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PREFACE.

I HAVE endeavoured in this Manual to collect and

arrange all those Elementary Q-eometrical Propo-
sitions not given in Euclid which a Student will

require in his Mathematical Course. The neces-

sity for such a "Work will be obvious to every per-

son engaged in Mathematical Tuition. I have

been frequently obliged, when teaching the Higher

Mathematics, to interrupt my demonstrations, in

order to prove some elementary Propositions on

which they depended, but which were not given
in any book to which I could refer. The object

of the present little Treatise is to supply that

want.

The following is the plan of the Work. It

is divided into five Chapters, corresponding to

Books I., II., III., IV., YI. of Euclid. The

Supplements to Books I.-IV. consist of two Sec-

tions each, namely, Section I., Additional Propo-

sitions; Section II., Exercises. This part will be

found to contain original proofs of some of the
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most elegant Propositions in Geometry. The

Supplement to Book YI. is the most important ;

it embraces more than half the work, and consists

of eight Sections, as follows :—I., Additional Pro-

positions; II., Centres of Similitude; III., Theory
of Harmonic Section

; lY., Theory of Inversion
;

Y., Coaxal Circles
; YI., Theory of Anharmonie

Section
; YII., Theory of Poles and Polars, and

Reciprocation ; YIII., Miscellaneous Exercises.

Some of the Propositions in these Sections have

first appeared in Papers published by myself ; but

the greater number have been selected from the

writings of Chasles, Salmon, and Townsend.

For the proofs given by these authors, in some

instances others have been substituted, but in

no case except where by doing so they could be

made more simple and elementary.

The present edition is greatly enlarged : the

new matter, consisting of recent discoveries in Ge-

ometry, is contained in a Supplemental Chapter.

Several of the Demonstrations, and some of the

Propositions in this Chapter, are original, in par-

ticular the Theory of Harmonic Polygons, in Sec-

tion YI. A large number of the Miscellaneous

Exercises are also original.

In collecting and arranging these additions

I have received valuable assistance from Professor

Neuberg, of the University of Liege, and from

M. Brocard (after whom the Brocard Circle is
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named). The other writers to whom I am in-

debted are mentioned in the text.

The principles of Modern Q-eometry contained

in the Work are, in the present state of science,

indispensable in Pure and Applied Mathematics,*

and in Mathematical Physics ;t and it is important

that the Student should become early acquainted

with them.

JOHN CASEY.

86, South Circular Road,

Dublin, Aug. 31, 1886.

* See Chalmers' "
Graphical Determination of Forces in

Engineering Structures," and Levy's
"
Statique Graphique."

t See Sir W. Thomson's Papers on ** Electrostatics and Mag-
netism" ; Clerk Max-well's "Electricity."
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BOOK FIRST,

sectio:n' I.

Additional Propositions.

In the following pages the Propositions of the text of

Euclid will be referred to by Eoman numerals enclosed

in brackets, and those of the work itself by the Arabic

The number of the book will be given only when diffe-

rent from that under which the reference occurs.

Por the purpose of saving space, the following

symbols will be employed :
—

Circle will be denoted by

Triangle ,, A
Parallelogram ,, czd

ParaUel „ ||

Angle „ Z
Perpendicular ,, X

In addition to the foregoing, we shall employ the

usual symbols of Algebra, and other contractions whose

meanings will be so obvious as not to require expla-

nation.
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Prop. 1.—The diagonals of a parallelogram bisect each

other.

Let ABCD be the en, its diagonals AC, BD bisect

each other.

Dem.—Because AC^meets the Ijs AB, CD, the Z
BAO=DCO. In like manner,
the ZABO = CDO (xxix.),
and the side AB = side CD
(xxxiv.) ;

.-. AO = OC;
BO = OD (xxvi.)

Cor. 1.—If the diagonals
of a quadrilateral bisect each other it is a (=i.

Cor. 2.—If the diagonals of a quadrilateral divide it

into four equal triangles, it is a czi.

Prop. 2.—The line DE drawn through the middle point
D of the side AB of a triangle, ^.
parallel to a second side BC,
bisects the third side AC.
Dem.—Through C draw CF

II
to AB, meeting DE produced

in F. Since BCFD is a c=3,

CF = BD (xxxiv.); but BD
= AD (hyp.); .-. CF = AD.
Again, the Z FCE = DAE, and Z EFC = ADE (xxix.) ;

.'. AE = EC (xxvi.). Hence AC is bisected.

C7or.—DE = i BC. For DE = EF = ^ DF.

Prop. 3.—The line DE which joins the middle points
D and E of the sides AB, AC of a triangle is parallel to

the base BC.
Dem.—Join BE, CD (fig. 2), then A BDE = ADE

(xxxviii.), and CDE = ADE; there-

fore the A BDE = CDE, and the
line DE is

||
to BC (xxxix.).

Cor. 1.—If D, E, F be the middle

points of the sides AB, AC, BC of

a A, the four As into which the

lines DE, EF, FD divide the AABC b

are all equal. This follows from
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(xxxiv.), because the figures ADFE, CEDE, BFED,
are ens.

Cor. 2.—If through the points D, E, any two
|I
s be

drawn meeting the base BC in two points M, N, the
z=3 DENM is = i A ABC. Eor DENM = en DEEB
(xxxv.).

Def.— When three or more lines pass through the same

point they are said to he concurrent.

Prop. 4.—The bisectors of the three sides of a triangle
are concurrent.

Let BE, CD, the bisectors of

AC, AB, intersect in 0; the

Prop, will be proved by show-

ing that AO produced bisects

BC. Through B draw BG
||

to' CD, meeting AO produced
in G

; join CG. Then, be-

cause DO bisects AB, and is

II
to BG, it bisects AG (2) in

0. Again, because OE bisects

the sides AG, AC, of the A
AGC, it is

II
to GC(3). Hence the figure OBGC is

a en, and the diagonals bisect each other (1) ;
.-. BC is

bisected in E.

Cor.—The bisectors of the sides of a A divide each
other in the ratio of 2 : 1 .

Because AO = OG and OG = 20E, AO = 20E.

Prop. 5.—The middlepoints E, E, G, H of the sides AC,
BC, AD, BD of two triangles ABC, ABD, on the same base

AB, are the angular points

of a parallelogram, whose

area is equal to half sum
or half difference of the areas

of the triangles, according as

they are on opposite sides,

or on the same side of the

common base.

Bern. 1. Let the As
,

be on opposite sides. The
b2
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figure EPHG is evidently a czi, since the opposite sides

EF, GH are each
||
to AB(3), and = iAB (Prop. 2, Cor.).

Again, let the lines EG, EH meet AB in the points

M, N; then c=] EENM = i A ABC (Prop. 3, Cor. 2),

and c=i GHNM = i A ABD. Hence c=n EFHG =

i(ABC+.ABD).
Dem. 2.—When ABC, ABD are on the same side

of AB, we have evidently z=i EEGH = EENM -
GHNM = i(ABC - ABD).

OTDservation.—The second case of this proposition may be
inferred from the first if we make the convention of regarding the

sign of the area of the A ABD to change from positive to nega-
tive, when the A goes to the other side of the base. This affords

a simple instance of a convention universally adopted by modem
geometers, namely—when a geometrical magnitude of any kind,
which varies continuously according to any law, passes through a
zero value to give it the algebraic signs, plus and minus, on difie-

rent sides of the zero—in other words, to suppose it to change
sign in passing through zero, unless zero is a maximum or mini-
mmn.

Prop. 6.—If two equal triangles ABO, ABD he on the

same base AB, but on opposite sides, the Imejotm'??^ the

vertices C, D is bisected by AB.
Dem.—Through A and B

dravs^ AE, BE
|| respectively

to BD, AD
; join EC. Kow,

since AEBD is a cid, the

A AEB = ADB (xxxiv.) ;
but

ADB = ACB (hyp.) ;
.-. AEB

= ACB
;

.-. CE is
1|

to AB
(xxxix.). Let CD, ED meet
AB in the points M, N, respec-

tively. Now, since AEBD is

a d], ED is bisected in N (1) ;
and since NM is

1|
to

EC, CD is bisected in M (2).

Cor.—If the line joining the vertices of two As on

the same base, but on opposite sides, be bisected by the

base, the As are equal.

Prop. 7.—Ifthe opposite sides AB, CD ofa quadrilateral
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meet in P, and if G, H be the middle points of the

diagonals AC, BD, the

triangle PGH = i the

quadrilateral ABCD.
Dem.—Bisect the

sides BC, AD in Q and

H; joinQH, QG, QP,
HH, EG. I^ow, since

QG is
II
to AB (3), if

producM it will bisect

PC
; then, since CP,

joining the vertices of

the A s CGQ, PGQ on the same base GQ, but on oppo-
site sides, "is bisected by GCi produced, the A PGQ
- CGQ (Prop. 6, Cor.) = i ABC.

In like mannerPHQ = iBCD. Again, the c=i GQHR
= \ (ABD - ABC) (5) ;

.-. A QGH = i ABD - i ABC :

hence, A PGH = i (ABC + BCD + ABD - ABC) = i qua-
drilateral ABCD.

Cor.—The middle points of the three diagonals of a

complete quadrilateral are coUinear {i. e. in the same

right line) . Por, let
S;,

AD and BC meet
in S, then SP will

be the third dia-

gonal ; join S and P
to the middle points

O, H of the dia-

gonals AC, BD
;

then the As SGH,
PGH, being each
= i quadrilateral

ABCD, are = to one
another

;
.*. GH

])roduced bisects SP
(6).

Def.—If a vanalle point moves according to any law,

the path which it describes is termed its locus.

Thus, if a point P moves so as to be always at the

same distance from a fixed point 0, the locus of P is

a O, whose centre is O and radius = OP. Or, again, if
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A and B be two fixed points, and if a variable point P
moves so that the area of the A ABP retains the same
value during the motion, the locus of P will be a right
line

II
to AB.

Prop. 8.—IfKR, CD he two lines given in position
and magnitude, and if a point P moves so that the sum

of the areas of the triangles ABP, CDP is given, the locus

of P is a right line.

Dam.—Let AB, CD intersect in
;

then cut
off OE = AB, and OF = CD

; join OP, EP, EF,
FP; then A APB
= OPE, and CPD =
OPF

;
hence the sum

of the areas of the As
OEP, OFP is given;
.*. the area of the

quadrilateral OEPF is

given; butthe AOEF
is evidently given ;

.-.

the area of the A EFP o e a
s^;^

b

is given, and the base v\
EF is given ;

.*. the locus of P is a right line
||
to EF»

Let the locus in this question be the dotted line in the diagram.
It is evident, when the point P coincides with E, the area of the
A CDP vanishes

;
and when the point P passes to the other side

of CD, such as to the point T, the area of the A CDP must be

regarded as negative. Similar remarks hold for the A APB and
the Hne AB. This is an instance of the principle (see 6, note)
that the area of a A passes from positive to negative as compared
with any given A in its own plane, when (in the course of any
continuous change) its vertex crosses its base.

Cor. 1.—If m and n be any two multiples, and if

we make OE = wAB and OF = wCD, we shall in a
similar way have the locus of the point P when m times
A ABP + n times CDP is given ; viz., it will be a right
line

II
to EF.

Cor. 2.—If the line CD be produced through 0, and
if we take in the line produced, OF' = wCD, we shall

get the locus of P when m times A ABP - n times
CDP is given.

Cor. 3.—If three lines, or in general any number of
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lines, be given in magnitude and position, and if m, n,

p, q, &c., be any system of multiples, all positive, or

some positive and some negative, and if the area of

m times A ABP + n times CDP +p times GHP + &c.,

be given, the locus of P is a right line.

Cor. 4.—If ABCD be a quadrilateral, and if P be a

point, so that the sum of the areas of the As ABP,
CDP is half the area of the quadrilateral, the locus

of P is a right line passing through the middle points
of the three diagonals of the quadrilateral.

Prop. 9.—To divide a given line AB into two parts,
the difference of whose squares shall he equal to the square

of a given line CD. ^ q
Con.—Draw BE at

right angles to AB,
and make it = CD

;

join AE, and make
the Z AEF = EAB

;

then F is the point

required.
Dem.—Because the Z AEF = EAF, the side AF

= FE; .-. AF2 = FE2 = FB2 + BE2; .-. AF2-FB2 = BE2;
but BE^ = CD2

;
.-. AF2 - FB^ = CD^.

If CD be greater than AB, BE will be greater than AB, and

the L EAB will be greater than the L AEB
;
hence the line EF,

which makes with AE the L AEF = L EAB, will faU at the

other side of EB, and the point F will be in the line AB produced.
The point F is in this case a point of external division.

Prop. 10.— Given the base of a triangle in magnitude
and position, and given also the difference of the squares of
its sides, to find the locus of its vertex.

Let ABC be the A whose base AB is given ;
let fall

the ± CP on AB
;
then

AC2 = AP2 + CP2
; (xlvii.)

BC3 = BP2 + CP2;
therefore AC^ - BC^ = AP^ - BP^

;

but AC^ - BC^ is given ;
.-. AP^ - BP^ is given. Hence

AB is divided in P into two parts, the difference of

whose squares is given ;
.*. P is a given point (9), and

the line CP is given in position ;
and since the point C
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must be always on the line CP, the locus of C is a right
line J- to the base.

Cor.—The three ±s of a A are concurrent. Let
the J-s from A and B on the opposite sides be AD and

BE, and let be the point of intersection of these J-s.

Now, AC2 - AB2 = 0C2 - 0B2
; (10)

and AB--BC- = OA2-OC2;
therefore AC- - BC^ = OA^ - OB^.

Hence the line CO produced will be -L to AB.

Prop. 11.—If perpendiculars AE, BF he drawn from
the extremities A, B of the base of a triangle on the in-

ternal bisector of the vertical angle, the line joining the

middle point G of the base

to the foot ofeither perpen-
dicular is equal to half the

difference of the sides AC,
BC.
Dam.—Produce BE to

D
;
then in the As BCE,

DCE there are evidently A*'

two Zs and a side of one
= respectively to two Zs
and a side of the other;
.-. CD = CBandED=EB;
hence AD is the difference

of the sides AC, BC
; and, since E and G are the

middle points of the sides BD, BA
;

.-. EG = ^ AD
= ^ (AC -

BC). In like manner EG =
i^ (AC - BC).

Cor. 1.—By a similar method it may be proved that

lines drawn from the middle point of the base to the feet

of JLs from the extremities of the base on the bisector of

the external vertical angle are each = half sum of AC
and BC.

Cor. 2.—TheZ ABDis=^ difference of the base angles.
Cor. 3.—CBD is = half sum of the base angles.
Cor. 4.—The angle between CE and the J- from C

on AB =
|- difference of the base angles.

Cor. 5.—AID = difference of the base angles.
Cor. 6.—Given the base and the difference of the

sides of a A, the locus of the feet of the J-s from the
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extremities of the base on the bisector of the internal

verticalZ is a circle, whose centre is the middle point of

the base, and whose radius = half difference of the sides.

Cor. 7.—Given the base of a A and the sum of the

sides, the locus of the feet of the ±s from the extremi-

ties of the base on the bisector of the external vertical

Z is a circle, whose centre is the middle point of the

base, and whose radius = half sum of the sides.

Prop. 12.—The three perpendiculars to the sides of a

iriangle at their middle points are concurrent.

Dem.—Let the middle points be D, E, F. Draw
FG, EG J- to AB, AC,
and let these -Ls meet
in G

; join GD : the

prop, will be proved

by showing that GD
is J- to BC. Join AG,
EG, CG. Now, in the

As AEG and BEG,
since AE=FB,andFG
common, and the Z
AEG = BEG, AG is

= GB (iv.). In like manner AG = GC
;
hence BG = GC.

And since the As BDG, CDlS'have the side BD = DC
and DG common, and the base BG = GC, the Z BDG
= CDG (viii.) ;

.-. GD is ± to BC.
Cor. 1 .

—If the bisectors of the sides of the A meet

in H, andGHbe joined A
and produced to meet

any of the three _Ls

from the Zs on the

opposite sides
;
for in-

stance, the 1. from A
to BC, in the point I,

suppose; then GH = ^
HI. EurDH=^HA
{Cor., Prop. 4).

Cor. 2.—Hence the ±s of the A pass through the

point I. This is another proof that the ±s of a A are

concurrent.
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Cor. 3,—The lines GD, GE, GF are respectively
= iIA, ilB, ilC.

Cor. 4.—The point of concurrence of ±s from the
Zs on the opposite sides, the point of concurrence of

bisectors of sides, and the point of concurrence of Xs
at middle points of sides of a A

,
are collinear.

Prop. 13.—If two triangles ABC, ABD, he on the

same base AB and be-

tween the sameparal-
lels, and ifaparallel
to AB intersect the

lines AC, BC, in E
and E, and the lines

AD, BD, in G and
H, EF is = GH.
Dam.—If not, let GH be greater than EF, and cut

off GK = EF. Join AK, KB, KD, AF
;
then (xxxviii.)

A AGK = AEF, and DGK = CEF, and (xxxvii.) ABK
= ABE

;
.. the quadrilateral ABKD = A ABC

;
but A

ABC = ABD
;

.-. the quadrilateral ABKD = A ABD,
which is impossible. Hence EF = GH.

Cor. 1.—If instead of two As on the same base and
between the same ||s, we have two As on equal bases

and between the same
I| s, the intercepts made by the

sides of the As on a
||
to the line joining the vertices

are equal.
Cor. 2.—The line drawn from the vertex of a A to

the middle point of the base bisects any line parallel to

the base, and terminated by the sides of the triangle.

Prop. 14.—To inscribe a square in a triangle.

\ G'

I A J D 1 KJ' B
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Con.—Let ABC be tlie A: let fall the -L CD
;
cutoff

BE = AD
; join EC ;

bisect the Z EDC by the line DF,
nieeting EC in E

; through E draw a
||
to AB, cutting

the sides BC, AC in the points G, H ;
from G, H let fall

the -Ls GI, HJ : the figure GIJH is a square.
Dem.—Since the ZEDC is bisected by DF, and the

Z s K and L right angles, and DF common, FK = EL
(xxvi.) ;

but FL = GH (Prop. 13, Cor. 1), and FK = GI

(xxxiv.) ;
.-. GI = GH, and the figure IGHJ is a square,

and it is inscribed in the triangle.
Cor.—li we bisect the Z ADC by the line DF',

meeting EC produced in F', and through F' draw a

line
II
to AB meeting BC, and AC produced in G', H',

and from G', H' let fall J-s G'l', HT on AB, we shall

have an escribed square.

Prop. 15.—To divide a given line AB into any number

of eciual parts.

Con.—Draw through A any line AE, making an Z
with AB

;
in AE take any point C, and cut off CD, DE,

EE, &c., each = AC,
until we have as many
equal parts as the

number into which we
want to divide AB—
say, for instance, four

equal parts. Join BE
;

anddrawCG,DH,EI,
each

II
to BE; thenAB ^

is divided into four equal parts.
Dem.—Since ADH is a A, and AD is bisected in C,

and CG is
||

to DH; then (2) AH is bisected in G;
.*. AG = GH. Again, through C draw a line

|1
to AB,

cutting DU and EI in K and L
; then, since CD = DE,

we have (2) CK = KL
;
but CK = GH, and KL = HI

;

.-. GH = HI. In like manner, HI = IB. Hence the

parts into which AB is divided are all equal.

This Proposition may be enunciated as a theorem as follows :
—

If one side of a A be divided into any number of equal parts, and

through the points of division lines be drawn
||
to the base, these

|!
s

will divide the second side into the same number of equal parts.
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Prop. 16.—If a line AB he divided into (m + n) equal
parts, and supposeKG contains m of theseparts, and CB con-

tains n ofthem. Then, if ^
from the points A, C, B
perpendiculars AD, CF,
BE he let fall on any
line, then w^BE + wAD
= {m + n) CF.
Dem. — Draw BH

II
to ED, and through

the points of division of

AB imagine lines drawn

II
to BH

;
these lines will divide AH into m + » equal

parts, and CG into n equal parts; .'.n times AH=(m + m)
times CG

;
and since DH and BE are each = GF, we have

n times HD +m times BE = (m + w) times GF. Hence, by-

addition, n times AD + m times BE = (m + w) times CF.

Def.—The centre of mean position of any number of

points A, B, C, D, Sfc, is a point which may be found
as follows :

—Bisect the line joining any two points AB
in G, join Gt to a third point C, a?id divide GC in H,
^0 that GH = i GC ; join 'K to a fourth point D, and
divide HD in K, so that HK = l-HD, and so on : the last

j)oint found will be the centre of mean position of the

system of points.

Prop. 17.—If there be any system ofpoints A, B,C, D,
whose number is n, and ifperpendiculars be let fallfrom
these points o?i any line L, the sum of the perpendiculars

from all the points on L is equal n times the perpendicular

from the centre of mean position.

Dem.—Let the J-s be denoted by AL, BL, CL, &c.

Then, since AB is bisected in G, we have (16)

AL + BL = 2GL
;

and since GC is divided into (1 + 2) equal parts in H, so

tliat HG contains one part and HC two parts; then
2GL + CL = 3HL

;

.-. AL + BL + CL = 3HL, &c., «&c.

Hence the Proposition is proved.
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Cor.—If from any number of points -Ls be let fall on

any line passing through their mean centre, the sum of

the J-s is zero. Hence some of the -Ls must be nega-
tive, and we have the sum of the .Ls on the positive
side equal to the sum of those on the negative side.

Prop. 18.— We may extend the foregoing Definition as

follows :—Let there he any system ofpoints A, B, C, D, ^c.^
and a corresponding system of multiples a, h, c, d, Sfc.,

connected with them ; then divide the line joining thepoints
AB into {a + h) equal parts, and let AG contain h of these

parts, and GB contain a parts. Again, join Gc to a third

point C, and divide GC into (» + 5 + c) equalparts, and let

GH contain c of these parts, andHC the remaining parts,
and so on ; then the point last found will he the mean
centre for the system of multiples a, h, e, d, Sfc.

From this Definition we may prove exactly the same
as in Prop. 17, that if AL, BL, CL, &c., be the -Ls

from the points A, B, C, &c., on any line L, then

« . AL + 3 . BL + c . CL + ^ . DL + &c.

=
{a + h + c + d+ &c.) times the J- from the centre of

mean position on the line L.

Def,—If a geometrical magnitude varies its position

continuously according to any law, and if it retains the

same value throughout, it is said to he a constant ; hut if
it goes on increasing for some time, and then hegins to

decrease, it is said to he a maximum at the end of the

increase : again, if it decreases for some time, and then

hegins to increase, it is a minimum when it commences to

increase.

From these Definitions it will be seen that a maxi-
mum value is greater than the ones which immediately

precede and follow
;
and that a minimum is less than

the value of that which immediately precedes, and less

than that which immediately follows. "We give here a

few simple but important Propositions bearing on this

part of Geometry.
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Prop. 19.—Through a given point P to draw a line

which shallform, with two given lines CA, CB, a triangle

of minimum area.

Con.—ThroughPdraw
PD

II
to CB

;
cut off AD

= CI)
; join AP, and pro-

duce to B. Then AB is

the line required.
Dem.—Let RQ be any

other line through P
;

draw AM
||

to CB. ITow, because AD = DC, we
have AP = PB

;
and the As APM and QPB have the

Zs APM, AMP respectively equal to BPQ, BQP, and
the sides AP and PB equal to one another; .*. the

triangles are equal ;
hence the A APE, is greater than

BPQ : to each add the quadrilateral CAPQ, and we get
the A CQR greater than ABC.

Cor. 1.—The line through the point P which cuts

off the minimum triangle is bisected in that point.
Cor. 2.—If through the mid- a

die point P, and through any
other point D of the side AB of

the A ABC we draw lines
||
to

the remaining sides, so as to

form two inscribed CDS CP, CD,
then CP is greater than CD.
Dem.—Through D draw

QR, so as to be bisected in D
;

then the A ABC is greater than CQE ;
but the ens

are halves of the As; hence CP is greater than CD.
A very simple proof of this Cor. can also be given by

means of (xliii.)

Prop. 20.— When two sides of a triangle are given in

magnitude,
'

the area is a maximum when they contain a

right angle.

Dem.—Let BAC be a A having the Z A right ;

with A as centre and AC as radius, describe a O ;

take any other point D in the circumference; it is
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evident the Prop, will be proved by showing that the
A BAC is greater than BAD.
Let fall the ± DE; then

(xix.) AD is greater than

DE; .*. AC is greater than
DE

;
and since the base AB

is common, the A ABC is

greater than ABD.
Cor.—If the diagonals of

a quadrilateral be given in

magnitude, the area is a maximum when they are at

right angles to each other.

Prop. 21.— Given two poz7its, A, B : it is required to

find a point P in a given line L, so that AP + PB may he

a minimum.

Con.—From B let fall the -L BC on L; produce
BC to D, and make CD = CB

; join AD, cutting L in

P
;
then P is the point

required.
Dem.—Join PB, and

take any other point Q,

in L
; join AQ, QB, QD.

Kow, since BC = CD and
CP common, and the Zs
at C right Zs, we have
BP=PD. In likemanner

BQ=QD; to these equals
add respectively AP and AQ, and we have AD = AP
+ PB, and AQ + QD = AQ + QB ;

but AQ + QD is

greater than AD ; .-. AQ + QB is greater than AP + PB.
Cor. 1.—The lines AP, PB, whose sum is a mini-

mum, make equal angles with the line L.

Cor. 2.—The perimeter of a variable A, inscribed in

a fixed A
,

is a minimum when the sides of the former

make equal Z s with the sides of the latter. For, sup-

pose one side of the inscribed A to remain fixed while

the two remaining sides vary, the sum of the varying
sides will be a minimum when they make equal Zs
with the side of the fixed triangle.
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Cor, 3.—Of all polygons whose vertices lie on fixed

lines, that of minimum perimeter is the one whose
several angles are bisected externally by the lines on
which they move.

Prop. 22.— Of all triangles having the same base and

area, the perimeter of an isosceles triangle is a minimum.

Dem.—Since the As are all equal in area, the vertices

must lie on a line
||
to the base, and the sides of an

isosceles A will evidently make equal Zs with this

parallel ;
hence their sum is a minimum.

Cor.—Of all polygons having the same number of

sides and equal areas, the perimeter of an equilateral

polygon is a minimum.

Prop. 23.—A large number of deducihles may he given
in connexion with Euclid, fig., Prop, xlvii. We insert a

few here, confining ourselves to those that may le proved

hy the First JBooh.

(1). The transverse lines AE, EK are JL to each
other. Por, in the As ACE, BCK, which are in every
respect equal, theZ EAC
= BKC, and the Z AQO
= KQC ;

hence the angle
AOQ = KCQ, and is .-. a

right angle.

(2). AKCE = DBE.
Dem.— Produce KC,

and let fall the ± EN.
l^ow,theZACN = BCE,
each being a right angle;
.•.theZACB = ECN,and
ZBAC=ENC,eachbeing
a right angle, and side

BC = CE
;
hence (xxvi.)

EN = AB and CN = AC
;
but AC = CK

;
.-. CN = CK, and

the A ENC = ECK (xxxviii.) ;
but the A ENC = ABC

;

hence the A ECK = ABC. In like manner, the

A DBP = ABC
;

.-. the A ECK = DBE.

(3). EK2 + ED^ = 5BC^
Dem.—EK2 = EN^ + NK^ (xlvii.) ;
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but EN = AB, and NK = 2AC
;

therefore EK^ = AB^ + 4AC2.

In like manner

FD2 = 4AB2 + AC=';
therefore EK^ + ED^ = 5 (AB^ + AC") = 5BCK

(4). The intercepts AQ, AR are equal.

(5). The lines CE, BK, AL are concurrent.

SECTION II.

Exercises.

1. The line which bisects the vertical L of an isosceles A bisects

the base perpendicularly.

2. The diagonals of a quadrilateral whose four sides are equal
bisect each other perpendicularly.

3. If the line which bisects the vertical Z. of a A also bisects the

base, the A is isosceles.

4. From a given point in one of the sides of a A draw a right
line bisecting the area of the A .

5. The sum of the ±s from any point in the base of an isosceles

A on the equal sides is = to the JL from one of the base angles on
the opposite side.

_

6. If the point be taken in the base produced, prove that the
difference of the ±s on the equal sides is = to the ± from one of

the base angles on the opposite side
;
and show that, having

regard to the convention respecting tha signs plus and minus, this

theorem is a case of the last.

7. If the base EC of a A be produced to D, the L between the
bisectors of the Z. s ABC, ACD = half L BAG.

8. The bisectors of the three internal angles of a A are con-
current.

9. Any two external bisectors and the third internal bisector of

the angles of a A are concurrent.

10. The quadrilaterals fonned either by the four external or the
four internal bisectors of the angles of any quadrilateral have their

opposite Z. s = two right I a.

c
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11. Draw a right line
(|
to the hase of a A

,
so that

(1). Sum of lower segments of sides shall he = to a given line.

(2). Their difference shall he = to a given line.

(3). The
II
shall he = sum of lower segments.

(4). The
II
shall he = difference of lower segments.

12. If two lines he respectively ± to two others, the L between
the former is = to the L between the latter.

13. If two lines he respectively ||
to two others, the L between

the former is = to the L between the latter.

14. The A formed by the three bisectors of the external angles
of a A is such that the lines joining its vertices to the Z. s of the

original A wiU be its ±s.

15. From two points on opposite sides of a given Hne it is

required to draw two lines to a point in the Hne, so that their

difference will be a maximum,

16. State the converse of Prop. xvii.

17. Give a direct proof of Prop. xix.

18. Given the lengths of the bisectors of the three sides of a A:
construct it.

19. If from any point ±s be drawn to the three sides of a A,
prove that the sum of the squares of three alternate segments of

the sides = the sum of squares of the three remaining segments.

20. Prove the following theorem, and infer from it Prop, xlvii. :

If CQ, CP be as described on the sides CA, CB of a A
,
and if

the sides
||
to CA, CB be produced to meet in R, and EC joined^

a described on AB with sides = and
||
to EC shall be = to the

sum of the Os CQ, CP.

21. If a square be inscribed in a A, the rectangle under its side

and the sum of base and altitude = twice the area of the A .

22. If a square be escribed to a A, the rectangle under its

side and the difference of the base and altitude = twice the area

of the A .

23. Given the difference between the diagonal and side of a

square : construct it.

24. The sum of the squares of lines joining any point in the

plane of a rectangle to one pair of opposite angular points = sum
of the squares of the lines drawn to the two remaining angular

points.

25. If two lines be given in position, the locus of a point equi-
distant from them is a right line.

26. In the same case the locus of a point, the sum or the differ-

ence of whose distances from them is given, is a right line.
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27. Given the sum of the perimeter and altitude of an equi-
lateral A : construct it.

28. Given the sum of the diagonal and two sides of a square :

construct it

29. From the extremities of the base ^ s of an isosceles A
right lines are drawn ± to the sides, prove that the base Z. s of the

A are each = half the L between the ±s.

30. The line joining the middle point of the hypotenuse of a

right-angled triangle to the right angle is = half the hypotenuse.

31. The lines joining the feet of the ±s of a A form an in-

scribed A whose perimeter is a minimum.

32. If from the extremities A, B of the base of a A ABC JLs

AD, BE be drawn to the opposite sides, prove that

AB2 ^ AC . AE + BC . BD.

33. If A, B, C, D, &c., be any number («) of point's on a line,

and their centre of mean position ; then, if P be any other point
on the line,

AP + BP + CP 4- DP + &c. = «0P.

34. If 0, 0' be the centres of mean position for two systems ol

collinear points, A, B, C, D, &c., A,' B,' C,' D,' &c., each system
having the same number (w) of points ; then

. wOO' = AA' + BB' + CC + DD' + &c.

35. If G be the point of intersection of the bisectors of the

Z. s A, B of a A
, right-angled at C, and GD a ± on AB

; then,
the rectangle AD . DB = area of the A .

36. The sides AB, AC of a A are bisected in D, E ; CD, BE
intersect in F : prove A BFC = quadrilateral ADFE.

37. If lines be drawn from a fixed point to all the points of the

circumference of a given O, the locus of aU their points of bisec-

tion is a O .

38. Show by drawing ||
lines how to construct a A = to any

given rectilineal figure.

39. ABCD is a : show that if B be joined to the middle

point of CD, and D to the middle point of AB, the joining lines

will trisect AC.

40. The equilateral A described on the hypotenuse of a right-

angled A = sum of equilateral A s described on the sides.

41. If squares be described on the sides of any A, and the

adjacent comers joined, the three As thus formed are equal.
c2
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42. If AB, CD be opposite sides of a CH, P any point in its

plane ; then A PBC = sum or difference of the A s CDP, ACP,
according as P is outside or between the Hnes AC and BD.

43. If equilateral As be described on the sides of a right-angled \*

A whose hypotenuse is given in magnitude and position, the locusy^
of the middle point of the line joining their vertices is a .

44. If CD be a JL on the base AB of a right-angled A ABC, and
if E, F be the centres of the 0s inscribed in the As ACD, BCD,
and if EG, FH be lines through E and F

||
to CD, meeting AC,

BCinG, H; then CG = CH.

45. If A, B, C, D, &c., be any system of collinear points,
their mean centre for the system of multiples a, i, c, d, &c. ; then,
if P be any other point in the Hue,

{a + b + e + d+&c.)0'P = a.A'P + b.B'P-]-e.CV + d.J)T + &G.

46. If 0, 0' be the mean centres of the two systems of points

A, B, C, D, &c., A', B', C, D', &c., on the same line L, for a
common system of multiples a, b, c, d, &c. ; then

{a + b + c + di &c.) 00' =a . AA' + b .BB' +c .CC + d .00' + &c.
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SECTIOIS^ I.

Additional Peopositions.

Prop. 1.—i/'ABC le an isosceles triangle, whose equal
sides are AC, EC ;

and ifOD le a line drawnfrom C to any
point D in the base AB

;

then AD. 1)B=1BC^-CJ>\

Dem.—Let fall the JL

CE
;
then AB is bisected

in E and divided un-

equally in D
;

therefore AD . DB + ED^ = EB'
;

adding to each side EC^
;

therefore AD . DB + CD^ = BC^
; (I. xlvii

therefore AD . DB = BC^ - CD^.

Cor.—If the point be in the base produced, we shall

have AD . BD = CD^ - CB^. If we consider that DB
changes its sign when D passes through B, we see

that this case is included in the last.

Prop. 2.—7/*ABC he any triangle^ D the middlepoint

0/ AB, then AC=» 4 BC^ = 2AD2 + 2liQ\
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Dem.—Let fall the ± EC.

AC^ = AD2 + DC^ + 2AJ) . DE
; (xii.)

BC2 = BD2 + DC^ - 2DB . DE. (xiii.)

Hence, by addition, since AD = DB,
AC^ + BC^ = 2AD' + 2DC^

This 13 a simple case of a very general Prop., whicli we shall

prove, on the properties of the centre of mean position for any
system of points and any system of multiples. Tha Props, ix.

and X. of the Second Book are particular cases of this Prop., viz.,
when the point C is in the line AB or the line AB produced.

Cor.—If the base of a A be given, both in magnitude
and position, and the sum of the squares of the sides

in magnitude, the locus of the vertex is a .

Prop. 3.—The sum of the squares of the diagonals ofa

parallelogram is equal to the ^ ^
sum of the squares ofitsfour
sides.

Dem.—LetABCDbethe
CZ3. Draw CE

|I
to BD

; a
produce AD to meet CE.

Kow, AD = BC (xxxiv.), and DE = BC
;

.-. AD = DE
;

hence (2) AC^ + CE^ = 2Kb'' + 2DC2
;
but CE^ = BD^

;

.-. AC=* + BD2 = 2AD2 + 2DC2 = sum of squares of the

four sides of the parallelogram.

Prop. 4.—The sum of the

squares of the four sides of a

quadrilateral is equal to the sum

of the squares of its diagonals

plusfour times the square ofthe

line joining the middle points

of the diagonals.

Dem.—Let ABCD be the

quadrilateral, E, E the middle points of the diagonals.

]S"ow, in the A ABD, AB^ + AD^ = 2AT' + 2FB\ (2)

and in the A BCD, BC^ + CD^ = 2CF2 + 2YB' (2)

therefore AB* + BC* + CD* + DA* = 2(Ar* + CE*) + 4rB»

= 4AE* + 4EE* +4EB* = AC* +BD* + 4EF*.
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Prop. 5.—Three times the sum of the squares of the

mdes of a triangle is equal to four times the sum of the

squares of the lines hisecting the sides of the triangle.

Dem.—Let D, E, F be the middle points of the sides.

Then AB2+ AC^ = 2BD2 + 2DA2
; (2)

therefore 2AB2 + 2AC2 = 4BD2 + ^DA?
;

that is 2AB2 + 2AC2 = BC^ + 4DA2.

Similarly 2BC2 + 2BA2 = CA^ + 4EB2
;

and 2CA2 + 2CB2 = AB^ + 4^0^.

Hence 3(AB2 + BC^ + CA^) = 4(AD2 + BE^ + CF^).

Cor. If G be the point of intersection of the bisec-

tors of the sides, SAG = 2AD
;
hence 9AG^ = 4AD2

;

.• . 3
(
AB' + BC2 + CA^) = 9

(
AG^ + BG^ + CG^) ;

.-. (AB^ + BC^ + QA?) = 3 (AG^ + BG^ + CG»).

Prop. 6.—The rectangle contained hy the sum and

difference of two sides of a triangle is equal to twice the

rectangle contained ly the hase, and the intercept between

the middle point of the hase and the foot of the perpendi-
cularfrom the vertical angle on the base (see Eig., Prop. 2).

Let CE be the _L and D the middle point of the

base AB.

Then AC2 = AE^ + EC^,
and BC2 = BE2+EC2;
therefore, AC^ - BC^ = AE^ - EB^

;

or (AC + BC)(AC-BC)=(AE + EB)(AE - EB).

Now, AE + EB = AB, and AE - EB = 2ED
;

therefore (AC + BC) (
AC - BC) = 2AB . ED.

Prop. 7.—IfA, B, C, D befourpoints taken in order on

a right line, then AB . CD a b c d
+BC.AD = AC.BD. ' ' '

Dem.—Let AB = ^, BC =
J, CD = ^

;
then AB . CD

+ BC . AD = «c + J (« + J + c)
= (a + i) (* + = ^C . BD .

This theorem, which is due to Enler, is one of the

most important in Elementary Geometry. It may be

written in a more symmetrical form by making use
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'N'ow, since mKD = wDB, we have

m(2AD . DE) = w(2DB . DE).

Hence, by addition, the rectangles disappear, and we get

wAC* + wBC* = mKW + wBD^ -\- [m + n) CD^
Cor.—If the point D be in the line AB produced,

and if ?wAD = wBD, we shall have

jwAC* - wBC=^ = mAD^ - nJm + (m-n) CD^.

This case is included in the last, if we consider that

DB changes sign when the point J) passes through B.

Prop. 10.—^ A, B, C, D, &c., he any system of n

points, their centre of mean position, P any other

point, the sum of the squares of the distances of the points

A, B, C, D, &c., from P exceeds the sum of the squares

of their distances from by wOP^.

Dem.—Eor the sake of simplicity, let us take four

points. A, B, C, D. The method of proof is perfectly

general, and can be extended to any number of points.
Let M be the middle point of AB

; join MC, and divide

it in KC, so that MN
= -|-NC; join ND, and
divide in 0, so that NO
= i OD ;

then is the

centre of mean position
of the four points A, B,

C, D.

Now, applying the

theorem of the last

article to the several

As APB, MPC, NPD, we have

AP2 + BP2= AM2 + MB«+2MP2;
2MP2 + CP2 = 2MN2 + NC2 + SNP^;
3NP2 + DP2 = 3N02 + 0D2 + 40P2.

Hence, by addition, and omitting terms that cancel on

both sides, we get

AP2 + BP2 + CP2 + DP2 = AW + MB2
+ 2MN2 ^ ^Q2 + 31^0^ + OW -«- 40P*.
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Kow, if the point P coincide with 0, OP vanishes, and
we have

A0« + BO'' + C02 + D02 = AM2 + MB'*
+ 2MN2 + NC^ + 3N02 + OD^

;

therefore, AP^ + BP* + CP^ + DP^
exceeds AO^ + BO^ + CO^ + DO^ by 40P^

Cor.—If be the point of intersection of bisectors

of the sides of a A, and P any other point; then

AP2 + BP* + CP2 = A02 + B02 + CO^ + 30P2 :

for the point of intersection of the bisectors of the sides

is the centre of mean position.

Prop. 11.—The last Proposition may be generaU%ed
thus: if A., B, C, D, &c., le any system ofpoints, their

centre of mean position for any system of multiples a, J,

c, d, &G., then

flf . AP2 + J . BP2 + c . CP3 + t? . DP2, &c.,

exceeds a . AO' + b .BO"" + o.CO'' + d . DO^, &c.,

by {a + h + c + d, &c.) OP^.

The foregoing proof may evidently be applied to this

Proposition. The following is another proof from
Townsend's Modern Geometry:

—
From the points A, B, C, D, &c., let fall ±s AA',

BB', CC, BW, &c., on the line OP
;
then it is easy to

«ee that is the centre of mean position for the points
A', B', G'f Wf and the system of multiples a, h, c, d, &c.

ITow we have by Props, xii., xiii., Book ii.,

AP2 = AO^ + 0P2 + 2A'0 . OP
BP2 = B02 + 0P2 + 2B'0 . OP
CP2 = C02 + 0P2 + 2C'0 . OP
DP2 = DO^ + 0P2 + 2D'0 . OP, &c.

;

therefore, multiplying by a, h, c, d, and adding, and

remembering that

<i.A'0 + h.B'0 + c.C'0 + d.J)'0 + &c. = (see I., 18),
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we get

«.AP + 3.BP3 + c.CP2 + t?.DP2, &c.,
= <f . AO^ + J . BO^ + c . CO^ + ^ . DO^. + &c.,

+ (a + J + c + <?, &c.) 0P2.

This Proposition evidently includes the last.

