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*NOV UBRARV

ABSTRACT

The effect of several types of flat and sloping bottom

configurations and bottom geophysical properties are

studied using the parabolic equation model in a sensitivity

analysis to determine the importance of such environmental

parameters. Low frequency and fixed source and receiver

depths have been used along with a single sound speed pro-

file, in both deep and shallow water cases. For a fully

absorbing bottom, only the refracted energy paths remain,

making the model insensitive to the bottom geometry. For a

perfectly reflecting bottom, both the refracted and the re-

flected paths were present in deep water tests, and only the

reflected paths in shallow water cases. For the sloping

bottom geometries a periodic interference pattern was found

in transmission loss, with a wavelength inversely related

to the bottom slope. A more realistic partially-absorbing

bottom proved to have properties very similar to those of

the perfectly reflecting bottom.
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I . INTRODUCTION

The usually accepted procedure for the evaluation of

acoustic field measurements has been to compare observed

propagation loss with an analytical expression for propaga-

tion loss versus distance from the acoustic source.

Not much is known beyond these kinds of semiempirical

expressions for transmissions losses. This is especially

true at low frequencies. The type or kind of bottom from a

geophysical point of view has not been included, except for

some shallow-water, high-frequency cases in a very limited

sense with coefficients that may account for the "strength"

of the bottom. Not much work has been published on acoustic

transmission with sloping or range-dependent bottom geometry

Northrop et al. (1968) comment on the effect of variations

in the observed signal level received from shots fired over

the edge of the continental shelf, attributing these varia-

tions to changes in bottom slope, bottom material, and water

depth in the source area. Another study analyzing the influ-

ence of sound speed fluctuations of a CW signal in an ocean

with a uniformly sloping bottom has been made by Hamilton

et al. (1979) . One of the reasons for considering the uni-

form slope was that bottom variation had been excluded from

most previous published studies.

The effect of a sloping bottom on propagation could be

divided into two categories: purely geometric effects





(iso-velocity case) and refraction effects caused by a

variable sound speed. In the first category, perhaps the

most apparent effects are the funnel effect and its inverse,

the megaphone effect (Fig. 1). These effects are simply

changes in acoustic energy density due to changes in water

cross sectional area at any fixed range. This effect is

maximized in the case of a perfectly reflecting bottom

(Hawker et al., 1976). Another interesting effect found in

the sloping bottom context has been the slope enhancement

effect (Hawker et al., 1976). Several sets of experimental

data were examined for slope effects showing a strong slope

enhancement feature for all receiver depths. The enhancement

increased with decreasing depth and began approximately 40%

up the slope, peaking at the top of the slope.

With the introduction of the parabolic equation (PE)

model in acoustics, an accurate description of the acoustic

field is now available for many of the actual situations that

can be found in underwater acoustics.

Possibly one of the most complete numerical models for

the PE equations is that of Brock (197 8) . This model treats

the acoustic propagation phenomenon from a deep water point

of view.

With the incorporation of the bottom into the PE algor-

itehm (Stieglitz et al., 1979), it is possible to simulate

practically all kinds of environments for either shallow or

deep water cases.
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Figure 1. Funnel effect

This study is intended to be a preliminary sensitivity

test for bottom-related model parameters. The scope of the

present work is to explore the importance of the oceanic

bottom in the transmission of sound from two points of

view: type and geometry. Under the first, three kinds

of bottoms that, in theory, span all the possible situations

were studied. Under the second, several different bottom

geometries were modeled.





II. THE PARABOLIC EQUATION (PE) MODEL

A. THE ALGORITHM

The parabolic equation (PE) model is one of the latest

major developments in the field of acoustic modeling. It

was introduced into underwater acoustics by Tappert and

Hardin in 1972, and the first paper showing practical re-

sults of applying the method to underwater sound propagation

was published by Spofford (197 3) . Since then, the PE method

has been tested and evaluated at various laboratories,

especially in the United States, and several variants of

the numerical model have been developed.

An outline of the derivation of the PE equation is de-

scribed below, showing the steps and approximations employed

Basically, the parabolic equation involves replacing the

elliptic reduced wave equation (the Helmholtz equation) with

a parabolic differential equation.

Starting with the Helmholtz equation,

V
2

cf> + k
2

.}) = (1)

where

:

and

2
V = Laplacian operator,

(J)
= velocity potential,

k = Wave number (w/c)

.





