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PREFACE.

THE bulk of the following work was written several years ago,

and was designed to supply a want which was then much felt,

that of a treatise giving simple methods of calculating strains

on girders, trusses, arches, roofs, and other kindred structures.

The treatises existing at that time were either too meagre or

too mathematical for the average engineering student. One class

gave him results without explaining to him how they were ob-

tained
;
the other, in making the required explanation, bewildered

him with mathematical formulae beyond his comprehension.

Several excellent works on this subject having appeared

during the last few years, the issue of another from the press

might be thought superfluous. I have judged otherwise, because

the methods adopted in this little work are mostly original,

and, as I consider, simpler than usual. A knowledge of simple

equations, excepting on the subject of deflection, where a little

elementary trigonometry is required, is the extent of the

mathematical attainment required for working out the problems

presented in this work to the reader.

The article on "
Economy in Suspension Bridges" from "

Engi-

neering" is added as a supplement to the chapter on Suspen-

sion Bridges.

THE AUTHOR.
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STRAINS ON GIRDERS, ARCHES,

AND TRUSSES.

CHAPTER I.

OF LEVERS AND THE RESOLUTION OF FORCES.

The Lever. By
" a lever" is commonly understood a bar of

wood or iron such as a handspike or crowbar employed for moving
great weights. As we shall have under our consideration in the

course of this work structures consisting of a combination of many
levers, the whole of the structure itself being sometimes considered

as one lever, it will be advisable to commence with a few remarks
on levers and leverage, a correct knowledge of the principles of

which is indispensable for the determination of the strains to

which such complex structures are subjected by the pressures
which they have to bear.

Fulcrum. The bar abc (fig. 1)

is a representation of a simple
lever resting on a support at b

called the fulcrum, or fixed point
about which the lever would turn

if the forces at each end did not

balance each other. A weight of 100 Ibs. is suspended from the

end c.

Ann or Leverage. Suppose the lever to have no appreciable

weight, to be 6 feet long, to lie horizontally, and the fulcrum 7>

to be placed 2 feet from the end c, and therefore 4 feet from a.

Y. 1
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The distance be, being the perpendicular distance of the line of

action of the load from the fulcrum, is termed the Arm or

Leverage at which the 100 Ib. weight acts. The tendency of the

load at c is to depress that extremity of the lever and raise the

other. The fulcrum b may be considered as the centre of two

concentric circles of which be and ba are ra,dii ; and, assuming
the lever to oscillate about the point 6, the arcs described by
the points a and c and their velocities will be directly proportional
to their respective distances from the point b.

Moment. Since it is a first principle that the moments of two

opposing forces must be equal in order that they may balance one

another, and the moment of any force about a fulcrum is the force

multiplied by the leverage, if we divide the moment of the 100 Ib.

weight by the leverage of the counterbalancing force at a, we shall

obtain the value of the latter.

Now the moment of the 100 Ib. weight = 100 x 2 = 200
;

200
.*. 7- = 50 Ibs. = counterbalancing force or power acting down-

wards at a.

The pressure on the fulcrum at b will therefore be 150 Ibs.

Levers of three kinds. Figs. 1, 2 and 3 represent what are

sometimes called the three kinds of levers, because the relative

positions of the power, the weight, and the fulcrum are different

in each case.

Such a distinction is however un-

necessary, and may be confusing to

some. We will therefore consider the

pressures exerted by the power, the ^
weight, and the fulcrum, simply as r

*
"~j

*

forces, and represent them by the O O
pull of weights on strings (see fig. 4).
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We can then assume at will any of the three points as a fulcrum,
and thus avoid confusion of ideas.

Bent Lever. In estimating the

moment of the force acting upon
the extremity d of the bent lever

shewn in
fig. 5, the distance bd must

not be assumed as the arm or lever-

age but be, since be is the perpen-
O

dicular distance of the line of action

of this force from the fulcrum at b.

Examples. In the example il-

lustrated in
fig. 6, the moments of

the three forces on the left side of

the fulcrum at b are

10 x 2 = 20

10 x 4 = 40

10 x 6 = 60

120

120
.'.

-g-
= 60, the force required at c to maintain equilibrium.

The pressure on the fulcrum at b = 30 + 60 = 90. The mo-
ment of the three forces of 10, each acting at leverages of 2, 4

and 6 respectively, is equal to that of a force of 30 acting at their

mean leverage of 4 thus 30 x 4 = 120 their moment, and gene-

rally The moment of any number of parallel forces about a

fulcrum is equal to the sum of the forces acting at a point which

may be called their centre of gravity.

For instance, in fig. 6, the point b is the centre of gravity of

the downward forces acting on the lever abc, and their resultant

is a pressure of 90, their sum on the fulcrum at that point.

It must be carefully remembered that the moments of forces

acting in contrary directions must be added together when they
are situated on opposite sides of the fulcrum, because each tends

to turn the lever in the same direction.

Fig. 7 is a representation of a lever acted upon by 7 forces,

acting either vertically upwards or downwards as indicated by
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the arrows. Their points of application are equidistant from

-"
.

I I I
3 27 17

each other, and their intensities, being represented by numbers

written against the arrows, are so arranged as to maintain the lever

in equilibrium.

The sum of the upward forces is equal to the sum of the

downward forces, and any point in the lever being assumed as a

fulcrum, the moments of opposing forces about that point balance

each other, e.g.

Let the force 21 represent the reaction of a fulcrum, and let

the forces tending to depress the right-hand extremity of the

lever have the sign +, and those tending to turn the lever in the

opposite direction the sign ,
then

Moments of forces on left I

., -- , \+ 10x2 = + 20
side of fulcrum are

I + 4 x 1 = + 4

Total ....................................... + 9

J'

_ 22 x 1 = 22

side of fulcrum are
]
I 7x3 = 21

Total ....................................... -9

Again, take the left-hand extremity of the lever as the

fulcrum.

The moments are as follows :

- 7x6 = - 42

+ 17 x 5 = +85
-22x4 = - 88

+ 21x3= +63
- 4x2=- 8

-10xl=- 10

Totals ................ -148 +148
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Once more, take a point half way between the points of appli-
cation of the forces 10 and 4 as the fulcrum.

The moments are

-lOx } = - 5

+ 4x } = + 2

-21xlJ= -31}
+ 22 x 2} = -f 55

-17x3}= -59}

Totals ................. +96 -96

The lever is thus shewn to be in equilibrium.

Fig. 8 is a representation of an irre-

gularly shaped body acted upon by three

forces f
l

, f\ and f*, in the same plane,

whose lines of action are shewn by dot-

ted lines, and their directions by arrows.

If these forces are in equilibrium, what-

ever point in the body may be assumed as the fulcrum, the op-

posing moments of the forces about that point will be found to

balance.

Any point a in the body being assumed as the fulcrum the

leverages of the forces/
1

, /
2

,
and /

3

may severally be represented

by the lines ab, ac, and ad drawn perpendicularly to their respec-

tive lines of action from the fulcrum a.

If equilibrium be maintained

Although the strains on engineering structures of a very com-

plicated kind can be found by considering them as combinations

of levers and applying the principles which have been laid down

in the preceding pages, nevertheless the strains in certain cases

can be determined more rapidly, and with less liability of error,

by the application of the principle known as The parallelogram

or triangle offorces, which is as follows.
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Parallelogram of Forces. If two adjacent sides of a parallelo-

gram represent both in magnitude and direction two forces meeting
in a point, their resultant may be represented by the diagonal of

the parallelogram drawn to the point where they meet.

For example, let a (fig. 9) be a body
acted upon by two forces represented by
the lines ac and ab, and their directions

by the arrows. If cd* be drawn parallel

to ab, and bd to ac, the diagonal ad repre-

sents both in magnitude and direction a single force equal to the

combined effect of the forces ab and ac upon the body a.

Resultant. The line ae, which is the equal of the diagonal ad,

called the resultant of the farces ab and ac, shews the magni-
tude and direction of the force necessary to balance the forces ab

and ac,

Triangle of Forces. The forces which keep the body a in

equilibrium are represented by the sides of the

triangle abd, both as to direction and amount.

The arrows indicating direction arrange them-

selves as in fig 10, in consecutive order.

Corollary 1. When three forces which meet in a point, and

whose directions lie in the same plane, maintain a body in equi-

librium
;
their magnitudes are proportional to the sides of a tri-

angle, each of which is drawn parallel to one of the forces.

Corollary 2. One of the three forces being known, the magni-
tude of the other two may be found by constructing the triangle.

Corollary 3. Any one force in the triangle is the resultant

of the other two.

Polygon of Forces. In fig.
10 substitute for the force ad the

two forces represented by the dotted lines ac and ad, of which it

may be regarded as the resultant. Also for the force ab substi-

tute the forces be and ea. The condition of equilibrium remains

unimpaired.
Thus we have a body maintained in equilibrium by the action

of five forces represented by the sides of the polygon acdbe.

* This operation is generally called completing the parallelogram.
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Hence we may gather that if a body in equilibrium is acted

upon by more than three forces meeting in a point, they are

proportional to the sides of a polygon to which their directions

are severally parallel.

But since many polygons may be drawn whose homologous
sides shall be parallel, it is obvious that we cannot by this means
discover the value of unknown forces, except in certain cases.

A body o, fig. 11, is acted upon by 6 forces p, q, r, s, t, u, which

may be respectively represented by the sides ab, be, cd, de, ef,

and fa of the polygon abode/, of which ab is drawn parallel
to the direction of p, be to q, and so on, or the forces may be

represented by any other polygon as abcghik whose sides are

respectively parallel to the forces.

Examples of the Polygon of Forces. To find the values of

unknown forces by the polygon of forces.

Of the forces p, q, r, s, t, u, let the values of p, q, r and s be

known, and of t and u unknown.

To find t and u.

Draw the line ab parallel to the direction of force p, and make
the length of ab to represent the intensity of p. From the point
b draw the line be in a similar manner parallel and equal to

force
q, cd equal to r, and de equal to s. From the point e draw

a line of indefinite length parallel to t, and from point a a line

parallel to u intersecting the line drawn from e parallel to t in /;
the lines ef and fa represent the values of the forces t and u

respectively.

Again, let the forces q and t represented by the sides be and ef
in the polygon be unknown, required their values.
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Now as the sides fa, ab, cd and de

represent known forces, their lengths

and inclination are fixed, consequently

the relative position of the points/and b

is fixed, also that of c and e. Join ec (fig.

11). Through b (fig. 12) draw a line of

indefinite length parallel to the direction

of q, also a line through point/ parallel

to t
;
in this line take any point #, draw xy

parallel and equal to ec (fig. 11), and

through the point y draw a line parallel

to fx intersecting the line drawn through b parallel to,^ in the

point c. From c draw a line parallel to the line ce (fig. 11), and

meeting the line fas in e
;
the lines be and fe represent the values

of the two unknown forces.

If the directions of the two unknown forces be parallel, their

values cannot be discovered.

This method is frequently of use in determining the strains on

roofs or other structures where a number of struts and ties meet

in a point ;
the strains on some of them being known, this fur-

nishes a means of arriving at the strains on the others.

Corollary. In the polygon of forces any one force, its direction

being reversed, is the resultant of all the other forces.

Thus if the body o be acted upon by 5 forces represented by
sides ab, be, cd, de and ef of the polygon abcdef (fig. 11), their

combined effect tends to move the body in the direction of a to /
with a force represented by the line of, since the addition of the

forcefa will keep the body at rest.

Resolution or Decomposition of Forces. In constructing the

polygon acdbe (fig. 10), the force ad was resolved or decomposed
into two forces ac and cd. Forces inclined at an angle with the

horizontal may be resolved into a horizontal and a vertical force.

For example: the force ac (fig. 13) may be j*ia.ia

resolved into the horizontal force ab, and the

vertical force bc-
}

these forces being termed

respectively the horizontal and vertical ele-

ments or components of the force ac.
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We shall find it very convenient, in tracing the strains througf

complicated structures, not to attempt to find the direct strain on

every bar in the first instance, but the horizontal or vertical strain

merely ;
from either of these the direct strain can afterwards be

calculated.

Example. By the resolution of forces

we obtain the following proof that the

sides of a polygon represent a set of

forces in equilibrium.

Let the sides of the polygon abcdef t

represent six forces acting upon a point, N b

the arrow-heads shewing the directions

of the forces which are consecutive.

Describe the rectangle ABCD about the polygon abcdef.
From c draw eg parallel to AB, and ch parallel to AD, and from

e draw ei parallel to BC, and ek parallel to AB.

Let the effect of any force towards the upper part of the

parallelogram be called northing, represented by the letter N, that

towards the right hand easting, represented by E, and similarly

southing and westing by S. and W.

Now the force ab exerts a pressure represented by the line aD
in a westerly direction, and in a northerly a pressure equal to Db.

Kesolving each force into its N. S. E. or W. directions, and

adding all the N.s, S.s, E.s and W.s together, we get the following
result.
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Therefore they are in equilibrium, and as the combined effect of

the forces ab, be, cd, de, ef, fa has been shewn to be equal to that

of the forces DA,BC, AB and CD, therefore the forces represented

by the sides of the polygon abcdef are in equilibrium.

Alternative methods, the Lever or Parallelogram of Forces.

As it has been already stated, the

strains upon the parts of a struc-

ture may be found by means of

the parallelogram of forces as well

as by the principles of the lever.
,^_

abed (fig. 15) is a simple truss,
"

in which ac is horizontal and bd vertical, supporting a load of 8 at

n (* a (*

the point b. The depth Id = -r ,
and the distance be = -j- . Then

the load on the point of support at a will be 2 and that on c

will be 6.

Lever method. Taking the distance be as our unit of length,

we have 6 as the moment of each of the reactionary pressures of

the abutments. Assuming the point b as the fulcrum, 6 being the

moment of the force acting at a, the balancing strain on the bar ad

must =-7, the distance eb being its leverage. Similarly the

n

strain on the bar cd must = T> .

Again, taking point d as the fulcrum, we find the strain on the
s*

bars ab and be to be ^= = 6, since bd bc = l.
oa

Since eb : bd :: ab : ad, we perceive that the strains on the

bars ab and ad are to each other as their lengths, and the same

holds good of the bars be and cd.

Method of Parallelogram of Forces. To find the strains by
the parallelogram of forces, produce the line bd to h making
dh = the load of 8 to any convenient scale. Produce the lines ad

and cd indefinitely. From the point h draw hg parallel to cd, and

hi parallel to ad. From the points i and g draw horizontal lines

11 and glc to meet the line dh in the points / and k.

The line dh being the diagonal of the parallelogram dghi

represents a force which is the resultant of two forces represented
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by the lines di and dg, wherefore by applying the same scale to

these lines as we have used for dh, we ascertain the strains on the

bars ad and cd, which they severally represent.

The distance dk is the vertical element of the strain dg on the

bar ad = 2, and dl is the vertical element of the strain on dc = 6.

Forces acting in different planes. When three forces whose

directions are not in the same plane meet in a point, their resultant

is the diagonal of a parallelopiped of which three consecutive edges

joining the opposite extremities of the diagonal represent the

forces.

Thus the diagonal ad of

the parallelopiped (rig. 16)

is the resultant of three

forces represented by the

sides abj be and cd. These are

the equivalent of the three forces shewn by the lines AB, BC
and CD, of which the first two only are assumed to be in the same

plane, that of the paper. These two may be resolved into one

force AC, and the forces AC and CD may be resolved into AD, a

force lying in a plane common to both, and the equivalent of the

diagonal ad.

In a similar manner the resultant of any number of forces

acting in different planes and meeting in a point may be found by
taking them in pairs and finding their resultants, again pairing
the resultants and so on, until only two forces remain, whose

resultant is the required force.
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GIRDERS WITH PARALLEL FLANGES,

Load at Centre of Span. Fig. 17 is a representation of a

parallel flanged girder of a length I v ^^ ^
and depth d, loaded at its middle

with a weight W. Required the

strains on the flanges at the points
^

a and b at the centre of the span.

W being half way between the points of support, the upward
TIT -I

reactionary force is acting at an arm -
. The balancing mo-

ment of the strains at a and b is Sd, S being the strain, and dt

the depth of the girder, being the leverage.

Equilibrium requires that -
.
- = Sd, whence S= -r-j .

The strain at a is compression, that at b tension.

The strain on the flanges at any distance x from the nearest

W x
abutment (see fig. 17) will be .

-^
;
this shews that the strain on

the flanges at any point is inversely proportional to its distance

from the centre of the span.

To find the strain on the flanges at the point of application of

the load when that point is not at the centre of the span.

Let x be the distance of the load from one bearing, and I x

the distance from the other bearing, I being the span.

Let W and W" be the two reactionary pressures on the

bearings, and let

W : W" :: x : l-x,

then W (l-x) = W"x-
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which expressions represent the moments of the pressures on the

bearings about the point where the load is applied, where the

strain on the flanges is

W'l-x W"x

Load evenly distributed, strain at centre. To find the strain

on the flanges at the centre of the girder when the load is evenly
distributed over it.

' f*
Let the point a (fig. 18) be the

'

fulcrum. Let TTbe the distributed

load, I the length, and d the depth
of the girder as before.

Now since the moment of any number of parallel forces about

a fulcrum is equal to the sum of the forces acting at their centre

of gravity (see p. 3), we may consider the whole load on the

part Aa of the girder to be collected a distance half way between

I WA and a, or - from either point, its value will- of course be .

TD 2i

Now the reactionary force of the abutment acts at an arm of
2̂t

about the fulcrum a, its moment therefore is

W l_Wl
2

X
2~~4~*

It is balanced by S, the strain on the flange at b acting at a

W I

leverage of d, and the force of -=- acting at a leverage of -j ;

Wl W I Wl
.-. =^ +T .

5
, whence 8=-^.

This is a very useful formula for finding the strain on the

flanges at the centre of a uniformly loaded girder.

Corollary. The strain produced at the centre of the span by
an evenly distributed load is one half that produced by the same

load collected at the centre of the span.
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Strain at any point of the flange. To find the strain on the

flanges at any point distant x from the nearest bearing.

Let I be the length of the girder, vg iff./9. of

d depth

w unit of loading, |

and wl the total load.

Let a (fig. 19) be the point in the flange where the strain is

required, and x its distance from the nearest bearing.

Assuming the weight of each of the two portions into which

the girder is divided by the point a to be collected at its centre

of gravity, the moments about the fulcrum a giving differing signs

to the opposing forces will be as follows :

On the left-hand side of the fulcrum,

force leverage sign

WX X
I

:

y X * + -T-J-.

, On the right-hand side of the fulcrum,

force leverage sign

Since these moments balance one another,

wlx wx* _ wl (I x) w (I xf I x

S being the strain on the flanges at a,

~,_ I x
A Q t x

an expression for the strain on the flanges of a uniformly loaded

parallel flanged girder at any distance x from a bearing point.
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Example. A girder 12 feet long and 1 foot in depth is loaded

with two tons per foot of its length, required the strain on the

flanges at a point 3 feet from the bearing.

Here Z = 12, d = 1, cc=3, w = 2.

I x
Giving these values to I, d, and x in the expression wx ,

,
we get

{12

3)
[

= 27, the strain required.Zxl)

If the strain on the flanges be

calculated at a few points in the

girder, and a perpendicular propor-
tional to the strain thereat erected

from each point, a curved line drawn

through the extremities of these lines

(see fig 20) will afford a ready means

of arriving at the strain on intermediate points by measuring the

distance of the flange from the curve in a direction perpendicular
to the former.

When a girder is evenly loaded all over, this curve is a para-

bola of which the apex is situated at the extremity of the perpen-
dicular raised from the centre of the girder, which is the axis of

the curve.

In the parabola if from points in any straight line ab

(fig. 20) drawn perpendicular to the axis cutting the curve in a

and b ordinates be drawn to the curve, their lengths vary as the

areas of the rectangles included by the parts into which they

severally divide the line ab.

Thus the length of the perpendicular at point x in line ab

(fig. 20), is in the same proportion to that at y as ax x bx is to

ay x by.

Now in the equation S=wx 5-7- , oj is a constant quantity ;

therefore the value of 8 varies as x (I x), or the strain on the

flanges at any point varies as the rectangle included by the parts

into which the length I is divided by the point x, and therefore if

the strain on the flange at several points in the girder be expressed
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by ordinates, the curve which passes through their extremities

will be a parabola.

Knowing the strain on the flanges of a girder at one point, we

can easily find the strain at any other by the following proportion :

S':S::(l-y)y.(l-x}x,

in which S is the known strain at a point distant x from one

extremity of the girder, and S' the required strain at a distance y
from the extremity.

Irregularly loaded Girders. To find the strain at any point

a in the flanges of a girder at a distance x from one of the

bearings when the load is not evenly distributed.

First find the load on the bearing (see p. 33) and then the

centre of gravity of the portion x, which we will assume to be

at a distance y from the point a.

Let W be the load on the bearing,

and W portion x.

Then the moment about the point a will be

Wx-W'y=Sd;
Wx- W'y .. ., a

.'. S=
-j

=the strain on the flanges at a.
a

Strain on the Web. Shearing Force. We have now to

consider the strain to which the web of a girder is subjected: this

will depend upon the amount of vertical or shearing force, as it

has been called, to which it is subjected.

The vertical or shearing force at any vertical as ab (fig. 19)

in a girder is the total vertical downward effect of all external

forces on the one side of the plane, which of course equals the total

vertical upward effect on the other side of it.

Required the shearing force at the plane ab (fig. 19).

The upward vertical force on the left-hand side of ab is

wl

^--wx.

The downward vertical force on the right-hand side of ab is
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The shearing force or F
wl n N

,-= -x- wx = w (I x) g"

From this it appears that in a uniformly loaded girder the

shearing force on the web at any point equals the total load

between that and the centre of the girder. At the centre of the

span all shearing stress disappears.

To find the value of F at any plane ab distant x from one

bearing when the girder is not uniformly loaded.

Find the load on the bearing (which may conveniently be done

by finding the centre of gravity of the load) and the weight of the

portion between it and the plane ab
;
the difference between these

loads is the shearing force.

Cantilevers. When a beam or girder supports a load which

does not lie between the points of support, it is called a cantilever.

Load at the extremity. Fig. 21 is a representation of a

cantilever in which the load W is situated at one extremity a of

the girder, the other extremity c and an intermediate point b

being the bearings.

Here the upward pressure on the bearing f .

f/

at c = Wj~, and the load on the bearing
I

~.
be

The strain on the top flange at b = W~ . The strain on the

flange at any distance x from the extremity of the cantilever

-<
The vertical or shearing force at any point in the cantilever

between a and b = W. between b and c = W j- .

be

Distributed Load. When the load is

evenly distributed
>
the strain at b (fig. 22) is

equal to that which would result if the total

load were concentrated half-way between a

and b.

Y.
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If w = unit of loading, 7 the length of the cantilever, d the

depth, the strain on the flange at b or 8

The strain on the flange at any distance x from the extremity

X
WX X

a is

wx x -
o

2 wx*

The shearing force at x = wx.

In the above two cases the strain on the top flange is tension,

that on the bottom compression.

The preceding investigations are chiefly applicable to the cases

of girders or beams supporting evenly distributed dead weights,

as the walls of houses or floors of warehouses.

