

UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
BOOKSTACKS

Faculty Working Paper 92-0131

l33o ^T*

1992s 131 COPY 2

A Single-Machine Scheduling Model
with Fixed-Interval Deliveries

The Library of the

JUN , 8 Yffl

University of «««*»

of yrbana-Clwrnpaign

Suresh Chand
Krannert School ofManagement

Purdue University

Dilip Chhajed
Department of Business Administration

University of Illinois

Rodney Traub
Krannert School ofManagement

Purdue University

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

BEBR
FACULTY WORKING PAPER NO. 92-0131

College of Commerce and Business Administration

University of Illinois at Grbana-Champaign

May 1992

A Single-Machine Scheduling Model
with Fixed-Interval Deliveries

Suresh Chand
Purdue University

Dilip Chhajed
University of Illinois at Grbana-Champaign

Rodney Traub
Purdue University

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/singlemachinesch92131chan

A Single-Machine Scheduling Model

with Fixed-Interval Deliveries

By

Suresh Chand
Krannert School of Management

Purdue University

West Lafayette, IN 47907

Dilip Chhajed

Department of Business Administration

University of Illinois at Urbana-Champaign
Champaign, IL 61820

and

Rodney Traub
Krannert School of Management

Purdue University

West Lafayette, IN 47907

March 9, 1992

Abstract

This paper considers an environment where a single-machine job shop needs to assign

delivery dates to several orders and find a feasible sequence. Tardy jobs are not allowed. The

delivery dates must be at prespecified fixed intervals. The objective is to minimize the due date

penalty and the cost of earliness.

Subject Areas: Dynamic Programming, Production/Operations Management, Scheduling

1. Introduction

Consider a single-machine shop with a list of customer orders. The shop needs to specify

delivery dates to customers and find a schedule such that the delivery promises are met without any

tardy jobs. The delivery dates are assumed to be multiples of a fixed interval. One example of such

a situation is when there is a delivery system in place that delivers the completed jobs from the

shop to customers at fixed intervals. Each customer would like to receive it's order as soon as

possible. For each job, there is a lead time penalty proportional to it's delivery date that reflects the

discount the customer may have to be offered for waiting to receive his order. The shop incurs a

holding cost for a job for the time between it's completion in the shop and delivery to the customer.

The shop has a service policy of delivering to its customers on a first-come first-served

basis. Thus if customer A's order was received before customer B's order, then the delivery date

to customer A cannot be after the delivery date to customer B.

The problem of scheduling a given number of jobs and determining their due dates to

minimize the sum of earliness, tardiness, and due date costs, where the due date cost of an order is

proportional to its assigned due date, is well studied. Panwalkar, Smith, and Seidmann (1982)

consider the case of a single due date and Chand and Chhajed (1992) consider the case of multiple

due dates. Models in which there is a single fixed due date and the objective is to find a schedule

of minimum total earliness and/or tardiness costs are also considered by Hall, Kubiak, and Sethi

(1989), Kanet (1981), Bagachi, Sullivan, and Chang(1986), Garey, Tarjan, and Wilfong (1988),

and De, Ghosh, and Wells (1991). Our problem is different from these because the due dates in

our model are at fixed intervals.

In the problem that we consider, the due dates cannot be violated and so these are deadlines

as in Ahmadi and Bagchi (1986), and Chand and Schneeberger (1988). However, unlike these

papers, we consider the due dates as decision variables. Matsuo (1988) considers the problem

with fixed shipping times and minimizes the sum of overtime and tardiness costs. Cheng and

Kahlbacher (1991) consider the problem with fixed delivery cost and earliness cost. They do not

restrict the deliveries at fixed intervals and show that the problem in NP-hard. Chhajed (1991) has

considered a similar problem but without the first-come first-served policy. He showed the

problem to be NP-complete and gave bounds on the optimal solution value in the case when there

are two delivery dates. Garey, Tarjan, and Wilfong (1988) consider the problem of scheduling

jobs with a given ordering with preferred starting times. They give an O(nlogn) algorithm to

minimize the sum of the absolute deviation from the preferred starting times.

For the problem considered in this paper, we provide a dynamic programming algorithm to

find an optimal sequence and delivery dates. Later, we provide several dominance results to reduce

the computational time taken by the dynamic program. Our computational results indicate that the

dominance results reduce the computational requirements by an order of magnitude. The rest of the

paper is organized as follows. In section 2, we introduce the notation and formulate the problem as

a dynamic program. In section 3, we develop dominance results to reduce the time taken by the

dynamic program. In section 4, we discuss the computational requirements and provide an

example. Section 5 provides a computational study to examine the savings realized by the use of

our dominance results in the dynamic programming algorithm. Concluding remarks are in section

6.

