.

S MITHSONIAN

C0NTRIBUTI0NS T0 KN0WLEDGE.

VOL. XXI.

CITY OF WASHINGTON:

PUBLISHED BY THE SMITHSONIAN INSTITUTION. MDCCCLXXVI.

PHILADELPHIA: COLLINS, PRINTER, 705 JAYNE STREET.

ADVERTISEMENT.

This volume forms the twenty-first of a series, composed of original memoirs on different branches of knowledge, published at the expense, and under the direction, of the Smithsonian Institution. The publication of this series forms part of a general plan adopted for carrying into effect the benevolent intentions of James Smithson, Esq., of England. This gentleman left his property in trust to the United States of America, to found, at Washington, an institution which should bear his own name, and have for its objects the "increase and diffusion of knowledge among men." This trust was accepted by the Government of the United States, and an Act of Congress was passed August 10, 1846, constituting the President and the other principal executive officers of the general government, the Chief Justice of the Supreme Court, the Mayor of Washington, ${ }^{1}$ and such other persons as they might elect honorary members, an establishment under the name of the "Smithsonian Institution for the increase and diffusion of knowledge ayong men." The members and honorary members of this establishment are to hold stated and special meetings for the supervision of the affairs of the Institution, and for the advice and instruction of a Board of Regents, to whom the financial and other affairs are intrusted.

The Board of Regents consists of two members ex officio of the establishment, namely, the Vice-President of the United States and the Chief Justice of the Supreme Court, together with twelve other members, three of whom are appointed by the Senate from its own body, three by the House of Representatives from its members, and six persons appointed by a joint resolution of both houses. To this Board is given the power of electing a Secretary and other officers, for conducting the active operations of the Institution.

To carry into effect the purposes of the testator, the plan of organization should evidently embrace two objects: one, the increase of knowledge by the addition of new truths to the existing stock; the other, the diffusion of knowledge, thus increased, among men. No restriction is made in favor of any kind of knowledge; and, hence, each branch is entitled to, and should receive, a share of attention.

[^0]The Act of Congress, establishing the Institution, directs, as a part of the plan of organization, the formation of a Library, a Museum, and a Gallery of Art, together with provisions for physical research and popular lectures, while it leaves to the Regents the power of adopting such other parts of an organization as they may deem best suited to promote the objects of the bequest.

After much deliberation, the Regents resolved to divide the annual income into two parts-one part to be devoted to the increase and diffusion of knowledge by means of original research and publications-the other part of the income to be applied in accordance with the requirements of the Act of Congress, to the gradual formation of a Library, a Museum, and a Gallery of Art.

The following are the details of the parts of the general plan of organization provisionally adopted at the meeting of the Regents, Dec. 8, 1847.

DETAILS OF THE FIRST PART OF THE PLAN.

I. To increase Knowledge.-It is proposed to stimulate research, by offering rewards for original memoirs on all subjects of investigation.

1. The memoirs thus obtained, to be published in a series of volumes, in a quarto form, and entitled "Smithsonian Contributions to Knowledge."
2. No memoir, on subjects of physical science, to be accepted for publication, which does not furnish a positive addition to human knowledge, resting on original research; and all unverified speculations to be rejected.
3. Each memoir presented to the Institution, to be submitted for examination to a commission of persons of reputation for learning in the branch to which the memoir pertains; and to be accepted for publication only in case the report of this commission is favorable.
4. The commission to be chosen by the officers of the Institution, and the name of the author, as far as practicable, concealed, unless a favorable decision be made.
5. The volumes of the memoirs to be exchanged for the Transactions of literary and scientific societies, and copies to be given to all the colleges, and principal libraries, in this country. One part of the remaining copies may be offered for sale; and the other carefully preserved, to form complete sets of the work, to supply the demand from new institutions.
6. An abstract, or popular account, of the contents of these memoirs to be given to the public, through the annual report of the Regents to Congress.
II. To increase Knowledge.-It is also proposed to appropriate a portion of the income, annually, to special objects of research, under the direction of suitable persons.
7. The objects, and the amount appropriated, to be recommended by counsellors of the Institution.
8. Appropriations in different years to different objects; so that, in course of time, each branch of knowledge may receive a share.
9. The results obtained from these appropriations to be published, with the memoirs before mentioned, in the volumes of the Smithsonian Contributions to Knowledge.
10. Examples of objects for which appropriations may be made:-
(1.) System of extended meteorological observations for solving the problem of American storms.
(2.) Explorations in descriptive natural history, and geological, mathematical, and topographical surveys, to collect material for the formation of a Physical Atlas of the United States.
(3.) Solution of experimental problems, such as a new determination of the weight of the earth, of the velocity of electricity, and of light; chemical analyses of soils and plants; collection and publication of articles of science, accumulated in the offices of Government.
(4.) Institution of statistical inquiries with reference to physical, moral, and political subjects.
(5.) Historical researches, and accurate surveys of places celebrated in American history.
(6.) Ethnological researches, particularly with reference to the different races of men in North America; also explorations, and accurate surveys, of the mounds and other remains of the ancient people of our country.
I. To diffuse Knowledge.-It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of lenowledge not strictly professional.
11. Some of these reports may be published annually, others at longer intervals, as the income of the Institution or the changes in the branches of knowledge may indicate.
12. The reports are to be prepared by collaborators, eminent in the different branches of knowledge.
13. Each collaborator to be furnished with the journals and publications, domestic and foreign, necessary to the compilation of his report; to be paid a certain sum for his labors, and to be named on the title-page of the report.
14. The reports to be published in separate parts, so that persons interested in a particular branch, can procure the parts relating to it, without purchasing the whole.
15. These reports may be presented to Congress, for partial distribution, the remaining copies to be given to literary and scientific institutions, and sold to individuals for a moderate price.

The following are some of the subjects which may be embraced in the reports:-

I. PHYSICAL CLASS.

1. Physics, including astronomy, natural philosophy, chemistry, and meteorology.
2. Natural history, including botany, zoology, geology, \&c
3. Agriculture.
4. Application of science to arts.

II. MORAL AND POLITICAL CLASS.

5. Ethnology, including particular history, comparative philology, antiquities, \&c.
6. Statistics and political economy.
7. Mental and moral philosophy.
8. A survey of the political events of the world; penal reform, \&c.

III. LITERATURE AND THE FINE ARTS.

9. Modern literature.
10. The fine arts, and their application to the useful arts.
11. Bibliography.

1\%. Obituary notices of distinguished individuals.

II. To diffuse Knowledge. -It is proposed to publish occasionally separate treatises on subjects of general interest.

1. These treatises may occasionally consist of valuable memoirs translated from foreign languages, or of articles prepared under the direction of the Institution, or procured by offering premiums for the best exposition of a given subject.
2. The treatises to be submitted to a commission of competent judges, previous to their publication.

DETAILS OF TIIE SECOND PART OF TIIE PLAN OF ORGANIZATION.

This part contemplates the formation of a Library, a Museum, and a Gallery of Art.

1. To carry out the plan before described, a library will be required, consisting, 1st, of a complete collection of the transactions and proceedings of all the learned societies of the world; 2 d , of the more important current periodical publications, and other works necessary in preparing the periodical reports.
2. The Institution should make special collections, particularly of objects to verify its own publications. Also a collection of instruments of research in all branches of experimental science.
3. With reference to the collection of books, other than those mentioned above, catalogues of all the different libraries in the United States should be procured, in order that the valuable books first purchased may be such as are not to be found elsewhere in the United States.
4. Also catalogues of memoirs, and of books in foreign libraries, and other materials, should be collected, for rendering the Institution a centre of bibliographical knowledge, whence the student may be directed to any work which he may require.
5. It is believed that the collections in natural history will increase by donation, as rapidly as the income of the Institution can make provision for their reception; and, therefore, it will seldom be necessary to purchase any article of this kind.
6. Attempts should be made to procure for the gallery of art, casts of the most celebrated articles of ancient and modern sculpture.
7. The arts may be encouraged by providing a room, free of expense, for the exhibition of the objects of the Art-Union, and other similar societies.
8. A small appropriation should annually be made for models of antiquity, such as those of the remains of ancient temples, \&c.
9. The Secretary and his assistants, during the session of Congress, will be required to illustrate new discoveries in science, and to exhibit new objects of art; distinguished individuals should also be invited to give lectures on subjects of general interest.

In accordance with the rules adopted in the programme of organization, each memoir in this volume has been favorably reported on by a Commission appointed
for its examination. It is however impossible, in most cases, to verify the state ments of an author; and, therefore, neither the Commission nor the Institution can be responsible for more than the general character of a memoir.

The following rules have been adopted for the distribution of the quarto volumes of the Smithsonian Contributions:-

1. They are to be presented to all learned societies which publish Transactions, and give copies of these, in exchange, to the Institution.
2. Also, to all foreign libraries of the first class, provided they give in exchange their catalogues or other publications, or an equivalent from their duplicate volumes.
3. To all the colleges in actual operation in this country, provided they furnish, in return, meteorological observations, catalogues of their libraries and of their students, and all other publications issued by them relative to their organization and history.
4. To all States and Territories, provided there be given, in return, copies of all documents published under their authority.
5. To all incorporated public libraries in this country, not included in any of the foregoing classes, now containing more than 10,000 volumes; and to smaller libraries, where a whole State or large district would be otherwise unsupplied.

OFFICERS

OF THE

SMITHSONIAN INSTITUTION.

the president of the united states, Ex-officio PRESIDING officer of the institution.

THE VICE-PRESIDENT OF THE UNITED STATES,
Ex-officio second presiding officer.

MORRISON R. WAITE, Chancellor of the institution.

JOSEPH HENRY, SECRETARY OF the institution.

SPENCER F. BAIRD, ASSISTANT SECRETARY.

PETER PARKER, JOHN MACLEAN, GEORGE BANCROFT,

REGENTS.

T. W. Ferry, Vice-President of the United States (acting).
Morrison R. Waite, Chief Justice of the United States.
Hannibal Hamlin, Member of the Senate of the United States.
John W. Stevenson,
Aaron A. Sargent, 66
Hiester Clymer, Member of the House of Representatives U. S.
Benj. H. Hill,G. W. McCrary, .66
John Maclean, Citizen of New Jersey.
Peter Parker, " of Washington.
George Bancroft, 66
Asa Gray, " of Massachusetts.J. D. Dana," of Connecticut.
Henry Coppée, " of Pennsylvania.

MEMBERS EX-OFFICIO OF THE INSTITUTION.

Ulysses S. Grant, President of the United States.
T. W. Ferry, Tick-President of the United States (acting).

Hamilton Fish, Secretary of Stute.
B. H. Bristow, Secretary of the Treasury.

Alphonso 'Taft, Secretary of Wer.
George M. Robeson, Secretary of the Navy.
Marshall Jenell, Postmaster-General.
E. Pierrepont, Attorney-General.

Morrison R. Waite, Chief Justice of the United States.
R. H. Duell, Commissioner of Patents.

HONORARY MEMBER.

Zachariah Chandler, The Secretary of the Interior.

TABLE OF CONTENTS. ${ }^{1}$

ARTICLE I. Introduotion. Pp. 16.
Advertisement iii
List of Oficers of the Smithsonian Institution ix
ARTICLE II. (No. 280.) Statement and Exposttion of Certain Harmonies of theSolar System. By Stephen Alexander, LL.D., Professor of Astro-nomy in the College of New Jersey, 1874-1875. 4to. pp. 104.
ART.
Section I. Introductory statement. 1
Correction of data 3
Table (A) of periodic times, distances, and masses of planets, respectively 3
Section II. First approximation to a Law of planetary distances, with an approximate tabular arrangement of the system 5
Half-planet characteristics of the Earth and Venus 6
Half- planet characteristics of Uranus 7
Ratios for half-planet terms ; viz.:-$\frac{\text { Neptune }}{\text { Uranus }}, \frac{\text { Earth }}{\text { Mars }}$, and also $\frac{\text { Mercury in aphelion }}{\text { Mercury in perihelion }}$; which, with r forthe leading ratio of the system, all approximate to r^{7}; also ratio$\frac{\text { Earth }}{\overline{\text { Venus }}}$, approximating to $r^{\frac{1}{4}}$. Symbolical arrangement represent-
ing planetary ratios 8
Mode of computation of terms 9
Laws of planetary distances, involving leading ratio \dot{r}, also $r^{\dot{3}}$, and $r^{\frac{1}{4}}$. $2 d$ Approximate Arrangement of the system. 10
Question of regular variation of ratio r considered II
Subsidiary Induction in the region from Saturn to Mars inclusive 12
Specific values of r in the Planetary System 13
Completed Arrangement of the Planetary System; exhibiting the corres- pondence of Law with Fact, in Table (B) 14
System of Saturn 15
Centre of gyration of a thin bomogeneous ring is in the circumference of a circle bisecting the area of the ring 16
A formula for the centre of gyration of any two equal masses similar to the reduced formula for the homogeneous ring 17
Definite Arrangement of the Saturn System in Table (C); the rings (re- ferred to their centres of gyration) claiming their places as satellites 18
Other relations in Saturn's System 19
Definite Arrangement of Jupiter's System, in Table (D) 20
Approximate Arrangement of the System of Uranus, in Table (E) 21

[^1]ART.
Summing up of the preceding relations of distances in all the four systems 22
Additional feature of resemblance of half-planets 23
Section III. Description and illustration of the Laplace Nebular Hypothesis 24-29
Formation of satellites and of Saturn's rings 30, 31
Small eccentricities 32
Accounted for 33
Existence of comets explained 34
The Zodiacal Light, as discussed by Laplace 35
Modification of Laplace's Nebular Hypothesis 36-38
Four specialities of the two Lalf-planets Earth and Venus 39
Summation of the same 40
Determination of the mass of a (now) missing lalf-planet interior to Uranus 41
Disappearance of missing mass to be accounted for. It was not broken into asteroids 42
Ten coincidences to show that the missing mass was absorbed and com- bined with the forming Saturn 43
An 11 th coincidence shown in a more Ancient Arrangement of the material of the Solar System ; the same being exhibited withal in Table (F) . 43-45
Values of the leading ratio R_{1} in Table (F) 45
Mass of the Asteroids 46
Aareement of the determination of the asteroid-mass with that indicated by M. Le Verrier as obtained by a discussion of the perturbations of Mars 47
1st Approximation to the range of the asteroids, by the use of the mass as previously determined 49
Mercury's place in Table (F). Mercury includes mass of a whole and a half-planet. Eccentricity of his orbit accounted for 50
Mass and distance of a possible planet (or rather half-planet) interior to Mercury 51
Such a mass, so situated, seems to be adequate to the perturbations in the orbit of Venus indicated by M. Le Verrier 5»
Peculiar relations of the living force of (simullaneous) rotation of some of the planetary masses, and of Saturn's rings 53
Application of other conditions appertaining to the ring-like form. Ex- teusion of formula 54
Induction with respect to Saturn's rings 55
Application to Neptune and Uranus 56
Consequent Arrangement of planetary masses; the greater among the more remote, but the greatest not the most remote 57
Consequent and similur arrangement of masses in Saturn's System 58
Consequent and simitar arrangement of Jupiter's System 59
Arrangement of asteroid-mass. Same seems to be referable to two half- asteroid masses. Range of asteroids, and interference of Jupiter 60
Eccentricity of asteroid-orbils 61
Approximate relations of the vis viva of (simultaneous) rotation of the half-asteroid masses and that of Mars, respectively 63
Keason for missing terms in planetary or satellite series of distances 64,65
Vacuities iu the Saturn-System 66
Commensurability of periodictimes. Influence of a resisting medium at the formation of the revolving bodies provided for by theory 67
Special characteristics of the Moon and other satellites. 68
ART.
Explanation of the appearance of certain satellites of Jupiter as darkspots, in their transit across the face of their primary. Significance ofthe same as respects the rotation, temperature, atmosphere, etc., ofsatellites69
Of the Zodiacal Light-M. Laplace's proof that the Zodiacal Light is not due to the sun's atmosphere 70
His subsidiary hypothesis as to the constitution of the material which affords us the light 71
Eastern and Western appearances of the light have occurred simultaneously 72
Difficulty of supposing that the material is an immediate solar appendage 73
The material a terrestrial appendage-its rarity 74
The light, to a great extent, transmitted light. Observers at diverse stations see different portions of the material illuminated 75, 76
Other phenomena attendant on the transmission of the light 76, 77
Modification of Rev. George Jones? hypothesis of a nebulous terrestrial ring. The material in form, a girdle. 78
How the girdle is maintained. Its time of revolution around the Earth the same with that of the Moon 79
Oval form of the girdle, and certain conditions of equilibrizm 80
Girdle, in equilibrio, retains its form when the distance of the moon vuries; but its dimensions change 81
Dimensions of the girdle 82
Tidal action of the moon on the girdle 83
Other peculiarities are noticed in connexion with Consistency 60th, in 100
Curvature of parts of the girdle 84
Five cases of variety of illumination of the girdle, and therefore of variety, ete., of the Zodiacal Light to be looked for 85
Variation of brightness probable 86
Observations of phenomena, presented by the Zodiacal Light, and state- ments of the Moon's position at the times of observation 87
"Moon" Zodiacal Light. 88
Various additional observations, including those of the "pulsations" of the Zodiacal Light 89-93
Absence of parallax of the Zodiacal Light accounted for 94
Summary of what seemed to be eight special coincidences of phenomena with the requirements of the theory 95
Origin of the Girdle 96
Conjecture as to the Aurora Borealis 97
Analogies and differences of the Girdle and Saturn's Dusky Ring 98
Close correspondence in the position of the planes of the planetary orbitsin ancient times. Conjecture as to the reason why the Sun's equatormakes an angle with those planes, the mean value of which is nearly 5°.Also as to the derivation of the great planelary masses from differenthalf-spheroids of the Sun; and which from which. Harmonious rela-tions developed by John N. Stockwell, M.A. .
Greater inclination of the orbits of outer satellites to the planes of the equators of their respective primaries, and especially the great inclination of the Moon's orbit to the plane of the equator of the Earth; and the yet greater inclination of the orbits of the satellites of Uranus to the plane of the equator of their primary. Reasons assigned for these peculiarities
The Minor System 101
Saturn and the Earth (the Saturn of the Minor System) compared akt.
Relations of great planetary masses, in the Ancient State of the Solar System. Possible order and character of successive development 104
Illustrations of Kirlwood's Analogy 106
Failure of the formula derived from Kirkwood's Analogy in the case of Uranus. Reason for this 107
Approximate coincidence of the result of the same formula with fact, in the case of Mars; admitting the subsidiary hypothesis of half asteroid masses. 108
The (so-called) "Bode's Lav" 109
Immediately after these we have the Summation of Coincidences, 62 in number 110
Lastly, we have Supplementary Notes (A) and (B).
AR'TICLE III. (No. 281.) On the General Integrals of Planetary Motion. BySimon Neffomb, Professor of Mathematics United States Navy. 1874.4to. pp. 40.§ 1. Introduction1
§ 2. Canonical Transformation of the Equations of Motion 4
§ 3. Approximation to the Required Solutions by the Variations of the Arbitrary Constants in à First Approximate Solution 9
§4. Formation of the Lagrangian Coefficients ($\alpha_{i j}, a_{k}$), and Reduction of the Equations to a Canonical Form 11
§ 5. Fundamental Relations between the Coefficients of the time, b_{1}, b_{2}, etc., considered as Functions of c_{1}, c_{2}, etc. 16
\S 6. Development of $\Omega, \Omega_{j}, \Omega^{\prime} ;$ 19
$\S 7$. Form of Second Approsimation 24
§ 8. General Theorem 26
§ 9. Summary of Results 28
article IV. (No. 267.) The Haidail Indians of Queen Cearlotte's Islands, British Columbia; witil a brief Description of their Carvinas, Tattoo Designs, etc. By James G. Swan, Port Townsend, Washington Territory. 1874. 4to. pp. 22.
ARTICLE V. (No. 277.) Tables, Distribution, and Variations of the Atmospherio Temperature in the United States, and some Adjacent Parts of America. Collected by the Smithsorian Institution, and discussed under the Direction of Josepil Henry, Secretary. By Charles A. Schott, Assistant U. S. Coast Survey; Member Nat. Acad. of Sci., Am. Phil. Socs. of Philadelphia and Washington, and of Academy of Sciences of Catania, Sicily. 1875. 4to. pp. 360. Niue Diagrams, Two Plates, Three Charts.
Section I. General remarks and explanation of tabular results
Special table of corrections for daily variation of temperature in each month and the year, for every hour and for various combinations of hours Tables of mean temperature for each month, season, and the year at various stations, principally in North Americature, and of the distribution of the temperature during the winter andthe summer seasons
page
Section II. Discussion of the daily fluctuation of the atmospheric tempe-rature107
Times of sunrise and sunset in different latitudes, and for every tenth dayin each month .113
Tables of bi-hourly, hourly, and semi-hourly mean temperatures, for each month and the year at various places in North America 121
Tables of differences from the mean of the day, of bi-hourly, hourly, and semi-hourly mean temperatures for each month and the year 137
[For consolidated table of corrections for daily variation of tempera-ture at four principal stations, in each month and the year, forevery hour and for various combinations of hours, see page xiv.]
Systematic representation of the daily fluctuation of the temperature, bymeans of a periodic function153
Analysis of the daily fluctuation 154
Variability of the temperature at any bour of the day from the normal value of that hour 162
Section III. The annual flactuation of the temperature expressed in terms of a periodic function 169
Table of computed annual fuctuation of the temperature at 46 stations. 175
Discussion of the results for dates of mean annual values, and for maximaand minima ; and annual range in connection with the geographical dis-tribution of the stations180
Examination into alleged interruption in the regularity of the annual fluctuation at certain epochs, with tables of temperature of each day of the year, deduced from a series of years 183
Investigation of the variability of the temperature of any one day in a series of years 197
Inequality in the epoch of the minima and maxima of the annual fluctuation 199
Tables of observed extremes of temperatures, arranged by months, for a selected number of stations 202
A nalysis of tabular results for greatest heat and greatest cold with regard to geographical distribution 226
Extreme annual range of temperature and monthly absolute variability, exhibition of the law of annual distribution 227
Tables of the mean annual temperature, principally in the United States, for a succession of years, from the earliest records to the close of the year 1870 228
Investigation of the secular variation of the annual mean temperature, and of the permanency of the climate 302
Comparison of the secular variation of the temperature with the variations in the frequency of the solar-spots 314
Comparison of the secular variation in the temperature and rain-fall in the United States 315
Comparison of the secular variation in the temperature with the average annual direction of the wind 316
Range of variability in the secular variation of the annual temperature 318
Secular variation in the annual minima and maxima, compared with the variation in the annual means 319
List of Stations 321
List of Observers 333
Index 341
-

STATEMENT AND EXPOSITION

or

CERTAIN HARMONIES

THE SOLAR SYSTEM.

PY
STEPHEN ALEXANDER, LL.D.,
PROFESNOR OF ASTRONOMY IN THE COLLEGE OF NEW JERSEY.
[accepted for publication, july, 1874.]

$$
\begin{gathered}
\text { WA SHINGTON, } \\
\text { MARCH, } 1875 .
\end{gathered}
$$

PHILADELPHIA:
COLLINS, PRINTER, 705 JAYNE STREET.

ADVERTISEMENT.

The principal part of the following Memoir on Certain Harmonies of the Solar System was read before the American National Academy of Sciences, at its mecting in April, 1873, and some additional portions of the same, at the meeting in April, 1874.

In accordance with usage in such cases the whole is now presented to the public through the Smithsonian Contributions to Knowledge.

JOSEPH HENRY,
Secretary S. I.

Note by the Author.-After reading the whole memoir, a synopsis of the principal relations may be obtained by a reperusal and comparison of the Tables (B) to (F) inclusive, with their explanations ; and, especially, the Summation of Consistencies at the end.

CONTENTS.

$N . B$. The references are to the articles, not to the pages.

SECTION I.

Introductory statement, 1 .
Correction of data, 3.
Table (A) of periodic times, distances, and masses of planets, respectively, 3.

SECTION II.

First approximation to a Law of planetary distances, with an approximate tabular arrangement of the system, 5 .
Half-planet characteristics of the Earth and Venus, 6.
Half-planet characteristics of Uranus, 7.
Ratios for half-planet terms; viz:-
$\frac{\text { Neptune }}{\text { Uranus }}, \frac{\text { Mars }}{\text { Earth }}$, and also $\frac{\text { Mercury in aphelion }}{\text { Mercury in perihelion }}$; which, with r for the leading ratio of the system, all approximate to $r^{\frac{7}{2}}$; also ratio $\frac{\text { Earth }}{\text { Venus }}$, approximating to $r^{\frac{1}{2}}$. Symbolical arrangement representing planetary ratios, 8.
Mode of computation of terms, 9 .
Laws of planetary distances, involving leading ratio r, also r, and r. od Approximate Arrangement of the system, 10.
Question of regular variation of ratio r considered, 11 .
Subsidiary Induction in the region from Saturn to Mars inclusive, 12.
Specific values of r in the Planctary System, 13.
Completed Arrangement of the Planelary System; exhibiting the correspondence of Law with Fact, in Table (B), 14.
System of Saturn, 15.
Centre of gyration of a thin homogeneous ring is in the circumference of a circle bisecting the area of the ring, 16 .
A formula for the centre of gyration of any two equal masses similar to the rednced formula for the homogencous ring, 17 .
Definite Arrangement of the Saturn System in Table (C); the rings (referred to their centres of gyration) claiming their places as satellites, 18.
Other relations ir Saturn's System, 19.
Definite Arrangement of Jupiter's System, in Table (D), 20.
Approximate Arrangement of the System of Uranus, in Table (E), 21.
Summing up of the preceding relations of distances in all the four systems, 22.
Additional feature of resemblance of half-planets, 23.

SECTION III.

Description and illustration of the Laplace Nebular Hyputhesis, 24 to 29 inclusive.
Formation of satellites and of Saturn's rings, 30 and 31.
Small eccentricities, 32. Accounted for, 33.
Existence of comets explained, 34.
The Zodiacal Light, as discussed by Laplace, 35.
Modification of Laplace's Nebular Hypothesis, 36 to 38.
Four specialities of the two half-planets Earth and Venus, 39.
Summation of the same, 40.
Determination of the mass of a (now) missing half-planet interior to Uranus, 41.
Disappearance of missing mass to be accounted for. It was not broken into asteroids, 42.
Ten coincidences to show that the missing mass was absorbed and combined with the forming Saturn, 43.
An 11th coincidence shown in a more Ancient Arrangement of the material of the Solar System; the same being exhibited withal in Table (F), 43, 44, and 45.
Values of the leading ratio R_{1} in Table (F), 45.
Mass of the Asteroids, 46.
Agrement of the determination of the asteroid-mass with that indicated by M Le Verrier as obtained by a discussion of the perturbations of Mars, 47.
1st Approximation to the range of the asteroids, by the use of the mass as previously determined, 49.
Mercury's place in Table (F). Mercury includes mass of a whole and a half-planet. Eccentricily of his orbit accounted for, 50.
Mass and distance of a possible planet (or rather balf-planet) interior to Mercury, 51.
Such a mass, so situated, seems to be adequate to the perturbations in the orbit of Venus indicated by M. Le Verrier, 52
Peculiar relations of the living force of (simullaneous) rolation of some of the planetary masses, and of Saturn's rings, 53.
Application of other conditions appertaining to the ring-like form. Extension of formula, 54.
Induction with respect to Saturn's rings, 55.
Application to Neptune and Uranus, 56.
Consequent Arrangement of planetary masses; the greater among the more remote, but the greatest not the most remote, 57 .
Consequent and similar arrangement of masses in Saturn's System, 58.
Consequent and similar arrangement of Jupiter's System, 59.
Arrangement of asteroid-mass. Same seems to be referable to two half-asteroid masses. Range of asteroids, and interference of Jupiter, 60.
Eccentricity of asteroid-orbits, 61.
Approximate relations of the vis viva of (simultancous) rotation of the half-asteroid masses and that of MIars, respectively, 63.
Reason for missing terms in planetary or satellite series of distances, 64 and 65.
Vacuities in the Saturn-System, 66.
Commensurability of perionlic-times. Influence of a resisting medium at the formation of the revolving bodies provided for by theory, 67 .
Special characteristics of the Moon and other satellites, 68.
Explanation of the appearance of certain satellites of Jupiter as dark spots, in their transit across the face of their primary. Significance of the same as respects the rotation, temperature, atmosphere, etc., of satellites, 69.
Of the Zodiacal Light-M. Laplace's proof that the Zodiacal Light is not due to the sun's atmosphere, 70.
Fis subsidiary hypothesis as in the constitution of the material which affords as the light, 7 l .
Eastern and Western appearances of the light have occurred simultaneously, 72.
Difficulty of supposing that the material is an immediate solar appendage, 73.

The material a terrestrial appendage-its rarity, 74.
The light, to a great extent, transmitted light. Observers at diverse stations see different portions of the material illuminated, 75 and 76 .
Other phenomena attendant on the transmission of the light, 76 and 7 \%
Modification of Rev. George Jones' hypothesis of a nebulous terrestrial ring. The material in form, a girdle, 78.
How the girdle is maintained. Its time of revolution around the Earth the same with that of the Moon, 79.
Oval form of the girdle, and certain conditions of equilibrium, 80 .
Girdle, in equilibrio, retains its form when the distance of the moon varies; but its dimensions change, 81.
Dimensions of the girdle, 82 .
Tidal action of the moon on the girdle, 83 .
Other peculiarities are noticed in connexion with Consistency 60th, in 100.
Curvature of parts of the girdle, 84 .
Five cases of variety of illumination of the girdle, and therefore of variety, etc, of the Zodiacal Light to be looked for, 85.
Variation of brightness probable, 86 .
Observations of phenomena, presented by the Zodiacal Light, and statements of the Moon's position at the times of observation, 87.
"Moon" Zodiacal Light, 88.
Various additional observations, including those of the "pulsations" of the Zodiacal Light, 89 to 93.
Absence of parallax of the Zodiacal Light accounted for, 94.
Summary of what seem to be eight special coincidences of phenomena with the requirements of the theory, 95.
Origin of the Girdle, 96.
Conjectare as to the Aurora Borealis, 97.
Analogies and differences of the Girdle and Saturn's Dusky Ring, 98.
Close correspondence in the position of the planes of the planetary orbits in ancient times. Conjecture as to the reason why the Sun's equator makes an angle with those planes, the mean value of which $i s$ nearly 5°. Also as to the derivation of the great planetary masses from different halfspheroids of the Sun; and which from which. Harmonious relations developed by Joln N. Stockwell, M.A., 99.
Greater inclination of the orbits of outer satellites to the planes of the equators of their respective primaries, and especially the great inclination of the Moon's orbit to the plane of the equator of the Earth; and the yet greater inclination of the orbits of the satellites of Uranus to the plane of the equator of their primary. Reasons assigned for these peculiarities, 100.
The Minor System, 101.
Saturn and the Earth (the Saturn of the Minor System) compared, 102.
Relations of great planetary masses, in the Ancient State of the Solar System. Possible order and character of successive development, 104.
Illustrations of Kirkwood's Analogy, 106.
Failure of the formula derived from Kirkwood's Analogy in the case of Uranus. Reason for this, 107.

Approximate coincidence of the result of the same formula with fact, in the case of Mars; admitting the subsidiary hypothesis of half asteroid masses, 108.
The (so-called) "Bode's Law," 109.
Immediately after these we have the Summation of Coincidences, 62 in number, $\mathbf{1 1 0}$.
Lastly, we have Supplementary Notes (A) and (B).

CERTAIN HARMONIES OF THE SOLAR SYSTEM.

SECTIONI.

INTRODUCTORY.
(1) Kepler's 3d Law is ordinarily expressed by saying that the squares of the periodic times of the several planets of the solar system are to one another, respectively, as the cubes of their distances from the sun. The same law includes also the periodic comets, and it is, in like manner, applicable to the satellite systems.

But from this we do not learn that any laws are to be found determining the ratios of the distances themselves.

It will be one main object of the present discussion to show that such laws exist, and precisely what they are-generality and precision being characteristics of every law of nature. ${ }^{1}$
(2) Approximations to the laws in question have, from time to time, been exhibited, by the author of this paper, to the American Association for the Advancement of Science, at several of their meetings, begiming with that at New Haven, in 1850, and more especially, also, that at Montreal, in 1857; Baltimore, in 1858; and Springfield, Massachusetts, in 1859 ; but it is only within the past few months, or even almost up to this present time (July, 1874), that the entire form and consistency of the results hereinafter exhibited have been quite fully made out.
(3) All that is to be stated will, it is conceived, be the more readily intelligible by proceeding, as occasion may seem to require, inductively, and consequently following, to some extent, the order of discovery.

Antecedently even to this, however, it seemed to be desirable to discuss anew the expressed values of the distances in question, and this, in view of the fact, that Kepler's 3d Law is itself slightly modified by the consideration due to the masses of the revolving bodies.

Thus if M represent the mass of the sun, and m, m^{\prime} the respective masses of any two planets, while a, a^{\prime} represent their mean distances from the sun, and $T, T^{\prime \prime}$ represent their periodic times, we have

[^2]When m and m^{\prime} are mere particles of matter Eqs. (1) are both reduced to

$$
\left(\frac{T^{\prime}}{T}\right)^{2}=\left(\frac{\alpha^{\prime}}{\alpha}\right)^{3} \ldots(1)^{\prime}
$$

It may be convenient to regard, once for all, a, m, and T, in so far as they appear, as being special for the earth, while a^{\prime}, m^{\prime}, and $T^{\prime \prime}$ respectively represent like quantities in the instance of any other planet.

Now $T^{\prime \prime}$ and T having both been well ascertained, and being themselves constant, the same is true of their ratio, which involves also the constant value of $\left(\frac{T^{\prime \prime}}{T}\right)^{2}$; and hence it follows that, to preserve $E q$. (1)', we must have the value of $\binom{a^{\prime}}{\frac{a}{a}}^{8}$ also constunt, and this, although the accepted value of a, the earth's mean distance from the sun, which is the unit of measurement, may itself require correction in comparison with other standards. If $i t$ then be diminished, every other mean distance a^{\prime}, as it is represented in Eq. (1)', will be found to be diminished in the same ratio; and thus, while the numbers representing them remain unchanged, "all the distances have to be reckoned on a new scale." ${ }^{11}$

Next, as respects the modifying factor $\frac{M+m^{\prime}}{M+m}$, in the second of Eqs. (1). As it is moreover true, that M itself varies directly as a^{3}; if a^{3} be diminished, M will be diminished in the same ratio, and the like will be true of m^{\prime} represented, as usual, in terms of M as the measuring unit; so that all such masses will be represented by the same numbers as before, but all, as in the case of the distances, "reckoned on a new scale," while the mass of the earth will, in this comparison, be increased, as that will vary inversely as a^{3}.

Now the more recent determination of the solar parallax requiring that the actual value of a should be diminished, it became requisite for the accurate determination of the values of the mean distances of such other planets as have ascertained and appreciable masses, that those values, as already intimated, should be rediscussed.

This has been done with the aid of logarithms computed to ten decimal places of figures; and the results, to the seventh decimal place inclusive, are exhibited in Table (A), in which withal, in their appropriate column, are also the values of the masses made use of, with indications of the authorities to which they are referable.

The densities which besides are exhibited in Table (A), will be found to vary more or less from those hitherto ordinarily accepted. This is due to the increase in the relative mass of the earth, and also to the more accurate determination of the masses of the planets.

The arrangement of the series of planets begins with the most distant, as that will be found to be the more convenient for the application of these data to the special purposes of the whole investigation.

[^3]The results given are those which are respectively consistent with two values of the solar parallax; viz., Prof. Newcomb's value $\pi=8^{\prime \prime} .848,{ }^{1}$ and that which some prefer, $\pi=8^{\prime \prime} .78$.

Table (A).

- A Synoptic Table of some of the Elements of the Planetary System.

	Names.	Periodic Times.	$\begin{gathered} \text { Masses } \\ \left(\pi^{\prime} 8^{\prime} .8+8 .\right) \end{gathered}$	$\left\|\begin{array}{c} \text { Masses } \\ (\pi=8: 78) . \end{array}\right\|$	$\begin{gathered} \text { Mean Distances. } \\ \left(\tau=8^{\prime} .848 .\right) \end{gathered}$	$\begin{aligned} & \text { Mean Distances } \\ & \left(\pi=8^{\prime \prime} .78\right) . \end{aligned}$	$\begin{gathered} \text { Densities } \\ \left(\pi=8^{\prime} .848\right) . \end{gathered}$	$\begin{aligned} & \text { Densities } \\ & \left.\pi=8^{\prime} .78\right) . \end{aligned}$
Ψ	Neptune,	$60186^{\text {d. }} 6385$	$\frac{1}{19700}$	$\frac{1}{19700}$	30.0567298 -	$30.0567339-$.142-	$0.145+$
令	Uranus,	3068850	$\frac{1}{22000}$	$\frac{1}{22000}$	19.1833617 +	19.1833622 -	.182-	186
2	Satura,	10759.2198174	$\frac{1}{3501.600}$	$\frac{1}{3501.600}$.5388544-	9.5388546 -	119-	122-
27	Jupiter,	4332.5848212	+77.879	$\frac{1}{1077.879}$	$2028004-$	$5.2028005-$	$0.240-$	0.245
§	Mars,	686.9796458	$\overline{32009}$	$\frac{1}{320090}$. 5236913	. $5236913+$	$0.585+$	$0.599+$
\oplus	Earth,	365.2563582	${ }_{3}^{1} \frac{1}{12500}$	$\frac{1}{3303 i 8}$	1.0000000	1.0000000	1.000	1.000
¢	Venus,	224.7007869.	408134	$\frac{1}{408134}$	7233322 -	33322 -	$0.809+$	$0.828+$
¢¢	Mercury	87.9692580	$\begin{gathered} 4051 \\ 485751 \\ 48.0575 \end{gathered}$	$\frac{1}{486571}$	0.3870987 -	0.3870987	$1.122-$	$1.148+$
\odot	Sun,		,	+			$0.250+$	$0.256+$

Remaris.-The authorities for the Periodic Times are:-
Uranus. From Prof. Newconb's Tables of Uranus.
Earth. The sidereal year of Hansen and Olufsen, as quoted by Prof. Watson. Theor. Astronomy, Table XXI.
The other periodic times are those usually accepted.
For the Masses we have-
Neptune. The Pulkova deduction, furnished by Prof. Newconb.
Uranus. From Prof. Newcomb's Tables of Uranus.
Saturn. Bessel, Comples Rendus, 1841.
Jupiter. Bessel, Die Masse des Jupiter, p. 64. [Its great accuracy is confirmed by Prof Mörler's deduction from the perturbations of Faye's Comet, and by the recent investigations by Dr. Kroeger, of the perturbations of Themis, Ast. Nachrichten, No. 1941.]
Mars. Hansen and Olufsen's mass, as quoted by Prof. Hill. Tables of Venuis, p. 2.
Earth. Prof. Newconb's Investigation of the Distance of the Sun, etc., § 11 (with $\pi=8^{\prime \prime} .848$). With $\pi=8^{\prime \prime} .78$, the mass was deduced, with a change of value proportioned to π^{3}.
Venus. Prof. Hill, Tables of Venus, p. 2.
Mercury. Encke, Astronomische Nachrichten, No. 443.
The columns of densities have been computed by the aid of the other data. If we admit for Venus the mass $\frac{1}{4722+9}$, to which some indications point (Hill's Tables, p. 2), then the density of that planet with the value of the solar parallax $=8^{\prime \prime} .848$, will be represented by 0.773 , or for the value of $\pi=8^{\prime \prime} .78$, the representative density will be $0.791+$. The only change in the value of the mean distance of Venus will then be that the last decimal figure (with $\pi=8^{\prime \prime} .848$) will read $1+$ instead of $2-$.

[^4]
SECTION II.

on the laws of arrangement of the distances, both of planets and their SATELLITES, FROM THEIR RESPECTIVE CENTRES OF ATTRACTION.
(4) The object of this section is to indicate distinctly the ratios which prevail among the planetary and satellite distances from their respective centres, and also the laws which include the same; without the introduction in this same connexion of any physical hypothesis on which those laws seem to be founded, or of which they are the exponents.

The hypothesis which seems to reconcile and explain those laws, as well as a number of other phenomena, will be considered in a subsequent section.
(5) The first correspondence and arrangement of ratios that will be noticed, may be thus stated: Beginning with the mean distance of Neptune as found in Table (A) in (3), if of this we take $\frac{5}{9}$, and of that fractional product, again, $\frac{5}{9}$, etc., etc.; then, among the terms in the geometrical progression thus developed, in addition to that pertaining to Neptune, we shall find those which respectively, in their order, exhibit close approximations to the mean distances of the two great planets Saturn and Jupiter; another having an appropriate position among the asteroids; ${ }^{1}$ with, again, others which respectively exhibit close approximations to the mean distance of Mars, and that of Mercury in aphelion ; all which can be distinctly traced in the following tabular arrangement, in which the approximations are carried to the third place of decimals inclusive; though the computations were extended to the fifth place. In the third column, it will be remembered, every term after the first, is $\frac{5}{9}$ of that immediately preceding; so that the ratio of every one to its next succeeding term will be that of 9 to $5=$ to $\frac{9}{5}=\frac{18}{10}=\frac{1.8}{1}=1.8$; a statement which, in certain comparisons, will be found to be more convenient than the other.

In this arrangement the column under the title of Law exhibits the results in accordance with the (approximate) law of succession of the terms as now explained; in comparison, respectively, with the recorded distances found in the column of Fact; the terms in the column of Law forming a series in geometrical progression, the ratio being 1.8.

1st Approximate Arrangement.

Names and Symbols.		Law.	Fact.	$\begin{gathered} \text { Difference } \\ \text { L.-F. } \end{gathered}$
Ψ	Neptune,	30.05733	30.05733	0.000
1	(Uranus,		(19.183+
(U) (3i)	$\left\{\begin{array}{l}\text { Limit (U), } \\ \ldots\end{array}\right.$	16.698+	$\left\{\begin{array}{l}\text { (missing })\end{array}\right.$	
${ }_{2}$	Satura,	$9.277-$	9.539-	-0.262
4	Jupiter,	5.154-	5.203-	-0.049
(A)	Limit (A),	$2.863+$	(to be supplied)
¢	Mars,	1.591-	1.524	$+0.067$
\oplus	(Earth,	\cdots	\{ 1.000
$\left(\oplus_{0}+\mathrm{P}\right)$	$\{$ Limit (\oplus ¢ P),	0.884-	$\{\ldots .$.
아	(Venus, (Mercury,)		($0.723+$	
$A p \bar{n}$. ̧ㅡ	in $\left.\begin{array}{l}\text { in } \\ \text { Aphelion }\end{array}\right\}$	0.491 -	0.467-	+0.024
	(Aphelion,			

(6) An inspection of what is here exhibited will at once reveal the fact that the Earth and Venus seem to have characteristics of half-planets; the one term, 0.884 (in the series), pertaining to them, being indicative of a distance between those of the two planets at which their masses should be united; and which is designated as limit (\oplus ¢) .
[To avoid circumlocution, such an arrangement as this, will be termed a halfplanetary arrangement, and the planets subject to it, be, at times, designated as half-planets; those situated, as Uranus and the Earth are, without the intervening limit, being styled exterior half-planets; while those, like Venus, within the limit, are specially designated as being interior half-planets; Uranus being regarded as an exterior half-planet as well as the Earth. For the ratio of the mean distance of Neptune to that of Uranus is very nearly the same as that of Mars to the Earth's; viz., a very little greater than the ratio of $1 \frac{1}{2}$ to 1 . And so the limit (U) in the progression is very nearly the same fraction of the term for Uranus in the column of Fact, that the limit $(\oplus \rho)$ is of the Earth's distance; viz. very nearly $\frac{9}{10}$, in both cases.]
(7) Uranus, then, like the earth, has the characteristics of an exterior halfplanet ; ${ }^{2}$ though there is no other half-planet (analogous to Venus) apparent between limit (U) and Saturn. But the region of the system where the appropriate term for such a half-planet should be found has been marked in the tabular arrangement, and its symbol ($\left.{ }^{\ominus} i\right)$ shows that $i t$ would belong to a half-planet interior to Uranus; such as Venus is in the region interior to the Earth's place.
(8) Now the ratios for the mean distances from the Sun of the exterior halfplanet terms, are as follows:-

$$
\left.\begin{array}{rl}
\frac{\text { Neptune }}{\text { Uranus }}=1.56681 \\
\frac{\text { Mars }}{\text { Earth }}=1.52369 \\
\text { Mercury in aphelion } \\
\text { Mercury in perihelion } & =1.51768
\end{array}\right\} \text { Mean }=1.53606 ;
$$

while it is also true, with respect to the ratio for other than half-planet distances [which $=\frac{9}{5}$ or $\frac{1.8}{1}$ very nearly], that

$$
(1.8)^{\frac{3}{4}}=1.55401,
$$

agreeing very nearly with the preceding; so that, r being the ratio for other than half-planets, the ratio for the exterior half-planets is $r^{\frac{3}{4}}$.

Also, as again respects mean distances from the Sun,

$$
\frac{\text { Earth }}{\text { Venus }}=1.38249 .
$$

[^5]But r being still $=1.8$, the square root of r, or

$$
r^{\frac{1}{2}}=1.34161
$$

so that, r being still the leading ratio, the ratio for the interior half-planet Venus, is $r \frac{1}{2}$; and this planet furnishes the only existing example of its kind in the planetary system. Another will appear in the system of Saturn.

The relations thus ascertained may be symbolized as follows; the dependence of a following term on that from which it is derived being indicated by a brace connecting the two, and the power of r involved marked outside of the brace: as, for example, we have
(9) This being kept in view, it will be apparent from what precedes, that the rules now established for the derivation of all the distances in the planetary arrangement subsequent to the first, are as follows:-
[Leading ratio r being $=1.8$ very nearly]
Rule 1 st. -When the term in question in the series of planctary distances is other than that pertaining to a half-planet, the value of that term may be obtained by dividing the value of the term immediately preceding by the leading ratio.

Examples.-Thus, as indicated by the symbols,

$$
\begin{aligned}
\frac{\text { Saturn term }}{r} & =\text { Mean distance of Jupiter } \\
\frac{\text { Mars term }}{r} & =\text { Limit }(\oplus P) ; \text { and } \\
\frac{(\oplus \odot)}{r} & =\text { Aphelion distance of Mercury. }
\end{aligned}
$$

[This (incidentally it may be) includes the term for Mercury, ${ }^{1}$ with the variety, that the term which immediately precedes (and which is to be employed in that computation) is the term pertaining to the half-planet Venus; though Mercury itself is not a half-planet, but even has characteristics approaching to those of a double-planet.]

Rule 2d.-The value of any term in the series of exterior half-planets may be obtained by dividing the value of the term immediately preceding that in the planetary arrangements, by $r^{\frac{3}{4}}$.
[The Examples are: The respective mean distances of Uranus and the Earth, and the perihelion distance of Mercury. Thus,

$$
\frac{\text { Mars term }}{r^{3}}=\text { Earth term.] }
$$

[^6]Rule $3 d$. - The value of any tern in the series of interior half-planets may be obtained by dividing the value of the term of the planetary arrangement immediately preceding that, by $r^{\frac{1}{2}}$.
[Examples are: 'The mean distance of Venus, and that due to the missing interior. half-planet, next in the arrangement to the exterior half-planet Uranus. Thus

$$
\frac{\text { Earth term }}{r^{\frac{1}{2}}}=\text { Venus term.] }
$$

With D^{\prime}, or $D^{\prime \prime}$, or $D^{\prime \prime \prime}$, as the case may be, for the value of the distance in question, and D that to which that value is referred, we have

For Case under Rule First,

$$
\begin{gather*}
D^{\prime}=\frac{D}{r} \text {; whence, withal, } r=\frac{D}{D^{\prime}} \cdots \cdot \tag{a}\\
{\left[\text { For Mercury, } D^{\prime}=\frac{(d)}{r}\right]^{1}}
\end{gather*}
$$

For Case under Rule Second,

$$
D^{\prime \prime}=\frac{D}{r^{\frac{3}{3}}}
$$

For Case under Rule Third,

$$
D^{\prime \prime \prime}=\begin{gathered}
D \\
r_{2}^{\frac{1}{2}^{-}}
\end{gathered}
$$

From these equations we also learn, that

$$
\left.\begin{array}{l}
\frac{D^{\prime}}{D}, \text { or } \frac{D^{\prime}}{(d)}, \text { each }=\frac{1}{r} \\
\frac{D^{\prime \prime}}{D}=\frac{1}{r_{1}^{1}}, \text { and } \\
\frac{D^{\prime \prime \prime}}{D}=\frac{1}{r_{1 \frac{1}{2}}}
\end{array}\right\} \cdots(\mathrm{P})
$$

(10) These equations express the laws of apportionment of the planetary distances; which are these:-

> Laws of Apportionment of the Planetary Distonces.
> [Value of $r=1.8$, very nearly.]

Laid First. For any term subsequent to the first, in the series of terms of planetary distances; and other than a half-planetary term:-

$$
\text { succeeding term } \quad: \text { prec. term : : } 1: \text { leading ratio } r \text {. }
$$

Lant Second. For an exterior half-planetary term:-
ext. half-planet. term : prec. term : : 1 : ${ }^{3}$ power of leading ratio r, i. e. r^{3}.
Law Third. For an interior half-planetary term.
int. half-planet. term : prec. term : : $1:$ square root of leading ratio r, or $r \frac{1}{\frac{1}{2}}$.

[^7]In the second approximate arrangement which follows, the dependence of the value of one term on that of another is indicated by the brace connecting them, and the power of r in question is also shown; the half-planetary terms have their names printed in italics; while Mercury's name (in view of the peculiarity of that planet) appears in capitals: other symbols, etc., as heretofore.

The leading ratio here accepted, after many trials of it and of other ratios, is 1.805 .

Second Approximate Arrangement of the Planetary System. [Value of Leading Ratio 1.805].

Names and Symbols.				Law.	Fact.	Diff. L.-F.
$$		$\left.\begin{array}{l}\text { Neptune } \\ \text { Uranus }\end{array}\right\} r^{7}$,	r	30.05673 19.30118	$\begin{aligned} & 30.05733 \\ & 19.18336 \end{aligned}$	$\begin{array}{r} -0.001 \\ +0.118 \end{array}$
(U)	$r^{\frac{2}{4}}$	Limit (U),		16.65193		
- i			r		(Missing).	
h		Saturn,		9.22545	9.53885	-0.313
2		Jupiter,		5.11105	5.20280	-0.092
(A)		Limit (A),	r	2.83161		
$\stackrel{\hat{\delta}}{\oplus}$		$\left.\begin{array}{l}\text { Mars } \\ \text { Earth }\end{array}\right\} r^{\text {a }}$	r	1.56876 1.00739		+0.045 +0.007
$(\oplus$			r	1.00739 0.86912	1.00000	+0.007
		Venus, -	r	0.74982	0.72333	$+0.026$
Aph.		Mercury in Aph.		0.48151	0.46670	+0.015
$\stackrel{\square}{\square}$		Mercury		0.41543	0.38710	$+0.028$
Per. ¢¢		Mercury in Per.		0.30920	0.30750	$+0.002$

(11) The approximation of law to fact here shown, though in the main very close, yet exhibits some terms in which the discrepancy is a greater fraction of the whole than seems to be quite tolerable, in view of the accuracy of the other terms.

Then, too, the last column of the arrangement here shows a tendency in the difference of law from fact to be negative for the first part of the series of terms, but positive afterwards; as though the value of the leading ratio were in excess for the one portion, and thus had given the results in general too small; but the same value of the ratio having been too small in the case of the remaining terms, had consequently given results too large. All this makes it not improbable that the leading factor r, from first to last, should regularly increase, beginning below the mean value of 1.805 , and ending above the same; the increase, however, in any event, being very small.

To ascertain whether this is so, it will be found advisable to institute a separate induction within the narrower limits of the region from Saturn to Mars inclusive,
in which we possess three out of the four requisite terms; ${ }^{1}$ the fourth (the asteroid term or limit (A)) to be accurately determined by the process here proposed, and its value thus obtained to be made the criterion for the comparison of its value as ascertained in the more extended series. In the several instances of the three planets here in question, there are withal no half-planet relations, and the fourth term being a limit in the regular series in which r enters, the half-planet relation does not pertain to $i t$; so that the character of the leading factor r, as to variability or otherwise, is here to be sought for.
(12) Now the existing mean distances from the sun in this region, together with the asteroid limit (A), may be arranged as follows, viz. :-

The log. differences being equal, the ratios themselves increase in geometrical progression.

But if the arrangement be made with the ratios increasing in arithmetical progression, we shall have-

Now we do not know enough of the nature of the case to decide which of these conditions ought to prevail, though the analogy of logarithms etc. would lead us to suppose that the ratios themselves should increase in arithmetical progression. But, happily, such a decision is of no moment practically; since the differences in question are so small, that the value of the limit (A) in the one case differs from that in the other only in the fifth decimal place.

So the value of the limit $(A)=2.82293-$, which is that due to the increase of the ratio in arithmetical progression, will be accepted, and the same will be adopted; and then, as heretofore intimated, this value will be made the criterion for the comparison of the value as ascertained in the more extended series. This standard value, being withal a direct derivation from fact, in its own special region, will hereafter be inscrted as a limit in the column of Fact, the figures being inclosed in a parenthesis. ${ }^{3}$

[^8](13) The increment of the leading ratio, or factor r, having been ascertained to be real for the region thus examined, an application of the rule which that implies was tried throughout the planetary system; and after an enormous number of such tentative processes, the following local values of r were found to give the most consistent results, the values of r, it will be seen, increasing withal in arithmetical progression.

Values of r in the Planetary System.
Region.

```
Factor \(r\).
```


The mean of these is 1.8253 ; differing a little less than $\frac{1}{38}$ th of itself from either extreme.

From these we have for the exterior half-planet intervals:-
Region. Factor $r_{\frac{3}{4}}$.
Neptune to Uranus 1.5369 -
Mars to Eartb 1.5710 -

Aphelion to Peribelion of Mercury $1.6014+$
For the interior half-planet intervals, we have:-
Region. FFactor $r \frac{1}{3}$.
Uranus to $\widehat{6} i$. $1.3356+$
Earth to Venus $1.3612+$
From the interior half-planet Venus to Mercury

$$
r=1.8632+
$$

Under these conditions the value of the half-planet limit $\widehat{i} i$, i.e. interior to Uranus, may now be determined; and it will be found to be $14.64275 .{ }^{1}$

(14) The arrangement of the planetary system in accordance with all that has now been determined, is similar to that of the Second Approximate Arrangement heretofore exhibited, (10); the value of the interior half-planet limit | |
| :---: |
| i | and the standard value ${ }^{2}$ of the asteroid limit (A) being both inserted; and besides the column of differences of Law from Fact in terms of the Earth's mean distance as 1, we have

[^9]an additional column expressing in every case the same difference in terms of the quantity to be compared, which is a^{\prime}, the planet's own mean distance from the Sun, or else d^{\prime}, the distance from the Sun of the limit in question.

Thus, for example, in the instance of Saturn, Law-Fact $=0.094$ of the Earth's mean distance; and that, in the next column, is seen to be only 0.010 of Saturn's own mean distance from the Sun.

Completed Arrangement of the Planetary System, exhibiting the Correspondence of Laf wite Fact.

Table (B).

	Names and Symbols.	Law.	Fact.	Lan-Fact.	
				$\begin{gathered} \text { Earth's dist. } \\ =1 \end{gathered}$	$\begin{gathered} \mathrm{a}^{\prime} \text { or } \mathrm{d}^{\prime} \\ =1 . \end{gathered}$
Ψ		30.057264	30.057332	$-0.000+$	$-0.000+$
$\stackrel{\ominus}{\text { ® }}$		19.55718	\{ 19.18336	+ $0.374+$	$+0.019+$
(U)	$r^{\frac{1}{2}}\{\operatorname{Limit}(\mathrm{U}), \ldots \ldots \text {, }$	16.91431	$\{\cdots . .$.		
$\stackrel{\widehat{\sigma} i}{h}$	(Int. to © $\mathfrak{\beta}$, \}r	(14.64275)	((missing)	-0.094 -	
h	Saturn,	9.44511	9.53885	-0.094 -	- $0.010-$
4	Jupiter, $\}$	5.23391	5.20280	$+0.031+$	$+0.006$
(A)	Limit (A) , $\}^{\text {a }}$?	2.87831	(2.82293)	$+0.055+$	$+0.020-$
¢ ${ }_{+}$	$\underset{\text { Marsth }}{\text { Mart }}\} r^{\frac{3}{4}} \cdots \cdots\{r$	1.57096	1.52369	$+0.047+$	$+0.031$
$\stackrel{\oplus}{\oplus}+$	$r^{\frac{1}{2}}\left\{\begin{array}{l} \text { Earth },\} \\ \text { Limit }(\oplus q), \ldots \end{array}\right\} r$	0.99335 0.85101	$\{1.00000$	$-0.007-$	-0.007-
(¢ $_{\text {¢ }}^{\text {¢ }}$)		0.85101 0.72975	$\left\{\begin{array}{l}1.0 .1\end{array}\right.$	$70.006+$ $+0.006+$	$+0.009+$
Aph. ¢冖	r (Aph. of Mercury, $\left\{^{r}\right.$	0.45758	0.46670	$-0.009+$	$-0.020-$
	(Mercury, $\} r^{\frac{3}{4}}$	0.39166	0.38710	+0.005-	+ $0.012-$
	Per. of Ilercury,	0.28573	0.30750	-0.022-	-0.071-

The coincidences between Law and Fact, as compared with previous approximations, are now far more complete. The greatest actual difference is that in the instance of Uranus, which, after all, on the large scale of that planet's orbit is less than $\frac{1}{50}$ th of the quantity to be measured. ${ }^{1}$

The distances of Mercury in aphelion and in perihelion as stated in the column of Fact are themselves computed from Mercury's mean distance and the eccentricity of his orbit, at the present date. With other values of the eccentricity, we would have had as follows:-

Eccentricity.	Aph. Dist.	L.-F	Per. Dist.	L.-F.
Maximum	$=0.2317185$	0.47680	$-0.019+$	0.29740
Mean	$=0.1766064$	0.45546	$+0.002+$	0.31873
Minimum	-0.033			
Min $^{2}=0.1214943$	0.43413	$+0.023+$	0.34007	$-0.054+$

${ }^{1}$ Why, after all, Uranus seems to have, as it were, fallen in from his appropriate position, may be considered in another connexion; not here, where only the relations themselves are permitted to have place, without the introduction of any physical hypothesis to explain them, as was indeed intimated in the first part of this Section. The same may be said of Mars.
${ }^{2}$ The maximum and minimum values of the eccentricity here inserted, are those given by John N. Stockwell, M.A., in his Memoir on the Secular Variations of the Elements of the Orbits of Eight Principal Planets, Introduction, p. xi.—Smithsonian Contributions to Knowledge, vol. xviii.

SATELLITE SYSTEMS.

System of Saturn.

(15) In the System of Saturn we find again three ratios; all of them fractional powers of one another, and one of these, like the special one in the Planetary System, the square root of another.

The rings, both bright and dusky, have also their places in the satellite series, with the condition always understood, that the distance of any ring from Saturn's centre is to be measured from that ring's own centre of gyration.
(16) Now the centre of gyration of an indefinitely thin ring, and one which has, in effect, a uniform density and thinness, this centre, has itself special relations which it will be well to notice.

For let R be the radius of the outer edge of the ring, C the distance of the centre of gyration from Saturn's centre (or from the common centre of all the circles in question), and r the radius of the inner edge of the ring.
Then, we have

$$
C=\sqrt{\frac{R^{4}-r^{4}}{2 R^{2}-2 r^{2}}}
$$

or,

$$
C=\sqrt{\frac{1}{2} \cdot \frac{R^{4}-r^{4}}{R^{2}-r^{2}}}
$$

That is

$$
C=\sqrt{\frac{1}{2} \cdot \frac{\left(R^{2}+r^{2}\right)\left(R^{2}-r^{2}\right)}{R^{2}-r^{2}}} ;
$$

or

$$
C=\sqrt{\frac{1}{2}\left(R^{2}+r^{2}\right)} \ldots(\mathrm{A})
$$

But now, if the ring be supposed to be so divided by the circumference of a circle concentric with the edges of the ring, that the two portions thus obtained shall be equal in area, and the radius of this bisecting circumference be x; then the expressions for the two portions of the ring will be equivalent to one another, and so we shall have

$$
\begin{aligned}
\pi\left(R^{2}-x^{2}\right) & =\pi\left(x^{2}-r^{2}\right) ; \text { whence } \\
R^{2}-x^{2} & =x^{2}-r^{2} ; \text { and } \\
R^{2}+r^{2} & =2 x^{2} ; \quad \text { whence } \\
x^{2} & =\frac{1}{2}\left(R^{2}+r^{2}\right) ; \text { and } \\
x & =\sqrt{ } \frac{1}{2}\left(R^{2}+r^{2}\right) \ldots \text { (B). . . . }
\end{aligned}
$$

[^10]The value of x in equation (B) is the same with that of C in equation (A). Hence

$$
C=x ;
$$

or the centre of gyration is in the circumference of a circle concentric with the edges of the ring, and bisecting its area.

And a cylindrical surface having this bisecting circle for one of its edges, and cutting perpendicularly through a ring formed like that of Saturn, would (density uniform) also bisect the volume of the ring, and also would bisect the material of the ring; and the value of C, the centre of gyration of this ring of sensible thickness, would not be affected by these new circumstances; the indefinitely thin ring being the plane of rotation on which the other might be projected. ${ }^{1}$
(17) The equation for the centre of gyration of any two equal masses will take the same form as that of Eq. (B), with the condition, however, that R and r shall respectively denote the radii of gyration of those masses. Indicating these radii then by R^{\prime} and r^{\prime}, and the masses (equivalent or not) by M and m; and then (since velocities are as radii of simultaneous rotation) the general formula will be thus expressed:-

$$
C=\sqrt{\frac{\overline{M R^{\prime 2}+m r^{2}}}{M+m}} \cdots(\mathrm{C})
$$

which, when $M=m$, is reduced to

$$
C=\sqrt{\frac{1}{2}\left(R^{2}+r^{\prime 2}\right)} \ldots .(\mathrm{C})^{\prime}
$$

so that when the equivalent masses are both rings, the one wholly clasping the other, like the two halves of the ring in question, the position of the centre of gyration may be obtained by a similar process, whether the $\frac{1}{2}$ sum of the squares under the radicle be that of those quantitics representing the radii of outer and inner perimiters of the whole ring, as in Eq. (A); or the radii of gyration of the respective halves, as in $E q$. (C)'.

[^11]System of Saturn.
Table (C).
(18) Definite Arrangement of the System.

In the instance of the Dusky Ring two values appear in the column of Fact; the first of these indicating the position of the centre of gyration, if the Dusky Ring have an interval between it and the inner Bright Ring (proportional, perhaps, on a smaller scale, to that which exists between the two systems of Bright Rings). The second value is that which obtains, if we suppose the Dusky Ring to extend quite up to the Bright Ring. The difference between the results is but a small fraction of the quantity to be compared.
[In view of the very considerable number of limits in the upper region of the system at which no satellite is found, and the ratios themselves being so small, it might almost seem that the approximate coincidence between Law and Fact was a forced one, brought about by a special arrangement and combination of terms. But not merely the number of terms (or ratios, or their equivalent) is indispensable,
but the right order of their grouping must also be measurably maintained, to bring about the coincidences in their appropriate places. Then, afterward, from Dione downward, every limit has its corresponding satellite or ring, with the bare exception of that between the satellites and the rings. Then the discrepancy between Law and Fact is, in most cases, all but insensible. The most conspicuous deviation is that in the instance of the more recently discovered satellite Hyperion, the distance of which is not yet well determined. Another fact seems also not without its significance; viz., that the two ratios in the region of the rings have the same value, $\left.r^{\prime}.\right]^{1}$

The somewhat abnormal deviation from Law in the instance of Hyperion, presents a case like those of Uranus (especially) and, also, Mars, in the planetary system; ${ }^{2}$ the resemblance being all the more accurate because the difference from Law is, in all these instances, negative. These, and other peculiarities, will be reviewed in the aspect of theory, in Section III.

Other Relations.

(19) The centre of gyration of the whole system of Bright Rings is at the distance from Saturn's centre $=1.9090$; being just within the outer edge of the inner Bright Ring (or Rings) which is at the distance 1.9276 .

In the subordinate system of the two outer Bright Rings the ratio of their distances $(2.1825-$ and $2.0522-)=1.06438$; while $r^{\frac{1}{2}}=1.06423$.

Manifestly, then, the arrangement of the Outer. System of Bright Rings is
Fact.
$\underset{\text { Interior Ring }}{\text { Exterior Ring }}\} r^{\frac{1}{2}}$, agreeing well with $\left\{\begin{array}{l}2.1825-\}^{3} \\ 2.0522-\}^{3}\end{array}\right.$
System of Jupiter.
Table (D).
(20). Definite Arrangement of the System.

Satellites.	LAW.	Ratio.	Fact.	L.-F.
IV.	$26.99835{ }^{2}$	1. 6007$)^{\frac{6}{5}}$	26.99835	0.000
III.	15.35202 ,		15.35024	+ $0.002-$
II.	$9.62147\}^{r}$	1.5956	9.62347	-0.002
I.	$6.04934\} r^{\prime}$	1.5905	6.04853	+ $0.001-$

Here $r=r^{\prime \frac{6}{5}}$, or $r^{\prime}=r^{\frac{5}{6}}$; and the value of r^{\prime} regularly diminishes by 0.0051 .
${ }^{1}$ The accepted values in the column of Fact agree very closely with the very careful deductions of Capt. Jacob, from his own observations (Memoirs of the Royal Astronomical Society, vol. xxviii. p. 108). These are referred to Titan's distance as the standard; and when measured by Saturn's eq. radius give for

Rhea	9.5562 instead	of	9.5528.	
Dione	6.8445	"	"	6.8398.	
Tethys	5.3470	".	"	5.3396.
Enceladus	4.3207	"	"	4.3125.	

[^12]
System of Uranus.

Table (E).
(21) Approximate Arrangement.

Here $r=r^{\prime 2}$, or $r^{\prime}=r^{2}$; and the value of r^{\prime} increases; as r did (but regularly) n the planetary system.

Summing up of Relations of Mean Listances from their Respective Centres.
(22) In the Plunetary System the value of the leading ratio r is at first 1.7770 , and the regularly progressive increase of its value afterwards, from term to term $=0.0138$. Also $r^{\prime}=r^{\frac{3}{3}}$; and $r^{\prime \prime}=r^{\frac{1}{2}}$.

In the System of Saturn $r=1.28273, r^{\prime}=r^{\prime}$, and $r^{\prime \prime}=r^{\frac{1}{2}}$; and all the ratios are constant. Moreover, for the two outermost rings, $r^{\prime \prime \prime}=r_{1}^{\frac{1}{2}}=\left(r_{!}^{1}\right)^{\frac{1}{2}}$.

In the System of Jupiter we have $r^{\prime}=\dot{r}_{\delta}^{2} ; r^{\prime}$, at first, $=1.6007$; and the regularly progressive decrease of its value $=0.0051$.

In the System of Uranus $r^{\prime}=r_{s}^{2}$; and the value of r^{\prime} shows an increase from term to term.

Additional Feature of Resemblance of Two Half-Planets.

(23) The inclination of the equator of Venus to the plane of that planet's orbit, does not seem to have been accurately determined, but it is usually stated to be nearly 72°; the rotation of the planet (as is usually the case) being direct.

In the Monthly Notices of the Royal Astronomical Society, vol. xxiii. p. 166 (Jan. 1873), W. Buffham, Esq., as a merely approximate result as yet, makes the inclination of the equator of Uranus $80^{\circ}{ }^{1}$ "Movement direct."

The orbits of the satellites are inclined to the ecliptic at an angle of about ${ }^{7} 9^{\circ}$; and their motion is retrograde.

These two half-planets, then, though near to the two extremes of the system, are again alike; viz., in the great inclinations of their equators, as well as in the direction of their rotations.

[^13]
sECTION III.

APPLICATION OF THEORETICAL CONSIDERATIONS AND THE DEVELOPMENT OF OTHER RELATIONS.

(24) The further discussion of the relations exhibited in Section II. will be aided, and circumlocution, at the same time, avoided, by the introduction of considerations having reference to the Nebular Hypothesis of Laplace; and this especially in the exposition of other relations, the investigation of which was prompted by suggestions furnished by the application of this very hypothesis somewhat extended and modified, in a manner now to be specified.

In the exposition of his hypothesis, its illustrious author supposes the atmosphere of the rotating Sun to have extended, in ancient times, to the limit (or, when at the furthest, very near to the limit) at which the centrifugal force of rotation must have balanced the force of attraction.

That afterwards-the atmosphere shrinking from loss of heat -the rotation (for reasons which he specifies) would be accelerated as the atmospheric molecules drew nearer to the centre of the Sun, ${ }^{1}$ and, that the limit in the plane of the Sun's equator, at which the two forcescentripetal and centrifugal - would

Fig. 2.
 balance one another, would, therefore, be found further and further in. ${ }^{2}$

That thus successively, at new limits in the plane of the Sun's equator, further and further inward, the centrifugal and centripetal forces would indeed balance one another; insomuch that the thin and narrow zones thus in equilibrio in the plane of the equator (they having no tendency either to fall in or to be thrown off), would themselves be "abandoned" by the atmosphere in its farther shrinkage. ${ }^{3}$
(25) The description then goes on to state that the same equilibrium of forces not existing with respect to the atmospheric molecules situated on the parallels to

[^14]the solar equator, these molecules would, by their attraction, be brought closer to the atmosphere, in the progress of its condensation, and would not cease to belong to it until, in consequence of this

Fig. 3.
 motion, they were brought nearer to the plane of the equator. ${ }^{1}$
(26) The description proceeds, saying of these "zones of vapor" (or rather nebulous zones) successively abandoned, that these zones, must, in all probability, form by their condensation and the mutual attraction of their molecules, diverse concentric nebulous rings circulating around the Sun. The mutual friction of the molecules of every ring must accelerate some and retard others, until all had acquired the same angular motion. And (when all this went round together) the actual velocity of molecules further from the centre would be greater than that of those nearer; the parts near the outside of the ring going uniformly round in a large circuit, in the same time in which those nearer, also moving uniformly, described a smaller circuit. Thus, with time the same, the angle $A C B$ being the same for both, the part, such as $A B$, is greater than the similar part $a b$ of the smaller circuit; ${ }^{2}$ and the part of $A B$ described in a unit (say a second) of time, greater than the similar part of $a b$; i.e. the actual velocity in $A B$ is greater.
(27) Besides all this, in the progress inward of the particles forming the nebulous rings, the actual velocity of rotation of those particles would be increased conformably to the principle of the conservation of areas; which requires that an area such as $A C B$, in the figure, should continue to be passed over, by the rotation of $C B$, in the same time; so that if $A C$ and $B C$ be shortened, the figure must be broader to preserve its size, or the distance $B A$, traversed in the same time must be greater than before; i.e, the particle must move faster along $B A$; while the particles attracted toward the others outward, and then forming the inner part of the ring, would, in obedience to the same principle; have their actual velocity of rotation diminished.
(28) Then if all the molecules of the nebulous ring continued to condense without being disunited, they would at length form a liquid or a solid ring. ${ }^{3}$ But the regularity requisite in such a case, in every part of the ring and also in its cooling, must make this a very rare phenomenon. Accordingly the solar system affords but a single example of this kind-that of the rings of Saturn.

[^15](29) But almost always, the nebulous ring must have broken into several masses, which, moving with velocities but slightly different, would continue to circulate at the same distance from the sun.

These masses would take a spheroidal form with a motion of rotation in the direction of their motion of revolution (from west to east), because of the inferior molecules (26), having less actual velocity than the superior; and thus would soon be formed so many nebulous planets. But if one of these were sufficiently powerful to bring together successively, by its attraction, all the others about its own centre, the nebulous ring would then be transformed into a single nebulous spheroidal mass revolving around the sun, and having a rotation in the direction of its revolution. This last has been the most common case; though the solar system, nevertheless, furnishes an example of the first case, in the small planets which revolve between Mars and Jupiter, at least

Fig. 5.
 if we do not suppose with Olbers that they primitively formed a single planet, which a powerful explosion divided into several parts animated with different velocities.
(30) Now if we follow the changes which an ulterior cooling would produce in the nebulous planets of which we have come to conceive the formation, we shall see form, at the centre of each, a nucleus incessantly increasing by the condensation of its surrounding atmosphere.
(31) In this state the planet would perfectly resemble the sun in the nebulous state in which we considered it. The process of cooling must then produce, at different limits in its atmosphere, phenomena similar to those which we have described; that is to say, rings and satellites circulating around its oentre in the direction of the planet's own rotation, and turning at the same time (the satellites that is) upon themselves. The regular distribution of the mass of the rings of Saturn about its centre, and in the plane of its equator, results naturally from this hypothesis, and without it becomes inexplicable. "The rings" (exclaims the framer of the hypothesis) "appear to me to be an ever-present proof of the primitive extension of the atmosphere of Saturn, and of its successive retreats."
(32) He then proceeds to say that the singular phenomena of the small eccentricity of the orbits of the planets and the satellites, of the small inclination of those orbits to the solar equator, of the identity of direction of rotation and revolution of all ${ }^{2}$

[^16]these bodies with that of the rotation of the sun, flow from the hypothesis which he proposes, and give to it great probability. ${ }^{1}$
(33) If the solar system had been formed with perfect regularity, the orbits of the bodies which compose it would have been circles, the planes of which, as well as those of their several equators and rings, would have coincided with the plane of the solar equatoi. But we may conceive that the innumerable varieties which must exist in the temperature and density of the different parts of those great masses, have produced the eccentricities of their orbits, and the deviation of their motions from the plane of that equator.
(34) The author then goes on to show that, on this hypothesis, the comets are strangers to the system, formed by the condensation of nebulous matter elsewhere, but drawn in when they come into the region in which the attraction of the sun is predominant; and he then proceeds further to show that this will account for all the peculiarities of their motion, as well as the variety in the inclinations of their orbits.
(35) M. Laplace then adds that, if in the zones abandoned by the atmosphere of the sun there were found molecules too volatile to unite to one another, or to the planets, they ought, while continuing to circulate around the sun, to present all the appearances of the Zodiacal Light, without opposing sensible resistance to the several bodies of the planetary system, either because of their extreme rarity, or because their motion is the same with that of the planets themselves.
(36) In all that has now been stated, which, for the most part, is a translation, or else a paraphrase of M. Laplace's Note VII. to his Exposition du Système du Monde, in all this, there has been no allusion to the operation of another cause, which may well have produced changes in the nebulous material, antecedent to those which have been already contemplated. The solar atmosphere, when at its largest extent, must also have had a very oblate form, and the portions near to the pole of the rotating sun, because of the superior density, and close proximity of the sun's body, have been subjected to an attractive force greatly superior to that prevalent (or barely in equilibrio) in the equatorial regions.
(37) Now a greater attractive force acting on nebulous matter increases the local density where the force is thus urgent; as is manifest from what we observe in the nuclei of comets. But a greater density of the same sort of material is accompanied by a more profuse radiation of heat. All this could not fail to produce changes in the actual, as well as angular, velocity of the portions thus affected, which would not conform to the changes of both, then going on, in the regions nearer to, or at the equator. ${ }^{2}$ A rending of the material of the atmosphere must thus result, perpetuating itself all round the sun, so long as the portions most affected were not detached to the extent of "abandonment."

There might still be a tendency in the portions thus separated by the rent from those parts still closely attached, to preserve, at least rudely, an approximation, even in their exterior surface, to the spheroidal form; the situation, at any given distance from the axis-when once that situation has been attained-presenting the same ratio there of centripetal and centrifugal forces; since, in so far as density

[^17]is concerned, the centrifugal force at the extremity of the radius of rotation, would be as the density, and the attractive force, still acting at the same angle with the plane of the parallel, be also as the density, so that the element of density being, in effect, all but excluded from the comparison, there would remain very nearly the same ratio of the forces as before; so that the not yet "abandoned" portion of the atmosphere would scarcely have its exterior spheroidal form affected. ${ }^{1}$

And, although the case is not just the same, divisions into something like spheroidal shells resembling those here supposed may be ${ }^{2}$ traced in the representations of the heads of comets, among others that of 1680 , as represented in Plate VI. of the third volume of Delambre's Astronomie Théorique et Pratique; the same being copied from the Histoire Céleste of Lemonnier. The appearance in question is yet more conspicuous in the representations of the head of the great comet of 1858, given by Prof. G. P. Bond. in Vol. III. of the Annuls of the Observatory of Harvard College. A very faithful copy of one of these is here given.

Fig. 6.

(38) Now, the partially condensed shell thus formed (if indeed admissible) must itself have exerted a conservative power in preventing the too frequent occurrence of cases like that of the asteroids; viz., by an earlier holding together of the greater number of the "abandoned" equatorial portions of the atmosphere in the process tending to form rings or planets. ${ }^{3}$

Nay, it might even be questioned whether the more dense portions of the atmosphere, earlier separated, may not in their progress toward the equatorial plane, described in (25), have arrived at the state of equilibrium of the forces, before the equatorial portions were ready for the same; and so, the formation of a planet have gone on thus far, from a shell instead of a ring.

Just one change more, to be followed by its consequences, might then have taken place. The more dense portions, being the first about to be "abandoned," might be found to be further outward than the rarer equatorial portions; and attaching the latter to themselves by the attraction due to a greater density.
(39) Now, the special arrangements of the two half-planets, Earth and Venus, are as though what has here been discussed and explained, were entirely applicable to them.

[^18]
Specialities of the Half-Planets Eurth and Venus.

1. In accordance with the immediately preceding conclusion, the exterior halfplanet, the Earth, not merely shows a density greater than that of its interior half-planet Venus, but also, as seen in Table (A), in (3), a density altogether remarkable in view of the Earth's place in the planetary system.
2. The inclination of the equator of Venus to the plane of that planet's orbit (from 73° to 75°, most probably) presents a marked contrast to what we find in the cases of Mercury, the Earth, and Mars, in all which the inclination of the equator approaches to a mean value that is nearly the same with the obliquity of our equator to the ecliptic; and this, while a like contrast does not exist in the respect of the time of rotation (the sidereal day) of Venus; for that is nearly the same with each of the respective sidereal days of these same other three planets, in this region of the system. But the inclination of the equator of Venus is, up to the present time, without a parallel in all the system, except in the instance of another halfplanet, viz. Uranus. ${ }^{1}$

And here the state of things is, withal, as though the enormous deviation of the plane of the equator from the plane of the planet's own orbit (and which implies also a very large deviation from the plane of the sun's equator) were itself due to the attraction towards the more dense outer portion, already commented on, which went to the formation of the Earth; an attraction acting in a direction nearly perpendicular to the half-planet's first-forming equator and its parallels.

Thus the material, at its first rolling up from the form of a ring or shell, would be inclined to rotate in the plane of $E W$, but being drawn outward by the attraction of the more dense material in the direction $E N$, the resultant rotation would be in a direction such as $E O$, as represented in the figure at 1 , and transferred to the position marked 2.

Fig. 7.

All this might begin antecedently to the process of rending which introduced the formation of half-planets, or perhaps go on during that very process; in which

[^19]same process of rending, the attraction of material outward, i.e., toward the more dense Earth-forming mass, may itself have been efficient. ${ }^{1}$
3. The division of material into two half-planet portions, would very probably take place, at what, with reference to the revolution around the sun, was the centre (or rather the central line) of gyration of the whole mass (at the distance $S C$ in the figure); leaving the material on the one side and the other of that limit, to be gathered into the half-planet masses, each around its own special centre of gyration (at C^{\prime} and $C^{\prime \prime}$); which special centre would be that due to the half-planet itself, when formed.

Making use, then, of the halfplanets themselves (gathered at C^{\prime} and $C^{\prime \prime}$), ${ }^{2}$ and finding their centre of gyration, we shall approximate to the former position of (C) the centre of gyration of the whole mass. But that would be the position of the whole planet, if the material had all gone to form it, i.e., the limit (\oplus)) in Table (B), so that the centre of gyration of the two half-planets should be found very near to the limit (\oplus () in

Fig. 8.
 Table (B), in (14).

Now-with the masses of the Earth and of Venus as given in Table (A), in (3), and their distances as given in the column of Law in Table (B) in (14)—from Eq. C in (17), we have for the distance from the sun of the centre of gyration of the Earth and Venus,

$$
\begin{aligned}
\text { with sun's horizontal parallax } & =8 " .848, \mathrm{C}=0.88665 \\
" ، \quad " \quad " \quad & =8.78, \quad \mathrm{C}=0.88579 .
\end{aligned}
$$

And the position due to the whole planetary limit (\oplus ($)$) in Table (B), in accordance with Law 1st (10), is

$$
(\oplus \odot)=0.85101 .
$$

4. But the separation of the material into two half-planet portions would, withal, take place at the limit where the attractive forces of the forming half-planets were in equilibrio; on one side of which limit the material would be gathered (by the excess of attractive force on that side) in the formation of a half-planet toward that side ; and on the other side of (the neutral) limit, in the formation of another

[^20]half-planet on that other side [as they are represented in Fig. 8], gathering around $C^{\prime}, C^{\prime \prime}$, the one on the one side, and the other on the other side of $C D$, the dividing limit of neutrality, where the forces being equivalent and opposed would be in equilibrio. It would seem then to be desirable to ascertain whether the limit thus defined will agree with either, or nearly with both, of the other two determinations already made.

Fig. 9.

Now when two planets (P and P^{\prime}) are in conjunction, as seen from the sun (at S), the position of the point (N), at which their attractions would be equivalent and opposite, and so neutralize one another, may be found, as is well known, by so dividing the distance $\left(P P^{\prime}\right)$ between those planets, that

$$
\frac{N P}{N P^{\prime}}=\frac{\sqrt{\text { of mass of } P^{\prime}}}{\sqrt{\text { of mass of } P}}{ }^{1}
$$

Fig. 10.

But, in the act of the rending described in the Note on p . 22, portions such as Q and Q^{\prime} would act on one another directly (in the line $Q Q^{\prime}$) very much as would two small planets; and so the neutral point (N) be determined as before, viz.:-

$$
\frac{Q N}{Q^{\prime} N}=\frac{\sqrt{ } \frac{\text { of mass of } Q^{\prime}}{\sqrt{\text { of mass of }} Q^{\prime}} ;}{}
$$

And the local oblique action of neighboring portions would conform to very nearly the same ratio; so that the whole action within distances at which it would be appreciable would have its neutral limit ($N^{\prime} N N^{\prime \prime}$) dividing the distance between the points of reference of rupturing amular masses in a manner approximating to that which obtains in the case of two planets. And what is here stated of them, might also be asserted of the sections of shells, parallel to the equatorial rings, with approximately the same result as to the dividing limit.

Making use then, as heretofore, of the half-planets themselves, as accumulated around what were their respective points of reference, while yet their masses were

[^21]in the former state; we shall, by the application of the equation here adopted, in effect obtain $Q N$ or $Q^{\prime} N$, and hence also $S N$, the distance of the neutral point N from the sun's centre. With the same data from Tables (A) and (B) in (3) and in (14), as before, we shall then have

While, (14), limit (\oplus)) due to a whole planet distance in Table (B), is 0.85101, exhibiting all but a perfect coincidence; while, as before, the distance of the centre of

gyration from the sun's centre . . $S C=\left\{\begin{array}{l}0.88665, \text { or } \\ 0.88579,\end{array}\right\}$
(40) Summing up then the specialities of the two half-planets, Earth and Venus, which are consistent with the theoretical considerations now exhibited, we have

1. In accordance with the conclusion in (39), the greater density of the exterior half-planet, the Earth.
2. The tilting up (if the expression be allowable) of the equator of Venus and its parallels-as if by the attraction outward, due to that same greater density-in the antecedent arrangement of the half-planet masses.

3 and 4. The decided approximation to agreement in position of -
(a) The whole planet limit (\oplus ($)$) in Trable (B).
(b) The neutral point, or point of equal attraction between the two half-planet masses, and
(c) The distance from the sun's centre of the centre of gyration of the same two half-planet masses, thus-
$(\oplus$ 아) $=0.851+$
Neutral position is at $0.854 \pm$
Centre of gyration is at $0.886 \pm$.

Determination of the Mass due to a Half-Planet ${ }^{\circ} i($ now missing), interior to Uranus.

(41) The distance due to such a half-planet has already been determined in accordance with Law $3 d,(10)$, and the same is recorded in Table (B), in (14).

The mass of this half-planet may be determined by means of the equation for the centre of gyration of it and Uranus; the case being similar to that of the Earth and Venus, ${ }^{1}$ and the whole planet limit here being limit (U), in Table (B).

Now let a^{\prime} represent the mean distance of Uranus from the sun, and m^{\prime} the mass of that planet; while a and m, respectively, represent like quantities in the instance of $\widehat{\leftrightarrow}_{i}$. Then, as limit (J$)$ represents the position due to the centre of gyration, Eq. (c) of (17), will read

[^22]4 December, 1874.

$$
\begin{gathered}
(\mathrm{U})=\sqrt{\frac{m^{\prime} \cdot a^{\prime 2}+m \cdot a^{2}}{m+m^{\prime}}} ; \text { or } \\
(\mathrm{U})^{2}=\frac{m^{\prime} \cdot a^{\prime 2}+m \cdot a^{2}}{m+m^{\prime}} ; \text { whence } \\
m(\mathrm{U})^{2}+m^{\prime}(\mathrm{U})^{2}=m^{\prime} \cdot a^{\prime 2}+m \cdot a^{2} ; \text { and } \\
m\left\{(\mathrm{U})^{2}-a^{2}\right\}=m^{\prime}\left\{a^{\prime 2}-(\mathrm{U})^{2}\right\} ; \text { and } \\
m=\frac{a^{\prime 2}-(\mathrm{U})^{2}}{(\mathrm{U})^{2}-a^{2}} \times m^{\prime} ; \text { or } \\
m=\frac{\overline{a^{\prime}+(\mathrm{U})} \times \overline{(\mathrm{a}}-\overline{(\mathrm{U})}}{(\mathrm{U})+a} \times \overline{(\mathrm{U})-a} \times n^{\prime} ;
\end{gathered}
$$

which, as $a^{\prime},(\mathrm{U})$, and a are all determined, will give us m in terms of m^{\prime}.
Substituting, then, the values of $a^{\prime},(\mathrm{U})$, and a, as found in the column of Law in Table (B), in (14), we have

$$
m=(1.38865) m^{\prime},
$$

i. e., the mass of $\mathfrak{\delta} i=(1.38865)$ of the mass of Uranus; or, substituting the value of the latter, as found in Table (A), in (3), we shall have

Mass of $\hat{\oplus}_{i}=\frac{1}{158+3}=0.00006312-$ of the mass of the sun.
The most probable Answer to the Question-What has lecome of the Missing Mass?
(42) The most ready reply to this question would seem to be-that the missing mass had, (29), been formed into a group of asteroids. But then, as this region of the planetary system is one in which large masses abound, it would also seem that the mass of a group of asteroids here, might reasonably be supposed to be very considerable, even if the computation already made, (41), had not indicated this very mass to be almost $1 \frac{4}{10}$ that of Uranus.

And if these considerations are conceded to have weight, the existence of the seemingly missing mass, in the form of a group of asteroids, becomes at once inadmissible; since, if such a group were there, its existence would speedily be evidenced by the perturbations of both Uranus and Saturn, which such a group would produce.
(43) Rejecting, then, the hypothesis of the existence of a group of asteroids in this region, the next hypothesis which it may be found to be appropriate to consider will be, whether, in the accumulation of the great mass which was to constitute Suturn, the material which would have formed the interior half-planet © $i=$ was not itself drawn over and inward by the o'ermastering attraction of the Saturnforming mass, which thus attached to itself the interior half-planet mass rent away from Uranus.

In favor of this hypothesis we shall find ten special consistencies, which in their tum will introduce others, having more extended relations.
1.
'Ihe mass of the forming Saturn would be adequate to the exercise in its own place of the o'ermastering attraction here supposed.

For if from the mass of Saturn, as found in Table (A) in (3); viz.:-

$$
\begin{aligned}
\frac{1}{3501.6} & =0.00028558+ \\
& =0.00006312+ \\
\operatorname{ain} & 0.00022246+
\end{aligned}
$$

for the mass of the forming Saturn; before the mass due to the interior half-planet $\widehat{6} i$, had been drawn over and inward to unite with the other portion of the entire mass which has gone to constitute the complete Saturn system as we now have it.

Now as the symbol for Saturn is h, we may represent this first formative portion of that planet's mass [which we just now found to be $=0.00022246+$] by the symbol \hat{n}. And then computing the position of the point of equal attraction, or neutral point [as, heretofore, (39), in the case of Earth and Venus], we shall find \hat{h}^{\prime} s attraction to extend in the direction of Uranus, to the distance from the sun's centre $=$ to 16.40924 , which is far beyond the distance due to the (missing) interior half-planet $\begin{aligned} & \text { ® } \\ & i \\ & \text { (viz., 14.64275) as found in 'Table (B), in (14). The attractive force }\end{aligned}$ of the pre-existing Saturn-mass was, then, adequate in measure to the effect here supposed.

2.

But this same limit, 16.40924 , to which the attractive force of $\hat{\gamma_{2}}$ extended, in the direction of Uranus, this, also, is not so very far short of the limit (U), ${ }^{1}$ i.e., 16.91431, at which the whole planet mass would be likely to be rent to form the two half-planets, Uranus and i; it being, in that respect, a limit analogous to that found to be a dividing limit in the case of Earth and Venus in which both the halfplanets still exist

3.

The very great inclination of the sateliite system of Uranus to the plane of the planet's orbit was, long ago, determined by Sir William Herschel ; the inclination of the orbits of the satellites to the plane of the ecliptic being nearly 79°; and the inclination to the plane of the orbit of Uranus must therefore be nearly $79^{\circ} 1^{\prime},{ }^{2}$ while their ascending nodes on the ecliptic are nearly in longitude $166 \frac{1}{2}^{\circ}$; motion retrograde.

And, again, the recent observations, (23), of W. Buffham, Esq., detailed in the Monthly Notices of the Royal Astronomical Society, vol.xxxiii., No. 3 (Jan. 1873), lead to results at present stated by him to be "the merest approximations;" but which yet give

[^23]\[

$$
\begin{aligned}
& \text { Long. of the asc. node of the equator } 110^{\circ} \\
& \text { Inclination of the equator } 80^{\circ} \\
& \text { Time of rotation } 12^{h} \pm \text {; }
\end{aligned}
$$
\]

motion direct.

From these several data, it would seem probable that the equator is inclined about $79 \frac{1}{3}^{\circ}$ to the plane of the planet's orbit, and some 60° to the orbits of the satellites.

So that the drawing over of material (inward now, and not outward) due to the proximity of the great mass of \hat{h}, would seem to have produced in the direction of the plane of the equator of Uranus, an alteration like that which, as heretofore shown, (39), seems to have taken place in the instance of another half-planet, Venus; the tilting-up (if the expression may again be tolerated) being quite as great in this instance as in the other; and here the orbits of the satellites are also enormously displaced.

4.

In the instance of Venus, it would seem that the great inclination of the equatorial plane was, (39), brought about by the attractive force of the Earth-mass of greater density; but, in the present instance, the like effect, as already shown, seems to have been due to proximity of the great mass of \hat{h}; though, (3), the density of the existing planet Saturn, as exhibited in Table (A), is the least in the whole planetary system.

But even that is here found to be a fact in place. For the drawing over, (41), of a mass nearly eqưal to $l_{10}^{\frac{4}{10}}$ of that of Uranus, from a region in which the mean density of the nebulous material was far inferior to that of the \hat{h}-mass, ${ }^{1}$ could hardly fail to have resulted in a mean density of the existing Saturn, such as we find.

5.

The scrupulously exact coincidence of the numbers in the column of Law with those in the column of Fact in Table (B), in (14), approaches the nearest to an exception, in the very instance of Uranus; the existing Uranus being 0.374 of the Earth's distance within the distance due to Uranus in accordance with Law $2 d$, in (10); though even that difference is less than $\frac{1}{50}$ th of the whole distance of Uranus itself. But this, if we give it any weight at all, is, again, a fact in place. Uranus in the drawing over of the material towards \hat{h}, may, perhaps, have somewhat fallen in.

6.

The acquisition of so much additional material, drawn in from a great distance, must, it would seem, have the effect of giving to the condensing Saturn-mass a much more oblate form than that which would otherwise have pertained to it; which seems to be confirmed by the fact that the outermost satellite is at the dis-

[^24]tance of more than 64 radii of Saturn from his centre; while the distance of the outermost satellite of Jupiter, measured in the same way, is scarcely 27 radii of its primary.

And the comparatively feeble light of this same outermost satellite of Saturn is withal consistent with a low density of that satellite; ${ }^{1}$ a fact also in place, in view of the acquisition of a less dense material from the planetary region exterior to the ancient Saturn \hat{h}_{2} : the outermost satellite, in the view of the hypothesis as to its formation, being most probably constituted of the portion the least dense of all.
7.

Such being the special form and constitution of the Saturn-forming mass-the formation of the extensive system of satellites might have been nearly completed, in advance of the "abandonment" of the material which now constitutes Saturn's rings ; ${ }^{2}$ or that satellite formation, at least have gone so far, as to keep the rings in their form and general arrangement, while Saturn, condensing, shrank away from the rings, yet with his central position with regard to them (or rather their corresponding arrangement around him) preserved; the conservatice power of the satellites, in these respects, being exerted in those very ancient times, even as now. ${ }^{3}$

It was then, it would seem, the drawing over and inward of the material which else had constituted the half-planet between Saturn and Uranus, that, as has been said, gave to Saturn and to his system the special form and arrangements that rendered the retaining of the rings as rings a possibility; which has made them an actuality; made Saturn what the author of the Novum Organum would term an "instantia solitaris," in the solar system.

8.

The same processes of the transference and combination of material here insisted upon, seem also to have affected the inclination of Saturn's own equator, and that of almost the whole Saturnian System, to the plane of the planet's orbit.

For this great planet's equator, and his rings, and the orbits of his satellites ${ }^{4}$ are inclined at an angle of more than 28° with the plane of his orbit; while the inclination of Jupiter's equator, and that of the orbits of three of his satellites, does not much differ from 3°.
9.

Another relation may possibly have some significance in this connexion; viz., the ratio of the periodic time of the interior half-planet $1 . i$ to the periodic time of the ancient Saturn \hat{n}.

[^25]For the mean distance from the sun of the (now missing) interior half-planet $\widehat{\delta} i$, and that of Saturn [as recorded in the column of Law in Table (B), in (14)] being, respectively, 14.64275 and 9.44511 , the application of Kepler's 3d Law will give us the corresponding periodic times; and then the measurement of the greater of these by the less, will show the periodic time due to the half-planet $\widehat{\varrho} i$ to be to the periodic time of the ancient Saturn $\hat{{ }_{\imath}^{2}}$ at its theoretical distance, in the ratio of 1.9303 to 1 ; and a still more scrupulous determination of the data in question than that exhibited in Table (B), might, perhaps, show the ratio to be very accurately that of 2 to $1 .{ }^{1}$

But with this ratio existing, the perturbations of one of the masses by the other at their nearest approach (intensified, it may be, by eccentricity of form or of orbit; or otherwise) would recur after every two subsequent revolutions of the ancient Saturn $\hat{\imath}$; and very possibly the effect of those perturbations become, in this way, cumulative; and thus the passing over of the material of the half-planet have been furthered and aided, until its mass was absorbed by the ancient Saturn $\hat{{ }_{n}} .{ }^{2}$

10.

It is not inconsistent with all that has just now been stated, that the term for the distance of Saturn reported in the column of Law in Table (B) is less than the corresponding term in the column of Fact; the ancient Saturn \hat{h} having, as it were, been drawn outward in the completion of the catastrophe of the absorption of $\widehat{\delta} i$; while Uranus, as indicated in Consistency 5 of this series, may, perhaps, have somewhat fallen $i n$.

11.

The (additional) 11th of these consistencies has much more extensive relations; some of which will here be exhibited and explained; they being especially such as are comprehended under the following title:-

The more Ancient Arrangement of the Material of the Planetary System.

For if-ulways adhering to the hypothesis that the material of the existing Saturn was increased in the way so often already specified-we endeavor to show what was the more ancient combination and arrangement of the material of the solar system (viz, ere the rending and the rupture, of which we now seem to find traces, were, in all their extent, accomplished), we shall find that, by regarding the masses in question (half-planets, Asteroid mass or masses, etc.), as recombined about their respective centres of gyration, and then ascertaining the positions of those centres, to serve as our points of reference, we shall thus obtain a new and fully justifierl series of terms, in which, very much as in the other instances of leading ratios in the planetary, and also in the satellite systems, every term will have a ratio to the next

[^26]succeeding term, which will, here, decreuse very slowly, but regularly, in the progress inward.
(44) With respect, then, to this recombination-

The value of the 1st, or Neptune-term of the series, closely corresponds to that in Table (B) of the completed arrangement of the Planetary System in (14).

For the $2 d$ term of the series-

Then, (c).-The whole planet mass (U), accumulated anew (as already indicated), must be combined with the mass $\hat{h_{2}}$ to form from both, around their centre of gyration, a quasi double-planet mass $[(\mathrm{U}) \hat{h}]$; to furnish the $2 d$ term required.

Jupiter will itself, in its mean distance from the sun, furnish the $3 d$ term.
Mars and the Asteroid mass (A) will, in the quasi double-planet arrangement, at their centre of gyration, furnish the 4 th term ; designated as that of $[\delta(A)] .^{1}$

The Earth and Venus, now existing as separate half-planets, will, in a wholeplanet arrangement, furnish (at thcir centre of gyration) the 5th term very near, (39), to the already recognized limit $(\oplus$ ㅇ). This 5th term is then designated as that of [$\oplus \subset]$.

Mercurx, in its mean distance from the sun, furnishes the 6 th term. ${ }^{2}$

[^27]The conditions prevalent in this series (with a quasi double-planet arrangement for every altermate term), require that the mean ratio R_{1} should nearly $=r^{\frac{2}{2}, r}$ being the mean leading ratio for the whole-planet arrangement in Table (B), in (14). ${ }^{1}$ Accordingly we find that, with the mean value of r, in Table (B), [which, $(13),=1.8253]$, that $r^{\frac{3}{2}}=2.4660+$, while the mean value of R_{1} prevalent in this new series, is 2.4021 .
(45) The whole arrangement, in accordance with what has now been stated, is exhibited in the following table; the symbols of mode of connexion, and dependence, etc., being similar to those in Table (B), in (14).

Table (F).
More Ancient State and Arrangements of the Planetary System.

Names, etc.	Symbols.	Law.	$\begin{gathered} \text { Fact and } \\ \text { Derivations. } \end{gathered}$	$\begin{aligned} & \text { Diff. } \\ & \text { L. }-F . \end{aligned}$	Diff. in terms of quantity measured
Neptune	Ψ	30.06039	30.05733	+0.003+	$+0.000+$
$\left.\left\{\begin{array}{l} \frac{1}{2} \text { planet Uranus } \\ \frac{1}{2} \text { planet } \widehat{-} i \end{array}\right\} \begin{array}{l} \text { Whole-planet (U) } \\ \text { Whole-planet } \hat{\imath} \end{array}\right\} \ldots$	[${ }^{\mathrm{U}} \hat{\hat{h}}$]	12.44376	12.40099	+0.043	$+0.003$
Jupiter	4	5.16574	5.20280	-0.037	-0.007
Asteroid mass (A) ? Mars	[$\delta(A)$]	(2.15051)	(2.15051)
Earth.	[$\oplus \bigcirc]$	$0.89780 \frac{1}{2}$	0.88665	+0.011	$\div 0.013$
Mercury.	¢	0.37589	0.38710	-0.011	-0.030

The values of the ratio R_{1}, which determine the numbers in the column of Law, are-

The mean value of R_{1} is, then, very nearly 2.4 , which $=\frac{24}{10}={ }_{5}^{12}$, so that every

[^28]term, after the first, is ${ }_{1}{ }^{5} 2 \pm$ of that which immediately precedes it; instead of $\frac{5}{9} \mp$, which is the whole planet ratio in the existing planetary system. ${ }^{1}$

Now, it is especially to be again observed, that the $2 d$ term of the serics in this Table, in the way in which it is here obtained, supposes, and it depends upon the supposition, that the material of the missing half-planet $\hat{i} i$ passed over and was combined with the other portion of the Saturn-forming mass, to, thus, construct the existing planet Saturn; and it is, (44), by supposing that process reversed-restoring ${ }^{\text {e } i}$ to its place-and then combining in the way already indicated, (44), that the $2 d$ term of the Table is obtained for the column of Fact, and can, consistently and accurately, occupy its place in the series; ${ }^{2}$ so that this 11 th consistency, supporting the hypothesis of the disappearance of the missing planet, in consequence of its mass having been drawn inward and combined with the Saturn-forming mass, has even more extended relations than the others.

Having, then, as far as may be, answered the question, (41), What has become of the missing mass, it may next be well to consider what more we may be taught by certain other relations exhibited in Table (F).

Mass of the Asteroids.

(46) With the term [$\hat{\delta}(\mathrm{A})$], [at the centre of gyration of Mars and the Asteroid mass (A), as found in Table (F), in (45)], and also with the mass of Mars takeii as unity, and the mean distances, from the sun, of Mars and (A), respectively, in Table (B), in (14), we may determine m^{\prime}, the Asteroid-mass which will be required to justify the term [$\delta(A)$] in Table (F); the case being similar to that of the interior half-planet ${ }^{\top} i$ in (41); except that the value of m^{\prime}, the exterior mass, is here required instead of m.

Substituting in the equation, in (41), the values here indicated, we shall find m^{\prime}, the Asteroid-mass, $=0.58929$ of the mass of Mars.

This, with the mass of Mars, as in Table (A), in (3), [$\left.=\frac{1}{3 . \frac{1}{0} 9 \overline{0} \overline{0}}\right]$, will make the mass of the asteroids $=\frac{1}{5431814}$ of the mass of the sun.
(47) Now M. Le Verricr, in the Comptes Rendus, tome lxv, p. 880 (Nov. 25,

[^29]1867) has given us the following equation, dependent on the necessity of an admitted increase in the motion of the perihelion of Mars.

He states that, in so far as we now know-
Ten times the correction of the mass of the Earth, plus three times the mass of the small planets, in a mean distance reference of the group, would make a sum equal to 1.38 ; the mass of the Earth deduced from the parallax of Encke, $8^{\prime \prime} .58$, being taken for unity. ${ }^{1}$ 'This mass is $\frac{1}{354 \frac{1}{9} \overline{6} 6}$.

The mass of Mars which M. Le Verrier employed in his investigations, would seem to be the same with that which he has, provisionally, attributed to that planet in the Comptes Rendus for July 22, 1872; viz, 0.000000333 of the sun.

With these values of the data, the equation of M. Le Verrier will give us, for the asterold mass, the same fraction of the mass of Mars with that which justifies the term [δ (A)] in our Table (F); if we make the solar parallax 8 " .896 ; 2 which is a value included within the present limits of uncertainty, and near to the mean of all the more recent determinations.
(48) If, then, fortified by these several coincidences, we allow any weight to the determination of the value of the Asteroid mass derived from the justification of the term $[\delta(A)]$ of the series here in question; it may be noted that this value, (41), depends on the ratio of the difference of the squares of the terms [$\delta(\mathrm{A})$] and Mars to the difference of the squares of (A) and [$\delta(\mathrm{A})]$; and the tabular values of the quantities represented in the terms thus involved, may all be considered as being approximately well-determincd.
[It will, moreover, be observed that the several independent elements which have entered into the computation of this result are:-

1. The leading ratio r, in Table (B), in (14).
2. The leading ratio R_{1}, in Table (F), in (45).
3. The application of the formula for the centre of gyration; and
${ }^{1}$.... " on doit dire que dix fois la correction de la masse de la Terre, plus trois fois la masse de l'ensemble des petites planètes distribucées en moyenne, d'après ce qu'on en sait aujourd'hui, doit faire une somme égale ì 1.38 ; l'unité ćtant la masse admise pour la Terre quand on la deduit de la paral laxe d'Encke, $8^{\prime \prime} .58 . "$
${ }^{2}$ For, $\left(\frac{8^{\prime \prime} .896}{8^{\prime \prime} .58}\right)^{3}=\frac{\text { increased mass of Earth, } M}{1}$; the mass due to parallax $8^{\prime \prime} .58$, being $=1$
M being thus determined-
Then $\mathrm{M}-1=$ increment of Earth's mass $=i$.
Then m^{\prime} being asteroid mass, M. Le Verrier's equation gives$10 i+3 m^{\prime}=1.38 ;$ whence $3 m^{\prime}=1.38-10 i$, and asteroid mass, $m^{\prime}=\frac{1.38-10 i}{3}$; the mass of the Earth due to parallax
$8^{\prime \prime} .58$ being 1.
Then $\frac{1}{354936} m^{\prime}=$ asteroid mass $m^{\prime \prime}$ in terms of the Sun's mass 1.
And this last value is our fraction (0.58929) of MI. Le Terrier's mass of Mars, i.e. the same fraction of the mass of Mars (taken=1), which justifies the value of our $[\delta(\Lambda)]$ term in our Table (F).
4. The mass of Mars itself, deduced from the mutual action of it and those of the other planets.]

But the value of the same Asteroid-mass, as derived from M. Le Verxier's equation, depends on $\frac{1}{3}$ of ten times the excess above 1 of $\left(\frac{8^{\prime \prime} .896}{8^{\prime \prime} \cdot 58}\right)^{3}$. This value, then, albeit that it wholly depends on ascertained facts for its data, is, nevertheless, very sensitive to any, the smallest, change in the value of the solar parallax.
[In a subsequent Memoir on the Masses of the Planets and the Parallax of the Sun, in the Comptes Rendus, for July 22, 1872, M. Le Verriex, as the result of a discussion of the secular variations of the elements of the orbits of Mercury, Venus, the Earth, Mars, and Jupiter, states that it is probable that the attraction of the minor planets amounts, up to the present time to a quantity which may be neglected. ${ }^{1}$]
(49) The value of the Asteroid-mass, which we have thus obtained, is, as far as may be, confirmed by yet another consistency.

For with this value of the mass, at distance (A) in the column of Law in Table (B), and other masses and distances in Tables (A) and (B), [(3) and (14)], we shall find that the neutral point, or point of equal attraction of this same mass, is, on the side of Jupiter, at the distance 3.16559 from the sun. And the similar limit, on the side of Mars, is at the distance from the sun $=2.13869$.

These numbers at once suggest the limits (thus far recognized) of the mean distances of the asteroids.

The supposition of a half-planet arrangement of the material in the progress of its early "abandonment" will, however, better provide for all this; as well as exhibit yet other consistencies, as will be shown hereafter. ${ }^{2}$

Peculiar Relations of the Planet Mercury.

(50) From Table (B) in (14) and Table (F) in (45), we find that the position and relations of Mercury may be represented as follows:-

Table (B).	Table (F).	
	[\oplus ¢ $]$	
		$R_{1}=r^{2}$
$\frac{1}{2}$ planet ratic, $r^{\frac{3}{i}} \quad\left\{\begin{array}{l}\text { Perihelion of Mercury }\end{array}\right\}$...(at mean dist.) Mercury	

so that Mercury, when in aphelion, is in the position due to a whole-planet; and when in perihelion his distance is that due to a half planet.

[^30]Then, at his mean distance (half-way between the two) his place is that of an almost double-planet, in the special arrangement in Table (F).

Of these it may be said:-

1.

That these several peculiarities scem, at once, to be reconciled and explained by the supposition that the condensing material (ring, or shell, etc.) which was in position to have formed a whole planet at the aphelion distance, and another portion of the condensing material (ring, or shell, etc.) which was in position to have formed what we have termed an exterior half-planet, at the perihelion distance, have been combined to form the existing planet; which, thus, is made up of a whole-planet mass and a half-planet mass.

2.

But all this accounts for and expluins in mode and in measure, the very great eccentricity of the orbit of mercury; his perihelion distance not extending beyond the centre (or a point near the centre) of gyration of the half-planet mass (ring, or shell, etc.) due there ; and his aphelion distance, reaching out to the centre of gyration, or near it, of the whole planet mass due there.

> Mass and Distance of a possible Planet interior to Meroury.
(51) The position of the perihelion of Mercury has, (14), been shown to be that due to an exterior half-planet. Hence the distance from the sun of the next planet interior to Mercury may, most probably, be ascertained by dividing the term value of Mercury's perihelion distance, in the colum of Law in Table (B), in (14), by the value of $r^{\frac{1}{2}}$, in accordance with Law 3d, in (10).

The value of $r^{\frac{1}{2}}$, for this region of the system, is 1.3733 .
Performing then the division thus indicated, we shall have the distance from the sun of the planet interior to Mercury-

$$
¥_{i}=0.20836 .^{1}
$$

We may also ascertain the whole-planet position next to that due to the aphelion of Mercury, by dividing the aphelion term in the column of Law in Table (B), in (14), by the value of r, in accordance with Law 1 st in (10).

The value of r, for this region of the system, is 1.8736 . Dividing the value of the aphelion limit by that number, will give for the whole-planet limit interior to Mercury's aphelion distance, the value $0.24422+$.

Thus, then, we shall have the following arrangement:-

[^31]Then for the mass of the interior half-planet $\ngtr i$, we need first to redistribute the material of Mercury, so as to place its whole-planet portion at the aphelion, and its half-planet portion at the perihelion; to come back to the forming state, etc., described and exhibited in symbol in (50).

Putting then the whole mass of Mercury $=$ to 1 ; if that be so distributed to the aphelion and perihelion positions, that the centre of gyration of the distributed portions shall be found at Mercury's mean distance, ${ }^{1}$ we shall have-

$$
\begin{aligned}
& 0.5617245 \text { of Mercury's mass, for the aphelion, and } \\
& 0.4382755 \text { " " " " "periheliou. }
\end{aligned}
$$

The values thus far requisite having been ascertained, the case is but a repetition of that of the mass of $\widehat{\delta} i$ in (41); and by substituting the values now before us, and reducing, we shall find the value of the mass of the interior half-planetm of $¥ i$, interior to Mercury, $=0.594059$ of the mass of Mercury.
(52) Now M. Le Verricr, in the Comptes Rendus, tome XLIX. p. 382, (Sept. 1859), speaking of a cause adequate to produce an ascertained secular motion of $38^{\prime \prime}$ in the perihelion of Mercury, admits the supposition of a hypothetical planet, situated between Mercury and the Sun, and says that, as the hypothetical planet ought to impress on the perihelion of Mercury a secular motion of 38 seconds, the resulting relation between its (the planet's) mass and its distance from the sun will be such that, in measure, as we suppose the distance less, the mass will be increased, and the converse: and he adds, that, "For a distance a little less than the half of the mean distance of Mercury from the Sun, the mass sought would be equal to that of Mercury."

The mass which, on our own plan, in the following out of our own hypothesis, (51), we have found for the hypothetical planet is 0.594059 of the mass of Mercury; and when, in conjunction with Mercury, as seen from the sun, the distance between the two planets [see (51) and Table (A), in (3)], would be

$$
0.38710-0.20836=0.17874
$$

and " a mass equal to that of Mercury," similarly situated, would have the same attractive force with that due to our hypothetical planet, at a distance, for that mass, inside of Mercury $=$ to 0.23190 , i.e., a distance from the sun $=0.15520$; which is indeed, assuredly, somewhat " less than the half of the mean distance of Mercury from the Sun," which $\frac{1}{2}$ distance, accurately, $=0.19355$.

[^32]All this, so far, approximates to an accordance with M. Le Verrier's required action of the mass in question. It is then sufficiently manifest that our hypothetical planet, as to mass and distance both, would be such as measurably to satisfy the conditions of the ascertained perturbation; and so we need not pursue the investigation of a troublesome problem any farther.

Peculiar Relations of the Living Force of (simultaneous) Rotation of some of the Planetary and Satellite Masses.

(53) If Jupiter and Saturn should (or if they did) turn around the sun, in the same time ; the moment of rotation must, in the instance of either, be represented by the formula, mass \times (velocity $)^{2}$; or, as velocity in this case would be, as a, the radius vector of rotation, the ratio of the moments will be obtained by comparing mass $\times(\text { radius vector })^{2}$ of the one with mass $\times(\text { radius vector })^{2}$ of the other. So with m and m^{\prime}, respectively, for the masses, and α and a^{\prime} for the radii vectores; i.e. the mean distances from the sun, as in the column of Law in Table (B), in (14), and the massés, as in Table (A), in (3); we have-

$$
\begin{aligned}
& \text { For Jupiter, } m a^{2}=0.026142 \text {. } \\
& \text { For Saturn, } m^{\prime} a^{2}=0.02547 \%
\end{aligned}
$$

or with the distances as in column of Fact in Table (B) ; we have-

$$
\begin{aligned}
& \text { For Jupiter, } m a^{2}=0.025832 . \\
& \text { For Saturn, } m^{\prime} a^{\prime 2}=0.025985 .
\end{aligned}
$$

The approach to a ratio of equality is here very close. ${ }^{1}$
There is also an approximation to the same state of things in the following cases. ${ }^{2}$

The respective moments of (simultaneous) rotation of \hat{h} (i. e. Saturn reduced to its ancient state), of Uranus, and also of $\begin{gathered} \\ i\end{gathered}$ [the half-planet (supplied) interior to Uranus], are all nearly equal to one another; the ratios being-

$$
\begin{align*}
& \frac{m r^{2} \hat{h}}{m^{\prime} r^{\prime 2}}=1.1431 \cdots(1) \text {. } \tag{1}\\
& \frac{m^{\prime} r^{\prime 2} \text { § }}{m^{\prime \prime} r^{\prime \prime 2} \text { § } i}=1.0060 \ldots . \tag{2}
\end{align*}
$$

Then, when the combined masses of Saturn and Uranus [in the More Ancient State, as exhibited in the term $[(\mathrm{U}) \hat{h}]$, in Table (F), in (45)], are compared with Neptune in respect to the moment of (simultaneous) rotation; we have for the ratio-

[^33]$$
\frac{m_{1}{ }^{2} r_{1}^{2} \text { of }[(\mathrm{U}) \hat{h}]}{m^{\prime \prime / 2} r^{\prime \prime / 2} \text { of } \Psi}=1.1101 \cdots(3)^{1}
$$

Lastly, in the System of Saturn, m being the mass of the outer, and m^{\prime} that of the inner bright system of rings; we shall have for the ratio of the moments of (simultaneous) rotation-

$$
\frac{m \times a^{2} \text { of outer rings }}{m^{\prime} \times a^{12} \text { of inner rings }}=1.1400 \ldots(4)
$$

the rings being respectively referred, each to its centre of gyration [obtained as in (16)].
[Then, since the rings in Table (C) in (18), have their places as satellites; if the periodic times of the rings referred to their centres of gyration agree with Kepler's $3 d L a w$, and so actual velocities are as $a^{\frac{1}{2}}$ to $\alpha^{\prime} \frac{1}{2}$, and hence their 2 d powers as α to a^{\prime}; we shall have for the ratio of the moments of rotation of the existing and turning rings

$$
\left.\frac{m^{\prime} \times a^{\prime} \text { of } \text { inner rings }}{m \times a \text { of outer rings }}=1.0752 .\right]
$$

There is a very close resemblance between ratios (1) and (4). ${ }^{2}$ Were, then, those ancient masses compared in (1), ring-like in form; and did the masses, with nearly equal moments of (simultaneous) rotation, go round the central body together?

If, in an ancient state, they were parts of the atmospheres of their primary and central body, in every case; then they did go round together. But, whether we admit any part of that hypothesis, or else reject any portion, or all of it; THe ratios remain, and seemingly without that hypothesis, they remain unaccounted for.

There is yet another aspect of the matter, and that is-that the rings or shells, etc., separated about the time when the moments in question lecame nearly equal.

Application of other Conditions appertaining to the ring-like Form. What succeeded these.-Position of great Planets, and of largest Satellites.

(54) It has, (16), been shown that the centre of gyration of a homogeneous ring is in the circumference in which the mass of the ring is bisected; and that thus, we have

$$
(C)^{2}=\frac{1}{2}\left(R^{2}+r^{2}\right)
$$

[^34](C) representing ϕR_{3} in the figure, i.e. the distance of the centre of gyration from the centre of force, and R and r, respectively,

Fig. 11.
 the radii of the edges of the ring, so that we have

$$
\frac{{ }^{2}}{\phi R_{3}}=\frac{1}{2}\left({\overline{\phi R_{1}}}^{2}+\phi R^{2}\right) .
$$

Now the like being also true of the halfrings, with their centres of gyration at R_{2} and R_{4}, respectively; we shall also have

$$
\begin{aligned}
& \frac{2}{\varphi R_{2}}=\frac{1}{2}\left(\overline{\phi R_{1}}+\overline{\phi R_{3}}\right) ; \text { and } \\
& \frac{2}{\phi}=\frac{2}{2}\left(\overline{2}=\overline{R_{4}}=\frac{1}{2 R_{3}}+\overline{\phi R_{5}}\right) ;
\end{aligned}
$$

from which, by substitution and reduction, we shall obtain

$$
\frac{{ }^{2}}{\phi R_{3}}=\frac{1}{2}\left(\frac{2}{\phi} \stackrel{R}{2}_{2}+{\left.\stackrel{2}{\phi R_{4}}\right)}_{\text {a }}\right.
$$

in which the centres of gyration of the half-rings respectively, take the places of the edges of the whole ring.
(55) The supposition here throughout has been that all the material was homogeneous. But as the "abandoned" rings, or ring-like masses, would increase in density inward, the centre of gyration for each half-ring, as well as that of the whole ring, would also, therefore, be within that assigned by the formula.

Nevertheless it would seem that this would affect, or rather has affected, the several quantities, proportionally.

Accordingly, we find that the mass of the system of the inner bright rings of Saturn is considerably greater than the miss of the system of the outer bright rings; yet the other condition here in question is fulfilled.
For the centre of gyration of the outer bright rings, [Table (C) in
(18)], is at the distance 2.1165.

And the centre of gyration of both systems of the bright rings, as obtained independently by the general formula, is at distance . 1.9090 .
And that of the system of the inner bright rings is at . . . 1.7097.
Now the sum of the squares of the first and last of these numbers is 7.16399197;
and $\frac{1}{2}$ of the same $=3.58199593+$
And the square of the intermediate number, 1.9090, $=3.64428100 ;$ showing a very close correspondence with the formula.

Accepting, then, this result as an induction, we shall find, on trial, in the same way, a semblance of a ring-like form of the "abandoned" masses, apparent, even in the case of the Earth and Venus.
For the sum of the squares of their mean distances [as those distances are given in the column of Law in Table (B) in (14)] is
and $\frac{1}{2}$ sum $=0.75964$
And, (C) being distance of the centre of gyration, . . . $(C)^{2}=0.78616$;
in which case $(C)^{2}$ is the greater because of the superior density of the Earth. [And the great relative distance of our own satellite (nearly 60 radii of the Earth) as, in the similar instance in Saturn's system, is also [6 of (43)] indicative of a great oblateness of the nebulous material at some stage of its progress.]
(56) Again, a like relation is found in the case of the mean distance and centre of (simultaneous) gyration of Uranus and Neptune.

In the instance of these we have an approximation to equality in the masses; ${ }^{1}$ the ratio of the mass of Neptune to that of Uranus being

$$
\frac{m \Psi}{m^{\prime \Uparrow}}=1.11678 \text {. }
$$

Moreover (C), the centre of gyration of the two planets is at the distance 25.4457 -; and while

$$
\begin{aligned}
& \frac{1}{2}(\text { mean dist. } \Psi)^{2}+\frac{1}{2}(\text { mean dist. } \widehat{b})^{2}=635.704 \\
& (C)^{2}=(25.4457-)^{2} . ~ . ~ . ~ . ~
\end{aligned}=647.4812
$$

This is consistent with a ring-like form of the two masses in question, after the "abandonment" of the material of which they were constituted; the flowing over of material in this outer portion of the oblate solar atmosphere having given to the whole, or, at least, to both the parts of the masses in question, a form not unlike that of a thick ring.

All this is consistent with that form, yet does not require the masses to have had

Fig. 12.
 such a form ; since, (17), the equation here in question would, accurately, exist in the case of any equal masses.
(57) The state of things arrived at (perhaps later) in the case of Jupiter and Saturn, (53), seems to be inconsistent with a mere ring-like form for both masses; but to be a consequence of the accession of material from regions of the sun's atmosphere extra-equatorial. Accordingly we shall find that the equation here in question does not obtain in that instance.

But under the conditions approximated to in the case of planets exterior to thèm, and at length attained in the instance of those two great masses, viz.

$$
m a^{2}=m^{\prime} a^{\prime 2}
$$

we have the masses inversely as the squares of the radii of gyration; so that the resulting planets must increase in mass, in the progress inward, until we come to the instance of Jupiter, the greatest of all; ${ }^{2}$ the ring-like masses, or the shells, though successively decreasing in volume, yet increasing more rapidly in density,

[^35]for some distance within; so that the planets of greatest mass would not be the outermost, but the masses of the successive planets will be greater and greater, so long as the density increases in a greater ratio than that in which the volume diminishes; aided, withal, by the whole-planet arrangement, which supervenes in the Saturn and Jupiter arrangement, and, in the instance of Saturn, (42), by the half-planet acquired.

And this arrangement of the masses we actually find, with some variation in the instance of Uranus. ${ }^{1}$
(58) Closely analogous to this arrangement of the masses in the great planetary system is that which we find in the System of Saturn; viz. Japetus outside, for one of the larger satellites, followed by Titan, the Jupiter of the system, with smaller satellites after it (Hyperion before it, in the place analogous to that of Uranus), and other satellites, larger than Hyperion, farther inward.
(59) Then too, in the System of Jupiter, the relative masses of the satellites are-

$$
\begin{array}{rrrllllll}
\text { Satellite } & \text { IV. } & . & . & . & . & . & . & 42659 \\
\text { ". } & \text { III. } & . & . & . & . & . & . & 88497 \\
" & \text { II. } & . & . & . & . & . & . & 23235 \\
" & \text { I. } & . & . & . & . & . & . & 17328
\end{array}
$$

so that the mass of Satellite IV. approaches to being more than double that of either Satellite II. or Satellite I.; while the mass of Satellite III. is more than the double of that again; the great masses outside of the others; and yet, as in the other systems, the greatest of all not the outermost.

Arrangements of the Asteroid-mass.

(60) The neutral points for the Asteroid-mass, towards Jupiter on the one side and Mars on the other, have, (49), been already stated. But when we come to apply the formula for the ring-like mass; viz. that which has, (55), been especially in question, we do not succeed. We thus have a negative indication that the Asteroid-mass, as a whole, did not have a ring-like form.

But if we suppose a half-planet arrangement of the mass, we shall have

again approximating to the requirements of the formula.
The neutral point, or point of equal attraction, between Jupiter and the exterior half-planet will be 3.35790

That between the two half-planets, 2.94068
Between the interior half-planet and Mars,
2.14438

[^36]The first and last of these, toward one limit and the other, also indicate the range of the mean distances of the asteroids better than the result in (49). [The middle limit 2.94068 here given, is a little outside of the centre of gyration of the two half-planet masses, which is at whole-planet distance (A) of Table B, $=2.87831$ -the more dense material being inward: a state of things of which there is a distinct semblance, (19), in the previous example of Saturn's rings. In the case of the Earth and Venus, (39), the centre of gyration is without the neutral point, as it ought to be, because of the superior density of the earth.]

The exterior limit, 3.35790 , at which the attraction of the outer mass and that of Jupiter would seem to have been in equilibrio, is scarcely 0.017 (of the Earth's mean distance) outside of the position due to the exterior half-planet. ${ }^{1}$
(61) The distances 3.34083 and 2.47748 , respectively due to the exterior and interior half-planets, themselves exhibit approximations to the aphelion and the perihelion distances of several of the existing asteriods; insomuch that their case in that respect resembles that of Mercury, already commented on in (50): with the marked difference, however, that while the orbit of Mercury is, indeed, limited in its aphelion by a whole-planet distance, and in its perihelion by the succeeding half-planet distance, the existing planet seems to have combined in itself the material which would have appertained to both the whole and the half-planet.
(62) The very small mass due to the exterior half-planet (0.4274 of the interior half-planet, or 0.2518 of Mars) would itself suggest the probability that but few asteroids were to be looked for at a mean distance, near to the outer limit 3.35790 ; and the progress of discovery, thus far, has justified such a conclusion.

Special Relations of the Moments of (simultaneous) Rotation (around the same centre) of the two supposed Asteroid-masses and that of Mars.
(63) The moments of (simultaneous) rotation of the two Asteroid-masses (halfplanetary in position) and that of Mars have, respectively, the ratio of the following representative numbers:-
$\left.\begin{array}{llllllllll}\text { Exterior Asteroid-mass } & . & . & . & . & . & . & 2.8108 \\ \text { Interior } & \text { " } & \text { " } & \text {. } & \cdot & \cdot & \cdot & \cdot & . & 2.0712\end{array}\right\}$ Mean, 2.4410

Of Missing Terms, or, at least, Varieties in Planetary or Satellite Series, other than those heretofore noticed; and the Explanation of the same.-A Resisting Medium.
(64) As "the comet of Lexell" had its orbit twice changed, as a special consequence of its periodic time being very nearly $\frac{1}{2}$ that of Jupiter, so that the comet was for the second time brought very near to that disturbing planet after only two revolutions; so, also, it has been well argued that when the periodic time

[^37]of the disturbing planet was very nearly a multiple of the periodic time of an " abandoned" ring; very similar effects would follow, which have, in part, at least, been indicated by Prof. Daniel Kirkwood in his paper On the Nebular Hypothesis and the Approximate Commensurability of Planetary Periods, in the Monthly Notices of the Royal Astronomical Society, vol. xxix. In that paper, at p. 99 of the volume quoted, he sums up, in part, what he had discussed, as follows :-
"A planetary particle at the distance 2.5-in the interval between Thetis and Hestia - would make precisely three revolutions while Jupiter completes one; coming always into conjunction with that planet in the same parts of its path. ${ }^{1}$ Consequently its orbit would become more and more eccentric until the particle would unite with others, either interior or exterior, thus forming the nucleus of an asteroid. Even should the disturbed body not come in contact with other matter, the action of Jupiter would ultimately change its mean distance, and thus destroy the commensurability of the periodic times. In either case the primitive orbit of the particle would be left destitute of matter. ${ }^{2}$ The same reasoning is, of course, applicable to other intervals;" and Prof. Kirkwood produces evidence to show that the "intervals in the asteroid zone"-however small at best-are yet appreciably greater in the instances of "nearly commensurable periods." With respect to the interval between the two Rings (or system of rings) of Saturn, Prof. Kirkwood, after a discussion of the distances and periodic times in question, concludes, "It is thus seen that the interval occupies precisely the space in which the periods of satellites would be commensurable with those of the four members of the system immediately exterior. As, therefore, the powerful attraction of Jupiter produces the observed gaps in the asteroid zone, so the disturbing influence of Saturn's interior satellites is the physical cause of the permanent interval between the two bright rings."

Prof. Kirkwood concludes his paper with the declaration that the Nebular Hypothesis "assigns an obvious cause for the establishment of nuclei in such positions that their periods will be nearly commensurable with that of the disturbing body. As these nuclei would receive accretions of matter from portions of space both interior and exterior to their respective orbits, their distances from the central body, during their planetary growth, would not be liable to great variation."
(65) Now, with our half-planetary arrangement of the Asteroid-mass, (60), the periodic times of Jupiter, the exterior half-planet mass, the interior half-planet mass, and Mars, will, respectively, be related as follows; the coincidences, though not absolute, being yet very close-

$$
\begin{aligned}
\text { P. Time }(\mathrm{T}) \text { of Jupiter } & =2(\mathrm{~T}) \text { of exterior asteroid-mass, } \\
& =3(\mathrm{~T}) \text { of interior asteroid mass; and }
\end{aligned}
$$

(T) of interior asteroid-mass $=2(\mathrm{~T})$ of Mars.

Thus with the action of Jupiter on the one side, and Mars on the other, there would be abundant occasion for the effects under discussion.

[^38]Then also, in view, (62), of the very small exterior half-planetary mass, in this instance, and the close approximation of Jupiter's o'ermastering influence; and the much larger, (62), interior half-planetary mass, and its special relations to Mars as here specified, we discern, at last, how the formation of half-planets in this region may have been prevented; also, why the range of the asteroids should be so extensive; why the eccentricity of their orbits should be so great; why so many have been discovered at distances approaching to that of the interior halfplanetary mass, and even on the side toward Mars; and why so few have been found at distances approaching to that of the exterior half-planetary mass. ${ }^{1}$

Besides all this, we have the fact, that the actual distance of Mars [as seen in Table (B), in (14)], is appreciably less than the distance registered in the column of Law; Mars, like Uranus [see 5 of (43)], having seemingly fallen in; though not, like Uranus, influenced, to a proportionate extent, by a large planet interior to itself; yet the acquisition of sufficient material from the interior half-planetary mass, with the inferior velocity of revolution appertaining to that mass, would produce just such an effect. ${ }^{2}$

And the Earth-Venus mass, while it endured (if at all), would have had a periodic time $\frac{2}{5}$ ths of that of Mars; and might, with the other influences in question, contribute to the very considerable eccentricity of the orbit of Mars ;-on which, however, it does not seem to be justifiable to insist.
(66) In the System of Saturn there are withal vacuities, (64), in the series of satellites, under the conditions already specified in the other cases. Thus, in the large interval from Japetus to Titan, if the places for interpolated terms as indicated in Table (C), in (18), be compared with those which would be due to satellites with periodic times commensurable with the periodic time of Japetus, or with that of Titan, we shall have the following results:-

[^39]| (Reckoniug from Japetus inward), submultiples of periodic-time of Jafetus, and corresponding distances. | | Distances in accordance with ratios of terms in Table (C). | (Reckoning from Titan outward) multiples of the periodic-time of Tman, and corresponding distances. | |
| :---: | :---: | :---: | :---: | :---: |
| P. Time. | distance. | | P. time. | distance. |
| ${ }_{3}^{2}$ that of JAPETUS | 49.109 | 51.9925 | $3 \frac{1}{2}$ that of titan | 51.037 |
| $\frac{1}{2}$ 1 ${ }^{\frac{1}{2}}$ | 40.544 | 41.9986 | $2 \frac{1}{2}$ " " | 40.782 |
| " " | 34.939 | 33.9271 | 2^{2} " " | 35.145 |
| 年 $\begin{aligned} & \text { 3 } \\ & 7\end{aligned}$ | 27.919 | 27.4069 (Hyperion) | | 29.014 |

In the Interval from Titan to Rhea.

In accordance with Ratios of Terms in Table (C.)	(Reckoning from Titan inward) submultiples of the periodic-time of Titan, and corresponding distances.	
distance.	PERJODIC TIME..	distance.
	$\frac{2}{3}$ that of TITAN $\frac{1}{2}$ 16 $\frac{1}{3}$ " $\frac{2}{2}$ 6 $\frac{2}{7}$	$\begin{array}{r} 16.894 \\ 13.947 \\ 10.644 \\ 9.604 \end{array}$

In this region the coincidences, it will be perceived, are more perfect than in the other region exterior to Titan.

But it is here, again, worthy of remark, that Hyperion, outside of Titan, in a place analogous to that of Uranus in the planetary system, has, like that planet, seemingly fallen in somewhat from its true position in series; as if influenced by the great interior body, under stringent circumstances. [See, again, 5 of (43).]

Exact Commensurability of Periodic Times.-Explanation of this.
(67) M. Laplace, in the course of his comments on his own hypothesis, especially notices and accounts for "the rigorous equality observed between the angular motions of rotation and revolution of every satellite ;" all which will be considered in another connexion.

But, he adds, that " the first three satellites of Jupiter present a still more extraordinary phenomenon;" which consists in this, that "the mean longitude of the first minus three times that of the second, plus twice that of the third, is always equal to two right angles."

Next, with respect to the existing satellites of Saturn, we have the statement of Sir J. Herschel that "A remarkable relation subsists between the periodic times of the two interior satellites and those of the two next in order of distance, viz, that the period of the third (Tethys) is double that of the first (Mimas), and that
of the fourth (Dionc) double that of the second (Enceladus). The coincidence is exact in either case to about the 800th part of the larger period." ${ }^{1}$

Again, in the American Journal of Science and Arts, $3 d$ Series, vol. iii, p. 67 (1872), is an extract from a letter of Prof. Benjamin Peirce to Prof. Newton, in which Prof. Peirce says: "I have discovered three fixed equations between the mean motions of the four outer planets. If the mean motions of Jupiter, Saturn, Uranus, and Neptune are respectively represented by $n^{\mathrm{v}}, n^{\mathrm{vi}}, n^{\mathrm{vii}}$, and $n^{\text {viii }}$, these equations are-

$$
\begin{aligned}
& 4 n^{v i}+9 n^{v \mathrm{viii}}=16 n^{\text {vii }} \\
& 2 n^{\mathrm{vii}}+17 n^{\mathrm{vii}}+6 n^{\mathrm{viii}}=12 n^{\mathrm{vi}} \\
& 3 n^{v \mathrm{iii}}+8 n^{\mathrm{viii}}=n^{\mathrm{v}}
\end{aligned}
$$

. To which he adds "If all the three equations are admitted, the mean motions of three of these planets can be computed when the fourth is given;" and he exhibits the requisite equations. He states, moreover, that the reception of these "involves a laborious revision of the theory of these planets, and must seriously change the elements of their orbits."

Lastly ;-to this, Prof. Daniel Kirkwood adds: " The recent note of Prof. Peirce announcing his discovery of some interesting relations between the mean motions of the four outer planets, has recalled my attention to a number of similar coincidences detected by myself several years since, while engaged in a somewhat laborious examination of the planetary elements. Of these the following may be worth putting on record for future discussion :-

$$
\begin{array}{ll}
2 n^{v}-3 n^{1 i}-11 n^{v i i i} & =0 \ldots(1) . \\
2 n^{v i}-21 n^{\mathrm{vii}}+30 n^{\mathrm{viii}} & =0 \ldots \text { (2). } \\
3 n^{v}-8 n^{\mathrm{vi}}-2 n^{\mathrm{vii}}+7 n^{\mathrm{viii}}=0 \ldots . .(3) .
\end{array}
$$

"The re-examination of the last of these has recently led to the discovery of two others, viz:-

$$
\begin{gathered}
68 n^{\text {i }}-325 n^{v i i}+257 n^{\mathrm{viii}}=0 \ldots(4) . \\
257 n^{\mathrm{v}}-844 n^{\mathrm{vi}}+587 n^{\mathrm{vii}}=0 \cdots(5) . "
\end{gathered}
$$

. . . . "The fifth, however, is not an independent equation, but is derived from the third and fourth. . . It is obvious, moreover, from the same equations, that no three of the four outer planets can ever be in conjunction at the same time."
'The more thorough revision indicated by Prof. Peirce would be requisite before all these relations could be definitely settled; but they furnish additional occasion both in the planetary system and in that of Saturn for the explanation which M. Laplace himself has given, in Note VII to the Système du Monde, of the special relation apparent in the first of the instances here quoted, viz., that of Jupiter's satellites.

That illustrious astronomer indicates that "in order to produce the equation with regard to those satellites, already quoted, it would be sufficient that, at first,

[^40]there should have been a very close approximation to the conformity in question, and then the mutual attraction of the satellites would rigorously establish such a conformity;" and hence, moreover, " make the mean longitude of the first satellite minus three times that of the second, plus twice that of the third, always equal to a semi-circumference."

At the same time, as he says, this would originate a periodical inequality dependant on the small quantity by which the mean motions "primitively deviated from the relation which we have announced. Notwithstanding all the care which Delambre took to make out this inequality by observation, he could not discover it; which proves its extreme minuteness, and consequently indicates with very great probability a cause which made it disappear."
M. Laplace then proceeds to show that, on his own hypothesis, the satellites of Jupiter, immediately after their formation, did not move in a perfect vacuum; but that the less condensable molecules of the primitive atmospheres of the sun and of the planet furnished a resisting medium, ${ }^{1}$ the effect of which would be different on every one of the satellites in question, and when their motions attained the conditions requisite to the establishment of the conformity of motions, the same resistance diminished the inequality to which this relation gave rise, and finally rendered it insensible.

All this may well be extended to the case of the conformity of periodic-times in Saturn's system, as well as those of the periodic-times of the outer planets already specified.
M. Laplace illustrates the process in question by the retarded motion of a pendulum in a resisting medium; entire revolutions being reduced to oscillations diminished continually by the resistance of the medium, and in the end annihilated; the pendulum coming to rest, and ever after remaining so.

The original passage in which this illustration occurs, is the closing one of the Système du Monde; and is as follows:-
"On ne peut mieux comparer ces effets, qu'au mouvement d'un pendule animé d'une grande vitesse, dans un milieu très peu résistant. Il décrira d'abord un grand nombre de circonférences; mais à la longue, son mouvement de circulation toujours décroissant se changera dans un mouvement d'oscillation, qui diminuant lui-même de plus en plus, par la résistance du milieu, finera par s'anéantir; alors le pendule arrivé à l'état du repos, y restera sans cesse."

The changes indicated in the quotation in the next article, contemplate a veritable oscillation, in some measure like this.

Special Characteristics of the Moon, and other Satellites.

(68) M. Laplace, commenting on his own hypothesis, in the connexion already referred to, (67), thus expresses himself: "One of the most singular phenomena of the solar system is the rigorous equality observed between the angular motions of rotation ard revolution of every satellite. We may wager infinity to one that

[^41]this is not due to chance. The theory of gravitation causes the infinity of this unlikelihood to disappear, by showing us that, for the existence of the phenomenon, it would be sufficient that the motions should have been very little different at their origin. ${ }^{1}$ Then the attraction of the planet established between them a perfect equality; but at the same time gave rise to a periodic oscillation of the axis of the satellite directed toward the planet, the extent of it dependant on the primitive difference of the two motions. The observations of Mayer on the libration of the moon and those which MM. Bouvard and Nicollet made with reference to this matter, at my request, have failed to make known this oscillation. The difference on which it depends must, therefore, have been very small; which indicates, with extreme probability, a special cause which first kept this difference within the very narrow limits within which the attraction of the planet could establish an equality between the mean motions of rotation and revolution, and which afterwards destroyed the oscillation which this equality had originated. Both these effects result from our hypothesis. For it will be understood that the moon in the state of vapors, formed, because of the powerful attraction of the earth, an elongated spheroid the major axis of which must be incessantly directed towards that planet, from the facility with which vapors yield to the smallest force which animates them. The terrestrial attraction continuing to act in the same manner when the moon was in a fluid state, at length, in approximating incessantly the two motions of this satellite, caused them to fall within limits such that their rigorous equality began to be established. Afterwards this attraction must, little by little, have annihilated the oscillation which this equality produced in the axis of the spheroid directed towards the earth."
"It is thus that the fluids which covered this planet ${ }^{2}$ have destroyed, by their friction and their resistance, the primitive oscillations of its axis of rotation, which now is subjected but to the nutation resulting from the actions of the sun and the moon. It will be readily seen that the equality of motions of rotation and revolution would present an obstacle to the formation of rings and of secondary satellites from the atmospheres of those bodies. Accordingly, observation has thus far indicated none such."
(69) It is claimed that the other satellites of the planetary system resemble the moon in the coincidence of their times of rotation and revolution; and thus presenting always nearly the same side of any satellite toward its primary. This is inferred from special vicissitudes of the light of the satellites recurring when they have again arrived at the same positions in their orbits around their respective primaries.

Nor is that all. Among the remarkable phenomena presented by satellites is that of their seeming loss of light; all Jupiter's satellites, having, at times, been seen to transit the disk of the planet, appearing, in whole or in part, as dark instead of bright spots; and that sometimes after having first appeared bright and then dusky.

This-as has elsewhere been indicated by the author of this paper-would seem to be due to the absorption, and, possibly also, to the interference of light on a scale such as Astronomy alone exhibits; of the light, viz., reflected from Jupiter and meeting that of the satellite.
(a) Aside from all that, however, the phenomenon, or rather phenomena, in question would seem to be consistent with the conclusion of a coincidence in the times of rotation and revolution; for the appearance of the satellite, in the course of its transit, as a black spot has, within moderate intervals of succession, recurred when the satellite had returned to a like position in its orbit around its primary. ${ }^{1}$
(b) Admitting the absorption already indicated; then, instructed by the revelations of the spectroscope, we may regard it as probable that the satellite must be colder than its primary. ${ }^{2}$
(c) This last would happen-indeed we would have a reason for it-if the satellite, like the moon, had little or no atmosphere.
(d) All these analogies would be quite consistent with the hypothesis that all these satcllites (including the moon) had been similarly condensed from the nebulous state, and then subjected to the stringent conditions which prevail in satellite systems. The loss of atmosphere is one of the supposable consequences of those stringent conditions; as indeed M. Laplace has intimated, when after stating the distance at which the attractive force of the earth is in equilibrium with that of the moon, he adds: "If at this distance, the primitive atmosphere of the moon had not been deprived of all elasticity, it would be carried to the earth, which could thus draw it to itself, (aspirer). This is, perhaps, the reason why the moon's atmosphere is so nearly insensible."3

Of the Zodiacal Light.

(\%) As to the region of the zodiacal light; M. Laplace, in speaking of the atmosphere of the sun, says: "The atmosphere at the equator cannot extend beyond the point where the centrifugal force exactly balances gravitation; for it is manifest that beyond that limit the fluid must itself be dissipated. As respects the sun, this point is at the distance from his centre of the radius of the orbit of a planet which would complete its revolution in a time equal to that of the rotation of the sun. The atmosphere of the sun, therefore, does not extend even to the

[^42]orbit of Mercury, and, consequently, it does not produce the zodiacal light, which seems to extend even beyond the earth's orbit. Moreover this atmosphere, whose polar axis must be at least two-thirds of that of the equator, is very far from having the lenticular form which observations give to the zodiacal light."
(71) Next as to the origin and the constitution of the material which gives us the zodiacal light, we have: "If, among the zones abandoned by the atmosphere of the sun, there should be molecules too volatile either to combine themselves, or to unite with the planets, they ought, while continuing to circulate about the sun, to present all the phenomena of the zodiacal light without opposing a sensible resistance to the diverse bodies of the planetary system, either because of the extreme rarity of those volatile molecules, or because their motion is very nearly the same with that of the planets which they encounter." ${ }^{\prime 2}$

It will be observed that the first of the two quotations, here made, intimates it as probable that the material from which the Zodiacal Light proceeds, itself extends beyond the earth's orbit. This is, in fact, intimated by the existence of what in German accounts of observations of the Zodiacal Light has been designated as the gegenschein; which is seen in the part of the heavens opposite to the sun; the existence of which phenomenon is established by numerous observations, such especially as are detailed in various numbers of the Astronomische Nachrichten.
(72) Both eastern and western appearances occurring simultaneously are reported by the late Rev. George Jones, A.M., chaplain in the U. S. Navy; these phenomena being, among numerous others, the description of which, and other things connected with them, itself occupies the whole of vol. iii. of the Report of the U. S. Japano Expedition; and the extent of the light to both sides of the heavens is confirmed by the observations of Col. Charles G. Forshey, U. S. A., made while he was stationed in an elevated and dry region of Texas; where, as stated by Col. Forshey to the author of this paper, that phase of the phenomenon was a common occurrence; though the appearance of the Zodiacal Light in lower Louisiana, as described by him, was very different. ${ }^{3}$
(73) All this makes it more difficult to admit that the matcrial in question can be maintained in position, with the sun for its centre of reference; the conservative

[^43]influence of the great planets being not supposable within the extended limits of the solar system; though the satellites of Saturn, [Note ${ }^{3}$ to 7 of (43)], are efficient in that way, maintaining the position of the rings, under the more stringent conditions of a closer arrangement.

Added to this, is the consideration of the enormous extent which would seem to be required on both sides of the ecliptic, to account for the great breadth of the base of the zodiacal illumination, even after the disappearance of twilight in the evening, or before daylight in the morning; all which seems to be true of the more dense, and, if surrounding the sun, also the more distant portion of the material in question, which ought, unless uncommonly extensive, to be seen under a smaller angle than the other portions of the same; a difficulty to which the hypothesis recently advanced by Mr. Richard A. Proctor, F.R.A.S., viz. that the Zodiacal Light is due to a closely arranged group of meteors, would seem to be especially liable; and all the more so, if "assuming" (as he himself says we are bound to do) "a considerable degree of flatness in the actual figure of the zodiacal disk, and more especially of its more distant portions." ${ }^{11}$

And just that difficulty still remains if we were even to admit Prof. Arthur W. Wright's conclusion from his recent experiments on the polarization of the Zodiacal Light, as far as this-that "the light is reflected from matter in a solid state ;" since, he adds, in explanation of the same that this solid matter is that of "innumerable small bodies revolving about the sun in orbits of which more lie in the neighborhood of the plane of the ecliptic than near any other plane passing through the sun." ${ }^{2}$

Now this portion of the hypothesis of Prof. Wright, Mr. Proctor, and, it may be, others-whatever may be the special composition of the material in questionwould seem to require that the apparent form of the Zodiacal Light should be somewhat like that of the head of a comet, with the expansion beyond it extending upward from the sun; whereas the actual appearance and position are both the reverse of that; the broad base near the horizon, and the narrow and curved termination at the upper end.

And then, moreover, it would seem, on the part of the hypothesis here considered, that, in any event, there must be a conspicuous central beam or core of the Zodiacal Light; which we do not find.

And, lastly, what shall be said of the planetary perturbations, which, it would seem, ought to be superinduced by such a closely arranged group of metcors; especially if the "light" be indeed "reflected from matter in a solid state ?"

Other objections to hypotheses which would make the material to which we owe the Zodiacal Light to be an appendage of a lenticular or other form, referable to the sun as its centre, are very exhaustively considered by Chaplain Jones in the volume already referred to. The hypothesis that the Zodiacal Light is due to

[^44]reflection from the earth's atmosphere is also discussed and rejected by him. Upon this, however, it will not be necessary here to comment; as it, most probably, is no longer insisted upon by any one.
(74) It remains, then, to consider with what modifications we may admit Mr. Jones's hypothesis; that the nebulous material which gives the Zodiacal Light is a terrestrial appendage; and also what is the conservative force, which may insure its preservation of form, and its maintenance in its revolution around the earth, even in close proximity to the moon.

Antecedent to all that, however, will be found to be the questions of density and of mode of illumination, as well as, in its proper connexion, the question of parallax.

The density of the material in question seems indeed to be that intimated in the description of M. Laplace already quoted, (71); viz. that which pertains to the state of molecules " too volatile either to combine themselves, or to unite with the planets." And this is confirmed by the spectrum-analysis; the result of which has led to no other reliable conclusion than that of the extreme rarity of this same material. ${ }^{1}$

This same rarity of the material in question is withal indicated by its transparency.

Of this Rev. George Jones says, under date of Dec. 30, 1854 (in lat. $10^{\circ} 46^{\prime}$ N., long. $89^{\circ} 31^{\prime}$ W. of Greenwich): "I also, this morning, gave attention to the stars as seen through the Zodiacal Light, and found, even to $4^{\mathrm{h}} 30^{\mathrm{m}}$, when the effulgent light below the zigzag lines (in the chart) is very strong, that with the naked eye I could readily make out stars of the 6th magnitude within the effulgent light; also a line of four stars below 19 Libræ, and ranging with β Libræ; the two northernmost of these last are of the 7th magnitude, yet I think the naked eye detected them, even within this effulgent light; but the last are near its upper edge. All this shows the great transparency of the substance giving the Zodiacal Light." ${ }^{2}$
(75) The consideration of these phenomena leads to the conclusion, That this light proceeds from particles which, as respects size, are, at most, all but molecular, and if discrete, and, possibly, "solid," yet excessively small solids. It then must also largely be transmitted light; and so the illuminated material appear brighter in the special direction in which the light is transmitted. Chaplain Jones illustrates this in part, when he says that "it seems to be quite conclusive, on an inspection of these charts, that we never at any one time see the whole actu'l extent of the Zodiacal Light. This subject can, perhaps, be elucidated by noticing a common event-a cloud silvered at one edge by the rays of the declining sun. The sun may be shining on the bordering, quite around that cloud; and, if so_{2} it is sending off from every portion of the border, an equally brilliant silvery light. But our eye is in a position to

[^45]catch this reflection from only one portion of it; and the rest is dull to our vision. If we could with great rapidity change our positions, other portions of the silvered edge would show themselves according to our changes of place. So also, when a rainbow is presented to our eye; the myriads of drops of falling water in the whole rain-shower are sending off from each drop reflections of light in all directions, and the universal atmosphere about us is full of these brilliant variously-colored rays; but only that portion, which, to us, forms the rainbow arch, can reach our eye; and all the rest is lost to our sight."
"So it is also with the Zodiacal Light; and the proof that we never see the whole of its extent at once, is manifest in the following facts:-
"1. When I was in a position north of the ecliptic, the main body of the Zodiacal Light was on the northern side of that line.
"2. When I was south of the ecliptic, the main body of the Zodiacal Light was on its southern side.
" 3. When my position was near or on the ecliptic, this Light was equally divided by the ecliptic, or nearly so.
"4. When, by the earth's rotation on its axis, I was, during the night, carried rapidly to or from the ecliptic, the change of the apex, and of the direction of the boundary lines, was equally great, and corresponded to my change of place.
" 5 . That, as the ecliptic changed its position as respects the horizon, the entire shape of the Zodiacal Light became changed, which would result from new portions of the nebulous matter coming into position for giving us visible reflection; while portions lately visible were no longer giving us such reflection.'"
(76) The phenomena here commented upon all serve to confirm the assertion, (75), that the zodiacal illumination must largely be transmitted light; and so the illuminated material appear brighter in the special direction in which the light is transmitted; as the sun illuminates the partially transparent vapor in our atmosphere through rifts in the clouds, and thus produces the appearance familiarly described as "the sun drawing water." ${ }^{2}$
(77) The light being transmitted, other phenomena would also be in place, among which are absorption-possibly interference-and also fluorescence; new waves being originated in this case, as well as, perhaps, in that of the comets; the spectrum-analysis of whose light seems to show, among other phenomena, characteristics of self-luminous material.
(78) To this it may now be added, that the nebulous ring of Chaplain Jones, may well be regarded as having, indeed, not the lenticular form attributed to the

[^46]material giving the zodiacal light by older hypotheses (which he does not claim); nor yet that of a ring like those of Saturn; nor yet a ring of greater thickness, partially luminous indeed in appearance, as Mr. Jones would have it; but we must have for it the form of what may rather be termed a girdle, of no great. thickness, it may be-it is too translucent for that-but yet of very considerable width, such as will provide for the broad base of the Zodiacal Light, and the extended elliptical spot which exhibits the "gegenschein"" opposite to the sun; and which latter would seem to be almost wholly due to reflection. There may also be some reason to suppose that the curvature of the girdle, on the one side at least (that on which the "gegenschein" appears) is such as would be due to a spheroidal shell such as has been described in Article (37) of this paper. Such a girdle, withal, could not always-perhaps ever-have all its breadth enveloped in the earth's shadow.

How the Girdle is maintained.

(79) The question at once becomes a pertinent one, How can such a girdle escape destruction by the continued perturbation of the moon, acting in close proximity?

The answer to this question may be found, if the girdle be so situated that iTs time of revolution around the earth shall be equal to, and in the same direction with, that of the moon. The conditions requisite to fulfil this will first be considered, and then the phenomena that seem to be accordant with the actual maintenance of such conditions.
(80) If the earth's attraction alone were concerned, the form of the revolving girdle must, it would seem, be that of a spheroidal shell; such as that indicated in (37). The attraction of the moon will distort this, yet so that the shape shall also be consistent with the stringent condition as to the periodic time.

Fig. 13.

${ }^{1}$ Counter-gleam, we might perhaps term it ; though that scarcely scems so apt as the German word for the same thing, here quoted.

The middle line of the girdle will, notwithstanding, form an oval, which, at any time, in its arrangement around the earth, will not anywhere be found at a distance differing much from that of the moon at that time; except in those portions comparatively near to the moon.

That part of the oval nearest the moon may pass between the moon and the earth, as in Fig. 13; or else outside of the moon, as in Fig. 14; in both of which E marks the position of the earth, and M that of the moon.

In the determination of the dimensions in either case, it will be convenient to ascertain the periodic time of a particle, or of an inappreciable mass, revolving around the earth at the mean distance of the moon; which we may obtain by the aid of the following formula, in which (T) will be put for the periodic time; M and m representing the masses in question, and r the radius-vector; and we have

$$
(T)=\frac{2 \pi r^{\frac{3}{3}}}{\sqrt{M+m}} \cdots(1) .^{1}
$$

Then, when m is insensible,

$$
\left(T^{\prime}\right)=\frac{2 \pi r^{\frac{3}{2}}}{\sqrt{ } M} \cdots(2)
$$

and, when r is the same for both, from these we also have,

$$
\begin{aligned}
& \frac{\left(T^{\prime}\right)}{\left(T^{\prime}\right)}=\frac{\sqrt{M+m}}{\sqrt{M}} \cdots(3) ; \text { or } \\
& (T)=\frac{\sqrt{M+m}}{\sqrt{M}}(T) \ldots(4)
\end{aligned}
$$

which, otherwise expressed, is

$$
\left(T^{\prime}\right)=\sqrt{\frac{M+n \varepsilon}{M}} \cdot(T) \ldots(5)
$$

 ple in which M and m, respectively, represent the masses of the earth and the moon, and (T) the moon's periodic time, we shall have the periodic time of a particle, or of an insensible mass, revolving around the earth at the distance of the moon.

2d. Ascertain the periodic time (t) of the same insensible mass, revolving about the earth, at the assumed distance EA, by the application of Kepler's $3 d$ Law.
$3 d$. The attractive forces of the moon and the earth, respectively, acting at A may be separately computed in accordance with the law of gravitation $\left(\frac{M}{d^{2}}\right)$, and then taking the difference of the two forces, when the state of things is that represented in Fig. 13; and expressing this difference in terms of the earth's force F, viz. as $\frac{p}{q} F$; then (with (t), the periodic time around the carth of an insensible mass revolving at distance $E A$, already computed), we shall have
${ }^{1}$ Encyclopædia Metropolitana-Physical Astronomy, Section V.

$$
\begin{gathered}
\frac{\left(t^{\prime}\right)^{2}, \text { for } \frac{p}{q} F}{(t)^{2}, \text { for } F}=\frac{F \text { itself }}{\frac{p}{q} F} ; \text { whence } \\
\left(t^{\prime}\right)^{2}=\frac{F}{p_{F} F} \cdot(t)^{2} ; \text { and } \\
\left(t^{\prime}\right)=\left\{\frac{F}{\frac{p}{q} F} \cdot(t)^{2}\right\}^{\frac{1}{2}}
\end{gathered}
$$

Then if (t^{\prime}), thus computed, be found to be equal to the moon's own periodic time, the point A will have been accurately ascertained; the particle, or the insensible mass (in the line $E M$), completing its revolution at the distance $E A$, in the same time with the actual revolution of the moon around the common centre of gravity of the moon and the earth.

But if (t^{\prime}) differ at all from that, the difference may be exhausted by the continued application of the method of trial and error.

When A is situated beyond the moon (in accordance with the representation in Fig. 14) the sum of the attractive forces of the two bodies must be made to enter into the equation to determine the value of $\left(t^{\prime}\right)$, instead of the difference of those same forces. So also, for the distance from E to B, on the opposite side of the earth.
(81) Now the division or the extension of $E M$ (as the case may bc) so as to give the distance $E A$, this depends upon the forces in question, and, ultimately, on the ratio of the masses, and not upon the absolute length of $E M$. Hence $E A$ and $E B$ will each have a constant ratio to ENF; whether the moon be in apogee, or in perigee, or at the mean or any other distance. The same is true of the distance of the moon from the common centre of gravity of the moon and the earth, i.e. of the radius-vector of the moon's orbit; and for the same reason.

Now,-(a.) Every other of the quantities in question having, after this manner, a constant ratio to $E M$; it will follow that, under all their variations of value, the value of any one of the quantities will preserve a constant ratio to the coexistent value of any other; and therefore, specifically, to the coexistent value of the moon's radius-vector; or the square of the one, a constant ratio to the square of the other.
(b.) Next, as M, E, A, and B, under the conditions in question, are preserved in the same straight line; it follows from the doctrine of parallels, that the angular change of direction of M revolving about the common centre of gravity of M and E, or that of A and B revolving about E, will be the same with reference to any fixed direction in space, such as that of $E M$ (at any instant), or with reference to its parallel; or the same will be true with respect to the first tendency to such change, i.e. its differential.
(c.) Hence also, especially, the angular change of direction which would take place, were such a tendency preserved during the next unit of time, i.e. the co8 January, 1875.
existing angular velocity of M, A, B, (in their revolution of every one of them around its centre of reference) would, in every instance, have the same value.
(d.) But this same angular velocity in the moon's orbit varies inversely as the square of the radius-vector, and the coexisting values of the squares of $E A$ and $E B$, respectively, having (as already shown) constant ratios to that; their ratios may be substituted for the ratios of the respective coexisting values of the squares of the radii-vectores themselves; and the inversion of the one for the inversion of the other.
(e.) By substitution, then, the respective squares of $E A$ and $E B$ are inversely as the coexisting angular velocities in the moon's orbit.
(f.) But the same angular velocity being (as also shown) common to all the three masses in question; every one of those masses will also have its angular velocity inversely as the square of its own radius-vector; and that will imply the principle of the conservation of areas; and thus maintain not only for the moon, but also for the other masses, in the consentaneous revolution of all, a dynamical equitibrium.
(g.) Then withal the constancy of the ratios already specified, will secure, under the coexisting similar change of angle, the same ratios among the radii-vectores of all the three trajectories here in question; and just all that implies that the same polar equation will apply to all the three.
(7.) Hence the trajectories of A and B are both cllipses; as well as (perturbations apart) is the orbit of the moon; even more than this, under those stringent conditions (common to all); viz. the trajectories are all similar ellipses.
(82) The positions of the points A and B, on the supposition that the girdle on the one side, is between the earth and the moon, as in Fig. 13, is exhibited in the following table; the distances represented being in terms of the earth's equatorial radius.

	in perigee.	at mean distance.	ix apogee.
Moon's Distance.	56.964	60.273	$63.583 \frac{1}{2}$
(EA) Internal Distance of Girdle	48.309	51.116	$53.922 \frac{1}{2}$
$(E B)$ External Distance of Girdle.	56.790	60.090	63.389

On the supposition that the girdle encompasses the moon, as in Fig. 14, we have:-

	19 Pertiele.	at mban distance.	in Apogee.
Moon's Distance.	56.964	60.273°	$63.583 \frac{1}{2}$
($E A$) External Distance of Girdle	66.426	70.285	$74.144 \frac{1}{2}$

(83) As A, B, and the moon thus describe similar ellipses with their radiivectores coincident in the same straight line; it is manifest that the portions of the girdle in the immediate neighborhood of A and B will expand (the material
being readily adjustable) as the moon passes from perigec to apogee; and they will contract as the moon passes from apogee to perigee; the cohesive power and the gravitation of outer to inner portions being, in any event, insensible; and so each particle or molecule moving in its independent, or nearly independent, ellipse very much as Sir J. Herschel has intimated that the molecules of comets might move. ${ }^{1}$

Then, too, a permanent tide must influence and control the form of the girdle; this tide (with the arrangement as in Fig. 14) being in some sense supra-lunar, instead of sub-lunar, in the region of the crest of the girdle extending beyond the moon.

By such a tidal action an accumulation of material will be determined toward the two extremities of that axis of the girdle, which at any time passes through the two centres-that of the carth and that of the moon-and which is extended to the girdle on both sides [i.e. toward A and B in either of the cases represented, the one in Fig. 13, and the other in Fig. 14].

And the portions of the adjustable material here specified having themselves been once so adjusted (radii-vectores and all) as to be held, or very nearly held, in a dynamical equilibrium, such as is specified in (81); the compulsory power of the forces acting on such material, under such stringent circumstances, might well be supposed to bring about the form required to secure a dynamical equilibrium of the girdle; though the oscillations, in various directions, antecedent to that, would present a problem of no ordinary difficulty.

However all that may be-the dynamical equilibrium of all parts of the girdle being once established, the state of things afterward would be eminently conservative of the same; such being especially the case with respect to the various actions, which, under other conditions, might be eminently destructive.
(84) If the girdle (as at A in Fig. 13) were between the moon and the earth, its curvature would be diminished in the direction perpendicular to the moon's orbit, by the moon's own action; though the curvature would be increased by the action of the moon, on the opposite side; as was, indeed, intimated, though not at all explained, in (78). But if the girdle (as at A in Fig. 14) were outside of the moon, the curvature (perpendicular to the moon's orbit) would be greater still.
(85) The second thing proposed in this connexion, was to consider the phenomena which seem to be accordant with the state of things thus far represented as being merely supposable. With respect to these phenomena, it may be observed, that the hypothesis of the girdle having the same periodic time with the moon suggested itself as a necessity, to insure the preservation of the girdle itself; and, in the brief interval which has since elapsed, the variations of the Zodiacal Light have, to some extent, been carefully noted, and then referred for explanation to the hypothesis.

And here the phenomena seem to be more consistent with the arrangement of the girdle as represented in Fig. 14; the point A being situated beyond the moon.

[^47]With that in view, the special appearances of the Zodiacal Light may be arranged as follows:-

Case 1st. The Zodiacal Light appears narrow and towering high just about the time of the new moon; as though the sun's light were indeed
 transmitted, at that time, through the least curved, and, probably, somewhat raver sides of the oval-shaped girdle; and that through a great part of the length of the oval. (Fig. 15.)

Case 2d. After the new moon, when the moon is approaching her first quarter; when the moon has set, and the twilight has disappeared, the Zodiacal Light does not extend so high as in the preceding case, and its termination is broader, and not so sharply curved, and the intensity of the light, withal, is not especially conspicuous (as in Fig. 16, for Zodiacal Light of the morning), as though the sun's light indeed. in all its transmission, passed through the rather less dense portion of the girdle;
 and passed out of it in a direction more across the girclle and not so nearly at a tangent to it (in its exit under these circumstances), as in the preceding case.

Case $3 d$. After the full moon, and when the moon is approaching her last quarter; then, before the rising of the moon, and after the end of twilight, a luminous spot of considerable size, and, in appearance, like the brighter portion of an aurora borealis, occupies the place in the Zodiacal Light which is quite accurately opposite to the moon's place; and night after night, as the moon advances, this luminous spot rises among the stars, so as still to keep opposite to the moon; as though the somewhat more dense portion at the further end of the oval (as respects the moon)

Fig. 17.
 were thus more conspicuous than the other portions then in view; and then the upper extremity of the Zodiacal Light is broader and not so sharply pointed as in Case 1st; as though for the reason assigned in Case 2d. (Fig. 17.)

Case 4th. After the last quarter and before the new moon, the Zodiacal Light of the evening is again faint, as it was before the first quarter; as though the illumination were wholly of that part of the girdle beyond the region near the longer axis. (Fig. 18.)
Case 5th. When the moon is nearly in quadrature, it would seem that the Zodiacal Light must appear short and bright, if apparent at all after the twilight of the evening, or before the twilight of the morning. For the sun's light would be transmitted by a short course through the most curved portion, near to one end of the longer axis of the oval. (Fig. 19.)
(86) Increase of brightness might be looked for, with the moon in perigee; and of extent, with the moon in apogee. 'Traces of something like one and the other have been apparent.
(87) After an examination of Chaplain Jones' very numerous charts, a selection was made of those which seemed to exhibit instances in which the light was most

Fig. 18

Fig 19.

extensive, or most conspicuous, and others in which, in one or both respects, the light seemed to be deficient (the character of the light, and not the position of the moon, furnishing the guide in the selection); and then the age of the moon, and her position in her orbit were ascertained, for a comparison of the phenomena with theory.

The following instances were then classified with reference to our hypothesis now under discussion. The Nos. are those of Mr. Jones' charts :-

Examples under Case 1st.

No. 219.-Morning of Sept. 21, 1854; 1 day before new moon.
No. 220.-Evening of Sept. 23, 185t ; 1 day after new moon.
No. 232.-Morning of Oct. 20, 185t; 1 day before new moon.
No. 233.-Morning of Oct. 21, 1854 ; the day of new moon.
No. 243.-Morning of Nov. 21, 1854; 1 day after new moon.
No. 259.-Morning of Dec. 19, 1854; the day of new moon.
(A very marked instance; and not only was the day that of new moon, but the moon was also in perigee.)

Mr. Jones, without any reference to the moon's age, or to her distance from the earth, says of the zodiacal light, "At 2 h . the eastern zodiacal light was bright, at 3 h .30 m . quite so. At 5 h . it was as brilliant as I have ever seen it, and was especially so within the zigzag" (waving lines toward the lower part of the diagram), "where the light had more of a cone shape than I ever saw it have before." . . . Sun rose at 6 h .57 m ."

Approximation to Case 1 st.

No. 49. Morning of Sept. 2d, 1853; 1 day before new moon.

$$
\text { Exumples under Case } 2 d .
$$

No. 31. Evening of July 9th, 1853; 3 days after new moon.
No. 114. Morning of Feb. 1st, 1854; 31 days before first quarter.

[^48]Case 2d, or Case 4 th.
No. 161.-Evening of May 29th, 1854; 3 days after new moon.
No. 237.-Morning of October 30th, 1854; 2 days after first quarter.
Examples under Case 3d.
No. 212.-Evening of Sept. 12th, 1854; 1 $1 \frac{1}{4}$ day before last quarter.
No. 213.-Evening of Sept. 13th, 1854; $\frac{1}{2}$ day before last quarter.
Examples under Case 4th.
No. 18.-Evening of June 29th, 1853 ; $1 \frac{1}{2}$ day after last quarter.
No. 60.-Morning of Sept. 30th, 1853; 21 days before new moon.
No. 215.-Evening of Sept. 16th, 1854 ; 2 days after last quarter.
Examples under Case 5 th.
No. 67.-Morning of Oct. 8th, 1853; 1 day before first, quarter.
No. 214.-Evening of Sept. 14th, 1854 ; day of last quarter.
No. 239.-Evening of Nov. 11th, 1854; 1 day before last quarter.
No. 241.-Evening of Nov. 13th, 1854; 1 day after last quarter. ${ }^{1}$
(88) Mr. Jones also gives examples of "Moon Zodiacal Light."
(89) Baron Humboldt, commenting on Rev. Mr. George Jones's observations, quotes from his own ship-journal on his voyage from Callao to Acapulco, and speaks of the brilliancy of the Zodiacal Light as exceeding anything which he had previously witnessed. The time when this was observed was from the 17 th to the 19th of March, 1803. Indeed the intensity of the light increased for five or six nights after the 14 th. Height $39^{\circ} 5^{\prime} .^{2}$

As the moon was new on the 23d, this bright light must have begun before the last quarter; and will present a probable instance of Case 3d, passing into and beyond Case 5th.

But, strangely enough, Baron Humboldt finds occasion to add: "We did not see the Zodiacal Light the 20th and 21st of March, although the nights were of greatest beauty."

Now something-perhaps not a little-of that may have been due to differences in the state of moisture of the atmosphere, such as those, (72), of which Col. Forshey has informed us. But the time being withal from two to three days before the new moon, the sun's light would, on the hypothesis here in question, be transmitted through the curved portion of the girdle a little in advance of the longer axis.

The length of the transmitted portion would not be great, and the upper end would set almost as soon as the twilight ended.
(90) In the account of Prof. C. Piazzi Smyth, Astronomer Royal at Edinburgh, of his expedition to Teneriffe, under date of Aug. 19th, 1856, speaking of the Zodi-

[^49]acal Light, he says: "So bright was it toward the base that it produced a weak reflected glow to the west, and we could occasionally fancy a tail of the faintest conceivable light extending nearly to the zenith." (Length of the bright light was 63°.) "Nevertheless there was no doubt of the lenticular form of the chief mass of light, and the place of its apex as measured, was always consistent enough." ${ }^{1}$

This was almost three days after the full moon, and seems to present an example of Case 3d. Under the date of Sept. 8th, Prof. Smyth says of the Zodiacal Light-" bright at base, glowing toward the lower part of the axis." ${ }^{2}$

This was one day after the first quarter of the moon; and we here would seem to have an example of Case 5th.
(90 bis) The observations of Col. Charles G. Forshey, already alluded to in (72), were made while Col. Forshey was superintendent of the I'exas Military Institute (Lat. 30° N., Long. $96^{\circ} 25^{\prime} \mathrm{W}$. of Greenwich), in 1858,1859 , and 1860.

