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PREFACE

THE demand for an elementary treatise on

mechanical drawing, including the first principles

of machine design, and presented in such a way
as to meet, in particular, the needs of the student

whose previous theoretical knowledge is limited,

has caused the author to prepare the present vol-

ume. It has been the author's aim to adapt this

treatise to the requirements of the practical me-

chanic and young draftsman, and to present the

matter in as clear and concise a manner as possible,

so as to make "
self-study

"
easy. In order to meet

the demands of this class of students, practically

all the important elements of machine design have

been dealt with, and, besides, algebraic formulas

have been explained and the elements of trigo-

nometry have been treated in a manner suited to

the needs of the practical man.

In arranging the material, the author has first

devoted himself to mechanical drawing, pure and

simple, because a thorough understanding of the

principles of representing objects greatly facilitates

further study of mechanical subjects ; then, atten-

tion has been given to the mathematics necessary

iii
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IV PREFACE

for the solution of the problems in machine design

presented later, and to a practical introduction to

theoretical mechanics and strength of materials;

and, finally, the various elements entering in ma-

chine design, such as cams, gears, sprocket wheels,

cone pulleys, bolts, screws, couplings, clutches,

shafting, fly-wheels, etc., have been treated. This

arrangement makes it possible to present a con-

tinuous course of study which is easily compre-

hended and assimilated even by students of limited

previous training.

Portions of the section on mechanical drawing
was published by the author in The Patternmaker

several years ago. These articles have, however,

been carefully revised to harmonize with the pres-

ent treatise, and in some sections amplified. In

the preparation of the material, the author has

also consulted the works of various authors on

machine design, and credit has been- given in the

text wherever use has been made of material from

such sources.

Several important additions have been made by

Mr. Erik Oberg, Associate Editor of Machinery.

In the preparation of these additions, use has partly

been made of material published from time to time

in Machinery.
THE PUBLISHER.

APRIL, 1910.
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SELF-TAUGHT
MECHANICAL DRAWING

CHAPTER I

INSTRUMENTS AND MATERIALS

ONE who is to study the subject of drawing
should not merely read a book on the subject, but

should prepare sheets of exercises. This will fix

the principles which he learns in his mind in a way
as reading alone will not do, and will give him

practical experience in the use of the tools. The

geometrical problems given in this book make

perhaps the best of subjects for a beginning, as

their proper execution will require careful work.

Later, the student may make dimensioned free-

hand sketches of some machine with which he is

familiar, and from these sketches he may make up
a set of finished working drawings. In all of this

work, care should be taken to have it so laid out,

with proper margins and spaces between different

parts, that the drawing when finished shall pre-

sent an appearance of neatness and methodical

arrangement.
For the purposes of the student, a drawing board

about 15 by 18 inches will be large enough. With
this should be an 18-inch T-square, a pair of 6-inch

triangles, and a set of three or four irregular curves.

1



SELF-TAUGHT MECHANICAL DRAWING

For drawing full-size work, a good flat beveled-

edge rule will answer ordinary requirements, but

for making half- or quarter-size drawings some
kind of a "scale"

'

will be found desirable. The tri-

angular scale shown in Fig. 1 is perhaps the one

mostly used, and it has the advantage of possess-

\Ytt \V\\ \Y\\ \\\\ \\\\ \X\\ \\Tvl\\ \Y\\ \

FIG. 1. -The Triangular Scale.

ing six surfaces for graduations, giving variety

enough for all sorts of conditions, but it has the

disadvantage of persistently presenting the wrong
edge, and putting one to the trouble of turning it

over and over to get the desired edge. This trouble

may, of course, be overcome by using a scale guard
such as is shown in Fig. 2, but the guard is itself

often in the way. As
but two or three differ-

ent scales, aside from
full size, will be likely

to be required, it will be

found much more con-

FIG. 2. -Scale Guard or Holder venient to have a sep-

used on Triangular Scale. arate flat scale for each

graduation. Such scales

may be purchased, or, if one is satisfied with the

open graduation system shown in Fig. 3, he may
make them without much trouble himself. In this

system, only one inch is divided, this inch being
numbered 0; and measurements which include a
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fractional part of an inch are reckoned from the

required whole number to the proper place on the

divided inch.

The drawing instruments themselves, while not

necessarily of the highest price, should be of a

good serviceable quality of German silver. The

cheap brass or nickel plated school sets should not

be considered, as they will prove unsatisfactory

for regular work. It is not necessary to have a

large number of instruments. A very good set,

sufficient for all ordinary requirements, might be

as follows: First a pair of about 4J- or 5-inch com-

11 12 13 14 15 16 17 "18

FIG. 3. Inexpensive Type of Scale.

passes with fixed needle points (bayonet points are

useless) and interchangeable pin and pencil points,

with lengthening bar. Then, a pair of hair-

spring spacers of about the same size. These re-

semble ordinary plain compasses, but the steel end

of one leg is made adjustable by means of a

thumb screw. Next, a pair of ruling pens, one

large and one small, and, lastly, a set of three

spring instruments, pen, pencil and spacers, for

small work. Rather than to get cheap instru-

ments, it would be advisable to obtain a set gradu-

ally by getting the large instruments and one pen
first, and adding the second pen and the spring
instruments later. The large compasses can, if

necessary, be used to make circles of from about

i inch to about 18 or 20 inches in diameter, so
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that they will do very well for a beginning. For
making larger circles, beam compasses, in which
separate heads for the needle point and for the pen
or pencil point are attached to a wooden bar, after

the manner of workmen's trammels, are used.

A convenient case for the instruments, when
they are bought separately, is shown in Fig. 4,

and is made as follows: Take two pieces of
chamois skin or thin broadcloth, one of them about
one-half longer than the longest instrument, and
somewhat wider than all of them when they are

FIG. 4. Home-made Instrument Case.

laid out side by side, and the second one of the

same width as the first, but somewhat shorter than

the longest instrument. This second piece is

sewed onto the large piece at one end by the outer

edges. Pockets for the reception of the instru-

ments are then made as shown, and when the free

end of the large piece is folded over, the instru-

ments are rolled up together.

The pencils, which to avoid scratching particles,

should be of best quality, should not be sharpened
to a round point, but to a flat oval point, as such

a shape will wear longer than a round point ; the

leads used in the compasses, however, should be
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only slightly flattened. It will be found desirable

to have two grades of pencils, one quite hard,

about "4H," to be used for laying out work, and

a softer one, about "2H," to be used for going
over the lines of work which is not to be inked in.

In laying-out work where the hard pencil is used,

only a moderate pressure should be applied, so as

to permit of erasures at any time, whether for the

purpose of making alterations, or to free the draw-

ing of pencil marks after inking.

The drawing pens should be kept sharp, though
not so sharp as to cut the paper, and their ends

should present a neat oval shape. The needle

points of the compasses should also be kept sharp
to avoid the tendency to slip when doing work
where it is undesirable to prick through the pa-

per. A small Arkansas stone will be found useful

for this purpose. Where much use is made of a

given center, it may be desirable to employ a horn

or metal center, such as are kept in stock by deal-

ers in artists' supplies, to avoid the troublesome

enlargement of the center in the paper which the

points of the compasses would otherwise make.
In making a drawing, care should be taken to

have the preliminary pencil work done correctly.

It is a mistake which beginners are likely to make,
to think that errors in the pencil work may be

readily corrected in the inking. This, however,
is usually another case where "haste makes
waste." It is much better to spend a little extra

time on the pencil work, than to have to throw

away a nearly finished ink drawing and do the

work all over again. In locating the various



6 SELF-TAUGHT MECHANICAL DRAWING

views of a drawing upon the paper, it will fre-

quently be found to be well to make rough sketches

of it on scrap paper. These sketches can then be

moved around on the drawing paper until the best

arrangement is secured.

In making a drawing, it will be found most con-

venient, ordinarily, to limit the use of the T-square
to horizontal lines, the head of the square being

kept pressed firmly against the left-hand end of

the drawing board. Vertical lines are then made

FIG. 5. Appearance of Carelessly made Drawing.

with the aid of the triangles resting against the

blade of the T-square. Vertical lines which are

too long to be made in this way, are, of course,

made with the T-square itself. In inking in a

drawing, it is best to draw all curved or circular

lines first, as it is easier to join straight lines onto

curved lines than to join curved lines onto straight

lines. Care should also be taken to have meeting
lines just meet, whether they meet end to end or

at an angle. Carelessness in this respect gives a

drawing a very bad appearance, as shown by Fig.

5, A and B.
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In using the pens, whether the ruling or the com-

pass pens, care should be taken to see that both nibs

rest upon the paper, otherwise lines such as shown
in Fig. 6 may result. If the pen does rest squarely

upon the paper, and such lines continue to appear,

it is fair to infer that the paper has become some-

what greasy, perhaps from too much handling.

This trouble may be avoided, and the work kept

cleaner, by having a piece of thin paper inter-

posed between the hands and the drawing paper.

The cross hatching work, such as is shown at A
in Fig. 5, is frequently done by simply using one

of the triangles resting against the blade of the

FlG. 6. Line Resulting from not Having both Pen Points or

Nibs Resting on the Paper when Inking.

T-square, the same as is done for vertical lines, the

spacing being done entirely by the eye; but unless

one is doing a good deal of this work, so as to

keep in practice, he will find it very difficult to

make the spacing regular. There are various sec-

tion-lining devices on the market for doing this

work, some of them quite expensive. Fig. 7 shows
a simple device for cross-sectioning, which serves

the purpose as well as any of the more elaborate

ones, and possesses the additional advantage that

anyone may readily make it for himself. This

instrument was shown by Mr. E. W. Beardsley in

Machinery, September, 1905. An old instrument

screw, B, is screwed into a slightly smaller hole

in a piece of wood, A, shaped as shown, and of a
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thickness a little in excess of the diameter of .the

screw-head. This combination is then used in the

central hole in a triangle, as shown. Then, with

one finger on the triangle itself, and with another

one on A, the two may be moved along, first one

and then the other, for section lining, the desired

width of space being secured by the adjustment

given to B.

For making erasures of ink lines on paper, a

steel scraping eraser or a sharp knife blade is usu-

FIG. 7. Simple Cross-section Liner.

ally the best, the roughened surface being after-

wards rubbed down smooth with some hard sub-

stance. When making erasures of either pencil

or ink with a rubber eraser, an erasing shield,

such as is shown in Fig. 8, is useful for prevent-

ing rubbing out more than is intended. These

shields are made both of thin sheet metal and of

celluloid; the metal ones, being the thinner, are

the more convenient to use.

Tho paper used, if good work is desired, should
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be regular drawing paper, whether it be white or

brown. This has an unglazed surface, and will be

found much more satisfactory in every way than

common paper. The glazed surface of the cheaper

paper does not take pencil marks well, and is torn

up badly in making erasures. Such paper, if used

at all, should be used only on the most temporary

FIG. 8. Erasing Shield made from Sheet Metal

or Celluloid.

work. Of white drawing papers, the smooth sur-

faced kinds should be selected. For making ink

drawings, it will be found most satisfactory to use

the prepared drawing inks, rather than to go to

the trouble of preparing it oneself from the stick

India ink.

For fastening the paper on to the board, common
one-half-ounce copper tacks are as good, if not

preferable, to other fastening means.



CHAPTER II

DEFINITIONS OF TERMS USED IN GEOMETRICAL
AND MECHANICAL DRAWING

1. A Point has position, but not magnitude.
2. A Line has length, but neither breadth nor

thickness.

3. A Surface has length and breadth, but not

thickness.

4. A Solid has length, breadth and thickness.

5. A Plane is a surface which is straight in

every direction; that is, one which is perfectly
flat.

6. Parallel lines are such as are everywhere
equally distant from each other. Circular lines

which answer to this condition are also said to be

concentric.

7. An Angle is the difference in the direction

of two lines. If the lines meet, the point of meet-

ing is called the vertex of the angle, and the lines

ab and ac, Fig. 9, are its sides.

8. If a straight line meets another so that the

adjacent angles are equal, each of these angles is

a right angle, and the two lines are perpendicular
to each other. Thus the angles acd and deb, Fig.

10, are right angles, and the lines ab and dc are

perpendicular to each other. A distinction is to

be made here between the words perpendicular
10
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and vertical. A vertical line is one which is per-

pendicular to the plane of the earth's horizon ; that

is, to the surface of still water.

9. An Obtuse Angle is one which is greater
than a right angle, as ace, Fig. 10.

10. An Acute Angle is one which is less than a

right angle, as ecb, Fig. 10.

11. It is obvious that the sum of all the angles
which may be formed about the point c, Fig. 10,

above the line ab will be equal to the two right

angles acd and deb.

FIG. 9. Angle. FIG. 10. Illustration for Making
Clear the Terms Right, Acute
and Obtuse Angles.

12. The Complement of an angle is a right angle,
less the given angle. Thus bce

t Fig. 10, is the

complement of dee.

13. The Supplement of an angle is two right

angles less the given angle. Thus bee, Fig. 10, is

the supplement of ace.

14. A Circle is a continuous curved line, Fig. 11,

or the space enclosed by such line, every point of

which is equally distant from a point within called

the center.

15. The distance across a circle, measured

through the center, is the diameter. The distance

around the circle is the circumference. The dis-
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tance from the center to the circumference is the

radius.

16. The ratio between the circumference and
the diameter, that is, the circumference divided

by the diameter, is 3.1416. While this is not exact

(Bradbury's Geometry states that it has been car-

ried out to two hundred and fifty places of deci-

mals), it is near enough for practical purposes.
This ratio is frequently represented by the Greek
letter TT (pi).

17. A circle is considered as being equally divided

FIG. 11. -Illustration for FIG. 12. -Similar Triangles.
Making Clear the Terms

Relating to the Circle.

into three hundred and sixty degrees (360), each

degree into sixty minutes (60'), and each minute

into sixty seconds (60").

18. If two diameters cross each other at right

angles, the circle is divided into four equal parts;

hence a right angle contains ninety degrees.

19. An Arc of a circle is any part of its circum-

ference, as abc, Fig. 11.

20. A Chord is a straight line joining the ends

of an arc, as ac, Fig. 11.

21. Two triangles, as abc and dec, Fig. 12, hav-

ing like angles are similar triangles. The corre-
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spending sides of similar triangles have the same
ratio. Thus if ac were twice as long as dc, ab

would be twice as long as de, and be would be

twice as long as ec.

22. The sum of the angles of a triangle is equal

to two right angles. Let abc, Fig. 13, represent

any triangle. Extend one side, ac, as shown, and
make cd parallel with ab. Then the angle dee is

equal to the angle bac, for their sides have the

same direction, and the angle bed is equal to the

FIG. 13. Illustration for

Showing that the Sum of

the Angles in a Triangle

equals Two Right Angles. FIG. 14. Tangent and Nor-

mal to a Curve.

angle abc, for their sides have opposite directions;

hence the sum of the three angles formed about

the point c is equal to the sum of the three angles
of the triangle abc, and these are equal to two

right angles (11).

23. A Tangent is a line which touches another,
but does not, though extended, cross it. Thus, a,

b and c, Fig. 14, are tangent lines. A line, d,

perpendicular to the straight line 6, at the point
of tangency, is called a normal. If one of the



14 SELF-TAUGHT MECHANICAL DRAWING

lines, as a, is circular, the normal will pass through
its center.

24. A Parallelogram is a figure whose opposite

sides are parallel, as ab and cd, or eb and fd in

Fig. 15. The sides may all be of equal length,

FIG. 15. Parallelograms. FIG. 16. -Square.

(Seewhen the parallelogram is called a square.

Fig. 16.)

25. Figures having five, six or eight sides are

called respectively Pentagon, Hexagon and Octagon.

These, and all figures having more than four sides,

are called Polygons. If the sides in a polygon are

FIG. 17. Regular Polygon. FIG. 18. Ellipse.

all of equal length, and all the angles equal, the

polygon is called a regular polygon. (See Fig. 17.)

26. An Ellipse, Fig. 18, is a continuous curved

line, or the space enclosed by such line, of such

shape that the sum of the distances from two
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points within, as a and 6, called the foci (singu-
lar: focus), to any point upon its circumference
is constant. Thus al plus bl equals a2 plus b2 or

a3 plus b3.

27. An Involute is a line of such shape (as a in

FIG. 19. Involute. FIG. 20. Cycloid.

Fig. 19) as might be made by a pencil at the end
of a string which is unwound from a circle.

28. A Cycloid is a line of such shape (as a in

Fig. 20) as might be made

by a pencil fastened to the

circumference of a circle

which is being rolled upon
a straight line. If the circle

was being rolled upon the

convex side of a circular

line the line traced by the

pencil would be an epicy-

cloid. If it was being rolled

upon the concave side of a

circular line, the line traced

by the pencil would be a

hypocycloid. The involute

and cycloidal curves are used in gear outlines.

29. A Parabola is a curve which may be ob-

FIG. 21. Method of Sec-

tioning a Cone to Ob-

tain a Parabola.
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tained by cutting a cone so that the exposed
sectional surface will be parallel with one of the

sides of the cone, as shown in Fig. 21. This

curve, as shown in Fig. 22, is of such shape that

lines drawn to it from a certain point within,
called the focus, shown at / in the illustration,

niake the same angle with it as lines drawn from

/7

/\7

FIG. 22. Parabola.

the intersection points parallel with the axis ax.

Thus the line fm makes the same angle with the

parabola, at the point of intersection, as the line

ml. Because of this property of the parabola,

mirrors of this shape are used in headlights of

locomotives, in search lights," and in many light-

houses ; because, if a light be placed at the focus,

its rays, when reflected from the mirror, will be

thrown out in parallel lines.



CHAPTER III

GEOMETRICAL PROBLEMS

Prob. 1, Fig. 23. To bisect a line, either curved

as abc, or straight as ac. With centers at a and c

and with a radius somewhat greater than half the

length of the line, describe the arcs d and e. A
line passing through the intersections of these arcs

bisects either line. It will also pass through the

center of the circle of which the arc abc is a part.

Prob. 2, Fig. 24. To bisect an angle. With

FIG. 23. Bisecting a Line. FIG. 24. Bisecting an Angle.

center at a, and with any convenient radius, de-

scribe the arc be. With centers at b and c, and

with a radius greater than half the arc, describe

the arcs d and e. A line from a through the inter-

section of these arcs bisects the angle.

Prob. 3, Fig. 25. To make an angle equal to a

given angle. Let a be the given angle, and let it

be desired to make an angle equal to it on the line

dg. With center at a make the arc be, and then

with center at d make the arc eh with the same
17
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radius. Then with a radius equal to be, and with
center at h, make the arc /. A line from d through
the intersection of the arcs gives the required
angle.

Prob. 4, Fig. 26. To erect a perpendicular at the

end of a line, ab. With any convenient center, c,

FIG. 25. Making an Angle Equal to a Given Angle.

and with radius cb, draw a semicircle intersecting
ab at d. Draw a line from d through c intersect-

ing the semicircle at e. A line from 6 passing

through e is the required perpendicular.
Prob. 5, Fig. 27. To drop a perpendicular from

a point a, to a given line be. With a as a center,

FIG. 26. Erecting a Perpen-
dicular Line.

r
FIG. 27. Drawing a Perpen-

dicular Line.

draw an arc intersecting be at d and e. With d

and e as centers draw the intersecting arcs / and

g. A line from a through the intersection of

these arcs is the required perpendicular. If a

were over one end of the line be the process shown
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in the preceding problem might be reversed by
drawing a line from a corresponding to de, Fig.

26, and upon this line drawing a semicircle, when
its intersection with the base line would give the

point to which the perpendicular from a should be

drawn.

Prob. 6, Fig. 28. To draw a tangent to a circle

at a given point. Draw a radius of the circle to

the required point, and erect a perpendicular to it,

which will be the required tangent. To find the

point of tangency of a line to a circle, drop a per-

FIG. 28. Drawing a Tangent FIG. 29. Finding the Center
to a Circle. of a Circle.

pendicular to the tangent from the center of the

circle.

Prob. 7, Fig. 29. To find the center of a circle.

Mark off two arcs as ab and ac upon the circumfer-

ence, and bisect these arcs as in Prob. 1. Where
these bisecting lines cross each other will be the

required center.

Prob. 8, Fig. 30. To draw a regular hexagon

upon a given base, ab. With a radius equal to the

length of ab draw the arcs c and d. The intersec-

tion of these arcs will be the center of a circum-

scribing circle upon which the other sides may be
marked off.
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Prob. 9, Fig. SI. To draw a regular octagon in

a square. Draw the diagonals of the square, ad
and be, and with a radius equal to half of a diago-

nal, and with centers at a, b, c and d, draw the

arcs e, f, g and h. The intersections of these arcs

FIG. 30. Drawing a Regular

Hexagon.

FIG. 31. Drawing a Regular

Octagon.

with the sides of the square give the corners of

the required octagon.

Prob. 10, Fig. 32. To draw a circle about a tri-

angle, as abc. Bisect any two of the sides as in

Prob. 1. Where the bisecting lines cross each

32. Drawing a Circle

about a Triangle.

FIG. 33. Inscribing a Circle

in a Triangle.

other will be the center of the required circle. In

a similar manner a center may be found from

which to draw a circle through any three given

points, the given points in this case being the cor-

ners of the triangle.
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Prob. 11, Fig. 33. To draw a circle within a

given triangle, as abc. Bisect any two of the angles
as in Prob. 2. Where the bisecting lines cross, will

be the center of the required circle. In a similar

manner a center may be found from which to draw
a circle tangent to any three given straight lines.

Prob. 12, Fig. 34. To find the foci of an ellipse.

Draw the long and the short diameters of the

ellipse, ab and cd, and with a radius equal to half

of the long diameter, and with a center at c or d

FIG. 34. Finding the Foci of

an Ellipse.

FIG. 35. Simplified Method
of Drawing an Ellipse.

draw the arcs e and /. Where these arcs intersect

the long diameter will be the required foci.

Prob. 13, Fig. 35. To draw an ellipse with a

pencil and thread. Having found the foci of the

ellipse, stick a pin firmly into each focus, and loop-

ing a thread around them, allow it to be slack

enough so that the pencil will draw it out to the

end of the short diameter. The thread will then

guide the pencil so that it will draw an ellipse. A
groove should be cut around the pencil lead to pre-
vent the thread from slipping off.

Prob. 14, Fig. 36. To draw an ellipse with a
trammel. Lay out the long and the short diame-
ters of the ellipse, ab and cd, and on a strip of

paper, A, mark off 1-3 equal to half of the long diam-
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eter, and 2-3 equal to half of the short diameter.

Then, keeping point 1 on the short diameter, and

point 2 on the long diameter, mark off any desired

number of points at 3. A curved line passing

through these points will be the required ellipse.

The ellipsograph, an instrument for drawing el-

lipses, is made on this principle, points at 1 and

2 traveling in grooves which coincide with ab

and cd.

Prob. 15, Fig. 37. To draw an ellipse by tangent

lines. Make ab equal to one-half of the long di-

d

FIG. 36. Another Method of FIG. 37. Drawing an Ellipse

Drawing an Ellipse. by Tangents.

ameter of the required ellipse, and be equal to one-

half its short diameter. Divide ab and be into

the same number of equal parts, and, numbering
them as indicated, connect 1 and 1'', 2 and 2' and
so forth. A curved line starting at a, tangent to

these lines, and ending at c, is one-quarter of the

required ellipse.

Prob. 16, Fig. 38. To draw an approximate el-

lipse with compasses, using four centers. Lay out

the long diameter ab, and the short diameter cd,

crossing each other centrally at o. From 6 meas-

ure off be equal to co, one-half of the short diam-

eter. The length ae will then be the radius gh
for forming the part hk of the ellipse. From e
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mark off the point/, making ef equal to one half

of oe. The point / will be the center, and fb the

radius for forming the end of the ellipse. Lines

drawn from the centers g through the points / de-

termine the points at which the different curves

meet. This method is not considered applicable

when the short diameter is less than two-thirds of

the long diameter.

FIG. 38. Drawing an Approximate Ellipse by Four
Circular Arcs.

Prob. 17, Figs. 39 and 39a. To draw an approx-
imate ellipse with compasses, using eight centers.

Lay out the long diameter ab, and the short diam-
eter cd crossing each other centrally at /. Con-
struct the parallelogram aecf, and draw the diago-
nal ac. From e draw a line at right angles to ac,

crossing the long diameter at h, and meeting the

short diameter, extended, at g. Point g is the center

from which to strike the sides of the ellipse, and
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h will be the center, subject to certain modifica-

tions for narrow ellipses, from which to strike the

ends of the ellipse. To get the radius of the third

curve for connecting the side and end curves, lay

off a base line ab, Fig. 39A, of any convenient

length, and divide it into five equal parts by the

points 1, 2, 3 and 4. At one end of the line erect

the perpendicular ac, equal to the end radius ah,

and at the other end erect the perpendicular bd

equal to the side radius eg. Connect the ends of

these perpendiculars by the line cd, and at point
2 erect a perpendicular, meeting cd at e. The

length e2 will be the desired third radius. With
the compasses set to this radius, find a center i

from which a curve can be struck which will be

just tangent to the side and end curves. From
other centers similarly located the remainder of

the ellipse is drawn. Lines drawn from i through

h, and from g through i determine the meeting

points of the different curves.

For narrow ellipses the length of the end radius,

ah, should be increased as follows : For an ellipse

having its breadth equal to one-half of its length,

make ah one-eighth longer. For an ellipse having
its breadth one-third of its length, make ah one-

fourth longer. For an ellipse having its breadth

equal one-quarter of its length, make ah one-half

longer. For intermediate breadths lengthen ah

proportionately. With this modification of the

length of the end radius, this method gives curves

which blend well together so as to satisfy the eye,

and gives a figure which conforms quite closely to

the actual outlines of an ellipse.
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FIG. 39a.

FIGS. 39 and 39a. Drawing an Approximate Ellipse by

Eight Circular Arcs.
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Prob. 18, Fig. 40. To draw a regular polygon of

any number of sides on a given base, ab. Extend ab

as shown, and on it with one end as a center and
a radius equal to the length of the given side, draw
a semicircle. Divide this semicircle into as many
equal spaces as there are to be sides to the polygon.
A line from b to the second space, reckoning from

where the semicircle meets the extension of ab,

will be a second side of the required polygon.
Lines are then drawn from b through the remain-

ing divisions of the semicircle, and the remaining

FIG. 40. Drawing a Regular FIG. 41. Drawing a Spiral

Pentagon. about a Square.

sides of the polygon are marked off upon them as

indicated. If the polygon is to have many sides,

as an additional precaution against error, bisect ab

and b2, thus getting the center of a circumscribing
circle upon which the remaining sides may be

marked off.

Prob. 19, Fig. 41. To draw a spiral about a

square. Lay out a square, 1-2-3-4, having the

length of each side equal to one-quarter of the de-

sired distance between the successive convolutions

of the spiral, and extend each side in one direction

as shown. With a center at 2, and with a radius

1-2 draw a quarter of a circle. With a center at 3
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draw another quarter of a circle, continuing the

first one, and so continue with successive corners

of the square for centers.

Fig. 42 shows how, by similarly extending one

end of each side, a spiral may be drawn about a

regular polygon of any number of sides. A curve

so formed determines the shape of the teeth of

sprocket wheels.

Prob. 20, Fig. 43. To draw an involute. Upon
the circumference of the given circle mark off any

FIG. 42. Drawing a Spiral FIG. 43. Drawing an Invo-

about a Regular Polygon. lute.

number of equally distant points, as 0-1-2-3, etc.,

and draw lines tangent to the circle at these points,

beginning at point 1. Then with the compasses
set the same as for marking off the spaces on the

circle, mark off one space on line 1, two spaces on

line 2, three spaces on line 3
t and so forth. A

curved line starting at and passing through these

points will be the required involute. This curve

is used for the shape of the teeth of involute gears.

Prob. 21, Fig. 44. To draw a cycloid. Upon the

base line ab mark off any number of equally dis-

tant points, as 0-1-2-3, etc., the distance between
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them being made, for convenience sake, about one-

sixth of half the circumference of the generating
circle. Beginning at 1 erect perpendiculars from
these points, and with centers on these lines draw
arcs of circles tangent to the base line to represent

FIG. 44. Drawing a Cy-
cloid.

FIG. 45. Drawing an Epicy-
cloid.

successive positions of the generating circle as it

is rolled along. With the compasses set as for

spacing off the base line, mark off one space on the

arc which starts from point 1, two spaces on arc

2, three spaces on arc 3, and so forth. A curved

line starting at and pass-

ing through' the points
thus obtained will be the

required cycloid.

An epicycloid, Fig. 45,

or a hypocycloid, Fig. 46,

is formed in precisely the

same way, excepting that

as the base line, ab, is an arc of a circle, the center

lines from points 1-2-3, etc., are made radial.

These three cycloidal curves are used for the

shape of the teeth of epicycloidal gears, sometimes

called simply cycloidal gears.

FIG. 46. Drawing a Hypo-
cycloid.
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Prob. 22, Fig. 47. To draw a parabola by means

of intersecting lines. Draw the axis ax, and on it

mark the focus / and the vertex v, and at right

angles to it draw the line be at a distance from v

equal to the distance of v from/. Across the axis,

and at right angles to it, draw a number of lines,

1, 2, 3, 4, 5, 6. Then with radius al, and with

center at the focus /, draw arcs intersecting line

1; with radius a2, and with center again on /draw
arcs intersecting line 2, and so on. A curved line

FIG. 47. Drawing a Parabola.

passing through these intersections will be a para-
bola. It will be seen from this method of drawing
a parabola that any point on it is equally distant

from the focus, and from the line be, called the

directrix.

Prob. 23, Fig. 48. To draw a parabola with a

pencil and string. Lay out the axis, the focus, the

vertex and the directrix as before. Attach one

end of a thread to the focus, / by means of a pin,

and attach the other end of the thread to the

square shown at d, having the thread of such
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length that when the inner edge of the square is

on the axis, ax, the thread if drawn down with
a pencil will just reach to the vertex, v. Now
slide the square along be in the direction of the

FIG. 48. Simplified Method of Drawing a Parabola.

arrow, keeping the pencil against the square; the

thread will cause the pencil to move along so as to

describe a parabola as shown.
Prob. 24, Fig. 49. To draw a parabola of a given

\
FIG. 49. Another Method of Drawing a Parabola.

breadth of opening, ab, and of a given depth, cd.

Draw ef parallel with ab, and draw ae and bf paral-
lel with cd, having ac and be equal. Space off dc
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and df into any number of equal parts, and also

space off ea and/6 into the same number of equal

parts, as shown. From d draw lines to the di-

visions on ea and/6, and from 1, 2, 3 and 4 on de

and df draw perpendicular lines to intersect the

lines drawn from d to 1, 2, 3 and 4 on lines ca and

fb. A curved line passing through these inter-

sections will be the required parabola.

Prob. 25, Fig. 50. To find the focus of a para-
bola. Let abed be the given parabola, eft being its

FIG. 50. Finding the Focus of a Parabola.

axis. Across the parabola at its vertex, v, draw
the line ij at right angles to the axis. From any
point, g, on the parabola, draw the line gh parallel

to the axis. With center at g.fmd a radius, by
trial, which will cut the axis as much inside the

vertex, v, as it cuts the line gh beyond the line ij.

The intersection at x will be the required focus.



CHAPTER IV

PROJECTION

Mode of Representing Objects. In mechanical

drawing, machines, or parts of machines, are rep-

resented by views, generally three, in which per-

spective is ignored, and which show the object in

different positions at right angles to each other.

The mode of representing these views, and their

positions with regard to one another, which expe-
rience has shown to be most convenient is perhaps
best shown by means of the familiar cardboard

illustration. Let abcdefgh, Fig. 51, represent a

piece of cardboard, which we will suppose to be

transparent, creased on the dotted lines to permit
of the outer portions being turned back. Let us

now suppose that we have a prism shaped as shown
at C, and of the length shown at A. If the prism
is stood upright with its broad side facing the ob-

server, and the cardboard, being blank, is held up
in front of it, the prism will appear, if all its lines

are brought perpendicularly forward to the card-

board, as it is shown at A, lines on the prism
which would be hidden by its body, as the further

corner, being dotted. If section Cof the cardboard

is now turned backward through an angle of 90

degrees over the top of the prism we would get the

view shown in that part, all lines being brought
32
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perpendicularly forward from the prism to the

cardboard as before. Likewise if part D of the

cardboard were turned backward through an angle

of 90 degrees, and the lines of the prism were

brought perpendicularly forward onto it, we would

get the view shown in that part. The view shown

at A is called the elevation, that shown at C is

called the plan, and that shown at D is called the

side view. Occasionally a piece is so shaped, or

FIG. 51. Principle of Projection.

has so much of detail to it as to make another side

view desirable; such a view would be placed at B.

In many other cases, as in the case of the prism
here shown, the plan and elevation views alone

will fully show the object.

The production of these views from one another

is called projection ; and by the use of connecting

lines, and also at times of temporary construction

views, objects may be shown at any desired angle,

irregular or curved lines may be traced, and sur-

faces may be developed.
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An Upright Prism. Fig. 52 shows a prism in its

simplest position. A moment's examination will

show that the elevation cannot be drawn directly,

as the distance apart of the vertical lines which

represent the corners of the prism, cannot be deter-

mined without other aid; hence it is necessary to

draw the plan view first. Horizontal lines having
been made to give the height of the prism in the

elevation, the vertical lines may then be drawn in

FIG. 52. Projections of

Prism.

FIG. 53. Projections of

Tilted Prism.

from the plan, as indicated by the vertical dotted

line.

The Prism Inclined at One Angle. Fig. 53 shows
the prism inclined to the right. A brief exami-

nation of these views will show that none of them
can be drawn directly, as the distance apart of

the vertical lines in the elevation and side views

is not known, and the lines of the plan view are

foreshortened; but the views can be developed
from Fig. 52. It is evident that as the prism is

tipped, the elevation view will remain unchanged,
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hence the first step will be to reproduce that view

inclined at the desired angle. As the prism is

tipped it is also evident that all points in the plan

view of Fig. 52 will move in horizontal lines to the

right, hence horizontal lines are drawn from these

points through the position which the plan will

occupy in Fig. 53. The intersection of these lines

with vertical lines from the corresponding points

in the elevation will determine the position of

each point in the plan. The points so determined

one by one being then connected by straight lines,

gives the plan view as shown. To make the side

view, horizontal lines are first drawn from the

various points of the prism as seen in the eleva-

tion through the position which the side view will

occupy. Then, bearing in mind that each point

of the prism in the side view will be as much to

the left of the vertical line ab as the same point

in the plan is below the line ccZ, the position of

each point on the horizontal lines is marked off

from ab.

The Prism Inclined at Two Angles. Fig. 54 shows

the prism tipped forward after having been tipped

to the right as shown in Fig. 53. An examination

of these views will show that not only can they

not be drawn directly, but they cannot be devel-

oped from Fig. 52. They may, however, be de-

veloped from Fig. 53. It is evident that as the

prism is tipped forward, the side view of Fig. 53

will remain unchanged ;
hence the first step will

be to reproduce that view inclined at the desired

angle. Next, horizontal lines are drawn from the

corners of the prism as seen in this view through
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the place which the elevation is to occupy, and the

perpendicular line gh is drawn. It is evident that

as the prism is tipped forward, the different points
of it as seen in the elevation of Fig. 53 do not

move any to the right or left, but forward only.

Hence, the distance of the corners of the prism
from the line ef may be taken by the compasses
and marked off from the line gh upon the proper
horizontal line. The new position of all of the

corners having thus been

determined, the con-

necting straight lines

are drawn, giving the

elevation as shown in

Fig-, 54. Vertical lines

are then drawn from the

different points of the

prism, as seen in this

view, through the posi-

tion which the plan is

to occupy, and the exact

position of each point

upon these lines is

marked off from mn at the same distance which
it is from the line jk in the side view.

An Upright Rectangular Prism. The upright

rectangular prism shown in Fig. 55 is, of course,

drawn in the same way as was the prism shown
in Fig. 52.

The Prism of Fig. 55 Tipped Forward on One Edge.
It is evident that if the prism were to be tipped

on its edge in the direction of the arrow No. 1, the

result would be the same as though it had been

FIG. 54. Projections of Prism

Tilted in Two Directions.
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tipped first to the right, and then directly forward,

as was done to produce Fig. 54; but as those

angles are not given, the method employed in that

case is not readily available.

Fig. 56 shows the prism tipped to its new po-

sition, and shows, also, the method employed to

produce the views. Draw the line cd at the same

FIG. 55. Upright Rectan-

gular Prism.

FIG. 56. Rectangular Prism

Tipped Forward.

angle to the horizontal as the edge ab of the prism
in Fig. 55, and make e/at right angles to it. Upon
these lines draw the temporary side view of the

prism, A, tipped at the desired angle. With the

aid of this view the plan view is readily drawn.

Vertical lines are then drawn from the various

points of the plan view through the place which
the elevation is to occupy, and the exact location

of each point is marked off on these lines at the
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same height above the base line gh that it is above

the line ef in the temporary side view, A. The

permanent side view is then developed from
the plan and elevation in the same way as was the

side view of Fig. 53.

Let it now be required to tip the prism of Fig. 55

forward on one corner in the direction of arrow
No. 2.

It will be seen that tipping it in this direction

FIG. 57. Rectangular Prism Tipped in Two Directions.

will cause a foreshortening of all of the lines in the

plan, hence the use of a single temporary view
such as was used in Fig. 56 will not solve the

problem; but it may be solved by the use of two

temporary views as shown in Fig. 57. Draw the

line ab in the direction in which the prism is to be

tipped, and the line cd at right angles to it. At A
reproduce the plan view of Fig. 55, and at B draw
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a side view of the prism as it would appear if A
were viewed in the direction of the arrow, but in-

clined to cd at the required angle. The intersec-

tion of lines drawn from the corners of A, parallel

with ab, with lines drawn from the same corners

of B, parallel with cd, will give their location

FIG. 58. Projections of a Cube.

in the permanent plan view. This view being

finished, the elevation and the permanent side

views are drawn in the same way as were those

of Fig. 56.

Let a cube be set on one corner so that a diagonal

of it shall be horizontal; required to show the angle
which the edges that meet at that forward corner

make with a plane perpendicular to the diagonal,

the angle which the sides that have corners coming

together at the same point make with the plane, and
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also the am ^ant offoreshortening of the lines which
will be caused.

In Fig. 58, A shows a face view of the cube set

on edge, B shows a side view of the same, and C
shows B inclined until the diagonal ke becomes
horizontal. The length of ke being laid out on the

center line, the position of the other corners is ob-

tained as indicated by the arcs a, b, c and d. The

angle geh is the required angle which the edges
which meet at e make
with a plane perpendic-
ular to ek, of which fg is

an edge view ; the angle

fej is the angle which
the sides having corners

meeting at e make with

the plane. D is a face

view of C, and any of its

lines, when compared
with any of the lines of

A, will show the fore-

shortening caused by the
cube being put into this

position.

The Surface Develop-
ment of a Cone. Let A
and B, Fig. 59, be the

plan and elevation views

of a cone. With a radius

equal to ab, and with a

center at c, draw the arc def, making it equal in

length to the circumference of the base of the cone,

as shown at A, This may be most conveniently

FIG. 59. Development of

a Cone.
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done by spacing it off. Draw the lines cd and cf,

and the figure C thus formed will be the required
surface development.
The Surface Development of a Pyramid Having

Its Top Cut Off Obliquely. In Fig. 60, A, B and C
show, respectively, the plan, elevation, and side

FIG. 60. -Development of a Frustum of a Pyramid.

views of the pyramid, the top of which is cut off by
the plane ab. These views may be made by the

principles already explained, as may also the view
at D, which shows the pyramid as though B were
viewed in the direction of the connecting dotted

line, which is at right angles to ab, thus showing
the shape of the section exposed by cutting off the

top.
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To get the surface development, take a radius

equal to the length of one edge of the pyramid as

shown at cd in the elevation, this being the only
one which shows at full length, the others being
more or less foreshortened, and with a center at e

in view E, draw an arc of a circle upon which the

sides of the base are to be marked off. These

points are connected with one another and with e;

this gives the shape of the surface of the whole

pyramid. Upon the lines connecting the points

with e, as el, e2 and e3, the .lengths of the different

edges of the cut off pyramid are marked off. As
the edge which is seen at the left in the elevation

shows full length, its length, dl, may be taken di-

rectly and marked off on the line el. As the other

edges are seen foreshortened, their lengths cannot

be taken directly, but by horizontally transferring
the upper end of each edge to the line cd, their

actual lengths d2 and d3 may be obtained and then

marked off on the lines e2 and e3. The points so

obtained being connected, and the outer half sec-

tions being finished, gives the required surface

development.
If the cone shown in Fig. 59 were to have its top

cut off obliquely, the views of it corresponding to

A, B, Cand D, Fig. 60, and its surface develop-

ment, would be obtained by dividing off its base,

as seen in the plan, into any number of sides, and
then proceeding as though it were a pyramid of

that number of sides, until the points correspond-

ing to those of Fig. 60 had been located, but then

connecting them with curved lines instead of

straight lines.
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Intersecting Cylinders, Fig. 61. Required the

line of the intersection, the surface development ofthe

branch, and the shape which the end of the branch

would appear to have as seen in the view at the

right.

First draw the elevation, A, in outline, and as

much of the end view, B, as can be directly drawn.

FIG. 61. Intersecting Cylinders.

Opposite the end of the branch in each of these

views, and in line with it, draw circles of the same

diameter as the branch, and space off the semi-

circumference nearest to it into a number of

equal parts, the same number in both cases. From
the points so obtained draw lines parallel with the

center line of the branch, as shown. From the

points where these lines in the view B meet the
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circle representing the end of the large cylinder,

draw horizontal lines intersecting the lines drawn
from C. These intersections will be points through
which the line of the intersection of the cylinders
is to be drawn. From the points where the lines

drawn from C cross the end of the branch, draw
horizontal lines intersecting those drawn from D.

These intersections will be points through which
the line representing the end of the branch is to

be drawn.

To get the surface development of the branch,
first draw the line ab, in E, having it in line with

the end of the branch. Make this line equal in

length to the circumference of the branch, spacing
it off equally each way from the center line OX into

the same number of spaces as the semi-circumfer-

ence of C was divided into. From these points
draw lines parallel with OX, and from the points
in the intersection of the two cylinders, previously

obtained, draw lines parallel with ab, intersecting

these lines. These intersections will be points

through which a curved line is to be drawn, thus

giving the completed surface development of the

branch.

In drawing these curved lines through the points

of intersection, the irregular curves mentioned in

the early part of the chapter on instruments and

materials are used.

Intersecting Cylinder and Frustum of Cone, Fig.

62. Required line of intersection and surface de-

velopment of branch, as before.

Draw the elevation, A, in outline, continuing the

sides of the conical branch either way until they
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meet at their vertex, a, on the one hand, and to

any convenient points, c and d, on the other. In a

similar manner draw as much of the end view, B,

FIG. 62. Intersecting Cylinder and Cone.

as can be made directly. With centers at a and at

6, and with any convenient radius, draw the arcs

c'd and ef, intersecting the extended sides of the

conical branch. Then, with centers at the inter-
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section of these arcs with the center line of the

branch, draw the half cicries shown, tangent to

the extended sides of the branch, and space them
off into a number of. equal parts, the same number
in each case. From these points draw lines to the

vertices a and b. From the points where these

lines in the end view, B, intersect the circle repre-

senting the end of cylinder, draw horizontal lines

to the elevation, A, intersecting the lines drawn
from the vertex a to the half-circle cd. The inter-

sections will be points through which the line rep-

resenting the intersection of- the cylinder and its

conical branch is to be drawn. The shape of the

end of the branch as seen in the end view, B, is

now obtained in the same manner as in the case of

the intersecting cylinders. From the points where
the lines drawn from the vertex, a, of the side ele-

vation A, to the half-circle at cd, cross the end of

the branch, draw horizontal lines intersecting the

lines drawn from the vertex b. These intersec-

tions will give points through which the line rep-

resenting the end of the branch in view B is to

be drawn.

To get the development of the branch as shown
at F take a radius equal to the distance from the

apex a to the end of the branch as seen in the side

elevation, A, and with a center at g draw an arc

hi, making the length of the arc equal to the cir-

cumference of the end of the branch as shown at

E, spacing equally each way from the center line

gj, the length and number of the spaces each way
being the same as those obtained in spacing off the

semicircle at E. Through these points draw lines
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radiating from g, as shown. On these lines dis-

tances are marked off from the arc hi through
which the irregular curved line is drawn which

gives the development of the branch. The lengths
at the middle and at the extremities may, of course,

be taken directly from the elevation A, the length
kl being the length on the center line, and the

length mn being the length at the extremities.

The other lengths, being foreshortened, as seen in

the elevation A, cannot be taken directly, but are

obtained by transferring the points to either kl or

mn as shown by the dotted lines, as was done in

the case of the pyramid, Fig. 60.

To Draw a Helix. A helix is a line of such shape
as would be made by winding a thread around a

FIG. 63. Drawing a Helix.

FIG. 64. The Helix as

it Appears in a Screw
Thread.

cylinder, and having it advance lengthwise on the

cylinder at a uniform rate as it is wound around
it. In Fig. 63 we have the side and end views of

a cylinder upon which it is desired to draw a helix,

which shall advance from a to b in making a half

turn around it. Divide the space from a to b into

any number of equal parts, and at the points so

obtained erect perpendicular lines. Divide the
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semi-circumference of the end view of the cylinder,

toward the side view, into the same number of

equal parts, and from these points draw horizontal

lines to meet the perpendiculars previously erected.

Where these lines meet will be points through
which the helix is to be drawn.

The outlines of a screw thread are helices. Fig.
64 shows a double threaded Acme standard, or 29

degree threaded screw, the outline of which, on
its outside diameter, is the helix of Fig. 63.

Isometric Projection. If a cube is tipped over on

one corner, so that the diagonal of it is horizontal

as shown at D, Fig. 58, and also in Fig. 65, the

FIG. 65. Principle of FIG. 66. An Example of

Isometric Projection. Isometric Projection.

lines of it will all appear of equal length. Draw-

ings made on this principle, as Fig. 66, are called

isometric drawings. Vertical lines remain ver-

tical. Horizontal lines become inclined to the

horizontal of the paper at an angle of 30 degrees.

Circles appear as ellipses, which may be drawn as

shown in the upper square of Fig. 65. From the

ends of the "short" diagonals, lines are drawn to

the middle of the opposite sides. Where these

lines cross the "long" diagonals are located the

centers from which the ends of the ellipse may
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be drawn. The ends of the short diagonals will

be centers from which to draw the sides of the

ellipse.

Irregular curves may be drawn as indicated in

Figs. 67 and 68. The figure 2 there shown is first

drawn in the desired position in a naturally shaped
square, which is then divided off by equally spaced
lines into smaller squares. The isometric square
is then similarly divided off, and the figure is

FIGS. 67 and 68. Method of Transferring Irregular Lines in

Isometric Projection.

made to pass through the corresponding inter-

sections.

Isometric drawings differ from perspective draw-

ings in that receding lines remain parallel, instead

of converging to a vanishing point. They may be

measured the same as ordinary drawings in any
one of the three directions indicated by the lines

of the cube. The foreshortening of the lines caused

by tipping the cube into this position is generally

ignored. If an isometric drawing is to be shown
in connection with ordinary views, however, it

should be made on a scale of about 8-10 of an inch

to the inch, otherwise it would appear too large.



CHAPTER V

WORKING DRAWINGS

As the object of working drawings is to convey
to the workman a clear idea of the appearance and
construction of the piece to be made, and as the

whole "science" of mechanical drawing has been

developed primarily for the purpose of conveying
the ideas and thoughts of the designer and drafts-

man to the men who carry out these ideas in wood
and metal, the subject of working drawings is of

supreme importance to all mechanics. A working
drawing should be as complete as possible, so com-

plete, in fact, that when it has once passed out of

the draftsman's- hand into the shop, no further

questions will be necessary. In or.der to accom-

plish this, all necessary information, of whatever

kind, should be .included, and, if required, short

notes and directions may be written on the draw-

ing to prevent eventual misunderstandings.
The number of views necessary to properly rep-

resent an object must be left for the draftsman's

judgment to determine. Usually two views are

sufficient, when the object is simple, but when at

all complicated, three or more views will be found

necessary. Cylindrical pieces can often be ade-

quately represented by a single view, on which the

various diametral and length dimensions are given.
50
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While it is customary to put the plan view of an

object above the elevation, it frequently becomes

necessary, in order to present the objects shown in

as clear a manner as possible, to deviate from this

rule. A case of this kind is shown in Fig. 69,

where the shaft hanger illustrated has been se-

lected as an example of the methods employed in

working drawings.
An examination of the hanger will show that if

the plan were placed above the elevation, and if it

were represented according to the methods already

explained, the box and the yoke with its adjusting

screws and check-nuts would have to be shown

mostly by dotted lines. Such a multiplicity of

dotted lines would tend to confusion; hence the

object in view, that of presenting the hanger in as

clear a manner as possible, is best accomplished in

a case like this by having the plan underneath the

elevation, and letting it be a bottom view instead

of a top view.