Wooden Beams. In applying the formulae to wooden beams

izi which the whole of the section of the beam is considered to

resist the bending moment, the upper half by compression, the

lower by tension, we must find a new value for d.

Neutral Axis. If, as is usual, we assume that the strain on

the fibres increases in direct proportion to their distance from the

neutral axis or neutral plane, which is the part of the beam where

the longitudinal strains of tension and compression merge into one

another, and that this is at the centre of the beam
;
the forces in

compression and tension on each side of it may be

represented by shaded wedges (fig. 23) the centres

of gravity of which are at the distance - d from the ^^
2

neutral axis, and therefore at a distance = d apart,o

if d be the whole depth of the beam.

The moment of resistance to bending will therefore be the

2
sum of the strains on the fibres on one side of the neutral axis x -=

o

the depth of the beam. .
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Thus, let a = the breadth of the beam in inches,

d = depth

. - = sectional area of half the beam in inches,
Zi

s = strain per sq. in. on the outermost fibre,

Then
<8f-Y.|

=^,
and substituting

- d for d in the expression
-^-j-

(see p. 13),

Wl ZWl
2

e ads 3WI
therefore :

whence s

^ 4ad?s
and W = jrr-

= the load which the beam will carry.

Actual experiment proves that timber beams will carry a

much greater load than theory would lead us to suppose. The

reasons for this are still involved in mystery. One of them, there

can be little doubt, is the fact that the fibres in the neighbourhood
of the neutral axis are strained much more than is generally

supposed, and therefore that, in fig. 23, the shaded part represent-

ing the strain on the fibres would more correctly have been

bounded by the curved dotted lines, than by the straight lines as

in the figure.

The Web in Iron Girders. In iron girders the resistance to

bending offered by the web is not usually taken into account,

and d is taken to be the distance between the respect-

ive centres of gravity of the top and bottom flanges,

as shewn in fig. 24. The web however does assist the

flanges in resisting transverse strain, and in some cases

it may be necessary to determine the amount of this

assistance.
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When the girder is of wrought iron, a material which contracts

under compression and extends under tension in about an equal

ratio, the top and bottom flanges being of equal area, the neutral

axis is situated half-way between the flanges, and the formula
A .rJ2

W= 7- (see p. 19) will enable us to ascertain the proportion of
of/

the load which may be considered to be supported by the web.

Should the material of the girder be one which compresses

more easily than it extends, or the reverse, the position of the

neutral axis will not be equidistant between the flanges if they
are of equal area.

Fig. 25 represents a portion of beam com- JF^.SS

posed of a material which offers 3 times as much
resistance to compression as to extension. Let

the line ab represent an imaginary vertical

section through the beam. Let de be the posi-

tion assumed by the line ab when the beam is loaded, the distance

ad representing the amount of compression in the upper layer of

the fibres, and eb the amount of extension in the lower layer. The

point c where these lines intersect lies in the neutral axis. Since

the triangles adc and bee are similar to each other,

ac : be :: ad : eb :: 1 : 3,

therefore the distance of the neutral axis from the upper or under

surfaces of a rectangular beam is inversely proportional to the

resistance per unit of section of the fibres at those surfaces to the

strain which they experience.

Examples. No. 1. What amount of evenly distributed load

will a beam 12 inches deep and 6 inches wide laid across an

opening 10 feet wide support, the strain on the outermost fibres to

be at the rate of 1 ton per square in-ch ?

Here a = 6in., ^=12 in., s = 1 ton, I 120 in.,

.a, f rrr 4 X 6 X 144 X 1 n ,

therefore W
Tiifi

= 9'6 tons.
o x \2i\j

No. 2. A wrought-iron girder is 1 foot in depth and 12 feet

span. The web at the centre of the span is J" thick
;
what dis-

tributed load is the web capable of sustaining, taking it as 10''
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deep over all, and the strain on the outermost fibre as 5 tons per

square inch?

Here a ='5 in., cZ = 10in., s = 5tons, =144 in.

4 x -5 x 100 x 5

3 x 144
= 2-314 tons.

Beams and Girders of Irregular Section. To find the load

which a beam or girder of irregular section will sustain, the

location of the neutral axis must be determined, which will be

such that the total moments about the neutral axis of all the

forces on the one side of it balance the moments of all the

opposing forces on the other side
;
d the working depth of the

beam or girder will be the distance between the centres of gravity

of the two sums of opposing forces.

When the section of the beam or girder cannot be equally and

symmetrically divided by a line parallel to the line of action of

fiff.se

the load, generally a vertical line, allowance must be made for the

tendency to buckle unless the beam or girder be prevented from

so doing by stays.

Sections 1 arid 2, fig. 26, are examples of this want of symmetry.
No. 3 is symmetrical.

Practical method of determining the strain on an ordinary

wrought-iron girder.

Ordinary wrought-iron Girders. In the commonest type of

wrought-iron girder bridge, the roadway is carried by cross girders

which are supported by main girders. The points of attachment

of the cross girders, whether they are suspended from the bottom

or rest upon the top flange, are stiffened in the main girder by

upright gusset plates or T irons. The load is considered to be

concentrated at these points, and the strain on the flange between

two adjacent gussets to be uniform.
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Diagram 1, Plate I., is a diagram for a girder in which the

cross girders attached to the bottom flange are equally loaded,

and placed at equal distances apart. The web of the girder is

assumed to be so thin as to be incapable of resisting compression,
and therefore to do duty in tension only.

Let the load at each gusset be 8 tons.

Since the girder is uniformly loaded, there will be an equal
load of 44 tons on each pier, consequently of the load of 8 at the

centre of the span 4 will be borne by the right-hand, and 4 by the

left-hand abutment. The load 4 is supported by the web repre-

sented by the diagonal line, and is conveyed up to the point where

the adjoining gusset meets the top flange. Here it puts a hori-

zontal compressive strain on the top flange, and a vertical strain

of 4 on the gusset. This force of 4 being added, the load of 8

makes a total load of 12 to be carried by the web in the 2nd bay
from the centre. In this manner the load on the web in each bay
increases towards the pier.

Strains on the Flanges. The strains on the flanges in each

bay are found by commencing with the bay next the abutment

and working towards the centre of the span.

For the sake of convenience, the depth of the girder has been

taken equal to the width of a bay and therefore the horizontal

strain on the top flange on the last bay is 44, which is also the

vertical load on the pier, for the point a is kept in equilibrium

by three forces represented by the sides of a right-angled triangle,

in which the two sides enclosing the right angle are equal to one

another.

In like manner the point b in the bottom flange is kept in

equilibrium by three forces, of which the vertical is 44, conse-

quently the horizontal strain on the bottom flange of the second

bay from the abutment is 44, being equal to the vertical.

These horizontal strains on the flanges are carried through till

they meet with reacting strains coming from the other end of the

girder.

The vertical load of 36 carried by the diagonal of the second

bay adds 36 to the strain on the flanges, making it 80 + in the

top flange, and 80 in the bottom.
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Adding in the horizontal effect of each diagonal as we proceed

towards the centre we thus get the strain on the flanges in each

bay, and a maximum strain of 144 tons at the centre.

Diagram 2, Plate I., shews the strains on the flanges, the web

being assumed to act only in compression, while Diagram 3,

Plate I., gives the strains which result when the web resists equally

extension and compression.

It may be observed that the sum of the strains on the top and

bottom flange of any bay is the same for each of the three kinds

of web, while in the last case the strains on the top and bottom

flanges are equal, being the mean of the strains on the two flanges

by either of the other methods.

To prove the truth of the third diagram as in Diagrams 1 and 2,

Plate I., take the load per bay as 4 instead of 8
;
find the strains

on the flanges, which will be just half those given in the figure,

and consider Diagram 1 to be placed upon Diagram 2, so that the

flanges and verticals of each coincide, and the strains of each to be

added together : the result will be Diagram 3, Plate I.

In practice, find the strains by the method of either Diagram 1,

or Diagram 2, and take the mean as the correct strain for the

flanges, the web being strained equally in tension and compres-
sion.

Since As depth of girder : breadth of bay
:: vertical load on a diagonal : horizontal strain

caused thereby,

, , , breadth of bay b
/. horizontal strain = vertical load x 1 -r-

<> . , or -j ,

depth ol girder a

if 6 = breadth of bay,

and d = depth of girder.

In the example we have just considered -= = 1.

The strains on the flanges in Diagrams 1, 2, and 3, multiplied

by the fraction
-^ ,

will give the correct strains for any similarly
d

loaded girders in which the proportion of the depth to the breadth

of a bay is as d to b.
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Strains on the Web. The web in plate girders should be

considered to act as in Diagram 3, in this case it is made to do

double duty; the same fibres which are resisting extension in one

direction, resist a force of compression in a direction at right angles

to the other, without impairing the efficiency of the plate in

offering resistance to either force.

On the system of Diagram No. 3 the webs need only be one-

half the thickness of those required for Diagrams Nos. 1 and 2.

It is a further advantage attending the system of Diagram 3

over Diagrams 1 and 2, that it allows the top and bottom flanges

to be made exactly alike without waste of metal.

Diagram No. 4, Plate L, is similar to Diagram No. 1, but the

letter w is substituted for the load of 8 on each bay. It shews a

more expeditious way of finding the strains on the flanges, saving

figures.

Adding the top and bottom flanges together in any bay, and

dividing by 2, we get an expression for the strain on the system
of Diagram No. 3.

Thus the strains on the third bay from the abutment on this

^A I,
13J W+IV W 113 TT7 OA 'f

system would be - -= = llf W= 94, if w = 8.

Result checked by method described p. 14. The strains on

the 'flanges in any bay may also be found by the method indi-

cated at the commencement of this Chapter, for finding the strain

on the flanges at any point of a uniformly loaded girder. We

cannot make use of the formula 8=wx ,
,
as our load is not

evenly distributed, but concentrated at intervals.
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Taking a girder of which Diagram No. 3, Plate I., is a diagram,

required the strain on the flanges of the 'third bay from the abut-

ment. Draw the vertical line ab (fig. 27) through the centre of

the bay, and therefore passing through the point of intersection

of the diagonals.

The fulcrum being supposed to be either the point a or 6, we

have an upward force representing the reaction of the pier = 5\ W,
which acts at a leverage of 2, if the length of a bay be taken

as 1. In opposition to this we have two forces, W acting at a

leverage of J, and again IF at a leverage of 1 J.

The difference between the moments of these forces is the

actual bending moment about point a or b.

Since the length of each bay is 1, and the depth 1,

The moment of the reaction

of the abutment is 5J TFx2J=13j

The moment of the load be-

tween the fulcrum and the - *

abutment is . . W x -^

Of?

17
'

Bending moment or $=111 W
If TF = 8, =94.

It is proper to consider the flanges throughout the whole bay
as subject to a strain of 11JTF, though if the plane ab in which
the fulcrum lies were taken at a point in the bay nearer the centre

of the girder, the value of 8 would be greater, while on the other

hand it would be less if it cut the bay at a point nearer to the

abutment than the centre of the bay. In such case though the

strain on the flange would be the same, since the line ab does not

pass through the point of intersection of the diagonals, their effects

would have to be reckoned in determining the total bending
moment. The moments of the diagonals depend upon the vertical

distance apart of the points where they are intersected by the

imaginary plane.

Example. In the girder just given, required the total bending
moment on S at a distance of 2f bays from the abutment, being
at the section a'b'} fig. 27.
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Proceeding as in the previous example,

Moment of reaction of

abutment =
5J- W x 2 f = 15J W+

Moment of loads at) 'J
*

I _iw_
each bay j~1 Wx

^J

=12|TF
when width of each bay and depth of girder, or d,

= 1.

The value of 8 for the flanges of bay No. 3 we have seen to be

11JJF, therefore

which must be the bending moment of the diagonals acting at a

leverage of d.

Now the line a'b' intersects the diagonals in the points p and q

and the* distance apart of these points is half the depth of the

d
girder, or

^.

The horizontal effect of each diagonal in bay No. 3 is equal to

its vertical effect, since the diagonals are inclined at an angle

of 45.

By referring to Diagram No. 4, Plate I., it will be seen the

total vertical or shearing force on bay No. 3 is 3J W. The

vertical force on each diagonal when they are crossed is therefore

1| W, which is also the amount of horizontal force exerted by each,

the diagonal in which the point p lies giving a compressive hori-

zontal force and the other a tensive force.

Now 1JW acting at a leverage of -

therefore considering all the horizontal forces as acting at a

leverage of d,

HfTF+f JF=12fTF,

the value of S at a distance of 2| bays from the abutment.

In finding the value of 8 at a point distant 2J bays from the

abutment, the horizontal effect of the diagonal has to be deducted
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from the flange, as the strain on the diagonal is of a different sign

to that on the adjacent flange.

General Formula for the Strain on any Bay. By means of

the foregoing diagrams formulae may be constructed for finding

the strains on the flanges of any bay of a girder.

When loaded as per Diagram No. 1, Plate I., the web being in

tension only,

Let N = whole number of bays in the girder,

n = number of any bay reckoned from the abutment,

b = breadth of a bay,

W = load per bay,

d = depth of girder,

S = strain on flange of any bay n,

Nn^T b fo =n -
yy.-j,tor top tiange (1),

S = 0-1)
~
^

" V

'W.
j

for bottom flange (2).

When the web is under compression only as in Diagram No. 2,

Plate L, equation No. 1 will give the strain on the bottom flange,

and equation No. 2 on the top flange.

When the web plate acts equally in compression and extension,

the mean of equations 1 and 2 will give the strain on either

flange ;
wherefore

S =
2 v } 2
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the shearing effects produced by the different positions of the load

are shewn in separate diagrams.
The diagrams 1 to 14, Plate II., re'present a girder of 12 bays,

having a dead load of 2 tons, and a live load of G tons per bay.

Diagram No. 1 shews the shearing strains produced by the

dead load which are constant, the diagonal line across each bay
serves to shew by which abutment the load on that bay is carried,

the upper end of the line lying towards the particular abutment.

The diagonal lines may be regarded as tension rods and the

figures written against them as the vertical elements of the strains

to which they are subjected.

Diagram No. 2 shews the strains caused by loading the 1st

bay, counting from the left hand, with 6 tons.

Diagram No. 3, the strains caused by the loading of the 2nd

bay, and so on.

The strain on bay No. 2, Diagram No. 3, is 2 -25 only ;
this is

the difference between 2-5, the proportion of the load of 3 resting
at the junction of bays 2 and 3, which goes to the left hand abut-

ment
;
and '25, the proportion of the load of 3 situated between

bays 1 and 2, which goes to the right hand abutment. For this

bay diagonals crossing one another having the numbers 2'5 and
*2o written against them respectively would represent the shearing
forces due to each of the loads of 3 in turn. In all cases where

diagonals representing direction of shearing stress cross, the only
vertical force upon the bay is the excess of the preponderating

diagonal over the other, and the only diagonal to be shewn is the

one representing the intenser force of the two.

If the vertical element of two diagonals crossing one another

is the same, the shearing strain on the bay is nil : such is the case

in the central bay of a symmetrically loaded girder with an odd
number of bays.

The propriety of subtracting opposing diagonal effects may
further be seen if we remember that shearing force produces strain
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on the diagonal, consequently distortion of the normal form of the

bay. When the diagonal ab (fig. 28) is subjected to tension it

stretches
;
in consequence of this the originally square form of the

bay abed (fig. 28) becomes a rhombus af^d^ the points a and

b being forced further apart and the points c and d brought closer

together.

When the diagonal cd (fig. 29) is in tension, a reverse action

takes place, so that were the respective hypothetical strains on the

diagonals ab and cd equal, the rectangular form of the bay would

be preserved, in which case there can be no actual strain on the

diagonals. If the hypothetical strain on the one exceed that on

the other, the actual strain will be the difference of the two.

Diagram No. 14 exhibits the greatest shearing force for every

bay of the girder. The 4 centre bays have two sets of figures and

diagonals crossing one another : this signifies that under one con-

dition of loading the direction of the diagonal differs from that

under another possible condition of loading. The figures written

against each diagonal shew the vertical component of the greatest

strain to which the diagonal can be exposed.
In Diagram 14, the vertical strain of 44 in bay No. 12 is

obtained by taking the sum of the strains on bay No. 12 in all the

diagrams 1 to 13 inclusive. In bay No. 11 the strain of 36'25 is

the sum of the strains on bay No, 2, in Diagrams 1 to 12 inclusive,

that is to say the live load is supposed to be removed from bay
No. 12, the girder being loaded throughout with that exception.

When the girder is loaded all over the strain on bay No. 11 is 36,

since "25 the strain on the opposing diagonal of bay No. 11,

Diagram 13, has to be deducted from 36'25.

Similarly in bay No. 10 the shearing strain is 29, being the

sum of the strains in Diagrams 1 to 11 inclusive.

In bay No. 7 the strain is 5 '25, bays Nos. 8 to 12 being loaded.

5*25 is the sum of the strains on bay No. 7 in Diagrams 9 to 13

inclusive, 1 the strain on bay No. 7 in Diagram No. 1. Since the

dead load is always constant, this neutralizing strain must not be

neglected.

The shearing strain on bay No. 7 when bays 1 to 7 are loaded

will be 10'25, being the sum of the strains in Diagrams 1 to 8

inclusive, the direction of the diagonal in this case being reversed.
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The shearing strain on bay No. 5 caused by loading bays

No. 1 to No. 4 is 1 only. It is the sum of strains on bay No. 5

in Diagrams 2 to 5 less 3, the opposing strain on bay No. 5 in

Diagram 1.

There is no shearing force to left abutment on bay No. 9, for

if we add together the strains on bays No. 9 in Diagrams 11 to 13

we get a shearing force to left hand of 2*25, but the shearing force

to the right-hand abutment on bay No. 9 caused by the dead load

is 5 as given in Diagram 1. Subtracting these forces from one

another we have a remaining shearing force of 2*75 to the right

hand.

Hence it is evident that if Diagram 14 represents a lattice

girder with vertical struts and diagonal tension bars, bars crossing

one another should be inserted in the 4 central bays. For a plate

girder the web in each of the 4 centre bays must be made strong

enough to sustain the greater of the two shearing strains. Since

the web does duty equally in compression as in tension, the

vertical shearing force will be halved for each diagonal ;
thus in bay

No. 1 the web will have to sustain a vertical force of 22 by tension

and a like amount by compression.

The bays in this example being squares, the actual strains on

the diagonals will .be the vertical load upon them x V2.

Formula for Shearing
1 Force. Formula for the maximum

shearing force upon any bay.

If we examine Diagram No. 4, Plate I., we shall see that the

shearing force on the bay next the pier may be expressed by the

formula

~

2
'

W being the load per bay and.-ZV the total number of bays in the

girder.

N 3
In the 2nd bay from the abutment F= W

^

Srd F= W ~^
UlU. 5, ,, 2

'

A 1 1
Tjl T/T7" ^

n ^^n ,,
-t7 r

) '
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and so on. Up to the 6th bay the value of F is positive, but

if after reaching the centre of the girder we continue to count the

number of the bays from the same abutment, we shall get F with

a negative sign ;
this indicates the change in the direction of the

diagonal. The value of F will however be correct, as, for instance,

it may be written thus for the bay next the abutment,

either F= W^^ for bay No. 1 = W^^- = 5JIT,

or F = WN~^ for bay No. 12 = W ~ = - 5J W,

according as we count from the right or left-hand abutment.

A negative value to F shews that the shearing force is carried by
the abutment opposite to that from which the counting has com-

menced.

Putting n for the number of the bay, the formula for the

vertical or shearing force on any bay of a symmetrically loaded

girder becomes

By deducting the values of F as given in Diagram 1, from its

values in Diagram 14, Plate IL, it will be seen that the greatest

shearing force caused by a live load of W per bay is

On bay No. 1, W (

"

>> 4 W

and so on.

N-l N-3 JV-5
For the expressions -r, ^ ,

-
, &c. substitute the

2 22 2
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_
general formula - -~---

, n being the number of the bay,

14 9 , , (n-l)*and express , , , &c. by .

Thus the general formula for the shearing stress on any bay n

due to the live load becomes

2 ~2^

Therefore the maximum shearing force on any bay w. caused

by the live and dead loads combined will be expressed by the

formula

when the number of the bays in the girder is even. When the

number of bays is uneven, the formula is true when n is not

N
greater than -=

;
but when this is the case, a quantity represented

W
by the expression ^-^ (N 2% 1) must be added to the right-

zIlV

hand side of the above equation to obtain the true value of F.

Therefore when the bays are uneven, the value of F in any bay
whose number is more than half the total number of bays in the

girder may be expressed by the formula

W
~

(
N ~

(
Zn ~ !)1 + K -

1)
2

In the foregoing formulas,

F maximum shearing force on the bay n
t

n = the number of the bay counting from one abutment,

N = the total number of bays in the girder,

W = the live load per bay,

W = dead
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N.B. Negative values of F obtained from the above formulas

should be neglected. For the bays near the centre of the girder F
have two positive values, varying accordingly as the number (ri)

of the bay is counted from one or the other abutment. Of these

the greater will be that obtained by counting the number n of the

bay from the nearer abutment. This value of F will be the only
one required for a plate-girder. For a lattice-girder both values

of F must be found, and diagonals crossing one another intro-

duced, as shewn in Diagram 14, Plate II.

Irregular loading, First case, Bays equal. In Diagram 5,

Plate I. are given the strains on the flanges of one girder of a

skew bridge, the load on the left-hand end of the girder being
less than that on the right. For simplicity's sake, the web is

assumed as acting in tension only.

There are two convenient methods of finding the load borne

by each abutment, the first by dealing with each load singly, and

adding the separate effects of all the loads as follows :

Proportion to left-hand Proportion to right-hand
abutment abutment

of bad i
; g |

v ^
3 3x 10 - 30 Sx 2 - 6

X
12~12

X
I2~I2

A_i5 * JL-isX
12~12

X
12~12

7 Tx^- 5? 7xA-??
12 12 12 12

_7 _ 56 5
__
40

X
12~12

X
l2~T2

8 8x-i- 48 8x^-MX
12~l2

X
12~12

j>_40 1_-!MX
12~l2

X
12~12

8 8x
4 - 32 8x

8 - 6*
X
12~l2

K
12~12

Y. 3
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Proportion to left-hand Proportion to right-hand
abutment abutment

OfloadS 8x^-g 8x =g '

j^_16 10_80
" " X

12"12
* X

l2~l218 11 _ 88
X
12~12

X
12~12

Totals = 30-5

Since the total load on the left-hand abutment is 30*5

and right-hand ,. 41'5,

we must so divide the loads that the sums of those which go to

the left shall be 30*5, and the sum of those which go to the right

41'5. To do this, assume that 6*5 of the load of 8 at the centre

of the girder goes to the left, and 1/5 of it to the right-hand

abutment,

then 1 + 3 + 5 + 7 + 8 + 6*5 = 3O5 load on left-hand abutment

and 8 +8 + 8 + 8 + 8 + 1-5 = 41-5 right-hand

The moments of these loads balance one another.