2. Model Formulation and Dynamic Programming Algorithm

The following problem is considered: Jobs { 1,2,...,N} are available at the beginning of

Period 1 for processing on a single machine. The jobs are numbered in the order of their arrival.

(Thus, for < i < j < N, the arrival time of Job i is less than or equal to the arrival time of Job j.)

The shop needs to assign a due date to each job and determine a schedule for processing these N

jobs on the single machine to optimize a certain measure of performance. The following

constraints are observed:

(1) Each job is to be delivered exactly at it's due date.

(2) Deliveries of completed jobs to customers occur at some predetermined fixed intervals.

(3) Jobs must be delivered on a first-come, first-served basis. Thus, if Jobs i and j are

delivered at the same time, then Jobs (i + 1, i + 2,...,j - 1 } must also be delivered

at that time. However, any processing order can be used among the jobs

scheduled in an interval.

The performance measure considered in this paper is assumed to include the earliness cost

and the lead time penalty. Earliness cost for a job is incurred from the time the job completes

processing until it is delivered. The shop incurs this cost because it has to hold the job between its

completion and delivery. Lead time penalty for a job is incurred for the time taken to deliver die

job to die customer. It represents the discount the customer may have to be offered for the delay in

meeting his order.

We now define the necessary notation and develop expressions for different costs.

Throughout the paper, we assume that the set notations {J?, J? + 1....J? + nj and <J?, Q + n> are

equivalent

Let P. denote the processing time for Job i and let W. denote the earliness cost per unit time

for Job i. It is easy to see that the cost of earliness for jobs scheduled in an interval is minimized

W
by arranging them in the order of increasing -5- ratios. Let E[K] denote the minimum cost of

earliness for scheduling jobs in the set K in an interval. Then, for K = <J?+1, P+k>, it is possible

to see that

E[K] = Z[min (W. P.,W. P.}| i e <J? + 1, J?+ k - 1>, j e <i + 1, J?+ k>]. (1)

In this formulation, it is assumed that the last job processed in an interval completes at the end of

the interval. Also, the interval length is assumed to be larger than, or equal to, the processing time

of any job.

If K- denotes the per period lead time penalty for Job i, then the lead time penalty of

delivering Job i at the end of the mr 1 period (or the m1" interval), is given by rmr..

We are now ready to develop a Dynamic Programming algorithm to solve this problem. To

develop this algorithm, we need the following additional notation. By n-job problem, we mean the

problem when only the first n jobs are to be scheduled on the single machine.

C (n) = the minimum cost for the n-job problem

C (n,m) = the minimum cost for the n-job problem subject to the constraint that there are m

deliveries (infinite if infeasible)

C. (n,m) = the minimum cost for the n-job problem with m deliveries and k jobs in

the last interval (infinite if infeasible)

It is now possible to develop the following recursions:

C (n,m) = min { C. (n,m)
I k e <l,n-m+l>}

k K

C(n) = min (C (n,m) I m e <l,n>}.m
The following Dynamic Programming algorithm solves the problem. For this algorithm, we first

need to initialize

n

C (n,l) = E[<l,n>] + £ 7C. forne <1,N>.
i=l

l

n

We set C (n,l) to infinity if £ p: > the interval length.

i=l

Steps of the Dynamic Programming Algorithm:

(Loop 1) For n = 2, 3, . . . , N

(Loop 2) For m = n, n-1, . . . , 2

(Loop 3) For k = 1, 2, . . . , n-m+1

n

C, (n,m) = C (n-k, m-1) + E [<n-k+l, n>] + £ K - m (End of LooP 3)k i=n-k+l
1

C (n,m) = min {C . (n,m) I k e <1, n-m+l>} (End of Loop 2)
k K

C (n) = min {C (n,m) I
me<l,n>} (End of Loop 1)m

This algorithm is forward in n (the number of jobs) and backward in m (the number of

deliveries). That is, we solve the C (n) - problem for increasing n (starting from n = 2 up to n =

N) and the C (n,m) - problem for decreasing m (starting from m = nupton= 1).

In the next section, we develop several dominance properties to reduce the computations

needed to solve the problem using the Dynamic Programming algorithm. Specifically, we develop

results to reduce the search region for m for a given n (in Loop 2) and the search region for k for a

given (n,m) pair (in Loop 3).