In designing a machine detail of this kind, the

starting point would of necessity be the shaft

itself, and the first step would be to design the

box; next would come the yoke, and lastly, the

frame. Much of the preliminary work may fre-

quently be done on scrap paper; having determined

the size and proper proportions of the various

parts, the position which the different views will

occupy in the finished drawing is easily ascer-

tained. The center lines are then laid out as

shown, and the drawing built up about these lines

as a base.

When a drawing is for temporary use only, and
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the mechanism represented on it of a simple nature,

the assembly drawing, corresponding to the three

views in Fig. 69, will answer all purposes, the di-

mensions being given directly on this drawing. In

FIG. 69. Shaft Hanger.

some cases only the most important dimensions

would be given, those of secondary consequence

being left for the workman to be obtained by
"
scaling'

'

the drawing. This procedure, however,
is possible only when the drawing is made care-

fully to scale, and is not one that should be en-
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couraged. In general, a drawing should be so di-

mensioned that it can be worked to without the

workman obtaining any measurements by "scal-

ing" the drawing.
In most cases it is not possible to show the de-

tails of a mechanism clearly enough in an assembly

drawing; for if the device shown is more or less

complicated, a hopeless confusion results from the

attempt to put in all the lines necessary to fully

show all the details ; neither would it be possible,

for the same reason, to give more than the princi-

CAST IRON, BABBITTED

FIG. 70. Example of Working Drawing.

pal dimensions. In such cases it is, therefore, cus-

tomary, after the assembly drawing has been com-

pleted, and the proper sizes and proportions of the

various parts of the mechanism thus ascertained,

to make a separate drawing of each detail, either

on the same sheet of paper, or on separate sheets.

This permits the parts of the mechanism to be

clearly and completely shown and fully dimen-

sioned. Figs. 70 and 71 show two pieces of the

hanger in Fig. 69 detailed in this manner. These

detail drawings give all the required informa-

tion for the making of the pieces, and the assembly
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drawing merely shows, in a general way, how the

parts are to be assembled when completed.
In the case of jig and fixture drawings, it is the

practice in a great many large drafting-rooms to

show assembled views only, and to put all dimen-

CAST IRON,

Tap %"-
10 thd.

FIG. 71. Example of Working Drawing.

sions directly on the assembly drawing; the argu-
ment advanced in favor of this practice is that ex-

perienced pattern-makers and tool-makers, who are,

as a rule, the only mechanics who will work on

the making of these tools, will find no difficulty in

reading the assembly drawing; besides, it is said,
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as a drawing of this kind is, in most cases, used

but once, it would be waste of time to have the

draftsman detail the different parts of the tool.

While these arguments are undoubtedly true in

the case of very simple jigs and fixtures, there can

be little doubt that in the case of more complicated

ones, the comparatively short time required by the

draftsman to make detail drawings will be saved

many times over in the shop; for the pattern-

maker and tool-maker will not have to spend, in

the total, a number of hours puzzling over the draw-

ing, and even then being liable to make a mistake.

In making drawings, it is always a rule to work
from the center lines, when the outline of the

piece is such that it has a definite center line.

Dimensions in either direction from the center

line can be best marked off with the compasses.
This insures a symmetrical appearance to the fin-

ished drawing, such as might not be secured if the

dimensions are set off on either side of the center

line from the rule, it always being easy to then

introduce small errors which show plainly in the

finished work. If the piece is of such shape as to

have no center line, some one principal line may
be selected, one in each direction in each view,

and the remaining points and lines may be located

from these lines.

The various styles of lines ordinarily used in

working drawings are shown in Fig. 72. The

regular "full" line AA is used for the outlines of

objects, and when drawn rather "fine," for cross-

hatching or cross-sectioning. The heavy shade

line BB is used to represent lines assumed to sepa-
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rate the light surfaces of an object from the dark,
as will be explained in the following. The dotted

line CC, as has already been explained in the pre-
vious chapter, is used to represent lines obscured
or hidden from view. The line DD, called a
"dash" line, is used by a great many draftsmen
for dimension lines. Finally, the line EE, the

"dash and dot," or, simply, the "dash-dotted"

FIG. 72. Styles of Lines Used on Working Drawings.

line, is used in common practice for center lines,

to indicate sections, etc. This line is also com-

monly used for construction lines, in laying out

mechanical movements.

The dimension lines may be made either fine

full lines or "dash" lines, the dashes being about

| inch long. A space is left open for the figures

giving the dimension. The witness points or ar-

row heads, showing the termination of the dimen-

sion, are made free hand. Many draftsmen draw
the extension and dimension lines in red ink, the

arrow heads, however, still being made black. It

is well to avoid, as far as possible, having the
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dimension lines cross each other, as such crossing
tends to confusion; the difficulty can usually be

avoided by having at least one set of dimensions

placed outside or between the views, the larger di-

mensions being placed farther from the outline of

the object than the shorter ones, to avoid having
the extension lines of the latter cross the dimen-

sion lines of the former. Dimensions under 24

inches are most conveniently given in inches;

larger dimensions are given in feet and inches.

The usual practice is to indicate feet and inches

on drawings by short marks,
"
prime'

' marks ('),

placed at the right, and a little above the figure,

one mark (0 indicating feet, and two marks,
"
double prime'

' marks ("), indicating inches, so

that 5' 7" would read 5 feet 1 inches. Some drafts-

men do not consider this method of marking safe

enough to eliminate mistakes, and prefer to write

dimensions of this kind in the form 5 ft. 7". A
method equally satisfactory in preventing possible

mistakes is to place a short dash between the

figure giving the number of feet and that giving
the number of inches, at the same time retaining
the "prime" marks; thus, 5' 7". When feet only
are given, it is well, for the sake of uniformity
and to prevent any misunderstanding, to give the

dimension in the form 5' 0".

A few examples showing the principles of the

usual methods of dimensioning drawings may be

of value. In Fig. 73 is shown a simple bushing.
The diameter of the hole or bore is given as 2

inches by a dimension line passing through the

center of the circles in the end view. It is con-
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fusing, however, to have more than one dimension
line passing through the same center, and, there-

fore, the outside diameters of the bushing have
been given on the side view. The lengths of the

various steps or shoulders of the bushing are given
below the side view, as is also the total length. It

will be noticed that the dimensions of the three

steps are slightly offset that is, the dimension

FIG. 73. Simple Example of Dimensioning a Drawing.

lines do not extend in one straight li'ne ; this makes
a very clear arrangement.
The method of dimensioning holes drilled in a

circle is shown in Fig. 74. Outside of the dimen-

sion for the holes themselves only the diameter of

the circle passing through the centers of the holes

is given, together with the number of holes. As
the holes, of course, are to be equally spaced, that

is* all that is required. When a great many bolt

holes or bolts occur around a flange, it is not nec-

essary to draw them all in on the working draw-

ing; a common method is to show a few, and to
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draw the circle passing through their centers, the

pitch circle. The total number of bolts around the

flange is, of course, also given. A case of this

kind is illustrated in Fig. 75. When a great many
holes are drilled in a row, a similar expedient may

FIG. 74. Dimensioning Holes Drilled in a Circle.

be adopted to avoid showing and dimensioning
all the holes; an illustration of this is shown in

Fig. 76.

In Fig. 77 are shown the common methods of

dimensioning screws and bolts. At A is shown a

hexagon head bolt, so drawn that three sides of
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the head are visible. Hexagon bolt-heads are

usually drawn in this manner in all views, irre-

spective of the fact that the rules of projection
would call for only two sides to be visible in one
view. The reason for this is partly that the bolt-

FiG. 75. Simplified Method of Dimensioning Holes

Drilled in a Circle.

head looks better when three sides are visible, and

partly that when so drawn there can be no confu-

sion whether a hexagon or a square head is meant.

If only two sides were shown, as at B, the head,

especially if carelessly drawn, might be mistaken

for a square bolt-head. As a rule, the dimensions
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of bolt-heads are standard for given diameters of

bolts, and no dimensions are required for the

head. In some cases, however, the head may be

required to fit a given size of wrench, or for some
other reason be required to be made different from
the standard size

;
in such cases dimensions may

be given as shown at C, Fig. 77, the dimension

"V hex." indicating that the head is one inch

K 10-HOLE8-2-CENTER-DISTANCE j
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FIG. 76. Dimensioning Holes Drilled in a Row.

"across flats." In the same way, "f" sq." would

indicate that the head should be square, and three-

quarters inch "across flats."

The length of the bolt should be given as shown
in the lower view in Fig. 77. The dimensions

should be given "under the head," both the total

dimension, and the distance to the beginning of

the thread.

In general, full circles should be dimensioned by
their diameters ; an arc of a circle, again, should

be dimensioned by its radius. The center from
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which the arc is struck should preferably be indi-

cated by a small circle drawn around it. In small

dimensions, the arrow points are frequently placed
outside of the lines between which the dimension
is given, as shown in Fig. 71 in dimensioning
the narrow ribs; sometimes, the figures giving the

"A"7

^
JL

-a

8T D

HEAD

<-- ---2M

FIG. 77. Dimensioning Screws and Bolts.

dimension are themselves placed outside of the

space between the arrow heads, because the space
is too small to permit the dimension to be clearly

written within it.

The principal dimensions should be so given
that the workman will not have to add a number
of other dimensions to get them. When the

dimensioning of a piece naturally divides itself

into several measurements, an over-all dimension

should always be given for verification. If, how-
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ever, the piece terminates with a round end, as

the yoke in Fig. 71, the over-all dimension may
properly terminate at the center of curvature of

the end, the distance beyond being of entirely

secondary importance, and being taken care of by
its radius. If a dimension has been given in one

view, there is usually no reason for repeating it

in the other views; sometimes such repetitions

would cause too many dimensions to be given in

each view, so that confusion would arise, and in-

stead of making the drawing plainer, the repeti-

tion of dimensions might cause mistakes which
otherwise would have been avoided.

Drawings should always be dimensioned the full

size of the finished article, regardless of the scale

to which the drawing is made. If a drawing is

made to any other scale than full size, it is cus-

tomary to state on the drawing the scale to which
it is made, as

"
Scale, i inch=l ft."

A drawing should be so marked as to tell the

workman what surfaces are to be finished ; a fin-

ished surface is usually indicated by the letter

"f" placed either upon the line representing the

surface, or in close proximity to it. While the

amount and kind of finish is usually left to the

workman to determine, the best modern methods

require that the draftsman should indicate on the

drawing how closely the various parts are to be

machined. A very commendable method is to

give dimensions in thousandths of an inch, where

accuracy is required, and in common fractions in

cases where there is no need of working to thou-

sandths. In very highly systematized establish-
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ments, the limits of variation between which any
measurement is allowed to vary, are given with

each dimension, or, at least, with dimensions for

diameters which are to fit the holes or bores of

other pieces. The determination of the limits of

accuracy required calls for good judgment on the

part of the draftsman. Limits may be expressed
in two ways. For instance, a running fit on a

shaft to go into a li inch standard size hole may
be marked

-0.0005 max.
l5 -0.0015min.

or it may be expressed

1.4995 max.
1.4985 min.

which means that the shaft must not be larger

than 1.4995 inch, and not smaller than 1.4985 inch.

On drawings, the tap drill size and the depth of

tapped holes should always be shown. Surfaces

to be ground to size should be marked "
grind/'

If the surface is to be filed, the words "file finish'
'

are substituted for the letter "f." Finishing

marks, as a rule, are used on castings and forg-

ings only. On work made from bar stock, every
surface is nearly always finished, so that here the

finishing marks are omitted. When a casting or

forging is finished on every surface, it is not nec-

essary to show finish marks, but the words "finish

all over" may be written in a conspicuous place,

so as to readily catch the eye of the workman. If,

on work made from bar stock, it is desired that

the piece be left rough at any point, the words
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"stock size" may be applied to the figures giving
that particular dimension. For instance, on a

li-inch cold rolled shaft, turned for journals for a
short distance at each end, the central part would
be dimensioned "li-inch stock size/'

While the practice of indicating finished surfaces

by the letter "f" is by far the most frequently
met with, it is by no means universal. In some

shops the words
"
polish,

"
"ream," "finish," etc.,

are written near the lines representing the sur-

faces to be thus treated. Still another method
much in use is to draw a red line outside of the

line representing each surface to be finished. If

a blue-print is made from a tracing thus pre-

pared, the red lines will print fainter than the

black ones, and the finish lines on the blue-prints
are traced over with a red pencil or red ink before

being sent out in the shop. This method, how-

ever, is more expensive than that of indicating
the finished surfaces by the letter "f," and on

complicated drawings, the many additional red

lines tend to cause confusion. By whatever
method the finish is indicated, the finishing
marks should always be shown fully in every view
of the object.

It frequently happens that the representation of

an object is made clearer by the use of sectional

views, representing the object as having been cut

in two, either wholly or in part. Examples of this

are shown in Figs. 69, 70 and 71. From these

illustrations it is apparent that the construction of

the various pieces is much more clearly exhibited

when a section is shown. The surface "cut" or
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shown in section is cross-hatched or cross-sectioned

with fine lines at a distance apart varying from a

thirty-second to an eighth of an inch, according
to the size of the drawing and the piece. The

cross-sectioning brings the parts in section into

bold contrast with the remainder of the drawing,
and prevent all confusion as to what parts are in

section and what parts shown in full. All lines

beyond the sectional surface which are exposed to

view, should be shown in the drawing as usual.

Should it be deemed necessary, which it seldom is,

to show any parts that have been cut away for the

purpose of showing a section, such parts may be

drawn in by dash-dotted lines, this indicating that

the parts thus shown are in front of the section

and actually cut away.
When a mechanism is shown in section, the dif-

ferent parts of the same pieces should always be

cross-sectioned by lines inclined in the same direc-

tion, while separate pieces adjoining each other

should always, when possible, be cross-sectioned

by lines running in different directions. When a

solid round piece is exposed to view by a section,

it is customary to show, it solid, and not to section

it; the screw stud in Fig. 69 is an example of this

practice.

Sectional views may also be used for many pur-

poses where a slight deviation from the theory of

projection will tend to simplify the representation

of certain machine details. The shape of the arm
of a pulley or gear, or of any other part of a cast-

ing, may be conveniently represented in this way.
The cutting plane may be assumed to lie at any
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angle necessary to bring out the details most clear-

ly. A sectional view, for instance, may represent

a casting as though it were cut through partly on

one plane and partly on another. In all such cases,

however, it should be indicated in another view of

the object just where the sectional views are sup-

SECTION AT
G-H

FIG. 78. Methods of Showing Sections.

posed to be taken, so that no confusion may arise

on this account. The examples in the following
will serve to make clear the principles laid down.
In Fig. 78 are shown sections of two hand-

wheels. When an object is symmetrical it is

unnecessary to show more than one half in sec-

tion, although it is quite common to section gears,

pulleys, etc., completely on working drawings.
The hand-wheel at A in Fig. 78 is represented as
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though cut in two along its diameter BC. When
the section is taken along the center line, it is not

absolutely necessary to explain where the section

is taken ; but it can do no harm to make a practice
of in all cases to state where the section is made,
except when perfectly obvious. In this case it

would be clear that the section is taken through

SECTION AT A-B

FIG. 79. A Gear-wheel in Section.

the center, and the legend "Section at BC' 9
is

given only to show the principle. The hand-wheel

at D is provided with four arms, and the method
of representing the shape of the arms, hub and
rim are clearly indicated.

In Fig. 79 are shown two views of a gear-wheel,

indicating the conventional method of represent-

ing gears on drawings. The view on the left side

is the side view, and as all the teeth are, of course,
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alike, it is unnecessary to draw more than a few
of them. The pitch line of the teeth is represented

by a dash-dotted line. In the part of the gear-
wheel rim where the teeth are not shown, the face

of the gear is indicated by a solid line, and the

bottom of the teeth by a dotted line. In the case

of machine-cut gearing, where the teeth are cut

by standard formed cutters, it is unnecessary to

show any teeth at all on the rim of the gear, it

being sufficient to state the pitch and the number
of teeth, as will be more fully explained later in

the chapter on gearing. To show the shape to

which the arms are formed, a sectional view of

one of the arms is drawn in the side view; the

ends of the shaft are supposed to be broken off,

and are, therefore, sectioned as shown. The right-

hand view of the gear is a section taken along the

line AB. It will be noted that the shaft and key
are not sectioned, usual practice being followed in

this respect. The gear shown has five arms, and
the line AB cuts through one of them only. This

arm, however, is not sectioned in the right-hand

view, and two opposite arms are drawn as though
both of them lay in the plane of the paper. While
this is not theoretically correct, it is the method

usually followed because of simplicity in drawing
and clearness of representation. The method of

representing the gear teeth in the sectional view
is the one commonly employed.

Sectional and top views of a cylinder end with

flange and cover are shown in Fig. 80. This

cylinder cover has only five bolts, and the plane

through which the section is taken cuts through



70 SELF-TAUGHT MECHANICAL DRAWING

only one of the bolts. It is common practice, how-

ever, to draw the section as shown at the left.

The bolts are shown as if two of them were in the

plane of the section. The bolts are not sectioned,

FIG. 80. Section of Cylinder End with Flange and Cover.

but are drawn in full, as explained previously.

Dotted lines of the remaining bolts, or full lines

of their nuts, should not be shown, because this

detracts from the clearness of the drawing; the

top view shows clearly the number of the bolts

and their arrangement, and that is all that is nec-

essary. Some draftsmen prefer to draw sections
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of this kind as indicated at the right in Fig. 80.

This method, however, is not as commonly used.

In a case where the object is rather unsymmet-
rical, as, for instance, in Fig. 81, the draftsman's

judgment must often be relied upon to decide how

|< A -< A

FlG. 81. Another Method of Showing Sections.

it shall best be shown in section. Usually the

sectional view is made symmetrical as shown, the

distances A in the lower view being made equal to

the radius A in the top view,

The materials for the various details making up
a complete mechanism are usually cross-sectioned

CF "HE

UNIVERSITY
OF
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in such a way as to indicate the material from
which each piece is made. There is, however, no

universally adopted or recognized standard for

cross-sectioning for the purpose of indicating dif-

ferent materials. In Fig. 82 is shown a chart,

FIG. 82. Cross-sectioning used for Indicating Different

Materials.

published by Mr. I. G. Bayley in Machinery, Oc-

tober, 1906, which represents average practice,

although it must be distinctly understood that

there is no agreement in all respects between the

numerable charts in use in various drafting-rooms.
For this reason, cross-sectioning alone should

never be depended upon for indicating to the work-
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man the kind of material to be used. Written

directions should also be given, the kind of mate-

rial for each part being plainly marked. Tool steel

may be abbreviated "T. S.", machine steel, "M.

ROUND BAR, SOLID

ROUND BAR, HOLLOW

SQUARE OR RECTANGULAR BAR

WOODEN BEAM

FIG. 83. "Broken'

I-BEAM

Drawings of Long Objects.

S."; wrought iron, "W. L"; cast iron, "C. L",
etc. The less common materials in machine con-

struction, such as bronze, brass, copper, etc.
,
should

preferably be written out in full, in order to avoid

any chances for confusion. It is better to be too
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explicit as regards the information on the draw-

ing, than to risk misunderstandings and conse-

quent errors.

Long bars, shafting, structural beams, etc.
,
can-

not conveniently be shown for their full length on

the drawing. In such cases the pieces are drawn
as long as the drawing and the adopted scale per-

mit, and are broken as shown in Fig. 83, a part
between the two end portions shown being imag-

ined as broken out. The di-

mensions, of course, are given
for the full length of the piece,

as if not broken.

There are several conven-

tional methods for showing
screw threads; these methods

are adopted largely for saving
of time, as it would be out of

the question to spend the time

required for drawing a true

helical screw thread on a work-

ing drawing. A method for

very nearly approximating the

appearance of a theoretically correct screw drawing
is shown in Fig. 84, where the projection of the

screw helix is drawn by straight lines. The V-

shaped outline is first laid out, and the connecting
lines are then drawn. It will be noticed that the

lines representing the roots of the threads are not

parallel with those representing the tops or points.

This aids in making the drawing resemble that of

a true helix.

Usually, however, much simpler methods are

FIG. 84. Method of

Drawing a Screw,

Giving Correct He-
lix Effect.
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employed for indicating screw threads. In Fig.

85, A, B and C, some of these methods are shown.

When a long piece is threaded the entire length,

this fact can be indicated as at D, which saves

drawing the conventional thread for the full length

of the piece. The lines indicating the thread are

L.H

E F

FIG. 85. -Simplified Methods for Showing Screw Threads.

inclined, the same as would be the lines represent-

ing the true helix. At E in Fig. 85 is shown a

right-hand thread and at F a left-hand thread, the

different direction of inclination of the thread in-

dicating this fact. However, if a thread is to be

left-hand, it should always be so marked on the

drawing. It is usual to abbreviate left-hand, writ-

ing "L. H."
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Three methods of indicating tapped holes are

shown in Fig. 86, these being used when the holes

are obscured from view, and shown by dotted lines.

When a tapped hole is shown in section, and looked

upon from the top, it is shown as indicated at D,
while if seen from the side, in section, it is repre-

FIG. 86. Simplified Methods for Indicating Tapped Holes.

sented as at E. A surface having tapped holes in

it, seen from above, is shown at F. At G and H
are shown the methods of representing bolts or

screws inserted in place in tapped holes. It will

be noted that when the threads of a tapped hole

are exposed to view by section, the lines repre-

senting the screw helix will be seen to slope in the

opposite direction to those of the screw, it being
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the back side that is exposed to view. An example
of this is shown in Fig. 71 as well as in Fig. 86.

In drawings made for use in the shop it is cus-

tomary to make the lines of uniform thickness.

For shop use such drawings are as good as any.

When, however, the purpose of a drawing is chiefly

to show up the object which it represents, its ef-

fectiveness may be considerably enhanced by the

use of shade lines as shown in Fig. 87. In shade

line work, the light is usually assumed to come
from the upper left hand corner,

and to shine diagonally across

the paper at an angle of forty-

five degrees. Lines on the side

of the object away from the

light, or lines separating light

from dark surfaces, are made
extra heavy. This gives to the FlG 87> _Use Of

drawing a suggestion of relief. shade Lines.

An examination of the lines of

Fig. 87 taken in connection with the direction from

which the light is supposed to come will show,

without the aid of any other view, that the hex-

agonal part is raised above the surface of the

square, and that the circle in the center represents

a depression.

When a drawing is intended for permanent use

it is customary to make only a pencil layout on

paper, usually on brown paper, and from this to

make a tracing from which any number of blue

print copies may be made. The tracing is usually

made on the regular tracing cloth. This has one

glazed and one unglazed surface. Either surface
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may be used. The tracing cloth is drawn tightly

over the pencil drawing, and its surface is cleaned

of any greasiness with dry powdered chalk. This

insures a good flow to the ink. In doing the ink

work curved lines should be made first, straight
lines afterwards, as mentioned in Chapter I.

The blue prints are made in the same manner as

photographs are printed, the tracing taking the

place of the photographic negative. An exposure
of from three to ten minutes may be required, de-

pending on the freshness of the blue print paper
and the brightness of the sun. After the proper

exposure has been given, which may require some

experimenting at first, until one gets accustomed

to the change in the paper which the light makes,
the print is thoroughly rinsed out in clear water

and dried, by being hung up by one edge.
White writing may be made on a blue print with

saleratus water, the water being given all the sale-

ratus it will dissolve.



CHAPTER VI

ALGEBRAIC FORMULAS

IN order to be able to carry out the calculations

required in simple machine design, it is necessary

that a general understanding of the use of for-

mulas, such as are used in mechanical hand-books

and in articles in the technical press, is acquired.

Knowledge of algebra or so-called
"
higher mathe-

matics" is by no means necessary, although, of

course, such knowledge is very valuable
;
but simple

formulas can be used, and the results of scientific

results employed in practical work to a very great

extent, by any man who understands how to use

the formulas given by the various authorities ; and
the knowledge required for an intelligent use of

algebraic formulas can be very easily acquired.

All the mathematical knowledge necessary as a

foundation is a clear understanding of the funda-

mental rules and processes of arithmetic.

A formula is simply a rule expressed in the sim-

plest and most compact manner possible. By using
letters and signs in the formula instead of the

words in the rule, it is possible to condense, in a

very small space, the essentials of long and cum-

bersome rules. The letters used in formulas sim-

ply stand in place of the figures which would be

used for solving any specific problem ; the signs

used are the ordinary arithmetical signs used in

79
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all kinds of calculations. As each letter stands for

a certain number or quantity, whenever a specific

problem is solved the figures for that case are put
into the formula in place of the letters, and the

calculation is carried out as in ordinary arithmetic.

This may, perhaps, be made clearer by means of a

few examples.
The circumference of a circle equals the diameter

times 3.1416. This rule may be written as a

formula as follows :

C= DX 3.1416.

In this formula C = circumference, and D =

diameter. No matter what the diameter is, this

formula says, the circumference is always equal to

the diameter (D) times 3.1416. Assume that the

diameter is 5 inches. Then, to find the circumfer-

ence, place 5 in the formula in place of D.

C = 5 X 3.1416 = 15.708 inches.

If the diameter of a circle is 12 feet, then

C = 12 X 3.1416=37.6992 feet.

This, of course, is the very simplest kind of a

formula, but it illustrates the principle involved,

and indicates how easily formulas may be em-

ployed.

One of the most well-known formulas in steam

engineering is that giving the horse-power of an

engine, when the average or mean effective pres-

sure of the steam on the piston, the length of the

stroke of the piston in feet, the area of the piston

in square inches, and the number of strokes per

minute, are known. Let
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H.P. = horse-power,
P = mean effective pressure in pounds per

square inch,

L = length of stroke in feet,

A = area of piston in square inches, and
N = number of strokes per minute.

Then
PX LX A X N

H.P.
33,000

The rule conveying this information expressed
in words would require considerable space, and be

difficult to grasp immediately ; but the meaning of

the formula is quickly understood. If the pressure

(P) equals 75 pounds, the stroke (L) 2 feet, the

area of the piston (A) 125 square inches, and the

number of strokes per minute (N) 60, then

TT D 75 X 2 X 125 X 60 OAH'P'
= ~~

It will be seen that the values for the different

quantities are merely inserted in the formula in

place of the corresponding letters, and then the

calculation is carried out as usual. It will be

remembered that the line between numerator and
denominator in a fraction also means a division;

that is

i i OK f)(\f)^ = 1,125,000 -* 33,000 - 34.1.

It is very common in formulas to leave out, en-

tirely, the sign of multiplication ( X ) between the

letters expressing the values of the various quanti-
ties that are to be multiplied. Thus, for example,
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PL means simply P X L, and if P = 21 and L =
3,

then PL = P X L = 21 X3 = 63. If the multipli-

cation signs are left out in the formula for the

horse-power of engines just referred to, the for-

mula
PXLXA XN ,, ,

'

... PLAN
- could be written

As a further example of the leaving out of the

multiplication sign in a formula, assume that D
=

12, R =
3, and r = 2, then

DRr DXRXr = 12 X 3 X 2 72 _

9 9 9
:

9
:

It must be remembered that no other signs, ex-

cept the multiplication sign, may thus be left out

between the letters in a formula.

From the examples given, the use of simple
formulas is clear; each letter stands for a cer-

tain number or quantity which must be known in

order to solve the problem ; when the formula is

used for the solution of a problem, the letters are

simply replaced by the corresponding number,
and the result is found by regular arithmetical

operations.

The expressions "square" and "square root"

and "cube" and "cube root" are frequently used

in engineering hand-books and technical journals.

It would seem, to one unfamiliar with these names
and their mathematical meaning, as well as the

signs by which they are indicated, that difficult

mathematical operations are involved; but this is

not necessarily always the case. The square of a

number is simply the product of that number mul-
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tiplied by itself. Thus the square of 3 is 3 X 3 = 9,

and the square of 5 is 5 X 5 = 25. In the same

way, the square of 81 is 81 X 81 = 6561. Instead

of writing 81 X 81, it is common practice in

mathematics to write 812
, which is read "81

square/' and indicates that 81 is to be multiplied

by itself. Similarly, we may write 72 = 7 X 7 =

49, and 12 2 = 12 X 12 = 144. The little "2" in the

upper right-hand corner of these expressions is

called "exponent." Nearly all mechanical and

engineering hand-books are provided with tables

which give the squares (and also the square root,

cube and cube root) of all numbers up to 1000, so

that it is usually unnecessary to calculate these

values by actual multiplication.

As the squares of numbers are frequently used
in formulas for solving problems occurring in

machine design and machine-shop calculations, a
few examples will be given below of formulas con-

taining squares.

The area of a circle equals the square of the

radius multiplied by 3.1416. Expressed as a for-

mula, if A = area of circle, R =
radius, and the

Greek letter n (Pi) = 3.1416, we have:

A = E2
K.

If we want to know the area of a circle having a
5-foot radius, we have :

A = 5
2 7r=5X5X 3.1416 - 78.54 square feet.

As a further example, assume a formula to be

given as follows :

A _ D
2N + R2nA ~

DR
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Assume that D =
3, N =

5, R =
4, and n (as

usual) =3.1416. What is the value of A? Insert-

ing the values of the various letters in the formula,
we have :

3 2 X 5 + 4 2 X TT 3X3X5 + 4X4X7TA =
3X4 3X4

9 X 5 + 16 X n _ 45 + 50.2656 _ 95J2656 _ _ QQQQ
12 12 12

It will be seen in the example above that all the

multiplications are carried out before any addition

is made. This is in accordance with the rules of

mathematics. When several numbers or expres-
sions are connected with signs indicating that

additions, subtractions, multiplications or divisions

are to be made, the multiplications should be

carried out before any of the other operations,

because the numbers that are connected by the

multiplication sign are actually only factors of

the product thus indicated, and consequently this

product must be considered as one number by
itself. The other operations are carried out in the

order written, except that divisions when written

in line with additions and subtractions, precede
these operations. A number of examples of these

rules are given below:

12 X 3 + 7 X 2i - li= 36 + 17J
- 1J = 52.

5 + 13X7-2=5 + 91-2 = 94.
*

9-3 + 9X3=3 + 27 = 30.

9 + 9-3-2=9 + 3-2 = 10.

Sometimes, however, in formulas, it is desired

that certain operations in addition and subtraction
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precede the multiplications. In such cases use are

made of the parenthesis ( ) and bracket [ ]. These

mathematical auxiliaries indicate that the expres-
sion inside of the parenthesis or bracket should be

considered as one single expression or value, and

that, therefore, the calculation inside the parenthe-
sis or bracket should be carried out by itself com-

plete before the remaining calculations are com-

menced. If one bracket is placed inside of another,

the one inside is first calculated, and when com-

pleted the other one is carried out. Some examples
will illustrate these rules and principles:

(6
-

2) X 3 + 4 =4 X 3 + 4 = 12+ 4 = 16.

3 X (12 + 7) - 28i = 3 X 19 - 28i = 57-28J =2.

3 + [5 X 3 (5 + 2)
-

3] X 6 = 3 + [5 X 3 X 7 -3]
X 6 = 3 + [105

-
3] X 6 = 3 + 102 X 6 = 3 + 612

= 615.

Without the parentheses and brackets, the calcu-

lations above would have been as follows :

6-2X3 + 4 = 6-6 + 4 = 4.

3 X 12 + 7 H- 28i = 36 + 0.2456 = 36.2456.

3 + 5X3X5 + 2-3X6 = 3 + 75 + 2- 18 = 62.

These examples should be carefully studied until

thoroughly understood.

We are now ready to return to the question of

square roots. The square root of a number is that

number which, if multipled by itself, would give
the given number. Thus, the square root of 9 is 3,

because 3 multiplied by itself equals 9. The square
root of 16 equals 4, of 36 equals 6, and so forth. It

will be seen at once that the square root may be
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considered, or, rather, actually is the reverse of

the square, so that if the square of 20 is 400, then

the square root of 400 is 20. In the same way, as

the square of 100 is 10,000, so the square root of

10,000 is .100. The sign used_m mathematical
formulas for the square root is V . ThusV 9 =

3,

V 49 = 7, and . so forth. The process of actually

calculating the square root is rather cumbersome,
and it is very seldom required, because, as already

mentioned, the engineering hand-books usually

give tables of square roots for all numbers up to

1000, and for larger numbers the tables can also be

used for obtaining the square root approximately

correct, or at least near enough so for almost all

practical calculations.

The cube of a number is the product resulting
from repeating the given number as a factor three

times. Thus, the cube of 3 is 3 X 3 X 3 - 27, and
the cube of 17 is 17 X 17 X 17 = 4913. In the same

way as we write 2 2 = 2X2 =
4, for the square of

2, so we can write 2 3 = 2 X2 X 2 = 8, for the cube

of 2. The exponent (
3

) indicates how many times

the given number is to be repeated as a factor.

The cube of 4, for example, may be written 4 3 = 4

X 4 X 4 = 64. Similarly 17 3 - 4913. The expres-
sion 17 3 may be read

"
the cube of 17," "17 cube/'

or "the third power of 17." In the same way as

the square root means the reverse of square, so the

cube root (or "third root") means the reverse of

cube or "third power" ; that is, the cube root of a

number is the number which, if repeated as factor

three times, would give the given number. For

example, the cube root of 64 is 4, because 4 X 4 X
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4 = 64. It is evident that if the cube of a number,

say 6, is 216 (6 X 6 X 6 = 216), then the cube root

of 216 is 6. The sign used injformulas for the cube

root is f^. For_example,
f
7
8 = 2 (because 2X2

X 2= 8), and 1^125 = 5 (because 5X5X5= 125).

Similarly, 1^3,723,875 = 155.

The use of the square and square root, and cube

and cube root in formulas may be shown by a few

examples :

V B X V C

Assume that B =
27, C =

25, and D = 2. Insert

these values in the formula. Then

X 125 3X5 15

25 2 + 2 2
"

125 +4
""

129
"

As another example:
z?

A
B 3 X V C

Assume B =
2, C =

9, and D = 4. Then

_ 2 2 + 9 2 +4 2

_ 4 + 81 + 16 _. 101.

2 3 XT/y 8X3 24

In the same way as 2 2 = 2 X 2 = 4, so 2 4 = 2 X 2

X 2 X 2 = 16, and 2 5 = 2X2X2X2X2 = 32.

The expression 2 4
is read the "fourth power of

2," and 2 5 the "fifth power of 2." The exponents

(
4
) and (

5

) indicate how many times the given
number is to be repeated as factor.

If, again, it is required to find the number which,
if repeated as factor four times, gives the given

number, we must obtain the "fourth root" orV~
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Thus, Vl6 =
2, ^because 2 X 2 X 2 X 2 = 16. In

the same way V256 = 4. The fifth root is writ-

ten V ; and \/243 = 3, because 3X3X 3X3X3
= 243.

These explanations, when fully understood, will

eliminate all difficulties with formulas of a simple

nature, and with such expressions as cube root,

exponents, etc.

An important method facilitating the use of

formulas, is commonly known as the transposition

of formulas. A formula for finding the horse-

power which can safely be transmitted by a gear
of a given size, running at a given speed, is :

D X NX PX FX20Q
H.P. =

126,050

In this formula H.P. = horse-power,
D =

pitch diameter,
N = revolutions per minute,
P = circular pitch of gear,

F = width of face of gear.

Assume, for example, that the pitch diameter of

a gear is 31.5 inches, the number of revolutions

per minute 200, the circular pitch 1J inch, and the

width of the face 3 inches. Then, if these values

arc inserted in the formula, we have :

31.5 X 200 X lj X 3 X 200 , cH'R - ~ = 45

power, very nearly.

Assume, however, that the horse-power required
to be transmitted is known, and that the pitch of

the gear is required to be found. Assume that
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tf.P = 30; Z> = 31.5; N = 200; F=3; and that P
is the unknown quantity; then, inserting the

known values in the formula, gives us:

31.5 X 200 XPX 3 X 200

126,050

In order to be able to find P, we want it given
on one side of the equals sign, with all the known

quantities on the other side. If we multiply the

expressions on both sides of the equals sign by
the same number we do not change the conditions ;

thus

on v i oa AKA - 31.5 X 200 X P X 3 X 200 X 126,050
1Zb

'
Ut

126,050

By canceling the number 126,050 on the right-

hand side we have :

30 X 126,050 = 31.5 X 200 X P X 3 X 200.

If we now divide on both sides of the equals

sign with 31.5 X 200 X 3 X 200, we have:

30 X 126,050 = 31.5X200 XPX 3X200
31.5 X 200 X 3 X 200 31.5 X 200 X 3 X 200

We can now cancel all numerical values in the

fraction on the right-hand side; then:

30 X 126,050 p
31.5X200X3X200

This is then the transposed formula giving P,

and from this we find that P = 1 inch.

In general, any formula of the form
B

A---C.
can be transposed as below :

A XC = B C =
-
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It will be seen that the quantities which are in

the denominator on one side of the equals sign, are

transposed into the numerator on the other side,

and vice versa.

Examples:
BX CA D .

Then:

n _ Bx c D AX D n AX D
A '

=

C '
=

~~B
'

A _ EXFX G
KXL

Then:

E_A XKXL F _A XKXL . r _A X KxL
FX G ' EX G ' EXF '

rf = EX FX G
T

EXFX G
AXL AXK

The principles of transposition of formulas can

best be grasped by a careful study of the examples

given. Note that the method is only directly ap-

plicable when all the quantities in the numerator
and denominator are factors of a product. If con-

nected by + or -
signs, the transposition cannot

be made by the simple methods shown unless the

whole sum or difference is transposed. Example :

A =-
; then D =~and + C= A X D.

The most usual caclulations, perhaps, in some
classes of machine design, are those involving the

finding of the strength of certain machine mem-
bers

; and, in order to find the strength qf these
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members, it is necessary to first find the cross-

sectional area of the part subjected to stress. For

this reason, the remainder of this chapter will be

largely taken up with rules and formulas for find-

ing the areas and other properties of various geo-

metrical figures. Rules and formulas for volumes

of solids will also be given. Examples have been

given in some cases merely to show the applica-

tions of the formulas.

The area of a triangle equals one-half the prod-
uct of its base and its altitude. The base may be

any side of the triangle, and the altitude is the

length of the line drawn from the angle opposite

the base, perpendicular to it.

Assume that A = area of triangle,

.
B = base,

- H = altitude.

Then the rule above may be expressed as a

formula as follows :

A ^BXH
'

Let the base (B) of a triangle be 5 feet, and the

altitude (H) 8 feet. Then the area

5X8 40
'

.A = n =
-JT
= 20 square feet.

z z

The area of a square equals the square of its

side. If A = the area, and S the side of the square,

then

If the side is 9.7 inches long, then

A = 9.7
2= 9.7 X 9.7 =94.09 square inches.
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The area of a rectangle equals the product of its

long and short sides. If A =
area, L = length of

the longer side, and H= length of the shorter side,

then
A = L X H.

The area of a parallelogram equals the product
of the base and the altitude.

The area of a trapezoid equals one-half the sum
of the parallel sides multiplied by the altitude.

If A =
area, B = length of one of the parallel sides,

C = length of the other parallel side, and H =

altitude, then

B

Assume that the lengths of the two parallel

sides are 12 and 9 feet, respectively, and that the

altitude is 16 feet. Then

A = ^-^ X 16= 10.5 X 16 = 168 square feet.

To find the area of an irregular figure bounded

by straight lines, divide the figure into triangles,

and find the area of each triangle separately. The
sum of the areas of all the triangles equals the

area of the figure.

The circumference of a circle equals its diameter

multiplied by 3.1416.

The diameter of a circle equals the circumfer-

ence divided by 3.1416.

The area of a circle equals the square of the

diameter multiplied by 0.7854.

The diameter of a circle equals the area divided
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by 0.7854, and the square root extracted of the

quotient.

If D = diameter, C = circumference, and A =

area, these last rules may be expressed in formulas

as follows :

C-DX 3.1416. =3ib-

A = D*X 0.7854. D =

The length of a circular arc equals the circum-

ference of the circle, multiplied by the number of

degrees in the arc, divided by 360. If L = length
of arc, C = circumference of circle, and N = num-
ber of degrees in the arc, then

r
CXN
360

The area of a circular sector equals the area of

the whole circle multiplied by the quotient of the

number of degrees in the arc of the sector divided

by 360. If a = area of sector, A = area of circle,

and N = number of degrees in sector, then

a = A X
N
360*

The area of a circular segment equals the area of

the circular sector formed by drawing radii from
the center of the circle to the extremities of the

arc of the segment, minus the area of the triangle

formed by these radii and the chord of the arc of

the segment.
The area of a pentagon (regular polygon having
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five sides) equals the square of the side times

1.720.

The area of a hexagon (regular polygon having
six sides) equals the square of the side times

2.598.

The area of a heptagon (regular polygon having
seven sides) equals the square of the side times

3.634.

The area of an octagon (regular polygon having
eight sides) equals the square of the side times

4.828.

The volume of a cube equals the cube of the

length of its side.

The volume of a prism equals the area of the

base multiplied by the altitude.

The volume of a cylinder equals the area of its

base circle multiplied by the altitude.

The volume of a pyramid or cone equals the area

of the base times one-third the altitude.

The area of the surface of a sphere equals the

square of the diameter multiplied by 3.1416.

The volume of a sphere equals the cube of the

diameter times 0.5236.

The volume of a spherical sector equals two-

thirds of the square of the radius of the sphere

multiplied by the height of the contained spherical

segment, multiplied by 3.1416. If V = volume of

sector, R= radius of sphere, and H= height of the

contained spherical segment, then

V = f-tf
2 X HX 3.1416.

o

Assume that the length of the radius of a spheri-
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cal sector is 6 inches, and the height of the con-

tained segment 2 inches. Then

V =
-f-X 6

2 X 2 X 3.1416 = 150. 7968 cubic inches.
o

The volume of a spherical segment equals the

radius of the sphere less one-third the height of

the segment, multiplied by the square of the

height of the segment, multiplied by 3.1416. If R
= radius, H = height, and V = volume of segment,
then

(R- y) XH
2 X 3.1416.

Assume that the length of the radius is 4 inches,

and the height of the segment 3 inches. Then

V =
(4
-
y) X 3 2 X 3.1416 = 84. 8232 cubic inches.

The area of an ellipse equals the long axis multi-

plied by the short axis, multiplied by 0.7854. If

the area =A, the long axis =B, and the short axis
= C, then

A = BXCX 0.7854.

If the long axis is 12 inches and the short axis

8J inches, then

A = 12 X 8i X 0.7854 - 78.54.

Formulas and application of formulas have not

been given for such rules which are so simple and

easy to understand that the reader without diffi-

culty can formulate his own formula.



CHAPTER VII

ELEMENTS OF TRIGONOMETRY

TRIGONOMETRY is a very important part of the

science of mathematics, and deals with the deter-

mination of angles and the solution of triangles.
In order to fully understand the subjects treated

of in the following, it is necessary that the reader

is fully familiar with the usual methods of desig-

nating the measurements or sizes of angles. While
mathematicians employ also another method, in

mechanics angles are measured in degrees and
subdivisions of a degree, called minutes. The
minute is again subdivided into seconds, but these

latter subdivisions are so small as to permit of

being disregarded in general practical machine

design.
A degree is 1-360 part of a circle, or, in other

words, if the circumference of a circle is divided

into 360 parts, then each part is called one degree.

If two lines are drawn from the center of the

circle to the ends of the small circular arc which
is 1-360 part of the circumference, then the angle
between these two lines is a 1-degree angle. A
quarter of a circle or a 90-degree angle is called a

right angle. The meaning of obtuse and acute

angles has already been explained in Chapter II.

Any angle which is not a right angle is called an

oblique angle.
96
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A minute is 1-60 part of a degree, and a second

1-60 part of a minute. In other words, one circle

= 360 degrees, one degree = 60 minutes, and one

minute = 60 seconds. The sign () is used for in-

dicating degrees; the sign (') indicates minutes,

and the sign (
"

) seconds. A common abbreviation

for degree is
' l

deg.
' '

; for minute,
' '

min.
' '

; and for

second, "sec."

Two angles are equal when the number of de-

grees they contain is the same. If two angles are

both 30 degrees, they are equal, no matter how

long the sides of the one may be in relation to the

other.

Of all triangles, the right-angled triangle occurs

most frequently in machine design. A right-ang-

led triangle is one having the angle between two
sides a right angle; the angles between the other

sides may be of any size. In the calculations in-

volved in solving right-angled triangles, a useful

application of the squares and square roots of

numbers is also presented. Assume that the lengths

of the sides of a right-angled triangle, as shown
in Fig. 88, are 5 inches, 4 inches, and 3 inches,

respectively. Then

5
2 = 4 2 + 3

2
,
or 25 = 16 4- 9.

This relationship between the three sides in a

right-angled triangle holds good for all right-ang-
led triangles. The square of the side opposite the

right angle equals the sum of the squares of the

sides including the right angle. Assume, for ex-

ample, that the lengths of the two sides including
the right angle in a right-angled triangle are 12
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and 9 inches long, respectively, as shown in Fig.

89, and that the side opposite the right angle, the

hypotenuse, is to be found. We then first square
the two given sides, and from our rule, just given,
we have that the sum of the squares equals the

square of the side to be found. The square root

-* H h
'

of the sum must then equal the side, itself. Carry-

ing out this calculation we have:

12 M-_9
2 = 144 + 81 = 225

V 225 = 15 inches = length of hypotenuse.

Similar methods may be employed for finding

any of the sides in a right-angled triangle if two
sides are given. If the hypotenuse were known
to be 15 inches, and one of the sides including the

right angle 9 inches, as shown at D in Fig. 90,

then the other side including the right angle can

be found. In this case, however, we must subtract

the square of the known side including the right
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angle from the square of the hypotenuse to obtain

the square of the remaining including side. We,
therefore, have:

15 2 -9 2 = 225-81 =

\/144 = 12 inches= length of unknown side.

In the same way, if the lengths 15 and 12 were

k; SIDE TO BE FOUND >

FIG. 90.

known, we could find the side AC, as shown at E,

Fig. 90:

15^- 12 2 = 225- 144 = 81

Vgf= 9 inches = length of AC.

From these examples we may formulate rules

and general formulas for the solution of right-

angled triangles when two sides are known. In

Fig. 91, at F, the square of AB plus the square of

AC equals the square of EC; the square of EC
minus the square of AC equals the square of AB;
and the square of EC minus the square of AB
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equals the square of AC. These rules written as

general formulas would take the form :

BC 2 -AB 2 =

From these formulas we have, by extracting the

square root on each side of the equal sign :

EC = V~AB 2 + AC 2

AB = VBC 2 - AC 2

AC = V BC 2 - AB 2

These formulas make it possible to find the third

side when two sides are given, no matter what the

numerical values of the length of the sides may
be. Assume AB =

12, and BC = 20; find AC. Ac-

cording to the formula :

AC = \/20 2 - 12 2 = V400- 144 = V^56 =16.

Assume that AB = 15 and AC = 20. Find BC.

BC =Vl5 2 + 20 2 = V 225 + 400 = \/625 = 25.

The rules and formulas given make it possible to

find the length of the sides in a right-angled tri-

angle. To -find the angles, however, use must be
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made of the trigonometric functions, the meanings
of which will be presently explained. The trigo-

nometric functions are the sine, cosine, tangent, co-

tangent, secant and cosecant of angles. While these

functions are used in the solution of all kinds of

triangles, they refer directly to right-angled tri-

angles, and the meaning or value of each function

can be explained by reference to a right-angled

triangle as shown in Fig. 91, at G, where the side

BC is the hypotenuse, AC the side adjacent to

angle D, and AB the side opposite angle D. Of

course, if reference is made to angle E, then AB
is the side adjacent and AC the side opposite.

The sine of an angle is the length of the opposite

side, if the hypotenuse is assumed to equal 1. The
sine of angle D, then, is the length of AB if BC
equals 1. To find the sine of D when BC is any
other length, divide AB by the length of BC. To
find the sine of D, if BC equals 5, for example, it

is necessary to divide the length of AB by 5.