Defining a reference sound speed c g^.ves

k = reference wave number = w/c , and

n = refraction index = c
n /c -

This results in the Helmholtz equation in terms of the

reference sound speed:

V
2

<J)
+ k

2
n
2

<{> = . (2)

Assuming cylindrically symmetric propagation, gives

2 2
3 d> 1 3d> 3 d) . . 2 2 , ,-.,

d r dZ

With the separation of variables,

<j> = tp(r,z) • S(r) (4)

equation (3) becomes

.
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If we set the terms in the first bracket equal to

2 2
(-Sk

n ) , and the terms in the second bracket equal to (^k )

,

the equation can be separated into two differential equations

2

1_4 +
1 3S + k

2
s = Q (6)

~ 2 r 3r
3r
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and

d \p 3 ip ,l x 2 3S> 3i() .2 2, .2.
7^ + rT +
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+ k
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(7

dr dZ

Equation (6) is the zero-order Bessel equation, and its

solution in terms of outgoing waves is given by the zero-

order Hankel function of the first kind:

S = R
{

Q

l)
(k

Q
r) (8)

Introducing the far field approximation,

k
Q
r >> 1 (9

and replacing the Hankel function by its asymptotic value,

gives

S(r) ~ /2Ak
Q
r e ~ ' . (10)

The variable S can be eliminated from equation (7)

using (10) :

i!$. + i!i + 2ik n
|i+ k2(n 2

-l)^ = (11)

3r
2

3z
2 3r

Next, the small angle approximation is introduced:

i^fc << 2k n
|i

. d2)
~ 2 3r
3r
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The physical meaning of this fundamental approximation

in the parabolic equation method is that, if the acoustic

field were represented by rays, these would be inclined only

at small angles with respect to the horizontal.

This yields the parabolic wave equation:

2
i

3z*
£-f + 2ik

Q || + kjj(n
2
-tt* = . (13)

B. THE NUMERICAL MODEL

The parabolic equation model is an acoustic wave model

designed for the computation of acoustic transmission loss

as a function of range and depth in range -dependent ocean

environments.

The elliptic-reduced wave equation, Eq . (1), is approxi-

mated by a parabolic differential equation, Eq . (13), that

can be numerically integrated by marching the solution for-

ward in range, using the Tappert-Hardin split-step Fourier

algorithm (Brock, 1978)

.

The parabolic wave equation includes diffraction and all

other full-wave effects as well as the possibility of dealing

with range dependent environments. The numerical algorithm

has exponential accuracy in depth, second order accuracy in

range and is unconditionally stable. As the solution is

marched forward in range, the entire range and depth depen-

dent acoustic field is computed.

The model assumes a flat pressure release ocean surface

and a vanishing field at the maximum depth of the finite

12





Fourier transform. That is, an artificial horizontal bottom

boundary below the physical bottom is introduced, and the

field is assumed to satisfy a zero boundary condition there.

This was required as a periodic boundary condition in z be-

cause of the use of the finite Fourier Transform in the

split-step algorithm. A pseudo radiation condition is intro-

duced at the water-bottom interface by smoothly attenuating

the field.

Since the computing time increases as frequency increases,

the model is primarily useful for predicting low-frequency

acoustic propagation of energy along water-borne or shallow

angle bottom-bounce paths.

On the other hand, the treatment of paths which intersect

the ocean bottom has been a major limitation of the algorithm

ever since it was first introduced by Tappert and Hardin.

The two reasons for this limitation are inherent in the

numerical scheme. First, the narrow-band (angular aperture)

approximation employed in deriving the PE equation produces

an intolerable phase-error for the steep angles associated

with the bottom-interacting paths. Second, the stringent

requirements of the discrete Fast Fourier Transform (FFT)

permit only "smooth" transitions in both the sound speed

profile and the attenuation of the pressure field. This

makes the implementation of geophysical models for the ocean

bottom difficult unless the characteristics of smooth transi-

tion are met.

13





With the incorporation of a rather general ocean bottom

model (Stieglitz et al . , 1979), it is possible, by applying

certain restrictions to the bottom-interacting field of the

PE model, to realize a workable ocean bottom model. There

are two alternative ways to characterize the ocean bottom:

by specification of both the sound-speed variation and

attenuation in the bottom or by specification of loss versus

grazing angle. The first alternative is directed towards a

geophysical description of the bottom while the second lends

itself to a simple bottom-reflected ray analog.

There are three specific restrictions to the above speci-

fications, however. First, all bottom sound-speed and attenu-

ation profiles must be point-continuous at the bottom-water

interface. Second, the maximum bottom grazing angle con-

sidered is approximately 33 degrees. Beyond this angle,

independent of what is specified, the attenuation of the

field is assumed to be infinite. Finally, the minimum range

interval over which a set of bottom specifications, such as

grazing angle vs. loss, are held constant should equate to

the range-cycle or periodicity of the maximum range ray.

