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ABSTRACT

The question motivating this paper is: what conditions define the bounds on <

mechanism designer's ability to implement social objectives when the agents
indulge in communication prior to participation in the mechanism?
Communication may involve mediation, correlation (to expand the equilibrium
set) and the transmission of costly signals (to refine the equilibrium set)

.

The objectives of this paper are: to show that a sequential structure is

essential to the study of communication; to identify an appropriate
equilibrium concept -- sequential mediated equilibrium; to show how standard
refinement criteria based on forward induction arguments amy be extended to

the problem at hand; and to provide a class of necessary and sufficient
conditions for implementation of social performance standards in environments
with such communication. Every member of the class is identified with a

particular restriction on off - the-equilibrium-path beliefs. A limited
characterization of implementability is also given.

JEL classification numbers: 025, 026.





1. INTRODUCTION

1.1 Summary

A mechanism designer devises a game to be played by economic agents.

If they stand to benefit from it, typically, agents will communicate with

each other before playing the game. The question motivating this paper is:

what conditions define the bounds on the designer's ability to implement

social objectives when the agents have such opportunities for

communication? Communication may stem from two seemingly opposing reasons.

On the one hand, communication, especially through a mediator, facilitates

correlation and enlarges the equilibrium set. This could add attractive

outcomes to the set of self-enforcing outcomes. On the other hand,

communication may involve the adoption of costly signals to facilitate

forward induction. The latter may refine the equilibrium set. This could

eliminate unattractive or unreasonable outcomes from the set of

self-enforcing outcomes.

The multiple motivations and resulting complexity of communication

demands a sufficiently rich model. Within the framework of such a model,

the objectives of this paper are: (i) to show that a sequential structure

is essential to the study of communication even if there is only a single

round of communication and even if the communication is simply cheap talk;

(ii) to identify an appropriate equilibrium concept for the induced

sequential game; (iii) to show how refinement criteria based on forward

induction arguments may be extended to the problem at hand; and (iv) to

establish a class of necessary and sufficient conditions for

implementability of social performance standards in environments with such

communication opportunities. Every member of this class is identified with

a particular restriction on off-the-equilibrium-path beliefs. A limited



characterization of implementability is also given.

Single-round mediated communication in incomplete information games

for enlarging the equilibrium set is generally analyzed within the

following model of a communication system (primarily due to Myerson ([18],

[20]). Prior to participation in a game, privately informed agents send

signals to an unbiased mediator who in turn sends messages (possibly

correlated) back to the agents. Finally, the agents choose a move in the

underlying game. The signals that the agents send are essentially "cheap

talk" and have no effect on payoffs. In addition, by the Revelation

Principle (Myerson ([18], [20]), there is no loss of generality in

restricting attention to "direct" communication systems where agents signal

their types and the mediator recommends moves in the underlying game. The

game induced by pre-play communication is solved by applying the concept of

communication equilibrium (Myerson ([19], [20]) which is a generalization

of correlated equilibrium (Aumann [1]).

An alternative role of communication has been emphasized in the

literature on signaling (Spence [25], Cho and Kreps [5], etc.). Agents

indulge in "costly talk" to communicate via forward induction (Kohlberg and

Mertens [11]). This serves to refine the equilibrium set.

In general, when agents are confronted with a game there are elements

of both the paradigms discussed above that motivates communication. For

simplicity, we will assume that there is a single round of communication

prior to a game. (The extension to multiple rounds a la Forges [8] is

discussed later.) It is common knowledge that all agents focus on a

particular "language of communication". The selection of a language is

The mediator does not belong to the set of agents. It is an unbiased
outsider and could be a suitably programmed computer. It is easy to show
that a mediator can be built by the agents.



similar to the selection of an equilibrium in the sense that the selection

process itself is not part of our model. . M

This paper proceeds in three steps. First, it is argued that there is

a fundamental sequential structure to the game induced by communication.

The appropriate solution concept for such games is sequential mediated

equilibrium [SME). Conditions for the existence of SME are given.

Especially in light of the sequential nature of the model, a truly

general examination of the effects of communication ought to take into

consideration the choice of costly talk as well as cheap talk. In a

variety of economic applications, costly signals are deliberately chosen by

"better types" of agents to be transmitted to other agents. They serve an

important purpose of communicating private information and focusing on more

"reasonable" equilibria. The implications of costly signals in our model

are several. We must consider communication systems that are rich enough

to permit the choice of such signals by agents. Models of mediated

communication (as in Myerson [18], [20]) and unmediated communication,

especially games with pre-play cheap talk (Crawford and Sobel [6], Farrell

and Gibbons [7], Mathews and Postlewaite [14], etc.) and signaling games

with costly talk (Spence [26], Cho and Kreps [5], Banks and Sobel [3],

etc.) would be special cases of the "rich" communication system presented

in this paper. The second part of the paper discusses how forward

induction based arguments may be applied towards refining the set of SME.

Finally, we employ this structure to address the problem of mechanism

design in environments with communication opportunities. Any mechanism

that the designer asks the agents to participate in is susceptible to

pre-play communication. The designer has no control over the language of

communication chosen by the agents or the correlation function chosen by

the mediator or the strategies chosen by the agents. In essence, we are



confronted by a classic implementation problem (as in Maskin [13],

Postlewaite and Schmeidler [25], Palfrey and Srivastava [23]). . ,
y

The implementation problem considered in this paper is rendered more

complex by the fact that agents can communicate prior to participation in

the mechanism. Moreover, the communication may be costly which in turn has

implications for the equilibrium concept and for social welfare. An

appropriate notion of a "performance standard" is defined. For every

restriction on off-the-equilibrium path beliefs (and the corresponding

refinement of SME), necessary and sufficient conditions and a limited

characterization of implementable performance standards are established.

Next, we present an example that motivates the sequential structure.

Section 2 presents the model. Section 3 defines the equilibrium concept.

Section 4 discusses refinements of the concept and Section 5 discusses

implementation. The final section concludes.

1.2 An Example

The following example provides a motivation for explicitly considering

the sequentiality in communication and refining the set of communication

equilibria. The agents indulge in one round of cheap talk through a

mediator before playing the underlying game.

Example 1:

There are three agents 1, 2 and 3 playing a game, T. Agent l's action

space is iT, M, B}, agent 2's action space is {L, R} and agent 3 has only

*

one possible action {0}. Agents 1 and 3 have two possible types t and t ,

where i = 1, 3. Agent 2 has only one possible type t . Assume that

* *
prob((t , t , t )) + prob((t , t , t )) = 1. The payoffs in the game T are

given in Figure 1.



[Insert FIGURE 1 here]

Consider pre-play communication in this game with a direct

communication system as in Myerson [20], i.e. the agents report their types

confidentially to a mediator and the mediator privately recommends actions

to each agent. A communication equilibrium (a Bayesian-Nash equilibrium of

the induced game) is given as follows:

If agent 3 reports t , then the mediator recommends (T, L, 0) with

probability one regardless of the other reports.

If agent 3 reports t , then the mediator recommends {B, R, O) with

probability one regardless of the other reports.

It may be checked that, assuming common knowledge of the mediator's

rule, every player finds it an optimal strategy to report his/her type

truthfully and to faithfully follow the mediator's recommendations.

We shall argue that this equilibrium is not sequentially rational.

First, observe that there is a particular sequence in the game induced by

the communication system. In the first (signaling) stage, every agent

reports types and in a later (final decision) stage, actions are taken in

the game I\ In an intermediate stage, the mediator, whose private

information is the agents' reports, sends recommendations. Thus, we have a

sequential game with four players.

The agents and the mediator are treated asymmetrically. We shall

consider trembles by agents that lead to parts of the game that are

assigned zero probability in equilibrium. The mediator, being an unbiased

mechanical device, is a dummy player. We presume that it never trembles.

The justification generally given to analyses of deviations from

equilibrium is as follows. Players typically cannot pre-commit to their

components of an equilibrium list of strategies. A deviation from



equilibrium may be expected to occur if it was being held in check by a

non-credible threat to the deviator. Since the mediator is
,

y
unbiased (i.e.

with a constant utility function), these considerations of "threats" do not

arise. Hence, we presume that it always plays according to the

equilibrium.