Find the sine of D, when AB = 15 and BC = 20.

The sine of D = 15 * 20 = 0.75.

The cosine of an angle is the length of the adja-
cent side, if the hypotenuse is assumed to equal 1.

The cosine of angle D, then, is the length of AC
if BC equals 1. To find the cosine of D when BC
is any other length, divide -AC by the length of

BC. To find the cosine of D, if BC equals 8, for

example, it is necessary to divide the length of

AC by 8.

Find the cosine of D, when AC = 12 and BC =
30. The cosine of D = 12 -*- 30 = 0.4.

The tangent of an angle is the length of th<
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posite side, if the adjacent side is assumed to

equal 1. The tangent of angle D is the length of

AB if AC equals 1. To find the tangent of D when
AC equals any other length, divide AB by the

length of AC. To find the tangent of D when AC
equals 3, for example, it is necessary to divide the

length of AB by 3.

Find the tangent of D, when AB = 16 and AC
= 12. The tangent of D = 16 + 12 = 1.333.

The cotangent of an angle is the length of the

adjacent side, if the opposite side is assumed to

equal 1. The cotangent of angle D is the length
of AC if AB equals 1. To find the cotangent ofD
when AB equals any other length, divide AC by
the length of AB. To find the cotangent of D
when AB equals 12, for example, divide AC by 12.

Find the cotangent of D when AB = 3 and AC
= 36. The cotangent of D = 36 + 3 = 12.

The secant of an angle is the length of the hypo-

tenuse, if the adjacent side is assumed to equal 1.

The secant of angle D is the length of BC when
AC equals 1. To find the secant of -D when AC is

any other length, divide BC by the length of AC.
Find the secant of D when BC = 24 and AC = 9.

The secant of D = 24 -*- 9 = 2.666. . .

The cosecant of an angle is the length of the

hypotenuse if the opposite side is assumed to equal

1. The cosecant of angle D is the length of BC
when AB equals 1. To find the cosecant of D when
AB is any other length, divide BC by the length

of AB.
Find the cosecant of D when BC = 30 and AB

= 3.75. The cosecant of D = 30 ^ 3.75 = 8.
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The expressions sine, cosine, tangent, cotangent,

secant and cosecant are abbreviated as follows:

sin, cos, tan, cot, sec, and cosec. Instead of writ-

ing tangent of D, for example, it is usual to write

tan D. By means of these functions, tables of

which are given in the following, the values of

angles can be introduced in the calculations of tri-

angles. The tables here used give the values of

the functions of angles for every degree and for

every ten minutes. Only three decimal places are

given, as that is enough for the great majority of

shop calculations. When very accurate calculations

are required, tables can be procured giving the

functions for every minute, and with five decimal

places. From the tables given, when the angle is

known, the corresponding angular function can be

found, and when the function is known, the cor-

responding angle can be determined by merely

reading off the values in the table. The tables in-

clude sines, cosines, tangents and cotangents only,

as these are most commonly used, and all problems
can be solved by the use of them. When the se-

cant is required, it can be found by dividing 1 by
the cosine. The cosecant is found by dividing 1

by the sine.

The tables of sines, cosines, etc., are read the

same as any other table. It will be seen that the

four tables given are headed Sines, Cosines, Tan-

gents, and Cotangents, respectively. At the bottom

of the table headed "Sines" is read the word

"Cosines," and at the bottom of the table headed

"Cosines" is read the word "Sines." In the same

way, at the bottom of the table headed "Tan-
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gents,
" we read "Cotangents/' and at the bottom

of the table headed
"
Cotangents,

" we read
"
Tan-

gents/' The object of this will be presently ex-

plained. The extreme left-hand column, we find, is

headed "Deg.," and the following seven columns
are headed 0', 10', 20', 30', 40', 50' and 60', re-

spectively, these columns indicating the minutes.

At the bottom of the pages the same numbers are

found but reading from the right to the left. The
values of the functions marked at the top are read

in the table opposite the degrees in the left-hand

column and under the minutes at top. The values

of the functions marked at the bottom are read

opposite the degrees in the right-hand column and
over the minutes at the bottom. For example, the

sine of 39 40 ' or sin 39 40 ', as it is written in

formulas, is thus found to be 0.638, and the sine

of 64 10' is 0.900, this latter value being read off

in the second table, reading it from the bottom up,

and locating the number of degrees in the right-

hand column.

As further examples, we find

tan 37 40 ' = 0.772

cot 37 40 ' = 1.295

tan80 0' = 5.671

cos 75 30 ' = 0.250

We are now ready to proceed to solve right-ang-
led triangles with regard both to the sides and the

angles. In any right-angled triangle, if either two

sides, or one side and one of the acute angles are

known, the remaining quantities can be found. As
a general rule, in any triangle, all the quantities
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can be found when three quantities, at least one

of which is a side, are given. In a right-angled

triangle the right angle is always known, of

course, so that here, therefore, only two additional

quantities are necessary. If all the three angles

are known, the length of the sides cannot be de-

termined; one side, at least, must also always be

known in order to make possible the solution of

the triangle.

The following rules should be used for solving

right-angled triangles.

Case 1. Two sides known. Use the rules al-

ready given in this chapter for finding the third

T
i

r
'

1

GIVEN
ANGL

< ADJACENT SIDE
>j

FIG. 92.

side when two sides in a right-angled triangle are

given. To find the angles use the rules already

given for finding sines, cosines, etc., and the

tables.

Case 2. Hypotenuse and one angle given. Call

the side adjacent to the given angle the adjacent

side, and the side opposite the given angle the

opposite side (see Fig. 92.) Then the adjacent
side equals the hypotenuse multiplied by the cosine
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of the given angle; the opposite side equals the

hypotenuse multiplied by the sine of the given

angle ; and the unknown angle equals 90 degrees
minus the given angle.

Case 3. One angle and its adjacent side given.

The hypotenuse equals the adjacent side divided

by the cosine of the given angle ; the opposite side

equals the adjacent side multiplied by the tangent
of the given angle; and the unknown angle is

found as in Case 2.

Case 4. One angle and its opposite side known.

The hypotenuse equals the opposite side divided

by the sine of the given angle; the adjacent side

equals the opposite side multiplied by the cotangent

of the given angle; and the unknown angle is

found as in Case 2.

These rules may be written as formulas as fol-

lows (see Fig. 93) :

Case 1. For formulas for the sides see the first

part of this Chapter. For the angles we have:

sin B = - sin C =
.

a a

Case 2. Here, when a and B are given, we have :

c = a cos B; b = a sin B; C = 90 - B.

When a and C are given, we have :

b = a cos C; c = a sin C; = 90 - C.

Case 3. Here, when B and c are given, we have:

a = C

-^; b = c tan B; C = 90 - B.
cos B

When C and 6 are given, we have:

a = ~; c = 6 tan C; B - 90 - C.
cos C'
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Case 4. Here, when B and b are known, we
have:

,; c = b cot B; C = 90 - B.
sin

When C and c are known, we have :

a -~\ 6 - c cot C;
sin o

90 - C.

These rules and formulas, while not including all

possible combinations for the solution of right-

angled triangles, give all the information neces-

sary for the solution of any kind of a right-angled

A

C Bf

r-
FIG. 94. FIG. 95.

triangle. A few examples of the use of these rules

and formulas will now be given, so as to clearly

indicate the mode of procedure in practical work.

Example 1. In the triangle in Fig. 94, side AC
is 12 inches long and angle D is 40 degrees. Find

angle E and the two unknown sides.

This is an example of Case 3, one angle and its

adjacent side being given. Angle E equals 90 de-

grees minus the given angle, or

#=90 -40 -50
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The hypotenuse BC equals the adjacent side

divided by the cosine of D, or

BC - - = 15 -666 inches -

Side AB equals the adjacent side multiplied by
the tangent of D, or

AB = 12 X tan 40 = 12 X 0.839 = 10.068 inches.

The cosine and tangent of 40 degrees are found
in the tables of trigonometric functions as already

explained.

Example 2. In the triangle in Fig. 95, the

hypotenuse BC = 17i inches. One angle is 44 de-

grees. Find angle E and the sides AB and AC.
This is an example of Case 2, the hypotenuse

and one 'angle being given. Using the rules or

formulas given for Case 2, we have :

AC = 174 X cos 44 = 17.5 X 0.719 = 12.5825

inches.

AB = 174 X sin 44 = 17.5 X 0.695 = 12.1625

inches.

E =90 -44 =46.

Example 3. In the triangle in Fig. 96, side AC
= 208 feet, and the angle opposite this side= 38

degrees. Find angle E, and the two remaining
sides.

This is an example of Case 4, one side and the

angle opposite it being known. From the rules or

formulas given for Case 4, we have:

BC = 208 - sin 38 = 208 - 0.616 = 337.66 feet.

AB = 208 X cot 38 = 208 X 1.280= 266.24 feet.

#=90 -38 = 52.
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Example 4. In the triangle in Fig. 97, side AC
= 3 inches, and the hypotenuse #C=5 inches. Find

side AB and angles D and E.

This is an example of Case 1. According to a

formula previously given in this chapter

AB = VBC'2 - AC 2 =

Vl6 = 4.

AB
sin E =

BC

\/5 2 - 3 2 = \/25 - 9 =

=0.800.

From the tables we find that the angle corre-

FIG. 96. FIG. 97.

spending to a sine which equals 0.800 is 53 10'.

Consequently :

# = 53 10', and D = 90 -53 10' = 36 50'.

Example 5. In the triangle in Fig. 98, side BC,
the hypotenuse, is 1| inch long. One angle is 65

degrees. Find angle E and the remaining sides.
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This is an example of Case 2. We have:

E= 90 -65 =25.
AB= 1| X cos 65 = 1.375 X 0.423 - 0.5816 inch.

AC = 1| X sin 65 = 1.375 X 0.906 =1.2457 inch.

Example 6. In the triangle in Fig. 99, side AB
= 0.706 inch, and the angle adjacent to this side is

60 degrees. Find angle Eand the sides AC and EC.
A B

T

U ia

FIG. 99.

This is an example of Case 3. We have :

#=90 -60 = 30.
EC = 0.706 *- cos 60 - 0.706 - 0.500 = 1.412

inch.

AC= 0.706 X tan 60 = 0.706 X 1.732= 1.2228

inch.

The previous examples, carefully studied, will

give a comprehensive idea of the methods used for

solving right-angled triangles, no matter which

parts are given or unknown.
A triangle which does not contain a right angle

is called an oblique triangle. Any such triangle

can be solved by the aid of the formulas given for

the right triangle, by dividing it into two right-

angled triangles by means of a line drawn from
the vertex of one angle perpendicular towards the

opposite side. Formulas can be deduced which do
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not require that the triangle be so divided, but for

elementary purposes, the method indicated is the

most easily understood.

In Fig. 100, for example, a triangle is given as

shown. One angle is 50 degrees, and the sides in-

cluding this angle are 4 and 5 inches long, respec-

tively. Draw a line from A perpendicular to the

side EC. We have here two right-angled tri-

angles, and can now proceed by using the formulas

previously given. In triangle ADB, the hypoten-
use AB and one angle are given. We then find

side AD by means of the formulas for Case 2, and
also angle BAD and side BD. Next we find CD
= 5- BD. We then, in the triangle ACD know
two sides AD and CD, and can thus find side AC
as in Case 1, as well as angles ACD and CAD.
The angle BAG finally is found by adding angles
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BAD and CAD and, then, all the angles and sides

in the triangle are found.

The successive calculations would be carried out

as follows:

AD = 4 X sin 50 = 4 X 0.766 - 3.064.

D = 4 X cos 50= 4 X 0.643 = 2.572.

Angle BAD = 90 - 50 = 40.
DC = 5 - BD = 5 - 2.572 = 2.428.

AC = AD* + DC* = aoe 2.428* =- 3.91.

Sine of angle ACD =~ = ~ - 0.784.

Angle ACD = 51 40'.

Angle CAD = 90- 51 40' = 38 20'.

Angle BAG = 40 + 38 20'= 78 20'.

In order to check the results obtained, add angles

ABC, BAG and ACD. The sum of these angles
must equal 180 degrees if the results are correct:

50 + 78 20' + 51 40' = 180.

This method, with such modifications as are

necessary to meet the different requirements in

each problem, may be used for solving all oblique-

angled triangles, except in the case where no angle
is known, but only the lengths of all the three

sides. In this case the use of a direct formula

will prove the best and most convenient. Let the

three known sides be a, b and c, and the angles

opposite each of them A, B and C, respectively, as

in Fig. 101 ; then we have :

b
2 + c

2 - a 2 b sin A

180- (A + B).
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As an example, assume that the three sides in a

triangle are a = 4, 6 = 5, and c = 6 inches long.

Find the angles.

5 2 + 6 2 - 4 2

= 45_

60
Cos 4 = 2X5X6

,4 = 41 25'.

0.750.

Sin B = _
4 4

B = 55 50'.

C = 180 -
(41 25' + 55 50') = 82 45'.

As only the first principles of trigonometry have
here been treated, some of the more advanced

^

problems have, by necessity, been omitted. For

ordinary shop calculations the present treatment

will, however, be found more satisfactory, as some
of the matter which would unnecessarily burden
the mind has been left out. If the student only
first acquires a thorough understanding of the first
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principles of mathematics and their application to

machine design, it is comparatively easy to broaden

the field of one's knowledge; it is, therefore, of

extreme importance that these first principles

be thoroughly understood and digested. The ap-

plication will then be found comparatively easy.

The trigonometric functions afford a convenient

means for laying out angles ; and when the sides

Ar
r

60
>j

^FiG. 102. Method of Laying Out Angles by Means of

Natural Functions.

of the angle laid out are much extended, it can

be laid out more accurately in this manner than

by the use of an ordinary protractor. Let it be

required, for instance, to lay out an angle of 37

degrees, one side of the angle being 60 inches long.

Lay out the side AB, Fig. 102, 60 inches long.

Then with a radius equal to the sine of 37 degrees

multiplied by 60, and with a center at B, draw an



ELEMENTS OF TRIGONOMETRY 119

arc C. Then draw a line from A, tangent to arc

C. This line forms an angle of 37 degrees with
line AB. If the required angle is over 45 degrees,
then it is preferable to lay out the complement
angle from a line perpendicular to the original

-B

FIG- 103. Laying Out an Angle Greater than 45 Degrees.

line, as shown in Fig. 103, where an angle of 70

degrees is to be laid out, but the 20-degree comple-
ment angle is actually constructed. Many other

methods for use in laying out angles, arcs, etc.,

will readily suggest themselves to the student who
thoroughly understands the relation of the trigo-

nometric functions in a right-angled triangle.



CHAPTER VIII

ELEMENTS OF MECHANICS

MECHANICS is defined as that science, or branch

of applied mathematics, which treats of the action

of forces on bodies. That part of mechanics which
considers the action of forces in producing rest or

equilibrium is called statics; that which relates to

such action in producing motion is called dynamics;
the term mechanics includes the action of forces

on all bodies whether solid, liquid or gaseous. It

is sometimes, however, and formerly was often,

used distinctively of solid bodies only. The me-
chanics of liquid bodies is called also hydrostatics

or hydrodynamics, according as the laws of rest or

motion are considered. The mechanics of gaseous
bodies is called also pneumatics. The mechanics

of fluids in motion, with special reference to the

methods of obtaining from them useful results,

constitutes hydraulics.

The Resultant of Two or More Forces. When a

body is acted upon by several forces of different

magnitudes in different directions, a single force

may be found, which in direction and magnitude
will be a resultant of the action of the several

forces. The magnitude and direction of this single

force may be obtained by what is known as the

parallelogram of forces. Let A and B, Fig. 104,

120
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represent the direction of two forces acting simul-

taneously upon P, and let their lengths represent

the relative magnitude of the forces
; then, to find

a force which in direction and magnitude shall

be a resultant of these two forces, draw the line C
parallel with B, and draw the line D parallel with

A. A diagonal of the parallelogram thus formed,

drawn from Pto E, will give the direction, and its

F

FIG. 104. Parallelogram of Forces.

length as compared with A and B, the relative

magnitude, of the required force.

That this is so may be seen by considering the

two forces as acting separately upon P. Let A be

considered as acting upon P to move it through
a distance equal to its length. Then P would be

moved to F. If the force B is now caused to act

upon P to move it through a distance equal to its

length, P will arrive at G. As FP has the same

length and direction as A, and as GFhas the same

length and direction as B, the distance from G to

P would be the same as the distance from P to E;
therefore, PE, the diagonal of the parallelogram
formed by the lines A, B, C, and D, represents the

required new force or resultant.

If there are more than two forces acting upon
the point P, first find a resultant of any two of the

forces; then consider this resultant as replacing
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FIG. 105. -Resultant of Three

Forces.

the first two, and find the resultant of it and an-

other of the original forces ; continue this process
until a force is obtained which will be the resultant

of all of the original forces. Thus, in Fig. 105, if

A, B and C be considered as representing in di-

rection and magnitude
three forces which are

acting simultaneously

uponP; then, if we draw
a parallelogram upon A
and B, we have its diag-
onal PD as the resultant

of A and B. A parallel-

ogram is now drawn

upon PD and C, giving PE, its diagonal, as the

resultant of these two, and, consequently, of the

three original forces.

This principle holds true whether the original

forces are acting in the same plane or not. Thus,
in Fig. 106, let A, B
and C be three forces

acting simultaneously

upon P. Then the re-

sultant of A and B
would be the diagonal
PD. Considering this

as replacing A and J5,

a resultant of it and C
would be a diagonal drawn from P to the further

corner E; PE would then be the resultant of A, B
andC.
This operation may, of course, be reversed to

allow of finding two or more forces in different

FIG. 106. -Resultant of Three

Forces in Different Planes.
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directions which in magnitude shall be equivalent

to a single known force. Thus in Fig. 107, if PA
represents the direction and magnitude of a given
force which it is desired to replace by two others

acting in the direction of PB and PC, respectively,

then draw a line from A to PB parallel with PC,
and draw another from A to PC parallel with PB.
The lengths Pa and Pb
thus determined will

represent the relative

magnitudes, as com-

pared with PA, of the

required new forces.

Parallel Forces. Let

A and B, Fig. 108,

represent the direction

and magnitude of two

parallel forces acting

together upon the bar DE. These two forces may
be replaced or counterbalanced by a single force,

equal in magnitude to A and B combined. To de-

termine the point of application of this new force

produce A to a, making Da equal in length to B.

Also make bE equal in length to A. The inter-

section of the line connecting a and b with DE, at

F, will be the required point of application. The

lengths DF and FE will be inversely proportional

to the forces A and B. That is, the length FE will

be to the force A as the length DF is to the force

B. The product of DF multiplied by A will be

equal to the product of FE multiplied by B.

Fig. 109 shows how several parallel forces, act-

ing in the same direction, may be replaced or

FIG. 107. Resolution of Forces.
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counterbalanced by a single force. Let A, B and

C represent the relative magnitudes of the forces.

A resultant of B and C would be D, equal in

/
xi.

FIG. 108. Parallel Forces.

FIG. 109. Resultant of

Several Parallel Forces.

magnitude to B and C combined, and its point of

application, determined in the manner previously

described, would be at a. Regarding D as a single
force replacing B and C,

would give E, equal in

magnitude to A and D
combined, as the result-

ant of these two, and its

point of application, de-

termined as before, would
be at b.

Oblique Forces. Let A
and B, Fig. 110, repre-

sent the directions and
relative magnitudes of

two forces acting simultaneously upon the barDE.
These two forces may be either replaced or counter-

FIG. 110. Oblique- Forces

Acting at Different Points

on a Bar.
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balanced by a single force, which in direction and

magnitude shall be a resultant of them. Produce

A and B until they meet at a. Draw the parallel-

ogram abed, making da equal to A, and ba equal

to B. The diagonal of this parallelogram will give

the direction and relative magnitude of the new
force, and if extended its intersection with DE
will give the point of application.

Opposing Forces. Let A and J9, Fig. Ill, repre-

sent the directions and relative magnitudes of two

forces acting upon oppo-
site sides of the bar DE.
These two forces may be

replaced by a single force,

which in direction and

magnitude will be a re-

sultant of them. Produce

A and B until they meet
at a. Lay off ac equal to

the length of B, and make
be equal to and parallel

with A. A line drawn
from a to 6 will give the

direction of the new force, and the length of ab,

as compared with A and B will give its relative

magnitude. Its application on bar DE may be de-

termined by extending ab until it intersects DE.
Levers. When a workman wishes to raise a

heavy object, he may insert one end of a bar un-

der it, and lift on the other end; or, pushing a

block of wood or iron in under the bar as close to

the object to be raised as he can, he presses down

upon the free end of the bar. A bar so used con-

FIG. 111. Opposing Oblique
Forces.
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stitutes a lever, and the point where the bar rests

when the lever is doing its work, the end of the

bar in under the heavy object in the first case, or

the block on which the bar rests in the second

case, is the fulcrum of the lever.

Levers are of three kinds, as shown in Fig. 112:

First, where the fulcrum is between the power

J1ST

I 3RD

Ow
FIG. 112. Classes of Levers.

and the weight; second, where the weight is

between the fulcrum and the power; and, third,

where the power is between the fulcrum and the

weight. A man's forearm furnishes a good illus-

tration of a lever of the third class, the fulcrum

being at the elbow, the weight at the hand, and

the muscle, being attached to the bone of the arm,
at a short distance from the elbow, furnishing the

power.
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In all of these cases the gain in power is exactly

proportional to the loss in speed, or the gain in

speed is exactly proportional to the loss in power.

Also, in every case the product of the weight mul-

tiplied by its distance from the fulcrum, will equal
the product of the power multiplied by its distance

from the fulcrum, or, the weight and power will

balance each other when the weight multiplied by
the distance through which it moves, equals the

power multiplied by the distance through which it

moves.

If in Fig. 108 the bar DE is a lever, the fulcrum

will be at F, and the methods used in that figure

and in Figs. 109, 110 and 111 give solutions of dif-

ferent lever problems.
The length of the lever arm is independent of

the form of the lever. In Fig. 113 is shown a lever

FIG. 113.-Lever of Curved Shape.

of curved shape ;
but the lever arms on which the

calculation as to the work that the lever is doing,
will be based, will be straight lines connecting the

point where the power is applied, or the point
which supports the weight, with the fulcrum.

The length of the lever arm is always at right

angles to the direction in which the power is being
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applied, or to the direction of the resistance of the

weight or load.

In Fig. 114 two cases are shown where the power
is applied obliquely on the lever; but the lever arm
on which the calculation is based will be the dis-

f\

FIG. 114. Power Applied Obliquely on Lever.

tance Fa measured from the fulcrum, at right

angles to the direction of the power.

Compound Levers. In Fig. 115 is shown a case

where the power gained with one lever is further

increased by' the use of a second lever, acting on

the first one. The weight and power will balance
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each other when the product of the weight and the

lever arms ab and ef, multiplied together, equals

the product of the power and the lever arms gfand
be multiplied together. Thus, to find the weight

FIG. 115. Compound Levers.

which a given power will lift, divide the product

of the power and its lever arms &/*and be, multi-

plied together, by the product of the lever arms of

the weight, ab and ef, multiplied together. To find

6W
A B

FIG. 116. Diagram for Lever Problem.

the power necessary to lift a given weight, divide

the product of the weight and its lever arms, ab

and ef, multiplied together, by the product of the

lever arms of the power, gf and be, multiplied

together.
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A few examples will illustrate these principles.

Assume that in Fig. 116 a weight at A must bal-

ance the 18-pound weight at B. The lever arms
are given as 12 and 5 inches, respectively. How
much must the weight W be, in order to balance

the weight at B ?

The weight at B (18 pounds) times its lever arm
(5 inches) must equal the weight W times its lever

arm (12 inches). In other words:

18 X 5 = W X 12.

90 = 12 W.

W =
12

= 7i P unds -

In Fig. 117, two weights, 4 and 2 pounds, respec-

tively, are balanced by a weight W. Find what

r
./
c

FIG. 117. Diagram for Lever Problem.

the weight of TFmust be with the lever arms

given in the engraving.
In this case the weight at A times its lever arm

plus the weight at B times its lever arm, will

equal weight W times its lever arm. The sum of

the products of the weights and leverages of the

weight at A and B is taken, because both these

weights are on the same side of the fulcrum F.
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Carrying out the calculation outlined above, we
have:

4 X 16 + 2X8 = 6 W.
64 + 16 = 80 = 6 W.

W = 8
^-

= 134 pounds.
b

The product of a weight or force and its lever

arm is commonly called the moment of the force.

The moment of the force at A, for example, is 4

pounds X 16 inches= 64 inch-pounds. If the lever

arm were 16 feet instead of 16 inches, the result

would be 64 foot-pounds.
An interesting application of the lever, and the

moments of forces, is presented in calculations of

FlG. 118. Diagram for Lever Problem.

weights for safety valves. A diagrammatical
sketch of a safety valve lever is shown in Fig. 118.

Assume that the total steam pressure, acting on

the whole area of the safety valve, is 300 pounds
when it is required that the steam should "blow
off." Find the weight W required near the end
of the lever to keep the valve down until the total

pressure is 300 pounds on the valve. Assume the

weight of the lever itself to be 6 pounds, con-

centrated at its center of gravity, 10 inches from
the fulcrum F.
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In this case we have that the moment of the

steam pressure, which acts upward, should equal
the sum of the moments of the weight of the lever

and the weight W. Therefore :

300 X 3 = 6 X 10 + 20 W.
900 = 60 + 20 W.
900 - 60 = 20 W.
840 = 20 W.

TJ7 840 , ,W =
-gQ-

= 42 pounds.

The calculation above has been carried out step

by step, so that students unfamiliar with the alge-

braic solution of equations may be able to under-

stand the principles involved in simple examples
of this kind. In the following, the calculations

have been carried out more directly, but the stu-

dent should use the "step by step" method until

thoroughly familiar with the subject.

Fixed and Movable Pulleys. A fixed pulley is

frequently used to change the direction of the

power, as shown in Fig. 119, but there is no gain
in power with such a pulley, as there is no com-

pensating loss of speed ; the weight will move up-
ward at the same rate of speed as the power moves
downward.

If now a movable pulley be used in connection

with the fixed pulley as shown in Fig. 120, then as

the end of the rope to which the power is applied

is drawn downward, each of the two strands of

rope between the pulleys will take half of the

stress of the suspended weight, and the weight
will be raised only one-half the distance that the
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power descends. The power will therefore need to

be only one-half of the weight. In Fig. 121, there

are three strands of rope between the pulleys, each

of which will be equally shortened when the free

end of the rope is pulled ;
the power, therefore, is

only one-third of the weight. In Fig. 122, with

o

FIG. 119. Fixed Pulley. FIG. 120. Fixed and Movable

Pulleys.

four strands of rope between the pulleys, each fur-

nishing an equal amount to the free end as it is

drawn out, the power need be only one-fourth of

the weight.
The law of the pulley, then, where a single rope

is employed, is that the power will be increased as

many times as there are lines of rope between the

pulleys to participate in the shortening. In a sys-
tem using more than one rope, as shown in Fig.
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123, each additional movable pulley doubles the

power, as it will move at only half the rate of the

preceding pulley.

Differential Pulleys. Another form of pulley,

known as the differential pulley, much used in ma-
chine shops, is shown in Fig. 124. In this form of

w

FIG. 121. Tackle where Load
is Taken on Three Strands

of Rope.

FIG. 122. Tackle where Load
is Taken on Four Strands

of Rope.

pulley an endless chain replaces the rope, the pul-

leys themselves being grooved and toothed like

sprocket wheels. The two pulleys at the top are

of slightly different diameters, but rotate together
as one piece. In operation, as the chain is drawn

up by the large wheel it passes around in a loop to

the small wheel from which it is unwound, causing
the loop in which the movable pulley rests to be
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shortened by an amount equal to the difference in

the pitch circumferences of the two upper wheels,

when they have made one revolution. This would

cause the weight to be raised one-half of that

amount. If in a given case the two upper pulleys

had respectively 20 and 19 teeth, then as the ap-

FlG. 123. A SpecialArrange-
ment of Movable Pulleys.

FIG. 124. Differential

Pulley.

plied power was being moved through a distance

of 20 inches the small pulley would unwind 19

inches of the chain, causing a shortening of the

loop in which the movable pulley rests of one inch,

which would raise the weight one-half of an inch,

giving a ratio of load to power of 40 to 1.

In all of these cases the results actually attained

in practice will be somewhat modified from the
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theoretical results given by calculations, by the

losses occasioned by friction.

Inclined Planes. In raising heavy weights

through short distances, as for instance in loading
barrels onto wagons, a plank may be used to facili-

tate the work by placing one end of it on the

ground and the other end on the wagon, and roll-

ing the barrel up the plank onto the wagon. Such
an arrangement is called an inclined plane. When
the force which is being applied to the rolling

FIG. 125. Inclined Plane. FIG. 126. Power Applied
Parallel to Base.

object is exerted in a direction parallel to the in-

clined surface, as in Fig. 125, it is evident that the

power must move through a distance equal to the

length of the incline in order to raise the weight
the desired height. The gain in power will then

be equal to the length of the incline divided by the

height.

If the power is applied in a direction parallel

with the base, as in Fig. 126, the power will have

to advance through a distance equal to the length
of the base to raise the object the desired height.

The gain in power will then be equal to the base

divided by the height. By considering Fig. 126
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FIG. 127. Power Applied Obliquely
to Surface of Incline.

further, it will be seen that in rolling the object

up the incline the power will have to advance from
the beginning of the

incline to a point
from which a line

may be drawn per-
'

pendicular to its di-

rection to the top of

the incline. In any
case where the

power is applied in

any direction other

than parallel with

the incline, in roll-

ing the object to the top, the power will have to

advance to a point from which a line may be drawn

perpendicularly to its direction to the top of the

incline. In Figs. 127

and 128 are shown two
other cases where the

power is applied in

a direction obliquely

to the surface of the

incline. In either of

these cases, as in the

other two cases, the

gain in power will

be found by dividing
the distance through
which the force

distance through which the

FIG. 128. Another Case where
Power is Applied Obliquely to

Surface of Incline.

moves, ab, by the

object is raised, cd.

It will be further seen that the gain in power is
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greatest when the direction in which the force is

being applied is parallel with the incline. When
the direction of the force is upward from the in-

cline, as in Fig. 127, part of the force is expended
in lifting the weight off from the incline, until,

when its direction is made vertical, it is all

expended in this way. When the direction of the

force is downward from the incline, as in Figs. 126

and 128, part of it is lost in pressing the object

against the incline.

The Screw. The screw is a modified form of

inclined plane, the lead of the screw, the distance

FIG. 129. Differential Screw.

that the thread advances in going around the

screw once, being the height of the; incline, and

the distance around the screw, measured on the

thread, being the length of the incline.

The Differential Screw. The differential screw

is a compound screw having a coarse thread part of

its length, and a somewhat finer thread the rest of

its length, the object being to get a slow motion

combined with the strength of a coarse thread.

Fig. 129 shows such a screw. The piece A is a

fixed part of some machine. The piston B slides

within A, being prevented from turning by the pin

C which enters a groove in B. If that part of the
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screw which engages in A has eight threads to

the inch, and that part of it which engages in B
has ten threads, then when the screw makes one

revolution, it will advance into A one-eighth of an

inch, and into B one-tenth of an inch
; the piston

B will therefore advance through a distance equal

to the difference between one-eighth of an inch

and one-tenth of an inch, or twenty-five one-thou-

sandths of an inch, requiring forty turns of the

screw to make the piston advance one inch.

Newton's Laws of Motion. The relation which

exists between force and motion is stated by the

three fundamental laws of motion formulated by
Newton.
Newton's first law says that if a body is at

rest it will remain at rest, or, if it is in motion, it

will continue to move at a uniform velocity in a

straight line, until acted upon by some force and

compelled to change its state of rest or of straight-

line uniform motion. In a general way, this law is

self-evident, and based on daily experience. How-
ever, the part of the law stating that a body in

motion will continue indefinitely to move if not

acted upon by resisting forces, may not be so self-

evident; yet whenever a body is brought to a stand-

still after it has been in motion, such forces as

frictional resistance, gravity, etc., always have in

some way influenced the motion of the body.
Newton's second law of motion says that a

change in the motion of a body is proportional to

the force causing the change, and takes place in

the direction in which the force acts. If several

forces act on a body, the change is proportional to
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the resultant of the several forces, and takes place
in the direction of the resultant. This has been

clearly explained in the previous pages, in connec-

tion with the resolution and composition of forces.

The most important point to note in regard to

the second law of motion is that when two or

more forces act on a body at the same time, each

causes a motion exactly the same as if it acted

alone ; each force produces its effect independently,
but the total effect on the motion of the body, of

course, is a combination of all these independent
motions.

Newton's third law says that for every action

there is an equal reaction. This means that if a
force or weight presses downward on a support
with a certain pressure, the reaction, or resistance

in the support, must equal the same pressure. If

a bullet is shot from a rifle with a certain force,

there is a reaction, or "recoil," in the rifle, equal
to the force required to give the velocity to the

bullet. This law is very important, and many
failures in machine design have been due to

ignorance of the real meaning of the law of action

and reaction.

Newton's third law may be illustrated by a loco-

motive drawing a train of cars. The driving
wheels give as much of a backward push on the

rails as there is of forward pull exerted on the

train; and it is only because the rails are held in

place by their fastenings, and by the weight rest-

ing on them, that the locomotive is able to pull the

train forward. This principle of action and reac-

tion being equal and opposite is also an effectual
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bar to any perpetual-motion machine, as such a

machine in order to work would have to produce
a greater action in one direction than the reaction

in the other direction.

The Pendulum. A body or weight suspended
from a fixed point by a string or rod, and free to

oscillate back and forth is called a pendulum. The

center ofoscillation is the point which, if all of the

material composing the pendulum, including the

sustaining string or rod, were concentrated at it

(the material so concentrated being considered as

being suspended by a line of no weight) would
vibrate in the same time as the actual pendulum.
The length of the pendulum is the length from the

point of suspension to the center of oscillation.

When the length of the pendulum is unchanged,
its time of vibration will be the same, if its angle
of vibration does not exceed three or four degrees,

and its time of vibration will be but slightly in-

creased for larger angles.

The time of vibration of a pendulum is not

affected by the material of which it is made,
whether light or heavy, except as the light mate-

rial will offer greater resistance to the air, by

presenting a greater surface in proportion to its

weight, than a heavy material.

The time of vibration of a pendulum of a given

length is inversely as the square root of the inten-

sity of gravity. As the intensity of gravity de-

creases with the distance from the center of the

earth it follows that a pendulum will vibrate faster

at the poles or at sea level than it will at the equa-
tor or at an elevation.
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The time of vibration of a pendulum varies di-

rectly as the square root of its length. That is, a

pendulum to vibrate in one-half or one-third the

time of a given pendulum will need to be only one-

quarter or one-ninth of its length.

Example l.A pendulum in the latitude of New
York will require to be 39.1017 inches long to beat

seconds. Required the length of a pendulum to

make 100 beats per minute.

A pendulum to make 100 beats per minute will

have to make its vibrations in 60-100 of the time

of one which is making 60 beats per minute, and
its length will be equal to the length of one which
beats seconds, multiplied by the square of 60-100,

or:

39.1017 X 60 2 39.1017 X 3600 ,

~W~ 10,000
: 14076 mches -

Example #. Required the time of vibration of

a pendulum 120 inches long. Letting x repre-
sent the required time, we have the proportion

V 120 :V 39. 1017 = x : 1, or 10.954 : 6.253 = x : 1.

10.954 ,

x =
/? oco = 1-75 second.
b.Zoo

A short pendulum may be made to vibrate as

slowly as desired by having a second "bob" placed
above the point of suspension, which will partially

counteract the weight of the lower bob.

Falling Bodies. A falling body will have ac-

quired a velocity at the end of the first second of

32.16 feet per second, under ordinary conditions.

If the body is of such shape or material as to pre-

sent a large surface to the air in proportion to its
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weight, its velocity will, of course, be lessened, and
as its velocity depends upon the force of gravity,

its velocity will be affected somewhat by the lati-

tude of the place, and its distance above sea level.

During the next second it will acquire 32.16 feet

additional velocity, giving it a velocity of 64.32

feet at the end of the second second. Each suc-

ceeding second will add 32.16 feet to the velocity

the body had at the end of the preceding second.

To find the velocity of a falling body at the end
of any number of seconds, therefore, multiply the

number of seconds during which the body has

fallen by 32.16. This rule, expressed as a formula,
would be :

v = 32.16 X *

in which v = velocity in feet per second, t = time

in seconds.

The acceleration due to gravity, 32.16 feet, is

often, in formulas, designated by the letter g. As
an example, find the velocity of a falling body at

the end of the twelfth second:

v = 32.16X12 = 385. 92 feet.

As the body falling starts from a state of rest,

its average velocity will be one-half of its final ve-

locity ; the distance through which it falls equals
the average velocity multiplied by the number of

seconds during which it has been falling. This

rule, expressed as a formula, is :

A-f X*
.^

in which h = distance or height through which
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body falls, and v and t have the significance given
above. But v = 36.16 X t; if this value of v is in-

serted in the formula just given, we have:

This last formula, expressed in words, gives us

the rule that the distance through which a body
falls in a given time equals the square of the num-
ber of seconds during which the body has fallen,

multiplied by 16.08.

How long a distance will a body fall in 10 sec-

onds? Inserting t = 10 in the formula, we have:

h = 16.08 f = 16.08 X 102 = 16.08 X 100 = 1608

feet.

The time, in seconds, required for a body to fall

a given distance equals the square root of the

distance, expressed in feet, divided by 4.01. Ex-

pressed as a formula, this rule would be :

t = V^
4.01'

As an example, assume that a stone falls through
a distance of 3600 feet. How long time is required

for this?

Inserting h = 3600 in the formula, we have :

V3600 60
t = .

= = 15 seconds, very nearly.

The velocity of a falling body after it has fallen

through a given distance equals the square root of

the distance through which it has fallen multi-

plied by 8.02.
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This rule, expressed as a formula, is:

What is the velocity of a falling body after it

has fallen through a distance of 3600 feet?

Inserting h = 3600 in the formula, we have:

v = 8.02 X V3600 = 8.02 X 60 = 481.2 feet.

The height from which a body must fall to acquire

a given velocity equals the square of the velocity

divided by 64.32. As a formula, this rule is:

~

64.32

From what height must a body fall to acquire a

velocity of 500 feet per second? Inserting v = 500

in the formula given, we have:

500 2 500 X 500
=
64.32

=
.64.32

If a body is thrown upward with a given ve-

locity, its velocity will diminish during each second

at the same rate as it increases when the body
falls. A body thrown up into the air in a vertical

direction will return to the ground with exactly

the same velocity as that with which it was thrown

into the air. At any point, the velocity on the up-

ward journey will be equal to the velocity on the

downward journey, except that the direction is

reversed.

The acceleration of a falling body, 32.16 feet per

second, is the value at the latitude of New York,
at sea level.

The force required to give to a falling body its
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acceleration of 32.16 feet per second is the weight
of the body itself. The force required to give any
acceleration to a body, then, is to the weight of the

body as that acceleration is to the acceleration

produced by gravity. Therefore, to find the force

required to produce a given rate of acceleration to

a body, divide the weight of the body by 32.16,

and multiply the quotient by the required rate of

acceleration.

Example. A body weighing 125 pounds is to be

lifted with an acceleration of 10 feet per second.

Required the strain on the sustaining rope.

125
00 .,

X 10 = 38.8, the tension necessary to produce
oZ.lb

the acceleration.

To this must be added the pull necessary to lift

the weight without acceleration, or the weight of

the body itself. Thus 38.8 + 125 = 163.8 is the re-

quired tension on the rope.

The rate of acceleration which a continuously

acting force will produce is equal to the force

divided by the weight of the body,, multiplied by
32.16.

Energy and Work. The unit of work, the stand-

ard by which work is measured, is the foot-pound,

or the amount of work done in lifting a weight or

overcoming a resistance of one pound through one

foot of space.

"Energy is the product of a force factor and a

space factor. Energy per unit of time, or rate of

doing work, is the product of a force factor and a

velocity factor, since velocity is space per unit of

time. Either factor may be changed at the ex-
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pense of the other; i.e., velocity may be changed,
if accompanied by such a change of force that the

energy per unit of time remains constant. Corre-

spondingly force may be changed at the expense of

velocity, energy per unit of time being constant.

Example. A belt transmits 6000 foot-pounds per
minute to a machine. The belt velocity is 120 feet

per minute, and the force exerted is 50 pounds.
Frictional resistance is neglected. A cutting tool

in the machine does useful work ; its velocity is 20

feet per minute, and the resistance to cutting is

300 pounds. Then the energy received per minute
- 120 X 50 = 6000 foot-pounds; and energy deliv-

ered per minute = 20 X 300 = 6000 foot-pounds.
The energy received therefore equals the energy
delivered. But the velocity and force factors are

quite different in the two cases." (Prof. A. W.
Smith.)
Force of the Blow of a Steam Hammer or Other

Falling Weight The question, "With what force

does a falling hammer strike ?" is often asked.

This question can, however, not be answered

directly. The energy of a falling body cannot be.

expressed in pounds, simply, but must be expressed
in foot-pounds. The energy equals the weight of

the falling body multiplied by the distance through
which it falls, or, expressed as a formula:

E = WXh,
in which E = energy in foot-pounds,

W = weight of falling body in pounds,
h = height from which body falls in feet.

The energy can also be found by dividing the
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weight of the falling body by 64.32 and then mul-

tiplying the quotient by the square of the velocity

at the end of the distance through which it falls.

This rule, expressed as a formula, is:

in which E and W denote the same quantities as

before, and v = the velocity of the body at the end

of its fall.

Both of these formulas give, of course, the same
results. That the second method gives the same
result as multiplying the weight by the height

through which it falls, is evident from the fact,

stated under the head of "Falling Bodies/' that the

square of. the velocity of a falling body, divided

by 64.32, gives the height through which it has

fallen.

This second method allows of determining the

energy of any weight or force moving at a given

velocity, whether its velocity has been acquired by

falling, or is due to other causes.

Now assume that we wish to find the force of

the blow of a 300-pound drop hammer, falling 2

feet before striking the forging, and compressing
it 2 inches.

The energy of the falling hammer when reach-

ing the forging is:

E = W X h = 300 X 2 = 600 foot-pounds.

This energy is used during the act of compress-

ing the forging 2 inches or 0.166 of a foot. Con-

sequently, the average force of the hammer with
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which it compresses the forging is 600 -*- 0.166 +
the weight of the hammer, or

Average force of blow =
A ,* + 300 =
U.lbb

3600 + 300 = 3900 pounds.

The general formula for the force of a blow is:

in which F = average force of blow in pounds,
W = weight of hammer in pounds,
h = height of drop of hammer in feet,

d = penetration of blow in feet.

A horse-power, in mechanics, is the power ex-

erted, or work done, in lifting a weight of 33,000

pounds one foot per minute, or 550 pounds one foot

per second. The power exerted by a piston driven

by steam or other medium during one stroke, in

foot-pounds, is equal to the area of the piston,

multiplied by the pressure per square inch, multi-

plied by the stroke in feet, the product of the area

by the pressure giving the force, and the stroke

giving the distance through which the force is

exerted. In the case of steam engines, where the

steam is cut off at one-quarter, one-third or one-

half of the stroke, the piston being driven the rest

of the way by the expansion of the steam, the

average pressure for the entire stroke, the ''mean

effective pressure" (M.E. P.), as it is called, is the

basis of calculations. As each revolution of the

engine equals two strokes of the piston, the number
of foot-pounds per minute an engine is developing
will be the product of the area of the piston in
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square inches, multiplied by the mean effective

pressure, multiplied by the stroke in feet, multi-

plied by the number of revolutions per minute
times 2. This product, divided by 33,000, gives
the indicated horse-power (I.H.P.) of the engine;
this name being derived from the fact that the

mean effective pressure is determined by the use

of the steam engine indicator. Therefore:

r TT D AreaXM. E. P. X strokeX rev, permin. X2LH'P'
=

33,000

This formula may be transposed in various ways
to give other information. For instance, if the

piston area for a given horse-power is desired,

then

Area
LH.P. X 33,000

M.E.P. X stroke X rev. per min. X 2.

If the volume of the cylinder is desired, then

A LH.P. X 33000
Area X stroke = , , ^ n rr^rM.E.P. X rev. permin. X 2.

If the pressure to produce a given horse-power
is desired, then

MEp = LH.P. X 33000

Area X stroke X rev. per min. X 2.

The mean effective pressure in the cylinder of

the engine is, of course, considerably less than the

boiler pressure as shown by the steam gauge. The
indicated horse-power of an engine does not take

into account the losses caused by the friction of

the working parts. The power which the engine

actually delivers as shown by a brake dynamo-
meter or other contrivance at the flywheel is called

the brake horse-power.



CHAPTER IX

FIRST PRINCIPLES OF STRENGTH OF MATERIALS

Factor of Safety. It is obvious that it would be

unsafe in designing a piece of construction work
to allow a strain of anywhere near the breaking
limit of the material it is to be made from. It is,

therefore, customary in making any calculations

for the size of the parts to use what is called a

factor of safety, by making the part from three or

four to ten or even more times the strength neces-

sary to just resist breaking with a steady load.

The factor of safety used will depend upon several

considerations. It will depend, first, upon the na-

ture of the material used. A wrought or drawn

metal, for instance, will be likely to be more uni-

form in its nature than a cast metal which may
contain air holes, or which may be more or less

spongy, or which may be under unequal strains in

cooling. The matter of strains in a casting due to

unequal cooling is to a considerable extent a mat-

ter of proper or improper design ; still it is not

possible to entirely avoid them.

Again the factor of safety to be used will depend
upon the nature of the work which will be re-

quired of the part. If the part has to simply sus-

tain a steady load it will not need to be as strong
as though the load was applied and reversed, or

151
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even as strong as though the load was applied and
released. To illustrate, it is a familiar fact that a

piece of wire which may be bent a given amount
without apparent injury, may be broken by repeat-

edly bending it back and forth the same amount
at one point. And, similarly, in machine parts,

rupture may be caused not only by a steady load

which exceeds the carrying strength, but by re-

peated applications of stresses none of which are

equal to the carrying strength. Rupture may also

be caused by a succession of shocks or impacts,
none of which alone would be sufficient to cause it.

Iron axles, the piston rods of steam hammers and
other pieces of metal subjected to repeated shocks,

invariably break after a certain length of service.

The factor of safety used will therefore vary

widely with the nature of the work required of the

part. For a steady or "dead" load, Prof. A. W.
Smith says: "In exceptional cases where the

stresses permit of accurate calculation, and the

material is of proven high grade and positively

known strength, the factor of safety has been

given as low a value as 1J but values of 2 and 3 are

ordinarily used for iron or steel free from welds ;

while 4 to 5 are as small as should be used for cast

iron on account of the uncertainty of its composi-

tion, the danger of sponginess of structure, and

indeterminate shrinkage stresses." Others would

make 3 the lowest factor of safety that should be

used for wrought iron and steel.

Where the load is variable, but well within the

elastic limit of the material, that is where the load

is not so great but so that the part will immedi-
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ately resume its original shape when the load is

removed, a factor of safety of 5 or 6 might be

used. The part will need to be made stronger if

the load or force acts first in one direction and

then in the opposite direction, that is, if it acts

back and forth, than it will need to be if the same
force is simply applied and then released. Where
the part is subjected to shock, the factor of safety

is generally made not less than 10. A factor of

safety as high as 40 has been used for shafts in

mill-work which transmit very variable powers.
In cases where the forces are of such a nature

that they cannot be determined, then Prof. Smith

says: "Appeal must be made to the precedent of

successful practice, or to the judgment of some ex-

perienced man until one's own judgment becomes

trustworthy by experience.
* * * In proportioning

machine parts, the designer must always be sure

that the stress which is the basis of calculation

or the estimate, is the maximum possible stress;

otherwise the part will be incorrectly propor-
tioned." And he cites the case of a pulley where
if the arms were to be designed only to resist the

belt tension they would be absurdly small, because

the stresses resulting from the shrinkage of the

casting in cooling are often far greater than those

due to the belt pull.

In many cases the practical question of feasi-

bility of casting will determine the thickness of

parts, independent of the question of strength.
For instance, on small brass work, such as plumb-
ers' supply, and small valve work, a thickness of

about 3-32 of an inch is as little as can be relied
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on to make a good casting on cored out work ; or

in the case of partitions in such work where the

metal has to flow in between cores, a thickness of

about J of an inch is as small as should be used;

yet such thicknesses may be much greater than

are required to give the necessary strength. On
larger cast iron work, the thickness to be allowed

to insure a good casting will, of course, depend
upon the size of the piece. The judgment of the

pattern-maker or foundry-man will naturally de-

termine the thickness in such cases.

