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PREFACE

LIBRARY

In many Colleges of Engineering, the need is felt for a text

book on Differential Equations, limited in scope yet comprehen
sive enough to furnish the student of engineering with sufficient

information to enable him to deal intelligently with any differen

tial equation which he is likely to encounter. To meet this need

is the object of this book.

Throughout the book, I have endeavored to confine myself

strictly to those principles which are of interest to the student of

engineering. In the selection of problems, the aim was con

stantly before me to choose only those that illustrate differential

equations or mathematical principles which the engineer may
meet in the practice of his profession.

I have consulted freely the Treatises on Differential Equations
of Boole, Forsyth, Johnson, and Murray. I am indebted to two
of my colleagues, Professors N. C. Riggs and C. W. Leigh, for

reading parts of the manuscript and verifying many of the

answers to problems.
D. F. CAMPBELL.

CHICAGO, ILL.,

September, 1906.

PREFACE TO ENLARGED EDITION

This book as it first appeared consisted of the first eight

chapters as here given. The kindly criticism by a number of

:hose teachers for whose use it was intended on the need of a

liscussion of equations, that occur in investigations in Mathe
matical Physics, other than those given in these chapters has

nduced me to add Chapter IX to the book.

M577086



vi PREFACE

In the preparation of Chapter IX.
,
I have drawn freely from

Professor Byerly s Treatise on Fourier s Series and Spherical

Harmonics, from Professor Bocher s pamphlet entitled Regular

Points of Linear Differential Equations of the Second Order and

from notes kindly loaned me by Professor Snyder of Cornell

University. I have also consulted Heffter s Treatise on Linear

Differential Equations with one Independent Variable.

To those teachers who have sent me their criticism of the

book in its original form, as well as to others who have cordially

received it, I am under the deepest obligations.

D. F. CAMPBELL.
CHICAGO, ILL.,

June, 1907.
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A SHORT COURSE
ON

DIFFERENTIAL EQUATIONS

CHAPTER I

INTRODUCTION

1. There are various definitions given for a function of one

variable. We shall here adopt the following :

If to every value of x there corresponds one or more values of

/(#), then f(x) is said to be a function of x.

This definition includes a constant as a function of x, for if

/(#) is constant, then for every value of x, /(#) has a value,

namely, this constant.

A definition of a function of two variables is the following :

If to every pair of values of two variables x and y there cor

responds one or more values of/(a, y), then /(a?, y) is said to be

a function of x and y.

This includes a constant or a function of one variable as a

function of x and y.

A function /(#) of one variable x is single valued when for

every value of x there is one and only one corresponding value

A function f(x) of one variable x is continuous for a value
x = a if/(a) is finite, and

[/( + h)}
=

1&quot; [/(a
-

A)]
= /(a).

;

...

A function /(#, y) of two independent variables x and y is

single valued when for every set of values for x and y there is

one and only one corresponding value off(x, y).
I
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A function f(x, y) of two independent variables x and y is

continuous for a set of values x = a, y = 6 if /(a, 6) is finite,

and
limit

|~ ~|

no matter how h and & approach zero.

The following definitions are given in almost any work in

calculus :

If /(#) is a single valued and continuous function of x, given

by the equation y = /(#), then

Az and Ay denote the increments of x and y respectively,

dy^ _ limit
A~ Ax =

dy = -= d#.
cfo

If /(#) is single valued and continuous, and dyjdx is contin

uous, then

ft l/4\
&amp;lt;fo

2

dx\dx/

In general, if /() is single valued and continuous, and the

preceding derivatives are all continuous, then

._
dxn

~
dx\dx

If f(x, y) is a single valued and continuous function of two

independent variables x and y, given by the equation z
=/(&amp;gt;, y),

then dz/dz is the derivative of 2 with respect to x when y is held

constant ; dz/dy is the derivative of z with respect to y when a is

held constant.

2. In a single valued and continuous function f(x) of one vari

able x, given by the equation y =/(#), whether x is the inde

pendent variable or a function of some other variable or variables,

we have
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= d(dx) ;
d*x

Definitions. The differentials dx, d\ d*x, ,
dn

x, or

dyy d*y, d3

y,
-

,
dn
y are called the first, second, third, , nth,

differentials respectively.

3. Derivation of d*y and cfy when no assumption is made re

garding x being independent or a function of some variable or

variables.

By taking differentials in succession any differential may ulti

mately be found.

4. In the differentials of the preceding article, if x is an inde

pendent variable, it can be assumed without loss of generality,
that A#, or what is the same in this case, dx, is constant. That

is, it can be assumed that x changes by equal increments. Under
this supposition, therefore, d*x and all higher differentials of x
can be taken zero. Therefore, under this supposition,

The place which a derivative or differential occupies in the

succession of derivatives or differentials indicates the order of the

derivative or differential. Thus, a second derivative or differ

ential is said to be of the second order, a third of the third order,
and so on.
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5. The only functions usually considered in elementary works

in calculus are functions of a real variable. Such functions with

one exception are the only ones considered in the following pages.

The exception is e* where z is a complex quantity.

The student is already familiar with the definition of e
x where

x is real. He is, however, probably not familiar with the defini

tion of e? when z is a complex quantity. A definition of this

function will now be given.

The infinite series

where z is a complex quantity, can be shown to have a determi

nate, finite value for every value of z. It also reduces to the

infinite series

when z becomes real and equal to x, and this series, it will be re

membered, is equal to e
x
for all values of x. It therefore appears

that the infinite series in z would be satisfactory as a definition

of e
z
. We shall define e

z

by saying that it is equal to the infinite

series

for all values of z.

From this definition, the following theorem can be established :

Theorem. If z= x-\-yj where x and y are real, and j = V 1&amp;gt;

then

e* = e*(cosy -f jsiny).

Proof.
2

gS

e* = l-fz + ur + r^ + ---,ky definition.

N , O + J0 )
f

,
O + ^7

,
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Consider all the terms containing xr
. These are found from the

terms

O + wY
, (^wY^

ll lifl
They are

Fi ,,,, M! , (JL)!^1_
II

or

af
\^ -.(&amp;gt; .()*. (s/)

4
. (Y. ..1

7[i
+ y&amp;gt; + -

-g-- -JT -[5- J-

Separate the real terms from the imaginary and there results,

or

Let r take all positive integral values in succession from 0.

In this way we get all the terms of the development e
z

. Then

e* =
1

1 + re +
j|-
+ r|

+
-J

[cosy +./siny]

The theorem is therefore proved.

EXAMPLES. e~x+&quot;^ = e~
x
(cos Bx + j sin 3a;)

EXERCISES

1. Given y = logo;, find %, rf
2

^, c?
3

?/ :

(a), on the assumption that x is the independent variable ;

(6), making no assumption with regard to x.

In the results of (6), substitute x = cos and show that the

results are the same as those obtained by first substituting the

value of x in log x and then taking the differentials.

2. Given y = e
x where x cos 0, express dy, d?y, d?y in terms

of without substituting the value of x in the equation y = e?.
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3. Given y = log x where x = sin 6, express dy, d*y, d*y in

terms of 6 without substituting the value of x in the equation

y = log x.

4. Prove that & ** = e
z
(cos y j sin y~).

5. Prove that e^e&quot;*** = ex+z+(y+w)J
,
where x, y, z and w are

real.

ANSWERS

i / N j dx ,. efce*
,, 2cta

8

l(a). &amp;lt;fy

=
;
d2

&amp;lt;/= -^-; ^ =
^3-. .

3xdxd*x -\-2dx*

2. dy = smO ecos *dO
;

^2

y = _ sin0 ecos^2
^

-|- (sin
2
^

d?y = smB ecosed3 + 3(sin
2
^

+ sin0(l

3. rfy = cot0 d0
; ePy = cot0 &amp;lt;f0 _ cosec

2
rf0

2

;

&amp;lt;P = cot0 c?
3 _ 3 cosec

2
c?0cZ

2
2 cosec

2
cot0 d0*.

6. Definition of differential equation. A differential equation

is an equation involving derivatives or differentials with or with

out the variables from which these derivatives or differentials are

derived.

The following are examples of differential equations :

(3)
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7. In examples (1) to (4) inclusive of the preceding article

it will be noticed that differentials enter the equation only in de

rivatives. It is conceivable, however, that there might be an

equation containing differentials other than those in the deriva

tives, as for example,

but there is no need of entering into a discussion of such equa

tions, and we shall not do so. In what follows, we shall assume

that if the equation is written in differential form, the differen

tials can all be converted into derivatives by the process of

division.

8. Classes of differential equations. Differential equations

are divided into two classes : ordinary and partial.

An ordinary differential equation is one in which all the

derivatives involved have reference to a single independent
variable.

A partial differential equation is one which contains partial

derivatives and therefore indicates the existence of two or more

independent variables with respect to which these derivatives

have been formed.

Thus, in Art. 6, equations (1), (2), (3) and (4) are ordi

nary differential equations, and equations (5) and (6) are par
tial differential equations.

Chapters I to VII inclusive are devoted to a discussion of ordi

nary differential equations. Chapter VIII contains a short

treatment of some partial differential equations.

9. Order and degree of a differential equation. The order of

a differential equation is that of the highest derivative or differ

ential in the equation.
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Thus, in Art. 6, equations (1) and (4) are of the third order,

and (2) and (3) of the second order.

The degree of a differential equation is the degree of the deriv

ative or differential of highest order in the equation after the

equation is freed from radicals and fractions in its derivatives.

Thus, in Art. 6, equation (1) is of the second degree, equa

tions (2), (3) and (4) of the first degree.

10. Solutions of a differential equation. Let us consider the

differential equation in each of the two following examples, and

see if, from the equation, we can get a relation connecting x and

y and not involving derivatives, such that, if the value of y in

terms of x be substituted in the equation, the equation is satisfied.

EXAMPLE 1. -/- x*.
dx

By integration, we get
a?

EXAMPLE 2. -f y = 0.

Multiply the equation by 2dy/dx and integrate.

. . y = A/^sin (x -f c
x), or y = cos (x -f c

2).

In example 1, if J#
3 + c be substituted for y in the equation,

there results x* = x*. The equation is therefore satisfied.

In example 2, if Vc sin (x + c,), or =h Vc cos (x -f c
2 ) be

substituted for y in the equation, there results, in the first case,
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zp Vc sin (x -f Cj) Vc sin (# -f c
x ) = 0, and in the second case,

q= Ve cos (# -f c
2 ) A/C cos (z -f c

2 ) = 0. In either case the

equation is satisfied.

Definition. A solution of a differential equation is a relation

between the variables of the equation and not involving deriva

tives, such that if the value of the dependent variable be substi

tuted in the equation, the equation is satisfied.

Thus, y = J#
3

-f-
c of example 1, and y = Vc sin (x -f cj

of example 2, are solutions of the equations.

In this book we shall not concern ourselves with the question

of whether every differential equation has a solution but shall be

content with finding solutions in the few special cases discussed

here.

11. A solution of an ordinary differential equation may be

one of three kinds : general, particular and singular.

A general solution is one which contains arbitrary constants

equal in number to the exponent of the order of the equation.

Thus, in example 1, Art. 10, the number of arbitrary con

stants is one and the exponent of the order of the equation is 1,

and in example 2 of the same article the number of arbitrary

constants is two, and the exponent of the order of the equation

is 2. In either case the solution is the general solution of the

equation.

A particular solution of a differential equation is a solution

obtained from the general solution by giving one or more of the

constants particular values.

Thus
3? X* 3?

2/= 3 2/
=

&quot;3

+ 1 r y = 3
~ 5

of example 1, Art. 10, or y = sin x, y= 2 sin x, or y= 3 cos x,

of example 2 of the same article, are particular solutions of the

equations.

A singular solution of a differential equation is a solution with

out arbitrary constants which cannot be derived from the general
solution by giving the constants particular values.

2
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Singular solutions will not be considered in this book.

12. A solution of a differential equation is not a general solu

tion unless the constants are in number equal to the exponent of

the order of the equation, and cannot be reduced to a fewer

number of equivalent constants.

Thus, y = cex+a
,

c and a arbitrary constants, although it con

tains two arbitrary constants, is not the general solution of a dif

ferential equation of the second order, as can readily be shown.

The equation y = cex+a is the same as y = c
a
e
x

. Now c
a

is equiv
alent to only one arbitrary constant because an arbitrary con

stant can have any value and thus all the particular solutions

got by giving c and a all possible values can be obtained. There

fore y = e
a
e
x

is equivalent to a solution y Aex
,
A arbitrary, and

cannot therefore be the general solution of a differential equation

of the second order.

13. Let y =/1 (^), y =/2O), , y = /() be solutions of a

differential equation.

Definition. If the c s cannot be chosen, not all zero, such that

ci/i(^) + ^/aOO + + Cn/n(^) i identically zero, then the

solutions are said to be linearly independent.

Thus, y = d= Ve sin (x 4. c,) and y= =t Vc cos (x -)-
c
2 ) of ex

ample 2, Art. 10, are such that no values c
s
and c

4,
not both

zero, can be chosen such that c
s Vc sin (re-f-Cj) c

4 Vc cos (#-[-c2 )

is identically zero. The solutions are therefore linearly inde

pendent.

14. Derivation of an ordinary differential equation. Let

*(x, y, Cl ) = (1)

be an equation containing x and y, and the arbitrary constant cr

By differentiation of (1) there results

j&amp;gt;

* o . (2)dx T cty dx

Equation (2) will in general contain cr If between (1) and
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(2), c
l
be eliminated, the result is a differential equation of the

first order of which
&amp;lt;j&amp;gt;(x, y, Cj) = is the general solution.

EXAMPLE. Find the differential equation of which

m _za

is the general solution.

dx
~

1

Eliminate c
t
between the equations. Therefore

dy _
-
7
-

-f- 2xy = mx
dx

is the differential equation of which

y = - + Cl
&amp;lt;T&quot;

is the general solution.

Sometimes the arbitrary constant is so involved that it disap

pears in the equation which results from the differentiation. In

such a case this equation is the desired equation.

EXAMPLE. Find the differential equation of which y
2 =

is the general solution.

Divide both sides of the equation by x.

:.
- = 2crx

By differentiation there results

which is the desired differential equation.

Let

&amp;lt;f&amp;gt;(x, y, cv c
2 )
= (1)

be an equation between x and y, and two arbitrary constants c
v

and c
2
.
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By differentiation of (1) there results

=.
dx dy dx

Equation (2) contains dy/dx and will in general contain c
x
and

c
2
also. Eliminate one of the constants between the two equa

tions. Suppose the constant c
l
to be eliminated. The resulting

equation contains dy/dx and in general x
} y and c

2
. Call it

By differentiation there results

dij, d^dy
dx + dydx=

Q

Equation (3) contains d*y/dx* and will in general contain c
2

.

Eliminate c
2
between (2) and (3). The result is a differential

equation of which
&amp;lt;j&amp;gt;(x, y, c,,

c
a ) = is the general solution.

EXAMPLE. Find the differential equation of which

is the general solution.

Differentiate y =

Eliminate cv
dy 2c.

. *. w x - -
-.

dx x

Differentiate.

Eliminate c between

cPw 2c, , ^y 2c
2

y 2̂ = * and y x-~ = ?

dx* x*
y dx x
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which is the desired differential equation.

15. It is seen from the preceding article that one constant can

be removed after each differentiation. From this it would be

expected that, starting with the differential equation, an arbi

trary constant might be introduced every time the order of the

differential equation was lowered by unity. Then, since lower

ing the order of a differential equation of the nth order by unity

n times would result in a solution of the differential equation, it

would be expected that a solution would contain not more than

n arbitrary constants.