Nevertheless, even with these limitations, the class of

bottom characteristics which can be realized under these

restrictions is large enough to cover most of the more gen-

erally accepted bottom models.

C. COMPARISONS WITH OTHER MODELS

Although there are many models based on the parabolic

equation method, the only significant differences among them

14





are the numerical solution technique used to solve the

equation (13) , the handling of the bottom absorption, and

the treatment of range dependence.

The PE numerical model used in the present work is in-

stalled on the main frame of the W.R. Church Computer Center

at the Naval Postgraduate School. The program is documented

by Brock (1978) and by Stieglitz et al., (1979). An advan-

tage over other PE models is the possibility to choose

either of the two alternative bottom characterizations des-

cribed previously. The loss versus grazing angle method is

a particularly important option for problems of naval warfare

interest.

Lee and Papadakis (1980) applied an improved numerical

technique to solve the parabolic equation. They used the

numerical ordinary differential equation methods combined

with a predictor-corrector procedure. Apparently, this new

procedure has some advantages over the split-step Fourier

algorithm developed by Tappert and Hardin and later imple-

mented by Brock (1978) and Jensen and Kroll (1975).

In implementing the split-step algorithm described previ-

ously, the second order differential operator in z, in

Eq. (13) , is represented by the inverse transform of its

Fourier transform. The resulting equation is transformed

into a system of ordinary differential equations by approxi-

mating the forward and inverse Fourier transform by the Fast

Fourier Transform (FFT) numerical algorithm in z. When the

15





index of refraction has a large change across the bottom in-

terface, there is the possibility of a large error. This

error is proportional to the square of the z-derivative of

the index of refraction multiplied by the cube of the range

step. This error is avoided by using a very small range

step, but this may result in unacceptably long computation

times for long range calculations. Brock's model (1978),

incorporates a warning if the predicted range step is less

than the acoustic wavelength. Five such warnings terminate

the calculation.

Lee and Papadakis (1980) approximate the second-order

differential operator in z by a central finite difference

operator which converts the partial differential equation

into a system of first order ordinary differential equations.

The system is solved numerically by nonlinear multistep

methods. This procedure avoids the introduction of an arti-

ficial horizontal bottom boundary below the physical bottom.

This was required because of the use of the finite Fourier

Transform in the split-step algorithm as a periodic boundary

condition in z.

The arbitrary boundary condition at the bottom is incor-

porated into the system of first order ordinary differential

equations, treating the bottom boundary condition realistically

Among the currently working PE models in different

centers and laboratories, special mention is made of the

SACLANTCEN parabolic equation model (PAEEQ) (Jensen and

16





Kuperman, 1979; Jensen and Martinelli, 1980). This model is

essentially a shallow-water version of the Brock model

(Brock, 197 8) and has been compared successfully with other

non-PE models for different environmental conditions.

Even without having the useful alternative characteri-

zations of the bottom that are possible in the model used

here, the PAREQ program adds some subroutines, mainlv relat-

ed to output options, such as a routine for creating smoothed

propagation loss curves and contour programs for use either

in demand or batch modes. This makes the PAREQ program

especially useful for certain applications. An example

is the study of the sound propagation in the ocean with a

sloping penetrable bottom (Jensen and Kuperman, 198 0) where

modal cutoff during upslope propagation in a wedge-shaped

ocean was studied using the PAREQ model, taking advantage

of the special contouring features. The PAREQ model has been

selected for a comparison with the results from the PE model

used here. Three typical cases were compared: One deep-

water case, one shallow-water case and an upslope propagation

case. The comparisons were sufficiently good to warrant use

of the model to study more complicated propagation phenomena.

In the following section, a general description of the

model input parameters is presented along with the results

achieved and the conclusions that may be drawn.

17





III. TREATMENT OF DATA AND ANALYSIS OF RESULTS

Before discussing the PE model results, it is convenient

to list the main parameters employed in the tests.

Bottom. Three different types of bottom were studied.

Two of them were limiting situations. The first is a per-

fectly reflecting bottom for which there is no attenuation

and the sound is not transmitted but is entirely reflected

at the water-bottom interface. The other limiting situation

is that of a fully absorbing bottom in which all the inci-

dent energy is absorbed. Finally there is a third type of

bottom resembling more realistic conditions. This latter

type simulates results from a compilation of low frequency

measurements of bottom loss. These situations were examined

in order to establish the limits of the behavior of the

energy in normal acoustic propagation for each case.