Shape of Machine Parts. While the size of ma-
chine parts will vary greatly with the nature of the

work required of them, their shape will depend
very much on the manner or direction in which
the load or strain is brought to bear upon them.

If the part is subjected to simple tension, that is,

merely resists a force tending to pull it apart, then

the shape of the member which serves this purpose
is not very material, though a round rod, being most

compact and cheapest, is best. Almost any shape
will answer, however, though it is well to avoid

using thin and broad parts, as a strain, though not

greater than that which the part as a whole might
bear safely, might be brought upon one edge, pro-

ducing^a tearing effect beyond the safe limit. For

resisting simple tension the part should be made of

uniform size its entire length, of a size to be deter-

mined by the tensile strength of the material and
the factor of safety used.

If the part is to resist compression, then when
the proportion of its length to its diameter or

thickness is such that it will
"
buckle'

'

or bend,
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instead of crushing, that is when its length ex-

ceeds five or six times its diameter, it becomes

desirable to use a hollow or cross-ribbed form of

construction, so as to get the metal as far from the

axis of the piece as possible. The hollow cylind-

rical form, by getting all of the metal equally dis-

tant from the axis is, of course, most effective,

but considerations of appearance may make a hol-

low square form more desirable, while considera-

tions of cost may make a cross-ribbed form to be

preferred, as such a form can be cast without the

use of cores. In cases where a wrought metal must
be used a solid form is often the only practicable

one. When it becomes important to keep the

weight down to the lowest point, it is common to

have the piece slightly enlarged in the middle

of its length, as in the case of connecting rods of

steam engines. In the case of steam engine con-

necting-rods, the tendency to buckle is least side-

ways, as the cross-head and crank-pins tend to

hold it in line this way, while the rotary motion of

the crank-pin tends to produce buckling the other

way. Connecting rods are therefore frequently
made somewhat flat, of a breadth about twice
their thickness.

When a piece is designed to resist bending, it

becomes desirable to get a good depth of material

in the direction in which the force is applied, as

the capacity of a piece to resist bending increases

as the square of its thickness or depth in the di-

rection of the force, but only directly as its breadth
or width, so that to increase the thickness of a

piece two or three times in the direction of the
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force would increase its capacity to resist bending
four or nine times; while to increase its breadth
two or three times would only increase its strength
two or three times. The proportion of depth to

breadth which can be used will, of course, depend
upon the length of the piece, as if the piece is long
and its depth is made large in proportion to its

thickness the tendency will be for the piece to

buckle, or yield sideways. To resist this tendency
it is customary to put ribs on the edges of such a

FIG. 130. FIG. 131.

FIGS. 130 and 131. Beam Cross-sections of

Different Types.

piece, giving it the form shown in Fig. 130. The
hollow box-form shown in Fig. 131 is, of course,

equally effective to resist combined bending and

buckling stresses, and in some cases may be pref-

erable as a matter of appearance on account of

the impression of solidity which it gives.

A projecting beam, like that shown in Fig. 132,

designed to resist a force or sustain a load at

its end, would need to have its lower edge made
of the form of a parabola, if made of uniform

thickness. If the edges were ribbed to prevent

buckling, then material might be taken out of

the middle portion, as shown in Fig. 133, without

weakening it.
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Strength of Materials as Given by Kirkaldy's
Tests. A very large number of tests of cast iron

made by Kirkaldy gave results as follows : Tensile

strength per square inch, necessary to just tear

asunder, from about 10,000 or 12,000 pounds to

about 28,000 or 32,000 pounds, or an average

strength of about 20,000 pounds. Tests on the

ability of cast iron to resist crushing gave results

varying from about 50, 000 to about 150, 000 pounds,

FIG. 132. Cantilever of

Uniform Strength, when
Loaded at End.

FIG. 133. Common Design
of Cantilever of Uniform

Strength.

or an average strength of about 100,000 pounds
per square inch. These tests indicate that cast

iron has about five times the capacity to resist

crushing that it has to resist tension. They also

indicate that cast iron is a somewhat uncertain

material.

Tests of wrought iron indicated a tensile strength
of between 40,000 and 50,000 pounds per square

inch, the elastic limit being reached at about one-

half the tensile strength. Tests on steel castings

gave results for tensile strength ranging from

55,000 to about 64,000 pounds per square inch,
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the elastic limit being reached at about 30,000

pounds.
Tests of wire gave results as follows : Brass,

from 81,000 to 98,000 pounds per square inch of

area. Iron, from 59,000 to 97,000 pounds. Steel,

from 103,000 to 318,000 pounds.
The tensile strength of regular machine steel

(low carbon steel) is generally given at about

60,000 pounds per square inch.

Size of Parts to Resist Stresses. To resist ten-

sion it is, of course, only necessary to have the

piece of such a size that each square inch shall not

have a stress greater than the average strength

of the material (as 20,000 pounds for cast iron)

divided by whatever factor of safety may be

selected.

To Resist Crushing. Prof. Hodgkinson's rule

for the strength of hollow cast iron pillars is as

follows : To ascertain the crushing weight in tons

multiply the outside diameter by 3.55; from this

subtract the product of the inside diameter multi-

plied by 3.55, and divide by the length multiplied

by 1.7. Multiply this quotient by "46.65. Ex-

pressed as a formula this rule would be:

(D X 3.55)
- (d X 3. 55)

L X 1.7
S c

= 46.65 X

in which

Sc = ultimate compressive (crushing) strength

of hollow column, in tons,

D = outside diameter in inches,

d = inside diameter in inches,

L = length of column in feet.
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Any desired factor of safety may be introduced

in the above formula by dividing the factor 46.65

by the factor of safety. In this case the formula

would be:

Q 46J>5_Xl CD._X_SL55) - (d X 3.55)]

F X L X 1.7

in which

S = safe compressive strength in tons,

F = factor of safety, and

D, d and L have the same meaning as above.

This rule and formula assumes that the ends of

the column are perfectly flat and square, and that

the load bears evenly on the whole surface.

If the ends are rounded, the column yields at

about one-half the -stress of one with fixed square
ends.

To Resist Bending. In the following commonly
given rules for the strength of beams or bars to

-i K-H

I

FIG. 134. Rectangular Cantilever.

resist breaking by transverse stresses, the tensile

strength of cast iron is assumed at 20,000 pounds
per square inch. Divide 20,000 in the formulas

>
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by the desired factor of safety. The breadth and

depth of rectangular bars, the diameter, if the bar

is round, and the length, are all in inches.

For rectangular bars fixed at one end with the

force applied at the other, Fig. 134, the breaking
load equals

bX d 2 X 20,000

I

:

For round bars under the same conditions, Fig.

135, the breaking load equals

JL /
0.59 X d*X 20,000

6 I

If the rectangular bar is hollow, as shown in

FIG. 135. Circular Section Cantilever.

Fig. 131, subtract the internal b X d 2 from the

external b X d 2
.

If the round bar is hollow subtract the internal

d 3 from the external d 3
.

The case of a bar of the I-section shown in Fig.

130 is similar to that of the hollow rectangular bar

of Fig. 131, the depressions in its sides correspond-

ing to the hollow part of Fig. 131, the sum of their
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depths corresponding with the internal width b of

the hollow rectangular bar.

If a beam is fixed at one end and the load is

evenly distributed throughout its entire length,

it will bear double the weight it will if the load

is supported at the outer end.

If the beam is supported at the ends and loaded

in the middle it will bear four times the weight of

the beam of Fig. 134, or, if the load is evenly dis-

tributed throughout the length of the beam, eight
times.

If the beam, instead of being simply supported
at- the ends, has the ends fixed and is loaded at the

center, its ability to resist breaking will be doubled

as compared with that when loaded at the center

and with the ends only supported.

Regarding the safe load that beams or bars of

different material may bear Griffin says that "with
but a general knowledge of the elastic limit, ordi-

nary steel is good for from between 12,000 to 15,000

pounds per square inch non-reversing stress, and
from 8000 to 10,000 pounds reversing stress. Cast

iron is such an uncertain metal, on account of its

variable structure, that stresses are always kept

low, say from 3000 to 4000 for non-reversing stress,

and 1500 to 2500 for reversing stress.
"

Again, though the tests of wrought iron show it

to have a much higher tensile strength than cast

iron, Nystrom, in formulas for lateral strength,

gives wrought iron but little more than three-quar-
ters the value of cast iron, probably because it

bends so readily.
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A table is appended giving the average breaking

strength, in pounds per square inch, of some com-

monly used materials in engineering practice.

Stresses in Castings. Reference has been pre-

viously made to stresses in castings, due to shrink-

age in cooling. If all parts of a casting could be

made to cool equally fast there would not be much
trouble in this respect, but as different parts of a

casting vary in thickness, the time they require

to cool will vary, and the thick parts remaining
fluid the longest, will, on cooling, cause a strain on

the already cool thin parts. In the case of a pulley,

where the rim and arms are much lighter than the

hub, the hub on cooling will tend to draw the arms

to itself and away from the rim, and if the differ-

ence in thickness is great, they may be even found

to be pulled away so as to show a crack where they

join the rim. The"remedy in such a case would, of

course, be first, to take out as much of the metal

from the center of the hub as possible by means

of a core, and second, to keep the outside of the

hub as small as would be consistent with strength,

getting necessary thickness for set screws by hav-

ing a raised place or boss at that point.
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As these strains are primarily due to unequal

cooling, it is evident that in order to reduce them
to the lowest point the first thing to do is to make
the different parts of the casting of as nearly uni-

form thickness as possible. Where different parts

of the casting vary in thickness, the change from
one thickness to the other should be made as grad-
ual as possible. Sharp internal corners should also

be avoided, as such places are very liable to be

spongy; the sand from the sharp corner in the

mould is also very liable to wash away when the

metal is poured in, and lodge in some other place,

causing a defective casting. A good
' '

fillet,
"
as an

internal round corner is called, which the pattern-

maker may put into the pattern with wax, putty or

leather, will not be very expensive, and will save

much trouble in the casting.

Besides possessing a knowledge of factors of

safety, proportioning parts to resist various

stresses and the like, a general knowledge of the

principles of foundry and machine shop practice is

essential to properly design machine work. If one

does not understand foundry work, he will be con-

stantly designing castings which it will be im-

practicable to mould ; if not actually impossible of

moulding, they will be needlessly expensive. And
in like manner, unless he understands the general

principles of machine shop practice, his work will

be giving trouble at that end of the line.



CHAPTER X

CAMS

General Principles. In designing machinery it

is frequently desirable to give to some part of the

mechanism an irregular motion. This is often

done by the use of cams, which are made of such

form that when they receive motion, either rotary

or reciprocating, they impart to a follower the

desired irregular motion.

The follower is sometimes flat, and sometimes

round. When the follower is round it is usually

made in the form of a wheel or roller, so as to les-

sen the wear and the friction. The follower may
work upon the edge of the cam, or if round, it

may work in a groove formed either on the face

or on the side of the cam.

The working surfaces of cams with round fol-

lowers are laid out from a pitch line, so called,

which passes through the center of the follower.

The shape of this pitch line determines the work

which the cam will do. The working surface of

the cam is at a distance from the follower equal to

one-half the diameter of the follower. This prin-

ciple of a pitch line holds good whether the cam
works only upon its edge like the one shown in

Fig. 139, or whether it has an outer portion to

insure the positive return of the follower. This

164
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outer portion is frequently made in the form of a

rim of uniform thickness around the groove.

Design a Cam Having a Straight Follower Which
Moves Toward or From the Axis of the Cam, as

Shown in Fig. 136. Let it be required that the

follower shall advance at a uniform rate from a to

FIG. 136. Cam with Straight Follower having Uniform
Motion.

6 as the cam makes a half revolution, this advance

being preceded and followed by a period of rest of

a twelfth of a revolution of the cam.
Divide that half of the cam during the revolu-

tion of which the follower is to be raised from a to

&, in this case the half at the right of the vertical

center line, into a number of equal angles, and
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divide the distance from a to b into the same num-
ber of equal spaces. Mark off the points so ob-

tained onto the successive radial lines as indicated

by the dotted lines, and at the points where these

dotted lines intersect the radial lines draw lines at

right angles to the radial lines to represent the

position of the follower when these radial lines

become vertical as the cam revolves.

A period of rest in a cam is represented by a cir-

cular portion, having the axis of the cam as its

center. In order, therefore, to obtain the required

periods of rest, the distances of a and b from the

center are marked off upon the radial lines c and

d, these lines being made a twelfth of a revolution

from the vertical center line, and lines represent-

ing the follower are drawn at these points as be-

fore. To get the return of the follower the space
from c to d is divided into a number of equal

angles, and the distance from e to/is divided off

to represent the desired rate of return of the

follower. In this case the rate of return is made

uniform, so the distance ef is spaced off equally.

The distance of these points from the axis is marked
off upon the radial lines between c and d, and lines

representing the follower are drawn.

A curved line, which may be made with the

aid of the irregular curves, which is tangent to all

of the lines representing the follower, gives the

shape of the cam.

Fig. 137 shows a cam having the conditions as to

the rise, rest and return of the follower the same

as the one shown in Fig. 136, the follower, how-

ever, being pivoted at one end.
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Draw the arc ab representing the path of a point
in the follower at the vertical center line, and

divide that part of the arc through which the fol-

lower rises into the same number of equal spaces

as the half circle at the right of the vertical cen-

ter line is divided into angles. Through these

FlG. 137. Cam with Pivoted Follower.

points draw lines, as shown, representing consecu-

tive positions of the working face of the follower.

The various distances of the follower from the axis

of the cam are now marked off upon the corre-

sponding radial lines as before. Lines to represent
the follower are now drawn across each of these

radial lines, at the same angle to them that the

follower makes with the vertical center line when
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at that part of its stroke corresponding to the par-
ticular radial line across which the line represent-

ing the follower is being drawn. A curved line

passing along tangent to all of these lines gives
the shape of the cam as before.

Design a Cam with a Round Follower Rising Ver-

tically. In Fig. 138 the follower has the same uni-

form rise, and the same periods of rest as before.

FIG. 138. Cam with Roller Follower.

A cam with a round follower is less limited in its

capabilities than one with a straight follower
;
in

the one here shown the follower on its return

drops below the position in which it is shown.

That part of the cam during which the conditions

are the same as in the others is divided off and
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the position of the center of the follower upon the

radial lines is obtained in the same manner as

before. That part of the cam representing the

return of the follower is divided into such angles

as desired, and the distance through which the fol-

lower is to drop as the cam revolves through each

of these angles is marked off upon the proper
radial line. A curved line which is now made to

pass through all of the points so obtained gives

the pitch line of the cam.

In drawing such a cam it is not always neces-

sary to fully draw the working faces. The pitch

line and the method of obtaining it being shown,
a number of circles representing consecutive posi-

tions of the follower may be drawn. This will

usually be sufficient. The side view of the cam,
which in a case like this would naturally be made
in section, will give opportunity to show any fur-

ther detail that may be desired.

Design a Cam with a Round Follower Mounted on
a Swinging Arm. Fig. 139 shows such a cam, all

of the conditions as to rise, rest and return of the

follower being the same as in the cam shown in

Fig. 138. The cam is divided into the same angles
as before, and the position of the follower is laid

out on these radial lines as though it moved ver-

tically. These positions are then modified in the

following manner : Draw the arc ab representing
the path of the center of the follower as it rises,

and extend the dotted circular lines, which repre-

sent successive heights of the follower, from the

vertical center line to this arc. The distance of

each of the intersections of the dotted circular
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lines with the arc a&, from the vertical center line

is then taken with the compasses and is marked
off upon the same dotted line from the radial line

at which it terminates, or, where the follower has

a period of rest, from both of the radial lines

FIG. 139. Cam with Roller Follower Mounted on

Swinging Arm.

where the period of rest takes place. Thus the dis-

tance of the point 1 from the vertical center line is

marked back upon the dotted circular line from the

radial lines ra and n. Point 2 is marked back from

the radial line o. Point 3 is marked back from the

line p. By this means the position which the fol-

lower will occupy, when each of the radial lines

has become vertical, as the cam revolves, is deter-
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mined. A curved line which is made to pass

through all of these points will be the required

pitch line of the cam. The method of getting the

working face of the cam is indicated by the small

dotted circular arcs, which are drawn with a radius

equal to that of the follower. It will be noticed

that, as the follower, on its return, drops below

the position in which it is shown, it passes to the

other side of the vertical center line, so that in

marking off its position from the radial lines x and

y this must be borne in mind. The question as to

FIG. 140. Reciprocating Motion Cam.

on which side of a radial line the new position of

the follower will be, may be readily determined by
imagining the cam to revolve so as to bring that

particular line vertical.

Reciprocating Cams. Fig. 140 shows a straight

cam, which by a reciprocating motion imparts a

sideways motion to its follower. The pitch line

of such a cam may be determined by intersecting
lines at right angles to each other. As here shown
the distance through which the follower is to be

raised is divided into a number of equal spaces by
horizontal lines, and the distance through which it

is desired to have the cam move in order to raise

the follower from one horizontal line to the next

one is indicated by vertical lines. A curved line
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which is made to pass through the intersections of

these lines will be the required pitch line of the

cam.

If the follower, instead of rising vertically, rose

at ah angle, or if it were mounted on a swinging
arm, the pitch line would be modified in the same
manner as that of the cam shown in Fig. 139.

Cams With a Grooved Edge. It is sometimes de-

sired to have a revolving cam impart a sideways

FIG. 141. Cam with Grooved Edge.

motion to a follower. This is done by having a

groove in the edge of the cam, as shown in Fig.

141. Such a cam may be considered as a modified

form of a reciprocating cam, and its pitch line may
be determined in the same way.

By laying out a development of the pitch lino, or

of that part of it which is to operate the follower,

as shown in Fig. 142, horizontal lines, that is, lines

parallel with the pitch line, may be drawn to indi-

cate successive stages in the movement of the fol-

lower, and lines at right angles to these to indicate
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the desired movement of the cam. The pitch line

is then drawn through the intersections of these

lines as before.

A Double Cam Providing Positive Return. In a

cam like that shown in Fig. 138, where the return

FIG. 142. Development of Cam Action of Grooved-Edge
Cam in Fig. 141.

of the follower is insured by a groove in the face

of the cam, the groove must be slightly broader

than the diameter of the cam roller to insure free-

dom of action, as, when the cam is forcing the rol-

FIG. 143. Double Cam Providing Positive Return.

ler away from the center, the roller will revolve in

the opposite direction to that in which it revolves

when the other face of the cam groove acts on it

to draw it toward the center, so that unless clear-
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ance is provided, there will be a grinding action

between the roller and the faces of the cam groove.
This clearance, however, causes the cam to give a
knock or blow on the roller each time its action is

reversed, and the reversal of the direction of the

revolution of the roller itself causes a temporary
grinding action. These actions may become ob-

FlG. 144. Positive Return Cam with Rollers Mounted on

Swinging Arms.

jectionable, especially at high speeds. A method
which overcomes these objections, and which is

preferred by some for such work, is shown in Fig.

143, where the return is secured by a secondary
cam mounted on the same shaft as the primary
cam, but acting on a roller of its own. In this case

there is no reversal of the direction of the revolu-

tion of the rollers, so that the necessity of provid-
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ing clearance does not exist. Where the forward

and backward motion of the rollers is in a straight

line passing through the center of the cam shaft,

as in this case, it is only necessary in designing
the secondary cam to preserve the distance be-

tween its pitch line and the pitch line of the prim-

ary cam constant, measuring through the center of

the cam shaft, as shown at x and y.

If, however, the rollers are mounted on swing-

ing arms, as shown in Fig. 144, so that their for-

ward and backward motion is not in such a straight

line, then the shape of the secondary cam will be

subject to modification on principles previously

explained. It is obviously necessary where this

method of operation is used, that provision be made
to absolutely prevent any change in the relative

position of the two cams, as by bolting them to-

gether, or, better still, by having them cast

together in one piece.

Cams for High Velocities. In machinery work-

ing at a high rate of speed, it becomes very im-

portant that cams are so constructed that sudden
shocks are avoided when the direction of motion

of the follower is reversed. While at first thought
it would seem as if the uniform motion cam would
be the one best suited to conditions of this kind, a

little consideration will show that a cam best suited

for high speeds is one where the speed at first is

slow, then accelerated at a uniform rate until the

maximum speed is reached, and then again uni-

formly retarded until the rate of "motion of the

follower is zero or nearly zero, when the reversal

takes place. A cam constructed along these lines
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FIG. 145. Uniformly Accelerated Motion Cam.
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is called a uniformly accelerated motion cam. The
distances which the follower passes through during

equal periods of time increase uniformly, so that,

if, for instance, the follower moves a distance equal

to 1 length unit during the first second, and 3

during the second, it will move 5 length units

during the third second, 7 during the fourth, and

so forth. When the motion is retarded, it will

move 7, 5, 3 and 1 length units during successive

seconds, until its motion becomes zero at the re-

versal of the direction of motion of the follower.

In Fig. 145 is shown a uniformly accelerated

motion plate cam. Only one-half of the cam has

been shown complete, the other half being an exact

duplicate of the half shown, and constructed in the

same manner. The motion of the follower is back

and forth from A to G, the rise of the cam being
180 degrees, or one-half of a complete revolution.

To construct this cam, divide the half-circle, AKL,
in six equal angles, and draw radii HB , HC^ ,

etc. Then divide AG first in two equal parts AD
and DG, and then each of these parts in three

divisions, the length of which are to each other as

1:3:5, as shown. Then with H as a center draw
circular arcs from J5, C, Z>, etc., to B

, d , A ,
etc.

The points of intersection between the circles and
the radii are points on the cam surface.

If the half-circle AKL had been divided into 8

equal parts, instead of 6, then the line AG would
have been divided into 8 parts, in the proportions

1:3:5:7:7:5:3:1, each division being the same
amount in excess of the previous division while

the motion is accelerated, and the same amount
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less than the previous division while the motion is

being retarded. With a cam constructed on this

principle the follower starts at A from a velocity

of zero
;
it reaches its maximum velocity at D ; and

at G the velocity is again zero, just at the moment
when the motion is reversed.

A graphical illustration of the shape of the uni-

formly accelerated motion curve is given in Fig.

i
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FIG. 146. Development and Projection of Uniformly
Accelerated Motion Cam Curve.

146. To the right is shown the development of

the curve as scribed on the surface of a cylindrical

cam. This development is necessary for finding

the projection on the cylindrical surface, as shown
at the left. To construct the curve, divide first

the base circle of the cylinder in a number of equal
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parts, say 12; set off these parts along line AL, as

shown ; only one division more than one-half of the

development has been shown, as the other half is the

same as the first half, except that the curve to be

constructed here is falling instead of rising. Now
divide line AK in the same number of divisions as

the half-circle, the'divisions being in the proportion
1:3:5:5:3:1. Draw horizontal lines from the

divisions on AK and vertical lines from B, C, D,
etc. The intersections between the two sets of

lines are points on the developed cam curve. These

points are transferred to the cylindrical surface at

the left simply by being projected in the usual

manner.
In order to show the difference between the uni-

form motion cam curve, and that illustrating the

uniformly accelerated motion, a uniform motion

cylinder cam has been laid out in Fig. 147. The
base circle is here divided in the same number of

equal parts as the base circle in Fig. 146. The
divisions are set off on line AL in the same way.
The line AK, however, is divided into a number of

equal parts, the number of its divisions being the

same as the number of divisions in the half-circle.

By drawing horizontal lines through the division

points on AK, and vertical lines through points B,

C, D, etc., points on the uniform motion cam curve

are found. It will be seen that this curve is merely
a straight line AM. The curve is transferred to its

projection on the cylinder surface at the left, as

shown.

It is evident from the developments of the two
curves in Figs. 146 and 147, that the uniform motion
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curve, Fig. 147, causes the follower to start very

abruptly, and to reverse from full speed in one

direction to full speed in the opposite direction.

The uniformly accelerated motion curve, Fig. 146,

permits the follower to start and reverse very

smoothly, as is clearly shown by the graphical

A B C DEFGHIL

FIG. 147. Development and Projection of Uniform Motion

Cam Curve.

illustration of the curve. The abrupt starting and

reversal of the follower in the uniform motion

curve is the cause why this form of cam, while

the simplest of all cams to lay out and cut, cannot

be used where the speed is considerable, without

a perceptible shock at both the beginning and the

end of the stroke.
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Besides the uniformly accelerated motion cam

curve, quite commonly called the gravity curve,

on account of it being based on the same law of

acceleration as that due to gravity, there is another

curve, the harmonic or crank curve, which is quite

often used in cam construction. The harmonic

motion curve provides for a gradual increase of

speed at the beginning, and decrease of speed at the

end, of the stroke, and in this respect resembles

xV
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FIG. 148. Lay-out of Harmonic Motion Cam Curve.

the uniformly accelerated motion curve; but the

acceleration, not being uniform, does not produce so

easy working a cam as the gravity curve provides
for. The harmonic motion curve is, however, very

simple to lay out, and for ordinary purposes, where

excessively high speeds are not required of the

mechanism, cams laid out according to this curve

are very satisfactory.

The harmonic curve is laid out as shown in Fig.

148. Draw first a half-circle AEL Divide the



182 SELF-TAUGHT MECHANICAL DRAWING

circle in a certain number of equal parts. Draw a
line AI /! ,

and divide this line in a number of equal

parts, the number of divisions of A v Jt being the

same as that of the half-circle. Now draw hori-

zontal lines from the divisions A, B, C, etc., on the

half-circle, and vertical lines from the divisions on
line AI /! . The points where the lines from corre-

sponding division points intersect, are points on
the required harmonic cam curve.

An approximation of the uniformly accelerated

motion or gravity curve can be drawn as shown in

FIG. 149. Approximation of Uniformly Accelerated Motion

Curve.

Fig. 149. By using this approximate method, any
degree of accuracy can be attained without the

necessity of dividing the vertical line AK, Fig.

146, in an excessively great number of parts. The

approximate curve in Fig. 149 is constructed as

follows: Draw a half-ellipse AEI, in which the

minor axis is to the major axis as 8 to 11. Divide

this half-ellipse in any number of equal parts, and
divide the line Ailt in the same number of equal

parts. Now draw horizontal lines from the division
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points on the ellipse, and vertical lines

BI, Ci, etc. The points of intersection between

corresponding horizontal and vertical lines, are

points on the cam curve. This cam curve, as well

as the one in Fig. 148, can be transferred to the

cylindrical surface of a cylinder cam by ordinary

projection methods, as shown in Figs. 146 and 147.

In Figs. 150 and 151 are shown two plate cams
for comparison. The one in Fig. 150 is a uniform

V

FIG. 150. Plate Cam Laid Fia. 151. Plate Cam Laid

out for Uniform Motion. out for Uniformly Accel-

erated Motion.

motion cam. The dwell is 180 degrees, the rise, 90

degrees, and the fall, 90 degrees. As shown by
the sudden change of direction of the cam curve

at A and B, there is considerable shock when the

follower passes from its "dwell" to the
"
rise,

"
as

well as at the end of the
' '

fall.
' ' A sudden reversal

takes place at C, which also causes a shock in

the mechanism connected with the follower. In the

uniformly accelerated motion cam, Fig. 151, the
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passing from
"
dwell" to "rise,

"
the reversal of the

direction of motion, and the return to the "dwell"

position, is accomplished by means of smoothly

acting curves, and, even at high speeds, no per-

ceptible shock will be noticed.

The examples given will show the necessity of

careful analysis of conditions, before a certain type
of cam curve is selected. In machinery which
works at a low rate of speed, it is not important
whether the follower moves with a uniform, har-

monic, or uniformly accelerated motion ; but when
the cam has a high rotative speed, and the follower

a reciprocating motion, it often becomes practically

impossible to make use of the uniform motion

curve in the cam. In such cases, as already men-

tioned, the harmonic, or, preferably, the uniformly
accelerated motion curve should be used in laying

out the cam.



CHAPTER XI

SPROCKET WHEELS

WHEN it is desired to transmit power from one

shaft to another one quite near to it, especially if

the power to be transmitted is considerable, so as

to preclude the use of belting, sprocket wheels

with chain are frequently used, if the speed is not

high. Bicycles afford a familiar illustration of

this sort of power transmission.

Fig. 152 shows a sprocket wheel of a type similar

to those used on bicycles and shows the method of

getting the shape of the teeth. The chain is shown
with the links (on the side toward the observer)

removed so as to allow of showing the teeth with-

out dotted lines. The size of a sprocket wheel to

fit a given chain may be determined graphically as

follows : A circle, not shown in the illustration, is

first drawn of a diameter about equal to that of

the desired wheel, and this circle is spaced off into

as many divisions as the wheel is to have teeth.

Lines corresponding to the dotted radial lines in

the upper half of the wheel shown, are drawn from
these division points to the center of the circle. A
templet, similar in shape to that shown in Fig. 154,

is next cut out of paper, the lines ab and cd being
at right angles to each other, and the length of a

link of the chain, measured from center to center

185
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of the pins as shown at a, Fig. 152, is marked off

upon the line ab, measuring equally each way from
the center line cd. In getting the length of the

link in the chain it will be best, for the sake of ac-

curacy, to measure off the length of a considerable

portion of the chain, and with the spacing com-

passes divide this length into twice as many spaces
as there are links in the measured portion of the

FIG. 152. Sprocket Wheel and Chain.

chain. The compasses, being then set to exactly
half the length of a link, may be used to mark off

the length of the link, 1 2, upon the templet.
Now letting the angle abc, Fig. 155, represent one

of the angles into which the circle has been di-

vided, bisect it to get a center line bd, and placing
the templet so that its line cd shall coincide with
this center line move it along until the points 1 2

shall coincide with the lines ab and cb of the angle.

These points being now marked off upon the lines,

give the location of the centers of the pins in the

chain, and a line connecting them will be one side
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of the polygon which forms the pitch line of the

wheel. A spiral may now be formed upon this

polygon (see geometrical problem 19, Figs. 41 and

42) , and will give the path of the pin as the chain

FIG. 153. Sprocket Wheel Designed for Common
Link Chain.

unwinds from the wheel when the latter revolves,

as shown in Fig. 152. The working face of that

part of the tooth in the wheel lying outside of the

pitch polygon is now struck from such a center as

will cause it to fall slightly within the path of the

chain, as just obtained, so that the link may fall

FIG. 154. FIG. 155.

FIGS. 154 and 155. Graphical Method of Laying Out

Sprocket Wheel.

freely into place as it enters upon the tooth. Of
course allowance must be made all around for the

natural roughness of the casting if the wheel is to

be left unfinished. The length of the tooth is

usually made about equal to the width of the chain.
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If a wheel is to have many teeth, it will gener-

ally be accurate enough to consider the pitch line

as a circle of a circumference equal to the number
of the teeth multiplied by the length of the link.

Its diameter will then, of course, be found by
dividing the circumference by 3.1416.

In the case of the wheel shown in Fig. 152,

should the pitch line be regarded as such a circle

it would have a diameter a little over a thirty-

second of an inch too small, if the length of the

link is taken at three-quarters of an inch. If the

wheel were to be made twice as large, the error

would be a little less than a sixty-fourth of an inch,

as it would decrease at a slightly faster rate than

that at which the number of the teeth increased. An
error of a sixty-fourth of an inch in the diameter

of such a sprocket would be of but very little

moment. Where a sprocket has but few teeth,

however, it will be on the side of safety to always

give to the pitch line its true polygonal form, and
the only way by which its diameter could be ascer-

tained with any greater accuracy than by the

method here given would be to calculate it, as may
be done by trigonometry. When the pitch line of

a sprocket is regarded as a circle, the path of the

chain as it unwinds will be regarded as an involute

(see geometrical problem 20).

The shape of the rim of a sprocket wheel will be

governed by the style of the chain for which it is

designed. Fig. 153 shows a portion of the rim of

a wheel which is designed for a common link

chain ;
but whatever the general shape of the rim

may be, the working faces of the teeth, or of the
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projections.which correspond to teeth, will always
be made on the principles here explained.

The speed ratio of the two wheels of a pair of

sprockets will be inversely as the number of teeth

in each. For instance, if the large and the small

wheels have respectively 13 and 7 teeth, then the

speed of the large wheel will be to the speed of

the small wheel as 7 to 13.



CHAPTER XII

GENERAL PRINCIPLES OF GEARING

Friction and Knuckle Gearing. In machinery
it is frequently necessary to transmit power from
one shaft to another near to it. For this purpose
gears are generally employed. Let a and 6, Fig.

156, be two such shafts. If now disks c and d are

mounted upon these shafts, of such diameters as

FIG. 156. -Friction Wheels. FIG. 157. -Knuckle Gears.

to give the required speed ratio, we will have

gearing in its simplest form. Such disks, having
their edges covered with leather or other equiva-
lent material, are called friction gears and are

sometimes employed on light work. At best, how-

ever, they will transmit but little power.
If now we make semi-circular projections at

equal distances apart upon the outside of the cir-

cles c and d, and cut out corresponding depressions
inside of the circles, as shown in Fig. 157, we will

have a simple form of toothed gearing and the cir-

190
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cles c and d will be the pitch circles. Such gears,

called knuckle gears, are sometimes employed on

slow-moving work where no special accuracy is

required. They will not transmit speed uniformly.
If the driver of such a pair of gears rotated at a

uniform rate, the driven gear would have a more
or less jerky movement as the successive teeth

came into contact, and if run at high speed they
would be noisy. Various curves may be employed
to give to gear teeth such an outline that the

driver of a pair of gears will impart a uniform

speed to the driven one, but in common practice

only two kinds are used, the cycloidal, or, as it is

sometimes called, epicycloidal, and the involute.

Epicycloidal Gearing. Let the circles a, b and

c, Fig. 158, having their centers on the same

straight line, be made to rotate so that their cir-

cumferences roll upon each other without slipping.

If the circle c has tracing points 1, 2, 3 upon its

circumference, and when we start to rotate the

circles point 1 is half way around from the posi-

tion in which it is shown, then in rotating the cir-

cles sufficiently to bring the tracing points to the

position in which they are shown, point 1 will

trace the line 1
'

inwardly from the circle a, and the

line 1
"
outwardly from the circle b. Point 2 will

trace the two lines which are shown meeting at

that point, one inwardly from the circle a, and one

outwardly from the circle 6. Point 3 will similarly

trace the two lines which met at that point. Inas-

much as these lines were traced simultaneously by
points at a fixed distance apart, it is evident that

if the circle c were to be removed, and the circles
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a and b were rolled back upon each other, these

lines would work smoothly together, being in con-

tact and tangent to each other at all times upon
the line of the circle c. If the circle c is now placed
beneath the circle b in the position shown, and the

three circles are rolled together as before, the tra-

cing points would trace lines inwardly from 6, and

FIG. 158. Principle of Epi-

cycloidal Gearing.

FIG. 159. Principle of Invo-

lute Gearing.

outwardly from a, which would also work together

smoothly if the circle c were removed and the cir-

cles a and 6 were rolled back upon each other. It

is evident that as the three circles are rolled

together the lines formed by the tracing points are

the same as though either a or 6 were taken by
itself, and the circle c were rolled either within

or upon it, hence the lines formed by the tracing

points are either epicycloids or hypocycloids as

the case may be, and so could be formed by the
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plotting method described in the geometrical

problems.
If these two sets of lines are now joined together

so that the lines which extend inwardly from a or

b form a continuation of those which extend out-

wardly and reverse curves are made at a distance

from the first set equal to the thickness of a gear

tooth, and they are the-n cut off at such a distance

both outside and inside of the circles a and 6 as to

give to the teeth the proper

length, it is evident that

we will have a pair of per-

fectly working gears. The
circles a and b would roll

upon each other without

slipping and hence would
FlG ^.-Definitions' of

be true pitch circles. The Gear Tooth Terms.

teeth would work smoothly

together in constant contact, the point of contact

being always on the line of the generating circle.

The length of the point of the gear tooth, that

is the portion lying outside of the pitch line, is

usually made one-third of the circular pitch^the
latter being the distance between the teeth meas-

ured from center to center on the pitch line. The
distance below the pitch line is made somewhat

greater for the sake of clearance. For the names
of the various parts of a gear tooth see Fig. 160.

Cast gears have some backlash between the teeth

to allow for the roughness of the castings, as

shown in Figs. 161 and 163.

It is evident that if another circle, either larger
or smaller, were substituted for b in Fig. 158, the
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lines formed by the generating circle c either

within or upon the circle a would remain unchanged.
Or if a different circle were substituted for a, the

curves formed within or upon 6 would remain un-

changed. Hence it follows that all gears in the

epicycloidal system, having their teeth formed by
the same generating circle and made of the same

FIG. 162.-Rack with

Epicycloidal Teeth.

FIG. 161. Gears with Epicycloidal
Teeth.

size, will work together correctly, or% as it is com-

monly expressed, are interchangeable.
In standard interchangeable gears the generat-

ing circle is made one-half the diameter of the

smallest gear of the set, which has twelve teeth.

This smallest gear will have radial flanks, as that

part of the working surface lying within the pitch

line is called, because the hypocycloid of a circle

formed by a generating circle of half its size will

be a straight line passing through its center.

Fig. 161 shows a portion of a pair of such gears,

Fig. 162 showing the rack.
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Gears with Strengthened Flanks. A further ex-

amination of Fig. 158 will show that the curves

formed by the generating circle when it is in the

upper of the two positions in which it appears,
work together by themselves, and those formed
when it is in the lower position work similarly, so

that it is not necessary that the same sized gener-

r\
\J

FIG. 164. Rack with
Involute Teeth.

FIG. 163. Gears with Involute Teeth.

ating circle should be used in both positions, unless

the gears are to be members of an interchangeable
set of gears. Advantage may be taken of this fact

to strengthen the roots of the teeth in a pinion.

If, for instance, in Fig. 161, a smaller generating
circle were used in the upper position, the effect

would be to broaden out the roots of the teeth in

the pinion, and to correspondingly round off the

points of the teeth of the other gear.
Gears with Radial Flanks. Another modification

which may be made is to have the teeth of both

gears with radial flanks. If, for instance, in Fig.
161 a generating circle were to be used in the
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lower portion, of half the pitch diameter of the

large gear, the effect would be to give to that gear
radial flanks, and to make the points of the teeth

of the small gear broader in order to work properly
with them. Then both gears would have radial

flanks. Such gears have been considerably used.

They are not as strong as gears of the standard

shape, and the only advantage is that it is easier

to make the pattern, the teeth being all worked out

with a flat-faced plane; but as the teeth of in-

volute gears, described in the next section, can be

worked out in the same way, and as such gears are

interchangeable, the advantage is obviously in

favor of the involute system for such work.

Involute Gears. In involute gears the working
surfaces of the teeth are involutes, formed not

upon the pitch circles, but upon base circles lying

within the pitch circles and tangent to a line,

called the line of action, which passes obliquely

through the point where the pitch circles cross the

line connecting their centers. Let a and b, Fig.-

159, be pitch circles, and let the line cd be the line

of action. Then e and /, being made tangent to

the line cd, will be the base circles upon which

the involutes are to be formed. If now this line

of action be considered as part of a thread which

unwinds from one base circle and winds up on the

other, as the pitch circles are revolved back and

forth upon each other, then if tracing points were

attached to the thread at points 1, 2, 3, 4, 5 and 6,

these points would describe involutes outwardly

from the base circles, which, being formed simul-

taneously in pairs and each pair being formed by
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a common point, would work together smoothly
like those formed by the generating circles of the

epicycloidal system. That the base circles are of

such size as to just pass the thread as the pitch
circles roll upon each other is proven by the fact

that their radii, gd and gi, and he and hi, the radii

gd and he being made at right angles to the line of

action, are corresponding sides of similar triangles,

the segments into which the line of action is di-

vided by the line of centers being the other sides,

and hence have the same ratio. It would only then

FIG. 165.-Modified Form of Involute Rack Teeth.

be necessary to reverse the direction of the thread

to get curves for the other side of the teeth, and
to give to the teeth their proper length inside and
outside of the pitch line to obtain a pair of cor-

rectly working involute gears. That part of the

tooth of an involute gear which may lie within the

base line is made radial.

In the standard interchangeable involute gears
the line of action is given an obliquity of 15

degrees (cut gears, 14J degrees) . This angle may
be readily obtained by the combination of the

triangles resting against the blade of the T-square
shown in Fig. 166. The point of contact of the
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teeth is always upon the line of action and the

push of one tooth against another is in its direc-

tion, hence its name.

The teeth of the 15-degree involute rack have

straight sides, inclined to the pitch line at an angle
of 75 degrees as shown in Fig. 164. This shape,

however, is subject to a slight modification to avoid

interference of the points of the teeth with the

radial flanks of small gears.

Interference in Involute Gears. The points c

and d, Fig. 159, where the line of action is tangent
to the base circles, are called the limiting points.

If the involutes which spring from either base cir-

cle are so long as to reach

beyond these limits on the

other base circle, they will

interfere with the radial

flanks of the mating teeth.

At A; is shown an elongated
involute interfering with

the radial flank of the

mating tooth. This is, of

course, a highly exagger-
ated case. The interfer-

FIG. 166. Obtaining a 15-

or 75-degree Angle by
30- and 45-degree Tri-

angles.

ence will occur sooner as the line of action is made
to cross the line of centers at a less oblique angle,

as in standard gears, and still earlier as the pitch

circle b is made larger. In gearing of standard pro-

portions, a gear of 30 teeth is the smallest that will

work correctly with a straight toothed rack. In

the gears shown in Fig. 163, the teeth of the large

gear pass beyond the limiting point of the small

gear, and hence, if made of
,
true involute shape,
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their extremities will not work properly with the

flanks of the small gear.

There are three methods available to overcome

this interference. First, to hollow out the flanks

of the teeth of the small gear. Second, to round

off the points of the teeth of the large gear. This

is the method usually adopted, in interchangeable

gears, the point being rounded off enough to clear

the flanks of the smallest gear of the set. Fig. 165

shows the teeth of the rack so corrected in larger

scale. Third, to cut off that part of the tooth in

the large gear which extends beyond the limiting

point of the small gear. This is done in special

cases.

The Two Systems Compared. The great point
in favor of epicycloidal gearing would appear to be

in its freedom from interference. It is necessary,

however, in order to have epicycloidal gears run

well, to have the pitch circles of the two gears of

a pair just coincide, as shown in Fig. 161; but

with involute gears the distance between centers

may be varied somewhat without affecting their

smoothness of operation, though where the points
of the teeth are rounded off to avoid interference,

as previously explained, the amount of variation

which can be allowed is not great. As no value

has been given to the angle at which the line of

action crosses the line of centers in Fig. 159, it is

evident that whether the base circles are brought
nearer together or are carried further apart, circles

which might then be drawn through the point
where the line of action crosses the line of centers,

would roll upon each other while the base circles
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passed the thread as before, and hence would be

true pitch circles for the time being. The amount
of backlash, that is, the space between the faces

of the teeth, would vary, but the smoothness of

operation would not be affected. This property of

involute gears is very valuable in cases where the

distance between centers is variable, as in rolling

mill gearing. In such cases, however, interfer-

ence must be avoided by the first of the three

methods explained, that of hollowing out the flanks

of the teeth of the mating gear.

The epicycloidal system is the older of the two,
and cast gears are still quite largely made to this

system, there being so many patterns of that sys-

tem on hand. But though the epicycloidal system
once had the field to itself, the fact that the invol-

ute system has so largely replaced it, having al-

most wholly superseded it for cut gearing, shows
the trend of modern practice. It is sometimes

urged against the involute system that the thrust

on the shaft bearings is greater than with the epi-

cycloidal system, on account of the obliquity of its

line of action. But though the line of action is at

an angle to the direction of the motion of the teeth

when they are on the line connecting their centers,

it is a constant angle; while it is never less, it is

never more. With the epicycloidal system, on the

other hand, though the teeth of the driver give a

square push to the teeth of the driven gear when

they are in contact on the line of centers, yet

the direction of this pushing action being on the

line of the generating circle, is variable, so that

when the teeth are first coming into contact with
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one another they have an obliquity of action fully

as great, if not greater, than standard involute

gears. For this reason such authorities as the

Brown & Sharp Co., Grant and Unwin, do not con-

sider this objection as being of great weight.

Twenty-Degree Involute Gears. It has been al-

ready shown how the teeth of epicycloidal gears

may be considerably strengthened where it is not

necessary to have them interchangeable. In invol-

ute gearing, when a stronger gear is desired than

the standard 15-degree tooth provides for, recourse

may be had to increasing the obliquity of the line

of action. This makes the tooth considerably
broader at the base, and correspondingly narrower

at the point. The angle usually adopted in such

cases is 20 degrees, and some makers report an

increasing demand for such gears.

Shrouded Gears. -When it is desired to strengthen
the teeth of cast gears without increasing their

size, or without using any other than a standard

shape or tooth, the practice of shrouding them is

sometimes resorted to. This consists in casting
a flange on one or both sides of the gear. Full

shrouding consists in having the flanges extend to

the points of the teeth as shown in Fig. 167 ; half

shrouding is where the flanges extend only to the

pitch line as shown in Fig. 168. When the two

gears of a pair are of nearly equal size so that

their teeth would be of about the same strength
it would be natural to use half shrouding on both

gears as shown.

When, however, there is much difference in the

size of the gears, as shown in Fig. 167, it would be



202 SELF-TAUGHT MECHANICAL DRAWING

natural to use full shrouding on the small gear, as

otherwise its teeth would be weaker than those

of the large gear. Shrouding is estimated to

strengthen the teeth from 25 to 50 per cent.

FIG. 167.

FIGS. 167 and 168.-Shrouded Gears.

Bevel Gears. In cylindrical or spur gears the

pitch surfaces are cylinders of a diameter equal to

the pitch circle; in bevel gears the pitch surfaces

are cones, having their apices coinciding.

In designing a pair of bevel gears as shown in

Fig. 169, the center lines ab and cd are first drawn,
and the pitch diameters then laid out from these
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lines as indicated. From the point where the lines

of the pitch diameters meet at e, a line is drawn to

the point where the center lines intersect at k.

This gives one side of the pitch cone of each gear
and from this the other sides of the cones are

FIG. 169. Bevel Gears.

readily drawn. All lines of the working surfaces

of the gears meet at the point h.

To lay out the teeth, the line/gr is first drawn

through the point e and at right angles to eh. This

gives the outside face of the teeth, and the points

/and g become the apices of cones upon the devel-

opment of which the teeth are laid out. With cen-

ters at/and g the pitch line developments ei and

ej are drawn, and upon these lines the teeth are

laid out the same as for ordinary gears. When
the two gears of a pair are of the same size

they are called miter gears.
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Worm Gearing. In worm gearing, as shown in

Fig. 170, a screw having its threads shaped like

the teeth of a rack engages with the teeth of a

gear having a concave face and teeth of such shape
as to fit the threads of the screw. If the screw is

single threaded, one rotation of it will cause the

gear to revolve the distance of one tooth
;
if double

threaded, the gear will turn two teeth, and so on.

In worm gearing, the worm wears much faster

than the gear; it is, therefore, frequently made of

FIG. 170. Worm and Worm-Gear.

steel while the worm-wheel is made of bronze, to

give the combination increased durability.

In involute worm gearing interference is com-

monly avoided by the last of the three methods

already mentioned. The points of the thread of the

screw in Fig. 170 project but little beyond the

pitch line, the root spaces of the gear being made

correspondingly shallow. At the same time, the

points of the teeth in the gear are made long

enough to preserve their total length the same as

usual, and the depth of the screw thread inside the

pitch Iin2 is made sufficient for clearance. But un-
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less the worm-gear has less than 30 teeth, the

standard shape of tooth will be satisfactory.

Circular Pitch. In designing gearing, the old

method (the one which is given in the older trea-

tises on the subject) is to use the circular pitch;

that is, the distance between the teeth, measured

from center to center on the pitch circle. This

method has many disadvantages. For instance, if

it is required to make a pattern of a gear to mesh
with one already on hand, the natural thing to do

in measuring up the old gear is to first guess at

where the pitch line is, and then measure straight

across from one tooth to the next. This leads to

two errors in the result; first, the probably incor-

rect location of the pitch line, and, second, the dis-

tance measured is the chordal pitch instead of the

circular pitch. A noisy pair of gears would quite

likely be the result.