Among these observations we find the following, which seem to furnish consistent examples under the Cases described in (85); and the list might readily be extended.

Case 1st.

Evening of Oct. 5, 1858; 1 day before new moon.
Evening of Nov. 6, 1858; 1 day after new moon.
Evening of Nov. 7, 1858; 2 days after new moon.
Erening of March 3, 1859; $\frac{1}{2}$ day before new moon:-
Light narrow, except near the horizon, and towering high.

Case $2 d$.

Evening of Oct. 12, and morning of 13, 1858; between new moon and the first quarter. A midnight band of light seems to be delineated; such as will also be. noted among the observations under Case 5th.

Approaching to the conditions of Case 2d:-
Evening of March 31, 1858; 2 $2 \frac{1}{2}$ days after full moon.
Evening of Nov. 10, 1858; 3 days before the first quarter of the moon.
Evening of Nov. 13, 1859 ; 3 $\frac{1}{2}$ days after full moon.
[The three last-mentioned instances are specially described in Note 3 to (72).]
Evening of Nov. 11, 1858 :-
This observation may be specially classified with the preceding three. It was made three days before the first quarter of the moon. The position, therefore, is nearly that of Case 5th.

Case 3d.

Evening of April 22, 1859, 2 days before the last quarter of the moon.
Figure seems to show the peculiar bright spot indicated in the description of our Case 3d, of this Article.

Case 4th.
Evening of Oct. 29, 185г8; day of last quarter of the moon.
Time 11h. to 12h. P. M.

A midnight band with parallel edges. The figure seems to indicate that the band was about 7° or 8° wide. The appearance is such as it might be if the light were reflected at all but right angles to the girdle.

Evening of April 4, and also that of April 5, 1858; two and one days, respectively, before the last quarter of the moon.

In the evening of April 5, the light is expressly noted as being visible "entirely across the heavens, from Aries at least to Libra."

Evening of Oct. 27, 1858; nearly one day before the last quarter of the moon.
The light seems to have, consistently, been short but considerably bright.
Both characteristics are more distinctly manifest, in the evening of Oct. 28, 1858; day of the last quarter of the moon.

Evening of Dec. 28, 1858 ; about 2 days after the last quarter of the moon.
Light short and rounded at the top, and the base very broad.
Evening of Jan. 15, 1860; 1 day after the last quarter of the moon.
Light described as having been "intensely bright;" and, in the drawing, it tapers rapidly.
(91) Among the Notes on the Zodiacal Light, by Rev. Samuel J. Johnson (Proceedings of Royal Ast. Society for March, 1874), we find-"What Humboldt speaks of as the 'mild pyramidally-shaped zodiacal light, very visible to the unassisted eye' has been displayed here" (at Upton Helions Rectory, Crediton) " this winter with far more distinctness than I have noticed since Feb. 21, 1870, when I witnessed a vivid appearance of the phenomenon from Lytham, on the Lancashire coast. It was conspicuous, amongst other nights, on February 8, when the impression that Tycho mistook the light for the 'abnormal vernal evening twilight,' appeared at first sight almost pardonable."

This seems again to present an example of our Case $5 t h$.
"Feb. 16. Sky clear for a brief interval about 8 P. M. The conical figure very fairly defined, except at the apex, where the curvature was somewhat difficult to make out. Mars, situated nearly on the axis; about which point the light seemed equal in brightness to that portion of the Mitky Way that passes through Cassiopeia. Near the horizon the intensity was decidedly greater, v Ceti appeared just outside the cone of light; the head of Avies faintly involved in it; it could be traced, though with difficulty, 3° or 4° above the Pleiartes."

Again, a remarkable example of our Case 1 st. For this was the clay of the New Moon, and the moon was $1 \frac{1}{4}$ day from the Perigee. Confirmed this is withal by the next observation.
"Feb. 18. Could be readily followed before the moon set. Clear extent at the base 30° to 35°. Not quite so brilliant as on the 16 th ; I fancied a slight reddish tinge in the brighter portions."

Appropriately descriptive of our Case $2 d$.
"March 6. The Zodiacal Light again conspicuous. In extent and general features unaltered; in intensity scarcely so great. The clearest defined portion lay between v Ceti and γ Arietis; at lower altitudes the light, although brighter, appeared very much diffused. Mars about 5° left of the axis."

An example of our Case $3 d$. "The clearest defincd portion" was nearly opposite to the moon, then $3 \frac{1}{2}$ days past the full, and $1 \frac{1}{3}$ day beyond the apogee.
"March 7. With regard to the earliest visibility of the light, it was not noticeable till 15 m . after stars of the brightness of γ Arietis had shone out, and not quite so soon as the Milky Way at equal altitudes. Its whiteness more dusky than the latter. At an altitude of about $20^{\circ}, n$ and α Piscirm (the latter just within the boundary) were somewhat dimmed by its intensity."

This is followed by another Note on the Zodiacal Light, by E. B. Knobel, Esq., who writes from Stapenhill Burton on Trent, and says: "I would beg to direct attention to the unusual brilliancy of the Zodiacal Light this winter. . . ." On two clear evenings in the first week in January, on January 17, at 6.45 P. M., and, lastly, on Feb. 8, at 7 P. M., it appeared as an elongated luminous cone, the apex of which, on January 17, extended nearly to the star γ Arietis, and on Feb. 8, the apex just enclosed n Piscium.
"It appeared nearly as bright as the Milky Way, and sufficiently bright to attract the attention of a casual observer.
"I should mention that my situation is quite away from the town, and sufficiently high to be above the mists of the valley."

The observation of Jan. 17 affords another good example of our Case 1st ; the date being a little more than $\frac{1}{2}$ a day before New Moon, and about 3 days before the moon arrived at the Perigee.

The observation of Feb. 8 confirms that of Rev. Samuel J. Johnson of the same date, previously quoted.

These observations are, moreover, all confirmatory of those made about the same time, as well as at other dates, at the College of New Jersey, by the author of this paper; and which, indeed, furnished the data for the distinction of the various Cases.
[A very little observation will suffice to make it very evident, that under circumstances in other respects entirely similar, the fact of the atmosphere being $d r y$ will notably affect the apparent extent as well as brightness of the Zodiacal Light; in accordance with the special, and even uniform, experience of Col. Forshey, already referred to in (72) and Note.]
(92) Chaplain Jones also speaks of pulsations in the Zodiacal Light; as having been observed by himself and others. His synopsis of these observations at p. xili of his Introduction is: "Some time early in 1854 I saw in a newspaper a brief notice of the pulsations of the Zodiacal Light seen at Kew Observatory; but as the newspaper did not state where they were observed, or the authority, and as I had now been observing for a year without having noticed anything of the kind, I set it down as an ocular deception, and the thing passed entirely from my mind. But in March of this year (see No. 111), I was surprised, one evening, at seeing the Zodiacal Light fade sensibly away, dimmed to almost nothing, and then gradually brighten again. This was repeated several times; but the effect, after all, was to leave me only in amazement and doubt; subsequent nights, however, gave abundant exhibitions of this kind, of which, with the times and changes, I have
made ample records with the particularity which the case required. It was a great satisfaction, after my return home, to find that Baron Humboldt had observed the same thing while in southern latitudes, though he thought it more probable that it was owing to 'processes of condensation going on in the uppermost strata of air, by which the transparency, or rather the reflection of light, may be modified in some peculiar and unknown manner.' My records, however, will show that there is a regularity of appearance at the closing off of these pulsations, which proves that they do not belong to so uncertain a cause as atmospheric changes, but to the nebulous substance itself. They seem to intimate a great internal commotion in the nebulous matter, for they were too rapid to be occasioned by irregularities in its exterior surface.
"I noticed them again the following year, but must refer the reader to my records and charts. The changes were a swelling out, laterally and upwards, of the Zodiacal Light, with an increase of brightness in the light itself; then, in a few minutes, the shrinking back of the boundaries, and a dimming of the light; the latter to such a degree as to appear, at times, as if it was quite dying away; and so back and forth for about three-quarters of an hour; and then a change still higher upward toward permanent bounds."
(93) That these pulsations should be real seems not incredible in the instance of a substance having, as it would seem, a density even less than that of the material which exhibits the rapid changes of intensity, etc., of the aurora borealis. The girdle, moreover, would have a very nearly constant position with respect to the earth and the moon-both magnetic ; and the earth in a relatively rapid rotation. ${ }^{1}$
(94) It would seem most probable that the middle plane or equator of the girdle should nearly coincide with the plane of the moon's orbit; but even in that case, the more intense illumination by transmitted light would be in directions nearly parallel to the plane of the ecliptic. That, and the local illumination, (\%5), ascertained and described by Mr. Jones, would together make it difficult to determine where the middle plane may be situated; though some observations of the "gegenschein" might seem to make it the same with the plane of the moon's orbit.

The position of the vertex of the Zodiacal Light would need to be more carefully scrutinized, and compared with that condition.

Such being the state of things, observations for parallax must, withal, most probably continue to be unsuccessful.
(95) As a summation of the consistencies of the hypothesis of a nebulous girdle revolving around the earth in the same time and gencral direction with the moon, and exhibiting the phenomena of the Zodiacal Light, we have:-

1. That it provides a conservative force for the maintenance of such an appendage.

[^50]2. It will account for the phenomena common to all appearances of the zodiacal light, broad base and all.
3. It accounts for certain periodical changes in form and intensity, etc., of the same, which seem to be completed in a synodical revolution of the moon.
4. It provides for the gegenschein in form and position; and possibly also for "a lunar zodiacal light."
5. It renders a plausible account of the fading, at times, and total disappearance of the Zodiacal Light.
6. It accounts for the absence of a determinate parallax of the girdle.
7. It shows why, when east and west zodiacal lights are visible at the same time, the middle, even, of the zodiacal arch need not be wholly obscured by the earth's shadow.
8. It provides for the "pulsations."

Origin of the Girdle.

(96) It remains to consider how far the origin of the girdle may be accounted for by the modified nebular hypothesis, already so frequently applied.

If the moon herself were formed of a spheroidal shell [such as those described in (37)], while the form of the earth with its expanded atmosphere was yet very oblate; the equatorial diameter extending beyond the present distance of the moon-i.e. more than 60 times the radius of the earth's equator-the moon, derived from the atmosphere of this spheroid, might, at first, indeed have had the form of a spheroidal shell, with its equatorial circle nearly in the plane of the ecliptic, as the orbit of the moon now is, instead of the plane of the earth's equator, since determined.

This whole collection of material having, by processes heretofore described, (26), been brought to revolve together, the outer portions having thereafter failed to be collected with those that went to form the moon herself, these same outer portions would still continue to revolve and complete the same periodic time.

The part between the moon and the earth would nearly all be compelled to fall toward the earth in obedience to her superior attraction; except, possibly, some small remnant still forming an extra-mundane nebulosity (the middle of it at the position A in Fig. 13); the existence of which might help to account for some of the phenomena of solar eclipses, if not also of those of transits of the inferior planets; which it would be out of place to enlarge upon in this connexion. ${ }^{1}$
(97) Whether the material which exhibits the Aurora Borealis, or rather Aurora Polaris, can have had a similar origin, near to the pole of the oblate expanded atmosphere, and so, also, near to the pole of the Ecliptic in direction, as well as actually near to the earth, can be little better than matter of conjecture. The results, of the spectrum-analysis [(74) and Note] do not yet establish a composition

[^51]of this material similar to that of the Zodiacal Light. It may, however, be asserted that auroral phenomena are most intense in latitude about that of the arctic circle; in which region, it must also be remembered, we have the magnetic poles. It is withal true, that the Zodiacal light seems sometimes to have exhibited (like the Aurora) a ruddy tint. An instance is mentioned in (91).

Saturn's Duskiy Ring.

(98) The situation of the dusky ring of Saturn somewhat resembles that of the zodiacal girdle (if supposed to be a terrestrial appendage). But the shape of the dusky ring is different from that of the girdle; and its position, concentric with that of Saturn [7 of (43) and Note], is maintained by the action of many satellites instead of one; the total action of the several bright rings on particles within being in every case zero. But the dusky ring besides is, as it were, walled in by the bright rings, which themselves are kept concentric with both the planet and the dusky ring.

Of the Inclination of the Planes of the Orbits of the Planets and Satellites to the Equators of their respective Primaries; and the relative positions of their Perihelia and Nodes.
(99) In a Memoir on the Secular Variations of the Elements of the Orbits of Eight Principal Planets, its author, Mr. John N. Stockwell, M.A., has given us the maximum and minimum inclinations of the planes of those orbits to the invariable plane of the solar system. ${ }^{1}$

From these and the inclination, $7^{\circ} 15^{\prime}$, of the plane of the solar equator to the plane of the ecliptic of 1850 , as ascertained by Mr. Carrington, ${ }^{2}$ we obtain the following approximate inclinations of the planes of the orbits to the plane of the sun's equator; carrying the reference back to that ancient state of things in which the nodes (of the same name), of the sun's equator and those of the planets' orbits in the invariable plane, respectively coincided.

Incuination of Orbit to Sun's Equator.			
Wit	Minimum Inclination to Inv. Plane.	Mean Inclination to Inv. Plane.	Maximum Inclination to Inv. Plane.
Mercury	$0^{\circ} 56^{\prime}$	$1^{\circ} 18^{\prime}$	$3^{\circ} 31^{\prime}$
Venus	540	458	2.4
Eartie	540	437	234
Mars	540	242	016
Jupiter	536	528	511
Saturn	453	446	439
Uranus	445	59	433
Neptune	56	459	453

[^52]It will be observed that when the planes of the orbits most nearly coincide with the invariable plane, they yet make an angle of nearly 5° with the plane of the sun's equator, except in the instance of Mercury, in which the inclination is scarcely 1°; while the Earth and Venus, under the variety of circumstances here indicated, still, as it were, assert their character as half-planets, by preserving among themselves always nearly the same inclination. ${ }^{1}$

In view of our hypothesis all along kept in view, the question would here seem to be a pertinent one-Why so great an average deviation in the planes of the planetary orbits from the plane of the sun's equator?

The answer to this may, perhaps, be found in what has heretofore been insisted on; viz. the acquisition of material in the nebulous state from extra-equatorial portions of the sun's atmosphere; it being added withal that such an acquisition would not take place from both the northern and southern half-spheroids at the same time. ${ }^{2}$

The extra-equatorial acquisition, (37), of more dense material being thus mainly from one side, that has, it would seem, tended to produce an average deviation in the plane of the resulting orbit. ${ }^{3}$ In that aspect of the matter, and, in view also of the Ancient State contemplated in (44) and in Table (F), it may not be entirely without significance that the color of Neptune is a pure white, while that of Uranus is inclined to yellow, and that of Saturn, the other component [as in Table (F)] is decidedly so. But Jupiter is, again, white, while Mars is ruddy, and the Asteroids are-Juno of a pale yellow color, and the others reddish. ${ }^{*}$

Then, again alternately, the half-planet Venus, and also our satellite are both white; while Mercury is nearly of a rose color. ${ }^{5}$ In the case here supposed, it is

[^53]besides manifest that what would be the ascending node of the planetary orbit when, in such a case, the acquisition was from the one half-spheroid, would be the descending node in the instance of the other.

And with respect to the matter here brought into question, as well as in other aspects, though without deciding that they have any significant connexion; we may consider some of the relations developed by Mr. Stockwell, and exhibited in his Memoir ; such as-
"The mean motion of Jupiter's node on the invariable plane is exactly equal to that of Saturn, and the mean longitudes of those nodes differ by exuctly 180°."

The latter portion of that description may have some interest in this connexion.
Mr. Stockwell states, withal, that " The mean angular distance between the perihelia of Jupiter and Uranus is exactly 180°."

These and other relations connected with them, are shown by Mr. Stockwell to be eminently harmonious and conservative; and then, after stating that he had prepared separate solutions corresponding to several increments of the Earth's assumed mass; and that a comparison of the values which the different solutions give for the superior eccentricity of the Earth's orbit "has suggested the inquiry whether there may not be some unknown physical relation between the masses and mean distances of the different planets." ${ }^{1}$

After having withal arrived at the conclusion that " a system of bodics moving in very eccentric orbits is". . . . "one of manifest instability;" he says, "and if it can also be shown that a system of bodies moving in circular orbits is one of unstable equilibrium, it would seem that between the two supposed conditions, a system might exist which should possess a greater degree of stability than either," and then indicates a superlatively grand problem, viz., that "The idea is thus suggested of the existence of a system of bodies in which the masses of the different bodies are so adjusted to their mean distances as to insure to the system a greater degree of permanence than would be possible by any other distribution of masses." He adds: "The mathematical expression of a criterion for such distribution of masses has not yet been fully developed; and the preceding illustrations have been introduced here, more for the purpose of calling the attention of mathematicians and astronomers to this interesting problem than for any certain light we have yet been able to obtain in regard to the solution." ${ }^{2}$

[^54](100) In the satellite systems we find the orbit of the outermost satellite of Saturn making an angle of about 14° with the plane of his equator and that of the rings, this angle being about onc-half of that which the latter makes with Saturn's orbit, while the orbits of the other satellites are nearly in the plane of rings and the equator.

Then the orbit of our own moon has a mean inclination of something less than $5^{\circ} 9^{\prime}$ to the orbit of the Earth; while the variable inclination to the Earth's equator is more than four times as great; as though the moon in the nebulous state had been "abandoned" in the form of a spheroidal shell before the axis of the earth, (68), was established ; and so with Saturn's outer satellite, under it may be even more disturbing circumstances, (43); while the orbits of the inner satellites and the rings of Saturn, having a later history, nearly coincide with the plane of his equator, the same being very nearly the case with the satellites of Jupiter; the outer one, notwithstanding, justifying its character as shown in Table (D) in (20), by exhibiting an inclination greater than that of either of the other three.

The orbits of the satellites of Uranus are nearly perpendicular to the plane of his orbit; and so that their motions are even retrograde; while the equator of the planet [3 of (43)], inclined at an angle of about $79 \frac{1^{\circ}}{3}$, has its rotation direct; all exhibiting, as it would seem, the effect of the great transference of material to Saturn, described in (43).

And although, at present [see 3 of (43)], the equator is inclined to the orbits of the satellites at an angle of about 60°; yet, if it be indeed allowable to refer the situation of all these to that very ancient time when the ascending node of the equator on the planet's orbit nearly coincided with the descending nodes of the orbits of the satellites, then all would be found approximating to a coincidence in the same plane, the several inclinations of all of them to the plane of the planet's orbit being now near to 79°; but the direction of rotation of the planet the reverse of that of the revolutions of the satellites.

It might almost seem then, as if, in the great transference of material to the ancient Saturn here again spoken of, the rotation of the outer, and mostly rarer, portions of the mass had been most affected; so that, in the satellite-formation, the resultant rotation became even retrograde, while the condensing planet conformed to the usual result of a direct rotation; though (in what was apologetically characterized as the tilting up of this whole system) all were constrained to revolve in planes nearly at right angles to the planet's orbit, and all nearly in the same plane.

The satellite of Neptune revolves in an orbit having a large inclination to the plane of the planet's orbit, and the motion is retrograde; but whether that also marks the direction of the rotation of the planet's equator, does not yet appear; nor which direction, therefore (that of revolution, or that of rotation), might be regarded as having been established before the other.

The Minor System.

(101) After the separation of the great mass of Jupiter, the "abandonment of the solar atmosphere would seem to have again occurred more exclusively in the region of the solar equator; and thus the Asteroid-mass and Mars appear to have been separated; to be succeeded. in order, and with variety of constitution, by the Earth, Venus, and Mercury.

And so it would appear, on a smaller scale (within mone restricted limits for the balancing of the centripetal and centrifugal forces), was constituted that minor system, which, in fact, resembles the whole great solar system, in the features and mode of constitution already traced in changes on the larger scale. A system, viz., in which the Asteroids and Mars, as far as may be, have the places respectively of Neptune and Uranus on the greater scale, and the Earth and Venus those of Saturn and Jupiter [the Earth, (39), greater than Venus, from the accession, from regions of the sun's atmosphere other than equatorial]. After these Mercury [and possibly an interior planet], to have the place analogous to that of all the small planets (not Asteroids) in the great solar system.

Resemblances and Differences between Saturn and the Earth.

(102) It may not be without some interest to exhibit in connexion the resemblances and differences between Saturn and the Earth—the Saturn of this Minor System. These are:-

1st. In ancient times, an unusual oblateness of form, evinced [(43) and (96)] in the case of both planets by the great distances of their satellites; the outer satellite of Saturn, and also our own moon, being each at the distance of more than 60 radii of its own primary.

2d. Saturn and the Earth have each an abnormal density; that of Saturn being too low, it would seem, because of the absorption, (43), of the rare material, which would otherwise have constituted the half-planet interior to Uranus; but the Earth's density, (39), being made abnormally great by the absorption of an extraequatorial portion of the sun's nebulous atmosphere.
$3 d$. Each of these planets exceeds the other planets in the same region of the solar system with itself, in number of satellites. This is true, though the Earth has but one; but that is the only one in the Minor System.

4th. Saturn is surrounded by two systems of bright rings and a dusky ring; and the Earth [if we admit the existence of the Zodiacal Girdle, (78)] is surrounded by something analogous to the dusky ring of the other planet; though they differ from one another to some extent, both in form and position; and the one is preserved because the planet has many satellites, the other because its planet has but one such accompaniment. [See, again, 7 of (43), and (79) to (83) inclusive.]
$5 t h$. The Earth [2 of (39)] seems to have been instrumental in producing the great inclination of the equator of its interior half-planet Venus, and Saturn [3 of (43)] as efficient in producing a similar effect upon the half-planet exterior to itself, viz., Uranus.
(103) The analogies to the great planetary system, presented by the satellite systems, have been discussed, in another connexion and aspect, in (58) and (59).

Possible Succession of Changes, in the Progress of the Division, Recombination, and Final Separation of the Great Masses of the Solar System.

(104) In the Ancient State contemplated in (44) and in Table (F) in (45), the relation of masses and distances was, it would seem, very nearly the same with that of the existing masses and distances of Jupiter and of Saturn as exhibited in (53); viz., that in which $m(r)^{2}$ of the one $=m^{\prime}\left(r^{\prime}\right)^{2}$ of the other.

For-retaining the symbols in (44)-[the second mass in order in Table (F) in (45), including in itself the masses of Uranus and Saturn, while the first mass is that of Neptune]; we have in the instance of the second mass

$$
m^{\prime}\left(r^{\prime}\right)^{2} \text { of }[(\mathrm{U}) \hat{h}]=0.05090861
$$

and for the first,

$$
m r^{\circ} \Psi=0.0458582
$$

the ratio of the two being

$$
\frac{m^{\prime}\left(r^{\prime}\right)^{2} \text { of }[(\mathrm{U}) \hat{h}]}{m r^{2} \Psi}=1.1101 ;
$$

which, since $m r^{2}$, thus, nearly $=m^{\prime}\left(r^{\prime}\right)^{2}$, gives

$$
\frac{m}{m^{\prime}}=\frac{\left(r^{\prime}\right)^{2}}{r^{2}}
$$

or the masses nearly in the inverse ratio of the squares of the distances.
Next, comparing the mass and distance of Neptune-also those of the wholeplanet (U), made up of Uranus and its (now) missing interior half-planet $\begin{gathered}\text { it-and }\end{gathered}$ then, the mass and distance of \hat{h}, that is of Saturn in its ancient state before, (43), $\widehat{\diamond} i$ was absorbed [the mass of $\widehat{\phi} i$ being deduced as in (41)]; we shall obtain for the several ratios of the distances and the inverse ratio of the $\frac{3}{4}$ powers of the masses, respectively :

$$
\begin{array}{ll}
\frac{\text { dist. of } \Psi}{\text { dist. of }(\mathrm{U})}=1.7770 ; & \frac{\left(m^{\prime}\right)^{\frac{3}{3}} \text { of }(\mathrm{U})}{m^{\frac{3}{4}} \text { of } \Psi}=1.768 \% . \\
\frac{\text { dist. of }(\mathrm{U})}{\text { dist. of } \hat{h}}=1.7908 ; & \frac{\left(\mathrm{m}^{\prime \prime}\right)^{\frac{3}{3}} \text { of } \hat{h}}{\left(\mathrm{~m}^{3}\right)^{\frac{1}{2}} \text { of }(\mathrm{U})}=1.7125 .{ }^{1}
\end{array}
$$

And then, with respect to the existing Saturn and Jupiter, we have, as in (53),

$$
\left.\begin{array}{l}
m^{\prime \prime \prime}\left(r^{\prime \prime \prime}\right)^{2} \text { of } h_{2}=0.025985 \\
m^{i \mathrm{I}(}\left(r^{\mathrm{iv}}\right)^{2} \text { of } 4=0.025832
\end{array}\right\}
$$

a coincidence more perfect than that found in the instance of the two outer great masses, in which the data to be used are less accurately ascertained. Then here,

[^55]of course, again, the masses are very nearly in the inverse ratio of the squares of the distances. ${ }^{1}$

The history of the changes would then seem to be:-

1. That the division of the great masses, Neptune and that composed of Uranus and Saturn, first occurred; in accordance with a proportion of masses and powers of distances, such as Jupiter and Saturn now present.
2. That afterward occurred the division of the compound Uranus-Saturn mass into the masses of the whole-planet (U) and the ancient Saturn $\hat{\mathrm{h}}$.
3. That subsequently to that, the material of the whole-planet (U) was rent [the outer half-planet Uranus possibly falling inward somewhat, to justify the new equilibrium of forces $] ;{ }^{2}$ and, (43), the material of the inner half-planet $\begin{gathered} \\ i\end{gathered}$ passing over and combining with the ancient Saturn \hat{r}, to form the mass in part of the existing Saturnh.
4. That, before the planetary character of Saturn was complete, the mass [derived in great part, it may be, from the atmosphere of the other half-spheroid of the sun], ${ }^{3}$ which was to form Jupiter, became temporarily blended with the Saturnmass; to be in the end separated in accordance with the same law of arrangement of masses and distances which, at first, was prevalent in the instance of the great masses, Neptune and the combination of Saturn-Uranus. ${ }^{4}$.
(105) It will be observed, that the preservation of the continued equality of ratios here in question, depends upon the introduction, in one connexion, of the ancient Saturn, that is Saturn deprived of the very mass acquired by the process which brought about the disappearance of the mass of the interior half-planet $\sqrt{ } i$, as the same is described in (43) and (44), and the proof of which is manifold; while the preservation of an cquality of ratios in another connexion is as truly dependent on the introduction of the whole mass of the existing Saturn.

Such are the facts; and no explanation appears, except that of the process which bore away the mass of the interior half-planet, the reality of which seems thus, again, to be confirmed ; to which, possibly, may be added the mode of subsequent combination and separation suggested in (104).

Then we have the negative evidence, that the supposititious separation of the great masses in question in any other way, is not found to yield at all similar proportions.

Kirkwood's Analogy.

(106) This Prof. Daniel Kirkwood communicated to the American Association for the Advancement of Science in 1849. ${ }^{5}$

He first speaks of what, (39), we have described as the neutral point.
Thus, as Prof. Kirkwood states it (and the same is applied to the Earth in our

[^56]figure): "Let P be the point of equal attraction between any planet and the next interior, the two being in conjunction; P^{\prime} that between the same and the one next exterior.
"Let also $D=$ the sum of the distances of the points $P P^{\prime}$ from the orbit of the planet" (the whole $P P^{\prime}$ in the figure); "which I shall call the diameter of the sphere of the planet's attraction.
" $D^{\prime}=$ the diameter of any other planet's sphere of
 attraction found in like manner.
" $n=$ the number of sidereal rotations performed by the former during one sidereal revolution round the sun.
" n ', the number performed by the latter; then it will be found that
$$
n^{2}: n^{\prime 2}:: D^{3}: D^{\prime 3} ; \text { or } n=n^{\prime}\left(\frac{D}{D^{\prime}}\right)^{\frac{3}{2} "}
$$

From this we shall have, alternately,

$$
\begin{aligned}
& n^{2}: D^{3}:: n^{\prime 2}: D^{33} ; \text { i.e. } \\
& n^{2} \\
& D^{3}=\frac{n^{\prime 3}}{D^{3}}=\text { a constant. }
\end{aligned}
$$

The coincidence with fact is very close in the several instances of Venus, the Earth, and Saturn.

The proportion thus exhibited is analogous to Kepler's 3d Law; that the squares of the periodic-times of the planets are as the cubes of their mean distances from the sun; and it is hence called Kirkwood's Analogy.

An "Examination" of this by the late Sears C. Walker is also given in the Proceedings of the American Association for 1849 (pp. 213 to 219 inclusive), and its consistency with Laplace's Nebular Hypothesis made the subject of comment.

Failure of the Analogy in the Case of Uranus.

(107) Conceding that the time of rotation of Uranus [3 of (43)], as found by W. Buffam, Esq., viz. 12 hours \pm, is a first approximation to the truth; Kirkwood's Analogy will be found to fail in the case of Uranus.

For if we apply Mr. Walker's formula, in which θ represents the time of rotation (a mean solar day of the Earth being $=1$); a, a planet's mean distance from the sun; and D, the diameter of the (Kirkwood) sphere of the planet's attraction; then,

$$
\theta=\left(\frac{\alpha}{2 D}\right)^{\frac{3}{2}} ;
$$

and we shall find, with the values of masses and distances as given in our 'Table (A), in (3), that, in the instance of Uranus,

$$
\theta=1^{d} .30380+=31.291 \text { hours. }
$$

instead of nearly 12 hours; the result of the observation already quoted.

But even this negative result seems almost like a shadowing forth of the catastrophe, which happened when the material of the half-planet interior to Uranus [(43) etc.] passed over to Saturn; which has so often asserted itself in our preceding investigations.

With the half-planet restored to its place [its distance as in Table (B), in (14), and its mass, as in (41)], we shall have, by a comparison of Uranus, with that and with Neptune, and the application of the formula,

$$
\theta=31.883 \text { hours ; }
$$

agreeing nearly with the former result. ${ }^{1}$
But if we combine Uranus and the restored interior half-planet, in a wholeplanet arrangement at the whole-planet limit (U) in Table (B), in (14); we shall have (by a comparison with Neptune and the ancient Saturn \hat{h}, and the application of the formula) for the time of rotation of whole-planet (U),

$$
\theta=16.451 \text { hours. }
$$

Was there, then, in the collection of material adapted to form a whole-planet at limit (U), the origination of a moment of rotation of the remaining half-planet Uranus, which was not all destroyed when the intcrior half-planet mass passed over to Saturn? ?

All this is not for a moment to be insisted upon; but there seems to be a possibility that the failure of the Analogy in question, may, in this case, be due to these special conditions here also appearing as if in question; as they have been heretofore.

Approximate Result in the Case of Mars.

(108) In the application to the case of Mars, we may make use of the relative asteroid-mass as made out in (46); viz., 0.58929 of the mass of Mars.

Then, as in (60) the indications were in favor of a half-planet arrangement of the asteroid-mass, we have-distributing the mass [Note to (51)] in accordance with that-the interior half-asteroid mass $=0.33745$ of the mass of Mars; and the distances withal [in accordance with the Laws found in (10)] being derived from those in the region in question (viz., Saturn to Mars inclusive), as exhibited in (12).

From these and the masses, on the one side, and the mass and distance of the Earth on the other, we may then obtain D, the diameter of Mars's sphere of attraction; and then, Mr. Walker's formula,

$$
\theta=\left(\frac{a}{2 \nu}\right)^{\frac{3}{2}},
$$

will give for Mars's time of rotation 27h. 34 m. $8 .{ }^{2}$ Observation gives $24 h .3 \% \mathrm{~m} .4$. The coincidence is as close as could be expected; the masses being more or less uncertain, and the formula confessedly "approximate."

[^57][With a whole-planet arrangement of the asteroid-mass, the resulting time of rotation of Mars would be 197.968 ; the half-planet arrangement of (60), thus appearing again as preferable.]

So that, in the case of the asteroids, although the component material has been dispersed; yet, as a half-planet portion has not passed over and been absorbed by an interior planet, the determining conditions of the next interior planet's rotation have, it would seem, not been entirely disturbed.

Of "Bode's Law," and the reasons for its success in the approximate determination of the respective distances of Uranus and several other planets, and also for its failure to determine the distance either of Saturn or that of Neptune.
(109) The most simple statement of the (so-called) Law of Bode (or of Titius) is that of Sir J. Herschel; viz.:"The interval between the orbits of the Earth and Mercury is nearly twice that between those of Venus and Mercury; that between the orbits of Mars and Mercury nearly twice that between the Earth and Mercury; and so on." ${ }^{1}$

Now, (13), the mean value of our whole-planet ratio is (stated here approximately) 1.8. But, if we subtract Mercury's distance from each of two successive terms in the whole-planet series, to obtain the intervals between orbits here in question, the ratio of the remaining intervals will exceed the ratio r of $1.8+$, since the smaller of the two distances compared will be more than proportionally diminished by such a subtraction; and the value of greater divided by the less (i.e. here of the ratio) will be increased. Thus:-

$$
\frac{\text { Asteroid } \operatorname{limit}(\mathbf{A})}{\text { Mars' } \frac{\text { distance }}{}}=1.8+
$$

But

$$
\frac{\text { (A)-Mercury's distance }}{\text { Mars'-Mercury's distance }}=\mathbf{2}+\text {; }
$$

the ratio being a very little greater than that which "Bode's Law" requires.
The same ratio is, even, very well justified in the instance of the Earth compared with Venus, and Mars with the Earth; though [as exhibited in Table (B) in (14)], while the ratio of the distance of Venus to that of Mercury is (incidentally) the whole-planet ratio r, that of the Earth's distance to that of Venus is only $r^{\frac{1}{2}}$, and even the ratio of Mars' distance to that of the Earth is only $r{ }^{3}$. But the increase of the measuring unit in the comparison, as we proceed, and the subtraction of Mercury's distance in every instance (one being more effective in the one case, and the other, in the other) together make the one interval near to the double of the other.

The ratio, as has been already stated, nearly accurate for the Asteroid-interval in the middle of the whole-planet series. But, when we pass beyond that to the Jupiter and Saturn terms, successively, the subtraction of only Mercury's distance, though just about sufficient for the justification of the Jupiter interval, gives a result too small in the instance of that of Saturn.

[^58]Thus-making use of the veritable distances as stated in Table (B), cxpressed approximately, we shall find:-

But

$$
\begin{aligned}
& \frac{\text { Jupiter's distance }- \text { Mercury's distance }}{\text { Asteroid distance }- \text { Mercury's distance }}=\frac{4.81}{2.43}=\begin{array}{c}
1.98 \\
1
\end{array} \\
& \frac{\text { Saturn's distance }- \text { Mercury's distance }}{\text { Jupiter's distance }- \text { Mercury's distance }}=\frac{9.15}{4.81}=\frac{1.00}{1} 1
\end{aligned}
$$

The same process would fail notoriously in the case of the next whole-planet (U), were that yet to be found. But Uranus being an exterior half-planet, the ratio of its distance to that of Saturn is $r^{\frac{5}{5}}$ instead of r; and so the double interval for Uranus is tolerably well preserved in comparison with that of Saturn.

But as the ratio of Neptune's distance to that of the exterior half-planet Uranus (though on a larger scale than that immediately preceding, in the order here pursued) is only r^{3}, the subtraction of only Mercury's distance from each of the others, leaves the interval for the greater in a ratio to that for the less of not more than $\frac{162+}{1}$; and so, the representative number when it ought to be 301 appears in the series of numbers illustrating the "law" as 388.

The latest application of "Bode's Law" would seem to be that of Maxwell Hall, Esq.; an abstract of whose communication is given in the Monthly Notices of the Royal Astronomical Society, vol. xxxiv, No. 7 (May, 1874), under the title of "The Solar and Planetary Systems."

The author states "Bode's Law" as follows: "In the solar and planetary systems the mean distances of the planets do not greatly differ in value from the terms of the series:

$$
4 \lambda, 7 \lambda, 10 \lambda, 16 \lambda, 28 \lambda, 52 \lambda, 100 \lambda, 196 \lambda, 388 \lambda, \text { etc., }
$$

where λ has different values in different systems. But there may be more than one, or there may be no planet or satellite near any of the above theoretical distances. ${ }^{\prime \prime}$. And he then proceeds to determine λ in miles for the planetary system, and for the Jovian, Saturnian, and Uranian satellite-systems respectively.
"Some of the numerical coincidences are very close; thus in the Uranian system, taking the distances to be $7 \lambda, 10 \lambda, 16 \lambda$, and 28λ, the first three satellites give $\lambda=17600$, and 17100 , and 17600 miles respectively (but the fourth satellite gives $\lambda=13400$ miles). ${ }^{,{ }_{3}}$
"He then states a second proposition: "Twice the unit of length in any system

[^59]is approximately equal to that distance which corresponds to the period of rotation of the central body of that system,' or say"
$$
\lambda=1580 M_{3}^{\frac{1}{3}} P_{3}^{2},
$$
where $M=$ mass of central body, in terms of the mass of the earth, P the period of the axial rotation in hours, λ in miles as before.

It thus appears that dividing the value of λ for any system by the value of $M^{\frac{1}{3}} P^{\frac{2}{3}}$ for the central body of the system, the quotient should be 1580 . For the Solar, Jovian, and Saturnian the quotients are 1790, 1340, 1720, mean 1620. For the Earth $\lambda=13100$; so that regarding the Moon as a fourth satellite (the three interior ones missing) the theoretical distance is 210,000 miles. ${ }^{1}$

The paper concludes with some considerations as to M. Lescarbault's planet Vulcan.
[Sir J. Herschel, in a Note to Article (505) of the 11th edition of his Outlines of Astronomy, makes the following statement:-
"Another law has been proposed (in a letter to the writer, dated March 1, 1869), by Mr. J. Jones, of Brynhyfryd, Wrexham. If the planets' mean distances from the sun be arranged in the following orders: Mercury, Venus, Jupiter, Saturn; the Earth, Mars, Uranus, Neptune; the product of the means in each group is nearly equal to the product of the extremes.
$\frac{\text { Venus } \times \text { Jupiter }}{\text { Mercury } \times \text { Saturn }}=\frac{\text { Earth } \times \text { Neptune }}{\text { Mars } \times \text { Uranus }}=1$. In point of fact the first fraction $=1.02$, and the last $=\frac{1}{1.03}$, so that the approach to verification of the law is really very near:"

Now the first fraction

> Venus \times Jupiter
> Mercury \times Saturn'
may be resolved into

$$
\frac{\text { Venus }}{\text { Mercury }} \times \frac{\text { Jupiter }}{\text { Saturn }} .
$$

An inspection of the ratios exhibited in our Table (B), in (14), will show that the first of these component fractions expresses a whole planet ratio r; and the second component the inversion of that, $\frac{1}{r}$. So that the value of the whole expression
$\frac{\text { Venus } \times \text { Jupiter }}{\text { Mercury }} \times \overline{\text { Saturn }}$, resolved into its two components here specified $=\frac{r}{1} \times{ }_{r}^{1}=1$.
Then the other fraction, $\frac{\text { Earth } \times \text { Neptune }}{\text { Mars } \times \text { Uranus }}$, may be resolved into $\frac{\text { Earth }}{\text { Mars }} \times \frac{\text { Neptune }}{\text { Uranus }}$;

[^60]and, from Table (B) again, we learn that the first of these component fractions expresses the inversion of an exterior half-planet ratio $\frac{1}{r^{3}}$, and that the second component expresses the exterior half-planet ratio r^{3} itself. So we have the value of $\frac{\text { Earth }}{\text { Mars } \times \text { Neptune }} \times$ Uranus \quad resolved inta $\underset{r_{1}^{3}}{1} \times \frac{r^{\frac{3}{3}}}{1}=$, again, to 1 .

The small differences from 1 (in the one way and the other) in the actual values already quoted, are due to the slight increase in the value of the ratio r (and its derivatives) ; as exhibited in our Article (13).

For the arrangement, otherwise, into the two "orders" here first quoted, there is no very manifest reason; and so it would seem to be merely artificial.] ${ }^{1}$

Summation of Coincidences.

(110) In the summation of coincidences and the comparison of the same with theoretical deductions, those will be first considered which have at various times been indicated by commentators on the nebular hypothesis of Laplace, beginning with those which M. Laplace has himself specified, and of which his hypothesis was especially designed to furnish the explanation.
$1 s t$. The motion of the planets in the same circular direction, and nearly in the same plane.
$2 d$. The motions of the satellites, with few exceptions, in the same direction with those of the planets.
$3 d$. The rotation of these different bodies and of the sun, also in that same circular direction, and in planes not much inclined to one another.
$4 t h$. The small eccentricity of the orbits of the planets.
5th. The hypothesis accounts for the existence of comets in the solar system, as well as the variety of inclination of their orbits; also for the very great eccentricity, and the change in the form of the same. See (34), and Note VII of the Système du Monde.
[M. Laplace's expansion and explanation of these five coincidences is exhibited in our Articles (24) to (34) inclusive.]

6th. The hypothesis accounts for Saturn's rings, (28), and that they also revolve in the same circular direction with the planets and their satellites.

7th Asteroids as well as ordinary planets are provided for ; as is explained in (29).

8th. The great heat of the sun and, possibly also, of some of the existing planets, are facts in place.

[^61][See in this connexion (69) and its Note ${ }^{2}$. The secming perturbations of the atmospheres of Venus and Mercury, and even those of the atmosphere of Jupiter, are also consistent with the supposition of a high temperature.]

9 th. The very existence of a gaseous or nebulous envelope of the sun, as well as of the atmospheres to so many of the planets, is itself consistent with the hypothesis in question. [Confirmed by recent investigations with the spectroscope].

10th. Another evidence of previous high temperature, as the hypothesis would require, is found in the internal heat of the Earth, even now.

11th. Similar is the evidence of geological facts; many of which require the existence of a very high temperature in ancient times.

12th. The evidences of the effects of a former high temperature in the moon, supplement the evidence of geology.

13th. The hypothesis accounts for the lack of an atmosphere to the moon; in the explanation quoted in (69).

14th. The hypothesis, in like manner, accounts for the absence of secondary satellites (satellites of satellites); and also shows why there are no secondary rings; in the explanation quoted in (68).

15th. The hypothesis accounts for the arrangement by which the moon and (it may be) the other satellites, present the same faces severally to their respective primaries; the explanation being that quoted in (68).

16th. The hypothesis accounts for the spheroidat form of the planets; they having been supposed to have been, in older times, in a gascous or in a liquid state, in which they took a form suited to the rotation of their gravitating material. The researches of Prof. H. Hennesey "have shown that the ultimate ellipticity" in consequence of the accumulation of water, etc., in the equatorial regions, and the gradual abrasion of polar continents in case the Earth were at first a solid sphere, would be $\frac{1}{404}$, instead of "that found by actual measurement;" ${ }^{1}$ viz, a little greater than $\frac{-1}{3} \frac{1}{0}$. The Earth could not then have been solid at first. The oblateness of Mars seems to be too great; but it is supposed that the liquid surface of some planets was solidified before they could assume the figure appertaining to their rotation.

17 th. The molecular constitution and whole composition of aerolites; so like, and yet in some respects so different from, what we find on the earth, is consistent with a common origin of all from the ancient solar atmosphere. [The spectrumanalysis has, within a recent period, afforded similar testimony, and to a greatly enlarged extent].
[The existence of the Zodiacal Light is also consistent with the hypothesis in question. This consistency is not numbered here; as it must appear in another connexion.]

[^62]18th. We have Kirkwood's Analogy; already discussed [(106) to (108) inclusive].
19th. It is consistent with Laplace's Nebular Hypothesis that the large planets should be furnished with satellites, while the small planets are not so attended, with the bare exception of the Earth; which, even, has but one, unless some small bodies, not wholly unlike aerolites, are to be added to the number. The "abandonment" of nebulous rings, etc., could more readily proceed and be carried to the result of condensed rings, or of satellites, in the case of the larger bodies.

20th. The greater density of the smaller planets in comparison with the larger; and the tendency to a law of increase from without inward, in the whole series; as manifested in Table (A) in (3). The decidedly abnormal deviations from this are specially accounted for. [See references in exposition of Consistencies 32d and $39 t h$ respectively.]

21st. The Nebular Hypothesis furnishes M. Laplace with an explanation of the exact commensurability of the angular motions, and thus of the periodic times, etc., of Jupiter's satellites; they having "immediately after their formation not moved in a perfect vacuum." The action, in this case, of a resisting medium, itself consistent with his hypothesis, is illustrated by M. Laplace in the way already indicated in (67).

The farther summation of consistencies will have special reference to other phenomena and relations discussed in this paper.

22d. In addition to Consistency 21st, we have an approximate commensurability of periodic times of some of the satellites of Saturn, and also of those of the four outer planets of the Solar System; as detailed in (67).

23d. The modification of the Laplace Nebular Hypothesis, (37), providing. for spheroidal shells, provides, also, for a conservative force for the holding together of great masses; and so prevents the indefinite multiplication of asteroids in all regions of the system.

24th. As if in consistency with a common origin and mode of development, we have the three laws of distances of planets and half-planets, as stated in (10); and the arrangement in accordance with these, in Table (B), in (14).

25th. We have also the prevalence of similar laws in the System of Saturn; the arrangement in accordance with which is exhibited in Table (C) in (18. Then, moreover, we have the arrangement in so far as a more restricted syster, would admit (viz., in accordance with two such laws) in the System of Jupiter; as shown in Table (D) in (20); and in the approximate arrangement of the System of Uranus in Table (E) in (21).

26th. The gradual and systematic increase or diminution, as the case may be, of the leading ratio, and its powers in these several systems, would seem again to indicate that the arrangement had a physical origin, not unlike that under discussion. [See the Summing up of these relations in (22).]

27 th . The consistency of the results obtained in so many connexions by a reference of positions to the centres of gyration of the revolving masses, together with other
facts in the same connexion, all but insist upon and require that the masses in question must have turned around together. [See especially the application of this in (39) and (41); also (44) with Table (F) in (45); and (53), (54), (56), and (104).]
$28 t h$. The conditions involved in connexion with what is stated in Consistency 27 th , also show that the law or laws of apportionment of the masses are not independent of the laws of the distances; but that they are functions, one sort of the other. [See, again, last Note to (44); also quotations in (99), and its last Note but one.]
$29 t h$. It is in perfect agreement with Consistency $26 t h$ and $27 t h$, if not also with Consistency 28th, that the rings of Saturn referred to their respective centres of gyration have, in Table (C), in (18), the places of satellites.
$30 t h$. We have, besides, the commensurability of the periodic times of the two great satellites of Saturn with those due to some of the limits of Table (C) in (18), at which satellites are now missing, as that commensurability is exhibited in (66), and in consequence of which (in view of the Laplace Hypothesis, or of that hypothesis as modified) the existence of satellites may have been prevented there; and thus also possibly may have been occasioned the space between the two systems of Saturn's bright rings; all, as explained in (64).

31st. Again we have the commensurability of the periodic time of Jupiter, and some of the periodic times due to certain of the asteroid limits, and also that of Mars; which may have been the means of breaking up former planets or asteroids, as is also explained in (64). With respect to the special relations of the halfplanets, Earth and Venus-in accordance with the Laplace Nebular Hypothesis, or clse with the same modified as in (37), we have:-
[. $32 d$. The abnormal density of the Earth accounted for (a density too great for the Earth's place in the system). [See 1 of (39).]

33d. In connexion with that, we have the great inclination of the equator of the other half-planet Venus to the plane of its orbit; apparently accounted for in 2 of (39).

34th. We have the approximate agreement of the neutral point (the Kirkwood limit of the Earth's sphere of attraction between the two half-planets on that side) with the whole-planet limit for the combination of the two masses; as exhibited in 4 of (39). [The approximation to an agreement also of this last with the centre of gyration of the two half-planets has already been adverted to in the exposition of Consistency 27th, and its reference.]

35th. The great oblateness of the nebulous Earth (with its accumulated dense material) is, (96), recorded in the great distance of the moon, $=$ to full sixty equatorial radii of its primary planet.

36th. That the ascertained density of the moon should be but 0.55654 of that of the Earth is another fact in place in this discussion, in view of Consistency 35 th.

In consistency with the rest, and in confirmation of our subsidiary hypothesis accounting for the disappearance of the now-missing half-planet, which should be
found interior to Uranus; viz., that its mass was absorbed by what previously constituted the mass of Saturn, we have:-
$37 t h$. That the mutual attractive force of the missing mass and the thenexisting Saturn was adequate in measure to the effect supposed; as is explained in 1 of (43).

38th. That the limit to which the same mutual attraction extended is itself not very far short of the limit (U) at which the whole-planet mass would be likely to be rent; as in the Earth-Venus case [4 of (39)]; as is farther explained in 2 of (43).
[The mass of the missing planet is found in (41) by the application of the formula for the centre of gyration; which has its reference in Consistency 27th.]

39th. The very inferior density of Saturn [below that due to his place in the system, and the least in all the series of densities of planets in Table (A) in (3)], is here a special fact in place; so much of the material of the existing Saturn being derived from the region outside. [See 4 of (43).]

40th. All this would contribute to give the forming nebulous Saturn a very oblate figure; the ellipticity being even greater than that of the forming Earth -for the outer satellite Japetus is at the distance of more than sixty-three radii of its primary; and the very faint light of that satellite in certain positions may be accepted as one condition not in itself inconsistent with a low density.

41st. All this would permit the formation of satellites to begin and advance, some time before that of the rings; and so the conservative influence of the satellites be exerted, in those early times, to preserve those rings and keep them concentric with the shrinking planet; and thus make it possible for Saturn to be adorned with those remarkable appendages which make him an instantio solitaris in the system. [See explanations and quotations in 7 of (43) and its Note 3.]

42d. The great mass of the ancient Saturn $\hat{\mathrm{h}}$, (notwithstanding its low density), would seem to have been efficient in bringing about the great inclination of the equator of Uranus to the plane of its orbit, as well as to that of the ecliptic, [and also that of the whole Uranian system, specially described in 3 of (43);] the whole so like the effect on the inclination of the equator of Venus, insisted on in Consistency 33d. Thus these two phenomena, so like, but which present themselves in regions of the system remote from one another, are found to be referable to the action of not unlike causes.
$43 d$. The very considerable inclination of the Saturnian system (equator of the planet, rings, and orbits of satellites)-so unlike in that respect to the system of the other great planet Jupiter-would seem itself to be referable to the same disturbance which so tilted up the equator and all the system of Uranus.

44th. It is not inconsistent with all this, that on a comparison of the column of Fact with the column of Law in Table (B) in (14), Uranus would almost seem to have perceptibly fallen in; and Saturn perhaps have been drawn a little outward. [See 5 and 10 of (43)]. And it may be that Consistency $31 s t$ is also to be found here [see 9 of (43)].

45th. A like effect may be more distinctly traced in the system of Saturn, in the instance of the satellite Hyperion, which is just outside of Titan, the Jupiter of the system; as may be made apparent by a comparison of the columns of Fact and of Law in Table (C) in (18); which is withal explained in (66). 'That Mars also seems to have perceptibly fallen in by the acquisition of material from the asteroid mass is discussed in (65).

46th. The subsidiary hypothesis of the transference of the half-planet mass, is still farther and very remarkably confirmed by the ratios due to the Ancient State exhibited in Table (F) in (45), the Uranus-Saturn ratio of which is not justified, unless we also restore Saturn to its ancient state, by restoring also the missing planet to its legitimate place; and then combine that, the mass of Uranus, and also that of the ancient Saturn $\hat{\hat{h}}$, all at their common centre of gyration; and then the appropriate ratio in Table (F) is very scrupulously justified. ${ }^{1}$

47th. The conformity of the ratios of the Ancient State is itself a justification of the mass of the missing half-planet; that mass being independently determined in conformity to the condition, that the centre of gyration of that half-planet and Uranus should be the same with the whole-planet limit (U) in Table (B) in (14).

This value of the mass is still farther confirmed, in so far as may be, by the curious relations developed in (104); in which the mass of the ancient Saturn \hat{h} (Saturn deprived of the mass of the now-missing planet) enters in one comnexion, and the mass of the existing Saturn in another.

48th. The justification of the ratios of the Ancient State, as the same are exhibited in Table (F) in (45), itself demands a special value of the asteroid-mass; and the value thus ascertained, with the data which we have, agrees closely with that signified by M. Le Verrier (in one of his investigations of the subject), as being required by the perturbations of the planet Mars. [See explanations and quotations in (47) and Note.]

49th. The arrangements of the Ancient State exhibited in Table (F) in (45), into which combinations of planetary masses alternately enter, justify the position of Mercury in their own series. Then withal the aphelion of Mercury's orbit has a whole-planet place in Table (B) in (14), while the perihelion of the same has a half-planet place. The arrangements of both tables thus consistently indicate that Mercury has accumulated in itself the material appropriate for a planet and a half planet, and that its position justifies that.
$50 t h$. The arrangements now specified, also serve to account for the great eccentricity of Mercury's orbit; the planet having absorbed into itself the ring-like or shell-like masses, one due to the whole-planet position at the aphelicn of the orbit, and the other to the half-planet position at the perihelion.

[^63]$518 t$. The distribution of masses which Consistency $50 t h$ would indicate, and the Laws of Distance in (10), together enable us to compute the mass and mean distance of material (possibly planetary) immediately interior to Mercury. And the mass thus indicated seems to be adequate to produce the perturbations of Mercury's orbit to the extent required by M. Le Verrier. [See discussion of all in (52)].
$52 d$. With the arrangement of distances of Jupiter and Saturn either in the column of Law or in the column of Fact, in Table (B), in (14), and with the ascertained value of their masses, we find, (53), the vis viva or moment of (simultaneous) rotation of the one very accurately equal to that of the other; so that the masses are inversely as the squares of the radii of gyration; i.e. here inversely as the squares of the mean distances from the sun.

There is, at least, a rude approximation to the same, on a large scale, when the masses and distances of Neptune and the next term of the series [$\mathrm{U} \hat{\mathrm{h}}$] in Table (F) in (45) are, in like manner, made the subjects of a proportion in (104).

It may be then that the great divisions of the nebulous solar atmosphere (antecedent perhaps to other planet-forming developments) were made in conformity to the proportion here in question.

But in what seems like the subsequent subdivision of the [Uh] mass, in its special comparison with Neptune, the proportion, (104), of distances inversely as the $\frac{3}{4}$ power of the masses is very accurately justified; in which the whole-planet mass (U) (consisting of the mass of Uranus and that due to its now-missing interior هِ i) enter, as well as the ancient Saturn \hat{h}; though, as already intimated in Consistency 47 th, the existing Saturn enters in the comparison with Jupiter.

The moments of (simultaneous) rotation of the outer and inner systems of bright rings of Saturn exhibit, (53), an approximation to equality like that of the great outer masses here spoken of.
[Also if the expressions of the respective velocities of the existing ring systems, at their centres of gyration be made to enter, instead of the $2 d$ powers of the same, we have, (53), with m and m^{\prime} for the masses, and a and a^{\prime} for the distances from the centre of the planet

$$
\frac{m \times a \text { of } \text { inner rings }}{m^{\prime} \times a^{\prime} \text { of outer rings }}=1.0752
$$

Incidental very possibly, but curious.]
$53 d$. From what is stated in Consistency $52 d$, it would seem to have been the case, that the large masses of the system, in the series from without inward, increased in a more rapid ratio than the respective distances diminished (in a more rapid ratio, viz., than the inverse ratio of the distances); the increased density of material more than counterbalancing the effect of its diminished quantity.

Accordingly, in (57), with scarcely an exception, we find a continual increase of the masses, from Neptune to Jupiter inclusive; the mass of Jupiter being transcendently the greatest of all.

The like, (58), is true (Hyperion being the exception there) in the system of Saturn; Titan being the Jupiter of the system; as is, (59), the $3 d$ satellite among the four satellites of Jupiter; while, lastly, the Earth and Venus, (101), are,
respectively, the Saturn and the Jupiter of the Minor System of planets; and there are other curious relations, furnishing subjects for comparison, which are detailed in (101) and (102).

54 th. It is shown in (16) that the centre of gyration of a thin homogeneous ring is in the circumference of a circle concentric with the edges of the ring, and bisecting its area. Also that R^{\prime} and r^{\prime} being the radii of the edges of the ring and C that of the centre of gyration, we shall have

$$
C^{2}=\frac{1}{2}\left(R^{\prime 2}+r^{\prime 2}\right) .
$$

(a) The same, in (54), is extended to the case in which the equivalent masses are both thin homogencous rings, one wholly clasping the other; R^{\prime} and r^{\prime} representing the respective radii of the centres of gyration of the two clasping rings, and C that of the common centre of gyration.
(b) The common formula for the centre of gyration will, when reduced, give us the same equation, in the case of any two equal masses, irrespective of the form of either.

Now although the two systems of bright rings of Saturn can scarcely be presumed to be homogeneous, and although they do not seem to be equal in mass, yet, (55), the equation in question is found to be very nearly applicable to them.
[Making use of this inductively, as some indication of the ring-like form in revolving masses, (55), we found, that the like equation in the solar system was very nearly justified in the case of the half-planets Earth and Venus; and, (56), that a similar one was nearly realized in the case of Neptune and Uranus; the distances being those in the column of Law, in Table (B) of (14). ${ }^{1}$

These results might seem to be consistent with the supposition that the flowing over of the material of the oblate solar atmosphere had given to the masses in question, at some period of their development, a form not unlike that of α thick ring; and yet the same cannot be regarded as decisive; and in the case of Uranus and Neptune, there is the other explanation found in (b) of this Consistency; for the masses of Neptune and Uranus are nearly equal.]

In another and different instance we have a closer agreement.
The centre of gyration, (19), of the whole system of Saturn's Bright Rings is at a distance from the planet's centre $=1.9090$; being just within the outer edge of the Inner Bright Ring (or Rings), which is at the distance 1.9276; as though the division of one great ring had taken place there.

Some reason why the opening between the system of rings should be permanent, is given in (64); which reason has already been alluded to in Consistency 30 th.

55th. An application of the criterion of the ring-like form as stated in Consistency $54 t h$, was, as far as might be, made use of $[(60),(61)$, and (62)] in determining as to whether it would be preferable to attribute to the asteroidmass (in the progress of its development) at any period, a whole-planet or a half-planet arrangement; without the assertion that either is, beyond controversy, supposable.

In favor of the supposition of a half-planet arrangement, we had:-
(a) That we do not find the equation here in question justified when a comparison is instituted between the whole-planet arrangement and Mars; but, with an appropriate distribution of the mass for a half-planet arrangement we find, (60), a close approximation to the fulfilment of the equation in question.
(b) This might seem to have the less weight, were it not also true that the limit of equal attraction between the exterior half-asteroid mass and Jupiter, (60), is 3.35790 , and that between the interior half-asteroid mass and Mars, is 2.14438 ; which limits very well mark the range of the mean distances of the known asteroids; and, (61), the respective distances 3.34083 and 2.47748 of the exterior and interior half-asteroid masses approximate to the aphelion and perihelion distances of several of the existing asteroids; so that the case in that respect may possibly resemble that of Mercury, commented on in (50).
(c) Other circumstances discussed in (65), and referred to in Consistencies $31 s t$ and 45 th, seem to indicate that (with the wide range and great eccentricity of the asteroid-orbits) Mars may have acquired material of slower motion; which caused that planct (perceptibly) to fall in. Such is the look, when Fact and Law in Table (B) in (14) are compared.
[This is again alluded to here because of its present connexion with the other considerations; though formally noticed in Consistency 45th.]
(d) Though we may not attribute too much weight to our results when the data are imperfect-yet, in this connexion, we find that the formula derived from Kirkwood's Analogy, which, (107), signally fails (for reasons assigned) to give us the length of the sidereal day of Uranus, yet, (108), approximates to a true result in the case of Mars, referred on the one side to the Earth and on the other to the interior half-asteroid mass.

56 th . In view of the secular variations of the planctary orbits, we have exhibited in (99) the close approximation to coincidence of the planes of those orbits in very ancient times.

In (99) we make the suggestion that the mean inclination of the sun's equator (of nearly 5°) to these may have arisen from the fact that the acquisition of material of a planet from the extra-equatorial regions of the sun's nebulous atmosphere, may have been mainly from one side; the changes in the two half-spheroids not being simultaneous.

But this is a region for speculation in which our sources of information are very restricted. [Not quite discordant with it, however, is the fact mentioned in (99), and its Note (5), that the great planetary masses of Table (F) [in (45)] are alternately white and yellow or ruddy.]

57th. Other harmonies may be gathered from the Memoir on the Secular Variations of the Elements of the Orbits of Eight Principal Planets, by John N. Stockwell, M.A., from which the positions of the planes of the planetary orbits, alluded to in Consistency $56 t h$, are taken ; which harmonies are to some extent described in (99). These, like Consistencies $22 d$ and $31 s t$, seem to indicate a common origin of the bodies concerned-under restricted circumstances.

58th. As stated in (100), the orbits of the outermost satellites of Saturn and Jupiter have very considerable inclinations to the equators of their respective primaries; as though their development had an earlier history than that of the other satellites and appendages.

And the orbit of our own moon has a mean inclination of something less than $5^{\circ} 9^{\prime}$ to the orbit of the Earth; while the variable inclination of the Earth's equator is more than four times as great; as though the moon in the nebulous state had been separated in the form of at spheroidal shell, before the axis of the Earth was established.

The like, withal, would seem, (100), to have happened in the instance of the satellites of Uranus and their primary planet: with additional varieties, themselves, as it were, confirmatory of the supposition of the rending away and absorption by Saturn of the mass due to the (now missing) half-planet, which was once connected with that of Uranus.
$59 t h$. In our explanation of the appearances of certain of Jupiter's satellites as dark spots, while they were in transit across the disk of their primary; the conclusion was arrived at, (69), that the phenomena were due to absorption, and possible interference, of the light proceeding from Jupiter and encountering that of the satellite ; as is explained in (69). The circumstances also seemed to indicate :
(a) A confirmation of the supposition that the satellites, in their revolution, continue to present, respectively, each nearly the same face to its primary.
(b) That the phenomena of absorption, etc., indicate, as a reasonable probability, that the satellites are colder than their primary.
(c) That, therefore, the satellites, like our moon, have very possibly little or no atmosphere.
(d) That, in view of the Laplace Nebular Hypothesis, the satellites may, then, possibly have lost their atmospheres, in the same way in which M. Laplace supposes the moon's atmosphere may have been carried away; which was already alluded to in Consistency 13th, and explained in (69).

All this bears upon the question of a similar origin and development of all the bodies (comets excepted) of the solar system.

60th. In Articles (70) to (95) inclusive we have a discussion of the phenomena of the Zodiacal Light; which, in (78), are regarded (in modification of Chaplain George Jones's hypothesis) as due to a givdle encompassing the Earth. It is further indicated, in (79), that the girdle is preserved from destruction by having its periodic time coincident with that of the moon ; and the limits of the girdle, (82), are computed in accordance with that subsidiary hypothesis, and the variations, (83), in the size of the girdle are distinctly stated. Also tidal actions at the ends of the 12 February, 1875.
major diameter. Accumulations of material, or the contrary, must also exist, in the maintenance of the dynamical equilibrium where the central forces of earth and moon act at an angle with one another; somewhat, it may be, like that which appears in Fig. 14, at Article (80).

Examples of observed phenomena are afterwards given; and in (95) eight particulars are specified, in which the whole hypothesis seems, thus far, to be consistent with the observed phenomena.

The resemblances and differences of the Girdle and Saturn's Dusky Ring are stated in (98).

61st. The late Sears C. Walker in a personal communication to the author of this paper, made some years since, was understood to say, that he had computed what would be the time of rotation of the now existing Earth, if its material were given a ring-like form extending to the Kirkwood limits; and that he had found a year for the time of rotation, as the Laplace Nebular Hypothesis would require.

Prof. Benjamin Peirce, commenting on the explanation of the rotation of the planets on their axes, as deduced from the nebular hypothesis of Laplace, and reasoning especially with regard to Jupiter and Saturn, is understood to have "demonstrated, by a mathematical analysis of the movements of the particles constituting the liquid ring, that the velocities of the resulting rotations of those planets must be such as are actually observed." No authentic information of this, however, scems as yet to have been made public.
[Then Maxwell Hall, Esq., (109), would establish a connexion between the mass of a central body, sun or planet, and its period of axial rotation, and certain approximate ratios developed from the so-called Bode's Law.]

In the statement of Consistencies no allusion has been made to the coincidences in the times of revolution of the planets with the respective times of rotation of the sun with an atmosphere supposed to be expanded successively to the distances of the planets. Sufficient data for this are not attainable.

Other coincidences not sufficiently accurate have not been insisted on in the enumeration; and conjectures, like that in (97), with respect to the Aurora, cannot yet be verified. The giving of undue weight to the result, in any instance, has, withal, been carefully guarded against.

In view, however, of all the consistencies which have now been enumerated, the inquiry whether these can all be incidental, would seem at once to suggest its own negative answer.

But whether that, indeed, be so or no, a single additional statement should, if possible, once for all, be made emphatic :-

The special relations exhibited in Section II. (designedly stated without reference to any theoretical considerations), and the other phenomena detalled in Section III., at least in so far as mere numerical relations are CONCERNED-ALL TheSE, From first to last, depend upon existing facts or relations in the Solar System itself; and so must endure while the system lasts, though every hypothesis with regard to those relations should be rejected.

But if every hypothesis be rejected, the relations exist as more or less consistent, but yet as ultimate facts ; i.e. without any explanation; while the hypothesis, or rather theory, which has been discussed in these pages, seems, with a more or less perfect applicability, to include and grasp the whole.

ADDENDUM.

Consistency $62 d$. In addition to what is already stated as a part of Consistency $55 t h$, it may be noted, that the resulting rotation of Mars as determined by Kirkwood's Analogy, (108), is not merely, in so far as may be, confirmatory of the half-planet arrangement of the asteroid-mass exhibited in (60); but also of the value of the mass itself, as determined in (46): the appropriate fraction of the mass entering into the computation of the time of rotation in question.

Note (A).

Oro the Origin of Clusters and Nebute.

The application of similar principles to those involved in the Nebular Hypothesis of Laplace, but on a larger scale, and with reference to a greater variety of circumstances, led the author of this paper to his own hypothesis of the Spheroidal Origin of Clusters and Nebula; which represents those groups and conglomerations as being the derivations of spheroids (or of rings derived from spheroids, or of masses of an ancient ring-like form) all rotating in a state of dynamical equilibrium, at periods very remote. But, that the process of cooling brought about like phenomena to those which the Laplace-hypothesis maintains to have taken place in the instance of our sun; viz. the same more rapid rotation, sometimes with a local increase of actual velocity, sometimes with a diminution of the same; but always, on the whole, with an increase of angular velocity, continued, however, until the centrifugal force of rotation o'ermastered cohesion and gravitation, and, in place of an "abandoned" equatorial ring, portions of the ruptured material were ejected; to be left behind the others, in the direction opposite to that of the rotation-the material thus being broken into elongated fragments, and they again into drops; but every drop having in it material sufficient to form a condensed nebula, or in the end a star: the result presenting appearances such as are visible in the very beautiful nebula H. 1173 ; the spirals described and figured by the late Lord Rosse; the projections from the one end of the annular nebula in Lyra; and the teeth leaning backword in the globular cluster H. 1968, etc. etc.

The expositions in the communication here referred to, occupy in all twenty-nine (double-column) quarto pages of the $2 d$ volume of (Gould's) Astronomical Journal,
published in 1852; and among those expositions is one, drawn out in detail, the heading of which is "The Millay Way-a Spiral;" which is found in No. 37 of the Journal specified, at p. 101; followed by some reasons for supposing that the ${ }^{-}$ spiral had four branches, and a dense central cluster. ${ }^{1}$

For a variety of other details as well as a more complete exposition of the phenomena and their progress, reference must be made to the memoir itself; but one of its concluding paragraphs should, if possible, be made emphatic; and, therefore, we also introduce it here. It reads thus:-
"While it is even to be expected that errors may hereafter be found in the various details which have been so fully exhibited, it is respectfully submitted whether this same hypothesis of the spheroidal origin of so many of the clusters and nebulæ, in its most important features, is not adequate in mode; or whether, in the very least, the phenomena do not even require the admission of a dynamical equitibrium destroyed, as the one pervading principle-guiding, as it would also seem, to the explanation of all the other conditions."

It would seem, indeed, to be in vain to look for an exposition of the phenomena and their progress, if we do not keep in view and adhere to the hypothesis of a dynamical equilibrium destroyed; a conservative view does not now suit the case.

Among the conditions requiring just that, are the phenomena here briefly adverted to; and the fact that the centres of clusters do not exhibit the enormous condensation anywhere, which the "clustering power" of Sir William Herschel, it would seem, must somewhere have produced; but, on the contrary, the central portions uniformly appear as if, when they were released from superincumbent pressure, by the rupture of the outer portions of the spheroid, or other primitive form, their feeble central attraction could no longer preserve them in form; and so the centres are always broken up. The sudden curvature of the spirals, moreover, seems to be more like that due to the ejection of material under the influence of an excess of centrifugal force, than that which would result from a rushing inward, in obedience to an excess of attraction.

The supposition of original nebutous spheroids does not seem to be contradicted by the revelations of the spectroscope; but, on the contrary, to be consistent with them.

In further justification of an hypothesis, the distinguishing feature of which is the utter destruction, on the large scale, of a dynamical equilibrium, we also reproduce the conclusion of the communication already referred to, which is as fol-lows:-

The more condensed clusters (other things being equal) must, upon this plan, be regarded as probably of the more recent origin; instead of being the older, as supposed by Sir William Herschel (Phit. Trans. for 1789, pp. 224 and 225); and if a contimued dispersion is even yet in progress, the permitted collisions regarded

[^64]by Sir John Herschel [Outlines of Astronomy (872)] as quite supposable as consequences of the clustering power, will be the more frequently avoided; and stars, which, like our sun, may have planets in their keeping, will bear their attendants away beyond the reach of harm.

In view, then, of even the little that has yet been ascertained, may we not in all humility ask whether this was not indeed the way in which the Supreme Disposer of both great and small events executed his vast purposes; the changes being, alternately, destructive and conservative.

For the growing leaf is fed by the exhalations which it finds in the atmosphere; and the leaf, in its decay, nourishes the vegetating tree; the roots of that tree are embedded in the débris of a comparatively ancient earth; the earth itself, in view of the nebular hypothesis (of Laplace), has been detached from the sun; and the sun and other stars would now seem to be but the comparatively small fragments or drops of greater masses: the one great plan pervading the whole, being, BY means of a permitted destruction, to provide for a more perfect adaptation and developyent.

Note (B).

Of the Nebular Hypothesis of Sir William Herschel.

On this subject, Sir John Herschel says in his Outlines of Astronomy, (871):"The first impression which Halley, and other early discoverers of nebulous objects received from their peculiar aspect, so different from the keen, concentrated light of mere stars, was that of a phosphorescent vapour like the matter of a comet's tail, or a gaseous and (so to speak) elementary form of luminous sidereal matter. Admitting the existence of such a medium, dispersed in some cases irregularly through vast regions in space, in others confined to narrower and more definite limits, Sir W. Herschel was led to speculate on its gradual subsidence and condensation by the effect of its own gravity, into more or less regular spherical, or spheroidal forms, denser (as they must in that case be) towards the center. Assuming that in the progress of this subsidence, local centers of condensation, subordinate to the general tendency, would not be wanting, he conceived that in this way solid nuclei might arise, whose local gravitation still further condensing, and so absorbing the nebulous matter, each in its immediate neighborhood, might ultimately become stars, and the whole nebula finally take on the state of a cluster of stars. Among the multitude of nebulæ revealed by his telescopes, every stage of this process might be considered as displayed to our eyes, and in every modification of form to which the general principle might be conceived to apply. The more or less advanced state of a nebula towards its segregation into discrete stars, and of these stars themselves towards a denser state of aggregation round a central nucleus, would thus be, in some sort, an indication of age. Neither is there any variety of aspect which nebulæ offer, which stands at all in contradiction to this view. Even though we should feel ourselves compelled to reject the idea of a
gaseous or vaporous 'nebulous matter,' it loses little or none of its force." [The spectroscope indicates that that need not always be.] "Subsidence, and the central aggregation consequent on subsidence, may go on quite as well among a multitude of discrete bodies under the influence of mutual attraction, and feeble or partially opposing projectile motions, as among the particles of a gaseous fluid."
"(872) 'The 'nebular hypothesis,' as it has been termed, and the theory of sidereal aggregation stand, in fact, quite independent of each other, the one as a physical conception of processes which may yet, for aught we know, have formed part of that mysterious chain of causes and effects antecedent to the existence of separate self-luminous solid bodies; the other as an application of dynamical principles to cases of a very complicated nature no doubt, but in which the possibility or impossibility, at least, of certain general results may be determined on perfectly legitimate principles."
"Among a crowd of solid bodies of whatever size, animated by independent and partially opposing influences, motions opposite to each other must produce collision, destruction of velocity, and subsidence or near approach towards the center of preponderant attraction; while those which conspire or remain outstanding after such conflicts, must ultimately give rise to circiulation of a permanent character. Whatever we may think of such collisions as events, there is nothing in this conception contrary to sound mechanical principles."
"Ages which to us may well appear indefinite may easily be conceived to pass without a single instance of collision, in the nature of a catastrophe. Such may have gradually become rarer as the system has emerged from what must be considered its chaotic state, till at length, in the fulness of time, and, under the pre-arranging guidance of that DESIGN which pervades universal nature, each individual may have taken up such a course as to annul the possibility of further destructive interference."

To which we may add, that it is well understood, that, with respect to all this, Sir J. Herschel has but fully and clearly expressed the very thoughts and feelings of his distinguished father.
[The supposed "aggregation," in view of what is stated in Note (A), must be regarded as being a wider segregation, by the continuance of an even now progressive dispersion.]

In so far as the nebutar hypothesis here under consideration, has, at least, the character of an ingenious conjecture in the form of a generalization, it would seem to relate to a more ancient state of things than that contemplated in our Note (A); being indicative of the way in which the rotating spheroids there described might themselves have been formed.

The existing phenomena seem to require the spheroids to have preceded the present state of things; but there is very little to indicate what must have been the state of the material composing the spheroids before they acquired their form.

The revelations by the spectroscope of a similarity of molecular constitution in so very many instances are not indeed inconsistent with the supposition of a common origin; yet they do not require that.

The statement of Sir J. Herschel, already quoted, speaks of the "chain of causes
and effects" here in question as being antecedent to the existence of self-lummous solid bodies.

Being thus antecedent, the traces of the phenomena which have required the admission of such causes and effects have, it would seem, been so far obliterated, in the course of the changes which have since taken place, that the nebular hypothesis here in question cannot now be proved; and yet enough has even here been stated, to show that it cannot be disproved.

GENERAL INTEGRALS

of

PLANETARY MOTION

BY

SIMON NEWCOMB,
professor of mathematics united states naty.

PHILADELPIIIA:
COLLINS, PRINTER, 705 JAYNE STREET.

ADVERTISEMENT.

The following Memoir, on the "General Integrals of Planetary Motion," was submitted to Prof. H. A. Newton, of Yale College, and Mr. G. W. Hill, of Nyack, N. Y., and has received their approval for publication in the "Smithsonian Contributions to Knowledge."

JOSEPH HENRY,
Secretary Smithsonian Institution.
Washington, D. C., December, 1874.

PREFACE.

The present memoir may be considered as, in part, an extension and generalization of two former papers by the author: the first being Théorie des perturbations de la Inune qui sont dues à l'action des Planètes, published in Liouville's Journal, tome xvi., 1871; and the second, Sur un Théorème de Mécanique Céteste, published in the Comptes Rendus, tome lxxy. Notwithstanding its extent, the author is conscious, in his treatment of the subject, of several gaps, which may detract from entire rigor. He believes that some of these are of such a nature that the reader can readily fill them, while the remainder would have led into long digressions, and thus caused great delay in the publication of the paper. To the former class belong (1) the analogy between the expressions for the rectangular co-ordinates x and y, which differ only in that the latter is composed of products of sines, while the former is composed of similar products of cosines; and (2) the omission of all considerations of the modifications growing out of the fact that in equation (1) one value of \hbar vanishes. To the lattcr class belong the omission of all considerations respecting the convergence of the series encountered, respecting terms of long period, and respecting the occurrence of relations among the arguments, such as that known to subsist between the mean motions of three of the satellites of Jupiter. These subjects will naturally come up for consideration when the process of actually integrating the differential equations of planetary motion in the most general way is undertaken. No method for the actual execution of this integration is given at present, partly because the paper may be considered complete without it, partly because the author has not succeeded in working out any method satisfactory to himself. It is true that a large part of the paper is devoted to reviewing the general forms met with in a certain integrating process, but the actual execution of this process, even for a single approximation, may be considered impracticable on account of the enormous labor involved in it. It is shown, by a bird's eye view, that a certain object is, in the nature of things, attainable; but a practicable way of actually reaching it is yet to be pointed out. It would be extremely agreeable to the author to learn that abler hands than his were successfully working to effect the actual solution of this noble problem in its most general form.

CONTENTS.

page
§ 1. Introduction 1
§ 2. Canonical Transformation of the Equations of Motion 4
§ 3. Approximation to the Required Solution by the Variations of the Arbitrary Constants in a First Approximate Solution 9
§4. Formation of the Lagrangian Coefficients (a_{i}, a_{k}), and Reduction of the Equations to a Canonical Form 11
§5. Fundamental Relations between the Coefficients of the time, b_{3}, b_{2}, etc., considered as Functions of c_{1}, c_{2}, etc. 16
§ 6. Development of Ω, Ω_{j}, and Ω_{j}^{\prime} 19
§ 7. Form of Second $\Lambda_{\text {pproximation }}$. 24
§ 8. General Theorem 26
§ 9. Summary of Results 28
+

general Integrals 0f Planetary motion.

§ 1. Introduction.

If we examine what has been done by geometers towards developing the coordinates of the planets in terms of the time, we shall see that the most general expressions yet found are those for the development of the secular variations of the elements in a periodic form. It is well known that if we neglect quantities of the third order with respect to the eccentricities and inclinations, the integration of the equations which give the secular variations of those elements, and of the longitudes of the perihelia and of the nodes, leads to the conclusion that the general expressions of those elements in terms of the time are of the form

$$
\begin{align*}
e \sin \pi & =\sum_{i}^{n} N_{i} \sin \left(g_{i} t+\beta_{i}\right) \\
e \cos \pi & =\sum_{i}^{n} N_{i} \cos \left(g_{i} t+\beta_{i}\right) \tag{1}\\
\phi \sin \theta & =\sum_{i}^{n} M_{i} \sin \left(h_{i} t+\gamma_{i}\right) \\
\phi \cos \theta & =\sum_{1}^{n} M_{i} \cos \left(h_{i} t+\gamma_{i}\right)
\end{align*}
$$

n being the number of planets, N_{i}, M_{i}, g_{i}, and h_{i} being functions of the eccentricities at a given epoch and of the mean distances, while β_{i} and γ_{i} are angles depending also on the positions of the perihelia and nodes at a given epoch. It is to be remarked that one of the values of h_{i} is zero, the corresponding quantities M and γ depending on the position of the plane of reference.

The numerical values of these constants for the solar system have been found by several geometers. The latest and most complete determinations are those of Le Verrier and of Stockwell. ${ }^{1}$
When we consider the terms commonly called periodic, that is, those which depend on the mean longitudes of the planets, we shall find that their determination depends on the integration of differentials of the form

$$
m^{\prime} h_{\sin }^{\cos }\left(i t+i l+j^{\prime} \pi^{\prime}+j \pi+k^{\prime} \theta^{\prime}+k \vartheta\right),
$$

where we put
m^{\prime} the mass of the disturbing planet.
h a function of the eccentricities, inclinations, and mean distances of the two planets, developable in powers of the two former quantities.
l, l^{\prime} the mean longitudes of the planets.
π, π^{\prime} the longitudes of their perihelia.
θ, θ^{\prime} the longitudes of their nodes.
$i, j, 7$, numerical integer coefficients,
and in which $i^{\prime}+i+j^{\prime}+j+k^{\prime}+k=0$.
The coefficient \hbar is of the form

$$
A e^{j} e^{j^{\prime}} \phi^{k} \phi^{\prime k^{\prime}}\left(1+A_{1} e^{2}+A_{2} e^{\prime 2}+\text { etc. }\right)
$$

while the circular function of which it is a coefficient may be put in the form

$$
\begin{array}{r}
\cos \left(j \pi+j^{\prime \prime} \pi^{\prime}+k \theta+l^{\prime} \hat{\theta}^{\prime}\right) \cos \left(i^{\prime} l^{\prime}+i l\right) \\
\pm \\
\sin _{\cos }^{\sin }\left(j \pi+j^{\prime} \pi^{\prime}+k \theta+k^{\prime} \theta^{\prime}\right) \sin \left(i^{\prime} l^{\prime}+i l\right)
\end{array}
$$

As.these equations have hitherto been integrated the different elements are developed in powers of the time, and we are thus led to expressions of the form

$$
\left(A+A^{\prime} t+A^{\prime \prime} t^{\prime}+\ldots\right)_{\sin }^{\cos }\left(i^{\prime} t^{\prime}+i l\right)
$$

But it is clear, that we shall get more general expressions if, instead of using developments in powers of the time, we substitute the general values of the elements given by equations (1). The substitution will be most readily made by reducing the circular to exponential functions. Putting in (1) for brevity

$$
\begin{aligned}
& g_{i} t+\beta_{i}=\lambda_{i} \\
& h_{i} t+\gamma_{i}=\lambda_{i}^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Pi=\varepsilon^{\pi /-1} \\
& \Lambda=\varepsilon^{\lambda \sqrt{ } /-1} \\
& \Theta=\varepsilon^{\prime} \sqrt{ }=1,
\end{aligned}
$$

the equations (1) may be put in the form

$$
\begin{gathered}
e \Pi=\Sigma_{i} N_{i} \Lambda_{i} \\
e \Pi^{-1}=\Sigma_{i} N_{i} \Lambda_{i}^{-3} \\
\phi \Theta=\Sigma_{i} M I_{i} \Lambda_{i}^{\prime} \\
\phi \Theta^{-1}=\Sigma_{i} M_{i} \Lambda_{i}^{\prime-1} .
\end{gathered}
$$

In the preceding differential to be integrated the coefficient of $\frac{\sin }{\cos }\left(i^{\prime} l^{\prime}+i l\right)$ is of the form

$$
\left(1+A_{1} e^{2}+A_{2} e^{\prime 2}+\text { etc. }\right) A e^{j} e^{j^{\prime}} \phi^{k} \phi^{\prime \prime \prime} \frac{\cos }{\sin }\left(j \pi+j^{\prime \prime} \pi^{\prime}+k_{2} \theta+k^{\prime} \theta^{\prime}\right)
$$

If in the last factor we substitute the preceding exponentials for the circular functions, its product bv $e^{j} e^{j^{\prime}} \phi^{k} \phi^{\prime k \prime}$ in the case of a cosine reduces to half of the sum

$$
(e \Pi)^{j}\left(e^{\prime} \Pi^{\prime}\right)^{j^{\prime}}(\phi \Theta)^{k}\left(\phi^{\prime} \Theta^{\prime}\right)^{k}+\left(\frac{e}{\Pi}\right)^{j}\left(\frac{e^{\prime}}{\Pi^{\prime}}\right)^{j^{\prime}}\left(\frac{\phi}{\Theta}\right)^{k}\left(\frac{\phi^{\prime}}{\Theta^{\prime}}\right)^{k^{\prime}}
$$

Substituting the values of these expressions in terms of the exponentials just given, developing by the polynomial theorem, and then substituting for the expo-
nentials their expressions in circular functions, we find that this sum reduces to a scries of terms, each of the form

$$
h_{\sin }^{\cos }\left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\ldots+i_{n} \lambda_{n}+j_{1} \lambda_{1}^{\prime}+j_{2} \lambda_{2}^{\prime}+\ldots+j_{n} \lambda_{n}^{\prime}\right)
$$

in each of which we have

$$
\begin{aligned}
& i_{1}+i_{2}+\ldots+i_{n}=j+j^{\prime} \\
& j_{1}+j_{2}+\ldots+j_{n}=k+k^{\prime}
\end{aligned}
$$

The expressions $A_{1} e^{2}+A_{2} e^{i 2}+$ etc., comprising products and powers of the squares of e, e^{\prime}, ϕ and ϕ^{\prime} by constant coefficients by the substitutions of the values (1) reduce themselves to a series of terms of the form

$$
\hbar \cos \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\ldots+i_{n} \lambda_{n}+\ldots j_{1} \lambda_{1}^{\prime}+j_{2} \lambda_{2}^{\prime}+\ldots+j_{n} \lambda_{n}^{\prime}\right)
$$

in which

$$
i_{1}+i_{2}+\ldots+j_{1}+j_{2}+\ldots=0
$$

By these operations and by corresponding ones in the case of sines the expressions to be integrated finally reduce themselves to the form

$$
m^{\prime} A^{\prime} \sin _{\cos }\left(i^{\prime} l^{\prime}+i l+i_{1} \lambda_{1}+i_{2}^{\prime} \lambda_{2}+\ldots+j_{1} \lambda_{1}^{\prime}+\ldots+j_{n} \lambda_{n}^{\prime}\right)
$$

in each of which the sum of the integral coefficients of the variable angles vanishes, while A^{\prime} is a function of the mean distances and of the $2 n$ quantities N_{i} and M_{i}. By integration this expression will remain of the same form, so that we may regard it as a general form for the perturbation due to the mutual action of two planets, the elements of each being corrected for secular variations. If we consider the action of all the planets in succession, we shall introduce no new variable angles except their mean longitudes, which will make n mean longitudes in all. We shall therefore have, at the utmost, not more than $3 n$ variable angles.

We may thus conclude inductively that by the ordinary methods of approximation, the co-ordinates of each of $3 n$ planets, moving around the sun in nearly circular orbits, and subjected to their mutual attractions, may be expressed by an infinite series of terms each of the form

$$
\begin{equation*}
i_{i}^{\operatorname{ccs}}\left(i_{1} \dot{\lambda}_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}\right) \tag{2}
\end{equation*}
$$

$i_{1}, i_{2} \ldots i_{3 n}$ being integer coefficients, different in each term ; $\lambda_{1}, \lambda_{2} \ldots \lambda_{3 n}$ being each of the form

$$
l_{i}+b_{i} t
$$

$l_{1}, l_{2} \ldots l_{3 n}$ being $3 n$ arbitrary constants, and $b_{1}, b_{2} \ldots b_{3 n} k_{\text {, being functions of } 3 n}$ other arbitrary constants.

We shall further assume that the inclination of the orbit of each planet to the plane of $x y$ is so small that the co-ordinates may be developed in a convergent series, arranged according to the powers of this inclination, while it may be shown that the general expressions for the rectangular co-ordinates will be of the form

$$
\begin{align*}
& x=S k \cos \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}\right) \\
& y=S k \sin \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}\right) \tag{3}\\
& z=S c \sin \left(j_{1} \lambda_{1}+j_{2} \lambda_{2}+\cdots+j_{3 n} \lambda_{3 n}\right)
\end{align*}
$$

The letter S being used to express the sum of an infinite series of similar terms; $7_{i}, i$, and j having the signification just expressed, and each system of values of the integers i and j being subjected to the condition

$$
\begin{align*}
& i_{1}+i_{2}+i_{3}+\cdots+i_{3 n}=1 \\
& j_{1}+j_{2}+j_{3}+\ldots+j_{3 n}=0 \tag{3}
\end{align*}
$$

It is evident that when x, y, and z are expressed in this form, any entire function of these quantities will reduce itself to the same form.

We shall now proceed to show that the form (3) is a general one: that is to say, that having an approximate solution of this form, if we make further approximations, developed in powers of the errors of this first solution, every approximation can be expressed in the form (3).

We can make no general determination of the limits within which these approximations will be convergent, we are therefore obliged to assume their convergency.

§ 2. Canonical Transformation of the Equations of Motion.

If we put
Ω, the potential of the $n+1$ bodies, that is, the sum of the products of every pair of masses divided by their mutual distance, the differential equations of motion will be $3(n+1)$ in number, each of the form

$$
m_{i} \frac{d^{2} x_{i}}{d t^{2}}=\frac{\partial \Omega}{\partial x_{i}}
$$

If we substitute for the co-ordinates themselves their products by the square roots of their masses, putting

$$
\mathrm{x}_{i}=m_{i}^{\frac{1}{i}} x_{i} ; \mathrm{Y}_{i}=m_{i}^{i} y_{i}, \text { etc. },
$$

the differential equations will assume the canonical form

$$
\begin{equation*}
\frac{d^{2} x_{i}}{d t^{2}}=\frac{\partial \Omega}{\partial x_{i}} . \tag{4}
\end{equation*}
$$

We suppose the index i to assume for each of the three co-ordinates all values from 0 to n, the value 0 referring to the sun, and we thus have $3(n+1)$ equations of the form (4) the integration of which will give the co-ordinates in terms of the time, and $6(n+1)$ arbitrary constants.

We shall now diminish the number of variables to be determined in the following general manner: Suppose that we have m differential equations of the first order, between m variables and the time t, each being of the form

$$
\frac{d x_{i}}{d t}=X_{i}
$$

Suppose also that we have found k integrals of these equations, each of the form

$$
f\left(x_{1}, x_{2}, \ldots x_{m}, t\right)=\text { constant. }
$$

Let us assume at pleasure $m-l$ other independent functions of the variables, each of the form

$$
\xi_{i}=\phi_{i}\left(x_{1}, x_{2}, \ldots x_{m}, t\right)
$$

so that the m variables x can be expressed as a function of $\%$ arbitrary constants, the time t, and the $m-k$ variables

$$
\xi_{1}, \xi_{2}, \ldots \xi_{m-k}
$$

Differentiating the above expression for ξ_{i}, and substituting for $\frac{d x}{d t}$ its value X, we shall have

$$
\frac{d \xi_{i}}{d t}=\frac{\partial \phi_{i}}{\partial t}+X_{1} \frac{\partial \phi_{i}}{\partial x_{1}}+X_{2} \frac{\partial \phi_{i}}{\partial x_{2}}+\cdots \cdot+X_{m} \frac{\partial \phi_{i}}{\partial x_{m}} .
$$

By substituting for the x 's in the right hand side of this equation their expressions in terms of $\xi_{1}, \ldots \xi_{m-k}$, t, and the arbitrary constants, we shall have the problem reduced to the integration of $m-k$ equations between that number of variables.

In the special problem now under consideration, the m variables are the coordinates x, y, z, and their first derivatives with respect to the time. The integrals by which we shall seek to reduce the number of the variables are those of the conservation of the centre of gravity. We shall take for ξ_{1}, ξ_{2}, etc., linear functions of x_{1}, x_{2}, etc., so chosen that the reduced equations shall maintain the canonical form. Let us take the $n+1$ linear functions of the co-ordinates x :-

$$
\begin{align*}
& \xi_{0}=a+b t=\alpha_{00} x_{0}+\alpha_{01} x_{1}+\ldots .+\alpha_{0 n} x_{n} \\
& \begin{array}{ccc}
\xi_{1}= & \alpha_{10} x_{0}+\alpha_{11} x_{1}+\ldots+\alpha_{1 n} x_{n} \\
\vdots & \vdots & \vdots \\
\xi_{n} & =\alpha_{n 0} x_{0}+\alpha_{n 1} x_{1}+\ldots \\
& \ldots+a_{n n} x_{n},
\end{array} \tag{5}
\end{align*}
$$

where we have put for symmetry

$$
\begin{equation*}
m_{i}=c \alpha_{0 i}, \text { or } \alpha_{0 i}=\frac{m_{i}}{c} \tag{6}
\end{equation*}
$$

c being an arbitrary coefficient, while the other coefficients are to be chosen, so that the resulting differential equations shall be of the canonical form. Let us represent the values of x which we obtain from these equations by

$$
\begin{equation*}
x_{i}=\beta_{0 i} \xi_{0}+\beta_{1 i} \xi_{1}+\beta_{2 i} \xi_{2}+\ldots+\beta_{n i} \xi_{i} \tag{7}
\end{equation*}
$$

Differentiating any one of the preceding expressions for ξ, and substituting for $\frac{d^{2} x}{d t^{2}}$ its value, we hạve

$$
\frac{d^{2} \xi_{i}}{d t^{2}}=\frac{\alpha_{i 0}}{m_{0}} \frac{\partial \Omega}{\partial x_{0}}+\frac{\alpha_{i i}}{m_{1}} \frac{\partial \Omega}{\partial x_{1}}+\cdots+\frac{\alpha_{i n}}{m_{n}} \frac{\partial \Omega}{\partial x_{n}} .
$$

If we suppose x_{0}, x_{1}, etc., replaced by their expressions in ξ_{0}, ξ_{1}, etc., obtained by solving the equations (5), that is, by their values in (7), we shall have

$$
\frac{\partial \Omega}{\partial x_{j}}=\alpha_{0 j} \frac{\partial \Omega}{\partial \xi_{0}}+\alpha_{1 j} \frac{\partial \Omega}{\partial \xi_{1}}+\cdots \cdots+\alpha_{n j} \frac{\partial \Omega}{\partial \xi_{n}} .
$$

Substituting these values in the preceding equation, it becomes

$$
\begin{aligned}
\frac{d^{2} \xi_{i}}{d t^{2}} & =\left(\frac{\alpha_{00} \alpha_{i 0}}{m_{0}}+\frac{\alpha_{01} \alpha_{i 1}}{m_{1}}+\frac{\alpha_{02} \alpha_{i 2}}{m_{2}}+\cdots+\frac{\alpha_{0 n} \alpha_{i n}}{m_{n}}\right) \frac{\partial \Omega}{\partial \xi_{0}} \\
& +\left(\frac{\alpha_{10} \alpha_{i 0}}{m_{0}}+\frac{\alpha_{11} \alpha_{i 1}}{m_{1}}+\frac{\alpha_{12} \alpha_{i 2}}{m_{2}}+\cdots+\frac{\alpha_{1 n} \alpha_{i n}}{m_{n}}\right) \frac{\partial \Omega}{\partial \xi_{1}} \\
\vdots \vdots & \vdots \\
\vdots & \vdots \\
& +\left(\frac{\alpha_{n 0} \alpha_{i 0}}{m_{0}}+\frac{\alpha_{n 1} \alpha_{i 1}}{m_{1}}+\frac{\alpha_{n 2} \alpha_{i 2}}{m_{2}}+\cdots+\frac{\alpha_{i n} \alpha_{i n}}{m_{n}}\right) \frac{\partial \Omega}{\partial \xi_{n}} .
\end{aligned}
$$

In order that this equation may reduce to the canonical form

$$
\frac{d_{2} \xi_{i}}{d t^{2}}=\frac{\partial \Omega}{\partial \xi_{i}}
$$

it is necessary and sufficient that the expressions

$$
\frac{\alpha_{j 0} \alpha_{i 0}}{m_{0}}+\frac{\alpha_{j 1} \alpha_{i 1}}{m_{1}}+\frac{\alpha_{j 2} \alpha_{i 2}}{m_{2}}+\cdots+\frac{\alpha_{j n} \alpha_{i n}}{m_{n}}
$$

should vanish whenever i is different from j, and should reduce to unity whenever $i=j$. In other words, it is necessary and sufficient that the coefficients α should be so chosen that the $(n+1)^{2}$ quantities

$$
\begin{array}{cc}
\frac{\alpha_{00}}{\sqrt{ } m_{0}}, & \frac{\alpha_{01}}{\sqrt{ } m_{1}}, \cdots \cdot \frac{\alpha_{0 n}}{\sqrt{ } m_{n}} \tag{8}\\
\vdots & \vdots \\
\frac{\alpha_{n 0}}{\sqrt{ } m_{0}}, & \frac{\alpha_{n 1}}{\sqrt{ } m_{1}} \cdots \cdots \\
\cdots & \frac{\alpha_{n n}}{\sqrt{ } m_{n}}
\end{array}
$$

should form an orthogonal system. The first line of coefficients is already determined by the equation (6), the coefficient c excepted, which is to be determined by the condition

$$
\frac{\alpha_{10}^{2}}{m_{0}}+\frac{\alpha_{01}^{2}}{m_{1}}+\ldots+\frac{a_{0 n}^{2}}{m_{n}}=1
$$

or, from (6)

$$
m_{0}+m_{1}+\ldots+m_{n}=c^{2}
$$

which gives

$$
c=\sqrt{m}
$$

putting m for the sum of the masses of the entire system of bodies. Having thus

$$
\alpha_{0 i}=\frac{m_{i}}{\sqrt{ } m}
$$

the orthogonal system (8) becomes

$$
\begin{aligned}
& \sqrt[V]{m^{m}}, \frac{\sqrt{ } m_{1}}{\sqrt{m^{\prime}}}, \ldots . \frac{\sqrt{ } m_{n}}{\sqrt{m}} \\
& \frac{\alpha_{10}}{\sqrt{ } m_{0}}, \frac{\alpha_{11}}{\sqrt{ } m_{1}}, \cdots \cdot \frac{\alpha_{1 n}}{\sqrt{m_{n}}} \\
& \begin{array}{cccc}
\vdots & \vdots & & \vdots \\
\alpha_{n 0} & \alpha_{n 1} & \ldots & \alpha_{n n} \\
\hline
\end{array} \\
& \sqrt{ } m_{0}{ }^{\prime} \sqrt{ } m_{1}{ }^{\prime} \cdots \cdots \sqrt{ } m_{n}
\end{aligned}
$$

The number of coefficients to be determined is now $n(n+1)$. The total number of conditions which the system must satisfy is $\frac{(n+1)(n+2)}{2}$, butone of these being already satisfied by the quantities in the first line, there remain only $\frac{n(n+3)}{2}$ conditions to be satisfied by $n(n+1)$ quantities, we have therefore

$$
n(n+1)-\frac{n(n+3)}{2}=\frac{n(n-1)}{2}
$$

quantities which may be chosen at pleasure.
The general theory of the substitution which we have been considering, and the various modes in which the orthogonal system just found may be formed, have been developed very fully by Radau in a paper in Annales de l'Ecole Normale Supérieure, Tome V. (1868). ${ }^{1}$ We shall, therefore, at present confine ourselves to a brief indication of the special form of the substitution which has been found useful in Celestial Mechanics. We first remark that if we form the $(n+1)$ equations

$$
y_{i}=\frac{\alpha_{i 0}}{\sqrt{m_{0}}} z_{0}+\frac{\alpha_{i 1}}{\sqrt{ } m_{1}} z_{1}+\ldots+\frac{\alpha_{i n}}{\sqrt{m_{n}}} z_{n}
$$

by giving i in succession all values from 0 to n, we shall have by the theory of orthogonal substitutions the $(n+1)$ equations

$$
z_{i}=\frac{\alpha_{0 i}}{\sqrt{m_{i}}} y_{0}+\frac{\alpha_{1 i}}{\sqrt{m_{i}}} y_{1}+\ldots+\frac{\alpha_{n i}}{\sqrt{m_{i}}} y_{n}
$$

If we suppose in the first equations
we shall have from (5)

$$
\begin{gathered}
z_{j}=\sqrt{ } m_{j} x_{j} \\
y_{i}=\xi_{i}
\end{gathered}
$$

whence, by substituting these values of z_{i} and y_{i} in the second equation, we shall have for the expression of x_{i} in terms of ξ_{0}, ξ_{1}, etc, to replace equation (7)

$$
\begin{equation*}
x_{i}=\frac{1}{\sqrt{m}} \xi_{0}+\frac{\alpha_{1 i}}{m_{i}} \xi_{1}+\frac{\alpha_{2 i}}{m_{i}} \xi_{2}+\text { etc. } \tag{9}
\end{equation*}
$$

The first term of this expression is common to all the values of x_{i}, representing, as it does, the co-ordinates of the centre of gravity of the system. It may, therefore, be omitted entirely, when we seek only the relative co-ordinates of the various bodies, and, in any case, it will disappear from the differential equations of motion.

The most simple way of forming the coefficients $\alpha_{i j}$ is to suppose $\frac{n(n-1)}{2}$ of them equal to zero. Let us first suppose $\alpha_{i j}=0$ whenever $j>i$, the first line, in which $i=0$, being, of course, excepted.

The orthogonal system will then be of the form

[^65]\[

$$
\begin{array}{cccc}
\frac{\sqrt{ } m_{0}}{\sqrt{m}}, & \frac{\sqrt{ } m_{1}}{\sqrt{m}}, & \frac{\sqrt{ } m_{2}}{\sqrt{ } m}, & \ldots . \\
\frac{\alpha_{10}}{\sqrt{ } m_{0}}, & \frac{\alpha_{11}}{\sqrt{ } m_{1}}, & 0, & 0, \ldots \tag{10}\\
\frac{\alpha_{20}}{\sqrt{ } m_{0}}, & \frac{\alpha_{21}}{\sqrt{ } m_{1}}, & \frac{\alpha_{22}}{\sqrt{ } m_{2}}, & 0, \ldots . \\
\vdots & \vdots & \vdots & \vdots \\
\vdots \\
\frac{\alpha_{n o}}{\sqrt{ } m_{0}}, & \frac{\alpha_{n 1}}{\sqrt{ } m_{1}}, & \frac{\alpha_{n 2}}{\sqrt{ } m_{2}}, & \ldots
\end{array}
$$ \frac{\alpha_{n n}}{\sqrt{ } m_{m}} .
\]

Then $\alpha_{n n}$ will be determined by the condition

$$
\frac{\alpha_{n n}^{2}}{m_{n}}+\frac{m_{n}}{m}=1
$$

while all the other coefficients in the bottom line will be determined by the condition

$$
\frac{\alpha_{n i} \alpha_{n n}}{\sqrt{m_{i} m_{n}}}+\frac{\sqrt{m_{i} m_{n}}}{m}=0
$$

Taking the line next the bottom the diagonal coefficient will be determined by the equation

$$
\frac{\alpha_{n, n-1}^{2}+\alpha_{n-1, n-1}^{2}}{m_{n-1}}+\frac{m_{n-1}}{m}=1
$$

while the remaining coefficients of the form $\alpha_{n-1, i}$ will be given by the equations

$$
\frac{\alpha_{n, i} \alpha_{n, n-1}+\alpha_{n-l, i} \alpha_{n-1, n-1}}{\sqrt{m_{i} m_{n-1}}}+\frac{\sqrt{m_{i} m_{n-1}}}{m}=0
$$

The general values of the coefficients to which we are thus led may be expressed in the following way: put

$$
\mu_{i}=m_{0}+m_{1}+\ldots m_{i}
$$

by which m will become μ_{n}. Also, suppose

$$
\nu_{j}=\frac{\sqrt{ } m_{j}}{\sqrt{\mu_{j} \mu_{j-1}}}
$$

We shall then have

$$
\begin{gathered}
\alpha_{i i}^{2}=\frac{m_{i} \mu_{i-1}}{\mu_{i}} \\
\alpha_{j i}=-\nu_{j} m_{i} \cdot \cdots(i<j) .
\end{gathered}
$$

It is easy to prove that the coefficients thus formed fulfil the required conditions.
If we substitute these values of the coefficients in the expressions for ξ_{1} and $\xi_{2,}$ they become

$$
\begin{aligned}
& \xi_{1}=\frac{\sqrt{m_{0} m_{1}}}{\sqrt{m_{0}+m_{1}}}\left(x_{1}-x_{0}\right) \\
& \xi_{2}=\frac{\sqrt{m_{2}}}{\sqrt{\mu_{1} \mu_{2}}}\left(\left(m_{0}+m_{1}\right) x_{2}-m_{1} x_{1}-m_{0} x_{0}\right)
\end{aligned}
$$

We see that, supposing x_{0} to represent the co-ordinates of the sun or other central body, ξ_{1} is equal to the co-ordinate of the first planet, which may be any one at pleasure, relatively to the sun, multiplied by a function of the masses, while ξ_{2} is equal to the co-ordinate of the second planet relatively to the centre of gravity of the sun and first planet multiplied by another function of the masses, and so on. These functions ξ_{i}, when divided by the functions of the masses just alluded to, will differ from the co-ordinates of the several planets relatively to the sun only by quantities of the order of magnitude of the masses of the planets divided by that of the sun.

In what precedes we have considered only the co-ordinates x_{1}. Of course the other co-ordinates are to be subjected to the same transformation. If we represent by η and ζ the corresponding functions of y and z, and if in the expressions for ζ, η, and ζ we substitute for x, y, and z, the expressions (3), those quantities will themselves reduce to expressions of this same form.

§ 3. Approximation to the Required Solutions by the Variations of the Arbitrary Constants in a First Approximate Solution.

By the transformation in question we have for the determination of the relative motion of the $n+1$ bodies, $3 n$ differential equations, of the canonical form

$$
\begin{equation*}
\frac{d^{2} \bar{\zeta}_{i}}{d t^{2}}=\frac{\partial \Omega}{\partial \xi_{i}} ; \quad \frac{d_{2} n_{i}}{d t^{2}}=\frac{\partial \Omega}{\partial \eta_{i}} ; \quad \frac{d_{2}^{2} \zeta_{i}}{d t^{2}}=\frac{\partial \Omega}{\partial \zeta_{i}} . \tag{11}
\end{equation*}
$$

Let us now suppose that we have found approximate solutions of these equations in the form (3), the quantities x, y, z being there replaced by ξ_{i}, η_{i}, and ζ_{i}, that is, solutions which possess the property that, if, on the one hand, each expression is twice differentiated, and if, on the other hand, the values (3) are substituted in the second members of (11), the two expressions shall differ only by terms multiplied by small numerical coefficients. We have to show that when we make a further approximation to quantities of the first order relative to these coefficients, the solution will still admit of being expressed in the form (3). To do this we shall make the further approximation by the method of the variation of arbitrary constants, remarking, however, that the usual formulæ of this method cannot be applied, because they presuppose that the first approximation is a rigorous solution of an approximate dynamical problem, while, in the present case, we are not entitled to assume that our approximate solution (3) possesses this quality; in other words, we are not entitled to assume that any function Ω_{0} of the quantities ξ, n, and ζ, can be formed, such that we shall find the $3 n$ equations of the form

$$
\frac{d^{2} \zeta}{d t^{2}}=\frac{\partial \Omega_{0}}{\partial \xi}
$$

rigorously and identically satisfied by the approximate expressions, both with respect to the time, and the $6 n$ constants which the solution contains. Consequently, we cannot assume the existence of a perturbative function, and must employ other expressions in place of the derivatives of that function.

We set out, then, with the three sets of equations, having n in each set

$$
\begin{align*}
& \xi_{i}=S k_{i} \cos \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}\right) \\
& \eta_{i}=S k_{i} \sin \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{33} \lambda_{3 n}\right) \tag{12}\\
& \zeta_{i}=S k_{i} \sin \left(j_{1} \lambda_{1}+j_{2} \lambda_{2}+\ldots+j_{3 n} \lambda_{3 n}\right),
\end{align*}
$$

in which all the quantities are supposed to be given in terms of $6 n$ arbitrary constants and the time, each λ being of the form

$$
\lambda_{i}=l_{i}+b_{i} t,
$$

l_{i} being an arbitrary constant, which each b, k, and l_{i}^{\prime} is given as a function of $3 n$ other arbitrary constants, which we may represent in the most general way by

$$
a_{1}, a_{2}, \ldots \ldots a_{3 n} .
$$

So long as no distinction between a and l is necessary, we may represent the entire $6 n$ arbitrary constants by

$$
a_{1}, \alpha_{2}, \ldots \ldots a_{6 n}
$$

Let us now take the complete second derivatives of (12) with respect to the time, supposing all $6 n$ constants variable. We shall suppose the variable constants to fulfil Lagrange's conditions, now $3 n$ in number:-

$$
\begin{equation*}
\sum_{j=1}^{j=6 n} \frac{\partial \zeta_{i}}{\partial a_{j}} \frac{d a_{j}}{d t}=0 ; \quad \sum_{j=1}^{j=6 n} \frac{\partial n_{i}}{\partial a_{j}} \frac{d a_{j}}{d t}=0 ; \quad \sum_{j=1}^{j=6 n} \frac{\partial \zeta_{i}}{\partial a_{j}} \frac{d a_{j}}{d t}=0, \tag{1:3}
\end{equation*}
$$

which will give

$$
\frac{d \xi_{i}}{d t}=\frac{\partial \xi_{i}}{\partial t}=\xi_{i}{ }_{i} \text { etc. }
$$

From the second derivatives, combined with the differential equations (11), we shall have $3 n$ equations of the form

$$
\sum_{j=1}^{j=6 n} \frac{\partial_{i}^{\prime}{ }_{i}^{\prime}}{\partial a_{j}} \frac{d a_{j}}{d t}=\frac{\partial \Omega}{\partial \xi_{i}}-\frac{\partial^{2} \xi_{i}}{\partial t^{2}},
$$

which it is required to satisfy. The expression in the right-hand member of this equation corresponds to $\frac{\partial R}{\partial_{j}^{3}}$ in the usual theory, when R is the perturbative function. Let us multiply this equation by $\frac{d \xi_{i}}{d a_{k}}$, and add up the $3 n$ equations which we may form in this way by substituting for ξ_{i} all the values of ξ, n, and ζ in succession. We may thus obtain

$$
\sum_{i=1}^{i=n} \sum_{j=1}^{i=6 n} \sum_{j=1}^{j} \frac{\partial \xi_{i}}{\partial a_{k}} \frac{\partial_{k_{i}^{\prime}}}{\partial a_{j}} \frac{d a_{j}}{d t}=\frac{\partial \Omega}{\partial a_{k}}-\sum_{i=1}^{i=n} \frac{\sum^{2} \xi_{i}}{\partial t^{2}} \frac{\partial \xi_{i}}{\partial a_{k}},
$$

the sign Σ^{\prime} indicating that all values of η and ζ as well as of ξ^{ξ} are to be included. The right-hand member of this equation corresponds to $\frac{\partial R}{\partial \alpha_{k}}$ in the usual theory. Let us now multiply the equations (13), the first by $\frac{\partial \xi_{i}^{\prime}}{\partial a_{k}}$, the second by $\frac{\partial \eta_{i}^{\prime}}{\partial a_{k}}$, and the third by $\frac{\partial \zeta_{i}^{\prime \prime}}{\partial a_{k}}$, and add together the $3 n$ equations which may be thus formed by giving i all its values. If we subtract their sum from the last equation, putting

$$
\begin{equation*}
\left(a_{k}, a_{j}\right)=\sum_{i=1}^{i=n}\left(\frac{\partial \xi_{i}}{\partial u_{k}} \frac{\partial \xi_{i}^{\prime}}{\partial a_{j}}-\frac{\partial \xi_{i}}{\partial a_{j}} \frac{\partial \xi_{j}^{\prime}}{\partial a_{k}}\right), \tag{14}
\end{equation*}
$$

we shall have

$$
\begin{equation*}
\left(u_{k}, a_{1}\right) \frac{d a_{1}}{d t}+\left(a_{k}, a_{2}\right) \frac{d a_{2}}{d t}+\ldots . . \text { etc. }=\frac{\partial \Omega}{d a_{k}}-\sum_{i=1}^{i=n} \frac{\sum^{2} \zeta_{i}}{\partial t^{2}} \frac{\partial \xi_{i}}{\partial a_{k}}, \tag{15}
\end{equation*}
$$

the sign Σ^{\prime} including, as before, not only all values of i from 1 to n, but the corresponding terms in η and ζ.

By giving 7 all values in succession from 1 to $6 n$, we shall have a system of $6 n$ differential equations, the integration of which will give the values of the $6 n$ quantities
in terms of the time.
By the fundamental assumption with which we set out, the expressions for ξ, n, and ζ are such that the right hand members of these equations are small quantities of which we neglect the powers and products. We may, therefore, after solving these equations so as to get the derivatives in the form

$$
\frac{d a_{i}}{d t}=f\left(\prime_{1}, a_{2} \ldots a_{\Delta n}, t\right)
$$

integrate by a simple quadrature, supposing a_{1}, a_{2}, etc., in the second members to be constant. Moreover we shall require the values of the quantities (a_{k}, a_{j}) only to the first degree of approximation, and within this limit they must necessarily conform to the well-known law of Lagrange of being functions of the constants only, and not containing the time explicitly. This theorem will materially assist us in their formation.

§ 4. Formation of the Lagrangian Coefficients $\left(a_{i}, a_{k}\right)$, and Reduction of the Equations to a Canonical Form.

Restoring the two classes of constants represented by a and l, we shall have three classes of the functions sought, included in the forms

$$
\left(a_{k}, a_{j}\right),\left(l_{k}, l_{j}\right) \text { and }\left(a_{k}, l_{j}\right)
$$

Let us now differentiate the equations (12) with respect to the time, putting for brevity

$$
\begin{aligned}
& i_{1} b_{1}+i_{2} b_{2}+\ldots .+i_{3 n} b_{3 n}=b \\
& i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}=N \\
& j_{1} b_{1}+j_{3} b_{2}+\cdots+j_{3 n} b_{3 n}=b^{\prime} \\
& j_{1} \lambda_{1}+j_{2} \lambda_{2}+\ldots+j_{3 n} \lambda_{3 n}=N^{\prime} ;
\end{aligned}
$$

we shall then have, omitting the index i of b, k, and N,

$$
\begin{align*}
& \xi_{i}^{\prime}=-S b k^{\sin } N \\
& \eta_{i}^{\prime}=S b \hbar \cos N \\
& \zeta_{i}^{\prime}=S b_{i}^{\prime} \cos N^{\prime} .
\end{align*}
$$

To form the combination (a_{k}, a_{j}) we must differentiate the equations (12) and (15) with respect to a_{i} and a_{k}, and substitute the results in (14). In forming these quantities, two series of terms represented by the sign S of summation are to be
multiplied together, which renders it necessary to be more explicit in representing the double summation we thus encounter. Having n of each of the quantities $\check{\xi}$, η, and ζ distinguished by writing the various values of the index i, which takes all integer values from 1 to n, the quantities $b, ~ k$, and N should all be affected with this same index. But it is not necessary to write it after N or b, because each N is common to all the ζ 's and η 's, or to all the ' 's', respectively. Again, we have as many values of N as there are combinations of the coefficients i_{1}, i_{2}, i_{3}, etc., which enter into it, while each N has its corresponding coefficients k, i in number. We must, therefore, consider k to be written

$$
F_{i}\left(i_{1}, i_{2}, i_{3} \ldots \ldots i_{3 n}\right)
$$

while b and N are affected with the same indices, the first excepted. In other words, we have

$$
\begin{aligned}
b\left(i_{1}, i_{2}, i_{3} \ldots i_{3 n}\right) & =i_{1} b_{1}+i_{2} b_{2}+\ldots+i_{3 n} b_{3 n} \\
N\left(i_{1}, i_{2}, i_{3} \ldots \ldots i_{3 n}\right) & =i_{1} \lambda_{1}+i_{2} \lambda_{2}+\ldots+i_{3 n} \lambda_{3 n} .
\end{aligned}
$$

Then, in the sense in which we have hitherto used the sign of summation S we have symbolically

To avoid the complication of writing so many indices we shall represent any one combination, as $\left(i_{1}, i_{2}, \ldots \ldots i_{3 n}\right)$ by the symbol ν, and any other combination by μ. We shall also put

$$
S^{\prime}=\sum_{i=1}^{i=n} S
$$

This summation includes all the terms in all the values of any one co-ordinate, as ξ, n, or ζ, respectively. A sign for a summation including all $3 n$ co-ordinates is not here necessary, as k and N are common to ξ and n, while the corresponding quantities for ζ, being of a different form, must be written separately. We have, in fact, distinguished them by an accent.

The co-ordinates and their derivatives which enter into the expressions (a_{k}, a_{j}) will then assume the following form, the index i being understood after k and k^{\prime}.

$$
\begin{align*}
& \check{\zeta}_{i}=S_{\mu} T_{\mu \mu} \cos N_{\mu} \\
& n_{i}=S_{\mu} k_{\mu} \sin N_{\mu} \tag{16}\\
& \zeta_{i}=S_{\mu} h_{\mu}^{\prime} \sin N_{\mu}^{\prime} \\
& \xi_{i}^{\prime}=-S_{v}(b k)_{2} \sin N_{v} \\
& \eta_{i}^{\prime}=\quad S,(b l i), \cos N_{v} \\
& \zeta_{i}=S_{v}\left(b^{\prime} k^{\prime}\right)_{v} \cos N_{v}^{\prime} \\
& \left.\frac{\partial \xi_{i}}{\partial a_{k}}=S_{\mu}\left\{\frac{\partial F_{\mu}}{\partial \sigma_{k}} \cos N_{\mu}-l_{\mu} \frac{\partial b_{\mu}}{\partial a_{k}} t \sin N_{\mu}\right\}\right\} \\
& \left.\begin{array}{l}
\frac{\partial n_{i}}{\partial a_{k}}=S_{\mu}\left\{\begin{array}{l}
\partial k_{\mu} \\
\partial a_{k} \\
\sin N_{\mu}+k_{\mu} \\
\frac{\partial b_{\mu}}{\partial a_{k}} t \cos N_{\mu}
\end{array}\right\} \\
\frac{\partial \zeta_{i}}{\partial a_{k}}=S_{\mu}\left\{\begin{array}{l}
\partial k_{\mu}^{\prime}{ }_{\mu} \sin N_{\mu}^{\prime}+k_{\mu} \frac{\partial b_{\mu}^{\prime}}{\partial a_{k}} t \cos N_{\mu}^{\prime} \\
\partial a_{k}
\end{array}\right\}
\end{array}\right\} \tag{17}
\end{align*}
$$

$$
\left.\begin{array}{l}
\frac{\partial \xi_{i}^{\prime}}{\partial a_{j}}=S_{v}\left\{-\frac{\partial(b k)_{v}}{\partial a_{j}} \sin N_{v}-(b k)_{v}, \frac{\partial b_{v}}{\partial a_{j}} t \cos N_{v}\right\} \\
\frac{\partial \eta_{i}^{\prime}}{\partial a_{j}}=S_{v}\left\{\begin{array}{r}
\frac{\partial(b k)_{v}}{\partial a_{j}} \cos N_{v}-(b k)_{v} \frac{\partial b_{v}}{\partial a_{j}} t \sin N_{v}
\end{array}\right\} \tag{18}\\
\frac{\partial \zeta_{i}^{\prime \prime}}{\partial a_{j}}=S_{v}\left\{\frac{\partial\left(b_{i}^{\prime}\right)_{v}}{\partial a_{j}} \cos N_{v}^{\prime}-\left(b k^{\prime}\right), \frac{\partial b_{v}^{\prime}}{\partial a_{j}} t \sin N_{v}^{\prime}\right\}
\end{array}\right\}
$$

By changing a_{k} into a_{j} in the three equations (17), and making the reverse change in (18), we have the complete expressions necessary to form any term of the expression

$$
\left(a_{k}, a_{j}\right)=\sum_{i=1}^{i=n}\left\{\frac{\partial \xi_{i}}{\partial a_{k}} \frac{\partial \xi_{i}^{\prime}}{\partial a_{j}}-\frac{\partial \xi_{i}}{\partial a_{j}} \frac{\partial \xi_{i}^{\prime}}{\partial a_{k}}+\frac{\partial n_{i}}{\partial a_{k}} \frac{\partial \eta_{i}^{\prime}}{\partial a_{j}} \text { - etc. }\right\}
$$

We see at once that this expression will be of the form

$$
\sum_{i=1}^{i=n} S_{\mu, \nu}^{2}\left\{A_{\mu, \nu} \sin \left(N_{\mu}-N_{v}\right)+A^{\prime} t+A^{\prime \prime} t^{2}\right\}
$$

Since the expression is known to be independent of t, we must have, to quantities of the first degree of approximation, $A^{\prime}=0$ and $A^{\prime \prime}=0$ by the condition that ξ, η, and ζ satisfy the original differential equations, and the coefficient $A_{1} \mu, \nu$ must vanish, unless we have

$$
N_{\mu}-N_{\nu}=\text { constant }
$$

The coefficients $b_{1}, b_{2} \ldots b_{3 n}$, being supposed incommensurable, this can only happen when we have in (3)'

$$
i_{1 \mu}=i_{1 v} ; \quad i_{2 \mu}=i_{2 v}, \text { etc., }
$$

and hence

$$
N_{\mu}=N_{v}
$$

when $\sin \left(N_{\mu}-N_{v}\right)$ will itself vanish. Hence, $\left(a_{k}, a_{j}\right)$ containing no constant term whatever, we must have

$$
\begin{equation*}
\left(a_{k}, a_{j}\right)=0 \tag{19}
\end{equation*}
$$

Again, differentiating the equations (16), the first three with respect to l_{k} and the last three with respect to l_{j}, we find

$$
\begin{aligned}
& \frac{\partial \xi_{\xi_{i}}}{\partial l_{k}}=-S_{\mu}\left(i_{k} k^{2}\right)_{\mu} \sin N_{\mu} \\
& \frac{\partial r_{i j}}{\partial l_{k}}=S_{\mu}\left(i_{k} / k\right)_{\mu} \cos N_{\mu} \\
& \frac{\partial \zeta_{i}}{\partial l_{k}}=S_{\mu}\left(j_{k} /\right)_{\mu} \cos N_{\mu}^{\prime} \\
& \frac{\partial \xi_{i}^{\prime}}{\partial l_{j}}=-S_{v}\left(i_{j} b l\right)_{v} \cos N_{v} \\
& \frac{\partial \eta_{i}^{\prime}}{\partial l_{j}}=-S_{v}\left(i_{j} b l\right)_{v} \sin N_{v} \\
& \frac{\partial \zeta_{i}^{\prime}}{\partial l_{j}}=-S_{v}\left(j_{j} b^{\prime} k_{i}^{\prime}\right)_{\nu} \sin N_{v}^{\prime}
\end{aligned}
$$

From these expressions it may be shown that

$$
\begin{equation*}
\left(l_{k}, l_{j}\right)=0 \tag{20}
\end{equation*}
$$

in the same way that we found $\left(a_{k}, a_{j}\right)=0$.
We have next to consider the combinations of the form $\left(a_{k}, l_{j}\right)$, for which the expression is

$$
\left(a_{k}, l_{j}\right)=\sum_{i=1}^{i=n}\left\{\frac{\partial \xi_{i}}{\partial a_{k}} \frac{\partial \xi_{i}^{\prime}}{\partial l_{j}}-\frac{\partial \xi_{i}}{\partial l_{j}} \frac{\partial \xi_{i}^{\prime}}{\partial a_{k}}+\frac{\partial n_{i}}{\partial a_{k}} \frac{\partial n_{i}^{\prime}{ }_{i}}{\partial l_{j}} \text { - etc. }\right\}
$$

The terms which do not contain t as a factor are found to be

$$
\begin{aligned}
& -S_{\mu} S^{\prime \prime}\left\{\left(i_{j} b /\right)_{\nu} \frac{\partial k_{\mu}}{\partial a_{k}}+\left(i_{j} l^{k}\right)_{\mu} \frac{\partial(b k)_{\mu}}{\partial a_{k}}\right\} \cos \left(N_{\mu}-N_{v}^{\prime}\right) \\
& -\frac{1}{2} S_{\mu} S_{\nu}^{\prime}\left\{\left(j_{j} b^{\prime} k^{\prime}\right)_{\nu} \frac{\partial k_{\mu}^{\prime}}{\partial a_{k}}+\left(j_{j} k^{\prime}\right)_{\mu} \frac{\partial\left(b^{\prime} k^{\prime}\right)_{v}}{\partial a_{k}}\right\} \cos \left(N_{\mu}^{\prime}-N_{v}^{\prime}\right)
\end{aligned}
$$

S^{\prime} having the meaning given on page 12.
The only non-periodic terms in this expression will be those in which $\mu=v$, and these terms reduce to

$$
\left.\begin{array}{c}
-S^{\prime \prime}\left\{i_{j} b k \frac{\partial k}{\partial a_{k}}+i_{j} j^{k(b k)} \frac{\partial\left(b a_{k}\right.}{\partial a_{k}}+\frac{1}{2} j_{j} b^{\prime} k^{\prime} \frac{\partial k^{\prime}}{\partial a_{k}}+\frac{1}{2} j_{j} k \frac{\partial\left(b^{\prime} k^{\prime}\right)}{\partial a_{k}}\right\} \\
\left.=-S^{\prime \prime}\left\{\begin{array}{c}
\partial\left(i_{j} 7 k^{2}\right) \\
\partial a_{k}
\end{array}\right\} \frac{1}{2} \frac{\partial\left(j_{j} b^{\prime} k^{\prime 2}\right)}{\partial a_{k}}\right\}
\end{array}\right\}
$$

or, by putting

$$
\begin{equation*}
c_{j}=\mathbb{S}^{\prime \prime}\left\{i_{j} b 7 k^{2}+\frac{1}{2} j_{j} b^{\prime}{k^{\prime 2}}^{2}\right\} \tag{21}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(a_{k}, l_{j}\right)=-\frac{\partial c_{j}}{\partial a_{k}} . \tag{22}
\end{equation*}
$$

These expressions are now to be substituted in the differential equations represented by (15), which will then divide into two classes according as the derivative of Ω is taken with respect to $l_{1}, l_{2} \ldots$ or $l_{3 n}$, or with respect to $a_{1}, a_{2} \ldots$ or ${ }^{\left({ }_{3 n} n\right.}$. Having regard to equation (20) we find those of the first class to be of the form

$$
\left(l_{j}, a_{1}\right) \frac{d a_{1}}{d t}+\left(l_{j}, a_{2}\right) \frac{d a_{2}}{d t}+\cdots \cdot+\left(l_{j}, a_{3 n}\right) \frac{d a_{3 n}}{d t}=\frac{\partial \Omega}{\partial l_{j}}-\sum_{i=1}^{i=n} \frac{\partial_{2} \xi_{i} \partial_{4 i}^{\prime} i}{\partial t^{2}} \partial l_{j} .
$$

!f, in the first member, we substitute for the coefficients their values (22), noticing that

$$
\left(l_{j}, a_{k}\right)=-\left(a_{k}, l_{j}\right),
$$

and in the second member put for brevity

$$
\frac{\partial \Omega}{\partial l_{j}}-\Sigma_{i}\left\{\frac{\partial^{2} \xi_{i}}{\partial t^{2}} \frac{\partial \xi_{i}}{\partial l_{j}}+\frac{\delta^{2} \eta_{i}}{\partial t^{2}} \frac{\partial n_{i}}{\partial l_{j}}+\frac{\partial^{2} \zeta_{i}}{\partial t^{2}} \frac{\partial \zeta_{i}}{\partial l_{j}}\right\}=\Omega_{j}
$$

the differential equation reduces to

$$
\frac{\partial c_{j}}{\partial a_{1}} \frac{d a_{1}}{d t}+\frac{\partial c_{j}}{\partial a_{2}} \frac{d a_{2}}{d t}+\ldots+\frac{\partial c_{j}}{\partial a_{3 n}} \frac{d a a_{3 n}}{d t}=\Omega_{j 9}
$$

or

$$
\begin{equation*}
\frac{d c_{j}}{d t}=\Omega_{j o} \tag{23}
\end{equation*}
$$

By giving j all values in succession from 1 to $3 n$, we shall have $3 n$ equations to determine the variations of $c_{1}, c_{2}, \ldots c_{3 n}$, from which the variations of a_{1}, a_{2}, $\ldots \ldots a_{3 n}$ are to be obtained by the $3 n$ equations (21). But, for our present purposes, it will be more convenient to consider the c 's as the fundamental elements, and to consider $a_{1}, a_{2}, \ldots a_{3 n}$ to be replaced by $c_{1}, c_{2}, \ldots . c_{3 n}$ in the original equations.

The second class of differential equations (15) will, by (19), be represented by

$$
\left(\alpha_{k}, l_{1}\right) \frac{d l_{1}}{d t}+\left(a_{k}, l_{2}\right) \frac{d l_{2}}{d t}+\text { etc. }=\frac{\partial \Omega}{\partial a_{k}}-\sum_{i=1}^{i=n}\left\{\frac{\partial^{2} \xi_{i}}{\partial t^{2}} \frac{\partial_{\bar{h}_{i}}}{\partial a_{k}}+\frac{\partial^{2} n_{i} \partial n_{i}}{\partial t^{2}} \partial a_{k}+\frac{\partial^{2} \zeta_{i} \partial \zeta_{i}}{\partial t^{2}} \partial\right.
$$

Substituting for the coefficients in the first member their values (23), we shall have $3 n$ equations represented by

$$
\frac{\partial c_{1}}{\partial a_{k}} \frac{d l_{1}}{d t}+\frac{\partial c_{2}}{\partial a_{k}} \frac{d l_{2}}{d t}+\ldots .=-\frac{\partial \Omega}{\partial a_{k}}+\sum_{i=1}^{i=n}\left\{\frac{\partial^{2} \xi_{i}}{\partial t^{2}} \frac{\partial \xi_{i}}{\partial a_{k}}+\text { etc. }\right\}
$$

Putting l_{i} successively equal to $1,2 \ldots 3 n$, we shall have $3 n$ equations of this form. Let us multiply the first of these equations by $\frac{\partial a_{1}}{\partial c_{1}}$, the second by $\frac{\partial a_{2}}{\partial c_{1}}$, the $i t h$ by $\frac{\partial a_{i}}{\partial c_{1}}$, and so on to the $3 n t h$, and add all the products, noticing that the theory of functional determinants gives

$$
\sum_{i=1}^{i=3 n} \frac{\partial c_{j}}{\partial a_{i}} \frac{\partial \alpha_{i}}{\partial c_{k}}=+1 \text { or } 0
$$

according as k is or is not equal to j. Then, by putting

$$
\frac{\partial \Omega}{\partial c_{j}}-\sum_{i=1}^{i=n}\left\{\frac{\partial^{2} \xi_{i}}{\partial t^{2}} \frac{\partial \xi_{i}}{\partial c_{j}}+\frac{\partial^{2} n_{i}}{\partial t^{2}} \frac{\partial n_{i}}{\partial c_{j}}+\frac{\partial^{2} \zeta_{i}}{\partial t^{2}} \frac{\partial \zeta_{i}}{\partial c_{j}}\right\}=\Omega_{j g}^{\prime}
$$

we shall have

$$
\begin{gather*}
\frac{d l_{1}}{d t}=-\Omega_{1}^{\prime} \\
\frac{d l_{2}}{d t}=-\Omega_{2}^{\prime} \tag{24}\\
\vdots \\
\vdots \\
\frac{d l_{3 n}}{d t}=-\Omega_{3 n}^{\prime} .
\end{gather*}
$$

These $3 n$ equations, combined with the $3 n$ equations (23), will give, by simple integration by quadratures, the perturbation of the $6 n$ constants, which, being substituted in the original equations (12), will give values of the variables which satisfy the original differential equations to terms one order higher than they were satisfied by (12) originally.

It will be observed that if our functions of the time and $6 n$ arbitrary constants, which we have represented by ξ_{i}, η_{i}, and ζ_{i}, possessed the property that a function Ω_{0} of ξ, n, and ζ could be found such that for all values of i

$$
\frac{\partial^{2} \xi_{i}}{\partial t^{2}}=\frac{\partial \Omega_{0}}{\partial \xi_{i}} ; \frac{\partial^{2} \eta_{i}}{\partial t^{2}}=\frac{\partial \Omega_{0}}{\partial \eta_{i}} ; \frac{\partial^{2} \zeta_{i}}{\partial t^{2}}=\frac{\partial \Omega_{0}}{\partial \zeta_{i}}
$$

we should have in (23) and (24) by putting $R=\Omega-\Omega_{0}$,

$$
\begin{aligned}
\Omega_{j} & =\begin{array}{l}
\partial R \\
\partial \gamma_{j}
\end{array} \\
\Omega_{j}^{\prime} & =\frac{\partial R}{\partial c_{j}}
\end{aligned}
$$

§ 5. Fundamental Relation between the Coefficients of the time, b_{1}, b_{2}, etc., considerent as Functions of c_{1}, c_{2}, etc.
In the preceding section we have found ourselves able to express the first approximate values of the variables in terms of $3 n$ pairs of arbitrary constants

in which the two members of each pair are conjugate to each other; or possess the property that the expressions (14) all vanish except when α_{k} and α_{i} represent the two members of a conjugate pair, in which case we have

$$
\begin{equation*}
\left(l_{i}, c_{i}\right)=+1 \tag{25}
\end{equation*}
$$

The distinguishing characteristic of the integrals we have been investigating is that they do not contain the time, except as multiplied by the $3 n$ factors b, which are functions of the $3 n$ constants c. This characteristic will enable us to deduce a fundamental relation between the differential coefficients of b with respect to c. In the first place, we remark that each c has a b to which it stands in a peculiar relation, in that the latter, multiplied by the time, is added to the l, which is conjugate to c to form the corresponding λ. The theorem in question is this: each b being supposed to be marked with the index of its corresponding c, we shall have for all values of i and j from 1 to $3 n$,

$$
\frac{\partial b_{i}}{\partial c_{j}}=\frac{\partial b_{j}}{\partial c_{i}} ;
$$

in other words, the expression

$$
\sum b_{i} d c_{i}
$$

will be an exact differential.
It is quite possible that this theorem may admit of being deduced immediately from the preceding theory, but I have not succeeded in doing so, and have therefore been obliged to consider the problem in the reverse form. We have, in starting, supposed ourselves to have completely expressed the $3 n$ co-ordinates ζ, n, ζ, as functions of the $6 n$ quantities

$$
a_{1}, a_{2} \ldots a_{3 n}, \lambda_{1}, \lambda_{2} \ldots \ldots \lambda_{3 n},
$$

and we have just shown how to replace the first $3 n$ quantities by the quantities $c_{1}, c_{2} \ldots c_{3 n}$. If we add to these the first derivatives of the co-ordinates (16)
we shall have $6 n$ variables, represented by $\xi_{i}, \eta_{i}, \zeta_{i} \xi_{i}^{\prime} \eta_{i}^{\prime}, \zeta_{i}^{\prime}$, expressed as functions of the $6 n$ quantities

$$
c_{1}, c_{2}, c_{3} \ldots \ldots c_{3 n}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \ldots \lambda_{3 n}
$$

Let us now suppose these equations solved with respect to these last quantities. We shall then have $6 n$ equations of the form

$$
\begin{equation*}
c_{i}=\phi_{i} ; \lambda_{i}=\Psi_{i}, \text { whence } l_{i}=\Psi_{i}-\bar{b}_{i} t, \tag{26}
\end{equation*}
$$

ϕ and Ψ being functions of ξ, n, ζ, etc. The first and third of these expressions are the $6 n$ first integrals of the given equations, or, what we may call the integral functions, being those functions of the co-ordinates, and the time, which remain equal to arbitrary constants during the entire movement.

Let us now, for generality, once more represent the $6 n$ arbitrary constants by

$$
a_{1}, a_{2}, \ldots \ldots a_{6 n},
$$

and let us consider the $(6 n)^{2}$ quantities of Poisson formed from the general expression ${ }^{1}$

$$
\begin{equation*}
\left[a_{\mu}, a_{\nu}\right]=\Sigma_{k}^{\prime}\left[\frac{\partial a_{\mu}}{\partial \xi_{k}} \frac{\partial a_{v}}{\partial \xi_{k}^{\prime}}-\frac{\partial a_{\mu}}{\partial \xi_{k}^{\prime}} \frac{\partial a_{\nu}}{\partial \xi_{k}}\right], \tag{27}
\end{equation*}
$$

the symbol Σ_{k}^{\prime} including, as in (14), the $3 \curvearrowleft$ values of ξ, n, and ζ in succession. Putting the general expression (14) in the form

$$
\left(a_{i}, \alpha_{j}\right)=\Sigma_{s}^{\prime}\left[\frac{\partial \xi_{s}}{\partial a_{i}} \frac{\partial \xi_{s}^{\prime}}{\partial a_{j}}-\frac{\partial \xi_{s}^{\prime}}{\partial a_{i}} \frac{\partial \xi_{s}}{\partial a_{j}}\right],
$$

forming by multiplication the product of this expression by (27), then putting $\nu=j$, and forming the summation

$$
\sum_{j=1}^{j=6 n}\left(a_{\mu}, a_{j}\right)\left(a_{i}, a_{j}\right),
$$

noticing also that the expression

$$
\sum_{j=1}^{j=6 n} \frac{\partial x}{\partial a_{j}} \frac{\partial a_{j}}{\partial y}
$$

is equal to unity whenever x and y represent the same symbol, and to zero in the opposite case, we find

$$
\sum_{i}^{6 n}\left(\alpha_{i}, \alpha_{j}\right)\left[a_{\mu}, \alpha_{j}\right]=\Sigma_{s}\left[\frac{\partial \xi_{s}}{\partial a_{i}} \frac{\partial a_{\mu}}{\partial \xi_{s}}+\frac{\partial \xi_{s}^{\prime}}{\partial a_{i}} \frac{\partial \alpha_{\mu}}{\partial \xi_{s}^{\prime}}\right]
$$

an expression which is itself equal to unity when $\mu=i$, and which vanishes in all other cases.

Now a_{i}, a_{j}, and a_{μ} may here be any of the $6 n$ arbitrary constants. Let us then suppose a_{i}, a_{μ} to represent l_{i} and l_{μ} respectively, and a_{j} to represent c_{j}. This equation will then become

$$
\left(l_{i}, c_{1}\right)\left[l_{\mu}, c_{1}\right]+\left(l_{i}, c_{2}\right)\left[l_{\mu}, c_{2}\right]+\left(l_{i}, c_{3}\right)\left[l_{\mu}, c_{3}\right]+\text { etc. }=1 \text { or } 0
$$

[^66]according as i and μ represent the same or different indices. But we have already found that the expression $\left(l_{i} c_{j}\right)$ vanishes whenever i is different from j, and reduces to unity when those indices are equal. The equations we are considering thus become
\[

$$
\begin{equation*}
\left[l_{i}, c_{i}\right]=1 \tag{28}
\end{equation*}
$$

\]

while all other combinations $\left[l_{i}, c_{j}\right],\left[l_{i}, l_{j}\right]$ and $\left[c_{i}, c_{j}\right]$ vanish.
Let us now return to the integral equations (26), and first form the combination

$$
\begin{gathered}
{\left[\bar{l}_{i} c_{j}\right]=\Sigma_{k}\left[\left(\frac{\partial \Psi_{i}}{\partial \xi_{k}}-t \frac{\partial b_{i}}{\partial \xi_{k}}\right) \frac{\partial \phi_{j}}{\partial \xi_{k}^{\prime}}-\left(\frac{\partial \Psi_{i}}{\partial \xi_{k}^{\prime}}-t \frac{\partial b_{i}}{\partial \xi_{k}^{\prime}}\right) \frac{\partial \phi_{j}}{\partial \xi_{k}}\right]} \\
=\left[\Psi_{i}, \phi_{j}\right]-t\left[b_{i}, \phi_{j}\right] .
\end{gathered}
$$

The conditions (28) therefore give
and

$$
\begin{equation*}
\left[\Psi_{i}, \phi_{j}\right]=0 \tag{29}
\end{equation*}
$$

$$
\left[\Psi_{i}, \bar{\phi}_{i}\right]=1
$$

the first equation applying whenever j is different from i, the second when they are the same.

Let us next consider the combination $\left[7_{i}, l_{j}\right]$ which we know must vanish for all values of i and j. Forming the general expression (27) from the integrals (26), we find:-

$$
\left.\left[l_{i},\right\rangle_{j}\right]=\left[2 \Psi_{i}, \Psi_{j}\right]-t\left\{\left[b_{i}, \Psi_{j}\right]-\left[b_{j}, \Psi \Psi_{i}\right]\right\}+t^{2}\left[b_{i}, \partial_{j}\right]=0 .
$$

This equation being identically zero, the coefficient of each power of t must vanish identically. This gives, in the case of the middle term,

$$
\begin{equation*}
\left[b_{i}, \Psi_{j}\right]=\left[b_{j}, \Psi_{i}\right] \tag{30}
\end{equation*}
$$

Forming these expressions by the general formula (27), and putting

$$
\frac{\partial b_{i}}{\partial \varepsilon_{\xi}}=\Sigma_{k} \frac{\partial b_{i}}{\partial c_{k}} \frac{\partial c_{k}}{\partial \underline{\xi}}
$$

we find

$$
\begin{aligned}
& {\left[b_{i}, \Psi_{j}\right]=\sum_{1}^{3 n}\left[\phi_{k}, 2 \Psi_{j}\right] \frac{\partial b_{i}}{\partial c_{k}}} \\
& {\left[b_{j}, \Psi \Psi_{i}\right]=\sum_{1}^{3 n}\left[\phi_{k}, 2 \Psi_{i}\right] \frac{\partial b_{j}}{\partial c_{k}} .}
\end{aligned}
$$

By (29) all the terms of these expressions vanish except that one in the first equation in which $k=j$, and that one in the second in which $k=i$, in both of which the first coefficient reduces to -1 . Hence

$$
\begin{aligned}
& {\left[b_{i}, \Psi_{j}\right]=-\frac{\partial b_{i}}{\partial c_{j}}} \\
& {\left[b_{j}, \Psi_{i}\right]=-\frac{\partial b_{j}}{\partial c_{i}},}
\end{aligned}
$$

and (30) now gives

$$
\begin{equation*}
\frac{\partial b_{i}}{\partial c_{j}}=\frac{\partial b_{j}}{\partial c_{i}} \tag{31}
\end{equation*}
$$

§ 6. Development of Ω, Ω_{j}, and Ω_{j}^{\prime}.

We have next to find the forms of the expressions Ω_{j} and Ω_{j}^{\prime} which enter into the equations (23) and (24). In the first place we have

$$
\Omega=\sum_{1}^{n},{ }_{1}^{2,} \frac{m_{i} m_{j}}{\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}}} .
$$

We now substitute for x, y, and z their expressions (9) as linear functions of ξ, η, and ζ respectively. By this substitution we shall introduce no terms of the form $\xi \eta, \eta \zeta$, or $\zeta \xi$. Hence, when we substitute for ξ, η, and ζ, their expressions in infinite periodic series, the reduced expressions will contain cosines only. In fact, using the forms

$$
\begin{aligned}
& \xi_{i}=S k_{i} \cos N \\
& \eta_{i}=S k_{i} \sin N \\
& \zeta_{i}=S k_{i}^{\prime} \sin N^{\prime}
\end{aligned}
$$

we shall have from (12) when we put for brevity

$$
\begin{gather*}
\left(\frac{\alpha_{1 i}}{m_{i}}-\frac{\alpha_{1 j}}{m_{j}}\right) k_{1}+\left(\frac{\alpha_{2 i}}{m_{i}}-\frac{\alpha_{2 j}}{m_{j}}\right) k_{2}+\text { etc. } \ldots=k_{i j p} \\
x_{i}-x_{j}=S k_{i j} \cos N \\
y_{i}-y_{j}=S k_{i j} \sin N \tag{32}\\
z_{i}-z_{j}=S k_{i j}^{\prime} \sin N^{\prime}
\end{gather*}
$$

Each denominator in Ω will therefore assume the form

$$
\sqrt{(S k \cos N)^{2}+(S k \sin N)^{2}+\left(S k^{\prime} \sin N^{\prime}\right)^{2}} .
$$

When we form these three squares we find that every term of the form $h \cos$ ($N_{\mu}+N_{v}$) in the first square is destroyed by a corresponding term $-h \cos \left(N_{\mu}+N_{v}\right)$ in the second square. Hence the sum of these two squares will only contain terms of the form

$$
\hbar \cos \left(N_{\mu}-N_{v}\right) .
$$

Since in each value (15) of N we have

$$
i_{1}+i_{2}+i_{3}+\ldots+i_{3 n}=1
$$

we shall have in $N_{\mu}-N_{v}$

$$
\Sigma i=0
$$

Also, since in N^{\prime} the sum of these coefficients is zero, it follows that the same thing will hold true of the third of the preceding squares. The denominator in question may therefore be expressed in the form

$$
\sqrt{S k \cos N}
$$

in which each N is of the form

$$
i_{1} \lambda_{1}+i_{2} \lambda_{2}+\ldots+i_{3 n} \lambda_{3 n}
$$

where

$$
i_{1}+i_{2}+i_{3}+\ldots+i_{3 n}=0
$$

The possibility of developing the reciprocal of this denominator in the usual way depends upon the condition that the constant term of $S k \cos N$ is larger than the sum of the coefficients of all the other terms, a condition which, so far as we yet know, is fulfilled by all the planets and satellites of our system. Representing this constant term by k_{0}, and the quotient of the sum of all the other terms divided by k_{0} by Δ, so that

$$
S k \cos N=k_{0}(1+\Delta)
$$

the developed expression for Ω will be

$$
\Omega=\Sigma \frac{m_{i} m_{j}}{k_{0}^{2}}\left(1-\frac{1}{2} \Delta+\frac{1.3}{2.4} \Delta^{2}-\text { etc. }\right)
$$

When we develop the powers of Δ this equation will reduce itself to the form

$$
\begin{equation*}
\Omega=S \hbar \cos \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+i_{3} \lambda_{3}+\ldots+i_{3 n} \lambda_{3 n}\right) \tag{33}
\end{equation*}
$$

each λ being, as before, of the form

$$
\lambda_{i}=l_{i}+b_{i} t
$$

while in each term

$$
i_{1}+i_{2}+i_{3}+\ldots+i_{3 n}=0
$$

To form the second part of Ω_{j} and of Ω_{j}^{\prime} in (23) and (24) we have to differentiate the expressions (12) twice with respect to the time, and once with respect to the arbitrary constants which enter into them. Putting, as before, for brevity,

$$
\begin{aligned}
& N=i_{1} \lambda_{1}+i_{2} \lambda_{2}+\ldots+i_{3 n} \lambda_{3 n} \\
& b=i_{1} b_{1}+i_{2} b_{2}+\ldots+i_{3 n} b_{3 n}
\end{aligned}
$$

we have

$$
\begin{align*}
& \frac{\partial^{2} \xi_{i}}{\partial t^{2}}=-S b^{2} k_{i} \cos N \\
& \frac{\partial^{2} n_{i}}{\partial t^{2}}=-S b^{2} k_{i} \sin N \tag{34}\\
& \partial_{2} \xi_{i} \\
& \frac{\partial t^{2}}{}=-S b^{2} k_{i}^{\prime} \sin N^{\prime}
\end{align*}
$$

For the other derivatives which enter into Ω_{j}^{\prime} we have

$$
\begin{align*}
& \frac{\partial \xi_{i}}{\partial l_{j}}=-S i_{j} k_{i} \sin N \\
& \frac{\partial \eta_{i}}{\partial l_{j}}=S i_{j} k_{i} \cos N \tag{34}\\
& \frac{\partial \zeta_{i}}{\partial l_{j}}=S j_{j} k_{i}^{\prime} \cos N^{\prime}
\end{align*}
$$

Forming the sum of the products which enter into Ω_{j}, in the manner represented in § 4, it becomes

$$
\begin{align*}
\sum_{i=1}^{i=n} S_{\mu} S_{v} & \left\{(i _ { j } k _ { i }) _ { v } \left(b^{2} k_{i / \mu} \sin \left(N_{v}-N_{\mu}\right)\right.\right. \\
& \left.+\frac{1}{2}\left(j_{j} k_{i}^{\prime}\right)_{v}\left(b^{2} k_{i}^{\prime}\right)_{\mu}\left(\sin \left(N_{\nu}^{\prime}-N_{\mu}^{\prime}\right)-\sin \left(N_{\nu}^{\prime}+N_{\mu}^{\prime}\right)\right)\right\} \tag{35}
\end{align*}
$$

This expression reduces to the form $S H \cos N$, where in each value of N we have

$$
\Sigma i=0 .
$$

In this expression it may be worth while to give the complete value of H corresponding to any value of N. The value of the latter is completely determined by the indices i_{1}, i_{2}, etc., which multiply $\lambda_{1}, \lambda_{22}$, etc., in its expression. Let then

$$
N=i_{1} \lambda_{1}+i_{2} \lambda_{2}+i_{3} \lambda_{3}+\ldots+i_{3 n} \lambda_{3 n}
$$

represent the value of N for which we wish to find the corresponding value of $H_{j}\left(i_{1} i_{2} i_{3} \ldots i_{3 n}\right)$ by means of (35). The required term will be found by taking in (35) all combinations of ν and μ for which we have

$$
\begin{array}{r}
N_{v}-N_{\mu}=N, \\
N_{v}^{\prime}-N_{\mu}^{\prime}=N, \\
\text { or } N_{\nu}^{\prime}+N_{\mu}^{\prime}=N .
\end{array}
$$

Let us represent the combination of indices ν in N_{v} by k_{1}, k_{2}, etc., and those in N_{v}^{\prime} by j_{1}, j_{2}, etc., so that we have

$$
\begin{aligned}
& N_{v}=\mu_{1} \lambda_{1}+\mu_{2} \lambda_{2}+\cdots \cdots+\mu_{3 n} \lambda_{3 n}, \\
& N_{v}^{\prime}=j_{1} \lambda_{1}+j_{2} \lambda_{2}+\ldots+j_{3 n} \lambda_{3 n} .
\end{aligned}
$$

Then, in order that the sum or difference of these angles and of N_{μ} may make N, according to the formulæ just written, we must have

$$
N_{\mu}=\left(\mu_{1}-i_{1}\right) \lambda_{1}+\left(\mu_{2}-i_{2}\right) \lambda_{2}+\ldots+\left(\mu_{3 n}-i_{3 n}\right) \lambda_{3 n},
$$

and

$$
N_{\mu}^{\prime}=\left(j_{1}-i_{1}\right) \lambda_{1}+\left(j_{2}-i_{2}\right) \lambda_{2}+\ldots+\left(j_{3 n}-i_{3 n}\right) \lambda_{3 n}
$$

or

$$
N_{\mu}^{\prime}=\left(i_{1}-j_{1}\right) \lambda_{1}+\left(i_{2}-j_{2}\right) \lambda_{2}+\ldots+\left(i_{3 n}-j_{3 n}\right) \lambda_{3 n} .
$$

For the corresponding coefficients of the time b, we have

$$
\begin{aligned}
& b_{\mu}=\left(\mu_{1}-i_{1}\right) b_{1}+\left(\mu_{2}-i_{2}\right) b_{2}+\cdots \cdots+\left(\mu_{3 n}-i_{3 n}\right) b_{3 n} \\
& b_{\mu}^{\prime} \pm\left(j_{1}-i_{1}\right) b_{1} \pm\left(j_{2}-i_{2}\right) b_{2} \pm \cdots \cdots \pm\left(j_{3 n}-i_{3 n}\right) b_{3 n} .
\end{aligned}
$$

Affecting k and k with the proper indices, as explained in § 4, the part of the coefficient $H_{j}\left(i_{1}, i_{2} \ldots i_{3 n}\right)$ corresponding to any one value of the angle N_{v}, will be

$$
\begin{gathered}
\sum_{i=1}^{i=n} \mu_{j} k_{i}\left(\mu_{1}, \mu_{2}, \ldots .\right) k_{i}\left(\mu_{1}-i_{1}, \mu_{2}-i_{2}, \ldots\right) b_{\mu}{ }^{2} \\
+\frac{1}{2} \sum_{i=1}^{i=n} j_{j} j_{i}^{\prime}\left(j_{1}, j_{2}, \ldots \ldots\right) b^{\prime 2}{ }_{\mu}\left\{k_{i}^{\prime}\left(j_{1}-i_{1}, j_{2}-i_{2}, \ldots .\right)-k_{i}^{\prime}\left(i_{1}-j_{1}, i_{2}-j_{2}, \ldots\right)\right\}
\end{gathered}
$$

where the values of b_{μ} and b_{μ}^{\prime} are those just given. The complete value of $H_{j}\left(i_{1}, i_{2}, \ldots\right.$) will be found by taking the sum of all the terms which we can form by giving to μ_{1}, μ_{2}, etc., $j_{1}, j_{2}, \ldots \ldots j_{3 n}$, in these expressions, all admissible combinations of values, that is, the complete expression will be given by writing before the first line the symbols

$$
\begin{array}{ll}
\mu_{1}=\propto & \mu_{2}=\propto \\
\mu_{1}=-\infty & \sum_{2}=-\infty
\end{array} \cdots{ }_{\mu_{3 n}=-\infty}^{\mu_{3 n}=\propto \varnothing}
$$

and before the second one

$$
\begin{array}{cc}
j_{1}=\propto & j_{2}=\propto \\
\sum_{1}=-\propto & \sum_{j_{2}=-\infty}=\cdots{ }_{j_{3 n}=-\infty}^{j_{3 n}=\propto}=\propto
\end{array}
$$

Differentiating (33) with respect to l_{j}, we have

$$
\begin{equation*}
\frac{\partial \Omega}{\partial l_{j}}=-S i_{j} \hbar \sin N . \tag{36}
\end{equation*}
$$

By the substitution of these expressions (23) now assumes the form

$$
\begin{equation*}
\frac{d c_{j}}{d t}=-S \hbar_{j}^{\prime} \sin N \tag{37}
\end{equation*}
$$

putting for brevity

$$
h^{\prime}=i_{j} \hbar+H_{j}
$$

By the fundamental hypothesis that the adopted expressions for ξ, n, and ζ are first approximations to the true values of those quantities, it follows that in adding (35) and (36) all the terms which are not of the order of those neglected in the first approximation destroy each other, so that π^{\prime} is of the order of the quantities neglected in that approximation.

To form the equations (24) we differentiate (12) with respect to c, whereby, omitting the index i with which ξ, η, ζ, k, and π^{\prime} are always to be considered as affected, we find

$$
\begin{align*}
& \frac{\partial \xi}{\partial c_{j}}=S \frac{\partial k}{\partial c_{j}} \cos N+t S k \frac{\partial b}{\partial c_{j}} \sin N \\
& \frac{\partial \eta}{\partial c_{j}}=S \frac{\partial k}{\partial c_{j}} \sin N+t S k \frac{\partial b}{\partial c_{j}} \cos N \tag{37}\\
& \frac{\partial \zeta}{\partial c_{j}}=S \frac{\partial k^{\prime}}{\partial c_{j}} \sin N^{\prime}+t S k \frac{\partial b^{\prime}}{\partial c_{j}} \cos N^{\prime}
\end{align*}
$$

The sum of the products of these expressions by (34) which enter into (24) is

$$
\begin{aligned}
-\sum_{i=1}^{i=n} S_{\mu, \nu}^{2}\{ & \left(b^{2} k\right)_{\mu} \frac{\partial k_{v}}{\partial c_{j}} \cos \left(N_{v}-N_{\mu}\right)-t\left(b^{2} k\right)_{\mu} \frac{\partial b_{v}}{\partial c_{j}} \sin \left(N_{v}-N_{\mu}\right) \\
& +\frac{1}{2}\left(b^{\prime 2} k^{\prime}\right)_{\mu} \frac{\partial k_{v}^{\prime}}{\partial c_{j}}\left(\cos \left(N_{\nu}^{\prime}-N_{\mu}^{\prime}\right)-\cos \left(N_{\nu}^{\prime}+N_{\mu}^{\prime}\right)\right) \\
& -\frac{1}{2} t\left(b^{2} k^{\prime}\right)_{\mu} \frac{\partial b_{v}^{\prime}}{\partial c_{j}}\left(\sin \left(N_{v}-N_{\mu}\right)-\sin \left(N_{\nu}^{\prime}+N_{\mu}^{\prime}\right)\right\},
\end{aligned}
$$

while by differentiating (33) we find

$$
\begin{equation*}
\frac{\partial \Omega}{\partial c_{j}}=S\left(\frac{\partial \hbar}{\partial c_{j}} \cos N-t \hbar \frac{\partial b}{\partial c_{j}} \sin N\right) \tag{37}
\end{equation*}
$$

Taking the difference of these two expressions, the equations (24) will assume the form

$$
\begin{equation*}
d l_{i}=-S h^{\prime \prime} \cos N+t S h^{\prime \prime \prime} \sin N . \tag{38}
\end{equation*}
$$

the quantities $h^{\prime \prime}$ and $h^{\prime \prime \prime}$ being formed by a process similar to that used in forming h^{\prime}. We have now to integrate the expressions (37) and (38), and substitute the
resulting values of c_{i} and l_{i} in the expressions (12). Representing the perturbations of each quantity by the sign δ, we shall have to increase each value of λ by the quantity

$$
\delta \lambda_{i}=\delta \tau_{i}+t \delta b_{i} .
$$

We here have the time t outside the signs \sin or \cos in both δl_{i}, from the integration of (38), and in $t \delta b_{i}$. We must next find the sum of the terms thus introduced into $\delta \lambda_{i}$. Differentiating this expression we have

$$
\begin{equation*}
\delta \frac{d \lambda_{i}}{d t}=\frac{d l_{i}}{d t}+t \frac{d b_{i}}{d t}+\delta b_{i^{*}} \tag{39}
\end{equation*}
$$

We have now to form the sum of the terms in the second member of this equation which are multiplied by t. Beginning with the second, we have, omitting the index of b

$$
\frac{d b}{d t}=\frac{\partial b}{\partial c_{1}} \frac{d c_{1}}{d t}+\frac{\partial b}{\partial c_{2}} \frac{d c_{2}}{d t}+\text { etc. }
$$

Substituting for $\frac{d c_{i}}{d t}$ their values in (37), this equation becomes

$$
\frac{d b}{d t}=S\left\{h_{1}^{\prime} \frac{\partial b}{\partial c_{1}}+h_{2}^{\prime} \frac{\partial b}{\partial c_{2}}+\ldots \ldots+h_{3 n} \frac{\partial b}{\partial c_{3 n}}\right\} \sin N
$$

which, after multiplying by t, is to be added to the last member of (38). But it will be more convenient, instead of using h^{\prime} and $h^{\prime \prime \prime}$ in these expressions, to retain the expressions $\frac{d^{2} \xi}{d t^{2}} \cdot \frac{d^{2} \eta}{d t^{2}}$, and $\frac{d^{2} \zeta}{d t^{2}}$ in their present analytical form. Representing them, for brevity, by $\xi^{\prime \prime}, \eta^{\prime \prime}$, and $\zeta^{\prime \prime}$, the equations (23) and (24) become

$$
\begin{align*}
& \frac{d c_{j}}{d t}=\frac{\partial \Omega}{\partial l_{j}}-\sum_{i=1}^{i=n}\left\{\xi_{i}^{\prime \prime} \frac{\partial \xi_{i}}{\partial l_{j}}+n_{i}^{\prime \prime} \frac{\partial n_{i}}{\partial l_{j}}+\zeta_{i}^{\prime \prime} \frac{\partial \zeta_{i}}{\partial l_{j}}\right\} \tag{40}\\
& \frac{d l_{j}}{d t}=-\frac{\partial \Omega}{\partial c_{j}}+\sum_{i=1}^{i=n}\left\{\xi_{i}^{\prime \prime} \frac{\partial \xi_{i}}{\partial c_{j}}+n_{i}^{\prime \prime} \frac{\partial n_{i}}{\partial c_{j}}+\zeta_{i}^{\prime \prime} \frac{\partial \zeta_{j}}{\partial c_{j}}\right\} .
\end{align*}
$$

If in the first of these equations we substitute for the derivatives their values in (34)' and (36), it becomes

$$
\frac{\partial c_{j}}{d t}=-S\left\{i_{j} h-\Sigma\left(\xi_{i}^{\prime \prime} i_{j} k_{i}\right)\right\} \sin N+\Sigma\left(\eta_{i}^{\prime \prime} i_{j} k_{i}\right) \cos N+\Sigma\left(\zeta_{i}^{\prime \prime} j_{j} k_{i}^{\prime}\right) \cos N^{\prime}
$$

Substituting in the first of the above expressions for $\frac{d b}{d t}$, we have

$$
\begin{align*}
\frac{d b}{d t}= & -S\left\{\begin{array}{r}
\left.i_{1} \frac{\partial b}{\partial c_{1}}+i_{2} \frac{\partial b}{\partial c_{2}}+\cdots+i_{3 n} \frac{\partial b}{\partial c_{3 n}}\right\} h \sin N \\
\end{array}+S\left\{\Sigma k_{i} \xi_{5}^{\prime \prime}{ }_{i}\left(i_{1} \frac{\partial b}{\partial c_{1}}+i_{2} \frac{\partial b}{\partial c_{2}}+\cdots+i_{3 n} \frac{\partial b}{\partial c_{3 n}}\right)\right\} \sin N\right. \\
& -S\left\{\Sigma k_{i} \eta^{\prime \prime} i^{\prime}\left(i_{1} \frac{\partial b}{\partial c_{1}}+i_{2} \frac{\partial b}{\partial c_{2}}+\ldots+i_{3 n} \frac{\partial b}{\partial c_{3 n}}\right)\right\} \cos N \tag{41}\\
& -S\left\{\Sigma k_{i}^{\prime} \zeta^{\prime \prime \prime}\left(j_{1} \frac{\partial b}{\partial c_{2}}+j_{2} \frac{\partial b}{\partial c_{2}}+\ldots+j_{3 n} \frac{\partial b}{\partial c_{3 n}}\right)\right\} \cos N^{\prime} .
\end{align*}
$$

We have next, in the second of equations (40) to substitute the expressions for the derivatives in (37)' and (37)", retaining only the terms multiplied by t. This gives by substituting for b its developed expression

$$
\begin{align*}
& b=i_{1} b_{1}+i_{2} b_{2}+\ldots+i_{3 n} b_{3 n} \\
& \frac{1}{t} \frac{d l_{i}}{d t}=S\left\{\quad i_{1} \frac{\partial b_{1}}{\partial c_{i}}+i_{2} \frac{\partial b_{2}}{\partial c_{i}}+\ldots .+i_{3 n} \frac{\partial b_{3 n}}{\partial c_{i}}\right\} \pi \sin N \\
& -S\left\{\Sigma \xi_{i}^{\prime \prime} k_{i}\left(i_{1} \frac{\partial b_{1}}{\partial c_{i}}+i_{2} \frac{\partial b_{2}}{\partial c_{i}}+\ldots .+i_{3 n} \frac{\partial b_{3 n}}{\partial c_{i}}\right)\right\} \sin N \tag{42}\\
& +S\left\{\sum_{r_{i}^{\prime \prime}} k_{i}\left(i_{1} \frac{\partial b_{1}}{\partial c_{i}}+i_{2} \frac{\partial b_{2}}{\partial c_{i}}+\ldots .+i_{3 n} \frac{\partial b_{3 n}}{\partial c_{i}}\right)\right\} \cos N \\
& +S\left\{\Sigma \zeta_{i}^{\prime \prime} k_{i}^{\prime}\left(j_{1} \frac{\partial b_{1}}{\partial c_{i}}+j_{2} \frac{\partial b_{2}}{\partial c_{i}}+\ldots .+j_{3 n} \frac{\partial b_{3 n}}{\partial c_{i}}\right)\right\} \cos N^{\prime} .
\end{align*}
$$

Adding this expression to (41), we find that the sum reduces to a series of terms each of which has a factor of the form

$$
\frac{\partial b_{i}}{\partial c_{j}}-\frac{\partial b_{j}}{\partial c_{i}}
$$

By (31) these factors are all zero. Hence the terms of (39) multiplied by t destroy each other, and we have

$$
\begin{equation*}
\delta \frac{d \lambda_{i}}{d t}=\left(\frac{d l_{i}}{d t}\right)+\delta b_{i}, \tag{43}
\end{equation*}
$$

the parenthesis around $\frac{d l_{i}}{d t}$ indicating that all the terms multiplied by the time in that expression are to be omitted; in other words, that, in taking the derivatives of Ω, ξ, η, and ζ with respect to c_{i}, we are only to consider the coefficients h, k, and k^{\prime} as functions of these quantities, and are not to vary b_{1}, b_{2}, etc.

§ 7. Form of the Second Approximation.

The rest of our process is now as follows: By integrating (37) and (38), the last member of (38) being omitted, we have

$$
\begin{gathered}
\delta c_{j}=S \frac{h_{j}^{\prime}}{b} \cos N \\
\left(\delta z_{j}\right)=-S \frac{h_{j}^{\prime \prime}}{b} \sin N .
\end{gathered}
$$

The co-ordinates ζ, n, and ζ in (12) being expressed as functions of the quantities c_{j} and l_{j}, we are to suppose these quantities increased by their perturbations, that is, we are to find

$$
\delta \xi=\Sigma \frac{\partial \xi}{\partial c_{j}} \delta c_{j}+\Sigma \frac{\partial \xi_{\xi}}{\partial l_{j}} \delta l_{j 2}
$$

or, since we have replaced l_{i} by λ_{i},

$$
\delta \xi=\Sigma \frac{\partial \xi}{\partial c_{j}} \delta c_{j}+\Sigma \frac{\partial \xi}{\partial \lambda_{j}} \delta \lambda_{j} .
$$

In (43) we have

$$
\delta b_{i}=\Sigma_{j} \frac{\partial b_{i}}{\partial c_{j}} \delta c_{j}=S \sum_{j=1}^{j=3 n} \frac{h_{j}^{\prime}}{b} \frac{\partial b_{i}}{\partial c_{j}} \cos N,
$$

and, integrating,

$$
\begin{aligned}
& \delta \lambda_{i}=\left(\delta l_{i}\right)+\int \delta b_{i} d t \\
& \left.=-S\left\{\frac{h_{i}^{\prime \prime}}{b}-\sum_{j=1}^{j=3 n} \frac{h_{j}^{\prime}}{b^{2} \partial b_{j}}\right\}\right\} \sin N,
\end{aligned}
$$

which, for brevity, we may represent by
putting

$$
\begin{equation*}
\delta \lambda_{i}=S_{v} L_{i} \sin N \tag{44}
\end{equation*}
$$

$$
L_{i}=-\frac{h_{i}^{\prime \prime}}{b}+\sum_{j=1}^{j=3 n} \sum_{j}^{h_{j}^{\prime}} \frac{\partial b_{i}}{\partial c_{j}} .
$$

In adding the efiect of the perturbations δc_{i} to ξ, η, and ζ, we are to vary only k, the expressions for $\delta \xi$, etc., being

$$
\begin{aligned}
& \delta \xi=S_{\mu}\left\{\delta k \cos N-k_{i} \sin N\left(i_{1} \delta \lambda_{1}+i_{2} \delta \lambda_{2}+\cdots+i_{3 n} \delta \lambda_{3 n}\right)\right\} \\
& \delta \eta=S_{\mu}\left\{\delta k \sin N+k^{\prime} \cos N\left(i_{1} \delta \lambda_{1}+i_{2} \delta \lambda_{2}+\cdots+i_{3 n} \delta \lambda_{3 n}\right)\right. \\
& \delta \zeta=S_{\mu}\left\{\delta k^{\prime} \sin N^{\prime}+k^{\prime} \cos N^{\prime}\left(j_{1} \delta \lambda_{1}+j_{2} \delta \lambda_{2}+\cdots+j_{3 n} \delta \lambda_{3 n}\right)\right\}
\end{aligned}
$$

We are to put in these expressions

$$
\begin{align*}
\delta k & =\Sigma_{i} \frac{\partial k}{\partial c_{i}} \delta c_{i} \\
& =S_{y}\left(\sum_{i} \frac{h_{i}^{\prime}}{b} \frac{\partial k^{\prime}}{\partial c_{i}}\right) \cos N \tag{45}
\end{align*}
$$

and the values of $\delta \lambda$ in (44). We thus find

$$
\begin{aligned}
& \delta_{\zeta}=\frac{1}{2} S_{\mu, \nu}^{2}\left\{\Sigma_{i}\left(\frac{h_{i}^{\prime}}{b} \frac{\partial \hbar_{i}}{\partial c_{i}}\right)_{\nu}+k_{\mu}\left(i_{1} L_{1}+i_{2} L_{2}+\ldots .+i_{3 n} L_{3 n}\right)_{\nu}\right\} \cos \left(N_{\mu}+N_{v}\right) \\
& +\frac{1}{2} S_{\mu, \nu}^{2}\left\{\Sigma_{i}\left(\begin{array}{c}
h_{i}^{\prime} \\
b \\
b \\
\partial c_{i}
\end{array}\right)_{\nu}-k_{\mu \mu}\left(i L_{1}+i_{2} L_{2}+\ldots .+i_{3 n} L_{3 n}\right)_{\nu}\right\} \cos \left(N_{\mu}-N_{\nu}\right) \\
& \delta n=\frac{1}{2} S_{\mu, \nu}^{2}\left\{\Sigma_{i}\left(\frac{h_{i}^{\prime} \partial k}{b} \partial c_{i}^{-}\right)+k_{\mu}\left(i_{1} L_{1}+i_{2} L_{2}+\ldots .+i_{3 n} L_{3 n}\right)_{v}\right\} \sin \left(N_{\mu}+N_{v}\right) \\
& +\frac{1}{2} S_{\mu, v}^{2}\left\{\Sigma_{i}\left(\frac{h_{i}^{\prime}}{b} \frac{\partial k}{\partial c_{i}}\right) v-k_{\mu}\left(i_{1} L_{1}+i_{2} L_{2}+\ldots+i_{3 n} L_{3 n}\right)_{v}\right\} \sin \left(N_{\mu}-N_{v}\right) \\
& \delta \zeta=\frac{1}{2} S_{\mu, \nu}^{2}\left\{\Sigma_{i}\left(\frac{h_{i}^{\prime}}{b} \frac{\partial k^{\prime}}{\partial c_{i}}\right)_{v}+k_{\mu}^{\prime}\left(j_{1} L_{1}+j_{2} L_{2}+\ldots+j_{3 n} L_{3 n}\right)_{v}\right\} \sin \left(N_{\mu}^{\prime}+N_{v}\right) \\
& +\frac{1}{2} S_{\mu, v}^{2}\left\{\Sigma_{i}\left(\frac{h_{i}^{\prime}}{b} \frac{\partial k^{\prime}}{\partial c_{i}}\right)_{v}-{k_{\mu}^{\prime}}_{\mu}^{\prime}\left(j_{1} L_{1}+j_{2} L_{z}+\ldots+j_{3 n} L_{3 n}\right)_{v}\right\} \sin \left(N_{\mu}^{\prime}-N_{v}\right) \\
& \text { Since, in } N_{\mu} \text { we have } \Sigma i=1 \text {, } \\
& \text { while in } N_{v} \text { " " } \Sigma i=0 \text {, }
\end{aligned}
$$

it follows that all these terms will be of the same form with those already contained in ξ, n, and ζ (12).