With respect to the geometry of the bottom, three differ-

ent cases were examined: Flat, sloping, and combinations

of these two types of bottom configurations, termed a "mixed

bottom"

.

For simplification, it is useful to introduce some short-

hand notation:

F means flat.

SL=1 means upslope of 1°.

SL=2 means upslope of 2°.

18





MIXF1 mixed bottom: upslope of 1° (0-25 run) and
flat (25-50 nm)

.

MIXF2 mixed bottom: upslope of 2° (0-25 nm) and
flat (25-50 nm)

.

MF1 mixed bottom: flat (0-30 nm) and upslope of 1

(30-50 nm)

SL=1 MXF

ISL=1 I4XF

mixed bottom: flat (0-10 nm) , upslope of 1°

(10-15 nm) and again flat (15-50 nm)

.

mixed bottom: flat (0-10 nm) , downslope of 1°

(10-15 nm) and again flat (15-50 nm) .

/ > / /—7
-r

->
7 7 >

SL=1

1—7—7

—

T

MIXF1
"»

7 7 7 7 T
ISL=1MXF

~> 7

—

>

1 ' ^ i f—i—r—r—r ' > 1 1 r—i 7 1 7—7-

MF1 SL=1MXF

Figure 2. Bottom Geometries
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Frequency. Three different frequencies have been em-

ployed: 50, 100, and 300 Hz. Due to the constraint of

computational time required for the higher frequencies, more

cases have been studied at 5 Hz.

Range. For most cases the maximum range used is 50 nm.

Depth. Both deep and shallow water cases were examined

with water depths of 12000, 5000, and 1000 feet.

Sound Speed Profiles (SSP) . In the tests presented in

this work, a single SSP profile documented by Johnson and

Norris (1968), Fig. 3, has been employed in order to compare

results attributable only to variation of the bottom charac-

teristics, thus avoiding possible "contamination" due to

other "weight" parameters related to the SSP.

Source-Receiver Depths. These parameters have been fixed

in most of the cases studied, with 300 feet for the receiver,

and 50 feet for the source.

Source Beam Size. The half -beam size was 20°.

Spherical Earth Correction. Applied in all the tests.

Volume Attenuation. Omitted.

Horizontal Range Period (for rays in the partially ab-

sorbing bottom) . This is the distance that the rays travel

in the partially absorbing bottom before they again encounter

the water. In the model used here this range period is

constant for all the rays, and the value used was the default

value of 6000 feet. For the fully absorbing bottom cases,

the value was .

20





Bottom Loss Information. Given by grazing angle (de-

gress) vs. loss (dB)

.

The information analyzed included transmission loss

versus range plots (TL vs. R) , tabular listings of TL vs R,

and in some selected cases, a contouring of the whole field

(TL vs. R and Depth)

.

Velocity .Meters/Sec

1490 1S00 1S10 1S30 '-S30 1S40 ISSO

SEASONAL ~!- F-"OCLINE

KAIH THEW.OCLINE

DEEP

ISOTHERMAL LArER

Hi Winter (Jan-Apr)

Sp: Spring (May, Juiw)

Su: Sumner (July-Oct)

ft ?ail (Nov. Doc)

Figure 3. SSP PROFl (Winter)
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A. FULLY ABSORBING BOTTOM

A series of figures are presented that show the behavior

of the acoustic energy in the presence of this type of bottom

using several geometries and frequencies.

The remaining parameters are held constant:

Range = 5 nm.

SSP = PROF1.

Source Depth = 50 ft.

Receiver Depth = 3 00 ft.

Maximum Water Depth = 12000 ft.

The tests are summarized in a tabular format, using the

nomenclature above defined for the bottom geometry (Table I)

.

Table I

Fully Absorbing Bottom Tests

FIGURE BOTTOM GEOMETRY

4 F
5 SL=1
6 SL=2
7 F
8 SL=1
9 SL=2

10 F
11 SL=1
12 SL=2
13 MIXF1
14 MIXP2
15 MIXF3
16 MIXF1
17 MIXF2
18 MIXF1
19 MIXF2
20 MP1

FREQUE

50
50
50

100
100
100
300
300
300
50
50
50

100
100
300
300
50

22





An analysis of the figures reveals that for a flat bottom,

refractive rays can exist for deep water, and convergence

zones are seen at about 40 nm for the three frequencies

tested (Figs. 4, 7 and 10). Introducing an upslope of 1° or

more causes downward refracted rays to be reflected and

therefore absorbed, eliminating the convergence zones (in 50

nm 1° upslope decreases the depth by 5236 ft).