Again, as the ratio between the circumference

and the diameter of a circle is not an even num-

ber, but a troublesome fraction, the use of the cir-

cular pitch method will give the pitch diameter of

the gear in inconvenient fractions of an inch, un-

less an equally inconvenient circular pitch is used.

This method has so many disadvantages that it

has been largely replaced by the more convenient

"diametral pitch'* method. For cut gears the dia-

metral pitch method is used almost exclusively;

but for cast gears there are so many patterns on

hand, made by the circular pitch method, that that

method is still used considerably on such work,

especially on the larger sizes of gears.

Where one is designing new work, however,
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where no old gear patterns made by the circular

pitch method are used, the diametral pitch method
will be by far the most convenient to use, which-
ever style of tooth, whether involute or epicy-

cloidal, may be adopted.

PITCH DIAMETERS OF GEARS FROM 10 TO 100

TEETH, OF 1-INCH CIRCULAR PITCH.

When the pitch of a gear is given in inches or

fractions of an inch, the circular pitch is always

meant; as, for instance, where a gear is said to be

of 1-inch pitch, or IJ-inch pitch. To get the pitch
diameter in such a case, it is necessary to multiply
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this pitch by the number of teeth in the gear, and
then divide this product by 3. 1416, the ratio be-

tween the circumference and the diameter. For

ascertaining the pitch diameter of gears when

using the circular pitch, the accompanying table

will save much time. If the gear is of any other

than 1-inch circular pitch, multiply the diameter

here given for the required number of teeth, by
the circular pitch to be used.

Proportions of Teeth. The proportions of the

teeth of gears where the circular pitch method is

used, are given slightly different by various writ-

ers. The length of the teeth is entirely arbitrary

and therefore this discrepancy is quite natural.

It is also unimportant, excepting as uniformity
is desirable. The proportions as given by Grant
are as follows : The addendum and dedendum are

each made one-third of the circular pitch; the

clearance, the distance of the root line below the

dedendum line, is made one-eighth of the adden-

dum; the backlash, the space which is allowed be-

tween the sides of the teeth in cast gears, is made
about the same as the clearance. This presents the

proportions in fractions which are convenient to

use, and at the same time makes the proportions

practically the same as those of the diametral pitch
method. Cut gears are made without backlash.

Diametral Pitch. In the diametral pitch method
the gear is considered as having a given number
of teeth for each inch of pitch diameter. Gears

having three, four, or five teeth to each inch of

their pitch diameters are said to be of three, four,

or five pitch. With this method the addendum
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(the distance which the teeth project beyond the

pitch line) is made equal to one divided by the

pitch, so that the addendum on gears of three, four

or five pitch would be, respectively, one-third, one-

fourth or one-fifth of an inch. The advantages of

this method are numerous.

To get the diametral pitch of a gear it is only

necessary to divide the number of teeth by the

pitch diameter, or to divide the number of teeth

plus two, by the outside diameter. A complete
set of rules, as well as formulas and examples for

calculating spur gear dimensions, will be given in

the next chapter.

It is quite a common practice in figuring gears
made by diametral pitch to give only the pitch and
the number of teeth, as 4 pitch, 18 teeth, or 4 D.

P., 18 T. The letters D. P. stand for diametral

pitch, the letters P. D. standing for pitch diameter.

The pitch diameter is then found by dividing the

number of teeth by the diametral pitch. When
this method is used, the circular pitch becomes
of secondary importance, but may be found by di-

viding 3.1416 by the diametral pitch. When the

circular pitch is given and the diametral pitch is

desired, divide 3.1416 by the circular pitch. The
diameter of a gear, unless otherwise specified, is

always understood to be the pitch diameter. With
the diametral pitch method, the pitch diameter,

unless in even inches, will be in fractions of an

inch corresponding to the pitch, so that the frac-

tional parts of the diameter of gears of three, four

or five pitch, for instance, would be thirds, fourths

or fifths of an inch.
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The Hunting Tooth. It is a common practice in

making gear patterns to have the teeth of the two

gears of a pair of such numbers that they do not

have a common divisor. For instance, instead of

having 25 and 35 teeth in the gears of a pair, one

may give to one of them one more or one less

tooth, so as to insure all of the teeth of one gear

coming into contact with all of the teeth of the

other as they run together.

This practice is condemned by some, however,
on the ground that if any of the teeth are of bad

shape it would be better to confine their injurious

action within as narrow limits as possible, rather

than to have them ruin all of the teeth of the other

gear ;
but the shape of badly formed teeth should

be corrected as soon as the error is discovered.

Approximate Shapes for Cycloidal Gear Teeth.

That part of the~cycloidal curve which is used in

the formation of gear tooth outlines is so short

that it may be replaced with a circular arc which
will very closely approximate it, and such arcs are

generally used in the practical construction of gear

patterns. In the following is given a table of such

arcs with the location of the centers from which

they are struck. The center from which that part
of the tooth lying outside of the pitch line is

drawn, the face of the tooth, will be inside of the

pitch line, while the center from which that part
of the tooth lying inside of the pitch line is drawn,
the flank of the tooth, will be outside of the pitch
line. These radii and center locations were ob-

tained directly from a set of tooth outlines of

3-inch circular pitch, formed by rolling a genera-
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ting circle, drawn upon tracing paper, upon a set

of pitch circles, correct rotation being assured by
the use of needle points pricked through the gen-

erating circle into the pitch circle, the needle

points serving as pivots upon which the genera-

ting circle was swung through short successive

stages, the forward movements of the tracing

point in forming the cycloidal curves being also

pricked through. Needle points were also used in

the instruments which were used for tracing this

curve when the radius and center location were

determined.

CYCLOIDAL TOOTH OUTLINES

Radii and center locations for one-inch circular pitch. For

any other pitch multiply the given figure by the required

pitch.

If the diametral pitch method is being used, the corresponding circular

pitch may be found by dividing 3.1416 by the diametral pitch, as already
mentioned.

Involute Teeth. The construction of a correct

involute tooth outline is so simple a matter as to

make the use of tables of approximate circular
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arcs .unnecessary. An involute may be formed by
the plotting method given in the geometrical prob-

lems, but in most cases it may be more readily

formed by the use of a sharply pointed pencil

guided by a strong thread as shown in Fig. 171,

where ab represents the pitch line of a gear, and
cd represents the base circle, having a number of

pins stuck into it at short distances apart. The

thread being doubled, forms a loop to hold the pen-
cil point. The thread being drawn tightly around

the pins, the pencil is swung outward from the

FIG. 171. Laying out an Involute Gear Tooth.

base circle, forming the required involute. When
gears of over thirty teeth are to mesh into others

of less than that number, it will be necessary to

slightly round over the points of the teeth to avoid

interference with the radial flanks of the mating
gear. For this purpose use a radius of 2.10 inches

divided by the diametral pitch, with a center on

the pitch line as shown in Fig. 172. This radius,

2.10 inches divided by the diametral pitch, is the

same as that given by Grant for rounding off the

points of the teeth of racks ; but actual trial on

teeth of large size shows it to be correct for gear
wheels also, giving a curve which coincides very

closely with the epicycloidal shape which the point
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should have to work correctly with the radial flank

of the mating gear.

That part of an involute tooth lying within the

base circle is made radial, as previously stated, and
a good fillet should be drawn in at the root. For
this purpose use a radius of one-twelfth of the

circular pitch. A templet which is fitted to this

FlG. 172. Modified Tooth Form to Avoid Interference.

outline is used to finish the drawing, and to mark
out the teeth on the pattern.

On large work the size of the base circle may be

obtained by calculation more readily than by the

use of the triangle, as shown in Fig. 166. When
the line of action has an obliquity of 15 degrees,

the diameter of the base circle will be equal to

0.966 of the pitch diameter. For 20-degree invo-

lute gears the diameter of the base circle will be

0.94 of the pitch diameter.

With the 20-degree involute system the teeth of

the rack have an inclination of 70 degrees to the

pitch line. With this system there will be no ne-

cessity for rounding off the points of the teeth of

the rack or of a large gear unless it meshes with
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a gear of less than 18 teeth. When, to avoid inter-

ference, it does become necessary to round off the

points of the teeth of the rack or of large gears,

the same radius, 2.10 inches divided by the diam-

etral pitch, is to be used, as in the 15-degree

system, the center being on the pitch line as

before.

Proportions of Gears. A somewhat common rule

is to make the rim and the arms of about the same
thickness as the teeth at the root, though some
make the thickness of the rim equal to the height
of the tooth

; and to make the diameter and length
of the hub about equal to about twice the diameter

of the shaft. On spoked gears, the rim is also stiff-

ened by ribbing it between the arms. On a light

gear mounted on a relatively large shaft it would
be natural to lighten the hub somewhat. The
width of

t
the face of cast gears is usually made

from two to three times the circular pitch. The
face of bevel gears should not exceed one-fifth of

the diameter of the large gear, and the face of

worm gears should not exceed one-half of the

diameter of the worm.

Strength of Gear Teeth. When a gear is to be

designed for a given work, the first question is

how large to make the teeth to give the required

strength. On their size will also depend the gen-
eral proportions of the gear.

It is comparatively easy to determine the work
which the teeth are doing, that is, the strain or

load which they are bearing, when the power
which the gear transmits is known. A horse-power
being the power required to lift 33,000 pounds one
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foot in one minute, the load on the teeth will be

33,000 multiplied by the horse-power which is

being transmitted, and divided by the velocity of

the pitch line of the gear in feet per minute ; or,

what is the same thing, 126,050 multiplied by the

horse-power, and divided by the product of the

pitch diameter in inches multiplied by the number
of revolutions per minute. This latter figure,

126,050, takes into account the fact that in the first

case the velocity is expressed in feet, while in this

case the diameter is in inches, and also the fact

that the velocity is a factor of the circumference

instead of the diameter.

While the load on the teeth may be readily

determined, the question of how large they should

be made to bear it is one where authorities have

differed very much on account of the number of

factors involved. First of all is the question of

the material, usually cast iron, which is a variable

quantity, both on account of the nature of the

material itself, different grades varying greatly as

to strength, and the liability of defects in the cast-

ing. Then there is the question of whether the

load should be considered as divided between two

or more teeth or carried by one tooth, or the cor-

ner of a tooth.

Then there is the nature of the work: whether,

the load will be uniform or whether the teeth will

be subject to severe strain or shock. There are

questions of the shape of the tooth, and the velocity

at which the gear is running, the teeth having

greater strength at slow speeds than at high speeds

due to the shocks accompanying high velocities.
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To show the different results given by different

writers we may take the case of a gear 24 inches

diameter, 2 inches circular pitch, 4 inches face,

running at 100 revolutions per minute. A rule

given by Box in his treatise on mill gearing, and

quoted by Grant and Kent, would make the gear
safe for 9.4 horse-power. The rule in Nystrom's
Mechanics gives 12.2 horse-power. Rules by other

writers, quoted by Kent, give results as follows:

Halsey, 22.6; Jones & Laughlin, 35; Harkness, 38;

Lewis, 65.2. The rule by Prof. Harkness is the

result of investigations conducted by him in 1886.

He examined a great many rules, largely, how-

ever, for common cast gears. Mr. Lewis's method,
the result of his investigations of modern machine
molded and cut gears, though giving much higher
results than the others, is said to have proved sat-

isfactory in an extensive practice, and so may be

considered reliable for gears which are so well

made that the pressure bears along the face of the

teeth instead of upon the corners.

It is customary in calculating gears to proceed
on the assumption that the load is borne by one

tooth, and in ordinary work, the size of the tooth

may be determined by the load it may safely bear

per inch of face and per inch of circular pitch.

In 1879, J. H. Cooper selected an old English rule

giving the breaking load of the tooth as 2000 X
pitch X face, which, allowing a factor of safety of

10, would give us a safe load of 200 X pitch X face.

Kent says of this rule that for rough ordinary work
it "is probably as good as any, except that the fig-

ure 200 may be too high for weak forms of tooth,
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and for high speeds.
" Lewis also considers this

rule as a passably correct expression of good gen-
eral averages.
The value given by Nystrom and those given by

Box for teeth of small pitch, are so much smaller

than those of other authorities that Kent says they

may be rejected as giving unnecessary strength.

Accepting the factor 200 as a good average would
leave one room for the exercise of individual judg-
ment for the particular case in hand. If the speed
were slow and the teeth were of strong shape, as

where both the gears of a pair, or all of the gears
of a train, have a reasonably large number of

teeth, a higher figure, perhaps 225 or more, might
be taken; while if the speed were higher and one

of the gears had but few teeth, giving them a

weak form, or if they were to be subject to much
vibration or shock, a lower figure, perhaps as low

as 125, might be taken.

To ascertain the horse-power safely transmitted

by an existing gear, we would then multiply to-

gether its diameter, pitch (circular) and face,

taken in inches, and the number of revolutions

per minute, and multiply their product by 200, or

whatever figure is selected, and divide the total

product by 126,050. This may, perhaps, be ex-

pressed clearer, as follows:

diam. X rev. X circ. pitch X face X 200
Horse-power=

"

The figure 200 would give to the 24-inch gear

previously considered 30.5 horse-power. The fig-

ure 125 would give 19.0 horse-power.
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To ascertain the size of the teeth to transmit a

given horse-power we may transpose the above rule

and say that the product of the pitch multiplied

by the face would be equal to 126,050 multiplied

by the horse-power, and divided by the product of

the diameter in inches, the number of revolutions

per minute, and 200, or the figure selected; that is:

~. , , , , 126^050 X horse-power
Circ. pitch X face :=--

Assuming some pitch and dividing this result

by it would give the breadth of face. A few
trials will give the desired ratio between pitch

and breadth of face. If one has a table of square
roots at hand, the work may be simplified by

assuming some desired ratio, when the pitch will

be the square root of the quotient of this figure,

pitch multiplied by the face, divided by the ratio.

If, for instance, the pitch multiplied by the face

were found to be 12, and we desired them to be

in the ratio of 2J to 1, the pitch would be equal to

the square root of the quotient of 12 divided by
2i, or 2. 191, which would be about the same as li

diametral pitch.

Example. Required the size of the teeth of a

gear 18 inches in diameter, to run 120 revolutions

per minute, which shall transmit five horse-power,

allowing 200 pounds load per inch of face, and
inch of pitch. Then :

126,050 X 5 630,250Pitch X face=- =
"432^000

= L46

nearly. A circular pitch of 0.785 inch, correspond-
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ing to 4 diametral pitch, would give a breadth of

face of about 15 inches. For bevel gears take the

diameter and pitch at the middle of the face.

Mr. Lewis's method differs from the preceding
in that instead of using a single constant, as 200

pounds per inch of pitch and inch of face, two
constants are used, one, Y, a factor of strength

depending on the number of teeth in the gear, and

another, S, a safe working stress for different

speeds of the pitch line, in feet per minute. The
values of these constants are given in the accom-

panying tables.

The rule to get the horse-power of a given gear
is:

TJ p = circ. pitch X face X velocity X S X Y
33,000

the velocity being that at the pitch line in feet per

minute, and the values of S and Y being taken

from the tables. The velocity is, of course, the

diameter in feet X 3.1416 X number of revolu-

tions. If the diameter were taken in inches then

the total product would be divided 'by 12. The

product of the pitch multiplied by the face, to

determine the size of teeth to transmit a given

power, would then be

33,000 X H. P.
Circ. pitch X face = v .T

~" ~- ^
velocity X S X Y.

The calculation should be made for the gear of

the pair or train having the fewest teeth, as it

would be the weakest, unless it were made of some

stronger material as steel, or unless it were
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WORKING STRESS, S, FOR DIFFERENT SPEEDS
AT PITCH LINE IN FEET PER MINUTE,

FOR CAST IRON.

shrouded. If made of steel S might be taken 2i

times the tabulated values.

As a gear with cut teeth has from two to three

times the strength of one with cast teeth, because

of the more perfect contact, Mr. Lewis's method

might be adapted to common cast gears by taking
the value of S at from one-half to one-third of the

tabulated value. By so doing one could bring into

the calculation the question of shape of teeth and

FACTOR FOR STRENGTH, Y, TO BE USED IN
LEWIS'S FORMULAS.

0.078
0.083
0.088
0.092
0.094
0.096
0.098
0.100

13 3
0.3 -S-i

0.067
0.070
0.072
0.075
0.077
0.080
0.083
0.087

0.102
0.104
0.106
0.108
0.111
0.114
0.118
0.122

0.090
0.092
0.094
0.097
0.100
0.102
0.104
0.107

43
50
60
75
100
150
300

Rack

0.126
0130
0.134
0.138
0.142
0.146
0.150
0.154

0.110
0.112
0.114
0.116
0.118
0.120
0.122
0.124
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speed, which would be especially desirable if the

speed were high or the teeth of weak form. Tak-

ing S at one-half the tabulated value would give
to the 24-inch gear previously considered about

the same power as allowing 200 pounds per inch

of pitch and face, which Mr. Lewis considers a
fair value. With cast gears where interchange-

ability is not a necessary feature, the teeth of a
small gear could of course be considerably strength-
ened in the manner previously indicated for epicy-
cloidal gears; or the 20-degree system might be

used if the teeth have the involute form.

Thurston's Rule for Shafts. The size of shaft

which the gear will require may be found by the

rule given by Thurston. Multiply the horse-power
to be transmitted by 125 for iron, or by 75 for cold

rolled iron, and divide the product by the number
of revolutions per minute. The cube root of the

quotient will be the size of the shaft.

. The size of gear to give a required speed may
be readily determined from the fact that the prod-
uct of the speed of the driving shaft multiplied by
the size of the driving gear or gears, should be

equal to the product of the speed of the driven

shaft, multiplied by the size of the driven gear or

gears. This, perhaps, may be made clearer by

placing the driving members on one side of a line,

and the driven members on the other side, as in

the following example.
A shaft making 75 turns per minute has on it a

gear of 200 teeth. Required the size of gear to

mesh with it which shall drive its shaft 120
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revolutions per minute. Letting x represent the

size of the required gear we have

Rev. driving shaft = 75

Size driving gear = 200

x = size driven gear.

120 = rev. driven shaft.

Then as the product of the numbers on one side

of the line equals the product of those on the other

side, 75 X 200 -5- 120 will give the value of x, the

number of teeth in the driven gear. This method

applies to a train of gears as well as a pair.



CHAPTER XIII

CALCULATING THE DIMENSIONS OF GEARS

IN the previous chapter, the general principles
of gearing have been explained. The three kinds
of gearing most commonly in use, spur gearing,
bevel gearing and worm gearing, have been
touched upon, and the fundamental rules for the

dimensions of gear teeth have been given. In

this chapter it is proposed to give in detail the

rules and formulas for these three classes of gears,

so as to enable the student to calculate for himself

any general problem in gearing with which he

may meet.

Spur Gearing. In the following, machine cut

gearing is, in particular, referred to; but the gen-
eral formulas are, of course, of equal value for use

when calculating cast gears. The expressions pitch

diameter, diametral pitch and circular pitch have

already been explained, and rules have been given
for transferring circular pitch into diametral

pitch, and vice versa. These rules, expressed as

formulas, would be:

in which P = diametral pitch, and
P'= circular pitch.

Assume as an example that the diametral pitch
222
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of a gear is 4. What would be the circular pitch

of this gear?

Using the formula given, we have:

pf = == 0.7854 inch.

When the diametral pitch and the pitch diameter

are known, the.number of teeth may be found by

multiplying the pitch diameter by the diametral

pitch, as already mentioned in the previous chap-
ter. This rule, expressed as a formula, would be :

N=PXD
in which N = number of teeth,

D = pitch diameter, and
P = diametral pitch.

Assume that the diametral pitch of a gear is 4

and the pitch diameter 6i inches. What would be

the number of teeth in this gear?

By inserting the given values in the formula

above, we would have :

N = 4 X 6i = 25 teeth.

If the number of teeth and pitch diameter of the

gear are known, and the diametral pitch is to be

found, a rule and formula for this may be arrived

at by merely transposing the rule and formula just

given. The diametral pitch equals the number of

teeth divided by the pitch diameter, or, expressed
as a formula:

in which P, N and D signify the same quantities
as in the previous formula.
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Assume, for an example, that the number of

teeth in a gear equals 35 and that the pitch diam-
eter is 3J inches. What is the diametral pitch?

If we insert the known values in the given for-

mula, we have :

35P = ^f = 10 diametral pitch.
05

Finally, if the diametral pitch and the number
of teeth are known, the pitch diameter is found

by dividing the number of teeth by the diametral

pitch, which rule expressed as a formula, would be:

As an example, assume that the number of teeth

in a gear is 58 and the diametral pitch 6. What is

the pitch diameter of this gear?

By inserting the known values in the formula,

we find :

D =
5|-

=9.667 inches>

If it now be required to find the outside diam-

eter of the gear, that is, the diameter of the gear

blank, we make use of the following rule : The
outside diameter equals the number of teeth plus

2, divided by the diametral pitch. Expressed as

a formula, this rule is:

TV N+2
P

in which D ' = outside diameter of gear, and N
and P have the same significance as before.

As an example, assume that the number of teeth
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is 58 and the diametral pitch 6. By inserting these

values in the formula, we find the outside diameter:

rv 58+2 60
D' = - = -^-= 10 inches.

b b

When the pitch diameter and the diametral pitch

are known, the outside diameter is found as

follows: Add the quotient of 2 divided by the

diametral pitch to the pitch diameter; the sum is

the outside diameter. This rule, expressed as a

formula, is:

in which the letters have the same significance as

before.

Assume that the pitch diameter of a gear is 9.667

inches, and the diametral pitch 6. Find the out-

side diameter.

By inserting the given values in the formula, we
have:

Df = 9.667 + ~ = 9.667 + 0.333 = 10 inches.
o

By a transposition of the rule and formula just

given, we find that the pitch diameter equals the

outside diameter minus the quotient of 2 divided

by the diametral pitch. This rule, written as a

formula, is-

D = u-
Jr

Assume that the diametral pitch of a gear is 8,

and the outside diameter 12 inches. What is the

pitch diameter?

D = 12-~f-=12-i = 111 inches.
o
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When the number of teeth and outside diameter
are known, the diametral pitch may be found by
adding 2 to the number of teeth and dividing the

sum by the outside diameter; or, expressed as a
formula:

N + 2P =
D'.

If the number of teeth in a gear is 96 and the

outside diameter is 14 inches, what is the diame-
tral pitch?

If the known values are inserted in the given
formula, we have :

-D 96 + 2 98 . ,P ~TZ~
=

IT
= diametral pitch.

When the outside diameter and the number of

teeth are known, the pitch diameter may be found

by multiplying the outside diameter by the number
of teeth, and dividing the product by the sum of

2 added to the number of teeth; or, as a formula:

ZXX N
"WTz

Find the pitch diameter for the gear having 96

teeth and an outside diameter of 14 inches.

14X96 1344 ,^ ==

96T2~ ~98~
= 13.714 inches.

When it is required to find the center distance C
between two gears in mesh with each other, we
must first know the pitch diameters of, or the

number of teeth in, the two gears. The center
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distance equals one-half of the sum of the pitch

diameters of the two gears :

D + d
2

in which D and d denote the pitch diameters in

the large and small meshing gears, respectively.

The pitch diameters of two gears equal 9. 5 and 7

inches, respectively. Find the center distance

between them when in mesh.

9.5 + 7 16.5 .

O =
~^ ~~^~

= o.Zo inches.

The center distance is also equal to the sum of

the numbers of teeth in the two gears divided by
two times the diametral pitch; or, as a formula:

2P
in which N and n denote the numbers of teeth in

the meshing gears.

As an example, assume that the number of teeth

in each two gears equals 95 and 75. The diametral

pitch is 10. What is the center distance?

n 95 + 75 170
:

2~~X~10
=

"20"

We will now find the dimensions of the tooth

parts. The addendum (see Fig. 160) equals 1

divided by the diametral pitch. Expressed as a

formula:

in which A = addendum.
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What is the addendum or height above the pitch
line of a 5 diametral pitch gear tooth?

A =4-= 0.2 inch.
o

The dedendum (see Fig. 160) equals the ad-

dendum.
The clearance, c, equals 0.157 divided by the

diametral pitch, or:

c
_0157

P.

What is the clearance at the bottom of the gear
tooth (see Fig. 160) of a 4 diametral pitch gear?

c = ^p - 0.039 inch.

The full depth of the tooth equals the sum of the

addendum, dedendum, and clearance, or

JL JL ,

0.157 2J.57
P

'

P P P

in which d ' = full depth of gear tooth.

What is the full depth of a 4 diametral pitch

tooth?

d , = =
. a539inche

The thickness of a cut gear tooth at the pitch
line equals 1.5708 divided by the diametral pitch;

or, as a formula :

T 1.5708

~1T
in which T = thickness of tooth at pitch line.
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What is the thickness at the pitch line of a 4

diametral pitch gear tooth?

T == ~ == 0.3927 inch.

As a general example, let it be required to de-

termine the various dimensions for a pair of gears,

the one having 36 and the other 27 teeth. The

gears are of 8 diametral pitch.

By using the formulas given, we have :

For the larger gear :

Pitch diameter =
-5

=
-5-

= 4.5 inches.
r o

Outside diameter = ~~w^ - 86
J"

2= 4.75 inches.
Jr o

For the smaller gear:

n 27
Pitch diameter = = - = 3.375 inches.

Jr o

Outside diameter= 5~~
=

o
= 3.625 inches.

Jr o

For both gears :

Addendum = ~ = - - = 0.125 inch.
f O

Dedendum = ^ =
-5-

= 0.125 inch.
Jr o

~ 0.157 0.157 ftmofi -
v.Clearance = =r~ = ^~~ = 0.0196 inch.

Full depth of tooth= = -~ - 0. 2696 inch.
X O

36 + 27 63 015 .

Center distance = -
-

2x g
==

16
= 3|| inch.
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This concludes the required calculations neces-

sary for a pair of spur gears.

Bevel Gears. Bevel gears are used for trans-

mitting motion between shafts whose shafts are

not parallel, but whose center lines form an angle

with each other. In most cases this angle is a

--o

FIG. 173. Diagram for Calculation of Bevel Gearing.

right, or 90-degree, angle. The formulas for the

dimensions of bevel gears are not as simple as

those for spur gears, and an understanding of the

trigonometrical functions, explained in Chapter

VII, is necessary, as well as the use of trigonomet-

rical tables. As bevel gears with a 90-degree angle

between their center lines are the most common,
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formulas will be given for this case only, in the

following.

In Fig. 173 a pair of bevel gears are shown, the

dimensions of which are to be determined. The

letters in the formulas below denote the following

quantities :

P = diametral pitch,

Di = pitch diameter of large gear,

D2
= pitch diameter of small gear,

01 = outside diameter of large gear,

2
= outside diameter of small gear,

NI = number of teeth in large gear,

AT2
= number of teeth in small gear,

NI = number of teeth for which to select cut-

ter for large gear,

N2

' = number of teeth for which to select cut-

ter for small gear,

flu &i, Ci, 02, &2, c2 ,
d and e = angles as shown in

Fig. 173.

A = addendum,
A + C = dedendum = addendum plus clearance.

If the pitch diameter and diametral pitch are

known, the number of teeth equals the pitch

diameter multiplied by the diametral pitch, or:

N, = D, X P
N2

= D 2 X P
If the number of teeth and the diametral pitch

are known, the pitch diameter equals the number
of teeth divided by the diametral pitch, or:
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Angles a t and a 2 can be determined if either the

numbers of teeth or the pitch diameters of both

gears are known. The tangent for these angles,

the pitch cone angles, equals the number of teeth

in one gear divided by the number of teeth in the

other, or the pitch diameter in one gear divided by
the pitch diameter in the other, according to the

following formulas :

2 ,
tan a2

= ^ = ^
Angle a2 also equals 90 - a lt

The outside diameter equals the pitch diameter

plus the quotient of 2 times the cosine of a t or a2 ,

respectively, divided by the diametral pitch, or:

0,=

Angles d and e are determined by -the formulas:

, 2 sin a,! 2 sin a 2

tancZ= ^~ -~
2.314 sin a^ 2.314 sin a 2

tan e -^r- ^
Angles 6 t , Ci, 62 and c 2 are determined by the

formulas :

&!
=

O-! + d

Ct
= di e

& 2
= a2 + d

c = a - e
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The number of teeth for which the cutter for

cutting the teeth should be selected is found as

follows :

COS

cosa2

Finally the addendum, dedendum and clearance

are found as in spur gears.

As a practical example, assume now that two
bevel gears are required, 8 diametral pitch, with
24 and 36 teeth, respectively. Find the various

dimensions.

n Ni 36D 1
=

-p
--

~^
=4.5 inches.

N2 24D2
=

-p-
=

-g-
= 3 inches.

tan ttl
== ^ == H =

1.5; a, = 56 20'.

tan a2
= ^ = ^ = 0.667; a2

= 33 40'.
JMi ob

Qi=Di+ 2^0, =45+
2X|554

= 46W incheg _

2
= Z)2+ ^f^ = 3 +^^2 _ 3m incheg _

-L O

tan d =
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b,
= a, + d = 56 20' 4- 2 40' = 59 0'.

Cl
= a,- e = 56 20'-30' = 5320'.

6 2
= a 2 + d = 33 40' + 2 40' = 36 20'.

c2
= a2

- e = 33 40
' - 3 ' = 30 40 '.

ZV'=
N* = - 36

1

COS ttj

AT2
' =

0.554

N2 24

cos a2 0.832

= 65 approximately.

= 29 approximately.

A - -4- - 4- - 0.125 inch.
Jr o

= 00196inch
o

Whole depth of tooth = y 4- y +

0.2696 inch.

Worm Gearing. Worms and worm gears are

used for transmitting power in cases where great

FIG. 174. -Worm.

reduction in velocity and smoothness of action are

desired. They are also used when a self-locking
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power transmission is desirable, that is, when
it is required that the mechanism itself, due to

the friction between the worm and worm-wheel,
should support the load without slipping if the

driving power be rendered inoperative.

In Figs. 174 is shown a worm and in Fig. 175 a

worm-wheel; the dimensions to be found are, in

most cases, given in these illustrations. The fol-

lowing notation has been used in the formulas

given below for worm and worm-wheels :

P = circular pitch of worm-wheel = pitch of the

worm thread,

N = number of teeth in worm-wheel,
Z>!

= pitch diameter of worm-wheel,
DT = throat diameter of worm-wheel,
01 = outside diameter of worm-wheel (to sharp

corners) ,

R = radius of worm-wheel throat,

C = center distance between worm and worm-
wheel axes,

D 2
= pitch diameter of worm,

2
= outside diameter of worm,

DR = root diameter of worm,
A = addendum, or height of worm tooth above

pitch line,

d = depth of worm tooth,

a = face angle of worm-wheel.

If the pitch of the worm and the number of

teeth in the worm-wheel are known, the pitch
diameter of the worm-wheel may be found by
multiplying the pitch of the worm by the number
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of teeth, and dividing the result by 3.1416, or, as

a formula :

D -
3.1416

The outside diameter of the worm, 2 , is usually
assumed. To find the pitch diameter of the worm,

the addendum must first

be found. The addendum
equals the pitch of the

worm thread multiplied

by 0.3183, or:

A = P X 0.3183.

Now the pitch diameter
of the worm equals the

outside diameter minus 2

times the addendum, or:

>
2
=

2
- 2A.

The root diameter of

the worm can be found
first after the full depth
of the worm-wheel thread

has been found. The full

depth of the worm-wheel
thread equals the pitch

multiplied by 0.6866, or:

d = PX 0.6866.

Now the root diameter

of the worm thread equals
the outside diameter of

the worm minus 2 times the depth of the thread, or:

DR =
2
- 2d.

FIG. 175. Worm-wheel.
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The throat diameter of the worm-wheel is found

by adding 2 times the addendum of the worm
thread to the pitch diameter of the worm-wheel, or:

DT = A + 2A.

The radius of the worm-wheel throat is found

by subtracting 2 times the addendum from the

outside diameter of the worm divided by 2, or:

R = Y
2 - 2A.

The outside diameter of the worm-wheel (to

sharp corners) is found by the formula below :

G! = D T + 2 (R - tfcos-

The angle a is usually 75 degrees.

Finally, the center distance between the center

of the worm and the center of the worm-wheel

equals the sum of the pitch diameter of the worm
plus the pitch diameter of the worm gear, and this

sum divided by 2, or:

Find, for an example, the required dimensions

for a worm and worm-wheel, in which the worm-
wheel has 36 teeth, the pitch of the worm thread

is J inch, and the outside diameter of the worm is

3 inches. We have given P = J; N = 36; 2
= 3.

X 36

3.1416 3.1416
=

A = P X 0.3183 = i X 0.3183 = 0.15915 inch.

D 2
=

2
- 2A = 3 - 0.3183 = 2.6817 inches.
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d = P X 0.6866 = i X 0.6866 = 0.3433 inch.

DR =
2
~ 2d = 3 - 0.6866 = 2.3134 inches.

DT = D, + 2A = 5.730 + 0.3183 = 6.0483 inches.

R=^-2A=~- 0.3183 = 1.1817 inch.

0,= D T + 2 (R - R cos y)
== 6.0483 + 2 X

(1.1817
- 1.1817 X cos 37 30

X

)
= 6.5375 inches.

r A+A 5.730 + 2.6817C = ~ - = 4.2058 inches.



CHAPTER XIV

CONE PULLEYS

WHEN it is desired to have a variable speed ratio

between two shafts which are belted together, the

method of having reversed conical cylinders or

drums mounted on the shafts, as shown in Fig. 176

and 177, is sometimes used. These permit any

FIG. 176.-Simplest
Form of ' ' Cone-

Pulley."

FIG. 177. An Im-

proved Form of

"Cone-Pulley."

FIG. 178. The Mod-
ern Type of Stepped

Cone Pulley.

desired change of speed, but they have disadvan-

tages which on most work offset this advantage.
It would be necessary, in the first place, to use a

narrow belt to avoid undue stretching at the edges.

Then, as the tendency of a belt is to mount to the

largest part of a pulley, this tendency, acting in

239
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the same way on the cones, would produce undue
tension on the belt. If a crossed belt is used on

such cones their faces would be made straight, as

the belt would be equally tight in any position.

This may be seen by an inspection of Fig. 179,

where circles A and B represent sections of such

cones on one line, and circles C and D represent
sections on another line. If the cones have the

FIG. 179. Diagram Showing relative Influence of Open and

Crossed Belt on Pulley Sizes.

same taper it is evident that the circle D will be

as much larger than B as C is smaller than A, the

gain in one diameter being offset by the loss in the

other. Then, as the circumferences of circles vary

directly as their diameters (the circumference of

a circle having twice the diameter of another, for

instance, will be twice as long as the circumfer-

ence of the other) ,
whatever is gained on one cir-

cumference_will be lost on the other. For a crossed

belt then, it is only necessary that the cones have

the same taper.

When, however, an open belt is used, it becomes

necessary to have the cones slightly bulging in the
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middle as shown in Fig. 177. By again inspecting

Fig. 179 it will be seen that it is only when the

belt is crossed that one cone gains as fast in size

as the other loses, because it is only when the belt

is crossed that the arc of contact of the belt on the

pulleys is the same on all steps of the cone.

In practice these cones are usually replaced by

stepped or cone pulleys as shown in Fig. 178, so as

to avoid the troubles with the belt previously

mentioned.

Applying the principles mentioned to cone pul-

leys, we see that when a crossed belt is used, all

that is necessary is that the sum of the diameters

of any pair of steps shall be equal to the sum of

the diameters of any other pair of steps. For

instance, the sum of the diameters of steps 1 and
r must be equal to the sum of the diameters of

steps 2 and 2'. When, however, an open belt is

used, as is usually the case, the sum of the diam-

eters of the steps at or near the middle of the cone

will have to be somewhat greater than the sum of

the diameters of those at or near the ends.

What is generally considered to be the best

method of determining the size of the various

steps of cone pulleys is that given by Mr. C. A.

Smith in the
'

'Transactions of the American Society
of Mechanical Engineers,

' '

Vol. X, page 269. Make
the distance C, Fig. 180, equal to the distance

between the centers of the shafts, and draw the

circles A and B equal to the diameters of a known
pair of steps on the cones. At a point midway
between the shaft centers erect the perpendicular
ab. Then, with a center on ab at a distance from
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a equal to the length of C multiplied by 0.314, draw
the arc c tangent to the belt line of the given pair

of steps. The belt line of any other pair of steps

will then be tangent to this arc.

If the angle which the belt makes with the line

of centers, de, exceeds 18 degrees, however, a

slight modification of the above is made as follows :

Draw a line tangent to the arc at c at an angle

of 18 degrees with de', and with a center on a&, at

FIG. 180. Method of Laying out Cone Pulleys.

a distance from a equal to the length C multiplied

by 0.298 draw an arc tangent to this 18-degree

line.

All belt lines which make an angle with de

greater than 18 degrees are made tangent to this

new arc.

The sizes of the steps so obtained maybe verified

by measuring the belt lengths of each pair. For

this purpose a fine wire may be used, the wire

being held in place by pins placed at close intervals

on the outer half circumference of each pulley of

the pair.



CHAPTER XV

BOLTS, STUDS AND SCREWS

SCREWS for clamping work together are of three

classes: through bolts, Fig. 181; studs, Fig. 182;

cap screws, Fig. 183. In Fig. 181 the bolt is put

entirely through both of the two pieces to be

FIG. 181. Through Bolt for

Holding two Pieces to-

gether.

FIG. 182. Stud used for

Clamping one Piece to

another.

clamped together, and a nut is put onto the

threaded end. This is considered to be the best

method on cast iron work, both as regards efficiency

and cheapness, as there is no tapping of any holes

243
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in the cast iron. A tapped hole in cast iron is to

be avoided, if possible, as, on account of the brittle

nature of the material, the threads are liable to

crumble or wear away easily.

In many cases, however, it is not practicable to

avoid tapping holes in cast iron, or questions of

appearance may make the broad flange which is

necessary when through bolts are used, undesirable.

In such cases studs should be used. A stud consists

of a piece of round stock threaded on both ends,

and having a plain portion

in the middle. The studs

are screwed firmly into the

tapped holes, which should

be deep enough to prevent
the studs from bottoming
in them, the studs instead

binding or coming to a

bearing at the end of the

threaded portion. The
loose piece is then put on

over the studs, and is held

in place by the nuts. By
using studs, any further wear of the tapped hole

is avoided, as, when removing the loose part, the

nuts only are taken off, the studs being left in

the body piece.

When the material of the parts which are being

clamped together is of such a nature that threads

formed in it are not liable to crumble or to rapid

wear, then cap screws, Fig. 183, may be used to

advantage. They give a neat appearance to a

piece of work, and the nut is entirely eliminated.

FIG. 183. Cap Screw used

for Clamping Purposes.
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United States Standard Screw Thread. The
most commonly used of all screw threads is the

United States standard thread. A section, indicat-

ing the form of this thread, is shown in Fig. 184.

The thread is not sharp neither at the top nor at

the bottom, but is provided with a flat at both of

these points, the width of the flat being one-eighth
of the pitch of the thread. The sides of the thread

x^

FIG. 184. Form of the United States Standard Thread.

form an angle of 60 degrees with each other. The

"pitch" and the "number of threads per inch"

should not be confused. The pitch is the distance

from the top of one thread to the top of the next.

If the number of threads is 8 per inch, then the

pitch would be 4 inch
; and the flat on the top of

a United States standard thread, which, as men-

tioned, is one-eighth of the pitch, would be 1-64

inch. If the number of threads per inch is known,
the pitch may be found by dividing 1 by the num-
ber of threads per inch, or

No. of threads per inch.

If, again, the pitch is known and the number of

threads per inch required, then

No. of threads per inch =
p.

,
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U. S. STANDARD SCREW THREADS.
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For example, assume that the pitch is 0.0625

inch. Then

No. of threads per inch =
.
= 16.

The accompanying table of United States stand-

ard screw threads gives the standard number of

threads per inch, corresponding to given diame-

ters, the diameter at the root of the thread, the

width of the flat at the top and bottom of the

thread, the area of the full bolt body, and the

area at the bottom of the thread. These dimen-

sions are, of course, always the same with all

manufacturers. As regards the sizes for hexagon
nuts and heads, and square nuts and heads also

given in the table, it may be said that all makers
do not conform strictly to the sizes as given. The

catalog of one large bolt manufacturing concern,

which is at hand, gives the width across flats of

finished bolt heads and nuts the same as the rough
sizes given in the table, which, it will be seen, are

founded on the rule that the width across the flats

of the heads and nuts should equal one and one-

half times the diameter of the body of the bolt,

plus one-eighth of an inch. It will also be noticed

that the thickness of the head or nut is the same
as the diameter of the body of the bolt.

With cap screws, although the length of the head
is made the same as for bolts, or equal to the di-

ameter of the bolt body, the diameter of the head,
and the distance across flats, is made different as

shown in table on the following page :
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CAP SCREW SIZES.

(From catalog of Boston Bolt Co. )

Check or Lock Nuts. When a bolt is subjected

to constant vibrations there is a tendency for the

nut to work loose. To overcome this tendency it

is customary to employ a second nut, called a check

or lock nut, which is screwed down upon the first

one as shown in Fig. 185. When the first nut is

screwed down to a bear-

ing, the upper surfaces of

its thread are in contact

with the under surfaces

of the bolt thread. When
the check nut is screwed

down, however, it forces

the first nut-down so that

the under surfaces of its

thread come into contact

with the upper thread sur-

faces of the bolt. This

means that the check nut has to bear the entire load.

When, therefore, the two nuts are of unequal

thickness, as is frequently the case, the thick

nut should be on the outside.

Bolts to Withstand Shock. When a bolt which
is subjected to shocks fails, it breaks, of course,

FIG. 185. Correct Arrange-
ment when Using Check
or Lock Nut.
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at the part having the least cross sectional area,

that is, at the bottom of the thread. If now the

body of the bolt be reduced so that its cross section

is of the same area as the area at the bottom of

the thread, a slight element of elasticity is intro-

duced, and the bolt is likely to yield somewhat
instead of breaking. This is considered very im-

portant in some classes of work. The reduction of

area may be accomplished by turning down the

body of the bolt, or, according to some authorities,

the same object is attained by removing stock from
the inside by drilling into the bolt from the head
end.

Either method, it is stated, gives the same degree
of elasticity to the bolt, but as the drilling method
takes the stock from the center, the bolt is left

stiffer to resist bending or twisting than when the

stock is taken off the outside by turning.

Wrench Action. When bolts or any form of

screws are used to hold machine parts together,

they must be strong enough not only to withstand

the strain which is put upon them by the operation
of the machine, but also to withstand the strain

which is put upon them by the wrench in setting

or screwing them up. In the case of a cylinder

head, for instance, the strain upon the bolts due to

the working of the engine will be the exposed area

of the head, multiplied by the pressure per square
inch. This divided by the number of bolts used

will give the proportional part of this strain which
each bolt must sustain. But in order to insure a

tight joint, it is necessary that the bolts be not

merely brought up to a bearing, but that they be
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set up hard enough so as to press the cylinder and

cylinder head surfaces firmly together. The force

which the wrench exerts in doing this work will

be equal to the circumference of the circle through
which the hand moves in turning the wrench

through one revolution, multiplied by the force in

pounds exerted at the handle, and this product
divided by the distance through which the nut

advances in one revolution, that is, by the lead of

the screw. This theoretical result is, of course,

modified by the friction between the nut and the

bolt, and between the nut and washer. In addition

to this direct strain, there is also a twisting strain

in the bolt, caused by the friction between the bolt

and nut.

To insure the bolts being sufficiently strong to

resist these various forces, it is customary to make
them somewhat more than double the strength
that would be necessary to enable them to safely

resist the pressure of the steam or other fluid in

the cylinder; that is, they are made about double

strength to enable them to resist the direct strain

of the wrench action, and then this amount is in-

creased about 15 or 20 per cent, to allow for the

twisting action of the wrench. Allowing that a

factor of safety of 4 would be sufficient to allow

for the steam pressure only, a factor of safety of

not less than about 9 or 10 would therefore be used

to provide for the added strain on the bolt due to

the wrench action. In the case of small bolts,

where the workman might set them up much harder

than is really necessary, a factor of safety of about

15 may be used.
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The distance apart which bolts can be spaced
without danger of leakage is given by Prof. A. W.
Smith as between 4 or 5 times the thickness of the

cylinder flange for pressures between 100 and 150

pounds per square inch.

In the case of bolts which are not under strain

as a result of the wrench action, as in the case of

FIG. 186. Example of Thread

not under Stress due to

Wrench Action.

FIG. 187. Square Threaded

Screw, such as is Generally
used for Power Transmis-

sion.

the hook bolt shown in Fig. 186, a factor of safety

as low as 4 might be properly used, if the load is

steady.

Assuming that the material of which the bolts

are made has an ultimate strength of 40,000 to

60,000 pounds per square inch, the factors of

safety previously indicated would give allowable

working stresses of from 4000 to 15,000 pounds per

square inch.
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Screws for Power Transmission. In Fig. 187 is

shown a square threaded screw such as is generally
used for power transmission. In such a screw the

depth of the thread is made one-half of the pitch.

The size of the body of the screw, assuming that

the work which the screw is doing brings a ten-

sional stress on the screw, will be determined by
the tensile strength of the material of which it is

made and the factor of safety which is used. As
a screw which is used for power transmission is

subjected to constant wear when in use, the ques-
tion of the proper amount of bearing surface in the

threads of the nut is of first importance, in order

that it may not wear out too rapidly. The area of

the thread surface in the nut on which the pressure
bears will be equal to the difference in area of a

circle of a diameter equal to the outside diameter

of the screw, and one of a diameter equal to the

diameter at the root of the thread of the screw,

multiplied by the number of threads ; or, letting D
represent the outside diameter of the screw, and d

represent the diameter of the body, the area will be:

(D
2 - d 2

) X 0.7854 X No. of threads in the nut.

The allowable pressure per square inch of working
surface will vary with the nature of the service

required, whether fast or slow, and also with the

lubrication, and with the material used. Where
the speed is slow, say not over 50 feet per minute,
and the service is infrequent, as in lifting screws,

a pressure of 2500 pounds for iron or 3000 pounds
for steel is allowable, while for more constant

service some authorities limit the pressure to

about 1000 pounds per square inch even when the
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lubrication is good. For high speeds a pressure of

about 200 or 250 pounds is considered to be as

much as should be allowed.

For a screw which, fitting loosely in a well lubri-

cated nut, is to sustain a load without danger of

running down of itself, the pitch of the screw
should not, according to Professor Smith, be greater
than about one-tenth of its circumference.

Efficiency of Screws. A square-threaded screw
has a greater efficiency than a V-threaded one, as

the sloping sides of the V-thread cause an increase

of friction. Square threads are therefore preferable
for power transmission. Experiments show that

in the case of bolts used for fastenings, the friction

of the nut on the bolt and washer may absorb 90

per cent, of the power applied to the wrench,

leaving only 10 per cent, for producing direct com-

pression. For square-threaded screws an efficiency

of about 50 per cent, is considered fair, if the

screws are well lubricated.

Acme Standard Thread. While the square thread

gives the greatest efficiency in a screw it is not as

strong as one having sloping sides. Fig. 188 shows
a section of a screw thread called the Acme or 29-

degree thread, which is often used for replacing
the square thread for many purposes, such as in

screws for screw presses, valve stems, and the

like. The use of such a screw permits the employ-
ment of a split nut, when such construction is

desirable, which would not be practicable with a

perfectly square thread, and for this reason, as

well as for the reason that it can be cut with

greater ease than the square thread, it has of late



254 SELF-TAUGHT MECHANICAL DRAWING

become widely used. In the Acme standard thread

system the threads on the screw and in the nut are

not exactly alike. A clearance of 0.010 inch is

provided at the top and at the bottom of the thread,
so that if the screw is 1 inch in diameter, for

example, then the largest diameter of the thread
in the nut would be 1.020 inch. If the root diam-
eter of the same screw were 0.900 inch, then

the smallest diameter of the thread in the nut

would be 0.920 inch. The sides of the threads,

however, fit perfectly.

The depth of an Acme thread equals one-half the

pitch of the thread plus 0.010 inch. The width

FIG. 188. -Shape of Acme Screw Thread.

of the flat at the top of the screw thread equals
0.3707 times the pitch; and the width of the flat

at the bottom of the thread equals 0.3707 times the

pitch minus 0.0052 inch.