Cor. 1.—The locus of a point, the sum of the squares
of whose distances from any number of given points,

multiplied respectively by any system of constants

^, If c, d, is a circle, whose centre is the centre of

mean position of the given points for the system of

multiples a, h, c, d.

Cor. 2.—The sum of the squares for any system of

multiples will be a minimum when the lines are drawn
to the centre of mean position.

Prop. 12.—From the Propositions vi. and ix. itfollows

thaty if a line is divided into any two parts, the rectangle

of the parts is a maximum, and the sum of their squares
is a minimum, when the parts are equal.

Cor.—If a line be divided into any number of parts,

the continued product of all the parts is a maximum,
and the sum of their squares is a minimum when they
are all equal. Eor if we make any two of the parts

unequal, we diminish the continued product, and we
increase the sum of the squares.

SECTION II.

EXEECISES.

1. The second and third Propositions of the Second Book are

special cases of the First.

2. Prove the fourth Proposition by the second and tliird.

3. Prove the sixth by the fifth, and the tenth by the ninth.

4. If the Z C of a A ACB be i of two right L s, prove

AB2 = AC2 + CB2 - AC . CB.

5. If C be f of two right L s, prove

AB2 = AC2 + CB2 + AC . CB.
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6. In a quadiilateral the sum of the squares of two opposite
sides, together with the sum of the squares of the diagonals, is equal
to the sum of the squares of the two remaining sides, together with
four times the square of the line joining their middle points.

7. Divide a given line AB in C, so that the rectangle under BC
and a given Hne may be equal to the square of AC.

8. Being given the rectangle contained by two lines, and the

difference of their squares : construct them.

9. Produce a given line AB to C, so that AC . CB is equal to the

square of another given line.

10. If a line AB be divided in C, so that AB . BC = AC^, prove
AB2 + BC2 = 3AC2, and (AB 4- BC)^- = SAC^.

11. In the fig. of Prop. xi. prove that—

(1). The Hnes GB, DF, AK, are paraUel.

(2). The square of the diameter of the about the A FHK
= 6HK2.

(3). The square of the diameter of the about the A FHD
= 6FD2.

(4). The square of the diameter of the about the A AHD
= 6AH2.

(6). If the lines EB, CH intersect in J, AJ is 1 to CH.

12. If ABC be an isosceles A, and DE be
||
to the base BC,

and BE joined, BE2 - CE2 = BC . DE.

13. If squares be described on the three sides of any A, and
the adjacent angular points of the squares joined, the sum of the

squares of the three joining lines is equal to three times the sum
of the squares of the sides of the triangle.

14. Given the base AB of a A, both in position and magnitude,
and wAC2 - wBC2 : find the locus of C.

15. If from a fixed point P two lines PA, PB, at right angles
to each other, cut a given in the points A, B, the locus of the

middle point of AB is a 0.

16. If CD be any line
|1
to the diameter AB of a semicircle, and

if P be any point in AB, then

CP2 + PD2 = AP2 + PB2.

17. If be the mean centre of a system of points A, B, C, D,
&c., for a system of multiples a, b, c, d, &c.

; then, if L and M
bo any two

|| lines,

2 (a . AL2) - 2 (a . AM2) = 2 («) . (OL? - 0M2).
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SECTIOIT I.

Additional Propositions.

Prop. 1.—The two tangents drawn to a circle from a

external point are equal. p

Dem.—Let PA, PB be the tan-

gents, the centre of the O . Join

OA, OP, OB
;
then

0P2 = OA? + AP^
0P2 = 0B2 + BP ;

but OA^ = OW
;

.-. AP2 = BP^ and
AP = BP.

Prop. 2.—If two circles touch at a point P, andfrom
P any two lines PAB, PCD le

drawn^ cutting the circles in

the points A, B, C, D, the lines

AC, BD joining the points of
section are parallel.

Dem.—^At P draw the

common tangent PE to both

O 8
;
then

ZEPA =PCA; (xxxii.)
ZEPB=PDB.

Hence Z PCA = PDB, and AC is

Cor.—If the angle APC be a right angle, AC and
BD will be diameters of the ©s, and then we have the

to BD. (I. xxiii.)
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following important theorem. The lines drawn from

the point of contact of two touching circles to the ex-

tremities of any diameter of one of them, will meet

the other in points which will be the extremities of a

parallel diameter.

Prop. 3.—If two circles touch at P, and any line PAB
cut loth circles in A and B, the tangents at A and B a/r&

parallel.

Dam.—Let the tangents at A and B meet the tan-

gents at P in the points E and P.

1^0w, since AE = EP (1), the Z APE = PAE. In

Hke manner, the Z BPE = PBF
;

.-. Z PAE = PBF,
and AE is H to BE.

This Prop, may be inferred from (2), by supposing
the lines PAB, PCD to approach each other indefinitely ;

then AC and BD will be tangents.

Prop. 4.—If two circles touch each other at any point

P, and any line cut the circles in

the points A, B, C, D ;
then the ^

angle APB = CPD.

Dem.—Draw a tangent PE
at P

;
then

Z EPB = PCB
; (xxxii.)

Z EPA = PDA.

Hence, by subtraction, Z APB
= CPD.

Prop. 6.—If a circle touch a semicircle in D and its

diameter in P, and PE le per-

pendicular to the diameter atV,

the square on PE is equal to

twice the rectangle contained

hy the radii of the circles.

Dem.—Complete the circle,

and produce EP to meet it

again in G. Let C and E be the

centres
;
then the line CE will

pass through D. Let it meet

the outside circle again in H.
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Kow, EF . FG = DF . FH (xxxv.), and PF^ = DF^.

Hence, by addition, making use of II. v., and II. iii.,

EP2 = DF . DH = twice rectangle contained "by the
radii.

Prop. 6.—If a circle PGD toucli a circle ABC in D
and a chord AB in P, and if c
EF le perpendicular to AB
at its middle point, and at

the side opposite to that of
the circle PGrD, the rectangle
contained hy EF and the dia-

meter ofthe circle^(jj)is equal a\
to the rectangle AP . PB.

Dem.—Let PGr be at

right Zs to AB, then PG
is the diameter of the O
PGD. Join DG, DP, and

^ '''

produce them to meet the O ABC in C and F
;
then CF is

the diameter of the O ABC, and is
||
to PG (2) ;

.-. CF
is J_ to AB

;
hence it bisects AB in E

(iii.)- Through
F draw FH

||
to AB, and produce GP to meet it in H.

I^ow, since the Z s H and D are rightZ s, a semicircle

described on GF will pass through the points D and H.
Hence HP . PG = FP . PD = AP . PB ; (xxxv.)
but HP = EF EF . PG = AP . PB.

This Prop, and its Demonstration will hold true when
the Os are external to each other.

Cor. If AB be the diameter of the O ABC, this

Prop, reduces to the last.

Prop. 7.—To draw a common tangent to two circles.

Let P be the centre
of the greater O, Q
the centre of the less,

with P as centre, and
a radius = to the dif-

ference of the radii

of the two Os: de-

scribe the O IGH
;

from Q draw a tangent to this O, touching it at H.
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Join PH, and produce it to meet the circumference of

the larger O in E. Draw QF ||
to PE. Join EF,

which will be the common tangent required.

Dem.—The lines HE and QF are, from the construc-

tion, equal ;
and since they are

||,
the fig. HEFQ, is a czi;

.-. the Z PEF = PHQ = right angle ;
.-. EF is a tangent

at E
;
and since Z EFQ = EHQ = right angle, EF is a

tangent at F. The tangent EF is called a direct com-

mon tangent.

If with P as centre, and a radius equal to the sum
of the radii of the two given Os, we shall describe a

O, we shall have a common tangent which will pass
between the Os, and one which is called a transverse

common tangent.

Prop. 8.—If a line passing through the centres of two

circles cut them in the points A, B, C, D, respectively ;

then the square of their direct common tangent is equal
to the rectangle AC . BD.

Dem.—We have (see last fig.) AI = CQ ;
to each add

IC, and we get AC = IQ. In like manner, BD = GQ.
Hence AC . BD = IQ . QG = EF^.

Cor. 1.—If the two Os touch, the square of their

common tangent is equal to the rectangle contained by
their diameters.

Cor. 2.—The square of the transverse common tan-

gent of the two Os = AD . BC.
Cor. 3.—If ABC be

a semicircle, PE a -L

to AB from any point

P, CQD a O touch-

ing PE, the semicircle

ACB, and the semi-

circle on PB
; then, if

QE, be the diameter

of CQD, AB . QR = EP2.

Dem. PB . QR = PQ',
AP . QR = EP2

therefore, by addition,

{Cor. 1)

(6)PQ2.
AB . QIl = EF.

Cor. 4.—If two Os be described to touch an oidi
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nate of a semicircle, the semicircle itself and the semi-

circles on the segments of the diameter, they will be

equal to one another.

Prop. 9.—In equiangular triangles the rectangles under

the non-corresponding sides about

equal angles are equal to one another.

Dem.—Let the equiangular As
be ABO, DCO, and let them be

placed so that the equal Z s at

may be vertically opposite, and
that the non-corresponding sides

AO, CO may be in one right line, _
then the non-corresponding sides

BO, OD shall be in one right line. N'ow, since the

Z ABD = ACD, the four points A, B, C, I) are con-

cyclic (in the circumference of the same O). Hence
the rectangle AO . 00 = rectangle BO . OD. (xxxv.)

Prop. 10.—The rectangle contained ly the perpendi-
culars from any point in the cir-

cumference of a circle on two tan-

gents AC, BC, is equal to the square

of the perpendicular from the same

point on their chord of contact AB.

Dem.—Let the ±sbe OD, OE,
or. Join OA, OB, EF, DE. ITow,
since the Zs ODB, OEB, are right,
the quadrilateral ODBE is in-

scribed in a O. In like manner,
the quadrilateral OEAE is in-

scribed in a O. Again, since BC
is a tangent, the Z DBO = BAO
(xxxii.) ;

but DBO =DEO (xxi.) ;

and EAO = EEO
;

.-. Z DEO = EEO. In like manner,
Z ODE = EEO

;
hence the As ODE, EEO are equi-

angular, and .'. the rectangles contained by the non-

corresponding sides about the equal Zs DOE, FOE,
are equal (9). Hence OD . OE = OE^.

Prop. 11.—Iffrom any point in the circumference of
a circle perpendiculars he drawn to the four sides, and to
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the diagonals of an inscrihed quadrilateral, the rectangle
contained hy the perpe^idiculars on either pair of opposite
sides is equal to the

rectangle contained hy
the perpendiculars on

the diagonals,

Dem.~Let OE, OF
be the -L s on the oppo -

site sides AB, CD; 00,
OH, the J-s on the

diagonals. Join EG-,

EH, OA, OD. Now,
as in the last Prop. ,

we
see that the quadrila-
terals AEOa, DEOH,
are inscribed in 0s.
HenceZOEG = OAG,
and OHE = ODE. Again, since AODC is a quadri-
lateral in a O, the Z OAC + ODC = two right Zs
(xxii.)

= ODC + ODE ;
.-. the Z OAC = ODE. Hence

the Z OEG- = OHE. In like manner, the Z OGE
= OEH. Hence the Z s OEG, OHE are equiangular,
and the rectangle OE . OE = the rectangle OG . OH.

Cor. 1.—The rectangle contained by the -Ls on one

pair of opposite sides is equal to the rectangle contained

by the JLs on the other pair of opposite sides. This may
be proved directly, or it follows at once from the theorem
in the text.

Cor. 2,—If we suppose the points A, B, to become

consecutive, and also the points C, D, then AB, CD
become tangents ;

and from the theorem of this Article

we may infer the theorem of Prop. 10.

Prop 12.—The feet J), E, E of the three perpendiculars
let fall on the sides of a triangle ABC,/rom anypoint P in

the circumference of the circumscrihed circle, are collinear.

Dem.—Join PA, PB, DE, EE. As in the Demonstra-
tions of the two last Propositions, we see that the qua-
drilaterals PBDF, PEAE are inscribed in Os; .*. the

Z s PBD, PED are = two right Z s (xxii.), andZ s PBD.
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PAC, are = two right Zs (xxii.) ;
/. Z PPD = PAC

;

and since PFAE is a quadri- E

lateral in a circle, the Z EAP
= EEP

;
.-. PFD + PEE = PAC

+ PAE = two right Zs. Hence
the points D, E, E, are collinear.

Cor. 1.—If the feet of the

J-s drawn from any point P
to the sides of the A ABC be

collinear, the locus of P is the

O described about the triangle.

Cor. 2.—If four lines be given, a point can be found

such, that the feet of the

four J-8 from it on the lines

willbe collinear. Eorlet the

four lines be AB, AC, DB,
DE. These lines form four

As. Let the O s described

about two of the As—say

AEE, CDE—intersect inP
;

then it is evident that the

feet of the ±s from P on
the four lines will be collinear.

Cor. 3.—The Os described about the As ABC, DBE,
each passes through the point P. This follows because

the feet of the J.s from P on the sides of these As aro

collinear.

Prop. 13.—If the perpendicula/rs of a triangle he pro-
duced to meet the circumference of
the circumscriled circle, the parts of
the perpendiculars intercepted be-

tween their point of intersection and
the circumference are bisected by the

sides of the triangle.

Let AD, CE intersect in
; pro-

^

duce CE to meet the O in G
;
then

OF = EG.
Dem.—TheZ AOE = COD (I. xv.) and AFO = CDO,

d2
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each being right ;
.-. PAO = OCD

;
but OCD = GAF

(xxi.) ;
.-. FAO = FAG, and AFO = AFG, each being

right, and AF common. Hence GF = FG.

Prop. 14.—The line joining any point P, in the cir-

cumference of a circle^ to the point of intersection of the

perpendiculars of an inscribed triangle, is bisected by the

line of collinearity of the

feet of the perpendiculars

from P on the sides of the

triangle.

Let P be the point ; PH,
PL two of the Xs from
P on the sides

;
thus HL

is the line of collinearity
of the feet of the -Ls from
P on the sides of the A.
Let CF be the ± from C
on AB

; produce CF to

G, and make OF = FG;
then is the point of

intersection of the J-s of the A . Join OP, intersecting
HL in I : it is required to prove that OP is bisected in I.

Dem.—Join AP, PG, and let PG intersect HL in K, ,

andAB inE. Join OE. ITow, since APLH is a quadri-
lateral in a O, the Z PHK = PAC = PGC = HPK

;

.-. PK = KH. Hence KH = KE, and PK = KE.
Again, since OF = FG, andFE common, Z GEF = OFF

;

but GEF = KEH = KHE
;

.. Z OFF = KHE
;

.-. OE
is

II
to KH

;
and since EP is bisected in K, OP is bi-

sected in I.

Cor.—If X, Y, Z, "W be the points of intersection

of the J-s of the four As AFE, CDE, ABC, DBF
(see fig.. Cor. 2, Prop. 12), then X, Y, Z, W are col-

linear. For let L denote the line of collinearity of the

feet of the -Ls from P on the sides of the four As.
Join PX, PY, PZ, PW. Then, since L joins the

])oints of bisection of the sides of the A PXY, the

line XY is
||

to L. Similarly, YZ, ZW are each
||
to

L. Hence XY, YZ, ZW form one continuous line.
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Prop. 15.—Through one of the points of intersection of
two given circles to draw a line, the sum of whose segments

intercepted hy the circles

4ihall he a maximum.

Analysis.—Let theO s

intersect in the points P,

B, and let APB be any
line through P. From
0, 0', the centres of the

Os, let fall the ±sOC,
O'D, and draw O'E

||
to

AB. [N'ow, it is evident

that AB = 2CD = 20'E
;
and that the semicircle de-

scribed on 00' as diameter will pass through E. Hence
it follows that if AB is a maximum, the chord O'E
will coincide with 00'. Therefore AB must be

||
to

the line joining the centres of the Os.
Cor. 1.—If it were required to draw through P a

line such that the sum of the segments AP, PB may be

equal to a given line, we have only to describe a

from 0' as centre, with a line equal half the given line

as radius
;
and the place where this O intersects the O

on 00' as diameter will determine the point E
;
and

then through P draw a
||

to O'E.

Def.—A triangle is said to he given in species when
its angles are given.

Prop. 16.—To describe a triangle of given species

whose sides shall pass through three given points, and
whose area shall le a maximum.

Analysis.—Let A, B, C be the given points, DEF
the required A ; then, since tho triangle DEF is given
in species, the Zs D, E, F are given, and the lines AB,

BC, CA are given by hypothesis ;
.-. the 0s about the

As ABF, BCD, CAE are given. These three 0s will

intersect in a common point. For, let the two first in-

tersect in 0. Join AO, BO, CO
;
then ZAFB + AOB =

tworightZs; andBDC + BOC = tworightZs; .-.theZs

AFB, BDC, AOB, COB = four right Zs, and the Zs
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. the Z COA
D

AOB, BOC, COA = four right Zs;
= AFB + BDC : to each
add the Z CEA, and we
have the Z COA + CEA
= sum of the three Zs of

theA DEE, that is = two

right Zs ;
.*. the qua-

drilateral AECO is in-

scribed in a O. Hencethe
three Os pass through
a common point, which
is a given point.

Again, since the area

of the A DEE is a maxi-

mum, each of its sides is a maximum. Hence (15) we
have to draw through the point A a line

||
to the line

joining the centres of the Os ABE, CEA
;
that is, a

line ± to AO, and join its extremities E, E to the

points C, B, respectively.

Cor.—If instead of the maximum A we require to
describe a A whose sides will be equal to three given
lines, the method of solving the question can be inferred

from the corollary to the last Proposition.

Prop. 17.—To describe in a

last fig.) <? triangle given in species
minimum.

triangle DEE (see
whose area shall he u

Analysis.—LetABC be the inscribed A
; describe Os

about the three As ABE, BCD, CAE; then these Os
will have a common point : let it be 0. "We prove this

to be a given point as follows : The Z EOE exceeda
the Z EDE by the sum of the Zs DEO, DEO ; that is,

by the sum of the Zs BAO, CAO. Hence the Z EOE
= EDE + BAC

;
.-. the Z EOE is given. In like

manner, the Z EOD is given. Hence the point will

be the point of intersection of two given Os, and is

.*. given ; and, since E and E are given points, the
Z OEE is given; .'. the Z OBA is given. In like

manner, the Z OAB is given; .-. A OAB is given
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in species. IS'ow, since the A ABC is a minimum, the
side AB is a minimum; .*. OA is a minimum; and
since is a given point, OA must be -L to EF. Hence
the method of inscribing the minimum A has been
found.

Cor.—From the foregoing analysis the method is

obvious of inscribing in a given A another A whose
sides shall be lespectively equal to three given right
lines.

Prop. 18.—7/* ABC he a triangle, and CD a perpen-
dicular to AB

;
then if kSx = DB, it is required to prove

that AB is the minimum
line that can he drawn

through E, meeting the two

fixed lines AC, BC.

Dam.—Describe a O
about the A ABC

; pro-
duce CD to meet it in 1/,

and erect EK _L to AB.
Join AK, BK. Through
E draw any other line FG

;

draw KO J_ to FGr, and

produce it to meet AB in H
; through H draw JI

||
to

FG. J oin JK, iK, CK, KL. J^ow, since AE = DB, it

is evident that EK = DL. Hence KL is
|1

to AB
;

.*. the Z KLC = ADC, and is consequently a rightZ ;

.-. KC is the diameter of the
;

.'. the Z KBC is

right, and the Z KHI is right ;
.*. KHIB is a quadri-

lateral inscribed in a circle
;

.'. the Z KIH = KBA.

in like manner, the Z KJH = KAB
;

.-. the As UK
and BAK are equiangular; and since IK is greater
than KB (the Z IBK being right), it follows that IJ is

greater than AB
;
but FG is evidently greater than IJ

;

.-. much more is FG greater than AB. Hence AB is

the minimum line that can be drawn through E.

If in the toregoing lig. the line JiA receive an infinitely small

jhange of position, namely, J3 along BC, and A along AC
;
then
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it is plain the motions of B and A would be the same as if the

A AKB got an infinitely small turn round the point S, which
remains fixed : on this account the point K is called the centre of

instantaneous rotation for the line AB.

This Proposition admits of another demonstration, as

follows :
—Through the points A, B draw the lines AM,

BM
II
to BC, AC ;

then ME is evidently J_ to AB
;
let

fall the ± MK on PG
; join AG, MG ;

then the A FMG
is plainly greater than A AGM ;

but AAGM =A ABM
;

.*. A FGM is greater than A ABM, and its ± MIS" is

less than ME, the J. of A AMB
;
hence the base PG

is greater than the base AB.

Prop. 19.—If OC, OD he any two lines, AB any are

of a circle, or ofany other curve concave to
; then, of all

the tangents which can he drawn to AB, that whose inter-

cept is hisectedat the point ofcontact cuts off the minimum
triangle.

Dem.—Let CD be bisected at P, and let EP be any
other tangent. Then through P draw GH

||
to EF

;

then, since CD is bisected in P, the A cut off by CD
is less than the A
cut off by GH
(I. 19); but the A
cut off by GH is

less than the A
cut off by EF.
Hence the A cut

off by CD is less

than the A cut off

by EF.
Cor. 1.—Of all

triangles described

about a given circle, the equilateral triangle is a
minimum.

Cor. 2.—Of all polygons having a given number of

sides described about a given O, the regular polygon
is a minimum.
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Prop. 20.—IfABC he a circle, AB a diameter, PD a

Jixed line perpendicula/r to

AB
; then if ACP he any

line cutting the circle in C
and the line PD in P, the

rectangle under AP and AC
is constant.

Dem.—Since AB is the

diameter of the 0, the

/. ACB is right (xxxi.) ;

.-. BCP is right, and BDP
is right ;

.. the figure BDPC is a quadrilateral inscribed

in a O, and, consequently, the rectangle AP . AC
= rectangle AB . AD = constant.

Cor, 1.—This Prop, holds

true when the line PD cuts the

O, as in the diagram : the value

of the constant will, in this

case, be = AE'^. Hence we
have the following :

—
Cor. 2.—If A be the middle

point of the arc EP, AC any
chord cutting the line EF in P

;
then AP . AC = AE^

On account of its importance, we .shall give an inde-

pendent proof of this Prop. Thus : join EC, and sup-

pose a O described about the A EPC
;
then the Z PEA

= ECA, because they stand on equal arcs AP, AE.
Hence AE touches the O EPC (xxxii.) ;

;-. the rect-

angle AP . AC = AE^
Cor. 3.—If A be a fixed point (see two last figs.),

PD a fixed line, and if any variable point P in PD be

joined to A, and a point C taken on AP, so that the

rectangle AP . AC = constant—say 'B?—then, by the

converse of this Prop., the locus of the point C is a O.

Def.—The point C is called the inverse of the point P,
the O ABC the inverse of the line PD, the fixed point A
the centre, and the constant E, the radius o/ inversion.

We shall give more on the subject of inversion in

our addition to Book YI.



42 A SEQUEL TO EUCLID.

Prop. 21.—Iffrom the centre ofa circle aperpendicuh
he let fall on any line GD,
and from D, the foot of the

perpendicular, and from any
other point G in GD two tan-

gents DE, GF le drawn to the

circle, then GF^ = GD^ + DE^.

Dem.—Let C be the centre
of the© . JoinCG, CE, CE.
Then

GF2 = GC2 - CE2 = GD2 -f DC^ - CF»

= GD2 + DE2 + EC2 - CE2 = GD^ + DE^.

Prop. 22.—To describe a circle having its centre at a

given point, and cutting a

circle orthogonally

{at right angles).

Let A be the given
point, BED the given O.
FromA draw AB, touch-

ing the O BED (xvii.)
at B

;
and fromA as cen-

tre, and AB as radius,
describe the O BED: this O will cut BED orthogo-

nally.

Dem.—Let C be the centre of BED. Join CB
; then,

because AB is a tangent to the circle BED, CB is at right
Zs to AB (xviii.) ;

.'. CB touches the O BDF. Kow,
since AB, CB are tangents to the OsBDE, BDF, these
lines coincide with the Os for an indefinitely short

distance (a tangent to a O has two consecutive points
common with the O ) ; and, since the lines intersect

at right Zs, the Os cut at right Zs; that is, or-

thogonally.

Cor. 1.—The Os cut also orthogonally at D.

Cor. 2.—"When two Os cut orthogonally, the square
of the distance between their centres is equal to the
sum of the squares of their radii.
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^
Prop. 23.—If in the line joining the centres of two

circles a pointD hefound,
such that the tangents DE,
DE'/row it to the circles

are equal, and if through
D a line DG le drawn

perpendicular to the line

joining the centres, then

the tangents from any
other point G in DG to

the circles will he equal.

Dem.—Let GP, GF' be the tangents. !N'ow, by-

hypothesis, DE2 = DE'2. To each addDG^, and we hava

or

GD2 4- DE2 = GD2 + DE'^

GF2 = GF'2. .-. GF = GF'

Def.—The line GD is called the radical axis of the

two circles ; and two points I, T, taken on the line through
the centres, so that DI = DI' = DE = DE', are called the

limiting points.

Cor. 1.—Any circle whose centre is on the radical

axis, and which cuts one of the given Os orthogonally,
\vill also cut the other orthogonally, and will pass

through the two limiting points.

Cor, 2.—If there be a system of three Os, their

radical axes taken in pairs are concurrent. For, if

tangents be drawn to the Os from the point of inter-

section of two of the radical axes, the three tangents
will be equal. Hence the third radical axis passes

through this point.

Def.—The point of concurrence of the three radical

axes is called the radical centre of the circles.

Cor. 3.—The O whose centre is the radical centre

of three given Os, and which cuts one of them or-

thogonally, cuts the other two orthogonally.



44 A SEQUEL TO EUCLID.

Prop. 24.—The difference letween the squa/res of the

tangents, from any /point P to two circles, is equal to twice
the rectangle contain-

ed hy the perpendi-
cular from P on the

radical axis and the

distance between the

centres of the circles,

Dem.—Let C, C^,
be the centres, the

middle point of CC,
DE the radical axis.

Let fall the i.s PE, PG. IS'ow,

CP2 _ CT^ = 2CC' . Oa (II., 6)

CP2-C'E'2= CD^-C'D^,

because DE is the radical axis

= 2CC' . OD.

Hence, by subtraction,

PP2 _ pp'2 = 2CC' . DO = 2CC' . EP.

This is the fundamental Prop, in the theory of coaxal

circles. Eor more on this subject, see Book YI.,
Section v.

Def.—If on any radius of a circle two points he tahen,

one internally and the other externally, so that the rect-

angle contained hy their distances from the centre is equal
to the square of the radius ; then a line drawn perpendi-
cular to the radius through either point is called the

polar of the other point, which is

called, in relation to this perpendi-

cular, its pole. Thus, let he the

centre, and let OA . OP = radius"^ ;

then, if AX, PY he perpendiculars
to the line OP, PT is called the

polar of A, and A the pole o/PT.
Similarly, AX is the pola/r of P, and
P the pole of AX.
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Prop. 25.—If A and B he two points, such that the

polar ofkpasses through B,
then the polar of B passes

through A.

Dem.—Let the polar of

AbethelinePB; thenPB
is ± to CP (C being the

centre). Join CB, and let

fall the ± AQ on CB.

Then, since the Z s P and
U are right Zs, the qua-
drilateral APBQ is inscribed in a O ;

.*. CQ
= CA . CP = radius^

;
.*. AQ is the polar of B.

Cor.—In PB take any other point D. Join CD, and
let fall the perpendicular AR on CD. Then AQ, All are

the polars of the points B and D, and we see that the line

BD, which joins the points B and D, is the polar of the

point A
;
the intersection of AQ, AR, the polars of

B and D. Hence we have the following important
theorem :

—The line of connexion of any two points is

the polar of the point of intersection of their polars;
or, again : The point of intersection of any two lines is

the pole of the line of connexion of their poles.

Def.—Two points, such as A and B, which possess the

property that the polar of either passes through the other,

are called conjugate points with respect to the circle, and
their polars are called conjugate lines.

Prop. 26.—If two circles cut orthogonally, the extre-

mities of any diameter of either are conjugate points with

respect to the other.

Let the Os be ABP and

CED, cutting orthogonally in

the points A, B
;

let CD
be any diameter of the O
CED

;
C and D are conjugate

points with respect to the

©ABE.
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Dem.—Let be the centre of the O ABF. Join

OC, intersecting the O CED in E. Join ED, and pro-
duce to E. Join OA. Now, because the Os intersect

•orthogonally, OA is a tangent to the O CED. Hence
OC . OE = 0A2

;
that is, OC . OE = square of radius of

the O ABE
; and, since the Z CED is a right angle,

being in a semicircle, the line ED is the polar of C.

Hence C and D are conjugate points with respect to the

O ABE.

Prop. 27.—If A and B he two points, and iffrom A
we draw a perpendicular AP to

the polar of B, and from B a

perpendicular BQ, to the polar of
A

; then, ifC be the centre of the

circle, the rectangle CA . BQ
'=CB.AP (Salmon).
% Dem.—Let fall the -Ls AY,
BX, on the lines CE, CD.

Now, since X and Y are right

angles, the semicircle on AB
passes through the points X, Y.

Therefore CA . CX = CB . CY
;

and CA . CD = CB . CE,

because each = radius'^
;
.'.we get, by subtraction,

CA . DX = CB . EY
;

or CA . BQ = CB . AP.

Prop. 28.—The locus of the intersection of tangents to

d circle, at the extremities of a chord

which passes through a given point, is

the polar of the point.

Dem.—Let CD be the chord, A
the given point, CE, DE the tan-

gents. Join OA, and let fall the

± EB on OA produced. Join OC,
OD. Now, since EC = ED, and

EO common, and OC = OD, the Z
CEO = DEO. Again, since CE
= DE, and EE common, and Z CEE
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= DEF
;

.-. the Z EFC = EPD. Hence each is right,

l^ow, since the A OCE is right-angled at C, and CF
perpendicular to OE, OF . OE = OC^

;
but since the

quadrilateral AFEB has the opposite angles B and F
right angles, it is inscribed in a O. The rectangle
OF . OE = OA . OB

;
but OF . OE = OC; .-. OA . OB

= 00^ = radius^
;

.-. BE is the polar of A, and this is

the locus of the point E.

Cor. 1.—If from every point in a given line tan-

gents be drawn to a given circle, the chord of contact

passes through the pole of the given line.

Cor. 2.—If from any given point two tangents be
drawn to a given circle, the chord of contact is the

polar of the given point.

Prop. 29.—The older geometers devoted much time
to the solution of problems which required the con-

struction of triangles under certain conditions. Three

independent data are required for each problem. We
give here a few specimens of the modes of investigation

employed in such questions, and we shall give some addi-

tional ones under the Sixth Book.

(
1 ). Given the base of a triangle

the vertical angle, and the sum of
the sides : construct it.

Analysis.—Let ABC be the
A

; produce AC to D, and make
CD = CB

;
then AD = sum of

sides, and is given; and the
^ ^

Z ADB = half the Z ACB, and is given. Hence we have

the following method of construction:—On the base AB
describe a segment of a O containing an Z = half the

given vertical Z
,
and from the centre A, with a distance

equal to the sum of the sides as radius, describe a

cutting this segment in D. Join AD, DB, and make
the Z DBC = ADB

;
then ABC is the A required.

(2). Given the vertical angle of a triangle, and the seg-
ments into which the line bisecting it divides the base :

construct it.
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Analysis.—Let ABC be the A, CD the line bisect*

ing the vertical Z . Then AD, DB,
and the Z ACB are given. Now,
since AD, DB are given, AB is

given ;
and since AB and the ZACB

are given, the O ACB is given a\
(xxxiii.); and since CD bisects the

Z ACB, we have arc AE = EB
;

.*. E is a given point, and D is a

given point. Hence the line ED is given in position^
and therefore the point C is given.

(3). Given the base, the vertical angle, and the rectangles

of the sides, construct the triangle.

Analysis.—Let ABC be the A
;

let fall the J_ CD
;
draw the dia-

meter CE
; join AE. Now the

Z CEA= CBA (xxi.), and CAE
is right, being in a semicircle

(xxxi.); .-. =Z CDB. Hence the

A s CAE, CDB are equiangular ;

.*. rectangle AC . CB = rectangle
CE . CD (9) ;

but rectangle AC . CB
is given ;

.'. rectangle CE . CD is given ;
and since the

base and vertical Z are given, the O ACB is given;
.-.the diameter CE is given; .-. CDis given; and there-

fore the line drawn through C
||

to AB is given in

position. Hence the point C is given.
The method of construction is obvious.
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SECTION II.

EXEECISES.

1. The line joining the centres of two Os bisects their common
chord perpendicularly.

2. If AB, CD be two
|1
chords in a 0, the arc AC = BD.

3. If two Os be concentric, all tangents to the inner O which
are terminated by the outer O are equal to one another.

4. If two ±s AD, BE of a A intersect in 0, AO . OD
= BO . OE.

5. If be the intersection of the Is of a A, the Os described

about the three As AOB, BOO, COA are equal to one another.

6. If equilateral As be described on the three sides of any A,
the Os described about these equilateral As pass through a com-
mon point.

7. The lines joining the vertices of the original A to the oppo-
eite vertices of the equilateral As are concurrent.

8. The centres of the three Os in question 6 are the angula*

points of another equilateral A . This theorem will hold true if

the equilateral A s on the sides of the original A be turned in-

wards.

9. The sum of the squares of the sides of the two new equi-
lateral A 8 in the last question is equal to the sum of the squares
of the sides of the original triangle.

10. Find the locus of the points of bisection of a system of

chords which pass through a fLsed point.

1 1 . If two chords of a O intersect at right angles, the sum of the

squares of their four segments equal the square of the diameter.

12. If from any fixed point C a line CD be drawn to any point
D in the circumference of a given O, and a line DE be drawn ±
to CD, meeting the O again in E, the line EF drawn through
E

II to CD will pass through a fixed point.

13.. Given the base of a A and the vertical L
, prove tiiat the

sum of the squares of the sides is a maximum or a minimum
when the A is isosceles, according as the vertical L is acute or

obtuse.

14. Describe the maximum rectangle in a given segment of

a circle.

16. Through a given point inside a O draw a chord which
shall be divided as in Euclid, Prop. XI., Book II.

E
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16. Given the base of a A and the vertical L
,
what is the

locus—(1) of the intersection of the ±s; (2) of the bisectors of
the base-angles ?

17. Of all As inscribed in a given 0, the equilateral A is a
maximum.

18. The square of the third diagonal of a quadrilateral in-

scribed in a O is equal to the sum of the squares of tangents to

the O from its extremities.

19. The O, whose diameter is the third diagonal of a quadri-
lateral inscribed in another O, cuts the latter orthogonally.

20. If from any point in the circumference of a O three lines

be drawn to the angular points of an inscribed equilateral A ,
one

of these Hnes is equal to the sum of the other two.

21. If the feet of the ± of a A be joined, the A thus formed
will have its angles bisected by the ± s of the original triangle.

22. If all the sides of a quadrilateral or polygon, except one, be

given in magnitude and order, the area wiU be a maximimi, when
the remaining side is the diameter of a semicircle passing through
all the vertices.

23. The area will be the same in whatever order the sides are

placed.

24. If two quadrilaterals or polygons have their sides equal,
each to each, and if one be inscribed in a O, it will be greater
than the other.

25. If from any point P without a O a secant be drawn cut-

ting the O in the points A, B
; then if C be the middle point of

the polar of P, the L ACB is bisected by the polar of P.

26. If OPP' be any Hne cutting a O, J, in the points PP'
; then

if two Os passing through touch J in the points P, P', respec-

tively, the difference between their diameters is equal to the dia-

meter of J.

27. Given the base, the difference of the base L s, and the sum
or difference of the sides of a A

,
construct it.

28. Given the base, the vertical Z, and the bisector of the

vertical Z of a A
,
construct it.

29. Draw a right line through the point of intersection of two

Os, so that the sum or the difference of the squares of the inter-

cepted segments shall be given.

30. If an arc of a be divided into two equal, and into two

unequal parts, the rectangle contained by the chords of the im-

equal parts, together with the square of the chord of the arc be-

tween the points of section, is equal to the square of the chord of

half the arc.
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31. If A, B, C, D be four points, ranged in order on a stxaight
line, find on the same line a point 0, such that the rectangle
OA . OD shall be equal to the rectangle OB .00.

32. In the same case find the locus of a point P if the L API3

equal L CPD.

33. Given two points A, B, and a X, find in X a point C,
so that the L ACB may be either a maximum or a minimum.

_

34. The bisectors of the L s, at the extremities of the third

diagonal of a quadrilateral inscribed in a are ± to each other.

35. If the base and the sum of the sides of a A be given, the

rectangle contained by the ± s from the extremities of the base on
the bisector of the external vertical L is given.

36. If any hexagon be inscribed in a 0, the sum of the three
alternate Z. s is equal to the sum of the three remaining angles.

37. A line of given length MN slides between two fixed

lines OM, ON
; then, if MP, NP be 1 to OM, ON, the locus

of P is a circle.

38. State the theorem corresponding to 35 for the internal

bisector of the vertical angle.

39. If AB, AC, AD be two adjacent sides and the diagonal of
a, and if a passing through A cut these lines in the points
P, Q, E, then

AB . AP + AC . AQ = AD . AR.

40. Draw a chord CD of a semicircle
||
to a diameter AB, so as

to subtend a right Z. at a given point P in AB (see Exercise 16,
Book II.)

41. Find a point in the circumference of a given 0, such that
the lines joining it to two fixed points in the circumference may
make a given intercept on a given chord of the circle.

^2. In a given describe a A '

whose three sides shall pass
through three given points.

43. If through any point three Knes be drawn respectively ||

to the three sides of a A, intersecting the sides in the points

A, A', B, B', C, C, then the simi of the rectangles AO . OA',
BO . OB', CO . OC' is equal to the rectangle contained by the

segments of the chord of the circumscribed which passes

through 0.

44. The lines drawn from the centre of the circle described

about a A to the angular points are ± to the sides ©f the A
ionned by joining the feet of the Is of the original triangle.

e2
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46. If a O toucli a semicircle and two ordinates to its diameter,
the rectangle under the remote segments of the diameter is equal
to the square of the J. from the centre of the O on the diameter

of the semicircle.

46. If AB he the diameter of a semicircle, and AC, BD two
chords intersecting in 0, the O ahout the A OCD intersects the

semicircle orthogonally.

47. If the sum or difference of the tangents from a variahle

point to two 08 he equal to the part of the common tangent of

the two 0s hetween the points of contact, the locus of the point
is a right Hne.

48. If pairs of common tangents be drawn to three 0s, and if

one triad of common tangents be concurrent, the other triad wiU
also be concurrent.

49. The distance between the feet of JLs from any point in the

circumference of a on two fixed radii is equal to the A. from
the extremity of either of these radii on the other.
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SECTIOIT I.

Additional Propositions.

Prop. 1.—If a circle he inscribed in a triangle^
the

distances from the angular points of the triangle to the

points of contact on the sides a/re respectively equal to the

remainders that a/re left, when the lengths of the sides are

taJcen separately from their half sum.

Dem.—Let ABC be the A,
D, E, E, the points of contact.

Kow, since the tangents from an
-external point are equal, we have
AE = AF, BD = BE, CD = CE.
Hence AE + BC = AB + CE
= half sum of the three sides

BC, CA, AB; and denoting these

sides by the letters a, h, c, re-

spectively, and half their sum

by 8, we have
AE + a = 8

therefore AE = s - a.

In like manner BD = s - h;

Cor. 1.—If r denote the radius of the inscribed O,
the area of the triangle = rs.

For, let be the centre of the inscribed 0, then we
have

BC . r = 2 A BOC,
CA . r = 2 A COA,
AB.r = 2 AAOB;

therefore (BC + CA + AB) /• = 2 A ABC ;

CE 8-0.
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Cor. 5.—If "we denote the area of the A ABC by iN",

we shall have

1^ = ^/8{s-a){8-h){8-c).

For, by equations (a) and (^), we have

rs = ^, and r' {s
-

a)
= I^.

Therefore, multiplying and substituting from (y), we
get

l^^^s{s-a){s- h) (s
-

c) ;

therefore N = ^ s{s
-
a){s -h){8 -

c).

Cor. 6.— JST = */r.r' . r" . r'"
;

where r", r'" denote the radii of the escribed circles,
which touch the sides J, c, externally.

Cor. 7.—If the A ABC be right-angled, having the

angle C right,

r = 8 - c\ r' = 8-l\ r" = 8 - a\ r'" = 8.

Prop. 2.—Iffrom any point perpendicula/r8 he letfall
on the sides of a regular polygon of n

sides, their sum is equal to n times the

radius of the inscribed circle.

Dem.—Let the given polygon be,

say a pentagon ABCDE, and P the

given point, and the ±s from P on
the sides AB, BC, &c., be denoted

^y !Pn P-ii Pz} &c., and let the com-
mon length of the sides of the poly-
gon be 8

; then
2 A APB =

sp^ ;

2 A BPC =5i?2;
2 A CPD =

sp^ ;

&c., «&c.
;

therefore, by addition, twice the pentagon
=

«(i?l +i?2 +i?3 +Pi +i?5).

Again, if we suppose to be the centre of the in-

scribed circle, and R its radius,* we get, evidently,

2 A AOB = Rs :
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bu*:, the pentagon = 5 A AOB
;
therefore

4 twice pentagon = 5Rs
;

therefore « (i?i + i?2 + i?3 + i?4 + i^s)
= 5E,«.

Hence Pi +P2+ P3 + Pi+Ps== 5E.

Prop. 3.—If a regular polygon of n sides he described

about a circle, the sum of the perpendiculars from the

points of contact on any tangent t^he circle equal wR.

-Bern.—Let A, B, C, D, E, &c., be the points of con-

tact of the sides 0^ the polygon with the O, L any-

tangent to the O, and P its point of contact. Kow,
the JLs from the points A, B, C, &c., on L, are respec-

tively equal to the JLs from P on the tangents at the

same points ;
but the sum of the -Ls from P on the tan-

gents at the points A, B, C, &c., = wE (2). Hence the
sum of the _Ls from the points A, B, C, &c., on L = nR,

Cor. 1.—The sum of the -Ls from the angular

points of an inscribed polygon of n sides upon any line

equal n times the -L from the centre on the same line.