3. Computation Reduction Results

In this section, we develop several dominance results to reduce the computations in the

application of the Dynamic Programming Algorithm. To state these results, we need the following

additional notation.

m*(n) = number of deliveries in a C(n)-solution

NJL(n,m) = number of jobs assigned to the last delivery period in a C(n,m)-solution

Theorem 1 below gives an upper bound on the number of deliveries in the C(n+1) - solution.

THEOREM 1: There is an optimal solution for the C(n+1) - problem such that

m*(n+l) < m*(n) + 1.

Proof: It is easy to see that the (n+1) - job problem with m*(n)+l deliveries has an optimal

solution such that the Job (n+1) is assigned to the last interval and the remaining n jobs are

assigned to the first m*(n) intervals with the total cost equal to

C(n+1, m*(n) + 1) = C(n) + JC
n+1

• (m*(n) + 1).

To prove this theorem, it is sufficient to show that

C(n+1, m*(n) + J?) > C(n) + 7t
n+1

• (m*(n) + J?) for J? > 1.

This follows from the observation that the cost of the first n jobs in the C(n + 1, m*(n)+J?) -

solution is at least as large as C(n), and the cost of the last job is at least as large as k * • (m*(n)

+ J?).

As a result of this theorem, the search for m in Loop 2 of the Dynamic Programming

Algorithm can be started from m = m*(n-l)+l instead of m = n when we go from n-1 jobs to n

jobs. Also, for the C(n,m)-problem with m = m*(n-l)+l, there is an optimal solution with

NJL(n,m)=l; that is, one job is assigned to the last due date and the remaining n-1 jobs are

assigned to the first m*(n-l) due dates.

The next theorem gives an upper bound on the number of jobs assigned to the last interval

in the C(n,m) - solution. To prove this theorem, it is useful to define 9(KAL) as follows:

9(KAL) = E(K+L) - E(K)-E(L)

Here, K and L are two mutually exclusive sets of jobs. E(K+L) is the cost of earliness if all jobs

in K and L are processed in the same interval. E(K) and E(L) are similarly defined. 9(KAL)

denotes the increase in the earliness cost ifjobs in K and L are processed in the same interval,

instead of in two separate intervals. It is easy to see that

G(KAL) =2 I min {W
i
p. W. p.}.

ieKjeL J ' J

8

Also, for K > K, and L > L, we have

9 (KAL)>9(KAL).

We are now ready to prove the following theorem.

THEOREM 2: The C(n,m) - Problem has an optimal solution such that

NJL(n,m) < NJL(n-x,m) + x for every xe <l,n-m>.

Proof: Assume to the contrary that the optimal solution to the C(n,m) - problem has

k + NJL(n-x,m) + x jobs in the last interval for some x € <l,n-m> and k a positive integer. We

let K(J?) denote the set of the last J? jobs in <l,n-x> and let L(J?) denote the set of the last Q jobs in

<l,n>. For convenience of presentation, we denote NJL(n-x,m) by (n-x)

Given that the C(n-x,m) - solution has (n-x) jobs in the last interval, and the C(n,m) -

solution has k + (n-x) + x jobs in the last interval, then the C(n,m) - problem must have a

feasible solution with (n-x) + x jobs in the last interval. One such feasible solution can bem J

constructed from the C(n-x,m) - solution simply by adding the x jobs in L(x) to the last interval.

The cost of this feasible solution is equal to

A = C(n-x,m) + E[K((n-x)) + L(x)] - E[K((n-x))] + . Z/N 7t • mm m ieL(x) J

C(n-x,m) + 9[K((n-x)) A L(x)] + E[L(x)] + . Z it • m.m ig L(x) 1

Now consider the C(n,m)-solution with k + (n-x) + x jobs in the last interval. If we pull

out each of the x jobs in L(x) from the last interval, and adjust the remaining k + (n-x) jobs such

that their earliness cost is minimized, then the remaining schedule is feasible for the C(n-x,m) -

problem. It is now possible to see that the cost of the C(n,m) - problem with k + (n-x) + x jobs

in the last interval is equal to

B > C(n-x,m) + 0[K(k+(n-x)) A L(x)] + E[L(x)] + Z Jt • m.m ie L(x) l

It is easy to see that B > A. This completes the proof.