Miscellaneous Screw Thread Systems. Besides

the screw thread systems already mentioned, a

great many other systems are in more or less

common use. Leading among these is the sharp

V-thread, which, previous to the introduction of the

United States standard thread, was the most com-

monly used thread in this country. This thread

is, theoretically at least, sharp at both the top and
the bottom of the thread, the angle between the
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sides of the thread being the same as in the United

States standard system, or 60 degrees. In ordinary

practice, however, a small flat is provided on the

top of the thread, because it would be almost impos-
sible to commercially produce the thread otherwise ;

and even if the thread could be produced, the sharp

edge at the top would rapidly wear away. The

sharp V-thread is being more and more forced

out of use by the United States standard thread,

although it must be admitted that it will probably

long hold its own in steam fitting work, because of

being especially adapted for making steam-tight

joints. It answers this purpose probably better

than any of the other common forms of threads.

The Whitworth standard thread is not used to a

very great extent in the United States, but it is the

recognized standard thread in Great Britain. In

this form of thread the sides of the thread form
an angle of 55 degrees with each other, and the

tops and bottoms of the threads are rounded to a

radius equal to 0.137 times the pitch. This round-

ing of the thread at the top provides for a thread

which does not wear rapidly, and screws and nuts

made according to this thread system will work
well together in continuous heavy service for a

longer period than would screws and nuts with any
of the other standard thread forms. The fact that

the threads are rounded in the bottom is advan-

tageous on account of the elimination of sharp
corners from which fractures may start. The main

disadvantage of the thread, and the reason why
the United States standard thread was adopted in

this country in preference to the Whitworth stand-
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ard, which is the older of the two, is to be found

in the fact that it is more difficult to produce than

a 60-degree thread with flat top and bottom. The
Whitworth form of thread is used in this country

mostly on special work and on stay-bolts for loco-

motive boilers.

A thread perhaps more commonly used than any
of the others, with the exception of the United

States standard thread, is the Briggs standard

pipe thread, which is used, as the name indicates,

for pipe fittings. This thread is similar to the

sharp V-thread, having an angle of 60 degrees
between the sides, and nearly sharp top and bottom ;

instead of being exactly sharp at the top and bot-

tom, however, it is slightly rounded off at these

points. The difficulty of producing these slightly

rounded surfaces has brought about a modification,

at least in the United States, so that a small flat is

made at the top, and the thread made to a sharp

point at the bottom. It appears that a thread cut

with these modifications serves its purpose equally

as well as a thread cut according to the original

thread form.

Besides these systems, there are the metric screw

thread systems. These use the same form of thread

as the United States standard system, but the

thread diameters and the corresponding pitches

are, of course, made according to the metric system
of measurement.

Other Commercial Forms of Screws. Set-screws,

shown in Fig. 189, are usually made with square

heads, and have either round or cup-shaped points,

and are generally case hardened. They are used
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for such work as fastening pulleys onto shafts,

etc. Some set-screws are made headless, and are

slotted for use with a screw-driver in places where
it is undesirable that the _
screw projects beyond the

work.

The term machine screws

covers a number of styles of

small screws made for use

with a screw-driver. Fig.

190 shows the principal styles.

Machine screw sizes are usu-

ally designated by numbers,
the size and the number of

threads per inch being usually given together, with

a "dash" between ; thus a 10 24 screw would be a

number 10 screw with 24 threads per inch. There

are two standard systems for machine screw

FlG. 189. Forms of

Set-screws.

FILLISTER
HEAD

FIG. 190. Forms of Machine Screws.

threads, the old, which until recently was the only

system, and the new, which was approved in 1908

by the American Society of Mechanical Engineers.
The standard thread form of the old sy"stem was
the sharp V-thread, with a liberal but arbitrarily
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selected flat on the top. The basic thread form

of the new system is that of the United States

standard thread.

The accompanying tables give the numbers and

corresponding diameters and number of threads

per inch of the old as well as the new system for

machine screw threads.

MACHINE SCREW THREADS, OLD SYSTEM.

MACHINE SCREW THREADS, NEW SYSTEM.



CHAPTER XVI

COUPLINGS AND CLUTCHES

A COUPLING is a device for connecting together
the ends of two shafts or axles for the purpose
of making a longer shaft, the term being usually

limited to those devices which are intended for

permanent fastening. The term clutch is used to

designate a disengaging coupling.

The simplest form of coupling consists simply of

a sleeve or muff, made of a length about three

times the diameter of the shaft, bored out to fit

the shaft, and provided with a keyway its entire

length, made to receive a tapering key. The ends

of the shafting are, of course, also provided with

keyways, and are inserted into the sleeve; then

the key is driven in. In some couplings the sleeve

is made tapering on the outside at both ends, and,

being split, is clamped upon the shafts by means
of rings or hollow conical sleeves which are driven

onto the tapered ends, or drawn together by means
of bolts.

One of the most common forms of coupling is the

flange coupling shown in Fig. 191. In this case a

flanged hub is keyed to each of the shaft ends, and
the flanges are then held together and prevented
from turning relative to each other by bolts, as

shown. In some cases the bolt heads and nuts are

259



260 SELF-TAUGHT MECHANICAL DRAWING

provided with a guard by having the rim on the

outer edge of the flange made deep as shown by
the dotted lines on one side. This construction

also allows the coupling to be used as a pulley, if

necessary. In a coupling of this kind, the chief

problem is to get the bolts of such size that their

combined strength to resist the shearing action

to which they are subjected equals the twisting

FIG. 191. Flange Coupling.

strength of the shaft. Letting d represent the

diameter of the shaft in inches, its internal resist-

ance to twisting is given by the formula

~

5.1

in which T equals the internal resistance to twist-

ing, or the twisting moment, and S the shearing

strength per square inch of area in pounds.

Regarding the shearing strength of materials

Kent says :

' ' The ultimate torsional shearing re-

sistance is about the same as the direct shearing

resistance, and may be taken at 20,000 to 25,000

pounds per square inch for cast iron, 45,000 pounds
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for wrought iron, and 50,000 to 150,000 pounds for

steel according to its carbon and temper."
The torsional and direct shearing resistance being

the same, this quantity may be neglected if the

shaft and coupling bolts are of the same material,

and
d s

5.1

the internal resistance factor or torsion modulus
of the shaft, should be equal to the product of the

radius of the bolt circle of the coupling, the number
of bolts used, and the area of each bolt. Or, letting

a represent the area of each bolt, R the radius of

the bolt circle of the coupling, and n the number
of bolts used, we would have :

a = -~- + (R X ri).
). -L

Example. Required the size of the bolts for a

flange coupling for a 2-inch shaft. The radius of

the bolt circle is 3 inches, four bolts being used.

Using the notation in the formula given, our

known values are:

d = 2 inches,

R = 3 inches,

n = 4 bolts.

If we insert these values in the formula we have:
03 o

a =
-g-y

-^ (3X4)= g-^^
12=0.13 square inches.

This area corresponds to a diameter of about A
of an inch. To allow for the strain on the bolt

caused by the action 01 the wrench, the next size
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larger bolt, at least, or a i inch bolt, will be se-

lected. The capacity of the bolt to resist shear-

ing will be considerably increased by having the

corners of the holes at those faces of the flanges

which come together, somewhat rounded. If this

is not done, the action of the flanges on the bolts

will be like that of a pair of sharp shears. Experi-
ments have shown that with the corners rounded,
the capacity of the bolt to resist shearing may be

increased 12 per cent.

If the shaft and bolts are of different materials

then the modulus

5̂.1

should be multiplied by the shearing strength of

the shaft in pounds per square inch and the product

t=

3 d

FIG. 192. Clamp Coupling.

RXn should be multiplied by the shearing strength
of the bolts per square inch, before dividing in

the formula to get the bolt area.

In Fig. 192 is shown another form of coupling
much used. It consists of two parts bolted together
over the joint in the shafting, a key and keyway
being provided to prevent the slipping of the shafts.
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By having a thickness of heavy paper interposed

between the two parts of the coupling when it is

bored out, it may be made to clamp very tightly

onto the shafts.

With either form of coupling, the length is made
such that each shaft end is held by the coupling

by a length of about one and one-half times its

diameter, as indicated in the engravings.
Oldham's Coupling. Fig. 193 shows a form of

coupling which may be used for shafts which are

FIG. 193. Oldham's Coupling.

parallel, but slightly out of line. In this coupling
each shaft end has a flanged hub attached to it.

Across the face of each flange is planed a single

groove passing through its center. Interposed
between the two flanges is a disk, shown at the

right, having tongues on both faces at right angles
to each other, to engage in the grooves in the

flanges.

Hooke's Coupling or Universal Joint is used for

connecting two shafts whose axes are not in line

with each other, but merely intersect. The shafts

A and B, and B and C, in Fig. 194, are thus con-

nected by universal joints. If the shaft B is made
telescoping, as is very often the case, a solid part
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entering into and being keyed in a sleeve so as

to prevent independent rotation, but yet permit
a sliding action, then the two shafts A and C may
move independently of each other within certain

limits, the distance between their ends being

capable of variation. The arrangement shown in

Fig. 194 is used on various machine tools, notably
on milling machines, flange drilling machines, etc.

Many designs of flexible shafts are really only a

combination of a great number of universal joints.

FIG. 194. Application of Universal Joints and Telescoping

When this coupling is employed for driving only

one shaft at an angle with another, as if shaft

A simply drove shaft B which, of course, is the

fundamental type of universal coupling, then, if

the driving shaft has a uniform motion, the driven

shaft will have a variable motion, and so cannot be

used in such cases where uniformity of motion of

the driven shaft is necessary ; but where there are

three shafts, as shown in the illustration, A will

impart a uniform motion to C provided the axes of

A and C are parallel with each other, as shown ; for

if A, having a regular motion, imparts an irregular
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motion to B, then if B, with its irregular motion,
is made the driver, it will impart a regular motion

to A, and as C is parallel with A it will also impart
a regular motion to C.

This form of coupling does not work very well

if the angle a is more than 45 degrees.

Clutches are of two general classes, toothed

clutches and friction clutches. An example of a

toothed clutch is shown in Fig. 195. In this clutch

the part at the left is fastened to its shaft; the

part at the right is free to slide back and forth upon

FIG. 195. A simple Form of Toothed Clutch.

its shaft, but is prevented from turning on the

shaft by a key. The sliding motion for engaging
or disengaging this part of the clutch is accom-

plished by means of the forked lever and jointed

ring, shown at the right, which latter engages in

the groove A. Such a clutch, while giving a pos-
itive drive, cannot, of course, be thrown in or out

while the driving shaft is running at a high rate

of speed. By having the back faces of the teeth

beveled off as shown by the dotted lines, this diffi-

culty is partly overcome, although the shock caused

by the sudden engaging of the teeth still renders
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the clutch unsuitable for operating at very high

speed. To facilitate uncoupling, the driving faces

may also be given an angle of about 10 or 12

degrees.

Friction Clutches are generally made in one of

the two styles shown in Figs. 196 and 197. The

power which a clutch of the type shown in Fig. 196

will transmit, depends upon the power which is ap-

plied to force the sliding part against the fixed part,

FIG. 196. Friction-Disk Clutc.h.

and the efficiency of the frictional force between

the rubbing surfaces. As to the efficiency of the

clutch, therefore, much depends upon the nature of

the engaging surfaces, whether metal comes in

contact with metal, or whether one of the surfaces

has a facing of leather or wood. The efficiency is,

of course, much increased by either a leather or

wood facing. Professor Smith gives the efficiency

of these different surfaces as follows: Cast iron on

cast iron, 10 to 15 per cent. ; cast iron on leather,
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20 to 30 per cent. ; cast iron on wood, 20 to 50 per

cent.

The horse-power which such a clutch will trans-

mit will be found by multiplying the velocity of the

parts in contact, in feet per minute, taken at their

mean diameter as indicated at D, by the force

which is being applied at this diameter in the

direction of revolution, and dividing this product

by 33, 000. The force which is acting at the diameter

D to produce revolving motion is equal to the pres-

sure which is being applied to force the two parts

of the clutch together, multiplied by the coefficient

of friction (as the frictional efficiency between the

surfaces in contact, as given above, is called) of the

materials which form the driving surfaces.

Example. What power will a clutch of the type
shown in Fig. 196 transmit if running at a speed
of 250 revolutions per minute? The diameter D is

18 inches, and a pressure of 50 pounds is exerted

to force the two clutch faces together. One of

the clutch parts has a leather facing, and the

coefficient of friction is 0.25.

The general formula for finding the horse-power
of a clutch of this type is:

IT p >X3.1416XnXPX/
33,000

in which H.P. = horse-power transmitted,
D = mean diameter of friction sur-

faces in feet,

n = revolutions per minute,
P = pressu/e between clutch surfaces

in pounds,

/ = coefficient of friction.
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The values to be inserted in the formula, which

are given in this problem, are as follows :

D =
]n

= 1.5 foot,

n = 250 revolutions,

P = 50 pounds,

/ = 0.25.

Inserting these values in the formula we have :

1.5 X 3.1416 X 250 X 50 X 0.25 n ,_

"33,000

The formula given may be transposed in various

ways according to the requirements of the problem ;

if, for instance, it is desired to know what pressure

must be applied to transmit a given horse-power,

then:
H.P. X 33,000

D (in feet)" X 3.1416 X n X /.

If the pressure is known, and it is required to

find what diameter the clutch must be made to

transmit a given power, then :

D (in feet)
- -~

3.1416 X n X P X /.

If the pressure and diameter are both known,
then the number of revolutions which the clutch

must make per minute to transmit a given horse-

power will be :

H.P. X 33,000n =
D (in feet) X 3.1416 X P X /.

It may be said that the capacity of the clutch

to transmit power is independent of the area of the
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friction surfaces; for, if the friction surface is

increased the pressure which is applied to force

the two parts of the clutch together is simply dis-

tributed over a much greater area, giving a smaller

pressure per square inch. The durability would be

increased, but the horse-power capacity would re-

main unchanged.
The conical clutch shown in Fig. 197 may be

made to run metal to metal, or the hollow part may

FIG. 197. Friction Cone Clutch.

be made larger to allow of the insertion of wooden
blocks. This would increase the efficiency, but at

the expense of the durability. The principle of

this form of clutch may be explained by referring
to the diagrammatical sketch at the right of Fig.

197, where the angle ACB represents the angle
which the opposite sides of the clutch make with

each other, the line DC representing the axis of

the shaft. If now line bd of the small triangle
abd be considered as representing the magnitude
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of the force acting in the direction of the axis

of the shaft to force the two parts of the clutch

together, then if ab is at right angles to AC, ab

will represent the resultant magnitude of the force

acting on the face of the clutch at right angles to

its surface, according to the principles explained
in the chapter on the elements of mechanics. The

efficiency of the clutch will therefore be as much
greater than that of a flat-faced clutch as ab is

greater than bd. The horse-power of such a

clutch, using the same notation as before, would,

therefore, be:

_ D (in feet) X 3.1416 X n X P Xf v ab^

33,000
K

bd.

But from the chapter on the solution of triangles
we know that

T = sine of angle bad.

Hence
ab 1

bd sin bad.

But angle bad equals angle x, the angle which
the conical surface of the clutch makes with the

axis of the shaft.

Therefore
ab = 1

bd sin x

and our original formula takes the form:

TJ P D On feet) X 3.1416 X n X P Xf'

33,000 X sin x.
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Transposing this formula as before for the flat-

faced clutch, gives us:

H.P. X 33,000 X sin a?
~

D (in feet) X 3.1416 XnXf.

nr - ,, H.P. X 33,000 X sin xD (in feet) - ~ "

n = - = ,____^ srn^
D (in feet) X 3.1416 X Pxf.

The sine of x may be taken from the tables of

trigonometric functions previously given in the

chapter on the solution of triangles, or it may be

found by dividing the length bd (Fig. 197) by the

length ab.

The power necessary to force the two parts of

the clutch together may be neglected, as the slip-

ping which occurs as they are engaging allows

them to come together with but little pressure

beyond what is required for power transmission

purposes. The angle which the face of the clutch

makes with the shaft (the angle x in the diagram
at the right in Fig. 197) should be such that the

clutch does not grip too quickly when thrown into

gear, nor require too much pull to release. Making
this angle between 7 and 12 degrees conforms to

the average given by different authorities.



CHAPTER XVII

SHAFTS, BELTS AND PULLEYS

Shafts. The twisting strength of a shaft, as

stated in the preceding chapter, is given by the

formula

T =
5.1

in which T = twisting moment, or force which

acting at a distance of one inch

from the center of the shaft would

produce in it a torsional shearing
stress of S pounds per square inch,

d = diameter of shaft in inches,

S = torsional shearing stress in pounds

per square inch.

Expressing this formula in words we may say

that the cube of the diameter in inches multiplied

by the torsional shearing stress, and this product

divided by 5.1, gives the force which acting at a

distance of one inch from the center of the shaft

would produce in it the given torsional shearing

stress.

The twisting moment T equals, therefore, the

force Fl9 acting at a distance of one inch from

the center of the shaft, times 1
;

it also equals any
other force F exerting a twisting action on the

272
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shaft multiplied by its distance from the center of

the shaft. The formula given can hence be written

5.1

vn which F = any force acting at a distance r from
the center of the shaft.

Transposing this formula to obtain the distance

from the center (r) at which a given force would
have to act to set up a torsional shearing stress S
in the shaft, we would have:

r " =

KlXF.

The force which would be necessary to set up
a stress S in the shaft when acting at a given
distance would be :

=
5.1 Xr.

The diameter of shaft to resist a given force

acting at a given distance would be:

d --

^F
r X5.1

The torsional shearing strength of ordinary

shafting is about 45,000 pounds to the square inch,

and of steel shafting from about 50,000 to 150,000

pounds, according to its quality; these figures

should be divided by five or six to give a safe

working stress.

The above formulas, however, are based on the

assumption that the force acting is of a purely
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twisting nature, as if a hand-wheel were put onto

the end of the shaft, and the tendency to bend the

shaft, caused by the pull of one hand, were counter-

acted by the push of the other hand. In the case

of a shaft actuated by a rocker arm, as sometimes

occurs in machines, the tendency to bend the shaft

caused by the push on the arm could be provided

for by using a somewhat higher factor of safety.

If the arm were placed at some distance from the

bearing, however, the tendency to bend the shaft

might be greater than the twisting effect.

The methods of calculating the size of shafts for

transmitting a given power, so as to take into

account both the twisting and bending effects pro-

duced by the pull of the belt are quite complicated,

and the beginner will ordinarily find it best to use

some of the empirical formulas for that purpose
which are intended to take into account both of

these effects.

The following rules by Thurston are considered

to afford ample margin for strength for shafts

which are well supported against springing:

To find the diameter of a cold rolled iron shaft to

transmit a given horse-power, multiply the horse-

power to be transmitted by 75, and divide the product

by the number of revolutions per minute that the

shaft is to make. The cube root of this quotient will

be the diameter of the shaft.

If the shaft is to be of turned iron, proceed as

above, except that the horse-power to be trans-

mitted is to be multiplied by 125 instead of 75.

This rule is "for head shafts, supported by bear-
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ings close to each side of the main pulley or gear, so

as to wholly guard against transverse strain.
"

If

the main pulley is at a distance from the bearing,

the size of the shaft will need to be increased,

while for ordinary line shafting, with hangers 8

feet apart, the size may be reduced, figures of 90

for turned iron, and 55 for cold rolled iron shafting

being substituted for those given in the rule ; or, in

the case of shafting for transmission only, without

pulleys, figures of 62.5 for turned iron, and 35 for

cold rolled iron are substituted.

To find the horse-power which a given shaft will

transmit, multiply the cube of its diameter by the

number of revolutions per minute, and divide the

product by 125 for turned iron, or by 75 for cold

rolled iron.

For line shafting substitute the figures given by
90 and 55, respectively.

The horse-power which is being transmitted is

determined by multiplying the pull in pounds
which the belt exerts (or the push which the teeth

of the driving gear exert, if gears are used) by
the diameter of the pulley in inches (or the pitch

diameter of the gear in inches) and multiplying
this product, again, by the number of revolutions

per minute of the shaft; then divide this product

by 126,050, and the quotient gives the horse-power
transmitted.

Expressed as a formula this rule would be:

n P X D X Nn '^'
126,050
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in which P =
pull on belt or push on gear teeth in

pounds,

D = diameter of pulley or pitch diameter

of gear in inches,

N = number of revolutions per minute of

pulley or gear.

Belts. The theoretical horse-power which a belt

will transmit is equal to the pull which the belt

exerts in pounds, multiplied by its velocity in feet

per minute, and this product divided by 33,000.

The question then arises as to what is the allowable

stress to be put upon a belt.

A common rule of practice for ordinary belting

is that for single thickness belts the horse-power
transmitted equals the breadth of the belt in inches,

multiplied by its velocity in feet per minute, this

product being divided by 1,000. This rule assumes

a belt pull of 33 pounds per inch of width. Many
authorities, however, would allow a much higher

tension. The higher the tension, however, the

narrower the belt for a given horse-power, and

the greater the stretch, the more frequent the

necessity for relacing, and the shorter the life of

the belt.

Allowing 33 pounds tension per inch in width for

the thinnest commercial single belt, and allowing

the tensions for increased thicknesses given by a

large belt manufacturing concern, would give the

following formulas for the transmission capacities

of given belts:
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Single belt, A inch thick, H.P. =
Breadth^velocity.

Single belt, J inch thick, H.P. = Breadth X velocity.
800

Light double, # inch thick, H.P. = Breadth X velocity,

733

Heavy double, & inch thick, #.P. = Breadth X velocity.

687

Heavy double, A inch thick, H.P. = Breadth X velocity.

660

Heavy double, | inch thick, H.P. = Breadth X velocity.
550

Heavy double, if inch thick, H.P. = Breadth X velocity.

500

In these formulas the breadth of the belt is

understood to be in inches, and its velocity in feet

per minute, the letters H.P. meaning horse-power.

Transposing the above formulas to ascertain the

breadth of belt required to transmit a given power,
we would have :

Single belt, T\ inch thick, Breadth = H' R x 100

Velocity

Single belt, i inch thick, Breadth =. H- P- x 80

Velocity

Light double, U inch thick, Breadth = H" P' x 73B

Velocity

Heavy double, & inch thick, Breadth - H' P' x 687

Velocity

Heavy double, T\ inch thick, Breadth = H' P' x 66

Velocity

Heavy double, | inch thick, Breadth =-H' P- x 55

Velocity

Heavy double, ifinch thick, Breadth ^ H- P' x 50Q

Velocity
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These formulas are all for laced belts. A belt

made endless by being lapped and cemented or

riveted is considered to be nearly 50 per cent,

stronger than a laced belt, and is thus capable of

transmitting nearly 50 per cent, more power; or

the breadth of an endless belt to transmit a given

power would not need to be more than between

two-thirds to three-quarters of the breadth of a

laced belt. Metal fastenings are not considered to

make as strong a belt as lacings.

If the foregoing formulas had been made on the

basis of an allowable stress of 45 pounds for each

inch in width of a single belt, a figure which many
consider perfectly safe for a belt in good condition,

they would have shown the belts as being capable
of transmitting one-third more power than at 33

pounds stress per inch; to transmit a given power
a belt would then need to be not more than three-

quarters of the width.

It will be seen from these formulas that the

power transmitting capacity of a belt depends upon
its breadth (a wide belt allowing an increased

tension) or on its velocity. Increasing the width

of the belt without increasing the tension to corre-

spond would not give any increase of power trans-

mitting capacity, as the given tension would simply
be distributed over so much more pulley surface ;

but a tight belt means more side strain on shaft

and journal. Therefore, according to Griffin, from

the standpoint of efficiency, use a narrow belt under

low tension at as high a speed as possible. The de-

sired high speed is, of course, secured by simply

putting on large pulleys.
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Speed of Belting. The most economical speed
is somewhere between 4000 and 5000 feet per
minute. Above these values the life of the belt is

shortened ;

' '

flapping,
" ' '

chasing,
' ' and centrifugal

force also cause considerable loss of power at higher

speeds. The limit of speed with cast iron pulleys

is fixed at the safe limit for the bursting of the

rim, which may be taken at one mile surface speed

per minute.

The formulas given for the horse-power trans-

mitted assume that the belt is in contact with just

one-half of the pulley ; or, in other words, that the

arc of contact is 180 degrees. If the arc of contact

is increased, as it might be in the case of a crossed

belt, until it becomes 240 degrees, or two-thirds of

the circumference of the pulley, it is stated that

the adhesion of the belt to the pulley, and conse-

quently the efficiency of the belt, will be increased

50 per cent. If, on the other hand, the arc of con-

tact should be reduced to 120 degrees, or one-third

of the circumference of the pulley, as might be the

case with open belts where the shafts were near

together, and the pulleys were very unequal in

size, the efficiency is stated to be only 60 per cent,

of what the formulas would show ;
if the arc of con-

tact should be reduced to 90 degrees, the efficiency

is stated to be only 30 per cent.

From these percentages one can form a fairly

good idea of what percentage to allow for varying
arcs of contact. In most cases, however, it will

probably be correct enough to assume the arc of

contact to be 180 degrees.
In all cases of open horizontal belting the lower
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run of the belt should be made the working part,

so that the sag of the upper run will increase the

arc of contact.

In the location of shafts that are to be connected

with each other by belts, care should be taken to

secure them at a proper distance from one another.

It is not easy to give a definite rule what this dis-

tance should be. Some authorities give this rule:

Let the distance between the shafts be ten times the

diameter of the smaller pulley ; but while this is

correct for some cases, there are many other cases

in which it is not correct. Circumstances generally
have much to do with the arrangement; and the

engineer or machinist must use his judgment, mak-

ing all things conform, as far as may be, to general

principles. The distance should be such as to allow

a gentle sag to the belt when in motion. The Page
Belting Co. states that if too great a distance is

attempted, the weight of the belt will produce a

very heavy sag, drawing so hard upon the shafts

as to produce considerable friction in the bearings,

while at the same time the belt will have an un-

steady, flapping motion, which will destroy both

the belt and the machinery.
As belts increase in width they should be made

thicker. It is advisable to use double belts on

pulleys 12 inches in diameter and larger. If thin

belts are used at very high speed, or if wide belts

are thin, they almost invariably run in waves on

the slack side, or "travel" from side to side of the

pulleys, especially if the load changes suddenly.

This waving and snapping that occurs as the belts

straighten out, wears the belts very fast, and
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frequently causes the splices to part in a very short

time, all of which is avoided by the employment of

suitable thickness in the belts. The Page Belting
Co. states that driving pulleys on which are to be

run shifting belts should have a perfectly flat sur-

face. All other pulleys should have a convexity in

the proportion of about -fj of an inch to one foot

in width. The pulleys should be a little wider than

the belt required for the work.

Pulley Sizes. The sizes of pulleys to give a re-

quired speed, or the speed which will be obtained

with given pulleys may be readily found from the

fact that the product of the speed of the driving

shaft, in revolutions per minute, and the diameters

of all driving pulleys, on the main and on counter-

shafts, multiplied together, will be equal to the

product of the diameters of all driven pulleys and
the speed of the last driven shaft, in revolutions

per minute, multiplied together; so that if the size

of one driven pulley, for instance, is required, its

size may be found by dividing the product of the

speed of the driving shaft and all driving pulleys

multiplied together, by the product of speed of the

final driven shaft and the diameters of such driven

pulleys as are given, multiplied together. The re-

sult will be the required pulley size.

Example. A shaft making 200 revolutions per
minute has mounted on it a pulley 18 inches in

diameter which belts onto a 6-inch pulley on a
countershaft. The countershaft has mounted on it

a 20-inch pulley which belts to a pulley on the

spindle of a machine which is to make 3000 revolu-

tions per minute. What size pulley will be required
on the spindle.

CAH?

rrv



282. SELF-TAUGHT MECHANICAL DRAWING

Placing the speed of the driving shaft, and the

sizes of all driving pulleys on one side of a vertical

line, for convenience sake, and the sizes of all

driven pulleys and the speed of the last driven

shaft (or spindle) on the other side, and letting x

represent the required size we would have:

Speed of shaft = 200

Pulley on shaft = 18

Driving pulley on

countershaft = 20

6 = Driven pulley on coun-

tershaft.

x = Required size of pulley
on spindle.

3000 = Speed of spindle.
i

Then 200 X 18 X 20 = 6 X x X 3000

= 200J<_18_X_20 _ _721000

6 X~3000 18,000

The diameter of the pulley on the spindle would

therefore have to be 4 inches. If this size had

been given, and the speed of the spindle had been

required, x might have been taken to represent the

required speed, when the same process would have

given the desired information.

Twisted and Unusual Cases of Belting. It

frequently happens that, in transmitting power,
conditions present themselves in which ordinary

straight belting, either open or crossed, will not

serve the purpose, and recourse must be had to

some form of twisted belting, either quarter turn

belting or belting guided by idler pulleys. In the

following are given some of the principal con-

ditions.

Fig. 198 shows a quarter turn belt, by which

power can be transmitted from one shaft to another

at right angles to it. The condition necessary for
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the successful working of this arrangement is that

the middle of the face of the pulley toward which

FIG. 198. Arrangement of

Pulleys for Quarter-Turn
Belt.

FIG. 199. Another Arrange-
ment for Transmitting
Power between Shafts at

Right Angles.

the belt is advancing shall be in line with the edge
of the pulley that the belt is leaving. An exami-
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nation of both the plan and elevation views will

make this clear.

While this is the simplest arrangement for this

purpose, it has several drawbacks. The edgewise
stress on the belt as it is leaving either pulley is

very severe on the belt. It also causes a consider-

able loss of contact with the pulley face, with

corresponding loss of power transmission capacity.

The edgewise stress also makes it necessary, if

durability is to be considered, to have the belt

relatively narrow. Incidentally, also, any reversal

of the motion will cause the belt to immediately
run off the pulleys.

Fig. 199 shows another arrangement for trans-

mitting power from one shaft to another at right

angles to it, which overcomes all of the objections

mentioned to the arrangement shown in Fig. 198,

but at the expense of a double length belt and an

extra pair of pulleys.

As shown in the illustration, A and B are tight

pulleys, and C and D are loose pulleys. The belt,

as it leaves the tight pulley A, passes down under

the loose pulley D, up over the loose pulley C, down
under the tight pulley B, and then up over the

tight pulley A, making a complete circuit. The

loose pulleys, it will be seen, revolve in an opposite

direction to the shafts on which they are mounted.

Fig. 200 shows an arrangement by which, by

employing loose guide pulleys, power may be trans-

mitted from one shaft to another so close to it as

to prohibit direct belting. If the main pulleys are

of the same size, and their shafts are in the same

plane, the guide pulleys may be mounted on a
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single straight shaft at right angles to a plane

passing through the axes of the shafts on which

the main pulleys are mounted. If, however, the

main pulleys are of unequal size, as shown in the

illustration, the guide pulleys will have to be in-

clined to such an angle that the center of the face

FIG. 200. Arrangement of Belt Transmission Using
Loose Guide Pulleys.

of the pulley toward which the belt is advancing
shall be in line with the edge of the pulley that

the belt is leaving, the same as in the case of the

quarter turn belt shown in Fig. 198.

It is not necessary that the shafts on which the

main pulleys are mounted be in the same plane ;

their direction may be such that their relation to
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each other is similar to that of those shown in

Fig. 198, or at any intermediate angle.

Again, if they are in the same plane, it is not

necessary that they should be parallel with each

other; they may be at any angle with each other.

Fig. 201 shows a case which is a modification of

Fig. 200. The main shafts are at right angles to
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each other. The main pulleys, being of the same

size, permit the guide pulleys to be mounted on

a single shaft. This arrangement is a common
method of transmitting power around a corner.

Fig. 202 shows a case where the direction of the

shafts with regard to each other is the same as in

FIG. 202. A Case where the Guide Pulleys would be Mounted
in an Adjustable Frame.

Fig. 198, but where shop conditions are such that

it is not practicable to bring the lower shaft under
the upper one to permit of belting by either of the

methods shown in Figs. 198 or 199. The guide

pulleys are, therefore, mounted on a frame which
can be raised or lowered in guides by means of an

adjusting screw, permitting of an easy adjustment
of the belt tension.
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Fig. 203 shows a case which is similar to Fig.

200 in that it permits the belting together of shafts

which are at angle to each

other, but accomplishes this

result by the use of only one

guide pulley. The shafts,

though at an angle to each

other, are in the same plane.

This, however, is not neces-

sarily so. The shafts may
be twisted around until they
are at right angles to each

other, as in Fig. 198. As
shown in Fig. 200, the belt

may be run in either direc-

tion as long as the shafts are

in the same plane; but as

shown in Fig. 203, it is nec-

essary that the belt should

be run in the direction in-

dicated by the arrows.

An examination of the en-

gravings will show that the

condition necessary for the

proper working of guide

pulleys is that the shaft on

which the guide pulley is mounted shall be at right

angles to a line drawn from the edge of the pulley

that the belt is leaving in its advance toward the

guide pulley, to the middle of the guide pulley

face.

FIG. 203. An Arrange-
ment in Which but One
Guide Pulley is Used.



CHAPTER XVIII

FLY-WHEELS FOR PRESSES, PUNCHES, ETC.

IN a great many different classes of machinery,
the work that the machine performs is of a variable

or intermittent nature, being done, in the case, for

example, of punches and presses, during a small

part of the time required for the driving shaft or

spindle of the machine to make a complete revolu-

tion. If this work could be distributed over the

entire period of the revolution, a comparatively nar-

row belt would be sufficient to drive the machine;
but a very broad and heavy belt would otherwise be

necessary to overcome the resistance, if the belt

only be depended on to do the work. It is, of

course, in a sense, impossible to distribute the work
of the machine over the entire period of revolution

of the driving shaft of the machine, but by placing

a large, heavy-rimmed wheel, a fly-wheel, on the

shaft, the belt is given an opportunity to perform
an almost uniform amount of work during the

whole revolution. During the greater part of the

revolution of the driving shaft the power of the

belt is devoted to accelerating the speed of the fly-

wheel. During that brief period of the revolution

of the shaft when the work of the machine is being

done, the energy thus stored up in the fly-wheel is

given out at the expense of its velocity. The
289
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energy a fly-wheel would give out if brought to a

standstill would be (neglecting the weight of the

arms and hub, as the efficiency of the wheel depends

chiefly on the weight of the rim), expressed in

foot-pounds, equal to the weight of the rim in

pounds multiplied by the square of its velocity at

its mean diameter in feet per second, and this

product divided by 64.32, the same as in the case

of a falling body moving at the same velocity, as

explained in the section on mechanics.

Expressed as a formula this rule is :

= Wv* Wv 2

2g 64.32

in which E = total energy of fly-wheel,

W = weight of fly-wheel rim in pounds,
v = velocity at mean radius of fly-wheel

in feet per second,

g = acceleration due to gravity= 32. 16.

If the speed of the fly-wheel is only reduced, the

energy which it would give out would be equal to

the difference between the energy which it would

give out if brought to a full stop, and that which
it would still have stored up in it at its reduced

velocity. Therefore, to find the energy in foot-

pounds which a fly-wheel will give out with an
allowable loss of speed, subtract the square of the

velocity of the rim in feet per second at its reduced

speed from the square of its velocity in feet per
second at full speed, multiply this difference by
the weight in pounds, and divide the product by
64.32. The result will give the loss of energy in

foot-pounds.
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This long and cumbersome rule is expressed
much more simply by the formula:

ElS=
""64732"

in which El
= energy, in foot-pounds, fly-wheel

gives out while speed is reduced

from Vi to v 2 ,

Vi
= speed before any energy has been

given out, in feet per second,
v2
= speed at end of period during which

energy has been given out, in feet

per second,

W = weight of fly-wheel rim in pounds.

This rule and formula may be transposed as fol-

lows : To find the weight of a fly-wheel to give out

a required amount of energy with an allowable loss

of speed, multiply the required amount of energy
in foot-pounds by 64.32, and divide the product by
the difference between the square of the velocity

of the rim, at its mean diameter, in feet per second

at full speed, and the square of its velocity in feet

per second at its reduced speed ; or, expressed as a

formula, using the same notation as above :

v i

2 v ?

When the mean diameter of the fly-wheel is

known, the velocity of the rim at its mean diameter

in feet per second will be

Diameter in feet X 3.1416 X rev, per minute
~60

It is evident that in designing a fly-wheel for a
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machine, there is an opportunity for a wide range
in the weight, from a wheel heavy enough, when
once it has been brought to its full speed, to do, by
means of the energy stored in it, the work without

assistance from the belt, the belt being only just

wide enough to restore the speed of the wheel in

time for the next operation, to a wheel where the

belt is wide enough to do the most of the work

directly, the stored energy in the fly-wheel merely

assisting it somewhat. Perhaps the best way would
be to have the wheel heavy enough so that its

stored energy could do the bulk of the work, the

belt assisting it, and at the same time have the

latter wide enough to quickly restore the speed of

the wheel, so that, in case its velocity should be

reduced beyond that calculated, there would be a

margin of available power in the belt.

Example. Let it be required to design a fly-

wheel for a press to cut off one-inch round bar

steel, the press making 30 strokes per minute.

Soft steel having a shearing resistance of about

50,000 pounds per square inch, and a one-inch bar

having an area of cross-section of 0.7854 square

inch, the shearing resistance of the bar will be

50,000 X 0.7854 = 39,270 pounds, or practically

40,000 pounds. This resistance varies,, however,

during the process of shearing, being greatest near

the beginning of the cut, and decreasing as the

cutting progresses. In the case of a round bar it

could not decrease uniformly, because of the shape
of the cross-section. For the sake of getting the

decrease in resistance as nearly uniform as possible,

we will assume that the work of cutting off a one-
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inch round bar is the same as the work of cutting
off a square bar of the same area ; though this may
not be quite exact, it would probably not be far

out of the way. The length of the sides of a square
of the same area as a given circle, is equal to the

diameter of the circle multiplied by 0.886. There-

fore, our equivalent square bar will be 0.886 of

an inch square. The mean resistance to cutting,

assuming that the resistance decreases uniformly
as the cutting progresses, would be 40,000 ^ 2 =

20,000 pounds. As the cutting operation continues

through a space of 0.886 of an inch, the power
required would be 20,000 X 0.886 = 17,720 inch-

pounds, or 1476.6 foot-pounds. Let us plan to have
the belt do one-fifth of the work of cutting direct-

ly, leaving four-fifths to be done by the stored up
energy of the fly-wheel. One-fifth of 1476.6 equals
295.3. Subtracting this from 1476.6 leaves 1181.3

foot-pounds to be supplied by the energy of the

fly-wheel. As a preliminary calculation let us find

what would have to be the weight of the wheel if

it were to be placed upon the crank-shaft, the shaft

which operates the plunger of the press. Assuming
the mean diameter of the fly-wheel rim to be 4

feet, the circumference would be 4 X 3.14 = 12.56

feet, and, as the shaft makes 30 revolutions per

minute, the velocity of the rim in feet per second

would be :

12.56 X 30 c 00 ,

gg
= 6.28 feet.

If we expect the fly-wheel to suffer a loss of,

say, 10 per cent, while doing its work, then its

velocity at its reduced speed will be 6.28 - 0.628 =
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5.65 feet. The weight of the fly-wheel to give out

1181. 3 foot-pounds under these conditions will then

be, according to the rule and formula already

given :

1181.3 X 64.32_ 75,981.2 75.981.2 _ 1 n
6.28

2-5.65 2 39.44-31.92
=

7.52

nearly.

A wheel weighing 10, 100 pounds would, of course,

be out of the question ;
but as the energy increases

as the square of the velocity, the weight may be

very rapidly reduced by mounting the wheel upon
a higher-speeded secondary shaft, connected with

the crank-shaft by reducing gears. If the speed
of the secondary shaft is to the speed of the crank-

shaft as 6 to 1, the weight of the wheel, if the

mean diameter be kept the same, will need to be

only about one thirty-sixth of what it would need

to be if mounted on the crank-shaft. At thisjhigher

speed, however, it might be desirable to somewhat
reduce the diameter of the wheel. Let us assume

that the mean diameter be made 3 feet. If the

ratio of speeds is 6 to 1, the wheel will make 180

revolutions per minute, and the velocity of the rim

in feet per second will be :

3 X 3.14 X 180
'

,

To" =28-3 feet.

If the wheel suffers a loss of 10 per cent., its

velocity at its reduced speed will be 28.3 - 2.83 =

25.5 nearly. The weight of the wheel will then

be:
1181.3 X 64.32 75,981.2 KnA ,

28.3
2- 25.5

2
=

15064^
= 5 4 P Unds '
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As a cubic inch of cast iron weighs 0.26 pound,
the wheel will contain

.
504 -5- 0.26 = 1938 cubic

inches. The mean circumference of the rim in

inches will be 3 X 12 X 3.14 = 113 inches. The
cross-section of the rim will then be :

1938 - 113 = 17.1 square inches.

This would mean a rim about 4 by 4J inches.

The outside diameter of the wheel would then be

40 inches.

We planned to have the belt do one-fifth of the

work, and this we found to be 295.3 foot-pounds.
If the crank has a radius of li inch, the cutter will

have a stroke of 2J inches, and if the cutters over-

lap each other one-quarter of an inch at the end of

the stroke, the crank will have to swing through
an angle of about 54 degrees in order to make the

cutters advance the one inch necessary to cut off

the one-inch bar, as a simple lay-out will show.

The belt must then develop 295.3 foot-pounds while

the crank swings through 54 degrees. It will then

develop 295.3 + 54 = 5.5 foot-pounds, nearly, in one

degree, and in a complete revolution it will develop
5.5 X 360 = 1980 foot-pounds. As the press makes
30 strokes per minute, the belt will develop 30 X
1980 = 59,400 foot-pounds per minute. If a driving

pulley 18 inches in diameter is used, the belt speed
in feet per minute will be :

18 X 3.14 X 180
a

,

^ = 848 feet.

If a single thickness belt, one-inch wide, at

1000 feet per minute, transmits 33,000 foot-pounds
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per minute, the same belt at 848 feet per minute
will transmit TWo as much, or 33,000X0.848 =

27,984 foot-pounds. The width of belt necessary
to transmit 59,400 foot-pounds per minute at this

speed will then be 59,400 -*- 27,984 = 2.1 inches.

No account has so far been taken of the power
necessary to drive the machine itself. To allow

for this the belt should evidently be not less than

2i inches wide. A 3-inch belt would allow consid-

erable of a margin of safety, and further calculation

will show that such a belt would develop, during
about one-third of a revolution of the crank, the

amount of energy which the fly-wheel had lost, so

that, as the cutting operation takes about one-sixth

of a revolution, the fly-wheel would be running at

full speed for about one-half of a revolution of the

crank, previous to the beginning of the cut, pro-

vided that it had not suffered any greater reduction

of velocity than the 10 per cent, planned for.

If the press was employed doing punching the

same method of procedure would be employed in

the calculations, the area in shear in such a case

being equal to the circumference of the hole mul-

tiplied by the thickness of the plate. The end of a

punch . is usually made slightly conical or slightly

beveling, the effect in either case being to increase

the shearing action, and make the work of punch-

ing easier.



CHAPTER XIX

TRAINS OF MECHANISM

FOR obtaining high speeds without the use of

unduly large driving pulleys or gears, for securing

gain in power by sacrificing speed, for securing
reversal of direction, or for obtaining some par-

ticular velocity ratio between the driver and some

part of the mechanism, pulleys, gears, worm-gears,
or the like, may be substituted for direct acting

driving-mechanisms.
To Secure Increase of Speed. Let a shaft making

100 revolutions per minute be required to drive the

spindle of a machine at 2000 revolutions per minute,
the pulley on the spindle being 3 inches in diam-

eter. If a direct drive were to be used, the pulley

on the shaft would have to be as many times greater

than the pulley on the spindle as 2000 is greater

than 100, or 20 times.

This would mean a pulley on the shaft 60 inches

in diameter. Practical considerations, such as the

weight of the pulley, size of hangers and the like,

would make such a pulley out of the question.

By interposing an intermediate countershaft be-

tween the first shaft and the spindle of the machine,

however, having pulleys of such size that the

product of the ratio of the pulley on the first shaft

and the one to which it is belted on the counter-

shaft, multiplied by the ratio of the second pulley
297
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on the countershaft and the pulley on the spindle

to which it is belted is equal to the ratio which

it is desired to have between the first shaft and

the spindle, the same speed may be secured by the

use of pulleys of convenient size. Thus, if the

ratio between the pulley on the first shaft and the

one on the countershaft is as 1 to 4, and the ratio

between the driving pulley on the countershaft

and the one on the spindle of the machine is as

1 to 5, the product of these two ratios, 1 to 4 and 1

to 5, is 1 to 20, and the arrangement will give the

FIG. 204. Reversal of Direction Obtained by Crossed Belt.

required speed. The pulley on the spindle being 3

inches in diameter, the driving pulley on the coun-

tershaft will be 15 inches in diameter, and if the

driven pulley on the countershaft is 4 inches in

diameter the pulley on the first shaft to which it is

belted will be 16 inches in diameter, instead of 60

inches, as would be required with direct belting.

If the spindle of the machine, instead of being

driven were made the driver, as it would be if it

were the armature shaft of a motor, then this ar-

rangement would give gain in power with con-

sequent loss of speed.

To Secure Reversal of Direction. In cases where

shafts are belted together, reversal of direction of
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rotation is secured by simply using a crossed belt

instead of an open one, as shown in Fig. 204.

When gears are used, reversal of direction of rota-

tion follows as a natural condition of their meshing
together, as shown in Fig. 205. In order that the

two gears A and B shall rotate in the same direc-

tion, it is necessary to separate them slightly, and

interpose an intermediate gear, or idler, between

FIG. 205. Relative Direc-

tion of Rotation in a

Pair of Gears.

FlG. 206. Influence of Idler

on Direction of Rotation.

them as shown in Fig. 206. The rates of rotation

ofA and B with regard to each other is not affected

by the idler gear, whether the idler be large or

small. That this is so may be seen by direct exam-
ination. If A is the driver, its circumference will

impart to the circumference of C its own rate of

motion, and C will in turn impart to B the same
rate of motion, which is the same as it would have
if in direct connection with A.

If, now, another idler be interposed between A
and B, making four gears in the train, A and B
will again rotate in opposite directions. From this

it will be seen that when a train is composed of an
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even number of gears, the first and last members
rotate in opposite directions ; but when the train is

composed of an odd number of gears, the first and
last members rotate in the same direction.

In Fig. 207 is shown the mechanism used in

engine lathes to secure either direct or reversed

motion, by having the working train consist of

either an even or an odd number of gears. In this

FIG. 207. Principle of Turn- FIG. 208. Principle of Com-
bler Gear. pound Idler.

arrangement A is a gear on the head-stock spindle,

and B is a gear on a stud below. Pivoted on the

axis of B is a triangular piece of metal, or bracket,

shown in dotted lines, which can be swung back

and forth by the handle E. Mounted on this

bracket are the idler gears C and D, C being con-

stantly in mesh with B, and D being in mesh with

C. When it is required that B shall rotate in the

same direction as A, the handle E is lowered until

C meshes with A. The working train then consists
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of three gears, A, C and B, D being out of mesh with

A, revolving by itself, but not forming a part of

the working train. When it is desired that B shall

rotate in the opposite direction to A, the handle E
is raised until D meshes with A, C being thrown
out of mesh with it. The working train then con-

sists of four gears, A, D, C and B, and the desired

reversal is secured.

The Compound Idler. It has been shown that

when a train consists of simple gears the relative

rates of rotation of the first and last members re-

main unchanged, regardless of the number or size

of the idlers that may be interposed. When it is

desired to secure a different rate of rotation be-

tween two members of a train than that which

they would have if meshing directly together, a

compound idler is used, as shown in Fig. 208. Such
a gear is used on many screw cutting lathes. For

cutting threads up to a certain number per inch

the screw cutting train consists of simple gears.
A compound idler may then be introduced into

the train, when without other change additional

threads may be cut. If with screw cutting trains

of simple gears a lathe will cut all whole numbers
of threads up to 13 threads per inch, then, by adding
a compound idler to the train, having its two steps
in the ratio of 2 to 1, threads from 14 to 26 per inch

(except odd numbers) may be cut with the same

gears as previously used for cutting up to 13 threads

per inch. If the compound idler forms an additional

member of the train, the reversal of direction of

rotation which would take place in the motion

of the lead-screw of the lathe may be taken care of
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by the reversing gears between the spindle of the

head-stock and the stud, previously described, and
shown in Fig. 207.

The Screw Cutting Train. In Fig. 209 is shown
the screw cutting mechanism found on engine
lathes. The reversing mechanism shown in Fig.

FIG. 209. FIG. 210.

FIGS. 209 and 210. Arrangement of Lathe Change Gearing.

