J.594 Baker

A455228 Shells of land and water

THE CENTFNT CHILDREN'S ROON
DCNETE ST MY CENTER
NEW YORK, W. . 10019

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

\square

PROM COL CHI. ACAD WCIENCES.
COWRY SHELLS.

shells of land and water

A Familiar
INTRODUCTION TO TIIE STUDY OF
THE MOLLUSKs

13Y

FRANK COLLINS BAKER

Curator, the Chicauo Academy of Sciences
ILATNTRATEi

CHICABO
A. W. MUMFORD, Prblisher
190:?

Copypiget, 1903.
By FRONN CGLUING" 'SAKER

$\because \because \because \quad \therefore \quad \because \quad \because \quad \vdots$

A.455228

R. R. DUNNELIEY \& SONS COMPANY CHICAGO

TO ALL STUDENTS OF NATURE
who diather her eberets hy orsertailons
IN FIELI, HOIEEST, ANO, WA, NER THIS VOLCMEIS DEDICATFD
"The mure things thou learnest to know and to enjoy, the more condplete and fill will lee. for thee the delight of living. " \because Phesi $\because \quad \because \quad \therefore$:
$\because \vdots \vdots \vdots$
$\because \because \therefore \therefore \because \because:$
$\therefore \therefore \cdot!\cdot \because:$.

CONTENTS

.

LIST OF FULL-PAGE ILLUSTRATIONS IN COLOR

Cowry Siellis - - \quad - \quad - \quad - \quad - Frontispiece
Cypraa anmulns, Cyprea prosa, Cyprea exanthema (half grown), Cypraa pantlema (young), Cyprea exanthema (full growi), (ypara histrio, Cypra lurila, Cypaa moneta, Cyprea mus, Cyprat spadicea, Cypraa talpa, Trivia solamhri.
Ponf Snatls ant Rifer Snals 18Ampullaria depressa, Angitrema verrucosa, C'ampeloma snlsolidnm, Lin-na"a mugasoma, Limmatagnalis, Melamia tetrica, Plhyst gyrima, Plan-orhis trivolvis, Pleurocera elevatum, Yivipara contectrides.
Lavi Simbles
Aeavis hæmastomus, Achatinella, Cerion microstoma, Clansilia macarama, Cochlostyla intorta, Cyclophorns apmendiculatus, Drymens multilineatus. $\mathrm{E}_{\mathrm{p}} \mathrm{i}$ dimagmophora fidelis, Glandinat truncata, Itelix memoralis, If lix l"matia, Liyums fasciatus, Nanina lamarkiana, Omphalina fuliginosa, Polygyta alloohatris, Polygera profunda, Strophomelus chiliensis.
The Orster and Its Pidlatives 69
Curlimu isocardia, Cytherea lupimaria, Lammilis lutoola, Mytihs eelulis, Ostrea lacerans, lecten dislucatus, beteria raliata, spomylus imperialis, Tellina ralliata.
Some Sralls of the Ocean 94
Bulla ampulla, Cerithium alico, Crepidula fornicata, Fissurilea listeri, Italiotis assimilis, llarja mobilis, Littorinat angulifera, Mitra pontificalis, Nerita peloronta, Strombus auris-lianie, Terebra lamarclii, Thrbo peth- olatus.
Rock Siells106Murex alustus, Murex axicomis, Murex hicolor, Mherex pomm, Murexradix, Mnrex ramosns, Murex tribulns, Ahrex trmentns.
Marine Sifells 115Burcium undatum, Cassis flammea, Chiton sifuamosns, Conns mamoreus,Cypma pantherina, Fascolaria distans, Ianthina communis, Lottiagigantra, Nassa glans, Oliva irisans. Tritonimm olearimm, Voluta musica.
Cepilalorols 132
Beak of Octopns, Japer Nintilns (Argonauta tulserenlata), Pearly Nautilus (Namtilus mubilicatus).

ALPHABETICAL LIST OF ILLUSTRATIONS

half-TONES AND LINE ENGRAVINGS

PaGE
C'rttleflsish, Sepin officinulis $1+1$
Curlea Thias, The Chawlinc Anhal of 107
1hall Ani Pemininge, The Rogky Mome of the 82
Drille, Me:THOD of Bondina of a 87
1 hirlla, shell of the, Crosedpinur cinoters 8t
Dremofe, A Marine 89
Mheimina, Methon of 90
Egi Mast of P'ilsta milina 36
File-sifele, A Common Cimalise, Limit squmenst 74
Gloghintion of the Anomonta 7
Lhiee, A SEA, Aplysim depitens 104
 104
Delaet Shell Caneo of Colembers 116
Hex-clan, A Comnos, siniselte solitissim! 78
Hemmit Crab in a Shell 92
Jaws of Land sials 41, 43
Jingle-shellas, One wf the, Anmian simpler - 73
 91
Linyotrachest thomasi, silede of 2.
Lineret, A, latelle lonugicost" 95
Limifet, Fliesin-witer, Aucylus ritularis 34
Linhet, Rivele, Aneyles ricularios 14
Litmoinis, A Gool Locility foh 100
Maimen Simell, A, Aucillo glathente 119
Melongena corona, A Marixe sembe 122
Mollesk, A Deep-witer, Chlliostomon hemiai 88
Mollosks Cin Alwits le Foexd, Where 54
Mollisks, Wifere Fresio-Whter, Lite $14: 3$
Money, I'hinitive Silell 110
Messel, Tue Bissus (of the liduk, Mytilus atulios 6.
Nautilen, The l'enies, S'untilus pompitius 133
Octopes tubericilateg 136
 $3:$
 76
l'arel Simor, The, Aryonmute urgo 185
Periwinkle, Anatonyy of the, Littorinu littoren 86
1'ehiwinkle, The Rocky Home uf tie Dhill ant 83
Pilysa, Aximal of 14

PAGE
Svall, The Violet Sea, Junthine fregilis 115
Snall, Wilite-lipied, Animal of tife 27
Svall, White-Lipped, Shell of the 26
Sxal without an Exterval Shell, Limad agrestis 27
Snalls, Four Siecies of Minute Land 30
Svalls, Taws of Lavi, Pulygyre thypodes and Limur flerws 43
Sxals, Left-handed lonh, Ihysu gyrine 13
Svalls, Orb, Tief Fiot of Each of Four Species 38
Skalls, Where Ponib, Delight to Dwell 24
Sphidla levis 135
Squm, A (ilant, Architeuthis prinerps 139
Squin, Anatomy of a Female, Loligo pentii 130
Squid, leak of a 128
Gquid, Dhaidam of tue Body of a, Loligo peetii - 127
Suud, Pen ol Internal sutport of a 129
Squid, The 137
Suum, Sucker of a, Loligo pmolii 128
Sthompus (iggas, Shell anl Anhal of 102
Seccinia ofalis, Crawline: 31
Tamelus glbbus, Foot anil Shmons of 67
Teeth of a Ponje ixalle, Limnect cupercte 4.3
Teeth uf a Water Daeatheh, Amniohle limose 44
Teeth, Magrai of the, un the Molluscan Radula - 42
Tellen Shell, An English, Giteri vespertinu 71
Terefo navalis, Anhal of the 80
The, The lieach at Low 60
Tootn Shell, Dentalium rlephentinum 94
Top-shell, The Common, of the Memterimanean Sea, Culliosfoma ziayphimem 97
Thay of shechens 58
Tribacra sedamosa 70
Thumpet Shell, The, Tritonium tritonis 123
Tun shell anil Animal, Dotirm perdix 117
Veliger larva 9.3
Vexus Comb, Mufer tenuispinu 111
Watering-pot Shella, Aspergillam reginiforem 81
Wenis, Fishemhax's 12.5
Whelk, Tue Black, Chrysodomus cutiques 129
Winhle shell of tife New Emihani S'tates, Fulgur cancheuletus 91
Fueng of Rissoa costata 93

PREFACE

Living in the woods and in the ponds and streams about us are thousands of creatures, large and small, which are seldom observed, and rarely understood, and are, moreover, often thought too trivial for serions contemplation. Many people when looking at a mollusk will say, " O that's only a clam, or a snail," but if they are asked how the snail grew, or where it lives, they are utterly at at loss to answer.

The author has been frequently surprised by the careless question of some otherwise intelligent person, when he has been exhibiting the shell of some interesting mollusk: "Well, really, now, was that thing ever alive?" And the surprise of others when told that there are such animals as land smails is amazing, to say the least. It is to be earnestly hoped that such a condition of things will soon be changed by the light of knowledge.

Nature study has now become an established part of the curriculum of all schools, graded and higher, and no apology seems necessary for the appearance of this volmne. For reasons which the author has acquired through his connection with the public, as custodian of a publie museum, the pages which follow are couched in language somewhat different from the general books on nature which are being published. He believes that the narrative form will be more pleasing than any other style, and will bring the subject closer to the reader.

The plan of the work is as follows: Professor Parker is a teacher of biology in a university in which Harry and George are students. Howard is a young man, not attending sehool, but intensely interested in nature. The narrator is a post-graduate student, pursuing special studies. Professor Parker and the narrator are ardent conchologists, and the Professor has interested the three young men in the subject. In the chapters which follow, the quartette of conchologists visit the woods, fields, lakes, and seashore with Professor Parker, who instructs them in the varions phases of the science. Local and other musenms are visited in the search for knowledge, and the summer's work terminates in the formation of a conchological club. It is the hope of the writer that the use of this method may suggest to some teachers of nature, by little excursions into the country, a new way of interesting and instructing their pupils.

Each chapter of this volume treats of a definite branch of the subject, and all information is given which is necessary for the amateur. In the descriptive chapters on the different fimilies of the Mollusca no attempt has been made to even approach completeness, only a simple ontline being given of the facts conceming the most important families. Those who would know more concerning these lowly creatures (and the writer earnestly hopes that all who read this book will have such a desire) are referred to the chapter on "Some Books to Study."

In the preparation of those chapters devoted to visits to the museums, the writer has drawn upon all available books for information, and he cannot justly claim the authorship of these chapters, although the language and sequence are his, and for these he is responsible. The subjectmatter of these chapters was also published in part in recent volumes of "Birds and Nature." The black and white cuts in the text have been carefully selected, and sufficiently illustrate the subject-matter of each chapter. The colored plates illustrate some of the principal families of mollusks.

It is the author's desire that this volume may be the means of stimulating an interest in this neglected but intensely interesting type of life. and if such should prove to be the case. he will feel amply repaid for time and trouble incident to its preparation.

The author believes that chbs should be formed for the study of nature, and in the present volume the formation of a club devoted to the study of mollusks is described. There are many clubs or societies which have for their object the study of botany, entomology, ormithology, and microscopy, but there are very few devoted to the study of the lowly molnsks. These animals should be of particular interest, becanse of their beanty, the ease with which they may be collected, and especially because their study and aequisition take the student into the fields, the woods, and beside the streams. and give him a wider conception of Nature and her laws.

FRANK COLLINS BAKER.
Chicago, Illinols, June 1, 1903.

ILLUSTRATIONS AND ACKNOWLEDGMENTS

The colored plates are photographed from specimens loaned by The Chicago Academy of Sciences, and have been previonsly published in "Birds and Nature," Volumes VII, IX, and XII. The full-page halftones are from negatives by Mr. Frank M. Woodruff, Mr. T. HI. Puple, and Professor Alja R. Crook. A number of the line engravings and several of the half-tones in the text are from the works of Tryon, Wookward, Bimey, Dall, Verrill, Morse, Prime, Lankester, Brooks, Hyatt, Gould, Goode, and Kmz. Several of these have been published in the Bulletins and Reports of the United States Fish Commission. Acknowledgnent is made for these severally in the descriptions of each illustration. To these volumes the author desires to express his indebtedness, and also to The Chicago Academy of Sciences for the lom of various cuts which appeared in "The Mollusca of the Chicago Area." When not otherwise stated, the line engravings were from drawings made by the author especially for this work.

The nomenclature used is mainly that of Dr. William H. Dall, of the United States National Museum, and Dr. Henry A. Pilsbry, of the Academy of Natural Sciences of Philadelphia.

THE IIOMEE OF THE CLAM

One morning in Jume, Professor Parker awakened our quartette of amateur conchologists at the early hour of five o'clock, and bade us prepare for a day's outing in search of fresh-water clams and smails. After lastily eating breakfast and packing a good lunch, for shell-collecting makes one very lungry, we left the house and boarded the cars for a ride of eighteen miles, which carried us to a large lake south of the city of $\mathrm{C}-$-.

The ride through the country in the early morning air was very exhilarating. A cool breeze blew across the open prairie, and wafted to our nostrils the sweet incense of early summer. After an hour's ride we reached the village of W —_, and alighted from the car. A walk of fifteen or twenty minutes over a stretch of swampy prairie brought us to the edge of the large lake, which was our destination.

The lake at this point was shallow and bordered ly cat-tail flags and rushes. The bottom was muddy and peculiarly adapted to the life of clams and snails. The water contained a large amomet of lime held in solution, thus furnishing the material necessary for the building of the shells. This body of water was very beantiful, being several miles long and nearly a mile wide. In some places the bank sloped down to meet the water, which was overhung by tall trees, while in other places it was low, marshy, and reed-bordered. Here the dragon-flies flitted to and fro in search of prey, and the water was alive with whirligig-beetles, waterboatmen, and water-striders, the last being those strange, spider-like insects which appear to walk upon the surface of the water. As we went along the bank near the swampy portion of the lake, a large bittern started up and flew away in one direction, while in another, dropping from a nearby tree, a kingfisher uttered its shrill ery which somnded like a watchman's rattle.

Our collecting outfit consisted of a market-basket for carrying large specimens of clams, and in addition to this, each member of the party carried a fishing-basket. In this were stored sereral wide-mouthed, twoomnce bottles, one of which was filled with alcohol for preserving the soft animal. There were also some homoeopathic vials for minute shells, a pair of sharp-pointed tweezers, a flat-bladed knife, and a small dipnet
made of wire netting and attached to a long handle, jointed like a fishpole. This net was of great value in securing specimens which were beyond the reach of the arm and in bringing up those species which live on a muddy bottom in rather deep water. Professor Parker had provided a two-quart pail for the purpose of carrying home some of the living snails and clams.

We prepared for our first collecting at a point in the lake where the shore was sandy and gradually sloped into deep, water. The hottom was

Fresh-water clam, showing different parts of shell. Upper figure, right valve exterior: lower figure, both valyes viewed from above; A, anterior end; P, posterior end; D, dorsal margin: V, ventral margin; R, right valve; L, left valve; 1 , ligament; Ig, lines of growth; lu, lnnule; u, umbo. thickly dotted with little projections sticking out of the sand and mud. Harry, who was our most energetic collector, having remored his shoes and stockings, and laving rolled up lis trousers, waded into the water, and brought to us a landful of these objects which proved to be fresh-water chams, or Unios, like those pictured in the accompanying figure.

The shells were a rich, yellowish green color, with rays of dark green extending from the umbones to the ventral margin. Some of the specimens were beautifully polished, while others were covered with a hard incrustation of mud at one end. Howard, who was a begimer, and knew little alout mollusks, asked what the shell was made of and how it opened.

As we were all a little tired by our walk over the swampy ground near the lake, we sat down upon a grassy loank while Professor Parker, in answer to Howard's question, gave the following talk on clams:
"In the clams, oysters, and mussels, the shell is composed of two convex pieces, or valves (hence called bivalves), which are generally on each side of the animal and are attached to each other at the dorsal or upper margin by a tongh, clastic, homy ligament. In the oysters and some other shells the two valves are not side by side, but are upper and lower; but of these we shall learn more at another time.
"The romded, raised portion of the shell at the upper part of each valve is called the beak, or umbo (plural umbones), which is marked by
several raised, wavy ridges showing the form of the very young shell. The shell grows by the addition of new shelly matter, and each time new material is added a distinct line is left on the shell. These we call lines of growth. At intervals, a more distinct line edged with black is formed, which shows where the animal rested and stopped work on its, shell. These are called rest periods, and by their aid we are enabled to tell the age of a clam. For example, the shell we are studying is five years old, as there are five of these rest periods, counting the last.
"If the shell of the clam is held in the hand with the umbones uppermost and the long end nearest the observer, the right and left siles of the clan are in their natural position and the point nearest the observer is the posterior end, the point farthest away is the anterior ent, while the upper, or rounded part, is the dorsal margin, and the sharp, lower part is the ventral margin. The ligament and umbones are also in the center of the sliell.
"The shell of the clam, as well as those of nearly all mollusks, is covered by a

Fresh-water clam, showing interior of shell. A, anterior end; P, posterior end; a, anterior adductor muscle scar; b, posterior adductor muscle scar ; c, anterior foot retractor muscle scar; e, posterior foot retractor muscle scar; ct, cardinal teeth; lt, lateral teetli; l, ligament; lu, lnnule; pl, pallial line; u, umbo. layer of animal matter called the epilermis This protects the more limy part of the shell, which is composed of carbonate of lime with a little animal matter, from being acted upon by the carbonic acid in the water. This epidermis, or skin, is formed by the edge of the soft part of the animal, called the mantle, which lines the shell If a break occurs in the elge of the shell, it is perfectly repaired by the animal and covered by the epidermis; if, however, the break occurs in any other part of the shell, the damage is repaired by the addition of new shelly matter, but without the epilermis. This shows monclusively which part of the animal secreted this covering.
"Haring studied the outside of the shell," said Professor Parker, " let us examine the insile of this dead clam, from which the animal has been removed loy the waves. The inside of the valve is concave, and is marked by several very distinct characters. Near the dorsal margin there are two long, thin teeth, or rilges, called the lateral teeth, and two short, conical tubercles just in front of the umbo, called the cardinal teeth. These interlock with similar processes in the opposite valve.

- At either end of the shell, just below the termination of the lateral and cardinal teeth, there is a large, romnded scar which shows where the adductor muscles of the amimal are attached, and are therefore called respectively the anterior and posterior adinctor muscle scars. Not far from these, two other scats are placed, which show where the anterior and posterior foot retractor museles are attached.
". The ligament and the adductor maseles are two of the most important factors in the economy of the clam, governing as they do the opening and closing of the shell. The adductor museles by their contraction serve to keep the two valves closed, while the ligament, which acts as a spring, tends to keep the valves open, the cardinal and lateral teeth gniding the two valves, and keeping them from getting twisted.
"If we were to cut a section through the living amimal, we would see that the two shells form a double lever, with the teeth as a fulcrum. The ligament acts upon the short arm of the lever, the umbones, as a spring which is constantly pulling the vallves apart. The adductor muscles, on the other hand, act upon the long arms of the lever, and by their

Diagram of a section of clam shell, showing method of opening and closing the valves. I., ligament: II., III., the umbones; IV., V., lateral teeth in the left valve ; VI., lateral tooth in the right valve: VII., VIII., left and right valves of shell; IX., adductor mascle; X., Xl., ventral surface of shell, or long arms of the lever. (After Lancaster.) contraction pull the valves together. It will readily be seen that when the shell is tightly closed, the animal is not at rest, beeause this canses some effort on the part of the adductor muscles. The real periol of rest is when the shells are slightly gaping, as they are when the animal is partly buried in the mud.

- The hollow in the upper part of the shell formed by the umbo is called the cavity of the beaks: in this are a number of small sears showing where the muscles are attached which hold the animal to the dorsal part of the shell.
" About a quarter of an inch from the edge, an impressed lime runs parallel with the ventral margin of the shell. This shows where the mantle of the amimal is attached. It is called the pallial line, and extends in an mbroken line from one adductor muscle sear to the other. The interior of the whole shell is pearly and iridescent."

Having completed our examination of the shells, and feeling thoronghly rested, we all followed Harry's example loy taking off our shoes ant stockings, rolling up our tronsers, and wading into the lake after clams. Buried in the muddy saml, they were all about us, and in all conceivable angles. Here and there several individuals were crawling,
and we paused to watch them. The animal would stretch out its white, fleshy foot to its fullest extent, get a purchase on the simd, and then pull

Fresh-water clam crawling over the muddy bottom of a lake. Cl, cloacal siphon; Br , branchial siphon; F , foot; S, shell; B, surface of mud; < which the animal is moving ; $t \downarrow$, currents of water to and from the gills. (After Morse.)
the shell after it, sometimes with a little jerk. In several places the clams had left a well-marked track in the sand, showing the distance which they had traveled.

Professor Parker called our attention to the two siphons which protruded from the posterior end of the shell. The lower one, he told us, was taking in water filled with microscopic plants and animals, which the clam fed npon, and also fresh oxygen for the gills, or breathing organs. The upper siphon at the same time was ejecting the waste products of respiration and digestion.

About noon we stopped collecting and ate our lunch on a grassy slope not far away, after which we proceeded to become better accuainted with these animals. Under the guidance of Professor Parker we removed the right valve of the shell by cutting with a flat-bladed knife through the large adductor muscles, and removing that portion of the mantle which lies next to and secretes the shell, we then beheld the internal organs of the animal. The inside of the shell was lined by the soft mantle, which was the exact form of the shell. Its surface was covered with little cells, which had the power of extracting the carbonate of lime from the blood and building up the shell with it. The shelly skeleton of all clams and snails is formed by a mantle similar to this inside of the shell.

Fresh-water clam with right valve and a part of the mantle removed to show the principal organs of the animal. A, anterior end; P, posterior end; ab, abdomen; b, anterior adductor mascle; br, branchial siphon; c, posterior adductor muscle ; cl, cloacal siphon ; ct, cardinal teeth; d, anterior foot retractor muscle ; e, posterior foot retractor musele ; em, edge of mantle which forms the pallial line: f, foot; h, protractor muscle of foot; ig, inner gill of right side; l, ligament; lp, labial palpi; lt, lateral teeth; m, mantle : mo, mouth; og, outer gill of right side; s, shell; u, umbo.

The fleshy foot was seen to be attached to the abdomen, which was suspended between two pairs of gills, or breathing organs. Each gill was made up of many little leaf-like parts arranged in vertical rows. At the anterior end there were two pairs of orgins resembling small gills which were the labial palpi. Between these palpi, or lips, was placed the month, a little oval slit. The mantle was seen to be attached to the shell along the pallial line and to lse modified at the posterior end by two short siphons, the uper one being separated from the lower ly a horizontal partition. The margins of both siphons were lined with short, hair-like organs, called cilia. The upper siphon was seen to be a closed tube on all sides, but the lower siphon was open below, in order that the water entering might bring an abmentant food supply in the form of microscopic animals and plants, and hathe the gills, thereby furnishing fresh oxygen for the hlood, and pass on to the month, which we saw tolse placed between the four lallial palpi at the anterior end of the body. The water is then taken into the stomach, the small animals digested, and the waste products discharged throngh the upler siphon.

Professor Parker told us that the clams possess a simple nervous system, which is made up of a ring of nerve matter called the brain. This surrounds the asophagns, from which brimches are sent to the foot, stomach, gills, mantle and other organs. There is an olfactory orgm, or nose, and an auditory organ, or ear, the latter situated in the foot. The circulatory system is composed of a heart made up of a ventricle and amicle, from which veins and arteries are sent to the lifferent parts of the borly. The digestive system consists of a small, romded stomach and a long, narrow intestine. "You may lee surprised," sail Professor Parker, "when I tell yon that the clam has no head. although possessing a large mouth which leads directly into the stomach. For this reasom the bivalves are sometimes called Acephala, or headless animals.
"If we should make a section of a clam by cutting through the whole animal in the region of the heart, we wonld find the organs about as I have drawn them in this figure," and he showed nis a rough pencil sketch which he had made. "The foot hangs down between two pairs of gills in the lower cavity, or pallial chamber, and the gills are pierced loy many little water tubes ruming longitudinally from one end to the other. In the upper cavity, which is separated from the lower by a partition, are placed the heart, intestines, and kidney. Sections throngh other parts of the body would appear somewhat different, hat this one gives a good general idea of the intemal structure, particnlarly of the two main looly cavities."

While Professor Parker had been speaking, Harry, who was the most observing member of the quartette, and who had been carefully examining a clam with one valve removed, exclamed, "What's this thing in the upper part of the animal which pulsates so regularly?"

Professor Parker took the specimen and looked at it for a few moments, saying, "This is the clan's beating heart. It is composed of a central ventricle and two lateral amricles which are contained in the pericardimm, this being the upper cavity which you saw in my drawing of a section of the clam. There are several large blood-vessels which carry the blood throngh different sized veins into every part of the borly. The throbbings which we see in this specimen are the pulsations of the ventricle pumping the blood into the veins. After flowing throngh the body and becoming loaded with carbonic acid gas,

Cross section of fresh-water clam passing through the heart. A, pallial, or branchial chamber: a, aurieles; cl, eloaeal chambers of gills; f, foot; i, intestine : ig, inner gills; k, kidneys; m, mantle: og, outer gills; p, pericardium, or chamber containing the heart: v, ventricle. the blood passes to the gills, where it discharges the poisonous gases into the pallial chambers, absorbs fresh oxygen from the gills, and enters the two amicles, one aricle being placed over each pair of gills, to be again pumper through the body."

Harry was asked to comnt the pulsations of the heart and he did so, finding sixteen per minnte. This was an interesting oconpation, and we each comnted in turn, finding the records to vary from fourteen to sixteen.

George, who from his habit of asking endless questions hat heen dubled the interrogation point, asked how the young clams grew.

Anterior view of "Glochidium" of Anorlonta, inclosed in the eggshell. b, byssus; bg, byssus organ; e, egashell; h, hooks; ls, left valve of shell: m, posterior adductor miusele; rs, rislit valve of shell; s, setie; v, velum. Greatly magnified. (Ifter Brooks.) This question led the Professor to explain to us the wonderful method of growth in the fresh-water clams.
"The gills of the fresp-water clams are modified to form marsupia, or poucles, and in these the young clams develop from the egg until they attain a certain size and shape called a glochidiam. The shell, mantle, and muscles are developed, but the digestive organs are not formed until six months or a year afterward. The animal is inclosed in a thim eggshell in which are enveloper the embryonic shells of the animal. These are miterl by a hinge, whith is so elastic
that the two valves are frequently seen in the same plane. A long, thread-like organ called a byssus is placed between the valves, and this enables the young clam to anchor itself to a stone when it becomes free. 'The lower' surface of the shell forms two toothed hooks.
"The young of some clams, as Anorlonta, reach this condition in a few days in the fall, and they remain in this state until the following spring, when the parent discharges them into the water. The embryos now swim about by opening and closing their shells and seareh for a fish, into the fins or gills of which they drive their hooks and close their shells. The fish covers the glochitium with a layer of living cells and it becomes encysted. Here it develops gills, stomach, intestines, and heart, amd finally breaks the cyst or walls of its prison and falls to the bottom of the water, a perfect young shell. From this point its growth consists in simply enlarging its shell."

We hat all heard of mammals which carried their young in ponches, like the kangaroo of Australia, and Harry said he had recently read of some sea-urchins living in the Pacific Ocean which also carried their young in marsupia, but that clams should be marsupials was something new to us.

Professor Parker also pointed out the difference between the male and the female shells, the latter having the lower posterior part of the shell much swollen to accommodate the enlarged gills when they are used as marsupia, while the male shell is thin and perfectly even in this part. We also learned that only a few of the fresh-water clams could be thus distinguished, for in a large number the shells of both sexes are alike.

After gathering a number of clams and snails we walked several miles to the shore of Lake M—_, where Professor Parker thought we might find some species which did not live in the smaller lakes and ponds. Just as we were leaving the head of Lake C———, Harry discovered a pile of clams on the shore, from which the animals hat been neatly extracterl, leaving the shells as perfect as any collector cond wish. The Professor told us that this was the work of the muskrat, that animal being very fond of fresh-water clams. "The vicinity of its burows," he said, "are always good places in which to find perfect and clean specimens of many comparatively rare species."

When about hall the distance to the lake had been covered, we came to a small ditch. The Prolessor remarked that this ought to be a good place for the small clams of the genera Sphariom and Calyculina, and so it proved mon examination. The muddy bottom seemed fairly alive with their delicate, horn-colored shells, which were from a quarter
to a half inch in length. The Professor told us that these small clams live plentifully in pools, ponds, ditehes, and streams.

In about an hour we reached Lake M__, and walked along the shore for some distance in search of molluscan life, but met with little success as far as living species were concerned. In the line of debris which had been thrown up by the waves, we found a large number of very small snails and clams and a host of insects belonging to the beetle order. George managed to find several large clams like those which were so plentiful in Lake C ——, but with very much heavier shells. We asked Professor Parker if they belonged to the same species and he said they did. He told us that the reason

Calyculina transversa, with its long, narrow foot and two short siphons extended. (Prime's Monograph.) they were so heavy was becanse the waters of a large lake like Lake M _ - were very rongh, and that the shells were subject to a great deal of rolling about, while the waters of the smaller lakes were comparatively calm, and the shells, being allowed to remain quiet, were consequently more delicate. We also learned that the Anodontas, which have thin shells, are generally found in still bodies of water on muddy bottoms, while the Unios, which have very thick, solin shells, prefer, as a rule, the bed of ruming streams.

We reached home late that might, footsore and weary and desperately hungry, but with our bottles, pockets, and baskets filled with shells, and our minds fresh with the memory of a joyful day spent in commumion with Mother Nature.

A DAY WTTII THE POND SNAILS

A few days after the collecting trip recorded in the preceding chapter. I'rofessor Parker and our quartette of young naturalists again visited the country in search of fresh-water smails.

This time a different direction was taken, and a locality risited which was not at such a great

Limntea desidiosa, a small pond snail (Binney.) distance from the city. This was reached by an electric-car ride of half an hour. It was a beautiful spot. A creek wended its way through a small ravine, which was overhung by tall, majestic trees. The banks were grassy and bordered ly sedges, willows, and rarions shrubs. The little creek ran merrily along, now dancing over a pebbly bottom and again flowing sluggishly between steep banks, until it joined its waters with those of a large river. Here was one of Dame Nature's choicest. retreats, and we proposed to wrest some of her secrets from her.

After leaving the carr, a walk of ten minutes brought us to the river, which Professor Parker desired us to examine before going to the creek. Harry was so anxions to secure the first specimen that he rushed on aheald and stooped over the bank, earnestly peering into the water. Suddenly, with a cry of exultation, he held up to riew several large specimens. A nearer approach showed them to be living specimens of the large pond snail, Limnow strumalis, and all hastened to examine the animals. Professor Parker took a specimen in his hand and showed us the principal characteristics of the mollusk. The shell of this snail was long and graceful and of a rich horn color. The spire was very much elevated and tapered to a point; the whorls were much longer than wide, and separated by a distinct suture. The aperture was wide and very large, and the peristome, or outer lip, was thin and sharp, like that of most fresh-water shells. The columella, which means little column, was covered with a deposit of shelly matter, and the umbilicus was indicated by a little chink, or fissure.

Pond snail, showing different parts of shelf. a, apex: sp, spire; s, suture; ap, aperture: p, peristome ; c, columella; lw, last whorl; u, umbilical region.

While we were examining one of these shells, the occupant thereof was twisting itself about in a vain effort to find some object upon which it might erawl. This gave us a splendid opportunity to examine the amimal. Its color was dark horn.

Animal of pond snail (Limnaa mighelsi). bp, breathing pore; e, eye: f, foot: h, head; s, sholl; t, tentacles; v, vela, or lateral lobes of head. with a bluish tinge on the head. The foot was very broad and flat, and separated from the head by a little constriction. The head was very broad, and widened at the sides into two lobes, called vela. The tentacles were short and triangular, and on swellings at their imer base the little black eyes were placed. Just at the elge of the shell, the little hole through which air enters the lung could be seen opening and closing.
"We must understand," said the Professor, " that the snail camnot leave his house or shell any more than the turtle can crawl out of its shell. The anmal of the pond snail is fastened to the colomella loy a huge columella muscle, which grasps this part of the shell and holds it fast. A part of the animal, called the mantle, is kept in close contact with the shell by means of small muscles called sphincter muscles. It is the edge of this mantle, called the mantle collar, which secretes the shelly matter and builds $u p$ the shell. It also provides the beantiful colors seen in shells which are found in the tropics. We must thoronghly understand that were we to take the animal from its shell, it would die.
"The animal, when removed from the shell, is seen to be the exact comerpart of it, and it is also seen to be covered with a soft membrane, the mantle, which is molded to the shell. The spire is mainly occupied by the enormous liver.
"You will remember," contimed the Professor, "that we spoke of the clams as bivalves becanse they had two shells. The suails are called mivalves because they have but one valve, or shell, which is generally in the form of a spiral, as you have already learned. All snails are not umivalves, however, as you may observe when you visit the museum. Some suails have the shell composed of sereral pieces, while other snails are without a shell."

Placing the pond snails in our collecting pail, we then looked for other mollusean inhabitants of the river. Just a little way from the shore, several large pond smails conld be seen apparently crawling on
the surface of the water, with little wave-like motions passing over it, with shell downward and spreading foot tumed upward. The snails had also extended their breathing orifices to the surface of the water in the form of tubes or siphons. Professor Parker remarked that the animals were busily engaged in taking in a smpply of fresh air. He said that pond snails, orb snails, and some other mollnsks breathe air by means of a lung in the stme mamer as the land snails, and they are compelled to come to the surface at intervals for the purpose of exhaling the poisoned air and taking in a supply of pme air.

A short distance from the place where the Limnceas were found, were noticed a number of snails in the water, gliding along, with a peculiar wheel-like shell set ergewise on their backs. These were the Planorbes, or orb shells. The animal was much like that of the pond suail, except that the tentacles were very long and thin, instead of being flat and triangular. The shell was tightly wound like a watch-spring, and the upper and lower surfaces, that is, the spire and umbilicns, were in the same plane, and the full number of whorls (four) could be plainly seen. The aperture was rounded and the outer

Orb snail, Planorbis: shell with animal creeping over the ground. (Binney.) lip thin and sharp.

Crossing over a little neek of land which extended into the water, our party reached the small creek which flowed into the river in which lived a great number of pond snails, orb snails, and another variety very numerous in specimens which were gliding swiftly about as though bent upon important business. "These," Professor Parker said, "are the Physas."

As these were fine, large specimens, we all stopped to gather a number for our collections. The shells of these snails were about three-quarters of an inch in length, highly polished, and with a short spire and very large aperture. But the aperture of the $P h y s a$ seemed different from that of the pond snail. Upon comparing the two shells, the Physas were found to have the aperture on the left side, while the pond snails had it on the right side. Professor Parker explained that these two snails were typical of all gastropod shells. In the great majority of snails the aperture is on the right side, ancl these are called dextral or right-handed shells. In a few, like Physa, the aperture is always on the left side,

Left-handed or sinistral pond snails, Physa gyrina.
and these shells are called simistral or left-handed shells. Some shells. as a variety of the apple snail, Campeloma decisum, may be either dextral or sinistral, but only a few species of smails are both right and left handed.

The animal of the Physa seemed similar to that of the orbs shell, the tentacles being long and slender, and George asked if there ivas any difference. The Professor snggested that we examine a specimen carefully. This we did, and found that it differed from all the other fresh-water suails in having many little finger-like projections on the

Animal of Physa. (Binney.) edge of that part of the mantle covering the columella. These were arranged in two series of rows, one near the lower part of the colmmella and one near the point of juncture of the onter lip with the body whorl. The whole animal was yellowish gray or blatkish in color, flecked with yellowish white, the spots being plainly seen through the transparent shell.

Professor Parker then told us that Physa was one of the hardiest of snails, and that he had frequently seen it in winter gliding over the bottom of a pond or creek when the surface was corered with ice. The shells, he said, were very variable, scarcely two specimens being exactly alike.

A short distance from the shore of the creek were a number of dead clam shells, and George fished mp several of them with the wire net.

Ancylus rivularis. River limpet, with animal extended. (Binney.) One of these shells had several little snails upon it which were quite new to us. These snails were flat and limpet-shaped, and about a quarter of an meh in length. The animals looked like Limnact, with their flat, triangular tentacles and broad foot. The Professor said that these curious little fresh-water limpets, Ancylus, were very common on both the outside and inside of clam shells, and on stones, sticks, and other submerged objects.

Having exhansted this part of the creek as a collecting locality, a shady spot was selected in which to eat lunch, and never was feast more enjoyed than was that simple honch, the appetites being whetted to the keenest edge by the fresh air and vigorous exercise.

After lmeh, our party walked across several fields, passed through a pateh of woods, and erossed a streteh of swamp, where Howard fell into a hole, thereby scaring several water fowl. Finally we reached the shore of a large lake, where Professor Parker said another tyje of mollusk was abumdant.

Leading the way to a little point of land which extended into the lake, he bade all take off shoes and stockings, roll up tronsers, and wade into the water in seareh of snails. Harry as usual was the fortunate one, and soon came across a colony of long, slender shells. "They are a species of the water-breathers," suid the Professor, "which are called Pleurocera elecutum. They are named water-breathers because the oxygen is supplied to the blood by means of a gill instead of a lung, as in the snails which have been previonsly seen. This snail," he added, "like others of its family, does not like a muddy bottom, but prefers a rocky or sandy bed, in which it delights to partly bury itself. It is seldom found in a muddy pond or stream."

Shell of Pleurocera elevatum, a water - breather. (Tryon.)

The animal had a short, thick, wide foot, and its color was blackish or yellowish in a more or less mottled pattern. The head ended in a rather long rostrum, or snout, which was yellowish with a black pateh on top, and the mouth was placed at the extreme tip. The tentacles were long and tapering, and the black eyes were placed on little prominences at the bases of the tentacles. The upper part of the hinder end of the foot supported a horny, ovate opereulum, which closed the aperture when the amimal withdrew into the shell.

Professor Parker explainel that in the water-breathers, including the fresh-water and marine mollusks, the proboscis is of two kinds: in one, it is simply contractile-that is, it can be contracted as when one presses a cushion spring together-while in the second class, it is retractile, and can be retracted like the eye-pedmele of a land snail. The genus Pleurocera is a good example of the first class, and the Dolium, or tum-shell, of the second class.