Suppose, for some reason, type t of agent 3 were to deviate from

*

truth-telling and were to report t instead. The mediator's rule given

above dictates that (B, R, 0) be recommended to the agents. Recall that

the t and t types of agents 1 and 3 are perfectly correlated. Agent 1

(of type t ), upon observation of B, would conclude that agent 2 has been

recommended R since the mediator's rule is common knowledge. In addition,

it is common knowledge that the mediator does not deviate from equilibrium

and that agent 2's strategy in equilibrium is one of faithful obedience.

Given these observations, type t of agent 1 would deviate from the

faithful obedience strategy and choose to play M (since he/she gets an

increase in payoff of +1). Given that agent 1 will play M and agent 2 will

play R if this deviation from the equilibrium path arises, type t of agent

3 will indeed choose to deviate to a report of t in the first stage (since

he/she gets an increase in payoff of +1). Thus, the communication

equilibrium described above does not survive.

It must be noted that our concern for sequential rationality is

different from that of Myerson [19]. The latter considers a multi-stage

game with communication as in Forges [8]. Our emphasis is on the sequence

of strategic choices within any single stage of the Myerson/Forges

framework.



2. PRELIMINARIES

ji ..

In this paper, given a set N, a set X with x e X for every i e TV,

we write X X as X, (x ) as x and (x)^.,, as x
16N 1 1 1€N J J€N\0> -1

Correspondingly, x is the i-th component of x. For any x e X, for all i e

AT, let x/x'7 = (x', x ). For any (finite) set X, A(X) is the set of

probability distributions on X. For any sets X, Y, given a function g: X ->

MY), g(y|x) is the probability assigned to y e Y by g when x e X is

realized. For every i € N, and any sets X and Y , given a function g : X.

-> 7 , we write (g (x ) ) as g(x). Given a set X, co(X) is the convex
i

6
j J j€N °

hull of X.

Given these basic conventions, the model is as follows.

N is a finite set o/ agents. M is a finite set o/ moves /or agent I.

2
A is a set of outcomes and is assumed to be Euclidean . £: M -» co(/l) is an

outcome function. A simultaneous-move game (form) T is a triple <N, M, £>.

5J1 is a mediator and JJ1 £ N. The mediator receives reports drawn from a

finite report space, R from every agent i and sends messages drawn from a

finite message space, Q to every i. The reports and messages are

transmitted in a confidential manner. "R and Q are, respectively, the class

of joint reports and the class of joint messages spaces. A general

communication system is characterized by a language. A language, L, is a

pair <R, Q>. £ = <??, Q> is the class of all languages. For every (r, q)

€ U R X U Q, there is a trivial language, L° defined by L° = </?° = {r}, Q°

Reft QeQ

= <q». iS c if is the class of all trivial languages. Given L e f., a game

(form) with communication is a pair <f, L>.

2
For example, A could be interpreted as a set of commodity allocations in

an Arrow-Debreu economy.

8



Each agent i € N has private information summarized by i's type, t .

T is the set of possible types for t and is assumed to be finite. Given L

e £, each agent i € N has preferences on co(A) that are dependent on the

type and report profiles. i's preferences are representable by a VNM

utility function u : co(A) X T X R -> OR. It is assumed that there is a

common prior probability distribution on the joint types space p : T -» [0,

1] from which i's subjective posterior probability p : T -> A(T ) can be

derived by every i € N using Bayes' Law.

Remark 1: For purposes of interpretation, consider the following

o

restriction on the class of utility functions: for all L , L € £ , u =

—

o

u . Under this restriction, communication by means of a trivial language

corresponds to no communication. Since the restriction is not necessary

for our results, we do not impose it.

To summarize, an environment e is a list <N, A, X, T, (u )
(f

, p >. 8

is the class of environments. This model is common knowledge, in the sense

of Aumann [2].

The definitions that follow are given for <I\ L> with T = <Af, M, £>

and L = <R, Q>.

3H(L) = {u : R -> A(Q)}. 3JUL) is the space of mediation plans. For all

i € N, S(R) = {<r
L

: T -» A(R )} and D (L, M) = {S
L

: T X R X Q -> A(M )}.
1 111 1 1111 i

S (R) X D (L, M) is the strategy space for agent i. The strategy space

reflects two stages of strategy choice: the first being the signaling stage

and the second being the final decision stage. For all i € N, B (ZJ = {/3 :

T x R X Q -> A(T . x K X (?_ )} is the space of eventual beliefs for

agent i. To minimize on notation, we shall suppress the superscript "L" on

o\ u, 5 and |3 whenever it is clear that the language being employed is L.

The introduction of communication induces a sequence of moves before a

game is played. Given a game T, and a language L, the sequential game



induced by <T, L> is as follows: N u 3JUL) is the set of players. The play

proceeds in three stages: in the signaling stage every
p

•

j£ € N with

information t e T and beliefs p sends a report r e i? to 3JWL); in the11 M ^11
second stage, JJUL) with information r e R sends a messsage q € <? to every

i € AT; in the final decision stage, every i e N with information (t , r

,

q ) € T x i? X and beliefs 6 selects a move m € M . The payoffs toV l l l i ii v J

the members of N are dependent on the moves chosen, the profile of types

and the reports sent in the signaling stage and are given by the utility

functions u . The mediator, 3JKL), is a dummy player in the sense that its

utility is independent of all strategies chosen in the game.

Remark 2: The model presented here is a generalization of that of Myerson

[20]. The reports spaces that we consider could contain payoff-relevant

reports. Moreover, Myerson* s focus is on a characterization of the set of

all equilibrium outcomes generated by a game paired with all possible

languages (with payoff-irrelevant reports). We fix a pair <I\ L> and

inquire about the set of equilibria generated by this pair. Finally,

Myerson studies the induced game in the strategic-form, whereas we consider

the extensive-form.

3. SEQUENTIAL MEDIATED EQUILIBRIUM

Let <r, L> be given. This section presents the equilibrium concept

for the three-stage game induced by <r, L>.

For every t € T, cK'\t) is the joint distribution on R induced by

(o
\ ( *

I *,)),«„ and for evepy t e T, r <= R and q € Q, 5(«|t, r, q) is the

joint distribution on M induced by (5 (• 1 1 , r , a ))J
1 ' 1 1

M
l 1€N

The following notation is used to denote expected utilities in the

10



signaling and in the final decision stages:

for every t € N, t € 7 , and (o\ ji, S) e S(R) x WD x D(L, M),11
u\(^, <r, ll. 5; t

{

) =

Y. Pp.JV Z^r|t) 2>(q|r;£S(m|t, r, g)u^Cm;, t, rX
t €T r€R q€Q m€M-1-1

for every i € N, t € T , (o\ n, 8) € S(RJ x WO X 5a, AO, (3 e B OJ, r

€ R, and q
t

€ Q^

V
L
(£, 6, (3 ; t , r , q ) =

1 ^ 1 1 i 1III fi/t.^ r
{

, qj^, r^ g^EaOnlt, r, g)uWm;, t,

t €T r €R q €Q m€M-1-1 -1 -1 -1 -1

Given ji e 3JUL) and r € R , let Q (jx, r ) = {q € Q: u(q\r) for some

r e R >.
-l -l

An equilibrium for the sequential game induced by <r, L> is obtained

as follows: fix a strategy for the mediator, say u, and, presuming that the

3
mediator never deviates from fi , define the sequential equilibrium (Kreps

and Wilson [12]) of the N-player game induced by <f, L> and \i.

Definition 1: A quadruple W, [i, 5, 0) € S(R) X WD X D(L, M) x B(L) is a

sequential mediated equilibrium (SME) of <r, L> if

Vi € N, Vt 6 7, V<r' e S (R), V5' € D (L, Af), Vr e R , Vq e Q (u, r ),
l l i l l l l I M l^i

(i) - (ii)d hold.

(i) (/V?, a-, u, 8; t; i tfr& <r/V7, n, 5; t; and

(ii) 3 a sequence {<r , 8 j such that (ii)a - (ii)d are met:
n=l

(ii)a. Vn e {1, 2,...>, <r
n

e SCR; is such that Vt € T, Vr € R, o-
n
(r|t) > 0,

3
Recall the discussion from the previous section: the mediator is a dummy

player. Hence, it does not deviate from equilibrium.