It is a theorem that a differential equation cannot contain a

solution having more arbitrary constants than the exponent of

the order of the equation unless the constants are such that they
can be reduced to a fewer number of equivalent constants. This

will be assumed without further discussion.

It is also a theorem that a differential equation cannot have

more than one general solution. This theorem will be assumed

without discussion.

16. A genera] solution may have various forms but there is

always a relation between the constants of one form and those of

another. Thus, the general solution of example 2, Art. 10, may
be written y = A sin x

-{-
B cos x instead of y= Vc sin (z-f-Cj).

This latter form of solution is y= . Vc cos c
l
sin x V^sin C

L
cos x,

so that A = Vc cos c and B = V^sin c

j EXERCISES

1. Determine the order and degree of the following equations. ft Pv
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In each of the seven following exercises determine the differ

ential equation of which the given equation is the general solu

tion, given that c
lt

c
2
and c are arbitrary constants.

2.
2/
= c

i
si*1 mx + C

2
cos mx- 5- y = ex -f c c

3
.

3. v = e
l
cos (mt -j-

c
2 ). y^ 6. #?/ = e^ -f-

c
2
e~

z
.

^ 4. O - c
x )

2

4. (y _ c
2 )

2 = m2
. 7. ^ - 2c.r _ c

2 = 0.

9. Show that

is a solution of

^ ,

x dx*

v 10. Show that

4y = 3^ + c/ -f

is a solution of

*^_ 54^ + 5
^ 2 dx T ^

11. Show that

y = TV&quot; + W-* -f

is a solution of

3+ 42+^=
12; Show that

c,
v =

r
+ C

2

is a solution of

&amp;lt;fv 2 &amp;lt;iv

ANSWERS

o ^2y
2
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4 i ,



CHAPTER II

CHANGE OF VARIABLE

17. Interchange of Variables. It is sometimes desirable to

transform an expression involving derivatives of the function y,

in y = /(#) where x is the independent variable, into an equiva
lent expression involving derivatives of the function x, given by
the same equation, where y is the independent variable.

The formulas for such a transformation can be readily estab

lished as follows:

limit limit

d?y

dx*
,(*y\
dx\dx)

d / dy\ dy
dx

dy*

/dxV dx

(dy) dy

dx3

d

dxdxD-

tfx

W
dy

_dtf_

(dy)

(i)

dz dz dy
since -=- = -y- j-.ax ay ax

by substitution from (1).

(2)

l_

dx

dy

16
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dx\ 3 d?x itfx\
2

/&amp;lt;M
2

&amp;lt;f* efo /d!Vv 2

) (dy) -dtfdy
+ 6

(dy*)

The method of procedure for higher derivatives is evident.

The transformations to which these formulas apply are called

change of the independent variable or interchange of variables.

EXAMPLE. Change the independent variable from x to y in

the equation

/*yV &amp;lt;*y*y ^W^/Y_o
\dx*)

~
dx dx*

~
dx* \dx)

~~

Substitute from (1), (2) and (3).

.-. 3

18. Change of the dependent variable. Suppose that y is a

function of x and at the same time is a function of some other

variable 2. The derivatives of y with respect to x can then be

expressed in terms of derivatives of 2 with respect to x.

As a function of 2, let y = &amp;lt;(z).
Denote differentiation with

respect to 2 by primes. Then

= = = _

dx
~

dz dx dz dx dx
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Similarly for higher derivatives.

The above transformation is called change of the dependent
variable.

EXAMPLE. In the equation

change the dependent variable from y to z where y = tan z.

dy dz
f- = sec z-y-.ax ax

,~ = 2 sec
2
2 tan z I -7- ) + sec 2 -7-,.

&amp;lt;fo

2 2

Substitute in the equation.

4
z tan i +sec

4
z

2 -(2 tanz_l) Bec**

3a; sec
4
2 -7- = 0.

19. Change of the independent variable. Suppose that y is

a function of x where a is a function of some other variable z.

The derivatives of y with respect to x can then be expressed in

terms of derivatives of y with respect to z.

As a function of z let x =
&amp;lt;(z).

Denote differentiation with

respect to z by primes. Then

dy dydz dy 1 dy \

dx
~
dzdx~ dzdx

~
dz

&amp;lt;#&amp;gt; (z)*

d*y d (dy\ d f dy 1 \ 1 1 d*y &amp;lt;&quot;(z) dy

~dz
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A ^_{^y\ A\ __L_ d*y _

~

{* (*) }
6

&amp;lt;fe-

Similarly for higher derivatives.

The above transformation is called change of the independent

variable.

EXAMPLE. In the equation

d*y x dy y _

&quot;cfo -r^^+l-*2
-

change the independent variable from x to 2, where x = cos z.

dy dy dz dy
-/- = -f - cosec z -f .

dx dz ax ciz

d y d(dy\ d(= = -

dz

L dy d*y= cosec
2

zQQtz~j-+ cosec
2
3 -j4.

ds dz
2

Substitute in the equation.

. . cosec
2
z -r| - cosec

2
z cot z^+ cosec

2
2 cot 2

^+cosec
2
2 2/=0.

^*y A
.

*
. -TT + ?/

= 0.
d28

When changing either the dependent or independent variable

to a third variable, it is better to work out each derivative in the

particular case considered rather than use the derivatives ex

pressed in the general case as formulas.
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EXERCISES

In each of the four following exercises, change the independent
variable from x to y.

f 1
d*y dy ^ d2

y / dy\
z

/ dy\
3

da?

d&amp;gt;ydy 3 ., o r4 - 8 +8 ~ ~ =

In each of the two following exercises change the dependent
variable from y to z.

^.a+^
where = tan 2.

where ?/ = e
z

.

In each of the four following exercises, change the independent
variable from x to z.

7. x* -j-? 4- z / + w = 0, where a; = c*.
c?^

2
~

c?a;

~

8. (1 a;
2

) j^
x

~j-
= 0, where x = sin 2.

9. x*
d~ + 2*2

|^ + 1; = 0, where a; = e&quot;.

d2/y 2 c?v v . .

10. 4.
--- _

4.
- - = o, where x tan z.

dx*
T

1
z *
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11. Transform the formula for radius of curvature,

N!)Tp= w %

dx*

into polar coordinates, the equations of transformation being

x = r cos 6, y = r sin 6.

1. ^
ANSWERS

d*x dx

dx
X --

df
z n z . o

&amp;lt;? n z z ^ z
,

5. T-O 2 j- = sm2
2.2 6. -

7

- - 2^-^ + 3^2
,- +a;

3= 0.
dx* dx * t dx* dx2 n dx ^

A
- j-i j-2 + ^ = 0. 10. ,- + v = 0.3 2 T a T



CHAPTER III

ORDINARY DIFFERENTIAL EQUATIONS OF THE FIRST ORDER
AND FIRST DEGREE

20. An ordinary differential equation in one dependent vari

able, of the first order and first degree, may be represented by

the equation

Mdx + Ndy =

where M and N are functions of x and y and do not contain

derivatives.

The equation Mdx + Ndy = cannot be integrated in the

general form. There are certain particular forms of it, however,

which can be integrated. Some of these will now be investigated.

21. LINEAR DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

Definition. An ordinary linear differential equation of the

first order is an equation in the form

where P and Q are functions of x and do not contain y or deriv

atives.

The general solution of the equation

can be found as follows :

Multiply both sides of the equation by ef

22
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If the substitution u = yeJ
pdx

be made, the left hand member of

the equation reduces to du/dx.

..
dx

.-.y = e-fpdx

fQef
pdxdx + or/&quot;, (1)

which is the general solution of the equation.

In the original equation, if P is zero, the equation reduces to

the familiar form dy/dx = Q, and the general solution is

y = c + fQdx.

If Q is zero, the equation becomes

and the general solution is y = ce~J Pdx
.

When Q, in the equation

is zero, the equation is called the ordinary linear differential

equation of the first order with the right hand member zero.

EXAMPLE. Find the general solution of the equation

dy 1

-T- + -
y = x

dx^ x y

Multiply both sides of the equation by eJ *
dx

.

dy rl
.dx 1

-..~
dx y =9



24 SHORT COURSE ON DIFFERENTIAL EQUATIONS

Let u = ye*/
*
d
*.

du f-dx r 2 f-dxj
.

-
. -j- = #W * . . . u = I are- a# -f c.
efo J

J x
4 a? \ 4 / 4- *&quot;

It is usual to solve an ordinary linear differential equation of

the first order by substituting directly in formula (1). Thus,

in the above example, formula (1) becomes

- fl d*

y =

22. EQUATIONS REDUCIBLE TO THE LINEAR FORM

A form easily reducible to the linear form is

where P and Q are functions of # and do not contain y or deriv

atives.

Divide by y
n

.

Let y
w+1 = u.

du^ &*&&******
^ - -*.&.

C4 ^
&quot;St**&quot;

1

&quot;

c ft

ec^tferry*^!,***-

which is linear and can therefore be solved by the methods of

Art. 21.
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EXAMPLE. Find the general solution of the equation

Divide by y*.

Let y~* = u.

. . -2y-*
d^=-* dx dx

.-.- ?.--*-.
dx x

Therefore 2x*y* + ca;
2

2/

2 = 1 is the general solution of the

equation.

23. VARIABLES SEPARABLE

Sometimes the equation Mdx -f Ndy = can be brought to

the form Xdx -f Fdy = where X is a function of x alone and

Y is a function of y alone. In such a case the general solution

is evidently

c being an arbitrary constant.

EXAMPLE. Find the general solution of the equation

x Vl y
2dx

-f- y Vl x*dy = 0.

Divide by Vl y
z

Vl #2
.

3* ?/

= 0.

Vi-*3

Vi-t/
2

/ifc&vrr?

Therefore Vl x* -f Vl 2/

2 = c is the general solution of the

equation.
3
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The process of reducing the equation Mdx -f Ndy = to the

form Xdx -f Ydy = is called separation of the variables.

24. EXACT DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

AND FIRST DEGREE

Definition. The ordinary differential equation Mdx + Ndy= Q

where M and N are functions of x and y, is said to be exact when

(there is a function u(x, y~) such that du = Mdx -+- Ndy.

EXAMPLE. The equation 2xydx + xz

dy = is said to be

exact because u = x2

y is such that du = 2xydx -f x*dy.

When there is a function u(x, y) such that du = Mdx + Ndy,

then u c, where c is an arbitrary constant, is the general solu

tion of the equation Mdx -f Ndy = 0.

Condition that the equation Mdx 4- Ndy be exact. If

the equation Mdx -f Ndy = be exact, then, by definition, there

is a function u(x, y) such that du = Mdx + Ndy. Now

7 du j du ,

du = -=- dx + -^- dy,dx dy

from the definition of the differential of two independent variables.

,, du , ,T du
.-.M=^-, and N= ^ .

dx
y

dy

dM d*u , dN d*u
and -T= = ^

dx dxdy

dM dN
dy

~~
dx

That the equation Mdx + Ndy = be exact, it is therefore

necessary that
dM dN
dy

&quot;

dx
9

Conversely, the condition is sufficient. That is if

dM dN
dy

==
dx

then Mdx -f Ndy = is an exact differential equation.
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Proof: Let C Mdx = P, . . f- = M-
** ox

j^P dM _dN
dy dx~ dy

~~
dx

where Q(y) is such that dQ(y) = F(y}dy.
Therefore, if

_
dx

-
dy

the left hand member of the equation Mdx
-f- Ndy = is an

exact differential and therefore the equation is an exact differential

equation.

To find the general solution of the equation Mdx -j- Ndy =
when the equation is exact.

Let u(z, y} be a function whose differential is Mdx + Ndy.
a- &u nr
Since = M,dx

V-%r^*-

. . F(y} = \(N~J \ dy

The general solution of the equation is u = c where c is

arbitrary constant. ^H
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EXAMPLE. Find the general solution of the equation

Os

-f 2xy 4- y}dx + (y* + a? + x)dy = 0.

This is an exact differential equation. Therefore the general

solution can be obtained by the above method.

~.

Since ^- = M,
dx

.u = f (af 4- 2xy 4- w)&amp;lt;&; + F(y) = T + tfy 4- ay -,
_ w

/ 4
&amp;lt;tl

&quot;

W TT

ry

=jr

K AV

. .

dy

Therefore ~
-f^ + ^y + \ c ls ^e re(luire(l general solution

of the equation. .,

25. INTEGRATING FACTORS

It sometimes happens that the differential equation

Mdx + Ndy =

is not exact but becomes so when it is multiplied by some quan

tity. Thus,

of Art. 21, is not exact but becomes so after multiplication by
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Definition. A factor which changes a differential equation

into an exact differential equation is called an integrating factor

of the equation.

Sometimes an integrating factor can be found by inspection.

EXAMPLE. Find the general solution of the equation

(&amp;lt;eV
- y*)dx 4- 2xydy = 0.

The equation is not exact as it stands but becomes so on multi

plication by l/#
2
.

Multiply by 1/x*.

zV - f 7 2v ,
.

*
.
-

i-^- dx 4- dy = 0.
x2 x

~
X

...*+*().*
V
s

4-
- = c. . . y* = xe* + ex.

Therefore y
z = #e

x
-|-

ca; is the general solution of the equa
tion.

Rules have been devised for finding integrating factors in

many cases where they cannot be found by inspection. For a

discussion of them, the student is referred to Boole s, Murray s,

or Johnson s Differential Equations.

26. EQUATIONS HOMOGENEOUS IN X AND y

Definition. If M and N of the equation Mdx -f Ndy =
are both of the same degree in x and y and are homogeneous, the

equation is said to be homogeneous.

To find the general solution of the equation Mdx 4- Ndy
when the equation is homogeneous.

dy M
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Divide both numerator and denominator of -^ by x raised to

the power indicated by the degree ofM or N.

Then every term in M and N is constant or in the
forn^

of a

coefficient multiplied by some power of -
.

Then

dy_ f (y\dx~ J
\x)

Let y = vx.

dv .

x
fo + v =fW-

Therefore

dx dv

x

an equation in which the variables are separated, and can there

fore usually be integrated without difficulty. /
t

EXAMPLE. Find the general solution of the equation

(x
2 + f)dx - xydy = 0.

equa

7 ,

dx xy
Let y = vx.

dv 1 4- v
2 dv I

-{-
v
2 1

. . v 4- x -y- = . . . x -j- = - -
1&amp;gt; = -.

dx v dx v v

dx
. . vdv = .

x

. . v* = 2 log ca?.

Therefore y
z = 2x* log ex is the general solution of the equation.

dii a.x 4- b.y -4- c.

27. EQUATIONS OF THE FORM -/ = -i iy

V + b# + C

The general solution of an equation in the above form can be

found as follows :

Let x = x + X
Q ,
and y = y + y ,

where a/ and y are new

variables, and X
Q
and y are constants.
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Change the variables to x and y
r
.

_
dx a/ + bjf

Case I. If X
Q
and ?/ can be determined such that

a
i
x
9 + %o + c

i
=

&amp;gt;

and % + tyo + C
2
= 0,

then, on determining them such, equation (1) becomes

dy a^ -f b,y

dx&amp;gt;

~
a,x

r + &/

which is homogeneous and can be solved by the method of

Art. 26.

Case II. If x and y cannot be determined such that

a
i
x

&amp;lt;&amp;gt;

+ biy + c
i
=

&amp;gt;

and a^o + b
*y&amp;lt;&amp;gt;
+ c

a
=

then, as was seen in algebra,

5 _ *i _ 1
2

~
6
2

~~
m*

By substitution, the original equation becomes

dx
~

m(a^x
Let aj -}- b^y = v.

. rfv dv

Therefore

C?V V -4- C.

j- = a, + o. -

-,J

an equation in which the variables are separable.

