REVISED AND RE-ARRANGED IN LIBRARY FORM

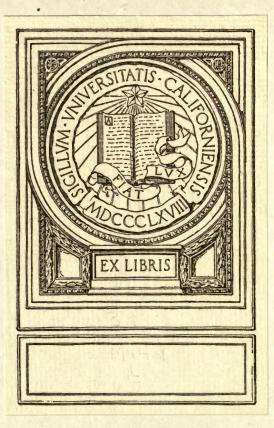
INERY S DATA SHEETS

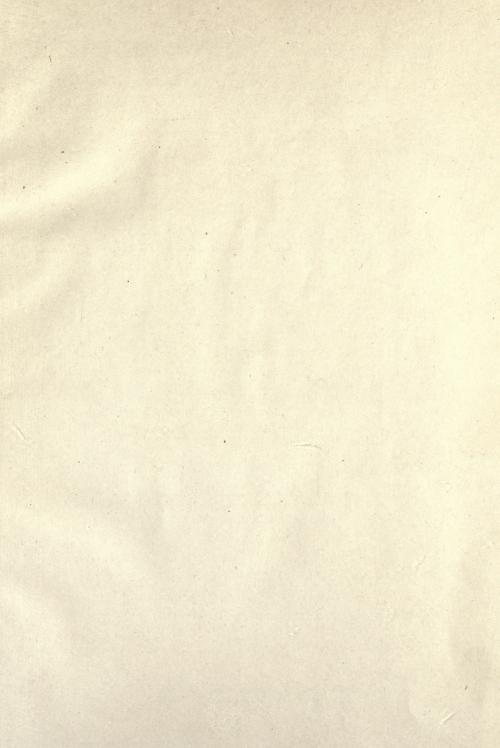
691

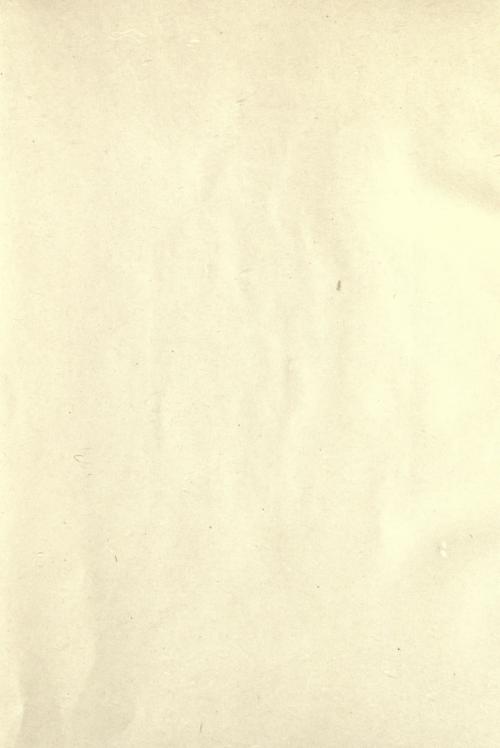
TJ 7

YC 66827

No. 7 Shafting, Keys and Keyways


PRICE 25 CENTS


CONTENTS


Horsepower Transmitted by Shafting 4
Diagrams of Strength of Shafts for Different Fiber Stresses 8
Moment of Inertia and Section Modulus of Circular Sections12
Shear Stresses Combined with Tension or Compression Stresses13
Combined Bending and Torsional Moments14
Tables of Diameters of Shafts for Combined Torsional and Bending
Stresses
Diagrams of Diameters of Shafts for Combined Torsional and Bending
Stresses
Weights and Areas of Cold Rolled Steel Shafting25
Allowances and Tolerances for Running Fits27
Allowances for Forcing, Driving and Running Fits
Pressure Factors for Forcing Fits
Limits for Limit Gages
Woodruff Keys
United States Navy Standard Proportions of Keys35
Table of Gib Keys
Table for Milling Keyways
Duplex Keys

The Industrial Press, 49-55 Lafayette Street, New York Publishers of MACHINERY

COPYRIGHT, 1910, THE INDUSTRIAL PRESS, NEW YORK

MACHINERY'S DATA SHEET SERIES

COMPILED FROM MACHINERY'S MONTHLY DATA SHEETS AND ARRANGED WITH EXPLANATORY MATTER

No. 7

Shafting, Keys and Keyways

CONTENTS

Horsepower Transmitted by Shafting	4
Diagrams of Strength of Shafts for Different Fiber Stresses	8
Moment of Inertia and Section Modulus of Circular Sections	12
Shear Stresses Combined with Tension or Compression Stresses	13
Combined Bending and Torsional Moments	14
Tables of Diameters of Shafts for Combined Torsional and Bending	
Stresses	18
Diagrams of Diameters of Shafts for Combined Torsional and Bending	
Stresses	20
Weights and Areas of Cold Rolled Steel Shafting	25
Allowances and Tolerances for Running Fits	27
Allowances for Forcing, Driving and Running Fits	28
Pressure Factors for Forcing Fits	29
Limits for Limit Gages	30
Woodruff Keys	32
United States Navy Standard Proportions of Keys	
Table of Gib Keys. Table for Milling Keyways.	36
Table for Milling Keyways	37
Duplex Keys.	38

Copyright. 1910, The Industrial Press, Publishers of MACHINERY, 49-55 Lafayette Street, New York City In the following pages are compiled a number of diagrams and concise tables relating to shafting, keys and keyways, carefully selected from MACHINERY'S monthly Data Sheets, issued as supplements to the Engineering and Railway editions of MACHINERY since September, 1898. A number of additional tables also are included which are published here for the first time.

7.J7 M2

In order to enhance the value of the tables and diagrams, brief explanatory notes have been provided wherever necessary. In these notes references are made to articles which have appeared in MA-CHINERY, and to matter published in MACHINERY'S Reference Series, giving additional information on the subject. These references will be of considerable value to readers who wish to make a more thorough study of the subject. In a note at the foot of the tables reference is made to the page on which the explanatory note relating to the table appears.

ان و و رو وقد رفر مدید دارد. ور د درد در و رد در در د وهو د و و در و در د و و در د وهو د و و درد و و و در د و و ی و در در مو

SHAFTING, KEYS AND KEYWAYS

Horsepower Transmitted by Shafting

A question which often meets the machine designer is that of determining the horsepower that may be safely transmitted by a shaft of a given diameter at a given number of revolutions per minute. Quite as frequently the horsepower and the speed are known, and it is required to find the diameter of the shaft which will safely transmit the given power. On page 4 a table is presented giving working proportions for shafting of medium steel; this table will be found useful whenever either of the above problems are met with.

Assume, for example, that it is required to find the diameter of a shaft for transmitting 40 horsepower at a speed of 250 revolutions per minute. The shaft is not subjected to any bending action except its own weight. Consulting the table to the left on page 4 and locating 40 in the body of the table, in the column under 250 revolutions per minute, we find in the extreme left-hand column that the diameter of the required shaft should be two inches. The table also gives the maximum permissible distance between the shaft bearings, which in this case is slightly more than 14 feet.

When the exact horsepower given cannot be found in the table, it is advisable to take the nearest larger value listed in the table, and find the diameter of shaft required to transmit this horsepower.

On page 5 a table is given for finding the horsepower which can be safely transmitted by cold rolled steel line shafting. The body of the table gives the horsepower. For example, assume that a 3-inch shaft revolves at a speed of 400 revolutions per minute. What power can this shaft safely transmit? By locating 3 inches in the left-hand column, and 400 at the top of the vertical columns at the head of the page, and following the vertical column downward until opposite 3 inches, we find that under the given conditions 154 horsepower may be safely transmitted.

On pages 6 and 7 are given the horsepower which may safely be transmitted by turned steel line shafting. In this case the diameters are carried up to 12 inches. The tables on pages 5, 6 and 7 are used by the transmission department of the Jones & Laughlin Steel Co. These tables are based on the assumption that bearings are placed at intervals of from 8 to 10 feet, and that all pulleys are located near the bearings. The reason why the table for cold-rolled steel shafting is carried up only to 5 inches diameter, is that 5 inches is the largest diameter cold rolled at the present time.

Diagrams for Strength of Round Shafts

On pages 8 to 11, inclusive, are given diagrams for determining the dimensions of round shafts under different conditions. The diagram on page 8 is intended for finding the diameter of the shaft when the twisting moment and the fiber stress are known. Assume as an example that a shaft is subjected to a twisting moment of 100,000 inchpounds, and that the allowable fiber stress is 8000 pounds per square inch. The twisting moments, in thousands of inch-pounds, are given on the scale at the bottom of the table, and the fiber stresses are represented by the diagonal (Continued on page 16.)

HORSEPOWER TRANSMITTED BY SHAFTING

4

		200		10 G	27			120							-	ENI		-	-	-
	ding	Maximum	in Feet	Bearings	6.8	7.2	7.5	7.9	8.2	8.6	8.9	9.2	3.6	10.2	10.8	11.4	12.0	12.5	13.1	
	t to ben ng, etc.		300	H.P.	14	18	22	28	34	42	48	58	99	89	116	148	184	226	274	
	d subjects, beltii	- Minute	250	H.P.	12	15	18	23	28	34	41	48	55	74	96	123	153	881.	228	
Steel.	ower, an f pulleys	ons per	200	H.P.	10	12	15	19	23	27	33	38.	45	59	77	98	123	151	183	
Medium	Transmitting power, and subject to bending action of pulleys, belting, etc.	Revolutions per Minute.	150.	H.P.	2	6	11	14	Ĺ1	21	24	29	33	44.	58	74	92	113	13.7	
ng of 1	Transn		001	H.P.	S	9	80	6	11	14	16	61	22	30	39	49	19	75	16	
Proportions tor Shafting of Medium Steel.	ding	Maximum	in Feet	Bearings	11.7	12.4	13.0	13.6	14.2	<i>i</i> 4.8	15.4	16.0	16.5	17.6	18.6	19.7	20.7	21.6	22.6	
ions to	no benu		300	Н.Р.	20	26	32	40	48	58	68	80	94	124	162	206	258	316	384	
Proporti	Transmitting power, but subject to no bending action except its own weight.	per Minute.	250	H.P.	17	21	26	33	40	48	53	6.7	78	102	134	172.	215	264	32.0	
Working 1	but sub		200	H.P.	14	17	21.	26	32	38	46.	54	63	83	108	137	172	211	256	
Mo	power,	Revolutions	. 150	H.P.	01	13	16	20	24	59	34	40	47	62	8.1	103	129	158	192	E
	nitting	4	100.	H.P.	2	6	11	13	16	19	23	27	31	42	54	69	86	105.	128	
	Transn	Diameter	of Shaft	in Inches	12	5100.	13	1 28	2	2%	24	238	22	24	3	34	32	33	4	

MACHINERY'S DATA SHEETS

No. 7

MACHINERY'S Data Sheet No. 7. Explanatory note: Page 3.

No. 7

SHAFTING, KEYS AND KEYWAYS

HORSEPOWER TRANSMITTED BY COLD ROLLED STEEL LINE SHAFTING

Dian	neter				No	Imbe	r of	Revo	olutio	ns F	Per M	inut	e				-	
	haft	100	125	150	175	200	225	250	275	300	325	350	400	450	500	550	600	
1	2	4.8	6.0	7.2	8.4	9.6	10.8	12.0	13.2	14.4	15.6	16.9	19.2	22	24	26	29	
1	9/16	5.5	. 6.8	8.2	9.5	10.9	12.2	13.6	15.0	16.4	17.7	19.0	22	25	27	30	33	
1	518 .	6.1	7.6	9.2	10.7	12.2	13.8	15.3	16.8	18.4	19.9	21	24	28	31	34	37	
1	1/16	6.9	8.6	10.3	12.0	13.7	15.4	17.1	18.8	21	22	24	27	31	34	38	41	
1	3/4	7.7	9.6	11.5	13.4	15.3	17.2	19.1	21	23	.25	27	31	34	38	42	46	
1	13/16	8.5	10.6	12.7	14.8	16.9	19.0	21	23	25	28	30	34	38	42	46	51	
	7/8	9.4	:11.7	14.1	16.4	18.8	21	23	26.	. 28	31	33	38	42	47	. 52	57	
1	15,16	10.4	13.0	15.6	18.2	21	23	26	29	31	34	36	42	47	52	57	62	
2		11.4.	14.3	17.2	20	23	26	29	32	34	37	40	46	51	57	63	69	
2	16	12.6	15.7	18.9	22	25	28	31	35	38	41	44	50	56	63	69	7.6	
	18	13.7	17.1	21	24	27	31	34	38	41	45	48	55	61	68	75	82	
2	3/16	15.0	18.7	22	26	30	34	37	41	45	49	52	60	67	75	82	90	
2	4	16.3	20	24	29	33	37	41	45	49	53	57	65	73	81	89	98	
2	5/16	17.7	22	27	31	35	40	44	49	53	57	62	7/	80	.88	97	106	
2		19.2	24	29	34	38	43	48	53	57	62	67	76	86	96	105	115	
2	716	20	25	30	36	41	46	51	56	61	66	72	81	91	102	112	122	
2	2	22	28	33	39	45	50	56	61	67	72	78	89	100	112	123	133	
2	9/16	24	30	36	42	48	54	60	66	72	78	84	96	108	120	132	144	
	518	26	32	39	45	52	58	64	7/	77	84	90	104	116	129	142	155	
2	"16	28	35	42	48	.55	62	69	76	83	90	97	111	124	138	152	166	
	34	30	37	44	52	59	67	74	81	89	96.	104	119	133	148	163	178	
2	13/16	32	40	47	55	63	71	79	87	95	103	111	127	143.	159	174	190	
	78	34	42	51	59	68	76	85	93	101	110	119	135	152	169	186	203	
2	15/16	36	45	54	63	72	81	90	99	108	117	127	144	162	181	199	217	
3		39	48	58	67	77	87	96	106	116	125	135	154	173	192	212	231	
3	8	44	54	65	76	87	98	109	120	131	142	152	174	196	218	240	261	
	4	49	61	73	86	98	110	122	135	147	159	172	196	221	245	270	294	
	3,40	55	69	83	96	110	124	137	151	165	179	192	220	247	275	302	330	
	12	61	77	92	107	123	138	153	169	184	199	214	245	276	307	337	367	
3		68	85	102	119	136	153	170	187	204	221	238	272	306	340	374	408	
-	3/4	75	94	113	132	151	170	189	207	226	245	264	301	340	377	415	452	
3	7/8	83	104	125	145	166	187	207	228	249	270	291	332	379	415	456	498	
4		92	114	137	160	183	206	229	252	274	297	320	366	411	457	501	549	
	8	101	125	150	175	201	226	251	276	300	325	351	401	451	501	551	601	
	4	110	137	164	192	219	246	273	301	328	355	383	438	492	547	601	657	
4	0	120	150	180	210	239	268	298	328	358	388	418	478	538	597	657	717	
	12	130	163	195	228	261	293	326	358	391	423	455	521	586	651	716	781	
	5/8	141	177	212	247	283	318	354	389	425	460	495	566	636	707	777	848	
-	34	153	191	230	268	307	344	382	421	4.59	497	537	613	688	765	840	919	
	7/8	166	207	249	290	331	372	413	455	496	538	580	662	745	827	909	994	
5		179	224	268	313	358	402	447	492	537	581	625	715	805	895	984	1074	

