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Abstract:

Weber [1983] argues that the expected equilibrium prices of

identical objects auctioned sequentially to expected profit

maximizing bidders with symmetrically distributed privately-known

values (with each bidder winning at most one object) should all

be equal. In fact, in actual auctions, the prices seems to tend

downwards. We show that for similar objects—objects having

statistically identical, independent values— the trend will be

upwards in some cases, but the overall trend will be downwards

for any value distribution with bounded support.

We also consider non-similar (but still independent) objects

and argue that the seller benefits from selling first the objects

that contribute most to bidders' profits. To the extent that

bidders most highly value those objects with high variance— high

variance in bidders' values leads to high winner profits—
sequentially auctioning the option to choose one of the remaining

objects implements a good order.





In troduc ticn :

In many actual sequential auctions of similar objects—
auctions of farmland, of used restaurant equipment, of a bankrupt

construction firm's inventory, of nursery stock, and of dairy

cattle— the price tends to drop from one object to the next.

This contrasts with the existing theory. In particular, Weber

[1983] argues that in sequential auctions of identical ocjects to

expected profit maximizing bidders with symmetrically-distributed

privately-known values (with each bidder allowed to win at most

object), the prices will be a martingale; ex ante, each object

has the same expected price. More generally, with affiliated

information, the prices will be a submar tinga 1 e ; the prices will

tend to drift upwards. Of course, a particular realization of a

submar tinga 1 e might consist of a strictly decreasing sequence of

numbers. But this would be an atypical outcome. And prices in

actual auctions seem to trend downwards far too often to be

explained as atypical outcomes.

Assuming the objects to be identical misses what turns out

to be an essential element of the above mentioned auctions. 7ne

objects are not indeed identical. For example, the used

restaurant tables that were auctioned sequentially were basically

similar, but varied in structural soundness, in condition of the

table top, and in condition of the base. Similarly, eacn dairy

cow differed slightly in age, milk yield history, and genetic

stock; all these factors affect bidders' values. So, lnsteac of

a bidder's value varies from object to object.

We model the values of different objects to a particular

bidder as being independent draws from some fixed distribution.

This may indeed be just as unrea 1 is t ica 1 1 y extreme an assumption

as is the assumption of identical objects

—

that is, an assumption

that the values are perfectly correlated. But, the independent

objects assumption provides an insightful contrast to the

identical objects assumption. Going all the way to this extreme



also simplifies the analysis and the interpretation of the

results; in particular, the independence across objects avoids

the effect of signalling (as studied, for example, by Qrtega-

Reichart [1968] and Enge 1 brecht-Wiggans and Weber [1987], ana

which underlies Weber's upward price trend result.)

Our results contrast with those for identical objects. in

particular, the price trend now varies with the distribution of

the bidders' values. For certain distributions of values,

including the exponential, the expected prices increase strictly

from one object to the next. Eut, for other distributions,

including the uniform, the expected prices decrease strictly.

And, in general for bounded distributions, for large enough

numbers of objects, the overall price trend is downwards. That

is, our model's predictions seem consistent with the sustained

downwards seguences of prices in actual auctions.

The analysis also reveals the forces underlying the price

trends in seguential auctions. A closer look at one of these

—

the effect of decreasing opportunities— has practical

implications in the case of non-similar objects. in particular,

the seller benefits from first selling the objects that

contribute most to the bidders' profits. if the seller aoes net

know which objects these are, then to the extent they are cne

objects that bidders consider most valuable, sequential-,

auctioning the right to choose one of the remaining objects

implements the desired order.

The Basic Model

:

We start by defining our model. In particular, imagine that

n objects will be auctioned one after another without re^er\/e.

Initially, there are n+m (m>0) expected profit maximizing

bidders. Each bidder may win at most one object; thus, the

number of bidders drops by one in each auction and there will be

n-j+m+1 bidders in the j"61-1 auction.
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To specify the informational assumptions, let X*,j denote a

random variable with outcome Xi.j, Bidder 1 has a value of :< ipJ

for object j; bidder 1 knows x^.j when bidding on object j, but

does not yet know Xi.j + i, Xi,j+2 , ... , x* „ n . (For notational

simplicity, i always ranges from one to n+m, while j always

ranges from one to n; bidders who have already won an object can

simply ignore subsequent x i(J-'s.) Assume that for each 1, X * . x ,

Xi.-, ... X i , ,-, ar& identically and independently distributed.

Also, assume symmetry— but not necessarily independence— across

bidders; more precisely, the joint distribution of X x „ j , X-.j,

... , X ^. m ,j is symmetric in its arguments. Finally, assume that

everyone knows the joint distribution of the bidders' values.