EXAMPLE 1 . Find the general solution of the equation

dy __
6x - 2y - 7

dx
=

2x + 3y 6*
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Let x = X
Q + xf

, y = y + y where

6z - 2yQ
- 7 = 0, and 2z + 3y - 6 = 0.

_ 5_- 2v _ 6 - 4v _= ~~ ~ ~~
3v

(2 + 3v)c?v dx

6&quot;TTSnTsl?
=

^&quot;

. . - log cX = log (3v
2 + 4v - 6)*.

Therefore 3y
2

-f- 4xy 6x* I2y -f- 14# = c is the general solu

tion of the equation.

EXAMPLE 2. Find the general solution of the equation

This comes under case II.

dy dv
.

*
. b 2 - = -

.

.

-f 4 aa;

^ + 76

rfa;

~
v -f 8

+

. . v - 30 log (v + 38) = 2x + ,.

. . 4x - 2y -30 log (6* - 2y + 38) =
c,.
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Therefore 2x y 15 log (3# y -f 19) c is the general so

lution of the equation.

EXERCISES

Find the general solution of each of the thirty-six following

equations.

dy x
*

dx jT
=

x(\ + z2

)

6. &amp;lt;l_^)+(^-l)2/ = ^.

f/?y

7. -7- -f- cos a; y = J sin 2a;.

8. *(l-aog + (2*-l)f.*

9 sin ^/ = /

2
sina:.

^
10. 1 - ^2 -

/ =

11.
-j-

+cosxy = 2/

n
sin2a;. &quot;12. 3?/

2

-^ + y
3 = a; - 1.

13. - tan x y = y* sec #.

14. y sf~^ldx + a; ^f^ldy = 0. _
15. (e

y + 1 ) cos # eta
-|- ^ sin x dy 0.

16. V2cw/ ?/

2
cosec xdx

-\- y tan .T c?y = 0.

17- 2/(3 + 2/) =
&amp;lt;

2 + 3). \

18. _
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19. (V 4 4:xy 4- y
z

)dx 4 (2#
2

4- 2xy 4 ty*)dy 0.

20. sin x cos y dx 4 cos re sin y dy = 0.

,s

21. fz2
.

22. a;(aj
- 2y)dy + (&amp;gt;

2 + 2y*)da; = 0.

23. Sxydy - (a? + if)dx = 0.

24. O2 + 3a^ - 2/

2

)c?2/
- 3^daj = 0.

25. (x
2

4. 2iry)dy
- (3^

2 - 2sy 4. y*)da; = 0.

26. 5xydy - (x* + y
2)^ = 0.

27. (ic
2 - 2xy)dy + (a;

8 - 3y + W)dx = 0.

28. &td 2x2 _ 3*(te = 0.

29. (3z 4 2w - 7) / = 2z _ 3y 4 6
\ I */ /

&amp;gt;y/&amp;gt;

30. (6a;
- 5y 4 4) ^|

= 2x - y 4 1.

U
31. r5^_2v47)^=a:-3v42.

^2/ fr

^\
dll n

33. (x - By 4- 4) /- = 2o; _ 6y + 7.y-T y
rfa;

/*
c?v

34. (5a; 2y 4- 7) g = lOo: -4^ + 6.

35. (2*_22,45)2- = *-&amp;lt;/ + 3.

36. (6a?
- 4^ 4- 1) = 3a?-

The following formulas, derived in almost any work in cal

culus, are inserted here for convenience of reference :
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The subtangent and subnormal at a point (#, y) on a curve

whose equation is expressed in rectangular coordinates are

y T- and y -j- respectively.
The polar subtangent and polar sub

normal at a point (r, 6} on a curve are r
2

-y- and -^ respectively.

The angle between the radius vector to a point (r, 0) and the

tangent line to the curve at the point is

ST
de

The equation of the tangent line to the curve y =/(#) at the

point (xv y^) on the curve is

dy

The area enclosed between the curve y =/(#), the a&amp;gt;axis, and

the ordinates whose abscissas are x and x
l respectively is

Jyd*

provided the curve does not cut the #-axis between x and xr
The length of the arc of the curve y = f(x) between the points

(^o&amp;gt; 2/o)
an(^ (^iJ y\) on ^ne curve is

37. Determine the curve whose subtangent at a point on it is

n-times the abscissa of the point. Find the particular curve that

goes through the point (3, 4). Plot the curve (a), for n = 1,

(6), for 7i = 2.

38. Determine the curve whose subtangent at a point on it

is ?i-times the subnormal at the point. Find the particular curve

that goes through the point ( V^, 2). Plot the curve when
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39. Determine the curve whose subtangent is constant and

equal to a. Plot the curve, (a), when a = 1, (6), when a = 2.

40. Determine the curve whose subnormal is constant and

equal to a. Find the particular curve that goes through the

point (1, 2).

41. Determine the curve which is such that the length of the

perpendicular from the foot of the ordinate of any point on the

curve to the tangent line at that point is constant and equal to a.

Determine the particular curve when c = a. At what angle

does this curve cut the ^/-axis ?

42. Determine the curve which is such that the area between

the curve, the re-axis, and two ordinates, is equal to the arc

between the ordinates.

43. Determine the curve which is such that the perpendicular

from the origin upon any tangent line is equal to the abscissa of

the point of contact.

44. Determine the curve in which the angle between the radius

vector and the tangent line is ^i-times the vectorial angle. Plot

the curve when n =
-J.

45. Determine the curve in which the polar subnormal is pro

portional to the sine of the vectorial angle.

46. Determine the curve in which the polar subtangent is pro

portional to the length of the radius vector.

The equation for a circuit containing induction and resistance is

di .

where e is the electromotive force [E.M.F.] impressed upon the

circuit, JR the resistance offered by the circuit, L the coefficient

of induction, i the current, and t the time during which the cir

cuit is in operation. In each of the four following exercises,

determine the current in the circuit after a time t supposing that

the resistance and induction are constant.

47. The E.M.F. is zero. Solve subject to the condition that

i = Jwhen t = 0.

48. The E.M.F. is constant and equal to E.
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49. The E.M.F. is a simple sine function of the time,

= E sin &amp;lt;ot where E is the maximum value of the impressed

E.M.F., and &amp;lt;o is the angular velocity, equivalent to 2-n-n where

n denotes the number of complete periods or alternations per

second.

50. The E.M.F. is the sum of two components each follow

ing the sine law, that is, e = E
l
sin ut

-\-
E

2
sin (but -f- 0).

The equation for a circuit containing resistance and capacity is

di i 1 de

where e is the E.M.F., E the resistance, C the capacity, i the

current, and t the time during which the circuit is in operation.

In each of the two following exercises determine the current

in the circuit after a time t, supposing that the resistance and

capacity are constant.

51. The E.M.F. is constant and equal to E.

52. The E.M.F. is a simple sine function of the time,

= E sin at.

The equation for a circuit containing resistance and capacity is

R dq q
ll
di + ~c

=

where e is the E.M.F., R the resistance, C the capacity, q the

quantity of charge in the conductor, and t the time during which

the circuit is in operation. In each of the three following exer

cises determine the charge in the circuit after a time t, suppos

ing that the resistance and capacity are constant.

53. The E.M.F. is zero. Solve subject to the condition that

q = Q when t = 0.

54. The E.M.F. is constant and equal to E.

55. The E.M.F. is a simple sine function of the time,

= E sin wt.

ANSWERS
/Y

1. 4xy = 2#2
x*

-f- c. 2. y sin x = log tan -
-f. c.
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3. y = x 1
-j- ce~

z
. 4. y = x 1 i

5. 2/(l + a2

)* = log -rp-

6. 2/= log (1 a2

) -fez. 7. y = sin a; 1
-j-

2i

8. y ax 4. cz Vl #2
- 9. - = 1 -f ce~

cosa!
.

&quot;

10. i= _ a + c Vl - x\
y

11. y
1 &quot;71 = 2 sin a; -

j-^ + ce~(1-n) 8ln z
.

12. 7/

3 = a; - 2 + ce~
x

.

13. y~
s = 3 sin # cos

2 x sin
3

a; 4- c cos
s
x.

14. V#
2 f sec&quot;

1
.r -f V^

2
1 sec&quot;

1

?/
= c.

15. (e* -f 1) sin x = c._ nt

16. cosec# -|- A2ay y* avers&quot;
1 - = c.

17. 2y + Qy - 9 log (2y + 3) = 4^2 + c.

is. _
5

19. *-r + 2rc
2

2/ + xy
1 + y

4 = c. 20. cos # cos y = c.

21.
-^ -f a; log 2/

= c. 22. #V = c( -|- y)
3
.

23. (4^ - x&amp;gt;?
= . 24. / = c

(^~ )

25. etf + 3^ - 3, ) =

26. a - 1 = cz.
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[6w- (3 +
28. ex = \^

}6y - (3 -

29. (y - )
2 + 3&amp;lt;&amp;gt;

- AX? - if - s - = c -

30. (5y - 2* f 3)
4 = c(4y - 4a? - 3).

{2(y - A) - (4 -

_ _ c

32. (By - 5x + 10)
2 = c(y - a; + 1)-

33. 15y - 30^ + c = 3 log (5s - 15y + 17).

34. 4x - 2y + c = 16 log (5a?
- 2y + 23).

35. 2# a; + c = log (a y + 2).

36. 2y - a; + c = J log (12a;
- 8y + 1).

37.
2/

M = cz;
3/&quot;

= i
w

. 38. y=
Vn

39. y
a = ce

x
.

40.
2 = 2cw; + c

; ?/

2 = 2a# _|_
4 2a.

41. y =
{e

4- ?
e

j
; y - ^ Ce

&quot; + e *
) ;

zero

44. r
n = c sin ?i0. 45. r = c k cos 0.

46. r = ce&quot;*. 47. i = Je~^*.

48. i = | + c^ .
;

.

E /E . \ -?-t
49. i = 7-^ r ( Y sm ^ to cos o&amp;gt;H 4- ce *
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7?

50. i ~~~- ~ s^n ^ w cos

]? \~
T&amp;gt; ~]

+ r^-v tT-.ffli(fcrf+t) fciwiCWHrf)i+W 1-

52. i = ce ^
-j-

.
---

^r^r-i (cos wi
_|_

JtCw si
J.

-j-
_/x w

53. 5= Qe~^ . 54. 5=

55. g = ,--- M̂
- -

(sin tt RCu cos orf) 4-
1

-]-
.it O (o



CHAPTER IV

ORDINARY LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

28. Definition. An ordinary linear differential equation is

a differential equation in one dependent variable which is linear

in the dependent variable and its derivatives.

We saw in Art. 21 that the type of an ordinary linear differ

ential equation of the first order is

where P and Q are functions of x, and do not contain y or de

rivatives.

In genera], the type of an ordinary linear differential equa
tion is

dn _ dn
~

l _ dn~*

where Pv P2, ,
Pn,

and X, are functions of x, and do not

contain y or derivatives.

In this chapter the only cases considered are those where

P,, P2 , ,
Pn are constants and real. Two forms of this equa

tion present themselves, namely, when the right hand member is

zero, and when the right hand member is not zero.

RIGHT HAND MEMBER ZERO

29. We shall first prove a theorem used in the investigation

of equations in this form. It is :

Theorem. If y = yv y = yt , , y yn,
are solutions of the

equation
dn
y dn

~l

y

41
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then

arbitrary constants, is also a solution of the equation.

Proof. Substitute y = c
lyl -f c

ai/3 -f 4. cjjn in the equa
tion.

Now each expression in brackets is zero, since

y = yv y = y y = y

are solutions of the equation. Therefore

is a solution of the equation.

Cor. If y = c
lyl 4. c

2t/2 4. -f cnyn is a solution of the equa

tion, then y = c^, y = c
2y2 , , y = enyn ,

are solutions of the

equation.

If y = ylt y = yz , , y = yn are linearly independent solu

tions of the equation, then y = c
1yl -f c

ay2 + -f cnyn is the

general solution of the equation (see Art. 13).

30. To find a solution of the equation

in the form y = e&quot;&quot;

5

.

Let y = e
mx and substitute in the equation. If y = e is a

solution of the equation, then

+ P
a
mn-2 + + PJ = 0.
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Since e
mx cannot be zero for any value of m, then must

P = 0.

Therefore, if y = e
mx

is a solution of the equation, it is necessary

that

mn + Pjm&quot;-

1 + P2
mn~2 + 4- Pn = 0.

Conversely, if m has a value m
x
such that

7V + ^x*-
1 + J&amp;gt;r~

2 + - + P* = o,

then t/
= emia; is a solution of the equation. This is obvious be

cause on substitution of y = emix
,
the equation reduces to

&amp;lt;pi*(mf + PjWij&quot;-

1 + Pjn^ + - + PJ = 0.

Therefore the necessary and sufficient condition that equation (1)

has a solution in the form y = e* is that m be such that

Definition. The equation

mn + Pjm&quot;&quot;

1 + P2
wn~~2

H---- + Pn =

is called the auxiliary equation of

31. To find the general solution of the equation

n n~l l~*

When the auxiliary equation has distinct roots. Denote the

roots by mv ?7i
2 , ,

ran . Then n linearly independent solu

tions of the equation are y = emix
, y em*x

, , y = e
m

&quot;

x
,
and

the general solution is y = c^
1*

4- c^e** -f -f cne
mnX

(see

Art 29).
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EXAMPLE 1. Find the general solution of the equation

g-3^-4y = 0.
dx* dx

Let y = e.
2 _ 3m - 4) = 0. . . (m 4)(m + 1) = 0.

Therefore y = c
v
e
ix

-f c
t
e~* is the general solution of the equation.

EXAMPLE 2. Find the general solution of the equation

Let y = e
mx

.

. . ^(m2 + m + 4) = 0.

1 -

^
Therefore y = ^e a

*
+ c^e

a
*

is the general solution of

the equation.

This solution may be written as

Vl5
y = e^&quot;&quot;*&quot;

cos ^
a;

-|-
c
a
e~4z sm

^-
# (see Art. 5).

When the auxiliary equation has multiple roots. Suppose
that the auxiliary equation mn

-f-P1m
rl
~1

-|-P2m
n~2

-j- +Pn =
has the roots mv w2 ,

my ,
mn .

At first suppose that two roots are equal. Suppose for defi-

niteness that w
2
= m,. Then a solution of the differential equa

tion is

y = (c, + c,)^* + c
3
e-3x + Gne^.

Since c
x + c

2
is equivalent to only one constant, this solution con

tains only Ti 1 arbitrary constants and is not therefore the gen

eral solution of the equation.

To find the general solution in this case :
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Suppose that the differential equation is such that its auxiliary

equation has the roots mv ml 4- h, my ,
mn . The general

solution of this equation is

y = c^x
4- c+* 4- c

z
e
m**

4.
----

= c^* 4- 0,6^*6** 4- c
s
e
m^

_j_
----

^_

Expand e** by Maclaurin s Theorem to TI terms and the re

mainder.

&amp;lt;
x

l &amp;lt;
x.

Substitute in the above equation.

Since c
2

is arbitrary, ^ may be chosen such that cji is any con

stant B for all values of h. Since
c,

is arbitrary, c
x 4. c

2 may be

chosen such that c
x 4. c

2
= A. Then

4-

where J. and i&amp;gt; are arbitrary constants.

Let h approach zero. As h approaches zero, the assumed

auxiliary and differential equations approach identity with the

given ones, and (1) approaches the general solution of the given
differential equation.

Now

Therefore the general solution of the differential equation is

y = (A 4- Bx^e*** 4- c
s
e
TO^

_|_
. . .

_j_ cne
m x

,
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or, as we shall write it,

y = (i + W)em* 4- c
s
em& H + cne

m*x
.