In the preceding integration we have tacitly supposed the coefficient of the time, b, never to vanish in any case. But some of the values of N will necessarily be zero, and in this case, instead of having

$$
\int \frac{k}{t} d t \cos N=\frac{k}{b} \sin N
$$

we must put

$$
\int k d t \cos N=k t
$$

The only terms of this form are found in δl. If, in (38), we represent the coefficient of the vanishing term by $h_{0}^{\prime \prime}$, we shall have for the terms in question

$$
\varepsilon l=-h_{0}^{\prime \prime}{ }_{0} t
$$

This adds to λ the same expression, and is equivalent to diminishing b by the quantity $h_{0}^{\prime \prime}$. We make this change not only in the original terms of $\xi_{,}, \eta$, and ζ, but also in the terms of $\delta \xi, \delta \eta$, and $\delta \zeta$, because the change will only affect them by quantities of the second order, which we have rejected throughout.

Making these changes, the expressions

$$
\xi+\delta \xi, \quad n+\delta n, \quad \text { and } \zeta+\delta \zeta,
$$

will now satisfy the differential equations (11) to quantities of the second order, while their form will still be in all respects the same as in (12). As we have made this one approximation without changing the form of the original integrals, so may we make any number of successive approximations. We may, therefore, regard the form

$$
\begin{aligned}
& \xi=S k \cos \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}\right) \\
& n=S k \sin \left(i_{1} \lambda_{1}+i_{2} \lambda_{2}+\cdots+i_{3 n} \lambda_{3 n}\right) \\
& \zeta=S k \sin \left(j_{1} \lambda_{1}+j_{2} \lambda_{2}+\ldots+j_{3 n} \lambda_{3 n}\right),
\end{aligned}
$$

where each λ is of the form

$$
\lambda_{i}=l_{i}+b_{i} t
$$

l_{i} being an arbitrary constant, and k, k_{k}^{\prime}, and b_{i} being each functions of $3 n$ other arbitrary constants, while

$$
\text { and } \begin{aligned}
& i_{1}+i_{2}+\ldots+i_{3 n}=1 \\
& j_{1}+j_{2}+\ldots .+j_{3 n}=0
\end{aligned}
$$

in each separate term under the sign S, to be a general form in which the relative co-ordinates of n planets, revolving in nearly circular orbits with a nearly uniform motion, may be developed when the approximations are continued indefinitely. This may, therefore, be regarded as the general form of the integrals of planetary motion.

§ 8. General Theorem.

If we express the relative living force of the entire system in terms of the canonical elements, the coefficients of the time $b_{1}, b_{2}, \ldots \ldots b_{3 n}$ will each be equal to the negative
of the derivative of the constant term of the living force with respect to its corresponding canonical element. That is to say, if we represent the constant term of the living force by V, and suppose V to be expressed in terms of the canonical elements, we shall have

$$
\begin{aligned}
& b_{1}=-\frac{\partial V}{\partial c_{1}} \\
& b_{2}=-\frac{\partial V}{\partial c_{2}} \\
& \vdots \\
& b_{3 n}=-\frac{\partial \dot{V}}{\partial c_{3 n}} .
\end{aligned}
$$

From the expressions (9) for x, and the corresponding expressions for y and z, it will be seen that the expression for the relative living force is

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{\alpha_{10}}{\sqrt{m_{0}}} \xi_{1}^{\prime}+\frac{\alpha_{20}}{\sqrt{ } m_{0}} \xi_{2}^{\prime}+\ldots\right)^{2} \\
+ & \frac{1}{2}\left(\frac{\alpha_{11}}{\sqrt{m_{1}}} \xi_{1}^{\prime}+\frac{\alpha_{21}}{\sqrt{m_{1}}} \xi_{2}^{\prime}+\ldots\right)^{2} \\
+ & \text { etc. etc. } \\
+ & \text { corresponding terms in } \eta^{\prime} \text { and } \zeta^{\prime} .
\end{aligned}
$$

Here the coefficients of ξ^{\prime}, etc., are those which we have shown to form an orthogonal system, and, by the properties of such a system, the expression reduces to

$$
\frac{1}{2} \Sigma_{i}\left(\xi^{\prime 2}{ }_{i}+\eta_{i}^{\prime 2}+\zeta^{\prime \prime 2}{ }_{i}\right) .
$$

Substituting for $\xi^{\prime}, \eta^{\prime}$, and $\zeta^{\prime \prime}$ their periodic expressions

$$
\begin{aligned}
& \xi^{\prime}=-S b k \sin N \\
& \eta^{\prime}=S b k \cos N \\
& \zeta^{\prime}=S b^{\prime} k^{\prime} \cos N^{\prime},
\end{aligned}
$$

the constant term of the living force is found to be

$$
V=\frac{1}{2} S^{\prime}\left(b^{2} k^{2}+\frac{1}{2} b^{2} k^{2}\right),
$$

the sign S^{\prime} having the signification given on page 12. Compare this expression with that of c_{i} in (21). Multiply each c_{i} by its corresponding b_{i}, and add all the products, remembering that

$$
\begin{aligned}
& b=i_{1} b_{1}+i_{2} b_{2}+\text { etc. for } \xi \text { and } \eta, \text { and } \\
& b=j_{1} b_{1}+j_{2} b_{2}+\text { etc. for } \zeta .
\end{aligned}
$$

We thus find, from the expression for V just given,

$$
2 V=b_{1} c_{1}+b_{2} c_{2}+b_{3} c_{3}+\ldots+b_{3 n} c_{3 n} .
$$

Differentiating this expression with respect to c_{i} and substituting $\frac{\partial b_{i}}{\partial c_{j}}$ for $\frac{\partial b_{j}}{\partial c_{i}}$, we have

$$
\begin{equation*}
2 \frac{\partial V}{\partial c_{i}}=b_{i}+c_{1} \frac{\partial b_{i}}{\partial c_{1}}+c_{2} \frac{\partial b_{i}}{\partial c_{2}}+\cdots \cdots+c_{3 n} \frac{\partial b_{i}}{\partial c_{3 n}} . \tag{46}
\end{equation*}
$$

We have now to show that b is a homogeneous tunction of the degree -3 in $\left(c_{1}, c_{2}, \ldots c_{3 n}\right)$. Let us represent such a function of the nthe degree by $\left[c^{(n)}\right]$.

Let us represent the linear elements of the system by a_{1}, a_{2}, etc. Since x, y, z, and ζ, n, ζ, are all linear co-ordinates, we have in the expressions (16) of the latter

$$
k=\left[a^{(1)}\right] .
$$

Every time we differentiate these expressions with respect to the time, we multiply the coefficicnts by b, a linear function of b_{1}, b_{2}, etc. Hence

$$
\frac{d^{2} \zeta}{d t^{2}}=\left[u^{(1)}, b^{(2)}\right]
$$

The form of the potential Ω shows that

$$
\Omega=\left[a^{(-1)}\right],
$$

a result which arises from the law of attraction proportional to the inverse square of the distance. Whence

$$
\frac{\partial \Omega}{\partial \xi}=\left[a^{(-2)}\right] .
$$

In order that the differential equation $\frac{d^{2} \xi}{d t^{2}}=\frac{\partial \Omega}{\partial \xi}$ may be satisfied identically we must have

$$
\left[a^{(1)}, b^{(2)}\right]=\left[r^{(-2)}\right],
$$

or

$$
b^{(2)}=\left[a^{(-3)}\right] \text { or } b=\left[a^{\left(-\frac{3}{2}\right)}\right] \text {. }
$$

The expression (21) for c_{i},, being linear in a, is of the form

$$
c_{i}=\left[b^{(1)} a^{(2)}\right]=\left[\alpha^{(3)}\right]=\left[b^{(-3)}\right] .
$$

Hence, when we express b_{i} in terms of c_{1}, c_{2}, etc., we must have

$$
b_{i}=\left[c^{(-3)}\right] .
$$

The fundamental property of homogeneous functions now gives

$$
\Sigma_{j} c_{j} \frac{\partial b_{i}}{\partial \mathbf{c}_{j}}=-3 b_{i} .
$$

Substituting in (46), we find

$$
b_{i}=-\frac{\partial V}{\partial c_{i}}
$$

which is the theorem enunciated.
This theorem cannot be directly employed to obtain the values of b_{i}, for the reason that V camnot be determined as a function of the canonical constants until the equations of motion are completely integrated.

§ 9. Summary of Results.

The following is a brief summary of some of the results which follow from the preceding investigation.

We first suppose that we have found expressions for ξ, n, and ζ of the form (12), such as identically satisfy the differential equations (11). We also conceive the
quantities l_{k} and b as expressed in terms of $3 n$ canonical constants $c_{1}, c_{2}, c_{3} \ldots \ldots$ $c_{3 n}$, so chosen that the expression

$$
\left(c_{j}, l_{k}\right)=\sum_{i=1}^{i=n}\left\{\frac{\partial \xi_{i}}{\partial c_{j}} \partial \xi_{i}^{\prime} l_{k}-\frac{\partial \xi_{i}^{\prime}}{\partial c_{k}} \frac{\partial \xi_{i}^{\prime}}{\partial l_{j}}+\frac{\partial \eta_{i}}{\partial c_{j}} \frac{\partial \eta_{i}^{\prime}}{\partial l_{k}} \text { - etc. }\right\}
$$

shall reduce to unity when $k=j$, and shall vanish whenever any other of the $6 n$ quantities $c_{1} \ldots c_{3 n}, l_{1} \ldots l_{3 n}$ is substituted for l_{k}. Then:-

Theorem I.-If, taking the entire series of $3 n$ co-ordinates represented by $\zeta_{1} \ldots \ldots \xi_{n}, n_{1} \ldots n_{n}, \zeta_{1} \ldots \zeta_{n}$, we multiply the square of each coefficient k by the coefficient of the time in the corresponding angle $i_{1} \lambda_{1}+i_{2} \lambda_{2}+$ etc. (that is, by the corresponding quantity $i_{1} b_{1}+i_{2} b_{2}+$ etc., or $j_{1} b_{1}+j_{2} b_{2}+$ etc.), and by the coefficient i_{j} or j_{j} of any one of the λ 's, as λ_{j}, which λ is to be the same throughout, then all the constants c, except c_{j}, will identically disappear from the sum of all these products, which sum will reduce identically to $2 c_{j}$. This theorem is expressed in equation (21).

Theorem II.-The $3 n$ coefficients of the time, b_{1}, b_{2}, etc., considered as functions of c_{1}, c_{2}, etc., fulfil the $\frac{3 n(3 n-1)}{2}$ conditions expressed by

$$
\frac{\partial b_{i}}{\partial c_{j}}=\frac{\partial b_{j}}{\partial c_{i}},
$$

where i and j may have any values at pleasure from 1 to $3 n$. They are therefore all the partial derivatives of some one function of $c_{1}, c_{2} \ldots c_{3 n}$.

Theorem III.-This function is the negative of the constant term of the expression for the living force in terms of c_{1}, c_{2}, etc., as shown in the last section.

Theorem IV.-The sum of the canonical elements $c_{1}, c_{2} \ldots c_{3 n}$ is equal to the "constant of areas," this constant being either the sum of the canonical areolar velocities on the plane of $X Y$, or, which is the same, the sum of the products obtained by multiplying the actual areolar velocity of each body around any point, fixed with reference to the centre of gravity of the system, by the mass of the body.

This theorem is demonstrated as follows: The sum

$$
\sum_{i=0}^{i=n} m_{i}\left(x_{i} y_{i}^{\prime}-x_{i}^{\prime} y_{i}\right)
$$

is known to be a constant by the principle of conservation of areas. From the expression (9) for x_{i}, and the corresponding expression for y_{i}, introducing the quantity $\alpha_{0 i}$ as in (8), we have

$$
\left(x_{i} y_{i}^{\prime}-x_{i}^{\prime} y_{i}\right)=\sum_{j=0}^{j=n} \sum_{k=0}^{n=n} \frac{\alpha_{j i} \alpha_{k i}}{m_{i}^{2}}\left(\xi_{i} n_{k}^{\prime}-\xi_{j}^{\prime} n_{k}\right) ;
$$

multiplying by m_{i}, and then summing with respect to i, we have

$$
\sum m_{i}\left(x_{i} y_{i}^{\prime}-x_{i}^{\prime} y_{i}\right)=\sum_{j=0}^{j=n} \sum_{k=0}^{k=n}\left\{\sum_{i=0}^{i=n} \frac{\alpha_{j i} \alpha_{k i}}{m_{i}}\right\}\left(\xi_{j} n_{k}^{\prime}-\xi_{j}^{\prime} n_{k}\right)
$$

By the condition of the orthogonal system (8) the sum in brackets vanishes whenever j is different from k, and becomes unity when these indices are equal. Moreover in (5) ξ_{0}^{\prime} and r_{0} vanish whenever the origin of co-ordinates is fixed relatively
to the centre of gravity of the system. The right-hand member of the last equation therefore becomes

$$
\sum_{j=1}^{j=n}\left(\xi_{j} n_{j}^{\prime}-\xi_{j}^{\prime} n_{j}\right) .
$$

Substituting for ξ, η, ξ^{\prime}, and η^{\prime} their expressions (16), the constant term of this expression becomes
$S^{\prime} b k^{2}$.
But if we add all the values of c_{j} in (21), noting that by the form of the general integrals we have

$$
\begin{aligned}
& i_{1}+i_{2}+i_{3}+\ldots \ldots+i_{3 n}=1 \\
& j_{1}+j_{2}+j_{3}+\ldots .+j_{n 3}=0
\end{aligned}
$$

we find, also,

$$
\Sigma_{j} c_{j}=S^{\prime} b h^{2}
$$

and hence

$$
\Sigma\left(\xi \eta^{\prime}-\xi^{\prime} \eta\right)=\Sigma c .
$$

Theorem V.-The constant part of the living force, which is itself equal to the constant H in the integral of living forces, usually expressed in the form

$$
\Omega-T=H
$$

is represented by

$$
\frac{1}{2}\left(b_{1} c_{1}+b_{2} c_{2}+\ldots+b_{3 n} c_{3 n}\right)
$$

as already shown in § 9 .
The constant part of Ω itself is therefore equal to

$$
b_{1} c_{1}+b_{2} c_{2}+\ldots+b_{3 n} c_{3 n} .
$$

The equality of H to the constant part of T may be shown by the preceding theory, or it may be easily deduced directly from the theorem of living forces as shown by Jacobi. (Vorlesungen über Dynamik, p. 29.)

The conditions that the Lagrangian coefficients $\left(a_{i}, l_{j}\right)$, the sum of the canonical areolar velocities, and the difference between the potential and living force, are all constant, give rise to a number of relations between the quantities b, k, and their derivatives with respect to c, which I have not yet found of any use in the operations of integration. I therefore omit to cite them, especially as their complete expressions are rather complex.

The forms which we have been considering are those in which it would be necessary to develop the expressions for co-ordinates of the planets, if we wished these expressions to hold true for all time. The usual expressions are sufficiently correct for a few centuries, but fail entirely when we extend the time beyond certain limits. But, in the case of the planetary system, we are obliged to adhere to them for the reason that formulas developed in multiples of the 23^{*} independent arguments of that system would be umanageable in practice. But, in the case of the subsidiary systems, as the Tellurian and Jovian for instance, the secular

[^67]variations of the orbits are so rapid that the approximation in powers of the time fails even for present uses. Hence, the lunar theory, considered as a problem of three bodies only, is always treated in a manner analogous to that in which the general theory of planetary motion has been considered in the present paper, the three arguments introduced by the moon being her mean longitude, and the longitudes of her node and perigee. In the theory of Delaunay the analogy in question is most easily seen. His L, G, H, represent three of our canonical elements c_{i}, the constant term of R, to which he constantly approximates, is the constant part of so much of the expression for the living force as contains L, G, and H, by differentiating which with respect to the latter quantities, he obtains the expressions for the motions of the three arguments.

The theory of Jupiter's satellites has been treated by M. Souillart in such a manner that the co-ordinates may contain, instead of the longitudes of the periioves, the varying angles on which these longitudes depend. His analytical theory is given in the Annales de l'Ecole Normale Supérieure, Vol. 2, 1865.

It may be hoped that the general view of the subject taken in the present paper will afford a means of introducing a more rigorous system of integration in such cases. One of the special problems growing out of this general theory will be the determination of the coefficients of the time, b_{1}, b_{2}, etc., either in terms of the canonical constants c_{1}, c_{2}, etc., or of the largest of the coefficients k, in the expressions for the co-ordinates of the several planets. These coefficients are, approximately, the mean distances of the planets. The quantities b ought, perhaps, to appear as the roots of an equation of the 3 nth degree, but the writer has not yet succeeded in forming any expression fitted to give rise to such an equation, except one in which only the squares of the quantities in question appear.

```
PUBLISHED BY THE SMXTHSONIAN INSTITUTION,
WASHINGTON CITY,
dECEMbER, 1874.
```

-

SMITHSONIAN CONTRIBUTIONS TO KNOWLEDGE.
\qquad

THE

HAIDAH INDIANS

or

QUEEN CHARLOTTE'S ISLANDS, BRITISH COLUMBIA.

WITH A

- BRIEF DESCRIPTION OF THEIR CARVINGS, TATTOO DESIGNS, ETC.

BX
JAMES G. SWAN,
pORT TOWNSEND, WASHINGTON TERIITORY.

PHILADELPHIA: COLLINS, PRINTER, 705 JAYNE STREET.

ADVERTISEMENT.

This Memoir was referred for examination to Dr. James C. Welling, LL.D., President of Columbian University, Washington, D. C., and to Dr. George A. Otis, of the Surgeon General's Office, U. S. Army.

Their report states that "the Memoir is a valuable contribution to our general knowledge of anthropology and archæology, while yielding besides a special contingent to the ethnology of the North American continent. Under the latter of these heads it raises some questions which seem of great significance, and which it is to be hoped will lead to further investigation."

JOSEPH HENRY,
Secretary S. I.

Smithsonian Institution,
Washington, July, 1874.

THE HAIDAH INDIANS OF QUEEN CHARLOTTE'S ISLANDS.

Queen Charlotere's Islands are a group in the Pacific Ocean, lying off the northwest coast of North America about seventy-five miles northwest of Vancouver's Island, between latitude $51^{\circ} 30^{\prime}$ and $54^{\circ} 20^{\prime}$ north, and at a distance from the mainland varying from one hundred miles at their southern extremity to about sixty miles at the northern portion of the group.

They were first discovered by Captain Cook, R. N., in the year 17\%6, and it is said that he landed on the most northerly portion near a spot now known as Cook's Inlet. Captain Juan Perez, a Spanish navigator, had sighted this land two years previously, but it was not taken formal possession of by either the English or Spanish until 1787, when Captain Dixon took possession in the name of King George the Third, and named the group after the consort of the King, "Queen Charlotte's Islands."

These Islands form together a healthy picturesque territory, rich in natural resources, and well adapted to colonization. Nevertheless, for the space of nearly a century no attempt has been made by the English to colonize them. There they lie waste and fallow, yet marvellously productive, and awaiting nothing but capital, enterprise, and skill to return manifold profit to those who will develop their resources.

The names of this group are North, Graham's, Moresby's, and Prevost.
Graham's and Moresby's Islands are the largest, and constitute at least 95 per cent. of the whole area of the group.

North and Prevost Islands, one at the extreme northwest, and the other at the extreme southeast of the group, are quite small, being only a few miles in area.

There are a great number of small islands and islets around the main group, particularly on the eastern side. Some of these islets are of considerable extent. but are of minor importance when compared with the main group.

The general direction of Queen Charlotte's Islands is northwest and southeast, following the general outline of the coast in that region of the continent.

The widest portion is at the northern end of Graham's Island, a little north of the 54° parallel, and measures, from Cape Fife on the east, to Cape Knox on the west, about sixty nautical miles.

From the 54° parallel the group narrows towards its southern extremity till it is reduced, at Prevost Island, to about one mile.

The whole length of the group from North Point to Cape St. James, its southern extremity, is about one hundred and sixty miles. The islands of the group are separated by three channels. Parry Passage, at the north, separates North Island from Graham's, Skidegate Channel separates Graham's and Moresby's Islands, and Stewart Channel separates Moresby's and Prevost Islands.

These Islands are inhabited by a tribe of Indians called Haida or Hydah, who in manners and customs seem somewhat different from the neighboring tribes of the mainland, and those of Vancouver's Island. The name is spelled Hyder, Haida, or Haidah. I have adopted the latter style as it is more expressive of the true pronunciation of the natives.

In general appearance the Haidahs resemble the natives of the northeastern coast of Asia, who have a marked resemblance to the Tartar hordes and who seem to have extended along the Siberian coast, the Aleutian Islands, and down the American shores as far south as Queen Charlotte's Islands, where this peculiar type of the Indian race ceases, and is succeeded immediately by the Selish or flat-head branch of the North American Indians, who have been classed by Morgan as the Ganowanian family or Bow and Arrow people. I apply the term Selish in this paper to the tribes of Washington Territory and British Columbia south of the 51° parallel of north latitude.

The distinctive features of these two classes of Indians are apparent to the most casual observer. The Haidah, Chimsean, and other tribes north of Vancouver's Island, who are termed by the residents of Puget Sound "Northern Indians," are, as a general rule, of larger stature, better proportion, and lighter complexion than the Selish.

Although there are numerous instances of well-developed individuals among the Vancouver Island tribes, and of small-sized individuals among the Northern, yet the general appearance of the Northern Indians, both men and women, is much larger and finer. This difference is particularly marked in the females. Those of the Haidah and other northern tribes are tall and athletic, while the Selish women are shorter and more given to corpulency.

The Haidah Indians, living on an island separated from the mainland by a wide and stormy strait, are necessarily obliged to resort to canoes as a means of travel, and are exceedingly expert in their construction and management.

Some of their canoes are very large and capable of carrying one hundred persons with all their equipments for a long voyage. But those generally used will carry from twenty to thirty persons; and in these conveyances they make voyages of several hundred miles to Victoria on Vancouver's Island, and from thence to the various towns on Puget Sound.

These canoes are made from single logs of cedar, which attains an immense size on Queen Charlotte's Islands. Although not so graceful in model as the canoes of the west coast of Vancouver's Island and Washington Territory, which are commonly called Chenook canoes, yet they are most excellent sea boats, and capable of being navigated with perfect safety through the storms and turbulent waters of the northwest coast.

The Haidahs bring with them as articles of traffic, furs of various kinds, dogfish, and seal oil, and carvings in wood and stone, as well as ornaments in silver of excellent workmanship, such as bracelets, finger-rings, and ear ornaments.

A peculiar kind of slate-stone is found on Queen Charlotte's Islands, very soft when first quarried, and easily carved into fanciful figures of various kinds, but growing very hard upon exposure to the air, and after being rubbed with oil, which seems to harden and polish it.

These stone carvings are eagerly purchased by persons looking for Indian curiosities, and are generally regarded by casual observers as idols, or objects of worship, or indicative in some manner of their secret or mystic rites. This, however, is an error. None of the tribes of the northwest coast worship idols or any visible symbol of their secret religion, which is confined to the totem, or tomanawas, or guardian spirit of each individual Indian.

But the custom which prevails among them, and seems to be a distinctive feature of this tribe, is that of tattooing their bodies with various designs, all of which are fanciful representations of animals, birds or fishes, either an attempt to represent in a grotesque form those which are known and commonly seen, or their mythological and legendary creations. A recent visit of a party of these Indians to Port Townsend has enabled me to study carefully a varicty of their carvings and tattoo marks, and to ascertain with accuracy their true meaning and signification.

I have forwarded to the Smithsonian Institution, to accompany this memoir, several carvings in wood and stone; and, in order the better to describe them, I have made sketches illustrative of these carvings and also of various tattoo designs, which were copied by me from the persons of the Indians, and also have caused photographs to be taken to still further illustrate this subject.

The first of these carvings which I shall describe is of wood (Plate 2, fig. 1). It is intended to represent one of the carved posts or pillars which are raised in front of the houses of the chiefs or principal men. These pillars are sometimes from fifty to sixty feet high, elaborately carved at a cost of hundreds of blankets; some of the best ones even costing several thousand dollars, consequently, only the most wealthy individuals of the tribe are able to purchase the best specimens.

These pillars are carved out of a single cedar tree, the back hollowed out so as to relieve the weight when raising it in a perpendicular position. They are deeply and firmly set in the earth directly in front of the lodge, and a circular opening near the ground constitutes the door of entrance to the house. The Chimsean Indians, at Fort Simpson, and the Sitka tribes have this style of carved posts, but they set them a short distance from the front of their houses.

The figures carved on these posts are the family totems or heraldic designs of the family occupying the house, and as these Indians build large wooden lodges capable of containing several families, the carvings may be said to indicate the family names of the diffierent occupants.

The chief or head man owns the house, and the occupants are his family and relatives, each one of whom will have on some part of the body a representation in tattooing of the particular figure which constitutes his or her family name or connection.

The chief will have all the figures tattooed on his body to show his connection with the whole.

The principal portion of the body tattooed is the back of the hand and forearm; and a Haidah, particularly the women, can be readily designated from any other northern tribe by this peculiarity.

The carving which I shall next describe is the wooden figure on the left of Sketch No. 2. This has four figures, one above the other. The lowest one is the beaver Tsching. On his head sits the mythological mother of the Haidah tribe, who is named Itl-tads-dah. In her arms she holds the young crow Keet-kie, and on her head is seated the crow Hoo-yéh, bearing in his beak the new moon Koong. His head is surmounted by the Tadn-skillit, a peculiar shaped hat worn only by chiefs or persons of importance. On the top of the Tadn-skitlitik is seated the bear Hoorts.

The legend connected with this carving is, that the beaver Tsching occupies limself by eating the moon, and when he has finished his meal and obliterated it, Itl-tads-dahh sends out Hoo-yéh, the crow, to hunt for a new moon which he brings home in his bill. The duty of Hoorts the bear is to keep watch that all goes on well.

The second carving is of stone (Plate 1, fig. 1), and consists of Tsching the beaver, Slams-kwoin the eagle, and Itt-tads-dah the grandmother. In the under lip of the old woman is seen the staie, an oblong piece of wood or ivory which is inserted in the under lip, and increased in size till the lip is distorted and stretched out of all shape.

This practice was formerly universal, but of late years has fallen somewhat into disuse, particularly with those females who have visited Victoria and seen the customs of civilization.

Carving No. 2 is of stone, and represents two figures, the lower one is Hoorts the bear holding in his paws the Stoo or crayfish. The upper figure is the Tsching or Tsing, the beaver, holding the Tl-kam-kostan or frog in his paws.

The Indian, however xude or grotesque his carvings or paintings may be, is always true to nature. He knows that the bears eat crabs, crayfish, and other littoral marine crustacea, and that the frog is the fresh-water companion of the beaver. Hence, if the carver had reversed the grouping, he would have been laughed at by his friends, for the Indians are keen critics of each other's work, and prone to ridicule.

Stone carving No. 3 represents three figures. The lower one is the Ta7n or sealion; on his head is the Wasko, a mythological animal of the wolf species similar to the Chu-chu-hu-uxl of the Makah Indians. Above the Wasko is the bear, surmounted by a head resembling a human head, but intended to represent the young bear.

The other stone carving (Plate 5, No. 5) is unfinished. It represents two figures: the lower one, the bear, and the upper one, the Scana or killer (Orca ater).

With the exception of the first-named carving, I did not learn of any legend or allegorical history connected with these carvings of the Haidahs. But they will be of interest and value to study at some future opportunity.

The drawings of tattoo designs which accompany the carvings were copied by me from the persons of the Indians who came to my office for that purpose.

The first one (Plate 4, fig. 1) is the Kahatta or codfish. This was tattooed on the breast of Kitkün, a chief of the Laskeek village of Haidahs, on the east side of Moresby's Island.

Kìtkün and his brother Genés-kelos-a carver and tattooer-Kít-kī-gens, one of the head men of the band, and Captain Skedance, chief of the Koona village, with their party gave me the information and descriptions, and from their persons I made the drawings.

Fig. 2 (tattoo mark) is the Oolala, a mythological being, half man, half bird, similar in all respects to the Thunder bird of the Makah Indians. It lives on high mountains enveloped in clouds and mist, causing the loud thunder and sharp lightning, and destructive alike to man or beast.

Fig. 3 (Plate 4) is called Wáslo, another mythological being of the antediluvian age. This represents the ancestors of the present race of wolves. It is similar to the Chu-chu-hu-uxl of the Makahs, and the tradition is, that after the primitive race had produced the present genus of wolf, the Wasko were transformed into the killer (orca ater). The sharp teeth and powerful jaws of the killer, resembling more the mouth of a carnivorous land animal than any of the inhabitants of the water, was undoubtedly the origin of the fable.

Scammon, in his Cetacea of the Northwest Coast, styles them the cannibals of the whale tribe. The Wasko, as I have copied it, was tattooed on the back of the chief Kittūn.

Fig. 4 (Plate 4) is the Scance or killer (Orca ater).
Fig. 5 is the Koone or whale.
Plate 5, Fig. 6, is the Tl-kam-kostan or frog.
Fig. 7 is the Thlama or skate.
Fig. 8, mama-thlon-tona or humming bird.
Plate 3, Fig. 9, is the fish eagle (Koot). This drawing was made by $\overline{\text { Geneskelos, }}$ the painter and tattooer of the tribe.

Plate 6, Fig. 10, is the Chimose or Tchimose, a fabulous animal supposed to drift about in the ocean like a log of wood, floating perpendicularly, and believed by the Haidahs to be very destructive to canoes or to Indians who may fall into its clutches. The tahdn-skilliti or hat shown in the drawing indicates this animal to belong to the genii or more powerful of these mythological beings.

Fig. 11 is the crow, Hooyeh. This is sometimes drawn with a double head.
Fig. 12 is the bear, Hoorts.
Fig. 13 is a young skate, the Billachie of the Makahs and the Cheetha of the Haidahs. The young skate has on each side of its body an elliptical brown spot surrounded by a ring of bright yellow, and a brown ring outside of all. As the skate grows large this spot disappears. I have noticed it only on very small ones, and the Haidahs informed me that it is from this peculiar spot that they got their elliptical designs, which are to be seen in many of their paintings, and particularly in Fig. 12.

Figs. 14, 15, and 16 (Plate 7), representing the Skamsom or thunder bird, squid 2
(octopus), noo, and the frog, Tl-Kam-kostan, were copied from the tattooed marks on Kitkagens; the skamson or skamsquin on his back, the noo on front of eaph thigh, and the Tl-kam-kostan on each ankle.

The designs which I have copied and described are but a portion of the whole which were tattooed on the persons of this party; but the limited time they remained did not enable me to make a very extended examination. Enough, however, has been obtained to show that this subject is one of great ethnological value, and if followed up with zeal and intelligence would be certain to produce interesting results.

The method by which I determined with accuracy the meaning of these various carvings and tattoo designs was by natural objects, by alcoholic specimens of frogs and crayfish, by dried specimens, by carvings of bears and seals, and by pictures, and by the mythological drawings of similar objects which I had previously obtained and determined among the Makahs.

The Haidahs, in explaining to me the meaning of their various designs, pointed to the articles I had, and thus proved to me what they meant to represent.

The tattoo marks of the codfish," squid, humming-bird, etc., never could have been determined from any resemblance to those objects, but by having the specimens and pictures before me they could easily point each one out. Nor was I satisfied until I had submitted my drawings to other Indians, and proved by their giving the same names to each, that my first informant had told me correctly. The allegorical meaning, however, will require for determination time and careful study. Indians are very peculiar in giving information relative to their myths and allegories. Even when one is well acquainted with them and has their confidence, much caution is required, and it is useless to attempt to obtain any reliable information unless they are in the humor of imparting it.

I have observed another peculiarity among the Haidahs. They do not seem to have any particular standard style of drawing their figures; consequently, unless a person is familiar enough with the general idea to be conveyed, it would be difficult to determine the meaning either of a carving or drawing, unless the Indian was present to explain what he intended to represent. For instance, Figs. 6 and 16 are drawn by two different Indians, and both represent the frog. The bear, beaver, and Wasko or wolf, are different in the carvings from the tattoo designs, and so of other tattoo figures. Still, there are certain peculiarities which, once known, will enable one readily to determine what the correct meaning is. I have even known the Indians themselves to be at a loss to tell the meaning of a design. I will cite one instance illustrative of this. One of the Haidahs brought me a bone which he had rudely carved to resemble an animal ; I pronounced it without hesitation to be a lizard. He said he would leave it with me till the next day, and would then tell me what it was. I showed it to several Indians in the mean time, and they thought as I did, that it was a lizard or newt. Any person on the Atlantic coast would have pronounced it an alligator. After we had exhausted our guessing, the Indian who carved it said it was an otter, and pointed to its teeth which were the only distinguishing features to prove that it was not a lizard or a crocodile.

The carvings of the pillars are thought by many persons to resemble Chinese or

Japanese work, and in order to satisfy myself upon that point, I showed the carvings to a party of very intelligent Japanese who visited Port Townsend several months since. They examined them carefully and critically, and pronounced them entirely unlike anything they had ever seen in their own country. In fact, they seemed as much interested with the specimens as our own people. I have seen similar carvings by the natives of the Feejee Islands, but on the northwest coast they are confined almost exclusively to the Haidahs on Queen Charlotte's Island, and to the Chimseans on the mainland. The carvings I particularly allude to are those representing several figures one above the other, as shown by the sketches and photographs of the carved posts or pillars placed before the entrances to their houses.

The limited time the Haidahs were at Port Townsend did not enable me to ascertain the origin of this system of carving, or of their custom of tattooing their bodies; what little information I did obtain was given with evident reluctance; but, as we became more acquainted and they began to understand what my object was in obtaining information, they became more communicative, and promised me that this present summer (1874) they would again be here and would bring more carvings and would give me all the information I wished.

Plate No. 2, fig. 8, shows a tattoo design of a halibut, and a painting on a buckskin cape representing the thunder bird of the Sitka Indians, worn by a medicine man during his incantations.

The belief in the thunder bird is common with all the tribes of the northwest coast, and is pictured by each tribe according to their fancy. I have traced this allegory from the Chenooks, at the mouth of the Columbia, through all the coast tribes to Sitka. The general idea is the same throughout; it is a belief in a supernatural being of gigantic stature, who resides in the mountains and has a human form. When he wishes for food he covers himself with wings and feathers as one would put on a cloak. Thus accoutred, he sails forth in search of prey. His body is of such enormous size that it darkens the heavens, and the rustling of his wings produces thunder.

The lightning is produced by a fish, like the Hypocampus, which he gets from the ocean and hides among his feathers. When he sces a whale he darts one of these animals down with great velocity, and the lightning is produced by the creature's tongue, which is supposed to be like that of the serpent. This is the general idea of the mythological legend, slightly altered in the narrative by different tribes and differently depicted by various painters.

The Haidahs seem to have the greatest variety of designs, and they seem to be the principal tribe who tattoo themselves to any extent. Where they acquired the practice or from whom it was learned, it will be difficult to determine. This is an interesting ethnological question, and worthy of further investigation.

Among other customs of the Haidahs which I observed is the practice of gambling, which is common among all the North American Indians.

In my paper on the Indians of Cape Flattery, published by the Smithsonian Institution (No. 220), I have given an account of the gambling implements of the Makahs, which consist of circular disks of wood, highly polished and marked on
the edges to designate their value. The Haidahs, instead of disks, use sticks or pieces of wood four or five inches long, and a quarter of an inch thick. These sticks are rounded and beautifully polished. They are made of yew, and each stick has some designating mark upon it. There is one stick entirely colored and one entirely plain. Each player will have a bunch of forty or fifty of these sticks, and each will select either of the plain sticks as his favorite, just as in backgammon or checkers the players select the black or white pieces. The Indian abōut to play, takes up a handful of these sticks, and, putting them under a quantity of finely-separated cedar bark, which is as fine as tow and kept constantly near him, he divides the pins into two parcels which he wraps up in the bark and passes them rapidly from hand to hand under the tow, and finally moves them round on the ground or mat on which the players are always seated, still wrapped in the fine bark, but not covered by the tow. His opponent watches every move that is made from the very first with the eagerness of a cat, and finally, by a motion of his finger, indicates which of the parcels the winning stick is in. The player, upon such indication, shakes the sticks out of the bark, and with much display and skill throws them one by one into the space between the players till the piece wanted is reached, or else, if it is not there, to show that the game is his. The winner takes one or more sticks from his opponent's pile, and the game is decided when one wins all the sticks of the other.

As neither of the players can see the assortment of the sticks, the game is as fair for one as the other, and is as simple in reality as "odd or even" or any child's game. But the ceremony of manipulation and sorting the sticks under the bark tow gives the game an appearance of as much real importance as some of the skilful combinations of white gamblers.

The tribes north of Vancouver's Island, so far as my observation has extended, use this style of sticks in gambling, while the Selish or Flat-heads use the disks. Some persons have termed this game Odd and Even, and others have designated it Jack Straws; but the game as played by the Haidahs is as I have described it.

Kitkūn, the chief whom I have alluded to, came to my office one day with one of his tribe, and took quite an interest in explaining the game. The two men played slowly at first, the Chief explaining as the game proceeded, till finally they played with their usual earnestness and rapidity, and I found that the game, with its accompaniment of singing and beating time, was quite as exciting and as interesting as any Indian game I ever witnessed. Sometimes the game is played between only two persons, at other times a dozen may be seen seated on each side, particularly when different bands meet. Then the excitement is intense, and the game is kept up day and night without intermission, and some Indians lose everything they possess, and come out of the play stark naked and remain in a state of nudity till some friend gives them a blanket or an old shirt.

It is probable that the Haidahs have other gambling games, but I have seen only this kind, and the game which Kitkūn explained to me was played with a bunch of sticks which I obtained in Sitka, showing that the northern tribes have the same game with sticks, in common, as the Selish or Flat-head Indian tribes have a common game with disks.

The Haidah Indians have another custom which I have not observed among any of the tribes of the northwest coast, with the exception of these people. It is the practice of cremation or burning the bodies of any of their friends who may die while absent from their homes. An instance of this kind came under my observation at Port Townsend, W. 'T., on Sunday, March 29th, 1874. A large party of men, women, and children, numbering about one hundred and fifty persons, had been encamped for a couple of weeks on the beach. One of the men who had been at work at the saw-mill in Port Discovery, some seven or eight miles distant from Port Townsend, had died there, and his body had been brought around to Port Townsend. On the morning of the day named, the party broke up their camp and moved in slow procession in six large canoes to Point Wilson, near Port Townsend, where a pile of drift logs was formed into a sort of altar and the body placed upon it, and the whole reduced to ashes; the women singing their death songs, amid howlings, beating of tambourines, and other savage displays. When the whole was burned, one old woman gathered the charred bones and placed them in a box, and the whole party left for Victoria, British Columbia, on their way home to Queen Charlotte's Islands.

I asked one of the Indians why they burned the body. He replied that if they buried it in a strange land their enemies would dig it up and make charms with it to destroy the Haidah tribe. This is the only instance of the kind which has come under my own immediate observation, but I have been informed by other persons that they have observed the same practice on other occasions, but I am not prepared to say whether cremation is a general custom among the Haidahs, or only confined to particular cases like the one I have described.

The Haidahs are one of the most interesting tribes I have met with on the northwest coast. Their insular position and the marked difference in their manners and customs from the Indians of the mainland give me reason to think that very interesting and valuable results in ethnology can be had by a thorough investigation among the villages on the islands. Their carved images, their manufactures in wood and stone, and in silver ornaments, and other evidences of their present skill, and the rich stores of material of a former age to be found in the shell heap remains, are matters well worthy of the careful consideration of those who desire to make up a history of the coast tribes of the northwest. British Columbia is, as it were, sandwiched between Alaska and Washington Territory, and a description of the coast Indians from the Columbia River to the Siberian borders, cannot be complete without including the Indians of Vancouver's Island, Queen Charlotte's Islands, and the adjacent mainland.

I am of the opinion that it will be found more economical and attended with better and more satisfactory results, to have such investigations pursued by persons resident on the northwest coast, rather than to entrust them to the very limited visits of scientific expeditions. Investigations of this kind require time and careful study before correct results can be arrived at.

A knowledge of the habits, manners, and customs of the natives, and a general understanding of the language, is of the first importance. The person making the investigation should be his own interpreter, and these requisites can be $\mathbf{M a}_{T}, 1874$.
attained only by a long residence and observation among these Indians. The impressions of casual travellers are not always reliable, nor are the interpreters who generally accompany scientific expeditions always capable of understanding correctly what they are required to translate.

It is interesting to read the reports and observations of the early voyages of Cook, La Perouse, Portlock and Dixon, Marchand, and others who have visited Queen Charlotte's Island, and see how little they really knew or understood about these natives.

The best account that I have seen, and that is but a meagre one, is in Marchand's Voyage Round the World, performed during the years 1770 '71, '72, in the "Solide," a ship fitted out in France for the purpose of trading on the Northwest coast of America. But Marchand and all the other early voyagers labored under a very great difficulty; they did not understand the language of the natives, and their only means of intercourse was by signs. Hence we find the accounts of the voyages of every nation, Spanish, Portuguese, French, and English, full of theories, and scarce any two alike. When the narrators confine themselves to descriptions of things which they saw, such as the dwellings, carvings, canoes, and other manufactures, and the usual appearance of the natives, their accounts generally agree ; but when they commence to form hypotheses on imaginary meanings of the things they saw, they are lamentably at fault.

The following description of a house at Cloak Bay, on North Island, the most northerly island of the group, gives a general idea of a Haidah house of the present day. I quote from Marchand:-
"The form of these habitations is that of a regular parallelogram, from fortyfive to fifty feet in front, by thirty-five in depth. Six, eight, or ten posts, cut and planted in the ground on each front, form the enclosure of a habitation, and are fastened together by planks ten inches in width, by three or four in thickness, which are solidly joined to the posts by tenons and mortises; the enclosures, six or seven feet high, are surmounted by a roof, a little sloped, the summit of which is raised from ten to twelve feet above the ground. These enclosures and the roofing are faced with planks, each of which is about two feet wide. In the middle of the roof is made a large square opening, which affords, at once, both entrance to the light, and issue to the smoke. There are also a few small windows open on the sides. These houses have two stories, although one only is visible, the second is under ground, or rather its upper part or ceiling is even with the surface of the place in which the posts are driven. It consists of a cellar about five feet in depth, dug in the inside of the habitation, at the distance of six feet from the walls throughout the whole of the circumference. The descent to it is by three or four steps made in the platform of earth which is reserved between the foundations of the walls and the cellar; and these steps of earth well beaten, are cased with planks which prevent the soil from falling in. Beams laid across, and covered with thick planks, form the upper floor of this subterraneous story, which preserves from moisture the upper story, whose floor is on a level with the ground. This cellar is the winter habitation."

The entrance door of their edifices is thus described:-
"This door, the threshold of which is about a foot and a half above the ground, is of an elliptical figure; the great diameter, which is given by the height of the opening, is not more than three feet, and the small diameter, or the breadth, is not more than two. This opening is made in the thickness of a large trunk of a tree which rises perpendicularly in the middle of one of the fronts of the habitation, and occupics the whole of its height; it imitates the form of a gaping human mouth, or rather that of a beast, and it is surmounted by a hooked nose about two feet in length proportioned in point of size to the monstrous face to which it belongs. * *** Over the door is the figure of a man carved, in a crouching attitude, and above this figure rises a gigantic statue of a man erect, which terminates the sculpture and the decoration of the portal. The head of this statue is dressed with a cap in the form of a sugar-loaf, the height of which is almost equal to that of the figure itself. On the parts of the surface which are not occupied by the capital subjects, are interspersed carved figures of frogs or toads, lizards, and other animals."

This description by Marquand is that of the houses of the present inhabitants. The hooked nose mentioned is the Skamsquin or eagle; and the sugar-loaf hat is the Tadn skillik.

If Marquand had been able to procure the services of a skilled interpreter, he and his officers could have ascertained the true meaning of these emblems as casily as I have done; but not being able to exchange ideas with the natives, they came to their conclusions, and framed their theories by a series of guesses; and as all the early explorers formed their theories of the Indians upon the same lucid basis, it is not to be wondered at that so much of error has found place in all their narratives. It is, however, a source of surprise, that, since the time of those old voyagers, a lapse of nearly a century, no one has attempted to give a description of those islanders, or to explain the simple meaning of their devices. The Qucen Charlotte's group presents to-day as fresh a field for the ethnologist and archæologist as if no explorers had ever set foot upon their shores.

Of the extent and nature of these carvings, Marquand adds :-
"These works of sculpture cannot undoubtedly be compared in any respect to the master-pieces of ancient Greece and Rome. But can we avoid being astonished to find them so numerous on an island which is not, perhaps, more than six leagues in circumference, where population is not extensive, and among a nation of hunters ?" The writer was alluding to North Island, one of the smallest of the group; and when it is remembered that in every village on every one of the islands of the group these sculptures are quite as abundant, some idea can be formed of the number to be seen on Queen Charlotte's Islands. "Is not our astonishment increased," adds Marquand, "when we consider the progress these people have made in architecture? What instinct, or, rather, what genius, it has required to conceive and execute solidly, without the knowledge of the succors by which mechanism makes up for the weakness of the improved man, those edifices, those heavy frames of buildings of fifty feet in extent by eleven in elevation! Men who choose not to be astonished at anything will say, the beaver also builds his house; yes, but he does not adorn it; nature, however, has given the beaver the instru-
ment necessary for building it; she has certainly placed the man of the forest in the middle of the materials with which to construct his; but he has been under the necessity of creating the varying tools without which he could not employ those materials. A sharp stone, hafted on a branch of a tree, the bone of a quadruped, the bone of onc fish, and the rough skin of another, form instruments more fit to exercise patience than to help industry, and which would have been ineffectual in seconding his efforts, if fire which he discovered, and the action of which he learnt to regulate and direct, had not come to the assistance of his genius, and of the art which he executes through the impulse of genius."

When we examine the whole of the operations necessary for constructing and ornamenting one of the edifices which I have just described, when we reflect on this assemblage of useful arts, and of those which are merely agreeable, we are forced to acknowledge that these arts have not taken birth on the small islands where they are cultivated; they come from a greater distance.

Marquand observes that "the distinction between the winter and summer habitations of the Queen Charlotte Islanders, recalls to mind the custom of the Kamtschadales, who have their balagans for summer and their jourts for winter; the former erected on posts or pillars, twelve or thirteen feet in height, and the latter dug in the ground and covered with a roof: it is even remarked that some of the balagans have oval doors."

The country of these Kamtschadales, as we know, is a peninsula of northeastern Asia, and seems to show that this style of houses of northern Asia must have been introduced by immigration at some remote period from that region. In fact everything seems to prove that Asia peopled the northwest coast of America, the buildings, the manners and customs and general appearance of the natives from Vancouver's Island to the Siberian Coast, are very similar, and in certain respects nearly identical.

Marquand thinks, and my own observations certainly verify the theory, "that it is not without the sphere of probability, that the northwest coast should reckon three species of inhabitants; of the first date, the men who might belong originally to the very soil of America, if we adopt the opinion, that this large country had its own men or aborigines, as it has its animals and its plants," a view which is coincided in by Sir Charles Lyell, Agassiz, Forshey, Morton, Squire, and other eminent authorities. This first class of inhabitants I have in this paper termed Selish, or Flat Heads.

The second species are the Asiatics of the north, whose transmigration seems to have been retarded at Queen Charlotte's Islands, and to have stopped at Vancouver's Island; and lastly, and of the third date, the Mexicans, who fled for refuge to the coast after the destruction of their empire, and whopeopled the Californias, and wandered north and mingled with the Selish. Marquand says, "that everywhere on the Queen Charlotte's Islands appear the traces of an ancient civilization; everything indicates that the men with whom they had the opportunity of being acquainted have belonged to a great people, who were fond of the agreeable arts, and knew how to multiply the productions of them."

I feel a great confidence that in the shell heap remains to be found on those islands, as well as in the caves and the mausoleums of the dead, may be discovered relics of antiquity which will well repay the archæologist for exploring them; and that on these islands may be discovered those evidences which will form the missing link in the chain of testimony which will add to the history of the origin of the North American Indians, and perhaps enable us to trace with greater certainty those ancient annals which are now hidden in mist and obscurity, and only darkly hinted at in the shadowy legends and mythological lore crooned over by the ancient men and women, and handed down to after generations, who add to every fresh recital an additional sprinkling of the dust of obscurity.
I have already, in my former writings on the Indians of the northwest coast, ${ }^{1}$ alluded to the Mexican terminal t, as occurring in the vocabularies of the Chinooks, Chihalis, Quenáiūlt, and Makah Indians of the west coast of Washington Territory, a fact noticed by Anderson-who compiled the vocabulary of the Nootkan language, which is in the Journal of Cook's Third Voyage, and in that of Marquand and others. A reference to my vocabulary of the Makah Indians (Smithsonian Contributions to Knowledge, 220) will show it to be rich in words having that terminal. Hence the supposition that while the Selish retained their identity as separate and distinct from the Asiatic tribes, they did receive an influx from the hordes of Mexico, and from them obtained words which have become engrafted into their language during a lapse of centuries, just as we can now perceive the use of English words already among those Coast Indians, who for many years have had intercourse with the traders of the Hudson's Bay Company, and the use of certain Russian words among the natives of Alaska, from their intercourse with the traders of the Russian American Fur Company.

But the vocabularies of the early voyagers are not correct. No two of them are alike, a fact which is to be attributed, in part, to there being at that time no recognized standard for spelling Indian words, and in part to the difficulty of understanding the natives. I will illustrate this by a remarkable error. The word Nootka, as it is usually spelled, or Nūtka, as it should be spelled, is not the name of a place or a people; and it is surprising to me how the intelligent persons who, for so long a time, made "Nootka" their head-quarters, and named the tribe Nootka Indians, and even the authors of the treaty (the Nootkan Treaty), between Great Britain and Spain, should not have discovered the error.

The mistake arose in this way. The Indians have a custom of forming a ring, taking hold of each other's hands, and running or dancing in a circle. This is termed "Nootka," and was explained to me by a Clyoquot Indian who resides near Nootka, and who could speak English. He said, if you run round your house, or round a canoe, or dance round in a circle, we say "Nootka;" and he remarked that, probably the Indians were dancing on the beach at the time the ethnologist of Cook's Expedition was asking the name of the country, or the people; and the Indian, thinking he asked what the people were doing on the beach, said Nоотка,

[^68]and the white people having called the place and people Nootka, the Indians took no pains to undeceive them. This is very common for Indians to do, even with their own names, or the names of their friends. If a stranger, and particularly a white man, makes a mistake in pronouncing or applying an Indian name, they think it a good joke, and wish to perpetuate it. For instance, a white man asked an Indian, "what is your name?" He replied, "Halo," which means, I have none. The man thought that was the Indian's name, and always called him Halo. The tribe liked the joke, and to this day this Indian is known among the whites as Halo, and is so called by his tribe.

Numberless instances could be adduced to show this very common custom of the coast Indians, to take no pains to correct mistakes in language, but to consider such errors as good jokes which are to be kept in perpetuity.

This illustration will serve to show how easy and natural it was for the white man to make the mistake; and how very natural it was for the Indians to keep up the error with every succeeding party of white men who visited them. They thought if Captain Cook called the place Nootka, it must be so, whether the Indians called it so or not. The correct name of the place is Mōwatchat, or Bowatchat, which means, the place of the deer, from Bōkwitch, a deer, which word has been changed in the Jargon to Mowitch, a deer. Since the white men have called the place for so many years Nootka, the Indians speak of it to a white man under that name, just as they speak of the towns which have been settled by the whites, as Victoria, or Port Townsend, or Dungeness, but among themselves they invariably call the place and people by their Indian names, and the Nootkans always laugh at the mistake the white man made in naming them and their country after a dance.

I will not, at this time, press further this discussion upon a subject which to perfectly understand will need extended observations to be made upon the spot, and would require an explanation that would carry me beyond the limits to which I purpose to confine myself in this present paper. I trust that it will be sufficient for me to have shown that the subject of the carvings in wood and stone and precious metals, the paintings and tattoo marks of the Haidahs, is one of very great interest, and one which not only never has been properly explained, but never properly understood.

When we reflect on the great number of centuries during which all knowledge of the interior of the Pyramids of Egypt was hidden from the world, until the researches of Belzoni discovered their secret treasures, and until Champollion, by aid of the Rosetta stone, was enabled to decipher their hieroglyphical writings, may we not hope that the knowledge of the ancient history of the natives of the northwest coast, which has so long been an enigma, may be traced out by means of the explanation of the meaning of the symbols such as I have been enabled to discover in part, and have in this paper described?

This very brief memoir, made during the visit of a party of Haidah Indians for a few weeks in Port Townsend, will serve to show what could be effected if the Government would empower some person here, and appropriate sufficient funds to be expended in these ethnological and archæological researches.

Port Townsend is a place peculiarly adapted to the prosecution of these investigations. Its near proximity to Victoria, where hundreds, and sometimes thousands of the northern Indians congregate every spring for purposes of trade, will enable the observer to collect rich stores of material, in addition to what may be obtained here by the same Indians when they visit Puget Sound.

These Indians, heretofore, have disposed of all their curiosities and other products in Victoria before coming to the American side. But I am of the opinion that hereafter they will bring their wares to Port Townsend, having found by the experience of the past summer that they can dispose of all their manufactures here. During the past summer we have had Indians in Port 'Townsend from Kwe-nai--ult, Kwillehuyte, and Cape Flattery, on the American coast, and from Nittinat, Clyoquot, Nootka, and other tribes on the west coast of Vancouver's Island, as well as the Haidahs, Chimseans, and other tribes north of Vancouver's Island as far as Sitka. A steamship leaves Puget Sound once every month for Sitka, and the United States Revenue vessels of this district make frequent excursions as far north as Behring's Strait. Arrangements could undoubtedly be made by which an authorized person could have conveyance to any point north that it might be desirable to visit, and could remain as long as required.

The field of observation on the northwest coast is very extensive, and cannot be exhausted for many years. It is a field that would yield such rich returns to ethnology, as well as to every other branch of natural science, as would amply repay any outlay that the Government might make. The history of the coast tribes is becoming of more importance every year, and a connected description of the Aleuts and other coast tribes of Alaska, the tribes of Western British Columbia, Washington, and Oregon would not only be interesting, but would be valuable in assisting to solve that perplexing question of the origin of the North American Indian.

$$
-
$$

I N D EX.

A.

Aieutian Islands, 2
Areuts, the coast tribes of Alaska, 15 Anderson, ethnologist to Capt. Cook, his vocabulary, 13
Asia, northeastern tribes of, 2
Asiatic tribes, 13
Asiatics, the second species of the Indian race who peopled the northwest coast, 12

B.

Baiagans, summer dwellings in Kamtschatka, 12
Bear, hoorts, 4
Beaver, tsching, 4
Bebring's Strait, United States Revenue vessels make excursions to, from Puget Sound, 15
Belzoni, 14
Billaceie, young skate, the cheetka of the Haidahs, 5
Bōmitch, the deer; changed in jargon to mowitch, 4
Bowatchat, name of the country, miscalled Nootka, 14
Britise Columbia, tribes of, 2 ; lies between Alaska and Washington Territory, 9

C.

Canoes, description of, 2
Capes Fife and Kinox, 1 ; St. James, 2
Cape Flattery, 15
Cabvings, in wood, stone, and silver, description of, $3,4,5$
Champollion, 14
Channels, Skidegate, 2 ; Stewart, 2
Caeetea, the young skate; the Haidahs copy the elliptical figures on its sides in their ornamental paintings, 5
Chiefs, or head men, are tattooed, 3
Chimose, tchimose, a fabulous animal, 5
Chimsean Indians, 2, 3, 15
Chinese, the carvings of Haidahs said to resemble, 6
Ceū-cнū-hu-שxL, mythological wolf of the Makahs, 4, 5
Cloak Bay, on North Island, 10
Clyoquet Indian, explains meaning of the word Nootka, 13
Coor, Capt., R. N., discovered Queen Charlotte's Island, 10
Crayfise, stoo, 4
July, 1874.

Cremation, practice of, at Port Townsend, 9
Cnow, hooyeh ; young crow, keetkie; 4

D.

Dixon, Captain, R.N., names Queen Charlotte's Islands, 1, 10
Dungeness, 14

E.

Eagle, skamsquin, 5
Eagle Fish, koot, 5
Ethnologist of Cook's Expedition mistakes the name of Nootka, 13 ; field of observation for, 15

F.

Fife, Cape, on east side of Graham's Island, 1
Fisi Eagle, koot, 5
Forshey, an eminent authority, 12
Fort Simpson and Chimsean Indians, 3
Flat Heads or Selish Indians, 12
Frog, Tl-kam-kos-tan, 4

G.

Gambling, description of, 7,8
Ganowanian, or bow and arrow people, 2
Geneskelos, a carrer and tattooer, 5 Graham's Island, one of the Queen Charlotte group, 1

H.

Haidah Indians, general description, 2 ; tattoo marks on women, 4 : have nostandard style of drawing figures, 6 ; gambling, 7,8 ; practice of cremation, 9 ; most interesting tribe on the northwest coast, 9 ; description of their houses, 10
Halibut, tattoo design of Sitka Indians, 6
Halo, an Indian name, 14
Hoorts, the bear, 6
Hooyen, the crow, 4
Houson's Bay Company, traders of, 13
Homming Bird, mama thlon tona, 5
Hypocampos, or lightwing fish, 7
I.

IdoLs, carved images mistaken for, 3 Indtans, Haidah, 2; Selish, 2 ; Vancouver tribes, 2
Indians of Cafe Flattery, 13
Indian Jokes, 14
Islands, Queen Charlotte's group named by Dixon; North, Graham's, Moresby's, and Prevost, 1
Itl-tads-dah, the ancestress of the Haidahs, 4

J.

Jack Straw, name of gambling game, 8
Japanese, Haidah carvings thonght to resemble, 7 ; visit of, to Port Townsend, 7.
Jodrrs, winter habitations of Kamtschatka, 12

K.

Kahatta, the codfish, 5
Kamtschatea, a peninsula of Northern Asia, 12
Kamtschadales, style of houses similar to Queen Charlotte Islanders, 12 Keetkie, the young erow, 4
King (ieorge tie Third,
Kitkagexs, a head man, 5 ; his tattoo marks, 6
Kıtкūn, chief of Laskeek village, 5 ; explains the gambling method, 8
Knox, Cape, on the west side of Graham Island, 1
Koona Village, on east side of Moresby's Island, 5
Koone, the whale, 5
Koong, the new moon, 4
Koot, the fish eagle, 5
Kwe-nai-ūlt, 15
Kwille huyte, 15

L.

La Perouse, voyage of, 10
Laskeez, a village on east side of Moresby's Island, 5
Legend of the carving on sketch No. 2, 4
Lightning Fise, legend of, 7
Lizard, carving of otter mistaken for, 6 Lyell, Sir Charles, an eminent authority, 12
M.

Makail Indians, 5, 6
Mama-trlon-tona, humming bird, 5
Marchand's voyages, 10
Method of ascertaining the meaning of Indian emblems, 6
Mexicans, 12, 13
Moresby's Island, one of the Queen Charlotte group, 1
Morgan, styles the North American
Indians bow and arrow people, 2
Morton, an eminent authority, 12
Mowatchat, or Bowatchat, name of
Nootka, 14

N.

Nitinat, 15
Noo, the squid, octopus, 6
Nootra, not the name of a tribe or country, the name of a dance, explained by a Clyoquet Indian, 13
Nootkan Treaty, 13
Nortif Island, one of the Queen Charlotte group, 1
Nortaern Indians, a term applied by residents on Puget Sound to all tribes north of Vancouver's Island, 2
Northmest Coast, or three years in Washington Territory, 13

0.

Octopus, the squid, 5
Odd and even, a gambling game, 8
Oolala, a mythological being, 5
Orea ater, killer, seana, 4
Otter, carving of, mistaken for lizard, 6

P.

Parry passage separates North from Graham's Island, 2

Perez, Capt. Juan, a Spanish navigator who first sighted Queen Charlotte's Islands, 1774, 1
Pillars of wood sixty feet high carved by Indians, 3
Point Wilson, near Port Townsend, 9 Portlock and Dixon, 10
Port Discovery, 9
Port 'Townsend, visit of Indiars, 3 ;
cremation, 9 ; best place to collect information, 15
Prevost Island, one of the Queen Charlotte's group, 1
Pyramids of Egypt, 14.

Q.

Queen Charlotte's Islands, a group in the North Pacific first discovered by Cook in 1776, and taken possession of by Capt. Dison, and named by him in 1787; names of the group, North, Graham's, Moresby's, and Prevost, 1 ; tribes of, 2 ; great quantities of sculpture, 11 ; customs of uatives resemble Kamtschadales, 13

R.

Rosetta Stone, 14
Russian American Fur Company, 13
Russian words, found among Alaskan Indians, 13

S.

Scammon, Cetacea of the northwest, 5
Scana, orca ater, the killer, 4, 5
Sea lion, takn, 4
Selish or Flathead Indians, 2, 8, 12, 13
Shell-heap remains, 13
Siberia, 12

Sitka Indians, 7
Skamskian, the eagle, 4, 5
Skedance, Captain, chief of Koona vil-
lage, 5
skidegate Chanvel, 2
Slate stone carvings, 3
Squier, an eminent authority, 12
Staie, 4
Stewart's Channel, 2
Stoo, the crayfish, 4

T.

Tadn-skillik, a peculiar shaped hat worn by chiefs, 4
Tabn, the sea lion, 4
Tartar hordes, resemblance of, to Haidalı Indians, 2
Tattoo marks, description of, 3, 5, 6
Tchimose, or chimose, a fabulous animal, 5
Thlama, the skate, 5
Thunder bird, skamsom, or skamskwin, 5
Tlkamliostan, the frog, 4,5
Totems, or heraldic designs, 3
Tsching, the beaver, 4

V.

Vancouver's Island, 1
Victoria, 14
Voyages of Cook, La Perouse, Portlock and Dixon, and Marchand, 10

W.

Washington Territory, tribes of, 2
Wasko, mythological wolf, 4, 5 Whale, koone, 5

Y
Young crow, keetkie, 4

CARVINGS AND DESIGNS OF HAIDAH INDIANS.
Plate 1.

[^69]

Kōōt.
(TheFish Eiagle.)
Painted by Geneskels
aHaidah Chief and Principal tattoo and painter of the bribe.
Painted at Pont'Iownsend, W?? May $10^{\text {Th }} 1873$.

Designs, Fig 9.

Wa sko a mythological being of the wolf species
similar to the Chu-chu-huurl of the Makeah Indians, an anti diluvian demon,supposed to live in the mountains.

This sketch was copied from the tattoo mark on the back of Hikteurt, a Haidah Chief, and tatren by me in my office, Port Townsend W.T. May 10 E'M 1873 .

STONE GARVINGS
№ 5 .

Hoorts IThe Bear.)

Ska na
,The Tiller.

CARVINGS AND DESIGNS OF HAIDAH INDIANS.
Plate 5.

CARVINGS AND DESIGNS OF HAIDAH INDIANS.
Plate 6.

Tattoo Marks No 10
 in theocean.

No 13.

Cheelka-Haidah. Billachie Makah /young Skale./
Natural Size, Showing
the oval spots which the Indianstry tompresent in variouspaintings as for instance in the draw ing of the bear. on the left of this.

[^70]
Tattoo Marks No 14, Skam-som.

$$
\sigma
$$

TABLES, DISTRIBUTION, AND VARIATIONS

OFTHE

ATMOSPHERIC TEMPERATURE

in the

U NITED STATES,

AND SOME ADJACENT PARTS OF AMERICA.

COLLECTED BY THE SMITHSONIAN INSTITUTION, AND DISCUSSED UNDER TEE DIRECTION OF JOSEPH HENRY, SECRETARY.

BY

CHARLES A. SCH0TT,

ASSISTAIFT U. S. COAST SURVEY; MEMBER NAT. ACAD. OF SCIENCES; PBIL. SOCS. of PMILADELPHIA AND WASHINGTON, AND OF academy of sciences of catania, sicily.

WASHINGTON CITY: PUblished by the smithsonian institution. 1876.

PHILADELPHIA:
COLLINS, PRINTER, 705 JAYNE STREEI.

CONTENTS.

Illustrations to Section I.

Chart of the United States showing the distribution of the mean annual temperature, by isothermal curves, drawn for every fourth degree (Fah.), from 36° to 76°.
Chart of the United States showing the distribution of the mean winter temperature (December, January, and February), by isocheimal curves, drawn for every fourth degree (Fah.), from 4° to 72°.
Chart of the United States showing the distribution of the mean summer temperature (June, July, and August), by isotheral curves, drawn for every fourth degree (Fah.), from 56° to 88°.
(For explanation see page 101 and following.)

SECTION II.

Discussion of the daily fluctuation of the atmospheric temperature 107
Times of sunrise and sunset in different latitudes, and for every tenth day in each month . 113
Tables of bi-hourly, hourly, and semi-hourly mean temperatures, for each month and the year at
various places in North America 121
Tables of differences from the mean of the day, of bi-hourly, hourly, and semi-hourly mean temperatures for each month and the year
[For consolidated table of corrections for daily variation of temperature at four principal stations, in each month and the year, for every hour and for various combinations of hours, see page xiv.]
Systematic representation of the daily fluctuation of the temperatere, by means of a periodic function
Analysis of the daily fluctuation 154
Variability of the temperature at any hour of the day from the normal value of that hour . 162

Illustrations to Section II.

Wood-cats: Diagrams A and B, showing the daily variation, on the yearly average, for latitudes 27° and 75°, and for 40° and 44°
PAGE
Wood-cuts: Diagrams C and D, showing the average daily range for each month, for five groups distributed between the Arctic Regions and the Gulf of Mexico 157
Wood-cuts: Diagrams E, F, and G, showing the daily variation of temperature in June and December for Aretic stations, Temperate latitude stations, and Gulf stations, respectively 160
SECTION III.
The annual fluctuation of the temperature expressed in terms of a periodic function 169
Table of computed annual fluctuation of the temperature at 46 stations 175
Discussion of the results for dates of mean annual values, and for maxima and minima; and annual range in connection with the geographical distribution of the stations 180
Examination into alleged interruption in the regularity of the annual fluctuation at certain epochs, with tables of temperature of each day of the year, deduced from a series of years 183
Investigation of the variability of the temperature of any one day in a series of years 197
Inequality in the epoch of the minima and maxima of the annual fluctuation 199
Tables of observed extremes of temperatures, arranged by months, for a selected number of stations 202
Analysis of tabular results for greatest heat and greatest cold with regard to geographical distribution. 226
Extreme annual range of temperature and monthly absolute variability, exhibition of the law of annual distribution 227
Tables of the mean annual temperature, principally in the United States, for a succession of years, from the earliest records to the close of the year 1870 228
Investigation of the secular variation of the annual mean temperature, and of the permanency of the climate 302
Comparison of the secular variation of the temperature with the variations in the frequency of the solar-spots 314
Comparison of the secular variation in the temperature and rain-fall in the United States 315
Comparison of the secular variation in the temperature with the average annual direction of the wind 316
Range of variability in the secular variation of the annual temperature 318
Secular variation in the annual minima and maxima, compared with the variation in the annual means 319

Illustrations to Section III.

Wood-cut of North America, showing position of stations espeeially selected for character and distribution of the annual fluctuation 180
Plate illustrating the irregularity throughout the year of the daily mean temperature for five stations, selected on account of length of series of observations; to face 193
Plate exhibiting the character of the secular variation in the mean annual temperature, for a number of stations, and comparison of variations in temperature and the solar-spots; to face 310
Cut, showing two typical curves of comparison of the secular variation in the temperature and the rain-fall 316
Cut, illustrating the relation of the secular variation in temperature and direction of wind for Brunswick, Me., and Marietta, Ohio 317
List of Stations 321
List of Observers 333
Index 341

ADVERTISEMENT.

Ar the commencement of the operations of the Smithsonian Institution a system of meteorology was established, carried on by voluntary observers, which was continued for more than twenty years until it was transferred to the Signal Service of the United States Army in 1874 to be continued by means of the annual appropriations of Congress. This system included observations on the temperature, pressure, aqueous precipitation, moisture of the air, and winds.

The object now of the Smithsonian Institution is to render the results of these observations accessible to meteorologists by their reduction, discussion, and publication; but to give greater value to this work it has been thought advisable to incorporate in it all accessible and reliable meteorological observations that have been made in the United States since the early settlement of this country.

The first part of the general work, that on the aqueous precipitation, was published in $18^{7} 7$, that which relates to the winds is now in the press, and the other parts will follow in succession.

The present memoir relating to the temperatures contains the results of all observations to the end of the year 1870, from the following sources:-

1 st. The registers of the Smithsonian Institution, embracing upwards of 300 folio volumes.

2d. The joint publications of the Institution and of the Patent Office and Department of Agriculture.

3d. All the publications and unpublished records of the meteorological system of the United States Army.

4th. The records of the United States Lake Survey under the Engineer Department of the United States Army.

5th. The records of the United States Coast Survey, under the Treasury Department.

6th. The volumes compiled by Dr. F. B. Hough from observations made under the direction of the Regents of the University of the State of New York.

7th. The records made in Pennsylvania under the direction of the Franklin Institute of Philadelphia.

8th. The transactions of various societies and periodical publications.
The first part of the work was the formation of an extended series of classified tables derived from the foregoing sources, and the second the deduction from these consolidated tables, of average temperatures. The first of these series, owing to its great bulk, must for the present remain in manuscript. It can, however, be
consulted at any time at the Institution. The second series, which is given in the following pages, consisting of average temperatures, is sufficient to furnish all necessary information for the study of our climate as far as it depends upon temperature.

All the materials were placed in charge of Mr. Charles A. Schott, Assistant United States Coast Survey, to be reduced and discussed under his direction by trained computers, at the expense of the income of the Smithson fund. He was ably assisted by Mr. E. H. Courtenay, of the United States Coast Survey.

The character of Mr. Schott for scientific knowledge, sagacity, and skill in the line of investigation, and scrupulous accuracy as exhibited in the previous meteorological publications of the Institution, give assurance that the work here presented to the public is a valuable contribution to the knowledge of the climate of the United States.

JOSEPH HENRY, Secretary Smithsonian Institution.
Washington, D. C., January, 1876.

SECTION I.

TABLES, DISTRIBUTION, AND VARIATIONS OF THE ATMOSPHERIC TEMPERATURE IN THE UNITED STATES,

AND SOME ADJACENT PARTS OF AMERICA.

GENERAL REMARKS.

The laws of the distribution of winds, rain, and heat of a large portion of North America, embracing the normal or statical values as well as their variations with seasons and for longer periods of years, form part of those studies with whose results we are most directly concerned. Although this ground has been gone over many times and must continue to be cultivated, the continued accumulation of new materials enables the investigator gradually to present his results in a more precise form and to enter more fully into detail or local discussions. Whatever imperfections the available records may possess, their effect in the mean values will constantly diminish with the increase of reliable modern observations; moreover, they could not be dispensed with on account of inaccuracies, since they form the only material in our possession for the discussion of such subjects as possible changes in climate since the first settlement of the States. In the following work we shall therefore be chiefly occupied with the establishment of tabular results comparable among themselves, with obtaining mean or normal values or the so-called constants of temperature, as factors of the climate, and with the range of the fluctuations, daily, annual, and secular, also with the generalization of the results either in analytical or graphical form.

The advantages gained by an early discussion of observations beyond putting us in possession of results for immediate use are several; light is thrown on the reliability of the records, their sufficiency or insufficiency for our present or future wants, and the kind of results they are or are not capable of yielding, is indicated. Besides improvements in methods of observing and in instrumental means are likely to result, as well as incitements of the observer to renewed efforts.

Our earliest records of temperature, the results of which are given in the following tables, date about a quarter of a century after the invention of Fahrenheit's thermometer, ${ }^{1}$ and with few exceptions all the observers in this country have made

[^71]use of his scale, in consequence of which all tabular quantities and results presented in this paper have reference to this graduation. For the sake of uniformity, records originally given in Réaumur or Centigrade scale have been converted into that of Fahrenheit, and however advisable otherwise it might have been to adopt the Centigrade scale, such a step was forbidden by the great labor and consequent expense which the conversion would have entailed.
on proper principles, thermometers upon which reliance could be placed; his earlier instruments were filled with alcohol, but about the year 1714 he used mercury for this purpose. According to his own account, he recognized three principal points, viz. : his so-called absolute zero, representing the extreme cold experienced by him in the severe winter of 1709 and erroneously supposed to indicate the greatest cold, the freezing point of water, and a point representing the heat of the human body; in practice, however, he made use of the freezing point as well as of the boiling point of water, with the fixity of which latter he became acquainted in 1714. Supposing the volume of mercury at the temperature represented by his zaro point to be 11124 parts, he noticed an expansion of 32 parts at the temperature of freezing water, and of 212 parts at the temperature of boiling water, and accordingly adopted the numbers 32 and 212 to indicate these temperatures. Before Fahrenheit's instruments came into general use, Réaumur brought out his spirit thermometers graduated between the freezing and boiling points of water from 0 to 80 , and shortly after, Celsius, about 1742 , introduced the Centigrade division between the same points. The spirit thermometers used in the preceding century had arbitrary scales, and were not generally directly comparable. * * * Fahrenheit had already noticed the effect of a change in the atmospheric pressure on the position of the boiling point, but the proper allowance or reduction to a standard pressure was not satisfactorily ascertained in his time. It would seem that allowance was made for the expansion of the glass tube in the above-mentioned experiment, since the dilatation of mercury is nearly 0.0001 of its volume for $1^{\circ} \mathrm{Fah}$. All of the thermometric scales mentioned are intended to measure equal increments of heat by equal increments in their scale readings, but for the purpose of comparison and discussion it is much to be desired that all should agree to use the same scale, the Centigrade scale being the one most likely to take the place of the others.

In connection with the cold indicated by the zero of Fabrenheit's scale it may be remarked as an accidental circumstance, that it may and has been taken roughly to be that of the mean annual temperature of the pole, hence the possibility of representing approximately the annual mean temperature in the latitude ϕ by the simple expression $81^{\circ} .5 \cos \phi$ without the addition of a constant.

TABULATION

OF

RESULTING MEAN TEMPERATURES

FROM

OBSERVATIONS EXTENDING OVER A SERIES OF YEARS, FROM THE EARLIEST TO NEARLY THE PRESENT TIME,

FOR
EACH MONTH, SEASON, AND THE YEAR, PRINCTPALLY FOR

STATIONS IN NORTH AMERICA.

EXPLANATIONS AND REMARKS

ON THE

CONSOLIDATED TABLES OF RESULTING MEAN TEMPERATURES FOR EACH MONTH, SEASON, AND THE YEAR.

Tнit part of the tables which refers to the United States is arranged in alphabetical order according to states and territories, and the names in each subdivision are given alphabetically. For all stations beyond the limits of the United States it was considered more advantageous to adopt a geographical arrangement, but the alphabetical sequence of stations under each geographical district is preserved.

The tables contain: The number and name of each station, its latitude and longitude, its elevation above the sea when known, its mean temperatures for each month, each season, and for the whole year, the beginning and ending of the series of observations, its actual extent, the observing hours, the name of the observer with references.

The geographical positions are given to the nearest minute of arc, as far as known, the longitudes are counted as usual west of Greenwich. The positions which became known through the operations of the United States Coast Survey are reliable, as well as those given upon the authorities of the United States Lake Survey, officers of the United States Army, directors of astronomical observatories, and, in general, all those positions which have been determined by direct astronomical observations and those connected with the General Land Office. Positions given on the authority of the observer, and these are by far the most numerous, are less trustworthy, since most of these were taken from State or county maps having no adequate astronomical basis. The results for longitude depending on the electric telegraph are of so recent date that but few maps have as yet incorporated them. Although no pains have been spared to render these geographical positions as trustworthy as possible, they are, in general, when taken from maps evidently in the given latitudes affected with a probable uncertainty of from $\pm 3^{\prime}$ to $\pm 5^{\prime}$ and in the given longitudes with a probable uncertainty of from $\pm 5^{\prime}$ to $\pm 8^{\prime}$. Fortunately for the immediate wants of the discussion of temperature a moderate approximation to the true position suffices. The elevations of the observing stations depend in all cases upon the statements of observers; these also no doubt require considerable improvement, as but few depend upon direct hypsometric measures or on measured differences of level from known railroad or
canal levels; those depending on barometric observations can only be regarded as rough approximations. Heights near tide-water may be considered to be reliable.

Unless otherwise stated, the mean tabular values of the temperature, always expressed in degrees of the Fahrenheit scale, refer to the observing hours noted, and are consequently uncorrected for daily variation. In all cases where the observing hours were variable or were changed during the series, the results were referred either to those observing hours maintained for the longest period or to those susceptible of the greater accuracy, or else all were corrected for daily fluctuation. The means for correcting observed values, taken at stated epochs of the day and for any month, were furnished by the discussion of the daily variation, but the stations available for such discussions are comparatively so very few in number, and are almost wanting for the western part of the United States, that but a small portion of our results could be so corrected. If we had better and more complete materials for daily variation, it would undoubtedly have been preferable to correct all tabular results for this inequality, but in their absence it was deemed advisable to attempt no more than to present the results in any one series for a uniform set of hours of observation, correcting as stated in all cases where the observer has changed his times of observation; this gives us the advantage of effecting hereafter a more satisfactory reduction to the mean of twenty-four hours whenever we come into possession of new and, it is to be hoped, automatic registers.

Respecting the results obtained under the University System of the State of New York, the daily mean was directed ${ }^{1}$ to be found by adding to the morning observation twice the afternoon observation, and twice the evening observation to that of next morning, and dividing their sum by six. This may be symbolically expressed by $\frac{1}{6}\left\{\odot_{\mathrm{r}}+3_{\mathrm{a}}\right.$ bis $+\left(\odot_{\mathrm{s}}+1^{\mathrm{h}}\right)$ bis $\left.+\odot_{\mathrm{r}}\right\}$; the morning observation was to be taken a little before sunrise. The means given in the table were made out in accordance with this rule. ${ }^{2}$

With respect to the Smithsonian system of meteorological observations, the result of the three hours i A. M. 2 and 9 P. M. was found to approximate less closely to the true daily mean than the result obtained by adding twice the reading at $9 \mathrm{P} . \mathrm{M}$. to the readings at $7 \mathrm{~A} . \mathrm{M}$. and $2 \mathrm{P} . \mathrm{M}$. and dividing this sum by four. The latter rule was therefore adopted, and is symbolically indicated by $\frac{1}{4}\left\{7_{\mathrm{m}}+2_{\mathrm{a}}+9_{\mathrm{a}}\right.$ bis $\}$. In the column headed observing hours the symbols \odot_{r} and \odot_{B} stand for sunrise and sunset; the affixes m . and a. to any given hour indicate morning and afternoon respectively ; N. and Mdt. stand for noon and midnight ; M. and E. for morning and evening; Max. and Min. for mean from maximum and minimum readings;

[^72]" bis" attached to any hour indicates that the reading at this hour received double weight as explained above.

Respecting the corrections necessary to refer monthly and annual means depending on observations at certain hours to what they would have been had the observations been made hourly and continued day and night, the reader is referred to the discussion of the daily variation of the temperature. In this discussion it is shown that the mean of hourly observations represents the average temperature of the day within about $0^{\circ} .01$ Fah.

The following table of corrections for daily variation to means resulting from observations at certain hours was prepared directly from observations extending over a series of years at Toronto, Mohawk, New Haven, and Philadelphia; it is inserted here on account of its frequent application to our tabular results, either to refer them to the mean of the day or to a uniform set of hours, in which latter case the table can be made readily to apply. This table of corrections was found to answer well enough for the Eastern and Western States lying within the range of latitudes of the four stations; for Southern States and for the elevated western portion of the United States other less reliable corrections had to be supplied.

Table of corrections for daily variation of temperature，derived from observations made at Toronto，Mohawk，New Haven，and Philadelphia；for every hour and for various combi－ nations of hours，in degrees of Fahrenheit．

Hours．	号	涉		茇	家	恖	宫	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{x}_{0}^{2}} \\ & \stackrel{\rightharpoonup}{\dot{E}} \end{aligned}$	$$	\％	会	هٌ	岂
Mid＇t	＋1．6	＋2．2	＋2．8	＋3．7	＋4．7	＋5．2	＋5．2	＋4．7	＋4．2	＋3．2	＋2．0	＋1．4	1
${ }_{\text {m }}$		＋2．7	＋3．4	$+4.6$	＋5．6	＋6．3	＋6．0	＋5．4	＋4．6	＋3．8	＋2．1	＋1．8	02
${ }_{\text {m }}$	＋2．2	＋3． 1	＋3．9	＋5．3	＋6．4	＋7．1	＋6．7	＋6．0	＋5．2	＋4．3	＋2．5	＋2．1	＋4．57
$3{ }_{4}$	＋2．5	+3.6 +3.9	+4.3 +4.7	+5.7 +6.2	+7.2 +7.8	＋7．8	+7.3 +7.8	＋6．5	+5.7 +6.2	+4.7 +5.1	+2.9 +3.2	＋2．4	+5.05 +5.46
$4{ }_{\text {m }}$	＋2．7	＋3．9	＋4．7		＋7．8	＋8．3			＋6．2	＋5．1	＋3．2		
5m	＋3	$+4.2$	＋5．2	＋6．5	＋7．8	＋8．1	＋7．8	＋7．2	＋6．6	＋5．4	＋3．4	＋2．8	＋5．67
6 m	＋	＋4．5	＋5．4	＋6．3	＋6．4	＋6．4	$+6.3$	＋6．5	$+6.4$	$+5.5$	＋3．5	$+3.1$	＋5．27
7 m 8 8	+3.1 +2.8	＋4．6	$+4.7$	+4.7 +2.4	+4.0 +1.5	（	+3.7 +1.1	+4.5 +1.8	+4.7 +2.2	＋4．6	+3.4 +2.4	+3.1 +2.7	+-4.08 +2.24
9m	＋1．4	+3.5 +1.3	+2.7 +0.5	0．0	＋0．9	－1．2	－1．2	－0．6	＋2．2	＋0．2	＋0．7	＋r．3	＋o．11
	－0．4	－0．9	－1．6	－	8	－3．2	－3．2	－2．8	－2．5	－	－1．1	－0．5	－1．93
${ }^{11}{ }_{\text {m }}^{\text {m }}$	，	－2．7	-3.2	－3．7	－4．4	－4．8	－4．9	－4．6	－4．	－3．9		－2．0	-3.60
Noon	2	－4．1	－5	－5．1	－5．7	－6．1	－6．2	－5．9	－5．7	-5.3 -6.2	－3．8	－3．2	－4．91
${ }_{1}^{1}{ }_{2}$	4.5	－5．1	－5．4	－6．2	－6．8	－7．1	－7．1	－6．9	－6．8	－6．8	－4．5	-4.0 -4.3	－5．84
					－	－	－7．8	－7．8	－7．6	7	－4．7	－	－6．51
3 43 4	－	－5．2	－5．8	－7．1	-7.8	－8．0	－7．5	－7．6	－7．4	－6．1	－3．8	－3．3	－6．12
5	-2.5	－3．9	－4．7	－6．3	－7．2	－7．2	－6．9	－6．8	－6．2	－4．4	－2．4	二2．0	－5．04
6_{a}	1.5	－ 2.3	-2.9	－4．6	-5.5	－5．7	－5．4	－5．1	－4．0	－2．5	－1．3	－	${ }_{-1.74}^{-3.51}$
7 a	0.7	－1．2	－1．5	-2.2	－－2．9	－3．3	－3．0	－2．5	－1．6	－1．0	－0．5	－0．6	－1．74
$8{ }_{\text {a }}$	－0．1	－0．2	－	-0.2	－0．2	－0．4	－0．2	＋0．1	＋0．3	＋0．2	＋o． 1	－0．1	－0．09
$9{ }_{\text {a }}$		－0．5	＋0．9	＋1．2	＋1．5	＋1．6	＋1．8	＋1．7	＋1．6	＋1．1	＋0．7	＋0．3	＋1．11
$1 \mathrm{IO}_{\mathrm{a}}$	＋0．9	－I． 1	＋1．5	＋2．2	＋2．7	＋3．0	＋3．1	＋2．9	＋2．7	＋1．9		＋0．7	＋1．99
HI_{a}	＋1．2	＋1．7	＋2．2	$+3.0$			＋4．2		+3.5 +6.5		+1.5 +3.4		+2.73 +5.68
\bigodot_{r}	－	＋4．5	＋5．3	＋6．4	＋7．8	＋8．1	＋7．8	＋7．1	$+6.5$	＋5．3	＋3．4	＋2．9	＋5．68
\bigcirc_{8}	2.7	－3．0	－	－2．8	－2．2	－			－3．7	－3．7	2.9	－	-2.64
	4.5	5.8	－	－7．3	－7．9	－8．2	－7．8	－7．8	－7．7		9	－4	27
Mia	3	4.6	＋	＋6．5	＋7．9	＋8．4	＋7．9	＋7．2	＋6．7				7
$\bigodot_{\mathrm{r}} \bigodot_{\mathrm{s}}$		＋－0．7	－0．4	－0．4	0.0 +2.8	＋0．1	+0.1 +3.2	－0．3 +2.4	－1．	＋0．8	＋0．2	＋0．1	＋ +1.52 +0.57
	$+$	＋2，	＋	＋3．8	＋4．6	＋4．9	＋4．8	＋4．4	＋4．0	＋3．2	＋2．1	＋1．6	
	－0．5	－0．3		0.0		－0．3	－0．4	－0．2	－0．2	－0．4	－0．5	－0．4	－0．28
$7 \mathrm{~m} \mathrm{~m}_{\mathrm{a}}$		－0．5	－0．7	－1．2	－1．7	－2．0	－2．0	－1．5	－1．3	－I．1	－0．7	－0．6	－1．17
	． 7	＋2．6	＋2．8	$+3.0$	$+2.7$	＋2．7	＋2．8	＋3．1	＋3．1	＋2．9	＋2．0	＋1．7	＋2．60
$8{ }_{\text {m }}{ }_{\text {a }}$		－1．1	－1．7	-2.3	-3.0	-3.3	－3．3	－2．9	－2．6	－2．1			-2.09
		＋1．2	$+$	＋0．1	－	－I． 1	－0	－0．4	＋0． 3	＋o．8	＋0．9	＋1．1	＋0．24
m ${ }^{\text {n }}$	－	0.0	－0．1	－0．3	－0．3	－0．4	－0．4	－0．4	－0．4	－0．4	－0．2	o．o	－0．24
－\bigcirc_{s}	－1．0	－0．9	－0．7	－0．5		＋0．2	＋o． 1	－0．4	-1.0	－1．2	－1．1	－1．0	－0．62
	－0．2		$+0.3$	＋0．5	＋0．8	＋0．9	＋o． 8	＋0．6	＋0．4	＋0．1	1	－0．3	＋0．32
$\bigcirc_{\mathrm{r}} \mathrm{I}_{\mathrm{a}} 1 \mathrm{O}_{\mathrm{a}}$	0.0	＋0．2	＋0．5	＋0．8	＋1．2	＋1．3	＋1．3	＋1．0	＋o．8	＋0．3	0.0	－0．1	＋0．61
$\odot_{r} 2_{a} \odot_{s}$	－1．4	－1．4	－1．2	－r．1	－0．6	－0．4	－0．4	－0．9	－1．5	－1．7	－1．4	－I． 4	－1．13
${ }_{2}$	． 4	－0．	0.0	＋0．2	$+$	＋0．6	＋0．7	＋0．4	＋0．2	－0．1	－0．2	－0．4	＋0．12
$\odot_{\mathrm{r}} 3_{3}{ }^{\text {a }}$	． 3	－0．2	0.0	＋o． 1	＋0． 5		＋0．6	＋o． 3	＋0．2	－0．1	-0.2	－0．3	＋0．09
N．${ }_{\text {a }}$	－0．6	－0．6	－0．7	－I．I	－1．6	－r．8	－r．8	－1．5	－1．1	－0．8	－0．5	－0．4	－1．05
$2_{a} 9{ }_{a}$	4	－0．2	＋0．1	＋0．2	＋0．1	＋0．1	＋0．2	$+0.2$	＋0．2	－0．1	－0．2	－0．3	－0．0
	－0．2	0.0	＋0．3	＋0．5	＋0．5	＋0．5	＋o． 6	＋0．6	＋0．6	＋0．2	－0．1	－0．2	＋0．28
$7_{\text {m }}^{\text {m }}$ N．${ }^{\text {Na }}$ ， $6^{\text {a }}$	－0．5	－0．6	－0．9	－1．7	－2．4	－2．7	－2．6	－2．2	－1．7	－1．1	－0．6	－0．4	－1．45
$7_{7 m} \mathrm{I}_{\mathrm{a}} 8_{\mathrm{a}}^{4}$	－－0．3	－0．2	－0．4	－0．6	－1．0	－1．2	－1．2	－0．8	－0．6	－0．5	－0．3	－0．3	－0．62
$7 \mathrm{~mm} \mathrm{I}_{\mathrm{n}} 9_{\mathrm{a}}$	－0．2	． 6	＋0．1	一0．1	－0	－0．6	－0．5	-0.2	－0．2	－0．2	－1．${ }_{\text {－}}$	－1．2	－0．22
$7 \mathrm{~mm}{ }_{\text {a }} 5_{\text {a }}$	1.3	－1．6	． 0	－2．9	－	－3．7	－3．	－3．3	－3．0		． 3	－1．	
$7 \mathrm{~mm} \mathrm{ma}_{\mathrm{a}}$	－1．0	－1．1	－1．4	－2．3	－3．0	-3.2	－3．1	－2．7	－2．3	－I． 6	－0．	－0．8	－1．95
$7 \mathrm{~m} 2_{\text {a }} 7_{\text {a }}$	－0．7	-0.7	－r．o	－1．5	－	－2．4	－2．3	－1．8	－1．4	－1．1	－0．	－0．6	－r． 36
$7{ }_{7}{ }^{\text {a }}$ 9 9_{a}	－0．3	－0．2	-0.2	－0	－0．7	－0．8	－0	－	－0．4	－0．4		－	－0．41
	－0．3	－0．2	－0．2	－0．4	－	－0．9	－0．	－	－	－0．3	－	－0，	． 56

Table of corrections for daily variation of temperature，etc．－Continued．

Hours．	号	家		囬	彥	E	官	离	范	－	号	®ٌ	¢
$8{ }_{\text {ma }} \mathrm{ar}^{8}$	－0． 6	－0． 8	－	－1． 6	-2.1	－2．4	－2．2	－	－${ }^{\circ} .6$	－1．3	－0．8	－0． 5	
	－0．4	－0．5	－0．8	－I．1	－1．5	－1．7	－r．6	－I． 3	－1．2	－1．0	－0．6	－0．4	－1．02
	－0．3	－0．3	－0．6	－0．8	－I． I	－1．2	－I．1	－0．9	－0．8	-0.8	-0.4	－0．3	－0．73
$9_{\mathrm{n}} \mathrm{N} .9_{\text {a }}$	－0．5	－0．8	－1．0	－1．3	-1.7 -2.4	－1．9	－I．9	－	$-\mathrm{I} .4$	－1．3	－0．8	－0．5．	－1．23
$9_{\text {m }} 3 \mathrm{am} 9_{\text {a }}$	－0．9	-1.3	－1．6	－2．0	－2．4	－2．6	－2．4	－2．2	－－2．0	－1．8	－I．I	－0．8	－1．76
$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	＋o．i	＋0．2	＋0．1	＋0．1	＋0．2	＋0．1	＋o． 1	＋0．1	＋o．1	．	． 0	＋o． 1	＋o．10
$\bigcirc_{1} N^{N} .2_{3} 6_{3}$	－1．6	－1．9	－2．1	-2.6	-2.7	－2．9	-2.8	－2．9	－2．6	-2.3	－1．6	－I． 5	－2．29
	－0．5	－0．4	－0．1	＋0．2	＋0．6	＋0．9	＋0．9	＋0．4	－0．1	－0．4	－0．5	－0．6	＋0．03
$\odot_{r} 2_{1} \bigcirc_{1} \bigodot_{s} 9_{3}$	－0．9	－0．9	－0．7	-0.5	－0．1	+0.1 +0.3	+0.2 +0.5	－0．3	－0．7	－1．0	－0．9	－0．9	－0．56
	－0．9	－0．9		－0．5	0.0	＋0．3	＋0．5	－0．2		－1．1		－0．7	－0．48
	0.0	－0．1	－0．1	－0．1	0．0	0.0	0.0	0.0	－0．1	－0．2	－0．1	0.0	-0.06
$6_{\mathrm{m}} 9_{\mathrm{m}} 3_{\mathrm{a}} 6_{\mathrm{a}}$	$\bigcirc 0.4$	－0．5	－0．8	－1．4	－2．0	－2．1	－2．0	－1．7	－1．4	－0．9	－0．5	－0．2	－1．16
$6_{m} 9_{m} 3_{a} 9_{a}$	＋o． 1	＋0．2	＋o．r	＋0．1	－0．2	－0．3	－0．2	－0．1	＋o．r	0.0	0.0	＋0．2	0.00
$7_{\mathrm{mm}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	－0．1	0.0	＋0．1	0.0	－0．1	－0．2	－0．1	＋0．1	＋o．1	0.0	0.0	－0．1	-0.03

${ }^{1}$ For New York University System；derived from observations at Toronto and Mohawk．

Respecting the column headed References the following abbreviations were used:-
S. O. for Smithsonian system of observations.
S. Coll. for Smithsonian collection in general.

Sm. Con. to. Knowl. for Smithsonian Contribations to Knowledge.
P. O. and S. I. Vol, I, for Patent Office and Smithsonian Institation systems.

Ar. Met. Regs. for Army Meteorological Registers.
MS. from S. G. O. for Manuseript from Surgeon-General's Ofice.
Am. Alm for American Almanac.
Agl. Rep. for Agricultural Report.
Reg. Rep. for Regents' Report.
N. Y. Univ. Syst. for New York University System.

And various others whose meaning is sufficiently apparent
(xvi)

TABLES OF MEAN TEMPERATURE

FOR

EACH MONTH, SEASON, AND THE YEAR AT VARIOUS STATIONS,
PRINCIPALLY IN NORTH AMERICA.

EXPRESSED IN DEGREES AND FRACTIONS OF THE FAHRENHEIT SCALE.

ICELAND.

BRITISH NORTH AMERICA.-ARCTIC REGION.

	74 41
-	7440
-	7312
-	7406
-	7430.
-	6959
.	7452
-	75 31
-	6830
-	6654
-	7436
-	6921
-	7447
-	7652
-	6732
-	72 O1
-	7314
,	73 31
.	7247
-	6632
	6632

 -36.7
-29
-19
-35
-33
-28.6
-36.
-36
-38.
-26.7
-31
-17
-30
-40.09
-24
-34
-28.91
-35
-3
-29.32

-32 | 36.71 |
| :--- |
| 29.00 |
| 19.92 |
| 35.59 |
| 33.00 |
| 28.69 |
| 36.13 |
| 36.38 |
| 38.05 |
| 26.79 |
| -31.90 |
| 17.07 |
| 30.09 |
| -40.00 |
| -24.45 |
| -34.4 |
| -28.91 |
| -35.70 |
| -32.44 |
| -29.32 |
| 32.4 |

 \qquad

			$\begin{aligned} & 6 \infty \\ & 0 \infty \\ & 00 \\ & 1+1 \end{aligned}$
	$\begin{aligned} & \text { Rono } \\ & \text { on on } \\ & \text { ong } \end{aligned}$		
		¢	

BRITISH NORTH AIVERICA.-SOUTH OF LATITUDW $66^{\circ} 30^{\prime}$.

BRITISH NORTH AIMERICA.-ARCTIC REGION.

BRITISH NORTH AIMERICA.-SOUTH OF LATITUDE $66^{\circ} 3^{\circ}$.

1	22.18	65.67	37.09	-0.22	31.18	Sept. 1867; May, 1869			J. Lockhart.	S. Coll, and S. O.
2	27.43	- 5.93	..	Oct. 1843; June, 1844	- 9	hourly	Richardso	Blodget's Cliz
3	${ }^{10.33}$.	.	-17.90	-	Oct. 1795; May, 1796	- 8		Thompso	S. Coll.
4	31.38			+7.00	..	Oct. 1777; July, 1778	- 10			Cartwright's Labrador.
6	29.86					${ }^{18827}$ (780. ${ }^{\text {a }}$		max. \& min.	Richardson.	Franklin.
7	27.00	63.00 58.93	32.67 32.30	- 0.67	30.50	Oct. 1789; Sept. 1790	10		Thompson.	S. Coll.
7	32.37 32.63	58.93 ..	32.30 33.04	- $\begin{array}{r}\text { 3.70 } \\ -\quad 0.34\end{array}$	29.98	Sept. 1819; Aug. 1820 Aug. 1839 ; Sept. 1840	$\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 10\end{array}$	$\ddot{8}_{8} \ddot{8}_{9}$	Lewis.'	Dove, Rep. Br, Assoc. 1847.
9					..	1827	- 2	${ }^{\text {ma }}$ \& $\&$ min.	Drummon	Frankli
10						1864	02			S. O.
II	22.76	58.70	31.89	$3 \cdot 34$	27.50	1825; 1839	36	$8_{m} 8_{\mathrm{a}}{ }^{10}$	Keith and Stewart.	Richardson.

BRITISH NORTH AIMERICA．－SOUTH OF LATITUDE $66^{\circ} 30^{\prime}$ ．

Name of Station．	－			急	\％	范	导	䓓	号	合	总	$\begin{aligned} & \stackrel{\ddot{\circ}}{0} \\ & \stackrel{0}{2} \end{aligned}$	－	\％	ค
12．Fort Churchill	58	$94^{\circ} 30^{\prime}$	20	－28	－20．${ }^{\circ}$	12．0	20.	38.0	O．	58．0	$50 .{ }^{\circ}$	42.0	$28 .{ }^{\circ}$	5.	－18．${ }^{\circ}$
13．Fort Churchill ．		9430	550	-21.21	－7．31	－ 4.63	16.29	28.42	44.69	56.80	53.39	36.03	26．50	3.32	－ 18.00
14．Fort Enterprise．	64	11306	850	-15.57	-25.88	－13．48	5.78	31.20				31．59	21.75	1.70	30．54
15.		12245	230	－22．34	－16．75	－ 5.39	12.35	35.18	48.02	52.1	50.56	41.00	22.47	0.1	9
16．Fort Nascopie	5425	6522		－10．1	＋	8.0	${ }^{1} 7.4$	31.0	3				8.8	15.8	－ 2.8
17．Fort Norman	6430	12500	200	-23.	－12．93	－ 9.48	． 28	47.68							
18．Fort Prince of Wa				-25.	－17．5	－ 9.2	21.2	38.0	50.0	56.4	53.0	44.0	28.0	I． 7	－15．5
19．Fort Ra	6246	109 or		－23．15	-23.15	－ 2.68	18.64	41.53					23.65	＋ 1.08	－17．91
20．Fort Reliance	6246	10900	650	－25．01	－18．85	－10．47	8.23	36.03					．．		－17．07
21．Fort Resolution	61				－25	9.95	12.88	40.14					26.06		－ 2.59
22．Fort Simpson ${ }^{3}$	62	12120	300	－13．46	－10．43	＋ 4.47	25.94	47.89	63.50	60.81	53.16	［48．00］	23.20		－9．22
23．Fort Simpson	62	12120	300	-7.6	－ 2.3	－6．5	32.8	52.2					31.2		－18．6
24．Fort Simpson	62	12120		－18．13	-12.87	11.90	24.27	46.77.	61.				27.00		－14．47
25．Fort Simpson	62	12120	300	-15.43	－ 9.98	$+3.87$	26.13	49.45	64.			44.91	25.45	1.2	－15．97
26．H	58			－ 5.24	－5．3I	4.62	16.8	33.0	36.61	43.57	49．10	38.84	29.43	23.58	
27．Hebron ．	58	6330	．	-5.03	－ 0.04	9.93	21.	32	41.41	47.41	48.04	39.89	29.59	19.36	
28．Isthmus Bay－	5347	5630		8.55	7.10	24．79	27.76	36．14	45.59						1． 89
	4950	8400	1000	3.27	10.70	11.21	33.29		62.28	64.25	6 t .35	48.47	38.37	22	11.12
30．Little Whale Rive 31．Moose Factory．	5602	7730		－ 9.88	－12．05	14.63	20.	33.	37	50.83	47.20	［38．94］	32.13	17.1	－ 2.15
31．Moose Factory ：	5115			－ 7.28	－ 4.95	9.05	25.5	39.33	52.5	59.12	56.67	45.83	36.20	21.70	4.52
32．Moose Factory－	5115	8045	30	－10．86	－4．85	14.29	15.80	40.40	44.96	56.40	58.40	47.62	37．17	18.54	－ 4.54
33．Nain．	57			1.87	$+3.87$	6.35	27.50	37.17	43.47	50.45	51.80	44.8	33．12	23.0	6.80
35．Nain ．															
35．Nain	57	6150		－4．33	－3．21	8.74	19.21	31.6	37.44	44.0	51.01	41.04	26.03	24.71	．70
36．Nain ${ }^{\text {37．}}$ Nain	57	6150	．	-3.84	－ 0.69	9.46	22.6	32.8	41.78	48.2	51	42.21	32．13	22.2	3． 3^{8}
37．Nain ${ }^{\text {38．}}$ Norway House	57	6150	\cdots	0.95	3.51	7.52	29.97	36.23	42.53	50.18	50.99	44.9	33.98	26.51	6.51
38．Norway House	5350	98 oo	．	－ 7.13	-2.36	7.58	27.40	44.62	54．99	63.55	61.13	46.40	31.09	12.48	1．06
39．Okhak	5745	6320		2.15	I． 95	8.25	29.0	38.25	44.65	51.6	52.0	44.45	31.15	22.4	8.45
40．Okhak ．	5745	6320		－ 5.33	-2.04	11.28	23.92	33． 14	43.00	49.46	51．31	41.90	30.33	21.99	4.06
41．Oxford House	55	95 oo	400	-22.06	－ 1.90	8.57	28.6	38.01	．．		．．		17.53	${ }^{1} 3$	－23．06
42．Pelly Banks ．	6245	13045		－21．95	－14．73	－0．99	20.4								-13.98
ment－．	49	9700							57.1	63.		0．06	32.3		5.82
Red River ment			653	－ 1.79	－ 1.09			51．6		． 5	64.6	4.91	40.9		
45．Rigolet	5330	5821		－ 1.68	＋ 1.57	20.36	27.0	33.9	42.36					22.35	3.28
46．Rigolet	53	58 21	．	－ 0.81	＋ 2.87	13.43	26.62	34.69	41.66	51.69	50.96	41.70	32．18	21.8	4．18
47．Rupert House	51	7840		－4．09	－0．68	7.64	21.	41．51					34．80	23.33	15.59
48．Victoria－Winnepeg ：	4855 4952	12322 9700	64 650	38.09 8.96	42.22 5.78	$\begin{array}{r}44.79 \\ 13.36 \\ \hline\end{array}$	48.6 39.4	55.51 56.61							
49．Winnepeg ．	493^{52}	9700		8.96 9.70	5.78 0.07	13.36 15.15	39.46 24.32	56.61 42.83	61.65	66.20	64.35	55.73	39.99 32.03	19.8	$\begin{array}{r} 8.23 \\ -3.85 \\ \hline \end{array}$
51．Winter Island	66 ıо	83 10		－22．96	4.97	－11．64	5.51	23.09		36.34	36.60	31.06	12．51	7.75	12.94
52．York Factory	57 oo	9226		5.12	6.60	4.77	19.21	33.53	47.67	59．99	54.85	41.90	33.43	25.17	3.73

NEW FOUNDLAND．

I．St．John＇s9． 2．St．John＇s ${ }^{10}$	4734 47	5240 5240	140 170	$\begin{aligned} & 23.34 \\ & 23.77 \end{aligned}$	$\begin{aligned} & 20.86 \\ & 23.49 \end{aligned}$	$\begin{aligned} & 24.20 \\ & 30.33 \end{aligned}$	$\begin{aligned} & 33 \cdot 38 \\ & 35 \cdot 47 \end{aligned}$	$\begin{aligned} & 39.26 \\ & 44.46 \end{aligned}$	$\begin{aligned} & 48.00 \\ & 52.75 \end{aligned}$	$\begin{aligned} & 56.10 \\ & 59 \cdot 49 \end{aligned}$	$\begin{aligned} & 57.86 \\ & 60.31 \end{aligned}$	$\begin{aligned} & 52.96 \\ & 55.83 \end{aligned}$	$\begin{aligned} & 44.44 \\ & 44.27 \end{aligned}$	$\begin{aligned} & 33.96 \\ & 36.25 \end{aligned}$	$\begin{aligned} & 25.32 \\ & 27.95 \end{aligned}$
3．St．John＇s ．	4734	5240	．	．	．	．．	\cdots	－•	．	．	．	．	．	－	\cdots

${ }^{1}$ Morning，afternoon，and evening．
${ }^{3}$ Series much broken．Mean for September interpolated．
6 Value for September interpolated．
${ }^{2}$ Corrected for daily variation by means of Dove＇s Toronto Table．
4 Observations made at daylight，warmest time of day，and after dark．
${ }^{6}$ Hours of Observation $7_{\mathrm{m}} 8_{\mathrm{m}}$ N． $4 \mathrm{a} 5 \cdot 5 \mathrm{a}$ ．

7 Daily means derived from $7 t_{1}+7 t_{2}+10 t_{3}$,
Zambra maximum and minimum thermometer，tested at Kew．

BRITISH NORTH AIMERICA．－SOUTH OF LATITUDE $66^{\circ} 30^{\circ}$ ．

	$\begin{aligned} & \text { in } \\ & \dot{E} \\ & \dot{\sim} \\ & 0 \end{aligned}$		兑 号	嵳	菏	Series． Begins．Ends．	$\left\|\begin{array}{c} \text { Extent } \\ \text { yrs.mos. } \end{array}\right\|$	Observing huers．	Observer，	References．
12	$23^{\circ} \cdot 33$	$52^{\circ} .67$	$25^{\circ} .00$	$-22^{\circ} .00$	$19^{\circ} .75$	Feb 1769				Dove，Rep．Br．Assoc． 1847.
${ }^{1} 3$	13．36	51.63	21.95	－14．17	18.19	Feb．1838；May， 1839	13	1	Harding．	Richardson．
14	7.83		17.21	－24．00		Sept．1820；May， 1821	－ 9		Franklin．	Richardson．
15	14.05	50.23	21.12	－16．66	17.18	Sept．1825；May， 1827	I 9	18 times daily	Franklin．	Dove，Rep．Br．Assoc． 1847.
16	18.80	．		－ 3.73	\cdots	Oct．1864；June， 1865		$7 \mathrm{~m} 2_{\mathrm{n}} 9_{\mathrm{g}}$	H．Connolly．	S．Coll．
17	17.49					1862	－ 5	$7_{m} 2_{n} 9_{\text {a }}$ bis	A．Flett．	S．O．
18	16.67	53.13	24.57	－19．53	18.71	1768； 1769	10		Wales．	Williams＇History of Vermont．
19 20	19．16	5	．．	－21．40	．．	Oct．1859；May， 1863	1.5	$7 \mathrm{~mm} 2_{\text {a }} 9_{\mathrm{n}}$ bis	L．Clarke，Jr．	P．O．and S．I．Vol．I，and S．O．
20	II－26	．		－20．31	．	Nov．1833；Mar． 1835	10	$\begin{aligned} & 15 \text { times } \\ & \text { daily } \end{aligned}$	Back．	Dove，Rep．Br．Assoc．1847．
21	20.99							$88_{\mathrm{m}} 8_{\mathrm{a}}{ }^{2}$		Richardson．
22	26． 10	59.16	［26．24］	－11．04	［25．12］	1837； 1840	26	$8_{\mathrm{m}} 8$	McPherson．	Edin．N．Phil．Journ．Jan． 1841.
23	26.17			-9.50	［	Oct． 1851 ；May， 1852	－ 8	$8_{\mathrm{m}}{ }^{2}{ }^{\text {a }} 8_{\mathrm{a}}$	B．K．Ross．	S．Coll．
24	27.65	．		－ 15.16		Mar．1856；Apr． 1859	2	max．\＆min．	B．R．Ross．	P．O．and S．I．Vol．i．
25	26.48	．．	23.05	－13．79	．	Sept．1859；Apr． 1862	15	$7 \mathrm{~mm} \mathrm{ar}^{\text {a }} 9$ bis	B．R．Ross，A．Flett， W．W，Kirkby．	P．O．and S．I．Vol．I，and S．O．
26	18．15	43.09	30.62	－ 1.79	22.52					Dove，Rep．Br．Assoc． 1847.
27	21.46	45.62	29.61	－0．41	24.07	Sept．1842；Aug． 1848	6 －	$6_{\mathrm{m}} 7_{\mathrm{m}} \mathrm{N} 6_{\mathrm{a}} 7_{\mathrm{a}}$		Dove， 1857.
28	29.56			9.18		Dec．1785；June， 1786	－ 7			Cartwright＇s Labrador．
29	28.93	62.63	36.56	8.36	34.12	Sept．1860；Apr． 1863	16	$7_{7 m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	T．Richards．	S．O．
30	22.72	45.33	［29．41］	-8.03	［22．36］	Nov．186r ；Dec． 1862	1 I		W．Dickson．	S． 0 ．
31	24.64	56.12	34.58	－ 2.57	28.19	Sept．1857；May， 1862	25	＂	J．Mckenzie．	P．O．and S．I．Vol．I，and S．O．
32	23.50	53.25	34.44	－6．75	26.11	Sept．1858；Aug． 1859	10	$\odot_{r} 2_{n} 1 O_{n}$	J．McKenzie．	P．O．and S．I．Vol．I．
33	23.67	48.57	33.65	$\cdots 0.40$	26.37	Aug．1777；Aug．1780	3 I	$8_{m} \mathrm{~N}, 4_{4} 8_{a}$	M．de la Trobe．	
34	23.90	48.38	33.44	0.60	26.58	8．．．．．．	\cdots			Bridgewater Treatises，
35	19.87	44.16	30.59	＋ 0.05	23.67	Sept．I84I ；June， 1843	110			Dove．
36	21.65	47.03	32.21	－0．38	25.13	Sept．1841；July， 1852	96	S^{6}		Dove， 1857.
37	24.57	47.90	35．16	3.66	27.82		3 o	8_{m} N． $4_{\mathrm{a}} \delta_{\mathrm{n}}$		Dove，Rep．Br．Assoc． 1847.
38	26.53	59.89	29.99	-2.81	28.40	1841； 1847	7 o	max．\＆min．	Ross．	MS．in S．Coll．
39	25.17	49.43	32.67	4． 18	27.86	1777；1780	20	S_{m} N． $4_{\mathrm{s}} 8 \mathrm{fa}$		Dove，Rep．Br．Assoc． 1847.
40	22.78 25.07	47.92	31.41	－ 1.10	25.25	Oct． 1833 ；May， 1834				Dove， 1857. Richardson．
42	25.07	．．	．	-15.67 -16.89	．	Oct． $\begin{aligned} & \text { I } \\ & \text { Dec．} 1848 ; \text { Apr．} 1849\end{aligned}$	－ 0	$\odot_{r}{ }_{\text {ma }}^{\text {m }}$ dusk ${ }^{2}$	Campbell．	Richardson． Richardson．
43	．	．	32.79	．	．	1844	－ 9	$\bigodot_{r} 99_{m} 3_{\mathrm{e}} 9_{\mathrm{a}}$		MS．in S．Coll．
44 45	34.42 27.12	64.98	38.2 I	－ $\begin{array}{r}1.11 \\ \hline 1.06\end{array}$	34． 12	June， $1855 ;$ Sept．1861 Nov． 1857 ；June， 1859	4 1 1	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	D．Gunn	P．O．and S．I．Vol．I，and S．O．
46	24.91	48． 10	31.91	2.08	26.75	July，1860；June， 1863	25		H．Connolly．	P．O．
47	23.40	．．		361	．．	1839 ； 1840	－ 8			Richardson．
48	49.66				\cdots	1864	－ 5		Dr．D．Walker．	MS．in S．Coll．
49	36.48	64.07	40.47	7.66	37.17	Jan．1869；Dec． 1870	13	$7 \mathrm{~m} 2 \mathrm{az} 9_{\mathrm{a}}$ bis	J．Stewart．	S．O．
50	27.43		．．	1.93		Oct．1865；May， 1866	－ 8		H．Connolly．	S．O．
51 52	5.65	35.64	17.11	－20．29	9．53	Aug．1821；July， 1822	$1{ }^{1} 0$	bi－hourly	Parry．	Parry．
52	19.17	54.17	33.50	－ 2.66	26.05	June，1830；May， 1831	10	M．N．E．${ }^{8}$	Charles．	Richardson．

NEW FOUNDLAND．

8 ＂The exact hours of morning and evening are not specified；they have been corrected by Dove＇s table on the supposition that the hours were \odot_{r} and \odot_{8} ．＂ ${ }^{9}$ Colonial Secretary＇s Office．
${ }^{10}$ Observations made in several localities（for the most part at＂Colonial Building＂），and at various hours．They have been corrected for daily variation by means of the general table．

PROVINCE OF NOVA SCOTIA．

Name of Station．	＋゙ٌ	＋ic	号	氐	［100	忽	笕	$\underset{\sim}{\infty}$	啰	官	范	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \text { ஸ் } \end{gathered}$	¢	8	®
I．Albion Mines ．．	$45^{\circ} 34^{\prime}$	$62^{\circ} 42^{\prime}$	120	$19^{\circ} .15$	$19^{\circ} .42$	$27^{\circ} \cdot 30$	$37^{\circ} .43$	$48^{\circ} .73$	$5^{80} .63$	$66^{\circ} \cdot 39$	$65^{\circ} \cdot 54$	$56^{\circ} \cdot 30$	$46^{\circ} \cdot 47$	$35^{\circ} \cdot 75$	$23^{\circ} .98$
2．Caledonia Coal Mine	4612	5957	60	19.27	19.70	24.23	32.77	41.42	54.15	60.55	64.15	57.03	45.67	36.22	24.88
3．Halifax－	4439	6335	8.	23.44	23.65	29.96	38.13.	48.36	56.90	64.51	63.74	57.96	48.91	39.34	28.75
4．Halifax ．．．	4439	6335	\cdots	\cdots	．	．．	．．	－•	．	．	．	．	－•	．	．
5．Halifax ${ }^{2}$ ．．．．	4439	6335	\cdots	23.75	24.50	29.00	38.50	47.75	56.25	62.00	63.25	57.25	46.50	39.00	26．25
6．Halifax	4439	6335	130	20.20	23.31	27.47	37.26	47.97	58.92	63.98	64.15	58.31	46.11	36.04	25.18
7．Windsor ．．．	4459 4459	$\begin{array}{ll}64 & 07 \\ 64 & 07\end{array}$	200	26.84 23.27	29.01 22.49	36.33 30.63	48.96 38.07	61.05 48.48	70.47 60.35	75.82 66.05	75.02 64.68	66.68 57.25	54.26 46.26	40.61 37.31	32.12 25.54
9．Wolfville ．．．	4506	6425	80	21.73	23.84	28.98	39.86	50.06	60.03	66.22	65.26	57.24	47.28	38.18	26.36
PRINCE EDWARD ISLAND．															
I．Charlottetown	4612	6300		17.91	23.52	27.81	37.60	51.59	60.19	69.48	67.68	59.49	45.79	37.49	28.60
PROVINCF OF N®W BRUNSWICK．															
1．Fredericton	4557	6640		17.	24.			37.	48.5	65.5	69.75	61.5	47.5	31.	13.5
2．St．John ．	4522	6604	135	18.21	$2 \mathbf{2 1 . 9 7}$	27.81	36.35	46.33	54.49	59.27	59.01	54．80	44.53	35．59	22.96

PROVINCE OF QUEBEC（CANADA EAST）．

1．Fort Coulonge	4555	7704	250	11.33	15.72	28.74	40.55	54.30	65.40	69.40	66.46	56.28	45.05	31.30	17.01
2．Island of St．Helen ${ }^{5}$	4530	7333	60	13.53	17.68	24.90	38.37	53.97	64.73	68.91	68.04	57.62	46.50	31.58	19.66
3．Montreal	4531	7333	60	14.66	18.13	28.43	41.94	58.06	68.12	78.89	69.67	60.23	47.43	33.83	18.96
4．Montreal	4531	7334	57	15.00	17.51	29.45	43.53	58.14	68.37	73.14	70.79	60.64	46.46	33.71	19.07
5．Montreal	45 3x	7333	．	14.52	16.20	28.63	41.84	58.99	71.01	74.46	73.12	62.42	47.05	33.97	19.29
6．Montreal	45 31	7333	50	15.00	16.40	28.40	39.80	55.40	66.20	71.00	68.40	55.80	44.60	34.40	17.80
7．Montreal	45 31	7333	118	12.29	17.27	27.05	40.76	55.59	67.01	70.98	68.32	60.21	47.66	35.50	19.65
8．Montreal	45 31	7333	．．									．			
9．Nicolet	4614	7232	\ldots	13.26	13.26	27.22	39.48	52.69	63.58	68.50	67.83	57.90	44.32	32.27	17.24
10．Quebec ．	4649	7112	\cdots	10.	10.	22.	40.	52.	67.	69.	67.	51.	44.	36.	20.
II．Quebec ．	4649	7112	300	9.88	12.79	24.36	38.66	52.88	63.69	66.8 r	65.51	56.25	44．13	31． 54	17.28
12．Quebec ${ }^{6}$ ．	4648	7112	330	．．	．		．．	．	．．			．．．		．	．
13．Quebec ${ }^{6}$ ．	4648	7112	330	\cdots			－		6	63.93	63.65	50.21	45.28	\cdots	
14．Quebec ．	4649	7112	．．	10.98	14.83	28.38	39.40	53.58	65.27	71.29	70.77	57.50	43.70	$34 \cdot 32$	12.64
15．Quebec ．．	4649	7112	\cdots	15.91	12.65	22.66	39.65	54.84	63.95	73.40	66.88	62.38	42.80	33.13	13.89
16．Quebec ．	4649	7112	\cdots	．．				．．	．．	．．	．	．	．．	．．	．．
17．St．Anne．	4724	$70 \quad 05$	175	11.05	18． 35	25．18	36.23							\cdots	22.00
18．St．Martin ${ }^{8}$ ．	4532	7346	118	10.94	16.56	25.26	39.78	54.77	65.42	71.48	67.32	58.60	46.22	31.73	16.33
19．Sherbrook ${ }^{9}$	4525	7153	\cdots	18．5	11.9		35.9	38.9		$64 \cdot 3$	56.7				
20．Stanbridge	4508	7300	222	14.68	16.90	25.43	39.81	54.32	64.07	68.32	65.71	56.87	44． 18	33.15	19.27

1 Observations for $1853-54$ ，at $7{ }_{\mathrm{ma}} 2_{\mathrm{a}} 9$ ．$\quad{ }^{2}$ Results from three observations daily，at hours not stated．
${ }^{3}$ At the even hours．The values for 2_{m} and 4_{m} were interpolated from the readings at midn＇t and 6_{m} ，and by means of a minimum thermometer．
4 Corrected for daily variation by means of the general table．
${ }^{5}$ At the Barracks，R．A．，opposite Montreal．During the first year，the observations were made bi－hourly，at the even hours；during the second，bi－ hourly，at the odd hours．
${ }^{6}$ Cape Diamond．

PROVINCE OF NOVA SCOTIA．

	$\stackrel{\dot{6}}{\substack{0 \\ 0 \\ 0}}$		$\begin{aligned} & \text { 丘 } \\ & \text { 苞 } \end{aligned}$	㞱	H゙ら	Series． Begins．Ends．	$\begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing HoURS．	Observer．	References．
1	$37^{\circ} .82$	$63^{\circ} \cdot 52$	$46^{\circ} \cdot 17$	$20^{\circ} .85$	$42^{\circ} .09$	1843； 1854	11 I	$\odot_{r} 9 \mathrm{~m} 3{ }_{\mathrm{a}} 9^{1}{ }^{1}$	H．Poole．	MS．in S．Coll．
2	32.81	59.62	46.31	21.28	40.00	Jan．1867；Dec． 1869	30	max．\＆min．	H．Poole．	Trans．Nova Scotia Inst．Nat． Sci．Vol．II．
3	38.82	61.72	48.74	25.28	43.64	Oct．1845；Feb．1861	106	$6_{\text {m }} 3_{\mathrm{g}} 8_{\mathrm{a}}$	Generd，C．Harrison．	Dove；Board of Trade First Paper；P．O．and S．I．Vol． I，and S．O．
4	－	．	．	．．	43.65	1860； 1863	40			Trans．Nova Scotia Inst．Nat． Sci．Vol．I．
5	38.4	60.50	47.5	24.83	42.83	Jan．1863；Dec． 1866	40		Colonel Myers．	Trans．Nova Scotia Inst．Nat． Sci．Vols，I and II．
6	37.57	62.35	46.82	22.90	42.4 I	Jan．1867；Dec． 1869	30	bi－hourly ${ }^{3}$	F．Allison．	Trans．Nova Scotia Inst．Nat． Sci．Vol．II．
7	48.78	73.77	53.85	29.32	51.43	Jan．1794；Dec．18ir				S．Coll．
8	39.06	63.69	46.94	23.77	43.36	May, I867; June, I863	$\begin{array}{ll}3 & 5\end{array}$	$7 \mathrm{~m} \mathrm{2as}_{\mathrm{a}}$	Profs．J．D．Everett， H．How，and J．M． Hensley．	P．O．and S．I．Vol．I，and S．O．
9	39.63	63.84	47.57	23.98	43.75	Sept．1855；Dec． 1870	1 l 6	4	A．P．S．Stuart，C．F． Hartt，D．F．Higgins．	P．O．and S．I．Vol．I，and S．O．

PRINCE EDWARD ISLAND．

I	39.00	65.78	47.59	23.34	43.93	．．．．．．．．．．．	10	．．．．．．	．．．．．．．．．	Dove， 1857.

PROVINCE OF NEW BRUNSWICK．

PROVINCE OF QUEBEC（CANADA EAST）．

1	41．20	67.09	44.21	14.69	41.80	Jan．1824；Dec． 183 I		$\bigcirc_{\mathrm{r}} \mathrm{N} . \odot_{s}$	Severight．	S．Coll．
2	39.08	67.23	45.23	16.96	42.12	Aug．1839；July， 1841			J．S．McCord．	Printed Report，Montreal， 1842.
3	42.81	72.23	47.16	17.25	44.86	1826； 1840	15 －	max．\＆min．	J．S．McCord．	Drake．
4	43.71	70.77	46.94	17.19	44.65	Jan．1826；Dec． 1852	27 －	$7 \mathrm{~m} 3{ }_{3}$	W．S．Kakel．	Hall＇s MS．Phil．Mag．
5	43.15	72.86	47．81	16.67	45．12	Jan．1845；Dec． 1853	90	$8 \mathrm{ml} \mathrm{I}_{\mathrm{a}} 6_{\mathrm{a}}$	L．A．H．Latour．	MS．in S．Coll．
6	41.20	68.53	44.93	16.40	42.77	Jan．1846；Dec． 1850	5 o		Dr．Bethune．	S．Coll．
7	41.13	68.77	47.79	16.40	43.52	Sept．1855；June， 1863	6	$7 \mathrm{~m} 2_{\mathrm{n}} \mathrm{g}_{\mathrm{a}}$	Dr．A．Hall．	P．O．and S．I．Vol．I，and S．O．
8					41.45	1857；1861			．${ }^{\text {c．．．．．}}$	Trans．Nova Scotia Inst．Nat． Sci．Vol．I．
9	39.80	66.64	44.83	14．59	41.46	Jan．1838；Dec． 184	$9 \bigcirc$	6 m 3 a	Desanniers．	S．Coll．
Iо	38.00	67.67	43.67	13.33	40.67	1743； 1744			Gautier．	Sill，Journal．
11	38.63	65.34	43.97	13.32	4 C .31	Jan．1809；Dec． 1818	100		Dr．Sparks．	S．Coll．
12					37．19	1828； 1836		7	Watt．	6
13						1829				＂${ }^{\text {c }}$
14	40.45	69.11	45．17	12.82	41.89	1845； 1847	20			Dove， 1853
15	39.05	68.08	46.10	14.15	41.85		．．			Bouchette．
16	38.84	68.00	46.04	14．18	41.76					Bridgewater Treatises．
				17.13 14.61		Dec．1866；Apr． 1867	O 5	$7{ }_{\text {m }} 2_{\mathrm{n}} 9 \mathrm{am}$ b	J．O＇Donohue．	S．O． S．Coll，P．O，and S．I Vol．I，
18	39.94	68.07	$45 \cdot 5^{2}$	14．61	42.03	Jan．185I ；Jan． 1862		$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a}$	Dr．C．Smallwood．	S．Coll．，P．O．and S．I．Vol．I， and S．O．
19	32.57					1836		$\bigcirc_{\mathrm{r}} \mathrm{I}_{2} 9 \mathrm{a}$	Z．Thompson．	S，Coll．
20	39.85	66.03	44.73	16.95	41．89	Mar．1856；Dec． 1870	II 4	$7 \mathrm{~m} \mathrm{z}_{\mathrm{n}} 9_{\mathrm{a}} \mathrm{Lis}$	J．C．Baker，A．H．I． Gilmour．	P．O．and S．I．Vol．I，and S．O．

[^73]| PROVINCE OF ONTARIO（CANADA WEST）． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | － | E． ¢ \square | 烒 | － | \％ | cin 或 | 芸 | 窓 | 号 | 官 | 莒 | $\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}} \\ & \underset{\sim}{2} \end{aligned}$ | ٌ | 安 | ®ٌ |
| 1．Ancaster ． | $43^{\circ} \mathrm{I} 5^{\prime}$ | $80^{\circ} 07^{\prime}$ | \cdots | $27^{\circ} \cdot 50$ | $25^{\circ} .45$ | $33^{\circ} .79$ | $43^{\circ} .80$ | $54^{\circ} .60$ | $63^{\circ} .20$ | $68^{\circ} .73$ | $66^{\circ} .42$ | 59° ．or | $47^{\circ} \cdot 34$ | $37^{\circ} .64$ | $30^{\circ} .23$ |
| 2．Brantford | 43 o8 | So 14 | ． | 27.00 | 25.87 | 35.88 | 51.50 | 61.75 | 72.62 | 78.75 | 75.38 | 63.13 | 49.00 | 37.44 | 28.22 |
| 3．Clifton ${ }^{1}$ ： | 4305 | 7906 | | \cdots | 26.60 | 36.57 | 39.27 | 50.89 | 68.61 | 73.83 | 70.69 | 60.30 | 47.98 | 39.50 | 28.60 |
| 4．Fort William | 4823 | 8922 | 660 | 5.70 | 8.22 | 22.72 | 31.42 | 48.87 | 58.73 | 62.19 | 58.84 | 48.16 | 41.88 | 23.43 | 18.16 |
| 5．Hamilton ． | 4315 | 7957 | 300 | 26.43 | 26.29 | 33.73 | 43.68 | 55.60 | 66.47 | 72.46 | 70.44 | 61.86 | 49.65 | 39.84 | 29.93 |
| 6．Kingston | 4413 | 7629 | 300 | 16.0 | 20.5 | 32.0 | 48.0 | 56.0 | 63.0 | 68.5 | 68.0 | 62.5 | 46.0 | 32.5 | 26.5 |
| 7．Kingston | 44 I3 | 7629 | 3 | 18.99 | 9.88 | 27.01 | 40.01 | 58.01 | 65.99 | 70.00 | 67.01 | 59.99 | 49．01 | 36.99 | 25.99 |
| 8．Kingston | 4413 | $76 \quad 29$ | | ．． | ．． | ．． | ．． | | ．．． | ．． | ．． | ．． | ．． | － | ， |
| 9．Kingston | 4413 | 7629 | 294 | － | ．\cdot | ．\cdot | ． | | | | | ．． | | | ． |
| 10．Kingston ．． | 4413 | 7629 | 294 | 20.98 | 23.14 | 34.00 | 40.20 | 59.62 | 63.49 | 66，26 | 68.53 | 59.07 | 48.09 | 38.34 | 19.07 |
| II．Lake Temiscamin－ gue ． | 4719 | 79 31 | 630 | 9.23 | 18.44 | 24.41 | 39.04 | 49.35 | 62.75 | 67.28 | 65.58 | 53.39 | 40.83 | 25.97 | 17.68 |
| I2．Michipicoten ．． | 4756 | 8506 | 660 | 10.63 | 16.66 | 26.09 | 34.66 | 51.88 | 55．00 | 57.03 | 60.04 | 49.67 | 44.92 | 29.01 | 22.38 |
| 13．Michipicoten | 4756 | 8506 | 660 | 8.72 | 12.62 | 23.84 | 39.00 | 52.30 | 59.00 | 70.01 | 64.68 | 57.11 | 46.32 | 32.33 | 22.21 |
| 14．Michipicoten ${ }^{3}$ ．． | 4756 | 8506 | 660 | 5.79 | 6.09 | 16.62 | 36.05 | 42.12 | ［55．52］ | 59.03 | 60.80 | 51.00 | 42.82 | 29.62 | 14.69 |
| 15．Niagara ．．． | 4309 | 7906 | 270 | －${ }^{\text {\％}}$ | 27.05 | 30.81 | 43.57 | 49.67 | 61.80 | ． | | ．． | 51.17 | 38.47 | 34.60 |
| 16．Penetangushene | 4448 | 8000 | 600 | 22.50 | 21.23 | 30.82 | 37.48 | 55.09 | 67.85 | 73.15 | 68.72 | 54.93 | 48.83 | 37.85 | 24.38 |
| 17．Toronto－．． | 4339 | 7923 | 342 | 22.24 | 19.17 | 29.41 | 40.44 | | | | | | | 34.75 | 26.01 26.05 |
| 18．Toronto ${ }^{5}$ ．．．． | 4339 | 7923 | 342 | 23.13 | 23.03 | 29.57 | 41.09 | 51.52 | 61.60 | 67.30 | 66.06 | 58．17 | 45．80 | 36.73 | 26.05 |

ALABAMA．

1．Ashville	3350	8619	－	32.75	51.13	42.46	49.73	63.50	70.93	72.63	74.33	67.46	60.56	46.27	45.70
2．Auburn－－	3236	8531	821	42.98	49.50	53.01	64.35	71.36	77.66	80.08	79.12	76.48	62.88	56.65	48.96
3．Bon Secour ${ }^{6}$ ．	3018	8746		50.45	56.17	62.73	．．	．	．	80.10	79.03	78.49		58.51	54．17
4．Cahawba ．	$32 \quad 19$	8711	160							82.25	80.56	75.39	57.41	57.48	
5．Carlowville ．	3205	8708	400	46.98	52.89	58.02	63.47	71.86	78.58	81.82	80.42	74.54	64.98	54.32	48.76
6．Coatopa ${ }^{7}$ ．	3240	8815	350		49.98	53.13	60.55	71.45	76.23	80.35	79.84	74.10	66.70	53.03	43.78
7．Elyton，near	$33 \quad 30$	8654	\cdots		46.00	50.03	59.29	70.19	76.59	81.21	79.34	72.79	63.57	49.78	40.08
8．Erie ．．	3245	87 31	\cdots	52.21	57.20	66.54	66.74	76.20	81．38	84.78	82.72	76.99	67.02	$55 \cdot 32$	54.30
9．Erie	3245	8731	\ldots	45.62	51.86	58.92	63.92	73.83	75.70	80.81	81.51	75．19	64.80	53．20	47.24
10．Eutaw ${ }^{8}$	3250	8800	．	41.27	52.22	58.04	65.68	73.58	79.93	82.40	80.69	73.73	61.84	50.47	45.20
ir．Florence．	3447	8741		45.5	42.8	63.0	63.5	70.0	77.3	77.0	78.7	72.6	59.0	56.5	44.3
12．Fort Morgan ${ }^{9}$	3014	88 or	20	55.29	50.34	56.16	65.11	74.97	80．01	82．18	81．38	76.96	70.94	60.86	56.84
13．Fort Morgan	3014	88 or	20	58.96	55.50	63.61	69.33	71.04	So． 86	85.34	86.64	82.95	71.83	60.93	55.84
14．Greene Springs ．	3250	8746	500	43.60	49.49	56.01	62.75	70.79	76.99	79.58	78.77	73.09	61.90	52.07	45.77
15．Greensboro ${ }^{11}$	3243	8740	350	45.39	50.47	56.16	61.90	70.31	76.92	79.31	78.28	72.22	61.97	52.60	47.21
16．Huntsville	3445	8640	600	42.06	42.59	51.34	61.30	67.25	74.23	76.39	76.24	70.15	59.50	49.74	4 r .8 I
17．Mobile	3041	$88 \quad 02$	15	51.3	53.7	59.4	67.1	74． 1	77.8	79.8	79.4	76.1	65.7	57.0	52.3
18．Mobile	3041	$88 \quad 02$	15	55.25	$55 \cdot 57$	65.64	70.00	76.37	82.17	82.41	82.76	77.59	67.95	59.92	54.32
19．Monroe	$\begin{array}{lll}32 & 23\end{array}$	8640	\cdots	\cdots	56.99	62.97	71.97	73.00	75.98	78.98	79.99		61.99		
20．Monroeville．	3 3 32	8728	150	47．91	56.40	62.78	65.59	73.50	78.31	79.99	80．15	76.13	69.46	56.38	52.73
21．Montgomery	3223	8618	162	46.98	52.73	60.88	63.80	75.49	77.62	．．		73.40	6 I .40	50.19	50.18
22．Moulton ．	3429	8723	643	41.66	47.47	52.63	6 F .46	68.49	74.17	77.20	76.48	70．19	56.95	48.33	42.93
23．Mount Airy	3220	8652	．．	47.73		60.96			78.91	82.45	85.85	77.80	66.22	54.69	
24．Mt．Vernon Arsenal	3105	$88 \quad 02$	200	49.98	54.20	60.09	66.60	74.05	78.48	80.15	79.85	76.17	66.03	56.84	51.37
25．Newbern．	$\begin{array}{ll}32 & 38 \\ 32 & 38\end{array}$	87 87 85 5												51.89 52.08	
26．Opelika，near ． 27．Orville ．	32 32 32	8525 8720	200	45．77	50.70	56.88	62.84	68.96	77.74	80．18	78.41	74.81	62.31 61.97	52.08 56.45	46.93 45.00

[^74] were made at various hours，and have been corrected for daily variation by means of the general table．
${ }^{2}$ Corrected for daily variation by means of Dove＇s Toronto table．${ }^{3}$ Value for June interpolated．
4 ＂The readings were recorded regularly at 8_{m} N． $5_{a} 8_{a}$ ．When the highest or lowest temperature for the day occurred at other periods it was registezed．＂
5 Magnetic and Meteorological Observatory，in the grounds of the University of Toronto．The hours of observation for $\mathbf{I} 840$ are not known，but the results can differ little from the true mean of the day；from January，I841，to June，IS42，the observations were taken bi－hourly；from July 1 ， 1842 ，to June 30,1848 ，hourly．Afterwards，to the end of 1852 ，the observing hours were irregular；not less than six readings were taken daily，and some hourly and bi－hourly．From January， $1 S_{53}$ ，to the end of the series，the observations were taken regularly at $6_{\mathrm{m}} 8_{\mathrm{m}} 2_{\mathrm{a}} 4_{\mathrm{a}} 1 \mathrm{I}_{\mathrm{a}}$ and M．，＂excepting on Sundays， Christmas day，and Good Friday，when the instruments wese read at $6_{\mathrm{m}} 2_{a}$ only．These latter readings，though recorded in the daily register，are not

PROVINCE OF ONTARIO（CANADA WEST）．

		岂 品 की	筑 菖	烒	発	Series． Begins．Ends．	$\left\|\begin{array}{c} \text { ExTENT } \\ \text { yrs.mos. } \end{array}\right\|$	Observing HOURS．	Observer，	References．
1	$44^{\circ} .06$	$66^{\circ} .12$	$48^{\circ} .00$	$27^{\circ} .73$	$46^{\circ} .48$	Jan．1835；Dec． 1845	11.	9 m 9 a	Craigie．	S．Coll．
2	49.71	75．58	49.86	27.03	50.54	Nov．1836；Dec． 1844	82		McDougal．	＂＂
3	42.24	71.04	49.26			May，1867；Dec． 1870	16		W．M．Jones．	S．O．
4	34.34	59.92	37.82	10.69	35.69			$8_{m} 8_{\text {a }}{ }^{2}$		Richardson．
5	44.34	69.79	50.45	27.55	48.03	Jan．1846；Dec． 1859	136	9 m 9 a	Dr．W．Craigie．	Can．Journ．Feb．1854，and P． O，and S．I．Vol．I．
6	45.33	66.50	47.00	21.00	44.96	July，1843；Feb． 1845	18		Smith．	MS．in S．Coll．
7	41.68	67.67	48.66	18.29	44.07		$1{ }^{1}$			Dove， 1857.
8	．	．．	．．	．	42.77	856；I858	30			Trans．Nova Scotia Inst．Nat． Sci．Vol．I．
9					44.56	1856 ； 1861	6 o	9.5 m 3.5 s	J．Williamson．	S．Coll．
10	44.61	66.09	48.50	21.06	45.07	Jan．1859；Dec． 1860	20			
II	37.60	65.20	40.06	15.12	39.50		\cdots	$\odot_{r_{8}} \mathrm{~N} . \odot_{s}{ }^{2}$	Severight．	Richardson．
12	37.54	57.36	41.20	16.56	38.16	18．7	\cdots	$8_{\mathrm{m}} 8$	Keith．	
13	38.38	64.56	45.25	14.52	40.68	Nov 1847 ${ }^{\text {184 }}$	10	$8{ }_{\text {m }}{ }^{2}$	Swanston．	Regent＇s Report．
14	31.60	［58．45］	41.15	8.86	［35．01］	Nov．1860；Mar． 1866	15	$7 \mathrm{~m}{ }^{2}{ }^{2} 9 \mathrm{ab}$ bis	C．Rankin．	S．O．
15.	41． 35		－	\cdots		Feb．1861；June， 1863	0 O 10	$7_{m m} \mathrm{I}_{\mathrm{a}} 9_{3}$	H．Phillipps．	S． 0.
16	41．13	69.91	47.20	22.70 22.47	45.24	May，J825；Apr． 1826 Jan．IS3I；Dec．I839	10	max．\＆min．${ }^{4}$	Todd．	Franklin＇s Second Journey． Up．Can．Med．Journ．
18	40.73	64.99	46.90	24.07	44.17	Jan．1840；Dec． 1870	3 O	．．．．．．		

ALABAMA．

1	51.90	72.63	58．10	43．19	56.45	1857	10		T．M．Barker．	P．O．and S．I．Vol．I．
2	62.91	78.95	65.34	47．15	63.59	Jan．1855；Jan． 1858	30	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{a}$	Prof．J．Darby．	＂＂${ }^{\text {a }}$
3	．	．．		53.60		Nov．1866；Sept． 1868	10	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	W．J．Vankirk．	S．O．
4			63.43			1859	－ 5	$7_{m} 2_{\mathrm{n}} 9_{\mathrm{m}}$	Dr．M．Troy．	P．O．and S．I．Vol．I．
5	64.45	80.27	64.6 I	49.54	64.72	June，1856；Dec． 1870	72	$7_{m} 2_{\text {a }} 9_{\text {a bis }}$	Dr．H．L．Alison．	P．O．and S．I．Vol．I，and S．O．
6	61.71	78.81	64：6I	49．54		Aug．1859；Dec． 1870	10		Rev．S．U．Smith， Dr．S．K．Jennings．	＂＂6＂\％＂
7	59.84	79.05	62.05			1870	0 II	، ${ }^{\text {c }}$	E．B．Shields．	S． 0.
8	69.83	82.96	66.44	54.57	68.45	May，1824；June，1825	12	$6{ }_{\text {m }}$ N． $4_{\text {a }}$	Osborn．	S．Coll．
9	65.56	79.34	64.40	48.24	64.38	1849； 1852	38	$\bigcirc_{r} 9_{m} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Jennings and Osborn．	＂ 6
10	65.77	81.01	62.01	46.23	63.75	1850； 1853	22	$)_{6}^{6}$	A．Winchell．	＂،
11	65.50	77.67	62.70	44.20	62.52	1849	10		B．R．Gifford．	＂＂،
12	65.41	81．19	69.59	54．16	67.59	Jan．1835；Dec． 1867	210	10	Assistant Surgeon．	Ar．Met．Reg．1855，and MS． from S．G．O．
13	67.99	84.28	71.90	56.77	70.24	1848； 1850		hourly．	Officers of U．S．C．S．	S．Coll．
14	63.18	78.45	62.35	46.29	62.57	Jan． 1854 ；Dec． 1870	100	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	H．Tutwiler and J． W．A．Wright．	P．O．and S．I．Vol．I，and S．
15	62.79	78.17	62.26	47.69	62.73	June，1856；Jan． 1870	66	،	R．B．Waller，Dr．S． K．Jennings．	＂،
16	59.96	75.62	59.80	42.15	59.38	1829； 1842	130		Allan．	Drake．
17	66.87	79.00	66.27	52.43	66.14		10 o			Patent Office Report．
18	70.67	82.45	68.49	55.05	69.16	Apr．1840；Feb． 1870		$7 \mathrm{~mm} \mathrm{za}_{\text {a }}$	Dr．S．B．North，L． B．Taylor．	Am．Alm． 1842 and foll．，and S．O．
19	69.31	78.32						＂		Dove， 1857.
20	67.29	79.48	67.32 668	52.35	66.61	$\xrightarrow{\text { 1849；}} 1853$	3 II		Cumming．	S．Coll．
21	66.72 60.86		61.66 58.49	49.96 44.02		Mar．1849；Apr． 1861 Mar．1859；Dec． 1869			Swan \＆J．A．Shepherd A．J．Harris，A．D．	P．O．and S．I．Vol．i，and S．O．
22	60.86	$75 \cdot 95$	58.49	44.02	59	Mar．1859；Dec．		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ в в	A．J．Harris，A．D． Hunt，T．M．Peters， J．Shackelford．	P．O．and S．I．Vol．i，and S．O．
23		82.40	66.24			1850；1851		$\bigcirc_{r} 9_{9 m} 3_{\text {ma }} 9_{a}$	Percivall．	S．Coll．
24	66.91	79.49	66.35	51.85	66.15	Aug．1840；Nov． 1860	194		Assistant Surgeon．	Ar．Met．Regs．1855，and 1860， and MS．from S．G．O．
25								$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$		S．Coll．
26	62.89	78.78	63.07	47.80	63.13 ..	Mar．1867；Dec． 1869 1859	$\begin{array}{ll} 2 & 7 \\ 0 & 3 \end{array}$	$\begin{gathered} 7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bia }} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \end{gathered}$	E．B．\＆J．H．Shields． Dr．S．K．Jennings．	S． 0 ． P．O．and S．I．Vol．I．

included in the hourly means of the month．＂From 184I to 1863 ，inclusive，the observations have been corrected for daily variation，but since the correc－ tion to the mean of any one month amounts，in maximo，to only about $\pm^{\circ} .1$ ，and for the year to but $+^{\circ} .02$ ，it has been omitted from $1864-1870$ ．The duties of the observatory are carried on by the director，G．T．Kingston，A．M．，assisted by Messrs．Walker，Menzies，Stewart，and Davidson．

6 Observations in 1867－68 at Fish River，or Bolivar， 5 miles N．W．of Bon Secour． 1 Observations in August， 1859 ，at Livingston， 5 miles to the S．
8 Observations in 1853 at $7{ }_{70} 2_{a} 9$ ．No correction for change of hours has been applied．${ }^{9}$ Observations in 1867 at Fort Gaines some miles to the west，
10 Observations at various hours；they have been referred to the mean of the day，making use of the＂Fort Morgan table．＂
${ }^{11}$ Observations from January， 1868 ，to October， 1869 ，inclusive，＂ 6 miles east of Havana；＂and from November，I869，to January， 1870 ，inclusive， ＂near Greensboro．＂All the stations are within a radius of a few miles，and have about the same elevation．

ALABAIMA．－Continued．

	官		思 菖	岕	－	Series． Begins．Ends．	Extent yrs．mos．	Obser ving hours．	Observer．	References．
28	$64^{\circ} .63$	$8 \mathrm{I}^{\circ} .45$	$66^{\circ} .45$		．．	1867	O II	$7 \mathrm{~m} 2^{2} 9{ }^{\text {a }}$ bis	W．Henderson，R．M． Reynolds．	S．O．
29	64.76	79.28	64.46	$49^{\circ} \cdot 54$	$64^{\circ} \cdot 51$	Apr．1858；Dec． 1870	1 II	$7 \mathrm{~m} \mathrm{2an}_{\text {a }}$	Dr．S．K．Jennings， C．F．Fahs，R．B． Deans．	P．O．and S．I．Vol．I，and S．O．
30	73.72	89.43	72.95	54．12	72.56	1841	10	9 m N． $3_{\text {a }} 9_{\mathrm{a}}$	Fabre．	Printed Journal．
31	．．				．．		$\begin{array}{ll}0 \\ 0 \\ 0 & 18\end{array}$	$6_{7 m} 2_{a}$	A．Cornette． Prof．M．Tuomey，and	S．O． P．O．and S．I．Vol．I．
32	．	80.76	64.43	44.30	．	Jan．1854；Mar． 1855	O II		Prof．M．Tuomey，and G．Benagh．	P．O．and S，I．Vol．I．
33	60.53	．	．	．	．	${ }_{1842}{ }^{1842}$	－ 4	7 m	Jennings．	Regents＇Report．
34	．．	．		\cdots	．．	Aug．1849；Feb． 1854	－ 4	$7 \mathrm{~m} \mathrm{~F}_{\mathrm{a}} 9_{\mathrm{a}}$	B．T．Holley．	S．Coll．
35	．	．	67.8 x		．	1854	－ 4	$8_{m} 2_{\mathrm{a}} 8_{\mathrm{a}}$	Dr．J．W．Payne．	P．O．and S．I．Vol．I．

ALASKA．

ARIZONA．

1	62.67	78.33	65.81	47.20	63.50	Aug．	1867；Dec． 1870		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{n}}$	Assistant Surgeon．	MS．from S．G．O．
2	71.72	90.08	73.22	54.96	72.50	Jan．	1869 ；Dec． 1870	20			
3	61.06	77.05	62.76	43.08	60.99	Apr．	1868；Dec． 1870	28	،	＂${ }^{\text {، }}$	، ${ }^{\prime}$
4	61.20	82.17	64.37	45.53	63.32	May，	1867；Dec． 1870	38	＂	＇6	＂${ }^{6}$
5 6				46.85	66.19		${ }_{1867}^{186}$		＂	＂＂	＂＂${ }^{\prime \prime}$
7	65.52 66.88	84.50 85.59	67.89 69.25	46.85 48.93	66.19 67.66	Dec．	1866；May， 1870	310 410	＊	＊${ }^{\prime}$	＇6
8	．．	72.31		－	．．		1870	－ 8	＂	،＂،	، ${ }^{6}$
9			63.35				1868		＂	＇6	＂
10	67.49	85.52	71.46	50.24	68.68		1866；Dec． 1870	4 －	＊	＂${ }^{\prime}$	＂＂
II	69.21	90.20	72.65	52.27	71.08	Sept．	1866；Dec． 1870	43	＂	c	＂${ }^{\text {a }}$
12	69.94	89.67	72.67	48.98	70.31		${ }_{1869 ;}^{1867}$ Feb． 1870	1	،	＂${ }^{6}$	＂${ }^{\prime \prime}$

${ }^{5}$ Corrected for daily variation．${ }^{6}$ In Siberia．

7 Old style．The observations were taken at the Magnetic and Meteorological Observatory on Japonski Island．From May， $\mathbf{1 8 4 7}$ ，to March， $\mathbf{1} 849$ ，and for 1862 they were made hourly；from June， 1849 ，to Dec． 1856,17 observations were taken daily，hourly，from 6_{m} to 10_{a} ；for the years $1857-1861$ ，and 1863－64， 19 observations were taken each day，hourly，from 4_{m} to 10_{a} ．The observing hours in 1867 not stated，but the corrections to them must be very small．The series has been corrected for daily variation by means of the Sitka table by Schott．
8 In 1867－68 called＂Camp McPherson．＂
9 Formerly＂Fort Breckènridge．＂
10 Also called＂Fort Tollgate．＂

ARIZONA．－Continued．

Name of Station．	＋	¢ ¢ H	少	号	－		兌	寍	号	三	苞	$\stackrel{\dot{\rightharpoonup}}{\stackrel{\rightharpoonup}{0}}$	－	\％	®ّ
14．Camp Verde	$34^{\circ} 32^{\prime}$	$111{ }^{\circ} 54^{\prime}$	\ldots	$44^{\circ} .57$	$48^{\circ} .49$	$53^{\circ} \cdot 45$	$61^{\circ} .63$	$7 \mathrm{I}^{\circ} \cdot 55$	$80^{\circ} .80$	$87^{\circ} \cdot 31$	$79^{\circ} \cdot 5^{6}$	$75^{\circ} \cdot 71$	$62^{\circ} .13$	$51^{\circ} \cdot 53$	$4 \mathrm{I}^{\circ} .64$
15．Camp Wallen ．	3131	IIO II	\ldots	44.88	46.53	54.14	60.64	67.53	77.42	78.72	74.92	71.69	63.61	52.30	48.54
16．Camp Willow Grove	3534	11327	－．	36.58	38.70	44.01	51.24	59.35	71.15	76.02	73.16	68.99	57.99	44.06	41.49
17．Fort Buchanan ．．	3140	IIC 55	5330	39.69	44.62	50.84	59.37	67.83	77.29	75.30	75.79	72.57	62.55	48.54	40.29
18．Fort Canbyt ．	3543	10910	6500	24.04	31.29	39.50	47.30	54.58	67.22	70.51	67.69	58.64	47.36	37.57	26.37
19．Fort Mojavé	3506	11435	604	52.23	56.42	64.06	73.67	80.38	90.02	94．51	93.25	84.15	74.84	6 r .73	53.50
20．Fort Whipple	3427	11220	5700	35.40	39.20	42.29	52.39	66.34	72.09	73.63	70.98	64.73 81.15	55.85 72.38	44.94 57.99	35.43 56.68
21．Tubac ．．	3 I 40	111 00	3000	51.14	$55 \cdot 56$	．．	．．	．				8 I .15	72.38	57.99	56.68
ARKANSAS．															
1．Camden ．	3332	9248	．	\cdots	－	\ldots	．	\ldots	．		．			57.16	
2．Fayetteville ．	36	9412	I 350		．			．				－	61.15	51.80	34.85
3．Flippin＇s Barrens ${ }^{2}$	3620	$92 \quad 23$	1000	40.63	43.13	52.66	64.30	7124	75.70	82.48	77.95			43.28	25.71
4．Fort Smith ．．	$35 \quad 23$	9429	460	38.17	44.33	50.92	62.35	69.10	76.32	80.23	78.88	72.76	60.43	48.77	39.15
5．Fort Wayne ．	3625	9438	．	40.90	51.73	55.88	62.86	67.80	75.89	77.37	76.92	68．58	60.19	44.28	$3^{8 .} 53$
6．Helena，near ．	3436	9036	．	41.17	44.87	53.89	6 A .76	69.02	75.25	80.92	80.14	72.67	58.32	52.54	43.23
7．Jacksonport ．．．	3540	915	．							81.90	79.17				．．
8．Little Rock ．．．	3440	9212	．	39.81	49.62	49.64	62.58	70.07	81.61	80.82	82.27	75.71	66.20	50.97	43.20
9．Springhill	3334	9335		48.75	51.55	60.75	71.15	76.70					62.50	60.83	
10．Washington，near	3344	9341	660	42.96	47.60	53.84	63.06	69.87	76.32	79.87	78.37	72.42	60.60	50.59	43.28

CALIFORNIA．

1．Alcatraz Island	3749	12225	\ldots	53．18	54.82	54.69	55.49	55.94	56.61	57.77	57.80	59.40	60.31	58.99	55．18
2．Angel Island ${ }^{4}$	3751	12226	30	50.58	53.04	55.15	58.10	60.13	61.51	63.91	63.14	62.71	61.05	58.27	52.66
3．Auburn	3853	121 04	1176				65.70	60.40			90.39	81.53	81.65	60.97	55.16
4．Benicia Barracks ${ }^{6}$	3803	12209	64	47.43	50.94	53.93	58.34	60.92	66.47	67.78	66.75	66.18	63.32	55.27	47.88
5．Cahto	3915	12317	2000	49.03	49.28	47.25	53.70	59.18	65.45	76.08	72.75	65.35	60.07	54.08	45.72
6．Camp Babbitt	3622	11917		47.91	51.77	55.87	64.96	74.30	75.32	82.02	81.00		64.50	50.65	48． 59
7．Camp Bidwell	4150	12010	4680	30.42	32.66	38.95	48.22	57.17	66.36	73.87	73.14	63.04	50.41	41，48	33.82
8．Camp Cady ．	3458	11632	3000	46.13	51.04	58.76	70.08	76.78	88.31	92.72	88.90	79.75	64.17	51.92	42.94
9．Camp Far West	39 O7	12118	175	45.33	48.45	51.29	59.20	67.00	71.66	75.53	76.29	69.34	65.35	52.30	44.85
10．Camp Gaston	41 OI	12334		44.33	45.57	50.22	56.12	62.48	67.86	73.96	72.37	66．ro	57.67	50.43	46.21
II．Camp Independence．	3650	11811	4800	37.87	41.29	48.07	57.50	65.42	76.14	81．01	79.61	71.72	59.16	48.07	38.97
12．Camp Lincoln	4150	12405		45.70	46.49	48.03	54.92	58.11	57.75	62.02	58.82	58.35	55.47	51.54	49.33
13．Camp Union	3832	12130	54	46.80	47.77	53.45	62.45	70.24	73.10	76.69	74.09	70.29	63.50	51.39	49.68.
14．Camp Wright	3948	12317	－	40.41	44.34	47．59	55.22	63.03	70.15	77.73	76.11	67.67	59.03	49.62	42.69
15．Chico．．	3943	12148	150	47.83	50.88	51.30	60.13	67.40	76.30	85.78	81.55	71.70	62.65	53.68	45.44
16．Clayton	3756	12155	76	50.78	52.33	49.78	57．10	．．	．．	，	．．	．	．．		
17．Crescent City	41 45	12412	12	42.93			．．			．	\cdots				
18．Downieville．	3933	12049	2200								70.13	59.30	50.80	42.38	36．19
19．Drum Barracks ．	3347	11817	32	55.29	55.34	56.35	61.12	63.93	68.16	72.83	74.68	70.82	66.91	61.39	56.02
20．Folsom	3840	2110	．．			55.03	58.57	63.64	68.70	80.50	77.54	74.80	62.82		
21．Fort Bragg	3956	12355		47.69	47．17	49.11	50.19	54.36	57.98	59.64	57.34	57.81	54.13	49.56	49.27
22．Fort Crook	4107	12129	3390	29.59	34.41	40.76	49.05	56.91	64.85	72.36	71.64	63.19	50.91	41.49	33.52
23．Fort Humboldt ${ }^{\text { }}$	4045	12410	50	47.29	47.55	49.22	51.84	55．00	58.20	58．09	58.15	57.67	54.05	51.25	46.17
24．Fort Jones ${ }^{7}$	4136	1225^{2}	2570	32.19	38.13	44.75	52.09	57.62	67.45	73.38	72.52	65.68	51.27	40.09	31.92
25．Fort Miller ${ }^{7}$ ．	3700	II9 40	402	47.61	53.09	57.80	64.70	70.70	82.86	88.53	85.71	77.46	67.86	54.92	47.47

[^75]
ARIZONA．－Continued．

	$\begin{aligned} & \dot{6} \\ & \dot{E} \\ & \dot{\omega} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 淢 } \\ & \text { 艺 } \end{aligned}$	烒	䔍	Series．${ }_{\text {Begins．－Ends．}}$	Extent	Observing Hours．	Observer．	References．
14	$62^{\circ} .21$	$82^{\circ} .56$	$63^{\circ} .12$	$44^{\circ} .90$	$63^{\circ} .20$	Dec．1868；Dec． 1870	2 I	$7 \mathrm{~m} \mathrm{2a}_{\text {a }} \mathrm{ga}_{\mathrm{a}}$	Assistant Surgeon．	MS．from S．G．O．
15	60.77	77.02	62.53	46.65	61.74	Nov．1866；Sept． 1869	210			
16	51.53	73.44	57．01	38.92	55.23	Feb．1868；Sept． 1869	18	،	＂	＂＂
17	59.35	76.13	61.22	41.53	59.56	Aug．1857；June，186r	3 II	＂	＂،	Ar．Met．Reg．1860，and MS． from S．G．O．
18	47．13	68.47	47.86	27.23	47.67	Dec．1851；Nov． 1863	8 II	＇6	＂＊	Ar．Met．Regs． 1855 and 1860，
19	72.70	92.59	73.57	54.05	73.23	June，1859；Dec． 1870	65	＂	＂،	Ar．Met．Reg．1860，and MS． from S．G．O．
20	53.67	72.23	55．17	36.68	54.44	Jan．1865；Dec． 1870	$\begin{array}{ll}4 & 9 \\ 0\end{array}$	＂		MS．from S．G．O．
21	．．	．	70.51	54.46		Sept．1867；Feb． 1868	－ 6	＂	＂${ }^{\text {c }}$	＂6＂

ARKANSAS．

CALIFORNIA．

1	55.37	57.39	59.57	54.39	56.68	Feb．1860；Dec． 1870		$7 \mathrm{~mm} \mathrm{a}_{\text {a }} 9 \mathrm{a}$	Assistant Surgeon．	MS．from S．G．O．
2	57.79	62.85	60.68	52.09	58.35	Dec．1867；Dec． 1870	31	\％${ }_{\text {a }}$		＂\％＂\％＂\％
3	\cdots		74.72			Aug．1859；May， 1860		2	R．Gordon．	P．O．and S．I．Vol．I，and S．O．
4	57.73	67.00	61.59	48.75	58.77	Nov．1849；Dec． 1870	157	$7 \mathrm{~m} \mathrm{z}_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860 and MS．from S．G．O．
5	53.38	71.43	59.83	48．01	58.16	Dec．1869；Dec． 1870	1	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Dr．Thornton and daughter．	S．O．
6	65.04	79.45		49.42		Nov．1863；Feb． 1866	18	$7 \mathrm{~m}{ }^{\text {a }}$	Assistant Surgeon．	MS．from S．G．O．
7	48.11	71.12	51.64	32.30	50.79	Nov．1863；Dec． 1870			＂،＂	
8	68.54	89.98	65.28	46.70	67.63	Jan．1868；Dec． 1870	30	＇،	،6 6	＂
${ }_{10}^{9}$	59.16 56.27	74.49 71.40	62.33 58.07	46.21	60.55	Jan．1850；Mar． 1852	$\begin{array}{ll}1 \\ 1 & 11 \\ 8 & 8\end{array}$	$\odot_{r} 99_{m} 39_{\mathrm{a}}$	＂${ }^{6}$	Ar．Met．Reg． 1855.
10	56.27 57.00	71.40	58.07	45.37	57.78	Sept．1861；Dec． 1870 Nov．1862；Dec． 1870	88		＂،＂،	MS．from S．G．O．
12	53.69	59.53	55.12	39.38 47.17	53.88	Nov．1862；Dec． 1870 Sept．1866；May， 1869	5 2	＂	＂،	
13	62.05	74.63	61.73	48.08	61.62	Apr．1864；Aug． 1865	14	＇6	، 6	＂، ، ${ }^{6}$
14	55.28	74.66	58.77	42.48	57.80	Aug．1864；Dec． 1870	6 －	،	، ${ }^{6}$	＂${ }^{6}$ ،
15	59.61	81.21	62.68	48.05	62.89	Nov．1869；Dec． 1870		$7 \mathrm{~m} \mathrm{~m}_{\mathrm{a}} 9^{3} \mathrm{~m}$ biq	W．F．Cheney，	S．O．
16	\ldots	．	．	．．	．．	1870 1860			C．L．McClung．	＂6＂6
18			50.83			Nov．1859；Dec． 1860	$\bigcirc 7$	＂	Dr．T．R．Kibbe．	P．O．and S．I．Vol．
19	60.47	71.89	66.37	55－55	63.57	May，1864；Dec． 1870		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Assistant Surgeon．	MS．from S．G．O．
20	59.08	75.58				1861	－ 8		S．V．Blakeslee．	S．O．
21	51.22	58.32	53.83	48.04	52.85	Dec．1860；Sept． 1864		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Assistant Surgeon．	MS．from S．G．O．
22	48.91	69.62	51.86	32.51	50.72	Jan．1858；Apr． 1869	104		＂＂	Ar．Met．Reg． 1860 and MS． from S．G．O．
23	52.02	58．15	54.32	47.00	52.87	Jan．1854；Dec． 1869	II 9	＂	،	Ar．Met．Regs． 1855 and $\mathbf{I} 860$ ， and MS．from S．G．O．
24	51．49	71.12 85.70	52.35 66.75	34.08	52.26 66.56	Jan．1853；June， 1858		＂	＂＂	Ar．Met．Regs． 1855 and 1860.
25	64.40	85.70	66.75	49.39	66.56	Aug．I851；Aug． 1864		＂	،	Ar．Met．Regs． 1855 and 1860 ， and MS．from S．G．O．

[^76]| CAIIFORNIA．－Continued． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | ＋ | 60 0 0 + | | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | 官 | 砢 | 兌 | $\underset{\sim}{\text { a }}$ | 适 | 官 | | $\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{1}{\circ}}$ | － | 8 | ®ٌ |
| 26．Fort Point ${ }^{1}$ | $37^{\circ} 48^{\prime}$ | $122^{\circ} 29^{\prime}$ | 27 | $50^{\circ} \cdot 59$ | $51^{\circ} .81$ | $53^{\circ} .15$ | $55^{\circ} \cdot 5^{2}$ | $57^{\circ} .61$ | $5^{\circ} \cdot 93$ | 59.86 | $58^{\circ} .84$ | $59^{\circ} \cdot 31$ | $58^{\circ} \cdot 36$ | $5^{6} \cdot 44$ | $52^{\circ} .22$ |
| 27．Fort Reading ${ }^{2}$ ． | 4028 | 12213 | 674 | $44 \cdot 31$ | 49.78 | 55.83 | 59.31 | 65.47 | 77.69 | 82.96 | 80.16 | 72.61 | 64.52 | 52.30 | 43．10 |
| 28．Fort Ross ． | 3833 | 12315 | ， | 47.18 | 48.04 | 49.95 | 51.26 | 55.32 | 56.90 | 57.82 | 58.39 | 55.97 | 53.42 | 50.90 | 48.91 |
| 29．Fort Tejon ． | 3453 | 11855 | 3240 | 43.61 | 46.34 | 50．10 | 54.98 | 60.01 | 71.49 | 76.62 | 75.61 | 68.35 | 58.75 | 48.49 | 42.05 |
| 30．Fort Ter－Waw ． | 4130 | 12352 | \cdots | 43.72 | 47.84 | 49．15 | 51.70 | 54.35 | 59.63 | 59.79 | 60.92 | 59.92 | 54.91 | 50.41 | 45．11 |
| 31．Fort Yuma ${ }^{3}$ ． | 3246 | 11444 | 200 | 56.20 | 60.97 | 66.62 | 74．02 | 79.57 | 89.55 | 94.25 | 92.42 | 87.25 | 75.65 | 64.08 | 56.72 |
| 32．Indian Valley | $40 \quad 07$ | 12050 | 3280 | | 5 ${ }^{\circ}$ | | ． | ．． | | 75．01 | － | ． | \cdots | 50.65 | 39.20 |
| 33．Los Argeles．．${ }^{\text {a }}$ | 3403 | $\begin{array}{lll}118 & 15\end{array}$ | 457 | 58.83 | 55．12 | 58.33 | ． | ． | 73.05 | 75.01 | | | | | 60.87 |
| 34．Mare Island，Naval Hospital | 3806 | 12215 | 30 | 48.46 | 52.43 | 57.00 | ． | ＊＊ | － | 71.28 | 69.60 | 66.35 | 64.45 | 63.08 | 51.20 |
| 35．Marsh Ranche ．． | 3753 | $\begin{array}{lll}121 & 42\end{array}$ | 8 | 42.25 | $5{ }^{\circ}$ | 52．15 | 57.38 | 64.35 | 73.38 | 80.95 | 79.37 | \cdots | | 55.38 | 53.25 |
| 36．Marysville ${ }^{\text {a }}$（ | 3909 | 12134 | 80 | 45.39 | 51.03 | 54.23 | 60.08 | 66.29 | 72.71 | 77.64 | 74.84 | 72.97 | 63.90 | 54.07 | 45.46 |
| 37．Meadow Valley ${ }^{4}$ ． | 3956 | 12102 | 3700 | 32.54 | 35．14 | 41.09 | 47.01 | 53.04 | 60.59 | 66.97 | 64.71 | 59.08 | 50.15 | －40．57 | 33.72 |
| 38．Monterey ${ }^{5}$ | 3637 | 12152 | 40 | 50.04 | 50.35 | 52.13 | 54.56 | 57.05 | 58.67 | 60.05 | 60.47 | 59.95 | 57.94 | 54．01 | 50.14 |
| 39．Murphy＇s ．． | 3808 | $\begin{array}{lll}120 & 28 \\ 117 & 10\end{array}$ | 2200 | 38.19 | 42.98 | 48.92 | 54．13 | 55.50 | 62.48 | 75.73 | 76.93 | 64.58 | 55.60 | | 42.95 |
| 40，New San Diego－ | 3243 37 | 117810 | 10 125 | 54.59 44.98 | 56.01 | 57.30 | 60.86 | 66.38 | 67.57 | 68.71 | 70.90 | 68.18 | 65.16 | 60.89 | 53.30 |
| 41．Paradise City ．． | 3736
 37 | $\begin{array}{lll}121 & 04 \\ 122 & 26\end{array}$ | 125 | 44.98 | 45．12 | 55.33 | 58.78 | | | ．． | | | | | |
| 42．Point San José ．． | 3748
 37
 17 | $1 \begin{array}{ll}122 & 26 \\ 122 & 28\end{array}$ | 150 | 51.61 49.69 | 55.11 51.01 | $55 \cdot 33$ 52.34 | 58.78 54.52 | 55.96 55.37 | | 57.62 | 59.12 57.87 | 60.76 | 59.01 | 56.36 | 50.83 |
| 43．Presidio ． | 3747 | 12228 | 150 | 49.69 | 51.01 | 52.34 | 54.52 | $55 \cdot 37$ | 56.91 | 57.62 | 57.87 | 59．13 | 58.01 | 54.70 | 50.25 |
| 44．Rancho de Jurupa ． | 3402 | 11727 | 1000 | 53.31 | 53.89 | 56.89 | 64.42 | 63.56 | 71.83 | 76.22 | 74．51 | 74.07 | 66.90 | 56.52 | 52.37 |
| 45．Rancho del Chino ． | $33 \quad 59$ | 11744 | 1000 | 55.43 | 56.82 | 56.57 | 60.75 | 63.75 | 68.76 | 72.54 | 72.63 | 70.06 | 68.58 | 60.39 | 53.61 |
| 46．Sacramento ． | 3834 | 12126 | 52 | 46.39 | 50.52 | 54.44 | 59.42 | 63.65 | 70.05 | 72.79 | 70.74 | 68.82 | 62.85 | 53.49 | 46.85 |
| 47．San Benito ． | $36 \quad 08$ | 12102 | 140 | 46.46 | 46.77 | 53.84 | 56.80 | 59.58 | 65.61 | 68.27 | 67.00 | | 62.26 | 54.97 | 54.47 |
| 48．San Diego ． | 3242 | 11714 | 150 | 53.55 | 54.60 | 57.11 | 60.72 | 62.59 | 66.68 | 70.32 | 72.02 | 69.38 | 65.16 | 59.04 | 54.11 |
| 49．San Francisco | 3748 | 12225 | 130 | 48.81 | 50.81 | 53.24 | $55 \cdot 24$ | 56.40 | 57.90 | 57.98 | 58.24 | 59.73 | 58.82 | 54.89 | 50.66 |
| 50．San Joaquin ．． | 3338 | $\begin{array}{lll}117 & 48\end{array}$ | \cdots | 49.3 | 57.4 | 56.6 | 65.5 | 74.9 | 88.5 | | 82.9 | 78.1 | 67.1 | 56.6 | 49.7 |
| 51．San Luis Rey ．－ | 33 13
 34 | $\begin{array}{lll}117 & 20 \\ 119 & 43\end{array}$ | 20 | 52.01 | 50.74 | 54.33 | \％ | 63 | 67.5 | 70.64 | 73.71 | 73.50 | 65.53 | 58.50 | 50.60 |
| 52．Santa Barbara 5 Santa Catilina Isiand | 3424
 34
 26 | $\begin{array}{lll}119 & 43 \\ \text { I18 }\end{array}$ | 20 | ．． | | 58.38 | 64.05 | 63.33 | 67.54 | 66.63 | 70.33 | 67.00 | ．． | 5. | ． |
| 53．Santa Catilina Island | 3326 | 11830 | － | －${ }^{\circ}$ | 58.96 | 58.74 | ．． | ． | ．． | ． | ．． | | | | |
| 54．Santa Clara ${ }^{\text {5 }}$ ．． | 3720 | 12154 | 100 | 48.95 | 52.53 | 56.13 | ． | ． | ． | ．． | ．． | 63.29 | 61.67 | 53.33 | 46.26 |
| 55．Silver Creek ．． | 4000 | 12040 | 3700 | 50． | 35.48 | ．． | \cdots | \cdots | | \cdots | \cdots | 62.00 | 51.55 | 38.48 | 33.95 |
| 56．Sonoma 5tockton 10° ．． | $\begin{array}{lll}38 & 18 \\ 37 & 57\end{array}$ | $\begin{array}{lll}122 & 27 \\ 121\end{array}$ | 100 | 50.96 | 52.84 | 53.04 | 57.47 | \cdots | | | \cdots | | | 53.81 | 49.16 |
| 57．Stocktoi3 ${ }^{10}$ ． | 3757 | 12115 | － | 44.95 | 50.51 | 55.17 | 59.04 | 64.92 | 68.89 | 71.99 | 70.34 | 67.93 | 62.66 | 58.63 | 49.19 |
| 58．Stony Point ．．． | 3840 | 12250 | 500 | ． | ．${ }^{\text {a }}$ | | | | | 68.50 | | 68.25 | | | |
| 59．Union Ranche ．－ | 3925 | 12130 | ．． | $45 \cdot 37$ | 47.70 | $53 \cdot 37$ | 58.57 | 63.80 | 74.80 | 81.29 | 79.21 | 73.53 | 63.65 | 52.77 | 46.45 |
| 60．Vacaville | 3821 | 12158 | 175 | 50.49 | 52.69 | 54.71 | 60.81 | 65.68 | 72.15 | 74.73 | 72.23 | 73.80 | 68.58 | 6 t .00 | 48.03 |
| 6r．Visalia ． | 3622 | If 916 | 2500 | 44.82 | 51.27 | 50.48 | 59.22 | 68.50 | 75.40 | 84.85 | 82.08 | 70.73 | 59.98 | 50.30 | 40.05 |
| 62．Watsonville ．Yerba Buena Island | 36 36 | $\begin{array}{lll}121 & 43 \\ 122 & \end{array}$ | 45 | 52.99 | 54.59 | 55.87 | 58.57 | 60.38 | 62.40 | 66.39 | 65.52 | －． | 60.15 | 56.08 | 49.57 |
| 63．Yerba Buena Island | 3748 | 12222 | ．． | 51.97 | 52.17 | 53.95 | 55.85 | 57.27 | 58.38 | 61.80 | 60.79 | 6i．17 | 6 r .02 | 57.49 | 40.46 |

COLORADO．

I．Central City＂ 2．Denver	3952 3945	10531 10501	5250	24.05 26.57	32.75	31.85	$\begin{aligned} & 38.53 \\ & 46.90 \end{aligned}$	49.27 60.28	$\begin{aligned} & 62.73 \\ & 67.13 \end{aligned}$	$\begin{aligned} & 67.90 \\ & 72.68 \end{aligned}$	67.70	56.33 61.26	48.78	$\begin{aligned} & 35.83 \\ & 39.22 \end{aligned}$	37.30 22.45
3．Fort Garland ${ }^{12}$ ．．	3732	10540	8365	18.46	23.37	33.63	42.75	52.41	62.23	66．6ı	64.34	55.61	43.97	30.88	20.05

[^77]CALIFORNIA.-Continued.