In the previously mentioned examples, the auctions followed

the common ascending-price oral format. In our model, we use

Vickrey [1961] auctions

—

sealed-bid sales in which the hignest

bidder wins, but pays only an amount equal to the highest losing

bid. Given the private values nature of our model, the Vickrey

auction provides a simple, seemingly plausible approximation to

actual oral auctions.

An Equi 1 l br mm

To derive an equilibrium bidding strategy for our sequential

auctions, we will start with the last auction and work toward the

first. To derive the condition applied iteratively in this

process, focus on any one auction, say that of object j (j\n).

Imagine that the strategies used in subsequent auctions will be

independent of how others bid in this auction (but not

necessarily independent of who wins this auction); given the

independence across objects, this will be true in the equilibrium

that we identify for our model. Then fixing the strategies used

by bidders in subsequent auctions fixes the expected profit to

each bidder in subsequent auctions (conditional on the outcome of

this auc t ion ) .
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We will repeated refer to these profits. So, let L *. . _,

denote the expected profit to bidder 1 from auctions j+i, J+2,
... , n conditional on bidder 1 losing object j . For the moment,

also consider the case in bidders may win more than one object--
ln this case, the value x * ,. j may depend on what objects 1 won

previous to the auction of object j— and let W i(J' denote the

expected profit to bidder 1 conditional en winning object j

.

Since object n is the last object, define L i>n and W Iin to be

zero for all bidders 1.

This allows us to consider the auction of object j in

isolation from other auctions. In particular, in auction j,

bidder 1 in effect has a privately-known net value of •< ± . j + Wi,j

— Li, j for winning. So, the standard argument for vickrey

auctions with privately-known values (see for example,

Enge 1 brech t-Wiggans [1991]) yields the following:

Proposition 1: If bidder i knows x L . j , Li, j , and Wi.j (and the

latter are independent of how bidder i bids in this auction) when

bidding on object j, then bidder i should truthfully bid equal to

the net value that would be gained by winning this auction.

More precisely, bidder i has the dominant strategy in this

auction of bidding equal to < ± , j + Wi.j - Li.j.

If bidders may win any number of objects, and each bidder s

value for a set of objects equals the sum of the individual

values, then L A ,j equals Wi,j, and each bidder i has the dominant

strategy of bidding equal to x^.j. That is, bidders can bid in

each auction as if it were the only auction. We later refer to

this as the case of "unrestricted, independent auctions."

Repeated application of Proposition 1 defines an equilibrium

strategy for a sequence of auctions. Specifically, in the last

auction, let bidders bid truthfully (that is, equal to their

Xi, n 's) , just as they might be assumed to do if this were the

only auction. Then, calculate the Li, n-i's and the W i( n-i s

resulting from such bidding. Next, let bidders in the next to
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last stage bid truthfully as defined by the proposition i her

calculate the L ipn -;'5 and the W i( p,-2 '5 resulting from this two-

stage strategy. Iterate this process; the subsequent calculation

of equilibrium profits will be for the equilibrium defined by

this process. (The equilibrium strategies so defined sr° nor.

dominant strategies; in particular, Li.j and W*,j depend on how

other bidders other bidder 1 bid on objects subsequent to object

j, and if for some reason of their own, each bidder other than 1

bid extremely large amounts on each object, then bidder i s La.j

and Wx.j would be zero for all j, and 1 should bid differently

than if they were non-zero. ) .

Return now to the case in which each bidder may win at most

one object. Thus, W i#j equals zero for all 1 and j. Hnc Li.j

will be independent of i; thus, we hereafter simply write !__, .

Expected Equilibrium Profits:

To derive the expected profits at the equilibrium resulting

from iteratively applying Proposition 1, start by looking at the

contribution to the bidders' profits made by the auction of any-

one object, say object j. In particular, let tt^ denote the

expected profit in auction j (ex ante to the bidders seeing their

values for object j) to each bidder; since there will Ce n-j+m+i

bidders on object j, the bidders together have an expected profit

of (n-j+m+1) Ttj in this auction, all of which profit goes to the

one bidder who actually wins.

Next quantify rtj . Clearly, if each bidder 1 bids a

constant— in particular, Lj— more than the value x i(J , then the

winner's profit will be exactly this constant amount greater than

if everyone bid equal to their corresponding x ± . _, . But

Engel brecht-Wiggans [1991] establishes that when bidders bin

equal to their true values, each bidder has an expected profit

equal to the expected marginal contribution this bidder makes to

the expected total social value. More precisely, if each bidder
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l were to bid x ± . j on object j, then ttj would equal v(n-j+m+lj -

v(n-j+m), where v(k) denotes the expected social value

E[ max { X j. . _,- , X -,_,-, ..., Xr.j}] of an object sold in an auction

with k bidders. In fact, each bidder 1 bids Kt.j + L j , and so

the n-j+m+1 bidders together actually have an expected profit of

(n-j+m+1) [v(n-j+m+l ) -v (n-j'+m) ] + Lj .