In a similar manner it can be shown that if three roots of the

auxiliary equation are equal, the general solution of the differen

tial equation is

and, in general, if r roots are equal, the general solution of the

equation is *

y =. (c, 4- c,x 4- 4- c xr~ l

^emix 4- c
,
emr+lX 4. j_ c emnXJ \ 1 l 2 t r /

~
r+1 I n

If a pair of imaginary roots occur twice, the part of the general
solution derived from these roots is

s px+j sin fix) 4- ( c3 -\-c4x)e
aX
(cos (3xj sin fix)

Lj 4- -#!#) cos /3^ 4- (A 3 4- -B
2a:) sin fix] .

EXAMPLE 1. Find the general solution of the equation

c?
2

v ^ dyy
_l_

2 -^ 4. i/
= 0.

The auxiliary equation is m2

4- 2m 4- 1 = 0, or (m 4- I)
2 = 0.

The general solution is therefore y e~
x

(cl 4- c
2#).

EXAMPLE 2. Find the general solution of the equation

The auxiliary equation is m* 4m3

4- 8m
2 8m 4-4 = 0, or

The general solution is therefore

y = e
x

{(A l 4- Bfl) cos x 4- (J. 2 4- J5
2#) sin x}.

32. As a physical application of the above principles, con

sider the following discussion (see Emptage, Electricity and

Magnetism, page 180) :
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In a galvanometer in which resistance is offered to the motion

of the needle, the equation of motion of the needle for small

oscillations may be written as

g + 2*| + ^-.)=0, (1)

where is the angle through which the needle turns in the time

t, k is a constant depending on the resistance offered to the mo
tion of the needle, w2

is a constant depending on the moments of

the restoring forces on the needle, and a ws the angle which the

needle at rest makes with the line from which angles are meas

ured. Let 6 a =
,
and substitute in (1).

d*6
)7

dff

..y + ii-j+rfr.a
This is a linear differential equation of the second order with

constant coefficients and right hand member zero. The auxiliary

equation is m2

-f-
2km -f to

2 = 0. The roots of the auxiliary

equation are m = k

Case I. If k
&amp;gt;

o&amp;gt;.

In this case, - a = e^-*^**
1^) + Cj&amp;gt;(-k-vi^w is tlie

general solution of (1).

Case II. If k = w .

In this case a = (cx -f- c.)e~
ltt

is the general solution of

(1).

Case III. If k
&amp;lt;

&amp;lt;o.

In this case a = e~
w
[c1

cos V^2
tf t + c

2
sin V^2 k2

1]

is the general solution of (1).

In cases I and II the motion is not oscillatory. The needle

can go through the position of equilibrium for one value of t,

after which it reaches a position of maximum deflection and then

continually approaches but never reaches the position of equi
librium. In case III there are oscillations in equal times, the

periodic time being
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EXERCISES

Find the general solution of each of the following equations.

* .a e.

V ANSWERS

1. y = c^-
2* + cf. 2. y =

3. y = c^ + c,e
2a: + c

s
. 4. y = e~x(el

5. y = e
z
(X + c

2
a; 4. c

3
z2

).

6. y = ^e* -f-
e~

2a!

(c1
cos ^ -j-

c
3
sin ).

7. y = CI

P
&quot;*&quot; + &amp;lt;5

z
(c2 cos x -\- c, sin a;).

8. y = Cje* 4- c.,!?&quot;

35

4. c
3
cos a; 4 c

4
sin x.

9. y = (Cj 4 CjZ) cos a; 4- (c8 4. c
4x~) sin a;.

RIGHT-HAND MEMBER NOT ZERO

33. Symbolic form of equation. The equation, when the right

hand member is not zero, is

where P,, P2 ,
Pn ,

are constants, and Xis a function of x but

not of y.

Let
d D
dx

-&quot;
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and the equation may be written,

Dn
y -f PJ)

n
~^y -f P2

Dn~2

2/ -f + Pn y = X.

Suppose that y is treated as an algebraic factor of the left hand

member of the equation. On this supposition, the equation
becomes

Suppose also that V&quot; + Pl
DH~l + P2

Z&amp;gt;

W~2 + - . . + Pn ,
factored

as an algebraic expression in D, is

and that the equation is written

(D - m^(D - mj . . - (D _ m^y = X (2)

Equation (2) is not equivalent to equation (1) except in a

symbolic sense. Let us see what conventions must be made in

order that equation (2) be equivalent to equation (1).

Let us make the convention that (D m)u where u is a func

tion of x is equal to

du
- _ mu.

dx

Also, let us agree that we shall begin at the right of the left

hand member of (2) and work towards the left, evaluating

according to the preceding convention at each step. Then

(D - m^XD - mjy = (D _ m^) _ m.
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and finally,

(D_m1

dn
y

Now -(X+ m
2+ ... + wiB)=P1 , ., (

since the factors of Dn + P^&quot;
1

-f P3
Dn~*

4.
- + Pn ,

treated

as an algebraic expression in D are D mv Dmv ,
Dmn.

This expression is therefore the same as the left hand member of

equation (1). Therefore, with these conventions, equations (2)
is equivalent to equation (1).

EXAMPLE. With the above conventions, the equation

may be written in the equivalent form (D m
1)(Z)_m2)y = X,

where D m, and D m
2
are the factors of the expression

D2

4- PJ} -f-
P

2
treated as an algebraic expression in D. For,

^^ ^V
(D - mjy = ^ - m

37/,

(D - m^D - mjy = (D - m

Now (Wj -|-
m

2) = Pp and m^m^ = Pr Therefore the second

form of the equation is equivalent to the first.

Definitions. When equations in the form (1) are expressed

in the form (2), they are said to be expressed symbolically, or

to be expressed by means of symbolic factors.

When a symbolic factor D m and a function u are applied

to each other so as to give (D m)w or -=- mu, the function
do&

u is said to be operated upon by D m, or the factor D m to

be multiplied symbolically by u.
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The factor D m is called the symbolic operator, or more

briefly, the operator.

34. Theorem. The order in which the symbolic factors in the

equation of the last article are taken is immaterial.

Consider in illustration the equation of the second order.

Let the equation be taken in the form

(D - ro
f ) (D - mjy = X.

Then

(D m
&quot;)

dy- m

and

(D-m,)(D-m1)^=(D_m]

= *2 _ (m 4- m^ 4- %
dx2 ^ i ~f *J dx &quot;*&quot;

Therefore (D m
2 )(Z&amp;gt; m^)y = X is equivalent to

Also, (J&amp;gt;
m

1)(D m.
2)y = X is equivalent to

S+ P + P^ = X- (See Art. 33.)

Therefore, in the case of the equation of the second order, the

order in which the factors are taken is immaterial.

The proof in the general case is left as an exercise to the

student.

35. First method of solution of the equation

(D-mJCD-m,)? = X.

Let (D m^y = u. The equation then becomes

(D m
l)u = X or - _ m^u = X.
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du ^_ m.u = JC
dx l

The general solution of the equation

is (see Art. 21)

. .(D-

u =

This is the general solution of the given equation.

EXAMPLE. Find the general solution of the equation

d2

y n dy _

-=-5 3 -/ + 2y = cos a;.

ciic
2

rfa;

Write the equation as (D 1)(Z&amp;gt; 2)y = cos a?.

Let (D 2)y = w. The equation then becomes

..p.

( l&amp;gt; 1 )u = cos a? or -=- u = cos a;.

c?a;

. . u e*
J*

e~* cos x dx + c^*

J(sin x cos x) -|- Cje*.

. .
(Z&amp;gt; 2)y = J(sin a; cos a;) -f ^e*.

. . y = Je
1*

J*e~
2a!

(sm a; - cos x)dx + c^*f e~
xdx + c

a
e
te

= TV cos a: T\ sin a; + c^ + c/
2

.

This is the general solution of the given equation.

36. To solve the equation

(D - m,}(D - m,)
- (D _ mjy = X,

we may proceed as follows :

First, let (D m
2 )

- (D mjy = u. The equation then

becomes (D m^u = X.
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From this equation, u can be determined as in the case of the

equation of the second order. Let

Then
(D _ m^v = u.

From this equation v can be determined in the same manner as

u was determined before. After n 1 such steps there results

(Z) mn )y = 2 where 2 is a known function of x.

The general solution of the equation (Z&amp;gt;
mn )?/ = 2 is the

general solution of the original equation.

37. The following theorems concerning the symbolic operator
will now be established :

Theorem I. A constant factor in a function may be written

in front of the operator.

Proof: Let au be a function containing a constant a as a fac

tor. Let D m be the operator. Then

(D m)au = = mau, by definition

du

Theorem II. The result when the operator is applied to the

sum of a number of functions is equal to the sum of the results

found when the operator is applied to each of the functions

separately.

Proof : Let u
-\-

v + w
-}- -{-2 be the sum of a number of

functions. Let D m be the operator. Then

(D _ m) (u -f v -f w -f -f z)

d(u -f v -f w -f-

dx
m(u -f v + w -f -j- 2)

du dv dw d
mv-f-y- mw -f -f -jr dx

~
d

m)v -f (D w)w -f + (Z) tri)z.

--y- --y- mw -f -f -j- _ mz
dx dx r dx

~
dx
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38. The equation (D - mj (D - m
a ) (D - mjy = X

may be written in the form

-
ro.) (D _ mj

In the first form the symbolic operators

D m
1?
D m

2 , ,
D mn

applied in succession give X. Moreover, by the theorem of

Art. 34, the order in which the operators are applied is imma
terial. If the second form, therefore, is to be the same as the

first, the symbolic expression 7-=
--^7^---r--7-^

--r X
(D-mJCD-mJ (D-mJ

must be such that, when operated upon by

D mv D m
2 , ,

D mn,

in succession in any order, the result is X.

Definition. The symbol 7-=
-r-^ r---7^-r- is

(D _ m^(D _ m
2)

- - - (D - mj
called the inverse symbolic operator, or, more briefly, the in

verse operator.

39. Let

be a linear differential equation where the symbolic factors viewed

as algebraic factors are distinct. Break up -^r

into partial fractions as if it were an algebraic expression in D.

Then

(D mJCD m
f )

^
wij
- m

a \ I) - m
l

~
D - m

2

Let

-

^
- X = w and -

m ^_ m D ^_ m X=v&amp;gt;

Theorem. The result of operating on u + v with

m.) is X.
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Proof: Operate on u
-j-

v with (D m^^D m
t ).

-
m&amp;gt; +

(D m
1 )(Z&amp;gt;

ra
2 &amp;gt;, by theorem II, Art. 37.

Now

(D-m1) = -^--X) and (D - m&amp;gt;
= _ _Jl - X,

lit/ ^o tit, &quot;t/rt

by definition and theorem I, Art. 37.

= (D _ m
2) ^X+ (D - m.) f .N A S A^J *,* IX lX\ /v- .

40. When the symbolic factors D m
l
and D m

2 ,
viewed

as algebraic factors, are distinct, the result of operating on

with (D m
l)(D w

2 ) is JT, by the preceding article, and the

result of operating on

x

with the same factors is X, by definition. Therefore when the

symbolic factors D m
l
and D m

2 ,
viewed as algebraic fac

tors, are distinct, the inverse operator of

may be broken up into partial fractions the same as if it were an

algebraic expression in 7), and the result of operating with

(D _ m^^D w
2) on the expression formed by multiplying

each of the fractions symbolically by X, and taking the algebraic
sum of the results, is X.
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In general, when the symbolic factors

viewed as algebraic factors are distinct, the inverse operator of

1 X
y =

(D - mJCD - ro
f ) (1&amp;gt;

- m.)

can be broken up into partial fractions the same as if it were an

algebraic expression in Z), and the result of operating with

(D m
l)(D - ma) (D - mn ), on the expression formed by

multiplying each fraction symbolically by X and taking the

algebraic sum of the results is X.

The proof of this theorem is left as an exercise to the student.

41. Second method of solution of the equation

Break up__r into partial fractions the same as
r
(D -mJ(D m

2 )

if it were an algebraic expression in D.

.

i JL__/__!_ J_Y
(D _ wJGD - m2 )

~ m
t
- m

a \D - m
t D-mJ

Let

w-- -=:- X and v = - w X.~
mi m

2
/) m

l
m

l
m

3
JJ ^ m

a

Operate on u with D mr

du
. . -r-

dx

Operate on v with D m
a

.
. v = __^ - e** C

m
x

m
2 ^

e~m*xXdx 4. c,d&quot;.
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^

__-_ e i* CtrwXdx ---- &* Ce~m-xXdx
y m

l
m

i J m
l

m
2 J

+ Cje&quot;!* + 0,6&quot;&quot;*,

ivhich is the general solution of the equation.

EXAMPLE. Find the general solution of the equation

d?y r.dy
^ _ 3 -4- 2y = cos #.

dz3
do;

T

Write the expression in the form

Break up =r-YTn-9^
*nto Part^a^ fractions the same as if

it were an algebraic expression in D.

2)
- ~

^ITT D-2
Let

-F^ T
jt&amp;gt; 1

cos x = u an &quot; cos x = v&amp;gt;

Operate on u withD 1.

eft*

. . -,- u = cos x.
dx

.

-

. u = ^ cos x \ sin x -f- c^e*.

Operate on v with D 2.

ey
. .

_ 2v = cos re.

dx

. . v = | cos x 4- | sin a;
-f-

c
2
e
2z

.

. . y = TV cos a? T\ sin a; + c^
36

-f

which is the general solution of the equation.

This method does not apply when the symbolic factors viewed

as algebraic factors are not distinct.

5
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42. It will be noticed in the example of the preceding article

that the result is the same as that found by applying the method

of Art. 35 to the same equation. This will be the case in any

linear differential equation with constant coefficients to which

both methods apply.

The first method of solution will apply in all cases where the

left hand member of the equation can be factored into linear fac

tors in D. The second method will also apply if the linear fac

tors in D are all distinct. If two or more factors are equal, and

the inverse operator be broken up into partial fractions, the term

or terms corresponding to these factors may be evaluated by the

first method.

Usually the second method is easier of application than the

first.

43. An examination of either method by which the general

solution of a linear differential equation of the nth order with

constant coefficients and second member not zero is derived shows

immediately that the general solution consists of the sum of two

parts, one containing terms not involving arbitrary constants,

the other containing terms involving such constants. Moreover

the arbitrary constants are involved so that when any one is zero,

the term in which it appears vanishes.

Definition. The part of the general solution of a linear dif

ferential equation with constant coefficients and second member

not zero which contains the arbitrary constants is called the com

plementary function of the general solution of the equation.

EXERCISES

Find the general solution of each of the fourteen following

equations.
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d3

y _ d2

y _ dy

dx

.

9.
^, +^
^2

2/ = 12. j4 j^ -f T^ V= cos a.
3 2 ^ *

In each of the six following exercises, find the equation of the

elastic curve of the beam from the given differential equation,

determining the constants of integration. Find also the deflec

tion of the beam. In these equations, E is the modulus of elas

ticity, I is the moment of inertia of a cross section of the beam

about a gravity axis in the section perpendicular to the applied

forces, and I is the length of the beam.

15. The beam rests on supports at its ends.

weightless with a weight P at its middle point.

P/l

It is supposed
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16. The beam rests on supports at its ends. It is supposed to

be of uniform cross section and of weight w per unit of length.

Y

17. The beam rests on supports at its ends. It is supposed to

be of uniform cross section and of weight w per unit of length,

and to have a weight P at its middle point.

P
X

18. The beam is a cantilever fixed horizontally in the wall,

It is supposed weightless with a weight P at its extremity.

19. The beam is a cantilever fixed horizontally in the wall.

It is supposed to be of uniform cross section and of weight w per

unit of length, and to have a weight P at its extremity.