This small smail differed from the ones which had been previonsly collected not only in breathing by gills instead of by lungs, but also in having an operculum, and in having the month placed at the end of a snout. "These differences," Professor Parker remarked, 'are characteristic of most fresh-water smails."

On one side of the miniature peninsula were a number of rounded objects half buried in sand, and of a rich green color. Upon investigation they proved to be a species of the apple snail, Cumpeloma decisum. The shell of this snail was of a beautiful applegreen, the whorls were gracefully rounded,

Shell and operculum of apple snail, Campeloma decisum. (Binney.)
and the whole shell was solid and heavy. The aperture was tightly clased loy the operculam.

While Harry was holding the shell in his hand, the animal came forth and stretcherd itself out to its fallest extent. Attention was immediately attracted to the enormonsly wide, thin foot, which seemed to envelop the rest of the amimal in its ample folds. The tentacles and snont were short, and the eyes were placed near the base of the tentacles, on the outside, where they were much thickened. The operculum was attached to the back of the foot, and was oval in shape, being made up of many concentric rings; it was also tough and horny.

Having collected a number of the apple snails, besides some others, our party walked to another part of the lake, where the bottom was muldy, and where the water contained some water-plants. Here the wire scoop came into play. The first haul produced nothing but a few pebbles and a lot of mud. Fearing that the handle was not long enough, all of the joints were attached and we tried again. This time it was not in vain, for the scoop came up filled with soft mud, which was literally loaded with the shells of a small snail, Ammicola limosa, and with several varieties of the little clams like those which were collected on the previous trip.

The smails were placed in a bottle of water, and soon came out, and began to crawl up the sides of the glass. With their small foot, long cylindrical tentacles, globular shell, and large operculum, they were very

Dorsal and ventral views of animal and shell of Amnicola limosa. Magnified. (Stimpson.) interesting specimens. Professor Parker selected a number of these, and also several of the apple snails and the Plewrocera, and placed them in his pail, to be added to those already in his aquarinm at home.

Among the apple snails collected were several which had the spire of the shell broken off, and George asked how this was done. The Professor replied that in many of the shells the end of the spire frequently became empty, as the animal built the shell near the aperture. As the dead tip soon became brittle, it broke off, and the animal built a partition across the exposed part of the whorls. The shells in this condition are called decollated. In some small marine shells, called Cocom, the decollation takes place to such a degree that when the animal is adult, the shell
is simply a straight tube. In the young animal, the shell is spiral. Sone land shells, called Cylindrella, have been seen to voluntarily break off the dead apex by hitting it against a stone.

As it was now getting late, the collecting outfits were packer, and we started to walk to the car line, which was abont a mile distant. On the way, we passed a small stream on one side of the road which was literally filled with decaying vegetable matter, and across from it on the other side of the road was a small pond fairly black witl fine, impalpable mul held in suspension in the water. George began to examine these places in the hope of finding a few more snails, but he was told by the Professor that mollusks could not and would not inhabit water in such a condition. In the case of the first stream, the decaying regetation cansed the

Apple snail, Vivipara intertexta. Animal and shell viewed from above and in front. Left figure, female; right tigure, male. (Binney.) presence of carbonic acid gas, which was imimical to the life of the smail; and in the pond, the fine mod interfered with the breathing of the molhisks. It was also learned that a stream with a very rapid current and a bottom composed of erystalline gravel was not well adapted to the life of fresh-water smails. Snch snails as Plysa, pond snails, and apple smails love a still pond or shoggish strean, in which the botiom is more or less muddy.

On our way home in the cars, we amateur conehologists plied Professor Parker with questions abont fresh-water snails. Observing that we were thoroughly interested, he suggested that we visit the musemm with him the following Saturday, and study the different types of this class of mollusks. Tu this, all gladly assented.

SNAILS OF POND, RIVER, AND BROOK

On the Saturday following the trip to the river and creek, the large museum in the park was risiter, and under the guidance of Professor Parker we studied the shell collection, and particularly the speemens from fresh-water streams and ponds. The Professor was thoroughly aequainted with this class of animals, and narrated many interesting facts as we went from case to case.
"Our fresh-water snails," he said, " may be divided into two elasses: first, those which breathe by means of a lung and winich must come to the surface at regular intervals to take in a supply of air; and second, those which breathe by means of plume-like gills, which take the oxygen directly from the water.
"One of the most common and best known of the first class is the Limaceide, comprising the pond smails. These amimals generally have a long. graceful shell, horn-colored for the most part, but sometimes greenish without and reddish within the aperture. They have a broad, flat foot; an auricnlate, or eared, head; and flat, triangular tentacles.
"It is interesting to note that the young animal.s breathe air through the water for a long time, but finally aequire the normal charateristic of the family, which is, breathing the air directly. While submerged, the mantle chamber containing the lmg is tightly closed, so that no water can possibly enter. It is thought by some that the species of Limnoa, living at great depths in large lakes, retain the early habit of allowing the water to fill the mantle cavity and so breathe oxygen through the water. They are not therefore compelled to come to the surface for air.
"Limneats live imder many varying conditions, being found in the arctic regions of Greeuland and Icelaud as well as in the tropics, in thermal springs, and those containing sulphur and other mineral matter as well as in brackish and in fresh water. In Thibet, they have been found at a height of over fourteen thousand feet, and in Lake Geneva, Switzerland, at a depth of eight hundred feet.
"During times of drought, when streams are dried up and the surface of the mud is sum-cracked, the species of the family bury themselves deeply in the mud and cover the aperture with an epiphragm

Physagyrina (\mathbf{T}, S,)
Plonrocera +l-vatum ((: ©)
Vivipara contectoides C . S .

POND SNAILS AND RIVER SNAILS.
Melania tetrica (Viti Iclimuls)
Planorhe trivolvis (\mathbf{s}^{\prime})

Angitrema verrucnsa (IV. S.)
Limmara stagtabis C. S.

in much the same mamer as is done by the land shells. This fact accounts for the apparent disappearance of all life from a pond when it dries up, and its sudden and seemingly unaccountable reappearance when the pond is again filled with water.
"Next to the Limncers, the Planorbes, or orb-shells, are the most abmiant and interesting, although not exhibiting a large amonnt of variation, as you will see by the specimens in this case. Their rombled, orb-like shells are found along the shore of ahmost any pond or stream. In size the shells vary from the little Planorbis parvus, so common among the fresh-water algre and which is scarcely an eighth of au inch in length, to the giant Planorlis corneus of Europe, with a shell over an inch in diameter. The Planorbes are found in nearly all parts of the world.
"The family Physide, containing left-handed or sinistral shells, is one of the most distinct of all the fresh-water mollusks, not only in the form of the shell, but also in the character of the animal, the mantle being ornamented by many little finger-like projections which are reflected over the inner lip of the shell. We learned something about these animals on our last collecting trip; how they move over the bottom of a pond or creek with a steady, gliding motion, even when the surface of the water may be frozen. The shells are almost always smooth and glossy, and average from half an inch to an inch in length. Like the Limnaas anl Planorbes they are found in many parts of the world. The egg-masses of Plyssa, Planorbis, and Limncea (little, glairy, transparent, jelly-like objects) may be seen in the spring in almost any pond or stream, attached to sticks, stones, or the under side of water-plauts.
" Not all of the fresh-water pulmonates have spiral shells. A whole family, the Ancylide, have a conical shell formed like a rounded shield and resembling the limpet of the seashore; hence they are called river limpets. They are generally duite small, some of the species being less than a quarter of an inch in length. They live attached to the interior of dead river shells, and to sulmerged plants and rocks. They are very interesting, but hard to find on account of their small size and inconspicnous hahitat.
"The second class of mollusks of which I spoke a short time ago (those which breathe air through the water) have a respiratory cavity instead of a lung, in which is placed a series of leaflets arranged like the teeth of a comb in two series of lines, forming the so-called gills. The month is placed at the end of a long rostrum or proboscis and not in the lower plane of the head, as in the last class. We must
cross the museum to study these snails, as they belong to a different order from the air-breathers."

In a few moments, we had walked to the opposite side of the museum and hat gathered aromen the case which the Professor had pointed out to us. All became silent and eagerly listened, while the Professor contimued:
"Among the most common of this order are the river snails known as strepomutids. There are about three hundred species in this family, and with two or three exceptions they are confined in geographital distribution exclusively to the United States. The shells are very graceful, having long, inrreted spires of ten or twelve whorls, and small apertures. The color of the shells is generally a uniform greenish or yellowish, although some species have color bands, and the aperture is frequently tinged with purple or red. It is an interesting fact that the majority of the species of this family are foum in the rivers and streams of Temnessee, Alabama, Ohis, West Virginia, and Mississippi. From these states a few species have migrated to the east, west, and north, and are now fomed in almost every part of the United States. Yon will see by the number of shells exhibited in this case what a variety of species occur in this family.
"A family closely allied to the last is the Itelanïde, the animals of which inhabit the entire world, except North America. They may be distinguished from the last family loy the presence of little fingerlike digitations on the elge of the mantle, similar to those in Physa. The shells are generally larger and more highly colored than those of the Strepomatids, many of them being of a dark chocolate color, while some are a beautiful glossy black; some shells are smooth. while others are ornamented by knobs and spines. The genus Itelania is the most characteristic form. Some species are viviparons, like the apple-snails.
"The largest and handsomest of the fresh-water smails belong to the two families, Viviparida and Ampulariade, the shells of the latter family frequently attaining a length of three inches. The animals of the first family prefer a sandy beach in a large lake or river, while those of the second generally live in more or less muddy rivers. ponds, and creeks. A single genus of Ticiparidue, Campeloma, is confined solely to that portion of the United States east of the Rocky Mountains. The shells are generally of a rich grass-green, and in certain localities they may be collected by thousamds.
"Unlike many of the snails at which we have been looking, this family is riviparous; that is, it brings forth its young alive instead
of laying eggs, as do the family Limmeide. This characteristic has given the family its name, which is certainly well chosen. When born, the shell is generally abont one-sixteenth of an inch in length, and is perfectly transparent. The animal is very active and eats voracionsly of any vegetation within reach. One of the handsomest shells of this family is the liripara contectoides, which is about an inch in length, and is encircled by several color bands. It is a common shell in many of our ponds.
"Somewhat larger and more showy than the Tiviparas, are the Ampullarias, or apple-shells, also called idol-shells and pond snails. These amimals live chiefly in tropical and subtropieal regions, and are noted for the tenacity with which they retain their hold on life. So tenations of life are they that instances are known of their living for several years away from the water; in this respect they resemble some of the land snails. It is also recorded that hollow pieces of logwood from Hondmas have frequently contaned specimens of this family, which were alive after a journey of thonsands of miles. They may be said to be truly amphibions.
"One species of this family, Ampullaria depressa (of which you may see a fine set of specimens in this case), is very common in Florida, where it forms a large part of the diet of the everglade kite, a bird imhabiting the southern part of the state. Large quantities of these shells, from which the amimal has been neatly extracted withont in the least damaging the shell, may be fomd about the nestingplaces of these birds. The kite is, curiously enough, provided with a curved bill which easily fits into the aperture of the mollusk and extracts the animal with Jittle difficulty. The feet and claws are so constructed that the shell may be firmly held during the operation.
"The animal of $A m-$ pullaria depressa is very curious and interesting when studied alive. The foot is very wile, almost square in some positions;

Animal of Ampullaria depressa, with its siphon and tentacles fully extended. e, eye; f, foot; mt, mouth tentacles; o, operculum; s, siphon; sh, shell; t, tentacles. (Tryon.) the head is narrow, separated from the body by a neck; and the region of the mouth is produced into two long, cylindrical, tapering tentacles, which are probably tactile organs, like the elongated lips of the land
suail Glandina. On the top of the head, the two whip-like tentacles are placed. These have a greater length than that of the whole animal, and are always waving about when the animal is in motion. Just back of the tentacles, the eyes are found at the end of two short, rounded prominences, or peduncles. From the left elge of the aperture, the long, hollow, cylindrical siphon protrudes. This is formed by two extensions of the mantle. On the mper side of the posterior end of the foot, the homy, concentric operculum is placed. When the mimal withdraws into its shell, the head first disappears with its appendages and the siphon, then the foot is donbled up in the middle, the operculum shotting in last and closing the interior against all enemies.
"In the farther end of this case yon will notice a set of very peculiar shells, some of them looking like marine shells, yet living in fresh water. They live in Lake Tanganyika, a body of water situated in Central Africa, and having a length of four hundred miles and a width of from ten to fifty miles. This lake has an elevation of twenty-seven hundred feet above sea level, and possesses one of the most interesting and peculiar fresh-water mollusean fanas known. It is thonght that in some remote period in geological history it formed part of the ocean, and that in the course of time it was cut off from the sea, gradually becoming fresh, and was finally raised to its present elevation. The reason for such a theory is the presence in the lake of certain mollusean organisms whose shells closely resemble those of the fresh-water family Littorinide, or periwinkles. The fact that certain species of this family inhabit brackish water, and are even sulbject to the inflnence of fresh water, gives alditional weight to this theory. The shells of one species, Limnotrochus tho-

Limnotrochus thomasi, from Lake Tanganyika. (Tryon.) masi, from Lake Tanganyika, also resemble certain of the top shells (Trochus) which are marine in habitat. Most of the species living in this lake are like the Viviparas in form.
"All of the different groups of the Molhusca have their giants and their pigmies, and the fresh-water mollusks are no exception to the rule. We have, as yet, only studied the animals of nomal size, and the giants. Let us now turn our attention to some of the pigmies of these snails.
"One of the commonest of these small mollusks is the Bythimia tentaculata, the shell of which does not exceed half an inch in length, and having the form of a graceful, tapering turret. This species, like many other European animals, has been introdnced into America, and bids fair to eclipse many of the native species in the momber of individuals.

It probably first came over with some merchandise which was shipped west by the Erie Canal. The snail, once established in the canal, has had every opportunity to spread over the entire United States. The canal is emptied every year and cleaned, and the water with its organisms is allowed to flow into the little streams and the larger rivers and thence into Lake Outario. From this lake, the species has spread so that it is now found in Lakes Erie and Michigan, and it will eventually spread over the entire northern portion of the United States. This is but one of the many examples of different species being carried by human agencies from one part of the world to another.
"But there are many species of these smaller fresh-water snails that are pigmies indeed, whose tiny shells do not exceed an eighth of an inch in length, and which require the aid of a microscope to adequately study their delicate organism. These minute organisms live on water-plants and on any sulmerged oljject. They vary from long, pointed, steeple-like shells to those which are perfectly round, like a miniature apple. These little creatures are found in all parts of the world, and in our own comstry they may be found in any of our ponds and streams. The lively little animals are well worth a closer acquaintance. They are known scientifically under the rather difficult names of Paludinella, Amnicola, Somatogyrus, Fluminicolu, Pomatiopsis, and many others, and do not have any specifie English titles.
"There is another group of mollusks which is intermediate between the land shells and the fresh-water shells," continued the Professor, "and you will observe several good specimens in this case. One of these

Pomatiopsis lapidaria, a minute freshwater snail. Animal and shell enlarged. (Binney.) belongs to the family Ampribolide and has a spiral shell. It inhabits the seashore salt marshes of New Zealand, where it lives in pools of brackish water. During dry periods it buries itself in the sandy mud. The aperture of this shell is closed by an operculum, and the branchial cavity communicates with the air by a valvular opening. It is said to be esteemed by the natives of New Zealand, as an article of food.
"Another example of this curious group is the Siphonaria, which lives on the seashore, between tides. The shell is flat like that of the limpet, and the single gems Siphonaria is found in most parts of the world."

Having spent nearly the whole afternoon in the musemm, we returned home, filled with enthusiasm, and each one determined to acquire a large and fine collection of shells.

IN THE IIOME OF THE SNAIL

> Among the beautiful pictures
> 'That hang on memory's wall,
> Is one of a dim old forest, That seemeth best of all. - Alice Cary.

Several weeks after our visit to the museum, Professor Parker invited us to go with him to the woods on a collecting trip after land snails. Accordingly one bright morning our quartette, with the Professor, boarded the street car; and after a ride of half an hour we reached the country, ready for work. The piece of woodland in which the Professor wished to make the collections was abont a mile from the car lines, and toward this we wended our way.

It was a beautiful day; the air was cool and the sum shome brightly, althongh not too warmly, and everything about us

Polygyra palliata. A common land snail. (Binney.) looked fresh and green after the warn rain of the previons day. The country road was sandy and bordered on either side by a small ditch, throngh which was flowing a stream of clear water from a nearby spring. At the left, a field of grain was ripening in the sun, the breeze making long lillows over its even surface. On the opposite side, the cattle were grazing in a pasture bordered by a hedge of low shrubs.

Jumping over the fence which inclosed the pasture, and crossing the field, we were soon in the woods lousily searching for its molluscan inluabitants.

Each one carried a collecting outfit, consisting of a tin mustard box, a couple of wide-monthed two-onnce bottles, and several homoespathic vials, the corks of which were tied to the neck of the bottle by a stout thread to insure us against their loss in the underbrush. The bottoms of the tin boxes and of the large bottles were lined with cotton to prevent the thin shells of some of the snails from being broken. For scratching away the dead leaves, under which many species of mollusks are fomm, each had a small hand rake with a short
hamdle which cond be remored to enable the whole apparatus to fit in the pocket. For picking up the very small shells, we had provided ourselves with a pair of very slender tweezers. A good-sized pocketknife and a small trowel, completed the outfit.

After walking into the forest a short distance, we came to an open spot where the gromind was corered with a rich loam. The mass of dead leaves was sereral inches in thickness aml formen a soft beed on the gromd. There were also many old rotting tronks of trees scattered about. Here, indeed, was an excellent locality for a conchologist. Harry discovered the linge prostrate trmen of a tree before he had gone many rods, and Professon larker said that it ought to be a good habitat for some of the larger snails. Julging by its moss-covered surface and rotten condition, it must lave lain in its present position for some time. We all put our shoulders to the fallen tronk, and succeeded, after several ineffectual efforts, in turning it over.

The surface of the groum exposed ly the overturned trimk was fairly alive with animate creatures. Here was a reddish centipede about two inches long, just disappearing down a convenient hole;

White-lipped suail, showing parts of shell. a, apex; ap, aperture; d, denticle; lw, last whorl; p, peristome; pw , parietal wall: s, suture: sp, spire; u, umbilicus. (Binney.) there, in a little hollow formed by some decaying leaves. was a thousand-leg. or millipede, and all over both gromed and trmok were black, green, and rel bectles, and black ants: but best of all, closely attached to the under side of the trink, were several fine, Jarge specimens of the white-lipped snail, Polygyra allolabris.

Professor Parker picked up one of the smails (the amimal of which quickly disappeared within its shell) and explained to us its different parts and characteristics, and showed us how it diltered from the fresh-water mails. The shell was somewhat tou $]$-shapeed, ind composed of five or six whorls or turns which were closely and evenly coiled about the axis. The spire was not elevated as in the pond smails, but was very much depressed and dome-shaped; the apex was small, and light hom-colored, and the sutures separating the whorls were very distinct. The last or body whorl was very large and swollen.

The apertmre, withim whirh the amimal had just disappeared, was large and shaped somewhat like a half-moon. The outer lip of the
snail's shell was turned over or reflected, forming the peristome, and was not thin and sharp, as was that of the pond snail. Professor Parker said that in some land shells the lip was thin and sharp. withont a reflected peristome. We also noticed the white deposit of shelly matter which covered the umbilicus. The Professor told us that this showed that the snail was fully grown, as in the young snail the umbilicus was very wide and deep. ln some land snails, he said, the umbiliens is always open, even in arhalt life. On the imer lip, or parietal wall, we noticed a small denticle, or tooth; and on the outside, we observed the fine, regular lines of growth.

Professor Parker remarked that, as in the fresh-water snail, the shell of the land snail was inseparably attached to the animal. But just as he spoke several peculiar amimals crawled along the log which we had overturned, looking exactly like the snail withont its house, and George at once said, "Why, what are these? Have they not lost their shells?" The Professor replied that these were garden slugs. which were snails that had no shell, but in its place, a tiny shelly plate situated on the back to protect the ling, and covered by a part of the mantle.

He then suggested that we watch the white-lipped snail and see if it would crawl about. Soon we saw a slight movement, then the large, fleshy foot appeared, and then the head was cautionsly thrust

White-lipped snail, showing parts of animal. e, eye: ep, eye-peduneles; f, foot: h, head; n, neek; sh, part of shell occupied by lung; t, tentaeles. (Binney.) out. A moment of hesitation followed, the tentacles and the rest of the head appeared, and the animal stretched out and began to crawl over the log, carrying the shell as shown in the accompanying figure. As the animal crawlerl along, it left a glistening track of mucus luehind it. From the head, two long tentacles extended which pointed straight ahead. They moved about restlessly, tonching every object which came in the path of the anmal, and retracting suddenly if any obstruction was met. These were the eye pedmoles, and by looking very closely, we could see the little black eyes at their tips.

Harry gently tonched one of the eyes with his finger to see what would happen. It at once disappeared. Professor Parker asked us
to observe closely the snail's method of drawing the eye peduncle into the body. After remaining retracted for a few seconds, the peduncle was again stretched out. This time we watched intently as Harry lightly tapped the eye. As it retracted, we saw the black eye rum down the interior of the peduncle and disappear in the head. Ifoward. who was nearest the mimal, suddenly exclaimed. "Why, that is exactly the way my sister pulls off the fingers of her kid gloves." The Professor smilingly remarked that that was exactly the point he wished ns to see, for the eye perluncle is retracted in just the same mamer as the finger of a kid glove is turned inside out. He told wis that a set of muscles is attached to the inside of the perluncle at the tip, and when the eye is tonched, the muscles contract and draw the whole peduncle into the liead, outside in.

Just beneath the eye pednucles, we noticed two short, finger-like organs. These were the true tentacles, with which the amimal feels about. The back of the anmal was covered with many romnded tubereles, and the center of the tail, or posterior part, had a prominent ridge, or keel.

Harry now picked up the animal by its shell. and we examined the under surface of its long, wide foot. It first, the animal contracted a little into its shell. but soon it stretelied ont again to its fullest extent, and twisted itself abont from side to side. raised its head and thrust its eye pedmoles about in every direction in a rain endeavor to fiml some solid support. George inquired what it was that resembled water and seemed to be flowing orer the bottom of the snail's foot. Professor Parker replied that it was the contraction and expansion of the muscles on the muler surface of the foot which gave this wavy appearance. "The glistening effect," he said, "is cansed by the mucus which is constantly flowing from the foot. If we place a smail on a piece of glass, these ware-like movements may be seen to canse the animal to glide over the surface."

As we were looking at the foot, we noticed a hole of good size which opened and closed at regular intervals, in that part of the animal remaining in the shell. This, Professor Parker said, was the opening into the lung which allowed the fresh air to come in and the impure air to escape. He also reminded us that land snails breathe by means of a trme lung, which occupies the last whorl of the sliell. "This lung," he said, " is composed of a network of blood-vessels, throngh which the blood flows after it has passed throngh the body and is filled with carbonic acid gas. The fonl air is expelled and the fresh air enters and purifies the blood, which flows to the heart to he again pmoped through the body."

The prolonged examimation alarmed the snail, and it had now withdrawn into its shell. George held the shell quietly in his hand to see if the animal would not come out again. While we were waiting for this, Professor Parker asked us to comt the heart beats of the animal. The shell was tumed over and we observed a movement inside, to the left of the spot where the outer lip meets the body whorl. We moistened this spot a little and it became almost transparent, so that we could plainly see the beating of the heart throngh the shell. We were told that the heart was composel of the ventricle and the auricle, the former lying behind the latter. The pulsations were from right to left, the auricle seeming to push the ventricle at every pulsation. We now tried to combt the number of pulsations in a minute. Harry held the watch while the rest of us comnted. We found the mumber to be fifty. We then tried another snail to see if the number of pulsations were the same. Again we comted and this time the number was sixty-one. Professor Parker told us that the nmmber of pulsations of the heart varied greatly, and that if we had the time to examine a large number of specimens, the mumber would be found to range from forty-eight to one hundred and six, the latter number being that of very young animals.

Not all of the snails which lived in the old log were as lange as the white-lipped snail, some being very minnte. While pulling of the rotten bark near one end of the log, Howard found quite a colony of the little P"pa shells. It took sharp eyes to detect them, for they were not larger than very small seeds, and lay very close to the under surface of the bark. With our pair of tweezers, we picked up a number of the little fellows, some of which were put into a small vial filled with alcohol, so that they would not dry up or stick to the sides of the bottle when dead. A few, we placed alive in a vial for study when we returned home. We examinel one of the little specs with a hand lens and it appeared like the shell in the picture. The whorls were romded, the spire quite long, and the aperture was modified by six teeth, or projections. When we saw the aper-

Aperture of Pupa shell, greatly magnified. (Binuey.) ture so obstrincted by teeth we wondered how the animal was able to crawl in and out. Professor Parker then said that in tropical comtries, there live certain species of suails whose apertures are so contracted by teeth that scarcely any room is left for the animal.

Leaving the old \log which we hal turned over, we walked through the woods for a short distance, and soon came to another fallen tree, whose trunk was so rotten that it fell to pieces when we tonched it. Breaking away the softer outside portion we soon found a part of the wood which was fairly alive with small, glassy smails less than a quarter of an inch in dianeter, like those in the accompanying fighre. These

Four species of minute land snails. The smaller figures indicate the natural size. 1, Zonitoides arboreus; 2. Vitrea hammonis: 3, Vitrea indentata; 4, Zonitoides minusculus. (Morse.) little shells. together with the Pupa, love to nestle under the loose bark of trees and in rotting trunks and stumps, such as we had just examined. The larger shells, like the white-lipped suail, hide under fallen tree trunks, among dead leaves, and in ahmost any other place affording protection from the sum.
"Should we wish to see them crawling about and very active," said Professor Parker, "we must visit the woods just after a rain, when, in some localities, almost every bush, tree trunk, or stump will bear one of these animals. Moisture is an essential to their welfare, and they will not voluntarily live where the gromid is dry. For this reason they are seldom found in forests of spruce and pine. Also a region where there is considerable limestone will produce larger and finer shells than one where this mineral is absent, becanse the limestone is necessary for the formation of the shell. A locality where there is a great quautity of quartz or flint is not conducive to the growth of land snails and few will be found in such regions. No land snail will live where sand, ashes, or lime, in a pure state, are found."

We ate our lunch on the mossy bank of a little stream, which ran merrily along over its rocky bed, and fell in tiny waterfalls as it tumbled over a ledge of rock. The forest rose on either side and the trees almost met overhead. At noon, the sum shone brightly through the boughs above, which cast fantastic shadows on the leafy carpet beneath the trees. Here indeed was a spot which needed the pen of the poet to do justice to its charms. After eating our lumeh, we explored the strem for evidences of life. We did not have to seareh long, for Harry soon gave a glad slout, which told us plainly that he had discovered something of importance, and we saw him busily engaged in picking something from the leaves of the vegetation on the edge of the stream.

A nearer approach showed the olject to be a snail with a long, graceful, yellowish shell. Looking about, we saw hundreds of them
crawling over the grass and even at the very edge of the water. The animal seemed much too large for the shell; in fact, Professor Parker told us that during the summer months the animal is not able to withdraw completely into the shell, but that on the approach of winter it becomes smaller, and is finally able to retract a considerable distance within the aperture. The head and neck of the animal were made especially notable by the presence of seven black lines. The eye peduncles were short and bhunt, and the foot was half as wide as

Succinea ovalis crawling on the ground. (Magnified.) it was long.

Professor Parker said that the species of this gemus (Succinea) inhabit moist localities, generally in the vicinity of water, and may be found crawling abont on the regetation along the margin. They are sometimes found on tree trunks at a considerable height from the grommd. "Succinea retusa," continued the Professor," is infested with a very curions, sausage-shaped parasite called Leucochloritium americamm, belonging to the fluke-worms, which modifies the tentacles to a large extent. Some birds, the thrushes for example, eat the infected Succinea, and the parasite develops in their intestines into the adult fluke-worm, or Distoma. Some of the fresh-water Limncas are infested with a smaller worm, which changes into the fatal liver-fluke in sheep, which love to feed upon Limnacts."

In the moss which overhmeng a pool of clear water George found a number of glossy, horn-colored, turreted shells, about a quarter of an inch in length, which, we were told, bear the technical name Cochlicopa lulrica. Not far from this spot Harry picked up a number of Succinea shells from which the animals had been removed. They were of a beautiful rich, transparent horn-color. Some smaller specimens of a different species were of a rich rose color.

Cochlicona lubrica, magnified. (Binney.)

Hary, who was the closest observer of the guartette, discovered some minute shells about one-twelfth of an inch long, which were white and pellucid, like spermaceti. These, Professor Parker told us, were members of the family Auriculide, which includes terrestrial shells that inhabit the vicinity of water. Their shells were graceful, and when examined with a hand lens, were very interesting. The other genera of this family inhabit salt marshes in the vicinity of the sea: their shells are generally much larger, and the apertures are filled with tecth. We spent the entire day in
the vicinity of this piece of woodland, and toward evening, having filled our boxes and bottles with specimens, we turned our footsteps toward the cars. As we reached the elge of the forest, we saw a particularly large \log lying in a damp ravine, and we could not resist the temptation to turn it over aurl see if something new could not be fomd. Sure enough, there were several specimens of the solitary suail, Pyramidula solitaria. One of them

The solitary snail, Pyramidula solitaria. (Binney.) was crawling over the damp leaves.

Underneath another part of the \log Howard discovered a whole colony of smails, the shells of which were about three-fonrths of an inch in diameter, and marked by many reddish streaks on a horn-colored backgromed. Several of the animals were crawling about, their methorl of locomotion being slow and careful. "This species," said Professor Parker, " is called Pyramidula alternata, and is our most abundant species. Unlike most of our Heliees, it is gregarions, being generally found in colonies of from twenty to one hundred or more. The animal is sluggish in its movements, but is not at all shy, allowing itself to be picked up and examined without withdrawing into its shell. The shell is very variable in the height of its spire, some specimens having an elevated, convex spire, while others are perfectly flat. This variation is in a great measure due to the habit of crowding itself into narrow crevices, which canses the shell to assume a flat-whorled aspect. The convex forms are generally found in wide, open crevices, or moler logs, while the flat-whorled forms are found in small, narrow crevices or under loose bark."

On the same log with this snail were several others in which the aperture was covered with a glistening film resembling parchment. George asked what this was, and Professor Parker proceeded to enlighten us. "This," he said, "is called an epiphragm, and with this the snail closes the aperture of the shell on the approach of winter. It is formed in the following manner: The animal withdraws into its shell, and places the parts of the boly called the collar on a level with the aperture, and covers the latter with a quantity of mucus. A little bubble of air is now liberated from the lung, which detaches the film of mucus and makes it project in a convex form from the aperture. At the same moment the animal retreats fartler into its shell, and leaves a vacum between itself and the film of mucus. As the pressure of air is now greater on the outside, the film is pushed in and assumes
a concave form. This whole operation occupies but the fraction of a minute.
"As the weather gets colder, the animal withdraws farther into the sliell, and new epiphragms are made until five or six of these partitions are formed. And what would you imagine was the purpose of this epiphragm? It is to protect the snail through the cold of winter when food is scarce or unobtainable. The winter's sleep is called hibernation. Other animals, as the bear and the raccoon, also enter into this sleep of winter, as you probably know.
"During hibermation, the heart almost ceases to beat, and all the functions of the body stop, the animal becoming torpid, to be awakened only when the warm days of April or May appear. In tropical countries, the snails hibernate during the hot and dry season, and are most active during the rainy season. The naked snails, or shgs, cover themselves with this secretion much as a caterpillar covers itself with a cocoon.
"The land snails are most active in the spring, when they may be seen crawling over fallen trees, on bushes, and on the gromud. As fall and winter approach, they become less active, and finally prepare for the winter's sleep, from which many of them never awake, meeting death from old age, or falling a victim to some carnivorous animal."

This old \log produced a large number of species for our collections, some of which were new, and one in particular, called Omphalina fuliginost, was especially large and fine. Here we worked until darkness had fairly set in, when we reluctantly left the prolific locality and returned home.

Omphalina fuliginosa. (Binney.)

An Eventing witil the Aquarium AND SNAILERY

One evening, shortly after our trip to the woods, we met by appointment at Professor Parker's home for the purpose of spending a few hours in study. The Professor greeted us in his usual hearty manmer, and we were soon deeply engrossed in our favorite subject.

Of great attraction to us was a large rectangular aquarium (about two feet in length and one foot in width and depth), which was tenanted by various speeies of pond snails, and fresh-water clams. A light was

Fresh-water limpet Ancylus rivularis, as seen through the side of an aquarium. Greatly magnified. placed behind the tamk, and thus we were able to study the habits of the imprisoned amimals. A clam was slowly pulling its shell through the muddy bottom, its siphons extended, and the little eilia moving nervously about. Professor Parker told us to watch these siphons closely. A strem of water was constantly passing down the lower siphon, a fact of which we beeame aware by seeing several very small particles of vegetable matter float near the siphon and quiekly disappear into its orifice. The upper siphon was violently expelling waste matter, and we could see the little particles thrown ont into the water. We noticed that this siphon seemed to move like dock work, opening and closing at regular intervals, each time ejecting a current of water filled with waste matter. Out of curiosity we commer these pulsations and recorded twelve each minute.

In another part of the aquarimm, a number of pond snails were gliding slowly along. On one side, several large snails were eating the growth of green regetable matter which had accmmatad. This side presented a curions appearance, for each suail hatl left a clear path behind it where the semm had been cleaned off. We could plainly sce the month open and elose as the amimal grazed along. Every time the month opened, the tongue was thrust out, aud the whole operation reminded us of a cat lapping milk. The brown jaw was also plainly seen.

As we were watching the animals on the side of the aquarimm, one of them rose suddenly from the bottom of the tank to the top of the water: there it floated, shell downward, and with the foot applied to the under surface of the top of the water. Sometimes a faint, clicking somm cond be heard when one of the pond smails marle this ascent. This, Professor Parker said, was cansed by the escaping of the imprisoned air from the lung.

George inquired how the snail was apparently able to crawl on the under side of the surface of the water, and also how the little insects called waterstriders could rim over the surface as though it were perfectly solid.
"This apparently impossible feat," answered the

Pond snail. Limnear mighelsi, crawling up the glass side of an aquarium. Professor, "is easily explained when we muderstand some of the laws of physics, and those of you who are studying the subject at the University are probably well acquainted with the fiact. It is now a well-established fact that the surface of water and other liquids, is covered with a very thin film, and the insect is able to walk upon the upper side of this film and the mollusk on the lower side. One proof of the presence of this surface film is fomm by the oft-repeated experiment with the needle. If we carefnlly place a fine needle on the surface of the water, it does not sink, but will float, although seven times heavier than its own bulk of water. If the needle is wet, or if it is very large, it will not float, which shows that this film is very delicate. If we place the glass holding the needle so that we can look through the glass at the surface of the water, we will then see that the needle rests in a little lollow, as if the water were corered with a membrane."

Among the pond snatils were a number of ofl snails carrying their shells in a perpendicular manner, and waving their slender tentacles abont. Several of them were caraling along the bottom of the tank, with a peculiar stepping motion. The animal pushed its foot deep into the sand, the shell leeing drawn well down toward the head. It was then pushed forward and upward, making a little furrow, whish prepared the way for another step. In this way it "stepped" along at a lively gait. We leamed from Professor Parker that this "stepping" " was more for procuring food than for locomotion. One of the large orb shells was crawling up the side of the aquarium, eating everything in its path. Several times a morsel was taken which proved distasteful to the animal, and it was immediately "spit ont."

Some of the smaller snails, Ammicola and Falvatu, were wandering about, the former crawling with a wabbly gait, rolling the shell from side to side. In another part of the aquarimm, a number of Physas were crawling rapidly along the bottom. Some of these rose suddenly, like the prond snails. Others descended from the top, suspended by a slemter thread of mucus. Several of the

Tadpole snail. Plyysa gyrina, showing the tapering foot, digitate mantle margin, and long, slender tentacles. pond snails hatd crawled out of the water, and were attached to the glass, a number of inches from the surfare. Several apple suails, as well as other members of the water breathers, were enjoying themselves by crawling about the hottom, or on the sides of the aquarimm, apparently feeding; their long tentacles were waving, and their blunt, cylindrical rostrum was moving about like the nose of a hound on the scent. All of this animation in the aquarimm made it seem like a miniature world, as indeed it really was.

On the narrow end of the aquarimm we discovered a mumber of little, jelly-like masses, which Professor Pirker told us were the eggs of the Physa snail. They were nearly an inch in length and very narrow. Each mass contained a large number of eggs. By the aid of a magnifying glass we counted the eggs in three masses, and found one hundred and thirty in one, one handred and sixty in another, and two hondred

b

Egg mass of Physa gyrina. a, egg-mass, showing position of eggs in envelope; b , single egg, much enlarged, showing position of rotating embryo. in the third. The Professor placed one of these masses moder the microscope, and we observed the little embryos slowly rotating about.
"The eggs of the fresh-water smails," said the Professor, " may be fomm any time during April or Maty. The youmg hatch ont in June. They are transparent little anmals, about onefiftieth of an inch in length. They are very active. and eat voracionsly of anything which they find. Some of the water-breathers lay but a single egg, which is inclosed in a romed capsule. The young of the apple snails are born alive, and are minute, transparent animals, about one-eighth of an inch in length; they are very active."

Near the aquariun, the Professor had a smailery in which were several dozen snails of varions species. The snailery was made of an aquarimm abont the size of the one in which the fresh-water snails and clams lived; the bottom was covered with earth to a depth
of three or four inches, and a little pan of water was sumk in one corner to imitate a lake; several small ferns were growing in the opposite end; a piece of netting was stretched over the top to keep the shails from escaping.

