0.516 .6 I86s

5

C. of I.

DEPARTIDEDT OF ARCHITECTURE

SHADES and SHADOCUS

为
$\cdots+{ }^{2}$

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

SHADES \therefore SHADOMS
Notes Arpigco For
The jeprrivent on frenitccture

UNIVERSITY OF ILITNOIS-
$\because * *$

Pimoegnaphea by
Student supply store Chompoign, IIl.
1
SlaMES MTE BUDOS

1. INTRODUCTION:

Objects are orisible to the eye owing to the reflection from their surfaceirays of light. These reflccted rays strike upon the retina of the eye and give the sensation of sight. The greatest source of light is the sun, and rays from it strike all bodies on the earth at various angles. If the angles of impact of all the rays ofriking on the surface besthe. same, the surface appears flat, technically "plane". If the angles of impact are different then the surface appears "curved".

Since therefore, the pleasant or unpleasant effect of any object will depend upon the producing of an effect of plcasing or unpleasing lighting upon the eye, it becomes of primary importance that the students of those branches of art that deal with objects in the round, with objects subject for their offect upon the play of light and shade upon their surface, namely, Architecture and sculpture, be thoroughly familiar with the phenomeno of light and shade.

In addition to this "it is esscnticl that he who conccives an idea must be able to cxpress that idea forcibly and convincingly, to others, clsc his idca becomos of no importance. The painter expresscs an idea in one way, the writcr in another, the sculptor in another, the architcct in still anothcr. The Sculptor $\begin{gathered}\text { orks out his idea in clay, then piastor, then in stone }\end{gathered}$ or in bronzo; the architcct has certain conditions set before him; he works out the iden in the drafting room and working under his direction, the builder execntes that ider in permanent metcrisls of wood, brick, and sউone.

A building doos not consist morcily of the lines by which it is represented in geometricel drawing, but of masses and these are botter and more quickly roprosoritod by tints then by mere line drawing and in order that the final results may bo that pleasing creation that distinguishos tho thing of art from that of pure utility-that make of it architcctare-thc architcct must be thououghly familiar with those ga: esal phonomena which Mill mako of his creation a thing of beaut.i and must be able to reprosent those phonomena on draivings.

In order that a represcintation of light and shade may bo made upon gcomotrical drawings, the architect brings into use an application of certain principles of descriptive geometry, using that science, homever, not as a means alone, but as a means toinard an end, and basine the general underlying principles of the application upon a careful observanceof natural phenomenacdopting convenient conventions-never violating the fundamental

principles of nriarnd zonong.
2. IIGHT RAYS:

The raje of light which rre denlt with in reference to anyf one body are first-direct or incident rays, secondtangentinl tays,-third-lateral rays. Direct rays impinge directly upon the body. Tancential rays are those tancent to its surface. Literal rays do not strike the surface, but o on to illuminate bodies beyond. ITaturally, in the study of Shades and Shadoivs, direct and tangentiol rays are those of importance. Fig. I
3. SHADE AND SIADOWS:

If rajs of licht are excluded from certain portions of a surface by the shrpe of that surfrce itself, then the darkened portion is said to be ill shade; if the surface, by projection beyond or position between the source of light and another surface, exclude licht from any portion of the second surface, then the first one is said to"cast shadow over the second". Shadows reveal by their extent the relative position of as well as the shape of surfaces. Shade reveals merely the shape of sepnrate surfaces.

Any object placed in a fired position on the earth, as is of course every builoing, will be subject to a continual chance of lighting, to a continually chenging play of light, shade and shadow. If on the ceometrical or line draifing of an element architectural; each separate artist vere to assume a direction for the rays of lieht that are presumed to illuninete an object-for naturally an assumption of directions of light is prerequisite to the worlsing out of shades and shadows geometrically-then to each drawing would have to be added a stetement of the assumptions made. The assumption of certain directions of the rays would be cause of great difficulties in the eeonetrical solution and a geheral confusion would result, thourh each distinct method or means would itself be correct. Since the finished result of the artist's efforts must be easily and clearly readnble by those who do not understond the methods used in acheiving the result set before them; since the worling out of shaciows is in any event a long and complicated process, and since, therefore, the adoption of any conventions tending to make for the cirnftsman greater ease of worling, are of prime importance, and for these reasons solely
\because 亿. \because

- $\because: \quad \therefore$ - ••••
. 5
- ク! ! , •"

$$
\begin{aligned}
& \therefore \because \because \because \quad \because \cdots r_{i} \div \\
& 86 \\
& \text { 20 }
\end{aligned}
$$

SHADES IIND SHADOWS

certain conventions as to direction of light have been universally adopted. The student, however, must not come to believe that the adoption for sake of convehience of particular conventions affect in any way the general principles underlying the Study of Shades and Shadows.
5. THE RMY 45%

In the study, therefore, of Shades and Shadows, the sun is assumed to be the source of light, and the rays assumed to tale o. downward direction, and to the right parmillel to the diagonal of a cube (Fie. 2). The enele which the ray malies with its own projection is, therefore, $35 \% 15^{\prime} 52^{i \prime}$, and is knom usually as the angle 1 or the"true angle of the ray".