Y

dot
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20. The beam is vertical. It has rounded

ends. It is supposed weightless. It is de

flected a small amount a and a load P is

applied at its upper end just sufficient to hold

it in position.

The equation for a circuit containing re

sistance, induction and capacity in terms ol

the current i is

L dt

in terms of the quantity of charge q is

3*g
dt*

Edq
~Ldt

where e denotes the E.M.F., R the resistance, L the induction,

C the capacity, and t the time during which the circuit is in

operation. In each of the three following exercises, determine

the current and quantity of charge in the circuit after a time t,

supposing that the resistance, induction and capacity are constant.

21. The E.M.F. is equal to/0). Solve when R*C? 4L.

22. The E.M.F. is constant and equal to E.

23. The E.M.F. is a simple sine function of the time,

= .Esin tat. Solve when R*C ^ 4L.

ANSWERS

. y = T
Z

2. y = ^ -

3. y = ^t2

(3 T/13)a!
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5. y = TV*
2 - $p + Cj + c

t
e~zx + c

3
e-

8a6

.

6. /=- i

7. y = e
x

(|z
2 + c

i + &amp;lt;yc).
8. y = a? + 2 + 6*0,

n a; sin a?

9. y = &amp;lt;r 4- Cj
cos a; + c

2
sin a?.

10. y = - \x + J 4- Cl
e-

z + c
2
e~

2j: + cf.

x cos a;

11. y = ^ -f c
x
cos a;

-j-
c
2
sin a;.

12. ?/
= J(cos x x sin x x cos #) -f- Cj

sin a;
-f-

c
2
cos a;

-j-
c
3
e
z

.

13. y = e
x

(%x* + eX + c
a
a; + c

3 ).

14. y = .^
4

24-|- Cj6
z

-f- Cje&quot;

2
-f c

3
sin re 4. c

4
cos x.

15. 4E = ^ - ^8
. Deflection = .

16. SJSTy =
&quot;

** -
f

*&amp;lt;. Deflection = .

wl + P , w (wl
17.

-

IP?

3

18. 2^Jy = _ Pfo1 + a:
3
. Deflection = r .

Deflection = pl3 + wl&amp;gt;-

20. ^
a

Deflecti
\~P I D ^/T2

ion = a vers \\^rni anc* ** = ~72~\ xi/7 .2 t
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21 -

where
2LC

The value for q differs from that for i only in having /() instead

of/ (0- _
RC-Jl&C*-4LC

22. i = c&quot;&quot;
*LG ce

cos sin ^ ~2LC- -&amp;lt;&amp;gt;

when J?C=4JD.

when

cos

v 2LG
when R*C&amp;lt;4L.

q=
when R*C=4L.

23. i=
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where T^ and T
2
have the values given in exercise 21.



CHAPTER V

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS. EXACT
LINEAR DIFFERENTIAL EQUATIONS

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

44. Definition. A homogeneous linear differential equation is

an equation of the form

dn
y n . dn

~l

y dy ~f - x = x

where pv pv , pn_v pn are constants, and X is a function of

x but not of y.

This equation can be transformed into an ordinary linear dif

ferential equation with constant coefficients by changing the inde

pendent variable from x to z, the equation of transformation be

ing x = e*. The equation that results from the transformation

may be solved by the methods of the last chapter. If a solu

tion is y =/(), the corresponding solution of the original equa
tion is y =/(logz).

45. The transformation and general solution of a homogene
ous linear differential equation in the general case will not be

considered here. We shall merely consider them in a particular

example.

EXAMPLE. Find the general solution of the equation

x-7/^s
i

c\y^ (\y

Let x = e?. . . z = log x,

dy dy dz 1 dy
dx~ dz dx~ x dz

d*y d ( 1 dy \ 1 dy 1 d*y dz 1 ( d*y dy

65
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^x
2

\dz
2 dz / I

~
x3

\ dz
3

dz2
dz /

dy dyX
dx
=

dz

d2

y _ ffy dy
dx2

~
dz2

~
dz

xsA = A _ 3
&amp;lt;?y

, 2 ^

Substitute in the equation.

d*y d*y dy
dz*

&quot;&quot; dz2
~

dz&quot;
y ~

The general solution of this equation can be found by the

methods of the last chapter. It is

y = tz + + c
i
e + c

a
e + C

3
e

The general solution of the original equation is therefore

c
v = 1 log #-1-1-4- 4-~4- caa;

2
.J *k. O I 4: I . T^ ~2 I 3

EXACT LINEAR DIFFERENTIAL EQUATIONS

46. Definition. A linear differential equation

is said to be exact, when, if the left hand member be represented

by V, the expression Vdx is the exact differential of some func

tion U which does not contain an integral of y.

The expression U is evidently an expression actually contain

ing a derivative of order n 1.

47. To find the necessary and sufficient condition that the

equation of the preceding article be exact, and a method of solu

tion of such an equation.



EXACT LINEAR DIFFERENTIAL EQUATIONS 67

Multiply each term by dx and take the integral of each term.

Cp d &quot;

y dx Cp^dx CP d y dz
J
r

d*&quot;

d* + J
p d^ d

+J
p - &*

Now

jPnydy =JPnydy identically.

And, by integration by parts,

J*P_,g dx = - fP ^ydx + P^,

where the primes denote differentiation with respect to x.

. . fxdx + c = /(P. _ P n_, + P&quot;
n_2
-

P&quot;U + -}ydx.

(Pn_!
-P

n_3+

Write the expression in brackets as Q a , _,, , Q respec

tively.

e=Qnydx+Qn_,y+ ./+ . . +ft. (1)

Now in order that the equation be integrable there must be no

term in the right hand member of (1) containing an integral of

y. The necessary and sufficient condition for this is that Qn = 0.
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Therefore the necessary and sufficient condition that the equation

be exact is that Qn = or

P. - -f&quot;.-. + ?&quot;~.
- P&quot; *-* + = 0. (2)

When this condition is satisfied the equation reduces to

c. (3)

, If the coefficients in (3) satisfy a relation in Q similar to (2)

in P, equation (3) is exact and the above process may be re

peated.

EXAMPLE. Solve the equation

P9 p/ O
p&quot;

in P &quot; _ fi
ft
= A * B_! = A -r n_2

= - lu, r n_3
= o.

P P j^ Pr/ P &quot; _* J n-l ~T * n-2 * n-3 ^

The necessary and sufficient condition that the equation be exact

is therefore satisfied.

The equation therefore reduces to

In this equation, Pn = 2x, - P n_! = 4, P&quot;n_3
= - 6z.

P P -L_ P&quot;* ^n * n-l ~T * n-2 U

The necessary and sufficient condition that this equation be exact

is therefore satisfied.

_, = - 2** + 3x* - 1 = _ 1, ., = x(l _ ).

The equation therefore reduces to
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This equation is not exact. It is however an ordinary linear dif

ferential equation of the first order, and can therefore be solved

by the method of Art. 21. The general solution is

which is therefore the general solution of the original equation.

EXERCISES

Find the general solution of each of the following equations.

~ cot * + cosec2 ^ = cos x-
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fJ^/ll (Xl]

12. O + 8*1

) ^ + 2(1 + te) J + 6y = sin a.

13. (*
3+ *_ 3* + 1)+ (9* + 6z - 9)

,

14. x* --

ANSWERS

|f log *

A

2. y = _ + c^
2 +

^-.

3. y \y? log x %x* + c^ + c
2
o;
2

4. c
3
a;

4. y = Jlogz + i + c
x
a? + c

2
o;

2 + ^.

5. y = | +
~2
log* + c

3
a;. 6. y =

7. y = log x + 2 + Cjic log a; + c
2
a;.

a;
3

c.a; c

10. y == xsm x
-\- ^ sin # log (cosec # cot ^) -j-

c
2
sin

11. =

12. (a; + 3a;
2

)2/
= sin x 4- c

t
a; 4- c

a
.

13. (a;
3

4. z2 - 3^ 4- 1 )y = yh^ 4- i + C2^ +



CHAPTER VI

CERTAIN PARTICULAR FORMS OF EQUATIONS

48. An equation in the form ^ = f(x}
dxn J ^ J

An equation in this form is exact and can therefore be inte

grated by the methods of the preceding chapter. It can also be

integrated by direct integration.

The first integration gives

where a
t
is an arbitrary constant.

The second gives

/ /
=
J J -

where a
3
is an arbitrary constant.

After n integrations there results

where cv c
a , ,

cn are arbitrary constants.

49. An equation in the form J f(y )

dxn
~ J^ J

An equation in this form can in general be integrated only
when n = 1 and n 2.

When n = 1 the equation is

71
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To integrate, separate the variables.

When n = 2 the equation is in the form

3 =/&amp;lt;*&amp;gt;

To integrate, multiply by 2 .

Now

dx dx*
~

dx \ dx I

Suppose that

dy
. .

V^(y) + Ci

dy

50. An equation that does not contain x directly.

Such an equation is of the form
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Let

