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GENERAL PREFACE
It is the aim of these tracts to provide authoritative accounts of

subjects of topical physical interest written by those actively

engaged in research. Each author is encouraged to adopt an

individualistic outlook and to write the tract from his own pointof

view without necessarily making it
"
complete

"
by the inclusion of

references to all other workers or to all allied subjects ; it is hoped
that the tracts may present such surveys of subjects as the authors

might give in a short course of specialized lectures.

By this means readers will be provided with accounts of those

subjects which are advancing so rapidly that a full-length book

would be out of place. From time to time it is hoped to issue

new editions of tracts dealing with subjects in which the advance

is most rapid.

M. L. O.

J. A. R.
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PREFACE

My object in writing this tract has been to give a simplified

account of some of the main achievements of the theory of metals

in the last ten years. The difficulties and dangers of presenting

such a simplified and condensed account of a highly complex

subject are so obvious and so great that I should have hesitated

to attempt to write the tract were it not that there is now a

sufficient number of treatises on the subject to which the reader

can refer for further information.

The method of presentation adopted is to try to make clear

the physical principles on which the theory is based and to

derive the results wherever possible by simplified arguments.

The book therefore attempts to give more than a superficial

account, but I hope that no one will be misled into assessing the

-arguments at a higher value than they deserve. When it has not

been possible to derive a result by a method substantially easier

than that used in the strict mathematical theory as set out in my
larger book referred to in the bibliography, I have simply quoted
the result. Although the treatment is an elementary one, it

cannot be pretended that all parts of the book are easy reading.

Some parts of the theory are intrinsically more difficult than

others, and all that I can hope is that I have given a readable

account of the simpler parts of the subject and supplied some

help to those who wish to understand the harder parts. On
account of the necessity of keeping the size of the tract within

reasonable limits, it has been found impossible to include

accounts of the very important subjects of alloys and metal optics.

My thanks are due to Mr J. A. Ratcliffe, who has made many

suggestions which have simplified and clarified the exposition.

A. H. W.

November 1938
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Chapter I

FUNDAMENTAL PRINCIPLES

i !. Introduction.

The modern electron theory of metals is a direct successor

of the theory of Drude and Lorentz, which was based on the

hypothesis that the electrons in metals are free to move from

atom to atom, while those in insulators are not. This funda-

mental idea of a free electron has been made precise and has

been used to elucidate a great many phenomena. Some of the

more important applications are indicated below.

Electrons in a solid can move freely from one atom to another

owing to the typical quantal effect known as the "tunnel effect"

( 1-2), but, just as there is a distinctive energy level system in

an atom, so the energy levels of the electrons in a solid have a

characteristic structure which determines the properties of the

substance. Solids in which the electrons form closed groups
have properties differing from those of solids in which the

electrons form open groups, the former being insulators and the

latter being metals ( 1*3), while if the electrons nearly form a

closed group the solid is a semi-metal ( 2-3). Also, if the

number of electrons outside a closed group is zero when the

temperature is zero and increases with the temperature, the

solid is a semi-conductor (chapter iv).

The cohesive forces in a metal differ considerably from the

normal valency forces of classical chemistry, which are based on

the idea that a bond is formed when two atoms share a pair of

electrons. In a metal the cohesive forces are caused by the

interaction of the free electron gas with the metallic ions and

are essentially long-range forces which are largely determined

by the number of electrons present and not to any great extent

by the coordination number (the number of atoms which are

nearest neighbours of a given atom) (chapter in). The cohesive

forces of alloys are caused partly by the attractions of the

w
< j >
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FUNDAMENTAL PRINCIPLES

different ions and partly by the interaction of the free electrons

with the ions. For those alloys in which the latter effect is

predominant, the theory shows how the e?nergy level structure

affects the cohesion, and it shows that the so-called intermetallic

compounds should occur at compositions which bear no relation

to the compositions at which compounds would be expected

according to the normal valency rules ( 3-6).

The initial successes of the early theories of metals were

rapidly overshadowed by the even greater difficulties which they

created, chief among which was the difficulty of the specific

heat. According to the classical theory, each free electron should

contribute f& to the specific heat, but in fact the specific heats

of metals and insulators do not show any large difference and

can be explained quite well by assuming that the free electrons

do not contribute appreciably. This difficulty has been removed

by applying Fermi-Dirac statistics instead of Maxwell statistics

to the free electrons
( 1-4). The free electrons make a small

contribution to the specific heat, which can only be detected

either at very low temperatures where it is larger than the

specific heat of the lattice vibrations or at very high temperatures

where its temperature variation is larger than that of the normal

specific heat ( 5*1 and 5-2).

The use of the Fermi-Dirac statistics also enables us to

understand why the paramagnetic susceptibility of many metals

is independent of the temperature, whereas the susceptibility of

a paramagnetic gas is inversely proportional to the temperature

( 5'3)' Further, in ferromagnetic metals the magnetic moment

per atom, the magneton number, is determined by the structure

of the energy level system, and the theory gives an explanation

of the fact that the magneton numbers of actual metals are not

integral, nor are they simply related to the number of valency

electrons per atom
( 5-6).

The treatment of conduction problems requires a second

fundamental idea, that of the free path. In a perfect crystal an

electron can move in a straight line without being deflected

( 1-2), and so the conductivity is infinite. The resistance in a

metal is caused by the scattering of the electrons by irregularities

<2 >



SUMMARY OF RESULTS

in the crystal; these irregularities may be due to the presence

of impurity atoms and strains or to the temperature motion of

the atoms ( 6-21). The conduction of heat and the thermo-

electric effects are second order effects which can be calculated

when the free path is known ( 6*4 and 65).

While a complete shell of electrons has no conducting pro-

perties, a shell which is nearly complete has certain anomalous

properties, chief among which is that the shell behaves as if it

had a positive charge ( 1-22).

This is the explanation of the fact that the Hall coefficients

and Thomson coefficients of metals are sometimes negative and

sometimes positive ( 4-2, 6*3 and 6-5) and it is not necessary

to postulate the existence of positive carriers to explain the

occurrence of the anomalous positive signs.

The only really unsolved problem is superconductivity, which

is so baffling that up to the present we have no idea in which

direction to look for an explanation.

Chapter i deals with all the fundamental ideas which are

necessary for a rough qualitative survey of the subject, while

chapter n is concerned with the further general theory required

for discussions of the finer details. The remaining chapters are

devoted to the applications of the results set forth in the first

two chapters.

1*2. The motion of an electron in a perfect crystal.

Since the problem of determining the electronic states of a

solid is of enormous complexity we have to introduce great

simplifications in order to obtain any results at all. We assume

as a first approximation that each electron can be treated

independently. We do not neglect the other electrons entirely;

we replace their effects by the average or "smeared" field which

they produce, but we do not take into account correlations in

the positions of the electrons when taking this average. This

assumption amounts to ascribing to each electron a definite

state of motion and a definite energy. It is an assumption

which has proved very fruitful in the theory of atomic and

molecular structure, and, though it probably has less justification
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in solids, nevertheless it provides the best approach to the

problem.
We have now to determine the motion of a single electron in

a fixed three-dimensional field which has the periodicity of the

crystal. Let us consider for simplicity an electron and a linear

chain of N similar equidistant atoms at a distance a apart.

If a is large, the electron will move in an orbit round one

particular atom uninfluenced by the presence of the other atoms.

If, however, a is of the order of the interatomic distances

actually found in crystals, the electron will not remain attached

to one atom, even when its kinetic energy is not sufficient to

carry it over the potential hump between two atoms. For, if

the electron were placed in a similar orbit on any other atom,

it would be in a state with the same energy, and, according to

quantum mechanics, an electron can always jump from one state

to a state of equal energy. The probability of such a jump
decreases exponentially as the height and the breadth of the

potential hump are increased, and it is therefore only appreciable

when the atoms are near together and when the electron is not

too tightly bound. The apt phrase "the tunnel effect" has been

coined to describe the leaking of electrons through potential

barriers.

From the preceding discussion we see that, in a stationary

state, an electron in a perfect crystal does not revolve round

one atom, but it moves steadily through the crystal jumping
from one atom to the next. If, however, the lattice is not

perfect, the motion is more complicated. Still considering a

linear chain, let us suppose that an atom B is displaced so that

it is nearer to its neighbour A than to its neighbour C. Then,
if an electron moving through the crystal in the direction ABC
arrives at J5, the probability that it should jump to C is less than

normal since the distance JBC, and therefore the potential hump
between B and C, is greater than the normal one. There is,

therefore, a probability that the electron will jump back to A
and be reflected instead of continuing its course. A similar

state of affairs occurs in a real three-dimensional crystal,

except that the electron can be deflected by an irregularity
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through any angle and not just reflected back along its original

path.

The irregularities may be caused by the presence of foreign

atoms, by strains, or by the temperature motion of the lattice.

When the irregularities are large, as in liquid metals, the

electrons can move from atom to atom but the number of

deflexions suffered per second is much larger than in solids,

and therefore liquid metals like mercury are distinctly poor
conductors. It is only in a perfect lattice, at absolute zero tem-

perature, that an electron can continue to move through a large

distance without being deflected.

Let us consider in more detail the possible energy levels of

the linear chain. As a first approximation we assume that the

electron is revolving in the ground orbit round some particular

atom and that the electrostatic forces of the other atoms can be

neglected. This state is degenerate since the electron could

equally well be in a similar orbit round any of the N i other

atoms. If we now introduce the electrostatic forces which have

been neglected, this degenerate state splits up into N non-

degenerate states lying very close together, each of which

represents a state of motion in which the electron is no longer

localized but moves freely through the crystal. In the limit,

when N becomes infinite, these energy levels form a continuum

or band whose width is proportional to the electrostatic forces

between the atoms. When the band is wide the electrostatic

forces are large and the mobility of the electron is large. When
the band is narrow the probability of the electron jumping from

one atom to the next is small.

Instead of considering the electron to be revolving in the

ground state round one atom, we could have considered it to

be in an excited state. This state would also give rise to a band

of N energy levels. We therefore see that the energy spectrum
consists of a set of continuous bands separated by intervals for

which no energy levels are possible. Each of these bands

contains as many energy levels as there are atoms in the crystal.

So long as the width of the bands is less than the energy
difference between the levels of the free atom it is possible to
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correlate the bands with the atomic levels from which they are

derived. When the width is larger than these energy differences,

which is always true for the highly excited levels, a unique
correlation is no longer possible. The regions of disallowed

energies still exist, however, but they get narrower as the energy
increases. The general form of the potential energy of an electron

and the arrangement ofthe energy bands are shown schematically

in fig. i.

E

\
v

-37T 2TT TT Q 7T 2lT 37T
*,

Fig. i . Energy bands (shaded) in a

one-dimensional lattice.

Fig. 2. The energy as a function of
the wave number. The dotted
curves give the energy in terms
of the reduced wave vector.

1*21. The preceding discussion really assumes that the electrons

are tightly bound, i.e. that the electrostatic forces are such that

the band width is smaller than the energy difference between

the atomic levels. When this is not true we can approach the

problem from another angle. When the crystal is highly com-

pressed (or if we consider highly excited states) the kinetic

energy of the electrons is large, and the potential humps are

narrow and comparatively unimportant. Therefore, as a first

approximation, we treat the electron as if it were perfectly free
;

it is then represented by a plane wave moving through the

crystal. The wave function is

the energy is

E=

(PI)

(pa)

and the momentum is h(kly ^, k^/zrr. The effect of the three-

dimensional periodic field is to introduce modulations into
\fr
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with the same period as the field. It can be shown (TM. p. 38,

equation (61)) that ty has the form

&= ***+**+**> ukM3(x, y, *), (1-3)

where u(x, y, z) is periodic in the unit cell of the crystal. So

long as we consider only slow electrons with long wave-lengths
so that ku k2 and k3 are small compared with i/a (a is the lattice

constant), the modulations do not have very much effect on E.

When, however, kl9 say, is nearly equal to n/a, resonance sets

in and the energy spectrum is radically altered. The electron

is strongly reflected by the lattice planes and a standing wave

is set up. These reflexions are the exact analogues of the Bragg
reflexions of X-rays. They occur whenever the electron has the

appropriate wave-length and direction of motion for reflexion

by a particular set of lattice planes.

It is not possible to see the effect of the reflexions on the

energy spectrum, and to determine the behaviour of the energy
as a function of the wave vector (kl9 k%, &3), without calculation.

What actually happens is shown in fig. 2, p. 6; wherever there

is a reflexion the energy has a discontinuity. In the one-

dimensional case the discontinuities occur when ^x
=

nrr/a (n a

positive integer), and the energy levels for which kt lies

between tinfa and (ni^n/a form a band or zone separated

from the neighbouring bands by a region in which there are no

energy levels. (Positive values of k
t correspond to electrons

moving to the right, say, and negative values to electrons moving
to the left.) These bands are, of course, the same as the bands

discussed at the beginning of this section. Both methods of

approach give the same qualitative information about the energy

spectrum.

It is often convenient to restrict kly k%, k% to lie between

n/a, since then the different parts of a zone are joined up.

To do this we have to subtract from kly k2 , &3 suitable multiples

of n/a. The factors such as e*nnxla which are left over can be

absorbed into u(x, yy z) since they are periodic in the lattice

constant. In this case the wave vector k is called the reduced

wave vector.
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The energy ranges for which no steady motion of the electron

exists are analogous to the frequency ranges near an absorption

line for which anomalous dispersion of light occurs. According
to the theory of dispersion, there is a range of frequencies round

any resonance frequency of a substance for which a light wave

cannot be propagated at all if damping is neglected, while, if

damping is taken into account, the light wave can exist but it is

strongly absorbed. Correspondingly, an electron impinging on

a metal with an energy which lies in a forbidden region can

enter the metal but it is strongly reflected, whereas if its energy
lies in an allowed band it can pass freely through the metal.

The well-known experiments of Davisson and Germer show

very clearly this anomalous dispersion of electrons.

In a real three-dimensional crystal the zone structure can be

very complicated. The details are discussed in chapters II, ill

and iv.

I-Z2. The velocity components vl , v2 , v% of an electron are given

in terms of the derivatives of E by de Broglie's relation. Thus

27T SE . .

The form of v: is shown in fig. 3. When ^= 0, ^=0, and, as

k^ increases, vl increases, reaches a maximum and finally

becomes zero again at the top of the band.

Electrons for which vl lies between the maximum and the

minimum behave normally, while those which lie

to the right of the maximum or to the left of the

\/ -H*

The
a

minimum behave abnormally, since when the energy
increases the velocity decreases in absolute magni-
tude. To see the importance of this, consider the

action of an electric field $ which is along the x function ofthe

axis. The charge of the electron being -e, the
wavenumber -

increase in the kinetic energy of the electron per second is

Hence, by (1-4),
J17 3171 jr r TI
aft GCi UK* n UK-i
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, dk* 27T aand so ^ T
Further, the acceleration is given by

dvi_d_ 2ndE^_2nd
2E

dk^
~dt ~~dt ~h Vk~~h aV ~df

When the electrons are perfectly free and

E=A

equation (1*6) becomes

which is the ordinary acceleration equation for a free particle.

However, as fig. 2 shows, 92Z?/3 1
2 can take on negative values,

and, when it does so, the acceleration is in the opposite direction

to the normal one. For states sufficiently near the top of a band

we can write E=A-h2
(kl

2+ k2
2+ k3

2
)/(8n

2
m'*) J since the energy

is a maximum at the top of the band, kl9 k2 and k3 being
measured from the position of the maximum. In this case

and thus we can say that the electron behaves as if it had either

a negative mass or a positive charge. (The second statement is

the more usual one.) m* is called the effective mass. We there-

fore have the very important result that an electron behaves

as if it has a positive charge if it occupies an energy level

lying in the region in which the energy curve as a function

of the wave number is concave downwards, i.e. near the top of

an energy band. This peculiarity has no effect on the electrical

conductivity since the conductivity is proportional to the square

of the charge. It only plays an important role for those pheno-

mena, such as the Hall and thermoelectric effects, which are

proportional to the first power of the charge. This is discussed

further in 1-3.

The energy curves of tightly bound electrons are similar
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qualitatively to those of nearly free electrons, but the energy
bands are narrower and the anomalous regions in which

32E'/9&1
2

is negative are more marked. It is no longer possible

to represent E as a quadratic function of kl9 k2 and k3 over a

considerable range, but this can of course be done when we are

only interested in a small range of the wave vector, as happens,

for example, in the theory of electrical conductivity. We may
then write instead of (1-2)

*3
2
) + constant. (1-7)

The effective mass m* can be considerably larger than m if the

potential humps between the atoms are large. It can also be

negative, but in this case we prefer to keep to positive masses

and treat the charge as positive instead.

1*3. The exclusion principle: metals and insulators.

Schrodinger's equation governs the motion of the electrons

in a crystal, but the possible configurations are further limited

by Pauli's exclusion principle which states that not more than

two electrons can occupy the same energy level, and, if there

are two, they must have their spins in opposite directions. This

enables us to explain why it is possible to divide solids into the

two distinct classes of metals and insulators, even although the

electrons can move freely through the crystal.

Consider the behaviour of a solid at the absolute zero, and

consider for the moment only the valency electrons. The state

of lowest energy for an electron is the state of zero kinetic

energy. According to the classical theory all the valency

electrons would be in this state, but this is not possible on

account of the exclusion principle. Instead the states, starting

from the lowest, are successively filled by two electrons with

opposite spins until all the electrons are accommodated.

Consider first the case in which the number of valency
electrons per atom is such as just to fill an energy band. The
effect of an external electric field is to tend to produce a current

by accelerating the electrons moving in one direction and

< 10 >
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retarding those moving in the opposite direction, or in other

words to increase the energy of the electrons moving in one

direction and to decrease the energy of the others. In the case

we are considering this is impossible since there are no vacant

energy levels to which the electrons can be transferred. Of course

there are the energy levels of the next allowed band, but they

lie about i e.volt higher, so a field of the order of at least

io6 volts/cm, would be required to produce a transition. In

this case, therefore, the solid behaves as an insulator.

Next suppose that the number of electrons present is not

sufficient to fill an energy band, as would happen, for example,

for a linear chain in which there was one valency electron per

atom. So far as most of the electrons are concerned, an electric

field is just as ineffective as in the previous case, but for the

most energetic electrons the situation is entirely different. For

these electrons there are now plenty of vacant levels into which

they can be transferred by an external electric field, and in a

perfect lattice they would be accelerated by the field until their

energies reached the limit of the allowed band. In actual fact,

however, the accelerating effect of the field is resisted by

scattering agents such as foreign atoms, distortions and the

thermal motion of the lattice, so that the resultant change in the

distribution of the electrons over the energy levels is small.

The important point is that, when the electrons do not fill an

energy band, a redistribution of the electrons over the energy
levels is possible and a current can be set up by an electric field.

The solid is, therefore, a metal.

When a band is nearly full it has anomalous properties since

the most energetic electrons, which alone contribute to the

conductivity, behave as if they had a positive charge ( 1-22).

Since a completely filled band does not conduct at all, it is often

convenient to say that the vacant spaces or "holes" in a nearly

full band are responsible for the current, the motion of an

electron in one direction being equivalent to the motion in the

opposite direction of the vacant space which it leaves behind.

This interpretation must, however, be used with caution since

it is always the electrons which really carry the current and

< ii >
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which are accelerated by external fields. Nearly complete bands

behave anomalously because the most energetic electrons occupy

energy levels for which d^E/dkj
2

is negative. When there are

sufficient holes for the energy levels to fall in the region where

92 '/9A1
2 is positive, the electronic distribution behaves normally.

When we talk about
"
holes" in discussing semi-conductors in

4-2 and the Hall effect in 6-31, we always assume that the

number of "holes" is so small that the anomalous behaviour

occurs, and we often describe them loosely as "positive holes".

For a linear lattice, two electrons per atom suffice to fill an

energy band, but this is not so for a three-dimensional crystal.

A detailed knowledge of the zone structure is necessary before

we can say whether a given solid will be a metal or not; this is

discussed in 2*3. We now see that it is immaterial whether we

regard the inner electrons as being mobile or not; in any case

they cannot contribute to the current since they belong to

completely filled bands. However, we prefer to regard the inner

electrons as "atomic electrons", definitely attached to one atom,

and to reserve the idea of "free" or "metallic electrons" for

the most loosely bound electrons.

To sum up, although the valency electrons can be considered

as being free to move through the lattice, not every solid is a

metal, on account of the possibility of closed groups of electrons

being formed. A solid is a metal if and only if the valency

electrons form an open group.

1*4. The Fermi-Dirac statistics.

The difficulty of the specific heat which proved so fatal to

the theory of Drude and Lorentz disappears when proper
account is taken of the exclusion principle. According to the

classical theory all the free electrons are in the lowest state, i.e. they
have zero translational energy, at absolute zero temperature. As
the temperature is raised, the electrons acquire kinetic energy and

are responsible for a large specific heat. This is obviously wrong,

since, if the argument is carried to its logical conclusion, we

ought to ascribe the classical specific heat of fk to all the inner,

core electrons as well; we have no valid reason for applying

< 12 >
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quantum principles to the core electrons and classical principles

to the valency electrons.

In the preceding section we saw that in fact the valency

electrons occupy, at the absolute zero, the energy levels ranging

from zero energy to a maximum energy, which we call EQ and

which depends, amongst other things, on the number of

electrons present. If the temperature is T instead of zero, the

distribution is modified, and this modification determines the

specific heat. The effect of increasing the temperature is to tend

to increase the energy of the electrons, but we must bear in

mind the fact that each energy level can accommodate only two

electrons with opposite spins. The thermal energy is of the

order kT, and so if E^>kT the electrons with low energies

cannot be excited, since the energy levels within reach are

already occupied. Only for those electrons with energies near E
can the distribution be effectively modified.

1*41. Let /o() be the distribution function, i.e. fQ(E) is the

probable number of electrons with a given spin in a state with

energy E when the temperature is T. Then/ (/?), which is called

the Fermi-Dirac function, must have the following properties.!

For T=o,/ () is i if E lies between o and , and/ () is o

if E is greater than EQ . For T+o, / (E) must be constant and

equal to i for small values of E\ as E approaches EQj fQ(E) must

begin to decrease and fall practically to zero in an energy

interval round E of the order of kT. Thus, instead of fQ(E)
dropping sharply to zero at

"

, the fall is rounded off and/ (")

has a
"
Maxwellian tail". The actual form of/ (ZJ) is

The quantity is the thermodynamic potential of the electrons,

and, when T=o, it is the same as EQ . When >A7\ the electron

gas is said to be degenerate, and TQ
=EQjk is called the degeneracy

temperature, since for T<^T the electron gas is degenerate

t Note that fQ(E) is the probability of a given state being occupied;

fo(E) dE is not the average number of electrons with energies lying in the

range dE, since there are many states with energies lying in this range.
See 2-5.
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while for T> T the electron gas behaves classically. The general

form of/o() for a degenerate gas is shown in fig. 4.

The order of magnitude of

T can be calculated as follows.