A snail was crawling orer the moist earth, and we watched to see what it would do. It was eridently headed toward a fresh piece of lettuce leaf, which had been recently phaced within. The snail went along slowly, moring its eye peduncles about nervonsly and retracting them when they came in contact with a lump of earth. Occasionally it would raise its head mitil it rested only upon the last third of its foot, and then, it would twist about its head and eye pedumeles as though it scented danger.

Gastrodonta ligera, a com. mon land snail. (Binney.)

In a little while the lettuce leaf was reached. Resting upon the hind part of its foot, it raised the fore part and began to bite off pieces of the leaf. We conld see the horny jaw come out of the month, bite off a piece of lettuce, and then swallow it, accompanying the action by a faint rasping somad. Professor Parker told us that the jaw was used to bite off large pieces of vegetation, which were then reduced to pulp loy the action of the teeth or radula.

The sight of the aquarim and smailery filled with living animals, fired our ambition, and we plied the Professor with questions relative to the immediate possession of aquariums and snaileries for each of us.

He smilingly encouraged us in our desire, and said that almost any kind of a glass jar or globe would answer the purpose. A fish globe was recommended, as was also an electric battery jar, and even a quart Mason fruit jar. The top, he said, should be covered with netting to keep both land and fresh-water smails from getting out and crawling about the room. Some floating water-plant in the aquariuns, as duckweed, hadderwort, and watereress, with a few small ferns and some

Circinaria concava. A carnivorous land snail. (Binney.) moss in the smaileries, would add to their beanty, and make them more homelike for their inhabitants.

We were warned against mixing different kinds of snails in one swailery, for while the majority are vegetable feeders, and perfectly friendly with each other, a few are carnivorons and would prey upon each other and also upon other smails. Such species as Circinaric, Glandina, and Testacella were to be especially aroided. We also learued that if there was not a sufficient amount of lime in the water of the aquarium, the snails would eat each other's shells to obtain this necessary
material. Professor Parker advised us to study the growth of some of the land snails; and as a preliminary lesson, he set us to hunting for some of the eggs in his snailery. After a few minutes' search, George found a little cluster of eggs under a projecting clump of earth. They were perfectly white, and about one-sixteenth of an inch in diameter.

The Professor told us that during May or June these smails lay their eggs to the number of forty or more, in moist localities where they are sheltered from the rays of the sim. Favorite places are muler old leaves which have space heneath them, by the side of logs, stones, or sticks, and under loose pieces of bark or chips. Twenty or thirty days after the eggs are laid, the young snail is hatched and starts on it. life joumey, reaching full maturity in about three years. In October or November, in this latitude (about 42 degrees north), the snail ceases to be active and hibernates during the cold winter months.

We asked Professor Parker how finst a snail could travel. This, he said, was a part of the subject which he had never studied: so he took a large specimen of the white-lipped smail from the snailery, placed him on a board, and took out his watch. The snail hesitated for a moment, and then started to crawl to the other end of the board. In one minute it had crawled two inches. He then again timen it, and it crawled twenty-four inches in fourteen minutes. He then tried a snail of a different species, and found that it took this snail two minutes to crawl two inches. Several other species were tried, and it was found that each seemed to have a certain regular speed, which did not vary to any great extent.

Four species of orb snails, showing the under surface of the foot as seen through the aquarium.

1. Planorbis bicarinatus.
2. Planorbis trivolvis.
3. Planorbis campanulatus.
4. Planorbis truncatus.

HOW SNAILS EAT

After we had examined and studied the aquarim and snailery to our satisfaction, Professor Parker remarked that he was realy for the work of the evening, which was to prepare and examine some of the teeth on the radula, or tongue, of smails.

Selecting a good sized specimen from a number which had been drowned the day previons, he showed us the oval mouth on the mader side of the head, with the jaw and radula protriding. "The radula," he explained, "is inclosed in a rounded hody called the buccal sac, which is placed at the fore part of the body, in the lower plane of the head. If we were to cut a section through the head and lonceal body, it would present the appearance shown in this diagram which I have prepared for you. In some snails, as the apple suail, the radula sac is placed at the end of a retractile rostrum, or prohoscis. The apparatus is protrusile, and may be plainly seen when a slail is feeding.

Diagram of buccal organs of land suail. 1, esophagus; 2, radula; 3, core of radula; 4, new teeth forming; 5 , cartilaginous substance beneath the radula, serving for support and for the attachment of muscles; 6, posterior cartilage muscles; 7, anterior cartilage muscles; 8, cartilage bearing jaw; 9, jaw; 10, outer surface of mouth; 11, upper lip; 12, lower lip; 13 , under surface of lip; 14, orifice of mucous glands; 15, mucous glands; 16, mouth; 17, cells lining under surface of radula.
"The ralula, or lingual ribbon, sometimes called the odontophore, is a strap of chitinous, or horny matter, and occupies a place in the month of a snail analogons to that occupied by the tongne in the cat and dog. It is formed in the radula sac, and grows forward as needed, much as does the human finger-mail. Just beneath the radula there is a stont cartilage to which are attached protractor and retractor museles which move the cartilage backward and forward. The radula is strongly fastened to this cartilage at the anterior end. The forward action of the cartilage muscles brings the radula down between the two fleshy lips, where
a backward and forward movement takes place, the sharp teeth rasping oft small particles of food.
"The horny jaw lies in the upper part of the mouth, and cuts off large pieces of food, such as leaves or other vegetation. The food is then acted upon by the radula, being pressed against the roof of the mouth, while the teeth rasp off small pieces, which are then swallowed. As fast as the teeth on the front end of the radula are worn out they

Diagram of animal of land snail, Helix, removed from its shell. The snail is in the position of crawling, aud the organs are is their natural position. bs, buceal sac; e, eye-peduncle; f, foot; l, lung; lv, liver; m, moutli; me, orifice of mucous gland; mg, mucous gland; n, nerve ganglia in head and foot; oe, wsophagus: t, tentacle. (Hyatt.)
are replaced by new ones which are pushed forward from the core of the radula sac. In this way the teeth are being constantly wom out by use and being replaced by new ones.
"The radula is one of the most important features in the classification of the Mollusea, and a knowledge of its characteristics is quite essential to any one who would seriously study the subject, as it is present in all classes except the clams or bivalves."

Having explained to us the function of the radula and its position in the animal, with a small pair of tweezers, Professor Parker deftly removed the jaw and radula of the white-lipped smail, placed it in a drop of Canada baksam in the center of a microscope slide, carefnlly lowered a cover-glass over it, and slipped it on the stage of the microscope.

After adjusting the eye-tube, he motioned us to come aud look through it. This we did in turn, and saw a flat backgromed covered with peculiarly shaped teeth. The Professor changed the oljective on the microscope to one of ligher power and again asked us to look. This time we could make out only a few teeth, but each one was
clear and distinct and very large. As we moved the slide along on the stage of the microscope we observed that the shape and size of the teeth changed. The teeth seemed to become broken into several prongs toward the edge of the

Two rows of teeth on the left side of the radula of Polygyra tridentata, a common land snail. Magnitied. (Binney.) radula membrane.
We called Professor Parker's attention to this characteristic, and he proceeded to explain the radula and how it is studied by scientific investigators.
" The teeth," he said, "are arranged in five longitudinal rows, each differing from the one next to it. Thus there is a central row, on each side of this, a lateral row; and outside of this, a marginal row. The central tooth is called the central, or rhachidian; the lateral teeth are known as admedian ; and the marginal, as uncini. These teeth lie on the radula membrane, and are composed of a base of attachment which is fastened to the membrane, and a reflected or turned-over portion which bears the cutting points. This may be better understood by consulting this diagram which I hold before yon. In studying the radula through the microscope, care must be taken not to confuse the reflected portion with the base of attachment. This mistake is easy to make, as each has a different focus, the reflected portion being higher and therefore nearer the observer.
"Each tooth in each row is made up of a number of different parts, which.

Teeth and jaw of land snail. Polygyra pennsylvanica. c, central tooth: I, lateral tooth: $9,16,18,25$, marginal teeth; j, jaw. Greatly magnified. in their diversity, serve to distinguish the different groups of mollusks Thus the central tooth may have a strong, squarish base of attachment to the radula membrane, and the reflected portion may be provided with three cusps or projections-a central cusp which reaches to the bottom of the base of attachment. and two side cusps which are shorter. Each cusp may also have a decided cutting point. The lateral and the marginal teeth may also be divided in the same mamer.
"The majority of the teeth of pulmonate mollusks may be divided into two types: first, the quadrate, like a in this diagram of mollusean teeth; and second, the aculeate, like c in the diagram. The latter has no reflected portion, but a single, thorm-shaped cutting point arises from its sole-shaped base of attachment.

Diagram showing appearance of radula of land snail when seen in section. c, eutting point; ba, base of attachment of tooth; r, reflected or turnedover portion of tooth; rm, membranc to which the teeth are attached, called the radula membrane.
"In describing the radula, scientific men use a dental formula, similar to that nsed for designating the teeth of mammals. This formula deseribes the nmmher and position of the teeth and cusps; thus, if a radula has a single central, three lateral, and twelve marginal teeth, and the first series has five cosps, the second series four, and the third series one cinsp, the formula will be expressed as follows: $\frac{12}{1} 2+\frac{3}{4}+\frac{1}{5}+\frac{3}{4}+\frac{12}{1}$. The mit representing the tooth is written as a nmmerator, and the number corresponding to the cusp as a denominator."

Professor Parker now prepared another radula from a large pond snail, and before mounting it tore it in several pieces with the points of a pair of tweezers and a fine dissecting needle. We asked him what this was for, and he replied that it was necessary to separate

Diagram of the teeth on the molluscan radula. a, median: b, lateral; c, uncinal or marginal. 1, baso of attachment to radula; 2, reflected portion: 3, side cusps: 4, median cusps: 5 , cutting points of side cusps; 6 , cutting point of median cusps. some of the rows, as well as individaal teeth, so that they would be more clearly seen, as they overlaid each other in their natural position, like shingles on a roof.

We examined the radula, and saw that the teeth differed from those of the land smail in being differently shaped and in having more numerous cusps and cutting points. We also saw that tearing the radula made the teeth stand out more clearly, and they were not so mixed as when the radula was left in its natural condition.

When examining and making drawings of the teeth of the Mollusea, Professor Parker wamed us to be very careful to note every feature accurately. The form of the base of attachment, of the reflection, the cusps, and the cutting points were all of importance. "Don't be satisfied," he sait, "with making one examination, make several. After you have made your first drawings and notes, lay them aside
for a time, and then make some new ones. Compare these with the first ones and you will doubtless find a vast difference. After repeated examinations you will ultimately secure a perfect drawing and description."

After examining several more radula the Professor placed several types of jaws under the microscope for our observation. These were horny organs of various shapes, frequently armed with ribs or other projections.

When asked how many teeth a suail had on its radula, Professor Parker directed us to figure the number for ourselves from the radula of the white-lipped snail. This we did in the following manner: We first comnted the teeth in one trimsverse row,

Teeth of pond snail. Limnæa caperata. c, central tooth; 1-7, lateral teeth; 8, 9, intermediate teeth betweeu lateral and marginal teeth; 10-25 marginal teeth. Greatly magnified. begiming with the central tooth and counting each way toward the margins, and found eighty-nine teeth. Then counting the rows of teeth vertically we found that there were one hundred and twenty rows. Multiplying eighty-nine by one hundred and twenty we secured the enormons sum of ten thonsand six hundred and eighty, the mmber of teeth in the month of a single snail!

Professor Parker told us that the number of teeth varies greatly in the different classes of smails. For example, a sea slug, Lolis drummondi, has but sixteen; the common whelk, Buceimem undatum, has two houdred and forty; and another sea slug, Doris tuberculata, has six thonsand; the edible snail of Europe. Helis pomatim, has twenty-one thomsand; while another suail, Ielix ghiesbreghti, has the enormons number of thirty-nine thousand five hundred and ninety-six !

George asked the Professor how

Jaws of land snails. Upper figure, Polygyra thyroides, a common land snail; lower tigure, Limax flavus, a common European naked mollusk, or slug. Magnitied. it was possible to study the radula of some of the minute snais, like the Pupa shells. He replied that these must be boiled in canstic potash, and that he would prepare
one to show us how it was done. He first extracted the amimal from its shell, and then placed it in a medium sized test-tulse which contained a tablespoonful of canstic potash, which had become liquid by the attraction of the moisture in the atmosphere. He next lighted an alcohol lamp which made a good flame. Holding the test-tube tirmly between the thmm and fingers of the right hand, he held it at the side of the flame, at the same time keeping the liqnid in motion by a rolling movement of the thmm and fingers. He let it boil several times, being careful to avoid the boiling over of the amimal matter, as it would stick to the dry side of the tube. This happened once, but he shook the liquid over it and it again fell to the bottom.

After the animal matter was dissolved, he quickly poured the liquid into a watch crystal, put a little clear water into the test-tube, shook it up well, and poured it into another watch crystal. He then placed the first watch crystal on a piece of white paper, and with the aid of a large hand lens searched for the radula. The watch crystal was given a gentle rotary motion, so that the solid particles in the liquid might be bronght to the center. "The minute radula will be known." said the Professor, "by its long, curved form, and the little reticulations on its surface. If it is not in the first crystal we must examine the second. When it is found we will transfer it, with the fine tweezers, to the glass slide, and mount it in Canada balsam, as we did the radula of the large land snail. A much higher power of the microscope will be necessary for studying this radula, as it is much smaller.
"If the teeth are very transparent it may be necessary to stain them, and this may be done by putting the radula into a strong solution of chromic acid, which

Teeth of a water breather. Amnicola limosa. A, central tooth; 1, 2, 3, lateral teeth. Greatly magnified. (Stimpson.) colors it a yellowish brown. It should be perfectly clean before it is stamed."

Having shown us the method of preparing the radule of small snails, Professor Parker placed the prepared slide of the radula of the snail (a species of Amnicola) under the microscope and bade us look at it. This we did, and we saw that the teeth differed very materially from those of either the land or fresh-water snails. The
central tooth was covered with little cusps, and there were only three teeth on one sirle, instead of thirty or forty, as in the other suails, and these teeth were long and marow, the cusps showing as fine serrations at the upper end of the tooth. The Professor told us that many of the water breathers and marine snails possessed a radula with a few teeth on each side of a central tooth.

Before bringing our work of the evening to a close, we were shown a specimen of a common pond snail in which the month was open to its fullest extent, showing the three homy jaws attached to the lips and the radula situated far back in the throat. The Professor said that this was the only specimen he had been able

Mouth parts of pond snail. Limnæa reflexa. From drowned specimen. A, superior jaw; B, lateral jaws: C, radula; D, lips. to prepare showing these features so clearly.

As we were bidding him good night, he asked us if we would like to visit the moseun again on the following Saturday and stholy some of the varieties of land snails. We quickly accepted his kind invitaltion, and promised to meet him at the musem promptly at one oclock in the afternoon.

SNAILS OF TILE FOREST AND FIELD

Promptly at one ocluck on Saturlay aftemoon our quartette of conchologists were at the musenm, and were as promptly met by Professor Parker, who was waiting for us. We lost no time in ascending to the upper gallery where the mollusks were located. We went from case to case, and the Professor told ins interesting and instructive facts concerning the specimens in each.
"Lamd shells are found almost everywhere," said Professor Parker, " in valleys. high upon momtains, and even in deserts. Many species live on Alpine heights of over thirteen thonsand feet, while others love the beaches near the ocean where they are wet with the salt spray. Some are subterranean in habit, living under-

Vitrea cellaria, a common Enropean land snail. It has also been introdnced into the greenhouses of the United States. (Binney.) ground in burrows, while others live among the limbs of tall trees, never visiting the gromid. They may be found in the cold climate of Alaska and in the tropical zone, under the equator. As a rule, they prefer moist localities where there is abmolant vegetation, and where the gromd is strewn with rotting logs, beds of deeaying leaves, or moss-covered roeks. In the northern part of the United States, open woods may he said to be their best habitat.
"As you have already learned, land snails breathe by means of a so-called lung, which is a sae lined with a network of blood-ressels, ocenpying the last turn, or whorl of the shell. The air taken into the lomg purifies the blood. They are called I Pumonata, or air-treathers. for the reason that they possess a lung and breathe air directly, instead of through the medim of water.
"The shells of the Pulmonata vary to a wonderful degree in size, shape, and coloration. Some are so small that they can scarcely be seen with the naked eye, while others attian a length of six or more inches; some have the aperture of the shell modified by mumerons folls, or teeth, while others are smooth. The colors vary from whitish or horn-colored, to the gorgeonsly colored IIclices of the tropies, with their bands and blotches of red, brown, white, and green. With all this diversity, the land shells may be easily distinguished from their

889

Cerion miscommanal (abat.
salt and fresh water relatives. The tropical land shells are much sought after by collectors.
"The desert snails are generally pure white. Like that of many other animals, the color of the suails is in a measure protective, rendering them more or less inconspicuons to their enemies. Thus the desert snails live in sandy regions, and are whitish; the Philippine tree snails live among the varionsly colored leaves and branches of trees. and are of many colors; while those species which live among moss, dead leaves, and under logs, are horn-colored, or greenish.
"We hear much of late," contimed the Professor, "about our new possessions, the Pliilippine Islands, but few people are aware that some of the most beantiful of the land snails live there. These are the Cochlostylus, or tree-snails, which live for the most part among the branches of trees and bushes. The animals are large and bold, and their shells are of surpassing beanty, with their colors of white, green, brown, hom, and many other slates, as you will see when you look in this case, which contains several hundred specimens. The island of Luzon has probably the best known fama, and it is to be hoped that the United States govermment will soon complete a natural history survey of all the islands, so that we maly know more of these interesting creatures.
"The land shells of the United States, while mumerons in species, are not as conspicuous in color pattern as are those of Europe, South America, or the islands of the Indian and Pacific Oceans; however, California prorluces some highly colored species, for example the Epiphragmophora fidelis. The majority of our species are free from bright colors, as is the common white-lipped snail, Polygyra allolabris.
"One of the largest and most interesting of American shells is the Butimus, found in South America. The shell of Bulimus ovatus attains a length of six inches, and the animal is correspondingly large. In the markets of Rio Janeiro this mollhsk is sold as food, and is eagerly sought by the poorer people, among whom it is considered a great delicacy. Another interesting fact in comnection with this species, as well

Bulimus oblongus, a Brazilian snail which lays calcareous eggs. (Tryon.) as others of the genns, is the size of the eggs which it deposits, they being as large as pigeons' eggs. These are also eaten with avidity by the negroes of Brazil.
"One of the most beantiful of the land shells living in the United States is the Liguus fasciatus, found in Florida and also in Cuba.

The shell is about two inches long, and is encircled by bands of white, brown, and green. This species lives in great numbers at Key West, where it is associated with many small shells of the Bulimulus group. Closely related to the last-mentioned shell (Ligurs) is the agate shell, Achatina, which attains a length of seven inches, and is the largest of the land shells. Like the Bulimus, it lays eggs of large size, inclosed in a calcarcous shell, some being over an inch in length. Both the animal and the egg are eaten by the natives of Africa. The shells are very attractive, being variegated with different colors, as are the agates, from which they receive their common name.
" Another of our recently acquired political possessions, the Hawaiian Islands, has a molluscan fama peculiar to itself. This is the family Achatincllide, which is confined solely to these islands. There are no shells that can compare in beanty with the Achatinellas, with their encircling bands of black, yellow, white, and red. They live on the bushes, generally rather low and near the ground. A bush inhabited by these little creatures must be a beautiful sight, with the green foliage decked with their handsomely colored shells, like jewels on a costly dress. These mollusks have been recently threatened with extinction, because of the cattle which have been introduced into the islands. These cattle, while feeding on the bushes, also consume large quantities of the snails. This is a good example of how man disturbs the balance of nature.
"Achatinella is not the only group of snails having a restricted geographical distribution. The genus Cerion, comprising cylindrical, pupiform shells, is somewhat restricted, being confined to the West Indian Islands with the exception of two species which live in southern Florida. It is also a curious fact that not a species of this gems is found in

Cerion chrysalis, showing position of shell when the animal is in locomotion. (Tryon.) Jamaica nor in the islands of the Cariblean Sea. The name Cerion is from the Greek word Kerion, signifying honey-comb, and is given to these shells because the form of the spire resembles that of a bee-hire; hence they are called bee-hive shells. These mollusks are peculiar, in living in the full glare of the tropical sum. Probably for this reason their shells are whitish in color and are usually without color markings. Shells of this genus are frequently found living in hot, dry localities where most snails would quickly die. In this respect they resemble the desert snails.
"Among the edible snails, none excel in public favor the common edible snail of Europe, Helixe pomatic. The cultivation of this snail
has become an established industry, similar to our oyster fisheries, and thousands of snails are consumed aunually. The early Romans considered this animal a dainty dish, and the inhabitants of France, Spain, and Italy have inherited or cultivated a liking for the succulent "shell-fish." This snail has been introduced into New Orleans where it is eaten Jy the French inhabitants. Helix nemoralis, an edible snail of England, with a beautifully banded shell, is sold in the streets of London and eaten much as we eat walnuts, by picking out the animals with a pin. Owing to their large size, the edible snails make good and valuable pets in captivity. It is interesting to watch one of these smails feeding upon a piece of lettuce, the jaw and radula being plainly visible while at work. Helix pomatia is of a very inquisitive disposition, and will wander about the snailery, or even the whole house, if it can get out, examining everything in a very curious manner.
"The most interesting snails are by no means the largest. Frequently the small snail shells, with their animals, have habits or shell structures of absorbing interest. Among these are the Pupas, whose timy shells frequently attain the incredible size of only one-sisteenth of an inch in lengtl! ! It is not until we place these mites under the microscope that their interesting characteristics are seen and appreciated. By such an examination, we find that the little apertures are modified by many teeth and folds, and we sometimes wonder how the little animal is able to get in and out through such a labyrinth of apparent obstructions. These teeth are said to serve in a manner to protect the animal from its enemies. These tiny shells are always to be found in great numbers under starting bark, and under chips, stones, and debris, in more or less moist localities.
"In another genus of Pupide (Clansitia) nature has provided the aperture of the shell with a little valve, called a clausilium, which acts as a spring door to close the shell against all enemies. This door is an additional safeguard, as the aperture is already provided with mumerous teeth and folds.
"It is a curions fact that in the larger groups of animals there are one or more genera which have the cruel and bloolthirsty character of the shark or tiger. The Mollusca are no exception to this rule, and we find in the genus Testacella of Europe an animal having all of the ferocions propensities of the man-eating tiger. This mollusk has a long, worm-like body, the ear-shaped shell being very small and rudimentary, and placed on the posterior end of the animal. Its principal food consists of earthworms, althongh it will attack other molhusks, and even its own species. It has been likened to the tiger

The forest home of the snail.
and the shark, in its cuming while pursuing its prey, and in its ferocity when attacking it. The poor eartliworm stands but a slight chance of escape when Testacella scents it and starts in pursuit. The carthworm tries to escape by retreating into its underground galleries; but this is of no avail, becanse the mollusk has a long, narrow body, and can go wherever the worm does. If the worm, perchance, has the opportunity of retreating far into its gilleries, the mollusk will dig tumnels to intercept it. Frequently the mollusk will make a sudden spring upon its victim, taking it by surprise. This slug-like animal will frequently devour a snail moch larger than itself; but if the victim is too large, it will be broken in the middle, and onc-half eaten and digested, and then the meal completed with the other half.
"The Testacella also resembles the tiger and the shark in the possession of long, fang-like teeth upon the radula. These teeth are recurved, and aid the mollnsk in getting a firm hold upon its victim, and also assist in the operation of swallowing. It is a curions fact that this animal will not feed upon dead animals, nor upon fresh meat, or freshly killed worms. Like the snake, which it greatly resembles in some respects, it must hont and kill its own food. Its wanderings are noctumal, as is the case with most of the land shells, and particu-
larly the shogs, and during the day it remains concealed in burows in the earth. Testacella is quite long-lived, as snails go, its duration of life being about six years.
"A genus allied to Testacella, and having the same predaceous habits, but protected by a large shell into which the animal can withdraw, is the Oleacina, or Glandina. The shell is long, with a narrow aperture, and an elevated, dome-shaperl spire; the animal is long and narrow, and the head near the month is fumished with a pair of elongated lips, which may be used as tentacles. The South American species feed upon the larger mollusks, as the Bulimus, and the aperture of each intended victim's shell is carefully examined before any attempt is mate to enter. When the 'tiger' is satisfied that its victim is really within, it will enter the aperture and devour the animal. Sonetmes it will make a hole for itself in the shell of its victim, and will eat the contents throngh this aperture instead of the natural one. In Florida, the Glamdina preys upon the large pulmonates, as Lifmes and Orthalicus.
*Still another land shell with tigerish habits is the Circinaria, which has a flat, spiral shell. A species in California reaches a diameter of one inch; but the species fond in the eastern and central parts of the United States are not much over half an inch in diameter, and are very common in some localities. It is a perfect cammibal, and will quickly 'elean out' a snailery of half a dozen or more Helices. Thrusting out its long, narrow body, it crawls into the shells of its victims, and no matter how far the latter may contract within their shells, it is of no avail against the carnivorons appetite of Circintiou. It preys upon its own as well as mpon other species, thus being in truth a camnibal.
"In this case," said Professor Parker, pointing to a large upright case in one corner of the gallery, "preserved in alcohol, is a collection of slıgs, or snails without external shells. These animals are very common in Europe, where they attain a large size. They are rather solitary in habit, living in the woods under fallen trees and stones. Some species live near the seashore. Their food consists principally of fungi and the tender

Limax flavus, a slug, or snail without an external shell. (Binney.) shoots of plants. Instances have been known of their committing camibalism, especially when very hungry and when several specimens are together. The native species
of the United States are mostly rather small, althongh several very large species live in the states of the Pacific coast. Some of the smaller species, notably Limax compestris, have the curious habit of suspending themselves from some olject ly a thread of mucus. Some of the larger European species of Limax and Arion have been introduced into this country, and are now found in many of the greenhouses of the larger cities. In some localities they have invaded the cellars of private residences, where they feed upon meat and vegetables. Occasionally a housewife finds one in her milk-pan. In one city in the state of New York, Limax maximus has escaped from the greenhouses, and may be found in almost any yard, under boards, barrels, or boxes, and even under board sidewalks.
"These slugs, as well as some shelled snails, are very injurions to farmers and horticulturists, as they eat the tender shoots of plants and vegetables. In the greenhonses, these amimals are songht after daily and killed by being placed in boiling water. The story is told of a man who tried to raise tomatoes on one of the Florida Keys. He noticed that as the fruit became ripe it was eaten by some animal which left nothing but the skin. lnvestigation revealed the fact that every might a host of slugs, called Veronicella, issued from the holes in the sponge-like coral and devoured the fruit. Against this invincible enemy, the raiser of tomatoes conld not fight and he was forced to give up his gardening.
" A good way to keep slugs ont of a cultivated patch, is to spread a belt of dry ashes, about two feet in width, arome the plot of ground. When the mollusk meets this obstruction it will seerete mucus so fast that it will soon die from exhaustion. The slugs, as well as all land shells, are preyed upon by birds, reptiles, and other amimals, which in a measure keep their number within reasonable bomeds. Turtles are particularly fond of some varieties of smails, and a large number of beetles have been observed feeding upon the succulent mollusk. It is an movarying law among the lower anmals that the small individuals eat those still smaller, and they in turn are eaten by the larger animals."

As we were leaving the gallery, George inquired how long land snails live. Professor Parker answered and said: "The large majority live but a year or two. The desert snatils, which spend half of their lives in hibernation, live much longer, probably six or eight years. Instances are known of the desert snail living withont food for five years while in a state of hibernation, and specimens which have been glued to tablets in a museun have apparently come to life after being on exhi-
bition several years. This habit of hibernation has enabled land smails to be carried many hundred miles from their natural habitat, and has very largely widened the geographical distribution of some species.
"It is interesting to study the methods by which many species of shells have been carried from one country to another. Land shells may be hidden in fruit, grain, or other merchandise, while the marine snails may become attached to the bottom of vessels, or to the bodies of other animals. The driftwood along the shores of rivers may be carried many hundred miles and thus disperse the mollusks attached to the wood over a large area. Clams have been known to close their shells upon the feet of birds and turtles, and have thus been carried from one pond to another. The most effective method of distribution among the marine snails is by the free swimming larva, which often swim many miles from their birthplace before settling to the bottom of the sea.
"The air-breathing snails which we have studied this afternoon," continued Professor Parker, as we left the museum, "are but a limited mumber of the many thousand species of this very interesting group of amimals. Their shells are so easily gathered, and require so little tronble to prepare for the cabinet, that I would advise you all to make a collection of them. If you have no engagement for Monday evening, I should be pleased to have yon spend it with me, when we can study the methods of caring for and labeling such a collection." We gladly accepted his invitation, and promised to be at his house at an early homr.

HOW TO PRESERVE A COLLECTION

On the Monday evening following our visit to the museum, we met at the home of Professor Parker to help him sort and preserve some collections which he had made several days before. His work-room was large and airy, provided with roming water and a good sink; the tables were covered with pans, bottles, files, tweezers of various sizes, an alcohol lamp, and a compound microscope. The aquarium which had so interested us on a previous visit, was placed near the window, and on the opposite side of the room was a large bookcase filled with books on conchology, birds, and other branches of natural listory.

The Professor greeted us cordially, and immediately set us at work. We first separated the clams from the snails, and placell them in different pans of water, after which we proceeded to extract the animal from the clam shells. This we did by placing the shells in lukewarm water, and then heating the water to the boiling-point. This killed the animal, and made the valves of the shell separate. The boiling water also prevented the epidermis from cracking. Professor Parker told us that it was always better to place the shells in lukewarm water at first, in order not to crack delicate shells, and also to preserve the natural gloss. The adductor muscles were next cut, and then the animal was easily removed from the shell.

After cleaning the clams in this mamer, we washed them thoroughly under the fancet, and then tied the valves together in their natural position. The Professor cautioned us to be very careful in cleaning the shells, in order not to injure the ligaments. We were told to grease the outside of the shell with vaseline, which wonld aid in keeping the epidermis from eracking. After greasing them thoroughly and mbling the vaseline in with a flamel cloth, we removed all surplus grease, so that the shells might not feel sticky. We then placed all of the shells in rows on boards and put them away on a long shelf to dry.

In one of the clam shells which George had opened he formd a little, round, pearly object, and he asked Professor Parker what it was. "That," said the Professor, "would have been a rather nice pearl if it had not been boiled. These pearls are frequently found in our fresh-water bivalves, and are caused by some irritating substance becoming loilged in the soft part of the animal. This forms a meleus which the clam
covers with smooth pearly matter to prevent irritation. The beautiful iridescence is cansed by light falling on the edges of transparent plates. The nuclens of the pearl may be any foreign substance, like a grain of sand, particle of food, or a parasitic worm. Spherical pearls are frequently fomd loose in solt parts of pelecypods, particularly in the muscles.
"While we are discussing the subject of pearls, let us look at a broken shell of a Unio. If you observe this clusely with a hand lens yon will

Diagram of a section of the shell of fresh - water clam, showing the three shell layers. a, epidermis; b, columnar layer; c, prismatic, or inner layer. see that it is composed of three distinct parts. Now, if you will look at this section, which I have prepared for the mieroscope, you will see that the shell is made up of an outer layer, composed of almost black tissue, a layer of columnar tissue set at right angles to the first layer, and a third or prismatie layer, which forms the imner surface of the shell, and is composed of thin plates of membrame and carbonate of lime placed alternately. It is the effect of the rays of light falling on the edges of these transparent plates which gives to these shells, and also the pearls whieh the animals produce, their beantifnd iridescent luster."
After finishing the larger clams, we cleaned a number of the smaller shells belonging to the genus Spharium. Upon opening some of these clams, we fond a mmber of smaller shells, which were abont one-sixth the size of the larger shell. These, the Professor informed us, were the young of the Splutium, which are born alive and not hatched from eggs. He also added, that they are very active when young, climbing about water-plants, and seeming to thoronghly enjoy themselves; and that they frequently suspend themselves by a threal, called a byssus.

Having prepared and cleaned the bivalves, we turned our attention to the snails. In order to kill the animal, these were treated in the same mamer as were the clams, after which the soft parts were extracted with a piece of wire bent into a spiral and sharpened at one end to a fine point. Many of the snails, especially the apple snails, were covered with hard mud which it was necessary to remove. This we accomplished with a tooth-brush. Some of these specimens were badly stained with iron, and although we serubbed them dillgently, the stain would not come out. Noticing our predicament, Professor Parker took a hottle of oxalic acid solution and told us to place them in this for a few moments. Following his advice, we found that they were cleaned perfectly.

He also made each of us a good snail extractor by taking a pair of hat pins and heating them over the gas flame. With a pair of pincers he twisted the pin into a spiral of two turns. Then he heated it again,
and plunger it into a pan of cold water to restore the temper of the steel. Thus we had an excellent tool for extracting the animal from spiral shells.

Some of the fresh-water snails possessed an operculnm, and this we carefnlly removed from the foot and placed it beside the shell from which the ammal was taken. When the shells were perfectly dry, the aperture was filled with cotton, and the operculum fastened to it in its matmral position with a little glue. We were told that in some snails the operculum is so large that it curls mp when drying, and that such opereula must be placed between two pieces of wood tied tightly together matil perfectly dry.

Some of the fresh-water snails were covered with incrustations of lime, which we removed with the sharp point of a file, after which a good scrubbing elemed them very micely. When dry, the larger freshwater snails were treated with vaseline in the same manner as the clams, which gave them a fine gloss.

Professor Parker had accumnlated a number of land shells in his snailery, which he asked us to clean for him. These we placed in boiling water, extracted the animal, washed the shells thoroughly, and placed them on a board to dry.

Some slugs had been drowned the day before by placing them in a vessel completely filled with water so as to exclnde the air. This killed the animal in an extended position, the eye peduncles and tentacles being stretched out to their fullest extent. Many of the snails had also been treated in this manner. When completely drowned they were removed to alcohol, the strength of which was gradually inereased. We asked the Professor how long it took to drown a smail, and he said about twentyfour hours. When we asked how long it took to harden the slugs and snails, he answered by giving us the following formula on a piece of paper: 30 per cent alcohol, 24 hours; 70 per cent alcohol, 30 hours; and S5 per cent alcohol for final preservation. He also said that a 1 per cent solution of chromie acid would accomplish the same purpose; and that the specimen of moderate size might be hardened in about thirty hours, after which it should be thoroughly washed in ruming water for twentyfour hours, to remove all of the acid. All of these facts we carefully recorded in our note-books, for futme reference.

From some of the shigs we removed the little, flat, internal shell, cleaned and dried them for the cabinet. The very small snails and clams we placed in alcolol for fifteen or twenty minntes, and then dried them. This removed the moisture and prevented any mpleasant odor.

We asked Professor Parker whether it was necessary to have a differ-
ent lot of tools, or if the work were done differently in preparing marine shells for the cabinet. He assured us that the same apparatus and method of procedure would answer equally as well for mariue shells. In some large species it was necessary to use a syringe to remove all of the animal matter from the spire. We were told that this was necessary to keep the museum insects from ruining the appearance of the collection.

The Professor now showed us a new cabinet which he had just received, and in which he had arranged some of his recent aequisitions. This cabinet was about five feet high, and inside the drawers measured a

A tray of specimens, illnstrating the method of labeling. little more than two feet square, and were two inches in depth. The specimens were all neatly arranged in pasteboard trays covered with black glazed paper. He said that he formerly used white trays, but found that they were too easily soiled. The trays were half an inch deep, and were made in interchangeable sizes, as follows: $2 \times 3,3 \times 3,4 \times 3,4 \times 6$, and $6 x 6$ inches. At the upper part of the drawer were several trays 1×3 inches, turned upside down, upon which was pasted the name of the genus to which the shells belonged. The labels were written with india ink, and were fastened to the tray ly simply ghing the upper edge, as shown in the cut above. This method prevented the specimens from rolling on the label and hiding it.

The labels were made of manila pasteboard, and each one bore the name of the species, its locality, from whom received, the date, a consecutive number, and a few notes relative to the specimens or the locality. The number on the label referred to a book called an accession catalogue, in which the Professor had entered each species, grring all possible int formation regarding it, such as exiact locality, kind of shore, whether rocky, sandy, or muddy, and if a fresh-water shell the size and kind of pond or stream, whether sandy, rocky, reedy, etc. The date and temperature were also carefully recorded, lesides lorief mention of the habits or peculiarities of the animals. In addition to the accession book, he also kept a card catalogue which showed at a glance how many species of a given gemus were in the collection. All of this seemed very desirable,
and we determined, at the first opportunity, to arrange our collections in the same manner.

The very small, minute species were exhibited in little bottles or vials, in which was placed a number corresponding to that on the label. This was a very necessary precantion, the Professor told us, to grard against the contents of the trays being spilled, and so mixing up the collection.

Before we left the Professor's honse for our homes he asked us where we expected to spend our vacations. We told him that we had plamed to spend a few weeks together on the seashore, and that we would be in Providence, Rhode Island, about the middle of July. He made us very happy when he said that he also expected to visit the coast during the snmmer, and would be in Providence about the time that we were to be there. He added that he wonld be pleased to plan some collecting trips with us to obtain marine shells and clams, so that we might compare them with their fresh-water relatives which we had already studied. We bade him good night, and returned to onr homes, onr hearts stirred with the anticipation of a few weeks to be spent on the seashore in company with our friend and instructor.

THE BEACH AT LOW TIDE

on the beach AT LoW TIDE

As treasures that men seek, Deep-buried in sea-sands, Vanish if they but speak And elude their eager hands. - Longfellow.

One morning in the month of August, our quartette of conchologists with Professor Parker, boarded the little steamer at Providence, Rhode Island, for a trip down the bay. Our destination was a small phace called Rocky Point, where it was our purpose to dig clams and collect the various species of mollusks which live on the rocky shore. The ride down the bay was delightful, and the scenery was very beautiful. On either side, the hills rose from the water and stretched far away in soft undulations, their sides green with grass and trees, and their gentle slopes dotted here and there with the cottages of those who were spending the summer in this delightful region. A fresh seabreeze was blowing, and the buoyancy caused by this pleasing aspect of nature made us feel equal to almost any emergency.