Then

d?y dp dpdy dp
dx*

~~~

dx
~

dy dx
~ P

dy

d*y d I d2

y \ d / dp\ d / dp \ dy
da?

~~
dx \ dx* /

~
dx\

P
dy )

~
dy \

P
dy ) dx

and so on.

The equation then becomes a differential equation in p and y
of order n 1. Suppose that it can be solved and that the solu

tion is p =/(y). Then a solution of the original equation is

51. An equation which does not contain y directly.

Such an equation is of the form

Let

dy

The equation then becomes a differential equation in p and x

of order n 1. If the equation can be solved for p and the

solution
is^&amp;gt; =/(#), a solution of the original equation is

y + c =

52. An equation of the first order solvable for y.

In such a case, when solved for y, the equation becomes

y = F(x,p}. (1)
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Differentiate with respect to x.

This equation does not contain y explicitly. It is an equation of

the first order in p and x. If it can be integrated as an equation

in p and x, there results on integration an equation between x, p
and an arbitrary constant. From the resulting equation and

(1), if p can be eliminated, there results an equation between

x, y and an arbitrary constant, which will be the general solution

of the equation.

53. An equation of the first order solvable for x.

In such a case, when solved for x, the equation becomes

y = F(y, p). Differentiate with respect to y.

The method of procedure from this point is similar to that in the

preceding article.

EXERCISES

Find the general solution of each of the twelve following

equations.

!.g = , .g-COB,

-3
ffy /dy\*7 ql ?.

I
-2- I 1

y da? \dx)
~
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= 8*. 10. *=
dx dx

-L J. * SO ~~
ty T- I ~^j I -1. ^J . U 7~&quot;^ *V i

1 -*- dx

13. Find the curve whose curvature is constant and equal

to/c.

14. If a sphere of radius E
l

is surrounded by a concentric

shell of radii R
2
and jR

3,
the potential function, V, at a point

either in the space between the conductors or outside the outer,

satisfies the equation

J2 rr o J ~rr

= o,
dr* r dr

where r is the distance of the point from the center of the sphere.

Solve the equation given that F
x
is the potential on the sphere

and F
2
on the spherical shell.

15. If a circular cylinder of radius R
l
is surrounded by a cir

cular cylindrical shell of radii Jf?
2
and J?

3 ,
both of very great

length, the potential function, F, in the space between the con

ductors, is such that

dr*
^

r dr
~

where r is the distance from the point to the axis of the cylinder.

Solve the equation given that V
l
is the potential on the cylin

der and F
2
on the spherical shell.

ANSWERS

2. y = cos x + CjX + c
2
.

3. y = - log x - |(log x}
z

4. CJR 4- c
a
.

4. y = Cj
sin (aa; 4- c

a).
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5. d= x + c
2
= Ve# - 2 + .log

c
i

c
i

6. y = c
2
eci*.

7. a; + c
x
= -log (cy + VcV - 1).

- 2).

1 C,

2
4- 1 . ..

8. y = - ~x - -^-n log (1 -

9. y = 10. y + c
x
= %x* -

11. \x + c
x
^ =p Vz - y - log (1 =F V^ - y).

12. y = ex c
2
. 13. A circle of radius -.

K

JZ,^ F.-7 J.F.= ~

15. F=



CHAPTER VII

ORDINARY DIFFERENTIAL EQUATIONS IN TWO DEPENDENT
VARIABLES

54. So far, the differential equations considered consisted of

two variables, one independent and one dependent. We shall

now consider equations in three variables. These may be divided

into two classes : those in which there is only one independent

variable, and those in which there is only one dependent vari

able. The first comes under the class called ordinary or total

differential equations : the second, partial differential equations.

This chapter is taken up with a discussion of a few forms of ordi

nary differential equations. The next chapter is devoted to

partial differential equations.

55. If /(#, 2/)
is a single valued and continuous function of

the two independent variables x and y, given by the equation

z == /(#, y), and and ^-are continuous, then, by definition,
ox oy

, dz , dz ,

dz = dx + dy,dx dy
&quot;

or

Iff(x, y, z) is a single valued and continuous function of the

three independent variables x, y and z, given by the equation

u = f(x, y, z), and
,

and are continuous, then, by defi-
ox uy uz

nition,

y, d
, &

dx dy dz

77
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56. Equation (1) of the preceding article has, as a special

case when 2 = 0, the equation

That is, the equation is true for the equation f(x, ?/) = where

x and y are independent variables. If y in f(x, y) = is a

single valued and continuous function of x, the equation holds

true for all values of x for which y is a single valued and con

tinuous function, for in this case y is merely restricted to values

which it could assume, as well as others, in the more general

case where it is independent.

This can be seen more clearly perhaps by a consideration of

the geometrical representations of the equations.

The equation z = f(x, y) when x and y are independent vari

ables represents a surface. If z = 0, the surface is the zt/-plane,

and the equation

dx dy

holds true for every point in the plane. If y is a single valued

and continuous function of x, the equation f(x,y)=Q repre

sents a curve in the zy-plane in which the equation expressed in

the form y = &amp;lt;j&amp;gt;(x) gives a single valued and continuous function

of x, and since

dx dy

holds true for all sets of values of x and y in the plane, it holds

true for all sets of values which together determine a point on

the curve in the plane.

57. Equation (2) of Art. 55 has as a special case when z= 0,

the equation

K*JL1&amp;gt; dx +
d
J^&amp;gt;^ dy +

dJ^^ dz = o.

dx dy dz
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By reasoning similar to that employed in the preceding article

in the case of two dependent variables, it may be seen that

this equation holds true when z is a single valued and continuous

function of x and y.

58. An integral relation in x, y and z, equated to an arbitrary

constant c, say &amp;lt;(#, y, 2) = c, can always be expressed in the

form
Pdx 4- Qdy + Rdz = 0,

where P, Q and R are functions of x, y and z, and do not con

tain the arbitrary constant c.

For, the result of taking the differential of each member of

the equation &amp;lt;(#, y, 2) = c is, by the preceding article,

dt(x y, z) S&amp;lt;j,(x y, z)

dx dy dz

and this equation is in the specified form.

EXAMPLE. The result of taking the differential of each mem
ber of the equation x*y xz2

4- y
z
z = c where c is arbitrary, is

(2xy - z^dx 4- (3? 4- 2yz)dy + (y
2 - 2xz)dz = 0.

This equation is in the form Pdx 4. Qdy + Rdz = 0.

The resulting equation Pdx -f Qdy -\-
Rdz = is such that P,

Q and R are proportional to

d
&amp;lt;*&amp;gt;

d
&amp;lt;l&amp;gt; and &amp;lt;W

dx dy dz&amp;gt;

respectively.

Conversely, however, an equation of the form

Pdx 4- Qdy + Rdz =

where P, Q and R are functions of x, y and z, does not neces

sarily give rise to a solution of the form
&amp;lt;f&amp;gt;(x, y, 2) = c. This

can be seen immediately because an equation of the form

Pdx -f Qdy 4. .Kdz =
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which gives rise to a relation
&amp;lt;f&amp;gt;(x, y, z) = e must be such that

P, Q and R are proportional to

d&amp;lt;t&amp;gt; dtb ^
d&amp;lt;t&amp;gt;

~, ~ and ~,dx dy dz
}

respectively, and these relations cannot hold for all values of P,

Q and R.

59. To determine when an equation of the form

Pdx 4- Qdy + Rdz =

has a solution of the form
&amp;lt;(#, y, 2) = c.

If it be assumed that Pdx -f Qdy -f Rdz = has a solution

&amp;lt;(#, y, 2) = c, then P, Q and R must be proportional to

respectively, or

,

^- , -5- and
,

^o; ^/ dz

where /A is a certain unknown function. From the first two of

these equations there results

or

Similarly, by using the first and third equations we get

dR dP

and by using the second and third,

SQ dB
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Multiply equations (1), (2) and (3) by R, Q and P respec

tively, and add.

_ + __ = . (4)
dz/

T
\dy dx ]

Therefore, if the equation Pdx
-j- Qdy -|-

Rdz = has a solution

&amp;lt;(#, y, 2) = c, equation (4) must be satisfied.

Conversely, if equation (4) is satisfied, the equation

Pdx + Qdy + Rdz =

has a solution
&amp;lt;f&amp;gt;(x, y, 2) = c. The proof of this theorem is some

what long and will not be given in this book.* The theorem

however will be assumed in the subsequent work.

Definition. Equation (4) is called the condition of integra-

bility of the equation Pdx + Qdy + Rdz = 0.

60. To solve the equation Pdx + Qdy -f Rdz = when the

condition of integrability is satisfied.

Suppose at first that z is constant so that the equation becomes

Pdx 4- Qdy = 0. Solve this equation. Suppose that the solu

tion is f(x, y, 2) = a constant. Let u = f(x, y, z). Find a

quantity /A such that

du

Multiply the equation Pdx + Qdy -f Rdz = by /*.

. . ii.(Pdx + Qdy + Rdz) = 0.

This equation may be written in the form du -f Sdz = where

u and S are in general functions of x, y and z. In the equation
du

-\- Sdz, change the variables from x, y and z to x, u and z by
means of the relation u = f(x, y, z). The equation then be-

* For a proof of this theorem and also that S/ of Art. 60 does not con

tain x, the student is referred to Forsyth, A Treatise on Differential Equa
tions, Art. 152.
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comes du -j-
S dz = 0. It can be shown that S does not contain

x. Assuming that it does not, the equation du
-\- S dz can be

integrated as an equation in u and z. The general solution of

the equation is the general solution of the original equation.

EXAMPLE. Solve the equation

yz dx
Z

XZ
2 dy tan&quot;

1 - dz = 0.

Suppose that z is constant. The equation then becomes

dx -3^ dy = or ydx xdy = 0.
2 2

, ,
xz + y a;

The solution of this equation is

- = a constant.
y

Let w = .

dx

Let uP = -.

Multiply the original equation by

Now
7

1 j ^
ef = -&amp;lt;iaj-

Substitute

x

u
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in this equation, y being derived from the equation

x
=

y

u? 4- 1 1
. . du - -2 tan

l - dz = 0.
z u

Separate the variables.

du dz
Q

O2

-f man&quot;
1 -

v u

Let tan
l - = v.
u

. . vz = c.

. .z tan&quot;
1 y- = c.
x

Therefore

z tan&quot;
1 - = c
a;

is the general solution of the original equation.

61. Suppose that in the equation

Pdx + Qdy + Rdz =

the condition of integrability is not satisfied. Then there is no

relation
&amp;lt;f&amp;gt;(x, y, z) c which satisfies the equation. In such a

case a relation

is assumed arbitrarily and a relation
&amp;lt;(#, y, z) = c is sought

which, together with \j/(x, y, z) = 0, will satisfy the equation.

By differentiation of \j/(x, y, z) = there results

Ox
&quot;

dy dz

From this equation and (1) suppose that z and dz be eliminated.

Then there will result an equation of the form P dx
-f- Q dy =
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where P and Q
f

are functions of x and y the values of which

depend upon $(x, y, z). Suppose that a solution of this equation

containing an arbitrary constant is found and is
&amp;lt;(#, y, z) = c.

Then this solution and ^(#, y, 2) = together give a solution

of the equation.

As an illustration consider the following example :

The equation
di .

considered in exercises 47 to 50 inclusive, Chapter III, for special

cases of e, does not satisfy the condition of integrability if e, i

and t are variables independent of each other. For, the equa
tion may be written as

Ldi 4. (Ri - e)dt + de = 0.

By application of the condition of integrability there results

dL d(Ri - e) 1

\a*- ~di j-
or

-L = 0.

Since L is not zero, the equation does not satisfy the condition

of integrability. Assume e
=/(0&amp;gt; however, and the equation

becomes an ordinary linear differential equation of the first order.

The solution is

-
~ --ft

From this solution the results of exercises 47 to 50 inclusive,

Chapter III, may be found by substitution.

62. The cases considered thus far consisted of one equation in

two dependent variables. Another important class of equations

is the case of two total differential equations in two dependent
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variables where each equation is of the first degree with constant

coefficients. The method of solution of this class of equations is

as follows :

By differentiation and elimination, obtain one equation in one

unknown. This equation may be solved by methods previously

discussed. The solution found must be a solution of the original

equations. Another solution is found by substituting the one

just found in the equations. The complete solution consists of

two linearly independent relations between the variables.

EXAMPLE. Solve the equations

Differentiate (2) with respect to x.

. d*y dy dz

CM
b^ +5^ = U

Multiply (1) by - 5, and add to (2) and (3).

.-.gZ-sf + 4y = 0.
da? dx T

This is a linear differential equation of the second order with con

stant coefficients and right hand member zero. It can therefore

be solved by the methods of Art. 31.

y = &amp;lt;Vf + c^. (4)

Substitute this value of y in (2) and solve for z.

--^-h jfV&quot;-
(5)

Equations (4) and (5) together constitute a set of solutions of

the given equations.
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EXERCISES

In each of the seven following equations, show that the condi
tion of integrability is satisfied. Solve the equation.

1. (y 4 z)dx 4 (z 4 x)dy + (x + y)dz = 0.

2. (2aty 4 2^
2 4 2xyz

3. (2a?y + 2
2

)^ 4. (^
2

4. (a -f 2)yc?^ -f (a -f-

6. (y + 2a?)d + (xz + 2y)rfy + (xy + 2)cfo = 0.

7. (2#2/z -f ?/

2
2 -f yf)dx 4- (^ 4 2^3 4 ^2

)d?/

4- (^ 4 xf 4
Solve the following sets of equations.

8. ? 4 7y - 3z = 0, 7 4 63^ _ 36. = 0.

11.
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*
+ + *_&amp;lt;! *l + 3y + 4, = e&amp;gt;:

.*-* + *.,, * + *-._*

17.

ANSWERS
1. xy 4- yz 4- zx = c.

2. y?y 4- y*z 4- log(# -|- y 4. z) = c.

3. nfy -f ?/

2
2 4. z*x = c. 4. xy c(a + z}.

7. xyz(x -f i/ -f z) = c.

Txi 17 fr .

8. v = c^-
32

-

9. y = Cl

10. = c

11. y = Cje
2

4. e
2
e 2

12. y = e^x cos a; + c
2
e** sin

-^-
a?,
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13. y = c^eT* cos V&E -j-
c
2
e~

x
sin V5#,

z = c
t V5e~* sin V5# 4. c

2 V5&amp;lt;T

Z
cos V&c.

14. y = x \xe
x
4- Cje&quot; 4- c

2
e~x

,

15.
2/
=iV^

16. y = ^e
3* + ^e

x
-f Cl

e--y **
4- c

2
e-^

2+
^^,

2 =
2-V&quot; + i6

&quot; + e
i V3 e-(2

-y}* - c
2 V3 e

17. y = - yjg 4- A + c^1-&quot;^
4- e

_ c
2 (3

18. y = Tel
~k
e
** + C

i
e5z cos ^5x 4. c

2
e

5a:
sin V

19. y = i^e
3* + \e^ 4 cf cos VlO^ 4- c

2
e
2x

sin VI Oa?.

r

e
4a:

-{- j

- e
2x

cos VlO^ - - e
2x

sin



CHAPTER VIII

PARTIAL DIFFERENTIAL EQUATIONS.

63. So far we have considered differential equations in which

there is only one independent variable. We shall now consider

equations involving two independent variables. Such equations

belong to the class called partial differential equations,

In this book, the independent variables will be denoted by x

and y, and the dependent variable by z. The partial derivative

of z with respect to x and with respect to y will be denoted by p
and q, respectively.

Definition. A linear partial differential equation of the first

order is an equation of the form

Pp+Qq = B,

where P, Q and It are functions of x, y and z, and do not con

tain p or q.

64. If there are two equations containing x, y and z, p and q,

which can be solved for p and q, the result may be substituted in

dz = pdx -f qdy

thus giving an ordinary differential equation. Usually, however,

there is only a single differential equation given.

65. Derivation of a partial differential equation.

(a) By the elimination of constants. Let
&amp;lt;j&amp;gt;(x, y, z, cv c

2 ) =0
be a relation between x, y, z and two arbitrary constants c

t
and

c
2
. By differentiation of

&amp;lt;(.#, y, z, cv c
2 ) = with respect to x

holding y constant there results
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By differentiation with respect to y holding x constant there

results

By means of these two equations and
&amp;lt;j&amp;gt;(x, y, z, cv c

2 ) = 0, cv
and c

3
can be eliminated. The result is an equation

F(x, y, z, p, q) =

which is a partial differential equation of the first order.

EXAMPLE. Let x* + f -f z
2

-f c^x -f c
ty = be an equation

between #, y and z, and two arbitrary constants c
x
and c

2
. By

differentiation with respect to x holding y constant there results

2x + GI + 2zp = 0.

By differentiation with respect to y holding x constant there

results

2y + c
2 + 2z? = 0.

By elimination of
Cj
and c

2
between the three equations there

results

x* -f tf z*
-}- 2#zp -f 2^5 = 0.

This is a partial differential equation of the first order.

(6) By the elimination of an arbitrary function. Suppose
that u and v are functions of the variables x, y and z, and that

&amp;lt;(w, -y)
= where

&amp;lt;j&amp;gt;(u, v) is an arbitrary function of u and v.

The differential of
&amp;lt;(&amp;gt;&amp;gt; v) = is

d&amp;lt;, &amp;lt;,

S^dtt-L -^(fo = 0.
C7M CV

Now
dw , 5t* ,

aw = ^- aa; 4- ^- dz
dx dz

when y is constant, and

, du j du ,

du = ay -)- ^- a 2

dy
r

^2 y

when x is constant, and similarly for v.
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Therefore the partial derivatives of the equation &amp;lt;#&amp;gt;(i*, v~) =
with respect to x and y, respectively, are