Letn be thenumber ofelectrons

perunitvolume. Then, in order

to apply classical statistics, it is

necessary to be able to define

the position of an electron with

an error (Axf which is such
Fig. 4. The Fermi function.

so that the electrons can be treated as distinguishable. The

corresponding error Ap in the linear momentum is connected

with Ax by the relation

AxAp~h. C
1

* 10)

Further, Ap must be small compared with the mean momentum
of thermal agitation. Hence

Thus, combining (1-9), (i'io) and (i-u), we see that the

condition for the validity of classical statistics is

Hence T must be of the order

The exact formula is (T.M. p. 16, equation (29))

a proof of which is given on p. 34. If we put n $-gx io22
,

which is the value for silver if we assume that there is one free

electron per atom, we find ro~6xio40 K. Thus for most

purposes we can assume that the electron gas is highly de-

generate.

The quantity is not a constant but varies with the tem-
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perature. For temperatures which are small compared with T ,

the variation of is small and we can put =EQ . For high

temperatures, however, decreases and the Fermi function

becomes very spread out. When T^>TGJ actually becomes

negative, the Fermi statistics becomes the ordinary classical

statistics and nothing is left of fQ(E) but the Maxwellian tail,

the curve being concave upwards everywhere.

1*42. Since the drop in the Fermi function is spread over an

energy range of the order of kT
y
while the energy spread of the

occupied states is of the order J?
, only a fraction kT/E of the

electrons contributes to the specific heat. Thus, although the

number of free electrons is large, the effective number con-

tributing to the specific heat is small and there is no great

difference between the heat capacity of metals and insulators.

Any quantity, such as the specific heat, which vanishes when

we assume the electron gas to be completely degenerate, i.e.

when we replace fQ(E) by its value when T=o, is called a

second order quantity. For such quantities, only those electrons

in an energy interval of the order kT round E play a part, and

in order to calculate them we need to know the density of states

n( ),
the definition of which is that n(E) dE is the number of

energy levels in the range dE. Alternatively, we can use the

experimentally measured quantities to determine n(), and that

is all the information we can obtain from the experiments.

The calculation of first order quantitiesf is simple. All we
have to do is to replace / () by i if E< EQ and by o if E>E .

Second order quantities have to be calculated by using the

approximate formula (T.M. p. 15, equation (28))

The order of magnitude of a second order quantity is, however,

usually obtainable by elementary arguments.

At first sight we might expect all second order quantities to

be determined by the behaviour of the fastest electrons only,

while for first order quantities all the electrons would play a part.

f First order quantities are those which are not second order.
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This is not so. The electrical resistance and the paramagnetic

susceptibility are examples of first order quantities to which only
the fastest electrons contribute. In both these cases the entire

effect is due to the modification of the electronic distribution

by an external field, and the electrons which occupy the low

energy levels are ineffective since the neighbouring levels are

full.



Chapter II

THE ENERGY LEVELS OF A THREE-
DIMENSIONAL CRYSTAL

2*1. Brillouin zones.

The energy spectrum of a one-dimensional lattice, discussed

in 1-2, consists of a number of bands separated by regions in

which there are no energy levels, and each band can accommo-

date exactly two electrons per atom. This simple structure of

the energy bands does not occur in real three-dimensional

crystals, and the band structure varies widely from metal to

metal and determines their characteristic properties.

The fundamental problem is to determine the energy of a

state as a function of the wave vector k= (^x , &2 > ^3)- This can

only be done approximately by long and complicated numerical

calculations (see 2*4), but many important qualitative results

can be obtained in other ways. For a one-dimensional lattice

the energy is a function of one quantum number only, say t ,

and has the form shown in fig. 2, p. 6, discontinuities occurring

when /fj
= tin/a. For three dimensions the energy levels are

not so easily visualized. The simplest method is to consider a

three-dimensional space, the k space, in which k^, k^, k3 are

rectangular coordinates, and to construct the surfaces of

constant energy. For perfectly free electrons E is given by (1*2)

and the energy surfaces are spheres. In the general case, if we

take one particular direction in the k space, the energy has the

form shown in fig. 2. The general form of the energy contours

can therefore be constructed by fitting together sections of

this type.

We now consider the discontinuities in the energy more

thoroughly. These discontinuities always occur whenever the

direction and magnitude of the wave vector of an electron is

such that the electron suffers a Bragg reflexion. If the spacing

between a particular set of lattice planes is d, Bragg reflexions

w
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occur when #A= 2*/cos 0, where n is an integer, A is the wave

length, and 6 is the angle between the initial direction of

motion and the normal to the reflecting planes. Now A= 27r/&,

where k=
\

k
|,
and k cos 6 is kn , the component of the wave

vector along the normal to the reflecting planes. Thus the

condition for Bragg reflexion is*

&w = W7T/rf, (2-l)

and it is for these values of k that the discontinuities in the

energy occur. The equation (2-1) represents a plane in the k

space, parallel to the reflecting planes of the crystal, at a distance

nn/d from the origin. If we consider all possible reflecting

planes and all possible orders of reflexion, we obtain a set of

planes in the k space, which divide it up into zones, called

Brillouin zones after L. Brillouin who first studied their

structure, which are the three-dimensional generalizations of

the one-dimensional energy bands discussed in 1-2. Inside

each zone the energy is a continuous function of (kl9 /e2 , k%) and

it increases discontinuously when a boundary is crossed in the

direction of increasing k.

2*2. The zones for a simple cubic lattice.

Although no metal has a simple cubic structure, the zones

for such a lattice serve to illustrate the theory in an elementary

manner. Further, the results are needed for the discussion of

those cubic lattices which actually occur.

The reflecting planes which have the largest spacing, and so

give rise to the smallest values of knJ are those perpendicular to

the crystal axes. The direction ratios of the normals to these

planes are ( i, o, o) or (o, i, o) or (o, o, i), and we have

d=a, where a is the lattice constant. The first zone (n=i) is

therefore the cube bounded by the planes

&i
=

Ti\a> ^2
=

fir/0, 3
=

n/a. (2-2)

The next set of reflecting planes consists of those with the

* To conform to custom we use n in two different senses in (2-1) The
suffix n denotes the normal component, while the n on the right-hand side

is an integer.
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direction ratios

( i, i, o)or( i, o, i)or(o, i, i), and

for these da/^2. The corresponding zone boundaries (with

n=i) are

k
l

k2= 2n/a, kl k3= 27r/a, k2 k3= 2n/a9 (2-3)

and they form the dodecahedron shown in fig. 5 (ii). The
second zone lies between this dodecahedron and the funda-

mental cube (2-2). The third zone consists of the space, lying

outside the dodecahedron, defined by the intersections of the

planes (2-2) and (2-3); it is shown in fig. 5 (iii). The external

(iii) (iv)

Fig. 5. The first four Brillouin zones of a cubic lattice.

boundaries of the fourth zone are formed by two sets of planes,

(i) the planes with direction ratios (i, i, i) and with

</= tf/V3 w=i, (ii) the planes with direction ratios such as

(i, o, o) with w = 2. They are therefore

k
l k^k^^Tfla (2-4)

and AI
= 2n/a, k2

= 2n/a, fe,
= 2n/a. (2-5)

The surface of this zone, consisting of eight hexagons and six

squares, is shown in fig. 5 (iv).
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The fundamental cube defined by (2*2) contains as many

energy levels as there are atoms in the crystal, and it can

therefore accommodate exactly two electrons per atom, with

opposite spins. The number of levels in the other zones is

proportional to the volume they occupy in k space; this has to

be found by mensuration. It is found that each zone has the

same volume as the fundamental cube. Therefore the dode-

cahedron (2-3) can accommodate exactly four electrons per

atom, and the truncated octahedron defined by (2-4) and (2-5)

can accommodate eight electrons per atom. The equality of the

volumes of the zones is peculiar to cubic lattices and does not

apply, for example, to hexagonal lattices.

2*3. Metals, semi-metals and insulators.

The form of the Brillouin zones is determined entirely by

the crystal structure and hence is easily found for any type of

lattice. A much more difficult problem is to find the shape of

Fig. 6. The energy contours in the plane &3
= o.

the energy contours and the magnitude of the energy dis-

continuities. Since these depend on the electrostatic forces,

they can be found only by actually solving the Schrodinger

equation for the crystal. Before we consider the results of these

calculations, it is convenient to consider the possible behaviour

of the energy contours and their effect on the properties of

the crystal.

<20 >



METALS AND INSULATORS
A section of the energy contours by the plane 3=0 is shown

schematically for a simple cubic lattice in fig. 6; the contours

are given for the whole of the first zone, but only for a few of the

lowest energy levels in the second zone. Now, although the

energy of a state in the second zone is greater than the energy
of the adjacent state in the first zone, we cannot conclude that

all the energy levels of the first zone are lower than those of the

second zone. For, when the energy contours are as shown in

fig. 6, the states with the greatest energy in the first zone are

given bykl
= k2= k9= n/a, while the states with the least energy

in the second zone are given by ^= + n/a, ^ =
^3
= 0, and four

other states obtained by permuting kly k%, 1%. All that we know
with certainty is that

E2(7T/a 9 o, o) > E^n/a, o, o),

where the suffixes denote the zones, and, since

E^n/a, n/a, n/a)>El(nia, o, o),

we cannot say without calculation which of E^n/a, n/a, n/a)

and E2(n/a, o, o) is the greater.

We distinguish two cases:

(1) All the energy levels of the second zone lie above the

energy levels of the first zone, i.e. the energy discontinuities

are large. In this case all the energy levels of the first zone must

be occupied (at the absolute zero) before any electrons go into

the second zone, and if the number of electrons present is just

sufficient to fill the first zone they will do so. This type of

crystal is an insulator.

(2) Some of the energy levels of the second zone lie lower

than the highest levels of the first zone. In this case the first

zone can never be full of electrons while the second zone is

completely empty. If there are just enough electrons present

to fill the first zone, they will not do so, but will occupy some of

the levels of the second zone and leave some vacant levels in

the first. Thus although the number of electrons present may
be sufficient to make it possible for the solid to be an insulator,

yet the energy gaps may be so small that the solid is in fact a

metal. There is another case (20) which cannot be sharply
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distinguished from the preceding case. If the energy gaps are

neither too large nor too small, it may happen that the energy

levels of the two zones only just overlap. In this case, if there

are just enough electrons present to fill the first zone, there will

be a small number of vacant places in the first zone and the

same number of electrons in the second zone. The solid must

still be a metal, but the number of effective free electrons will

be so small that the solid will be a poor or semi-metal, such as

bismuth.

2*4. Methods for the calculation of energy levels.

In order to discuss whether the metallic or the gaseous state

is the more stable, it is necessary to know the energy of a state

not only as a function of k but also of #, the lattice constant.

A method of finding the energy for the lowest state, i.e. for

k= o, was given by Wigner and Seitzd). The wave function

UQ(X, y, z) of this state has the lattice constant for its period (see

equation (1-3)), and by symmetry the component of grad UQ

along the lines joining the centres of two neighbouring atoms

must vanish half way between them. Consider in particular

sodium, which has a body-centred cubic lattice, and fix attention

on an atom at the centre of one particular cell. The lines joining

it to its nearest neighbours are the eight lines to the corners of

the cube and the six lines to the centres of the neighbouring
cells. If we draw planes bisecting these fourteen lines at right

angles, we obtain a polyhedron which is the truncated octa-

hedron shown in fig. 5 (iv), p. 19. Now the wave function u

must be such that it and its derivatives are continuous and the

normal component of grad UQ must vanish at the centres of the

fourteen faces of the polyhedron. To find such a function

exactly is very difficult, but the following approximate method

can be used. The polyhedron is nearly a sphere, and we
therefore replace it by a sphere of the same volume and use the

boundary condition that du /dr
= o at the surface of the sphere.

The wave function UQ is spherically symmetrical in this approxi-

mation, and it can be found by integrating the Schrodinger

equation numerically if we know the potential produced by the
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sodium ion at the centre of the polyhedron. The energy

determined in this way is shown by the lower curve in fig. 7

as a function of r8/r , where rs is the radius of the sphere defined

above (i.e. fflr/ is the atomic volume), and r is the radius of

the first Bohr orbit. The value of a for which the minimum in

the energy curve occurs is closely connected with the equilibrium

lattice constant, but the two are not identical for the reasons

discussed in 3-2.

-0-3

$ -0-4

1-0-5

d -0-6

fc 01234567
W r8/rQ

Fig. 7. The energy of the lowest 3$-state (lower curve) andjthe'total energy

per atom (upper curve, see p. 34) in sodium as functions of the lattice

constant.

The method was extended by Slater (2) to deal with the wave

functions and energy levels when k= o. The method consists

in solving the Schrodinger equation inside a polyhedron with

the proper boundary conditions to ensure ttiat i/r
is of the form

In practice, however, it is only possible to satisfy the boundary
conditions at a finite number of points, usually the centres of

the faces of the polyhedron, since otherwise the numerical work

becomes prohibitively complicated. By this method we can

obtain the energy levels for all k and a (or rs). The curves in

fig. 8, which is for sodium, give the results. When rs is infinite

the energy levels are discrete, being those of the normal sodium

atom, while for any finite value of rs the typical band structure

appears and, for sufficiently small rg , the bands overlap. (In the

diagram only the extreme energy levels corresponding to the top
and bottom of each band are shown.) The fact that, for the

value of rs which actually occurs, the first and second bands

(the 3$- and 3/>-bands) overlap is not of much importance since
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sodium is monovalent and the valency electrons only half fill

the first band. For the alkaline earths, however, the overlapping

is not trivial. These metals have two valency electrons per atom,

so that they would be insulators if the two lowest bands did

not overlap. (This does not apply to Be and Mg since they do

not have cubic structures.) It is very satisfactory that calcu-

lations by Manning and Knitter (?) for calcium show that there

is a decided overlapping of the bands, and therefore that the

metallic nature of the alkaline earths is consistent with the theory.

01 23456789 10 11 12

Fig, 8. The energy bands in sodium.

Some of the wave functions calculated by Slater are shown in

fig. 9; the thick lines represent the actual wave functions, while

the dotted lines represent the wave functions of perfectly free

electrons, i.e. ei(kix+k*y+k*z\ It will be seen that over most of

the crystal the wave functions are well represented by those for

free electrons, particularly for small values of &, the deviations

occurring only inside the atomic cores. It is for this reason

that many of the properties of metals can be explained so

successfully by assuming that the valency electrons behave as

if they are perfectly free. A further important point is illustrated

by the fact that the curves b and c have $-like properties at some

points and />-like properties at others.f This means that, when

the energy bands overlap, the states can no longer be regarded

as being derived from single atomic states; the states have

t A p wave function has a node at the centre of an atom while an s wave
function has not.
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become mixed and there is no sharp distinction between the

symmetry properties of the wave functions belonging to

different bands.

The energy bands have also been found for lithium (3,4),

diamond (5,6), calcium (7), copper (8,9), and silver do); also for

LiF and LiH do and NaCl (12).

Fig. 9. Wave functions for the 3s-electrons in sodium as functions of the

distance in the (in) direction, a, wave function at the bottom of the

band ; b, c
y real and imaginary parts of the function whose wave-length is

eight times the lattice constant; d, wave function at the top of the band.

2-5. The density of states.

Although a knowledge of the energy levels and wave functions

of a crystal is essential for a complete description of all its

properties, and in particular for the discussion of transport

phenomenon, yet knowledge of a much less detailed nature is

sufficient for a discussion of the simpler equilibrium phenomena.
For example, the specific heat of the electrons can be found if

the density of states n(E) is known. We define n(E) dE as being

the number of energy levels per unit volume lying in the range

E, E+dE. Hence

n(E) dE=

the integral being taken over the part of the k space lying

between the energy contours E and E+dE. The proportionality

factor is fixed by the fact that, when the integral is taken

through the fundamental cube Tr/a^fe^ J^, fcg^TT/a, the
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number of energy levels per unit volume must be ar3,

the

number of atoms per unit volume.

For perfectly free electrons the energy contours are spheres,

and, since the volume in k space contained between two

concentric spheres of radii k and k= dk is 47rk
2
dk, we have

2
27T

Further, E=A2 2
/(87r

2
m), so

n() = 27r(2w)U-
3

*. (27)

This expression for n(E) is not correct when we take the zone

structure into account, but it is still a good approximation when

the energy contours do not approach the zone boundaries too

closely. Even when the binding forces are fairly large, and the

energy bands narrow, the energy is given by E^=h2k2
/(8n

2
m*)

for not too large values of k, where m* is the effective mass of

the electron, and we can therefore use (27) with m* instead

of m. The effect of the binding is, therefore, to increase n(E)
but to leave the variation with E practically unchanged.
The zone structure has a very marked effect on n("), which is

usually exceedingly complicated. Fig. 10 shows n(E) when the

energy contours are of the type given in

fig. 6, p. 20. For small values of E the

energy contours are spheres, so that

n(E) oc E*. As the contours deviate from

the spherical shape, n(E) increases more

rapidly than E* and reaches a maximum
when the contour just touches the zone

n(E)

E
boundaries. The density of states now Fig. 10. The influence of

rapidly decreases with E until the the energy discontinuities

t .
on the density of states,

minimum energy of the second zone

is reached; the energy levels of the second zone then start

contributing, and n(E) increases once more. If the energy
zones do not overlap, the density of states in the first zone

reaches a maximum and then drops to zero. There follows

a region in which there are no energy levels, after which the

energy levels of the second zone begin. This behaviour is shown
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in fig. ii
(i). If the two zones only just overlap, as in a semi-

metal like bismuth, the form of n(E) is as shown in fig. 1 1
(ii).

E E
(i)

"
(ii)

Fig. 1 1 . The density of levels for (i) an insulator and (ii) a semi-metal.

2*51. For convenience in calculation it is often essential to have

a simplified model which possesses all the essential features of

an actual metal for the problem in hand, but which is such that

all the calculations can be carried out exactly and without too

much labour. The simplest of these models is that of perfectly

free electrons. This is usually a good enough model for mono-

valent elements for those phenomena which are the same for all

directions in the crystal. This model is quite inadequate for

metals in which the electrons partly occupy two bands, in

particular for divalent metals. If it is sufficient to assume that

band? r\(E)

Fig. 12. The energy levels for two overlapping bands of normal form and the

density of states.

the metal is isotropic, the simplest model which can be used

for a divalent metal is as follows. We take two overlapping

bands, as shown in fig. 12 (i), in each of which E is a function

of
|
k

| only. For the lower band, which is nearly filled with

electrons, the energy is given by

A2
I k I

2~ * ' '

(A>o) y (2-8)
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while in the upper band

A2
I k I

2n
| KJ_ , ,

For this model the density of states is given by

n(E) = 27Th-*{(2m1)* (A - )* + (aw,)* *}, (a- 1 o)

the first term being omitted when E>A and the second when

; n(E) is shown in fig. 12 (ii). When the energy is given

by (2-8) and (2-9) we say that the bands are of normal form.

2*52. Of particular interest is the density of states in copper
and the neighbouring elements in the periodic table, nickel,

cobalt and iron. Copper possesses one 4$-electron outside a

closedM shell, but the existence of divalent copper ions shows

that the excitation energy of one of the 3rf-electrons is at most

of the same order of magnitude as the valency forces which

exist in chemical compounds, which are also of the same order

as the forces in the solid state. This means that, whereas in

sodium, for example, the effect of the 2/>-states on the 3^-band

can be neglected, in copper the 4$- and 3^-bands overlap.

(We have already seea that when two bands overlap the wave

functions get mixed up, but it is convenient to label the bands

by the atomic states to which they tend as the lattice constant

becomes infinite.) Now, although the 4$- and 3rf-electrons have

nearly the same energy, their wave functions are entirely

different, the ^d wave functions being compact and the 4$

wave functions being very spread out. Since the width of a band

is determined by the effect of the electrostatic forces of the

neighbouring atoms on an electron, and since the width there-

fore depends on the overlapping of the wave functions from

one atom to the next, the 4^-band should be of approximately
the same width as the sodium bands, while the 3^-band should

be narrow. In other words, the 3rf-electrons have a large

effective mass and move only sluggishly. The density of states

in the 3*/-band is thus abnormally high; in addition there are

five 3</-states, and this further increases the density of states.

Some results of calculations by Slateroa) based on work by
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Knitter (8) are shown in fig. 13, n(E) being given separately for

the 3^- and 4^-bands. As the figure shows, it is reasonable to

assume that the 3</-band is of normal form near the top and

bottom of the band, but not elsewhere. The numbers i to 12

indicate how much of the bands is occupied when there are

i to 12 electrons per atom. We see that, for copper, the 3^-band

is full, as we should expect, and that there is one electron per

atom in the 4$-band. For nickel, on the other hand, not all the

Fig. 13. The density of levels in the 3^- and 4^-bands.

ten most loosely bound electrons are in the 3^-band but some

electrons overlap into the 4$-band, leaving an equal number of

holes in the 3^-band. Evidence discussed in 56i indicates

that there is about 0-6 electron per atom in the 4^-band. That

this overlapping should occur is not surprising since in the

normal state of the free atom two electrons are in 4^-states.

From the above discussion we conclude that the effect of the

closed group of 3^-electrons will not be noticeable in copper,
but that the large density of the 3^-states in nickel should have

a considerable effect on the properties of the metal.
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Chapter III

THE STRUCTURE OF METALS

3- 1. Cohesive forces in metals.

Solids may, according to the nature of the cohesive forces, be

roughly divided into ionic, covalent, molecular and metallic

classes, but the division is somewhat arbitrary and there is no

such sharp demarcation as exists, for example, between metals

and insulators if we take electrical conductivity as the criterion.

The cohesion of ionic crystals such as sodium chloride can be

readily explained by assuming that, superimposed on the

coulomb forces between the ions, there are short-range repulsive

forces which prevent the collapse of the crystal. The potential

energy of two ions is assumed to be of the form Ar~m /ir*
1
,

where m is a number of the order of 10, the constants A, fi and

m being, in principle, calculable from the crystal structure and

the constitution of the ions. The cohesion of molecular crystals

is explained in the same way, except that the attractive forces

are van der Waals forces instead of coulomb forces, and the

potential energy of two molecules is of the form Xr~m ^r~
n
'^

where m>n since the forces must be attractive for large r.

Examples of molecular lattices are provided by hydrogen and

the inert gases. Strong valency forces bind two atoms of

hydrogen together to form a molecule which is a saturated

structure unable to form bonds with another atom or molecule,

and so the only attractive forces between two hydrogen molecules

are the weak polarization, or van der Waals, forces.

Diamond affords the simplest example of a covalent structure.

Each atom is surrounded by four atoms at the corners of a

regular tetrahedron, and, since there are four electrons per atom,

each atom can be considered as sharing one electron with each

of its four neighbours. The atoms are therefore linked by bonds,

so that the whole crystal can be thought of as a gigantic molecule.
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In this case the cohesive forces are exchange forces which arise

owing to the sharing of two electrons (one from each atom)
between two atoms. However, the concept of localized bonds

is at best an approximate one and breaks down even in fairly

simple molecules, the difficulties in assigning the bonds in the

benzene ring being notorious. In benzene three bonds of each

carbon atom can be assigned without difficulty, one to a hydrogen
atom and two to the neighbouring carbon atoms. This leaves

six electrons, one from each carbon atom, to be accounted for.