	$\begin{gathered} \dot{\circ} \\ \stackrel{\sim}{E} \\ \dot{\sim} \end{gathered}$		E E 若	$\frac{\stackrel{4}{ \pm}}{\stackrel{y}{5}}$	\%゙0	Series. Begins. Ends.	Extent yrs.mos.	Observing hours.	Observer,	References.
26	$55^{\circ} \cdot 43$	$59^{\circ} .21$	$5^{8} .04$	$51^{\circ} \cdot 54$	$5^{6} .05$	Jan. 1860; Dec. 1870	10 II	$6_{\text {m }}$ N. 6 a	Assistant Surgeon, F. P. Thompson, W. Knapp, H. E. Uhrlandt.	MS. from S. G. O. and U. S. Coast Survey.
27	60.20	80.27	63.14	45.73	62.34	Apr. 1852; Mar. 1856	310	$\bigodot_{\mathrm{r}} 9 \mathrm{~m} 3 \mathrm{n} 9 \mathrm{a}$	Assistant Surgeon.	Ar. Met. Regs. 1855 and 1860.
28	52.18	57.70	53.43	48.04	52.84	Jan. 1837; Dec. 1840	40		"	Dove, S. Coll.; and Ar. Met. Reg. 1855°
29	55.03	74.57	58.53	44.00	58.03	Mar. 1855; Aug. 1864	69	$7 \mathrm{~m} \mathrm{2a}_{\text {a }}{ }_{\text {a }}$	* 6	Ar. Met. Reg. I860, and MS. from S. G. O.
30	51.73	60.11	55.08	45.56	53.12	Apr. 1859; Oct. 1861	23	6	66	" " " "
31	73.40	92.07	75.66	57.96	74.77	Dec. 1850; Dec. 1870	14 II	*	" "	Ar. Met. Regs. 1855 and $\mathbf{1 8 6 0}$, and MS, from S. G. O.
32	.	-				1870	- 2	$7_{\mathrm{m}} 2^{\text {a }} 9_{\text {a bis }}$	M. E. Pulsifer.	S. O.
33	\cdots	\cdots		58.27 50.70		June, i847; Mar. 1848	$\begin{array}{ll}0 & 6 \\ \mathrm{x} & 0\end{array}$	$\odot_{r} 9_{m 6}^{m} 3_{a} 9_{a}$		Ar. Met. Reg. 1855.
34	\ldots	-•	64.63	50.70		Jan. 1868; Sept. 1870			J. M. Brown, W. E. Taylor.	S. O.
35	57.96	77.90				May, 1867; May, 1868	- 10	$7{ }_{\text {m }} 2_{\text {a }} 9 \mathrm{ab}$ bs	F. M. Rogers,	"
36	60.20	75.06	63.65	47.29	61.55	May, 1857; Aug. 1863	30		W. C. Belcher.	P. O. and S. I. Vol. I, and S. O.
37	47.05	64.09	49.93	33.80	48.72	Jan. 1860; June, 1866	3 II	،	J. H. Whitlock and M. D. Smith.	S. O.
3^{8}	54.58	59.73	57.30	50.18	55.45	May, 1847; Dec. 1870	125	.	Assistant Surgeon, and Dr. C. A. Canfield.	Ar. Met. Reg. 1855, MS, from S. G. O., P. O. and S. I. Vol. I, S. O.
39	52.85	71.71		41.37		Mar. 1868; Mar. 1869	10	"	E. Cutting.	S. O.
40	61.51	69.06	64.74	54.63	62.49	Dec. 1864; Dec. 1870	19	$7 \mathrm{~mm} \mathrm{za}^{\text {a }}$	Assistant Surgeon.	MS. from S. G. O.
41		. .			.	1869 ${ }_{\text {- }}$	- 2	$7 \mathrm{~m}^{2}{ }^{2} 9 \mathrm{am}$ bis	J. W. A. Wright.	S. O. from S.
42.	56.69	57	58.71	52.52		Oct. Oct. 1865;	$\begin{array}{cc}1 & 6 \\ \text { I } & 0\end{array}$	$7_{\mathrm{m}}{ }_{\text {am }} \mathrm{a}_{\text {a }} 9_{\mathrm{m}}$	Assistant Surgeon.	MS. from S. G. O.
43	54.08	57.47	57.28	50.32	54.79	Oct. 1847; Dec. 1870	19.0			Ar. Met. Regs. 1855 and 1860, MS. from S. G. O. and S.O.
44	61.62	74.19	65.83	53.19	63.71	Oct. 1852; Mar. 1854		$\bigodot_{\mathrm{r}} 9_{9 \mathrm{~m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	6 ${ }^{\text {c }}$	$\underset{\approx}{\text { Ar. Met. Reg. I }} \underset{\text { s }}{8} 55$
45 46	60.36 59.17	71.31 71.19	66.34 61.72	55.29 47.92	63.32 60.00	July, 1851; Aug. I852 July, 1849; Mar. 1867	$\begin{array}{rr}1 & 2 \\ 14 & 0\end{array}$		Assist. Surgeon, Drs.	Ar. Met. Reg. 1855 , MS from
46	59.17	71.19	61.72	47.92	60.00	July, 1849; Mar. 1867	14 o	${ }^{1}$	Assist. Surgeon, Drs. F. W. Hatch and T. M. Logan.	Ar. Met. Reg. 1855, MS. from S. G. O., Am. Alm., P. O. and S. I. Vol. I., and S. O.
47	56.74	66.96		49.23		May, i861; July, i863	19	$7 \mathrm{~mm} 2_{\mathrm{z}} 7_{\mathrm{a}}$ bis	Dr. C. A. Canfield.	S. O.
48	60.14	69.67	64.53	54.09	62.11	July, 1849; Dec. 1870	2010		Assistant Surgeon, A Cassidy, and W. Knapp.	Ar. Met. Regs. 1855 and 1860, MS. from S. G. O., and U. S. Coast Survey.
49	54.96	58.04	57.81	50.09	55.23	Jan. 1854; Sept. 1868	II 2	$7_{\text {ma }} 2_{u} 9 \mathrm{ab} \mathrm{bis}$	Drs. H. Gibbons and W. O. Ayres.	P. O. and S. I. Vol, I. and S. O.
50	65.67	.	67.27	52.13	.		15			Pat. Off. Rep.
51			65.84	51.12	.	July, 1850; Mar. 1851	- 9	$\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon.	Ar. Met. Reg. 1855.
52	61.92	68.17	-	1864	$\bigcirc 7$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Dr. W. W. Hays.	S. O.
53	.	..	5	- 25	.	1864	$\bigcirc 2$	$7_{\mathrm{mm}} \mathrm{N}_{6} \mathrm{~S}_{3}$	Assistant Surgeon.	MS. from S. G. O.
54	\cdots	\cdots	59.43 50.68	49.25	\cdots	Sept. 1859; Mar. 1861	- 7		Prof. O. S Frambes. M. D. Smith.	P. O. and S. I. Vol. I, and S. O.
55 56	.	\cdots	50.68	50.99	-	Sept. 1802; Feb. I863 Nov. I850; Apr. 1851	0		Mssistant Surgeon.	Ar. Met. Reg. 1855.
57	59.71	70.41	63.07	48.22	60.35	Jan. 1854; June, 1867	1 II		Dr. R. K. Reid, W. M. Trivett, Assis. Surg.	P. O. and S. I. Vol. I, S. O., and MS, from S. G. O.
58						1869	- 2	$7_{\text {m }} 2_{a x} 99_{\text {bis }}$	Dr. Thornton,	S. O.
59	58.58	78.43	63.32	46.51	61.71	Mar. 1858; Jan. 1863	37		J. Slaven, W. L. and E. S. Dunkum.	P. O. and S. I. Vol. I, and S. O.
60	60.40	73.04	67.79	50.40	62.91	Feb. 1869; Apr. 1870	13	"	Prof. J. C. Simmons.	S. O.
61	59.40	80.78	60.34	45.38	61.47	1870	10	"	J. W. Blake.	" "
62	58.27	64.77		52.38		Jan. 1869; Dec. 1870	110	'،	Dr. A. I. Compton.	" "\% from S. G
63	55.69	60.32	59.89	51.53	56.86	Feb. 1869; Dec. 1870	110	7 ma 2a ${ }_{\text {a }}$	Assistant Surgeon.	MS. from S. G. O.

COLORADO.

COLORADO．－Continued．															
Name of Station．	＋	¢ ¢ H	$\begin{aligned} & \text { 荡 } \\ & \text { 空 } \end{aligned}$	$\stackrel{\text { ¢ }}{\sim}$	ث		$\underset{\sim}{\tilde{E}}$		芭	突		$\stackrel{\dot{\hat{~}}}{\stackrel{\rightharpoonup}{\sim}}$	نٌ	$\begin{aligned} & \text { 言 } \\ & \hline \end{aligned}$	ه゙
4．Fort Lyon ${ }^{1}$ ．	$38^{\circ} 08^{\prime}$	$102{ }^{\circ} 50^{\prime}$	4000	26° ． 01	$33^{\circ} .65$	$39^{\circ} .68$	$49^{\circ} .72$	$64^{\circ} \cdot 74$	$74^{\circ} .80$	$79^{\circ} .65$	$76^{\circ} .13$	$64^{\circ} \cdot 33$	$49^{\circ} .08$	$39^{\circ} .08$	$27^{\circ} \cdot 37$
5．Fort Morgan	4015	10346	4500	19.78	33.67	30.52	47.20	58.25	71.00	78.99	79.85	70.65	57.41		29.31
6．Fort Reynolds ．	3815	10412		32.26	36.23	41.67	51.73	63.13	72.50	78.79	73.94	64.38	50，98	39.78	27.06
7．Fort Sedgwick ．	4058	10223	3600	26.23	3 F .60	34.65	46.25	59.49	70.88	78.81	72.21	60.62	49.62	40.20	28.51
8．Golden City ．	3944	10518	5240				49.77	61.00	67.57	73.33	74.73	65.80			
9．Montgomery	39 oo	10600		17.86	24.45	19.78	29.75	41.28							19.58
CONNECTICUT．															
2．Canton－	4152	72×5	750	27.87	25.11	29.63	40.57	54.15	58.93	68.79	64.03	59.67	50.24	39．10	29.51
3．Colebrook	4200	7303	1210	20.89	23.31	28.76	43.12	53.84	64.55	69.38	67.13	59.40	47.30	36.61	24.67
4．Columbia ．	4141	7218		25.88	28.87	33.94	45.76	56.52	65.87	70.62	68.87	61.73	51.13	40.65	29.25
5．Farmington，near ${ }^{2}$ ．	4142	7250	\cdots	42.09	49.07	56.33	62.58	69.10	77.52	81.37	78.25	71.17	63.44	50.17	42.48
6．Fort Trumbull ．．	4121	7205	23	30.48	31.68	37.42	47.78	57.71	67.40	72.61	71.58	64.69	54.07	43.88	33.27
7．Georgetown ．	4115	7325	300	16.28		27.41	46.03	50.63	64.79	71.45	66.30	61.53	50.02	40.10	27.86
8．Goshen ${ }^{3}$ ．．	4148	7207	561	26.55	26.12	34.00	45.92	56.11	65.26	70.53	69.06	60.89	49.95	39.89	29.05
9．Hartford ．	4146	7241	60	29.11	29.32	37.71	48.30	57.66	66.87	72.14	70.25	62.58	51.39	41.12	31.25
10．Knight Hospital	4118	7255		32.08				60.35	65.76	75.68	75.77	65.52	56.80	49.24	35.95
11．Litchfield ${ }^{\text {d }}$	4145	7312	800	24.02	26.19	32.92	38.88	51.45	62.58	68.06	64.39	58.48	49.44	35.52	25.08
12．Lynde Point Lt．Ho．	4116	7220	10	26.96	28.82	33.43	44.09	54.33	63.31	71.10	69.56	63.14	53.59	42.71	30.73
13．Middletown ．．	4133	7239	175	26.23	28.93	33.86	45.66	56.24	66.34	70.96	68.97	61.43	50.80	38.95	28.67
14．New Haven	41 IS	7257	45	26.46	28.08	36.03	46.96	57.28	66.96	71.69	70.24	62.49	51.06	40.28	30.42
15．New London ．	4121	$\begin{array}{ll}72 & 07\end{array}$	90	28.42	29.75	36.32	45.47	56.28	66.28	71.79	69.17	63.27	52.87	42.68	32.34
16．North Colebrook	42 O1	7306	．．	．．	．．	．．	．\cdot	52.48	63.35	66.96			．．	．．	
17．North Greenwich	4104	7340	300												29.53
18．Norwich ．	4132	7204	50	24.65	28.21	30.65	45．15	55．51	67.47	73.87	69.92	64.43	51.25	41.32	30.68
19．Plymouth	4140	7304		26.10	26.29	27.98	41.70	56.42	62.18	68.83	67.80	57.85	48.74	38.97	25.97
20．Pomfret ．．	4151	7156	587	22.89	28.07	30.99	43.30	53.77	63.17	68.12	65.82	58.88	48.46	42.36	26.28
21．Salisbury ．．．	4159	7325	737	24.65	25.28	34.65	44.44	56.32	65.87	70.44	68.06	60.09	50.18	39.23	27.54
22．Sharon ．．	4152	7328	200	24.90	26.15	34.42	45.64	57.65	65.96	70.11	68.00	61.14	49.96	39.29	28.73
23．Southington ．	4135	7254	－．	\cdots			49.48	59．11	70.93	73.82	71.94	63.83	52.90	41.04	30.11
24．Wallingford ．．	4127	7250	133	24.42	27.85	34.79	44.72	54.99	65.77	69.76	67.36	60.49	50.82	39.28	28.40
25．Warren Centre ．	4144	7320	－ 6	21.70	20.66	$35 \cdot 31$	41.21	52.41	64.31	67.67	67.34	58.41	48.32	45.46	27.23
26．Waterbury	4133	7302	363	24.52	27.55	33.62	44.93	54.26	64.78	70.92	69.05	60.32	45.22	38.01	24.65
27．West Cornwall ．．	4153	$\left\lvert\, \begin{array}{lll}73 & 22 \\ 72 & 39\end{array}\right.$	1000	24.00	22.41	38.23	41.10	56.70	64.83 66.34	71.17	67.17	59.70	51.01	38.35	21.91
DAKOTA．															
5．Fort Randall ．． 43 or $\begin{aligned} & \text { 2 }\end{aligned}$															
		9747	．	6.98	10.20	16.42	43.73	59.07	65.62	70.34	65.27	57.41	39.16	28.03	13.96
		10033	\cdots	13.23	16.29	26.12	$45 \cdot 37$	59.14	68.15	74.76	67.14	54.28	40.45	29.11	17.64
		101 10	．	5．23	11.79	22.51	44.96	58.08	69.33	77.41	69.76	57.18	44.83	31.87	13.02
		10035	．．	16．65	20.57	23.25	44.98	60.14	69.21	76.82	72.09 65.82	60.62 58.67	45.85	35.42	24.54
		9916	．	－0．52	7.41	13.47	46.19	59.22	67.52	69.59	65.82	58.67	38.33	27.57	12.48
		9710	\ldots	5．21	9.43	10.96	40.22	55.33 64.86	65.17	70.39	67.27	58.99 58.58	43.45	30.40	12.91
		9824	1900	17.66	27.30	37.68	50.89	61.86	71.29	74.30	74.43	58.58	51.24	32.98	20.43
1 Observations from January，186r，to May，1862，were made at Fort Wise or old Fort Lyon，some miles to the southeast of the present fort． 2 The observations were made six miles S ．of Farmington． ${ }^{3}$ The observations are stated to have been made in Windham Co．as indicated by the given position and height，but perhaps a mistake of x° in Long． been made． ${ }^{4}$ The observations were made at variable hours，the means being corrected for daily variation．															

COLORADO．－Continued．

	先	$\begin{aligned} & \text { 芯 } \\ & \text { ت } \\ & \text { 的 } \end{aligned}$	妾	岕	辰	Series． Begins．Ends．	Extent yrs．mos．	Observing HOURS．	Observer．	References．
4	$51^{\circ} \cdot 38$	$76^{\circ} .86$	$50^{\circ} .83$	29° ． 01	$52^{\circ} .02$	Jan．1861；Dec． 1870		$7 \mathrm{~m}{ }_{\text {ci }}^{\text {a }}$ 9a	Assistant Surgeon．	MS．from S．G．O．
5	$45 \cdot 32$	76.61	．．	27.59	50	Dec．1866；Apr． 1868	$\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}$	－6	6 6	＂6＂6 6
6	52.18	75.08	51.71	3 I .85	52.70	May，1868；Dec． 1870	28	＂6		＂،＂، ${ }^{6}$
7	46.80	73.97	50.15	28.78	49.92	Apr．1867；Dec． 1870		،		＂＂＂
8		7 I .88	5	．	－	May，1860；Apr． 1867	$\bigcirc 6$	،	M．L．Blunt，J．Mc－ Donald，E．L．berthoud	S. O.
9	30.27	．	－	20.63	－	Dec．1863；May， 1864	－ 6	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	J．Luttrell．	＂＂

CONNECTICUT．

1	44.77	70.39	51.54	31.57	49.57	Oct．1868；Dec． 1870	22	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{a}$ bis	S．W．Roe．	S．O．
2	4 I .45	63.92	49.67	27.50	45.63	Dec．186i ；July，1863			J．Case．	
3	41.91	67.02	47.77	22.96	44.91	Sept．1860；Nov． 1870	99		C．Rockwell．	
4	45.41	68.45	51.17	28.00	48.26	Dec．1856；Dec． 1870			W．H．Yeomans．	P．O．and S．I．Vol．I，and S．O．
5	62.67	79.05	6 K． 59	44.55	61.96	May，1838；Apr．1841	\cdots	3 a	Smith	Pat．Off．Rep． 1851.
6	47.64	70.53	54.21	3 I .8 r	51.05	Jan．1833；Dec． 1870	238	$7_{\mathrm{m}} \mathrm{I}_{\mathrm{a}} 9 \mathrm{a}$	Rev．E．Dewhurst and Assistant Surgeon．	Ar．Met．Regs．1840，＇5 I，\＆＇55， MS．from S．G．O．，and S．O．
7	41． 36	67.51	50.55			Mar．1856；Jan． 1857	0 II	＇＂	A．B．Hull．	P．O．and S．I．Vol．I．
8	45.34	68.28	50.24	27.24	47.78	Jan．1829；Dec． 1850	220	$\bigcirc_{\mathrm{r}} \mathrm{N}$ ．	Clark	MS．in S．Coll．
9	47.89	69.75	51.70	29.89	49.8 I	Oct．1806；July， 1852	167	9 m 3 l	Rev．A．Flint and Hoadley．	Med．and Agr．Reg．Bost．Vol． I，1806－7，and MS．in S．Coll．
10		72.40	57．19			May，I863；Jan． 1864	－ 9	m $2_{\text {a }} 9 \mathrm{a}$		MS．from S．G．O．
11	41.08	65．01	47．8r	25．10	44.75	Jan．1850；Dec．IS52	30		Hendrick．	Regent＇s Rep．
12	43.95	67.99	53．15	28.84	48.48	Jan．1854；May，1861		$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{~m}$	J．Rankin．	P．O．and S．I．Vol．I，and S．O．
13	45.25	68.76	50.39	27.94	48.09	1849；Dec． 1870	I4 8	$7_{\text {m }} z_{\text {a }} 9_{a}$ bis	Cutter and Prof．J． Johnston．	S．Coll．，P．O．and S．I．Vol．I， and S．O．
14	46.76	69.63	51.28	28.32	49.00	July，1778；Oct． 1865	86 －	4	Various observers．	Trans．Con．Acad．Vol．I，Part 1，New Haven， 1866.
15	46.02	69.08	52.94	30.17	49.55	Mar．1849；No			Rev．T．Edwards．	S．Coll．，\＆P．O．\＆S．I．Vol．I． S．Coll
16	．．	．				1849			Cobb． W．P．Alcott．	S．Coll． S． 0 ．
17					\cdots			$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a} \text { bis }$	W．P．Alcott． N Scholfield	S． 0 ． P．O，and S．I Vol I．
18	43.77	70.42	52.33	27.85	48.59	Mar．1856；Feb． 1858		$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{~g}$	N．Scholfield．	P．O．and S．I．Vol．I．
19	42.03	66.27	48.52	26.12	45.74	June，1862；May， 1864	20		D．W．Leamed．	$\text { S. } 0 \text {. }$
20	42.69	65.70	49.90	25.75	46.01	Mar．1853；Apr． 1869	16 o		Rev．D．Ifunt．	S．Coll．，P．O．and S．I．Vol．I， and S．O．
21	45.14	68.12	49.83	25.82	47.23	Jan．1844；Dec． 1854	II O	$\odot_{r} 99_{\text {ma }} 3{ }^{\text {a }} 9 \mathrm{a}$	Dr．O．Plu	S．Coll．，\＆P．O．\＆S．I．Vol．I．
22	45.90	68.02	50.13	26.59	47.66	Jan．1816；Dec． 1836	20 II	$6_{\mathrm{m}} \mathrm{~N} .6_{\mathrm{a}}$	Gov．Smith．	MS．in S．Coll．
23		72.23	52.59		\cdots	870		$7 \mathrm{~m} 2^{\text {a }} 9{ }_{\text {a }}$ bis	L．Andrews．	S．O．
24	44.83	67.63	50.20	26.89	47.39	Apr．1856；July， 1862	64	$7_{\text {m }} 2_{2} 9_{3}$	B．F．Harrison．	P．O．and S．I．Vol．I，and S．O．
25	42.98	66.44	50.73	23.20	45.84	1849	10		Hendrick．	Regent＇s Rep．
26	44.27	68.25	47.85	25.57	46.49	Jan．1867；Aug． 1869		6	Rev．R．G．Williams．	S ．O．
27	45.34	67.72	49.69	22.77	46.38	1854		$7 \mathrm{~m} \mathrm{za}_{\text {9 }}$	Z．L．Gold．	P．O．and S．I．Vol．I．
28					．．	1850；1852	－ 3	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\text {a }} 9_{\text {a }}$	Phelps．	S．Coll．

DAKOTA．

1	38.66	70.94	43.81	7.95	40.34	Feb．1859；Dec．I870	10 I	$7 \mathrm{~m} \mathrm{~L}_{\mathrm{a}} 9 \mathrm{a}$	Assistant Surgeon．	Ar．Met．Reg．IS60，and MS． from S．G．O．
2	40.41	69.52	42.52	11.76	41.05	Sept．1866；Dec． 1870	42	،	، ${ }^{\text {a }}$	MS．from S．G．O．
3	40.92		42.12	16.78		Sept．1866；May， 1869	－ 10	،		6 6\％6
4	47.30	73.44	48.68	13.96	45.84	Jan．1854；May， 1857	25	،	F．Behman，Assistant Surgeon．	P．O．and S．I．Vol．I，Ar．Met． Reg．I860．
5	43.28	74．6I	49.06	20.93	46.97	Nov．1856；Dec．1870	128	،	Assistant Surgeon．	Ar．Met．Reg．1860，and MS． from S．G．O．
6	39.74	67.08	41.53	10.38	39.68	Dec．1868；Dec． 1870	2 I	＂	6 66	fro S．G．${ }^{\text {a }}$
	43.54	70.02	41.28	15.72	42.64	July，1868；Dec． 1870	23	،	6 6	＂6 66 ، ${ }^{6}$
8	4 t .85	72.17	44.43	10.01	42.11	Sept．1866；Dec．18\％0	2 II	＇	6، 6،	＂
9	42.79	72.71	47.30	20.59	45.85	Jan．1866；Dec．I870	27	＂	＂6＂6	
10	39.63	67.64	41.52	6.46	38.81	Aug．1869；Dec． 1870	15	،	＂ 6	＂6＂6＂،＂6
1 I	35.50	67．61	44.28	9．18	39．14	Sept．1866；Dec．I870	33	－${ }^{6}$	F＂${ }^{\text {＂، }}$	
12	50.14	73.34	47.60	21.80	48.22	Nov．1859；Dec． 1862	111	$7 \mathrm{~mm} 2_{\text {a }} 9^{\text {a }}$ bis	F．Norvell，H．G． Williams，G．M． Lamson．	P．O．and S．I．Vol．I，and S．O．

[^78]
DHLAWARE．

Name of Station．	ざ	E0 ¢ H		品	－	＋	宽	家	E	鹪	㵄	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \text { مٌ } \end{aligned}$	O゙ं	20	®ٌ
1．Dover ．．	$39^{\circ} \mathbf{1 0}{ }^{\prime}$	$75^{\circ} 30^{\prime}$	40								$76^{\circ} .80$	$67^{\circ} .48$	$58^{\circ} .19$	$46^{\circ} .28$	$35^{\circ} .60$
2．Fort Delaware ${ }^{\text {l }}$ ．	3935	7534	10	$32^{\circ} .26$	33° ． 80	$40^{\circ} .08$	$51^{\circ} \cdot 59$	$63^{\circ} \cdot 44$	$72^{\circ} .25$	$77^{\circ} .61$	75.84	69.60	57.32	45.90	36.62
3．Georgetown ．．．	$3^{88} 43$	7522	．	44.00	33.65	45.06	56.15	61.02	77.36	78.64	76.78	71.49	60.13	46.54	43.90
4．Milford ．．．．	3855	$75 \quad 25$	20	40.87	34.58	42.74	54.97	62.17	74.68	77.74	75.62	66.12	51．81	41.22	38.20
5．Newark	3938	7547	120	28．6I	32.95	36.74	48.68	59.53	69.47	74.71	73.26	64.63	52.58	44.14	36.57
6．Wilmington－．	3944	75 75 75	II5												
7．Wilmington ．．．	3944	7533	115	27.62	32.16	42．10	51.89	64.24	71.91	74.78	74.00	66.46	51.40	43.06	$35 \cdot 36$

DISTRICT OF COLUMBIA．

1．Georgetown ．	3855	7704	\cdots	33.85	36.29	45.63	53.36	64.85	72.66	76.33	76.31	69.13	59.40	46.97	37．18
2．Washington ．．	3853	7702	30	27.27	40.29	42.84	． 53.25	62.97	72.36	75．01	76.01	68.63	53.69	42.41	33.98
3．Washington．	3854	7702	30	41.4	36.5	$45 \cdot 7$	60.2	71.4	75.2	79.9	79.7	70.3	56.5	43．3	39.5
4．Washington ．－	3854	7702	75	34.09	36.82	45.36	55.70	66.26	74.44	78.26	76.28	67.76	56.70	44.83	37.41
5．Washington ．	3855	7702	110	$35 \cdot 3$	37.	46.5	54.0	61.7	76.	74.8	76.5	68.0	53.5	47.5	41.7
6．Washington ．．－	3853	77 or	80	27.21	37.71	44.45	56.51	64.76	69.59	77.88	75.53	66．II	55.61	40.83	31.57
7．Washington ．．．	3853	77 or	80	35.10	35．41	46.08	52.31	60.45	73.32	－75．40	72.02	68.07	48.80	43.73	35．70
8．Washington	3854	77	110	36.0	36.4	44.8	58.0	68.8	75.9	78.3	77.0	70.1	57.6	47.9	40.1
9．Washington ．	3853	7702	40	31.96	35.65	43.27	52.63	64.17	74.06	78.50	74.60	67.93	55.45	51.01	35.77
Io．Washington ．	3854	77	110	32.43	34.40	40.49	51.75	61.81	70.93	75.89	74.28	67.47	54.67	44.35	34.23
11．Washington ．	3854	77 O3	110	37．19	34.65	41.79	51.88	61.79	72.67	78.28	76.23	68.78	54.75	44.21	34.87

FLORIDA．

1．Belair ．	3023	84 8 8 17	70	52.25	59.18	61.08 64.37	66.22 68.68	75.73 75.88	79.88	82.08	81.29	77.70	69.43	58.83	58.48
2．Cedar Keys ${ }^{6}$	2907	8303	35	56.33	58.47	64.37	68.68	75.88	79.84	82.03	81.27	79.40	71.96	63.73	58.82
3．Chattahoochie Ars．	3042	8450	ISo					71.68	79.40	83.10	79.68				
4．Fairview（near Pa－ Jatka）	293^{6}	8137	152	58.37	56.96	6r．97	67.76	73.81	78.88	81.99	80.91	76.65	70.89	61.76	$55 \cdot 57$
5．Fernandina ．．	3040	8128	25	50.96	57.60	61.27	65.58	71.73	77.60	79.87	85.89	76.96	71.56	65.47	53.89
6．Fort Barrancas ${ }^{7}$	3021	8718	20	52.71	55.27	61.26	68.47	75.51	80.59	82.20	82.00	78.41	69.55	60.79	55.13
7．Fort Brooke	2757	8226	20	60.99	63.00	66.87	71.88	76.64	79.58	80.96	80.63	79.42	73.86	67.29	61.99
8．Fort Dallas ${ }^{\text {a }}$	2548	So 13	20	66.10	66.16	70.30	74.97	74.40	80.99	82．17	82.48	80． 59	77.91	73.45	69.37
9．Fort Deynaud	2645	8130	－	60.04	64.41	67.79	71.98	76.96	79.53	79.76	80.51	80． 14	71.95	71.52	64.75
10．Fort Fanning	2935	8256	50	58.52	57.97	67.04	70.72	76.26	79.32	82.05	82.40	80.55	72．16	60.55	54.93
II．Fort Gamble	3020	8400	50	55.54	60.71	69.06	71.27	75.42	80.04	79.79	79.74	79.06	68.25	60.04	55.82
12．Fort Hamer．	2730	8230	20	．．				77.55	80． 34	80.96	83.64	82.24	．．	．．	
13．Fort Heiloman．	2948	8205	25	56.32	56.45	63.33	70.68	75.65	81.88	So． 25	79.71	77.07	71.57	59.57	51.94
14．Fort Henderson	3051	8209	25	55.64	58.27	64.46	70.52	76.26	82.03	80.16	79.76	77.54	69.85	59.94	51.20
15．Fort Jefferson	2438	8252	11	70.96	70.67	73.22	74.43	79.59	83.31	84.79	84.62	83.86	80.12	74.84	71.71
16．Fort King ．	2912	8212	50	58.41	58.13	64.38	71.41	76.59	79.90	80.80	80.59	78.21	70.56	63.18	58.55
17．Fort Marion9（St．	2954	SI 19	25	56.79	59.85	63.25	68.75	74.06	$79.3{ }^{2}$	80.91	80.86	79.04	72.57	64．10	58.12
18．Fort Meade ．	2745	8147	80	58.40	63.23	69.02	69.89	76.69	78.24	79.76	80.03	79.18	73.81	68.48	60.15
19．Fort Micanopy ．	2935	8231	78	60.36	60.29	67.43	72.05	76.92	79.38	80.22	79.42	77.95	70.52	60.96	55.94
20．Fort Myers ．	2640	8156	50	62.86	66.08	69.85	73.26	79.20	80．96	82.38	82.89	81.24	76.43	72.53	65.75
21．Fort Pierce	2728	$\begin{array}{ll}80 & 18\end{array}$	30	62.45	64.80	69.05	73． 13	77.36	79.80	82.61	83.02	81.43	75.07	69.57	65.72
22．Fort Russell ${ }^{10}$	2915	8215	50	61.40	56.30	69.70	71.64	76.10	79.30	84.44	${ }^{83} 3.76$	78.48	68.79	61.23	57.56
23．Fort Shannon	2934	8148	25	58.00	59．00	64.69	71.64	76.43	79.37	81.66	80.38	79.09	71.07	61.89	58.63

[^79]
DELAWARE．

	容		䓪	烒	－	Series． Begins．Ends．	$\begin{aligned} & \text { Extent } \\ & \text { yrs.mos. } \end{aligned}$	Observing HOURS．	Observer．	References，
2	$51^{\circ} .70$	$75^{\circ} .23$	$57^{\circ} \cdot 32$ 57.61	$34^{\circ} .23$	$54^{\circ} .69$	Feb．${ }^{\text {1825 }}$ 180 ${ }^{\text {\％}}$ Sept． 1870	$\begin{array}{rr}0 & 5 \\ 18 & 10\end{array}$	$\begin{gathered} 7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bis }} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \end{gathered}$	J．H．Bateman． Assistant Surgeon，J． M．Vanhekle．	S．O． Ar．Met．Regs． 1855 and 1860 ， MS．from S．G．O．，and S．O．
3	54.08	77.59	59.39	40.52	57.89	July，1857；Dec． 1858	16	$8{ }_{\mathrm{m}} \mathrm{I}_{\mathrm{a}} 6_{\mathrm{a}}$	Dr．D．W．Mauld．	P．O．and S．I．Vol．I．
4	53.29	76.01	53.05	37.88	55．06	Dec．1857；Dec． 1870	22	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	A．C．Whittier，W．R． Phillips，R．A．Martin．	P．O．and S．I．Vol．I，and S．O．
5	48.32	72.48	53.78	32.71	51.82	July，1847；Feb． 1858	43	2	E．E．Norton，Craw－ ford，and others．	P．O．\＆S．I．Vol．I，and S．Coll．
6					51.30 52.91	Aug．1834；July， 8835	$\begin{array}{cc}1 & 0 \\ 1 & 10\end{array}$		Dr．U．D．Hedges．	Am．Almanac． S． O ．
7	52.74	73.56	53.64	31.71	52.91	Jan．1864；Oct． 1865	110	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	Dr．U．D．Hedges．	

DISTRICT OF COLUMBIA．

\mathbf{I}	54.6 I	75.10	58.50	35.77	56.00
$\mathbf{2}$	53.02	74.46	54.9 I	33.85	54.06
3	59.10	78.27	56.70	39.13	58.30
4	55.77	76.33	56.43	36.1 I	56.16
5	54.1	75.8	56.3	38.0	56.0
6	55.24	74.33	54.18	32.16	53.98
7	52.95	73.58	53.53	35.40	53.87
8	57.20	77.07	58.53	37.50	57.58
9	53.36	75.72	5.13	34.46	55.42
IO	$5 \mathbf{1 . 3 5}$	73.70	55.50	33.69	53.56
II	5 I .82	75.73	55.9 I	35.57	54.76

FLORIDA．

FHORIDA．－Continued．															
Name of Station．		＋i0		号	辰	$\begin{aligned} & \text { 这 } \\ & \text { 㤩 } \end{aligned}$	家	$\begin{aligned} & \stackrel{\Delta}{\mathrm{c}} \\ & \hline \end{aligned}$	号	穹	菏		－	号	هٌ
24．Fort Wacohootee ．	$29^{\circ} 28^{\prime}$	$82^{\circ} 25^{\prime}$	50	$59^{\circ} \cdot 13$	$55^{\circ} \cdot 58$	$67^{\circ} .21$	$69^{\circ} .67$	$72^{\circ} .00$	$75^{\circ} .00$	$80^{\circ} .00$	$78^{\circ} .00$	$77^{\circ} .00$	$65^{\circ} .67$	$59^{\circ} \cdot 33$	$5^{6} \cdot 33$
25．Fort Wacassassa ．	2930	8245	45	58.53	57.59	66.93	70.50	74.13	77.32	79.66	79.56	78.62	69.74	59.63	56.58
26．Gainesville ．．	2938	8220	184	53.96	58.73	61.21	67.18	73.97	78.13	79.37	78.35	76.40	68.65	61.11	57.56
27．Gordon ．．	2952	8221	\cdots	53.07	61.48	66.00	72.90	73.95	79.23	81.73	81.20	79.75	70.38	63.50	55.94
28．Hibernia ．．	3004	8142	15	59.85	．．										59.47
29．Jacksonville ．．	3020	8I 39	20	55．51	57.27	62.76	69.45	75.59	79.53	81.73	81.69	78.67	69.78	61.67	54.09
30．Key West	2433	81 48	10	70.04	70.68	73.79	76.29	80.20	82.15	83.31	83.52	82.53	79.12	$75 \cdot 59$	72.83
3I．Key West ．．．	2433	8148	10	69.18	70.51	72.70	75.65	79.21	82． 66	83.84	83.54	82.29	78.70	74.66	71.63
32．Key West ．	2433	8148	10	64.92	71.18	76.09	77.62	82.25	83.54	85.09	84.99		80.30	．	70.93
33．Knox Hiill ${ }^{2}$ ．	3040	8558	148	48.66	55.40	62.52	66.31	$75 \cdot 34$	77.93	79.26	79.58	77.23	67.96	59.72	55．12
34．Lake City ${ }^{3}$ ．．．	3012	8238	185	56.15	56.94	62.51	68.98	75.27	80.73	79.82	80.28	77.94	69.12	59.35	59.18
35．Manatee ．．．．	2730	8 I 45	6	66.64	63.08	66.57	70.80	76.78	82.74	82.73	83.40	80.60	75.30	65.98	63.45
36．Micanopy ：．	2930	8218	78	55.23	61.45	67.22	69.42	75.99	80.70	80.79	80.14	$77 \cdot 31$	71.87	60.05	60.32
37．Mosquito Inlet（ 12 miles N ．W．of）．	2912	SI 02	10	．．	．．	．．	．．	．	．．	78.12	79.89	77.20	73.88	62.80	54．18
38．Newport ．．．．	3010	8415	．．			\ldots	．	73.36	77.15	79.37	79.51	75.36	67.38	56.83	48.90
39．New Smyrna ．．	2900	8056	20	62.27	63.64	67.57	73．14	74.88	78.91	80.04	78.94	78.29	72.06	67.15	63.49
40．Ocala ．．．．	2911	8209	－．	61.89	62.73	63.18	67.17	72.86	79.62	81.13	82.35	79.24	69.40	59.73	57.45
41．Orange Grove ．．	2728	8235	10				67.08	75.89	79.89	81.38	8 I .8 I	80.00	74.99		
42．Pensacola ．．．	3025	8713	－．	56.17	57.87	64.51	68.67	76.49	80.69	84.92	83.57	78.90	71.00	6 x .29	57.84
43．Picolata ．．．．	2957	8136	25	61.21	56.80	64.30	72.60	73.46	78.60	81.70	80.50	77.88	70.67	61.04	57.86
44．Port Orange ．．	2904	8057	．．	59.17	59.07	63.99	68.76	74.83	78.40	82.01	81.37	79.41	72.96	64.34	58.48
45．Seville ．	3029	8407	\cdots	51.32	51.54	58.55	59.60	69.36	75.90	76.40	73.15	71.61	62.78	55．19	49.25
46．Warrington ${ }^{4}$	3021	8717	12	53.02	57.10	63.19	69.12	75.74	S1．16	83.84	82.90	78.97	70.30	6 I .58	56.51
47．White Springs	3024	8256		\ldots				．	80.13	84.20	－	\cdots		．	\ldots
GEORGIA．															
I．Athens	335^{8}	8325	850	44.58	45.99	53.63	61.43	68.40	75.09	76.33	75．81	71.60	59.39	$5^{1} \cdot 3^{1}$	47.61
2．Atlanta	3345	8424	1050	40.90	43.45	51.14	58.01	65.65	71.71	77.50	75－40	68.86	57.55	48.92	41.22
3．Augusta ${ }^{6}$ ．．．	3329	8r 51	150	47.06	49.86	55.85	63.92	72.97	79．13	81.30	78.04	74.56	63.66	49.68	43.53
4．Augusta Arsenal	3328	8ı 53	350	47.20	50.57	55.67	65.10	72.28	79.12	82.16	79.85	73.95	63.68	53.85	46，68
5．Berne ．．．．． 6．Boston ．．	3050 3042	$\begin{array}{ll}81 & 50 \\ 83 & 50\end{array}$	25	52.03 47.45	49.25 54.35	54.08	61.15	70.83	75.97	79.64	77.40	71.93	63.56	52.96	47.73
7．Brunswick ．．．	3042 31 31	8350 8130	\cdots	47.45 51.3	54.35 56.0	59.3	66.7	75.3	75.0	82.0	82.0	80．o	68.0	58.3	
8．Catawba ．．	3240	8452		5.		59.3		75.3	82.0	82.0	82.0	80.0	68.0	50.3	$52 \cdot 3$
9．Clarksville ．．	3440	8331	1632	40.40	45.97	48.93	55.33	－	70.93	72.82	72.45	65.86	55.05	46.01	44.42
10．Columbus－．	3229	8459	\cdots		．	\cdots	62.92								
ir．Culloden ．．．	3251	8406	825	46.17	52.33	59.70	64.36	73.89	77.73	79.63	76.97	72.27	64.01	55.84	48.76
12．Cuthbert ．．．	3144	8450	77	－．				．	79.60	83.78	79.10	．．	．．	．．	．．
13．Dalton ${ }^{\text {a }}$ ，	3447	8500	775	39.90	44.87	49.30	54．		．．		－．	．	－	\cdots	
14．Factory Mills ．	3340	8446	．．	．．	．	47.96	54.97	．	．	．	．．	．	．	．	
15．Griffin＊．．	3303	$\begin{array}{ll}84 \\ 8 & 15\end{array}$	\cdots	$\therefore 8$	\cdots		60.26	\cdots	\cdots	－	\ldots	\cdots	－		
16．Hillsborough ．．	3310	8338	566	48.82	44.47	55.36	62.81	71.89	77.65	\cdots	\cdots	74.13	59.41	50.48	51.77
17．La Grange ．：	$\begin{array}{lll}33 & 02 \\ 32 & 50\end{array}$	85 83 83	．\cdot	47.87		59.73			．．	－．	．．	．．	．．	．．	．．
18．Macon（Lewis High	32 32 3	8340	\％ 30	44.60	47.63	59.73	62.38	70.85	8			．	．		
19．Macon（Lewis High School）	3247	8347	1300	50.95	48.03	54.45	63.70	68.70	78.09	80.88	So． 10	．	－	50.23	42.75
20．Macon ．．．	3250	8338	339	49.83	49.05	55.15	6 r .95	67.03							42.48
21．Milledgeville ．	3305	8312	577			60，68	65.12	72.39	So． 16	77．19	81.07	74.15	59.47	57.9°	48.95
${ }^{1}$ Corrected for daily variation by the Key West table．${ }^{2}$ Also called Orange Hill． 3 Also called Alligator． ${ }^{4}$ This series is composed of observations made at the Navy Yard and U．S．Naval Hospital．															

FLORIDA．－Continued．

	菏		品 若	䔍	－	Series． Begins．Ends．	Extent yrs．mos．	Observing HoURS．	Observer．	References．
＇24	$69^{\circ} .63$	$77^{\circ} .67$	$67^{\circ} \cdot 33$	57° ． 01	$67^{\circ} \cdot 91$	Jan．1841 ；Mar． 1842	13	$\bigodot_{r} 2_{a} 9_{a}$	Assistant Surgeon．	Ar．Met．Reg． 1855.
25	70.52	78.85	69.33	57.57	69.07	Oct．1840；Dec． 1842	23	$7_{\mathrm{m}} 22_{\mathrm{a}} 9$		
26	67.45	78.62	68.72	56.75	67.89	Feb．1856；Feb．1861	49		J．B．Bailey．	P．O．and S．I．Vol，r，and S．O．
27	70.95	80.72	71.21	56.83	69.93	Apr．1866；Jan． 1868	I 3	$7 \mathrm{~m}{ }^{\text {a }}{ }^{\text {9 }}$ a bis	H．B．Scott．	S．O． P ．${ }^{\text {P．}}$
28						Dec．1857；Jan． 1858	－ 2	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{~m}$	F．L．Batchelder．	P．O．and S．I．Vol．I． MS，in S．Coll，P．O．and S．
29	69.27	80.98	70.04	55.62	68.98	Feb．1839；Dec． 1870	124	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	Dr．A．S．Baldwin．	MS．in S．Coll．，P．O．and S． I．Vol．I，and S．O．
30	76.76	82.99	79.08	71.18	77.50	1823； 1836	90	$\bigodot_{\mathrm{r}} 2_{\mathrm{a}} \mathrm{IO}_{\mathrm{a}}$	Whitehead，	Manuscript．
31	75.85	83.35	78.55	70.44	77.05	Jan．1830；Dec． 1870	266	1	Assist．Surg．，Coll＇tor of Customs，J．and W．A．Whitehead， W．C．Dennis，A． Gordon，G．T．Fer－ guson，J．G．Olt manns．	Ar．Met．Regs． 1855 and $\mathbf{1 8 6 0}$ ， MS．from S．G．O．，Am． Alm．1835，and foll．，MS．in S．Coll．，P．O．and S．I． Vol．I，and S．O．
32	78.65	84.54		69.01		June，1851；May， 1852	－ 10	hourly．	U．S．Coast Survey．	Manuscript．
33	68.06	78.92	68.30	53.06	67.09	July，1851；Dec． 1855			J．Newton．	S．Coll．，P．O．\＆S．I．Vol．I．
34	68.92	80.28	68.80	57.42	68.85	Mar．1857；Jan． 1869	40	$7 \mathrm{~m} 2_{\text {a }} 9$	E．R．Ives．	P．O．and S．I．Vol．I，and S．O．
35	71.38	82.96	73.96	64.39	73.17	Jan．1869；July， 1870	17	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}^{\text {a }}$	B．A．Coachman．	S．O．
36	70.88	80.54	69.74	59.00	70.04	June，1858；Dec． 1859	17	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{am}$	Dr．J．B．Bean．	P．O．and S．I．Vol．I．
37 38	－		71.29 66.52	\cdots	\cdots	1870 1870	\circ		S．N．Chamberlin．	$\text { S. } 0 \text {. }$
3.8		78.68	66.52		71.70	$\stackrel{1870}{\text { ¢ }}$（840；Oct． 1853	$\begin{array}{ll}0 & 8 \\ 3 & 0\end{array}$		C．Bucher． Assistant Surgeon．	Ar．Met Reg 1855
39 40	71.86 67.74	79.30 81.03	72.50 69.46	63.13 60.69	71.70 69.73	Jan． $1840 ;$ Oct． 1853 Jan． 1869；Sept． 1870	$\begin{array}{ll}3 & 0 \\ 1 & 5\end{array}$	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon． E．Barker．	Ar．Met．Reg． 1855. S． O ．
41	67.74	81.03	6.4		9.	1870	－ 7		W．J．Clark．	S． 0.
42	69.89	83.06	70.40	57.29	70.16	Aug．1849；Dec． 1852	35	$\odot_{\mathrm{r}} \mathrm{N} . \odot_{\mathrm{s}}$	Pearson．	Manuscript．
43	70.12	80.27	69.86	58.62	69.72	Sept．1840；Sept．I84I		$\bigcirc_{\mathrm{r}} \mathrm{z}_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg． 1855.
44	69.19	80． 59	72.24	58.91	70.23	Jan．1867；Apr．1870	210	$7 \mathrm{~m} \mathrm{ma}_{\text {a }} \mathrm{m}_{\text {bis }}$	Dr．and Mrs．J．W． Hawks．	S．O．
45	62.50	75.15	63.19	50.70	62.89	${ }^{1} S_{59}$		7 m	L．Gibbon．	P．O，and S．I．Vol．I．
46	69.35	82.63	70.28	55.54	69.45	Oct．1849；Dec． 1860	10 9		J．Pearson，W．John－ son and others．	S．Coll．，P．O．and S．I，Vol．I．
47	\cdots	．	．	－•	－	1870	－ 2	$7_{\text {m }} 2_{\text {n }} 99_{\text {a bis }}$	R．W．Adams．	S．O．

GEORGIA．

1	61． 15	75.74	60.77	46.06	60.93	Jan．1845；Sept． 1859	66	5	McCoy，Prof．J．D． Easter．	Southern Cultivator，and P．O． and S．I．Vol．I．
2	58.27	74.87	58.44	41.86	58.36	Jan．1859；Dec．1870	52	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{ab}$	Dr．J．G．Westmore－ land，Assist．Surg， F．Deckner \＆son．	P．O．and S．I．Vol．I，S．O．， and MS．from S．G．O．
3	64.25	79.49	62.63	46.82	63.30	Jan．1839；July， 1868	75	6	Drs．M．and S．H． Holbrook，W．H． Dougherty，W． Haines，S．Elliott．	Am．Alm．，P．O．and S．I． Vol．I，and S．O．
4	64.35	80.38	63.83	48．15	64．18	Jan．1826；Dec． 1870	217	$7 \mathrm{~m} 2_{\mathrm{n}} \mathrm{9}_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg．1855，and MS． from S．G．O．
5	62.02	77.67	62.82	49.67	63.04	June，$\underset{\text { r }}{\text { 869 ；}}$ ；Dec． 1870	1 7 2	$7 \mathrm{~mm}{ }_{\text {a }}^{\text {a }}$ ， 9 ab bis	H．L．Hillyer． W．Blewett．	$\begin{array}{lll} \text { S. O. } \\ \text { is } & \text { is } \end{array}$
7 8	67．10	79.67	68.77	53.20	67.18	June，1838；May， 1839	$\begin{array}{ll}1 & \\ 1 & 0 \\ 0 & 1\end{array}$	$8_{m} 2_{\mathrm{a}} 6_{\mathrm{a}}$	J．Bancroft． Shields．	Am．Alm． S．Coll．
9	\cdots	72.07	55.64	43.60	．	June，1847；Apr．I861	$\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 2 & 3\end{array}$	${ }_{5}^{2} 9^{\text {a }}$	Campbell and J．Van－ buren．	Pat．Off．Rep．，S．O．，and P． O．and S．I．Vol．I．
10				…		$\frac{1870}{\text { ¢ }}$	$\bigcirc 1$	$7 \mathrm{~m} 2_{\text {n }} \mathrm{Ca}_{\text {a b bis }}$	N．J．Fogarty．	S． 0 ．
11	65.98	78.11 80.83	64.04	49.09	64.31	May，1852；June， 1854		${ }^{\text {IIL }}{ }^{5}$	Prof．J．Darby．	S．Coll．，\＆P．O．\＆S．I．Vol．I．
12	．	80.83	．．	．．	．	1860 1861	－ 3		C．C．Seavey． Dr．J．R．McAfie．	S． 0 ． ＂،＂
13	\cdots	．．	\cdots	\cdots	\cdots	1861	O		Dr．J．R．McAfie． F．T．Simpson．	P．O．and S．Y．Vol．I．
15		．	．	．	－					S．Coll．
16	63.35	．	61.34	48.35	．	Sept．1857；June， 1858	010	7 m	E．S．Glover．	P．O．and S．I．Vol．I．
17			．．				－I	$\bigodot_{r} \mathrm{~N} \cdot \bigodot_{\mathrm{s}}$		＂＂
18	64.32		．	\cdots	\cdots	1868	－ 5	$7 \mathrm{~m} 2_{\mathrm{a}} \mathrm{ma}_{\mathrm{a}}$ bis		S．O．
19	62.28	79.69	－	47.24	．	Nov．1868；Aug． 1869	010	－	Misses S．G．Whiting， and S．M．Proctor．	＂،
20	61.38			47．12		Dec．1868；May， 1869	06	＂	J．F．Adams．	＂
21	66.06	79.47	63.84	．．	．	Oct．1843；Dec． 1849	1 I	$\bigodot_{r} 99_{m} 39_{a}$	J．R．Catting \＆Jacobs，	MS．in S．Coll．and S．Coll．

${ }^{5}$ Corrected for daily variation．
6 Observations of 1839 and for four months of 1868 at Summerville，about one mile south of Augusta．

GFORGIA．－Continued．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Station． \& 嶌 \& \[
\begin{aligned}
\& \dot{0} 0 \\
\& \stackrel{y}{\circ}
\end{aligned}
\] \& \[
\left\lvert\, \begin{aligned}
\& \text { 䔍 } \\
\& \text { 宓 }
\end{aligned}\right.
\] \& 㤐 \& \[
\stackrel{\rightharpoonup}{\sim}
\] \& \[
\begin{aligned}
\& \text { 惑 } \\
\& \text { 1 }
\end{aligned}
\] \& 范 \& 完 \& 品 \& 豈 \& 薄 \& 这 \& ¢゙ \& 言 \& คั \\
\hline 22．Oglethorpe B＇ks \& \(32^{\circ} 05^{\prime}\) \& \(81^{\circ} \mathrm{O} 7^{\prime}\) \& \(40!\) \& \(52^{\circ} .03\) \& \(54^{\circ} .05\) \& \(5^{8} .76\) \& \(66^{\circ} .89\) \& \(75^{\circ} .60\) \& \(80^{\circ} .31\) \& \(82^{\circ} .67\) \& \(81^{\circ} .43\) \& \(77^{\circ} .49\) \& \(67^{\circ} .26\) \& \(57^{\circ} .85\) \& \(50^{\circ} .97\) \\
\hline 23．Penfield \& 3338 \& 8309 \& 72 \& 47.59 \& 45.93 \& 50.74 \& 61.21 \& 69.02 \& 76.85 \& 80.25 \& 78.58 \& 71.02 \& 62.22 \& 50.06 \& 42.47 \\
\hline 24．Perry ．． \& 3228 \& 8343 \& 280 \& 42.64 \& 53．50 \& 63.08 \& 64.35 \& 73.67 \& 78.99 \& 81.37 \& 78.57 \& 74.57 \& 67.55 \& 53.26 \& 50.65 \\
\hline \begin{tabular}{l}
25．Powelton \\
26．Quitman（ten miles
\end{tabular} \& 3325 \& 8250 \& 620 \& ．． \& \& \& ．． \& 74.55 \& 76.71 \& 79.72 \& 75.80 \& 72.33 \& \& 52.17 \& ．． \\
\hline S．W．of）． \& 3040 \& 8340 \& ， \& ． \& ． \& － \& \& \& ．． \& \& \& \& \& \& 49.28 \\
\hline 27．Richmond Hill ． \& 3326 \& 81 53 \& 275 \& ． \& ． \& \& \(\cdots\) \& \& \& 82.70 \& \& \& \& \& \\
\hline 28．St．Mary＇s
29．Savannah \& 3044
3205 \& 81
81

06 \& 15
42 \& 51.29 \& 54.31 \& 59. \& 66.97 \& 72.38
74.47 \& 77.39
79.38 \& 80.55
81.67 \& So． 38
80.77 \& 76.48
75.90 \& 69.56
66.71 \& 57.97
57.83 \& 49.12
52.09

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 30．Sparta \& 3315 \& 8254 \& 550 \& 43.66 \& 48.89 \& 54.08 \& 61.50 \& 71.33 \& 76.08 \& 80.18 \& 78.28 \& 73.49 \& 61.95 \& 52.90 \& 46.34

\hline 31．The Rock ${ }^{1}$ \& 3252 \& 8423 \& 833 \& 42.87 \& 47.95 \& 55.68 \& 63.59 \& 70.35 \& 77.34 \& 78.63 \& 74.80 \& 72.49 \& 61.50 \& 51.62 \& 44.09

\hline 32．Thomson \& 3329 \& 8225 \& \& \cdots \& 49.78 \& 57.98 \& 63.65 \& 74.34 \& \& \& \& \& \& \& 54.23

\hline 33．Thornhill－ \& 3137 \& 81 II \& 10 \& \& \& \& \& \& 79.47 \& 79.57 \& 82.13 \& 76.06 \& 69．10 \& \&

\hline 34．Whitemarsh Island \& 3200 \& 81 00 \& 18 \& 48.20 \& 53.16 \& 57.64 \& 64.59 \& 72.86 \& 77.85 \& 80.12 \& 79.60 \& 75.09 \& 65.59 \& 57．56 \& 51.74

\hline 35．Zebulon \& 3306 \& 8421 \& \& 43.85 \& 51.77 \& 56.09 \& 61． 88 \& 71.75 \& 79.86 \& 8ı． 68 \& 78.48 \& 72.06 \& 66.64 \& 53.69 \& 48.99

\hline
\end{tabular}

IDAHO

1．Camp Connor				11．38	12.51	．．	\cdots				\cdots				20.03
2．Cantonment Loring ${ }^{2}$	4304	11227	4700	24.31	24.06	25.23	42.71	．			63.39	59.62	47.97	34.67	22．50
3．Chelemta Depot	4842	11619	1796			．．					71.6	58.1	49．1	40.1	．．
4．Fort Boisé	4340	11600	．．	26.50	32.89	40.90	52.56	62.62	70.68	78.38	76.05	63.75	52.84	42.33	30.05
5．Fort Lapwai	4618	11654		29.78	36.09	41.36	53.70	63.89	70.26	77.59	72.86	62.40	51.27	41.62	33.46
6．Lapwai ${ }^{3}$ ．．	4618	116 54	2000	31.83	38.50	42.75	52．75	57.50	68.87	70．13	72.00	64．00	48.13	41.50	40.40

ILLINOIS．

1．Albion	3824	$88 \quad 04$	\cdots				40．81			－•		－•			
2．Alto ${ }^{4}$	4145	8900	\cdots	19.53	24.05	30.85	45.77	56.57	68.45	73.17	68.70	59.90	47.37	35.85	23.59
3．Alton．	3853	$90 \quad 14$	650	34.05	33.66	41.13	48．01	62.30	73.93	76.53	75.69	66.65	51.10	43.84	28.32
4．Andalusia ${ }^{5}$	4125	9045	686	23.17	25.83	36．14	47.64	58.95	69.78	75.82	72.17	63.57	51.57	38.24	26.00
5．Athens	3957	8945	800	31.16	29.78	39.25	47.29	60.14	70.11	73.16	71.36	62.78	51.42	42.98	26.24
6．Athens ${ }^{6}$	3957	8945	800	25.12	29.24	39.08	52.17	63.00	72.01	77.68	75.36	68.56	55.40	40.49	29.81
7．Augusta ${ }^{7}$	4012	9058	500	25.52	29.08	38.28	50.94	61.77	70.56	75．19	72.75	65.27	52.49	40.23	28.42
8．Aurora	4146	8817	696	21． 26	24.08	34.90	46.23	57．14	67.72	73.29	68.29	58.81	49.55	41.37	23.19
9．Batavia ${ }^{8}$	4152	8816	636	21．17	27.41	36.83	43.87	58.25	67.75	73.58	70.28	62.71	48.23	33.42	24.25
10．Belleville	3829	8958	600	30.88	31.38	45.03	56.03	70.72	75.03	79.81	79.27	70.83	59.84	46.43	40.27
II．Belvidere	4216	8848	810	19.54	21.98	31．57	44.84	58.16	66.29	73.09	68．14	60.01	44.89	34.03	21.82
12．Brighton ．	3900	9013		27.64	31.72	38.07	$45 \cdot 47$	63.54	74.55	81.87	76.99	67.63	56.76	37.37	32.49
13．Bruce ${ }^{9}$ ．	4109	8850	550	．－	\cdots			59.25	63.30	－	－			43.56	15.63
14．Carthage ．	4023	${ }^{11} 17$	．．	24．53	30． 10	42.64	46.65	66.97	70.25	79.14	75．56	66．11	52.59	39.07	24.89
15．Centralia．－	3831	8908	6	27.53	37.40										
16．Channahon－	4126	8812	630			36.50	50.97	58.20	70.70						
17．Charleston	3930	88 10		27.93	29.45	35.31	53.31	64.96	71.39	77．18	71.21	67.35	54．13	41.31	26.28
18．Chicago ${ }^{10}$ ．	4154	8738	600	23.01	24.96	32.01	45.31	53.34	61.59	70.34	68.34	60.19	48.41	36.36	26.38
19．Clinton	$40 \quad 09$	8857	430	20.72	25.75	35．4I	52.65								19.95
20．Coloma（near）．	3814	$\begin{array}{ll}89 & 16 \\ 88 & \end{array}$	405	29.15	32.55	37.57	5 t .48	59.67	70.60	75.72	72.60	64.23	51.24	42.59	30.98
21．Decatur ．	39 5I	8857	685	27.53	28.38	34.45	52.85	65.23	72.05	77.98	71.75	67.20	49.65	38.99	28.26

${ }^{1}$ The results previous to 1854 are defective on account of frequent blanks in the record．In $\mathbf{1 8 5 6}$ and 1859 the observations were made at Thomaston， about three miles N．E．of The Rock．

2 Old Fort Hall．
3 Observations assumed to have been taken at or in the vicinity of the Fort．
4 Also called Rochelle．
5 Observaitions previous to I866 were made at Edgington，about one mile to the west of Andalusia，

GEORGIA．－Continued．

	$\begin{aligned} & \dot{\text { © }} \\ & \dot{\vec{n}} \\ & \dot{\sim} \end{aligned}$	耑 品 n	$\begin{aligned} & \text { 品 } \\ & \frac{5}{3} \\ & \hline \end{aligned}$	䔍		Series． Begins．Ends．	Extent yrs．mos．	Observing HOURS．	Observer，	References．
22	$67^{\circ} .08$	$8 \mathbf{I}^{\circ} .46$	$67^{\circ} \cdot 53$	$52^{\circ} \cdot 35$	$67^{\circ} \cdot 11$	Jan．1832；Dec．1870	124	$7 \mathrm{~m}{ }^{\text {a }}$ 9a	Assistant Surgeon．	Ar．Met．Reg． 1855 and MS． from S．G．O．
23	60.32	78.56	6r．10	$45 \cdot 33$	6 r .33	1852；Dec．1870	27	$7_{\text {ma }} 2_{\text {at }} 9_{\text {a bis }}$	Prof．S．P．Sanford and Willis．	S．O．and S．Coll．
24	67.03	79.64	65.13	48.93	65.18	Apr．1851； 1853	23		Cooper．	S．Coll．
25	．．	77.41	．．	．	．	1852	0.6		Pendleton．	$\text { " } 6$
26	．	－	\ldots	．	\cdots	1870		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{abis}$	J．L．Cutier．	S．O．
27	\cdots	\cdots	．	\ldots	．	1854	0 I	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	W．Schley，Jr．	P．O．and S．I．Vol．I．
28		79.44	68.00			1870	$\bigcirc 8$		E．Barker．	S．O．
29	67.06	80.61	66.81	52.56	66.76	Jan．1819；Oct． 1859	26 I	$7_{\mathrm{m}} 27_{\mathrm{a}}$	A．G．Pemler，Dr．J．F． Posey，and Williams．	Am．Alm． 1838 and foll．espe－ cially 1856，MS．in S．Coll．， and P．O．and S．I．Vol．I．
30	62.30	78.18	62.78	46.30	62.39	1850；Apr．186r	90	$7 \mathrm{ma} \mathrm{za}_{\text {a }} \mathrm{ga}^{\text {a }}$	Dr．E．M．Pendleton．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
31	63.21	76.92	6 r .87	44.97	61.74	May，1839；Dec． 1859	75	＇6	Dr．J．Anderson．	MS．in S．Coll．，P．O．and S． I．Vol．I．
32	65.32		．	\ldots	．	Dec．1858；May， 1859	－ 5	＂		P．O．and S．I．Vol，I．
33		80.39		51.03		Apr．1849；Apr． 1861	0 5 II		Grant．	S．Coll，
34	65.03	79.19	66.08	51.03	$65 \cdot 33$	Apr．1849；Apr．I86ı		$7 \mathrm{~mm}{ }_{\text {a }} \mathrm{gam}_{\text {a }}$	R．T．Gibson．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
35	63.24	So．OI	64.13	48.20	63.90	Jan．1856；Mar． 1857	29	＂	Mrs．J．T．Arnold，	P．O．and S．I．Vol．1．

IDAHO．

ILLINOIS．

1		…				1857		$7 \mathrm{ma}{ }^{\text {a }}$	E．P．Thompson．	P．O．and S．I．Vol．I．
2	44.40	70.11	47.71	22.39	46.15	July，1866；Dec． 1870	42	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}{ }_{\text {big }}$	Dr，Carey．	S．O．
3	50.48	$75 \cdot 3^{8}$	53.86	32.01	52.93	May，1849；Dec． 1851		$\odot_{r} 99_{m} 3_{2} 9_{a}$	Johnson．	MS．in S．Coll．
4	47.58	72.59	51．13	25.00	49.07	Mar．1857；Dec． 1870	9	$7{ }_{\text {ma }} 2_{\text {a }} 99_{\text {a his }}$	Dr．E．H．Bowman．	P．O．and S．I．Vol．I，and S．O．
5	48.89	71.54	52.39	29.06	50.47	1847； 1850	33	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} \bigodot_{s}$	Prof．J．Hall．	Pat．Off．Rep．
6	51.42	75.02	54.82	28.06	52.33	Jan．1851；Dec． 1858	7 II	$7 \mathrm{ma} 2_{\mathrm{a}} 9_{\mathrm{a}}$		S．Coll．，P．O．and S．I．Vol．I．
7	50.33	72.83	52.66	27.67	50.87	Aug．1833；Dec． 1870	$26 \quad 9$	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Dr．S．B．Mead．	MS．in S．Coll．
8	46.09	69.77	49.91	22.84	47．15	Oct．1857；Dec． 1870			A．J．Babcock，Dr．A． Spaulding and wife．	P．O．and S．I．Vol．I，and S．O．
9	46.32	70.54	48.12	24.28	$47 \cdot 31$	Jan．1854；July，I86ı	38	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Prof．W．Coffin，T． Mead，and F．Cran－ don．	،
Io	57.26	78.04	59.03	34.18	57．13	May，1860；Dec． 1862	2	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	N．T．Baker，J．J．R． Patrick．	S． O ．
II	44.86	69.17	46.31	21.11	45.36	Apr．1868；Dec． 1870	29	＂	G．B．Moss．	＂
12	49.03	77.80	53.92	30.62	52.84	June，1856；Feb． 1859		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Rev．W．V．Eldridge．	S．Coll．，P．O．and S．I．Vol．I．
13	．．		．－		．．	Nov．1859；June， 1860		m ${ }^{\text {a }}$	Dr．G．O．Smith．	P．O．and S．I．Vol．I，and S．O．
14	52.09	74.98	52.59	26.51	51.54	Aug．1858；Dec． 1859			Mrs．E．M．A．Belle．	P．O．and S．I．Vol．I．
15		．．			．．	1865		$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{n}}$	H．A．Schauber．	S． 0.
16	48.56						－ 4		I．Fitch．	
17	51．19	73.26	54．26	27.89	51.65	Apr．1870；Dec． 1870	－ 9	＇6	C．Gramesby．	＂＂${ }^{6}$
18	43.55	66.76	48.32	24.78	45.85	July，1832；Dec． 1870	173	،	Assist．Surg．，S．Mea－ cham，S．Brooks，I． I．Langguth，and others．	Rec．of Mech．Inst．and S．O．
19		\cdots		22.14	\cdots	Dec．1864；May， 1866		$7 \mathrm{~m} 9_{\mathrm{a}}$	C．N．Moore．	S．O．
20	49.57	72.97	52.69	30.89	51.53	June，I865；Nov．I870		$7 \mathrm{~m} \mathrm{ma}_{\text {a }} 9 \mathrm{ab}$ bis	W．C．Spencer．	＂،＂
21	50.84	73.93	51.95	28.06	51.19	Oct．1869；Dec． 1870	13		T．Dudley．	＂＂

[^80]ILIINOIS．－Continued．

Name of Station．	号	$\begin{aligned} & \dot{80} \\ & \dot{0} \\ & \end{aligned}$		$\stackrel{\text { E．}}{\text { ¢ }}$	\％	$\begin{gathered} \text { H2 } \\ \text { Kin } \end{gathered}$			苞	宫		$\bar{\circ}$	ぜ	2	®
22．Edgar Co．（near S ． W．corn．）．	$39^{\circ} 30^{\prime}$	$88^{\circ} 5^{\prime}{ }^{\prime}$	．	$33^{\circ} .42$	$17^{\circ} .25$		$44^{\circ} \cdot 37$	$53^{\circ} .61$							
23．Effingham ．．．	$\begin{array}{ll}39 & 07\end{array}$	8832	592	33.42 30.73	17.25	$35 \cdot 42$		562.73	$733^{\circ} \cdot 40$	$77^{\circ} .45$	$79^{\circ} .65$				
24．Elgin ．．	4203	8816	777	23.01	20.62	36.85	45．13	56.99	66.26	70.26	69.40	$59^{\circ} .91$	$48^{\circ} .63$	$34^{\circ} \cdot 59$	$22^{\circ} .11$
25．Elmira	4110	8950		20.76	26.92	33.53	48.72	61.15	70.52	75.26	70.96	62.94	48.76	38.01	23.35
26．Evanston（N．W． University）	$42 \quad 03$	8739	618	23.49	25.86	34.32	45.63	55.89	66.15	70.20	70.43	66.75	49.63	39.78	23.89
27．Farm Ridge ．	4113	8853	600	20.90	26.05	40.00	46.73	62.43	66.10	69.48	68.13	59.08	49.86	31.50	18.73
28．Fort Armstrong	4130	9040	528	22.80	24.68	37.83	51.06	62.67	71.39	76.48	74.48	62.98	52.26	39.02	27.16
29．Fremont Centre	4218	8806	736	19.73	23.43	33.93	36.56	53.41	67.61	75.22	71.56	65.82	49.45	30.28	32.24
30．Galesburg（Univrs．）	4055	9024	795	21.41	26.10	33.22	49.01	59.63	70.41	74.06	71.75	63.69	49.93	38.75	26.40
3r．Golconda ．．	3723	8830		35.05	41.29	45－34	58.31	65.89	75．88	81.76	80.59	72．07	58.97	46.17	36.31
32．Granville	41 14	8915	\cdots				．．	55.56	．．	．．	．．			－	
33．Havana ．	40 I8	$90 \quad 05$	475									66.15	52.28	41.04	25.85
34．Hennepin ．．	4115	8920	\cdots	26.85	28.90	32.85	54.78	67.75	74.83	80.45	74.28	67.93	53.73	41.45	25.90
35．Highland ${ }^{\text {d }}$ ．	3844	8940	620	32.77	35.18	44.52	57.50	67.62	75.54	79.55	77.97	70.88	55.95	42.98	34.44
36．Hillsborough	3912	89 26			25.39	39.40									
37．Hoyleton ．	3826	8917	480	25.70	5．39	S	49.03	62.27	73.63	79.30	75.65	68.48	48.75	42.25	28.85
38．Jacksonville ${ }^{2}$	3945	9012	67	28.9	24.27	41． 48	55.18	6 \％． 6	75．13	74.45	72.52	65.53	54.97	44.89	34.76
39．Joliet	4130	$88 \quad 05$	\cdots	29.39	31.57		52.79	56.07		73.35	68.65	．	40.75	．	
40．King＇s Mill ．	4205	8833	\cdots	26.78	24.20	26.78	42.48	53.23	63.15	68.90	69.08	\cdots			
41．Lawn．－	4059	8938				27.25	49.78								
42．Lebanon ．－	3835	8949	500	30.37	35.09	43.63	55.40	65.20	73.95	75.75	$77 \cdot 32$	69.25	57.40	46.28	39.88
43．Lee Centre	4145	8917												33.98	20.55
44．Loami	3940	8951	675	26.13	30.3	32.47	52.27	58.90	71.68	76.18	74.34	64.57	5 5 .09	40.36	25.68
45．Louisville ．	3845	8830		33.71	34.39	38.48	55.00	66.25	73．16	78.67	$76 \cdot 14$	67.15	50.59	42.34	3 T .34
46．Magnolia（near）	4115	8915	300	15.93	25.78	34.98	47.29	35.72	71.61	85．10	66.40			41.65	． 25.95
47．Manchester ．－	39 31	9034	683	26.41	30.65	38.55	52.04	62.90	71.88	76.11	73.72	66.00	53.56	40.47	29.58
48．Manlius ．	4124	8836	\because	．．		．．	．．88		67					33.90	
49．Marengo ．	42 I 4	8834	842	19.42	23.81	33，14	43.78	55.36	67.37	72.16	68.29	60.39	48.89	33.78	26.05
50．Mattoon ．	$39 \quad 29$	8823	740	30.00	28.85	34.73	53.18	66.80	73.48	78.42	75.52	67.77	51.48	40.87	30.34
51．Meeker＇s Store ．	$\begin{array}{ll}37 & 24\end{array}$	8920	487	36.80	34.25	47.55	55.40		\％	73.17	76.55	67.72	58.22	46.63	44.63
52．Milford	4133	8840	．．	17.72	29.28	39.69	49.04	58.	68.76	76.71	73.93	58.22	57.06	36.90	26.90
53．Mound City ．	3706	8912	\cdots	44.75	41.63	47.18	．．	．	．			77.37	．．	48.75	46.66
54．Mount Sterling ．	3958	9047	\cdots	26.04	30.46	36.68	52.92	62.99	73.54	80.03	74.87	65.52	53.27	42.18	28.53
55．Monroe ．－	4208	8755	600	29.49	30.21	34.25	43.06	53.17	68.67	70.96	68.07	6i．1I	49.35	43.56	22.06
56．Murrayville ．	3935	9014	683	，	\cdots	．．	51.30	65.14	74.87	72.08	74.37	73.84	54.97	．．	．．
57．Nachusa Nursery	4150	8923	．．	－．	27.41	．	47.53	54.89	66.00	71.43	．．		－．	\cdots	
58．Naperville	4146	8806	\cdots	22.35	24.53		．．	．．	．．	74.99	72.21	60.29	47.51	．	17.00
59．Olney ．．．	3844	$\begin{array}{lll}58 & 03\end{array}$	\cdots	．								63.13	54.88		
60．Oquawka ．	4055	9059	．．	．						79.83	72.93	68.30	55.43	43.35	27.95
6i．Orchard Farm ．	4036	8945		24.35	30.55	37.87	49.52	61.71	68.87	72.33	71.94	63.28	50.58	37.29	29.46
62．Osceola	4112			2269	28.53	39.14	50.78	61.64	70.13	74.55	73.60	64.55	54.70	33.95	20.23
63．Ottawa	4120	8847	500	23.48	26.70	35.62	45.78	59.82	69.98	74.55	71.63	63.91	52.49	37.26	25.79
64．Pana．	39 23	S9 05	735	29.23	30.75	36.28	54.24	66．18	71.60	76.76	74.85	66.55	50.12	39.67	28.91
65．Paris．	$\begin{array}{ll}39 & 37 \\ 40 & 35\end{array}$		600				－0		\cdots	－		63.48			
66．Pekin．	4035	8938		21.62	26.0	36.58	49.00	60.74	70.53	74.77	71.43	65.43	50.63	37.78	24.52
67．Peori	4043	8930	512	25.06	28.67	37.9	51.05	62.87	72.14	77．11	74．12	66.37	52.63	39.81	28.47
68．Pleasant Ridge Nur－ sery	4115	8936	550	22.75	28.42	32.96	47.98	59.31	69.52	73.66	70.29	62.13	48．13	39－34	25.99
69．Quincy ．．	3955	9125	650	．	31.88	37.55	45.09	62.62	73.29	79.30	72.88	68.38	55.45	$43 \cdot 58$	28.45
70．Ridge Farm ．．	3953		3120				－	59.75	69.35	81．19	69.43	60.88	50.80		
71．Riley ．．．	42 II	8835	760	17.54	22.87	31.88	43.53	55.71	65.60	70.04	67.82	60.08	46.54	33.56	21.93
72．Rock Island Arsenal	4132	9031	528	22.49	25.88	33.24	49.24	60.96	72.92	77.54	75.89	63.94	51.26	39.89	24.49
73．Rushville－	4005	9039				33.24			72.00	79.13					－
74．Sandwich South Pass （near）	4140	8835	575	$2 \pi .12$	25.59	33.94	43.18	58.61	68.31	72.73	70.27	62.23	48.46	36.45	22.39
75．South Pass ${ }^{3}$（near）	3728	8914	650	36.98	38.23	43.66	56.15	66.35	75.66	76.84	79.70	73.35	51.80	43.13	37.62
76．Springfield	3948	8940	550，	24.85	29.67	35．8I	48.98	60．31	71.21	77.25	73.59	64.06	42.41	40.34	28.33

[^81]ILLINOIS．－Continued．

			E E 者	岃	哭	Series． Begins．Ends．	$\left\lvert\, \begin{aligned} & \text { EXTENT } \\ & \text { yrs.mos. } \end{aligned}\right.$	Observing hours．	Observer．	References．
22	$44^{\circ} \cdot 47$					1858		\odot_{r}	J．W．Brown	P．O．and S．I．Vol．I．
23		$76^{\circ} .83$				May，1869；Jan． 1870	－ 5	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{am}$ bis	W．Thompson．	S．O．
24	46.32	68.64	$47^{\circ} .71$	$21^{\circ} .91$	$46^{\circ} \cdot 15$	Jan．1858；July， 1862	40	7 m a ${ }^{\text {a }}$	J．B．Newcomb．	P．O．and S．I．Vol．I，and S．O．
25	47.80	72.25	49.90	23.68	48.41	May，1862；Aug． 1870	510		O．A．Blanchard．	S． 0.
26	45.28	68.93	52.05	24.41	47.67	Feb．1858；Dec． 1870	4 I		C．E．Smith，J．H． Gill，O．Marcy，and others．	P．O．and S．I．Vol．I，and S．O．
27	49.72	67.90	46．81	21.89	46.58	Feb．1860；Dec． 1860	010	＂	E．Baldwin．	S．O．
28	50.52	74.12	51.42	24.88	50.23	Jan．1824；Dec． 1835	II 6	7 m 2 a 9 a	Assistant Surgeon．	Ar．Met，Reg． 1855.
29	41.30	71.46	48.52	25.13	46.60	Jan．1857；Mar． 1858	13		I．H．Smith	P．O．and S．I．Vol．
30	47.29	72.07	50.79	24.64	48.70	Feb．1861；Dec． 1870	97	$7 \mathrm{~m} \mathrm{I}_{2} 9 \mathrm{~m}$	W．Livingstone．	S．O．
31	56.51	79．18	59.07	$37 \cdot 55$	58.08	Jan．1866；Sept． 1870	49		W．V．Eldridge．	
32	．．	．．		．．	．．	1857	I	$7 \mathrm{~m} 2_{\mathrm{a}} \mathrm{a}_{\mathrm{a}}$	J．L．Jenkin	P．O．and S．I．Vol．I．
33			53.16	27.22		1870	O 4		J．Cochrane	$\text { S. } 0 \text {. }$
34	51.79	76.52	54.37	27.22	52.48 56.24		$\begin{array}{rr}1 & 0 \\ 15 & 1\end{array}$		E．Osborn． Dr．Ryhiner，A．F．	MS．in S．Coll．and S．O．
35	56.55	77.69	56.60	34．13	56.24	Jan．1841；Mar． 1864	15 I	$6{ }_{\text {m }} 9 \mathrm{~m}$ N． 3 a	Dr．Ryhiner，A．F． Bandelier．	MS．in S．Coll．and S．O．
36					－		02	$7{ }_{\text {m }}{ }^{2} 9^{9}$	J．S．Titcomb．	P．O．and S．I．Vol．I．
37	．	76．19	53.16	．	－	Apr．1854；June， 1866	10	$7 \mathrm{~mm} 2_{\mathrm{a}} 7_{\mathrm{a}} \mathrm{bts}$	J．Ellsworth，O．J．	S．O．
38	52.78	74.03	55．13	29.34	52.82	Apr．1849；Mar． 1862	2 II	＂	T．Dudley and Coffin．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
39			．	．	．	Oct．1843；July， 1845	－ 8	$\odot_{r} 9_{m} 3_{\text {a }} 9^{\text {a }}$	Dr．M．K．Brownson．	MS．in S．Coll．
40	40.83	67.04	\cdots	．	．		－ 8	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Dr．A．Spaulding and wife．	S．O．
4I						1867	－ 2	＊	A．H．Thompson．	
42	54.74	75.67	57.64	35．11	55.79	Nov．1859；June， 1862	18	＂	N．E．Cobleig	P．O．and S．I．Vol．I，and S．O．
43						1860	02	＂ 6	E．D．Strauss	S．${ }_{\text {\％}}$ \％
44	47.88	74.07	52.01 53.36	27.39	50.34 53.93	Jan．1866；Sept． 1869 Mar． 1869 ；Dec． 1870	$\begin{array}{lr}2 & 9 \\ 1 & 10\end{array}$	＂${ }^{6}$	Dr．D．H．Chase．	＂6 ، 6
45	53.24 39.33	75.99 74.37	53．36	33.15 22.55	53.93	Mar．1869；Dec．1870 Nov．1866；Aug． 1868	$\begin{array}{lrr}1 & 9 \\ \mathbf{1} & 4\end{array}$	＂	Dr．D．H．Chase． H．A．Smith．	＂．＂6
46	39.33 51.16	74.37 73.90	53.34	22.55 28.88	51.82	Nov．1866；Aug．I868	$\begin{array}{rr}1 & 4 \\ 15 & 6\end{array}$	$7{ }_{\text {ma }} \mathrm{I}_{\mathrm{a}} 9_{\mathrm{a}}$	J．Grant \＆daughter．	P．O．and S．I．Vol．I，and S．O．
48						1860	－ 1		S．L．Shotwell．	S．O．
49	44.09	69.27	47.69	23.09	46.04	Apr．1856；Mar． 1869	56		O．P．\＆J．S．Rogers．	＇6
50	51.57	75．81	53.37	29.73	52.62	Aug．1869；Dec． 1870	$\begin{array}{lr}1 & 5 \\ 0 & 10\end{array}$	＂	Dr．W．E．Henry．	
51			57.52	38.56	49.42	Mar．1861；Feb． 1862	$\begin{array}{rrr}10 \\ 0 & 10 \\ \text { I } & 0\end{array}$	＂${ }^{6}$	R．Meeker． Hendrick．	Regents＇Rep．
52 53	49．18	73.13	50.73	24.63 44.35	49.42	Sept．${ }^{1862} 854$ Mar． 1863	$\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}$	$7 \mathrm{mma} 2{ }^{\text {a }}$	Hendrick．	Regents＇Rep． MS．from S．G．O．
53 54			53.66	44.35 28.34		Sept．1862；Mar． 1863 Jan．I866；Dec． 1870	－ 6		Rev．A．Duncan．	MS．from S．G．O． S． O ．
54 55	50.86 43.49	76.15 69.23	53.66 51.34	20.34 27.25	52.25 47.83	$1849 ; \quad 1850$	4 11 1	$\begin{aligned} & 7 m m_{a}^{2} 9 a_{a i} \\ & \bigodot_{r} 9_{m} 3_{a} 99_{a} \end{aligned}$	Main．	S．Coll．
56		73.77	．．	．．	．	1865	－ 7	$7_{\text {m }} \mathrm{I}_{\mathrm{a}} 9_{\mathrm{a}}$	J．Grant \＆daught	S．O．
57					．	Apr．1863；May， 1867	－ 7	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bis }}$	J．＇I＇，Little．	＂${ }^{\text {c }}$
58	．	．	．	21.29	．	July，1859；Feb． 1860	－ 7	$7_{m} 2^{2} 9 \mathrm{am}$	M．S．\＆L．Ellsworth．	P．O．and S．I．Vol．I．and S．O．
59		．		．．	－	1860	－ 2		H．A．Brickenstein． H．N Patterson．	S．${ }_{\text {\％}}$ \％
60		\cdots	55.69				0		H．N．Patterson． I．H．Riblet．	
61	49.70	71.05	50.38	28.12	49.81	Jan．1860；Mar． 1864	$\begin{array}{ll}4 & 0 \\ 1\end{array}$	＇6	J．H．Riblet． Dr．J．S．Pashley．	
62	50.52	72.76	51.07	23.82	49.54	Jan．1860；May， 1861	$\begin{array}{ll}1 & 5 \\ 18 & 0\end{array}$	＇6	Dr．J．S．Pashley． Dr．J．O．Harris，Mrs．	P．O．and S．I．Vol．I，
63	47.07	72.05	51.22	25.32	48.92	1852：Nov． 1870	189	6	Dr．J．O．Harris，Mrs． E．A．Merwin，and Meacham．	P．O．and S．I．Vol．I， S．Coll．
6_{4}	52.23	74.40	52.11	29.63	52.09	June，1869；D		6	Dr，T．Finley．	S．
65						1868	－ 1	،	C．Lee	
66	48.77	72.24	51．28	24.06	49.09	Jan．1855；Oct． 1865	6 10	＊	J．H．Riblet．	MS．in S．Coll．，P．O．and S． I．Vol．r，and S．O．
67	50.63	74.46	52.94	27.40	51.36	Jan．1856；Dec． 1870	149	c	Dr．F．Brendel，M． A．Breed．	P．O．and S．I．Vol．I，and S．O．
68	46.75	71.16	49.87	25.72	48.37	July，1863；July， 1870		6	V．Aldrich．	S．O．
69	48.42	75.16	55.80	．．	，	Feb．1850；Dec． 1870	O 11	،	F．J．Hearne and Giddings．	S．O．and S．Coll．
70		73.32				1868	－ 6	6	B．C．Williams．	S．O．
71	43－71	67.82	46.73	20.78	44.76	Apr．1856；Dec． 1870	120	＇	E．Babcock，J．W． James．	＂
72	47．81	75.45	51.70	24． 29	49．81	Feb．1866；Dec． 1870	46	$7 \mathrm{~m} 2_{\text {a }} 9$		MS．from S．G．O．
73						－1833	$\bigcirc 2$		Mead．	S．Coll．
74	45.24	70.44	49.05	23.03	46.94	Dec．1858；Apr． 1870	112	$7 \mathrm{~m} 2_{\text {a }} 9^{\text {a bis }}$	Dr．N．E．Ballou．	P．O．and S．I．Vol．I，and S．O．
75	55.39	77.40	56.09	37.61	56.62	Dec．1857；Feb． 1870	311		H．C．Freeman and wife，F．Baker，and S．C Spaulding	MS．in S．Coll．，P．O．and S． I．Vol．I，and S．O．
76	48.37	74.02	48.94	27.62	49.74	Jan．1865；Aug． 1870	57	،	G．M．Brinkerhoff．	S．O．

[^82]${ }^{3}$ Observations for 1862－3－4 are not very reliable．

ILIINOIS．－Continued．

Name of Station．	－	＋is	蒔	呪	完	$\begin{aligned} & \text { sin } \\ & \text { 를 } \end{aligned}$	家	帯	号	亳	$\begin{aligned} & \dot{\ddot{y}} \\ & \text { हैp } \\ & \text { 茕 } \end{aligned}$	$\begin{aligned} & \text { 芯 } \\ & \text { © } \end{aligned}$	$\stackrel{\square}{0}$	\％	هّه
77．Upper Alton ${ }^{1}$	$38^{\circ} 57^{\prime}$	$90^{\circ}{ }^{\circ} 4^{\prime}$	650	$29^{\circ} .43$	$34^{\circ} \cdot 39$	$43^{\circ} \cdot 47$	$52^{\circ} .02$	$63^{\circ} \cdot 53$	$73^{\circ} .16$	$76^{\circ} .65$	$75^{\circ} .05$	$67^{\circ} .87$	$53^{\circ} .59$	$40^{\circ} .70$	$3 \mathrm{I}^{\circ} \cdot 39$
78．Upper Alton	3857	$90 \quad 04$		26.05	27.14	32.64	52.64	63.97	71.73	77.84	73.36	67.39	53.64	40.86	30.81
79．Vandalia ．	3858	$\begin{array}{ll}89 & 05 \\ 88\end{array}$	\cdots	．．		\cdots	\cdots	．	78.61	75.57	．	．	．	．	．
80．Wapella ．	4414	8858	．．		27.78	47．10									
81．Warsaw（near）．	4021	9123	550	$25 \cdot 36$	29.23	37.45	50.15	61.78	70.50	74.67	72.88	65.57	51.67	37.48	29.14
82．Waterloo	3820	9010	．．	25.86	37.26	44.52	53.41	64.74	79.47	82.79	80.45	70.79	59.32	45.78	31.36
83．Waukegan	4221	8755	646			35.90	41.72	51.08							
84．Waverly ．	3936	8958	680	26.26	30.81	39.33	50.62	63.61	70.84	74.35	73.35	67.74	50.40	39.72	29.38
85．Waynesville．	4016	8907	．．	29.89	24.27	43.05	51.66	57.36	72.21	75.54	73.21	65.98	53.48	33.78	31．50
86．West Salem．	3830	8800	\cdots	27.97	34.22	44.43	54.49	67.11	74.26	78.80	75．14	68.55	57.18	42.36	33.98
87．West Urbana ．．	$40 \quad 09$	8817	550	24.27	27.97	39.63	47.11	60.48	70.34	76.74	74.23	66.06	51.96	3 3．4I	29.94
S8．Wheaton－i	4149	8806	682	28.49	21.41	36.22	51.70	56.09	68.17	72.04	70.62	6 r .39	49.10	36． 11	24.97
89．Willow Creek Nur－ sery ．	4145	8856	1040	18.70	26.75					70.93	69.43	60.83.		37.25	I
90．Winnebago ．．	4217	S9 12	900	19.19	21.80	3 I .83	44.67	57.69	67.13	71.59	68.94	60.81	47.04	34.60	21.02
91．Woodstock ．．．	4218	8824	\cdots		28.60	40.13	47.11	63.02	67.78	72.85	70.13	60.66	49.11		\cdots
92．Wyanet（four miles N．W．of）	4130	8945	．	21.72	26.76	33.16	49.03	59．11	60.11	75.09	71.20	62.91	50.43	39.68	24.09
93．York Neck．	4005	91 33	．	23.90	33.35	38.55	49.00	62.90	72.05	73.25	72.30	70.15	52.00	41.30	25.65
INDIANA．															
1．Annapolis	3952	8712	3090			\cdots							$55 \cdot 38$	39.23	24.88
2．Anoma ．	3845	8533			38.42	40.51	53.57	60.42	73.33	74．39			54.51	51.79	25.29
3．Aurora ：	3904	8455	509	28.95	33.79	40.59	52．90	62.44	73.36	79.04	74.42	67.45	52.67	41.59	29.90
4．Balbac ．－	4030	8500	1000	24.27	21.15	32.35	55.05		．．			．	．．	．．	．．
5．Bloomingdale （Friends＇Acad．）	3948	8700	600	24.23	33.20			65.75	74.90	79.58	72.88	．	．		．．
6．Bloomington ．．	3912	8633	771	35.71	35.22	41.30	48.97	60.88	70.68	80.15	71.49	52.06	51.23	41.44	27.48
7．Cadiz ${ }^{3}$（one mile S．of）	3955	8520	1060	23.85	27.96	$35 \cdot 56$	47.19	57.93	65.70	70.33	67.71	60.03	$47 \cdot 31$	37.08	27.17
8．Cannelton－	3758	8645	400	30.39	38.17	44.04	54．00	64.20	72.55	75.47	73.61	66.80	56．10	45．50	37.48
9．Columbia City ．	4110	8525	\cdots	23.61	27.33	32.98	48.38	56.32	71.27	$75 \cdot 30$	70.29	62.65	50.29	39.77	27.23
10．Evansville ．．	3800	8730	390	32.45	38.84	44.24	51.60	63.56	73.70	79.00	76.39	70.69	57.59	43.10	42.63
11．Farmers＇Institute	4020	8657	．．	．．	．	．	．．	60.97	71.23	69.08	68.40	7 O .15	50.10	．	．${ }^{2}$
12．Fort Wayne．	4105	8504	．	．			．	58.10	70.34	．	．	．\cdot	．．	－	25.23
13．Greencastle ．	3939	8649	．	24.50	35.00	41．55	．	61.91	69.43	．	－	\cdots	\cdots	．	．
14．Green Mount	3952	8458		33.38	35.05	\cdots									
15．Harveysburg	3959	8716	3090	26.25	28.15	33.44	51.26	6 r .54	72.09	$75 \cdot 37$	73.22	65.63	43.48	37.45	30.98 28.80
16．Indianapolis ．	3947	$86 \quad 99$	698	26.45	30.87	37.64	49.94	60.45	71.73	74.58	71.60	64.63	50.43	40.82	28.80
17．Jalapa ．	4040	8548		$34 \cdot 5^{8}$	33.95	32.05	50．	56.13	67.20	78.76	68.53	59.46	$49 \cdot 31$	42.09	27.49
18．Jeffersonville	3819	8542	400	48.	45.	45.		69.	80.	79.	82.	70.	60.	53.	37.
19．Kendallville－	4121	8514	975	．．	31.46	40.47	50.48	60.12	71.77	78.95	75.70	66.67	\cdots		．．
20．Kentland－	4047	8722	725	31．00	31.89	31.28	46.98	57.00	65.84	71.32	73.25	63.88	44.03	34.60	27.50
21．Laconia ${ }^{4}$ ．．．	3805	86		35.18	34.05	39.80	56.05	65.40	71.95	76.75	$75 \cdot 55$	67.83	51.64	42.67	33.52
22．Lafayette－－	4025	8652	620	29.73	32.38	31.35	47.58	61.18	69.80	71.20	74.25		．．	．．	30.70
23．Laporte ．．．	4137	8643	550	28.19	26.40	36.25	47.27	61.26	68.69	72.99	70.73	64.67	48.84	40.90	26.49
24．Laporte ．	4137	8643	550	25.0	28.0	36.0	40.0	50.0	60.0	64.0	65.0	54.0	45.0	34.0	20.0
25．Lo ．${ }^{\text {26．}}$ Logansport ．．	4113 40 40	85 86 86 19	600	24.15	30.36	37.97	49.98	55.29 60.84	70.59	77.50	73.58	64.48	52.03	38.02	28.40
27．Madison－．．	3845	8520	450	32.87	31.53	43.53	55.82	62.87	71.11	80.08	$75 \cdot 31$	69.56	56.27	39.24	$37 \cdot 33$
${ }^{1}$ Observations at $6_{\text {mim }} 2_{\mathrm{a}} 6_{\mathrm{a}}$ ，from Nov．1， $18{ }_{51}$ ，to May， 1853 ，subsequently at $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ；no correction for change of hours has been applied． 2 Observations previous to 1857 were made at irregular hours；the series has been corrected for daily variation．															

ILLINOIS．－Continued．

	$\begin{aligned} & \dot{0} \\ & \dot{E} \\ & \dot{D} \\ & \dot{W} \end{aligned}$	$\begin{aligned} & \text { 苟 } \\ & \text { 眷 } \\ & \text { 苋 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { 菜 } \end{aligned}$	苞	毞	Series． Begins．Ends．	$\left\lvert\, \begin{gathered} \text { Extent } \\ \text { yrs.mos. } \end{gathered}\right.$	Observing HOURS．	Observer．	References．
77	53° ．01	$74^{\circ} .95$	$54^{\circ} .05$	$3{ }^{10} .74$	$53^{\circ} \cdot 44$	1849； 1854	44	$\bigcirc_{\mathrm{r}} 9 \mathrm{~mm} 3 \mathrm{a}_{\mathrm{a}}$	James．	S．Coll：
78	49.75	74．31	53.96	28.00	51.51	Jan．1854；Apr． 1864	55	$7_{m}{ }^{2} 99^{\text {a }}$	Dr．L．James and Anna C．Tritle．	P．O．and S．I．Vol．1，and S．O．
79	－	．	．			1865	$\bigcirc 2$	7 ma	J．A．Sanborn．	S． 0.
80							02		T．L．Groff．	＂＂
81	49.79	72.68	51.57	27．91	50.49	May，1840；Dec． 1870	910	2	Ben．Whitaker．	MS．in S．Coll．，P．O．and S． I．Vol．I，and S．O．
82	54.22	80.91	58.63	31.49	56.31	Mar．1865；Dec． 1870	30	$7_{\text {ni }} 2_{\text {a }} 9 \mathrm{am}$ bis	H．Künster，F．Sum， Dr．C．Jozelle．	S．O．
83	42.90	－．			\cdots	1849	－ 3	$\odot_{r} 9 \mathrm{~m} 3 \mathrm{ar} 9_{\mathrm{a}}$	Joslyn．	S．Coll．
84	51.19	72.85	52.62	28.82	51.37	Apr．1862；Dec． 1865	35	$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	T．Dudley．	$\text { S. } 0 \text {. }$
85	50.69	73.65	51.08	28.55	50.99	Jan．1858；Mar． 1859	13	${ }^{1}$	J．E．Cantril．	P．O．and S．I．Vol．I．
86	55.34	76.07	56.03	32.06	54.87	Feb．1856；Oct． 1860	45	$\mathrm{ma}_{4}{ }_{\text {a }}$	H．A．Titze．	P．O．and S．I．Vol．I，and S．O．
87	49.07	73.77	52.14	27.39	50.59	Apr．1857；Dec． 1859	29	7＂،	Dr．J．Twain．	P．O．and S．I．Vol．I．
88	48.00	70.28	48.87	24.96	48.03	Dec．1857；Dec．1861	27	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	Prof．G．H．Collier．	P．O．and S．I．Vol． I ，and S．O．
89	．				－．	Jan．1860；Nov．1861		،	E．E．Bacon．	S．O．
90	44.73	69.22	47.48	20.67	$45 \cdot 53$	Jan．1858；Dec． 1870	129	＇	J．W．Tolman and daughter．	P．O．and S．I，Vol．I，and S．O．
91	50.09	70.25	－	\cdots	\cdots	Sept．1859；Apr．186r		＂،	G．R．Bassett．	＂＂،＂＂＂
92	47．10	68.80	51.01	24.19	47.77	June，1864；Dec． 1870	64	،	E．S．Phelps and daughter．	S． 0.
93	50.15	72.53	54.48	27.63	51.20	Jan．1864；Dec． 1870	20	．．．．．．	V．P．Gay．	MS．in S．Coll．

INDIANA

1	．	－	\cdots	\cdots	－	1870	－ 3	7 m 2 a 9 abig	R．S．Robertson	S．O．
2	51．50		－．		．	1849； 1850	0 10	$\bigodot_{\mathrm{r}} 9_{\mathrm{ma}} 3_{a} 9^{3}$	Thomson．	S．Coll．
3	51．98	75．61	53.90	30.88	53.09	Jan．1859；Dec． 1870		$7_{7 m} 2_{\mathrm{n}} 9^{\text {a }}$ bls	G．Sutton．	P．O．and S．I．Vol．I，and S．O．
4	．．		．	．	．．	1866	－ 4	S	Miriam Griest．	S．O．
5	．	75．79	．\cdot	．	．	Feb．1864；July， 1865	－ 8	،	W．H．and Mary A． Hobbs．	＂\％
6	50.38	74． 11	48.24	32.80	51.38	Mar，1868；Sept． 1869		＇6	C．M．Dodd \＆others．	＇6
7	46.89	67.91	48．14	26.33	$47 \cdot 32$	Dec．1854；Mar． 1865	97	،	W．Dawson and T． B．Redding．	S．Coll．and S．O．
8	54.08	73.88	56．13	35－35	54.86	Jan．1857；Apr． 1869	34	＂	H．Smith，Jr．，and P． Smith．	P．O．and S．I．Vol．I，and S．O．
9	45.89	72.29	50.90	26.06	48.79	Sept．1865；Dec	5 ○	＂	Dr．F．McCoy and daughter，Dr．W． J．Maxwell．	S．O．
10	53．13	76.36	57．13	37.97	56.15	Mar．1857；Sept． 1858		$7 \mathrm{~m} 2_{\text {a }} 9^{\text {a }}$	J．F．Crisp．	P．O．and S．I．Vol．I．
11	．	69.57	．	．	．	1865	－ 6	$7 \mathrm{~mm} 2_{\text {a }} 9_{\text {a }}{ }_{\text {bis }}$	I．E．Windle．	S．O．
12	．．	．．	．	．	．	May，1849；Dec．	－ 3	${ }_{6}{ }^{\text {a }}$	R．S．Robertson and Huestes．	S．O．and S．Coll．
13	\ldots	－•	\cdots	－•	．	1843； 1854	－ 5	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Profs．C．J．Downey and J．Tingley．	Newspaper slip，P．O．and S． I．Vol．I，and S．Coll．
14					\cdots	1860			J．Haines．	S．O．
15	48.75	73.56	48.85	28.46	49.91	Feb．1869；Sept． 1870	$\begin{array}{ll}1 & 6 \\ 6 & 5\end{array}$	$\mathrm{Jia}_{4}{ }^{\text {a }}$	B．C．Williams．	＂\％
16	49.34	72.64	51.96	28.71	50.66	Jan．1864；Dec．1870	65	＂	W．W．Butterfield and others．	＂،
17		71.50 80.33	50.29 6	32.01		June，1868；June， 1869	$\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}$		Dr．A．C．Irwin．	
18	57.67 50.36	80.33 75.47	61.00	43.33	60.5	1819 1854	$\begin{array}{ll}1 & 0 \\ 0 & 8\end{array}$			Rep．Brit．Assoc．I847＊
19	50.36	75.47				${ }^{1854}$			J．Knauer and W．B． Coventing．	P．O．and S．I．Vol．I．
20	45.09	70.14	47.50	30．13	48.22	Feb．1869；Dec． 1870	$\bigcirc 11$	$7 \mathrm{~mm} 2_{\text {a }} 9 \mathrm{a}$ bis	D．Spitler．	S．O．
21	53.75	74.75	54.05	34.25	54.20	July，1869；Dec． 1870	16		A．Crozier．	
22	46.70	71.75	．	30.94	．．	May，1854；Jan． 1870	0 II	،	A．H．Bixby and J． W．Newton．	P．O．and S．I．Vol．I，and S．O．
23	48.26	70.80	51．47	27.03	49.39	1849 ；Dec．	26	＂	F．G．Andrew and Newkirk．	S．O．and S．Coll．
24	42.00	63.00	44.33	24.33	43.41		10		Reid．	Pat．Off．Rep．
25						186 I		9_{a}	Dr．W．W．Spratt．	S． 0 ．
26	49.60	73.89	51.51	27.64	50.66	July，1854；June，1863	52	$7 \mathrm{~mm} 2_{\text {a }} 9^{\text {a bls }}$	E．L．Berthaud，C．B． Laselle，I．Bartlett， and T．B．Helen．	MS．in S．Coll．and S．O．
27	54.07	75.50	55.02	33.91	54.63	Nov．1854；July， 1866	210	＂	C．Barnes，and Rev． S．Collins，	P．O．and S．I．Vol．I，and S．O．

[^83]${ }^{4}$ Also called Tobacco Landing．

INDIANA．－Continued．															
Name of Station．	\＃゙̇	＋00	管	告	运	发	荷	※	号	官	烒	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { にे } \end{aligned}$	¢ٌ	\％	ه́
28．Merom	$39^{\circ} 05^{\prime}$	$87^{\circ} 30^{\prime}$	．．	$28^{\circ} .54$	$33^{\circ} .87$	$38^{\circ} .20$	$51^{\circ} .76$	$62^{\circ} .03$	$72^{\circ} .29$	$78^{\circ} \cdot 93$	$76^{\circ} .44$	$64^{\circ} .99$	$52^{\circ} \cdot 93$	$43^{\circ} .16$	$30^{\circ} .52$
29．Michigan City	4142	8649	622	24.28	29.30	36.05	44.63	56.46	67.48	72.95	70.80	63.72	47.87	35.69	27.60
30．Milton ．	3947	8506	Soo	30.20	29.31	38.53	52.61	62.24	71.13	75．52	73.13	67.80	50.26	42.09	31.52
31．Mishawakal．	4139	86 o8				．．	43.84	63.21	64.97	73.31	70.72	62.27	51.11	43.72	．．
32．Mount Carmel ．	3925	84.52	900	31.18	30.83	36.00	51.85	65.13	70.77	76.31	75.98	67.74	50.14	38.85	29.85
33．Mount Hope ${ }^{\text {a }}$ ．－	3947	8533	800	3 L .88	29.75	38.09	50.28	6 t .63	69.97	$75 \cdot 32$	74.44	66.45	49.29	40.51	28.18
34．Muncie	4012	8520	1000	25.54	30.73	35.70	49.08	60.32	70，75	75.16	70.71	62.27	49.03	40．17	29.38
35．New Albany	3^{8} 19	855°	353	26.85	39－56	40.03	51.46	61.98	71.76	76.90	73.06	68.61	51.57	43.72	35.40
36．New Harmony ．	38 го	8754	350	34．II	41.53	52.56	56.04	67.64	76.36	78.85	75.50	65.65	55－72	43.27	$37 \cdot 36$
37．New Harmony ．	38 ıо	8754	350	31.32	36.29	43.77	55.26	65.53	73.20	78.53	76.04	68.92	54.44	44.25	35．13
38．Newport ．	3957	8454	\cdots		．${ }^{\text {a }}$	\cdots	－ 8		\cdots		\cdots	－	48.08	43.28	\cdots
39．Pennville ．	4020	8500	1000	19.80	31.45	42.50	51.88	63.35	70.24	71.83	70.19		．		21.15
40．Rensselaer ．	4056	8705	725	22.99	28.00	34.91	47.39	59.24	70.73	75.02	71.70	65.24	47.49	36.98	24.67
41．Richmond ${ }^{3}$ ．	3950	84 5I	850	26.25	31.04	39.45	50.01	60.59	70.08	73.85	71.44	65.88	52.20	39.48	30.19
42．Rockville（one mile N．of）		8710	1100	25.90	28.50	36.40	50.40	60.30	67.40	74.70	71.50	65.90	50.90	40.50	28.90
43．Rockville ．．	3946	87 ı	1100	25.59	29.15	36.65	52.13	62.88	68.00	72.20	72.05	63.68	46.43	40.10	27.65
44．South Bend ．．	4139	8612	600	21.14	29.14	35.38	46.99	61.07	68.93	72.47	71.34	62.60	47.81	38.74	29.74
45．Spiceland ．	39 51	8526	1025	25.57	30.62	36.69	50.36	60.28	70.55	74.74	71.29	64.36	49.47	40.13	29.23
46．Vevay ．．	3845	8505	525	29.38	35.76	43.47	56.13	63.78	74.62	79.09	75.51	69.35	53.89	42.90	32.31
47．Warsaw ．．．	4 x 14	855^{2}			．	．．	．．	．．	．．	．．	．．	．．		．．	29.90

INDIAN TERRITORY．

1．Armstrong Acad，${ }^{5}$ ．	3407	9612	．	47.36	46.56	53.22	63.02	69.90	77.08	80.72	82.56	74.24	66．I7	53.19	42． 14
2．Baptist Mission	3500	9700	．		．．									47.75	38.55
3．Caney ${ }^{6}$ ．	．．	．			－．	53.42	64.83	70.05	76.40	82.23	76.03	68.97	55.90	43.23	
4．Fort Arbuckle	3429	9717	1000	38.09	45．14	53.35	61.33	69.95	77.12	82.29	81.24	73.76	61.61	49.65	39.04
5．Fort Gibson ．	3548	95^{20}	560	38.81	41.83	51.50	62.53	69.21	76.33	80.84	80.22	73.43	61.29	49．61	40.12
6．Fort Sill ．	3445	9838	\cdots		．		62.83	73.21	77.23	82.14	78.64	74.99	56．17	46.97	．．
7．Fort Towson	3400	9512	300	42.96	45.91	53.31	63.85	69.53	76.67	$8 \mathrm{8o}$.	79.53	72.36	60.84	＇50．08	42.35
8．Fort Washita	34 II	9638	645	41.69	47.30	54．01	63.27	70.39	76.72	81.21	80.97	74.80	62.64	51.62	41.60
－9．Good Water Mission	33	9525	\ldots	．	．		．	．	83.60	94.43	\ldots	．．		．．	．
10．Lee＇s Creek	3530	9430	．	．	．	48.70	．	－•	．\cdot	．．	．	．		－•	．

IOWA．

I．Algona	$43 \quad 05$	9415	1500	1． 69	17.93	26.60	42．15	58．15	67.51	71.62	68.47	59.64	44．51	3 I .59	19.56
2．Algona（ten miles S．W．of）．	4255	9417	1500	10.82	16.04	21.10	41.70	55.20	66.79	72.58	67.28	56．12	44.75	31.98	17．94
3．Ames（six miles N ． of）	4207		790	．	．	26.40			．．	．．	．．	62.63	．．	．．	
4．Atalissa ．．．	4131	9108	．．		25.19	24.13	44.98	50.08	\cdots		\cdots		\cdots		
5．Pangor ．．	4210	$93 \quad 09$	\cdots	26.58	－．	35.03	50.35	62.88		73.68	71.90	61.95	－		
6．Bellevue ．．．	42×5	9025	\cdots	16.98	22.53	34.38	43.96	58.26	68.49	73.44	69.51	6 I .4 I	49.21	33.64	20.16

1 This series includes observations in Sept．Oct．and Nov．1858，and May，1859，at Notre Dame，about three and half miles N．W．of Mishazaka．
2 Observations in Feb．March，April，and May，1868，were made at Carthage，about one and half miles S．E．of Mount Hope．
${ }^{3}$ Observations from May to August，1849，both inclusive，were made at Walnut Hills，about one and half miles N．W．of Richmond．

INDIANA．－Continued．

	$\begin{aligned} & \text { 曷 } \\ & \text { 会 } \end{aligned}$		g 总 号	苞	－	Series． Begins．Ends．	$\begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing HOURS．	Observer．	References．
28	$50^{\circ} .66$	$75^{\circ} .89$	$53^{\circ} .69$	$30^{\circ} .98$	$52^{\circ} .8 \mathrm{I}$	June，1866；Dec．1870	43	$7 \mathrm{~m} \mathrm{max}_{\text {a }} 9 \mathrm{ab}$ bis	T．Holmes，and B．F． McHenry．	S． 0.
29	45.71	70.41	49.09	27.06	48.07	Jan．1857；Sept． 1860	29	$7 \mathrm{~m}{ }^{\text {a }} 99$	C．S．Woodward，W． Woodbridge，and H．Blake．	P．O．and S．I．Vol．I，and MS． from U．S．Lake Survey．
30	51.13	73.26	53.38	30.34	52.03	Jan．1853；Dec． 1855		＂		P．O．\＆S．I．Vol．I，and S．Coll．
31	5	69.67	52.37	30．34	5.03	Sept．1858；Oct． 1859	010	＊	G．C．Meinfield，and T．Vagnier．	P．O．and S．I．Vol．I．
32	50.99	74.35	52.24	30.62	52.05	June，1869；Dec． 1870	17	$7 \mathrm{~m} \mathrm{2}_{\mathrm{n}} 9_{\mathrm{a}}$ bls	J．A．Applegate and daughter．	S．O．
33	50.00	73.24	52.08	29.94	51.32	Feb．1868；Dec． 1870	26	،	C．M．Hobbs and D． Deem．	＂،
34	48.37	72.21	50.49	28.55	49.90	Oct．1863；May， 1870	47	＂	E．J．Rice and Dr．G． W．H．Kemper．	＂،
35	51.16	73．91	54.63	33.94	53.41	Apr．1856；Mar． 1869	43	،	C．Barnes，and D．E． L．Crozier．	S．O．and P．O．and S．I．Vol．I．
36	58.75	76.90	54.88	37.67	57.05	1826； 1828	25		Troost．	Dove， 1857.
37	54.85	75.92	55.87	34.25	55.22	1850 ；Dec．1870	195	$77_{\text {ma }} 2_{\text {a }} 9 \mathrm{ab}$ bls	J．Chapell Smith．	P．O．and S．I．Vol．I，S．O．， and S．Coll．
38		\cdots	\cdots	\cdots	．	Nov．1851；Nov． 1853		$7 \mathrm{~mm} 2_{\mathrm{a}} 93$	Roberts．	S．Coll．
39	52.58	70.75	．．	24.13	8	May，1864；Aug， 1865	1 1	$7_{\mathrm{m}} 2_{\mathrm{n}} 9 \mathrm{abis}$	Miriam Griest．	S．O．
40	47.18	72.48	49.90	25.22	48.70	July，1864；Oct． 1870	311	714 ${ }^{\text {a }}$	Dr．J．H．Loughridge．	＂＂ P O and S．Y Vili，S．O，\＆
41	50.02	71.79	52.52	29.16	50.87	1849；Aug． 1868	123	4	W．W．Austin，J． Moore，J．Haines， E．W．Rambo，J． Valentine．	P．O．and S．I．Vol．I，S．O．，\＆ S．Coll．
42.	49.03	71.20	52.43	27.77	50.11	Jan．1862；Dec． 1866	50		H．H．Anderson．	MS．in S．Coll．
43.	50.55	70.75	50.07	27.46	49.71	Jan．1860；Dec． 1864	I． 4	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	H．H．and Mary A． Anderson．	S． 0.
44	47.81	70.91	49.72	26.67	48.78	May，1862；June， 1865	30	،	J．H．Dayton，R． Burroughs．	＂ 6
45	49.11	72.19	51.32	28.47	50.27	May，1863；Dec． 1870	78	،	W．Dawson．	＂،＂
46 47	54.46	76.41	55.38	32.48	54.68	Aug．1864；Dec． 1870 1870	$\begin{array}{rrr}5 & 11 \\ 0 & 1\end{array}$	＂	C．G．Boerner． G．R．Thralls．	

INDIAN TERRITORY．

IOWA．

I	42.30	69.20	45.25	16.39	43.29	June，186I ；Dec． 1870	78		Dr．F．McCoy and daughter，and J．H． Warren．	S．O．
2	$39 \cdot 33$	68.88	44.28	14.93	41.86	Sept．1866；Aug．1870	310	＊	P．Dorweiler．	＂＂
3	\ldots	\cdots	．．	．	\ldots	Sept．1869；Mar． 1870	－ 2	،	J．M．Cotton．	＂ 6
4	39.73	．．	－	．．	．．	1867	－ 4	＂	B．Carpenter．	＂\％＂\％
5	49.42					Aug．1861；July， 1862	$\bigcirc 7$	＂	J．M．Gidley．	＂＂
6	$45^{\circ} \cdot 53$	70.48	48.09	19.89	46．00	Jan．1856；Aug． 1860	46	،	J．C．Tory．	P．O．and S．I，Vol．I．and S．O．

[^84]| IOWA．－Continued． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | 舄 | ¢00 ¢ H | $\begin{aligned} & \text { 淢 } \\ & \text { N } \\ & \text { In } \end{aligned}$ | $\xrightarrow[\text { ¢ ¢ ¢ }]{\substack{\text { ¢ }}}$ | － | | 荷 | 密 | 号 | 宫 | | $\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ | ஷ் | 8 | ¢ّ |
| 7．Boonesboro | $42^{\circ} \mathrm{O} 4^{\prime}$ | $93^{\circ} 55^{\prime}$ | 1160 | $15^{\circ} .64$ | 210．94 | $31^{\circ} .68$ | $44^{\circ} .62$ | $62^{\circ} .44$ | $67^{\circ} \cdot 70$ | $76^{\circ} .45$ | $65^{\circ} .82$ | $59^{\circ} .47$ | $44^{\circ} .68$ | $35^{\circ} .26$ | $23^{\circ} .29$ |
| 8．Border Plains ． | 4224 | $94 \quad 05$ | | 18.47 | 20.09 | 35.54 | 41.93 | 57.84 | 69.89 | 76.05 | 72.37 | 64.57 | 51.25 | 34．10 | 20.20 |
| 9．Bowen＇s Prairie | 4216 | 9109 | 800 | 20.92 | 23.93 | 29.41 | 47.44 | 60.84 | 69.15 | 72.22 | 69.47 | 60.85 | 45.27 | 34.68 | 21.19 |
| 10．Burlington | 4049 | 9107 | 600 | 25.91 | 30.39 | 45.93 | 47.65 | 65.02 | 68.63 | 778.59 | 74.24 | 63.66 | 50.60 | 41.23 | 24.48 |
| I1．Brooksidel ${ }^{\text {l }}$ | 4225 | 9200 | | 15.32 | 19.92 | 27.65 | 45.50 | 58.99 | 68.33 | 73.54 | 69.38 | 61.39 | 46.36 | 33.77 | 19.08 |
| 12．Ceres ． | 4249 | $91 \quad 12$ | 825 | 13.75 | 18.44 | 28.90 | 44.01 | 56.55 | 68.67 | 71.55 | 69.54 | 63.41 | 50.69 | 38．19 | 20.49 |
| 13．Clarinda ． | 4044 | 9502 | | 23.48 | 24.03 | | | | | | | | | | 25.88 |
| 14．Clinton（or Lyons ${ }^{2}$ ） | 4150 | 90 10 | 630 | 20.69 | 24.20 | 32．19 | 47．45 | 58.65 | 68.79 | 73.74 | 71.43 | 63.46 | 49.33 | 36.81 | 25.06 |
| 15．Council Bluffs ．． | 4116 | 95 51 | 1327 | 18.43 | 27.14 | 37.26 | 52.37 | 62.90 | 73.77 | 76.24 | 76.44 | 65.93 | 52.00 | 36.45 | 20.60 |
| 16．Dakota ．． | 4243 | 9412 | | 7.07 | 16.59 | 23.64 | 38.32 | 51.29 | 67.90 | 70.62 | 70.32 | 60.53 | 49.33 | 36.73 | 19.23 |
| 17．Davenport | 4130 | 9039 | 737 | 19.18 | 24.09 | 32.21 | 46.30 | 59.07 | 69.60 | 74.21 | 70.98 | 62.88 | 48.38 | 37．12 | 23.98 |
| 18．Des Moines City ${ }^{3}$ | 4136 | 9338 | 780 | 23.51 | 26.67 | 35．59 | 54.47 | 59.92 | 67.91 | 76.27 | 71.23 | 62.32 | 46.57 | 36.88 | 26.00 |
| 19．Dubuque． | 4230 | 9040 | 680＇ | 20.31 | 23.62 | $33 \cdot 57$ | 48.02 | 60.40 | 70.14 | 74.22 | 70.76 | 63.18 | 48.76 | 35.55 | 23.71 |
| 20．Fairfield ． | 41 or | 9157 | 940 | 21.0 | 23.0 | 35．0 | 6 f .0 | 68.0 | 69.0 | 75.0 | 72.0 | 70.0 | 52.0 | 33.0 | 20.0 |
| 21．Fairfield ．． | 41 ol | 9157 | 940 | 23.28 | 25.56 | 38.43 | 47.14 | 59.49 | 71.08 | 77.07 | 72.32 | 64.40 | 52.47 | 35.38 | 26.24 |
| 22．Fayette Village ． | 42 51 | 9151 | 1000 | | 23.35 | 38.78 | 46.80 | 61.48 | 66.55 | 69.85 | 66.68 | 57.85 | 45.94 | 33.06 | 11． 26 |
| 23．Forrestville ． | 4240 | 9132 | － 7 | 14.12 | 19.66 | 32.45 | 46.76 | 57.66 | 65.27 | 70.72 | 68.32 | 58.45 | 49.32 | 33.53 | 21.73 |
| 24．Fort Atkinson | $43 \quad 09$ | 9200 | 700 | 20.95 | 20.12 | 29.43 | 49.73 | 58.38 | 64.77 | 72.47 | 68.57 | 61.30 | 45.40 | 31.02 | 20.14 |
| 25．Fort Croghan | 4121 | 9523 | 1250 | 24.90 | 13.78 | 12.86 | 48.63 | 58.22 | 68.25 | 73.77 | 69.46 | 63.80 | 4， | | |
| 26．Fort Dodge ． | 4231 | 9412 | 944 | 15.66 | 21.70 | 27.07 | 42.49 | 58.15 | 7 I .13 | 76.36 | 71.62 | 62．61 | 51.44 | 33.43 | 19.56 |
| 27．Fort Madison4 | 4037 | 91 28 | 600 | 23.12 | 27.56 | 37.5 | 49.85 | 62.57 | 72.81 | 77.58 | 73.81 | 65.59 | 52.28 | 38.65 | 25.70 |
| 28．Franklin ． | 4245 | 92 It | \cdots | 15.64 | 21.22 | 33.03 | 43.82 | 57.35 | 69.68 | 73.33 | 69.29 | 61． 59 | 50.74 | 32.93 | 20.25 |
| 29．Grant City ． | 4215 | 9453 | － | 17.70 | 22.92 | 25.42 | 46.97 | 62.74 | 69.62 | 75.46 | 71.49 | 62.90 | 44.48 | 34.02 | 22.34 |
| 30．Guttenberg＊． | 4246 | 9109 | 690 | 14.06 | 20.82 | 27.74 | 43.33 | 56.34 | 66.37 | 71.25 | 65.94 | 57．56 | 44.94 | 33.95 | 19.22 |
| 31．Guttenberg（near）． | 4246 | 9114 | 800 | 15.87 | 20.64 | 25.88 | 44.80 | $59 \cdot 33$ | 68.55 | 66.28 | 69.90 | 64.98 | 46.56 | 34.92 | 16.77 |
| 32．Harris Grove ${ }^{5}$ | 4139 | 9547 | 900 | 18.19 | 26.74 | 30.67 | 45.76 | 58.55 | 66.83 | 74.13 | 69.30 | 60.48 | 49.79 | 37.54 | 24.44 |
| 33．Hesper | 4330 | 91 46 | 720 | 13.23 | 19.90 | 26.80 | | ．． | | 69.38 | 67.35 | 56.88 | 49.00 | 30.40 | 17.50 |
| 34．Independence | $\begin{array}{ll}42 & 29\end{array}$ | 91 57 | 850 | 15.38 | 21.82 | 27.31 | 45.61 | 59.01 | 68.57 | 73.72 | 69.15 | $6 \mathrm{6r.19}$ | 46.15 | 35.20 | 20.35 |
| 35．Iowa City | 4137 | 9130 | 621 | 19.94 | 23.32 | 32.50 | 47.35 | 58.84 | 68.90 | 73.64 | 71.22 | 63.86 | 49.00 | 35.99 | 24.80 |
| 36．Iowa Falls ${ }^{6}$ | 4232 | 93 21 | | 15.56 | 2 T .99 | 26.68 | 45.20 | 59.67 | 70.05 | 74.66 | 70.80 | 63.31 | 47.89 | 34.65 | 20.65 |
| 37．Keokuk | 4025 | 9121 | 600 | 26.53 | 32.37 | 39.09 | 50.37 | 60.83 | 73.13 | 76.43 | 74.74 | 67.41 | 55.60 | 39.13 | 29.21 |
| 38．Lizard－ | 4230 | 9425 | | \cdots | 24.63 | | | | | | | | | | |
| 39．Manchester－ | 4229 | 9138 | 925 | 19.40 | 14.98 | $25 \cdot 55$ | 46.90 | 56.00 | 63.73 | 71.55 | 63.13 | 61．00 | 47.66 | 35.43 | 17.27 |
| 40．Maquoketa ${ }^{\text {a }}$ | $\begin{array}{ll}42 & 04 \\ 42 & 58\end{array}$ | 9041 | ．． | ． | 26.42 | 34.94 | ．． | ． | | | | | | | |
| 41．Marble Rock | 4258 | 9252 | 200 | | \cdots | | | | 70.00 | 71.08 | 70.90 | 61.60 | 52.28 | 40.63 | 20.75 |
| 42．Mineral Ridge | 42 II | 9355 | 1200 | 20.23 | 25.93 | 28.20 | 45.20 | | | 71.65 | 74.32 | 63.28 | 41.83 | 31.23 | 25.78 |
| 43．Monticello ． | $\begin{array}{lll}42 & 15 \\ 41 & 5\end{array}$ | 9115 | 880 | 16.26 | 22.47 | 29.53 | 46.62 | 58.80 | 68． 14 | 73.48 | 69.03 | 60.63 | 46.52 | 35.03 | 19.91 |
| 44．Mount Vernon | 4158 | 9128 | \cdots | 17.63 | 22.25 | 30.40 | 46.95 | 58.57 | 68.34 | 73.11 | 69.48 | 61.76 | 47.89 | 34.99 | 20.98 |
| 45．Muscatine | 4126 | 91 05 | 586 | 20.69 | 24.76 | 34.58 | 48.25 | 58.25 | 67.09 | 71.22 | 68.94 | 62.12 | 49.09 | 35.21 | 23.52 |
| 46．Mount Pleasant | 4257 | 9137 | \cdots | 19.41 | 28.68 | $33 \cdot 56$ | 46.08 | 62.75 | 72.10 | 76.93 | 72.87 | 66.71 | 46.58 | 33.85 | 22.72 |
| | 4142 | 9303 | 1400 | 20.15 | \cdots | \cdots | －• | 63 | | | 71.23 | 60.45 | 40.80 | 30.63 | 22.65 |
| 48．North Union（near）${ }^{7}$ | 4258 | 9150 | 1250 | 19.95 | 22.89 | 27.52 | 49.24 | 63.74 | 69.99 | 74.69 | 71.26 | 64.39 | 45.64 | 35.14 | 20.92 |
| 49．Onowa City ．． | 4202 | 9609 | 1000 | | 28.33 | 31.23 | 44.05 | 59.00 | 72.65 | 74.48 | 71.33 | 68.03 | ． | 35 | |
| 50．Osage． | 4317 | 9249 | 73 | 9.58 | 17.20 | 31 | 45.80 | 57.75 | 67.78 | 76.29 | 66.50 | 55.96 | 49.50 | | 19．10 |
| 51．Pella ．．． | 4130 | 9255 | 730 | 17.35 | 22.36 | 32.33 | 49.78 | 59.92 | 69.58 | 74.07 | 71.19 | 63.83 | 49.90 | 33.01 | 22.16 |
| 52．Pleasant Plain | 4107 | 9155 | 950 | 20.08 | 24.94 | 35.50 | 46.76 | 6 r .49 | 71.07 | 74.75 | 72.10 | 64.47 | 49.79 | 35.09 | 24.16 |
| 53．Poultney ．． | 4240 | 9121 | | 12.62 | 16.57 | 3 I .41 | 48.05 | 60.32 | 67.29 | 71.78 | 69.69 | 63.12 | 47.16 | 33.77 | 20.99 |
| 54．Quasqueton ．． | 4223 | 9123 | 888 | 13.06 | 16.38 | 28.51 | 51.30 | 61.02 | 70.70 | 74.97 | 71.39 | 65.77 | 50.03 | 33.66 | 22.03 |
| 55．Rockford | 4303 | 9256 | ． | 7.38 | 18.28 | 37.63 | ．． | 60 | 68 | \cdots | 67.48 | 54.35 | 46.98 | 34.03 | 18.90 |
| 56．Rolfe ．－． | 4250 | 9428 | \cdots | 12．17 | 17.57 | 29.01 | 43.13 | 60.97 | 68.12 | 75.19 | 69.39 | 56.45 | 42.44 | 29.49 | 18.44 |
| 57．Rossville ．．． | 4310 | 9121 | 1400 | 22.17 | 18.27 | 36.92 | 40.40 | 55.51 | 66.05 | 72.32 | 71.11 | 59.40 | 46.64 | 31.29 | 19.66 |
| 58．Sac City ${ }^{\text {59．Sioux City ．．}}$ ， | 4225 4235 | 9500 96 | 900
 1258 | | | | 49.64 | 63.77 | | 71.72 | | | 48.54 | 39.14 | 22.00 |
| 59．Sioux City－－ | 4235 | 9627 | 1258 | 16.67 | 19.29 | 32.85 | 43.27 | 56.99 | 69.17 | 71.72 | 70.13 | 62，16 | 47.32 | 29.10 | 24.05 |
| 60．St．Mary＇s ． | 4100 | 9545 | 1200） | 17.01 | 32.41 | ． | － | ． | －• | ． | － | | － | 41.60 | 31.00 |

1 Also called Byron．
${ }^{2}$ Observations in 1857－58 were made at Camanche，about three miles southwest from Clinton．
${ }^{3}$ Observations previous to 1865 were made at Fort Des Moines，about two miles east of Des Moines City．

IOWA．－Continued．										
	$\begin{aligned} & \text { 官 } \\ & \text { 品 } \end{aligned}$		采	范	－	Series． Begins．Ends．	Extent yrs．mos．	Observing HoURS．	Observer．	References．
7	$46^{\circ} .25$	$69^{\circ} \cdot 99$	$46^{6} \cdot 47$	$20^{\circ} .29$	$45^{\circ} .75$	Nov．1867；Dec．1870		$7{ }_{7 m} 2_{\mathrm{a}} 9 \mathrm{abis}$	E．Babcock．	S．O．
8	45．10	72.77	49.97	19.59		July，1856；Sept． 1859	33		W．K．Goss．	P．O．and S．I．Vol．I．
9	45.90	79.28	46.93	22．01	46.28	Feb．1853；Dec． 1870		$7_{\text {m }} 2_{a} 9_{\text {a }}$	S．Woodworth，Bid－ well，and Farwell	S．O．and S．Coll．
ı0	52.87	73.82	51.83	26.93	51.36	Feb．1859；May， 1868	19	＂	J．M．Corse，and L．	P．O．and S．I．Vol．I，and S．O．
1	44.05	70.42	47.17	18.1	44.94	Apr．1862；Dec． 1870			A．C．Wheaton．	S． 0.
12	43.15	69.92	50.76	17.56	45.35	May，1865；May， 1868	31	＂	J．M．Hagensick．	
$\stackrel{1}{13}$	46．10	71.32	49.87	24.46 23.32	47.65	Jan． $1865 ;$ Feb． 1866 Apr． $1856 ;$		＂＇	Dr．S．H．Kridelbaugh N．H．Parker．	P．O．and S．I．Vol．I，and S．O．
15	50.84	75.48	51.46	22.06	49.96	Jan．1820；Dec． 1825	6 o	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Assistant Surgeon．	P．O．and S．I．Vol．I，and S． Army Register．
16	37.75	69.61	48.86	14.30	42.63	Apr．1867；Mar． 1868			W．O．Atkinson．	S．O．
17	45.86	71.60	49.46	22.42	47.33	Apr．1858；Dec． 1870	93		A．J．Finley，W．P． Dunwoody，J．Cham－ berlain，D．S．Sheldon	P．O．and S．I．Vol．I，and S．O．
18	49.99	71.80	48.59	25.39	48.94	Oct．1843；June，1867	310	，	J．A．Nash，\＆Assist． Surg．	Ar．Met．Reg．1855，and S．O．
19	47.33	71．71	49.16	22.55	47.69	Jan．1851；Dec． 1870	18 ıо	＂	Asa Horr．	MS．in S．Coll．，S．O．，P．O． and S．I．Vol，I，and S．Coll．
	54.67	72.00	51.67	21.33	49.92	$\stackrel{1855}{ }{ }_{\text {Apr }}{ }_{\text {185 }}$	$1{ }^{1}$		Dri J．M．Schaffer．	P．O．and S．I．Vol．I．
22	48.35 49.02	73.49 67.69	50.79 45.62	25.03	49.41	$\begin{array}{lll}\text { Apr．1856；} & \text { Dec．} 1859 \\ \text { Oct．} \\ \text { 1859；} & \text { Nov．} 1860\end{array}$	3 7 1 1			
22 23	49.02 45.62	67.69 68.10	45.62 47.10	18.51	44.83		$\begin{array}{ll}1 & \mathbf{1} \\ 3 & 2\end{array}$		J．M．McKenzie． D．Sheldon．	P．O．and S．I．Vol．I，and S．O．
24	45.85	68.60	45.91	20.40	45.19	Jan．1842；May， 1884	45	$\bigcirc_{\mathrm{r}} 9 \mathrm{mma} 9_{\mathrm{m}}$	Assistant Surgeon．	Ar．Met．Reg． 1855
26	39.90 42.57	70.49 73.04	49．16	18.97	45.94	Aug．1851；Mar． 1869		7 mma 9 a	Assistant Surgeon and	Ar．Met．Reg．1855，and S．O．
27	49.9	74.73	52.17	25.46	50.59	Mar．1848；Dec． 1870	21	$6_{\mathrm{m}} \mathrm{N} .7 \mathrm{7m}$	D．McCready．	MS．in S．Coll．，S．O．，and P． O．and S．I．Vol．I．
28	44.73	70.77	48.42	19.04	45.74	May，1856；Apr． 1862	44	$7_{m} 2_{n} 9_{\mathrm{n}}$	D．and Mrs．C．Beal．	P．O．and S．I．Vol．I，and S．O．
29	45.04	72.19	47.13	20.99 18.03	46.34 43.46	Jan．1869；Dec． 1877	$\begin{array}{ll}1 & 11 \\ 4 & 6\end{array}$	$7 \mathrm{mma}{ }_{\text {a }}^{6}{ }^{\text {a }}$ a bis	E．Miller and wife．	S．${ }_{\text {c／}}$＂．
30 31	42.47 43.34	67.85 68.24	45.48 48.82	18.03 17.76	43.46 44.54	July，1860；Dec． 1870		＂	J．P．Dickinson．	＂،＂
32	44.99	70.09	49.27	23.12	46.87	May，1866；Dec． 1870		＂	J．T．Stern．	＂،＂
33			45.43	16.88		July，I860；Mar． 1861	－ 9	＂	H．B．Williams．	＂،＂
34	43.98	70.48	47.51	19.18	45.29	Nov．1861；Dec． 1880		＂	D．S．Deering．	＂، ${ }^{\text {c }}$
35	46.23	71.25	49.62	22.69	47.45	May，r856；Dec． 1870	11	＂	Prof．T．S．Parvin，H． H．Fairall，Dr，W． Reynolds．	Printed Slip，S．Coll．，P．O．\＆ S．I．Vol．r，and S．O．
36	43.85	71.86	48.62	19.40	45.93	Nov．i863；Dec． 1870		＂${ }^{\text {c }}$	N．Townsend．	S．O．
37	50.09	74.77	54.05	29.37	52.07	1851；Jan． 1855	2	$\bigodot_{r} 9_{\text {m }} 3_{3} 9_{z}$	Dr．and Mrs．J．E． Ball．	P．O．\＆S．I．Vol．I，\＆S．Coll．
38						186			J．J．Bruce．	S．${ }_{\text {ci }}$ \％
39	42.82	66.14	48.03	17.22	43.55	Sept．1865；Nov． 1866	$\begin{array}{ll}1 & 3 \\ 0\end{array}$		A．Mead．	
40 41 1	．．	70.66	51.50	\cdots	．．		－ 1	$\bigodot_{\mathrm{r}} \mathrm{~N} . \mathrm{IO}_{\mathrm{a}}$	E．F．Hobart． H．Wadey	P．O．and S．I．Vol．I． S．O．
42		70.66	45.45	23.98		Apr．1869；Mar． 1870	\bigcirc	$7_{\text {m }}{ }_{\text {a }}^{6} 9^{\text {a }}$ bis	A．L．Sullivan	
43	44.98	70.22	47.39	19.55	45.54	July，1864；Dec． 1870	62	＂	C．Mead．	
44	45.31	70.31	48．21	20.29	46.03	Oct．1856；Dec． 1870	10 I	／	Profs．B．W．Smith and A．Collier．	P．O．and S．I．Vol．I．and S．O．
45	47.03	69.08	48.81	22.99	46.98	Jan．1839；Nov．1870	276	＂	T．S．Parvin．	Am．Alm． 1839 and foll．，MS． in S．Coll．，P．O．and S．I．
46	47.46	73.97	49.05	23.60	48.52	Dec．1863；Sept． 1864	－ 10	＂	Rev．E．L．Briggs and daughter．	S． O ．
47			43.96			Aug．I869；Jan． 1870	$\bigcirc 6$	＂	A．Failer．	＂،＂،
48	46.83	71.98	48.39	21.25	47	Jan．1869；Dec． 1870	$2{ }^{2} 8$	\％	F．McClintock．	
49 50	44.76	72.82 70.19		15.29		Apr．${ }_{\text {I }}{ }^{1866}$ ；Feb． 1867	0 8 10	＂	Dr．R．Stebbins． A．Bush and F．Marsh．	
51	47.34	71.61	48．91	20.62	47．12	Jan．1852；Mar． 1856	43	$7 \mathrm{~m} \mathrm{ma}_{\text {a }} 9$	E．H．A．Scheeper．	P．O．and．S．I．Vol．I，and MS． in S．Coll．
52	47.92	72.64	49.78	23.06	48.35	Jan．1856；Sept． 1865.			T．McConnell．	P．O．and S．I．Vol．I，and S．O．
53	46.59	69.59	48.02	16.73	45.23	July，1853；June， 1859	34	$7_{\mathrm{m}}{ }_{c}$	Rev．B．F．Odell．	P．O．\＆S．I．Vol．I，\＆S．Coll．
54 55	46.94	72.35 ..	49.82 45.12	17.16 14.85	46.57	Dec．1853；June， 1856	2 4 0 8	$7_{\text {m }} 2^{\prime \prime} 9^{6}$	Dr．E．C．Pidwell． H．Wadey．	S．O．
56	44.37	70．90	42.79	15.06	43.53	Feb．1868；Jan． 1870	20		O．J．Strong．	
57	44.28	69.83	45.78	20.03	44.98	Nov．1857；Dec． 1859	$\stackrel{2}{2}$	$7_{\text {ma }} 2_{a} 9_{\mathrm{a}}$	C．D．Beeman．	P．O．and S．I．Vol．I．
58 59	44.37	70.34	46．19	20.00	$\stackrel{\square}{45.22}$	Aug．1857；Mar． 1863	0 3 3		D．B．Nelson．	MS．
59	$44 \cdot 37$	7.34				Aug．1857；Mar． 1863			A．J．Millard．	MS．from S．G．O．，S．O．，and P．O．and S．I．Vol．r．
¢о		．．		26.81		Nov．1853；Feb． 1854	－ 4	$7 \mathrm{mma} \mathrm{ma}_{\text {a }}$	D．E．Read．	P．O．\＆S．I．Vol．I，\＆S．Coll．

4 Four miles northwest from town on the Bluff Prairie．
${ }^{5}$ Also called Logan．
${ }^{6}$ Also called Spring Grove．
${ }^{7}$ The observations in 1870 were made at West Union，two miles west of North Union．

IOWA．－Continued．

	－		$\begin{aligned} & \text { 品 } \\ & \text { 品 } \\ & \hline \end{aligned}$	淢	哭	Begin	Series． ins．Ends．	Extent yrs．mos．	Observing HOURS．	Observer．		References．
61	$45^{\circ} .05$	$72^{\circ} .13$	$48^{\circ} \cdot 56$	$21^{\circ} .59$	$46^{\circ} .83$	May，	1866；Dec．1870	48	$7 \mathrm{mu} 2_{\text {a }} 99_{\text {a bir }}$	A．F．Bryant．	S． 0.	
62	45.37	68.11	45.79	．．	．	Apr．	1861；June， 1863	1 I		G．Marshall．	＂ 6	
63		70.92	40.81	－	－		${ }^{1869}$	－ 8	،	J．Wood．	＂،	
64	43.60	．．	41.33	17.53	\cdots	Apr．	1869；Dec． 1870	13	＂	E．M．Hancock．	،	
65					．		1861	－ 2	＂		،＂	
66	43.96	69.57	48.01	19.96	45.38	Jan．	1863；Aug． 1870	65	＇	L．H．Doyle．	＂ 6	
67	46.60	70.62	47.66	21.18	46.51		1870	－ 9	،	C．L．Croft．	، 6	
68	48．14	71.88	44.99	17.03	45.51	Dec．	1867；Nov． 1868	I 0	＂	D．R．Witter．	، ، 6	
69	45.60	70.00	46.94	23.09	46.41	Jan．	1869 ；Dec． 1870	19	،	＂＂	، ، 6	
70	45.58	70.41	47.56	21.71	46.31	Jan．	1869；Dec． 1870	20	＂	H．Wadey．	＂＂	

KANSAS．

1	49.83	74.86	53.65	27.06	51.35	May，1865；Dec． 1870	52	$7 \mathrm{~m} 2_{\mathrm{ar}} 9 \mathrm{a}$ bis	Dr．H．B．Horn and daughter．	S．O．
2				．		1866		＇6	A．Crocker．	،6
3	57.79	79．6ı	59.09	35.52	58.00	July，1867；Dec． 1870	36	＇	Messrs．Ingraham \＆ Hyland．	＂6
4	54.42	75.72	54.57	29.91	53.66	Jan．1858；Mar．1861		＂	E．and L．Fish．	P．O．and S．I．Vol．r，and S．O．
5	44.20	75.65	．	．．		Feb．1857；Jan． 1858		$7{ }_{\text {ma }} 2_{\text {a }} 9_{\text {a }}$	E．Fish．	P．O．and S．I．Vol．I．
6	51.97	76.32	56.01	31.23	53.88	Apr．1865；Dec． 1870		$77_{m}{ }^{\text {a }} 9^{2}$ bis	Dr．A．Woodworth．	S．O．
8	\because	74.24	56	34.65	\cdots	June，1869；May， 1870 I870		＂ 6	P．Daniels． Dr，W．W．Lamb．	
9	53.05	．	56.3	．	．	Oct．1867；May， 1868.		$2_{\text {a }} 9$ a		MS．from S．G．O．
10	53.	．	．	．	．	1862	$\bigcirc 1$	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	C．F．Oakfield．	S．O．
II	54.86	77．12	54.65	32.04	54.67	Nov．1850；Sept． 1853	2 II	$\bigcirc_{r} 99_{m} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg． 1855.
12	54.93	77.57	55.96	34.47	55.73	Nov．1867；Dec． 1870	32	$7_{\mathrm{ni}} 2_{\mathrm{a}} 9_{\mathrm{a}}$		MS．from S．G．O．
13	50.60	75．17	54.36	28.76	52.22	Nov．1866；Dec． 1870	16			
14	53.05	78.52	54.78	33.05	54.85	Aug．1867；Dec． 1870	35	＂		＂6＂6＂\％
15	51.88	77.39	56.33	31.68	54.32	Sept．1860；Dec． 1870		＂		
16	53.69	75.24	54.35	29.35	53．16	Jan．1830；Dec． 1870	39 II	،	Assistant Surgeon．	MS．from S．G．O．and Ar． Met．Regs． 1855 and 1860 ．
17	54.56	78.66	56.34	28.90	54.62	Nov．1853；Dec． 1870	1610	＂	Assist．Surg．，T．R． Drew，E．E．Lee， J．H．Prince，and J．Schaffer．	Ar．Met．Regs． 1855 and 1860， MS．from S．G．O．and S．Q．
18	54.76	74.95	55.27	32.93	54.48	Jan．1843；Mar． 1853	103	$\odot_{\mathrm{r}} 9_{\mathrm{ml}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg． 1855.
19	57.08	79.28	57．21			Apr．1860；Feb． 1862	13	7m ${ }_{\text {a }}^{\text {a }} 9 \mathrm{max}$	G．F．Merriam，J． Scott，J．S．Gardner．	
20	52.05	76.79	52.56	28.63	52.51	May，1867；Dec．1870	38	＂	Dr．J．Walters，W． H．Gilman．	P．O．and S．I．Vol．I，and S．O．
21						1862		＊	Dr．E．W．Seymour．	S． 0.
22	53.43	75.82	53.08	31.64	53.49	July，1857；Dec． 1870		＇،	G．W．Brown，W．J． R．Blackburn，W．G． Soule，A．W．Fuller， G．W．Hollingsworth， Prof．F．H．Snow．	P．O．and S．I．Vol．I，and S．O．
23	50.87	74.24	52.02	28.69	51．45	Nov．1857；Dec．1870	76	،	H．D．McCarty，M． Shaw，Dr．J．Stay－ man，F．B．Stowell．	＂6＂6＂6
24			56.90	28.37		July，1859；Feb．186ı	11	＂	Dr．W．T．Ellis．	＂،
25	51.25	76.93	51．78＊	33.08	53.26	$\text { Jan. } 1867 ; \text { Apr. } 1870$		＂ 6	J．G．Shoemaker．	S．O．
26	51.95	76.48	53.86	29.26	52.89	Mar．1857；Dec． 1870	II 10	${ }^{\prime \prime}$	I．T．Goodnow，Rev． N．O．Preston，H． L．Denison，B．F． Mudge and wife．	P．O．and S．I．Vol．I，and S．O．
27 28	\cdots	79.63 74.75	\cdots	\cdots	\cdots	Dec． 1857 ；Sept． 1858 1859	$\begin{array}{ll} 0 & 7 \\ 0 & 5 \end{array}$	$\begin{gathered} 7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} \end{gathered}$	Dr．S．O．Himoe． J．O．Wattles．	P．O．and S．I．Vol．I．
29		－	40.20	26.24		Aug．1860；Mar，1861	－ 8		Dr．W．T．Ellis．	S．O．
30	54.69	77.03	54.49	30.85	54.27	Mar．1859；Apr． 1870		$7 \mathrm{~m}{ }_{6}^{\text {a }}$	B．F．Goss，Mrs．E． W．Groesbeck．	P．O．and S．I．Vol．1，and S．O．
31	49.69	74.50	52.81	28．10	51.27	May，1864；Dec． 1870	67	‘	W．Beckwith．	S．O．
32	53.44	75.06	53.28	32.06	53.46					
33 34	54.68	．．		．	．	$\begin{aligned} & 1858 \\ & 1870 \end{aligned}$	$\begin{array}{ll} 0 & 5 \\ 0 & 5 \end{array}$		F．W．Giles． J．M．Cotton \＆wife．	P．O．and S．I．Vol．I． S． O ．
35	．．	\cdots	57.29 56.57	29.95	．	Aug．1859；Mar． 1860	$\bigcirc 8$	$7 \mathrm{~m}{ }_{\text {a }}^{\text {a }}{ }^{\text {a }}$ a bis	J．H．Millar．	P．O．and S．I．Vol．I，and S．O．

[^85]| KENTUCKY． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | 苛 | 爵 | | 景 | 㙖 | 感 | 宽 | 㫴 | ¢ | 官 | | $\begin{aligned} & \stackrel{\Delta}{\circ} \mathrm{O} \\ & \hline \end{aligned}$ | ¢ | 会 | $\stackrel{\square}{\circ}$ |
| 1．Arcadia | $37^{\circ} 34^{\prime}$ | $84^{\circ} 42^{\prime}$ | 900 | $36^{6} .00$ | $36^{6} .18$ | $40^{\circ} .53$ | $56^{\circ} .25$ | $67^{0} .08$ | $3^{\circ} \cdot 15$ | ． 95 | ． 45 | 5° ． | $53^{\circ} \cdot 21$ | 20．87 | 35° |
| 2．Ballardsville | 3825 | 8522 | 461 | 30.60 | 33.23 | 40.65 | 56.2 | 64. | 75.24 | 78.14 | 76.21 | 69.57 | 58.32 | 44.54 | 34.52 |
| 3．Bardstown（St．Jos． | 37 | 853^{2} | ．． | 37. | 37.07 | 46.74 | 55.50 | 65.38 | 74.04 | 76. | 73.75 | 66. | 55.38 | 44.48 | 37.57 |
| 4．Beech Fork | 37 | 8512 | | | | | | | 72.28 | 77.13 | 75．50 | 64.23 | 55．10 | 39.88 | 37． 28 |
| 5．Bowling Green． | 3701 | 8631 | 450 | 35.12 | 40.09 | 48.70 | 55.63 | 65.51 | 73.36 | 77.85 | 76.15 | 70.18 | 56.30 | 44.77 | 38.01 |
| 6．Chilesburg | 3804 | 84 | 900 | 31．30 | ${ }^{36.41}$ | 42.68 | 54. | 61．30 | ${ }^{70} 36$ | ${ }_{7}^{76.28}$ | 94 | ${ }_{6}^{67.42}$ | 49 | 43.54 | 7 |
| 7．Danville ： | 38 30 | ${ }_{84}{ }^{89} 8$ | 900 | ${ }^{45.49}$ | 39.47 | 45.51 | ${ }_{57} 54.14$ | 66.20 | 74. | ${ }_{77.25}$ | ${ }_{75} 7$ | 70.42 | ${ }_{57}^{54.74}$ | 47．33 | 38．56 |
| 9．Lexington | 3807 | 8432 | 950 | ．． | | ．． | ． | | 69.85 | 74.98 | 72.67 | 68.54 | 51．15 | 47.59 | |
| 10．Lebanon． | | 8517 | 717 | | | | 54.59 | 64．18 | | 77.24 | 73.35 | ． | 49.70 | 46.28 | |
| | 37
 38
 38
 18 | ${ }_{8}^{84} 808$ | 1100 450 | 34.38 36.37 | 37.22 | ${ }_{47.09}^{44.70}$ | 54.50 | 65.54 | $\begin{aligned} & 75.30 \\ & 70.72 \end{aligned}$ | $\begin{aligned} & 75.80 \\ & 75.94 \end{aligned}$ | $\begin{aligned} & 72.58 \\ & 75.23 \end{aligned}$ | 69.08 | 55.42 | ${ }^{44.18} 4$ | 38.44 |
| | | | | | | | | | | | | | | | |
| 13．Maysville I4．Millersburg ： | $\begin{aligned} & 38 \\ & 38 \\ & 38 \\ & 24 \end{aligned}$ | $\left\lvert\, \begin{array}{ll} 83 & 81 \\ 84 & \text { ro9 } \end{array}\right.$ | $\begin{aligned} & 630 \\ & 804 \end{aligned}$ | $\begin{aligned} & 34.43 \\ & 29.61 \end{aligned}$ | $\begin{aligned} & 36.73 \\ & 33.27 \end{aligned}$ | 42.72 | 52．45 | $\underset{63.91}{ }$ | 73.61 | 76.85 | 75．39 | 66.8 | $\begin{aligned} & \begin{array}{l} 56.56 \\ 55.61 \end{array} \end{aligned}$ | $\begin{aligned} & 46.17 \\ & 45.23 \end{aligned}$ | 37.01 36.87 |
| 15．Newport Barracks ． | 39 | 8429 | 500 | 3 T .9 I | 35.46 | 43.47 | 53.89 | 64.10 | 73.00 | 77.16 | 75．0x | 68. | 55.53 | 44.25 | 35.06 |
| 16．Nicholasville | 3756 | 8438 | 940 | 35.78 | 38.03 | 42.67 | 54.35 | ${ }_{63.77}$ | 70.21 | 73.54 | 74.57 | 68.81 | 57.05 | 44.39 | 40.90 |
| | 3734
 3904
 0 | 85
 84
 84 | 812 | | | | 57.21 | 65.39 60.10 | | | | 66.60 | | | |
| 19．Paris ．．． | ${ }^{8} 815$ | 8417 | 810 | 27.83 | 34.70 | 41．17 | 51．39 | ．62．06 | 70.76 | 75.62 | 71.88 | 64.54 | 53.14 | 41．49 | 34.81 |
| 20．Pleasant Valley M＇ls | 3810
 3840
 8 | 8349 83 | 700 | | | 44.16 | 51.16 | 61.01 | | | ${ }_{7}^{73.18}$ | | ${ }_{52.26}^{47.18}$ | 46．59 | |
| | ${ }_{38} 07$ | ${ }_{85} 44$ | 570 | $3{ }^{32.08}$ | ${ }_{36.23}$ | 43.39 | 54．01 | 62.39 | ${ }_{70} \mathbf{7}$ | 74．43 | 72.48 | 66.89 | 53.29 | 43.73 | 35．18 |
| 23．Taylor Barracks ${ }_{\text {24．}}^{\text {24．Taylorsville．}}$ ． | 3802 | $8{ }^{\prime \prime} 25$ | 600 | | | ．． | | 63.75 | 74.85 | 80.35 | \cdots | | 65.91 | 47. | 32．57 |

LOUISIANA．

I．Baton Rouge	3026	9111	41	53.06	55.31	6 r .89	69.08	75－74	80.73	81.90	81.45	77.39	67.47	59.52	54.22
2．Benton	3230	9345	\cdots	47.85	51.23	58.66	64.55	71.94	80.14	82.41	81.19	75.63	63.78	55.79	49.88
3．Black River Plant＇n	3130	9 C 46	108	49.05	57.74	61.47	64.46	74.44	79.33	81.77	82.23	75.21	66.45	53.27	52.25
4．Camp Lawrence	3026	9118	4 x								80.00	74.64			
5．Camp Salubrity	3 I 40	9315	80	53.75	60.00	60.50	70.50	73.00	80.00	85.75	80.59	75.51	65.25	57.75	49：75
6．Cheneyville（near）．	3100	9218	．			59．10	67.10	75.55	79．10	81.18	81.60	79.33			
7．Collins－．－	3030	$90 \quad 20$	20											59.73	49.75
8．Fort Jackson ${ }^{3}$ ．	2921	8927	0	58.82	58.86	62.54	72.02	77.08	82.76	82.95	81.84	80.32	72.65	63.71	58.76
9．Fort Jessup ．	3135	9325	So	50.64	52.71	59．16	67.87	73.80	80.32	82.33	81.43	76.13	65.96	56.67	50.23
10．Fort Pike	3010	8938	10	55．18	56.72	62.82	70.64	77.06	82.31	83.54	83.22	79.31	70.67	62.84	55.69
II．Fort Sabine ．	2945	9350	10	51.60	43.82	59.12	70.26		79.05	79.53	78.35	72.39	71.37	64.62	53.84
12．Fort Wood ．．	$30 \quad 09$	8947	20	54.89	56.56	60.30	71.11	78.11	81.50	82.96	82.34	79.04	68.84	62.40	55．19
13．Jackson ．	3051	9109	100	47.6	49.4	56.6	65.4	70.8	78.7	81.7	79.9	75．1	67.4	50.0	48.4
14．Monroe ．．	3231	9207	100	39.3	49.7	68.4	70.5	75.7	80.4	82.45	80.0	72.1	57.7	48．I	42.6
15．New Orleans	2956	9003	25	56.75	58.39	66.58	72.41	77.26	81.78	82.22	82.12	79.42	69.71	58.71	52.26
16．New Orleans	2956	$90 \quad 3$	25	54.75	57.90	63.69	68.67	75.76	80.69	82.13	80.43	78.84	69.48	61.07	$55 \cdot 36$
17．New Orleans	2956	9003	25	56.6	54.4	61.5	67.4	73.8	78.5	80.0	79.5	$77 \cdot 3$	69.3	57.6	56.4
18．New Orleans ．	2956	9003	25	59.0	56.0	66.5	67.0	74.0	79.3	78.7	81.0	78.4	66.7	63.6	57.3
19．New Orleans ．	2956	9003	25	$55 \cdot 4$	60.8	6 I .3	71.5	78.3	82.6	84.6	83.7	78.8	67.8	61.6	56.6
20．Petite Coquille ．			．				68.00	69.80	74.25					57：	…
21．Rapides ．	3108	9220	76	53.5	54.0	62.2	67.1	73.2	79.3	80.5	80.5	75.6	66.5	57.5	51.9
22．St．Francisville ．	3049	9122	80								81． 66	．		．．	50.89 50.99
23．Trinity ${ }^{\text {a }}$（near）${ }^{\text {24．}}$ ．	$\begin{array}{lll}31 & 37 \\ 31 & 35\end{array}$	9147 9130	200				61.27 67.73	72.79 72.85			81.66				50.99
25．West Feliciana．	3040	9120	96	50.6	54.6	59.3	65.9	72.5	77.7	79.7	78.6	75.5	66.6	56.7	51.7
2 Eight miles above Cincinnati．															

KENTUCKY．

	诺		$\begin{aligned} & \text { 台 } \\ & \text { 荮 } \\ & \text { 号 } \end{aligned}$	烒	䮃	Series． Begins．Ends．	Extent yrs．mos．	Observing huUrs．	Observer．	References．
I	$54^{\circ} .62$	$71^{\circ} \cdot 52$	$53^{\circ} \cdot 96 *$	$35^{\circ} \cdot 91$	54° ．00	July，1840；Dec．1870	17	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{s}}$ bis	Rev．J．A．Sheperd and H．Shriver．	MS．in S．Coll．and S．O．
2	53.82	76.53	57.48	32.78	55．15	May，1853；Jan． 1862	37	،	Dr．J．Swain．	P．O．and S．I．Vol．I，S．O．，\＆ S．Coll．
3	55.87	74.79	55.56	37，26	55.87	Jan．1858；Oct． 1861	29	＂	J．H．Lünemann and ＇I．H．Miles．	P．O．and S．I．Vol．I，and S．O．
4		74.97	53.07			1860		＂${ }^{\text {c }}$	Dr．C．D．Chase．	S．O．
5	56.61	75.79	57.08	37.74	56.8 r	1849 ；Oct． 1855	44	$\bigcirc_{\mathrm{r}} 9 \mathrm{~m} 3 \mathrm{~m} 9_{\mathrm{a}}$	Younglove and F．C． Herrick．	P．O．\＆S．I．Vol．I，and S．Coll．
6	52.78	73.19	54.82	33.83	53.65	Mar．1865；Dec． 1870	59	$7 \mathrm{~mm} 2_{\mathrm{a}}^{6} 9 \mathrm{ab}$ bis	Dr．S．D．Martin．	$\text { S. } \mathrm{O} .$
7	54.43	76.77	54.56	37.51	55.82	May，1868；May， 1869	$\begin{array}{rr}1 & 1 \\ 12 & 7\end{array}$		Rev．T．H．Cleland．	
8	56.28	75.58	58.56	37.84	57.07	Feb．1853；Dec． 1870	127	＂	Prof．O．Beatty．	P．O．and S．I．Vol．I，S．O．， and S．Coll．
9	．	72.50	55.76	\ldots	．	Aug．1859；July， 1869	－ 6	＂	Rev．S．R．Williams and N．Williams．	P．O．and S．I．Vol．I，and S．O．
10	－		．．	．．	．．	1843 （1866	－ 6		Thebaud．	Manuscript．
11		74－56				June，1865；Mar． 1866	－ 6	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{s} \text { bis }}$	W．S．Doak．	S．O．
12	55．71	73.96	55.79	37.34	55.70	1851；Feb． 1870	46		Rev．S．R．Williams， E．N．Woodruff，S． Manly，and C．B． Blackburn．	P．O．and S．I．Vol，i，S．O．，and S．Coll．
13				36.06		1852；1853	07	$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a}$	Berthoud．	S．Coll．
14	53.03	75.28	55.88	33.25	54.36	June，1853；Apr． 1862	410	$7 \mathrm{~mm} 2_{\text {a }} 9 \mathrm{am}$	Rev．J．Miller，Rev． G．S．Savage．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
15	53.82	75.06	56.09	34.14	54.78	July，1847；Dec． 1870	23 －	$7 \mathrm{~mm} 2_{\mathrm{a}} 9$	Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860, and MS，from S．G．O．
16	53.60	72.77	56.75	38.24	55.34	Jan．1861；June， 1863	23	$7{ }_{7 \mathrm{~m}} 22_{\mathrm{a}} 9 \mathrm{am}$ bis	J．McD．Matthews．	S．O．${ }_{\text {P．}}$ S．${ }^{\text {S }}$
17	．．		．	．	．．	1858	O 2	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{a}$	J．Grinnell．	P．O．and S．I．Vol．I．
18	51.54	73.87	53.06	32.45	52.45		$\begin{array}{ll}0 & 5 \\ 4 & \\ 0\end{array}$		M．G．Williams．	S．O．
19	51.54	72.75	53.06	32.45	52.45	Jan．1856；Dec． 1859	4 0 0	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} 9_{\mathrm{a}}$	Dr．L．G．Ray． Bixby．	P．O．and S．I．Vol．I． S．Coll：
20	52．11	73.04	53.50 54.55	35.83	53.88	$\mathrm{I}_{849}{ }^{1850}$ 1851	$\begin{array}{ll} 0 & 4 \\ \text { I } & 9 \end{array}$		Bixby． Beatty．	S．Coll：
22	53.26	72.42	54.64	34.50	53.71	July，1841；Dec． 1870	278		Mrs．L．Young．	P．O．and S．I．Vol．I，MS．in S．Coll．，and S．O．
23	．	．	－	－•	－	1870	$\bigcirc 3$	$77_{\text {ma }} 2_{\text {a }} 9 \mathrm{a}$		MS．from S．G．O．
24	．	．	\cdots	\cdots	－	I866	－ 3	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{~m}$ bis	H．C．Mathis．	S．O．

LOUISIANA．

1	68.90	81.36	68.13	54.20	68.15	Jan．1822；Dec． 1860	28 －		Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860， and MS．from S．G．O．
2	65.05	81.25	65.07	49.65	65.25	May，1867；Nov．1870	211	$7 \mathrm{~m} 2_{\text {a }} 99_{\text {a }}$ bis	J．H．Carter．	S．O．
4	66.79	8x．11	64.98	53．01	66.47	Oct．1856；May， 1859		$7 \mathrm{~m} \mathrm{~m}_{\text {a }} 9_{\mathrm{a}}$	Dr．A．R．Kilpatrick． Assistant Surgeon．	P．O．and S．I．Vel．i． Ar．Met．Reg．I 860.
4	68.00	82．11	66.17	54．50	67.70		$\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}$	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg．IS60． Ar．Met．Reg． 1860.
6	67.25	80.63	66．	54.5	－	I870		$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\text {a }} 9$ bis	R．S．Jackson．	S．O．
7						1870	－		H．C．Collins．	
8	70.55	82.52	72.23	58.81	71.03	Jan．1822；Mar．IS35	410		Assistant Surgeon．	Ar．Met．Reg． 1855.
9	66.94	81.36	66.25	51．19	66.44	Jan．1823；Dec． 1845	22 11		＂ 6	
Io	70.17	83.02	70.94	55.86	70.00	Oct．1824；Dec． 1870	15	،	، ،	Ar．Met．Reg． 1855 and MS． from S．G．O．
11		78.98	69.46	49.75		July，1837；June， 1838	0 II	，	،＂	Ar．Met．Reg． 1855.
12	69.84	82.27	70.09	55.55	69.44	July，1832；Apr． 1846	62	＂	＂، ${ }^{6}$	6 6 6
13	64.27	80． 10	64.17	48.47	64.25	1839；1841	30	$\odot_{r} 2_{\mathrm{a}} \odot_{\mathrm{s}}$	Carpenter．	Sill．Journal．
14	71.53	80.95	59.30	43.87	63.91	1808； 1819	10 0			Dr．Barton．
15	72.08	82.04	69.28	55.80	69.80		3. 32			Rep．Brit．Assoc． 1847 ．
16	69.37	81.08	69.80	56.00	69.06	Jan．1826；Dec． 1870	329		Assist．Surg．，D．T． Lillie，Dr．E．H． Barton，J．Harrison， E．L．Ranlett．	Ar．Met．Regs． 1855 and I860， MS．from S．G．O．，Am．Alm． 1842，and foll．，Printed Slip in S．Coll．，P．O．and S．I． Vol．I，and S．O．，and MS．
17	67.57	79.33	68.07	55.80	67.69	1833 ； 1850	180			Barton＇s Rep． 1851.
18	69．17	79.67	69.57	57.43	68.96	1849	10			Rep，of Board of Health， 1850.
19	70.37	83.63	69.40	57.60	70.25	1807； 1810	30			Barton＇s Rep． 185 I ．
20	67.50	80．10	66.53		66.8 I	$1833 \%^{1820} 18$	$\begin{array}{rr}0 & 3 \\ 10 & 0\end{array}$	$\odot_{r} \odot_{r} \odot_{s}$	Dr．E．H．Belle． Voorhies．	S．Coll．${ }_{\text {Barton＇s Rep．} 1851 .}$
22				53.1	6.8	${ }_{1856}$	\bigcirc	$\bigcirc_{r} \mathrm{I}_{a} 9_{a}$	B．R．Gifford．	P．O．and S．I．Vol．i．
23	65.22	83.05		47.43		Dec．1856；Oct． 1860	1	$7 \mathrm{~m} 22_{2} 9{ }^{\text {a }}$	Dr．E．Merrill．	P．O．and S．I．Vol．I，and S．O．
$z 4$						1867	－ 2	$2_{2} 9$	Rev．A．K．Teele．	S．O．
25	65.90	78.67	66.27	52.30	65.78	$1820 ; 1833$	130	$\odot_{r} 2_{\mathrm{g}} \odot_{\mathrm{s}}$	Barton．	Barton＇s Rep． 185 I ．

[^86]| MMAINE． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | － | －000 | | 年 | \％ | $\begin{aligned} & \text { 号 } \\ & \text { 哥 } \end{aligned}$ | 宽 | 密 | 告 | 宔 | 岗 | $\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \dot{\sim} \end{aligned}$ | ぜ | \％ | هٌ |
| 1．Augusta | $44^{\circ} \mathrm{I} 9^{\prime}$ | $69^{\circ} 47^{\prime}$ | ． | $19^{\circ} .87$ | $27^{\circ} .00$ | 32° ． 20 | $3^{80} .67$ | $50^{\circ} \cdot 30$ | $65^{\circ} \cdot 61$ | $68^{\circ} .65$ | $65^{\circ} .86$ | $60^{\circ} \cdot 39$ | $50^{\circ} \cdot 50$ | $42^{\circ} \cdot 55$ | $21^{\circ} \cdot 58$ |
| 2．Bangor | 4449 | 6846 | 40 | 21.87 | 17.57 | 33.27 | 41.01 | 53.92 | 62.73 | 66.76 | 64.51 | | | 35.37 | 21.07 |
| 3．Bath ． | 4355 | 6949 | 50 | 23.22 | 23.32 | 31.65 | 41.86 | 52.37 | 61.32 | 68.71 | 66.06 | 59.23 | 47.74 | 35.90 | 25．10 |
| 4．Belfast | 4426 | 6900 | ， | 15.58 | 20.49 | 28.74 | 41.25 | 54.21 | 62.88 | 68.34 | 65.70 | 58.43 | 46.38 | 36.08 | 19.95 |
| 5．Bethel ．．－ | 4420 | 7051 | 650 | 14.10 | 18.68 | 26.63 | 38.40 | 49.62 | 61.80 | 67.27 | 63.97 | 56.57 | 47.12 | 33.23 | 22.68 |
| 6．Biddeford ． | 4330 | 7027 | 45 | 21.70 | 25.01 | 33.22 | 42.89 | 53.96 | 67.02 | 71.22 | 69.77 | 60.56 | 49.78 | 38.49 | 25.63 |
| 7．Blue Hill | 4425 | 6834 | 50 | | ．． | | | | | 67.05 | | | | | |
| 8．Brunswick | 4354 | 6957 | 74. | 20.10 | 22.93 | 31.54 | 42.56 | 52.69 | 62.29 | 67.44 | 65.60 | 58.28 | 47.78 | 36.71 | 24.86 |
| 9．Bucksport | 4440 | 6848 | 90 | 24.57 | 2812 | 34.85 | 44.15 | 55－86 | 60.73 | 74.08 | 71.27 | 63.59 | 52.65 | 40．69 | 26.36 |
| 10．Carmel ． | 4447 | 6900 | 175 | 13.59 | 14.48 | 26.90 | 39.32 | 54.83 | 64.32 | 72.35 | 64.04 | 55.03 | 45.27 | 33.91 | 18.33 |
| Ir．Castine ． | 4423 | 6847 | 50 | 21.41 | 22.30 | 30.38 | 41.43 | 50.53 | 59.43 | 64.82 | 64.66 | 58.39 | 48.44 | 38.06 | 25.57 |
| 12．Cornish | 4344 | 7051 | 784 | 18.47 | 21.16 | 28.32 | 40.58 | 52.53 | 63.51 | 68.56 | 66.05 | 58.20 | 45.92 | 34.53 | 21.77 |
| 13．Dennysville ． | 4453 | 6714 | | 19.13 | 20.06 | 29.06 | 39.66 | 50.42 | 59.84 | 65.67 | 63.87 | 56.67 | 46.69 | 35.76 | 23.20 |
| 14．Dexter ．．．． | 4502 | 69 I8 | 650 | 14.53 | 21．15 | 27.21 | 39.34 | 52.51 | 62.12 | 66.99 | 66.76 | 58.74 | 46.25 | 34.94 | 21.21 |
| 15．East Exeter（or Exeter） | 4500 | 6910 | 190 | 18.84 | 19.99 | 30.73 | 42.15 | 5 | 62.22 | 67.30 | 66：67 | 57.58 | ． | \cdots | － |
| 16．Eastport ．．． | 4454 | 6659 | 40 | 20.0 | 22.7 | 28.8 | 39.5 | 48.2 | 55.5 | 63.8 | 63.7 | 56.2 | 46． 1 | 35.7 | 24.5 |
| 17．East Wilton | 4436 | 7014 | ．${ }^{15}$ | 15.16 | 13.10 | 24. | ． | \cdots | 분 | | | 49.13 | 39.9 | 37.05 | |
| 18．Fort Fairfield | 4646 | 6749 | 415 | 15.16 | 13.10 | 24.40 | 35.90 | 47.70 | 57.05 | 62.83 | 64.70 | 49.13 | 39.92 | 29.15 | 12.53 |
| 19．Fort Kent ． | 4715 | $68 \quad 35$ | 575 | 10.76 | 11.26 24.61 | 23.26 | 35.08 | 46.78 | 59.00 | 62.51 68.57 | 63.45 66.64 | 51.18 59.66 | 39.58 | 27.52 38.01 | 10.86 26.88 |
| 20．Fort Preble ． | 4339 | 7014 | 31. | 22.54 | 24.61 | 32.62 | 43.22 | 52.84 | 63.31 | 68.57 | 66.64 | 59.66 | 49.14 | 38.01 | 26.88 |
| 21．Fort Sullivan | 4454 | 6659 | 70 | 22.06 | 23.23 | 30.57 | 40．II | 48.67 | 56.24 | 61.99 | 62.23 | 57.14 | 47.73 | 37.27 | 25.56 |
| 22．Foxcraft ．． | 4512 | 6913 | ．． | \cdots | －． | 31.83 | | 53.70 | 59.78 | 66.70 | 65.64 | 55.03 | 47.70 | ．． | ．\cdot |
| 23．Fryeburg ．．．． | 4400 | $\begin{array}{ll}71 & 04 \\ 69 & 48\end{array}$ | | 11.18 | 15.93 20.72 | 23.75 29.49 | 45.08 | 53.61 52.69 | | | | | | 35.31 | |
| 24．Gardiner • ．．－ | 4414 | 6948 | 76 | 17.94 | 20.72 | 29.49 | 41.24 | 52.69 | 63.06 | 68.64 | 66.47 | 58.07 | 46.58 | $35 \cdot 31$ | 22.14 |
| 25．Hampdon | 4443 | 6850 | 180 | 8.88 | 21.00 | 29.64 | 43.78 | 5 5 .88 | 62.29 | 63.21 | 67.67 | 56.75 | 44.12 | 30.30 | 21.64 |
| 26．Hancock Barracks （Houlton） | $46 \quad 07$ | 6749 | 620 | 14.87 | 16.68 | 27.09 | 39.43 | 51.18 | 61.15 | 66.09 | 64.73 | 56.16 | 43.71 | 30.99 | 18.60 |
| 27．Hiram ．．．． | 4351 | 7052 | 400 | 17.01 | 18.39 | 28.23 | 39.26 | 51.45 | 61.33 | 67.17 | 64.11 | 56.29 | 44.54 | 33.17 | 20.91 |
| 28．Houlton ．－ | 4607 | 6749 | ．． | ．． | | | 36.17 | 48.21 | 61.25 | 67.79 | 66.74 | | | | |
| 29．Kennebec Arsenal． | $44 \begin{array}{ll}44 \\ 45\end{array}$ | 6946 | \cdots | 22.95 | 15.51 | 28.40 | 40.74 | 52.54 | 64.59 | 69.47 | 65.49 | 58.91 | 47.02 | 37.25 | 25.98 |
| 30．Lee | 4525 | 6818 | | 13.08 | 21.62 | 27.71 | 41.85 | 50.20 | 64．14 | 66.92 | 65.34 | 56.23 | 45.16 | 35.69 | 22.45 |
| 3r．Linneus | 4604 | 6758 | \ldots | 17.20 | ． | ． | ． | － | ． | ．． | 63.90 | ． | | | |
| 32．Lisbon ${ }^{2}$ | 4404 | $70 \quad 07$ | 130 | 18.46 | 22.67 | 29.23 | 41.55 | 54.08 | 63.53 | 68.92 | 67.24 | 58.21 | 47.62 | 37.63 | 22.66 |
| 33．Newcastle ．North Bridgeton | $\begin{array}{lll}44 & 07 \\ 44 & 02\end{array}$ | 6936 70 78 | 88 300 | 14.05 | 22.83 | 28.00 | | | 61． S_{5} | 70.57 | 65.65 | 58.17 | 44.06 47.77 | 34.25 | |
| 34．North Bridgeton | $\begin{array}{ll}44 & 02 \\ 44 & 58\end{array}$ | 7048 6840 | 300 137 | 14.05 16.24 | 22.83 17.17 | 28.00 25.07 | 38.55 37.38 | 51.62 48.97 | 61.35 58.75 | 70.57 66.79 | 65.65 63.88 | 58.17 55.49 | 47.77 45.07 | 34.25 32.49 | 23.05 18.32 |
| 36．Oxford | 4408 | 7033 | 182 | 19.06 | 18．15 | 28.48 | 40.35 | 52.54 | 64.44 | 68.94 | 65.87 | 56.71 | 44.63 | 33.81 | 20.72 |
| 37．Patten ． | 46 oo | 6827 | \cdots | | \cdots | 22.90 | 35． 23 | \cdots | | 65.21 | | 52.63 | 42.90 | 38.35 | \cdots |
| 38．Pembroke | 4455 | 67.09 | 40 | 19.23 | 19.00 | 32.70 | 40.50 | 54.15 | 58.58 | | 62.50 | 56.78 | | ． | \cdots |
| 39．Perry ．．．． | 4500 | 6705 | 100 | 19.76 | 23.17 | 28.82 | 38.89 | 49.11 | 57.59 | 63.29 | 61.55 | 55.67 | 46.21 | 35.62 | 24.11 |
| 40．Portland． | 4339 | 7015 | 87 | 19.26 | 21.46 | 29.72 | 40.05 | 50.58 | 60.27 | 66.30 | 64.68 | 57.45 | 45.39 | 34.41 | 23.85 |
| 41．Portland ${ }^{\text {．}}$ | $43 \quad 39$ | 7015 | 50 | 19.46 | 21.25 | 29.89 | 40.12 | 50.32 | 60.31 | 66.28 | 64.59 | 57.66 | 46.27 | 35.54 | 24.35 |
| 42．Prospect ． | 4428 | 6846 | 207 | \cdots | \cdots | 30.93 | 40.02 | | | | | | | | ．． |
| 43．Rumford ． | 4430 | 7037 | 600 | | 24.75 | 24.77 | 39.60 | 51.85 | 66.38 | 66.00 | 67.35 | 54.43 | 46.15 | 37.55 | 21.75 |
| 44．Saco ．．． | 4331 | 7026 | 69 | 21.08° | 21.29 | 31.21 | 43.69 | 54.28 | 65.06 | 70.31 | 68.44 | 60.92 | 47．18 | 37.18 | 25.34 |
| 45．South Thomaston | 4404 | 6908 | 50 | 22.96 | 24.96 | 29.49 | 39.12 | 50.90 | 63.37 | 66.74 | 63.84 | 56.51 | 48.63 | 37.05 | 21.03 |
| 46．Standish ． | 4345 | 7037 | 280 | 19.89 | 22.18 | 27.71 | 41.51 | 52.84 | 65.18 | 69.97 | 67.33 | 59.49 | 44.74 | 35.24 | 22.28 |
| 47．Steuben | 44 31 | 6758 | 50 | 19.10 | 21.34 | 28.52 | 38.66 | 48.74 | 58.57 | 63.73 | 62.30 | 55.65 | 45.42 | 35.81 | 22.75 |
| 48．Surry ：． | 4430 | 68 69 60 | 5 | | 25.23 | 31． 49 | － | ． | 66.15 | 82 | 68.53 | 60.20 | 50.15 3765 | 38.28 | 26.43 |
| 49．Topsham．－ | 4354 | 6957 | 60 | 16.59 | 25.23 | 31.49 | 37.27 | 47.92 | IS | 67.82 | | | 37.56 | 35.58 | 19.21 |
| 50．Vassalboro ．${ }^{\text {a }}$ | 4427 | 6942 | \cdots | 17.84 | 19.01 | 29.35 | 40.57 | 54.06 | 62.18 | 64.92 | 66.64 | 56.28 | 46.53 | 36.83 | 21.10 |
| 51．West Waterville | 4433 | 6946 | 250 | 18．18 | 21.89 | 29.77 | 42． 10 | 53.20 | 65.10 | 69.91 | 67.09 | 59.20 | 46.15 | 35.14 | 22.78 |
| 52．Williamsburg | 4521 | 69 06 | ．． | 13.94 | 16.68 | 24.33 | 38.29 | 50.33 | 61.55 | 66.93 | 63.59 | 50.57 | 45.05 | 32.72 34 | 17.80 |
| 53．Windham ． | 4346 | 7028 | \cdots | 16.43 | 20.70 | 30.86 | 38.52 | 57.89 | 64.01 | 68.93 | 67.28 | 59.14 | 47.45 | 34.56 | 25.63 |

${ }^{1}$ Hours of observation $7_{\mathrm{ma}} 1_{\mathrm{n}} 6_{\mathrm{a}}$ ．Observations corrected for daily variation by means of the general table．
${ }^{2}$ Observations from Dec， $\mathbf{1 8 6 5}$ ，to May， $\mathbf{1 8 6 7}$ ，at Webster，about three miles east of Lisbon．
${ }^{3}$ The observations for $\mathbf{1} 870$ were made at Orono，about three miles southeast of Oldtown．

MAINE.