The projections of this one rar are three, and each projection naturally makes an angle of $45{ }^{6}$ with the horizontal, and since ther ariginnte at infinity--the sun--the projections of all rays in and particuler plene are porallel. (Fig.3) Expressed architecturally, there is one ravi vith ofront elevation, a side elevation and a plon as can be readily understood. The use of the ray in this particular direction, eives not only ease of construction, but also ease of interpretation of projections of surfaces on bejond the other, for naturaliy the width of the shadow cast by one plane surface over another will be exactly equal to the projection of the first surface in front of the second, Heving established a definite basis for study there can now be discussed the various procedures necessary for the actual finding of Shades and Shadows under eny given condition. To the study the architectursi student must bring more than a mere linowlede of the processes of descriptive geonetry. He must bring a sense of analysis and thought fulness that will enable him to discover in each problem those onrticular elements that are necessary for the rapid solution of the problem, but he must above all else cultivate n knowledge of the general shrpes of actuel Shedes and Shedows and n common sense way of looking at any problem presented.

By a mere application of principles of descriptive geometry the finding of the precise piercing point of a line on a surfaceanj profile in shades and shadows can be solved, but since rapidity of thought and action as well as accuracy of result are the prime requisites of the architectural Craftsmen every effort must be made to learn the shortest and the ersiest methods of acheivint a eiven result. Analysis and ncquired experience, thoughfulness, imacination, observetion of netural phenomena, these all will give rapidity end accuracy.

OF SHLDES A ND SHDOMS
BY GEOMITFICAL ITTAIS
6. DEFINITIONS.
"A plane of Rays" is a plone which may be consicered as made up of the rays passing through adjacent points of a straight line. (Fig. 4)
"Point of loss"-The point of intersection of a shadow with a shede line, or of a shedom or shade line with the line of division between 2 lighted and unlighted surface. (FiE. 5)
"Invisible shddows" or shadows in space"---that portion of spece from imich light is excluded by a body in direct light. (FiE. 6)
7. INTEODS OT COISTRUCTION.

The finding of shadows comprises two distinat operntions, They are in order of construction:

1. The finding on the object itself of the line which separetes the lighted pert from that sheded pert, ?nown in consequence as the separation or separatrix or "shade line".
2. The Einding of the outlines of the shadows cast by the object on a foreien surface, that surface being usually in the hotizontal or vertical plane, mown as the "shador".

Since it has been ressumed that the light rays fall in a definite position oblique to the vertical and horizontal plane of the projeotion and since architectural details are mode up for the most part of revian surfaces, either plones at right angler to each other and parallel to or at right nngles to the general. surfaces of revolution whose elements are perallel or perpendiculain to the same plane, when it is evident that in general the shadow of any object over another object in an 6blique projection of the first objeot, iand that, as can be readily seen, the outline of the first shadow is the shadow of the shade line of the object castine the shadov.

SHADES AIJD SHADOWS

8. THE SHADOMS OR POINTS.

The shadow of a point on any surface is found by passing a ray (straight line) through that point and finding where that ray pierces the surface. The point of piercine must necessarily be at the shadow of the point. (FiE. 7)

9. THE SHADOW OF LINES.

A straight line is by definition made up of a number of points. So that the pasing of separate rays through each of the points would make a plane of rays, the intersection of which plane with the surfaces in question would Give the line of shadow of the line considered. The length of the shedow would be determined by the shadows of the two points a.t the ends of the line or by the limits of the surfaces on which the shodow fills (Fig. 8).
10. THE SHiDOWIS OF SURFACES.

Since a surface is limited by lines, the shadow of a surface can evidently be found by findine the shadows of boundary lines of that surface.
11. THE SHLDOWS OF SOLIDS.
a) Polyhedra.
${ }^{12}$ re solids bounded by portions of intersectins plenes. The lines of demnriation betiveen licht and shade vill noturnlly be along lines of intersection. The outlines of the shadows of a polyhedron will be determined by findinc the shadows of those lines of intersection that divide the lichted from the unlichted pottion of the polyhedra (FiE. 9).
b) Surfaces of Revolution.

The shade lines on surfeces of revolution are formed by rays tancent to the surfaces. The outline of the shedow will evidently depend upon the finding of the shadow of thet line of tengency. (Fies. 10).

$$
\begin{aligned}
& \text { yr. a misytyen bria } \\
& \text { te!! }
\end{aligned}
$$

$$
\begin{aligned}
& 31 \\
& \therefore \text { - } 1 \text { R } \\
& \text { +': }
\end{aligned}
$$

$$
\begin{aligned}
& \text {-ir rioi. - } \\
& \therefore \\
& \text { Sn. } \quad \text { •i } \\
& \text { orre: in }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \begin{array}{ll}
-8 & \vdots \\
3
\end{array} \\
& \text { - תirc . } \because \because \\
& \text { - にな. ••fベ: }
\end{aligned}
$$

SHADES AND SHADOWS

12. THE GEIERAL PROBLEII

From the preceding discussions it should be evident thet the eeneral problem involved is that of "representing the rays which pass through points in the shade line of an object and finding the points at which these rays strike another object. Generally spealing, this is not a difficult problem in descriptive Eeometry, and is one quite within the power of an architectursl draftsman of 2 little experience, if he will keep clerrly in mind the noture of the problem he is to solve. "Ke is apt to entangle himself in trying to remember rules and methods by which to reach Ω solution", (McGoodwin). Statement of certain more or less evident corollaries of preceding discussion.