These electrons cannot give rise to bonds of the normal type,

and they are to be thought of as mobile electrons shared by the

whole of the benzene ring.

The metallic type of binding is the extreme type in which

all the most loosely bound electrons are shared between all the

atoms in the crystal, there being no connexion between the

valency of the substance and the number of nearest neighbours
of an atom in the crystal, as in covalent solids. We may therefore

say that the binding forces are of infinitely long range, and, since

the electrons are shared by all the atoms, we see that the

structure of alloys will be determined in the first place by the

number of electrons present, and only secondarily by the nature

of the atoms from which the electrons come. This is the

explanation of the inability of the ordinary valency rules to

account for the existence of the so-called intermetallic com-

pounds.
In dealing with questions concerning cohesion it must be

kept in mind that all the systems of classification are approxi-

mations only. What determines this classification is the nature

of the state of lowest energy of the body, and it is only in very

simple cases that we can be quite sure what this state is. Even

in complex atoms and molecules the energy level system is not

easy to unravel, while in crystals it is of enormous complexity.

The different categories outlined above are only limiting cases

in which the conditions have been so simplified that we can

deal with them, and it is unlikely that these conditions apply in

their entirety to any actual substances. For example, to obtain

covalent binding we must assume that an electron on one atom
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only interacts with one of the neighbouring atoms, and that

these neighbouring atoms do not interact with each other. The
metallic binding corresponds to the opposite limiting case in

which the effect of distant atoms is as important as that of

neighbouring atoms. We must, therefore, not be surprised that

many solids refuse to fit into these categories, but appear to

have some of the properties both of covalent and of metallic

substances.

3-2. The binding energy of sodium.

The methods by which the energy levels of sodium can be

obtained have been discussed in 2-4, and it was shown that

the lowest energy level of a free electron has, as a function of

the lattice constant, a pronounced minimum. The extra binding

energy over that of the free atom is caused by the presence of

the atoms surrounding a given atom, which thereby make the

wave function periodic with the unit cell as its period, whereas

in the free atom the wave function drops rapidly to zero as the

distance from the nucleus becomes large. This extra binding

energy, however, does not give the total binding energy of the

metal, which is the resultant of a number of almost compensating
contributions.

The most important repulsive effect comes from the kinetic

energy of the electrons, or, in other words, from the fact that

all the valency electrons do not occupy the lowest energy level

but half fill the 3^-band. The magnitude of the kinetic energy

is easily calculated if we assume, as is verified by the calculations

of Slater on which fig. 8, p. 24, is based, that the effective mass

of the electrons is equal to the ordinary mass of an electron.

We have in fact for the kinetic energy per unit volume

E, (3-i)

where EQ is the energy of the highest occupied state relative to

the bottom of the 3^-band. (The factor 2 occurs because each

level is occupied by two electrons with opposite spins.) Now,
if n is the number of electrons per unit volume, EQ is determined

< 33 > 3
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from the fact that the number of occupied levels per unit volume

must be \n. Hence

w= n(E)dE. j (3-2)
J o

Now n(E) is given by (2-7), so that

Jo

4 A K1 _ I *J I

Also t/kln
=

47r(2w)*/r-
3 f *d
Jo

(3-5)
\",

The other contributions are much more difficult to calculate.

Since, by the exclusion principle, two electrons with the same

spin cannot be in the same state of motion, we see that there

is a tendency for electrons with parallel spins to be on the

average somewhat far apart. Now our calculations so far have

been based on the idea that each electron moves in the average

"smeared" field of the ions and of the other electrons, this

average being taken without regard to correlations in the positions

of the electrons. Since there are in fact such correlations, which

tend to make electrons with parallel spins avoid one another,

we have overestimated the mutual potential energy of the

electrons, which is a repulsion, and to compensate for this we
have to introduce an extra binding energy. This energy is called

the exchange energy since it is the analogue for free electrons

of the exchange energy in molecules. There are, moreover, also

correlations between electrons with opposite spins and these

introduce a further binding energy which is known as the

correlation energy. When all these corrections have been made (O,

we obtain for the binding energy per electron as a function of

the lattice constant the upper curve shown in fig. 7, p. 23, which

has a very flat minimum at r8
= 2*27 x io~8 cm. Since sodium is

body-centred cubic and therefore has two electrons in the unit

<34>
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cell, the atomic volume is a3
,
which gives rs

=
0(3/877)*. Thus

the calculated lattice constant is = 4/62x io~8 cm. and the

binding energy is found to be i'i3 e.volts/atom, i.e. 26 kcal./gram

atom. The experimental values are a=^z^x io~8 cm. and

30 kcal./gram atom for the binding energy. Such close agree-

ment is almost certainly fortuitous, and the results for other

metals are not so good.

3-3. The compressibility.

The compressibility K is determined by the curvature of the

energy curve at the minimum, and, as fig. 7 shows, the minimum
occurs at a point where the energy of the lowest state is nearly

a linear function of a. The curvature is actually mainly deter-

mined by the variation of C/kln , and we can obtain the order

of magnitude of K by neglecting the other parts of U. Since

the pressure/) is given byp= d(U/n)/dv, where v is the atomic

volume and n is the number of atoms per unit volume (thus

U/n is the internal energy per atom), we have

i dp d? IU\ , ,.-= -v-f^v-j-^ . (3-6)K dv dv2
\nj

^ '

Now v = ^7Trs
3

, so

K 3 drs (inr* drs \nj\ 12nrs dr*
'

since d(U/ri)ldrs
= o is the condition for equilibrium.

If we now substitute for U the expression (3-5) for C/kin ,

and remember that nrl v = fTrr
3

,
we find that

(3'8) ,

ioma5
'

The calculated and observed values of K for the alkalis are given

in Table I; the observed values are for temperatures ranging

from 30 to 50 C. The agreement is as good as can be expected

considering the rough approximations used. Another result

which is obvious from fig. 7 is that for high pressures the

compressibility is determined largely by the energy curve for

the lowest state, which has a large curvature near the minimum.

< 35 > 3'2
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Thus the compressibility of the alkalis must have a very large

(negative) pressure-coefficient.

TABLE I. Compressibilities of the alkalis in (kg./cm.
2
)"

1

The compressibility of the noble metals is low, /c for copper

being 7*2 x io~7
(kg./cm.

2
)"

1
. This is because, owing to the

small lattice constant, the atomic cores are almost in contact,

whereas in the alkalis the structure is more diffuse and the cores

are very far apart. The expression (3-8) is, therefore, not even

approximately correct for the noble metals; their compressibility

is determined almost entirely by the deformability of the cores.

3-4. Survey of the metallic structures.

Although we possess considerable knowledge of the energy

levels of several metals, it is not yet possible to predict the

crystal structure of a metal, the reason being that the differences

in energy between the various structures are less than the errors

in the numerical calculations which have so far been carried out.

It is clear that for sufficiently short-range forces the face-centred

cubic (i.e. cubic close packed) structure is more stable than the

body-centred cubic, since the number of nearest neighbours,

the coordination number, is twelve for the former and only

eight for the latter. Since, however, the metallic forces are long-

range forces the paucity of nearest neighbours in the body-
centred lattice is compensated by the much greater number of

second nearest neighbours as compared with the face-centred

lattice. The approximate method of Wigner and Seitz gives, in

fact, the same energy for both structures. For, their method

consists essentially in solving the Schrodinger equation inside a

sphere whose volume is the atomic volume, and hence the

energy value calculated by them depends only on the atomic

volume and not on the crystal structure.

The only properties which vary widely from metal to metal

<36 >
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are those which depend upon the magnitude of the energy
discontinuities at the zone boundaries and upon the relation of

the highest occupied energy levels to these boundaries. Now it

is just for these energy levels that our quantitative knowledge
is weakest, and so all that we can do at present is to interpret

the properties of metals in terms of the distribution of the

energy levels, not to predict them.

3*41. Typical metallic structures.

The majority of the elements crystallize in one of the metallic

structures, the body-centred cubic, the face-centred cubic and

the hexagonal close packed, the cells of which are shown in

fig. 14. The coordination numbers of the lattices are as follows.

Fig. 14. The structures of (i) body-centred cubic, (ii) face-centred cubic and
(iii) hexagonal close packed lattices.

In the body-centred structure each atom has eight nearest

neighbours at a distance ^^a, the atoms at the centres of the

cubes being the neighbours of those at the corners. In the

face-centred structure the atom at (o, o, o) has as its nearest

neighbours the twelve atoms at the face centres such as

( |fl, J#, o), which are at a distance ^2 a. In the hexagonal

structure each atom has six neighbours at a distance 0, which

lie in the basal plane through the atom perpendicular to the

hexagonal a? is. There are six others at a distance V(ia
*+ ic2)

three lying jbove and three below the basal plane. If the axial

ratio /a
=

(8/3)*, these twelve neighbours are all at the same

distance, tne case of ideal close packing; the coordination

number is then twelve, while, if c\a deviates very much from

the ideal ratio, the coordination number is six.

<37>



THE STRUCTURE OF METALS
It is clear that the binding in these lattices cannot be covalent

and must be metallic in character. Thus, a body-centred

structure, for example, could only be cpvalent if each atom

shared one of its electrons with each of its eight neighbours,

which would require far too much energy for the structure to

be stable.

3-42. The simplest way of dealing with the body- and face-

centred cubic lattices is to regard them as lattices with a basis.

For the former the basis consists of two atoms at (o, o, o) and

(#, \a, \d) y while for the latter the basis consists of four atoms

at (o, o, o), (\a, |a, o), (|a, o, \a) and (o, \a, \d). The whole

lattice is obtained from the basis by translations along the axes

through multiples of the lattice constant.

For the body-centred lattice it is well known that, owing to

the interference of the waves scattered by the two atoms of the

basis, no reflexions take place from the (i, o, o) and similar

lattice planes. Correspondingly, the first energy discontinuities

arise from the (i, i, o) planes and thus the first Brillouin zone

for the body-centred lattice is the dodecahedron shown in

fig. 5 (ii), p. 19, which can accommodate four electrons per unit

cell of the crystal. There are two atoms per unit cell, and hence

in the alkalis the valency electrons just fill half of this zone. Now
we should expect the energy contours to be approximately

spherical unless they approach the zone boundaries closely. If

we assume them to be spheres, the highest occupied level has

a radius &
,
where ^nk^ : (27r/a)

3=2 : 2, since the fundamental

cube in k space of side 27T/a can accommodate two electrons

per atom and the number of energy levels in a region of k space

is proportional to its volume. Hence k =
(67T

2
)*/a

=
3-898/0. The

radius of the sphere inscribed in the dodecahedron is equal to

the distance of the planes (2-3) from the origrn, i.e. it is

>/27r/a
=

4'44/fl, which is considerably larger than &, . Thus the

approximation of treating the energy contours of the occupied
levels as being spheres, i.e. of treating the electrons as free

electrons, is seen to be a reasonable one for the alkalis.

Little can be said about the energy contours of the other
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body-centred metals, except that the zone structure must reduce

the metallic character of the substances. The valency electrons

of barium, for example, are just sufficient to fill up the first

zone, but in fact they do not do so. Instead they overlap into

the second zone, and the energy discontinuities must be fairly

small.

In face-centred structures the (i, o, o) and the (i, i, o) re-

flexions do not occur. Hence the boundaries of the first zone

are related to the (i, i, i) and (2, o, o) reflexions, the zone being
the truncated octahedron shown in fig. 5 (iv), p. 19, which can

accommodate eight electrons per unit cell. Since there are now
four atoms per unit cell, in the noble metals the valency

electrons just fill half this zone. Just as for the alkalis, it is a

reasonable approximation to assume that the energy contours

are spheres, and that the valency electrons occupy a sphere of

radius kQ= (i2n
2
)^/a

=
^()i/a. The radius of the sphere inscribed

in the Brillouin zone is equal to the distance of the planes (2*4)

from the origin, i.e. it is -^3 71/^
=

5 -44/0. The energy contour of

the highest occupied level therefore approaches the zone

boundary more closely in the face-centred than in the body-

centred structure, and the approximation of free electrons is

presumably not so good.

The first Brillouin zone of the hexagonal close-packed lattice

is somewhat complicated. It consists of

a hexagonal prism surmounted by two

truncated hexagonal pyramids and is

shown in fig. 15. Unlike the zones of the

cubic lattices, it does not contain an in-

tegral number of energy levels since its

volume depends on the axial ratio. By
actual mensuration it can be shown that

this zone can accommodate Fig. 15. The first Brillouin

zone of a hexagonal

close-packed lattice.

electrons per atom. For the axial ratios which occur, (3-9) is

less than 2, and so the electrons of all the divalent hexagonal
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metals overlap into the second zone. To take an actual example,

only 1792 electrons per atom can be accommodated in the first

zone of zinc, the axial ratio being 1-856. .Further, since the

zone is fairly symmetrical, we should expect that the number

actually in the first zone would not be very much less than 1-79,

so that there may be only something of the order of 0*3 electron

per atom in the second zone. Thus, although zinc has two

valency electrons, we should expect it to be much less metallic

in character than the alkalis.

3*43. Other metallic structures.

Some metals crystallize in slightly distorted forms of the

typical metallic structures. Examples are mercury, whose lattice

is a rhombohedral distortion of a face-centred cubic lattice, and

indium and y-manganese which have tetragonal lattices. Other

structures are those of white tin and the complicated structures

of a- and yff-manganese. It is not difficult to find the Brillouin

zones of these metals, but it has not proved possible to correlate

the shapes of the zones with the properties of the metals, and

so we do not discuss them here.

3*5. A survey of the structures of the semi-metals.

Most of the elements with incomplete groups of four, five and

six electrons appear at first sight to form covalent structures in

which each atom has four, three and two nearest neighbours

respectively, but that this is not an exact description of affairs

is shown by the fact that many of these elements have a con-

siderable electrical conductivity.

The elements selenium and tellurium have lattices in which

the atoms are arranged in spiral chains as \ r

shown in fig. 16, so that each atom has two

closeneighbours in each chain, and four more

distant neighbours in adjacent chains. In

tellurium the interatomic distances are

2*86 X I0~8 cm. and 3-46 X IO~8 cm. Thus Fig. 16. The structure

if we are to describe the lattice as covalent,
of selenium.

the forces in each chain must be covalent while the chains are

kept together by van der Waals forces.
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The structures of metallic phosphorus, arsenic, antimony and

bismuth are rhombohedral in which the atoms are arranged in

double layers. Each atom has three near neighbours in the

double layer in which it is situated and three others at a greater

distance in an adjacent layer. If the forces keeping each double

layer together are covalent forces, the forces between the layers

must be van der Waals forces, but since the interatomic

distances between nearest and next nearest neighbours are

i'74x io~8 cm. and 3-01 x io~8 cm. in phosphorus, while they

are nearly equal (3-105 x io~8 cm. and yqj^x io~8
cm.) in

bismuth, the description of the structure as covalent may be

a reasonable approximation for the former substance but it must

be a bad approximation for the latter.

Although the semi-metals can be classed neither as covalent

nor as metallic substances, yet, if we have to choose between the

two descriptions, the metallic one seems to be the better, though

quantitative calculations have not yet been carried out to

confirm this. If the metallic description of these substances is

to be at all adequate, we should expect there to be a Brillouin

zone just capable of holding all or nearly all the electrons. As

we have seen, this is a question which is settled by the crystal

structure alone, and it is not difficult to find Brillouin zones

which are capable of holding five electrons per atom in the case

of the bismuth structure and six in the case of the selenium

structure. In addition to this, it is necessary, if these solids are

to have properties intermediate between those of metals and

insulators, that the energy discontinuities should be neither too

small nor too large. No quantitative calculations of the dis-

continuities have yet been carried out, and all that we can do is

to infer from the known properties of the substances that the

discontinuities are such that only very few electrons overlap

into the higher zones, leaving a corresponding number of holes

in the almost full zone. Evidence discussed in 6*25 suggests

that the number of electrons in the second zone in bismuth is

about io~3 per atom.

The remaining semi-metals are carbon, silicon, germanium
and (grey) tin, which have diamond lattices. For this structure
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there is a zone which has twice the linear dimensions of the

dodecahedron shown in fig. 5 (ii), p. 19, and which can just

accommodate four electrons per atom. The energy discon-

tinuities at the surface of this zone must be fairly large in

diamond and must decrease with increasing atomic number,
since diamond is the only one of these substances which is an

insulator. Graphite, the other form of carbon, has a complicated

sheet-like structure, the atoms in each sheet forming regular

hexagons. Thus graphite bears the same relation to the benzene

structures as diamond does to the ordinary tetrahedral carbon

compounds. It behaves as a highly anisotropic semi-metal,

which is what we should expect, since the forces between the

atoms in a sheet must be very different from the forces holding

the sheets together.

3-6. Alloys.

When metals are melted together they may or may not mix,

and, if they do, it does not follow that a homogeneous solid

solution will be obtained on cooling. The possible behaviour

of even binary alloys is so complex that the factors which

influence the formation and stability of alloys have only been

elucidated in some very simple cases.

One of the important factors in alloy formation is the relative

size of the metal atoms, since, if the atoms differ too much in

size, it is impossible to arrange them regularly so as to form an

alloy devoid of cavities. Another important factor is the

"electron concentration". It has been found that certain types

of crystal structure tend to be formed when the ratio of the

number of valency electrons to the number of atoms reaches

certain fairly precise values. For example, two empirical rules

enunciated by Hume-Rothery are that the body-centred cubic

/?-brass structure tends to be formed when the electron con-

centration (the value of the ratio above) is f ,
and that the

complex cubic y-brass structure tends to be formed when the

electron concentration is f^. It has already been pointed out

in 3-1 that the cohesive forces in metals and also in alloys are

to be thought of as belonging to the whole system of valency
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electrons and not as being localized, between neighbouring

atoms. It is, therefore, clear that, since the energy levels of

the electrons depend upon a large number of factors, we should

expect few regularities in the behaviour of alloys. For those

alloys which obey the Hume-Rothery rules, however, it has been

found that the most stable structure at any concentration is that

which possesses a Brillouin zone capable of accommodating the

valency electrons and leaving the largest number of levels vacant.

For further details concerning these alloys the reader is referred

to any of the more recent text-books on metals, but it must be

emphasized that the Hume-Rothery rules are by no means of

universal application and that the theory of alloys is still only
in a primitive state.
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Chapter IV

SEMI-CONDUCTORS

4*1. General principles.

In 1*3 we saw that an insulator is a substance in which the

electrons just fill an energy band at the absolute zero. At any

higher temperature some of the electrons are thermally excited

into the next, unoccupied, band, leaving some vacant spaces in

the occupied band. The number of electrons excited must be

of the form e~blT , where b is connected with the energy step

between the two bands, and since these electrons are free to

move through the lattice they produce an electrical conductivity

whose temperature variation is also of the form e~blT . Insulators

such as sodium chloride do show a weak electrical conductivity,

but this is due to the electrolytic conduction of positive ions, as

is shown by the polarization effects set up by the passage of the

current. There are, however, substances, conventionally known

as semi-conductors, which have at room temperatures an

appreciable electronic conductivity which varies rapidly with

temperature. These substances, which are of great technical

importance, owe their properties to the presence of impurities

(this was first clearly recognized by Gudden), and therefore

it is not possible to deal theoretically with all the details of

their behaviour, but the general principles are well under-

stood.

Many substances such as graphite, silicon, titanium and

zirconium were formerly thought to be semi-conductors since

their resistances decreased as the temperature increased. This

anomalous behaviour is now known to be due to the presence

of highly insulating layers of oxides, and these substances are

good metals or at worst semi-metals in the pure state. The only
reliable test for distinguishing between a semi-conductor and a

metal is that the conductivity of a metal is increased by purifi-
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cation, while the conductivity of a semi-conductor is reduced by
the removal of impurities.

The ways in which impurities can affect the conductivity of

insulators can be most readily understood with the help of

fig. 17, in which two energy bands of a crystal are shown. The
band F is completely filled with electrons

when the temperature is zero, and the

band E is completely empty. Consider

the effect of an impurity atom D which

has one valency electron, the energy level

of this electron lying between the two
i- j rni_- i ^ *. *. i _u Fig- 17- The energy levels
bands. This electron cannot take part ^ a semi-conductor,

directly in conduction if the number of

impurities is small, since to do so it would have to jump to a

similar state on another impurity atom. The probability of

such a jump decreases very rapidly as the distance between

the atoms increases, and is negligible for the concentrations

with which we are concerned. The electron on the impurity

atom can only take part in conduction by being first thermally

excited into the empty band
",
when it is free to move

through the lattice. In this case the conductivity still varies

as e~blT y
but b is now connected with the energy difference

between the level D and the band E and not with the energy
difference between the two bands. Thus by introducing suitable

impurities we may be able to make b so small that the substance

has an appreciable electronic conductivity at room temperatures.

We distinguish four important cases.

(1) If the impurity atoms are electropositive and the energy

levels of their valency electrons lie between the two bands, the

atoms act as donors of electrons to band
,
and the number of

electrons in band E is of the form e~blT .

(2) If the impurities are electropositive and the energy levels

lie in the band
,
the atoms are permanently ionized and the

number of electrons in band E is constant, in so far as the

electrons are derived from the impurities.

(3) If the impurity atoms are electronegative they may have

vacant energy levels, such as A in fig. 17, lying between the two
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bands. In this case the impurity atoms can act as acceptors of

electrons from the band F\ holes are created in band F and

their number is proportional to e^T
^ where b is connected with

the energy difference between the band F and the energy

level A.

(4) If the impurity atoms are electronegative and are such

that their vacant levels lie in the band jF, holes are created in

the band F and their number is constant.

We now proceed to discuss some of the properties of semi-

conductors and to see how far they can be understood in the

light of the above principles. It must, however, be borne in

mind that there is considerable dispute about many of the

experimental details.

4'2. Criteria for establishing the nature ofthe conductivity.

Since both the electronic and electrolytic conductivities in

semi-conductors are proportional to e~blT
, we cannot decide the

nature of the conductivity by measurement of the temperature

coefficient of the conductivity alone; other evidence must be

invoked. Polarization effects and departures from Ohm's law

are evidences of electrolytic conductivity and their absence is

conclusive proof of the existence of electronic conductivity.

However, even when there appears to be a transport of positive

ions obeying Faraday's law, it cannot necessarily be concluded

that the conductivity is overwhelmingly electrolytic. This is

shown by the dispute concerning the behaviour of a-Ag2S,

which is the modification stable above 179 C. That the con-

ductivity is electrolytic seemed to be established by the fact

that the amount of silver removed from a silver anode in contact

with the sulphide is exactly that given by Faraday's law. On
the other hand, the conductivity does not vary rapidly with

temperature and is about fifty times greater than that of any
known electrolytic conductor. Further, the mobility of the

silver ions calculated from the conductivity is very much greater

than that calculated from diffusion measurements. The dis-

crepancy was finally explained away by Wagnerd), who showed

that the disappearance of silver from the anode was a purely
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secondary diffusion phenomenon not directly connected with

the passage of the current through the body of the sulphide.

It now seems certain that about 99 per cent of the current in

a-Ag2S is carried by electrons.