dd&amp;gt; f du du H d&amp;lt;b f dv dv

and
d&amp;lt;

[&quot;

dv dv
ft

Eliminate
*

and ^ from these equations.^du

du du

dv

dv dv dv du Su

When arranged in powers of p and q and the coefficients ex

pressed as determinants, the equation becomes

du du

dy dz

dv dv

dy dz
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By differentiation of

respect to y there result

v) = with respect to x and with

and

respectively. By elimination of
^-

and -~ from these equations

there results

1 1 1 1

C %

1 1

or

This is a partial linear differential equation of the first order

which does not contain the arbitrary function

66. We have seen that a differential equation with two inde

pendent variables can be derived from an expression containing
two arbitrary constants or from an expression containing an arbi

trary function of two independent functions of the variables. We
see therefore that a differential equation with two independent
variables may involve in its solutions, arbitrary constants or an

arbitrary function of the variables.

Definitions. A relation between the variables of a differential

equation with two independent variables which includes two arbi

trary constants is called a complete integral of the equation.

A relation between the variables of a differential equation with

two independent variables which involves an arbitrary function

of two independent functions of these variables is called a general

integral of the equation.

There is another class of solutions called singular integrals but

these will not be considered here.
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67. Consider the two equations u c
l
and v = c

2
where u and

v are functions of x, y and z, and c
t
and c, are arbitrary con

stants. By differentiation of u = c
x
and v = c

2 ,
there result

and

du , du , du 7
- dx -f -5- dy + x- =

d#
~
dy dz

dv , dv , dv , ~
eta

-f- rty + ^- dz = 0,

respectively.

Multiply (1) by ^- , (2) by ^- ,
and subtract.

a)

(2)

du du
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Therefore
&amp;lt;(, v) = is a general integral of the equation

Pp -f- Qq = H if u = c
l
and v = c

2
are solutions of the equations

68. From the investigations of Arts. 65 and 67 the following

rule for finding a general integral of the linear partial differential

equation Pp -f- Qq E is determined.

Solve the equations
dx dy dz

Suppose that u = ^ and v = c
2
are two independent integrals of

these equations. Then
&amp;lt;(&amp;gt;, v) = where

&amp;lt;O, v) is an arbi

trary function of u and v is a general integral of the equation

= R.

Definition. The equations

dx dy dz

are called the subsidiary equations of Pp -f Qq = E. They are

also sometimes called Lagrange s equations.

69. As illustrations of the method of solution of a linear par

tial differential equation of the first order, consider the following

examples.

EXAMPLE 1. Solve the equation x*p -}- xyq -f- y* = 0.

Write the subsidiary equations

dx dy dz

~tf

=
xy

= ~

f
Solve the equation

dx dy x

x* xy y
Solve the equation

dy dz



PARTIAL DIFFERENTIAL EQUATIONS 95

From
x

-,-,
substitute the value of x, and the equation becomes

A general integral of the original equation is therefore

EXAMPLE 2. Solve the equation (y z}p-\-(z

Write the subsidiary equations

dx dy dz

y-z~z-x~x-y
From a familiar theorem of algebra, if

then la -f me -f ne = Ib -f md -f- n/ where
,
m and w are any

multipliers whatsoever. Application of this theorem to the sub

sidiary equations gives

dx -f dy -f dz = 0, (1)

when I = m = n, and

-f ydy + zdz = 0, (2)

when I = x, m = y, n = z.

Solve equations (1) and (2). Therefore x + y -f z = c
l
and

xz

-\- y* 4- 2
2 = c

2
are solutions of equations (1) and (2), and

therefore of the subsidiary equations. A general integral of the

original equation is therefore
&amp;lt;j&amp;gt;(x -f y -f z, x2

-{- i/

2

-f 2
2

) =0.
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EXERCISES

Determine the partial differential equations of which the four

following equations are complete solutions, c
x
and c

2 being arbi

trary constants.

1. z = CjX + c$. 2. z
2 = c^

2 + c
2 &amp;lt;/

2
.

X* V* Z
2

3. z = O + Cl)(y + c
2 ). 4. -i+ jr+

- = !
C
l

C
2

Eliminate the arbitrary function from each of the four follow

ing equations.

5.
&amp;lt;j&amp;gt;(x+y-z,

z2

+*/
2 -z2

)=0. 6.
&amp;lt;fr(x + y + z, z) = 0.

7. = 6*K* + y). 8- *=/(*
2 + 2/

2

).

Find a general integral of each of the following equations.

9. xzp yzq = xy. 10. x*p + y*q z
2 = 0.

11. a?yp -f- yq = x*z. 12. xp yq = a? ?/.

13. (^ - z
2

)^ + (z
2 _ x^q + (^ - *2

) = 0.

14. (2z _ 3t/)j9 + (3a?
- 4z)q = 4y - 2x.

ANSWERS

1. xp -|- yq = z. 2. xp -\-yq = z.

3. jo^ = z. 4. xzp -}- 2/z# z
2

-f a2 = 0.

5. (yz)p+(zx}q=yx. 6. p q = Q.

7. p q = z. S. yp xq = 0.

9. &amp;lt;f&amp;gt; ( #v, log w -{- ^ )=0. 10. &amp;lt;

(

-
-,

- -
)
=0.

12.
&amp;lt;A(^,

a: + y - z) = 0.

13. ^ + y + z, a;
3 + f + z

3

) = 0.

14.
&amp;lt;i&amp;gt;(4x + 2y + 3z, ^2

-f 2/

2 + ^
2

) = 0.



CHAPTER IX

APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS.
INTEGRATION IN SERIES

APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

70. It is shown in the Analytical Theory of Heat that the

change of temperature in any solid at a point (#, y, z) within

the solid is given by the equation

where u represents the temperature at the point and t denotes

time.

In polar or spherical coordinates the equation becomes

^ r -
du __
dt

~
r
2 ^^ sin 00

and in cylindrical coordinates,

du A d*u 1 5w 1 d*u a*Ml

c5^

=

L 5r2 +
r dr + r

2

a&amp;gt;

T + d2 \

If the solid is a rectangular plate so thin that the thickness

need not be taken into account, equation (1) becomes

du ran, ann
= c &quot; +

If the solid is a wire of infinite extent so thin that the breadth

or thickness need not be taken into account, equation (1)

becomes
du d*u

~dt=
cW

In the case of a sphere when the temperature u depends merely
on the distance of the point from the center, equation (1), as

8 97
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can be seen from (2), reduces to

d(ru) a (ru)

~df~

In the problem of permanent states of temperature, du/dt= Q,

and the equation becomes

an equation known as Laplace s Equation, and sometimes writ

ten V 2u = 0. This equation also figures in the Theory of

Potential.

In polar or spherical coordinates, equation (7) becomes the

right-hand member of equation (2) set equal to zero, and in

cylindrical coordinates, it becomes the right-hand member of

(3) set equal to zero.

In the Theory of Acoustics, in considering for instance the

transverse vibrations of a stretched elastic string, there occurs

the equation

&y_^y m
Bf dx&quot;

and if the resistance of the air be taken into account, the

equation

In the problem of the vibrations of a stretched elastic mem

brane, there occurs the equation

which in cylindrical coordinates becomes

2 ^J

71. As an illustration of transformation of coordinates, con

sider the transformation of Laplace s Equation in two dimen

sions,
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dx* cty
2
=

from rectangular to polar coordinates.

The equations of transformation are x = r cos 6, y = r sin 6.

Now u is a function of x and y and therefore of r and 0.

Therefore, as seen in calculus,

. du , du
du = dr

-f-
~ dd.

dr r dO

If y is held constant, this equation becomes,

du 7 du , ,

Divide by A#, or what is the same, dx, and there results th&

equation
du du dr du dO

.p
dx

~~
dr dx dO dx *

Similarly,
du du dr du dO ,~,

Since x = r cos and y = r sin 0, therefore r = V#
2 + y* and

= tan&quot;
1

y/x.
dr x x .

-

fl~
= = == - = cos 0,

dO y y sin &

and
dO x x cos

Now
du du dr du dO du du sin

a~ = * 5~ + HZ a- = a~ COS ^
J^fi &amp;gt;

da; c?r do; 50 ^* dr du r

and
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d*u d\du dusinOl d [du du sin
0&quot;]

sin b
^~a = 5~l a&quot;

COS0 -=-- COS 6 ^7. =- COS0 *
- -

dx* dr\dr dO r \ dO\_dr dO r
j

r

d*u sin0 dusinO ]
cos -^^ - + -^ T- cos B

drdO r
~
DO r

2

,

ducosOlsinO-
ae ~r \

~[du
.-

s~r
s

Similarly

a 2
i* [ d\i . d u cos du cos 6 &quot;I .

a~i = ^^ Sm ^ + a 3d
~

^7 s- sm ^
^2 |_ar

2 ^ drdO r dO r
2

J

d 2^ . .. ait .,, a 2
it cos ait sin 0~| cos

Lara0 aV a02
r a0 r r

a 2
it a 2w a 2

it i ait i a 2
i*

a^c
2

a^/
2

a/*
2

T* a?* y
2 a02

*

Therefore the equation
a it a u

ox uy

in polar becomes

_ i
. i_ _ u _ o.

^2 1^
y. ^^ \

y,2 ^Qt

72. A method of determining particular solutions of those of

the above equations with constant coefficients is illustrated in the

following example.

EXAMPLE. Find particular solutions of the equation

z
z d z

z

Assume that there is a particular solution in the form

z = e^+fly+Y* where a, ft and y, are constants.

Substitute in the equation.

. . y
2e*+0y+Y = C

2

(a
2

-f p^e^+M+y .

Now e^+^y+v cannot be zero for any values of x, y and t.
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Therefore z = e^+Pv^^+P 2
is a particular solution of the

equation where a and ft are arbitrary constants.

The above solution can be put into another form as follows:

Let a = aj and (3 = /3j where j = V 1.

Then

z =
Therefore

z = sin (ax -f fty ct Va
2

-f ff), (1)
and

3 = cos (ax + (3y+: ct Va
2

-f
2

), (See Art. 5. ) (2)

are particular solutions of the equation.

\ From these can be found particular solutions in the forms

z = sin ax sin fiy sin ct Va
2

-f-

z = sin ax sin

and six others. The determination of these six is left as an

exercise to the student.

73. Consider the equation

+ -.
:

dr

which is Laplace s Equation in spherical coordinates where u is

independent of &amp;lt;.

Let u = r
m
P, where P is a function of alone, and m is a

positive integer. On substitution there results the equation

m(m
sin dO

Change the independent variable from to x where x = cos 0.

0. (2)

The solutions of equation (1) are known when P is determined

from equation (2). Equation (2), not only when m is a posi-
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tive integer but for all values of m, is called Legendre s Equa
tion. Its solutions are discussed in Arts. 76, 85 and 86.

74. To find particular solutions of the equation

which is equation (11), Art. 70, when z is independent of
&amp;lt;/&amp;gt;,

let z = R - T where R is a function of r alone and T is a func

tion of t alone. Substitute in the equation.

^d^T

or

^TW = R \W~t~r drj&quot;

w
The right-hand member of (2) does not involve t. Therefore

the left-hand member does not. The left-hand member does not

involve r. Therefore the right-hand member does not. There

fore each member is constant. Call the constant
/u,

2
.

and
1 dR

A particular solution of (1) is therefore R T where T is de

termined by equation (3) and R by (4).

Particular solutions of equation (3) are T = cos pet and

T= siufjict. (See Art. 31.)

To solve equation (4), let r = x/p and substitute in the

equation.

...g+lg+J^O. (5)
dx*

~
x dx ^

Equation (5) is a special case of the more general equation
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known as Bessel s Equation. Its solutions are considered in

Arts. 79 to 84 inclusive.

INTEGRATION IN SERIES

75. It will be noted that as yet in this book no equations with

variable coefficients, of higher order than the first, have been

considered except a few very special cases discussed in Chaps. V
and VI. The remainder of this chapter is devoted to a discus

sion of linear differential equations of the second order with coef

ficients rational integral functions of x, and second member zero.

To such a set belong Legendre s and Bessel s Equations men

tioned above.

Not all differential equations, not even all in the comparatively

simple form of linear differential equations of the first order, are

capable of solution in finite form. When solutions cannot be

found in finite form, recourse is had to integration in series. In

the set about to be considered, some equations have solutions in

finite form and some have not.

We shall attempt here to find solutions only in the form of

infinite, convergent, power series.

If an equation be capable of solution in finite form, this form

is found when a solution is attempted in the form of a power series.

For instance, in exercise 11, page 120, the solution found as if it

were made up of infinite series is in reality in finite form.

Sometimes the series that make up the solution of an equation

may be recognized as those of familiar functions. In such cases,

the solution can be written in terms of those functions. For

instance, in the answer given on page 122 for exercise 12, page

120, if J. be taken equal to 2 and B to 1, and the two particular

solutions be added, there results the series

which is x~y
e*

x
. If the second solution be subtracted from the

first, there results the series which is x~2
e~

2x
. The general solu

tion is therefore
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y = CjOTV* -|-
c
2
3T2

e~
2z

.

76. Let us attempt to find a solution of Legendre s Equation

in the form of a power series in x.

At first, assume that there is a power series

V=00

y ==
ff(fi ~\~ o \%

K
~f~

* * *

~i~ g
*

-i-
* * *

x OVX
K

where g , gv
-

,
K are constants, which will formally, i. e.,

without regard to whether the series converges or not, satisfy the

equation. It is no restriction to assume, as we shall, that # =j=0,

because, if there is any solution at all, one at least of the g s is

not zero, and we assume that the series begins with the term con

taining the first g which does not vanish.

Since

I/--0

and

^ =
S&amp;gt;

(/&amp;lt; + v)(/c

Substitute in the equation.

V 1Y1 r Vir _i_ i/V* _i_ !. . 2^ lA 1 x ) \.
K H- V)(,K + v

or

j/=a

!/=(

If

- m(m + l)}flr^+&quot;]
= 0.
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is to satisfy the equation, the coefficients of each power of x in

(1) must be zero. Therefore there results the following series

of equations :

(K + 2)(K + 1)0, - {K(K + 1) - m(m + 1)}^ = 0,

3)(K + 2)&amp;lt;/s
- {(K + 1)(* + 2) _ m(m + 1)}^ = 0,

(2)

2r - 2)(/c + 2r - 1) - m(m

From the first of these equations, since g =j= 0, therefore,

= 0, or K = 1. At first, take K = 1.

Substitute in equation (2) and calculate the # s in succession.

ffi
=

X

1

where ^ is arbitrary, and gzr
has the value given above, formally

satisfies the equation. Since this series is convergent, (3) is a

particular solution of the equation.

Next, take K = 0.

Substitute in equations (2). gl
is arbitrary. Call it zero.
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m(m+l) m(m-2)(m+ l)(
&quot; ~

^ l

-
4

[2
~U~

(4)

where
&amp;lt;7

is arbitrary, and g2r
has the value given above, formally

satisfies the equation. Since the series is convergent, (4) is a

particular solution of the equation.

If solution (3) be denoted by yl
and solution (4) by yv the

general solution of the equation is y = Ayl -f By^ where A and B
are arbitrary constants. (See Art. 11.)

77. The general form of a linear differential equation of the

second order with right hand member zero is

It will be assumed here that qQ (x), ?,(), g2() are rational

integral functions of x.

If a solution is to be found in the form of a power series in

x a, it will be convenient to write the equation in the form

(* - )&amp;gt;(*)g + (X - )A00 g +A (Z) .

y = 0, (2)

where .p (a;), ^(a;), jt&amp;gt;2() are rational integral functions of x.

The equation can be written in this form in an unlimited number

of ways by multiplying it through by a suitable power of x a

and a rational fraction neither the numerator nor denominator of

which contains x a.
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Definition. The point a is a regular point of equation (2) if

p.W * o.

Without at first making any assumption with regard to the

point a, substitute

in equation (2) and attempt to determine the g s so that the

equation is formally satisfied.

= 0. (3)

Call the expression in square brackets f(x, K
-f- v).

Develop f(x, K
-j- v) into a power series in x a by Taylor s

Theorem.

.-./*, K + V) =/(a, K + V) + / (, K + V)
~~ +

Substitute this development in (3), equate each power of

x a to zero and there results the following series of equations:

&amp;lt;7j(a,
K + l) +flr / (o, K) = 0,

2) + ^/ (a, K + 1) +

Now g 4= 0. Therefore /(a, K) = 0.

And /(a, K) = K(K -
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.-.K(ic-.l)^ (a) H-icp^a) + ^(a) =0.

From this equation can be determined the value or values of K

which are to be used in the subsequent equations (4). Ifp (a}

is not zero, the equation is of the second degree. If p (a) is

zero, the equation is of lower degree than the second.

The necessary and sufficient condition that the equation

is of the second degree is therefore that the point a be a regular

point of the differential equation.

Definition. The equation K(K l)j (a)-f^(a) + p2 (a) =
is called the indicial equation of the differential equation (2).

If the point a is regular, the indicial equation gives two values

of /c, say K and
K&quot;,

and from equations (4), for either value of

K, the values of gv g3 , , may be computed, in general, in

terms of g .

Therefore in general there are two series in ascending powers

of x a, namely,

2/
=

V

Z U,(z-a&amp;gt;y
+v

,

v=0
and

y-Y* (*-)*&quot;*,
v=0

where g is arbitrary in either series, which will formally satisfy

equation (2).

78. The following theorems with regard to the solutions of the