Cor, 2.—The centre of mean position of the angular

points of a regular polygon is the centre of its circum-

scribed circle.

For, since there are n points, the sum of the Xs
from these points on any line equal n times the -L from
their centre of mean position on the line (I., 17);
therefore the J- from the centre of the circumscribed O
on any line is equal to the JL from the centre of mean

position on the same line
; and, consequently, these

centres must coincide.

Cor. 3.—The sum of the Xs from the angular points
of an inscribed polygon on any diameter is zero

; or, in

other words, the sum of the J-s on one side of the di-

ameter is equal to the sum of the JLs on the other side.

Prop. 4.—If a regular polygon ofn sides he inscribed

in a circle^ whose radius is R, and if^ be any point whose
distance from the centre of the circle is R', then the sum

of the squares of all the lines from P to the angular points

of the polygon is equal to n (R^ + R'^).
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Dem.—Let be the centre of tlie O, then is the

mean centre of the angular points ;
hence (II., 10) the

sum of the squares of the lines drawn from P to the

angular points exceeds the sum of the squares of the

lines drawn from by wOP^, that is by wE'^
;
but all

the lines drawn from to the angular points are equal
to one another, each being the radius. Hence the

sum of their squares is nW. Hence the Proposition
is proved.

Cor. 1.—If the point P be in the circumference of

the 0, we have the following theorem :
—The sum of

the squares of the lines drawn from any 'point in the cir-

cumference of a circle to the angular points of an inscribed

polj/cfon is equal to 2nlEi^.

The following is an independent proof of this theo-

rem :
—It is seen at once, if we denote the J-s from the

angular points on the tangent at P byjpi, p2f &c., that

2E . i?2
= BP2

;

2E . i?3
= CP2, &c.

Hence
2E (i?i +i?2 +i?3 + &c.) = AP2 + BP2 + CP^ &c.

;

or 2E . wE = AP'^ + BP^ + CP^ &c. ;

therefore the sum of the squares of all the lines from
P = 2wE2.

Cor. 2.—The sum of the squares of all the lines of

connexion of the angular points of a regular poly-

gon of n sides, inscribed in a O whose ra^us is E, is

n'E2.

This follows from supposing the point P to coincide

with each angular point in succession, and adding all

the results, and taking half, because each line occurs

twice.

Prop. 5.—T/'O he the point of intersection ofthe three

perpendiculars AD, BE, CP of a triangle ABC, and if

G, H, I be the middle points of the sides of the triangle,

and K, L, M. the middle points of the lines OA, OB, OC ;

then the nine points D, E, P ; G, H, I
; K, L, M, are in

the circumference of a circle.
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Dem.—Join HK, HGr, IK, IG
; then, because AO is

bisected in K, and AC in H, HK is
||
to CO. In like

manner, HG is
||
to AB. Hence the Z GHK is eqnal

to theZ between CO andAB
;

.-. it is a rightZ; conse-

quently, the O described on GK as diameter passes

through H. In like manner, it passes through I
;
and

since the Z KDG is right, it passes through D ;
.*. the

circle through the three points G, H, I, passes through
the two points D, K. In like manner, it may be

proved that it passes through the pairs of points E, L ;

P, M. Hence it passes through the nine points.

Dep.—The circle through the middle points of the sides

of a triangle is called, on account of the property/ we ha/ve

just proved,
'' The Nine-points Circle of the Triangle^

Prop. 6.—To draw the fourth common tangent to the

two escribed circles ofa plane triangle, which touch the base

produced, without describing those circles.

Con.—Prom B, one of the extremities of the base,

let fall a JL BG on the external bisector AI of the

vertical Z of the A ABC
; produce BG and AI to meet

the sides CA, CB of the A in the points H and I
;
then

the line joining the points H and I is the fourth com-
mon tangent.
Dem.—The A s BGA, HGA have the side AG com-

mon, and the Zs adjacent to this side in the two As
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equal each to each
;
hence AH = AB. Again the As

ASI, ABI have the sides AH, AI and the included Z
in the one equal to the two sides AB, AI and the in-

cluded Z in the other; .-. the Z HIA = BIA.

!N"ow, bisect the Z ABI by the line BO, and it is

evident, by letting fall J_s on the four sides of tlie

quadrilateral ABIHfrom the point 0, that the four _Ls

are equal to one another. Hence the O, having as

centre, and any of these J-s as radius, will be inscribed

in the quadrilateral ;
.*. HI is a tangent to the escribed

O, which touches AB externally. In like manner, it

may be proved that HI touches the escribed O, which
touches AC externally. Hence HI is the fourth com-
mon tangent to these two circles.

Cor. 1.—If D be the middle point of the base BC^
the O, whose centre is D and whose radius is DGr, is

orthogonal to the two escribed Os which touch BC
produced.

For, let P be the point of contact of the escribed O,
which touches AB externally, then

PD = CP - CD = i(«+ 3 + c)
- i«= i^(^ + <?) ;

and since BH is bisected in G, and BC in D,

DG = ^CH = i(AB + AC) = ^(3 + t?) ;

therefore the.©, whose centre is D and radius DG, will

cut orthogonally the O which touches at P.
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Cor. 2.—Let DG cut AB in M, and HI in K, and
from A let fall the Jl AL, then the quadrilateral
LMKI is inscribed in a circle.

Tor, since the Z s ALB, AGB are right, ALBG is

a quadrilateral in a O, and M is the centre of the
;

.-. ML = MB, and Z MLB = MBL. Again, Z MKI
= AHI = ABI

;
.-. MKI + MLI = ABI + MBL = two

right Z s. Hence MKIL is a quadrilateral inscribed

in a circle.

Prop. 7.—The ^'
Nine-points Circle'*'' is the inverse of

the fourth common tangent to the two escriled circles which

touch the base produced, with respect to the circle whose

centre is at the middle point of the hase, and which cuts

these circles orthogonally.

Dem.—The Z DML (see fig., last Prop.) = twice
DGL (III. XX.) ;

and the Z HIL = twice AIL
;
but

DML = HIL, since MKIL is a quadrilateral in a O ;

.*. the Z DGL = GIL. Hence, if a be described

about the A GIL it will touch the line GD (III. xxxii.) ;

.*. HL . DI = DG^
;

.*. the point Lis the inverse of the

point I, with respect to the whose centre is D and
radius DG. Again, since MKIL is a quadrilateral in a

0, DM . DK =DL . DI, and, .-. = DG^. Hence the pointM is the inverse of K, and .*. the described through
the points DLM is the inverse of the line HI (III. 20) ;

that is, the *'Mne-points Circle" is the inverse of the
fourth common tangent, with respect to the whose
oentre is the middle point of the base, and whose radius

is equal to half the sum of the two remaining sides.

Cor. 1 .
—In like manner, it may be proved that the

"
ITine-points Circle

"
is the inverse of the fourth com-

mon tangent to the inscribed and the escribed 0,
which touches.the base externally, with respect to the

whose centre is the middle point of the base, and
whose radius is = to half the difference of the remain-

ing sides.

Cor. 2.—The *'Mne-points Circle" touches the in-

«cribed and the escribed circles of the triangle.

Por, since it is the inverse of the fojirth common
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tangent to the two escribed Os which touch the base

produced, with respect to the O whose centre is D,
and which cuts these Os orthogonally ;

if we join D to

the points of contact of the fourth common tangent,
the points where the joining lines meet these Os again
will be the inverses of the points of contact. Hence

they will be common both to the "
Mne-points Circle

"

and the escribed Os; .'.the *'

Nine-points Circle"

touches these escribed Os in these points ;
and in a

similar way the points of contact with the inscribed O
and the escribed O which touch the base externally

may be found.

Cor. 3.—Since the "Mne-points Circle" of a plane
A is also the "Nine-points Circle" of each of the

three As into which it is divided by the lines drawn
from the intersection of its ±s to the angular points,
we see that the "

Nine-points Circle" touches also the

inscribed and escribed circles of each of these triangles.

Prop. 8.—The following Propositions, in connexion
with the circle described about a triangle, are very im-

portant :
—

(1). The lines whichjoin the extremities of the diametery

lohich is perpendicular to the lase of a triangle, to the ver-

tical angle, are the internal and external bisectors of the

vertical angle.

Bern.—Let DE be the diameter ± to BC. Join AD^
AE. Produce AE to meet CB in I. Now, from the

construction, we have the arc CD = the arc BD. Hence
theZ CAD = DAB

;
. *. AD is the internal bisector of the

Z CAB. Again, since DE is the diameter of the O,
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the Z DAE is right; .-. the Z DAE = DAH; and
from these, taking away the equal Z s CAD, DAB, we
have the Z CAE = BAH

;
.-. JAH = BAH. Hence

AH is the external bisector.

(2). Iffrom D a perpendicular he let fall on AC, the

segments AG, GC into which it divides AC are respectively
the half sum and the half difference of the sides AB, AC.

Dem.—Join CD, GE. Draw EH
1|
to AC. Since the

Zs CGD, CED are right, the figure CGED is a qua-
drilateral in a O. Hence the Z AGE = CDE
(III., xxii.)

= CAE (III., xxi.) ;
.-. GE is

||
to AE.

Hence AHEG is a c=]
;
and AG = EH = ^^ sum of AB,

AC (I., 11, Cor. 1). Again, GC = AC - AG = AC
- ^(AB + AC) = i(AC - AB).

(3). Iffrom E a perpendicular EG' he drawn ^o AC,
CG' and AG' are respectively the half sum and the half

difference of KG, AB.
This may be proved like the last.

(4). Through A draw AL perpendicular to DE. TJie

rectangle DL . EE is equal to the square of half the sum of
the sides AC, AB.

Dem.—The As ALD, EEI have evidently the Zs
at D and I equal, and the right Zs at L and E arc;

equal. Hence the As are equiangular; .*. DL . EE
= AL . EI =EK . EI = the square of half the sum of the

sides (Prop. 7).

(5). In like manner it may be proved that EL . ED
is equal to the square of half the difference of AC, AB.

Prop. 9.—Jfa, h, c denote, as in Prop. 1, the lengths

of the sides of the triangle ABC, then

the centre of the inscriled circle will

he the centre of mean position of its

angular points for the system of mul-

tiples a, h, c.

Dem.—Let be the centre of

the inscribed O. Join CO; and on
CO produced let fall the ±s AL,
BM. l^ow, the A s ACL, BCM have the ZACL = BCM

;
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and the Z ALC = BMC. Hence they are equiangular

therefore BC . AL = AC . BM
; (III. 9)

or « . AL = 5 . BM. (a)

iN'ow, if we introduce the signs + and -, since the ±s
AL, BM fall on different sides of CL, they must be
affected with contrary signs ;

.*. the equation (a) ex-

presses that a times the -L from A on CO + J times the
-L from B on CO =

;
and since the X from C on CO

is evidently = 0, 'we have the sum of a times per-

pendicular from A
;

h times perpendicular from B
;

c times perpendicular from C, on the line CO = 0.

Hence the line CO passes through the centre of mean
position for the system of multiples a, I, c. In like

manner, AO passes through the centre of mean posi-
tion. And since a point which lies on each of two
lines must be their point of intersection, must be
the centre of mean position for the system of multiples
a, h, e.

Cor. I,—Li 0', 0", 0'''be the centres of the escribed

s, 0' is the centre of mean position for the system of

multiples -
a, +h, + e; 0" for the system + «,

-
J, + c ;

•

and 0'" for the system + a, + h, ^o.
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SECTION II.

EXEECISES,

1 . The square of the side of an eqtiilateral A inscribed in a G>

equal three times the square of the radius.

2. The square described about a O equal twice the inscribed

square.

3. The inscribed hexagon equal twice the inscribed equi-
lateral triangle.

4. In the construction of IV., x., if P be the second point in

which the O ACD intersects the O BDE, and if we
join AF, DP,

the A ADP has each of its base L s double the vertical L . The
same property holds for the As ACP, BCD.

5. The square of the side of a hexagon inscribed in a 0, together
with the square of the side of a decagon, is equal to the square of

the side of a pentagon.

6. Any diagonal of a pentagon is divided by a consecutive

diagonal into two parts, such that the rectangle contained by the
whole and one part is equal to the square of the other part.

7. Divide an L of an equilateral A into five equal parts.

8. Inscribe a O in a given sector of a circle.

9. The locus of the centre of the O inscribed in a A, whose
base and vertical L are given, is a circle.

10. If tangents be drawn to a O at the angular points of an
inscribed regular polygon of any number of sides, they will form
a circumscribed regular polygon.

1 1 . The Hne joining the centres of the inscribed and circum-
scribed Os subtends at any of the angular points of a A an Z,

equal to half the difference of the remaining angles.

12. Inscribe an equilateral A in a given square.

13. The six lines of connexion of the centres of the inscribed,-*

and escribed Os of a plane A are bisected by the circumference ^

of the circumscribed circle.

14. Describe a regular octagon in a given square.

15. A regular polygon of any number of sides has one O in-

scribed in it, and another circumscribed about it, and the two Os
are concentric.
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16. If 0, 0', 0", 0'", be the centres of the inscribed and
ascribed Os of a plane A, then is the mean centre of the points

0', 0", 0'", for the system of multiples («
—

a), {s
—

b), {s
—

c).

17. In the same case, 0' is the mean centre of the points

O, 0", 0"', for the system of multiples s, s — b, s - Cf and cor-

responding properties hold for the points 0", 0'" .

18. If r be the radius of the O inscribed in a A
,
and pi, paths

radii of two Os touching the circumscribed O, and also touching
each other at the centre of the inscribed O ;

then

?-i i
r pi p2

19. If r, n, rz, rs be the radii of the inscribed and escribed 03
of a plane A ,

and R the radius of the circumscribed O ; then

ri+r2 + r3 — r = 4R.

20. In the same case,

r n n rs

21. In a given O inscribe a A , so that two of its sides may
pass through given points, and that the third side may be a
maximiim.

22. What theorem analogous to 18 holds for escribed 0s ?

23. Draw from the vertical L of an obtuse-angled A a line

to a point in the base, such that its square will be equal to the

rectangle contained by the segments of the base.

24. If the line AD, bisecting the vertical L A of the A ABC,
meets the base BC in D, and the circumscribed in E, then the

line CE is a tangent to the described about the A ADC.

25. The sum of the squares of the Is from the angular points
of a regular polygon inscribed in a upon any diameter of the

O is equal to half n times the square of the radius.

26. Given the base and vertical Z. of a A, find the locus of

the centre of the which passes through the centres of the thre<?

escribed circles.

27. If a touch the arcs AC, BC, and the line AB in the

construction of Euclid (I. i.), prove its radius equal to f of AB.

28. Given the base and the vertical Z. of a A
,
find the locus

of the centre of its
**
Nine-point Circle."

P
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29. If from any point in the circumference of a O Is be let

fall on the sides of a circumscribed regular polygon, the sum.
of their squares is equal to f w times the square of the radius.

30. The internal and external bisectors of the Z. s of the A y

formed by joining the middle points of the sides of another A ,

•are the six radical axes of the inscribed and escribed Os of the

latter.

31. The O described about a A touches the sixteen circles in-

scribed and escribed to the four As formed by joining the centres

of the inscribed and escribed circles of the original triangle.

32. If 0, 0' have the same meaning as in question 16, ihen

AO . AO' = AB . AC.

34. Given the base and the vertical Z. of a A, find the locus

of the centre of a O passing through the centre of the inscribed

circle, and the centres of any two escribed cii'cles.
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SECTION" I.

Additional Peopositions.

Prop. 1.—If two triangles ha/ve a common base, hut

different vertices, they are to one another as the segments
into which the line joining the A
vertices is divided ly the common
hase or base produced.

Let the two As be AOB, AOC,
^

having the base AO common;
let AO cut the line BC, joining
the vertices in A'

;
then

AOB : AOC : :

Dem.—TheAABA' : ACA' : :

and OBA' : OCA' : :

therefore

ABA' - OBA' : ACA' - OCA' : : BA' : A'C
;

or AOB : AOC : : BA' : A'C.

Prop. 2.—Ifthree concurrent lines AO, BO, CO, drawn

from the angular points of a triangle, meet the opposite

sides in the points A!, B', C, the product of the three

ratios

BA' CB' AC .
.,

rc' ba:' c^^^^^^^y-
p2
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Dem.—From the last Proposition, we have

EA^ _ AOB
A'C~AOC'

CB' BOC^
B'A" BOA'

AC' AOC
C'B

"
BOO*

Hence, multiplying out, we get the product equal to

unity.
Cor. This may be written

AB' . BC . CA' = A'B . B'C . C'A.

The symmetry of this expression is apparent. Ex-

pressed in words, it gives the product of three alter-

nate segments of the sides equal to the product of the

three remaining segments.

Prop. 3.—If two parallel lines he intersected hy three

coneurrent transversals, the segments intercepted hy the

transversals on the parallels are ^

Let the I|s be AB, A'B', and the

transversals CA, CD, CB
;
then

AD : DB : : A'D' : D'B'.

Dem. — The triangles ADC, a
A'D'C are equiangular ;

therefore AD : DC : : A'D' : D'C.

In like manner, DC : DB : : D'C : D'B' ;

therefore exaequali AD : DB : : A'D' : D'B'.

Cor.—If from the points D, D' we draw two ±s
BE, D'E' to AC, and two ±s DF, D'F' to BC ; then

DE : DF : : D'E' : D'F'.
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Prop. 4.—If the sides ofa triangle ABC he cut hy any
transversal^ in the 'points A', B', C ;

then the product of
the three ratios

AB^ BC' CA'

B'C
'

C^A' A?B

W ec[ual to unity.

Dem. — Erom the

points A, B, C let fall

the ±8 /,y,yon the

transversal
; then, by si-

p' p" p'"
milar As the three ratios are respectively

= ^, ^^ ^^
and the product of these is evidently equal unity.
Hence the proposition is proved.
Observation.—If we introduce the signs plus and minus,

in this Proposition, it is evident that one of the three ratios must
be negative. And when the transversal cuts all the sides of the

triangle exjGmaUy, all three will be negative. Hence their

product will, in all cases, be equal to negative unity.

Cor. 1.—If A', B', C be three points on the sides of

a triangle, either all external,^ or two internal and one

external, such that the product of the three ratios

^ BC' CA/

B'C C'A' A'B

is equal to negative unity, then the three points are col-

linear.

Cor. 2.—The three external bisectors of the angles
of a triangle meet the sides in three points, which are

coUinear.

For, let the meeting points be A', B^ C, and we
have the ratios

BA' CB' AC ., ,. BA CB AC
TC' m^ cB'-*°*^^''^*'°'aC» BA* CB'

respectively ; and, therefore, their produce is unity.

Prop. 5.—In any triangle^ the rectangle contained hy
two sides is equal to the rectangle contained hy theperpen-
dicular on the third side and the diameter of the circum-

scrihed circle.
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Let ABC be the A, AD the ±, AE the diameter of
the

;
then AB . AC = AE . AD.

Dem.—Since AE is the diameter,
the Z ABE is right, and ADC is

right ; .-. ABE = ADC
;
and AEB

= ACD (III., xxi.) ;
therefore the

As ABE and ADC are equiangular ;

and AB : AE : : AD : AC (iv.).
Hence AB . AC = AE . AD.

Cor.—If a, bf c denote the three

sides of a triangle, andE the radius of the circumscribed

circle, then the area of the triangle = --^.

For, let AD be denoted by p, we have (5)

2pE = ho;

therefore 2apli = ahc,

op abo

that is, area of triangle = —=:.

Prop. 6.—If a figure of any even number of sides be

inscribed in a circle^ the continued product of the perpen-
diculars letfallfrom any point
in the circumference on the odd
sides is equal to the continued

product of the perpendiculars
on the even sides.

"We shall prove this Pro-

position for the case of a

hexagon, and then it will

be evident that the proof is

general.
Let ABCDEF be the hexa-

gon, the point, and let the Xs' from on the lines

AB, BC . . . FA, be denoted by a, /?, y, 8, c, ;
let D

denote the diameter of the O, and let the lengths of
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the six lines OA, OB ... OF be denoted by ?, m, n, p,

^, r ; then we have Da = Im
; Dy = np ;

!>€ = qr;

therefore D^ayc = Imnpqr.
In like manner, D^jS8<^ = Imtipqr ;

therefore aye =
^S</.. (Q.E.D.)

Cor. 1.—The six points A, B, C, D, E, E may be
taken in any order of sequence, and the Proposition
will hold

; or, in other words, if we draw all the

diagonals of the hexagon, and take any three lines,

fiuch as AC, BD, EE, which terminate in the six points

A, B, C, D, E, E, then the continuous product of the

-Ls on them will be equal to the continuous product of

the JLs on any other three lines also terminating in the

six points.
Cor. 2.—When the figure inscribed in the circle con-

tains only four sides, this Proposition is the theorem

proved (III., 11.)
Cor. 3.—If we suppose two of the angular points to

l)ecome infinitely near; then the line joining these

points, if produced, will become a tangent to the circle,

and we shall in this way have a theorem that will be
true for a polygon of an odd number of sides.

Cor. 4.—If perpendiculars be let fall from any point
in the circumference of a circle on the sides of an in-

scribed triangle, their continued product is equal to the

continued product of the perpendiculars from the same

point on the tangents to the circle at the angular points.

Prop. 7.— Given, in magnitude and position, the base

BO ofa triangle and the

ratio BA : AC of the

sides, it is required to

find the locus of its

vertex A.
Bisect the internal

and the external verti-

cal angles by the lines

AD, AE. Now, BA :

AC:: BD:DC(III.);
but the ratio BA : AC is given (Hyp.) ;

therefore the
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ratio BD : DC is given, and EC is given (Hyp.) ;
.. the

point D is given. In like manner the point E is given.

Again, the angle DAE is evidently equal half the sum
of the angles BAC, CAF. Hence DAE is right, and the
circle described on the line DE as diameter will pass
through A, and will be the required locus.

Cor. 1 .
—The circle described about the triangle ABC

will cut the circle DAE orthogonally.

For, let be the centre of the O DAE. Join AO ;

then the angle DAO = ADO, that is, DAC + CAO
= BAD + ABO

;
but BAD = DAC

;
.-. CAO = ABO

;

.'. AO touches the O described about the A BAC.
Hence the Os cut orthogonally.

Cor. 2.—Any circle passing through the points B, C,
is cut orthogonally by the circle DAE.

Cor. 3.—If we consider each side of the triangle as

base in succession, the three circles which are the loci

of the vertices have two points common.

Prop. 8.—If through 0, the intersection of the diago-
nals ofa quadrilateral ABCD,
a line OH be drawn parallel
to one of the sides AB, meeting
the opposite side CD in G, and
the third diagonal in H, OH
is bisected in Gr.

Dam.—Produce HO to

meet AD in I, and let it

meet BC in J.

Now IJ : JH : : AB : BF,

and OJ : JO : : AB : BF
(Prop. 3.)

therefore 10

but AB

GH
BF

AB

10

BF

OG OG = GH.

Cor.—GO is a mean proportional between GJ and

GI.

Prop. 9.—If a triangle given in species have one angu^
lor point fixed, and if a second angular point moves along
a given line, the third will also move along a given line.
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Let ABC be the A which is given in species; let

the point A be fixed
;
the point B move along a given

line BD : it is required to find the
locus of C.

From A let fall the ± AD on
BD

;
on AD describe a A ADE

equiangular to the A ABC
;
then

the A ADE is given in position ;

.-. E is a given point. Join EC.

N'ow, since the As ADE, ABC
are equiangular, we have

therefore

AD: AE:: AB: AC;
AD : AB : : AE : AC :

and the angle DAB is evidently = EAC. Hence the A s^

DAB, EAC are equiangular ;
.*. the angle ADB = AEC.

Hence the angle AEC is right, and the line EC is given
in position ;

.*. the locus of C is a right line.

Cor.—By an obvious modification of the foregoing
demonstration we can prove the following theorem:—
If a A be given in species, and have one angular point

given in position ;
then if a second angular point move

along a given O, the locus of the third angular point
is a circle.

Prop. 10.—If le the centre of the inscribed circle of
the triangle ABC, then AC^ : AB . AC : : s - a: s.

Dem.—Let O'bethe centre

of the escribed touching
BC externally; let fall the

XsOD, O'E. Join OB, OC,
O'B, O'C. Kow, the Zs
O'BO, O'CO are evidently

right Zs; .-. OBO'C is a

quadrilateral inscribed in a

circle, and Z BO'O = BCO
= ACQ ;

and BAG' = OAC.
Hence the triangles O'BA and
COA are equiangular; .•. O'A:

BA : : AC : AO
; /. O'A . OA = AB . AC. Hence
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€A2 : AB . AC : : 0A2 : O'A. OA : : OA : O'A : : AD
AE

;
but AD = « - a, and AE = s

;

therefore OA^ : AB . AC : : (s
-

«) : *.

0A2 0B2 0C2
Cor. 1.—

ic
1.

Por

6;«
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Again, the As DEB, PCF are equiangular ; be-

cause the angles DEB and PCE are equal, being in the
same segment, and the angles DBE and PEC are right.
Hence DE : DB : : CP : PE (iv.) ;

.-. DE . PE = DB . PC
= DP.PC.

l^ow, since the triangle OCD is isosceles, DP
= OC2-OP2(IL,i.);
therefore DE . PE = OC^ - OP^

;

that is, 2Iir = H^ - S"
;

PC

therefore H 1.
S It + 8

Cor. 1 .
—If r'j r", r'" denote the radii of the escribed

s, and 8', 8", 8"' the distances of their centres from
the centre of the circumscribed O, we get in like

manner

R-h'^ RTE'
" "

^' *'^-

Cor. 2.—If O'T', 0"T", 0"'T" be the tangents from
the points 0', 0", 0"' to the circumscribed O ;

then

^Rr' = 0'T'\ &c.

Cor. 3.—If through we describe a 0, touching
the circumscribed O,
and touching the dia-

meter of it, which

passes through P, this

will be equal to the
inscribed O ;

and simi-

lar Propositions hold
for circles passing

through the points 0',

0", 0'".

Prop. 12.— If two

triangles he such that the

linesjoining correspond-

ing vertices are concv/r-

rent, then the points of
intersection of the corresponding sides are collinear.
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Let ABC, A'B'C be the two As, having the lines

joining their corresponding vertices meeting in a

point : it is required to prove that the three points
X, Y, Z, which are the intersections of corresponding
sides, are collinear.

Dem.—From A, B, C let fall three pairs of J_s on
the sides of the A A'B'C

;
and from let fall three ±s

'p', p", p'" on the sides B'C, C'A', A'B'.

Kow we have, from Cor.f Prop. 3,

^^p^ BQ^^y CE_y'
AP'

"
p"

'

BU'
"
p"" CR'

~
y

•

Hence the product of the ratios,

AP BQ CR
AF' BQ" CE/

=
^^'*y-

Again we have, independent of sign, (I^O

AZAP BXBQ CYCR
ZB

~
BQ" XC

"
CE" AY

"
A?"''

Hence the product of the three ratios

AZ BX CY
ZB' XC YA

is equal to the product of the three ratios

AP BQ CR
^

BQ" CR" AF '

and, therefore, equal to unity. Hence, by Cor.y Prop. 4,

the points X, Y, Z are collinear.

Cor.—If two As be such that the points of inter-

section of corresponding sides are collinear, then tBe

lines joining corres|)onding vertices are concurrent.
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)l)servation.—Triangles whose corresponding vertices lie on
concurrent lines have received different names from geometers,
Salmon and Poncelet call such triangles homologous. These
writers call the point the centre of homology ; and the line XYZ
the axis of homology. Townsend and Clebsch call them tri-

angles in perspective ; and the point 0, and the line XYZ the
centre and the axis of perspective.

TvoTp. 13.— TFTien three triangles are two hy two in

perspective, and have the same axis of perspective^ their

three centres of perspective are collinear.

Let ale, a'Vc', a!'l"c"\>Q the three As whose corre-

sponding sides are concurrent in the collinear points

A, B, C. Now let US consider the two As ada", Ih'h",

formed by joining the corresponding vertices a, a', a",

h, b'f h", and we see that the lines ah, olV
,
a"h" joining

corresponding vertices are concurrent, their centre of

perspective being C. Hence the intersections of their

corresponding sides are collinear
;
but the intersections

of the corresponding sides of these A s are the centres

of perspective of the As ale, a'l'c', a"l"c". Hence the

Proposition is proved.

Cor.—The three As aa'a", ll'l", cc'c" have the same
axis of perspective ;

and their centres of perspective
are the points A, B, C. Hence the centres of perspec-
tive of this triad of As lie on the axis^of perspective
of the system ale, a'l'dy a"l"c", and conversely.



78 A SEQUEL TO EUCLID.

Prop. 14.— TFTien three triangles which are two hi/ two

in perspective have the same centre of homologyy
their thre&

axes of homology are concurrent.

Jjet ahc, a'Vdy a"l"c" be three As, having the point
as a common centre of perspective. iN'ow, let us

consider the two As formed by the two systems of

lines ah, a'h\ d'h"
\
and ac, a'c\ a"c"

; these two As are

in perspective, the line Oaa'a" being their axis of

perspective. Hence the line joining their correspond-
ing vertices are concurrent, which proves the Pro-

position.
Cor.—The two systems of As, viz., that formed by

the lines ah, ah', a"h"
; he, h'c'

,
h"c"

; ca, c'a', c^'a"; and
the system ahc, a' h'c', a"h"c", have corresponding pro-

perties
—

namely, the three axes of perspective of either

system meet in the centre of perspective of the other

system.

Prop. 15.—We shall conclude this section with the

solution of a few Problems :
—
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The method of construction derived from this ana-

lysis is evident.

Cor.—If the base, the perpendicular, and the diffe-

rence of the sides be given, a slight modification of the

foregoing analysis will give the solution.

(3). Given the lase of a triangle, the vertical angle^
and

the bisector of the vertical angle, to construct the triangle.

Analysis.—Let ABC be the required A ,
and let the

base AB be given in position ; then, since AB is given
in position and magnitude, and the Z ACB is given in

magnitude, the circumscribed©
is given in position. Let CD,
the bisector of the vertical Z

,

meet the circumscribed O in E,
then E is a given point. Hence
EB is given in magnitude.

JSTow ED . EC = EB2 (III.,

20, Cor. 2); .*. the rectangle
ED . EC is given, and CD is

given (Hyp.). Henee ED, EC
are each given, and the O described from E as centre,
with EC as radius, is given in position. Hence the point
C is given, and the method of construction is evident.

Cor.—Erom the foregoing we may infer the method
of solving the Problem : Given the base, vertical angle,
and external bisector of the vertical angle.

(4). Given the base of a triangle, the difference of the

lase angles, and the difference of
the sides, to construct it.

Analysis.—Let ABC be the

required A
;

then the rect-

angle EF . GD = the square of

half the difference of the sides

(IV., 8); .-. EF . GD is given ;

and EF . FD = FB^ is given.
Hence the ratio of EF . GD
: EF . FD is given. Hence
the ratio of FD : GD is given.

Again, the Z CED = haU the difference of the baseZ s,
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and is given; and DCE is a right Z ;
.*. A DCE is

given in species, and CGD is equiangular to DCE
;

.-. CGD is given in species; .*. the ratios of GD : DC
and of DC : DE are given. Hence the ratio of FD : DE
is given ;

therefore the ratio of DE : FE is given, and

their rectangle is given. Hence DF and FE are each

given. Hence the Proposition is solved.

Cor.—In a like manner we may solve the Prohlem :

Given the base, the difference of the base angles, and

the sum of the sides to construct the triangle.

(5). To construct a quadrilateral ofgiven species whose

four sides shall pass through four given points.

Analysis.
—Let ABCD be the required quadrilateral,

P, Q, R, S the four given points. Let E, F be the ex-

tremities of the third diagonal. Kow, let us consider

the A ADF
;

it is evidently given in species, and PQR
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is an inscribed triangle given in species. Hence, if M
"be the point of intersection of circles described about
the As PAQ, QDE, the A MAD is given in species.

—
See Demonstration of (III., 17).

In like manner, if N be the point of intersection of

the Os about the As QAP, PBS, the A ABN is given
in species. Hence the ratios AM : AD and AN : AB
are given ;

but the ratio of AB to AD is given, because

the figure ABCD is given in species. Hence the ratio

of AM : AN is given ;
and M, N are given points ;

therefore the locus of A is a circle (7) ;
and where this

circle intersects the circle PAQ, is a given point. Hence
A is given.

Cor.—A suitable modification of the foregoing, and

making use of (III., 16), will enable us to solve the

cognate Problem—To describe a quadrilateral of given

species whose four vertices shall be on four given
lines.

(6). Given the hase of a triangle, the difference of the

lase angles, and the rectangle of the sides, construct it.

(7). Given the base of a triangle, the vertical angle, and
the ratio of the sum of the sides to the altitude : construct

it.

SECTION II.

Centres op Similitude.

Def.—// the line joining the centres of two circles he

divided internally and externally in the ratio of the radii

of the circles, the points of division are called, respectively,

the internal and the external centre of similitude of the

two circles.

From the Definitions it follows that the point of

contact of two circles which touch externally is an in-

ternal centre of similitude of the two circles
;
and the

point of contact of two circles, one of which touches

another internally, is an external centre of similitude.

Also, since a right line may be regarded as an infinitely
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large circle, whose centre is at infinity in the direction

perpendicular to the line, the centres of similitude of a

line and a circle are the two extremities of the diameter

of the circle which is perpendicular to the line.

Prop. 1.—The direct common tangent of two circles

jpasses through their external centre of similitude.

Dam.—Let 0, 0'

be the centres of the

0s; P, P' the points
of contact of the

common tangent ;

and let PP' and 00'

produced meet in T
;

then, by similar As,

OT : O'T : : OP : O'F.

Hence the line 00' is divided externally in T in the

ratio of the radii of the circles
;
and therefore T is the

external centre of similitude.

Cor. 1.—It may be proved, in like manner, that the

transverse common tangent passes through the internal

centre of similitude.

Cor. 2.—The line joining the extremities of parallel
radii of two Os passes through their external centre of

similitude, if they are turned in the same direction
;

and through their internal centre, if they are turned
in opposite directions.

Cor. 3.—The two radii of one O drawn to its points
of intersection, with any line passing through either

centre of similitude, are respectively ||
to the two

radii of the other O drawn to its intersections with
the same line.

Cor. 4.—All lines passing through a centre of

similitude of two Os are cut in the same ratio by
the Os.

Prop. 2.—Ifthrough a centre ofsimilitude of two circles

we draw a secant cutting one of them in the points R, 11',

Mnd the other in the corresponding points S, S'; then

q2
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the rectangles OE . OS', OE' . OS are constant and

equal. g.

Dem,—Let a, I de-

note the radii of the /
V7^^^~~~~~^

circles
;
then we have [ K )

- ^

{Cor. 3, Prop. 2),

a: 5:: OS : OE;

therefore a : J : : OS . OS' : OE . OS';

but OS . OS' = square of the tangent from to the circle

whose radius is a, and is therefore constant. Hence,
since the three j&rst terms of the proportion are con-

stant, the fourth term is constant.

In like manner, it may be proved that OE' . OS is a

fourth proportional to a, h and OS . OS'; .-. OE' . OS
is constant.

Prop. 3.—The six centres of similitude of three circles

lie three hy three on four lines, called axes of similitude

of the circles.

Dem.—Let the radii of the Os be denoted by«, 5, c,

their centres by A, B, C
;
the external centres of simi-

litude by A', B', C, and their internal centres by
A", B", C". Now, by Definition,

AC
C'B
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Again, let us consider the system of points A ', B'',

C. "We have, as hefore,

AC
C'B
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In like manner, the line SS' passes through the
same centre of similitude. Hence the point 0, whera
these lines meet, will be the external centre of simili-

tude of X and Y; and .*. the rectangle OE, . OR'^
= OS . OS' (Prop. 2) ;

.-. tangent from to W = tan-

gent from to V, hence the radical axis of "W and V
passes through 0.

Def.—The circle on the interval, letween the centres of
similitude of two circles as diameter^ is called their circle

of similitude.

Prop. 5.—The circle of similitude of two circles is th&

locus of the vertex of a triangle whose hose is the interval

between the centres of the circles, and the ratio of the sides

that of their radii.

Dem.—"When the base and the ratio of the sides are

given, the locus of the vertex (see Prop. 7, Section I)
is the O whose diameter is the interval between the

points in which the base is divided in the given ratio

internally and externally ;
that is, in the present case,

the O of similitude.

Cor. 1.—If from any point in the O of similitude of

two given Os lines be drawn to their centres, these

lines are proportional to the radii of the two given Os.
Cor. 2.—If, from any point in the of similitude of

two given Os, pairs of tangents be drawn to both Os,
the angle between one pair is equal to the angle between
the other pair.

This follows at once from Cor. 1.

Cor. 3.—The three Os of similitude of three given
Os taken in pairs are coaxal.

For, let P, P' be the points of intersection of two-

of the Os of similitude, then it is evident that the

lines drawn from either of these points to the centres

of the three given Os are proportional to the radii of

the given Os. Hence the third O of similitude must

pass through the points P, P'. Hence the Os are

coaxal.

Cor. 4.—The centres of the three Os of similitude

of three given Os taken in pairs are coUinear.
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SECTIOIS" III.

Theoet op Haemonic Section",

Def. — If a line AB he divided internally in the

point 0, and ex- ^ o c b d
in the

point D, SO that the ratio AC : C%*= - ratio AD : d!b
;

the points C and D are called harmonic conjugates to

the points A, B.

Since the segments AC, CB are measured in the same

direction, the ratio AC : CB is positive ;
and AD, DB

being measured in opposite directions, their ratio is

negative. This explains why we say AC : CB = - AD
: DB. We shall, however, usually omit the sign minus,
unless when there is special reason for retaining it.

Cor.—The centres of similitude of two given circles

are harmonic conjugates, with respect to their centres.

Prop. 1.—If C and D he harmonic conjugates to A and

B, and {/"AB he hisected in 0, then OB is a geometric
mean hetween OC and OD.

Dem.— AC : CB : : AD : DB
;

AC-CB AC + CB AD-DB AD + DB
2

•

2
•• ~"

2
•

2
*

or OC : OB : : OB : OD.

Hence OB is a geometric mean between OC and OD.

Prop. 2.—If C and D he harmonic conjugates to A and

B, the circles descrihed on AB and CD as diameters inter-

sect each other orthogonally. ^ -^p
Dem.—Let the Os inter-

sect in P, bisect AB in 0; a(
o^

fc J
B

jq

join OP; then, by Prop. 2,

we have OC . OD = OB^ = 0P-.

Hence OP is a tangent to the

circle CPD, and therefore the Os cut orthogonally.



88 A SEQUEL TO EUCLID.

Cor. 1.—Any O passing through the points C and
D will he cut orthogonally hy the O described on AB
as diameter.

Cor. 2.—The points C and D are inverse points with

respect to the © described on AB as diameter.

Def.—If C and D he harmonic conjugates to A and B,
AB is called a harmonic mean between AC and AD.

Observation.—This coincides with the the algebraic Defini-

tion of harmonic mean.

For AC, AB, AD being three magnitudes, we have

AC: CB :: AD :BD;
therefore AC : AD : : CB : BD

;

that is, the Ist is to the 3rd as the difference between
the 1st and 2nd is to the difference between the 2nd
and 3rd, which is the algebraic Definition.

Cor.—In the same way it can be seen that DC is a

harmonic mean between DA and DB.

Prop. 3.—The Arithmetic mean is to the Geometric

mean as the Geometric mean is to the Sarmonic mean.

Dem.—Upon AB as diameter describe a
;
erect

EF at right angles to AB through C
;
draw tangents to

the O at E, E, meeting in D
;

then, since the A OED is right-

angled at E, and EC is -L to

01), we have OC . OD = OE^
= 0B2. Hence, by Prop. 1, C
and D are harmonic conjugates
to A and B. Again, from the

same A, we have OD : DE : : DE : DC; but OD =

^ (DA + DB) = arithmetic mean between DA and DB
;

and DE is the geometric mean and DC the harmonic

mean between DA and DB.

Cor.—The reciprocals of the three magnitudes DA,
DO, DB are respectively DB, DC, DA, with respect to

DE^
J
but DA, DO, DB are in arithmetical progression.
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Hence the reciprocals of lines in arithmetical progression
are in harmonical progression.

Prop. 4.—Any line cutting a circle, andpassing through
afixed point, is cut harmonically hy the circle, the pointy
and the pola/r of the point.

Let D be the point, EE its polar, DGH a line cut-

ting the in the points G and H, and the polar of D
in the point J; then the

points J, D will be har-

monic conjugates to H and
G.

Dem.—Let be the cen-

tre of the O ;
from let

fall the ± OK on HD; then,
since K and C are right Z s,

OKJC is a quadrilateral in a

O; .•.OD.DC=KD.DJ;butOD.DC=DE2; .-. KD.DJ
= DE2. Hence KD : DE : : DE : DJ

;
and since KD,

DE are respectively the arithmetic mean and the

geometric mean between DG and DH, DJ (Prop. 3.)

will be the harmonic mean between DG and DH.

The following is the proof usually given of this

Proposition :—Join OH, OG, CH, CG. Now OD . DC
= DE2 = DH . DG; .-. the quadrilateral HOGG is in-

scribed in a ; .-. the angle OCH = OGH
;
and DCG

= OHD
;
but OGH = OHD

;
.-. OCH = DCG. Hence

HCJ = GCJ
;
hence CJ and CD are the internal and

external bisectors of the vertical angle GCH of the

triangle GCH ;
therefore the points J and D are har-

monic conjugates to the points H and G. Q. E. D.

Cor. 1.— If through a fixed point D any line be

drawn cutting the in the points G and H, and if

DJ be a harmonic mean between DG and DH, the

locus of J is the polar of D.

Cor. 2.—In the same case, if DK be the arithmetic

mean between DG and DH, the locus of K is a 0,
namely, the described on OD as diameter, for the

/L OKD is right.
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Prop. 6.—If ABC le a triangle, CE a line through
the vertex parallel to the lase AB

;
then any transversal

through D, the middle ofAB, will meet CE in a point, which
will le the harmonic conjugate

ofD, with respect to the points
in which it meets the sides of
the triangle.