For substances in which the conductivity has been proved to

be electronic, it is very important to know whether the current is

carried by electrons in a nearly empty band or by "holes'* in

a band nearly filled with electrons. Since the "holes" behave

in many ways like positive electrons, this question can be

settled by measuring any quantity which depends on the first

power of the charge of the carrier; such quantities are the Hall

coefficient and the thermoelectric power ( 6-3, 6-5). It must,

however, be remembered that the current may in some sub-

stances be carried both by electrons and by
"
holes ". In this

case measurements of the Hall effect merely show which is the

more important method of transport. If we call conductors in

which the current is mainly carried by electrons in a nearly

empty band "excess conductors", and those in which it is

carried mainly by holes "defect conductors", the following are

some of the substances in the two classes (2-11). Excess con-

ductors: a-Ag2S, MoS2 , ZnO, A12O3 , Ta2O5 ,
V2O5 , WO3 .

Defect conductors: Cu2O, Cul, UO2 ,
NiO.

4*3. Oxidation and reduction semi-conductors.

Many of the most important semi-conductors are oxides and,

even in their purest forms, are slightly dissociated; they owe

their properties to the presence of a small excess of oxygen or

of the metal above the stoichiometric amount. These substances

can be classified according to the way in which they behave

when the oxygen content is varied.

Substances whose conductivity increases with the oxygen
content are called oxidation semi-conductors, since the con-

ductivity is due to the presence of excess oxygen, though it is

not perfectly clear what is the exact mechanism of producing
the conductivity. The oxygen atoms may act directly as acceptors

of electrons or, in say cuprous oxide, they may first abstract

electrons from cuprous ions so as to turn them into doubly
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charged cupric ions, which then act as acceptors. Whatever the

mechanism, the ultimate unit which is responsible for the

conductivity is electronegative, and oxidation semi-conductors

should be defect conductors in which tlie conductivity is due

to holes in a nearly filled band.

Reduction semi-conductors are those in which the con-

ductivity decreases as the oxygen content increases. Their

conductivity is therefore due to the presence of excess metal

atoms which act as donors of electrons.

The few experiments which have been carried out confirm

the conjecture that oxidation conductors are defect conductors

and that reduction conductors are excess conductors (but not

necessarily the converse). A further rule has been formulated

by Friederich(i2), Le Blanc and Sachses), Meyerd4) and

Wagner (is), which states that compounds in which the metal

exerts its smallest valency are oxidation conductors, while

saturated compounds in which the metal exerts its highest

valency are reduction conductors. This rule has been proved to

be correct for the defect conductors Cu2O, Cul, NiO and UO2

in which the acceptor atoms are probably divalent copper,

trivalent nickel and sextivalent uranium, and also for the excess

conductors a-Ag2S, ZnO, A12O3 and Ta2O6 . It is probably
true in other cases such as CdO, FeO, CoO, TiO2 , but complete
measurements of the Hall effect (or the thermoelectric power)
and of the influence of the composition on the conductivity have

not yet been carried out.

The above rule does not appear to be true in all cases, and

there are some substances such as cupric oxide whose con-

ductivity is independent of the oxygen content. The significance

of the exceptions is at present obscure.

4*4. The dependence of the conductivity on the amount
of impurity.

The conductivity of most semi-conductors can be well

represented by the formula <r= ae~WT or cr= a'Tse~blT over a

large temperature range. The two formulae are indistinguishable

experimentally, and, though the second is to be preferred on
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theoretical grounds, the index s cannot be determined except

by making certain assumptions whose validity is open to

question. Measurements of cr alone do not give the number of

free electrons since cr is given by cr= ne2
r/m, where r is the mean

time of relaxation (see (6-2)). However, only n varies ex-

ponentially with temperature, and so the temperature variations

of n and a are practically the same. If great accuracy in b is

desired, it is better to use measurements of the Hall coefficient

R, since, by (6*10), we have

/v = -^ (4* I )

Snec
VT '

for excess conductors, while for defect conductors the minus

sign is to be omitted. For conductors in which the current is

carried partly by electrons and partly by holes, the numbers of

the carriers cannot be determined with any accuracy.

It seems reasonable to suppose that the quantity a should be

determined by the number of impurity atoms present, while the

quantity b should be independent of that number and should

depend only on the nature of the impurity, since b is connected

with the energy difference between the levels of the impurities

and of the bulk material. This reasoning is based on the

assumption that cuprous oxide, say, in which there are excess

oxygen atoms, behaves, for small concentrations, like an ideal

dilute solution. Now the experimental results show that the

energy kb varies within wide limits, which can only mean that

the above assumption is wrong. For cuprous oxide, kb has been

found by various workers to lie between o-i and 0-4 e.volt, the

great majority of the measurements being near 0-3 e.volt. The

reasons why b is not constant are not at present understood, and

this makes a complete quantitative theoretical treatment im-

possible. Two possible explanations suggest themselves. First,

the additional oxygen atoms may be able to exist only where

there are cracks or faults in the material. They would there be

subject to distorting forces which would alter the binding energy

of the electrons, and therefore also b
y
in an irregular manner.

Secondly, the oxygen atoms may be arranged in clusters, so

that nuclei of cupric oxide are formed. In this case b might be
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expected to vary smoothly with the oxygen content, but

experimental evidence to test this point is lacking.

4-41. The action of the impurities in producing free electrons

can be described by the equation

free electron+ positive ionAbound electron (4-2)

for excess conductors, and by the equation

free hole -f negative ion < bound hole (4-3)

for defect conductors. (In these equations positive ion and

negative ion are to be taken in a relative sense. Thus Cu+ may
have to be regarded as the negative ion of Cu++

.)
Since excess

conductors are easier to think of, we restrict ourselves to the

first case, but the results are the same for both. Let N be the

number of impurity atoms per unit volume, and n the number

of free electrons. Then if n+ is the number of positive ions with

which the free electrons can combine, the law of mass action gives

nn , r̂

where K is the equilibrium constant, since the number of bound

electrons per unit volume to which the right-hand side of (4-2)

refers is Nn. The difficulty in proceeding further is that we
do not know what n+ is. There are, however, two limiting cases

which are easily discussed, (i) If the free electrons can only

recombine with the impurities from which they came, then

n+= n. Since K, apart from powers of T which are unimportant,

varies as e~AEIkT
, where AE is the energy of activation, i.e. the

energy difference between the impurity level and the empty
band of the bulk material, we have

nacN*e-^EikT
, (4-5)

provided that n<^N. (2) If the free electrons can combine with

any of the positive ions in the crystal, then n+ is practically

equal to the number of metal ions present and can therefore

be treated as a constant. We then have

nocNe~AE'kT
. (4-6)

These are the extreme cases. If the free electrons can combine

< 50 >



CONDUCTIVITY OF CUPROUS OXIDE
with only some of the metal ions, say those situated at cracks,

as well as the original impurities, then we have an intermediate

case.

4-42. The two points raised by the theory, namely the de-

pendence of n on N and on AE, are not easily tested experi-

mentally. In the first place the amount of impurity present can

only be found directly when it is sufficiently large to be detected

chemically, and in the second place the amount of impurity is

not necessarily the same as the number of available electrons

if the impurities occur in large clusters. (Only the atoms on the

outside of the cluster would be effective.) The only experiments
which have been carried out to test the theory directly are those

of Wagner(s,6,8) and Badeckerua). Wagner measured the con-

ductivity of cuprous oxide in equilibrium with an oxygen

atmosphere at temperatures between 800 and 1000 C. He
found that the conductivity is a single-valued function of the

oxygen pressure and that approximately

<roc(/> )W. (47)

The chemical reaction can be represented by the equations

O2 +4Cu+^2O~ + 4Cu++, (4-8)

4Cu++^4Cu+ + 4 free holes. (4-9)

The equation (4-9) is the same as (4*3); the cupric ions

abstract electrons from the full band of electrons and produce
holes which are free to carry a current. If square brackets are

used to denote concentrations, we have from (4-8) that

[Cu++]oc(/>0a)v*. (4-10)

In order to determine n, the number of free holes per unit

volume, we have to make some assumption concerning the

number of Cu+ ions which can combine with the free holes.

If we make the assumption which leads to (4*5), then [Cu+] = n,

andso
"ocC/Xx)

1/8
. (4' 11 )

This is in fair agreement with (47) and is an indication that the

reaction can be considered as a homogeneous reaction between

holes and impurities. This is confirmed by the fact that Wagner
found that kb for the conductivity at constant oxygen content
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had the value 0-4 e.volt and was independent of the oxygen
content. It is in any case clear that the experimental results

cannot be reconciled with the assumption which leads to (4*6),

namely that the number of cuprous ions which can combine

with the free holes is very much larger than the number of free

holes, since we should then have cr oc (/>oa)
1/4

-

Similar experiments have been carried out for the reduction

conductor ZnO. Since the conductivity is caused by excess zinc

atoms, the conductivity is reduced by increasing the oxygen

pressure, and it is found that between 400 and 700 C.

approximately. The chemical equations are probably

and Zn<Zn++ + 2 free electrons. (4-14)

Hence the law of mass action gives

PoJP*+*P* = K> (4-iS)

and, if we assume that n= [Zn
+4

~],
we have

c(/ 0t)-w. (4-16)

This does not agree at all well with the experimental result

(4- 1 2). In fact better agreement is obtained if we assume that

[Zn+
+
] is independent of n

y or, what is more plausible, that the

zinc is not completely ionised.

4*5. The photoelectric effect.

Most of the work on semi-conductors has been carried out,

not in equilibrium with oxygen gas, but at fairly low tem-

peratures (less than a few hundred degrees C.) with a constant

amount of oxygen "frozen in". In this case the inner photo-
electric effect has been used to give information concerning the

number of impurity atoms and the energy levels.

The absorption of light by cuprous oxide has been thoroughly

investigated by Schonwald(i7) and Engelhard (is). It was found

that in addition to the absorption band with a maximum at

0*63/4, which is characteristic of the pure substance, there are

weak absorption bands with maxima at o-8/ and 2/1. The
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significance of the band at o-8/J is not known, but the band at

2/1 is definitely associated with the ordinary conductivity

observed in the dark. At first sight these measurements appear
to give us a means of determining AE, the energy required to

create a free hole, and of comparing it with the value of kb found

from the electrical conductivity. There are, however, certain

difficulties in this procedure. In the first place the infra-red

absorption band is of considerable width, and we have to decide

whether to take the long wave-length limit or the position of the

maximum as determining AE. The long wave-length limit lies

at about 4/4, so it is a large energy difference which is in question,

and the matter can really only be decided if we know exactly

what the energy levels are. Moreover, it is known that for

substances like the alkali halides the infra-red absorption bands

become narrower as the temperature is decreased, and the

maximum shifts to higher frequencies. The second difficulty is

discussed below.

In the two extreme cases considered in 4-41 we should have

kb= \AE according to (4-5), and kb=AE according to (4-6).

Now kb is about 0-3 e.volt and the wave-length 2/1 corresponds

to an energy of 0-6 e.volt while 4/4 corresponds to 0-3 e.volt.

Thus either of the two alternative hypotheses can be made

to fit in with the facts, f and neither can be definitely proved
or disproved. For other substances neither hypothesis agrees

well with the facts. It was pointed out by de Boer and

van Geel(ig) that in general we should expect no simple

relation to exist between the thermal activation energy and

the photoelectric threshold energy hv . The first is an energy

difference between two equilibrium states while, on account

of the Franck-Condon principle, the second is not. When
an electron is removed thermally (i.e. slowly) from an atom

the crystal becomes distorted near that atom, but when the

electron is excited by light the lattice does not have time to

take up this distorted form, and so the two energies are not the

f The results would prove that kb= $AE if the excitation energy is de-

termined by the position of the maximum of the absorption band, and that

kb=AE if it is the long wave-length limit which is important.
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same. It therefore appears that direct comparison between

thermal and photoelectric data is not always possible.

The dependence of the photoconductivity on the intensity

of light is more easy to interpret. It is found that the extra

conductivity induced, and therefore the number of electrons

excited, is proportional to the intensity /. Now if N is the

number of impurities, the rate at which electrons are excited is

proportional to NI. The recombination rate lies between those

given by the two limiting cases of 4*41, namely constant xn2

and constant x n. Thus in a steady state the extremes of the

dependence of n upon / should be given by (i) nccN*I*

and (2) n oc NI. The experiments show that in fact n is pro-

portional to /, and thus that, if the same ions are responsible

for recombination in the thermal as in the photoelectric case

(and there is no reason to suppose otherwise), (4'6) is to be

preferred to (4*5). This is to be contrasted with the conclusion,

based on Wagner's results, that (4*5), though not in exact

agreement with the experiments, is to be preferred to (4-6) at

high temperatures.

4*6. Other possible tests of the theory.

There are two classes of semi-conductors for which many of

the difficulties of interpretation are considerably lessened. The
first consists of semi-conductors of the type (2) described in

4 i, i.e. semi-conductors in which the number of free electrons

is independent of the temperature and equal to the number of

impurities. It is, however, very doubtful whether such sub-

stances exist, the only substance so far investigated (4) which

might belong to this class being a-Ag2S. The rhombic /?-modi-

fication, which is stable below 179 C., behaves like a normal

semi-conductor in which some of the current is carried electro-

lytically. The conductivity of the cubic a-modification is about

300 times larger than that of /?-Ag2S just below the transition

point, and it decreases slowly and linearly as the temperature
increases. This decrease is presumably due to the decrease in

the free path, as in metals, the number o free electrons remaining
constant. The properties of silver sulphide have not been
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sufficiently investigated for us to be able to say whether this

interpretation is correct or not, and it is possible that here we
are dealing with a semi-conductor of the normal type, but in

whichAE is small compared with kT, so that, at the temperatures
at which the measurements are carried out, all the impurities

are ionized. Since a-Ag2S is only stable at high temperatures,

this possibility cannot be tested by measurements at low

temperatures.

The other simple type of semi-conductor is that in which

the free electrons are derived from the atoms of the pure
substance and not from impurities. It has been claimed by

Juse and Kurtschatow(2o) that extremely pure cuprous oxide

comes under this category. The inner photoelectric effect shows

that to raise an electron from the filled band to the empty band

in cuprous oxide requires about 2 e.volts. Since this is so much

larger than the 0-3 e.volt (or 0-6 e.volt according to (4-5))

required to transfer an electron to a surplus oxygen atom, the

intrinsic conductivity could only be observed for a very pure

specimen, in which the intrinsic conductivity would not be

masked by the
"
impurity conductivity ", and at a high tem-

perature. There is, however, one factor which favours the

intrinsic conductivity. The electrons from the filled band can

be excited from any of the doubly charged oxygen ions of the

crystal, whereas only the impurities are effective in the ordinary

case and the number of impurities is only of the order io18 to

io20 per cm.3 Therefore if we write cr ae~b!T
y
both a and b

are much larger for the intrinsic conductivity than for the

"impurity conductivity", and the largeness of b is partly com-

pensated by the largeness of a. Juse and Kurtschatow claim to

have measured <r for very pure cuprous oxide and also for

cuprous oxide containing a small amount of oxygen at tem-

peratures high enough for the intrinsic conductivity to be

dominant. They found that kb= o-j2 e.volt. The number of

measurements was, however, small, and their results have not

been confirmed by other experimenters. At the moment it
\p

an open question whether the intrinsic conductivity is obseryrolf
or not.
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If it should prove possible to observe the intrinsic conductivity,

we could test the general assumptions of the theory without

having to make any special hypotheses. When electrons are

excited from the filled to the empty band the number of holes

is equal to the number of electrons and hence (4-5) ought to

apply, except thatN is to be taken as the total number of oxygen
atoms and not the number ofexcess atoms. In this case, therefore,

we have kb= \AE. Deviations from the behaviour predicted by
the simple theory would indicate the formation of such things

as metastable excited atoms and neutral copper atoms, but such

speculations belong to the future.

4*61. Other methods of investigation do not so much test the

theory of semi-conductors as test the theory of the effect

measured. This is certainly true of the change of resistance in

a magnetic field (see 6-34) and to a less extent of the thermo-

electric power. The thermoelectric force per degree d@12/dT for

a couple formed of two specimens of different purity is given

by (T.M. p. 182, equation (267))

a@i 9 k - H9 , ^

-df-**
10
** (4" 7)

the minus sign referring to excess conductors and the plus

sign to defect conductors.

The measurements of Wagner (6) are in reasonable agreement
with this formula, the measured thermoelectric force for two

specimens of cuprous oxide being 3 x io~5
volt/degree at 900 C.

and the calculated value being 3-6 x io~5
volt/degree.

The thermoelectric force of semi-conductors is large in

comparison with that of metals (see 6-53), and hence the

absolute thermoelectric force of a semi-conductor can be found

fairly accurately by using a couple consisting of a metal and the

semi-conductor, and not correcting for the contribution of the

metal. The most important part of the thermoelectric force of

a semi-conductor comes from the term log i/n (compare (4-1 7)),

and since n is of the form nQe~
blT

,
we have

d& _kb , ox= constant + . (4-18)
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The first term is not really a constant, but its variation with T is

small, and in any case it is small compared with the second

term.

Hochberg and Sominski(") have recently carried out measure-

ments on the temperature dependence of dOjdT for a number

of substances. They find that (4*18) holds for WO3 and also,

but not so well, for V2O5 . For MoS2 and Cu2O, on the other

hand, they find that d0/dT is practically constant. It is well

known that the theory of the thermoelectric effects is not very

satisfactory even for metals, and the lack of agreement between

(4-18) and the experimental results may be due to some neglected

factor in the theory. However, the experimental accuracy is not

great, and the results do not agree with those of Vogtteo for

cuprous oxide. Vogt found that the thermoelectric power of

cuprous oxide against copper was about 1-3 mV./degree at room

temperature and that it increased considerably as the tem-

perature decreased. The temperature variation between 60

and 70 C. was compatible with the i/T law, but the results

were not sufficiently precise either to confirm or refute it with

certainty.

4*7. Crystal rectifiers.

One of the most important technical applications of semi-

conductors is to the rectification of alternating currents. It has

been known since 1874 that, when a metal point is placed in

contact with a semi-conductor, either in the form of a crystal

or as tarnish on wires, a current passes through the circuit more

easily in one direction than the other.

The best known commercial rectifier, the cuprous oxide

rectifier discovered by Grondahl in 1920, owes its advantages

to the method of manufacture. (For a full description of the

rectifier see
(22).)

A sheet of copper is partially oxidized at a high

temperature, so that a layer of cuprous oxide is formed which

has a very intimate contact with the mother copper. Thus

rectification takes place over a large area, and the rectifier is

capable of carrying large currents. By measuring the potential

difference between various parts of the rectifier, it has been
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found that there is a highly insulating layer, the barrier layer,

between the oxide and the metal, and that the presence of this

layer is essential for the occurrence of rectification. Since the

conductivity of cuprous oxide is due to the presence of excess

oxygen, it is highly probable that the barrier layer consists of

very pure, and therefore highly insulating, cuprous oxide. It

would indeed be difficult for an excess of oxygen to exist in

the immediate neighbourhood of the mother copper.

Since the resistance of a homogeneous substance is necessarily

the same in one direction as in the opposite, the asymmetry in

the resistance of the rectifier can be due only to the "contact

resistance". A theory of the contact resistance which, until

recently, seemed to be most promising, is based on the idea

that, provided that the barrier layer is not too thick, it can be

treated as a potential hump through which electrons can pass

by means of the tunnel effect. We give an outline of this theory

and then discuss the difficulties which beset it.

Although cuprous oxide is really a defect conductor, it is so

much simpler to think of an excess conductor that we consider

the semi-conductor to be of the latter type. The only levels with

which we are concerned in the semi-conductor are those in the

first incompletely filled band, there being in fact a few free

electrons in this band which have a Maxwell distribution. The

lowest energy levels in the metal and semi-conductor, and the

potential hump, are shown in fig. 18. In the metal there is a

very large number of electrons which have a Fermi distribution,

while in the semi-conductor there are very few electrons, the

distribution being Maxwellian. In equilibrium there must be

no resultant current in either direction, and so the surfaces

charge up until the number of electrons leaving the metal per
second is the same as that leaving the semi-conductor. Now,

by the principle of detailed balancing, this can happen only

when the number entering each individual energy level is the

same as that leaving, and hence equilibrium is reached when
the energy levels are displaced so that the Maxwell distribution

of the semi-conductor just corresponds to the tail of the Fermi

distribution. (Since no electrons can enter the forbidden levels
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of the semi-conductor, there is no question of having to balance

the electrons in the metal whose levels lie lower than the lowest

allowed and unoccupied level in the semi-conductor.) When the

metal is made negative with respect to the semi-conductor, the

energy of the electrons in the former is increased and hence the

Fermi distribution is raised relatively to the Maxwell distribution.

There is therefore a resultant electron current from the metal

to the semi-conductor, some of the electrons going over the

potential hump, but many passing through the hump (the well-

known tunnel effect). Similarly when the potential is reversed

metal /" \ semi - conductor

Fig. 1 8. The energy levels of a metal and a semi-conductor in contact in

equilibrium. The density of the dots indicates roughly the number of

electrons thermally excited.

there is a resultant current from the semi-conductor across the

junction; but, whereas effectively an unlimited number of

electrons can leave the metal, the same is not true of the semi-

conductor since there are so few electrons present. In other

words, giving the metal a negative potential brings into play

a number of electrons which previously could not enter the

semi-conductor since the energy levels which they occupied in

the metal are forbidden in the semi-conductor. Thus ft is

possible for a very large current to pass from the metal to the

semi-conductor, while in the reverse direction the current is

necessarily small, since there are very few electrons in the

semi-conductor and the number available does not depend on

the field.

Some curves calculated for a special type of hump are shown

in fig. 19, the second curve referring to the differential resistance

R= dV/dJ, where V is the potential drop from the metal to the

semi-conductor and / is the current per unit area. It will be

noticed that R has a maximum for negative V, i.e. when the

current is from the semi-conductor across the gap. The reason
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for this is as follows. Th penetrability of the potential hump
decreases as the energy of the electron decreases, and so the

slow electrons in the semi-conductor do-not have much chance

of getting into the metal. Now it can be shown that the effect

of a strong electric field is to increase the transparency of the

barrier and tins the slower electrons have a better chance of

getting out 01 the semi-conductor in this case; the resistance

therefore decreases. If the transmission coefficient of the barrier

were unity this effect could not, of course, occur.

Jin 10 amp.

1 05

R in 100 ohms.

16

-12

-8

-4

05 !

Volts

1 2

Volts

h- 6

Fig. 19. The current and differential resistance as a function of the

voltage for a contact between a metal and a semi-conductor.

At first sight it might appear that the rectification which takes

place at one contact between the metal and semi-conductor

would be nullified at the second contact. (We necessarily have

to consider a closed circuit.) This would be true if both

contacts were identical, but rectifiers are made so as to have one

good contact (no potential hump) and one bad contact (a large

potential hump), and it is the latter at which the rectification

takes place. When a current is flowing, the potential drop has

to distribute itself over the circuit so as to produce the same

current at all points. Thus there must be a large potential drop
at the bad contact and a much smaller one at the good contact,

and since, as we see from fig. 19, there is very little asymmetry
in the current for small voltages, it is only the bad contact which

is important in the rectification.
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In order to make the above discussion apply to cuprous oxide

we must replace "electrons" by "holes"; the easy direction of

flow of holes is still from the metal to the semi-conductor, since

there is an unlimited number of holes available in the metal.