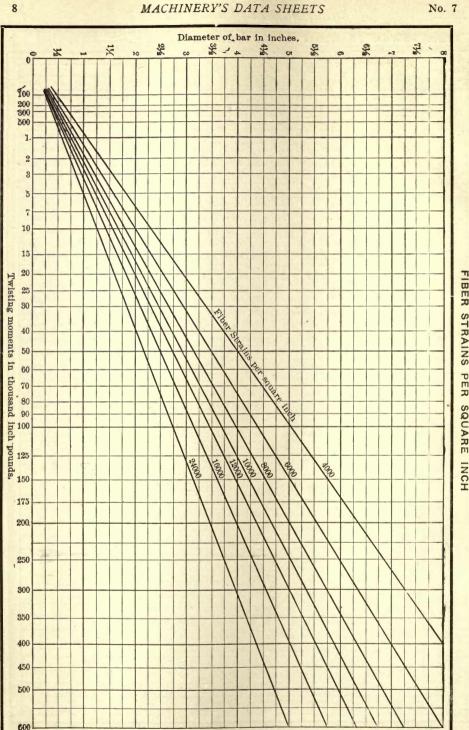
Contributed by Frank Wackermann, Pittsburg, Pa. Explanatory note: Page 3.

HORSEPOWER TRANSMITTED BY TURNED STEEL LINE SHAFTING

							1.00							1		-	100	
1	Diameter				N	umbe	er of	Revo	olutic	ons F	PerM	linut	'e			1-35		7
	of Shaft	100	125	150	175	200	225	250	275	300	325	350	400	450	500	550	600	1
F	1/2	3.7	4.7	5.6	6.6	7.5	8.4	9.4	10.3	11.2	12.2	13.1	15.0	16.9	18.8	21	22	1
t	19/16	4.2	5.3	6.4	7.4	8.5	9.5	10.6	11.6	12.7	13.8	14.8	17.0	19.0	21	23	25	-
F	15/8	4.8	5.9	7./	8.3	9.5	10.7	11.9	13.1	14.3	15.5		19.0	21	24	26	28	-
1	1 1/16	5.3	6.7	8.0	9.3	10.7	12.0	13.4	14.6	16.0	17.4	18.7	21	24	27	29	32	-
F	134	5.9	7.4	8.9	10.4	11.9	13.4	14.9	16.4	17.9	19.3	21	24	27	30	33	36	4
F	1'13/16	6.6	8.2	9.9	11.5	13.2	14.8	16.5	18.1	19.8	21	23	26	30	33	36	40	-
-	17/8	7.3	9.1	11.0	12.8	14.7	16.5	18.3	20	22	24	26	29	33	37	40	44	4
1	1 15/16	8.1	10.0	12.1	14.1	16.1	18.2	20.	22	24	26	28	32	36	40	44	48	-
+	2	8.9	11.1	13.3	15.6	17.8	20	22	24	27	29	3.1	35	40	44	49	53	- T
F	2/16	9.8	12.3	14.7	17.2	19.6	22	24	27	29	32	34	39	44	49	54	59	4
F	2'8	10.6	13.3	16.0	18.6	21	24	27	29	32	.35	37	43	48	53	58	64	4
F	23/16	11.6	14.6	17.5	20.0	23	26	29	32	35	38	41	47	52	58	64	70	1
-	24	12.6	15.8	19.0	22.0	25	28	32	35	38	41	44	51	57	63	70	76	1
-	25/16	13.7	17.2	21	24	27	31	34	38	41	44	48	55	62	69	76	82	1
F	23/8	14.9	18.6	22	26	30	33	37	41	45	48	52	60	67	74	82	89	1
t	2.7/16	16.0	20	24	28	32	36	40	44	48	52	56	64	72	80	88	96	
F	21/2	17.4	22	26	30	35	39	43	48	52	56	61	69	78	87	95	104	
1	29/16	18.7	23	28	33	37	42	47	51	56	61	66	75	84	94	103	112	1
F	25/8	20	25	30	35	40	45	50	55	60	65	71	80	90	100	110	120	1
F	21/16	21	27	32	38	43	48	54	59	65	70	76	86	97	108	118	129	
t	234	23	29	35	40	46	52	58	63	69	75	81	92	104	115	127	138	1
F	2 13/16	25	31	37	43	49	56	62	68	74	80	87	99	111	124	136	148	
F	278	26	33	40	46	53	59	66	73	79	86	92	105	119	132	145	158	
F	2 15/16	28	35	42	49	56	. 63	70	77	84	91	99	113	127	141	155	169	
-	3	30	37	45	52	60	67	75	82	90	97	105	120	135	150	165	180	
F	3'8	34	42	51	59	68	76	85	93	102	111	119	136	152	170	186	203	
F	31/4	38	48	57	67	76	86	95	105	114	124	134	153	172	191	210	229	ŀ
T	33/8	43	53	64	75	85	96	107	118	128	139	150	171	192	213	235	256	
F	31/2	48	60	72	83	95	107	119	131	143	155	167	190	214	238	262	286	
F	358	53	66	79	93	106	119	132	145	159	172	185	211	238	265	291	317	
F	334	59	73	88	103	117	132	146	161	176	190	205	234	264	293	322	351	
F	378	65	81	97	113	129	145	161	177	194	210	226	258	291	322	355	387	
F	4	71	89	107	125	142	160	178	195	2/3	231	249	284	320	356	391	427	
F	4'8	78	98	117	136	156	176	195	215	235	254	273	312	351	390	429	468	
T	4 1/4	85	107	128	149	170	192	213	234	256	277	298	341	385	426	469	511	
F	43/8	93	116	139	163	186	210	233	256	279	303	326	372.	419	466	512	559	
F	41/2	102	127	152	178	203	228	253	279	305	330	356	405	456	507	558	610	
F	45/8	110	138	165	193	220	247	275	302	330	358	385	440	495	550	605	660	
F	43/4	119	149	179	209	238	268	298	327	357	396	416	476	537	595	654	714	
T	4%	129	161	193	226	258	290	322	355	387	420	452	516	581	646	710	775	
T	5	139	174	208	244	278	3/3	347	382	417	452	486	557	625	695	765	835	
-				-														

Contributed by Frank Wackermann, Pittsburg, Pa. Explanatory note: Page 3.

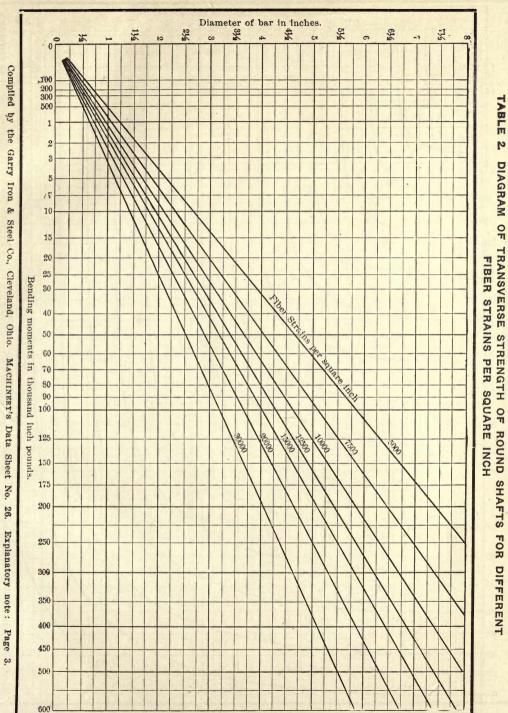
No. 7 SHAFTING, KEYS AND KEYWAYS


HORSEPOWER TRANSMITTED BY TURNED STEEL LINE SHAFTING

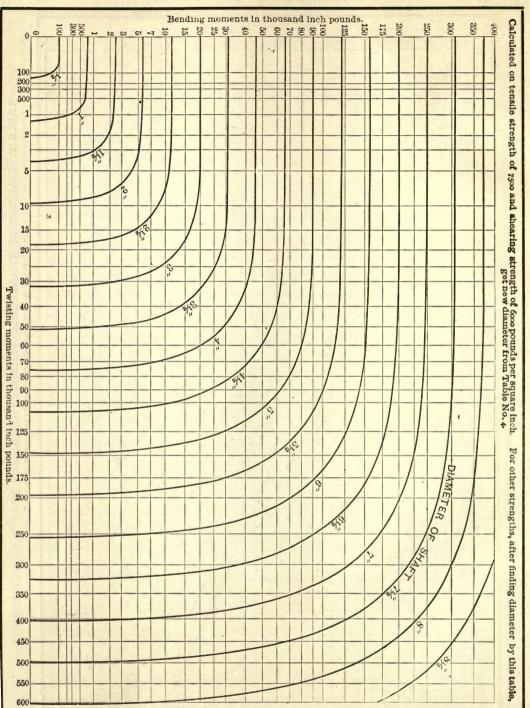
				-			-						-		-	
Diameter			1.7.1	N	umb	er. 01	Rev	oluti	onsi	Per M	linut	'e				
of Shaft	100	125	150	175	200	225	250	275	300	325	350	400	450	500	550	600
5'8	150	187	225	262	300	337	375	412	450	487	525	600	675	750	825	900
5 /2	161	201	242	281	322	362	403	443	483	523	564	644	725	805	886	966
53/8	172	215	259	301	344	387	430	473	516	559	602	689	775	861	947	1033
51/2	184	230	277	322	369	415	461	507	553	599	645	738	830	922	1014	1106
558	197	247	297	345	395	445	495	545	593	642	692	791	890	989	1088	1186
534	211	264	317	369	422	.475	528	581	633	686	739	844	950	1055	1161	1260
51/2	225	282	339	394	451	507	564	621	677	733	789	902	1015	1128	1240	1353
6	240	300	360	419	480	540	600	661	720	780	840	960	1080	1200	1320	1440
61/8	255	320	384	446	511	575	639	704	766	830	894	1022	1150	1278	1405	1533
64	271	339	407	473	542	610	678	747	813	881	949	1084	1220	1355	1491	1626
63/8	287	360	432	502	575	647	720	792	863	935	1007	1151	1295	1439	1582	1726
6 1/2	305	382	459	535	611	687	764	841	917	993	1069	1222	1375	1528	1680	1833
658	322	403	484	564	644	725	806	887	966	1047	1127	1289	1450	1611	1772	1933
634	341	427	513	598	682	767	853	939	1023	1108	1194	1364	1535	1705	1876	2046
67/8	361	452	543	632	722	813	903	994	1083	1173	1264	1444	1625	1805	1986	2160
7	381	476	573	667	762	857	953	1049	1143	1238	1333	1524	1715	1905	2096	
7'8	401	502	603	702	802	902	1003	1104	1203	1303	1404	1604	1805	2005	2206	
74	423	529	636	742	847	952	1059	1166	1270	1375	1481	1693	1905	2116	2328	
73/8	445	557	670	782	891	1003	1115	1227	1336	1448	1559		2005			2673
71/2	468	586	704	822	938	1055		1291	1406	1523	1641					2814
758	492	616	740	864	987	1108		1355	1477		1722		2215			2953
73/4	516	646	776	904	1033	1162		1422	1550	1679	1808		2325			3100
77/8	545	682	820	957	1091	1227	1365	1502		1772	1909		2455		3000	3273
8	568	7/2	855	998	1138	1280		1567		1848	1991		2560		3128	3413
8 1/8	593	742	892	1041		1335		1634	1780	1928	2076				3263	3560
8'4	623	780	937	1094	1247			1717		2025			2805	3116	3428	
83/9	651	816	980	1145	1305	1467	1632	1796	1957	2119	2282	2608	2935	3261	3586	
8 1/2	681	853	1025	1197	1364	1533	1707	1879	2047	2216	2387	2728	3070	3411	3751	
858	713	892	1072	1252	1427	1605	1785	1964	2140	2318	2496	2855	3210	3566		
834	744	931	1119	1306	1489		1863	2050	2233		2605		3350	3722		
87/8	766	972	1167	1363	1553	1747	1943	2139	2330	2523	2718	3106	3495	3883		
9	809	1013	1217	1421	1620	1822	2027	2231	2430	2632	2834	3240	3645			
9%	844	1056	1269	1482	1689	1900	2113	2325		2744	2955	3377	3800			
9 1/4	878	1099	1321	1542	1758	1977	2198	2420	2637	2855	3075	3515	3955			
93/8	915	1145	1376	1606	1831	2060	2291	2521	2747	2975	3204	3662		1.1.1		
91/2	951	1191	1431	16.71	1904	2142	2382	2622	2858	3094	3334	3808				
9518	989	1238	1488	1737	1980	2227	2477	2726	2972	3218	3464	3960			- 1	
934	1029	1288	1548	1808	2000	2317	25.77	2837	3090	3346	3604					
9718	1069	1338	1608	1878	2140	2407	2677	2947	3210	3476	3744					
10	1111	1388	1666	1944	2222	2500	2778	3055	3333	3611	3888					
10'4	1195	1497	1798	2100	2393	2692	2994	3295	3590	3888	-					
101/2	1285	1608	1934	2258	2573	2895	3219	3543	3860	4180						
1034	1379	1726	2074	2422	2760	3105	3453	3800	4140	4484						
11	1477	1850	2223	2595	2958	3327	3700	4073	4437		-					
11/2	1688	2114	2540	2966	3380	3802	4247	4654	5070	182						
12	1918	2402	2886	3369	3840	4320	4804	5288	5760							
						1.1.1								-	1	