After a ride of about an hour we arrived at Rocky Point. On this occasion, our collecting outfit consisted of two spades, several basketr. some wide-mouthed bottles (one of which contained alcohol), a number of glass vials for any small shells which we might find, and the ever ready tweezers.

The tide was out, and a long stretch of muddy beach lay before us, with here and there a pool left by the retreating water, or a rock eovered with seaweed, barmacles, and sea-moss. We made our way aeross this stretch of mul, our objective point being a smooth portion of the beach some three-lourths of a mile distant, where clams were said to be abundant. As we walked along, little jets of water shot up here and there, showing where a clam had become alarmed and had shot his door suddenly, causing the little water-spout.

Arriving at our destination, we were soon prepared for wading; then two of our number took spades and began to dig. At the first movement of the spade, up shot the tiny water-sponts in every direction, showing that the clams were there "in force." A little
digging soon brought to light a whole spadeful of clans mixed with mud, and we all gathered aromed to pick out some specimens for our collections. They were the soft-shelled clams, having white shells and remarkably long, black siphons. Upon close examination we found that the siphon was not one tube, but two tubes jomed together. Professor Parker told nis that when the

Soft-shelled clams, Mya arenaria, buried in the mud in natural positions. A, with siphon extended; \mathbf{B}, with siphon contracted. clam is in its natural position it is buried nearly a foot below the surface of the mud, and its siphons are stretched out matil the end just reaches a little above the surface. In this position the lower siphon is the larger, and is fringed with little whip-like organs called cilia. The other siphon is smaller, and is without the larger cilia. When the clam is disturbed, either by footsteps or by some enemy, it violently retracts the siphons, thus causing the water in its shell to shoot up in a. little spout. When the clam is covered by the sea, all of the little cilia are engaged in pumping currents of water down one siphon and up the other; but when the tide is out, the clam stops working and remains quiet, with its siphons fully extended. However, shonld an enemy alarm it, the siphons are suddenly drawn in.

We spent the morning digging clams, and by noon had accumnlated nearly a bushel. Gathering together a lot of seaweed, some driftwood, and a few large stones, we built a fire in an inclosure formed by the stones, put on the seaweed, and soon had a nice lot of clams baking for our dimer.

While Harry was busy preparing the dimer, the rest of ns walked along the shore to pick up any good specimens which the tide might have washed in. At the point which marked the height of the tide, there was a line of debris called sea-wrack, which proved to be a perfect mine for specimens, and we gathered no less than twenty different varieties of clams and snails. The Professor told us that such a locality
was always a gool one for shells and other amimals which the tide had washed in.

At one place we came to an elevated bank, which was solid with black edible mussels, Mytilus chulis. There must have been literally millions of shells attached to the bank and to each other, by their byssus of little silken threads. Among the massels we found periwinkles, bubble shells, slipper shells, and a host of others. Not the least interesting inhabitants of this mussel bank were the fiddler crabs, which scampered off in every direction as we approached, holding their one enormous claw ready for battle. They soon disappeared in their holes, their claw and big pincer being visible just below the edge of the hole.

Returning to our camping-

The black mussel, Mytilus edulis, showing byssus, by which it attaches the shell to some object. (Binuey's Gould.) ground, we found awaiting us a good dimer consisting of baked clams, bread and butter, and a generons slice of apple pie for each one. After dimner, Professor Parker proceeded to give us a lecture on clams, and we willingly gave him our closest attention.

We were first told to examine the ontside of the shell, and note the brown, horny covering called the ejidermis, which protects the limy shell from injury by any carbonic acid which may be in the water. As in the fresh-water clams, the soft-shelled clam has a rounderl anterior end and a wedge-shaped posterior end; a sharp ventral margin and a romded dorsal margin, with the two beaks, or mobones, placed a little in front of the center of the shell. The two valves are alike, and the anmal is therefore bilaterally symmetrical. It was noted that the anterior end closed tightly, while the posterior end opened, or gaped, to allow the siphons to be extended.

Removing one of the animals from the shell, Professor Parker pointed out its different parts, and their relation to the animal. In the right valve we noticed the large scars of the adductor muscles at either end of the sholl, and the deep pallial line connecting them and showing where the mantle of the animal was attached. Our attention was called to the fact that this line was not straight, as is the case with the fresh-water clam, but was curvel, and had a bay, or simus, at the posterior part, called the pallial sinus. This showed that the anmal
had long, retractile siphons, and was a burrower in the mud. "All bivalve shells with this kind of siphon," said the Professor, "have a pallial sinus in the shell, while those with short, non-retractile siphons are withont a simus, as is the fresh-water clam.
"In the fresl-water clam the dorsal part of the two shells are fastened together by a ligament, and the valves are aided in opening and closing, by a set of cardinal and lateral teeth. In this soft-shelled clam, however, no such apparatus is present; but in its place there

Interior of right valve of clam. aa, anterior adductor muscle scar; pa, posterior adductor muscle sear; pl, pallial line; ps, pallial sinus; r, resilium, or so-called cartilage; t, tooth like enlargements of the hinge corresponding to the teeth of the fresh-water clam: $u, u m b o$. is in the left valve a broad shelf extending from the hinge, on which there is a long tooth, and a tongh piece of brown cartilage called the resilium. In the right valve there is a depression and a heavy ridge, which fits into a corresponding depression in the left valve. This resilium forms a eushion whieh is constantly pushing the valves apart.
"It will be remembered that in the fresh-water clam, the tongh ligament pulled the two valves apart by contraction; but in the soft clam the elastic cushion is constantly pushing the valves apart. In both cases, the adductor muscles have to overcome the strain to keep the valves together. The resilimm is not a true comnterpart or analogue of the ligament, but it is a part of the latter which has become separated from the true ligament. which is reduced to a mere trate in this clam, becanse of its burrowing habits.
"The interior of this shell is not lustrous and pearly, as in the freshwater clam, but is white like porcelain. For this reason the shell is called poreellamons. The outside of the shell is very much roughened by many concentric lines or ridges, which show where the animal alded to the size of its shell as it grew larger. The heavier ridges indicate rest periods and by comnting them we are able to tell the age of the clam, as you observed in the fresh-water clams."

Having thus explained to us the functions of the shell. the Professor picked up a large shell from a pile lying near, carefully severed the two adductor muscles ly cutting them close to the shell with a flat-
bladed knife, removed the left valve, and presented to our wondering gaze the animal which made the shell.

We saw that the shell was lined by a soft skin, called the mantle or pallinm, which secreted the two valres. This formed a closed hag, with the siphons at one end and a romd aperture at the other end throngh which the foot might be thrnst.

Carefully cotting away the central trimsparent part of the mantle, the Professor laid bare the intemal orgms of the animal, and explained their functions to us in detail. The long siphon was seen to contain two canals and to be very elastic, as we han seen in the living animal, being capable of stretching ont several times the length of the shell. The aperture was seen to be lined with hairs, or cilia, which keep up a constant motion in the living clam, creating an inward current, which brings food to the amimal in the form of microscopie animals and plants.

This class of mollusks, like the fresh-water clams, is headless, and the mouth leads directly to the stomach. Just back of the posterior adductor muscle, we were shown two pains of delicate organs, suspended from the dorsal part of the anmal, and called the labial palpi, or lips, which

Diagram of a section of the soft-shelled clam, showing method of opening and closing the valves. ch, chontrophore, or shelly depression for the cartilage, or resilium, r; lv, left valve; rv, right valve: m, adductor muscle: u, umbo. protect the month; and which, by the motion of the minnte cilia on their surface, create a current of water toward the mouth. Lifting up the palpi we saw the little month lying between them. The most conspicuons oljects were the two pairs of gills; one pair lying on either side of the fleshy abdomen. The gills were hroad, wrinkled masses, hanging from the dorsal part of the amimal to which they were attached. They were filled with many little tuhes, thromgh which the blood circulates, expelling its poisonous carbonic acid gets, and becoming laden with fresh oxygen.
"The gills not only purify the hood," sibl Professor Parker, " Hut they also aid in gathering the food. If examinel with a powerful magnifying glass, the surface of the gills will be seen to be covered with thousamb of little har-like cilia all moving in unison like the oars of a man-of-wim boat, thus keeping up a constant current. The little animals and plants which are hrought in throngh the lower, or branchial siphom are canght upon the little cilia, rolled into a mucilaginoms string, and passed on to the month, where they enter the stomarh and intestine. and are digested. The nutritions portion is absorbed in the bood,
and the hard parts are cast out by the upper or eloacal siphon, as waste. The gills are, therefore, gatherers of food as well as purifiers of the blood."

Suspended between the gills we noticed a muscular borly, which is the ablomen, with the small, spade-like foot attached to the lower end. This foot is capable of great expansion, and is thrust ont through

Soft-shelled clam, with left valve and a part of the mantle removed to show the prineipal organs of the animal. A, anterior end: P, posterior end; aa, anterior adductor musele: ah, abdomen; f, foot; ig, inner gill: lp, labial palpi; me, mantle edge, which is much thickened; og, outer gill: pa, posterior adductor musele: po, petal orifice, through which the foot is extended: sh, shell: s, siphons; u, umbo. The arrows indicate the dircction of the currents of water. a round slit in the mantle, the edge of which is very musenlitr and much thickened.
"Besides the organs already mentioned," continued the Professor," the clam has a nervous system like that of the fresh-water clam, a brownish liver, and a
heart and blood-ressels. The heart may be seen at the upper part of the amimal, where the mantle is very thin, and is like that of the fresh-water clam. The foot is especially adapted for digging. When not in use, it is a small projection on the anterior end of the abdomen; lont when extended ready for use, it is meh swollen and greatly increases in size. The animal digs by pushing the foot into the sand, thereby making a hole, and pulling the foot after it."

We asked the Professor if it was true that the clams were becoming less mmerons, and if so, why this was the case, as we hat moderstood that each clam lays thonsands of egres ammatly. He said that it was true that the momber was decreasing, and that this fact was due to several reasons; the first one being that they were gathered all the year romm, and were not given time enongh in one year to make rp for the loss of the previous year. "And while it is true," he added, "that each clam produces hmolreds of thonsands of eggs, yet they are so beset with enemies that but a comparatively small number reach maturity. The eggs are deposited during September and October, and some of them are soon eaten by other animals. After the little clams hateh, they swim about in the water for a time, and finally sink to the
bottom and dig burrows, as do their parents. During this frec-swimming time they are the prey of mumerons amimals-molhisks, worms, starfish, and even fishes - so that only a small momber live to become established in their burows. They should be protected during the montlis of September, October, and November, in the same manner as are the birds in the spring. Not only is the clam in great danger while yomg, but even when it has reached adult life and is apparently safe in its burow, it is still beset by enemies. One of these is the clam worm, a cylimhral amimal about an inch long, and the other is the drill, which sometimes finds the clam near the surface, and then proceeds to drill a hole in its shell and suck the juices of the animal. Flomnders, cod, and other fish also prey upon the poor clam."

As the tide was now almost high, we picked up our collecting baskets and walked toward the boat landing. On our way, one of our party picked up a long, slim clam, resembling the blate of a razor'. This, the Professor said, was called a razor clam. A little later, another specimen was found whicla contaned the animal. It was very cmrions, and is pictmed on this page. The siphons were partly divided, and

Razor shell, Ensis directus, with foot and siphonsextended. (Verrill.) covered with little fingerlike projections called papilla. The foot was rery sharp and somewhat pointed on the end.

Near the razor clan, the Professor pieked up another shell containing the ammal which he called Tarehes giboms. The foot was very large for the size of the shell, and the siphons were remarkable, being very long, and separated their whole length. Professor Parker told us that the siphons of different bivalves were of many shapes and sizes. Some, like the softshelled elam, were long, and bound up in one piece. Others, like the Tagelus, were long and separated; while still others were

Tagelus gibbus, with foot and siphons extended. Note the long, divided siphons. (Verrill.) short. thick, mited, or separated; and in fact, almost any modification could be fomd. In some cases. one siphon might be longer than the other, as is the case
with some tellen shells. We were each fortmate enough to find a specimen of the Tayelus.

Just before reaching the steamer, we walked along a ridge of land a little above high tide, which was literally packed with the shells of different kinds of mollusks. Here were clams, oysters, seallops, drills, heart shells, moon shells, slijper shells, and a host of others. Among these were a mumber of heary, romded shells, which the Professor called quahoys. One of these was alive, and we saw that it had a large foot, and two short, thick siphons. The linge differed very much from that of the soft-shelled clam, and was very much like that of the fresh-water clam, excepting that it was much broader. and the lateral teeth were heavier. The anterior part of the shell also showed a plainly marked lumule.

All were particularly interested in the ark shells, with their heavy, radiating ribs, and their peenliar linge, which bore about forty little teeth in each valve. The Professor reminded us that we had now seen three types of linges; the

Interior of ark shell, Arca pexata, showing the large number of teeth, t, forming the hinge. clam, withont pronomiced teeth; the ark, with many small teeth, and the fresh-water clan and quahog, with well-marked cardinal and lateral teeth.

Onr ride home was one never to be forgotten. It was twilight when the steaner left the wharf, and as we steamed slowly up the bay the darkness deepened, the heantiful tints of the western sky faded slowly away, and night settled over ns like a huge curtain. Along the shore, the lights in the cottages began to appear, and in a little while the full moon rose and cast its leams over the dancing waves. An hour later, we landed at Providence, tired and hungry, but filled with the satisfaction that only the born naturalist can experience after a day of successful collecting and commmion with Nature.

M. tlus mbtuli l

Cxthersal lopimaris I:mana

THE OYSTER AND ITS RELATIVES

Several days after our trip down the bay, Professor Parker invited us to go to Boston with him and visit one of the museums of that city, where we might together study some of the different varieties of bivalve mollusks. We accordingly took an early train, which carried us to Boston in a little over an hour.

Without delay he conducted us to the musemm, which was situated but a short distance from the station. We entered the square, massive building, passed ly mumerous cases filled with minerals and geological specimens, and ascended to the first gallery, where the mollusks were located. The shells filled the cases in several rooms, and to one of these the Professor led us. In this case were some of the most beautiful shells we had ever seen.
"The clams, oysters, and mussels belong to the class Pelecypoda," said Professor Parker, "which is the lowest, or rather the simplest, of the branch of animals which we call the Mollusea. As you have already learned, the animal is encased between two shelly valves made of carbonate of lime. Some of the bivalves live in the mud, in various positions, and are able to move from place to place at will. Others, like the oyster, live attached to some object at the bottom of the sea, such as a stone, a piece of woorl, or the piling of an old wharf, and are not able to travel about as are their more fortunate relatives, the quahog and the clam. Still other bivalves attach themselves by a byssus composed of silk-like threads, which anchor their shells to stones, sticks, and other foreign objects.
"The shells in the case before us are among the most attractive of the bivalves. They belong to the family Venerida, or Venus shells; and the little, shelly skeleton is ornamented by many bright colors, the patterns occurring in spots, dashes, zigzag lines, and rays. Some varieties, such as the spiny Venus, Cythera lupinaria, have the posterior end of the shell armed with long, sharp, curved spines, and the shell is also frilled in a beautiful mamer. The common qualog, or round clam, which you found so plentifully on our excursion to Rocky Point, is a prominent member of this family on account of its value as an article of food along the whole Atlantic coast, where it is much esteemed.

This family comprises about five lundred species, which are distributed throughout the whole work, and are found ranging from between tides, to several hundred fathoms beneath the surface of the water.
"The family Cardiudt, the heart-shells, or cockles, comprise some of the largest and most attractive of Pelecyporls. The name Cardium, signifying a heart, is given to them becanse of the close resemblance to that organ when the shell is viewell from the anterior end. These animals live in sandy or muddy bays, and generally congregate in thousands. In England, the edible cockle, Cardium chlule, is considerer quite a delicacy, and annually, thonsands are used for food. In our own comitry they are not generally eaten, except by the poor in Florida and in some places along the Gulf of Mexico. The waters of Florida furnish some very handsome species, among then the rich, red Cardium isocardia, and the large Cardium magnum, the latter attaining a length of five inches, and being ornamented by beautiful color patterns of brown and yellow. The foot of the Cardium is very peculiar, being shaped like a sickle, which enables the animal to pull itself along at a lively gait. A California cockle, Liocardium clatum, grows to a diameter of seven inches, and would furnish a meal for several people. Nembers of the Cardium family are found in all parts of the world, from the Arctic regions to the Tropics, and they number several hundred species.
"In the fimily Tridacnide, which we find in this case, size seems to have reached its limit. This speeimen of Tridacna gigas, which is so nicely momed, lives in the Lndian Ocean, grows to a length of nearly six feet, and weighs as much as eight hondred pounds. It is recorded that a pir of these shells, which

Tridacna squamosa. A relative of the giant clam of the Pacific Ocean. (Woodward.) are two feet in diameter, and weigh five himdred pounds, are used as lenetiers in the church of St. Sulpice, Paris. In some parts of the Indian Ocean, where pearl and sponge fishing are carried on, this clam, which is known as the giant clam, is a source of great danger to the divers, many losing their lives by having either hands or feet canght between the great valves of the slell. Miny a diver has amputated a finger, hand, or foot, and thus sated his life at the expense of one or more of these members.
"Let us now give our attention to this case of tellen shells," contimued the Professor. "This family, the Tellimide, numbers among its five hundred or more species some of the most beantiful of the bivalves. What could be handsomer than this tallet of specimens of the sumrise
tellen, Tellina radiuta, which is so plentiful along the shores of Florida and the West Indies? You notice that the right valve looks not mulike the horizon at sumrise, the brilliant rays of color spreading in different directions from a common center. The varions species of the family live buried in the sand or sandy mud, and are found throughont the world. The siphons of the tellen are very long and are separated, the upper one being half or threequarters as long as the lower one. The foot is rather long and pointed,

Gari vespertina. An English tellen shell. Note the two long, separated siphons. (Tryon.) and admirably adapted for burrow-
ing. The long siphons enable the animal to bury itself to quite a depth below the surface of the sand. At Newport, I have gathered many humdred specimens of this beautiful little pink tellen, Tellina tenera; the shell of which yon see is tinted a delicate pink or pinkish white.
"Placed beside these tellen shells you will note another and related family, the Psammobidde, which contains some very pretty and interesting shells. I purchased a book yesterday on the shells of the Pacific Coast of the United States, entitled 'West Coast Shells,' written by a California gentleman, Prolessor Josiah Keep." The Professor drew a small volume from his pocket, and said, "If you will turn to page 199, yon will find an excellent description of one of these animals, called I'sammobia rubroradiata, or the red-streaked Psammotia." Harry took the book, turned to the page indicated, and read as follows:
"'But I wanted to see more of him, so I took a large jar, filled it half full of beach sand, added as mmeh sea-water as it would hold, and plunged my prize into the same. He rested quietly for a few minutes, and then began to open his shell and cautionsly put out his two siphons. Soon afterward, from between the two elges of his shells, came his big, white, spade-shaped foot. He drove it down into the sand, curved it a little to one side, gave a vigorous pull, and, lo! his shell followed, thongh just why, I could not clearly mulerstand. Thongh the jar was large, he reached the bottom before his shell was wholly covered with samd, and had to content himself with a half-above-ground tenement. Next morning his siphons were stretched out some six inches in length. I never thought before that there was any particular beauty to the siphons of a clam, but for this red-lined one my opinion quickly changed. Imagine two tubes made of the finest pink and white silk, stretched over delicate hoops arranged at regular intervals; then thimk of them as endowed with life, and waving with a graceful motion through the water, and you will have a faint idea of their exquisite texture and
elegant appearance.'" We all thought that this description was very rivid, and that it gave us a good idea of the appearance of this interesting anmal.

Passing by several minor families of shells, Professor Parker conducted us to a series of eases which contained a large collection of Uniomide, or river mussels. These, he said, were no less interesting than the marine shells which we had seen, and in many instances they excelled their salt-water relatives in beanty of ormamentation. The general colors were black and shades of green, and their surfaces were varionsly marked with knols, spines, and rib-like mondations, with rays and spots of color. The tints of their interiors were most beantiful, ranging from pure, silvery white, throngh orange, pink, and salmon, to dark purple; and the rich, pearly iridescence rivaled that of any of the marine shells. These reminded us of a collection, which we had seen in the West, illustrating the pearlbutton industry, and from which we learned that hmolreds of tons of these shells are gathered yearly from the Mississippi River and sold to the button factories at Muscatine and other places in Iowa, for the purpose of mannfacturing pearl buttons. We learned from Professor Parker that the Mississippi Valley is the metropolis of this family, and that more species are fomd there than in all the rest of the world combined. He also told us that there are about one thonsand different kinds of these mussels. "Pearls," he added, "are found in river mussels, but are msually of little value, although some very valuable ones have been found.
"The shell that is the most familiar to many people is the oyster, Ostrea virginich, and in the case next to those containing the river mussels, we may see a variety of these and their near relatives," contimued Professor Parker, walking toward a case some distance away. "The cultivation of this bivalve ocenpies the attention of a large number of men, and the investment of considerable capital. The oyster is free and active when young, but becomes attached to some submerged object early in life. Oyster eultmrists take advantage of this habit by erecting poles in the water to which the young oysters attich themselves. One valve, the lower one, becomes attached, and the oyster spends its life in this condition, with neither foot nor siphon, and entirely dependent upon the currents in the surrounding water for its food, which consists of the larvae of sponges and mollusks, and of various species of microscopie anmals. The oyster has many enemies, chief among which is a species of horing sponge, which eats into the valves to such an extent that it falls to pieces. Another enemy is the drill, which bores a loole in the shell and sucks the juices of the animal through
this aperture. It is said that the yomg oyster has but one chance out of one million, one hundred and forty-five thousand, to survive and reach adult life, so mumerous are the destructive agencies which surround it. To offset this terrible mortality, each oyster lays several million eggs in order that a few may survive to perpetuate the species. Oysters are found in many parts of the world, and the different species vary much in their form and in their mode of life. In the 'cock's comb' both of the valves are curiously plaited, while another species, the 'tree oyster,' grows on the roots of the mangrove. The common edible oyster sometimes attains the length of a foot, while a Japanese species, Ostrea taliemwaniensis, reaches the astomnding size of three feet.
"Distantly related to the oysters is the Anomia, or jingle-shell, which attaches itself by a huge plug or byssus to other objects. This plug passes throngh a hole, or foramen, in the lower valve, and so tightly does it hold the Anomia to the object upon which it is resting, that its shell becomes molded to the surface of that olject. You will note several specimens in this case which are attached to the shell of the scallop, the Anomia having its shell ribbed in precisely the same form as the scallop. In France, this animal is used as an article of food.
"You have no doubt heard of the 'dancing scallop,' and here you may see nearly a hundred different kinds. This family, the Pectinide, is composed of rounded shells, many with frills or rils,

Anomia simplex, one of the "jingle-shells." The orifice through which the byssal plug is thrust is shown in the upper part of the figure. (Tryon.) and nearly all ornamented with beantiful colors. Here is one from China, for example, with one valve white and the other reddish brown streaked with white. Unlike the quahog and clam, these animals have no siphon, and the shell is open atl the way around save at the lhinge. The edge of the mantle is provided with small, round, black eyes. With its foot, the mimal spins a byssus, which it extends through a little noteh on one ear of the shell near the linge, and with which it attaches its shell to pieces of searveer, bits of wood, and other objects. A beach at low water is an interesting place, the receding tide having left on the shore, or in little pools, hundreds of these mollusks, attached by the byssus to picces of seaweed. As one stands gazing wonderingly orer the vast fields of yellow sand and green weed, an object will suddenly move through a pool of water with astonishing rapidity, accompanying the movement by a quick, snapping sound. This is the scallop, which is imprisoned in the pool and desires to get out. The morement is effected by rapidly
opening and closing the two valves of the shell, thereby causing a clicking sound. The noise of several hundred of these clicking shells, and the sight of as many of them with strings of seaweed attached to them, looking not mulike a comet with a long tail, is quite bewidlering. This habit of shooting through the water has caused them to be called 'diuncing scallops.' In both Emrope and America the scallop is considered a delicacy, and several tons are gathered amnally. The scallop, Pecten maximus, has a bright orange boly and a fawn-colored mantle. A related species, Pecten jucubcous, has been dignified as a budge of several orders of knighthood, and it was also worn by pilgrims to the Holy Land, many years ago. It was called St. James's Shell.
"The family Spondylude is closely related to the scallops, and the shells certainly rank as among the most beantiful and striking of all bivalves. They are varionsly colored with brown, red, and white, and are covered with many long, graceful, sharp spines. In some species, in adult life, the lower valve is attached like the oyster, from which habit they have received the common name of 'spiny' or 'thorn' oyster; but a few, like the Spondylus imperialis, in the center of this case, remain free during life. The finest and largest specimens come from the Gulf of Califormia.
"A family closely related to the Spomblidee is the Limida, of which the genus Lima is the typical form. The mame Lima means a file, and the shells are called 'file shells,' because the smrface is covered with scaly ribs, giving it the aspect of a file. There are about twenty species in the family, which are found in many parts of the world. In early geological times they must have been very mmerons, over three hundred species having been fomid in the rocks of Enrope, India, and the United States.
"Dr. J. Gryyn Jeffreys, in his ' British Conchology', thus writes of the Lima: 'The Lima moves, or rather darts through the water like a scallop, but in a contrary posture. The hinder, instead of the ventral end is in front, so that the mode of its progression may le compared to that of a fish swimming tail foremost. Some species construct dwellingplaces called 'nests' ont of fragments of shell, comal, gravel, and other material, which they ingenionsly fasten together hy their byssal threads and attach to the roots of large seaweeds. Several young ones often occupy the same nest, or case, but when they become adult each individual has a honse of its own. This remarkable construction is fun-nel-shaped, with the larger end contracted, and sufficiently wide to admit
of the Lima moving freely up and down, but not turning around in it. Here it lives secnre from prowling fish and crabs. The case is lined mside with a closely woven net of byssal threads, plastered over with slime. When the Lima is first taken out of its case and put into a basin of sea-water, it is exceedingly active and restless, or else it gracefully careens about, with its long and thick fringe of filaments trailing behind it. In the course of a few minntes it seems to get tired, or reconciled to its prison; and it then lies on its back, the valves of its shell expanded, and reposes on its own soft, luxurious cushion. The filaments (or tentacles) at first curl and entwine around one another, but afterwards they are withdrawn and become contracted; a circular, inner row, like a coronet, surrounds the slowly flapping gills; and the outer rows fold orer on each side and form a sort of checaux-de-frise. A remarkable peculiarity of Lima consists in the tenacious grasp of it tentacles; sometimes when my finger tonched the animal, it was rapidly seized by the tentacles, as by those of an Actinia (or sea anemone), and so firmly, that I have dragged the Lima aromnd the tank. It seldom let go its hold until the tentacles were torn away, or as I believe, voluntarily thrown off by the animal. The tentacles so detached still adhere closely to the object they have grasped, their free ends twisting about as if conscions of life, and they are with difficulty taken off.'
"One of the larger bivalves belongs to the family Pinnide, comprising the wing shells of which, one species, Pimna nobilis, attains a length of two feet, and spins a fme, silken byssus by which it moors its shell to some solid oljject. They frequently bury themselves almost from sight in the sand, the shell standing erect with knife-like elges. The Italians gather the byssus of this species and weare it with silk, from which they mamfacture gowns, caps, and other articles of wearing apparel. You may see some of these articles in this case. The shells of Pinna are triangular in shape, very thin and brittle, and the hinge is withont teeth of any kind. The wing shells entertain a guest in the form of a little crab, which lives in the mantle and gills without any apparent discomfort to the animal. Many hundred years ago, Aristotle, the Greek philosopher, gave it the name of Pimotheres, or Pima-guardian, he having believed that the crab had formed an alliance with the Pima.
"The family Iterïdce, comprising the 'pearl-oysters,' is of great interest, both scientifically and economically. At the present time there are a little over one humdred species living; but the family has existed since early geological times, and over a thonsand species have
been found in the rocks. The shells of this family are very broally rounded, and the hinge line is long and straight. The thickness of the animal is small comparel to its breadth. The pearl oyster, Melectgrina margaritiferc, is the most important member of the fanily, furmishing, as it does, the beantiful pearls of commerce. These animals are found at Madagascar, Ceylon, and other parts of the Indian Ocean. The pearls are formed by some irritating substance, as a grain of sand, some parasite, or even an egg getting in between the shell and the animal, or lodging in some soft part, which canses the amimal to cover it with pearly matter to prevent irritation. Pearl gathering, by diving, has been carried on at Ceylon since the time of Pliny, and several remarkable pearls have been found. The largest pearl known, that of Mr. Hope, weighed eighteen thousand grains, and measured two inches in length and about four inches in circumference. The Chinese produce artificial pearls, as well as pearl images.

Malleus vulgaris, the "hammer-head oyster" of the Indian Ocean. A near relative of the pearl oyster. (Tryon.) by inserting a lead figure, or small, round olject between the mantle and the shell, which the animal covers with pearl in a few months. The shells of the pearl oyster furnish the larger part of the mother-of-pearl, which is so largely used for ornamental purposes, and several hundred tons are imported into England ammally, principally from Manila. A species of pearl oyster lives at Panama, and a related species, Pteria radiata, in Florida and the West Indies.
"You will probably remember," said Professor Parker, stepping over to another case, "the large bank of mussel shells which you saw on our trip to the beach at Rocky Point. In this case are exhibited a large variety of these shells. Notice the peculiar, wedge-shaped shell, with its small, rounded anterior end, and broad, sharp posterior end. Note also the little bunch of thread-like filaments which extend from near the anterior end of the slell, and fastens that large specimen to a stone. That is the byssus, which is spun by the foot of the animal, and by which they attach themselves to mud banks and regetation. The luge banks of these nussels, some of which have black, glossy shells, are familiar oljects to the seaside visitor. At low water they are among the most conspicnous oljects on the shore. A related genus, Ifodiola, burrows in the gromul or spins a nest formed of stones
and fragments of shells, the byssal threads holding them together. One species varies from this rule, and simply spins a byssus. This is the Modiola plicatula, a yellowish shell lound on the Atlantic coast of the United States. This Modiola uses its foot like a snail, and has been seen to crawl up the side of a glass jar.
"The mussels are of great importance and value economically, thousands of bushels of the edible mussel, Mytitus cdutis, being consumed annually in Emrope. They are also used as bait, millions being taken for this purpose. An ingenious method of fishing for mussels is used at Kiel, Germany. Boughs of trees are placed in the Bay of Kiel and allowed to remain for three, four, or five years, at the end of which time they are covered with mussels. Between December and March they are taken $u p$ and sold by weight. The mussels are said to attain their growth in a single year.
"Still another interesting mussel is the date shell, or Lithodomus, so called from its habit of boring a 'stone house' in corals, or even in the hardest limestone rock. Its burrows are shaped like the shell, which prevents it from turning aromol. They are like the mussels in form, and are considered a delicacy by some of the inhabitants of the shore of the Mediterranean Sea. The perforations which this ammal has made in the Temple of Serapis at Puteoli have shown that the seat-coast has materially changed in modern times.
"We must now hury on, and pass hastily by several cases which we camot study today. Here in this case is a large collection of ark shells, with their pecuhar multidentate hinge. They live at low water, under and aboit stones, to which they anchor themselves by a byssus. In the same case are a number of the nut shells, Nuculu, and a relaterd genus, Foldia, the shells of which are smooth and polished. These animals live in large rutantities in bays and in the mouths of rivers, buried in soft mud. We must also pass by the Astartes, with their brown and chestunt shells, many of which are plaited like a lady's skirt.
" We will panse a moment, however, and study the handsome shells of the family Lucinida, which embraces about one hundred and fifty species of rather solid, whitish shells, beantifully ormamented with fine lattice work, or straight radiating ribs. The species of this family dwell principally in temperate and tropical seas, and love muddy and samdy bottoms. They have been foum from low water to very. great depths. The foot of the principal gemus (Lucina) is hollow; is frequently twice as long as the shell, and is folded back upon itself and hidden between the gills. Several handsome species of Lucina inhabhit the shores of Florida, notably Lucina tigrina and Lucina clergsostome."

At this point George interrupted Professor Parker by asking him if a certain family of shells in the same case were oysters. Their shells were very irregular, and were attached to each other and to various objects in the same manner as the familiar edible bivalve. "No," answered the Professor, "these are not oysters, although they somewhat resemble them. They are members of the family Chamide, which live in the vicinity of coral reefs in the tropical seas of many parts of the world, and are attached by either valve to some object. Their shells are variously sculptured, some being ribhed, while others are foliated or spinose. In color they vary from pure white, through pinkish, to yellow. A California species, Chama pellacilla, is sometimes rosy red in color, and a perfect specimen is translucent like the mineral chalcedony. It receives the name of pellucida from its transparency. The Chamas of Florida are very handsome shells, Chama arcinella being covered with straight spines, while Chama macropliglla is beautifully frilled. The name of the genus was first given to it by the naturalist Pliny and revived by Limmus."

Placed nar the Chama family was a collection of the fresh-water shells belonging to the genera Spheriam and Pisidiam, the latter being so small that we could scarcely see them. Near these we saw several species of the Cyrenas, which live in the brackish waters of warm countries, buried in the mud.
"This family," continued Professor Parker, pointing to a group of shells with brilliantly polished sturaces, "comprises the wedge-shells, or Donax. On the shores of Florida and California they may be found by thousands buried an inch or two beneath

Spisula solidissima, a common hen-clam of the Atlantic coast of the United States. (Tryon.) the surface of the sand. The foot is large and pointed, and particularly adapted for burrowing.
"I am sure you will be interested in the chicken, or hen-clams (Nactra) of which a number of species may be seen in this case. This is a large family, which is represented in all parts of the world, and embraces some one hundred and fifty or more species. On the Atlantic coast of the United States, a species called Spisula solidissima attains a length of about six inches. They bury themselves just beneath the surface of sandy shores. The long, finger-like foot is used for leap-
ing. In some places this shell is used as food for swine and other animals, and it is said to be preyed upon by starfishes as well as by gastropod mollusks."

While Professor Parker was telling us about the Donax and Mactra, George had walked ahead, and we suddenly heard him call to us. "Come orer here," said he, " here is a whole case of razor clams, and some of them are very large!" We hastened to his side, the Professor smiling at his entlusiasm. "Yes," said the Professor, "these are the razor clams, or 'spout fishes,' so called from their habit of spouting water when disturbed. There are about thirty-five species in this family, living in all seas except the Arctic. They burrow in the sand, at extreme low water mark, at an angle of abont sixty degrees. They are said never to voluntarily leave their burrows, and if removed will instantly bury themselves again. They are great diggers, and the collector must indeed be agile who can catch one of these creatures when it once starts to bury itself deeper in the sand. This clam is said to be an excellent article of food when cooked, and the fishermen of Naples have a unique method of catching it. They wade out to where the water is shallow, and feel for the Solen with the foot. When the clam is felt, it is caught between the great toe and the next one and fished up. Frequently the fishermen's feet are badly lacerated (although protected by linen bands) by the sharp shell of the Sulen in its frantic efforts to bury itself out of harm's way. It has been known to bury itself to a depth of three feet below the surface.
"We must not forget to see the different kinds of clams, since we gathered such a nice lot of the soft-shelled ones on our last excursion. There are not many species of the genus Mya, and they are rather small, and confined to northern seas. It is

Ensis directus, a razor shell which lives on the eastern shores of the United States. (Dall.) said that the large walms feeds entirely upon clams, and varions species of crabs love the esculent bivalves. A related genus contains some large species, the most notable being the Washington clam, Tresus muttallii, whose shell is ten inches long, and whose siphon reaches the astounding length of two feet, and is of correspondingly large diameter. This clam inhabits the western coast of the United

States, and buries itself two feet below the surface of the mud, keeping its commmication with the water above by means of its long siphon. A large specimen is exhibited in this case with the siphons extended and stuffed in their matural position. The clam of the Atlantic coast has been introluced on the Pacific coast, and it is said to be slowly crowding out some of the native species of bivalves.
"We must now pass on, and hastily glance at the two remaining families in this case, for it will soon be closing time, when we must leave the building. This family comprises the 'angel wings,' or 'piddock' shells. They are all borers in mud, clay, wood, and gramite, although their sliells are thin and fragile. It is not definitely known how this boring is done, some scientists claiming that it is by means of an acid solvent secreted by the animal, while others believe the shell or foot to be the means employed. However this may be, the mollusk and its burrow are of great interest, and worthy of much study. The loles are mostly vertical and quite symmetrical, quite closely fitting the form of the shell. On the coast of Devon, England, the piddock, Pholes dactylus, is used for bait. In many places a large number of people are employed gathering this mollusk, not only for bait but for food. It is eaten well seasoned and cooked with bread crumbs. The common 'angel wing' of Florida is sold for food in the markets of Harana, Cuba. The shell is curious for having two accessory, spoon-shaped pieces, just beneath the umbones, which act as supports for the liver of the amimal. In addition to these accessory pieces of shell the skim of the Pholas is rendered more solid and rigid by the presence of many siliceons granules. It is said that the

Animal of Teredo navalis. e, collar; f, foot; p, pallets; s, shell; t, tentacles. Note the long, worm-like body of the animal. (Verrill.) Califormia piddock, Parapholas californica, utilizes the dust made by excavating its burrow in building up a strong tube to protect its siphons. The Pholas emits a peculiar phosphorescent light when alive, and this phosphorescence clings to it even after death. Some pelagic mollusks also possess this phosphorescence.
"The ship worm, Toredo navalis, is another borer which docs an
immense amount of danage. This animal measures a foot in length, although it sometimes attains a length of three feet. The shells are two little hemispherical valves placed at the extreme posterior end of the body. The siphons are-very long and worm-like, and terminate in two shelly pallets or paddles. The foot is broad and suckerlike. The vital organs of the animal are all eneased in the little shell. The Teredo bores into wood, such as piling, wharves, ships, and any kind of timber, and no wood is hard enough to withstand its ravages. It always bores in the direction of the grain unless it meets another Teredo or a knot in the wood, when it will change its course a little. As it bores, it lines the tube with shelly matter, always keeping the tip of its siphons within easy reach of the original opening, in order to obtain both a food supply and oxygen. The wool which is swallowed in boring the tunnel is taken into the mouth, passes through the stomach and intestine, and is expelled into the water. When the Teredo first enters the wood the hole is very small, and for this reason a piece of wood may be perfectly honeycombed with the tubes of this animal, and the fact may not be known until some shock or blow breaks the timber and reveals the damage. Metal sheathing and broad-headed nails have been found very effectual in protecting ships and piers from the Teredo. The curions pallets spoken of are used by the animal to effectually close its tube when danger is near, or when it desires to shat off the current of water.
"One of the most curious of bivalves is the Aspergithum, known as the watering-pot, which burrows by hundreds in soft mud. The original shell is about a quarter of an inch in length; but the adult animal is encased in a large, shelly tube fully seven inches long, in the lower end of which the scarcely distinguishable valves are cemented. The lower end is perforated by many small, tube-like holes, and the upper, or siphonal, end is encircled by four or five frills, or ruffles. There are about twenty species in this peculiar genus, living in the Red Sea, at Java, Australia, and New Zealand, and the mollusk is certainly very strange and shows to what extremes Nature goes in fashioning her creatures."