A thorough understanding of the general corolinries stated below will be of inestimable benefit in quick and ready annlysis of problems.

1. All straight lines and planes may be considered as being of indefinite extent. Parts not of such lines and plajes lying beyond parts having actual existence in cases considered will be termed " "imaginary". (Fig. 11).
2. (a) A point which is not in licht cannot cost a real shedon.
(b). Every real shadow line must cast a real shadow and this real shodow cannot lie within another real shadow. llost of the blunders in casting shadows are due to a neglect ormunderstanding of these two statements. For instance, in Fig. 12 it is evident thet point "a" connot cast a shadow on the wall.
3. (a) The shadow of straicht line on a plane may be determined by the shadow of any two of its points of the plane. Vaturally the shadows of the points at the ends of the line are the ones most advantageous to find.
(b) The shadows of any line on any surface may be determined by finding the shadows of adjacent points of the lines. As could be expected, this method is a very cumbersome one, and such shadows will be, wherever possible, found by less lengthy processes.

$$
\begin{aligned}
& \therefore 1 \quad \because \quad \%
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \because \quad i+1 \\
& \therefore \because \because
\end{aligned}
$$

$$
\begin{aligned}
& 1 \therefore \therefore \cdots \text { rio grat }
\end{aligned}
$$

SHADES AHD SHADOWS

13. THE GENERAL METHOD.

Sought for results may be acheived by cumbersome or by ensy methods. So in the finding of shades and shadows on architectural drawines, certain methods have been found to give results easil and accurately. Those general methods found to be the most applicabl: are:

1) The method of oblique projections.
2) The method of circurascribing surfaces.
3) The method of nuxiliary shadows.
4) The slicing method.

Each separate method will be discussed in detail in its oroper sequence, and with its proper applications. All of the methods or but one method may be conveniently used in the casting of shadows on any one object. The use of a little common sense and visualizing foculty are essentinl io the student is to do eny particular problen problem accurately and quiclily.
14. THE ITETHOD OF OBLIQUE PROJECTION.

The method of oblique projection consists simply in drawine on the projections of the object the forty-five degree line representing the rajs tangent to an object or prssing through itd shade line and then in findine the points where the roys strike any other object involved in the problem, these points of interesction giving the outline of the shadow.

Thes method is simple and direct, but notron can be used only when the plan or side elevation cen be represented by a line. Otherwise it is impossible to find directly points at which rays strike the Eiven surface. For example, in plen the surfece of a oylinder with vertical elements can be represented by a circle but the surface of a torus, scotis, or cone connot. Hence in the latter cases some method other then thet of direct projection must be used if shades or shadows are to be found on these surfoces. Theoreticnlly this method requires the finding of the shadows of nill points in a line, but practically, under the assumption made in this study-namely; rays of fixed direction parallel with each other--the shadows of certain points and lines on certain surfaces in certain portions will be always the same. They maty be stated as follows:

1) The elevition of the shadow of a point on ? verticnl plane rill dimay lie on forty-five degree line to the right of the elevation of the point in front of the plane. (Fig. 13).

SHADES AHD SHADOWS

2) The shadow on a given plane of any line which is parallel to that plene is a line equal and parallel to the given line and lies to the richt of the line a distance equal to the distance of the line in front of the plane. Fig. 14).
3) The shadows of parallel lines in any plane will be parallel.
4) The shadow of a line perpendicular to an elevation plane will in front elevation be alvays a forty-five degree line no matter mat be the form or position of the objects receiving the shadow. The shadow of a Inne being formed by the intersection of a plane of rays, through the line with the surface considered, in this particular case, will coincide, of course, with the elevation of the plane of rays this plane will, therefore, be itself perpendiculaw to the surface receiving the shadow and will appear in elevation as a forty-five defree line. EiE.15).
5) The shadow in plane of line perpendicular to the plan plane should be a forty-five desree line. The ressoning given in (4) should be suferient to maie the point clear. Fig. 16).
6) The shadow of a vertical Dine on an inclined plane whose horizontal lines are parallel to the elevation plane is an inclined plane whose slope is equal to that of the given plane. The most frequent apolication to architectaral problems is found in shadows of dormers and chimneys on roofs. (Fis. 17).
7) The shadoiv of a vertical line on ε series of horizont: 1 . mouldings is equal in front elevation to the profile of the right section of the mouldings. (Fig. 18). The shadow line of course moves to the rieht as the contour recedes. This shadow of such frequent is occurence in architectorel problems is too often drawn. incorrctly
8) The shadows of horizontal lines either parallel or perpendicular to the elevation plane, on $?$ vertical plane receding diagonally to the left at an angle of forty-five decrees-are of the parallel lines forty-five degree lines, sloping downward and to the left, and of the perpendicular lines forty-five degree lines sloping downward and to the right. (Fig. 19). These shadows are often used in findine of auxiliary shadows.