Dem.—Erom the similar

As ECE, EAD we have
EE : ED : : CE : AD

;
but

AD = DB; .-.EE: ED::CE
:DB.

Again, from the similar

As CEG, BDG, we have
CE : DB : : EG : GD

;

therefore EE : ED : : EG : GD. Q.E.D.

Defs.—If we join the points C, D (see last diagram)^
the system of four lines CA, CD, CB, CE is called a har-

monic pencil; each of the four lines is called a ray ; the

point C is called the vertex of the pencil ; the alternate

rays CD, CE are said to le harmonic conjugates with

respect to the rays CA, CB. We shall denote such a

pencil ly the notation (C . EDGE), where C is the vertex;

CE, CD, CG, CE the rays.

Prop. 6.—If a line AB le cut harmonically in C and D,
and a harmonic pencil (0 . KQQJ)) formed ly joining th&

points A, B, C, D to any
point ; then, if through C,
a parallel to OD, the ray

conjugate to OC le drawn,

meeting A, OB in G and H,
GH will le lisected in C.

Dem.—
OD : CH : : DB : BC

;

and OD : GC : : DA : AC
;

but DB : BC : : DA : AC
;

OD : CH : ; OD : GC Hence GC = CH.
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Cor.—Any transversal A'B'C'D' cutting a harmonic^

pencil is cut harmonically.
For, through C draw G'H'

|I
to GH

; then, bjr

Prop. 3, Section I., G'C : C'H' : : GC : CH
;

.-. G'C
= C'H'. Hence A'B'C'D' is cut harmonically.

Prop. 7.—The linejoining the intersection of two oppo-
site sides of a quadrilateral with the intersection of its.

diagonals forms, with the third diagonal, a pair of rays,,
which are harmonic conjugates with these sides.

Let ABCD be the quadrila-
teral whose two sides AD, BO
meet in F

;
then the line FO,

and the third diagonal FE,
form a pair of conjugate rays
with FA and FB.
Dem.—Through draw OH

II
to AD

;
meet BC in G, and

the third diagonal in H. Then
OG = GH (Prop. 8, Section

(F . AOBE) is harmonic.

(E . AODF) is harmonic.

Prop. 8. — If four collinear points form a harmonia

system, their four polars with respect to any circle form,
a harmonic pencil.

A C B D

I.). Hence the pencil
In like manner the pencil

Let A, C, B, D bo the four points, P the polo ot
their line of coUinearity with respect to the O X ; let
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O be the centre of X. Join OA, OB, OC, OD, and let

iall the ±s PA', PB', PC, PD' on these lines; then,

by Prop. 25, Section I., Book III., PA', PB', PC, PD'
are the polars of the points A, B, C, D ;

and since the

angles at A', C, B', D' are right, the O described on OP
as diameter will pass through these points ;

and since the

system A, B, C, D is harmonic, the pencil (0 . ABCD)
is harmonic

;
but the angles between the rays OA, OB,

OC, OD are respectively equal to the angles between
the rays PA', PB', PC, PD' (III., xxi.). Hence the

pencil (P . A'B'CD') is harmonic.

Def.—Four points in a circle which connect with any
Jifth point in the circumference by four lines, forming a
harmonic pencil, are called a harmonic system of points
on the circle.

Prop. 9.—If from any point two tangents he drawn
to a circle, the points of contact and the points of intersec-

tion of any secant from the same point form a harmonic

system ofpoints.
Dem.—Let Q, be the point, QA,

QB tangents, QCD the secant
;

take any point P in the circumfe-

rence of the O, and join PA, PC,
PB, PD

; then, since AB is the

polar of Q, the points E, Q are

•harmonic conjugates to C and D
;

.-. the pencil (A . QCED) is har-

monic
;
but the pencil (P . ACBD)

is equal to the pencil (A . QCED),
for the angles between the rays of one equal the angles
between the rays of the other

;
therefore the pencil

(P . ACBD) is liarmonic. Hence A, C, B, D form a

harmonic system of points.
Cor. 1.—If four points on a O form a harmonic

system, the line joining either pair of conjugates

passes through the pole of the line joining the other

pair.
Cor. 2.—If the angular points of a quadrilateral

inscribed in a O form a harmonic system, the rectangle
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contained by one pair of opposite sides is equal to the

rectangle contained by the other pair.

Prop. 10.—If through any point two lines he drawn

cutting a circle in four points, then joining these points
both directly and transversely ; and if the direct lines meet
in P and the transverse lines meet in Q, the line PQ, will

he the polar of the point 0.

Dem.—Join OP
;
then the pencil (P . OAEB) is har-^

monic (Prop. 7); .-. the points 0, E are harmonic

conjugates to the points A, B. Hence the polar of

passes through E (Prop. 4). In like manner, the

polar of passes through E; .*. the line PQ,, which,

passes through the points E and E, is the polar of 0.

Q.E.D.
Cor. 1.—If we join the points and Q, it may be

proved in like manner that OQ is the polar of P.

Cor. 2.—Since PQ is the polar of 0, and OQ the

polar of P, then (Cor. 1, Prop. 16, Section I., Book III.)
OP is the polar of Q.

Dep.—Triangles such as OPQ, which possess the pro-

perty that each side is the polar of the opposite angula/r

point with respect to a given circle, are called self-con-

jugate triangles with respect to the circle. Again, if we
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consider the four points A, B, C, D, they are joined hy
three pairs of lines, which intersect in the three points

O, P, Qj respectively ; then, on account of the harmonic

properties of the quadrilateral ABCD and the triangle

OPQ,, Ipropose to call OPQ, the harmonic triangle of the

quadrilateral.

Prop. 11.—If a quadrilateral he inscribed in a circle,

und at its angular points four tangents he drawn, the six

joints of intersection of these four tangents lie in pairs on

the sides of the harmonic triangle of the inscribed quadri-
lateral.

Dem.—Let the tangents at A and B meet in K (see

fig., last Prop.) ;
then the polar of the point K passes

through 0. Hence the polar of passes through K ;

therefore the point K lies on PQ,. In like manner,
the tangents at C and D meet on PQ. Hence the- Pro-

position is proved.
Cor. 1.—Let the tangents at B and C meet in L, at

C and D in M, atA and D in N
;
then the quadrilateral

KLMN will have the lines KM (PQ) and LIS" (OQ) as

diagonals ;
therefore the point Q is the intersection of

its diagonals. Hence we have the following theorem :
—

If a quadrilateral he inscribed in a circle, and tangents be

drawn at its angular points, forming a circumscribed

quadrilateral, the diagonals of the tioo quadrilaterals are

concurrent, andform a harmonic pencil.

Cor. 2.—The tangents at the points B and D meet
on OP, and so do the tangents at the points A and C.

Hence the line OP is the third diagonal of the quadrila-
teral KLMN

;
and the extremities of the third diagonal

are the poles of the lines BD, AC. ^NTow, since the lines

BD, AC are harmonic conjugates to the lines QP, QO,
the poles of these four lines form a harmonic system
of points. Hence we have the following theorem :

—
If tangents he drawn at the angular points of an inscribed

quadrilateral, forming a circumscribed quadrilateral, the

third diagonals of these two quadrilaterals are coincident,

<ind the extremities of one are harmonic conjugates to

the extremities of the other.
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SECTIOIS' IV.

Theory of Inveesion.*

Def.—IfX.he a circle, its centre, P and Q, two points
on any radius, such that the rectangle OP . OQ = square

of the radius, then P and Q are called inverse points
with respect to the circle. q

If one of the points, say Q, de-

scribe any curve, a circle for in-

stance, the other point P will

describe the inverse curve.

"We have already given in Book

III., Section I., Prop. 20, the in-

Tersion of a right line; in Book lY,,
Section I., Prop. 7, one of its most important appli-
"cations. This section will give a systematic account

of this method of transformation, one of the most

elegant in Geometry.

Prop. 1.— The inverse of a circle is either a line or a

<!ircle, according as the centre of inversion is on the cir-

cumference of the circle or not on the circumference.

Dem.—We have proved the first case in Book III.
;

the second is proved as

follows :—Let Y be the

O to be inverted, the

centre of inversion
;
take

any point P in Y
; join

OP, and make OP . OQ
= constant (square of ra-

dius of inversion) ;
then

Q is the inverse of P : it is required to find the locus of

<^. Let OP produced, if necessary, meet the O Y again

* This method, one of the most important in the whole range of

Geometry, is the joint discovery of Doctors Stubbs and Ingram,
Fellows of Trinity CoUege, Dublin (see the Transactions of the

DubUn Philosophical Society, 1842). The next writer that

employed it is Sir WilHam Thomson, who by its
aid^ gave geo-

metrical proofs of some of the" most difficult propositions in the

Mathematical Theory of Electricity (see Clerk Maxwell on

-"Electricity," Vol. I., Chapter xi.).
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at It
;
then the rectangle OP . OR = square of tangent

froin (III. xxxvi.), and .-. = constant, and OP . OQ,
is constant (hyp.) ;

.'.the ratio of OP . OR : OP . OQ:
is constant : hence the ratio of OR : OQ is constant.

Let C be the centre of Y; join OC, CR, and draw QI>
II
to CR. mw OR : OQ : : C]- : QD; .-. the ratio of

CR : QD is constant, and CR is constant; .*. QD is

constant. In like manner OD is constant
;

.*. D is a

given point; .*. the locus of Q is a 0, whose centre
is the given point D, and whose radius is DQ.

Cor. 1.—The centre of inversion is the centre of

similitude of the original circle Y, and its inverse.

Cor. 2.—The circle Y, its inverse, and the circle of

inversion are coaxal. Por if the O Y he cut in any
point by the O of inversion, the O inverse to Y will

pass through that point.

Prop. 2.—If two circles^ or a line and a circle, touch

each other, their inverses will also touch each other.

Dem.—If two ©s, or a line and a O touch each other,

they have two consecutive points common
;
hence their

inverses will have two consecutive points common, and
therefore they touch each other.

Prop. 3.—If two circles, or a line and a circle, intersect

each other, their angle of intersection is equal to the angle

of intersection of their inverses.

Dem.—Let PQ, PS be

parts of two Os inter-

secting in P
;
let be the

centre of inversion. Join

OP
;
let Q and S be two

points on the ©s very
near P. Join OQ, OS, PQ,
PS

;
and let R, U, Y be

the inverses of the points

P, Q, S. Join UR, YR,
and produce OP to X.

"Now, from the construc-

tion, U and Y are points
on the inverses of the ©s PQ, PS, And since the rect-

angle OP . OR = rectangle OQ . OU, the quadrilateral
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RPQTJ is inscribed in a O ;
.-. the Z ORU = OQP ;

and when Q is infinitely near P, the Z OQP = QPX ;

.*, the Z ORTJ 33 ultimately = QPX. In like manner,
the Z ORV is ultimately equal to the Z SPX

;
.-.the

Z UEV is ultimately equal to the Z QPS. Now
QP, SP are ultimately tangents to their respective
circles, and .*. the Z QPS is their angle of intersection,
and UEY is the angle of intersection of the inverses
of the circles. Hence the Proposition is proved.

Prop. 4.—Any two circles can he inverted into them-

Dem.—Take any point in the radical axis of the
two Os ;

and from draw two lines OPP', OQQ',
cutting the Os in the points P, P', Q, Q'; then the

rectangle OP . OP' = the rectangle OQ . OQ' = square of

tangent from to either of the circles, and .*. equal
to the square of the radius of the circle whose centre
is 0, and which cuts both circles orthogonally. Hence
the points P', Q' are the inverses of the points P and
Q with respect to the orthogonal circle

;
and therefore

while the points P, Q move along their respective

circles, their inverses, the points P', Q', move along
other parts of the same circles,

n



98 A SEQUEL TO EUCLID.

Cor. 1.—The circle of self-inversion of a given circle

cuts it orthogonally.
Cor. 2.—Any three circles can be inverted into them-

selves, their circle of self-inversion being the circle

which cuts the three circles orthogonally.
Cor. 3.—If two circles be inverted into themselves,

the line joining their centres, namely ABCD, will be
inverted into a circle cutting both orthogonally ;

for

the line ABCD cuts the two circles orthogonally.
Cor. 4.—Any circle cutting two circles orthogonally

may be regarded as the inverse of the line passing

through their centres.

Cor. 5.—If ABCD be the line passing through the

centres of two circles, and A'B'C'D' any circle cutting
them orthogonally ;

then the points A', B', C, D' being

respectively the inverses of the points A, B, C, D, the

four lines AA', BB', CC, DD' will be concurrent.

Cor. 6.—Any three circles can be inverted into three

circles whose centres are coUinear.

Prop. 6.—Ant/ two circles can he inverted into two

equal circles.

Dem.—Let X, Y be the original Os, r and r' their

radii
;
let Y, W be the in-

verse Os, p and p' their

radii
;
and let be the

centre of inversion, and T,
T' the tangents from to

X and Y, and H the radius

of the circle of inversion.

Then, from the Demonstra-
tion of Prop. 1, we have

r : p :: T2 : E2.

/ : p' : : T'2 : B^.

Hence, since p = p', we have

r:/:: T^: T';

.-.the ratio of T* : T'^ is given; and, consequently, the

ratio of T : T' is given. Hence if a point be found,
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such that the tangents drawn from it to the two Os
X, Y will be in the ratio of the square roots of their

radii, and if X, Y, he inverted from that point, their

inverses will be equal. It will be seen, in the next

Section, that the locus of is a circle coaxal with X
and Y.

Cor. 1.—Any three circles can be inverted into three

equal circles.

Cor. 2.—Hence can be inferred a method of de-

scribing a circle to touch any three circles.

Cor. 3.—If any two circles be the inverses of two

others, then any circle touching three out of the four

<;ircles will also touch the fourth.

Cor. 4.—If any two points be the inverses of two
other points, the four points are concyclic.

Prop. 6.—If A. and B he any two points, a centre

of inversion ; and if the inverses of A., B le the points

Af, B', and p, p',
the perpendiculars from on the lines

AB, A'B'; then AB : A'B' -.-.p-.p'.

Dem.—Since is the centre of inversion, we have

OA. 0A'= OB . OB';

therefore OA : OB : : OB' : OA'.

And the angle is common to the two As AOB, A'OB'
;

.*. the As are equiangular. Hence the Proposition is

proved.

Prop. 7.—If A^ B, C . . . L he any number of col-

linear points, we have

AB + BC + CD . . + LA = 0.

(Since LA is measured backwards, it is regarded as

negative.) IN'ow, let p be the J. from any point on
the line AL; and, dividing by^, we have

AB BC CD LA ^

p p p p

Let the whole be inverted from
; and, denoting the

h2
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inverses of the points A, B, C . . . L bj- A'. E', C . . .

L', we have from the last Article the folloving general
theorem :

—If a polygon A'B'C . . . L' of any number

of sides he inscrihed in a circle, and if from ony point
in its circumference perpendiculars he let fall on the sides

of the polygon ; then the sum of the quotients oltained hy

dividing the length of each side ly its perpendicular is

%ero.

Cor. 1.—Since one of the -Ls must fall externally
on its side of the polygon, while the other J_s fall in-

ternally, this _L must have a contrary sign to the re-

mainder. Hence the Proposition may he stated thus :
—

The length of the side on which the perpendicular falls

externally, divided hy its perpendicular, is equal to the sum

of the quotients arising hy dividing each of the remaining
sides hy its perpendicula/r.

Cor. 2.—Let there he only three sides, and let the

-Ls be a, y8, y; then, U. a, h, o denote the lengths of

the sides, &c.,
a h ^

a 13 y

Prop. S.—If A, B, C, D he four collinear points, A',

B', C, D' the four points inverse to them; then

AC . BD A'C . B'D'

Dexu.—^Let be the centre of inversion, and p the

± from on the line ABCD
;
and let the ±s from

on the lines A'B', A'C, B'D', CD' be denoted by a, j8,



/3
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Bern.—Let X, Y be the original 08, X', Y' their

inverse ©s, ABCD the line through the centres of X
and Y, and let the inverse of the line ABCD be the

A'B'C'D'
; then, since the line ABCD cuts orthogonally

the s X, Y, its inverse, the A'B'C'D', cuts orthogo-

nally the s X', Y'. Let ahcd be the line through the

centies of the s X', Y'; then abed cuts the s X',

Y' orthogonally ;
hence the A'B'C'D' is the inverse

of the line ahcd with respect to a of inversion, which

inverts the 0s X', Y' into themselves (see Prop. 4,

Cor. 3). Hence, by Prop. 8, each of the ratios

is equal to the ratio

AC
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to tlie squares of the common tarij^ents of the pairs of

circles X, Y ; X', Y' (see Prop. 8, Section I., Book III).
Hence the Proposition
is proved.

Cor. 1.—If Ci, Ca,

Cz, &c., be a series of

circles, touching two

parallel lines, and also

touching each other
;

then it is evident, by making the diagram, that the

square of the direct common tangent of any two of

these circles, such as C„», C„j + „, which are separated by
{n

-
I) circles, is = n^ times the rectangle contained by

their diameters. Hence, by inversion and by the theo-

rem of this Article, we have the following theorem :
—

If A and B le any two semicircles in contact with each

other, and also in contact with another semicircle, on

whose diameter they are described ; and if circles Q^, Co, C3
le described, touching them as in the diagram, the _L

from the centre of C„ on the line AB = n times the

diameter of C„, where n denotes any of the natural num-
bers 1, 2, 3, See.

This theorem will immediately follow by completing
the semicircles, and describing another system of circles

on the other side equal to the system Ci, C2, C3, &c., and

similarly placed.*

Prop. 10.—Jf four circles be all touched by the same

circle; then, denoting by 12, the common tangent of the

\8t and 2nd, Sfc,

12 . 34 + 14 . 23 = 13 . 24.

Dem.—Let A, B, C, D be four points taken in order

on a right line
; then, by Prop. 7, Section I., Book II.,

we have
AB . CD + BC . AD = AC . BD.

l^oWf let four arbitrary circles touch the line at the

* The theorem of this Cor. is due to Pappus. See Steiuer'a

Oesaimnelte Werke, Band I., Seite 47.
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points A, B, C, D, and let their diameters be 8, 8', 8",

S'"
;
then we have

AE .CD BC . AD AC . BD

^88' . ^/8"8"' ^S'S'' . ^/88'" y/B8" , ^/h'h'"
'

and by the last Proposition each of the fractions of this

equation remains unaltered by inversion. Hence, if the

diameters of the inverse circles be denoted by d^ d\ d", d"'y

and their common tangents by 12, &c., we get

12 . 34 23". 41 13 . 24

s/dd' . ^d"d"' s/d'd" . yd"'d ^dd" . yd'd'"
'

Hence 12 . 34 + 23 . 14 = T3 . 24.*

Cor. 1 .
—If four arbitrary circles touch a given circle

at a harmonic system of points ;
then

12 . 34 = 23 . 1?.

Cor. 2.—The theorem of this Proposition may be
written in the form

12 . 34 + 23 . 14+ 31 . 24 = 0;

and in this form it proves at once the property of the

"Nine-points Circle." For, taking the ©s 1, 2, 3, 4
to be the inscribed and escribed Os of the A, and re-

membering that when Os touch a line on different

sides, we are, in the application of the foregoing theo-

rem, to use transverse common tangents. Hence,

making use of the results of Prop. 1, Section I., Book
IV., we get

12 . 34 + 23 . 14 + 31 . 24

= ^2 _ ^2 + ^2 - ^2 + ^2 _ ^2 = 0.

Hence the Os 1, 2, 3, 4, are all touched by a fifth O.
This theorem is due to Peuerbach. The following

simple proof of this now celebrated theorem was pub-

* Tkis extension of Ptolemy's Theorem first appeared in a

Paper of mine in the Proceedings of the Eoyal Irish Academy, 1866.
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lished by me in the Quarterly Journal for February,
1861 :—

"
If ABC le a plane triangle, the circle passing through

the feet of its perpendiculars touches its inscribed and
ascribed circles.^*
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nearity evidently is -L to AD and it bisects PD (see'

Prop. 14, Section I., Book III.). Hence FG is the \m&
of collinearity, and PG is -L to AD. Let M be the-

point of contact of with EC
; join GM, and let fall

the _L HS. N'ow, since FM is a tangent to 0, if from
K we draw another tangent to 0, we have FM? = PN*
+ square of tangent from N (Prop. 21, Section L,
Book III.) ;

but PM =
i- (AB - AC). Hence PM»

= PB, . PI (Prop. 8, Cor. 5, Section I., Book IV.)
= PK . P:N'

;
.-. square of tangent from N = PK . ^K.

Again, let GT be the tangent from G to
;
then GT^

= square of tangent from N" + GcW = PN . NK + GW
= GP^. Hence the O whose centre is G and radius-

GP will cut the circle orthogonally; and .*. that O-
will invert the circle into itself, and the same O
will invert the line BC into ^ ;

and since BC touches 0,
their inverses Avill touch (Prop. 2). Hence 5 touches-

0, and it is evident that S is the point of contact.

In like manner, if M' be the point of contact of 0'

with BC, and if we join GM', and let fall the ± HS'
on GM', S' will be the point of contact of S with 0'.

Cor.—The circle on PR as diameter cuts the circles-

0, 0' orthogonally.

Prop. 11.—Dp,. Haet's Extension of Peijeebach's

Theoeem :
—If the three sides of a plane triangle he re-

placed hy three circles, then the circles touching these, which

correspond to the inscribed and escribed circles of a plane-

triangle, are all touched by another circle.

Dem.—Let the direct common tangents be denoted,,

as in Prop. 11, by 12, &c., and the transverse by 12'^

&c., and supposing the signs to correspond to a A whose-

sides are in order of magnitude a, h, c\ then we have,
because the side a is touched by the O 1 on one side^
and by the Os 2, 3, 4 on the other side,

Hence

12' . 34 + 14' .
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showing that the four circles are all touched by a circle

having the circle 4 on one side, and the other three
circles on the other. This proof of Dr. Hart's ex-

tension of Feuerbach's theorem was published by me in

the Proceedings of the Roijal Irish Academy in the year
1866.

Prop. 12.—If two circles X, Y he so related that a

triangle may he inscribed in X and described about Y, the

inverse ofX with respect to Y is the
"
JVine-poinis Circle^*

of the triangle formed hy joining the points of contact

onY.
Dem.—Let ABC be the A

inscribed in X and described

about Y
;
and A'B'C the A

formed by joining the points
of contact on Y.

Let 0, 0' be the centres e\

of X and Y. Join O'A, inter-

secting B'C in D
; then, evi-

dently, D is the inverse of

the point A with respect to

Y, and D is the middle point of B'C. In like manner,
the inverses of the points B and C are the middle

points C'A' and A'B'; .*. the inverse of the O X, which

passes through the points A, B, C with respect to Y,
is the O which passes through the middle points of

B'C, C'A', A'B', that is the ''Nine-points Circle" of the

triangle A'B'C.
Cor. 1.—If two Os X, Y be so related that a A in-

scribed in X may be described about Y, the O in-

scribed in the A, formed by joining the points on Y,
touches a fixed circle, namely, the inverse of X with

respect to Y.
Cor. 2.—In the same case, if tangents be drawn to

X at the points A, B, C, forming a new A A"B"C",
the O described about A"B"C" touches a fixed circle.

Cor. 3.—Join 00', and produce to meet the O X in
the points E and F, and let it meet the inverse of X
with respect to Y in the points P and Q, ;

then PQ, is

the diameter of the **

JN'ine-points Circle" of the A
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A'B'C, and is .*. = to the radius of Y. Kow, let the

Tadii of X and Y be R, r, and let the distance 00' be-

tween their centres be denoted by 8
;
then we have,

l)ecaiise P is the inverse of E, and Q of F,

0T = O'Q

but

iiherefore

Hence

OT + 0'Q = PQ = r

E + S

1

R + S

R-8
1

R-S

R-S'

1

s. result already proved by a different method (see

Prop. 11, Section I.).

Prop. 13.—If a variable chord of a circle subtend a

:right angle at afixed point, the locus of its pole is a circle.

Dem.—Let X be the given circle, AB the variable
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chord which subtends a right Z at a fixed point P ;

AE, BE tangents at A and B, then E is the pole of

AB : it is required to find the locus of E. Let be
the centre of X. Join OE, intersecting AB in I

; then,

denoting the radius of X by r, we have OP + AP = r* ;

but AI = IP, since the Z APB is right; .'. OP + IP^^

=
r'^; .'. in the A OIP there are given the base OP in

magnitude and position, and the sum of the squares of

01, IP in magnitude. Hence the locus of the point I
is a O (Prop. 2, Cor., Book II.). Let this be the O
INE. Again, since the Z OAE is right, and AI is -L

to OE, we have 01 . OE = OA^ = r^ Hence the point
E is the inverse of the point I with respect to the

X
;
and since the locus of I is a O, the locus of E will

be a circle (see Prop. 1).

Prop. 14.—If two circles, whose radii are R, r, and
distance between their centres 8, he such that a quadri-
lateral inscribed in one is circumscribed about the other ;

then

1 1 1

+
(R + 8)2 (R -.

S)2 r""'

Dem.—Produce AP, BP (see last fig.) to meet the.
O X again in the points C and D

; then, since the
chords AD, DC, CB subtend right Z s at P, the poles
of these chords, viz., the points H, G, P, will be points
on the locus of E

; then, denoting that locus by Y, we
see that the quadrilateral EEGH is inscribed in Y and
circumscribed about X. Let Q, be the centre of Y

;
then

radius of Y = R, and OQ = 8. Now, since N is a point
on the locus of I (see Dem. of last Prop.), OW + VW
= r^

;
but PJS" = OR

;
.-. QW + OR^ = r^. Again, let

OQ produced meet Y in the points L and M
;
then

L and M are the inverses of the points K and R with

respect to X. Hence

ON . OL = r^
;
that is ON . (R + 8)

=
/^;

therefore ON =
^g r.
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«uin of the squares of the radii of the circles whose
•centres are at the points A, = AO^. Hence these
-circles cut orthogonally.

Observation.—In this Demonstration we have made the A
-acute-angled, and the imaginary O is the one whose centre is at

the intersection of the ± s, and the three others are real
;
hut if

the A had an ohtuse angle, the imaginary O would he the one
whose centre is at the obtuse angle.

Prop. 16.—Iffour circles he mutually/ orthogonal, and

if any figure he inverted with respect to each of the four
<circles in succession, the fourth inversion will coincide with
the originalfigure.

Dem.—It will plainly be
sufficient to prove this Pro-

position for a single point,
for the general Proposition
^ill then follow. Let the
centres of the four Os he
the angular points A, B,
d of a A, and the inter-

•section of its J-s : the A
squares of the radii will

he AB . AF, BA . BF, -

€0 . OF, CF . CO. mw P

let P he the point we operate on, and let P' he its in-

Terse with respect to the O A, and P" the inverse of

P' with respect to the O B. Join P"0 and CP meeting
in P"'. Now, since P' is the inverse of P with respect
to the O A, the square of whose radius is AB . AF,
we have AB . AF = AP . AP' : .-. the A AFP is equi-

angular to the A AP'B Z AFP = AP'B : in like

manner the Z BFP" = AP'B, .-. the As AFP, BP"F
are equiangular, .*. rectangle AF . FB = PF . FP".

Again, because is the intersection of the ±s of the
A ABC, AF . FB = CF . OF. Hence CF . OF =
PF . FP", and the Zs CFP and OFP" are equal, since

the Zs AFP and BFP" are equal ;
.-. the As P'TO and

€FP are equiangular, and the Zs OP"F and PCF are

equal ;
hence the four points C, P", F, P'" are coneyclic ;
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.-. rectangle OP" . OP'" = rectangle OC . OF
;
the point

P"' is the inverse of P" with respect to the O whose-

centre is 0, and the square of whose radius is the

negative quantity OC . OF. Again, the Z OFP
= P"FO = OP"T, .-. the four points 0, F, P'", P
are concyclic; .-. CP . CP'" = CO . CF, and the point P
is the inverse of P'" with respect to the whose centre

is C, and the square of whose radius is the rectangle
CF . CO . Hence the Proposition is proved.
The foregoing theorem is important in the Theory

of Elliptic Functions, as on it depends the reduction of

the rectification of Bicircular and Sphero-Quartics to

Elliptic Integrals (see Phil. Trans., vol. 167, Part ii.,
*' On a I^ew Form of Tangential Equation").
The following elegant proof, which has been com-

municated to the author by W. S. M'Cay, F.T.C.D.,

depends on the principle (Miscellaneous Exercises,
jN'o. 60), that a circle and two inverse points invert into

a circle and two inverse points.
Invert the four orthogonal circles from an intersec-

tion of two of them and we get a circle (radius R), two

rectangular diameters, and an imaginary concentric

circle (radius R^/-!). Suc-

cessive inversions with respect
to these two circles turn P into

Q, (OP = -
OQ,) ;

and successive

reflexions in the two diameters

bring Q, back to P.

This theorem can be extend-

ed to surfaces^ thus :
*' If five

spheres be mutually orthogonal,
and if any surface be inverted

with respect to each of the five spheres in succession,

the fifth inversion will coincide with the original

surface."
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SECTIOlSr V.

Coaxal Circles.

In Book III., Section I., Prop. 24, we have proved
the following theorem:—
^^
Iffrom any point P tan-

gents be drawn to two circles,

the difference oftheir squares
is equal twice the rectangle
contained hy theperpendicu-
lar let fall from P on the

radical axis and the distance

between their centres J^

The following special cases of this theorem are

deserving of notice :
—

(1). Let P be on the circumference of one of the circles,

and we have—Iffrom any point P in the circumference

of one circle a tangent be drawn to another circle, the

square of the tangent is equal twice the rectangle con-

tained by the distance between their centres and the per-

pendicular from P on the radical axis.

(2). Let the circle to which the tangent is drawn be

one of the limiting points, then the square of the line

drawn from one of the limiting points to any point of a

circle of a coaxal system varies as the perpendicular from
that point on the radical axis.

(3). i/" X, T, Z be three coaxal circles, the tangents
drawn from any point of Z to'K and Y are in a given
ratio.

(4). If tangents drawn from a variable point P to two

given circles X and Y have a given ratio, the locus of P is

a circle coaxal with X and Y.

(5). The circle of similitude of two given circles is

coaxal with the two circles.
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(6). J^ A. and E be the points of contact, upon two

circles X and Y, of tangents drawn from any point of
their circle of similitude, then the tangent from K to Y
is equal to the tangent from B to X.

Prop. 2.—Two circles being given, it is required to

describe a system of circles coaxal with them.

Con.—If the circles have real points of intersection,
the problem is solved by describing circles through
these points and any third point taken arbitrarily.

If the given circles have not real points of intersec-

tion, we proceed as follows :
—

Let X and Y be the given Os, P and Qi their

centres : draw AB, the radical axis of X and Y, inter-

secting PQ in ; from draw two tangents OC, OD

to X and Y
;
then 00= OD, and the O described with

as centre and OD as radius will cut the two Os X
and Y orthogonally. Now take any point E in this

orthogonal O, and draw the tangent ER meeting the

line PQ, in E. : from B, as centre, and BE as radius,

describe a O Z
;
then Z will be coaxal with X and Y.

For the line EB being a tangent to the ODE, the

Z OEB is right, .*. OE is a tangent to Z
;
and since

OD = OE, the tangents from to the Os Y and Z are
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'equal : hence OA is the radical axis of Y and Z
;

.*. the

three ©s X, Y, Z are coaxal. In like manner, we can

get another circle coaxal with X and Y by taking any
other point in the O CDE, and drawing a tangent, and

repeating the same construction as with the O Z. In
this way we evidently get two infinite systems of circles

coaxal with X and Y, namely, one system at each side

of the radical axis. The smallest circle of each system is

a point, namely, the point at each side of the radical

axis in which the line joining the centres of X and Y
cuts the O CDE. These are the limiting points, and in

this point of view we see that each limiting point is to be

regarded as an infinitely small circle. The two infinite

systems of circles are to be regarded as one coaxal sys-

tem, the circles of which range from infinitely large to

infinitely small—the radical axis being the infinitely

large circle, and the limiting points the infinitely
«mall.

Cor. 1.—N'o circle of a system with real limiting

points can have its centre between the limiting points.

Cor. 2.—The centres of the circles of a coaxal system
are collinear.

Cor. 3.—The circle described on the distance between
the limiting points as diameter cuts all the circles of the

system orthogonally.

Cor. 4.—Every circle passing through the limiting

points cuts all the circles of the system orthogo-

nally.

Cor. 5.—The limiting points are inverse points with

respect to each circle of the system.

Cor. 6.—The polar of either limiting point, with

respect to every circle of the system, passes through
the other, and is perpendicular to the line of collinearity
of their centres.

Prop. 3.—If two ctroles X and Y cut orthogonally, the

polar with respect to X of any point A in Y passes

through B, the point diametrically opposite to A.
i2
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This is Prop. 26, Book III., Section I. The follow-

ing are important deductions :
—

Cor. 1.—The circle a_
described on the line

joining a point A to any
point B in its polar,
with respect to a given
circle, cuts that circle ^X

orthogonally.
Cor. 2.—The inter-

section of the JLs of the

A formed by a pair of

conjugate points A, B,
with respect to a given circle and its centre 0, is the

pole of the line AB.
Cor. 3.—The polars of any point A with respect to

a coaxal system are concurrent. For, through A and

through the limiting points describe a O : this
(
Cor. 4,.

Prop. 2) will cut all the Os orthogonally, and the

polars of A with respect to all the s of the system
will pass through the point diametrically opposite to

A on this orthogonal O ;
hence they are concurrent.

Cor. 4.—If the polars of a variable point with respect
to three given O s be concurrent, the locus of the point
is the O which cuts the three given Os orthogonally.

Prop. 4.—If Xi, Xg, X3, &c., he a system of coaxal

circles, and ifY he any other circle, then the radical axes

of the pairs of circles Xi, Y ; Xg, Y ; X3, Y, &c., ar&

concurrent.

Dem.—The two first meet on the radical axis of Xi,
X2 ;

the second and third on the radical axis of Xg,

X3 ;
but this, by hypothesis, is the radical axis of Xi,

X2 ;
hence the Proposition is evident.

Prop. 6.—If two circles cut two other circles orthogo-

nally, the radical axis of either pair is the linejoining th&

centres of the other pair.

Dem.—Let X, Y be one pair cutting "W, V, the other

pair, orthogonally ; then, since X cuts "W and Y ortho-

gonally, the tangents drawn from the centre of X to W
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and Vare equal; hence the radical axis of Wand Ypasses
through the centre of X. In like manner the radical

axis of W andY passes

through the centre of

Y; .*. the line joining
the centres of the Os
X andY is the radical |w '>^T^ V)

axis of the sW and
Y. In the same way
it can be shown that

the line joining the
centres of W and Y is

the radical axis of X and Y.
Cor. 1.—If one pair of the Os, such asWandY, do

not intersect, the other pair, X,Y, will intersect, because

they must pass through the limiting points ofW and Y.
Cor. 2.—Coaxal Os maybe divided into two classes—

one system not intersecting each other in real points,
but having real limiting points ;

the other system in-

tersecting in real points, and having imaginary limiting

points.
Cor. 3.—If a system of circles be cut orthogonally by

two circles they are coaxal.

Cor. 4.—If four circles be mutually orthogonal, the

six lines joining their centres, two by two, are also their

radical axes, taken two by two.

Prop. 6.—If a system of concentric circles he inverted

from any arbitrary 'point, the inverse circles will form a

coaxal system.

Dam.—Let be the centre of inversion, and P the

common centre of the concentric system. Through P
draw any two lines : these lines will cut the concentric

system orthogonally, and therefore their inverses, which
will be two circles passing through the point and

through the inverse of P, will cut the inverse of the

concentric system orthogonally ;
hence the inverse of

the concentric system will be a coaxal system (Prop. 5,

Cor. 3).

Cor. 1.—The limiting points will be the centre of
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inversion, and the inverse of the common centre of
the original system.

Cor. 2.—If a variable circle touch two concentrie

circles, it will cut any other circle concentric with them
at a constant angle. Hence, by inversion, if a variable

circle touch two circles of a coaxal system, it will cut

any other circle of the system at a constant angle.
Cor. 3.—If a variable circle touch two fixed circles,,

its radius has a constant ratio to the perpendicular from
its centre on the radical axis of the two circles, for it

cuts the radical axis at a constant angle.
Cor. 4.—The inverse of a system of concurrent lines

is a system of coaxal Os intersecting in two real points.
Cor. 5.—If a system of coaxal circles having real

limiting points be inverted from either limiting point,

they will invert into a concentric system of circles.

Cor. 6.—If a coaxal system of either species be in-

verted from any arbitrary point, it inverts into another

system of the same species.

Prop. 7.—i/" a variable circle touch two fixed circles^

its radius has a constant ratio to the perpendicular from
its centre on the radical axis.

Dem.—This is Cor. 3 of the last Proposition ;
but it

is true universally, and
not only as proved there

for the case where the

cuts the radical axis. On
account of its importance
we give an independent

proof here. Let the cen-

tres of the fixed s be 0,

0', andthatofthe variable
0". Join 00', and pro-

duce it to meet the fixed

s in the points C, C : ^
upon CC describe a :

let 0'" be its centre : let fall the J-s 0"A, 0'"B on the

radical axis : let D be the point of contact of 0" with

;
then the lines CD and 0'"0" will meet in the centre
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of similitude of the Os 0", 0'"; but this centre is a

point on the radical axis of the circles 0, 0' (see Prop. 4,

Section II.). Hence the point E is on the radical axis,

and, by similar triangles,

0"A : 0'"B : : 0"E : 0'"E : : radius of 0" : radius of 0"',

.-. radius of 0" : 0"A : : radius of 0"' : 0'"B
;

but the two last terms of this proportion are constant,

.-. radius of 0" : 0"A in a constant ratio.

Prop. 8.—If a chord of one circle he a tangent to

another^ the angle which the chord subtends at either limit-

ing point is bisected by the line drawn c^

from that limiting point to the point

of contact.

Let CF be the chord, K the point
of contact, E one of the limiting

points : the angle CEE is bisected by
EK. Eor since the limiting point
E is coaxal with the circles 0, 0' we
have, by Prop. I. (3),

CE : CK : : EE : FK
;

.-. EC : EE : : KG : KE.

Hence the angle CEE is bisected (VI. iii).

In like manner, if G be the other limiting point, the

angle CGF is bisected by GK.
Cor. 1 .

—If the circles were external to each other,
and the figure constructed, it would be found that tha

angles bisected would be the supplements of the angles

CEE, CGF.
Cor. 2.—If a common tangent be drawn to two

circles, lines drawn from the points of contact to either

limiting point are perpendicular to each other; for

they are the internal and external bisectors of an angle.
Cor. 3.—If three circles be coaxal, a common tan-

gent to two of them will intersect the third in points
which are harmonic conjugates to the points of contact

;

for the pencil from either limiting point will be a har-

monic pencil.
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Cor. 4.—If a circle be described about the triangle
CEF, its envelope will be a circle concentric with the
circle whose centre is

;

that is, with the circle

whose chord is CF. C/

{When a line or

moves according to any given
latv, the curve which it

touches in all its positions
is called its envelope.)

Produce EK till it meets
the circumference in D

;

then because the Z. CEF
is bisected by ED, the arc

CDF is bisected in D
;
hence the line OGr, which joins

the centres of the circles, passes through D and is J- to

CF
;

.-. O'K is
II

to OD
;

/. O'K : OD : : EO' : EO
;

hence the ratio of O'K : OD is given ;
but O'K is given ;

therefore OD is given, and the O whose centre is

and radius OD is given in position, and the O CEF
touches it in D

;
hence the Proposition is proved.

Prop. 9.—If a system of coaxal circles have tivo real

points of intersection, all

drawn through either

point are divided propor-

tionally hy the circles.

Let A, B be the points of

intersection of the coaxal

system : through A draw
two lines intersecting the

circles again in the two
svstems of points C, D, E ;

C', D', E'; then

CD : DE : C'D':D'E'.

Dem.—Join the points C, D, E, C, D', E' to B
;
then

the As BCD, BCD' are evidently equiangular, as are
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also the triangles BDE, BD'E'
;
hence

CD : DB : : CD' : D'B
;

DB:DE::D'B : D'E';

therefore, ex aequali,

CD : DE : : CD' : D'E'.

Cor. 1.—If two lines be divided proportionally, the

circles passing through their point of intersection and

through pairs of homologous points are coaxal.

Cor. 2.—If from the point B perpendiculars be
drawn to the lines joining homologous points, the feet

of these perpendiculars are coUinear. Eor each lies on
the line joining the feet of the perpendiculars from B
on the lines AC, AC.

Cor. 3.—The circles described about the triangles
formed by the lines joining any three pairs of homolo-

gous points all pass through B.

Cor. 4.—The intersection of the perpendiculars of

all the triangles formed by the lines joining homolo-

gous points are collinear.

Cor. 5.—Any two lines joining homologous points
are divided proportionally by the remaining lines of

the system.

Prop. 10.—To describe a circle touching three given
circles.

Analysis.—Let X, Y, Z be the three given Os,
ABC, A'B'C two s which it is required to describe

touching the three given Os ; then, by Cor. 2, Prop. 4,

Section lY., the O DEF, which cuts X, Y, Z orthogo-

nally, will be the O of inversion of ABC, A'B'C, and
the three ©s ABC, DEF, A'B'C will be coaxal ( Cor. 2,

Prop. 1, Section lY.).