Moments of Loads

On left-hand abutment On right-hand abutment

load leverage moment load leverage moment1x1=1 8x1=83x2=6 8x2= 165x3= 15 8x3= 24

7x4= 28 8x4= 32

8 x 5 = 40 8 x 5 = 40

6-5 x 6 = 39 1-5x6=9
Total moment 129 Total moment 129

The second method is to find the moments of all the loads

about one abutment which are equal to the moment of the

pressure on the other abutment about the first abutment. Thus
the moments about the left-hand abutment are
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1x1=1
3x2=6
5x 3 = 15

7 x 4 = 28

8 x 5 = 40

8x 6 = 48

8x 7 = 56

8x 8 = 64

8x 9 = 72

8 x 10 = 80

8x11 = 88

498

Let P be the pressure on the right-hand abutment, P acts at

an arm of 12,

.-. Pxl2=498,

z>
498 ^ -

P== __ = 41-o,

which agrees with result obtained by the first process.

Second Case, Bays of an unequal size, Load symmetrical.

Diagram 6, Plate I. is the diagram for a cross girder 25 feet

long and 2 feet deep. The load being symmetrically disposed on

each side of the centre line, there will be no shearing strain on

the centre bay under full load, but an equal load of 16 on each

abutment. Assuming the web to act only in tension, the strains

on the flanges would be those given on the left-hand side of the

centre line of the diagram. On the right-hand side are given
the strains which arise when the web acts equally in tension

and compression.
The strain of 36 on the flange of the 4'. 6" bay to the left is

obtained by multiplying 16, the vertical load carried by the

diagonal, by 4'. 6" the length of the bay, and dividing by 2 the

depth of the bay, 4*6 being the leverage at which the load acts,

and 2 feet the leverage of the counterbalancing strain on the

flange. The method by the parallelogram of forces also shews us

that the forces which keep the upper left-hand corner of the

girder in equilibrium are proportional to the sides of a triangle

composed of the depth of the girder 2', the length of the bay

32
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4'. 6" and the diagonal of the bay, since the depth of the girder

2 represents the vertical force 16.

/. As 2' : 16 :: 4'. 6" : 36, the horizontal strain on the flange.

It may be shewn in a similar manner that 8 x = 20 is the
ft

additional strain on the flange caused by the load of 8 at the

junction between the second and third bays, and 36 + 20 = 56 is

the strain on the top flanges of second and third bays.

On page 23 is given the following equation for the strain on

the flanges caused by a vertical load on any bay. Horizontal

strain = vertical load x -3 .

a

When the bays of a girder are unequal in length, the fraction

-j
will vary for each bay. This is the only point of difference be-

cL

tween the case we have just considered and that of the uniformly
loaded girder treated of on page 22.

Third Case, Bays and Loading irregular. In Diagram 7,

Plate I. the bays and loads are both irregular.

Proceeding as in the case of Diagram 5, Plate I.

Proportion to left-hand Proportion to right-hand
abutment abutment

0,,-S

6" - 25 25~ 25

nc> 15 180 _. 10 120
2 12X

25
=

25
12X

25=25

JL_ 81 16 _ 144
X
25~ 25

y X
25~~25~

4 _ 16 21 _ 84
X
25
"

25
X
25
~

25

Totals = 23,

To get a load of 23 on the left-hand abutment, and of 16 on

the right-hand abutment, we must split the load of 12, taking
9 to the left and 3 to the right-hand side.
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The moments of loads are as follows :

On left-hand abutment On right-hand abutment

load leverage moment load leverage moment

8x2 = 16 4x4 = 16

6x6 = 36 9x9 = 81

9 x 10 = 90 3 x 15 = 45

Total moment 142 Total moment 142

This moment of 142 divided by 2, the depth of the girder
which represents the arm or leverage at which the strain on the

flange acts, gives 71 as the accumulated or maximum strain on the

flanges of the girder.

In order to find the greatest shearing stress on any bay of

girder with irregular bays, caused by a moving load, the method

illustrated by Plate II. should be adopted.

Trusses and Lattice Girders. If for a solid plate web we

substitute open work of bars, whether acting as ties or struts,

inclined at an angle with the vertical, we have what is called a

truss or a lattice girder.

Diagram 1, Plate II. may be taken to represent a simple truss

in which the diagonals are tension-bars, and the verticals struts,

and Diagram 2 a truss in which the diagonals are struts, and the

verticals tension- bars. When several sets of diagonal bars cross-

ing one another are used, the girder is styled a lattice, and some-

times a trellis girder, from its resemblance to trellis-work.

Without Verticals. Diagram 1, Plate III. is a diagram of a

truss in which there are no verticals; the diagonals are inclined at

an angle of 45 with the vertical. The left-hand half of the

diagram gives the strains on the flanges, and the vertical stress

on the diagonals caused by resting the load on the top flange.

The right-hand portion gives the strains when the load is sus-

pended from the bottom flange.

It will be observed that the strains may be made to agree in

the two parts by turning either half upside down and changing
the signs of the strains.
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The formula

8=T \ {"
(N~ n + 1}

~^} (see page 27)>

will give us the mean strain, i. e. half the sum of the strains on the

top and bottom flanges of any bay n.

When the load rests upon the top flange, the strain on the

bottom flange will exceed that on the top flange of the same bay

W
by the amount -$ . But when the load is suspended from the

2i

bottom flange, the strain on the bottom flange will be less than

W
that on the top flange by the amount -5- ; accordingly the true

strain on the flanges will be obtained, as the case may be, by
W W

adding -r- to, or subtracting ~j- from, the value of S obtained from
4 T

the formula above.

Plate IV. shews by a series of diagrams the shearing effect of

the line load considered at each of its points of application in

succession.

Diagram 14 gives the extreme vertical strains. From this

diagram it will appear that the diagonals at the centre of the

truss have to be made capable of resisting both tension and com-

pression.

The sums of the extreme strains on the diagonals of any

bay n may be found by the formula

WA- W (r) 1 V2

F=-^f- {N-(2n-\}}+W'
(

^f- (see page 32).

In each bay the vertical strain on the one diagonal exceeds

W+ W
that on the other by 5 .

z

When the loapl is suspended from the bottom flange the dia-

gonal in tension is subject to the greater strain, but if the load

rest on the top flange the reverse is the case; see Diagram 1,

Plate III.

Warren Truss. The peculiarity of the Warren truss is that

the struts and ties make angles of 60 or thereabouts with the

flanges.
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In Diagram 2, Plate III. are given the strains on a Warren

truss in which the load rests upon the top flange. Diagram 3,

Plate III. shews the strains caused by suspending the load from

the bottom flange. For the sake of comparison with the diagrams

of girders and trusses already given, the depth of these Warren

trusses has been taken as
1
~ of the span, consequently the angle

made by the diagonals with the flanges is more than 60, being
about 63.

Referring to Diagram 3, Plate I. it will be seen that the strains

on the bottom flange of that diagram agree with those on the top

flange of Diagram 2, Plate III. and with those on the bottom

flange of Diagram 3, Plate III. These strains may consequently
be found by equation 3, page 27.

The strains on the eleven bays in the bottom flange of Dia-

grams 2 and 4, and in the top flange of Diagrams 3 and 5, Plate

III. may be found by the equation

a N (n 1) TTT b
S = n- -^ -Wj', seep. 27;

N being 11 in this case.

The strains on the top flange of Diagram 4, and bottom flange

of Diagram 5, Plate III. are given by the formula

and on the bottom flange of Diagram 3, Plate III. by equation 3,

p. 27.

In the example Diagram 6, Plate III. the load is supported by
both top and bottom flanges. It may be regarded as a combina-

nation of the two systems illustrated by Diagrams 3 and 5,

Plate III.

Since the load at each point of intersection of diagonals with

the flanges is 4 in Diagram 6
;
we may, in order to find the strains,

take 4 as the load per bay in each of the Diagrams 3 and 5, cal-

culate the strains, and consider the one to be superimposed upon
the other, adding the strains.

The strains on the top flange of Diagram 6, Plate III. may be
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found by the equation above given for the top flanges of Diagrams
3 and 5. For the bottom flange the strains may be found by
the formula

It must be remembered that N is the whole number of bays

(12 in the case of Diagram 6, Plate III.) and TFthe load per bay

(
= 8 in this case) .

Strains on the Diagonals. The strains on the diagonals of a

Warren truss may be found by constructing a series of diagrams
as in Plate II., or by means of the formula given on page 32.

Diagram 7, Plate III. shews the strains on the diagonals of a

Warren truss with a live load of 6, and a dead load of 2 per bay.



CHAPTER in. {(UNIVERSITY

HOGBACKED GIRDERS.

WE now come to the consideration of girders in which the flanges

are not parallel. Girders which have a slightly curved top flange

are very common, these have been called Hoghacked girders. The

effect of thus diminishing the depth towards the abutments is to

increase the strain on the flanges and relieve the web.

Equations 1, 2 and 3, p. 27, will give the strains on the flanges

of any bay of a hogbacked girder according as the diagonals do

duty in tension only, compression only, or in tension and compres-

sion alike. The fraction
-j

in those equations will vary for each

bay.

Diagrams 1 to 6, Plate V. represent a hogbacked truss with

diagonal tie-bars under various conditions of loading. Diagram 7

gives the extreme horizontal strains on the diagonals, and the

greatest strains on the verticals
; Diagram 1 the extreme hori-

zontal strains on the flanges.

Strains on the Flanges. The horizontal strains on the flanges

may be found conveniently by the method described on pp. 24 and

25. Thus at the points a and , Diagram 1,

S= 45x^=58-06;'

1 7o

at points c and d,

= 45 x ^-18 x ^ = 7579;
95 *9o

at points e and/,

Strains on the Diagonals- To find the greatest strain on the

diagonals, it will be necessary to calculate the strains on the

flanges of the girder under the various conditions of loading.
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The extreme strains on the diagonals of bays Nos. 1 and 6

occurs when the girder is fully loaded, as in Diagram 1, in which

case the horizontal element of the strain on the diagonal is obviously

58*06, as it forms the medium of communicating the horizontal

strain of 58'06 in the top flange to the bottom flange at b.

The greatest strain occurs on bay No. 2, when the bays Nos. 2

to 6 of the girder are fully loaded, as shewn in Diagram 2.

The horizontal strain on the diagonal of this bay is equal to

the difference between the horizontal strains on the top flange

of bays 1 and 2, or between the strains on the bottom flange of

bays 2 and 3.

This is obvious, for to maintain point g or point k in equi-

librium, the opposing horizontal as well as vertical forces upon g
must be equal ;

for instance, the horizontal thrust upon g by the

top flange in bay 2 being 71 '58, it is opposed by 51*61 in bay
No. 1, and 71*58 -51*61, or 19*97 must be the horizontal pull of

the diagonal to preserve equilibrium.

Thus, the horizontal strain on a diagonal is equal to the dif-

ference between the horizontal strains on the flanges on each side

of the point of its junction therewith.

Having found the horizontal element of the strain on the

diagonal, it is easy to calculate therefrom the vertical element;
this determines the strain on the vertical : e.g. take point 6,

Diagram 1, which is subjected to an upward vertical pull of 29*03

from the diagonal, while a load of 18 tends to pull it vertically

downwards, to maintain equilibrium therefore we require a force

of 29*03 18, or 11*03 compressive strain on the vertical. On
the other hand, to keep point d in equilibrium an upward force

of 18 13*735 or 4*265 is required in tension on the vertical.

Diagram 7 contains the maximum strains on diagonals and

verticals collated from Diagrams 1 to 6. Diagrams 1 to 6 give the

strains on every part of the truss under each condition of loading.

The correctness of the figures given may be checked by examining,
in turn, each point where the diagonals and verticals meet the

flange, and observing whether the conditions of equilibrium are

maintained.

For instance, point a Diagram 1 is acted upon by a horizontal

force of 75*79 which is balanced by two horizontal forces 58*06
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arid 17'73, whose sum equals 75*79 : thus equilibrium as regards
horizontal motion is proved. Again, the vertical forces tending
to force point a downwards are 13'265 and 13*735, their sum = 27.

These are balanced by the forces 15'97 and 11'03, sum = 27,

tending to force point a upwards : thus equilibrium as regards
vertical motion is proved, and the correctness of the figures ascer-

tained.

A further check upon the figures may be obtained by adding

together the total vertical effects of flange and diagonal in any

bay, the sum of which, be it remembered, should equal the total

shearing force on the bay (see p. 16). For example, the vertical

force taken by the top flange in bay No. 2, Diagram 3, is 10*3,

which being added to 147 the vertical force taken by the diagonal

gives a total of 25
;
an examination of the diagram will shew that

31 6 or 25, is the shearing force on the bay.

In bay No. 4, of Diagrams 4 and 5, the vertical effect of the

flange must be subtracted from that of the diagonal to get the

true shearing force on the bay, since the direction of flange and

diagonal with reference to the horizontal is similar, and their signs

are opposite. Thus the flange of bay No. 4, Diagram 4, tends to

push point I upwards with a force of 2'84, and the diagonal to

pull it downwards with the same force, therefore the shearing force

on the bay is 0.

In practice it would not be necessary to find the strains on

every part of every bay as is done in Diagrams 1 to 6, but only in

those bays which immediately adjoin the point where the live

load changes from the dead load only, to dead and live load com-

bined. Reference to Diagrams 1 to 6 will shew that it is in

these bays that the maximum strains are to be looked for.

Comparison with a parallel Flanged Girder. For the sake

of comparison, the strains on a parallel flanged girder whose depth
is the same as that of the hogbacked girder at the centre, and

whose loading is similar, are given in fig. 30.
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It will be observed that the strains on the flanges of the hog-
backed girder are in general the greater, and the strains on the

diagonals the lesser of the two.

All the verticals in the parallel girder are in compression,
whereas on the hogbacked some are in tension, and others have

to resist both tension and compression.

Diagonals as Struts. Fig 31 represents a truss of the same

dimensions and loading as that illustrated in Plate V., but having
the position of the diagonals reversed, they being struts in this

case. The same process may be adopted in this case as when

tension-bars are used for calculating the strains on the diagonals.

Diagonals of both kinds used. When it is desirable to make

use of diagonals both as struts and ties, or when a web of plate

iron is employed, the most convenient plan will be to make the

horizontal strains on the top and bottom flanges of each bay alike

by taking a mean.

Fig. 32 represents a truss with equal horizonal strains on the

top and bottom flanges of each bay. Examination of the diagram
will shew that this necessitates equal horizontal strains on the

diagonals in each bay, and that the verticals are in tension.



CHAPTER IV.

THE BOWSTRING GIRDER

Is so named from its resemblance to a strung bow. In all the

various forms of girder that we have hitherto considered, the

thrust of the top flange was conveyed to the bottom flange by
means of a web or by struts and ties. The peculiar feature of the

bowstring girder is that the thrust of the top flange bears directly

against the end of the tie. In fact, the top member may be

regarded as an arch, the thrust of which is taken by a horizontal

tie instead of by abutments.

On p. 16, it is shewn that the strains on the flange of a hori-

zontal parallel girder at any points are in the same proportion to

each other as are the vertical lines drawn from these points to a

parabolic arc, the apex of which is over the centre of the girder

and whose extremities coincide with those of the flange. Since

the strain on the flange of a girder is inversely proportional to the

depth of the girder, it follows that by making the depth at every

point along the girder proportionate to the vertical ordinate to the

parabolic arc, we should obtain a girder in which the horizontal

strain on the flanges was equal throughout. In fact, we should

obtain a bowstring girder, the form of the bow being that of a

parabola, the axis of which bisects the girder at right angles.

When such a girder was uniformly loaded at the top the web

would have (practically) no duty to perform and might be dis-

pensed with, but it is required to resist the effects of unequal

loading.

Curve of Equilibrium. A parabola is the curve of equili-

brium for a uniformly distributed load, that is to say, the line of

stress passes entirely along the curved flange so that it has no

tendency to bend.
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A curve of equilibrium is simply a line of pressure whose direc-

tion is curved
;
the direction of the pressure at any point in the

curve being tangential to the curve at that point. A chain

hangs in a curve of equilibrium, forming what is called a catenary

(from catena, a chain). If it were so loaded as to have the same

weight per horizontal unit of length it would assume a parabolic

curve
; by loading it irregularly it might be made to assume an

irregular curve.

Method of drawing the Curve of Equilibrium. As we shall

have to make use of the curve of equilibrium presently we must

know how to draw it.

In most cases which come before us we shall find the load con-

centrated at intervals, so that our line of pressure will be poly-

gonal instead of curved. We may however call the curved line

which would pass through the angles of the polygon our curve of

equilibrium.

Regular Loading. The simplest case will be that of a number

of equal weights, horizontally equidistant, which have to be sup-

ported by a polygonal arched framing hinged at the joints. Let

it be required to draw such a framing.

Let the span of the arch be divided up into six equal hori-

zontal bays, and at the junction of each bay let a load W act

vertically. (See fig. 33.)

Then the load will be symmetrically distributed over the arch,

one of the loads W being at the apex. Of this load half will go

to each pier. Let ab and ab' be two beams meeting at a, making
the same angle with the horizontal and supporting the load W.

W
Each of these beams will support a vertical load of --

,
which may

be represented by the vertical line be or b'c drawn from the point
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b or H to meet the horizontal line drawn through point a in c or c'.

The lines ac and ac will represent the horizontal thrusts on the

beams ab and ab', which are equal by construction, so that point a,

is in equilibrium.

At point b (dealing with one side of the polygon only, for the

two sides must obviously be alike) an additional vertical force

of W comes into play; thus the beam Id will have to carry a

W
vertical load of W+ -~-

,
or three times that on ab, and to re-

sist the horizontal thrust of the beam ab. Therefore to find the

position for the beam bd, draw from point b the horizontal line be,

equal to ac
;
from point e let fall a perpendicular ed three times

the length of the line be
; join bd: bd is the correct position for the

beam.

Similarly, as the beam df has to carry a vertical load of

WW+ W+-=- ,
the vertical gf must be made five times the length

of cb, gd being made equal to ac. The points d' and f on the

other side of the polygon being found in the same manner, a

curved line passing through the points fdbab'd'f would be

called the curve of equilibrium. It is a parabola in this case, and

would represent the line of pressure in an arch whose versed sine

was ah caused by an evenly distributed load.

To draw the Curve of Equilibrium with a given versine.

It is obvious that the curve fdbab'd'f' is not the only form of

arched polygonal framing that would support the weights W.

The angle at which the beams ab, ab' are inclined with the

horizontal is arbitrary. The lines cb, ed and gf are in the proportions

of the numbers 1, 3 and 5 respectively, and provided these pro-

portions are preserved the lines may be of any length. That is to

say, the versine of the curve may be made of any required dimen-

sion. The line ah representing the versine of the arch is equal to

the sum of the lines cb, ed and gf, or = 1 + 3 + 5 = 9. We have

only therefore to divide the versine in the proportion of 1, 3 and 5,

as shewn in fig. 33, and to draw horizontal lines from the points so

obtained to the corresponding vertical lines of action of the load

and trace the curve through these points.
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It will be observed that when one of the loads comes at the

centre of the span, that is, when the number of bays is even, the

versine or rise of the arch, as we may in fact call it, will have to

be divided up into lengths which are terms of an arithmetical

series 1 + 3 + 5 + 7 + &c. according to the number of bays. Also

Fiy.34:

that when the number of bays is odd the versine will be repre-

sented by the sum of a series 2 + 4 + 6 + &c. (see fig. 34), and in

each case the last term of the series is one less than the number of

~bays in the span.

If n = the number of bays in the span,
2

= the sum of the series for a girder with an even number of bays,

and

uneven

The most convenient practical way to set out the curve is as

follows. Take with the compasses from any convenient scale a

length representing the sum of the series answering to the versine

of the arch, and with the crown of the arch as a centre and this

length as radius, describe an arc cutting the chord of the arch

(see fig. 34) : join this point of intersection with the centre from

which the arc was struck, and mark off along this line divisions cor-

responding to the several terms of the series, commencing with the

first term at the crown of the arch. Through the points so

obtained draw horizontal lines to meet their corresponding verti-

cals
;
the points of meeting will be in the curve of equilibrium.

Irregular loading, bays equal. It is obvious that the curve

will be of the same form whether W the load per bay be great

or small, but if the value of W be not the same for every bay the

curve will be altered accordingly.
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To draw the curve of equilibrium when the loads on the

bays are irregular, the first step is to ascertain the total load which

goes to each abutment. Fig. 35 represents the irregularly loaded

framing: in this case the load on the left-hand abutment is 19 and

on the right-hand abutment 20, therefore we must take 4 of the

load of 6 at the crown to the left and 2 to the right hand.

The vertical loads supported by the beams

on the fe/fc-hand side will be respectively 4, 4 + 3 and 4 + 3 + 12,

right 2, 2 + 6 and 2 + 6 + 12,

that is 4, 7 and 19, sum = 30,

and 2, 8 and 20, =; 30.

Taking the point at the crown where the load 6 divides as

centre, describe an arc with a radius = 30 cutting the chord of the

arch in two places ; join each of these points of intersection with

the centre, mark off divisions equal to 4, 7 and 19 on the left-hand

line and divisions equal to 2, 8 and 20 on the right-hand line.

Draw horizontal lines through the points of division to meet their

respective verticals on either hand, as shewn in the figure; the

points so obtained are the hinges of the framing, the beams of

which coincide with the lines of thrust.

Irregular Loading, Bays unequal. It will be observed that

the sums of the two irregular series are equal, being 30 for both

sides. This corresponds to the equality of moment at the centre

of the forces which go to each abutment, as previously pointed out

in treating of irregularly loaded parallel girders (see p. 34). This

correspondence will afford a convenient means of setting out the

polygon of equilibrium when the bays are of unequal lengths.

Y. 4
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Fig. 36 represents a polygonal framing in which the bays and

loads are both unequal.

The moments of the loads which go to the abutments are

as follows.

Left-hand abutment,

loads sums leverage moment

84-18 = 31 x 1 = 31

5 + 8 =13 x 3 = 39

5 x 2 = 10

80

Right-hand abutment,

loads sums leverage moment

7+6 + 10 = 23 x 2 = 46

7 + 6=13x1 = 13

7 x 3 = 21

80

That the above table of moments may be seen at a glance to

be correct, we give in fig. 37 a diagram of a parallel girder loaded

similarly to the framing, the additional horizontal moment on each

several bay agreeing with that given in the tables. Now the

Jwrizontal strain throughout our polygonal framing must be the

same for every beam
; consequently the depth of the arch or

vertical distance from any hinge to the chord must vary directly
as the strain on the flange of the parallel girder at the point

corresponding to the hinge. Therefore taking the versine of the

arch as equal to 80, the heights of the first and second hinges to

the left above the chord will be 31 and 70 respectively, on the

right they will be 46 and 59.

By describing an arc with a radius = 80, having its centre at

the hinge where the load divides, and cutting the chord in two
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places, and proceeding in a manner similar to that described on

p. 49 for an irregularly loaded framing with equal bays, the

positions of the hinges may be found.

Line of greatest resistance. Though in the preceding exam-

ples the quasi curve obtained was the true curve of equilibrium for

the conditions given, since it must of necessity pass through the

centre of each hinge-joint to preserve equilibrium, yet it does not

follow that a curve of equilibrium drawn within an arch or curved

rib will be the curve of equilibrium for that case. The line of

pressure must always be the line of greatest resistance, its direction

will therefore greatly depend upon the material as well as the form

of the arch or curved rib. The true curve of equilibrium in an

arch is the line of pressure which strains the arch least, so that if

we draw the curve of equilibrium for an arch, and can shew that,

assuming the pressure to pass along this curve, the arch is not

overstrained, we may consider the arch as safe.