207 is reproduced entire, and these gears the gear
A on the lathe spindle, the gear B on the stud,

which is connected with A by the idlers C and D
are all permanent gears. These gears are usually
on the inside of the head-stock as shown in Fig.
210. The stud reaches through the head-stock, and
on its outer end is the change gear F, connecting
with the change gear G on the lead-screw of the

lathe by means of the intermediate idler H. The
idler H is mounted on a slotted swinging arm as

shown, so as to allow of gears F and G being
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replaced by others of such size as may be required
to cut the particular screw desired. The carriage of

the lathe, carrying the screw cutting tool, is driven

directly by the lead-screw. On large lathes this

screw is quite coarse, four threads per inch being
common, while on smaller lathes a finer thread is

used. The gearA on the spindle and the fixed gear
B on the stud are sometimes of the same size, and
sometimes of different sizes.

The problem met with in screw cutting is to find

what sizes change gears, F and G, must be used

so that the lead-screw shall drive the carriage along
one inch while the spindle of the lathe is making
a number of revolutions equal to the number of

threads to be cut per inch. Let us take as an

example the assumed case of a lathe in which the

lead-screw has 9 threads per inch, and in which
the number of teeth in the gear on the spindle is

to the number of teeth in the fixed gear on the stud

as 3 to 4; required the size of change gears to cut

23 threads per inch. Then, as the lead-screw has

9 threads per inch, the spindle of the lathe must
make 23 revolutions while the lead-screw is making
9 revolutions. The method used in a previous

chapter for obtaining the size of pulleys to give

required speeds will give us the solution of this

problem; if the speed of the first driving member
of the train, together with the number of teeth or

relative sizes of all other driving members be placed
on one side of a vertical line, and the speed of the

last driven member, together with the number of

teeth or relative sizes of all other driven members
be placed on the other side of the line, the product
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of the numbers on one side of the line multiplied

together will equal the product of the numbers on

the other side of the line multiplied together. The

spindle of the lathe is, of course, the first driving
member of the train, and the lead-screw is the

last driven member. As the spindle is to make 23

revolutions while the lead-screw makes 9 revolu-

tions, 23 will be the first number on the side of the

line on which the driving members are placed, and
9 will be the last number on the side of the line on

which the driven members are placed. Next, as

the ratio between the sizes of the driving gear on

the lathe spindle and the fixed gear on the stud

below which it drives is as 3 to 4, these numbers
will be placed against each other on opposite sides

of the line.

The ratio between the numbers of teeth or sizes

of the two change gears, F and G, whose sizes it

is required to find, being unknown, may be said to

be as 1 to the unknown number x. These numbers,
1 and 05, are now placed on their proper sides of

the line, and the problem appears as shown below.

The size of the idler gearH does not enter into the

question, because, as has been previously shown, a

simple idler gear does not affect the relative rates

of rotation of the gears between which it transmits

motion.

Speed of spindle 23

Ratio of size of spindle gear 3 4 to size of fixed stud gear.

Ratio of number of teeth

in change gear F 1 ! x to number of teeth in

change gear G
9 speed of lead-screw.

69 = ZGx
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Multiplying together the numbers on both sides

of the line gives the equation 69 = 36x. It is evi-

dent that if 69 equals 36x, x must be equal to 69

divided by 36, or f|. The ratio between sizes of

the gear F and the gear G is then as 1 to ||.

Eliminating the fraction by multiplying both terms

of the ratio by 36 gives the ratio as 36 to 69. If,

then, F has 36 teeth, and G has 69 teeth, the lathe

will cut the required number of 23 threads per
inch.

In Fig. 211 is shown how a compound idler gear
is sometimes used in a screw cutting train. The

FIG. 211. Compound Gearing.

change gear G and the idler H have long hubs on

one side. When it is desired to cut finer threads

than what the gears E and G with the idler H will

give, H and G, are put on with the long hubs

toward the lathe, throwing them out of line with

E. The gear E then meshes into the large step of

7, the small step of / meshes into H, and H meshes
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into G. The ratio between the large and the small

steps of / must then be taken into account in the

calculation. For cutting the coarser threadsH and

G are put on with the short hubs toward the lathe,

bringing them into line with E. The idler / is also

turned over, so that its large step is on the outside

and out of line with E and H. It is then swung
back out of the way.
When the gearing is fully compounded the two

gears at / are separate from each other but keyed

together on the same stud and mounted in the

same manner as shown in Fig. 211. By varying
the sizes of these gears, almost any screw thread

may be cut within reasonable limits. In this case,

of course, there are four gears to be determined in

our calculations. Simplified rules are given in the

following for this case, as well as for the regular

simple trains.

Large lathes are provided with change gears for

cutting threads from about 2 to about 20 threads

per inch, smaller lathes being provided with gears
for cutting from about 3 or 4 to 40 or 50 threads per

inch, in either case including a pair of gears for

cutting 11J threads per inch, this being the stand-

ard thread for iron pipes from one to two-inch sizes

inclusive. The smaller lathes would also naturally

be provided with gears for cutting 27 threads per

inch, this being the number of threads on i-inch

iron pipes.

Simplified Rules for Calculating Lathe Change
Gears. The following rules for calculating change

gears for the lathe have been published by Ma-
chinery (Reference Series Book No. 35, Tables
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and Formulas for Shop and Draftingroom) ,
and

are here given because of their concise form and

simplicity.

Rule 1. To find the "screw-cutting constant*' of

a lathe, place equal gears on spindle stud and lead-

screw; then cut a thread on a piece of work in the

lathe. The number of threads cut with equal

gears is called the
"
screw-cutting constant

"
of

that particular lathe.

Rule 2. To find the change gears used in simple

gearing, when the screw-cutting constant as found

by Rule 1, and the number of threads per inch to

be cut are given, place the screw-cutting constant

of the lathe as numerator and the number of threads

per inch to be cut as denominator in a fraction, and

multiply numerator and denominator by the same
number until a new fraction is obtained represent-

ing suitable numbers of teeth for the change gears.

In the new fraction, the numerator represents the

number of teeth in the gear on the spindle stud,

and the denominator, the number of teeth in the

gear on the lead-screw.

Rule 3. To find the change gears used in com-

pound gearing, place the screw-cutting constant as

found from Rule 1 as numerator, and the number
of threads per inch to be cut as denominator in a

fraction ; divide up both numerator and denomi-

nator in two factors each, and multiply each pair

of factors (one factor in the numerator and one in

the denominator making a pair) by the same num-

ber, until new fractions are obtained, representing
suitable numbers of teeth for the change gears.

The gears represented by the numbers in the new
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numerators are driving gears, and those in the

denominators driven gears.

Two examples, showing the application of these

rules, will be given in the following.

Example 1. Assume that 20 threads per inch are

to be cut in a lathe having a "screw-cutting con-

stant," as found by the method explained in Rule

1, equal to 8. The numbers of teeth in the avail-

able change gears for this lathe are 28, 32, 36, 40,

44, etc., increasing by 4 up to 96.

By applying Rule 2, we have then :

S_ _8_X_4 =
32

20
==

20 X 4 80

By multiplying both numerator and denominator

by 4 we obtain two available gears having 32 and

80 teeth. The 32-tooth gear goes on the spindle

stud and the 80-tooth gear on the lead-screw. It

will be seen that if we had multiplied by 3 or by 5

instead of by 4, we would not have obtained avail-

able gears in both numerator and denominator, as

8X3 would have given 24 and 20 X 5 would have

given 100, both of which gears are not in our given
set of gears. The proper number by which to

multiply can be found by trial only.

Example 2. Assume that 27 threads per inch are

to be cut on the same lathe as assumed in Example 1.

In this case the calculation must be made for

compound gearing, as so fine a pitch could not be

cut by simple gearing in this lathe. By applying
Rule 3 we have :

_8_ _2_>^4 (2 X 20) X (4 X 8) =
40 X 32

27
: =

3 X 9 "(3~X 20) X (9 X 8)

=

60 X 72
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The four numbers in the last fraction give the

numbers of teeth in the required gears. The gears
in the numerator (40 and 32) are the driving gears,

and those in the denominator (60 and 72) are the

driven gears.

It makes no difference which one of the driving

gears is placed on the spindle stud or which one of

the driven gears is placed on the lead-screw.

Back-Gears. Nearly all engine lathes and many
other machine tools are provided with a set of re-

c =

FIG. 212. Principle of Back-Gearing.

ducing gears, called back-gears, by means of which
double the range of speeds that can be obtained by
direct driving may be given to the spindle of the

machine. Fig. 212 illustrates such a set of gears,

and the method of applying them to the machine.

The large gear A is fastened to the spindle of the

machine, but the cone pulley, with the gear B
attached to it, is loose on the spindle. The back-
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gear shaft with gears C and D is mounted in

brackets on the back side of the head-stock, and
is provided with eccentric bearings, by means of

which the gears on it can be thrown into or out of

mesh with the gears on the head-stock spindle.

When direct driving is desired, the back-gears are

thrown back, out of the way, and the cone pulley
and the large gear are clamped together by means
of a screw pin or stud passing through the gear
into the cone. They then revolve together as one

piece.

Let us assume the case of a lathe having a cone

with four steps, the largest step being 6 inches in

diameter, and the smallest 4 inches in diameter,
with the intermediate steps in proper proportion.
If the cone pulley on the countershaft is of the

same size as the one on the spindle, then, if the

countershaft runs 300 revolutions per minute, direct

driving will give about the following speeds to the

spindle: 450, 345, 260 and 200. Let it now be

required to find the sizes of gears to be used so

that with the back-gear driving, a proportionately
slower rate of speeds may be obtained. We may
solve the problem by giving to the gears some

arbitrary sizes, and finding what speeds such sizes

will give, and then modify these sizes until the

required speeds are obtained. For trial purposes
let us make the pitch diameter of the gear A the

same as the diameter of the large step of the cone

pulley, or 6 inches, and the pitch diameter of the

gear B the same as the diameter of the small step
of the cone pulley, or 4 inches. Arranging driving
and driven members on opposite sides of a vertical
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line, the speed of the first driving member of the

train, the countershaft, being 300, the required

speed of the last member, the lathe spindle, being

represented by x, and having the belt on the largest

step of the countershaft cone so as to obtain the

highest speed with back-gears, gives an arrange-
ment of the case as below. The sizes of the back-

gears are the same as those on the lathe spindle,

the gear C being 6 inches in pitch diameter, and
the gear D 4 inches in pitch diameter.

Speed of countershaft 300

Pulley on countershaft 6

Gear B on lathe 4

Back-gear D 4

4 Pulley on lathe

6 Back-gear C
6 GearA on lathe

x Speed of spindle

28,800= 144s

From this it is seen that with the sizes of the

gears as above, the highest speed with back-gears
would be the same as the lowest speed without

the back-gears. This, of course, would be useless

duplication of speeds.

For another trial we. will make the sizes of the

gears B and D each 3J inches in pitch diameter.

The calculation then becomes:

Speed of countershaft 300

Pulley on countershaft 6

Gear B on lathe 3.5

Back-gear D 3,5

4 Pulley on lathe

6 Back-gear C
6 Gear A on lathe

x Speed of spindle

) nearly.
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A speed of 153 revolutions per minute for the

fastest back-gear speed follows quite regularly the

series of speeds which the direct drive gives.

Instead of using the pitch diameters of the gears
in making the calculations the number of teeth

which the gears would have, the pitch being first

decided on, might be used. In this manner it is

possible to make slight changes in the diameters of

the gears without bringing troublesome fractions

into the calculations.

Many lathes and other machine tools have trains

of mechanism much more complicated than any
here shown, but the method of procedure here

outlined can be applied to all of them.



CHAPTER XX

QUICK RETURN MOTIONS

IN a large class of machinery the work is done

during the forward motion of a reciprocating part;

the return of the part to its starting point is then

a question of time. The quicker the part can be

returned to its starting point, the more efficient

becomes the machine. When the stroke is long, as

in the case of the bed of an iron planer for large

work, this rapid return motion is usually obtained

by means of shifting the driving belt onto a return

pulley so arranged that a higher ratio of speed is

procured; but in other cases, where the recipro-

cating motion is shorter, and the stroke is actuated

by means of a crank, the actuating mechanism is

made such that the crank gives a slow forward

and a quick return motion to the reciprocating

part. Iron planers for small work, shapers, and
the like, and some classes of engines and pumps,
use such quick return motions. Below are described

the principal devices used for such purposes.

Fig. 213 shows a method of securing a quick
return by having the axis of the crank outside of

the path of the reciprocating end of the connecting-
rod. Let A be a crank, the crank-pin of which, a,

acting upon the connecting-rod B represented by
the heavy line, causes the block b to move back and

313
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forth in the path CD. When the crank is in the

position shown the block is at the extreme left of

its stroke, the connecting-rod and crank being in

the same straight line, the center line of the con-

necting-rod coinciding with the axis of the crank.

As the crank swings downward, the block b is

driven to the right; but an examination . of the

illustration will show that the crank must make

FIG. 213. Simple Quick Return Motion.

more than a half revolution before it again forms

a straight line with the connecting-rod, which it

will do when the block has reached its extreme

position to the right. As, therefore, the block

makes its movement to the right while the crank

is swinging through the lower angle included be-

tween these two positions, and as it makes its

return stroke while the crank is swinging through
the upper angle included between these same two

positions, the time of the forward stroke of the

block -will be to the time of its return stroke as

the lower angle is to the upper angle.
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The upper angle being the smaller of the two,
the block has a quick return motion. To secure

ease of motion to the block as it starts on its stroke

to the right, the angle abC, the angle which the

connecting-rod makes with the path of the block,

should not be more than about 45 degrees.
To design a quick return motion of this type, lay

out a horizontal line ab, Fig. 214, and on it mark
off cb equal to the required length of stroke. From
c draw the line cd of indefinite length at such an

fl b

FIG. 214. Lay-out of Quick Return Motion in Fig. 213.

obliquity that the angle acd shall not be more than

45 degrees. From b draw the line be at the angle

required to give the desired quick return. The
intersection of these two lines at /will be the axis

of the crank. The length bf will be seen by re-

ferring back to Fig. 213 to be equal to the length
of the crank plus the length of the connecting-rod.

The length of cf will be seen to be equal to the

length of the connecting-rod minus the length of

the crank. If in a given case the length cb is

made 12 inches, and cf is found to be 10 and bf 21

inches, which they would be if the angles were as
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shown in Fig. 214, then, letting x represent the

length of the connecting-rod and y the length of

the crank, we would have x + y = 21 inches, and
x - y = 10 inches. Adding the left-hand and the

right-hand members, respectively, of these two

equations, we would have x + y + x-y = 21 + 10
= 31 inches. As + y

- y= we may eliminate

these expressions, and the equation will read 2x =

31 inches, and x, the length of the connecting-rod,

will thus be 15J inches. The length of the crank

will then be 21 inches (the length of bf) minus 15J

inches, or 5J inches.

It will be seen that if the length of the stroke is

made variable by having the crank-pin, a, adjust-

able to different positions on the crank A, Fig. 213,

the difference between the time of the forward

and of the return stroke of the sliding block b will

be lessened, because the two positions which it

will occupy at. the extremes of its stroke will be

nearer together, and the lower and upper angles
which the crank passes through in giving to the

block its forward and return movements will be

more nearly equal.

Fig. 215 shows a quick return motion device

especially adapted to cases where the horizontal

space is limited, and which is much used on shapers.

The illustration shows a shaper in outline. The
ram of the shaper is given its forward and return

motion by means of the rocking arm A, which

swings on a fulcrum at B. The rocking arm is

given its motion by means of a crank-pin on the

disk C, the pin engaging in a sliding block which

travels in a slot in the arm A.
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Let BC and BD, Fig. 216, represent the extreme

positions of the rocker arm A. Draw the lines OF
and OG from the center of the crank disk at O at

right angles to BC and BD. It is evident that in

order that the crank, on its upper sweep, shall

FIG. 215. Diagram of Quick Return Arrangement
in a Shaper.

move the rocker arm from C to Z), it must move

through the arc FAG, while to return the arm
from D to C, on its lower sweep, it must move only

through the lower arc FG. The time of the return

motion will therefore be to the time of the forward

motion as the lower arc or angle FG is to the arc
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or angle FAG. If the crank is shortened so as to

give a shorter stroke to- the ram of the shaper,
then the rocker arm will swing through a smaller

angle, as from H to /, and lines drawn from at

FIG. 216. Diagram of Speed Ratios in Shaper Motion.

right angles to HB and IB will be more nearly in a

straight line than OF and OG. There will, there-

fore, be less difference between the time of forward

and return motions on short strokes than on long
ones.
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The Whitworth Quick Return Device. Let A,
Fig. 217, be a slotted arm revolving on its axis at

B. Above A is the driving crank C, having a pin

engaging in the slot at the left in the arm A. The
slot at the right in the arm A is provided for an

adjustable stud which drives the reciprocating

parts, through the medium of the connecting-rod

_D

FIG. 217.-Whitworth Quick Return Motion.

D. It will be seen that, as shown, the connecting-
rod is at the extreme right of its motion, forming
as it does a straight line with the revolving arm
A, which latter is at the same time at right angles
with the center line cd. It will be seen that in

order that the arm A may move through half a

revolution so as to bring the connecting-rod to the

extreme left of its motion, it will be necessary for

the actuating crank C to revolve either through the
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upper angle x or through the lower angle y, so as

to form again the same angle with the center line

cd, but at the right of it, as it is now shown form-

ing with it at the left. The forward and return

motions will, therefore, be to each other as the

angle x is to the angle y. To design a quick return

motion of this type it is, therefore, necessary to

first lay out the angles x and y of such relative

sizes that x is as many times greater than y as the

time of the forward motion is to be greater than

the time of the return motion, having them, of

course, central on the line cd. The distance apart
of the fulcrums of the crank C and of the revolving
arm A will be partly determined by the sizes of

their shafts. The location of the crank-pin, de-

termining the length of the crank, will then be at

the intersection of the horizontal center line of the

revolving arm A with the dividing line ef between
the angles x and y. The length of the crank must,
of course, be sufficient so that the crank pin will

swing under the hub of the arm A, and the length
of the crank-pin slot in A must be. sufficient for

the motion of the pin relative to the arm.

It will be noticed that, unlike the two preceding

quick return devices, varying the stroke of the

reciprocating parts does not alter the relative time

of the forward and return motions ; for such change
does not affect the angles x and y upon which the

time of the forward and return motions depends.

If, however, the length of the crank C is varied,

then the angles x and y are altered, and the time

of the forward and return motions will be affected.

It will be seen upon examination that with the
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construction shown the revolving arm A must be

made in two parts, one at each end of its shaft, in

order to avoid interference of the parts of the

mechanism with one another as they revolve. This

trouble is overcome by replacing the crank C with

a crank disk which fits over and revolves upon a

fixed stud or hub large enough to receive the stud

at B upon which the arm A revolves.

The Elliptic Gear Quick Return. If two ellipses

of equal size, Fig. 218, having foci at w and x and

FIG. 218. Quick Return Motion by Means of Elliptic Gears.

at y and z, be placed in contact with each other

with their long diameters forming a continuous

straight line as shown; then if the ellipses are

caused to, revolve freely upon their correspond-

ing foci, w and y, they will roll upon each other

perfectly, without slipping. From the nature

of an ellipse as shown by its construction with a

thread and pencil (see Chapter III, Problem 13) it

will be seen that if the ellipse at the left were

being formed in this manner and the pencil were

at D, the intersection of the circumference of the
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ellipse with the long diameter, the length of the

thread would be equal to the sum of the distances

wD and Dx. But the distance Dx is the same as

the distance Dy\ therefore, the length of the thread

would be equal to the distance wy, the distance

between the foci upon which the ellipses are re-

volving. If, now, the ellipses are revolved until

the points A and B, vertically over the foci x and

y, are in contact with each other, the sum of the

distances wA and By will be equal to the distance

between the foci w and y, for their sum is equal to

the length of the thread, and the length of the

thread is equal to wA plus Ax, and Ax is equal to

By, as points A and B are both vertically over the

foci of the ellipses. In a similar manner any pair

of points may be selected on the two ellipses equally

distant from the point D. The distance from the

point on the ellipse at the left, to the focus w, will

be equal to the length of the thread at the left of

the pencil, and the distance from the point on the

ellipse at the right, to the focus y, will be equal to

the length of the thread at the right of the pencil,

and their sum will be equal to the distance between

the foci w and y. This distance between the foci

w and y will be seen on further examination to be

equal to the long axis of the ellipse. This property
of the ellipse has been taken advantage of to secure

a quick return motion to a reciprocating part of a

machine. If in Fig. 218 the two ellipses represent

the pitch lines of elliptic gears; with the gear at

the left as the driver with a uniform motion, the

one at the right will have an ununiform motion.

If, now, a crank is mounted on the same shaft as
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the driven elliptic gear, the crank having its center

line at right angles to the long axis of the ellipse,

and this crank actuates a sliding block back and
forth in the direction of the center line of the two

gears, then this block will have a slow motion in

one direction, and a quick motion in the other

direction. If, now, the gears are revolved from the

position in which they are shown until A and B
are in contact, the gear at the right will have made
a quarter of a revolution and the sliding block will

be at the extreme right of its stroke; but while

this gear has made a quarter of a revolution, the

driving gear has revolved through the angle AwD
only. If, now, the gear at the right is revolved

another quarter of a turn, the points E and F will

be in contact, and the crank will be directed ver-

tically upward. The driving gear will, however,
have revolved through the angle AwF. The forward

and return motions of the sliding block will, there-

fore, be to each other as the angle AwF is to the

angle AwD. In designing a pair of elliptic gears,

therefore, the first thing to do is to determine the

size of the angle Awx. To find the distance be-

tween the foci w and x first lay out on a large scale

a triangle similar to the triangle Awx. Then the

sum of its hypothenuse and the perpendicular will

be to the length of its base as the sum of wA and
Ax (the long axis of the ellipse) is to wx, the dis-

tance between the foci of the ellipse. The length

of the short axis may then be found by reversing
Problem 13, Chapter III. The problem may be

solved even more accurately by the rules given for

the solution of right-angled triangles. The length
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of wA will be to Ax as 1 is to the sine of the angle
Awx. Dividing the long axis of the ellipse into

two parts in this proportion gives the length ofwA
and Ax. The length of wx will then be equal to

the length of Aw multiplied by the cosine of the

angle Awx. Then to find the short axis of the

ellipse, divide the distance wx into two equal parts

and construct the triangle wgh. The length wh
will be half of the distance between the foci, and
the length of wg will be half of the long axis. The

length gh, half of the short axis, may then be found.

Calculations made in this manner give the follow-

ing proportions to ellipses for quick return ratios

as indicated in the first column :

There appear to be two difficulties with elliptic

gearing. The first is that if a high quick return

ratio is attempted, so as to make considerable dif-

ference between the long and the short axes, the

obliquity of the action of the teeth upon each

other, and the consequent great amount of friction

between the teeth as they come together, becomes

so great as to be troublesome. This may, to a con-

siderable extent at least, be overcome by using a

train of gears, each gear but slightly elliptic, in

place of one pair of decidedly elliptic form. Thus
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a train of three gears having their long and short

axes in the proportion required to give a quick
return of 3 to 1, with one pair of gears, will give
a quick return of 9 to 1. If three gears of the 4 to

1 proportion are usad, a quick return of 16 to 1

will result.

The second difficulty is that of correctly cutting

the teeth. To work properly, the teeth should be

cut on a machine having a special elliptic gear

cutting attachment, otherwise the gears are likely

to be expensive and unsatisfactory. Such an ellip-

tical gear cutting arrangement is described, and

the subject of elliptic gearing is quite fully dis-

cussed, in Grant's treatise on gearing. Not being
within the territory of this elementary treatise on

machine design, the subject cannot here be dealt

with in detail.
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Accelerated motion cams, 176
Acceleration of falling bodies,

143
Acme standard screw thread,

253
Addendum of gear teeth, 193

Aluminum, strength of, 162

Angle, definition of, 10

Angle of cone clutches, 271

Angle, to bisect an, 17

Angles, laying out, 118
Areas of plane figures, 92
A. S. M. E. standard machine

screws, 258

Assembly drawings, 52

B

Back gears, 309

Beams, cross-sections of, 156

Beams, strength of, 159
Belt for reversal of motion,

crossed, 298

Belting, horse-power of, 277

Belting, speed of, 279

Belting, twisted and unusual
cases of, 282

Belts, 276

Belts, endless, 278

Belts, laced, 278

Belts, width and thickness of,
277

Bending, shape of parts to

resist, 155

Bending strength of beams,
159

Bevel gearing, calculating,
230

Bevel gears, 202
Blue printing, 78
Bolt heads, table of United

States standard, 246

Bolts, studs and screws, 243
Bolts to withstand shock,
248

Brass, strength of cast, 162
Brass wire, strength of, 158
Broken drawings of long ob-

jects, 73

Cam curve for harmonic mo-
tion, 181

Cams, comparison between
uniform motion and accele-

rated motion, 183
Cams for high velocities, 175

Cams, general principles, 164
Cams with grooved edge, 172
Cams with pivoted follower,

167
Cams with positive return,

double, 173
Cams with reciprocating mo-

tion, 171

Cams with roller follower,
168

Cams with straight follower,
165

Cams with uniform motion,
165

Cams with uniformly accele-

rated motion, 176

Cap screw sizes, 248

327
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Case for drawing instru-

ments, 4
Cast iron, strength of, 157

Castings, stresses in, 162

Change gears, for screw cut-

ting, 302
Check or lock nuts, 248
Chord of circle, definition of,

12

Circle, area and circumfer-
ence of, 92

Circle, area of, 83

Circle, circumference of, 80

Circle, definition of, 11

Circle, to find center of a,
19

Circles, circumscribed and in-

scribed, 20

Circles, concentric, 10
Circles in isometric projec-

tion, 48
Circular pitch, 205
Circular sector, area of, 93
Circular segment, area of, 93

Clamp coupling, 262

Clutches, friction cone, 269

Clutches, friction disk, 266

Clutches, toothed, 265

Compasses, 3

Complement angle, definition

of, 11

Composition of forces, 120

Compound idler gear, 301

Compound gearing for screw
cutting, 305

Compression of machine
parts, 154

Compressive strength of ma-
terials, 158

Concentric circles, 10

Cone and cylinder intersect-

ing, 44
Cone clutches, angle of, 271
Cone clutches, friction, 269
Cone pulleys, 239
Cone pulleys, method of lay-

ing out, 242

Cone, surface development
of a, 40

Copper, strength of cast, 162
Cosecant of an angle, 102
Cosine of an angle, 101

Cosines, table of, 105

Cotangent of an angle, 102

Cotangents, table of, 107

Coupling, Hooke's, 263

Couplings, 259

Couplings, clamp, 262

Couplings, flange, 260
Crank motion, quick return,
313

Cross-sectioning device, 7
Cross-sections of beams, 156

Cube, projections of a, 39
Cube root, 82

Cube, volume of, 94

Cutting screw threads, gear-
ing for, 302

Cylinder and cone, intersect-

ing, 44

Cylinder, volume of, 94

Cylinders, intersecting, 43

Cycloid, definition of, 15

Cycloid, to draw a, 27

Cycloidal gear teeth, approx-
imate shape of, 209

D

Dedendum of gear teeth, 193
Definitions of terms, 10

Degree, definition of, 96
Detail drawings, 53
Diametral pitch, 207
Differential pulleys, 134
Disk clutches, friction, 266
Dimensions on drawings, 56
Double cams with positive

return, 173

Drawings, assembly, 52

Drawing board, 1

Drawings, classes of lines on,
55

Drawings, detail, 53

Drawings, dimensions on, 56

Drawing instruments, 1

Drawing paper, 8
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Drawing pens, the use of, 7

Drawings, sectional views on,
66

Drawings, working, 50

E

Efficiency of screws, 253

Elevation, definition of, 33

Ellipse, area of, 95

Ellipse, definition of, 14

Ellipse, to draw an, 21

Elliptic gear quick return

motion, 321

Elliptic gear return motion,
table for lay-out of, 324

Energy and work, 146

Energy of fly-wheel, 290

Engines, horse-power of

steam, 81

Epicycloid, definition of, 15

Epicycloidal gearing, 191

Epicycloidal and involute

systems of gears, compari-
son between, 199

Erasing shield, 9

Factor of safety, 151

Falling bodies, 142

Finishing marks on drawings,
63

Flange couplings, 260

Foot-pound, definition of, 146
Force of a blow, 147

Forces, oblique, 124

Forces, opposing, 125

Forces, parallel, 123

Forces, resultant of, 120

Forces, resolution of, 123

Formulas, algebraic, 79

Formulas, transposition of, 88
Friction cone clutch, horse-

power of, 270
Friction cone clutches, 269
Friction disk clutch, horse-

power of, 267

Friction disk clutches, 266

Fulcrum, definition of, 126

Fly-wheel, energy of, 290

Fly-wheels for presses,
punches, etc., 289

Fly-wheel, weight of, 291

Gear, compound idler, 301

Gear, influence of the idler,
299

Gear quick return motion,
elliptic, 321

Gear teeth, approximate
shape of, 209

Gear teeth, laying out invo-

lute, 210
Gear teeth, Lewis' formula

for strength of, 218
Gear teeth, pitch of, 205
Gear teeth, proportions of,
207

Gear teeth, strength of, 213
Gear teeth systems, compari-
son between, 199

Gear tooth, hunting, 209
Gear tooth terms, definitions

of, 193

Gear, tumbler, 300

Gearing, back, 309

Gearing, calculating bevel,
230

Gearing, calculating dimen-
sions of, 222

Gearing, calculating spur,
222

Gearing, calculating worm,
234

Gearing, epicycloidal, 191

Gearing for reversal of direc-

tion of motion, 299

Gearing for screw cutting,
302

Gearing, general principles
of, 190

Gearing, worm, 204

Gears, bevel, 202
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Gears, interference in in-

volute, 198

Gears, involute, 196

Gears, knuckle, 190

Gears, method of drawing, 68

Gears, proportions of, 213

Gears, shrouded, 201

Gears, speed ratio of, 220

Gears, twenty degree invo-

lute, 201
Gears with radial flanks, 195

Gears with strengthened
flanks, 195

Geometrical problems, 17
Grooved edge cams, 172
Guide pulleys for belts, 285

Instrument case, 4
Involute and epicycloidal sys-
tems of gears, comparison
between, 199

Involute, definition of, 15
Involute gears, 196
Involute gears, interference

. in, 198
Involute gear teeth, laying

out, 210
Involute gears, twenty de-

gree, 201
Involute rack teeth, modified
form of, 197

Involute, to draw an, 27
Iron wire, strength of, 158
Isometric projection, 48

Harmonic motion cam curve,
181

Helix, to draw a, 47

Heptagon, area of, 94

Hexagon, area of, 94

Hexagon, definition of, 14

Hexagon, to draw a, 19

Hoisting pulleys, 132
Hooke's coupling or universal

joint, 263

Horse-power, 149

Horse-power of belting, 277

Horse-power of friction cone

clutch, 270

Horse-power of friction disk

clutch, 267

Horse-power of shafting, 274

Horse-power of steam en-

gines, 81

Hunting tooth, 209

Hypocycloid, definition of, 15

Hypotenuse, definition of, 98

I

Idler gear, compound, 300
Idler gear, influence of the,
299

Inclined .plane, 136

K

Kirkaldy's tests on strength
of materials, 157

Knuckle gears, 190

Lathe back gearing, 309
Lathe change gears, 302
Lathe change gears, simpli-

fied rules for calculating,
306

Levers, 125

Levers, compound, 128
Lewis' formula for strength
of gear teeth, 218

Line, definition of, 10

Line, to bisect a, 17
Lines on drawings, classes of,

55
Lock or check nuts, 248

M
Machine parts, shape of, 154

Machine screws, 257
Machine steel, strength of,

158
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Mechanics, elements of, 120

Materials, indicating, 72

Mechanism, trains of, 297
Metric screw thread, form

of, 256

Minute, definition of, 97

Moment, twisting or torsion-

al, 272

Motion, Newton's laws of,
139

N
Newton's laws of motion, 139

Nuts, check or lock, 248

Nuts, table of United States

standard, 246

Oblique-angled triangles, 114

Octagon, area of, 94

Octagon, definition of, 14

Octagon, to draw an, 20
Oldham's coupling, 263

Oscillation, center of, 141

Paper, drawing, 8
Parallel forces, 123

Parabola, definition of, 15

Parabola, to draw a, 28

Parallelogram, area of, 92

Parallelogram, definition of,
14

Parallelogram of forces, 121
Parallel lines, 10
Parenthesis in formulas, 85

Pencils, 4

Pendulum, 141

Pens, the use of drawing, 7

Pentagon, area of, 93

Pentagon, definition of, 14

Pentagon, to draw a, 26

Perpendicular lines, 10

Perpendicular lines, to draw,
18

Pitch, circular, 205
Pitch diameters, table of, 206

Pitch, diametral, 207

Plane, definition of, 10

Plane, inclined, 136

Point, definition of, 10

Polygons, definition of, 14
Positive return cams, 173
Power transmission, screws

for, 252

Presses, fly-wheels for, 289
Prism, projections of a, 34

Prism, volume of, 94

Projection, 32

Projection, isometric, 48

Pulley diameters, 281

Pulley diameters, to calcu-

late, 297

Pulleys, cone, 239

Pulleys, differential, 134

Pulleys, guide, 285

Pulleys, hoisting, 132

Punches, fly-wheels for, 289

Pyramid, surface develop-
ment of a, 41

Pyramid, volume of, 94

Q

Quarter-turn belting, 283

Quick return device, Whit-
worth, 319

Quick return motions, 313

R

Rack teeth, modified form of

involute, 197
Rack with epicycloidal teeth,

194

Reciprocating motion cams,
171

Resolution of forces, 123
Resultant of forces, 120
Return device, Whitworth

quick, 319
Return motion, elliptic gear

quick, 321
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Return motions, quick, 313
Reversal of direction of mo-

tion, to secure, 298

Right-angled triangles, 97

Safety, factor of, 151

Scales, 2
Screw cutting, gearing for,
302

Screw, differential, 138

Screw, in mechanics, 138
Screw thread, Acme stand-

ard, 253
Screw thread, form of met-

ric, 256
Screw thread, sharp V, 254
Screw thread, Whitworth,
255

Screw threads, drawing, 74
Screw threads, table of
United States standard, 246

Screw threads, United States

standard, 245
Screw threads, wrench action

on, 249

Screws, bolts and studs, 243

Screws, dimensioning, 62
Screws, efficiency of, 253
Screws for power transmis-

sion, 252

Screws, machine, 257

Screws, set, 256

Screws, square threaded, 251
Secant of an angle, 102

Second, definition of, 97
Sections on drawings, 66

Set-screws, 256
Shade lines, 77

Shafting, horse-power of, 274

Shafts, 272
Shafts at right angles, belt-

ing between, 283

Shafts, Thurston's rule for

strength of, 220

Shapers, quick return mo-
tion for, 316

Sharp V-thread, 254

Shearing strength of mate-
rials, 240

Shearing strength of shaft-

ing, torsional, 273

Shears, fly-wheels for power,
289

Shrouded gears, 201
Sine of an angle, 101

Sines, table of, 104

Solid, definition of, 10

Speed of belting, 279

Speed ratio of gears, 220

Speed ratio of sprocket
wheels, 189

Speed, to secure increase of,
297

Sphere, area and volume of,
94

Spherical sector, volume of,
94

Spherical segment, volume
of, 95

Spiral, to draw a, 26

Sprocket wheels, 185

Sprocket wheels, graphical
method of laying out, 187

Sprocket wheels, speed ratio

of, 189

Spur gearing, calculating,
222

Spur gears, method of draw-
mg, 68

Square root, 82

Square threaded screws, 251
Steel castings, strength of,
157

Steel, strength of machine,
158

Steel, strength of structural,
162

Steel wire, strength of, 158

Stepped cone pulleys, 239

Strength of gear teeth, 213

Strength of gear teeth,
Lewis' formula for, 218

Strength of materials, 151

Strength of: materials, Kirk-

aldy's tests on, 157
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Strength of materials, shear-

ing, 260

Strength of shafting, tor-

sional shearing, 273

Strength of shafts, twisting,
272

Stresses in castings, 162

Studs, screws and bolts, 243

Supplement angle, definition

of, 11

Surface, definition of, 10

Tangent, definition of, 13

Tangent of an angle, 101

Tangent to a circle, to draw
a, 19

Tangents, table of, 106
Tensile strength of materials,

158
Tension in belts, 276

Tension, machine parts sub-

jected to, 154
Thickness of belts, 277

Thread, Acme standard
screw, 253

Thread cutting, gearing for,
302

Thread, form of metric screw,
256

Thread, sharp V, 254

Thread, Whitworth screw,
255

Thread, drawing screw, 74

Threads, screws with square,
251

Threads, United States
Standard screw, 245

Thurston's rule for strength
of shafts, 220

Toothed clutches, 265
Torsional strength of shafts,
272

Trains of mechanism, 297

Transposition of formulas, 88
Triangle, area of, 91

Triangles, solution of, 96

Trigonometry, elements of,
96

Tumbler gear, 300

Twisting strength of shafts,
272

U
Uniform motion cams, 165

Uniformly accelerated mo-
tion cams, 176

United States standard screw
thread, 245

Universal joint, 263

V-Thread, sharp, 254
Vertex of angle, definition

of, 10
Views on working drawings,
number of, 50

Volume of solids, 94

w
Weight of fly-wheel, 291
Whitworth quick return de-

vice, 319
Whitworth screw thread, 255
Width of belts, 277

Wire, strength of, 158
Work and energy, 146

Working drawings, 50
Worm gearing, 204
Worm gearing, calculating,
234

Wrench action on screw
threads, 249

Wrought iron, strength of,
157
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GOOD, USEFUL BOOKS

BRAZING AND SOLDERING

BRAZING AND SOLDERING. By JAMES F. HOBART.
The only book that shows you just how to handle any job of

brazing or soldering that comes along; tells you what mixture
to use, how to make a furnace if you need one. Full of kiaks.
4th edition. 25 cents

CHARTS

BATTLESHIP CHART. An engraving which shows the
details of a battleship as if the sides were of glass and you could
see all the interior. The finest piece of work that has ever been
done. So accurate that it is used at Annapolis for instruction

purposes. Shows all details and gives correct name of every
part. 28 x 42 inches plate paper. 50 cents

BOX CAR CHART. A chart showing the anatomy of a box
car, having every part of the car numbered and its proper name
given in a reference list. 20 cents

GONDOLA CAR CHART. A chart showing the anatomy
of a gondola car, having every part of the car numbered and its

proper reference name given in a reference list. 20 cents

PASSENGERCAR CHART. A chart showing the anatomy
of a passenger car, having every part of the car numbered and its

proper name given in a reference list. 20 cents

TRACTIVE POWER CHART. A chart v/hereby you can
find the tractive power or drawbar pull of any locomotive,
without making a figure. Shows what cylinders are equal, how
driving wheels and steam pressure affect the power. What sized

engine you need to exert a given drawbar pull or anything you
desire in this line. 50 cents

WESTINGHOUSE AIR-BRAKE CHARTS. Chart I.

Shows (in colors) the most modern Westinghouse High Speed
and Signal Equipment used on Passenger Engines, Passenger
Engine Tenders, and Passenger Cars. Chart II. Shows (in

colors) the Standard Westinghouse Equipment for Freight
and Switch Engines, Freight and Switch Engine Tenders, and
Freight Cars. Price for the set, 50 cents



CHEMISTRY

HENLEY'S TWENTIETH CENTURY BOOK OF
RECEIPTS, FORMULAS AND PROCESSES. Edited by
GARDNER D. Hiscox. The most valuable Techno-chemical
Receipt Book published, including over 10,000 selected scientific

chemical, technological, and practical receipts and processes.
See page 24 for full description of this book. $3.00

CIVIL ENGINEERING

HENLEY'S ENCYCLOPEDIA OF PRACTICAL EN-
GINEERING AND ALLIED TRADES. Edited by JOSEPH
G. HORNER, A.M.I., M.E. This set of five volumes contains
about 2,500 pages with thousands of illustrations, including dia-

grammatic and sectional drawings with full explanatory details.
It covers the entire practice of Civil and Mechanical Engineering.
It tells you all you want to know about engineering and tells it

so simply, so clearly, so concisely that one cannot help but
understand. $6.00 per volume or $25.00 for complete set of five
volumes.

COKE

COKE MODERN COKING PRACTICE; INCLUDING
THE ANALYSIS OF MATERIALS AND PRODUCTS.
By T. H. BYROM, Fellow of the Institute of Chemistry, Fellow
of The Chemical Society, etc., and J. E. CHRISTOPHER, Member
of the Society of Chemical Industry, etc. A handbook for
those engaged in Coke manufacture and the recovery of By-
products. _

Fully illustrated with folding plates.
The subject of Coke Manufacture is of rapidly increasing in-

terest and significance, embracing as it does the recovery of
valuable by-products in which scientific control is of the first

importance. It has been the aim of the authors, in preparing
this book, to produce one which shall be of use and benefit to
those who are associated with, or interested in, the modern de-

velopments of the industry.
Contents: Chap. I. Introductory. Chap. II. General Classi-

fication of Fuels. Chap. III. Coal Washing. Chap. IV. The
Sampling and Valuation of Coal, Coke, etc. Chap. V. The
Calorific Power of Coal and Coke. Chap. VI. Coke Ovens.
Chap. VII. Coke Ovens, continued. Chap. VIII. Coke Ovens,
continued. Chap. IX. Charging and Discharging of Coke Ovens.
Chap. X. Cooling and Condensing Plant. Ch'ap. XI. Gas Ex-
hausters. Chap. XII. Composition and Analysis of Ammoniacal
Liquor. Chap. XIII. Working up of Ammoniacal Liquor.
Chap. XIV. Treatment of Waste Gases from Sulphate Plants.

Chap. XV. Valuation of Ammonium Sulphate. Chap. XVI.
Direct Recovery of Ammonia from Coke Oven Gases. Chap.
XVII. Surplus Gas from Coke Oven. Useful Tables. Very
fully illustrated. 83.50 net

COMPRESSED AIR

COMPRESSED AIR IN ALL ITS APPLICATIONS By
GARDNER D. Hiscox. This is the most complete book on the

subject of Air that has ever been issued, and its thirty-five

chapters include about every phase of the subject one can think
of. It may be called an encyclopedia of compressed air. It is

written by an expert, who, in its 665 pages, has dealt with the

subject in a comprehensive manner, no phase of it being omitted.
Over 500 illustrations, sth Edition, revised and enlarged.
Cloth bound; $5.00, Half morocco, *6.5O



CONCRETE

ORNAMENTAL CONCRETE WITHOUT MOLDS, By A. A.
HOUGHTON. The process for making ornamental concrete with-
out molds, has long been held as a secret and now, for the first

time, this process is given to the public. The book reveals the
secret and is the only book published which explains a simple,
practical method whereby the concrete worker is enabled, by
employing wood and metal templates of different designs, to
mold or model in concrete any Cornice, Archivolt, Column,
Pedestal, Base Cap, Urn or Pier in a monolithic form right
upon the job. These may be molded in units or blocks, and
then built up to suit the specifications demanded. This work
is fully illustrated, with detailed engravings. 83.00

POPULAR HAND BOOK FOR CEMENT AND CON-
CRETE USERS, By MYRON H. LEWIS, C.E. This is a con-
cise treatise of the principles and methods employed in the
manufacture and use of cement in all classes of modern works.
The author has brought together in this work, all the salient
matter of interest to the user of concrete and its many diversified

products. The matter is presented in logical and systematic
order, clearly written, fully illustrated and free from involved
mathematics. Everything of value to the concrete user is given.
Among the chapters contained in the book are: I. Historical

Development of the Uses of Cement and Concrete. II. Glossary
of Terms employed in Cement and Concrete work. III. Kinds
of Cement employed in Construction. IV. Limes, Ordinary and
Hydraulic. V. Lime Plasters. VI. Natural Cements. VII.
Portland Cements. VIII. Inspection and Testing. IX. Adul-
teration; or Foreign Substances in Cement. X. Sand, Gravel
and Broken Stone. XI. Mortar. XII. Grout. XIII. Con-
crete (Plain). XIV. Concrete (Reinforced). XV. Methods
and Kinds of Reinforcements. XVI. Forms for Plain and Re-
inforced Concrete. XVII. Concrete Blocks. XVIII. Arti-
ficial Stone. XIX. Concrete Tiles. XX. Concrete Pipes and
Conduits. XXI. Concrete Piles. XXII. Concrete Buildings.
XXIII. Concrete in Water Works. XXIV. Concrete in Sewer
Works. XXV. Concrete in Highway Construction. XXVI.
Concrete Retaining Walls. XXVII. Concrete Arches and
Abutments. XXVIII. Concrete in Subway and Tunnels.
XXIX. Concrete in Bridge Work. XXX. Concrete in Docks
and Wharves. XXXI. Concrete Construction under Water.
XXXII. Concrete on the Farm. XXXIII. Concrete Chimneys.
XXXIV. Concrete for Ornamentation. XXXV. Concrete
Mausoleums and Miscellaneous Uses. XXXVI. Inspection for
Concrete Work. XXXVII. Waterproofing Concrete Work.
XXXVIII. Coloring and Painting Concrete Work. XXXIX.
Method of Finishing Concrete Surfaces. XL. Specifications and
Estimates for Concrete Work. $3.50

DICTIONARIES

STANDARD ELECTRICAL DICTIONARY. By T.
O'CoNOR SLOANE. An indispensable work to all interested in
electrical science. Suitable alike for the student and profession-
al. A practical hand-book of reference containing definitions
of about 5,000 distinct words, terms and phrases. The defini-

tions are terse and concise and include every term used in electri-

cal science. Recently issued. An entirely new edition. Should
be in the possession of all who desire to keep abreast with the
progress of this branch of science. Complete, concise and con-
venient. 682 pages 393 illustrations. 83.00



DIES METAL WORK

DIES, THEIR CONSTRUCTION AND USE FOR THE
MODERN WORKING OF SHEET METALS. By J. V.
WOODWORTH. A new book by a practical man, for those who
wish to know the latest practice in the working of sheet metals.
It shows how dies are designed, made and used, and those who
are engaged in this line of work can secure many valuable sug-
gestions. $3.00

PUNCHES, DIES AND TOOLS FOR MANUFACTUR-
ING IN PRESSES. By J. V. WOODWORTH. An encyclo-
pedia of die-making, punch-making, die-sinking, sheet-metal
working, and making of special tools, subpresses, devices and
mechanical combinations for punching, cutting, bending, form-
ing, piercing, drawing, compressing, and assembling sheet-
metal parts and also articles of other materials in machine
tools. This is a distinct work from the author's book entitled

"Dies; Their Construction and Use." 500 pages, 700 engrav-
ings. $4.00

DRAWING SKETCHING PAPER

LINEAR PERSPECTIVE SELF-TAUGHT. By HERMAN
T. C. KRAUS. This work gives the theory and practice of linear

perspective, as used in architectural, engineering, and mechanical
drawings. Persons taking up the study of the subject by them-
selves, without the aid of a teacher, will be able by the use of the
instruction given to readily grasp the subject, and by reason-
able practice become good perspective draftsmen. The arrange-
ment of the book is good; the plate is on the left-hand, while the
descriptive text follows on the opposite page, so as to be readily
referred to. The drawings are on sufficiently large scale to show
the work clearly and are plainly figured. The whole work makes
a very complete course on perspective drawing, and will be
found of great value to architects, civil and mechanical engineers,
patent attorneys, art designers, engravers, and draftsmen. $2.50

PRACTICAL PERSPECTIVE. By RICHARDS and COLVIN.
Shows just how to make all kinds of mechanical drawings in the
only practical perspective isometric. Makes everything plain
so that any mechanic can understand a sketch or drawing in

this way. Saves time in the drawing room and mistakes in the
shops. Contains practical examples of various classes of work.