The search region for k in Loop 3 of the Dynamic Programming algorithm can be reduced

as a result of Theorems 1 and 2. For m = m*(n-l) + 1, from the proof of Theorem 1, the search

region for k is { 1 } instead of < l,n-m+l >. For m < m*(n-l) + 1, the search region for k is

< 1,M >, where

M = min (NJL(n-x,m) | x e < l,n-m >}.

The next theorem further reduces the search region for k in Loop 3 of the Dynamic

Programming algorithm by developing a lower bound on k.

THEOREM 3: The C(n,m-l)-problem has an optimal solution such that NJL(n,m-l) > NJL(n,m).

Proof: Let q- denote the number of jobs in the j"1
interval in the C(n,m) - solution. Note that

qm = NJL(n,m). We define J?, similarly for the C(n,m-1) solution. Then Qm_\ = NJL(n,m-l).

Contrary to the theorem, assume that J? , < q .J m-1 nm

m-1 m m-1 m
Note that X J?-=n> X q-. Let k* denote the largest integer such that X J?- > X Q-

i=l
l

i=2
l

i=k*
J i=k*+l l

Clearly, k* < m-1 because J?
1

< q . Let us assume k* = m-2 to simplify the presentation.

With k* = m-2, we have £„ 9 + J? . > q , + q .m-z m-i ^m-i ^m

Consider a C(n,m) - solution with the constraint that the mtn
interval has J? , jobs and the

(m-l)tn interval has (q ,+q -J? Jiobs. Let F(n,m) denote the minimum cost for this

constrained C(n,m) - problem. Note that transferring (q -J? ,) jobs from the (m-1)
tl1

interval

to the mtn
interval in the F(n,m) - solution gives the C(n,m) - solution; the reduction in cost is

equal to

F(n,m) -C(n,m) = saving in the earliness cost in the (m-l)th interval

- increase in the earliness cost in the mth interval

- increase in the lead time penalty for the jobs that are transferred

= A-B-C

10

It is feasible to make an identical transfer of the same jobs in the C(n,m-1) - solution also

from the (m-2)^ interval to the (m-l)tn interval. Let A' denote the saving in the earliness cost in

the (m-l)^ interval due to this transfer, B' the increase in the earliness cost in the (m-l)tn interval,

and C the increase in the lead time penalty for the jobs that are transferred. It is easy to see that

B' = B and C = C. Also, A' > A because the same set of jobs is transferred from an interval

consisting of more jobs in A' than in A. (This interval consists of the last J? ~ J0DS m tne set

<1, n-P ,> in A' compared to the last q_ + q_ , - J? , (< J?) in the set <1, n-J? ,> in
m-1 r ^m nm-l m-1 m-z' m-1

A.) Thus, there is a non-negative saving due to this transfer. This implies that, for the case of k*

= m-2, an alternate solution with a reduced or same cost can be constructed such that Q -, = q .

m-1 Mm

The proof can be easily extended for the case when k* < m-2. In this case, we define the

F(n,m) - problem by putting the following constraints on the C(n,m) - problem: The i
tn interval,

m m-1
for i e < k* + 2, m >, has J?- , jobs and the (k* + l)

tn interval has S Q- " X $\ jobs.
1-1

j=k*+l J j=k*+l J

It is possible to find sets of jobs that need to be transferred from the (k* + l)" 1 interval to the (k* +

2)
tn interval, from (k* + 2)"1 interval to the (k* + 3)

1" interval, and so on, to go from the F(n,m) -

solution to the C(n,m) - solution. This transfer reduces the cost because F(n,m) > C(n,m). An

identical transfer can be made in the assumed C(n,m-1) solution also leading to q jobs in the last

interval, with the saving > F(n,m) - C(n,m) > 0. This completes the proof.

With this result, for given (n,m), the search region for k in Loop 3 of the Dynamic

Programming Algorithm starts from k = NJL(n,m+l) instead of k = 1.

We now discuss the computational requirements of the Dynamic Programming Algorithm

and use a numerical example to illustrate the dominance results.

4. Computational Requirements and a Numerical Example

In this section, we first discuss the computational requirements and then present an

example. For the full dynamic program, the total number of states (combinations of different

11

N^ + 5N
n,m,k values) analyzed is ? where N is the number of jobs. Thus, the state space for

the full algorithm is of the order O(N^). As explained below, it requires O(N^) calculations to

analyze these states.