Wateringpot shell, Aspergillum vaginiferum. a, original valves of sheli; b, sieve-like lower end, with row of tubes; c, frilled upper end. Onehalf natural size. (Woodward.)

As it was now closing time, we left the building, and in about an hour took the train for Providence.
偪

IN SEARCII OF TILE DRILL AND PERININKLE

And should the strongest arm endeavor The limpet from its rock to sever, "Tis seen its loved support to clasp, With such tenacity of grasp, We wonder that such strength should dwell In such a small and simple shell.

- Worisworth.

Not long after our trip to Boston, we again visited the shores of the bay, this time near the little town of Apponang. Here the shore was covered with rock and various kinds of ocean debris. The beach was muddy and sandy in places, and the water was shallow for a long distance into the bay. A fresh, sea-born breeze was fortmately llowing, tempering the otherwise torrid heat of a July sum. Alighting from the train which had brought us from Providence, we crossed a bridge spamning a small creek, and descending a steep bank, within a few minutes we were at the shore. The tide was at its lowest ebb, and stretching out before us was a wide expanse of mud-flat, with tiny pools here and there, which were inhalited by many of Naturess strange creatures. Far out over this stretch of muddy beach the tide was slowly coming in; the waves were rolling angrily, but becoming calm and peaceful as they struck the shelving beach, they glided toward us with a soft murmur.

We walked along the shore, passed munerous groups of men and women who were digging clams, and then started across a broad expanse of beach toward a little creek which flowed into the bay. As we hastened along, little jets of water spouted up on every hand, revealing the presence of soft-shelled clams. Crossing the mouth of the creek, which at low water was but a few inches in deptl, we soon came to a pile of rocks, and a small pier which extended into the water to where the depth was considerable. Here the rock-loving sea suails were very abundaut, and the old pier was fairly alive with specimens of the drill, a common suail along the coast from Maine to Florida.

A large-sized individual of the drill measures over an inch in length,
and is fusiform, or spindle-shaped; that is, it is larger in the middle than at either end, where it tapers to a point. Professor Parker suggested that we examine the shell of this species, and see how it compared with that of the fresh-water suails. This we did, and found that every part of the latter could be found in the former. Here were the rounded whorls revolving round the imaginary central axis, the oval aperture, the inner and the outer lip, the columella, the suture and the umbilicus. We noticed that this shell was roughened by many spiral lines which encircled the whorls. In addition to these spiral lines were many fine lines parallel with the elge of the outer lip and shaped like it. These were the lines of growth, showing where the mimal had added new matter to its shell. Crossing the shell at right angles to the spiral lines, there were about twelve rounded ridges. These represented the periods when the animal ceased adding to the outer lip of the shell, and built this ridge or varix. The Professor told us that some suails, like the drill, build several of these ridges in a single year; but that others, as the rock shells (Alurex), build but three or four, and these are highly ornamented, with frills and folds. The aperture of the drill was tinted a dark purple, and was very narrow at the lower end, and formed a little canal through which the siphon was thrust. We learned that very frequently there were two canals, one at each end of the aperture, called respectively the anterior and posterior camals. " $1 t$ is a curions fate," said Professor Parker, "that in most of those shells having a canal in comection with the aperture,

Shell of the drill, Urosalpinx einereus, showing the different parts of the shell. a, apex; ac, anterior canal; ap, aperture; bw, body whorl; e, umbilieus; cl, columella; il, inner lip; ol, outer lip; pe, posterior canal; s, suture; sp, spire. (Binney's Gould.) pire (Binay Gouk.)
 the animal is carnivorous, and lives by preying upon other animats, as does the lion and the tiger, while in those shells with a rounded aperture, the animal generally subsists upon vegetable food.
"The mantle of the drill," continued the Professor, "as indeed of other smails, is a closed sae which communicates with the water by means of one or two siphons. The anterior siphon, which is extended through the long anterior canal, is rather long and is generally reflected, or turned back toward the shell. In some genera of smails there is a posterior siphon of greater or lesser length, which extends through the posterior canal, and expels the water from the gills in addition to the waste matter from the intestine. In a few snails, as Cyprea and Ovula, the posterior canal, instead of being a mere noteh, as in the drill, is extended in the form of a tubur
lar canal. It will be seen after examining our drill, that it is typical of the great class of mollusks which inhabit the sea, and are called Gastropods because the foot or organ of locomotion is on the lower side of the body, and the amimal apparently crawls upon its stomach. The name Gastropod is from the Greek and means stomach-footed. In some marine shells the spire is long and tapering, in others it is short and blunt, while in still others it is almost flat. The shells also vary, some being fusiform, others cone-shaped, ovate, ladder-like, or ear-shaped; in fact, the variety in form is almost endless. But however the shell may vary, it can be described by the names which we have given to the different parts of the drill."

Having examined the shell of the drill, we turned our attention to its occupant, the animal. This was not unlike those we had already studied which lived in fresh water. Here were the same foot, tentacles, head, rostrum, eyes, and operculum that we saw in the apple snail, only they were of different color and shape.

Professor Parker now led us along the shore to a place where several large pools had been left by the receding tide. "Let us peer into the water of this pool," said he, "and see if we can fiud a drill about its daily work in its native home." As we gazed through the clear water, we saw many beautifully colored seaweeds - green, red, yellow, and brownand darting here and there were several mimnows, alarmed at our close proximity. On the bottom of the pool, beneath a shelving rock, were several "five-fingers," or starfish, while in another nook was a clam-worm, with its hundreds of legs moving about. On the under side of the overlanging rock, several sea anemones, those flowers of the ocean, were seen, with their tentacles expanded, ready to catch some umwary fish with which to fill their capacious stomachs. Crabs, smails, and clams made up the rest of the inhabitants of this miniature wordd.

On the rock beside the sea anemones, we saw a drill, and hastily putting his haud in the water, Harry drew it from the rock. But alas, as his awkward hand grasped the shell and disturbed the waters of this quiet pool, what a change took place! The sea anemones retracted their tentacles, and became but a mere rounded lump; the crabs and fishes sought safety beneath the rocks and among the seaweed, and the drill, the animal of which we had hoped to see, had withdrawn into its shell, and closed the aperture tightly with its operculum. This operculum, or door, as the name signifies, is a valuable part of the animal, enabling it to close the aperture against all its enemies. It is placed on the upper surface of the foot, and has a strong muscle attached to it. In large snails this mmsele is so powerful that the strongest man could not pull the animal from the
aperture when the operculum is in place. We learned from Professor Parker that the operculum varies greatly in different snails, some being horny, while others are calcarcous like the shell. They are nearly all formed on the plan of a spiral, althongh in some snails, as in the operculum of Nerita, it is not at first apparent. If the operculum of the drill be closely examined, it will be seen to have grown from a small nucleus by the addition of new matter, as did the shell of the animal.

General anatomy of periwinkle, Littorina littorea; the aninual removed from its shell, and the branchial cavity and back laid open. a, anus; b, branchium, or gill; e, heart: e, stomach; f, liver: g, nervous ganglia surrounding the eesophagus; h, biliary canal: i, intestine; k, buecal mass; 1, lingual coil; m, columella muscle; n, aorta; c, œesophagus; r, rostrum, or proboseis; s , salivary gland; t , foot: x , kidney, or renal organ; y, mucous gland; z, eye. (Woodward.)

We now placed the drill into the pool again, to see if it would not come out of its shell and crawl about. The first thing to appear was the brownish operculmm, which was pushed ont of the aperture, and then a flat, muscular disk appeared, which was the foot, or organ of locomotion. The head next appeared, with its pair of tentacles, which bear the black eyes near their bases. Soon the animal was fully extended, and crawled about on its muscular foot.
"If we could take the time to dissect the drill," said the Professor, "we would find that it is a perfect animal, having a brain and nervous system; a digestive system made up of a mouth, teeth, salivary gland, crop, stomach, and intestine; a heart with veins and arteries carrying the blood to all parts of the body; a complicated set of muscles for all its organs, and a gill for the purpose of respiration. In fact, this lowly mollusk is as perfectly fitted for its work in life as are we for ours, and its organs are as perfect, though not, of course, as highly developed. Like nearly all marine snails, it breathes by means of a gill, or branchinm, made up of a long central stem or rilb, from which a mmber of leaf-like filaments extend, like the teeth of a comb. The fresh-water breathers also have the same kind of a gill, as we have already learned."

As the Professor was thus talking, he suddenly stooped over and picked up a quahog shell with a peculiar little round hole in it. "Aha!" said he, "here is some of the work of the drill, the amimal of which is carnivorons, and lives by boring holes in bivalve shells, through which it may suck the juices of the clam. The drill applies its mouth to the
bivalves, and the radula rasps a hole throngh the shell by a backward and forward motion, the fine particles of lime filed away being swallowed by the drill. It is said that when the bivalve becomes exhausted, it opens its valves, and that the drill then enters by this opening, as do also other mollusks and crabs which have been waiting for this opportunity."

Feeling rather tired by our walk across the muddy shore, we sat down on the sandy beach above high-water mark, and Professor Parker gave us the following account of the homes of marine mollusks:
" Naturalists have divided the sea into certain definite regions, each characterized by a certain kind of life. One of these divisions varies according to latitude

A. Diagrammatic figure showing method used by drill in boring a hole in the shell of a clam. m, mouth; o, throat; p, proboscis, or rostrum; r, radula, which works backward and forward over a pulley-like arrangement, and files or rasps the hole.
B. Piece of the shell of a quahog, showing the round hole bored by the drill. (we speak of the fama of the arctic regions, of the temperate regions, and of the tropical regions), but the division which I desire to speak about is that of depth. The older natmralists divided the shore regions into the Laminarian zone, or region of brown kelp; and the Coralline zone, or region of stony algæ. Later scientists, however, divide the regions according to other characteristics. Thus, the region bordering the shore which supports marine vegetation, and to which light can penetrate, is called the Littoral region; that of the deep sea, to which no light can penetrate, is called the Abyssal or Benthal region; and the region lying between these two is called Archibenthal. The Littoral region may be said to extend from the shore to a depth of one hundred fathoms, and the conditions are here the most favorable for life, being supplied with warm, fresh currents which afford the amimals almondant food.
"The Littoral region may also be divided into several subordinate areas, characterized by the kind of life. The first is the Littoral region proper, which includes that part of the beach lying between high and low water. The next area is called the Laminarian zone, for the reason that the long-leaved kelp, or Laminaria, lives chiefly in this region. It extends from low-water mark to about fifteen fathoms in depth. The third area is the Coralline zone, so called because the vegetation consists principally of stony alge. Small coralline animals, or Polyzoa, are abundant, and this region is generally supposed to extend to a depth of one hundred fathoms.
" Beyond the Littoral region the shore gradually slopes into deep water,
and at depths ranging from two thonsand five hundred fathoms to five thousand fathoms is the bottom of the ocean. The inhabitants of the deep sea are curious animals, the shells being often of exquisite beauty, both in texture and in color; and are often covered with an epidermis similar to that of fresh-water shells. The bodies of the mimals from these regions are flabby and gelatinous in appearance when brought to the surface, but it is believed by scientists that in their native places, monder the terrific

Calliostoma bairdii, a deep-water mollusk, dredsed in the Atlantic Ocean at a depth of from 56 to 640 fathoms. Dorsal view of living animal and shell. (Verrill.) pressure of a depth of two or three miles below the surface, which cannot be less than one thonsand pounds to the square inch, their bodies are compressed to the consistency of iron or steel wire. It is also believed by some conchologists that every molecule of amimal matter in the body of the mollusk is in actual contact with a molecule of sea-water. How this can be and the amimal still perform the functions of life is not known, but this seems to be the only theory that will account for their ability to withstand such enormons pressure.
"When the operculum is present in deep-sea shells it is horny, and very small when compared to the size of the aperture. That light is present in these great depths we are assured from the presence of well-formed eyes in these animals, many of these organs being out of all proportion to the size of the animal.
"It is also interesting to note the temperatures moder which many deep-sea amimals live. At a depth of about eight hundred fathoms it is forty degrees Fahrenheit, and from this depth, the temperatire falls one-tenth of a degree for every humdred fathoms until the freezing-point is reached. It is not to be supposed, however, that the water in these extreme depths ever actually congeals.
"A large number of deep-sea mollusks have been discovered by the United States Fish Commission's steamers Albatross and Blake, and the British steamer Challenger, and the material collected has been described and figured by such well-known biologists as Dr. W. II. Dall, Professor A. E. Verrill, Rev. Boog Watson, and others. Many interesting accomits
may be fomd in such books as 'Three Cruises of the Blake,' by Alexander Agassiz, and 'The Depths of the Sea,' by Sir Wyville Thompson. These books may be consulted in almost any library.
"One can hardly realize the difficulty attending the gathering of these animals from such depths. Let us imagine that a dredge is dropped from the top of the Masonic Temple in Chicago, a height of about two hundred and seventy feet, and drawn along the street to catch such insects, mollusks, and other invertebrate life as might be there. It is manifest that only a small percentage of the fama would be represented by such a method. The depth mentioned is only forty-five fathoms, and if there is difficulty in securing a representative collection for this moderate distance, what must be the almost insurmonntable difficulties when that distance is magnified fifty times! Yet with all these difficulties the animals of the abysses of the sea are being collected and classified.
"These animals are being obtained by means of a large dredge, of which you will find a description in the books mentioned above. This work is, of course, beyond the reach of any save a government or a very wealthy person. A little dredging may be done by eren a novice, along the shore in waters ranging from two or three to ten fathoms. The dredge should be about two feet wide at the mouth, and of the shape indicated by this drawing which I have roughly made. The netting shonld be stout, and protected by canvas flaps on each side to prevent it from being torn. A stout manila rope about ten feet long and three-fourths of an inch in diameter should be permanently attached to the ring of one arm of the dredge. The ring of the other arm should be fastened to the ring of this arm by ordinary twine. This may seem somewhat ridiculous at first, but it is really quite important, for should the dredge become caught by a large boulder or other obstruc-

> A marine dredge ready for use. Note the manner of fastening the two arms together at A, so that they will fall apart when an extra strain is brought upon them. tion, a strong pull will break the twine, and the two arms will swing apart, allowing the dredge to be brought to the surface. If both arms were securely fastened by the heavy rope, the dredge could not be freed from the obstruction, and would be lost. The end of the ten-foot rope is made into a stout loop, to which the long dredge rope is knotted.
"If a rowboat is used, it should be large and heavy and rowed by two men, each pulling a single oar. The person controlling the dredge should sit in the stern, and between him and the rowers there should
be room enough for a good-sized tub in which to dump the result of the dredging.
"Let ns now suppose that we are in a boat ready to Aredge. We first put the chedge over the stern, month downward, and let it gradually sink, playing out the rope very carefully to avoid knots and twists. I neglected to say that before the dredge is placed in the water, a lead weight of about ten pomels should be fastened to the rope ten or fifteen feet from the month of the dredge. This is to keep the mouth in contact with the bottom of the sea, when it is being pulled along. When the dredge is felt to tonch the bottom, the dredger should play out enongh rope to equal twice the depth. The dredge line is now fastened to a eleat in the stem, and the line allowed to pass over the noteh ent in the stern for the seulling oar. This is necessary in order that the rowers may keep in straight line.
"After the dredge tonches the bottom, the rowers may pull the boat for quite a distance before the dredge is ready to be pulled up. By the

Sketch showing method of dredging from a rowboat. D, the dredge; w, the weight placed ten feet from the mouth of the dredge. (Dall.)
peculiar vibrations of the line, one soon learns to judge correctly when the dredge is on the bottom, when it is eatehing well, when it is canght by some obstruction, or when it is not eatching at all. When the dredge is thought to be full it may be pulled up and its contents dimped into the tub. It is sometimes well to examine the material near the month of the dredge for fear there may be some very delieate specimens which may be broken. The material in the tub may afterwards be picked over and the specimens properly claned. Notes should always be made regarling each haul of the dredge, giving all possible
information relative to the characteristies of the bottom (whether sandy, muddy, gravelly, or weedy), the date, the depth, and any other items of interest. It is desirable that each haul of the dredge be kept separate, and for this purpose several tubs, or other receptacles, will he found necessary. A fine wire sieve will be found useful in washing the material.
"Every variety of shore supports a certain type of mollusk, which also varies in different latitudes. Thus a rocky shore is especially adapted for Chitons, limpets, and periwinkles, and a sandy beach is the favorite home of the Naticas, or moon shells, the Nassas, or basket shells, and the large Fulgur, or winkle shell, and of course the bivalves specially abound in muddy and sandy beaches. In tropical regions the coral reefs are fairly alive with mollusks. The student must learn by experience just what species live in each kind of a locality."

Having rested ourselves, we now removed our shoes and stockings, rolled up our tronsers, and walked toward the water, determined to thoronghly explore the shore for mollusks. When about half-way across the beach, Harry found a horse-foot crab, the outside and inside of whose shell was covered witli rounded, flattened shells. Professor Parker said that these were the slipper shells, or Crepidulas, and we proceeded to strip the crustacean of every one of its ormaments, and no less than a hmondred shells of various sizes were taken from this crab.

Fulgur canaliculatus, the common winkle shell of the New England states. (Dall.)

We soon reached the rocky shore which the tide had left uncovered, and each of us began to eagerly search for shells. The rocks were slippery, and covered with great masses of seaweed, while the little pools left in the hollows were filled with the most gorgeously colored weeds - green, red, and pink - which waved gracefully about in the eddying waters. The rocks were tenanted by millions of the periwinkles, whose shells of black, yellow, and red seemed to be everywhere. The purple shells (Purpura) were also very abundant, and George was fortmate enough to find several limpets neatly tucked away on the under side of an overhanging rock. Some of the seaweed was filled with the minute shells of Cerithium, and the little pools contained several specimens of the naked sea slugs (Doris). The sea slugs were very curious, with their peculiar shapes, brilliant colors, and odd, plume-like
breathing organs extending from the back of their bodies. Howard found several graceful ladder shells (Scala) in one pool, and he was the only one of us who was so fortmate. In the same pool he saw a peculiar shell to which he called our attention. It was a large spiral shell which

Hermit crab in shell of Polinices was imhabited by a hermit crab, and its surface was covered with little coral animals called IIydractinia.

Professor Parker, who had gone some distance ahead, now called to ns, and we hastened to him. As we approached we saw him stooping over and looking at the inder side of an overhanging rock; we leaned over a small pool of water, and the Professor pointed out a little bunch of graceful, vase-like objects, about a quarter of an inch high. These were the egg capsules of the purple shell, Purpura lapillus.
Not far from the Purpura eggs Howard discovered several flattened objects resembling the little pill bugs so common under old boards in damp places. We asked Professor Parker what these were. "These," replied he, "are Chitons, or coat-of-mail shells, the back being protected by eight pieces instead of one, as in the other snails. If you wish to preserve any of these molhusks you mnst tie them to a flat piece of wood to keep them from rolling or coiling up."

This spot proved a perfect mine of shells, and we collected over thirty different species. The seaweed was tenanted by small dove shells (Columbella) and the little Cerithites, while the sand in the little pools of water contained numerons minute shells, besides some periwinkles, drills, basket shells, and a few delicate bubble shells, or Bullas.

As the tide was now coming in very rapidly, we started toward the shore. On the way George came across several living moon shells buried in the sand, and near them he noticed a peculiar collarlike object made of sand, to the under side of which a multitude of small, yellowish objects were attached. Professor Parker said that these were the eggs of the Natica, and that the collar was called a nidus. Not far away we fomed several long strings of the flat capsules of Fulgur, and near them a large living specimen which had been thrown up by the tide. Near a dead fish we saw a multitude of the black basket shell, Nassa obsoleta, eating its flesh. There was a perfect procession of Nassas from all directions, headerl toward the fish. The Professor said that the Nassas, being
natural seavengers, have a powerful sense of smell, and had probably scented the fish a long way off. These mollusks seemed to be able to live as well out of the water as in it.

Reaching the shore, we ate our dimer, and then returned to the station by a route which took us aeross a salt marsh, in which we found a large number of the amphibious snail Melampu., which always lives in the vicinity of the sea. A large mussel, Modiola plicatulu, was found here in great abundance.

About the middle of the afternoon, we took the train for Providence, and settling back in the comfortable seats, plied Professor Parker with questions. George wanted to know how the shells grew, and if the young animal was like the old one. "No," replied the Professor, "the young are quite different. After leaving the eagg, the young mollusk, which is very small, is called a veliger larva, and swims about by means of two lobes, or vela, which are placed on each side of the animal and are covered with hairs, or cilia, by the rapid motion of which the larva swims about. All mollusks are free and active when young, and spend a greater or lesser time in swimming about. As the organs become more developed, the vela gradually disappear, the head, foot, tentacles,

Veliger larva, or young of Rissoa costata, a minute gastropod. The vela or ciliated lobes are seen on each side of the animal, and the eyes, foot, and tentacles are seen in the center. (Tryon.) heart, and other organs are formed, and the young mollusk sinks to the bottom of the sea, and takes up its adult condition. If an attached species, it fastens itself to some object; if a free-moving snail, it selects some rocky or sandy spot for its home. You will observe from this rough sketeh which I have made, that the young mollusk is as different from the adult animal as the caterpillar is from the butterfly."

We arrived home at supper-time, tired in body, and as Harry expressed it, "as liungry as wolves."

SOME SNAILS OF THE OCEAN

Several days after the collecting trip to Apponang, we again visited Boston; this time to remain a week and study, with the aid of Professor Parker, the many varieties of marine snails in the different

Tooth shell. Dentalium elephantinum. (Tryon.) musenms of that city. During that time we learned the following valuable and interesting facts conceruing these animals:

The marine snails outnumber all of the other mollusks, and their shells are far more beautiful, those in the tropics having the most gandy colors imaginable. The animals are all formed on the same plan, althongh each family has some peculiarity not shared by its relatives. They are found in all parts of the world, those of the tropics, however, being the most brilliantly colored. While the majority of species live either between tides or near low water, there are not a few which live in the abysses of the ocean, and have been obtained by dredging at a depth of three thousand fathoms, which is more than three miles. The average depth at which mollusks are found in any number is about one thousand fathoms. The variability of marine snails is so great that only a few typical forms can be mentioned.

One of the most curious of marine mollusks is the Dentalium, or tooth shell, which is a member of the class Scaphopoda. The shells vary from the fraction of an inch to over four inches in length, and in color from white to dark green. The Dentalium burrows in the sand and lies there in a slanting position, the little end being upward and above the sand, for the purpose of respiration. The large end is armed with a number of long tentacles which terminate in small, romded clubs. These feel about in the sand and catch foramanifera, or minute bivalves, which they convey to the mouth of the animal. The Dentalium has no eyes, but is provided with ears in the form of several vibrating organs. The Scophopods serve as food for a variety of other mollusks. In former times, the tooth shells were used for personal adormment, as well as for money, by the Indians of the Pacific coast. At one time a string of tweuty-five

.
large shells were equivalent in value to two hundred and fifty dollars, and would purchase a canoe or a squaw. The Indians have a unique method of catching these shells. While the squaw paddles the boat slowly along, the Indian stands in the prow and plunges a comb-like spear into the sand. If successful, his spear comes from the water with several of these animals impaled upon it.

The most peculiar of all the molhasks, so peculiar indeed, that they constitute a separate class, called Amphineura, are the Chitons, or coat-of-mail shells. The shell is made up of eight separate pieces or plates, each interlocking with the other, the whole supported by and buried in a coriaceous mantle, which forms a margin all the way around. This must not be confounded with the true mantle of the animal, for it is only a part of the shell. It is beset with bristles, spines, or hairs, which adrl much to the peculiar appearance of the mollusk. In some species, well-formed eyes are developed along the sides of this mantle. The Chitons, which are said to be nocturnal in habit, feeding only at night, live for the most part on rocks which are exposed at low water. Their movements are slow, and they appear to be very sluggish in all their actions. When detached and taken from their rocky homes, they have the provoking habit of rolling up like a pill bug, and are sometimes very difficult to straighten out again. When placed on their backs, they sometimes right themselves by violently contorting their valves. In various parts of the world they are eaten by natives, and by the poorer classes. The Iceland fishermen believe that if these "sea-bugs," as they call them, are swallowed raw they will prevent seasickness and also quench thirst. It is probable that the cure would prove worse than the disease for most people who cross the ocean. There are about two hundred and fifty species of Chitons, and they may be found in all parts of the world.

The limpet, or Patella, is a familiar mollusk to many visitors at the seashore. This shell is a depressed,

Patella longicosta, a limpet which lives at the Cape of Good Hope. Left figure, outside; right tigure, inside of shell. (Tryon.) conical, oval disk, looking not unlike a miniature shield. It lives on rocks, to which it clings with great tenacity. Some experiments which were made on the English limpet some years ago, showed that it could sustain a weight of thirty pounds attached to its shell without being pulled from the rock. The animal seems to have a pretty clear idea of local geography, for it invariably returns to the same place after its excursions for food, and the
rock in some localities has been hollowed out to a considerable depth by the continuous dwelling thereon of the limpet. If the surface of the rock is uneven, the shell grows in such a mamer as to fit these inequalities. The large foot is very strong, and it is almost impossible to dislodge it from the rock when the animal becomes alamed and is aware that danger is near. While grazing along the sides of a rock covered with fine seaweed, it will leave a track like a worm, and will clear off quite an area in a short space of time. This track is made by the radula, which is very long and is thrust out and loaled with food, which it carries to the month. When at rest, it is coiled like a watchspring.

In the limpet we find a departure from the general form in both animal and shell, looth being bilaterally symmetrical; that is, having the two sides alike. In the majority of snails, the body is twisted in the form of a spiral, making one side different from the other, and causing the organs of one side to become atrophied, or made very much smaller. In the limpets the organs are paired, as they are supposed to have been in the ancestors of the living mollusks. On the British coast, the limpet is used as an article of food, and primitive man not only ate the mollusks but formed a necklace by stringing the shells together. There are several hundred species of limpet-like shells, and they are found in all parts of the world, though generally on rocky shores.

A family of shells closely related to the limpets is the Fissurellidee, or keyhole limpet, distinguished from the last family by having a slit, or foramen, in the apex of the shell, through which the waste products of digestion are discharged. This slit resembles a keyhole, and for this reason they are called keyhole limpets. The shells of Fissurella are generally rougher than those of the Patella, and they live, as a rule, in warm seas. In habits, the keyhole limpet resembles its relative the limpet, living in one rocky place and making excursions for food. In the young shell the spire is without a perforation, this appearing as the shell increases in age. There are over a humbred species of this family, several handsome species of which inhabit Florita and the West Indies.

The Ifaliotis, or abalone shells, abound in many parts of the world. and are widely known for their beanty. The largest and finest shells live on the coast of California, where they attain a length of ten inches. The shells are flat, though made in the form of a spiral, and are perforated near the edge of the last whorl, which is many times the size of all the rest combined. Through these holes the water from the gills, together with the waste products of the animal, pour out. As the shell increases in size, the old holes are fillell up and new ones are formed.

The inside of the shell is resplendent with iridescent colors, particulirly about the region of the huge muscle scar, and when the ontside is polished they become objects fit for the palace of a king. A large part of the mother-of-peal of commerce is furnished by these shells, and a vast number are ammally exported for the purpose of making pearl buttons. In England they are called "Ormers," but the correct name, if we translate the generie title, is "sea-ear," or ear shells. To the Chinese, the abalone is an object of great commercial importance, and they gather then in large mumbers, dry the animals and use them as food, prineipally in the form of sonp, which is said to be very delicions. The abalone clings to the rocks with terrible power, and many a lonely fisherman has been drowned while gathering these mollusks, by getting his fingers canght between the shell and the rock. A method employed by the Chinese is to take a crowbar, and stealing up to the animal, give it a sudden push before it is aware of danger. This method is generally sucesssful.

The animal of the Haliotis is no less interesting than the shell, having a broad foot, tapering, slender tentacles, stalked eyes, and a mantle which is fringed with slender, tentacle-like organs. Five different species of ear shells live on the coast of California, all of which are celebrated for their beanty.

There are three families of shells which are much sought after by conchologists: these are the top shells (Trochida), the turban shells (Tirbinida), and the pheasant shells (Phasianellida). Altogether, they embrace nearly five hundred species, which live from the shore between tides to the lowest depths of the ocean. The shells of the top shells vary to a wonderful degree: some are large, others small; some are perfectly plain and smooth, while others are ornamented by impressed ribs, lines, and gramles; some are very thin and delicate, while others are large and massive. Many of the species are richly colored with brown, purple, black, green, and yellowish, and all are more or less pearly. They are all vegetable eaters. One of the best known of the top shells is Trochus niloticus, a

Calliostoma zizyphi-
um, the common topnum, the common topranean Sea, as it appears when the animal is crawling over the bottom of the ocean. (Tryon.) large, massive shell. striped with brown, which is seen on the mantel of many households. One of the prettiest top shells is the ringed top shell, Calliostoma amulatum, found abundantly in some parts of California. The surface is marked by several rows of delicate points, and the suture is bordered by a rich line of purple. It lives in the seaweeds off shore, and in pleasant weather
it may be seen crawling about in this vegetation. During storms or rongh weather this frail mollusk sinks to the bottom of the sea. The top shells inhabit many parts of the world, the coasts of California and Florida prodncing several very interesting and handsome species.

The turban shells inchule many large and fine shells, a notable species being Turbo marmoratus, the "green turban" of the dealers. This shell is about seven inches in diameter, is of a rich green color outside, and has a pearly inner face. The shell is largely used for mother-of-pearl work and for making pearl buttons. It is said that the early Scandinavian monarehs used this shell as a drinking-cup, and at the present time it is often richly mounted and used for ornamental purposes. In Japan, the animal is used for making chop suey, being ent into little disk-like pieces. Some of the smaller shells of this family are very beautifnlly colored, as the T'urbo petholatus and the Turbo sarmaticus, or Turk's cap, the latter being much used by dealers in making fancy ormaments.

The pheasant shells are beautifully variegated with red, black, white, and brown, and are very interesting animals to study alive. When crawling, the left side of the foot moves forward while the right remains stationary, and when the right side moves the left remains stationary. This curious mode of progression has been likened to the canter of a horse. The larger species, with beautifully variegated shells. inhabit Australia, while the smaller species live in the Mediterranean Sea, South Africa, the West Indies, and California.

The Neritas are very abundant in tropical and semitropical countries, where they live on rocks and stones, near low-water mark. They are said to be nocturnal, and to spend the night feeding on seaweed. The shell of Nerita is solid and heavy, and variously ornamented with ribs, pustules, and color patterns. The columella is modified by several teeth, and the operenlum is shelly and provided with a little hook by which it articulates with the toothed colmmella. The "bleeding tooth" shell, Nerita peloronta, so named becanse of the presence of a red spot near one of the colnmella teeth, is a typical member of this genus. A species living in the Philippine Islands is said to climb trees to a considerable height. What the Neritas lack in color the Neritinas, or little Neritas, fully make up, with their smooth, globular shells, ornamented with bands of various colors. One species, Neritina virginea, which is very abundant in Florida and the West Indies, is so variable that scarcely any two shells are alike. Some individuals are spotted with white on a gray ground; others are banded with white, drab, and red, and are rosy with spots of color mixed in, while many are perfectly plain. The
animals are quite amphibions, some of them living on the roots and leaves of the vegetation which overhangs the water. A small British species, Neritina fluciatilis, lives in the rivers of England, but the great majority of species live in salt or brackish water.

The family Cerithuida comprises some very handsome shells which inhabit salt, brackish, or fresh water. They are fonnd throughont the world, but the finest species live in the tropics. The spire is very long, and is composed of many whorls. Some shells are smooth and polished, while others are marked by frills, knobs, spines, and ribs. The name Cerithium is from the Greek, ceration, meaning a small horn, and is given becanse of the hom-like shape of the shell. This family has its giants and also its pigmies. The latter are pretty, reticulated shells, from one-fourth to three-fourths of an ineh in length, which live among the cel-grasses and other vegetation along the shore. There are over one hundred speeies of these small shells, some with dextral and others with sinistral apertures. When handled, some of these mollusks discharge a bright green fluid.

The Potamides, comprising the fresh and brackish water Cerithites, generally have blackish shells without color markings, and inhabit streams, swamps, and salt marshes. Some of the speeies are able to suspend themselves from bushes by means of glutinous threads. In many of the islands of the Indian and Pacific oceans the animal is roasted and eaten by the natives, who suck the contents through a hole in the spire.

Whoever visits the seashore is bound to become intimately acquainted with the Littorinas or periwinkles, for they cover the rocky shores everywhere, millions of their rommded shells elinging to the rooks when the tide goes out. They live principally in the littoral region, feeding on the alge which grows near the shore. They are also found both in brackish and in fresh water. The common periwinkle, Littorina littorea, is extremely abundant on the shores of sonthem Enrope and in the northern part of the United States. In England it is used as an article of food, and it is said that nearly two thonsand tons are gathered amnally, and a thonsand persons are employed in their capture. In London and in other large cities they are sold on the streets in the same manner that we sell peanuts, and the animal is pieked out with a pin. It is used for bait in some of the fisheries, and the oystermen ammally plant many bushels on their oyster berls to keep the seaweeds from accumulating. From these facts it will be seen that this periwinkle is of considerable economic importance. This species is also remarkable for the length of its radula, which is coiled in the
head like a watchspring. The shell is about an inch long, while the radula, when stretcherl out, measures two and a half inches. This great length is necessary because it rapilly wears out on the front end while scraping the alga from the rocks, and the worn part must be quickly replaced. The shells of the northern species are not very handsome, being back, brownish. or jeilow, hat some of those living in the tropics, as the Littorina angulifera, are very attractive, their shells being tiste-

A good loeality for Littorinas, Newport, Rhode Island.
fully mottled. All of the species are amphibious, living for a long time out of the water. It is recorded that several specimens of a West Indian species lived in a gentleman's cabinet for over a year.

A genus of small shells related to Littorince is Laeuma, the animal of which presents a good example of protective coloration. It feeds uron seaweed, and when the weed is brown the anmal becomes brownish; when the weed is red the anmal is of a rosy tint.

A singular genns of mollusks is the Vermetus, or worm shell, which is frequently mistaken for a true worm. The shell of a Florida species is ten inches long. It starts out like other shells, but after making six or eight whorls it suddenly forms a long, irregular tube. In an allied gemus, Turitella, or the screw shells, the whorls are from twenty
to twenty-five in number, are gracefully rounded, and often marked by many raised spiral lines. The aperture is about one-eighth the length of the spire, which is long and tapering.

Of all the Gastropods, none excel the curions Nenophora in point of oddity. Its shell is in general form like that of the top shell, but as it grows, it attaches to itself small stones and pieces of shell so that when the anmal is fully grown it looks like a heap of dead shells and pebbles. This habit is, in all probability, for the purpose of concealing itself from enemies. They are called "earriers," and the individuals with shells attached to their houses are

A carrier shell. Xenophora conchyliophorus. (Tryon.) called conchologists, while those with stones so attached are called mineralogists. The fragments of shells are attached with coneave sides upward so as not to impede the progress of the animal during locomotion. The earriers are not able to glide as are other mollusks, as their foot is very small. They progress by fixing the front part of the foot to an object, and then drawing the hind part forward. In this way they jump and scramble along in a ludicrous manner.

Related to the "earriers" are the slipper shells (Crepidula), the horse-hoof shell (Ifipponyx), and the bomet limpet (Capulus). The slipper shells are found in many parts of the world, and are particularly abundant on the Atlantic and Pacific coasts of the United States. The shell is flat and somewhat limpet-like, and across one end, near the apex, is a little shelf, which gives the likeness to a Chinese slipper. They adhere to stones, shells, crabs, and any submerged object, and modify the form of their shell to fit the inequalities of their resting-place; thus, a Crepidula on a pecten shell will be ribbed, while the same species on a stone will be perfectly smooth. Frequently they may be seen piled one upon another in tiers of six or more. Though the animal generally feeds upon the seaweeds, it has been known to feed upon other mollusks. The bonnet limpets also belong to this family, as do the cup and saucer limpets (Calyptrica). Some of the bonnet limpets are believed never to leave the spot to which they have become attached.