differential equation

in a power series in x a have been established. The proofs

are too long to be given in this book. For a discussion of these

theorems the student is referred to a pamphlet entitled Regu
lar Points of Linear Differential Equations of the Second Order

&quot;

by Professor Maxime Bocher, published by Harvard University.
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Theorem I. If a is a regular point of the differential equa

tion, and the difference of the roots of the indicial equation is not

zero or a positive integer, two solutions in the form of a power
series in x a, viz.,

and

y = E
&amp;lt;/
v (x-a&amp;gt;y

+v
,

v=0

where K and K&quot; are the roots of the indicial equation, exist, and

these series are convergent. In each of these series g is

arbitrary.

In this case, if y l
denotes one of the series and y2

the other,

the general solution of the equation is y = Ay^ -j- Ey%
where A

and B are arbitrary constants.

A case to which this theorem applies is Bessel s equation when

n is not zero nor an integer, discussed in Art. 80.

Note. By the difference of the roots of the indicial equation

being a positive integer is meant that the greater minus the less

is a positive integer.

Theorem II. If a is a regular point of the equation and the

difference of the roots of the indicial equation is a positive inte

ger n, the necessary and sufficient condition that two solutions

of the form under Theorem I exist is that

?-,/ (, &quot;&quot; + - 1) + + 9.
f (a~^ = 0,

IV

(see equations (4), Art. 77), where K&quot; is the smaller of the

roots, and when this condition is fulfilled, the series are conver

gent,

In this case the series corresponding to the larger value of K,

say K
,
can be found as before. In the series corresponding to

K&quot;, g and
&amp;lt;/,

are arbitrary, but if g l
be chosen zero a particular

solution in terms of g is found. Then if yl
denotes the first

series, and y3
the second, the general solution of the equation is

y = Ayr -j- Byt
where A and B are arbitrary constants.
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A case to which this theorem applies is Legendre s Equation
discussed in Art. 76. ,

Theorem III. If a is a regular point of the equation, and the

difference of the roots of the indicial equation is either zero, or a

positive integer n where

two solutions are found, one being

y = T,9 v(x-aY+v
,

v&amp;lt;d

the other being

y = log O _ a) fr(* - aY+v
+&quot;if0r(*

-
a)&quot;&quot;*&quot;,

v=0 v=0

where K is the larger root of the indicial equation and K&quot; the

smaller, and these series are convergent. In the first of these

series gQ
is arbitrary. In the second, gQ

is arbitrary and gv is

determined in terms of g .

If yl
denotes the first series and y3

the last; term of the second,

the general solution of the equation is

y= 1A + B log O - 01 2/1 + By

where A and B are arbitrary constants.

A case to which this theorem applies is BessePs Equation
when n = 0, or an integer, discussed in Arts. 82 and 83.

Theorem IV. If the point a is not a regular point of the

equation there are not two solutions of the equation in any of

the forms under Theorems I and III, and if any series in one of

these forms is found it is usually not convergent.

Cases to which this theorem would apply will not be considered

in this book.

BESSEL S EQUATION

79. We shall now consider the solutions of the equation

in the form of a power series in x.
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The equation as it stands is in the form (2) of Art. 77, where

PoW = * PM = ! ^aW = x* - n*-

Since jp (#) cannot be zero for any value of x, all points of

this equation are regular. Therefore the solutions of the equa
tion for all values of x, and in particular when x = 0, will come

under one or other of the forms mentioned in the first three

theorems of Art. 78.

Substitute

y =
&quot;

g v^ v

i&amp;gt;=0

in the equation.

-
&quot;If [(* + V)(K + v - 1) + -f v) + (V _ 7i)]^^+&quot;= 0,
v=0

or

If [(K + v)
2 + *2 _ ^ 2

]^^^&quot; = 0.

x=0

The equations for the determination of the g s are therefore :

(K
2 _ n^g. = 0,

[(*+!)*-0^ = 0,

[(x + 2)
2 -n2

]^2 + !7o
= 0,

[(K + 3)
2 _712

]^ =:0, (1)

[(K + 2r - I)
2 -

&amp;lt;]0M = 0,

Since
gr =j= 0, from the first equation there results K = n.

The difference of the roots of the indicial equation is therefore

2n. If n = 0, this difference is zero. If n = ~, where j9A

is an odd integer, or if n is an integer, this difference is a posi-

P
tive integer. If n is neither zero nor ^ nor an integer, the dif-

Zi

ference is neither zero nor a positive integer.
nr\

80. At first assume n neither zero nor ^ nor an integer.
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This is the case covered by Theorem I. There are therefore

two solutions

and

To determine the gv substitute K = n in equations (1).

&amp;lt;7o

4(2 + 4)
~

2 4(2ra + 2) (2m + 4)

_ f _ 1 y 9-^ &amp;gt; 2 - 4 - - -

2r(2 + 2)(2n + 4)
- - (2w + 2r)

2 4(2 + 2)(2n + 4)
~

g

where g is arbitrary and ^2r
has the value given above is a par

ticular solution of the equation.

Similarly, on substituting K = n in equations (1) there

results

y = gf~
[l
+
2(2n

g

_ 2)
,_X__ I . . 1 ^Zf^r , . /Q\

f
2.4(2n_2)(2n_4)&quot;

f ^
g J

Lj

where ^ is arbitrary and

9,______~
2 4 -

2r(2^i - 2)(2w - 4) (2 - 2r)

is a particular solution of the equation.
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If yl
denotes the first series and yt

the second, the general solu

tion of the equation is y = Ay1 -f- By2
where A and B are arbi

trary constants.

79

81. Next, assume n = =^^- Assume, for definiteness, that p

is positive. In this case the difference of the roots of the indicial

equation is a positive integer, viz. p. From an examination of

T)

equations (1) it is seen when n = ^ that both g and gp are
2i

arbitrary. Choose gp = 0, and there results the same equation
nr\

as (3) of the preceding article when
-j-^

is substituted for n.

Therefore in this case there are two particular solutions of the

equation which are the same as the solutions in the case of the

f)

preceding article when ^ is substituted for n.
Zi

82. Next, assume n an integer. Since n appears only in the

form of a square in the differential equation, it is sufficient to

suppose it a positive integer.

In this case the difference of the roots of the indicial equation

is the positive integer 2n.

For the root K = n, the series is the same as (2) of Art. 80.

For the root K&quot; = n, the equation

is such that the coefficient of gyn
is zero. Therefore, since

#2n-2 =H 0&amp;gt;
tms case comes under that mentioned in Theorem III,

Art. 78.

To get a solution corresponding to
K&quot;,

let

y = qga
i/=0 v=0

For the purpose of determining the coefficients
~gv ,

write the

series in the form

y = if (v-2n log X + gv
v=0

where g_tn
= g_,n+l = = g_, = 0.

9
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Substitute in the equation.

-&quot;if [(*&quot; + &quot;)

2 + *? -
&amp;lt;l#v-2 log x x*&quot;+

v

&quot;V{2(K&quot;+v)^_2,+ [(K--f v)
2

+^-^]^}^+&quot;= 0. (1)

Now in the coefficients of log x - XK &quot;+ V
, &amp;lt;7_2n, g_2n+l , , g_v

are zero, and the remaining ones are the same as the left hand

members of equations (1), Art. 79, with K&quot;
-{-

In substituted for

K. Now K&quot;
-{-

2n = K
,
and equations (1), Art. 79, hold for

K K . Therefore all the coefficients of log x
- XK &quot;+V vanish.

From the second set of terms in (1) are found the equations

from which to determine
&amp;lt;/.

These equations are:

&amp;lt;V

2 _ n^g. = 0,

[(K- + 2ny - n*]g^ + gM + 2(&amp;gt;&quot; + 2n) 9o = 0,

[(K&quot; + 2n H- I)
2 - n^g,n+l + 2(&quot; + 2n + 1)^ = 0,

&quot; + 2n + 2)
2 _ n^gM + 9*&amp;gt; +W + 2w + 2)(/2

= 0,

Since in these equations, K&quot; = n, therefore g ,
an arbitrary

constant, satisfies the first equation. Also,

_ 2)

- 4)
*

r 2.4. .-2r(2n-2)(2n_4)-
- -(2/i-r

Since the coefficient of
&amp;lt;?2n

is zero, this equation introduces no

new g. The equation, however, gives a means of determining the

hitherto undetermined constant g ,
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Also

~2 2 &quot;-2Q-l)2

~fi 7, - ff
77 _ o_

&amp;lt;Ji

-
&amp;gt; U* -

2(2n - 2)
J*n~*

-{2.4.6-. -~(2n - 2) }
2

where

Choose
&amp;lt;/2n

= 0. Therefore

-|
-v y J

; 2 4 ... 2r2^

z4

2) 2 2n

^
1

+ 2 J

rn+2r ,

where
^r

is arbitrary and
&amp;lt;72n+2r

has the value given above, is a

particular solution of the equation
If the first solution be denoted by y^ and all terms not involv

ing log x in the second by ?/2 ,
the general solution of the equation

is y = (A -\-
B log x)yl -\- JByz

where A and B are arbitrary

constants.
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83. Next, assume n = 0. In this case the difference of the

roots of the indicial equation is zero. This case is covered by
Theorem III.

The two infinite series when n = can be found from equa
tions derived as in the preceding case. They can also be found

by letting n be zero in the results in that case. Two particular

solutions are

z x4&quot; xzr

~
2 2

~~ &quot;

~^~ ^
~

) 2
4

2

(2r)

and

84. As will appear in applications to physical problems, when

n is a positive integer it is convenient to take, not y^ and yv but

the quotients of these by 2 n

\

n where g is unity. These special

solutions are written Jn(x) and Wn(x) so that

~

and
f 2n

~3
1 n 2 x~

Fn &amp;lt;

= J log x - 2-1

\n
- 1 x- + -

2n
~l

\n-l

LEGENDRE S EQUATION

85. Returning now to the equation

(1 - *)g -
2*g + (w+l)y = 0,

considered in Art. 76, we see that it can be transformed into the
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form (2) of Art. 77 by multiplying through by x2
. The trans

formed equation is

*2(i - *2) 2 - 2x*

fx + m(m + ixy =

where pQ(x) = 1 x\ p v (x) = 2x*, pt (x) = m(m -f- 1)#
2
.

Since _p (#) = when x = I and x = 1, the points 1 and

1 are not regular points of the equation. All other points are

regular.

The indicial equation when x = is

K(K_ 1) = 0.

This equation has the roots and 1. The differential equa

tion in this case comes under the case mentioned in Theorem II.

This case was already discussed in Art. 76.

86. It is convenient when m is a positive integer as it was in

the illustration of Art. 73 to have a solution of Legendre s Equa
tion as a series in descending powers of x. In this case we shall

take the equation, as in Art. 73, in the form

Let

(1 _ * )
_ 2x + m(m + 1)P= 0.

i/=0

and substitute in the equation.

&quot;Z O -
&quot;) (n - v - I)?,**-

1
-2

v=0
_

\_(
n v)(n v -f 1) m(m -f \y\gvx

n~ v = 0.

. . [n(n+ 1) _m(m + l)]0r = 0,

\_(n
-

1&amp;gt;
_ m(m + 1)]^ = 0,

n(n - IX - [(^ - 2;(w - 1) - m(m + 1)]^ = 0,

_ [(n - 2r)&amp;lt;&amp;gt;

_ 2r + 1) - m(m + 1)]^ = 0.
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From the first equation, since g 4= 0,

. . n(n -f- 1) m(m + 1) =0.

. . n = m or n m 1.

&quot;it first take n = m.

(m l)m-
. 9l = 0, g%

= - -
gv &amp;lt;73

= 0,
.

-,

= (~ IV
~ - - 2r - 2)

J 2r . . . 4 - 2(2m - 2r + 1)
-

A series in descending powers of x which satisfies the equation
is therefore

P-~ \l
O- 1 ) -~
2C2^TT)

x

(m-3)(m-2)(m-l)m g 1

4.2(2m_3)(2m_l) h
~g~

+

^nere
(/

is arbitrary and #2r
has the value given above.

By taking n = _ m 1, there results the solution

-

f (

I

J

where ^ is arbitrary and

(m + 2r)(m-f 2r - 1) (m
2r 2r 2(2m 4. 3)

- - - (2m + 2r +T) v

When m is a positive integer, solutions (3) and (4) of Art.

76 is a finite series according as m is even or odd, and in either

case, equation (1) above is finite differing from (3) or (4) of

Art. 76 only by a constant factor.

87. If series (1) of Art. 86 be multiplied by

(2m- l)(2m_3) ! 2m .--^- or
,
the resulting integral is

, m 2m(m)
2



INTEGRATION IN SERIES 119

called the Legendrian Coefficient of the wth order, and is de

noted by Pm(x).
The successive values of jP

TO(#) are readily found to be

EXERCISES

1. Find the remaining six particular solutions of the equation

considered in Art. 72.

2. Find two particular solutions of the equation

. du ^d
2u

dt
=

dx*

3. Find two particular solutions of the equation

d(ru) ,d\ru)~ ~~
4. Find four particular solutions of the equation

du
2
/ d 2u d 2u \

dt
~ J

\ dx
2

dy
2

/

5. Find four particular solutions of the equation

_
dt

2
~

dtf

6. Find four particular solutions of the equation

d y + U dy
c&amp;gt;

d *

y
.

at*
+

.

af.&quot; dx*

7. Show that equation (1) of Art. 70, in rectangular coor

dinates, becomes equation (2) when transformed to polar or

spherical coordinates. The equations of transformation are

x = r cos sin
&amp;lt;, y = r sin sin

&amp;lt;,
z = r cos &amp;lt;.

du du dr du dO du
d&amp;lt;j&amp;gt; n i

Suggestion. =- = =- - + ^, -_- + ^ ^-, and similarly
dx dr dx

~
d$ dx

d&amp;lt;$&amp;gt;

dx
for y and z.
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Find the general solutions of the following equations :

8.
2*-g _*!+(!+). 0.

9 &quot; 9af&+&*-*)&- (* + V9 = 0-

10. 4z4* 1

14. x_

17. Show that,

ANSWERS

1. 2 = sin ax cos % sin at Va
2 + /8

2

,

z = sin CUE cos fiy cos cf V 2 + ft*,

z = cos a# sin fiy sin c^ Va
2 + ft*,

z = cos ax sin /??/ cos c^ a2 + ft
2

,

z = cos ax cos /&/ sin ct Va
2

-f y8
2

,

2 = COS cue COS y8y COS ct Va
2

-f y8
2
.

2. u =e ~c2a2t cos a^, it = e-c2 2&amp;lt;

sin
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3. u = - e~c2a2 cos ar, u = - e~c2a2 sin ar.
r r

4. u = e-e
2

(&amp;lt;*

2+0 2
)* cos ax cos fiy, u = e-c2 (

2+0 2
) cos ax sin $/,

w = e
-c2(a2+02)f g n aa,

gjn^ M _ e
_C2(a2+02)f gjn ax CO6^

5. y = cos ax cos Ca
^&amp;gt; y = s^n a:c s^n Ca^f

y = sin cue cos ca^, 2/
= cos ax s^n Ca^-

6. y = e~
kt
sin aa; cos f cV ^2

, ?/
=

y = e cos cue cos f Vc
2a2 k2

, y = e
kt
cos cue sin t VcV2 k

2
.

8. =

1 3

274^3^7
~
2.4.6.3. 7-11

where

e 2
1

1
x f g** \

and

9.

- 2-5 . 2-5-8x-+^+^ +

where

r) _
~~

32r 5 - - -

(2r + 3r2

)
r
~

32r
- 1 -

(3r
2 _ 2r)

10. -
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where_1 1^ =
8 r 3 1 (2r

2 + r)
^2r = V- 1 - 6 (2r

2

_7)

11. =

12. y = 4s-1

[l
+ f*

2 + g^g*
4 + - + ^- + -..

+ 1^ + 2^2^ + H- g^ +
],

where

r

6-20---2(2r
2

+r)

13. .

^2r =

l +K + gT 30
^ + + g

where

^ =3r =
12.42--.3(3r

2 + r)
=

6 30 3(3r
2 - r)

14. y = ^[1 - %x 4. ^2

] 4. ^-2

[l
-

4a;].

15. y=[A + Blogx]

[2
2

2
2

s

1 - p + pTI
^ ~

FT2 2T

+ B p*
- j-Ai + i) + irrra-^P + 4 +

where
Or

and ..
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16. =

*) + Al + 4

where





FISHER AND SCHWATPS
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the requirements for admission to colleges, the &quot;Complete Secondary&quot;

covers the requirements for admission to any scientific school, and is also

sufficiently full for the ordinary work of the first year in college.
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ratics and Beyond&quot; consists of the second half of the &quot;Complete Sec

ondary,&quot; bound separately for the convenience of advanced and reviewing
classes in secondary schools, and for college freshman work.

The second series constitutes a more difficult course and places more

emphasis on the theory of mathematics. In this series the &quot;School

Algebra&quot; corresponds roughly to the &quot;Secondary,&quot;
and the &quot;Elements&quot;

to the &quot;

Complete Secondary.&quot;

The Higher Algebra
&quot;

is a book for college courses. The &amp;lt; Textbook

of Algebra&quot; is a high school book containing an unusually large number
of graded exercises

;
it is a valuable mine of problems bearing on the

regular high school work.
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[HIS book is designed especially to introduce the student

ofengineering to the mathematics upon which his future

work will be based, but in spite of the emphasis on the

practical side of the subject the needs of classes in clas

sical colleges and universities have been neglected in no way.
To meet the needs of colleges where the study of the calculus

is taken up in the first year of the course, Professor Campbell has

presented a more detailed discussion in the opening of both the

differential and integral parts of his work than is usually given
in text-books. Thereafter, the subject is developed by the use of

practical problems which are sure to arise in engineering work.

Thus all subjects only remotely connected with engineering have

been omitted, while in addition, a few elementary chapters in

mechanics have been supplemented. This presentation of mate

rial, without encumbering the book, affords a short introduction

to Mechanics and Differential Equations as well as a view of the

principles of Attraction, Centers of Gravity, and, to a certain ex

tent, the Moments of Inertia, from the mechanical rather than

from the purely mathematical side.

The part of the book which differs most widely from other

text-books is that dealing with the integral calculus. A full ex

planation is given of each step in the formation of each summation

and integral. In addition, in order to enable the student to grasp
more fully the details of the subject, the author has introduced a

large number of practical questions which are found in actual ex

perience to produce the desired result better than the theoretical

propositions introduced into the older treatises.
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