- 10

Mstaccotyon

i $\because \because!$

$\because!$! $\therefore \because \quad \therefore$.
. 11
$\therefore \quad \therefore$
Tre:
$\therefore \because \because \because$
 $\therefore \%$:
 $\because \cdot:$ $\therefore ; \cdots$ - 0 '
\qquad 01
- $\quad \therefore 1$

$$
\begin{array}{ccc}
4 & \ldots \\
\vdots & \vdots & \vdots \\
\hdashline 9 & \vdots & \ddots
\end{array}
$$

SHADES AND SHADOWS

9) The shade line on a curved surface whose elements are horizontal or vertical straight lines, is found by drawing the elevation of a ray tancent to the profile of the surface. (Fig. 20). Evidently the shadow cast over such a surface by a straight line which is parallel to the elements of the surface can be found as shown. (Fig. 21).

With the lnowledge, therefore, of the definite positions that the shadows of these lines which form boundary lines are to practically all surfaces appearing in architectural work take, the findins of shadows of even the most complicated surfaces becomes comparatively easy. Often the detemination of the shadow of a single point will suffice for the determinetion of an entire group of shadows. An attempt rust, alivays be made to use as little as possible either plon or side elevation in determinine shadors-for the: are often in architectural work at different scale from the front elevations, and if used to a large extent would have to be redraim-o lengthy and entirely uncalled for proceeding.

SHADES AID SHADOWS

Nomenclature

For the purpose of clearness in reading of diagrams given, the followine nomenclature has been adopted:
R - Ray of licht in space at Conventional Angle.
$R_{1}-$ Front Elevation of Ray.
i2 ${ }^{-}$Side elevation of Rey.
R3- Plen of Ray.
中- True anele of Rayé
V - Vertical plane of projection or Front Elevation Plan
P - Profile or Side Elevation Plane.
H - Horizontal or plan plane.
X - Any other plane.
Let A Any point in space.
Then A_{1} - Anj point'in front elevation.
A_{2} - Same point in plan.
A_{3} - Same point in sice elevation.
Let. Als- Front elevation of shadow of point A!
A2s Plane of shadow of point A.
A3s Side elevation of shadow of point A.
GL- Ground Line-Line of intersection of V Plane and H plane.

NOTE: In lettering of all problen: plates this nomenclature is to be followed.

The Architectural terms, front elevation (or usually Elevation), Side Elevation, and Plan, are to be used in preference to the terms V Projection, P projection, and H projection.

THE SFFADOWS OF CIRCLES.

15. SHADOWS OF CIRCLES IN PLAHES PARALLEL
 TO PLARE RECEIVITMG SHADOU.

It is quite evident that the shadow line of, for instance, a circular flat disle on a plane will be formed by the intersection of a cylinder of rays with the plane in question, and that the intersection of the cylinder will be a circle or an ellipse depending upon whether the disk were in a plone parallel to the given plane or in a plane at an angle with the siven plane. (FiE.22). It is also evident that in the first instance, the shadow line will be a circle of exactly the same radius as the disk casting the shadowr and that, therefore, the findine of the shadow of the center of the circle will be sufficient to determine the complete shadow. The arch is the common architectural form in which circles occur in such a position.

16. SHADOIS ON VERTTCAL ATE HORIZONTAL PLAINES:

Then the shadow line is an ellipse, by methods of direct projection Irom plen or side elevation as auxiliaries can be found a number of points of shadows of the circumference of the circle. Usually circular forms occur in architectural work in planes perpendicular to the vertical plane of projection and parallel to the horizontal, or in planes perpendicular to both planes of projection, and the shadow of such circies are usuelly cast on a vertical of elevetion plane, thouch sometimes on a horizontal or plan plane. Since the center of the circle is a point, it is quite easy to determine its shadow, which determines naturally the center of the ellipseishadow. The major and minor axes of the ellipse of shodow are then determined.

The architect must, of cours, determine if possible bty methods of ressoning, those shadow points that will be of greatest importance, and through them must construct the ellipse of shadow. The simplest and most accurate method of determination is as follows (FiE. 23).

The shadows of the circunscribed and the inscribed squares are first found, usine the alrendy found shadov of the center of the circlens a point for symmetrical construction. The shadows of the median and diafonol lines are easily found. The points at which the ellipse of shadow crosses the diaconals is found as shown in the figures. The tangents, which of course are perinliel to the diagonals are usually drawn to serve ns a Euide in freehnnd construction of the ellipse of shadow. Since the circle is a continaous curve, if through any inaccuracy of construction points of shadow found do not give continuous curve, then these points must be disregarded and the curve drawn through the greatest number that lie on a continuous curve.