For all three frequencies the slope of the bottom (either

flat or upsloping) has no effect on the transmission loss

out to ranges where upward refraction begins. There are

generally larger signal fluctuations with increased frequency,

however.

Summarizing, the convergence zones only appear in the

cases where there is absolutely no bottom interaction with

refracted rays. All other cases (either an upsloping bottom

or a mixed bottom, deep or shallow depth) result in identi-

cal TL for each frequency. Thus, no convergence zones can

be expected when the change in bottom slope occurs at ranges

less than the turning depth of the deeply refracted rays.

When the change in slope occurs at ranges beyond the range

of the first turning point, as in Fig. 21 where the slope

begins at 30 nm from the source and the first turning point

occurs at 20 nm, the refracted rays can intersect with the

bottom and become absorbed before the second turning point.
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Figure 21. Fully Absorbing Mixed Bottom (50 Hz) with
Slope at 30 nm from Source. The symbols
employed are described at the head of the

figure in the TL scale. The bottom is

depicted by the letter B.
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B. PERFECTLY REFLECTING BOTTOM

The same parameters as in the previous case were re-run

for a perfectly reflecting bottom with the exception of the

300 Hz tests and some of the 100 Hz tests because of com-

putational-time restraints. Table II summarizes the cases,

according to bottom geometry and frequency.

Table II

Perfectly Reflecting Bottom Tests

FIGURE BOTTOM GEOMETRY

22 F
23 SL=1
24 SL=2
25 MIXF1
2 6 MIXF2
27 MIXF3
28 F
29 SL=1
30 SL=2

In the range of 25-50 nm, the analysis of these cases

shows the existence of clearly defined convergence or energy-

focusing zones that vary according to the specific bottom

geometry imposed. These convergence zones (CZ) are not the

typical refracted CZ observed at 40 nm as in previous cases

(Figs. 4, 7, 10 and 21) , but are the result of focusing of

both refracted and bottom reflected rays.

The difference between an upsloping bottom (Figs. 23, 24)

and a flat one (Fig. 22) is that of changing the slope of the

TL curves. This effect has been called the funnel effect in

reference to the upslope bottom geometry. Its counterpart is
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the megaphone effect for downsloping bottoms. The megaphone

and funnel effects are simply changes in acoustic energy

density due to changes in water cross sectional area at any

fixed range.

The cut-off effect observed in Figs. 24 and 30 appears

to be independent of frequency and hence difficult to explain

in the mode-mode coupling context. There are, however, two

possible explanations for this effect. The first is associated

with a model restriction; if the grazing angle becomes greater

than 33°, the bottom becomes fully absorbing, independetly

of what it is specified by the user. Hence, the propagating

energy that intersects the bottom is lost. Because of the

funnel effect, the energy propagates upslope intercepting

the bottom at steeper angles as it progresses in range. This

could lead eventually to the limiting grazing angle that would

cause the energy cut off observed.

The second possible explanation is a result of the ray

theory. If the reflected angle becomes equal or less than

the angle of the slope, the energy reflects backwards (for

an isovelocity fluid) , creating interferences with the pro-

pagating energy at less distance from the source. This could

happen for a very steep slope where

slope angle = 90° - grazing angle > 57°,

as the grazing angle is model-limited to a maximum value of

33° where the bottom becomes fully absorbing. This leads to

values for the slope that are not considered in this study.

Hence, only the first explanation is possible.
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Figure 25. Perfectly Reflecting MIXF1 Bottom (50 Hz)
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Figure 27. Perfectly Reflecting MIXF3 Bottom (50 Hz)
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Figure 28. Perfectly Reflecting Flat Bottom (100 Hz)
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The study of the other cases (Figs. 22, 25, 26, 27) is

more interesting. From 0-25 nm all the four cases are very

similar. However, a smoothing of the curves shows that the

number of convergence zones over a given increment of range

is a function clearly related to the slope of the bottom

geometry. The shape of the TL curve has a strong sinusoidal

pattern. The wavelength of this periodic occurrence of con-

vergence zones was plotted versus bottom slope for each of

the four cases (Fig. 31) . This figure shows a quasi-linear

relationship between the slope of the bottom and the wavelength

of the convergence peak.

3 Slo?f>(°)

Figure 31. Wavelength of observed convergence zones

as a function of the slope of the bottom.

C. A MORE REALISTIC BOTTOM

In this section a more realistic bottom has been chosen

to perform tests similar to those in previous sections. The
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degree of reflection from the sea floor is modeled using the

formulation of Christensen and shown in Urick (1979), corres-

ponding to a compilation of bottom loss at low frequencies

(Fig. 32). This bottom loss formulation has been called

Ul for the sake of simplification.