Contributed by Frank Wackermann, Pittsburg, Pa. Explanatory note: Page 3.

co


MACHINERY'S DATA SHEETS

No. 7


TABLE 1. DIAGRAM OF TORSIONAL SHEARING STRENGTH OF ROUND SHAFTS FOR DIFFERENT

SHAFTING, KEYS AND KEYWAYS

SHAFTING, KEYS AND KEYWAYS

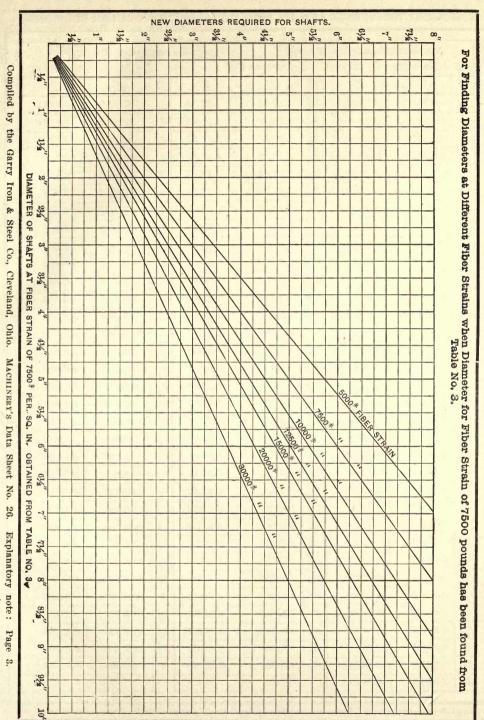


TABLE 4. DIAGRAM OF ROUND SHAFTS

MOMENT OF INERTIA AND SECTION MODULUS OF CIRCULAR SECTIONS

		of Inertia			Section of Inertia.		ulus Z =	$\frac{\pi D^3}{32}$
D	I	Z	0	I	Z	0	I	Z
10	0.000001	0.000024	2/6	1.1240	1.0276	42	20.129	8.9462
18	0.000012	0.000192	24	1.2581	1.1183	4%	22.460	9.7126
316	0.000061	0.000647	25	1.4038	1.2141	43	24.989	10.522
4	0.000192	0.001534	28	1.5618	1.3152	43	27.725	11.374
516	0.000468	0.002996	216	1.7328	1.4218	5	30.680	12.272
13180	0.000971	0.005177	22	1.9175	1.5340	5%	33.865	13.215
716	0.001798	0.008221	2%	2.1166	1.6520	54	37.291	14.200
12	0.003068	0.012272	2%	2.3307	1.7758	58	40.972	15.245
916	0.004914	0.017473	2/6	2.5607	1.9057	52	44.918	16.334
518	0.007490	0.023968	24	2.8074	2.0417	53	49.143	17.473
11	0.010967	0.031902	2/3	3.0714	2.1841	534	53.659	18.664
3/4	0.015532	0.041418	28	3.3537	2.3330	58	58.479	19.908
1316	0.021393	0.052659	215	3.6550	2.4885	6	63.618	21.206
18	0.028774	0.065769	3	3.9761	2.6507	6'8	69.087	22.559
15	0.037919	0.080894	3/0	4.3179	2.8199	64	74.902	23.968
1	0.049087	0.098175	3'8	4.6814	2.9961	63	81.076	25.436
176	0.0626	0.1178	310	5.0673	3.1794	62	87.624	26.961
18	0.0786	0.1395	34	5.4765	3.3701	68	94.562	28.547
13/16	0.0976	0.1644	36	5.9101	3.5684	64	101.90	30.193
14	0.1198	0.1918	38	6.3689	3.7742	63	109.66	31.902
15	0.1457	0.2220	376	6.8540	3.9878	7	117.80	33.674
18	0.1755	0.2552	32	7.3662	4.2092	74	135.62	37.4/2
176	0.2096	0.2916	3%	7.9066	4.4388	72	155.32	41.418
12	0.2485	0.3313	38	8.4762	4.6765	74	177.08	45.699
1916	0.2926	0.3745	3/1	9.0761	4.9226	8	201.06	50.265
15/8	0.3423	0.4213	34	9.7073	5.1772	84	227.35	55.127
116	0.3980	0.4717	3/3	10.371	5.4404	82	256.24	60.292
14	0.4604	0.5262	3%	11.068	5.7124	834	287.74	65.769
1316	0.5298	0.5846	3/5	11.799	5.9932	9	322.06	71.569
18	0.6067	0.6472	4	12.566	6.2832	94	359.37	77.701
15	0.6918	0.7140	4'8	14.212	6.8908	92	399.82	84.173
2	0.7854	0.7854	44	16.015	7.5364	94	443.60	90.994
2/16	0.8883	0.8614	438	17.984	8.22/2	10	490.87	98.175
2'8	1.0010	0.9421						

Contributed by John S. Myers, MACHINERY'S Data Sheet No. 87. Explanatory note: Page 16.

SHAFTING, KEYS AND KEYWAYS

SHEAR STRESSES COMBINED WITH TENSION OR COMPRESSION STRESSES

	$t_m = Maxime$ Then $S_m = \sqrt{S^2 + 1}$	$\begin{array}{l} \text{um Combined } 0\\ \text{um Combined } 0\\ \hline \frac{1}{2} \\ \hline \frac{1}{2}$	$\frac{1}{2} = 5y.$	ion or Compre	ssion.
5+	Tension X	Shear Factor Y	(Sirv	Shear y Factor Y	Tension X Factor
0.05	1.0025	10.0499	0.05	1.0003	20:5060
0.10	1.0099	5.0990	0.10	1.0012	10.5130
0.15	1.0220	3.4801	0.15	1.0028	7.1854
0.20	1.0385	2.6926	0.20	1.0050	5.5250
0.25	1.0590	2.2361	0.25	1.0078	4.5312
0.30	1.0831	1.9437	0.30	1.0112	3.8706
0.35	1.1103	1.7438	0.35	1.0152	3.4006
0.40	1.1403	1.6008	0.40	1.0198	3.0495
0.45	1.1727	. 1.4948	0.45	1.0250	2.7778
0.50	1.2071	1.4142	0.50	1.0308	2.5016
0.55	1.2433	1.3515	0.55	1.0371	2.3857
0.60	1.2810	1.3017	0.60	1.0440	2.2401
0.65	1.3201	1.2616	0.65	1.0515	2.1177
0.70	1.3602	1.2289	0.70	1.0595	2.0135
0.75	1.4014	1.2019	0.75	1.0680	1.9240
0.80	1.4434	1.1793	0.80	1.0770	1.8463
0.85	1.4862	1.1602	0.85	1.0866	1.7783
0.90	1.5296	1.1440	0.90	1.0966	1.7184
0.95	1.5735	1.1300	0.95	1.1071	1.6653
1.00	1.6180	1.1180	1.00	1.1180	1.6180
1.05	1.6630	1.1076	1.05	1.1294	1.5757
1.10	1.7083	1.0985	1.10	1.1413	1.5375
1.15	1.7540	1.0904	1.15	1.1535	1.5031
1.20	1.8000	1.0833	1.20	1.1662	1.4718
1.25	1.8463	1.0770	1.25	1.1793	1.4434
1.30	1.8928	. 1.0714	1.30	1.1927	1.4175
1.35	1.9396	1.0664	1.35	1.2065	1.3937
1.40	1.9866	1.0619	1.40	1.2207	1.3719
1.45	2.0338	1.0578	1.45	1.2352	1.3518

No. 7

13

Contributed by John S. Myers, MACHINERY'S Data Sheet No. 87. Explanatory note: Page 17.

-
12
0
-
2
et .
7
parts .
Contributed
-
per la
C
0
õ.
-
5
-
<u> </u>
John
~
H
-
20
ŝ
1
Myers
-
4
P
H
70
-
ers, MACHINERY'S
Prof.
5
-
0
14
40
-
-
\mathbf{z}
bud -
1-1
77
-
~
70
04
H
9
8
-
Date
200
ta
tas
ta SI
ta Sh
ta She
ta Shee
ta Sheet
ta Sheet
ta Sheet]
ta Sheet N
ta Sheet No
ta Sheet No
ta Sheet No.
Sheet No.
Sheet No.
Sheet No.
ta Sheet No. 89.
Sheet No.
Sheet No.
Sheet No.
Sheet No. 89. I
Sheet No.
Sheet No. 89. I
Sheet No. 89. Explanatory note:]
Sheet No. 89. I

17.

14

			-			Bei	ndi	ing	M	on	ner	77.	51	in	Inc	h.	PO	our	nds		- /	Y3.			2			2		Г	-	
	1800	1600	1400	1200	1100	1000	1000	000	800	100	4AP	600	000	500	450	400		350	300		250	200	100	iso	125	100	100	75	50			1
The 2.00		8	B	8	0	18	4	81	8	8	10	0	4	70	r a	8	10	10	8	4	1	8	8	-	n a	в	7	r a	8			
The values at 1 2,000 to 4,500.	WIT	Thes	7=1	8 =	7.	M3 =	M= =								452.8	803.1	103.0	353.6	604.2	305.0	255.0	406.2	308.1	158.1	134.6	211.8	111.8	90.14	120.7	50		
500.1	n The	e idea	+ 2W	Ideal L	Ideal 7	Bendin	Torsio								461.0	8/2.3	114.0	364.0	616.2	519.5		423.6	330.3	180.3	100.1	241.4	141.4	125.0	161.8	100		
ight o	rolar	nom /	Mb an	Bendii	orsion	Mb = Bending Moment	nal M				10000	12/0	1022		474.3		130.	380.8	635.	34	29	450.0	+	212	195.3		180.3	107		150	1	All
t heav	Secti	nents	d B=	=Ideal Bending Moment	= Ideal Torsional Moment	nent	ment		1625	1428	_	2 1222		0 538.5	3 9224	2 847.2	2 44	8 403	4 660.6	10	5	0 482.8		1 250.0	•		3 223.6	7 213	1 256	200	1	alves
The values at right of heavy zig-zag line across upper 2,000 to 4,500, inclusive, in right-hand column.	WITH THE POIDT SECTION HIDAUIUS.	These ideal moments being for use	$T = \sqrt{M_{t}^{2}} + M_{b}^{2}$ and $B = M_{b} + \sqrt{M_{t}^{2}} + M_{b}^{2}$	nent	ment	2031	1031	934.1	1		0 743	1		5 559.0	4 514.8	2 871.	1 100.1	1 430.1			.2 353.6	.8 520.2	0 441.5		a 279.5	1.1		6 261.0	2 305	250	Tors	All values may be read in hundreds or thousands of inch pounds
-zag I	cuino	for u	42+ M	1251 2437	2240	TN	+	4 184	838.2 834.4 1638 1654	1462	.3 76	1250 1271	2801 6	1.0 58	18 990.8	.7 900.0	17 5000		5 724.3	0.0 040.5	3.6 390.5	2.2 560.6			15 525.0			.0 309.2	5.0 35	0 300	Torsional Moments in Inch Pounds = $M_{\tilde{t}}$	be rec
ine a					+	120	++	9.7 98 19 18	4.4 85	52 15	761.6 80	+	-		0.8 002.1	2.0 965.7	00 5657	-							5.0 419.	1	316.2 4	9.2 40	4.1 4	-	Mon	id in
umn.		3249 3			1	70 1	7	1885 19		1506 1:	806.2 8	121.1 1	+	-		+	+	nin				647.2 7.	577.2 6		1	1 1	412.3 5	5 0.71	53.1 5	400 5	nents	hundr
Inddn	1868 1	3276 3				1208 1	1	1930 1			860.2	1381 1449	1207		012.1	++	-	0/0.3 (1	738.5	1		515.4 GANA			505.0	52.5	500	in In	eds or
	1897	309	2923	2542	++	2100	+		1800	1622				+	1200	++	+	694.0	970.8	-	-	832.5	768.5	618.5	012.9	708.3	608.3	6797	952.1	000	ich P	- thou
t-hai	1931		2965	589	2404	1304		2040	1863	0691	990.0		1360	860.2	1282	1206	8067	182.6	211-	0.066	743.3	928.0	865.9	0	9761	807.1	707.1	704.0	4119	700	ound	sand
nd cor	1970	3389		2642	2460	1360	1881	2104	1931	1763	1063	1600	1443	943.4	1282 1368	1294	11231 CC11	6 873.2	1154	8801	838.2	1025	963.9	8/3.9	9747	906.2	806.2	803.5	4154	008	2 = M	s of II
right-hand corner are	2012	3436	3064	2700	2521	2345	1345	1273	2004	1840	1140	1682	1530	1030	1456	1385	0840	965.		1104	934.1	1122		1	908.6	4963		2577	4193	2010		nch pa
re for	2059	3487	3/20	2762	2587	2414	1414	2245	12081	1261		1766	16/8	1118	1547		1077	1059		1021	1031	1220	1.		2180	5000		2417	4236	0001	1	ounds.
	3963	3600	324	1682	2728	1626	1562	2400	2242	-		+	1800	1300	1284	1665	1	1250		0141	1226	623	584		2864		268	2500	433	0021	1	
rendin	3 4080	372	1 338	7 304	9 288	272	+	-		5922 6802	3 156.	-	2651 0		1921		1456	170	7 173	121	377	6311	6 5931	++	5553 4		5 277	200	2 444	1400		
the bending moments	0 2408	6 380	1844 1980 2126 2280 3244 3380 3526 3680	3044 3200	2880 3042 3210	0 288	0 186	2564 2736	24/2 2589	5 2446			7 2176		1 211		6 164	3 1038	8058 2	0 1240	0 384	1 6400	-	11	_	325 8.	8 288	12 8 212	1 450	009/ 0	-	
ment	18 2546	5 4208	0 2280		12 32.	12 2110		2/62 92	++-	-		-	10 2368	+++	2 2305	+-+	19 1844	484 BI		0420 01	3848 3936	20 6499	2 4	5 332	5653 5762	84 5400	34 300	20 2845	51 46	0081 00	-	
S	-		1		11			1	1	+	4	4	+	-+	-1-	41	-	11	86 4000	_	1	_	-				20 34		11	10	Ben	
	1800	1600	1400	1200	1100		1000	000	800	100	3	600		500	450	400	3	4500	00		3500	3000	00	0089	2600	0047	2	2200	0002		Bending	