SHADES AMD SHADOWS.

17. SHADOWS ONT INCLINED PLANES.

The same methods of reasoning as used for shadows of circles on vertical end horizcntal planes give the construction of the shadow on an inciined flane, as shown in Fig. 24.

18. SHADOWS ON 45% AUXIIIARY PLANE.

The shach or a vertionl plane at t 5 decrees passing through its center, of acircie in a horizontal plane perpendicular to the elevation pirne is a circle (Fiç. 25).
19. CONCLUS IOIT

It must above all slae be remembered that the shadow of any ciacle must, of course, be completely within the shadow of the circumscriberi square emi will be tangent to thet shedow et points where the original cirrie is tancent to the circuascribed square, Time honored bluaders in the castine of the enadows of circles may be almost entirely avoided by the accurate tinding of the shadow of "the circumsinijed square even though the inscribed square is not found.
20. THE SHADES ON AND SHADOWS OF SURFACES OF REVOLUTION.

Surfaces of revolution are created by revolving lines straifht or curved or both about a fixed axis or series of axes. - In the forms commonly met with in architectural objects, the surfaces of revolution are generally either vertical or horizontal, so that the shapes created are more simple to deal with than those created when the ares are inclined. The study, therefore, will be confined to right cylinders, cones, shades on and shadows of certain of found by an application of some one or all of the methods mentioned at the beginning of the discussion.
21. THE SHADES ON AN UPFIGFT CYIINDER. (Fi5. 26).

It is quite evident that the surface of an upright cylinder cen be represented in plan by a circle, and the surface of α horizontal cylinder in side elevation by a circle. Hence the method of oblique projection con be applied in the finding of the shades and the shodows. The lines of on the cylinder will evidently be determined by two plones of rays tangent to the surface. They will come tangent along a verticnl or horizontal element of the cylinder and can be represented in plan or side elevation as the cose may be by lines tancent to the plan or side elevation of the line representine the surface of the cylinder. From the points of tangency thus detemined are secured the lines of shades. One line of shade is of course invisible in the front elevation. The other is a little less then $1 / 6$ of the $\because i d t h e$ of the elevation of the cylinder to the left of the riaht profile of the cylinder. This proportion is a convenient one to remember.
22. THE SHADOIS OF CYIITDTRS. (Fig. 26).

The outline of the shadow of a cylindercol surface on n plene can evidently be detemined by finding the shedows of the two shade lines--imich are streight lines, and the shodows of those portions of the circular outline of the top end bese thet lie between the points e.t which the lines of shade cross the beses. These will be elliptical, and it is best to determine by methods s.lrendy Eiven for the shadows of entire circles. As can readily be seen, the width of the elvation of the shadow of ? cylinder on a vertical planermill be equal to the diaconal of a square having the diameter of the cylinder for a side and will also be symmetrical about the shador of the axis of the cylinder. This fnct can be conveniently put into use in many ceses.

23. THE SHADOUS ON CYLIIDRICAL SURFACTS.

1. The Shedows of a Straight Line on an Upright Cylinder,

The shadow of a straight line parallel to both the V and H planes will be a circle whose radius is equal to the radius of the cylinder and the elevation of whose center lies on the elevation of the axis of the cylinder, belo: the elevation of the line a distance equal to the distence of the line in front of the axis of the cylinder. This should be clear from Fig. 28.

The shadoy on the surface of a line perpendicular th the elevition plane and parallel to the plan plane is a line at 45% (Art. 14, paragraph 4). The shador of the end of the line would be found by direct projection. (Fig. 28). The shado: of any other straicht line would be formed by the direct projection anto the surface of the cylinder of enough points of shedow to determine the curve of shedow.
2. The shadow on an Upright Cylinder of a Lerger Cylinder whose axis coincides with the Axps of the Smaller Cjlinder.

Evidently the shadow line will be a curve of no easily constmu: od seometrical form. Hence it becomes necessary to find of that curve by means of direct projection enough points to determine the directic: of the curve. Since the outline of the shadow will be determined by the shadow of a certain portion of the circle bounding the lower surface of the cylinder, by means of direct projection from points in this circle on the surface can be found any number of points desired. However, certain points are of more importance in determin. inc shape of the shadow than others. Those points are naturally enough, the points where the shadow crosses the lighted profile of the cylinder, the point where it crosses the shade line, and the point where it crosses the elevation of the axis, and where it is closest to the elevation of the line casting the shadow. By inspection it can be scen that the highest point of shadow lies on the diagobal axis on the left of the center, for on that line the rays strike the surface at the true angle.--(The angle ϕ).

Thenefore, it is determined first of all what points on the circle cast shadow on these lines mentioned and thenas many additional points are determined as are deened necessary to the correct drawing of the shadow. If the object be small, then naturyis the determination of the four points mentioned is sufficient: if the object be large, then more points must be determined. The method of determination is shown in Fig. 29. The point on the profile line
and that on the axis of the cylinder are at the same distance below the line casting the shad oir. The determination, therefore, of the position of either one will be sufficient to determine the position of the other.
24. THE SHADES AND SHADOWS OF HOLLOW CYLINDERS.