11



(ii)b. Vn € {1, 2,...},
n

€ B(L) is derived from (p, <r
n

, fi) by the

application of Bayes' Law. ,.„.<.

(ii)c. (<r, 8) = lim (<r
n

,

n
) and

n-»oo

(ii)d. V^, 5, p
t
; t

|(
r
i$

q
x

) * v\($, 8[V],
fy

t
{

, r^ q
{

).

In the sequel, whenever we construct (3 6 B(L) from a pair (cr, u) e S(R) x

JIUL) in the manner given in (ii)a - (ii)c above, we shall say that fi is

justified by (o\ fi).

SME(T, L) = (O, ii, 5, /3J € SCR; X WD X D(L, M) X B(L): (<r, u, 5, p)

is an SME for <T, L».

The mediator is a dummy player whose utility is constant over all

strategies and who does not tremble from an equilibrium. Thus, given any /i

€ UJUL), the (N+D-player sequential game can be re-written as an JV-player

sequential game. By definition, SME(T, L) is non-empty if a sequential

equilibrium of the TV-player sequential game induced by (T, L) and n exists.

By the general existence theorem for perfect equilibrium (and, therefore,

of sequential equilibrium) of finite games (Selten [26]), we have:

Theorem 1: Let <f, L> be a game with communication. SME(V, L) * 0.

4. REFINEMENTS

As is the case with sequential equilibrium and communication

equilibrium, the set of SME can be rather large. Much of the communication

between agents may be directed not only towards expanding the set of

equilibrium outcomes but also towards focusing on more "reasonable"

12



equilibria. It is in the context of such refinement possibilities that the

richness of the reports space plays a crucial role. An
,

y
SME may be

rationalized by a set of beliefs that are unreasonable off the equilibrium

path. Costly reports often serve to eliminate such equilibria. Consider

the following example.

Example 2:

Suppose that N = U, 2}, T = <t , t } and T = it }. Each type of^K 111 22
agent 1 could occur with equal probability. The game T = <N, M, £> is such

that M = {m , m } and M = {m , m ). Suppose that the agents agree on a

language, L = <R, Q>, where R = {r , r }, R = ir }, Q = {a } and Q =&
1 112 2 1

M
l 2

{q , q ). The payoffs for <r, L> are given by Figure 2. The

non-genericity of the payoffs is not crucial. The matrices are to be read

as follows:

Top left matrix: agent 1 sends report r and is of type t .

Top right matrix: agent 1 sends report r and is of type t .

Bottom left matrix: agent 1 sends report r and is of type t .

Bottom right matrix: agent 1 sends report r and is of type t .

[Insert FIGURE 2 here]

Consider the following SME:

<r (r It ) = <r{r \t ) = 1; <r (r It ) = 1.
1 1

' 1 1 1
l

1 2 2 1 2

V((q
x
, q

2
)\(r

x
, rj) = \i«q

x
. qj\<?

x
. rj) = 1.

VmJV r
i'

q
i

) = VmJV r
i'

q
i

} = 1 '

S(m It , r , q ) 8 (in \t ,r , q ) = 1.

S (m It , r , q ) = S (m \t , r , q ) = I.
2 2 1 2 2

M
2 2 2' 2 2

M
2

Agent 2's beliefs p assign greater probability to type t in the
^ 1

event that q is observed.^2

13



A forward induction argument would rule out the equilibrium given

above. Suppose agent 2 were to observe a disequilibrium message q . Given

that it is common knowledge that the mediator does not err and uses the

strategy p, agent 2 would conclude that agent 1 has sent a report r . Type

t is more likely to gain from deviating from the equilibrium report r

than type t regardless of the move that agent 2 chooses. Hence, an

observation of q could be interpreted as an implicit message from agent 1

that she is indeed of type t . If agent 2 assigns a higher probability on

agent 1 being of type t , he would switch to m after observing q . This

behavior can be anticipated by type t who would indeed have the incentive

to deviate to r and obtain a payoff of 2 instead of 1. A more reasonable

SME would be:

<r(r It ) = <r (r It ) = 1; <r (r 1 1 ) = 1.
1 1

' 1 1 1 ' 1 2 2 1 2

U(q
x
, *^K»V r

2
}) =

*((qi' V'^i' r
2
)} = L

VmJV r
i* V = VmJV r

i'
q

i
; = l '

V"*jv F
i'

q
i
; = v^xiv F

i-
q

i

; = L

5 Cm 1 1 , r , q ; = 5 Cm |t,r,q; = l.
2 2 1 2 2

M
2 2 2 1 2 2 2

Agent 2's beliefs ^ assign greater probability to type t in the

event that q is observed.^2

The basic intuition behind the elimination of SME discussed above may

be formalized by extending the various criteria for restricting

off-the-equilibrium path beliefs suggested in the literature, (e.g.

McLennan [15], Kohlberg and Mertens [11], Cho and Kreps [5], Banks and

Sobel [3], Grossman and Perry [9], Okuno-Fujiwara and Postlewaite [21]).

The bite of any given refinement criterion is considerably dulled in a

communication system with a mediator. The receiver of a disequilibrium

message would find it more difficult to interpret the message as an

implicit statement about an agent's type since there are several senders in

14



addition to a mediator who may introduce noise. Typically, for a

disequilibrium message to relay information about types, it must be such

that it can be traced back to the deviator.

In the remaining sections of the paper, it will be assumed to be

common knowledge that all agents focus on some restriction on

off-the-equilibrium path beliefs. The restriction will presumably be

chosen from the menu of restrictions available in the literature (e.g.

Divinity, Universal Divinity, Dl, Never Weak Best Response, etc.). We shall

refer to the one being employed as restriction X. Since the logic

underlying a restriction depends on the functions <r, ji and £°5, given (cr,

fi, 5, /3), we say that /3 satisfies criterion X{cr, n, £°5) if restriction X

is being employed to constrain beliefs. Observe that if the underlying

game T were replaced by some allocation function z: T x R X Q -> co{A), the

same logic underlying restriction X could be applied and we would say that

£ satisfies criterion X[<r, /i, z).

Given T = <N, M, £>» let SME (T, L) = <(o\ ji, 5, 0) 6 SME(T, L):

satisfies the criterion X(o\ ji, £°S)h

5. IMPLEMENTATION

5.1 Definitions

For the remaining sections in the paper, we relax the requirement that

the set of joint moves, M, be finite. It is assumed that for all t e T,

o 4
p (t) > 0. In addition, we shall focus on the set of pure-strategy SME .

4
The analysis can be extended to include more general prior distributions
and the case of mixed strategies. The restrictions are made for

15



It is assumed that the mediator can randomize over the set of messages.

For agent i, the pure strategy sets are given by S^R) {s^^T^ -» RJ and

D (L, M) = id : T x R X Q -> M )> The notation for denoting expected
i ill 1 l

utilities are extended in the obvious manner. The set of pure strategy SME

#
of (T, D with beliefs that satisfy restriction X is written as SME (T, L).

Let G = {g: T -> coU)h Given L = <R, Q>, let ?
L

= </ = (g, s) € G x

S(i?)> and ? = x ^
L

.

Given L, ^ is a set of pairs of functions. The first component of

the pair specifies a type-contingent outcome mixture in coM) and the

second component specifies a type-contingent report profile.

Let E(T, L) = {f € ?S 3(s, n, d, p) e SME (T, L) such that Vt e T,

/(t) = r £ (x(g|sct;)c(dct, sa;, q;j, sa;;>.

q€Q

Definition 2: A performance standard is a subset of "3- and is written as <p

= X <p . For every L e £, <p is assumed to be non-empty. <p and <p are the

L€<£
° S

projections of <p on G and S(R) respectively. It is assumed that for all L,

L L'V € £, g e ^j if and only if g 6 y . In the sequel, given that
G G

<p-optimality of a function g € G is language-invariant, we shall simply

write g € <p .