			药 要	$\begin{aligned} & \text { In } \\ & \stackrel{y y}{0} \end{aligned}$	تَّ	Series. Begins. Ends.	$\begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing hours.	Observer.	References.
I	$40^{\circ} \cdot 39$	$66^{\circ} \cdot 71$	$51^{\circ} \cdot 15$	$22^{\circ} .82$	$45^{\circ} .27$	Nov. 1849; Mar. 1864	12	$6_{m} 2_{\text {a }} 9 \mathrm{ga}$	G. E. Brackett and others.	Pat. Off. Rep. 1851 and S. O.
2	42.73	64.67		20.17		1843 ; June, 1860		$7 \mathrm{~m} \mathrm{~m}_{\mathrm{a}}$	Young.	O. and Manuscript.
3	41.96	65.36	47.62	23.88	44.71	Jan. 1832; July, 1842	107	$\odot_{r} 2^{2}$	John Hayden.	Am. Alm. 1842 and S.
4	41.40	65.64	46.96	18.67	43.17	July, 1859; June, 1866	43	7_{m} N. G^{2}	G. E. Brackett.	P. O. and S. I. Vol. I, MS. in S. Coll., and S. O.
5	38.22	64.35	45.64	18.49	41.68	Jan. 1861; Feb. 1862			A	S. O.
6	43.36	69.33	49.61	24.11	46.60	Jan. 1848; June, 1852			J. G. Garla	Am. A
7						1864			H. H. Osgood.	S. O.
8	42.26	65.11	47.59	22.63	44.40	Jan. 1807; Dec. 1859	51		Prof. P. Cleaveland.	Sm. Con, to Knowl.
9	44.95	68.69	52.31	26.35	48.07	Jan. 1849; Feb. 1853	$4 \quad 2$	$9{ }_{9} 33_{\text {a }}$	R. Buck,	S. Coll.
10	40.35	66.90	44.74	15.47	41.87	Jan. 1852; Jan. 1857	410	$7{ }_{71} 2_{8} 9_{\text {a }}$	J. J. Bell	P. O. and S. I. Vol. ı, \& S. Coll.
11	40.78	62.97	48.30	23.09	43.79	Jan. 1810; Dec. 1849	40		Judge Nelson.	S. Coll.
12	40.48	66.04	46.22	20.47	$43 \cdot 30$	Jan. 1856; Dec. 1870	14 10	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bia	G. W. Guptill, S. West.	P. O. and S. I. Vol. I, and S. O.
13	39.71	63.13	46.37	20.80	42.50	Jan. 1816; Dec. 1855	40 0	max. \& min.	T. Lincoln.	S.
14	39.69	65.29	46.64	18.96	42.65	June, 1860; June, 1863	30	$\mathrm{m}_{\mathrm{a}} \mathrm{a}_{\mathrm{a}} \mathrm{a}_{\mathrm{bis}}$	B. F. Wilbur.	
15		65.40		.		Jan. 1858; Sept. 186x	10	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	S. Gilman, J. B. Wilson.	P. O. and S. I. Vol. 1, and S. O.
16	38.8	61.00	46.00	22.40	42.06	Jan. 1833; Dec, 1834	o			$\text { Am. Alm. } 1836 \text {. }$
17							0 I		H. Reynolds.	S. 0 .
19	35.0	61.53 61.65	39.40 39.43	13.6	37.63 36.77	Jan. 1842; Aug. I843 Jan. I842; Aug. 1845		a	'6	r. Met. Reg. 185
20	42.89	66.17	48.94	24.68	45.67	Jan. 1824; Dec. 1870	262	$7_{\text {ma }} 2_{\text {a }} 99_{\text {a }}$	"	Ar. Met. Reg. 1855, and MS. from S. G. O.
21	39.78	60.15	47.38	23.62	42.73	Jan. 1822; Dec. IS70	$23 \quad 9$	$\odot_{\mathrm{r}} 9 \mathrm{~m} 3 \mathrm{n} 9_{\mathrm{a}}$	" "	، 6
2		64.04				June, 1863; Mar. 1864		$7 \mathrm{ma} 2_{\text {a }} 9 \mathrm{abis}$	M. Pitman.	S. O .
3	40.81					$\stackrel{1856}{ }$		$7^{7 m}{ }^{2}$	Dr. E. B. Barrows.	P. O. and S. I. Vol. I.
24	41.14	66.06	46.65	20.27	43.53	Jan. 1837; Dec. 1870	3011	$7 \mathrm{~m} \mathrm{a}_{\mathrm{a}} 9$	R. H. and F. Gardiner.	P. O. and S. I. Vol. I, S. Coll., and S. O.
5	41.77	64.39	43.72	17.17	41.76	Aug. 1843; July, 1844	10	$9_{m} 3_{a} 9_{a}$	J. Herrick.	Am. Alm. 1846.
26	39.23	63.99	43.62	16.72	40.89	Jan. 18:9; Dec. I870	185		Assit. Surg., C. H. Fernald.	Ar. Met. Regs. 1855 and S. O.
27	39.6	64.20	44.67	18.7	41.82	Jan.	340	max. \& min.	G. Wadsworth,	MS. in S. Coll.
28	\cdots	65.26					15		M. Welch.	S. Coll. Ar. Met, Reg 1860
29	40.56	66.52	47.73	21.48	44.07	May, 1857; Aug. 1858	14	$7 \mathrm{~m} 2_{\mathrm{a}}$	Assistant Surgeon.	Ar. Met. Reg. 1860.
30	39.92	65.47	45.69	19.05	42.53	June, 1864; Sept. 1867	211	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	E. Pitman, B. H. Towle.	S. O .
31						A	- 2	9	A. G. Young and daughter.	"
32	41. 62	66.56	47.82	21.26	44.32	A		7 m	A. P. Noore, A. Robinson.	P. O. and S. I, Vol. I. and S. O.
33					.		$\bigcirc 1$	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	C. L. Nichols.	P. O. and S. I. Vol. I.
34 35	39.39 37.14	66.02	46.73	19.98	43.03	1861		$0^{7 m} 2_{a} 99_{\text {a bis }}$	Dr. M. Gould.	S. O.
35	37.14	63.14	44.35	17.24	40.47	Jan. 1849; Dec	65	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Rev. S. H. Merrill, M. C. Fernald.	P. O. and S. I, Vol. I, S. O, and Manuscript.
36	40.46	66.42	45.05	19.3I	42.81	F	4 \%		H. D. Smith, G. W. Verrill, Jr.	S. O.
37			44.63	.		862	- 6	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	S. Eveleth.	S. Coll
38 39	42.45 38.94					July, ${ }_{\text {I }} 8629$	0 14 14	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{x}$ bis	E. Dewhurst.	S. 0 .
39	38.94 40.12	60.81	45.83 45.75	22.35 21.52	41.98	July, 1849; J			W	P. O. and S. I.Vol. I, S. O., and Manuscript. Manuscript
41	40.11	63.75 63.73	45.75 46.49	21.52 21.69	42.75 43.00	Jan. I820; Dec. 1859	$\begin{array}{ll} 35 & 6 \\ 37 & 3 \end{array}$		Becket, H. Willi	P. O, and S. I. Vol. I, and S.
42							0	7 m	Eaton.	$\text { S. } \mathrm{O} \text {. }$
43	38.74	66.58	46.04	-	\cdots	Oct. 1866; Apr. 1869	12		W. Pettingill.	"، "
44	43.0	67.94	48.43	22.57	45.50	July, 1843; June, 1848	50	$7 \mathrm{~m} 2_{\mathrm{a}} 7 \mathrm{a}$	J. M. Batchelder.	Am. Alm. 1845 and foll.
45	39.84	64.65	47.40	22.98	43.72	$1849 ; \quad 1855$	22	$\bigodot_{r} 9_{m} 3_{\text {a }} 9_{a}$	J. Bartlett.	P. O. \& S. I. Vol, I, \& S. Coll.
46	40.69 38.64	67.49	46.49	21.45 2 L .06	44.03	May, 1865; Jan. 1870 Aug. 1854; Apr. 1870	$\begin{array}{rr} 4 & 0 \\ 15 & 6 \end{array}$	7 ma	J. P. Moulton. J. Parker	S. O.
47	38.64	6r. 53	45.63 49.54	21.06	41.72	Aug. ${ }_{\text {1 }} 854$; Apr. 1870	$\begin{array}{rr}15 & 6 \\ 0 & 6\end{array}$	${ }_{6} 6$	J. D. Parker. O. H. \& L. S. Tupp.	P. O. and S. I. Vol. I. and S. O. S. O.
49	38.89			20.34	.	Nov. 1859; Dec. 1861	14	"	W. Johnson.	P. O. and S. I. Vol. I, and S. O.
50	41.33	64.58	46.55	19.32	42.94	Aug. 1859; July, 1863	35	/6	J. Van Blascom.	" " " "
51	41.69	67.37	46.83	20.95	44.21	Dec. 1863; Dec. 1870	71	"	B. F. Wilbur.	S. O.
52	37.65	64.02	42.78	16.14	40.15	June, 1863; Dec. 1870	40		E. and H. W. Pitman.	"P. O. \& S. I. Vol I \& S. Coll.
53	42.42	66.74	47.05	20.92	44.28	1849; Feb. 1856	4 ○	$7 \mathrm{maz} \mathrm{mam}^{\text {a }}$	S. A. Eveleth.	P. O. \& S. I. Vol. I, \& S. Coll.

4 The observations for 1860-61 were made at Norway, about three miles northeast of Oxford.
5 Observations from Jan. 1820, to Dec. 1852, probably included in the preceding series.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{IMARYLAND．}

\hline Name of Station． \& ＋ \& ¢
$\stackrel{0}{\circ}$
\square \& 䔍 \& $\stackrel{\text { घี่ }}{\text { ロ゙ }}$ \& \％ \& J
岩
L \& 官 \& ぶ心 \& 芭 \& $\stackrel{\square}{3}$ \& 苟 \& $$
\stackrel{\ddot{\ddot{O}}}{\stackrel{\leftrightarrow}{\ddot{0}}}
$$ \& － \& 言 \& ®

\hline 1．Agricultural College
2．Annapolis ．．． \& $38^{\circ} 59^{\prime}$
3858 \& $76^{\circ} 57^{\prime}$
7630 \& 20 \& $34^{\circ} .69$
33.85 \& $39^{\circ} .29$
36.19 \& 460.37
41.85 \& $55^{\circ} .82$
52.41 \& $61^{0} .62$
62.73 \& 73

73.45 \& $72^{\circ} .73$
77.83 \& $75^{\circ} .22$
75.85 \& $70^{\circ} .67$
69.14 \& 610.57

56.87 \& $$
\begin{array}{r}
47^{\circ} .25 \\
46.59
\end{array}
$$ \& \[

$$
\begin{aligned}
& 40^{\circ} \cdot 55 \\
& 37.80
\end{aligned}
$$
\]

\hline 3．Baltimore－． \& 3917 \& 7637 \& 80 \& 32.52 \& 33.67 \& 41.45 \& 50.84 \& 62.38 \& 70.34 \& 75.61 \& 74.28 \& 66.58 \& 54.29 \& $44 \cdot 35$ \& 35.15

\hline 4．Baltimore \& \& 7637 \& 80 \& 33．10 \& 34.30 \& 42.40 \& 53.00 \& 63.20 \& 71.60 \& 76.60 \& 74.50 \& 67.70 \& 55．80 \& 45．00 \& 37.80

\hline 5．Bladensburg ： \& $\begin{array}{lll}38 & 57\end{array}$ \& 7656 \& 75 \& 31.23 \& 33.62 \& －40．63 \& 51.54 \& 62.32 \& 71.66 \& 75.75 \& 74.25 \& 63.56 \& 54.3 I \& 43.43 \& 33.84

\hline | 6．Calvert College |
| :--- |
| （New Windsor）． | \& 39 31 \& 7706 \& \& 30.16 \& 34.95 \& 41.67 \& \& \& \& 75.12 \& \& \& \& ．． \& 37.38

\hline 7．Catonsville ${ }^{2}$（St． Timothy＇s Hall） \& 3917 \& 7642 \& 500 \& 27.14 \& 27.63 \& 34.75 \& 48.47 \& 56.94 \& 68.79 \& 74.64 \& 69.02 \& 66.36 \& 53.24 \& $44 \cdot 39$ \& 31.14

\hline 8．Chestertown（Wash． Coll．） \& 3913 \& 7604 \& 85 \& 30.20 \& 33.56 \& 41.10 \& 50.98 \& 63.51 \& 71.45 \& 75．81 \& 74.67 \& 69.00 \& 56.35 \& $45 \cdot 75$ \& 36.04

\hline 9．Cumberland ．．． \& 3939 \& 7845 \& \cdots \& 27.75 \& 28.43 \& 35．14 \& $45 \cdot 38$ \& 55.62 \& 66.89 \& 69.52 \& 67.14 \& 59.22 \& 46.91 \& 38.25 \& 29.83

\hline 10．Elkton ．．． \& 3938 \& 7550 \& 40 \& \& \& \& \& \& \& 70.7 \& \& \& \& ． \& 32.0

\hline 11．Emmettsburg ${ }^{3}$ ．． \& 3943 \& 7720 \& 498 \& 29.75 \& 31.15 \& 36.74 \& $49 \cdot 56$ \& 58.35 \& 69.05 \& 74.14 \& 71.93 \& 64.14 \& 50.93 \& 42.01 \& 30.34

\hline 12．Eyrie House（Mt． Savage） \& 3942 \& 7852 \& 1818 \& 30.6 \& 26.3 \& 40.2 \& 51.9 \& 61.6 \& 64.2 \& 69.5 \& 70.7 \& 65.4 \& 51.7 \& 44.3 \& 32.9

\hline 13．Fallston ．．． \& 3930 \& 7624 \& 300 \& \& \& \& \& \& \& \& \& 68.70 \& 58.20 \& 46.63 \& 35.08

\hline 14．Fort McHenry ．． \& 3916 \& 7635 \& 36 \& 33.00 \& 34.57 \& 42.27 \& 53.22 \& 63.54 \& 72.56 \& $77 \cdot 35$ \& $75 \cdot 34$ \& 68.65 \& 56.75 \& 45.71 \& 35.93

\hline 15．Fort Severn ．． \& 3859 \& $76 \quad 29$ \& 20 \& 33.34 \& 34.84 \& 42.96 \& 54.24 \& 64.82 \& 73.06 \& 78.22 \& 76.17 \& 69.02 \& 57.73 \& 46.90 \& 36.81

\hline 16．Fort Washington \& 3842 \& 7704 \& 60 \& 36.24 \& 38.57 \& 46.19 \& 56.22 \& 67.56 \& 76.02 \& 79.93 \& 76.97 \& 69.57 \& 59.13 \& 47.03 \& 37.58

\hline 17．Frederick City ． \& 3924 \& 7724 \& 274 \& 31.47 \& 33.69 \& 40.32 \& 50.67 \& 62.31 \& 71.76 \& 76.30 \& 72.15 \& 65.96 \& 53.72 \& 44.60 \& 34.16

\hline 18．Hagerstown \& 3939 \& 7743 \& \cdots \& ． \& ． \& ． \& \& \cdots \& 71.45 \& \& \& \cdots \& \& \cdots \&

\hline 19．Isthmus ．．．． \& 3845 \& 7615 \& ． \& \& \cdots \& ． \& 54.6 \& \& \& 78.4 \& 77.8 \& \& 58.2 \& \& 40.2

\hline 20．Leitersburg ．．． \& 394^{2} \& 7730 \& ． \& 28.46 \& 32.72 \& 41．45 \& 48.39 \& 60.81 \& 69.19 \& 73.06 \& 71.58 \& 63.58 \& 52.93 \& 39.98 \& 31.03

\hline 21．Leonardtown \& 3817 \& 7637 \& ． \& 39．10 \& 38.19 \& 49.92 \& 52.09 \& 64.25 \& 72.07 \& 75.44 \& 74.41 \& 69.61 \& 51.71 \& 44.25 \& 37.44

\hline 22．Nottingham ．．． \& 3842 \& 7643 \& ． \& ． \& 31.38 \& 46.52 \& ．． \& ．． \& $\cdots 1$ \& \& ． \& ． \& ． \& ． \& ．．

\hline 23．Port Deposit ．． \& 3937 \& 7606 \& ． \& －${ }^{\text {in }}$ \& $\cdots 8$ \& \bigcirc \& 400 \& $6{ }^{\circ} \mathrm{FI}$ \& 74.21 \& 78.27 \& ． \& 73.14 \& 59.25 \& \& 3460

\hline 24．Ridge．．．． \& 3806 \& ${ }_{76} 761$ \& \cdots \& 26.12 \& 43.28 \& 41.83 \& 49.90 \& 65.51 \& 78.72 \& 84.12 \& 7800 \& 73.14 \& 59.25 \& 48.29 \& 34.60
38.88

\hline 25．St．Mary＇s City ，． \& 38 10 \& 7628 \& 45 \& 35.24 \& 36.85 \& 42.72 \& 53.89 \& 6 6 .89 \& 72.64 \& 76.14 \& 78.00 \& 70.50 \& 57.84 \& 47.23 \& 38.88

\hline 26．Schellman Hills （near Sykesville） \& 3925 \& 77 00 \& 700 \& 30.65 \& 32.13 \& 40.28 \& 50.35 \& 62．19 \& 69.85 \& 73.28 \& 71.20 \& 65.13 \& 53.81 \& 43.34 \& 33.55

\hline 27．Union Bridge ． \& 3934 \& 76 10 \& 400 \& \& 2 \& \& 51.5 \& 65.50 \& 7 \& 75－ \& 72 \& 66.77 \& 53.11 \& \cdots \& \cdots

\hline 28．Woodlawn ．－ \& $\begin{array}{ll}39 & 39 \\ 39 & 19\end{array}$ \& $\begin{array}{ll}76 & 04 \\ 76 & 51\end{array}$ \& 400 \& 30.51 \& 32.44 \& 38.97 \& 51.57 \& 59.74 \& 71.28 \& 75.24 \& 72.25 \& 66.77 \& 53．11 \& 43.47 \& 32.30
32.17

\hline 29．Woodstock ． \& 3919 \& 7651 \& 400 \& \& ． \& ． \& ． \& \& \& \& \& \& \& \&

\hline \multicolumn{16}{|c|}{MASSACHUSETTS．}

\hline I．Amherst（College）． \& 4222 \& 7234 \& 267 \& 22.99 \& 23.31 \& 33.02 \& 44.77 \& 55.72 \& 65.07 \& 69.94 \& 67.73 \& 59.45 \& 47.33 \& 37．19 \& 26．14

\hline 2．Amherst（College）． \& 4222 \& 7234 \& 267 \& 22.91 \& 24.82 \& 31.57 \& 44.28 \& 56.01 \& 65.29 \& 69.90 \& 67.21 \& 59.76 \& 48.68 \& 38.55 \& 26.01

\hline 3．Andover ．．． \& 4238 \& 7110 \& \cdots \& 24.54 \& 25.64 \& 33.27 \& 45.27 \& 55.95 \& 66.57 \& 70.66 \& 69.97 \& 61.28 \& 49.21 \& 37.44 \& 29.85

\hline 4．Baldwinsville ． \& 4237 \& 7204 \& 847 \& 17.97 \& 24.24 \& 29.25 \& 42.19 \& 55.55 \& 63.60 \& 68.19 \& 67.62 \& 59.36 \& 42.82 \& 37.84 \& 24.04

\hline 5．Barnstable ．．．
6．Bird Island ． \& 4142
$42 \quad 21$ \& $\begin{array}{ll}70 & 19 \\ 71 & \text { O1 }\end{array}$ \& 20 \& 30.23 \& 27.93 \& 4100 \& ．． \& ．． \& ． \& \& \& ．． \& \& 47.56 \&

\hline 7．Boston ．．． \& 42
42 \& $\begin{array}{ll}71 & 03\end{array}$ \& －82 \& 31.90
26.38 \& 27.91 \& 41.00
35.36 \& 45.64 \& 55.83 \& 65.53 \& 71.49 \& 69.01 \& 62．20 \& 56.31
51.04 \& 39.87 \& 40.85
29.96

\hline 8．Bradford ．．． \& 4246 \& 7105 \& \cdots \& 25.42 \& 30.26 \& 32.16 \& 46.98 \& 57.92 \& 64.91 \& 75.49 \& 70.74 \& 61.07 \& 54.59 \& 42.68 \& 36.95

\hline 9．Bridgewater ．． \& $42 \quad 02$ \& 7100 \& 150 \& 24.41 \& 26.70 \& 34．39 \& 43.97 \& 52.33 \& 64.22 \& 69.52 \& 65.29 \& 61.36 \& 49.96 \& 40.46 \& 29.31

\hline Io．Byfield ．．．． \& \& 7056 \& \cdots \& 8 \& 30 \& 370 \& 43.18 \& 53.97 \& 67 \& \cdots \& \cdots \& 62° \& 51．${ }^{7}$ \& 193 \& 30.1

\hline 11．Cambridge ．．． \& $\begin{array}{ll}42 & 23 \\ 42 & 23\end{array}$ \& $\begin{array}{ll}71 & 07 \\ 71 & 07\end{array}$ \& 60 \& 28.99 \& 31.18 \& 37.09 \& 47.99 \& 58.66 \& 67.26 \& 72.92 \& 70.91 \& 62.01 \& 51.57 \& 41.12 \& 30.91

\hline 12．Cambridge ．．．
13．Cambridge ．． \& $\begin{array}{ll}42 & 23 \\ 42 & 23\end{array}$ \& $\begin{array}{lll}71 & 07 \\ 71 & 07\end{array}$ \& 60 \& 28.0
22.50 \& 30.7
23.90 \& 36.5
32.90 \& 48.5
45.10 \& 58.5
54.40 \& 68.5
66.10 \& 73.7
69.60 \& 72.5
69.40 \& 64.0
60.00 \& 50.7
50.10 \& 37.0
40.20 \& 31.5
29.04

\hline \multicolumn{16}{|c|}{\multirow[t]{2}{*}{| ${ }^{1}$ Corrected for daily variation by means of the general table． |
| :--- |
| 2 Previous to 1865 the observations were made at Oakland，about five miles S．E．of Catonsville． |}}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

IVARYIAND．

		岕 品 息	萦	岕	岸	Series． Begins．Ends．	Extent yrs．mos．	Observing HoURS．	Observer，	References．
1	$54^{\circ} .60$	$73^{\circ} \cdot 77$	$59^{\circ} .83$	$38^{\circ} .18$	$56^{\circ} .60$	Feb．186r ；July，i862	12	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis		
2	52.33	75.71	57.53	35.95	55.38	Nov．1855；Dec． 1870	1310	$7 \mathrm{~m}{ }_{\text {a }}^{\text {a }}$ ，${ }_{\text {a }}$	Dr．A．Zumbrock，\＆ W．R．Goodman．	P．O．and S．I．Vol， t ，and S．O．
3	51.56	73.41	55.07	33.78	53.46	Jan．1817；Aug． 1859	189	1	L．Brantz，Dr．Ed－ mondson，Prof．N． M．Meyer，and A． Zumbrock．	Printed Journ．in S．Coll．，P． O．and S．I．Vol．I，S．Coll．， and printed record．
4	52.87	74.23	56.17	35.07	54.58		220			Pat．Off，Rep．
5	51.50	73.89	53.77	32.90	53.02	Dec．1854；Aug． 1865	94		B．O．Lowndes	P．O．and S．I．Vol．I，and S．O．
6				34.16		1852； 1853			Nelson	S．Coll．
7	46.72	70.82	54.66	28.64	50.21	Dec．1857；Feb． 1868	30	$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a} \text { bis }$	G．S．Grape，E．L． Raulett，F．Reed， P．Tabb，and L．R． Cofran．	P．O．and S．I．Vol．I，and S：O．
8	51.86	73.98	57.03	33.27	54.04	June，1855；July， 1864	38	＊	Prof．J．R．Dutton \＆ others．	＂6＂．${ }^{\text {a }}$
9	$45 \cdot 38$	67.85	48.13	28.67	47．5 I	Jan．1859；Dec． 1870		7 7m		MS．in S．Coll，
10						Dec．18＋3；July， 1849	$\bigcirc 2$		F．Finch．	Manuscript．
II	48.22	71.71	52.36	30.41	50.67	Nov．1866；Dec． 1870	42	7 ma 2a $\mathrm{ma}_{\text {bis }}$	E．Smith，and P．C． H．Jourdan．	S．O．
12	51.23	68.13	53.80 57.84	29.93	50.77	Jan．1846；Sept． 1846	\circ	$Q_{r} 3_{3} \mathrm{II}_{2}$	T．C．Atkinson． G．G．Curtis．	MS．in S．Coll．
I3	53.01	75.08	57.84 57.04	34.50	54.91	Jan．1831；Dec． 1870	$\begin{array}{rr}0 & 4 \\ 36 & 0\end{array}$	$\begin{gathered} 7_{\mathrm{m}}{ }^{2}{ }_{\mathrm{a}} 9_{\mathrm{a} \text { bis }} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \end{gathered}$	G．G．Curtis． Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860，
										MS．from S．G．O．，and MS． in S．Coll．
15	54．01	75.82	57.88	35.00	55.68	Jan．1822；July，i845		＂	＂ 6	Ar．Met．Reg． 1855.
16	56.66	77.64	58：58	37.46	57.58	Jan．1824；Sept． 1870		${ }^{6}$	＂${ }^{\prime \prime}$	Ar．Met．Reg．1855，and MS． from S．G．O．
17	5 I .10	73.40	54.76	33． 11	53.09	1851 ；June， 1870	156	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{abis}$	II．E．\＆J．K．Hen－ shaw，H．M．Baer， and Jones．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
18		．	．	－．	．	$\mathrm{IS}_{52}{ }^{\text {a }}$		$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{3} 9_{\mathrm{a}}$	Carter．	S．Coll．
19	50			30.74	51.10	Apr．1843；July， 1845	－ 6		R．Banning．	Manuscript．
20	50.22	71.28	52.16	30．74	51.10	Oct．1851；June，IS62	47	$7_{\text {ma }} 2_{3} 9_{\text {a bis }}$	J．E．Bell．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
2 L	55.42	73.97	55．19	38.24	55.71	Jan．1858；Sept． 1859	$\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}$	$\overbrace{}^{7 \mathrm{~m}} 2^{\text {a }} 9 a^{\text {a }}$	Dr．A．McWilliams．	P．O．and S．I．Vol，I． S．Coll．
22	\cdots	\cdots	\cdots	．	\cdots			$\bigodot_{\text {r }} 9 \mathrm{max} 3_{\text {a }} 9_{\mathrm{a}}$	Darrymple．	
24	52.41	．	60.23	34.67	．	May，1856；June， 1867		$7 \mathrm{~m}{ }^{2}{ }^{\text {a }} 9$	T．G．Stagg．	P．O．and S．I．Vol．I．
25	52.83	75.59	58.52	36.99	55.98	Dec．1859；Feb． 1870	68	$7 \mathrm{~m} \mathrm{ma}_{\text {a }} 9_{\text {a bis }}$	Rev．J．Stephenson．	P．O．and S．I．Vol．I，and S．O．
26	50.94	71.44	54.09	32.11	52.15	Jan．1846；Dec， 1865	198	${ }^{6}$	Miss H．M．Baer．	P．O．and S．I．Vol．I，MS．in S．Coll．，and S．O．
27		2，	45	35.75	52.3	${ }_{\text {Mar }}^{1864}$		＇6	W．Gillingham．	S． 0 ．
28	50.09	72.92	54－45	31.75	52.30 .	Mar．1865；Dec． 1870 1870	$\begin{array}{ll}5 & 9 \\ 0 & 1\end{array}$	＂ 6	J．O．McCormick． A．X，Valente．	$\begin{array}{ll} 46 \\ \text { "، } \end{array}$

MMASSACHUSETTS．

1	44．17	67.58	47．99	24.15	45.97	Jan．1836；Dec． 1853	176		Prof．E．S，Snell．	MS．，Ag＇l．Rep．，and S．Coll．
2	43.95	67.47	49.00	24.58	46.25	Jan．1854；Dec． 1870	16 II	$7{ }_{7} 2_{a} 9 \mathrm{ab}$ bis	＂،＂،	P．O．and S．I．Vol．I，and S．O．
3	44.83	69.07	49.31	26.68	47.47	Jan．1798；Dec． 1808	110	\bigcirc_{r} max．	French．	Mem．Am．Acad．
4	42.33	66.47	46.67	22，08	44.39	Mar．1863；Sept． 1865		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Rev．E．Dewhurst．	S．O．
5			．．	－		1854	－ 2	$7 \mathrm{~m}{ }^{2}{ }_{3} 9_{a}$	R，R．Gifford．	P．O．and S．I．Vol．I．
6						1843； 1844	－ 9	$6_{\mathrm{ma}}^{\mathrm{m}} \mathrm{N} . \mathrm{C}_{\text {a }}$	Clark．	Manuscript．
7	45．6I	68.68	51.04	28.08	48.35	Feb．1806；Apr． 1858	$3^{88} 5$		J．P．Hall，and R．T． Paine．	Med．and Agr．Reg．Bost．Vol． I，1806－7，Sill．Journ．，MS．in S．Coll．，P．O．and S．I．Vol． I，and Memoirs Americaines．
8	45.69	70.38	52.78	30.88	49.93	${ }^{1772}$		6 ma N． 6_{a}	Williams．	Phil．Soc．Trans．
9	43.56	66.34	50.59	26.81	46.83	Apr．1856；June，186r	34		L．A．Darling and others．	P．O．and S．I．Vol．I，and S．O．
10						1851		$\odot_{r} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Root．	S．Coll．
11	47．9	70.36	51.57	30.36	50.05	Jan．1742；Dec． 1773	$32 \quad 0$		Winthrop．	Am．Alm．1837，p． 176.
12	47.83	71.57	50.57	30.07	50.01	July，1780；Dec． 1783			Rev．E．Wigglesworth．	Mems．Am．Acad．
13	44．13	68.37	50.10	25.15	46.94	Jan．1784；Dec． 1788		．．．．．．	Williams．．	Am．Alm．I837，p． 176.

[^87]

IMASSACHUSETTSS．－Continued．

	$\begin{aligned} & \text { 官 } \\ & \text { 足 } \\ & \text { है } \end{aligned}$		E E 号	$\begin{aligned} & \text { H } \\ & \text { H } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { む̈ } \\ & \stackrel{y}{\circ} \end{aligned}$	Begins．Ends．	Extent yrs．mos．	Observing hours．	Observer．	References．
14	$44^{\circ} \cdot 93$	$69^{\circ} \cdot 47$	$50^{\circ} .45$	$126^{\circ} \cdot 96$	$47^{\circ} \cdot 95$	Jan．1790；Dec． 1870	48． 5	$7 \mathrm{~m}{ }^{2} \mathrm{a}_{\text {g }}$	Profs．Farrar，Bond， and others．	Am．Almanac 1837，MS．in S．Coll．，Am．Almanac 1843 and foll．especially 1854，and S．O．
15				27.86		Dec．1856；Jan． 1858	－ 6	＂	D．H．Ellis．	P．O．and S．I．Vol．r．
16	46.16	69.58	52.68	27.30	48.93	Jan．1861；June，1865	34	$\bigodot_{r} 99_{m} 3 \mathrm{am}$	W．F．Patton，J．L． Fox，and J．Beale， Surgeons．	MS．in S．Coll．and S．O．
17	．	67.34	－		．	May，1860；Mar．1861	－ 9		Dr．G．M．Morse．	S．O．
18		．．	．		．		－ 4		Dr．	Med．and Agr．Reg．Bost．Vol． I，1806－7．
19				27.49		Dec．1858；Feb． 1859	－ 3	$7 \mathrm{~m} \mathrm{z}_{1} \mathrm{~g}_{\mathrm{a}}$	A．W．Mack．	P．O．and S．I．Voi．i．
20	42.88	68.08	47.78	23.71	45.61	Apr．1806；Nov． 1818	34		E．Hoyt and Hitch cock．	Med．and Agr．Reg．Bost．Vol． 1，1806－7，and Sill．Journ．
21			．		．	1849	－ 3		Ritchie．	S．Coll．
22	46.69	70.73	－	．	．	1849	－ 6		Ric	＂＂
23						1861	O 2		C．C．Terry．	S．O．
24									Dr．N．Barrows． G．Raymond．	"، "،
25	44.96	68.06	51.45	27.01 28.60	47.87 48.76	Jan．1861 ；Nov．1861	0 II	$7{ }^{2} 9$	G．Raymond． Assistant Surgeon．	Ar Met Regs 1855 and 1860
26	45.52 47.27	68.47	52.43 48.12	28.60 27.05	48.76	Jan．1824；Dec． 1870	$\begin{array}{rrr}26 & 7 \\ 0 & 10\end{array}$	$7 \mathrm{~m}{ }^{\text {a }}$ 9a	Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860 ， and MS．from S．G．O． MS．from S．G．O．
27 28	47.27	68.68	48.12	27.05 28.63	48.25	Sept．1864；June， 1865 Oct．I862；Dec． 1870	0	＂		＂، from
29	44.14	67.25	47.95	23.86	45.80	1843；1852	5 10	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Hyde．	S．Coll．
30	43.24	67.50	48.57	24.90	46.05	Feb．I865；Dec． 1870	42	7 ma 2a 9 a bis	H．M．Nelson．	S．O．
31	42.17				．．		－ 6		Rev．H．W．Scandlin．	＂＇s
32 33		68.28 66.87				1847； July， $1868 ; ~$		$\odot_{r} \mathrm{~N}^{\text {c }} \odot_{\mathrm{s}}$	Brooks． Rev. E．Dewhurst．	Pat．Off．Rep． $185 \mathbf{1}$.
33	39.87	66.	44.87	22.	43.61 50.18	July，1868；Dec．	$\begin{array}{ll}2 & 3 \\ 3 & 0\end{array}$	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	Rev．	Rep．Brit．Asso． 1847.
35	47.50 42.30	67.37	51.37 51.67	32.33 29.28	47.65	July，1866；Dec． 1870	46	7 m 2	G．S．Newcomb．	S．O．
36	42.21	67.08	48.74	25.06	45.77	Jan．1856；Dec． 1870	140		J．Fallon．	P．O．and S．I．Vol．r，and S．O．
37	39.56	64.18	43.42	20.49	41.91	Jan．1837；Dec． 1838	20		M	Rep．Brit．Asso．1847．
38	．．						$\bigcirc 1$	$\odot_{r}{ }_{2}{ }^{1}$	A．Bigelow．	Med．and Agr．Journ．Bost．Vol． I，1806－7．
39	44.79	70.17	50.99	26． 18	48.03	Jan．1846；Dec． 1852	7 o	$7 \mathrm{~m} \mathrm{a}^{\text {a }}$	R．and J．R．Moor．	Am．Alm． 1848 and foll．
40	44.74	67.71	50.30	26.52	47.32	Jan．1838；Dec． 1870	33 －	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	G．A．Cunningham．	S．Coll．and S．O．
4 I	41.80	68.51	50.79	24.37	46.37	1849； 1853	$\begin{array}{ll}1 & 7\end{array}$	$\bigcirc_{r} 9_{m} 3_{a} 9 \mathrm{a}$	Batcheder．	S．Coll．
42	44.23	67.23	48.98	26.53	46.74	Jan．1821；Dec． 1832	120	$\bigodot_{\mathrm{r}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Sanders． Dr ．${ }^{\text {a }}$ Metcalf．	Am．Alm． 1834 ．${ }^{\text {a }}$ ，
43	43.49	67.57	49.08	25.15	46.32	Jan．1833；Dec． 1870	35 ○	$7_{\text {ma }} 2_{\text {a }} 9_{\text {a bis }}$	Dr．J．G．Metcalf．	Am．Alm． 1843 and foll．，MS． in S．Coll．，P．O．and S．I． Vol．I，and S．O．
44	43.89	68.54	50.16	27.81	47.60	Jan．1867；Dec． 1870	38	،	A．K．Teele．	S．O．
45	45.76	68.56	54.99	34.78	51.02	Jan．1827；＇Dec． 1853	93		WV．Mitchell．	MS．in S．Coll．
46	44.64	67.37	55.04	33.54	50.15	Jan．1854；Mar． 1861	6 5 5	$7_{\mathrm{m}} 2_{\mathrm{n}} 9_{\mathrm{a}}$		P．O．and S．I．Vol．r，and S．O．
47	44.80	66.95	52.27	30.21	48.56	Oct．1812；Dec． 1870	581	$\bigodot_{\mathrm{r}} 2_{\mathrm{a}} \bigodot_{\mathrm{s}} 1 \mathrm{IO}_{\mathrm{a}}$	S．Rodman and E． T．Tucker．	Sill Journ．，MS．in S．Coll．，P． O．and S．I．Vol．I，S．Coll．， and S．O．
48	43.73	68.08	47.34	25.43	46.15	May，1864；Dec． 1870		$7_{\mathrm{m}} 2_{3} 9_{2}{ }_{\text {bis }}$	J．H．Caldwell．	S．O．
49	42.45	66.69	49.96	24.91	46.00	Mar．1806；Sept． 1868	61	${ }_{1}$	Dr．H．C．Perkins．	Med．and Agr．Journ．Boston Vol．I，I806－7，P．O．and S． I，Vol．1，S．Coll．，and MS．
50	45.00	69.95	－ 51.56	26.25	48.19	1850；Mar． 1857	72	$7 \mathrm{~m}{ }^{2} 9^{4}$		P．O．and S．I．Vol．I，\＆S．Coll．
51	43.83	69.46	49.27	26.10	47.16	Feb．1866；Dec． 1870	4 11 8	$\begin{aligned} & 7_{m} 2_{a} 9_{a} \text { bis } \\ & 6_{0} N .66 \end{aligned}$	Rev．E．Nason． Plânt．	S．O． Manuscript．
52 53	49.34			－．	\cdots	$\begin{array}{ll}1844 ; \\ \text { 1851；} & 1845 \\ \end{array}$	$\begin{array}{ll}\circ & 8 \\ 1\end{array}$		Plânt． Benjamin．	Manuscript． Manuscript and S．Coll．
53	．．	65.34	45.85	\cdots	－	1851；${ }_{1857}{ }^{1853}$	$\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}$	$\begin{gathered} 6_{m}{ }^{2}{ }^{2}{ }^{10_{a}} \\ 79_{\mathrm{m}} 9_{\mathrm{m}}^{\mathrm{N}} \mathrm{~g}_{\mathrm{a}} \end{gathered}$	Benjamin． F．Shaw．	Manuscript and S．Coll． P．O，and S．I．Vol．i．
55	39.86	65.56	48.45	20.77	43.66	Nov．1853；Dec． 1857	38	$7_{7 m}{ }^{\text {a }}$ a $9^{\text {a }}$	J．Brooks．	P．O．\＆S．I．Vol．I，\＆S．Coll．
56	44.22	69.48	49.27	23.86	46.71	1851；Dec． 1870	1410		W．Bacon．	S．O．，S．Coll．，and P．O．and S．I．Vol．1．
57	47.35	71.32	54.82			1849 ${ }^{1849}$	－ 9		Kent．	S．Coll．
58	46.19	70.08	51.39	27.97	48.91	Jan．1786；Dec． 1828	43 I 0	$\mathrm{S}_{\mathrm{m}} \mathrm{~N}^{2} \mathrm{O}_{\mathrm{s}} 1 \mathrm{O}_{\mathrm{a}}$	Dr．Holyoke． Dr．N．Barrows．	Am．Alm．1834， 1837. S． O
59 60	45.42 45.08	66.96	51.25	29.38	48.25	$\begin{array}{cc} \text { May, i863; Apr. } 1865 \\ \text { I849; } & \text { I851 } \end{array}$	$\begin{array}{lll}1 & 11 \\ 1 & 0\end{array}$		Dr．N．Barrows． Holcomb．	S．O． S．Coll．
61	46.46	71.40	50.72	26.24	48.7 I	Jan．1848；Dec． 1866	9 II	a	L．C．Allin，F．A． Brewer，J．Weather－ head．	P．O．and S．I．Vol．i，S．O．， Manuscript，and S．Coll．
62		72.17	53.62		\cdots	$\text { May, } 1854 ; \text { Mar. } 1856$	－ 10		A．Schlegel．	P．O．and S．I．Vol．I．
63	44.19	67.71	49.96	26.93	47.20	Apr．1860；Dec． 1870	99		N．B．Brown，J．H． Caldwell，and A． M．Merriam．	S． O ．
64	．	67.40	47.30	21.93	－•	June，1806；Sept．1807	13	$\odot_{r} 2^{2}{ }^{1}$		Med．and Agr．Reg．Bost．Vol． 1，1806－7．

6 SEPTEMBER，I874．

MASSACHUSFTTS．－Continued．															
Name of Station．	＋	＋	壁	号	\％	运	家	灾	号	官	菏	苂	出	\％	
65．Watertown Arsenal ${ }^{\text {l }}$	$42^{\circ} 21^{\prime}$	$71^{\circ} 1 I^{\prime}$	100	$25^{\circ} .85$	$25^{\circ} .86$	$33^{\circ} \cdot 14$	$45^{\circ} .75$	$55^{\circ} \cdot 59$	$66^{\circ} .02$	$71^{\circ} .61$	$70^{\circ} \cdot 19$	$61^{\circ} .83$	$49^{\circ} \cdot 42$	$37^{\circ} .78$	$28^{\circ} .27$
66．West Denis	4140	70 11	25		\cdots	\cdots	\cdots			－		60.77	50.50		\cdots
67．Westfield ．．．	4206	7245	180	26.64 ．	29.39	37.55	47.90	60.98	68.04	74.39	69.35	60.39	51.25	38.95	32.04
68．Westfield ．．．	4206	7245	180	22.48	25.48	32.91	45.16	55.92	64.59	69.58	66.94	59.57	48.55	38.31	27.22
69．West Stockbridge	4216	7322	\cdots	\cdots	19.51	－•	\cdots		69.72		$\cdots{ }^{\circ}$			\cdots	\cdots
70．Weymouth ．${ }^{\text {b }}$	4212	7056	150	22.06	33.90	33.09	42.51	53.98	63.99	69.78	66.46	60.99	51.00	40.15	29.29
71．Williamstown（Will． Coll．）	4243	7313	686	21.63	22.92	30.93	43.60	55.78	65.56	69.66	66.52	58.81	46.92	36.34	25.28
72．Wood＇s Hole－	4132	7040	25 5	30.58	28.80	37.05	44.54	55.59	66.84	70.99	69.95	64.84	53.82	43.62	36.48
73．Worcester（State Lun．As．）	4216	7149	528	23.74	25.60	33.10	45.75	56.18	65.84	70.94	67.71	60.89	49.74	39.26	27.67

MICHIGAN．

1．Adrian ${ }^{\text {2．Ann Harbor }}$ ．．．	$\begin{array}{ll}41 & 58 \\ 42 & 19\end{array}$	8411 8344	$\begin{array}{r}1240 \\ 89 \\ \hline\end{array}$	23.80 21.39	22.03 20.74	28.03 30.75	46.65 47.85	58.10 58.61	$\begin{aligned} & 67.18 \\ & 68.80 \end{aligned}$	72.07	69.72	63.05	50.49	37.86	26.77
2．Ann Harbor－．	4219			21.39	20.74	30.75							50.49		26.77
3．Battle Creek	4222	8515	750	24.45	25.98	34.19	44.55	58．19	69.79	73.89	71.44	63.46	49.61	38.21	28.35
4．Benzonia	.4437	86 os	620	22.18	21.40	28.63	44.63	59．18	．．	．．	．．	．．	．．	39.05	27.98
5．Brooklyn－	4206	8336	1020	19.8	25.9	36.4									\cdots
6．Carp Lake Mine ${ }^{4}$	4652	8954	1440	15.23	21.85	22.98	36.50			68.53	67.88	53.03	41． 98	29.84	15.50
7．Central Mine ．	4700	8854	1177	14.24	12.01	21.51	34.02	48.18	58.93	64.58	60.63	52.80	39.79	29.08	17.26
8．Clinton ．－	4205	8400	750	25.15	32.52	39.52	44.08	56．79		－．		54.31	43.67	40.73	26.28
9．Coldwater	4159	8502	－	26．71	26.38	27.96	46.32	57.75	65.44	72.52	68.08	60.94	45.75	35.63	34.35
10．Cooper ${ }^{5}$ ．	4225	8538	690	21.21	24.46	30.42	45.09	54.55	67.97	73.80	69.90	62.86	49.00	34.58	28.22
r i Copper Falls Mine ．	4726	8822	1250	8.15	6.85	18.05	31.85	46.70	56.70	65.85	6 r .35	50.40	42.00	28.90	17.60
12．Dearbornville	4220	8318		24.99	21.26	33.79	43.42	54.73	64.82	69.95	65.32	58.00	51.76	35．01	24.26
13．Detroit	4220	8303	597	25.84	25.89	34.11	46．18	56.09	65.43	69.60	69.11	58.51	49.85	38.14	28.09
14．Eagle River	4725	$88 \quad 26$	627	10.93	II． 13	18.93	38.63	49．50	61.46	68．16	61.08	54.61	47.21	29.63	17.85
15．Eureka Valley	4706	8851	800	17.57	19.59	23.98	35.73	51.25	59.08	66.80	64.78	50.18	40.68	29.33	21.80
16．Flint	4302	8342	－．	22.85	19.68	33．15	48.07	59.80	66.90	74.12	70.93	64.39	49.06	36.92	25.03
17．Forestville	4338	8239	600						66.8	70.1					
18．Fort Brady	4630	8428	600	16.73	$\times 5.89$	24.77	38.39	49.67	59.57	65.50	63.10	54.75	43.88	32.60	21.44
19．Fort Gratiot ．	4259	$82 \quad 29$	598	25.42	25.39	$3^{2.72}$	44.30	54.26	63.79	69.81	67.95	60.01	48.78	38.28	27.19
20．Fort Mackinac ．	4551	8440	728	19.10	17.27	25.69	37.32	48.18	57.72	64.90	64.17	55.30	$45 \cdot 32$	34．14	23.14
21．Fort Wayne ：	4220	8305	\cdots	34.21	29.91			59.83	64.96	74.32	75.10	65.46	53.49	36.92	35.90
22．Fort Wilkins	4728	88 oz	630	23.40	21.40	28.93	38.07	48.42	56.68	63.55	62.17	55.79	42.91	30.17	20.55
23．Grand Haven	4305	8615	588	25.80	25.53	32.98	45.25	56.08	65.40	70.12	70.27	60.38	49.83	38.00	28.73
24．Grand Rapids	4300	8542	780	23.29	24.71	30.94	45.63	57.49	67.28	73.59	68.38	6 t .07	47.79	36.79	25.86
25．Holland．	4249	8608	\cdots	24.71	26.51	32.10	$44 \cdot 31$	54.58	66.01	70.48	65.82	58.15	47.70	37.78	28.24
26．Homestead	4436	8602	\cdots	21.50	23.47	25.65	41.47	51.65	65.64	67.13	62.09	59.76	46.29	37.62	25.65
27．Jackson ．	4217	8427	\cdots	．．	25.77	．．	．．	\cdots				근	．．	．	．
28．Lake George	4615	8500	．	．			．	49.79	．	66.15	66.69	54.21			
29．Lansing（State Agr． Coll．）	4246	8436	895	23.61	$25 \cdot 36$	32.50	46.59	56.51	67.20	70.65	67.43	59.88	45.72	37.29	25.90
30．Laphamsville ．．	4300	8530	650	28.90	32.65	39.33	43.87	54.38	64．10	69.50	66.24	64.26	49.59	35.23	26.14
31．Litchfield	4205	8446	1040	21.35	24.37	29.16	44.63	55.74	67.22	72.74	67.45	59.95	47．12	36.18	23.34
32．Macon ．．	4205	8352											－	．．	23.13
33．Manchester ．－	42 II	8406	．．	\cdots	．	．	．	58.08	70.98	66.60	66.65	\cdots	\cdots	\cdots	．．

[^88]MASSACHUSETTS．－Continued．

	$\begin{aligned} & \text { 官 } \\ & \text { 卨 } \\ & \text { R } \end{aligned}$		$\begin{aligned} & \text { 荷 } \\ & \text { 首 } \end{aligned}$	苞	苞	Series． Begins．Ends．	$\begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing Hours．	Observer．	References．
65	$44^{\circ} .83$	$69^{\circ} \cdot 27$	$49^{\circ} .68$	$26^{\circ} .66$	$47 .{ }^{\circ} 61$	Jan．1837；Dec．1870	10 O	${ }^{2}$	Assist．Surg．，and J． H．Bixby．	Ar．Met．Reg．1855，and S．O．
66						1864	－ 2	7 ma 2a $\mathrm{ma} \mathrm{bis}^{\text {b }}$	E．Tappan．	$\text { S. } \mathrm{O} \text {. }$
67	48.81	70.59	50.20	29.36	49.74		20	…．．	Rev．E Davis	Diove， 1857.
68	44.66	67.04	48.81	25.06	46.39	Nov．1824；May， 1866	1211	2	Rev．E．Davis．	P．O．and S．I．Vol．I，S．O．， Sill．Journ．，and Manuscript．
69					\cdots	June，1849；Feb．I855	02	$7 \mathrm{~m} \mathrm{I}_{\mathrm{a}} \mathrm{g}_{\mathrm{m}}$		P．O．\＆S．I．Vol．I，\＆S．Coll．
$7{ }^{\circ}$	43.19	66.74	50.71	28.42	47.27	May，1856；Jan． 1859	$\begin{array}{r}1 \\ \hline\end{array}$	－	Dr．N．O．Tinell．	P．O．and S．I．Vol．I．
71	$43 \cdot 44$	67.25	47.36	23.28	$45 \cdot 33$	Jan．1816；Dec． 1870	368	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Profs．C．Dewey and E．Kellogg，A．Hop－ kins and others．	MS．communicated to S．I．by E．W．Morley，P．O．and S． I．Vol．I，and S．O．
72	45.73	69.26	54.09	31.95	50.26	Aug．1852；Apr． 1855	110	＂	R．R．Gifford．	P．O．\＆S．I．Vol．I，\＆S．Coll．
73	45.01	68.16	49.96	25.67	47.20	Jan．1839；Dec． 1870	3I 9	2	H．C．Prentiss，F．H． Rice，J．Draper．${ }^{3}$	Am．Alm． 1842 and foll．，P． O．and S．I．Vol．i，S．O．， and Rep．Brit．Assoc． 1847.

IMICHIGAN．

1	44.26					1870		$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{am}$ bis		S． 0.
2	45.74	70.23	50.47	22.97	$47 \cdot 35$	June，1852；Dec． 1870	410	$7_{m} 2_{\text {a }} 9_{\text {m }}$	L．Woodruff，Prof，N． C．Winchell \＆wife．	P．O．and S．I．Vol．I，S．O．，\＆ S．Coll．
3	45.64	71.71	50.43	26.26	48.5 I	Mar．1849；Dec． 1859	10 9	$7{ }^{6}$	D．W．M．Campbell．	P．O．\＆S．I．Vol．I，\＆S．Coll．
4	44． 15	．．	．．	23.85		1870		$77_{\text {m }} 2_{\text {a }} 99_{\text {a bis }}$	W．Wilson．	S．O．
5						Mar．1853；Mar． 1854	\bigcirc		Dr．M．K．Taylor．	P．O．and S．I．Vol．I．
6			41.62	17.53		July，1864；Apr． 1865	－ 10		Dr．E．Ellis．	S．O．
7	34.57 46.80	61.38	40.56 46.24	14.50 27.98	37.75	May，1867；Dec． 1870	$\begin{array}{rrr}3 & 7 \\ 0 & 11\end{array}$		G．H．Whittlesey．	
8	46.80 44.01	68.68	46.24 47.44	27.98 29.15	47.32	$1850 ;$ July， $1868 ;$	$\begin{array}{rrr}3 & 11 \\ 2 & 6\end{array}$		Wainwright． N．L．Southworth．	S．Coll． S． O ．
10	43.35	70.56	48.81	24.63	46.84	June，1854；Mar． 1867			Mrs．O．C．Walker \＆ Dr．M．Chase．	P．O．and S．I．Vol．I，and S．O．
II	32.20	61.30	40.43	10.87	36.20	Dec．1855；Aug． 1857	1 9	$7 \mathrm{~m} \mathrm{2am}_{\text {a }}$	C．S．Whittlesey．	MS．in S．Coll．and P．O．and S．I．Vol．I．
12	43.98	66.70	48.26	23.50	45．6I	$1836 ; 1839$		＇6	Assistant Surgeon．	Army Register．
13	$45 \cdot 46$	68.05	48.82	26.61	47.24	Apr．1836；Dec． 1867	303	6	Various observers．	Ar．Met，Regs．1855，S．Coll．， U．S．Lake Survey，MS．and Rep．of 1867 and 1868 ，P ． O．and S．I．Vol．I，and S．O．
14	35.69	63.57	43.82	13.30	39.09	Dec．1855；Dec． 1856		$7 \mathrm{~m} \mathrm{I}_{\mathrm{a}} \mathrm{g}_{\mathrm{n}}$	Mrs．M．A．Goff．	P．O．and S．I．Vol．I．
15	36.99	63.55	40.06	19.65	40.06	Jan．1862；Feb． 1864	15	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	W．Van Orden．	S．O．
16	47．01	70.65	50.12	22.52	47.58	Jan．1854；Dec． 1855	20	$7_{\mathrm{m}} 2_{\mathrm{s}} 9_{\mathrm{s}}$	Drs．D．Clark and M． Miles．	P．O．and S．I．Vol．I．
17						1858		$6_{\text {m }} 99_{m} 3_{\mathrm{a}} 6_{\mathrm{a}}$	C．N．Turnbull．	MS．from U．S．Lake Survey．
18	37．6I	62.72	43.74	18.02	40.52	Jan．1823；Dec．	32 I	$7_{\mathrm{ru}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860， and MS．from S．G．O．
19	43.76	67．18	49.02	26.00	46.49	Apr．1830；Aug． 1859	$17 \quad 5$	6	Assist．Surg．\＆Lieut． C．N．Turnbull．	P．O．and S．I．Vol．I，Ar．Met． Reg．1855，and U．S．Lake Survey，and MS．
20	37.06	62.26	44.92	19.84	41.02	Sept．1825；Apr．186x	276	＂	Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860， and MS．from S．G．O．
21		71.46	51.96	33.34	4i．0	May，1862；Feb． 1863	0 10	－ 0		MS．from S．G．O．
22	38.47 44.77	60.80 68.60	42.96 49.40	21.78 26.69	41.00 47.36	June，1844；June， 1846 Sept．1859；July，I863	$2 \begin{array}{ll}1 \\ 3 & 11\end{array}$		Assistant Surgeon． H．Squier．	Ar．Met．Reg． 1855. U．S．Lake Survey，Rep．of
23 24	44.77 44.69	68.60 69.75	49.40 48.55	26.69 24.62	47.36 46.90	Sept．1859；July， 1863 1849 ；Dec． 1870	3 II II	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	H．Squier． A．O．Courrier，L．H．	U．S．Lake Survey，Rep．of 1867.
24	44.69	69.75	48.55	24.62	46.90	1849 ；Dec． 1870	II 3	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{ab}$ bis	A．O．Courrier，L．H． Strong，E．A．Strong， \＆Dr．E．S．Holmes．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
25	43.66	67.44	47.88	26.49	46.37	June，1856；Dec．I870		＂	L．H．Streng．	P．O．and S．I，Vol．I．and S．O．
26	39.59	64.95	47.89	23.54	43.99	Jan．1865；Feb． 1870	2 9 0 1	＇6	G．E．Steele．	S．O． ＂ 6
27 28	－•	－．		\cdots			\circ		Dr．F．M．Reasner． Capt．A．W．Whipple，	P．O．and S．I．Vol．I．
29	45.20	68.43	47.63	24.96	46.55	Dec．1858；Dec． 1870	73	$7{ }_{\text {m }} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	and E．Perrault． J．C．Holmes，C．Abbe， and R．C．Kedzie．	＂＂＂
30	45.86	66.61	49.69	29.23	47.85	Dec．1850；Nov． 1851	10		Wetmore．	Pat．Off．Rep．
31	43．18	69.14	47.75	23.02	45.77	July，1866；Dec． 1870	46	7 ma	R．Bullard．	S．O．
32 33	\cdots	68.08	．．			$\begin{aligned} & 1870 \\ & 1865 \end{aligned}$	O I	، ${ }^{\text {، }}$	D．Howell． Dr．F．M．Reasner．	

[^89]

MICHIGAN．－Continued．

	$\begin{aligned} & \text { 会 } \\ & \text { 范 } \\ & \text {. } \end{aligned}$		\＆ 号 4	嵳	－	Series． Begins．Ends．	Extent yrs．mos．	Observing HOURS．	Observer．	References．
34	$37^{\circ} \cdot 5^{6}$	$63^{\circ} .23$	$44^{\circ} .80$	$19^{\circ} \cdot 57$	$41^{\circ} .29$	Sept．1857；Dec． 1867	104	7 man 2am	H．S．\＆F．M．Bacon， P．White，and G． H．Baker．	U．S．Lake Survey，Rep．of 1867－8，P．O．and S．I．Vol． I ，and S．O．
35	41.11	64.44	45.74	23.23	43.63	July，1860；June， 1862		$7 \mathrm{~m} 2^{\text {a }} 99_{\mathrm{a}} \mathrm{bis}$	L．M．S．Smith．	S．O．
36	46.44	70.59	49.80	25.83	48.17	Jan．1849；Dec．I870	II 9		J．Lane，H．J．and F． E．Whelpley and others．	U．S．Lake Survey，Rep．of 1867－8，P．O．and S．I．Vol． I．，S．O．，and S．Coll．
37	48.72	72.46	51.00	29.18	50.34	Oct．1868；Aug． 1870	110	＂	H．A．Pattison．	$\mathrm{S} . \mathrm{O}$ ．
38						1856	$\bigcirc 1$	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	L．H．Streng．	P．O．and S．I．Vol．I．
39	47.48	69.11	49.97	27.57	48.53	Jan．1858；May， 1862	210	$7_{\mathrm{m}} \mathrm{I}_{\mathrm{a}} 9 \mathrm{a}$	J．B．Crosby．	P．O．and S．I．Vol．I．and S．O．
40	38.48	64.26	47.54	23.46	43.43	Mar．1862；Dec． 1870	48	$7 \mathrm{~mm} 2_{\text {n }} 9_{\text {a }}$ bis	Rev．G．N．Smith，\＆ H．R．Shetterly．	S． O ．
41		63.83				1869	－ 6	＂	C．P．Avery．	
42	35.66	62.63	44.34	17.48	40.03	Aug．1859；Dec． 1870	115	＊	H．Shelby，H．B． Smith，\＆Dr．E．Ellis．	U．S．Lake Survey，Rep．of 1867 and I868，and S．O．
43	44.95	67.66	50.09	29.94	48.16	Apr．1867；Sept． 1870	$\begin{array}{ll}3 & 6 \\ 0 & 5\end{array}$	＂،	Dr．M．Chase \＆wife． R．H．Griffith．	S． O ． ＂، ،
44	33.89 40.26		42.77		42.35	Mar．${ }^{1869}{ }^{189}$ Aug． 1870	$\begin{array}{ll}\text { O } & 5 \\ \text { I } & 6\end{array}$	＂	R．H．Griffith． J．D．Millard．	$\begin{array}{ll} \text { " } 6 \text { " } \\ \text { " } \end{array}$
45	40.26 45.61	63.71 68.42	42.77 46.21	22.65 24.44	42.35 46.17	Mar．1869；Aug． 1870 Mar．1864；Aug． 1865	$\begin{array}{ll}\text { I } & 6 \\ \text { I } & 6\end{array}$	،	J．D．Millard． J．A．Weeks．	
46 47	45.61 36.77	68.42	46.21	24.44	46.17	Mar．1864；Aug． 1865 Jan．1854；Aug． 1862	1 6	$\odot_{\mathrm{r}} \mathrm{N} . \odot_{s}$	C．H．Palmer and J．	MS．in S．Coll．and S．O．
48	43.93	68.52	49.34	28.24	47.51	May，1857；July， 1859	21	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	J．Allen．	P．O．and S．I．Vol．I．
49		69.15			．．	1861	－ 3	$77_{\text {mi }} 2_{\text {a }} 9 \mathrm{ab}$ bis	Dr．C．S．Smith．	S．O．
50	41.62	69.31	48.54	16.80	44.07	Jan．1856；Mar， 1857	12		D．S．L．Andrews．	P．O．and S．I．Vol．I．
51	38.01	64.24	47.65	20.20	42.53	Sept．1852；May， 1856	33	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	J．J．Strong．	＂، 6 ＂ 6 \％ 6
52		．．			．．	1859	\bigcirc			
53	43.96 45.61				49.08	Feb．${ }^{1854}{ }^{\text {184 }}$ ；May， 1856	$\begin{array}{ll}0 & 4 \\ 2 & 1\end{array}$		Birney． I．H Streng．	S．Coll． P．O，and S．I Vol．I．
54	45.61 39.42	70.78 62.83	54.83 42.97	25.08 20.32	49.08 41.38	$\begin{array}{lll}\text { Feb．1854；May，} 1856 \\ \text { Sept．} \\ \text { 1823；} & \text { June，} 1825\end{array}$	$\begin{array}{rrr}2 & 1 \\ 1 & 10\end{array}$	$7 \mathrm{~m} 2_{\mathrm{n}} 9 \mathrm{a}$	L．H．Streng． Col，Cutier．	P．O．and S．I．Vol．I． MS．in S．Coll．
55 56	39.42	62.83	42.97	20.32 21.52	41.38	Sept．1823；June， 1825 Nov．1863；Apr． 1868	$\begin{array}{ll}1 & 10 \\ 0 & 11\end{array}$	$77_{m} 2_{\text {a }} 9 \mathrm{a}$ bis	I．W．Church and J． W．Paxton．	MS．from U．S．Lake Survey， and S ．O．
57	40.25	65.40	47.94	23.71	$44 \cdot 33$	Sept．1858；Dec． 1867	94	7 ma 2ag	J．Oliver and C．H． Whittemore．	U．S．Lake Survey，Rep．of 1867－68．
58	37.29	62.19	47．14	24.22	． 42.71	Aug．1858；Dec． 1870	93	＂	J．W．Paxton \＆others．	Survey of N．and N．W．Lakes， Rep．of $1867, \mathrm{MS}$ ，and S，O ．
59	46.66	70.78	52.46	24.37	48.57	Feb．1870；Dec．1870	0 II	$7 \mathrm{man} \mathrm{max}_{\text {a bis }}$	F．W．Higgins．	S．O．
60	45.64	68.09	48.35	26.42	47．13	Jan．1859；Sept． 1864	4 II		C．S．Woodward．	P．O．and S．I．Vol．I，and S．O．

MINNESOTA．

I	39.71	67.47	44.94	13.85	41.49	Apr．1865；Julv 1870		$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{am}$ bis	Dr．B．F．Babcock \＆	S．O．
2						1868		＂	S．Bloomfield．	＇،
3	35.20	59.86	41.76	14.52	37.84	Nov．858；Dec． 1870	10 II	،	T．Clarke，and C． Wieland．	P．O．and S．I．Vol．I，and S．O．
4		61.37	－	\cdots	．	1860		＂	H．Wieland．	S．O．
5						1866		＂＇	A．Stouffer．	
6	39.30			19.35		Dec．1857；May， 1858		$7 \mathrm{~mm} \mathrm{~m}_{3} \mathrm{~S}_{\text {g }}$	S．Walsh．	P．O．and S．I．Vol．I．
7	37.27	60.16	41.57	15.05	38.51	Jan．1858；Sept． 1860			A．A．Hibberd．	P．O．and S．I．Vol．I，and S．O．
8	\cdots			7.00		1852；1853			Barnard．	S．Coll．
9	45． 10	68.48	45.85	15.97	43.85	May，1859；May， 1861	$\begin{array}{ll}1 & 9 \\ 0\end{array}$		T．F．Thickstun．	P．O．and S．I．Vol．I，\＆S．O．
10	．．	．．	．\cdot	．	．	1868 1868	$\begin{array}{ll} 0 & 1 \\ 0 & 5 \end{array}$		S．Bloomfield． T．A．Kellett．	S．O．
11	\cdots	．．	－．	．	．	${ }_{1849}{ }^{1868}{ }^{\text {8 }} 80$	$\circ 5$	－ 30	T．A．Kellett． Holt．	S．Coll．
12	37．3I		\cdots	15.8 r		$\xrightarrow{1849 ; ~} 1850$	0 II	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 33_{\mathrm{a}} 9_{\mathrm{a}}$	Holt．	S．Coll．
13	42.76	67.46	44.28	13.75	42.06	June，1858；May， 1866	510	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bis }}$	A．C．\＆H．L．Smith．	P．O．and S．I．Vol．I，and S．O． Ar．Met．Reas． 1855 and $\mathbf{1 8 6 0}$
14	42.96	70.62	46.49	13.85	43.48	July，1853；Apr． 1867	$13 \quad 4$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Regs． 1855 and $\mathbf{1 8 6 0}$ ， and MS．from S．G．O．
15	39.87	67.55	43．18	10． 13	40.18	July，1849；Dec． 1870	19.6	＂	＂＂	،6 ،، ، ،
16	45．12	71.05	46.12	15.79	44.52	Oct．1819；Dec． 1870	$42 \quad 2$	＋＂	＂${ }^{6}$	＂6＂＂＂
17	．．	57.60	．．			1867	－ 5	$7 \mathrm{~m} 2_{\mathrm{a}} 99_{\mathrm{a}}$ bis	R．Bardon．	S．O．
18		69.59	45.21			1861		－${ }_{6}$	T．F．Thickstun．	＂
19	38.81	70.05	44.49	10.96	41.08	Aug．1860；July， 1862	110	＂	S．R．Riggs and A． W．Higgins．	＂،
20	41．13	66.93	51.13	14.63	43.46	Dec．1864；Dec． 1865			J．B．Clough．	
21	40.75	．	．．	11.97	．	Nov．1860；Mar． 1863	$\bigcirc 10$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \text { bis }$	O．H．Kelly，	S．O． P．O，and S．I Vol i
22 23	41.90	64.66	42.68	I4．01	40.81	Jan．${ }^{1869}{ }^{1859}$ Dec． 1870	$\begin{array}{ll} 0 & 2 \\ 1 & 9 \end{array}$	$7_{m} 2_{a} 6_{\mathrm{a}}$	A．Whitefield． T．M．and Mary H．	P．O．and S．I．Vol．I． S． O ．
						Jan．1869，Dec． 1870		$7 \mathrm{~m} \mathrm{ma}_{\text {a }} \mathrm{m}^{\text {bis }}$	Young．	

[^90]MINNHSOTA．－Continued．

Name of Station．	Ḣ゙	＋	蓉	咢	－		号	㝕	怘	¢	驚		ぜ	言	®
24．Lac qui parle ${ }^{1}$	$45^{\circ} \mathrm{OO}$	$95^{\circ} 30^{\prime}$	946	$8^{\circ} .85$	$13^{\circ} .26$	$26^{\circ} .48$	$42^{\circ} \cdot 78$	$5^{6} .25$	$66^{\circ} \cdot 32$	$72^{\circ} .14$	$68^{\circ} .28$	$57^{\circ} \cdot 13$	$45^{\circ} \cdot 79$	$28^{\circ} .05$	$13^{\circ} .29$
25．Lake Winibigoshish	4730	9440		-8.83	6.67	24.57	．．	51.19	\ldots					24.03	2.45
26．Litchfield ．	4512	9445			14.10				69.24	71.48 73.84	63.89 69.47	62.65 64.76	46.53 43.34	38.24 32.29	17.72 20.06
27．Madelia ．	4400	94 94 94 10	\because	12.18	14．10	I8．86	45.62	62.16	69.24	73.84	69.47 69.58	64.76	43.34	32.29	20.06
28．Manketo ．	4408	$94 \quad 02$	85				ㅍ．		67.10	71．	69.58 66.68				
29．Minneapolis ．	4458	9315	856	9.89	14.58	21.47	41.94	56.96	67.10	71.25	66.68	58.92	44.71	32.35	14.13
30．New Ulm ．	4419	9430	821	11.25	16.52	22.79	43.50	59.34	69.58	74.73	70.67	62.29	47.49	34.65	16.12
3r．Pembina．	4858	97 02 1	900	7.84	18.54	18.19	36.73	52.78	66.85	74.47	69.93		45.36	ㄱ．．	5
32．Princeton	4534	933^{8}	．	8.96	13.33	31.54	36.47	56.32	67.28	73.88	67.98	58.65	$45 \cdot 36$	27.39	12.35
33．Red Lake	4830	9530			\cdots		38.37								
34．Red Wing	4433	9230	800	9.25	17.90	16.75	40.26	46.70	68.1	71.17	72.87	．	．	33.05	10.86
35．St．Anthony＇s Falls	4500	9315	820	5.09	19.00	30.72	45.62	57.31	64.33	73.61	70.40	58.75	51.63	38.78	25.22
36．St．Cloud	4539	9412	．．	8.72	8.57	21.58	34.58	58.88	69.00	68.88	66.11	52.43		．．	
37．St．Joseph ．	4855	9800		－1．18	6.33	20.62	43.16	52.28	65.77	68.30	66.63	54.68	45.19	25.01	13.35
38．St．Paul ．	4456	9305	800	11.37	16.94	23.06	43.04	57.47	66.65	70.64	66.81	58.30	44.09	32.55	16.96
39．Sandy Lake ．	4546	93 or	1300	13.93	17.08	29.68	38.23	50.15	60.94	67.69	65.47	58.10	43.36	22.83	9.70
40．Sauk Centre	4543	9456	1125	12.80			－		．	．．		．．		．．	\cdots
41．Sections 17 \＆ 22^{3}	4543	9530		7.90	10.38	28.43	41.39	60.90			68.36				11.03
42．Sibley ．．．	4430	9412	\cdots	8.89	13.37	19.54	41.87	58.24	68.13	72.79	68.36	59.68	45.33	32.89	15.00
43．Stillwater	4504	9245	756	\cdots	9i88	6．	$\dot{6}$	\cdots	\cdots	．	．	．．	．．	28.34	\cdots
44．Tamarack ${ }^{4}$ ．	4458	9338	．．	11.98	21.88	26.90	46.18	57．00	70.92	\cdots	．			．．	20.17
45．Travers des Sioux	4421	9400	1500		シ＂		43.02			72.57					
46．Wabashaw ${ }^{\text {a }}$	4430	9215	850	21.58	IX．29	35.80	．	56.64	70.47	72.16	71.76				25.83
47．White Bear Lake	4537	9530		2.73	（1）	19.20	－	．．	．．	．	．．				3.67
48．White Earth	4740	9620	1670	3．50：	10.35	21.43	－	．	6% I		．	56.83	33.88	23.75	13.78 15
49．Zapham ．．．	4610	$9600{ }_{\text {cc }}$	850	15.95	5.04	．	\cdots	．	67.01	69.86			．	24.02	15.21

MISSISSIPPI．

1．Academus，P．H．． 2．Bay of St．Louis 3．Brookhaven ${ }^{5}$（near）	$\begin{array}{lll}32 & \\ 30 & 20 \\ 31 & 34\end{array}$	$\begin{array}{lll}89 & \\ 89 & 18 \\ 90 & 24\end{array}$	20 430	48.96	52.48 51．07	58.62 $5^{8} .14$	68.80 64.36	75.65 78.76 70.75	78.92 77.25	82.23 80.23	81.48 79.93	77.80 73.32	62.76	54.30	46.20
4．Clinton ．	3220	$90 \quad 20$	．．								\cdots			\cdots	43.95
5．Columbus ．	33 31	8828	227	43.29	47.83	53.59	62.66	70.28	77．21	80.27	79.21	73.52	60.81	52.15	45.37
6．Early Grove ．．	3500	9000	484												36.80
7．East Pascagoula	3020	8833	10		．			76.96	81.95	83.93	83.78	80.04	69.95	60.94	
8．Enterprise ${ }^{6}$ ．	3212	8850	285	50.88	51.50	54.60	62.63	73.83	79.25	85.50	84.00	75.63	65.88	54.26	40.80
9．Fayette ．．	3143	9107	．．	45．55	55.93	51.93	61.98	67.93	74.67	75.34	75.65	73．10	59.18	51.77	46.66
10．Garlandsville	3214	8906	．	48．54	49.53	61.11	69.69	77.71	83.00	85.63	87.10	82.77	69.97	56.05	49.36
11．Grenada ．	3348	8950	\cdots	44.41	$47 \cdot 57$	54.38	62.54	67.36	76.11	80.31	79.34	73.70	62.54	55.44	46.87
12．Hernando ．．	3448	9000	275	．．	．．								59.18	56.87	35.46
13．Holly Springs ．	3445	8925	．．		55.02	60.87	62.83	70.46	79.15	81.91	80.65	73.63	62.50		
14．Jackson ．．	3229	$90 \quad 12$	350	46.86	52.60	58.64	62.06	71.25	75.95	79.57	80.43	75.09	63.43	55.41	48.44
15．Kingston ．．．	3124	91 26	\cdots	48.64	59.67	55.33	．	\cdots	\ldots				64.31		50.23
16．Lake Washington	3300	9106			50.18	62．19	63.35	72.90	77.33	81.73	81.27				
17．Marion C．H．．	3225	8946	168	48． 15	48.67	55.50	63.97	72.65	79.00	79.33	82．10	74.48	60.48	55.38	49.25
18．Monticello ．．	3134	9004	600	48.53	51.63				81.85	83.95	79.95	73.05	62.80	52.95	47.23
19．Natchez ．	3134	9127	264	48.89	52.35	58.59	65.80	72.07	78.62	80.89	79.93	75.73	64.94	55.70	50.04
20．Natchez＇	3134	9127	264	51.68	53.21	60.49	69.25	74.05	80.23	81.76	80.97	76.86	66.10	57.29	50.23
21．Oxford ．．．	3423	8929	300	36.03	39.05	48.30	67.03	73.54	76.06	79.24		74.63	61.94	54.64	42.78
22．Pass Christian ．	3020	8912	20	．．		．．	．．		83.20	84.00	80.90	79.34	68.20	．．	．．
23．Paulding ．．	3202	8903	215	47.84	53.48	59.57	66.32	74.75	80.42	81.91	81． 55	76.73	69.03	56．01	50.94
24．Philadelphia ．	3248	8906	550	45.20	49.20	51.90	60.73	70.48	73.98	79.23	79.28	74.45	64.43	52.60	42.35
25．Port Gibson．	3159	91 00	\cdots	38.05	53.77	56.69	56.60		．	．	81.03	72.86	64.41	54．16	46.62
26．Salem．－．	31	89					76.13	81.79						．${ }^{\text {c }}$	
27．Ship Island	3012	8857	15	58.40	56.91	67.27	70.48				86.70		74.40	66.20	64.82
28．Vicksburg	3223	9050	350	48.01	52.75	58.79	65.27	73.30	79.94	81.41	80.21	76.20	64.77	55.66	50.59
29．Westville	3 I 52	S9 54	．	．．				77.85		87.95	83.95	78.34	63.98	62.25	44.83

MINNESOTA.-Continued.

	$\begin{aligned} & \dot{8} \\ & \dot{0} \\ & \dot{0} \end{aligned}$		臭	岂	$\begin{aligned} & \dot{\text { H }} \end{aligned}$	Series. Begins. Ends.	$\left\|\begin{array}{c} \text { Extent } \\ \text { yrs.mos. } \end{array}\right\|$	Observing hours.	Observer.	References.
24	$41^{\circ} .84$	$68^{\circ} .91$	$43^{\circ} .66$	119.80	$4 \mathrm{I}^{\circ} \cdot 55$	Feb. 1844; Dec, 1859	65	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{am}$	Rev. S. R. Riggs.	P. O. and S. I. Vol. I, MS. in S. Coll., and S. Coll.
25				0.10		Nov. 1856; May, 1857	- 6	7 "	Rev. B. F. Odell.	P. O. and 'S. I. Vol. I.
26			49.14			1870	- 6	$7 \mathrm{~mm} 2_{\text {a }} 9^{\text {9 }}$ bis	H. L. Wadsworth.	S. O.
27	42.21	70.85	46.80	15.45	43.83	Jan. 1869; Dec. 1870	20	18	W. W. Murphy.	"
28						1864	- x		W. Kilgore.	" 6
29	40.12	68.34	45.33	12.87	41.67	Nov. 186.4; Dec. 1870	62		W. Cheney.	" "
30	41.88	71.66	48.14	14.63	44.08	Feb. I864; Dec. 1870	6 II	\bigcirc	C. Roos.	S
31	35.90	70.42				$1851 ; 1853$	- 9	$\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Cavilur.	S. Coll.
32	41.44	69.71	43.80	II. 55	41.63	Oct. 1856; Aug. 1860	39	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bts}$	O. E. Garrison and S. M. Byers.	P. O. and S. I. Vol. I, and S. O.
33			\cdots		\ldots		0 I	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Spencer.	S. Col
34	34.57	70.71	\cdots	12.67	-	Nov. 1855; Aug. IS67	- II	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Rev. J. Brooks and A. M. Stephens.	P. O. and S. I. Vol. I, and S. O.
35	44.55	69.45	49.72	16.44	45.04	Mar. 1853; Nov. I854	18	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Dr. C. L. Anderson.	P. O. \& S. I. Vol. 1, and S. Coll.
36	38.35	68,00		6.		May, 1860; Feb. 1869	12	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \text { bis }$	O. E. Garrison.	S. O.
37	38.69	66.90	41.63	6.17	38.35	Jan. 1854; Feb. I855	0 II	$7_{\text {III }} x_{a}$	Rev. D. B. Spencer, A. A. Kellum,	P. O. and S. I. Vol. I.
38	41.29	68.03	44.98	15.09	42.32	June, 1862; Dec. 1870	85	$7 \mathrm{~mm}{ }^{2} 9_{\mathrm{a}}^{\text {bis }}$	Rev. A. B. Patterson \& J. W. Heimstreet.	S. O.
39	39.35	64.70	41.43	13.57	39.76	1850; 18	110		Holt and others.	S. Coll.
40			- 1	$7_{\mathrm{ma}} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{aji}$	S. Bloomfield.	S. O.
41	43.57 39.88	69.76	45.97	9.77 12.42	42.01	$\begin{array}{lll}\text { Apr. 1861; May, } 1862 \\ \text { May, } 1865 ; & \text { Dec. } 1870\end{array}$	$\bigcirc 8$		O. E. Garrison. C.W.\& C.E.Woodbury.	"، "
43			1858	$\bigcirc 1$	$7 \mathrm{~m} 2_{\text {a }} 9$ a	A Van Vorhes.	P. O. and S. I. Vol. I.
44	$43 \cdot 36$	\cdots	\cdots	IS.OI	\cdots	Apr. 1863; June, 1864	- 9	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Mary A. Grave.	S. O.
45		L	\cdots		.	1849; 1851	- 2	$\odot_{r} 99_{m} 3_{a} 9^{\text {a }}$	Hopkins.	S. Coll.
46	.	71.46	\cdots	19.57	-	Dec. IS57; Aug. I858	- 8	$7 \mathrm{~m} 2_{n}$	Rev. I. Z. Hillier.	P. O. and S. I. Vol. I.
47	.	. .		\cdots	-	Dec. 1860; Mar. 186ı	- 3	$\bigodot_{\mathrm{r}} \mathrm{N} . \bigodot_{\mathrm{s}}$	O. E. Garrison.	S. O.
48	\cdots	\cdots	38.15	9.21	\cdots	Sept. 1869; Mar. 1870	$\bigcirc 7$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \text { bis }$	Dr. D. Pyle.	" 6
49	.		. .	12.07	-	Nov. I857; Dec. 1858	- 8	$7_{m} 2_{a} 9_{a}$	E. M.Wright, S Locke, and F. McMullin.	P. O. and S. I. Vol. I.

MISSISSIPPI.

MISSOURI．															
Name of Station．	\xrightarrow{H}	$\begin{aligned} & \dot{8} \\ & \stackrel{5}{0} \\ & \end{aligned}$	$\begin{aligned} & \text { 嵒 } \\ & \text { 要 } \\ & \text { 总 } \end{aligned}$	$\xrightarrow[\text { 品 }]{\text { 号 }}$	落		$\stackrel{\text { 邑 }}{\substack{4 \\ \hline}}$	家	$\begin{gathered} \text { ジ } \\ \text { E } \end{gathered}$	育	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { in } \end{aligned}$	苍	$\begin{aligned} & \dot{0} \\ & z \end{aligned}$	®ٌ
1．Allentown	$38^{\circ} 29^{\prime}$	$90^{\circ} 45^{\prime}$		$27^{\circ} \cdot 77$	$34^{\circ} \cdot 3^{6}$	$40^{\circ} .15$	$53^{\circ} .15$	$62^{\circ} \cdot 19$	$70^{\circ} .44$	75° ．or	$72^{\circ} \cdot 37$	$64^{\circ} \cdot 42$	$51^{\circ} .04$	$42^{\circ} \cdot 58$	$30^{\circ} .64$
2．Athens ${ }^{1}$ ．．	4030	9145	482	27.89	35.13	42.36	51.16	61.74	72.29	8030	78.00	75.40	54．35	46.30	28.42
3．Bolivar ．．－	3735	9330	1000	36.45	37.85	41.25	57.63	66.23	72.05	78.10	81.10	68.75	53.00	47.60	34.17
4．Brunswick ．．	3924	9305	．	40.25	42.50	47.00	63.50	67.50	73.00	81.00	77.50	70.00	55.50	41.25	47.25
5．Canton ．－．	4007	9134	\cdots	18.75	28.83	．	48.48	56.79	75.75	79.33	77.60				
6．Cape Girardeau	3720	8934	．	34.30	35．14	38.29	46.06	60.23	70.74	76.03	74.58	69.46	57.24	42.13	38.72
7．Carrollton ．．	3920	9328				14.10	50.10	66							
8．Cassville ．．．	$\begin{array}{ll}36 & 41 \\ 40\end{array}$	$\begin{array}{lll}93 & 56\end{array}$	2	36.00	42.60	49.94	58.70	66.04	75.09	So． 65	76.74	67.61	57.87	46.66	32.59
9．Corning ．．．	40 38 38 30	95 91 91 10	536	28.50	33.80	38.70	54.43	71.75	74.95	81．40	71.40	67.55	54.53	42.60	26.87
10．Dundee ．${ }_{\text {ric }}$ ．	3830	91 89 89	536	28.50	33.80	38.70	51.20	71.75	74.95	81.40	79.65				
1r．East Prairie ．．	3650	8920	－．	36.37	39.89	46.29	56.32	64.24	71.46	78.42	76.38	67.33	53.50	42.52	33.84
12．Easton－．	3946	9442	．	24.17	29.27	42.22	53.96	68.15	75．78	76.42	74.54	67.11	53.14	41.94	2 L .95
13．Edinburg ．	4006	9350	．	${ }^{1} 7.80$	\cdots									41.63	29.12
14．Hannibal ．．	3944	9123	\cdots	23.16	37.30	43.35	52.41	61.79	73.40	82.13	83.20	69.30	53．19	43.15	33.80
15．Harrisonville	3838	9425	\cdots	26.55	33.57	37.65	52.96	63.64	72.19	77.08	74.11	67.11	53.00	4 4 .87	28.57
16．Hematite	3811	9037	475	37.23	38.29	41．17	55.28	66.41	73.00	79.85	76.15	66.73	53.88	44.21	32.37
17．Hermitage	3756	9315	．	28.30	33.43	42．37	5 L .32	62.62	70.91	77.59	73.96	65.86	51.07	41.37	31．53
18．Hornersville	3605	$90 \quad 05$		38.00	46.49	53.99	63.11	74.28	78.95	83.23	79.53	73.88	6 r .80	48.50	42.39
19．Jefferson Barracks ．	3828	9015	472	32.47	$35 \cdot 34$	45.26	57.03	66.83	74.63	78.90	76.92	68.47	56.35	43.27	34.06
20．Jefferson City	3835	9216	650	30.18	35.01	41.34	53.33	66.50	73.49	80.79	76.41	65.39	52.74	42.78	30.27
21．Kansas City ．－	3905	9440	710	31.90	38.53	41.00	57.05	66.48	72.38	78.85	74.23	67.68	55.35	45.05	29.28
22．Keysterville ．	3927	$\begin{array}{lll}93 & 03\end{array}$	．．		80	4		62.37	69.45	74.88	77.25	．	44.80	，	
23．Laborville 24． 2regon	38 39 39	90 95 9	1100	29.08	38.50 31.83	40.38 3 I .82	52.18 50.66	66.90	74.90						33.78
25．Palmyra，St．Paul＇s	3959	$95 \quad 09$	1100	． 67	31.83	31.82	50.66	62.94	72.05	78.32	74．06	64.99	53.09	41.48	28.98
26．Coll．．．－	3947	9137					39.90	57.00	71.99	76.87	71.69	67.42	58.20	36.90	23.22
26．Paris（near）．．	3930	9200	700	25.91	34.49	43.83	55.08	64.07	71.92	71.33	72.95	64.05	53.14	43.56	28.46
27．Rhineland ．－	3842	9146	4	．．	38.13	46.60	55.78	67.70		．．	．．	．．	．．	43．15	22.45
28．Rocheport ${ }^{\circ}$	3855	9238	\cdots		．．	38.55	60.99	66.44	81.26						
29．Rolla（ $3 \frac{1}{2}$ mil．W．of）	3758	9144	950	32.20	35.97	43.95	52.16	62.68	70.60	77.77	74.51	66.95	52.73	43.04	33.18
30．Springfield ．－	3712	9312	．．	38.86	30.80	48.50	54.74		\cdots	74.16	70.88	71.07	53.57	40.89	40.11
31．St，Josepht ．．	3945	9453		33.14	$35 \cdot 4^{2}$	38.52	56.36	63.53	70.99	77.14	76.09	67.09	50.88	35.38	34.39
32．St．Louis ${ }^{5}$	3837	$90 \quad 12$	48 I	31.06	34.59	43.40	56.33	65.55	74．17	78.13	76.05	68.55	55．16	43.94	33.05
	3743	9348	800		42.44	52.68	63.45	72.53	\cdots	85.90	75.79	68.24	52.75	46.87	26.39
34．Tower Grove ．	$\begin{array}{lll}38 & 36\end{array}$	$\begin{array}{ll}90 & 20\end{array}$	500	27.87	33.11	42.12	54.03	63.48	70.35	75.09	75.59	67.03	53.65	4 x .60	37.96
35．Union ．－	3825	9107	616	27.67	34．74	37.59	56.73	6 t .21	73.07	79.28	72.20	61.63	54.23	44.68	33.62
36．Warrensburg	3845	9340	600 6	33.88	33.43	38.10	53.85	65.23	71.90	80.99	77.22	64.98	56.08	41.93	25.93
37．Warrenton	3850	915	6	30.79	33.90	43.12	55.64	64.24	72.87	77.69	75.37	66.27	53.33	41.35	31.64
38．Wyaconda Prairie	4012	9137	\cdots	23.76	28.59	36.33	48．8I	63.83	71.44	76.82	72.99	67.24	49.82	38.57	26.57
IMONTANA．															
1．Baton City ．		．		．	27.88										
2．Camp Baker ．													39．12	．．	
3．Camp Cook ．．	4748	10938	\cdots	15.20	21.76	25.24	47.64	60.28	68.62	72.36	71.48	56.31	47.75	35.37	21.09
4．Cantonment Stevens	4616	11400	3412	13.3	31.2	39.4	48.3	56.3	64.2	71.9	72.6	56.7	45.9	$34 . \mathrm{I}$	30.2
5．Deer Lodge City ．	4626	$\begin{array}{ll}112 & 32 \\ 110\end{array}$	4240	20.63	25.00	26.80	43.43	54.00	61.83	65.41	58.52	50.72	37.02	33.50	21.05
6．Fort Benton．${ }^{\text {7．Fort C，F，Smith－}}$	4750	11039	2730	19.43	29.67	23.13	52.91	58.05	71.65	77.60	64.19	62.20	48.15	35.8 r	26.33
7．Fort C．F．Smith	4520	10756		18.43	26.62	25.47	48.43	55.29	68.52	73.03	77.80	6 r .38	53.88	45.35	3 I .39
8．Fort Shaw ．．	45 47 47 30	III III I2	4800	23.26 18.26	29.48	28.43	44．00	58.20	65.60	69.65	64.64	54.61	43.23	35.97	25.44
to．Port Union ir．Helena City 12．Missoula ．	47 48 48	$\begin{array}{ll}\text { III } & 42 \\ 104 & 00\end{array}$		18.26 12.29	30.63	31.63 28.54	48.05	55.98 53.78	66.12	71.10	65－28	57.21	47.33	38.67	27.33
			2000；	12.29	21.44	28.54	50.87	53.78	65.84	．	67.50	56.80	45.30	26.20	
	4637	11200	4150	11.21	20.96	21.98	37.95	41.35	56.80	78.05	76.00	57.70	48． 18	40.95	25.30
	4645	11345	3300		．．			－						36.63	20.45
${ }_{1}$ This series is considered not very reliable． 2 Altitude 25 feet above high water in Missouri River． ${ }^{3}$ Observations corrected for daily variation．															

MISSOURI．

		$\begin{aligned} & \dot{心} \\ & \text { 品 } \\ & \text { に } \end{aligned}$	首 花	$\begin{aligned} & \text { 岕 } \\ & \text { 2 } \end{aligned}$	ジメ	Begins．${ }^{\text {Series．}}$ Ends．	$\left\|\begin{array}{l} \text { EXTENT } \\ \text { yrs.mos. } \end{array}\right\|$	Observing HOURS．	Observer．	References．
1	$51^{\circ} .83$	$72^{\circ} .61$	$52^{\circ} .68$	$30^{\circ} \cdot 92$	52° ． 11	Apr．1864；Dec． 1870		$7 \mathrm{ma} 2{ }^{\text {a }} 9{ }_{\text {a }}$ bis	A．Fendler．	S．O．
2	51.75	76.86	58.68	30.48	54.44	Mar．1863；July， 1866	24		J．T．Caldwell．	"، "
3	55.04	77.08	56.45	36.16	56.18	Dec．1868；Jan． 1870	12		J．A．Race．	－
4	59.33	77.17	55.58	43.33	58.85	1845	10	$8{ }_{\text {m }}{ }^{2}$	Blue．	Pat．Off．Rep．
5		77.56 73.78	56.28			May，1867；Apr． 1868 Oct． $1856 ; ~ J a n . ~$ 1858			G．P．Ray．	S． 0 ． P．O．and S．I．Vol．I．
6 7	48．19	73.75	56.28	36	3．58	Oct．1856；Jan． 1858	1 0 0	$\begin{gathered} \bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}} \bigodot_{\mathrm{r}} \bigodot_{\mathrm{s}} \end{gathered}$	Rev．J．Knoud O．J．Kerby．	P．O．and S．I．Vol．I． S． 0 ．
8	58.23	77.49	57.38	37.06	57.54	Aug．1859；June，1861	17	$77_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	M．S．Wyzick．	P．O．and S．I．Vol．I，and S．O．
9				54.89		1870	6		H．Martin．	S．O．
10	53.88	78.67				1860	－ 8	＇s	S．S．Bailey．	＂
II	55.62	75.42	54.45	36.70	55.55	Jan．1868；Dec． 1870	3 o	3	A．Miller．	＂6＂
12	54.78	75.58	54.06	25.13	52.39	Sept．1864；Nov． 1866	18	$7_{m} 2_{\text {a }} 9_{\text {a }}$ bis	P．B．Sibley．	＂＂${ }^{6}$
13						Nov．1866；Jan． 1867	－ 3		J．E．Vertrees．	＂＇＂
14	52.52	79.58	55.21	31.42	54.68	Mar．1853；Nov． 1854	15	＂	O．H．P．Le	P．O．and S．I．Vol．I，and S．O．
15	51.42	74.46	53.99	29.56	52.36	June，1863；Sept． 1870	72	＂	J．Christian．	S．O．
16	54.29	76.33	54.94	35.96	55.38	Apr．1868；Dec． 1870	29	＂	J．M．Smith．	،6 6
17	52.10	74.15	52.77	31.09	52.53	Sept．1867；Dec． 1869	23	＂	Dr．W．and Miss Isa－ bella Moore．	6 6
18	63.79	80.57	61.39	42.29	62.01	Jan．1860；Apr． 1861	I． 2	＂	W．Horner．	＂＇＂
19	56.37	76.82	56.03	33.96	55.79	Jan．1827；July， 1862	32 II	$7 \mathrm{~m} \mathrm{2}_{\mathrm{n}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Regs． 1855 and 1860， and MS．from S．G．O．
20	53.72	76.90	53.64	3 I .82	54.02	Feb．I868；Dec． 1870	28	$7 \mathrm{~m} 2_{\mathrm{a}}^{6}$ ，	N.	S．O．
21	54.84	75.15	56.03	33.24	54.82	Feb．1870；Dec． 1870	0 II		S．W．Salisbury．	
22	．．	73.86	．．	．．	．．	1869 ${ }^{\text {18，}}$（863：June， 1864	O 5	＂	C．Veatch． W．Meier．	
23 24	53.15 48.47		53.19	33.79 28.16	51.16	Dec．1863；June，1864 Jan．1867；Dec． 1870	$\begin{array}{ll}0 & 7 \\ 3 & 11\end{array}$	＂،	W．Meier． W．Kaucher．	＇6،
24	48.47	74.81	53.19	28.16	51.16	Jan．1867；Dec．1870	3 II	＇6	W．Kaucher．	
25		73.52	54.17			June，1856；Sept． 1857	11	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	G．P．Comings	P．O．and S．I．Vol．I．
26	$54 \cdot 33$	72.07	53.58	29.62	52.40	Aug．1859；Jan． 1862	111	7m ${ }_{\text {2 }}^{4} 9 \mathrm{ab}$ bis	W．F．Maxey．	P．O．and S．I．Vol．I，and S．O．
27	56.69	．．	．．	．．	－．	Nov．1859；May， 1860	－ 6		C．Vogel．	
28	55.33					1856	－ 4	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Dr．C．Q．Chandle	P．O．and S．I．Vol．I． S．
29	52.93	74．29	54.24	33.78	53.81	May，1867；Dec． 1870	38	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	H．Ruggles，	S． 0 ．
30		\cdots	55．18	36.59	．${ }^{\text {a }}$	July，1857；Apr． 1858	$\bigcirc 10$	$\bigodot_{\text {r }} 9^{\text {m }} 33_{\mathrm{a}} 9_{a}$	I．A．Stephens．	P．O．and S．I．Vol．I． P．O．and S．I．Vol．I，and S．O．
31	52.80	74－74	51.12	$34 \cdot 32$	53.24	May，1857；Aug． 1870	2 I	$7_{\mathrm{ma}} 2_{\mathrm{n}} 9 \mathrm{ab}$ bis	E．B．Neeley and H． Bullard．	P．O．and S．I．Vol．I，and S．O．
32	55.09	76.12	55.88	32.90	55.00	Jan．1830；Dec． 1870	410	3	Drs．G．Engelmann， A．Wislizenus，B． B．Brown，A．Fend－ ler，J．H．Lüneman， and others．	Ar．Met．Regs． 1855 and $\mathbf{1 8 6 0}$ ， MS．in S．Coll．，St．Louis Med．\＆Surg．Journ．，Trans． St．Louis Acad．Sci．，S．O． P．O．and S．I．Vol．I，and Sill Journ．
33	62.89		55.95			Aug．1859；Feb．186ı		$7 \mathrm{~m} \mathrm{za}_{\mathrm{n}} \mathrm{g}_{\mathrm{m}}$	W．Wells．	P．O．and S．I，Vol．I，and S．O．
34.	53.21	73.68	54.09	32.98	53.49	Jan．186I ；Jan． 1864	25		A．Fendler．	S．O．
35	51.84	74.85	53.51	32.01	53.05	Mar．1866；June，1867	14	6	Dr．W．，and Miss I． Moore．	＂＂
36	52.39	76.70	54．33	31.08	53.63	July，1868；Aug． 1869	12		J．E．Pollock．	＂＂6
37	54.33	75.31	53.65	32.11	53.85	Oct．1859；July， 1863	3 II	،	M．A．Tidswell and M，F．Hamacker．	P．O．and S．I．Vol．I，and S．O．
38	49.66	73.75	51.88	26.31	50.40	Mar．I862；Dec． 1868	52	،	G．P．Ray．	S．O．

MONTANA．

1	－	\cdots	－			1868		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bis }}$	Dr．H．M．Lehman．	S． O ．
2	．					1870	－I	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	MS．from S．G．O．
3	44.39	70.82	46.48	19.35	45.26	Sept．1866；Sept．I869	210			＂＂\％
4	48.00	69.57	$45 \cdot 57$	24.90	47.01	1853；1854	10		Burr．	Blodget＇s Climatology，
5	41．41	61.92	40.41	22.23	41.49	Jan．I869；Dec．I870	20	$7 \mathrm{~m} 2^{2} 99 \mathrm{bis}$	G．Stuart．	S．O．
6	44.70	71.15	48.72	25．14	47.43	Nov．1869；Dec． 1870	$\begin{array}{ll}1 & 2 \\ 1\end{array}$	$7_{m} 2_{\text {a }}^{6}$	Assistant Surgeon．	$\underset{6}{\text { MS．from }}$ ，S．G．O．
7	43.06	73.12	53.54	25.48	48.80	Sept，1866；June，r868	1 Io	－${ }^{\text {a }}$		
8	43.54 45.22	66.63 67.50	44.60	26.06	45.21 46.47	Aug．1868；Dec． 1870		＂،	＂${ }^{6}$	$\begin{array}{lll} " ، & " \\ " ، & " ، \end{array}$
10	45.22 44.40	67.50	47.74 42.77	25.41	46.47	$\begin{array}{ll}\text { Sept．} 1867 ; & \text { Dec．} 1870 \\ \text { Jan．} 1854 ; & \text { Jan．} 1858\end{array}$	$\begin{array}{ll}3 & 4 \\ 0 & 11\end{array}$	＂ 6	E．${ }^{\prime \prime}$ T．Denig，F．G．	P．O．and S．I．Vol．I．
II	44.40 33.76	70.28	42.77 48.94	19.1		Jan．1866；Mar． 1868			Riter， A．C．Wheaton．	S．O．
12		70．2	48.94	19.1		Jan． 1870	－ 2		J．M．Minnesinger．	＂${ }^{\text {c }}$

[^91]| NEBRASKA． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | 号 | 00 0 0 0 | $\begin{aligned} & \text { 荡 } \\ & \text { 感 } \\ & \text { 畐 } \end{aligned}$ | $\stackrel{\text { E゙ }}{ }$ | $\stackrel{\dot{\text { in }}}{\substack{2 \\ \hline}}$ | 苞 | $\begin{aligned} & \text { 登 } \end{aligned}$ | $\stackrel{\underset{\mathrm{A}}{\mathrm{~A}}}{\text { N }}$ | $\begin{gathered} \stackrel{\Xi}{\Xi} \\ \stackrel{y}{5} \end{gathered}$ | 宫 | 苍 | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{6} \\ & \dot{6} \end{aligned}$ | － | 号 | هّ |
| 1．Bellevue ．－ | $4^{1}{ }^{\circ} \mathrm{o} 8^{\prime}$ | $95^{\circ} 55^{\prime}$ | ． | 21 ${ }^{\circ}$ ．So | $26^{\circ} .84$ | $37^{\circ} .05$ | $48^{\circ} .81$ | $61^{\circ} .79$ | $71^{\circ} .05$ | $76^{\circ} .02$ | $72^{\circ} .65$ | 65° ．10 | $50^{\circ} .42$ | $37^{\circ} .65$ | $25^{\circ} .20$ |
| 2．Brownville ． | 4024 | 9540 | | 28.02 | 26.92 | 42.89 | | 64.18 | 74.51 | 79.56 | 76.53 | 66.97 | 53.89 | 32.70 | 24.67 |
| 3．Dakota－． | 4225 | 9625 | 1090 | 17.11 | 24.35 | 35.56 | 44.76 | 63.32 | 68.20 | 74.32 | 73.99 | ．． | 50.59 | 36.35 | 22.42 |
| 4．Decatur ．－ | 4200 | 9616 | 1 | | | 30.95 | 46.98 | 60.15 | 66.18 | 71.60 | | | | | |
| 5．De Sota ． | 41131 | $96 \quad 5$ | 1100 | 17.29 | 24.18 | 28.11 | 46.63 | 60.66 | 70.06 | 75.11 | 70.69 | 60.67 | 48.20 | 36.05 | 23.26 |
| 6．Fontanelle ．－ | 4132 | $96 \quad 27$ | $1000{ }^{2}$ | 16.90 | 22.74 | 29.85 | 45.90 | 59.78 | 71.16 | 72.77 | 71.61 | 61.81 | 45.23 | 33.65 | 23.44 |
| 7．Fort Calhoun ${ }^{3}$ ．． | 4130 | 9602 | 1327 | 18.95 | 26.64 | 36.90 | 51.74 | 64.16 | 74.15 | 76.34 | 76.20 | 65.48 | 52.77 | 37.33 | 22.06 |
| 8．Fort Childs ．＊ | 4040 | 9941 | | 7.71 | 17.50 | | \cdots | | | ． | ．． | | | \cdots | ．． |
| 9．Fort Kearney ${ }^{4}$ | 4038 | 9857 | 2360 | 19.99 | 25.57 | 34.70 | 46.92 | 57.96 | 69.89 | 75．01 | 72.34 | 62.57 | 50.51 | 34.71 | 20.17 |
| 10．Fort McPherson | 4100 | 100.30 | \cdots | 28.72 | 34．I4 | 37.03 | 49.66 | 63.45 | 71.63 | 79.97 | 74.68 | 63.88 | 51.64 | 40.94 | 30.82 |
| 11．Glendale，near． | 4055 | 96.05 | 1010 | 16．56 | 23.65 | 29.91 | 46.82 | 59.03 | 68.94 | 75.87 | 71.99 | 59.95 | 48.14 | 34.95 | 23.41 |
| 12，Ionia ．．． | 4241 | 9650 | 2500 | ．． | ．． | ． | | ．． | ．． | ．． | 73.03 | ． | ． | ．． | ． |
| 13．Lincoln ．${ }^{\text {a }}$ | 4050 | 9645 | 1647 | ． | | ． | 51.16 | 60° | \cdots | | | | 5 | \cdots | |
| 14．Nebraska City ． | 4041 | 9551 | 1005 | \cdots | －81 | 961 | 53 | 64.07 | 71.45 | 78.88 | 74.95 | 63.23 | 51.53 | 39.39 | 16.03 |
| 15．Nebraska City ． | 4041 | 9551 | 1225 | 25.83 | 29.81 | 36.31 | 53.92 | 63.50 | 72.06 | 77.78 | 72.48 | 64.43 | 50.32 | 37.95 | 25.28 |
| 16．New Castle．． | 4237 | 9647 | 800 | | | | | | 70.80 | 78.15 | 68.15 | 62.48 | ．． | 36.00 | 29.20 |
| 17．Nursery Hill | 4040 | 9613 | 1266 | 21.63 | 29.45 | 32.05 | 45.70 | 63.38 | | | | | | | |
| 18．Omaha ${ }^{5}$ ． | 4115 | 955^{6} | 1300 | 20.07 | 28.23 | $33 \cdot 41$ | 48.42 | 63.37 | 72.11 | 76.99 | 73.67 | 64．10 | 49.59 | 39.60 | 21.79 |
| 19．Omaha Agency ${ }^{6}$ | 4207 | 9622 | 100 | 21.54 | 27.81 | 34.37 | 48.60 | 63.99 | 70.47 | 78.19 | 72.76 | 62.73 | 51.20 | 38.78 | 26.85 |
| 20．Peru | 4029 41 41 | 9545 9616 | 1000 1350 | 27.70 17.26 | 30.35 23.82 | 33.18 31.63 | | | 69.94 70.87 | | | 62.86 | | | |
| 21．Richland ${ }^{\text {22．Rock Bluff }}$ ． | | | | 17.26 | 23.82 28.20 | 31.63 | 45.91 | 61.77 | 70.87 | 75.08 | 72.42 | 62.86 | 49.02 55.70 | 35.09 36.57 | 21.41 22.13 |
| INEVADA． | | | | | | | | | | | | | | | |
| I．Camp Halleck ： | 4042 | 11530 | 5600 | 24.49 | 28.57 | 37.03 | 46.23 | 53.09 | 63.95 | 69.73 | 69． 19 | 58.82 | 47.34 | 38.65 | 29.46 |
| 2．Camp McDermit | 4158 | 11740 | 4700 | 27.59 | 31.23 | 36.07 | 46.17 | 54.68 | 64.46 | 73.52 | 72.61 | 62.09 | 49.90 | 40.38 | 29.24 |
| 3．Camp McGarry ． | 4140 | 119 00 | 6000 | 21.82 | 27.25 | 27.65 | 39.47 | 46.77 | 54.38 | 63.77 | 66.23 | 56.65 | 47.56 | 38.02 | 26.44 |
| 4．Camp Winfield Scott | 4134 | 11730 | | 28.11 | 29.81 | $35 \cdot 36$ | 48.71 | 56.11 | 67.55 | 77.78 | 76.92 | 63.63 | 51.31 | 36.71 | 36.31 |
| 5．Fort Churchill ．． | 3917 | 11919 | 4284 | 32.08 | 35.57 | 43.84 | 52.55 | 60.95 | 70.75 | 78.37 | 76.41 | 67.61 | 53.00 | 42.47 | 35.99 |
| 6．Fort Ruby ． | 40 ol | 11535 | 5922 | 27.44 | 29.86 | 37.46 | 45.45 | 58.08 | 64.89 | 72.65 | 73.82 | 62.72 | 51.21 | 40.57 | 32.46 |
| 7．Star City ． | 4030 | 11810 | 7500 | | | | | | ．． | ．． | | ．． | 49.73 | 43.18 | 20.65 |
| NEW HAMPSHIRE． | | | | | | | | | | | | | | | |
| 1．Charlestown ． | 4315 | 7223 | \cdots | | | | 41.97 | | | 69.96 | 68． 11 | | 45.67 | | 26.51 |
| 2．Claremont－ | 4324 | 72 21 | 536 | 18.35 | 22.47 | 30.79 | 43.51 | 54.96 | 65.27 | 69.21 | 66.56 | 58.48 | 46.53 | 37.11 | 23.68 |
| 3．Concord | 4312 | 7129 | 374 | 20.84 | 22.73 | $3 \mathbf{1} .49$ | 43.21 | 56.17 | 65.86 | 69.91 | 66.80 | 59．15 | 48.82 | 37.96 | 24.87 |
| 4．Contoocooksville | 4315 | 7142 | 450 | \cdots | | \cdots | － | | | \cdots | | | | 39.83 | 28.88 |
| 5．Dover ．．． | 4313 | $70 \quad 54$ | 150 | 24.00 | 23.60 | 31.80 | 42.70 | 53.70 | 63.90 | 70.40 | 64.70 | 58.80 | 46.40 | 35.50 | 25.20 |
| 6．Dublin ．．． | 4254 | 7203 | 1869 | 18.52 | 21.58 | 27.70 | 36.99 | 49.14 | 63.18 | 67.15 | 64.18 | 57.37 | 45.44 | 33.67 | 21.14 |
| 7．Dunbarton－． | 4306 | 7135 | 750 | 27.74 | 24.78 | 30.08 | 42.60 | 54.54 | 66.44 | 72.84 | 70.25 | 61.20 | 48.89 | 36.65 | 26.38 |
| 8．Epping ．．． | $\begin{array}{ll}43 & 03 \\ 42 & 59\end{array}$ | $\begin{array}{ll}71 & 05 \\ 71 & 00\end{array}$ | 8 | | 21． 20 | 3 L .41 | | 54.47 | | | | 59.00 | 49.22 | | 25.33 |
| 9．Exeter－． | 4259 | 7100 | 8 | 19.89 | 21.20 | 31.41 | 40.85 | 54.47 | 63.81 | 69.89 | 67.82 | 59.00 | 49.22 | 38.06 | $25 \cdot 33$ |
| 10．Farmington ． | 4322 | 7107 | 300 | 22.20 | | | | | | | | －${ }^{\circ}$ | | | |
| 11．Farmouth ${ }^{9}$ ． | 4351 | 7119 | 450 | 23.98 | 22.15 | 26.41 | 43.19 | 55.50 | 69.09 | 71.32 | 68.20 | 57.99 | 45.38 | 33．13 | 24.00 |
| 12．Fort Constitution | 4304 | 70.42 | 40 | 24.89 | 26.26 | $34 \cdot 37$ | 43.26 | 53.50 | 62.34 | 67.06 | 65.06 | 59.12 | 49.64 | 38.89 | 28.74 |
| 13．Francestown ． | 4259 | 7148 | ．． | 18.58 | 24.29 | 30.08 | 42.00 | 53.50 | 64.09 | 69.32 | 68.15 | 59.45 | 47.09 | 38．19 | 29.46 |
| 14．Great Falls ${ }^{10}$ ． | 4315 | 7055 | 250 | 21.32 | 20.25 | 31.96 | 41.73 | 56.83 | 64.78 | 75．50 | 68.90 | 60.98 | 51．01 | 38.16 | 22.13 |
| 15．Hanover（Dart－ mouth Coll．） | 4342 | 7217 | 530 | 16.24 | 15．4．7 | 26.15 | 37.66 | 52.53 | 61.69 | 65.68 | 63.34 | 55.55 | $44 \cdot 30$ | 32.31 | 17.08 |
| 16．Hanover ${ }^{12}$
 17．Keene | 43 42 42 56 | $\begin{array}{ll}72 & 17 \\ 72 & 16\end{array}$ | 530 | 17.62 | 18.89 | 29.10 | 40.10 41.20 | 53.40 54.60 | 62.70 | 67.15 68.79 | 65.60 70.40 | 56.33 .. | 44.18 44.80 | 33.76 31.20 | 20.99 25.50 |
| | | | | | | | 41.20 | | | | | | | | |
| ${ }^{1} 35$ feet above Missouri River．
 ${ }^{2} 1025$ feet in 1868－69．
 ${ }^{3}$ Old Council Bluffs．
 4 Observations for $1849-54$ at $\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ ；they were referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ by means of the general table．
 ${ }^{5}$ Observations from Jan． 1859 to July，1860，at＂Pioneer Grove，＂near Omaha，to the northwest，at an elevation of $\mathbf{1} 400$ feet．Observations for Nov． and Dec．1868，at an elevation of 900 feet；for 1869－70 at＂Omaha Barracks．＂ | | | | | | | | | | | | | | | |

NEBRASKA．

		岂 品 च	$\begin{aligned} & \text { 品 } \\ & \text { 薄 } \\ & \hline \end{aligned}$		－	Serits． Begins．Ends．	$\begin{array}{\|c\|} \text { ExTENT } \\ \text { yrs.mos. } \end{array}$	Observing Hours．	Observer．	References．
1	$49^{\circ} .22$	$73^{\circ} .24$	$51^{\circ} .06$	$24^{\circ} .61$	$49^{\circ} \cdot 53$	June，1857；Dec． 1870	124	7 m 2a 9 ab bis	W．Hamilton and E． E．CaIdwell．	P．O．and S．I．Vol．I．and S．O．
2		76.87	51.19	26.54	－	May，1858；Oct． 1859	12	$7 \mathrm{~m} 2^{\text {a }} 9 \mathrm{a}$	C．B．Smith．	P．O．and S．I．Vol．I．
3	47.88	72.17	S	21.29	．	Oct．1867；Aug． 1869	17	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	H．H．Brown．	S． 0 ．
4	46.03	71	48.31		46.74	1869 ${ }^{1867 .}$	－ 5		Dr．S．C．Case．	，
5	45.13 45.18	71.95 71.85	48.31 46.90	21.58	46.74 46.24	$\begin{array}{ll}\text { Apr．1867；} \\ \text { Jan．} 1859 ; & \text { Nec．} 1870 \\ \text { Nov．} 1869\end{array}$	$\begin{array}{ll}3 & 8 \\ 2 & 8\end{array}$	＂،	C．Seltz．${ }_{\text {J．Evans，H．Gibson．}}$	
7	50.93	75.56	51.86	22.55	50.23	Jan．1820；Dec．I826	7 0	$7 \mathrm{~m} 2^{2} 92$	Assistant Surgeon．	Ar．Met．Reg． 1855.
8						1849	－ 2	$\bigodot_{r} 9_{m} 3_{a} 9_{a}$	، 6	S．Coll．
9	46.53	72.41	49.26	21.91	47.53	Jan．1849；Jan． 1868	15 II	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{a}$	، 6	Ar．Met．Regs． 1855 and $\mathbf{1 8 6 0}$ ， and MS．from S．G．O．
10	50.05	75.43	52.15	31.23	52.21	Nov．1866；Dec． 1870		＂	＂${ }^{\text {c }}$ ，	MS．from S．G．O．
II	45.25	72.27	47.68	21.21	46.60	Aug．186r；Oct． 1869	40	$7 \mathrm{~m} \mathrm{~m}_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Dr．A．L．\＆J．E．Child．	S． 0 ．
12	．．	．		．	．	1865	\bigcirc		L．T．Hill．	＂6
13		－			．	1870	－I	،	Dr．G．A．Goodrich，	،
14	．	75.09	51.38			1859	－ 8	$7 \mathrm{~m} \mathrm{I}_{\mathrm{a}} 9 \mathrm{a}$	E．E．Mason．	P．O．and S．I．Vol．I．
${ }^{1} 5$	51.24	74．11	50.90	26.97	50.81	July，1868；Dec．1870	23	$7 \mathrm{~mm}{ }^{2} 9^{\text {a }}$ a bis	P．Zahner．	S．O．
16		72.37	．．	．．	．．	1870	\bigcirc		L．H．Smith．	＂6．64
17	47.04					$\xrightarrow[1865]{\text { 188 }}$	$\bigcirc 5$	＂	R．O．Thompson．	P．
18	48.40	74.26	51.10	23.36	49.28	June，1858；Dec．I870	40	$7 \mathrm{~m}{ }^{\text {a }}$ 9a	J．T．Allan，W．N． Byers，Assis．Surg．，J． G．Rain，C．B．Wells．	P．O．and S．I．Vol．I，S．O．， and MS．from S．G．O．
19	48.99	73．81	50.90	25.40	49.77	Aug．1867；Dec． 1870			W．Hamilton．	S． 0.
20		．．				June，1867；June，i869	－ 5		J．M．McKenzie．	" "
21	46.44	72.79	48.99	20.83	47.26	June，1858；Mar． 1870	II 3	$7 \ddot{20}$	J．S．\＆A．M．J．Bowen．	P．O，and S．I．Vol．r，and S．O．
22	．．	．		．${ }^{\text {a }}$	．．	Oct．1860；Feb．I86ı	－ 4	$7 \mathrm{~m} 2_{\mathrm{n}} 9 \mathrm{a}$	H．C．Pardee．	S．O．

NEVADA．

NEW HAMPSHIRE．

I	\cdots					1843；${ }^{\text {1844 }}$	$\bigcirc 5$			Manuscript．
2	43.09	67.01	47.37	21.50	44.74	Sept．1857；Nov． 1868	97	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	F．A．Freeman，A．	P．O．and S．I．Vol．I，and S．O．
3	43.62	67.52	48.64	22.81	45.65	Jan．1828；May， 1870	$22 \quad 2$	$7_{\text {ma }} 2_{\text {a }} 9_{\text {a }}$	J．C．Knox，J．Farmer， Dr．Prescott，H．E． Sawyer，J．T．Wheeler．	P．O．\＆S．I．Vol．I，S．O．，S． Coll．，and Am．Alm． 1837 \＆ foll．
4						1870	$\bigcirc 2$	$7_{\text {m }} 2_{\text {a }} 99_{2}$ bis	E．D．Couch．	S．O．
5	42.73	66.33	46.90	24.27	45.06	Jan．1833；July， 1843	107	$\bigcirc_{\mathrm{O}_{\mathrm{r}}} \mathrm{I}_{\mathrm{a}} \mathrm{IO}_{2}$	A．A．Tufts．	Am．Alm．1836－7 and foll．
7	37.94 42.41	64.84 69.84	45.49 48.91	20.41 26.30	42.17 46.87	Jan．1849；Aug． 1853 Mar．1868；Dec．I870	$\begin{array}{lr}4 & 8 \\ 2 & 10\end{array}$		Leonard．	S．Coll．
8	．．				44.76	IS33； 1834	20		Plummer．	Am．Alm．
9	42.24	67.17	48.76	22.14	45.08	1849；May， 1863	6 II	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	Rev．S．W．Leonard， E．Nason．	S．O．and S．Coll．
10						1861	－		L．Bell．	S． 0 ．
11	41.70	69.54	45.50	23.38	45.03	Feb．1867；Dec． 1870	14	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{abis}$	A．Brewster．	S6s
12	43.71	64.82	49.22	26.63	46.09	Jan．1822；Sept．I853		$7_{\mathrm{m}}{ }_{\mathrm{a}} \mathrm{al}_{\text {a }}$	Assistant Surgeon．	
13	41.86	67.19	48.24	24．11	$45 \cdot 35$	Mar．1853；May，IS58		${ }^{\text {ma }}{ }^{\text {a }}$	A．H．Bixby，Dr．M． N．Root，\＆Sawyer．	P．O．\＆S．I．Vol．I，\＆S．Coll．
14	43.15	69.73	50.05	21.23	46．13	53；Jan． 1857	12	،	G．B．\＆H．E．Sawyer， Titcomb．	＂＂＂${ }^{\text {6 }}$
15	38.78	63.57	44.05	16.26	40.67	Nov．1834；Dec． 1854	40	$\bigodot_{\mathrm{r}} \mathrm{I} \frac{1}{2 a} 99^{\frac{1}{2}}{ }^{\text {a }}$	Prof．I．Young，A．A． Young．	P．O．and S．I，Vol．I，Am． Alm． 1837 and foll．
16	40.87	65.15	44.76	19.17	42.49	$1835 ;_{1843} 1854$	$\begin{array}{rr} 20 & 0 \\ 0 & 7 \end{array}$	$\odot_{r} 9^{66} 3_{3} 9^{6}$	Young．	$\underset{\text { Manuscript．}}{\text { © }}$
17	－	．	－•	．	．	1843		$\bigodot_{r} 99_{m} 3{ }^{\text {a }} 9_{n}$	Whalock．	

[^92]NHW HAMPSHIRE．－Continued．

Name of Station．	H゙	¢00	莒	皆	－	＋	号	完	号	$\stackrel{\square}{\square}$	范	苟	ぜ	安	هٌ
18．Littleton ${ }^{1}$	$44^{\circ} 20^{\prime}$	$7 \mathrm{I}^{\circ} 49^{\prime}$	\cdots	$17^{\circ} \cdot 57$	$18^{\circ} .40$	$24^{\circ} .44$	$38^{\circ} .62$	$52^{\circ} .84$	$58^{\circ} .91$	$66^{\circ} .60$	$65^{\circ} .81$	$55^{\circ} \cdot 5^{8}$	$46^{\circ} .60$	$33^{\circ} .90$	$15^{\circ} .09$
19．Londonderry	4253	7120	300	22.64	24.38	31.89	43.48	56.21	66.36	71.69	68.41	61.09	50.61	38.87	26.91
20．London Ridge	4320	7125	475	23.70	30.77	38.45	49.18	62.23	67.20	74.08	72.85	70.25		42.28	33.03
21．Manchester ．	4259	7128	300	23.84	26.38	34.06	45.01	64.34	67.54	72.94	69.67	62.11	51.09	40.22	27.48
22．Mason	4245	7145	\ldots	29.10	31.70	30．15	43.60	．	66．10	68.80	67.90	．	－	．	26.20
23．Mt．Washington	4416	71 18	6285			\cdots	\cdots	\cdots	43.58	49.39	47.68	60.86			
24．North Barnstead ${ }^{3}$	4322	7115		21.65	24.74	31.03	43.27	54.49	64.04	69.00	68.12	60.86	48.29	38.77	25.44
25．Portsmouth ．	4305	7046	12	25.45	27.75	30.85	47.15	57.10	65.80	69.65	68.15	60.35	48.80	34． 80	26.20
26．Portsmouth	4305	7046	38	21.62	27.48	36.00	43.07	53.00	63.96	69.37	67.64	59.64	47.63	36.36	26.35
27．Salisbury	4323	7145	\cdots	18.83	20.32	31.42	42.15	．				61.55	47.43	36.27	27.30
28．Shelburne	4423	7114	700	16.32	19.26	27.44	39.80	52.07	62.91	69.36	64.18	55.46	43.78	33.35	20.21
29．Stratford ．．．	4440	7139	1000	13.27	17.17	24.92	$37 \cdot 37$	50.84	61.36	65.21	62.27	54.46	42.21	31.37	16.07
30．Wakefield	4334	$\begin{array}{lll}71 & 07\end{array}$	\ldots	28.00	28.80	39.25	49.80	61.20	73.40	79.40	77.20	67.60	52.80	44.20	31.80
35．West Enfield	433^{8}	7207		20.10	20.11	27.25	39．07	51.77	63.86	68.73	65.48	58.26	45.58	31.86	19.53
32．Whitefield ．	4423	7139	1332	22.50	16.35	24.18	43.65	53.23	64.48	67.61	62.42	57.68	43.43	31.36	21.73

NEW JERSEY．

1．Bloornfield ${ }^{6}$ ．	4048	7412	120	28.58	30.58	36.01	$47 \cdot 3^{6}$	57.60	69.16	73.99	71.01	64.60	54．19	43.65	33.67
2．Branchburg Town－ ship ${ }^{6}$	4036	7444	．	27.35	34.40	33.78	．	59．78	75.25	76.40	72.30	64.40	51.68	48.00	30.85
3．Burlington ．	4004	74 51	60	28.87	31.39	39.10	49.85	60.17	70.09	74.57	71．36	65.54	54.43	44.46	33.39
4．Chester？	4000	7457		27.79	31.22	38.29	50.01	59.62	69.82	74.98	72.61	65.34	52.20	42.83	31.96
5．Dover	4054	7434	619	26.99	28.31	35.59	46.59	54.92	66.65	72.70	69.94	62.57	52.62	43.77	29.65
6．Elwood ．	3934	7442	．．	26.08	23.91	39.80	46.40	56.23	67.90	76.85	72.48	65.88	51.55	43.08	28.70
7．Freehold	4015	7416	．．	30.35	31.62	39.38	46.48	57.13	68.14	72.34	71.01	64.03	53.98	42.93	34.30
8．Greenwich	3924	7520	30	30.97	33.94	39.68	51．53	60.43	71.00	75.74	73.02	66.73	53.71	44.19	34.50
9．Haddonfield	3953	7502	50	29.61	31.94	38.31	50.54	59.41	70.06	74.66	72.19	65.47	52.23	42.98	32.59
ro．Lambertsville	4023	7457	96	29.55	29.85	37.90	48.86	60.20	70.16	75．09	72.14	64.40	51.60	42.30	32.57
II．Lesser Cross Roads	4041	7439	．	36.13	3 3 .73									39.88	33.40
12．Long Branch	4018	7358	10												35.48
13．Middletown．	4024	7407	50	34.80	35.48	41．81	53．10	6 6 .47	66.83	71.93	72.23	66.40	57.37	45.73	34.80
14．Moorestown．	3958	7457	104	29.18		46.41	62.17	68.03	74.74	72.69	65.	．．	．		32.70
15．Mount Hoily	3959	7448	30	29.60	33.51	39.67	50.98	60.35	69.03	73.03	71.65	65.3 x	54.37	44.59	34.58
16．Navesink Highlands	4024	7359	111	29.50	36.45	38.20	47.88	54.23	67.23	70.30					
17．Newark	4044	74 10	35	31.63	25.90	34.45	45.62	56.31	66.01	70.51	69.04	60.71	49.86	39.92	29.05
18．Newark	4044	74 10	35	29.36	30.65	37.40	48.28	57.91	67.51	72.93	70.61	63.60	52.31	43.22	32.25
19．New Brunswick	4030	7427	90	27．12	29.46	35.67	50.11	58.36	68.30	74.07	71.09	63.66	51．90	41.99	30.93
20．Newfield．	3940	7450	125	35．18	3 3 .49	36.97	48.78	59.73	72.83	77.45	73.43	65.87	55.42	41.94	32.61
21．New Germantown	4041	7445	320	32.59	30.63	32.88	49.87	58.89	70.11	73.06	71.62	64.41	50．54	39.09	29.59
22．New Stone	4040	75 oo						59.05	71.50	73.30	73.65	．．	．．	．．	
23．Newton	4104	7445	659	28.71	28.71	30.83	47.34	55.96	64.78	69.40					
24．Paterson ．	4056	74 10	60	26.58	29.45	35.69	49.11	58.77	69.49	74.37	70.97	64.77	51.27	41.66	30.52
25．Rio Grande	39 or	7453	13	37.92	36.03	36.17	47.95	57.47	70.54	${ }^{76.37}$	73.92	67.44	53．19	42.78	35．13
26．Seaville	3911	7445	18	26.26	37.35	40.17	51.16	53．38	70.98	76.72	74.48	69.69	53.54	44.48	28.36
27．Sergeantsville	4027	7457	．．	28.54	31．39	38.65	43.02	60.42	69.61	74.86	76.45	71.17	${ }^{62.83}$	43.46	${ }_{3}^{36.62}$
28．South Orange 29．Trenton ．	4145 4014	7415 7445	60	31.80	．11	39.	52．08	60.05	70.55	75.21	73.33	64.47 66.22	54.57 54.20	42.35 44.29	31.64 33.06
30．Vineland	3929	75 O1	119	33.51	31.23	37.83	49.53	59.77	72.99	78.60	74.70	66.41	53.12		76
31．Woodstown	3939	$75 \quad 19$	30								．．	．．	45.33	47.84	31.96

[^93]NEW HAMPSHIRE．－Continued．

			$\begin{aligned} & \text { 号 } \\ & \text { 苛 } \\ & \hline \end{aligned}$	或	\％	Series． Begins．Ends．	Extent yrs．mos．	Observing Hours．	Observer．	References．
18	$38^{\circ} .63$	$63^{\circ} \cdot 77$	$45^{\circ} \cdot 36$	$17^{\circ} .02$	$41^{\circ} \cdot 20$	Mar．1863；July， 1864	15	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{ab} \mathrm{big}$	R．C．Whiting，R． Smith．	S．O．
19	43.86	68.82	50.19	24.64	46.88	Mar．1849；Feb． 1857	510	$7 \mathrm{~m} 2^{3} 9{ }_{3}$	R．C．Mack．	P．O．and S．I．Vol．I，\＆MS．
20	49.95	71.38		29.17		Jan．1862；Feb． 1863	1 O	$77_{\text {m }} 2_{a} 9_{a}$ bis	D．I．S．French．	S．O．
21	47.80	70.02	51.14	25.90	48.72	Jan．1845；Mar．I860．	14 I	$\bigodot_{\mathrm{r}}{ }^{2} \mathrm{a} \bigodot_{\mathrm{B}}$	S．N．Bell．	P．O．\＆S．I．VoI．I，S．Coll．，\＆ S． 0 ．
22	．	67.60	－	29.00		Jan．1806；June， 1807	－ 10	2		Med．and Agr．Reg．Bost．Vol． I，1806－7．
23	…	46.88				1853； 1859			J．S．Hall，Noyes．	P．O．\＆S．I．Vol．I，\＆Print．Reg．
24	42.93	67.05	49．31	23.94	45.81	Feb．1860；Dec． 1868	88	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	C．H．Pittman．	S．O．
25	45.03	67.87	47.98	26.47	46.84	Feb．1806；Sept． 1807	I 5	－ 2	C．Peirce．	Med．and Agr．Reg．Bost．Vol． I，1806－7．
26	44.02	66.99	47.88	25.15	46.01	Jan．1839；July， 1868	9 II	$\odot_{r} 9_{m} 3_{\mathrm{a}} 9_{\mathrm{a}}$	J．Hatch，Surg．Dela－ ney and Chase．	MS．in S．Coll．and S．O．
27	．${ }^{\text {\％}}$		48.42	22.15	\cdots	Nov．I861；Oct．1870	－ 8	$7_{\text {ma }} 2_{a} 9_{\text {a bis }}$	E．D．Couch．	S．O．
28	39.77	65.48	44.20	18.60	42.01	Dec．1856；May， 1869	69	${ }_{4}{ }^{1}$	F．Odell．	P．O．and S．I．Vol．1，and S．O．
29	37.71	62.95	42.68	15.50	39.71	Aug．1855；Dec． 1870		$7 \mathrm{~mm} 2_{\text {a }} 9 \mathrm{ab}$ bis	W．B．G．，B．G．\＆B． Brown，A．Wiggin．	＂6 6\％6\％
30	50.08	76.67	54.87	29.53	52.79	$1846 ; 1850$	5 －	N．	Dow．	Manuscript．
31	39.36	66.02	45.23	19.91	42.63	Sept．1856；Dec，1858	$\begin{array}{ll}2 & 3\end{array}$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	N．Purmort．	P．O．and S．I．Vol．I．
32	40.35	64.84	44.16	20.19	42.39	June，1869；Dec． 1870	17	$7 \mathrm{~mm} \mathrm{ma}_{\text {a }} 9 \mathrm{ab}$	L．D．Kidder．	S．O．，

NEW JERSEY．

I	46.99	71.39	54.15	30.94	50.87	Mar．1849；Dec． 1862	10 7	$7 \mathrm{~m}{ }^{\text {a }}$ 9a	R．L．Cooke，and Merrick．	P．O．and S．I．Vol．1，S．O．，\＆ S．Coll．
2	\cdots	74.65	54.69	30.87	\cdots	Nov．1866；Oct． 1870	1 I	$7 \mathrm{~mm} \mathrm{ma}_{\text {a }} \mathrm{ab}_{\text {bis }}$	J．Fleming，and W．	S． 0 ．
3	49．71	72.01	54．81	31.22	51.94	Mar．1849；Mar．I868	$13 \quad 3$	6	Rev．A．Frost，Dr．E． R．Schmidt，and J． C．Deacon．	P．O．and S．I．Vol．i，S．O．，and S．Coll．
4	49.31	72.47	53.46	30.32	51.39	May，1863；Dec． 1870	73	＊	T．S．and T．J．Beans．	S． 0 ．
5	45.70	69.76	52.99	28.32	49.19	Oct．1866；Jan． 1869	24	6	II．Shriver．	
6	47.48	72.41	53.50	26.23	49.91	Mar．1868；Nov． 1868	－ 9	＇6	J．S．Tritts．	＇${ }^{6}$
7	47.64	70.50	53.65	32.09	50.97	Jan．1857；Feb． 1862	50	＂ 6	O．R．Willis．	P．O．and S．I，Vol．I，and S．O．
8	50.55	73.25	54.88	33．14	52.95	Jan．1864；Dec． 1870	7 0	＂	Rebecca C．Sheppard．	S．O．
9	49.42	72.30	53.56	3 I .38	51.67	Jan．1864；Dec．IS70	69	،	J．S．Lippincott，S． Wood，\＆J．Boadle．	＊＂
10	48.99	72.46	52.77	30.66	51.22	Jan．1843；Dec．1859	170		L．H．Yarson．	Am．Alm．I845 \＆foll．，MS．in S．Coll．，\＆P．O．\＆S．I．Vol．I．
1 I	\cdots	．	\cdots	33.75	．	Oct．1869；Feb． 1870	$\bigcirc 4$		J．Fleming．	S．O．
12						1861	$\bigcirc 1$		H．A．Stokes．	
13	52.13 58.87	70.33 70.86	56.50	35.03	53．50	June，1831；Mar． 1849	$\begin{array}{ll}3 & 2 \\ 0 & 10\end{array}$	$7_{7 m} 2_{\mathrm{a}} 9 \mathrm{a}$	Colb and Jenkins．	Sill．Journ．and S．Coll．
14	58.87	70.86	．．		．．	July，1849；Aug． 1868	－ 10	$7_{\mathrm{m} 1} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Miss E．E．Thornton \＆J．W．Lippincott．	P．O．and S．I．Vol．I，S．O．， and S．Coll．
15	50.33	71.24	54.76	32.56	52.22	Jan．i86r；Mar． 1868	7	＂	Dr．M．J．Rhees．	S．O．
16	46.77					1861	$\bigcirc 7$	＂${ }^{\text {a }}$	Prof．L．Harper．	
17	45.46	68.52	50.16	28.86	48.25	$\xrightarrow{1829 ; ~} 1850$	220	$\odot_{\mathrm{r}} \mathrm{N}^{\text {N }}$		Pat．Off，Rep，185r．
18	47.86	70.35	53.04	30.75	50.50	May，1843；Dec． 1870	245		W．A．Whitehead．	MS．in S．Coll．，printed slip，P． O．and S．I，Vol．I，\＆S．O．
19 20	48.05 48.49	71.15 74.57	52.52 54.41	29.17 33.09	50.22 52.64	Mar．1863；May， 1870 Oct．1867；July， 1870	$\begin{array}{ll}6 & 1 \\ 2 & 10\end{array}$	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{nbis}$	G．W．Thompson，G．H． Cook，E．H．Bogardus， \＆J．E．Hasbrouck． E．D．Couch．	S．O． ＂＂
21	47.21	71.60	51.35	30.94	50.27	Oct．1868；Dec． 1870	22	＂	A．B．Noll．	＂، ${ }^{\text {c }}$
22		72.82	．．		．．	1867	－ 4	،	J．Fleming．	＂＂
23	44.71		．			1869	－ 7	،	Dr．T．Ryerson．	＂ 6
24	47.86	71.61	52.57	28.85	50.22	Oct．1863；Dec． 1870	68	،	W．Brooks．	،
25	47.20	73.61	54.47	36.36	52.91	Apr．1868；Dec． 1870	25	＂${ }^{6}$	Mrs．J．R．Palmer．	＂
26	48.24 47.36	74.06 73.64	55.90 59.15	30.66 32.18	52.21 53.08	$\begin{array}{ll} \text { Jan, } & 1865 ; \end{array} \text { Apr. } 1868$	$\begin{array}{ll} 2 & 0 \\ 1 & 3 \end{array}$	$7{ }^{2} 9$	B．Cole． J T Sergeant	P．O．and S．I．Vol．I．
27 28	47.36	73.64	59.15 53.80	32.18	53.08	Jan．1857；Mar． 1858	$\begin{array}{ll} \text { I } & 3 \\ 0 & 4 \end{array}$	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ $7 \mathrm{~mm} \mathrm{a}_{\text {a }} 9_{\mathrm{a} \text { bis }}$	J．T．Sergeant． Dr．W．J．Chandler．	P．O．and S．I．Vol．I． S．O．
29	50.46	73.03	54.90	32.66	52．76	Jan．1840；Dec． 1870	II 0	${ }^{\text {a }}$	Dr．F．A．Ewing，and E．R．Cook．	Am．Alm． 1842 and S．O．
30	49.04	75.43	54.03	32.17	52.67	Aug．1867；Dec．1870	35	$7 \mathrm{~m} 2_{a} 9_{a}$ bis	Dr．J．Ingram．	S． O ．
31				3	5	1859	－ 3	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	G．Watson．	P．O．and S．I．Vol．I．

[^94]| NEW MEXICO． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | 㥻 | $\begin{aligned} & \dot{8} 0 \\ & \stackrel{0}{0} \\ & \dot{H} \end{aligned}$ | 第 | ※ | － | $\begin{aligned} & \text { 䜳 } \\ & \text { 悹 } \end{aligned}$ | 芭 | 育 | $\begin{aligned} & \text { E } \\ & \text { E } \end{aligned}$ | 畜 | | $\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$ | | $\begin{aligned} & \stackrel{8}{8} \\ & i \end{aligned}$ | هٌ |
| 1．Abiquin ．Albuquerque ${ }^{\text {i }}$ ． | $36^{\circ} 15^{\prime}$ 3506 | $\left\|\begin{array}{l} 106^{\circ} 30^{\prime} \\ 10638 \\ 10 \end{array}\right\|$ | 6500
 5032 | $32^{\circ} \cdot 77$ | $38^{\circ} .19$ | $47^{\circ} .09$ | $56^{\circ} .07$ | $65^{\circ} \cdot 92$ | $74^{\circ} \cdot 24$ | 74 78.36 | $70^{\circ} .87$ 76.22 | $\begin{array}{r} 64^{\circ} .86 \\ 68.80 \end{array}$ | $\begin{array}{r} 53^{\circ} .28 \\ 56.88 \end{array}$ | $43^{\circ} .29$ | $33^{\circ} \cdot 39$ |
| 3．Camp Cimarron | 36 18 | | | | 18.10 | | | | 69.99 62.18 | 70.98 66.87 | 74.47 | 67.01 | | | |
| 4．Camp Plummer ${ }^{\text {5．Camp Rio Mimbres }}$ | $\begin{array}{ll}36 & 18 \\ 32 & 32\end{array}$ | $\begin{array}{ll}106 & 42 \\ 107 & 56\end{array}$ | | 67 | 18．10 | 25.64 45.08 | 42.40 59.03 | 50.05 66.32 | | 60.87 | | | 47．10 | 29.44 | 30.37 |
| 6．Cantonment Burg－ win 2 | 3626 | 10530 | 7900 | 21.81 | 28.97 | 37.55 | 45.92 | 54.45 | 65.48 | 68.52 | 64.62 | 56.32 | 46.72 | 32.18 | 20.89 |
| 7．Cebolleta ．．． | 3515 | 10720 | 6200 | 32.90 | 35．93 | 44.50 | 51.36 | 61.65 | 72.52 | 77.45 | 75.65 | 68.45 | 59.06 | 41.03 | 30.49 |
| 8．Doña Ana | 3226 | 10648 | 4000 | | | | | 69.89 | 78.94 | 82.22 | 81.50 | | | | |
| 9．El Paso ． | 3144 | 10632 | 3830 | 45.75 | 49.25 | 60.36 | 74.31 | 77.92 | 87.36 | 88.53 | 87.06 | 85.22 | 70.00 | | 38.37 |
| 10．Fort Bascom | 3524 | 10350 | | 36.21 | $45 \cdot 4 \mathrm{I}$ | 53.25 | 61.26 | 75.03 | 77.83 | 81.23 | 8 I． 83 | 77.43 | 60.74 | 54.27 | 41.66 |
| 11．Fort Bayard． | 3246 | Ic8 30 | 4450 | 36.38 | 39.56 | 43.97 | 51.67 | 58.49 | 69.25 | 71.13 | 69.91 | 66.61 | 57.87 | 45.86 | 38.68 |
| 12．Fort Conrad | 3347 | 10648 | 4576 | 36.26 | 41.99 | 5 I .31 | 60.87 ． | 66.70 | 74.21 | 79.06 | 77.04 | 69.99 | 58.20 | 43.60 | 38.40 |
| 13．Fort Craig ${ }^{3}$ ． | 333^{6} | 10700 | 4576 | 38.03 | 44.00 | 53.19 | 61.30 | 71.09 | 79.30 | S1． 89 | 79.12 | 72.24 | 60.30 | 47.09 | 36.84 |
| 14．Fort Cummings | 3232 | 10740 | | 46.80 | 49.14 | 54.94 | 64.30 | 72.40 | 77.88 | 81.08 | 78.42 | 76.52 | 66.60 | 59.83 | 46.66 |
| 15．Fort Fauntleroy ${ }^{4}$ | 3529 | 10823 | | 24.06 | | | 49.50 | 62.19 | 70.48 | 74.17 | 71.66 | 61.08 | 51.54 | 36.66 | 32.46 |
| 16．Fort Fillmore ${ }^{5}$ ． | 3214 | 10642 | 3937 | 43.57 | 48．10 | 55.42 | 63.90 | 72.30 | 81.78 | 82.95 | 81.65 | 76.33 | 65.82 | 51.18 | 43.67 |
| 17．Fort Lowell ． | 3639 | 10640 | | 19.91 | 20.95 | 33.65 | 41.07 | | | | 61.93 | 54.69 | 44.25 | 31．19 | 20.44 |
| 18．Fort McRae． | 3318 | 10703 | 4500 | 38.53 | 40．4I | 49.47 | 61.70 | 72.13 | 78.53 | 8 I .37 | 78.03 | 73.80 | 61.43 | 48.59 | 38.73 |
| 19．Fort Selden ． | 3223 | 10655 | | 44.12 | 48.06 | 55.45 | 63.55 | 72.89 | 81.53 | 82.57 | 80.27 | 74.77 | 63.54 | 51.89 | 43.10 |
| 20．Fort Stanton | 3329 | 10538 | | 34.61 | 38.10 | 44.52 | 52.15 | 61.06 | 68.39 | 69.40 | 67.74 | 61.38 | 51.97 | 41.56 | 35.24 |
| 21．Fort Sumner | 3425 | 10408 | | 39.27 | 40.76 | 47.68 | 56.44 | 68.54 | 77.67 | 78.78 | 78.07 | 71.92 | 59.56 | 47.26 | 39.65 |
| 22．Fort Thorn ${ }^{5}$ ． | ${ }^{\prime} 3240$ | 10709 | 4500 | 37.56 | 41.98 | 51.03 | 61.19 | 68.33 | 77.84 | 80.88 | 77.14 | 69.38 | 58.24 | 44.83 | 36.66 |
| 23．Fort Union ${ }^{5}$ ． | 3554 | 10457 | 6670 | 32.03 | 35.43 | 40.82 | 49.08 | 58.83 | 66.49 | 69.87 | 67.46 | 61.55 | 51.35 | 41．56 | 33.03 |
| 24．Fort Webster | 3243 | 10810 | 6350 | 35.96 | 40.48 | 46.20 | 53．10 | 59.44 | 70．11 | 75．15 | 69.89 | 63.08 | 53.85 | 43.62 | 42.82 |
| 25．Fort West ． | 3300 | 10839 | | | | 53.22 | 57.64 | 67.56 | 77.34 | 77.44 | 77.05 | | 45.80 | | |
| 26．Fort Wingate | 3530 | 10745 | 600 | 30.14 | 36.57 | 43.48 | 50.47 | 60.58 | 69.43 | 73.80 | 70.87 | 64.19 | 54.63 | 41.05 | 31.68 |
| 27．Laguna ． | 3503 | 10714 | 6000 | 38.91 | 46.24 | ．． | \cdots | | | \cdots | ．． | | 57.43 | 46.38 | 40.10 |
| 28．Las Vegas | 3535 | 10516 | 6418 | 33.36 | 31.20 | 37.23 | 47.07 | 56.41 | 67.82 | 71.41 | 73.01 | 66.47 | 48.88 | 32.98 | 21.73 |
| 29．Los Pinos | 3451 | 10639 | 5000 | 33.07 | 39.78 | 50.49 | 56.18 | 67.20 | 75.96 | 79.72 | 76.45 | 60.53 | 55.83 | 41.31 | 33.16 |
| 30．Rayado ${ }^{\text {a }}$ | 3627 | 10455 | 6000 | | | | | 61.62 | 71.48 | | | | | | |
| 31．Santa Fé6 | 3541 | 10602 | 6846 | 28.38 | 33.2 I | 40.73 | 50.27 | 59.17 | 69.36 | 72.13 | 70.01 | 63.79 | 5 K .79 | 38.44 | 29.25 |
| 32．Socorro | 3405 | 10650 | 456 | 37.60 | 38.05 | 48.74 | 57.31 | 65.69 | 76.46 | 79.60 | 80.48 | 73.61 | 60.38 | 42.60 | 33.30 ． |
| NEW YORK． | | | | | | | | | | | | | | | |
| I．Adirondack ． | 4400 | 7405 | \ldots | ． | | 24.49 | 33．79 | 48.03 | 57.87 | 64.18 | 60.65 | | | | |
| 2．Albany ． | 4239 | 7344 | 130 | 25.00 | 26.00 | 34.00 | 48.50 | 59．25 | 66.25 | 73.50 | 71.50 | 62.50 | 49.75 | 38.16 | 27.00 |
| 3．Albany－ | 4239 | 7344 | 130 | 22.90 | 26.75 | 32.11 | 49.02 | 60.32 | 68.67 | 71.26 | 72.06 | 64.01 | 51.33 | 41.47 | 29.34 |
| 4．Albany ．．． | 4239 | 7344 | 130 | 22.49 | 26.46 | 34.44 | 47.71 | 59.23 | 69.87 | 74.08 | 70.99 | 62.88 | 49.94 | 37.46 | 28.31 |
| 5．Albany（Academy）． | 4239 | 7344 | 130 | 24.37 | 24.72 | 35.03 | 47.74 | 60.06 | 68.13 | 72.24 | 70.17 | 61.38 | 49.48 | 39.16 | 28.40 |
| 6．Albany－．－ | 4239 | 7344 | 130 | 24.14 | 28.94 | $34 \cdot 35$ | 44.00 | 56.31 | 66.60 | 71.78 | 67.75 | 59.44 | 51.42 | 39.09 | 27.75 |
| 7．Albany（Dudley Observatory） | 4240 | 7345 | ．． | 21.71 | 23.33 | 30.43 | 45.22 | 58.08 | 69.31 | $74 \cdot 36$ | 70.50 | 61.49 | 47.68 | 37.59 | 25.54 |
| 8．Albany ． | 4239 | 7345 | 75 | 23.38 | 28.00 | 38.50 | 56.80 | | | 72.65 | 72.90 | 70.26 | 50.78 | 44.35 | 37．10 |
| 9．Albany ．－ | 4239 | 7344 | 130 | 23.29 | 24.88 | 33.68 | 46.87 | 59.06 | 68.26 | 72.90 | 70.13 | 61.26 | 48.97 | 38.44 | 27.60 |
| 10．Albion ．．． | 4314 | 7814 | 505 | 32.85 | 31.34 | 40.26 | 48.48 | 58.71 | 67.08 | 72.26 | 70.81 | 62.35 | 53.76 | 42.47 | 34.80 |
| 11．Albion ．．－ | 4314 | 7814 | 505 | 31.80 | 29.21 | $35 \cdot 46$ | 43.17 | 56.32 | 69.05 | 73.14 | 70.90 | 62.77 | 50.04 | $43 \cdot 37$ | 30.47 |
| 12．Alexander－${ }^{\text {13．}}$ | 4253 | $\begin{array}{lll}78 & 18 \\ 77 & 50\end{array}$ | ．． | | | | ．． | 58.37 | 66.21 | 7 7 .45 | ． | ．． | ．． | ． | ．． |
| 13．Alfred ${ }^{\text {14．}}$ Amenia． | 4215 | 7750 | \cdots | 17.19 | 24.44 | 29.40 | | | | | | | | | |
| 14．Amenia－． | 4150 | 7333 | 540 | 21.79 | 20.12 | 35.56 | 41.54 | 56.66 | 66.55 | 67.88 | 67.86 | 57.76 | 46.99 | 45．15 | 28.24 |
| 15．Angelica．．． | $42 \quad 18$ | $78 \quad 3$ | 1500 | 16.59 | 20.84 | 26.09 | 41.74 | 54.12 | 65.56 | 71.28 | 65.63 | 60.05 | 46.23 | $35 \cdot 4^{2}$ | 25.15 |
| 16．Auburn | 4255 | 7635 | 650 | 24.37 | 25.08 | 33.51 | 45.26 | 54.84 | 64.47 | 69.38 | 68.23 | 59.45 | 48.23 | 37.75 | 29.54 |
| 17．Auburn | 4255 | 7635 | 650 | 24.39 | 25.38 | 32.77 | 44.98 | 60.33 | 68.73 | 72.38 | 72.29 | 63.86 | 50.42 | 38.74 | 28.79 |
| 18．Auburn | 4255 | 7635 | 650 | 23.65 | 24.44 | 32.92 | 44.81 | 55.98 | 65.58 | 70.75 | 68.97 | 59.75 | 47.83 | 37.33 | 29.55 |
| 19．Baldwinsville ．． | 4309 | 7620 | | 22.62 | 24.69 | 30.39 | 42.09 | 53.75 | 64.17 | 68.79 | 66.03 | 59.08 | 47.29 | 37.72 | 26.76 |
| ${ }^{1}$ Observations for four years，Sept． 1849 ，to Dec． $1854, \odot_{r} 9_{m} 3_{a} 9_{a}$ ；they were referred to $7_{m} 2_{a} 9_{a}$ ，
 ${ }^{2}$ Observations for May and June， 1850 ，at Taos．For seven months of the series，the observing hours were $\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ ；a correction was applied to refer them to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ．
 ${ }^{3}$ Observations for nine months of 1854 ，at $\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{u}} 9_{\mathrm{a}}$ ；referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ．
 4 Also known as Fort Lyon．
 ${ }^{5}$ Observations prior to $\mathbf{1} 855$ ，at $\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{n}}$ ；referred to $7_{\mathrm{m}} 2_{\mathrm{n}} 9_{\mathrm{a}}$ ．
 ${ }^{6}$ From January， $\mathbf{1 8 5 5}$ ，to September， $\mathbf{1 8 6 7}$ ，inclusive，the observations were made at Fort Marcy，about one mile from Santa Fé．Previous to $\mathbf{1} 855$ ，the observing hours were $\odot_{r} 9_{\mathrm{n}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ ；they have been referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ， | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

NEW IMEXICO.

				$$	$\begin{aligned} & \dot{\Delta} \\ & \stackrel{\Delta}{\mathrm{O}} \end{aligned}$	Series. Begins. Ends.	Extent yrs.mos.	Observing hours.		server.	References.
1	$56^{\circ} \cdot 36$	$76^{\circ} .27$	$5^{6} \cdot 32$	$34^{\circ} \cdot 78$	$55^{\circ} .93$		$\begin{array}{rr} 0 & 4 \\ 14 & 5 \end{array}$	$\begin{gathered} \bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \end{gathered}$	$\underset{\text { " }}{\text { Assist }}$	Surgeon.	Ar. Met. Reg. 1855. Ar. Met. Regs. 1855 and 1860, and MS. from S. G. O.
3		71.81			-••	1868		\%	"	"	MS. from S. G. O.
4	39.36	.		21.71		Oct. 1867; July, 1868	- 10	"	"	" 6	"6 "6 ،6
5	56.81					${ }_{\text {Mry }}{ }^{1864}{ }^{\text {2 }}$	O 3	" ${ }^{\prime}$	46	"،	'6 '،
6	45.97	66.21	45.07	23.89	45.29	May, 1850; Apr. 1860	5 II	"	${ }^{6}$	'	Ar. Met. Regs. 1855 and 1860 , and MS. from S. G. O.
7	52.50	75.21	56.18	33.11	54.25	Dec. 1849; Sept. 185I	110		" 6		Ar. Met. Reg. 1855.
8		80.89 87.65		44		1851	$\begin{array}{ll}0 & 4 \\ \mathrm{I} & 0\end{array}$		" 6	" 6	
10	76.18	\$0.30	64.15	44.46	62.18	Feb. I864; Oct. IS70	$\begin{array}{rr}1 & 0 \\ 3 & 10\end{array}$	$2{ }_{2} 9$,	،	MS. from S. G. O.
11	51.38	70.10	56.78	38.21	54. 12	Mar. 1867; Dec. 1870	3 10		،	"	" " "
12	59.63	76.77	57.26	38.88	58.14	Oct. 1851; Mar. 1854	26	$\bigodot_{r} 9_{m} 3_{u} 9_{u}$	"	"	Ar. Met. Reg. 1855.
13	61.86	So. 10	59.88	39.62	60.37	Apr. 1854; Dec. 1870	1310	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	،	،	Ar. Met. Regs. 1855 and 1860 , and MS. from S. G. O.
14	63.88	79.13	67.65	47.53	64.55	Mar. 1869; Nov. I870	19	" 6	"	"	MS. from S. G. O.
15		72.10	49.76	.		Oct. 1860; Sept. 1861	- 10	"	"	"	" " "
16	63.87	82.13	64.44	45.11	63.89	Sept. I85I; May, I86x	9 S	"	،	،	Ar. Met. Regs. 1855 and 1860, and MS. from S. G. O.
17			43.38	20.43		Aug. 1868; Apr. 1869		،	،	"	MS. from S. G. O.
18	61.10	79.31	6 r .27	39.22	60.23	Mar. 1864; Dec. IS70	31	6	\%	/	" "6
19	63.96	81.46	63.40	45.09	63.48	Nov. 1865; Dec. 1870	48	،	"	"	" "
20	52.58	68.51	51.64	35.98	52.18	Aug. 1855; Dec. 1870	9 II	'	"	"	Ar. Met. Reg. 1860, and MS. from S. G. O.
21	57.55	78.17	59.58	39.89	58.80	Apr. 1864; July, I869		6	"	"	MS. from S. G. O.
22	60.18	78.62	57.48	38.73	58.75	Jan. 1854; Jan. 1859	5 -	، 6	"	،	Ar. Met. Regs. 1855 and 1860.
23	49.58	67.94	51.49	33.50	50.63	Aug. 1851 ; Dec. 1870	173	${ }^{6 \prime}$	*	*	Ar. Met. Regs. 1855 and $\mathbf{1 8 6 0}$, and MS. from S. G. O.
24	52.91	71.72	53.52	39.75	54.48	Feb. 1852; Dec. 1853	$1{ }^{11}$	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	" 6	" 6	Ar. Met. Reg. 1855.
25	59.47 51.51	77.28 71.37	53.29	32.80	52-24	Nov. 1862; Dec. 1870			"6	"	MS. from S. G. O.
26 27	51.51	71.37	53.29	32.80 41.75	52-24	Nov. 1862; Dec. I870 Oct. I851; Feb. 1852			'6	،	Ar. Met. Reg. ${ }^{\text {' }} 855$.
28	46.90	70.75	49.44	28.76	48.96	Jan. 1850; July, 1851	17		،	"	Ar. ${ }^{6}$ /6 "6
29	57.96	77.38	52.56	$35 \cdot 34$	55.81	Jan. 1863; May, I866	29	$7 \mathrm{~m}{ }^{2}{ }^{\text {a }} 9$	"	'	MS. from S. G. O.
30 31		70.50	51.34		50.54	Jan 1851	$\begin{array}{r}\circ \\ \hline 18 \\ \hline 8\end{array}$	$\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{a}$	"	$4{ }^{\circ}$	Ar. Met. Reg. 1855.
31	50.06	70.50	51.34	30.28	50.54	Jan. 1849; Dec. 1870	186	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	6	"	Ar. Met. Regs. 1855 and 1860, and MS. from S. G. O.
32	57.25	78.85	58.86	36.32	57.82	Nov. 1849; Aug. 1851	19	$\bigcirc_{r} 99_{m} 39_{a}$	"	"	Ar. Met. Reg. 1855

NEW YORK.