MACHINERY'S DATA SHEETS

No. 7

COMBINED BENDING AND TORSIONAL MOMENTS-I

	ł
0	1
0	ł
n	I
T	ł
-	l
5	ł
H	l
P	I
d	ļ
-	ł
ä	l
-	l
4	ł
2	l
E	1
μ	ļ
70	
÷	
5	
Contributed by John S. Myers, MACHINERY'S Data Sheet No. 89.	
Ye	
ř	
ŝ	
N	
A	
0	
H	
Ξ	
Z	
R	
F.	
202	
8	
5	
-	
20	
h	
e	
H	
\mathbf{z}	
0	
00	
9	
ę	
M	
D	
a	
D	
2	
đ	
r	
Explanatory note:	
-	
P	
2	
e	
••	
-	
~	
3	
e	
Page 17.	
1	

1		5500	000	5000	100	1500	4000		er sou	-	0000	-	NO00	1	2000	-	2400	-	10027	-	0002 2000	-	PC 1800	T	1600	T	1400	M	1200	1100		1000	1	000	000	Ann	100	707	000	-		
4	B	10	8	5 7	B	5 T	B	7	B	5 7	B	7	8	-	8	+	B	7	B	-+	0	+	0	+	a c	10	-	B	-	8	+	A	t B	2	8	7	β	7	B	7		
7027	11352	2680	10385	5385	9424	4924	8472	4472	753/	4031	6601	3601	6241	3441	0885	3280	5524	3124	5173	2973	4828	RCBC	4401	1096	4161	1936	1442	3532	2332	3383	2283	3230	5095	2/93	2954	2154	6182	2119	2688	2088	2000	
1027	11424	5924		5463	6056	5009	8565	. 4565	7634	4134	6720	3720	6361	3561	6006	3406	5656	3256	5.3/1	+	+	2977	4647	2842	0717	2720	8002	+	-	\rightarrow	+	3419	32	2377	3/4/	2341	3001	2301	2880	2280	2200	
CARD	11501	6001	10546	5546	0096	5100	. 8665	4665	7744	4244	6842	3842	6488	3688	-	-+	5794	3394	5456	3256	5174	3/24	4800	2000	4484	DANG	2118	30		3740	2640	3600	3465	2563	3330	2530	3200	2500	3074	2474	2400	
1022	11672	0112	10131	5731		-		4883	7982	4482	-			-+		-	-	-+	-	3561	5441	3441	5120	1720	1925	2002	15/5/	4240	3046	4108	3008	3973	3841	2941	3712	2162	3586	2886	3464	2864	2800	
1000	11863	0000	10956	5936	100	5522	10	51		4742	7386	4386	7052	4252	6723	4/23	6400	4000	2809.		5774	3774	5472	2672	5178	2578	1902	4618	3418	4484	3384	4353	4224	3324	4098	3298	3976	3276	3856	3256	3200	10101
1007	12073	6100	+	6161	_	5763		1855			7868	4868	7361	4561	7041	4441	6727	4327	6419	4219	6110	4/19	5895	4025	5540	7940	CODC	4995	3795	4864	3764	4736	4011	37/1	4488	3688	4367	3667	4250	3650	3600	101 0101101
1101	12301	10801	11405	6403	10521	1209	9657	5657	8815		-	5000	7683	4883	7371	4771	7065	4665	6765	4565	6472	4472	9819	+	-	4702	4620	5370	4176	5249	4/49	5123	0000	4100	4876	4076	4761	4061	4645	4045	4000	110110110
UVVL	12543	1045	11000	0000	10794	6294	9946	5946	3122	5622	8325	5325	8016	5216	77//	5/11	7412	5012	7/19	49/9	6837	4837	65.54	4754	6869	4682	1104	10/5	4561	5635	4535	5512	1612	4491	5272	4472	5155	4455	5041	4441	4000 4400 4800 5200	
LUNC	00821	1000	10901	6931	11080	6580	10248	6248				5660	8357	5557	8059	5459	7767	5367	7480	5280	7200	5700	9269	5126	6660	5060	0000	6/48	4948	6024	4924	5903	5/84	4884	5666	4866	5551	4851	5437	4837	4800	111 111011
TOAD	13009	6001	12214	72/4	11377	6877	10561	6561	9768	8929	2005	6003	8706	2006				5727	7846	5646	7571	5571	730.3	5503	1041	5441	2860	6537	5337	5415	5315	6295	1110	5277	6061	1925	5947	5247	5835	5235		
2008	15549	6401	10021	1001	11684	7/84	10882	6882	10104	6604	9353	6353	1906	1929	8774	6174	8493	6093	6128	6100	7946	5946	7682	5882	7424	5874	2112	6964	5764	6807	5707	66899	2150	5672	6457	5657	6344	5644	6232	5632	5600	Chino I
RARS	13039	6010	12010	1810	12000	7500	11211		10446	6946	8016	6708	9421	6621	9132	6532	8862	6462	1658	6391	8325	6325	8064	6264	7810	0169	10101	1319	6119	7100	6100	7083	1060	6067	6853	6053	6741	6041	6630	6030	6000	. 711
0000	14412	7060	20001	2008	12822	8322	12062	2008	11320	7826	10616	7616	10333	7533	10067	7467	9800	7400	9538	7338	9/4/	7/4/	9028	7228	1878	1	9570	2058	7102	8186	7086	8071	1401	7058	7846	7046	7735	7035	7626	7026	7000	
10000	00201	15000	14424		13619	6116	12944	8944	12232	8732	11544	8544	11276	8476	21017	8412	10752	8352	10497	7628	10246	8246	10000	8200	8576	8158	1	0626	0608	9175	8075	20062	1069	8051	8840	8040	8731	8031	8623	8023	8000	
1 KIII	04001	10040	06701		14562	10062	13849	9849	13157	9657	12487	9487	12226		89611	89268	11715	9315	11465	5926	11220	0220	O.	8716	10741	9/4/	UNSAUI	08201	0806	10167	9067	10055	2740	9045	3835	9035	9727	2206	0500	0200	0000	
11002	CIGOL	16012	10100	11180	15460	109	14770	170	14/09		13440	10440	13185	10385	12933	10333	12684	10284	12439	10239	86121	86101	19611	10/6/	11727	10/27	11407	21211	10072	11160	10060	11050	10940	10040	10832	10032	10725	10025	10618	81001	10000	
12330	06/11	12200	abcel	CODJI	CP5601	CRRII	15705	11105	15045	11545	14402	11402	14/51	11351	13903	11303	65921	11259	13418	81211	13/80	08/11	12946	11146	12716	9////	17499	C0271	11065	12155	11055	12045	1091	11037	62811	62011	11722	11022	11616	11016	11000	
1.5410	12416	10200	12201	10000	11316	91921	16645	12045	10000	12500	15364	12364	15122	12322	14878	18278	4638	12238	14400	12200	14/66	12/66	13934	12134	13706	12106	12001	79751	12060	13150	12050	13042	+6671	12034	12821	12021	12720	12020	12615	12013	12000	

SHAFTING, KEYS AND KEYWAYS

15

COMBINED BENDING AND TORSIONAL MOMENTS-II

No. 7

lines. Locate, therefore, 100 on the lower scale, and follow the line from the point so located upward until intersecting the diagonal line marked 8000. From the point of intersection follow the horizontal line to the scale at the left-hand side marked "Diameter of bar in inches." It will be seen that a shaft 4 inches in diameter is required.

On page 9 is given a diagram of transverse strength of round shafts for different fiber stresses. Assume in this case that a shaft is subjected to a bending moment of 80,000 inch-pounds and that a fiber stress of 12,500 pounds per square inch is allowable. The bending moments in thousands of inch-pounds are given on the scale at the bottom of the diagram, and the fiber stresses are represented by the diagonal lines, the same as in the previous diagram; hence by locating 80 on the lower scale and following the vertical line from the point so located until it intersects the diagonal line marked 12,500, and from the point of intersection following the horizontal line to the left, we find that the diameter of the required shaft is 4 inches.

On page 10 is given a diagram for the strength of round shafts subjected to a combined twisting and bending moment. This diagram is calculated for a tensile strength of 7500, and a torsional shearing strength of 6000 pounds per square inch. The twisting moment in thousands of inch-pounds is located on the scale at the bottom of the diagram. the bending moments are located on the scale at the left-hand side, and the diameter of the required shaft is determined by the curve which comes nearest to the intersection between the vertical line from the twisting moment and the horizontal line from the bending moment. Assume, as an example, that a shaft is subjected to a twisting moment of 175,000 inch-pounds and a bending moment of 90,000 inch-pounds. The two lines corresponding to these values are found to intersect very nearly on

the 6-inch curve. A shaft 6 inches in diameter is thus required.

On page 11 an auxiliary diagram to that on page 10 is given, from which the required diameter of round shafts may be found for other fiber stresses than 7500 pounds per square inch, for which the diagram on page 10 is made up. When using this table, the diameter for a fiber stress is 7500 pounds per square inch is first found from page 10. This diameter is then located on the lower scale in the diagram on page 11. The vertical line from the point so located is followed until it intersects the diagonal line representing the allowable fiber stress; from the point of intersection a horizontal line is then followed to the left-hand scale, where the corrected diameter for the permissible fiber stress is read off. For example, if we have found from the diagram on page 10 that for given conditions a sixinch shaft is required at a fiber stress of 7500 pounds per square inch, we find from this diagram that if we increase the stress to 12,500 pounds, a shaft 5 inches in diameter would be sufficient. MACHINERY, September. 1905, Computing Hollow and Solid Shafting.]

Moment of Inertia and Section Modulus of Circular Sections

When calculating the strength of shafting, tables of the moment of inertia and section modulus of circular sections, for diameters varying by small fractions of an inch, are very convenient. On page 12 such a table is given. The values in this table are used when the shaft is subjected to bending moments only. For torsional moments the polar moment of inertia and section modulus should be used; but since these quantities are, in this specific case, exactly double those given in the table, the tabulated values may simply be multiplied by 2 in cases where torsional moments are dealt with.

The use of the table can be best illus-

trated by an actual problem. Assume that the maximum combined bending moments on a shaft are 52,900 inchpounds. Using a fiber stress not exceeding 10,000 pounds per square inch, what size shaft would be required? The section modulus in this case is

$$Z = \frac{52,900}{10,000} = 5.29.$$

Referring now to the table on page 12 we find that the diameter corresponding to this section modulus is 313/16inches, approximately. This diameter corresponds to a value of Z = 5.44, and is thus on the side of safety. [MACHIN-ERY, May, 1908, Maximum Stresses.]

Shear Stresses Combined with Tension or Compression Stresses

The question of shearing stresses combined with tension or compression stresses is one which always causes considerable difficulty. On page 13 a table of factors is given by means of which the maximum combined unit shear and the maximum combined unit tension or compression may be determined when the forces causing shear and tension or compression are known. For example, assume that S (see table on page 13) = 9000, and t = 12,000 pounds per square

inch; then - = 0.75, and from the table t

we find that the tension (or compression) factor x then equals 1.40. This means that if the shear is 75 per cent of the tension, the maximum combined tension will be 1.40 times what it would have been if there had been no shear. This table makes it possible to quickly determine the maximum stresses in shafts subjected to combined tension and compression stresses, provided the separate unit stresses are known. [MA-CHINERY, March and April, 1904, Notes on Design: May, 1908, Maximum Stresses: MACHINERY'S Reference Series No. 12, Mathematics of Machine Design, Chapter I: Machinery Shafting.]

Table of Combined Bending and Torsional Moments

One of the most familiar examples of combined stresses in shafting is that of torsion and bending, the torsional stresses being shearing stresses, and the bending stresses being tension and compression stresses. The maximum stress may be found by calculating each separately, and combining them by the aid of the table on page 13, as already mentioned. The tables on pages 14 and 15 also may be used for more directly combining these stresses. If the bending and the torsional moments, both in inch-pounds, are known, they are located at the left-hand side and at the top of the tables, as indicated. The body of the tables then gives the maximum or "ideal" torsional moment in the line marked T to the left, and the maximum or "ideal" bending moment in the lines marked B. For example, a shaft $3\frac{1}{2}$ inches in diameter is subjected to a torsional moment of 36,000 inch-pounds and a bending moment of 35,000 inch-pounds. What is the combined shearing stress and the combined tension and compression stress?