Now, consider the O X, and the three Os ABC,
DEF, A'B'C; the radical axes of X and these Os are

concurrent (Prop. 4) ;
but two of the radical axes are

tangents at A, A', and the third is the common chord
of X and the orthogonal O DEF

;
let P be their point

of concurrence. Again, from Prop. 4, Section II., it

follows that the axis of similitude of X, Y, Z is the
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radical axis of the Os ABC, A'E'C; but since PA = PA'^
being tangents to X, the point P is on this radical axis^

Hence P is the point of intersection of two given lines^

namely, the axis of similitude of X, Y, Z, and the
chord common to X and the orthogonal O DEF

;
.-. F

is a given point; hence A, A', the points of contact of the

tangents from P to X, are given. Similarly, the points

B, B'
; C, C are given points. And we have the follow-

ing construction, viz. : Describe the orthogonal circle of

X, Y, Z, and draw the three chords of intersection of this

circle with X, Y, Z respectively ; and from the points
where these chords meet the axis of similitude of X, Y, Z
draw pairs of tangents to X, Y, Z

;
then the two circles

described through these six points of contact will be tan-

gential to X, Y, Z.

Cor. 1.—Since there are four axes of similitude of

X,Y, Z, we shall have eight circles tangential to X,Y, Z.

Cor. 2.—If we suppose one of the circles to reduce to

a point, we have the problem : "lb describe a circh

touching two given circles, and passing through a given

point.^' And if two of the circles reduce to points, we
have the problem :

^' To describe a circle touching agiveu
circle, and passing through two given points.''^
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The foregoing construction holds for each case, the

first of which admits of four solutions, and the second

of two.

Cor. 3.—Similarly, we may suppose one of the circles

to open out into a line, and we have the problem :

** 2b

descrile a circle touching a line and two given circles
"

;

and if two circles open out into lines, the problem:
" To describe a circle touching two given lines and a circle.

^^

The foregoing construction extends to these cases also,

and like observations apply to the remaining cases,

namely, when one of the circles reduces to a point, and

one opens out into a line, &c. Since our construction

embraces all cases, except where the three circles be-

come three points or open out into three lines, it would

appear to be the most general construction yet given
for the solution of this celebrated problem.

Another Method—Analysis.—Let 0, 0', 0'' be the

centres of the Os X, Y, Z, and let AR, BH be the

radical axis of the pairs of

Os XY, YZ, respectively,
and let 0'" be the centre of

the required O W : from
0'" let fall the ±s 0"'A,
0"'B

; join R to C, the

point of contact of W with

Z, and produce it to meet

0"Ddrawn||toO'"R. JS'ow,

because W touches the Os
X, Y, its radius 0'"C has a

given ratio to 0'"A(Prop.7).
Similarly, 0"'C has a given
ratio 0"'B

;
.-. 0'"A has a

given ratio to 0'"B
;
hence

the line 0'"E, is given in position, and the ratio of

0"'R:0'"B is given; .-. the ratio of 0'"R : 0'"C is

given; hence the ratio of 0"D : 0"C is given ;
.*. D is

a given point and R is a given point; .*. the line RD is

given in position; hence C is a given point. Similarly^
the other points of contact are given.
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Observation.—This metliod, though arrived at by the theory
of coaxal circles, is virtually the same as Newton's 16th Lemma.
It is, however, somewhat simpler, as it does not employ conic sec-

tions, as is done in the Frincipia. "When I discovered it several

years ago, I was not aware to what an extent I had been antici-

pated.

Prop. 11.—If X, Y he two circles, AB, A'B' two chords

of X which are tangents to Y
;

then if the perpendiculars from
A, A' on the radical axis he de-

noted hy p, TT, and the perpendi-
cularsfrom B, B' hy p', it',

AA':BB': V^ + v/tt

Dem.—Let 0, 0' be the cen-

tres of the circles
; then, by (1),

Prop. 1,

AD = -v/270(y.^ A'D' = -/2 . 00'. tt
;

.-. AD + A'D' = -/2 . 00' [x/p + V^] .

But AD + A'D' is easily seen to be = AC + A'C
;

.-. AC+ A'C = v/2.00'(yj» + -v/7r).
.

In like manner,

BC + B'C = ^/2700^ { v/? + </ '^l .

Hence,

AC + A'C : BC + B'C : : -v/^ + ^/^: ^p' + y^'.

Now, since the triangles AA'C, BB'C are equiangular,
we have

AC + A'C : BC + B'C : : AA' : BB';

.-. AA' : BB' : : v/? + y^^: // + ^/^.

This theorem is very important, besides leading to an

immediate proof of Foncelefs Theorem. If we suppose
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the chords AB, A'B' to be indefinitely near, we can in-

fer from it a remarkable property of the motion of a

particle in a vertical circle, and also a method of repre-

senting the amplitude of Elliptic Integrals of the First

kind by coaxal circles.*

Prop. 12.—Poncelet's Theorem.—Ifa variable 'poly-

gon of any number of sides be inscribed in a circle of a

coaxal systetn, and if all the sides hut one in every position
touch fixed circles of the system, that one also in every

position touches another fixed circle of the system.

It will be sufficient to prove this Theorem for the

case of a triangle, because from this simple case it is

easy to see that the Theorem for a polygon of any num-
ber of sides is an immediate consequence.

Let ABC be a A inscribed in a O of the system,
A'B'C another position of the A, and let the sides AB,
A'B' be tangents to one O of the system, BC, B'C tan-

gents to another O
;
then it is required to prove that

CA, C'A' will be tangents to a third O of the system.

Dam.—Let the perpendiculars from A, B, C on the

radical axis be denoted by p, p', p", and the perpendi-
culars from A', B', C by tt, tt', tt"; then, by Prop. 11,

we have

AA' : BB' : : v> + -/^ : a// + '/^'y

and BB' : CC : : ^/^+ ^^ : V¥' + 'Z'^' J

.-. AA' : CC : V^ + v^tTV/' + -v/^.

Hence AC, A'C are tangents to another circle of the

system.
The foregoing proof of this celebrated theorem wa&

given by me in 1858 in a letter to the Rev. R. Towns-

end, E.T.C.D. It is virtually the same as Dr. Hart's

proof, published in 1857 in the Quarterly Journal of
Mathematics, of which I was not aware at the time.

* The method of representing the amplitude of Elliptic Inte-

grals by coaxal circles was first given by Jacobi, Crelle's Journaly
Band. III. Theorem 1 1 affords a very simple proof of this appli-^
cation. See Educational Times, Vol. iii., Ecprint, page 42.
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Dr. Hart's Proof.—This proof depends on the fol-

lowing Lemma (see fig., Prop. 11) :
—If a quadrilateral

AA'BB' be inscribed in a circle X, and if the diagonals

AB, A'B' touch a circle Y of a system coaxal with X,
then the sides A, A' touch another circle of the same

system, and the four points of contact D, D', E, E' are

collinear.

This proposition is evident from the similar triangles

AED, B'E'D', and the similar triangles EA'D', E'BD
;

and the equality of the ratios AE : AD, B'E' : B'D',
A'E : A'D, BE : BD.

The first part of this theorem also follows at once

from Prop. 11.

Now, to prove Poncelet's theorem :
—Let ABC, A'B'C

be two positions of the variable A
,
and let, as before,

AB, A'B' be tangents to one O of the system, BC, B'C

tangents to another O ;
then CA, C'A' shall be tangents

to a third O of the system. Eor, join AA', BB', CC.
Then, since AB, A'B' are tangents to a O of the system,

AA', BB' are, by the lemma, tangents to another O of

the system ;
and since BC, -B'C are tangents to a O of

the system, BB', CC are tangents to a O of the system ;

.-.AA', BB', CC are tangents to a O of the system;
and since AA', CC touch a O of the system, by the

lemma, AC, A'C touch a O of the system ;
hence the

Proposition is proved, and we see that the two proofs
are substantially identical.

SECTION YI.

Theory of Anharmon-ic Section-.

Def.—A system of four collinear points A, B, C, D
make, as is known, six segments; these may he arranged,
in three pairs, each containing the four letters—thus,

AB, CD ; BC, AD ; CA, BD.

Where the last letter in each couple is D, and the first
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in the three couples are respectively AB, EC,
CA, exactly corresponding to the sides of a triangle ABC,
tahen in order. Now, ifwe tahe the rectangles formed hy
these three pairs of segments, the six quotients obtained

hy dividing each rectangle ly the two remaining ones are

called the six anharmonic ratios of the four points A, B,

<C, D. Thus these six functions are

AB.CD EC. AD CA . BD
BC.AD' CA.BD' AB.CD^

^und their reciprocals

BC . AD CA.BD AB.CD
AB. CD' BC . AD' CA . BD*

It is usual to call any one of these six functions the anhar-

monic ratio of the four points A, B, C, D.

Prop. 1.—If (0 . ABCD) he a pencil of four rays

passing through the four points

A, B, C, D
;

and if through

any of these points B we draw
a line parallel to a ray passing

through any of the other points,
•and cutting the two remaining
rays in the points M, iN", the

six anharmonic ratios of A, B,
C, D can he expressed in terms

^f the ratios of the segments
HB, BK, NM.

Dem.—From similartriangles,

:and

MB
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Cor. 4.—If A, B, C, D be four points in the circum-

ference of a circle, and E and F any two other points
also in the circumference, then the pencil (E . ABCD)
= (F . ABCD). This is evident, since the pencils have

equal angles.

Cor. 5.—If through the middle point of any chord

AB of a circle two other chords CE and DF be drawn,
and if the lines ED and CF joining their extremities

intersect AB in G and H, then OG = OH.

Dem.—The pencil (E . ADCB) = (F . ADCB
;
there-

fore the anharmonic ratio of the points A, G, 0, B = the -

anharmonic ratio of the points A, 0, H, B
;
and since

AO = OB, OG = OH.

Def.—The anharmonic ratio of the cyclic pencil

(E . ABCD) is called the anharmonic ratio of the four
cyclic points A, B, C, D.

Prop. 3.—The anharmonic ratio of four coneydie

points can he expressed in terms of the chords joining
these four points.

Dem. (see fig., Prop. 9, Section IV.)
—The anharmonic

ratio of the pencil (0 . ABCD) is AC . BD : AB . CD
;

and this, by Prop. 9, Section IV. = A'C . B'D'

: A'B' . CD'
;
but the pencil (0 . ABCD) = the pencil

(0 . A'B'C'D') = the anharmonic ratio of the points

A', B', C, D'. Hence the Proposition is proved.

Cor. 1.—The six functions formed, as in Def. 1,

with the six chords joining the four coneyclic points
A', B', C, D', are the six anharmonic ratios of these

points.

Cor. 2.—If two triangles CAB, C'A'B' be inscribed

in a circle, any two sides, viz., one from each triangle,
are divided equianharmonically by the four remaining
sides. For, let the sides be AB, A'B'

;
then the

pencils (C . A'BAB'), (C . A'BAB') are equal {Co9\ 4,

Prop. 2).

Prop. 4.—Pascal's Theorem.—If a hexagon he

inscribed in a circle^ the intersections of opposite sides

K
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viz.f \st and 4th, 2nd and 5th, 3rd and 6th, are colU-

near. B

Let ABCDEFA be the

hexagon. The points L, IsT,

M are collinear. t>1

Dem.—Join EK. Then the

pencil (N . FMCE) = the pen-
cil (C . EEDE), because they
have a common transversal

EE {Cor. 3, Prop. 2.) In
like manner, the pencil

.(A . EEDE) = (N . ALDE) ;

but(A.EBDE)=C.EBDE) (Prop.2; Cor. 4). Hence the

pencils (N . EMCE), il^ . ALDE) are equal ;
and there-

fore {Cor. 2, Prop. 2) the points L, E", M are collinear.

Cor. 1.—With six points on the circumference of a

circle, sixty hexagons can be formed. Eor, starting

with any point, say A, we could go from A to one of tlie

remaining points in five ways. Suppose we select B,
then we could go from B to a third point in four diffe-

rent ways, and so on
;
hence it is evident that we

could join A to another point, and that again to another,
and so on, and finally return to A in 5x4x3x2x1
different ways. Hence we shall have that number of

hexagons ;
but each is evidently counted twice, and we

shall therefore have half the number, that is, sixty
distinct hexagons.

Cor. 2.—Pascal's Theorem holds for each of the

sixty hexagons.
Cor. 3.—Pascal's Theorem holds for six points.

whicli are, three by three, on two lines. Thus, let the
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two triads of points be A, E, C, D, B, F, and the proof
of the Proposition can be applied, word for word, except
that the pencil (A . FBDE) is equal to the pencil

(C . FBDE), for a different reason, viz., they have a

common transversal.

Prop. 5.—If two equal pencils have a common ray, the

intersections of the remaining three homologous pairs of

rays are collinea/r.

Let the pencils be (0 . 0'ABC), (0' . OABC), having
the common ray 00'; then, if possible, let the line

joining the points A and C intersect the rays OB, O'B
in different points B', B" ; then, ^
since the pencils are equal,
the anharmonic ratio of the

points D, A, B', C equal the

anharmonic ratio of the points

D, A, B", C, which is impos-
sible. Hence the points A, B, C
must be coUinear. o

Cor. 1.—If A, B, C; A', B', C be two triads of

points on two lines intersecting in 0, and if the an-

harmonic ratio (OABC) = (OA'B'C), the three lines

AA', BB', CC are concurrent. For, let AA', BB',
intersect in D

; join CD, intersecting OA' in E
;
then

the anharmonic ratio (OA'B'E) = (OABC) = (OA'B'C)
by hypothesis; therefore

the point E coincides

with C. Hence the

Proposition is proved.
Cor. 2.—If two As

ABC, A'B'C have Hues

joining corresponding
vertices concurrent, the

intersections of corre- D^

spending sides must be
coUinear. For, join P, B^

the point of intersection

of the sides BC, B'C,
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to 0, the centre of perspective ;
then each of the

pencils (A . PCA'B), (A' . PC'AB') is equal to the pen-
cil (0 . PCAB) ;

hence they are equal to one another,
and they have the ray AA' common. Hence the inter-

sections of the three corresponding pairs of rays AC, A'C'^
AP, AT , AB, A'B', are collinear.

Cor. 3.—If two vertices of a variable A ABC move
on fixed right lines LM, LIS", and if the three sides

pass through thi*ee fixed collinear points 0, P, Q, the
locus of the third vertex is a right line.

Let the side AB pass through 0, BC through P, CA
through Q, and let A'B'C be another position of the A ;

then the two As AA'Q, BB'Q, have the lines joining
their corresponding vertices concurrent

;
hence the in-

tersections of the corresponding sides are collinear.

Hence the Proposition is proved.

Prop. 6.—If on a right line OX three pairs ofpoinU
A, A'

; B, B'
; C, C le taken, such that the three rectangles

OA . OA', OB . OB', OC . OC, are each equal to a constant^

sag W^ then the anharmonic ratio of ang four of the six

points is equal to the anharmonic ratio of their four conju-

gates.

Dem.—Erect OY at right Z s to OX, and make OY
=

h', join AY, A'Y, BY, B'Y, CY, C'Y. Now, by
hypothesis, OA . 0A'= OY^; .*. the O described about
the AAA'Y touches OY at Y

;
.-. the Z OYA = OA'Y.

In like manner, the Z OYB = OB'Y
;
hence theZ AYB

AX
= A'YB' : similarly the Z BYC = B'YC, &c.

;
.-. the

Zs of the pencil (Y . ABCC) = the Zs of the pencil
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(T . A'B'C'C) ;
and hence the anharmonic ratio of

(Y . ABCC) equal the anharmonic ratio of the pencil

(Y . A'B'C'C).

Cor. 1 .
—If the point A moves towards 0, the point

A' will move towards infinity.

Cor. 2.—The foregoing Demonstration will hold if

some of the pairs of conjugate points be on the pro-
duction of OX in the negative direction; that is, to

the left of OY, while others are to the right, or in the

positive direction.

Cor. 3.—If the points A, B, C, &c., be on one side of 0,

say to the right, their corresponding points A', B', C, &c.,

may lie on the other side
;
that is, to the left. In this

case the As AYA', BYB',CYC', &c., are all right-angled
at Y; and the general Proposition holds for this case

also, namely. The anharmonic ratio of any four points is

equal to the anharmonic ratio of their four conjugates.

Cor. 4.—The anharmonic ratio of any four collinear

points is equal to the anharmonic ratio of the four

points which are inverse to them, with respect to any
circle whose centre is in the line of collinearity.

Def.— When two systems of three points each, such as

A, B, C
; A', B', C, are collinear

,
and are so related that

the anharmonic ratio of any four, which are not two cou-

ples of conjugate points, is equal to the anharmonic ratio

of their four conjugates, the six points are said to he in

involution. The point conjugate to the point at in-

finity is called the centre of the involution. Again, if
we taJce two points D, D', one at each side of 0, such that

OD^ = OD'^ =
k^, it is evident that each of these points is

its own conjugate. Hence they have been called, hy
TowNSEND and Chasles, the double points of the in-

volution. From these Definitions the following Propo-
sitions are evident :

—
(1). Any pair of homologous points, such as A, A', a/re

harmonic conjugates to the double points D, D'.

(2). Three pairs ofpoints which have a commonpair of
harmonic conjugates form a system in involution.
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(3). The two douMe points, and any two pairs of con-

jugate points, form a system in involution.

(4). Any line cutting three coaxal circles is cut in
involution.

Def.—If a system of points in involution he joined to

any point P not on the line of collinearity of the points,
the sixjoining lines will have the anharmonic ratio of the

pencil formed hy any four rays equal to the anharmonic
ratio of the pencil formed ly their four conjugate rays.
Such a pencil is called a pencil in involution. The rays
passing through the double points are called the double

rays of the involution.

Prop. 7.—If four points he collinear, they helong to^

three systems in involution.

Dem.—Let the four points be A, B, C, D ; upon AB
and CD, as diameters, describe circles

;
then any circle

coaxal with these will intersect the line of collinearity
of A, B, C, D in a pair of points, which form an invo-

lution with the pairs A, B, C, D. Again, describe circles

on the segments AD, BC, and circles coaxal with them
will give us a second involution. Lastly, the circles^

described on CA, BD will give us a third system. The
central points of these systems will be the points where
the radical axes of the coaxal systems intersect the line

of collinearity of the points.

Prop. 8.—The following examples will illustrate the

theory of involution :
—

(1). Any right line cut- -^f

ting the sides and diagonals

of a quadrilateral is cut in

involution.

Dem.—Let ABCD be

the quadrilateral, LL' the

transversal intersecting the diagonals in the points

N, N'. Join AN', CN'
;
then the anharmonic ratio of

the pencil (A . LMNN') = (A . DBON') = (0 . DBON')
= (C . M'L'ON) = (C . L'M'Is^'N).
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(2). A right line, cutting a circle and the sides of an
inscribed quadrilateral, is cut

in involution.

Dem.—Join AR, AE,',

CR, CE'; then the anhar-

monic ratio of the pencil

(A.LRMR') = (A..DEBR')
= (C . DRBR')= (C . M'RL'R')
=(C.L'R'M'R).

•

Cor.—The points IST, W
belong to the involution.

(3). If three chords of a circle he concurrent, their six

points of intersection with the

circle a/re in involution.

Let AA', BB', CC be the
three chords intersecting in

the point 0. Join AC, AC,
AB', CB'; then the anhar-

monic ratio (A . CA'B'C) =

(B' . CBAC) =
(B' . C'ABC).

Cor.—The pencil formed by any six lines from the

pairs of homologous points A, A'
; B, B ; C, C, to any

seventh point in the circumference is in involution.

Prop. 9.—If 0, 0' he two fixed points on two given
lines OX, O'X', and if on OX we take any system of

points A, B, C, &c., and on O'X' a corresponding system

A!, B', C, &c., such that the rectangles OA . O'A'
= OB . O'B' = OC . O'C, &c., equal constant, say k\'

then the anharmonic ratio of any four points on 0^ equal
the anharmonic ratio of theirfour corresponding points on

O'X'.

This is evident by superposition of O'X' on OX, so that

the point 0' will coincide with (see Prop. 7) ;
then

the two ranges on OX will form a system in involution.

Def.—Two systems of points on two lines, such that

the anharmonic ratio ofanyfour points on one line is equal
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to the anharmonic ratio of their four corresponding points
on the other, are said to he homographic, and the lines are

said to he homographically divided. The points 0, 0'

are called the centres of the systems.
Cor. 1.—The point on OX is the point corre-

sponding to infinity on O'X'
;
and the point 0' on O'X'

corresponds to infinity on OX.

Def.—If the line O'X' he superimposed on OX, hut so

that the point 0' will not coincide with 0, the two systems

ofpoints on OX divide it homographically, and the points

of one system which coincide with their homologous points

of the other are called the double points of the homo-

graphic system.

Prop. 10.— Given three pairs of corresponding points

of a line divided homographically, to find the douhle points.

Let A, A'
; B, o a B C A B' c' x

B'; C, C', be the
'

\ *~^
' ' '

three pairs of corresponding points, and one of the

required double points ;
then the conditions of the

question give us the anharmonic ratio

(OABC) = (0 A'B'C) ;

OA.BC OA'.B'C
therefore

Hence

OB . AC B'. A'C*

OA . OB' B'C . AC
OA' .OB BC . A'C

equal constant, say P.

ITow OA . OB', OA' . OB are the squares of tangents
drawn from to the circles described on the lines AB'
and A'B as diameters

;
hence the ratio of these tan-

gents is given ;
but if the ratio of tangents from a

variable point to two fixed circles be given, the locus

of the point is a circle coaxal with the given circles.

Hence the point is given as one of the points of

intersection of a fixed circle with OX, and these inter-

sections are the two double points of the homographic
system.



BOOK VI. 137

If the three pairs of points be on a circle, the points
of intersection of Pascal's line with the circle will be
the double points required. For (see fig., Prop. 5), let

D, B, F ; A, E, C, be the two triads of points, and let

the Pascal's line intersect the circle in the points P and
Q ;

then it is evident that the pencil (A . PDBF)
= (D . PAEC).

Cor.—If we invert the circle into a line, or vice versa,
the solution of either of the Problems we have given
here will give the solution of the other.

Prop. 11.— We shall conclude this Section with the

solution of a few Prollems hy means of the double points

of homographic division,

(1). Being given two right lines L, L', it is required
to place between them a line AA', which will subtend

^iven angles O, O' at two given points P, P'.

Solution.—Let us take

arbitrarily any point A on
X. Join PA, P'A, and make
the Zs APA', APA", re-

spectively equal to the two

given Z s fl, O'
; then,

when the point A moves

along the line L, the points

A', A" will form two ho-

mographic divisions on the

line L'. The two double points of these divisions will

give two solutions of the required Problem.

(2). Being given a polygon of any number of sides,

and as many points taJcen arbitrarily, it is required to

inscribe in the polygon another polygon whose sides will

pass through the given points.

We shall solve this problem for the special case of

a triangle; but it will be seen that the solution is

perfectly general.
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Let ABC be the given triangle ; P, Q, E the given
points. Take on AC any-

arbitrary point D, Join

PD, intersecting AB in E
;

then join EQ, intersecting
PC in E

; lastly, join ER,
intersecting AC in D'; then

the two points D, D' will

evidently form two homo-

graphic divisions on AC,
the two double points of

which will be vertices of two triangles satisfying the

question.

(3). Being given three points P, Q, R, and two line»

L, L', it is required to describe a triangle ABC having
C equal to a given angle, the vertices A and B on the

given lines L, L', and the sides passing through the given
'points.

Solution.—Through the point R draw any line

meeting the two lines L, L' in the points a, h. Join

P5, and from Q draw
Qia' making the required
angle C with PJ

;
the

two points a, a' will

form two homographic
divisions on L,the double

points of which will give
two solutions of the re-

quired question.

(4). To inscribe in a

circle a triangle whose sides shallpass through three given-

2)oints.

This is evidently solved like the preceding, by taking^
three false positions, and finding the double points of

the two homographic systems of points.

(5). The problem of describing a circle touching three

given circles can be solved at once by the method of taking
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three false positions, and finding double points, as fol-
lows :—

Let A, 13, C be the centres of the three given circles; Z
the required tangential circle

; a, y8, y the points of con-

tact : then the triangles ABC, a/?y are in perspective,
the centre of Z being their centre of perspective, and the-

axis of similitude of the three given circles being their

axis of perspective. Let A', B', C be the three centres-

of similitude. Then take any three poinjfcs P, P', P" in

the circle A; join them to the point B', cutting the circle

C in the points Q, Q,', Q": again, join these points to A',
and let the joining lines cut the circle B in the points
E, R', R" : lastly, join R, R', R"to C, cutting the circle

A in the points ir, ir', tt"
;
then a vrill be such that the

anharmonic ratio (aPP'P") will be equal to the anhar-
monic ratio (a tt ttV"). Hence the problem is solved.
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Exercises.

1. The eight circles which touch three given circles may he

divided into two tetrads—say X, Y, Z, W ; X', Y', Z', W—of

which one is the inverse of the other with respect to the circle

cutting the three given circles orthogonally.

2. Any two circles of the first tetrad, and the two correspond-

ing circles of the second, have a common tangential circle.

3. Any three circles of either tetrad, and the non-corresponding

circle of the other tetrad, have a common tangential circle.

4. Prove hy means of the extension of Ptolemy's Theorem

(the middle points of the sides heing regarded as very small

circles) that these point- circles, and the inscrihed circle, or any
of the escribed circles, have a common tangential circle.

5. The anharmonic ratios of the four points of contact of the

**
nine-points circle" with the inscribed and the escribed circles

are respectively
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SECTIOIS^ YII.

Theoey of Poles and Polaes, and Eecipeocation.

Prop. 1.—Iffour points le collinear, their anharmonic
ratio is equal to the anharmonic ratio of their four polars.

This Proposition may be proved exactly the same as

Proposition 8, Section III. Thus (see tig., Prop. 8.

Section III.) the pencil (0 . A'E'C'D') = (P . A'B'C'D');
but the pencil (0 . A'B'C'D') = anharmonic ratio of

the four points A, B, C, D, and the pencil (P . A'B'C'D')
consists of the four polars. Hence the Proposition is

proved.
The two following Propositions are interesting appli-

cations of this Proposition :
—

(1). If two triangles le self-conjugate with respect to a

circle, any two sides are divided equianha/rmonically hy the

four remaining sides ; and any
two vertices are subtended

equianharmonically hy thefour

remaining vertices.

Let ABC, A'B'C'be the two
self-conjugate As; it is re-

quired to prove that the pencil

(C.ABA'B')=(C'.ABA'B').
Dem.—LetA'C, B'C meet

AB produced in D and E.

Join A'C, B'C, AC, BC.
Now, since A'C is the polar
of B', and AB the polar of C,

their point of intersection I)

is the pole of B'C (see Cor.,

Prop. 25, Section I., Book

III.). In like manner, the

point E is the pole of A'C ;

hence the four points B, A,

E, D are the poles of the four lines CA, CB, CA', CB'.

T^bfirefore the anharmonic ratio of the four points B^
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A, E, D is equal to the anharmonic ratio of the pencil

(C . ABA'E'). Again, the pdints B, A, E, D are the in-

tersections of the line AB with the pencil (C . ABA'B') ;

therefore the pencil (C . ABA'B') = (C . ABA'B').
We have proved the second part of our Proposition,

and the first follows from it by the theorem of this

Article.

(2). If two triangles le such that the sides of one are the

polar8 of the vertices of the other
^ they are in ^perspective.

Dem.—Let the three sides of the A ABC be the

polars of the corresponding vertices of the A A'B'C,
and let the corresponding sides meet in the points X,
Y, Z respectively. Now, since AB is the polar of C,
and B'C the polar of A, the point D is the pole of AC
(Cor., Prop. 25, Section I., Book III.). In like man-
ner the point X is the pole of AA', and the points B',
'C are, by hypothesis, the poles of the lines AC, AB.
Hence the anharmonic ratio of the points B', C, D, X
= the pencil (A . YZC'A') = the pencil (Z . YAC'A').
Again, the anharmonic ratio B'C'DX = the pencil

<Z . A'C'AX) = (Z . XAC'A'). Hence (Z . YAC'A')
= (Z . XAC'A'); .-. the Hnes XZ, ZY form one right

line
;
therefore the intersection of corresponding sides

of the triangles are coUinear. Hence they are in per-

spective.
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Prop. 2,—If two variable points A, A', one on each of
two lines given in position, subtend an angle of constant

magnitude at a given point 0, the locus of the pole of the

line KA! with respect to a given ^I

circle X, whose centre is 0, is a

circle.

Dem.—Let AI, A'l be the

lines given in position, and let

JB, B', Q, be the poles of the

three lines AI, A'l, and AA'
with respect to X

;
then the

points B, B' are fixed, and the

lines BQ, B'Q are the polars of

the points A, A'
;

.*. the lines

OA, OA' are respectively _L to the lines BQ, B'Q
lence the Z BQB' is the supplement of the Z AOA'
therefore BQB' is a given angle, and the points B, B'

are fixed
;

therefore the locus of the point Q is a

circle.

Prop. 3.—For two homographic systems of points on

two lines given in position there exist two points, at each

of which the several pairs of corresponding points subtend

-equal angles.

Dem.—Let A, A' be two corre-

isponding points on the lines AI, A'l;
:and let 0, 0' be the points on the

lines AI, A'l which correspond to

the points at infinity on A'l, AI

Tespectively ;
then (see Prop. 10,

^Section IV., Book VI.) the rectangle
OA . O'A' = constant, say k^. Join

'00', and describe the triangle OEO' (see Prop. 15,

•Section I., Book VI.) having the rectangle OE . O'E of

its sides = h^, and having the difference of its base Z s

equal difference of base Z s of the A 010'. Then E,
the vertex of this A, will be one of the points re-

quired. Eor it is evident from the construction that

OE . O'E = OA . O'A. and that the Z AOE = A'O'E:
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.*. the As AOE, A'O'E are equiangular ;
.'. the Z OAE

= A'EO'
;

.-. if the points A, A' change position, the

lines EA, EA' will revolve in the same direction, and

through equal angles. Hence the Z AEA' is constant.

In the same manner, another point E can be found on

the other side of 00' such that the Z AFA' is constant.

Cor. 1 .
—Since the line AA' subtends a constant angle

at E, the locus of the pole of AA' with respect to a circle

whose centre is E is a circle. Hence the properties of

lines joining corresponding points on two lines divided

homographically may be inferred from the properties of

a system of points on a circle.

Cor. 2.—Since when A' goes to infinity A coincides

with 0, then OAis one of the lines joining correspond-

ing points. And so in like manner is O'A', and the poles
of these lines will be points on the circle which is the
locus of the pole of AA'.

Cor, 3.—The locus of the foot of the perpendicular
from E on the line AA' is a circle, namely, the inverse

of the circle which is the locus of the pole of AA'.

Cor. 4.—If two lines be divided homographically,

any four lines joining corresponding points are divided

equianharmonically by all the remaining lines joining

corresponding points. This follows from the fact that

any four points on a circle are subtended equianhar-

monically by all the remaining points of the circle.

Prop. 4.—If any figure A le given, ly taking the pole

of every line, and the polar of every point in it with

respect to any arlitrary circle X, we can construct a new

figure B, which is called the reciprocal of A with respect
to X. Thus we see that to any system of coUinear points
or concurrent lines ofA there ivill correspond a system of
concurrent lines or collinear points o/B ; and to any pair

of lines divided homographically in A there will correspond
in B two homographic pencils of lines. Lastly, the angl&
which any two points of A subtend at the centre of tho

reciprocating circle is equal to the angle made ly their

polar8 in B.
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Hence it is evident that, from theorems which hold
for A, we can get other theorems which are true for B.
This method, which is called reciprocation, is due to

Poncelet, and is one of the most important known to

Geometers.

"We give a few Theorems proved by this method :
—

(1). Any two fixed tangents to a circle are cut homo-

graphically ly any variable

tangent.

Dem.—Let AT, BT be the

two fixed tangents touching
the circle at the fixed points A
and B, and CD a variable tan-

gent touching at P. Join AP,
BP. I^ow AP is the polar of

C, and BP the polar of D ; and if the point P take four

different positions, the point C will take four different

positions, and so will the point D ;
and the anharmonic

ratio of the four positions of C equal the anharmonic ratio

of the pencil from A to the four positions of P (Prop. 1).

Similarly the anharmonic ratio of the four positions of

D equal the anharmonic ratio of the pencil from B to the

four positions of P
;
but the pencil from A equal the

pencil from B
;
therefore the anharmonic ratio of the

four positions of C equal the anharmonic ratio of the

four positions of D.

(2). Any four fixed tangents to a circle are cut ly any
fifth variable tangent in four points whose anharmonic
ratio is constant.

Dem.—The lines joining the point of contact of the

variable tangent to the points of contact of the fixed

tangents are the polars of the points of intersection of

the variable tangent with the fixed tangents ;
but the

anharmonic ratio of the pencil of four lines from a

variable point to four fixed points on a circle is con-

stant
;
hence the anharmonic ratio of their four poles

—
that is, of the four points in which the variable tangent
cuts the fixed tangent

—^is constfuit.
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(3). Li7ies drawn from any variable point in the plane
of a quadrilateral to the six points of intersection of its

four sides form a pencil in involution.

This Proposition is evidently the reciprocal of (1),

Prop. 9, Section YI. The

following is a direct proof :

Let ABCD be the quadri-

lateral, and let its opposite
sides meet in the points E
andF, and let be the point
in the plane of the quadri-
lateral

;
the pencil from to

the points A, B, C, D, E, E
is in involution.

Dem.—Join OE, cutting the sides AD, BC in X and

Y. JoinEF. I^ow, the pencil(O.XADF)=(E.XADF)
= (E.YBCE)=(O.YBCE)=(O.XBCE); .-. (O.EADE)
= (0 . EBCF). Hence the pencil is in involution.

(4). If two vertices of a triangle move on fixed lines,

while the three sides pass through three collinear points,
the locus of the third vertex is a right line. Hence, reci-

procally, If two sides of a triangle pass through fixed

points, while the vertices move on three concurrent lines,

the third side will pass through afixed point.

(5). To describe a triangle about a circle, so that its three

vertices may be on three given lines. This is solved by
inscribing in the circle a triangle whose three sides

shall pass through the poles of the three given lines,

and drawing tangents at the angular points of the in-

scribed triangle.

(4). Beianchon's Theoeem.—Ifa hexagon be described

about a circle, the three lines joining the opposite angula/r

points are concurrent.

This is the reciprocal of Pascal's Theorem : we prove
it as follows :

—
Let ABCDEF be the circumscribed hexagon; the

three diagonals AD, BE, CF are concurrent, For, let
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the points of contact be G, H, I, J, K, L.
A is the pole of GH, and D
the pole of JK, the line AD
is the polar of the point of

intersection of the opposite
sides GH and JK of the in-

scribed hexagon. In like

manner, BE is the polar of

the point of intersection of

the lines HI, KL, and CF
the polar of the point of

intersection of IJ and LG
;

but the intersections of

the three pairs of opposite
sides of the inscribed hexagon, viz., GH, JK ; HI, KL ;

IJ, LG, are, by Pascal's Theorem, collinear
;
therefore

their three polars AD, BE, CE, are concurrent.

. 0)' ^f t^o lines he divided Jiomographically, two lines

joining homologous points can he drawn
,

each of whidi

passes through a given point.

Eor, if AA' (see fig., Prop. 3) pass through a given
point P, join EP, and let fall a ± EG on AA'

;
then

{Cor. 2, Prop. 3) the locus of the point G is a O ;
and

fiince EGP is a right angle, the O described on EP as
diameter passes through G ; hence G is the point of
intersection of two given Os ;

and since two Os inter-
sect in two points, we see that two lines joining homo-
graphic points can be formed, each passing through P.
Now, if we reciprocate the whole diagram with respect
to a circle whose centre is P, the reciprocals of the
points A, A' will be parallel lines. Hence we have the
following theorem in a system of two homographic
pencils of rays :

—There exist two pairs of homologous
rays which are parallel to each other.

Cor.—There are two directions in which transver^
sals can be drawn, intersecting two homographic pen-
cils of rays so as to be divided proportionally, namely,
parallel to the pairs of homologous rays which are
parallel.
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(8). If we reciprocate Prop. 3 we have the following
theorem:—Being given a fixed point, namely, the centre

of the circle of reciprocation and two homographic pencils

of rays, two lines can he found {the polars of the points E
and F in Prop. 3), so that the portions intercepted on

each by homologous rays of the pencils will subtend an angle

of constant magnitude at the given point.

SECTIOI^ YIII.

Miscellaneous Exeecises.

1. The lines from the angles of a A to the points of contact of

any O touching the three sides are concurrent.

2. Three lines heing given in position, to find a point in one of

them, such that the sum of two lines drawn from it, making given,

angles with the other two, may he given.

3. From a given point in the diameter of a semicircle produced
to draw a line cutting the semicircle, so that the lines may have a

given ratio which join the points of intersection to the extremities

of the diameter.

4. The internal and external hisectors of the vertical angle of

a A meet the hase in points which are harmonic conjugates to the
extremities.

5. The rectangle contained by the sides of a A is greater than
the square of the internal bisector of the vertical angle by the

rectangle contained by the segments of the base.

6. State the corresponding theorem for the external bisector.

7. Given the base and the vertical angle of a A, find the fol-

owing loci :
—

(1). Of the intersection of perpendiculars.

(2). Of the centre of any circle touching the three sides.

(3). Of the intersection of bisectors of sides.

8. If a variable O touch two fixed Os, the tangents drawn to it

from the limiting points have a constant ratio.
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9. The J- from the right angle on the hypotenuse of a right-

angled A is a harmonic mean between the segments of the hypo-
tenuse made by the point of contact of the inscribed circle.

10. If a line be cut harmonically by two Os, the locus of the
foot of the ± , let fall on it from either centre, is a O, and it cuts

any two positions of itself homographically (see Prop. 3, Cor. 2,
Section VII.).

11. Through a given point to draw a Hne, cutting the sides of

a given A in three points, such that the anharmonic ratio of the

system, consisting of the given point and the points of section,

may be given.

12. If squares be described on the sides of a A and their cen-

tres joined, the area of the A so formed exceeds the area of the

given triangle by ^th part of the sum of the squares.

13. The locus of the centre of a O bisecting the circumferences
of two fixed Os is a right line.

14. Divide a given semicircle into two parts by a 1 to the

diameter, so that the diameters of the Os described in them may
be in a given ratio.

15. The side of the square inscribed in a A is half the har-
monic mean between the base and perpendicular.

16. The Os described on the three diagonals of a quadrilatera
are coaxal.

17. If X, X' be the points where the bisectors of the Z. A of

a A and of its supplement meet the side BC, and if Y, Y'; Z, Z',
be points similarly determined on the sides CA, AB

;
then

1 1 1

XX'
^
YY'

"^
ZZ'

~
'

«« *2 c2 ^^^
XX'

+ YY^+ZZ^
= ^-

18. Prove Ptolemy's Theorem, and its converse, by inversion

19. A line of given length slides between two fixed lines : find

the locus of the intersection of the ±8 to the fixed lines from the

extremities of the sliding line, and of the ±s on the fixed lines

from the extremities of the sliding line.

20. If from a variable point P ±s be drawn to three sides of

a A
; then, if the area of the A formed by joining the feet of

these ±s be given, the locus of P is a circle.
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CG.CH;.

21. If a variable touch two fixed Os, its radius varies as the

sciuare of the tangent drawn to it from either limiting point.

22. If two Os, whose centres are 0, 0', intersect, as in EucHd
(I. 1), and 00' be joined, and produced to A, and a O GDH be^

described, touching the Os whose centres are 0, 0', and also-

touching the line AO
; then,

if we draw the radical axis

EE' of the Os, intersecting
00' in C, and the diameter
DF of the O GHD, and join

EF, the figure CDFE is a

square.

Dem.—The line joining
the points of contact G and
H will pass through C, the
internal centre of similitude

of the Os 0, 0'
; therefore CG . CH = CE2

;
but CD^

therefore CD = CE.

Again, let 0" be the centre of GDH, and D' the middle point
of AO

;
then the O whose centre is D' and radius D'A touches the

Os 0, 0'; hence (by Theorem 7, Section V.) the ± from 0" on
EE' : 0"p : : CD' : D'A

;
that is, in the ratio of 2 : 1. Hence the

Proposition is proved.

23. If a quadrilateral be circumscribed to a O, the centre and
the middle points of the diagonals are collinear.

24. If one diagonal of a quadrilateral inscribed in a O be bi-

sected by the other, the square of the latter = half the sum of the-

squares of the sides.

26. If a A given in species moves with its vertices on three
fixed lines, it marks off proportional parts on these lines.

26. Through the point of intersection of two Os draw a line
so that the sum or the difference of the squares of the chords of
the Os shall be given.

27. If two Os touch at A, and BC be any chord of one touching-
the other

;
then the sum or difference of the chords AB, AC bears

to the chord BC a constant ratio. Distinguish the two cases.

28. If ABC be a A inscribed in a O, and if a || to AC through,
the pole of AB meet BC in D, then AD is = CD.

29. The centres of the four Os circumscribed about tho As-
formed by four right lines are concyclic,

30. Through a given point draw two transversals which shall

intercept given lengths on two given lines.
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31. If a variable line meet four fixed lines in points whose
anharmonic ratio is constant, it cuts these four lines homographi-
caUy.

32. Given the ± CD to the diameter AB of a semicircle, it is

required to draw through A a chord, cutting CD in E and the

semicircle in F, such that the ratio of CE : EF may be given.

33. Draw in the last construction the line AEF so that the

quadrilateral CEFB may be a maximum.

34. The O described through the centres of the three escribed

Os of a plane A, and the circumscribed O of the same A, will

have the centre of the inscribedO of the A for one of their centres

of similitude.

35. The 0s on the diagonals of a complete quadrilateral cut

orthogonally the O described about the A formed by the three

diagonals.

36. When the three ±s from the vertices of one A on the

sides of another are concurrent, the three corresponding 1 s from
the vertices of the latter, on the sides of the former, are concur-
rent.

37. If a O be inscribed in a quadrant of a O ;
and a second O

be described touching the O ,
the quadrant, and radius of quadrant ;

and a ± be let faU from the centre of the second O on the line

passing through the centres of the first O and of the quadrant ;

then the A whose angular points are the foot of the 1, the
centre of the quadrant, and the centre of the second O, has its

sides in arithmetical progression.

38. In the last Proposition, the ±s let fall from the centre of

the second O on the radii of the quadrants are in the ratio of

1 : 7.