These required calculations, and therefore the necessary computer time, has been reduced

by taking advantage of the first-come first-served structure of the problem. Consider the x jobs

which are assigned to the last interval at some stage of an n-job problem. As loop 3 of the

algorithm continues, job x+1 is added to the last interval. From (1), the earliness cost associated

with these x+1 jobs can be found as follows:

x

Earliness cost for x+1 jobs = Earliness cost for x jobs + £min(Wj px+ j, Wx+ j pp.
i=l

Thus by carrying the earliness cost for the first x jobs forward, only the incremental cost of

adding the (x+1)"1 job to the last interval needs to be determined; this requires O(x) computations.

From the above discussion, we can conclude that O(N) computations are required for each state.

Thus with OCN-*) states, our dynamic programming algorithm (without any computation reduction

results) requires 0(N) computations to solve the problem.

Next, we present an example. Five jobs, whose processing times in order of arrival are 9,

18, 15, 16, and 2 are received. For all jobs, the lead time penalty cost is $10 per period and the

earliness cost is $1 per period of earliness. Since there are 5 jobs, 25 states must be analyzed in

the full version of the algorithm. Table 1 shows these 25 states in the sequence that the dynamic

program checks them. State (1,1) is included for completeness. The cost for each of these states is

given in column 5. The asterisks in the fifth column of Table 1 represent optimal solutions for

each value of n. The dynamic program provides solutions to each of these subproblems as well.

The third loop of the dynamic program calculates costs for each successive state. For

example, state 19 has 5 jobs assigned to 3 intervals with 2 jobs being assigned to the third interval.

This leaves 3 jobs to be assigned to the first two intervals. The optimal value for 3 jobs and 2

intervals is determined by taking the minimum over states 5 and 6 and is found to be 49. The

earliness cost of assigning the jobs 4 and 5 to an interval is 2. Finally, the lead time penalty of

12

assigning these two jobs to the third interval is 60. These are the three terms in Loop 3 of the

dynamic program and result in the total cost for state 19 of 1 1 1.

When the efficiency theorems are utilized the state space can be reduced. For this example,

1 1 of the 25 states are eliminated when Theorems 1, 2, and 3 are utilized. As indicated by the last

column of Table 1, Theorem 1 eliminates states 4, 6, 8, 10, 15 and 17, Theorem 2 eliminates states

13, 20, 23, and 24, and Theorem 3 eliminates state 21.

To demonstrate how efficiency theorems work, consider first how Theorem 1 eliminates

states 15 and 17. Since the optimal solution for 4 jobs uses 3 intervals, the most states which must

be considered for 5 jobs is 4 intervals, and if 4 intervals are used, only one job will be assigned to

the fourth interval. Therefore, state 15, which uses 5 intervals, and state 17 which has two jobs

assigned to the fourth interval, need not be considered. Theorem 2 is used to eliminate state 20.

Since the optimal solution for 4 jobs and 3 intervals has one job assigned to the third interval, there

is no need to consider state 20 which consists of 5 jobs but has 3 jobs assigned to the third

interval. Finally, Theorem 3 can be used to eliminate state 21. Since the optimal solution for 5

jobs and 3 intervals has two jobs assigned to the third interval, there is no need to consider state 21

which has one job assigned to the second interval.

5. Computational Results

To analyze the effectiveness of the dominance results, numerous simulations were run.

The full dynamic programming algorithm and a version using all efficiency theorems were tested

on randomly generated problems. The number of states analyzed by the dynamic program as well

as the time required to solve the problems were recorded to determine the effectiveness of the

theorems. The simple example above illustrates the appropriateness of using the number of states

as a measure of effectiveness. Also, the computer time required to solve each problem is presented

as a second measure of the theorems' effectiveness.

The test data was generated as follows. Processing times were generated from a uniform

discrete distribution with a range from 1 to 20. Problems of size 10, 20, ...,150 jobs were tested.

13

The lead time penalty cost was set at 100 for all jobs. The earliness costs were set at 5, 10, 20,

40, and 80. Note that a problem with an earliness cost of 2 and a lead time interval cost of 10 is

equivalent to a problem with an earliness cost of 20 and a lead time interval cost of 100. That is,

the ratio of costs, not the absolute value of costs, is what affects the assignment of jobs to

intervals. The range of earliness costs used should help us examine the performance of our

dominance results under a variety of circumstances. With a large earliness cost, relatively few jobs

will be assigned to an interval whereas the use of a small earliness cost results in many jobs being

assigned to an interval.

Table 2 gives the number of states checked for the full dynamic program as well as the

efficient version. Also, the fraction of states which the efficient version checks is given. The table

includes results for all replications, and is also broken down by problem size and by earliness cost.