This gives rise to a very serious difficulty since the observed

easy direction of flow of holes is from the oxide to the metal.

(The above theory was put forward at a time when the experi-

ments were supposed to give a negative Hall coefficient and

thus to indicate that cuprous oxide was an excess conductor.

The theory was in fact devised so as to make the direction of

easy flow from the metal.) Another difficulty is that recent

measurements put the thickness of the barrier layer as high

as io~3 cm. This means that the transparency of the potential

hump is quite negligible and that the electrons can only pass

over the hump. The theory given above only applies when the

width of the hump is of the order io~7 or io~6 cm. ; thicknesses

of the latter order of magnitude were indicated by the early

measurements.

Perhaps the most promising attempt to modify the theory

so as to give the right direction of rectification is that due to

Schottky(23), but as yet only an abstract has been published.

The theory seems to be on the following lines. Since the barrier

is so wide that electrons can only go over the top of the potential

hump, the shape of the hump is important. The arrangement
of the energy levels is as shown in fig. 18, except that the hump
is wide. Also the hump probably slopes gradually down to

the conduction levels of the oxide from a maximum value

situated at or near the metal surface. If now the levels in the

oxide are raised by applying an external field, the potential

hump is diminished and the number of electrons which can

flow over the hump into the metal is increased. On the other

hand, when the levels in the metal are raised the number of

electrons which can flow from the metal is unchanged. Thus
the direction of easy flow is from the oxide to the metal.

According to this theory, therefore, the rectification is caused

by the differential effect of the applied field in modifying the

potential hump, and it is essential that the maximum of the
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hump should occur very near the metal surface. Further details

are necessary before the theory can be properly appraised/

4*8. The discussion of semi-conductors given in this chapter,

though by no means complete, shows that the general theoretical

ideas have considerable qualitative value. On the other hand,

the behaviour of semi-conductors is so individual and varied

that only experiment can decide which of the almost infinite

number of possibilities is realized in any particular case.
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Chapter V

THE THERMAL AND MAGNETIC
PROPERTIES OF METALS

5*1. The specific heat of the electrons.

We saw in 1-42 that only those electrons whose energy levels

lie in an interval of the order kT round EQy where E is the

Fermi energy, contribute to the specific heat of a degenerate

electron gas. If n(E) is the density of states, the number of

electrons per unit volume in the range kT is kTn(EQ), and since

each electron contributes f& to the specific heat, the total

specific heat of the electron gas per unit volume is of the order

k*Tn(E ). (5-1)

An accurate calculation gives (T.M. p. 185, equation (268))

(5-2)

and if we assume that the electrons behave as if they were free,

with an effective mass m*, n(E) is given by (2-7) and (1-13),

so that
._3 *Z-2 /~~\ *

(5-3)

where n is the number of free electrons per unit volume. In

general the specific heat of the electrons is small compared with

that of the lattice vibrations, but, since the contribution of the

latter is proportional to T3 at low temperatures, the electronic

specific heat must be the more important for sufficiently small

T.

It is only recently that any measurements have been made of

the specific heat of the electrons (1-4). The results are shown in

Table II, expressed in calories/degree/gram atom. In order to

compare the theoretical and experimental results we have to

change the units in (5*2) and (5-3) by dividing by na ,
the number
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of atoms per unit volume, and multiplying by Loschmidt's

number L. We obtain for the specific heat per gram atom

(5-4)17-9 x io~16n(^o) Wa~1J1cal./deg./g. atom,

, i*r= 237xio
t/1 ,

rcal./deg./g. atom.

(5-5)

The values of n(E )/na and of m*jm deduced from the experi-

mental results are given in Table II. Since n(E )/na is given in

absolute units by (5*4) we have to multiply the numbers

TABLE II. Specific heats of metals at low temperatures

in units of io~4 Tcal./deg./g. atom

Notes. The values of Cv
'

for Hg, Tl, Sn, Pb, Ta, Nb are lower limits,
since they are obtained from the entropy differences between the super-
conductive and non-superconductive states by assuming that Cv

'= o for the

superconductive state. Since nickel is ferromagnetic, only the states with
one direction of spin contribute to Cv

'
at low temperatures (see 5-2 and 5-6).

The value of n^o) obtained from (5-4) must therefore be doubled.

obtained by 1-59 x io~12 in order to reduce them to the number
of levels per atom per electron volt. In compiling this table

we have taken n to be equal to the number of valency electrons

per unit volume except for the transition elements; for nickel

we take n= o*6na and for palladium and platinum n = o-$na (see

5*52 and 5*6i). For all the metals in Table II except Cu
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and Ag, the electrons occupy more than one zone, and tht^t" to

w* has not very much meaning, since it is derived from '<* %

formula which only holds if the electrons are perfectly free, i.e.

if the zone structure is unimportant. Further, the rf-bands in

say nickel (see below) may be degenerate. In this case the

calculated value of m* contains as a factor the weight of the

band, which may be as much as 5. On the other hand n(EQ) is

a well-defined quantity and the best way of determining it is

by means of the specific heat at low temperatures.
The large values ofn(EQ)/na for the transition metals can only

be due to the large density of states in the rf-band. We saw in

2-52 that in nickel there is a wide 4^-band with a small n(E)
and a narrow 3^-band with a large n(E) which overlaps the

4$-band, and that the number of electrons is such that there are

some electrons in the s-band and some vacant spaces in the

rf-band. A similar situation occurs in the other transition

elements, and in all cases the large density of states is due to

a narrow rf-band. An estimate of n(EQ) for nickel has been given

by Slater (s) based on calculations by Knitter, and he finds that

Cv
' = o-ooiiTy which is somewhat less than, but of the same

order of magnitude as, that found experimentally.

5*2. The temperature variation of the specific heat.

The proportionality of Cv to T is only true provided that

7"<^ro , where TQ is the degeneracy temperature, and at very

high temperatures Cv must tend asymptotically to the classical

value of \nk. The exact form of Cv as a function of T can only

be found by numerical calculations, the most complete of which

are due to Stoner(6), but, since some assumption must be made

concerning the behaviour of n(E) as a function of E, the results

of these calculations have not the same validity as the low

temperature result (S'2). The usual assumption is that the

energy band is of normal form, so that we have n(E) oc *, or,

ifwe are dealing with a nearly full band,we have n(E) cc(A )*,

where A is the energy at the top of the band. The results are

shown in fig. 20, p. 67, where Cv is given as a function of T/T .

The only temperatures where we can hope to measure the

w < 65 > 5
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of atonic specific heat accurately are either very low or very

aigh ones; the first because the specific heat of the lattice is

negligible there, and the second because the Debye specific heat

is constant at high temperatures. There are, however, two

difficulties in the interpretation of the high temperature results.

These are (i) that it is Cp that is measured and not Cv , and

(2) that the Debye theory is only an approximation and the

specific heat of the lattice vibrations does not really become

constant. The correction to constant volume can be estimated

semi-empirically, but there is at present no reliable way of

estimating what effect the anharmonic coupling of the lattice

vibrations has on the specific heat, and this difficulty cannot be

overcome. For example, the measurements of Jaeger, Rosenbohm

and Bottema(7) indicate that in copper the excess specific heat

over the Debye value is 0-37 cal./degree/gram atom at 1000 K.

If this is an electronic specific heat, it is much too large to be

reconcilable with the low-temperature value (Table II), and it

therefore indicates either that the present theory is inadequate,

or that the effect of the anharmonic coupling is fairly large.

5*21. The specific heat of nickel.

Nickel is the only metal for which detailed measurements

have been carried out, but the interpretation of the results is

somewhat difficult because nickel is ferromagnetic. To offset

this, the electronic specific heat is large, and so the effect of the

anharmonic coupling of the lattice vibrations is relatively less

important than it appears to be in copper. A detailed analysis

of the specific heat of nickel has been carried out by Stoner(8)

and compared with the theoretical predictions. Since nickel is

ferromagnetic it has an excess specific heat over the Debye value,

due to the destruction of the intrinsic magnetization by the

thermal agitation; this specific heat increases up to the Curie

point and then drops to zero. There is still a fairly large excess

specific heat above the Curie point and this is interpreted as

being due to the electrons. Of course the
"
ferromagnetic"

specific heat is also an electronic specific heat, but it is due to

the change in direction of the spins of the electrons, and, for
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convenience, we restrict the term "
electronic specific heat" to

mean a specific heat not associated with a change in spin. It is,

however, not entirely clear that this separation of the specific

heat into a ferromagnetic or spin contribution and a translational

contribution is justified.

Since the electronic configuration is different above and below

the Curie point, any comparison ofthe high- and low-temperature

specific heats involves some assumption about this configuration.

This is touched upon in 5-61 ;
the assumption usually made is

that only states with one direction of spin contribute to the

specific heat at low temperatures, while both sets of states

contribute above the Curie point. Thus the density of states

Cv/k

1-5-

VO
CE

0-5

200 400 600 800 1000 K
T

i 1 2. 2
2

T/T9
Fig. 20. Fig. 31.

Fig. 20. The specific heat per electron of a gas of free electrons.

Fig. 21. The electronic specific heat of nickel in cal./degree/gram atom. The
continuous curve is calculated on the assumption that the magnetism
varies, and the broken curve is calculated on the assumption that the mag-
netization does not vary. The experimental values are shown by crosses.

above the Curie point is larger than the low temperature values

and the specific heat is correspondingly increased. Further,

since the density of states is so large, the electron gas can no

longer be treated as completely degenerate at high temperatures,

T being about 2000 K. The electronic specific heat as calculated

by Stoner is shown in fig. 21. The calculations are based on the

low-temperature value i'74xio~
4T for the specific heat, and

the numbers of the electrons with opposite spins at any tem-

perature are chosen so as to give the observed magnetization at

that temperature.

The experimental values, which are due to Lapp(o), Grew do),

Klinkardt(n) and Sykes and Wilkinsons), and which are not

< 67 > 5-2
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corrected for the anharmonic contribution of the lattice, are in

general agreement with the calculations, but the position is not

entirely satisfactory. According to the, most recent measure-

ments (is), better agreement is obtained ifwe calculate the specific

heat above the Curie point on the assumption that the number
of electrons with a given direction of spin is independent of the

temperature (see fig. 21); this assumption is, of course, un-

tenable. The source of the discrepancy may be that it is incorrect

to split up the specific heat into a magnetic part and a trans-

I0r r

800K

Fig. 22. The specific heat of nickel in cal./degree/gram atom. Cp is the

observed specific heat ; Cjr, is the lattice specific heat ; Cg is the electronic

and CM is the magnetic specific heat. The last three are at constantvolume.

lational part, or it may be that the degeneracy temperature has

been wrongly estimated by assuming that the bands are of

normal form. A further complication is that if the anharmonic

contribution of the lattice has the same value as in copper

(O'2 cal./degree/gram atom), then the experimental values of the

electronic specific heat must be still further reduced. There

seems to be no method of estimating the anharmonic contri-

bution theoretically, and, to make matters worse, the contri-

bution can be negative as well as positive. At the present time,

therefore, we are still far from being able to say that the theory

has been verified quantitatively. The various contributions to

the specific heat as calculated by Stoner are shown in fig. 22.
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5-3. The spin paramagnetism.

Langevin's classical theory ofthe paramagnetism ofa substance

composed of molecules having a permanent magnetic moment

fi leads to the following formula for the susceptibility x Per

unit volume:

where N is the number of molecules per unit volume. This

formula fits well with the experimental results for gases and for

salts of the rare earths, but it is not even approximately correct

for metals. In general, x f r metals is small and nearly inde-

pendent of the temperature, whereas, since / for an electron

is one Bohr magneton eh/^nmcy
formula (5'6) gives much too

large a susceptibility at ordinary temperatures. This difficulty

is removed when we apply Fermi-Dirac statistics instead of

classical statistics to the free electrons in a metal.

The effect of a magnetic field H is to increase the number of

electrons with their spins along the direction of the field at the

expense of those with their spins in the opposite direction, the

transfer of an electron from one spin state to the other lowering

the potential energy by 2/i H. This transfer, however, increases

the kinetic energy, and the alignment of the electrons only

proceeds until the diminution of the potential energy is equal

to the gain in kinetic energy. Since the electrons whose spins

have been reversed must necessarily go into states which were

previously unoccupied, it is clear that only those electrons near

the top of the Fermi distribution can contribute to the para-

magnetism, and that the electrons in question are those whose

energies lie in a range of the order 2/iQH round E . This energy

interval is independent of T, and so x *n fifst approximation is

constant. Since each electron contributes / to the magnetic

moment, and since the number of the energy levels concerned

is 2/4QHn(EQ) per unit volume, the total magnetic moment per

unit volume is 2/*
2
//h(J? ), and hence

(57)
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For free electrons we have, by (1-13) and (2-7),

o

-. 3W/^0 ff.Q\
X= ~^E~- (5 )

Both Cv and % at low temperatures are proportional to n(" )>

and there is therefore a relation between the electronic specific

heat and the spin paramagnetism:

C 7T2 i k\ 2
^ II /

7~' /
r
f^ ^^ r

J~* \ ( r* f\\

X 3 \M

5*31. The temperature variation of the spin para-

magnetism.

When the temperature is so high that the classical statistics

is applicable we must have

This differs from Langevin's formula (5-6) by the absence of the

factor J. This factor arises as the mean value of cos2 0, where 6

is the angle between the magnetic moment of the molecule and

the direction of the field. Classically all orientations are possible

Fig. 23. The reciprocal of the paramagnetic susceptibility as a function of the

temperature for a gas of free electrons. The straight line gives the

classical value of i/x-

and the mean value of cos2 6 is correctly taken to be ^, but for

electrons only two orientations are possible, namely = o orTT,

and the mean value of cos2 6 is i.

The exact way in which x passes over from (5*7) to (5*10)

depends upon the behaviour ofn(E) as a function ofE. Numerical
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calculations have been carried out by Stonerto) for the case in

which the energy band is of normal form so that n(E) oc 2?*, and

his results are shown in fig. 23. He has also given the second

approximation to x *n the form

5*4* Diamagnetism.
The diamagnetic effect caused by the rotation of the electronic

orbits due to a magnetic field is a simple problem for atoms. The

susceptibility per atom is given by
^2

(5-i2)

where e and m are the charge and mass of the electron, r is

the distance of an electron from the nucleus, the bar denotes

the space mean value and the summation is over all the electrons.

This formula can also be applied to the ionic cores of the atoms

in a metal, since the inner electrons are unaffected by the

presence of the neighbouring atoms and r2 is the same as in

the free atom.

The theory of the diamagnetism of the free electrons is much
more difficult. Formula (5*12) is obviously inapplicable since

there is no unique origin from which to measure r, and (5- 12)

is not invariant for a change in origin. The correct theory was

first given by Landau, who showed that, whereas according to

the classical theory the diamagnetism of free electrons is zero,

a diamagnetic effect is to be expected according to quantum

theory. The difference between the classical and quantum
behaviours is difficult to explain intuitively, but roughly it arises

because the orbits of a free electron in a magnetic field are

quantized, while there is no such restriction on the orbits in

the classical theory. The motion of an electron parallel to the

direction of the field H is unaffected by the field and is therefore

unquantized, while the projection of the path of an electron on

a plane perpendicular to H is a circle, described with angular

frequency v^eHjqnmc. Since a circular motion can be con-
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sidered as made up of two simple harmonic motions at right

angles, the possible energy levels are given by E= (n + 2+ x
) hv,

where n and n2 are integers, the term hv arising because each

oscillator has a zero-point energy of \hv. The magnetic moment

of a stationary state is -dE/dH= -(nl+ n2 +i) ehlqrrmc, and

the average of this over all the occupied energy levels has to

be calculated. Landau's result is that for perfectly free electrons

the diamagnetism is exactly one-third of the spin paramagnetism,

for both the Boltzmann and the Fermi-Dirac statistics.

5*41. A method for dealing with the diamagnetism of the

quasi-free conduction electrons in metals was given by Peierls

and a more powerful method was given by Wilson. Only the

result can be given here. Itisfound(T.M. p. 118, equation (178))

that the susceptibility is mainly determined by the quantity

E \
2

'

where E is the energy as a function of the wave vector k, and

&1? k2 are the components of k at right angles to the field. The

quantity (5*13) is connected with the Gaussian curvature of the

energy contours in the k space, and it can be shown that this

curvature can only be abnormally large when the energy contour

comes near to a zone boundary. For perfectly free electrons the

diamagnetic susceptibility is the same as that calculated by
Landau, as it must be.

5*5. A survey of the magnetic properties of metals.

Before we can compare the theoretical and experimental

results, we have to subtract from the observed values the

diamagnetism of the atomic cores. These corrections can be

estimated partly by calculating (5-12) from the known electronic

distributions, and partly empirically from the susceptibilities of

compounds containing the ions. Unfortunately there are two

difficulties which prevent us from getting as much information

as we would like from the discussion of the theoretical formulae.

The first difficulty is that at present we have practically no

knowledge of the curvature of the energy surfaces, on which the
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diamagnetic contribution depends. (The calculations mentioned

in 2'4 give the density of states but not the curvature, which

requires very much more accurate calculations.) The other

difficulty, which is perhaps even more serious, arises from the

effect of the exchange and correlation forces between the

electrons. The exchange forces tend to align the spins of the

electrons and thus to increase the magnetic moment, and

although this is offset to a certain extent by the effect of the

correlation forces, it is nevertheless an important factor.

Estimates have been made of the magnitudes of these forces to

an accuracy which is sufficient for dealing with cohesion (see

3-2), but the magnetic susceptibility is a much more delicate

problem and the estimates so far given lead to impossibly large

susceptibilities. The best that we can do is to neglect the effect

of the exchange forces entirely and to use Landau's value for

the diamagnetic susceptibility. We can also introduce an effective

mass m* different from m\ in this case the diamagnetic contri-

bution is no longer one-third the paramagnetic, since the spin

magnetic moment /^ is independent of m*, whereas the orbital

moment is not. Hence we must replace m by m* only in the

factor n(EQ) which occurs in (57), while we must replace every

factor m by m* in the diamagnetic term. Since

for free electrons, we have
" " '

/K2

Alternatively, if n(EQ)/na is the density of states per electron

volt per atom (for one direction of spin), the susceptibility XA

per gram atom is given by

, J m2 \ n(E ) f
.

=64xio-6
|i
--

55 1
-^-

(5'iS)*
\ 3m*

2
/ na

*'

We see from (5*14) that a large effective mass favours the para-

magnetism while a small effective mass favours the diamagnetism.
This is what we should expect, since when m* is large the energy
bands are narrow and all the electrons and not only the fastest
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should contribute to the spin paramagnetism. On the other

hand, when m* is small the Larmor frequency of rotation

ehHI(qnm*c) is large and hence the contribution to the dia-

magnetic susceptibility should be large.

The susceptibilities of the monovalent elements are fairly well

represented by (5*14) with m* = m, as is shown by the figures

given in Table III. The calculated values of x are uniformly
too low, even allowing for the great uncertainty in the experi-

mental values, and this is probably due to the neglect of the

exchange forces, though in some cases it may be partly due to

the effective mass of the electrons being greater than m. We
have not given the values of n(E )

calculated from the observed

values of x> since, for the reasons given above, these cannot be

compared with the values calculated from the specific heat.

TABLE III. Volume susceptibilities in units of io~7

So far as is known, the temperature variation of x f r the

monovalent metals is very small, and is thus in agreement with

the theory. Measurements at high temperatures cannot be

carried out for the alkalis on account of their low melting points,

and measurements for the noble metals are lacking, so that it is

impossible to verify even the term involving T2 in x-

5*51. The alkaline earths are moderately paramagnetic, the

values of n(EQ)/na calculated from (5*15) with m* =m being
about 0-4 (electron volt)"

1
. Barium is remarkable in that x

increases with temperature, whereas the more normal behaviour
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is a decrease. However, (5-11) shows that x maY increase

initially with T if 32n/3
2

is positive and sufficiently large. It

must of course decrease for very large T since, when the electron

gas behaves classically, we have x c T~l
. If 32n/3J?

2 is positive,

E must be such that n(E) is near a minimum, and this can only

happen when two bands overlap. It is therefore not surprising

to find a positive temperature coefficient for x f r a divalent

element. However, the order of magnitude of the effect is so

large that it is difficult to believe that the above explanation is

the correct one. (According to Laned4), XA increases from

20 x io~6 at 20 C. to 57 x io~6 at 400 C.)

The susceptibility of the free electrons in the divalent

elements zinc, cadmium and mercury is paramagnetic, but it is

less than we should expect from the values of tl^o) found from

measurements of the specific heats (Table II). This may mean

that the diamagnetic contributions of the free electrons has been

underestimated, but since zinc and cadmium become markedly
more diamagnetic as the temperature is lowered they do not in

any case fit into the theory.

Bismuth is the most diamagnetic (XA = ~
290 x io~6 at i8C.)

of all the metals, and it becomes much more diamagnetic as the

temperature is lowered. This immense diamagnetism is supposed
to be produced by the quasi-free electrons, which, in bismuth,

nearly fill a Brillouin zone, and are therefore most favourably

situated to give a large diamagnetic effect. We should, however,

expect the susceptibility to be nearly constant especially at low

temperatures, whereas in fact d; 4/3T'~ 0-3. Thus although the

theory is satisfactory qualitatively and indicates the cause of

the peculiar magnetic properties of bismuth, it is not at present

very good quantitatively. A further discussion of the properties

of bismuth is given in 6-36.

5-52. Those transition elements, such as manganese, platinum
and palladium, which are not ferromagnetic are strongly para-

magnetic, a value of 3 for n(E )/na being required according to

(5-15), if we neglect the diamagnetism, in order to account for

the susceptibility of platinum at room temperature. Since this
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value of n(EQ)/na is very much larger than the value found

from the specific heat (Table II), we deduce that the effect of

the exchange forces is very important, and that the simple theory

is quite inadequate to deal with the transition elements. This

conclusion is borne out by the very large temperature vari-

ation of x- F r these metals, and in particular for palladium,

dx/^T is large and negative even for liquid-air temperatures,

whereas we should not expect any appreciable variation in x
for temperatures lower than a few hundreds of degrees Centi-

grade.

The magnetic properties of the alloys of the transition

elements are of considerable theoretical importance. When

copper, silver or gold is added to palladium, x decreases and

becomes zero when about 50 per cent of the noble metal has

been added. Since we ascribe the largeness of the paramagnetic

susceptibility to the large density of states in the ^-band, even

though the simple theory is inadequate, this means that zero

susceptibility is attained when the J-band is full, and we
therefore deduce that the number of unoccupied levels in the

rf-band in pure palladium is about 0-5 per atom. (We assume

that each monovalent atom adds one electron to the </-band

until it is full.) In the free state palladium and platinum have

ten electrons in the \d- and the 5^-states respectively, and these

ten electrons are just sufficient to fill the corresponding rf-bands

in the metals. However, on account of the overlapping of the

J-bands by the 5$- and 6^-bands in the metallic states, there is

in both metals about 0-5 electron per atom in the s-band and

the same number of vacant levels in the rf-band.