A performance standard as defined here is different from the usual

notion. Typically, in the social choice/mechanism theory literature, a

performance standard associates a set of outcomes (in A) with every state

of the world (in T). The recommendation of the performance standard is

based upon some pre-determined optimality considerations. These

considerations rely on the presumption that every agent's utility function

is defined on the domain A x T. We refer to this as first-best optimality.

convenience. The more general cases are much more cumbersome.
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The society that we are analyzing has opportunities for communication

whenever its members are confronted with a game. Eventually, a social

planner must invite these agents to participate in a game designed to

implement the performance standard. Communication may involve the use of

signals that affect the agents' utilities, i.e. every agent's utility

function is defined on co(A) x T X R if the language of communication is L

= <R, Q>. Given the distortion caused by the signals, the planner needs to

specify some notion of second-best optimality. Hence, for every t in T

chosen by Nature, every element of a performance standard must not only

specify an outcome in co(i4) but also recommend a profile of reports in R.

Given (g, s) in <p , g is based upon first-best considerations and s is

chosen so that it minimizes distortion from the first-best. Moreover, the

planner has no control over the selection of the language of communication.

The agents agree upon a language among themselves. Since the planner's

recommendation of g in <p is based on first-best considerations, it is
G

language-invariant. For every conceivable language L = <R, Q> in £, a

distortion minimizing signal s in S(R) must be recommended.

Definition 3: A performance standard <p is implementable if 3r = <N, M, £>

such that

(i) VL e £, E(r, L) * and

(ii) VL € H, E(r, L) Q <p

L
.

The definition of implementation has three crucial features. First,

it takes account of the fact that a social planner's role is limited to the

design of a game or mechanism. Once the agents are confronted with the

game, they will choose L as the language of communication. The properties

desired of the set of equilibria of the game must hold regardless of which

L in £ is chosen. Second, the planner, the mediator and the agents are

independent decision-making entities. In any equilibrium of the mechanism,

17



the choice of (s , d , B ) is made by each i in N and the choice of u is
1 i i

made by the mediator. Given that the planner has no control over these

choices, Condition (ii) in the definition above ensures that regardless of

the choice of (s, fi, d, B), the corresponding equilibrium is ^-optimal.

Third, as Condition (i) implies, we do not insist on "full" implementation.

The presumption is that the planner is indifferent between the alternative

non-empty subsets of <p and, therefore is content with ensuring that £(r, L)

is a non-empty subset of (p instead of being equal to the set <p itself.

In keeping with the tradition in the literature, the equilibrium concept

and the refinement criterion being employed is assumed to be common

knowledge among the agents and the planner.

Remark 3: Given the condition in Remark 1 above, communication with a

trivial langauge corresponds to no communication. In this situation, it

may be checked that our definition of implementation indicates that <p is

implementable in the absence of communciation whenever it is implementable.

Communication opportunities make the implementation problem an ever more

difficult one to resolve.

In the sequel, the notation given below is employed:

Given L = <R, Q> e 1 let Z(L) = iz: T X R X Q ^ co{A)}.

U
L
(z, s, u; t) = £ p(t \t)Jji(q\sit))u(z{t, sit), q). t, s(t))),

t €T q€Q
-J -J

I P/'-/ r
_i' q-Mi'

r
\'

qJufzit' r
> <0> t> r) >

t €T r €R q €Q
"J "J -J "J "J -J

For every j € N and q € Q , given a function ocl : T -> T ,

J J ' q J J

U\{z, sis'/a I in t) m
J J

I p(t \tmi(q\s[s\*a\ Kt))u(z(t, s[s* «a| ](t), q),
t €T J

q€Q J J

t,

J -J

18



s[s' oa\ }(t)),
1 q

J

For all z € Z(L), z
aqi

€ Z(L) is defined by z^kt, r, q) =

z((a\ (t ), t ), r, q) for all (t, r, g) € T X R X <?•

q
i

l

-
l

Next, we shall define three important properties of performance

standards that will be critical for identifying implementable standards.

Definition 4: Suppose g e <p . A performance standard <p satisfies Property
G

1(X, g) if the following holds:

VL = <R, Q> e <£, Vj e JV, Va = <(a| : 7, -> T) >,

IF

(i) 3{s, s> c s{R), /i € 3Jt(L), {z, z) € ZCZJ and g e G such that

vt € 7, gu) =
j; n(g|s(t;)z(t, sft>, g),

q€Q

|(t) = £ ii(q\s(t))z((cc\ it), s(t), q)) and
' q l i 1 1 i€N

q€Q M

V(t, r, gj € T x K X Q, z(t, r, q) m z((oc\ It), r. q) )
' a i i i i€N

1

(ii) Vi e N, Vs' e S {R), Vz' € ZCZJ, statements (A) and (B) imply

statements (C) and (D),

THEN

(g, s) € (p

L
,

where (A)-(D) are given by:

(A) Vtj e r ,

lA(z, s, n; t
{

) * (A(z, slsVa ], m; H.

(B) 3|3 € B (L) such that B is justified by (s, ii) and satisfies

criterion X(s, n, z) and Vt € T , Vr e R , Vg € Q (ja, r ),

K
L
Cz, S ; t , r . q) a V

L
(z

,CCq
\ B ; t , r , q ).

i i i i m l i l i m

(C) Vt € T ,

l i

u
L

{

(z, s, m; t) * uHz, s[s'), m; t ).

(D) 3B € B (L) such that j§ is justified by (s, fi) and satisfies
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criterion X{s, n, z) and Vt € T , Vr e R , Vg € Q (ji, r ),

kVz, p lS
t

(

, r
4

, g
t

; * 7^(5-, g iS
t

t

, v q
t

;, , >=

where V(t, r, gj € T X R X Q, z*(t, r, g,) h z'((a.\ it), r. q))-

This complicated property has its origins in the Maskin-monotonicity

condition (Maskin [13]) which is at the root of the critical properties

employed by the implementation literature (Postlewaite and Schmeidler [25],

Palfrey and Srivastava [23], Mookherjee and Reichelstein [16], Jackson

[10], etc.). Whereas the other properties alluded to can be stated without

reference to an allocation or a belief restriction, Property l(X, g) is

stated by fixing a particular function g in <p and a restriction X on
G

beliefs.

Definition 5: Suppose g € <p . A performance standard <p satisfies Property
G

2(X, g) if the following holds:

VL = <R, Q> € £, Vj € N, Vet = <(ec| : T -» T ) },

J 'q J J q €Q

IF

(i) 3(s, s} c s(R), ix e m(L), (z, z) € Z(L) and g e G such that

Vt € T, g(t) = £ n{q\s{t))zit, s(t), q),

q€Q

g(t) = £ n(q\s(t))z((a\ (t),s(t),q) ) and
". ' 'q l l l l i€N
q€Q

M
l

V(t, r, g; € T x R X Q, z{t, r, q) zfCal (t ), r , g J ;
q 1 1 1 i€N

1

(ii) Vi € N, Vsj € S^R), Vz* € Z(L), statements (B) and (C) are met

whenever (A) holds Vg' € G satisfying g'Ual (t )) ) = z'C(a| (t )) ,

'q J J€N ' q J j€N

s[sj]a;, q) for all t € T, for all g € Q such that £ jifg
|
s[s' }(t)) > 0.

q€Q

THEN

(g, s) e <p ,

where (A)-(C) are given by:
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(A) for all t € T , for all r € U R, for all q € Q , there exists
1

R€ft
! '

L' = </?', Q'> € £ such that r € /?' and • -.-• ..

I p(t \t)u\(g(t). t, r)

t €T
-1 -1

£ p^tjUu^Yal (y, t
x
). t, r).

q
t €T I

-1 -1

(B) for all t € T ,

t/"(z, s, m; y * t^*(i. Slsjl, u; n.

(C) for all t
t

e T , r € R , ?
t

€ ^(ji, r^,

where z' € Z{L) is defined by z'Ct, r, q) = z'CCal Ct J, r , g J ) for
1 q 1 1 1 1€N

1

all it, r, q) = T x R X Q.

Property 2(X, gj also derives from Maskin's [13] monotonicity

condition. The relation with Property 1(X, g) is discussed later.