Referring to the table on page 15 and remembering that all values may be multiplied by 10, we find, by locating the torsional moment 3600 (instead of 36.000) at the top of the column, and the bending moment 3500 (instead of 35,000) in the left-hand column, that the maximum twisting moment, in this case, is 50,210, and the maximum bending moment 85,210 inch-pounds. Having now found the maximum moments, we can find the maximum combined unit shear and unit tension or compression. From page 12 we find that the section modulus Z for a 3½-inch shaft is 4.209. The polar section modulus being twice this, we have $Z_{p} = 8.418$.

Using the notation,

Maximum combined unit shear $= S_m$, Maximum combined unit tension or compression $= t_m$,

(Continued on page 24.)

Contributed by John S. Myers, MACHINERY'S Data Sheet No. 89. Explanatory note: Page 24.

+	-	-	B	en	din	g	MOI			-	_		isal	_	-	-	ch	-	SUN		-		-	-		N	pei	in
	135	120	105	90	825	75	67.5	60	52.5	45	37.5	33.75	30	26.25	22.5	18.75	15	11.25	9.375	7.5	5.625	3.75	0			7500	per square inch	In PC
Valu	180	160	140	120	110	100	90	80	70	60	50	45	40	35	30	25	20	15	12.5	10	7.5	S	0		10000		are in	Pounds
lalues at	225	200	175	150	137.5	125	112.5	100	87.5	75	62.5	56.25	50	43.75	37.5	31.25	25	18.75	15.63	12.5	9.375	6.25	0	12500			nch	
tright	5/2	532	532	432	4/3	4/1	42	4 1/2	432	3/5	323	332	3/6	32	3%	2/5	2Alw	22	232	2/3	13/	123	0	0	0	0		I
20							0							332	332	2/5	24	22	200	232	232	132	13	6.25	S	3.75	5.	-
heavy										14				315	335	232	2325	273	216	216	276	232	132	12.5	10	7.5		
		-					2						332				232	232	232	276	216		132	18.75	15	11.25	77	
zig-zag lin							1		43	332	34	30	321	30					232	279	25	22	216	25	20	15	Torsional	
7 line								43	476	4	325	321	332	332	332		(1)	2/3	24	-		22	232	31.25	25	18.75		
			_		432	423	432	43	432	432	3/8	316			332	373	316	232			N	200	22	37.5	30	22.5	Moments	
across			54	S		423		432	44	4%	3%	325	32/	1			-							50	40	30		
Jeddn	523	52	532	532	429	43	43	432	410	4%		327			3/3		332					316	2/5	62.5	50	37.5	in The	
. 1		532	515	_	415		_	-	400	476		3/6		50	316	319			3/6	315	34	332	3'8	75	60	45	Thousands	
right-h		557	532	533	432	4/0	432	432	432		4%	432	315	3%	325	323		3/2	32	310	332	515	316	87.5	70	52.5	ids of	
hand	-	213			5	4%			432			+	416			3/3			3%	332		532	316	100	80	60	f Inch	
corner	532	532			532	415	4/3	432	432	432	432	432	48	4%	4	3/6	3327	325	33	070	616	532	332	112.5	90	67.5		
	5/3			532		432	_						432	432	432	432	332		62	63	676	6	323	125	100	75	Pounds	
are for	5%	511	52'	532	513	532	432	432		_			432	432	432		613	6/6	9/9	63	64	010	3/5	150	120	90	•••	
- the	515	53	212	Sin	532		_	432		432	432	400	419	-	432	73	6%	610	919	616	64	610	45	175	140	105		
benu	6	513	532	532	Sin	513		532	5	432					-	715	67	64	63	610	616	6%	432	200	160	120		
bending	39	6	532		532	Silve	515	532	5%	532	4/2	429		7/3	72	74	616	6/3	6%	0		670	42	225	180	135		
	225	200	175	150	137.5	125	112.5	100	87.5	75	62.5	56.25	50	562.5	500	437.5	375	350	325	300	275	250	0	12500			per	-
moments	180	160	140	120	110	100	00	80	70	60	50	45	40	450	400	350	300	280	260	240	220	200	0	_	10000		2	IN HOL
41	135	120	105	00	82.5	75	67.5	60	52.5	45	37.5	33.75	30	337.5	300	262.5	225	210	195	180	165	150	0			7500	al.	Founds

.

MACHINERY'S DATA SHEETS

No. 7

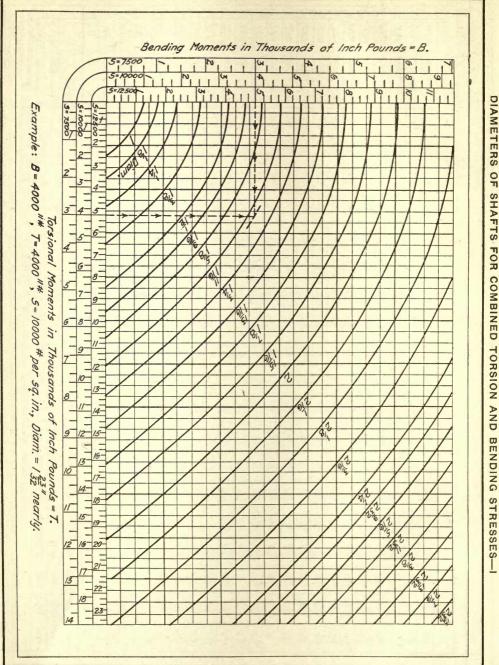
DIAMETERS OF SHAFTS FOR COMBINED TORSION AND BENDING STRESSES-

-
U
-
P
2
-
DIAMETERS OF SHAFTS FOR COMBINED TORSION AND BENDING STRESSES-II
-
mi
1.1
7
0
0
~
-11
10
0,
I
N
-
т
-
in
0,
-77
0
T
0
×
0
3
-
W
-
Z
m
-
0
-
0
-
20
S
-
0
7
-
T
-
Z
-
0
w
ш
7
-
O
-
Z
0
27
0
0,
-
7
E
111
S
0
T
10
4
-
-

450	4/2	375	Sena 33	300		22	210		180	-	150	501	120	105	90	82	75		60	52.	45	0	15		750	in siers
	412.5		337.5		262.5	225		195	0	165	-	5	0	9	0	2.5	5	67.5	0	5.5	5			2	00	in Pounds her square in
600	550	500	450	400	350	300	280	260	240	220	200	180	160	140	120	110	100	90	80	70	60	0		0000		e Inch
750	687.5	625	562.5	500	437.5	375	350	325	300	275	250	225	200	175	150	137.5	125	112.5	100	87.5	75	0	12500			4
82	84	8	7/6	77	716	643	9/9	610	64	010	50%	5/0	515	532	431	4/3	411	42	4 32	4.5	3/2	0	0	0	0	
8/8	816	816	713	710	74	616	6/3	6/1	670	616	64	6%	532	5/5	521	59	515	513	515	54	535	4/1	250	200	150	
<u>918</u>	00	88	7%	719			6%													532	532	4/3	275	220	165	
85	88	8%	72	75	7 colum	716	675	6/3	6/6	670	6	64	62	532	527	5413	5/1	500	532	532	5	432	300	240	180	
88	816	816	7/5	7/16	716	7%	7	6.8	64	630	62	614	615	6%	6	515	537	513	5415	5/6	532	532	350	280	210	
-8/1	876	84	8	73	72	74	7%	7	63	643	630	610	616	616	673	6%	616	6	515	5%	5/3	532	400	320	240	Tors
83	82	878	8/6	7/3	710	73	73	7%	-			6/6				-				616	6	5/6	450	360	270	Torsional
83	918	833	8%	7%	75	716	715	715	7%	7	615	616	6/0	616	62	616	614	616	616	64	616	5%	500	400	300	Moments
8/3	8%	87	816	90'	73	72	716	715	74	7%	710	6/6	63	643	630	010	9/0	62	616	610	614	6/0	550	440	330	
8%	8/1	82	84	816				710					-		64		611		-	610		64	600	480	.360	in The
8/5	84	918	978	8%	715	7/16	785	710	716	73	74	715	7%	7	6/3	6%	6%	6/3	643	6414	010	919	650	520	390	Thousands
0	8/6	88	810	818	8	7/5	734	73	716	72	73	715	74	7%	716	7	7	6/0	6%	63	615	010	700	560	420	ds of
910	8%	8/1	82	8/6	8%	7/5	7/3	73	7/6	710	72	716	73	74	713	7%	7%	716	716	7	615	6415	750	600	450	Inch
9/3	0	88	8/1	82	818	8%	8/6	8	7/2	7%	73	716	73	710	72	72	77	75	78	715	715	716	875	700	525	Pounds
9100	310	0	88	8/18	8/8	88	8/8	84	818	88	-8%	00	7/5	7%	7/3	73	75	7/6	7/10	7010	7%	716	1000	800	600	nds.
50	980	370	010	88	84	000	9/8	82	8/6	0014	818	84	818	88	816	816	00	00	7/3	7/5	7%	716	1125	900	675	
000	92	900	94	80	8/6	815	84	816	88	878	9/8	82	87	000	878	918	84	84	876	816	88	8	1250	1000	750	
9/6	9/10	970	910	970	80	0	8/3	8/8	8%	8/3	84	876	876	0%0	9/8	82	82	30	816	816	00	84	1375	1100	825	
>	0	6	0	0	0	94	0	30	376	6	0	9/8	00	00	a	-	-	8		00	00	00	1500	1200	000	

No. 7

Contributed by John S.

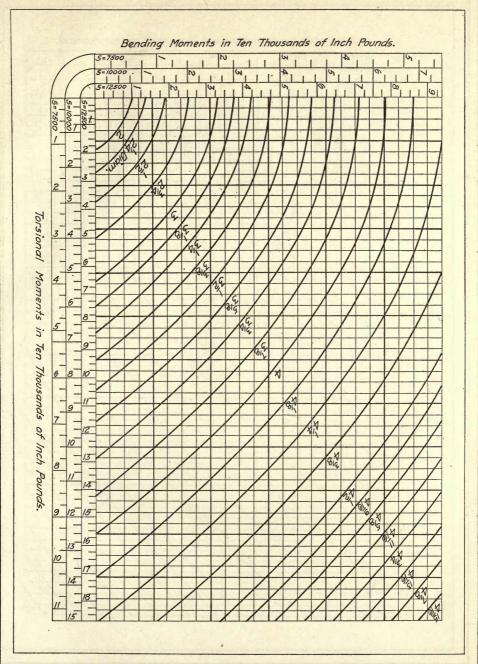

Myers, MACHINERY'S Data Sheet No.

89.

Explanatory note:

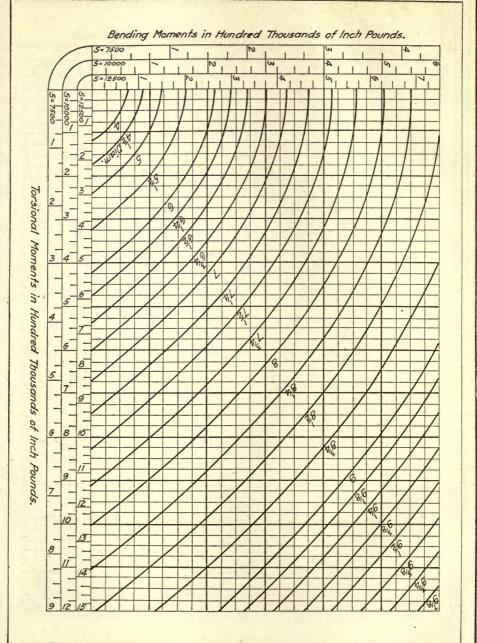
Page 24.

SHAFTING, KEYS AND KEYWAYS


MACHINERY'S DATA SHEETS

Contributed by John v Myers, MACHINERY'S Data Sheet No. 92. Explanatory note: Page 24. No. 7

24.


No. 7

21

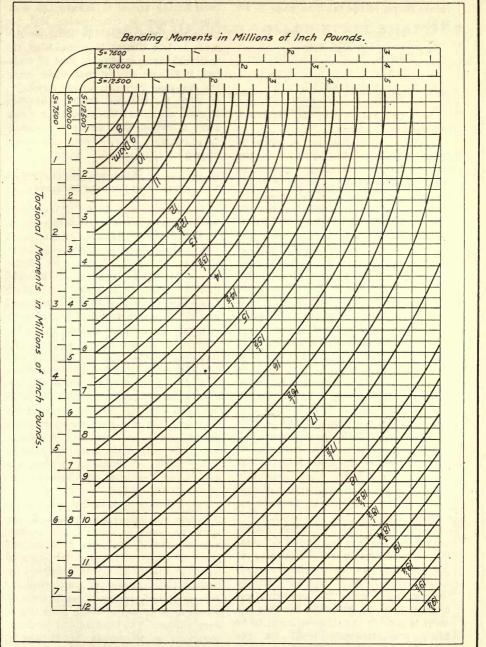
DIAMETERS OF SHAFTS FOR COMBINED TORSION AND BENDING STRESSES-II

MACHINERY'S DATA SHEETS

Contributed by John S. Myers, MACHINERY'S Data Sheet No. 92. Explanatory note: Page 24

22

No. 7


No. 7

Contributed by John S. Myers, MACHINERY'S Data Sheet No. 92.

Explanatory note:

Page 24.