5*6. Ferromagnetism.

Weiss' theory, which postulates the existence of an inner field

tending to align the elementary magnets, gave a very satisfactory

formal account of ferromagnetism, but it was not until 1928,

when Heisenberg noticed that the energies involved in ferro-

magnetic phenomena are of the same order as the energy
differences between the ortho and para states of helium, that

any explanation could be given of the origin of the inner field.
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The para states of helium are singlets and the spins of the

electrons are anti-parallel; for these states the spatial wave

function of the electrons must be symmetrical, since, according

to the exclusion principle, the total wave function, including

both the spatial and spin portions, must be anti-symmetrical.

Now if a helium atom changes from say the 2s para state to the

2s ortho state the spins become parallel, and, to preserve the

anti-symmetry of the total wave function, the spatial part must

become anti-symmetrical. Therefore in corresponding para and

ortho states the electronic configuration is necessarily different

and there is therefore a large energy difference, which is called

the exchange energy. Although the exchange energy is of an

electrostatic nature, yet we see that its effect can be described

formally as introducing a strong coupling between the spins of

the electrons. Weiss' theory postulates such a coupling.

In his original theory, Heisenberg considered the idealized

problem of a crystal composed of atoms each of which had one

valency electron in an s-state. It is impossible to find the energy

levels of such a complicated system, and Heisenberg therefore

assumed that all the excited states of the electrons could be

neglected, and in particular that there were no polar states in

which two electrons were on the same atom. By making this

assumption Heisenberg was able to find the lowest energy

levels, but the possibility of conduction was necessarily excluded

from the theory. A further assumption had to be made that the

exchange energy is positive so that the most stable state of the

metal at the absolute zero should be that in which all the spins

are parallel. In most molecules and solids the exchange energy

is negative.

It would take us too far afield to discuss either the formal

theory of ferromagnetism or Heisenberg's theory, and we
consider instead the attempts which have been made to attack

the problem from the point of view of the conduction theory.

It was first pointed out by Bloch that the exchange energy for

free electrons is positive and hence tends to make the spins of

the electrons point in the same direction. However, any align-

ment of the spins increases the kinetic energy of the electrons,
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since if the spins are parallel each energy level can only accom-

modate one electron instead of two. There are, therefore, three

possibilities, (i) If the exchange forces are weak, the lowest

state is the unmagnetized state in which each occupied level

contains two electrons with opposite spins. (2) If the exchange
forces exceed a certain limit the decrease in potential energy

when the spin of an electron is reversed more than compensates
for the increase in kinetic energy necessitated by the promotion
of the electron to a previously unoccupied level. Since the

energy required to reverse a spin increases with the number of

spins reversed (the electrons have to go into higher and higher

levels), the exchange forces may only be large enough to ensure

that some but not all of the levels are occupied by electrons with

one direction of spin, the other levels being occupied by two

electrons with opposite spins. In this case only the singly

occupied levels contribute to the magnetic moment. (3) If the

exchange forces are very large the lowest state will be that in

which all the electrons have the same direction of spin. It is

only in case (3) that there can be any simple relation between

the magnetic moment per atom the magneton number and

the number of valency electrons per atom.

5-61. One of the serious difficulties in the way of a complete

theory is that we have little knowledge of the exchange forces.

In spite of this we can make several deductions of a general

nature. Since the exchange forces have to overcome the increase

in the kinetic energy we should expect them to be most effective

when the spacing between the energy levels is small, that is,

when the density of states is large. Now we have seen that the

density of states is very large when there is an incomplete rf-band,

and it is just those elements which possess such a band that are

either ferromagnetic or very strongly paramagnetic.

Let us discuss nickel in detail; the density of states is shown

in fig. 13, p. 29, the contributions from the $d- and the 4$-bands

being shown separately. There are ten electrons to be accom-

modated in the $d- and 4$-bands, and, if the exchange forces

are neglected, the electrons occupy the lowest possible levels and
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hence fill the bands up to the energy marked 10. Most of the

electrons are in the rf-band, but some (less than one per atom)

are in the $-band. It is not very clear exactly what the effect

of the exchange forces is, and there is a considerable number

of possibilities. If we assume, as we must in order to make

ferromagnetism possible, that there is a net gain in energy when

more electrons have their spins pointing say to the right than

to the left, it is reasonable to assume that the electrons in singly

occupied levels are situated in the rf-band, since the number of

electrons which can be accommodated in a given energy interval

is much greater for the d-band than for the $-band. We now
divide the states into two sets one of which accommodates

electrons with spins pointing to the right and the other of which

accommodates electrons with spins pointing to the left. These

sets, of course, extend over the same energy range. The simplest

assumption that we can make is that the states are filled as

follows. We assume that all the states in the d-band for electrons

with spins pointing to the right are filled, which requires five

electrons per atom, and that some of the states in the rf-band

for electrons with spins pointing to the left are filled, the number

of electrons of the latter type being 5 x per atom, where

o<#<5. The remaining x electrons per atom occupy part of

the $-band, each level having two electrons with opposite spins.

To calculate x we need to know the exchange forces and the

density of states in the two bands. A first attempt to carry out

the calculations has been made by Slater (s), but it is simpler to

deduce x from the experimental results. With the above

assumptions the magnetic moment per atom of nickel is #/4 ,

since x is the number of unpaired electrons, and hence x is

uniquely determined by the magnetic moment. (With other

possible and plausible assumptions the number of empty levels

in the rf-band is not uniquely determined by the magnetic

moment.) Since the saturation value of the magnetic moment

of nickel at o K. is 0-6 Bohr magneton we deduce that #=o-6,

i.e. that there is o6 unoccupied level per atom in the J-band

and O'6 electron per atom in the s-band.
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5*62. Ferromagnetic alloys.

According to the argument given in the preceding section

there is 0-6 unpaired electron per atom in nickel occupying
the highest energy levels of the 3</-band. The corresponding

numbers, deduced in the same way, are 1-7 and 2'2 for cobalt

and iron respectively, i.e. there are 8*3 and 7-8 electrons per

atom in the rf-band. The number of electrons per atom in the

4^-band is 9 8-3
=

0*7 for cobalt and 8 7*8 = 0*2 for iron.

These figures are, however, not too reliable since they are based

on assumptions which probably do not hold, at least for iron.

It is probable that the exchange forces are not sufficiently strong

to make the lowest state in iron the one in which all the energy
levels in the d-band for electrons with spins pointing to the

right are filled. In this case there must be 5 y electrons per
atom in the J-band with spins pointing to the right, 5 x with

spins pointing to the left (x>y) and x+y 2 paired electrons

in the 4^-band (x+y>2). The magneton number is xy Bohr

magnetons, and we cannot therefore deduce both x and y from

measurements of the magnetic moment alone, and we cannot

find the number of electrons in the 4$-band. Support for the

hypothesis that jy=t=o for iron is given by the fact that the

magneton number of iron is increased by the addition of small

quantities of cobalt and nickel, which increase the number of

electrons present. The magneton number of the ferromagnetic

materials therefore reaches a maximum when the number of

electrons outside the closed 3/>-shell is somewhere between 8

and 9, and it is presumably at this concentration that y= o.

The above discussion makes it clear that one of the important

factors affecting ferromagnetism is the number of electrons in

the 3^-band, and that there is a certain optimum number round

about 8*5 electrons per atom. This enables us to understand in

a general way the behaviour of the ferromagnetic alloys. When

copper is alloyed with nickel the magneton number is reduced,

owing to the valency electrons of the copper atoms going into

the 3</-band of the alloy and compensating some of the pre-

viously unpaired spins. The extrapolated results indicate that
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ferromagnetism disappears when about 60 per cent of copper

has been added, which confirms the hypothesis that in pure

nickel there is 0-6 vacant level per atom in the 3*/-band. The

addition of zinc, aluminium and other electropositive metals has

the same effect, the valency

electrons of the added metal

compensating some of the spins
"8

of the nickel atoms. The general 0-6

behaviour is shown in fig. 24.

Not all the ferromagnetic

alloys can be dealt with bymerely o- 2

considering the number of avail-

able electrons, just as all alloys
, - i TT T^ 1 rig. 24. I he magneton numbers of
do not obey the Hume-Rothery nickei alloys as functions of the

rules for the effect of the composition,

electron concentration. Other factors are often very important
and these are very imperfectly understood at present. This is

most clearly shown by the ferromagnetic alloys of manganese.
Since manganese has seven electrons outside the closed 3/>-shell,

we can obtain any number of electrons between seven and

eleven outside the 3/>-shell by alloying manganese and copper.

If the electron concentration alone is important, we should

expect that for a certain range of concentrations these alloys

should be ferromagnetic, whereas in fact they are at most very

strongly paramagnetic. On the other hand the ternary alloys of

manganese, copper and aluminium embrace the ferromagnetic

Heusler alloys. The maximum magnetization occurs for the

composition MnAlCu2 ,
and the alloys are in the ordered state.

The saturation intensity is almost the same as that of nickel, and

the number of electrons outside the 3/>-shell is 10-5 per atom

and is therefore also almost the same as for nickel. Thus in some

respects the Heusler alloys fit into the general scheme, but it is

difficult to explain why the presence of three constituents is

necessary to produce ferromagnetism.

The alloys of manganese and nickel are also somewhat

anomalous. The addition of manganese to nickel increases the

magnetic moment for not too large concentrations, in agreement
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with the general theory, but the maximum magneton number

is only about 0-75 Bohr magneton, whereas, if the electron

concentration were the only important factor, the magneton

number, when 33 per cent of manganese has been added, should

be the same as that of cobalt.

5*63. The temperature variation of the magnetization.

Calculations of the saturation magnetization as a function of

the temperature are very difficult, since they involve a knowledge
of all and not only of the lowest energy levels. Heisenberg
could only carry out the calculations by making arbitrary

assumptions about the energy level system, but Bloch(is) was

able to find the energy levels sufficiently accurately to deal with

the magnetization at low temperatures. He found that, if M
is the magnetization at temperature T and M is the value of

Mat r=o, then

M
/*ry

where J is the exchange energy tending to align the spins and

a is a constant depending on the crystal structure (a
= 0-066 for

a body-centred cubic lattice and # = 0-033 f r a free-centred

cubic lattice).

Slater (5) has recently carried out calculations of M from the

point of view adopted here, and Stonerd6) has considered in

detail a special model in which there are n electrons in an energy
band of the normal type. Stoner does not deal with the exchange
forces exactly, but introduces an arbitrary parameter to take

account of their eifect, which enables the calculations to be

carried out. He finds that the temperature variation depends
on the magnitude of the exchange forces. If the exchange forces

are large enough to produce ferromagnetism, but not large

enough to align all the spins even at the absolute zero, so that

M <n/i09 the magnetization is given very closely by

'MV /TV

whereas, if the exchange forces are large enough to make

M =
n/i , thenM/M approaches unity exponentially as T-+o.



EFFECT OF TEMPERATURE
The temperature dependence of the magnetization and the

curvature of the i/#, T-curves above the Curie point are in

excellent qualitative agreement with the observations, and,

although this new attack upon the theory of ferromagnetism is

still in its infancy, yet it promises to be more fruitful than any
other in correlating the magnetic and electrical properties of

the ferromagnetic metals.
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Chapter VI

CONDUCTIVITY

6'i. The time of relaxation.

The conductivity of metals is much more difficult to deal

with theoretically than any of the equilibrium properties, since

not only do we need to know the exact wave functions and energy
levels (a knowledge of the density of levels is not sufficient) but

we meet with great mathematical difficulties. In transport

problems we do not know the velocity distribution of the

electrons a priori \
the effect of external fields and temperature

gradients is to tend to modify the distribution function /, while

the interaction of the electrons with the metal lattice tends to

restore the distribution function to its equilibrium form / .

A steady state is obtained when these two opposing tendencies

cancel, and the determination of the distribution function

depends upon the solution of an integral equation, which has so

far only been carried out in some simple special cases.

The calculation of transport phenomena can be greatly

simplified by use of the time of relaxation r, which is the

average time between two collisions of an electron with the

lattice. It is well known from the dynamical theory of gases

that it is impossible to define the average time between collisions

uniquely, and it is therefore preferable to define r as follows.

Consider any non-equilibrium state for which the distribution

function is /. If there are no external fields, it is a plausible

assumption that the rate at which equilibrium is restored is

proportional to the difference// . Thus, if [3//9^]coii *s the

rate of change of/, we put

m -^, (6-0
L^Jcoll r

where r is the time of relaxation. Hence the approach to

equilibrium follows the equation / / = constant xe~ilr
. The
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definition (6'i) must be used in the quantitative theory, but in

the descriptive treatment given here it is simpler to use the first

definition of T. We further assume that, unless otherwise stated,

the electrons are to be treated as free so that the energy is

simply ^mv
2

. The calculations which follow are extremely rough
and are only given so as to indicate the order of magnitude of

the effects and to show what are the important factors. In

general we consider a one-dimensional model whenever no

important feature is lost by ignoring the velocity components
at right angles to the external field.

6*2. The electrical conductivity.

When a uniform electric field is present, the electrons have

an acceleration -e$\m, where e is the charge of the electron.

An electron whose equilibrium velocity is v acquires an extra

velocity e^r/m in the time *

T between two collisions. Ifwe

assume that this extra velocity

is lost during a collision, the

average velocity of an electron

is v ^c&Tlm, and so the effect"
c i r- 11 i Fig. 25. The velocity distribution func-

Ot the held IS to increase the tion. The continuous curve gives the

Velocity of each electron by equilibrium distribution function and

mi -11 i
tne broken curve the distribution

-$e&Tlm. IhlS IS illustrated function in the presence of an electric

by fig. 25, where/(") is given
field -

as a functionf of v, which takes both positive and negative values ;

the continuous line givesfQ(E) and the broken line/(jB) obtained

by shifting fQ(E) a distance \e^r\m along the v axis. Since

the currents of the electrons with velocities v and v cancel,

we see that the only electrons which contribute to the resultant

current are those for which /(") and f (E) are different. The
current is therefore due to the excess of electrons with velocities

near v moving in one direction and the deficiency of electrons

with velocities near v moving in the other direction.
(|

v
\

is

t Note that/(E) is the average number of electrons occupying one energy
level and not the number of electrons occupying an energy range.
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the maximum velocity of the electrons at the absolute zero and

is given by jE = |wz;
2
.)

The electrons with velocities lying between v and VQ

occupy an energy interval AE given by

The total number of electrons moving to the right is \n per unit

volume, and so the number lying in the energy interval AE is

of the order %nAE/EQ
= -

\ne^Tv^\E^. The velocity of these

electrons is v approximately, so that the rate of transport of

charge per unit area is %ne
2$TvQ

2
/E . Since there is a deficiency

of electrons moving to the left equal to the excess moving to the

right, the resultant current density is

We thus obtain for the conductivity or the expression

<T= ne*r(EQ)lm, (6-2)

where r(E )
is the value of T for E=E . We can, if we wish,

express cr in terms of the free path / by defining I TV.

We can obtain a slightly more general formula by considering

the model of a divalent metal proposed in 2-51, consisting of

two overlapping bands, the upper of which contains n2 electrons

per unit volume and the lower of which contains n holes. We
then have ,,

(6-3)m
1 .

m

6*21. The ideal and residual resistances.

Since an electron can move freely through a perfect lattice,

the resistance must be caused by the departure of the lattice

from perfect regularity. This can arise in two ways, (i) by

imperfections caused by cracks, strains and the presence of

foreign atoms, and (2) by the thermal motion of the lattice. Since

these two mechanisms of scattering are independent of one

another, the total probability of an electron being scattered is

the sum of the separate probabilities of its being scattered by
the mechanisms (i) and (2). Hence, if T is the total time of

relaxation and if TO and r^ are the partial times of relaxation due
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to the mechanisms (i) and (2) respectively, then, by (6-1),

we have

and, by (6'2), we can write

"ill ,, x

*-*+*< (6>4)

where I/<TO is the "impurity resistivity" and i/cri is the ideal

electrical resistivity due to the heat motion of the lattice.

The free path for collisions of the electrons with the imper-

fections must be of the order of the average distance between

the imperfections and is therefore independent of the velocity

and the temperature. The corresponding resistance must also

be independent of the temperature and it will vary from

specimen to specimen. The interaction of the electrons with

the lattice, on the other hand, takes place mainly through the

scattering of the electrons by the fluctuations in density caused

by the thermal vibrations. Now only the longitudinal waves in

a solid are associated with volume changes, the transverse waves

being distortional but not compressional waves, and thus the

longitudinal sound waves are the effective scatterers. The free

path is therefore of the order of the mean wave length of the

sound waves, and it must increase as the temperature decreases,

since only the long waves are excited at low temperatures. The

corresponding resistance is called the ideal resistance since it is

characteristic of the pure metal; it tends to zero as T->o, and

thus the total resistance at low temperatures tends to a limiting

value which is entirely due to the presence of impurities and

imperfections. For this reason the
"
impurity resistance" is

called the residual resistance. To find the ideal resistance

experimentally the measurements must be carried to low tem-

peratures so as to obtain the residual resistance; by subtracting

this from the total resistance we obtain the ideal resistance.

6*22. The magnitude of the ideal resistance.

The calculation of r is, even in the simplest cases, of extreme

complexity. The result contains a number of constants, the
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calculation of some of which is still a matter of controversy (see

for example (o). We therefore leave aside any detailed discussion

of the magnitude of the conductivity, merely remarking that for

silver at 18 C. the free path is 5-2 x io~6
cm., and confine

ourselves to some general remarks.

It might appear at first sight that multivalent metals ought to

be better conductors than monovalent metals since they have

more free electrons. This is not so, owing to the effect of the

zone structure. (Since the conductivity is a function of 0/Ty

where is the Debye temperature, it is essential to compare
the conductivities of metals at corresponding temperatures,

measured in the scale of the respective 0's.) In a multivalent

metal the free electrons occupy more than one zone, and

according to (6-3) the conductivity is determined by nv and w2 ,

the numbers of holes and electrons per unit volume in the lower

and upper zones. Now wx and n2 may be quite small compared
with the number of atoms per unit volume. In fact the effective

number of electrons in multivalent metals is less than in mono-

valent metals, so far as the conductivity is concerned, and

monovalent metals are the best conductors.

The smallness of the effective number of electrons is un-

doubtedly the reason why the divalent elements are poorer

conductors than the monovalent elements. The extreme example
is bismuth, in which the effective number of electrons is of the

order of io~3 per atom ( 6-25 and 6-36). Mott(2) has, however,

suggested that in the transition and ferromagnetic metals the

low conductivity is due rather to an abnormal smallness in the

free path than to the small effective number of electrons. These

elements possess uncompleted rf-bands, platinum, for example,

having about 0-5 electron per atom in the 6s-band and the same

number of holes in the 5^-band ( 5-53). Hence the ^-electrons

can make transitions to the vacant d-states in addition to the

normal transitions to the vacant ^-states, which are alone possible

in a monovalent metal. Thus the scattering probability is

abnormally high in the transition metals and the free path is

abnormally low.

<88>



VARIATION WITH TEMPERATURE

6*23. The temperature variation of the ideal resistance.

In order to determine the temperature variation of the ideal

resistances it is only necessary to know how r depends on the

temperature. We see from (6-1) that i/r is proportional to the

transition (i.e. scattering) probability of an electron from one

state of motion to another, since this determines [9//9*]Coii-

Now it is a well-known result of the perturbation theory of

quantum mechanics that a transition probability is proportional

to the square of the matrix element

of the perturbation causing the transi-

tion. In the problem which we are

considering, the perturbation is pro-

portional to the amplitude of the

sound waves. Hence i/r is propor-
tional to the square of the amplitude,

i.e. to the energy of the sound waves,

which is proportional to T at tempera-
tures much greater than the Debye

temperature. We therefore have

finally the result that the resistance is Fie- 26 - The ideal resistance as,,,., a function of the temperature.
proportional to T at high tempera-
tures. This result ceases to hold at low temperatures since we
have neglected a number of important factors, chief among
which is that the electrons are reflected by the sound waves with

a change in momentum, the change being of the nature of a

Doppler effect. It is found that (T.M. p. 213, equation (343))

T^- (6-5)

o 02 0-4 o-e o-s 1-0

where pi
is the ideal resistivity and is the Debye temperature.

The integral can readily be evaluated when 0/T is either very

large or very small, and we have

Pi = constant x i24(T/0)
5

, (T< 0), (6-6)

and pi
= constant x%T/0, (7>6>). (67)

Formula (6*5) agrees very well with the experimentally deter-

mined temperature variation of the resistance. In fig. 26, pi
is

shown graphically.
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6-24. The resistance of alloys.

The addition of one metal to another can alter the resistance

in three ways, (i) by changing the number of valency electrons,

(2) by changing the average field acting on the valency electrons,

(3) by providing scattering centres when the alloy is in the

disordered state. The effect of (i) and (2) can only be discussed

in relation to the energy levels of the alloy and we therefore

confine our attention to (3). The gold-silver alloys provide ideal

material for a study of the influence of the composition upon
the conductivity. Gold and silver are both monovalent, have

the same crystal structure and practically identical atomic

volumes, and are miscible in all proportions. Since the average

field acting on the valency electrons is the (weighted) mean of

the average forces in pure silver and pure gold, the ideal

resistance depends on the composition, but the residual re-

sistance is so large in an alloy that we can ignore this effect and

consider only the residual resistance. For dilute solutions the

free path must be, of the order of the average distance apart of

the solute atoms, and thus the additional resistance caused by

alloying must be proportional to concentration of solute atoms.

For large concentrations of both com- 15

ponents the resistance is proportional to

Ci c2> where clf c2 are the concentrations 2

of the components. This can be seen as
g

follows. Since the resistance is propor- g
tional to the collision probability, which

in turn is proportional to the square of

the perturbing energy causing the transi-

tions, the extra resistance must be a
~

20^0 GO so 100

. . Atomic per cent gold
quadratic function or the concentrations. _. _
2, . Fig. 27. The specific re-

Jburther, the extra resistance vanishes sistance of the silver-

when either cl or c2 vanishes and hence it gold all ys -

must be proportional to c^. The resistances of the gold-silver

alloys are shown in fig. 27, the curve for o K. being, of course,

extrapolated. The results are in good agreement with the

theory.
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6-25. The resistance of the bismuth alloys.

We saw in 3-5 that the valency electrons in bismuth are just

able to fill a Brillouin zone completely, but that, owing to the

comparative smallness of, the energy discontinuities, some

electrons overlap into the next zone and leave a number of holes

in the almost filled band. The number of free electrons is,

therefore, so small that it can be altered appreciably by the

addition of suitable impurities. It has indeed been known for

a long time that the resistance of bismuth is very sensitive to

the presence of small amounts of impurities, but the early results

were discordant and no very reliable information could be

obtained from them. A recent investigation by Thompson (3)

has, however, clarified the situation considerably.

The resistance of perfectly pure bismuth increases with the

temperature in the normal manner. When small amounts of

lead are added, humps appear in the resistance curve, and when
there is a sufficient amount
of lead present the resistance

curve possesses a maximum,
the position of which moves
to higher temperatures as the x

lead content increases. The %

general behaviour is shown in S

fig. 28. The interpretation of 100-

these results is as follows.