50 cents

SELF-TAUGHT MECHANICAL DRAWING AND ELE-
MENTARY MACHINE DESIGN. By F. L. SYLVESTER, M.E.,
Draftsman, with additions by Erik Oberg, associate editor of

"Machinery." A practical elementary treatise on Mechanical
Drawing and Machine Design, comprising the first principles of

geometric and mechanical drawing, workshop
_
mathematics,

mechanics, strength of materials and the calculation and design
of machine details, compiled for the use of practical mechanics
and young draftsmen. $2.00

A NEW SKETCHING PAPER. A new specially ruled paper
to enable you to make sketches or drawings in isometric per-
spective without any figuring or fussing. It is being used for

shop details as well as for assembly drawings, as it makes one
sketch do the work of three, and no workman can help seeing
just what is wanted. Pads of 40 sheets, 6x9 inches, 25 cents.
Pads of 40 sheets, 9x12 inches, 50 cents



ELECTRICITY

ARITHMETIC OF ELECTRICITY. By Prof. T. O'CoNOR
SLOANE. A practical treatise on electrical calculations of all

kinds reduced to a series of rules, all of the simplest forms, and
involving only ordinary arithmetic; each rule illustrated by
one or more practical problems, with detailed solution of each
one. This book is classed among the most useful works pub-
lished on the science of electricity Covering as it does the mathe-
matics of electricity in a manner that will attract the attention
of those who are not familiar with algebraical formulas. 160

pages. $1.00

COMMUTATOR CONSTRUCTION. By WM. BAXTER,
JR. The business end of any dynamo or motor of the direct
current type is the commutator. This book goes into the de-

signing, building, and maintenance of commutators, shows
how to locate troubles and how to remedy them; everyone who
fusses with dynamos needs this. 25 cents

DYNAMO BUILDING FOR AMATEURS, OR HOW TO
CONSTRUCT A FIFTY WATT DYNAMO. By ARTHUR
J. WEED, Member of N. Y. Electrical Society. This book is a
practical treatise showing in detail the construction of a small
dynamo or motor, the entire machine work of which can be done
on a small foot lathe.

Dimensioned working drawings are given for each piece of
machine work and each operation is clearly described.

This machine when used as a dynamo has an output of fifty

watts; when used as a motor it will drive a small drill press or
lathe. It can be used to drive a sewing machine on any and all

ordinary work.

The book is illustrated with more than sixty original engrav-
ings showing the actual construction of the different parts. Paper.

Paper 50 cents Cloth 81.00

ELECTRIC FURNACES AND THEIR INDUSTRIAL
APPLICATIONS. By J.WRIGHT. This is a book which will

prove of interest to many classes of people; the manufacturer
who desires to know what product .can be manufactured success-

fully in the electric furnace, the chemist who wishes to post
himself on the electro-chemistry, and the student of science
who merely looks into the subject from curiosity. 288 pages.

$3.00

ELECTRIC LIGHTING AND HEATING POCKET
BOOK. By SYDNEY F. WALKER. This book puts in conven-
ient form useful information regarding the apparatus which is

likely to be attached to the mains of an electrical company.
Tables of units and equivalents are included and useful electrical
laws and formulas are stated. 43 8 pages, 3 oo engravings. $3.00

ELECTRICTOY MAKING, DYNAMO BUILDING, AND
ELECTRIC MOTOR CONSTRUCTION. This work treats
of the making at home of electrical toys, electrical apparatus,
motors, dynamos, and instruments in general, and is designed to
bring within the reach of young and old the manufacture of gen-
uine and useful electrical appliances. 185 pages. Fully illus-

trated. $1.00



ELECTRIC WIRING, DIAGRAMS AND SWITCH-
BOARDS. By NEWTON HARRISON. This is the only complete
work issued snowing and telling you what you should know
about direct and alternating current wiring. It is a ready
reference. The work is free from advanced technicalities and
mathematics. Arithmetic being used throughout. It is in every
respect a handy, well-written, instructive, comprehensive
volume on wiring for the wireman, foreman, contractor or elec-
trician. 272 pages, 105 illustrations. 81.50

'ELECTRICIAN'S HANDY BOOK. By PROF. T. O'CpNOR
SLOANE. This work is intended for the practical electrician,
who has to make things go. The entire field of Electricity is

covered within its pages. It contains no useless theory; every-
thing is to the point. It teaches you just what you should
know about electricity. It is the standard work published on
the subject. Forty-one chapters, 610 engravings, handsomely
bound in red leather with titles and edges in gold. $3.50

ELECTRICITY IN FACTORIES AND WORKSHOPS,
ITS COST AND CONVENIENCE. By ARTHUR P. HASLAM.
A practical book for power producers and power users showing
what a convenience the electric motor, in its various forms, has
become to the modern manufacturer. It also deals with the
conditions which determine the cost of electric driving, and
compares this with other methods of producing and utilizing

power. 312 pages. Very fully illustrated. $2.50

ELECTRICITY SIMPLIFIED. By PROF. T. O'CoNOR
SLOANE. The object of "Electricity Simplified" is to make the

subject as plain as possible and to show what the modern con-
ception of electricity is; to show how two plates of different
metals immersed in acid can send a message around the globe;
to explain how a bundle of copper wire rotated by a steam engine
can be the agent in lighting our streets, to tell what the volt, ohm
and ampere are, and what high and low tension mean; and to
answer the questions that perpetually arise in the mind in this

age of electricity. 172 pages. Illustrated. $1.00

HOW TO BECOME A SUCCESSFUL ELECTRICIAN.
By PROF. T. O'CoNOR SLOANE. An interesting book from cover
to cover. Telling in simplest language the surest and easiest way
to become a successful electrician. The studies to be followed,
methods of work, field of operation and the requirements of the
successful electrician are pointed out and fully explained.
202 pages. Illustrated. $1.00

MANAGEMENT OF DYNAMOS. By LUMMIS-PATER-
SON. A handbook of theory and practice. This work is arranged
in three parts. The first part covers the elementary theory of

the dynamo. The second part, the construction and action of

the different classes of dynamos in common use are described;
while the third part relates to such matters as affect the prac-
tical management and working of dynamos and motors. 292
pages, 117 illustrations. $1.50

STANDARD ELECTRICAL DICTIONARY. By Prof. T.
O'CoNOR SLOANE. A practical handbook of reference contain-

ing definitions of about 5,000 distinct words, terms and phrases.
The definitions are terse and concise and include every term
used in electrical science. 682 pages, 393 illustrations. $3.00
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SWITCHBOARDS. By WILLIAM BAXTER, JR. This book
appeals to every engineer and electrician who wants to know
the practical side of things. All sorts and conditions of dynamos,
connections and- circuits are shown by diagram and illustrate
just how the switchboard should be connected. Includes direct
and alternating current boards, also those for arc lighting, in-
candescent, and power circuits. Special treatment on high
voltage boards for power transmission. 190 pages. Illustrated.

81.50

TELEPHONE CONSTRUCTION, INSTALLATION,
WIRING, OPERATION AND MAINTENANCE. By W. H.
RADCLIFFE and H. C. CUSHING. This book gives the principles
of construction and operation of both the Bell and Independent
instruments; approved methods of installing and wiring them;
the means of protecting them from lightning and abnormal cur-
rents; their connection together for operation as series or bridg-
ing stations; and rules for their inspection and maintenance.
Line wiring and the wiring and operation of special telephone
systems are also treated. 180 pages, 125 illustrations. 81.00

WIRING A HOUSE. By HERBERT PRATT. Shows a house
already built; tells just how to start about wiring it. Where to
begin; what wire to use; how to run it according to insurance
rules, in fact just the information you need. Directions apply
equally to a shop. Fourth edition. 35 cents

WIRELESS TELEPHONES AND HOW THEY WORK.
By JAMES ERSKINE-MURRAY. This work is free from elaborate
details and aims at giving a clear survey of the way in which
Wireless Telephones work. It is intended for amateur workers
and for those whose knowledge of Electricity is slight. Chap-
ters contained: How We Hear Historical The Conversion of
Sound into Electric Waves Wireless Transmission The Pro-
duction of Alternating Currents of High Frequency How the
Electric Waves are Radiated and Received The Receiving
Instruments Detectors Achievements and Expectations
Glossary of Technical Work. Cloth. 81.00

ENAMELING

HENLEY'S TWENTIETH CENTURY RECEIPT BOOK.
Edited by GARDNER D. Hiscox. A work of 10,000 practical
receipts, including enameling receipts for hollow ware, for

metals, for signs, for china and porcelain, for wood, etc. Thor-
ough and practical. See page 24 for full description of this book.

3.00

FACTORY MANAGEMENT, ETC.

MODERN MACHINE SHOP CONSTRUCTION, EQUIP-
MENT AND MANAGEMENT. By O. E. PERRIGO, M.E. A
work designed for the practical and every-day use of the Archi-
tect who designs, the Manufacturers who build, the Engineers
who plan and. equip, the Superintendents who organize and
direct, and for the information of every stockholder, director,
officer, accountant, clerk, superintendent, foreman, and work-
man of the modern machine shop and manufacturing plant of

Industrial America. 85.00



FUEL

COMBUSTION OF COAL AND THE PREVENTION
OF SMOKE. By WM. M. BARR. To be a success a fireman
must be "Light on Coal." He must keep his fire in good con-
dition, and prevent, as far as possible, the smoke nuisance.
To do this, he should know how coal burns, how smoke is formed
and the proper burning of fuel to obtain the best results. He
can learn this, and more too, from Barr's "Combustion of Coal."
It is an absolute authority on all questions relating to the Firing
of a Locomotive. Nearly 350 pages, fully illustrated. 81.00

SMOKE PREVENTION AND FUEL ECONOMY. By
BOOTH and KERSHAW. As the title indicates, this book of 197
pages and 75 illustrations deals with the problem of complete
combustion; which it treats from the chemical and mechanical
standpoints, besides pointing out the economical and humani-
tarian aspects of the question. S2.5O

GAS ENGINES AND GAS

CHEMISTRY OF GAS MANUFACTURE. By H. M.
ROYLES. A practical treatise for the use of gas engineers, gas
managers and students. Including among its contents Prepa-
rations of Standard Solutions, Coal, Furnaces, Testing and
Regulation. Products of Carbonization. Analysis of Crude Coal
Gas. Analysis of Lime. Ammonia. Analysis of Oxide of Iron.

Naphthalene. Analysis of Fire-Bricks and Fire-Clay. Weldom
and Spent Oxide. Photometry and Gas Testing. Carbur-
etted Water Gas. Metropolis Gas. Miscellaneous Extracts.
Useful Tables. $4.50

GAS ENGINE CONSTRUCTION, OrHow to Build a Half-

Horse-power Gas Engine. By PARSELL and WEED. A prac-
tical treatise describing the theory and principles of the action of

gas engines of various types, and the design and construction of a
half-horse-power gas engine, with illustrations of the work in
actual progress, together with dimensioned working drawings giv-

ing clearly the sizes of the various details. 300 pages. $2.50

GAS, GASOLINE, AND OIL, ENGINES. By GARDNER D.
Hiscox. Just issued, i8th revised and enlarged edition. Every
user of a gas engine needs this book. Simple, instructive, and
right up-to-date. The only complete work on the subject. Tells

all about the running and management of gas, gasoline and oil

engines as designed and manufactured in the United States.

Explosive motors for stationary, marine and vehicle power are

fully treated, together with illustrations of their parts and tabu-
lated sizes, also their care and running are included. Electric

Ignition by Induction Coil and Jump Sparks are fully explained
and illustrated, including valuable information on the testing for

economy and power and the erection of power plants.

The special information on PRODUCER and SUCTION GASES in-

cluded cannot fail to prove of value to all interested in the gen-
eration of producer gas and its utilization in gas engines.

The rules and regulations of the Board of Fire Underwriters
in regard to the installation and management of Gasoline Motors
is given in full, suggesting the safe installation of explosive motor
power. A list of United States Patents issued on Gas, ^Gasoline
and Oil Engines and their adjuncts from 1875 to date is included.

484 pages. 410 engravings. S3.50 net



MODERN GAS ENGINES AND PRODUCER GAS
PLANTS. By R. E. MATHOT, M.E. A practical treatise of

320 pages, fully illustrated by 175 detailed illustrations, setting
forth the principles of gas engines and producer design, the selec-
tion and installation of an engine, conditions of perfect opera-
tion, producer-gas engines and their possibilities, the care of gas
engines and producer-gas plants, with a chapter on volatile

hydrocarbon and oil engines. This book has been endorsed by
Dugal Clerk as a most useful work for all interested in Gas Engine
installation and Prodxicer Gas. 82.50

GEARING AND CAMS

BEVEL GEAR TABLES. By D. AG. ENGSTROM. No one
who has to do with bevel gears in any way should be without
this book. The designer and draftsman will find it a great con-
venience, while to the machinist who turns up the blanks or cuts
the teeth, it is invaluable, as all needed dimensions are given
and no fancy figuring need be done. 81.OO

CHANGE GEAR DEVICES. By OSCAR E. PERRIGO. A
book for every designer, draftsman and mechanic who is inter-
ested in feed changes for any kind of machines. This shows what
has been done and how. Gives plans, patents and all information
that you need. Saves hunting through patent records and rein-

venting old ideas. A standard work of reference. 81.00

DRAFTING OF CAMS. By Louis ROUILLION. The
laying out of cams is a serious problem unless you know how to
go at it right. This puts you on the right road for practically
any kind of cam you are likely to run up against. 25 cents

HYDRAULICS

HYDRAULIC ENGINEERING. By GARDNER D. Hiscox.
A treatise on the properties, power, and resources of water for all

purposes. Including the measurement of streams; the flow of
water in pipes or conduits; the horse-power of falling water;
turbine and impact water-wheels; wave-motors, centrifugal,
reciprocating, and air-lift pumps. With 300 figures and dia-

grams and 36 practical tables. 320 pages. 84.00

ICE AND REFRIGERATION

POCKET BOOK OF REFRIGERATION AND ICE MAK-
ING, By A. J. WALLIS-TAYLOR. This is one of the latest and
most comprehensive reference books published on the subject
of refrigeration and cold storage. It explains the properties and
refrigerating effect of the different fluids in use, the manage-
ment of refrigerating machinery and the construction and insula-
tion of cold rooms with their required pipe surface for different

degrees of cold; freezing mixtures and non-freezing brines,
temperatures of cold rooms for all kinds of provisions, cold
storage charges for all classes of goods, ice making and storage of
ice, data and memoranda for constant reference by refrigerating
engineers, with nearly one hundred tables containing valuable
references to every fact and condition required in the installment
and operation of a refrigerating plant. 81.50
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INVENTIONS PATENTS

INVENTOR'S MANUAL, HOW TO MAKE A PATENT
PAY. This is a book designed as a guide to inventors in per-
fecting their inventions, taking out their patents, and disposing
of them. It is not in any sense a Patent Solicitor's Circular,
nor a Patent Broker's Advertisement. No advertisements of any
description appear in the work. It is a book containing a quarter
of a century's experience of a successful inventor, together with
notes based upon the experience of many other inventors. $J .00

LATHE PRACTICE

MODERN AMERICAN LATHE PRACTICE. By OSCAR
E. PERRIGO. An up-to-date book on American Lathe Work,
describing and illustrating the very latest practice in lathe and
boring-mill operations, as well as the construction of and latest

devel9pments in the manufacture of these important classes of

machine tools. 300 pages, fully illustrated. 83.50

PRACTICAL METALTURNING. By JOSEPH G. HORNER.
A work of 404 pages, fully illustrated, covering in a comprehen-
sive manner the modern practice of machining metal parts in

the lathe, including the regular engine lathe, its essential design,
its uses, its tools, its attachments, and the manner of holding the
work and performing the operations. The modernized engine
lathe, its methods, tools, and great range of accurate work. The
Turret Lathe, its tools, accessories and methods of performing
its functions. Chapters on special work, grinding, tool holders,

speeds, feeds, modern tool steels, etc., etc. $3.50

TURNING AND BORING TAPERS. By FRED H. COL-
VIN. There are two ways to turn tapers; the right way and
one other. This treatise has to do with the right way; it tells

you how to start the work properly, how to set the lathe, what
tools to use and how to use them, and forty^and one other little

things that you should know. Fourth edition. 25 cents

LIQUID AIR

LIQUID AIR AND THE LIQUEFACTION OF GASES.
By T. O'CoNOR SLOANE. Theory, history, biography, practical

applications, manufacture. 365 pages. Illustrated. $2.00

LOCOMOTIVE ENGINEERING

AIR-BRAKE CATECHISM. By ROBERT H. BLACKALL.
This book is a standard text book. It covers the Westinghouse
Air-Brake Equipment, including the No. 5 and the No. 6 E T
Locomotive Brake Equipment; the K (Quick-Service) Triple
Valve for Freight Service; and the Cross-Compound Pump.
The operation of all parts of the apparatus is explained in detail,

and a practical way of finding their peculiarities and defects,

with a proper remedy, is given. It contains 2,000 questions with
their answers, which will enable any railroad man to pass any
examination on the subject of Air Brakes. Endorsed and used

by air-brake instructors and examiners on nearly every rail-

road in the United States. 2 3d Edition. 380 pages, fully

illustrated with folding plates and diagrams. $2.00



AMERICAN COMPOUND LOCOMOTIVES. By FRED
H. COLVIN. The most complete book on compounds published.
Shows all types, including the balanced compound. Makes
everything clear by many illustrations, and shows valve setting,
breakdowns and repairs. 142 pages. $1.00

APPLICATION OF HIGHLY SUPERHEATED STEAM
TO LOCOMOTIVES. By ROBERT GARBE. A practical book.
Contains special chapters on Generation of Highly Superheated
Steam; Superheated Steam and the Two-Cylinder Simple
Engine; Compounding and Superheating; Designs of Locomotive
Superheaters; Constructive Details of Locomotives using Highly
Superheated Steam; Experimental and Working Results. Illus-

trated with folding plates and tables. 82.50

COMBUSTION OF COAL AND THE PREVENTION
OF SMOKE. By WM. M. BARR. To be a success a fireman
must be "Light on Coal." He must keep his fire in good con-
dition, and prevent as far as possible, the smoke nuisance.
To do this, he should know how coal burns, how smoke is formed
and the proper burning of fuel to obtain the best results. He
can learn this, and more too, from Barr's "Combination of Coal."
It is an absolute authority on all questions relating to the Firing
of a Locomotive. Nearly 350 pages, fully illustrated. $1.00

LINK MOTIONS, VALVES AND VALVE SETTING. By
FRED H. COLVIN, Associate Editor of "American Machinist.
A handy book that clears up the mysteries of valve setting.
Shows the different valve gears in use, how they work, and why.
Piston and slide valves of different types are illustrated and
explained. A book that every railroad man in the motive-
power department ought to have. Fully illustrated. 60 cents.

LOCOMOTIVE BOILER CONSTRUCTION. By FRANK
A. KLEINHANS. The only book showing how locomotive
boilers are built in modern shops. Shows all types of boilers

used; gives details of construction; practical facts, such as
life of riveting punches and dies, work done per day, allowance
for bending and flanging sheets and other data that means dol-
lars to any railroad man. 421 pages, 334 illustrations. Six
folding plates. $3.00

LOCOMOTIVE BREAKDOWNS AND THEIR REM-
EDIES. By GEO. L. FOWLER. Revised by Wm. W. Wood,
Air-Brake Instructor. Just issued 1910 Revised pocket edition.
It is put of the question to try and tell you about every subject
that is covered in this pocket edition of Locomotive Breakdowns.
Just imagine all the common troubles that an engineer may ex-
pect to happen some time, and then add all of the unexpected
ones, troubles that could occur, but that you had never thought
about, and you will find that they are all treated with the very
best methods of repair. Walschaert Locomotive Valve Gear
Troubles, Electric Headlight Troubles, as well as Questions and
Answers on the Air Brake are all included. 294 pages. Fully
illustrated. $1.00

LOCOMOTIVE CATECHISM. By ROBERT GRIMSHAW.
27th revised and enlarged edition. This may well be called an
encyclopedia of the locomotive. Contains over 4,000 examina-
tion questions with their answers, including among them those
asked at the First, Second and Third year's Examinations.
825 pages, 437 illustrations and 3 folding plates. $2.50
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NEW YORK AIR-BRAKE CATECHISM. By ROBERT
H. BLACKALL. This is a complete treatise on the New York
Air-Brake and Air-Signalling Apparatus, giving a detailed de-
scription of all the parts, their operation, troubles, and the
methods of locating and remedying the same. 200 pages, fully
illustrated. 81.00

POCKET-RAILROAD DICTIONARY AND VADE ME-
CU!\I.

^
By FRED H. COLVIN, Associate Editor "American

Machinist." Different from any book you ever saw. Gives clear
and concise information on just the points you are interested in.
It's really a pocket dictionary, fully illustrated, and so arranged
that you can find just what you want in a second without an
index. Whether you are interested in Axles or Acetylene; Com-
pounds or Counter Balancing; Rails or Reducing Valves; Tires
or Turntables, you'll find them in this little book. It's very
complete. Flexible cloth cover, 200 pages. 81.00

TRAIN RULES AND DESPATCHING. By H. A. DALBY.
Contains the standard code for both single and double track and
explains how trains are handled under all conditions. Gives all

signals in colors, is illustrated wherever necessary, and the
most complete book in print on this important subject. Bound
in fine seal flexible leather. 221 pages. 81.50

WALSCHAERT LOCOMOTIVE VALVE GEAR. By
WM. W. WOOD. If you would thoroughly understand the
Walschaert Valve Gear, you should possess a copy of this book.
The author divides the subject into four divisions, as follows:
I. Analysis of the gear. II. Designing and erecting of the gear
III. Advantages of the gear. IV. Questions and answers re

lating to the Walschaert Valve Gear. This book is specially valu-
able to those preparing for promotion. Nearly 200 pages. $1.50

WESTINGHOUSE E T AIR-BRAKE INSTRUCTION
POCKET BOOK CATECHISM. By WM. W. WOOD, Air-Brake
Instructor. A practical work containing examination questions
and answers on the E T Equipment. Covering what the E T
Brake is. How it should be operated. What to do when de-
fective. Not a question can be asked of the engineman up for

promotion on either the No. 5 or the No. 6 E T equipment that
is not asked and answered in the book. If you want to thor-

oughly understand the E T equipment get a copy of this book.
It covers every detail. Makes Air-Brake troubles.and examina-
tions easy. Fully illustrated with colored plates, showing
various pressures. 82.00

MACHINE SHOP PRACTICE

AMERICAN TOOL MAKING AND INTERCHANGE-
ABLE MANUFACTURING.

^
By J. V. WOODWORTH. A

practical treatise on the designing, constructing, use, and in-

stallation of tools, jigs, fixtures, devices, special appliances,
sheet-metal working processes, automatic mechanisms, and
labor-saving contrivances; together with their use in the lathe

milling machine, turret lathe, screw machine, boring mill, power
press, drill, subpress, drop hammer, etc., for the working of

metals, the production of interchangeable machine parts, and
the manufacture of repetition articles of metal. 560 pages,
600 illustrations. *4.0O



HENLEY'S ENCYCLOPEDIA OF PRACTICAL EN-
GINEERING AND ALLIED TRADES. Edited by JOSEPH
G. HORNER. A.M.I.Mech.I. This work covers the entire prac-
tice of Civil and Mechanical Engineering. The best known ex-
perts in all branches of engineering have contributed to these
volumes. The Cyclopedia is admirably well adapted to the needs
of the beginner and the self-taught practical man, as well as the
mechanical engineer, designer, draftsman, shop superintendent,
foreman and machinist.

It is a modern treatise in five volumes. Handsomely bound
in Half Morocco, each volume containing nearly 500 pages, with
thousands of illustrations, including diagrammatic and sectional
drawings with full explanatory details. $35.00 for the com-
plete set of five volumes. $6.00 per volume, when ordered singly.

MACHINE SHOP ARITHMETIC. By COLVIN-CHENEY.
Most popular book for shop men. Shows how all shop problems
are worked out and "why." Includes change gears for cutting
any threads; drills, taps, shink and force fits; metric system
of measurements and threads. Used by all classes of mechanics
and for instruction of Y. M. C. A. and other schools. Fifth
edition. 131 pages. 50 cents

MECHANICAL MOVEMENTS, POWERS, AND DE-
VICES. By GARDNER D. Hiscox. This is a collection of 1890
engravings of different mechanical motions and appliances, ac-
companied by appropriate text, making it a book of great value
to the inventor, the draftsman, and to all readers with mechanical
tastes. The book is divided into eighteen sections or chapters
in which the subject matter is classified under the following
heads: Mechanical Powers, Transmission of Power, Measurement
of Power, Steam Power, Air Power Appliances, Electric Power
and Construction, Navigation and Roads, Gearing, Motion and
Devices, Controlling Motion, Horological, Mining, Mill and
Factory Appliances, Construction and Devices, Drafting Devices,
Miscellaneous Devices, etc. nth edition. 400 octavo pages.

$3.50

MECHANICAL APPLIANCES, MECHANICAL MOVE-
MENTS AND NOVELTIES OF CONSTRUCTION. By
GARDNER D. Hiscox. This is a supplementary volume to the
one upon mechanical movements. Unlike the first volume,
which is more elementary in character, this volume contains
illustrations and descriptions of many combinations of motions
and of mechanical devices and appliances found in different lines
of Machinery. Each device being shown by a line drawing with
a description showing its working parts and the method of opera-
tion. From the multitude of devices described, and illustrated,
might be mentioned, in passing, such items as conveyors and
elevators, Prony brakes, thermometers, various types of boilers,
solar engines, oil-fuel burners, condensers, evaporators, Corliss
and other valve gears, governors, gas engines, water motors of
various descriptions, air ships, motors and dynamos, automobile
and motor bicycles, railway block signals, car couples, link and
gear motions, ball bearings, breech block mechanism for heavy
guns, and a large accumulation of others of equal importance.
1,000 specially made engravings. 396 octavo pages. $2.50

These two volumes sell for $2.50 each,
but when the twQ volumes are ordered

at one time from us, we send them prepaid to any address in the
world, on receipt of $4.00. You save $i by ordering the two
volumes of Mechanical Movements at one time.
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MODERN MACHINE SHOP CONSTRUCTION, EQUIP-MENT AND MANAGEMENT. By OSCAR E. PERRIGO.
The only work published that describes the Modern Machine
Shop or Manufacturing Plant from the time the grass is growing
on the site intended for it until the finished product is shipped.
Just the book needed by those contemplating the erection of
modern shop buildings, the rebuilding and reorganization of old
ones, or the introduction of Modern Shop Methods, Time and
Cost Systems. It is a book written and illustrated by a prac-
tical shop man for practical shop men who are too busy to read
theories and want facts. It is the most complete all-around book
of its kind ever published. 400 large quarto pages, 225 original
and specially-made illustrations. $5.00

MODERN MACHINE SHOP TOOLS; THEIR CON-
STRUCTION, OPERATION, AND MANIPULATION. By
W. H. VANDERVOORT. A work of 555 pages and 673 illustra-

tions, describing in every detail the construction, operation, and
manipulation of both Hand and Machine Tools. Includes
chapters on filing, fitting, and scraping surfaces; on drills, ream-
ers, taps, and dies; the lathe and its tools; planers, shapers,
and their tools; milling machines and cutters; gear cutters and
gear cutting; drilling machines and drill work; grinding ma-
chines and their work; hardening and tempering; gearing,
belting and transmission machinery; useful data and tables.

$4.00

THE MODERN MACHINIST. By JOHN T. USHER. This
book might be called a compendium of shop methods, showing a
variety of special tools and appliances which will give new ideas
to many mechanics from the superintendent down to the man
at the bench. It will be found a valuable addition to any machin-
ist's library and should be consulted whenever a new or difficult

job is to be done, whether it is boring, milling, turning, or plan-
ing, as they are all treated in a practical manner. Fifth edition.

320 pages, 250 illustrations. $2.50

MODERN MECHANISM. Edited by PARK BENJAMIN. A
practical treatise on machines, motors and the transmission of

power, being a complete work and a supplementary volume to
Appleton's Cyclopedia of Applied Mechanics. Deals solely with
the principal and most useful advances of the past few years.
959 pages containing over 1,000 illustrations; bound in half
morocco. $4.00

MODERN MILLING MACHINES : THEIR DESIGN,
CONSTRUCTION AND OPERATION. By JOSEPH G.
HORNER. This book describes and illustrates the Milling Ma-
chine and its work in such a plain, clear, and forceful manner,
and illustrates the subject so clearly and completely, that the
up-to-date machinist, student, or mechanical engineer can not
afford to do without the valuable information which it contains.
It describes not only the early machines of this class, but notes
their gradual development into the splendid machines of the
present day, giving the design and construction of the various
types, forms, and special features produced by prominent
manufacturers, American and foreign. 304 pages, 300 illustra-

tions. $4.00

" SHOP KINKS." By ROBERT GRIMSHAW. This shows
special methods of doing work of various kinds, and reducing
cost of production. Has hints and kinks from some of the largest
shops in th'is country and Europe. You are almost sure to find
some that apply to your work, and in such a way as to save time
and trouble. 400 pages. Fourth edition. $2.50
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TOOLS FOR MACHINISTS AND WOOD WORKERS,
INCLUDING INSTRUMENTS OF MEASUREMENT. By
JOSEPH G. HORNER. A practical treatise of 340 pages, fully
illustrated and comprising a general description and classifica-
tion of cutting tools and tool angles, allied cutting tools for
machinists and woodworkers; shearing tools; scraping tools;
saws; milling cutters; drilling and boring tools; taps and dies;
punches and hammers; and the hardening, tempering and
grinding of these tools. Tools for measuring and testing work,
including standards of measurement; surface plates; levels;
surface gauges; dividers; calipers; verniers; micrometers;
snap, cylindrical and limit gauges; screw thread, wire and
reference gauges, indicators, templets, etc. 83.50

MANUAL TRAINING

ECONOMICS OF MANUAL, TRAINING. By Louis
ROUILLION. The only book that gives just the information
needed by all interested in manual training, regarding buildings,
equipment and supplies. Shows exactly what is needed for all

grades of the work from the Kindergarten to the High and Nor-
mal School. Gives itemized lists of everything needed and tells

just what it ought to cost. Also shows where to buy supplies.
$1.50

MARINE ENGINEERING

MARINE ENGINES AND BOILERS, THEIR DESIGN
AND CONSTRUCTION. By DR. G. BAUER, LESLIE S.

ROBERTSON, and S. BRYAN DONKIN. This work is clearly
written, thoroughly systematic, theoretically sound; while the
character of its plans, drawings, tables, and statistics is without
reproach. The illustrations are careful reproductions from
actual working drawings, with some well-executed photographic
views of completed engines and boilers. $9.00 net

MINING

*ORE DEPOSITS OF SOUTH AFRICA WITH A
CHAPTER ON HINTS TO PROSPECTORS. By J. P. JOHN-
SON. This book gives a condensed account of the ore-deposits
at present known in South Africa. It is also intended as a guide
to the prospector. Only an elementary knowledge of geology
and some mining experience are necessary in order to under-
stand this work. With these qualifications, it will materially
assist one in his search for metalliferous mineral occurrences
and, so far as simple ores are concerned, should enable one to
form some idea of the possibilities of any they may find.

Among the chapters given are: Titaniferous and Chromif-
erous Iron Oxides Nickel Copper Cobalt Tin Molyb-
denum Tungsten Lead Mercury Antimony I r o n Hints
to Prospectors. Illustrated. $2.00

PRACTICAL COAL MINING. By T. H. COCKIN. An im-
portant work, containing 428 pages and 213 illustrations, com-
plete with practical details, which will intuitively impart to the
reader, not only a general knowledge of the principles of coal
mining, but also considerable insight into allied subjects. The
treatise is positively up to date in every instance, and should
be in the hands of every colliery engineer, geologist, mine
operator, superintendent, foreman, and all others who are in-
terested in or connected with the industry. $2.50
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PHYSICS AND CHEMISTRY OF MINING. By T. H.
BYROM. A practical work for the use of all preparing for ex-
aminations in mining or qualifying for colliery managers' cer-
tificates. The aim of the author in this excellent book is to place
clearly before the reader useful and authoritative data which
will render him valuable assistance in his studies. The only work
of its kind published. The information incorporated in it will

prove of the greatest practical utility to students, mining en-
gineers, colliery managers, and all others who are specially in-
terested in the present-day treatment of mining problems. 160
pages. Illustrated. $3.00

MISCELLANEOUS

BRONZES. Henley's Twentieth Century Receipt Book con-
tarns many practical formulas on bronze casting, imitation
bronze, bronze polishes, renovation of bronze. See page 24 for
full description of this book. 83.00

EMINENT ENGINEERS. By DWIGHT GODDARD. Every-
one who appreciates the effect of such great inventions as the
Steam Engine, Steamboat, Locomotive, Sewing Machine, Steel
Working, and other fundamental discoveries, is interested in

knowing a little about the men who made them and their achieve-
ments.

Mr. Goddard has selected thirty-two of the world's engineers
who have contributed most largely to the advancement of our
civilization by mechanical means, giving only such facts as are of

general interest and in a way which appeals to all, whether
mechanics or not. 280 pages, 35 illustrations. $1.50

LAWS OF BUSINESS, By THEOPHILUS PARSONS, LL.D.
The Best Book for Business Men ever Published. Treats clearly
of Contracts, Sales, Notes, Bills of -Exchange, Agency, Agree-
ment, Stoppage in Transitu, Consideration, Limitations, Leases,
Partnership, Executors, Interest, Hotel Keepers, Fire and Life

Insurance, Collections, Bonds, Frauds, Receipts, Patents, Deeds,
Mortgages, Liens, Assignments, Minors, Married Women, Arbi-
tration, Guardians, Wills, etc. Three Hundred Approved Forms
are given. Every Business Man should have a copy of this book
for ready reference. . The book is bound in full sheep, and Con-
tains 864 Octavo Pages. Our special price. $3.50

PATTERN MAKING

PRACTICAL PATTERN MAKING. By F. W. BARROWS.
This is a very complete and entirely practical treatise on the
subject of pattern making, illustrating pattern work in wood and
metal. From its pages you are taught just what you should
know about pattern making. It contains a detailed description
of the materials used by pattern makers, also the tools, both
those for hand use, and the more interesting machine tools; hav-
ing complete chapters on The Band Saw, The Buzz Saw, and The
Lathe. Individual patterns of many different kinds are fully
illustrated and described, and the mounting of metal patterns on
plates for molding machines is included. $3.00

PERFUMERY

HENLEY'S TWENTIETH CENTURY BOOK OF RE-
CEIPTS, FORMULAS AND PROCESSES. Edited by G. D.
Hiscox. The most valuable Techno-Chemical Receipt Book
published. Contains over 10,000 practical Receipts many of
which will prove of special value to the perfumer, a mine of in-

formation, up to date in every respect. Cloth, $3.OO; half
morocco. See page 24 for full description of this book. $4.00
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PERFUMES AND THEIR PREPARATION. By G. W.
ASKINSON, Perfumer. A comprehensive treatise, in which
there has been nothing omitted that could be of value to the
Perfumer. Complete directions for making handkerchief per-
fumes, smelling-salts, sachets, fumigating pastilles; preparations
for the care of the skin, the mouth, the hair, cosmetics, hair dyes
and other toilet articles are given, also a detailed description
of aromatic substances; their nature, tests of purity, and
wholesale manufacture. A book of general, as well as profes-
sional interest, meeting the wants not only of the druggist and
perfume manufacturer, but also of the general public. Third
edition. 312 pages. Illustrated. $3.00

PLUMBING

MODERN PLUMBING ILLUSTRATED. By R M.
STARBUCK. The author of this book, Mr. R. M. Starbuck, is one
of the leading authorities on plumbing in the United States. The
book represents the highest standard of plumbing work. It has
been adopted and used as a reference book by the United States
Government, in its sanitary work in Cuba, Porto Rico and the
Philippines, and by the principal Boards of Health of the United
States and Canada.

It gives Connections, Sizes and Working Data for All Fixtures
and Groups of Fixtures. It is helpful to the Master Plumber in

Demonstrating to his customers and in figuring work. It gives
the Mechanic and Student, quick and easy Access to the best
Modern Plumbing Practice. Suggestions for Estimating Plumb-
ing Construction are contained in its pages. This book repre-
sents, in a word, the latest and best up-to-date practice, and
should be in the hands of every architect, sanitary engineer
and plumber who wishes to keep himself up to the minute on this

important feature of construction. 400 octavo pages, fully
illustrated by 55 full-page engravings. 84.00

RUBBER

HENLEY'S TWENTIETH CENTURY BOOK OF RE-
CEIPTS, FORMULAS AND PROCESSES. Edited by GARD-
NER D. Hiscox. Contains upward of 10,000 practical receipts,...... ., , ..'...,..

S3.00
including among them formulas on artificial rubber. See page
24 for full description of this book.

RUBBER HAND STAMPS AND THEMANIPULATION
OF INDIA RUBBER. By T. O'CoNOR SLOANE. This book
gives full details on all points, treating in a concise and simple
manner the elements of nearly everything it is necessary to under-
stand for a commencement in any branch of the India Rubber
Manufacture. The making of all kinds of Rubber Hand Stamps,
Small Articles of India Rubber, U. S. Government Composi-
tion, Dating Hand Stamps, the Manipulation of Sheet Rubber,
Toy Balloons, India Rubber Solutions, Cements, Blackings,
Renovating Varnish, and Treatment for India Rubber Shoes,
etc.; the Hektograph Stamp Inks, and Miscellaneous Notes,
with a Short Account of the Discovery, Collection, and Manufac-
ture of India Rubber are set forth in a manner designed to be
readily understood, the explanations being plain and simple.
Second edition. 144 pages. Illustrated. $1.00
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SAWS

SAW FILING AND MANAGEMENT OF SAWS. By
ROBERT GRIMSHAW. A practical hand book on filing, gumming,
swaging, hammering, and the brazing of band saws, the speed,
work, and power to run circular saws, etc. A handy book for
those who have charge of saws, or for those mechanics who do
their own filing, as it deals with the proper shape and pitches of
saw teeth of all kinds and gives many useful hints and rules for
gumming, setting, and filing, and is a practical aid to those who
use saws for any purpose. New edition, revised and enlarged.
Illustrated. 81.00

SCREW CUTTING

THREADS AND THREAD CUTTING. By COLVIN and
STABEL. This clears up many of the mysteries of thread-
cutting, such as double and triple threads, internal threads, catch-
ing threads, use of hobs, etc. Contains a lot of useful hints and
several tables. 25 cents

SHEET METAL WORK

DIES, THEIR CONSTRUCTION AND USE FOR THE
MODERN WORKING OF SHEET METALS. By J. V.
WOODWORTH. A new book by a practical man, for those who
wish to know the latest practice in the working of sheet metals.
It shows how dies are designed, made and used, and those who
are engaged in this line of work can secure many valuable
suggestions. $3.00

PUNCHES, DIES AND TOOLS FOR MANUFACTUR-
ING IN PRESSES. By J. V. WOODWORTH. A work of 5.00

pages and illustrated by nearly 700 engravings, being an en-
cyclopedia of die-making, punch-making, die sinking, sheet-
metal working, and making of special tools, subpresses, devices
and mechanical combinations for punching, cutting, bending,
forming, piercing, drawing, compressing, and assembling sheet-
metal parts and also articles of other materials in machine tools.

$4.00

STEAM ENGINEERING

AMERICAN STATIONARY ENGINEERING. By W.
E. CRANE. A new book by a well-known author. Begins at
the boiler room and takes in the whole power plant. - Contains
the result of years of practical experience in all sorts of engine
rooms and gives exact information that cannot be found else-

where. It's plain enough for practical men and yet of value to
those high in the profession. Has a complete examination for a
license. 82.00

" BOILER ROOM CHART. By GEO. L. FOWLER. A Chart
size 14x28 inches showing in isometric perspective the

mechanisms belonging in a modern boiler room. Water tube
boilers, ordinary grates and mechanical stokers, feed water
heaters and pumps comprise the equipment. The various parts
are shown broken or removed, so that the internal construction
is fully illustrated. Each part is given a reference number, and
these, with the corresponding name, are given in a glossary
printed at the sides, 'ihis chart is really a dictionary of the
boiler room the names of more than 200 parts being given.
It is educational worth many times its cost. 25 cents



ENGINE RUNNER'S CATECHISM. By RpBERT GRIM-
SHAW. Tells how to erect, adjust, and run the principal steam
engines in use in the United States. The work is of a handy
size for the pocket. To young engineers this catechism will be
of great value, especially to those who may be preparing to go
forward to be examined for certificates of competency; and
to engineers generally it will be of no little service as they will

find in this volume more really practical and useful information
than is to be found anywhere else within a like compass. 387
pages. Sixth edition. 83.00

ENGINE TESTS AND BOILER EFFICIENCIES. By
J. BUCHETTI. This work fully describes and illustrates the
method of testing the power of steam engines, turbine and
explosive motors. The properties of steam and the evapora-
tive power of fuels. Combustion of fuel and chimney draft;
with formulas explained or practically computed. 255 pages,
179 illustrations. $3.00

HORSE POWER CHART. Shows the horse power of any
stationary engine without calculation. No matter what the

cylinder diameter or stroke; the steam pressure or cut-off; the
revolutions, or whether condensing or non-condensing, it's all

there. Easy to use, accurate, and saves time and calculations.

Especially useful to engineers and designers. 50 cents

MODERN STEAM ENGINEERING IN THEORY AND
PRACTICE. By GARDNER D. Hiscox. This is a complete and
practical work issued for Stationary Engineers and Firemen
dealing with the care and management of Boilers, Engines,
Pumps, Superheated Steam, Refrigerating Machinery, Dyna-
mos, Motors, Elevators, Air Compressors, and all other branches
with which the modern Engineer must be familiar. Nearly
200 Questions with their Answers on Steam and Electrical

Engineering, likely to be asked by the Examining Board, are
included. 487 pages, 405 engravings. S3.00

STEAM ENGINE CATECHISM. By ROBERT GRIMSHAW.
This volume of 413 pages is not only a catechism on the question
and answer principle; but it contains formulas and worked-out
answers for all the Steam problems that appertain to the opera-
tion and management of the Steam Engine. Illustrations of

various valves and valve gear with their principles of operation
are given. 3 4 tables that are indispensable to every engineer and
fireman that wishes to be progressive and is ambitious to become
master of his calling are within its pages. It is a most valuable
instructor in the service of Steam Engineering. Leading en-

gineers have recommended it as a valuable educator for the be-

ginner as well as a reference book for the engineer. Sixteenth
edition. S2.00

STEAM ENGINEER'S ARITHMETIC. By COLVIN-
CHENEY. A practical pocket book for the Steam Engineer.
Shows how to work the problems of the engine room and shows
"why." Tells how to figure horse-power of engines and boilers;
area of boilers; has tables of areas and circumferences; steam
tables; has a dictionary of engineering terms. Puts you onto
all of the little kinks in figuring whatever there is to figure
around a power plant. Tells you about the heat unit; absolute
zero; adiabatic expansion; duty of engines; factor of safety;
and 1,001 other things; and everything is plain and simple
not the hardest way to figure, but the easiest. 50 cents
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STEAM HEATING AND VENTILATION

PRACTICAL STEAM, HOT-WATER HEATING AND
VENTILATION. By A. G. KING. This book is the standard
and latest work published on the subject and has been prepared
for the use of all engaged in the business of steam, hot-water
heating and ventilation. It is an original and exhaustive work.
Tells how to get heating contracts, how to install heating and
ventilating apparatus, the best business methods to be used, with
"Tricks of the Trade" for shop use. Rules and data for esti-

mating radiation and cost and such tables and information as
make it an indispensable work for everyone interested in steam,
hot-water heating and ventilation. It describes all the principal
systems of steam, hot-water, vacuum, vapor and vacuum-
vapor heating, together with the new accelerated systems of
hot-water circulation, including chapters on up-to-date methods
of ventilation and the fan or blower system of heating and venti-
lation.
You should secure a copy of this book, as each chapter con-

tains a mine of practical information. 367 pages, 300 detailed

engravings. 83.00

STEAM PIPES

STEAM PIPES: THEIR DESIGN AND CONSTRUC-
TION. By WM. H. BOOTH. The work is well illustrated in regard
to pipe joints, expansion offsets, flexible joints, and self-contained

sliding joints for taking up the expansion of long pipes. In fact,
the chapters on the flow of Steam and expansion of pipes are most
valuable to all steam fitters and users. The pressure strength of

pipes and method of hanging them is well treated and illustrated.

Valves and by-passes are fully illustrated and described, as are
also flange joints and their proper proportions. Exhaust heads
and separators. One of the most valuable chapters is that on
superheated steam and the saving of steam by insulation with
the various kinds of felting and other materials, with comparison
tables of the loss of heat in thermal units from naked and felted

steam pipes. Contains 187 pages. $2.00

STEEL

AMERICAN STEEL WORKER. By E. R. MARKHAM.
The standard work on hardening, tempering and annealing steel

of all kinds. A practical book for the machinist, tool maker or

superintendent. Shows just how to secure best results in any
case that comes along. How to make and use furnaces and case

harden; how to handle high-speed steel and how to temper for all

classes of work. $2.50

HARDENING, TEMPERING, ANNEALING, AND
FORGING OF STEEL. By J. V. WOODWORTH. A new book
containing special directions for the successful hardening and
tempering of all steel tools. Milling cutters, taps, thread dies,

reamers, both solid and shell, hollow mills, punches and dies,
and all kinds of sheet-metal working tools, shear blades, saws,
fine cutlery and metal-cutting tools of all descriptions, as well
as for all implements of steel both large and small, the simplest,
and most satisfactory hardening and tempering processes are

presented. The uses to which the leading brands of steel may be
adapted are concisely presented, and their treatment for work-
ing under different conditions explained, as are also the special
methods for the hardening and tempering of special brands.

320 pages, 250 illustrations. 83.50



HENLEY'S TWENTIETH CENTURY BOOK OF RE-
CEIPTS, FORMULAS AND PROCESSES. Edited by GARD-
NER D. Hiscox. The most valuable techno-chemical Receipt
book published, giving, among other practical receipts, methods
of annealing, coloring, tempering, welding, plating, polishing
and cleaning steel. See page 24 for full description of this book.

$3.00

WATCH MAKING

HENLEY'S TWENTIETH CENTURY BOOK OF RE-
CEIPTS, FORMULAS AND PROCESSES. Edited by
GARDNER D. Hiscox. Contains upwards of 10,000 practical
formulas including many watchmakers' formulas. $3.0O

WATCHMAKER'S HANDBOOK. By CLAUDIUS SAUNIER.
No work issued can compare with this book for clearness and
completeness. It contains 498 pages and is intended as a work-
shop companion for those engaged in Watchmaking and allied

Mechanical Arts. Nearly 250 engravings and fourteen plates
are included. $3.00

WIRELESS TELEPHONES

WIRELESS TELEPHONES AND HOW THEY WORK.
By JAMES ERSKINE-MURRAY. This work is free from elaborate
details and aims at giving a clear survey of the way in which
Wireless Telephones work. It is intended for amateur workers
and for those whose knowledge of Electricity is slight. Chap-
ters contained: How We Hear Historical The Conversion of
Sound into Electric Waves Wireless Transmission The Pro-
duction of Alternating Currents of High Frequency How the
Electric Waves are Radiated and Received The Receiving
Instruments Detectors Achievements and Expectations
Glossary of Technical Words. Cloth. $1.0O



Henley's Twentieth Century
Book of

Recipes, Formulas
and Processes

Edited byGARDNER D. HISCOX, M.E.

Price $3. 00 Cloth Binding $4. 00 Half Morocco Binding

Contains over 10,000 Selected Scientific, Chemical,

Technological and Practical Recipes and

Processes, including Hundreds of

So-Called Trade Secrets

for Every Business

THIS
book of 800 pages is the most complete Book of

Recipes ever published, giving thousands of recipes
for the manufacture of valuable articles forevery-day

use. Hints, Helps, Practical Ideas and Secret Processes
are revealed within its pages. It covers every branch of
the useful arts and tells thousands of ways of making
money and is just the book everyone should have at his

command.
The pages are filled with matters of intense interest and

immeasurable practical value to the Photographer, the

Perfumer, the Painter, the Manufacturer of Glues, Pastes,
Cements and Mucilages, the Physician, the Druggist, the

Electrician, the Brewer, the Engineer, the Foundryman,
the Machinist, the Potter, the Tanner, the Confectioner,
the Chiropodist, the Manufacturer of Chemical Novelties

and Toilet Preparations, the Dyer, the Electroplater,
the Enameler, the Engraver, the Provisioner, the Glass

Worker, the Goldbeater, the Watchmaker and Jeweler,
the Ink Manufacturer, the Optician, the Farmer, the Dairy-
man, the Paper Maker, the Metal Worker, the Soap Maker,
the Veterinary Surgeon, and the Technologist in general.
A book to which you may turn with confidence that you

will find what you are looking for. A mine of informa-

tion up-to-date in every respect. Contains an immense
number of formulas that every one ought to have that are

not found in any other work.
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