Definition 6: Suppose that g € <p . A performance standard <p satisfies
G

multi-lingual incentive compatibility with respect to g (MIC(g)) if VL =

<R°, Q°> € 2°, Vi € N, Vt , t* e T , given <r°> = R°,III®
o o

I p(t_
x

\tju\(g(t), t, r°) * I p(t_
x

\t
x

)u\(g(t'
x

, t ), t,

t €T t €T
-i -1 -1 -1

o.
r ;.

The UlC(g) property is closely related to the standard incentive

compatibility or self-selection condition.

Next, we shall state a list of assumptions on the class of

environments, 8, and on <p.

Consider the following assumptions on the class of environments 8.

[Al(a)]: Vi € N, 3a.
1

€ co(A) defined by: Vt € T, VL = <R, Q> € £, Vr e R,

Va e co(i4)Ma }, u (a , t, r) > u (a, t, r) and VJ € N\{i), a
1

* a
J

.

[Al(b)] 3a € coU) defined by: Vi € W, Vt € 7, VL = </?, <?> € if, Vr e R, Va
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€ co(i4)\{a}, u (a, t, r) < u (a, t, r).

[A2J: \N\ > 2.
r -jl ..

[A3]: Vi e N, Vr € U R, VL = <R, <?> € 1, VL' = <i?', Q'> € 2, Vt € 7\ Va, a'

e coM), if r e R p /?', then u (a, t, r\> 2= u Ca', t, r) implies u^ (a, t,

r) * if'Ca', t, r).

[Al(a)] and [Al(b)l are assumptions that are met in typical "economic"

environments with agents' preferences that are strictly monotone in their

own consumption vectors. The first assumption states that there is a most

preferred outcome for each agent and is distinct from the most preferred

outcomes of others. This would correspond to the outcome that allocates

the entire resources of the economy to the agent in question. The second

assumption requires the existence of a universally least preferred outcome.

This corresponds to the outcome that allocates none of the economy's

resources to any agent. [A3] is an independence assumption on preferences.

Ceteris paribus, a given report has the same impact on an agent's

preference ordering over the outcomes in co(4) regardless of the

composition of the reports space from which it is drawn. The assumption

seems reasonable for most applications. For example, an expensive

education (the signal) has the same effect on the payoffs of a job

candidate and a potential employer regardless of whether or not there are

other alternative signals of the candidate's ability. Furthermore, it does

not matter what the alternatives are.

In addition, consider the following assumptions on performance

standards.

[A4] If <p S 5 is a performance standard, then Vt € T, Vg € <p , git) * a and
G —

Vt € N, git) * a
1

.

[A5] If <p Q 2 is a performance standard, then VL = <R, Q> € £, V(g, s) €
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A Vi e Af, Vt € T , s(t) € argmax { Y p (t 1 1 ,>u
L
(g(t), t, r

,r '

! Ill &
r €R u M -1 ' 1 1 1

1 1 t €T
-1 -1

sttj)}.

Given [Al], the assumption [A4] is met by various sub-classes of

performance standards (defined for "economic" environments) that are

generally of interest to economists. For example, [A4] is met by the class

of all non-dictatorial, Pareto-efficient standards, or the class of all

envy-free, Pareto efficient standards or, in environments where every agent

has strictly positive initial endowments, the class of all individually

rational, Pareto-efficient standards.

Given that efficiency is generally a desideratum, the assumption [A5]

is justifiable in view of the fact that the role of s in (g, s) e <p is to

minimize distortion from first-best optimality. The requirement of

existence of a function s satisfying the assumption limits the class of

environments. However, in the sub-class of environments with private

signaling costs, where an individual's reports have no externalities, such

an s always exists, given finiteness of R. This sub-class satisfies

assumption [B] below. Though [B] rules out a number of important

applications, it is met in several economic problems of interest.

IB] Vi 6 N, VL = <R, Q> e !£., Vr, r' € R, u
L
(-, , r) = uY-, •, r') if r =

i 1 i

r'.
i

In terms of the education example, [B] would require that education

affects the utility of a job candidate and has no benefits to an employer.

In other words, from the employer's perspective, its role is purely that of

a signal. [B], however, is not necessary for our results.

5.2 Results on Implementation
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The following two theorems provide necessary conditions for

implementation. ,'.,>..

Theorem 2: Let <p be a performance standard. If <p is implementable, then

there exists g € <p such that <p satisfies Property 1(X, g).
G

Proof: Choose L = <R, Q> e $.. By definition of implementation, there

L *

exists r = <N, M, £>, f € <p and is, u, d, p) e SME (T, L) such that for

all t € T, fit) = (£ uiq\sit))£(d(t, s(t), q)), sit)). Next, for all J e

q€Q

N, choose a = {(al : T * T) }. Let git) = £ uiq\sit))$(d(t, s(t),
J q, J J q,€Q, _.„

J J J q€Q

q)) and suppose that there exists s e SiR) and g € G such that git) =

Y,liiq\sit))Z(idioL\ it), sit), q) ) for all t € T. Define d e D(L,^
'

1 'q I 1 I 1 1€N
q€Q U

M) by d(t, r, q) = (d (al (t ), r, q; for all it, r, q) <= T x R X Q.
1 q 1 i i 1€N

1

Define z, z € Z(L) by z = £«d and z = £«d. Choose i € N and suppose that

part (ii) of the hypothesis of Property 1(X, g) is met, i.e. for all s* e

S (fi) and all z' € Z(ZJ, (A) and (B) imply (C) and (D) below.

(A) for all t € T ,

l l

U^iz, s, u; n * \]\z, slsVa ], fi; t^.

(B) for all t e T , r € R and q e <? iu, r ),1111 M
i i

^
i

^fz. g-. t,. r,. ,,; * ^<z<
a
«'. ^ v r. ,,;.

(C) for all t € T ,

l l

ifiz, s, u; n i <A(z, ifsj], fi; tj).

(D) there exists /§ € B (L) such that /§ is justified by is, u) and

satisfies criterion Xis, u, z) and for all t e T , r € K , and q e Q (u,
l ii i

M
i l

^

^
v\(z, ^; V r

i' V a K
i

(z '' p
i

; V r
i- V«

where for all it, r, q) e T x R X Q, z'it, r, q) = z'CCal it), r,
'q J J

«>W-
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Choose (s\ d') € S(R) x D (L, M). By definition of SME, we have

(E) for all t e T ,

l^(€. s, a, d; y 2: l^(£, stsVa 1, |i, * t^.

(F) for all t € T , for all r € R and all q e Q (fi, r ),11 11 M
i l

^
l

^(£, d[d;
aql

], fy
t
1#

r |f q^,

where d
,aqi

€ D (L, M) is defined by d
,<Xql

(«, •, •) = d'(a| (•), •, •).11 1 I 'q

By setting z' = ^od[d'], the hypothesis of Property 2(X, g,) yields

(G) for all t € T ,

i l

(/-(S, 5, fi, d; n * (/•(£, 5[sj], n, d; n.

(H) there exists /3 6 B (L) such that |3 is justified by (s, /i) and

satisfies criterion X(s, u, £°d) and for all t € T , for all r e R andr-* -a 11* 11
all q € Q (fi, r ),M 1 1

^, d, 0^ t
f
, ry g

t
; *

k^, d[d;
aql

], | iS
t
t
, r, q

t

;.

By definition of an SME, (E) and (F) must hold for all £ € AT and all

(s\ d') e S(R) x D(L, M). Hence (G) and (H) must hold for all i e W andri i l

all (s\ d') € S(R) x D(L, M). We conclude that (s, u, d, j§; e SME (T,

u.

By construction, g(t) = £ n(q|s(i))£(d(t), s(t), q,)) for all t € T.

q€Q

By definition of implementation, (g, s) € <p . Thus, the conclusion of

Property 1(X, g) is satisfied.

Theorem 3: Let (p be a performance standard. If <p is implementable , then

there exists g € <p such that <p satisfies MIC(g).
G

Proof: The proof follows that of the revelation principle (see Myerson

[17]). Let T = <N, M, £>. Choose L° = <R° = <r°>, Q° = {q°» € t. By
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definition of implementation, there exists (j\ G <p
€ <P and ^s > V-* d > $) e

o

SME (T, L°) such that for all t € T, f" U) = {£(d(t, s(Q, q°)), sit)).