Methods of resisting Distortion. When a bowstring girder

with a parabolic top flange is loaded evenly all over, the curve of

equilibrium passes along the centre of the flange, and there is no

tendency to distortion
;
but when the girder is loaded on one side

only, the curve passes outside the bow on the one side of the span
and inside on the other, if the flange be narrow, or close to the

outer edge on one side and inner on the other if the bow be

of considerable depth, as when it forms a curved box beam.

The distorting action on the bow may be resisted,

1. By making the bow sufficiently deep to include within

its boundaries the curve of equilibrium under every condition of

loading, it being wholly in compression.

2; By the transverse strength of the bow.

3. By the transverse strength of the tie.

4. By the transverse strength of the bow and tie com-

bined.

5. By means of a web or diagonals.

First Method. Fig. 38 illustrates the first method. The
dotted line touching the boundaries of the top flange or bow at

a, b and c is the curve of equilibrium under one condition of

42
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unequal loading, say one half span fully loaded. (In describing

the curve of equilibrium for this and the following cases we must

Fiy.38.

loaded fytlf ^

endeavour to draw it so that its maximum or minimum distance

from the outer and inner edges of the bow is the same, as this is

very near the truth, and gives the most economical results. It

will be almost impossible in drawing the curve to hit off on the

first occasion its true position ;
but by lengthening or shortening

the ordinates to the curve in the same proportion, we can raise or

depress the curve until its position is approximately correct.)

In Plate VI. the strain on the top flange of a certain truss fully

loaded is given as 81 at the centre
;
when the same truss is only

half loaded, the strain at the centre is given as 6075. Supposing
our bowstring girder to have the same span, depth at centre, and

conditions of loading as the truss in Plate VI., there would be a

horizontal strain of 6075 at points a, b and c. By changing the

position of the load we can cause the curve of equilibrium to pass

very near to almost every point in the outer and inner edges of the

bow, and at all of these points the strain would have a horizontal

element of 6075, or thereabouts. Thus it will be seen that metal

will have to be provided to take a horizontal thrust of 6075

throughout the outer arid inner edges of the bow, or 121*5 in all,

whereas had the curve of equilibrium passed along the centre of

the flange, a strain of but 81 would have to be provided for. The

curve of equilibrium may however fall considerably within the

edge of the top flange ;
in such case the compressive force on either

edge will be inversely proportional to its distance from the line of
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pressure, the sum of the horizontal strains on the two edges being

equal to the thrust on the tie
;
for example,

S being the total force acting along the dotted line at I, fig. 39,

be/
Strain at a = S,

ac

ab

Second method. In
fig. 40, the curve of equilibrium shewn

by the dotted line passes outside the limits of the top flange

Fig. 40.

in two places, the extreme distances being ab in the one case

and de in the other. With the curve in this position, the tendency
of the bow is to flatten at b and bulge outwards at e.

S being the pressure acting along the dotted line,

Strain on inside edge at c = j~ S tension, b being the fulcrum,

outside

inside

outside

ac
b = 7- 8 compression, c

7/>

e =
--j
S tension, /

eJ

fj,S compression, e

It must be remembered that in this and in the last example,

S is not a uniform force, it will vary with the angle of inclination

of the curve of equilibrium with the horizontal. The horizontal

element of 8 is uniform.

Third method. Fig. 41 represents a bowstring girder in

which the bow is quite flexible, that is hinged at the points where
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it joins the verticals. The tie affords the means of resisting

distortion. When the left-hand side of the span is loaded, the

F
iff.

41

"""

arch tends to flatten at a and bulge outwards at b, causing the

horizontal tie to bend downwards between d and c, and upwards
between c and e. It assumes in fact the form of an S curve as

shewn by the dotted line d, c, e, the point of contrary flexure being
at or very near to the centre of the span.

To prevent the top flange from buckling it is evident that the

bottom flange must have sufficient transverse strength to resist

the bending action to which it is subject. Let us endeavour to

ascertain what this should be.

Let us suppose the left-hand half of the span to be loaded,

and the load to be suspended from the bottom tie, this will

throw all the verticals into tension. Now if the bottom tie were

flexible and the bow stiff as in the immediately preceding cases,

the strain on the verticals on the left would be P= dead + live

load, while on those to the right it would be p = dead load. But

as our parabolic arc is perfectly flexible and is the curve of equili-

brium for an evenly distributed load, it is evident that in order to

preserve its form the strain on each vertical must be the 'same

throughout the span, it will therefore be But since

a load of P is attached to the bottom flange underneath each

vertical on the left-hand half of the span of which an amount
P + v̂

is carried by the vertical, the remainder

must be supported by the transverse strength of the tie offering

resistance to a vertical downward force. Again, the upward pull
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of ^ on the verticals of the left-hand side of the span is

met by a load of p only, therefore that part of the tie is subject to

a vertical upward force of

P

Now P- p the live load on each bay, therefore the loaded

half dc of the tie is subject to a load = half the live load per bay

acting downwards, and the other half of the tie ce to the same

force acting upwards. When the position of the load is reversed

the directions of the transverse strains on these half-lengths of

horizontal tie will also be reversed, so that each half of the tie

must be made capable of resisting an upward and downward

transverse force equal to one half the live Iqad on half the span,

or one quarter the whole live load on the span
1
. The tie may be

hinged at c the centre, if necessary, without impairing its effect in

resisting distortion. Each half of the tie must be treated as a

distinct girder of a length equal to half the whole span of the

bridge. Since the tie is in tension throughout all its cross-section,

the transverse strain, unless very great indeed, will not put any

part of the tie into compression. Thus if the horizontal strain on

the tie, when the bridge is loaded over one half of its length only,

be 100 or 50 on each flange, neg-

lecting web (see fig. 42), and the

strains due to transverse downward
, ....._

force be 10 + in the top flange and \P

10 in the bottom flange, the addi-

tion of these strains will give 40 for the top flange and 60 for

the bottom: when the transverse force acts upwards the strains will

be 60 in the top flange and 40 in the bottom flange. It would

therefore be necessary to insure rigidity to increase the sectional

area of both^ flanges at the centre of each half span. The extra

metal may be diminished to nothing at the centre and ends of the

span of the arch.

1 The "live load" here mentioned means that which comes upon each girder,

which will of course be - the whole load on the span if there are only two trusses.
X
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Fourth Method. Bowstring girders are often made with a

deep trough-like bow and tie
; by utilizing the transverse stiffness

of both these, resistance to distortion can be obtained.

Let us assume that it is desired to divide the work equally

between the top and bottom members of the girder. This as

regards the tie is equivalent to reducing the live load by one half

in the preceding case, and proceeding as before. For the bow, we

must draw the curve of equilibrium for one side only loaded, but

the total load at each vertical of the loaded side must be taken as

= dead load per bay -\
~

. Having correctly drawnL

the curve the strain on the flanges of the bow can easily be deter-

mined, as explained on p. 53.

Fifth Method. The general method of providing against the

distorting effect of unequal loading is by means of a web or cross-

bracing between the bow and the tie.

Plate VI. contains a series of Diagrams of the strains on every

part of a bowstring girder under unequal loading. It is neces-

sary to find the strains on the flanges first and thence to deduce

the strains on the diagonals, as in the case of the hogbacked girder.

The mode of procedure is precisely the same as that adopted for

the hogbacked girder ;
see p, 41. The depth at centre, number

and width of bays and loading are the same as those taken for the

hogbacked girder, Plate V., so that the strains on the two may be

compared.

Effect of elasticity in distributing the Load among the

Diagonals. As we have the bow of our girder in the form of a

parabolic curve, when the load is uniformly distributed the curve

of equilibrium will pass along the centre line of the top flange, the

strain on the tie will be the same throughout its whole length, and

there is no need of diagonals to prevent distortion. Diagram,
No. 1, Plate VI. represents the girder under this condition of

things. In this Diagram the diagonals are wholly omitted, and the

load is assumed to be carried by the vertical rods only. In reality

the strains are not such as are here given, because in consequence
of the stretching of the verticals a strain comes upon the diagonals.
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The accompanying figure represents a pair of diagonals inclined at

an angle of 45 with the vertical and a ver-

tical at whose point of meeting a a load is

suddenly applied. The effect is to bring

the point a down to b, stretching the ver-

tical to the extent ab and bringing the

diagonals into the position shewn by the

dotted lines. Taking the upper extremity

of one of the diagonals as a centre, and describing an arc through
the point a cutting the dotted line in c, it becomes evident that be

represents the amount of stretching of the diagonal. Now since

the distance ab is very small, the triangle acb is practically a right-

angled triangle in which ab is the hypothenuse and ac and cb are

equal sides. And the line ab is to the line be as V2 (or 1*41

nearly) is to 1.

Let a& = -3-rrrth of the length of the vertical before it was

loaded, the proportion being expressed by the fraction

100 _ length of vertical

1 amount of its extension
'

Now, diagonal : vertical :: V2 : 1, and the amount of the

diagonal's extension expressed in terms of ab

h l~
ab
~
V2

'

length of diagonal _ 100 x V2
amount of its extension 1

Vl

V2 x V2 x 100 200

From this it appears that if each of the diagonals and the

vertical be of the same sectional area, the sum of the strains on

the two diagonals will be as nearly as possible equal to that on the

vertical.

In this case the strain on the diagonals is 1'41 times the load

supported by them, therefore if
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x proportion of load taken by vertical,

y = diagonals,

x -f y = W total load carried ;

but x = 1'41 y ;

/. 2-41 y = W,

W

If W=I, 2/
= -4149 and x = '5851.

These values of x and y are of course only true when the

diagonals are inclined at an angle of 45 with the vertical and the

sectional area of each diagonal is equal to that of the vertical.

To find the proportions of load taken by diagonals and vertical or

any system of bars, the general rule is : Find the proportion of

extension to its length which each bar experiences, assuming the

load to descend vertically through a given space. The strain per

square inch thus placed upon the bar multiplied by its area in

square inches gives the actual stra
:n upon that bar. Finally, ascer-

tain the vertical element of the strain so obtained. This being
done for each bar the share of the load carried by each will be in

proportion to the vertical strain upon it.

For example. The three bars ab, ac, ad (fig. 44) support

a vertical load of 100 between them :

parts

4 x 100
ab supporting 4 = ^ = 20 actual load carried. -tfgM*.

*
7 -

9 x 100
e\r\

7x100

Total 20 100

Tn dealing with the diagonals of a truss it must be remem-

bered that the extension of the bars may be effected by the yield-

ing of their supports at the upper extremities. Thus if b, c, d,

fig. 44, represent the top flange of a truss, its compression under
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load would cause the points b, cand dto approach one another, and

thus affect the lengths of the bars ab, ac, ad. Further, if the

points b, c and d were supported as to vertical motion by struts,

their relative depressions would depend upon the strength of the

struts which supported them, and again upon the strength of the

ties which supported these struts, and so on ad infinitum.

Thus it is found practically impossible to tell the exact strain

upon a number of bars in a truss inclined at different angles and

meeting at a point where a load is applied.

The usual practice is to calculate the strain on every bar under

the most unfavourable condition and to neglect the easing effect

upon it of other bars, the strain upon which may be much or little,

but is uncertain.

The strains on Diagrams 1 to 6, Plate VI., are strictly correct for

trusses of the form represented in those Diagrams, but they are

not true as regards the verticals for one similar to Diagram 7, in

which the diagonals cross one another. However, by taking the

strains as given in Diagrams 1 to 6 as true for a truss of the form

of Diagram No. 7, we shall be safe.

The reader will observe this peculiarity in the Diagrams for

the bowstring girder, that the live load being removed from one

end of the girder the diagonals which come into play slope all in

the same direction. As a natural consequence the horizontal strain

on the top members increases in each bay till it reaches its maxi-

mum in the last bay at the loaded end of the girder. If the

diagonals were struts their slope would of course be reversed. The

diagonals throughout may however be made capable of acting

either as struts or ties. In such case the extreme strain on each

single diagonal given in Diagram 7 would have to be divided

between the two diagonals of the bay. This is analogous to the

effect of a solid web capable of resisting compression and extension
;

see page 24.

Figs. 45 and 46 shew two other alternative methods of arrang-
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ing the diagonals which should be made capable of resisting both

extension and compression. For the purpose of shewing this the

strains are given for each system, the girders being taken as half-

loaded.

Although not to be commended for appearance, trusses with

single double-acting diagonals are cheap, and have this advantage,

that the strains can be predicted with certainty.

Load resting on the top. The effect of resting the load

upon the top flange instead of suspending it from the bottom is to

alter the strains upon the verticals only, they also becoming
struts. Fig. 47 corresponds to Diagram No. 2, Plate VI, but gives

the strains when the load rests upon the top of the girder. With

this example before him, the student should be able to construct

without difficulty the Diagrams for the other positions of the load.

The curve of the bow is often made an arc of a. circle for

appearance sake and convenience of manufacture.



CHAPTER V.

THE ARCH.

THE preceding Chapter contains much that we shall have to

refer to in treating of the Arch in consequence of its affinity to the

bowstring girder as indicated in the opening paragraph of that

chapter.

Method of finding the Thrust at Crown. The horizontal

thrust on the crown of an arch may be found in the following
manner.

Consider the arch with its spandrils, fiy.4.8.

roadway, and live load, as forming two

rigid masses divided vertically at c the

crown of the arch, and hinged at a the

the centre of the skew-back, (see fig.

48). Find the centre of gravity of the mass
, b, c, being one-half

of the whole arch. Draw a vertical line through this point to

W
represent the line of action of the weight which we will call .

This acts at an arm of z, about the fulcrum a. Draw a hori-

zontal line cb through the centre c of the arch to represent the

line of action of the thrust. Through a, draw a\ perpendicular

to cb] the line ab represents the leverage at which the thrust acts

W
about point a, and as this thrust is the force that balances _

;

W
.*. S x ab = -- x z, if 8 = thrust,

Curve of equilibrium for an Arch of Masonry. An arch of

masonry is stable when the curve of equilibrium lies well within

the arch under all conditions of loading. The mode of drawing
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the curve of equilibrium has been fully described in the preceding

chapter. An example of the method of procedure in the case of

an arch of masonry is given in
fig. 49. The arch should be

divided up into equal horizontal segments ;
the weight of each

portion should be calculated, and the mean weight of two ad-

joining segments considered as acting in the direction of the

vertical line which divides them. To the dead load must be

added the live load when necessary. For the loads so obtained

a curve of equilibrium must be drawn through those points in the

crown and in the haunch of the arch which appear likely to give

the best results, which are obtained when the distance of the

curve from the outer or inner face of the arch is a maximum.
The available area of masonry for resisting thrust is equal in width

to twice the minimum distance of the line of pressure from the

extrados or intrados of the arch. If the points through which the

curve has been drawn have been injudiciously chosen, the position

of the curve can be changed by altering all the ordinates in the

same proportion.

Other methods of resisting distortion of the Arch* In the

case of metal ribs, the resistance to distortion may be effected as

in the cases of the bow-string girder by the five methods men-

tioned on p. 51, substituting the word rib for bow, horizontal girder

for tie, and adding in the spandrils after the word diagonals to

the description of the 5th method. The first four methods are

exactly analogous for the bowstring girder and the arched rib, so

that it is unnecessary to say more about them, but the method of

finding the strains on the diagonals in the spandril of an arch

differs from that used for the bowstring girder.

Strains on the Spandrils. Diagrams 1 to 6, Plate VII., shew

the strains caused upon the various parts of a parabolic arched rib,
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whose spandrils are braced with a single diagonal, under various

conditions of loading. Diagram 7 gives the greatest strains col-

lected from Diagrams 1 6. The form of the arch, and conditions

of loading, are the same as those of the bowstring truss illustrated

in Plate VI. In Diagram No. 1 are given the strains caused by
the full load. The arch being parabolic, there is no strain on the

diagonals under this condition of loading. To find the strains

when the load is unequally distributed, and the diagonals are

placed as in Plate VII., the most convenient method is to com-

mence at the springing of the arch, and work towards the centre.

We will now deal with Diagram, No. 2, Plate VII., com-

mencing at the left-hand corner.

In the first place, we find the vertical load on the abutments

which amount to 40 for the left-hand, and 44 for the right-hand

abutment (see p. 33). In the next place, we find the thrust of

the arch on the principle mentioned on p. 61. Thus

load leverage moment

12 x 1 = 12

18 x 2 = 36

10 x 3 = 30

78 horizontal thrust.

Of course the thrust on the right-hand abutment is the same.

Thus
load leverage moment

18 x 1 = 18

18 x 2 = 36

8 x 3 = 24

78 horizontal thrust.

Now the segment of the arch forming the lower member of

bay No. 1 being inclined at the rate of 5 vertical to 9 horizontal,

the vertical pressure which it exerts is to its horizontal as 5 is to 9,

.-. 78 x
I
=43-33,

the vertical pressure.
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But since there can only be a vertical pressure of 40 on the

abutment, the vertical bar which meets the rib at the springing
must exert an upward pull of 43'33 - 40 = 3*33 tension.

From this we derive a vertical thrust of 3'33 on the diagonal

of bay No. 1, which answers to a horizontal of 7*5, which again

requires a strain of 7 '5 in tension on the top member of bay
No. 1. To maintain equilibrium, there must be a horizontal

thrust of 78 + 7'5 = 85'5 by the rib in bay No. 2. The vertical

2
element being

- of this = 28*5.
y

The rib in bay No. 1 is pressing point a upwards with a force

of 43'33, while the rib in bay No. 2 and the diagonal in bay No. 1

are pressing it downwards with a force of 28'5 + 3'33 = 31'83,

therefore 43'33 - 31'83 = 11'5

is the pressure which the vertical bar must exert to maintain

equilibrium. Therefore of the load of 12 which is supported at

the upper extremity of this vertical *5 will be carried by the

diagonal of bay No. 2. This bar will exert a horizontal thrust

of 4 '5, which will cause the total horizontal strain on the top
member in bay No. 2 to be 12

;
this strain will be carried

through to bay No. 3.

Now 85'5 + 4'5 = 90, the combined horizontal thrust of rib

and diagonal in bay No. 2, which must be met by a thrust of 90

on the rib in bay No. 3. The vertical element of the thrust on

this part of the rib will be 90 x - = 10, and 10 is the proportion of
v/

the load of 18 at the centre which goes to the left.

Again, the point b is pressed upwards with a force of 28'5 by
the rib in bay No. 2 and downwards with a force of '5 by the

diagonal of bay No. 2, of 10 by the rib in bay No. 3, and of 18

by the vertical bar dividing the bays ;
the total downward force

being 28'5.

Further, 90 12 = 78 the thrust at the crown, which agrees
with that at the haunches. We find therefore, that the conditions

of equilibrium are satisfied throughout, and we may conclude that

our strains are correct.
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The strains on the right-hand side of the arch may be obtained

by a similar mode of proceeding. In this part of the arch the

diagonals of the spandril are in tension.

For the arrangement of diagonals given in Plate VIII., the

most convenient way of calculating the strains is to commence
from the centre of the arch.

For the arrangement of loading given in Diagram No. 2,

Plate VIII., we know that of the load 18 resting at the crown 10

goes to the left, consequently there must be a vertical load of 10

on the rib in bay No. 3
;
this will produce a horizontal thrust

of 90 upon it, which will produce a horizontal thrust also of 90

on the rib in bay No. 2 of which the vertical thrust will be 30,

necessitating a downward pressure of 20 by the vertical at point b.

To produce this, the diagonal in bay No. 2 must exert a down-

ward pull of 2, and therefore a horizontal pull of 4*5. Thence we
determine the total horizontal thrust on point a to be 90 4*5

= 85*5, which must be the thrust on the rib in bay No. 1. The
vertical pressure exerted by this part of the rib will be 47'5,

necessitating an upward pull of 7*5 by the diagonal in bay No. 1,

to reduce the total load on the abutment to 40. This diagonal
will exert a horizontal pull of 7*5 also on the top member of bay
No. 2, and cause the total load on the vertical at a to be 19 '5.

The diagonal in bay No. 2 causes the downward pressure of

the vertical at b to amount to 20, and adds 4*5 of horizontal

strain to the top member, making a total of 12 tension there-

upon.

Comparing the corresponding diagrams of Plates VII. and VIII.,

we find that the horizontal strains on the diagonals are the same

for corresponding bays under similar conditions of loading.

In Diagram No. 8, Plate VIII., are given the greatest hori-

zontal strains on diagonals, rib, and top member, when the dia-

gonals forming the spandrils are crossed. Diagram No. 8 is the

sum of Diagrams 7 in Plates VII. and VIII. It also gives the

greatest strain on the verticals. The load is 36 per bay for this

diagram; for a load of 18 it would be necessary to halve the

amounts.

We observe, therefore, that in the spandrils of arches con-

structed on the system of Diagram 8, Plate VIII., the horizontal

Y. 5
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strain on each diagonal of ,a bay is the same. Wherefore it is

sufficient, so far as the diagonals are concerned, to calculate the

strains for one system only.

The two following facts are to be noted with regard to the

Diagrams on Plates VII. and VIII.

1st. If in each bay of a Diagram the horizontal strains on

the diagonal, top member, and rib, be added together, the

cancelling the +, the remaining + will be the same for each bay,
and will equal the thrust of the arch at the crown.

2nd. The sum of the vertical strains on diagonal and rib in

any bay, the cancelling the +, is equal to the shearing force on

that bay.

In illustration of the first statement, add together the hori-

zontal strains on the severals bay of Diagram No. 2, Plate VII.,

and the resulting strain will be found to be + 78h.

Again, adding the vertical effect on each bay, we get

for bay No. 1 40

,, 2 28

3 10

4 8

,, 5 26

,, 6 44.

These amounts are the correct shearing forces for their several

bays.

The extreme strain which these diagrams shew on the rib in

bays 3 and 4, would not arise in actual practice, for the horizontal

girder and rib are united together for some distance on each side

of the centre of the arch in most arched bridges ;
this being the

case, the tension on the horizontal girder neutralizes some of the

compression on the rib. If, however, the horizontal girder be at

a higher level than the crown of the arch, the variation of strains

would not be so great as it appears in the case of which we have

just treated.

Other forms of Spandril filling. Figs. 50, 51, and 52, repre-

sent three other regular forms of spandril filling ;
for the first of

these systems the strains may be obtained by proceeding as in the
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last example, making a separate series of diagrams for each system
of diagonals. In figs. 51 and 52 the resistance to distortion is

effected by the transverse stiffness of the rib and horizontal girder,

(see p. 62).

Fiy.51.. so

Fig. ss.

The inclined position of the spandril bars in fig. 52 will cause

the curve of equilibrium for the strains on the rib to be an ap-

proximation to an arc of a circle when the bridge is fully loaded
;

indeed the angle of the bars might be so adjusted that the curve

of equilibrium should be exactly an arc of a circle under the full

load, and correspond with the centre of the rib. The effect of

unequal loading in a bridge of this description on the horizontal

girder would be to introduce an additional horizontal stretching

or compressing besides transverse strain.

Arched bridges of multiple span. The preceding pages treat

of the strains which come upon an arch of a single span. We have

now to consider the strains which arise from unequal loading

on an arched bridge of many spans.