As before, TL vs. range graphs were analyzed and the

results compared against those for the fully absorbing and

perfectly reflecting bottom cases. The tests performed are

listed in Table III.

30 40" 50~

GRAZING ANGLE

70^ 90

Figure 32. Results of a compilation of low frequency
measurements of bottom loss. Dashed curves
show limits of one standard deviation.
Compiled by R. Christensen (from Urick, 1979)
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Table III

Ul Bottom Tests

FIGURE BOTTOM GEOMETRY FREQUENCY

33 F 50
34 SL=1 50
35 SL=2 50
36 F 100
37 SL=1 100
38 SL=2 100
39 F 300
40 MIXF1 50
41 MIXF2 50
42 MIXF3 50
43 MIXF1 100
44 MIXF2 100
45 MIXF3 100

The following conclusions may be drawn from an analysis

of the results:

First, the behavior of the acoustic energy using this

more realistic type of bottom loss formulation is practically

the same as for the perfectly reflecting bottom (Figs. 22 to

30) . Except for more losses due to the partially absorbing

characteristics of this bottom, the same general patterns

for each geometry and frequency are found (Figs. 33 to 45)

.

Second, it appears to be possible to apply the general char-

acteristics for perfectly reflecting bottoms to partially ab-

sorbing bottoms, if one first establishes the limits or envelope

of the TL vs. range plots for the realistic bottoms in question.

Based upon this finding, the tests of the following sec-

tion were performed utilizing only the perfectly reflecting

bottom.
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Figure 35. Ul SL=2 Bottom (50 Hz)
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Figure 38. Ul SL=2 Bottom (100 Hz)
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Figure 40. Ul MIXFl Bottom (50 Hz)
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D. THE SLOPING-STEP GEOMETRY

The following cases are all for flat bottoms having a

single upward-sloping section of varying steepness. A maxi-

mum water depth of 5000 ft was chosen because the objective

of these tests were to determine the importance of the

changing steepness of the sloping section on the energy

reflected paths. As a consequence, it was considered con-

venient to eliminate the refractive effect observed in pre-

vious runs of the model. In addition, computational time

was saved without detriment to the results obtained.

Range = 5 nm.

SVP = PROF1.

Source Depth = 50 ft.

Receiver Depth = 300 ft.

Maximum Water Depth = 50 00 ft.

Frequency = 50 Hz.

Table IV lists the tests performed forthis bottom geometry

Table IV

Perfectly Reflecting Upsloping Bottom

IGURE BOTTOM GEO

46 SL=1 MXF
47 SL=2 MXF
48 SL=3 MXF
49 SL=4 MXF
50 SL=5 MXF
51 SL=6 MXF
52 SL=7 MXF
53 SL=8 MXF

FREQUENCY

50
50
50
50
50
50
50
50

69





The results of the analysis show that: first, only

negligible TL differences occur in the first 10 nm (Figs. 46

to 53) . This conforms with expectations because of the same

bottom geometry over this range for the previous cases

studied

.

Second, the steepness of the bottom slope is clearly mani-

fested in the subsequent large changes in the TL curves in

the range of 10-15 nm. It is possible to measure this change

in TL , from the maximum at 12 nm to the first maximum appear-

ing at or immediately after 15 nm. This drop in intensity

is related to the geometry of the bottom; ranges from less

than 1 dB (SL=1 MXF , Fig. 46) up to 10 dB (SL=8 MXF , Fig.

53) are observed.

Apparently, this is in disagreement with the observed

slope enhancement reported by Hawker et al . , (1976) when

using a reflecting slope. The reason for this loss of energy

is attributable to the previously mentioned limitation of

the modelwhen reaching an energy propagation angle of 33°,

where the bottom literally absorbs all the energy arriving

with this and greater grazing angles.

Another interesting effect has already been observed in

the previous MIXF cases (Figs. 25, 26, 27) : the presence of

periodic convergence zones in the range 15 nm to about 30

nm. This effect is more easily seen in Figs. 50, 51, 52 and

53, and seems to be wavelength-related to the angle of the

slope, as was found earlier. There remain, however, some
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unanswered questions as to the cause of this effect: why

are they more apparent in some figures than in others, and

why are the peaks so low compared to Figs. 25-27? Hopefully,

these and other questions will be solved after a numerical

smoothing is incorporated into the parabolic equation model

and Fourier Transforms are employed to accurately determine

the wavelengths involved. Intuitively, it appears that the

cause is purely geometrical and that the relative intensity

of the peaks is a function of the length of the slope for

a given angle.