1	35.44	60.90				1852	- 6	$6_{\mathrm{mm}} \mathrm{a}_{\mathrm{n}} 1 \mathrm{O}_{\mathrm{n}}$		MS. in S. Coll.
2	47.25	70.42	50.14	26.00	48.45	Jan. 1795; Dec. 1796	1 II	max. \& min.	De Witt.	" 6
3	47.15	70.66	52.27	26.33	49.10	Jan. 1813; Dec. 1814	20	$7 \mathrm{~m} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Dr. Eyhts.	" "6
4	47.13	71.65	50.09	25.75	48.65	Jan. 1820; Dec. 1825	6 o	$7 \mathrm{~m} \mathrm{~g}_{\mathrm{a}} \mathrm{g}_{\mathrm{a}}$	Dr. Beach.	"، "6 "
5	47.61	70.18	50.01	25.83	48.41	Jan. 1826; Dec. 1849	240		Various observers.	N. Y. Univ. Syst. 1855
6	44.89	68.71	49.98	26.94	47.63	Jan. 1850; Dec, 1852	30	$6_{m} 2_{a} \mathrm{IO}_{a}$		MS. in S. Coll.
7	44.58	71.39	48.92	23.53	47.10	Jan. 1862; Dec. 1870	$9 \bigcirc$	8 m 7 a	Various observers.	Annals of the Dudley Observ'y Vol. 2.
8			55.13	29.49	.	Jan. 1865; Apr. 1866			H. M. Paine.	S. O.
9	46.54	70.43	49.56	25.26	47.95	Jan. 1795; Dec. 1870	4511		Various observers.	Consolidated series.
10	49.15	70.05	52.86	33.00	51.26	1845; 1848			McHarf.	Dove.
11	44.98	71.03	52.06	30.49	49.64	1849; 1853	28	$\bigcirc_{\mathrm{r}} 99_{\mathrm{m}} 33_{\mathrm{a}} 9_{\mathrm{a}}{ }^{9}$	Munger.	MS. in S. Coll.
12	1851		$6_{m} 2_{\mathrm{a}} \odot_{\mathrm{s}}$		
13	-.		-	\cdots		1852		$6_{\mathrm{ma}} 2_{\mathrm{a}} 10_{\mathrm{a}}$		$\text { N }{ }^{6} \text { U Tiniy "Suct }{ }^{\text {get }}$
14	44.59	67.43	49.97	23.38	46.34	Jan. 1849; July, 1850	1 I		A. Winchell.	N. Y. Univ. Syst. 1855.
15	40.65	67.49	47.23	20.86	44.06	May, 1854; Dec. 1870	34	$7 \mathrm{~mm} 2_{\text {a }} 9 \mathrm{a}$	Dr. E. M. Alba, C. I. Arnold.	P. O. and S. I. Vol. 1, and S. O.
16	44.54	67.36	48.48	26.33	46.68	Jan. 1827; Dec. 1849		7	Various observers.	N. Y. Univ. Syst. 1855.
17	46.03	71.13	51.01	26.19	48.59	Jan. 1860; Dec. 1865	6 -	$29_{\mathrm{a}}^{\text {bis }}$	I. B. Dill.	S. O.
I8	44.57	68.43	48.30	25.88	46.80	Jan. 1827; Dec. 1865	$28 \quad 0$		Various observers.	Consolidated series.
19	42.08	66.33	48.03	24.69	45.28	1849; May, I867	16 -	8	J. Bowman.	MS. in S. Coll., P. O. and S. I. Vol. I, and S. O.

7 Daily means computed by the formula $\frac{a+2 b+2 c+a^{\prime}}{6}$ where a represents an observation a little before sunrise, b one at $3_{a}, c$ one at one hour after sunset, and a^{\prime} the morning observation on the following day. The results thus obtained appear, on the average, to be about $0^{\circ} .5$ too high,

8 Corrected for daily variation by means of the general table.
${ }^{9}$ Observations at $9_{\mathrm{m}} 3_{a} 9_{\mathrm{a}}$ in May, June, September, October, 1850 , and March, $185 \mathbf{1}$; subsequently at $\eta_{\mathrm{m}} \boldsymbol{2}_{\mathrm{a}}$.

NEW YORK．－Continued．															
Name or Station．	H	号			䪅		苍	寍	$\begin{aligned} & \stackrel{\oplus}{E} \\ & \text { E } \end{aligned}$	咅		$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \text { W } \end{aligned}$	$\stackrel{ \pm}{ \pm}$	安	هِ0
20．Barnesville ．	$42^{\circ} 3^{\prime \prime}$	$74^{\circ} 26^{\prime}$	1200		．	$30^{\circ} .48$	$47^{\circ} .28$	$60^{\circ} .20$	$72^{\circ} .68$						
21．Beaver Brook ．	4130	7437	700		．．	24.95	44.62	59.28	68.14	$76^{\circ} .00$	$71^{\circ} \cdot 17$	$65^{\circ} \cdot 15$	$53^{\circ} \cdot 43$	$3^{8} .66$	$24^{\circ} \cdot 32$
22．Belleville（Union	4347	7606		$23^{\circ} \cdot 73$	$22^{\circ} .92$	32.64	48.18	56.50	64.68	69.59	66.13	60.04	48.98	37.77	25.93
23．Bellport ．．．．	4044	7252	15	31.12	30.70	37.29	45．01	54.35	64.32	69.17	68.58	62.10	53.14	42.54	33.63
24．Beverly ．．	4122	7356	180	24.79	27.94	35.25	46.89	57.55	66.87	72.37	69.05	62.34	50.76	41.09	29.06
25．Blackwell＇s Island ${ }^{3}$ ．	4045	7358	29	22.31	30.64	33.67	46.99	56.20	68.48	74.66	72.24	66.95	54.13	43.95	35．06
26．Bloomingdale ．．	4049	7358		32.77	28.86	40.77	51.95	60.88	69.44	74.22	74.04	69.26	53.45	47.40	33.93
27．Bridgewater ．	4252	$75 \quad 17$	1286	20.64	21.89	29.88	42.29	52.98	59.58	66.64	62.90	55.44	44.66	31.42	23.68
28．Brooklyn ．	4041	7358	125		．．	．	．．		74.03	77.03	74.60	65.94	57.81	46.26	35.38
29．Buffalo	4253	7853	623	23.41	21.13	35.49	40.69	55．29	67.44	71.55	69.99	59.89	48.75	37.22	22.85
30．Buffalo Barracks	4253	7852	660	27.00	24.62	30.85	44.10	52.96	64.16	68.35	68.51	61.87	45.55	35.53	29.55
37．Buffalo ．．－	4253	7852	569	24.36	26.39	$3 \mathrm{I} \cdot 37$	43.63	53.59	65.04	69.58	68.58	6 r .19	49.51	40.13	28.40
32．Buffalo－	4253	7852	600	24.75	26.52	32.61	43.08	53.06	64.30	70.34	68.56	61.78	49.96	39.25	28.48
33．Buffalo ．	4253	7852	600	24.72	27.49	32.05	43.12	53.19	63.79	69.65	68.43	60.94	48.91	38.75	28.09
34．Caldwell．	4324	7343	300	．．	－	32.0	．．	5	，	74.03	70.48	62.63	49.35	3.75	
35．Cambridge（Wash－ ington Co．Acad．）	4300	7325	500	22.44	21.45	32.69	44.19	55.99	64.82	68.88	66.09	58.29	46.76	36.56	26.21
36．Canajoharie（Acad．）	4251	7442	284	20.97	19.61	30.46	47.29	58.33	64.06	70.34	67.36	58.69	49.06	37.87	25.26
37．Canandaigua（Aca．）	4255	7716	590	23.34	21.09	31.84	45.94	55.92	65.70	69.49	66.80	57.32	47.85	36.14	26.68
38．Canton ．	4436	7511	304	17.94	14.44	26.04	42.65	57．18	67.20	72.50	68.89	60.42	48.74	36.48	21.15
39．Cazenovia（Acad．）${ }^{4}$	4255	75 51	1260	21.43	22.21	29.85	42.87	53.09	61.99	66.71	64.61	57.66	45.84	35.63	24.69
40．Champion	4357	7541	\cdots	11.35	24.30	．	\ldots	－	．	．	．．	．	．－	．	\ldots
41．Charlotte ${ }^{5}$	4315	7737	273	25.47	27.88	32.93	44.57	54.69	66.33	70.65	69.76	62.22	50.68	40.83	29.23
42．Chatham ．．	4224	$73 \quad 36$	．	25.57	23.52	30.40	45.05	56.90	68.71	72.00	69.36	61.24	48．19	45.57	20.56
43．Cherry Valley Acad．	4248	7445	1335	22.03	2 2． 66	30.30	43.64	53.84	63.48	67.68	65.58	57.82	45.8 I	34.36	25.34
44．Clinton（Hamilton Coll．）	$43 \quad 03$	$75 \quad 24$	1127	21.78	24.25	30.28	43.70	56.55	65.84	72.46	69.39	61.54	49.75	37.92	28.44
45．Clockville ．．．	4300	7548	1300		24.63	28.25	40.33	49.47	66.90						
46．Clyde（near）．．	43 O5	7654	400	23.82	27.35	30.96	44.77	53.65	63.61	66.77	65.25	59.47	50.62	$37 \cdot 38$	31.95
47．Constableville ．．	4333	$75 \quad 27$			．				62.04	68.85	64.89	60.74 62.87			3
48．Constantia－－	4315	7602	424									62.87			
49．Cooperstown	4242	7457	1300	27.80	19.48	24.73	46.50	58.63	71.88	73.35	69.13	60.65	46.22	34.83	26.06
50．Cuba－．．	4212	7818	1502	18.10	22.48	28.02	40.41	51.21	62.60	63.52	63.22	55.12	40.19	32.61	23.58
51．Dansville ．．	4235	7744	714	28.82	3 r .53	32.35	46.87	52.20	65.22	68.95	68.01	60.80	52.12	37.50	34.03
52．Delhi（Delaware	4216	7458	1384	22.82	28.58	33.59	39.49	$55 \cdot 30$	68.05	68.95	64.69	55.86	45.92	37.01	31.45
53．Depauville（1 mile north of）	4406	76 06	350	19.24	20.76	29.20	42.82	53.10	64.85	69.57	66.49	60.32	46.36	35.96	23.72
54．East Hampton（Clin． Acad．）．	4058	7228	16	30.13	30.75	36.36	44.43	53.18	62.80	69.68	68.51	62.54	52.13	42.27	33.45
55．Eden（Brown Cot－	4230	$\begin{array}{ll}79 & 07\end{array}$	700	13.25	32.05	25.99	41.70	54.07	63.75	72.47	68.26	62.60	48.63	36.30	34.55
56．Ellisburg ．．．．	4347	7608	250	23.74	22.82	33.42	48.65	57.49	64.73	69.73	66.94	61.34	48.72	38.39	26.53
57．Elmira ．	4205	7650	860	19.50	26.66	32.15	39.85	56.09	62.80	67.81	64.29	58.55 57.53	51.02	33.90 34.50	32.86
58．Fairfield Academy ．	4305	7455	1185	19.73	19.73	29.85	42.57	53.91	62.53	66.39	65.79	57.53	46.02	34.50	23.98
59．Falconer ．．．	4205	7910	42	23.44	27.90	32.01	47			4					
60．Fishkill Landing ．	4130	7359	42	25.15	27.51	34.86	47.47	58.77	68.45	73.49	70.48	63.49	52.79	41． 15	30.08
6x．Flatbush（Erasmus Hall）${ }^{6}$	4039	7358	54	30.47	31.57	38.38	48.41	58.36	67.51	73.32	71.34	64.48	53.68	$43 \cdot 94$	34.31
62．Flushing7	4046	7348	．	32.57	29.12	33.80	49.65	62.38	72.55	76.73	74.13	66．10	55.50	41.98	31.09
63．Fordham（St．John＇s Coll．）	4054	7350	147	21.35	32.81	37．II				75.42	－	65.21	53.15	44.35	30.16
64．Fort Ann	4322	7328		34.55	36.05	$45 \cdot 31$	56.49	60.37	76.53	78.18	75．10	60.84	45.45	42.68	29.98
65．Fort Columbus ．．	4042	74 or		29.87	30.53	37.96	48.47	59.43	69.46	75.09	73.38	65.96	54.57	43.64	33.50
66．Fort Edward ．	4313	7333	175	$25 \cdot 31$	21.00	33.13	45.45	57.79	69.96	70.74	67.57	60.85	49.09	36.06	27.60
${ }^{1}$ Corrected for daily \＆Daily means compu sunset，and a^{\prime} the morning ${ }^{3}$ New York，Peniten	ariation d by th observa ary Ho	y mean formula on on th ital．	s of th $a+2+2$ fe follo	$\begin{aligned} & \text { eg genera } \\ & \frac{2 b+2 c-}{6} \end{aligned}$ wing da	table． a^{\prime} wh The		esents an s obtain		on a littl on the	e before average，	sunxise， to be abo	b one at ut $0^{\circ} .5$	$3_{\mathrm{a}}, c$ one too high	$t \text { one }$	r after

NEW YORK.-Continued.

8 October, 1874.

NEW YORK．－Continued．															
Name of Station．	－		$\begin{aligned} & \text { 䔍 } \\ & \text { 荷 } \\ & \text { 要 } \end{aligned}$	$\xrightarrow[\text { ® }]{\text { ® }}$	玺	－	兌	灾	E	$\stackrel{\text { E }}{\text { E }}$	苞	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\leftrightarrow}{6} \end{aligned}$	ぜ	8	هٌ
67．Fort Hamilton	$40^{\circ} 36^{\prime}$	$74^{\circ} \mathrm{O} 2^{\prime}$	25	$30^{\circ} .06$	$30^{\circ} \cdot 79$	$37^{\circ} \cdot 4{ }^{1}$	$47^{\circ} \cdot 59$	$58^{\circ} .11$	$68^{\circ} \cdot 43$	$73^{\circ} \cdot 97$	$73^{\circ} \cdot 17$	$66^{\circ} .43$	$55^{\circ} .02$	$44^{\circ} \cdot 52$	$33^{\circ} \cdot 73$
68．Fort Niagara	4315	7905	263	26.71	26.98	33.34	43.32	54.59	65.12	70.53	69.56	61.62	50.49	39.75	29.17
69．Fort Ontario ．	4334	7612	295	24.21	23.26	30.94	42.87	51.76	62.23	69.57	68.28	61.56	48.49	38.55	26.74
70．Fort Porter	4250	7855	660	24.32	25.58	30.90	41.26	52.26	66.09	72.03	70.16	62.92	50.83	39.37	27.77
71．Fort Wood	4042	74 11	\cdots	30.42	26.57	36.36	45.09	55.72	67.45	73.34	71.67	63.78	55.44	42.02	32.24
72．Fredonia（Acad．）	4226	79 21	715	28.37	27.75	35．16	45.85	56.67	65.23	70.66	68.47	6r．or	50.93	39.71	31.06
73．Friendship ．．．	4212	7810	1536	15.75	29.72	27.71	43.05	47.95	65.90	66.18	65.23	56.93	45.65	38.07	22.52
74．Gaines（Academy）	4316	7815	427	25.37	28.38	34.46	46.54	54.48	62.99	71.76	66.48	59.83	47.69	35.25	28.45
75．Geneva ．．．	4253	77 00	567	21.10	24.87	31.61	43.82	54.09	65.78	71.89	68.09	61.51	49.91	39.34	28.79
76．Germantown	4205	735^{2}	\cdots	20.62	25． 15	34.12	45.62	55.06	68.76	73．19	65.30	6 n .10	51.45	40.70	25.82
77．Glasco－．	4200	7400	150	31.93	26.28	30.20	48.25	55.20	71.75	72.95	69.20	61.35	50.00	38.58	28.28
78．Goshen（Farmer＇s	4123	7420	425	25.66	26.31	36.51	47.42	56.22	64.73	68.70	67.64	59.76	48.81	38.79	28.01
79．Gouverneur	4420	7527	400	17.23	18.17	28.56	42.89	54.81	64.11	69.70	66.71	56.67	45.59	33.73	20.94
8o．Greenville（Acad．）	4224	7402	\cdots	30.27	27.48	33.78	40.18	62.51	66.78	68.88	68.72	61.73	51.26	36.96	28.13
81．Hamilton（Acad．）	4248	$75 \quad 29$	1127	22.91	22.95	31.80	45.43	54.97	63.08	67.36	65.86	58.28	45.88	35.64	26.36
82．Hamilton	4248	$75 \quad 29$	1127	21.32	26.60	31.52	40.79	55.20	62.06	67.75	65.14	58.71	49.48	35.76	25.55
83．Hartwick（Sem．）．	4237	7500	1100	24.27	25.22	33.89	44.42	56.48	65.08	68.25	66.72	58.75	48.46	38.11	28.19
84．Havana．	4230	7330	1041	25.13											
85．Henrietta	$43 \quad 03$	7739	600	29.70	28.48	38.44	48.31	58.70	64.95	69.76	66.57	60.07	51.31	39.48	30.76
86．Hermitage ．．	4245	7816	1500	23.26	23.44	26.74	39.40	50.74	60.57	64.49	64.31	56.31	46.62	35.46	26.64
87．Homer（Courtland Acad．）	4238	76 II	1096	22.90	22.51	31.12	42.40	53.93	61.67	65.92	64.22	56.45	46.53	35.81	26.96
88．Houseville ．．．	4340	7532	900	20.92	21.40	28.37	38.8	51.56	64.97	69.16	65.18	57.79	46．81	34.28	20.24
89．Hudson（Acad．）	4214	7347	150	25．19	25.7	34.85	47.61	58.93	67.62	71.53	70.06	61.91	50.33	38.92	28.52
90．Huntingdon	4052	7327	50	26.		$24 .$					71.				31.
91．Ithaca（Acad．）	4225	7630	417	27.78	27.78	34.90	46.73	57.82	$65 \cdot 42$	70.78	68.68	60.35	49.20	38.97	31.02
92．Jamaica（Union Hall）	4042	7348	30	29.42	29.34	37.64	47.25	56.96	65.71	71.23	70.58	62.79	51.85	41.72	32.51
93．Jamestown ．．	4206	7916	1364	20.20	24.58	32.68	43.38	57.16	65.98	68.67	66.26	60.94	48.39	36.62	29.28
94．Jericho ．	4047	7133					44．11								
95．Johnstown（Acad．）	4259	7422	2_{25}	21.27	22.14	31.68	43.50	55.89	64.76	68.89	67.70	58.16	46.73	34.97	24.83
96．Kinderhook（Aca．）	4222	7323	125	22.90	23.32	33.74	46.30	57.26	65.44	70.15	68.47	60.30	47.54	38.28	25.24
97．Kingston（Acad．）	4155	7400	188	26.66	27.31	37.20	49.37	59.53	67.22	72.76	70.93	62.29	50.54	41.02	30.90
98．La Fargeville ．	4412	7600	－．	26.00	32.67	32.67	42.67	58.00	65.00	72.00	66.33	62.00	51.33	32.67	24.00
99．Lansingburgh （Acad．）	4245	734°	30	22.67	24.83	$34 \cdot 34$	47.00	58.67	67.48	71.68	69.89	61.89	49.96	38.21	26.63
100．Ledyard（Cayuga Acad．）．	4243	7642	447	28.70	28.18	36.91	46.59	56.55	66.15	72.27	70.71	62.96	50.53	40.60	29.80
101．Leroy－Lewiston（S．High	4257	$78 \quad 03$	．．	．	．	．	41.87	56.90	71.50	77.20	．		．	．	．
102．School）．．	4309	7904	280	27.23	26.92	34.80	46.32	56.91	64.80	71.56	69.94	61.88	50.10	39.70	29.94
103．Leyden ．．	4334	7522	1312	22.76	16.01	25.58	40.25	52.73	57.82	66.33	61.35	59.05	39.74	28.53	23.52
104．Liberty ．	4145	7446	1474	18.19	20.13	26.71	39.95	51.59	62.62	68.79	64.34	56.63	47.84	33.95	26.32
105．Lima	4253	7740	．．	22.63	30.75	．	．	－．	．．	\cdots	\cdots	\cdots	\cdots		－
106．Lisle ．．．	4221	7602	．	．	．．		\cdots	53.39					\cdots		\cdots
107．Little Genesee 108．Lockport	4200	7815 78 78	1500	22.13	23.58	28.65	43.26	52．38	65．44	68.97	64.97	58.50 59.6	45.27	35.58	24.47
108．Lockport ${ }^{4}$ ．	4309	7844	．．	24.2	27.6	33.2	40.4	53.7	66.3	68.8	66.7	59.6	49.9	43.9	34.4
rog．Lodí ${ }^{\text {a }}$ ．\cdot	4236	7650	1000	23.43	24.09	30.19	42.02	56.57	67.49	72.25	68.36	62.18	49.37	37.05	26.43
110．Lowville（Acad．）．	4347	7530	847	19.75	21.49	29.78	43.70	54.59	62.61	67.91	64.84	57.43	45.80	34.45	23.40
III．Ludlowville	4233	7635	600	28.40	27.63	26.83	45.90	55.85	66.68	70.73	69.28	\cdots	．	－．	\cdots
I12．Luzerne	4318	7350	500			‥8	\cdots	．．		6	66°	…	\cdots	35.33	24.10
II3．Lyons a II4．McGrawille ．	$\begin{array}{ll}43 & 04 \\ 42 & 34\end{array}$	7702	1450	24.90	26.22	31.80	42.64	54.73	63.06	67.12	66.39 64.66	57.94	49.67	38.04	28.90
114．McGrawville II5．Madison Barracks ${ }^{\text {6 }}$	4234 43 4	7611	1450 262	9.23	30.52	25.65	35.72	51.98	61.16	70.01	64.66	59.43	46.48	35.46	32.07
115．Madison Barracks ${ }^{6}$ I16．Madrid ．．．	4357 4443	$\begin{array}{lll}76 & 04 \\ 75 & 09\end{array}$	262 280	21.79 16.73	23.81 18.06	32.89 29.62	44.35	54.56 56.53	64.49 66.62	69.08.	68.96 69.18	60.62 59.06	49.49 46.49	37.88 35.10	25.87 22.13
116．Madrid ．	4443	7509	280	16.73	18．06	29.62	40.39	56.53	66.62	72.34	69.18	59.06	46.49	35．10	22.13

${ }^{1}$ Daily means computed by the formula $\frac{a+2 b+2 c+a^{\prime}}{6}$ where a represents an observation a little before sumrise，b one at 3_{a} ，c one at one hour after sunset，and a^{\prime} the morning observation on the following day．The results thus obtained appear，on the average，to be about $0^{\circ} .5$ too high．

NEW YORK.-Continued.

NEW YORK.-Continued.										
	$\begin{aligned} & \text { 宽 } \\ & \text { 落 } \end{aligned}$					Series. Begins. Ends.	$\begin{aligned} & \text { Extent } \\ & \text { yrs.mos. } \end{aligned}$	Observing hours.	Observer.	References.
67	$47^{\circ} .70$	$71^{\circ} .86$	$55^{\circ} \cdot 32$	$3{ }^{10} .53$	$51^{\circ} .60$	Jan. 1843; Dec. 1870	27	$7_{\text {m }} 2_{8} 9$	Assistant Surgeon.	Ar. Met. Reg. and MS. from S. G. O.
68	43.75	68.40	50.62	27.62	47.60	Jan. 1829; Dec. 1867	223	"	L. Leffman, Assistant Surgeon.	Ar. Met. Reg. 1855, and U. S. Lake Survey, Rep. of 1867-8.
69	41.86	66.69	49.53	24.74	45.71	$\text { Jan. 1843; Dec. } 1870$		$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{z}}$	Assistant Surgeon.	Ar. Met. Regs. $1855-60$.
70 71	41.47 45.72	69.43 70.82	51.04 53.75	25.89 29.74	46.96 50.01	$\begin{array}{cc}\text { Jan. } \\ \text { 1837; } & \text { Dec. } 1870 \\ 1838\end{array}$	$\begin{array}{ll} 8 & 9 \\ 2 & 0 \end{array}$	$7_{\mathrm{m}} \sum_{a} a_{a}$	Hosmer. Assistant Surgeon.	MS. from S. G. O. and S. Coll. Army Register.
72	45.89	68.12	50.55	29.06	48.41	Mar. 1829; Feb. 1864	209	1	Various observers.	N. Y. Univ. Syst. 1855, MS. in S. Coll., and S. O.
73	39.57	65.77	46.88	22.66	43.72	Nov. 1866; Nov. 1867	- 11	$7 \mathrm{~mm} \mathrm{a}_{\mathrm{a}} 9_{\mathrm{a}}$ bis	G. W. Fries.	
74	45.16	67.08	47.59	27.40	46.8 r	Jan. 1839; Dec. 1842	$\begin{array}{ll}4 & 0 \\ 6 & \end{array}$	${ }_{7}{ }^{\text {a }}$	$\underset{\text { Various observers. }}{\text { c/ }}$	N. Y. Univ. Syst. 1855.
75	43.17	68.59	50.25	24.92	46.73	Feb. 1852; Aug. 1868		$7_{\mathrm{nf}} \mathrm{z}_{\mathrm{a}} 9 \mathrm{ab}$ bis		P. O. and S. 1. Vol. I, MS. in S. Coll., and S. O.
76	44.93	69.08	51.08	${ }^{23} .85$	47.24	May, 1866; May, 1868	$2{ }_{2}^{2}$	"	S. W. Roe.	S. O.
77	44.55	71.30	49.98	28.83	48.66	Jan. 1870; Dec. 1870	- 11	"	D. B. Hendricks.	
78	46.72	67.02	49.12	26.66	47.38	Jan. 1835; Dec. 1849		1	Various observer	N. Y. Univ. Syst. 1855.
79	42.09	66.84	45.33	18.78	43.26	Jan. 1831; Dec. 1870				N. Y. Univ. Syst. 1855 and P. O. and S. I. Vol. I, and S. O.
So	45.49	68.13	49.98	28.63	48.06	1826	18	$\stackrel{1}{4}$	E. B. Wheeler.	N. Y. Univ. Syst. $18{ }_{6}{ }_{6} 55$
81	44.07	65.43	46.60	24.07	45.04	Jan. 1827; Dec. 1849	18 O	- 10	Various observer	
82 83 8	42.50 44.93	64.98 66.68	47.98 48.44	24.49 25.89	44.99 46.49	Sept. 1850; Dec. 1852 Jan. $1826 ;$ Dec. 1850	$\begin{array}{rr}2 & 4 \\ 16 & 0\end{array}$	$6_{\text {m }} \mathrm{I}_{\mathrm{a}}^{1} \mathrm{IO}_{\mathrm{a}}$		Manuscript. N. Y. Univ. Syst. 1855.
84						1860			E. C. Frost.	
85	48.48	67.09	50.29	29.65	48.88	Jan. 1835; June, 1862	56		J. S. Whitaker, E. D. Ransom, A. S. Wads worth.	N. Y. Univ. Syst. 1855, \& S. O.
86	38.96	63.12	46.13	24.45	43.16	Nov. 1860; Aug. 1864	310	$7_{\text {m }} 2_{a_{1}} 9_{\text {a }}$ bis	A. A. Hibberd.	$\text { S. } \mathrm{O} \text {. }$
87	42.48	63.94	46.26	24.12	44.20	Feb. 1829; Feb. 1856	218	t	Various observers.	N. X. Univ. Syst. 1855, P. O. \& S. I. Vol. I, \& MS. in S. Coll.
S8	39.61	66.44	46.29	20.85	43.30	49; Oct. 1870	94	$7 \mathrm{~m} \mathrm{za}_{\mathrm{a}} 9 \mathrm{ab}$ bis	W. D. Yale.	P. O. and S. I. Vol. I, S. O., \& S. Coll.
89	47.13	69.74	50.39	26.50	48.44	Jan. 1827; Jan. 1870	199	1	Various observers.	N. Y. Univ. Syst. 1855, MS. in S. Coll. and S. O.
$\begin{aligned} & 90 \\ & 9 \mathrm{I} \end{aligned}$	$\begin{aligned} & 45.33 \\ & 46.48 \end{aligned}$	$\begin{aligned} & 70.33 \\ & 68.29 \end{aligned}$	$\begin{aligned} & 55.00 \\ & 49.5 I \end{aligned}$	$\begin{aligned} & 28.67 \\ & 28.86 \end{aligned}$	$\begin{aligned} & 49.84 \\ & 48.29 \end{aligned}$	Sept. 1821; Aug. 1822 Jan. 1827; Dec. 1852	$\begin{array}{rr} 1 & 0 \\ 20 & 10 \end{array}$	${ }^{-\cdots}$	Various observers.	
									Various observers.	N. Y. Univ. Syst. 1855, and MS. in S. Coll.
92	47.28	69.17	52.12	30.42	49.75	Jan. 1826; Dec. 1850		1	" "	N. Y. Univ. Syst. 1855.
93	44.41	66.97	48.65	24.69	46.18	Jan. 1852; Mar. 1866	34	$7 \mathrm{man} \mathrm{m}_{\mathrm{a}} \mathrm{bis}$	Dr. S.W. Roe \& others.	MS. in S. Coll. and S.
94	43.69	67.12	46.62	22.75	45.04	Jan. ${ }_{\text {1828; }}$ 1849 Dec. 1845	$\begin{array}{rrr}0 \\ 16 & 1 \\ 16 & 0\end{array}$	$\cdots{ }_{i} \cdot \ldots$	Wills. Various observers.	S. Coll. N. Y. Univ, Syst. 185
${ }_{96} 95$	45.77	68.02	48.71	${ }_{23.82}^{22.75}$	46.58	Jan. 1830; Dec. 1846	17 \%	1	T. Metcalf.	
97	48.70	70.30	51.28	28.29	49.64	Sept. 1828; Nov. 1869	1910	1	Various observers.	N. Y. U̇niv. Syst. 1855, and S. O.
98	44.45	67.78	48.67	${ }^{27.56}$	47.11	1851		$\odot_{\mathrm{r}} \mathrm{N} . \bigodot_{\mathrm{s}}$	Rothers	Pat, Off, Rep.
99	46.67	69.68	50.02	24.71	47.77	Jan. 1826; Dec. 1852	23 o		Various observers.	N. Y. Univ. Syst. 1855, and Reg. Rep.
100	46.68	69.71	51.36	28.89	49.16	Jan. 1830; Dec. 1850		${ }^{1}$	" "	N. Y. Univ. Syst. 1855.
101				..		1854	\bigcirc	7 ma	L. F. Munger.	P. O. and S. I. Vol.
102	46.01	68.77	50.56	28.03	48.34	May, 1830; Dec. 1849	188	1	Various observers.	N. Y. Univ. Syst, 1855.
103	39.52	61.83 65.25	42.44	20.76 21.55	4 4 .154	Mar. r869; July, 1870	$\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}$	$7_{\text {mp }} 2_{a_{3}} 9_{\mathrm{ab}}$ bis	C. Collins Merriam.	S. O.
104	39.42	65.25	46.14	21.55	43.09	Jan. 1852; Apr. 1856	23	${ }_{7}{ }_{3}{ }_{3}$		P. O. \& S. I. Vol. I, \& MS. in S. Coll.
105						$7{ }_{7 m} 2_{1} 9_{\text {a }}$	Prof. S. A. Lattimer.	
10	41.43	66.46	46.45	23.39	44.43	Feb. ${ }^{\text {I } 866 \text {; }}$; Dec. 1870	- I	$\bigodot_{\mathrm{r}} 7_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Mitchell. D. Edwards.	S. Coll. S. O .
108	42.43	67.27	51.13	28.73	47.39	Nov. 1848; Dec. 1870	411 4 4		J. G. Trevor, Gid	MS. in S. Coll. and S. O.
109	42.93	69.37		24.65	46.62	1849; Jan. 1858	88		B. W. Clark. J. Lefferts.	P. O. \& S. I. Vol. I, \& S. Coll.
I 10	42.69	65.12	45.89	21.55	43.81	Jan. 1827; Dec. 1857	243		Various observers.	N. Y. Univ. Syst. 1855, MS. in S. Coll, \& P. O. \& S. I.Vol. I.
III	42.86	68.90	1869		$7_{\mathrm{mm}} 2_{\mathrm{n}} 9_{\mathrm{mb}}$	C. P. Murphy.	S. 0 \%.
112						1870	- 2		A. M. Strong.	
113	43.06	65.52	48.55	26.67	45.95	Jan. 1861; Aug. 1862	28	"	E. W. Sylvester:	"
114	37.78	65.28	47.12	23.94	43.53	Sept. 1856; Sept. 1857	${ }^{-115}$	$7 \mathrm{~m} 2_{\text {n }} \mathrm{gax}^{\text {a }}$	J. M. Smith.	P. O. and S. I. Vol. I
115	43.93 42.18	67.51 69.38	49.33 46.88	23.82 18.97	46.15 44.35	$\begin{array}{ll}\text { Jan. } & \text { 1824; } \\ \text { Jan. } & \text { 1849 }\end{array}$	$\begin{array}{rr}18 & 3 \\ 5 & 7\end{array}$	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon. E. A. Dayton.	Ar. Met. Reg. P. O. and S. I.Vol.r, \& S. Coll.

[^95]NEW YORK．－Continued．

Name of Station．	烒	$\begin{gathered} \text { 号 } \\ \stackrel{y}{-1} \end{gathered}$	$\begin{array}{\|l\|l\|:\|} \text { 震 } \end{array}$	号	辰	$\begin{aligned} & \text { 菦 } \\ & \text { 花 } \end{aligned}$	热	离	邑	宝		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\sim}{0} \\ & \hline \end{aligned}$	$\stackrel{\square}{\circ}$	\％	ュัٌ
117．Malone（Franklin Acad．）	$44^{\circ} 50^{\prime}$	$74^{\circ} \mathrm{I} 8^{\prime}$	703	$18^{\circ} .24$	$24^{\circ} \cdot 48$	$31^{\circ} \cdot 42$	$45^{\circ} .07$	53° ．${ }^{\text {O1 }}$	$60^{\circ} .22$	$66^{\circ} .90$	j30． 45	55 ${ }^{\circ}$ ． 17	$46^{\circ} .92$	$32^{\circ} .85$	$21^{\circ} .22$
118．Marathon ．	4225	7602	1200			25.53		56.73	59.43	69.62					
119．Martinsburgh ．	43.43	7528		．	－		50.30	55.60	64.93.						
120．Mexico（Acad．）	4327	7614	33^{1}	21.90	23.39	30.88	41.93	52.23	62.84	66.89	65.86	58.63	46.40	34.78	25.95
121．Middlebury（Aca．）	4248	7808	800	26.27	26．28	33.96	45.59	56.00	63.89	68.75	66.91	59．14	48.00	37.22	29.17
122．Milo．${ }^{\text {a }}$（ ${ }^{\text {a }}$	4239	77 or	868	28.53	21.25	25.43	44.38	55． 14	66.12	68.74	67.09	6ı． 24	45.96	35.44	27.71
123．Millville（Acad．）	43 ro	7820	600	26.00	26.36	32.28	45.55	54.69	63.23	68.24	67.73	59．50	46.63	37.76	28.99
124．Minaville ．．	4254	7415	．．	20.44	16.93	25.70	42.40	57.02	68.64	73.52	69.92	61.28	46.67	34.08	20.92
125．Mohawk ${ }^{\text {125 }}$（	4300	7502	435	20.87	22.69	28.04	42.33	54.89	64.59	69.64	67.73	58.77	47.93	36.87	23.12
126．Montgomery（Aca．）	4132	7413	300	25.36	27.02	36.63	47.63	${ }_{58}^{58.36}$	6598	72.34	70.31	62.51	49.23	39.47	29.03
127．Moriches ${ }^{\text {2 }}$ ， 128．Morley	4047 44 40	7248 7500 73	13	30.81 18.87 1	33.49 19.58	38.39 25.01	49．14	58.45	69.07 68.05	74.40 71.17	72.86 68.70	66.60	54.27 42.20	44．24	34．10
$\begin{aligned} & \text { 128. Morley } \\ & \text { 129. Morrisania } \begin{array}{c} \text { (Fair- } \\ \text { mount Inst.) } \end{array} . \end{aligned}$	4440 40 50	7500 73 73	150	18.87 24.93	19.58 28.72	25.01 32.27	46．00	57．82	68.05 70.39	71.17 75.77	68.70 74.75	56.33 67.31	42.20 55.51	38.33 43.24	17.59 37.49
130．Mt．Pleasant（Aca．）	4103	7352	125	27.96	29.39	38.04	48.34	57.87	67.68	71.40	71.12	62.49	50.63	40.29	30.24
${ }^{131}$ I．Newark Valley ${ }^{\text {d }}$	4420	7630	．．	24.14	20.69	27.05	41.77	54.65	65.52	70.80	66.45	58.74	45.22	35.03	26.43
132．Newburgh（Acad．）	4131	7400	74	28.29	27.60	36.13	48.27	59.02	68.21	72.75	71.05	64.20	52.52	42.03	29.81
133．New York ．	4042	74 or	56	25.25	27.27	38.75	49.32	65.97	80.37	8 I .05	80.82	67．10	54.27	40．10	36.50
134．New York．	4042	74 or	56	30.20	30.80	38.50	49．10	59.60	69．10	74.90	73.30	65.90	54.30	43.50	33.90
135．New York（D．\＆ D．Inst．）	4050	7356	25	30.52	31.04	37.49	48.45	58.85	69.74	75.04	73.07	65.54	53.69	44.38	34.23
136．New York（U．S． Nav．Hosp．）	4041	7357	56	29.61	31.39	37.91	48.70	58.68	70.43	75.07	73.20	65.3 I	53.94	44.42	33.11
137．New Yorks．${ }^{\text {a }}$	4045	7358	42	28.83	31.86	37.28	49.29	58.74	70.15	75.30	73－39	65.49	53．50	43.47	31.92
138．New Yorl ${ }^{4}$ ．	4045	7358	42	29.78	31.41	37.63	48.78	58.76	69.69	75.06	73.28	65.59	53．71	46.25	33.16
139．Nichols．	42 OI	7628	800	24.22	26.10	32.52	44．14	55.79	65.47	69.81	67.13	59.65	47.89	37.56	28.23
140．North Argyle	4318	7330	290				44.30	60.30	65.70	70.98	68.90				
141．North Granville	4323	7317	250	20.67	20.09	31.29	43.63	56.15	66.50	70.82	68.28	58.72	47．70	35.89	24.79
142．North Hammond．	4423	7545	\cdots	19.18	19.56	27.12	42.10	56.62	68.70	73.19	69.77	62.28	49.53	36.18	22.01
143．North Nassau ． 144．North Salem（Aca．）	42 42 41 120	73 73 73	361	23.98 26.55	27.90 26.07	36.48 35.55	43.95 46.12	56．70	65.50 66.07	${ }_{71.71}^{70.19}$	65.13 69.00	57.69 60.65	46.65	39．45	22.73 28.69
		734				35.55				71.7	69.0	6.65	49.6	39.1	
145．North Volney	4320	7628		27.34	21.10	29.62	42.20	58． 54	67.00	72.31	68.36	61． 54	47.54	35.87	25.92
146．Oaklands	4253	7431	480	28.49	27.69	36.32	37.68	53．37	68.00	72.80	68.50	60.65	49.28	45.40	28.95
147．Ogdensburgh （Acad．）	444°	7528	232	20.08	． 20	30.51	40.05	52.95	64.45	68.68	67.92	57.65	48.51	39.36	22.88
148．Oneida ．．	4304	7538	500	23.33	24.32	30.45	44.66	55.70	65.37	70.14	67.69	60.77	48.39	37.82	27.12
149．Onondaga（Acad．）	4256	7608	1260	25.28	25.67	33.81	45.97	58.01	65.49	68.91	68.05	59.75	48.26	36.54	29.12
150．Oswego．	4325	7634	232	24.12	25.43	31.32	42.10	52.88	63.15	69.57	68．10	61.28	49.74	40.40	28.05
151．Ovid（Seneca Coll． Inst．）	4241	$76{ }^{2}$	800	20． 33	25.25	26.35	41．53	53.26	65.08	72.70	68.78	61.77	47.85	38.61	29.08
152．Oxford（Acad．）	4223	7540	$96 x$	22.90	23.59	31．98	43.98	55．33	63.44	67.98	65.81	58.18	46.58	35.59	26.09
153．Oyster Bay（Acad．）	4052	733^{2}	50	27.48	34.14	38.94	49．3I	57.58	67.17	72.57	70.30	64.02	54．00	43.27	33.96
154．Palermo	4320	7616	327.	20.84	21.99	28.01	42.23	53.76	64.40	69.19	66.72	58.74	46.65	36.10	24.55
155．Palmyra	4304	7713	466	23.85	25.06	34.92	45.78	57.78	67.00	69.46	67.26	60.04	48.00	39.63	29.17
156．Penn Yan	4242	7704	740	25.60	25.54	33.40	44．16	55.28	64.42	69.22	66.8 I	59.48	47.88	38.22	28.44
157．Perry City	4227	7647	800									63.95			
158．Plainville 159．Plattsburgh（Acad．	4300	7616 73		33.86 18.68	32.55	28.76	37.07	53.97	62.71		66.94	60.04			
159．Plattsburgh（Acad． and Barracks ${ }^{6}$ ）	4441	7326	186	18.68	19.54	28.51	41.52	54.76	64.34	68.73	66.90	59.01	46.09	$35 \cdot 45$	23.15
160．Pompey（Acad．）．	4252	7600	1300	21．43	21.75	29.28	40.80	52.33	61.65	65.95	64.29	55.55	44.46	32.71	24.07

${ }^{1}$ Daily means computed by the formula $\frac{a+2 b+2 c+a^{\prime}}{6}$ where a represents an observation a little before sunrise，b one at 3_{a} ，c one at one hour after
sunset，and a^{\prime} the morning observation on the following day．The results thus obtained appear，on the average，to be about $0^{\circ} .5$ too high．
2^{2} Also called Brookhaven．

NEW YORK.-Continued

			荡	$\begin{aligned} & \text { 岕 } \\ & \stackrel{y}{4} \\ & \$ \end{aligned}$	$\begin{aligned} & \dot{\text { ®̈ }} \\ & \stackrel{y}{\omega} \end{aligned}$	Series. Begins. Ends.	$\begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing Hours.	Observer.	References.
117	$43^{\circ} .17$	$64^{\circ} .19$	-14.98	$21^{\circ} \cdot 31$	$43^{\circ} \cdot 41$	Jan. 1839; Dec. 1842	$\begin{array}{ll} 3 & 0 \\ 0 & 4 \end{array}$	1	Various observers. L. Swift.	N. Y. Univ. Syst. 1855 . S. O.
119	84		$7_{\mathrm{ny}} 9_{\mathrm{m}} \mathrm{~N}$	Dr. F. B. Hough.	MS. in S. Coll.
120	$4^{11.68}$	65.20	46.60	23.75	44.31	Jan. 1837; Jan. 1857	14 II		Various observers.	N. Y. Univ. Syst. 1855 , MS. in S. Coll., \& P. O. \& S. I.Vol. I.
121	45.18	66.52	48.12	27.24	46.77	Jan. 1826; Dec. 1848	19 0		" "	N. Y. Univ. Syst. 1855.
1	41.65	67.32	47.55	25.83	45.59	May, 1869; Dec. 1870	18	$7 \mathrm{~m} \mathrm{I}_{\mathrm{a}}$	G. D. Baker.	S. O.
123	44.17	66.40	47.96	27.12	46.41	Jan. 1840; Dec. 1847	8 o		Various observers.	N. Y. Univ. Syst. 1855.
124	41.71	70.69	47.34	19.43	44.80	July, 1867; Dec. 1870	36	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis	J. W. Bussing.	S. O.
125	41.75	67.32	47.86	22.23	44.79	June, 1860; Mar. 1869	63	hourly.	J. Lewis, M.D.	S. Coll.
126	47.54	69.54	50.40	27.14	48.66	Jan. 1828; Dec. 1842	130		Various observers.	N. Y. Univ. Syst. 1855.
127.	48.66	72.11	55.04	32.80	52.15	Mar. 1864; Dec. 1870	$6 \quad 9$	$77_{\text {ma }} 2_{\text {a }} 9$ a bis	E.A. Smith \& daughter.	S. O.
128		69.31	45.62	18.68		1849; 1850	0 \% 10	$\bigodot_{r} 9_{m} 3_{a} 9_{a}$		S. Coll.
129	$45 \cdot 36$	73.64	55.35	30.38	51.18	Jan. 1856; Jan. 1858	17	$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a}$	J. S. Norton, J. Zaepffel.	P. O. and S. I. Vol. ז.
130	48.08	70.07	51.14	29.20	49.62	Jan. 1831; July, 1849	13	1	Various observers.	N.Y.Univ. Syst. 1855, \& S. Coll.
131	4 T .16	67.59	46.33	23.75	44.71	Mar. 1868; Dec. 1870		7 m 2	Rev. S. Johnson.	S. O.
132	47.81	70.67	52.92	28.57	49.99	Jan. 1828; Dec. 1870	27 I		Various observers.	N. Y. Univ. Syst. IS55, MS. in S. Coll., and S. O.
133	51.35	80.75	53.82	29.67	53.90	May, 1782; June, r784	22		De La Lerve.	Cotté.
134	49.07	72.43	54.57	31.63	51.92		30			Pat. Off. Rep.
135	48.26	72.62	54.54	31.93	51.83	Jan. 1844; Dec. 1870	218	$7_{\text {m }} 2_{\text {a }} 9_{\text {a bis }}$	Prof. O. W. Morris.	MS. in S. Coll., P. O. and S. I. Vol. I, and S. O.
136	48.43	72.90	54. 56	31.37	51.81	1849 ; Sept. 1870	120	$\bigodot_{r} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{u}}$	T. L. Smith.	S. O.
137	48.44	72.95	54.15 55.18	30.87	51.60	Jan. 1854; June, 1870	87		Various observers.	P. O. and S. I, Vol. I, and S. O.
138	48.39 44.15	72.68 67.47	55.18 48.47	31.45 26.18	51.92 46.57	Jan. 1844; Dec. 1870	$\begin{array}{rrr}\text { 2I } & \text { II } \\ 14 & 0\end{array}$			Consolidated series.
139	4	67.47 68.53	40.47			Jan. 1		7 ma $\mathrm{Zax}^{\text {a }} 9 \mathrm{mbis}$ $،$	G. M. Hunt.	MS. in S. Coll., P. O. and S. I. Vol. I, and S. O. S. O.
141	43.69	68.53	47.44	21.85	$45 \cdot 38$	Jan. 1835; Dec. 1849	140	1	J. C. Parker, E. T. Mack.	N. Y. Univ. Syst. 1855.
142	41.95	70.55	49.33	20.25	45.52	June, 1866; Dec. 1870		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	C. A. Wooster.	S. O.
143		66.94	47.93	24.87	\cdots	1850; 1851	14	$\odot_{r} 99_{m} 3_{a} 9_{a}$	Ball	S. Coll.
144	46.12	68.93	49.81	27.10	47.99	Jan. 1829; Jan. 1857	22 11	\mid	Various observers.	N. Y. Univ. Syst. 1855, P. O. and S. I. Vol. I, MS. in S. Coll.
145	43.45	69.22	48.32	24.79	46.45	Mar. 1868; Dec. 1870			J. M. Patrick.	S. O.
146	42.46	69.77	51.78	28.38	48.10	$1849 ; \quad 185$	20			Observations, N. Y. State Agr. Society, I850 (p. 43).
147	41.17	67.02	48.51	21.05	44.44	Jan. 1838; Dec. 1852	38	1	Prof. J. H. Coffin, Griest.	N. Y. Univ. Syst. 1855, MS. in S. Coll.
148	43.60	67.73	48.99	24.92	46.31	Jan. 1862; Dec. 1870	89	$77_{\text {m }} 2_{3} 9$	Dr. S. Spooner.	S. O. Tiv Syt
149	45.93	67.48	48.18	26.69	47.07	Jan. 1826; Dec. 1844	160		Various observers.	N. Y. Univ. Syst. 1855
150	42.10	66.94	50.47	25.87	46.35	July, I849; Dec. 1870	187	$7 \mathrm{~m} \mathrm{~m}_{\mathrm{a}} 9 \mathrm{ab}$ bis	J. S. Hart, W. S. Malcom.	P. O. and S. I.Vol. I, S.O., and S. Coll.
151	40.38	68.85	49.41	24.89	45.88	Nov. 1855; Jan. 1858		$7 \mathrm{~m} 2_{\mathrm{n}} 9_{\mathrm{a}}$	J. W. Chickering.	P. O. and S. I. Vol. I.
152	43.76	65.74	46.78	24.19	45.12	Jan. 1828; Dec. 1852	218	,	Various observers.	N. Y. Univ. Syst. 1855, and MS. in S. Coll.
153	48.61	70.01	53.76	31.86	51.06	Jan. 1834; Dec. 1837	20	1	G. B. Docharty, N. H. Wells.	N. Y. Univ. Syst. 1855.
154	41. 33	66.77	47.16	22.46	44.43	Jan. 1860; Dec. 1870	10 II	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	E. B. Bartlett.	S. O.
155	46.16	67.91	49.22	26.03	47.33	Jan. 1835; Sept. 1865	27		J. F. Cogswell, S. Hyde.	N. Y. Univ. Syst. 1855, S. O. and S. Coll.
156	44.28	66.82	48.53	26.53	46.54	Jan. 1829; Dec. 1859	310	r $2_{8} \bigcirc_{8}$	Dr. H. P. Sartwell.	Reg. Rep., MS. in S. Coll., \& P. O. and S. I. Vol. I.
157	-	.	.	\cdots	-	1869	01		C. P. Murphy.	S. 0 .
15	39.93 41.60					Aug. 1856; June, 1857	O 8	$7 \mathrm{~m} \text { a } 9$	J. H. Norton.	P. O. and S. I. Vol. I.
159	41.60	66.66	46.85	20.46	43.89	Jan. 1839; Dec. 1870	159	$\odot_{r} 9_{m} 3_{a} 9_{\mathrm{a}}$	Various observers.	Ar. Met. Reg., MS. from S. G. O., N. Y. Univ. Syst. I855, P. O. and S. I. Vol. i, and MS. in S. Coll.
160	40.80	63.96	44.24	22.42	42.85	Jan. 1826; Jan. 1858	211	1	" "	N.Y.Univ. Syst. I855, MS. in S. Coll., \& P. O. \& S. I. Vol. I.

[^96]

NEW YORK．－Continued．

		区̈ E 者	音		亗	Series． Begins．Ends．	ExTENT yrs．mos．	Observing HOURS．	Observer．	References．
161		．		－		1856	－ 3		J．F．Kendall．	P．O．and S．I．Vol．I．
162	$42^{\circ} \cdot 91$	$66^{\circ} \cdot 37$	$45^{\circ} \cdot 36$	$19^{\circ} \cdot 77$	$43^{\circ} .60$	Jan．1828；Dec． 1848	210	1	Various observers．	N．Y．Univ．Syst． 1855 －
163	48.66	71.41	52.51	28.11	50.17	Feb．1828；Apr．1870	18 o			
164		7	5.5	．．	5	1849	－ 3	$7 \mathrm{~m} 9 \frac{1}{2} \mathrm{~m} 3_{\mathrm{a}} 9 \mathrm{n}$	Warring．	S．Coll．
165	44．01	64.64	46.20	25.76	45.15	Jan．1829；Dec． 1846	100	1	Various observers．	N．Y．Univ．Syst． 1855.
166	47.66	69.17	50.54	26．10	48.37	Jan．1830；Dec． 1842	120	1	＂،＂	P O and S I Vol 1 S
167	44.72	68.04	49.02	26.46	47.06	Jan．1830；Dec． 1870	$3^{8} \quad 9$	2	＂${ }^{\prime}$	P．O．and S．I．Vol．i，S．O．， MS．in S．Coll，Reg．Rep．，\＆ N．Y．Univ．Syst． 1855 ．
168	49.48					1869		7	C．De La Verny．	
169	41.37	66.78	46.86	19.56	43.64	Mar．1845；Sept． 1862	S 6		John Bratt．	MS．in S．Coll．\＆MS．from S． G． 0 ．
170	42.79	68.51	50.80	23.72	46.45	Aug．I849；Dec．I867	810	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	H．Metcalf，Platt．	U．S．Lake Survey，Rep．of 1867－68 and S．Coll．
171	45.48	71.00	55.23	32.42	51.03	Oct．1849；Dec． 1858		＇	E．N．Byram．	P．O．and S．I．Vol．I，\＆S．Coll．
172	45.08	68.26	48.41	24.49	46.56	Jan．1828；Dec． 1847	100	${ }^{1}$	Various observers．	N．Y．Univ．Syst． 1855.
173	42.43	68.96	48.70	25.23	46.33	Dec．1856；Jan． 1858	$\begin{array}{ll}1 & 2 \\ 4 & 0\end{array}$	2 n 9	W．H．Riker．	P．O．and S．I．Vol．I．
174	44.69	68.30	48.16	24.37	46.38	Jan．1829；Dec． 1864	$4 \bigcirc$		Various observers．	N．Y．Univ．Syst．1855，\＆S．O． S．Coll．and S．O．
175	43.53	68.60	48.75	26.05	46.73	$1849 ;$ July， 1864 1857	$\begin{array}{ll}4 & 11 \\ 0 & 1\end{array}$	$\begin{gathered} 7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bis }} \\ 7_{\mathrm{m}} z_{\mathrm{a}} 9_{\mathrm{a}} \end{gathered}$	P．Cowing，Fairchild． H．B．Fellows．	S．Coll．and S．O． P．O．and S．I．Vol．I．
177	45.95	65.58	．	．		1865		$7{ }_{7 m} 2_{3} 9_{\mathrm{a}}$ bis	Rev．J．R．Haswell．	S．O．
178	48.17	71.76	54.35	32.93	51.80	Mar．1849； 1852	28	$\odot_{r} 9_{m m} 3_{a} 99^{\prime}$	Mannie．	S．Coll．
179	42.17	65.38	48.39	25.62	45.39	Jan．1861；Dec． 1867	511		W．M．Beauchamp．	S. O.
180	40.48					May，1868；Jan． 1870	－ 5		G．W．Potter．	MS．in S．Coll．，and P．O．and S．
181	41.03 40.69	67.33 69.38	-49.26 48.63	21.67 19.79	44.82 44.62	Mar．1849；May， 1856	$\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	J．E．Breed．	MS．in S．Coll．，and P．O．and S． I．Vol．I． S．Coll．and Reg．Rep．
182 183	40.69	69.38	48.63	19.79	44.62	${ }^{1849 ;}{ }_{1852}{ }^{1852}$	$\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}$		Hough． Bemis．	S．Coll．and Reg．Rep． S．Coll．
184	43.69	68.04	48.84	24.34	46.23	1850； 1853	111		Beardsley．	＊ 6
185	46.33	72.44	50.89	23.58	48.31	Aug．1863；Dec． 1870	72	$7 \mathrm{~m} \mathrm{Fa}_{\mathrm{a}} 9$	G．M．Ingalsbe．	S． 0.
186	38.88	66.91	46.65	21.03	$43 \cdot 37$	Feb．1865；Dec． 1870			Capt．S．Barrows．	P．O，and S．I．Vol．I，S．O．，and
187	41.56	68.04	48.81	22.61	45.25	July，1854；June，I86I	4 o	$7{ }_{\text {m }} 2^{\text {a }} 9 \mathrm{a}$	Various observers．	P．O．and S．I．Vol．I，S．O．，and MS．in S．Coll．
188	43．11	64.44	47．11	26.41	45.27	Jan．1830；Dec． 1850		${ }^{1}$	S．${ }^{\text {6 }}$＂${ }^{\text {r }}$	N．Y．Univ．Syst． 1855.
189	．．		．．	27.54	．．	Oct．1867；Feb． 1868	－ 5		S．L．Hillier．	S．O．
190						18 ．			J．H．Warren．	
191	43.39	68.33	49.39	26.91	47.00	Jan．1843；Dec	35	$6_{m} 2_{\mathrm{a}} 1 \mathrm{O}_{\mathrm{a}}$	L．W．Conkey，Dru－ more．	N．Y．Univ．Syst． 1855 and S． Coll．
192	41.23	66.72	46.52	19.90	43.59	Mar．186x ；Feb． 1866		$7 \mathrm{~m} \mathrm{I}_{\mathrm{n}} 9_{\mathrm{a}}$	S．O．Griegory．	S．O．
193	46.68	71.45	53.90	29.95	50.50	Dec．1863；Dec． 1870		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	F．Morris．	＂＂
194	45.34	70.96	50.69	24.73	47.93	Jan．1854；Dec． 1868		＂ 6	arious observer	P．O．and S．I．Vol．I，and S．O．
195	－					1861		＂	J．S．Allen．	S．O．Univ Syst 1855 S Coll
196	44.77	67.17	48.33	24.71	46.25	Jan．1826；Dec．1870	$27 \quad 2$	1	Various observers．	N．Y．Univ．Syst．1855，S．Coll．， Am．Alm．1843，Reg．Rep．， S．O．，and P．O．and S．I． Vol， 1.
197							$\begin{array}{lr} 0 & 1 \\ 6 & 1 \end{array}$		Carpenter． Dr．S．Spooner．	S．O． P．O．and S．I．Vol．I，and S．O．
198	42.98 46.44	67．11	48.46	23.87	45.60		610 0 0	$7_{\mathrm{m}} 2_{n} 9_{\mathrm{a}} 9_{\mathrm{a} \text { bis }}$	Dr．S．Spooner． J．P．Morse．	P．O．and S．I．Vol．i，and S．O． S． 0 ．
199	46.44 40.92	66.9	45	24	． 43	Jan．${ }^{18695}$ ；Oct． 1870	$\begin{array}{ll}\circ & 3 \\ \text { I } & 9\end{array}$		J．P．Morse． D．Trowbridge．	S． O ．
201	44．11	68.77	50.02	24.18	46.77	Jan．1856；May，I863	63	،	J．C．House．	P．O．and S．I．Vol．I，and S．O．
20	42.02	68.42	49.04	16．56	44.01	1856	10	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Dr．P．O．Williams．	P．O．and S．I．Vol．I．
203	39.61	67.85	48.84	25.12	$45 \cdot 35$	1849 1851	17	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 99_{\mathrm{a}}$	Lower．	S．Coll．
204	46.36	71.25	50.15	24.79	48.14	Jan．1824；Dec． 1854	309	$7_{\mathrm{mm}}^{6} \mathrm{c}_{\text {a }} \mathrm{S}_{\mathrm{a}}$	Assistant Surgeon． W．Flint，I．Curtiss．	Ar．Met．Reg． 1855. S． 0 ．
205	39.83	66.78	47.6			$\text { I } 861$	$\bigcirc 1$		W．Flint，J．Curtiss． H．M．Sheerar．	S． 0 ． P．O．and S．I．Vol．i．
207	41.20	68.70				1858	－ 8	$\odot_{r} \mathrm{~N} . \odot_{s}$	J．M．Young．	MS．in S．Coll．
208	49.27	72.24	54．11	30.26	51.47	Jan．1824；Dec． 1870	$46 \quad 5$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg．1855，and MS． from S．G．O．
209	46.32	69.42	52.71	29.40	49.46	Jan．1854；Dec．1870	89	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{abis}$	Prof．O．R．Willis， Jenkins．	S．O．and S．Coll．
210	43.11	67.31	46.72	21.50	44.66	Jan，1834；Dec．I840	70	$7{ }^{1}$		
211	42.74	68.68	49.33	27.75	47.13	Jan．1860；Dec． 1864	43	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}} \text { bis }$	Dr，E．S．Holmes．	S．O． ＂،＂
212	39.62	65.24	46.34	23.54	43.69		3 －	$6_{m} I_{a} 9_{a}$	J．Hamam．	

[^97]
NORTH CAROLINA.

[^98]
NORTH CAROLINA．

	号	亗 品 品	हू E 艺	范		Series． Begins．Ends．	Extent yrs．mos．	Observing HOURS．	Observer．	References．
1	$52^{\circ} .60$	$70^{\circ} .56$ 75.63	$54^{\circ} .26$	$37^{\circ} \cdot 91$ 39.77	$53^{\circ} .83$ 57.04	Aug．1857；Dec． 1870	$\begin{array}{ll}4 & 5 \\ 4\end{array}$	7 m 2 a 9 abis	W．W．McDowell， E．J．Krow，and E． J．Aston．	S．O，and P．O．and S．I．Vol．I．
2	55.72	75.63	57.02	39.77	57.04	Apr．1861；Dec． 1870	47	$7{ }^{6}$	F．J．Kron．	S．O．
3	58.54 50.56	78.51 70.03	64.65	48.24 39.14	62.48	June，1863；Dec． 1864	$\begin{array}{ll}1 & 4 \\ \text { I } & 0\end{array}$	$7 \mathrm{~m}{ }^{2}{ }^{\text {a }} 9^{\text {a }}$		MS．from S．G．O．
5	50.56 58.85	70.03 76.80	54.33 60.46	39.14 42.92	59.76	Jan．1820；May， 1870	$\begin{array}{rr}1 & 0 \\ 20 & 0\end{array}$		Caldwell，Prof．J． Phillips，D．S．Pat－ rick．	Pat．Off．Rep． $185 \mathbf{1}$ ． Rep．Brit．Assoc．1847，Am． Alm． 1847 and foll．，Dove， MS．in S．Coll．，and S．O．
6	57.62	77.27	55.64	42.79	58.33	Nov．1857；Dec． 1859	110	7 m 2a ${ }_{\text {a }}$	Prof．W．C．Kerr．	P．O，and S．I．Vol．I．
7	64.56	80.33	67.50	50.66	65.76	Jan．1822；July， 1845	${ }^{1} 510$		Assistant Surgeon．	Ar．Met．Reg． 1855.
8	59.63	79.02	65.33	45．59	62.39	Oct．1833；Aug．I849	5			6 ．r6． 6
9	56.00	76.06	57.73	39.65	57.36	Oct．1856；Mar． 1861	46	＇6	Dr．G．F．Moore．	P．O．and S．I．Vol．I，and S．O．
10	59.68	78.84	61.63	44.24	61．10	Jan．1856；Dec． 1870	65	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}^{\text {bis }}$	Prof．D．Morrelle and Prof．E．W．Adams．	6 6 6\％6\％،6
II	60.34		．	37.83		1852； 1854	20	$7 \mathrm{ma} 29^{\text {a }}$	Guald．	S．Coll．
12	57.56	77.26	57.54	42.89	58.8	Jan．1860；May， 1870	30	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Prof．N．B．Webster， and J．N．Sprunt．	S．O．
13	57.99	75.24	60.31	43.90	59.36	$1849 ; 1853$	3 o	$\odot_{r} 9 \mathrm{~m} 3_{\mathrm{n}} 9_{\mathrm{a}}$	Shepherd．	S．Coll．
14	60.10		．．		．		－ 7			P．O．and S．I．Vol，I．
15	57.12	．	．	42.62	．	Dec．1867；July， 1868	－ 8			MS．from S．G．O．
16	57.56	76.46	58.66	42.77	58.86		0		E．D．Pearsall． Rev．N．McDowell．	S．O． P．O．
18	56.57	76.58	57.36	39.72	57.56	July，1866；Dec． 1870	4 I	$7_{m} 2_{\mathrm{a}} 9^{\text {a }}$ bis	J．H．Mill and Dr． W．R．Hicks．	S．O．
19	56.92	77.24	59.79	40.14	58.52	Aug．1866；June，1869	2 II	${ }^{6}$	F．P．Brewer．	c
20		75.95	59.51	．．	．．	1849	－ 7	$\odot_{r} 9 \mathrm{~m} 3 \mathrm{n} 9_{\mathrm{a}}$	Galloway．	S．Coll．
21	60.92	76.27			\cdots	1853	－ 8	$7 \mathrm{~m}{ }^{2}{ }^{\text {a }}$ 9a	Hardison．	＂＂
22	53.40	74.28	53.21	34.78	53.92	June，1866；Dec． 1870	40	$7 \mathrm{~m} 2_{\text {a }} 9^{\text {a bis }}$	Col．T．P，Allison．	S．O．
23	59.41	．．	．	39.66		Jan．1854；Apr． 1855	1 I	$7_{\text {m }} 2_{\text {a }} 9_{\mathrm{n}}$	Rev．T．Fitzgerald \＆ Prof．D．Morrelle．	P．O．and S．I．Vol．I．
24	55.86					Jan．1861；May， 1869	－ 5	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	O．W．Carr，E．D． Pearsall，\＆others．	S． 0 ．
25	53.86	75－44	58.57	39.76	56.91	Aug．1857；Dec． 1870	12	،	Dr．W．M．Johnston and H．A．Foote．	P．O．and S．I．Vol．I，and S．O．
26		75.27		．	．			－$_{\text {r }}$ N．	Watkins．	S．Coll．
27	60.44	．．	61.50	．	．	1866	－ 10	$7_{\mathrm{m}} \mathrm{z}_{\mathrm{a}} 9_{\mathrm{a}}$ bis	E．W．Adams．	S．O．

OHIO．

1	52.87	73.02	53.55	29.32	52．19	1849； 1852	18	$\odot_{r} 9_{m} 3_{a} 9_{n}$	Mathew．	S．Coll，and MS．
2	43.35	69.77	51.12	27.59	47.96	Mar．1856；Dec． 1867	57	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a} \text { bis }}$	J．D．Herrick，J．G． Dale，G．S．S．Griff－ ing，and E．D．Win－ chester．	P．O．and S．I．Vol．I，and S．O．
3	51.21	69.34	49.99	31．94	50.62	Nov．1858；Dec． 1859		$7 \mathrm{~m} \mathrm{2am}_{\text {a }}$	Rev．L．T．Ward．	P．O．and S．I．Vol．I．
4	48.87	72.61	51.89	26.25	49.91	Dec．1855；Dec． 1870	37	$7{ }_{\text {a }}{ }^{\text {a }}$	J．Shaw，W．Barringer．	P．O．and S．I，Vol．I．and S．O．
5	49.41	71.29	50．78	29.98	50.37	Feb．1860；Dec． 1870	94	$7 \mathrm{~m} 2^{\text {a }} 9{ }^{\text {a }}$ bis	G．W．Crane．	S．O．
6	47.84	71，46	51．47	30． 10	50.22	July，1857；Dec． 1870	Io 3		Dr．W．R．Peck，J． Clarke．	P．O．and S．I．Vol．r，MS．in S．Coll．，and S．O．
7	－•	\cdots		26.41	\ldots	Oct．1859；Feb．186i	－ 5	＊	Rev．S．L．Hillier，L． L．Willis．	P．O．and S．I，Vol．I．and S．O．
8			56.71			1870	－ 4	＊	R．Mäller．	S．O．
9	55.67	78.00	61.67	39.67	58.75	1819	10	$7 \mathrm{~mm} 2_{\text {a }} 9_{\text {a }}$		Rep．Brit．Asso． 1847.
10	53.87	73.19	53.16	33.25	53.37	1806；1813	8 \％			Drake．
II	54.13	75.24	55.21	34.28	54.72	Jan．1819；Dec． 1870	$36 \quad 8$	2	Prof．Ray，G．H．Phil－ lips，and others．	MS．in S．Coll．，Blodget＇s Clim． Drake，View of Cimn．，P．O． and S．I．Vol．r，and S．O．
12	53.90	73.23	53.07	33.60	53.45	1835； 1848	140			Drake．${ }^{3}$
${ }^{1} 3$	56.24	75－35	55.83	35.86	55.85	$1843 ; 1853$	90	$\max . \& \min$ ．	Lea，	Warder Hort．Keg．
14	52.94	74.94	54.52	33.08	53.87	Jan．1860；Dec． 1870	$10 \text { I }$	$7_{\mathrm{mm}} 2_{\mathrm{a}_{2}} 99_{\mathrm{a}}$ bis	G．W．Harper．	S． O ．
15	46.28	69.68	51.67	28.32	48.99	1850；Dec． 1870	17 I		G．A．\＆Mrs．Hyde， B．A．Stanard，and Wade．	U．S．Lake Survey，MS．\＆Rep． of $1867-8$ ，P．O．and S．I． Vol．I，S．O．，and S．Coll．
16	52.62		53.67				$\begin{array}{rr} 0 & 1 \\ 47 & 10 \end{array}$			S． 0 ．
17	52.62	72.17	53.67	31.65	52.53	Jan．1814；Dec． 1870	4710	\odot_{r} N．\odot_{s}	Jackson，Profs．R．S． Bosworth \＆J．H．Wil－ son，L．D．Tuckerman \＆J．W．Hammitt．	P．O．and S．I．Vol．I，S．O．， and S．Coll．

${ }^{3}$ As quoted by Dove．
4 Altitude given as 305 feet above low－water in the Ohio River．

OHIO．－Continued．															
Name of Station．	蔦	＋is	品	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\％		䓃	密	号	穾	$\begin{aligned} & \text { 苞 } \\ & \text { En0 } \\ & \text { 艺 } \end{aligned}$	$\begin{gathered} \dot{\widetilde{\sim}} \\ \stackrel{\sim}{1} \end{gathered}$	$\stackrel{ت}{0}$	号	$\xrightarrow[\sim]{\Perp}$
18．Columbus ${ }^{1}$ ．．－	$39^{\circ} 57^{\prime}$	$82^{\circ} 59^{\prime}$	834	$30^{\circ} .94$	$36^{\circ} \cdot 44$	$42^{\circ} .26$	$53^{\circ} .12$	$65^{\circ} \cdot 30$	$70^{\circ} \cdot 98$	$77^{\circ} .64$	$74^{\circ} .69$	$60^{\circ} \cdot 72$	$49^{\circ} .80$	$42^{\circ} \cdot 34$	$35^{\circ} .28$
19．Coshocton－	4018	8153	765	29.38	29.88								54.32	40．55	36.20
20．Croton ${ }^{\text {a }}$－	4013	8238	．．	28.55	32.56	37.08	50.68	60.15	68.30	72.25	71.71	62.95	51.20	37.78	31.84
21．Cuyahoga Falls ．．	4110	8133	$\ddot{8}$	18.40		\cdots	52.70	－	73.53		70.6		．．	40.13	25.55
22．Dayton（Cooper	3944	8408	860	27．36	30.80	29.00	55.23	59.55	72.76	74.64	70.69	64.11	55.01	42.44	．．
23．East Cleveland ．－	4131	8140	683.	27.71	28.67	34.89	48.00	53.45	63.41	67.13	66.44	61.95	48.02	37.81	32.05
24．East Fairfield ${ }^{3}$－	4047	So 45	1152	25.45	29.94	35.06	48.73	56.99	66.50	7 7 .35	68.97	62.59	49.67	40.18	29.89
25．Eaton ．．－	3944	8435	${ }^{1} 400$	23.95	30.15	36．10	49.50	60.10	73.40	71.50	．．	64.70	50.45	40.80	30.08
26．Edgerton	4129	8445	83 I		．．	33.65				73.25	68．00	61.58		．	．．
27．Edinburg－．	4109	8110	520	34.06	22.11	33.57	41.94	55.23	68.17	72.71	68.90	63.80	51.69	35.52	35.23
28．Elmwood •－	4005	8200	900		．．	33		5	71.14	77.01	73.39	66.98	54.75	41．43	30.55
29．Fort Washington－			\cdots	40.17	42.12	50.90	60.16		75.90	79.17	80.90	72.18	58.14	53.19	38.11
30．Freedom ．．．	41 16	8112	1100	27.32	26.39	34.55	46.68	62.19	68.51	72.71	70.30	6r．13	49.29	39.77	30.95
31．Fremont－．．	4122 38	$\begin{array}{ll}83 & 07 \\ 82 & 05\end{array}$	600		35．11	41.44				75.72	72.79			43.57	33.10
32．Gallipolis－	3850	8205	600	29.78	35．11	41.44	53.91	61.87	70.65	75.72	72.79	68.98	53.84	43.57	34.68
33．Gambier（Kenyon	4024	8223	1000	29.94	28.23	36.61	46．10	61.54	69.85	73.55	68.59	62.99	$49 \cdot 54$	41．34	28.41
34．Garretsville－．	4118	$8 \mathrm{8r} 08$	900		\cdots					69.73	70.20	62.67		38.55	35.18
35．Germantown ${ }^{5}$	3936	8420	720	22.57	30.11	35.69	53.46	61.28	70.17	76.36	72.01	67.09	52.56	40.41	27.99
36．Gilmore－	4018	8120	1180	33.30	32.93	31.78	50.28	62.55	69.99	74.91	73.85		44.53		34.28
37．Granville	40.03	8230	995	26.23	27.84	34.76	47.06	55.44	63.93	67.17	65.56	58.33	46.15	36.75	29.74
38．Hillsboro＇	3910	8327	1r 50	29.07	31.59	38.24	51.32	60.46	68.29	72.88	70．16	63.81	50.79	40.33	30.90
39．Hiram	4120	Si 10	1290	22.59	27.57	33.37	44.32	54.92	68.03	72.63	67.66	62.74	51．00	36.58	31.28
40．Hudson（W．Reserve Coll．）	4116	8127	1137	28.40	30.45	38.63	48．76	57.72	65.94	70.91	69.51	62.05	49.68	37.09	29.91
41．Huron	4125	8234		\cdots	30.50	40.35	47.02	$57 \cdot 39$	69.33	．	．				．
42．Iberia ．．．${ }^{\text {j }}$	4044	8247	1160	－		．	．．		．．．	．		63.09	47.65	44.88	．
43．Jackson（Jackson C．）	$39 \quad 02$	8232	700	33.21	34.16	40.73	52.37	62.14	70.74	75．19	72.25	66.62	51.87	43.61	$3 \mathrm{~T} \cdot 33$
44．Jackson（Monroe C．）	3940	80 56	540	34.80	3 x .80	40.73	52.18	63.23	70.96	76.88	69.59	64.96	51.51	40.33	34.20
45．Jacksonburg－．．	3930	8420	1152	33.36	32.90	35.54	51.76	61.29	69.49	77.02	74.62	66.45	51.85	41.31	29.69
46．Keene ．．	4023	8153	1000	28.97	34.17	40.40	48.41	60.77	69.89	74.38	72.47	66.06	51.06	43.62	29.84
47．Kelley＇s Island ．	4136	8243	587	26.60	28.71	33.69	45.33	57.37	68.25	73.56	72.22	65.22	52.76	41.73	30.26
48．Kenton－	4040	8333	1562	30.00	33.41	36.63	48.06	54.96	72.14	79.73	－74．50	67.01	52.29	40.21	31.24
49．Kingston－．．－	3926	8249	692	26.94	33.62	39.34	53.37	59.57	70.44	74．28	70.84	66.71	51.45	42.09	30.54
50．Lafayette．．．．	4050	8410	\cdots	20.02	33.70				－	－	．．		，	．．	
5i．Lancaster ．．．	3942	8231	926	31.02	33．70	．	51.93	60.44	73.53	75.07	71.72	64.01	51.02	39.17	37.58
52．Lebanon ．．	3926	8409	S28	34.66	34.25	42.77	54.38	62.76	70.46	73.50	71.15	65.12	52．10	49.89	28.01
53．Lewisville ．．	4012	8258	760	\cdots	，	，					66.44	61.22	5	－	
54．Little Mountain	4138	81 816 81 06	${ }_{6}^{6}$	25.53	27.94	29.79	46.26	55.75	65.74	69.83	69.57	62.66	49.73	41.44	28.15
55．Madison7．	41 48	81 06	620	26.54	27.43	34.23	45.32	55.64	65.43	70.41	68.26	62.07	50.42	39.19	30.86
56．Mansfield ．	4048	8230	900	25.4 I	33．12	41.70			6 r .06	72.92	75.23		52.16	39.01	28.23
57．Margaretta ．．	4127	8246	850	27.54	27.67	33.43	46.89	58.88	68.37	75.28	7 I .8 SI	64．18	49.61	39.35	29.63
58．Marietta ${ }^{8}$ ．．．	3928	81 26	670	31.12	33.94	41.60	52.68	61.67	69.28	73.12	71.47	64.60	52.03	41.93	33.45
59．Marion ．．．	4037	8307	1077	24.82	28.12	34.72	48.86	57.23	67.66	72.81	68.90	62.96	48.56	38.49	27.68
60．Martin＇s Ferry ．	40 10	8045	\cdots	27.59	35．18	34.98	50.41	54.58	71.93	－•		\cdots		\cdots	
61．Montville（or	4107	81 52	1255	29.45	29.24	36.42	45.84	57．19	65.57	70.07	68.85	62.30	50.94	38.27	31.38
62．Mount Auburn Inst．${ }^{9}$	$39 \quad 07$	8431	10	31.20	33.48	38． 11	54.55	63.42	73.16	77.46	76.19	70.50	56.19	42.92	34.87
1 The observations co 2 Observations correct 4 Observations previo 5 Observations in Jan．	aposing dor da s to 186 and Feb	his series ily variati were ma ．were m	s were tion by ade at made at	made at means of Mount t Frankli	the State the gene ernon，ab n，about	Library a eral table． out five m ix miles	nd Camp ailes west southeast	Dennis of Gam of Germ	n． bier． ntown．		3 Also ${ }^{6}$ Altit	called ade 600	Elk Run．	Lake	Erie．

OHIO．－Continued．

Name of Station．	蔦		$\left\lvert\, \begin{aligned} & \text { 第 } \\ & \text { 畐 } \end{aligned}\right.$	需	通	$\begin{aligned} & \text { 들 } \\ & \text { 要 } \end{aligned}$	荌	罢	足	宫		$\begin{aligned} & \text { 落 } \\ & \text { n } \end{aligned}$	逭	号	®ٌ
63．Mount Tabor－	$40^{\circ} 15^{\prime}$	${ }^{8} 3^{\circ} 40^{\prime}$	1094	$33^{\circ} .91$	$35^{\circ} \cdot 37$	$39^{\circ} .66$						$63^{\circ} .14$	$53^{\circ} .41$	$48^{\circ} .70$	$29^{\circ} .67$
64．Mount Union ． 65．Newark．．	4054 4004	$\begin{array}{ll}81 & 27 \\ 82 & 22\end{array}$		32.60 26.07	$26.3{ }^{\text {I }}$ 30.04		$48^{\circ} \cdot 50$ 49.91	$61^{\circ} .28$ 56.22		$70^{\circ} .00$		61.22	49.99 52.32	43.39 38.51	30.18 32.26
65．Newark． 66．New Athens （Franklin Coll．）	4004 $40 \quad 16$	$\begin{array}{lll}82 & 22 \\ 81 & 04\end{array}$	825	26.07	30.04	37．13	49.91	56.22	${ }^{65^{\circ} \cdot 45}$	700.00 75.3	$69^{\circ} .90$	61.22	52.32 46.8	38.51	32.26 32.4
67．New Birmingham ${ }^{\text {l }}$	40 10	SI 37		24.38	29.07	35.24	48.76	57.32	66.20	72.19	68.51	61.90	47.22	36.94	${ }^{31} .02$
	40.3	8I 44		33.68	32.25	38.21		62.37	73.32	73.48	71.95	64.01	52.01	47.17	30.52
miles S. W. of)	3930	83		30.21	30.71	38.23	54.66	68.38					51.95	43.38	34.85
70．New Lisbon ．－	4050	8050	961	26.20	29.45	35.76	48.93	59.70	69.92	74.55	71.04	63.58	50.51	40.31	31.08
71．New Westfield	4124	8346	692	\cdots	32.90	\cdots	50.00	59.88	66.95	77.20	76.58	66.85	53.50	38.78	34.15
72．Nicholasville							47.27							46.23 30.60	
73．North Bass Island 74．North Bend	4142 39 18	8246 8442	587	28.08 32.55	27.28 34.48	31.68 41.09	47.27 54.17	62.13 63.66	68.53 69.98	73.38 73.88	73.53 73.56	68.10 65.92	51.93 56.04	39.60 41.95	30.86 31.29
75．North Fairfield	$4{ }^{39} 10$	82 36	660	${ }_{28.32}$	34.48 29.32	34.10	488	58.10	68.69	74．18	72.10	65.95	51.08	40.79	${ }_{28.74}$
$\begin{aligned} & \text { 76. Northwood } \\ & \text { Geneva Hall) } \end{aligned}$	4030	8345	1170	32.79	31.08	39.11	32.11	57.23	71.15	76.55	71.29		49.93	36.09	3 S 50
77．Norton ．	4104	81 37	1200			34.40	48.30	51.12	69.03	66.30					
78．Norwalk	4116	8236		25.29	29.34	35.02	47.70	55.95	66.66	70.64	68.78	61.64	50.67	40.31	30.35
79．Oberlin ．	4120	S2 12	800	24.88	28.14	34.97	46.30	58．10	69.34	72.20	70.31	64.53	50.75	39.49	29.55
So．Oxford	3930	8444	950	26.36	31.40	38.33	50.67	60.67	71.44	76.24	73.41	66.58	51.32	40．53	29.24
81．Pennsville ．	3935	8150	555						72.20	75.75	72.65	66.03	55.88		29.60
82．Perrysburg，	4 I 35	${ }^{83} 36$		25.60	26.90	36.55	50.58	6 6 .16	72.18	77.68	71.80	67.34	54.03	40.55	31．10
83．Portsmouth．	3842	8253	537	33.07	36.17	44.71	54.29	64.74	72.29	75.59	74．5 ${ }^{1}$	65.37	57．70	44.61	36.76
84．Prospect Hill	3840	8333	700	36.18	35.60	44．16	51.16	61.01	72.69	72.85	73.57	64.74	52.26	46.65	35.70
85．Republic－	4109	8300	873	．								62． 18	51.43		
86．Ripley（Brown Co．）	3844	8339	${ }^{4} 574$	35．16	35.62	43.38	56.76	63.77	73.28	76.83	74.54	64.22	54.92	42.51	34.87
87．Ripley（Huron Co．）	4105	S2 36	965	22.58	30.57	36.07	46.92	56.20	70.49	72.29	71.99	66.27	49.71	43.88	30.53
88．Rockpori6 ${ }^{6}$	4130	8150	665	32.26	34.01	41.08	50.34	62.27	67.28	72.98	72.45	64.39	53．95	44.04	34.87
89．Saint Clairsville	4008 4056	80 55 8054	600	30.77 31.83	30.91 20.35	38.27 34.30	40.39 52.45	50.30 64.35	59.43 70.05	72.54	71.77 74.10	57.38 64.45	45.31 51.63	42.40 38.93	28.01 26.90
9r．Savannah	4102	8224	1098	25.17	28.54	35.94	48.60	59.27	68.41	73.88	71.22	64.38	51．23	38.22	29.72
92．Saybrook	4152	So 52	650	21.32	26.87	33.90	47.73	55.75	67.18	69.36	68.69	63.93	48.44	40.01	3 F .50
93．Seville	4100	8147	1075	26.86	33.60	35.43	48.72	53.02	67.65	69.75	63.45	63.10	53.60	38.80	34.98
94．Sidney	4018	8409		18.38	39.75	35.20	40.33	56.08	67.81	74.22	70.50	64.22	53.50	38.96	21.15
95．Smithville	4052	8150	934	20.55	27.20	．．	48.43	58.93	66.98	71.80	72.73	63.09	45.98	40.88	27.93
96．Springfield ．	3954	8346	．	38.90	．	．	52.80	66.78	72.35	77.90	．．	68.65		．	
97．Steubenville	4025	8041	670	29.76	31.95	39.53	51．54	6 r .91	70.77	74.94	72.09	64.79	51.87	40.91	3 3 .95
98．Tarlton ${ }^{\text {a }}$	3937	8245		30.93	35.96	41．61	46.07	58.71	64.73	69.71	64.23	64.47	49.55	38.67	30.13
99．Toledo ${ }^{6}$ ．	4140	8333	604	26.92	29.72	35.71	46.77	58.22	68.45	72.35	69.79	62.44	50.48	39.58	30.01
100．Troy	4003	84 II	1103	29.24	32.81	40.48	50.69	63.91	70.92	74.70	73.48	63.98	52.23	40.38	30.53
101．Twinsburg	4122	8130	1050							68.73	68.33	58.63	52.23		
102．Urbana（Univ．）	40.06	8343	1015	25.75	29.26	37.13	49.79	61.29	69.55	74.14	71.10	64.58	50.79	39.56	30.14
103．Welchfield．	4123	${ }_{81} 12$	1205	26.63	27.40	34.68	44.97	57.57	66.41	71.21	69.70	6r．90	48.93	37.83	30.75
104．Wellington．	4153	8212	875		33.13	．．	．．	62.88	67.20	73.10	．．	．．	．．	．．	．．
105．West Barre 106．West Bedford	41 40 40 18	84 82 82 Of	876						74.54	69.85		62.48	54.62	41.83	． 99
107．Westerville	4004	8246		28.70	$3 \mathrm{x} \cdot 3 \mathrm{I}$	38.77	50.84	60.37	68.89	73.56	70.45	63.82	50.27	40.20	31.74
108．West Union	3848	8321		30.23	．．	．．	．．	．．	．．	．．	．．	．．	．．	．．	．．
(Monroe Co.)				27.00	35．10	37.05	49.70							39.20	
iro．Windham ．	4117	8106		32.36	27.42	37.02	43.56	57.09	65.37	70.80	68.12	62.24	49.64	37.61	32.50
III．Wooster	4051	81 59	872	24.05	29.31	34.85	49.75	59.32	71.31	75.47	72.65	66.36	50.38	39.73	29.36
112．Yankeetown	$40 \sim 0$	8432	700						69.60	．．	76.40	．．			
113．Yellow Spring	39 49 42 2												47．80	37.75	
II5．Zanesville：	3958		70	31.89	35．10	35.30	56.20	6.25 64.20	71.69	77.25	73.67	69.48	52.40	$45 \cdot 3 \mathrm{r}$	32.64
1 Also called Milnersville． ${ }^{3}$ Observations corrected for daily variation by means of the general table．									${ }^{2}$ Also called Williamsport． 4 Altitude 130 feet above low－water in the Ohio River．						

OHIO.-Continued.

OREGON．															
Name of Station，	H゙	\％	｜	䔍	－	$\begin{aligned} & \text { 亏. } \\ & \text { H゙ } \\ & \text { H } \end{aligned}$	荡	宏	亗	宫	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{\circ} \end{gathered}$	$\stackrel{\Delta}{\circ}$	$\begin{aligned} & \dot{8} \\ & \text { 4 } \end{aligned}$	هٌ
1．Albany（near）．．	$44^{\circ} 35^{\prime}$	$122^{\circ} 5^{\prime}{ }^{\prime}$	600	$32^{\circ} .02$	$39^{\circ} .48$	$37^{\circ} .93$	$52^{\circ} .28$	$59^{\circ} \cdot 55$		$67^{\circ} .83$	$71^{\circ} .20$				
2．Astorial ${ }^{\text {l }}$ ．．．．	46 II	12348	52	38.44	38.78	44.24	48.75	53.16	$57^{\circ} \cdot 50$	60.29	60.77	58.30	$52^{\circ} .69$	$46^{\circ} .23$	$40^{\circ} .83$
3．Auburn ．．－	4435	11806	3350	52.04	．	－		．		71.48	70.38	．		．	31.23
4．Block－House ．．	4425	12330°	．．	39.38	42.83	44.49	46.83	52.13	58.58	60.59	61.78	59.31	52.19	44.91	40.52
5．Camp Harney ．	4300	11900		22.74	28.25	36.89	48.55	56.92	67.34	74.27	70.96	62.05	51.17	40.42	29.60
6．Camp Logan ．．	4416	11914	5600		．．		43.41	49.08	56.61	66.53	66.53	57.71	49.04	45.52	．．
7．Camp Lyons－	4243	11652	5500	14.87	27.19	41.82	49.23	52.52	61.29	72.25	72.69	58.31	51.56	41.85	34.14
8．Camp Three Forks－	4215	11654		22.78	29.89	37.11	43.78	53.08	63.08	71.00	71.23	61.65	52.61	41.70	31.111
9．Camp Warner ．．	4228	119 42	－	25.08	30.38	34.17	42.40	49.79	59.15	67.62	66.61	57.23	48.32	38.25	30.26
10．Camp Watson ．．	4422	11948	．	23.38	28.05	36.10	43.65	49.56	57.39	62.95	66.14	56.60	43.99	37.66	33.22
II．Corvallis ．．－	4432	12304	．．	31.57	37.59	36.32	50.60	－	56.85	64.07	66.10		46.92	．	42.89
12．Eola＊${ }^{\circ}$	4457	12254	500	36.40	39.05	39.40	46.79	51.86	58.47	67.45	68.64	58.19	49.32	42.07	33.22
13．Fort Dalles ${ }^{2}$ ．－	4533	12050	350	31.59	38.21	45.93	53.51	61.34	67.29	73.79	72.62	63.87	54.44	42.52	33.69
14．Fort Hoskins	4506	12326	．	38.74	41．61	44.96	50.35	55.05	60.43	63.55	64．19	59.78	52.29	45.08	40.39
15．Fort Klamath ．	4240	12150	4200	22.78	25.21	34.06	38.81	44.60	52.26	60.92	58.77	47.98	40.65	34.60	24.98
16．Fort Lane ．－	4220	12246	2000	39.29	$43 \cdot 52$	51.78	52.45	60.23	68.66	74.55	73.09		60.43	40.39	32.70
17．Fort Orford ${ }^{2}$	4244	12429	50	48.73	48.17	49.95	51.13	55.06	58.66	59.57	60.92	59．19	55.82	50.42	48.77
18．Fort Stevens－	4612	12357	． 8	38.28	40.76	43.41	48.95	53.58	58.70	62.89	61.37	58.18	53.59	48.90	42.59
19．Fort Umpqua ．	4342	12410	8	44.17	46.22	48.12	50.69	54.48	59.47	59.93	59.72	58.91	54.10	49.57	45.51
20．Fort Yamhill ．	4521	12315	\because	37.12	39.62	43.55	47.81	53.42	56.97	60.92	61.23	58.14	51． 21	43.52	38.17
21．Oregon City ．．．	4520	12218	200	38.60	42.00	45.20	55.90	60.90	66.30	72.27	71.63	60.20	55.80	47.23	38.93
22．Portland ${ }^{3}$	4530	12236	45	40.65	40.73	42.20	51.65	56.50	65.61	69.47	68.09	62.98	53.18	48.40	39.3 I
23．Salem－	4456	12245	120	41.3	49.2	46.5	49.5	58.4	64.5	67.1	69.3	65.2	70.5	58.2	50.3
24．Salem Willamette Univ．	4456	$\|$122 45 122	120							\cdots			49.48	．	
25．Willamette Univ．．	4522	12223	120	39.50	－	．	－	52.23							
PENNSYLVANIA．															
1．Abington	4131	7546	1183	23.93	26.11	31.97	45.31	55．15	65.95	69.98	67.12	60.78	47.39	37.90	27.40
2．Allegheny Arsenal．	4029	7959	704	28.89	31.67	38.84	50.36	61.49	69.90	73.58	71.59	64.15	51.45	40.38	32.04
3．Allegheny City ．	4028	So 03			－		51.66					－	\cdots	\ldots	．
4．Allegheny Tunnel ．	4030	7836	216 x	29.67	．	34.92	47.14	57.54	68.67	70.59	71.31	．		．．	\cdots
5．Altoona ．．．	4032	$78 \quad 24$	1208	．	．	33.03	46.28		．	－	7	．	46.49	42.27	29.40
6．Ashland ．．．	4048	7620	1005	．	27.23	31.88	50.75	5S．0 ${ }^{\text {d }}$							
7．Avondell ．－．	$40 \quad 27$	7722	515	27.15	25.97	$35 \cdot 32$	45.98	57.51	68.28	73.79	70.42	61.98	49.69	41．22	26.31
8．Beaver ．．	4043	So 20	5	29.89	27.79	35.3	54.52	62．35	72.56	74.42	72.10	59.63	53.14	38.87	29.81
9．Beaver Seminary	4043	So 23	．．	32.11	30.48	37.89	48.74	60.18	67.76	74.56	71.54	62.85	50.02	40.76	31.96
10．Bedford ．．．	40 OI	7830	－	27.77	30.68	37.90	49.90	60.52	70.97	74.12	72.19	63.64	52.18	40.13	31.43
II．Berwick ．	4105	7615	583	25.21	3 r .29	39.36	47.63	59.76	68.60	73.00	71.05	62.08	51． 94	40.94	30.91
12．Bethlehem ．－	4043	$75 \quad 20$	300	31.81	34.25	$3^{8 .} 53$	48．31	58.59	69.82	73.63	69.54	61.34	51.39	45.66	33.06
13．Blairsville ．${ }^{\text {a }}$	4027	7915	1010	22.7	28.2	$3+3$	42.1	52.4	54.9	64.8	66.0	52.8	47.7	40.2	28.0
14．Blooming Grove	4123	7509	．．	21．8I	$2 \overline{3} .63$	29.25	43.99	52.96	64.61	68.66	64.58	59.23	44.78	35.60	24.62
15．Brookville ．． 16．Brownsville ．	$\begin{array}{lll}41 & 12 \\ 40 & \\ 402\end{array}$	$\begin{array}{ll}79 & 08 \\ 79 & 52\end{array}$	\cdots	35．33	．．	．．	54.03	59.55	68.57	75.30	72.00	64.77	5		．
17．Buffalo Township	40 40 40	7952	1000	35.33	30.90	＊	54.03	68.40 63.03	74.88 65.13	80.55 69.08	77.00	70.38	58.55	41.60	34.24
18．Bustleton ．．	4005	75 OI	．．	28.25	．		47.80	6.4	65.13	69.00				\cdots	\cdots
19．Butler ．．．	4054	7950	850	28.48	32.92	39.92	49.71	60.78	71.06	74.82	71.81	64.08	54.63	41.96	30.76
20．Byberry ．．．．	4006	7458	70	27.04	33.68	38.07	48.85	61.78	69.17	74.57	73.36	66.08	56.78	44.35	34.44
21．Canonsburg（Jeffer－ son Coll．）	4017	80 II	850	27.95	31.67	38.41	48.77	59.49	67.74	71.80	70.13	63.73	51.97	39.89	31.23
22．Carlisle（Barracks）．	4012	77 11	600	28.10	30.17	$37 \cdot 31$	50.16	61.23	71.00	75.04	72.54	65.42	52.39	39.15	31.27
23．Carpenter ．．．	4137	7651	\cdots	\cdots	．	\cdots		51.05	60.95	66.28	66.00	59.73		\cdots	－
${ }^{1}$ Observations in 1850 and I 851 at $\odot_{\mathrm{r}} 9_{\mathrm{a}} 3_{a} 9_{\mathrm{a}}$ ，referred to 6_{m} N． 6_{a} ． ${ }^{2}$ Observations previous to 1855 at $\bigcirc_{\mathrm{T}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ ，referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ．															

OREGON.

PENNSYIVANIA.

1	44.14	67.68	48.69	25.81	46.58	Jan. 1864; Dec. 1870			$\odot_{\mathrm{r}} \mathrm{N} . \bigodot_{\mathrm{s}}$	R. Sisson.	Table in S. Coll. and S. O.
2	50.23	71.69	51.99	30.87	51.19	Jan. 1825; Apr. 1867			$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon.	Ar. Met. Regs. 1855-60 and MS. from S. G. O.
3				.	.				$\odot_{\mathrm{r}} 9_{\mathrm{m}} 33_{\mathrm{a}} 9_{\mathrm{a}}$	Stewart.	S. Coll.
4	46.53	70.19	\cdots		.	1853			$77_{m}{ }^{2} 9^{3}$	Seabrook.	
5	-	,	.	.	.	Oct. 1859; Apr. I S63	\bigcirc			W. R. Boyers, T. H. Savery.	P. O. and S. I. Vol. I, and S. O.
6	46.68					1870			'6	W. E. Honeyman.	S. O.
7	46.27	70.83	50.96	26.48	48.64	June, 1867; Apr. 1869	1 I		'	W. E. Baker.	" "
8		73.03	50.55	29.16		1839; 1840	1		$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{a}$	W. Allison.	Journ. Frank. Inst.
9	48.94	71.29	51.20	31.52	50.74	Oct. 1867; Dec. 1	3		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	Rev. R. T. Taylor,	S. O.
10	49.44	72.43	51.98	29.96	50.95	1839; Dec. 1861	14		$7 \mathrm{~m} \mathrm{za}_{\text {a }}{ }_{\text {a }}$	S. Brown, King, and Rev. H. Heckerman.	P. O. and S. I. Vol. I, S. O. Journ. Frank. Inst., \& S. Coll.
11	48.92	70.88	51.65	29.14	50.15	1856; Jan. I			$7 \mathrm{~m} 2 \mathrm{za}_{\mathrm{a}} 9_{\mathrm{a}}$ ds	J. Eggert.	P. O. and S. I. Vol. I, and S. O.
12	48.48	71.00	52.80	33.04	51.33	1849; 1851			$\odot_{r} 99_{m} 3_{a} 9_{a}$	Kluge.	S. Coll.
13	42.93	61.90	46.90	26.30	44.51	Oct. 1861; Jan. r 865	3		$7_{\mathrm{m}} 2_{2} 9_{3} 9^{\text {bis }}$	W. R. Boyers	S. O.
14	42.07	65.95	46.54	23.35	44.48	May, 1865; Dec. 1870			6 N. 6	J. Gratwohl. D. S. Dearing.	P. O. and S. I. Vol. I.
15 16	..	71.96 77.48			..	Nov. 1869 [${ }^{\text {c }}$			$6_{\text {m }}$ N. 6 a	D. S. Dearing. Dr. J. A. Hubbs.	P. O. and S. I. Vol. I. S. O.
17	.	.				1860				J. H. Baird.	¢6 ،6
18	\cdots			\cdots	-	1854			$7 \mathrm{~m} \mathrm{max}_{\text {a }}$	J. C. Martindal	P. O. and S. I. Vol. I.
19	50.14	72.56	53.56	30.72	51.75	39; 185				Michling.	Journ. Frank, Inst. and MS.
20	49.57	72.37	55.74	31.72	52.35	1852; Dec. 1863	5		,	J. Comley and others.	P. O. \& S. I.Vol. I, S. Coll., \& S. 0.
21	48.89	69.89	51.86	30.2	50.23	39; Dec. 1870	18		$7{ }_{\text {m }}{ }_{\text {a }} 9 \mathrm{am}$ bis	Various observers.	P. O. and S. I. Vol. I., Journal Franklin Institute, and S. Coll.
22	$49 \cdot 57$	72.86	52.32	29.85	51.15	July, 1839; Dec. 1870			$7 \mathrm{~m} 2_{\text {a }} 9{ }^{\text {a }}$	Assist. Surg., H. Duffield, W. C. Wilson, H. W. Cook.	Ar. Met. Reg., I855, MS. from S. G. O., P. O. \& S. I. Vol. I, and S. Coll.
23	-	64.41	.		.	1862	-		$7 \mathrm{~m} 2_{a} 99_{\text {bis }}$	E. L. McNutt.	S. 0 .

[^99]
${ }^{1}$ Observations were made at very irregular hours. They were corrected for daily variation by means of the gencral table.
${ }^{2}$ Observations in 1839-40-41, and from Dec. 1858, to June, $\mathbf{1 8 5 9}$, a period of three years four months, were made at Bellefontaine, about four miles east of Flemming.

PENNSYLVANIA.-Continued.

	$\begin{gathered} \dot{C} \\ \stackrel{0}{E} \\ \dot{\sim} \end{gathered}$		莮	范	-	Series. Begins. Ends.	$\begin{aligned} & \text { EXTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing hours.	Observer.	References.
24						1870		92 bis	A. Curtis.	S. O .
25	$43^{\circ} \cdot 75$	$66^{\circ} .60$	$4^{6} \cdot 99$	$24^{\circ} .66$	$45^{\circ} \cdot 50$	Jan. 1835; Mar. 1854	99	,	H. C. King, R. P. Stevens.	P. O. and S. I. Vol. I, Rec. in S. Coll.
26	51.89	74.04	53.68	32.66	53.07	July, 1858; Apr. 1862	26	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	W. Heyser.	P. O. and S. I, Vol. I. and S. O.
27				36.04		Dec. 1863; Apr. 1864				MS. from S. G. O.
28	48.59	71.46	53.39	31.63	51.27	Jan. 1849; Feb. 1859	99		J. Edwards.	P. O. and S. I. Vol. I, and printed slip.
29	41.09	64.95	45.79	24.36	44.05	Jan. 1865; Dec. 1870	57	$7 \mathrm{~mm} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	T. Day.	S. O.
30	47.35	71.13	51.55	27.26	49.32	Jan. 1855; Dec. 1859		$7_{\text {ma }} 2_{\text {a }} 9$ a	S. J. Coffin, G. R. Houghton.	P. O. and S. I. Vol. I.
31	49.58	74.07	55.43	31.27	52.59	Nov. 1855; Dec. 1870	49	${ }_{4}$ bis	W. H. Speras.	S. o.
32	49.15	71.71	54.10	31.72	51.67	Jan. 1860; Dec. 1870	II 0		E. Hanse.	
33	47.95	69.90	51.28	30.05	49.80	Jan. 1862; Dec. 1870	8 II	$7 \mathrm{ml}{ }^{2}, 9_{2}$ bis	J. Tay	"66 ${ }^{\text {6\% }}$
34	47.20	69.11	49.82	27.39	48.38	Jan. 1839; June, 1867	14 o	7 La	S. Brugger, J. I. Burrell, Atkins, Harris, Livingstone.	P. O. and S. I. Vol. I, S. O., \& Journ. Frank. Inst.
35 .	48.57	72.25	51.38	32.83	51.26	Dec. 1867; Dec. 1870	210	is	S. C. Walker.	S.
36	50.83	72.63	54.16	32.64	52.57	Jan. 1836; Dec. 1843			Maj. Mordec	Blodget's Climatology.
37	44.79	69.80	48.38	26.14	47.28	Oct. 1867; Dec. 1870	32	7 n \% $2_{\text {a }} 9 \mathrm{abis}$	Rev. M, A. Tolman.	S. O.
38			56.46			1854		7 m	A. D. Weir.	P. O. and S. I. Vol. I.
39	50.92	74.07	56.64	33.07	53.67	Jan. 1822; Oct, 1853	112	$\odot_{r} 9_{m} 3_{\mathrm{a}} 9 \mathrm{am}$	Assistant Surgeon.	Ar. Met. Reg. 1855
40	50.55	73.18	52.83	30.87	51.86	June, 1819; Dec. 1870	171	$7_{m} 2_{a} S_{\mathrm{n} \text { bis }}$	Haines, C. J. Wister, Jr., T. Meechan.	S. Coll. and S. O.
41	49.83	71.62	51.19	29.88	50.63	Jan. 1839; Feb. 1865	242	9	Prof. M. Jacobs.	P. O. and S. I. Vol. I, MS. in S. Coll., and S. O.
42						1870	$\bigcirc 3$	$7 \mathrm{ma} 2_{\text {a }} 9$	S.	S. O.
43	45.48		47.40	29.77	53.73	Sept. 1869; Aug. 1870		$7 \mathrm{~m}{ }^{2}{ }_{\text {a }}^{6} 9^{\text {a }}$ a bis		
44	51.76	75.61	55.38	32.18	53.73	Jan. 1840; July, I870	293	-6	J. Heisely, W. O. Hickok, Dr. W, H. Egle, R. A. Martin.	P. O. and S. I. Vol. I, MS. in S. Coll., and S. O.
45	50.47	73.66	55.80	32.16	53.02	Jan. 1854; June, 1863		$7 \mathrm{~m}{ }^{\text {a }}$	Dr. P. Swift: J. Haworth.	P. O. and S. I. Vol. I. and S. O. S. O .
47	48.35	72.07	52.44	30.36	50.81	1853	$1{ }^{1} \mathrm{O}$		Lowrie.	S. Coll.
48	. \cdot	1839; 184			Richardson	Journ. Frank, Inst.
49	50.52	73.44	51.67	29.55	51.29	1840; 1841	1	،	Miller.	" ${ }^{6}$ "6
50	49.67	69.62	53.05	29.47	50.45	- 1839; Aug. 1	311	,	White, Pector.	Journ. Frank. Inst., P. O. and S. I. Vol. I, and S. Coll.
51	44.57	68.42	48. 10	29.70	47.70	Feb. 1868; Dec. 1870	211		D. Peelor.	
52	51.11	71.86	52.87	31.98	51.96	Jan. 1839; 1850	65	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Winchell, Atler.	Journ. Frank, Inst., S. Coll. \& Dove, 1853.
53	45.61	67.21	49.34	29.08	47.81	Nov. 1856; Dec. 1859	32	،	P. Friel.	MS. in S. Coll., and P. O. and S. I. Vol. I.
54	- 75	70.71		\cdots	47	$186 \mathrm{r}$	1		W. R. Boyers.	S. O.
55	44.75	70.71	50.96	23.20	47.41	June, 1867; Nov. 1868		7 c \%	Prof. A. M. Mayer, N. C. Tooker.	" "
56	46.66	70.37	49.76	26.06	48.21	Jan. 1856; Dec. IS70	IO 9	,	Prof. C. S. James. ,	P. O. and S. I. Vol. I, and S. O.
57	55.17	72.13	Nov. 18.839		$7 \mathrm{man}{ }^{\text {a }} 9^{\text {a }}$	Culbertson.	Journ. Frank. Inst.
59	48.21	72.52	52.60	34.60		Nov. 1858; Apr. 1859 Mar. 1849; Apr. 1851	0	$7^{7 m} \mathrm{I}_{2} 9{ }^{\text {a }}$	J. Barr Marks.	P. O. and S. I. Vol. I. S. Coll.
60	45.21	69.69	50.76	27.18	48.21	1839; Sept. 1858		$7_{m} 2_{n} 9_{n}$	T. F. Thickstun, Shippen, Williams.	P. O. and S. I. Vol. I, S. Coll., and Journ. Frank. Inst.
61	55.88	73.28	54. 18	32.70	53.51	$1842 ; \quad 1847$		$\bigcirc_{\mathrm{r}} 2_{\mathrm{m}} 9_{3}$	Gre	Manuscript.
62	51.40	70.58	51.24	29.93	50.79	1839 ; 1841		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Benki	Journ. Frank. Inst.
63		\cdots	\cdots			1839	- 2	$7_{\mathrm{nn}} 27_{a}$	Ball.	
64	48.57	70.92	52.77	29.96	50.55	June, 1864; Dec. 1870		$7_{\text {ma }} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Anna Spencer.	S. O. MS in S Coll P O and S . I
65	50.29 44.21	72.47 69.82	58.86 49.38	30.45 25.37	51.77 47.20	Jan. 1790; Dec. 1859 Feb. 1852 ; Feb. 1857	6710	$\bigodot_{T} z_{\text {II }} \mathrm{IO}_{3}$	Pierce, E. Hance.	MS. in S. Coll., P. O. and S. I. Vol. I.
67	44.21 51.76	69.82 74.68	49.38 55.25	25.37 32.38	47.20 53.52	$\begin{array}{lll}\text { Feb. 1852; Feb. } 1857 \\ \text { Mar. 1857; } & \text { Nov. } 1870\end{array}$	410	9 a	F. Schreiner. Dr. T. R. Hoffer, Miss	P. O. and S. I. Vol. I, \& S. Coll. S. O.
		74.68	55.25	32.3	53.52			a bis	M. E. Hoffer.	
68	47.50	70.39	49.83	29.64	49.34	Apr. 1857; Mar. 1868	24	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	T. H. \& F. L. Stewart.	MS in S Coll S O, P O
69	47.83	70.13	50.86	27.77	49.15	Jan. 1787; Oct. 1866	145	$7{ }_{7 m}{ }^{2} 99 \mathrm{abis}$	C. J. Reichel and others.	MS. in S. Coll., S. O., P. O. and S. I. Vol. I.
70	48.02	71.89	52.55	28.67	50.28	Jan. 1866; Dec. 1870		"	E. M. McConnell.	S . O. in S Coll
71	49.29	71.36	51.41	30.84	50.73	Feb. 1837; Mar. 1843		$7 \mathrm{~m}{ }^{\text {a }}$ 9a	L. H. Parsons.	MS. in S. Coll, and Journ. Frank. Inst.

[^100]| PENISYIVANIA．－Continued． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | ＋ّهِ | －80 | 管 | $\stackrel{\text { 号 }}{\stackrel{\text { gr }}{5}}$ | － | 或 | 荙 | 突 | 邑 | $\stackrel{\text { 官 }}{\sim}$ | 芴 | $\begin{aligned} & \stackrel{\ddot{\theta}}{\mathbf{0}} \\ & \stackrel{y}{n} \end{aligned}$ | ぜ | 8 | ®ّ |
| 72．Norristown | $40^{\circ}{ }^{\prime \prime}$ | $75^{\circ} 19^{\prime}$ | 153 | $30^{\circ} .90$ | $32^{\circ} \cdot 46$ | $39^{\circ} \cdot 33$ | $48^{\circ} .26$ | $59^{\circ} .27$ | $68^{\circ} .56$ | $73^{\circ} .82$ | $71^{\circ} .89$ | $64^{\circ} .10$ | $53^{\circ} \cdot 77$ | $43^{\circ} \cdot 53$ | $33 \cdot{ }^{\circ} 40$ |
| 73．Northumberland ． | 4055 | 7649 | \cdots | 24.40 | 30.97 | 40.23 | 52．37 | 61.22 | 69.24 | 73.30 | 71.01 | 62.74 | 50.89 | 38.84 | 30.64 |
| 74．Oil City ．． | 41 26 | 7943 | ． | 25.94 | | ．． | ， | | | | | | 46.19 | 39.43 | 31.57 |
| 75．Oxford－ | 3947 | 7559 | 575 | | | | \cdots | 61.35 | 73.55 | $73 \cdot 30$ | 71.38 | 70.63 | ．． | | |
| 76．Oakland Observ．． | 4026 | 8002 | 1026 | 25.80 | 31.17 | 39.81 | 46．51 | 60.43 | 70.23 | 74.27 | 71.70 | 65.73 | 53.75 | 42.68 | 28.84 |
| 77．Paradise ${ }^{\text {l }}$ ． | 4000 | 7608 | ．． | 26.21 | 26.63 | 33.12 | 42.29 | 67.92 | 77.50 | 81.96 | 78.25 | 71.58 | 58.88 | 37.58 | 29.46 |
| 78．Pennsville ， | 4100 | 7838 | 1400 | 21.10 | 23.56 | 30.17 | 43.42 | 52.83 | 65.32 | 69.14 | 65.70 | 58.97 | 44.74 | 34×71 | 23.97 |
| 79．Philadelphia ${ }^{2}$ | 3956 | 75 10 | 36 | 33.5 | 40.0 | 50.0 | 62.0 | 75.0 | 81.0 | 87.5 | 85.0 | 80.5 | 64.0 | 54.7 | 49.5 |
| 8o．Philadelphia ． | 3956 | 7510 | ． 36 | 32.14 | 35.45 | 40.38 | 51.05 | 60.05 | 69.64 | 74.08 | 73.03 | 64.03 | 54.61 | 43.89 | 34.68 |
| 8r．Philadelphia | 3956 | 7510 | 36 | 33.3 | 33.4 | 41.2 | 52.9 | 62.1 | 71.9 | 76.4 | 75.6 | 68.1 | 57.1 | 43.7 | 34.9 |
| 82．Philadelphia ${ }^{2}$ ． | 3956 | 7510 | 36 | 32.7 | 36.1 | 45.6 | 57.2 | 68.1 | 78.9 | 82.2 | 80.7 | 73.4 | 64.1 | 47.6 | 37.1 |
| 83．Philadelphia ． | 3956 | 7510 | 36 | 30.7 | 29.7 | 38.9 | 49.2 | 60.7 | 68.3 | 73.8 | 70.2 | 63.4 | 53.2 | 44.5 | 33.9 |
| 84．Philadelphia | 3956 | 7510 | 36 | 30.1 | 29.4 | 38.8 | 49.4 | 6 L .2 | 69.7 | 73.9 | 71.1 | 63.6 | 51.7 | 41.5 | 30.7 |
| 85．Philadelphia ${ }^{3}$ ． | 3956 | 75 10 | 36 | 30.8 | 29.4 | 38.1 | 51．1 | 62.9 | 71.5 | 75.2 | 72.4 | 65.9 | 53.9 | 42.3 | 31.2 |
| 86．Philadelphia （Girard Coll．） | 3958 | 7510 | 114 | 33.7 | 31.6 | 39.8 | 50.6 | 58.9 | 68.8 | 72.8 | 71.5 | 64.1 | 51.3 | 40.7 | 32.6 |
| 87．Philadelphia ${ }^{4}$ | 3956 | 7510 | 36 | 31.32 | 32.57 | 40.19 | 50.66 | 61.48 | 71.04 | 76.02 | 73.45 | 65.64 | 53.99 | 43.68 | 33.64 |
| 88．Philadelphia ${ }^{6}$（Nav． Hosp．）． | 3956 | 7510 | 36 | 30.79 | 32.71 | 40．10 | 48.57 | 61.26 | 69.62 | 74.83 | 72.86 | 65.18 | 54.45 | 43.29 | 33.26 |
| 89．Phoenixville ．． | 4007 | 75 72 79 | 120 | 33.20 29.68 | 33.68 | 35．11 | 50.45 | 58.59 60.64 | 70.03 | 75.73 | | | | | ．． |
| 90．Pittsburg ．． | 4027 | 7959 | 840 | 29.68 | 3 I .81 | 38.47 | 49.92 | 60.64 | 70.12 | 75.73 | 71.38 | 65.84 | 52.88 | 43.38 | 33.44 |
| 91．Pocopson | 3954 | 7540 | 218 | 28.80 | 31.14 | 38.12 | 49.02 | 60.06 | 70.47 | 75.86 | 73.64 | 66.20 | 53.18 | 42.85 | 32.15 |
| 92．Port Carbon | 4043 | $76 \quad 06$ | \cdots | 28.95 | 26.05 | 37.25 | 45.38 | 57.50 | 71.13 | 71.94 | 76.44 | 58.77 | 47.87 | 40.65 | 29.98 |
| 93．Pottsville ． | 4041 | 7612 | \ldots | 31.86 | 26.18 | 34.87 | 49.30 | 59.26 | 65.35 | 74.65 | 68.00 | 61.90 | 51.08 | 42.14 | 29.46 |
| 94．Plymouth Meeting | 4006 | 7516 | ． | 35.84 | 29.69 | 36.29 | 48.63 | 58.72 | 70.27 | 75.41 | 72.62 | 65.19 | 51.38 | 41.15 | 31.94 |
| 95．Punxatawney ．． | 4059 41 4 | 79 80 80 75 | 1720 | 21.90 | | 33.02 | 43.23 | | | 74.10 | | 58.13 65.11 | 42.07 51.65 | 34.42 35.13 | |
| 96．Randolph ． | 4138 | 8000 | 1720 | 21.90 | 20.89 | 33.02 | 43.23 | 57.95 | 68．15 | 74.10 | 68.89 | 65.11 | 51.65 | 35.13 | 28.18 |
| 97．Reading ．－ | 4020 | 7555 | 269 | 29.53 | 31.40 | 37：76 | 51.29 | 59.79 | 69.32 | 74.44 | 71.37 | 63.74 | 53．11 | 42.62 | 3 I .84 |
| 98．Rose Cottage | 4107 | 7909 | \cdots | 26.66 | 30.61 | 36.74 | 51.04 | \cdots | | 61.18 | 64.82 | 56.93 | 51.25 | | 25.14 |
| 99．Salem＊． | 4125 | 7525 | 1600 | ． | | | 45.08 | 53.55 | 67.02 | 68.20 | 65.98 | 62.05 | 50.54 | 39.61 | 29.54 |
| 100．Shamokin ． | 4048 | 7635 | 700 | 3 I .01 | 32.44 | 38.96 | 47.26 | 60.06 | 68.52 | 70.73 | 71.24 | 64.92 | 54.65 | 41． 53 | 34.89 |
| 101．Shirleysburg | 4017 | 7743 | 640 | 30.87 | 34.08 | 39.97 | 52.12 | 63.13 | 75.22 | 75.56 | 73.59 | 65.83 | 49.02 | | |
| 102．Silver Lake | 4155 | 76 or | ．． | 16.83 | 27.10 | 35.56 | 48.43 | 58.39 | 65.00 | 71.55 | 71.16 | 59.16 | 51.20 | 38.16 | 22.40 |
| 103．Silver Spring ： | 4005 | 7640 | \cdots | 28.36 | 30.02 | 38.69 | 49.12 | 60.18 | 69.94 | 74.00 | 71.35 | 63.16 | 50.00 | 41.82 | 32.21 |
| 104．Sewickleyville | 4034 | 80 10 | 656 | 27.12 | 32.25 | 36.33 | 47.92 | 53.42 | 68.27 | 67.25 | 69.20 | 61.40 | 48.36 | 37.52 | 29.55 |
| 105．Somerset ．． | 4002 | 7905 | 2195 | 25.43 | 27.46 | $34 \cdot 37$ | 45.53 | 55.49 | 64.83 | 67.28 | 65.72 | 58.82 | 47.30 | 37.90 | 28.69 |
| 106．Stevensville ．． | | ${ }_{76}^{76}$ | 300 | 18.88 | 32.83 | | | | 67.50 | 72.73 | 62.50 | 59.80 | 49.48 | 40.33 | 26.75 |
| 107．St．Mary＇s ．
 108．St．Vincent＇s Col－ | 4125 | 7845 | ．． | ．． | 27.20 | 40.02 | 48.28 | 57.62 | | 75.12 | | | ． | | ．． |
| lege．．．． | 4014 | 7929 | 922 | 32.23 | 34.62 | 39.04 | 48.85 | 58.42 | 68.82 | 70.77 | 70.60 | 63.27 | 54.25 | 39.65 | 36.38 |
| 109．Smithport ．．． | 4154 | 7833 | ．． | 33.51 | 29.83 | 32.52 | $45 \cdot 34$ | 54.13 | 62.72 | 67.00 | 64.05 | 55．11 | 48.40 | 32.20 | 25.03 |
| III．Sugar Grove ．． | 4200 | 7924 | 1450 | 22.35 | 24.09 | 31.48 | 41.33 | 56.00 | 68． | \cdots | ． | ．． | ．． | ．． | ．． |
| III．Susquehanna Depot | 4156 | 7540 | 800 | ．． | ．． | \cdots | | 50.55 | 68.18 | 76.90 | ． | 60° | － | ． | |
| 112．Tamaqua ．．． | 40 40 49 | 7600 | 700 | | 32.75 | 30.48 39.20 | 47.85 | 59.55 60.19 | 69.85 | 72.81 | 2 | 61.50 | 50.84 | \cdots | |
| II3．Tarentum ．．． II4．Tioga | 4037 | 7946 | 950 | 28.64 | 32.75 35.26 | 39.20 | 46.23 | 60.19 | 68.44 | 72.81 | 70.22 | 62.73 | 50.84 | 39．19 | 34.37 |
| 114．Tioga I15．Towanda（Susq． | | 7711 | 1000 | 23.30 | 25.26 | 31.99 | 45.40 | 55．56 | 67.07 | 71.86 | 68.33 | 62.56 | 46.66 | 36.70 | 26.76 |
| 116．Troy Hill ．．． | $\begin{array}{lll}41 & 47 \\ 40 & 28\end{array}$ | $\begin{array}{ll}76 & 30 \\ 80 & 07\end{array}$ | 840 937 | 26.15 16.40 | 33.32 20.72 | 28.35 | 49.57 | 54.57 | 68.05 | \cdots | 69.00 | 63.37 | 48.50 | 46.18 | 33.85 |
| 117．Turtle Creek Val－ ley
 118．Warrior＇s Mark | 4028 4041 | $\begin{array}{lll}79 & 38 \\ 78 & 09\end{array}$ | 960 | | | 35.22 | 44．70 | 58.00 | 67.20 | 71.23 74.13 | \cdots | | ． | | ． |
| 1 The observations fr those months．
 ${ }^{3}$ The greater part of | May
 is serie | o Octobe
 is prob | er，both
 ably in | inclusi
 cluded in | e，appea
 2
 the prec | to be These obs eding six | out 5° to rvations | high． vidently | Probably require | y due to
 a negativ | a bad ex
 e correc | posure tion of | f the th bout 6° ． | mome | during |

PENNSYLVANIA．－Continued．

		$\begin{aligned} & \text { 苞 } \\ & \text { 筑 } \\ & \text { n } \end{aligned}$		$\begin{aligned} & \dot{y} \\ & \stackrel{\rightharpoonup}{\#} \\ & \text { B } \end{aligned}$	怱	Series． Begins．Ends．	$\begin{gathered} \text { EXTENT } \\ \text { yrs.mos. } \end{gathered}$	Observing Hours．	Observer．	References．
72	$48^{\circ} \cdot 95$	$71^{\circ} \cdot 42$	$53^{\circ} .80$	$32^{\circ} .25$	$51^{\circ} .61$	Aug．1843；July， 1863	1310	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{am}$ bis	Rev．J．C．Ralston， Rev．J．Grier，L． E．Corson．	P．O．and S．I．Vol．I，S．Coll．， Blodget＇s Climatology，and S． 0.
73	51.27	71.18	50.82	28.67	50.49	1839；1841	30	7 m 2a 9 a	Hust	Journ．Frank．Inst．
74				．．	．．	Oct．1863；Jan． 1864	－ 4	$7 \mathrm{~m} 2_{\mathrm{a}} \mathrm{a}_{\text {a }}$ bis	I．A．Week	S．O．
75		72.74				1865	－ 5		D．H．Duffield．	＂${ }^{\text {ct }}$ Coll
76	48.92	72.07	54.05	28.60	50.91	1849； 185	25	${ }_{\text {m }} \mathrm{a}_{\text {a }} \mathrm{m}_{\text {a }}$	Wilson．	S．Coll．
77	47.78	79.24	56.01	27.43	52.61	Jan．1835；Dec． 1858	24 0		J．Frantz	MS．in S．Coll．，P．O．and S． I．Vol． 1.
78	42．14	66.72	46.14	22.98	44.47	July，1864；Dec． 1870	66	$7_{\text {mi }} 2_{\text {a }} 99_{a}$ bis	E．Fenton．	S．O．
79	62.3	84.5	66.4	41.0	63.6	Oct．1748；Sept． 1749	10		Bertram Kalin，travels in N．A．	Blodget＇s Climatology．
80	50.49	72.25	54.18	34.09	52.75	Jan．1758；Dec． 1777	130			Trans．Am．Phil．Soc． 1839.
81	52.1	74.6	56.3	33.9	54.2	Jan．1798；Dec． 1804	70		Dr．J．	Blodget＇s Climatolog
82	57.0	80.6	61.7	$35 \cdot 3$	58.6	Jan．1807；Dec． 1826	200		James Young．	Darby＇s U．S．
83	49.6	70.8	53.7	31.4	51.4	Jan．1829；Dec． 1838	$\begin{array}{rr}10 & 0 \\ 8 & 7\end{array}$		Dr．Thomas Hewson．	Trans．Am．Phil．Soc． 1839. Journ．Frank．Inst
84 85	49.8	71.6 73.0	52.3 54.0	30.0 30.5	50.9 52.1	Jan．183I ；July， 1839	$\begin{array}{rr}8 & 7 \\ 57 & 0\end{array}$			Journ，Frank．Inst． P．O．Report．
85 86	50.7 49.77	73.0 71.03	54.0 52.03	30.5 32.63	52.1 51.36		$\begin{array}{rr}57 & 0 \\ 5 & 1\end{array}$	hourly．	A．D．Bache．	P．O．Report． Observations at the Magnetic \＆
86	49.77	71.03	52.03	32.63	51.36	June，I840；June，1845	5 I	hourly．	A．D．Bache．	Meteorological Observatory， Washington，1847，Vol． 3.
87	50.78	73.50	54.44	32.51	52.81	Feb．183I ；Dec． 1870	3910	6	J．A．Kirkpatrick and daughter，A．D． Bache，Dr．Conrad， and others．	Same as above，Journ．Frank． Inst． 1861 to 1869 ，Blodget＇s Climatology，S．O．，S．Coll．， and Dove．
88	49.98	72.44	$54 \cdot 3 \mathrm{I}$	32.25	52.25	Apr．1843；Dec． 1864		$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Surgeons of the Hosp．	MS．in S．Coll．
89	48.05						－ 6	$7_{m} 2_{a_{5}} 99_{\text {dis }}$	Dr．J．L．Coffman．	
90	49.68	72.41	54.03	31.6	51.94	1839；Dec． 1870	123		Various observers．	Journ．Frank．Inst．，S．O．，P． O．and S．I，Vol．I，\＆S．Coll．
91	49.07	73.32	54.08	30.7	51.79	Jan．	179	$7_{\mathrm{ma}} 2_{\mathrm{a}} 99_{\mathrm{a} \text { bis }}$	F．Darlington．	P．O．and S．I．Vol．I，S．O．，and S．Coll．
92	46.71	71.17	49．10	28.33	48.83	39；			Hewes．	Journ．Frank．Inst．
93	47.81	69.33	51．71	29.17	49.50	1839；July， 1858	20		Dr．A．Heger，Rev． B．R．Smyser，D． Washburn，Porter．	Journ．Frank．Inst．，P．O．and S．I．Vol．I．
94	47.88	72.77	52.57	32.49	51.43	Feb．1868；Dec． 1870	2 II	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	M，H．Corson．	S．O．
95			44.87		\cdots	1839	－ 3		Smith．	Journ．Frank．Inst．
96	44.73	70.38	50.63	23.66	47.35	Aug．1851；Feb． 1856	36.5		O．T．Hobbs．	P．O．\＆S．I．Vol．I，\＆S．Coll．
97	49.61	71.71	53.16	30.92	51.35	1839 ；Dec． 1870	$6 \cdot 8$	$7 \mathrm{~mm} 2_{\mathrm{a}} 9_{\mathrm{s}} \mathrm{bis}$	J．H．Raser，Engle－ man．	Journ．Frank．Inst．，P．O．and \＆S．I．Vol．I，and S．O．
98	\cdots	670	－	27.47	\ldots	1839； 1840	$\bigcirc 11$		Gaskel．	Journ．Frank．Inst．
99		67.07	50.73	－ 38	－	Apr．1869；Dec． 1870	－ 10		J．D．Sto	S．O． ＂ 6
100	48.76	70.16	53.70	32.7	51.35	Mar．1860；Jan． 1863	210		P．Friel．	
101	51.74	74．79	49.51		47.08		0 10	7 mm	Brewster．	S．Coll， Journ．Frank．Inst．
102 103	47.46 49.33	69.24 71.76	49.51 51.66	22.11 30.20	47.08 50.74	1839； Mar． $1863 ; ~$	$\begin{array}{ll}2 & 9 \\ 4 & 7\end{array}$		Rose． H．I．Burckart．	Journ．Frank．Inst． S．O．
103 104	49.33 45.89	71.76 68.24	51.66 49.09	30.20 29.64	50.74 48.22	Mar．1863；May， 1869 Oct． 1859 ；Jan． 1862	$\begin{array}{ll}4 & 7 \\ \mathrm{r} & 4\end{array}$		H．I．Burckart． J．A．Travelli，G．H．	S．O． P．O．and S．I．Vol．1，and S．O
105	45.13	65.94	48．01	27.19	46.57	Dec．1839；Dec．1861	157	$2_{\text {a }} 9$ a	Tracy． G．Mowry，Dr．F． Chorpenning．	Journ．Frank．Inst．，S．Coll，， P．O．and S．I．Vol．I，and S．O．
106		67.58	49.87	26.15	\cdots	June，1866；Feb． 1867		$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{ab}$ bis	I．R．Dutton．	S．O．
107	48.64	．．	．．	．．	．	849	－ 5	$\odot_{r} 9 \mathrm{~m} 3 \mathrm{a} 9 \mathrm{a}$	Stokes．	S．Coll．
108	48.77	70.06	52.39	34.41	51.41	Jan．I85I ；June，1862		$7 \mathrm{~m}{ }^{2} 9^{\text {a }}$ bis		S．O．Frant Inst
109	44.00	64.59	45.24	29.46	45.82	1839；		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Chadwick．	Journ．Frank．Inst．
110	42.94	．．	．．	．	．	54	$\bigcirc 5$		W．O．Blodget．	P．O．and S．I．Vol．I．
11			－		－	870	－ 2		H．H．Atwater．	S． 0 ． 6． 6
1112	45.96 48.54	70.49	50.92	31.92	50.47	1870 Sept． I856；Mar． 1860	\circ		J．Haworth． J．H．Baird．	\qquad
II3	48.54 44.32	70.49 69.09	50.92 48.64	31.92 25.11	50.47 46.79	Sept．I856；© Mar． 1860 July，1863；Dec．I870	$\begin{array}{ll} 3 & 3 \\ 7 & 0 \end{array}$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	J．H．Baird． E．T．Bentley．	P．O．and S．I．Vol．I，and S． S． 0 ．
$\begin{aligned} & 114 \\ & \text { 115 } \\ & \text { I16 } \end{aligned}$	44.32	69.09	48.64	25．17 23.66	4.79	$$	$\begin{array}{ll} 0 & 7 \\ 0 & 6 \end{array}$		S．J．Coffin． V．Scriba，Prof．R． Müller．	P．O．and S．I．Vol．I，and S．O．
117			．	－		1867	$\bigcirc 1$	＂	F．L．Stewart．	S．O．
118	45.97		．	．	．	1854	－ 5	7 m 2a $9_{\text {a }}$	J．R．Lowrie．	P．O．and S．I．Vol．I．

4 This series includes the preceding one．
${ }^{5}$ Observations corrected for daily variation．
6 This series was not combined with the preceding one because the record appears defective．It gives the temperature at 9 P．M．lower than at sunrise， which is contrary to experience at other stations．

PFNNSYLVANIA．－Continued．															
Name of Station．	－	＋	管	䀎	这	砍	宫	家	䔍	$\stackrel{\square}{\Xi}$	范	芯	¢゙0	\％	ه́凶
i19．Westchester	$39^{\circ} 5^{\prime \prime}$	$75^{\circ} 35^{\prime}$	541	$29^{\circ} .99$	$32^{\circ} .14$	$37^{\circ} .66$	$48^{\circ} .70$	$59^{\circ} \cdot 54$	$69^{\circ} .10$	$74^{\circ} \cdot 21$	$71^{\circ} .06$	$63^{\circ} \cdot 40$	$53^{\circ} .69$	43° ． 10	$32^{\circ} \cdot 75$
120．Westtown ．	3957	7534	550	33.87	29.33	40.64	48.47	56.41	73.61	74．3I	71.07	63.52	56.05	39.71	35.97
121．Whitehall ．．	4040	7532	450	27.42	29.69	36.33	48.35	59.15.	68.19	73.62	71.20	63.68	52.05	41.28	31.13
122．Worthington	4052	7937	1050	29.27	30.95	39.41	47.70	59.86	65.93	69.21	68.88	61.07	50.88	40.13	29.84
123．Williamsport ．	4115	7704	533	$35 \cdot 35$	29.56	．	48.03	60.05	67.30	．．	．．	．．	．．	．．	．
124．Youngsville ．．	4150	7920	II85	23.15	25.42	32.50	41.63	．．	．．	．	．	．	．	．	．

RHODE ISLAND．

I．Acquidneset ．	4140	7126	30	18.61	14.78	30.66	51.01				71．		． 3		
2．Fort Adams ．	4129	7120	40	30.23	30.53	35.89	45.45	55.48	65.98	72.18	71.54	63.89	53.97	42.94	33.63
3．Fort Wolcott	4130	7120	20	29.49	30.48	37.24	46.02	55.54	64.52	70.41	69.59	63.22	54.30	43.03	34.29
4．Little Compton．	4131	7111	．	．．				61.44		67.96					
5．Newport ．	4130	7119	25	29.93	29.40	36．14	44.51	53.88	64.70	70.14	69.52	63.43	53．55	43.27	34.16
6．Newport．	4130	7119	25	28.59	30.50	33.58	44.44	53.25	63.80	68．61	67.79	63.39	51.27	41.26	31.00
7．North Scituate ．	4150	7134	300	24.33	25.71	34.07	42.20	56.95	66.38	68.70	63.42	60.09	47.02	39．3I	26.01
8．Providence ．	4150	7124	155	25.84	27.01	34.43	45.64	55.75	63.85	70.93	69.08	61.73	50.85	40.45	29.37
9．Smithfield	4157	7128	．	24.2	－	30.0	44.9	52.9	63.3	67.9	68.9	6 r .0	50.9	38.8	29.1

SOUTH CAROLINA．

1．Abbeville ${ }^{3}$	3412	8217	500	46.41	48.92	54.89	62.61	69.99	77.55	79.43	78.67	74.31	60.95	54.33	46.53
2．Aiken	333^{2}	8133	565	44.15	47.83	53.22	61.49	69.25	76.08	78.80	77．19	72.23	61.80	51.84	45.48
3．All Saints	3340	7917	20	45.69	49.46	53.66	62.66	70.43	76.70	79.85	79.08	74.77	64.07	55.47	49.34
4．Beaufort ．	3226	8041	14	44.44	50.17	56.57	61.05	69.78	76.98	81.97	83.05		66.85	57.68	50.79
5．Black Oak	3319	80 oo	．．	50.56	51.50	58.66	69.76	77.63	81.57	83.40	79.41	73.77	66.33		51.68
6．Bluffton ．	3214	80 5I	．	55.98	53.08	57.25	64.20	73.35	78.90	83.33	82.33	77.30	70.80	60.30	48.25
7．Camden	3415	8031	240	42.71	47.28	53.37	61.73	70.60	78.32	80.64	78.99	73.56	60.94	52.28	45.49
8．Charleston	3247	7956	20	$49 \cdot 33$	53．71	58.43	65.16	72.87	78.94	80.22	79.48	74．19	65.34	57.35	51.35
9．Charleston	3247	7956	20	50.40	51.70	58.30	65.00	72.80	78.50	81.30	80.30	76.10	67.20	59.00	51.20
10．Columbia	3402	8057	315	43.71	44.61	53.99	62.02	69.85	76.75	78.78	78.14	73.48	60.55	54.35	48.12
1r．Edgefield	3347	8 I 51	＊	22.99						．					
12．Edisto Island	3234	80 IS	23	$3^{8.72}$	49.98	53.11	65.25	71.62	79.82	．	80.79	74.48	65.55	59.61	51.00
13．Evergreen	3422	8246	\ldots	47.08	45.85	52.10	65.35		\cdots	\ldots	．		\ldots	．	
14．Fort Mill	3502	8052	\cdots	．．	．．	47.28	60.80	69.78	74.45			70.73			
15．Fort Moultrie	3245	7951	25	50.28	52.40	58.19	65.21	73.26	79.44	81.94	81.30	76.92	67.77	59.50	52.66
16．Gowdysville ．	3455	8130	600	47.20	44.35	51.11	63.07	70.67	76.67	82.43	82.24	73．15	59.60	49.94	42.66
17．Greenville ．	3452	8218	．	49.0	50.4	53.9	64.8	70.8	75．1	76.2	76.6	71.3	57.6	52.0	46.5
18．Hilton Head	3214	80.43	15	45.43	52.24	58.58	67.12	73．14	79.16	83.75	83.58	78.17.	67.57	57.02	52.45
19．Morris Island	3242	$79 \quad 52$	15	\cdots	51.40	55.65	61.56	72.00	\cdots	\cdots	．	－	．	\cdots	49.96
20．Mount Pleasant	3247	7955	20	43	57.63 47.00	54.17 60.17			79.50					．	．．
21．Nightingale Hall	3330		\cdots	43.33 50.37	47.00 52.43	60.17 57.02	69.33 63.79	74.83 71.17	79.50 77.37	78.00 82.91	80.17 81.06	76.50 74.96			
22．Orangeburg ．${ }^{\text {23．}}$	$\begin{array}{ll}33 & 30 \\ 33 & 38\end{array}$		\cdots	50.37	52.43	57.02	63.79	71.17	$77 \cdot 37$	82.91 82.70	81.06	74.96	63.89	56.31	51．57
23．Richmond Hill ． 24．Robertville ．	33 32 32 36	8200 81 12	50	50.0	47.0	46.0	60.5	70.0	75．0	82.70 79.3	76.3	76.5	62.5	54.5	42.5
25．St．Johns．．．	3310	7950	50	46.19	5x．34	55.84	62.17	69.89	$75 \cdot 36$	78.28	77.48	72.45	64.48	54.26	49.47
26．Wilkinson	3500	81 27	－	38.50	38.48	52.60	57.85	68.30	\cdots	81.58	77.45	71.72	61.12	52.77	．

PENNSYLVANIA．－Continued

	感		首 4	$\frac{\dot{y y}}{\stackrel{4}{4}}$	䮃	Series． Begins．Ends．	$\begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}$	Observing HOURS．	Observer．	References．
119	$4^{\circ} .63$	$71^{\circ} .46$	$53^{\circ} \cdot 40$	$31^{\circ} .63$	$51^{\circ} .28$	July，1843；Dec．1870	166	1	E．W．Beans，T．H． Aldrich，J．C．Green and others．	P．O．and S．I．Vol．I，MS．in S．Coll．，and S．O．
120	48.51	73.00	53.09	33.06	51.91	July，1857；Mar． 1859	$\begin{array}{ll}1 & 9\end{array}$	$7 \mathrm{~mm} 2_{\mathrm{a}}{ }^{\text {a }}$	S．Alsop．	P．O．and S．I．Vol．I．
121	47.94	71.00	52.34	29.41	50.17	Jan．1856；Dec． 1870	1410	$\bigodot_{\mathrm{r}} \mathrm{N}, \odot_{s}$	E．Kohle	P．O．and S．I．Vol．I，and S．O．
122	48.99	68.01	50.69	30.02	49.43	Jan：1859；July， 1862	36	$7_{\text {ma }} 2_{\mathrm{a}} 9 \mathrm{9a}$ bis	S．Scott．	＂، ،＂
$\begin{aligned} & 123 \\ & 124 \end{aligned}$	．．	．．	．．	．．	．	May，1864；Feb． 1870	$\begin{array}{ll} \circ & 7 \\ 0 & 4 \end{array}$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a}$	H．C．Moyer． Dr．A．P．Blodget．	S． 0 ． P．O．and S．I．Vol．I．

RHODE ISLAND．

2	45．61	69.90	53.60	31.46	50．14		$\begin{array}{rr}0 & 4 \\ 19 & 2\end{array}$		E．G．Arnold． Assistant Surgeon．	P．O．and S．I．Vol．i． Ar．Met．Regs． 1855 and $\mathbf{1 8 6 0}$ ， and MS．from S．G．O．
3	46.27	68.17	53.52	31．42	49.8	Jan．1822；Dec． 1835	$14 \quad 0$			Ar．Met．Reg． 1855.
4		68.12	53.42	31．16	49.39	$\begin{array}{ll} 1849 ; & 1850 \\ 1817 ; & 1856 \end{array}$	$\begin{array}{rr} 0 & 2 \\ 40 & 0 \end{array}$	$\bigodot_{\text {r }} 9 \mathrm{~m} 3 \mathrm{a} 9 \mathrm{a}$	Bailey． Taylor．	S．Coll． Printed Journal．
5	44.84 43.76	68.12 66.73	53.42 51.97	31.16 30.03	49.39 48.12	$\begin{array}{cc}1817 ; & 1856 \\ \text { Sept．} 1865 ; & \text { Dec．} 1870\end{array}$	$\begin{array}{r} 40 \\ 5 \\ 5 \end{array}$	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$ bis．	Taylor． W．H．Crandall，W．	Printed Journal． S．O ．
7	44.41	66.17	48.81	25.35	46.18	Jan．1853；June， 1854	$\begin{array}{rr}1 & 6 \\ 38\end{array}$	7 m	A．Barber． H．C．Sheldon．	P．O．and S．I．Vol．I，\＆S．Coll．
8	45.27	67.95	51.01	27.41	47．91	Dec．1831；Apr． 1867	348	${ }_{2}$	A．Caswell，H．C． Sheldon．	Sm．Cont．to Knowl．1860，and S． O ．
9	42.60	66.70	50.23	\cdots	．	July， 1806 ；Oct．1807	12	$\bigcirc_{r} z_{\text {a }}$		Med．and Agr．Reg．Boston， 1806－7．

SOUTH CAROLINA

1	62.50	78.55	63.20	47.29	62.88	July，1838；185x	210	4	Th．Parker，\＆Barratt．	Am．Alm． 1840 and S．Coll．
2	61.32	77.36	61.96	45.82	61．6x	Jan．1853；Dec． 1869	88	$7 \mathrm{~m} z_{\text {a }} 9_{2}$ bis	H．W．Ravenal，J．H． Cornish，\＆Newton．	P．O．and S．I．Vol．I，S．Coll．， S．O．and MS．from S．G．O．
3	62.25	78.54	64.77	48.16	63.43	Oct．1854；Apr．186ı	65	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{a}$	Rev．A．Glennie．	P．O．and S．I．Vol．I，and S．O．
4	62.47	80.67		48.47		July，1863；Mar． 1865			Dr．M．M．Marsh	S．O．
5	68.68	81.46		51.25		1844； 1845	18		Ferguson．	Manuscript．
6	64.93	81.52	69.47	52.44	67.09	1870		$77_{m} 2_{\mathrm{a}} 9 \mathrm{ab}$ bis	Dr M Holbrook	
8	65.49	79.55	65.63	51.46	65.53	Jan． 1738 ；Oct．1861	248	4	Drs．J．L．Dawson， Lining，Chalmers， and Johnson，and John Ryan．	Am．Alm． 1842 and foll．，Print． slips，P．O．and S．I．Vol．I， Phil．Trans．，1748，MS．in Coll．，and S．O．
9	65.37	80.03	67.43	51.10	65.98		$20 \quad 0$			Pat．Off．Rep．
10	6 4 .95	77.89	62.79	45.48	62.03	Feb．1836；Nov． 1859	4 II	$7{ }_{\text {m }}{ }^{\text {a }}$ 9 $9_{\text {a }}$	Dr．E．H．Barton and others．	P．O．and S．I．Vol．I，Rep． Brit．Assoc．1847，Printed Journ．Pat．Off．Rep．
11		．			．．	1857	$0 \text { I }$	$\odot_{r} \odot_{3}$		$\mathrm{P}_{6} \mathrm{O} \text {. and } \mathrm{S} . \mathrm{I} . \mathrm{Vol} \text {, I. }$
12	63.33	－	66.55	46.57	．．	Feb．1856；Jan． 1857	$0 \text { II }$	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	E．A．and Dr．E．N． Fuller．	
13		．			\ldots	${ }^{1870}$		$7 \mathrm{~m}{ }^{\text {a }}$ \％${ }_{\text {a }}$	E．J．Earle．	S． O \％．
14	59.29					Sept．1869；June， 1870			R．A．Spring，Jr．	
15	65.55	$8 \mathrm{co}$.	68.06	5 5 .78	66.57	Jan．1823；Dec． 1860	32 II	$7 \mathrm{~m} .2 \mathrm{a} 9$	Assistant Surgeon． C Petty	Ar．Met．Regs．I855 and 1860. S． 0 ．
16	61.42	80.45	60.90	44.74	61.88	Mar．1869；Dec． 1870	$\begin{array}{ll}1 & 9 \\ 2 & 2\end{array}$	$7_{\mathrm{m}} 2_{\mathrm{a}} 9 \mathrm{a} \text { hs }$	C．Petty． Major E．Earle．	S． 0 ． MS．in S．Coll．
17 18	63.17 66.28	75.97 82.16	60.30 67.59	48.63 50.04	62.02 66.52	$\begin{array}{lll}\text { Mar．} 1839 ; & \text { Nov．} 1845 \\ \text { Apr．} & \text { 1862；} & \text { June，} 1865\end{array}$			Major E．Earle． Capt．J．R．Suter，\＆	MS．in S．Coll． MS．from S．G．O．，and S．O．
18	66.28	82.16	67.59	50.04	66.52	Apr．1862；June， 1865	3 II	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Capt．J．R．Suter，\＆ Maj．J．W．Albert．	
19	63.07	．	－	\cdots	\cdots	Dec．1863；May， 1864	05			MS．from S．G．O．
20						1857		$8_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Dr．E．N．Fuller． Kelly．	P．O．and S．1．Vol．I． Pat．Off．Rep．
21	68.11	79.22						$\odot_{\mathrm{r}} 2_{\mathrm{n}} \odot_{\mathrm{B}}$	Kelly． Elliott．	Pat．Off．Rep． S．Coll．
22	63.99	80.45	65.05	51.46	65.24	Aug．1849；Mar． 1851	$\begin{array}{ll}1 & 8 \\ 0 & 1\end{array}$	$\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{a} 9_{\mathrm{a}}$	Elliott．	S．Coll．
23 24				46.50		$\begin{aligned} & 1854 \\ & 1843 \end{aligned}$	1 1 1 1	$7_{\mathrm{m}} 2_{\mathrm{g}} 9_{\mathrm{a}}$ max．\＆min．		Newspaper slip in S．Coll．
24 25	58.83 62.63	76.87 77.04	64.50 63.72	46.50 49.00	61.68 63.10	$\stackrel{\text { 1843 }}{\text { Mar．}}{ }^{\text {1846 }}$ Mar． 1861	$\begin{array}{rr}1 & 0 \\ 13 & 11\end{array}$	max．\＆min． $\bigodot_{r} 2_{a} 9 a$	W．H．and T．P．	Black Oak Agr．Soc．，Printed
25	62.63	77.04	63.72	49.00	63.10	Mar．1846；Mar． 1861	1311	$\mathcal{C r g a ~}^{2} 9 \mathrm{am}$	Ravenal．	Journ．，Pamph．in S．Coll．，P． O．\＆S．I．Vol．i，and S．O．
26	59.58	．	61.87	－	\cdots	Sept．1867；Nov． 1868	11	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	C．Petty．	S．O．

[^101]| TENNESSEE． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | H゙』 | 0.0 है H | | 年 | － | 岩 | | 辿 | 邑 | 宫 | 荷 | $\begin{gathered} \stackrel{~+}{0} \\ \stackrel{U}{0} \end{gathered}$ | O゙ | 安 | هّ |
| 1．Alexandria ．．． 2．Austin ${ }^{1}$ ．．．． | $36^{\circ} 06^{\prime}$ 3612 | $\begin{aligned} & 86^{\circ} 06^{\prime} \\ & 8620 \end{aligned}$ | 2000 | $\begin{array}{r} 29^{\circ} .87 \\ 36.60 \end{array}$ | $42^{\circ} \mathrm{O} .82$ | $49^{\circ} \cdot 59$ | $57^{\circ} \cdot 23$ | $67^{\circ} \cdot 22$ | $75^{\circ} .04$ | $78^{\circ} .07$ | $76^{\circ} \cdot 52$ | $69^{\circ} \cdot 55$ | $60^{\circ} .09$ | $44^{\circ} .72$ 44.73 | $\begin{array}{r} 35^{\circ} .91 \\ 39.69 \end{array}$ |
| 3．Chattanooga－－ | 3502 | 85 86 86 | | | \cdots | \cdots | 57.65 | | 70.43 | | | | | 47.15 | |
| 4．Clearmont＊＊－ | $\begin{array}{ll}35 & 44 \\ 36 & 20\end{array}$ | 86
 86
 86
 8 | 1000 | 34.68 | 40.91 | 49.44 | 58.13 | 67.98 | 70.43 76.75 | 75.78 79.90 | 75.03 73.62 | 68.23 69.59 | 58.30 62.84 | 47.15 44.46 | 36.28 44.08 |
| 6．Dover ．． | 36 36 | 8755 | ．． | 39.03 | 4 x .08 | 48.76 | 57.38 | 64.48 | 70.25 | 74.42 | 73.41 | 66.65 | 55.76 | 47.54 | 42.09 |
| 7．Elisabethton ． | 3618 | 8212 | 1500 | 38.52 | 38.93 | $45 \cdot 37$ | 55.23 | 62.90 | 70.47 | 75.80 | 74.84 | 66.97 | 54.20 | 42.02 | 34.27 |
| 8．Fayetteville ．．． | 3512 | 8638 | ． | 44.40 | 45.24 | 56.59 | 61.19 | 68.64 | 76.76 | 78.51 | 79.45 | 70.21 | 57.96 | 50.74 | 42.66 |
| 9．Franklin ．．． | 3555 | 8653 | \cdots | | | | | | － | 77.08 | 76.88 | 74.90 | 60.65 | 50.47 | 45.82 |
| 10．Fort Humboldt ． | 35 51 | 8856 | \cdots | ． | \cdots | | 60.99 | 73.87 | 77.52 | 83.66 | 81.77 | 77.63 | 62.92 | 50.30 | 37.16 |
| II．Friendship ． | 3550 | 8925 | \cdots | ． | \cdots | | 70.13 | 68.90 | 72.49 | 78.17 | | | | | |
| 12．Gallatin ．．． | 3621 | 8630 | | 47.0 | 48.0 | 46.0 | 60.0 | 67.0 | 75.0 | 76.0 | 75.0 | 71.0 | | 54.0 | |
| 13．Glenwood Cottage． | 3628 | 8720 | 481 | 36.44 | 40.63 | $47 \cdot 36$ | 57.17 | 64.59 | 71.67 | 75.87 | 74.29 | 68.70 | 56.11 | 46.68 | 38.83 |
| 14．Greenville（Tuscu－ lum Coll．）． | 3605 | 8250 | \cdots | 36.10 | 39.97 | 43.80 | 55.52 | 63.53 | 71.55 | 76.76 | 74.82 | 66.79 | | 42.98 | 35.38 |
| 15．Knoxville East Ten－ nessee University | 355^{6} | 8356 | 1000 | 36.90 | 40.79 | 46.93 | 56.92 | 63.56 | 71.20 | 77.67 | $75 \cdot 33$ | 74.31 | 56.93 | 44.63 | 35.76 |
| 16．La Grange ．．． | 3508 | 8915 | 480 | 40.92 | 48.20 | 54.97 | 60.69 | 71.10 | 76.28 | 82.44 | 79.40 | $74 \cdot 39$ | 63.77 | 50.33 | 37.50 |
| 17．Lookout Mountain ． | 3500 | 8527 | 1626 | 40.69 | 43.76 | 47.95 | 58.24 | 66.53 | 74.41 | 79.46 | 78.00 | 70.81 | 59.15 | 49.23 | 38.86 |
| 18．Memphis ． | 3508 | 9004 | 262 | 40.19 | 44.75 | 52.72 | 59.89 | 69.97 | 77.40 | 81.39 | 79.79 | 71.75 | 59．14 | 50.06 | 41.41 |
| 19．Nashville | 3609 | 8649 | 533 | 37.66 | 42.22 | 49.77 | 6 t .81 | 67.96 | 73.18 | 79.26 | 76.53 | 69.61 | 57－31 | 45.35 | 39.12 |
| 20．Nashville | 3609 | 8649 | 533 | 35.63 | 38.74 | 50.27 | 56.14 | 66.77 | 75.79 | 77.63 | 78.97 | 70.19 | ．． | 49.80 | 39.94 |
| 21．Pomona－ | 3600 | 8500 | 2200 | 36.03 | 40.45 | 45.98 | 59.08 | 65.93 | 71.65 | 78.15 | 74.33 | 66．38 | 55.22 | 45.91 | 34.83 |
| 22．Trenton ． | $35 \quad 57$ | 8902 | ． | 43.95 | 45.23 | 47.65 | 60.63 | 68.49 | 74.09 | 79.65 | 79.31 | 71.69 | 58.29 | 46.27 | 41.88 |
| 23．University Place | 3512 | 8600 | 2000 | 39.02 | 42.17 | 47.91 | 61.33 | 67.18 | 72.33 | 78.58 | 73.23 | 66.53 | 55.95 | 43.35 | 36.18 |
| 24．Walnut Grove． | 3600 | 8253 | 1350 | | | ． | ．． | ．． | ．． | 80.66 | 72.86 | ．． | ．． | 43.40 | ． |
| 25．Winchester ． | 3512 | 8615 | ．\cdot | 38.98 | 41.60 | ． | ．． | －• | ． | | | | | | 37.90 |

TWXAS．

1．Anahuac ．．． 2．Aransas Canal ．． 3．Austin ．．．	29 29 27	$\begin{array}{ll}94 & 54 \\ 97 & 08 \\ 97 & 44\end{array}$	\％ $\begin{gathered}2 \\ 650\end{gathered}$	49.46	54．10	60.35 60.14	69.12 67.31	74.97 74.05	80.37 79.71	84.65 82.61	80.60 82.72	78.80 76.83	66.22	62.00 57.59	49.92
4．Blue Branch ${ }^{3}$	3027	9726	600	52.53	54.06	59.51	65.17	71.81	78.03	79.86	81． 50	76.22	65.53	62.70	46.73
5．Bluff Settlement	3000	9700	180		．．	．	－	\cdots	80.68	82.17	82.49	So． 31	71.52	61.87	48.98
6．Bonham ．．．	3340	9613	435				．	．	．．			．．	63.01	60.08	35.48
7．Buffalo Springs－	． 3330	9814	1800	39.48	48.68									55.70	54．14
8．Burkeville ．	3100	9338		47.49	50.98	56.98	66.32	73.35	82.90	86．10	79.33	75.63	62.40	54.68	43.87
9．Camp Colorado ．－	3155	9917	．．	42.98	52.05	59.25	64.75	74.53	82.81	86.31	83.28	75.25	65.40	52.21	44.09
10．Camp Concordia	3146	10621	3600	47.04	50．95	61.92	67.45	71.97	86．81	83.09	80.30	78.67	69.26	57.04	49.96
II．Camp Cooper ．	31 or	9900			51.14	56．11	55.59	74.74	83.39	87.10	81．53	74.27	62.77	\cdots	．．
12．Camp Hudson	2942	IOI 10	\cdots	49.34	56.75	64.36	71.34	79.30	83.98	87.23	84.36	78．51	71.18	57.32	49.39
13．Camp Moore			．	46.00	48.70	62.13	64.05	70.61							－．
I4．Camp Stockton ．．	3020	10230		46.54	51.43	59.44	68.20	79.8 r	82.51	84.33	80．75	74.69	65.15	56.07	44.07
15．Camp Verde ．	3000	99 10	1400	$47 \cdot 39$	52.72	58.43	64.45	73.70	82，00	82.07	8 I .20	72.71	66.60	53.99	46.09
16．Cedar Grove Planta－ tion	2908	9542	60	53.09	＇54．78	62.90	69.58	74.77	So．21	81.84	81． 10	78.33	70.11	59.19	58．11
17．Chapel Hill ．	3010	$96 \quad 20$	542	53.38	63.23	\ldots	．	74.38	78.73	80.23	78.95				
18．Clarkeville	3335	${ }_{95} 9202$	．．	\cdots	－．	6.35		\cdots	78.74	83.98	82.24	78.97	69.67	59.74	45.40
19．Clinton	2904	9723	\cdots	54．81	57.23	61.35	67.64	75．11	So 64	81.49	81.60	77.44	67.39	63.78	49.69
20．Corpus Christí	2747	9727	20	50.05	55．11	64.75	69.87	77.92	82.00	82.46	83．11	81.20	72.36	65.42	56.93
21．Cross Roads	3033	9746	672		53.45	62.03	7 7 .55	75.53	85.55	89.60		78.63	70.33	57．11	41．61
22．Dallas ${ }^{4}$	3244	9645	．．	42.02	53．34	60.24	62.22	72.72	75.01	So． 55	81.03	79.04	67.46	58.37	43.78

[^102]
TENNESSEE．

			品 号 号	$\begin{aligned} & 4 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$	范	Series． Begins．Ends．	Extent	Observing HOURS．	Observer．	References．
1	58° ． or	$76^{\circ} \cdot 54$	$58^{\circ} .12$	$39^{\circ} \cdot 70$	$58^{\circ} .09$	$\begin{array}{cc} 1851 ; & 1852 \\ 1850 ; & \text { Oct. } 1870 \end{array}$	$\begin{array}{ll} 0 & 3 \\ 6 & 0 \end{array}$	$\left\lvert\, \begin{array}{ccc} \odot_{\mathrm{r}} & 9_{\mathrm{m}} & 3_{\mathrm{a}} 9_{\mathrm{a}} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} & 9_{\mathrm{a}} \mathrm{bis} \end{array}\right.$	Sawyer． Prof．A．P．Stewart and others．	S．Coll． P．O．and S．I．Vol．i，S．O．，\＆ S．Coll．
3	．			－	．	1864	－I	،	G．H．Blaker．	S．O．
4		73.75	57．89			1870	\bigcirc	－${ }^{\text {＂}}$	T．P．Wright．	＂＂6
5	58.52	76.76	58.96	39.89	58.53	Feb．1852；Jan． 1853	10	$\bigcirc_{\mathrm{r}} 9 \mathrm{ma} 3{ }_{\text {a }} 9_{a}$	Sawyer．	S．Coll．
6	56.87	72.69	56.65	40.73	56.74	1846； 1850			Favel．	Manuscript．
7	54.50	73.70	54.40	37.24	54.96	Jan．1868；Dec． 1870	30	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	C．H．Lewis．	S．O．
8	62.14	78.24	59.64	44.10	61.03	Mar．1849；Feb． 185 r	20	$\bigcirc_{T} 9_{m} 3_{a} 9_{a}$	McWelly．	S．Coll．
9	．．		62.01	．	．．	1867	－ 6	$7_{\text {mi }} 2_{\text {a }} 9_{\text {a bis }}$	J．M．Parker．	S．O．
10	．	So．9S	63.62	\cdots	－	1870	$\bigcirc 9$	$7_{\text {m }}^{6} 2_{6} 9_{3}$		MS．from S．G．O．
11 12			．	．		1855	$\bigcirc 4$		Dr，R．T．Turner．	P．O．and S．I．Vol．I． Rep．Brit．Asso， 1847.
13	57.67 56.37	75.33 73.94	57.16	$3 \dot{8.63}$	56.53	Mar．1851；Dec． 1870	19 19 10	$7 \mathrm{ma} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Prof．W．M．Stewart．	P．O．and S．I．Vol．I，S．O．， and S．Coll．
14	54.28	74.38		37．15		July，1843；Dec．IS70	24	＂	S．S．\＆W．S．Doak．	S．O．and Manuscript．
15	55.80	74.73	58.62	37：82	56.74	1843；Dec． 1870	64	${ }^{6}$	Prof．G．Cooke and others．	P．O．and S．I．Vol．I，S．O．，S． Coll．，and MS．
16	62.25	79.37	62.83	42.21	6 r .66	Apr．1858；Dec． 1870	1 I	6	J．R．Blake，and Dr． W．E．Franklin．	P．O．and S．I．Vol．I，and S．O．
17	57.57	77.29	59.73	41．10	58.92	June，1866；Dec．I870	45	\％	E．F．Williams \＆Rev． C．F．P．Bancroft．	S．O．
18	60.86	79.53	60.32	42.12	60.71	1849；Mar． 1870	II 3	،	Various observers．	Met．Rep．Memphis， 1857 ，P． O．and S．I．Vol．I，S．O．，and S．Coll．
19	59.85	76.32	57.42	39.67	58.32	Jan．1834；Dec． 1844			Prof．J．Hamilton．	Am．Alm． 1836 and foll．
20	57.73	77.46	\cdots	38.10	\ldots	1849；Feb． 1868		$\bigcirc_{\mathrm{r}} 9_{\mathrm{ma}} 3_{\mathrm{a}} 9 \mathrm{a}$	Rothrock，F．H． French，and Dr．J． W．Parker．	S．O．and S．Coll．
21	57.00	74.71	55.84	37.10	56.16	Oct．1859；May，186r			J．W．Dudge and son．	P．O．and S．I．Vol．I，and S．O．
22	58.92	77.68	58.75	43.69	59.76	Feb．1869；Oct． 1870			W．T．Grigsby．	S．O．
23	58．81	74.71	55.28	39.12	56．98	Dec． 1859 ；Mar． 1861	I 4		C．R．Barney． J．B．Bean．	P．O．and S．I．Vol．I，and S．O． P．O．and S．I．Vol，I．
25	．	．	．	39.49	－	Dec．1859；Feb． 1860		$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{ab} \mathrm{ais}}$	S．W．Houghton．	P．O．and S．I．Vol．I．and S．O．

TEXAS

3 Also called Mine Creek and Sandy Fly．
${ }_{4}$ The observations，except for October，November，and December，I859，were made at Ferris Plantation，about five miles east of Dallas．

TEXAS．－Continued．

			体 苞	䔍	范	Series． Begins．Ends．	$\left\lvert\, \begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}\right.$	Observing Hours．	Observer．	References．
23	$64^{\circ} .75$	$83^{\circ} .29$	$65^{\circ} .29$	$43^{\circ} .94$	$64^{\circ} \cdot 32$	July，1851 ；Dec． 1858		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Assistant Surgeon．	Ar．Met．Regs，I855 and 1860.
24	65.62	81.66	64.86	48.61	65．19	July，1854；Dec． 1870	104			Ar．Met．Reg．1860，MS．from S．G．O．
25	74.42	84． 15	74.68	61.98	73.81	Nov．1846；Dec． 1870	135	\cdots	، 6	Ar．Met．Regs． 1855 and 1860， and MS．from S．G．O．
26	64.49	So． 89	63.05	44.82	63.31	May，1852；Mar．186I	810	＊	6 6	＂،＂6 ،6
27	70.29	83． 11	69.42	51.94	68.69	Aug．1852；Dec． 1870	10 I	＂	6 66	＂6＂6 66 ${ }^{6}$
28	65.86	80． 65	66.98	49.46	65.74	June，1849；Aug． 1853	43	$\odot_{r} 9_{m a} 3_{n} 99_{n}$	66 66	Ar．Met．Reg． 1855.
29	65.40	75.66	61.48	46.04	62.14	Nov．1854；Dec． 1870	710	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	＊ 6	Ar．Met．Reg． 1860 \＆MS．from S．G．O．
30	74.41	86.48	72.11	54.69	71.92	Oct．1849；Mar．186r	105	6	، 6	Ar．Met．Regs． 1855 and I860， and MS．from S．G．O．
31	73.19	83.64	72.59	55．79	71.30	Sept．1852；Sept． 1854	21	$\odot_{r} 9_{m} 3_{a} 9_{a}$	＂، 66	Ar．Met．Reg． 1855.
32	64.79	82.32	67.80	$48 \cdot 50$	65.85	Oct．1849；Jan． 1852	24	${ }_{\text {¢ }}^{4}$	،6 66	＂6 ${ }^{6}$ 6
33	64.91	82.43	66.86	48.86	65.77	Mar．1850；Aug． 1853	36		، ${ }^{6}$	＂${ }^{6}$＂
34	62.74	81.23		42.85	．．	Aug．1869；Dec． 1870	$\begin{array}{ll}1 & 2\end{array}$	$7 \mathrm{~mm} 2_{\mathrm{a}} 9_{\mathrm{a}}$		MS．from S．G．O，
35	75.63	81．93	72.70	61.90	73.03	Sept ${ }^{1842}$	1			Rep．Brit．Assoc． 1847.
36	70.14	83.50	69.28	53.25	69.06	Sept．1849；Jan． 1868	79	$7 \mathrm{~m}{ }^{\text {a }}$ a 9^{4}	Assistant Surgeon．	Ar．Met．Regss． 1855 and I860， and MS．from S．G．O．
37	67.77	83.79	64.99	47.78	66.08	May，1856；Feb．1861	410	،	＂＂	Ar．Met．Reg．IS60，and MS． from S．G．O．
38	67.79	81.04	68.47	54.86	68.04	Aug．1849；July， 1852	23	،	＂،	Ar．Met．Reg． 1855.
39	76.05	86.49	73.76	57.25	73.39	July，1849；Dec． 1870	1010	،	، 6	Ar．Met．Regs． 1855 and 1860， and MS．from S．G．O．
40	65.67	79.25	64.15	47.35	64．10	Apr．1852；Aug． 1870	75	${ }^{\prime}$	＂ 6	＂＂6
4 I	62.86	76.96	62.47	47.24	62.38	Aug．1849；Mar． 1852	27	$\bigcirc_{r} 9_{m} 3_{a} 9^{\text {a }}$	＂ 6	Ar．Met．Reg： 1855
42	67.63	82.28	66.46	50.86	66.81	Apr．1852；Feb．1861	59	$7_{m} 2_{a} 9_{a}$	＂${ }^{\prime}$	Ar．Met．Regs． 1855 and 1860 ， and MS．from S．G．O．
43	74.33	83.5	72.54	56.50	71.73	Apr．1851；Nov． 1855		－ 3		Ar．Met．Reg： 1855 and 1860.
44				75.87 $42 . \times 8$	62.95	July，1849；Jan． 1850 Jan． 1859	$\begin{array}{ll}0 & 7 \\ 3 & 1\end{array}$	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$		Ar．Met．Reg． 1855. Ar Met Reg I860，and MS
45	63.73	82.08	63.80	42.18	62.95	Jan．1859；Dec． 1870	3	$7{ }^{2}$	＇6	Ar．Met．Reg．1860，and MS． from S．G．O．
46	65.32	82.48	64.38	46.68	64.72	Apr．1868；June， 1870	23	＂		MS．from S．G．O．
47	65.36	77.65 80.43	64.89	46.67 45.91	63.64	Apr．1852；Dec． 1853 Nov．1849；Aug． 1853	$\begin{array}{rr}1 & 8 \\ 3 & 10\end{array}$	$\bigodot_{\mathrm{r}} 9_{\mathrm{m}}^{6} 33_{a} 9^{3}$	Assistant Surgeon．	Ar．Met．Reg．${ }_{66} 8_{6}^{55}$
48	63.11	80.43 83.73	65.37 70.92	45.91 53.51	63.71 69.38	Nov．1849；Aug． 1853 Sept．1851；Apr． 1870	$\begin{array}{rrr}3 & 10 \\ 3 & 1\end{array}$	،		
49	69.35	83.73	70.92	53.51	69.38	Sept．1851；Apr． 1870	31	2	U．S．Coast Survey．	MS．from S．G．O．\＆MS．in S． Coll．
50	65.89	81.88	65．18	47.92	65.22	July，1859；Dec．1870		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{n}}$ bis	J．M．Glasco．	P．O．and S．I．Vol．i，and S．O．
51	70.35	82.57	69.74	58.68	70.34	Dec．1832；Dec． 1858	22	$7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$	J．C．Brightman．	P．O．and S．I．Vol．I，\＆MS．
52	71.57	83.00	74.37	57.97	71.73	Feb．1848；June， 1850	2	max．\＆min．	C．D．Bennett．	MS．in S．Coll．
53						$\stackrel{1857}{ }{ }_{\text {May }}{ }^{\text {1867 }}$	O 3	$7 \mathrm{~mm}{ }^{2}{ }^{\text {a }} 9 \mathrm{a}$	J．C．Brightman．	P．O．and S．I．Vol．I．
54	68.67 68.02	78.12 83.15	69.22	53.04 55.84	67.26 69.15	May，1867；Dec． 1870	2 2 2	$77_{\mathrm{m}} 2_{\mathrm{a}} 9_{n \text { his }}$	Miss E．Baxter． T．Gibbs and Browne．	S． 0 ．
55 56	68.02	83.15	69.57	55.84	69.15	$1849 ;$ Mar． 1854	$\begin{array}{ll}2 & 5 \\ 0 & 3\end{array}$	$\begin{array}{cc} \bigodot_{\mathrm{r}} & \mathrm{~N} \cdot \bigodot_{\mathrm{s}} \\ 7_{\mathrm{m}} 2_{\mathrm{s}} & 9_{\mathrm{a}} \end{array}$	T．Gibbs and Browne．	P．O．and S．I．Vol．I，\＆S．Coll． MS．from S．G．O：
57	66.20	82.13	64.70	54.42	66.86	July，1869；Dec． 1870	1． 6			＂＂${ }^{\text {c }}$＂
58	66.42	82.55	66.64	49.79	66.35	Jan．1858；Dec， 1859	20	－	F．L．Yoakum．	P．O．and S．I．Vol．I．
59	67.42	81．99	69.62	53.67	68.17	Feb．1869；Aug． 1870	17	$7 \mathrm{ma}{ }^{\text {a }} 99^{\text {a bis }}$	L．D．Heaton．	S．O．
60	67.71	81.98				July，1869；Aug． 1870	010		L．Woodruff．	
61	70.14	84.64	69.29	51.53	68.90	July，1850；Dec． 1859	9	$7 \mathrm{~m}{ }^{\text {a }}$ a $9_{\text {g }}$	Prof．L．C．Ervend－ burg．	P．O．\＆S．I．Vol．I，and S．Coll．
62	63.35				．	1859	－ 6	$\bigcirc_{\mathrm{r}} 7_{\mathrm{m}} 2_{\mathrm{a}} 7_{\mathrm{a}} 9_{\mathrm{a}}$		P．O．and S．I．Vol．I．
63		81． 38	71.63		\cdots	1870 Oct． 1860， 1850	－ 9	$7 \mathrm{~m} \mathrm{~m}_{\mathrm{a}}^{2} 9_{a} \mathrm{~m}_{\text {bis }}$	F．Simpson．	S．O．
64	66.84 66.32			50.78 45.79		Oct．1869；Dec． 1870	－ 10		N．S．Brooks． Dr．W．H．Gantt．	P．O，and S Y Yol I
65 66	66.32 65.45	81.69	65.88 63.76	45.79 46.16	64.92 63.73	1856 Dec 185I．Mar 1854	$\begin{array}{ll}1 & 0 \\ 2 & 4\end{array}$	\odot_{r} N．\odot_{s}	Dr．W．H．Gantt． Assistant Surgeon．	P．O．and S．I．Vol．I． Ar．Met．Reg，I855．
66	65.45 76.22	79.57 86.24	63.76 74.35	46.16 59.93	63.73 74.19	Dec．1851；Mar． 1854 Oct．1849；Dec．1870	$\begin{array}{rr}2 & 4 \\ \text { IO } & 5\end{array}$		${ }_{66}^{\text {Assistant }}$ Surgeon．	Ar．Met．Reg． 1855. Ar．Met．Regs． 1855 and 1860，
67	76.22	86.24	$74 \cdot 35$	59	74.19	Oct．1849；Dec． 1870	10			Ar．Met．Regs．I855 and 1860， and MS．from S．G．O．
68	69.71	85.20	69.41	52.84	69.29	Jan．i859；Apr． 1861		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	B．Schumann．	P．O．and S．I．Vol．I，and S．O．
69	70.48	83.73	71.56	52.74	69.63	Jan．1846；Dec． 1870	87	$7 \mathrm{~m} 2_{\text {a }} 9 \mathrm{am}$	Assistant Surgeon and F．Peterson．	Ar．Met．Regs． 1855 and 1860， MS．from S．G．O．，\＆S．O．
70	68.07	S4． 83	66.11	47．11	66.53	59		＇6	E．Kapp．	P．O．and S．I．Vol．I．
71				．		1861		7	J．T．Rayel．	S．O．
72	65.65	79.64	67.88	51.42	66.15	Jan．1857；Aug． 1867	36	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis	Dr．W．H．Gantt，and W．Rutherford．	P．O．and S．I．Vol，I，and S．O．
73	66.66	83.56	65．18	49.48	66.22	Apr．1867；Apr． 1869		＇	Dr．E．Merrill．	S．O．
74	67.42	82.31	69.28	51.80	67.70	Dec．IS56；Dec．I859	28	$7 \mathrm{~m}{ }^{2}{ }_{\text {a }} 9 \mathrm{a}$	B．H．Rucker．	P．O，and S．I．Vol．I．
75	71.46	84.52	．	．	\cdots	Feb．1859；Apr．I861	10	＂	E．W．Yellowby．	P．O．and S．I．Vol．I，and S．O．