When the piers of an arched viaduct are short, it may so

happen that the system of arching may be stable without the

aid of the spandrils.

In
fig. 53 are shewn two arches of a viaduct, one of which

only is loaded. The curved dotted lines drawn within the

52
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limits of the arch represent the curves of equilibrium for each

arch. From the point of their intersection a, lines ab, ac are drawn

tangential to the curves, and representing to scale the strain on

the arches, ab being that on the loaded arch, and ac that on the

unloaded arch. The parallelogram being completed, the diagonal

ad represents the resulting line of pressure. In this example the

line of thrust falls well within the base of the pier, so that the

arching may be pronounced stable. The dotted prolongation of

the pier and line of thrust below the ground-line, is intended to

shew that if the pier were of the height shewn by the dotted

lines, the line of thrust would fall outside the base and the arching
be unstable.

Stability of Pier. The dead weight of the pier contributes

to the stability of a system of arches, as fig. 54 will serve to shew.

Let ab be the resultant thrust of the two arches, o the

centre of gravity of the pier; through o draw a perpen-
dicular to intersect the line of thrust in a, take ac = the

weight of the pier, complete the parallelogram abed,

join ad
;
ad is the resulting line of thrust which now falls

within the base.

fzg.se.

II J 11

Effect of horizontal Girder. Figs. 55 and 56 are intended

to shew the action of a horizontal girder in preserving the stability

of an arch. In fig. 55, there being no horizontal girder, the weight
of the pier is the sole source of stability ;

this being overcome, the

upper ends of the piers a and b are forced apart. If these are

tied together by means of a horizontal girder the arch can only

yield by the pier breaking as at c, fig. 56.

Transverse strain on Pier. In estimating the transverse

strain upon the pier at c, find the surplus horizontal thrust at c

arising from the loaded span, consider the whole pier as a lever

fastened at its two extremities and acted upon by a transverse
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force at c, the breaking tendency can then easily be

find the value of the surplus horizontal force, resolve

the thrusts of the two adjacent arches into their

horizontal and vertical elements, consider the vertical

effect of the thrusts as acting downwards through the

point c (see fig. 57), the neutral axis of the pier at the

springing, add to this the weight of that part of the

pier above c, the point of rupture, and call the whole

weight W. Again, call the weight of the lower part
of the pier acting through its centre of gravity o, P.

Choose a point in the base of the pier as a fulcrum or turning

point.

Let x be the leverage of P, y the leverage of TF, and z the

distance from base of pier to point of rupture.

Then is the resistance which the dead weight offers

to rupture.

Add this force to the horizontal thrust of the unloaded arch,

and subtract the whole from the horizontal thrust of the loaded

arch, the remainder is the surplus horizontal thrust.

Tt is manifest that the resistance of the horizontal girder in

the unloaded span to compression, helps to prevent the pier from

overturning.

In viaducts of masonry the spandril filling acts partly as a

horizontal girder in preventing the overturning of the pier, and

partly as bracing preventing alteration of form in the arch.

In dealing with a viaduct of masonry, and describing the

curve of equilibrium for loaded and unloaded spans for the pur-

pose of finding the resultant thrust, the curve in the loaded

span should be carried as near to the extrados of the arch at

the crown, and as close to the intrados at the springing as is

consistent with safety; while for the unloaded span, the curve

should be brought as close to the intrados at the crown as safety

permits, and be made to intersect the curve of the loaded arch

as high up as is possible without causing the resultant pressure

to pass so near to the face of the masonry at the springing as

to crush it. Fig. 53 illustrates this -method.
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Stability of a Wrought-iron Arched Viaduct. In a wrought-
iron arched viaduct the question of stability is somewhat compli-

cated.

Fig. 58 represents a wrought iron viaduct, perfectly continuous

throughout. We might calculate its stability in the manner

adopted for the case illustrated in fig. 56, and supposing it were

found that the piers were too weak to ensure the stability of

the system, this might be secured by making the rib stiff enough
at the crown to resist the upward force which comes upon it.

The arching must in that case be regarded as a continuous girder

of varying depth in which the effect of the load is to flatten

the loaded arch and to raise the crown of the unloaded arch. The

piers must be assumed to be hinged at the springing and at

the ground-level, so that no assistance is obtained from them,

because we are now considering the sole effect of the metal at

the crown in affording stability.

The first step in the calculation is to find the surplus hori-

zontal thrust at the springing. (In this case there is no resistance

p
afforded by the pier.) Call this force P, take half this force or as

acting at a leverage of ab (the versine of the arch), fig. 58, tending
to crush the bottom flange of the rib at b, and to tear it open at c.

p
Let S be the strain in tension at c caused by the force -

, then

P.ab

or

The compressive strain at b will be
-^
+ S,

P
2
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We take the horizontal force tending to force up the crown of

p
the unloaded arch as ^ only, because half the force P is absorbed

Zi

in flattening the loaded arch.

p
On the loaded arch the force

^
acts at an arm of al>' also

;

therefore if $' be the strain in compression on the top flange caused

by the force -=
,

~
.

P.a'V

The tensive strain at b' will be ~- + $',

or ^

These strains must be added to the strains which result from

the position of the curve of equilibrium to obtain the extreme

strain upon the flanges.

In practice the stability of the pier must be taken into ac-

count. Indeed in the majority of cases it will be on the pier that

we must rely : for before any considerable strain can be produced

on the rib in the unloaded span, the span of the loaded arch must

have increased through the forcing apart of the piers, as shewn in

fig. 58. The amount of this alteration in length of the span will

vary according to the height, thickness, and material of the pier.

By measuring the actual increase in length of the loaded span, it

is possible to determine how much of the resistance to overturning

is offered by the stability of the piers, and how much by the stiff-

ness of the ribs. This cannot however be done without a know-

ledge of the laws of deflection,



CHAPTER VI.

SUSPENSION BKIDGES.

A SUSPENSION bridge is merely an arched bridge inverted, the

chain of the suspension bridge being subject to a strain in tension

corresponding to the strain in compression on the rib of the arch.

There is one important practical difference between the two :

this, that in the suspension bridge the chain being flexible is able

to adapt itself to the curve of equilibrium, whereas no such pro-

perty belongs to the arched rib.

This peculiarity of the suspension bridge causes the platform of

the bridge to alter its form under the passage of a rolling load,

unless the bridge be rendered rigid by some kind of bracing.

Strain of centre of Span. The strain on the chains at the

WL
centre of the span may ordinarily be found by the formula --y- ,

since the weight of the chains is small compared with that of the

platform and live load, and consequently the load may be taken as

evenly distributed. In this formula

W the total load on the bridge.

L the span between towers.

d = the depression of the chain at centre below

the points of support on the towers.

In very large bridges, however, where the weight of the chains

is relatively large, this formula will not give correct results, and it

will be necessary to describe the curve of equilibrium by the

method described on p. 46, in order to obtain the strains on the

chain at the centre of the span.

In ordinary cases the chains will hang in a curve which is

a close approximation to a parabola. In cases where the chains
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are relatively heavy, the curve will approach more nearly the form

of a catenary.

Strain at any portion of the Chain. The strain at the

centre of the span being known, the strain at any point a (fig. 60)

in the chain may be found by drawing a tangent to the curve at

that point, cutting at b the horizontal line which is the tangent to

the lowest point in the curve. If be

the angle that the tangent makes with

the horizontal, and 8 the strain on

the chain where it is horizontal
;
then

a, or S.SQC 0, is the strain at a.
COS0'

Or the strain may be found by geometrical construction, thus :

let fall from point a a perpendicular to meet the horizontal

tangent in c.

Then, strain at a : S :: ab : be ;

~ ab
.*. strain at a = S 7- .

be

In the triangle abc, ab represents the actual strain at a.

be horizontal element = S.

and ac vertical element of the strain

= weight of superstructure between c and centre of span.

Strain on the back tie. As in the arch, the thrust of the

arch is taken by abutments, so in the suspension bridge the pull
of the chains is resisted by back ties, which are in general anchored

to masses of masonry at a considerable depth below the surface of

the ground in the abutments of the bridge. The strain on the

back tie is found by means of a parallelogram of which the adja-
cent sides are tangents to the chain at its junction with the saddle

on the pier and the back tie. The strain on the chain being
known, that on the back tie is obtained by completing the paral-

lelogram, the vertical diagonal of which represents the load on the

tower.

In those suspension bridges in which no means are provided
for resisting the distorting effect of unequal loading, the curve of

the chain alters its form during the passage of the moving load.
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Usually the moving load is small compared with the dead load,

and consequently the alteration in the form of the chain is not of

serious moment. Such bridges are, however, liable to accident

from the undulations produced by high winds.

Rigidity can be obtained by means similar to those which are

applicable to the bowstring girder as given on p. 51.

The adoption of the 1st, 2nd or 4th of these systems neces-

sitates the substitution of a curved rib for a flexible chain, thus

producing what has been called " an inverted arch bridge."

Whatever system of stiffening may be adopted, the whole

structure should be hinged at the centre of the span, to allow

for the rise and fall of the chain caused by variations of tem-

perature.

The methods of finding the strains on the various parts of the

suspension bridge are precisely similar to those already given for

finding the strains on the corresponding parts of the bowstring

girder, to which the reader is referred.

The usual practice is to stiffen the suspension bridge by means

of a horizontal girder. The method of calculating the necessary

strength of this girder is given on pp. 54, 55, and 56. The hori-

zontal girder answers to the tie in the bowstring girder, but is not

like it subject to longitudinal strain (see p. 55). It acts only as a

stiffener. The ends on the abutments should be anchored, but

should be free to move horizontally to allow for change of tem-

perature.

To restate the rule, in a form applicable to the suspension

bridge. If W be the whole live load on the bridge, then the

horizontal girder, which reaches from the abutment to the centre

of the span, will, under the most favourable conditions of loading,

be subject to an upward and downward transverse force equal

W
distributed.

o

If I be the span of the bridge,

d depth of the horizontal girder,

S the strain on the flange at centre,
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Plates VII. and VIII. turned upside down with the signs of

the strains changed, give the strains on a suspension bridge

stiffened by means of diagonal bracing. As under the condition

of loading, given in Diagram 5, Plate VII. or VIII., the rib of

the arch becomes subject to tension near the crown, so, under the

same condition of loading, the suspension chains are subject to

compression.

For further remarks on suspension bridges see supplementary

Chapter on Economy in Suspension bridges.



CHAPTER VII.

DEFLECTION.

BEFORE investigating the properties of continuous girders, it is

necessary to become acquainted with the laws of Deflection, which,

in the continuous girder, very importantly determine the magni-
tudes and directions of the strains.

Deflection is due to elasticity.

Definition. The deflection of a beam or girder is its vertical

displacement by a load from the position that it occupied when

unloaded, its bearing points being fixed.

So that were the bottom flange of the girder horizontal in its

unloaded state, when loaded it would be curved downwards, the

distance between the lowest point in this curve and the original

horizontal line being the measure of the deflection, generally

called the deflection of the girder.

If the flanges of the girder be parallel, straight, and of uni-

formly proportioned strength, the curve which it would assume

when loaded would be an arc of a circle whose versine is the

deflection.

If the girder be constructed with a camber, the curve of the

camber will be flattened when the girder is

loaded. The amount of deflection will not

be affected by cambering the girder.

Laws of Deflection. Let ABCD, fig. 61,

represent a girder, originally horizontal, un-

der deflection, having its flanges so propor-
tioned to the strain, that the strain per

square inch is uniform throughout the whole

of each flange. Then will the flange AB be

uniformly contracted throughout its whole

length, and CD uniformly extended.

Iif/. 61.
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Suppose that on the girder, when undeflected, two parallel

vertical lines pr, and qs, be drawn perpendicular to the flanges

at a distance x apart, then, when the girder is deflected,

their upper extremities p and q will be drawn together to a

small extent, which we will call e, so that the distance of p
from q will now be x e. In like manner, their lower extremi-

ties r and s will be forced apart to an amount e', the distance

between them being now x + e'. The lines pr and qs being no

longer parallel, will, if produced, meet in a point 0.

Since the flanges are uniformly contracted or extended

throughout their whole length, it is obvious that lines drawn

perpendicular to the flanges upon the face of the girder, would,

when the girder is deflected, all meet in the same point ;
and

therefore AB and CD would be arcs of circles, of which was the

centre.

Radius of Curvature. To find the distance Op.

The distance x being assumed very small, pq and rs may be

regarded as parallel straight lines.

i

From point p, draw pr parallel to qs. Then r's = pq, and

rr = e -f e.

Since the angle pOq is equal to the angle rpr\ the triangle

rpr' is similar to the triangle pOq (very nearly).

/. rr or e 4- e' : pr :: pq : Op-,

pr.pq_d.pquP--=
e + e

>
'-

e+ e

since pr = d, the depth of the girder. Whence Op the radius of

curvature for the top flange may be found. The neutral axis of

the girder, represented by the dotted line MNt
does not alter in.

length.

The radius of curvature of the line MN, or

R : x :: d : e + e,

by similar triangles,

-r> xd
therefore M= 7.

e + e
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When e = e, substitute 2E for e + e' in the foregoing ex-

pression, and taking x = 1,

we have E =
v

^ represents the actual alterations of a unit of length, say

1 foot lineal, of either flange under load in terms of the unit of

length, in feet therefore in this case
;
d represents the depth of the

girder, and R the radius of curvature in the same terms.

To find the Deflection. In fig. 62, let the arc CAD be the

neutral axis of the girder when deflected. Let

be the centre, and OA the radius of curvature.

Complete the circle AGED.
Produce A to E.

By Euclid, Book III. Prop. 35, AB . BE= BD\
Since AE=2B,

CD = I the span of the girder,

and AB = 8 the deflection,

AB.BE= (25 - 8) 8

But & being extremely small in comparison with R, (25 S) S

may be assumed equal to 25 . S, without sensible error.

'

Substituting for R the expression -=r^ ,
we obtain

-3 <

* The method here given of finding the radius of curvature is not absolutely

correct, for lines drawn on the side of the girder at right angles to the flanges in its

unloaded state will not make the same angle when the girder is deflected, but will

make angles with the flanges increasing in acuteness as the deflection and their

distance from the centre of the girder increases. Thus the angles ABC, SAD
(fig. 61), will be acute angles when the girder is deflected, though right angles when
it is undeflected. The consequence is that the true radius of curvature is less, and

therefore the deflection greater than our theory, which however is true enough for

practical purposes, gives.



DEFLECTION. 79

Example. A wrought-iron girder 60 feet long, and 10 feet

deep, receives a strain of 4 tons per square inch throughout its

flanges when loaded
; required the deflection.

.QA

Since a wrought-iron bar contracts or extends TrTr of its

length for every ton of strain per square inch of its section, in

this case

I = 60 feet,

d = 10 feet,

E=CS, where 0= a constant, varying for different

materials, and S= the strain in tons per square inch, caused by
the load*.

To put equation 1 into a more convenient form, substitute

CS for Ey then

Irregularly strained girder. When the flanges are not sub-

ject to a uniform strain, the foregoing equation is not available,

since the value of S is not the same throughout the girder, and

consequently the radius of curvature will vary for different parts.

We may, however, assume the value of S to be the same

throughout the whole of the flange in each bay, consequently
there will be a distinct radius of curvature for each bay.

Let us take the case of a girder in which the value of s is

largest for the bays at the centre of the span. Then it is

obvious that as S diminishes, the value of E, or e + e, diminishes

also (see fig. 61, p. 76), and consequently the radius of curva-

ture R increases in proportion as we approach the abutments.

Let us assume that the girder, when unloaded, lies hori-

zontally, and is constructed and loaded symmetrically on each

* If the girder be already partially deflected by a dead load, S will be the addi-

tional strain caused by the live load.
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side of the centre of the span p (fig. 63), then p will be the

lowest point in the girder when loaded,

and the centre of curvature for the bay qp
will lie in the line po drawn vertically

through p. Let o be this point. Join

q, o, and produce the line qo indefinitely.

Make qo
= R for the bay rq. Join ro and

make ro" = r for the bay sr. Join s, o".

Through the points q, r and s draw hori-

zontal dotted lines to meet perpendiculars

erected from points p, q and r respectively

in the points p, q and /.

The extremity 5 of the girder resting

on the abutment, it is obvious that the sum
of the distances pp, qq' and rr equals the

total deflection of the girder.

If pq, qr and rs be drawn as straight lines, the sine of the

angle pqp' is 2L;

/. pp'=pqsmpqp'',

similarly qq = qr sin qrq,

and rr rs sin rsr '.

Now the angle pqp / *--
;

2

, qorand qrq
=

tpoq + ^ -
,

rsr = tpoq + ^ qo r +

.*. the deflection or S pp
1

+ qq -f rr'

pq sin^ + qr . sin
(poq

+
2~J

+ rs.sin
^o^ + qor + -^J

......... (3).

In ordinary girders the lengths of the bays are all equal, con-

sequently pq, qr and rs may in such cases be represented by the
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expression -~
, in which I is the length of the girder and N is the

number of bays.

Equation 3 may then be simplified to this,

I ( . poq / qo'r\ f ro"s\)
8 =

-j- {sin" + sin (poq + -$-} + sm poq + qor+ -~-
}
Y .

IV
(

^ V 25 / \ * /J

The general expression for the deflection of a symmetrical

girder of N number of bays is when N is even,

N_
*

?

rl
-i-i)J

--w-

When N is uneven,

?-i ^.
(5),

6 being the angle of the centre bay.

To obtain the value of the angles poq, qo'r and rd's, we have

only to find the value of E for each bay, which will be given by

the equation R =^ (see p. 78).

Now the value of any angle 6 in degrees may be found from

the equation

_. 57'29578;
radius

t

or 6 = 2
. 57*29578 =

Substituting -= for pg and OS for E (see p. 79), we obtain

finally for any bay
.

In calculating the value of E in plate girders the effect of the

web must be taken into account.

Y. 6
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For accuracy, therefore, ^th
of the area of the cross section of

the whole web should be added to the area of the flange (see

p. 19).

Deflection of an arched rib. To find the deflection of an

arched rib, it will be necessary to know .

whether the abutments yield sensibly to

the thrust when the arch is loaded.

Assuming the abutment to be unyield-

ing, let a, c, b (fig. 64) represent half the rib in its normal posi-

tion, b being the vertex and a the springing of the arch, of which

Id is the rise.

Let the dotted line aeb' represent the position of the rib

when loaded, then W is the amount of deflection.

Draw the chords ab, ab'.

Since the distance W is very small,

the arc acb : arc acb' :: ab : ab', very approximately.

Knowing the strain in compression which the load gives to

the rib, the length of the arc acb' can be easily found, for

arc acb' = arc acb (arc acb x CS).

The half-span ad and the rise db of the arc are given

quantities ;

is known.

.
, acV xab

.out ab = * 7

acb acb

Now db
f * = ab'

2

-ad*-,

and W or 8 = db

(acb
- acb. Cfyjad* + db

Example. Required the deflection of a cast-iron arched rib of

20 feet span and 5 feet rise, under load. (See Fig. 65.)
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Let the strain on the cross section of the rib average 1 ton per

square inch when the bridge is unloaded, and

3 tons when loaded, then the strain caused by
the live load or S= 2.

For cast iron the value of the constant

0= -00018.

In this case db = 5 feet,

acb = 1I'6 feet;

ad=10 feet;

8= 5 - 4-99086 = '00914 feet = 10968 inches.

Deflection of Bowstring Girder. If the abutments yield, the

case becomes analogous to that of the bowstring girder, where

the span is lengthened by the stretching of the tie under load.

Let the strong line (Fig. 66) shew

the position of the flanges of a bowstring
Fl?'

&
e$-

girder when unloaded, and the dotted

lines their position when loaded.

Here, as in the previous case,

arc acb : arc ac'b' :: ab : a'b', approximately;

, ,,, ac'b' x ab
whence a b = 7 .

acb

But acb' = acb -acb. CS. See ante, p. 82.

And ab

,, , (acb
- acb . CS) *Jad*+db*

.*. a o = T , as before.
acb

Assuming ad to be a horizontal, and db' to be a vertical line,

a
f

d*.

62
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Now ad=ad+ad.CS;

/. db
/((acbV IV

by substitution ......... (9) .

And W or S = db-db
f

',

. . ,(IQ).

Deflection of Suspension Bridge. The case of the suspension

bridge, though analogous to that of the arch, presents certain

peculiarities.

The greatest amount of deflection in a bridge of three spans

occurs when the centre span only is loaded.

In consequence of the sliding of the chain on the top of the

tower, the chain in the centre opening will become lengthened

under load by the amount of extension, not only of itself but also

of the back tie.

Wherefore in equation No. 8, p. 82, it will be necessary to

substitute for the expression acb acb . (7$,

acb + acb . CS + amount of extension of back tie caused by live load.

Strength of a girder how far deducible from its deflection

under load. From the deflection of a bridge as actually observed

under test load, an idea can be formed of its strength. With the

span as the chord of an arc, and the deflection as its versine for

data, we can obtain R the radius of curvature, while from the

equation

the value of E, and the average strain per square inch on the

section of the flanges is deducible.

By comparing the deflection of a girder under a moving load

with its deflection under a dead load an approximate estimate

may be made of the strain to which it is subjected by the moving
load. It should, however, be borne in mind that a load moving
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rapidly on to a bridge deflects it to a greater extent than the

same load does when remaining at rest upon the bridge.

The mere stiffness of a girder is no criterion of its strength, for

the former depends upon the average sectional area of the flanges,

while the latter depends upon the net sectional area at any point.

For example, a girder whose flanges were made of the same

sectional area from end to end would be stiffer than a girder

which had this identical sectional area of flange at the centre of

the span and a sectional area diminishing towards the abutments,
but it would not be stronger, as the strength would be dependent

upon the sectional area at the weakest point the centre of the,

span. Again, if one of the plates in the flange of a girder of two

or three thicknesses of plate were cut completely through, the

deflection of the girder after the injury would not be perceptibly

greater than before, though the strength would be seriously-

diminished.

Mere stiffness alone does not prove the strength of a badly
constructed girder.
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CONTINUOUS GIKDEKS.

THE term " continuous
"

is applied to a girder when it is carried

without break over two or more spans. The peculiarity of the

continuous girder is, that a certain portion of it acts as an ordinary

girder, while another part is acting as a cantilever. In the one

part the top flange is in compression, and bottom flange in tension,

in the other part these conditions are reversed.

Fig. 67 shews the form assumed by two plain girders over

adjacent spans when deflected. Assuming that in their unloaded

state the flanges of the two girders formed two unbroken parallel

straight lines, and that the ends of the girders at a over the pier

were in contact for the whole of their depth ; upon deflection it is

obvious that the extremities of the top flanges of the two girders

would part at a, and a wedge-shaped gap be formed.

Now let us suppose that before causing the girders to deflect,

we had connected together the extremities of their top flanges

Jfcff.08.

at a. The effect of this would be to produce tension in the top
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flanges of the girders for a certain distance on each side of a, and

compression in the bottom flanges. The girders would assume

the form shewn in fig. 68, in which the centre of curvature for

the flanges in the neighbourhood of the pier is below the girder,

while for the other parts the centre of curvature is above the

girders. The points where the curve changes from convex to

concave, are called points of contrary flexure; at these points

there is no strain on the flanges. The parts of the girders in which

the top flange is in tension are in fact cantilevers, and the girders

of fig. 67, united as in fig. 68, form one " continuous girder."