Several more cases were tested with a downsloping bottom

segment. For these tests all the parameters were the same

except that the minimum depth was limited to 1000 feet.

Table V lists the tests performed.

Table V

Perfectly Reflecting Downsloping Bottom

FIGURE BOTTOM GEOMETRY

54 ISL=1 MXF
55 ISL=2 MXF
56 ISL=3 MXF
5 7 ISL=4 MXF
5 8 ISL=5 MXF
59 ISL=6 MXF
60 ISL=7 MXF
61 ISL=8 MXF

The resultant TL vs. range graphs (Figs. 54-61) show a

noteworthy aspect: the almost total absence of large inter-

ference, or small spatial scale variations, in comparison to

FREQUENCY

50
50
50
50
50
50
50
50
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the flat or upslope cases. This is particularly true for

slopes of 4° or more in the range 15-50 nm (Figs. 57 to 61)

.

This is due to the fact that with increasing downward slope

the number of bottom reflections decreases for the same range

All the high frequency noise is at close range where fre-

quent bottom reflections take place due to shallower depths.

On the other hand, rays which were bottom reflected at close

range become refracted rays as the bottom slopes downward.

Hence, CZ-type peaks appear. The effect of increasing slope

angle on the overall TL is to decrease the intensity of the

energy locally, principally due to the megaphone effect

cited before and not to any kind of energy absorption pro-

cess. If the downslope is increased sufficiently, the

energy becomes purely refracted, creating zones of energy

peaks as expected for the typical CZ's in a fully absorbing

bottom (where no reflected paths exist)

.

72





Q
CO

CO
r-

oo
co

o
co

CO
LO

rvj

in

co

LXO
ocn

a
it .

CO

<\j

CO

O
a
CO

IB 3 3 3 w S
co r^ r*> co co en

(QQ) SSOT doya

a—a 3 a
o — rj

Figure 45. Perfectly Reflecting SL=1 MXF Bottom (50 Hz)

73





o
CO

co

CO

2g

om
z
a
x
on

co

o.
Cj
10 CO

7T "3"

CO CO

~3~

en en
d
o

1FT

(80) SS01 dOUd

+ + -h

+ t +

T3 U\ 3— r- f\l

Figure 46. Perfectly Reflecting SL=2 MXF Bottom (50 Hz)

74





a
CO

CO

eo"
CO

UJ

fcpcm
za
oc .

m

3^- +

a iH 3 lH 3 3 3 uT

(80) SS01 dOUd

"3 3 3 3 3
O O — — (\J

Figure 47. Perfectly Reflecting SL=3 MXF Bottom (50 Hz)

75





a
CO

CO

r-

co
CO

z°

l»AO

Z
ct
X .

on

co oo en en

(90) SS01 dOUd

+ +

t

t

* * t

+

t

Figure 48. Perfectly Reflecting SL=4 MXF Bottom (50 Hz)

76





o
CO

en

AJ
r-

CO
10

iO

o
(A

a
AJ
on

AJ

a i/j d ui d id d uJ d ul dODf^r»coooojO)Oo™
190) 5S01 dOttd

+

+ +

"^ 3

Figure 49. Perfectly Reflecting SL=5 MXF Bottom (50 Hz)

77





o
OD

cm
z
a
a. .

m

> ^T-»wr- +

+

+ *

+ +

d 3 3 3 3 3 3 3 3 3 d 3 3coujr^r^aicocncnoo — -. c\j

(8Q) SS01 dOdd

Figure 50. Perfectly Reflecting SL=6 MXF Bottom (50 Hz)





a
CO

CO

CO
CO

CO
> .

o
CO

CO

in

CO

I3
*

UicO
Cor>
2
a

CO CO

+ +

7B c3 IB 3 u\ 3 ui 3 IT! a 3 d
co ca en en o

(8Q) 5501 JOUd

— C\J

Figure 51. Perfectly Reflecting SL=7 MXF Bottom (50 Hz)

79





o
CO

co

CM

CO
CO

UJlO

Z
CK
cc .

CM
on

co

d 3 3 3 13 in 3 iiTCOCDf^-P^COCOOlO)
(80) SS01 dOHd

"3" "3 3"
o —

t t

+ +

"3^r

Figure 52. Perfectly Reflecting SL=8 MXF Bottom (50 Hz

80





o
oo

r-

co

to

a
to

to
IT)

+ + * + + + + -• + + +

+ + + + + + + + +

* + + + + + + +

+ + + + +

+ + + + +

tft—a—a—a—3 a uj a a a g a

tea) sscn douj

Figure 53. Perfectly Reflecting ISL=1 MXF Bottom (50 Hz!