[^103]| UTAH． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | Ḣ゙ | E0 O －1 | 范 | | － | 砢 | 耍 | 高 | 邑 | 家 | $\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \tilde{H}_{0} \\ & \text { 足 } \end{aligned}$ | $\begin{gathered} \stackrel{\rightharpoonup}{*} \\ \underset{\sim}{n} \end{gathered}$ | U゙ | 8 | ® |
| 1．Camp Douglas ． | $40^{\circ} 47^{\prime}$ | $11 \mathrm{I}^{\circ} 52^{\prime}$ | 4800 | $28^{\circ} .71$ | $31^{\circ} .99$ | $38^{\circ} .82$ | $4^{8} .78$ | $60^{\circ} \cdot 32$ | $69^{\circ} .06$ | $75^{\circ} .90$ | $75^{\circ} \cdot 49$ | $64^{\circ} .67$ | $54^{\circ} \cdot 34$ | $42 .{ }^{\circ} 77$ | $31^{\circ} .92$ |
| 2．Coalville ．． | 4100 | 111 oo | 5630 | | 27.75 | 32.15 | | 54.83 | 64.26 | 70.99 | 68.39 | 59.69 | 45.52 | 38．11 | 19.59 |
| 3．Fort Crittenden ${ }^{1}$ | 4012 | 11206 | 4860 | 19.42 | 28.61 | 37.79 | 48.47 | 59.38 | 72.96 | 76.33 | 72.71 | 61.01 | 48.30 | 36.80 | 24.54 |
| 4．Great Salt Lake | 4046 | III 54 | 4260 | 25.86 | 32.98 | 40.70 | 48.73 | 60.35 | 69.21 | 76.56 | 74.94 | 64．10 | 55.05 | 41.54 | 32.30 |
| 5．Heberville ${ }^{3}$ ． | 4032 | II 16 | ． | $34 \cdot 4 \mathrm{I}$ | 39.67 | 48.55 | 56.53 | 75.43 | 82.58 | 84.83 | 84.29 | 74.12 | 62.65 | 54.95 | 38.42 |
| 6．St．Mary＇s ． | 4042 | III 00 | 6200 | | 26.05 | 28.00 | 36.70 | 54.70 | 61.00 | 70.70 | 70.67 | 59.25 | 46.75 | 38.85 | 19.45 |
| 7．Wanship ．． | 4040 | 11120 | 6200 | 19.69 | 25.61 | 30.33 | 37.10 | 51.83 | 59.91 | 70.18 | 69.97 | 61.44 | 50.32 | ${ }_{3} 3.35$ | 31.07 |
| VERIMONT． | | | | | | | | | | | | | | | |
| 1．Barnet | 4418 | 7205 | 952 | 10.91 | 25.87 | 25.54 | 45.42 | 52.75 | 66.43 | 72.78 | 64.70 | ． | | 36.63 | 8.70 |
| 2．Bradford ． | 44 or | 7210 | ． | 22.95 | 13.70 | 26.06 | | | | | | | | | |
| 3．Brandon－ | 4349 | 7303 | 460 | 19.29 | 21.95 | 28.57 | 41．91 | 54.75 | 64.01 | 68.67 | 65.87 | 58.43 | 46.27 | 36.28 | 23.45 |
| 4．Brattleboro ． | 4250 | 7231 | 359 | 24.78 | 26.05 | 33.89 | 41.29 | 52.51 | 67.58 | 72.49 | 66.77 | 60.85 | 47．79 | 43.51 | 21.25 |
| 5．Brookfield ． | $44 \mathrm{O2}$ | 7236 | 1000 | \cdots | 15.95 | 17.60 | 37.65 | 52.63 | | | | \cdots | | | \cdots |
| 6．Burlington ． | 4428 | 7312 | 346 | 14.4 | 18.9 | 28.5 | 39.5 | 56.3 | 66.6 | 68.2 | 67.6 | 57.1 | 45.2 | 33.5 | 24.7 |
| 7．Burlington ． | 4428 | 7312 | 346 | 20.02 | 20.04 | 28.39 | 41.76 | 54.68 | 64.21 | 68.52 | 67.24 | 58.76 | 47.16 | 35.85 | 22.84 |
| 8．Calais．－ | 4422 | 7225 | \cdots | 17.23 | 18.81 | 24.77 | 36.12 | 48.51 | | 63.59 | | 53.60 | | | |
| 9．Castleton | 433^{8} | $73 \quad 9$ | 490 | 22.65 | 19.48 | 29.03 | 42.60 | $53 \cdot 34$ | 67.76 | 73.44 | 70.25 | 60.10 | 48.38 | 37.45 | 24.67 |
| 10．Craftsbury | 4440 | 7223 | 1100 | 13.51 | 16.62 | 24.57 | 37.60 | 50.72 | 60.97 | 65.27 | 62.15 | 54.70 | 42.49 | 31.71 | 18.35 |
| 11．Fairfax | 4439 | 7300 | \ldots | | －． | ．． | | | 66.77 | | | | | | |
| 12．Fayetteville ． | 4257 | $7^{2} \quad 36$ | 350 | 18.4 | 19.9 | 31.0 | 44.0 | 56.2 | 63.5 | 67.5 | 66.1 | 57.4 | 46.7 | 34.9 | 24.1 |
| 13．Ferrisburg | 44 II | 7314 | ． | 26.08 | 18．83 | 24.70 | 46．33 | 56.28 | 68.45 | 72.88 | 78.50 | 62.69 | 46.48 | 33.84 | 24．74 |
| 14．Grafton ． | 4312 | 7234 | \cdots | ． | ．． | | 40.60 | 51.66 | | | | | ．． | | |
| 15．Luxenburg ． | 4428 | 7144 | 1124 | 15.68 | 17.52 | 26.32 | 37.77 | 51.84 | 63.96 | 67.52 | 64.55 | 55.64 | 44.55 | 32.24 | 19.36 |
| 16．Middlebury ． | $44 \quad 02$ | 7310 | 398 | 18.51 | 21． 30 | 29.84 | 42.82 | 54.52 | 65.78 | 69.80 | 66.01 | 58.91 | 46.93 | 37.15 | 23.23 |
| 17．Montpelier ${ }^{4}$ ． | 4417 | 7236 | 540 | 22.85 | 17.86 | 24.77 | 38.86 | 50.66 | 60.67 | 67.40 | 63.98 | 57.49 | 46.40 | 38.94 | 23.26 |
| 18．Newbury | 4406 | 7207 | 420 | 17.58 | 19.04 | 29.08 | 41．81 | 53.87 | 64.70 | 69.15 | 67.06 | 57.60 | 45.68 | 35.38 | 21.17 |
| 19．New Fane | 4258 | $\begin{array}{ll}72 & 35 \\ 72\end{array}$ | \cdots | 18.88 | 19.29 | 30.67 | 43.27 | 54.45 | 64.49 | 67.28 | 66.53 | 56.90 | 46.89 | 35.58 | 24.46 |
| 20．Newport | 4357 | 7218 | 750 | 15.54 | 22.29 | 25.73 | 42.38 | 53.22 | 64.95 | 71.11 | 65.55 | 57.85 | 47.44 | 34.67 | 25.62 |
| 21．Norwich ${ }^{5}$ ． | 4345 | 7221 | \cdots | 6.61 | 27.17 | 24.43 | 42.05 | 51.59 | 65.50 | 69.71 | 68.12 | 65.40 | 44.63 | 32.28 | 20.73 |
| 22．Randolph | 4355 | 7236 | 700 | 17.19 | 19.65 | 25.64 | 40.37 | 52.79 | 65.07 | 69.59 | 64.98 | 57.45 | 44.32 | 34．08 | 20.22 |
| 23．Rupert | 4315 | 7311 | 750 | 21.55 | 25.45 | 31.73 | 43.20 | 58.51 | 67.96 | 72.74 | 70.79 | 62.63 | 50.13 | 38.79 | 25.76 |
| 24．Rutland ． | 4337 | 7257 | 500 | 18.0 | 18.5 | 32.0 | 41.0 | 50.0 | 64.0 | 67.5 | 67.5 | 57.0 | 41.0 | 37.0 | 30.0 |
| 25．Rutland ．． | 4337 | 7257 | 500 | 27.75 | 30．13 | 34.65 | 43.38 | | | | 67.30 | 55.00 | 47.33 | 39.70 | 26.98 |
| 26．St．Johnsbury－ | 4427 | 7202 | 540 | 15.61 | 16.82 | 27.16 | 37.64 | 52.99 | 62.16 | 64.15 | 63.62 | 55.16 | 43.61 | 33.05 | 17.43 |
| 27．Shelburn－ | 4423 | 7311 | 150 | 9.51 | 21.06 | 24.97 | 41.63 | 53.22 | 64.71 | 71.62 | 65.04 | 58.09 | 45.05 | 35．11 | 22.25 |
| 28．Springfield ． | 4318 | 7225 | 300 | 16．19 | 21.19 | 29.24 | 39.38 | 53.33 | 62.00 | 66.08 | 66.37 | 58.67 | 48.37 | 37.56 | 22.87 |
| 29．West Charlotte ． | 4420 | 7315 | 90 | 25.69 | 22.80 | 26.56 | 44.54 | 55.71 | 68.48 | 75.02 | 71.04 | 63.43 | 47.77 | 35.40 | 25.23 |
| 30．Williamstown ． | 4408 | 7234 | 1000 | 15.34 | 15.72 | 25.45 | 37.93 | 50.12 | 59.45 | 64.04 | 61.36 | 52.98 | 41.79 | 30.08 | 18.06 |
| 31．Wilmington ． | 4253 | 7250 725 | 1200 | 11.95 | 26.43 | | 37.7 | 52.28 | 64.97 | 70.33 68.3 | 60.03 | 56.60 | 45.50 | 36.75 35.0 | 21.72 |
| 32．Windsor ． | 4329 | 7225 | | 22.7 | 25.7 | 29.6 | 37.7 | 57.2 | 66.7 | 68.3 | 63.7 | 61.1 | 47.8 | 35.0 | 23.6 |
| 33．Woodstock | 433^{6} | 7231 | 650 | 16.44 | 14.95 | 23.52 | 38.78 | 52.13 | 62.59 | 68.07 | 62.91 | 55.81 | 41.85 | 31.08 | 19.64 |

${ }^{1}$ Observations previous to March，I86I，were made at old Camp Floyd．
2 Observations prior to $\mathbf{I} 86 \mathbf{1}$ at various hours；they have been referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis，by means of the general table，
${ }^{3}$ Also known as St．George．The series is unreliable；when compared with other stations the results are shown to be much too high；probably due to improper exposure of the instrument，or defective scale．

UTAH．

	号		范	岕	岸	Series． Begins．Ends：	$\left\lvert\, \begin{aligned} & \text { ExTENT } \\ & \text { yrs.mos. } \end{aligned}\right.$	Observing HOURS．	Observer．	References．
1	$49^{\circ} \cdot 31$	$73^{\circ} \cdot 48$	$53^{\circ} .93$	$30^{\circ} .87$	$51^{\circ} .90$	Dec．1862；Dec． 1870	79	$7 \mathrm{mma} 9{ }_{\text {a }}$	Assistant Surgeon．	MS．from S．G．O．
2		67.88	47.77	．		May，1869；Dec．I870	15	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	T．Bullock．	S．O．
3	48.55	74.00	48.70	24．19	48.86	July，1858；July，I86I	30	$7_{\mathrm{m}} \mathrm{z}_{\mathrm{g}} 9_{\mathrm{R}}$	Assistant Surgeon．	Ar．Met．Reg．1860，and MS． from S．G．O．
4	49.93	73.57	53.56	30.38	51.86	Jan．1850；Aug．1870	90		H．E．\＆W．W．Phelps， and others．	Ar．Met．Reg．1855，P．O．and S．I．Vol．1，and S．O．
5	60.17	83.90	63.91	37.50	61.37	Jan．1861；June，1870	22	،	H ．Pearce and C． Johnson．	S．O．
6	39.80	67.46	48.28			June，1865；Aug． 1867	20		T．Bullock．	S．Coll．
7	39.75	66.69	50.04	25.46	45.48	June，1866；Mar． 1869	24	$7 \mathrm{~m} \mathrm{z}_{\mathrm{a}} 9 \mathrm{a}$ bis	＂＂	S．O．

VERMONT．

[^104]| VIRGINIA． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Station． | 苂 | ¢ٌ | $\left\lvert\, \begin{aligned} & \text { 淢 } \\ & \text { 感 } \end{aligned}\right.$ | 岳 | 閏 | | 要 | 㑒 | 兰 | 官 | 莬 | $\begin{gathered} \text { 芯 } \\ 0 \end{gathered}$ | － | ${ }_{8}$ | 凡ٌ |
| I．Alexandria | $3^{8}{ }^{\circ} 8^{\prime}$ | $77^{\circ} 02^{\prime}$ | 56 | $32^{\circ} .65$ | $34^{\circ} .05$ | $4 \mathrm{I}^{\text {0 }} .26$ | $52^{\circ} .53$ | $63^{\circ} \cdot 47$ | $74^{\circ} .94$ | $78^{\circ} .59$ | $76^{\circ} .19$ | $67^{\circ} .76$ | $54^{\circ} \cdot 50$ | $46^{\circ} .35$ | $35^{\circ} .98$ |
| 2．Ashland（Randolph Macon Coll．）． | 3745 | 7730 | 221 | 42.85 | | | | | | | | | | | |
| 3．Bellona Arsenal | 3733 | 7732 | 120 | $3^{8.73}$ | 41.97 | 50.31 | 58.36 | 67.79 | 76.58 | 79.19 | 77.90 | 70.57 | 60.08 | 50.59 | 43.43 |
| 4．Berryville－ | 3908 | 7758 | 575 | 21.86 | 32.22 | 35.24 | 43.59 | 57.81 | 72.78 | 75.41 | 72.05 | 65.99 | 54.45 | 42.78 | 36.14 |
| 5．Cape Clarles Light． | 37 o7 | 7554 | 20 | 36.05 | 33.20 | 39.70 | 52.85 | 60.48 | 70.05 | 76.00 | 76.75 | 74．00 | 63.28 | 51.83 | 38.03 |
| 6．Charlottesville | 38 or | 7826 | 150 | 38.87 | 39.01 | 48.05 | 53.26 | 63.71 | 73.11 | 77.87 | 76.77 | 66.33 | 57.34 | 48.11 | 36.60 |
| 7．Christiansburgh | 37 o5 | 8023 | 2000 | 37.73 | 43.68 | | 52．55 | 63.78 | 67.55 | | | | | 47.26 | 38.56 |
| 8．Cottage Home | 3710 | 7650 | ．． | 43.05 | 40.88 | 48.76 | 57.52 | 66.53 | 76.74 | 82.04 | 79.31. | 72.49 | 58.49 | 47.72 | 39.42 |
| 9．Crichton＇s Store ${ }^{1}$ | 3640 | 7746 | 500 | 39.31 | 42.29 | 49.39 | 59.25 | 68.03 | 75.35 | 80.45 | 77.89 | 71.48 | 59.52 | 49.61 | 41.32 |
| 10．Fredericksburg ． | 3818 | 7727 | 600 | 42.02 | 53.80 | 56.14 | 53.05 | 64.10 | 75.30 | 75．07 | 74.28 | 66.11 | 55.39 | 49.52 | 36.84 |
| 11．Fortress Monroe | 3700 | $76 \quad 19$ | 8 | 42.41 | 41.81 | 49.90 | 55.99 | 66.13 | 74.62 | 78.73 | 77.86 | 72.44 | 61.90 | 51.41 | 41.10 |
| 12．Garysville | 3718 | 77 16 | \cdots | 21.92 | 32.10 | 43.84 | 58.33 | 65.33 | 76.50 | 80.50 | 70.33 | 6 r .00 | 53.00 | 47.00 | 37.00 |
| 13．Glasgow Station | 3736 | 7857 | | 30.06 | 37.92 | 44.15 | 53.81 | 62.07 | 71.18 | 78.49 | 75．14 | 69.03 | 57.95 | 48.08 | 35.68 |
| 14．Hampton ． | 37 oz | 7621 | 5 | 44.24 | 42.51 | 43.60 | 54.92 | 64.35 | 75.94 | 80.24 | 77.69 | 70.50 | 58.42 | 46.72 | 40.72 |
| 15．Harper＇s Ferry （heights，near）． | 3920 | 7744 | ．． | | ．． | | | | | ．． | | | 54.73 | 42.48 | |
| 16．Heathville＊． | 3752 | 7626 | \cdots | \cdots | \cdots | 44.77 | 52.41 | 61.72 | | | | | ．． | | |
| 17．Hewlett＇s Station （near） | 3752 | 7745 | | | | | 59.13 | 60.98 | 74.38 | 74.58 | 70.18 | | | | |
| 18．Lewinsville ．．． | 3856 | 7712 | 180 | 38.62 | 40.97 | 50.38 | 52.67 | 65.35 | 72.85 | 76.76 | 73.76 | 66.82 | 56.69 | 42.41 | 41.67 |
| 19．Lexington ${ }^{3}$ ． | 3744 | 7924 | 1000 | 38.41 | 39．31 | 44.19 | 54.22 | 63.74 | 72.51 | 78.71 | 76.04 | 66.52 | 53.29 | 42.05 | 34.85 |
| 20．Longwood | 3730 | 7931 | 800 | 24.22 | 46.43 | 41.72 | | | | | | \cdots | | | |
| 21．Lynchburg－ | 3722 | $79 \bigcirc 7$ | 575 | ．． | 42.94 | 51.09 | 57.30 | 68.63 | 75－43 | 83.80 | 80.37 | \cdots | | | ． |
| 22．Lynchburg（six miles west of） | 3722 | 7912 | 8oo | 39.57 | 40.42 | 46.30 | 55.88 | 63.18 | 71.63 | 78.28 | 76.09 | 68.77 | 57.88 | 48.76 | 39.35 |
| 23．Madison C．H．．． | 3822 | 7817 | 500 | | | | | 66.13 | | | | | | | |
| 24．Meadow Dale | 3823 3850 38 | 7935 78 780 | ． | 28.52 36.68 | 34.36 33.73 | 34.59 38.50 | ${ }_{5}^{42.43}$ | 54.80 62.63 | 65.05 70.83 | 67.02 76.10 | 66.05 74.10 | 59.93 65.35 | 50.19 55.63 | 37.17 39.80 | 37.64
 33.88 |
| 25．Mechamissville 26．Montross ．． | 3850 38 38 | 7800 7646 | 200 | 34.02 | 33.73 38.91 | 34.59 44 | 51.98 50.98 | 62.63 62.99 | 72.83 | 76.08 | 73.85 | 67.51 | 52.46 | 44.59 | 37.88 |
| 27．Mossy Creek | 3825 | 7902 | \cdots | 28.78 | 34.35 | 37.73 | 49.59 | 59.99 | 72.34 | | | 63.70 | 44.59 | 39.29 | 33．13 |
| 28．Mount Solon | 3817 | 7902 | | 38.05 | 37.49 | 46.33 | 54.19 | 61． 39 | 71.24 | 76.73 | 73.85 | 69.85 | 55.93 | | 33.86 |
| 29．Mount View | 38 oo | 7830 | 521 | 36.21 | 40.12 | 48.77 | 54.82 | 66.29 | 70.61 | 74.26 | 73．22 | 64.57 | 53.49 | 46.63 | 34.54 |
| 30．Mulberry Hill | 3650 | 7650 | 100 | 45：13 | 43.25 | 45．26 | 56.74 | 65.21 | 76.58 | 81.49 | ．． | 68.30 | 54.28 | 42.20 | 43.80 |
| 31．Newark（near）${ }^{\text {32．Norfolk }}$ ． | 38 36 361 | 7810 7617 | 20 | 43.73 | 48.44 | 55.72 | 62.01 | 71.00 | 76.73 | 80.21 | 77.09 | 74.09 | 65.54 | 59.58 | 47.35 |
| | | | | | | | | | | | | | | | |
| 33．Norfolk ．． | 3651 | 7617 | 20 | 40.50 | 41.00 | 47.50 | 56．10 | 65.90 | 74.20 | 78.30 | 77．10 | 71.40 | 61.70 | 51． 20 | 43.20 |
| 34．Paddystown－ | 3928 | 7855 | \cdots | 30.42 | －． | | | | | | | | | 35.01 | 36.95 |
| 35．Peachlawn ${ }^{4}$ ． | 3819 | 7727 | 350 | 37.18 | 37.33 | 46.23 | 52.67 | 64.46 | 72.42 | 76.48 | 76.05 | 68.16 | 57.90 | 47.10 | 36.95 |
| 36．Piedmont ${ }^{\text {a }}$ ． | 3840 | | 900 | 38.43 | 33.43 | 38.23 | 52.53 56.65 | 62.08 | 71.08 | 76.75 | 73.13 | | 56.70 60.14 | 41.12 50.42 | 34.55 43.23 |
| 37．Portsmouth ${ }^{5}$ ． | $3^{6} 50$ | 7618 | 25 | 40．10 | 43.91 | 48.79 | 56.65 | 64.83 | 75.32 | 79.08 | 77.11 | 71.36 | 60.14 | 50.42 | 43.23 |
| 38．Powhatan Hill | 3813 | 7712 | 100 | 41．69 | 37.18 | 43.75 | 53.89 | 63.92 | 74.25 | 79.60 | 76.85 | 70.53 | 56.26 | 45.50 | |
| 39．Prince Edward C．H． | 3710 | 7821 | | 37.21 | 41.63 | 47.09 | 53.42 | 63.46 | 70.48 | 75.46 | 72.61 | 65.10 | 56．71 | 49.26 | 39．63 |
| 40．Prospect Hill Farm | 3725 | 7552 | 40 | 43．18 | 40.64 | 42.05 | 52.63 | 6 6 .98 | 72.16 | 78.03 | 75.72 | 70.03 | 57.53 | 47.07 | 38.88 |
| 41．Riclmond | 3732 | 7726 | 172 | 37.21 | 42.79 | 48.68 | 54.87 | 65.97 | 74．80 | 77.50 | 75.08 | 67.85 | 58.98 | 47.27 | 40.10 |
| 42．Rose Hill | 38 oo | 7657 | 250 | 34.71 | 35.17 | 45.51 | 52.24 | 62.87 | 75.37 | 76.77 | 76.90 | | | 50.10 | |
| 43．Rougemont ． | 3805 | 7821 | 450 | 29.72 | 39.19 | 44.82 | 53.35 | 63.34 | 74.11 | 79.18 | 76.05 | 69.43 | 58.58 | 45.44 | 40.89 |
| 44．Ruthven ${ }^{6}$ | 3721 | 7733 | \because | 36.07 | 38.18 | 50.41 | 52.85 | 63.63 | 74.86 | 76.49 | 74.78 | 69.77 | 55.60 | 44.31 | 38.64 |
| 45．Smithfield | 3657 | 7638 | 100 | 35.89 | 39.28 | 45.53 | 55.94 | 64.09 | 73.85 | 77.26 | 75.03 | 68.72 | 58.07 | 47.74 | 39.43 |
| 46．Snowville | 37 oo | 8000 | 1800 | 34.30 | 36.45 | 41.06 | 49.35 | 58.15 | 66.45 | 71.77 | 69.30 | 62.55 | 48.30 | 38.91 | 32.34 |
| 47．Staunton ${ }^{\text {48．}}$ Stribling Springs | 3809 3817 | 7904 | 1387 | 41.04 | 37.68 | 39.98 | 52.04 45.16 | 61.22 | 71．39 | 74.83 | 74.58 | 64.66 | ${ }_{49}{ }_{4} .65$ | 42.49 3.70 | 33.95 |
| 48．Stribling Springs | 3817 | 7912 | 1639 | 28.43 | 32.08 | 41.17 | 45.16 | | ．． | ．． | ．． | 59.05 | 49.71 | 33.70 | 34.59 |
| 49．The Plains（near） | 3850 | 7751 | ．． | ．． | ．． | 46.60 | 50.71 | | \cdots | \cdots | | | － | \because | ． |
| ${ }_{51}^{50 .}$ ．Vienna ${ }^{7}$ ．${ }^{\text {a }}$ ， | 39 38 38 | 78
 77
 77 | 400 | 37.40 | 32.08 | 40.00 | 54．73 | 65.33 | 75.35 | 77.05 | 72.50 | 6.55 65.33 | \cdots | 41.35 | 31.48 |

[^105]${ }^{2}$ Observations corrected for daily variation by means of the general table．
${ }^{3}$ The observations，except the first three months of 186I，were made at Tribrook Farm，about three miles northeast of Lexington，by W．H．Ruffner．
4 Also called Hartwood or Falmouth．

VIRGINIA

[^106]| VIRGINIA．－Continued． | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name or Station． | ＋ | 宮 | | 号 | － | 皆 | 芸 | 完 | E． | 官 | 苞 | $\begin{gathered} \stackrel{3}{3} \\ \stackrel{3}{\circ} \end{gathered}$ | ぜ | \％ | هٌ |
| 52．Vienna（near）． | $3^{80} 55^{\prime}$ | $77^{\circ} 15^{\prime}$ | 400 | $40^{\circ} \cdot 58$ | $35^{\circ} .90$ | $40^{\circ} .18$ | $54^{\circ} \cdot 75$ | $64^{\circ} \cdot 35$ | $72^{\circ} .85$ | $76^{\circ} .83$ | $75^{\circ} .27$ | $68^{\circ} .29$ | $54^{\circ} .07$ | $44^{\circ} .08$ | $36^{\circ} .61$ |
| 53．Washington and Lee | 3744 | 7924 | 1075 | | | | | | | | | 66.00 | 53.88 | 40.20 | 31.25 |
| 54．Westwood \therefore ．． | 3733 | 7727 | ．． | 38.20 | 42.17 | 50.00 | 56.29 | 65.83 | 73.30 | 76.69 | 74.83 | 69.11 | 57.05 | 50.14 | 36.86 |
| 55．Wytheville ${ }^{1}$ ．．． | 3655 | 8103 | 2257 | 36.31 | 35.29 | 42.10 | 52.26 | 59.70 | 66.88 | 72.98 | 71.14 | 63.47 | 51.78 | 40.20 | 33.18 |
| 56．Williamsburg ${ }^{2}$ ．－ | 3718 | 7640 | 100 | 41．43 | 43.68 | 47.88 | 57.59 | 64.00 | 72.48 | 76.49 | 75．26 | 68.72 | 59.41 | 47.28 | 42.65 |
| 57．Winchester ． | 39 10 | 7809 | \cdots | 31．37 | $34 \cdot 37$ | 42.44 | 51.85 | 64.38 | 72.99 | －• | \cdots | 67.99 | 54.62 | 43.68 | 34.68 |
| 5．Mt．Vernon）． | 3840 | 7710 | 150 | \cdots | ． | ． | ． | ． | ． | | \cdots | | | 44.45 | 32.95 |

WASHINGTON TERRITORY．

I．Camp Simiahmoo ．	49 or	12247	11	36.63	37.56	42.86	47．34	53.76	60.80	62.27	60.84	56.17	48.47	40.20	35.70
2．Camp Steele ${ }^{5}$	4828	123 OI	150	37.96	40.38	43.12	49.07	54.95	59.74	61.85	61.03	57.07	50.74	45．51	40.90
3．Cape Disappointment	$46 \quad 17$	12403	30	41.24	42.65	44.96	51.32	56.33	60.52	62.43	61.23	59.12	54.70	51.43	47.16
4．Cathlamet，near	4615	12312	40			40	48.44	52.95	59．18	64.95	64.45				35.36
5．Fort Bellingham	4845	12230	88	37.78	39.60	44.68	50.27	55．91	61.13	62.11	62.21	58.03	50.16	44.50	39.81
6．Fort Cascades ．	4539	121 50	．	36.81	41．5I	45．12	50.38	55．3I	63.48	65.52	66.91	6 I .37	53.22	$43 \cdot 54$	34.73
7．Fort Chehalis	4654	12407		43.25	45．19	46.16	48.26	51.26			65.68	62，28	56.17	48.24	44.21
8．Fort Colville ${ }^{6}$	4842	11802	1963	19.12	26.79	33.20	46.44	55.77	64.75	69.87	66.49	55.37	42.81	32.81	26．10
9．Fort George ．	4618	12300	\cdots	36．13	42.42	44.79	48.67	53.92	59.59	6 I .42	62.67	59.54	56.13	47.59	39.67
10．Fort Simcoe	4630	12040	\cdots	30.31	31.81	40.71	52.99	60.99	67.85	71.99	72.70	64.49	50.18	38.99	32.71
II．Fort Steilacoom7	47 II	12234	250	37.36	39.92	42.94	48.85	55.81	61.14	64.57	64.54	59.09	51.88	44．51	39.06
12．Fort Townshend ${ }^{8}$	4807	12245	135	39．14	41.3	43.12	42.5	53.58	59.63	\cdots	\cdots	\cdots	－•	．	41．41
13．Fort Vancouver	4540	12230	50	37.48	43.67	44.58	46.00	48.98	62.77	66.03	66.08	61.13	55．14	43.08	42.94
14．Fort Vancouver	4540	122.30	50	36.34	37.17	45.76	50.22	58.43	58.72	61.76	63.05	61．10	50.44	39.03	36.54
15．Fort Vancouver ${ }^{9}$	4540	12230	50	36.96	40.41	44.87	51.92	58.63	63.04	67.68	66.93	61.21	52.86	44.89	37.54
16．Fort Walla－Walla ．	$46 \quad 3$	118 20	－	31.35	37.18	42.54	52.38	62.28	70.50	77.01	75.01	65.25	54.54	41．80	33.76
17．Koos－Koos－Kee	4630	12237	．	31.59	37.58	44.84	52.85	57．80	69.40	70.47	72.72	68.47	48.96	42.40	41.52
18．Lake Washington	4736	12220				41.25	50.88	55.53	62.80	68.95	66，10	．．	．－	．．	．
19．Nee－ah Bay．；	4822	12437	40	$3^{8.81}$	38.84	39.81	44.33	50.43	55.11	57.00	57.33	52.97	51.25	$45 \cdot 39$	40.39
20．Port Townshend	4807	12245	\bigcirc	29.63	40.78	．．	48.95	53.28	58.48	61.20	59.85	55.68	47.88	45.55	39.80
21．Sinyakwateen Depot	4825	11718	1894	．．	．	－	46.9	55.3	62.7	70.7	68.8	．．	．	．．	．
22．Tatoosh Island Light－house	4823	12444	90	41.94	${ }^{4} 41.86$	44.13	50.12	53.49	57.72	6r． 39	59.58	56.50	52.82	49．3I	44.75
23．Walla－Walla	$46 \quad 05$	11854	930	34.85	．．		．．	．	．．	．．	．．	．．	．．	42.33	37.20

WEST VIRGINIA．

1．Ashland ${ }^{10}$	3834	8210	600	33.25	45.87	51.00	56.75	65.81	73.43	76.91	75.01	69.97	56.45	44.72	36.98
2．Ashland	3834	8210	600	30.96	37．15	40.83	53.89	63.10	70.57	76.31	74.58	70.25	53.97	43.56	35.71
3．Ashland ．	3830	82 I5	600	35．14	37.43	42.54	53.89	61.05	71.49	74.72	72.36	68.79	52.18	42.98	37.60
4．Buffalo ．．．	3836	8156	500	27.97	38.09	$47.6 \pm$	51.25	65.13	69.72	75.75	71.70	66.15	59.30	41.93	35.63
5．Buffalo ．．．	3836	8156	．．	，	3		5	66.85	Si． 58	81．82	80.14	．．	．．	．．	．．
6．Burning Springs	3856	8121	\ldots	31.94	31.36	51.83	－${ }^{\text {a }}$		．	\cdots	．．	．	．		．
7．Capon Bridge ${ }^{11}$ ．	3916	7829	\cdots	．	38.96	38.87	43.39	59.94		70．54					
8．Crack Whip	3902	${ }_{78}^{78} 33$	1720	23.31	31.48	34.63	45.41	55.87	68.47	70.54	66.27	60，00	50．38	40.27 36.63	28.31
9．Cross Creek ${ }^{12}$ ．	$40 \quad 16$	So 33	．．	27.58	31.59	41.77	48.85	65.47	66.49	71.38	70.01	61.15	46.73	36.63	31.19

${ }^{1}$ The observations from Feb．1868，to Dec．1870，were made by J．A．Brown，near Wythevilie，the position being Lat． $36^{\circ} 57^{\prime}$ ，Long． $81^{\circ} 06^{\prime}$ ，Alt． 2400 ．
2 The observations from July， $\mathbf{1 7 7 7}$ ，to Aug． $\mathbf{1 7 7 S}$ ，both inclusive，were made at William and Mary College，and are the means of daily extremes between
S A．M．and 4 P．M．，the hours of observation were assumed to be $S_{m} 3_{3}$ ，and the corresponding correction applied．
${ }^{3}$ Observations corrected for daily variation by means of the general table．
4 Bihourly， 6_{m} to 10_{a} ，from July， 1857 ，to Oct． 1858 ；hourly in Jan．Fcb．March，1859；hourly， 6_{m} to 10_{a} in April， 1859 ，and at $7 \mathrm{~m} \mathrm{z}_{\mathrm{n}} 9_{\mathrm{n}}$ for xemaining I6 months of series．A small correction has been applied to the results for $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ，the rest are assumed to represent very nearly the true mean of the day．

VIRGINIA．－Continued．

	官			号	范	Series． Begins．Ends．	Extent yrs．mos．	Observing hours．	Observer，	References
52	$53^{\circ} .09$	$74^{\circ} .98$	$55^{\circ} .48$	$37^{\circ} \cdot 70$	$55^{\circ} \cdot 31$	Aug．1869；Dec．1870	15	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{am}$ bis	H．C．Williams．	S．O．
53		\cdots	53.36		\cdots	1870		＇	Prof．J．L．Campbell．	＂＂
54	57.37	74.94	58.77	39.08	57.54	Jan．1859；Feb． 1852	22	\％	C．J．Merriwether．	P．O．and S．I．Vol．I，and S．O．
55	51.35	70.33	51.82	34.93	52.11	May，1860；Dec． 1870	48	＊	H．Shriver，W．D． Roedel，and J．A． Brown．	S． O ．
56	56.49	74.74	58.47	42.59	58.07	Jan．1760；Aug． 1778	92	3	Farquier \＆Madison．	Jefferson＇s Notes on Va．，Cotté， and Phil．Soc．Trans．
57	52.89	\cdots	55.43	33.47	－	Sept．185I；Dec．IS59		$7 \mathrm{ma} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Prof．J．W．Marvin．	P．O．\＆S．I．Vol．I，and S．Coll．
58	－	．	．	．	．	1870	－2	$7_{\text {min }} \mathbf{2 a x}_{\text {a }} \mathrm{m}_{\text {bis }}$	C．Gillingham．	S．O．

WASHINGTON TERRITORY．

WRST VIRGINIA．

1	57.85	75.12	57.05	38.70	57．18		1851－I854	2	8		Prof．G．R．Rossiter，	MS．in S．Coll．
2	52.61	73.82	55.93	34.61	54.24	Jan．	1854 ；Jan． 1858	3	2	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	＂6＂6＊	P．O．and S．I．Vol．I．
3	52．49	72.86	54.65	36.72	54．18	Feb．	1865；July， 1870	4	6	$7 \mathrm{~mm} 2_{\mathrm{ib}} 9_{\mathrm{n}} \mathrm{bis}^{\text {a }}$	C．L．Roffe．	S．O．
4	54.66	72.39	55.79	33.90	54．19		1852		0		Prof．G．R．Rossiter．	MS．in S．Coll．
5	．．	81．18	．．	．．	．．		1858	\bigcirc	4	$7_{\mathrm{m}} 2_{\text {a }} 9_{\mathrm{a}}$	W．R．Boyers．	P．O．and S．I．Vol．I．
6	\cdots	．．	．	－	\cdots		1868		3	$7 \mathrm{~mm} 2_{\text {a }} 9_{\mathrm{a}}$ bis	R．H．Boliven．	S．O．
7	47.40						1857		4	$7_{\text {ma }} 2_{2} 9^{\text {a }}$	Dr．J．T．T．Offutt．	P．O．and S．I．Vol．I．
8	45.30	68.43	50.22	27.70	47.91	Jan．	1856；May，186ı		8		D．H．Ellis．	P．O．and S．I，Vol．I，\＆S．O．
9	52.03	69.29	48．17	30．12	49.90	Nov．	1858；June， 1860	1	8	،	B．D．Sanders．	＂، ، ، ،

[^107]WEST VIRGINIA．－Continued．

Name of Station．	＋	bi E －	烒	号	－	皆	薜	育	号	官	㵄		H゙®	8	๕．
10．Grafton	$39^{\circ} 21^{\prime}$	$79^{\circ} 5^{\prime \prime}$	\ldots	$28^{\circ} \cdot 77$	$37^{\circ} .03$	$40^{\circ} \cdot 33$	$54^{\circ} .45$	$61^{\circ} .20$	\cdots	$76^{\circ} .89$	$76^{\circ} .40$	$70^{\circ} .49$	$56^{\circ} .86$	$46^{\circ} .91$	$35^{\circ} .18$
11．Holiday＇s Cove．	4022	8037	．．								76.98	63.76	54.36		
12．Kanawah ${ }^{1}$ ．	3853	81 25	．	33.83	40.66	44.90	55.39	62.84	$69^{\circ} \cdot 79$	72.79	71.62	64.19	56.27	43.49	35.48
13．Kanawah	3853	8125	\cdots	22.00	38.05	42.34	52.42	63.39	71.57	76.87	72.80	65.55	56.61	42.05	3 I .31
14．Lewisburgh ．	3749	80 28	2000	29.03	37.21	44.07	48.00	62.37	66.48	71.51	68.60	61.42	51.63	39.73	33.16
15．Lewisburgh ${ }^{2}$ ．	3749	8028	2000	33.18	39.48	47．18	53.37	66.76	72.62	78.47	74.24	68.62	57.08	44.48	36.45
16．Lewisburgh ．	3749	So 28	2000	130．64	34.12	40.79	51.59	62.98	69.35	74.05	71.95	64.03	52.01	41.68	33.49
17．New Creek Depot ．	3925	7900	\cdots		38.99	40.87		\cdots	－	．	74.20	．	．	\ldots	．
18．N，R，Mills ．．．	3920	7829	1100	33.5	34.7 36.08	53.5	57.3					．．	．．	．	．
19．Peach Grove Lodge	3915	8 l 00	1100	20.19	26.08	31.76	53.86	61.24	71.60	76.88	70.69	．	－		
20．Point Pleasant	3851	8209	480	32.32	37.79	48.79	44.64	73.50	72.13	\cdots	－	65	－	38.36	39.83
21．Poplar Groves	3820	8130	720	34.92	38.98	44.28	52.88	64.15	70.35	75.76	72.70	65.82	55.05	43.75	37.97
22．Romney－	3920	7842	573	29.26	30.68	44.03	50.42	58.69	70.54	76.61	72.74	65.82	52.73	42.81	29.01
23．Salem．${ }^{\text {a }}$	3920	80 ol	1100	．．	36.93	47.72	．．	．．		74.81	．．	69.51	54.39		
24．Sistersville	3934	8056	540				\cdots	57.13	69.16	73.08	－	65.45	50.51	38.78	38.37
25．Weston－	3900	8022	．．	28.87	33.63	35.95	．		69.85					42.98	40.12
26．White Day	3930	7955		38.27	36.94	39.94		63.81	72.67	81． 65	77.71	67.73	54.35	45．19	33.21
27．Wheeling	4005	8043	60	31.43	32.90	42.37	51.40							42.15	28.69
28．Wirt Court House ${ }^{4}$ ．	3905	8126	\cdots	28.29	33.69	37.67	47.49	60.25	72.58	75.62	72.41	63.84	53.88	3 S． 76	35.02

WISCONSIN．

I．Appleton（Lawrence University）
2．Aztalan ．．．
3．Baraboo ．－
4．Bay City（or Ash－ land）．．．
5．Bayfield ．
6．Bellefontaine
7．Beloit College
8．Bloomfield
9．Ceresco ．
10．Dartford ．
in．Delafield（or Sum－ mit）
12．Delavan．
13．Edgerton
14．Embarrass ${ }^{5}$
15．Emeraid Grove ．
16．Fort Crawford
17．Fort Howard
18．Fort Winnebago
19．Galesville（Univ．）
20．Green Bay
21．Greenfield
22．Green Lake
23．Holland．
24．Janesville
25．Kenosha ．
26．Lake Mills
27．Lebanon ．
28．Lowell ．
29．Madison（Wisconsin University）
30．Manitowoc
31．Menasha ．
32．Milwaukee

4418	8831	800	17.99	20.79	30.67	42.34	54.58	65.77	70.73	65.94	59.32	47.07	33.52	21.68
4304	8855	808	26.82	29.60	35.97	43.28	56.40	68.06	71.29	69.56	62.63	48.37	35.84	20.38
$43 \quad 29$	8954	920	18.87	23.03	29.94	44.51	57.58	69.62	73.17	69.15	62.50	49.27	34.58	22.14
4636	9100	610	13.94	12.27	23.45	33.02	45.20	56.58	65.08	60.90	53.48	39.38	26.40	15.90
4650	9057	．	13.44	15.08	23.68	38.59	49.65	60.15	67.84	63.59	54.70	41.59	30.25	18.21
4330	89 15	750	18.47	22.21	33.24	45.42	57.97	68.79	72.58	70.75	6 x .74	48.71	34.08	21.32
4230	89 II	750	19.77	23.64	32.05	$45 \cdot 37$	57.44	68.39	72.38	69.33	61.76	48.50	34.99	23.06
4235	8832	600	18.38	23.54	30.79	43.90	55.66	66.22	71.30	67.83	60.45	46．12	35.53	22.20
4350	8857	917	17.15	8.71	30.78	48.87	59.90		73.20	70.80	60.80	51.39	31.60	
4345	8916	850	17.05	20.32	30.69	44.24	52.55	67.25	68.45	69.13	61.37	49．15	34.25	28.55
4304	8834	900	22.59	24．51	33.43	44.28	56.03	64．14	69.41	68.30	60.82	48.94	35．74	22.50
4239	8842	957	15.69	23.01	27.57	44.65	52.33	67.29	68.84	66.34	60.54	47.06	36.37	19.96
4238	8900	1700	18.94	22.54	30.94	46.41	61.15	68.22	74.24	70.06	61．76	47.65	37.05	22.43
4425	8900		15.19	20.78	26.71	40.58	54.41	65.19	69.95	65.32	58.09	44.56	32.54	18.77
4239	8854	1005	23.92	26.48	34.60	42.50	55.43	67.39	70.51	68.57	61.05	48.07	34.48	19.19
4303	9114	642	19.47	21.72	34.59	51.02	59.78	69.89	75.58	72.19	61.64	48.98	35.18	22.68
4433	88 о9	620	18.83	20．10	31.19	43.20	55.87	66.27	71.57	67.93	57.28	46.75	34.24	21.15
4333	8935	770	19.56	18．53	32.64	$47 \cdot 33$	57.07	65.97	71.26	67.48	57.92	47.25	32.12	21.34
4407	9129	775	21.00					69.48 66.36		69.68				
4429	8800	732	15.19	23.00	27.14	39.77	54.46	66.36	69.85	68.09	60.46	45.85	35.98	17.66
4400	9045	750	－．		．	\cdots	63.28	68.28	70.55	66.30	63.78	49.08	37.18	19.45
4345	8900	670	24.57	27.22	32.13	40.37	50.42	67.48	69.35	67.33	60.90	49.16	37.11	20.35
4336	8758	670	15.01	23.49	27.17	43．58	56.20	63.93	69.91	67.67	60.58	44.61	35.22	23.05
4241	8900	780	18.30	20.60	31.26	$45 \cdot 57$	57.42	68.82	72.36	70.11	62.23	48.11	34.43	23.61
4235	8756	600	23.86	26.07	33.06	40.96	52.40	63.43	70.51	68.50	60.94	49.71	36.46	26.70
43 о6	8902	\cdots	12.50	21.50	26.81	－	．					．		
4428	8854	900	．		\cdots		\cdots	67.85	72.20					
4320	8854		5.95	25.84	27.05	33.86	53.03	63.04	69.72	66.81	62.54	47.80	29.83	29.67
4305	8924	1088	17.65	21.19	30.00	43.88	56.54	66.81	71.82	68.70	62.46	48.46	33.67	23.67
$44{ }^{\circ} \mathrm{O}$	8746	658	21.76	23.92	31.31	41.72	51．91	62.04	67.91	65.95	58.64	46.95	36.21	25.48
4413	88 88 88		26.77	14.50	35.00							47.09	29.91	28.06
4304	8800	604	21.39	25.22	32.81	$43 \cdot 36$	52.95	63.60	69.86	67.61	60.99	48.78	37.10	25.38

${ }^{1}$ The morning and evening observations were probably taken at \bigodot_{r} and \bigodot_{s} ．
${ }^{2}$ Observations at $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ after Jan．1853，except for March，May，June，July，and Oct．1853，at $7_{\mathrm{m}} 2_{\mathrm{a}^{6}}$

WEST VIRGINIA.-Continued.

WISCONSIN.

12 November, 1874.

WISCONSIN．－Continued．															
Name of Station．	苟	$\begin{gathered} \text { 号 } \\ \stackrel{\mu}{\circ} \end{gathered}$	$\begin{aligned} & \text { 䓲 } \\ & \text { 要 } \end{aligned}$	告	－	$\begin{aligned} & \text { digu } \\ & \text { 荮 } \end{aligned}$	宏	茳	官	家		$$	$\stackrel{\square}{\circ}$	号	®ٌ
33．Mosinee ．	$44^{\circ} 4^{\prime}$	$89^{\circ} 4^{6 \prime}$	750	$13^{\circ} .24$	$17^{\circ} .67$	$25^{\circ} \cdot 38$	$45^{\circ} \cdot 33$	$5^{80} .60$	$66^{\circ} .20$	$67^{\circ} .80$	$62^{\circ} .08$	$59^{\circ} \cdot 13$	$44^{\circ} .00$	$31^{\circ} .75$	${ }^{16} .75$
34．Mt．Morris ．	44 44 44 17	$\begin{array}{lll}89 & 20 \\ 90 & 38\end{array}$				34.91 36.41	42.02 41.09	59.68	67.55		66.43	58.04			
35．New Danemore	4417 43 58	90 88 12 12	\cdots	20.60 16.38	17.80	36.41	41.09	55.68	67.55	71.16	66.43	58．04	46.04	30.00	18.50 3 I .90
37．New Lisbon	4352	$90 \quad 17$	．	16.51	20.56	28.21	45．12	57.70	68.03	72.93	67.48	60.50	45.46	34.92	20.74
38．New Richmond	45 42 42	9242 88 88	753	9.75	20.54	27.37	40.17 47.11	56.96	71.14	74.56	68.58	60.21	50.01	34.48	16.22
40．Pardeeville ．	4329	8914											46.59	35.92	15.10
$\begin{aligned} & \text { 41. Parfreyville (or } \\ & \text { Rural) } \end{aligned}$	4415	8905	910	13.83	21． 57	26.75	44.61	57.27	69.70	70.23	67．80	61.30	50.76	36.22	30.90
42．Plattevilile	4245	9037	800	17.22	21.21	33.25	46.43	-60.58	70.74	76.51	73.03	63.42	49.96	33.61	20.68
43．Plymouth	4345	8806	S70	16.54	19.94	25.75	40.54	51.39	64.67	69.95	65.72	58．34	44.08	34.82	${ }^{20.77}$
44．Prescott－	4446	9255	${ }_{6}^{800}$	4.23 10.33	14.50 20.74	35.00 20.56		50.44	66.73	69.89	63.35	58.00	47.09 50.52	29.91 36.91	28.06 26.00
45．Racine ．	4243	8754			20.74	29.56	39.39	50.44							
46．Ripon College	4348	8833	\cdots	17.33	17.75	25.90	46.07	54.50	67.44	74.55	64.35			39.68	22，10
47．Rocky Run	4326	8919		16.90	21.60	29.33	45.01	57.40	67.49	71.00	68.33	60.06	46.55	34.64	21.17
48．St，Croix Falls ．	$45 \quad 27$	9247	660	21.60	11.01	33．10			－	．．		．．	．．		25.30
49．Southport	4230	8730	\cdots	28.27	29.06		41.52	50.71	64.78	69.48	77．61	62.89	50.59	47.37	21.47
50．Springdale ．	4331	8916	\cdots	19.63	23.53 1780	38.80	46.45	58.65	65.45 67.85	69．53		62.80			
51．Sturgeon Bay 52．Superior ．	4452 4644	$\begin{array}{lll}87 & 30 \\ 92 & 13\end{array}$	35 680	14.91	17.80 14.17	26.30 22.22	44.46 36.76	57.91 47.03	67.85 57.53	70.18 64.52	66.63 63.70	62.80 53.01	50.59 43.15	38.30 30.38	24.70 13.74
53．Waterford	4248	88 I8		17.50	26.04	30.32	46.30	53.62	66.75						
54．Watertown ．	4313	8845	840	26.59					71.60	74.11	70．86	58.82	52．36	${ }_{3}^{31.08}$	24.79
55．Waukesha	43 oo	8820	812	18.47	19.48	32.58	45.88	53.89	68.38	72.78	68.18	62.05	49.3 I	33.01	24.30
56．Waupaca．	4421	89 10	900	17.24	22.06	28.73	43.98	56.53	69.27	72.57	68.68	60.05	46.45	36.06	22.15
57．Wausau ．	4458	8943		14.97	22.42	25.42	40.03	58.29	65.03	76.62	67.39	57.52	43.82	33.26	14.99
58．Weyauwega ．	4420	8902	870	15.72	18.83	27.54	44.25	56.82	67.70	70.33	66.51	62.75	44.78	32.56	23.42
WYOIMING．															
1．Camp Scott ．	4118	032	．．	18.38	26.98	34.52	42.24	46.50	53.54	\cdots		\cdots			21.20
2．Camp Stanbaugh ．			\cdots												13.73
3．Deer Creek Agency	4249	106 oo	5000											32.14	18.32
4．Fort Bridger ．	4120	110 23	6656	18.88	22.89	27.73	38.44	50.09	59．12	65.44	64.37	53.86	42.26	31.56	20.66
5．Fort D．A．Russell	4112	10450	\cdots	28.57	30.60	24.54	36.14	48.60	58.86	68.70	63.64	55.50	42.98	38.69	23.32
6．Fort Fetterman ．．	4245	10537	．	28.11	．	27.08	41.92	54.41	62.35	71.23	66.32	55.29	41.46	35.05	23.32
7．Fort F．Steele ．	4145	10710		23.24	24.16	28.58	40.84	53.54	63.47	69.45	66.16	56.87	44.00	36.78	20.05
8．Fort Halleck ．	4134	10650	7800	21.16	23.72	29.12	37.09	51.76	62.11	65.79	68.90	54.95	41.78	33.45	21.50
9．Fort Laramie	4212	10431	4472	28.43	31.83	37.26	46.94	56.60	68.34	75.93	73.49	62.07	49.68	36.42	27.68
10．Fort P．Kearney	4430	10650	6000	14.88	25.44	23.57	42.75	53.60	69.24	76.33	74.66	62.60	47.11	36.64	29.09
11．Fort Sanders ．	4113	1053^{8}	7161	20.60	25.26	28.85	38.61	47.15	57.26	66.20	62.07	53.04	44.16	35.49	23.93
12．Fort Thompson	4248	108 56		10． 67			．．	．．	．．	．．	．．	．．	．．		
13．Gilbert＇s Trading P＇st	4228	108 40	7400	7.57	\cdots		4 S 8	53.93	\ldots					．	9.23
14．Sweetwater Bridge．	4230	10725	7000	．．	\cdots	29.80	41.88	53.93		\ldots				．	
MEXICO．															
1．Bər of Tabasco ．	1834	9240				77.83		80.80			81.93	81． 20	77.90		
2．Cordova ．．．	1845	9651	860	65.03	67.13	70.51	73.12	74.86	73.37	72.31	73.05	71.83	70.29	66.74	65.65
3．Frontera ${ }^{\text {a }}$－${ }^{\text {a }}$	1832	9240		72.28 74.66	76.00	77.72	79.84 80.24	81.28 82.58	81.84 84.01	${ }_{8}^{\text {So．} 62}$	81.30 79.34	81.58 80.78	80.60		71.65
5．Matamoras ．	2549	9738	55	64.95	65.89	70.48	76.00	8 SI .33	83.47	85.72	85.73	82.55	77.06	71.32	62.02
6．Mazatlan．	2315	10629		71.15	72.25	69.85	75.20	8 r .60	． 87.60	83．00	85.25	84.40	84.65	79.90	75.05
7．Mexico City ．	1927	9905	7665	58.39	57.30	61.84	64.00	67.07	64.72	62.79	63.02	62.06	60.83	56.82	54.36
${ }^{1}$ This series includes observations in Sept．Oct．and Nov．186I，at Caldwell＇s Prairie，about four miles southwest of Norway．															

WISCONSIN．－Continued．

	$\begin{aligned} & \text { 合 } \\ & \text { 号 } \\ & \hline \end{aligned}$	㟯 号	\＃ 吾 4	这	ェ゙	SEries． Begins．Ends．	$\left\lvert\, \begin{aligned} & \text { ExTENX } \\ & \text { yrs.mos. } \end{aligned}\right.$	Observing HOURS．	Observer．	References．
33	43° ． 10	$65^{\circ} \cdot 36$	$44^{\circ} \cdot 9^{6}$	$15^{\circ} .89$	$42^{\circ} \cdot 33$	Jan．1859；Dec． 1870	12	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{~m}$ bis	Dr．J．S．Pashley and J．O．Donoghue．	P．O．and S．I．Vol．I，and S．O．
34										P．O．and S．I．Vol．I．
35	44.39	68.38	44.69	18.97	44.11	Jan．1858；June， 1859 Dec． $1864 ;$ Jan． 1865	1 3	$6_{m} \mathrm{~N}, 6_{\text {a }}$	E．Haeuser．	s. o.
36 37	43.68	60		19.27	44.85	Dec．1864；Jan． 1865 Mar． 1867 ；June，1870	$\begin{array}{rr}0 & 2 \\ 2 & 10\end{array}$		F．Hatchez．	S. O.
38		G				I866	$\bigcirc 1$	${ }^{\prime}$	C．Scribner．	＂6 ،
39	43.81	71.43	48.23	15.50	$44 \cdot 74$	Mar．1856；Nov．186r	I 4	7 mma	J．E．Himoe and S． Armstrong．	P．O．and S．I．Vol．I，and S．O．
40						5		，	S．Armstrong．	P．O．and S．I．Vol．I．
41	42.88	69.24	49.43	22.10	45.91	May，1860；Apr． 1865	1	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{am}$ bis	R．H．Struthers，and J．C．Hicks．	S． 0 ．
42	46.75	73.43	49.00	19.70	47.22	Sept．1851；Dec． 1859		$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	Dr．J．L．Pickard．	P．O．and S．I．Vol．I，\＆S．Coll．
43	39.23	66.78	45.75	19.08	42.71	Jan．1865；Feb． 1870	410	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{~m}$ bis	G．Moeller．	S．O．
44				15.60		Oct．1857；Mar． 1858		$7_{\mathrm{m}} 2^{\text {a }} 9_{\mathrm{a}}$	Rev．S．L．Hillier．	P．O．and S．I．Vol．i．
45	39.80	66.66	48.48	22.02	44.24	Nov．1855；Jan． 1861	1 II		E．Seymour，J．W． Durham，and H．W． Phelps．	P．O．and S．I．Vol．I，and S．O．
46	42.16	68.78		19.06		Nov．1865；Aug． 1866	010		Prof，W．H．Ward．	S．O．
47	43.91	68.94	47.08	19.89	44.96	Aug．1859；Dec． 1870	10 II	$\mathrm{ma}_{\text {m }}$	W．W．Curtis．	P．O．and S．I．Vol．I，\＆S．O．
48		．	．．	19.30	．	Dec．1857；Mar． 1858	－ 4	$7 \mathrm{~m} \mathrm{a}_{\text {a }} \mathrm{ga}_{\text {a }}$	M．T．W．Chandler \＆W．M．Blanding．	P．O．and S．I．Vol．I．
49		70.62	53.62	26.27	\cdots	49； 185	II	$\bigcirc_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Gridley．	S．Co
50	47.97			\cdots	45	1860	$\bigcirc 7$	$7 \mathrm{~m} 2_{\mathrm{a}}^{6} 9 \mathrm{a}_{\mathrm{a}}$ bis	S．Armstrong．	S．O．
51	42.89	68.22	50.56	19.14	45.20		$0 \text { II }$		R．M．Wright．	U S．Lake Survey Rep of
52	$35 \cdot 34$	6 x .92	42.18	13.16	38.15	June，1855；Dec． 1867	10 O	$7 \mathrm{~m} 2_{\mathrm{a}} 9 \mathrm{a}$	G．R．Stuntz，E．H． Bly，W．H．Newton， W．Mann．	U．S．Lake Survey，Rep．of 1867－68，P．O．\＆S．I．Vol．I， and S ．O．
53	43.41	7－．	\cdots	21.56	．	Nov．1860；Apr． 1863		$7 \mathrm{~m} 2_{\text {a }} 9_{\mathrm{a}}$ bis	S．Armstrong．	S．O．
54		72.19	47.42	\cdots		1852；1853		$\bigodot_{r} 9_{m} 3_{\mathrm{a}} 9_{\mathrm{a}}$	Ayres．	S．Coll．
55	44.12	69.78	48.12	20.75	45.69	Mar．1856；Mar． 1859		$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Prof．S．A．Bean，Dr． L．C．Lyle．	P．O．and S．I．Vol．I．
56	43.08	70.17	47.52	20.48	$45 \cdot 31$	Dec．1863；Dec． 1870		$7_{\text {min }} 2_{\text {a }} 9 \mathrm{~g}$ bis	H．C．Mead，C．D． Webster．	S． 0.
57 58	41.25 42.87	69.68 68.18	44.87 46.70	17.46 19.32	43.31 44.27	Nov．1858；Dec． 1859 June，i860；May， 1867	$\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}$		Dr．W．A．Gordon． Various observers．	P．O．and S，I．Vol．I． S．O．
	42.87		46.70	19.32	44.27	June，1860，May， 186				

WYOMIING．

1	41．09	\cdots	\cdots	22．19	\cdots	Dec．1857；June， 1858	$\bigcirc 7$	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}}$	Assistant Surgeon．	Ar．Met．Reg． 1860.
2	．．	\cdots	\cdots	．			－			MS．from S．G．O．
3				．		1859	－ 2	،	Maj．T．S．Twiss．	P．O．and S．I．Vol．I．
4	38.75	62.98	42.56	20.81	41.27	July，1858；Dec． 1870	106	＂	Assistant Surgeon．	Ar．Met．Reg．1860，and MS． from S．G．O．
5	36.43	63.73	45.72	27.50	43.35	Dec．1869；Dec．1870	$1{ }^{1}$	＂	6＇6	MS．from S．G．O．
6	41．14	66.63	43.93		．．．	Nov．1868；Dec． 1870	I 9	＂	＂، 6	＂6＂
7	40.99	66.36	45.88	22.48	43.93	Jan．1869；Dec． 1870	20	＂	＂ 6 6	＂6＂6＂
8	39.32	65.60	43.39	22.13	42.61	Sept．1862；Nov． 1866	33	＂	، 6	＂＂
9	46.93	72.59	49.39	29.31	49.56	Sept．1849；Dec．1870	179	،	، ${ }^{6}$	Ar．Met．Regs． 1855 and $\mathbf{1 8 6 0}$ ， and MS．from S．G．O．
10	39.97	73.41	48．78	23.14	46.33	Jan．1867；July， 1868		＂	، 6	MS．from S．G．O．
II	38.20	6 L .84	44.23	23.26	41.88	Sept．1866；Dec． 1870		،	W＇${ }^{\text {6 }}$	＂＂
12	．．	．	．．	．．	．．	${ }^{1858}$	$\bigcirc 1$	＊	W．FI．Wagner．	P．O．and S．I．Vol．I．
13		－	\cdots	\cdots	．	Dec．1858；Jan． 1859	－ 2	＂	C．H．Miller．	＂6．6＂＂
14	41.87	．	．	．．	．	1864	－ 3	$77_{\text {m }} 2_{\text {a }} 9_{\text {a bis }}$	A．F．Ziegler．	S．O．

MEXICO

1						Dec．1862；Oct． 1863	－ 6	$7 \mathrm{~m} 2_{\text {a }} 9_{\text {a }}$	C．Latlo．	S．O．
2	72.83	72.91	69.62	65.94	70.32	Jan．1858；Dec． 1864	6 o	$9_{\mathrm{m} 1} \mathrm{~N} \cdot 3_{2} 6_{n} 9^{2}$	J．A．Hieto．	P．O．and S．I．Vol．I，and S．O．
3	79.61	81.25		73.31		Dec．1863；July， 1865	13	$7 \mathrm{~m} 2_{\text {a }} 9_{\mathrm{a}}$ bis	C．Lazlo．	S．O．
4	79.52	82.45	78.80	73.46	78.56	Aug，1838；July， 1839	10		Bevard．	Dove．
5	75.94	84.97	76.98	64.29	75.54	1830；1851	92	${ }^{2}$	Dr．J．L．Berlandier．	Manuscript．
6	75.55	85.28	82.98	72.82	79.16	1868 ． 185	10	$\odot_{\mathrm{r}_{3}} \mathrm{~N}$.	Dr． J ．．．．．．．	S． O ．
7	64.30	63.51	59.90	56.68	61．10	Apr．1769；Nov． 1856	3 II	${ }_{3}$	Alzate，Burkhardt， Berard，L．C．Er－ vendberg．	Cotté，Blodget＇s Climatology， Rep．Brit．Assoc．1847，P． O．and S．I．Vol．I．

[^108]

MEXICO．－Continued．

	－	山゙ 巻 号		䥻	悉	Series． Begins．Ends．	Extent yrs．mos．	Observing HOURS．	Observer．	References．
8		$63^{\circ} .03$	$5^{8} .70$	．	．	1769	－ 8		Alzate．	Blodget＇s Climatology．
9	$80^{\circ} .86$	79.05	75.80			May，1858；May， 1859	0 II	$7 \mathrm{~m} 3^{\text {a }}$	C．Lazlo．	P．O．and S．I．Vol．I．
10	70.61	71.59	67.98	$62^{\circ} .80$	$68^{\circ} .25$	Jan．1854；Dec． 1870	16 o	$7 \mathrm{~m} 2_{\mathrm{a}} 9_{\mathrm{a}} \mathrm{bis}$	C．Sartorius．	P．O．and S．I．Vol．I，and S．O．
11	．．				．．	Feb．1861；Nov． 1862	－ 3	،	C．Lazlo．	S．O．
12		－	76.08			1867	－ 4	8＂	B．Crowther．	＂＂
13	60.38	6 I .11	57.48	50.80	57.44	1839； 1840	20	S $\frac{1}{2} \mathrm{~m} 4 \frac{1}{2}$	Burkhardt．	Rep．Brit．Assoc． 1847.
14	77.00	81.92	78.26	70.88	77.02	$1791 ; 1803$	130		Orta．	＇6
15	77.90	81.50	78.62	71.96	77.72					Bridgewater Treatise．
16	78.71	81.04	78.39	72.73	77.72	June，1847；Aug． 1859	37	1	Assist．Surg．，Dr．G． Berendt．	Army Reg．，P．O．and S．I． Vol． 1.

COSTA RICA．

1 2 3	71.54 78.68	69.83 80.03 69.17	68.56 67.97	$\begin{aligned} & 70.04 \\ & 77.80 \\ & 68.32 \end{aligned}$	$\begin{gathered} 69.99 \\ 69.28 \end{gathered}$	Oct． Jan．	$\begin{aligned} & 1868 \\ & \text { 1865; Aug. I } 866 \\ & \text { I } 861 \text {; June, I } 861 \end{aligned}$	$\begin{array}{rr} 1 & 0 \\ 0 & 10 \\ 4 & 1 \end{array}$	$\begin{gathered} 7_{\mathrm{m}}{ }_{\mathrm{bs}} 7_{\mathrm{a}} \\ 7_{\mathrm{m}} 2_{\mathrm{a}} 99_{\mathrm{a} \text { bis }} \end{gathered}$	Seũor Rohrmoser， Philip Valentin． C．M．Raotte，Dr．A． Frantzius．	S． 0 ． MS．in S．Coll． S．O．
	GUATEIMALA．										
I	68.00	67.28	66.03	63.72	66.26		1845 ；Dec． 1859	40	－ 1	Bailly \＆A．Canndas．	Rep．Brit．Assoc．1847，P．O． and S．I．Vol．I．

NICARAGUA．

I	．	．	．	－•	\cdots	1849		$\odot_{\text {r }} 9 \mathrm{a} 3 \mathrm{a}$	Squier．	S．Coll．
2	．	－•	．	．	．	1865	0	$7 \mathrm{~m} 2_{\mathrm{a}} 6_{\mathrm{a}}$	F．M．Rogers．	S．O．

BAHAIMA ISLANDS．

I	78.62	84.50	80.55	74．70	79.59	Jan．1841；Aug． 1859	3 II	1	J．C．Lees，Chief Justice，and A．M． Smith．	Printed Journ．in S．Coll．，P． O．and S．I．Vol．I．
2	77.67	86.00	80.33	70.67	78.67	．．．．．．．．．	10			Martin＇s Brit．Colonies p． 105.
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	76.82	82.03	81．99	76.53	$79 \cdot 34$	$\stackrel{\text { I } 861}{ } \begin{aligned} & \text { Feb. } \\ & \text { I844; Dec. } 1868 \end{aligned}$	$\begin{array}{ll} 0 & 1 \\ 2 & 9 \end{array}$		S．S．Garland． J．Arthur，J．B．Hayne， J．C．Crisson，A． G．Carothers（U．S． Consul）．	S． O ． MS．in S．Coll．，P．O．and S． I．Vol．I，and S．O．

BERMUDA ISLANDS．

2	65.19 64.53	77.43 76.43	72.80 73.03	62.42 63.00	69.46 69.25	Jan．1836；Dec．I859 Jan．1856；Dec．I859	12 2	$\left\{\begin{array}{l} 3 \frac{1}{2 m} 9 \frac{1}{2} m \\ 3 \frac{1}{2} a \\ 9 \frac{1}{2} a \end{array}\right.$	Capt．Page，R．E．， S．L．D．Wells， Assist．Surg．R．N．， Serg＇t 56th，Reg． Signal Director，and Hartshorn． R．E．Met．Obs＇y．	Pamphlet by Sir W．Reid，Gov．， MS．in S．Coll．，Bermuda Royal Gazette，and Board of Trade． Bermuda Royal Gazette．
${ }^{1}$ Corrected for daily variation by the Gulf table．										

CARIBBEAN ISLANDS．

CARIBBEAN ISIANDS．															
Name of Station．	H゙ひ	$\begin{array}{r}\text { cin } \\ \text { ¢ } \\ \hline 1\end{array}$	$\begin{aligned} & \text { 荡 } \\ & \text { 毕 } \\ & \text {. } \end{aligned}$	号	\％	苞	茑	公	$\begin{aligned} & \text { E゙ } \\ & \text { E. } \end{aligned}$	空	$\begin{aligned} & \dot{3} \\ & \text { ह̈n } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \dot{\omega} \end{aligned}$	¢゙	8	هٌ
I．Antigua ．	$17^{\circ} 08^{\prime}$	$61^{\circ} 4^{\prime \prime}$	．	76° ． 80	$75^{\circ} \cdot 90$	$76^{\circ} .40$	$77^{\circ} \cdot 50$	$79^{\circ} .40$	$80^{\circ} .10$	$80^{\circ} .10$	$81^{\circ} .70$	$80^{\circ} .60$	$80^{\circ} \cdot 30$	S4 ${ }^{\circ} \cdot 30$	$79^{\circ} \cdot 40$
2．Antigua ．．．．	1708	${ }_{61}{ }^{6} 48$	．．		．．		．．								
3．Barbadoes ．．．	1304	5937	．	76.11			$\bigcirc 8$	79.77	80.40	So． 05	80.63	79.58	79.72	79.86	76.79
4．Barbadoes ．．．	1304	5937	\ldots	78.04	78.04	79.16	78.23	79.64	78.10	79.01	78.49	82.11	82.25	81.87	79.35
5．Guadeloupe ．．．${ }^{\text {6 }}$	1559	6125	\cdots	76.14	$75 \cdot 33$	76.53	78.30	79.79	81.07	80.98	81.72	81.64	So． 37	79.27	77.50
6．Roseau（Dominica	1518	6122	\cdots	76.0	74.0	77.0	77.0	79.0	81.0	81.0	80.0	80.0	80.0	75.0	
7．St．Bartholomew ．	1753	6300	．	79.05	78.69	79.99	80.06	79.86	79.59	83.30	81.01	79.18	80.17	79.48	79.32
8．St．Christopher ．－	1730	6245	．	78.02	78.13	80.09	80.32	81.46	83.28	84.19	83.89	83.48	82.40	81.27	78.73
9．St．Thomas ．．．	1821	6456	．．	80.78	79.43	81.55	81.32	S2．85	83.57	82.22	82.58	82.22	83.48	82.94	81.32
10．St．Thomas ．．．	1821	6456	\cdots	79.30	79.02	78.21	80.67	80.67	82.65	82.76	82.87	83.69	82.06	81.54	81.30
II．St．Vincent－．	1310	6115	．	79.80	79.12	79.51	So． 92	81.99	81.94	81.95	82.60	82.87	82.48	SI． S_{5}	So． 18
12．Santa Cruz ．	I7 45	6440	\cdots	76.0	77.5	74.0	76.0	．	－•	－	－．	\cdots	．	－	75.7
13．Sombrero Island	1837	6327	45	75.55	74.92	75.50	77.41	79.37	So． 16	81.05	81.62	SI． 53	S1． 68	79.35	76.77
14．Tortola＊．	1827	6440	860	$77 \cdot 35$	77.00	76.09	78.39	78.56	So． 79	So． 44	81.96	81.00	So． 95	80.02	79.85
15．Trinidad（Port of	10 39	6138	16	76.82	76.95	78.14	78.28	78.66	78.75	\cdots		．			
16．Trinidad ．．．．	10 39	6138	16	78.13	78.14	．．				．	\cdots	\cdots	So． 13	79.57	75.94
17．Trinidad ．．．．	10 3^{8}	6134		76.50	76.50	77.50	78.50	77.50	78.00	79.00	79.50	79.00	78.50	79.00	76.50

CUBA．

1．Havana ．	2309	8223	\cdots	74.60	75．51	78.80	80.69	82.62	84.96	87.57	S6．90	86.67	83.07	So．91	73.26
2．Havana ．．．	2309	8223	．	65.34	70.04	72.05	75.43	79.66	83.68	85.23	83.62	80.60	78.44	72.79	69.94
3．Havana ．．	2309	8223	50	69.98	71.96	75.74	78.98	82.58	S3．12	83.30	83.84	82.04	79.52	75.56	71.78
4．Havana ．．．．	2309	8223	．	71.38	74.03	74.08	76.62	77.97	81.01	$8 \mathrm{8r} .46$	81.57	80.38	78.85	75.13	73．54
5．Havana ．．．．	2309	8223	．	73.33	75.39	77.97	79.12	82.02	84.02	85.89	85.37	83.13	80.47	79.54	72.46
6．Havana ．${ }^{\text {a }}$	2309	8223	\cdots	．．	．．	．	．	．．	．	．	．．	．	．．	．	．．
7．Havana（College of Belen）	2309	8223	\cdots	72.90	74．19	76.46	78.94	81.23	83.57	84.26	83.99	83.02	80.40	75.77	73.89
8．Matanzas＊．．	2302	8140	50	73.53	72.10	75.76	80.23	80.75	82.09	81.58	82．12	82.15	78.79	77.71	74.67
9．San Fernando	2222	$80 \quad 09$	554.	69.90	71.40	73.20	74.60	77.90	78.90	80.50	79.60	78.60	75.90	72.90	67.90
10．Ubajay ．．	2300	8200	290	64.50	67.50	66.88	70.00	76.13	82.25	83.63	83.25	79.63	76.50	69.25	62.38
JAMIAICA．															
1．San Antonio	1810	7630	．	75.60	74.60	74.75	75.10	77.25	79.45	79.75	79.40	So． 40	79.45	78.70	75.40
2．Up Park Camp ．	1759	7656	225	78.95	79.65	81.15							82.38	82．26	\＄2．93
3．Up Park Camp ．	1759	7656	225	78.	78.	82.	83.	81.	S2．	83.	82.	82.	80．	79.	78.
4．Kingston ．	1800	7647	50	75．73	76.00	75.87	78.08	80.27	So． 60	81． 67	81.00	80.73	79.80	78.73	76.74

SAN DOMINGO．

1．San Domingo	1829	7000	\cdots	85．17	84.04	85.17	86.00	85.50	82.06	78.69	77.00	78.69	78.69	77.83	78.69
2．Tivoli（Hayti）．．	1835	7000	．	69.08	68.90	71.60	73.40	72.50	78.08	77.90	77.00	77.00	74.71	73.58	70.88

PORTO RICO．

1．Estate San Isidro ． 2．Ponce 3．Porto Rico ．．．．	$\begin{array}{lll}18 & 25 \\ 17 & 56 \\ 18 & 29\end{array}$	$\begin{array}{lll}66 & 12 \\ 66 & 35 \\ 66 & 13\end{array}$	${ }_{23}$ \ldots	76.43 $\cdots 7733$	75.14 78.5 78.83	75.40 \cdots 75.33	76.90 80.33	84．	84．00	\cdots $87 \cdot 33$	\cdots 9.33	\cdots 3.67	\cdots 81．33	\because $\square 9$ 79.67	${ }_{7} \dot{\square} 8.00$
GUIANA（BRITISH）．															
I．Demerara	645	5802	36	－						81.8					
2．Demerara ．	645	5802	．	79.5	Si．o	81．0	80.5	82.0	79.0	82.0	83.0	82.0	8r．o	81.0	76.5
3．Georgetown ．．．	649	5812	．	77.5	77.8	79.1	79.5	79.7	79.4			．			．．

CARIBBEAN ISLANDS．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \[
\stackrel{\underset{\sim}{0}}{\substack{0 \\ n}}
\] \& \& 号
菖 \& 烒 \& \[
\begin{aligned}
\& \text { 离 } \\
\& \text { 合 }
\end{aligned}
\] \& \begin{tabular}{l}
Series． \\
Begins．Ends．
\end{tabular} \& \[
\begin{aligned}
\& \text { EXTENT } \\
\& \text { yrs.mos. }
\end{aligned}
\] \& Observing hours． \& Observer， \& References． \\
\hline 1 \& \(77^{\circ} .77\) \& \(80^{\circ} .63\) \& \(81^{\circ} .73\) \& \(77^{\circ} \cdot 37\) \& \(79^{\circ} \cdot 3 \mathrm{~S}\) \& Dec．1833；Nov． 1834 \& \& \& \& \\
\hline 2 \& ．． \& 80． 36 \& 79.72 \& \& 79.68 \& May，I84I；Jan． 1842 \& \(\begin{array}{ll}1 \& 0 \\ 0 \& 9\end{array}\) \& \(1{ }^{1}\) \& Lawson． \& \\
\hline 4 \& 79.01 \& 78.53 \& 82.08 \& 78.48 \& 79.52 \& I844 \& i

0 \& $\rho_{r} 93$ \& R．Young． \& Rep．

\hline 5 \& 78.21 \& 81.26 \& 80.43 \& 76.32 \& 79.05 \& 1849； 1851 \& 30 \& max．\＆min． \& \& Rep．Brit．Assoc． 1847.

\hline 6 \& 77.67 \& 80.67 \& 78.33 \& \cdots \& \& \& 0 II \& \& \& Martin＇s Brit．Colonies，p． 75.

\hline 7 \& 79.97 \& 81.30 \& 79.61 \& 79.02 \& 79.97 \& May，1786；Apr． 1787 \& $\begin{array}{ll}1 & 0 \\ \mathrm{I} & 3\end{array}$ \& 6_{m} N． $2_{3} 6_{3}$ \& Fahlberg． \&

\hline 8 \& 80.62 \& 83.79
82.79 \& 82.38
82.88 \& 78.29
80.51 \& 81.27
82.02

81 \& 1840；i8．46 \& | 1 | 3 |
| :--- | ---: |
| I | 3 |
| 1 | | \& max．\＆min． \& Knox， \& Dove 1853

\hline 10 \& 79.85 \& 82.76 \& 82.43 \& 79.87 \& 81.23 \& 1833 \& $\begin{array}{ll}1 \\ \mathrm{I} & 0\end{array}$ \& $6{ }_{m} 7_{m} 4_{a} 8_{a}$ \& Schonburgh． \& Rep．Brit．Assoc． 1847.

\hline II \& 80.81 \& 82.16 \& 82.40 \& 79.70 \& 8 x .27 \& I824； 1832 \& 8 － \& \& \& ＂＂6＂6

\hline 12 \& ． \& ． \& \cdots \& 76.40 \& \cdots \& Dec．1836；Apr． 1837 \& $\bigcirc 5$ \& $\left\{\begin{array}{c}6 \frac{1}{2} \mathrm{~m} g_{\mathrm{m}} \mathrm{N} . \\ 3 \mathrm{~m}\end{array}\right.$ \& Rev．Dr．Tuckerman． \& Am．Alm． 1839.

\hline 13 \& 77.43 \& 80.94 \& 80.85 \& 75.75 \& 78.74 \& Feb．1863；Oct．I865 \& 1 Io \& \& A．A．Julien． \& S．O．

\hline 14 \& 77.68 \& 81.06 \& 80.66 \& 78.07 \& $79 \cdot 37$ \& 1831； 1833 \& $3 \circ$ \& $$
6_{m} 2_{a} 6_{a}
$$ \& Schonburgh． \& Rep．Brit．Assoc， 1847.

\hline 15
16 \& 78.36 \& \& \cdots \& \& \& \& \& \& Deville． \& Dove，1853． P ．

\hline 17 \& 77.83 \& 78.83 \& 78.83 \& 76.50 \& 78.00 \& \& 15 \& max． $\mathrm{Sm}_{\text {man }}$ \& Geological surveyors． \& Martin＇s Brit．Colonies，p． 26.

\hline \multicolumn{11}{|c|}{CUBA．}

\hline 1 \& 80.70 \& 86.48 \& 83.55 \& 74.46 \& 81.30 \& 1794 \& 10 \& \& \& Dove， 1853.

\hline ， \& 75.71 \& 84.18 \& 77.28 \& 68.44 \& 76.40 \& 1800；1807 \& 4 － \& \& \& ＂ 6

\hline 3 \& 79．10 \& 83.42 \& 79.04 \& 71.24 \& 78.20 \& 1810；1812 \& 30 \& \& Humboldt． \& ＂＂

\hline 4 \& 76.22 \& 81.35 \& 78.12 \& 72.98 \& 77.17 \& 1825；1831 \& 7 o \& \& \& Rep．Brit．Assoc． 1847.

\hline 5 \& 79.70 \& 85.09 \& 81.05 \& 73.73 \& 79.89 \& Jan．1842；Oct． 1849 \& I 3 \& $8{ }_{\text {m }} 2_{\text {R }} 8_{3}$ \& Gibbs and Poey． \& MS．in S．Coll．\＆Print．Journ．

\hline 6 \& 78.98 \& 83.30 \& 78.98 \& 71.24 \& 78.08 \& \& \& \& \& Bridgewater＇Treatise．

\hline 7 \& 78.88 \& 83.94 \& 79.73 \& 73.66 \& 79.05 \& Jan．1859；Nov． 1870 \& \& 2 \& Various observers． \& Printed Records of Observa．

\hline 8 \& 78.91 \& 8 8 .93 \& 79.55 \& 73.43 \& 78.46 \& 1832； 1835 \& 20 \& $$
\odot_{r_{n}} \odot_{8}
$$ \& Mallory． \& Sill．Journ．

\hline 9 \& 75.23 \& 79.67 \& 75.80 \& 69.73 \& 75.11 \& Jan．1839；June， 1840 \& 10 \& $\delta_{m} N . \bigodot_{s}$ \& Blake． \& ＂＂

\hline 10 \& 71.00 \& S3．04 \& 75．13 \& 64.79 \& 73.49 \& 1831； 1833 \& 30 \& $6_{m} 2_{n} 6^{3}$ \& Schonburgh． \& Rep．Brit．Assoc． 1847.

\hline
\end{tabular}

JAIMAICA

2	．	．．	．	80.51	．	Oct．1855；Mar．1856	－ 6	$9 \frac{1}{2} \mathrm{~m} 3 \frac{1}{2} \mathrm{a}$	Col．W．B．Marlow， and J．G．Lawkins．	P．O．and S．I．Vol．I．
3	82.00	82.33	80.33	78.00	80.67				From Sir J．McGre－ gor＇s Office，Military Medical Dep．	Martin＇s Brit．Colonies，p． 5.
4	78.07	81.09	79.75	76,16	78.77	1832	I 0			Martin＇s Brit．＇Colonies，p． 57.

SAN DOIMINGO．

2	85.56 72.50	79.25 77.66	$\begin{aligned} & 78.40 \\ & 75.10 \end{aligned}$	82.63 69.62	$\begin{aligned} & 81.4^{6} \\ & 73.72 \end{aligned}$	May， 1782 ；Apr． 1783 1779	$\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}$	\ldots		

PORTO RICO．

GUIANA（BRITISH）

[^109]${ }^{2}$ The observing hours were $\epsilon_{\mathrm{m}} 8_{\mathrm{m}} 10_{\mathrm{m}}$ N． $2_{\mathrm{a}} 4_{\mathrm{a}} 6_{\mathrm{a}} 8_{\mathrm{a}} 1 \mathrm{O}_{\mathrm{a}}$ ．

	GUIANA（DUTCH）．									
	－	菏	号	䔍	辰	Series． Begins．Ends．	Extent yrs．mos．	Observing huUrs．	Observer．	References．
I	$80^{\circ} .35$	$80^{\circ} .45$	$81^{\circ} .40$	$79^{\circ} \cdot 52$	$80^{\circ} .43$	Feb．IS56；Dec． 1 \＄59		$6_{m} 2^{2} 6_{a}$	C．T．Hering．	P．O．and S．I．Vol．r．
2	77.78	78.02	78.74	78.08	78.15	1843； 1844	20	$\mathrm{m}_{\mathrm{m}} \mathrm{a}_{\mathrm{a}} \mathrm{a}^{\text {a }}$		Rep．Brit．Assoc．1847．
3	77.67	80.89	77.33	71． 36	76.81	July，1819；June，i820	10	$\mathrm{Gma}_{\mathrm{m}} \mathrm{N}, \mathrm{o}_{\mathrm{a}}$		＂6＂ 6 ＂ 6
4	79.33	80.51	82.73	78.64	80.30	Jan．1833；Feb． 1835	20	$7{ }_{71} 2_{3} 7_{2}$	Dieperink．	
5	80.30 78.12	83.24 78.27	33.60 80.00	79.10 77.61	81.56 78.50		$\begin{array}{ll}1 & 0 \\ 3 & 7\end{array}$		Massé． C．T．Hering．	$\text { S.O. " }{ }^{*}$
	78.12	78.27	80.00	77.61	78.50	May，I86I；Dec． 1865	37	$7 \mathrm{~m}{ }^{2}{ }^{\text {a }}$ a	C．1．Hering．	S．O．

NEW GRANADA．

1	79.70	79.22	78.71	78.88	79．13	Oct．	1862；Dec．1868	510	7 m 2a 9 m bis	Drs．W．T．White，\＆ J．P．Kluge．	S． O ．
2	\cdots	\cdots					1852	$\bigcirc 1$		Bertherd．	Manuscript．
3	\cdots				\cdots		1857	$\bigcirc 1$	$10_{m} 4_{\text {a }} \mathrm{IO}_{\mathrm{a}}$	Dr．E．Wricoschea．	P．O．and S．I．Voi．I．
4	59.54	59.54	58.10	59．18	59.09		\cdots	14			Kaemptz．
5	．	．－	．．	．．	．		1850	$\bigcirc 2$	$6_{m} 9_{m} \mathrm{~N} \cdot 3_{\mathrm{a}} \sigma_{\mathrm{a}}$	A．Fendler．	MS．in S．Coll．
6	．	77.90	．	．	．		1851	－ 6	$\bigodot_{\mathrm{r}} 9 \mathrm{~m} 3 \mathrm{ma}$		S．Coll．
7			．		\cdots		1849	$\bigcirc 1$	$9 \mathrm{~m} 3_{3}$	Major Emory．	Am．Acad．Trans．
8	83.35	．．	．	81.62	．	Dec．	1822；June，1823	$\bigcirc 7$	7 ma	Wright．	Rep．Brit．Assoc．I847．

VENEZUELA

BRAZIL．

1	68.20	6r．18	68．15	71.51	67.26			$\left\{\begin{array}{c} 6_{\mathrm{m}} 9_{\mathrm{m}} \mathrm{~N} \cdot 4_{\mathrm{a}} \\ 6_{\mathrm{a}} 8_{\mathrm{a}} \mathrm{I} 2_{\mathrm{a}} \end{array}\right.$	－${ }^{\text {an．．．．．}}$	Rep．Brit．Assoc． 1847.
2	79.60	8 r .40	81.40	80.13	80.63	Dec．1844；May， 1849	46		Deweg．	Blodget＇s Climatology．
3	79.44	75.62	80.11	80.62	78.95	1842	$1{ }^{1} 0$		Loudon．	Dove， 1853.
4	74.70	68.60	72.56	79.15	73.75	${ }^{1782 \%}{ }^{1788}$	$\begin{array}{ll}7 & 0 \\ 12 & 0\end{array}$	trihourly．	Dorta．	Rep．Brit．Assoc． 1847
5 6	77．81	72.37 70.76	76.09	82.45	77.18	Jan．1832；Dec． 1843	$\begin{array}{rr}12 & 0 \\ 0 & 5\end{array}$	$\underset{\text { dihourly，}}{\text { N．}}$	Gardner． King．	Sill．Journ． Dove， 1853.
									King．	Dove，1053．

BUBNOS AYRES．

CHIII．

1	\cdots	\cdots	－	66．19	－	Nov．1858；Mar． 1859		5		E．B．Dorsey．	P．O．and S．I．Vol．I．
2	．	53.90 53.48	．	\cdots	．	1827 1828		7			Dove， 1853 ．
4	52.47	46．85	47.77	59.90	51.75	Apr．1851；Mar． 1852		0	6 m 7		Dove．
5 6	61.42	56.82 53.90	61.54 ..	5	5	1853； 1854		6	biliourly．	MacKey． King．	Board of Trade． Dove．

Nore．－The heading of the seasons corresponds to those existing at the time in the northern hemisphere；for stations in south latitude they would be the opposite ones．

FCUADOR．

Name of Station．	蔦	它	永	冎	$\stackrel{8}{8}$	皆	荷	密	吕		涼	$\stackrel{\stackrel{\rightharpoonup}{\overleftrightarrow{~}}}{\substack{1}}$	$\stackrel{\text { ®．}}{0}$	\％	¢
1．Antisana ．	$-0^{\circ} 27^{\prime}$	$78^{\circ} 28^{\prime}$	13455	$43^{\circ} .11$	41° ． 11	$41^{\circ} .99$	$42^{\circ} .60$	$41^{\circ} .92$	$40^{\circ} .08$	$37^{\circ} \cdot 31$	$37^{\circ} \cdot 41$	$39^{\circ} .27$	$41^{\circ} .02$	$41^{\circ} .95$	$42^{\circ} \cdot 42$
2．Quito ．．．．	－0 14	7845	8970	58.24	60.98	60.04	59.86	60.62	59．00	59．18	60.94	61.34	59.95	60.53	
3．Quito ．．．．	－0 14	7845	8970	．．	．．	．．	．．	．	．	\cdots	－	．	．．	．．	

FAKKLAND ISLANDS．

PARAGUAY．

PFRU．

URUGUAY．

	FCUADOR．									
	号		$\begin{aligned} & \text { 品 } \\ & \frac{1}{3} \\ & \hline \end{aligned}$	岂	－	Series． Begins．Ends．	Extent	Observing HOURS．	Observer．	References．
1 2 3	42.17 60.17 60.26	38.27 59.71 60.08	40.75 60.61 63.50	42.21 .0 .72	40.85 60.89	Dec． $1845 ; ~ \begin{array}{c}\text { Dec．} 1846 \\ \text { 1825；} \\ \text { 1828 }\end{array}$	$\begin{array}{ll}1 & 1 \\ 2 & 6 \\ 2 & 3\end{array}$		Anguire． Hallarn．	Dove， 1853. Rep．Brit．Assoc． 1847. Kaemptz．

FALKLAND ISLANDS．

1	48.97	39.85	46.82	53.29	47.23	．．．	10			Rep．Brit．Assoc． 1847.
2	48.46	39.56	46.58	53.06	46.94		．．．．．	．．．．．．＊		Bridgewater Treatise．
3	48.95	39.86	46.81	52.73	47.09		10	N．	Friquinet．	Rep．Brit．Assoc．1847．

PATAGONIA．

1	－	－•	－•	－•	－	．．．．．．	．．	．	．\cdot ．\cdot ．${ }^{\text {a }}$	Rep．Brit．Assoc． 1847.
2	40.53	34.09	\cdots	－•	＊	1828	－ 7	bihourly．	King．	Dove， 1853.
3	36.55	\cdots	．	－	－•	＊．．．．．．．．．	．\cdot ．	$6_{\mathrm{m}} 9 \mathrm{~m}$ N． $3_{\mathrm{a}} 6 \mathrm{am}$	．．．．．．．．	Rep．Brit．Assoc． 1847.

PARAGUAY．

1	75．34	－	－	82.87	．	Dec．1853；	1854	－ 8	δ_{m} N． $4_{a} 9^{3}$	Hopkins．	S．Coll．

PWRU．

URUGUAY．

Note．－The beading of the seasons corresponds to those existing at the time in the northerm hemisphere；for stations in south latitude they would be the opposite ones．

gRAPHICAL REPRESENTATION

OF THE PRECEDING

TABULAR RESULTS BY ISOTHERMAL CHARTS.

EXPLANATION

THE ISOTHERUAL CHARTS ACCOMPANYING THIS PAPER.

The three accompanying charts have been constructed to show the distribution of the atmospheric temperature within the limits of the United States, on the average during the year, and for the winter and summer seasons.

The great value of the graphical method consists in its capacity of bringing into a connected view the result of a large mass of apparently disconnected figures, and thus presenting their relations to the eye. In the present case, these relations depend on the geographical and hypsometrical features of the country.

The results brought out in these tables form the basis of the charts. They are laid down by means of curves connecting places of equal temperature. These curves may be conceived as forming the intersections of the earth's surface by a series of thermal surfaces of equal temperature one above the other and for equal differences of temperature. The difference, here adopted, is 4° Fah., and is the same for all the charts. During the winter season the decrease of temperature between the southern and northern limits of the United States is greater than during the summer season, hence a greater number of curves appear on the chart showing the distribution of temperature in the winter than on that for the year, and the chart for the distribution in summer has the least number of curves. The limiting curves are as follows: For the cold season 4° to 72° Fah., for the yearly average 36° to 76° Fah., and for the warm season 56° to 88° Fah.

From the above designation of the isothermals it follows that each curve must be continuous no matter how tortuous its course may be, that is, it cannot abruptly come to an end; of this instructive examples are presented on the chart for the year by the curve of $48^{\circ} \mathrm{Fah}$., and on the chart for the summer by the curve of 68° Fah. The construction of the curves for the yearly distribution was found slightly more troublesome than those for either of the other charts, owing to the way in which the mean temperature results, from the monthly means, are influenced by the annual variation. Some difficulty was experienced in tracing out the summer curves for the western part of California, owing to the well-known exceptional and remarkable distribution of its temperature, of which more will be said further on.

The want of a reliable hypsometric chart of the United States was seriously felt, not one only on which the existence of hills and mountains should be correctly indicated as regards position, but one, on which the actual elevations are indicated by contour lines. A rough hypsometric chart of the latter description was constructed by me to aid in the tracing out of the thermal curves, but the latter are
not what they might be, respecting accuracy in detail, were we in possession of an elaborate hypsometric chart.

On each chart was plotted the mean temperature for the respective period, corrected for daily variation, if necessary, for all the available stations within the area of the chart. On the east of the Mississippi all series extending over five years or more were given to the nearest tenth of a degree of Fahrenheit, those of less than five years' duration were set down to the nearest whole degree.

The decimal point marked the position of the place. For stations west of the Mississippi the limit of 3° was adopted instead of 5°. The curves were constructed with due regard to the elevations of the ground, producing a resemblance, for short distances, of the thermal curves to contour lines of equal elevation. The isothermals thus constructed are not reduced to the sea level for the following reasons. In the first place, we desire a knowledge of the true distribution of the temperature near the surface to which we are actually exposed and which affects agricultural and other pursuits, and not of any artificial distribution under special, qualified conditions such as the reduction to the sea level; in fact we might as well correct also for propinquity to the sea, for prevailing wind, for proximity of table-land or large lakes, nature of the soil, and a variety of other disturbing causes, which process would finally bring about a close conformity of the isothermals with parallels of latitude, and would represent what has been called the solar climate. Moreover, we do not possess the precise data for such a reduction; thus to experience a diminution of $1^{\circ} \mathrm{Fah}$. in the atmospheric temperature, near the surface, the average values vary between 250 and 500 feet of rise, and at elevations beyond a mile, the change in altitude must be greater for the same difference in temperature. Besides, the law is different in the different seasons. It is proper to connect the decrease of temperature in altitude with the decrease of pressure to which it is supposed proportional (when starting from the absolute zero of temperature), a fall of 1° of temperature corresponds approximately to a decrease in pressure of nearly 0.25 inch, the barometric column indicating about 29 inches, and to 0.35 inch nearly for pressure at and below 27 inches.

On the other hand, if the meteorological stations were sufficiently numerous and equally distributed in area, the isothermal curves drawn among them would themselves furnish the best means of ascertaining the separate effects on the climate (temperature) of the various modifying elements of elevation, slope, surface condition (wooded or barren), and many other circumstances.

If we review the indications presented by each chart separately and notice only the leading characteristic features of the distribution of temperature, we may conveniently divide the area of the United States into two parts, viz.: that east of the 100 th meridian, of comparatively small elevation, generally below 1000 feet and only exceptionally rising to 4000 , and that west of this meridian, with an elevation generally above 4000 feet, and not unfrequently attaining the altitude of 10,000 feet and above.

When referring to the isothermal curves in the description of the charts, those referring to the yearly period will simply be designated as "isothermals," those referring to the winter as "isocheimals," and those referring to the summer as " isotherals."

As already pointed out, the position of the isothermal curves is intimately connected with the hypsometric features of the country, and this direct dependence has consequently been made the basis of the above division, greater or less elevation constituting the principal cause of their deflections. This appears, for instance, conspicuously in the isothermal of 52°, depending on the direction of the Apalachian range, and in the isothermal of 44°, depending on the directions of the Rocky Mountains, the Cascade range, and the Sierra Nevada.

In the eastern part of the United States, the distribution of heat appears normal, as indicated by the isothermals between 44° and 68° which follow, with no great departures, parallels of latitude; in the western part, on the contrary, it is altogether more irregular, and the pure solar climate is apparently subverted, the distribution of temperature on the Pacific shore being governed by a system almost at right angles to that in the eastern part, and possessing an intermediate system of distribution at the head of the Gulf of California.

In the winter months, the proximity of the Gulf stream to the Atlantic sea-board has the effect of elevating the temperature in the vicinity of the ocean, the amount being 0° in Florida, about 4° in North Carolina, and about 8° or 10° in Massachusetts; in the summer months, the effect is reversed, as shown by the isotherals curving southwards; this is due to the cold current running southwards between the coast and the gulf stream, and the depression produced would be still greater but for the circumstance of the prevalence of westerly winds which carry the heated air to seaward. The depressing effect, however, in amount, is less than one-half that given for the opposite season. It would appear that in summer nearly the whole of Florida enjoys an almost equal temperature, barely rising above 80° Fah.; with this we connect the fact that in Florida summer constitutes the rainy season.

On the yearly average the vicinity of the Atlantic is apparently without any direct effect on the temperature of the coast.

Passing now to the influence of the great lakes we shall find it similar, viz.: a warming effect in winter, rising to about 10°, and a cooling effect in summer, depressing about 5°, whereas, during the year the presence or absence of this body of water would seem to be of no particular consequence as regards mean temperature.

The coldest region is in northern Minnesota and northeastern Dakota, the isocheimal of 4° appearing along the low elevations near Red Lake in Minnesota. It is near these regions that the extremely cold waves, which occasionally sweep over the eastern and southern states during the winter appear to enter the United States.

In the western part of the country we recognize as the most remarkable feature, the great uniformity of the distribution of temperature along the Pacific coast as exhibited in the isothermal of 52°, skirting the coast for about 650 miles between San Francisco and the northwestern part of Washington Territory; the same feature is indicated by the direction of the isocheimals, approximating to parallelism with that of the coast and again in the isotheral of 60°. The direct influence of the Pacific Ocean on the climate of the western states (west of 100° longitude) is heightened by the presence of a cool current running southward close along the coast. The presence of the cool occan, together with the prevailing westerly winds, 14 February, 1 S75.
sweeping the air which had been resting over the ocean across a great portion of the country, thus impresses the chief character on the climate, viz.: a comparatively high and uniformly distributed winter temperature, which is even felt beyond the Rocky Mountains in central Montana, to which latent heat is carried by the moist winds, as clearly exhibited in my Rain Chart ${ }^{1}$ for the winter season. With the high winter temperature, we associate the fact of comparatively great precipitation. Secondly, we are impressed with the comparatively low summer temperature over the Pacific States; in fact the coldest place in the whole United States, at this season, excepting only the high mountain ranges and peaks, is just outside the Golden Gate, Bay of San Francisco, where we encounter the isotheral of 56°, which appears nowhere else during this season. To exhibit the contrast more forcibly, we have in the corresponding season and latitude on the Atlantic side (near the mouth of Chesapeake Bay, a temperature higher by as much as 18°. With this low summer temperature we connect the fact of but little precipitation.

In winter this contrast between the two (opposite) coasts is of the opposite kind, the isocheimal of 52°, off the Golden Gate, corresponding to the isocheimal of 42°, off the mouth of the Chesapeake, a temperature lower by 10°. Finally, we notice the extraordinary difference in the range of the mean temperature at the extreme seasons, this being nearly 4° on the Pacific, and nearly 33° on the Atlantic.

We next notice the greater accumulation of heat in valleys than in the plains, the most remarkable instance being that of the Joaquin Valley and its northern prolongation, the Sacramento Valley. This feature is most apparent in the summer season, when these valleys seem to become reservoirs of heat, and when their sloping sides are most exposed to insolation. The mean summer temperature in the central part of San Joaquin Valley rises above 84°, when on the sea-coast, close by, it is below 60°. Other instances of this kind are presented on the chart for the summer temperature, by the heated plains of the Columbia River, by the region along the Colorado and Gila Rivers, and, to return to the eastern portion of the country, by the lower valley of the Rio Grande, where the temperature reaches 84°, by the Hudson Valley, and lastly by that of the St. Lawrence.

The hottest region in the United States is along the lower course of the Colorado and Gila Rivers, where we meet with the isotheral of 88°.

It is needless to follow out, in further detail, the various features presented by the charts, since they address themselves sufficiently to the eye, nor has it been deemed necessary to construct isothermal charts for the intermediate seasons of spring and autumn, which, being periods of transition, cannot present features as striking as those exhibited by the extreme seasons.

The total number of results from series plotted on the charts and from which the isothermal curves were constructed are 1300 nearly for the year, 1450 nearly for the winter, and 1500 nearly for the summer. For the base chart, the Smithsonian Institution is indebted to Prof. Francis A. Walker, Superintendent U. S. Census.

[^110]
DISCUSSION

OF THE

DAILY FLUCTUATION OF THE ATMOSPHERIC TEMPERATURE,
 WITII

TABLES OF HOURLY VALUES AND OF HOURLY DIFFERENCES FROM THE DAILY MEAN,

FOR
EACH MONTH AND THE YEAR, at Various places in north america.

SECTION II.

discussion 0f The daily fldctuation of tile atMospheric TEMPERATURE,

WITH
tables of hourly values and of hourly differences from the datly mean, for each month and the year,
AT VARIOUS PLACES IN NORTII $\Lambda M E R I C A$.

The Daily Fluctuation of the Temperature.-The daily variation of the temperature, due to the change in the sun's altitude, and dependent upon the length of the day or time of insolation, is principally affected by the amount of aqueous vapor suspended in the atmosphere, by the serenity or cloudiness of the sky, and by the elevation of the ground. As an accumulative effect, the greatest heat will occur some time after the sun has reached its greatest altitude, and the greatest cold some time after its greatest depression. Even in midwinter, in the high latitudes of the Arctic Regions and in the continued absence of the sun, this periodic fluctuation is still perceptible, which may be accounted for by the progress of waves of heat and by its transfer from more southern and still partly insolated regions. In midsummer, when the sun remains above the horizon, the range of the daily fluctuation in the Arctic Regions is very small owing to the small variation in the sun's altitude. As an instance of a small daily fluctuation in a low latitude, Key West near the northern tropic may be cited; here the great humidity of the air tends to confine the daily amplitude within narrow limits. As an example of the opposite effect or of an excessive daily variation, Albuquerque in the valley of the Rio Grande may be cited; it is due to the dryness of the air and the great altitude of the place.

For the investigation of the daily fluctuation hourly observations are quite sufficient, but they should be continued for several years, whenever it is desirable to bring out reliable values of the average daily amplitude for each month. It is in these investigations that the want of self-registering instruments or thermographs is most felt. Our records of temperatures, continued regularly during day and night, even for a single year, are very scanty, and there are but three stations where the observations continue over a sufficiently long period; these are Toronto, Canada, and Mohawk, New York, with full hourly records extending over six years at each place, and Sitka, Alaska, with records over more than twice this period. 'To Dr.

James Lewis, of Mohawk, is due the merit of having early brought into operation a thermograph of his own invention.

The collection of monthly values for daily fluctuation comprises the results from bihourly, hourly, and semi-hourly observations at 18 stations, see first table accompanying this section of the paper. They are arranged according to latitude. From these the second series of tables is derived as follows: For each month separately, the daily mean temperature t is subtracted from the observed temperature at any hour, and the difference is set down; a positive sign thus indicates a higher, and a negative sign a lower temperature than that of the day. These tables of differences would furnish the true diurnal fluctuation, if the effect of the annual fluctuation was fully eliminated, and if the daily mean was accurately known. The amount of the annual fluctuation in one day is generally small when compared with the daily fluctuation, and corrections for it need only be applied in extreme cases, as for instance in the Arctic Regions, where the daily range is small in comparison with the annual range; at Van Rensselaer harbor and Port Kennedy the maximum effect for 24 hours amounts to a little more than half a degree (Fah.), on account of which the maximum correction for midnight and the hour preceding it would be one-fourth of a degree, and proportionally less for the intermediate hours. This correction is greatest in April and October, and insensible in July and January.

These tables of hourly differences furnish at once the means of correcting any irregularly observed series, and the mean temperature thus corrected will be the same as that found from an unbroken and regular series of hourly observations. The chief value of these tables lies in this application, and in any special case we have only to select the table for that locality where the thermal conditions may be supposed the same, or at least most nearly resembling those at the locality for which the interpolation or reduction is to be made. For the purpose of facilitating this application, a series of mean values for certain selected combinations of hours is added to each table-these require some further explanation.

These combinations refer to those observing hours from which most probably the nearest approximation to the mean temperature of the day may readily be deduced, not only for the entire year, but also for each month and for any locality, and apply to the cases of record limited to two, three, and four entries a day. The tabular corrections to the selected four hour combination specially, become serviceable for self-registering instruments, when with the least labor (reading off the trace or punctures at those four hours) we wish to obtain a reliable daily mean short of the tedious process of operating on 24 equidistant records.

About the year 1815 , Prof. C. Dewey examined ${ }^{1}$ the hours 7 A. M., 2 and 9 P. M., adopted by the Manheim ${ }^{2}$ Meteorological Society, with reference to their applica-. bility to our climate, and in 1816 and 1817 instituted a short series of hourly observations at Williamstown which proved the fitness of these hours for observation in the United States. 'These results he communicated to Secretary Calhoun,

[^111]and the hours 7, 2, 9 were, in consequence, adopted for the system of meteorological observations at the military posts of the United States, organized in 1819 under the direction of the surgeon-general of the United States Army. Although these hours were at one time abandoned (between 1841 and 1854, when the epochs a little before sunrise, 3 and 9 P. M. were substituted), they were re-established in 1855 , mainly through the exertions of Dr. Coolidge, U. S. A. The convenience and satisfactory character of the results of these hours, also led to their adoption in the meteorological observations undertaken conjointly by the United States Patent Office and the Smithsonian Institution in 1854, and they have since been adhered to by the latter Institution. The recognition of the fact that the results by the three hours 7, 2, 9 can be greatly improved by taking one-fourth of the ordinates at 7,2 , and twice 9 in the place of one-third of the ordinates at 7, 2,9 , appears also to be due to Dr. Dewey.

From the present collection of results it appears that the homonymous hours, 10,10 , give differences of less than $\pm 0^{\circ} .5$ in the annual mean, that the triplets, $6,2,9$, and equidistant hours, $6,2,10$, are of nearly equal value, and but slightly superior to the preceding pair of hours, the former combination producing a higher, the latter a lower mean than the true value of twenty-four equidistant observations, but deviating less than $0^{\circ} .4$. The combination 7, 2, 9 , produces a result nearly $0^{\circ} .5$ in excess, whereas the modification 7, 2,9 (bis) diminishes this difference to nearly $0^{\circ} .1$ with a change of signs for different stations. The four-hour combination 3, 9, 3, 9, adopted by the Royal Society, is the best of all, being generally less than $0^{\circ} .1$ above the true daily mean. In the following table of differences from the daily mean, of the average temperature observed at 7, 2, 9 , the sign + indicates an excess, the sign - a defect of the latter average. The first line for each station answers to the combination $\frac{1}{3}(7,2,9)$, the second to the modification $\frac{1}{4}[7,2,9(b i s)]$.

Station．	皆	家	$\begin{aligned} & \text { 豆 } \\ & \text { 豆 } \end{aligned}$	\dot{B}	$\dot{\text { 学 }}$	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\Xi}}$	三		$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \dot{\sim} \end{gathered}$	O	8	$\dot{\sim}$	岕
Van Rensselaer harb．$\phi=78^{\circ} .6$	$\begin{aligned} & \circ \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 0 \\ +0.5 \\ +0.5 \end{array}$	$\begin{array}{r} 0 . \\ +0.5 \\ +0.1 \end{array}$	$\begin{aligned} & +0.8 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.8 \\ & +0.5 \end{aligned}$	$\begin{array}{r} 0 . \\ +0.7 \\ +0.5 \end{array}$	$\begin{array}{r} 0 \\ 0.0 \\ -0.0 \end{array}$	$\begin{gathered} 0 \\ +0.4 \\ +0.2 \end{gathered}$	0 +0.4 0.0	$\begin{array}{r} 0 \\ -0.1 \\ -0.3 \end{array}$	$\begin{gathered} 0 . \\ -0.2 \\ --0.3 \end{gathered}$	$\begin{aligned} & +0 . i \\ & +0 . i \end{aligned}$	$\begin{aligned} & 0 \\ & +0.3 \\ & +0.1 \end{aligned}$
Fort Kennedy． $\phi=72^{\circ} .0$	0.0 +0.1	+0.3 +0.2	$+\begin{aligned} & +0.4 \\ & -0.1 \end{aligned}$	$+0.4$	$\begin{array}{r} +0.7 \\ 0.0 \end{array}$	$\begin{array}{r} +0.7 \\ 0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +0.2 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.1 \\ 0.0 \end{array}$	0.0 -0.2	－0．1	$\begin{array}{r} +0.3 \\ 0.0 \end{array}$
$\begin{aligned} & \text { Sitka (I3 yrs.). } \\ & \phi=57^{\circ} . \mathrm{r} \end{aligned}$	$\begin{array}{r} +0.23 \\ +0.06 \end{array}$	$\begin{aligned} & +0.14 \\ & -0.13 \end{aligned}$	$\begin{array}{\|} +0.11 \\ -0.33 \end{array}$	$+0.44$	$\begin{aligned} & +0.72 \\ & +0.07 \end{aligned}$	$\begin{aligned} & +0.69 \\ & +0.12 \end{aligned}$	+0.69 +0.12	$\begin{array}{\|} +0.40 \\ -0.13 \end{array}$	$\left\lvert\, \begin{aligned} & +0.27 \\ & -0.16 \end{aligned}\right.$	$+0.27$	$\begin{aligned} & +0.21 \\ & +0.03 \end{aligned}$	$\begin{array}{\|} +0.12 \\ -0.01 \end{array}$	$\begin{aligned} & +0.36 \\ & -0.04 \end{aligned}$
Thunder Bay Isl． $\phi=45^{\circ} .0$	$\begin{aligned} & +0.5 \\ & +0.4 \end{aligned}$		$\begin{aligned} & +0.5 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.2 \end{array}$	$\begin{array}{r} +0.9 \\ +0.3 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.3 \\ -0.1 \end{array}$	$\begin{array}{r} +0.4 \\ 0.0 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.52 \\ & +0.15 \end{aligned}$
Toronto． $\phi=43^{\circ} .6$	$\begin{aligned} & +0.42 \\ & +0.28 \end{aligned}$	$\begin{array}{r} +0.03 \\ -0.13 \end{array}$	$\left\|\begin{array}{\|} +0.12 \\ -0.19 \end{array}\right\|$	$\begin{aligned} & +0.38 \\ & -0.17 \end{aligned}$	$\begin{aligned} & +0.8 I \\ & +0.04 \end{aligned}$	+0.72 -0.07	$\begin{aligned} & +1.01 \\ & -0.02 \end{aligned}$	$\begin{array}{r} +0.48 \\ -0.35 \end{array}$	$\begin{aligned} & +0.37 \\ & +0.12 \end{aligned}$	$+0.32$	$\begin{aligned} & +0.29 \\ & +0.10 \end{aligned}$	$\begin{aligned} & +\mathbf{+} .19 \\ & +-0.10 \end{aligned}$	+0.44 -0.05
Mohawk． $\phi=43^{\circ} .0$	+0.28 +0.14	$\begin{array}{r} +0.33 \\ +0.29 \end{array}$	$\begin{aligned} & +0.14 \\ & +0.16 \end{aligned}$	$\begin{array}{r} +0.13 \\ +0.09 \end{array}$	$\begin{aligned} & +0.28 \\ & +0.14 \end{aligned}$	$\begin{array}{r} +0.50 \\ +0.24 \end{array}$	$\begin{array}{r}+0.29 \\ -0.05 \\ \hline\end{array}$	$\begin{aligned} & +0.19 \\ & -0.07 \end{aligned}$	$\begin{array}{r} +0.15 \\ +0.10 \end{array}$	$\begin{array}{r} +0.21 \\ +0.05 \end{array}$	$\begin{array}{\|} +0.09 \\ -0.05 \end{array}$	$\begin{aligned} & +0.29 \\ & +0.18 \end{aligned}$	$\begin{aligned} & +0.24 \\ & +0.08 \end{aligned}$
Amherst． $\phi=42^{\circ} \cdot 4$	+0.52 +0.01	$\begin{array}{r} +0.33 \\ +0.18 \end{array}$	$\begin{array}{r} +0.62 \\ 0.00 \end{array}$	$\begin{array}{r} +0.89 \\ +0.23 \end{array}$	$\begin{array}{r} +0.96 \\ +0.30 \end{array}$	$\begin{array}{r} +0.93 \\ +0.20 \end{array}$	$\begin{aligned} & +0.87 \\ & -0.11 \end{aligned}$	$\begin{aligned} & +0.59 \\ & +0.04 \end{aligned}$	$\begin{array}{r} +0.78 \\ +0.07 \end{array}$	$\begin{aligned} & +0.52 \\ & +0.12 \end{aligned}$	$\begin{aligned} & +0.31 \\ & +0.03 \end{aligned}$	$\begin{array}{r} +0.55 \\ +0.24 \end{array}$	$\begin{gathered} +0.65 \\ +0.11 \end{gathered}$
New Haven． $\phi=4 I^{\circ} \cdot 3$	$\begin{aligned} & +0.28 \\ & -0.06 \end{aligned}$	$\begin{aligned} & +0.21 \\ & -0.15 \end{aligned}$	$\left\|\begin{array}{r} +0.30 \\ -0.19 \end{array}\right\|$	$\begin{aligned} & +0.36 \\ & -0.23 \end{aligned}$	$\begin{aligned} & +0.88 \\ & +0.10 \end{aligned}$	$\begin{aligned} & +1.11 \\ & +0.38 \end{aligned}$	$\begin{aligned} & +0.83 \\ & +0.21 \end{aligned}$	$\begin{aligned} & +0.64 \\ & +0.07 \end{aligned}$	$\begin{array}{r} +0.53 \\ +0.02 \end{array}$	$\begin{array}{r} +0.45 \\ -0.03 \end{array}$	$\begin{array}{r} +0.34 \\ +0.01 \end{array}$	$\begin{aligned} & +0.37 \\ & +0.02 \end{aligned}$	$\begin{aligned} & +0.53 \\ & +0.01 \end{aligned}$
Frankford Arsen＇l $\phi=40^{\circ} .0$	$\begin{array}{r} +0.29 \\ -0.21 \end{array}$	$\begin{array}{r} +0.39 \\ -0.08 \end{array}$	+0.37 -0.07	$\begin{array}{r} +0.30 \\ -0.25 \end{array}$	$\begin{array}{r} +0.79 \\ +\mathbf{+ 0 . 1 4} \end{array}$	$\begin{array}{r} +1.00 \\ +0.09 \end{array}$	$\begin{aligned} & +1.02 \\ & +0.11 \end{aligned}$	+0.78 -0.14	+0.65 -0.35	+0.75 -0.09	$+0.34$	$\begin{aligned} & +0.52 \\ & -0.01 \end{aligned}$	$\begin{aligned} & +0.59 \\ & -0.11 \end{aligned}$
Philadelphia． $\phi=40^{\circ} .0$	$\begin{aligned} & +0.28 \\ & +0.17 \end{aligned}$	$\begin{aligned} & +0.22 \\ & +0.09 \end{aligned}$	$\begin{array}{\|} +0.03 \\ -0.24 \end{array}$	$\begin{aligned} & +0.59 \\ & +0.23 \end{aligned}$	$\begin{aligned} & +0.67 \\ & +0.20 \end{aligned}$	$\begin{aligned} & +0.85 \\ & +0.25 \end{aligned}$	$\begin{aligned} & +0.68 \\ & +0.15 \end{aligned}$	$\begin{array}{r} +0.53 \\ +0.04 \end{array}$	+0.40 -0.19	$\begin{aligned} & +0.39 \\ & -0.03 \end{aligned}$	$\begin{aligned} & +0.28 \\ & +0.02 \end{aligned}$	$\begin{aligned} & +0.37 \\ & +0.27 \end{aligned}$	$\begin{aligned} & +0.44 \\ & +0.08 \end{aligned}$
Fort Morgan． $\phi=30^{\circ} .2$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 0.0 \\ -0.1 \end{array}$	-0.1	$\begin{array}{r} +0.6 \\ +0.4 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.3 \\ 0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.1 \end{aligned}$
Key West． $\phi=24^{\circ} .6$	-0.02 -0.16	$\begin{aligned} & -0.21 \\ & -0.28 \end{aligned}$	-0.02	$\begin{array}{r} +0.09 \\ -0.17 \end{array}$	$\begin{aligned} & +0.24 \\ & -0.15 \end{aligned}$	-0.05	$\begin{array}{r} +0.21 \\ -0.11 \end{array}$	$+0.09$	$\begin{aligned} & +0.09 \\ & -0.07 \end{aligned}$	$\begin{aligned} & +0.10 \\ & -0.06 \end{aligned}$	$\begin{aligned} & -0.09 \\ & -0.17 \end{aligned}$	$\begin{array}{r} -0.28 \\ -0.29 \end{array}$	$\left\lvert\, \begin{aligned} & +0.01 \\ & -0.19 \end{aligned}\right.$

With the exception of Key West，where the proximity of the gulf stream pro－ duces an anomaly，the combination $\frac{1}{4}(7,2,9(b i s))$ is superior to the simple mean for the three hours，and，in general，the results at the different stations are suffi－ ciently accordant to permit monthly average values of differences to be taken；omit－ ting，therefore，the first three stations and the last station，we find the following mean values applicable to most localities in the United States between latitudes 30° and 45° and east of the Mississippi．

Table of average differences，in temperature，of the mean derived from the observations at $7,2,9$ ，also as deduced from 7，2， 9 （bis），from the true daily mean； + in excess，－in defect of the true valuc．Expressed in degrees of the Fahren－ heit scale．

Combrnation．	号	定	$\begin{aligned} & \text { 号 } \\ & \text { 总 } \end{aligned}$	㤩	育	追	宝	$\begin{aligned} & \text { 䓹 } \\ & \text { 品 } \end{aligned}$	总	¢	\％	$\stackrel{\circ}{\circ}$	芯
Hours： $\begin{aligned} 7,2,9 \\ 7,2,9(\text { bis })\end{aligned}$	$\begin{gathered} 0 \\ +0.32 \\ +0.09 \end{gathered}$	$\begin{aligned} & 0.0 \\ & +0.26 \\ & +0.06 \end{aligned}$	$\begin{gathered} 0 . \\ +0.25 \\ -0.05 \end{gathered}$	$\begin{aligned} & 0.8 \\ & +0.48 \\ & +0.06 \end{aligned}$	$\begin{aligned} & +0^{\circ} 69 \\ & +0.18 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.79 \\ & +0.16 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.76 \\ & +0.10 \end{aligned}$	$\begin{aligned} & +0.68 \\ & +0.06 \\ & -0.06 \end{aligned}$	$\begin{gathered} 0 \\ +0.42 \\ -0.09 \end{gathered}$	$\begin{aligned} & 0 . \\ & +0.42 \\ & +0.03 \end{aligned}$	$\begin{gathered} 0 \\ +0.26 \\ +0.01 \end{gathered}$	¢ +0.34 +0.14	\％ +0.47 +0.05

In order to make use of the values of this table，as corrections to means derived from observations at these hours，the sign is to be reversed．

The above tabular values are derived from more than 22 years of hourly observations made at eight stations. 'The assumption that the average of hourly observations equals the daily average, is so nearly correct as to require no further consideration; thus at Thunder Bay Island, Mich., the mean of 24 observations taken at the full hours is $42^{\circ} .84$, the mean of 24 observations taken at the intermediate half hours is $42^{\circ} .83$, which is also the mean of the 48 semi-hourly observations.

Times of Sunrise and Sunset in different Latitudes and for every tenth day in each month.-We meet frequently, particularly in the older meteorological observations, with records taken at the times of sumrise and sunset; this practice, now generally superseded by better selected fixed epochs; still obliges us to resort to tables of times of sunrise and sunset, with the day of the month and the latitude as arguments, whenever we aim at a careful reduction of the recorded temperatures.

In computing such a table for various latitudes and to answer for any year, the deduced times can only be more or less close approximations on account of the small variations, in different years, in the sun's declination, in its distance, and in the equation of time, on the same nominal day. Fortunately a few minutes of error with a tendency to cancel itself for long series, are of little moment in the meteorological record. The tabular quantities will generally be found correct within 2 or 3 minutes, excepting in the higher latitudes, where this limit may occasionally be slightly exceeded.

The times were computed by the formulæ

$$
\begin{gathered}
\cos t=\frac{\cos \zeta-\sin \phi \sin \delta}{\cos \phi \cos \delta} \quad \text { and } \quad \zeta=90^{\circ}+r-\pi+s+d=90^{\circ} 51^{\prime} \text { nearly. } \\
\text { where } \phi=\text { latitude, } \\
\delta=\text { sun's declination, } \\
\zeta=\text { sun's zenith distance }, \\
t=\text { hour angle },
\end{gathered} \quad \begin{aligned}
& \pi=\text { sun's semidiameter, } \\
& \\
& d=\text { dip of horizontal parallax },
\end{aligned}
$$

The apparent time was changed to mean time by application of the equation of time (E).

The value of δ may vary in different years, for the same nominal day, by $\pm 9^{\prime}$ nearly, from its average amount; the value of s hardly varies as much as $\pm 0^{\prime} .5$; the variations in E for the same nominal day amount to less than $\pm \frac{1}{4}$ of a minute, and the maximum half-daily change is of the same amount. The use of the value of δ for the meridian of Washington instead of any other meridian within the limits of the United States, cannot occasion an error as great as that previously noted for δ. The changes in the horizontal refraction due to extremes of temperature (and atmospheric pressure) may amount, at most, to about $\pm 8^{\prime}$ from the mean state, assumed at 35^{\prime} (temp. $50^{\circ} \mathrm{Fah}$.; pressure 30 inch .). The value of ζ was taken as constant, δ was taken from the ephemeris for the times of sunrise and set for those parts of the year where the use of the meridional value would introduce a notable defect. Both, δ and E, refer to average years.

Time of Sunset.

Latitude.

Date.	23°	24°	25°	26°	27°	28°	29°	30°	31°	32°	33°	34°	35°
Jan. I	$5^{\text {b }} 26^{\text {m }}$	$5^{\text {h }} 24^{\text {m }}$	$5^{\text {h } 22^{\mathrm{m}}}$	$5^{\text {b } 20{ }^{\text {m }}}$	$5^{\text {h }} 18 \mathrm{~m}$	$5^{\text {a }} 16^{\mathrm{m}}$	$5^{\text {b }} 4^{\text {m }}$	$5^{\text {b }} \mathrm{I}^{\text {m }}$	$5^{\text {b }} 09^{\text {m }}$	$5^{\text {b }} 7^{\text {m }}$	$5^{\text {b }} 05^{\text {m }}$	$5^{\text {b }} 02^{\mathrm{m}}$	$5^{\text {h }} 00^{\text {m }}$
	534	532	530	528	526	524	522	520	518	$5{ }^{\text {r'6 }}$	514	5 II	509
	540	539	537	535	534	532	530	528	526	524	522	520	519
Feb. I	548	547	545	543	542	540	539	538	536	534	532	530	529
	555	554	552	551	550	548	547	546	545	543	542	540	539
	600	559	558	557	556	555	554	554	553	55^{2}	55^{1}	549	548
Mar. I	604	603	603	602	602	602	6 or	600	600	559	55^{8}	557	55^{6}
	608	608	608	607	607	607	606	606	605	605	604	604	604
	612	612	612	612	612	612	6 12	612	612	612	613	613	$6{ }^{1} 3$
Apr. I	615	616	6 17j	618	618	618	619	619	620	621	621	622	622
	619	620	621	621	622	623	624	6. 25	625	626	627	628	629
	624	625	626	627	628	629	630	63^{1}	633	634	635	637	63^{8}
May I	628	630	$63 \mathrm{3I}$	632	633	${ }_{6} 35$	636	638	639	641	643	644	646
	632	${ }_{6}^{6} 34$	${ }_{6} 35$	${ }_{6}^{6} 36$	${ }_{6}^{6} 38$	${ }_{6} 6$	642	644	646	648	650	652	653
	636	638	640	642	644	646	648	650	652	655	657	659	7 OI
June I	64 I	643	645	647	649	651	654	656	658	7 or	703	706	708
11	645	647	649	651	653	655	658	7 \%o	702	705	708	7 If	714
	648	650	652	654	657	659	7 or	703	705	708	711	714	717
July 1	649	651	653	655	657	659	702	704	706	709	712		
1 I	6 6 6	651 6 6	653 650	655 652	657 654	659 656	702 658	704	$7{ }^{7} 07$	709	712 7 7	714	716
	647	648	650	652	654	656	658	700	$7{ }^{\circ}$	705	7 os	710	712
ug.													
1	636	637	${ }_{6} 38$	639	641	642	643	645	647	648	650	652	654
	628	629	630	631	${ }^{6} 3^{2}$	633	634	636	637	639	640	648	642
Sept. I	618	619	620	620	621	622	623	624	624	625	626	627	628
	608	6	609	6 10	610	610	611	612	612	613	613	614	614
	558	55^{8}	558	55^{8}	558	558	559	559	559	559	559	559	559
Oct.	548	548	548	547	547	547		546		546			
1 I	539	538	537	537	536	535	535	534	534	533	532	532	531
	530	529	528	528	527	526	525	524	522	521	520	519	518
Nov. I	523	522	520	519	518	516	515	514	5×2	511	509	508	506
	517	516	514	512	${ }_{5} 11$	509	508	506	504	502	500	458	457
	515	514	512	5 1о	508	506	504	502	500	458	456	454	452
Dec.	514	512	510	508	506	504	502	500	458	455	453	450	448
	516	514	5.12	510	508	506	504	502	50	457	454	451	449
	521	519	516	514	512	5 10	507	505	503	500	458	455	453

Time of Sunset.-Continued.
Latitude.

Time of Sunset.-Continued. Latitude.												
Date.	49°	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°
Jan. I	$4^{\text {b }} \mathrm{I}^{\text {ma }}$	$4^{\mathrm{h}} \mathrm{O} \mathrm{S}^{\mathrm{m}}$	$4^{\text {b }} \mathrm{O}^{\text {m }}$	$3^{\text {b }} 58$	$3^{\text {h }} 53^{\text {m }}$	$3^{\text {b }} 4 \delta^{\text {m }}$	$3^{\text {b }} 43^{\text {m }}$	$3^{\text {h }} 37^{\text {m }}$	$3^{\mathrm{h}} 3 \mathrm{olm}^{\text {m }}$	$3^{\text {h }} 22^{\text {m }}$	$3^{\text {b }} 14^{m}$	$3^{\text {b }} \mathrm{O}^{\text {m }}$
	426	422	417	412	4 os	403	358	352	346	339	$\begin{array}{ll}3 & 32 \\ 3 & 5\end{array}$	$\begin{array}{ll}3 & 24 \\ 3 & 46\end{array}$
	44°	436	432	428	424	420	415	4 10	404	359	353	346
Feb. I	458	455	451	448	445	$4{ }^{41}$	438	434	429	425	420	415
,	514	512	510	507	504	502	459	456	453	450	446	442
	531	530	528	526	5^{24}	522	520	518	516	513	510	507
Mar. . 1.	544	543	541	539	538	537	536	535	534	532	530	528
11	559	559	558	568	557	556	556	555	555	554	5 6 6	$5{ }^{5} 5$
	615	615	615	615	615	616	616	616	616	617	617	617
Apr. 1								638	639	640	642	644
	646	647	648	650	652	654	656	658	700	702	704	707
	702	704	706	709	7 II	714	717	720	723	726	730	734
May 1	716	718	721	724	728	731	735	739	743	748	753 8 8	758
11	730	734	738	742	7 8 8 16	750 806	754 811	759 817	8 8 8			
	743	747	75^{2}	757	802	806	811	817	823			
June I.	755		804	809	814	820	${ }_{8}^{8} 26$	832	839	848	857	$9{ }^{9} 7$
11	${ }^{8} 8$	8 os	814	820	826	832	${ }_{8}^{8} 38$	845	853	9 Or	910	9 21
	8 o8	813	819	825	831	837	S 43	S 50	858	907	917	928
July	807	812	818	824	830	836	842	849	857	905	915	926
${ }^{1}$	803	807	812	817	823	${ }^{8} 28$	834	840	847	855	9 8 8	9
	754	758	802	8 o7	812	817	822	828	834	841	848	856
Aug. 1.	739	743	747	751	755	7.59	803	8 os	813	819	825	${ }_{8}^{831}$
	724	726	729	733	736	740	743	747	751	755.	759	804
	$7{ }^{\circ} 5$	707	709	712	714	717	720	723	727	730	733	737
Sept. I.	644	645	646	648	649	651	653	655	657	700	702	705
${ }_{11}$	622	623	623	624	625	626	627	628	629	$63 \mathrm{3x}$	633	${ }_{6} 635$
	6 or	602	602	602	602	$6{ }^{\circ}$	603	603				
Oct. I	539	539	538	538	537	537	537	537	536	536	535	534
11	519	518	516	515	514	512	511	510	5 os	506	505	503
	459	458	45^{6}	454	45^{2}	450	44^{8}	446	443	44^{1}	438	435
Nov, 1.	440	438	435	432	430	427	424	421	417	413	409	405
11	424.	421	418	414	410	407	404	400	356	351	346 34	340
	412	409	405	4 or	357	353	348	343	33^{8}	33^{2}	326	319
Dec. I.	406	4.02	357	352	347	342	337	332	326	3 19	311	303
11	403	359	354	349	344	339	333	327	320	${ }_{3} 312$	$\begin{array}{ll}3 & 04 \\ 3 & 04\end{array}$	255 255
	406	4 or	356	350	345	339	334	328	321	313	304	${ }^{2} 55$

T A BLES

of

BI-H0URLY, H0URLY, AND SEMII-H0URLY MEAN TEMPERATURES,

FOR

EACH MONTH AND THE YEAR.

AT VARIOUS PLACES IN NORTH AMERICA.

TABLES OF MEAN TEMPERATURES AT DIFFERENT HOURS OF THE DAY, FOR EACH MONTH AND THE YEAR.

INDEXTOSTATIONS.

[Arranged according to latitudes.]

1. Van Rensselaer, North Greenland 1853-55
2. Port Foulke, North Greenland I860-6I
3. Port Kennedy, North Somerset 1858-59
4. Sitka, Alaska Territory 1857 -64
5. Montreal, Canada East I839-4I
6. Thunder Bay Island, Lake Huron, Mich. i863-65
7. Toronto, Canada West 1842-48
8. Mohawk, N. Y. 1860-69
9. Cambridge, Mass. 5841-42
10. Amherst, Mass. I839
Ii. New Haven, Conn. I778-I865
11. Brooklyn Heights, N. Y. 1847-49

I3. Philadelphia, Girard College, Pa. $1840-45$
14. Jackson, Ohio 1851-52
15. Washington City, Capitol Hill, D. C. IS4I-42
" Washington City, U. S. Naval Observatory 1862-69
16. Fort Morgan, Mobile Point, Ala. 1848-50
17. Galveston, Texas 1851-53
18. Key West, Florida 1851-5²

Hour.	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.

Hourly Means of Temperature (Fah. scale).
Van Rensselaer Harbor, North Greenland. ${ }^{\text {I }}$ Lat. $78^{\circ} 37^{\prime}$. Long. $70^{\circ} 53^{\prime} \mathrm{W}$. of \mathbf{G}.
Near sea level. Dr. E. K. Kane. Sept. IS53, to Jan. 1855, inclusive.

Mdn't	$-28^{\circ} .3$	-33 ${ }^{\circ} 6$	$-38^{\circ} .4$	-11 ${ }^{\circ} .4$	+10\%.2	+28. 8°	$+36^{\circ} .9$	+ $29^{\circ} .8$	+10 ${ }^{\circ} 7$	-4 ${ }^{\circ} \cdot 7$	$-22^{\circ} .6$	$-31 .{ }^{\circ} 4$	$-4^{\circ} \cdot 5$
I	28.3	$34 \cdot 3$	38.8	12.2	9.0	27.0	36.6	29.2	11.2	3.5	21.3	31.5	-4.7
2	28.5	$34 \cdot 3$	38.6	12.2	9.3	27.1	36.7	29.5	11.3	$3 \cdot 5$	21.3	31.3	-4.6
3	28.6	34.1	38.8	12.6	10.0	27.2	36.8	29.5	11.5	3.5	21.3	31.6	-4.6
4	28.7	33.5	39.0	12.1	10.6	27.6	36.8	29.8	II. 4	$3 \cdot 4$	21.3	31.8	-4.4
5	28.7	34.2	38.9	11.2	11.8	28.8	36.9	29.7	11.4	$3 \cdot 3$	22.0	30.9	-4.2
6	28.7	33.6	38.7	10.6	12.7	29.5	37.6	30.3	12.0	$3 \cdot 3$	22.2	30.8	-3.8
7	29.0	33.2	38.0	9.5	13.5	30.4	37.8	31.0	13.0	3.2	22.0	31.0	-3.3
8	28.5	32.9	37.6	8.4	14.4	31.6	38.4	31.9	14.4	3.2	22.2	3 I .0	-2.7
9	28.6	32.6	36.3	6.8	14.4	30.8	39.4	33.0	15.2	2.9	22.0	30.7	-2.2
10	28.3	32.1	35.7	6.1	15.1	31.0	39.6	33.9	15.8	2.7	22.1	30.6	-1.8
11	27.8	32.4	34.5	5.1	15.3	31.4	40.0	34.0	16.2	2.8	21.6	30.5	-1.5
Noon	27.3	31.8	34.0	4.5	15.9	32.2	40.0	34.2	16.4	3.0	21.4	30.0	-1.1
1	27.5	31.3	33.6	4.0	16.1	32.3	39.8	34.2	16.5	3.0	21.7	30.1	-1.0
2	27.6	31.3	33.2	3.2	16.4	32.2	39.7	34.2	16.1	3.2	21.8	30.4	-1.0
3	28.1	31.4	33.8	3.1	16.5	31.9	39.7	33.8	15.6	$3 \cdot 1$	21.8	30.8	-1.2
4	28.3	31.5	34.9	3.4	16.7	31.6	39.6	$33 \cdot 3$	15.0	$3 \cdot 3$	21.9	3 I .1	-1.5
5	28.0	31.8	35.6	$3 \cdot 5$	16.2	31.4	38.9	33.0	14.4	3.5	21.8	3 I .2	-1.8
6	28.0	31.7	36.2	4.4	15.3	31.2	38.5	32.5	13.9	3.9	22.0	31.3	-2.1
7	27.9	31.6	36.7	5.8	14.5	30.8	38.2	32.1	13.1	4.5	22.2	31.9	-2.6
8	28.1	31.8	37.6	6.7	13.6	30.6	37.7	31.7	12.6	4.6	22.3	31.8	-3.0
9	28.1	32.2	37.7	8. 1	12.8	29.9	37.2	31.5	12.2	4.6	22.8	31.7	-3.4
10	28.0	$33 \cdot 3$	38.0	9.6	11.7	29.5	36.7	30.8	11.8	4.6	22.5	31.7	-3.9
II	-28.6	$-33 \cdot 3$	-38.2	-10.3	+10.7	+28.6	+36.8	+30.4	+11.1	-4.6	-22.7	-31.6	-4.3
Mean	-28.2	-32.7	-36.8	-7.7	+13.4	+30.1	$+38.2$	+31.8	+13.4	-3.6	-22.0	-31.1	-2.9

Bi-hourly Means of Temperature.
Port Foulke, North Greenland. ${ }^{2}$ Lat. 78° 1 8^{\prime}. Long. 73° oo' W. of G. Near sea level. Dr. I. I. Hayes. Sept. I860, to July, I86r, inclusive.

N. B. The above numbers are corrected for error of scale of thermometers, but are not changed for the effect of the annual fluctuation, which in Feb. is zero and in May 0.4 (its maximum amount) at midnight; see table on p. 183 of Sm. Cont's, No. 196.

[^112]| Hour. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | Oct. | Nov. | Dec. | Year. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bi-hourly Means of Temperature.
 Port Kennedy, North Somerset. ${ }^{1}$ Lat. 72° or'. Long. $94^{\circ} \mathbf{1} 4^{\prime} \mathrm{W}$. of G. Near sea level. Sir F. L. McClintock. Aug. 1858, to Aug. 1859, inclusive. | | | | | | | | | | | | | |
| Mdn't2468IONoon24688IO | -34 ${ }^{\circ} .6$ | $37^{\circ} .6$ | $-21^{\circ} .1$ | -60.1 | -11 ${ }^{\circ} .4$ | | | | | | | | |
| | - 34.6 | -37.7 | -21.5 | -5.7 | 11.0 | 30.2 | +37.0 36.5 | 35. 35.9 | $\begin{gathered} -24^{\circ} \cdot 7 \\ 24 \cdot 5 \end{gathered}$ | 6.4 6.9 | $\begin{aligned} & -13^{\circ} .0 \\ & -12.0 \end{aligned}$ | $\left\lvert\, \begin{aligned} & -34^{\circ} .0 \\ & -33.2 \end{aligned}\right.$ | $0^{\circ} .00$ 0.00 |
| | -35. 1 | -37.3 | -21.5 | -4.7 | 13.3 | 33.3 | 37.2 | 35.6 | 24.2 | 7.4 | -I1.6 | -33. I | +0.64 |
| | -34.8 | -37.3 | -22.0 | -4.1 | 14.3 | 35.0 | 39.2 | 36.0 | 24.1 | 7.0 | -11.0 | -33.3 | +1.09 |
| | -34.8 | -37.0 | -19.9 | -2.6 | 16.5 | 38.1 | 41.3 | 36.8 | 24.7 | 7.2 | -10.8 | -34.0 | +2.12 |
| | -34.4 | -36.9 | - 15.2 | -0.6 | 17.6 | 39.8 | 42.9 | 37.6 | 25.5 | 8.1 | -10.5 | -33.4 | +3.37 |
| | -34.1 | -36.3 | -12.4 | +1.0 | 18.8 | 39.8 | 43.5 | 38.1 | 26.5 | 8.9 | -ro. 7 | -33.5 | +4. 13 |
| | -34.4 | -36.3 | - 12.5 | +1.4 | 19.0 | 38.5 | 42.3 | 38.2 | 27.0 | 8.4 | -II. 5 | -33.4 | +3.89 |
| | -34.1 | -36.8 | - 14.2 | +0.3 | 18.2 | 36.9 | 42.0 | 38.0 | - 26.8 | | -12.0 | -33.8 | +3.22 |
| | -33.7 | -37.3 | -18.9 | -2.2 | 16.5 | $35 \cdot 4$ | 41.1 | 37.7 | 26.4 | 7.2 | -12.3 | -33.9 | +2.18 |
| | -33.9 | -37.1 | -19.7 | -4.4 | 14.3 | 33.9 | 40.0 | 37.2 | 25.6 | 7.1 | -12.6 | -34.0 | +1.37 |
| | -33.9 | -37.0 | -20.0 | -5.8 | +12.6 | $+32.0$ | $+38.6$ | $+36.7$ | +25.4 | 7.0 | -12.7 | -34.1 | +0.73 |
| Mean | -34.4 | 37. 1 | 18.2 | -2.8 | +15.3 | +35.3 | +40. 1 | +36.9 | $+25.4$ | $7 \cdot 4$ | -11.7 | -33.6 | +r. 89 |
| | Means corrected for error of scale. | | | | | | | | | | | | |

Hourly Means between 4 A. M. and io P. M.
Sitka, Alaska Ter'y. Lat. $57^{\circ} \circ 3^{\prime}$. Long. $135^{\circ} 20^{\prime}$ W. of G.
Alt. 20 ft . I857 to 1864 , inclusive. Magnetical and meteorological observatory at Japonski Island.
(Annales de l'observatoire, physique central de Russie.)

Mdn't	.	\ldots	.							.	.		[39.80]
I		-	.										[39.57]
2													[39.40]
3													[39.30]
4	29.89	28.76	32.61	35.41	40.45	45.97	50.24	50.71	47.41	41.99	36.95	31.46	39.32
5	29.93	28.69	32.35	35.67	41.04	47.03	50.97	50.97	47.54	42.08	36.85	31.30	39.54
6	29.95	28.58	32.35	36.31	42.61	48.69	52.15	51.51	47.75	42.12	36.63	31.32	40.00
7	29.89	28.38	33.12	38.03	44.46	49.86	53.69	53.08	48.76	42.2 S	36.68	31.25	40.79
8	29.84	28.76	34.67	39.89	46.13	52.04	55.17	54.59	50.24	42.96	36.74	31.28	41.86
9	30.16	29.93	36.59	41.52	47.84	53.71	56.88	56.20	51.82	44.03	37.42	31.44	43.13
10	30.89	31.59	38.11	42.98	49.23	55.06	58.07	57.53	53.33	45.07	38.27	31.98	44.35
11	31.82	33.23	39.33	44.12	50.38	56.16	59.00	58.77	54.68	45.99	39.06	32.69	45.42
Noon	32.63	33.71	39.83	44.60	50.83	57.22	59.76	59.56	55.60	46.75	39.94	33.44	46.16
1	32.71	34.00	40.17	45.23	51.06	57.22	60.03	59.54	55.87	46.75	40.05	33.57	46.35
2	32.67	33.93	39.95	44.53	50.83	56.84	59.80	59.33	55.56	46.66	39.85	33.37	46.11
3	$3^{22} 113$	33.45	39.51	44.19	50.22	56.39	59.52	58.81	55.13	46.21	39.29	32.87	45.66
4	31.39	32.71	38.91	43.32	49.57	55.75	58.39	58.10	54.38	45.50	38.70	32.42	44.93
5	30.85	31.66	37.69	42.32	48.55	54.95	57.42	57.06	53.41	44.67	38.11	32.02	44.06
6	30.56	30.92	36.31	41.02	47.27	53.67	56.25	55.78	52.11	43.92	37.80	31.77	43.11
	30.22	30.34	35.10	39.51	45.83	52.25	55.06	54.59	50.94	43.34	37.51	31.73	42.20
8	30.20	29.97	34.38	38.27	44.24	50.58	53.80	53.44	50.09	43.00.	37.44	31.64	41.42
9	30.02	29.67	33.96	37.75	43.02	49.26	52.70	52.81	49.55	42.66	37.25	31.51	40.85
10	29.84	29.66	33.61	36.95	42.14	48.24	51.98	52.29	49.17	42.51	37.11	31.53	40.42
II	[40.08]
Means²	30.61	30.58	35.59	39.59	45.38	51.37	54.76	54.60	50.99	43.73	37.78	31.94	42.24

${ }^{1}$ Smithsonian Contributions to Knowledge, No. 146; Washington, 1862.
2 The temperatures for the 5 hours, II to 3, were obtained by a graphical process, and the above means were taken from 24 values. The reckoning being in old style and easterly, out months begin and end $\mathbf{I I}$ days earlier than those to which the above numbers correspond. The original record is given in Reaumur's scale, it is here converted in Fahrenheit's scale. Interpolated values for 4 and 5 A. M., January, I86I, $-0^{\circ} .63$ and $-0^{\circ} .53$ (Reaumur).

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.		Sept.	Oct.	Nov.	Dec.	Year.
Island of St. Helen, opposite IMontreal. Lat. $45^{\circ} 30^{\prime}$. Long. 73° Alt. 60 ft . J. S. McCord. Printed Report, Montreal, 1842. Observations at the even hours from Aug. 1839, to July, inclusive, 1840 .													
Mdn't	$7{ }^{\circ} .00$	$19^{\circ} .5^{6}$	$26^{\circ} .00$	$39^{\circ} .75$	$52^{\circ} .06$	$59^{\circ} .13$	$66^{\circ} .00$	$62^{\circ} \cdot 40$	$53^{\circ} .81$	$45^{\circ} .48$	$29^{\circ} .03$	$21^{\circ} .74$	$40^{\circ} .16$
,	17.53	12.91	18.12	31.35	46.48	60.53	62.35	64.66	52.61	42.17	31.60	15.03	37.94
2	5.74	18.15	24.22	37.90	49.66	56.96	63.22	61.01	53.36	44.30	28.80	22.42	38.81
3	17.66	II. So	17.32	29.33	44.82	59.98	60.62	63.70	52.33	41.09	31.18	14.12	36.99
4	5.22	17.48	22.75	35.18	49.66	57.20	62.82	60.06	52.10	43.47	28.58	22.04	38.05
5	17.09	10. 57	15.66	27.93	44.77	58.78	59.66	63.25	52.10	40.25	30.68	13.62	36.19
6	4.56	16.94	22.09	36.71	50.00	58.83	64.93	60.41	53.11	43.48	29.03	22.10	38.51
7	16.98	9.30	15.43	30.63	47.77	60.36	64.38	67.59	54.06	41.09	30.75	13.85	37.68
8	5.00	17.62	24.01	38.83	53.55	63.50	69.79	63.61	55.51	45.79	29.61	22.50	40.78
9	17.80	IO. 53	19.54	33.76	50.83	65.10	67.20	70.27	56.80	43.93	32.13	14.77	40.22
10	8.31	21.65	27.34	43.06	57.58	66.13	73.24	68.14	59.18	$49 \cdot 30$	30.80	23.21	43.94
11	20.04	14.69	25.01	36.95	54.12	68.50	70.63	73.30	59.73	47.43	34. 11	16.40	43.41
Noon	10.92	24.34	31.54	47.28	63.71	69.55	75.85	72.03	63.13	52.53	32.26	24.64	47.32
1	20.45	19.32	29.91	39.40	57.11	71.05	73.50	76.30	62.65	50.11	36.25	18.29	46.19
2	12.17	26.27	33.80	48.26	65.37	72.10	77.75	74.33	64.30	55.27	32.76	25.96	49.03
3	21.32	20.60	31.53	40.80	57.79	72,01	75.43	77.03	64.18	50.50	35.98	18.69	47.15
4	1 I .98	24.44	33.27	48.06	64.96	71.38	77.90	74.12	64.40	53.93	32.91	26.64	48.66
5	19.59	18.64	28.98	40.10	57.95	71.26	73.95	75.16	63.36	47.85	33.95	17.35	45.67
6	9.87	22.34	30.74	46.15	60.48	69.40	75.79	72.03	60.50	51.10	31.43	24.72	46.21
8	19.56	15.75	24.90	37.40	54.83	68.25	70.30	71.14	58.15	45.70	33.20	16.61	42.98
8	0.00	21.43	28.54	43.08	58.22	65.48	71.06	67.10	57.60	48.56	30.36	23.40	43.65
9	19.62	15.48	23.25	34.03	50.72	63.50	66.25	68.11	56.21	44.38	32.63	16.62	40.90
10	7.93	20.62	27.61	41.63	54.74	61.91	67.75	64.41	55.31	46.89	29.21	22.53	41.71
II	18.35	14.28	20.82	32.41	48.91	61.53	64.03	66.59	54.51	42.33	31.28	15.69	39.22
Ev. h.	\} 8.14	20.90	27.65	42.15	56.66	64.29	70.50	66.63	57.69	48.34	30.39	23.49	43.07
Odd h. $\mid 849-41$	$\}$ 18.83	14.48	22.54	34.50	51.34	65.07	67.35	69.75	57.22	44.73	32.81	15.92	41.21

Semi-hourly Means of Temperature.
Thunder Bay Island, Lake Huron, Mich. Lat. $45^{\circ} z^{\prime}$. Long. $83^{\circ} 17^{\prime}$ W. of G. Alt, 610 ft . [and 40 above Lake Huron]. Observer: J. J. Malden. Dec. 1863, to Dec. 1865. Report, N. and N. W. Lake Survey, for 1867 .

Mdn't	19.4	21.4	25.3	$34 \cdot 5$	43.1	54.3	60.8	62.9	57.7	43.0	36.8	24.6	40.3
- 30	19.0	21.5	24.6	34.0	42.4	53.9	60.1	62.6	58.0	43.2	36.6	24.4	40.0
1	18.7	21.1	24.3	33.6	42. 1	53.7	59.7	62.4	57.8	43.0	36.4	24.3	39.8
130	18.3	20.8	24.1	33.4	41.8	53.3	59.2	62.1	57.7	42.8	36.3	24.2	39.5
2	18.0	20.7	23.8	33.0	4I. 5	53.0	58.8	6 I .8	57.5	42.6	36.2	24. I	39.2
230	17.8	20.5	23.6	32.8	41.4	52.7	58.5	61.7	57.3	42.5	36.1	24.0	39. 1
3	17.7	20.4	23.5	32.7	41.3	52.5	58.2	61.5	57.2	42.5	36.0	23.8	38.9
330	17.7	20.4	23.6	32.8	41.2	52.7	58.2	61.5	57.1	42.4	36.0	23.9	33.9
4	17.8	20.5	23.7	32.9	4I. 3	52.8	58.3	61.4	57.0	42.4	35.9	24.0	39.0
430	17.9	20.5	23.8	33.0	41.4	52.8	58.4	61.4	56.8	42.3	35.9	24.0	39.0
5	18.0	20.7	23.9	33.1	41.6	53.2	58.6	61.4	56.8	42.3	35.9	24.1	39.1
530	18.1	20.8	24.0	33.4	42.3	53.7	59.1	61.6	56.9	42.4	36.0	24.2	$39 \cdot 3$
6	18.2	20.9	24.2	33.8	43.2	54.6	59.9	61.9	56.9	42.5	36.0	24.3	39.7
630	18.3	21.0	24.6	34.5	43.9	55.9	61.1	62.7	57.3	42.6	36.0	24.3	40.1
7	18.3	21.2	25.0	35.4	45.0	56.9	62.7	63.7	57.8	42.9	36.0	24.3	40.8
730	18.4	2 I .4	25.5	36.3	46.0	$5 \mathrm{S.1}$	63.4	65.0	58.6	43.3	36.1	24.5	41.4
8	18.8	21.7	26.5	37.2	46.9	59.2	64.5	66.2	59.5	43.7	36.3	24.7	42.1
830	19.1	22.1	27.4	38.0	47.6	60.1	65.6	67.3	60.1	$44 \cdot 3$	36.6	24.8	42.7
9	19.4	22.7	28.0	38.7	48.2	60.7	66.5	68.2	61.0	45.0	37.0	25.0	$43 \cdot 4$
930	20.0	23.2	28.9	39.2	48.5	6 I .5	67.2	68.8	6 I. 6	45.7	37.4	25.3	43.9
10	20.4	23.7	29.6	39.8	49.0	62.0	67.9	69.6	62.3	46.4	37.9	25.6	44.5
IO 30	21.0	24.4	30.3	40.3	49.5	62.5	68.4	70.5	63.0	47.1	3 S .3	25.9	45.1
II	21.6	25.1	31.3	40.8	49.8	62.8	68.9	71.3	63.6	47.8	38.7	26.3	45.7
1130	22.2	25.7	31.3	41.2	50.1	63.1	69.3	72.0	64.2	48.4	39.2	26.7	46.1

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Thunder Bay Island.-Continued.													
Noon	$22^{\circ} .8$	$26^{\circ} .2$	$31^{\circ} .5$		$50^{\circ} .5$	$63^{\circ} \cdot 5$	$69^{\circ} .7$	$72^{\circ} .6$	$64^{\circ} .8$	$49^{\circ} \cdot 1$	$39^{\circ} .6$	$26^{\circ} .9$	$46^{\circ} \cdot 5$
- 30	23.3	26.7	31.9	41.7	50.7	64.2	69.9	73.1	65.1	49.6	40.0	27. 1	46.9
1	23.5	27.0	32.1	41.9	50.9	64.0	69.8	73.6	65.4	49.9	40.4	27.3	47.1
130	23.7	27.4	32.3	42.0	51.0	64.0	70.3	73.8	65.7	50.3	40.6	27.4	47.4
2	23.9	27.5	32.5	42.1	51.2	64.6	70.5	73.9	65.9	50.5	40.8	27.3	47.6
230	23.8	27.5	32.3	42.1	51.2	64.6	70.6	73.8	65.9	50.5	40.9	27.3	47.5
3	23.6	27.4	32.0	42.0	51.5	64.5	70.7	73.4	65.7	50.2	40.8	27.1	47.4
330	23.2	27.0	31.7	41.7	51.6	64.2	70.5	73.0	65.2	49.9	40.4	26.9	47.1
4	22.5	26.4	31.3	41.5	51.5	53.7	70.3	72.5	64.7	49.4	39.8	26.6	46.7
430	22.3	25.7	30.8	41.1	51.1	63.4	69.7	72.0	64.2	48.7	39.5	26.4	46.2
	21.9	25.2	30.1	40.6	50.6	63.0	69.1	71.2	63.6	48.1	39.0	26.2	$45 \cdot 7$
530	21.6	24.8	29.5	40.1	49.9	62.4	68.4	70.3	62.8	47.5	38.7	26,1	45.2
6	21.2	24.2	29.0	39.5	49.2	61.8	67.6	69.5	62.1	46.8	38.5	26.0	44.6
630	21.0	23.9	28.3	38.8	48.5	60.7	66.8	68.4	61.5	46.2	38.3	25.9	44.0
7	20.7	23.7	27.7	38.2	47.7	59.6	66.0	67.8	60.8	45.8	38.1	25.7	43.5
730	20.6	23.4	27.2	37.6	46.9	58.9	65.1	67.1	60.3	45.4	38.0	25.5	43.0
8	20.5	23.3	27.0	37.2	46.3	58.1	64.3	66.5	59.8	45.0	37.9	25.7	42.6
830	20.4	22.8	26.7	36.8	45.6	57.4	63.8	65.8	59.5	44.9	37.7	25.6	42.2
9	20.3	22.9	26.5	36.4	45.1	56.9	63.2	65.2	59.1	44.4	37.6	25.4	41.9
930	20.1	22.6	26.3	36.1	44.6	56.4	62.8	64.7	58.8	44.2	37.5	25.3	41.6
10	20.0	22.5	26.2	35.8	44.2	56.0	62.2	64.2	58.7	44.0	37.4	25.3	41.3
10 30	19.8	22.0	26.0	35.4	43.9	55.4	62.0	63.8	58.4	43.8	37.2	25.0	41.0
111	19.6	22.0	25.7	35.1	43.6	55.1	61.6	63.4	58.1	43.5	37.1	25.2	40.8
II 30	19.5	21.8	25.5	34.9	$43 \cdot 3$	54.7	61.2	62.8	57.9	43.2	36.9	24.8	40.6
Mean	20.3	23.3	27.5	37.4	46.5	58.6	64.6	66.9	60.6	$45 \cdot 5$	37.7	25.4	42.8

- Hourly Means of Temperature.

Toronto, Canada West. ${ }^{1}$ Lat. $43^{\circ} 39^{\prime}$. Long. $79^{\circ} 23^{\prime}$ W. of G.
Alt. 342 feet. Captains Riddell, Younghusband, and Lefroy, R. A. July, 1842, to July, 1848.

Mdn't ${ }^{2}$	+23.80	21.45	27.33	39.37	47.88	55.37	59.45	60.30	53.63	40.95	34.42	26.53	40.87
1	23.33	21.07	26.85	38.62	47.08	54.68	58.58	59.65	53.02	40.35	34.13	25.95	40.27
2	23.25	20.73	26.47	37.95	46.18	53.98	58.02	58.97	52.43	40.03	33.85	25.58	39.79
3	23.10	20.30	26.18	37.75	45.47	53.20	57.30	58.30	51.97	39.87	33.53	25.45	39.37
4	23.00	20.00	25.80	37.32	45.00	52.63	56.67	57.92	51.38	39.57	33.37	25.42	39.01
5	22.82	19.65	25.28	36.95	45.05	52.82	56.62	57.73	50.75	39.40	33.48	25.40	38.83
6	23.55	19.08	25.00	37.08	47.50	55.47	59.83	59.18	51.43	39.62	3375	24.98	39.71
7	23.45	18.95	25.87	39.37	50.48	58.28	63.50	62.15	53.98	40.37	33.75	24.82	41.25
8	23.68	19.97	27.85	41.62	52.70	60.62	66.10	65.42	56.73	42.62	34.80	25.25	43.11
9	24.65	22.27	30.02	43.60	55.02	62.50	$68 \cdot 30$	67.92	59.15	45.30	36.33	26.43	45.12
10	25.58	24.28	31.75	45.12	56.72	64.17	70.00	69.90	61.12	47.23	37.77	27.88	46.82
11	27.05	25.87	32.98	46.50	57.85	65.45	71.55	71.35	62.55	48.60	38.78	29.12	48.14
Noon	27.83	27.07	34.00	47.53	58.80	66.55	72.85	72.30	63.52	49.50	39.57	29.93	49.12
1	28.33	27.93	34.65	48.47	59.72	67.28	73.77	73.07	64.12	49.93	39.97	30.65	49.82
2	28.60	28.33	35.22	48.85	60.07	67.70	74.62	73.65	64.52	50.28	40.05	30.80	50.22
3	28.57	28.32	35.02	48.92	60.13	68.08	74.82	74.00	64.55	50.05	39.88	30.55	50.24
4	28.05	27.77	34.55	48.53	60.08	68.32	74.83	73.85	64.33	49.32	38.98	29.90	49.88
5	27.05	26.57	33.80	47.80	59.70	67.72	74.37	73.30	63.37	47.57	37.77	28.95	49.00
6	26.23	25.12	32.12	46.00	57.95	66.42	72.93	7 I .40	60.70	45.52	36.95	28.25	47.47
8	25.70	24.13	30.65	43.47	55.08	63.68	69.45	67.42	58.00	44.42	36.38	27.92	45.52
8	25.38	23.28	29.68	41.88	52.37	60.38	65.25	64.50	56.72	43.68	36.07	27.53	43.89
9	25.18	22.63	28.68	40.80	50.62	58.22	62.88	62.92	55.68	42.92	35.78	27.28	42.80
10	24.80	22.08	28.03	40.03	49.65	56.88	61.65	61.90	54.62	42.17	35.43	26.98	42.02
11	24.48	21.57	27.38	39.53	48.73	55.92	60.47	61.10	53.98	41.50	35.08	26.87	41.38
Mean	25.32	23.27	29.80	42.63	52.91	60.68	65.99	65.76	57.59	44.20	36.24	27.44	44.32

[^113]TABLES OF MEAN TEMPERATURES.

䂞		$\begin{aligned} & \text { Wr } \\ & 0 \\ & ! \end{aligned}$	苞		男	＇pənu！̣uO－＇YMEYOINI
$\begin{aligned} & \text { a } \\ & \text { io } \\ & \text { io } \end{aligned}$	 	$\begin{aligned} & \text { Wू } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{8}{8} \end{aligned}$	 	$\stackrel{\leftrightarrow}{\infty}$	
$\begin{aligned} & \text { à } \\ & \dot{\alpha} \end{aligned}$	 	$\stackrel{\text { os }}{8}$	$\stackrel{u}{\stackrel{\pi}{+}}$	 	$\underset{\substack{\infty \\ \hline \\ \hline \\ \hline}}{ }$	
$\begin{aligned} & \text { à } \\ & \stackrel{0}{8} \\ & \end{aligned}$	 	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & u \\ & \dot{y} \\ & \dot{g} \end{aligned}$	 		
$* \stackrel{N}{\mathrm{~T}}$	以	$\begin{array}{l\|l} \hline-2 & ! \\ \underset{\infty}{\circ} & \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 6 \\ & 0 \end{aligned}$	 		
	 	$\stackrel{\leftrightarrow}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{n} \end{aligned}$	FकN心	$\stackrel{\circ}{8}$	
$\begin{aligned} & \text { V } \\ & +0 \\ & i+ \end{aligned}$	 	$\begin{aligned} & \text { W } \\ & \hline \infty \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	 	$\begin{aligned} & \text { o } \\ & \infty \\ & \infty \end{aligned}$	
$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	 		$\underset{i}{\stackrel{\pi}{i}}$	 		
$\begin{aligned} & 8 \\ & \infty \\ & i \end{aligned}$	 	$\begin{aligned} & \text { on } \\ & \hline 8 \end{aligned}$	$\underset{\substack{0 \\ 0 \\ \hline}}{\text { a }}$	 	$\begin{aligned} & 4 \\ & 88 \\ & 8 \end{aligned}$	
0 0 0 0	 	BB号	$\begin{gathered} \Omega \\ \stackrel{\omega}{\omega} \end{gathered}$	ひN心	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \end{gathered}$	
8 3 3 3	 		$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	 	∞ 心 心	
y is in	 		$\begin{aligned} & \stackrel{1}{0} \\ & \dot{8} \end{aligned}$	 	$\underset{\infty}{\infty}$	
a 0 0 ∞	 	$\stackrel{\text { Bo }}{\substack{0}}$	$\begin{aligned} & \text { Q } \\ & \vdots \\ & = \end{aligned}$	 	$\begin{aligned} & \text { io } \\ & \underset{\sim}{\circ} \end{aligned}$	
¢ $\%$ 0	 	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\infty} \end{aligned}$	$$	 	∞ ∞ ∞ ∞	
$\stackrel{\underset{\sim}{u}}{\stackrel{9}{4}}$	 		$\begin{gathered} \stackrel{q}{{\underset{\sim}{n}}^{8}} \end{gathered}$	 		

17 February, 1875.

Mohawk.-Continued.

N. B. In the following means the preceding months marked thus *, are omitted.

Hour.	Mar. 5 years.	May. 5 years.	July. 5 years.	Aug. 5 years.	Hour.	Mar. 5 years.	May. 5 years.	July. 5 years.	Aug. 5 years.
Mdn't	$26^{\circ} .56$	$51^{\circ} .23$	$62^{\circ} .26$	$63^{\circ} \cdot 34$	Noon	$31^{\circ} .84$	$59^{\circ} .94$	$72^{\circ} .60$	$73^{\circ} .18$
1	25.74	50.09	61.42	62.86	1	32.84	61.28	73.47	74.60
2	25.31	49.20	60.57	62.17	2	33.67	62.43	73.72	75.37
3	24.74	48.38	59.87	61.47	3	33.85	63.03	73.90	75.98
4	24.26	47.56	59.24	60.83	4	33.70	63.17	73.50	75.98
5	23.82	47.08	58.73	60.33	5	33.06	62.79	73.16	$75 \cdot 36$
6	23.38	47.05	59.19	60.19	6	31. 79	61.72	71.98	74.06
7	23.40	48.56	61.17	61.36	7	30.33	59.52	70.15	71.56
8	24.78	50.93	63.79	63.62	8	29.40	56.73	67.51	68.75
9	26.76	53.53	66.53	66.22	9		54.65	65.42	66.81
-10	28.75	55.95	69.12	68.98	10	28.03	53.27	64.04	65.37
II	30.38	58.10	71.12	71.31	11	27.37	52.20	63.11	64.30
					Mean	28.44	54.93	66.48	67.66

N. B. The observer remarks that the indications of the instrument are absolutely correct, but that its exposure was not unexceptionable; the locality, though in the shade and on the north side of the house, being accessible to the influence of the sun between $2 \frac{3}{2}$ or 3 P. M., and sunset or to within half an hour previous to sunset. In 1865 the station was movable to avoid this influeace, in 1866-7 it was tolerably free from disturbance, in the winter 1868-9 a screen was erected to the westward. I have omitted the results in all months marked $*$, considering the indications affected from the above cause.
[S.]

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Scpt.	Oct.	Nov.	Dec.	Year.

Bi-huerly means of Temperature.
Cambridge, ${ }^{1}$ Mass. Lat. $42^{\circ} 23^{\prime}$. Long. $71^{\circ} \circ 7^{\prime}$ W. of G.
Alt. about 71 ft. Observer Oct. I841, to Dec. 1842, inclusive.