Let git) = ^CciCt, s(t), q°)). By definition of a sequential mediated

equilibrium, the following must hold:

for all i € N, for all t € T, for all <x°: T X R° X <?° -> T X R° X

o

v\ <$, d, 3,; \. saj, q\) *

V\(K, dld^aj,
t

; t
x
, s^U, q\) [3]

Since |K°| = \Q°\ = 1 and for all i € N, g - £°d(«, r? q°), [3] implies

that for all i € Af, for all t , V € T ,

i i i

£ p(t \t>u\<g(V. t, r°) * I p(t^\tJu\(g(t'
K

, tj. t,

t €T t €T
-1 -1 -i -1

r°). [4]

Thus, <p satisfies MlC(g).

The following theorem provides conditions under which we can design a

game that implements a given performance standard. In conjunction with the

two previous theorems, we have an extension of the results on

implementation of Maskin [13], Postlewaite and Schmeidler [25], Palfrey and

Srivastava [23], Mookherjee and Reichelstein [16] and Jackson [10] to

implementation in environments with communication.

Theorem 4: Suppose assumptions [Al] to [A3] on the class of environments 8

are satisfied. Let <p be a performance standard. Suppose <p satisfies

assumptions [A4] and [A3]. If <p satisfies Properties 2(X, g) and MIC(g)

for some g € <p , then <p is implementable.
G

Proof: The proof is by construction of an algorithm, K. When a particular

performance standard <p and g e <p is applied to K, we obtain a game H{<p,
c
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g). We claim that if the assumptions of the theorem are met and <p

satisfies Property 2(X, g) and MIC(g), H{<p, g) implements <p.
m ^

Given <p and g € <p , H((p, g) = <N, M, £> is defined by:
G

(I) Vt e N, M = <m = (m
1

, m , m3
) = (t (i), g(0, n(i)) € T x G x R }.

i 1 l l l l l +

The following definitions shall be used:

Definition 7: Vi € N, m satisfies Condition y|i if

(i) VJ € N\{i), g(j) = g, and

(ii) Vj e AT\tt>, n(j) = 0.

Vm € M, K(m) = {i e N: Vj € AT, n(i) ^ n(j)>.

(II) ^: M -> co(i4) is defined by the schematic diagram in Figure 3:

[Insert FIGURE 3 here]

The proof of the theorem is given by Lemma 1 and Lemma 4. Lemma 2 and 3

below are required to prove Lemma 4. It is presumed that the conditions of

the Theorem are met. The proofs of the lemmata are in the appendix.

Lemma 1: For all L € H, (p

L
pj ECR{<p, g), L) * 0.

*
Lemma 2: For all L e £, for all (s, \i, d, p) € SME (X(<p, g), L), for all t €

T, for all q € Q such that u(q\ s(t)) > 0, d(t, s(t), q) satisfies Case 1.

*
Lemma 3: For all L € !£., for all (s, u, d, p) e SME (H((p, g), L), for all i

€ N, for all t € T, for all r € R for all q € Q, if u(q\r , s_(t )) >

0, then d {t , s it ), q ) satisfies Condition y\i.

Lemma 4: For every L € £, E(H{<p, g), L) £ <p

L
.
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Property 2(X, g) and MIC(g) for some g € <p are sufficient conditions

for implementation under the asumptions [A1]-[A5]. MIC(g) is also a

necessary condition. A natural question to ask is: under what additional

restrictions is Property 2(X, g) necessary?

Definition 8: A game V is mediator neutral with respect to g if for some g

€ tp , VL € £,
G

(i) lis, [i, d, p) € SME*(r, L) such that Vt e T, git) =

£ u(q\s(t))$id(t, s(t), q)),

q€Q

(ii) Vr e R, Vq e Q, u(q\r) > and

(iii) Vt € T, Vr, r' € R, Vq, q' € Q, d(t, r, q) = d(t, r' ,
q').

Why is mediator neutrality an appealing restriction from a mechanism

designer's standpoint? It is apparent that in environments with

communication opportunities, the task of a designer is even more difficult

than it is in the absence of communication. There are more variables that

are beyond the control of the designer, especially the choices of the

mediator. The mediator and the designer are distinct entities with

different agendas. Mediator neutrality controls some aspects of the

problem that are unobservable to the designer. (ii) ensures that

off-the-equilibrium beliefs do not have to be constructed. Hence, for each

t in T, the derivation of the agents' beliefs is known to the designer,

(iii) ensures that neither the agent's report nor the mediator's message,

both of which are unobservable to the designer, has any effect on the final

move chosen by each agent. (ii) and (iii) are required of only one

equilibrium that achieves g. It appears to be hard to design an

implementation game without satisfying mediator neutrality. In light of

this fact, the sub-class of mediator neutral games seems to be a natural

one in which the designer may search for the right mechanism.
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The proofs of Theorem 2 and Lemma 1 yield the following corollary:

Theorem 5: Let <p be a performance standard. Suppose that assumptions

[A1]-[A5] are satisfied. If <p is implementable by a game that is mediator

neutral with respect to some g € <p , then <p satisfies Property 2(X, g).
G

Definition 9: <p is g-implementable if g € <p and 3H = <N, M, £> such that
G

(i) VL € 1, g <= E(T, L) and

(ii) VL € £, E(r, L) Q (p.

g-implementability assures us of implementability of <p. In addition,

it guarantees that g in <p is always achievable. .

G

The following corollary of the preceding results provides a limited

characterization of ^-implementation.

Theorem 6: Let <p be a performance standard. Suppose that assumptions [Al]

- [A5] are satisfied. Given g € <p , <p is g-implementable by a mediator
G

neutral game if and only if <p satisfies Property 2(X, g) and MIC(g).

6. CONCLUDING REMARKS

This paper establishes a class of necessary and sufficient conditions

for implementation in environments with communication possibilities prior

to participation in a mechanism. The communication may be rather complex.

It may involve correlated messages from a mediator to facilitate expansion

of the equilibrium set and costly reports from the agents for a refinement

of the equilibrium set. A game with communication induces a fundamental

sequential game whose equilibrium is given by SME. SME may be refined by

extending a standard restriction on off-the-equilibrium path beliefs. The

concept of a "performance standard" must be modified in environments with
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costly communication possibilities. The definition of implementability

also must be strengthened. ,
'.„.;

Despite the complicated nature of the problem, under a reasonable set

of assumptions, it is possible to determine the bounds on implementability.

The general structure of the necessary and sufficient conditions is

independent of the particular restriction being assumed on the

off-the-equilibrium path beliefs.

The Revelation Principle plays no role in our analysis. Since the

particular language of communication agreed on by the agents is relevant

for computing utilities to agents, we cannot restrict our attention to

direct communication systems.

The problem of implementation in environments with communication

opportunities has been studied in more specialized contexts by Palfrey and

Srivastava [24] and Chakravorti [4]. The former studies unique

implementation of incentive efficiency with trading mechanisms that are

immune to pre-play communication. The latter considers the implementation

problem under alternative communication regimes, i.e. when the channels of

communication may be entirely public or entirely private or a mixture of

public and private.

A limitation of our analysis is that we have not considered

multi-stage communication systems. The analysis given here can be extended

to this case. The primary difficulty of such an extension is that the

structure of the resulting model is extremely cumbersome. The relevant

equilibrium concept is an amalgam of SME and Myerson's [19] sequential

communication equilibria. Such an extension is a topic for further

research.
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APPENDIX

Proof of Lemma h_ Choose L = <R, Q> € £. By definition of <p, there exists

s: T -> R such that (g, s) € <p . We shall show that there exists (s, \i, d,

p; € SME*(H(<p, g), L) such that for all t € 7, git) = £ n(q|s(t))£Cda,

q€Q

s(t), q)). For all i € N, for all t € 7 , for all r e R , for all q €

Q , let d (t , r , q ) = (t , g, 0). In addition, choose u. e 3IUL) such
i i i 1 11

that for all r e R, ^i(r) = [j u (r ), where for all i € N, u : J? -» A(Q )

is defined for all r € ft and all q € <? by u(q |r ) =
I Q I

• Since Case
l l

M
i 1

J M n 1
1 ' I

1

1 applies, for all t e 7, for all r € R and all q € Q, ^(d(t, r, q)) = git)

=
Y. p(q\sU))fi(d(t, s(t), q)). We need to check that this outcome is an

q€Q

equilibrium with /3 satisfying criterion X(s, n, £°d).