Since lead has fewer valency
electrons than bismuth, the

"

10 2

f
replacement of an atom of Fig . a8> The specific resistance of bis-

bismuth by an atom of lead muth-lead alloys parallel to the prin-
. , 111 cipal axis.

in the crystal reduces the

number of electrons in the upper Brillouin zone. If sufficient

lead is added there will be no electrons in the upper Brillouin

zone, but there will be some vacant levels in the lower zone.

The resistance of such an alloy behaves normally at low tempera-
tures the resistance increases with the temperature since the

free path decreases but, when the temperature is such that the

400
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0-81%Pb
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thermal energy is of the same order as the energy required to

raise an electron to the upper zone, the resistance must de-

crease, since the decrease in the free path will be more than

offset by the increase in the number of electrons excited, and of

the number of holes produced, as the temperature is raised.

When the number of holes is increased by the addition of more

lead, the energy required to excite an electron is increased, and

thus the excitation of the electrons only becomes apparent at

a higher temperature, which is what is observed.

The resistance parallel to the principal axis is influenced much

more by impurities than is the resistance perpendicular to the

axis. For example, 0*1 per cent of lead is sufficient to produce
a maximum in /? ,

while i per cent is required to produce a

maximum in p . Since the average resistance is aft H- fPJ. ,

about 0-7 per cent of lead would be required to produce a

maximum in the resistance of polycrystalline bismuth, though
the exact figure depends on the magnitudes of

/o,,
and p . If we

assume that the maximum first appears when there are no

electrons in the upper zone, we deduce that the number of

electrons per atom in the upper zone of pure bismuth is of the

order 7 x io~3 . This estimate is, however, probably too large

for several reasons. In the first place we have disregarded the

anisotropy of bismuth and considered the average resistance.

Secondly, it is fairly certain that the addition of lead reduces the

number of electrons in the upper zone and increases the number

of holes at the same time, whereas we have assumed that the

number of holes remains constant until there are no electrons

left in the upper zone. Further, tin is about three times as

efficacious as lead in affecting the resistance. In view of all these

factors, a figure of about io~ 3 electron per atom is a reasonable

estimate for polycrystalline bismuth.

Impurities such as selenium, which have more than five

valency electrons per atom, have quite a different effect on the

resistance. In these alloys the resistance behaves normally as

regards temperature variation, while the first trace of impurity
decreases the resistance. This is what we should expect, since

the addition of electrons cannot produce the state of affairs
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which must exist if the resistance as a function of the temperature
is to have a maximum, namely that there should be no electrons

in the upper zone. When a small amount of selenium is added,

the extra electrons presumably go into the upper zone and

hence the conductivity is increased, while when more is added

the holes begin to be filled up and the conductivity decreases.

6-3. The galvanomagnetic effects.

The most important phenomena connected with the influence

of a magnetic field on the conductivity are the Hall effect and

the magneto-resistance effect. Consider a rectangular metal

plate in the plane #= o, with its edges parallel to the x- and y-

axes, forming part of an isothermal electric circuit, and let there

be an external electric field $x along the #-axis. Let the current

per unit cross-section of the plate be JXQ= O"Q<?X * Now suppose

that there is a uniform magnetic field H along the #-axis, and

suppose that the experimental arrangement is such that no

transverse current, i.e. in the y direction, can flow. Then it is

found that there is a transverse electric field $v \ this is the Hall

effect. Further, the current is no longer JXQ but some smaller

quantity Jx . The conductivity cr, defined by r=Jx/<fx ,
is

therefore a function of the magnetic field; this is called the

transverse magneto-resistance effect. The conductivity is also

altered when the magnetic field is along the #-axis, i.e. when the

magnetic field is parallel to the current; this is known as the lon-

gitudinal magneto-resistance effect. In both cases the electrical

resistance is increased by the presence of the magnetic field.

6-31. The Hall effect.

The effect of the magnetic field is that the paths of the

electrons are curved between collisions instead of being straight.

There is, therefore, a tendency for a transverse current to flow.

If the circuit in the y direction is open, the edges of the plate

must charge up until the transverse field $y set up is sufficient

to counterbalance on the average the effect of the magnetic field.

The Hall coefficient R is defined by

R-> (6
'8>
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and the sign of R is taken as positive when the transverse

potential is as shown in fig. 29.

Consider an electron moving
with velocity v parallel to the

#-axis. The force exerted on it

by the magnetic field H is evH/c

parallel to the jy-axis (the elec-

tronic charge is e), and in

order to counterbalance this a

transverse electrical force vH/c

Fig. 29. The sign convention for

the Hall effect. H is upwards.

is required. Now if all the electrons have the same velocity

we have Jx= nev, where n is the number of electrons per

unit volume, and so

vH[^_
nevH

i

nee
9 (6-9)

The assumption that all the electrons have the same velocity is

a good approximation in metals, since only the fastest electrons

take part in the conductivity, but it is not valid in say semi-

conductors where the electrons have a Maxwellian distribution.

In this case it is impossible for the transverse field to counter-

balance the effect of the magnetic field for each electron

individually, and so instead $y is such that the total transverse

current is zero. Hence <
>

y
= vH/c, where v is a certain average

velocity. Also Jx= nev, but this v is not necessarily the same

as the one occurring in $
y . The ratio of the two v's is a pure

number of the order unity, and it can be shown (T.M. p. 171,

equation (247)) that for semi-conductors

377

8nec'
(6.10)

while for metals (6-9) is the appropriate formula.

Since the Hall coefficient depends on the first power of the

electronic charge, there is the possibility, as pointed out in

1-22, that it can be negative in some metals and positive in

others. In order that the anomalous, positive, sign should occur

it is necessary that the electrons with the greatest energy should

<94>
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occupy levels which lie in the region where the velocity decreases

as the wave number increases. In general this means that the

electrons must nearly fill a band. The Hall coefficient is then

given by (6-9) or (6-10) but with the sign changed and with

n now meaning the number of unoccupied levels or holes.

The general formula for a multivalent metal in which the

electrons partly occupy two bands, the lower of which contains

n holes while the upper contains n2 electrons per unit volume,

is (T.M. p. 165, equation (238) for the particular case w1
= w2 >

i -
.Y = .--------.

t iu ill
EC (HI 71/01!+ W272/W2)

2 V

By taking n o or n2
= o we obtain the particular cases discussed

above.

6*32. Experimental results.

When the current is carried by electrons in one band only,

the Hall coefficient gives at once the effective number of electrons

or holes. Further, since by (6-2) and (6-9) we have

Rcr=

the value of r/m can be obtained. Unfortunately it is only for

the monovalent elements that we can expect the hypothesis to

be true ;
for other metals er and R are given by formulae which

reduce, when the metal is treated as isotropic, to (6-3) and (6*11).

There are too many arbitrary parameters in the latter formulae

for them to be determined merely by measurements of R and or,

but some of these parameters can be determined in other ways.

For example, when the number of valency electrons is just

sufficient to be able to fill the lower band completely (an example
is a divalent cubic metal), the number of holes in the lower band

must be equal to the number of electrons in the upper band.

Hence n1
=

n^ J
and the number of parameters is reduced by one.

There have been many attempts to find all the parameters

by combining various measurements. The most recent of these

is by Ariyamau) who made the simplifying assumption that

MI HZ, Ti= T2 an<l determined the remaining parameters from

<9S>
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the electrical conductivity, the Hall effect and the change of

electrical resistance by a magnetic field. The results are not

unreasonable, but it is impossible, from the formulae at present

known, to obtain correctly all the properties of any metal

including say the specific heat, the magnetic susceptibility,

the electrical conductivity, the Hall coefficient, the change
of resistance in a magnetic field, the Thomson coefficient

and the refractive index. It is in fact only in exceptional cases

such as the alkalis that we can reproduce correctly the mag-
nitudes of more than two or three of these effects, but it is also

true to say that by choosing the parameters properly we can

reproduce the magnitudes of any particular combination of say

three quantities. We illustrate this in 6-34 by a discussion of

bismuth. Of course it is known that the theories of the optical

constants and the change of resistance by a magnetic field are

much more unsatisfactory than the theory of say the specific

heat, because the theories of the former are not tolerably good
even for the monovalent elements, yet it is difficult to say which

effects ought to be given most weight. In general, we may say

that if a parameter can be determined unambiguously by the

measurement of one quantity then its value is likely to be correct.

If it depends upon the combination of two or more measure-

ments, the accuracy of the determination is very considerably

reduced.

In view of the above discussion, we regard (6-n) as being

correct qualitatively and also as regards order of magnitude, but

incapable of giving exact information. We prefer, therefore, to

give in Table IV the values of w, the number of electrons or

holes, deduced by assuming that (6-9) is correct. The values of

na , the number of atoms per unit volume, and of Rcr, are also

given. For the alkalis the values of na and n agree very well, as

we should expect, while for the noble metals the agreement is

not so good. The values of n for the other metals must be used

with considerable caution. We might, for example, be inclined

to imagine that in zinc there are about 1-2 positive holes per

atom, a figure quite impossible to reconcile with the known
zone structure. We saw in 3-42 that zinc possesses a Brillouin
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zone capable of holding about 1-8 electrons per atom, and thus

we should expect the number of holes in the first zone and

the number of electrons in the second zone to be a few tenths

of an electron per atom. The explanation of the discrepancy is

as follows. According to (6-9) a small (positive or negative)

Hall coefficient necessitates a large value of
, whereas in fact

a small Hall coefficient can quite well arise for small values of

TABLE IV. Hall coefficients and conductivities at o C.

in Gaussian units

Note. The values ofR from various sources differ widely. The values given
are mean values.

n and 2 by the effects of the electrons and the positive holes

nearly cancelling one another (see equation (6-n)). Thus when

(6'9) yields an unreasonably large value of n
y it merely means

that the current is carried both by electrons and by holes and

that each type of carrier has about the same importance.

The values of R& do not have any absolute significance except
for the monovalent metals, but they serve to show that the time

of relaxation does not vary as much from metal to metal as we

might expect.

w < 97 > 7
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6*33. The transverse magneto-resistance effect.

In addition to the transverse electric field, the magnetic field

produces an increase in the electrical resistance which is pro-

portional to H2 for small fields. The model used to derive the

Hall coefficient is quite inadequate to deal with this more subtle

problem, since, if all the electrons have the same velocity, the

change of resistance vanishes. The reason for this is as follows.

The transverse electric field set up has the right magnitude to

make the transverse current vanish. Therefore it is such as to

counteract the average force exerted on the electrons by the

magnetic field. But, if the electrons all have the same velocity,

the force on each electron is the same, and hence the effect of

the magnetic field and of the transverse electric field cancel

exactly for each individual electron. Hence in order for there

to be any effect other than the production of the Hall E.M.F. it

is necessary that the electrons should not all have the same

velocity. Further, it is clear that the average deviation of the

electrons from the direction of the current is zero, but there is a

mean square deviation and hence the change in resistance must

be proportional to H2 for small fields.

If we assume that the electron gas in a metal is completely

degenerate then the only electrons taking part in conduction are

the most energetic ones, and thus there is no magneto-resistance

effect if the electrons are treated as being entirely free. However,
if we take into account the fact that the energy range in which

the conduction electrons lie is of the order kT, we obtain a

change of resistance which comes out to be proportional to T2
.

This is in complete disagreement with the experimental facts,

since the observed change in resistance increases rapidly as the

temperature is lowered. The correct theory is one which gives

a magneto-resistance effect even when the electron gas is treated

as completely degenerate, and to obtain this we have to give up
the assumption that the electrons can be treated as free and use

a model in which the energy of an electron is not a function of

the magnitude of the velocity only.

The simplest model for which a magneto-resistance effect
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exists is the one in which there are two overlapping bands,

which we have used to describe divalent metals. It is found that

. IO LZ)v

(This formula can be found from T.M. p. 166, equation (239),

though it is not given explicitly there.)

In a semi-conductor the electrons are few in number and

have a Maxwellian distribution. In this case it is impossible to

assume that the electrons all have the same velocity, and hence

the difficulty mentioned in the preceding section does not arise;

(%-cr
o~

12

08

04

Fig. 30. The change in electrical resistance of a semi-conductor in

a magnetic field, w = eHl/{c(2iTmkT)*}.

we obtain a change in the resistance even if we treat the electrons

as free. It is found (T.M. p. 171) that for small H

Ap 77W
,. ,r
(6-13)

where / is the mean free path. For large values of //, deviations

from the quadratic law occur and finally the resistance becomes

constant. If or is the conductivity in the presence of a field and

<TO the conductivity in zero field, then (T.M. p. 172)

T .

Lim T . 0*0 or= Lim -

(6-14)

In fig. 30 we show (orQ 0*)/<r as a function of w, where

w= eHll{c(2mnkT)*}.

< 99 >
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6*35. Any detailed comparison between theory and experiment
is out of the question since the model used in deriving (6-12) is

too specialized, and because, in particular, we have no simple
model which is applicable to monovalent metals. We can,

however, make some general observations. If we put w1
= w2

= n

and TJ/WJ = T2/m2
=

T/TW, then (6- 1 2) becomes, with the help of (6-3),

The same formula holds for semi-conductors except that the

factor J has to be replaced by 0-38. Now although (6-15) has

only been derived by making very special assumptions, the form

of the equation leads us to hope that it gives a reasonable

approximation for the order of magnitude of Ap/p in general.

Apart from the numerical factor J, in which of course no trust

can possibly be placed, (6-15) is in good agreement with the

experimental facts; the proportionality to o- 2
,
i.e. to T~2 for not

too low temperatures, is qualitatively correct, and the value of

B for silver at o C. is %R
2
(T

2= yx lo"14 according to (6-15),

while the experimental value is 3 x io~13 .

The measurements of Kapitza(s) show that for fields of the

order of a few kilogauss the change in resistance is no longer

proportional to H2
, and it seems probable that this is the first

sign of a flattening of the Ap y
H curve, but this has not been

observed for metals. Unfortunately it is only for semi-con-

ductors that a reasonable theory exists for strong fields, and for

these substances there are no measurements. One striking
feature is that according to (6-14) the limiting value of Ap/pQ
should be 0-13 for all semi-conductors at all temperatures, and
it would be very interesting to see whether this prediction is

borne out or not. The only cases of apparent saturation found

by Kapitza were for impure specimens of the semi-metals

germanium and tellurium* For these the limiting values of

Ap/pQ were about 0-3, whereas much larger values were obtained

for pure specimens of germanium and no approach to saturation

was found. However, even impure germanium must be treated

as a semi-metal rather than a semi-conductor, and so the above

< 100 >
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results merely hold out the hope that the theory is correct for

semi-conductors, and neither definitely confirm nor disprove

the theory.

There is also a change of resistance when the magnetic field

is parallel to the current, but this longitudinal effect is smaller

than the transverse effect. No quantitative theory has been

given of this effect up to the present.

6*36. The properties of bismuth.

In order to show the kind of result which can be obtained

by applying the crude theoretical formulae, we find quite

formally the values of the parameters for bismuth. Since in this

case nl
= nz

= n, both r1/ml and T2/m2 can be found from the

expressions

(6-16)v '

and B= i. (6-17)2 ^ "

The experimental values at o C. for polycrystalline bismuth are

R(r= 5'4x io~5 e.s.u. and 5=1-3 xio~9
. Then (6-16) and

(6-17) give r
1//w1 =io15 and T2/m2

= ^^ x io15 . Further, since

cr= gx io15 e.s.u., (6-3) gives w = 7xio18
. Thus the present

calculations give the number of conduction electrons as

2-5 x io~4 per atom, whereas the behaviour of the alloys of

bismuth indicates that the number is considerably larger than

this.

We cannot determine the effective masses without some

independent evidence about the time of relaxation. If we

assume that rx and r,2 are both about the same as r for rubidium

(we choose rubidium since the Debye is of the same order of

magnitude for rubidium and bismuth), we find m^m = 3*5 x io~2

and m2lm= 1-3 x io~2
.

These values of n
y
ml and w2 give the right order of magnitude

for the diamagnetic susceptibility if we use Landau's formula

(5-13) and add the contributions from both bands; the calculated

value is %= 1-4 x io~6
per unit volume as against the observed

value of 13 x io~6 at room temperature.
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The corresponding data and results for arsenic and antimony

are as follows. Arsenic, R<r + 1-3 x io~6 e.s.u.
;
B= 1-6 x io~n

;

Tilmi
=

3 x io14,
T2/W2

= 2 x IC)14 - Antimony, Rcr= + 5 x io~6

e.s.u., J3= Qx io-11
;
r1/m1

= 8x io14
,
72/w2

=4x io14 .

In the above discussion we have disregarded the fact that

bismuth is a highly anisotropic metal, but, since the experimental

data used refer to polycrystalline bismuth, this does not seriously

affect the conclusions drawn. What we have discussed is a model

isotropic metal which has the same properties as those of bismuth

when the latter are averaged over all directions. Thus the values

of T/m calculated above should be the averages of the values of

r/m for the different directions calculated from a similar but

anisotropic model. When we consider the values obtained for

the various parameters, it is difficult to believe that they are in

any way satisfactory, and we must conclude that the models

used for multivalent metals have only a qualitative signifi-

cance. The very small effective masses required lead to very

large curvatures of the energy surfaces over a considerable

energy range. There is some theoretical justification, based on

a first order perturbation calculation, for believing that large

curvatures can occur near an energy discontinuity, but, if we

substitute the values found for n, ml and w2 into the formula

(1-13) for E
,
we find that the highest occupied energy level lies

about i e.volt above the bottom of the upper band and about

O'4 e.volt below the top of the lower band; these energy ranges

are too large for the levels to be considered as being in the

neighbourhood of the energy discontinuity. Further, the more

direct evidence of the conductivity of the bismuth alloys

indicates that the number of conduction electrons is greater than

that predicted by the indirect evidence, and on the whole the

direct evidence is to be preferred.

6*4. The thermal conductivity.

It has been recognized for a very long time that the conduction

of heat and of electricity in metals are closely related. As long

ago as 1853 Wiedemann and Franz showed that K/CT is very

nearly the same for all metals at room temperatures (K is the

< 102 >
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thermal conductivity), while in 1881 L. Lorenz showed that

K/crT, the so-called Lorenz number, is very nearly constant over

a large temperature range. It is therefore clear that most of the

heat current is carried by electrons, although, as discussed in

6-43, direct conduction by the lattice is also possible.

The calculation of the thermal conductivity is complicated by
the fact that all thermal effects are second order effects which
vanish for a completely degenerate electron gas, and thus the

calculations have to be pushed much further than is the case,

for example, with the electrical conductivity. For the thermal

conductivity itself we can avoid the long calculations by using
a result proved in books on kinetic theory with varying degrees
of rigour (see, for example, Jeans, Dynamical theory of gases,

chapter xn), which is valid for any single mechanism of con-

duction. It is

where v is an average velocity and Cv is the specific heat (per
unit volume) at constant volume. Detailed analysis is required
in order to determine what particular average velocity is meant

by v. For metals, since only the fastest electrons take part in

conduction, v is obviously the velocity of these electrons, and

hence %mv
2=E

, where EQ is given by (1-13). Hence, by com-

bining (6-18), (5-3) and (1-13), we obtain for the electronic

thermal conductivity ^2 nTk*T
/c =---- . (6-19)

3 m \ w

Further, from (6-2), we find for the Lorenz number L the

expression K

6-41. The calculated value of L at 18 C. is 7-89 x io~u e.s.u.,

which is in remarkable agreement with the observed value of

7-9 x io~n e.s.u. obtained by averaging the results for twelve

metals. At low temperatures, however, L differs considerably
from the value LQ given by (6-20), and thus both (6-19) and

(6'2o) are only valid at high temperatures. The reason is that

in general it is impossible to define a time of relaxation uniquely
and that the r which occurs in (6-19) is not necessarily the same

< 103 >
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as the T which occurs in (6-2). It is more or less a lucky accident

that T can be defined uniquely at high temperatures, and in all

other cases we have to work with the general collision operator

and not assume that it is of the simple form (6'i).

The exact dependence of K on T has been found by Wilson (6) ;

at high temperatures K is constant, in accordance with (6-19),

while at low temperatures it is proportional to T~2 for a perfectly

pure metal. The behaviour of K at intermediate temperatures is

complicated and depends upon the number of electrons per

atom. This is discussed in more detail in the next section.

6-42. The thermal resistance, like the electrical resistance,

consists of a part due to impurities and an ideal part /q charac-

teristic of the pure metal. There is no difficulty in defining a

time of relaxation for collisions with foreign atoms and other

fixed scattering centres, the free path being of the order of the

distance between the centres. Thus for this part of the resistance

the Wiedemann-Franz law holds, and, since the two scattering

mechanisms are independent, the thermal resistances are

additive and we have

" ---~^-~>
AC L cror AC/

v '

where I/<TO is the residual electrical resistance and i/(L (r 7
1

)
is

the residual thermal resistance.

In order to determine the ideal thermal resistance experi-

mentally, the simplest procedure is to plot T/K against T and

thus to determine the limiting value of T/K as T tends to zero.

This gives us the residual thermal resistance and hence by
subtraction the ideal resistance. A more indirect method was

adopted by Griineisen and Goens(?) based on "the law of

isothermal lines". Griineisen and Goens found that for different

specimens of a metal at the same temperature the thermal

resistance is a linear function of the electrical resistance, i.e.

- = <!+ -, (6-22)
AC er

v '

where a and b are functions of the temperature. By determining
a and b experimentally, they found AC^ by substituting the known
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value of <yi in (6-22). As we see by comparing (6-22) with (6-21)

and (6-4), the functions a and b are given by

7 I b 1 x, v

*=z^'
+^- (6>23)

The experimental results are too meagre and indefinite to

make possible a rigorous test of the theoretical expression for Kt .

The results indicate that, for small T, i/^ocT
3
approximately.

This is not in disagreement with the theory, because, although

the theory predicts that i/i^oc T*
2 at very low temperatures, there

is also a term in T4 in the expression for i//q, and thus if we

put i/AqocT
n the exponent n will lie between 2 and 4 for

moderately low temperatures and it will only approach 2 for

extremely low temperatures.

40 800-4

T/0

Fig. 31. Fig. 32.

Fig. 3 1 . Theoretical electronic thermal conductivity for a monovalent metal,

showing the effect of impurity. The temperatures marked correspond to

copper (0 = 315 K.).

Fig. 32. Ke for the bismuth model.

The theoretical electronic thermal conductivity Ke has been

computed by Makinson(S) taking into account the effect of the

impurities. His results are shown in figs. 31 and 32; the

parameter chosen to indicate the amount of impurity present is

Pol^A, where p is the residual resistivity and A is calculated

from the formula
p , = 7^ (6.24)

which is valid for high temperatures. For copper A = i -82 x io~6

ohm, while for polycrystalline bismuth ^ =
3-3 x io~5 ohm.
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For an ideally pure monovalent metal Ke is constant at high

temperatures, diminishes slightly at first as the temperature is

lowered and then increases again as T~2 for very small T. When
impurities are present, Ke does not become infinite as T tends

to zero, since, according to (6-21), K
eacT when the effect of the

impurities is dominant. Hence, when the amount of impurity

60

Fig. 33. Observed values of K for copper. The trend of observed values of K
for bismuth, disregarding anisotropy. Curves show Ke and KO as found
experimentally.