In the d rawing of the sections of buildings it is often necessary to determine the shades and shadows of hollow cylinders, as for instance in the section of the cupola of a dome, or that of a horizontal barrel vault or that of an arch. The methods of determining the points necessary to give the correct general shapes of the shades and shadows on such cylindrical surfaces are shown in Fig. $30,31,32$.
25. THE WETHOD OF AUXILIARY SHADONS

The principles upon which the applicati on of this method is based are:-

1. If upon any surface of revolution a series of auxiliary curves be draim, the shadow of the surface will include the shadows of all the auriliaries, and will be tangent to those that cross the shade line of the surface at points which are the shadows of the points of crossing.
2. The point of intersection of two shadow lines is the shad ow of the point of intersection of these lines if they are intersecting lines; if the shadow of the point where the shadow of one of the lines crosses the other line, if they are not interecting lines. If, therefore, the shadows of two lines intersect or cone tangent in a point, the position of the point of tangency of the point of intersection of the two lines cesting the shadow may be deternined by tracing back along the ray to the line in question. Evidently ease of construction and the necessity of accurate drawing maize it necessary to choose auxiliary lines whose shadows may be easily and accurately determined.
3. THE SHADES ON AND SHADOVIS OF CONES.

The conical forms ordinarily met with in architectural worl are those with vertical axis-as for example, the roof of a cylindrical tower, the lower part of a rall lamp, etc. The d iscussion to follow will be limited, therefore, to upright cones.

The surface of e cone cannot be represented in any one of the three planes of projuction by lines. Therefore, the shade lines cannot be found b_{i} the processes applied to the cylinder. From inspection it can bo seen that the shade lines will be forned by planes of rays thacent to the surface of the cone. They will be straicht lines passing through the apez and crossing the line of the base. Since in projection, the shade of the apex will coincide with the projections of the apex, then, in order to find the projection of the shade lines it becomes necessary to determine only points at which the shade lines
cross the projection of the basc. To secure those points, the methoci of auxiliery shaciows is used.

The outline shaco: of the cone on nne pinne will be determined. Dy shand of the bese, the roex and the shede line. If, therefore, as in Fig. 33, the shodor of the apor and the sheom of the base be cast indepenciently upon any given plane, then the shocows of the shade lines must be Als,Bls, and Als,Cls. Yoints BIs, and Cls, comin to the shedows of the shade line and the shacow of the base, mustibe the shadows of points common to the shade line and base, nomely, the shaows of points connon to the shade where the shade lines cross the base line. By passing bacir from $3 \mathrm{l}_{\mathrm{s}}$ and $\mathrm{C}_{1 \mathrm{~s}}$ alont rays of light to the base din=0e foind points B end C, and thes shade lines A :3 and A C constructed.

In findins the points B and C geometrically some method that Fill sive absolute accurcce must be used. Therefore, to find the points 3 and C in elevation the shadors of the cone on either a horizontel plene thropli.ts base, or on 2. 45 degree vertical plene through its aais are used as auxiliaries. Fics. 35 and 36 illustrate the application of the method wherein is used a.s an auxiliary, the shacow on the horizontal plane. (Fig. 35) In the geometrical construction shom in Fig. $B 6$, the shadow of the cone $B_{2}, A_{2}, C_{L_{5}}$ is
 the cone and points $B 1$ and C_{1} thus determined.

In Fig. 38, the points El and Fl are first detemined by casting the shadov of the cone on the $\leqslant 5$ dagree auxilingy plane, then since the shadom AD, FI KI Fl is that of the base of the cone on the 45 ," auxiliary plane, then from El and Fl in olevation, rays are pessed at 45 , to cut the elevation of the base, and thereby determinc the position of the points $B 1$ and C_{1}. The shade lines $A_{1} B 1$ and $A 1 C_{1}$ can then be dram.
27. CONES VITHOUT YTSIBLE STADE LINES.

If, as in Fie. 39, the profile lines of the cone make withthe horizontal an angle of 45 , then there is in front elevation no visiole shade line. The shade lines in plan are, however, as shom. If, as or less thap ϕ with the horizontal, then the cone has no shade line in plap or elevation.
28. THE SHADONS OF CONES.

The outline of the shadow on any surface can be secured by cas ing onto that surface the shadows of the spex, of the shade lines and of the profile of the base. If the surfacc on which the shadow falls be a plane, the shadow of the oxis of the cone should be first detei mincd; then on the shadow line can be determined the shadow of the apex then the shado: of the base. Throueh the shadow of the apex straicht lines drawn tengent to the shadow of the base will complete the shadow of the cone.
29. THE SHADES AND SHADOWIS OF SPHERES.

The shade lines of a shere is evidently a great circle of the sphere and is symnetrical about the two forty-five degree axes in the plane and in elevatinn. It is readily understood that the point where the shadc lineof any double curved surface of revolution touches the contour lines of the surface in plan or elevation is of course tu be found at the point of the contour at which the plan or elevation of 2 rey is tengent to it.