39. When three Os of a coaxal system touch the three sides of

a A at three points, -vs^hich are either collinear or concurrently
connectant with the opposite vertices, their three centres form,
with those of the three Gs of the system which pass through the

vertices of the A
,
a system of six poiats in involution.

40. If two Os be so placed that a quadrilateral may be in-

scribed in one and circumscribed to the other, the diagonals of

the quadrilateral intersect in one of the limiting points.

41. If from a fixed poiat _Ls be let fall on two conjugate rays
of a pencil in involution, the feet of the JL s are collinear with a
fixed point.

42. Miquel's Theorem.—If the five sides of any pentagon
ABODE be produced, forming five As external to the pentagon,
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the Os described about tbese As intersect in five points A", B",

C", D", E", wbicb are concyclic.

Dem.—Join E"B', E"D", D"C", C"B", C"C
; join also D"D

and E'B", and let them produced meet in G-. Now, consider tbe A
AB'E', it is evident the O described about it {Cor. 3, Prop. 12,
Book III.) will pass tbrougli the points E", B"

;
hence the four

points E", B', E', B" are concyclic ;
.-. the L GB"E" = E'B'E";

but E'B'E" = GD"E"
;

.-. L GB"E" = GD"E". Hence the

O through the points B", D", E" passes through G.

Again, since the figure CDD"C" is a quadiilateral in a 0, the

L GDE' = D"C"C, and the L GE'D = B"C"C (III. 21) ;

. ^ B"C"D" = GDE' + GE'D. To each add L E'GD, and
we see that the figure GD"C"B" is a quadrilateral in a

;

hence the through the points B", D", E" passes through C".
In Hke manner it passes through A". Hence the five points

A", B", C", D", E" are concyclic.

43. If the product of the tangents, from a variable point P to

two given Os, has a given ratio to the square of the tangent from
P to a third given coaxal with the former, the locus of P is a
circle of the same system.
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44. Through the vertices of any A are drawn any three paral^
lei lines, and through each vertex a line is di-awn, making the

same L with one of the adjacent sides which the parallel makes
with the other

;
these three lines are concurrent. Requii-ed the

locus of the point in which they meet.

45. If from any point in a given line two tangents he drawn to

a given O, X, and if a O, Y, be described touching X and the two
tangents, the envelope of the polar of the centre of Y with respect
to X is a circle.

46. The extremities of a variable chord XY of a given O are

joined to the extremities of a fixed chord AB
; then, ifmAX . AY

+ n BX . BY be given, the envelope of XY is a circle.

47. If A, A' be conjugate points of a system in involution, and
if AQ, A'Q, be L to the lines joining A, A' to any fixed point P, it

ig requii-ed to find the locus of Q.

48. If a, a', b, b', c, c\ be three pairs of conjugate points of a

system in involution
; then,

(1). ab' . bcf . ca' = — a'b , b'c . da.

(2). aV .be .dd=-a'b .b'd .ca.

ab . aV a'b . a'b'

<3)
. a(f

49. Construct a right-angled A, being given the sum of the

base and hypotenuse, and the sum of the base and perpendicular.

60. Given the perimeter of a right-angled A whose sides are

in arithmetical progression : construct it.

51. Given a point in the side of a A
;
inscribe in it another A

similar to a given A ,
and having one L at the given point.

52. Given a point D in the base AB produced of a given A ABC ;

draw a line EF through D cutting the sides so that the area of

the A EFC may be given.

53. Constnict a A whose three Lb shall be on given Os,
and whose sides shaU pass through three of their centres of

similitude.

54. From a given point three lines OA, OB, OC are diawn
to a given line ABC

; prove that if the radii of the Os inscribed

in OAB, OBC are given, the radius of the O inscribed in OAC
will be determined.

55. Equal portions OA, OB are taken on the sides of a given
right L AOB, the point A is joined to a fixed point C, and a J. let

fall on AC from B : the locus of the foot of this 1 is a circle.
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56. If a segment AB of a given line be cut in a given anhar-
monic ratio in two variable points X, X', then tbe anharmonic
ratio of any four positions of X will be equal to the anharmonic
ratio of the four corresponding positions of X'.

57. If a variable A inscribed in a O, X, whose radius is R, has
two of its sides touching another O, Y, whose radiu^ is r, and
whose centre is distant from the centre of X by 5

;
thfen the dis-

tance of the centre of the O coaxal with X and Y, which is the

envelope of the third side of the A from the centre of X,

, ^ (i22
-

52)2

58. In the same case the radius of the O which is the enve-

lope of the third side is

»-2
(
jg _ p)

_
Jipi ^

, i22 - 52
where p = .

59. If two tangents be drawn to a O, the points where any
third tangent is cut by these will be harmonic conjugates to the

point of contact and the point where it is cut by the chord of
contact.

60. If two points be inverse to each other with respect to anyO
,
then the inverses of these will be inverse to each other with

respect to the inverse of the O. Hence it follows 'that if two
figures be inverse to each other with respect to any O, their

inverses will be inverse to each other with respect to the inverse
of the circle.

61. Malfatti's Problem.—To inscribe in a A three Os which
touch each other, and each of which touches two sides of the A .

Analysis.—Let L, M, N be the points of contact of three 0»
which touch one another, and each touch two sides of the A ABC ;

draw the common tangents DE, FG, HI to these Os at their

points of contact L, M, N ; then, since these lines are the radical

axes of the Os taken in pairs, they are concun-ent: let them
meet in K.

Now, it is evident that FH - HD = FO - DP = FM - DL =
FK - DK. Hence H is the point of contact with FD of the O
described in the A FKD. In like manner, E and G are the

points of contact of Os which touch the triads of Hnes IK, KF>
AC

; and IK, DK, AB, respectively.
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Again, HN = HP = QL, and NS = EE = EL ; .-. HS = EQ j

. (see 6, Prop. 1, Section V.) the tangents at E and H to the O^
A

ES and II Q, meet on their O of similitude
;

.*. C is a point on the
of similitude of the Os ES and HQ, ; and therefore these Os

bubtend equal Z. s at C. Also, three common tang ,nts of the Os HQ,
ES, PNlt, viz., QL, SX, KF, are concurrent; .. (see Ex. 48,
Section II., Book III.) C must be the point of concun-ence of

three other common tangents to the same Os. Hence the second
transverse common tangent to HQ and ES must pass through G ;

and since C is a point on their O of similitude, this transverse

common tangent must bisect the L ACB. In like manner it is

jn-oved that the bisectors of A and B are transverse common tan-

gents to the Os ES and GT, and to HQ and GT, respectively.

Hence, we have the following elegant construction :
—Let V be

the point of concunence of the three bisectors of the Z. s of the A
ABC. In the As VAB, VBC, VGA, describe three Os : these Os-
will evidently, taken in pairs, have VB, VG, VA as transverse-

common tangents ;
then to the same pairs of Os draw the three

other transverse tangents ; these wiU be respectively ED, GF,
HI; and the Os described touching the triads of lines AB, AG,
ED; AB, BG, GF; AB, BG, HI, wiU be the required circles.

This construction is due to Steiner, and the foregoing simple
and elementary proof to Dr. Hart (see Quarterly Journal, vol. i.

p. 219).

62. If a transversal passing through a fixed point cut any
nimiber of fixed lines in the points A, B, G, &c., and if P be a
point such that 1111

OP OA
^

OB 00
+ &C,

the locus of P is a right line.
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63. The sum of the squares of the radii of the four 0s, cut-

ting orthogonally the inscrihed and escribed Os of a plane A,
taken three by three, is equal to the square of the diameter of the
circumscribed O .

64. Describe through two given points a O cutting a given arc
of a given O in a given anharmonic ratio.

65. All Os which cut three fixed Os at equal L s form a coaxal

system.

66. Being given five points and a line, find a point on the line,
so that the pencil formed by joining it to the five given points
shall form an involution with .the line itself.

67. If a quadrilateral be inscribed in a circle, the circle de-
«cribed on the third diagonal as diameter will be the circle of
similitude of the circles described on the other diagonals as dia-

meters.

68. If ABC be any A, B'C a line drawn || to the base BC;
then, if 0, 0' be the escribed Os to ABC, opposite the Z. s B and
€ respectively, d the inscribed O of AB'C, and O'l the escribed
•O opposite the L A

; then, besides the lines AB, AC, which are
•common tangents, 0, 0', d, d, are all touched by two other
circles.

69. When two Os intersect orthogonally, the locus of the point
whence four tangents can be drawn to the Os, and fonning a
iarmonic pencil, consists of two lines, viz., the polars of the
centre of similitude of the two circles.

70. If two lines be divided homogi-aphically in the two sys-
tems of points a, h, c, &c., a', V^ c', &c., then the locus of the

points of intersection of ah'
^ a'b, ac\ a'c, ad\ aid, &c., is a right

line.

71. Being given two homographic pencils, if through the point
of intersection of two corresponding rays we di-aw two transver-

sals,^
which meet the two pencils in two series of poiats, the lines

joining corresponding points of intersection are concurrent.

_
72. Inscribe a A in a O having two sides passing through two

given points, and the third || to a given line.

73. If two As be described about a O, the six angular points
are such that any four are subtended equianharmonically by the
-other two.

74. Given four points A, B, C, D on a given line, find "two
other points X, Y, so that the anharmonic ratios (ABXY), (CDXY)
may be given.

75. If two quadrilaterals have the same diagonals, the eight
points of intersection of their sides are such that any four are
subtended equianharmonically by the other four.
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76. Given three rays A, B, C, find three other rays X, Y, Z
through the same vertex 0, so that the anharmonio ratios of the

pencils (0 . ABXY), (0^. BCYZ), (0 . CAZX), may be given.

77. If a A similar to that formed by the centres of three given
Os slide with its three vertices on their circumferences, the ver-
tices divide the Os homographically.

78. Find the locus of the centre of a O, being given that the

polar of a given point A passes through a given point B, and
the polar of another given point C passes through a given
point D.

79. If a A be self-conjugate with respect to a given O, the-

O described about the A is orthogonal to another given circle.

80. The Os self-conjugate to the As formed by four lines are
coaxal.

81. The pencil formed by lines II to the sides and diagonals of a

quadrilateral is involution.

82. If four Os be co-orthogonal, that is, have a common or-

thogonal O, their radical axes form a pencil ia involution.

83. In a given O to inscribe a A whose sides shall divide in a

given anharmonic ratio given arcs of the circle.

84. "When four Os have a common point of intersection, their

six radical axes form a pencil in involution.

85. The pencil formed by drawing tangents from any point in

their radical axis to two O s, and drawing two lines to their centres

of similitude, is in involution.

*86. If a pair of the opposite Z. s of a quadrilateral be equal to a

right Z.
,
then the sum of the squares of the rectangles contained

by the opposite sides is equal to the square of the rectangle con-

tained by the diagonals.

87. Prove that the problem 17, page 38,
" To inscribe in a given

A DEF, a A given in species whose area shall be a minimum,"
admits of two solutions

;
and also that the point 0' in the second

solution, which corresponds to in the first, is the inverse of O
with respect to the circle which circumscribes the A DEF.

88. The line joining the intersection of the Is of a A to the

centre of a circumscribed O is 1 to the axis of perspective of the

given A, and the A formed by joining the feet of the Is.

* This Theorem is due to Bellavitis. See YasMeihodedesEquipollences,
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89. If two Os whose radii are R, R', and the distance of whose
centres is 5, be such that a hexagon can be inscribed in one and
-circumscribed to the other

;
then

1 1

{R2 -
S2)2 + 4II'2R5 (R2

-
52)2

- iR'-iRS

1

2B,'^ (R2 + §2)
_

(1^2
_

^zyz'

90. In the same case, if an octagon be inscribed in one and
^circumscribed to the other,

IMi(R2
-

52)2 + 4R'^B5 j ((R2
_

52yi
_ 4ii'2£5

2R'2(R2 4. 52) -(R^-S

91. If a variable O touch two fixed Os, the polar of its centre
with respect to either of the fixed Os touches a fixed circle.

92. If a O touch three Os, the polar of its centre, with respect
^0 any of the three Os, is a common tangent to two circles.

*93. Prove that the Problem, to inscribe a quadrilateral, whose
perimeteris a minimum in another quadrilateral, is indeterminate
•or impossible, according as the given quadrilateral has the sum of
its opposite angles equal or not equal to two right angles.

94. If a quadiilateral be inscribed in a O, the lines joining the
feet of the ± s, let fall on its sides from the point of intersection

•of its diagonals, willfonn an inscribed quadrilateral Q, of minimum
perimeter ;

and an indefinite number of other quadrilaterals may be
inscribed whose sides are respectively equal to the sides of Q, the

perimeter of each of them being equal to the perimeter of Q.

95._
The perimeter of Q is equal to the rectangle contained by

the diagonals of the original quadrilateral divided by the radius of
the circumscribed circle.

96. Being given four lines forming four As, the sixteen cen-
tres of the inscribed and escribed Os to these As lie four by four
on four coaxal circles.

97. If the base of a A be given, both in magnitude and posi-
tion, and the ratio of the sum of the squares of the sides to the

area, the locus of the vertex is a circle.

• The Theorems 87 and 93-96 have been communicated to the author
^y Mr. W. S. M'Cay, f.t.cd.



BOOK VI. 159

98. If a line of constant length slide between two fixed lines,
the locus of the centre of instantaneous rotation is a circle.

99. If two sides of a A given in species and magnitude slide

•along two fixed Os, the envelope of the third side is a circle.

(Bobillier).

100. If the lengths of the sides of the A in Ex. 99 he denoted

hy a, b, c, and the radii of the three Os by a, fi, y; then
aa ± b$ ± cy

— twice the area of the A
,
the sign + or — being

used according as the s touch the sides of the A internally or

externally.

101. If five quadrilaterals be formed from five lines by omitting
each in succession, the lines of collinearity of the middle points
•of their diagonals are concurrent. (H. Fox Talbot.)

102. If D, D' be the diagonals of a quadiilateral whose four
isides are a, b, c, d, and two of whose opposite angles are 6, 6', then

D2D'2 = a^c'^ + b^d^ - 2abcd cos {0 + 6').

103. If the sides of a A ABC, inscribed in a O, be cut by a
transversal in the points a, b, c. If a, 0, y denote the lengths of
"the tangents from a, b, c to the O, then aky = Ab .Be. Ca.

104. If a, b, c denote the three sides of a A, and if a, /3, 7 de-
note the bisectors of its angles,

Sabc .8 . area

{a + b){b + c){e-i-a)

105. If a A ABC circumscribed to a O be also circumscribed

to another A A'B'C, and in perspective with it, the tangents from
the vei-tices of A'B'C wiU meet its opposite sides in three coUinear

3)oints.

106. If two sides of a triangle be given in position, and its

area given in magnitude, two poiats can be found at each of

A\'hich the base subtends an angle of constant magnitude.

107. If two sides of a triangle and its inscribed cii-cle be given
in position, the envelope of its circumscribed circle is a circle.—
Mannheim.

108. If the circumference of a circle be divided into an uneven
number of equal parts, and the points of division denoted by the

indices 0, 1,2, 3, &c., then if the point of the circle diametri-

cally opposite to that whose index is zero be joined with all the

points in one of its semicircles, the rectangle contained by the

chords terminating in the points 1, 2, 4, 8 . . . is equal to the

X)Ower of the radius denoted by the number of chords.
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109. Aright line, which bisects the perimeter of the maximum'
figure contained by that perimeter, bisects also the area of the

figure. Hence show, that of all figures having the same perimeter
a circle has the greatest area.

110. The polar circle of a triangle, its circumscribed circle,,
and nine-points circle, are coaxal.

111. The polar circles of the five triangles external to a pen-
tagon, which are formed by producing its sides, have a common
orthogonal circle.

112. The six anharmonic ratios of four coUinear points can be

expressed in terms of the trigonometrical functions of an angle,

namely,
—

sin^^,
—

cos^^, tan^c^, -cosec^^, -sec^</>, cot^4>.

Show how to construct (p.

113. If the sides of a polygon of an even number of sides be-

out by any transversal, the product of one set of alternate seg-
ments is equal to the product of the other set. If the number.of
sides of the polygon be odd, the rectangles will be equal, but will

have contrary signs (Carnot).

114. If from the angular points of a polygon of an odd number
of sides concurrent lines be drawn, dividing the opposite sides

each into two segments, the product of one set of alternate seg-
ments is equal to the product of the other set (Poncelet).

115. If the points at infinity on two lines divided homo-

graphically be corresponding points, the lines are divided pro-

portionally.

116. To construct a quadrilateral, being given the four sides ant^

the area.

Analysis.— Let ABCD be
the required quadrilateral. The
four sides, AB, EC, CD, DA are

given in magnitude ; and the

area is also given. Draw AE
parallel and equal to BD. Join

ED, EC; draw AF, CG per-

pendicular to BD
; produce CG

to H
;
bisect BD in 0.

Now we have

and
BC2 - CD2 = 2BD . OG

AD2 - AB2 = 2BD . OF i
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therefore

BC2 + AD2 - AB2 - CD2 = 2BD . FG = 2AE . AH.

Hence, since the four lines AB, BC, CD, DA are given in

magnitude, the rectangle AE . AH is given. Now, if we suppose
the line AD to be given in position, since DE is equal to AB,
which is given in magnitude, the locus of the point E is a circle

;

and since the rectangle AH . AE is given, the locus of the pointH
is a circle, namely, the inverse of the locus of E.

Again, since the lines AE, AC are equal, respectively, to the

diagonals of the quadrilateral, and include an angle equal to that

between the diagonals, the area of the triangle ACE is equal to

the area of the quadrilateral. Hence the area of the triangle
ACE is given. Therefore the rectangle AE . CH is given. And
it has been proved that the rectangle AE .AH is given ; therefore

the ratio AH : CH is given. Hence the triangle ACH is given
in species. And since the point A is fixed, and H moves on a

given circle, C moves on a given circle. And since D is fixed,
and DC given in magnitude, the locus of the point C is another
circle. Hence C is a given point.

117 Prove from the foregoing analysis that the area is a maxi-
mum when the four points A, B, C, D are concyclic.

118. In the same case prove that the angle between the diagonals
is a maximum when the points are concyclic.

119. The difference of the squares of the two interior diagonals
of a cyclic quadrilateral is to twice their rectangle as the distance

between their middle points is to the third diagonal.

120. Inscribe in a given circle a quadrilateral whose three

diagonals are given. [Make use of Ex. 119.]

121. Given the two diagonals and all the angles of a quadi i-

lateral ;
construct it.

122. Ifh be one of the limiting points of two circles, 0, 0', and

LA, LB two radii vectors at right angles to each other, and termi-

nating in these circles, the locus of the intersection oftangents at A
and B is a circle coaxal with 0, 0'.

Dem.—Join AB, intersecting the circles again in G and H,
and let fall the perpendiculars OC, O'D, LE.
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Then

AL2 : AB . AH : : OL : 00' [vi. Sect. v. Prop. i. (3)].

But

Hence

therefore

In like manner

Hence

AL^ = AB.AE.

AE : AH : : OL : 00'
;

AE : HE : : OL : O'L.

GE : BE : : OL : O'L.

AG : BH : : OL : O'L,

that is, in a given ratio. Therefore the tangents AK, BK are in

a given ratio [Euclid, VI. iv. Ex. 2] ;
and the locus of K is a

circle coaxal with 0, 0'.

This theorem is the reciprocal of a remarkable one in Confocal
Conies (see Conies^ page 184). The demonstration of it here

given, as well as that of the Proposition Ex. 116, have been com-
municated to me by W. S. M'Cay, f.t.c.d.

123. In the same case the locus of the point E is a circle co-

axal with 0, 0'.

124. If 0" be the centre of the locus of E, then LO" is half

the harmonic mean between LO and LO'.
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125. If r be the radius of the inscribed circle of a triangle ABC,
and p the radius of a circle touching the circumscribed circle in-

ternally and the sides AB, AC
;
then p cos^ ^A = r.

126. Prove the corresponding relation p' cos^ |A = / for the
case of external contact.

127. Prove by inversion the equality of the two circles in

Prop. 8, Cor. 4, p. 32.

128. If AB, CD be the diameters of two circles, and be also

segments of the same line, prove that the two circles are equal
which touch respectively the circles on AB, CD

;
their radical

axis on opposite sides, and any circle whose centre is the middle

point of AD.—(Steiner.)

129. Given three points, A, B, C, and three multiples, I, m, n,
find a point such that lAO + wBO + «C0 may be a minimum.

130. If A, B, C, D be any four points connected by four cii'cles,

each passing through three of the points, then not only is the

angle at A between the arcs ABC, ADC equal to the angle at C
between CDA, CBA, but it is also equal to the angle at D be-

tween the arcs DAB, DCB
;
and to the angle at B between BCD,

BAD .
—

(Hamilton. )

131. If A, B, C be the escribed circles of a triangle, and if

A', B', C be three other circles touching ABC as follows, viz.

each of them touching two of the former exteriorly, and one in-

teriorly ; then A', B', C intersect in a common point P, and the
lines of connexion at P with the centres of the circles are perpen-
dicular to the sides of the triangle.

132. The line of collinearity of the middle points of the diago-
nals of a complete quadrilateral is perpendicular to the line of

collinearity of the orthocentres of the four triangles.

133. The sines of the angles which the line of collinearity of

the middle points of the diagonals of a complete quadrilateral
makes with the sides are proportional to the diameters of the

circles described about its four triangles.

134. If r, p be the radii of two concentric circles, and R the
radius of a third circle (not necessarily concentric), so related to

them that a triangle described about the circle r may be inscribed

in R, and a hexagon about p may be inscribed in R : then

r r _ 2p

r
"^

p

~
R'
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135. If E, r be the radii of two circles, C, C, of which the

former is supposed to include the latter
;
then if a series of circles

Oi, O2, O3, . . . 0,n be described touching both and touching each
other in succession, prove that if traversing the space between

C, C n times consecutively the circle Om touch Oi if 5 be the

distance between the centres,

(R -
r)-

- 4Rr tan^ — = 5-. —
(STEiNF,r>.)

fn,

136. If A, B, C, D be any four points, and if the three pairs
cf lines which join them intersect in the points h, c, d, then the

nine-points circles of the four triangles ABC, ABD, ACD, BCD,
and the circle about the triangle bed, all pass through a common
point P.

137. If Ai, Bi, Ci, Di be the orthocentres of the triangles

A, B, C, &c., and ^1, ci, di the points determined by joining

Ai, B], Ci, Di, in pairs; then the nine-points circles of the four-

triangles Ai, Bi, Ci, &c., and the circumscribed circle of the tri-

angle biC\di, all pass through the former point P.— (Ex. 29.)

138.* The Stmson's lines (Book iii. Prop. 12) of the extremi-

ties of any diameter of the circumcircle of a triangle intersect at

light angles on the nine-points circle of the triangle.

139.* Every tangent to a circle is out harmonically by the sides

of a circumscribed square, and also by the sides of a circumscribed

trapezoid whose non-parallel sides are equal.

140.* A variable chord of a circle passes through a fixed point ;

its extremities and the fixed point are joined to the centre
; prove

that the circumcircles of the three triangles so formed touch in

every position a pair of circles belonging to two given coaxal

systems.

141. WeilVs Theorem.—If two circles be so related that a poly-
gon of n sides can be inscribed in one and circumscribed to the

other, the mean centre of the points of contact is a fixed point.

142. In the same case the locus of the mean centre of any
number (n

-
r) of the points is a circle.

Weill's Theorem was published in Liouville's Journal,
Third Series, Tome IV., page 270, for the year 1878. A
proposition, of which Weill's is an immediate inference, was
published by the Author in 1862, in the Quarterly Journal

of Pure and Applied Mathematics, Vol. V., page 44, Cor. 2.

* Theorems 138-140 have been communicated to the author

by Robert Graham, Esq., a.m., t.c.d
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SUPPLEMENTARY CHAPTER.

RECENT ELEMENTARY GEOMETRY.

SECTION I.

Theoet op Isogokal and Isotomic Points, and of

Antipakallel and Symmedian Lines.

Def.—Two lines AX, AY are said to he Isogonal

Conjugates, with respect to an angle BAC, when they make

eqiial angles with its bisector.

Prop. 1.—If from
two points X, Y on two

AX, AY, which
are isogonal conjugates
with respect to a given

angle BAC, perpendi-
culars XM, YN, XP,
YQ, le drawn to its

sides
;
then—

1°. The rectangle
XM . YN = XP . YQ.

2°. Thepointsl^,!^,

P, Q, are coneydie.

3°. MP is perpendicular to AY, andNQ to AX.

Dem.—1°. From the construction, we have evi-

dently XM : AX : : YQ : AY, and AX : XP : : AY
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: YN. Hence [Em. V. xxii.] XM : XP : : YQ : YN
;

therefore XM . YN = XP . YQ.

2°. In the same manner AM : AX : : AQ : AY, and
AX: AP: : AY: AN. Hence AM : AP :: AQ : AIS^

;

therefore AM . AIS" = AP . AQ. Hence the points M,
N, P, Q are coneyclic.

3°. Since the angles AMX, APX are right, AMXP
is a cyclic quadrilateral ;

therefore the angle MAX =
MPX

;
but MAX = YAQ. Hence MPX = YAQ, and

PX is perpendicular to AQ. Hence PM is perpendi-
cular to AY. Similarly, QN is perpendicular to AX.

CoE. 1.—If the rectangle contained ly the perpendi-
culars from two given points on one of the sides of a given

angle he equal to the rectangle contained ly the perpendi-
culars from the same points on the other side, the lines

joining the vertex of the angle to the points are isogonal

conjugates with respect to the angle.

Prop. 2.—The isogonal conjugates of three concurrent

lines AX, BX, CX, with respect to the three angles of a

triangle ABC, are concurrent.

Dem.—Let the isogo-
nal conjugates of AX, BX
be AY, BY, respectively.
Join CY. It is required
to prove that CY is the

isogonal conjugate of CX.
From 1°, Prop. 1, the

rectangles of the perpen-
diculars from X, Y on the
lines AC, BCare each equal
to the rectangle contained

by the perpendiculars from X, Y on AB. Hence they
are equal to one another, and therefore, by Prop. 1,

Cor. 1, the lines CX, CY are isogonal conjugates with

respect to the angle C.
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Def.—The points X, Y are called isogonal conjugates
with respect to the triangle ABC.

CoE. 1 .
—

If X, Y le isogonal conjugates with respect
to a triangle, the three rectangles contained hy the dis'

tances of X, Y from the sides of the triangle are equal to

one another.

CoE. 2.—Tlie middle point of the line XY is equally
distant from the projections of the points X, Y on the

three sides of the triangle.

Exercises.

1. The sum of the angles BXC, BYC is 180° + A.

2. AM2 : AN2 : : BM . MC : BN . NO. (Steiner.)

3. If the lines AX, AY meet the circumcircle of the triangle
ABC in M', N', then the rectangles AB . AC, AM . AN', and
AM'. AN are equal to one another.

4. The isogonal conjugate of the point M' is the point at in-

finity on the line AN'.

5. If upon the sides of a triangle ABC three equilateral tri-

angles ABC, BCA', CAB' be described either externally or in-

ternally, the isogonal conjugate of the centre of perspective
of the triangles ABC, A'B'C, is a point common to the three

Apollonian circles of ABC. See Cor. 3, page 86.

6. If the lines MX, Q,Y in fig. Prop. 1, intersect in D, and
the lines MP, NQ, in E, the lines AD, AE are isogonal conjugates
with respect to the angle BAC.

7. If D, E be the points where two isogonal conjugates, with

respect to the angle BAC, meet the base BC of the triangle BAC,
and if perpendiculars to AB, AC at the points B, C meet the per-

pendiculars to BC at D, E in the points D', E'
; D", E", respec-

tively ; then BD'. BE' : CD". CE" : : AB* : AC*.

8. In the sam£ case BD . BE : CD . CE : : AB^ : AC^.

n2
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Pep.—The right lines AB', AC are said to he iso-

tomic conjugatesf
with respect to an angle BAG, of the

triangle ABC, when the intercepts BB', CC on the base

are equal.

Prop. 3.—If two points X, Y, in the plane of a

triangle he such that the

lines AX, AY are iso-

tomic with respect to the

angle BAG; BX, BY
with respect to ABG;
then GX, GY are iso-

tomic conjugates with

respect to AGB.

Dem.—Produce AX,
AT to meet BC in A',
A"

; BX, BY to meet
^ A A'

AG in B', B"
;
and GX, GY to meet AB in C', C'', re-

spectively. Then AB'. BG'. GA' = A'B . B'G . G'A
;
and

AB''. BG". GA" = A"B . B"G . G"A. [VI., Section i.,

Prop. 2.]

Hence, multiplying these equations, and omitting
terms that cancel each other, we get BC'. AC" = C'A .

C'A. Hence BG" = C'A. q.e.d.
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Def.—Two points, X, Y, are said to he isotomic conju-

gates, with respect to a triangle ABC, when the pairs of
lines AX, AY

; BX, BY
; CX, CY are isotomic con-

jugateSy with respect to the angles A, B, C respectively.

Exercises.

1. If the multiples for which the point X is the mean centre of

the points A, B, C be o, )3, 7 ; prove that -, -,
- are the mul-

a p 7
tiples for which the isotomic conjugate of X is the mean centre of

the points A, B, C.

2. If a right line meet the sides of a triangle in the points A',

B', C ; prove that the triads of points in which the isogonal and
the isotomic conjugates of AA', BB', CC, with respect to the

angles A, B, C, meet the sides of the triangle, are each collinear.

Def.—Lines BC, B'C are said to le antiparallel, with

A

respect to the angle A, when the angle ABC is eqtml to

AC'B'.

There are three systems of antiparallels with re-

spect to a triangle ABC.

1°.—Antiparallels to BC with respect to the opposite

angle A.

2° „ CA „ B.

3°. „ AB „ C.

Prop. 4.— Tlie antiparallels to the sides of a triangle
are parallel to the tangents to its circiimcircle at the

angular points.
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Por if LMN be the triangle formed by the tangents,
the angle MAC is [^JEuc. III. xxxii.] equal to ABC ;

therefore MAC = AC'B', and hence AM is parallel to

C'B'.

CoK. 1.—The points B', C ; B, C, are coneydie.

OoE. 2.—The lines joining the feet of the perpendicU'
lars of a triangle are antiparallel to its sides.

Def.—The isogonal conjugate of a median AM of a

triangle is called a symmedian.

It follows from Prop. 2 that the three symmedians
of a triangle are concurrent. The point of concur-
rence (K) is called the symmedian point of the triangle.

Prop. 5.—The perpendiculars from K on the sides of
the triangle are proportional to the sides.

Dem.—Let the perpendiculars from M on the sides

AB, AC be MD, ME, and from K on the three sides be

X, y, %. Then [Prop. 1, 1°] MD . e = ME . y ;
but MD .

AB = ME . AC. Hence y : z : : AC : AB, which proves
the proposition.
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Pi X y _% 2A
tOE. 1.— _ = -=_=

-^_^^_^.

CoE. 2.—The symmedians of a triangle are the medians

of its antiparallels.

CoE. 3.—The symmedian AS divides BC in the ratio

AB« : AC^

CoE. 4.—The multiples for which K is the mean centre

of the points A, B, C are a^, V^, c^.

CoE. 5.—The point K is the isogonal conjugate of the

centroid of the triangle.

Prop. 6.—The symmedians pass through the poles of
the sides of the triangle ABC with respect to its circum-

circle.

Dem.—Let A' be the pole of BC. Let fall perpen-
diculars AT, A'G

;
then A'F : A'G : : sin A'BF :

sin A'CG, or : : sin ACB : sin ABC
;

.'. AT : A'G : : AB
: AC : : perpendicular from. K on AB : perpendicular
from K on AC. Hence the points A, K, A' are col-

linear.

CoE.—The polar of K is the axis of perspective of

ABC, and its reciprocal with respect to the circumcircle.

Prop. 7.—The sum of the squares of the distances of

"Kfrom the sides o/ ABC is a minimum.

Dem.—Let x, y, 2 be the distances of any point
whatever from the sides of ABC, and let A denote

its area. "We have the identity

{x^ + 2/2 + z") {a" + 52 + c^)
-

(^ax + hy + czf
-

{ay
-

IxJ" + (iz
-

cyy- + {ex - a%f ;

but ax \-hy -V c%- 2A. Consequently x' + y'^-\- z^ has its
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minimum value -when the squares which occur on the

right-hand side of the identity vanish
;
that is, when

X y %

a h c

CoE.—K is the mean centre of the feet of its own

perpendiculars on the sides of the triangle ABC.

X
Def.—If we put - = ^ tan to, o> is called the Bro-

a

card angle of the triangle.

Prop. 8.—cot oi = cot A. + cot 'Q \- cot C.

Dem.—From 5, Cor. 1, we have

4A
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2. If the side BA of tlie triangle ABC be produced through ^
until AB' = BA

;
and at B' and C be erected perpendiculars to

BA, AC, respectively, meeting in I
;
AI is perpendicular to the

symmedian passing through A,

3. If A" be the pole of the line BC, with respect to the cir-

cumcircle Ao", Aa", Ac", the feet of the perpendiculars from A",
on the sides of ABC

;
the area of the triangle Aa" M" A<."

4. In the same case prove that the figure A"A6" Aa" Ac" is a

parallelogram.

SECTION II.

Two PiGTJEES DIEECTLY SiMILAE.

Defin.—Being given a system of points A, B, C, D,
. . . If upon the line joining them to a fixed point

points A', B', C, &c., . . , he determined hy the condi-

^.
OK' OB' OC -

z. .7; .
tions^ =

pr^
=
j-^

- &c., . . . = A, the two sys-

tems ofpoints A, B, C, &c!, and A', B', C, &c., are said

to be Nomothetic, and is called their homothetic centre.

Prop 1.—1°. Thefigwe homothetic to a right line is

a parallel right line.

2°. The figure homothetic to a circle is a circle.

Bern.—1°. This follows at once from the definition

and JEJuc.f VI. n.

2°. Is evident from Book VI., Section u., Prop. 1,

Cor. 4.

Prop. 2.—In two homothetic figures
— 1°. Two homo-

logous lines are in the constant ratio h. 2°. Two cor-

responding triangles are similar.

These are evident.
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jA Prop 3.—Being given two homothetic systems^ viz.,

ABC, . . . A'B'C ... If one of them, A'B'C, . . . he

turned round the homothetic centre 0, through a constant

C"

angle a, into a newposition A"B"C" ;
. . . then—1°, Ang

two homologous lines (AB, A''B") are inclined at an angle
a to each other, 2°. The triangles OAA", OBB", &c.,

are similar to each other.

Dem. — By hypothesis, the angle OAB = OA'B'
= OA"B", and the angle OZA''= AZQ [_Euc. I. xv.].
Hence \_Eug. I. xxxii.] the angle A''OZ = ZQA. Hence
ZQA = a'.

Again, the triangles OAB, OA'B' are equiangular.
Therefore OAB and OA"B" are equiangular. Hence
OA : OB : : OA" : OB"; .-. OA : OA" : : OB : OB", and
the angle AOA" = BOB". Therefore lEuc. YI. vi.] the

triangles AOA", BOB" are similar.

CoE. 1 .
—

Reciprocally. If upon the lines d/rawn from
afixed point to all the angles of a polygon ABCD, &c.,
similar triangles OAA", OBB", OCC" be described, the

polygon formed by the vertices A", B", C", &c., is similar

to the original polygon ABCD.
CoE. 2.—JfO be considered as a point belonging to the
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first figure^ it will he its own homologue in the second

figure.

Def.—The point is called a double point of the two

figures; it is also called their centre of similitude.

Prop. 4.—Being given two polygons directly similar
^

it is required to find their double point.
Let AB, A'B' be two homologous sides of the figures;

' C their point of intersection. Through the two triads

of points A, A', C
; B, B', C describe two circles inter-

secting again in the point ;
will be the point

required. For it is evident the triangles OAB, OA'B'
are similar, and that either may be turned round the

point 0, so that the two bases AB, A'B' will be

parallel.

Observation.—The foregoing construction must be modified
when the homologous sides of the two figures are consecutive

sides BA, AC of a triangle. In this case, upon the Lines BA,
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AC describe two segments BOA, AOC, touching AC, BC, re-

spectively, in the point A. Then 0, their point of intersection,
will be the double point required, for it is evident the triangles
BOA, AOC are directly similar.

CoE. 1.—If^0 he produced to meet the circumcircU

of the triangle AEC in D, AO is bisected in D.

Dem.—Produce BO to meet the circle in E. Join
ED. Now since the triangles BOA, AOC are directly
similar, the angle OAC = ABO, and therefore = ODE.
In like manner, the angle AGO = DEO. Kow, because
the angles DAG and ADE are equal, the arc CD = AE.
Hence DE = AC; .-. chord DE = AG; .-. [Euc. I. xxvi.]
DO = OA.

Cor. 2.—The distances of the double point from any
two homologous points A, A' are in a given ratio, because

the distances are homologous lines.

GoE. 3.—The perpendiculars drawn from the double

point to any two homologous lines are in a given ratio.

Cor. 4.—The angle subtended at the double point by
the line joining two homologous points is constant.

GoR. 5.—The line AO passes through the symmediar^

point of the triangle BAG. Because the perpendiculars

from the symmedian point on the lines BA, AG are pro-
portional to these lines, and therefore proportional to the

perpendiculars from on the same
~

GoE. 6.—i/'BD be joined, the rectangle AB . BD : AO'
: : BG : CO.

Prop. 5.—The centre of similitude of a given triangle

ABC, and an equiangular inscribed triangle, is one or

other of two fixed points.

Dem.—Let DEE be an inscribed triangle, having
the angles D, E, E equal to B, A, G, respectively.
Then the point common to the circles BDE, AEE,
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CED will [III., Section i., Prop. 17] be a given

point : if this be O, O will be the centre of similitude

of the triangle ABC, and equiangular inscribed tri-

angles, such as DFE, whose vertex F, corresponding
to A, is on the line AB. In like manner, there is

another point CI', which is the centre of similitude of

ABC, and similar inscribed triangles such as E'F'D',

having the vertex corresponding to A on the line AC.

Def.—O, O' are called the Brocard points of the tri-

angle ABC.

CoE. 1.— The circumcircle of the triangle AI2B touches.

BC in B.

Dem.—Since O is the double point of the triangles

ABC, DEE, the triangles OBD, OEA are equiangular ;

.-.the angle fiBD = OAE. Therefore the circle AOB
touches BC in B. In like manner, the circumcircles

of the triangles BflC, COA touch respectively CA in C,

and AB in A.

CoE. 2.—The three angles OAB, OBC, 12CA are equal
to one anothery and each is equal to the Brocard angle of
the triangle.

Dem.—The angles are equal \_Euc. III. xxxii.]. Let

their common value be w. Then, since the lines AO,
BO, CO are concurrent, we have, from Trigonometry,

sin^ CO = sin (A -
0)) sin (B -

w) sin (C
-

<u).

Hence cot oo = cot A + cot B + cot C.

Therefore w is the Brocard angle of the triangle (Sec-
tion I., Prop. 8).

Exercises.

1. Inscribe in a given triangle ABC a rectangle similar to a

given rectangle, and having one side on the side BC of the tri-

angle. A is the homothetic centre of the sought rectangle, and a

similar rectangle constructed on the side BC.
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2. Inscribe in a given triangle a triangle whose sides will be

parallel to three given lines.

3. From the fact that a triangle ABC, and the triangle A'B'C,
whose vertices are the middle points of the sides of {ABC, are

homothetic
; prove—1°, that the medians of ABC are concurrent

;

2°, that the orthocentre, the circumcentre, and the centroid of

ABC are collinear.

4. Show that Proposition 9 of Book VI., Section i., and its

Cor. are applications of the theory of figures directly similar.

5. If figures directly similar be described on the perpendicu-
lars of a triangle, prove that their double points are the feet of

perpendiculars let fall from the orthocentre on the medians.

6. The Brocard points are isogonal conjugates with respect to

the triangle BAG.

7. The system of multiples for which Xi is the mean centre of

A, B, C is -
, -,

—
;
and the system for ri' is

-5, -, — .

8. If the line A'B' (Fig., Prop. 4) turn round any given point
in the plane, while AB remains fixed, the locus of the double

point is a circle.

SECTION III.

Lemoine's and Tuckee's Ciecles.

Prop. 1.—The three parallels to the sides of a triangle

through its symmedian point meet the sides in six con-

cyclic points.

Dem.—Let the parallels be DE^ EF', FD'. Join

ED', DF', FE'. IS'ow AFKE' is a parallelogram. AK
bisects FE'. Hence [Section i., Prop. 5, Cor. 2] EE'
is antiparallel to BC. Similarly DF' is antiparallel to

AC. Hence the angles AFE', BF'D are equal ;
hence

it is easy to see that EE' is equal to F'l). In like

manner it is equal to ED'.
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Again, if be the circumcentre, OA is perpendi-
cular to FE'; therefore the perpendicular to FE', at its

middle point, passes through the middle point of KO.
Hence, since FE' = ED' = DF', the middle point of EO is

equally distant from the six points F, E', E, W, D, F.

ML/D'

This proposition was first published in 1873, at the

Congress of Lyons, Association Francaise pour Vavance-
menf des Sciences, by M. Lemoine, who may be re-

garded as the founder of the modern Geometry of the

triangle. It was rediscovered in 1883 by Mr. Tucker,
Qua/rterly Journal of Pwre and Applied Mathematics

y

p. 340.

I have recently shown that polygons of any number
of sides, called harmonic polygons, can be constructed,
for which a corresponding proposition is true. [See
Section vi.]



180 A SEQUEL TO EUCLID.

Def.— We shall call the circle through the six points

r, E', E, D', D, E' Lemoine's circle, and the hexagon of
which they are the angular points Lemoine's hexagon.

CoK. 1.—The sides of the triangle ABC are divided

symmetrically ly Lemoine's circle.

Eor it is easy to see that

AE \YWx'. E'B '.h'-.c^-.a^',

BD:DD': : D'C : c^-.a^i h';

CE : EE': : E'A : a^: P:c\

CoE. 2.—The intercepts DD', EE', EE' are propor-
tional to a^j b^, <^.