Now, to get Lj-i— the total expected profit to each bidder

from auctions j, j+1, ..., n just before bidders see their value

for object j—consider two cases. If 1 loses object j, 1 gets

nothing from auction >o , conditional on losing object j,

has an expected profit of Lj from auctions j and j-1, j -2 , ...

n. Alternatively, if l wins object j, l gets nothing frcm

subsequent auctions. So, conditional on winning, i nas an

expected profit of (n-j+m+1) [ v ( n- j +m+ 1
) - v ( n- j

' +m ) ] + Lj . And,

given the ex ante symmetry of all bidders, each of the bidders

has a l/(n-j+m+l) chance of winning the auction. Thus, Lj-j.

equals [ 1 / ( n- j +m+l ) ] {(n-j+m+l) [ v ( n- j +m+ 1 )
- v ( n - j +m ) ] + L _, j +

[1 - l/(n-j+m+l)] Lj . Simplifying this expression yields Lj-i =

Lj + [ v ( n-j +m+l ) -v ( n- j +m ) ] . This together with Ln = yields the

foil owing

:

Proposition 2: If for each object, each bidder on that object

bids truthfully (as defined in Proposition 1), then eacn bidder 5

total ex ante expected profit equals the sum of each bidder 3

expected profits from individual unrestricted independent

auctions with appropriate numbers of bidders. More precisely,

Lj-i = Ektj [ v ( n-k + m+1 ) -v

(

n-k+m ) ] (= v(n-j+m+l) - v ( m ) ) .

Expected Equilibrium Prices:

Now we compute the expected equilibrium prices Pi, p = , ... ,

p„ . Clearly, the expected price of an object auctioned to k

bidders must be the expected social value v(k) minus the k

bidders' expected profit from this object. But, we previously

found that n-j+m+1 bidders together have an expected profit of
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( n-j +m+l ) [ v ( n-j +m+ 1
) -v ( n-j +m ) ] + Lj on object j , and that !__,-

equals v ( n-j + m ) -v ( m ) . So, appropriate substitutions and

simplifications yield the following:

Proposition 3: The equilibrium price pj of object j is given by

the expression v(m) - ( n-j +m ) [ v ( n-j +m+ 1
) -v ( n-j + m ) ]

.

Let us calculate the expected equilibrium price Pj for

several distributions. One, if the bidders' values ar^

independent samples from the uniform distribution on the interval

[a,b] (with a large enough so that all bids exceed z&ro , or any

other specified reservation price), then v(k) = b -
( b-aj / ( k+1 )

,

and thus pj = b - ( b-a ) [ 1 / ( m+1 ) + ( n-j +m ) / ( n- j +m+2 ) ( n- j+m+1 ) ]

.

Clearly, as n-j increases, this increases toward b -
( b-a ) / ( m-+-i ) .

So, as j increases, pj decreases; for the uniform distribution,

the expected prices form a strictly decreasing sequence.

Two, if each value equals a constant c (large enough so that

all bids exceed any reservation price) plus an independent sample

from the exponential distribution with mean u, then v(k)—v(k— 1) =

u/k, and thus pj = v(m) - ( n- j +m ) u/ ( n- j +m+ 1 ) . Clearly, as n-j

increases, this decreases toward v ( m ) -u . So, as j increases, pj

increases; in this case, the expected prices form a strictly

increasing sequence.

Even though the sequence of prices may go in either

direction, we can make a more specific, potentially practical

statement. In particular, if the support of the distribution is

bounded above— this rules out the second example above, but would

be a plausible assumption for actual auctions— the expected

prices will tend to decrease.

To obtain the desired result, define k=n-j+m+l and rearrange

the expression for pj to get p r-1
_ k ^. m H-i = v(m) - k [ v ( k )

- v ( k - 1 ) ] +

[ v ( k
) -v (

k - 1 ) ] . The first term of this expression is independent

of k. The negative of the second term equals the k bidders'

combined expected profit at the dominant strategy equilibrium in
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a single-object Vickrey auction, and therefore equals the

difference between the largest and the second largest of k

identically (but not necessarily independently) distributed

samples. (See Proposition 1 of Enge 1 brec ht-Wiggans for a formal

derivation.) Clearly, for a bounded (symmetric) distribution,

this difference must eventually go to zero as k goes to infinity,

and thus the second term eventually disappears. (In contrast,

for the exponential distribution, it remains constant, equal to

the mean of the distribution. ) Since the seconc term is always

negative and eventually goes to zero, and since the sum of the

second and third terms is clearly always negative, the sum or the

second and third terms must eventually go to zero. find so, for

large enough k, the expected price will be greater than for

smaller k. But large k correspond to auctions early in long

enough sequences. So, overall, the prices tend downwards.