Note that as problem size increases, the fraction of states checked tends to decrease. In

absolute terms, this implies that our algorithm is relatively more efficient for large problems which

is a desirable quality. As earliness costs increase, the fraction of states checked also increases.

This is due to the additional intervals which must be considered. Regression analysis showed that

the number of states for the efficient version of the algorithm is an order of magnitude lower than

for the full version.

The CPU time to solve the problems is presented in Table 3. Here too, the improvement

that the theorems have on the solution can be observed. The table gives die average CPU time

required to solve a problem of a particular size with both the full algorithm and the efficient

version. In each case, 50 problems consisting of 10 problems for each value of earliness cost were

solved and the total time to solve these problems was recorded. This total time was then divided

by 50 to determine the average time required to solve problems of a particular size. As can be seen

in Table 3, the savings in number of states examined translates into a corresponding savings in

computational time. Again, a regression analysis showed that the calculations for the efficient

version are reduced by an order of magnitude. It is clear from both Tables 2 and 3 that our

theorems lead to a significant reduction in the effort required to solve the problem.

14

6. Concluding Remarks

This paper considered a single-machine scheduling problem where the shop has to assign

delivery dates to jobs and find a feasible schedule to minimize the lead time penalty and the cost of

earliness. A dynamic programming algorithm and several dominance results were developed for

the problem. Our computational results show that the dominance results in the paper can reduce the

computational requirements by an order of magnitude.

In our model, we assumed that the length of the fixed interval is prespecified. Note that this

interval length determines the frequency of delivery. If the annual delivery cost is increasing with

the delivery frequency, then the length of the fixed interval could also become a decision variable.

The results in this paper should be helpful in solving this more general problem.

15

TABLE 1

State n m k Ck(n,m) State Not Calculated

Due to Theorem #

1 1 1 1 10 *

2 2 2 1 30

3 2 1 2 29 *

4 3 3 1 60 1

5 3 2 1 49 *

6 3 2 2 65 1

7 3 1 3 63

8 4 4 1 100 1

9 4 3 1 79 *

10 4 3 2 105 1

11 4 2 1 83

12 4 2 2 84

13 4 2 3 116 2

14 4 1 4 113

15 5 5 1 150 1

16 5 4 1 119

17 5 4 2 142 1

18 5 3 1 113

19 5 3 2 111

20 5 3 3 139 2

21 5 2 1 133 3

22 5 2 2 105 *

23 5 2 3 108 2

24 5 2 4 142 2

25 5 1 5 131

* Designates the optimal solution for the n job problem

16

• TABLE 2

Average percent of states checked

Number of

Simulation runs

Average States

Checked in Full

Program

Average States

Checked with

Theorems

Average
Percent of

States Checked

Overall 750 160066.7 3602.4 6.8

By Problem Size

10 50 175.0 58.1 33.2

20 50 1350.0 228.4 16.9

30 50 4525.0 479.2 10.6

40 50 10700.0 815.6 7.6

50 50 20875.0 1231.6 5.9

60 50 36050.0 1720.2 4.8

70 50 57225.0 2293.1 4.0

80 50 85400.0 2930.0 3.4

90 50 121575.0 3657.4 3.0

100 50 166750.0 4431.6 2.7

110 50 221925.0 5281.8 2.4

120 50 288100.0 6240.4 2.2

130 50 366275.0 7149.7 2.0

140 50 457450.0 8190.3 1.8

150 50 562625.0 9328.9 1.7

By Earliness cost

5 150 160066.7 2633.8 4.3

10 150 160066.7 3006.7 5.4

20 150 160066.7 3465.3 6.7

40 150 160066.7 4064.2 8.0

80 150 160066.7 4842.2 9.6

17

TABLE 3

Average seconds required to so ve a problem

Problem Size Number of

Simulation runs

Average Time
Full Program

Average Time
with Theorems

Percent Time
Required

10 50 0.018 0.014 77.8

20 50 0.024 0.016 66.7

30 50 0.058 0.024 41.4

40 50 0.138 0.040 29.0

50 50 0.298 0.062 20.8

60 50 0.572 0.092 16.1

70 50 1.006 0.134 13.3

80 50 1.778 0.190 10.7

90 50 2.598 0.260 10.0

100 50 3.840 0.352 9.2

110 50 5.524 0.450 8.1

120 50 7.696 0.572 7.4

130 50 10.464 0.704 6.7

140 50 13.940 0.866 6.2

150 50 18.210 1.040 5.7

1ECKMAN
1INDERY INC.

JUN95
M MAMPMFSTFR