SHAFTING, KEYS AND KEYWAYS

23

DIAMETERS OF SHAFTS FOR COMBINED TORSION AND BENDING STRESSES--VI

and proceeding to make use of the values found in the table on page 15 we find:

$$S_{\rm m}^{\sim} = \frac{50,210}{8.418} = 5970$$
, and
 $t_{\rm m} = \frac{85,210}{8.418} = 10,120.$

These two values give the maximum combined unit stresses.

It will be noted that in the tables on pages 14 and 15 the values B of the maximum or ideal bending moments are always greater than the values T of the maximum or ideal torsional moments. Hence it is the combined tension or compression stresses which determine the size of the section to be used, and the maximum torsional moment may be entirely neglected. All authorities do not agree on the subject of combined torsion and bending. The tables given agree with the formulas given by Rankine. The formula given by Grashof gives a torsional moment which has a greater value than that obtained from the Rankine formula. This latter, however, is commonly used, and shafting designed from calculations based upon this formula has proved satisfactory.

In this connection it is well to note that in the case of shafting, the location and direction of the tooth loads, belt pulls, etc., which produce bending, remain fixed while the shaft rotates. The bending stresses are thus constantly varying in direction, and since a greater factor of safety should be used for reversible stresses than for those which are constant in direction, many designers recommend that the allowable working stresses should vary according to whether the torsional or bending moment predominates. Higher stresses may be used when the torsional moment is greater; when the bending moment is greater the stresses ought to be made proportionately less. On the other hand the ultimate tensile stress is approximately 25 per cent greater than the ultimate shearing stress, and as the determining stress is always the combined tension or compression and not the shear, and since the Rankine formula is less liberal in recognizing the torsional moment than is that of Grashof, it is safe to say that when using the Rankine formula, ample provision is made for the fact that the bending stresses are reversible, even when a constant allowable safe stress is assumed. [MACHINERY, July, 1908, Maximum Stresses.]

Diameters of Shafts for Combined Torsional and Bending Stresses

On pages 18 and 19 are given tables for the diameters of shafts subjected to combined torsional and bending stresses. The tables are arranged for fiber stresses of 7500, 10,000 and 12,500 pound's per square inch. As an example, find the diameter of a shaft to sustain a bending moment of 80,000 inch-pounds and a torsional moment of 100,000 inchpounds, if a fiber stress of 10,000 pounds per square inch is allowed. By referring to the table on page 18, and locating the torsional moment as given in thousands of inch-pounds at the top, and the pending moment as given at the left-hand side, in the line and column corresponding to a fiber stress of 10,000 pounds per square inch, and then locating in the body of the table the diameter of the shaft corresponding to these moments, we find that the diameter required is 434 inches.

One difficulty with tables is the interpolation for immediate values. A diagram or chart is much better in this respect, and if drawn to a convenient scale is often preferable. On pages 20 to 23, inclusive, are given diagrams for finding the diameter of shaft required for combined torsional and bending stresses. The use of these diagrams is very simple. The bending and torsional moments in thousands, ten-thousands, hundred-thousands, and millions of (Continued on page 26.)

		7 1. 23 2 2 2 2 2	Service States				
Diameter, Inches.	Area, . Square Inches.	Circumference Inches.	Weight per Foot, Pounds.	Diameter, Inches.	Area, Square Inches.	Circumference, Inches.	Weight pe Foot, Pounds.
8 16	.0276	.5890	.095	2 ⁸ / ₁₆	3.7583	6.8722	12.80
14 .	.0491	.7854	.167	21	3.9761	7.0686	13.52
516	.0767	.9817	.260	215	4.2000	7.2649	14.35
38	.1104	1.1781	.375	2 🖁	4.4301	7.4613	15.07
716	.1503	1.3744	.511	217	4.6664	7.6576	15.89
1/2	.1963	1.5708	.667	2 1/2	4.9087	7.8540	16.70
9 5 I	.2485	1.7671	.845	21%	5.1572	8.0503	17.55
58	.3068	1.9635	1.05	2 5	5.4119	8.2467	18.41
11	.3712	2.1598	1.26	211	5.6727	8.4430	19.31
34	.4418	2.3562	1.50	2 🛔	5.9396	8.6394	20.21
13	.5185	2.5525	1.77	213	6.2126	8.8357	21.15
78	.6013	2.7489	2.05	2 78	6.4918	9.0321	22.09
15 16	.6903	2.9452	2.35	215	6.7771	9.2284	23.06
1	.7854	3.1416	2.68	3	7.0686	9.4248	24.05
110	.8866	3.3379	3.02	3 1 /8	7.6699	9.8175	26.09
1 🛔	.9940	3.5343	3.38	33	7.9798	10.014	27.16
1 3	1.1075	3.7306	3.77	31	8.2958	10.210	28.22
14	1.2272	3.9270	4.17	3 3	8.9462	10.603	30.43
15	1.3530	4.1233	4,61	37	9.2806	10.799	31.58
1 3/8	1.4849	4.3197	5.05	3 1/2	9.6211	10.996	32.73
$1\frac{7}{16}$	1.6230	4.5160	5.52	3 5	10.321	1.1.388	35.20
1 1/2	1.7671	4.7124	6.01	311	10.680	11.585	36.40
1 ⁹ 1 5	1.9175	4.9087	6.52	3 <u>*</u>	11.045	11.781	37.57
18	2.0739	5.1051	7.06	3 78	11.793	12.174	39.40
111	2.2365	5.3014	7.61	315	12.177	12.370	41.04
1 3	2.4053	5.4978	8.18	4	12.566	12.566	42.75
113	2.5802	5.6941	8.78	4 1	14.186	13.352	48.26
1 78	2.7612	5.8905	9.39	47	15.466	13.941	52.62
115	2.9483	6.0868	10.03	4 1	15.904	14.137	54.11
2	3.1416	6.2832	10.69	41	17.728	14.923	60.88
216	3.3410	6.4795	11.35	4 <u>15</u>	19.147	15.512	65.50
2 ¹ / ₈	3.5466	6.6759	12.07	5	19.635	15.708	67.45

MACHINFER'S Data Sheet No. 29. Explanatory note: Page 26.

inch-pounds, as the case may be, are located at the left-hand side and at the bottom of the diagram respectively; the horizontal line from the bending moment and the vertical line from the torsional moment are followed until they intersect as shown by the dotted lines on page 20. The curve passing exactly or approximately through the point of intersection then indicates the diameter of shaft required. In the example shown on page 20 it will be seen that the lines intersect between the 111/16- and 13/4-inch curves. It is always better to make the shaft a trifle stronger than necessary; in this case, then, one of 1%-inch diameter would be used. This shaft would be of the required size to transmit a torsional moment of 4000 inch-pounds, and could in addition sustain a bending moment of 4000 inch-pounds, at a fiber stress of 10,000 pounds per square inch, these being the known requirements from which the dotted lines in the diagram were traced. [MACHINERY, July, 1908, Maximum Stresses.]

Weights and Areas of Cold-rolled Steel Shafting

When calculating the stresses in shafting, the weight of the shafting itself must be considered whenever the distance between the bearings is considerable. The table on page 25 will be found convenient in such instances, as it gives the weight per foot in pounds of cold rolled steel shafting from 3/16 to 5 inches diameter; besides, the area in square inches and the circumference in inches are given. In calculating the stresses caused by the weight of the shaft itself, the total weight between the bearings is, of course, considered as uniformly distributed along the whole shaft, the shaft being assumed to be supported freely at the bearings. The bending moments caused by pulleys, belting, gears, etc., are then determined and these are added to find the total bending moment.

Allowances and Tolerances for Various Kinds of Fits

Running fits, as implied by the name, are characterized by the condition that of two machine members fitted together, cne is free to revolve inside or about the other, the fit, however, being otherwise as close as possible. It is evident that the member that fits inside of the other must be a very small amount less in diameter than the hole into which it fits.

The term "forcing fit" is used when a pin, axle, or other part, which is somewhat larger than the hole into which it is inserted, is pressed into place by a hydraulic press or by other means. The crank-pins and axles for locomotive driving wheels are usually inserted in this way.

The term "shrinking fit" is applied when a part which is to be held in position by being tightly fitted into a hole is first turned a few thousandths of an inch larger than the hole, and then the diameter of the hole increased by heating it, after which the pin is inserted in the heated part. When this part cools down, the consequent contraction of the metal causes it to grip the pin with tremendous pressure. Locomotive tires, for example, are attached to their wheel centers by means of a shrinking fit.

Allowances and tolerances for running fits recommended by the Engineering Standards Committee of Great Britain are given on page 27. The note at the bottom of the page should be carefully read before using the table, in order to avoid misunderstandings.

On page 28 a diagram is given of allowances for forcing, driving and running fits as adopted by the Builders' Iron Foundry, Providence, R. I. In the diagram two heavy lines are drawn for each kind of fit, the upper line indicating the maximum and the lower line the minimum allowance for the respective diameter. For example, assume (Continued on page 34.)

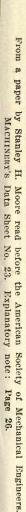
ALLOWANCES AND TOLERANCES FOR RUNNING FITS

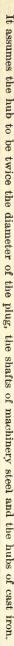
		Shaft		Allowance (Minimum Difference	Hole				
Nominal Diameter	Minimum Diameter	Tolerance (Difference)	Maximum Diameter	between Shaft and Hole)	Minimum Diameter	Tolerance (Difference)	Maximum Diameter		
Inches	Inches	Inches	Inches	Inches	Inches	Inches	Inches		
4	0.2495	0.0005	0.25	0.0005	0.2505	0.0003	0.2508		
1/2	0.4993	0.0007	0.50	0.0007	0.5007	0.0007	0.5014		
34	0.7491	0.0009	0.75	0.0008	0.7508	0.0009	0.7517		
1	0.9990	0.0010	1.00	0.0010	1.0010	0.0010 .	1.0020		
1/2	1.4988	0.0012	1.50	0.0012	1.5012	0.0013	1.5025		
2	1.9985	0.0015	2.00	0.0015	2.0015	0.0015	2.0030		
3	2.9982	0.0018	3.00	0.0018	3.0018	0.0017	3.0035		
4	3.9980	0.0020	4.00	0.0020	4.0020	0.0020	4.0040		
5	4.9980	0.0020	5.00	0.0020	5.0020	0.0020	5.0040		
G	5.9975	0.0025	6.00	0.0025	6.0025	0.0025	6.0050		
7	6.9975	0.0025	7.00	0.0025	7.0025	0.0025	7.0050		
8	7.9975	0.0025	8.00	0.0025	8.0025	0.0025	8.0050		
9	8.9970	0.0030	9.00	0.0030	9.0030	0.0030	9.0060		
10	9.9970	0.0030	10.00	0.0030	10.0030	0.0030	10.0060		
//	10.9970	0.0030	11.00	0.0030	11.0030	0.0030	11.0060		
12	11.9970	0.0030	12.00	0.0030	12.0030	0.0030	12.0060		

Note:- The above allowances and tolerances for running fits are recommended by the Engineering Standards Committee of Great Britain, for first-class work. For second-and third-class work, multiply the tolerances by 2 and 3, respectively. For extra fine quality of work, about 2/s the above allowances for first-class work are recommended. The maximum diameter of the shaft is the nominal diameter in all grades of work.

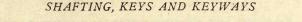
MACHINERY'S Data Sheet No. 78. Explanatory note: Page 26.

and a second and a second and a second	05 00 4 TO 00	0 6 4 0 4	4 5 6 -1	10 10	13 15	20 19 18
	THOUSANDTHS UNDER NORMAL		OV	OUSANDTHS O	F AN INCH DAMETER	20 20 19 18 17 16
	Ff	┥╷┶┓┕┥				
		05				
	RU	-1				
		CT			3	
	RUNNING FITS	0				
Dia .00 2.50 6.00	TS	MINIMUM				
Diameters 00 to 1.5 25 to 2.4 50 to 5.0 00 to 11.1		8 IUM				
LIMITS		9				
Fo		10	2			
Minimum. Minimum. Neter Neter		11				
TANI 00	MAXIMUM M)NIMUM	12			3	
STANDARD imum. 1700025 170005 17001	MUM MUM	13			MAXIMUM	
		NOMINAL 14			M	
HOLES. Maxin Diameter Diameter Diameter Diameter						
axin ter ter ter		AME				
++++ """. .000						
m. .00025 .00075		IN INCHES			FO	
		18 18			FORCE	
		19			FITS	
		8				
		22				
		8				
		- 8				

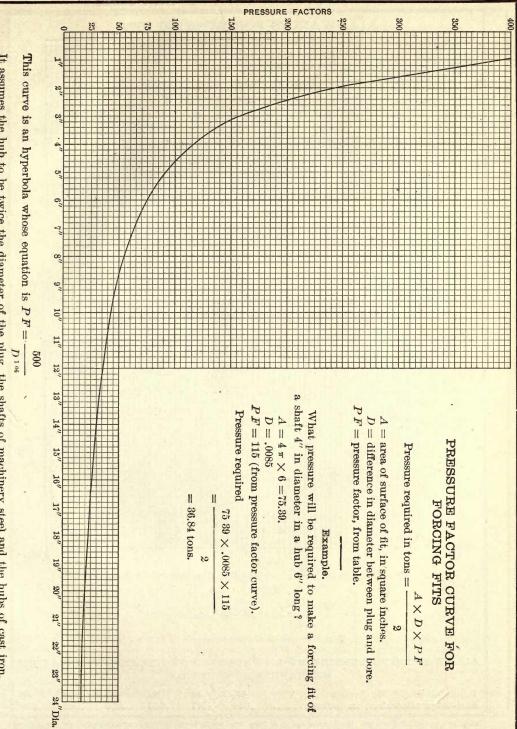

ALLOWANCES FOR FORCE, DRIVE AND RUNNING FITS (Builders Iron Foundry)

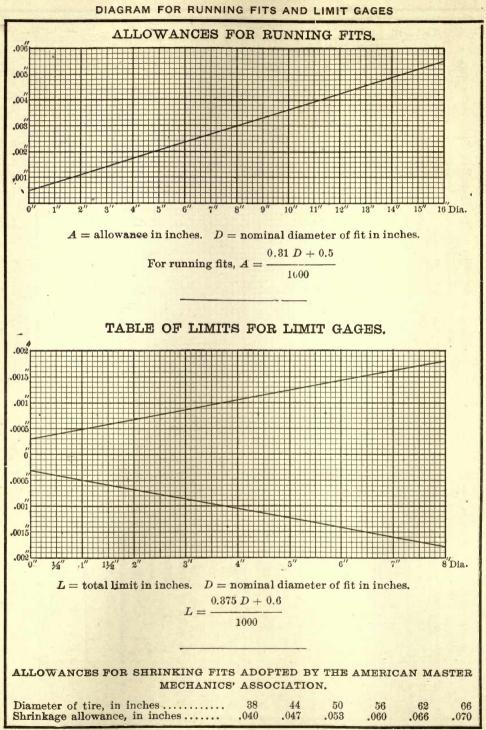

28

•

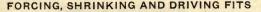

MACHINERY'S Data Sheet No. 23. Explanatory note: Page 26.