We now come to a family noted for its blood-thirsty mature. This is represented by the genus Nutica, or the moon shell. The amimal is quick in movement as it plows its way through the sand with its enormons foot, in seareh of bivalves. When one is found, the radula
is set in motion and in a short time a hole is bored throngh the clam and the moon shell quietly enjoys a hearty meal, sucking the juices of the animal through the hole. The shells are globular, from which they receive their common name, and those of the tropics are beantifully marked with purple, brown, yellow, and other colors, while not a few are perfectly white. The Sigaretus, a gemus closely allied to Natica, has a flat, whitish or brownish, ear-shaped shell; its habits are the opposite of those of the moon shell. It is slow and very timid, and constantly explores the neighborhood when in motion. Both the Natica and the Sigaretus burrow in the sand, and their presence may often be known by the rounded heap formed by the back of the shell.

The fanily Strombide contains many large and interesting shells. The animal is very powerful, and is able to leap to a considerable dis-

Strombus gigas with animal in its natural position. (Tryon.) tance. Mr. Arthur Adams, a celebrated English conehologist, thus describes its method of leaping: "Planting fromly its powerful narrow operculnm against any resisting surface, it insimnates it under the edge of its shell, and by a vigorons effort, throwing itself forwards, carrying its great heavy shell with it, the amimal rolls along in a series of jumps in a most singular and grotesque mamer." The eyes of the amimal are largely developed, and are placed on a stem or pedmele. The shells of Strombus vary greatly in both form and color. In some, the outer lip is simply turned over, while in others, it is modified by little spines or long projections. The apertures are frequently colored pink, purple, or yellowish. The large Strombus gigas is nsed in carving cameos, its shell leing made up of several layers of different colors. It is also gromd to powder for the manufacture of porcelain, and in the West Indies the animal is used as an article of food. The Pterocera, or spider shell, is related to the Strombus, as is also the pelican's foot shell, Aporthais. The spider shell receives its common name on accoment of the long, curved spines which extend from the lip in the adult shell.

The angur, or steeple shells, belonging to the family Terebride, have long been objects of interest not only to the natmalist, but to the layman, who places them in his honse as ornaments. There are abont two hundred species which, althongh confmed mostly to the tropies, are found in many parts of the world. The shells are very long, and are composed of many tightly womnd whorls, which are smooth in some
species and longitudinally ribbed in others. They also vary in color, being yellowish, grayish, or brownish, and many species are spotted with white or red.

There is a group of handsome mollusks living in the tropics whose shells have been named Mitra by the naturalist Lamarck, from their fancied resemblance to the pope's miter. The shells are fusiform, very thick and heary, and beantifully ornamented with various colors. The surface of the shells of some species is smooth, others are granulose, and not a few are spirally lined and longitudinally ribbed, while the columella is marked by several heavy plaits or folds. There are about two hundred speties of this genus, living in all parts of the world, but they are more numerous in tropical regions. The Philippine Islands seem to be the metropolis of this mollusk as of others, and their shores fairly teem with the graceful creatures. Some of them live among the coral reefs, concealing themselves in holes and among the seaweed, or under stones. Others live on the sandy or muddy beaches, in which they bury themselves when the tide recedes. Some of the species are entirely covered with mud, and when in this condition they are hard to distingnish. Most of the species love company, and generally a dozen or more individuals may be seen crawling over the sand, like the basket shells. The smaller species are quite active; but the larger species, probably owing to the heavy shell, are quite slow, the foot being rather small as compared with the shell. Many of the species are nocturnal, and remain hidden under coral and stones, or buried in the sand during the day. When disturbed, they are said to emit a purple fluid of disagreeable odor.

The early maturalists were fond of applying significant names to the various shells which they described, and the Mitras have received their share. Thus we have the episcopal miter, Mitra episcopalis, having a white shell with brilliant red spots and flames; the papal miter, Mitra papalis, with a brown spotted, whitish shell; the pontifical miter, Mitra pontificalis, with a red spotted shell and a coronated spire; and lastly the cardinal's miter, Mitra cardinalis. These four species might be called the ecclesiastical quartette. The shells of Mitra vary from one-half to five inches in length. In a nearly related genus, Turicula, the shell is very broad, heavily ribbed longitudinally, and the colors are red, ashy, or brownish, with an oceasional black spiral band. This genus of one hundred and sixty species is found only in the tropics and subtropics, and is most abundant iu Central Polynesia.

The harp shells, although few in species, are among the most showy of the marine snails. Their shells are large, and marked hy many
elevated ribs extending longitudinally, giving the effect of the strings on a harp, whence the name of the gemus (Itapa). The colors are different shades of brown, which form neat festoons of dark brown lines between the ribs. The inner lip of the shell is marked by a dark brown spot, and imother spot is frequently developed near the upper

Harpa ventricosa, one of the most heautiful of the harp shells. (Tryon.) part of the whorl. In one species, IIar'pa rosea, the shell is marked by several rosy spots and tints, which make a very beautiful shell. The animal of this genas is no less interesting than the shell, being variegated with many beautiful colors. The foot is long, erescentshaped in front, and becomes narrowed to a point lehind. The animal is said to voluntarily break off a piece of its foot when irritated, as it is not able to retreat within its shell. It is destitute of an opereulum. It is rery active, and crawls abont with an easy, gracefnl motion. Harpa lives only in the tropies, and is fomd in the Indian and Pacific oceans, and on the west coast of America.

The bubble shells include anong their mumber many curions and interesting animals. The typieal gems, Bulla, numbers some fifty species of smooth, globular shells, frequently mottled like a bird's egg. The aperture is as long as the shell, and the outer lip is thin and sharp. 'ihe mimal is large and fleshy, and partly envelops the shell. The bubble shells love sandy, mud flats, in which they bury themselves, or find concealment under masses of seaneed. Like many land shells, they exude vast quantities of mucus to moisten their skin when the tide is out. These animals are earnivorons, living on livalves and snails, which are swallowed whole and reduced to fragments by their huge, ealeareons gizzards.

The species of bubble sleells are quite mumerons in the waters bordering the Atlantic and the Pacific coasts of the United States, no less than sisty species living on the eastern coast and about thirty species on the western coast. Among the latter the Bulla nelullose, which attains a length of two inches, is the

A sea hare. Aplysia depilans. (Tryon.) largest and finest. The eastern species are much smaller, none measuring more than an inch in length and many of them being exceedingly minute. Many of the bubble shells are diffienlt to colleet alive with
perfect shells, because they are so fragile that they will break at the slightest touch. Much care is necessary to obtain mbroken specimens.

The order to which the bubble shells belong, the Tectibranchiata, comprises several hundred mollusks whose shells are similar in form to the bubble shells. Some are large and others are very small, some thick and solid, while others are thin as paper. The color is generally whitish, but in some species it is greenish, brownish, reddish, or banded with red and white like the ship's-flag bubble shell, Aphastrom. In the boatman bubble shell (saphanter) the calcareons gizzard is a third as large as the entire shell, the tooth sheh, Dentalium cntalis, being its principal food. Not all of the mollasks of this order have shells. The sea hares (Aplysia) have large, flabhy bodies in which is lodged a small, ohlong, transparent shell. This animal lives among the seaweed, feeding upon the vegetation as well as upon mollusks and other animals. It discharges a violet liquid when handled, which cansed the ancients to believe that it was poisonous. The old Greek philosophers wrote a great deal on this subject, believing that to even tonch the animal with a stick would eause death. Thongh repulsive looking creatures, they are perfertly harmless, and are even eaten by the natives of the Friendly and the suciety Islands.

THE COWRIES, SIIELL MONEY, AND TIIE ROCK SIIELLS

TIIE COWRIES

For some time, our quartette had been anxious to learn more in regard to the cowries, shell money, and the rock shells; so one rainy day, we induced the Professor to give us a talk on these subjects. We comfortably seated ourselves in his sitting-room at the hotel, and spent a profitable afternoon listening to lis instructive words. We took notes from time to time, and were able to remember many of the interesting facts which he gave us. Though the rain prevented the fulfillment of our plans for adding to our collections of specimens, we all decided that the rainy day proved a "red letter day" in our search for information.

The Professor placed limself in the center of the group and began by saying, that among marine mollusks none stand so favorably in the eyes of collectors, or are as beantiful as the Cypreas, or cowry shells. With their glossy coats and varied colors they are indeed gems of the ocean, and it is but little wonder that the conchologist has placed them first among the many families of marine shells.

He then continued: "The name Cyprow is from Cypris, one of the names of the godless Vems. About two hmdred recent species have been described, and they are fond in nearly all parts of the work, thongh more numerous in the tropics and subtropics, where they live on coral reefs and under rocks. As in many other genera of shells, the cowries that live in the tropics are more brilliantly colored than those from more temperate climes; a condition which is due to the large amount of smshine and the high temperature, both of these factors being essential to the secretion of coloring matter in the pigment cells of the animal.
"The animal which inhabits a cowry shell is a curiosity. The foot is large and spreads ont in a wide mass, enabling the animal to glide along quite rapidly. The mantle lobes are folded over the back of the shell, and are beset with many little tuft-like organs, which stick out like the young shoots of a plant. The mouth is placel at the end

Mhrex radix Pelbethat

ROCK SHELLS.

Murex frilnalua whoms

Murex ramems Imilinn Deram.

of a rather long snout, or rostrum, and the eyes are upon the outside of two long, tapering tentacles, about one-third the distance from the body. When the shell is young, it is covered with a thin epidermis, and has a thin, sharp, outer lip not unlike some snails; when it is full grown, the outer lip rolls inward, becomes toothed or ridged, as does also the inner lip, and the aperture becomes but a long and narrow slit reaching from the apex to the base of the shell. The mantle lobes, which are inconspicuons in

Animal of Cyprea tigris crawling. e, eye; f, foot: m, mantle, with tuft-like projections; r, rostrum; s, shell; t , tentacles. (Tryon.) the young shell, become large, and are reflected over the back, and deposit coat after coat of shelly enamel until the first pattern of the shell, as well as the epidermis, is covered with a secondary, shining coat. On most Cypracas there is a line of paler color, showing where the two lobes of the mantle meet on the back. Like many other mollusks, the Cyprea is able to dissolve the internal whorls, and thus enlarge the capacity of its shell. This is also true of Comus. Nurex and some other marine shells dissolve the spines which may be in the way when increasing the size of the whorls. The older naturalists, Lamarck and Bruguiere, believed that the Cyprea was able to dissolve its outer lip after it had been rolled over and toothed, but this theory has been proven incorrect. They founded their belief on the fact that some individuals of the same species were larger than others. This, however, is due simply to individual variation, just as in man, some are large and others are small.
"The beautiful colors, which are so much admired, are deposited by the reflected mantle, and their variety is almost endless. Some are perfectly plain - white, brownish, yellow, or orange - others are spotted with red, white, brown, drab, or black, and still others are variously banded. The eyed cowry, Cypreat argus, has large, dark brown spots on a lighter background.
"In form and sculpture the cowries present a rather wide range of variation. The typical form is more or less cylindrical or pyriform, while others are flat, oval, or egg-shaped. The surface varies from smooth to spirally lined and pustulose. In size, they vary from the little Trivia exigua, scarcely one-fourth of an inch long, to the luge Cypreca testudinaria, nearly five inches in length. Many of the larger species, like the tiger cowry, Cypraa tigris, and the black cowry,

Cyprea mauritiona, have been household ornaments for centuries, and have also servel ats playthings for young children, who have held them to their ears to hear 'the somd of the roaring sea.'
" In habits, the cowries are shy and slow in movement, gliding over the coral reefs and marine vegetation with a sluggish, steady motion. They present a beautiful sight when viewed through the water, their brilliant colors vieing with those of the corals, sea anemones, and seaweeds. They are said to feed principally upon the coral mimals.
"From very ancient times the cowries have been used for adornment or for barter, the Cinprea cmmulus, or ringed cowry, having heen fomel by Dr. Layard in the ruins of Nimrud; it is stated that the same species is now nsed by the islanders of the Indian and Pacific oceams to weight their fish-nets and to adom their persons. In western Africa, the money cowry, Cyprea moneta, has been and is now used as a medium of exchange in place of gold. Many tons were yearly shipped to England from the Indian and Pacific oceans, to be agatin carried to Africa to barter with the natives for ivory and other articles.
"The number of cowries which have been given for various articles, with their value in Americim cmrency, is interesting. Thus it is recorded by the conchologist Reere that a gentleman residing at Cuttack, in India, paid for the building of his bungalow entirely in cowries, giving over sixteen million specimens. The value of these cowries was for thousand mpees sicca in Indiam money, or about two thonsand dollars in American money. In mother place it is recorded that a young wife cost from sixty thonsand to a million cowries, or from nincteen to thirty-seven dollars, while an ordinary wife cost but twenty thonsamd shells, or about six dollars.
"The value of cowries varies in different comtries. In India, one rupee is worth five thousand or six thousind cowries, while in parts of Africa, two hundred cowries are worth sixteen cents. In Sudan two thousand cowries, which weigh seven pomnds, are worth one dollar. On the west coast of Africa, where trading in cowries is largely carried on, the following gradation of value is recorded by Dr. Stearns:

$$
\begin{array}{rrl}
40 \text { cowries }=1 \text { string, } & 10 \text { heads }=1 \text { lag, } \\
2 \frac{1}{2} \text { strings }=1 \text { lemy, } & 2,000 \text { cowries }=1 \text { head, } \\
100 \text { cowries }=1 \text { penny, } & 3 \text { heads }=1 \text { dullar, } \\
50 \text { strings }=1 \text { head of cowries, } & 20,000 \text { cowries }=1 \text { lag. }
\end{array}
$$

In other places the value is about 1 s .3 d . for 1,000 shells.
The money cowry is also nsed for ornaments upon the trappings of horses ant elephants, as well as on the persons of men and women. The rich, yellow raricty is much sought after by the chiefs of several
island tribes, who permit no one but themselves and their sub-chiefs to wear them. We may trmly say that of all the mollusks, large or small, handsome or ugly, the modest little money cowry surpasses any in point of economic importance. In the Friendly Islands, the orange cowry, Cyprcea aurantia, is used as a badge of chieftainship, and for a long time specimens were ahmost priceless becanse none lont the chief was allowed to wear this ornament. Specimens of this species are frequently seen in collections, with a hole in the back loy means of which it was snspended about the neek of the native chief.
"Those who have described the cowries have given them many fanciful names, some of which, however, are quite appropriate. Thms we have the coputserpentis, or serpent's head; the arabica, or arahic shell, so named from the peculiar hieroglyphic-like characters on its back; the lymx, pantherina, and tigris, each shell resembling the coat of the lynx, panther, and tiger; mus, the rat shell; rhinoceros, the rhinoceros shell; turdus, the thrush, and cercus, the deer. Many of the other names are equally well chosen, as mapa, the map cowry, and pustulatu, the pustulose cowry.
"It is interesting to note the prices that have been paid for rare specimens of this family. At an auction held in London many years ago, a specimen of Cypicea guttata bronglit two limedred dollars, and Cyprea princeps, another very rare shell, brought the same price. Cypraa momilicata once sold for one hundred and fifty dollars, but may now be had for five dollars. Aurantia, the orange cowry, was once

The lynx cowry, Cyprea lynx, which lives in the Indian Ocean. (Tryon.) almost priceless, but is now sold for from fifteen to forty dollars. Some of the others which are less rare are Cyprect scottio, worth from five to eight dollars, and Cyprea decipiens, from fifteen to twenty dollars. These extravagant prices need not be paid by any one desiring a collection of these pretty shells, for the price of a single rarity will suffice to purchase the majority of the common species. Several private collections in the United States contain from one hindred and fifty to one hondred and seventy species, incloding a momber of the rarities mentioned.

OTIIER SHELL MONEY

"In comection with the Cyprocos it is of interest to notice other species of mollusks which lave been used as shell money. The North American Indians used fragments of shells as money, which they called
wampum. In New England, wampum was in the form of beads, the manufacture of which required considerable skill. These beads were cylindrical in form, about one-fourth of an inch long and half as wide. These were of two colors, and were drilled and strung on long cords. The qualhog, Jemus mercenuriu, wis much used in the manufacture of shell money becanse of its two distinct colors, pure white and deep purple. The white beads were called wampum, or wompom, and the black beads suckanhock, or hack money. In addition to the quahog, the whelk (Buccimum) and the 'periwinkle' or 'winkle' (Fulyur) were used, the long, white colmuella being cut from the shell and made into beads. We learn from some of the older records that in Massachnsetts the wampm was valued at three beads to a pemy, or five shillings for a fathom. The fathom varied in size according to the number of beads allowed by law as an equivalent for a pemy. If this number was six, then the fathom contained three hondred and sixty leads; but if the number was four, then the fathom was composed of two humdred and forty beads. Owing to the comerfeiting

Primitive money made from shells. 1. Wampum of Indians of the New England states. 2. Hai-kwa, made of Dentalium shells, coast of California. 3. Hawock of Pacific coast Indians, made from shell of Pachydesma. 4. Uhl-lo, or Haliotis money, made in the form of a crenulated disk. 5. Hawock, made from eurved pieees of shell. 6. Kol-kol, or Olivella shell money. 7. Uhl-lo, made from Haliotis. (After Stearns.) of wampum by the whites, who could make it much more quickly with their tools than could the Indians, the value rapidly fell in later years, and its use was finally discontinued.
"On the coast of California, the tooth or tusk shells (Dentalium) were used as money, they being strung together as were the beads of the New England Indians. Those of the better quality were called hai-kwa or hi-qna, and represented the highest standard of money. One hi-qua would purchase one male or two female slaves. The damaged or defective shells were called kop-kops, forty of which equaled one hi-qua in value. At one time a single hi-qua was equal in value to about two hundred and fifty dollars. Other shells were also used on the Pacific coast. Some of these were simply strung in the form of beads, while others were
cut from large shells. One of the latter was from the large clam, Pachydesma crassatelloides, and the pieces were called hawock or ha-wok, their value ranging from four to twenty-five cents. Another cham used was Suxidomus aratus. The little Olivella biplicata was used as beads and called kol-kol. They were made by grinding off the apex, which left a hole through the axis of the shell. The Italiotis, or abalone, was also used and was called nhll-lo. Pieces of the shell from one to two inches in length were cut from the flat part of the abalone, holes were drilled at one end, and they were strung like beads. Their value was one dollar each, or ten dollars for a string of ten pieces.
"Like the shell money of New England, that of the Pacifie coast was comnterfeited by the whites, and for this reason, the value of the native currency soon declined.

THE ROCK SHELLS

"The rock shells, belonging to the gems Aturex, are among the most leautiful and interesting of all the mollusks, and are a favorite among collectors. Their peculiar spiny shells and brilliant colors caused them to be among the first mollusks studied by naturalists, and we therefore find them described in the earliest works on natural history.
"There are about two liundred kinds of rock shells, mostly confined to the tropical and subtropical seas, although a few are found in temperate climes. The largest number of these are found about rocks at low water, but not a few are inhabitants of waters as deep as five hundred or more fathoms. In our own comntry they are abmentant along the coast of Pamana, the Gulf of Califormia, Florida, and the islands of the West Indies; but the greatest number of varieties come from the Indian Ocean, Japan,

Venuscomb. Murex tenuispina, which lives in China. (Woodward.) Anstralia, and the Philippines. The more brightly colored species are from tropical seas, while the dull, plain species are from subtropical and temperate elimes.
"The murices are peculiar in having their shells ornamented by numerous projections, which vary from long, needle-like spines to simple fluted frills. What these spines and frills are for, would probably puzzle the ordinary observer, as they appear at first sight to be in the way. In some cases they may be simply ornamental, but in the main they are protective, and enable the mollusk to escape from being eaten by
some voracious fish. This is known as protective adaptation, and was doulttess brought about in the following manner:
"The murices or their ancestors did not at first have spiny shells, and they fell an easy prey to the fishes. As time went on, a few individuals, through some modification of their enviromment, developed small spines or prominences. The anmals having these were not eaten by lishes, as the knobs and spines caused them pain in swallowing; therefore they preferred the animals with smouther shells. In time, this modification cansed a weeding-out process, the animals without spines being exterminated, and those with piny shells increasing in number and becoming more spiny as one generation succeeded another. This continued until the present time, and is going on even now. Another interesting fact concerning the development of this ornamentation is that the smoother shells imhabit rocky shores on which the waves are beating with greater or lesser violence, while the more spiny individuals live in protected and comparatively still waters. This but adds additional weight to the theory of survival by protection, for the fishes which feed upon these shells do not, as a rule, imhabit localities where the water is rough, as along a rocky shore, but live abundantly in protected bays and lagoons in which the spiny morices are found.
"One of the most beautiful of the rock shells is the Vemus comb, found in China, Japan, and the Indian Ocem. It belongs to a group of shells which is characterized by a long canal and long, pointed spines which extend along the edge of the camal like the teeth of a comb, whence the name. The colors are yellowish or whitish, and in one species the spines are tipped with hack. Another rock shell which is found on the mantel of almost every honsehold is known as the branched rock shell, Aherex ramowes. This mollusk is found in the Red Sea, the Indian Ocem, New Zealand, Australia, and the Central Pacific Ocean. It attains a large size, some specimens reaching the length of a foot and weighing several poouds. The aperture is frequently tinged with a deep, beautiful pink. In many households the large shells of this species are used as flower-pots, suspended over the wimlow by chains, and for this purpose they are certainly very ormamental.
"The apple rock shell, Wher promam, is of home production, being fomed on the shores of Florida and thronghont the West Indies. It is not as attractive as the shell I have just mentioned, but is very common, every collector having several specimens in his cabinet. The horned rock shell, Murex axicormis, and the burnt rock shell, Murex achustus, are interesting members of this family. The latter name,
which signifies burned, is well chosen, for all of its spines and frills and most of the shell are black in color, and look just as though the shell had been scorched.
"A common rock shell fomd in the Mediterranean Seat, as well as on the coast of France and Portugal and in the Canary Islands, is the purple rock shell, Murex trunculus. It is a light brown, threebanded shell, about two inches in length, and is famons as having been used by the ancients in oltaining their rich purple dye. On the Tyrian shore, the shells were pomed in caldron-shaped holes in the rocks, and the animals were taken out and squeezed for the dye which they secrete. The fluid obtained was mixed with five or six times its bulk of water, and twenty ounces of soda were added to each hundred pounds of this mixture. It was then placed in lead or tin vessels, and exposed to the sun for several days until the proper hue was obtained. The wool was placed in this dye for a few hours. It is recorded that the dyed wool was valued at two hundred dollars per pound. A legend in Italy states that the discovery of this purple dye was due to the pet dog of a Tyrian nymph, which took one of these shells in its mouth and crmshed it with its teeth, thereby staining its mouth and lips with purple. If the animal of one of our common Purpuras, a small shell fomd along the Atlantic and Pacific coasts, be squeezed, it will exule a purple fluid which will stain fabries a reddish color. It is proballe that much, if not most, of the royal purple of the ancients was obtained from these lowly creatures.
"Although the most beautiful shells of this family are supposed to live in the warm, tropical seas of the Indian Ocean, it is nevertheless true that many of the most brightly colored rock shells live in the warm waters of Pamama and west Mexico. The root rock shell, Hurex ratix, one of these shells, attains a length of five inches and is very heavy. The shell is white

Purpura lapillus, a purple shell found abundantly along the Atlantic coast of the United States and Europe. (Tryon.) or yellowish white, and the spines and frills are jet black, the two colors producing a peculiar effect. Another beautiful shell from the same locality is the two colorel rock shell, Murer bicolor, a shell attaining somewhat larger dimensions than the last. In this species, the spines are reduced to mere knols; there are bout few fritls and only two colors, the outside being greenish white, and the aperture a deep red or pink, plainly showing the origin of the mame, two colored. This shell is collected at Panama by thousands and shipped all over the United States, to curiosity stores, summer watering places, and
other vacation resorts, where they are sold at prices rarying from a few cents to a dollar each, according to quality.
"Another rock shell, Ihurex crmacens, is the canse of much damage to the oyster beds of Europe. It is assidnously hunted ly the fishermen, who kill rast numbers by cutting off the foot and the operculum, after which the anmal is allowed to die. The Dherex kills the oyster by boring a hole in the alex, in the same maner as the drill, which is also a member of this family. The Iherex family also includes the purple shells (Purpura), which are handsome shells formd in many parts of the world; the castor-oil shells (Riemula), which live in the warm seas of the Indian, Pacific, and Atlantic oceans, and the unicom shell (Jfonoceros), which lives on the coast of California. It is remarkable for the presence of a long, sharp tooth on the lower erlge of the outer lip, whence the Greek name, Monoccros, signifying one horn. These, as well as others of the family, are rery interesting shells, as you will find when you stuly them more fully."

The P'rofessor crased speaking, and as we assured him of our appreciation of his efforts in our behalf, we arose from our seats. intending to leave him, lest we shonld presme too much upon his kindness and willingness to assist us; but the rain came down more heavily, and the Professor urged us to remin. "If you are not too tirel." said he, "resume your seats, and we will proceed with this fascinating sulject, and I will give you a little talk on marine smails. If you find them half as interesting as they seem to me, another hour will pass rapidly, and by that time I think the storm will be over."

CONES, BASKET-SHELLS, AND OTHER MARINE SNAILS

"One of the most abundant of mollusks," began the Professor, " is the violet sea snail (.Tonthinct), which spends its whole life floating on the waters of the Atlantic and Pacific oceans. The shell is very delicate, resembling in form some of the land snails, and has but two colors, both being shades of violet, a deep, color on the moder side, which is always turned upwards when the animal is in the water, and a lighter shade on the upper side. So fragile is the shell that it seems as if a breath conld break it. The most interesting fact in connection with this mollusk is the wonderful float, or " raft," which is secreted by the foot, and to the under side of which the eggs are attached. The latter are not all in the same condition; those nearest the animal are more or less fresh; those in the middle of the float contain embryos and fully formed young, while those on the onter end are empty, the young having escaped into the water. The snails are gregarions, and may be found in countless numbers

The violet sea snail, Janthina fragilis, with the animal and egg-float in their natural positions. a, float; b, eggs; c, gills, or breathing organs: d, head with the tentacles. (Tryon.) in varions parts of the ocean. During a severe storm they are sometimes cast up on the beach in vast quantities, where they soon die moder the fierce rays of the sun, or else fall a prey to varions species of birds.
"A handsome group of shells, which is related to Jouthina, is the genus Scala - the ladder-shells or wentle traps. These smails are found in all parts of the world, on rocky or sandy shores, below the low-water mark. The shells are nearly always pure white, and they receive their mame of ladder-shells from the regular series of longitudinal ribs which mark the whorls The large Chinese wentle trap, Scula pretiosum, was once very highly prized, and most extravagant prices were paid for specimens. It is recorded that on account of its
seeming rarity, the Chinese made quite perfect imitations of the shell with rice. Specimens may now be purchased for a dollar or two each.
"The helmet, or cameo shells, are among the largest of sea suails, some of the specimens measuring eight or ten inches in length and weighing several pounds. They live only in comparatively shallow water, on sanly bottoms of tropical or subtropical seas; they are voracions eaters, living principally upon bivalve mollusks. The animal is large, and is remarkable for the extreme length of its proboseis.
"Cameos are frequently quite popular, both as ornaments for the person and as articles of bric-à-brac. Many of the best shell cameos are made from the hehnet shells, which are well adapted to this purpose, owing to the

Sardonyx helmet shell (Cassis tuberosa) with portrait of Columbus cut in bas-relief. Carved by E. Campi, of Rome, one of the foremost artists of cameo work. (Kunz, Bull. Fish. Com., 1893.) different colored layers of the shell and their various degrees of hardness, making a basrelief fignre not only possible, lut very effective. The word cameo is from the Arabic, and means anything in basrelief. The name was once restricted to stone reliefs, but it now includes anything cut from stones or shells. The black helmet shell. Cassis tuberosa, is most frequently used, the figure being earved upon the white outer layer of the shell, which stands very clearly against the black background of the second layer. When a cameo is desired simply as a brooch, or for any other form of personal adornment, a piece of the shell is cut out and shaped into the required form and size, and cemented to a block of wood. The figure is then traced on the shell with a peneil, and fmally worked out carefully with sharp pointed steel instruments of delicate size and form. The
same process is resorted to in working ont a bas-relief on the entire shell, the latter being placed in a vise to hold it firmly. The home of this industry is at Genoa and Rome, Italy, and for a long time the practice of the art was confined to that country. At the present time it las spread to France, and in Paris alone several thonsand people are employed at this work, althongh the product is not of as fine a quality as is that from Italy. Many beantiful examples of these cameos were exhibited in Chicago, in 1893, at the World's Cohumbian Exposition.
" A genus relaterl to the helmet shells, but thinner and more delicate, is the Dotium, or tum shell, which is often beau-

Tun shell, Dolium perdix, showing the wide, spreading foot, long proboscis, small tentacles, and thin shell. (Woodward.) tifully colored and delicately sculptured. The animals of the fig shells, a related gems, are very timid, but when undisturbed are also very lively, crawling over the ground with great rapidity. When in motion, the long, tapering tentacles are fully extended, and the siphon is directed almost straight ahead, instead of over the back, as in many otlier snails. The colors of the animals vie with those of the shells, their bodies being marbled with violet and pink, and with spots of white here and there. The large, black eyes are very conspicuous. The foot and mantle are so large that the shell is frequently almost buried from sight. There are ten species of fig shells, and they may be found in the warm waters of the West Indies, the Philippine Islands, and the west coast of central America. One fine species, Pyrula papyratia, lives in Florida, where it may be collected in large numbers.
"Probably no more distinct family of mollusks exists than the Conida, or the family of cones, their beantifully decorated sliells and the large number of species making them a favorite gronp with collectors. The shell is in the form of an inverted cone and gracefully rounded, the aperture being but a narrow slit extending nearly the whole length of the shell. The colors of the cones are always very brilliant, althongh when they are alive the shell is not so highly polished as that of the Cyproas, owing to the presence of a homy epidermis. About three hundred species of cones are known; these live
principally in tropical seas, where they love to conceal themselves in holes in the rocks, or among the branches of corals. The animal is predaceous, boring into the shells of other mollusks and extracting the juices from their bodies. The teeth of Comus are hollow and very sharp, and have a barb on the end. A poison gland is said to be present, and lites from the animal are very painful,

The textile cone, Conus textile, whieh lives in the Philippine Islands. (Tryon.) althongh not dangerous; yet the large Coms marmoreus is able to inflict a severe wound. The cone is quite pugnacions, and when picked up will immediately bite the hand. It is a veritable reptile of the ocean.

- Mr. Arthur Adams records the case of a gentleman who was collecting on the shores of the Moluceas. He had taken a large cone shell from the water, and was much smprised to have it suddenly thrust out its proboscis and bite his hand. The bite left a small, deep, triangular mark, which was followed by a watery vesicle. The gentleman described the sensation to be like that cansed ly burning phosphorns monder the skin. The moral of this story is, 'Be careful in picking up individuals of the cone family.' A fine chestmut colored cone lives on the coast of Califormia; and several species, notably Comus proteus, with reddish brown spots on a whitish ground, may be collected in Florida. The great majority of the species are found in the Pacific and Indian oceans.
"A very large family of shells nearly related to the Comus is the Illeurotomide. The name is from the Greek, and means side notch, and is given to these shells because of the peculiar notch or simus in the upper part of the outer lip. There are over five hundred species in this family, all having shells which are fusiform and turriculated, and with long spires and eanals. They live in all parts of the world, and may be found from low water to a depth of over a thonsand fathoms. Some of the species are very large, being over four inches in length, while others are less than one-fourth of an inch in length. All are handsomely sculptured with spiral lines and pustules.

Pleurotoma babylonia. (Tryon.)
"The Columbellas, or dove shells, are among the most common mollusks found on the shores of tropical and subtropical lands. Their shells are never large, scarcely exceeding three-fourths
of an inch in length, and are oval and solid. They are of varions colors - brownish, whitish, yellowish, and reddish, variously spotted with white, red, and black. There are three hundred species of these shells, the majority of which live on the rocks and corals, at lowwater mark.
"On the sandy shores of subtropical beaches certain animals with graceful and polished shells, bury themselves from sight in the sand. These are the olive or rice shells, Olica, whose bright colors and highly polished surfaces rival even the gandy Conus and Cyproca in beanty. The foot may be described as plow-shaped, and is admirably adapted for digging rapidly in the sand, enabling the animal to quickly lide from sight on the approach of enemies. The long siphon is thrust up through the canal in the anterior part of the shell, and its end protrudes through the sand. The high polish of the surface is due to the voluminous folds of the foot which envelop the shell, hence there is no epidermis. Unlike the Cyprad, which covers its shell with a glossy coating only upon reaching maturity, the Olica produces the shiny layer at all periods of its life, the three strata being deposited simultaneously. It is like Cyprar, howerer, in dissolving the inner whorls to a paper-like thinness to accommodate its constantly increasing size. The aperture is so narrow that it is difficult to understand how the animal gets in and out. In many places the olive shells are very mumerons, and may be seen crawling rapidly orer the beaches when the tide is out. It is recorded that a species living at Panama, Oliva volutclla, has its body covered with sand, and when the first incoming wave of the returning tide washes off this coat of sand, it buries itself from sight and does not crawl about again motil the succeeding ebb of the tide. There are about nincty species of olive shells.
"Closely related to the olive shells are the Ancillas, or maiden shells. Their polished yellowish, whitish, or brownish shells are fully as attractive as those of the olives. Unlike the latter, their spires are rather long, and some of the speeies have a large umbilicus. They live in the Red Sea, Indian Ocean, Australia, Japan, and the West Indies.

A maiden shell, Ancilla glabrata, a common shell of the West Indies. (Tryon.)
"A neat gems of small shells allied to Oliva is Mrarginella, comprising about two hundred species, which are found in tropical and subtropical seas. The shells are brilliantly polished, and the animals are similar in habits to the olives.
"Of the many varieties of tropical shells few exceed the Volutes, or bat shells, in beauty or variety of coloration. They are found in most parts of the world, althongh strangely enough none are now living in the seas of Europe, but they are most abundant and more highly colored in the tropics and subtropics. The animal is carnivorons, and the long. fang-shaped teeth are certainly suggestive of predaceous habits. The shell is orate, thick, and solid, and varionsly colored, some being mottled, some with zigzag, or lightning-like markings, while others have spirally arranged dots, dashes, and lines. Australia is the metropolis of this family, and it is said that eighty per cent of the species are found in the triangular area bordered by Ceylon, Jitpar, and New Zealand. The genus is supposed to be oviparous in producing its young. One species, Tohuta musica, has received its name from a more or less fancied resemblance of the surface of the shell to a musical staff, the spiral lines being grouped in sets of four or five, and the dots being arranged as notes. In some shells the resemblance is quite close. The smooth and polished shell is due to the reflected lobes of the foot.
"The related grenera Cymbum and Melo, the boat shell and melon shell, are common on the coasts of Africa, Australia, and in the Picifie Ocean. They sometmes reach the length of a foot. The sliells are orate and very rentricose, althongh not especially solid or heary.

The rhankh of the Hindoos. Turbinella pyrum. (Tryon.) like the Tolutes. The nucleus or apex is very large, as is that of other species of this family. The shells of a closely related family, Thorbincllikto, are used in India to make rings and bangles which the native women wear, many of them being beantifully painted. One species of this family, the Tarbinella pryrm, is a sacred shell to the Hindoos, by whom it is called shamkh or chank; it is the national emblem of the province of Trasancorc.
"The basket shells, or dog whelks (Nrassa), are among the most monerons in intividuals of all the marine sliells, the common black whelk, Nassut obsolcta, being the most common of all the mollusks. At times a mud flat at low water will be literally paved with the shells of this snail, there bemg millions of the little creatures crawling about. The shells of this family are frequently very handsome, being latticed by the erossing of spiral and longitudinal lines. They are mostly of small size, seldom exceed-
ing an inch in length, many of them being much moder this dimension. The animal is very rapid in movement, and leaves a distinct track in the mud, which will frequently end at a little pellet of mud, which upon examination will diselose the little animal nicely concealed beneath. In the water the amimal is exceedingly active, gliding about easily with its long, tallike foot. It may be frequently seen with the foot applied to the moler side of the surface of the water, the shell hanging downward, as has been observed in the pond snails. There are about one limolred and thirty species of Nassa, which are found in all parts of the world. The gemus is mostly littoral in habit, living between tides, or at low-water mark, but a few have been dredged at great depths. The name Nassa signifies a narrow-necked wicker basket, which is used for catching fish. The application of this name to these shells will be easily understood when onee a reticulated specimen is examined. One species, the Nassa mutabilis, is used as food in Italy. The Nassa is one of the best molluscan scavengers known; but it is also a carnivorous animal, as the oysterman, whose bels it devastates, well knows. The Nassas of France, especially the Nassa reticulata, are very destructive to the oyster beds of that comntry, one adult "borer" being able to perforate the shell of an oyster in a single night. So numerous are these pests that a single acre has yielded over a thousand individuals. Should our native Nassa obsoletre, of which a thousand individuals could be found in an area five feet square, change its diet from dead fish to oysters, an oysterman would be compelled to go into bankruptcy, ruined by the basket shells. As a result of the depredations to the French beds, the oystermen carry on a relentless war against the Nassa, destroying many thonsands annually. But with all this persecution the mollusk still exists and increases in numbers. The dead shells of this genus are a favorite home for the liemit crab of small size, and it is suspected that sometimes other than dead shells are appropriated. We fear that a sort of piracy is resorted to by the hermit crab, resulting in a kind of 'walk-the-plank' end for the mollusk, before the new tenant takes possession of the home.
"A genus of mollusks, with light hom colored shells, and inhabiting the cold waters of the arctic seas, is the Buccinum, or whelk. In various parts of Great Britain it is known as 'buckje' and 'mutlog.' The Buccinum delights to burrow in the sand, like the moon shells (Natica), and frequently nothing but the end of the siphon ean be
seen, the latter protruling from the sand to enable the water to enter the animal and furnish the necessary oxygen for its gills. The whelk is usel economically for both food amd bait. One ingenions method of catching them is to fasten a dead fish of good size to a wire basket, and allow it to rest on the bottom for a short time; when taken up, it is sure to lee covered with large, fat whelks. This fishery in Great Britain is fully as valuable as our oyster fishery, the ammal income from this industry reaching to

The black whelk, Chrysodomus antiquus. (Tryon.) thousands of pounds sterling. The animal is also one of the principal baits used in cod-fishing. A related genus of slrells (Cherysodomus) is also eaten by the poorer people, and likewise makes a good codfish bait. The two kinds of whelk, Buccimem and Chrysodomus, are called respectively, the white whelk and the red, or almond whelk, probably on account of the color of the two shells. In the Shetland 1slands the red whelk is used as a lamp, being suspended by strings from a nail, the mouth placed uppermost and filled with oil.
"The family Buccimide, of which the whelks belong to the typical gemms, include a great variety of differently shaped shells, living in all parts of the world. Some of these are brilliantly colored, like the Ebumen; while others, like the Buccimum, are perfectly plain. Several large and handsome shells live in Florida; one, Melongenu corona, having the spire ornamented with many spines; while another, the F'ulyur, or lightning shell, is pearshaped, and attains a length of eight inelies. In various jarts of the Southem states this species is largely used in making borders aromed flower-beds and in lining walks. It is also used as a flower-pot, and the aborigines utilized it in making wampum, tools, and even drinking-vessels. The handsomest species of this family belong to the gems Ebumect, the ivory shells. They have rather large, smooth, rounded shells, the polished surface being marked by spots of reddish. They are very abmendant in the Indian and Pacific oceans.
"One of the most graceful of all the marine shells

Melongena corona, a common Florida marine snail. (Tryon.) is the Fusus, belonging to the family Fuvidle, and comprising mollusks with long, spindle-shaped shells, high, turreted spires, and long canals. They are found throughout the tropical and sultropieal regions of the
world, although a few species are found in temperate and in arctic climes. A related gemus, Fusciolaria, or banded suails, is a familiar object to those who visit Florida. The Faseiolaria distans attains a length of three inches, and is very prettily banded with narrow stripes. A near relative of this species is the giant banded shell, Fasciolaria gigantea, the largest of all marine snails, growing to a length of nearly two feet. This species is fomm on the sonthern coast of the United States, and is particularly abmodant about the coral reefs of the Florida Keys.
"Among the best known of the marine snails are the T'ritons, a family of mollusks living in the warm seas of the tropics. Their shells are generally large and highly colored, and are variously ornamented with short spines and knobs. Many of the species are covered with a hairy or bristly epidermis. This genus is remarkable for including in its humdred or more species almost the largest and smallest of marine gastropods, ranging from one-fourth of an inch to eighteen inches in length. The Tritonium tritonis, or trumpet shell, which attains the largest length, is one of the handsomest and most striking of shells. In the vicinity of the Loo Choo Islands it is said to be used as a tea-kettle, the operculum forming an excellent lid, the whole apparatns being suspended over the fire by a wooden peg. The frog shells, Gyrineum, are related to the Tritons, but the animal is more active. Some of the shells have long, sharp spines, while in others the whorls are

Tritonium tritonis, the trumpet shell. (Tryon.) simply foliated. Both Tritonium and Gyrineum have the shell marked by distinct varices, like the genus Murex."