Fig. 34. The ratio Le/LQ for monovalent metals.

present is small, Ke reaches a maximum at a very low temperature
and then decreases to zero; the temperature at which Ke is a

maximum increases as the impurity content increases. When the

amount of impurity is large, the maximum is flattened out and

may disappear altogether. Some experimental results for copper
are shown in fig. 33, the curve marked 3 being comparable with
the curve io~3 in fig. 31. The agreement is

reasonable, and the only point in which there is any marked
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difference between theory and experiment is that the predicted
flat minimum in Ke is not observed.

The theoretical values of LJLQ for a monovalent metal, where

Le
= KjcrT and L =

|(7r/e)
2

, are shown in fig. 34. For a perfectly

pure metal LJL decreases monotonically from i to o as the

temperature decreases. For an impure metal, on the other hand,

LJL reaches a minimum and becomes i again when the effect

of the impurities is dominant. These curves may be compared
with the experimental curves shown in fig. 36.

2-5

2-0

1-5

i-o

0-5

20 40 60 80

TK.
Fig- 35- The ratio Le/L for the bismuth model.

When the number of electrons is small, Ke is of the form

shown in fig. 32, which was constructed for a model isotropic

metal which has the average properties of bismuth, it being
assumed that the impurities are such that the number of

electrons is the same for all specimens. The main difference

between the results for this model and for a monovalent metal

is that the flat minimum in Ke no longer exists. The critical value

of the number of conduction electrons per atom is 0-32 approxi-

mately. The ratio LJL is shown in fig. 35.

6-43. The lattice conductivity.

Since insulators can conduct heat, it is clear that, though the

electrons may be the most important carriers of heat in metals,

yet the lattice vibrations must play some part in thermal con-

ductivity. The electrons and the lattice vibrations provide two
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different mechanisms of heat transfer, and hence we can write

K= Ke+ K
g , (6-25)

where K
g is the lattice conductivity,* the two heat currents being

additive. This does not mean that the heat currents are inde-

pendent of one another in the sense that we can add a lattice

conductivity like that of an insulating crystal to the electronic

conductivity to obtain the total conductivity. In a metal the

free electrons provide a mechanism for scattering the lattice

vibrations which is absent in an insulator, and hence K
g
for a

metal must be smaller than for an insulator with similar

properties. The methods of determining Ke and K
g must,

therefore, be indirect. They are as follows :

(1) lfLe
= Ke/o-T, then

K= LcrT=Leo-T+Ka . (6-26)

Now only K and <r can be measured experimentally, but if we
have a theoretical expression for Le ,

then K
ff
can be obtained.

(2) For metals such as bismuth for which the magneto-
resistance effect is large, the thermal conductivity can be

reduced by a magnetic field. If we assume that K
e
and cr are

reduced in the same ratio and that K
g

is unaltered, then by

measuring the change in K and cr we can find K
Q .

In the experiments which have so far been carried out, it has

been assumed that Le has its high temperature value L
, while,

as figs. 34 and 35 show, this is by no means true at all tem-

peratures. However, when p\\A > o-oi, LJL is nearly constant

for bismuth, and this value of p (1*32 x io~6 ohm cm.) is

exceeded in many specimens, so that serious error is not intro-

duced by the assumption. Moreover, for the monovalent metals

where LJLQ differs widely from i, the electronic conductivity

is so large that the lattice conductivity is unimportant and is

scarcely observable. However, if great accuracy is required, the

only safe procedure is to calculate Le using the appropriate

values of pQ/4A and of the number of electrons per atom. If

the observed L is appreciably greater than LeJ then conduction

by the lattice is of importance. Some experimental curves for

L are shown in fig. 36.
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The thermal conductivity of polycrystalline bismuth is shown

in fig. 33 for a moderate temperature range; measurements at

low temperatures by de Haas and Capelfo) indicate that K reaches

a maximum of the order of i watt cm."1
degree"

1 near 19 K.

Comparison of figs. 32 and 33 shows that the very high values

of K cannot be due to electronic conduction alone, the theoretical

maximum value being much too low if we assume that there is

a reasonable amount of impurity present. For bismuth, there-

2-5
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100 300 373200
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Fig. 36. Experimental curves for the ratio L/L .

fore, K
g

is considerable, and at low temperatures it is more

important than Ke . The values of Ke and K
g found experimentally

are indicated in fig. 33. These were obtained by Griineisen and

Reddemann(io) by method (i); method (2) gave essentially the

same results (n).

6-44. The thermal conductivity of the lattice is given by the

same equation as is the conductivity of the electrons, namely

K
g
=

^lu Cvy (6-27)

where / is the free path, UQ is the velocity of sound and Cv is the

specific heat of the lattice. In calculating the free path we have

to take into account the following causes of scattering:

(1) interaction with the conduction electrons;

(2) irregularities of atomic dimensions in the lattice, i.e.

irregularities small compared with the mean wave-length

of the vibrations;
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(3) lattice defects of large extent, such as grain boundaries
;

(4) anharmonic coupling between the different lattice waves,

which causes the waves to scatter one another.

With the exception of the first, all these causes of scattering

are the same for metals and insulators.

The calculations have been carried out by Makinson(S); his

conclusions are as follows. At very low temperatures the

scattering is almost entirely due to grain boundaries. In this

case / is constant and of the same order as the size of the crystal

grains, and, since Cv cc T3
, we have K

g
cc T"

3
. At somewhat higher

temperatures the electrons provide most of the scattering; in

this region K
g
acT2 and Kg is much smaller for metals than for

insulators (fig. 37). At still higher temperatures the mechanisms

Fig. 37. The theoretical general form of KO . The dotted line shows the form
for an insulator and the dashed line the form for a metal if only electrons

scattered the lattice waves.

(2) and (4), which are mainly responsible for the thermal

resistance in an insulator, are the most important; K
g
reaches a

maximum and then decreases as T~l
.

The general form of the K
gy
T curve is shown in fig. 37, the

main causes of scattering in each temperature range being
marked. It is clear that K

g can be important only for poor
conductors like bismuth and then only for not too high tem-

peratures. At high temperatures Ke is constant while K
g
ccT~l

,

and so at sufficiently high temperatures Ke >Kg
. For good

conductors like copper not only is Ke very large, except at the

very lowest temperatures, but K
g ,
on account of the large number

of free electrons, is very much less than the conductivity of an

insulator in the region where electronic scattering is important.
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For bismuth, on the other hand, Ke is small and K
g is larger than

in copper, so much so that K
Q is more important than Ke at low

temperatures.

The experimental data at present available are inadequate to

test all the details of the theory, the experiments of de Haas and

Capel(g) only just indicating that K reaches a maximum. Recent

experiments by de Haas and Biermasz(iz) on quartz have,

however, shown that boundary scattering occurs at very low

temperatures. They found that instead of AC increasing as T~l
,

as it should if the scattering is due to impurities distributed at

random, K reached a maximum at about 10 K., and that K

was nearly proportional to T"3 near 2 K. Since the maximum
of K for bismuth occurs at a much higher temperature, it seems

fairly well established that the observed decrease in /c, and hence

in K
gy

below 19 K. is due to the scattering of the lattice waves

by the electrons.

6*5. The thermoelectric effects.

Since there is a lack of uniformity in the literature concerning

the sign conventions for the thermoelectric effects, we begin by

defining the quantities concerned. If wires of two dissimilar

metals are joined at both ends and the two contacts are kept at

Fig. 38. The thermoelectric circuit.

different temperatures, an electromotive force is set up which

manifests itself by producing a current. This electromotive force

can be measured by opening the circuit at one point and

measuring the potential difference. If the metals are arranged
as in fig. 38, the thermoelectric force n is defined to be VA VD .

It is independent of T"
,
and is a function of T' and T" only.

If T is held fixed and T" =Tis varied, then dO^/dT is a function

of T only. It is called the thermoelectric force per degree
and is positive if VA VD is increased when T" is increased.

Alternatively, if r = T and T" = T+AT (AT>o), then d&l2/'dT
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is positive if the current flows from the hot to the cold junction

in metal i when A and D are joined.

If an electric current passes from one metal to another, which

is at the same temperature, heat is absorbed or emitted at the

junction. The Peltier coefficient U12 is defined as the heat given
out per second when unit current passes from metal i to metal 2.

U12 is a function of the temperature of the junction.

When an electric current passes between two points of a

homogeneous wire whose temperature difference is AT an

amount of heat /iAT per unit current is emitted or absorbed

per second in addition to the ordinary Joule heat. The Thomson
coefficient fi is taken as positive if heat is evolved when a positive

current passes from the higher to the lower temperature. Both

the Peltier and Thomson heats are proportional to the current

strength and are thus reversible effects.

6*51. There exist well-known thermodynamic relations between

the thermoelectric effects, which can be obtained as follows.

Suppose that the points A and D in fig. 38 are joined by a wire

of large resistance, so that any current passing round the closed

circuit does so slowly enough for the process to be considered

as reversible. Let unit charge pass round the circuit in the

direction ABCDA. By the first law of thermodynamics the

total work done plus the heat given out must be zero. The work

done is <912 ,
while an amount of heat (ni2)T > (IJl2)T is given

out at the junctions. The Thomson heat given out in conductor 2
PT"

y
since the sign convention is such that this quantity

PT
is I

JT'

must be positive if J"> T"\ there is a similar expression for the

Thomson heat in the conductor i. Hence we have

(/^i / 2) dT=o. (6*28)
\T'

Further, by the second law of thermodynamics, the total entropy

change must be zero in this reversible process, which gives

=dT-o. (6-29)rr\n
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By differentiating (6-28) with respect to T" and putting T" = T,

we obtain ,~

and, by differentiating (6-29), we find

d

Eliminating /^i / 2 from this and (6-30) we have

n^T d

^. (6-32)

If we now substitute this expression for 7712 in (6-31) we obtain

the remaining relation

K-/>* (6-33)

Of the three thermoelectric quantities only p refers to a single

metal. Borelius has, however, managed to obtain the absolute

thermoelectric force of a single metal in the following way. We
define the absolute thermoelectric force per degree d0/dT by

* Pf -
(6-34)

in accordance with (6-33). In order to obtain d&/dT it is

therefore necessary to measure / for at least one metal down to

the absolute zero. When this has been done, d0/dT can be

found for other metals either by direct measurement of the

relative thermoelectric power or by measuring the Thomson

coefficients and integrating equation (6-33). The obvious plan

of extrapolating the /*, T relation to the absolute zero is useless,

since fi behaves in a very complicated way at low temperatures.

Instead, use is made of the fact that there is no thermoelectric

force between metals in the superconducting states, which is

interpreted as meaning that /i
= o for a superconductor. Hence

by measuring the thermoelectric force of a metal against a

superconductor we obtain the absolute thermoelectric force for

temperatures below the transition temperature of the super-

conductor, and measurements of the Thomson coefficient enable

us to obtain d&\dT at higher temperatures.
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6-52. On account of the thermodynamic relations it is only

necessary to consider one of the thermoelectric effects; the

simplest to think of is the thermoelectric force. When one end

of a homogeneous wire is heated, the electrons at that end have

their energies increased and hence an electric current is set up.

The heated end becomes positively charged, since electrons flow

to the cold end until the electric field set up by the displacement

of the charge is sufficient to counteract the effect of the tem-

perature gradient. If the two ends are short-circuited by an

ideal conductor whose properties are independent of the tem-

perature, in fact by a superconductor, we see that there will be

a current of electrons in the metal wire from the hot to the cold

junction since the flow is now no longer hindered by the

accumulation of charge. The absolute thermoelectric power is

therefore negative. If, however, the current is due to holes in

a nearly filled band, then the thermoelectric power is positive

since the holes behave like positive electrons.

In order to obtain an idea as to the order of magnitude of the

thermoelectric effects it is simplest to consider the Peltier effect.

If we have an electric current, then at any point of a wire there

is a flow of energy nvE, where n is the number of electrons per

unit volume carrying the current, v is the average velocity and

E is the average energy which each electron carries. Now if the

current is a unit one we must have nev= i, and the energy flux

is E/e. We cannot find the average energy transported by the

electrons without elaborate calculations, but we can find its

order of magnitude quite easily. To do this, we must first be

quite clear what the energy zero is. We are really interested only

in the difference in the energy fluxes in two metals (the flux in

a homogeneous metal is unobservable), and, since the Fermi

energy is the same at all points of a conductor in equilibrium,

is the obvious choice for the energy zero. E is then the

mean thermal energy of an electron and it must be of the

order of the specific heat per electron multiplied by the

temperature. The fraction of the electrons which contribute

effectively to the specific heat is of the order kT/EQ ;
these

contribute fk, while the remainder contribute nothing. There-
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fore E is of the order k?T2

/E , and the energy flux is of the

order k2T2
/eEQ .

Now consider two conductors in which a unit positive current

flows from i to 2, the electronic current flowing from 2 to i .

At any point in 2 there is an energy flux of the order k2T2
/e(EQ)2

towards the junction, while in i there is an energy flux of the

order k2T2
/e(E )l away from the junction. The difference

between these two energy fluxes is the Peltier heat given out at

the junction. Hence 77,2 is of the order

The numerical factor given by the calculations is JT
Z for mono-

valent metals, and since n^T^Q^dT-dQ^dT}, we have

(T.M. p. 177, equation (263) and p. 178, equation (265 (a)))

df

When the conductivity is due to holes, e must be replaced by e.

In the preceding paragraphs we have been able to calculate

the Peltier heat without in any way considering the mechanism

by which it is produced. The reason for this is that owing to

the definition of the Peltier coefficient we need consider only the

current and not the electric field which produces it. Wherever

there is a change of composition an electric field is set up of such

a magnitude that the current is maintained constant throughout
the conductor. It is this field of course which is responsible for

the Peltier effect and the calculation of it lies outside the scope

of the elementary theory. Since, however, we only require to

know the amount of energy liberated, it is not necessary to

calculate the field, but a knowledge of the field is required for

the other thermoelectric effects. Here, however, the thermo-

dynamic relations enable us to dispense with it once more.

6-53. The large thermoelectric effects in semi-conductors can

readily be understood with the help of fig. 18, p. 59. We consider
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a couple formed by a metal and an excess semi-conductor, the

positive direction of the current being from the metal. The
electrons therefore are moving from the semi-conductor to the

metal, and in the semi-conductor they have an energy %AE=kb
relative to the Fermi energy . Thus the energy flux per unit

current is of the order kb/e, and by the argument given in the

preceding section, we have

d@ M
it, ,\

jf~-*r (6
'

38)

Similarly, if the semi-conductor is a defect conductor, the

fastest electrons in the semi-conductor have an energy kb less

than the Fermi energy and so they absorb energy when passing

into the metal. In this case the Peltier heat is negative, and the

absolute thermoelectric force per degree is given by (6-38) but

with e replaced by e. The experimental results have been

discussed in 4-61.

6-54. We show in fig. 39 some typical results for the absolute

thermoelectric force per degree at moderate temperatures. The
behaviour at low temperatures is still more complicated, and

600 K

Fig. 39. The absolute thermoelectric force per degree as a

function of the temperature.

cannot be explained at all by the theory in its present state.

Now, since d@\dT is obtained by integrating p/T (see (6-34)),

any anomalies in
fjb

at low temperatures persist in dQjdT at high

temperatures, and hence it is a fairer test of the theory to

compare the calculated and observed values of
ft,

rather than of
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d&ldT. If then we find agreement for /* at high temperatures,

any discrepancy in d0/dT is to be ascribed to the breakdown of

the theory at low temperatures.

We should expect the theory to be reasonably correct for the

monovalent metals, but this is not so. The Thomson coefficients

of copper, silver, gold and lithium are all positive instead of

negative at ordinary temperatures, while those of the other

monovalent metals are indeed negative but have not the correct

magnitude. This can only mean that the calculation of the

thermoelectric effects requires an accurate knowledge of the

energy levels and that the assumption that the electrons are free

is not such a good one in this problem as it is, for example, in

the calculation of the Hall effect. In some respects the theory

is, however, fairly satisfactory. The proportionality of the

Thomson coefficient to T and of the Peltier coefficient to T2
is

in good agreement with the experimental results for not too

low temperatures. Further, if we assume that for Pd and Pt

there is 0-5 electron per atom in the $-band and, on account of

their low mobility, ignore the contribution of the holes in the

rf-band, the calculated values of ju,/T are about - 2 x io~2 micro-

volt/degree for both metals. The observed values are - 3-4 x io~2

for Pd and - 1-8 x io~2
microvolt/degree for Pt. The smallness

of the Hall coefficients (Table IV, p. 97), however, indicates

that the holes in the rf-band reduce the effect of the ^-electrons,

and so the agreement is not so good as it seems.

TABLE V. Thomson coefficients in microvolts/degree of the

alkalis just above and just below the melting point

One satisfactory piece of evidence is that the Thomson

coefficients of the liquid alkali metals agree quite well with the

values calculated on the assumption that the electrons are free.

(See Table V. The experimental results, due to Bidwellda),
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have been reduced to absolute values by Sommerfeldd-*).)

When a metal is in the liquid state the energy level system ought
to be fairly simple, since the zone structure characteristic of

the solid is lost, and this confirms us in ascribing the failure of

the elementary theory, as applied to most metals, to our in-

adequate knowledge of the energy level system and not to the

breakdown of the foundations of the theory.
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Alkalis, Brillouin zones, 38; com-

pressibility, 35; Hall coefficients,

97; paramagnetism, 74; specific

heat, 65; Thomson coefficients,

117
Alloys, failure of valency rules in, 2,

13; Hume-Rothery rules, 42;
magneton numbers of ferromag-
netic alloys, 80 ff.

; paramagnetism
of alloys of the transition metals,

76 ; resistance of gold-silver alloys,

90; and of bismuth alloys, 91.

Antimony, 41, 102

Arsenic, 41, 102
Anomalous dispersion of electrons, 8

Bands in the energy spectrum of
a one-dimensional lattice, 5, 17

Basis of a composite lattice, 38
Bismuth, alloys, 91, 102; crystal

structure, 41; diamagnetism, 75,

101; Hall coefficient, 97, 101;
Lorenz number, iosff. ; number
of free electrons, 41, 92, 101 ;

thermal conductivity, 105 if.

Body-centred cubic lattice, 37;
Brillouin zone and relation to

simple cubic lattice, 38
Bragg reflexion of electrons, 17
Brillouin zones, 17; of cubic lattices,

18, 38, 39; of hexagonal lattices, 39

Cohesion in metals, 2, 31 if.

Compressibility of metals, 35
Conductivity, see Electrical con-

ductivity, Ideal resistance, Residual

resistance, Thermal conductivity
Coordination number, i, 37
Correlations between the electrons,

4; correlation forces, 34
Crystal rectifiers, 57 if.

Cuprous oxide, 47, 49, 55, 56, 57

Degenerate gas, 13

Degeneracy temperature, 13

Density of states, 15, 25 if.; deter-

mines the paramagnetism, 69, and
the specific heat, 63

Diamagnetism, of atomic cores, 71 ;

of bismuth, 75, 101
; of conduction

electrons, 71 ff.

Diamond, 41

Effective mass of electrons, 10; in

bismuth, 101

Electric field, effect upon the distri-

bution function, 85 ; motion of an
electron in, 8

Electrical conductivity in a magnetic
field, 93, 98 ff.; for semi-conduc-
tors, 99

Electrical conductivity ofalloys, 90, 91
Electrical conductivity of metals,

84 ff.; of liquid metals, 5; tem-

perature variation, 89 ; of transition

metals, 88 ; see also Ideal resistance

and Residual resistance

Electrical conductivity of semi-con-

ductors, 44, 48 ff.

Energy levels, numerical calculation

of, 22 ff.

Exchange forces, 34; effect on para-
magnetism, 73, 76; effect on
ferromagnetism, 78

Exclusion principle, loff.

Face-centred cubic lattice, 37; Bril-

louin zone and relation to simple
cubic lattice, 38

Fermi-Dirac statistics, 2, i2ff. ;

condition for validity, 14; reduces
to Maxwell statistics at high tem-
peratures, 15

Fermi function, i3ff. ; effect of
external fields on, 84, 85

First order quantities, 15

Ferromagnetism, 2, 76 ff.

Free electrons, i ; form open and
closed groups, i, n, 12; number,
88, 101; in semi-conductors, 50 ff.

Free path, 3, 54, 88, 103, 109

Graphite, 42, 44

Hall coefficient, 3, 9, 93 ff.; of semi-

conductors, 47 ff., 94
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Hexagonal lattice, 37
Holes in complete zones, behave like

positive charges, 3, 9, n; cause

anomalous Hall effects, 3, 9, 94,

and Thomson effects, 3, 9, 114;
effect on the conductivity of semi-

conductors, 45 ff.

Ideal resistance, 86 ff.

Impurities, effect on electrical con-

ductivity, 3, 86 if.; and on thermal

conductivity, 104; produce elec-

trons and holes in semi-conduc-

tors, 45 ff.

Insulators, i, n, 21, 44; density of

states in, 26

Lattice, specific heat of, 2, 63, 66, 68;
thermal conductivity of, icyrf.

Liquid metals, 5
Lorenz number, iO3ff.

Magnetic field, effect on electrical

conductivity, 93, 98 ff.

Magneton number, 2, 79 ff.

Nearly free electrons, 6

Nickel, density of states, 28, 65;

ferromagnetism, 78 ff.
; specific

heat, 64 ff.

Paramagnetism, 2, 68 ff.; above the

Curie point, 83
Peltier effect, 112, H4ff.
Photoelectric effect, in semi-con-

ductors, 52 ff.

Rectifiers, 57
Reduced wave vector, 8

Residual resistance, 86

Second order quantities, 15, 103

Selenium, 40
Semi-conductors, i, 12, chapter iv;

conductivity in a magnetic field,

99; Hall coefficient, 94; thermo-
electric force, 115

Semi-metals, i, 21; density of states

in, 27
Silver sulphide, 46, 47, 54
Sodium, binding energy, 33; energy

levels and wave functions, 23 ff.

Specific heat of the electrons, 2, 12,

15, 63 ff.; in nickel, 66 ff.

Specific heat of the lattice, 2, 3, 63,

66,68

Tellurium, 40
Tetragonal lattices, 40
Thermal conductivity, 3, io2ff.

Thermodynamic potential of the

electrons, 13

Thermodynamic relations between
the thermoelectric effects, ii2ff.

Thermoelectric effects, 3, 9, uiff.
Thermoelectric force, of metals,

114 ff.; of semi-conductors, 56,

Thomson coefficient, 3, 9, ii2ff.

Tightly bound electrons, 6

Time of relaxation, 49, 84
Transition elements, density of

states, 28; specific heat, 64; para-

magnetism, 75 ff.; thermoelectric

force, 117
Tunnel effect, i, 4, 58

Valency rules, invalid for metals and

alloys, 2, 32, 42

Wave functions, determined numeri-

cally, 22 ff.

Wiedemann-Franz law, 102
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