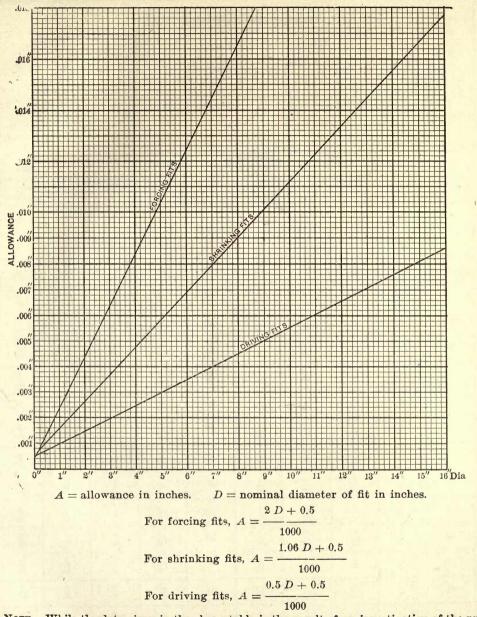
No. 7




No. 7

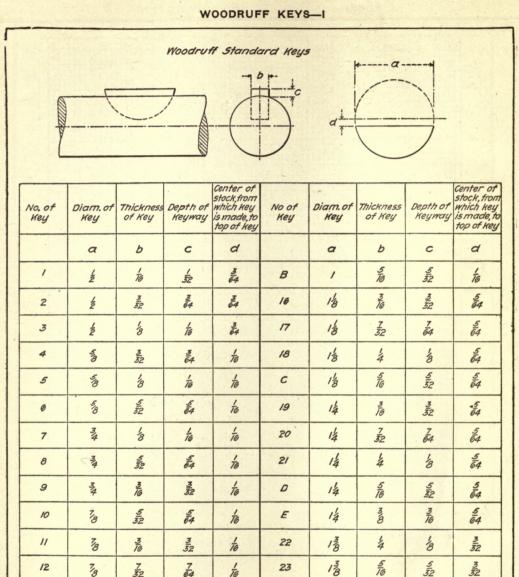
29


PRESSURE FACTORS FOR FORCING FITS



From a paper by Stanley H. Moore read before the American Society of Mechanical Engineers. MACHINERY'S Data Sheet No. 23. Explanatory notes: Pages 26 and 39.

SHAFTING, KEYS AND KEYWAYS



Note.—While the data given in the above table is the result of an investigation of the practice of a large number of shops, the allowances for the large diameters is considered excessive, as they give results which require presses of more than ordinary power to make the fits. It is the practice in a large number of shops to decrease the allowance per inch as the diameter increases. The general rule of .001 inch per inch of diameter has been found very satisfactory for sizes above 6 inches, while the allowances for the smaller sizes correspond more nearly to those given above.

From a paper by Stanley H. Moore read before the American Society of Mechanical Engineers. MACHINERY'S Data Sheet No. 23. Explanatory note: Page 26.

MACHINERY'S DATA SHEETS

MACHINERY'S Data Sheet No. 81. Explanatory note: Page 39.

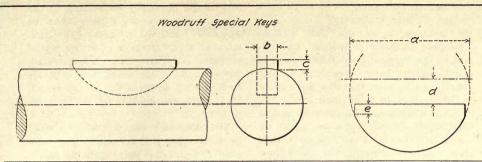
F

G

3/8

3/8

A


7/32

1/8

1/8

No. 7

WOODRUFF KEYS-II

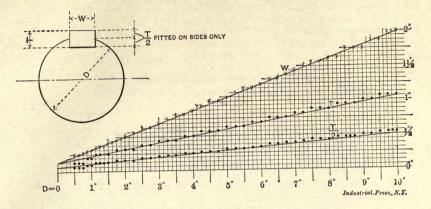
No.of Key	Diam. of Key	Thickness of Key	Depth of Keyway	Center of stock, from which key is made, to top of key	Width of Flat	No. of Key	Diam. of Key	Thickness of Key	Depth of Keyway	Center of stock, from which key is made, to top of key	Midth of Flat
	a	Ь	с	d	е		a	Ь	с	d	e
26	2%	3/0	3 <u>3</u> 32	17 32	3 32	31	32	7.16	7 32	13	3/6
27	2/8	4	1/8	1 <u>7</u> 32	3/32	32	32	1/2	14	13,16	316
28	2%	516	5 32	17: 32	3.32	33	32	9/10	9 32	13.16	316
29	2%	Bolton	316	<u>/7</u> 32	<u>3</u> 32	34	3/2	5,18	510	13	316
30	3 <u>/</u> 2	3,89	310	13/10	1310						

Standard Keys to use with various diameter shafts

Diameter of Shaft	Number of Keys	Diameter of Shaft	Number of Keys	Diameter of Shaft	Number of Keys
<u>5</u> 16 - 38	1	7 - 15 8 - 16	6, 8, 10	$1\frac{3}{16} - 1\frac{7}{16}$	14, 17, 20
7/0 - 1/2	2,4	1	9, 11, 13	1/2 - 158	15, 18, 21, 24
9 - 5 16 - 8	3,5	1/10 - 1/8	9, 11, 13, 16	1/16 - 134	18, 21, 24
$\frac{11}{16} - \frac{3}{4}$	3, 5, 7	110	11, 13, 16	1 <u>13</u> - 2	23, 25
13 16	6,8	14-15	12, 14, 17, 20	$2\frac{1}{10} - 2\frac{1}{2}$	25

MACHINEEY'S Data Sheet No. 81. Explanatory note: Page 39.

that it is required to find the diameter to which to turn a pin to be fitted by a forcing fit into a standard 7-inch hole. By locating 7 on the line marked "Nominal diameter in inches," and following the vertical line from 7 until it intersects the heavy lines for forcing fits, it will be seen that the pin should be from 0.009 to 0.010 inch above the nominal diameter. If a running fit had been required instead of a forcing fit, we would have followed the line downward from 7 until intersecting the heavy lines representing the limits for running fits. Assuming the hole to be standard size as mentioned, the pin should thus have been turned from 0.0025 to 0.004 inch below the size of the hole. In the case of running fits, however, it is almost always the practice to make the diameter of the shaft the standard or nominal size, and to provide for the allowance in the hole. In such a case the shaft would have been made 7 inches in diameter while the hole would have been made from 7.0025 to 7.004 inches in diameter.


Whether parts should be assembled by pressing them into place or by the shrinking method depends somewhat upon circumstances. To press a tire, for example, over a wheel center, would be a rather difficult job, owing to the size and shape of the work. On the other hand, a pin is easily forced into place with a hydraulic press if such a tool is available; otherwise the hole can be heated and expanded sufficiently to permit the insertion of the pin by sledging or even by hand. The hydraulic press is more economical for most work, and in addition there is an advantage in its use in that the exact pressure or tonnage required to force the part into place is indicated by a gage, while there is more or less uncertainty connected with a shrinking fit. If the allowance when turning a pin for a shrinking fit were too great, the part into which the pin is fitted might be broken when cooled down, owing to the excessive stresses produced. When using a press this danger is largely eliminated, as the approximate pressure required can be calculated, and the pressure gage indicates at every moment what the actual pressure is. Tests have demonstrated, however, that a shrinking fit is superior to a forcing or press fit, as the assembled parts are held more securely together.

The ultimate pressure finally required to force the pin or other part into place depends not only upon the allowance for the fit, but also upon the length of the bore or the area of the surface of the fit. The pressure required for forcing a pin with a given allowance into a hole may be determined by the formula given with the diagram on page 29, where the pressure factor PF is determined from the diagram. This pressure factor varies with the diameter of the pin. For example, if the pin is 6 inches in diameter, then we find from the diagram that the pressure factor is 75. To find this, we locate 6 on the scale at the bottom of the diagram, and follow the vertical line from the point so located until it intersects the curve drawn on the diagram; from the point of intersection, we follow the horizontal line to the scale at the left where the pressure factor 75 is read off. The example given in connection with the diagram and formula indicates clearly their use for practical calculations.

The diagrams for running, forcing, shrinking and driving fits given on pages 30 and 31 are compiled from a paper read by Stanley H. Moore before the American Society of Mechanical Engineers, and are the results of an investigation of the practice in a large number of shops. Before using these diagrams, however, the note at the bottom of page 31 should be read and comparison made with the diagram on page 28. The use of the diagrams on pages 30 and 31 is very simple. On the scale at the bottom of the diagrams are given DIMENSIONS OF KEYS-I

PROPORTIONS OF KEYS.

(United States Navy Standard.)

			1			11		1
D	W	T	D	W	T	D	w	T
1 "	32"	<u>s</u> " 16	4 "	7 7''	1 ''	8″	1 5 "	7 "
5 ''	1 ″.	3." 16	4 1 "	15" 16	9'' 16	81"	1 5 "	15"
3 '' 4	<u>9</u> "	8." 16	4 ½ ″	1″	9'' 16	8 1 "	11"	15" 16
7 "	9 '' 3 3	7 "	4 * "	1″	9'' 16	8 4 "	1 4 "	15" 10
1″	5"	7 // 32	5″	111	<u>5</u> "	9″	1 # "	1″
1 1 1/8	$\frac{11}{32}''$	1"	5 ± "	$1\frac{1}{8}''$	5 ''	91″	1 % ″	1″
11"	<u>3</u> ''	1"	51"	1 3 "	<u>5</u> ''	91"	13″	111''
1 3 "	3 11	1"	5 # "	13"	$\frac{11}{16}''$	9 3 ″	2″	11"
11"	13'' 32''	1"	6″	1±"	$\frac{11}{16}''$	10"	2″	111
13"	7″ 16	5″ 16	6 1 "	15"	3 ''			
2″	1 "	5″ 16	6 1 "	1 🖁 ''	<u>8</u> //			
2 1 "	9." 16	5″' Iđ	6 4 ''	1 % "	3 11			
2 ½ ″	5 //	<u>8</u> ''	7″	178"	1 <u>8</u> "			
2 [§] / ₄ ″	5 11	<u>\$</u> "	71"	1 1 1 "	18'' 16			
3″	11'' 16	7 "	7 1 "	119"	7 ''			
31"	<u>8</u> //	7 "	7 # "	· 19"	7 "			
3 ½ '	18'' 16	7 "' I 8			1.1			
3 <u>*</u> "	13" 16	1 "			••			
				1		11	and a straight	

MACHINERY'S Data Sheet No. 33. Explanatory note: Page 39.

MACHINERY'S DATA SHEETS

DIMENSIONS OF KEYS-II

TABLE OF CIB KEYS. Computed by F. D. Buffum, Akron, O Industrial Press, N.Y. Keys of proportions given below are weakest in shear. The safe twisting moment per inch of length of keys = RBS $\mathbf{R} = \mathbf{Radius}$ of shaft. B = Breadth of kev.S = Safe shearing strength of material in key. $B = \frac{1}{4}$ bore up to 6 inches. Then B = .211 bore. Taken to eighths. G = B approximately. $H = \frac{1}{6}$ bore up to 6 inches. Then $H = \frac{1}{6}$ bore. $h = Radius = \frac{1}{8}$ bore taken to eighths. But minimum value $= \frac{3}{16}$ inch. $L = Length of hub + \frac{1}{2}$ inch. Taper 1 inch per foot. Safe Twisting Moment on Key per inch of Length for S =Depth Height Width Bore and Shaft h and of Key H. G н of Key B. Diameter. Rad. 15 to 1 1 118 to 1 3 117 to 8 8 -111 to 1 78 5 82 2 1 115 to 1-2 16 23 to 2 8 16 217 to 2 5 2 3 211 to 3 1 215 to + $3\frac{3}{16}$ to 3 3 1-2 16 9 32 3 58 $3_{\frac{7}{16}}$ to 3 3 1-2 $3_{1\frac{1}{6}}$ to 10 x 315 to 4 1/8 11/16 1-2 4 8 1 1 $\frac{11}{16}$ 4 3 to $4_{\frac{7}{16}}$ to 4 3 1 = 418 to 5 1 5 3 1 3 5 5 to 6 1 -1 -518 to 1 1 6 5 to 6 3 1 = 1-2 1 3 618 to 1 1 1 2 7 3 1 3 $7_{\frac{5}{16}}$ to 718 to 8 3 1 3 1 1 818 to 9 3

> MACHINERY'S Data Sheet No. 14. Explanatory note: Page 39.