81





o
CO

tO
r-

<M

CO
CO

(90) SS01 dOUd

Figure 54. Perfectly Reflecting ISL=2 MXF Bottom (50 Hz

82





a
CO

to

1QQ> SSQ1 dOyd

Figure 55. Perfectly Reflecting ISL=3 MXF Bottom (50 Hz)

83





on

CD
r-

CO

2"

UJcc
Orr

cc
cc

m

CO

rj

cj 3 3 3 3 3 3 3 3 17! 3 3 3(Dtor^r^oooocncDoo — — oj

oo) sscn doud

Figure 56. Perfectly Reflecting ISL=4 MXF Bottom (50 Hz

84





CD

CO

CO
(O

o
co

CO

IS

mtoonz
cr
cc

CO

a 3 3 3 3 u-J 3 3 3 3 3 3 3uDcor-r-cococncnoo — — oj

(SQ) SS01 dOUd

Figure 57. Perfectly Reflecting ISL=5 MXF Bottom (50 Hz)

85





(80) SSOl dQ'dd

Figure 58. Perfectly Reflecting ISL=6 MXF Bottom (50 Hz

86





o
GO

CO
r-

co
CO

on

a 3 3 IB 3 3 3"
a) to r* r* co co en

(90) SS01 dOUd

"3 3 3 3 3 c)
CD O O — —

•

CJ

Figure 59. Perfectly Reflecting ISL=7 MXF Bottom (50 Hz)

87





o
CO

<\J

13Q) SG01 dOUd

Figure 60. Perfectly Reflecting ISL=8 MXF Bottom (50 Hz)

88





IV. SUMMARY AND CONCLUSIONS

More than two hundred different cases for the PE model

have been computed for both deep and shallow water situations

The scope of the present work has been, to study the

sensitivity of the parabolic equation model to ocean bottom

type.

Although this problem is a very broad one, it was chosen

to provide experience in the use of the Parabolic Equation

technique and to increase our understanding of its capabili-

ties and limitations. Furthermore, it was hoped that it

would be possible to determine, first hand, how the bottom

interaction affects the propagation of acoustic energy under

fairly realistic conditions.

The importance of the present work is obvious from many

standpoints. From the theoretical acoustics point of view,

it opens a way to determine qualitatively the importance of

some of the different environmental parameters for the pro-

pagation of the sound. From the applied acoustics point of

view, and especially for problems of naval interest, it pro-

vides the possibility of evaluating for a known environment

any anomalous situation that affects the established pattern

of sound propagation

.

The conclusions that can be drawn from the present work

are the following: with respect to the type of the bottom,

only the refracted energy paths remain for a fully absorbing
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bottom, making the model insensitive to different bottom

geometries when an interaction of the energy with the bottom

would otherwise be present. For a perfectly reflecting bot-

tom, both the refracted and reflected paths will be present,

but only if there is sufficient depth. The importance of

the water depth is closely related to the shape of the SSP

.

The third bottom type tested was a more realistic compilation

of bottom interaction at low frequencies. This bottom type,

called Ul in the study, proved to have properties very simi-

lar to those of the perfectly reflecting bottom. Based on

this fact it was proposed that the study of any realistic

bottom should begin by studying the perfectly reflecting

bottom. Any partial absorption characteristic of the bottom

could then be simply simulated with a simple attenuation

coefficient applied to the TL curves.

With respect to the bottom geometry, in the perfectly re-

flecting bottom cases, the importance of the sloping bottom

and sloping-step bottoms was examined. A periodic inter-

ference pattern was found in the TL curves. The wavelength

of this pattern proved to be inversely related to bottom

slope. It is suggested that more general conclusions can be

made with regard to this interference pattern after further

study that would add a smoothing procedure to the parabolic

equation model. Then the results may be studied in the

frequency domain.

The funnel and megaphone effects were present in some of

the tests, but some deviations from the usually expected
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results were found. This may be attributable to the restric-

tions in the parameterization of the modeled bottom.

In the downslope cases studied, the transfer of reflected

to refracted energy was evident. This effect was augmented

by increasing bottom slope.

More study is clearly necessary in these areas of re-

search using more sophisticated numerical and statistical

procedures. Furthermore, the study should expand to include

sensitivity to the roughness of the bottom, to changes in

the sound speed profile, and to a variety of source and re-

ceiver depths. Equally interesting should be some labora-

tory or field experiments in order to establish in a practi-

cal way the model-observed dependence between the wavelength

of the periodic interference pattern observed for upsloping,

perfectly reflecting bottom, and the slope of the bottom.
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