Therefore, Eis. 4 lb , to find on the plan the points where the shade lines come tangent to the plan of the contour draw the rays R_{2}, tancent to the plan of the sphere. The points thus found evidently Give, (Fig.4la), on the elevetion of the equator the points of shade $C_{1 \&} D_{1}$, and by symmetry the points E_{1} and F_{1}. Points A_{1} and B_{1} are determined by draining rays Rl tangent to the elevation of the sphere. Thus are determined six points on the shade line. To determine the points which will five the length of the minor axis of the ellipse, two equilatcral triangles with their apexes at Al and Bl are constructed , and points Gl and Hl thus determined. Through these eight points the ellipse of shade can then be drawn. The short construction for the points required is shown in Fig, 4lc. The outione of the shadow of the ellipse on any surface will be the shadow of the shade line of the sphere, and sufficient points could be determined by direct projection from plan and elevation to fix the shape of the curve. The shadow on a vertical or horizontal plane, however, is generally found by means of the construction shown in Fig. 4ld, and is sufficiently accurate provided the shape of the ellipse of shadow is drawn approximately as shom on the figure.

Miny mistakes are made by becinners in determining for instance the line of shade on a dome, which is of course only part of a sphere. The visible shade line can be determined accurately only by completin: the sphere.
30. THE SLICING IEETHOD.

In this method the object casting shadow and the object receivine the shadow are first cut through by a vertical planes parellel to the rays of the light. The elevations of the lines of intersection of the planes with the surfaces in question are then determined and then points of shode and shodow are determined on these slices.

The process is exploined by Fig. 42, the plan of the objoct is shown (0). The plan of a verticcl plane n.t 45% passed through the object roulc be represented by the line (1). The elevation of the line of intersection of that plane with the surface given would be the dotted line (1). The shadow on the scotia would be cast by the circular edee $x y$, The shadow of point bl would evidently lie at the point Dis there the elevation of ray through (31) striles the line of intersection (1). Plane (2) mould Eive intersection (2), and the elevation of a ray through Cl would give the shadow, C_{l} s. By the use of ? sufficiently lerce number of accurately constructed slices enough points of shodow mey be determined to fix the curve of the : shecom line.

Sconse it is ? quite casily understood, this method of determj ine shade and shadoir is apt to be obused by the beginner. Firstly, i: nust be distinctly remembercd thet the accurate construction of each slice is ? slow, tedious process and that the line of slicing when determined will be sufficient to eive but one point of shede or shodoit and, secondly, thet ? point of shade determined by drawing a ry tencent to such a. slice line will not be accurate in its position. Yinile the position of the slicing planes may be chosen so ns to give the most easy construction and velurble results, yet the slicine method is one to be used only when not other en be sapplied. It cannot be used at.smill scale. The shrpes of shadom and shade lines detcrmined by this method must be so determined at a sonle that will nllow of accurnte construction and mey then be copied at small scale by proportion.

By means of this method onn be determined the shades and shodows of scotics, and those on the more complicoted vase forms. However, those shadows can often be more nocurately detcrmined by the use of the $45 d e g r e e ~ a u x i l i n g ~ p l o n e . ~$
31. THE SHADOV OF A CIRCULAR NICIE

ITIT SPEERICAL HEAD
The outline of the shedow will be formed by the shadow of the circular outline of the head of the niche ne by the shecom of the straint liferngexesents the left hand side of the niche. The lines costinc tire shadow can be represented in plan by the line
tarso

$$
\begin{array}{lll}
3 & \ddots \\
\hdashline & \ddots & \ddots
\end{array}
$$

ต

10\% 58

$$
\begin{aligned}
& \text { an } \frac{10}{10}
\end{aligned}
$$

A2 C2 B2, Fig. 46 . The Portion of the niche in elevation up to line Al Ol Bl can be represented in plan by a semicircle. points of shadow Lls Els Dls can be found by direct projection from the plan and elevation. The curve of shadow will evidently start at Als and end at Cls where the ray $R 1$ comes tangent to the elevation of the profile. To find points of shadow on the spherical head of the niche auxiliary vertical planes such as X and y are passed through the surface of the niche and the clevation of the lines of their intersection \#ith the surface of the niche found. On these plenes are then cast the shadow of the semicircular outline of the head of the niche and the points Fls and Gls, thus Fls and Gls are points of shadow of the semicircular head of the niche because they are points common to the surface in question and to the shadow of the semicircular head.

At small scale the points of shadow to be detemmined are ils, DIs, and Cls. Als and Cls are easily determined, and Dls may be placed on the elevation of a ray through Of a distance from ol equal to $1 / 3$ of the radius of the niche. (Fig. 47). The shadow line must not cross the outline at Cls but must bo tangent to the outline at that point.
32. THE SHADES ON AND THE SHADOWS OF HORIZONTAL TORI.