Suppose agent i € N contemplates a deviation to is', d') e S (R) X

D(L, M). Choose t € T, r € R and q € Q and let d'(t , r, q) =
1 1 11 1 Ml 1111

(t\ g', n'). There are two possibilities ((i) and (ii) below) to be

considered. Agent i can distinguish between these possibilities since it is

common knowledge that for all j € N\{i}, for all t € 7 , for all r e R

and all q € Q , d it , r , q ) = (t , g, 0).

(i) Suppose g* = g. Since for all (t , r , q ) e 7 x ft X Q ,

-r -r -l -i -l -i

d (t , r , q ) satisfies Condition y\l, either Case 1 or 2 applies.

Given (£ , r , q ) € 7 X R x Q , if Case 1 applies, the outcome is
-r -r -i -l -i -r

^
unchanged and if Case 2 applies, either £(d'(t , r , q ), d (t , r ,

q_» = a or £(d'a, r jf qj, <*_,(£_,, r^ q^) = g(t|, t^). Since <p

satisfies UlC(g), for all L° € £ , given that L° = <{r }, {q }>,

I p
x

(t_
x

\tju\(g(t), t, r°) * I p(t \t)u
L
(g(t' t ), t, r°).

t €T t €T
-1 -1 -1 -1

By assumption [A3], for all r e R t

I pa^t^cga), t, r) *

t €T
-1 -1

A-l



E pjtjt^ga^ tj. t, r). [6]

t €T
-1 -1

(ii) Suppose g' * g. Since for all (t . r , q_
{

) € T x R_
i

X Q_
{
,

d it , r , q ) satisfies Condition y|i, Case 3 applies. Given (t ,

r , q ) e 7
}

x R X , either Zid'Jt^ r , q^, ^(t^, r_
f
, g^)) =

a or CW'ftj, r , q ;. d.jft * r_
{

, q_
{

) = g'ttj, t_J * a. The latter

can occur only if Case 3A applies. By definition of Case 3A, for all r €

R, there exists V = <R' , Q'> e 1 such that r € R' and

E pctjoi/rga;, t, r) * e pajUu^Yt;, t ;, t, r;. By

t €T t €T
-1 -1 -1 -1

assumption [A3], for all re/?,

E pft |tx£tert>, t, r; *

t €T
-1 -1

E p^tjya^'a;, t ;. t, r). m
t €T
-1 -i

By construction, ji is a joint distribution induced by \N\ independent

randomizations (u ) . The observation of q yields no information to
*J J€N

M
i

J

agent i about agent j * i. Also, for all j € Jtf, |i assigns positive and

equal probability on every element in Q . We do not need to construct

off-the-equilibrium path beliefs. In addition, d is independent of

\i (s (t )) for all t € T . Therefore, the only payoff-relevant
-1 -i -l -l -1 j r j

parameters unknown to i is t and r . Recall that [6] holds for all r e

R. Thus, given the assumptions /"AI7 and [A4] regarding a, for all (t , r ,

q ) € T x R X Q for which possibility (i) above is true, [6] implies

[8] below.

F^€. d,
t

; t
{
, r

x
. q^) *

v\{$, dldj], P
x

; t
x

, r
y
, q

x

). [8]

where 3 is justified by (s, \i).

The argument given in the preceding paragraph also applies to all (t

,

r, q ) € T x R X Q for which possibility (ii) above is true. Recall
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that [7] holds for all r € R. Thus, given the assumptions [Al] and [A4]

regarding a, for all such (t , r , q ) € T x R X Q , [7] implies. [§].

[8] is true for all t e 7* , for all r € R and all a € <? . By

construction, for all j e N, r € R and q € Q , d is independent of rJ
J J

H
i J J J

and q . Thus, a deviation to s' does not by itself affect the outcome.
J i

Recall that s is such that (g, s) € <p . By [A5], given that, by

construction, d is independent of r and q, we have

for all t e T ,

i l

[/-(€, s, u, d ; n ^ [/^(c, sis;], n, d; n. [9)

From [8] and [9] we conclude that (s, n, d, |3) € SME(H{<p, g), L). By

construction, [i assigns positive probability to every q € Q. Trivially,

the criterion X(s, \x, £°d) is met. Therefore, (g, s) € ECH(<p, g),

L). m

*

Proof of Lemma 7a_ Choose L = <R, Q> 6 if, (s, ji, d, p; e SME (H(<p, g), L),

i € N and (t,r,q,)€r xR XQ, where r = s (t ) and u(q|s(t)) >

for some t € T and some q e (? . Let Q (s, u) = {q* e Q : u(q ,

-1 -1 -I -1 -1 -i -i i

q' I s(t)) > for some t € T }. We shall establish that for all V e
-l 1 -l -l -l

T and all q\ e Q is, n), [d(t, r, q), d (V s (t\), q\))
-i -l-i liii-i -i -l -l -i

cannot satisfy any of the cases other than Case 1. We shall write d(», ,12 3
•) = (d (•, •, '), d (•, , •), d (•, , •)), where the superscripts 1, 2

and 3 on d(*, •, •) denote the restrictions of d(», •, •) to T, G and IR

respectively.

Choose t € T and q e Q (s, ji). Let m = d(t, s(t) t q). Suppose

that m satisfies one of the following: Case 2, Case 3 or Case 4. A

contradiction shall be established. Suppose t contemplates a deviation to

d' € D(L, M). Also, suppose that d'{t , r, q) = {d
l

{t , r, q ), d
2
{t

l l t r r l l i i l i i

r, q ), n'), where n' is such that for all V . € T , for all q' € Q ,

i i -l -r -l -l

A-

3



3
d XV , s (f ), q' ) < n'. There are two possibilities to be considered
-l -i -l -l -i

(i) There exists j € N such that K(m) = {j}. Therefore, for all k €

N\{j}, m does not satisfy Condition rile. Without loss of generality
-k

suppose that i € N\{j}. Since \N\ > 2, and by the assumption [Al(a)l, for

—

k

— k*
all k, k' € N a * a , again without loss of generality we can assume that

£(m) * a . By the construction of d', Condition z\k is not met for all k €

N if i deviates to d'. Since Case 4A applies, £(d'[t , r , a ), m ) = a .

l l r l m -i

(ii) There does not exist j € N such that K(m) = {j}. Hence, m is

such that either Case 2B or 3B or 4B applies, i.e. £(m) = a. If m is such

that either Case 2B or 4B applies, then by the outcome rules associated

with Cases 2A, and 4A, and given that (by assumption [A4]) for all g € <p
G

and all t € T, git) * a, we conclude that u
L
(^{m), t, s(t)) < u

L
(.e,(d[d'](t,

s(t), q), t, s(t)). If m is such that Case 3B applies, then there exists j

€ N such that m satisfies Condition r|j and for all k € N\{j}, m does
-J -k

not satisfy Condition f\k. Since \N\ > 2, without loss of generality

suppose that i e N\{j). (d'it , r , q ), m ) is such that for all k € N,ii r i -l

Condition ?\k is not met. By Case 4A, £(d'(t r , a ), m ) = a .
i

» ^
i l i m -i

On the other hand, for all t'_. e T , for all q^ € Q (s, u), for all

(m^ d,(f , s ft' ), q' )) e M which satisfy Case 1, we have £(m ,

d
.i

(t
ii'

s
_!
aV' q

'i
;) = ^(d

;

(v r
i» ^ d

-i
(t

'i«
s
.i
av- qv } since

WJCt^ r, q
{

), d^W , s ft *
), q' )) satisfies Case 2A.