2 1/2

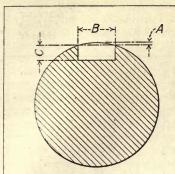
2 1/2

1 1

1 1

-

918 to 10 3


1018 to 11 8

1118 to 12 3

No. 7

SHAFTING, KEYS AND KEYWAYS

TABLE FOR USE WHEN MILLING KEYWAYS

The values in the body of the table give the dimension A, which should be added to the depth Cof the keyway in order to find the total depth from the outside of the shaft to the bottom of the keyway. When milling keyways, the cutter can then be fed down this total depth, and no further measuring is necessary.

Size	Width of Keyway B							Width	of Key	way B	
of Shaft	4	516	3/8	7	12	of Shaff	4	516	3/8	716	1/2
1/2	0.0325			-		25/6	0.0068	0.0104	0.0155	0.0209	0.027
9/16	0.0289	-		-		23/8	0.0066	0.0102	0.0152	0.0202	0.026
518	0.0254	0.0413		_		276	0.0064	0.0100	0.0149	0.0198	0.026
11/16	0.0236	0.0379				22	0.0063	0.0098	0.0146	0.0194	0.025
314	0.0220	0.0346	0.0511			2%	0.0061	0.0094	0.0142	0.0189	0.024
13/16	0.0198	0.0314	0.0465			23	0.0060	0.0090	0.0139	0.0185	0.024
78		0.0283	0.0420	0.0583		21/16	0.0059	0.0089	0.0136	0.0180	0.023
15,16	0.0164	0.0264	0.0392	0.0544		234	0.0058	0.0088	0.0133	0.0176	0.023
1		0.0246	0.0365	0.0506	0.0670	2/3	0.0057	0.0086	0.0129	0.0172	0.022
1/16	0.0143	0.0228	0.0342	0.0476	0.0625	2%	0.0056	0.0084	0.0126	0.0168	0.022
1'8	0.0136	0.0210	0.0319	0.0446	0.0581	25%	0.0054	0.0083	0.0122	0.0164	0.021
13/16	0.0131	0.0204	0.0304	0.0421	0.0551	3		0.0081	the second se		a second s
14	0.0127	0.0198	0.0290	0.0397	0.0522	3/16	0.0052	0.0080	0.0116	0.0158	0.020
15/16	0.0123	0.0191	0.0279	0.0380	0.0499	3'8	0.0051	0.0078	0.0114	0.0155	0.020
13/8	0.0120	0.0185	0.0268	0.0364	0.0477	33/6	0.0050	0.0076	0.0112	0.0157	0.015
136	0.0114	0.0174	0.0254	0.0346	0.0453	34	0.0049	0.0075	0.0110	0.0149	0.019
1/2	0.0110	0.0164	0.0240	0.0328	0.0429	35/6	0.0048	0.0074	0.0108	0.0146	0.019
19/6	0.0107	0.0158	0.0231	0.0309	0.0412	338	0.0047	0.0072	0.0106	0.0143	0.018
15/8	0.0105	0.0153	0.0221	0.0291	0.0395	31/6	0.0046	0.0071	0.0104	0.0140	0.018
1/10	0.0102	0.0147	0.0214	0.0282	0.0383		the second second second second	0.0070			
134	0.0.099	0.0142	0.0207	0.0274	0.0371	39/16	0.0044	0.0069	0.0101	0.0135	0.017
13,6	0.0095	0.0136	0.0198	0.0265	0.0355		and the second se	0.0067			
178	0.0093	0.0130	0.0190	0.0257	0.0339	31/16	0.0042	0.0066	0.0099	0.0131	0.017
15	0.0090	0.0127	0.0184	0.0250	0.0328	34	0.0042	0.0065	0.0098	0.0128	0.016
2	0.0088	0.0124	0.0179	0.0243	0.0317	3/3/6	0.0041	0.0064	0.0097	0.0126	0.016
2/16	0.0083	0.0117	0.0173	0.0236	0.0308	3%	0.0041	0.0063	0.0096	0.0124	0.016
2'8	0.0078	0.0111	0.0168	0.0229	0.0299	35%	0.0041	0.0062	0.0095	0.0123	0.016
23/6	0.0073	0.0109	0.0163	0.0222	0.0291	4	0.0040	0.0061	0.0094	0.0121	0.016
24	0.0070	0.0107	0.0159	0.0216	0.0282						

Contributed by James J. Loftus. Explanatory note: Page 39.

No. 7

MACHINERY'S DATA SHEETS

DUPLEX KEYS

a la la companya	MINE AND AND	THE REAL PROPERTY.			NUNSER NUNE	Carl Carl Carl	
	45°		B	A	В	с	Bore cf Hollow Shaft D
T					2/3	7 13	5
+	RB T	1/2 Via	10	16	3	7 29	538
AIM	17	TX.	VIN	17	3 36	8 <u>13</u> 32	534
¥	1		······································	18	338	8 29 32	6
		0>		19	3%	9 <u>13</u> 32	638
	*	A		20	334	978	6 ³ 4
Ta	per, one key	only, 's incl	Bore of	21	3 15	1038	7
A	В	С	Hollow Shaft D	22	4 1/8	1078	73/8
1	3/6	12		23	4 56	113/8	734
2	3,8	1		24	4 ½	1178	8
3	9]6	1 15 16		25	4 16	12 32	838
4	314	131		26	4 ⁷ /8	12 32	8 ³ 4
5	1516	2 15 32		27	5/16	13 <u>11</u> 13 <u>32</u>	9
. 6	11/8	2 31	2	28	5 4	13 27	938
7	15/16	3 <u>15</u> 32	238	29	57	14 11/32	934
8	12	3 31/32	2 34.	30	5.58	1427	10
9	116	476	3	31	5 13	15 16	1038
10	17/8	4 15	338	32	6	15 13	1034
11	2 / 16	576	334	33	636	165	11
12	2 4	5 15	4	34	638	1613	113,8
13	2 7/6	67	43/8	3.5	6 36	175	1134
14	2 5/8	6 <u>29</u> <u>32</u>	434	36	634	17 32	12

SHAFTING, KEYS AND KEYWAYS

the diameters in inches, and on the scale at the left-hand side the allowances. Assume, for example, that we want to find the allowance for a shrinking fit for a 4-inch diameter pin. Referring to page 31, we find by following the vertical line from 4 inches until it intersects the diagonal line for shrinking fits, and from the point of intersection following the horizontal line to the left-hand scale, that an allowance of nearly 0.005 inch is required.

Allowances for shrinking fits adopted by the American Master Mechanics Association are given at the bottom of page 30. These allowances refer directly to tires to be shrunk onto their wheel centers. [MACHINERY, July, 1909, Machine Shop Practice—Shrinking and Forcing Fits.]

Diagram of Limits for Limit Gages

On page 30 a diagram is given showing suitable maximum and minimum limits for limit gages for ordinary work. It will be understood that the upper and lower diagonal lines in this diagram indicate the maximum and minimum limits corresponding to various diameters. To find the limits for any given diameter, say 6 inches, this dimension is first located on the bottom scale, and the vertical line from 6 inches is followed until it intersects the lower diagonal line. From the point of intersection the horizontal line is followed to the left, and the minimum limit read off. This diagram is made up on the principle that the maximum limit is as much above standard size as the minimum limit is below standard size, so that when the minimum limit has been found there is no need of locating the maximum limit. For a 4-inch diameter shaft, for example, the allowable limits would be very slightly more than 0.001 inch above or below the standard size.

Keys

On pages 32 and 33 are given tables of Woodruff standard and special keys. In the lower part of page 33 a table is also given of Woodruff standard keys to be used with various shaft diameters. It will be seen that the designer's judgment must be relied upon to a certain extent, as a number of different sizes of keys may be used for the same diameters. For ordinary practice, when no special considerations have to be taken into account and where more than two keys are given for the same diameters, the medium size key is the most suitable.

On page 35 is given a diagram and table of the United States Navy standard proportions of keys. The diagram is shown only to indicate how the sizes were determined by plotting the dimensions from a curve supposed to give the best theoretical dimensions. When using the information given on page 35, no attention need be paid to the diagram, but the table should be used directly, as all the required information is contained therein.

On page 36 is given a table of gib keys. In addition to the dimensions, it will be seen that the safe twisting moments which the key will sustain for each inch of length, at different shearing stresses, are given. This information will be of considerable value in quickly calculating the strength of keys when the twisting moment is known. [MACHINERY, September, 1901, Notes on Keys and Keyways; MACHINERY'S Reference Series No. 22, Calculation of Elements of Machine Design, Chapter VI, Keys and Keyways.]

Table for Use when Milling Keyways

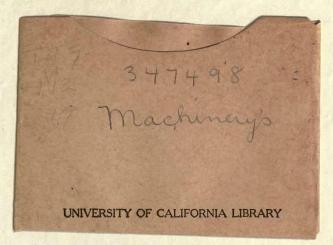
The table given on page 37 will be found very useful when milling keyways to a given depth. The usual way of measuring the depth of a keyway is to mill off the top of the shaft until the flat on the top is of the same width as the cutter. Then the index is set to zero and the cutter is fed down the reMACHINERY'S DATA SHEETS

quired depth C (see page 37). When milling off the top of the shaft, difficulty is experienced in measuring properly the width of the flat. By means of the table a more accurate measurement can quickly be obtained. Bring the cutter down so that it will just touch the work on the top, and set the index to zero. Then add the figures given in the body of the table for the given size of shaft and width of keyway, to the depth Cof the keyway. This gives the total depth from the outside of the shaft to the bottom of the keyway. For example: If the size of the shaft is 3 inches and the width of the keyway one-half inch, then, from the table, we find that 0.0211 inch should be added to the given depth C of the keyway—usually made half the width B—in order to find the total depth from the top of the shaft to the bottom of the keyway. In this case, then, this dimension would be 0.250 + 0.0211 = 0.2711 inch. [MA-CHINERY, December, 1908, Keyway Gaging in Shafts and Hubs.]

Sent Sentences and all and set

No. 7

40



THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

DEC 15 1942	
26Nov 48P8	
LIBRARY USE SEP 8 1960	
RECOLD SEP 8 1960	
	LD 21-100m-7,'40(6936s)

AC 66851

No. 16. Machine Tool Drives.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. Strength of Cylinders-Formulas, Charts, and Diagrams.

No. 18. Shop Arithmetic for the Machinist.—Tapers: Change Gears: Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 20. Spiral Gearing.-Rules, Formulas, and Diagrams, etc.

No. 21. Measuring Tools.—History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

No. 22. Calculation of Elements of Machine Design—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. Theory of Crane Design.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys; Pillar Cranes.

No. 24. Examples of Calculating Designs.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. Deep Hole Drilling.—Methods of Drilling; Construction of Drills.

No. 26. Modern Punch and Die Construction.—Construction and Use of Subpress Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. Locomotive Design, Part I.-Boilers, Cylinders, Pipes and Pistons.

No. 28. Locomotive Design, Part II.— Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. Locomotive Design, Part III. —Smokebox; Exhaust Pipe; Frames; Cross-heads; Guide Bars; Connecting-rods; Crank-pins; Axles; Drlving-wheels.

No. 30. Locomotive Design, Part IV.--Springs, Trucks, Cab and Tender.

No. 31. Screw Thread Tools and Gages.

No. 32. Screw Thread Cutting.-Lathe Change Gears; Thread Tools; Kinks.

No. 33. Systems and Practice of the Drafting-Room.

No. 34. Care and Repair of Dynamos and Motors.

No. 35. Tables and Formulas for Shop and Drafting-Boom.—The Use of Formulas; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. Iron and Steel.—Principles of Manufacture and Treatment.

No. 37. Bevel Gearing.—Rules and Formulas; Examples of Calculation; Tooth Outlines; Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. Grinding and Grinding Machines.

No. 39. Fans, Ventilation and Heating. -Fans; Heaters; Shop Heating.

No. 40. Fly-Wheels.—Their Purpose, Calculation and Design.

No. 41. Jigs and Fixtures, Part I.— Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. Jigs and Fixtures, Part II.-Open and Closed Drill Jigs.

No. 44. Machine Blacksmithing.—Systems, Tools and Machines used.

No. 45. Drop Forging. - Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. Hardening and Tempering.— Hardening Plants; Treating High-Speed Steel; Hardening Gages; Hardening Kinks.

No. 47. Electric Overhead Cranes.-Design and Calculation.

No. 48. Files and Filing.-Types of Files; Using and Making Files.

No. 49. Girders for Electric Overhead Cranes.

No. 50. Principles and Practice of Assembling Machine Tools, Part I.

No. 51. Principles and Practice of Assembling Machine Tools, Part II.

No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. Use of Logarithms and Logarithmic Tables.

No. 54. Solution of Triangles, Part I. --Methods, Rules and Examples.

No. 55. Solution of Triangles, Part II. -Tables of Natural Functions.

No. 56. Ball Bearings.—Principles of Design and Construction.

No. 57. Metal Spinning.—Machines, Tools and Methods Used.

No. 59. Machines, Tools and Methods of Automobile Manufacture.

No. 60. Construction and Manufacture of Automobiles.

No. 61. Blacksmith Shop Practice.— Model Blacksmith Shop; Welding; Forging of Hooks and Chains; Miscellaneous Appliances and Methods.

No. 62. Hardness and Durability Testing of Metals.

No. 63. Heat Treatment of Steel.— Hardening, Tempering and Case-Hardening.

No. 64. Gage Making and Lapping.

No. 65. Formulas and Constants for Gas Engine Design.

MACHINERY, the monthly mechanical journal, originator of the Reference and Data Sheet Series, is published in four editions—the *Shop Edition*, \$1.00 a year; the *Engineering Edition*, \$2.00 a year; the *Railway Edition*, \$2.00 a year, and the Foreign Edition, \$3.00 a year.

The Industrial Press, Publishers of MACHINERY,

49-55 Lafayette Street,

New York City, U.S.A.