It is evident that the strains on the flanges will greatly depend

upon the position of the point of contrary flexure. This fluctuates

with every change in the position of the load, and depends upon
the sectional area of the flanges at each point in the girder's

length. It is impossible to calculate the exact position of this

point in practice, we can, however, define its position within

certain limits.

Continuous Girder of two spans. Assuming the girder to be

of uniformly proportioned strength, both spans to be alike and

similarly loaded, the point of contrary flexure will be at a distance

o

of about Z^TV ths of the span from the pier, provided the relative

level of the three supporting points is similar to that of the three

bearing points in the girder in its unloaded state. For instance,

if the bearing points of the girder at the extremities and centre

are in the same straight line, the supporting points on the pier

and abutments must be so also. Or, if one bearing point in the

girder is, say 1 inch, higher than the other, its supporting point

must be made 1 inch higher than the other points of support.

' A corollary may hence be deduced, that the position of the

point of contrary flexure in a continuous girder may be shifted at

will to a certain extent by raising or depressing any one of the

points of support.

g
The reader may satisfy himself that

T7\ths
of the span is ap-

proximately the true position of the point of contrary flexure in

the following manner.
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Draw a horizontal line ab (fig. 69) to represent the girder in

its unloaded state. Let a be the end

of the girder resting on the abutment,
and b the bearing point over the pier,

the distance ab representing the span.

From point b drop a perpendicular

bo, making bo of convenient length.

With o as a centre, describe the arc be.

With a as a centre, and a distance

equal to ob as a radius, describe an

arc on the upper side of the line ab.

With o as a centre, and a distance equal to twice ob as a radius,

describe an arc cutting the last-mentioned arc in p. With p as

a centre, and ap as a radius, describe the arc ac touching the arc

be in c.

A line joining points o and p will cut the arcs be and ac at

their point of contact in c, which is the point of contrary flexure.

If ab = l, it will be found by actual measurement that the

horizontal distance of the point c from the line ob will be about

&
The curved line acb represents the position assumed by an

originally horizontal girder under load, for, supposing the girder,

as previously stated, to be symmetrically constructed and loaded,

it is obvious that the curvature of the girder in each span will be

the same, therefore the centre of curvature of the cantilever

portion must lie in the centre line ob of the pier, and as it is

assumed to be equally strained throughout, the rate of curvature

must be the same everywhere, (see Chapter on Deflection). This

assumption, however, can never be realized in practice ;
to do so,

it would be necessary to diminish the sectional area of the flanges

at c to nothing.

The extra proportional strength of the flanges in the neigh-

bourhood of the point of contrary flexure flattens the curves ac

and cb for a short distance on each side of the point c, and would

throw c rather further out from the pier. On the other hand,

in girders which are constructed to support a moving load, the

curvature of the girder portion ac is flatter than that of the canti-
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lever portion, in consequence of the extra metal in the flanges

of the girder portion, which is required to enable it to bear the

strain which arises when the adjoining span is unloaded and the

length of the girder portion increased, as will be seen subse-

quently : this would throw point c nearer to the pier. For girders

that have to bear a dead load only, the points of contrary flexure

should be taken as one-third of the span from the pier for safety.

This condition of loading gives the greatest possible strain to the

flanges at b over the pier, and for girders which have to carry

a dead load, such as the wall of a house, no variation in the

position of the point of contrary flexure can occur, but when a

moving load has to be carried, we must provide for the change
caused by the loading of one span only.

Fig. 70 represents a continuous girder of two spans, one only

Fiy. 70.

JM6-*

of which, that on the left, is loaded, c and c are assumed po-

sitions of the point of contrary flexure
;
be and be the respective

cantilever portions of the girder in the spans I and I'.

The conditions of equilibrium require that

weight of ac ,. , . , r , distance be2_- x distance bo + weight of be x--
^

weight of dc ,. , , . ,
, r 7 , distance be'

x distance le -\- weight of be x---=-- .

_ ^

Let w be the unit of the dead load,

w live

Then

ac (w + w) 7 ,
, . ,,bc do . w , ,

,
, be

i-|
-'- be + be (w + w )

-^
=

g
oo + be . w

,

or
(ac + 6c) (w + w'} j _ (dc' + bc^w , ,~~

J> " "
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but ac + be = I, and dc + be' = Z',

.-. l(w+w^ bc=l' .w. be (1).

If Z=f, (w + w')bc=wbc (2),

whence be : be :: w : (w + w').

That is to say, when the spans are equal, the lengths of the canti-

lever portions of each span are inversely proportional to the loads

on the spans.

be, the cantilever portion of the unloaded span, may be any

length between '3Z' and I'. It will be the former when w =
0, but

what value of w will give be' = I can only be determined approxi-

mately by very careful calculation, w, however, is generally a

known quantity.

Referring to fig. 70, it will be seen that the load on the abut-

ment d is equal to half the weight of the girder portion c'd. Now
if the point of contrary flexure c be assumed to coincide with d,

there will be no load upon the abutment d. This condition gives

the greatest possible length for the cantilever be, when the spans
are unequally loaded.

In calculating the length of the girder portion ac, be' should

always be assumed as considerably under the maximum length I'.

Let e and e (rig. 70) be the positions of the points of contrary

flexure, when the girder abd is fully loaded, then we see that the

effect of removing the live load from one span is to cause a con-

siderable strain upon parts of the girder which are unstrained

when both spans are fully loaded.

The positions of the points of contrary flexure c and c will

plainly be dependent upon the curvature of the girder, which is

regulated by the transverse stiffness. The transverse stiffness

again varies directly as the area of metal in the flanges.

In attempting to find approximately the true positions of the

points of contrary flexure it will therefore be necessary to assume

a certain transverse stiffness of girder, i.e. a certain area of metal

in the flanges of each bay.

Method of finding position of Point of Contrary Flexure.
The method of procedure should be as follows. Assuming both

spans to be fully loaded, calculate the strains on the cantilever

portions on each side of the pier
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Now assume each span in turn to be loaded, the adjoining

span being unloaded.

Take c, the point of contrary flexure for the unloaded span

(see fig. 70), as two-thirds of the span I' from b, the pier, and

calculate the position of c in the loaded span from equation 2,

and the strains on the girder portion ac, and cantilever por-

tion be.

Construct a diagram of the girder, shewing the maximum
strains on the flanges of each bay, as deduced from the foregoing

calculations.

Arrange the plates so as to give at least the required area

in each bay.

Take out the actual area of metal in the flanges of each bay,

and add thereto one-sixth the area of the web.

By equation 6, p. 81, find the value of 6 for each bay, (see

pp. 80, 81).

Proceed to calculate the slope of the flange at l} the pier, with

the horizontal, in the following manner.

/ / 1 I
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If the height of a be less than that of I above pointy, as in

this case, b
f

will fall below 6, but if greater it will be above it.

The value of 6 for each bay being known, the angle of incli-

nation of the flange with the horizontal line ab' is also known for

each bay.

But the truly horizontal line passes through points a, b and d,

consequently the true angle of inclination of the flange at b will

be obtained by subtracting the angle bob' from the angle of incli-

nation which it makes with the line ab', when, as in this case,

the point b' is below 5, or by adding it thereto when it is situated

above.

mi, ili> W 180 jThe angle bab = y in degrees.

Knowing the angle of inclination of the flange at b with the

true horizontal line abd, proceed to calculate step by step the

angle of inclination of the flange in each bay up to the abutment

at d, and thence ascertain the vertical height of the d extremity

of the girder above or below the horizontal line.

If it fall above, the girder is safe, but if below, the girder is

weak
;

the remedy for which is, to take the point of contrary

flexure c rather nearer the pier. On the other hand, if the

extremity of the girder at d fall much above the horizontal,

the point c' may be moved a little further from the pier, and

economy effected.

Example. A girder, in two spans of 60 ft., see fig. 1, Plate

IX., has to sustain a rolling load three-fourths of a ton per
foot run, its depth is 5 feet, and it is divided up into bays of

5 feet, at which distance apart the cross girders are affixed.

Taking the dead load at one quarter ton per foot run, we
3 1

have -r + -r 1 ton per foot run of girder, or 5 tons per bay.

Following the method laid down on page 90, we commence by
ascertaining the strains on the cantilever portions of the girder
when both spans are fully loaded.

In
fig. 2, Plate IX., are given the strains obtained by taking

the point of contrary flexure one-third the span from the pier, that

is, at the line dividing bays 8 and 9.



CONTINUOUS GIRDERS. 93

In fig. 1 are given the strains when the. left-hand span only is

loaded; c' being taken two-thirds of the span from the pier, c falls

in the loaded span at the line dividing bays 10 and 11.

In fig. 3 -are given the maximum strains collated from figs. 1

and 2.

In fig.
4 are given the arrangement of plates, areas of metal,

values of 8 and 6 for each bay of the girder under the condition

of loading strains in fig. 1.

Now e = 57'29578, see page 81,

S = strain per sq. inch in tons,

Here

ioootr

= -009626^,

whence the value of 6 for each bay is quickly obtained.

Assume the lowest point in the girder portion (coinciding with

point p, fig. 71) to be in the line dividing bays 5 and 6, which is

the centre of the girder portion, and consider this line to be

vertical when the girder is deflected.

Let 1

,
fl
2
, ...

12 be the respective angles for bays 1 to 12 of

left-hand span, and
1? 2 ,

...
12
be the respective angles for bays

(1) to (12) of right-hand span. Then the vertical height of the

lower left-hand corner of the girder portion above p, or

= 5
jsin |+

sin
(>+ |)

+ sisn -f +

= 5 (sin -0151 4- sin "04405 + sin -07146 + sin -09633 + sin-11148)

=5(-0002635ft.+'0007689ft.-f0012472ft.+-0016812ft.-H-0019457ft.)
= -0295325 ft
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On the right-hand side of p, the vertical height of the flange

at the extremity of the girder portion, being in the line dividing

bays 10 and 11, above p, or

B = 5 {sin
~ + sin (6+ ~] + sin

(
s + 67

(
A \ A / \

= 5 (sin -0151 + sin -04367 + sin'07021+ sin '09412+ sin -10792)

=5(-0002635ft.+-0007622ft.4-'0012254ft.+-0016426ft.+-0018835ft.)
=- -028886 ft.

8 for left side ofp = -0295325 ft.

S right ='0288860 ft.

Difference . -0006465ft.

Value of difference at pier
= '0006465 ft. x = '0007758 feet.

For bays 11 and 12 the centre of curvature is below the

horizontal line, and consequently the angle of slope of the flange
with the horizontal begins to decrease as we go to the right.

The angle made with the vertical by the line dividing bays
10 and 11 = the sum of the angles of the bays between this and

the vertical line at the centre of the girder portion

= ff> + O7 + (9
8 + 9 + 6 = -11090

and 0* + ff* ='01853

Difference = '09237

= angle with the vertical made by the line dividing bays 12 and

(12) at the pier, and angle of flange with the horizontal subject to

correction as below.

Now the height of point b (fig. 71) above point e, the lower

right-hand extremity of the girder portion,

5
jsin (-1109

- 6

^}+ sin
('1109

- 11 -
^

5 (sin -10826 + sin -09899) = '018165 ft.
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But -018165ft. - -0007758 ft. (see ante)
= '0173892 ft

the distance bb',

, ,, '0173892 ft..x 180
and / bob = ^TT^ 7,^, . -.

= '0166 ,
60 ft. x 3'1416

.-. -09237 -'0166 = -07577,

the true angle of the flange with the horizontal at the pier.

Turning our attention to the unloaded span, we observe that

the highest part of the flange will be in the fifth bay from the

pier, bay (8), where it will be nearly horizontal. It will make an

angle therewith

= -07577 -
(e, 9 + tt + 6> + 6g + ^} = -00304.

The flange of bay (7) will slope with an angle of

12 + 0n + M + 0. + 0. + |
= '004085

in the contrary direction.

Therefore the highest point of the flange will be in the line

dividing bays (7) and (8).

The rise or 8 = 5
jsin (-07577

-
|-

2

)
+ sin

(-07577
-

12
-

+ sin
(-07577

-
12
-

U
-

*p)
+ sin

(-07577
-

12
-

tt
-

10
-
1

+ sin
(-07577

- - 6n
-

10
-

9,
-

)}

= 5 {sin-06759+ sin '05061 + sin -03311 + sin -01606 + sin -00304}

= 5 (-0011797ft. + -0008831 ft. + -0005779 ft. + -0005779 ft.

+ -0002803 ft. + -0000530 ft.)
= '01487 ft.

or about ^ ths of an inch.

The drop from the summit towards d the right-hand abut-

ment or S

(since "004085 =
slope of flange in bay (7) and '004085 +-r

= -00654, the slope with the vertical of the line dividing bays
(7) and (8))
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= 5 {sin -004085 + sin (-00654 + %} + sin (-00654 + 0. +
(. V */ V *

+ sin
(-00654

+ 0^ + 6
-

\ + sin
(-00654

+ 0, + <9
5
-

6,
-

-*}

+ sin
(-00654

+ ft + e
-0

4
-0

s-)
+ sin f-00654 + 6 + B

-
4
-

3
-

2
- |

\ 2

= 5 (sin -004085 + sin '00779 + sin '00933 + sin '00938

+ sin -008465 + sin '006055* + sin '00244)

= 5 (-0000713 ft. + -0001359 ft, + '0001628 ft. + '0001637 ft.

+ -0001477ft. + '0001057 ft. + '0000426 ft.)

= -00415 feet.

01487 ft. - '00415 ft. = '01072 ft. = J th of an inch,

the height of the extremity d of the girder above the abutment.

But as by hypothesis the end of the girder rests upon the abut-

ment at d, it is obvious' that in order to fulfil this condition of

things, the angle of the bays between points a and e, fig. 71,

should be smaller, or those between e and the point of contrary

flexure in the unloaded span, that is to say the angles of the part

acting as cantilever, should be larger. Both these effects will

result if the points of contrary flexure be taken further from the

pier than they are in the present example ;
thus proving that

the length of the girder portion in the loaded span cannot in

practice be as long as that we have assumed, and therefore our

girder is so far safe, since the maximum strain on the portion

over the pier is obtained when both spans are fully loaded, and

the maximum strain on the girder portion is less than that we
have allowed for.

.

" As the point of contrary flexure in the unloaded span will fall

further from the pier than we have supposed, for safety's sake we
will assume the unloaded end of the girder as being lifted off the

pier. By this means we get the whole of the unloaded span in the

condition of a cantilever. By working out the strains produced by
this condition of things we find that on the flanges of the third and
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fourth bays, counting from the pier each way, there will be strains

of 52f and 41| tons respectively, instead of 36J and 31J tons, as

given in
fig. 3, Plate IX. To meet this it will be necessary to

have two thicknesses of J inch plate in bays 9 and (9), and to con-

tinue the -fg plate through in bays 10 and (10).

The question now arises whether we might not save metal.

By the proportion be : be :: w : (w+w'} (p. 90), we get bc= 15ft.

when be = 60 ft., that is, when c' coincides with the extremity of

the girder at d (fig. 70). It would, however, be manifestly unsafe

in fixing the position of the point of contrary flexure in the left-

hand span to assume the girder to be lifted off its bearing at d,

when the left-hand span only is loaded, for an almost inappreciable

error in the fixing or construction of the girder would prevent this

from taking place, and the result would be excessive strain on the

girder portion of the loaded span arising from increased span.

Again, the end of the girder might be lifted off the abutment to an

extent that would produce a dangerous jar when the load came on

to the unloaded span: for a species of blow would then be given
to the abutment by the underside of the girder, destructive of both.

If we assume be' = 50', the utmost we can with safety, then be =
12' 6".

That is to say, the point c would fall in the centre of bay 10,

and onr girder would be 2' 6" shorter than what we have assumed.

Very little metal would be saved hereby, and that at increased

risk. An error of but of an inch in the relative height of the

pier and abutments would only be just covered by our arrangement
in Plate IX. As it is, we know c' must fall further away from the

pier than we have assumed. The extra metal in the girder portion,

by lessening the value of 6 for the bays of the girder portion, helps

to keep c' nearer the pier than would be the case were the metal

in the girder portion reduced to the utmost limit of safety.

We conclude then, that considering all circumstances, it would

not be safe to take c further from the pier than we have done.

From the foregoing example the reader will perceive how much
of uncertainty and guess-work belongs to the calculations for con-

tinuous girders. In actual practice engineers do not think of thus

elaborately treating every case of continuous girder that comes

before them. They know by experience where to locate the points

Y. 7
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of contrary flexure so as to keep within safe bounds. In small

bridges the labour of calculation would not be repaid by the metal

saved in the bridge. In large and important bridges the chances

of error are very much diminished, because the proportion of dead

weight is much increased, and the amount of variation in the

position of the point of contrary flexure is proportional to the

difference between w and w + w', as shewn on p. 90.

In our example the variation of the point c amounts to 10 ft. or J
of the span, and c is taken as distant f of the span from the pier.

In calculating for a large bridge where the dead load reaches a high

figure, we should be careful riot to take c' too far from the pier.

We might perhaps take it so far as to get the cantilever portion of

the loaded girder as long, or even longer than, one third of the span ;

and as we know it must be less than this when the adjoining span
is unloaded, we know that c must be assumed at such a distance

from the pier as will give it a reduced length.

No universal rule can be given. The safest plan for the

student will be to work out carefully a few cases for himself, after

the manner of the preceding example, taking different proportions
of live and dead load, and thus satisfy himself as to what should be

the proportions of cantilever and girder in all cases likely to occur

in practice.

Two unequal spans. When the spans are unequal the deter-

mination of the position of the points of contrary flexure is still

more laborious.

Let
fig. 72 represent a continuous girder of two unequal spans

I and I', having a uniformly proportioned strength.
When both spans are fully loaded, in which case we may

assume the Unit of load to be alike for both, we find by equation
No. 1 (p. 90)

I . be = I' . be';

whence the proportion be ib'c :: I' : I.
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In this case the centre of curvature for the cantilever portion
will not, as in that of the girder of two equal spans (p. 88), fall in

the centre line of the pier. For since the rate of curvature for

all parts of the girder is assumed to be alike, it is obvious that the

flange at c will make a greater angle of slope with the horizontal

than the flange at c, I being the greater span, and as moreover

the pier is nearer to c than to c', it is plain that the flange at 6

must make an angle with the horizontal, and the perpendicular
to the flange in which lies the centre of curvature, must fall to the

right of the pier, as shewn by the dotted line in fig. 72.

To find point of c. flexure when both spans are loaded. The

following is a rough practical method of determining the position
of the points of contrary flexure when both spans are fully loaded.

Draw with the same radius three curves touching one another,

and forming an undulating line similar to acbc'd, fig. 73.

Join the centres of adjoining curves by straight lines cutting
the curves at their points of contact in c and c.

Divide the distance cc' into two parts be and 6c',

such that be : be' :: I' : I.

Through the point b draw a straight line cutting the two side

arcs in a and d, so that

ab : bd :: I : I'.

This may be done by fixing a needle in the paper at b, and

keeping against it the edge of a straight edge, which should be

moved about until its edge cuts the arcs at a and d, so as to give

the proper proportion between the spans.

By the diagram so obtained the proportion between the canti-

lever and girder portions of the structure is made visible at a glance.

We have now to determine the positions of the points of con-

trary flexure when one span only is loaded.

Adopting the notation made use of in the case of fig. 70, we call

the point of contrary flexure in the loaded span c, and that in the

unloaded span c.

72
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Longer span loaded. When the longer span only is loaded

the position of c in the shorter span should be taken nearer to

the pier than in the case of equal spans, and the greater the dis-

proportion in the spans the more should c' approach the pier.

The object of this precaution is to prevent the end of the unloaded

span d being lifted off the abutment, a contingency very likely

to occur if there is a deficiency of metal in the girder portion of the

longer span, in consequence of the large angle of slope which the

flanges would then make with the horizontal at the point c.

The actual position of c in practice will, however, be nearer to

the abutment d than in the case of the equal spans. From this it

will be understood that the girder portion of the longer span will

.be subject to less strain than the other parts of the structure.

Extremely disproportioned spans. If the disproportion be-

tween the spans be very great it may be impossible to prevent the

unloaded end of the girder from lifting off the abutment.

Ft'ff- 74.

Fig. 74 explains this pictorial ly. Here the structure over the

longer span is treated as entirely girder, which occurs when be

has a minimum value = 6. Notwithstanding this the slope of the

flange at the pier is so great as to lift up the end of the shorter

girder from the abutment. By putting a great deal of extra metal

in the longer span it might be possible so to flatten the curvature

of the girder as to avoid this defect, but as even now we have suffi-

cient metal in the structure to enable the longer span to support

itself alone, it is obvious that the proper thing is to span the two

openings by unconnected girders.

Shorter span loaded. To find what portion of the shorter

span when it alone is loaded should be taken as girder, determine

the position which the point of contrary flexure would occupy if

the adjoining span were equal in length to the shorter span and

unloaded.

The true position will be somewhere between this and its posi-

tion when both spans are loaded. The greater the disproportion
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of the two spans the nearer it will approach to this latter point,

and of course the longer will be the cantilever portion.

We cannot do more than indicate the law which regulates this

variation in position of the point of contrary flexure. The engineer

must exercise his own judgment in fixing its position. The limits,

as we see, are pretty well known. The only precaution to be ob-

served is not to take the point of contrary flexure too far from the

pier, when estimating the strains on the girder portion. Of course

it would be possible to find approximately the positions of the

points of contrary flexure by calculation in the manner of the

last example, but the labour would be doubled in cases where the

spans are unequal, and the result would be rendered inaccurate by
such slight irregularities in the methods of constructing or fixing

the girder, that it would be a waste of time to make the attempt.

Anchoring down the shorter girder. It is sometimes advisable,

when the spans are very disproportionate, to obtain the effect of

continuity by weighting or fastening down the abutment extremity

of the shorter girder. In such cases the shorter span acts entirely

as cantilever when the longer span only is loaded.

As the most usual cases of anchoring down occur in bridges

having two short side spans and one centre long span, we will

indicate the method of determining the amount of keying up neces-

sary to give the required position of the points of contrary flexure

in such three-span structures
;
a precisely analogous method will

enable the engineer to do the same for a two-span bridge.

In consequence of the facility afforded by a keying apparatus,

it is possible to locate the points of contrary flexure in the longer

span at convenient places within limits.

Suppose we desire that they should occur at a distance from

the pier
= - of the longer span.

Let abcdefg (fig. 75) be a representation of the curve assumed

by the lower flange of the girder. Then, as the structure will

receive nearly its greatest strain everywhere when the centre
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span only is loaded, we may take for granted that the metal in the

flanges has been arranged so as to give an approximately uniform

working strain throughout, and consequently that the rate of

curvature is the same everywhere.

That being sor it is plain that since the arcs cd, ef are each of

them by construction half the length of the arc de, the radii of

curvature of all three arcs 'must be parallel vertical lines; and if

distances cb and fg equal to cd and ef be marked off on the curve

of the flange of the shorter spans, the four points 5, d}
e and g will

be in the same straight line.