As in the case with all double curved surfaces of revolution, the shade line will be symmetrical in plan about the two 45 degree axes. If there can be d etermined accurately several points on that shade line, then same can be drawn with accuracy thiough the points thus determined.
33. THE SADE LINE ON E TORUS.

From the theorem that the point where the shade line of any d ouble curved surface of revolution touches the contour line of the surface in plan or elevation, is found at the point of the contour at \#hich the plan or elevation of a ray is tangent to the contour, there can be determincd the position in elevation of the points El Al Fig. 43 , By symmetrical construction can be found the points Cl, HI. From the plan by drawing rays tancent to the plan of the contour, which is the equatorial circle of the torus, can located. points Gl and 1 . If now, there cin x cotermined the hichost and lomest points of shade then the shacio line can be constructed rith sufficient accuracy. It is evident that the louest and the hicincst points ill lie in plan somemhere on the axis of the torus that is parallel to the rays of light and that point will be where the ray d light strines the surface of the torus at the angle 0 . If the torus be then revolved about its verticel axis until the point. comes into the vertical plane of projection then can be retermined the horizontal element on wich the point lie s. It lies on the as degree axis in plan. By finding the plan or
horizontal elements it determines the position of the points desired, namely, Bl and Fl. The construction is shown in FiE. 43
34. The SHADOF OF A TORUS.

The outline of the shadow of a torus is the shadow of its shade line, and can be cast on any surface by the direct projection of points in plan and elevation. However, as shown in Fig. $4 \leq$, the shador line so nearly corresponds to shadow of the cquatorial circle of tho torus that at small scalc the shadon of the equatorial circle can be used as the shadow of the torus.
55. THE OVAL CURVE OF THE TORUS.

The shadow of a torus on the 45 degree auxiliary plane is found by casting on that plane the shadows of various horizontal elements of the torus and dravine the envelope of thosc shadous. The construction is shom in Fig. 45. This shad on is used frequently as an auxiliary, particularly in the find ing of the sinadows of straight lines and circles on the surface of tori.

$$
\because \frac{\because \operatorname{trons}}{i r n}
$$

FIGURE I
THE RAYS OFLIGHT.

SHADES and SHADOWS PLATE I.
By JH Forcythe.

L= LATERAL RAYS
$T=$ TANCENT RAYS I = InCIDENT RAYS

ticure 2

 THECONEETIO DINECTIOV FOR Th Fi: hay IF LKitT

SHADES \& SHADOWS Plate II
By JH FOR yithe.

FIGURE 5.
POINTS OF LOSS.
POINTS a, b.c.d are POINTS OF LOSS. DEFINITION:

Figure 6.
INVISIBLE AND VISIBLE SHADOWS.
DEFINITION:

SHADES \& SHADCWS
PLATE III
Bur JHExaytha

FIGLiRE 9

DXYC S AN MAGINARI PERTEEN OR THE TDF OF THE BOX. FHIIIAN IF $A G$ AEY LNE THE CHAD N OF ThF: Cube Mar BE RLIOND INE. Lh ANDTHE P URTIU DEY WI WCULT RE MAÉN/RI

Figure 10

SHADES \& SHADOWS PLATE IV THE SHADOWS OF POINTS \& LINES By Jiff Forcuthe

Figure 13

The Shadow OF Ansi Point.

$H_{i} P_{L A N}$

Figure 14
Shadows of Lines faralell To Eleiat n lane

Figure 15
Shadowy Of A lime Perpendicular To Elevation Plane

SHADES \& SHADOWS DI.ATEV
 By JH Fob-ythe.

The Shancus Of A Line- Perpendicular To Plan Plane On Plan Plane.

Figure l 8
Shadow Of \ertical Line On Series of Horizontal Mouldings.

CIRCLE IN PLANE:PARALLEL TO PLANE ON WHIICH SHADCW ISCAST

StiADES \& StADOWS PLATE VITHerthe

Circle In Plane Perdendicular To Plane ON WFfICFESHADOW IS CAST.

Circle In Plane Perpendicular to Botht $C_{\text {Is }}$ Plan \&s, -- Elevation.

NCT:-
An- - -ER VGON
Al tussiefirs ToLemtersin Fig $23(c)$

TO FIND SHAN. .. Use Center o is tindia ait's $\mathrm{O}_{15} \mathrm{C}_{15}$ TtrRU Nis ${ }^{15}$ Fư Folz: DRAW STADOW OF CRCUM SCRIBEJ SQUARE.

FIGURE, $4 \mid(u)$ Distance of center

SHades \& Sizadows plater X
 BY J.IF.Fors che.

The Points In Elevation

FIGURE 41 (c)

The Shades And SHADOWS AT Small Scale

PLaN OF Sphere

Figure (41 (d) Shadow On V Plane

$+x_{2}=y_{0}$

The Sifade Line On A Torus

The equatorial circle of the torus

Elevation of shadow lineor 45° plane.

Sitadow Of THE
Equatorial Circle Shadow Of Torus Secured By Use Of Auxiliary circles $1,2,5,45$.

(1)