Professor Parker then rose from his seat, and called our attention

Dendronotus arborescens, a nudibranch, or sea slug. Note the tree-like aspect of the branchiae, or breathing organs, which project from the back. (Woodward.) to a number of marine shells which he had purehased to add to his collection in the West.
"I have now told you of a number of the most interesting and best known families of marine shells," he added, "but these include but a very small part of these animals which live in the sea. There are thonsands of species of minute mollusks which live among the marine vegetation and in the mod on the bottom, and some are even parasitic or commensal on other animals,
as the little Sthlifer, which lives on the spines of sea urchins and starfishes. A whole order, the Niudibronchiata, or sea slugs, are destitute of a shell, although possessing ealeareous spicules, or spines in the skin, which serve to make the borly rigid. The

Hyalar trispinosa, a common sea butterfly, or pteropod. Note the two swimming lobes, or " wings," from which the order receives its name. (Tryon.) breathing organs, or branchia, are placed on the outsile of the animal, near the posterior part of the borly, and look like leaves. The animals are also brillimitly colored. Another order, the Pteropoda, is composed of mollusks called sea butterflies, on accumt of the two swimming lobes, which are incessantly moring. The shells are of various shapes and sizes, glassy, thin, and transparent. These animals are pelagie; that is, live always in the ocean, and never approach land messs driven in ly a storm. They feed on mieroseopie amimals, and are in turn eaten by whales and fishes."

After spending some little time examining his new collection of marine shells, we bade the Professor groul by, he promising in the near future to allow ns to accompany him on a collecting trip.

A poor collecting locality.

IN SEARCII OF TIIE SQUID

One afternoon Professor Parker amomed to us that he was groing to visit the fishermen's weirs in the river near the little town of Warren, for the purpose of obtaining some large specimens of the squid, and he invited us to go with him. We accepted his kind invitation, and were soon ready to board the train for Warren. A short ride of ten miles brought us to our destination, where we spent the night. The next morning the Professor awoke us quite early. After eating a hearty breakfast, we walked to the wharf, and fomd the fishermen ready to

Fishermen's Weirs. (U. S. Fish. Com. Report, 1898.)
visit the weirs. Hastily scambling on board one of the boats, we were soon being rowed up, the river toward the fishing-gromds. The wind was blowing rather briskly, and the water was so rough that Howird came very near being seasick; but as we advanced farther up the river, the water became a little smoother and our position more comfortable, although we were wet with the spray, and were visibly shivering. This greatly amused the fishermen, who were sturdy fellows, tonghened by years of exposure to wind and rain, and who did not mind such weather at all.

The river where the weirs were located widened into a bay more than
a mile across. After we reached the weirs, the fishermen began to draw up one net, and what a commotion set in when it had been pulled up a little way! Fishes were jumping, a sting ray and a horse-foot crab were floundering about, and the net seemed to be fairly alive with soft-shelled crabs. Suldenly Professor Parker called us to look at the net, at the same time pointing his finger into the water. Our eyes followed the direction in which his finger was pointed, and saw several long, cylindrical objects which were darting here and there in the water. These, he said, were the squids.

Soon after this, Inoward stooped and quiekly seized an object which seemed to have become entangled in the net. It was a squid in trouble, and Howard's face was brought so near the animal that our instructor cantioned him to be careful, as the squid might shoot at his eyes. Professor Parker had hardly spoken, when the water about the animal became inky black, and a stream of back thid shot up toward Howard's face, compelling him to let go of the squid, with a ery of surprise. The animat had emptied the contents of its ink bag in a vain endeavor to escape. We immediately questioned the Professor in regard to this eurious habit of the squid, and were told that this was one of nature's ways of protecting it from its enemies; that the ink bag was quite large, and was placed near the base of the siphon, and that when the squid was aware that an enemy was near, it diselarged the inky contents of this bag through the siphon, and while the water was black and muddy from the effect of the ink, it swiftly swam away, and so escaped. We were also told that it is thought by some seientists that this inky diseharge is as much for diseoneerting the enemy as for rendering the animal invisible, and that the ink bag is a very characteristic organ in this class of animals.

Howarl was a most enthusiastic investigator, and as a result, he was often getting into trouble beculuse of his impetnosity. Once his hand was seized by an angry squid as he tried to grab it, while it lay near the surface of the water. One of the fishermen extricated his hand, and the Professor told him that he should be careful not to get near the arms of any of the squid fimily, becanse each arm was covered on the imner side with many little suckers which would hold an object tightly while the squid bit out pieces of the flesh with its parrot-like beak.

The Professor had brought with him a large copper can with a wide mouth, which was half-fillerl with a sisty per cent solution of alcohol, and which he proceended to fill with squids and soft-shelled crabs.

After spending a couple of hours or more in examining the weirs, in each of which we found some fishes, squids, and crabs, we returned
to the town, and Professor Parker asked us to help, him prepare the specimens. Upon reaching his room, he procured a large tub, and empitied the contents of the copper can into it. Thoroughly washing out the can, he filled it two-thirds full of seventy-five per cent alcohol, and then told us that he was ready for work.

Picking up a specimen of the squid about a foot long, he proceeded to show us the different parts of the animal, and to describe their functions. The looly was long and cylindrical, and was divided into two parts: the body proper, which resembled a conical sac, open at one end and sharply pointed at the other, to which two broad fins were attached; and the head, to which the arms, or feelers, were attached. The head was somewhat movable, and had a large eye on each side. The arms were ten in number, eight being short and thick, and lined on the inside with several rows of round, cupshaped sucking disks. Two of the arms were very much longer than the others, and were slender and cylindrical, excepting near the end, where they were enlarged to form an oval club, the inside of which was covered with suckers. The little suckers, or acetabula, were examined with great interest. Each one was a rounded cup, the rim of which supported a homy ring with serrated or teeth-like edges. The sucker was attached to the arm by a slender peduncle, or stem. Inside the cup there was a shallow cavity, and at the buttom a small, flat piston. The sucking action is produced in the following mamer: when the sucker comes in contact with any object, the piston, which is made up of strong muscles, is pulled back, thus forming a vacuum in the cup which causes the latter to allhere firmly to the object. It

Squid, Loligo pealii, showing different parts of body. a, ear; e, eye; f, fins; p, water pore: s, siphon; t , tentacular arm; 1, 2, 3, 4, the short or sessile arms. (Verrill.) may be easily seen that a squid has tremendous holding power when several hundred of these suckers are in action.

We saw that the month was placed in the center of the head where all of the arms join, and that it was armel with a homy beak like that of a parrot, only inverted. With this beak the squid is able to bite off pieces
of flesh which are then further cut up by the little teeth on the tongue, or radula, which are placel farther back in the month.

The eyes were large and wonderfully developed, and the Professor said they were almost as complicated as the hman cye, being made up of cornea, retima, iris, ${ }^{\text {mupil, and optic nerve. Just back of the eye, the ear, }}$ or auditory organ, was placed, and was represented by a curved fold in the hearl.

Sucker of squid. h , horny ring surrounding aperture; \mathbf{p}, pedicel, or stem; s , cup of sucker.

The siphon was a conspicuons olject, and was placed on the lower or ventral side of the amimal. It was more or less conical in shape, and bent a little outward toward the ventral surface. The aperture was oval and large, and was provided with a valve to govern the flow of water.

Professor Parker said that the siphon is a valuable organ to the animal, for it not only brings fresh water to the gills, but by forcing water violently throngh it, also serves as an organ of locomotion, enabling the squid to shoot backwards very rapidly.
The Professor next called our attention to certain small, dark brown spots which coverel the surface of the body and head. These he called chromatophores, or pigment spots. Some of these spots were oval, while others were irregular in outline, with many radiating lines ruming into the surromding parts of the body. In the living animal, these little pigment spots, or cells, are constantly swelling until the difterent spots tonch each other, and then contracting until they are scarcely visible. The cells contain different colored pigments, and the effect of these changes is to canse waves or blushes of different colors to sweep over the animal. The possession of this power of changing color is a great protection to the animal, for it is able to become the color of many oljects mpon which it

Beak of squid. Up per and lower mandibles in natural position. may lee resting, and this he rendered inconspicuous. This is called protective coloration, and a similar power is possessed by other animals, suth as the chameleon, so common in Florida. In the octopus the changes are more varied than in the squid, owing to its more sedentary habits.

George inquired of the Professor whether the squid had a shell. For answer he turned back a flap which projected over the head from the upper or dorsal side of the squid, slit the thin skin of its imer surface. and pulled out it long, thim, horny olject, which he said was the internal shell, or pen. of the animal, and served to support it in somewhat the
same mamer as does the backbone in vertebrate amimals. The pen was nearly a foot in length, and much resembled a quill or bird's feather, from which it receives its name. It is formed of a stout contral shalt, which reaches nearly to the lower end, and has a thim blade on each side. It lies in a pocket, or capsule, in the dorsal side of the squid, lont is not attached to it by any museles. The octopus does not have this internal skeleton, becanse it lives about rocks and on the bottom of the sea, while the squid and cuttlefish are pelagic, or free swimmers, and therefore need some sort of smpport for their soft bodies.

Procuring a pan of water, Professor Parker immersed a large squid, cut the skin or mantle from the upper edge or collar to the pointed posterior end, turned back the several pieces, and exhibited to us the internal organs. We saw that the mantle was attached to the lead in three places by a set of cartilages. those on the mantle fitting into those on the head like a long and narrow button and button-hole. One cartilage was on the upper or dorsal side, in the center, and two were on the ventral side on the siphon.

We were told that the inside of the animal is called the mantle cavity, and we were shown that it contains the heart, gills, nervous system, digestive system, and all of the vital organs. We found the siphon to be made up of three chambers; a fumnel-shaped ventral chamber opening into the mantle; and on either side a chamber which opens into the mantle chamber, but not on the outside. By this arrangement, Professor Parker said, the water contained in the mantle carity is compelled to pass through the rentral chamber, as the lateral cham-

Pen, or internal support of squid. Notice the long, narrow, central shaft, and the wide margin on each side. (Verrill.) bers, having no outlet, are forced against the sides of the mantle chamber, causing it to close; and thins the siphon is made an important organ of locomotion, for when the water is thas forced out, the animal shoots backward. Near the base of the siphon we saw the little oval ink bag. The large gills and venæ cave were the only organs which seemed to be attached to the mantle, and the posterior part of the body was made up of the large visceral sac, which contains the stomach, liver, and other organs.

Having leamed what we could abont the squid, we helped Professor Parker prepare the rest of the specimens. To do this, a slit was cut in the mantle, so that the liquid might reach the internal organs,
and then they were packed in the copper tank and covered with the alcohol.

As we expected to collect some specimens for our own eabinets to be preserved in alcohol, we carefully noted Professor Parker's method of packing the bottles in boxes for shipment to his home in the West. The bottles were first wrapped in papers, and then packed tightly

[^0] in a large box, separated from each other by masses of tightly crumpled newspaper, of which a layer was also placed on the bottom, sides, and top. The Professor said that in some localities damp moss might be used in place of the paper. -" The one essential object," sail he, " is to pack the bottles so that they will not shake about. It is also best to put in the bottles a number stamped on block tin, corresponding to a number in your note-book, where all information concerning the specimens should be kept. If the tin is not procurable, the information may be written on stiff linen paper with a soft lead pencil. Never write with ink, or any writing fluid, and never use ordinary tin, for that will corrode. Dry shells may be packed loose in small boxes, and padded with cotton, moss, or even paper. Stiff paper rolled in the form of cylinders or cormueopias is also a safe method. Always write the full information or data on each bundle or box. In shipping specimens. several small packages, as small soap-boxes, will carry more safely than one large one."

The specimens were all cleaned and packed by the middle of the afternoon, and the Professor suggested that we walls along the beach near the month of the river, as it was not far away. After a half-hour's walk we reached the desired point. The tide was at it,s lowest ebb, and the beach lay stretched before ns, a mingled mass of rocks, seaweer. cel-grass, and sandy beach. The Professor told us that this spot was once famons as the honse of the Fullyur, or winkle shell, and so it proved upon examination, for Harry and George each picked up at large Fulfor canaliculutus at the same time, and soon all members of the party had secured several good specimens. A couple of hours were - pent along the shore, which resulter in the acquisition of about thirty species, several of which had not been collected before.

Late in the evening, we returned to Providence, anticipating a pleasant time on the following day, when we were to again visit the museum in Boston, for the purpose of studying the squid, nautilus, and other animals of this class.

TIIE NAUTILUS AND I'S RELATIVES

> Year after year beheld the silent toil
> That spread his lustrons coil;
> Still, as the spiral grew
> He left the past year's dwelling for the new,
> Stole with soft step its shining archway through, Built up its ille door,
> Stretched in his last-found home and knew The old no more.

- Holmes, The Chambered Nautilus.

On the day following our excursion after srfuids, we again visited Boston in company with Profensor Parker, and the entire day was spent in that city and in Cambridge, studying the specimens in the museums. From the Professor we obtained the following information concerning the various kinds of squids and their relatives.

The highest group of mollusks belongs to the class Cephalopoda, which signifies head-footed, the name having been given to them because the head is surrounded by a eircle of tentacles which act as both arms and feet. The general plan of the anmal is that of a sac, the head protruling from the anterior end, and ending, as before stated, in a circle of eight or ten arms. The eye is wonderfully developed, and the nervous system is very complex. As the brain is protected by a cartilaginous hos, they resemble the vertebrate animals in this one respect. In this class, the majority of the species that possess shells are extinct, there being only from a dozen to fifteen species living at the present time. The Ammonile is an excellent example of the extinct Ceplutopods.

The most familiar member of this family is the pearly nautilus, Nautilus pompitius, the shell of which may be found on the mantelpiece or what-not of many dwellings. The shell of the Noutilus is formed in a spiral and is marle up of many chambers, all comnected by a tube called a siphomele. The onter chamber contains the animal, and is hence caller the living chamber. This shell is called the pearly matilus, but the pearly tints camot be seen until the outer layer, which is yellowish white with brown markings, is taken off, when the exquisite, rainbow-

like colors may be observed. There are over three hundred fossil species of the Noutilus, and but five or six that are still living.

While the shell of the Noutitus is well known, the animal is very rare in our museums, although the natives of the Fiji Islands, the New Hebrides, and New Caledonia are able to obtain it in large quantities for food, and it is higlly esteemed by them. During the voyage around the world of the English survey steamer Challenger, a living Noutilus was captured by dredging in about three hundred and twenty fathoms near Mateeka Island, one of the Fiji group. It was placed in a tub filled with water, in which it swam about in a lively manner by ejecting water from its fumnel. The tentacles, of which there are a larger number than in the other Cephatopods, were spread out radially,

Pearly nautilus, Nautilus pompilius. The shell is cut in section and the animal is in its natural position in the shell. a, mantle; b, dorsal fold of mantle: e, nidamental gland; g, shell muscle; \mathbf{i}, siphuncle connecting animal with chambers of shell; k, siphon or funnel; n, hood; p, tentacles; s, eye; x, septa or partitions separating chambers; z , last or living chamber. (From Woodward, after O wen.)
like those of the sea anemones. Thirty-six of these tentacles may be retracted into eight pouches, which represent the eight arms of the Octopus; forty-eight are arranged about the mouth, and four, called the ocular tentacles, are placed on the head, one in front of, and one behind each eye. All of these tentacles are without suckers. A peculiar appendage, called the hood, is formed on the upper side of the pouches. This acts as an operculum, and closes the shell when
the animal retreats within it. The Nomfilus also differs from the other Cepletopods in lacking the ink gland, and in possessing a simple eye, which is placed on a pertuncle, or stalk, and is withont cornea, lens, or vitreons hmor. Althongh sometimes seen floating on the water in large schools, the natmal habitat is on the bottom of the ocean or among the coral reefs, at depths ranging from three to three handred fathoms or more, where it crawls abont on its tentacles, the shell floating above. Their food is not definitely known, but it probably consists of crabs, as well as holothurims and other echinoderms.

The Fijian's method of capturing the Nouthes for food is thus described by Mr. Tryon in his Structural and Systematic Conchology: "When the water is smooth, so that the bottom, at several fathoms dejth, near the border of the reef, may be distinctly seen, the fisherman in his little frail camoe, serutinizes the samls and the coral masses below, to discover the amimal in its favorite hamts. The experienced eye of the native may probably encounter it in its usual position, clinging to some prominent ledge, with the shell turned downwards.
"The tackle consists: first, of a large, round, wicker basket, shaped very much like a cage rat-trap, having an opening above, with a circlet of points directed inward, so as to permit of entry, but to preclude escape; secondly, a rough piece of rope of sufficient length to reach the bottom; and lastly, a small piece of branched wool, with the branches sharpened to form a sort of grapmel, to which a perforated stone is attached, answering the purpose of a sinker. The basket is now weighted with stones, well baited with boiled crayfish, and then dropped gently down near the victim. The trap is now either closely watched or a mark is placed upon the spot, and the fisherman pursues his avocation upon other parts of the reef until a certain period has elapsed, when he returns, and in all probability finds the Noutilus in his cage, feeding upon the bait. The grapnel is now carefully let down, and having entered the basket throngh am opening on top, a dextrous movement of the hand fixes one or more of the points or hooks, and the prize is safcly hoisted into the canoe."

The animal is made into soup by some of the matives, while others eat it boiled. The shell is usel by the natives to make beautifully carred figures, the contrast of the dark outer coating against the light, pearly shell producing a striking effect. In India the shell is used as a drimking-cup, and in Europe it is used to make elegant eameos, which are much sought and are highly prized as ornaments.

The argonant, or "paper-sailor," is no less beautiful and interesting than the pearly mautilus. The thin and fragile shell camot be com-
pared with that of the Nautilus, nor with the pen or internal support of the squid, for it is attached to the animal by no moseles, and is only kept in position by the broad webs on the upper arms of the female which alone possesses a shell, and its function is simply to protect the eggs. The male is very much smaller than the female, and is exceedingly rare. The female, when in natural position, has the arms spread out and hanging about the shell, fonr in front and four behind, and the two broad arms which support the shell are expanded and closely embrace it. The siphon is tumed toward the ridged part of the shell, and the animal progresses in a backward direction by forcibly ejecting water through this organ. It crawls on the bottom of the sea with the shell on its back, like

The paper sailor, Argonauta argo, in its natural position when floating on the surface of the sea. (Tryon.) a snail. The argonat shells are fomd in all warm seas.

The poets have given us many beantiful writings detailing the vices and virtues of the lower forms of life, and among these the pearly nautilus and the "paper sailor" have received a good share of the muse's attention. But the poet, not writing as a conchologist, sometimes mixes the relationships of these creatures, and we must not be misled, knowing

Spirula levis. The shell is shown as if seen through the mantle. (Woodward.) that poetical license sometimes takes liberties with scientific facts.

The Spirula is a mollusk whose shell is cast up on the shore by thonsands, lut the animal of which is very rare. The shell is less than an inch in diameter, is marle in the form of a loose spiral, and is divided into little chambers comected by a siphncle. The shell of this gems does not contain the animal, as does the shell of the Noutitus, but it is enveloped in two flaps of the mantle, at the posterior part of the animal, and is concealed, with the exception of a part of its edge, on each side. The body of the animal is long and cylindrical, and the arms are quite short, more nearly resembling those of the Nautilus than those of the Octopues, or squid. The body ends in a disk, which is supposed to be a kind of sucker, by which the animal can adhere to rocks, thus enabling it to freely use its arms in obtaining food. It has been supposed by some anatomists that the shells of the fossil Ammonites were attached to the animal in a similar manner. If this can be shown to be true, these
small mollusks will assume a new meaning as being the last survivors of a large group of animals of which all except the Spirula are extinct.

Probably the best known of the shelless Cephalopods is the Octopus, with its rounded body, large eyes, and long arms.

The Octopus is foumd abmolantly thronghout temperate and tropical seas, generally near the coast among rocks, but frequently on the sandy bottom, in water of morlerate depth. On the sandy bottoms it may oceasionally be seen "walking" clmmsily along on its eight long ams,

Octopus tuberculatus. Notice the short, rounded body and long arms provided with suckers. (Woodward.) its little round body being bilanced above. It has been seen to use its dorsal pair of arms as the land snail does its tentacles. Its favorite position, however, is among the rocks. In such a locality it will squeeze its body into some cavity and spread out its arms montil they form a sort of web, resembling, in this position, a huge spider waiting for its prey. And it may well be likened to a spider, for from this net there is no escape if the hapless fish has come in contact with the powerful suckers on the long arms. The poor fish is paralyzed when seized by the Octopus, and is drawn towards the mouth, where it is torn to pieees by the beak-like jaws and swallowed.

Like many other mollusks, the Octopus is esteemed by several savage tribes, as well as by some civilized people, as a valuable article of food. By the native of the Pacific coast the Octopus is caught by a very ingenious method. Providing himself with a spear twelve or fourteen feet long, which has four or five barbed pieces of hard wood some fourteen inches long attached to one end, the ludian paddles his canoe to the feeding-ground of the mollusk. One is soon found in ten or twelve feet of water, and the Indian carefully lowers his spear mutil within a few inches of the center of the animal, when he quickly plonges it into the solt mass. Instantly the water is in commotion, the eight long arms writhing about in an endeavor to reach the boat. The Indian knows that should this happen, his chances of life would be slim indeed. But he is prepared for the onset, and carefully lifting up the Octopus with his barbed spear motil it is above the surface of the water,
he plunges a long, sharp spear, with which he is provided, into each arm where it joins the body. At each plunge of the spear, which paralyzes the nerve, an arm becomes helpless, and in a short time the animal, which but a few moments before had the power of a score of men, lies in the canoe, a shapeless and helpless mass. That the Octopus is a delicacy Professor Parker attested from experience, for during a visit to Yucatan, this mollusk was served to him as a meat dish, and proved to be very palatable, the flesh being firm and tender, and much resembling chicken. The portion eaten by him was the head, with a part of the arms attached.

One of the most interesting characteristics of the Octopus and allied Cephalopods is their power to change color when danger is near. These changes are caused, as has been noted before, by little pigment cells just beneath the skin, which expand and contract. Thus, if a person is looking at an Octopus in captivity, and the mimal is so placed that it camot escape, the observer will be astonished to see the body of the animal assume a deep pinkish color, which in turn is succeeded by blue and then by green, finally returning to pink. The body is covered with these little pigment cells, the different colors - pink, blue, and green-being so evenly distributed over the surface that when each cell is expanded the whole borly assumes that tint.

The Cephalopods are broadly divided into two large divisions: in one, called Dilronchiata, the animal breathes by a single pair of gills, and in the other, called Tetrabranchata, the animal breathes by two pairs of gills. The Noutilus is an example of this latter division. The first division is separated into two groups: the first, having no intermal shell and cight arms, hence called Octopoda; and the second, with an internal shell, or pen, and ten arms, and called Decapoda. In this group, eight of the arms are short, like those in the Octopus, and two are

The squid. Loligo pealii. (Tryon.) very long, and are retractile within pouches. The ends of these tentacular arms are expanded to form club-like organs which are covered with suckers on the inside.

The squids, which are so common on the Atlantic coast of the United States, are good examples of the ten-armed Cephalopods. They are very numerous in numbers, and form a large part of the food of such fishes as the blucfish, black bass, and striped bass, and the young are frequently found in the stomach of jelly-fishes. They form the principal
fond of the albatross. the petrels. and the dolphins. and they also furnish a later part of the fool of some whales. as they are fomed in rast shoals and hecome realy vietims of the hoge monsters.

An ingenions methend wed by the fishermen of the New Engrand coast for captuming a spertes of the smaller squids. Gmmetrotrentes illecebousto is atollurs: the squid has the habit of swmming in an opposite arrection to a light. as that of the full mom: so the fishermen goont to sea in boats. light a large torch in eath hot. and showly row toward the shore. driving the sulus. Whicle of conse swim hatkwad in an opposite direction from the light. upen the beach. Where they ate gathered hy thonsamds. Another methon of captme is hy jiguing: the jig is made of a piece of lead some two inders in length. Which is amed with a circle of sharp. mbarhed wires, pinting upwads and eurving ontwats. The proness of figemes is acomplished as follows the fig is attached to twelre or tiftem feet of stont. line. Which is lowered from the sile of a smail boat into water ahout ten feet deep. When near the bottom. it is kept moving up and down mila squid is felt mpon it. when it is suddenly drawn to the surface with the squid attacherd. Asomewhat similar method is emplosed hy the matives of the Polvmesian lslands to catch cutthetish. the jiguer bemg a piece of cowrs shell fastened to a piece of wood which in turn is attached to a line. The captured squids are used as bait. and a single frshing-smati has been known to use as many as eighty thousand in a simgle season.

The squids are called \cdot sea amows." or \cdot flymer squids." by the fishermen. on accome of the swiftness with which they dart through the water. They are very mmerons, and are fomb in all seas. They feed on fomm fishes. such ats mackerel. and are bery adept at eatching them. rapidly darting ont and seizing the fish. Which is instantly killed by a hite on the back of the neck.

In Norway and sweden. there is a legend of a sea monster. called the Kraken. Enomons squids have beem discovered during the last thirty years. and this lesend probably had its origin on account of some great mollusk seen in early times. The Kraken wis described as being of such size that it combl wind its arms about the masts of a lares ship and so orerturn and sink it. These acomuts were of course purely imaginary. Sany of the en large Cephatonents are fond ofit the coast of Sormay. Scotand, and lreland. and not a few have been seen along the conote of Sora Sootia and New Englamd. In the larger of these amimals. the henly is eiglt or ten feet long, the short arms eirht feet. and the tentamar arme thirs feet in length. making altugether. When stretched out. an amimal alont forty feet in length.

The giant squids are greatly prized ats bait, and frepuently a royal battle will take place between one of these gigantio creatures and a boat's crew. Sad, indeerl, is the fate of the crew if the somid once obtains a firm holl of the boat. Great care is taken, however, to guard against such a result, and the animal is grathatly deprived of its strength by making at sudden daslo, cutting off an arm, and as quickly retreating. These large stuids are mot ats common as are the smatler ones, and they are rarely captured.

The following accounts, taken from Tryon's Structural and Systematic Conehology, give an excellent idea of the size and appearance of these huge mollusks. and also the difficnlties in capturing them:
"On the 30th of November, 18600, the French steaner Alecton, commanded by Lieutenant Bonyer, encountered, botween Madeira and Teneriffe, an enormous Poulpe, which was swimning on the surface of the water. The animal measured fifteen to eighteen feet in length, without comnting the formidatle arms. covered with culs, which crowned its hearl. Its color was brick-red ; its eyes had a prodigions development and frightful fixity. Its mouth, like the beak of a parrot, conld be opened to the extent of eighteen inches. Its looly, fusiform, hut much swelled toward the center, presented an enormors mass, the weight of which has been estimated at more than four thonsand four hundred poinds. Its fins, situated at the pusterior extremity, were rounded in two fleshy lobes, and were of very large size. The commander of the vessel, on perceiving it, halted upon his course, and made preparations for captur-

Architeuthis princeps, a giant squid. One thirty-fifth natural size. (Sketeh of model prepared át Yale College and published in Ward's Catalogue of Mollusca.) Models of this mollusk may be seen at Yale University, Hartford, Conn. ; Harvard College, Cambridge, Mass.; and the Field Columbian Museum, Cbicago, Ill.
ing the monster. Gims were charged and harpoons hastily prepared; but at the first discharge of the former, the animal dived muder the ship and immediately appeared on the other side. Attacked again with harpoons, it disappeared two or three times, and each time that it reascended to the surface, its long arms writhed. The ship followed or arrested its course according to the movements of the amimal. This chase lasted more than three hours. The commanter of the Alecton was determined to capture this new kind of enemy; nevertheless, he did not dare to lower a boat, for a single arm of this cephaloporl would suffice to overturn it. The harpoons which were lamehed at it penetrated the flabby flesh and came out without success; several laalls traversed it also unsuccessfully. Nevertheless, it received one of them, which appeared to wound it badly, causing it to vomit a great quantity of frothy matter and blood mixed with viscid matter, which spread a strong olor of musk. It was at this instant that they snceeeded in lassoing the animal, but the rope slid along the elastic borly mitil arrested by the fins. Attempting to haul their prize aboard, they had already drawn the greater part of the animal from the water when its enomous weight cansed the rope to penetrate the flesh and separate the posterior portion of the borly, which was drawn on board, whilst the rest disappeared in the sea."

The capture of a large cephaloporl off the coast of Ireland is thus related, although the account is slightly exaggerated:
"On Monday last, the erew of a curragh, consisting of three men, met with a strange adventure northwest of Boffin Island. Having shot their spillets (or long lines), in the morning, they observed to seaward a great floating mass, surrounded by gulls; they pulled out, believing it to be a wreck, but to their great astonishment foumd it to be a cuttlefish of enormons proportions, and lying perfectly still, as if basking on the surface of the water. A knife was the only weapon on board. The enttle is much prized as a bait for coarse fish, and the crew resolved to secure at least a portion of it. Considering the great size of the monster, and knowing the crushing and holding powers of the arms, open hostility could not be resorted to, and the fishermen shaped their tactics differently. Paddling up with caution, a single arm was sublenly seized and lopped off. The cuttle, hitherto at rest, became dangeronsly active now, and set out to sea at full speed in a cloud of spray, rushing through the water at a tremendous rate. The canoe immediately gave chase, and was up again with the enemy after three-cuarters of a mile. Hanging on the rear of the fish, a single arm was attacked in turn, while it took all of the skill of the men to keep out of the deadly chatch
of the suckers. The battle thus continued for two bours, and while direct conflict was avoided, the animal was gradually being deprived of its offensive weapons. Five miles out on the open Atlantie, in their frail canvas craft, the boatmen still slashed away, holding on boldly by the stranger, and steadily cutting down his powers. By this time, the prize was partially subdued, and the curragh closed in fairly with the monster. Such as remained of the ten great arms slashed around throngle the air and water in most dangerous but mavailing fashion. The tronk of the fish lay alongside, fully as long as the canoe, while in its extremity, the mutilated animal emitted successive jets of fluid, which darkened the sea for fathoms around. The head at last was severed from the body, which was mmanageable from its great weight, and sank like lead to the bottom of the sea. Of the portions of the mollusk taken ashore, two of the great arms are intact and measure eight feet each in length, and fifteen inches aromnd the base. The two tentacles attain a lengtl of thirty feet. The mandibles are about four inches across. The head, devoid of all appendages, weighed about six stone (about forty-eight pounds), and the eyes were about fifteen inches in diameter.
"It is evident, from the supine condition of this monster, that it was very sick or in a dying condition when attacked; otherwise it would have escaped capture readily by diving."

A familiar object to most canarybird fanciers is the cuttle-bone placed in the cages of these birds for them to sharpen their beaks upon. The cuttle-bone is the internal support or shell of the cuttlefislı, Sepia officinalis, and is homologons with

Cuttlefish, Sepia officinalis. The cuttlebone is shown to the right of the figure. (Tryon.) the pen of the squid. The animal of Sepia is short and rounded, with a large head surrounded by a row of eight short and two very long tentacular arms, the latter ending in expanded clubs armed with powerful suckers. Like the Octopus and squid, the cuttlefish is capable of many changes of color by the changes in its pigment cells. They are found throughout the word, living near the shore, but the species found about the European coasts are the best known. The cuttlefish
is valnerl as an article of food in Italy, and is caught by the fishermen by many clever contrivances, anong them being a drealge. The long arms of the Sppia are used to catch fish for food, as are those of the squits. At Rome, Italy, the pigment sepia is made from this imimal, and at Liverpool, England, a dentifrice is manufactured from the chatky thickening of the cuttle-bone; it is said that twelve hundred pounds of cuttle-bone arrived at one time to be used for this purpose.

Mr. Tryon thus describes the wonderful changes of color in this animal: "But if the day is clear, the dorsal surface and arms are magmificently striped; the edges of the fins are black, and their superior face is ormamentel with spots of the same color. The eye is fatigned in following the incessant variation of coloring cansed by the constant movement of the pigment cells, and the metallic reflections of the head and arms are glorious beyond hmman skill to reproduce. The skin is usually shooth; but when the animal becomes irritaterl, it shows grambations, principally on the head and back. This is accompanied by a retraction of the arms, which appear both shorter and narrower; the extremes no longer touch, but curve slightly. At the same time the colors change; a miform gray tint takes the place of the striped bands. The aproach of death is equally anounced by a change of colors, which grow dull."

Professor Parker further remarked that there were a large number of mollusks belonging to this class which are of great interest, but of which he had not time to speak. Many of the fossil Cephulopods, like the Badmmites, the Ammonite, the Orthoceras, and others, are worthy of mention. They are fashioned upon the same plan as those he had ahready described, and he assured us that their characteristics wonld he readily malerstood whenever we should see them or read about them.

WHERE THE FRESH-WATER MOLLUSKS LIVE
Photograph by F. M. Woodruff

TIIE CLASSIFICATION OF SHELLS

One evening, several weeks after our return from the coast, we called upon Professor Parker and found him busily engaged in study in his laboratory. We spent several hours very pleasantly in examining a large collection of shells, just purehased, and which came from all parts of the world.

In the course of our conversation, George asked why it was necessary to give the shells such long and hard seientific names. "Why wouldn't English names do as well?" he asked.

The Professor, who always willingly answered our questions, sat down and explained to us the reasons for the use of Latin and Greek names.
"In the first place," he said, "it is necessary to have the names in some language which is studied in all the countries of the world, and you are aware that Latin and Greek are the ouly languages which are miversally used. If we were to use English names, the people in France, Germany, Russia, Japan, and other countries would not know their meaning; and so if the names were in any other language, the people of the other countries would not understand them. Then again, the use of the Latin and Greek languages enables the scientist to express in two or three words a meaning which would refpuire a whole sentence in English, or some other modern language. Let us see if that is not true. We will take the name Nerita sulbranosa, which means the 'nerite covered with a few grain-like pimples.' This is a Latin term. We may also use the Greek language, as in Tubo chrysostoma, which means the 'goldenmonthed turban shell.' And so this system may be used indefinitely.
"As yon have doubtless leamed in your studies, the Mollusea are classified systematically, each class, order, family, genus, and species being arranged in relation to other classes, orders, genera, and species. That is, all animals of one kind are placed in one group, as an order or family, while those differing from it are placed in other groups. and so ons.
"For example, let us see how we would elassify the common pond snail Limnaca staynalis. We find that it belongs to the class Gastropoda,
or those mollusks which have a large foot on the lower surface; we next note that it can be placed in the order Pulmonata, which comprises those snails which breathe by a lung. Its next position is found in the suborder Basommatophora, which includes those snails having flattened and contractile tentacles, with eyes placed at their imner bases. These live for the most part in the water, but come to the surface for fresh air. Following out our analysis, we next find that it belongs to the family Limncide, which includes the pond snails and orb shells. As it has a long spire it belongs to the genus Limncea.
"If we tabulate this, we find that it appears as follows:

> Class, Gastropoda.
> Order, Pulmonata. Suborder, Basommatophora. Family, Limnæidæ. Genus, Limnæa. Species, stagnalis Linné.