Dem.—Let fall the perpendicular AL ; then, since

the triangles DKD', BAC are similar,

DD' : a? : : EC : AL : : a^ : 2A.

Hence DD'='^'*'
2A a'-^h'' + (^

In like manner,

}fi ^
EE^= . ,. . , ^Y'

On account of this property, Mr. Tucker called the

Lemoine circle
** The Triplicate Eatio" circle.

Cor. 3.—The six triangles into which the Lemoine

hexagon is divided ly lines from K to its angular points
are similar to one another.

Prop. 2.—The radical axis of Lemoine's circle and the

circumcircle is the Pascal's line of the Lemoine hexagon.

Dem.—Let EE' produced meet BC in X. Then
since EE' is antiparallel to BC, the points BEE'C are
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concyclic. Hence the rectangle BX . CX = FX . E'X.
Therefore the radical axis of the Lemoiue circle and
the circumcircle passes through X. Hence the Pro-

position is proved.

CoR. 1.—The polar of the symmedian point, with

respect to the Lemoine circle, is the FascaVs line of
the Lemoine hexagon.

For since DEE'D' is a quadrilateral inscribed in the

Lemoine circle, the polar of K passes through X. In
like manner, it passes through each pair of intersec-

tions of opposite sides.

Cor. 2.—If the chords BE, D'E' intersect in p, EF,
E'F' in q, and FD, F'D' i7i r, the triangle pqr is in per-

spective with ABC.

Dem.—Join Kq, Cp, and let them meet in T
;
then

denoting the perpendiculars from T on the sides of

ABC by a, (3, y, respectively, we have a : ^ : : per-

I)endicular from p on BC : perpendicular from p on
CA—that is, : : DD' : EE', or : : a' : h\ In like man-
ner, ^ : y : : h^ : (P. Hence a : y : : a^ : (^ : : perpen-
dicular from r on BC : perpendicular from r on AB.
Hence the line Br passes through T.

CoR. 3.—The perpendiculars from the centre of per-

spective of ABC, pqr, on the sides of ABC are propor-
tional to a^, b^, (^.

Cor. 4.—The intersections of the antiparallel chords

D'E, E'F, F'D with Lemoine' s parallels DE' EF', FD',
respectively, are collinear, the line of collinearity heing
the polar of T loith respect to Lemoine^s circle.

Dem.—Let the points of intersection be P, Q, R;
then Gp? forms a seK-conjugate triangle with respect
to Lemoine's circle. Hence P is the pole of Gp.
Similarly Q is the pole of Aj', and E the pole of Br

;

but A^-, Qp, Br are concurrent. Hence P, Q, E, are

collinear.
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Prop. 3.—If a triangle a^y le homothetic with ABC,
the homothetic centre leing the symmedian point of ABC ;

and if the sides of a/3y produced, if necessary, meet those

o/ABC in the points D, E'
; E, E'

; E, D'; these six

points are coneydie.

Dem.—Let K be the symmedian point. Erom the

hypothesis it is evident that the lines AK, BK, CK are

the medians of EE', DE', ED'. Hence these lines are

A

antiparallel to the sides of the triangle ABC, and
the: efore, as in Prop. 1, the six points are concyclic.

CoK. 1.—The circumcenire of the hexagon DD'EEE'E'
lisccts the distance between the circumcentres of the tri-

angles ABC, a(3y.

CoE. 2.—If the triangle a^y vary, the locus of the cir-

cumcentre of the hexagon is the line OK.
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The circTimcircles of the hexagon, when the triangle

aj8y varies, were first studied by M. Lemoine at the

Congress of Lyons, 1873. Afterwards by JS'eubeeg:

see Mathesis, vol. i., 1881, pp. 185-190; by M'Cay,
Educational Times, 1883, Question 7551

; by Tucker,

Quarterly Journal of Pure and Applied Mathematics,
vol. XX., 1885, pp. 57-59. Neuberg has called them.

Tucker's Circles.

Cor. 3.—Tucker's circles can he defined in three follow-

ing distinct manners :—
{a) By means of the triangle a/3y homothetic with ABC

with respect to K.

(J) By means of triangles homothetic with the ortho-

{c) By either of the triangles DEF, D'E'F' inscribed

in ABC, and equiangular to it.

Corresponding to these three methods we have the

following particular cases :
—

{a) If the triangle aySy reduce to the point K, the

Tucker's Circle, whose centre is the middlepoint of O'K,
is Lemoine's Circle.

(S) Ifparallels to the sides of the orthocentre triangle

pass through K, the centre of the Tucker's circle will he

K, the inscribed triangles will have their sides perpendi-
cular to those of ABC, and the intercepts which the circle

mahes on the sides of ABC will he proportional to the

cosines of its angles. This is called the Cosine Circle.

(c) WJien the triangles FED, Y'WD' have for summits
the projections of the vertices of the orthocentric triangle
on the sides o/ABC. This occurs when the triangle a/?y

(fig. Prop. 3) is that formed by joining the middle

points of the sides of the orthocentric triangle. This
circle of Tucker's system is sometimes called Taylor's
circle.

o2
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Exercises.

1. The chords DE, EF, FD of Lemoine's hexagon meet the
chords F'D', D'E', E'F', respectively in three points forming a
triangle homothetic with ABC.

2. The triangle formed by the three alternate sides DF', FE',
ED', produced, is homothetic with the orthocentric triangle, and
their ratio of similitude is 1 : 4 cos A cos B cos C.

3. The system of circles which are circles of similitude of the
circumcircle and Tucker's circles, respectively, are coaxal.

4. The perpendiculars from K on the sides of the triangle
Ex. 2 are proportional to cC-, b"^, c-.

+ i3 + c3 + Zabc
5. The perimeter of Lemoine's hexagon is

A («* -\-b^+c^ + a'^b^+ b'^c^ + (^-d^)

a^ + b'^-t c3

and its area
(«2 + ^3 + f^yi

6. If the cosine circle intersect the sides of ABC in the points

D, D', E', E', F, F', the figures DD'E'F, EE'F'D, FF'D'E are

rectangles ;
and their areas are proportional to sin 2A, sin 2B,

sin2C.

7. In the same case, the diagonal of each rectangle passes

through the symmedian point. This affords a proof of the

theorem, that the middle point of any side, the middle point of

its corresponding perpendicular, and the symmedian point, are

collinear.

8. If the sides of the triangle a^y (fig., Prop. 3) produced,
if necessary, meet the tangents at A, B, C to the circumcircle, six

of the points of intersection are concyclic, and three are collinear.

9. If the distance OK between the circumcentre and symme-
dian point be divided in the ratio I : m\ij the centre of one of

Tucker's circles, and if E, R' be the radii of the circumcii-cle and

the cosine circle, the radius of Tucker's circle is v ^ -H-
- + ^» R

I -^ m
10. The square of the diameter of Lemoine's first circle is

W + R'2.

11. If a variable triangle aj87 of given species be inscribed in

a fixed triangle ABC, and if the vertices of afiy move along the

sides of ABC, the centre of similitude F of 0^87, in any two of its

positions, is a fixed point. (Townsend.)



A SYSTEM OF THREE SIMILAR FIGURES. 185

1 2. In the same case, if the circumcircle of 0)87 meet the sides

of ABC in the three additional points o', ^', 7'; the triangle d^'y
is given in species, and the centre of similitude F' of it, in any
two of its positions, is a fixed point. (Taylor.)

13. Also F, F' are isogonal conjugates with respect to the

triangle.

14. The locus of the centre of the circle a^y is a right line.

15. If through the Brocard points and the centre of any of

Tucker's cii'cles a circle, he described, cutting Tucker's circle iu

X, Y ; prove flX + n'X = XlY + Ci!Y = constant.

SECTION lY.

Oei^eeal Theoey of a System of Theee Si:milak,

riGUKES.

Notation.—Let Fi, Fo, F3 be three figures directly
similar

; a^, ^o, % three corresponding lengths ; ai the

constant angle of intersection of two corresponding
lines of F2 and F3 ; 03, 03 the angles of two correspond-

ing lines of F3 and Fi, of Fi and Fg, respectively ; Si

the double point of F2 and Fg ; S2 that of F3 and Fi ;

S3 that of Fi and F.. We shall denote also by (0, AB)
the distance from the point to the line AB.

Def.—The triangle formed hy the three double points

Si, S2, S3 is called the triangle of similitude of^i, Fg, F3;
and its circumcircle their circle of similitude.

Prop. 1.—In every system of three figures directly

similar, the triangle formed hy three homologous lines is

in perspective ivith the triangle of similitude, and the

locus of the centre ofperspective is their circle of simili-

tude.

Dem.—Let ^1, do, d^ be three homologous lines

forming the triangle D1D2D3 ; we have, by hypothesis,

(Si, ^2) _ (h
. (S2, d'i) _ «3

^ (S3, di) _ Oi

(Si, d^)

~
«3

'

(S2, di)

~
tti

'

(S3, d.i)

~
ai
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Hence it follows that the lines SiDi, S2D2, S3D3 co-

intersect in a point K, whose distances from the lines

di, d^, ^3 are proportional to «i, Uz, a^. The triangle D1D2D3
being given in species, its angles are the supplements
of tti, ag, a3. Hence the angles DiKDg, DgKDs, D3KD1

are constants
;
that is, the angles S1KS2, S2KS3, S3KS1

are constants. Hence the point K moves on three
circles passing through Si and S2, Sg and S3, S3 and Si ;

that is, it moves on the circumcircle of the triangle
SiS2S3.

Prop. 2.—In every system of three similar figuret
there is an infinite number of triads of concurrent homo-

logous lilies. These lines turn round three fixed points
Pi, P2, P3 of the circle of similitude, and their point of
concurrence is on the same circle.

Dem.—Let K be the centre of perspective of a tri-
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angle D1D2D3, and the triangle of similitude S1S2S2.

Through K draw three parallels, KFj, KP2, KP3, to the

sides of D1D2D3. These are three homologous lines.

For (S.KP2) (S.,^2)_^3 ^^
(Si, KP3) (S„ d,) a,'

^ •

The point Pi is fixed
;
for the angle SiKPi is equal to

the inclination KDi to D2D3, which is constant. Hence
the arc SPi and, therefore, the point Pi, is given.

Similarly the points Pg, P3 are fixed.

Def.—The points Pi, P2, P3 are called the invariahU

points, and the triangle P1P2P3 the invariable triangle.

Cor. 1.—The invariable triangle is invi

to the triangliformed hj three homologous lines.

For the angle P2P3P1 = P2KP1 = angle D1P3D2, and

similarly for the other angles.

Cor. 2.—The invariable points form a system of three

corresponding points.

For the angle

S1P2 (Si, KP2) ^2
P2SiP3 = ai, and

S1P3 (Si, KP3) a;

Cor. 3.—The lines ofconnexion of the invariable points

Pi, P2, P3, to any point whatever (K) of the circle of simi-

litude, are three corresponding lines of the figures Fi,

F2, Ps.

In fact these lines pass through three homologous

points. Pi, P2, P3, and make with each other, two by
two, angles equal to ai, ao, ag.

Prop. 3,—The triangleformed by any three correspond-

ing points is in perspective with the invariable triangle^

and the locus of their centre ofperspective is the circle of
similitude.
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Dem.—LetBi, Bg? B3 be three corresponding points ;

then PiBi, P2B2, P3B3 are three corresponding lines;
and since they pass through the invariable points they
are concurrent, and their point of concurrence is on
the circle of similitude. Hence the proposition is

proved.

Prop. 4.—The invariahle triangle and the triangle of
similitude are in perspective, arid the distances of their

centre ofperspective from the sides of the invariahle tri-

angle are inversely proportional to a^, a^, az.

Dem.—"We have

t^2 _ S^Pa ^ (Si, PiP.) a, _ (S2, P3P3 ) a. _ (S3, PaPQ

^3 S1P3 (S„ P,P3)
'

a, (S2, P2P1)
'

a, (S3, P3PO'

Hence the lines SiPi, S2P2, S3P3 are concurrent.

Prop. 5.—
Let S/ he the point of Fi, which is homologous to Si,

considered in P2 «w^ P3.

Let S2' he the point of Eg, which is homologous to 83,

considered in '^->,
and Fi.

Let S3' he the point of P3, which is homologous to S3,

considered in Fi and F2.

The triangle S/ S2' S3' is in perspective hoth with the

invariahle triangle and with the triangle of similitude ;

and the three triangles have a common centre of perspec-
tive.

Dem.—By hypothesis, the three points S/, Si, Si

are homologous points of the figures Fi, Fg, F3. Hence
the lines S/Pi, S1P2, S1P3 are concurrent. Hence the

points S/, Pi, Si are coUinear. Similarly S2', P2, S2

are collinear, and S3', P3, S3 are collinear. Sence the

proposition is

Prop. 6.—Li three figures, Fi, Fg, F3, directly similar,

there exists an infinite number of systems of three corre-
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sponding points which are collinear. Their loci are three

circles^ each passing through two double points and

through E, the centre of perspective of the triangle of

similitude, and the invariable triangle. Also the line

of collinearity of each triad of corresponding points passes

through E.

Dem.—Let Ci, C2, C3 be three homologous collinear

points. Since 83 is the double point of the figures Fg,

El ;
the triangles S2C3C1, S2P3P1 are similar

;
therefore

the angle S2C3C1 is equal to the angle S2P3P1, and

therefore \_Euc. III., xxr.] equal to the angle SoSiE.

In like manner, the angle C2C3S1 is equal to S1S2E ;

therefore the angle S2C3S1 is equal to SoESi. Hence
the locus of C3 is the circumcircle of the triangle S1ES3.

Again, since S2C3ES1 is a cyclic quadrilateral, the

angles S2S1E, EC3S2 are supplemental. Hence the

angles S2C3C1, EC3S2 are supplemental; therefore the

points Ci, C3, E are collinear, and the proposition is

proved.

CoE. 1.—The circumcircle of the triangle ^^'^^ passes

through S3'. Eor S3' is a particular position of C3.

CoE. 2.—The lines CiPi, C2P2, C3P3 o/re concurrent, and

the locus of their point of concurrence is the circle of simi-

litude.

The substance of this Section is taken irora Mathesis, vol. ii.,

page 73. Propositions 1-5 are due to M. G. Tarry, and Pro-

position 6 to Neuberg.

Exercises.

1. If in the invariable triangle be inscribed triangles equian-

gular to the triangle of similitude, so that the vertex correspond-

ing to Si will be on the side P2P3, &c., the centre of similitude

of the inscribed triangles is the point E.

2. If Yi, Y2, Y3 be the centres of the circles which are the

loci of the points Ci, C2, C3 ;
then the sum of the angles Pi, Si, Yi

is equal to the sum of P3, S2, Y2, equal to the sum of P3, S3, Y3,

equal to two right angles.

3. The system of multiples for which E is the mean centre of

the inyariable points is «i cosec 01, <?2 cosec a2, «3 cosec 03.
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SECTION V.

Special Application of the Theoey of Figures

DIEECTLY SiMILAE.

1°. The Brocard circle.

Def. 1 .
—If he the circumcentre, and K the symme-

dian point of the triangle ABC ;
the circle on OK as

diameter is called the Brocard circle of the triangle.

SUry\
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circle in three other points A', W, C, forming a tri-

angle, which we shall call Brocard's First Triangle.

The Brocard circle is called after M. H. Brocard, Capitaine
du Genie, who first studied its properties in the Nouvelle Cor-

respondence, Mathematiqtce, tomes, iii., iv.,v., vi. (1876, '77, '78,

'79) ;
and subsequently in two Papers read before the Association

Francaise pour I'avancement des Sciences, Congres d' Alger, 1881,
and Congres de Rouen, 1883. Several Geometers have since

studied its properties, especially Neuberg, Artzt, M'Cay, and
Tucker.

Prop. 1.—Brocard's first triangle is inversely similar

to ABC.

Dem.—Since OA' is perpendicular to BC, and OB'
to AC, the angle A'OB' is equal to ACB

;
but lEuc. III.

XX], J A'OB' is equal to A'C<B'. Hence A'C'B' is equal
to ACB. In like manner, the other angles of these

triangles are equal ;
and since they have different

aspects, they are inversely similar.

CoE.—The three lines A'K, B'K, C'K, produced, coip-
cide with Lemoine's parallels. For since the angle 0*AK
is right, A'K is parallel to BC.

Prop. 2.—The three lines A'B, B'C, C'A are concur-

rent, and meet on the Brocard circle^ in one of the Bro-
card points.

Dem.—Produce BA', CB' to meet in O. Then since

the perpendiculars from K, on the sides of ABC, are

proportional to the sides, and these perpendiculars are

equal, respectively, to A'X, B'Y, C'Z, the triangles BA'X,
CB'Y, A'CZ are equiangular; .*. the angle BA'X is equal
to CB'Y, or \_i:uc. I. xv.] equal to OB'O. Hence the

points A', O, B', are coneyclic, and .*. BA', CB' meet
on the Brocard circle. In like manner, BA', AC meet
on the Brocard circle. Hence the lines A'B, B'C, C'A
are concurrent, and evidently (Section ii., Prop. 5) the

point of concurrence is a Brocard point. In the same
manner it may be proved that the three lines AB', BC,
CA meet on the Brocard circle in the other Brocard

point.
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Prop. 3.—The lines AA', BB', CC are concurrent.

Dem.—Since Lemoine's circle, which passes through
F' and E, and Brocard's circle, which passes through
A' and K, are concentric, the intercept P'A' is equal to

KE. Hence the lines AA', AK are isotomic conjugates
with respect to the angle A. In like manner, BB', BK
are isotomic conjugates with respect to the angle B,
and CC and CK with respect to C. Therefore the
three lines AA', BB', CC, are concurrent : their point
of concurrence is the isotomic conjugate of K with re-

spect to the triangle ABC.

CoE. 1.—The Brocard points are on the Brocard circle.

Cor. 2.—The sides of the triangle FDE are parallel to

the lines AO, BO, CO, respectively.

Dem.—Join DF. Then since AF = KE'
;
but KE'

= DC
;

.-. AF = DC. Hence lEuc. I. xxxiv.] DF is

parallel to AC—that is, to AO, &c.

In the same manner it may be proved that the sides

of D'E'F are parallel to AO', BO', CO', respectively.

CoR. 3.—The six sides of Lemoine's hexagon, tahen in

order, are proportional to sin (A -
w), sin w, sin (B -

w),
•sin (0, sin (C

—
co), sin w.

CoE. 4.—O and K are the Brocard points of the tri-

ungle DEF, and O' and K o/ D'E'F'.

CoE. 5.—The lines AA', BB', CC are isogonal con-

jugates of the lines kp, B$', Qr (Section ii.. Prop. 2,

Cor. 2) with respect to the triangle ABC.

Def.—If the Brocard circle of the triangle ABC meet
its symmedian lines in the points A", B", C", respectively,
A"B"C" is called Brocard''s second triangle.

Prop. 4.—Brocard''s second triangle is the triangle of
similitude of three figures, directly similar, described on
the three sides of the triangle ABC.
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Dem.—Since OK is the diameter of the Brocard

circle, the angle OA"K is right. Hence A" is the

middle point of the symmedian chord AT, and is there-

r

M

fore [Section ii., Prop. 4, Cors. 1, 5] the double point
of figures directly similar, described on the lines BA^
AC. Hence [Section iv., Def. 1] the proposition is

proved.

Prop. 5.—Iffigures directly similar he described on the

sides of the triangle ABC, the symmedian lines of the tri-

angle formed ly three corresponding lines pass through
the vertices of Brocard's second triangle.

Dem.—Let hac be a triangle formed by three corre-

sponding lines, then hac is equiangular to BAC
;
and
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since A" is the double point of figures described on BA,
AC, and ha, ac are corresponding lines in these figures,
the line k."a divides the angle hac into parts respec-

tively equal to those into which A"A divides the angle
BAG. Hence A!'a is a symmedian line of hac, and

similarly Wh, Q"c are symmedian lines of the same tri-

angle.

Cor. 1.—The symmedian point of the triangle hac is

on the Brocard circle of BAC.

Dem.—Because the triangle hac is formed by three

homologous lines, and A"B"C" is the triangle of simili-

tude, and [Section rv., Prop. 1] these are in perspec-
tive

;
therefore their centre of perspective, K', is a

point on the circle of similitude, that is, on the Brocard
circle.

CoE. 2.—The vertices A', B', C of Brocard's first tri-

angle are the invariahle points of the three figures directly

similar, described on the sides o/BAC.
For the angle KA'K' is equal to KA"K', and that is

evidently equal to CLc from the properties of the simi-

litude of BAC, bac
;
but A'K is parallel to LC. Hence

A'K' is parallel to be. In like manner, B'K', C'K' are

parallel to ac, ab, respectively. Hence A'K', B'K',

C'K', form a system of three corresponding lines, and

A', B', C are the invariable points.

CoE. 3.— The centre of similitude of the triangles bac,
BAC is a point on the Brocard circle.

For since the figures K'bac, KBAC are similar, and

K'a, KA are corresponding lines of these figures inter-

secting in A", the centre of similitude [Section ii.,

Prop. 4] is the point of intersection of the circum-

circles of the triangles A"aA, A"KK'; but one of

these is the Brocard circle. Hence, &c.

CoE. 4.—In like manner, it may he shown that the

centre of similitude of two figures, lohose sides are two
triads of corresponding lines of any three figures directly

similar, is a point on the circle of similitude of the three

figures.
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Cor. 5.—If three corresponding lines he concurrent,
the locus of their point of concurrence is the Eeocaed
ClECLE.

This theorem, due to M. Bbocaed, is a particular
case of the theorem Section iv., Prop. 2, or of Cor. 1,

due to M'Cay, or of either of my theorems, Cors. 3, 4.

2°. The I^ine-points Ciecle.

6. Let ABC be a triangle, whose altitudes are AA',
BE', CC

;
the triangles A.WO', A'BC, A'B'C are in-

versely similar to ABC. Then if we consider these

triangles as portions of three figures, directly similar,

Fi, F2, T's, we have three triads of homologous points,

First triad,

Second ,,

Third „

Fi F2, Fs.

A, A
, A

;

B', B, B';

C, C. C.
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The double points A', B', C are the feet of the per-

pendiculars. The three homologous lines, AB', A'B,

A'B', equal to AB cos A, AB cos B, AB cos C. Hence
the three homologous lines are proportional to cos A,
cosB, cosC.
The three angles ai, a2, as are tt-A, tt-B, tt-C.
I'irst triad of corresponding lines

; perpendiculars at

the middle points of the corresponding lines AB'^
A'B, A'B'.

Second triad of corresponding lines
; perpendiculars

at the middle points of the corresponding lines B'C,
BC, B'C.

Third triad of corresponding lines
; perpendiculars

at the middle points of the corresponding lines C'A,

C'A', CA'.

The point of concurrence of these triads are the

middle points A'", B'", C" of the sides of ABC.
The point of concurrence of the lines of Ti of these

triads is the middle A" of AH
;
the point of concur-

rence of the lines of Fs is the middle B" of BH
;
and

of the lines of Fa the middle C" of CH.
The points A", B", C" are the invariable points.

Hence the nine points, viz., A', B', C (centres of simi-

litude) ; A", B", C" (invariable points) ; A'", B"', C"
(points of concurrence of triads of corresponding lines),

are on the circle of similitude. Hence the circle of

similitude is the nine-points circle of the triangle.

Hence we have the following theorems :
—

1°. Three homologous lines of the triangles AB'C,
A'BC, A'B'C form a triangle aj8y in perspective with

A'B'C; the centre of perspective^ N, is on the nine-

points circle of ABC, and it is the circumcentre of a(3y.

For its distances to the sides of aySy are : : cos A : cos B
: cos C. For example, the Brocard lines of the three

triangles possess this 'property.

2°. Linesjoining the points A", B", C" to three homo-

logous points ofFi, Fa, Fs are concurrent, and meet on the

nine-points circle of A.1^Q. '
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3°. IfV, Pi, P2, P3 ie corresponding 2ioints of the tri-

angles AEC, AB'C, A'EC, A'B'C, the lines A'Ti,
B"P2, C'Pa meet the nine-points circle of ABC in the

point which is the isogonal conjugate loith respect to the

triangle A"B"C" of the point at infinity on the line

joining P to the circumcentre of ABC.
4°. Every line passing through the orthocentre H meets

the circumcircles of the triangles AE'C, A'BC, A'B'C in

corresponding points.
5°. The lines joining the points A", B", C" to the

centres of the inscribed circles of the triangles AB'C,
A'BC, A'B'C, pass through the point of contact of the

nine-points circle of ABC with its inscribed circle.

Dem.—Let be the circumcentre. Join OA, and

draw A''E parallel to OA, meeting OH in E
; then EA'

p
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is a radius of the nine-points circle. Let AD be the

bisector of the angle BAG
;
then the incentres of the

triangles ABC, ABC are in the line AD. Let these

be I, I'. Join I'A". It is required to prove that I'A"
passes through the point of contact of the nine-points
circle with the incircle of ABC. From I let fall the

perpendicular IL on AB. Join LI'. It is easy to see

that the triangle ILI' is isosceles
;
in fact IL is equal

to LI'. Hence if r be the inradius of the triangle ABC,
B the circumradius, we have 2r^ = AI . II', and
2Rr = AI . ID. Hence r : R : : IF : DI.

Again, through I draw IF parallel to EA". !N"ow,

since the points I', A", in the triangle AB'C, corre-

spond to I and in ABC, the angle AI'A" = AIO.
Hence the angle II'P is equal to DIO, and the angle
I'lF is equal to IDO, because each is equal to DAO.
Hence the triangles II'F and DIO are equiangular.
Therefore II' : DI : : IF : DO. Hence IF : DO : : r : R.
Therefore IF = r, Now since EA" and IF are pa-

rallel, and are radii respectively of the nine-points

circle, and incircle of ABC, the line FA" passes through
their centre of similitude. Sence the proposition is

proved.

Similarly, if J' le the centre of any of the escribed

circles of the triangle AB'C, the line A"J' passes through
the point of contact of the nine-points circle of ABC with

the corresponding escribed circle.

The application of Tarry's theory of similar figures contained

in this sub-section, with the exception of the theorems 3° and 5°,

is due to Neuberg. The demonstration of 5°, given in the text,

is nearly the same as one given by Mr. M'Cay shortly after I

communicated the theorem to him.
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SECTION yi.

Theoey of Harmonic Polygons.

Def. I.—A cyclicpolyg071 ofany number of sides, having
a point K in its plane, such that perpendiculars from it

on the sides are proportional to the sides, is called a har-

monic polygon.

Def. II.—The point K is called the symmedian point

of the polygon.

Def. III.—The lines drawn from K to the angular

points of the polygon are called its symmedian lines.

Def. IV.—Two figures having the same symmedian
lines are called co-symmedian figures.

Def. v.—If he the circumcentre of the polygon, the

circle on OK, as diameter, is called its Brocard circle.

Def. VI.—If the sides of the polygon be denoted by

a, b, c, d, . . . and the perpendiculars on them from K
by X, y, %, u, . . . then the angle co, determined by any
of the equations x ~ ^a tan oi,y = ^b tan w, &c., is called

the Brocard angle of the polygon.

Prop. 1.—The inverses af the angular points of a

regula/r polygon of any number of sides, with respect to

any arbitrary point, form the angular points of a har-

monic polygon of the same number of sides.

Dem.—Let A, B, C ... be the angular points of the

regular polygon ; A', B', Q' . . . the points diametrically

opposite to them. Now, inverting from any arbitrary

point, the circumcircle of the regular polygon will

invert into a circle X, and its diameters AA', BB',
CC . . . into a coaxal system Y, Yj, Y2, &c.

;
then

[YI., Section v., Prop. 4] the radical axes of the pairs
of circles X, Y ; X, Yi ; X,- Yj, &c., are concurrent.

p2
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Hence, if the inverses of the systems of points A, B, C
... A', E', C ... be the systems a^y, . . . a'^y . . .,

the lines aa!, /Sp', yy' . • . are concurrent. Let their

common point be K; and since evidently the points

A, B, C, B' form a harmonic system, their inverses, the

points a, p, y, P', form a harmonic system ;
but the

line pP' passes through K. Therefore the perpendi-
culars from K on the lines aj9, /3y are proportional to

these lines. Hence the proposition is proved.

CoE. 1.—If the vertices of a harmonic polygon of n
sides he 1, 2, S . . . n, and K its symmedian point, the

re-entrant polygon formed ly the chords 13, 24, 35, &c.,
is a harmonic polygon, and K is its symmedian point.

This is proved by showing that the perpendiculars
from K on these chords are proportional to the chords.

Thus, let A, B, C be any three consecutive vertices
;

p, p' perpendiculars from K on the lines AB, AC
; and

let AK produced meet the circumcircle again in A'
;

then it is easy to see that the ratio -^ : ^7; is equal to

the anharmonic ratio (ABCA'), which is constant, be-

cause [Book YI., Section iv., Prop. 9] it is equal to

the corresponding anharmonic ratio in a regular polygon,
v p' .

and -f^ is constant. Hence -77= is constant.
AB AC

CoE. 2.—In the same manner the polygon formed ly

the chords 14, 25, 36 is a harmonic polygon, and K is Us

symmedian point, &c.

CoE. 3.— The vertices ofany triangle may he considered

as the inverses of the angular points of an equilateral tri-

le.

CoE. 4.—A harmonic quadrilateral is the inverse of a

square; and its symmedianpoint is the intersection of its

diagonals.

CoE. 5,—If ly 2, 3 . , , 2n he the vertices ofahar-
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monic polygon of an even number of sides, the polygon

formed hy the alternate vertices 1, 3, b . . . 2n - \ is a

harmonic polygon, and so is the polygon formed hy the

vertices 2, 4, 6 . . . 2n, and these three polygons have a

common symmedian point.

Prop. 2.—If Ao, Ai, Aa . . . A2„_i he the vertices of a

harmonic polygon; and if another ha/rmonic polygon he

formed hy the chords AoA„_i . . . AiA„, &c. ; if co, o>' he

the Brocard angles of these polygons ; then

tan <si' = tan^ —- tan w.
2w

Dem.—Let K be the symmedian point of the poly-
gons. Join AoAjn.i. Let fall the perpendiculars KX,
KX'. Then

tan co' = KX' ^ iA,jA2„_i, tan w = KX -^ ^A„A„_i.

Hence

KX
_ A,,A2„-i AoA2„_i . A2„-iA„

tan (»>' -^ tan w =
KX A„A„_i A„_iAo A„A„_i

the anharmonic ratio of the four points A©, A2„-i>
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A„, A„_i = to the anharmonic ratio of the four corre-

sponding points in a regular polygon of 27i sides

= tan^ — . Sence the proposition is proved.

Con.—In a similar way it may le proved that for two

eO'Symmedian harmonic polygons, one of n sides and the

other of In aides, the tangents of their Brocard angles are

TT TT

\ '. cot -
: cot —-.

n 2n

Prop. 3.—If through the symmedian point of a ha/r-

monic polygon a pa/rallel he drawn to the tangent at any
of its vertices, the intercept on the parallel between the

symmedian point and thepoint where it meets either ofthe

sides of the polygon passing through that vertex is con-

stant.

Dem.—Let AB be a side of the harmonic polygon^
AT the tangent, KU the parallel. Produce AK to meet
the circle in A'. Join A'B, and let KX be the per-

pendicular from K on AB
;
then KX ^ KIT = sin AUK

= sin UAT = sin AA'B = ^AB ^ B. Hence KIT ^ R
= KX -:- ^AB = tan w (if co be the Brocard angle of the

polygon). Hence KU = R tan w.

CoE. 1.—If the polygon consist ofn sides^ there will he

In points corresponding to U", and these points are con-

cyclic.
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CoE. 2.—If o>' le the Brocard angle of the harmonic

AK KA'
polygon ofwhich A'E is a side, tan w . tan o>' = ——

.

For, draw KY parallel to A'T. It is easy to see

that the triangles AKU, VKA' are equiangular. Hence
KU . KV = AK . KA'—that is, R^ tan <o . tan w' = AK .

KA'.

Cob. 3.—If-^ ie the side of a harmonic polygon of

2n sides, R^ tan'' <o = AK . KA' cof ^ . (See Prop. 2.)
Zin

CoE. 4.—IfAB he the side of a harmonic polygon of

n sides, R^ tan"" w = AK . KA' cof -. (See Prop. 2, Cor.)
n

CoE. 5.—The intercepts which the circle of Cor. 1

makes on the sides of the polygon are proportional to the

cosines of the angles which they subtend in the circumcircle.

Hence the circle may he called the cosine ciecle of the

polygon.

CoE. 6.—Ifh he the diameter of the Brocard circle of
a harmonic polygon of n sides,

82 = R2 (1
-

tan'^oi.tan'^-).^ n^

Prop. 4.—If all the symmedian lines, KA, KB, &c.,

of a harmonic polygon he divided in the points A", B",

&c., in a given ratio, and through these points parallels

he drawn to the tangents at the vertices, each parallel

meeting the two sides passing through the corresponding

vertex, all the points of intersection are coneydie.

Dem. — Let KA be divided in A" in the ratio

I : m (see fig.. Prop. 3). Join AO, OK, and draw A"0'

parallel to AO, and let A"U' be parallel to the tangent
AT. Then we have O'U'^ = O'A"^ + A."lj"

;
but O'A"

^^
,
and A''TJ' = KU^ = R tan o) .-^. Hence

l + m^ l + m l+m
{I + mf O'U'2 = R2 (Z2 + m"" tan^ <u). Hence O'U' is con-

stant, and the proposition is proved.
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Cor. 1.—If I = m, that is, if the lines KA, KB,
&c., be bisected, the circle passing through the points W
will, from analogy, be called Lemoine's Ciecle of the
Polygon". If pbe its radius, 2p = E, sec w.

CoE. 2.—7/" ABC . . ., A'B'C . . ., be two homothetie

harmonic polygons of any number of sides ; K their homo-

thetie centre ; and if consecutive pairs of the sides o/A'B'C
. . . produced, if necessary, intersect the corresponding

pairs of ABC . . . in the pairs of points aa', ^/3, yy,
&c., the points aa, f3f3', yy', &c., are coneydie.

For, since the figure (3B/3'B' is a parallelogram, BB'
is bisected by (3/^' in B"

;
and since the ratio of KB :

KB' is given, the ratio of KB : KB" is given, and p/S',

through B", is parallel to the tangent at B. Hence, &c.

CoE. 3.—If the harmonic polygons of Cor. 2, be qua-
drilaterals, their circumcircles and that of the octagon

aa'pfi'yy'BS' are coaxal.

For it is easy to see that the squares of the tangents
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from B to the circumcircles of aa'PJ^'yy'hh', and A'B'C'D'
are in the ratio 1:2; and the squares of tangents from

C, D, A to the same circles are in the same ratio.

CoR. 4.—If the two harmonic polygons of Cor. 2 have

an even number of sides, the n points of intersection of the

sides of the first with the corresponding opposite sides of
the second, respectively, are collinear.

Dem.—Por simplicity, suppose the figures are qua-
drilaterals, but the proof is general. Let P be the point
of intersection

;
then the angle ABE = AC'D'. Hence

ABC'D' is a cyclic quadrilateral. Therefore P is a point
on the radical axis of the circumcircles. Hence the

proposition is proved.

CoE. 5.—In the general case the lines a.c^
, /?/5', yy' are

the sides of a polygon, homothetic with that formed hy the

tangents at the angular points A, B, C, &c. Hence it

follows, if the harmonic polygon ABC . . . le of an even

number of sides, that the intersections of the lines aa',

PP', yy', taken in opposite pairs, are collinear.

Prop. 5.—The perpendicula/rs from the circumcentre

ofa harmonic polygon, ofany number of sides n on the sides,

meet its Brocard circle in n points, which connect con-

currently in two ways with the vertices of the polygon.

This general proposition may be proved exactly in

the same way as Prop. 2, page 191.

Def.—If the points of concurrence of the lines in this

proposition be O, O', these are called the Beocaed Points

of the polygon ; and the n points L, M, K, &c., in which

the perpendiculars meet the Brocard circle, for the same

reasons as in Cor. 2, page 194, are called its Invaeiable

Points. Also the points of bisection of the symmedian
chords AK, BK, CK, &c., ivill be its Double Points.

Cor. 1.—The n linesjoining respectively the invariable

points L, M, N . . . ^0 w corresponding points offigures

directly similar described on the sides of the harmonic
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polygon are concurrent; the locus of their point of concur-

rence is the Brocard circle of the polygon.

Prop. 6.—If figures directly similar he descriled on

the sides of a harmonic polygon of any numler of sides,

the symmedian lines of the harmonic polygon formed hy

corresponding lines of these figurespass through the middle

points of the symmedian chords of the originalfigures.

This is an extension of Prop. 5, page 193, and may-
be proved exactly in the same way.

CoE. 1.—The symmedian point of the harmonicpolygon^
formed ly corresponding lines of figures directly similar

y

is a point on the Brocard circle of the original polygon.

CoE. 2.—The invariable points of the original polygon
are corresponding points of figures directly similar de-

scriled on its sides.

CoE. 3.—The centre of similitude of the original poly-

gon, and that formed hy any system of corresponding lines,

is a point on the Brocard circle of the original polygon.

CoE. 4.—The centre of similitude of any two harmonic

polygons, whose sides respectively are two sets of corre-

sponding lines of figures directly simila/r, described on

the sides of the original polygon, is a point on the Bro-
card circle of the original.

The extension of recent Geometry to a harmonic quadrilateral
was made by Mr. Tucker in a Paper read before the Mathemati-
cal Society of London, February 12, 1885. His researches were
continued by Neuberg in Mathesis, vol. v., Sept., Oct., Nov.,
Dec, 1885. The next generalization was made by me in a Paper
read before the Royal Irish Academy, January 26, 1886, **0n
the Harmonic Hexagon of a Triangle." Both extensions are

special cases of the theory contained in this section, the whole
of which I discovered since the date of the latter Paper, and
which M. Brocard remarks,

'*
parait etre le couronnement de ces

nouveUes etudes de geometrie du triangle." The following
passage, in a note by Mr. M'Cay in Tucker's Paper, shoM's that
the idea of extension had occurred to that geometer:

—*'
I believe

all these results would hold for a polygon in a circle, if the sides

were so related that there existed a point whose distances from
the sides were proportional to the sides."—March, 1886.
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Miscellaneous Exercises.

1. If from the symmedian point of any triangle perpendicu-
lars be drawn to its sides, the lines joining their feet are at right

angles to the medians.

2. If ACB be any triangle, CL a perpendicular on AB ; prove
that AC and BL are divided proportionally by the antiparallel
to BC through the symmedian point.

3. The middle point of any side of a triangle, and the middle

point of the corresponding perpendicular, are coUinear with the

symmedian point.

4. If K be the symmedian point, and G the centroid of the tri-

angle ABC; then— 1° the diameters of the circumcircles of the

triangles AKB, BKC, CKA are inversely proportional to the

medians; 2° the diameters of the circumcircles of the triangles

AGB, BGC, CGA are inversely proportional to AK, BK, CK.

5. If the base BC of a triangle and its Brocard angle be given,,

the locus of its vertex is a circle. (Neueerg.)
Let K be its symmedian point. Through K draw FE parallel

to BC, cutting the perpendicular Ali in M. Make MN equal to

half LM. Through N draw QR parallel to EC ;
bisect BC in I,

and draw 10 at right angles, and make 210 . MX = BI^.
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Now, because the Brocard angle is given, the line FE parallel to

the base through the symmedian point is given in position. Hence
QR is given in position ;

therefore MN is given in magnitude.
Hence 10 is given in magnitude ;

therefore is a given point.

Again, because F'E is drawn through the symmedian point,
BA2 + AC2 : BC2 : : AM : ML

;
therefore BI2 + lA^ : BP : :

MN + NA : MN. Hence BI2 : IA2 : : MN : NA
;
therefore

IA2=: 210 . NA; and since I, are given points, and QR a given
line, the locus of A is a circle coaxal with the point I and the
line QR [VI., Section v., Prop. 1].

6. If on a given line BC, and on the same side of it, be de-
scribed six triangles equiangular to a given triangle, their vertices

-are coneyclic.

7. If from the point I, fig., Ex. 5, tangents be drawn to the

Neuberg circle, the intercept between the point of contact and I
is bisected by QR.

8. The Neuberg circles of the vertices of triangles having a
•common base are coaxal.

9. If the symmedian lines through the vertices A, B, C of a

triangle meet its circumcircle in the points A', B', C, the tri-

angles ABC, A'B'C are co-symmedians.

Dem.—Since the lines AA', BB', CC are concurrent, the six

points in which they intersect the circle are in involution. Hence
the anharmonic ratio (BACA') is equal to (B'A'C'A) ; but the
first ratio is harmonic ; therefore the second is harmonic. Hence
AA' is a symmedian of the triangle A'B'C. Similarly, BB', CC
are symmedians. Hence the proposition is proved.

10. If two triangles be co-symmedians, the sides of one are

proportional to the medians of the other.

1 1 . The six vertices of two co-symmedian triangles foim the

vertices of a harmonic hexagon.

12. The angle BOC, fig., Ex. 6, is equal to twice the Brocard

angle of BAC.

13. If the lines joining the vertices of two triangles which
have a common centroid be parallel, their axis of perspective

passes through the centroid. (M'Cay.)

14. The Brocard points of one of two co-symmedian triangles
are also Brocard points of the other.

_

15. If L, M, N, P, Q, R be the angles of intersection of the

-sides of two co-symmedian triangles (omitting the intersections
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which are coUinear), these angles are respectively equal to

those subtended at either Brocard point by the sides of the har-

monic hexagon. Ex. 11.

16. If two corresponding points D, E of two directly similar

figures Fi, Fa be conjugate points with respect to a given circle

(X), the locus of each of the points D, E is a circle.