This line is a certain vertical distance below the bearings on

the piers at c and f, which distance can be ascertained either by
z 2 //

7

calculation or experiment. The formula S = j-r (page 78) will

answer for the former method^ for the latter, it will be necessary
to key up the 'bridge by guess approximately to its true position,
then to load the centre span, and observe by measurement the

depression of points d and e. If the depression given to the points
b and g by the keying up be incorrect, the amount of keying up
should be altered until the lines 6, d, e and g are in one straight
line.

As most bridges are built with camber, to simplify matters

it is well to set out on the web or upright gussets of the girder
when unstrained a horizontal line to be the sole guide for observa-

tion. When a bridge of this kind is loaded all over, the curves

ac, fh become slightly flatter as the strain on these parts is some-
what relieved. The effect of this is to shift the points d and e a
little further from the pier.

. Multiple spans. We come now to continuous girders of three

or more spans.

fiff. 76*

Three spans equally loaded. Let the curved line abcdefyh

(fig. 76) represent a continuous girder of 3 spans and of uniformly

proportioned strength, under deflection from a uniformly distributed

load.
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Let b, d, e and g be points of contrary flexure. Then, if the

points of support a, c,/and h are to be in one horizontal line, the

span of the centre opening must be to the span of the side open-

ings as 12 is to 10.

For when the centre of curvature of the cantilever portions

Id and eg lies in the vertical line passing through the points of

support c and ft
the length of the cantilevers be and fg will be

g
of the spans ac and fh (see p. 88). And since the girder is by

assumption of uniformly proportioned strength, the radius of curva-

ture of the girder portion de is equal to that of the cantilever

portions bd and eg, and consequently the length of de is equal to

that of bd or eg\ wherefore the whole distance cf=4< times cd.

Now, if ac = 10, 6c = 3, cc = 3 and de = 6,

.'. spanac = 10, span cf= 12 and span fh = 10.

If therefore we wish to bridge an opening with a continuous

girder of three spans, these proportions of spans will be the most

convenient for purposes of calculation and erection. And if we use

more than three spans, the intermediate spans should be all alike,

and bear the same proportion to the two side spans as does the

centre span in fig. 76, viz. 12 to 10.

Spans unequally loaded. It is seldom, however, that multiple-

span continuous girders of any size are required to carry only a

uniform dead load. In the great majority of cases they are used

for railway purposes, where the- live load is large in proportion to

the dead load. In such cases the most trying position of the live

load for the girder will generally be when the two side spans only
are loaded, if there are but three spans.

The girder abcdefg (fig. 77) is a representation of a continuous

girder of three equal spans, of which the two side spans only are

loaded. In this case the proportion of live to dead load is assumed

to be so great as to throw the point of contrary flexure in the
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unloaded span so far from the pier as to pass the centre of the span
at d. Under these circumstances, both side spans being loaded,

there is no contrary flexure in the centre span, but the whole of

the top flange is in tension, and the bottom flange in compression.

Fig. 78 represents the same girder under similar conditions of

loading, except that the proportion of live to dead load is such

that the points of contrary flexure d, e in the unloaded centre

span are at a distance of less than half the span from the piers

c and/.
As in the case of the two-span girder, so here it is evident that

the position of the points of contrary flexure in the loaded span
will depend upon the curvature of the unloaded span.

In order to obtain the position of the point of contrary flexure

with approximate correctness, it would be necessary in the first

place to assume its position under different conditions of loading,

to arrange the metal in the flanges so as to give sufficient area of

metal to take the strain in each bay, to calculate the amount of

bending in each bay, and thence deduce the slope of the flange at

the point of contrary flexure in a manner similar to that employed
in dealing with the two-span girder, p. 91, and following pages.

If the slope at b (fig. 77), as derived from a calculation of the

bending of the portion of the girder bd, agree with that obtained

by calculating the bending of the portion ab, the position of the

point of contrary flexure which has been assumed is the correct

one
;
but if not, it must be shifted in a direction which will tend to

make the slopes so obtained by calculation agree.

The case of fig. 78 is very unusual, and as the variation in the

position of the points of contrary flexure in the side spans in such

a case is very slight, it is easy to locate them so as to ensure safety

without wasting metal. The ordinary case is that of fig. 77.

Diag. 1, Plate X. gives the strains on a continuous girder of

three equal spans, when the two side spans only are fully loaded.

In this case it will be seen that supposing the point of contrary
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flexure in the side spans to be at a distance of

span from the piers, the lifting force at the middle of the centre

span will be equal to 12J, the strain on the flanges being that

which would be caused by a load of 12J, supported at the centre

of a girder of the same length as that of the centre span. The

span, loading of the girder, and position of the point of contrary

flexure in the side span, are taken the same as in Diag. ], Plate

IX. for comparison's sake.

Diag. 2, Plate X. shews the strains on the flanges when the

centre span only is loaded, assuming the points of contrary flexure

to be one-sixth of the span from the piers, and Diag. 3 gives the

strains for the centre span when the whole bridge is loaded, and

the points of contrary flexure for the centre span are taken at a

distance of one-fourth the span from the piers*. This position

gives a strain of only 67J over the piers, and whereas there is a

strain of 60 at these points when the side spans only are loaded,

it is clear that the difference between the curvature of the centre

span for the condition of a strain on the top flange at the centre

of 37J in tension, and for the condition of 27J in compression at

the same point, would alter the curvature of the side spans more

than is implied by the difference of only 7J in tension over the

piers. We therefore judge that the positions of the points of

contrary flexure in the centre span should be nearer the centre of

the span, or more in accordance with that shewn in fig. 78.

If equality of span be indispensable, economy may be effected

by lowering the bearing of the girder on the abutments, so as to

throw the points of contrary flexure, b and f (fig. 77), further

from the piers.

Reference to Diag. 1, Plate X., will shew that under this con-

dition of loading the centre girder is strained to its maximum

*
It happens that in the examples given the points of contrary flexure have been

assumed to fall at the line dividing two bays, they may however fall at any inter-

mediate point in a bay. When it falls in the centre of a bay there is no strain on

the flanges, if the web be doing equal duty in tension and compression. There will

be strains in tension and compression on the flanges of the bay according as the

point falls nearer the girder side or cantilever side of the bay. Diagrams 4 and 5,

Plate X. are examples. In Diagram 5 the point falls j of the bay from the girder

side of it.
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almost throughout its whole length. Now Diag. I, Plate IX. shews

that in the case of the two-span girder the unloaded span is, for

the greater part of its length, only slightly strained, and conse-

quently its bending is much less than that of the former girder,

whence it results that the angle of slope with the horizontal of the

flange at the piers is greater in the three-span than in the two-

span girder, and therefore the position of c (fig. 70, p. 89), the

point of contrary flexure in the unloaded span, falls nearer to the

pier in the three-span girder than in the two-span.

Practical rule for determining the position of the point of

contrary flexure in three-span girder. In fixing the position of

the point of contrary flexure, the course we recommend is to de-

termine in the first place the position of the point c (fig. 69),, on

the assumption that we are dealing with a two-span girder, the

unloaded span of which corresponds with the centre span of our

three-span girder, in the manner pointed out on pages 89 and 90.

Having done so, to take for the three-span girder the position

of point c as somewhat nearer the pier. How much nearer is a

matter upon which the engineer must exercise his discretion, as it

will be greatly dependent upon the difference between the live

and dead loads. If he determines to lower the bearing on the

abutment, c need not be taken nearer to the pier.

Girders of more than three spans. When a continuous girder

spans four openings, the two centre spans are not subject to so

much strain as the centre span in a girder of three spans, for the

upward transverse strain upon them is less.

Continuous girders of varying depth. Economy may, in gene-

ral, be effected by increasing the depth over the piers whereby the

area of the flanges at this point is reduced, at the expense, how-

ever, of an increase in the amount of web. The greater local

stiffness thus produced will affect the position of the points of

contrary flexure; its tendency is to throw them further from the

piers.

When the load to be carried is entirely dead, or when the pro-

portion of live to dead load is small, the system is undoubtedly
attended with considerable economy; but when the proportion of

live to dead load is very large, the strains to which the unloaded
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spans are subjected, in consequence of the greater length of the
cantilever portions in the loaded spans, are increased, and much of

the saving in the side spans counterbalanced.

Figs. 79 and 80 represent girders of this kind of three spans;
in

fig. 79 the girder portions have parallel flanges ;
in fig. 80 they

are hogbacked.
In these examples the position of the points of contrary flexure

will fluctuate more or less on either side of the points b, c, d and e
t

according to the manner in which the girder is loaded.

In the example, fig. 81, the depth of the girder is assumed to

be nothing at the points b and e in the side spans, the structure

must therefore be hinged at these points. The points of contrary
flexure in the side spans are thus fixed under all conditions of

loading to b and e. The advantages attending this peculiarity of

construction are, that the strains on all parts of the bridge can be

calculated with certainty and ease, while the metal, which would

be required in the examples of figs. 79 and 80 in the flanges in

the neighbourhood of the points b and e to provide for the fluctua-

tion in the positions of the points of contrary flexure, is saved.

The economy and convenience of this system is most conspicu-

ously shewn when circumstances require a large centre span and
two short side spans (see fig. 82). As in case of fig. 75 already

mentioned, the ends of must be anchored down to the abutments.

The points of contrary flexure being fixed, all uncertainty about
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the strains disappears, and no necessity exists for that extreme

nicety in adjusting the bearings of the girder upon which stress

r
was laid in the case of

fig. 75, and which is required in all other

kinds of continuous girders.

The structure shewn in fig. 82, properly speaking, does not

come under the category of continuous girders; continuity is broken

at the points c and d. It must be considered as a compound
structure formed of a girder supported by two cantilevers.

Practical remarks. Continuous girders of more than three

spans are rarely to be met with. The difficulties of erection and

the niceties of construction requisite to ensure the full advantages
of continuity are, to many engineers, serious objections to their use.

The large amount of contraction and expansion in long girders is

another objection.

The attention of the reader is once more called to the import-
ance of careful superintendence in the construction and erection of

continuous girders. The chief precaution to be observed is, that

the girders be so manufactured that when they are placed in situ

they shall not be subjected to initial strains except such as the

engineer may desire. A simple means of securing this result is to

bone a horizontal line on the side of the girder, before it leaves the

manufacturer's yard, making a notch with a file in the gussets at

the bearings. When the girder rests on its bearings, if it be

found that these notches are not in the same straight line, the

girder must be packed up, or the bearings lowered so as to make
them so, unless it be desired to put an initial strain upon some

parts of the girder. The amount of this strain will depend on the

deviation of the girder from the original straight line.

As any settlement of the piers or abutments would seriously affect

the strains in a continuous girder, it is obvious that very great care

must be 'taken that they are well and substantially built. By
means of the horizontal line boned along the face of the girder,

settlement of bearings could be observed, and remedied by packing

up the girder.



CHAPTER IX.

EOOFING TRUSSES.

THE great variety of forms adopted for the principals of roofs

precludes a notice of any but types of the most common.

The most elementary form of principal is that shewn in fig. 83.

It consists of two inclined rafters

ab and be, the upper extremities

of which abut against each other,

while the lower extremities are

connected by a tie rod adc, gene-

rally cambered at the centre of

the span by means of a vertical suspending bar.

The strains on a principal of this character may be expe-

ditiously found in the following manner.

Draw through the point of intersection of tie rod and rafter

the horizontal line ae.

Erect a perpendicular to the line ae.

With any convenient scale mark off a distance on this perpen-
dicular representing the total load on the abutment, i. e. half the

whole load on the principal*.

Through the point so obtained draw a line parallel to ae,

intersecting the centre line of the rafter ab in f.

Through /drop the perpendicular^^ to the line ae.

The scale applied to af will give the strain on the rafter : to

*
By. "the whole load on the principal" is meant the load which may be

assumed to be concentrated at the apex b in this case. The reaction of the abutment
must be assumed to be the share of the load which comes upon it minus the pres-

sure produced upon it by the load carried by the transverse strength of the rafter

itself. Thus, supposing the distributed load on the principal abc, Fig. 83, to be

4, the rafter abc (Fig. 83) carries a load of 2 by its own transverse strength, and
the point a is kept in equilibrium by three forces, the thrust of the rafter, the pull
of the tie-rod, and the vertical reaction of the abutment minus half the load carried

by the rafter or 2-1=1.
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ag, the strain on the tie, and to gh, half the strain on the sus-

pending bar.

Or the strains may be found by calculation thus.

As be : ab : ae : 2de :: load on abutment : strain on rafter

: strain on tie : strain on suspending bar.

Fig. 84 is a diagram of a principal in which the rafters ac

and ce are supported at intermediate points, b and d, by struts

If and df. If W be the total load on

W
the principal, there will be a load of

concentrated at each of the points b, c,

and d.

The strains on a truss such as that

shewn in fig. 84 might be determined by considering it as one

primary, and two secondary trusses, finding the strains on the

secondary trusses abf and fdc, and afterwards on the primary
truss ace. A similar method may be adopted with the more

complicated trusses illustrated in figs. 86, 87, and 88, but we
think the simplest method is that indicated on pp. 24 and 25,

viz. to find the bending moment at different parts of the truss,

and thence deduce the strains on the subsidiary parts.

We propose therefore to adhere to this method as much as

possible throughout these investigations.

In the case before us, let us first find the bending moment on

the vertical line passing through the point b, and intersecting the

tie in the point g. It will be obviously

SW- x horizontal distance between a and go

bg

= horizontal element of the strain on the tie ag

rafter ab.

Again, horizontal strain at/

3W /horizontal distance \ W /horizontal distance \

8 V between a and / / 4 \ between g and/ /

"7T"
= horizontal strain on rafter be.
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Now vertical strain on be 4- vertical strain on cd

W = vertical strain on cf,

and horizontal strain on af horizontal strain at/
= horizontal strain on bf.

Also for checking purposes vertical strain on bf

strain on cf ,. , .= - ~ vertical strain on af.

Fig. 85 shews another common arrangement of parts for roofs

of small span. The bars are marked

with the 4- and signs, to shew which

are in compression, and which are in

tension.

To find the strains on a truss of this shape, it will be neces-

sary to find the horizontal element of the bending moment on the

parts at three vertical planes passing through the points b, f,

and c, in the manner indicated in the foregoing example.

Figs. 86, 87, and 83 are examples of roofs of larger span. The
strains may be found by taking the bending moment at vertical

sections in fig. 86, through the points b, h, c, i, and d
;
in fig. 87,

through the points b, c, and d\ and in
fig. 88, through the points

b, k, c, and e
;
for fig. 88, however, the strains on the subsidiary
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trusses cdeo and efgp must be obtained separately and added to

the strains obtained by the first process.

The strains on the top and bottom members in figs. 86, 87,

and 88, being thus ascertained, the strains on the diagonal struts

and ties are easily found by methods similar to those adopted for

finding the strains on the diagonals of the hogbacked and bow-

string girders.

Arched Roofs. Roofs of large span are generally of an arched

form.

First System. Fig. 89 represents a plain arched principal

intended to act mainly by compression.

If the only load that could come upon the principal were that

arising from its own weight, by making
the arch of the form of an inverted cate-

nary, a very shallow rib might be used,

as the line of pressure would always fall

within the flanges ;
but since all roofs are

subject to unequal loading, arising either

from the pressure of the wind or snow, it does not follow that

a catenary will be the best form for our rib. It will also be subject

to transverse strain at times, and should therefore have a con-

siderable depth.

To determine the form and scantling of the various parts of

the rib.

Having settled upon the amount of rise that it is desirable to

have for the crown of the arch, draw the curve of equilibrium for

the states of equal and unequal loading through the springing

points a and e, and the crown c (see p. 46, and following pages).

Draw the dotted line abode, representing the position of the curve

of equilibrium when the roof is acted upon by a high wind coming
from the left in the direction of the arrow. Suppose the line to

fall outside the centre of the rib by a maximum distance bf in

the one case, and inside by a distance dg. The most economical

form of rib will be that which makes the distances bf and dg

equal. Although the rib so obtained may not be graceful, any
alteration of form will be at the expense of economy.

The method of finding the strain on the rib at f and g is
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given' on p. 53. The thrust of the rib is taken by the abut-

ments a and e.

Second System. The resistance to the distortion of the rib

may be effected by bracing, as in the ordinary bowstring truss.

In roofing trusses the tie is generally very mwh cambered.

The strains on the top and bottom members of the truss shewn

in fig. 90, may be obtained by treating it as a girder of varying

Fiff. 90.

depth, the mode we have already adopted when dealing with

hogbacked and bowstring girders.

The most convenient way of finding the strain on' the diagonals

will be to proceed as follows. Ascertain the vertical or shearing
force on each bay (see pp. 16 and 43) and the strains on the top
and bottom members of each particular bay in that condition of

loading which gives this shearing force upon it. Resolve the

strain of the top and bottom members of the bay into their hori-

zontal and vertical components, the difference (in this case) be-

tween these vertical components of the strains on the flanges will

tie the total shearing force taken ly them; this amount must be sub-

tracted from the total shearing force on the bay, the remainder

will be the shearing or vertical forte borne by the diagonals.

If both the diagonals in the bay are struts only or ties only,

the whole of this force will be borne' by one of them' alone. If

they are capable of acting both as strut's and ties, it will be shared

between them. The amount taken by the one or the other will

depend mainly upon the sectional areas of metal in the top and

bottom members of the bay.

Example. Diagonals, both Ties. Let us by way of example

investigate a case in which the diagonals are both ties.

We will assume that when the truss is unequally loaded, it

is loaded in ;

a-" manner similar to that shewn in Diagram 4,,

Plate VI.

Y. 8
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Now the shearing force on bay No. 2 is 24 6 = 18, and the

strains on the flanges db and cd may be found by the method

described on pages 25 and 41. Thus :

If I be the span, and
^
= the length of one bay,

I

horizontal strain on cd = 24 x
ac

24x4-

bd

The horizontal elements of the strains on the flanges being

known, the vertical are easily calculated.

If m = the vertical thrust of the top flange,

and n = the vertical pull of the bottom flange,

m n their total shearing effect, since they counteract one

another ;

and 18 (m n) is the vertical element of the strain on the

diagonal ad.

In this manner the strain on the acting diagonal of each bay

may easily be found.

When the left side only of the truss is heavily loaded, the

other set of diagonals come into play. Thus, cb and gf will be

subject to strain while ad and eh will be unstrained.

Third System. Fig. 91 represents an arched rib with parallel

flanges resting on horizontal bearings having one end free to

move.

Equally Loaded. When the load acts in a vertical direction

only, the strain on the flanges at any point may be easily found

by the method described on p. 25 for finding the strain at any part

of a girder.

Thus, required the strain on the top and bottom flanges of the

rib at point c.
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We have a force equal to one half the whole load on the rib,

W
or --

, pressing upwards in the direction of the line aa, and acting

at a leverage of x, tending to break off the part ac from the re-

mainder of the rib cb. This force is partially counteracted by
loads at points e and / resisting the tendency to break at c

;

therefore the moments of the load at e and /, acting respectively

at leverages represented by their horizontal distances from a

vertical line passing through point c, must be deducted from the

W
force -5- x x

;
the remainder divided by the depth of the rib at c

will give the strain on the flanges at that point.

The method of ascertaining the strain on the diagonals has

just been described (p. 114), and consists in ascertaining the total

shearing force to be borne by any particular bay, deducting from

that the amount taken by the flanges, and assuming the re-

mainder as borne by one or both diagonals according as they are

ties only, or struts also.

'

Unequally Loaded. The action of the wind upon trusses of

this description is very powerful, on account of their great com-

parative height : it considerably complicates the process of deter-

mining the strains upon the various parts. Perhaps the most

satisfactory method will be to resolve the force of the wind into

its vertical and horizontal components; to treat the rib as subjected

to a system of unequal vertical loads, and obtain the strains so

arising ; then, making another diagram of the rib, to consider it as

acted upon by the horizontal forces only. The sum of the two

82



116 ROOFING TRUSSES.

systems of strains so obtained will give the actual strain upon
each part.

Force ofWind. The force of the wind will act perpendicularly

to the curve of the rib
;
but for the purpose of ascertaining this

force it will be sufficient to assume the wind as acting perpendicu-

larly to a tangent to the rib at its junction with the diagonals.

Thus, to find the force of the wind at the point b of the rib

(see fig. 92), draw abc tangential to the curve

of the rib at b, making the distances ab and

be respectively equal to half the lengths of the

bays on each side of the point b. The distance

ac x the distance between the principals is the

surface exposed to the wind, and we may take

the angle made by abc with the horizontal as that at which the

wind acts.

Pressure of Wind on Inclined Planes. The pressure of wind

on inclined surfaces is a subject on which until quite lately we

were without any information whatever. Under the auspices of

the Aeronautical Society of Great Britain, a few rough experiments

have been tried, from which the following table has been compiled

as a sufficiently approximate guide to the engineer in calculating

the load on a roof from the pressure of wind.

Pressure of wind on plane 1 foot square being taken as 1,

Pressure of wind vertically, not perpendicularly to the plane,

on same plane inclined at an angle with the horizontal of

15 vertical pressure = '4, horizontal pressure
= *11

;

20 ='5, =16;
4,XO -7 _ I7.

I J>
"

)

60 ='47, ='9.

These experiments were made with smooth planes and low

wind pressures, for high pressures and rough surfaces the hori-

zontal pressure should be taken higher than is given in the

table.

The maximum pressure of the wind in this country is about

40 Ibs. per square foot against an exposed vertical surface. Usually,

however, roofs are very much sheltered, and it is only in the case
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of lofty and exposed buildings that we need assume the pressure

so high.

Let plt p2 , p3 , Pi and p5 (fig. 91) represent the horizontal

element of the pressures of the wind at the junctions of the bays
of the truss, and let l

lt 2 ,
1
3 ,

Z
4
and 1

5
be the leverages at which

these forces respectively act about the point 6, that being taken as

the fixed end of the truss and a as the free end.

Then M+M+M+M +PA = g = the vertical pressure on
distance ab

the abutment a, and the lifting force at b.

We have therefore a horizontal force of pl + pa + p9 + P4 + P5

on the bearing at 6, and a lifting force of - on each of the
Lt

flanges of the arch at that point. With these data we can, by
means of the polygon of forces, find the strains caused by the

horizontal force of the wind on the various parts of the structure.

When b is the free end and a .the fixed end, it will be necessary
to commence from the a end of the span, taking as our data

the same horizontal force as before, but a vertical pressure of

-^ instead of a lifting force of that amount on the extrados and
2t

intrados of the arch at a.

It must be remembered to take one system of diagonals only
at a time as doing duty, otherwise the problem is insoluble, and

to take into account the forces plf p2 , ps , p4
and p5

when resolving

the forces at the points where they impinge.

The method of estimating the effects of the vertical loads upon
the truss, being similar to that adopted in cases of the bowstring
and other roofing trusses, will, we trust, need no further explanation.

On Diagram 6 are given the strains on one half of a circular

rib due to the horizontal force of the wind calculated by means of

the polygon of forces. Being determined by a graphic method,
and not by mathematical calculation, they are only approximately

correct, but are sufficiently near for practical purposes. The bar

aa (Diagram 6) of the truss resting on the abutment is assumed

"to be held down by its centre to the abutment with a force

= 1@10 x 2 = 3220, the total lifting force of the wind; it is there-
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fore assumed to be capable of standing a transverse strain of that

amount with safety.