To summarize, for all V . e T , for all q' € Q (s, u), for all (m ,

-l -i -i -i ^ i

d
-i^li«

s
-/*Vj gV } € M such that Case

*
is met

*
we have ^(m '

*jzc s
.i
aV' q

-i
)] = ^(d

;

(v r
i- ^ d

-i
(t ',« s

-,
av- qv ] and

for all t'A e T , for all q* € Q (s, n), for every (m , d .(f ,

s ft' ;, q* )) € M that does not satisfy Case 1 we have either £{d'{t ,-l-i-i " "»
i i*

r, q), d_XV^ iJVJ. <tj> = ? or u\[^m d {V 8 (V).

A" 4



q' )), t, sit)) < uH&dl&Kt, s(t), q), t, s(t)).. Thus, by [Al], vH^,

d, fij t
i$

r
{

, q
x

) < V
L
^, dldj], p

f
j t

{

, r^ qj. , „

By definition of sequential mediated equilibrium, the conclusions

*

derived above contradict the hypothesis that (s, \i, d, fi) e SME (H{<p, g),

L). u

»

Proof of Lemma 3i Choose L = <R, Q> € £ and is, fi, d, 0) e SME (H(<p, g),

L). By Lemma 2, for all £ € T and all q € Q such that u(g|s(t)) > 0, d(t,

s{t), q) satisfies Case 1. Thus, for all t e T, and all q e Q for which

u(g|s(£)) > 0, for all i e N, there exists a function al : T -> T such
1 'all

I

that d {t , s (t ), q) = (al it ), g, 0). By the outcome rule associated11111 'q l

l

with Case 1, there exists g € G defined by: for all t € T, g(£) =

I lx(q\s(t))giioc\ it)) )= Enr<j|sa;>£(d(t, s(t), q)).
' ' q 1 1€N '

q€Q 1 q€Q

Choose i e JV and suppose that the lemma is not true, i.e. there exists

t € T, s' e S (i?) and q € Q such that d (t , s (t ), g ) does not
1 1

"IX -1 -i -i -i -1

satisfy Condition ?\i and u(g|s[s* ](t)) > 0. We shall establish that this

yields a contradiction.

We shall write d(«, •, -) = (dV-, •, •), d
2
(-, •, O, d

3
C-, , -)),

where the superscripts 1, 2 and 3 on d(*, •, •) denote the restrictions of

d(', •, O to T, G and IR respectively. Suppose i contemplates a deviation

to d* e D (L, M). Also, suppose that for all r € R and all g e <? ,

1 2
d'(£ , r , g ) = (d (t , r , g ), d (t , r , g ), n'), where n* is such

i i i l ii i m l l 11
that for all V . € T , for all g* € <? , d

3
.W , s (V ), q' ) < n'

.

-i -i -i -l -l -l -l -l -i

By definition, id'it , s'it ), g ), d it , s it ), g )) satisfies Case
i r l l M -i -i -l -l -l

4A and, therefore, £id'it , s'it ), g ), d it , s it ), g )) = a\ By

-i - "
-l

assumption [A4], for all t e T, git) * a. Thus, for all t <= T, git) * a .

Moreover, by construction, for all t € 7 and all g € Q for which

A-5



u(q|s[s']U)) > and d (t_, s_(t ), q ) satisfies Condition ?\i, we

have &dii, s(t), q» = SWJtt^
«J(«,).

9,). ^t.^ , /Li('_
1
, « ^

A A A A A A

since (d'(t , s'(t ), q ), d_it_^ s It X <7_j)) satisfies Case 2A.

Thus, by [All, P^. d, p
t

; ft
if

sjtt), q^ < ^(£ dldj],
fy ^ s'fr),

*

q ). This contradicts the hypothesis that is, \x, d, &) e SME CH(<p, g),

l;.

_ _ _ *

Proof of Lemma 4* Choose L = <R, Q> € £ and (s, jx, d, 0) e SME (Hi<p, g),

L). By Lemma 2, for all t € T and all q e Q such that ji(q|s(t)) > 0, dit,

sit), q) satisfies Case 1. Thus, for all t € T, and all q e Q for which

u(q|s(t)) > 0, for all i e TV, there exists a function <x| : T -» T such
q i i

1

that d (£ , s (t ), q) = (al (t ), g, 0). By the outcome rule associated

l

with Case 1, there exists g e G defined by: for all t € T, git) =

£ n(q\s(t))gUa\ it))) = V n(q\s(t))^{d{tt s(t), q). We need to
q i 1€N

q€Q 1 q€Q

show that ig, s) € <p .

To prove that ig, s) e <p , we shall appeal to Property 2(X, g). Fix s

6 S(R). Define d € DiL, M) by d (t , s (t ), q ) = (t , g, 0) for all i €
' 1 l i 1 M I

Af, for all t e T and all q 6 Q . Given the outcome rule associated with

Case 1, for all t e T, for all q e Q such that £ v(q\s(t)) > 0, git) =

q€Q

£,(d(t, s(t), q)). Thus, there exists z 6 ZiL) defined by z = £°d such that

for all t € T, g(t) = £ tfq\s(t))z(t, s(t), q) and g(t) =

q€Q

£ n(q\s(t))z((a\ (t), sit), q) ). In addition, define z € ZiL) by
q€Q

q
i

z(t, r, q) = z((a\ (t), r, q) ) for all it, r, q) = T x R X <?. To
q

i

check that part (ii) of the hypothesis of Property 2(X, g) is satisfied, we

need to ensure that for all i e N, for all s' e S (/?), statements (B) and

(C) below are met for all z* e ZiL) whenever (A) is satisfied for all g' e

A-6



G such that g'((a| (t )) ) = zY(a| (t )) , sls'lCt), g<) for all t €
'q J J€N ' q J J€N 1

T, for all q € Q such that £ jifq
|
s[s* ](tX) > 0. • >,.-

q€Q

(A) for all t e , T , for all r € U K, for all q € Q , there exists

V = <iT, Q'> € £ such that r € R' and

£ pft |t*ijfcft>, t, r) *

t €T
-I -1

t €T q
i

-1 -1

(B) for all t € T ,

i i

iriz, S, /i; t ) 2: U U, s[s^), u; t ).

(C) for all t
f

e T , r € R , q
j

€ ^(u, r^),

K
L
Cz, ; t . r , q) a F

L
(z\ j§ ; t , r , g ;,

i l r i m i r i i i

where z' € Z(L) is defined by z'(£, r, q) = z'((cc\ (t ), r , q ) ) for
q J J J J^n

all {t, r, q) = T X R X Q.

Choose i € N. For all t € T and q 6 (? , let d'(t , s'(t ), q) =
i l

M
i l i i l l M

Ct , g\ n*,) with g' * g and a' > 0. Consider a deviation from (s, \i, d, ft)

by agent i € JV to (s\ d'
aql

) € S (R) x D (L, M) such that for all t e T1111 11
and q € Q , d

,0Cqi
(t , s'(t ), q) = (a\ (t ), g' , n'). By Lemma 3, for

1 11 1111 'q 1
' b '

1

all t € T, for all q e Q such that u(q|s[s'](t)) > 0, d a , s (t_),

q ) satisfies Condition y\i. If g' satisfies (D) below, then by Case 3A,

£(d[d
,aql

](t, s[s'](t), q)) = g'((oc\ (t)) ) for all t e T and q € Q
1 1 ' q J J€N

such that
Y. n(q\s[s'](t)) > 0.

q€Q

(D) for all t € T , for all r € U ft. there exists L* = <R', Q'> e 2lr -

such that r € R' and for all q € QM l

X pft |tJuJfat>. t, r) *

t €T
-1 -I

I p(t \t)u\(g'(a\ (t), t ;, t, r;.

t €T 1

-1 -1
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By definition of SME, (E) and (F) below are satisfied whenever (D)

holds.

(E) for all £ e T
,

t/-(S, 5, n, 5; n > (A(?, i[s;i, m, 5; n.

(F) for all t e 7 , for all r € R and all q e Q in, r ),11 11 M
i l l

v\(fi, d[d;
aql

], g iS
t

{

, r, q^,

where d
,aqi

e D (L, M) is defined by d
,aqi

(«, *, •) = d'(a| (), •, •).
1 1

J
1 1 ' a

I

Observe that by setting z' = ^<>d[d'], given the definitions of z and

z, if (D) implies (E) and (F), then (A) implies (B) and (C).

By Property 2(X, g), [g, s) € <p . u
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