Dem.—Let S be the double point of Fi, Fz, and let DE in-

tersect X in L, M ;
bisect DE in N. Join SN. Then from the

property of double points, the triangle SDE is given in species ;

therefore the ratio of SN : ND is given. Again, because E, D
(hyp.) are harmonic conjugates with respect to L, M, and N is

the middle point of ED, ND2 is equal to the rectangle NM . ML
;

that is, equal to the square of the tangent from N to the circle X.
Hence the ratio of SN to the tangent from N to X is given. Hence
the locus of N is a circle, and the triangle SND is given in species ;

therefore the locus of D is a circle.

17. If we consider each side of a triangle ABC in succession

as given in magnitude, and also the Brocard angle of the triangle,
the triangle formed by the centres of the three corresponding

Neuberg's circles is in perspective with ABC.

18. If in any triangle ABC triangles similar to its co-sym-
median be inscribed, the centre of similitude of the inscribed tri-

angles is the symmedian point of the original triangle.

19. If figures directly similar be described on the sides of a
hai-monic hexagon, the middle point of each of its symmedian
lines is a double point for three pairs of figures.

20. If F], F2, F3, F4 be figures directly similar described on
the sides of a harmonic quadrilateral, K its symmedian point, K',
K" the extremities of its third diagonal, and if the lines KK', KK"
meet the Brocard circle again in the points H, I

;
H is the double

point of the figures Fi, F3 ;
I of the figures F2, F4.

Def.—The quadrilateralformed by the four invariable points of
a harmonic quadrilateral is called Brocard^ s first quadrilateral, and
that formed by the middle points of its diagonals^ and the double

points H, I, Brocard'' s second quadrilateral.

This nomenclature may evidently be extended.

21. Brocard's second quadrilateral is a harmonic quadrilateral.

22. If <o be the Brocard angle of a harmonic quadrilateral

ABCD, cosec^ « = cosec^ A + cosec'^ B = cosec- C + cosec^ D.

23. If the middle point F of the diagonal AC of a harmonic

quadrilateral be joined to the intersection K' of the opposite sides

AB, CD, the angleAFK' is equal to the Brocard angle. (Neuberg.)

24. The line joining the middle point of any side of a har-
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monic quadrilateral to the middle point of the perpendicular on
that side, from the point of intersection of its adjacent sides, passes

through its symmedian point.
25. If Fi, F2, F3 . . . he figures directly similar described on

the sides of a harmonic polygon ABC . . . of any number of sides,

and if ajSy ... be corresponding lines of these figures ;
then if

any three of the lines ajSy ... be concurrent, they are all con-

current.

26. In the same case, if the figure ABC ... be of an even
number of sides, the middle points of the symmedian chords of

the harmonic polygon afiy . . . coincide with the middle points
of the symmedian chords of ABC . . .

27. If Fi, F2, F3 be three figures directly similar, and Bi,B2,

B3 three corresponding points of these figures ;
then if the ratio

of two of the sides B1B2 : B2B3 of the triangle formed by these

points be given, the locus of each is a circle
;
and if the ratio be

varied, the circles form two coaxal systems.
Dem.—Let Si, S2, S3 be the double points : then the triangles

S3B1B2, S1B2B3 are given in species. Hence the ratios B1B2 :

S3B2, and B2B3 : S1B2 are given ;
and the ratio B1B2 : B2B3 is

given by hypothesis. Hence the ratio S3B2 : S1B2 is given, and
therefore the locus of B2 is a circle.

28. If through the symmedian point K of a harmonic polygon
of n sides be drawn a parallel to any side of the polygon, inter-

secting the adjacent sides in the points X, X', and the circum-

oircle in Y, Y', then 4XK . KX' sin^ - = YK . KY'.
n

29. If the area of the triangle B1B2B3, Ex. 27, be given, the

locus of each point is a circle.

Dem.—Here we have the
ratios B1B2 : S3B2, and B2B3
: S1B2 given. Hence the ratio

of the rectangle B1B2 . B2B3 .

sin B1B2B3 : S3B2 . S1B2 . sin

B1B2B3 is given ;
but the for-

mer rectangle is given ;
there-

fore the rectangle S3B2 . 8162 .

sin B1B2B3 is given. Now,
the angles B1B2S3, SiB2B3 are

given. Hence the angle Bi
B2B3 ± S3B2S1 is given. Let
its value be denoted by o

;

therefore B1B2B3 = a ± S3
B2S1. Hence, taking the

upper sign, the problem is re-

duced to the following. The
base S3S1 ofa triangle S3B2S1
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is given in magnitude and position, and the rectangle S3B3 . S1B2 .

sin (a
— S3B2S1) is given in magnitude to find the locus of B2, which

is solved as follows :
—Upon S3S1 describe a segment of a circle

S3LS1 \Euc. III., XXXIII.] containing an angle S3LS1 equal to a.

Join SiL ;
then the angle B2S1L is equal to a — S3B2S1. Hence,

by hypothesis, S3B . S1B2 . sin B2S1L is given; but S1B2 . sin

B2S1L is equal to LB2 sin a
;
therefore the rectangle S3B2 . LB3

is given. Hence the locus of B2 is a circle.

30. If Q, QC be the inverses of the symmedian points of a tri-

angle, with respect to its circumcircle, the pedal triangles of Q, Q'
are— 1°, equal to one another ; 2"*, the sides of one are perpen-
dicular to the corresponding sides of the other

; 3°, each is

inversely similar to the original triangle. (M'Cay.)

31. If the area of the triangle formed by three corresponding
lines of three figures directly similar be given, the envelopes of
its sides are circles whose centres are the invariable points of the
thi-ee figures.

32. If the area of the polygon formed by n corresponding lines

of n figures directly similar described on the sides of a harmonic

polygon of n sides be given, the envelopes of the side are circles

whose centres are the invariable points of the harmonic polygon.

33. The four symmedian lines of a harmonic octagon form a
harmonic pencil.

34. A', C are corresponding points of figures F2, Fi directly
similar described on the sides BC, AB of a given triangle : if AA',
CC be parallel, the loci of the points A, C are circles.

Dem.—Let S be the double point of the figures, and D the

point of F2, which corresponds to C in Fi. Join DA', and pro-
duce CC to meet it in E. Now, since S is the double point of
the figures ABCC, BCDA', the triangles SCC, SDA' are equi-
angular ;

therefore the angle SCC is equal to SDA'. Hence the

points S, D, E, C are coneyclic ;
therefore the angle DEC is

equal to the supplement of DSC ; that is, equal to ABC
; there-

fore DA'A is equal to ABC, and is given. Hence the locus of
A' is a circle.

35. The Brocard angles of the triangles ABC, BCA' are equal,

Dem.—Let the circle about the triangle DA'A cut AB in F.
Join DF, CF

;
then the angle DFB is equal to DA'A {_Euc. III.,

XXII.] ; therefore it is equal to BCD. Hence the triangles BCA,
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BCF, BCD are equiangular. Hence the circle which is the

locus of the vertex when the base BC is given, and the Brocard

angle is equal to that of ABC, passes through the points A, F, D.

Hence it coincides with the locus of A.

36. If C, A', B' be three corresponding points of figures di-

rectly similar, described on the sides of the triangle ABC, and if

two of the lines AA', BB', CC be parallel, the three are parallel.

37. If ABC, A'B'C be two co-symmedian triangles, then
cotA + cot A' = cot B + cot B' = cot C + cot C . (Tucker.)

38. If n be a Brocard point of the triangle ABC, and pi,

P2, P3 the circumradii of| the triangles AnB, BnC, CnA ; then

pipzps
= K'. (TUCKEE.)

"39. If fl be a Brocard point of a harmonic polygon of n sides,

pij f2, P3, &c., the circumradii of the triangles AnB, BnC, CnD,

&c. ; then pipzps . . . pn = 2" cos'« — Il«.
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40. If the line joining two corresponding points of directly-

similar figures El, r2, Fs, described on the sides of the triangle

ABC, pass through the centroid, the three corresponding points
are colHnear, and the locus of each is a circle.

Dem.—Let Di, D2, collinear with the centroid G, be correspond-

ing points of Fi, F2, and let AN, BM, CL be the medians inter-

secting in G. Join NDi, MD2, and produce to meet parallels to

D1D2 drawn through A, B in the points A', B'. Now, from
the construction NA' = 3NDi, and MB' = 3MD

;
and since Di, D2

are corresponding points of Fi, F2 ; A', B' are corresponding

points ;
and AA', BB' being each parallel to D1D2, are parallel

to one another. Again, let D3 be the point of F3 which corre-

sponds to Di, D2 ;
and C that which corresponds to A', B'

;
then

the lines AA', BB', CC are parallel ;
and since LD3 =' ^LC, and

LG = ^LC ; D3G is parallel to CC Hence Di, D2, D3 are col-

linear ; and since the loci of A', B', C are circles, the loci of

Di, D2, D3 are circles. These are called M 'Cay's circles. It is

evident that each of them passes through two double points, and

through the centroid.

41. The polar of the symmedian point of a triangle, with re-

spect to Lemoine's first circle, is the radical axis of that circle

and the circumcircle.

42. The centre of perspective of the triangles ABC, pqt- (Sec-
tion III., Prop. 2, Cor. 2) is the pole of the line flfl', with re-

spect to the Brocard circle.

43. The axis of perspective of Brocard' s first and second

triangle is the polar of the centroid of the first, with respect to

the Brocard circle.

44. Brocard' s first triangle is triply in perspective with the

triangle ABC.

45. The centroid of the triangle, formed by the three centres

of perspective of Ex. 44, coincides with the centroid of ABC.

46-51. In the adjoining fig., ABCD is a harmonic quadrilateral,
E its symmedian point, M, N, P, Q its invariable points, &c.—

PQ_NP_OE
AC

~
BD

~
2R*

2^ NQ, GF, MP are paraUel.

3°. The pairs of triangles MNP, FHG ; MQP, GHF ; NMQ,
FIG

; NPQ, GIF are in perspective. The four centres of per-

spective are collinear; and the line of c611inearity bisects FG at

right angles.
'

•
' '*"

Q
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4'.^
The lines AG, CG, BF, DF are tangential to a circle con-

centric with the circumcircle.

5". If X, Y, Z, W be the feet of perpendiculars from E on the
aides of ABCD, E is the mean centre of X, Y, Z, W.

.B

/
M/

e**. The sides of the quadrilateral XYZW are tangential to a

circle concentric with the circumcircle.

52-55. if R, K he the symmedian points of the triangles ABC,
ADC ; S, S' of the triangles BCD, DAB ;

then—

1°. The quadrilaterals ABCD, S'ESR', have a common har-

monic triangle.

2° The four lines RS, S'R', AD, BC, are concurrent.

3°. If E' be the pole of AC
;
E" of BD, the three pairs of

points A, C
; S', S

; E, E", form an involution of which E, E"
mo the double points.
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4*. If through E a parallel to its polar be drawn, meeting the

four concurrent lines AD, S'R', RS, BC in the points \, jj., v, p,
the four intercepts Kfx, )liE, Ej/, vp are equal ;

and a similar

property holds for the intercepts on the parallel made by the

lines AB, S'R, R'S, CD.

56. If two triangles, formed by two triads of corresponding
points of three figures Fi, Fj, F3, directly similar, be in perspec-
tive, the locus of their centre of perspective is the circle of

similitude of Fi, F2, F3. (Tarry.)

57. If the symmedian lines AK, BK, CK, &c., of a harmonic

polygon of an odd number of sides, be produced to meet the cir-

cumcircle again in the points A', B', C', &c., these points form
the vertices of another harmonic polygon ;

and these two poly-
gons are co-symmedian, and have the same Brocard angles, Bro-
card points, Lemoine circles, cosine circles, &c.

58. In the same case the circles described through the extremi-

ties of the symmedian chords AA', BB', CC, &c., respectively,
and cutting the circumcircle orthogonally, are coaxal, and inter-

sect each other at equal angles.

69. In the same case, each circle of the coaxal system inter-

sects the Brocard circle orthogonally.

60. If the three perpendiculars of a triangle be corresponding
lines of three figures directly similar, the circle whose diameter
is the line joining the centroid to the orthocentre is their circle

of similitude.

61. If the base of a triangle be given in magnitude and position,
and the symmedian through one of the extremities of the base in

position, the locus of the vertex is a circle which touches that

symmedian.

62. If through the Brocard point n three circles be described,

each passing through two vertices of ABC, the triangle formed

by their centres has the circumcentre of ABC for one of its Bro-

card points. (Dewulf.)

63. If through the Brocard point fi of a harmonic polygon of

any number of sides circles be described, each passing through
two vertices of the polygon, their centres form the vertices of a
harmonic polygon similar to the original.

64. In the same manner, by means of the other Brocard point,
we get another harmonic polygon. The two polygons are equal
and in perspective, their centre of perspective being the cir-

cumcentre of the original polygon.
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65. In the same case, the circumcentre of the original poly-
gon is a Brocard point of each of the two new polygons.

66. If p he the circumradius of either of the new polygons,
the radius of Lemoine's first circle of the original harmonic poly-
gon is p tan (o.

,67-72. If Di, Da, D3 be corresponding points of Fi, F2, F3,
three figures directly similar, the loci of these points are circles

in the following cases :
—

1°. When one of the sides of the triangle D1D2D3 is given in

magnitude.

2". AVhen one angle of the triangle D1D2D3 is given in mag-
nitude.

< 3". "When tangents from any two of the points Di, D2, D3 to

a given circle have a given ratio.

4°. When the sum of the squares of the distances of Di, D2,
D3 from given points, each multiplied by a given constant, is

given.

5°. When the sum of the squares of the sides of the triangle

D1D2D3, each multiplied .by a given constant, is given.

6°. When the Brocard angle of the triangle D1D2D3 is given.

73. The poles of the sides of the triangle ABC, with respect to

the corresponding M 'Cay's circles, are the vertices of Brocard's

first triangle,

74. The mean centre of three corresponding points in the

system of figures, Ex. 60, for the system of multiples a^, Ir^ c^, is

the symmedian point of the triangle ABC.

75. If from the middle points of the sides of the triangle ABC
tangents be drawn to the corresponding Neuberg's circles, the

points of contact lie on two right lines through the centroid of

ABC.

76. The circumcentre of a triangle, its symmedian point, and
the orthocentre of its pedal triangle, are collinear. (Tucker.)

77. The orthocentre of a triangle, its symmedian point, and
the orthocentre of its pedal triangle, are collinear. (E. Van
AUBEL.)

78. The perpendicular from the angular points of the triangle
ABC on the sides of Brocard's first triangle are concurrent, and
their point of concurrence (called Tarky's Point) is on the cir-

cuincircle of ABC.
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79. The Simson's line of Tarry' s point is perpendicular to OK.

80. The parallels drawn through A, B, C, to the sides (B'C,

C'A', A'B'), or to (C'A', A'B', B'C), or (A'B', B'C, CA') of

the first triangle of Brocard, concur in three points, B, E,', R".

(Neuberg.)

81. The triangles RR'R", ABC have the same centroid. (Ibid.)

82. R is the point on the circumcircle whose Simson's line is

parallel to OK.

83. If from Tarry's point, Ex. 78, perpendiculars he drawn to

the sides BC, C4# AB of the triangle, meeting those sides in (o,

ai, a2), {fi, fiu /32), {y, 71, 72), the points o, )9i, 7 are collinear

(Simson's line). So also are ai, ^2, 7, and a2, ;8, 71 collinear

systems. (Neuberg.)

84. M 'Cay's circles are the inverses of the sides of Brocard's

first triangle, with respect to the circle whose centre is the cen-

troid of ABC, and which cuts its Brocard circle orthogonally.

85. The tangents from A, B, C to the Brocard circle are pro-

portional to a"', b'^, c'^.

86. If the alternate sides of Lemoine's hexagon be produced to

meet, forming a second triangle, its inscribed circle is equal to the

nine-points circle of the original triangle.

87. If K be the symmedian point of the triangle ABC, and
the angles ABK, BCK, CAK be denoted by du O2, 63, re-

spectively ; and the angles BAK, CBK, ACK by (pi, <p2, <pi,

respectively ;
then cot di + cot dt + cot ^3 = cot <^i + cot <^3

+ cot ^3 = 3 cot «. (Tucker.)

88. If Ai, Bi, Ci be the vertices of Brocard's first triangle, the

lines BAi, ABi are divided proportionally by nCi'.

89. The middle point of AB, AiBi, nn' are collinear (Stoll.)

90. The triangle formed by the middle points of Ai, Bi, Ci

is in perspective with ABC. (Ibid.)

91. If the Brocard circle of ABC intersect BC in the points

M, M', the lines AM, AM' are isogonal conjugates with respect
to the angle BAG.

92. If fi, fl' be the Brocard points of a harmonic polygon of

« sides, A n' = 2R sin »J (cos'w
- sin^w . tan^ -).

93. If the polars of the points B, C, with respect to the Brocard

circle of the triangle ABC, intersect the side BC in the points



218 A SEQUEL TO EUCLID.

L, L', respectively ; the Jlines AL, AL' are isogonal conjugates
with respect to the angle BAG.

94. The reciprocal of any triangle with respect to a circle,
whose centre is either of the Brocard points, is a similar triangle,

having the centre of reciprocation for one of its Brocard points.

95. If the angles which the sides AB, BC, CD . . . KL of a
harmonic polygon suhtend at any point of its circumcircle he
denoted by a, P,y, . . . A, the perpendiculars from the Brocard

points on the sides are proportional respectively to the quantities,
sin \ cosec A, sin a cosec B, sin fi cosec C, ... sin K cosec L,
and their reciprocals. ^

96. The triangle ABC, its reciprocal with respect to the Bro-
card circle, and the triangle pqr [Section iii., Prop. 2, Cor. 2],

are, two by two, in perspective, and have a common axis of per-
spective.

97. If the sides AB, BC, CD, DE, &c., of a harmonic poly-
gon of any number of sides, be divided proportionally in the points
L', M', N', P', &c. , the circuracircles of the n triangles L'BM',
M'CN', N'DP', P'EQ,', &c., have one point common to all, and
each of them bisects one of the symmedian chords of the polygon.

98. The locus of the common point in Ex. 97, as the points L',

M', N', &c., vary, is the Brocard circle of the polygon.

99. If n, n' be the Brocard points of a harmonic polygon of

any number of sides {n) ; then the products An . Bn . CX2 . . . .

= An' . Bn' . Cn '

. . . . = (R sec - sin w)".
n

100. If ABCDEF be a harmonic hexagon; L, M, N, P, Q, R
points which divide proportionally the sides AB, BC, CD, &;c. ;

the circles through the pairs of points L, R ; M, Q, ; N, P, and

through any common point on the Brocard circle of the hexagon,
are coaxal.

101. The symmedian point of a harmonic polygon of any num-
ber of sides is the mean centre of the feet of its perpendiculars on
the sides of the polygon.

102. A harmonic polygon of any number of sides can be pro-

jected into a regular polygon of the same number of sides, and
the projection of the symmedian point of the former will be the

circumcentre of the latter.

103. The sum of the squares of the perpendiculars from the

symmedian point of a harmonic polygon on the sides of the poly-
gon is a minimum.

104. Similar isosceles triangles, BA'C, CB'A, AC'B, are de-

scribed on the sides of a triangle ABC ;
then if ABC, and the

triangles whose sides are AB', BC CA', and A'B, B'C, C'A,
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respectively, be denoted by Fi, F2, F3, tbe triangle of similitude

of Fi, F2, F3 is nOn', formed by the Brocard points and circum-

centre of ABC
;
and their symmedian points are also their in-

variable points. (Neuberg.)

105. If the coaxal system, consisting of the circumcircle of a

harmonic polygon of any number of sides, its Brocard circle, and
their radical axis, be inverted into a concentric system, the radii

of the three inverse circles are in GP.

106. If the angles which the sides of a harmonic polygon
subtend at any point of its cii'cumcircle be denoted by a, jS, 7,

&c., and its Brocard angle by a, the intercepts made on the

sides of the polygon by Lemoine's First Circle are proportional
to sin (a

-
«), sin (jS

-
w), sin (7

-
w), &c.

From this property Lemoine's First Circle may be called the

Sine Circle of the polygon.

107. If L be either of the limiting points of the circumcircle

and Brocard circle of a harmonic polygon ABC, .... the lines

AL, BL, CL .... will meet the circumcircle again in the

angular points of a regular polygon.

Def.—Thepoints L, U are called centres of inversion cfthe
polygon.

108. If w be the Brocard angle of the polygon, n the number
of sides, L, L' the centres of inversion, the circumcentre,

OL : OL' : : cos ( 0) + -
j

: cos
[

cy—
j

.

109. The circles described about the triangles ALB, BLC,

CLD, &c., cut the circumcircle at equal angles, viz., .

110. The same circles are tangential to a circle coaxal with the

Brocard circle and circumcircle.

111. The lines from L to the points of contact are symmedian
lines of the triangles ALB, BLC, &c.

112. If through the extremities A, B
; B, C

; C, D, &c., of

the sides of a harmonic polygon circles be described touching the

Brocard circle, the contacts being all of the same species, these

circles cut the circumcircle at equal angles, and are all tan-

gential to a circle coaxal with the Brocard circle and circum-

circle.

113. The radical axis of the circumcircle and cosine circles of

a harmonic quadrilateral passes through the symmedian point of

the quadi'ilateral.

114. If the Brocard angles of two harmonic polygons, A, B, be
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complementary, and if the cosine circle of A be the circumcircle

of B, the cosine circle of B is equal to the circumcircle of A.

115-117. In the same case, if the cosine circle of B coincide

"with the circumcircle ofA
;
and n, n' be the numbers of sides of the

polygons ; «, «' their Brocard angles ;
5 the diameter of their

common Brocard circle ; then—
IT IT

V. tan w = cos - f cos — .

n n

2°. The Brocard points of A coincide with those of B.

3-. 5» cos^ '^ = R2 cos (- + -) cos (- - ^) .

118. If through the vertices of a harmonic polygon of any
number of sides circles be described, cutting its circumcircle and
Brocard circle orthogonally, their points of intersection with the

Brocard circle form the vertices of a harmonic polygon, and the

Brocard circle of the latter polygon is coaxal with the Brocard

circle and circumcircle of the former.

119. If the symmedian lines AK, BK, CK of a triangle meet

the sides BC, CA, AB in the points Ka, Kj, Kc, respectively, the

triangle ABC, its reciprocal, with respect to its circumcircle, and

the triangle KaKjKc, have a common axis of perspective.

120. If DE be the diameter of the circumcircle of ABC, which
bisects BC, and Ea be the intersection of the symmedian AK,
with BC, the line joining the middle point of BC to K meets the

lines EKrt, DKa, respectively, on the bisectors, internal and ex-

ternal, of the angle BAC.

121. If a Tucker's circle meet the sides BC, CA, AB of the

triangle ABC in the pairs of points D, D'; E, E'; F, F', respec-

tively, and if ai, 02, 03 be the centroids of the triangles AFE',
BDF', CED', respectively ; /3i, J82, Pz, the centroids of the cor-

responding triangles, cut off by the same Tucker's circle on the

triangle which is the co-symmedian of ABC, oi, 02, 03 are the in-

variable points of the figures directly similar, of which the

triangles AFE', BDF', CED' are corresponding parts, and

iSi, ^2, )83 are the double points.

122. In the same case corresponding lines in these figui'es are

proportional to a'S b-\ r^ respectively.

123. If be the circumcentre of a harmonic polygon of n

sides, L one of the limiting points of the circumcircle and
Brocard circle

;
then if OL = R cot d,

IT

cos20 = tano) tan -.
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124. If ABCD, &c., be a harmonic polygon, and if circle

<lescribed through the pairs of points A, B
; B, C

; C, D, &c.,
touch the radical axis of the circumcircle and Brocard circle, the

points of contact are in involution.

125. Any four given sides of a harmonic polygon meet any of

the remaining sides in four points, whose anharmonic ratio is

constant.

126. The quadrilateral formed by any four sides of a harmonic

polygon is such, that the angles subtended at either of the

Brocard points, by opposite sides, are supplemental.

127. The reciprocals of two co-symmedian triangles, with re-

spect to their common symmedian point, are equiangular.

128. The reciprocals of two co-symmedian triangles, with re-

spect to either of their common Brocard points, are two co-

symmedian triangles.

129. The reciprocal of a harmonic polygon, with respect to

either of its Brocard points, is a harmonic polygon, having the

centre of reciprocation for one of its Brocard points.

130. If two cu-cles W, W, coaxal with the circumcircle and
Brocard circle of a harmonic polygon, be inverse to each other,
with respect to the circumcircle ; then the inverses of the circum-

circle, and the circle W, with respect to any point in the circum-
ference of W, are respectively the circumcircle and Brocard circle

of another harmonic polygon, whose vertices are the inverses of

the vertices of the former polygon..

131. If R' be the radius of the cosine cii-cle of a harmonic

polygon of n sides; A, 5 the diameters of its Lemoine cirde and
Biocard circle, respectively ; then

a2 - 5^ - R'2 sec2 -.
n

132. If the vertices of a harmonic polygon of n sides be in-

verted from any arbitrary. point into the vertices of another har-

monic polygon, the inverses of the centres of inversion of tlio

former wiil be the centres of inversion of the latter.

Def. I.—Ifany point X in the circumference of a circle bejoined
to n fixed points Ii, I2 . . . Im in the same circumference, and upon
the joining lines be taken portions IiAi, I2A2 . . . InA,,, xchich are

in given ratios, and all measured in the same direction with respect to

X, a system of directly similarfigures described on these portio^ts is

called an Associated System. (Tarry.)
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Def. II.—The points Ii, I2 . . . I»» are called the Invariable

Points, and the circle through them the circle of similitude

of the system.

133-136. In an associated system—
1". Corresponding lines passing through the invariable points

are concurrent.

2°. The double points of the figures taken in pairs are concyclic.

3°. The figure formed by n homologous points is in perspective
with that formed by the invariable points.

4". The figure formed by n homologous lines is in perspective
with that formed by the centres of similitude.

Def. III.—A polygon which is such that a system of directly
similarfigures described on its sides is an associated system^ is called

a Tarry's Polygon'.

137. If a TaiTy's polygon be a closed figure, it is a harmonic

polygon.

138. If A1A2 ... An be a Tarry's polygon, the lines Aili,

A2I2 • . • A„I„ are concurrent, as also the lines A2I1, A3I2 . . .

A„Ii, and the points of concurrence Ci, Of are on the circle of simi-

litude.

Def. iv.—n, Of are called the Brocard Points of the polygon.

139. The angles I1A1A2, I2A2A3 . . . ImA„Ai have the same

value, say w.

The angles I1A2A1, I2A3A2 . . . InAiA„ have the same

value, say w'.

Def. v.— oj, w' are called the Brocard Angles of the polygon.

140. If 0) = »', Tarry's Polygon is a harmonic polygon.

141 . If through the invariable points parallels be drawn to the

homologous sides of Tarry's polygon, these lines concur in a point

K, whose distances from the sides of Tarry's polygon are propor-
tional to the sides.

Observation.—The extension of Tarry's Theory of Similar

Figures of which an outline is given, Ex, 133-141, has been

communicated to me by Professor Neuberg. I have only re-

ceived it while this last sheet is going through the press, too

late for insertion in its proper place, namely, the end of Sec-

tion IV. of this Chapter.
—May, 1886.
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Species, triangle given in, 37.
• quaurilateral given in,

81.

Steiner, theorem by, 103, 155, 164,

167.

Stoll, theorem by, 217.

Symmedian lines of a triangle,

170. — point of a triangle,

lines of harmonic

polygon, 199.

points of harmonic

polygons, 199.

Tarry, theorem bv, 189, 215, 221.

Taylor, theorem by, 185.

Triangle, given in species, 37.

self- conjugate, 93.
of similitude, 185.

Townsend, preface, 77, 125, 133,

184.

Tucker, theorems by, 206, 212, 216,

217.

Weill, theorems by, 164.
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EXTRACTS FROM CRITICAL NOTICES.

"Nature," April 17, 1884.

"We have noticed ('Nature,' vol. xxiv., p. 52; vol. xxvi.,

p. 219) two previous editions of this book, and are glad to find

that our favourable opinion of it has been so convincingly in-

dorsed by teachers and students in general. The novelty of this

edition is a Supplement of Additional Propositions and Exercises.

This contains an elegant mode of obtaining the circle tangential

to three given circles by the methods of false positions, construc-

tions for a quadrilateral, and a full account—for the first time in

a text-book—of the Brocard, triplicate ratio, and (what the author

proposes to call) the cosine circles. Dr. Casey has collected toge-

ther very many properties of these circles, and, as usual with

him, has added several beautiful results of his own. He has

done excellent service in introducing the circles to the notice of

English students. . . . "We only need say we hope that this

edition may meet with as much acceptance as its predecessors,

it deserves greater acceptance."
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The "Mathematical Magazine," Erie, Pennsylvania.

' ' Dr. Casey, an eminent Professor of the Higher Mathematics

and Mathematical Physics in the Catholic IJniversity of Ireland,

has just brought out a second edition of his imique
*

Sequel to

the First Six Books of Euclid,' in which he has contrived to

arrange and to pack more geometrical gems than have appeared

in any single text-book since the days of the self-taught Thomas

Simpson.
* The principles of Modern Geometry contained in the

work are, in the present state of Science, indispensable in Pure

and Applied Mathematics, and in Mathematical Physics ;
and it

is important that the student should become early acquainted

with them.'

' ' Eleven of the sixteen sections into which the work is divided

exhibit most excellent specimens of geometrical reasoning and

research. These will be found to furnish very neat models for

systematic methods of study. The other five sections contain

261 choice problems for solution. Here the earnest student will

find all that he needs to bring himself abreast with the amazing

developments that are being made almost daily in the vast regions

of Pure and Applied Geometry. On pp. 152 and 153 there is an

elegant solution of the celebrated Malfatti's Problem.

"As our space is limited, we earnestly advise every lover of

the *

Bright Seraphic Truth ' and every friend of the ' Mathe-

matical Magazine
'

to procure this invaluable book without

delay."

The "Schoolmaster."

" This book contains a large number of elementary geometrical

propositions not given in Euclid, which are required by every

student of Mathematics. Here are such propositiosns as that the

three bisectors of the sides of a triangle are concurrent, needed in

determining the position of the centre of gravity of a triangle ;

propositions in the circle needed in Practical Geometry and Me-

chanics ; properties of the centres of similitude?, and the thcoric?
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of inversion and reciprocations so useful in cerain electrical ques-

tions. The proofs are always neat, and in many cases exceedingly

elegant."

The ''Educational Times."

" We have certainly seen nowhere so good an introduction to

^Modern Geometry, or so copious a collection of those elementary

propositions not given by Euclid, but which are absolutely indis-

pensable for every student who intends to proceed to the study of

the Higher Mathematics. The style and general get up of the

book are, in every way, worthy of the * Dublin University Press

Series,' to which it belongs."

The " School Guardian."

''This book is a well-devised and useful work. It consists of

propositions supplementary to those of the first six books of

Euclid, and a series of carefully arranged exercises which follow

each section. More than half the book is devoted to the Sixth

Book of Euclid, the chapters on the '

Theory of Inversion
* and

on the ' Poles and Polars
'

being especially good. Its method

skilfully combines the methods of old and modern Geometry ;
and

a student well acquainted with its subject-matter would be fairly

equipped with the geometrical knowledge he would require for

the study of any branch of physical science."

The " Practical Teacher."

"Professor Casey's aim has been to collect within reasonable

compass all those propositions of Modem Geometry to which

reference is often made, but which are as yet embodied nowhere.

. . . "We can imreservedly give the highest praise to the matter

of the book. In most cases the proofs are extraordinarily neat.

. . . The notes to the Sixth Book are the most satisfactory.

Feuerbach's Theorem (the nine-points circle touches inscribed

and escribed circles) is favoured with two or three proofs, all of

which are elegant. Dr. Ilait's extension of it is extremely well
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proved. . . . We shall have given sufficient commendation

to the book when we say, that the proofs of these (Malfatti's

Problem, and Miquel's Theorem), and equally complex problems,

which we used to shudder to attack, even by the powerful wea-

pons of analysis, are easily and triumphantly accomplished by
Pure Geometry.

" After showing what great results this book has accomplished

in the minimum of space, it is almost superfluous to say more.

Our author is almost alone in the field, and for the present need

scarcely fear rivals."

The "Academy."

" Dr. Casey is an accomplished geometer, and this little book

is worthy of his reputation. It is well adapted for use in the

higher forms of our schools. It is a good introduction to the

larger works of Chasles, Salmon, and Townsend. It contains

both a text and numerous examples."

''Journal of Education."

" Dr. Casey's
'

Sequel to Euclid
' wiU be found a most valuable

work to any student who has thoroughly mastered Euclid, and

imbibed a real taste for geometrical reasoning. . . . The

higher methods of pure geometrical demonstration, which form

by far the larger and more important portion, are admirable
;
the

propositions are for the most part extremely well given, and will

amply repay a careful perusal to advanced students."
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OPINIONS OF THE WORK.

The following are a few of the Opinions received by
Dr. Casey on this Work :

—
" Teachers no longer need be at a loss when asked which of

the numerous * Euclids' they recommend to learners. Dr. Casey's
will, we presume, supersede aU others."—The Dublin Evening
Mail.

** Dr. Casey's work is one of the best and most complete
treatises on Elementary Geometry we have seen. The annota-

tions on the several propositions are specially valuable to stu-

dents."—The Northern Whig.

*' His long and successful experience as a teacher has eminently
qualified Dr. Casey for the task which he has undertaken. . . .

We can unhesitatingly say that this is the best edition of Euclid
that has been yet offered to the public."

—The Freeman's
Journal.

From the Eev. E. Townsend, F.T.C.D., &c.

** I have no doubt whatever of the general adoption of your
work through all the schools of Ireland immediately, and of

England also before very long."
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From George Francis Fitz Gerald, Esq., F.T.C.D.

" Your work on Euclid seems admirable, and is a great im-

provement in most ways on its predecessors. It is a great thing
to call tlie attention of students to the innumerable variations in

statement and simple deductions from propositions. ... I should

have preferred some modification of Euclid to a reproduction, but

I suppose people cannot be got to agree to any."

From H. J. Cooke, Esq., The Academy'-, Banbridge.

" In the clearness, neatness, and variety of demonstrations, it

is far superior to any text-book yet published, whilst the exercises

are all that could be desired."

From James A. Poole, M.A., 29, Harcourt-street, Dublin.

" This work proves that Irish Scholars can produce Class-books

which even the Head Masters of English Schools will feel it a

duty to introduce into their establishments."

From Professor Leebody, Magee College, Londonderry.

*' So far as I have had time to examine it, it seems to me a

very valuable addition to our text-books of Elementary Geometry,
and a most suitable introduction to the '

Sequel to Euclid,' which
I have found an admirable book for class teaching."

From Mrs. Bryant, F.C.P., Principal of the North London Col-

legiate School for Girls.

" I am heartily glad to welcome this work as a substitute for

the much less elegant text-books in vogue here. I have begun
to use it already Math some of my classes, and find that the

arrangement of exercises after each proposition works admirably."

From the Rev. J. E. Ebfpe, French College, Blackrock.

"I am sure you will soon be obliged to prepare a Second

Edition. I have ordered fifty copies more of the Euclid (this

makes 250 copies for the French College). They all like the book

here."

From the Nottingham Guardian.

" The edition of the First Six Bgoks of Euclid by Dr. John

Casey is a partieularly useful and able work. . . . The illus-

trative exercises and problems are exceedingly numerous, and

have been selected with great care. Dr. Casey^
has done an

undoubted service to teachers in preparing an edition of Euclid

adapted to the development of the Geometry of the present day."
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From the Leeds Mercury.

'* There is a simplicity and neatness of style in the solution of

the problems which will be of great assistance to the students in

mastering them. ... At the end of each proposition there is an

examination paper upon it, with deductions and other proposi-

tions, by means of which the student is at once enabled to test

himself whether he has fully grasped the principles involved. . . .

Dr. Casey brings at once the student face to face with the diffi-

culties to be encountered, and trains him, stage by stage, to solve

them."

From the Practical Teacher.

"The preface states that this book *
is intended to supply a

want much felt by Teachers at the present day
—the production

of a work which, while giving the unrivalled original in all its

integrity, would also contain the modern conceptions and de-

velopments of the portion of Geometry over which the elements

extend.'

** The book is all, and more than all, it professes to be. . . '. The

propositions suggested are such as will be found to have most

important applications, and the methods of proof are both simple
and elegant. We know no book which, within so moderate
a compass, puts the student in possession of such valuable results.

" The exercises left for solution are such as will repay patient

study, and those whose solution are given in the book itself will

suggest the methods by which the others are to be demonstrated.

"We recommend everyone who wants good exercises in Geometry
to get the book, and study it for themselves."

From the Educational Times.

"The editor has been very happy in some of the changes he
has made. The combination of the general and particular enun-
ciations of each proposition into one is good ;

and the shortening
of the proofs, by omitting the repetitions so common in Euclid, is

another improvement. The use of the contra-positive of a proved
theorem is introduced with advantage, in place of the reductio ad
absurdum ; while the alternative (or, in some cases, substituted)

proofs are numerous, many of them being not only elegant but

eminently suggestive. The notes at the end of the book are of

great interest, and much of the matter is not easily accessible.

The collection of exercises,
* of which there are nearly eight

hundred,' is another feature which will commend the book to

teachers. To sum up, we think that this work ought to be read

by every teacher of Geometry ; and we make bold to say that no
one can study it without gaining valuable information, and still

more valuable suggestions."
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From the Journal of Education, Sept. 1, 1883.

In the text of tlie propositions, the author has adhered, in all

hut a few instances, to the suhstance of Euclid's demonstrations,
without, however, giving way to a slavish following of his occa-

sional verbiage and redundance. The use of letters in brackets

in the enunciations eludes the necessity of giving a second or

particular enunciation, and can do no haim. Hints of other

proofs are often given in small type at the end of a proposition,

and, where necessary, short explanations. The definitions are

also carefully annotated. The theory of proportion. Book V., is

given in an algebraical form. This book has always appeared to

us an exquisitely subtle example of Greek mathematical logic,
but the subject can be made infinitely simpler and shorter by a
little algebra, and natiurally the more difficult method has yielded

place to the less. It is not studied in schools, it is not asked for

even in the Cambridge Tripos ;
a few years ago, it still survived

in one of the College Examinations at St. John's, but whether
the reforming spirit which is dominant there has left it, we do
not know. The book contains a very large body of riders and

independent geometrical problems. The simpler of these are

given in immediate connexion with the propositions to which

they naturally attach ; the more difficult are given in collections

at the end of each book. Some of these are solved in the book,
and these include many well-knovpn theorems, properties of ortho-

centre, of nine-point circle, &c. In every way this edition of

Euclid is deserving of commendation. "VVe would also express a

hope that everyone who uses this book will afterwards read the

same author's '

Sequel to Euclid,' where he will find an excellent

account of more modem Geometry."

NOW READY, Price 6s.,

A KEY to tlie EXEECISES in tlie ELEMENTS of

EUCLID.

2000—4, 2, '86— [101]
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OPINIONS OF THE WORK.
From George Gabriel Stokes, President of the Royal Society.

*' I write to thank you for your kindness in sending me your
book on the 'Analytical Geometry of the Point, Line, Circle,

and the Conic Sections.'
** I have as yet only dipped into it, being for the moment very

much occupied. Of course from the nature of the book there is

much that is elementary in it
;

still I see there is much which I

should do well to study."

From Professor Cayley, Cambridge.

"I have to thank you very much for the copy you kindly
sent me of your treatise on 'Analytical Geometry.' I am glad to

see united together so many of your elegant investigations in this

subject."

From M. H. Brocard, Capetaine du Genie a Montpellier.
** J'ai en hier ragr6able surprise sur laquelle je me complais

d'ailleura depuia un certain temps de recevoir votre nouveau
' Traite de Geometrie Analytique.' . . .

*' Je me suis emerveiUe du soin que vous avez apporte k la redac-

tion de cet ouvrage, et je forme dcs aujourd'hui les voeux les plus
sinc^res pour que de nombreuses editions de co livre se repandcnt

rapidement dans le public mathematique et parmi la jeunesso
atudieuse de nos univeraites."

[1016]
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conic sections; § 2, similar figures, gives a good.restime oi results-

connected with Brocard's points and circles, Neuberg's circles,

M'Cay's circles, and Kiepert's hyperbola ;
in § 3 on the general

equation interlinear co-ordinates. Aronhold's notation is *now
published for the first time in an English treatise on Conic Sec-
tions.' The remaining six sections are occupied respectively
with Envelopes, Projections, Sections of a Cone, nomographic
Divisions, Reciprocal Polars, and Invariants and Covariants. An
idea has now, we trust, been conveyed to the reader of the

ground covered by Dr. Casey ;
a good deal of it is, of course,

well-worn ground, but even this has been adorned by his touch,
and n^uch relating to the new circles has never before been intro-

duced into our books : these circles must soon become as familiar

to our junior students as the nine-points circle, whose properties
are by this time nearly exhausted.

" The examples are exceedingly numerous, and a good feature

is that most of the results obtained in them are numbered con-

secutively with the important results of the text. This enables

the author to refer to them with facility."

From the Educational Times, May, 1886.

*' The eminence and experience of the author are a sufficent

guarantee for careful work and original research, and in this

volume of moderate size there is a great deal that will be fresh to

English readers . . .

'' There can be no doubt that this treatise ought to be studied

as a whole by everyone to acquaint himself with the most recent

developments of Algebraical Geometry."

From the Educational Times, September, 1886.

"In this book the author has added to those propositions

usually met with in Treatises on Analytical Geometry many
which we have seen in no other books on the subject ; notably
extending the equations of circles inscribed in and circumscribed

about triangles to polygons of any number of sides, and extend-

ing to Conies the properties of circles cutting orthogonally. The
demonstrations are concise and neat. In many cases the author

has substituted original methods of proof advantageously, and in

some has also added the old methods. We would specially note

his treatment of the General Equation of the Second Degree,
which is more satisfactory than many we have seen. Throughout
the book there are numerous exercises on the subject matter, and
at the end of each section a collection of problems bearing on
that part of the subject. These problems have been obtained

from Examination Papers and other sources. They have been

selected with much care and judgment. The name of the pro-

poser has in many cases been added, and will cause more interest

to be taken in the solution."
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