Discussion

Three phenomena affect prices in sequential auctions. One

effect— that of decreasing opportunities—works to raise prices

on later objects. In particular, in contrast to losing in the

last auction, losing in an earlier auction still leaves a bidden

with opportunities to make a profit before the end of the

sequence; not all is lost if you lose in an early auction. So,

bidders might bid more aggressively in later auctions.

The other two effects arise from the fact that in our model-

-and , perhaps, quite typically— later auctions have fewer

bidders. One, with fewer bidders, bidders might bid less

aggressively. Two, at least in our model, the expected social

value generated by an auction drops as the number of bidders

drops. Together these two effects work to lower prices on later

objects. Perhaps, indeed, this last effect— the dependence of

the social value on the number of bidders

—

drives our results.

But even so, except in the un rea 1 is tica 1 1 y extreme case of pure

common values, this effect exists to some degree.
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Setting an Order for Selling the Objects:

In the case of identical objects, each object has the same

expected price ex ante. The expected total revenue to the

seller(s) is unaffected by the order in which the objects are

sold. Even if the auction consists of objects owned by different

sellers, ex ante, the order in which the objects ar^ sold ma*es

no difference to any one seller's expected revenue.

In contrast, the order does make a difference for non-

identical objects. In the case of statistically identical

objects, the order makes no difference to the expected total

revenue to the sellers. But, to the extent that expected prices

decrease from one object to the next, each seller should like to

see his or her own objects offered for sale early in the

seguence

.

In the case of dissimilar objects, the order also afreets

the expected total revenues. To illustrate, consider a simple

example with two objects. Imagine that all bidders have very

nearly the same value for object A, but have guite different

values for object B. Consider the two possible orders for these

two objects; assume that bidders bid truthfully as defined in

Proposi tion i

.

First, sell object A last. Then all bidders will bid

essentially the same amount in the last auction, and this last

auction generates essentially no profit for its winner. So, in

the first auction— the auction of object B— bidders bid very

nearly truthfully. And thus, in total, the bidders' combined

profit in the two auctions barely exceeds the profit they could

expect from a sale of object B alone.

Second, sell object B last. Now the last auction generates a

substantial expected profit. So, in the first auction, bidders

now shade their values by a substantial amount. Even though all
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bidders will be bidding very nearly the same amount, this amount

will be substantially less than their values for object A. Thus

the first auction also generates a substantial expected profit.

Together, the two auctions in this order generate nearly twice

the expected profit for the bidders as does the other order.

Also consider the effect of the order on the expected total

social value. Changing the number of bidders hardly affects the

expected social value of object A. Not so for object 3;

increasing the number of bidders increases the expectec socia:

value. Thus, selling object B first— that is, selling object B

in the auction with the larger number of bidders—generates a

greater expected total social value for the two objects than does

the other order.

Both effects work in the same direction. Selling object B

first yields both a higher expected value for the objects and

lower expected profits for the bidders. Clearly, the seller— or

the sellers together, if there is more than one

—

benefit from

selling object B first.

It is the variance, not the mean, of the distribution that

matters. In particular, increasing the variance in the bidders

values for an object tends to increase both the bidders profits

and the effect that changing the number of bidders has on the

expected social value. So, in general, roughly speaking, objects

with high variance in the bidders values should be sold first.

(In our example, even if, with probability one, everyone values

object A much more than object B, selling object B first

generates the greater expected total revenue.

)

Finally, consider the option auction— a sequential

auctioning of the right to chose one of the remaining objects.

If the bidders' values vary more from one object to another than

from one bidder to another, then such option auctions tend to

sell the objects in order of decreasing value; "value" here could

be defined as the average of the means of the bidders' marginal
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distributions for the value of the object. And, to the extent

that high values correspond to high variances, the option auction

tends to implement a desirable order of sale. So, an auctioneer

unfamiliar with bidders' preferences for a particular collection

of dissimilar objects may prefer the option auction. Indeed, in

the sale of restaurant equipment, the auctioneer turned to the

option auction when faced with selling four very used, very

different major appliances.
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