"The specific name, stagnalis, signifies pond inhabiting, and indicates that the animal lives in ponds or lakes. In a number of mollusks, the specific name has a distinct meaning, and refers to some characteristic of the animal or shell; but in the majority of cases the name is simply arbitrary, and is used as a means of identification, just as are the names of persons, or the trade names of merchandise."

As the Professor ceased speaking, George incuired what the difference was between a gemus, a species, and a variety. "That question," replied Professor Parker, "is a little difficult to answer in such a manner as to make it perfectly clear to you. A gemus includes all of the amimals having certain characteristics in common, as the genus Limuea, which includes the pond snails with a long spire. The animals may also have certain features which distinguish them from other related animals, as the flat, triangular tentacles of Limnen, which are different from the long, tapering tentacles of the orb snails, Planorbis. Species are distinguished by many minor features, the comparative length of the spire, the condition of the sutures separating the whorls, whether impressed, channeled, or plain, and the presence or absence of an umbilicus, or teeth within the aperture: all of these characteristics and many others serve to distinguish one species from another. A variety is very difficult to describe, as it is simply a minor modification of a species. To use a familiar illustration, the domestic cat, Felis domestica, is a species which comprises numerous varieties, as a black cat, a white cat, a back and white cat, or a tortoise-shelled
cat. These all belong to the species domestica, but are separated on account of their color into different varieties.
"The theory of evolution has led scientific men to recognize the fact that species and varieties do not exist in nature, life being a contimous whole, the simple amimals developing into complex animals, and these again into still more complex forms of life, until the amimals and plants have reached the myriad varieties we see about us to-day. Species are useful only, as I said before, as a means of identification. enabling us to compare the animals, or fama, of one locality with another. But I an wandering from the question which you asked me. A species may be described as a group of animals which have certain characteristics not shared by any other living animals, while a variety is a group of amimals closely related to the species, and connected with it ly living gradations, but which have become slightly different through occupying a different part of the comntry, or by living on different kinds of food. A variety is sometimes called a geographic race. Man is one of the best examples of the difference between a species and a varicty. and you are probably all familiar with the different races of men."

Howard, who had never sturlied scientific subjects before, asked Professor Parker what the word Limé meant. after Limnaca stagnalis. The Professor replied that this was the name of the great Swedish naturalist, Carl von Limmeus, or Limé, as it is frequently written. "The name of a person after the title of a species," he contimed, "indicates the investigator who was the first to give the animal that Latin name, and by the presence of his mame the student is able to refer to the original description of the animal or shell."

Professor Parker told us that it was always a gool plan to make a collection that would contain the largest possible variety, illustrating all of the principal divisions of the Molhsca. This would, he said, be of great educational value to us, and would enable us to better understand the almost infinite diversity of form in this class of animals.

Many collectors, he added. matle a generic collection, which embraced several representatives of atl the genera. The Professor then impressed upon the quartette the importance and ratue of making a complete collection of the mollusks which lived in their immediate neighborhood.

In the course of the conversation George asked into how many classes the Mollusea are divided. The Professor replied by placing on his hackboard what he called an artificial key, which read as follows:
A. Shell composed of two valves, or pieces, generally phaced side by side.
Clams, Oysters

> Prlceyproda.
B. Shell composed of eight separate pieces.

Coat of Mail shells
Amphineruru.
C. Shell composed of one piece, generally in the form of a spiral. Snails

Gestropode.
D. Shell in the form of a hollow cylinder.

Tooth shells
Sertphiporta.
E. Head with eight or ten arms, which are provided with numerous suckers; shell generally absent.
Squid, Nautilus, Devil-tish
Cephetopoda.
"Each class," continned the Professor, " is divided into mmerons orders, and these in turn are divided into suborders, families, subfamilies, and genera, and all of these divisions may be arranged in keys, as you may see for yourself by consulting some of the books in my library. I wonld advise each of you to procure a good manual of Conchology and stndy it carefully."

Howard asked what was the most characteristic feature of shells, which was not shared by any other branch of the amimal kingdom.
"The name Mollnsca," answered Professor Parker, "is from the Latin word Mollis, meaning soft, and is given to this class of ammals becanse their bodies are soft and fleshy. The most characteristic features of the Mollusca are the creeping disk, or foot, and in all bot the Pelecypoda, the peculiar dental apparatus called the radnla, or odontophore. In geological history the Mollnsca extend back almost to the beginning of time, their remains being found in the early Cambrian rocks. There are at present about fifty thousand known living species, and the same number of fossil species."

As we were leaving to go to our several homes, the Professor hamded each of us a slip of paper, containing a list of some books on Conchology, which he desired us to procure and stmdy.

Several days after this visit to Professor Parker's house, a conchological club was formed, consisting of the quartette and several of their young friends, who had become interested in the snbject. Professor Parker was by common consent elected an honorary member, and was manimonsly made the first president. A plan was outlined for the winter, which embodied a thorongh study of some of the most interesting gromps of the Mollnsca.

SOME BOOKS TO STUDY

At the first meeting of the new conchological club, the subject of what books to study was discussed. While the discussion was at its height, Professor Parker entered the room, and the chairman of the meeting, who happened to be Harry, referred the question to him. "I thought that you would discuss this subject this evening," said the Professer, "and I have brought with me a list of books and papers, together with some of the literature, which I shall present to the club to form a mucleus for its library.
"There are three valuable manuals, one of which, however, is in the French language. They are as follows:
"Structural and Systematic Conchology: an Introduction to the Study of the Mollusca. By George W. Tryon, Jr. Three volumes in one. Published ly the Conchological Section of the Academy of Natural Sciences of Philadelphia. 1882-84.
"This work gives descriptions and figures of all of the orders, families, and genera of Mollusea, recent and fossil. It is indispensable to the student of the Mollusca, not only for its descriptions but for its abundant illustrations. Another, though older manual, is
" A Manual of the Mollusca; or, a Rudimentary Treatise of Recent and Fossil Shells. By Dr. S. P. Woodward. Published by various firms in London, England. 1868.
"The French manual of which I spoke is entitled, Manual de Conchyliologie; au Histoire Naturelle des Mollusques vivants et fossiles. By Dr. Paul Fischer. Published in Paris, France. 1880.
"Those who desire a knowledge of the shells of the west coast of America will find the following little volume of much value:
"West Coast Shells. A familiar description of the Marine, Fresh Water, and Land Mollusks of the United States found west of the Rocky Manutains. By Josiah Keep. Published by Bancroft Brothers and Company, San Francisco, Cal. 1887.
"No similar book has been written on the shells of the Atlantic coast; but a large amount of information and many excellent iliustrations will be found in the following reports:
" A Preliminary Catalogue of the Shell-Jearing Marine Mollusks and

Brachiopods of the Southeastern Coast of the United States. By Willian II. Dall. Published as Bulletin No. 37 of the United States National Museum. 1889.
"Report on the Invertebrata of Massaclusetts. By A. A. Gould. Published by the Legislature of Massachusetts. 1841.
"Report on the Results of Dredging by the United States Const Survey Steamer Blake. Report on the Molhusca. By William H. Dall. Published in the Bulletin of the Museum of Comparative Zoology, Harvard College:
"Part I. Pelecypoda, in Vol. XII. 1886.
"Part 1I. Gastropoda, in Vol. XVIII. 1889.
"Report upon the Invertebrate Animals of Vineyard Sound and the Adjacent Waters, with an Accomt of the Physical Characters of the Region. By A. E. Verrill. In the Ammal Report of the United States Commissioner of Fish and Fisheries for the Year 1871-1872, pages 295 to 778.
"Two other interesting papers by the same author, one on deep sea mollusks and the other on the Cephalopoda, will be formol in the same series of reports for 1879 and 1883.
"A very interesting account of marine life will be found in the Depths of the Sea. By C. Wyville Thompson. Published by Macmillan and Company, London. 1873.
"This volume gives an account of the deep sea dredging of the British steamers 'Porcupine' and 'Lightning' in the summers of I868, 1869 , and 1870.
"The following volumes give the most comprehensive account of deep, sea work:
"Three Cruises of the United States Coast and Geodetic Survey Steamer Blake. By Alexander Agassiz. Published by Houghton, Mifflin, and Company, Boston. 1888.
"A very complete account of the methods and apparatus used in deep sea dredging will be found in the Report of the United States Fish Commission for the Year 1853, in a paper by Commander Z. L. Tanner, entitled
"Report on the Construction and Ontfit of the United States Fish Commissioner's Steamer Albatross.
"Books on the land and fresh-water shells of the United States are out of print and hard to obtain; lut the following may be consulted in the public library or musem:
"Land and Fresh-water Shells of North America. Parts I., II., and III. on the Pulmonata, and all but one family of the water-breathers.

By W. G. Bimey and T. Bland. Published in Smithsonian Miscellaneous Collections, Nos. 194, 143 , and 144. 186.5 to 1869. Part IV., ou the Strejomatida. By George W. Tryon, Jr., No. 253. 1873.
"Monograph of American Corbiculidx, recent and fossil. By Temple Prime. Smithsonian Miscellaneous Publications. No. 145. 186.\%.
"This pamphlet contains descriptions and illustrations of the small bivales, Sphærimm, I'isidimm, etc.
"'The best general work on American land shells is
"A Manual of Americam Laud Shells. By IV. G. Bimney. Published as Bulletin No. 28 of the United States National Museum. I885.
"The most elaborate and modern accomnt of the land shells is found in
"A Guide to the Study of Helices. By Henry A. Pilsbry. Published by the Conchological Section of the Pliiladelphia Academy of Sciences. 1894.
"Many valuable papers by the same author will be found in the Proceedings of the Philadelphia Academy from 1890 to the present year.
" A volume containing many beautifully colored figures is
"Monograph of the Fresl-water Univalve Mollusca of the United States. By S. S. Haldeman. Philadelphia, 1840-44. Continuation by Geo. W. Tryon, Jr. Philadelphia. 1870.
"A volume devoted to the land and fresh-water shells of the Upper Mississippi Valley is
"The Mollusca of the Chicago Area. By Frank C. Baker. Pulblished by the Chicago Academy of Sciences. 1902.
"This work contains many illustrations of the common species.
"The fresh-water clams, or Unios, have been carefully described and figured in
"Observations on the Gemus Unio. By Isaac Lea. Thirteen volumes. 1834-1874. Pliiadelphia, Pemsylvania.
"These mollusks are cataloghed and classified in a modern manner in
"A Synopsis of the Naiades; or, Pearly Fresh-water Mussels. By Charles T. Simpson. Published in the Proceedings of the United States National Musemm, Volume XXII., pp. 501-1044. 1900.
"An excellent account of the pearl button industry will be found in Volume XVIIl. of the United States Fish Commission; and the economic uses of mollusks are interestingly toll in
"Etho-Conchology: A Study of Primitive Money. By Robert E. C. Stearns. Published in the Ammal Report of the Smithsomian Institution. 1887. Part II., p. $\mathfrak{2 9 7}$.
"This paper gives an excellent account of the use among primitive people, of shells, both as ormaments and as currency.
" Instructions for Collecting Mollusks, and Other Useful Hints for the Conchologist. By William H. Dall. Published in Bulletin No. 39, part G, of the United States National Museum. 1892.
"This paper gives full instructions for collecting and preserving the Mollusca. This, as well as other publications of the govermment, may be obtained by writing to the Secretary of the Smithsonian Institution, Washington, D. C.
"Those who desire a knowledge of the mollusks of Great Britain and Europe may consult the following volumes:
"British Conchology. By J. Gwyn Jeffreys. Five volumes. Published in London, England, from 1862-69.
". The Land and Fresh-water Mollusks Indigenous to, or Naturalized in, the British Isles. By Augustus Lovell Reeve. Published in London, in 1863.
"The Land and Fresh-water Shells of the British Isles. By Richard Rimmer. Published in Edinburgh, in 1850.
"A Monograph of the Land and Fresh-water Mollusca of the British Isles. By John W. Taylor. 1894.
"Histoire Naturelle des Mollusques de France. By Morfuin-Tandon. Paris. 1855.
"A concise general account of the molhusks will be found in the article Mollusca, by E. Ray Lankester, in the Encyclopadia Britamica. Other general accounts will be found in the Zoologies of Parker, Zeitel, and Packard; the Standard Natural History; the Cambridge Natural History; and other general works of this character.
"Several valuable and costly monographs have been published, illustrated by many colored figures. Several of these may be consulted in the large libraries.

- Conchologia Iconica. By A. L. Reeve. Twenty volumes, 4to. London, 1843 to 1878. 2,600 colored plates.
.- Thesaurus Conchyliorum ; or, Figures and Descriptions of Recent Shells. By G. B. Sowerby. London, 1S47. Over forty parts in 8 ro.
"Systematischen Conchylien Cabinet von Martini und Chemnitz. A German work, of which over 325 parts have been published, containing over $I, 800$ colored plates. 4to.
"Those who desire a publication, in which all the known species of mollusks are described and figured, may consult the
"Manual of Concholog., Structural and Systematic, with ilhstrations of the Species. By George W. Tryon, Jr. Continuation by Heury
A. Pilsbry. Published by the Conchological Section of the Academy of Natural Sciences of Pliladelphia. 1882.
"This work is issued in four series, of which the first, on the Marine Snails, has been completed; and the second series, on the Land Shells, is now in progress.
"There is one journal published in America, and several in Europe, which are devoted to the interests of conchologists. These are:
"The Nautilus: a monthly devoted to the interests of conchologists. Publishel by H. A. Pilsbry and C. W. Johnson. Philadelphia, Pennsylvania. 1880-.
"The Journal of Conchology. London, England. 1874-.
"Annales et Bulletin de la Société Malacologique de Belgique. Brusselles. 1863-.
"Journal de Conchyliologie. Paris. IS50-.
"These publications," contimed Professor Parker, "are but a few of the many books and papers on this sulject; but with the aid of these I have mentioned, you may identify and classify the majority of mollusks. There are thousands of papers scattered through the journals and transactions of domestic and foreign societies, many of which are of great value, but are too technical for your use at present. I would strongly advise each of you to make a card catalogue of all the papers relating to the Mollusca which you can find. It will be of great assistance if you will arrange the cards geographically as well as by authors. That is, all papers relating to the marine molhusks of California may be catalogued together, and all of those referring to the land shells. of the United States. Experience will teach you many devices by which you will be able to systematize this subject."

gLOSSARY OF TECHNICAL TERMS

Several weeks after the first meeting of our club, we held another meeting, at which the sulbject of the terms or names used in study and description of the Mollusca, formed the subject of discussion. Professor Parker was present to assist the club in its debates.
"These technical terms," said the Professor, " are necessary in order that we may have a uniform means of describing the animals and shells. They are not difficult to understand when we appreciate their application to the animals. As your card, notifying me of this meeting, announced the subject for discussion to be the terms used in the study of the Mollusca, I thouglit a list or glossary of the majority of these terms might be of value to you, and form a kind of dictionary; and I have accordingly made several type-written copies of such a list." With these words, the Professor handed each of us a neat package of foolscap paper, containing the following glossary:

Aberrant. Deviating from a given type.
Abrasion. Wearing away.
Abyssal. The deepest part of the ocean.
Acephalous. Headless.
Acetabula. The suckers on the arms of squids and devil fishes.
Acinose. Full of small bulgings; resembling the kernel in a mut.
Aculeate. Very sharply pointed, as the teeth on the radula of some snails.
Acute. Sharp or pointed, as the spire of a shell or the lip of a shell.
Acuminate. Long and tapering, as the spire of some shells.
Admedian. Next to the central object, as the lateral teeth on the lingual nembrane.
Afferent. To bring in; when relating to a vessel or duct, indicating that it brings in its contents.
Alate. Wing-like; as the dorsal part of some Unios.
Albinism. Changing from a darker to a lighter color.
Amœboid. Shaped like an Amœbia, a small animaleule.
Amorphous. Without distinet form.
Amphibious. Iuhabiting both land and water.
Amphidetic. With the ligament on both sides of the umbones.
Ampullaceous. In the form of a flask.

Analugue. A likeness between two uljects when otherwise they are totally different, as the wing of a bird and the wing of a hutterfly.
Anastomosing. Coming together.
Androgyous. Combining both sexes in the same individual.
Ammular. Made up of rings.
Anterior. The front or fure end.
Aproximate. Near together, as the umbones of some Unios.
Aquatic. Inhaliting the water.
Arborescent. Branching like a tree.
Arched. Fowed or bent in a curve.
Archihenthal. The marine region lying between the deep sea (abyssal) and the shallow margin of the land (littoral).
Articulatel. Jointed.
Areti-spiral. Tightly eoiled, as some spiral shells.
Arcuated. Bent in a bow or arehed, as the ventral edge of some bivalves.
Asphyxiating. Causing suspented animation; apparent death.
Assimilation. Act of converting one substance into another, as the changing of food-stuffs into living lowlies.
Asymmetrical. Not symmetrical.
Atrophied. Wasted away.
Attenuate. Long and slender, as in some shells.
Auditory. Comeeted with the learing.
Awriclet. Eared, or with ear-like appendages.
Basal. The bottom or lower part.
Benthal. The cleepest part of the sea (the same meaning as abyssal).
Biangulate. With two angles.
Bicuspid or bicuspidate. Having two cusps.
Bific. Having two arms or prongs.
Bifureated. Having two lranches.
Bilateral. With two sides.
Bilobed. With two lobes.
Bisexual. Having two sexes.
Bivalve. A molhusk with two valves or shells, as the Unio.
Branchial. Referring to the lower or ventral siphons in Pelecypods.
Bulbras. Swollen.
Bysiferous. Attached to a byssus, as in some Unios.
Cadncous. Falling off or shedding, as of hair.
Calcareors. Composed of carbonate of lime.
Callosity. A hardened and raised bunch, as the callus on the columella of some shells.
Callus. A deposit of shelly matter.
Calyculate. Cur-like, as the umbo when separated from the rest of the shell by a distinet mark, as in Calyculina.
Campanulate. Formed like a bell.

Canaliculate. Resembling a canal, as the deep sutures in some shells.
Cancellated. Formed of cross-bars, as the longitulinal and spiral lines which cross in some shells.
Cardiac ponch. Containing the heart and placel near the umbones of the shell.
Carinate. Keeled.
Carnivorous. Feeding on animals.
Cartilaginons. Like cartilage.
Caudal. Tail-like, or with a tail-like appendage.
Cellular. Mate up of cells.
Cerebral. Pertaining to the brain.
Chameled. Growed or formed like a channel.
Chitinons. Fumed of chitin, as the rarlule of snails.
Chromatophores. The pigment spots on the hody of sinuids and devil fishes.
Ciliary. By means of cilia.
Ciliated. Having cilia.
Cilium (phral cilia). A lash; used to designate the hairs on the mantle, gills, ete.
Cirrated. Havinir movable lairs, as the siphons of lnio.
Clavate. Chul-shaped.
Cloacal. Teferring to the upper or dursal siphon in Pelecypots.
Coarctate. I'ressed tugether, narrowel.
Compressed. Flattened out, or pressed together, as some livalves.
Concave. Exeavated, hollowed out.
Concentric. From the same center, as the lines of growth on Spharimm, which are parallel with the umbo.
Confluent. To rum together, or into something else, as the muscle scars of sme Unios.
Congener. Belonging to the same gromb
Conic. Shaperl like a cone.
Connective. A part commecting two other parts, as a masele comecting two parts of the body, or a nerve comecting two gangha.
Constricted. Narrowed.
Contractile. Capable of being contracted or drawn in, as the tentacle of a smail.
Convex. Bulgerl out, as the whorls of some smails.
Convoluted. Rolleal tomether.
Cordate. IIeart-shaped.
Comeous. Horn-like, as the opercula of some mollusks.
Comngated. lionghened by wrinkles, as the shells of some Vnios.
Costate. Havingrern rike ridges.
Crenulate. Wrimkled on the edges.
Crescentic. Jike a crescent.
Cylindrical. Like a eylinder.
Deciduous. Falling off; andied to the parts of a shell which are not permanent, as the alex in some smails.
Decorticated. Peeled or striphed uff, as the epidermis in some shefls.

Decollated. Cut off, as the apex in some shells.
Decussated. With spiral and lougitudiual lines intersecting, as the sculpture of some shells.
Deflexed. Bent downward, as the last whorl in some snails.
Dentate. With points or nodules resembling teeth, as the aperture of some snails. Denticulate. Finely dentate.
Depressed. Flattened. As the spire in some suails.
Dextral. Right-handed.
Digitiform. Fiuger-like.
Dilated. Expamded in all directions, as the aperture of a shell.
Dimorphism. With two forms or conditions.
Dimyarian. Having two distinct adductor muscle impressions or scars, as in Unio.
Diœcious. Having the sexes in two individuals, one male and one female.
Distral. The farthest part from an object.
Discoidal. Shaped like a flat disk.
Diverging. Separating from each other, as the cardinal teeth in some Unios.
Diverticulum. A pouch or hole, as the pouch containing the radula, or that containing the dart in helices.
Dormant. In a state of torpor or sleep.
Dorsal. The back. In bivalves the hinge portion, and in univalves the opposite to the aperture.
Ectocone. The outer cusp on the teeth of the radula.
Edentulous. Withont teeth or folds, as the hinge plate in some Unios, and the aperture in some gastropods.
Efferent. Carrying out.
Elliptical. With au oval form.
Elongated. Drawn out, as the spire of a shell.
Emarginate. Bluntly notched.
Encysted. Inclosed in a cyst.
Entocone. The inner cusp on the teeth of the radula.
Entire. With even, unbroken edges, as the aperture of some shells.
Epithelium. All tissues bounding a free surface.
Equidistant. Equally spaced, as the spiral lines on some snail shells,
Equilateral. Equal-sided, as in Unio or Spherium when the umbones are placed in the center.
Equilibrating. Balancing equally.
Equivalve. With broth valves of the same size and shape.
Eroded. Worn away, as the epidermis on some shells.
Erosive. Capable of crosion.
Escutcheon. The region hehind the umbones in opisthodetic pelecypods.
Excavated. Hollowed ont, as the enlumella of some snails.
Excoriatel. Worn away, or rubbed off.
Excurrent. Referring to the siphon which carries ont the waste matter of the body.

Exoskeleton. The outer skeleton; all shells are exoskeletons.
Exotic. Foreign.
Exserted. Brought out.
Expanded. Spread out, as the lip of some shells.
Falcate. Scythe-shaped.
Fascienhus. A little bundle.
Ferruginons. Of the color of iron.
Filament. A slender, thread-like object.
Filiform. Thread-like.
Fissure. A cleft or cut.
Flagellate. Animals with a flagellum or lash.
Flavescent. Yellowish.
Flexuons. Formed in a series of curves or turnings, as the columella in some shells.
Floceulent. Clinging together in bunches.
Fluviatile. Living in rumning streans.
Foliaceous. Leaf-like.
Fuseous. Dark brown in color.
Fusiform. Thick in the middle and tapering at each end.
Gaping. Opening or spreading, as the valves of some Pelecypods.
Gelatinous. Like jelly, as the eggs of some mollusks.
Gibbous. Very much rounded, as the whorls in some snails.
Glandular. Like a gland.
Globose. Rounded.
Gramulated. Covered with little grains.
Gravid. A female mollusk (as Unio) with ovaries distended with young.
Gregarious. Living in colonies.
Gular. Relating to the windpipe or palate. In mollusks, referring to the innermost part of the aperture.
Habitat. Locality of a species.
Hxmolymplı. Mollusean blood.
Haliotoid. Ear-shaped.
Heliciform. In form like Helix.
Hemispherical. Half a sphere.
Herbivorous. Subsisting upon vegetable food.
Hermaphrodite. Having the sexes united in the same individual.
Hibernation. The act of hibernating or going to sleep for the winter months.
Hirsute. Covered with hairs, as some snails.
Hispid. Same as hirsute.
Homologons. Having the same position or value, as the wing of a bird and of a bat.
Hyaline. Glassy.
Imperforate. Not perforated or umbilicated.

Impressed. Marked by a furrow, as the impressed spiral lines on some univalve shells.
Inequipartite. When one end of a shell is longer than the other, as the two ends in I'isidium.
Incrassate. Thickened.
Incurrent. The siphon in Unio which brings in the food-stuffs.
Ineurver. Leaned or bent over, as the apex in some snails.
Inrlenter. Notched.
Inequivalve. When one valve is larger than the other.
Inflater. Swolien, as some livalve shells.
Inflected. Turnel in, as the teeth of some smails.
lnhalent. Same as incurrent.
Inoperculate. Without an operculum.
Intercostate. Between the ribs or rilges.
Invaginate. One part bending into another, as the tentacles of some land snails.
Invertible. Capable of being inverter, or drawn in, as the eye-peduncles of a land snail.
Involute. Rolled inward.
Keelerl. With a more or less sharp projection at the periphery.
Labial. Pertaming to the lips, as the labial-palpi in Unio.
Lamellatecl. Covered with scales.
Lamelliform. Having the form of seales.
Laminated. Consisting of plates or sciles laid over each other.
Lanceolate. Gradually tapering to a point.
Lateral. Pertaining to the side.
Latticed. (See deenssated.)
Lenticnlar. Having the shape of a donble conver lens, as some bivalves.
Lithodesma. An accessory shell plate near the umbones, in those shells having a "cartilage" or resilimm, as in Mactra.
Littoral. The region lordering the shore.
Lobulate. Composed of lobes.
LongituTinal. The lengtly of a shell.
Lmate. Shaperl like a half moon, as the aperture in some sliells.
Macmaterl. Sijutted.
Nalleated. Appearing as though hammered.
Manducatory. Relating to the apparatus for masticating fool. In smaik, the jaws and radula.
Mariture. Inhabiting the seashore.
Marsupinm. A part of an animal user as a pouch to contain the young, as the gills of Thio.
Merlian. Middle, as the midde tooth on the radula.
Mesocene. The middle cusp on the teeth of the radula.
Monoecins. Having the sexes united in the same individual.
Multifis. Mate up of may lobes or projections, as the cusps on some radule.

Multispiral. Consisting of many whorls, as some fresh-water snails.
Nacreons. l'early or iridescent, as the interior of some Unios.
Nive. The interior coating of Pisidim and Spherium.
Nepionic. The second stage of the embryonic shell, as the glochidium of Unio.
Nodulous. Proviled with small knobs or projections, as the surface of some Unios.
Notched. Nicked or indented, as the anterior canal of some gastroporls.
Nuclens. The first part or beginning, as the apex in a mivalse and the umbo in bivalves.
Nucleated. Having a mucleus.
Obernic. In the form of a reversed cone.
Oblique. Slauting, as the aperture of some shells when not parallel to the longitudinal axis.
Oblong. Longer than high, as some Unios.
Obovate. Reversed ovate, as some shells when the diameter is greater near the upper than at the lower part.
Obtuse. Dull or blunt, as the apex of some univalves.
Olfactory. Pertaining to the smell.
Olivaceous. Colored like an olive.
Opisthodetic. With the ligament behind the umhones.
Orbicular. Like an orb or disk, as some Spheria.
Organism. An organized being, or living object inade up of organs.
Ovate. Egg-shaped.
Ovately conic. Shaped like an egg, but with a somewhat conie apex, as some univalves.
Oviparous. Pringing forth young in an egg which is hatched after it is laid.
Ovisac. A poueh in which the eggs or embryos are contained.
Ovoviviparous. In this case the young are formed in an egg but are hatched inside the parent.
Papillose. Covered with many little bulgings or pimples.
Parallel. Having the same relative distance in all pirts, as when the spiral lines in univalve shells are the same distance apart all the way around.
Parivincular. A ligament "which may be comparel to a cylinder split on one side, attached by the several edges, one edge to each valve."
Patelliform. Shaped like a flattened out cone, as an Ancylus.
Patulous. Open and spreading, as the apertnre in some univalves.
Paucispiral. Only slightly spiral, as some opercula.
Pearly. Having a substance like pearl, as the interior of Unio.
Pectimate. Like the tecth of a comb, as the gills of some mollusks.
Pedal. Pertaining to the foot.
Pedunculaterl. Supported on a stem or stalk, as the eyes of land snails.
Pelagic. Living in the open sea, away from the shore.
Pelheid. Transparent or clear, as the shells of some snails; e. g., Vitrea.
I'enultimate. The whorl before the last in univalve shells.

Pericardinm. The chamber containing the heart.
l'eriostracum. The epidermal covering of some shells, as Succinea.
Pervious. Very narrowly olen, as the mbilicus in some snails.
Ihytophagus. Vegetalle-feerling.
lilose. Covered with hairs.
limate. Branched like a feather, as the sills of some mollusks.
l'aited. Folder.
Planorboid. Flat and orb-like, as some smails.
Ploure. Relating to the sile uf a body.
Plexus. A network of vessels, as the form of the lungs in snails.
Plicated. Mate up of folds.
l'lumose. Resembling plumes.
l'olygonal. Having many angles.
Polymorphons. With many forms.
Porcellanons. Like Porcelam.
Post-hasal. leyond or near the base, as the pusterio-ventral part of Lampsilis.
Prismatic. Like a prism.
Prolissoconeln. The embryonie shell.
Prosonletic. A term applied to the area in opisthodetic ligaments, lying in front of the monbones and forming the lamule.
Protseonch. The embryonic slell.
l'rotract. To push out.
lrotractor pedis. The foot protractor muscle.
Protrusile. Capable of being pushed out.
Proximal. The nearest ent of an object.
lsenducardinals. False cardinal teeth.
Psemololaterals. False lateral teeth.
Pulsation. A throb, as the throhbing of the heart.
Pupiform. Like a pupa; one of the stans in the development of an insect.
Pustulate. Covered with pustules, on little pimples.
lustulose. Same as above.
l'yramidal. Having the form of a pyramid.
Pyriform. Shaped like a pear.
Quadrangular. Having four comers, as some Cnios.
larliated. Extenting from a common center, as the rays on some Unios.
Reflected. Bent backward, as the lip in some smails, or the cusps in the lingual membrate.
Reflexed. Same as above.
Renal. Relating to the kidneys.
letieulaterl. lesembling a network, as when the longitulinal and spiral lines cross in a snail.
letractile. ('apable of being drawn in, as the eye peduncles in land snails.
Retractor pertis. Foot retractor muscle.
Reversen. Thmed the contriny way

Revolving lines. Spiral lines on a suail shell which run parallel with the sutures. Rhombic. Having four siles, the angles being oblinge.
Ihomboid. Four-sided, but two of the sides being longer than the others.
Rimate. Provided with a very smahl hole or crack, as some suails in which the umbilicus is very narrowly open.
Roundly lmate. Romoler than lunate (which see).
Rostriform. In the form of a rostrum.
Rudimentary. Not fully formed; imperfect.
Rugose. Rough w wrinkled, as parts of some shells.
Sacculated. Somewhat like a sac, or composed of sac-like parts.
Scalar or scalariform. Resembling a ladder.
Schizolont. With few teeth, consisting of one or two cardinals or laterals, as in Cuin.
Scutellum. The projecting or pinched parts in front of the mmbones in l'isidimu.
Scutum. The pinched parts behind the ligament in Pisidium.
Secreted. Produced or deposited from the blood or glands, as the shell material in mollusks.
Semicircular. Half round or circular, as the aperture in some suails.
Semidentate. Half toothed, as the parietal wall in some land snails.
Semiellijtic. IIalf elliptical.
Semiglobose. Half, or not quite globose.
Semilunate. Half limate.
Semioval. Half, or not quite oval.
Sermated. Notched, like the teeth on a saw.
Serriform. In the form of series.
Sessile. Attached without a stem, as the eyes in some water snails.
Shouldered. Ridged, as the whorls in some suails.
Sigmoid. Shaper like the letter S.
Siliceous. Marte up of silex.
Siuistral. Having the aperture on the left sile.
Sinows. Curved in and ont, as the elge of some bivalves and the lips of some snails.
Spatulate. In the form of a spatula, a flat-blarded instrument used by drugrists in pulverizing drugs.
Spherical. Shaped like a sphere.
Spiral. Wound about a central cavity, as the whorls of suails.
Striated. Marked hy lines or strise.
Subangulated. Morlerately angled.
Subearinated. Moderately carinated.
Subceutral. Not quite in the center
Subcirenlar. Not quite circular.
Subeonical. Morderately conical.
Subeylindrical. Momerately cylindrical.
Subequal. Not quite equal.

Subexeavated. A little excavated.
Sulfusifom. Moderately fusifom.
Sulghonse. Moderately ghonse.
Sulghmmlar. Moderately glmbular.
Suldyaline. Morlerately glases.
Subimperforate. Not much perforated.
Subohbmg. Morlerately ohlmog.
Subolisulete. Almost disapmearing.
Sulovate. Nearly wate.
Subparallel. Almost parallel.
Snhperforated. Ahmst perforaterl.
Sulgualrate. Almost fomr-sided.
Subreflected. Moderately tamed hack.
Subrotuml. Moderately rombl.
Sulnipial. Moderately spial.
Subtranguate. Morlerately or almost triangular.
Subtrigmal. Monlerately thereangled.
Suhtrumeate. Moberately cut off.
Submmilicated. Moderately umbilicater.
Sulcated. Growved.
Sulens. A longitulinal furrow.
Superanal. Abve the amus.
Supa-peripheral. Above the periphery
Symmetrical. Alike on both siles or mifom in all parts.
Symphyote. Having the losterio-dorsal portion of the shell flatened and prombed, as in Sympleyota complanata.
Temestrial. Living on the lamd.
Testaceors. Composed of shelly matter.
Torsion. A twisting aromb.
Tortuns. Twisted ar winding.
Torpid. Half unconscions ur asleep, as a suail during hibernation.
Transhcent. Not quite transprent; light is seen thromg the thin edges of the oljeet.
Transparent. Oljects may lee seen thrmug the sulstance.
Transverse. Fefering to the form of a shell when it is wider than high.
Tricuspidate. Having three eusps.
Tritid. Having three lranches.
Trigonal. Having thre angles.
Tribobate. Ifaving three lobes.
Tripartite. Divided into there jarts, as the foot of some snails.
Truntere Having the end cut off squarly, as some Chos.
Tuhereulate. Comered with tubercles or romded kmobs.
Tumitl. Swollen.
Furbinate. Ilaving the form of a top.

Turnculated. Having the form of a tower.
Turreted. Having the fom of a town.
Imbilicated. Having an opening in the base of the shell.
I'mblated. Having molulations wres, ats the surface of some U' nins.
Univalye. Haring the shell composed of a single piece, as a snail.
Varicose. swollen or enlarged.
Vascular. Comtaining or made n! of homberessels.
Vermiform. Formed like a wom.
Ventral. The loner border or sile.
Ventricose. Swollen or indated on the ventral side.
Vibratile. Moving from sile to side.
Visenos. Sticky.
Vitreons. Resembling glass, as some smails.
Viviparous. Bringing forth the yomg alive as in the genera Vivipara ant Campelma.
\& Male. The astrommical sign for the planet Mass.
of Female. The astromomical sign for the phatet Venns.

CONCLUSION

The first year of the Conchological Club's history was one of great success. Under the guidance of Professor Parker, meetings were held every two weeks, at which, papers were read by the members and specimens were bronght for identification. At several of the meetings, the Professor gave popular lectures on familiar branches of the subject. These were not only attended by the members of the clul, lout by many other people who were interested in the study of Niture. For these lectures, a large hall was secured in one of the University buildings, aml so great was the interest that the room was frecpuently crowded.

At the end of the year, the secretary's ammal report (Iloward being the secretary) gave the membership as twenty-five, showing that the club had increased its membership sixfold during this period. The library was also growing rapidly, and it was fomm, when the reports of several of the members were read, that two members. Howard and Harry, had accummlated over twelve humdred species of mollusks. "This is very encouraging," said Professor Parker, when, as the first president of the clul, he rose to make a few remarks; "and I am sure your enthnsiasm will not lag, and that you will continue to make a study of the sulject rather than to make a mere collection for the sake of possessing a large variety of shells. I have thought that we could commence this year a small magazine of several pages, devoted to the interests of conchologists. This would help to stimulate interest in the subject, and lee a means of exchanging notes with conchologists in other cities. If yon will appoint a publication committee, I will be very happy to talk the matter over, and determine when we shall start the magazine, and of what size and character it shall be. I would suggest that for a title, such names as 'The Argonant,' 'The Nautilus,' or 'The Conchologist' might be appropriate.
"In clusing my remarks," continued Professor Parker, "I wish to say that it has given me much pleasure to be your president for the past year, and to be able to aid you in your studies. But above all, I have been gratified to note that the study of these lowly creatures has marle you better and broader men. You have not only grown more observing, but have cultivated a willingess to receive the ideas and
thoughts which the contemplation of these wonderful bits of creation has suggested to your minds.
"In a new sense, has the great world become to you a storehouse of animate forms. Very many species of life have been revealed to yon, with all their complex being, their wonderful adaptation to their environment, their endless and astonishing variety, and the marvelous stories of their life histories.
"You seem almost to have visited the 'secret places of the Most High,' and to have wrested the hidden things from their hiding-places. Never again can the earth appear to you commonplace and mattractive. Rather yon will long for ages to penetrate farther into the mysteries of created things, of which as yet you seem only to have looked through an open door to the wealth of knowledge beyond.
"Allow me, as my parting word, to recall to your minds the guiding sentiment of the club, so wisely chosen:
" The more things thon lermest to knour "nut to enjoy, the more complete and full will be for thee the delight of living.'"

INDEX

$$
9
$$

$$
\stackrel{\square}{\square}
$$

*

[^0]: Anatomy of squid, Loligo pealii, female. a, water pore; b, ear; an, branchial auricles; bo, blood-vessel in gill; d, siphon; f, cartilages of siphon; g, gill; h, intestine; i, ink bag; m, mantle; ov, ovary, or egg gland; od, oviduct, or canal through which the eggs are discharged into the water; op, opening of this canal; r, kidney, or renal organ; ta, tentacular arms. (Verrill.)