The strains caused by the horizontal force of the wind may also

be found in the same way as those caused by its vertical effect

(see p. 115); for instance, the strain on the bottom flange about

the fulcrum 6 (Diagram 6, Plate X.) may be obtained by multiply-

ing the reactionary upward pressure of the abutment on the

right-hand side of the truss by its leverage about point b, and

subtracting therefrom the moments about the same point of the

forces, 2100 and 900, which tend to turn the truss in a contrary
direction (see pp. 4 and 5). The remainder, divided by the depth
of the truss, should give the strain on the bottom flange in

tension.



CHAPTER X.

ECONOMY IN SUSPENSION BRIDGES.

(Reprinted from
"
Engineering.")

WHILE mathematicians and- engineers of the highest ability have

devoted themselves to elucidating the principles which govern the

construction of girder bridges of almost every variety of type, but

comparatively little of their attention has been bestowed upon
the question of economy in bridges on the suspension principle.

This neglect may perhaps be owing to the fact, that, in this

country at least, suspension bridges are but rarely constructed,

and consequently the element of wonder which attends the con-

struction of bridges of very large span has not yet generally

subsided. It is still regarded as so much a feat to throw an iron

structure over a clear span of from 600 to 1000 ft., that to criti-

cise its cost would appear ungracious. It is enough that the work

has been successfully carried out.

Every one who has given attention to the subject is aware of

the important part which the proportion of depth of span plays in

the economy of girders of various types, and, as might be expected,

it has received due attention at the hands of investigators. But

while we are not left in ignorance as to the most economical forms

of truss or girder, no one, so far as the writer is aware, has

attempted to point out the most economical proportions for the

suspension bridge, or the most advantageous method of disposing

the materials in its construction.

In view of these facts, it has appeared to the author worth

while to make some attempt to supply the deficiency by the ele-

mentary investigations presented in this communication, which,
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wanting as they are in mathematical exactness, are yet, it is

believed, sufficiently approximate to be of real value to the prac-

tical engineer, and may, it is hoped, lead to further and more

elaborate treatment at the hands of the experienced mathema-

tician.

The main questions which it is now proposed to consider are

the two following :

1. What proportion should the height of the tower of the

suspension bridge .above the roadway bear to the span ? and

2. What should be the arrangement of parts in the super-

structure to obtain the greatest economy ?

In endeavouring to answer the first of these questions, let us

consider an elementary case.

Let us suppose that we have to support a given load W (fig. 1,

Plate XI.), halfway between the sides of a chasm, and are desirous

of knowing what is the most economical position for W. All that

is necessary is to construct a diagram such as that shewn in fig. 1,

Plate XL, in which AB and AC are the suspending bars, whose

.upper extremities B and G lie at the same level, and whose lower

ends meet in A, the point of application of the load.

Let the vertical dotted line AE represent the load W, then

the dotted lines ED and EF represent the strains on the bars

AB and A G, to which respectively they are drawn parallel ;
and

since the sectional area of each bar is propior.tional to the strain

upon it, by multiplying each bar by its sectional area, a quantity

is obtained which represents the amount of material required to

carry the load in the given position.

W being equidistant between the points of support B and (7,

it will be found that the position of greatest economy is attained

when the bars AB and A G make an angle of 45 with the hori-

zontal, that is to say, when the load is depressed below the points

of support to an amount equal to half the horizontal distance be-

tween them.

If the point A be raised, the bars AB and AC are shortened,

it is true, but the strains ED and EF are more than propor-

tionally increased. On the other hand, if point A be lowered, the

strains are diminished, but the bars are more than proportionally

lengthened.
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'The above statement is only true on the assumption that the

bars themselves have no weight. If this be taken into account,

the most economical position for the point A will be higher than

4)hat shewn in fig. 1, Plate XL, and the greater the weight of the

bars in proportion to the load W, the less will be the depression

of the point A below the points of support requisite to obtain

the greatest economy.
But few cases, however, occur in practice when it is possible

to make use of perpendicular cliffs as points of attachment for

t/he chains of a suspension bridge. It is therefore necessary to

take into account the cost of the towers which we have to raise

to carry our chains, and the back-ties, in order to arrive at a just

estimate of the cost of the whole structure.

For this purpose the diagram, fig. 2, Plate XL should be

constructed, in which (dealing with one side only for simplicity's

sake) AS is the suspending bar, BD the back-tie, and BE the

tower.

We have now to find that position of the point A which will

give (AB x its sectional area) + (BD x its sectional area) + (BE
x its sectional area) a minimum.

Assuming the sectional area of the bars AB and BD, and of

the tower BE, to be in the ratio of the strains upon them, this

will be attained when the depression of the point A below the top
of the tower ^ = '354 of the distance BG (nearly), that is to say,

when the height of the tower is rather more than one-third of the

span.

But since in practice, in order to obtain the necessary stability,

we require to make the sectional area of the tower much greater

in proportion to the strain upon it than is the sectional area of the

main chains, it will be obvious that the height of tower just given

will be too great to give the most economical practical result, and

that the larger the proportion which the sectional area of the tower

bears to the strain upon it, the less should be its height in pro-

portion to the span.

Fig. 3, Plate XI. is a diagram from which can be seen at a glance

that proportionate height of tower to span which gives the greatest

economy for any given sectional area of tower up to 24 times the

ratio of section to strain existing in the chains. The vertical
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distance between the horizontal lines represents the half span.

The heights of the tower are represented by the vertical ordinates

from the lower horizontal line to the curves, the upper of which

terminates the ordinates which give the height of the tower when
the load is at the centre of the span, and the lower, the ordinates

which shew the most economical height of tower when the load is

evenly distributed.

When the load is concentrated at the centre of the span, and

there are no towers, that is to say, when the sectional area of the

tower = 0, the depression of the platform below the points of

support should be, as we have already pointed out, equal to half

the span, therefore the ordinate at the extreme left of the diagram,

with the figure underwritten, is made equal to '5 of the span.

Calling the ratio of section to strain which exists in the chains

1, the height of the tower, when its sectional area bears the same

ratio to the strain, is represented by ordinate No. 1. When the

ratio of the sectional area of the tower to the strain is twice that

in the chains, the height is represented by ordinate No. 2, and so

on up to a ratio of 24 times.

From the lower curve we obtain in a similar manner the most

economical heights for towers of various characters, when an

evenly distributed load has to be carried. These heights are, as

might be expected, less than those for towers of similar section,

when the load is to be carried at the centre of the span.

To estimate the amount of material in the superstructure of a

suspension bridge, such as that shewn in fig. 4, Plate XI., carrying
an evenly distributed load and with a varying height of tower,

would involve a great amount of labour; it therefore became an

object to discover a less laborious method of arriving at a suffi-

ciently approximate estimate of the required quantities. The first

step towards the accomplishment of this result was made when
it was found that the quantities required to carry a distributed

load by the system of fig. 4, Plate XL were exactly equalled by
the quantities required by the system of fig. 5, Plate XI. Finally,

it was ascertained by experiment that an identical result was

obtained when the whole distributed load was taken as concen-

trated at two points, each situated at a distance equal to one-

fourth of the span from the pier, as shewn in fig. 6, Plate XI.
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It thus became an easy matter to calculate the quantities re-

quired for the superstructure with the different heights of tower.

If AB, fig. 7, Plate XII., be the span, and CD the most econo-

mical height of tower of a certain section when the load is con-

centrated at the centre of the span, the vertical EF will represent

the most economical height of tower when the load is concen-

trated, after the manner shewn in fig. 6, Plate XL, at two points

situated at a distance AE from the pier. If a series of vertical

ordinates representing the most economical height of tower at

various positions of the load be raised from the line AB, the point

from which each ordinate is raised representing the position in the

span of the load to which it corresponds, it will be found that

a line drawn through the upper extremities of the ordinates will

give a curve similar to that shewn in fig. 7, Plate XII. This

curve resembles somewhat the hyperbola. When the point E is

situated at a distance from A equal to one-fourth of AB, the

ordinate EF will be about five-sevenths of CD, that is to say, for

a distributed load the height of the tower should be about five-

sevenths of the height when a load is to be carried at the centre

of the span only.

The ordinates in fig. 3, Plate XL are calculated on the as-

sumption that the tower is composed of the same material as

the chains, but this is rarely the case in practice ;
cast iron or

masonry being most commonly employed in the tower. In order,

therefore, to utilise the diagram, it will be necessary to find the

equivalent of the tower in the material of which the chains are

composed.
For example : It is required to determine the most economical

height of tower for a suspension bridge of which the chains are to

be of wrought iron, subject to a maximum strain of six tons per

square inch.

Let us estimate for a cast-iron tower. Assuming that the

engineer desires that the working-strain on the cast iron shall not

exceed three tons per square inch section, and that he estimates

the requisite bracing and architectural ornament to absorb twice

as much metal as that employed in carrying the load, he will then

have one square inch section of metal in his tower for every ton

upon it.
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Let us assume the cost of cast iron to be in this case one-half

that of wrought iron
;
then we may take the tower as formed of

wrought iron, and containing one square inch of metal for every
two tons upon it. Now since there is a strain of six tons per

square inch on the chains, the ratio of section to strain in the

tower is three times that in the chains, therefore ordinate No. 3,

fig. 3, Plate XL, will give us the proper height for the tower, which

is about eighteen, or rather more than one-sixth of the span.

In a similar manner by obtaining the equivalent of a tower

of masonry in wrought iron, the most economical height for a

tower of this kind may readily be determined.

In deciding upon the height of the tower, it must not, how-

ever, be forgotten, that the greater the height, the greater the

expense of erecting the bridge. In order, therefore, to obtain the

'greatest economy, it will be advisable to find this extra cost in

terms of quantity of material. For instance : supposing it is esti-

mated that beyond a certain height from the ground the cost of

erection will increase by one shilling a ton for every additional

foot of elevation, then if at this height the cost of the material

in place be, say 25 per ton, an extra elevation of ten feet would

add one-fiftieth to the cost of the bridge, which is the equivalent

of an addition of one-fiftieth to the quantities in the structure.

The raising of the height of the tower in this case to the

.amount of ten feet beyond the given elevation, would only be

justified, so far as economy is concerned, when more than one-

fiftieth of the quantities was thereby saved.

In fig. 8, Plate XII. is given a series of curves, from the

ordinates to which may readily be seen the comparative economy
of various proportions of height of tower to span from one-fourth

up to one-fourteenth. The figures at the extremity of each curve

shew the ratios of the sectional area of the tower to chains, and

correspond with the numbers of the ordinates in fig. 3, Plate XL
From this diagram it will be seen that with a tower whose ratio

is 3, nearly one-third more material would be required for a

bridge with a height of tower equal to one-fourteenth of the span
4han for a similar bridge whose tower was one-sixth of the span.

But when a very expensive character -of tower is adopted, the

^extra cost incurred by keeping the tower low is comparatively
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small. From this diagram the engineer can tell at a glance what

extra expense he will incur by adopting ornamental instead of

plain towers.

Fig. 9, Plate XII. shews by means of ordinates to a curve the

great economy which can be attained by adopting an inexpensive

class of tower. The ordinates represent the minimum total quanti-

ties in tower and chains .necessitated by the adoption of any ratio

of sectional area of tower to sectional area of chains from to 24.

The whole of the foregoing diagrams are based on the assump-

tion that the chains have no weight, they do not, therefore, afford

strictly correct information as to the most economical heights of

tower under varying circumstances. For when the weight of the

structure is taken into account, the load to be carried varies with

the height of the tower. The higher the tower, within certain

limits, the less the quantities in the- superstructure, and conse-

quently the less the load to be carried.

For bridges of very large span, where the proportion of dead

load is very large, this variation will be so serious as to affect

very materially the question of height of tower. In all cases the

most economical height of tower is really greater than that given

by the diagrams. In small bridges the error will be inconsider-

able, but in large bridges it is quite worthy of being taken into

account.

To construct a diagram in which this variation of the load is

allowed for, would be a somewhat laborious operation. It has not

therefore been thought advisable to go minutely into this ques-

tion on the present occasion, more especially as a variety of con-

siderations other than that of mere economy often determine the

decision of the engineer as to the height of the tower. And
whereas the object of the preceding remarks is rather to shew that

the proportions of height of tower to span hitherto adopted are

much too small, if economy be an object, than to insist upon any

particular proportion, it will be enough to point out that if the-

weight of the superstructure be taken into account, a diagram
would result still more condemnatory of the proportions of height

of tower to span hitherto generally adopted, than are the diagrams,

accompanying this article.

Let us now turn our attention to the second part of our sub-
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ject: "What should be the arrangement of parts in the super-

structure to obtain the greatest economy?"
From the point A, fig. 6, Plate XI. erect a perpendicular AB

equal to CD, the height of the tower above the platform. Join

^(7 and BE.

Since BC=AE by construction, BE is parallel to AC. So

then, if the line AB represent the magnitude of the load con-

centrated at A, AE or GB will represent the strain on the bar

AE, and A or EB the strain on the bar AG.

Let us now suppose the bar AE, which is subject to tension,

to be removed, and its place to be supplied by a strut occupying
the position AD. The strain upon this strut and its length are

both equal to that of the bar AE, and as the bar AE is common
to both arrangements of carrying the load, it follows that if the

ratio of strain to sectional area upon the strut be identical with

that in the bar AE, the same amount of material will be required

whether we make use of the tension bar AE or the strut AD, to

carry the load at A.

But if the load be shifted to a point F nearer the pier, the

strut FD being shorter than the bar FE while the strain upon
both is the same, the strut arrangement will be the more econo-

mical of the two. On the other hand, if the load be removed to

G further from the pier, the tension bar arrangement will be pre-
ferable. It is therefore evident, assuming bars acting in compres-
sion to be as effective as bars acting in tension, that the most

economical method of carrying a dead load is by means of sus-

pension for that half of the span which lies equally on each side

of the centre, and by means of cantilevers for the remaining parts
of the span which adjoin the piers.

For a moving load this will not hold good, because, whereas

the cantilever parts are not liable to distortion, the same cannot

be said of the suspension portion of the structure, to which certain

additions are requisite in order to preserve its form under varying
conditions of load. It is thus apparent, that for ordinary bridges
which have to carry moving loads, it would be necessary to have

a preponderance of cantilever, in order to obtain the most econo-

mical results.

To determine exactly the proper relative proportions of these
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two forms of construction in any bridge would be a matter of con-

siderable difficulty. We can, however, conveniently do so under

two extreme conditions the first, when the value of the live

load = 0; the second, when the value of the dead load = 0.

The first of these conditions we have just considered; to elu-

cidate the second, let us inquire how the distorting tendency of

a moving load can be most economically counteracted.

If we compare the quantities required to carry a given load in

the manner shewn in fig. 10, Plate XII., with the systems of

figs. 4 and 5, Plate XI., we shall find that the method of fig. 10,

Plate XII. consumes about 50 per cent, more material than its

rivals. It has, however, this advantage over them, that it is a

perfectly rigid system of construction.

If, now, we take the system of fig. 4, Plate XI., and stiffen it

by means of two girders of an economical form, in the manner

shewn in fig. 11, Plate XIII.
,
we shall find, on taking out the

quantities, that they exceed somewhat those of system fig. 10,

Plate XII., which may, in fact, be regarded as absolutely the

most economical method of carrying by suspension a load entirely

moving. We will, therefore, now compare suspension by this

system with the cantilever method.

The quantities required to carry the load of 100 by the bars

AC and AB, fig. 12, Plate XIII., will be found to be exactly

equal to the quantities required to carry the same load by the

bar A G and the strut A G, when the distance AG is one-third

of the span. The suspension system is the more economical

when the distance of the load from the pier exceeds one-third

of the span, but the cantilever system when this distance is less,

than one-third of the span.

We have thus defined the distances of one-fourth and one-third

of the span from the pier to be the limits between which it will

be necessary to fix the point where the character of the structure

should change from that of suspension to cantilever, if economy is

to be a supreme consideration.

Now, if we compare together the systems of fig. 10, Plate XIL
and fig. 11, Plate XIII., when the load to be carried consists

partly of dead and partly of live load, we shall find the latter

system (fig. 11, Plate XIII.) to be more economical than the
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former in proportion to the quantity of dead load which has to be

carried. For whereas by the system of fig. 10, Plate XII. the

quantities required will be the same, whether the load be live or

dead, in the system of fig. 11, Plate XIIL, when the live load = 0,

the quantities in the stiffening trusses become = 0, and the bridge
takes the character of fig. 4, Plate XI. Hence it is evident that,

in ordinary suspension bridges, where the dead load forms a serious

item in the load, the system of
fig. 11, Plate XIIL, will be prefer-

able to that of fig. 10, Plate XII.

From the foregoing facts we deduce the principle, that when

the proportion of dead load is excessive, the point where the sus-

pension part of the structure ends and the cantilever portion

begins, should approach the limit nearest the pier. On the other

hand, when the live load preponderates, it should lie nearer the

limit furthest from the pier.

In these calculations the effect of the weight of the structure

itself has been completely left out of account. It will, however,

modify our conclusions to a certain extent, and in the direction of

further increasing the proportions of cantilever.

If we turn to fig. 6, Plate XI., and once more compare the

suspension with the cantilever system, we shall see that since the

tension bar AE occupies a position nearer the centre of the

spans than the strut AD, the weight? of the structure is more

advantageously situated for economy in the cantilever than in the

suspension part. Hence the truly economic position of the point

of change from suspension to cantilever method would be at a

distance, more or less, exceeding one-fourth of the span from the

pier, as the weight of the bars bore a large or small proportion to

the load carried.

Thus much for the economical part of the subject. Let us

now devote a short time to the consideration of the practical

part.

However economical any arrangement of parts may be, its

adoption must be barred if it involve danger to the safety of the

bridge. It probably has been with the idea chiefly of keeping down
the amount of oscillation to which a suspension bridge is liable, that

the curve of the chains in many existing suspension bridges has

been made so excessively flat. And if no means of stiffening the
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platform is to be adopted, the arrangement is so far calculated to

attain the desired object. But this is a very expensive way of

accomplishing in a very imperfect manner a result which can be

completely effected by the use of stiffening girders. The trans-
'

verse strain to which these are subjected is always the same with

certain proportions of live to dead load, and is entirely unaffected

by the rate of curvature of the chain. There can, therefore, be no

objection on this score in a bridge provided with stiffening girders

to proportionally high towers.

The higher the towers the less the deflection of the bridge
under load, and the less the alteration of form caused by changes
of temperature. This, to some engineers, will appear an impor-
tant consideration.

Let us now consider the behaviour of structure, such as that

shewn in fig. 13, Plate XIII., compounded of a suspension portion

AB between two cantilever portions AC and BD, under a rolling

load.

The load travelling on to the bridge from left to right, a

bending will take place at each of the points E} F, and G, in the

platform. At these points it should therefore be hinged. The

alteration in the form of the platform thus caused will, however,

be slight. In a bridge of 1600 feet span, where the proportion
of dead load would be large, it was found by calculation that the

effect of an ordinary train running on to the bridge as far as point
E

t would be to depress the platform at that point to an amount of

about one inch. We may therefore take it that the distortion of

the platform produced by unequal loading would be so insig-

nificant as to be unworthy of consideration.

The alteration in the form of the platform caused by changes
of temperature will, however, be considerable. The expansion of

the metal will cause the extremities E and G of the two canti-

levers to approach one another, and consequently the platform at

F to drop. In order to prevent cross strains, it will be advisable

to make the hinge joints at E and G such as to admit of a certain

amount of end motion in the platform. This can be done in a

variety of ways.
In order to avoid the unsightly appearance which would be

produced by a reverse camber in the platform, it is recommended
that the platform should be laid so as to have a slight gradient

Y. 9
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each way towards the centre of the span, as shewn by the straight

lines H, E} F, F, G, /, fig. 14, Plate XIIL, when the temperature
is at its lowest. When the temperature is at its highest, the

point F would drop to F1

, a point not below the level of the

hinges E and G.

By this arrangement, all unsightliness can be avoided. The

consequence of these alterations in form of platform would amount

simply to this, that the gradients on the bridge would vary with

the season of the year, a peculiarity in no way affecting the safety

of the structure. Nor would the fact that the platform is capable
of end motion at the points E and G affect its lateral stiffness,

provided it be treated as a continuous girder, of which HE and

GI are the cantilever portions and EG the girder portion, E
and G being the points of contrary flexure.

The erection of such a bridge as that shewn in
fig. 13, Plate

XIIL, could be conveniently effected by building out from the

piers as far as the extremities of the cantilevers, and erecting the

suspension portion in the usual manner.

We have not here entered into the question of the most econo-

mical height of tower for a bridge of single span : to do so would

unnecessarily lengthen this article; we may, however, consider

that the proper height of tower for a bridge of this kind should be

much the same as for a bridge of several spans, inasmuch as the

quantities in the back tie of the former would be not very different

from those in the half span of the latter description of bridge.

When the towers of a bridge of single span are backed by high

ground, of course it would be advisable to adopt a loftier tower

than would be proper if no such natural feature characterised the

site.

The result of the investigations briefly summarised in the fore-

going remarks has been to convince the author that considerable

unnecessary expense has been incurred in bridging large spans,

through the adoption of towers deficient in height, and an arrange-

ment of parts in the superstructure not of the most economical

description. In confirmation of these opinions he would state that

he has made numerous careful and detailed estimates for bridges

of various spans on the system of fig. 13, Plate XIIL, and the result

has fully justified his anticipations.
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Horizontal girder to arching, 62; effect

of on piers in arched viaducts, 68

Irregular loading of arches, 63; of bow-

string girders, 48 ;
of parallel flanged

girders, 16; of hogbacked girders, 41;

of suspension bridge, 73; of girders,

89

Lattice girders, 37

Lever, i

Lever, bent, 3

Leverage, ib.

Line of greatest resistance, 51

Load at centre of span, 12

Masonry, arch of, 61

Method of finding position of point of

contrary flexure in continuous girders,

90
Methods of resisting distortion in the

arch, 62 ; in the bowstring girder, 51

Moment, 2

Multiple span, arched bridges of, 67

Multiple span, continuous girders of, 102

Neutral axis, 18

Ordinary wrought-iron girders, 2 1
; strains

on the flanges, 22; strains on the web,

24; shearing strain on each bay, 27

Parallelogram of forces, 6

Polygon of forces, ib.

Practical remarks on continuous girders,

108

Radius of curvature of deflected beams, 77

Resolution of forces, 8

Resultant, 6

Shearing force, 16; formulas for, 30

Spandrils of an arch, 62

filling, sundry forms of, 66

Stability of piers, 68

Strain on flanges at centre of span, 13;

at any point of the flange, 14; on the

web, 16, 24; on the flanges of hog-

backed girders, 41 ;
on diagonals, ib.

Suspension bridges, 72; strain at centre

of, 73; strain at any portion of chain,

$>.-, methods of stiffening, 74

Transverse strain on piers of arched via-

ducts, 68

Triangle of forces, 6

Truss, warren, 38

Trusses, 37

Vertical, or shearing force, 16

Viaduct, arched, of masonry, 67 ;
of

wrought-iron, 70

Warren truss, 38; strains on diagonals

of, 40

Web in iron girdera, 19

Wooden beams, 18
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