0.6m	$27^{\circ} .92$	$34^{\circ} .21$	$33^{\circ} .02$	$39^{\circ} \cdot 41$	$46^{\circ} .93$	$54^{\circ} .65$	$66^{\circ} .00$	$61^{\circ} .20$	$49^{\circ} .90$	$39^{\circ} .66$	$33^{\circ} .13$	$29^{\circ} .22$	$42^{\circ} .94$
$2.6{ }^{\text {m }}$	27.31	32.94	31.79	39.76	45.67	52.68	64.79	60.35	48.49	38.40	32.77	28.75	41.97
4.6	26.97	32.01	31.48	38.24	45.06	52.60	64.93	59.50	48.17	37.90	32.41	28.66	41.49
6.6	25.71	32.15	30.59	38.93	49.61	59.74	68.24	62. 11	47.81	37.75	32.27	28.24	42.76
8.6	23.90	32.54	37.09	43.31	57.04	65.09	73.56	68.00	56.44	43.15	35-37	29.48	47.08
10.6	29.30	36.42	42.41	46.55	60.52	68.95	78.48	71.95	63.45	51.33	41.51	33.85	52.06
0.6a	33.24	40.40	45.04	48.22	63.08	71.18	79.03	72.72	66.10	55.07	43.66	36.57	54.53
2.6	33.27	40.99	44.51	48.52	63.98	71.49	78.49	73.01	66.04	55.91	43.69	36.33	54.69
4.6	31.76	38.87	42.11	47.01	62.51	69.33	76.64	71.79	63.28	52.28	40.58	33.33	52.46
6.6	29.55	35.13	37.77	44.31	58.13	66.54	72.45	68.39	58.09	45.59	37.62	31.64	48.77
8.6	28.82	34.58	35.24	41.07	52.40	59.60	68.80	64.40	53.82	42.52	35.67	30.58	45.62
10.6	28.13	34.57	33.85	40.21	49.40	56.08	67.00	62.86	51.30	40.82	34.57	29.61	44.03
Mean	28.82	35.40	37.07	42.96	54.53	62.33	71.53	66.36	56.07	45.03	35.94	31.35	47.37
No. of days $\}$	13	10	14	15	14	11	10	II	II	15	30	23	

It is apparent that the small number of observations is the principal cause of certain anomalies presented in the above means.
${ }^{1}$ Memoirs Am. Acad., vol. ii, new series; also Tirans. Conn. Acad. of Arts and Sci., vol, i, part I, IS66.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Hourly Means of Temperature. Mass. Lat. $42^{\circ} 22^{\prime}$. Long. $72^{\circ} 34^{\prime} \mathrm{W}$. of G. Alt. 267 feet. Prof. E. S. Snell, 1839.													
Mdn't	$+20^{\circ} .44$	$26^{\circ} .87$	$29^{\circ} .96$	$43^{\circ} .62$	$52^{\circ} 17$	$56^{\circ} .12$	$66^{\circ} \cdot 30$	$62^{\circ} .92$	$54^{\circ} \cdot 46$	$46^{\circ} \cdot 37$	$32^{\circ} .40$	27.930	$43^{\circ} .24$
I	19.04	25.79	30.08	42.31	51.41	54.96	65.22	62.30	54.44	45.59	32.46	27.65	42.61
2	18.70	25.54	30.00	41.85	50.44	54.32	64.78	61.78	53.68	44.81	31.81	27.08	42.07
3	18.81	25.37	29.46	41.12	49.51	53.68	64.33	61.41	52.88	44.00	31.31	26.73	41.55
4	18.44	24.63	29.12	40.69	49.04	53.56	64.19	61.15	52.24	43.37	31.08	26.58	41.17
5	18.22	24.37	28.77	40.42	48.74	53.80	64.07	60.78	51.92	42.74	30.77	25.96	40.88
6	18.26	23.79	28.69	40.77	50.15	55.64	65.59	61.63	52.36	42.81	30.46	25.50	4.1. 30
7	18.19	23.79	30.19	42.57	52.70	57.40	67.81	62.96	54.48	43.59	30.52	25.31	42.47
8	19.17	24.79	32.73	45.50	$55 \cdot 30$	60.20	70.52	65.48	57.28	46. 15	32.12	25.15	44.53
9	21.48	27.12	35.27	48.46	57.52	62.48	72.48	68.37	60.36	49.63	34.46	26.88	47.04
10	24.26	29.42	37.38	51.23	60.04	64.72	75.41	70.48	63.12	52.70	36.23	29.83	49.57
11	27.04	31.29	39.58	54.19	62.04	67.28	78.04	72.89	65.84	55.48	37.81	32.04	51.96
Noon	29.26	32.83	41.19	56.46	63.67	69.68	80.11	74.30	67.96	57.52	39.81	33.58	53.86
1	30.40	33.92	42.46	58.00	65.07	70.96	80.44	75.67	68.92	58.70	40.92	35.42	55.07
2	30.74	34.63	43.15	58.96	65.67	70.60	SI.11	75.30	69.60	59.74	40.77	35.58	55.49
3	30.26	34.37	42.92	58.35	65.19	70.20	79.11	75.11	69.00	59.70	40.08	34.88	54.93
4	28.74	33.46	42.04	57.15	64.78	69.44	78.78	73.67	68.20	58.70	3 3.65	33.04	53.89
5	26.26	31.67	40.46	55.58	62.89	67.60	77.44	72.70	66.24	56.11	37.08	31.31	52.11
6	25.00	29.75	38.27	53.04	61.00	65.80	75.78	70.26	63.32	53.96	35.65	29.96	50.15
7	22.70	29.62	34.64	50.23	59.30	63.52	73.15	68.85	61.27	51.70	35.44	29.59	48.34
8	22,30	29.00	33.88	48.27	57.11	61.56	70.63	67.11	59.69	50.33	34.72	29.08	46.97
9	21.44	28.29	32.92	46.77	55.26	59.64	68.56	65.85	57.81	49.30	34.00	28.59	45.70
10	20.93	28.00	31.52	45.23	54.19	58.40	67.82	64.42	56.27	48.56	33.64	28.08	44.75
II	20.52	27.38	30.52	44.31	52.93	57.40	67.37	63.65	55.19	47.22	32.84	27.70	43.92
Mean	22.94	28.57	34.80	48.54	56.92	61.62	71.62	67.45	59.85	50.36	34.79	29.28	47.23

Derived Hourly Means of Temperature.
New Haven, ${ }^{1}$ Conn. Lat. $41^{\circ} 18^{\prime}$. Long. $72^{\circ} 56^{\prime}$ W. of G.
Approx. Alt. 45 feet. Various observers. 1778 to 1865 inclusive.

Mdn't	24.26	25.24	32.28	42.19	51.88	61.15	66.46	65.57	57.71	47.02	37.68	28.25	44.98
1	23.91	24.77	31.77	41.41	51.01	60.03	65.49	64.75	56.87	46.26	37.14	27.93	44.28
2	23.53	24.31	31.24	40.74	50.12	58.91	64.69	64.03	56. I8	45.62	36.64	27.60	43.63
3	23.19	23.80	30.72	40.10	49.31	58.25	64.11	63.56	55.70	45.05	36.22	27.25	43.10
4	22.83	23.32	30.28	39.52	48.78	58.10	63.97	63.16	55.27	44.59	35.82	26.93	42.71
5	22.46	22.95	29.91	39.31	48.90	58.79	64.27	63.22	55.15	44.29	35.52	26.64	42.62
6	22.19	22,81	30.00	39.69	50.68	60.83	65.51	63.96	55.66	44.45	35.52	2645	43.15
7	22.15	23.01	31.18	41.57	53.65	63.79	67.98	66.21	57.75	45.83	35.84	26.46	44.62
8	22.71	24.42	33.79	44.8o	56.77	66.99	70.80	68.98	50.78	48.81	37.34	27.21	46.95
9	25.20	27.60	36.55	47.96	59.42	69.64	73.30	71.54	63.75	51.68	39.86	29.41	49.66
10	28.12	30.59	39.33	50.71	61.49	71.69	75.45	73.71	66.28	54.62	42.56	32.05	52.22
II	30.16	32.34	40.95	52.33	63.05	73.04	77.23	75.60	68.15	56.75	44.51	33.91	54.00

1 Transactions of the Connecticut Academy of Arts and Sciences. Vol. I, Part. r. New Haven, I866. Art. v. By E. Loomis and H. A. Newton.

The numbers of the tables are derived in part from 3 observations a day, during 86 years, and in part from 5 observations a day, during 9 years, with the assistance of the law of the diurnal fluctuation as found at Philadelphia, Amherst, and Cambridge.

Hour.	Jan.	Feb.	Mar.	April.	May.	June.	July.	- Aug.	Sept.	Oct.	Nov.	Dec.	Year.
New Haven.-Continued.													
Noon	$31^{\circ} .72$	$33^{\circ} .67$	$42^{\circ} .23$	$53^{\circ} .62$	$64^{\circ} .26$	$74^{\circ} .08$	$78^{\circ} \cdot 37$	$76^{\circ} .82$	$69^{\circ} \cdot 39$	$5^{\circ} .05$	$45^{\circ} .95$	$35^{\circ} .47$	$55^{\circ} \cdot 30$
1	32.60	34.70	43.12	54.58	65.21	74.89	79.12	77.62	70.17	58.85	46.69	36.27	56.15
2	32.87	35.06	43.56	55.16	65.79	75.28	79.47	78.01	70.54	59.18	46.89	36.54	56.53
3	32.41	34.87	43.43	55.19	65.81	75.21	79.37	77.94	70.39	58.81	46.51	35.95	56.32
4	31.26	33.89	42.69	54.67	65.30	74.59	78.85	77.38	69.65	57.70	44.95	34.44	55.45
5	29.37	31.92	40.83	53.44	64.07	73.44	77.79	76.21	68.30	55.57	43.20	32.51	53.39
6	27.92	30.12	38.63	50.89	62.00	71.27	75.84	74.26	66.47	53.86	41.88	31.42	52.05
7	26.84	28.73	36.97	48.31	58.93	69.12	73.69	72.24	64.38	52.28	40.82	30.63	50.24
8	26.04	27.67	35.52	46.23	56.66	66.88	71.77	70.31	62.42	50.88	39.95	29.93	48.69
9	25.42	26.88	34.43	44.86	55.05	65.14	70.01	68.67	60.81	49.64	39.25	29.38	47.46
10	24.98	26.27	33.69	43.87	53.81	63.68	68.78	67.53	59.65	48.68	38.73	28.96	46.55
II	24.58	25.73	33.04	43.04	52.83	62.36	67.55	66.46	58.63	47.82	38.20	28.60	45.74
Mean	26.53	28.11	36.09	46.84	57.28	66.96	71.66	70.32	62.50	51.10	40.32	30.42	49.01

Hourly Means between 4 A. M. and io P. M.
Brooklyn Heights, ${ }^{1}$ N. Y. Lat. $40^{\circ} 4 \mathbf{1}^{\prime}$. Long. $73^{\circ} 59^{\prime}$ W. of G.
Alt. . . E. Merriam. Dec. I847, to May, 1849, inclusive.

Mdn't	\cdots	\cdots	-		-	\cdots	\ldots	.	\cdots	.	\cdots	\ldots	.
1	\cdots	.	.	\cdots			
2	.	\cdots	.	\cdots	\cdots	.							
3		\cdots											
4	27.7	24.5	31.9	42.9	53.8	62.8	67.6	67.2	56.9	48.5	36.6	36.8	46.4
5	27.5	24.4	32.4	43.2	53.8	63.3	67.6	67.2	56.8	50.0	36.6	36.8	46.6
6	27.5	24.5	32.4	43.3	54.5	64.4	67.6	67.6	57.1	51.3	37.2	37.0	47.0
7	27.5	24.5	33.1	44.9	56.7	67.7	68.3	68.5	58.0	51.3	37.0	37.2	47.9
8	27.8	25.5	34.9	48.5	58.8	70.7	69.6	69.9	59.3	52.8	38.4	37.3	49.4
9	28.8	27.5	36.8	50.4	60.3	72.9	71.0	71.8	61.3	54.6	40.2	38.2	5 I .1
10	30.3	29.5	39.1	52.1	62.2	73.9	72.1	74.0	63.8	56.2	42.2	39.5	52.9
11	32.0	30.8	4 I .1	54.2	64.3	75.7	73.8	75.5	66.5	57.8	43.8	40.8	54.7
Noon	33.1	32.0	42.0	55.8	65.7	77.1	74.7	77.1	67.3	58.9	44.6	41.8	55.8
I	33.7	32.9	42.7	56.9	65.9	77.7	75.6	78.0	67.3	59.4	45.4	42.3	56.5
2	34.0	33.0	43.5	57.2	65.9	78.0	75.6	76.7	67.2	59.9	45.6	42.6	56.6
3	33.5	32.9	43.6	56.9	65.2	77.9	75.7	76.6	67.0	59.6	45.4	42.3	56.4
4	33.0	32.4	42.6	55.3	64.7	77.0	75.6	75.7	66.2	58.5	44.1	41.5	55.5
5	31.9	31.6	41.3	53.7	63.5	75.3	74.8	74.8	65.1	57.1	41.8	40.6	54.3
6	31.2	30.3	39.7	51.8	6 I .9	73.4	73.5	73.5	63.8	56.3	41.0	39.8	53.0
7	30.7	29.6	38.6	50.0	60.3	71.5	72.3	72.7	62.8	55.0	40.2	39.2	51.9
8	30.1	29.1	37.8	48.7	59.2	69.6	71.5	71.6	61.9	53.9	39.9	38.9	51.0
9	29.8	28.5	$37 \cdot 3$	47.7	58.2	68.5	70.6	70.8	6 I .1	53.5	39.6	38.3	50.3
10	29.5	28. 1	35.9	46.0	57.5	66.0	70.0	70.0	60.3	53.I	39.6	37.8	49.5
11	.	-•		. .		-•

Some of these observations do not appear to me altogether trustworthy. [S.]

By graphical interpolation the following quite reliable numbers were found to supply the missing observations:-

$\mathbf{I I}$	29.1	27.5	34.2	45.0	56.6	64.6	69.2	69.4	59.5	52.0	38.9	37.5	48.6
Mdn't	28.8	26.8	33.3	44.2	55.8	63.6	68.8	68.7	58.8	51.0	38.4	37.2	47.9
\mathbf{I}	28.5	26.2	32.7	43.6	55.1	63.0	68.4	68.1	58.2	50.1	37.8	37.0	47.4
$\mathbf{2}$	28.2	25.5	32.3	43.2	54.5	62.8	68.0	67.6	57.6	49.3	37.3	36.9	46.9
3	27.9	24.9	32.1	43.0	54.1	62.7	67.8	67.3	57.2	48.9	36.8	36.8	46.6
Mean	30.1	28.4	37.1	49.1	59.5	70.0	71.2	71.7	61.7	54.1	40.4	38.9	51.0

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Philadelphia, Girard College, ${ }^{1}$ Penn. Lat. $39^{\circ} 58^{\prime}$. Long. 75° ェо' W. of G. Alt. 114 feet. A. D. Bache. June, 1840, to June, 1845 , inclusive.													
Mdn't	$30^{\circ} .90$	$30^{\circ} .10$	$39^{\circ} .25$	$46^{\circ} .60$	$54^{\circ} .16$	63°.	$68^{\circ} .06$	$67^{\circ} .68$	$59^{\circ} .76$	$47^{\circ} .74$	$3^{80} .46$	$3 \mathrm{I}^{\circ} .14$	$48^{\circ} .11$
1	30.35	29.67	38.60	45.76	53.54	62.82	67.32	67.08	59.50	47.36	38.32	30.72	47.59
2	30.20	29.28	38.05	44.96	52.82	62.25	66.76	66.60	59.10	46.78	37.94	30.36	47.09
3	29.92	28.73	37.75	44.60	52.14	61.60	66.26	66.44	58.64	46.36	37.66	30.06	46.68
4	29.72	28.45	37.58	44. 18	51.48	61.13	65.82	65.88	58.32	45.88	37.18	29.78	46.28
5	29.50	28.22	36.78	44.08	51.60	61.60	66.04	65.78	58.10	45.46	36.90	29.46	46.12
6	29.22	27.95	36.77	44.54	53.04	63.03	67.10	66.36	58.08	45.12	36.64	29.22	46.42
7	29.10	28.08	37.42	46.08	55.16	65.45	69.40	68.20	59.94	46.50	36.96	29.52	47.65
8	29.52	29.63	39.40	48.12	57.44	67.85	71.66	70.48	62.40	48.96	38.20	30.02	49.47
9	30.80	31.55	41.40	50.10	59.64	69.78	73.62	72.40	64.54	51.38	40.10	31.40	51.39
10	32.32	33.60	43.25	52.08	61.22	71.45	75.24	74.22	66.62	53.54	41.82	32.94	53.19
11	33.65	35.32	45.27	53.86	62.70	72.95	76.74	75.86	68.30	55.20	43.28	34.46	54.80
Noon	34.88	36.70	46.75	55.46	63.86	74.35	77.96	77.16	69.64	56.70	44.48	35.54	56.12
1	35.87	37.83	47.80	56.70	64.90	75.37	78.80	77.94	70.56	57.76	45.46	36.28	57.10
2	36.53	38.47	48.55	57.68	65.80	76.25	79.54	78.84	71.38	58.54	46.14	36.88	57.88
3	36.60	38.73	49.10	57.94	66.26	76.54	79.82	79.08	71.48	53.46	45.88	36.66	58.04
4	36.37	38.50	49.00	58.00	66.46	76.67	79.76	78.98	71.40	58.20	45.40	36.28	57.92
5	35.05	37.35	47.85	57.14	66.00	75.77.	79.10	77.94	70.00	56.34	43.88	35.06	56.79
6	34.23	35.70	45.98	55.74	64.44	74.43	77.76	76.52	67.80	54.14	42. 54	34.36	55.30
7	33.42	34.50	44.85	53.10	61.86	71.93	75.62	74.44	65.60	52.48	41.50	33.62	53.57
8	32.75	33.23	43.80	51.08	59.22	68.93	73.04	71.98	63.36	51.00	40.66	33.00	51.83
9	32.17	32.47	4 T .35	40.70	57.64	67.28	71.32	70.60	62.12	49.98	40.00	32.60	50.60
10	31.58	31.68	41.00	48.46	56.28	65.93	70.04	69.46	60.92	48.82	39.50	32.16	49.65
II	31.12	31.10	40.28	47.40	55.06	64.63	69.08	68.64	60.34	48.06	39.02	31.70	48.86
Mean	32.32	32.79	42.41	50.56	58.86	68.81	72.74	72.02	64.08	51.28	40.75	32.63	51.60
No of years	\} 4	4	4	5	5	6	5	5	5	5	5	5	

Hourly Means between 3 A. M. and 9 P. M.
Jackson, Jackson Co., Ohio. ${ }^{2}$ Lat. $39^{\circ} \circ z^{\prime}$. Long. $82^{\circ} 3 z^{\prime \prime}$ W. of G.
Alt. 700 feet. G. L. Crookham. May, 1851, to June, 1852 , inclusive.

Mdn't	-	.	-	\cdots	\cdots	\cdots	-	45.1
1	.	\cdots	\cdots	\cdots	\cdots	-	-	\cdots	\cdots	44-4
2		-								.			43.9
3	20.9	31.5	37.6	40.9	52.2	57.8	. 64.5	6 I .1	54.9	41.0	36.1	23.2	$43 \cdot 5$
4	20.5	31.2	$37 \cdot 3$	40.6	51.8	56.5	61.5	60.5	54.2	40.0	$35 \cdot 7$	23.0	42.7
5	20.4	30.8	36.9	40.4	52.3	56.8	61.7	60.5	53.7	39.4	35.1	22.5	42.5
6	20.3	30.3	37.3	4 I .1	54.3	59.3	63.7	62.0	54.2	39.3	34.4	22.4	43.2
7	20.1	30.9	38.7	44.0	58.4	63.9	68.0	65.6	57.2	40.0	34.3	23.0	$45 \cdot 3$
8	21.6	33.1	42.4	47.2	63.3	68.5	73.9	70.1	63.5	45.9	$35 \cdot 3$	23.8	49.0
9	24.7	$35 \cdot 3$	46.0	50.2	66.9	72.1	77.0	73.6	68.9	52.5	38.8	26.9	52.7
10	28.3	37.9	48.1	53.1	70.0	74.9	80.0	76.2	72.9	56.9	41.8	29.7	55.8
II	30.7	40.3	50.2	55.0	71.8	77.1	83.0	79.1	$75 \cdot 9$	60.5	44.2	31.7	58.3

1 The observations between June, 1840, and Dec. I841, inclusive, were taken bi-hourly, and those between June, $\mathbf{1 8 4 0}$, and Feb. $\mathbf{1 8 4 1}$, inclusive, 25 minutes after the fuIl hours; those between March, $\mathbf{1 8 4 1}$, and Dec. $\mathbf{1 8} 8 \mathrm{I}$, inclusive, I 5 minutes after the full hours. By interpolation the results were changed to refer to the full hours and for every hour. The means for each hour for the whole period of observations were then combined separately for each month. There is no record for Jan., Feb., and March, 1843. For record see "Observations at the magnetical and meteorological Observatory." Washington, D. C., 1847, four volumes.

2 MS. in Sm. Coll.
The record begins with Jan. 1851, but is not sufficiently regular for use till May, 1851. Numbers interpolated at the following hours: 3 A. M. May, 1851 ; 9 A. M., 3 P. M., and 9 P. M. May, June, July, I 85 I. The annual means for Io, II P. M., o, I, and $2 \mathrm{~A} . \mathrm{M}$, are graphically interpolated.

There are many omissions in the record. Some scattering observations between the hours io P. M. and 3 A. M. cannot be utilized.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Jackson.-Continued.													
Noon	$32^{\circ} \cdot 4$	42°. 0	$51^{\circ} .7$	$56^{\circ} .4$	$74^{\circ} .0$	$78^{\circ} \cdot 3$	85°. 0	$80^{\circ} .8$	$78^{\circ} .6$	$62^{\circ} .6$	$45^{\circ} .9$	$33^{\circ} .6$	$60^{\circ} .1$
I	32.9	43. 1	52.9	57.7	74.9	79.2	85.4	81.9	80.0	63.9	46.6	34.4	6I. 1
2	32.9	$43 \cdot 4$	53.8	59.2	75.5	78.9	84.1	82.6	79.8	64.2	47.4	$35 \cdot 2$	6 r .4
3	32.4	42.9	53.6	58.9	75.2	78.0	83.2	82.6	80. 1	63.7	47.0	35.2	6 x .1
4	31.2	42.0	52.9	58.3	73.6	76.2	-82.3	80.7	79.0	62.3	46.0	$34 \cdot 3$	59.9
5	29.0	39.5	51.2	56.4	72.1	75.4	8 I .1	78.7	76.4	58.8	43.1	31.9	57.8
6	27.0	35.8	47.1	53.8	68.9	728	78.1	75.0	70.3	52.9	40.4	29.9	54.3
7	25.6	34. 1	43.6	49.7	64.4	68.8	73.1	69.6	64.3	49.6	39.8	28.8	51.0
8	24.9	33.2	41.7	46.9	60.9	64.1	69.4	66.3	61.3	47.3	38.9	27.1	48.5
9	23.7	32.6	40.6	$45 \cdot 7$	57.9	62.2	67.8	65.1	59.6	46.0	38.1	27.0	47.2
10	5	46.4
II	\cdots	\cdots		.	45.8
Mean													50.9

Bi-hourly Means of Temperature.
Washington City, Capitol Hill, D. C. ${ }^{1}$ Lat. $38^{\circ} 53^{\prime}$. Long. 77° or' W. of G. Alt. 8o feet. Lieut. J. M. Gilliss, U. S. N. Jan. 1841, to June, I842, inclusive.

0.2 m	32.37	32.58	42.48	47.91	55.20	66.83	68.78	66.82	62.70	44.90	41.80	33.50	49.66
2.2	32.10	31.22	41.26	46.92	53.34	66.04	68.09	65.12	61.90	43.70	40.70	33.16	48.63
4.2	31.71	30.51	40,06	46.12	52.42	65.07	66.78	64.17	61.00	42.30	39.40	32.20	47.64
6.2	30.74	30.18	39.88	46.49	55.50	68.26	70.64	65.69	61.29	41.70	38.80	31.60	48.40
8.2	33. 13	31.44	42.28	49.93	59.72	73.63	75.19	71.39	65.73	45.00	39.50	31.88	51.57
10.2	35.38	36.72	48.06	54.02	63.23	77.37	78.38	76.09	7 r .02	51.61	44. 10	36.00	55.99
0.2 a	38.28	40.04	51.39	57.68	66.38	79.33	81.13	78.70	74.66	55.30	48.00	39.20	59.17
2.2	40.83	42.51	53.61	59.98	68.48	81.93	83.25	80.73	76.50	57.00	49.20	41.30	61.27
4.2	40.18	42.28	53.28	60.20	68.69	83.43	84.76	80.09	76.30	56.20	48.50	40.60	61.21
6.2	36.68	38.22	49.97	57.22	65.93	76.89	81. 33	75.93	72.30	52.94	47.30	37.95	57.72
8.2	35.48	35.38	46.20	52.18	59.83	72.29	74.93	71.48	68.59	48.40	44.20	36.26	53.77
10.2	34.25	33.86	44.37	49.12	56.70	68.70	71.56	68.00	64.90	46.60	43.20	34.70	51.33
Mean	35.10	35.41	46.08	52.31	60.45	$73 \cdot 32$	75.40	72.02	68.07	48.80	43.73	35.70	53.87

Trx-hourly Means of* Temperature.
Washington City, U. S. Naval Observatory. Lat. $38^{\circ} 54^{\prime}$. Long. $77^{\circ} \circ 3^{\prime} \mathrm{W}$. of G.
Alt. IIo feet. Sup't U. S. N. O. Astro. and Met. Obs. for 1866-7-8-9. Jan. 1862, to Dec. I869, inclusive.

Mdn't	29.55	31.75	37.76	47.71	56.80	65.72	70.64	69.16	62.94	50.35	41.35	32.57	49.69
3	28.45	30.45	36.31	45.45	54.54	63.77	68.96	67.58	61.34	48.54	39.76	-31.49	48.05
6	27.56	29.58	35.20	44.62	54.41	63.67	68.53	66.66	60.35	47.35	38.82	30.64	47.28
9	29.46	32.63	39.54	51.66	62.37	71.56	76.38	74.25	69.23	53.99 -	42.82	32.67	53.05
Noon	35.89	39.02	45.35	57.46	68.28	77.40	82.68	81,46	75.37	62.25	51.00	38.51	59.56
3	37.43	41.13	47.56	59.50	70.51	78.88	84.10	83.67	77.11	63.76	51.94	39.51	61.26
6	33.70	37.20	44.40	56.26	66.51	75.35	80.64	78.13	70.08	56.47	46.21	35.62	56.71
9	31.29	34.04	40.07	51.03	60.24	68.91	73.56	72.31	65.14	52.36	43.16	33.41	52.13
Mean	3 x .67	34.47	40.77	51.71	61.71	70.66	75.69	74.15	67.70	54.38	44.3S	34.30	53.47

${ }^{1}$ Pub. Doc., 2 d Session, 2 Sth Congress, vol. x , No. 172. Washington, 1845.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.

Hourly Means of Temperature.
Fort Morgan, Mobile Point, Alabama. ${ }^{1}$ Lat. 30° I4'. Long. 88° or' W. of G. Alt. 20 feet. Observed by U. S. Coast Survey. June, 1848 and 1850.

Mdn't	-	.	$63^{\circ} \cdot 55$	$66^{\circ} .98$		79°. 10	$83^{\circ} \cdot 53$	$84^{\circ}-44$	$8 \mathrm{I}^{\circ} .45$	$70^{\circ} .93$	$60^{\circ} .21$	$54^{\circ} .95$	$68^{\circ} .8$
1	.		62.25	65.93	.	78.42	.83.14	84.55	81.2I	70.70	59.98	54.95	68.4
2			62.16	66.27		78.21	82.78	84.34	80.57	70.11	59.60	54.69	68.1
3			61.69	65.22		78.05	82.51	83.98	80.13	69.55	59.23	54.16	67.7
4			60.95	66.24		78.17	82.12	83.82	79.59	68.87	58.74	53.75	67.4
5			60.52	66.04	$67^{\circ} \cdot 39$	77.97	82.00	83.68	79.10	68.47	58.35	53.42	67.1
6	$56^{\circ} \cdot 38$	$52^{\circ} .28$	60.05	65.98	67.45	78.30	82.49	84.01	78.80	68.18	57.76	53.27	67.0
7	55.89	51.88	60.30	67.24	68.42	79.34	83.53	84.68	79.50	68.74	57.51	52.99	67.5
8	57.05	53.03	61.46	68.25	69.58	80.62	84.46	85.87	80.86	69.18	58.30	53.65	68.5
9	58.12	54.79	62.84	69.43	70.75	81.76	85.53	86.99	82.25	70.52	59.28	54.48	69.7
10	59.45	55.77	63.80	70.73	71.76	82.86	86.66	88.33	83.73	71.78	60.32	55.74	70.9
11	60.55	57.03	64.96	71.82	72.56	83.40	88.16	89.49	84.96	72.85	61.44	56.72	71.9
Noon	61.28	58.01	65.91	72.98	73.43	83.75	88.55	90.15	85.75	73.95	62.56	57.38	72.8
1	61.73	58.74	66.34	73.44	74.56	84.08	89.38	90.85	86.56	74.74	63.43	58.14	73.5
2	62.04	59.19	66.70	73.61	75.18	84.21	89.65	90.77	86.97	75.56	64.35	58.89	73.9
3	62.13	58.95	67.06	73.68	75.37	84.17	88.96	90.09	87.31	75.73	64.74	59.14	73.9
4	61.71	58.54	66.96	73.56	74.93	83.76	88.35	89.75	86.99	75.54	64.44	58.67	73.5
5	60.70	57.87	66.27	72.18	73.70	82.79	87.27	88.89	86.27	74.56	63.46	57.74	72.6
6	60.06	56.86	65.04	70.85	72.61	81.94	86.34	87.74	84.78	73.25	62.41	57.04	71.5
	59.63	56.12	64.22	69.83	71.76	80.89	85.38	86.45	83.74	72.68	62.08	56.61	70.7
8	59.21	55.79	63.87	69.39	71.31	80.27	84.76	85.67	83.19	72.39	61.58	56.33	70.3
9	59.07	55.27	63.61	68.98	71.00	79.93	84.45	85.16	82.92	72.13	6 I .17	56.08	70.0
Io	58.61	55.09	63.28	68.58	..	79.35	84.20	84.91	82.26	71.91	60.83	55.95	69.6
II			62.93	66.74		79.29	83.94	84.67	81.89	71.54	60.50	55.54	69.1
Mean	58.96*	55-50\%	63.61	69.33	71.04*	8o. 86	85.34	86.64	82.95	71.83	60.93	55.84	70.24

N. B. Some of the results are not altogether reliable, as the series is too short and broken.

* These values were found by means of graphical interpolation for the hours of no record, viz:-

Hourly Means of Temperature.
Galveston, Texas. ${ }^{1}$ Lat. 29° I 8^{\prime}. Long. $94^{\circ} 47^{\prime}$ W. of G.
Alt. 20 ft . Obs'd by U. S. Coast Survey. June, Sept. Oct. Nov. Dec. 1851; Jan. Feb. Mar. 1852; Jan. Feb. 1853.

Mdn't	48.2	56.5	65.3	\cdots	\cdots	\cdots	\cdots	.	78.5	70.4	58.0	52.2	.
1	47.9	55.9	64.9	78.7	70.0	58.7	52.3	.
2	47.7	55.8	64.5	.	.	.			78.7	69.6	58.2	51.8	
3	47.5	55.6	64.2	.	-	\cdots	.	.	78.3	69.2	57.8	51.6	.
4	47.1	53.3	63.8	.	.	-.	\cdots	.	77.8	68.8	57.4	51.2	\cdots
5	46.7	55.2	63.6	.	.	75.7	.	.	77.7	69.0	57.1	50.7	. .
6	46.6	55.5	64.0	.		77.1			77.7	70.7	57.2	50.4	.
7	46.7	55.5	65.1	.	.	79.7	.	.	79.7	74.1	58.2	50.3	.
8	47.7	57.0	68.0	.	.	81.3	.	\ldots	82.2	76.2	61.3	51.1	.
9	48.6	59.1	71.1	\cdots	.	82.4	\cdots	\cdots	83.9	77.2	62.7	53.4	\cdots
10	51.2	60.5	73.1	.	.	8 E .8		\cdots	84.8	77.2	63.3	54.7	
11	51.8	61.3	73.6	.	\cdots	83.3	-	\cdots	S4.7	76.9	62.5	54.7	.

[^114]| Hour. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug, | Sept. | Oct. | Nov. | Dec. | Year. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Galveston.-Continued. | | | | | | | | | | | | | |
| Noon1234567891011 | $51^{\circ} .8$ | $61^{\circ} .1$ | $72^{\circ} .8$ | . | | $83^{\circ} .0$ | | . | $84^{\circ} .2$ | $76^{\circ} \cdot 9$ | $6 \mathrm{I}^{\circ} \cdot 9$ | $54^{\circ} .8$ | . |
| | 51.8 | 61.0 | 71.8 | . | . | 83.3 | \cdots | . | 84.1 | 76.8 | 61.7 | 54.9 | . |
| | 51.6 | 60.8 | 71.7 | - | \cdots | 83.8 | \ldots | . | 83.6 | 76.3 | 61.7 | 54.9 | . |
| | 51.5 | 60.4 | 70.9 | . | . | 84.8 | . | . | 83.2 | 75.6 | 61.6 | 54.9 | |
| | 51.5 | 60.0 | 70.5 | . | | 86.0 | | | 82.8 | 74.4 | 61.4 | 54.6 | |
| | 50.8 | 59.0 | 69.5 | . | . | 84.3 | . | . | S2.0 | 73.6 | 60.7 | 54.1 | |
| | 50.1 | 58.4 | 68.3 | . | .. | 81.0 | . | . | S1.4 | 72.6 | 60.2 | $53 \cdot 7$ | . |
| | 49.6 | 58.0 | 67.4 66.8 | \cdots | . | 79.1 | \cdots | - | So. 4 | 72.1 | 59.5 | $53 \cdot 3$ | - |
| | 49.2 | 57.5 | 66.8 | | | \cdots | | | 79.6 | 71.7 | 58.9 | 52.9 | |
| | 48.7 | 57.1 | 66.3 | \cdots | . | \cdots | | .. | $79 \cdot 3$ | 71.1 | 58.6 | 52.7 | .. |
| | 48.6 | 56.9 | 65.8 | . | .. | \ldots | . | . | 79.1 | 70.9 | 58.2 | $52 \cdot 3$ | |
| | 48.4 | 56.7 | $65 \cdot 7$ | . | . | . | . | | 78.7 | 70.8 | 58.1 | 52.2 | . |
| Mean | 49.2 | 57.8 | 67.9 | | | So. 4^{1} | \cdots | | So. 9 | 73.0 | 59.8 | 52.9 | \cdots |
| Hourly Means of Temperature.
 Key West, Florida. ${ }^{2}$ Lat. $24^{\circ} 33^{\prime}$. Long. $81^{\circ} 48^{\prime}$ W. of G.
 Alt. 20 feet. Observed by the U. S. Coast Survey. June, 18_{51}, to May, 1852, inclusive. | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 6 | 62.55 | 68. 10 | 73.19 | 74.98 | 78.97 | 81.23 | 82.19 | 82.48 | - | 78.34 | .. | 69.32 | - |
| | | | | | | | | | | | | | -. |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| 10 | 65.74 | 72.52 | 78.18 | 79.28 | 85.02 | 85.71 | 87.23 | 86.39 | . | 81.60 | | 71.26 | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Mean | 64.92 | 71.18 | 76.09 | 77.62 | 82.25 | 83.54 | 85.09 | 84.99 | - | 80.30 | \cdots | 70.93 | \cdots |
| N. B. No observations in Sept. and INov. 185 I . | | | | | | | | | | | | | |
| | | 1 Ob
 2 M | ained by
 he olse
 in Sm | interp rvations
 Coll.; | lation fo extend
 Gustavu | 3 A. M ver too s
 Wurden | . and 9
 hort a
 mann, | M., b ne to be server. | the ho relied | $\text { trs } 3,9$ | | | |

TABLES 0F DIFFERENCES

OF

BI-HOURLY, HOURLY AND SEMI-HOURLY MEAN TEMPERATURES FROM THE MEAN OF THE DAY, FOR

EACH MONTH AND THE YEAR. AT VARIOUS PLACESIN AMERICA.

Tables 0f differences of mean temperatures at different hours of the day FROM THE dAILY MEAN, FOR EACH MONTH AND THE YEAR.

INDEX TO STATIONS.

[Arranged according to latitudes.]

1. Van Rensselaer, North Greenland 1853-55
2. Port Foulke, North Greenland $860-61$
3. Melville Island, Arctic America 1819-20
4. Port Kennedy, North Somerset - 1858-59
5. Boothia Felix, Arctic America - 1829-30
6. Sitka, Alaska Territory 1857-64
7. Montreal, Canada East 1839-41
8. Thunder Bay Island, Lake Huron, Mich. 1863-65
9. Toronto, Canada West 1842-48
10. Mohawk, N. Y. 1860-69
ir. Cambridge, Mass. . $\mathrm{J} 84 \mathrm{I}-42$
11. Amherst, Mass. 1839
12. New Haven, Conn. - 1779-1865
13. Brooklyn Heights, N. Y.15. Frankford Arsenal- 1836-37
14. Philadelphia, Girard College - $1840-45$
15. Washington City, Capitol Hill, D. C. - 1841-42
" Washington City, U. S. Naval Observatory - 1862-69
16. Fort Morgan, Mobile Point, Ala. - $1848-50$
17. Galveston, Texas 1851-53
18. Key West, Florida 1851-52
19. Rio Janeiro, Brazil ?

Diurnal Fluctuation of Temperature (Fah. scale).

Ho	Jan.	Feb.	Mar.	Apr.	May	Ju	July.	Aug.	Sept	Oc	No	De	Yea
Van Rensselaer Harbor, North Greenland. Lat. $78^{\circ} 37^{\prime}$. Long. $70^{\circ} 53^{\prime}$ W. of G. Kane. Near sea level. Sept. 1853, to Jan. 1855, inclusive. (Uncorrected for effect of annual fluctuation.)													
Mdn't	-0.1	O.9	-1.6	-3.7	-3.2	-1.9	-1.3	2.0	-2.7	- I .1	. 6	-0.3	. 6
1	-0.1	-1.6	2.0	-4.5	-4.4	-3.1	I. 6	. 6	-2.2	+0.1	. 7		- I .8
2	-0.3	. 6	1.8	-4.5	-4.1	3.0	-1.5	-2.3	-2.1	+o. 1		2	-1.7
3	-. 4	1. 4	-2.0	-4.9	-3.4	-2.9	-r. 4	-2.3	-1.9	+o.1	. 7	-0.5	-1.7
4	-0.5	- -.8	二2.2	-4.4	- -2.8	-1.5	-r. 4	$\square_{-2.1}^{2.0}$	-2.0	+0.3	-. 7	-0.7	1.5 -1.3
5		I. 5	-2.1	-3.5	-1.6	-1.3	-1.3	- ${ }^{2.1}$	-1.4	+0.3	0.0 -0.2		-1.3
7	-0.8	-0.9 -0.5	1.9 1.2	- -2.8	-0.7	-0.6	-0.6	-1.5	-1.4	+0.3 +0.4	-0.2 0.0	+0.3 +0.1	$\begin{array}{r}\text {-0,9 } \\ \hline-0.4\end{array}$
8	-0.8	-0.2	-0.8	-0.7	+1.0	+0.3 +1.5	-0.4	+0.1	+1.0	+0.4	-0.2	+0.1	-0.2
9	-0.4	+0.1	+0.5	+0.9	+1.0	+0.7	+1.2	+1.2	+1.8	+0.7	0.0	+0.4	. 7
\%	-0.1	+0.6	+1.1	+r.6	+1.7	+0.9	+r.4	+2.1	+2.4	+0.9	-0.	+0.5	+1.1
11	+0.4	+0. 3	+2.3	+2.6	+1.9	+i.3	+1.8	+2.2	+2.8	+o. 8	+0.4	+0.6	+r. 4
Noon	+0.9	+0.9	+2.8	+3.2	+2.5	+2.1	+r.8	+2.4	+3.0	+o. 6	+0.6	+	+1.8
1	+0.7	+1.4	$+3.2$	+3.7	+2.7	+2.2	+1.6	+2.4	+3.1	+o. 6	+o. 3	+1.0	+r.9
2	+	+1.4	+3.6	+4.5	+3.0	+2.1	+1.5	+2.4	+2.7	+0.4	+0.2	+0.7	+r.9
3	+o. 1	+r. 3	$+3.0$	+4.6	+3.1	+1.8	+r.5	$+2.0$	$+2.2$	+0.5	+0.2	+0. 3	+1.7
5	${ }^{-0.1}$	+1.2	+1.9	+4.3	$+3.3$	$+1.5$	+1.4	+1.5	+1.6	+0.3 +0.1	+0.1 +0.2		+1.4
5	+0.2	+0.9	+1.2	+4.2	+2.8	+1.3	+0.7	+1.2	+1.0	$\underline{+0.1}$	+0.2	-0.1	
		+1	$+{ }_{+}^{+0.6}$	+3	+1	+1.1 +0.7	+0.3	+o. 3	-0.3	-0.9	-0.2	-0.8	+o.3
$\stackrel{7}{8}$	+0.3	+1.1	${ }^{+0.1}$	+1.0	+0.2	+o. 5	-0.5	-0.1	-0.8	-1.0	-0.3	-0.7	-0.1
9	+0.1	+0.5	-0.9	-0.4	-0.6	-0.2	-1.0	-0.3	-1.2	-	-0.8	-0.6	-0.5
10	+0.2	-0.6	-1.2	-r.9	-r. 7	-0.6	-I. 5	-1.0	-1.6	1.0	-0.5	-0.6	-1.0
11	$\bigcirc 0.4$	0.6	-r. 4	-2.6	-2.7	-r.5	-1.4	. 4	-2.3	. 0	-0.7	5	4
$\begin{aligned} & \text { Comb's } \\ & \text { 10, } 10 \end{aligned}$					0.0	+0.1	0.0	+0.5	-0.4	0.0	-0.3	0.0	0.0
	+o.1	+0.3	+0.3	+0.4	+0.6	+o.4	0.0	+0.2	0.0	-0.3	-0.3	-0.1	+0.2
6,2,10	+o.1	0.0	+0.2	-0.1	+0.2	+o. 3	-0.2	0.0	-0.1	-0.1	-0.2	+o. 1	0.
7,2,9	0.0	+0.5	+0.5	+0.8	+0.8	+o. 7	0.0	+0.4	+o. 4	I	-	+o. 1	+0.3
7,2,9 $\mathrm{mis}^{\text {d }}$		+0.5	-. 1	0.5	+0.5	+0.5	-0.2	+0.2	0.0	-0.3	-0. 3	-0.1	+o.1
3,9,3,9	-0.1	+0.1	+0.1	0.0	0.0	-0.1	+o. 1	+o.1	+0.2	+0.1	0.0	-0.1	+o.0

Port Foulke, North Greenland. Lat. $78^{\circ} 18^{\prime}$. Long. 73° oo W. of G.
Hayes. Near sea level. Sept. 1860, to July, r86r, inclusive.
(Uncorrected for effect of annual fluctuation.)

Port Kennedy, North Somerset. Lat. 72° or'. Long. $94^{\circ} 14^{\prime} \mathrm{W}$. of G. McClintock. Near sea level. Aug. 1858, to Aug. 1859, inclusive.
(Uncorrected for effect of annual fluctuation.)

Mdn't 2	-0.2	-0.5	-2.9 -3.3	-3.3	-3.9 -4.3	-4.2	-3.1	-1.0	-0.7	-1.0	-1.3 -0.3	+0.4	$\begin{array}{r}\text {-1.9 } \\ \hline 1.9\end{array}$
4	-0.7	-0.2	-3.3	-1.9	-2.0	-2.0	--2.9	-1.3	-1.2	0.0	+0.1	+0.5	-1.2
6	-0.4	-0.2	-3.8	-r. 3	-1.0	-0.3	-0.9	-0.9	-1.3	-0.4	+0.7	+0.3	-0.8
8	-0.4	+0.1	-1.7	+0.2	$+1.2$	$+2.8$	+1.2	-0. F	-0.7	-0.2	+0.9	-0.4	+0.2
10	0.0	+0.2	$+3.0$	+2.2	+2.3	+4.5	+2.8	+0.7	+0.1	+0.7	+1.2	+0.2	+1.5
Noon	+0.3	+o.8	$+5.8$	$+3.8$	+3.5	+4.5	+3.4	+1.2	+I.I	+1.5	+1.0	+o. 1	+2.2
2	0.0	+0.8	$+5.7$	$+4.2$	$+3.7$	$+3.2$	+2.2	+1.3	+1.6	+1.0	+0.2	+0.2	+2.0
4	+0.3	+0.3	+4.0	+3.1	+2.9	+1.6	+1.9	+1.1	+1.4	0.0	-0.3	-0.2	+1.3
6	+0.7	-0.2	-0.7	+o. 6	+1.2	+o. 1	+1.0	+o.8	$+1.0$	-0.2	-0.6	-0.3	+0.3
8	+0.5	0.0	-1.5	-1.6	-1.0	-r. 4	-0.1	+0.3	+0.2	-0.3	-0.9	-0.4	-0.5
10	+0.5	+o.1	- 1.8	-3.0	-2.7	-3.3	-1.5	-0.2	0.0	-0.4	-1.0	-0.5	-1.2
$\begin{gathered} \text { Comb's } \\ \text { 10, 10 } \end{gathered}$	+0.2	+0.1	+0.6	-0.4	-0.2	+0.6	+0.6	+0.2	0.0	+0.1		-0.1	
6,2, 9^{2}	0.0	+0.2	0.0	+0.2	+0.3	+0.2	+0.2	+0.1	$\underline{+0.1}$	+0.1	0.0	0.0	+0.1
6,2, 10	0.0	+0.2	0.0	0.0	0.0	-0.1	$\bigcirc 0.1$	+o. 1	+0.1	+0. 1	0.0	0.0	0.0
7,2, 9^{2}	0.0	+0.3	+0.4	+0.4	+0.7	+0.7	+0.4	+0.3	$+0.2$	+0.1	0.0	-0. 1	+0.3
7, 2, $9 \mathrm{bis}^{2}$	+0.1	+0.2	$\rightarrow 0.1$	-0.2	0.0	0.0	+0.2	+0.2	$+0.2$	0.0	-0.2	-0.1	0.0
3, $9,3,9^{2}$	0.0	0.0	+o.1	0.0	0.0	+o.1	0.0	0.0	+0.1	0.0	0.0	-	0.0

${ }^{1}$ From Prof. Guyot's Meteorological and Physical Tables, Smithsonian Misc. Coll.; Washington, 1858. Reaumur's changed into Fahrenheit's scale. Table by Dove.

2 By interpolation.

Sitka, Alaska Ter'y. ${ }^{2}$ Lat. $57^{\circ} \circ 3^{\prime}$. Long. $135^{\circ} 20^{\prime}$ W. of G.
Alt. 20 feet. [Table by Dove.] From a 5 year series.

| Mdn't | -0.74 | -1.30 | -2.18 | -3.39 | -4.05 | -4.07 | -3.78 | -3.01 | -2.4 I | -2.67 | -0.92 | -0.63 | -2.43 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.76 | -1.48 | -2.45 | -3.78 | -4.59 | -4.63 | -4.23 | -3.44 | -2.65 | -2.49 | -1.03 | -0.74 | -2.70 |
| 2 | -0.78 | -1.6 I | -2.63 | -4.07 | -4.95 | -5.06 | -4.59 | -3.73 | -2.99 | -2.65 | -1.10 | -0.74 | -2.90 |
| 3 | -1.14 | -1.75 | -3.05 | -4.25 | -5.47 | -5.60 | -4.85 | -3.98 | -2.79 | -1.44 | -1.08 | -0.40 | -2.99 |
| 4 | -1.01 | -1.93 | -3.31 | -4.54 | -5.73 | -5.78 | -4.95 | -4.09 | -2.90 | -1.53 | -1.10 | -0.40 | -3.10 |
| 5 | -1.01 | -1.87 | -3.53 | -4.66 | -5.37 | -5.56 | -6.63 | -4.25 | -2.99 | -1.57 | -1.10 | -0.32 | -3.24 |
| 6 | -1.01 | -1.89 | -3.51 | -4.25 | -3.95 | -3.98 | -3.76 | -3.64 | -2.99 | -1.75 | -1.03 | -0.40 | -2.67 |
| 7 | -1.16 | -1.84 | -3.08 | -2.54 | -2.15 | -2.43 | -2.15 | -2.45 | -2.36 | -1.30 | -0.90 | -0.38 | -1.91 |
| 8 | -1.08 | -1.70 | -1.68 | -0.69 | 0.00 | -0.58 | -0.58 | -0.90 | $\mathbf{1 . 0 6}$ | -1.19 | -0.74 | -0.26 | -0.87 |
| 9 | -0.87 | -1.10 | +0.18 | +1.42 | +1.84 | +1.16 | +1.30 | +0.58 | +0.38 | -0.26 | -0.52 | -0.22 | +0.33 |
| 10 | -0.35 | +0.07 | +1.55 | +2.58 | +3.03 | +2.88 | +2.86 | +2.13 | +1.64 | +0.63 | 0.00 | +0.24 | +1.44 |
| 11 | +0.42 | +1.35 | +2.90 | +3.78 | +3.93 | +3.82 | +4.43 | +3.53 | +2.88 | +1.68 | +0.78 | +0.24 | +2.49 |

${ }^{1}$ From Prof. Guyot's Meteorological and Physical Tables, Smithsonian Misc. Coll.; Washington, 1858. Reaumur's changed into Fahrenheit's scale.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept:	Oct.	Nov.	Dec.	Year.
Sitka.-Continued.													
Noon	+1.28	+2.36	$+3.84$	+4.79	$+4.88$	+4.74	+4.74	+4.59	+3.71	+2.56	+1.61	+0.71	$\stackrel{\circ}{\circ}$
1	+1.87	+3.05	+ +3.91	+5.79 +5.24	+5.33	+5.28	+5.06	+5.59 +5.24	+3.50	+3.10	+1.89	+1.03	+3.33 +3.71
2	+2.13	+3.24	+4.47	+5.13	+5.40	$+5.44$	+5.19	+4.85	+4.18	+3.19	+2.25	+1.12	+3.89
3	+2.13	+3.3I	+4.36	+4.72	+5.13	+5.19	+4.79	+4.50	+3.86	+3.08	+2.11	+0.99	+3.69
4	+1.75	+2.70	+3.76	+4.29	+4.59	+4.70	+4.36	+3.95	+3.50	+2.54	+1.68	+0.71	+3.22
5	+1.12	+1.91	+2.58	+3.67	+3.89	+3.95	+3.71	+3.22	+2.79	+I. 98	+1.01	+0.45	+2.54
6	+0.56	+1.01	+1.84	+2.54	$+3.08$	$+3.33$	+2.83	+2.29	+1.44	+1.12	+0.47	+0.22	+1.73
7	+0.33	+0.22	+0.65	+1.08	+1.70	+2.25	+1.82	+1.10	+0.63	+0.35	+0.09	+0.07	+-0.85
8	+0.02	-0.24	-0.29	-0.33	+0.52	+0.92	+0.49	-0.26	-0.42	-0.13	-0.16	-0.02	0.00
9	-0.33	-0.67	-0.99	-1.57	-1.08	$-0.6 \mathbf{I}$	-0.74	-1.49	-I.16	-0.47	-0.49	-0.26	-0.83
10	-0.53	-0.83	-r. 44	-2.41	-2.29	-2.18	-2.22	-2.15	$-\mathbf{1 . 7 0}$	-0.67	-0.65	-0.43	-0.46
	-0.69	-1.08	-1.89	-2.88	-3.53	-3.28	-3.10	-2.67	-2.02	-2.13	-0.97	-0.49	-2.09
$\begin{array}{\|c} \text { Comb's } \\ 10,10 \\ 6,2,9 \\ 6,2,10 \\ 7,2,9 \\ 7,2,9 \text { bis } \\ 3,9,3,9 \end{array}$													
	-0.43	-0.38	+0.05	+0.08	+0.37	+0.35	+0.32	-0.01	-0.03	-0.02	-0.32	-0.33	$\bigcirc 0.01$
	+0.26	+0.23	-0.01	-0.23	+0.12	+0.28	+0.23	-0.09	+0.01	+0.32	+0.24	+o.15	+0.13
	+0.20	+0.17	-0.16	-0.91	-0.28	-0.24	-0.26	-0.31	-0.17	+0.26	+0.19	+0.10	-0.08
	+0.21	+0.24	$+0.13$	+o. 34	$+0.72$	+0.80	+0.77	+0.30	+0.22	+0.47	$+\quad+29$	+o. 16	+0.38
	+0.08	+0.01	-0.15	-0.14	+0.27	+0.45	$+0.39$	-0.14	-0.12	$+0.24$	$+0.09$	+0.05	+0.08
	-0.05	-0.05	+0.12	+0.08	+0.10	+0.03	+0.12	-o. 10	+0.07	+0.23		+o.03	+0.05

Sitka, Alaska Ter'y. Lat. $57^{\circ} \circ 3^{\prime}$. Long. $135^{\circ}{ }_{20^{\prime}}$ W. of G.
Alt. 20 feet. Months of old style. From an 8 year series, 1857 to 1864.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Montreal, Canada East. ${ }^{1}$ Lat. $45^{\circ} 30^{\prime}$. Long. $73^{\circ} 33^{\prime}$ W. of G. J. S. McCord. Alt. 57 feet. Aug. I839, to July, I845, inclusive.													
Mdn't	-1. 1	-1.3	-1.3	-2.5	-4.5	-5.2	-4.4	-4.0	-3.9	-2.8	-1.4	-1.7	-2.85
1	-1.4	-1.6	-4.4	-3.1	-4.8	-4.5	-5.1	-5.0	-4.9	-2.5	-1.2	-0.9	-3.30
2	2.4	-2.7	-2.9	-4.4	-6.9	-7.4	-7.2	-5.4	-4.3	-4.0	-1.6	-1.0	-4.20
3	-1. 3	-2.7	-5.2	-5.1	-6.5	-5.1	-6.8	-6.0	-5.2	-3.6	-1.6	-1.8	-4.25
4	-2.9	-3.4	-5.6	-7.1	-7.0	-7.2	-7.6	-6.3	-5.6	-4.8	-I. 8	-1.4	-4.96
5	-1.9	-4.0	-6.8	-6.5	-6.6	-6.3	-7.7	-6.4	-5.4	-4.5	-2.1	-2.2	--5.05
6	-3.5	-3.9	-5.2	-5.6	-6.6	-5.5	-5.5	-6.0	-4.6	-4.8	-1.4	-r. 3	-4.50
7	-2.0	-5.2	-7.1	-3.8	-3.6	-4.7	-3.0	-2.1	-3.5	-3.6	-2.	-2.1	-3.56
8	-3.1	-3.2	-3.3	-3.4	-3.1	-0.9	-0.6	-2.8	-2.2	-2.5	-0.8	-0.9	-2.24
9	-1.	-4.0	-3.0	-0.7	-0.5	0.0	-0.2	+0.6	-0.7	-0.8	-0.6	-1.1	-1.02
0	+0.2	+0.8	O.	+0.8	+1.0	+1.7	+2.9	+1.7	$+1.5$	+1.0	+0.4	-0.2	+0.93
11	+1.1	+0.2	+2.5	+2.5	+2.8	+3.4	+3.2	$+3.6$	+2.2	+2.7	+1.4	+0. 5	+2.17
Noon	+2.8	+3.5	+4.2	$+5.0$	+7.1	$+5.2$	$+5.5$	$+5.6$	+5.4	$+4.2$	+1.9	+1.2	+4.30
1	+1.5	$+4.8$	$+7.4$	$+4.9$	$+5.8$	+6.0	+6.1	$+6.6$	$+5.1$	$+5.4$	$+3.5$	+2.4	$+4.95$
2	+4. 5	$+5.4$	$+6.5$	+6.0	+8.8	$+7.7$	$+7.4$	$+7.9$	$+6.6$	$+7.0$	+2.4	+2.5	+6.02
3	+2.4	+6.1	$+9.0$	$+6.3$	$+6.5$	$+6.9$	$+8.0$	$+7.3$	$+6.7$	$+5.8$	$+3.2$	+2.8	$+5.91$
4	+3.9	$+3.6$	$+6.0$	+5.8	$+8.4$	$+7.0$	+7.5	$+7.7$	+6.7	+5.6	+2.5	$+3.2$	+5.65
5	+0.6	+4.1	$+6.5$	$+5.6$	+6.6	$+6.2$	$+6.5$	$+5.5$	$+5.8$	$+3.2$	+1.2	+1.4	+4.43
6	+1.8	+1.5	$+3.4$	$+3.9$	$+3.9$	$+5.0$	+5.4	$+5.6$	+2.8	$+2.8$	+1.0	+r.3	+3.20
	+0.6	+1.2	+2.4	+2.9	+3.5	+3.2	+2.9	+1.4	+o.6	$+1.0$	+0.4	+0.7	+1.74
8	+0.9	+o.6	+1.2	+0.8	+1.6	+1.1	+0.7	+0.7	-0.1	+0.2	0.	0.0	+0.65
	+0.7	+1.0	+0.7	-0.4	-0.6	-1. 6	-1.2	-1.6	-1.3	-0.3	-0.1	+0.7	-0.34
10	-0.2	0.2	+o. 3	-0.6	-1.9	-2.5	-2.6	-2.0	-2.4	-1.4	-1.2	-0.9	-1.30
11	6	-0.2	8	2.1	-2.5	-3.5	-3.4	-3.1	-3.0	-2.5	-1.5	-0.2	-2.02
$\begin{aligned} & \text { Comb's } \\ & \text { Io, ro } \end{aligned}$	0.0	+0.3	+0.I	+0.1	-0.4	-0.4	+0.I	-0.1	-0.4	-0.2	-0.4	-0.5	-0.18
6,2,9	+0.4	+0.8	+0.7	0.0	+0.5	+0.2	+0.2	+0.1	+0.2	+0.4	+o. 3	+0.6	+0.39
6, 2, 10	+0.1	+o.4	+0.5	-0.1	+0.1	-0.1	-0.2	0.0	-0.1	$+0.3$	-0.1	+0.1	+0.07
7, 2, 9	+0.9	+0.4	0.0	+0.6	+1.5	+0.5	+1.1	+1.4	+0.6	+1.0	+o.1	+0.4	+0.71
7, 2, 9 bis	+0.9	+0.5	+0.2	+o.3	+1.0	0.0	$+0.5$	+o.6	+o. 1	$+0.7$	0.0	+0.4	+0.44
3,9,3,9	+0.1	+o. 1	+0.4	0.0	0.3	0.0	0.0	+0.1	-0.1	+0.3	+0.2	+0.1	+0.07

Thunder Bay Island, Lake Huron, Mich. Lat. $45^{\circ} 2^{\prime}$. Long. $83^{\circ} \mathrm{I} 7^{\prime} \mathrm{W}$. of G. Alt. 6 ro feet. Dec. 1863 , to Dec. 1865.

Mdn't	-0.9	-	-2.2	-	-3.4	-4.3	-3.8	-4.0			-0.8	8	
- 30	-1.3	-1.8	-2.9	-3.4	-4.1	-4.7	-4.5	-4.3	6	-2.3	-	-1.0	-2.82
1	-r.6	-2.2	--3.2	-3.8	-4.4	-4.9	-4.9	-4.5	-2	-2.5	-r. 4	-I.I	-3.10
${ }_{2}^{1} 30$	3	-2.5	-3.7	-4.0	-4.7	-5.3	-5.4	-4.8	-2.9	-2.7	-1.5	--1.2	-3.36
2	-2.3		-3.7	-4.4	-5.0	-5.6	-5.8	-5.1	-3.1	-2.9	-I.	-1. 3	-3.60
	-2	-2.8	-3.9	-4.6	-5.1	-5.9	-6.1	-5.2	-3.3	-3.0	-1.6	-1.4	-3.77
330	-2.6	-2.9	-3.9	-4.6	-5.3	-5.9	-6.4	-5.4	-3.5	-3.1	-1.8	-1.5	-3.91 -3.90
4	-2.5	2.8	-3.8	-4.5	-5.2	-5.8	-6.3	-5.5	-3.6	-3.1	-1.	-1. 4	-3.96
430	-2.4	. 8	-3.7	4.4	-5.1	-5.8	-6.2	-5.5	-3.8	-3.2	-	-I. 4	-3.83
5	-2.3	. 6	-3.6	4.3	-4.9	-5.4	-6.0	-5.5	-3.8	-3.2	-1.9	-I. 3	-3.72
	2.2	2.5	-3.5	4.0	-4.2	-4.9	-5.5	-5.3	-3.7	-3.1	-r. 8	-1.2	-3.48
	-2.1	. 4	-3.3	3.6	-3.3	-4.0	-4.7	-5.0	-3.7	-3.0	-r. 8	-1.1	-3.16
630	-2.0	2.3	-2.9	-2.9	-2.6	-2.7	-3.5	-4.2	-3.3	-2.9	-1.7	-1.	-2.66
7	. 0	2.1	-2.5	-2.0	-1.5	-1.7	-r.9	-3.2	-2.8	-2.6	-1.8	-r.	-2.09
	I. 9	I. 9	-2.0	-1.1	-0.5	-0.5	-1.2	-1.9	-2.0	-2.2	-r	-0.9	-1.46
8	-r.5	-1. 6	I. 0		+0.4	+0.6	-1	-0.7	-1.1	-1.8	-1.5	-0.7	-0.76
830	-1.2	I. 2	-0.1	+0.6	+1.1	+1.5	+1.0	+0.4	-0.5	-1.	-1.1	-0.6	-0.10
9	0.9	0.6	+0.5	+1.3	+1.7	+2.1	+r.9	+1.3	+0.4	-0.5	-0.8	-0.4	+0.51
930	-0.3	-0.1	+r. 4	+1.8	+2.0	+2.9	+2.6	+r. 9	+1.0	+0.2	-0.3	-0.1	+1.c9
10	+0.1	+0.4	+2.1	+2.4	+2.5	+3.4	+3.3	+2.7	+1.7	+0.9	+o. 1	+0.2	+1.66
1030	+0.7	+1.1	. 8	+2.9	$+3.0$	+3.9	+3.8	+3.6	+2.4	+1.6	+0.6	+0.5	+2.25
II	+r.3			+3.4	+3.3	+4.2	+4.3	+4.4	+3.0	+2.3	+0.9	+0.9	+2.81
1130	+r.9	+2.4	$+3.8$	+3.8	+3.6	+4.5	+4.7	+5. I	+3.6	+2.9	+1.5	+1.3	+3.27

[^115] the observations were taken at the even hours; from Aug. 1840, to July, I841, at the odd hours.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June,	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Thunder Bay Island.-Continued.													
Noon	$+{ }^{\circ} .5$	+2.9	+4.0	+4.0	+4.0	+4.9	+5.1	+5.7	+ ${ }^{\circ} \mathrm{C}$ 2	$+3.6$	+1.8	+1.5	$+3.69$
- 30	+3.0 +3.0	+ +3.9 +3.4	+4.9 +4.4	+4.0 +4.3	+4.0 +4.2	+4.9 +5.6	+5.1 +5.3	+5.7 +6.2	+4.2 +4.5	+8.6	+1.8 +2.3	+1.5 +1.7	+3.69 +4.09 +4.29
1	+3.2	+3.7	$+4.6$	$+4.5$	$+4.4$	+5.4	+5.2	+6.7	+4.8	+4.4	+2.6	+1.9	+4.29
130	$+3.4$	+4.1	+4.8	$+4.6$	+4.5	+5.4	+5.7 +5	+6.9	+5.1	+4.8	+2.9 +2.9	+2.0	$+4.52$
	$+3.6$	$+4.2$	$+5.0$	+4.7	$+4.7$	+6.0	$+5.9$	$+7.0$	$+5.3$	$+5.0$	$+3.0$	+1.9	$+4.62$
230	$+3.5$	$+4.2$	$+4.8$	$+4.7$	$+4.7$	$+6.0$	$+6.0$	$+6.9$	$+5.3$	$+5.0$	+3.2	+1.9	$+4.69$
	$+3.3$	+4.1	+4.5	+4.6	$+5.0$	$+5.9$	$+6.1$	+6.5	+5.1	+4.7	$+3.0$	+1.7	$+4.55$
330	+2.9 +2.9	$+3.7$	+4.2 +4.8	$+4.3$	+5.1	+5.6	+5.9	+6.1	+4.6	+4.4	+2.7	+1.5	+4.26
	+2.2	+3.1	$+3.8$	+4.1	$+5.0$	+5.1	+5.7	+5.6	+4.1	+3.9	+2.0	+1.2	+3.83
430	+2.0	+2.4	+3.3	+3.7	+4.6	$+4.8$	+5.1	+5.1	$+3.6$	+3.2	+1.8	+1.0	+3.39
	+1.6 +1.3	+1.9	+2.6	+3.2 +2.7	+4.1	+4.4 +3	+4.5	$+4.3$	+3.0	+2.6	$+1.2$	+0.8	+2.86
${ }_{6} 3^{3}$	+1.3 +0.9	+1.5 +0.9	+2.0 +1.5	+2.7 +2.1	$+3.4$	+3.8 +3.2	+3.8	+3.4	+2.2	$+2.0$	+1.0	$+0.7$	$\underline{+2.33}$
	+0.9 +0.7	+0.9 +0.6	+1.5	+2.1	+2.7	+3.2	+3.0	+2.6	+1.5	+1.3	$+0.7$	+0.6	+1.76
630	$+0.7$	+o.6	+o.8	+1.4	+2.0	+2.1	+2.2	+1.5	+0.9	$+0.7$	+0.6	+0.5	+1.17
7	+0.4	+0.4	+0.2	+0.8	+1.2	+1.0	+1.4	+0.9	+0.2	+0.3	+0.3	+0.3	+0.62
730	+0.3	+0.1	-0.3	+0.2	+0.4	+0.3	+0.5	+0.2	-0.3	-0, 1	+0.3 +0.1	+0.1	+0.15
8	+0.2	0.0	-0.5	0.2	-0.2	-0.5	-0.3	-0.4	-0.8	-0.5	+0.1	$+0.3$	-0.22
830	+0.1	-0.5	-0.8	-0.6	-0.9	-1.2	-0.8	-1. 1	-1. 1	-0.6	0.0	+0.2	-0,60
9	0.0	-0.4	-1.0	-1.0	-1.4	-r. 7	-1.4	-1.7	-1.5	-1. 1	-0.2	0.0	-0.94
930	-0.2	-0.7	I. 2	-1.3	-r.9	-2.2	-1.8	-2.2	-1.8	-1.3	-0.2	-0.1	-r.23
10	-0.3	-0.8	-1.3	-1.6	-2.3	-2.6	-2.4	-2.7	-1.9	-1.5	-0.4	-0.	-1.48
1030	-0.5	-1.3	-1.5	-2.0	-2.6	-3.2	-2.6	-3.1	-2.2	-1.7	-0.5	-0.4	-1.79
11	-0.7	-1.3	-1.8	-2.3	-2.9	-3.5	-3.0	-3.5	-2.5	-2.0	-0.7	-0.2	-2.02
1130	-0.8	-1.5	-2.0	-2.5	-3.2	-3.9	-3.4	-4.1	-2.7	-2.3	-0.8	-0.6	-2.31
$10,10$	-0.1	-0.2	+o.4	+0.4	+o.1	+0.4	+0.4	0.0	-0.1	-0.3	-0.1	0.0	+0.08
6,2,9	+0.5	+0.5	+0.2	0.0	0.0	+o.1	-0.1	+0.1	0.0	+0.3	+0.3	+0.3	+o.16
6, 2, 10	$+0.4$	$+0.3$	+0.1	-0.2	-0.3	-0.2	-0.4	-0.2	-0.1	+0.2	+0.3	+0.2	-0.02
7,2,9	$+0.5$	+0.6	$+0.5$	+0.6	+0.6	$+0.9$	+0.9	+0.7	+0.3	+0.4	+0.3	+0.3	+0.52
$7,2,9$ bis	+0.4	$+0.3$	+0.1	+0.2	+o. 1	+0.2	+o. 3	+0.1	\cdots	0.0	+0.2	+0.2	+0.15
3,9,3,9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+0.2	+0.1	0.0	0.0	-0.1	+0.04

N. B. The hours $6_{m}, 9_{m}, 3_{n}, 6_{n}$ were employed in the U. S. Lake Survey, prior to June, 1860 , the differences for the means at these hours are as follows:-
$6,9,3,6|+0.3|+0.5|+0.8|+1.1|+1.5|+1.5|+1.6|+1.3|+0.8|+0.6|+0.3|+0.2 \mid+0.90$

The mean of $6_{m}, 9_{u n}, 3_{a}$, is about the same as 7_{a}.

Toronto, Canada West. Lat. $43^{\circ} 39^{\prime}$. Long. $79^{\circ} 23^{\prime}$ W. of G.
Alt. 342 feet. July, 1842 , to July, 1848 .

Mdn't	-1.52	-1.82	-2.47	-3.26	3	-5.31	-6.54		96	-3.25	I. 82	-0.91	-3.45
1	-1.99	- 2.20	-2.95	-4.01	-5.89	-6.00	-6.54	-6.11	- 4.57	-3.85	-2.11	-1.49	-3.45
2	-2.07	-2.54	-3.33	-4.68	-6.73	-6.70	-7.97	-6.79	-5.16	-4.17	-2.39	- T .86	-4.53
3	-2.22	-2.97	-3.62	-4.88	-7.44	-7.48	-8.69	-7.46	-5.62	-4.33	-2.71	-1.99	-4.95
4	-2.32	-3.27	-4.00	-5.31	-7.9x	-8.05	-9.32	-7.84	-6.21	-4.63	-2.87	-2.02	-5.31
5	-2.50	-3.62	-4.52	-5.68	-7.86	-7.86	-9.37	-8.03	-6.84	-4.80	-2.76	-2.04	-5.49
6	-1.77	-4.19	4.50	-5.55	-5.4I	-5.21	-6.16	-6.58	-6.16	-4.58	-2.49	-2.46	-4.61
7	-1.87	-4.32	-3.93	-3.26	-2.43	-2.40	-2.49	-3.6.	-3.61	-3.83	-2.49	-2.62	-3.07
8	-1.64	-3.30	-1.95	-1.01	-0.21	-0.06	+0.11	-0.34	-0.86	-1.58	-1.44	-2.19	-1.21
9	-0.67	-1.00	+0.22	+0.97	+2.11	+1.82	+2.31	+2.16	+1.56	+1.10	+0.09	-1.01	+o. 80
10	+0.56	+1.01	+1.95	+2.49	$+3.81$	+3.49	+4.01	+4.14	+3.53	+3.03	+1.53	+0.44	+2.50
1 I	+1.73	+2.60	$+3.18$	+3.87	+4.94	+4.77	$+5.56$	+5.59	+4.96	+4.40	+2.54	+1.68	$+3.82$

TABLES OF DIFFERENCES OF MEAN TEMPERATURES. 145

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Toronto.-Continued.													
Noon	$+2.51$	+3.80	+ ${ }^{\circ}$. 30	\circ +4.90	$+5.89$	$+5.87$	$+6.86$						
1	+3.01	+4.66	+4.80	+4.90 +5.84	+5.89 +6.81	+5.87 +6.60	+6.86 +7.78	+6.54 +7.31	+5.93 +6.53	+5.30 +5.73	+3.33 +3.73	+2.49 +3.21	
2	+3.28	+5.06	+ +5.42	+6.22	+7.16	+7.02 +7.02	+6.86 +8.63	+6.54 +7.89	+5.93 +6.93	+5.73 +6.08	+3.73 +3.81	+3.21 +3.36	+5.50 +5.90
3	+3.25	$+5.05$	+5.22	+6.29	+7.22	$+7.40$	+8.83	+8.24	+6.96	+5.85	+3.73 +3.64	+3.31 +3.11	+5.90 +5.92
4	+2.73	+4.50 +3.30	+4.75	+5.90	+7.17	$+7.64$	+8.84	+8.09	+6.74	+5.12	+3.64 +2.74	+3.11 +2.46	+5.92 +5.56
5	+1.73	+ 3.30 +1.85	+4.00 +2.32	+5.17	+6.79 +5.04	$+7.04$	$+8.38$	+7.54	+5.78	+3.37	+1.53	+1.51	+4.68
	+0.91 +0.38	+1.85 +0.86	+2.32 +0.85	+5.17 +3.37 +0.84	+5.04 +2.17	+5.74 +3.00	+6.94	+5.64	+3.11	+1.32	+0.71	+0.81	+3.15
8	+0.06	+0.01	-0.12	-0.75	-0.54	+3.00	+3.46	+1.66	+0.41	+0.22	+0.14	+0.4S	+1.20
9	-0.14	-0.64	-1.12	-1.83	-2.29	-2.46	-0.74	-1.26	-0.87	-0.52	-0.17	+0.09	-0.43
10	-0.52	-r. 19	-1.77	-2.60	-3.29	-3.40	-3.11	-2.84 -3.86	-1.91	-1.28	-0.46	-0.16	-1.52
II	. 8.8	-1.70	-2.42	-3.10	-4.18	-4.76	-5.52	-4.66	-3.65	二2.03	-0.81	-0.46	-2.30
												-0.57	94
Comb's													
Io, 10	+0.02	-0.09	+0.09			-0.15	-0.16	+0.14	+0.28	+0.50	+0.36	-0.01	+0.10
6,2,9	+0.46	+0.08	-0.17	-0.39	-0.18	-0.22	-0.21	$\underline{-0.51}$	+0.28	+0.50	+0.36 +0.29	$\underline{+0.015}$	+0.10
6,2, 10	$+0.33$	-0.11	-0.38	-0.64	-0.50	-0.66	-0.62	-0.85	-0.73	-0.18	+0.17	$\begin{array}{r} +.23 \\ +0.15 \end{array}$	-0.34
7,2,9	+0.42	+0.03	+0.12	+0.38	+0.81	+0.72	+1.01	+0.48	+0.37	+0.32	+0.29	$\begin{array}{r} +1.15 \\ +0.19 \end{array}$	+0.44
7,2,9 bis	$+0.28$	$\bigcirc 0.13$	-0.19	-0.17	+0.04	-0.07	-0.02	-0.35	-0.12	-0.08	+o.10	+o.10	-0.05
3,9,3,9	+0.05	+0.11	+0.17	+0.14	$\bigcirc .10$	-0.18	-0.16	+0.02	+0.25	+0.33	+0.14	-0.01	+0.06

Mohawk, N. Y. Lat. $43^{\circ} \circ 0^{\prime}$. Long. $75^{\circ} 02^{\prime}$ W. of G.
Alt. 435 feet. June, $\mathbf{1 8 6 0}$, to May, 1864, inclusive; and Jan. 1867, to Jan. 1869, inclusive.

Mdn't	-1. 19	-I.	-1.88	-2.95	-3.70								
1	-r. 34	-2.17	-2.70	-4.15	-4.84	-6.18	-5.06	-4.32	-3.57	-2.53	-1.34	-0.94	-2.65
2	-r. 64	-2.55	-3.13	-4.71	-5.73	-7.06	-5.91	-5.49	- 4.47	-2.04	-1.82	-1.17	
3	-2.05	-2.90	-3.70	-5.22	-6.55	-7.82	-6.61	-6.19	-5.06	-3.46	-r.6r	-r. 89	-3.88 -4.42
4	-2.37	-3.20	-4.18	-5.76	-7.37	-8.53	-7.24	-6.83	-5.66	-3.94	I. 88	-2.19	-4.93
5	-2.63	-3.	-4.62	-6.13	-7.85	$\square^{-9.01}$	-7.75	-7.33	-6. 19	-4.31	-2.21	-2.31	-5.3r
			-5.06	-6.43	-7.88	-8.36	-7.29	-7.47	-6.58		-2.48	-2.49	-5.43
7	-2.99	-4.11	-5.04 -3.66	-5.89	-6.37	-6.39	- -2.31	-6.30	-6.25	-4.78	-2.81	-2.64	-4.91
9	-2.20	-2.64	-1.68	- 1.87	-1.40	-	-0.69	. 04			-2.63	-2.62	-3.56
10	-0.70	-0.63	+0.31	+0.29	+1.02	+2.00	+2.64			-2.55	-1.77	-I. 79	69
11	+1.06	+r.21	+1.94	+2.15	$+3.17$	+4. 18				. 34	-0.36	-0.49	44
Noon	+2.55	+2.99	+3.40	+3.85	+5.01	+5.98	+6.12						
1	+3.51	+4.15	+4.40	+5.18	+6.35	+7.21	+6.99	+			$+2.38$	$+2.36$	03
2	+4.10	+4.90	+5.23	+6.30	+7.50	+8.45	+7.24		+6.39	+4.95	+3.16	+3.30	.21
3	+4.22	+5.16	+5.4r	+6.96	+8.10	+8.99	$+7.42$	+8.32	+ +8.36 +8.31		+3		
4	+3.75	+4.74	+5.26	+7.29	+8.24		$+7.02$	+8.32	+8.31	+5.88			
5	+2.75	+3.85	4.62	+6.98	+7.86	-8.45	+6.68	+7.70	+7.27	+4.70	+2.23	+2.97	17
6	+1.62	+2.60	, 35	+5.87	+6.79	+7.13		+6.40					
7	+0.85	+r.6I	+ I .89	+3.86	+4.59	+4.86	+3.67	+3.90	+2.76	+	+1.29 +0.49	+1.29 +0.72	
8		+o.83	-0.90	+1.62	+r.80	+1.90	+1.03	+1.09	+0.60	+0.37	+0.03	+0.26	
	-	+0.20	+0.22	-0.02	-0.28	-0.55	-I. 06	-0.85	-0.85	-0.44	-0.47	3	$\underline{-0.38}$
10	-0.66	-0.43	-0.4I	-1. 15	-1.66	-2.09	-2.44	-2.29	-1.90	-0.75	-0.77	-0.34	-1.24
1 I	$\bigcirc 0.97$	-1.0	I. 07	2.11	. 73	-3.53	-3.37	-3.36	-2.80	-1.32	-1.04	-0.60	-r
mb's													
10, 10	-0.68	-0.53	-0.05	-0.43	-0.32	\bigcirc	+o.10	-0.48	-0.82	-0.54	-0.57		0.40
6,2,9	+o.34	+0.47	+0.13	-0.05	-0.22	$\bigcirc .15$	-0.37	-0.20	+0.0.4	+0.26	+0.20	+0.34	+0.06
$6,2,10$ $7,2,9$	+0.21	0.26	-0.08	-0.43	-0.68	-0.67	-0.80	-0.68	-0.31	+0.16	+o.10	+0.27	-0.22
7,2,9	+0.28	0.33	+0.14	+0.13	+0.28	+0.50	+0.29	+0.19	+0.15	+0.21	+0.09	+o.	
$7,2,9$ bis	${ }_{-0.14}^{+0.14}$	+0.29		$+0.09$	+0.14			-0.07	-0.10	+0.05	-0.05	+o.	
3,9,3,9	-0.08	-	+0.06	. 04	-0.03	0.00	$\bigcirc .05$	-0.04	+0.02	-0.05	\bigcirc	-0.06	-0.03

Hour.	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov	Dec.	Year.
Cambridge, Mass. Lat. $42^{\circ} 23^{\prime}$. Long. $71^{\circ} \circ 7^{\prime} \mathrm{W}$. of G. Alt. about 7 I feet. Oct. 184 I , to Dec. 1842 , inclusive.													
		\bigcirc		- ${ }^{\text {- }}$	- ${ }^{\circ}$ ¢								(${ }^{\circ}$
0.6 A.M.	-0.90	-1.19 -2.46	- 4.05	-3.55	-7.60		-5.53	-5.16	-	5.37 6.63		-2.13	
$\begin{aligned} & 2.6 \\ & 4.6 \end{aligned}$	-1.51	-3.39	-5.28 -5.59	72			-6.74	-6.86	-	6.63 7.13		-2.60	-5.40 5.88
6.6	-3.11	-3.25	-6.48	-4.03	-4.92	-2.59	-3.29	-4.25	8.26	- 7.28	-4.67	-3.11	-4.61
8.6	-4.92	-2.86	+0.02	+0.35	+2.51	+2.76	+2.03	+1.64	+ 0.37	- 1.88	-1.57	-1.87	-0.29
10.6	+0.48	+1.02	+5.34	+3.59	$+5.99$	+6.62	+6.95	$+5.59$	+ 7.38	+6.30	+4.57	+2.50	+4.69
0.6 P.M.	$+4.42$	+5.00+5.59	$+7.97$	$+5.26$	+S.55	+8.85	$+7.50$	$+6.36$	+10.03	+10.04	$+6.72$	+5.22	$+7.16$
2.6	+4.45		+7.44	$+5.56$	$+9.45$	+9.16	+6.96	$+6.65$	+ 9.97	+10.88	+6.75	+4.98	$+7.32$
4.6	+2.94	+5.59 +3.47	$+5.04$	+4.05	$+7.98$	$+7.00$	$+5.11$	$+5.43$	$+7.21$	+ 7.25	+3.64	+1.98	+5.09
6.6	+0.73	+3.47 -0.27	+0.70	+1.35	+3.60	+4.21	+0.92	+2.03	+ 2.02	+ 0.56	+0.68	+0.29	+1.40
8.6	0.00	-0.82	-1.83	-1.89	-2.13	-2.73	-2.73	-1.96	- 2.25	-2.51	-1.27	-0.77	-1.75
10.6	-0.69	-0.83	-3.22	-2.75	-5.13	-6.25	-4.53	-3.50	- 4.77	$\mid-4.21$	-2.37	-1.74	-3.34
The following values for certain combinations of hours were obtained by a process of graphical interpolation, the above monthly results having been plotted on a suitable scale for that purpose :-													
$\begin{gathered} \text { Comb's } \\ 7,2,9 \\ 7,2,9 \text { bis } \\ 3,9,3,9 \end{gathered}$	$\begin{aligned} & +0.3 \\ & +0.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.1 \\ -0.1 \end{array}$	$\begin{aligned} & -0.2 \\ & +0.7 \\ & +0.2 \end{aligned}$	$\begin{array}{\|l} +0.1 \\ +0.4 \\ +0.4 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +1.4 \\ +0.2 \\ -0.2 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.3 \\ & +0.4 \end{aligned}$	$\left[\begin{array}{ll} - & 0.1 \\ - & 0.7 \\ + & 0.5 \end{array}\right.$	$\begin{array}{r} +0.4 \\ +0.4 \\ +0.2 \end{array}$	+0.2	$\begin{array}{r} +0.3 \\ 0.0 \\ 0.0 \end{array}$	$\left\lvert\, \begin{aligned} & +0.4 \\ & +0.2 \\ & +0.1 \end{aligned}\right.$
											-0.		
											+0.4		
The above results are of comparatively little value on account of the small number of observations.													
Amherst, Mass. Lat. $42^{\circ} 22^{\prime}$. Long. $72^{\circ} 34^{\prime}$ W. of G. Alt. 267 feet. 1839.													
$2.50-1.70-4.84-4.92-4.75-5.50-5.32-4.53-5.39-3.99-2.39-1.98-3.98$													
I	3.90	-2.78	-4.72	-6.23	-5.51	-6.66	-6.40	-5.15	-5.41	-4.77	-2.33	-1.63	
2	-4.24	-3.03	-4.80	- 6.69	-6.48	-7.30	-6.84	-5.67	-6.17	-5.55	-2.98	-2.20	-5.16
3	4.13	-3.20	-5.34	-7.42	-7.41	-7.94	-7.29	-6.04	-6.97	-6.36	-3.48	-2.55	-5.68
4	4.50	-3.94	-5.68	- 7.85	-7.88	-8.06	-7.43	-6.30	-7.61	-6.99	-3.71	-2.70	-6.05
5	4.72	$\left\|\begin{array}{r} -4.20 \\ -4.78 \end{array}\right\|$	-6.03	-8.12	-8.18	-7.82	-7.55	-6.67	-7.93	-7.62	-4.02	-3.32	-6.36
5	-4.68		-6.11	- 7.77	-6.77	-5.98	-6.03	-5.82	-7.49	-7.55	-4.33	-3.78	-5.92
7	4.75	-4.78	-4.61	- 5.97	-4.22	-4.22	-3.8I	-4.49	$-5 \cdot 37$	-6.77	-4.27	-3.97	-4.77
8	-3.83	$\begin{aligned} & -4.78 \\ & -3.78 \end{aligned}$	-2.07	- 3.04	-1.62	-1.42	-1.10	-1.97	-2.57	-4.21	-2.67	-4.13	-2.70
9	-1.46	$\begin{aligned} & -3.78 \\ & -1.45 \end{aligned}$	+0.47	- 0.08	+0.60	+0.86	+0.86	+0.92	+0.51	-0.73	-0.33	-2.40	-0.19
10	+5.32	+0.85	+2.58	+ 2.69	$+3.12$	$+3.10$	$+3.79$	+3.03	$+3.27$	+2.34	+1.44	+0.55	+2.34
11	+4.10	+2.72	+4.78	+ 5.65	+5. 12	+5.66	+6.42	$+5.44$	+5.99	$+5.12$	+3.02	+2.76	$+4.73$
Noon	+6.32		+6.39	+ 7.92	+6.75	+8.06	+8.49	+6.85	+8.11	$+7.16$	+5.02	$+4.30$	+6.64
1	-7.46	$\begin{aligned} & +5.35 \\ & +6.06 \end{aligned}$	$+7.66$	+ 9.46	+8.15	+9.34	+8.82	+8.22	+9.07	+8.34	+6.13	+6.14	$+7.85$
2	-7.80		+8.35	+10.42	+8.75	+8.98	+9.49	+7.85	+9.75	+9.38	+5.98	+6.30	26
3	7.32	$\begin{aligned} & +0.00 \\ & +5.80 \end{aligned}$	+8.12	+ 9.81	+8.27	+8.58	+7.49	$+7.66$	+9.15	+9.34	$+5.29$	$+5.60$	$+7.70$
4	5.80	+4.89	$+7.24$	- 8.61	+7.86	+7.82	+7.16	$+6.22$	+8.35	+8.34	+3.86	$+3.76$	+6.66
5	3.32	+3.101+1.18	$+5.66$	- 7.04	$+5.97$	$+5.98$	$+5.82$	$+5.25$	$+6.39$	+5.75	+2.29	+2.03	$+4.89$
6	. 06		+3.47	+ 4.50	+4.08	+4.18	+4.16	+2.81	$+3.47$	$+3.60$	+0.86	68	2.93
7	-0.24	+1.05	-0.16	+ 1.69	+2.38	+1.90	+1.53	+1.43	+1.42	+1.34	+0.65	+0.31	+1.11
8	-0.64	+0.43	-0.92	- 0.27	+0.19	-0.06	-0.99	-0.34	-0.16	-0.03	-0.07	-0.20	-0.25
9	-1.50	-0.28	-1.88	- 1.77	-1.66	-1.98	-3.06	-1.60	-2.04	-1.06	-0.79	-0.69	-1.53
	-2.01	$\begin{array}{r}\text {-0.57 } \\ \hline \mathbf{1} .19\end{array}$		-3.31	-2.73	-3.22	-3.80	-3.02	-3.58	-I. 80	-I. 15	-1.20	-2.47
11	2.42		-4.28	-4.23	-3.99	-4.22	-4.25	-3.80	-4.66	-3.14	-1.95	-1.58	-3.31
Comb's													
10, 10	-0.34		-0.35	-0.31	+0.19	-0.06	0.00	0.00	-0.19	+0.27	+0.24	-0.32	-0.06
6,2,9	+0.54	+0.14 +0.33	+0.12	+0.29	+0.11	+0.34	+0.13	+0.14	+0.07	+0.26	+0.29	+0.61	+0.27
6,2,10	+0.37	+0.24	-0.35	-0.22	-0.25	-0.07	-0.11	-0.33	-0.44	+0.01	+0.17	+0.44	-0.04
7,2,9	+0.52	+0.33	$+0.62$	$+0.89$	+0.96	+0.93	+0.87	+0.59	+0.78	+0.52	+0.31	+0.55	+0.65
7,2,9 ${ }_{\text {bis }}$	+0.01	+0.18	0.00	+0.23	+0.30	+0.20	-0.11	+0.04	+0.07	+0.12	+0.03	+0.24	O. 11
3,9,3,9	+0.06	+0.22	$+0.34$	$+0.13$	-0.05	-0.12	-0.50	+0.23	+0.16	+0.30	+0.17	-0.01	+0.08

TABLES OF DIFFERENCES OF MEAN TEMPERATURES. 147

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Alt. about 45 feet. Partly 1779 to 1865 , partly 1838 to 1852 , constructed from various hours of observation.													
				\bigcirc				-	-				$\left\lvert\, \begin{gathered} \circ \\ -4.03 \end{gathered}\right.$
Mdn't	-2.27-2.62	-2.87	-3.71	-4.65	-5.40	-5.8I	-5.20	-4.75	-4.79	-4.08	-2.64	-2.17	
1		-3.34	32	5.43	-6.27	-6.93	6.17	-5.57	-5.63	-4.84	-3.18	-2.49	-4.73
2	$\begin{array}{\|l\|} \hline-2.62 \\ -3.00 \end{array}$	-3.80	4.85	6.10	-7.16	-8.05	-6.97	-6.29	-6.32	-5.48	-3.68	-2.82	-5.38
3	-3.34	-4.31	-5.37	-6.74	-7.97	-8.71	-7.55	-6.76	-6.80	-6.05	-4.10	-3.17	-5.91
4	-3.70	-4.79	-5.81	-7.32	-8.50	-8.86	-7.69	-7.16	-7.23	-6.51	-4.50	-3.49	-6.30
5	4.07	-5.16	-6.18	-7.53	-8.38	-8.17	-7.39	-7.10	-7.35	-6.81	-4.80	-3.78	-6.39
6	$4 \cdot 34$	-5.30	-6.09	-7.15	-6.60	-6.13	-6.15	-6.36	-6.84	-6.65	-4.80	-3.97	-5.86
7	. 38	-5.10	-4.91	-5.27	-3.63	-3.17	-3.68	-4.11	-4.75	-5.27	-4.48	-3.96	-4.39
8	82	-3.69	-2.30	-2.04	-0.51	+0.03	-0.86	-1.34	-1.72	-2.29	-2.98	-3.21	-2.06
9	-I. 33	-0.51	+0.46	+1.12	+2.14	+2.68	+1.64	+1.22	+1.25	+0.58	-0.46	-1.01	+0.65
то	+r.	$+2.48$	+3.24	$+3.87$	+4.21	+4.73	$+3.79$	$+3.39$	+3.78	$+3.52$	+2.24	+1.63	$+3.21$
${ }^{1 / 1}$	$+3.63$	$\begin{aligned} & +2.48 \\ & +4.23 \end{aligned}$	+4.86	+5.49	$+5.77$	+6.08	+5.57	+5.28	$+5.65$	$+5.65$	+4.19	$+3.49$	+4.99
Noon	+5.19	$\begin{array}{r} +4.23 \\ +5.56 \end{array}$	+6.14	+6.78	+6.98	+7.12	+6.71	+6.50	+6.89	+6.95	+5.63	+5.05	+6.29
1	+.6.07	$\begin{aligned} & +5.50 \\ & +6.59 \end{aligned}$	$+7.03$	+7.74	$+7.93$	$+7.93$	+7.46	$+7.30$	$+7.67$	$+7.75$	+6.37	$+5.85$	+7.14
2	6.34	$\begin{array}{r} +6.59 \\ +6.95 \end{array}$	$+7.47$	+8.32	+8.51	+8.32	+7.81	+7.69	+8.04	+8.08	+6.57	+6.12	+7.52
3	+5.88	+6.76	+7.34	+8.35	+8.53	+8.25	+7:71	$+7.62$	$+7.89$	+7.71	+6.19	$+5.53$	+7.31
4	+4.73	+5.78	$+6.60$	+7.83	+8.02	+7.63	$+7.19$	$+7.06$	+7.15	+6.60	+4.63	+4.02	+6.44
5	+2.84	$+3.81$	+4.74	+6.60	+6.79	+6.48	+6.13	+5.89	+5.80	+4.47	+2.88	+2.09	$+4.88$
6	+1.39	+2.01	+2.54	+-4.05	$+4.72$	+4.31	+4.18	+3.94	$+3.97$	$+2.76$	+1.56	+1.00	$+3.04$
	+0.31	+0.62	+0.88	+1.47	+1.65	+2.16	+2.03	+1.92	+1.88	+1.18	+0.50	+0.21	+1.23
8	. 49	-0.44	-0.57	-0.61	-0.62	-0.08	+0.11	-0.01	-0.08	-0.22	-0.37	-0.49	-0.32
9	.11	-1. 23	-r. 66	-1.98	-2.23	-1.82	-1.65	-1.65	-1.69	-1.46	-1.07	-1.04	-1.55
10	-I. 55	-1.84	-2.40	-2.97	-3.47	-3.28	$\begin{aligned} & -2.88 \\ & -4.11 \end{aligned}$	$\begin{aligned} & -2.79 \\ & -3.86 \end{aligned}$	$\begin{aligned} & -2.85 \\ & -3.87 \end{aligned}$	$\begin{aligned} & -2.42 \\ & -3.28 \end{aligned}$	$\begin{aligned} & -1.59 \\ & -2.12 \end{aligned}$	-1.46	$\begin{aligned} & -2.46 \\ & -3.27 \end{aligned}$
II	-I.95		-3.05										
Comb's													
10, 10	+0.02	+0.32	+0.42	+0.45	+0.37	+0.72	+0.45	+0.30	+0.46	+0.55	-0.32	+0.08	+0.37
6,2,9	+0.30	+0.14	-0.09	-0.27	-0.11	+0.12	0.00	-0.11	-0.16	-0.01	+0.23	+0.37	+0.04
6,2,10	-	-0.06	-0.34	-0.60	-0.52	-0.36	-0.41	-0.49	-0.55	-0.33	+0.06	+0.23	-0.27
7,2,9	0.28	+0.21	+0.30	+0.36	+0.88	+1.11	+0.83	+0.64	+0.53	+0.45	+o. 34	+0.37	+0.53
7, 2, 9 bis	-0.06	-0.15	-0.19	-0.23	+0.10	+0.38	+0.21	+0.07	-0.02	-0.03	-0.01	+0.02	+0.01
3,9,3,9	+0.02	+0.18	+0.19	+0.19	+0.12	+0.10	+0.04	+0.11	+0.16	+o.19	+o.14	+0.08	+0.13

Brooklyn Heights, N. Y. Lat. $40^{\circ} 41^{\prime}$. Long. $73^{\circ} 59^{\prime}$ W. of G.
Alt. . . Dec. 1847, to May, 1849, inclusive.

Mdn't	-I. 3	-1. 6	-3.8										
1	-1.6	-2.2	-4.4	-5.5	-3.7	-7.0	-2.4 -2.8	-3.6	-2.9	-4.0	-2.0	-1.7	I
2	-1.9	-2.9	-4.8	-5.9	-5.0	-7.2	-3.2	-4.1	-4.1	-4.8	-3.1	-1.9	-3.6
3	-2.2	-3.5	-5.0	-6.1	-5.4	-7.3	-3.4	-4.4	-4.	-5.2	-3.5	-2.1	-4.1
4	-2.4	-3.9	-5.2	-6.2	-5.7	-7.2	-3.6	-4.5	-4.8	-5.6	-3.8	$\rightarrow 2.1$	-4.6
5	-2.6	-4.0	-4.7	-5.9	-5.7	-6.7	-3.6	-4.5	-4.9	-4.1	-3.7	-2.1	-4.4
6	-2.6	-3.9	-4.7	-5.8	-5.0	-5.6	-3.6	-4.I	-4.6	-2.8	-3.2	-1.9	-4.0
8	-2.6	-3.9	-4.0	-4.2	-2.8	-2.3	-2.9	-3.2	-3.7	-2.8	-3.3	-1.7	-3.1
8	-2.3	-2.9	-2.2	-0.6	-0.7	+0.7	- 1.6	-1. 8	-2.4	-1.3	-2.0	-1.6	-I. 6
	-1.3	-0.9	-0.3	+1.3	+o.8.	+2.9	-0.2	+o. 1	-0.4	+0.5	-0.1	-0.7	+o. 1
10	+0.2	+1.1	+2.0	$+3.0$	$+2.7$	+3.9	+0.9	+2.3	+2.1	+2.1	+1.8	+0.6	+1.9
11	+1.9	+2.4	$+4.0$	$+5.1$	$+4.8$	$+5.7$	+2.6	$+3.8$	+4.8	$+3.7$	+3.5	+1.9	$+3.7$

148 TABLESOFDIFEERENCES OFMEAN TEMPERATURES.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Brooklyn Heights.-Continued.													
Noon	$+3.0$	$+3^{\circ} .6$	+ ${ }^{\circ} \mathrm{C}$	$+6.7$	$+6.2$	$+7.1$	$+3.5$	+5.4	$+5.6$	+4.8	+ ${ }^{\circ} \mathrm{C}$	+2.9	+4.8
1	+3.6	$+4.5$	+5.6	$+7.8$	+6.4	+7.7	+4.4	+6.3	$+5.6$	+5.3	+5.1	+3.4	+5.5
2	+3.9	+4.6	+6.4	+8.1	$+6.4$	+8.0	+4.4	$+5.0$	$+5.5$	+5.8	+5.2	+3.7	$+5.6$
3	$+3.4$	+4.5	+6.5	$+7.8$	$+5.7$	$+7.9$	+4.5	$+4.9$	$+5.3$	+5.5	$+5.1$	$+3.4$	+5.4
4	+2.9	+4.0	$+5.5$	$+6.2$	$+5.2$	+7.0	+4.4	$+4.0$	+4.5	$+4.4$	$+3.7$	+2.6	+4.5
5	+1.8	$+3.2$	$+4.2$	$+4.6$	+4.0	$+5.3$	$+3.6$	+3.1	$+3.4$	$+3.0$	+1.5	+1.7	+3.3
6	+1.1	+1.9	$+2.6$	$+2.7$	+2.4	$+3.4$	+2.3	+1.8	+2.1	+2.2	+0.6	+0.9	+2.0
7	+o. 6	+1.2	+1.5	+0.9	+0.8	+1.5	+1.1	+1.0	+1.1	+0.9	-0.1	+0.3	+0.9
8	0.0	+0.7	+0.7	-0.4	-0.3	-0.4	+0.3	-0.1	+0.2	-0.2	-0.5	0.0	0.0
10	-0.3	+o.1	+0.2	-1.4	-1.3	-1.5	-0.6	-0.9	-0.6	-0.6	-0.7	-0.6	-0.7
10	-0.6	-0.3	-1.2	-3.1	-2.0	-4.0	-1.2	-1.7	-1.4	-1.0	-0.8	-I.I	-1.5
		-0.9	-2.9	-4.1	-2.9			-2.3		-2.1	-1.4	-1.4	-2.4
$\begin{aligned} & \text { Comb's } \\ & \text { 10, } 10 \end{aligned}$	-0.2	+0.4	+0.4	0.0	+0.3	0.0	-0.1	+0.3	+0.3	+0.5	+0.5	-0.2	+0.2
6,2,9	+0.2	+0.3	+0.4	+0.3	+0.3	+0.3	+0.1	0.0	+0.1	+0.8	+0.5	+0.4	+0.2
6,2,10	$+0.2$	+o. 1	$+0.2$	-0.3	-0.2	-0.5	-0.1	-0.3	-0.2	$+0.7$	+0.4	+0.2	0.0
7,2,9	+0.3	+0.3	+0.9	+0.8	+0.8	+1.4	+0.3	+0.3	+0.4	+0.8	+0.4	+0.5	+o.6
	+0.2	+0.2	+0.7	+0.3	+0.2	+0.7	+0.1	0.0	+0.1	+0.4	+0.1	+0.2	+0.3
$3,9,3,9$	-0.1	0.0	+o. 3	+0.4	0.0	+0.5	+o. 1	-0. I	0.0	0.0	+0.2	0.0	+0.1

The above results are not entitled to full confidence, either from insufficiency or irregularity of observation.

Frankford Arsenal, near Philadelphia, ${ }^{1}$ Penn. Lat. $40^{\circ} 00^{\prime}$. Long. $75^{\circ} 04^{\prime} \mathrm{W}$. of G.
Alt. 24 feet. Captain Mordecay, U. S. A. 1836 and 1837.

						-6.84	-5.92	-5.40	-5.29	-4.91	-2.59	-2.10	-4.23
1	-3.40	-3.89	-4.79	-5.24	-6.86	-8.39	-6.91	-6.05	-5.92	-5.40 -6.01	-2.66	-3.02 -3.38	4.84
3	-4.10	-4.46	-5.76	-6.48	-7.72	-8.82	-8.62	-7.47	-7.85	-6.62	-3.17	-3.74	-6.23
4	-4.79	-5.02	-6.53	-7.40	-8.03	-8.64	-8.64	-7.56	-8.39	-7.04	-3.40	-4.05	-6.62
5	-5.20	-5.54	--6.64	-7.45	-7.74	-7.56	-7.65	-6.73	-7.97	-7.02	-3.89	-4.21	-6.44
6	-5.06	-5.29	-5.90	-6.37	-5.96	-5.54	-5.67	-4.97	-6.39	-6.35	-3.11	-4.05	-5.38
7	-4.23	-4.52	-4.30	-4.37	-3.74	-2.84	-3.02	-2.59	-3.85	-4.93	-2.39	-3.42	-3.69
8	-2.75	-2.99	-2.12	-1.91	-1.28	+-0.07	-0.18	-0.02	-0.81	-2.84	-1.31	-2.18	-1. 53
9	-0.77	-0.68	+0.16	+0.45	+1.01	+2.70	+2.39	+2.25	+2.16	-0.27	+0.05	-0.41	+0.77
10	+1.40	+1.62	+2.25	+2.36	$+2.90$	+4.75	+4.41	$+4.01$	+4.64	+2.54	+1.58	+1.71	+2.86
II	+3	+3.98	$+3.96$	$+3.80$	$+4.43$	+6.17	+5.94	$+5.27$	+6.50	$+5.24$	$+2.52$	+3.83	+4.59
Noon	+5.18	$+5.85$	+5.22	$+5.00$	$+5.29$	+7.13	+7.11	+6.26	$+7.81$	+7.54	+4.41	+5.51	+6.03
1	+6.41	+6.77	+6.17	+6.12	+6.91	$+7.90$	+8.06	+7.11	+8.69	+9.11	+5.36	+6.46	+7.09
2	$+6.80$	+7.16	$+6.77$	+7.18	$+7.92$	+8.48	$+8.71$	$+7.83$	+9.16	+9.81	$+5.72$	$+6.58$	$+7.67$
	$+6.57$	$+6.59$	+6.98	$+7.94$	+8.51	+8.75	$+8.87$	+8.12	+9.05	+9.50	+5.40	$+5.72$	$+7.67$
4	$+5.69$	$+5.49$	+6.6.4	$+7.99$	$+8.33$	+8.44	+8.26	$+7.70$	+8.17	+8.24	+4.41	+4.37	$+6.98$
5	+	+4.21	$+5.63$	$+7.00$	$+7.20$	+7.27	+6.75	+6.32	$+6.39$	+6.19	$+3.42$	+2.77	$+5.63$
6	2.57	+2.50	+4	+5.0	$+5.20$	$+5.24$	+4.50	$+4.12$	$+3.87$	$+3.71$	+1.26	+1.24	$+3.60$
	+0.83	+1.04	$+2$	+2.45	2.68	+2.61	+1.87	+-5.51	+1.08	+1.22	-0.32	-0.02	+1.42
8	-0.65	0.27	+0.14	-0.05	0.23	-0.16	-0.63	-0.97	-1. 49	-0.97	-I. 55	-0.95	-0.
9	-1.71	-1.48	-1.37	-1.91	-I.8o	-2.63	-2.63	-2.90	-3.35	-2.63	-2.30	. 6	-2.21
10	-2.30	-2.09	-2.36	-2.97	-3.22	-4.55	-4.03	-4.14	-4.41		-2.59	-2.03	-3.20
11	2.54	-2.66	2.95	-3.38	4.16	-5.87	-5.04	-4.84	-4.91	-4.41	-2.05	-2.39	-3.76
mb's													
ı0, 10	45	-0.25	-0.07	-0.29	-0.16	+0.11	+0.18	-0.07	+0.11				-0.18
6,2,9	+0.01	+0.13	-0.17	-0.37	+0.05	+0.10	+0.14	-0.01	. 19	+0.28	+0.10		-0.03
6, 2, 10	-0.18	-0.07	-0.50	-0.72	-0.42	-0.54	-0.33	-0.43	-0.55	-0.09	-0.01	-0. 17	-0.30
7, 2, 9	+0.29	+0.39	+0.37	+0.30	+0.79	+1.00	+1.02	+0.78	+0.65	+0.75	+0.34	+0.52	+o.59
7,2,9 bis	$\bigcirc 0.21$	-0.08	-0.07	-0.2	+o.14	+0.0	+0.11	-0.14		-0.0	-0.32	-0.01	-0.11
3,9,3,9	These	four hou	ppe	to have	n em	yed for	e daily	mean				n bein	zero.

[^116] Table by Dove.

TABLES OF DIFFERENCES OF MEAN TEMPERATURES. 149

Hour.	Jan.	Feb.	Mar	Apr	May.	Jun	July.	Aug.	Sept.	Oct	Nov.	Dec.	Year.
Philadelphia, Girard College, Penn. Lat. $39^{\circ} 5^{8^{\prime}}$. Long. $75^{\circ} \mathbf{1 0}$ W. of G. Alt. II4 feet. June, I840, to June, I845, inclusive.													
									-4.32	-3.54	-2.29	-1.49	-3.49
I	-1.97	3.11	-3.81	-4.80	-5.32	-5.99	-5.42	-4.94	-4.58	-3.92	-2.43	-1.91	
2	2.12	3.51	-4.36	-5.60	-6.04	-6.56	-5.98	-5.42	-4.98	4.50	-2.81	-2.27	-4.51
3	-2.40	-4.05	-4.66	-5.96	-6.72	-7.21	-6.48	-5.58	-5.44	-4.92	-3.09	-2.57	-4.92
4	-2.60	-4.34	-4.83	-6.38	-7.38	-7.68	-6.92	-6.14	-5.76	-5.40	-3.57	-2.85	-5.32
5	-2.82	-4.56	-5.63	-6.48	-7.26	-7.21	-6.70	-6.24	-5.98	-5.82	-3.85	-3.17	-5.48
6	-3.10	-4.84	-5.64	-6.02	-5.82	-5.78	-5.64	-5.66	-6.00	--6.16	-4.11	-3.41	-5.18
7	-3.22	-4.70	-4.99	-4.48	-3.70	-3.36	-3.34	-3.82	-4.14	-4.78	-3.79	-3.11	-3.95
8	-2.80	-3.16	-3.01	-2.44	- 1.42	-0.96	-1.08	-1.54	-I. 68	-2.32	-2.55	-2.61	-2.13
9	-1.52	-1.23	-1.01	-0.46	+0.78	+0.97	+0.88	+0.38	+0.46	+0.10	-0.65	-1.23	-0.21
10	0.00	+0.81	+0.84	+1.52	+2.36	+2.64	+2.50	+2.20	+2.54	+2.26	+1.07	+0.35	+1.59
1 I	+1.33	+2.54	+2.86	+3.30	$+3.84$	$+4.14$	$+4.00$	$+3.84$	+4.22	+3.92	+2.53	+1.83	+3.20
Noon	+2.56	+3.91	$\underline{+} 4.34$	+4.90	$+5.00$	$+5.54$	$+5.22$	+5.14	$+5.56$	+5.42	$+3.73$	+2.91	+4.52
1	+3.55	+5.05	+ 5.39	+6.14	+6.04	+6.56	+6.06	+5.92	+6.48	+6.48	+4.71	+3.65	+5.50
2	$+4.21$	+5.68	+6.14	+7.12	+6.94	$+7.44$	+6.80	+6.82	$+7.30$	$+7.26$	$+5.39$	+4.25	+6.28
3	$+4.28$	+5.95	+6.69	$+7.38$	$+7.40$	$+7.73$	$+7.08$	$+7.06$	+7.40	$+7.18$	$+5.13$	$+4.03$	+6.44
4	+4.05	$+5.71$	+6.59	$+7.44$	+7.60	$+7.86$	+7.02	+6.96	+7.32	+6.92	+4.65	+3.65	+6.32
	+2.73	$+4.57$	+5.44	+6.58	+7.14	$+6.96$	+6.36	$+5.92$	+5.92	+5.06	+3.13	+2.43	+5.19
6	+1.91	+2.91	+3.57	$+5.18$	$+5.58$	+5.62	$+5.02$	+4.50	+3.72	+2.86	+1.79	+1.73	+3.70
	+1.10	+1.72	+2.44	+2.54	$+3.00$	+3.12	$+2.88$	+2.42	+1.52	+1.20	+0.75	+0.99	+1.97
8	+0.43	+0.44	+1.39	+0.52	+0.36	+0.12	+0.30	-0.04	-0.72	-0.28	-0.09	+0.37	+0.23
9	-0.15	-0.31	-1.06	-0.86	-1.22	-I. 53	-1.42	-1.42	-1.96	-1.30	-0.75	-0.03	-1.00
10	-0.74	-1.11	-1.41	10	-2.58	-2.88	-2.70	-2.56	-3.16	-2.46	-1.25	-0.47	-1.95
II	-1.20	-1.68	-2.13	-3.16	-3.80	-4.18	-3.66	-3.38	-3.74	-3.22	-1.73	-0.93	-2.74
Comb's													
$\text { 10, } 10$	-0.37	-0	-0.28	-0.29	-0	-0.12	-0.10	-0.18	-0.31	-0.10	-0.09	-0.08	-0.18
6,2,9	+0.32	+0.18	-0.19	+0.08	-0.03	+0.04	-0.09	-0.09	-0.22	-0.07	+0.18	+0.27	+0.03
6,2, 10	+0.12	-0.09	-0.30	-0.33	-0.49	-0.41	-0.51	-0.47	-0.62	-0.45	+0.01	+0.12	-0.28
7,2,9	+0.28	+0.22	+0.03	+0.59	+0.67	+0.85	+0.68	+0.53	+0.40	+0.39	+0.28	+0.37	+0.44
7,2,9 bis	+0.17	+0.09	-0.24	+0.23	+0.20	+0.25	+0.15	+0.04	-0.19	-0.03	+0.02	+0.27	. 08
3,9,3,9	+0.05	+0.09	-0.OI	+0.02	+0.06	-0.01	+o.01	to. 11	+0.11	+0.26	+0.16	+0.05	0.08

Washington City, Capitol Hill, D. C. Lat. $38^{\circ} 53^{\prime}$. Long. 77° o1' W. of G.
Alt. So feet. Lieut. J. M. Gilliss, U. S. N. Jan. 1841, to June, I 842 , inclusive.

2 A.M	-2.73	2.83	-3.60	-4.40	5	-6.49	-6.62	-5.20	37	-3.90			4.21
2.2	-3.0	-4.19	-4.82	-5.39	-7.11	-7.28	-7.31	-6.90	-6.17	-5.10	-3.03	-2.5	5.24
4.2	-3.39	-4.90	-6.02	-6.19	-8.03	25	-8.62	-7.85	-7.07	-6.50	-4.33	-3.50	-6.22
6.2	-4.36	-5.23	-6.20	-5.82	-4.95	-5.06	-4.76	-6.33	-6.78	-7.10	-4.93	-4.10	-5.47
8.2	I. 97	-3.97	-3.80	-2.38	-0.73	$+0.31$	-0.21	-0.63	-2.34	-3.80	-4.23	-3.82	-2.30
1.	+0.28	+1.31	+1.98	+1.71	+2.78	+ 4.05	+2.98	$+4.07$	+2.95	+2.81	+0.37	+0.30	$+2.13$
0.2 P.M.	$+3.18$	+4.63	+5.3I	$+5.37$	$+5.93$	+6.01	+5.73	+6.68	+6.59	+6.50	+4.27	$+3.50$	$+5.31$
2.2	+5.	+7.10	+7.53	$+7.67$	+8.03	+8.61	$+7.85$	+8.71	+8.43	$+8.20$	$+5.47$	$+5.60$	$+7.41$
2	$+5.08$	+6.87	+7.20	$+7.89$	+8.24	+10.11	+9:36	+8.07	+8.23	+7.40	+4.77	$+4.90$	$+7.34$
6.2	+1.58	+2.81	+3.89	$+4.91$	+5.48	$+3.57$	+5.93	+3.91	+4.23	+4.14	$+3.57$	$+2.25$	+3.86
8.2	+0.38	-0.03	+0.12	-0.13	-0.62	- 1.03	-0.47	-0.54	+0.52	-0.40	+0.47	+-0.56	-0.10
10.2	-0.85	-1.55	-1.71	-3.19	-3.75	-4.62	-3.84	-4.02	-3.17	-2.20	-0.51	-1.00	-2.53

By means of interpolation we find the diurnal ordinates for the full hours of combination, as follows :-

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Washington City, U. S. Naval Observatory. ${ }^{\text { }}$ Lat. $38^{\circ} 54^{\prime}$. Long. $77^{\circ} \circ 3^{\prime} \mathrm{W}$. of G.													
Mdn't	-2.12	$\mid-2.72$	-3.01	-4.00	-4.91	-4.94	-5.02	-4.99	-4.76	-4.03	-3.03	-1.73	-3.77
3	-3.22	-4.02	-4.46	-6.26	-7.17	-6.89	-6.73	-6.57	-6.36	-5.84	-4.62	-2.81	-5.41
6	-4.11	-4.89	-5.57	-7.09	-7.30	-6.99	-7.16	-7.49	-7.35	-7.03	-5.56	-3.66	-6.18
${ }^{9}$	-2.21	-ז. 84	-1.23	-0.05	+0.66	+0.90	+0.69	+0.10	+1.53	-0.39	-1.56	-1.63	-0.42
Noon	+4.22	$+4.55$	+4.58	+5.75	$+6.57$	$+6.74$	$+6.99$	+7.31	+7.67	+7.87	+6.62	+4.21	+6.09
	$+5.76$	+6.66	+6.79	+7.79	+8.80	+8.22	+8.41	+9.52	+9.41	+9.38	+7.56	+5.21	+7.79
6	+2.03	+2.73	+3.63	+4.55	+4.80	+4.69	$+4.95$	+3.98	+2.38	+2.09	+1.83	+1.32	+3.25
	-0.38	-0.43	-0.70	-0.68	-1.47	-1.75	-2.13	-1.84	-2.56	-2.02	-1.22	-0.89	-1.34
Comb's													
3, 9,3,9	-0.01	-0.09	+0.10	+0.20	+0.20	+0.12	+0.06	+0.30	+0.50	+0.28	+0.04	-0.03	$+0.15$

Fort Morgan, Mobile Point, Alabama. Lat. 30° s 4^{\prime}. Long. 88° or \mathbf{I}^{\prime} W. of G.
Alt. 20 feet. 185 to Feb. 1853 , inclusive, June, 1848 to 1850.

1 The differences in this table depend on the assumption that the mean of 8 equidistant observations represents the daily mean, which is only an approximation to the truth.

Hour.	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Galveston, Texas. Lat, 29° I 8^{\prime}. Long. $94^{\circ} 47^{\prime} \mathrm{W}$. of G. Alt. 20 feet. June, 1851, to Feb. 1853, inclusive.													
				-	-	-	-	-				-	-
Mdn't	-1.0	-1.3	-2.6	.		.			-2.4	-2.6	-r. 8	-0.7	.
1	-1.3	-1.9	-3.0			.			-2.2	-3.0	-1.1	-0.6	.
2	-1.5	-2.0	-3.4	.		.		.	-2.2	-3.4	-1.6	-I.I	-
3	-1.7	-2.2	-3.7	.	.	\cdots		.	-2.6	-3.8	-2.0	-1.3	\cdots
4	-2.1	-4.5	-4.1	.	\cdots		.		-3.1	-4.2	-2.4	-1.7	\cdots
5	-2.5	-2.6	-4.3		.	-5.1	.		-3.2	-4.0	-2.7	-2.2	.
6	-2.6	-2.3	-3.9			-3.7	.		-3.2	-2.3	-2.6	-2.5	.
7	-2.5	-2.3	-2.8 +0.1	\cdots		-1.1			-1.2	+1.1 +3.2	-1.6	-2.6	\cdots
8	-1.5	-0.8	+0.1 +3.2			+0.5 +1.6	\cdots		+1.3 +3.0	+3.2 +4.2	+1.5 +2.9	-1.8	\cdots
9	-0.6	+1.3	+3.2			+1.6	\cdots	.	$+3.0$	$+4.2$	+2.9	+0.5	\cdots
10	+2.0	+2.7	+5.2		.	$+1.0$.	.	+3.9	+4.2	+3.5	+1.8	-
$\xrightarrow{11}$	+2.6	+3.5	$+5.7$			+2.5	.	.	$+3.8$	+3.9	+2.7	+1.8	.
Noon	+2.6	+3.3	+4.9	.	.	+2.2	.		+3.3	+3.9	+2.1	+1.9	.
1	+2.6	+3.2	+3.9	.	.	+2.5	.	.	+3.2	+3.8	+1.9	$+2.0$.
2	+2.4	+3.0	$+3.8$.	..	$+3.0$.	.	$+2.7$	$+3.3$	+1.9	+2.0	.
3	$+2.3$	+2.6	+3.0			+4.0	.		+2.3	+2.6	+1.8	$+2.0$.
4	+2.3	+2.2	+2.6	.		+5.2	.		+1.9	+1.4	+1.6	+1.7	\cdots
5	+1.6	+1.2	+1.6	.	.	+3.5	.	.	+I.I	+o.6	+0.9	+1.2	.
6	+0.9	+0.6	+0.4	-	\ldots	+0.2	.-	\cdots	+0.5	-0.4	+0.4	+0.8	.
7	+0.4	+0.2	-0.5	-	\cdots	-1.7	\cdots	\cdots	-0.5	-0.9	-0.3	+0.4	\cdots
8	0.0	-0.3	-1.1			.	.	.	-1.3	-1.3	-0.9	0.0	-
9	-0.5	-0.7	-1.6						-1.6	-1.9	-1.2	-0.2	-
10	-0.6	--0.9	-2.I			. .		.	-1.8	-2.1	-1. 6	-0.6	.
II	-0.8	-1.1	-2.2	. \cdot	.			-	-2.2	-2.2	-1.7	-0.7	-
Comb's													
7, 2,9	-0.2	0.0	-0.2	..	-		.		0.0	+0.8	-0.3	-0.3	
7, 2, 9 bis	-0.3	-0.2	-0.5						-0.4	+0.1	-0.5	-0.2	\cdots
3,9,3,9	-0.1	+0.2	+0.2	\cdots			\cdots		+0.3	+0.3	+0.4	+0.2	.

Key West, Florida. Lat. $24^{\circ} 33^{\prime}$. Long. $8 \mathbf{I}^{\circ} 48^{\prime}$ W. of G.
Alt. 20 feet. June, July, Aug. Oct. Dec. 185 r, Jan. to May, inclusive, 1852.

Mdn't	-1.60	x. 54	-2.03	-1.95	-2.46	-1.84	22	-1.45	-1.36	-1.27	0.73	-0.19	-1.5
1	-1.58	-2.09	-2.07	-2.23	-2.80	-1.86	-2.07	-1.64	-1.60	-1.56	-0.84	-0.12	-1.70
2	-1.65	2.06	-2.03	-2.24	-2.75	-2.19	-2.32	-1.90	-1.70	-1.51	-0.80	-0.08	-1.77
3	-1.76	-2.44	-2.20	-2.31	-2.91	-2.28	-2.5	-2.15	-1.83	-1.51	-0.89	-0.27	-1. 92
4	-1.92	-2.56	-2.35	-2.32	-3.09	-2.54	-2.80	-2.28	-1.93	-1.59	-1.02	-0.45	-2.07
5	-2.36	-3.06	-2.78	-2.71	-3.65	-2.61	-3.09	-2.64	-2.27	-1.91	-I. 44	-0.96	-2.46
6	-2.37	-3.08	-2.90	-2.64	-3.28	-2.31	-2.90	-2.51	-2.23	-1.96	-1.78	-1.61	-2.
	-2.44	-3	-2.24	-1.66	-1.07	一I. 36	-1.33	7	-1.48	-1.40	-1.59	-1.78	-1. 74
8	-1.90	-r. 85	-0.56	-0.14	+1.01	-0.16	+0.34	+0.01	-0.11	-0.22	-0.76	-1.30	-0.47
9	-0.26	-0.01	+1.02		-	+1.14	+1.38	+0.78	+0.72	+0.67	+0.18	-0.32	+0.71
10	+0.82	+1.34	+2.09	+1.66	+2.77	+2.17	+2.14	+1.40	+1.35	+1.30	+0.81	+0.33	+1.51
II	+1.71	+2.16	+2.67	+1.94	$+3.02$	$+2.27$	+2.44	+1.82	+1.75	+1.68	+1.28	+0.89	+1.97

${ }^{1}$ Interpolated values, the mean of Aug. and Oct. for Sept, and the mean of Oct. and Dec. for Nov.

Hour.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Key West.-Continued.													
Noon	$\mid 1+2.16$	+2.66	$+2.88$	$+2.16$	+2.91	+2.62	$+2.67$	+1.85	+1.82	+1.80	+1.49	+1.17	+2.18
1	+2.79	+2.75	+3.12	+2.67	+3.02	+2.82	+3.23	+1.85	+2.27	+2.18	+1.67	+1.15	+2.18 +2.50
2	$+2.97$	$+2.87$	$+3.30$	+2.88	$+3.12$	+2.64	$+3.06$	+2.43	+2.32	+2.22	+1.75	+1.28	+2.57
3	+3.24	+3.30	$+3.20$	+2.94	+2.94	+2.76	+3.02	$+2.40$	+2.27	+2.14	+1.79	+1.44	+2.62
4	$+3.31$	$+3.66$	$+3.06$	+2.66	+2.83	+2.74	+2.61	+2.30	+2.15	+1.99	+1.73	+1.46	$\underline{+2.54}$
5	+2.79	+3.32	+2.44	+2.55	+2.44	+2.29	+2.56	+2.04	+1.76	+1.49	+1.23	+0.96	+2.16
6	+1.34	+1.96	+1.23	+2.22	+2.28	+1.57	+1.34	+1.43	+0.95	+0.47	+0.25	+0.04	+1.26
7	+0.14	+0.58	-0.30	+0.30	-0.07	+0.14	+0.06	+0.43	+0.15	-0.14	-0.32	-0.49	+0.04
8	-0.34	-0.15	-0.98	-0.65	-0.91	-0.90	-0.62	-0.15	-0.24	-0.33	-0.43	-0.53	-0.52
	-0.58	-0.49	-I.11	-0.95	-1.33	-1.44	-1.09	-0.60	-0.57	-0.53	-0.43	-0.33	-0.79
10	-0.98	-0.90	-1.57	-1.41	-1.83	-1.78	-1.71	-1.02	-0.92	-0.83	-0.48	-0.14	-1.13
11	-1.39	-1.25	-1.86	-1.70	-2.28	-1.78	-2.06	-r.18	-1.11	-1.04	-0.56	-0.09	-1.36
Comb's													
$10,10$	-0.08	+0.22	+0.26	+0.12	+0.47	+0.19	+0.21	+0.19	+0.21	+0.23	+0.16	+0.09	+0.19
6,2,9	+0.01	-0.23	-0.24	-0.24	$\cdots 0.50$	-0.37	-0.31	-0.23	-0.16	-0.09	-0.15	-0.22	-0.23
6, 2, 10	-0.13	-0.37	-0.39	-0.39	-0.66	-0.48	-0.52	-0.37	-0.28	-0. 19	-0.17	-0.16	-0.34
7,2,9	-0.02	-0.21	-0.02	+0.09	+0.24	-0.05	+0.21	+0.09	+0.09	+0.10	-0.69	-0.28	+0.01
$7,2,9 \text { bis }$	-0.16	-0.28	-0.29	-0.17	-0.15	-0.40	-0.11	-0.08	-0.07	-0.06	-0.17	-0.29	-0.19
$3,9,3,9$	+0.16	+0.09	+0.23	+0.16	+0.24	+0.04	+0.20	+0.11	+0.15	+0.19	+0.16	+0.13	+0.15

Rio Janeiro, Brazil, S. Am. ${ }^{1}$ Lat. $-22^{\circ} 54^{\prime}$. Long. $43^{\circ} 09^{\prime}$ W. of G.
Fort Villegagnon (Con. des Temps, 1870).

Mdn't	0.00		-										
			-1.06	-0.23	-0.14	+0.29	. 22	-		-0.32	-1.15	-0.65	-0.47
1	-0.74	-1.51	-1.80	-0.90	-1.13	-0.56	-1.85	-1.3I	-1.04	-0.97	-1.76	-1.31	-1.24
2	-1.64	-2.41	-2.48	-1.64	-2.12	-1.53	-2.75	-2.00	-1.69	-1.64	-2.32	-2.05	-2.03
3	-2.50	-3.11	-3.02	-2.32	-2.93	-2.43	-3.47	-2.66	-2.27	-2.21	-2.75	-2.66	-2.70
4	-3.08	-3.90	-3.24	-2.79	-3.38	-3.04	-387	-3.04	-2.59	-2.50	-2.93	-2.99	-3.06
5	-3.22	-3.29	-3.15	-2.90	-3.40	-3.29	-3.83	-3.08	-2.66	-2.52	-2.79	-2.99	-3.08
6	-2.93	-2.84	-2.75	-2.75	-3.06	-3.20	-3.47	-2.79	-2.41	-2.27	-2.32	-2.68	-2.79
7	-2.30	-2.21	-2.14	-2.30	-2.48	-2.84	-2.70	-2.25	-2.00	-1.82	-1.67	-2.12	-2.23
8	-1.49	- I .49	-1.40	-1.71	-1.85	-2.39	-1.96	-1.60	-1.46	-r.28	-0.90	-1.40	-1.58
9	-0.68	-0.72	-0.59	-I. 04	-1.15	-1.82	-1.15	-0.90	-0. 86	--0.68	-0.14	-0.59	-0.86
10	+0.07	+0.05	+0.23	-0.32	-0.50	-1.13	-0.32	-0.23	-0.18	-0.05	+0.56	+0.23	-0.14
11	+0.77	+0.86	+1.01	+0.45	+0.23	-0.32	+0.50	+0.50	+0.54	+0.59	+1.22	+1.04	+0.61
Noon	+1.40	+1.64	+1.71	+1.22	+0.99	+0.65	+1.31	+1.19	+1.26	+1.22	+1.80	+1.82	+1.35
1	$+2.00$	+2.30	$+2.30$	+1.94	+1.71	+1.67	+2.16	+1.91	+1.89	+1.78	+2.32	+2.43	+2.03
2	+2.41	+2.7	+2.66	+2.41	+2.30	+2.48	$+2.88$	+2.48	+2.34	$+2.16$	+2.66	+2.8I	+2.52
3	+2.59	+2.88	+2.84	+2.66	$+2.66$	+2.99	+3.40	+2.84	+2.50	+2.27	+2.79	+2.86	+2.77
4	+2.45	+2.70	+2.77	$+2.57$	+2.75	$+3.04$	$+3.60$	$+2.93$	+2.36	+2.12	+2.66	+2.59	+2.70
5	+2.05	+2.30	+2.	+2.21	$+2.54$	$+2.75$	+3.47	+2.68	+2.00	+1.78	+2.25	+2.09	+2.39
6	+1.5	+1	+2.12	+1.76	$+2.21$	+2.23	$+3.04$	+2.23	+1.55	+1.37	+1.67	+1.49	$\underline{+1.91}$
7	+1.04	+1.40	+1.67	+1.28	+1.89	+1.76	+2.39 +2.39	+1.67	+1.13	+1.04	+1.08	+0.99	+1.91
8	+0.72	+1.13	+1.22	+0.95	+1.67	+1.42	+1.85	+1.13	+0.83	+0.77	+0.59	+0.61	+1.08
9	+0.59	+0.92	+0.77	+0.72	+1.44	+1.26	+1.22	+0.70	+0.61	+0.61	+0.14	+0.38	+0.79
10	+0.56	+0.63	+0.25	+0.52	+1.13	+1.13	+0.59	+0.32	+0.4I	+0.45	-0.23	+0.16	+0.50
11	+0.41	+0.14	-0.36	+0.25	+0.63	+o.86	-0.09	-0.09	+0.09	+0.16	-0.65	-0.14	-0.09
Comb's 10, Io	+0.31	+0.34	+0.24	+0.10	$+0.31$	0.00	+0.13	+0.04	+0.11	+0.20	+0.16	+0.14	+0.18
6,2,9	+0.02	+0.28	+0.23	+0.13	+0.23	+0.18	+0.2I	+0.13	+0.15	+0.17	+0.16	+0.17	+0.17
6,2,10	+0.01	+0.18	+0.05	+0.06	+0.12	+0.14	0.00	0.00	+0.11	+0.11	+0.04	+0.10	+0.08
7,2,9	+0.23	+0.49	+0.43	+0.28	+0.42	+0.30	$+0.47$	+0.31	+0.32	+0.32	+0.38	+0.36	+0.36
7, 2, 9 bis	+0.32	+0.59	+0.51	+0.39	+0.67	+0.54	+0.65	+0.41	+0.39	+0.39	+0.32	+0.36	+0.47
3,9,3,9	These	r hour	appear	have	en emp	yed	he d	mean	e r	of th	ombin	n b	o.

${ }^{1}$ From Prof. Guyot's Meteorological and Physical Tables, Smithsonian Misc. Coll.; Washington, 1858. Table by Dove.

For systematic comparison of the law of the diurnal fluctuation we present the resulting hourly numbers, on the yearly average as contained in the table of differences, in an analytical form, making use of Bessel's periodic function- ${ }^{1}$

$$
t=A+B_{1} \sin \left(\theta+C_{3}\right)+B_{2} \sin \left(2 \theta+C_{2}\right)+B_{3} \sin \left(3 \theta+C_{3}\right)+\text { etc. }
$$

'See Bessel's paper in the Astronomische Nachrichten, No. 136 (May, 1828). His first publication on the subject is contained in the Literary Gazette of Jena, in 1814.

See also a memoir by M. A. Bravais in "Voyages en Scandinavie, en Laponie, au Spitzberg et aux Feroe, pendant les annees 1838, 1839, et 1840, Météorologie." An extract is given by M. J. Haeghens in the "Annuaire Meteorologique de la France pour 1850, p. 93.

See also Sir J. Herschel's Article, "Meteorology" in the Encycloprdia Britannica. Reprint, p. 144.
The general formulæ given in this article, when applied to the case of 24 equidistant observations in a cycle, chauge into the following expressions, which were employed for the numerical computations:

$$
\begin{aligned}
& A=\frac{1}{24}\left(y_{1}+y_{2}+y_{3}+\cdots+y_{24}\right) \\
& 12 a_{1}=0.966\left(y_{1}-y_{11}-y_{13}+y_{23}\right)+0.866\left(y_{2}-y_{10}-y_{1 \ddagger}+y_{22}\right)+0.707\left(y_{3}-y_{9}-y_{15}+y_{21}\right) \\
& +0.500\left(y_{4}-y_{8}-y_{16}+y_{20}\right)+0.259\left(y_{5}-y_{7}-y_{17}+y_{19}\right)-y_{13}+y_{24} \\
& 12 b_{1}=0.259\left(y_{1}+y_{11}-y_{13}-y_{23}\right)+0.500\left(y_{2}+y_{10}-y_{14}-y_{22}\right)+0.707\left(y_{3}+y_{9}-y_{15}-y_{21}\right) \\
& +0.866\left(y_{4}+y_{8}-y_{16}-y_{20}\right)+0.966\left(y_{5}+y_{7}-y_{17}-y_{19}\right)+y_{6}-y_{18} \\
& B_{1}=\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}} \text { and } \tan C_{1}=\frac{a_{1}}{b_{1}} \\
& 12 a_{2}=0.866\left(y_{1}-y_{5}-y_{7}+y_{11}+y_{13}-y_{17}-y_{19}+y_{23}\right)+0.500\left(y_{2}-y_{4}-y_{8}+y_{10}+y_{13}-y_{16}-y_{26}+y_{22}\right) \\
& -y_{6}+y_{12}-y_{18}+y_{24} \\
& 12 b_{2}=0.500\left(y_{1}+y_{5}-y_{7}-y_{11}+y_{13}+y_{17}-y_{19}-y_{23}\right)+0.866\left(y_{2}+y_{4}-y_{8}-y_{10}+y_{14}+y_{16}-y_{20}-y_{22}\right) \\
& +y_{3}-y_{9}+y_{15}-y_{21} \\
& 12 a_{3}=0.707\left(y_{1}-y_{3}-y_{5}+y_{7}+y_{9}-y_{11}-y_{13}+y_{15}+y_{17}-y_{19}-y_{21}+y_{23}\right) \\
& -y_{4}+y_{8}-y_{13}+y_{16}-y_{20}+y_{25} \\
& 12 b_{3}=0.707\left(y_{1}+y_{3}-y_{5}-y_{7}+y_{9}+y_{13}-y_{13}-y_{15}+y_{17}+y_{19}-y_{21}-y_{23}\right) \\
& +y_{2}-y_{6}+y_{10}-y_{14}+y_{18}-y_{22} \\
& 12 a_{4}=0.500\left(y_{1}-y_{2}-y_{4}+y_{5}+y_{7}-y_{8}-y_{10}+y_{11}+y_{13}-y_{14}-y_{16}+y_{17}+y_{19}-y_{20}-y_{22}+y_{23}\right) \\
& -y_{3}+y_{6}-y_{9}+y_{12}-y_{15}+y_{15}-y_{21}+y_{24} \\
& 12 b_{4}=0.866\left(y_{1}+y_{2}-y_{4}-y_{5}+y_{7}+y_{8}-y_{10}-y_{11}+y_{13}+y_{14}-y_{16}-y_{17}+y_{19}+y_{20}-y_{22}-y_{23}\right) \\
& \text { etc. }
\end{aligned}
$$

The values $B_{2} B_{3} B_{4} \ldots$ and $C_{2} C_{3} C_{1} \ldots$ are found in a similar manner as B_{1} and C_{1}.
For 12 equidistant observations in a cycle, as in our bi-hourly series, we use the formulx:

$$
\begin{aligned}
& A=\frac{1}{12}\left(y_{1}+y_{2}+y_{3}+\cdots+y_{12}\right) \\
& 6 a_{1}=0.866\left(y_{1}-y_{5}-y_{7}+y_{11}\right)+0.500\left(y_{2}-y_{4}-y_{8}+y_{10}\right)-y_{6}+y_{12} \\
& 6 b_{1}=0.500\left(y_{1}+y_{5}-y_{7}-y_{11}\right)+0.866\left(y_{2}+y_{4}-y_{8}-y_{10}\right)+y_{3}-y_{9} \\
& 6 a_{2}=0.500\left(y_{1}-y_{2}-y_{4}+y_{5}+y_{7}-y_{8}-y_{10}+y_{11}\right)-y_{3}+y_{6}-y_{9}+y_{12} \\
& 6 b_{2}=0.866\left(y_{1}+y_{2}-y_{4}-y_{5}+y_{7}+y_{8}-y_{10}-y_{11}\right) \\
& 6 a_{3}=-y_{2}+y_{4}-y_{6}+y_{8}-y_{10}+y_{12} \\
& 6 b_{3}=y_{1}-y_{3}+y_{5}-y_{7}+y_{9}-y_{11} \\
& 6 a_{4}=0.500\left(-y_{1}-y_{2}-y_{4}-y_{5}-y_{7}-y_{3}-y_{10}-y_{11}\right)+y_{3}+y_{6}+y_{9}+y_{12} \\
& 6 b_{4}=0.866\left(y_{1}-y_{2}+y_{4}-y_{5}+y_{7}-y_{8}+y_{10}-y_{11}\right) \\
& \quad \text { etc. }
\end{aligned}
$$

The values $B_{1} B_{2} B_{3} B_{4} \ldots$ and $C_{1} C_{2} C_{3} C_{4} \ldots$ are found as stated.
The above expressions, together with others, are given in Coast Survey Report of 1862, Appendix, No. 22 (with erratum in 1866 report).

20 February, iS75.

We retain three periodic terms as generally sufficient for our purpose. 'The angle θ counts from midnight at the rate of 15° an hour ; at those stations where the observations were not made at the full hours, the angles C_{1}, C_{2}, C_{3} were changed in the expression for t in order to refer them to the same epoch. The table also contains the latitude (ϕ), the longitude (λ), the elevation (h) of the station, and the number of years (n) of observation. The column headed T contains the annual mean temperature or the mean of the twelve monthly averages.

> Numerical quantities in Bessel's function for the Daily fluctuation of temperature, on the yearly average.

	Station.		Φ	λ	$\begin{gathered} k \\ \text { fect } \end{gathered}$	n	T	B_{1}	C_{1}	B_{2}	$C_{\text {g }}$	B_{3}	C_{3}
I	Van Rensselaer Harbor		$78^{\circ} 37^{\prime}$	$70^{\circ} 53^{\prime}$	6	I	- $2^{\circ} .47$	I. 86	$243^{\circ} 19^{\prime}$	O. 18	$158^{\circ} .6$	0.03	$301{ }^{\circ}$
2	Port Foulke	- .	78 I8	7300	6	I	+ 5.86	1.57	23508	0.02	195.3	0.11	148
3	Port Kennedy	. .	72 or	9414	4	1	+ 1.89	1.98	2540.4	0.19	81.0	O. 15	264
4	Boothia Felix.	. .	6959	92 of	4	.	$+3.68$	2.82	24724	0.40	58.5	0.09	194
5	Sitka .	.	5703	13520	20	13	43.03	3.46	23959	0.66	66.6	0.09	330
6	Montreal	.	45 31	7334	57	2	44.73	5.19	22154	0.94	42.8	0.12	104
7	Thunder Bay Island	.	4502	8317	610	2	42.83	4.06	23319	0.67	66.4	0.17	IOI
8	Toronto . .	.	4339	7923	342	6	44.18	5.61	23204	-0. 84	59.2	0.48	41
9	Mohawk	.	4300	7502	435	6	44.84	5.63	21620	1.19	33.7	0.24	357
10	Cambridge	,	$\begin{array}{lll}42 & 23\end{array}$	7107	71	I	$47 \cdot 37$	6.57	23607	1. 52	62.1	0.26	5
II	Amherst	.	4222	7234	267	I	47.23	6.84	23016	1. 49	65.7	0.08	317
12	New Haven	.	4118	7257	45	.	49.01	6.75	23150	I. 39	65.8	0.29	22
13	Brooklyn . .	-	4041	7358	125	I	51.00	4.94	23130	I. OI	67.1	0.10	243
14	Frankford Arsenal .	.	4000	7504	24	I	52.66	6.96	23254	1.14	51.1	0.51	53
15	Philadelplia	.	3958	75 10	114	5	51.35	5.77	22450	0.93	40.9	0.34	34
16	Jackson -	3902	S2 32	7001	I	50.90	9.28	23741	2.24	57.4	0.68	39
17	Washington, D. C. .	- .	$3^{8} 53$	7703	110	912	53.52	6.72	22721	1.61	49.6	0.21	13
18	Fort Morgan	3014	88 OI	20	1	70.24	3.06	22216	0.90	54.9	0.07	95
19	Key West . .	-	2433	Si 48	20	1	76.63	2.48	2345^{8}	0.55	60.4	0.35	26
20	Rio Janeiro	-22 54	4309	.	.	73.75	2.68	20520	0.42	83.6	0.22	110

A better insight into the systematic character of the co-efficients and epochal angles, as far as they depend upon the latitude and local conditions, can be had by a combination of the results into groups. The hourly values for the stations forming a group were combined into mean values, and then submitted to the numerical process, which produced the following results:-

Types of the daily fluctuation of the temperature on the yearly average.
Group I. The four Arctic stations. $\phi_{\mathrm{m}}=74^{\circ} .7 \quad \gamma_{\mathrm{m}}=82^{\circ} .5 . \quad 4$ years.

$$
\begin{aligned}
t= & +2^{\circ} .23+2^{\circ} .11 \sin \left(\theta+243^{\circ} .6\right)+0^{\circ} .14 \sin \left(2 \theta+66^{\circ} .3\right) \\
& +0.04 \sin \left(3 \theta+216^{\circ}\right) .
\end{aligned}
$$

Group II. The Alaska station. $\quad \phi=57^{\circ} .1 \quad \lambda=135^{\circ} .3$. 13 years.

$$
\begin{aligned}
t= & +43^{\circ} .03+3^{\circ} .46 \sin \left(\theta+240^{\circ} .0\right)+0^{\circ} .66 \sin \left(2 \theta+66^{\circ} .6\right) \\
& +0.09 \sin \left(3 \theta+330^{\circ}\right) .
\end{aligned}
$$

Group III. Four stations in Canada and

$$
\text { Northern New York. } \phi_{\mathrm{m}}=44^{\circ} .3 \quad \lambda_{\mathrm{m}}=77^{\circ} .8 . \quad 16 \text { years. }
$$

$$
\begin{aligned}
t= & +44^{\circ} .14+5^{\circ} .08 \sin \left(\theta+225^{\circ} .5\right)+0^{\circ} .89 \sin \left(2 \theta+48^{\circ} .2\right) \\
& +0.21 \sin \left(3 \theta+50^{\circ}\right)
\end{aligned}
$$

Group IV. Four stations in Mass.,
Conn., and N. Y. $\quad \dot{\phi}_{\mathrm{m}}=41^{\circ} .7 \quad \lambda_{\mathrm{m}}=72^{\circ} .6$. More than 4 years.
$t=+48^{\circ} .65+6^{\circ} .27 \sin \left(\theta+232^{\circ} .7\right)+1^{\circ} .38 \sin \left(2 \theta+61^{\circ} .1\right)$

$$
+0.10 \sin \left(3 \theta+359^{\circ}\right) .
$$

Group V. Three stations in Penn.
and Dist. of Col. $\quad \phi_{\mathrm{m}}=39^{\circ} .6 \quad \lambda_{\mathrm{m}}=75^{\circ} .8$. $\quad 15$ years.

$$
\begin{aligned}
t= & +53^{\circ} .38+6^{\circ} .55 \sin \left(\theta+228^{\circ} .7\right)+1^{\circ} .27 \sin \left(2 \theta+48^{\circ} .1\right) \\
& +0.35 \sin \left(3 \theta+36^{\circ}\right) .
\end{aligned}
$$

Group VI. Two Gulf stations. $\quad \phi_{\mathrm{m}}=27^{\circ} .4 \quad \lambda_{\mathrm{m}}=84^{\circ} .9$. 2 years.

$$
\begin{aligned}
t= & +73^{\circ} .44+2^{\circ} .75 \sin \left(\theta+227^{\circ} .8\right)+0^{\circ} .70 \sin \left(2 \theta+57^{\circ} .5\right) \\
& +0.17 \sin \left(3 \theta+31^{\circ}\right) .
\end{aligned}
$$

The hourly means from which these expressions were derived are contained in the following table:-

Observed Daily fluctuation of temperature, on the yearly average, for groups of stations.

	I.	II.	III.	IV.	V.	VI.		1.	II.	III.	IV.	V.	VI.
Hour.		$\begin{aligned} & \text { 采 } \\ & \text { B } \end{aligned}$					Hour.		$\begin{aligned} & \text { 总 } \\ & : ~ \end{aligned}$				
		$\underline{-2.4}$	-0 -2.9		-3.8	-1. ${ }^{\circ}$		+2.0		+ ${ }^{\circ} \mathrm{C}$	$+6.1$	+5.6	+2.4
						-1.8	$\begin{gathered} \text { Noon } \\ i \end{gathered}$		+3.7 +4.0		+6.1 +7.0	+5.6 +6.7	+2.4 +2.9
2	-2.0	-2.9	-4.0	5.0	-4.9	-2.0	2	+2.3	+3.9	+5.6	+7.3	$+7.4$	+3.1
3	-1. 8	-2.9	-4.4	-5.4	-5.5	-2.2	3	+2.0	+3.5	+5.7	+6.9	+7.4	+3. 1
4	-1.6	-3.0	-4.8	-5.7	-6.0	-2.4	4	+1.6	+2.9	$+5.3$	$+5.8$	+6.8	+2.9
5	-1.4	-2.9	-4.9	-5.8	-6.2	-2.8	5	+1.2	+2.1	+4.3	+4.3	$+5.4$	+2.3
6	.	-2.4	-4.4	-5.3	-5.7	-2.8	6	+0.7	$+1.2$	+3.1	+2.5	+3.5	+I. 3
7	-0.5	-1.7	-3.4	-4.0	-4.3	-2.2	7	+0.2	+o. 3	+1.5	+0.9	+1.7	+0.3
8	+0.1	-0.6	-1.9	-2.0	-2.2	-1.1	8	-0.3	-0.5	+0.2	-0.4	-0.2	-0.2
9	+0.7	$+0.7$	-0.4	+0.4	0.0	+0.1	9	-0.7	-1.2	-0.8	-I. 5	-1. 5	-0.5
10	$+1.2$	+1.8	+1.4	+2.5	$+2.2$	+1.I	10	-I. 1	-1.7	-1.6	-2.4	-2.5	-0.8
II	+1.6	+2.9	+2.8	$+4.7$	+4.1	+1.8	11	-1.5	-2.1	-2.2	-3.2	-3.3	-1.2

At several stations, interpolation, graphical or analytical, was required to complete the hourly values before they could be combined into groups. Frankford Arsenal and Philadelphia values were united into a mean and then combined with the Washington values.

By means of the equations we readily find the following times of greatest, least, and average heat of the day and of the daily range, on the yearly average.

	Max, at	Min. at	Me		Range.
Group I	$\mathrm{I}^{\text {h }} 3 \mathrm{I}^{\text {m }}$	$\mathrm{I}^{\mathrm{h}} 5^{6{ }^{\text {m }}}$	$8^{\text {h }} 0^{m}$	$7^{\mathrm{h}} 32^{\text {m }}$	$4^{\circ} \cdot 3$
II	120	343	823	724	7.2
III.	238	431	912	8 II	10.6
IV	I 46	424	853	742	${ }^{1} 3.1$
V	228	428	9 OH	754	${ }^{1} 3.6$
VI	212	454	90.4	749	5.9
Mean III, IV, V	217	428	902.	756	12.4

The results of the daily fluctuation, as given above, may be summed up as follows:-

The daily range diminishes from about latitude 40° in either direction north or south. The precise latitude of maximum range cannot yet be given. Diagram \mathbf{A} shows the extremely small ranges in latitude 75° and in latitude 27°, the former produced by the small range in the sun's altitude during the Arctic day, the latter by the equalizing effect of the aqueous vapor near the Gulf coast notwithstanding the sun's great daily range in altitude near the tropic of cancer. Diagram B shows the large daily range for the stations comprising groups IV and V, and the somewhat smaller one for group III.

Diagram A.

Diagram B.

The greatest heat of the day is reached earlier in the high than in the low latitudes; with the mean annual temperature near or below the freezing point, the warmest time of the day is about $1 \frac{1}{2} \mathrm{P} . \mathrm{M}$., in the middle and lower latitudes this epoch changes to $2 \frac{1}{4}$ P. M. The greatest depression in the daily fluctuation occurs in the Arctic regions about two hours after midnight, in the temperate zone about
$4 \frac{1}{2} \mathrm{~A}$. M. or about one hour and a half before sunrise. The epochs of mean daily temperature are subject to less variations with respect to latitude than the epochs of the daily extremes. In the Arctic regions the mean temperature of the day is reached about $8 \mathrm{~A} . \mathrm{M}$., in the temperate regions about $9 \mathrm{~A} . \mathrm{M}$., and again about $7 \frac{1}{2}$ P. M. and about 8 P. M. respectively.
The material for the discussion of the daily fluctuation for stations in the Mississippi valley and in the western states and territories is yet wanting.

The annual variation in the range of the daily fluctuation is shown in the following table. From want of completeness in the records the tabular numbers, in many instances, are the result of interpolation, and they can only be considered as close approximations.

Monthly means of the RANGE of the daily fluctuation.

	Grour I. Arctic Regions. 4 Stations.	Group II. Alaska. I Station.	Group III. Canada and N . New York. 4 Stations.	$\left\|\begin{array}{c} \text { Groups IV \& V. } 1 \\ \text { Mass., Conn., } \\ \text { Penn., D. of C. } \\ 6 \text { Stations. } \end{array}\right\|$	Group VI. Gulf Coast. 2 Stations.
January	$\stackrel{\circ}{\circ} \mathrm{I} .2$	3.1	6.3	$10^{\circ}+$	6.0
February	3.0	$5 \cdot 4$	8.9	11.2	7.0
March	9.2	7.9	10.9	I 3.6	6.6
April	8.6	9.8	12.0	14.8	7.1
May	8.6	10.9	14.0	17.0	$7 \cdot 4$
June	7.8	II. 3	14.9	17.2	5.8
July	$5 \cdot 7$	10.6	15.4	15.8	6.9
August	4.2	9.2	14.6	14.9	6.1
September	3.5	8.4	12.5	16.6	6.5
October	2.2	4.8	10.3	16.2	5.8
November	1.7	3.4	$5 \cdot 9$	II. I	$5 \cdot 4$
December	1.0	2.1	$5 \cdot 3$	9.8	$4 \cdot 7$
1 Omitting Brooklyn as too irregular.					

Diagram C.

Diagram D.

At all stations, of the above table, between the Gulf of Mexico and the Arctic Sea, the daily range is a minimum in December; this, however, is the only feature
they have in common, as shown in diagrams C and D . In the first diagram the curves for the northern stations appear single-crested, in the second the curve of the middle latitude stations is double-crested and that of the Gulf stations exhibits three or more elevations and depressions, all ill-defined. The marked feature of the low latitude range is its great uniformity throughout the year. In the Arctic regions, with the returning day, the range suddenly rises to its maximum in March; in Canada and northern New York the range is greatest in July or about the time of greatest heat; along the coast from Massachusetts to the District of Columbia the range attains two maxima, one early in June the other late in September, with an intermediate depression of range during the hottest season. As our observations become more extended, other features in the march of the daily temperature will undoubtedly make their appearance, and those already recognized will become better defined. At San Francisco especially, it would be interesting to have a series of hourly observations, extending at least over one year, this locality being otherwise noted for anomalous temperature relations. According to Dr. Gibbons the coldest and warmest periods of the day are not far from sunrise and noon, and by taking the differences of the mean monthly temperatures at these times, as given in the Smithsonian report for 1854, p. 231 and foll. For the years 1851 to 1854, I obtain the following table of daily range of temperature at San Francisco.

These numbers are approximations only, yet they indicate a comparatively large range, a minimum range in December and two maxima-one in spring, the other in autumn.

The modification which the daily fluctuation undergoes in the course of a year can be advantageously brought out by a comparison of its value in December when near the least, with its value in June when not far from its greatest development.

The fluctuations observed at Van Rensselaer, Port Foulke, Port Kennedy, and Boothia Felix were united into a mean, those at Thunder Bay Island, Toronto, Mohawk, Amherst, and Philadelphia into another, and those at Fort Morgan, Key West, and Galveston into a third; these localities are designated, Arctic stations, Temperate stations, and Gulf stations respectively.

Before taking means, the record for Galveston, Texas, was made complete by interpolation.

Extremes of daily fluctuation in December and June.

	Arctic Stations (4).		Temperate Stations (5).		Gulf Stations (3).	
	Dec.	June.	Dec.	June.	Dec.	June.
Md'nt	$-{ }^{\circ} .2$	-3.2	0 -1.5	-4.9	$\begin{gathered} \circ \\ -1.3 \end{gathered}$	$\begin{gathered} \circ \\ 2.0 \end{gathered}$
1	-0.2	-3.9	-2.2	-6.0	-1.4	-2.3
2	-0.3	-4.2	-2.5	-6.7	-1. 6	-2.5
3	-0.3	-3.5	-2.7	-7.3	-1.8	-2.8
4	-0.4	-2.6	-2.9	-7.6	-2.0	-3.0
5	-0.4	-r. 6	-3.0	-7.5	-2.4	-3.4
6	-0.4	-0.7	-2.9	-5.9	-2.5	-2.7
7	-0.4	+0.3	-2.9	--3.6	-2.7	-1.2
8	-0.2	+1.4	-2.5	-1.r	-1.8	$+0.2$
9	0.0	+1.8	-I. 4	+1.0	--0.6	+1.3
10	+0.1	+2.4	$+0.3$	+2.9	+I.I	+1.9
11	$+0.3$	+2.8	$+1.9$	+4.6	+2.0	$+2.6$
Noon	+0.5	+3.2	$+3.3$	$+6.1$	+2.4	$+2.7$
1	$+0.4$	+3.3	+4.1	$+7.0$	+2.7	$+3.0$
2	+0.3	$+3.3$	+4.6	$+7.6$	$+2.8$	$+3.1$
3	+0.2	$+2.9$	+4.5	$+7.7$	+2.9	$+3.5$
4	+0.1	$+2.4$	$+3.7$	$+7.5$	$+2.8$	$+3.7$
5	+0.2	+1.7	+2.4	+6.6	$+2.0$	+2.7
6	+0.2	+1.0	+1.5	+5.2	+1. ${ }^{\text {r }}$	+I.I
7	+0.2	+0.2	+0.5	+2.8	+0.4	-0.4
8	+0.2	-0.5	+0.1	+0.2	0.0	-I.I
	+0.1	-x. 3	-0.4	-1.7	-0.3	-I. 4
10	+o.r	-2.0	-0.8	-2.9	-0.6	-1.8
II	-0.1	-2.6	-1.2	-4.0	-I.I	-x.9

The above numbers are plotted on diagrams E, F, and G. These diagrams show plainly, in December the morning minimum later and the afternoon maximum earlier than in June; also the morning and afternoon epochs of mean daily temperature later in December (nearly two hours) than in June, but in the temperate latitudes the afternoon hour (8 o'clock) answers for the time of the winter as well as for the time of the summer solstice.

The vicinity of San Francisco, Cal., probably presents the greatest anomaly yet noticed. Dr. H. Gibbons remarks ${ }^{1}$ that at San Francisco the warmest period of the day in winter is from 1 to 2 P. Mr., but in summer (May to August) it is an hour or two earlier owing to the sea breeze, which springs up about noon or soon after, instantly depressing the temperature. In the season of the westerly breezes the temperature is rapidly reduced and the change is effected long before sumset, after which time the thermometer shows but little variation till the following morning. Under the influence of this brisk sea breeze, the rays of a high sun fail to impart any appreciable heat to the air. These conditions are quite local and the attending phenomena respecting the daily and annual fluctuations are confined to the vicinity of the Bay of San Francisco, though traces of it appear at all stations along the western coast exposed to the immediate influence of the westerly winds from the Pacific ocean. Observations of the daily march of the temperature in these localities are specially desirable. For the study of the effect of height on the daily fluctuation no material is at present available, but our records show that under this condition it may become quite excessive; at elevated regions the air is comparatively dry and the sun's rays reach the ground but little impeded, while at night radiation is going on with great energy from the comparative absence of an absorbing medium. The great interior basin bounded on the east by the Rocky Mountains and the

[^117]Sierra Madre, on the west by the Sierra Nevada and including the regions of the Colorado River, also the northern portion of the Rio Grande, furnishes many interesting examples of an excessively large daily range, the magnitude of which may, in a measure, be inferred from the following comparisons of the difference of temperature at the observing hours 7 A. M. and 2 P. M., or at the time of sunrise and 3 P. M., for a few selected places, located in New Mexico, Texas, Arizona, and California. With the exception of Fort Yuma, which is but 200 feet above the sea level, these stations are all at considcrable elevations.

Average difference in the temperature, between sunrise and $3 \mathrm{P} . \mathrm{M}$., or between 7 A. M. and 2 P. M., taken from the monthly means at these hours of observation. [Army Met. Regs. for 1855 and 1860.]

The mean daily range, for any month or for the year, at any of the above stations is necessarily several degrees higher than the corresponding tabular difference since the morning and afternoon extremes do not take place at the hours of observation; even the tabular numbers, when contrasted with the observed daily range in other parts of the United States, appear excessive, and imperfect as they must be owing to the short number of years and the great variability of the quantities themselves, the annual fluctuation of the differences given in the last column presents quite a regular double crested curve. The maximum daily range occurs in March and April, a second smaller maximum in October with minima in July and August, and again in December, the latter minimum being apparently a common feature within the boundaries of the United States. The great development of the daily fluctuation at Albuquerque, N. M., would recommend this station as a suitable locality for an extended hourly series (to be recorded with a self-registering instrument). Such observations would greatly assist in establishing corrections to 21 February, 1875.
the mean temperature derived from the ordinary hours of observation（ $7 \mathrm{~A} . \mathrm{M}$ ．and 2 and $9 \mathrm{P} . \mathrm{M}$ ．）in order to refer them to the true daily mean．

A table of the daily fluctuation for this place would answer for most stations situated within the elevated and arid region generally known as the great interior basin，as well as for the regions of the upper Rio Grande and of western Texas．

In some instances the recorded meau monthly difference between the morning and afternoon temperatures rises to 40° ，and if the observations are to be trusted to 45° ；the corresponding daily incidental range is equally great and for the regions described above it is not uncommon to meet，in the morning，with a temperature below the freezing point and to experience in the afternoon of the same day a heat rising to 70 or $80^{\circ} \mathrm{Fah}$ ．

Variahility of the temperature at any hour of the day from the normal value of that hour．

＇To complete the investigation of the general laws of the daily fluctuation we have yet to inquire into the amount of digression of the monthly mean of any observed hourly temperature when compared with its normal value．

These irregular variations are most readily ascertained by a comparison of the monthly means for each hour of the day，given separately for a series of years，with the mean of the combined years for each hour．By this method we completely free our results from the effects of the annual fluctuation，and have the advantage of presenting the probable error to the hourly temperatures，as given in the first set of tables for each month，provided the particular table was derived from a single year of observations；if the tables are constructed from n years，the probable errors require a division by \sqrt{n} in order to represent the probable uncertainties of their tabular numbers．

With a special view to this investigation the Mohawk table of hourly tempera－ tures is given in full，from 1860 to 1868 ，only six years of hourly observations， however，could be utilized for the present purpose．At Philadelphia，the Girard College series furnished hourly means for nearly 5 years from 1840 to 1845 ．At Sitka a series of hourly observations（with omissions of 5 readings in each day） was taken from the records of the observatory，for 5 years，selecting 1847－8－9 and 1862－3－4．For Toronto，Can．，the results are copied from Table VII ${ }^{1}$ of the
${ }^{1}$ The following is，in part，a copy of the Toronto table．

Hour．	哥	－	号	完	帯	岂	官	躴	兌	－	8	ベャ		
2 P．M．	$\stackrel{\circ}{3.49}$	$\stackrel{\circ}{2.47}$	$\stackrel{\circ}{0}$	$\stackrel{\bigcirc}{\text { I．} 94}$	${ }_{2 .}{ }^{\circ} 38$	$\stackrel{\circ}{2.20}$	${ }_{2}{ }^{\circ} \mathrm{C} 36$	${ }_{\text {I }}{ }^{\circ} 66$	$\stackrel{\circ}{\text { ¢．} 95}$	${ }_{1}{ }^{\circ} 69$	1.	3.12	2.44	${ }^{\circ} \mathrm{O} .08$
4 ＂	$3 \cdot 31$	2.54	2.59	1.76	2.36	2.13	2.09	I． 37	1.71	1． 46	1.30	3.10	2.38	1.90
10 ＂	3.53	3.52	2.69	1． 56	1.82	1.76	1.36	I．Io	I． 21	I． 54	1． 26	3.02	2.59	1.47
Mdn＇t	3.67	3.85	2.76	1． 52	1.76	1.88	1.33	1.14	1.07	1． 56	1.30	3.04	2.70	1.45
6 A．M．	3.90	3.65	2.98	1.32	1.72	$\underline{1.85}$	1． 59	1.09	1.25	1.48	1.24	3.20	2.74	1.47
8 ＂	3.89	3.57	2.85	1.38	1.95	1.99	1.67	1.01	1.26	1.59	1.23	3.12	2.71	1.54
All hours	3.63	3.27	2.72	1． 58	2.00	1.97	1.73	1.23	1.41	1． 55	1.30	3.10	2.59	1.65

"Results of meteorological observations made at the magnetical observatory, during the years 1860-1-2." G. T. Kingston, Director. Thi's table is headed "Probable variability of the monthly means of temperature at each of the 6 observation hours, in a single year, together with their half-yearly and yearly averages, from the years 1854 to 1862 inclusive," and the deduction from the results is stated as follows: The warm hours are most liable to disturbances of temperature in the warm months, and the cold hours in the cold months, and altogether the abnormal digressions are greater in the colder half year than in the warmer.

A series of hourly observations continued for 6 years is barely sufficient for the investigation and the results for the three winter months (Dec., Jan., Feb.) were contracted into a mean, also the results of the three summer months (June, July, Aug.); it was not deemed necessary to investigate the six remaining months, since the law is seen to change gradually from season to season, the variability of the temperature of any hour being nearly the same about or after the epochs of the equinoxes.

Probable error of the monthly mean temperature for any hour of the day, derived from a series of years.

Hours of day.	Winter.					Summer.				
	Toronto.	Mohawk.	Phila.	Sitka.		Toronto.	Mohawk.	Fhila.	Sitka.	
Md't	\circ \pm	0 ± 3.2	\circ ± 2.4	$\pm \stackrel{\circ}{\circ}$		0 ± 1.4	0 ± 1.2	± 0.8	$\pm \stackrel{\circ}{\circ}$	
1		3.2	2.4			..	1.2	0.8	..	
2	. .	3.2	2.4	\cdots		.	1.2	0.9	.	
3	. .	$3 \cdot 3$	2.4	.		..	1.2	0.8	\because	
4	.	$3 \cdot 3$	2.4	2.4		\cdots	1.2	0.8	0.8	
5		$3 \cdot 3$	2.4	2.5		\cdots	1.2	0.8	0.8	
6	3.6	$3 \cdot 3$	2.4	2.5		1.5	1.2	0.8	1.0	
7		$3 \cdot 3$	2.3	2.6		\ldots	1.0	0.7	1.2	
8	3.5	$3 \cdot 4$	2.3	2.5		1.5	1.0	0.7	1.3	
9	.	3.2	2.2	2.4		.	1.0	0.8	1.5	
10	.	3.I	2.3	2.2		.	1.0	0.9	1.4	
11	.	3.0	2.2	2.2		.	I. 0	0.8	1.4	
Noon	.	2.9	2.1	2.0		.	1.1	0.9	1.4	
1	-	2.8	2.3	1.9		\cdots	I. 3	0.8	1.3	
2	3.0	2.8	2.4	1.9		2.1	1.6	1.0	1.1	
3	.	2.7	2.5	2.0		\cdots	1.8	1.0	1.1	
4	3.0	2.8	2.5	2.1		I. 9	2.0	1.0	1.0	
5	.	2.8	2.5	2.2		. .	2.0	I. 0	0.8	
6		2.9	2.4	2.3		.	2.0	1.1	0.9	
7	\cdots	2.9	2.4	2.3		.	1.9	1.0	0.8	
8	\cdots	3.0	2.4	2.4		\cdots	1.8	1.1	0.9	
9	3	3.0	2.4	2.4		\cdots	1.6	1.0	0.8	
10	$3 \cdot 3$	3.1	2.5	2.3		1.4	1.4	1.1	0.8	
II	.	3.2	2.5	.		..	1.3	1.0	-	
Mean	± 3.3	± 3.1	± 2.4	± 2.3	± 2.8	± 1.6	± 1.4	± 0.9	± 1.0	$\pm{ }^{\circ} \mathrm{O}$

The Toronto results are in the main confirmed by those at the other stations, and there is no doubt a much closer accordance would be obtained from longer series of records. In winter the maximum variability occurs a few hours after midnight, or about the period of the maximum cold of the day; in summer the reverse of this happens, the maximum variability then occurs about 3 P . M., or about the period of maximum heat. In winter the greatest constancy is noted about 2 P. M., but in summer the temperature is most steady some hours after midnight.

The progression of the tabular numbers from hour to hour is quite regular, particularly for Mohawk. The amount of variation is nearly the same at Toronto and Mohawk, but less at Philadelphia and Sitka. In general the variability in winter is more than double that of summer; this latter variation will be found further investigated under the head of the annual fluctuation.

In winter the maximum variability at any hour is to the minimum variability as 5 to 4 , and in summer as 8 to 5 .

Multiplying the above average probable errors $\pm 2^{\circ} .8$ in winter, and $\pm 1^{\circ} .2$ in summer by $\sqrt{ } 30.4$ or by 5.5 nearly, we have an approximation to the probable error of an observed temperature at any hour of the day at these seasons, with reference to the normal values of that hour, month, and season. These quantities are $\pm 15^{\circ}$ and $\pm 7^{\circ}$ respectively.

Any attempt to deduce, for any given time and place at the earth's surface, even approximately, the daily fluctuation of the temperature, as far as it depends upon the variations of the sun's altitude ${ }^{1}$ and with consideration of the loss of heat by absorption while passing through various depths of atmosphere, ${ }^{2}$ must lead to
${ }^{1}$ Let $\zeta=$ the sun's zenith distance, δ its declination, t the hour angle, then for the latitude ϕ $\cos \zeta=\sin \phi \sin \delta+\cos \phi \cos \delta \cos t$,
from which expression the altitude or depression of the sun for any hour of the day may ke computed.
${ }^{2}$ If we treat the length of the oblique path of a ray of heat passing through the atmosphere simply as a geometrical problem, it is given by

$$
l=\sqrt{r^{2} \cos ^{2} \zeta+2 r h+h^{3}}-r \cos \zeta
$$

hence for the case of a horizontal ray (irrespective of refraction),

$$
L=\sqrt{2 r h+h^{2}}
$$

where $r=$ the earth's radius and $h=$ the height of the atmosphere. Taking for instance $h=45$ st. miles, at which elevation twilight yet indicates the presence of air capable of reflection, and $r=3956$ miles, we find that horizontal ray must traverse nearly 600 miles of atmosphere or 13.3 times the vertical thickness, if $h=74$ miles, which is the average height at which shooting stars become incandescent when coming in contact with the atmosphere, the length of path is about 770 miles or 10.4 times the vertical thickness. The decrease of heat of inclined rays is greater than that resulting from the inverse proportion of the length of tract, and is due to the density of the air increasing geometrically, while the depth increases arithmetically. The following measures of atmospheric tract and of calorific effect on a surface vertically exposed to the ray, is extracted from a table given in the Encyclopædia Britannica (8th edition), article, climate; it supposes that of one thousand rays, vertically incident on the outer boundary of the atmosphere, only 750 will be transmitted through it and received on the ground. The numbers in the column headed " B " are computed by the formula ($\left(\frac{2}{3}\right)^{\text {sec } \zeta \text {, given in }}$ the article meteorology, according to which only 667 rays reach the ground. The last two columns contain the number of rays incident on a horizontal surface, obtained by multiplying the numbers in the preceding columns by $\cos \zeta$.

Zenith distance. ζ	Length of atmospheric tract.	Rays transmitted. (L)	$\begin{gathered} \left(\frac{2}{3}\right)^{\sec \zeta} \zeta \\ (H) \end{gathered}$	$L \cos \zeta$	$H \cos \zeta$
0°	1.000	750	667	750	667
10	1.015.	747	663	735	653
20	1.064	736	650	691	611
30	I. I 54	718	626	619	542
40	1.305	687	589	526	45I
50	1. 554	640	531	411	341
60	1.995	563	444	282	222
70	2.905	434	306	148	105
80	5.610	199	97	35	17
90	37.850	0	0	0	0

unsatisfactory results, for the reason that the distribution of heat passing into the atmosphere directly and indirectly through surface radiation, evection, and conduction, and the amount parted with by radiation during the night, as well as the modifying influence of the aqueous vapor, present far too complex phenomena to be accounted for numerically. We have already seen that the absolute amount of vapor and the relative humidity are among the causes sufficient to impress a totally different character upon the range of the daily fluctuation, from that we might otherwise have expected from the meridian altitude of the sun and the length of its diurnal arc.

D I S C U S S I O N

of the

anNUAL FLUCTUATION, OF THE MONTHLY AND ANNUAL. EXTREMES AND 0F THE SECULAR VARIATION OF THE ATMOSPHERIC TEMPERATURE,

TABLES OF RESULTING TEMPERATURES FOR EACH DAY IN THE YEAR, OF MONTHLY EXTREMES AND OF ANNUAL MEANS FOR
A SUCCESSION OF YEARS.

SECTION III.

dISCUSSION 0F THE ANNUAL FLUCTUATION, OF TIIE MONTHLY AND annual extreyes and of the secular variation 0f THE ATMOSPHERIC TEMPERATURE

with
TABLES OF RESULTING TEMPERATURES FOR EACH DAY OF THE YEAR, OF OBSERVED MONTHLY EXTREMES AND OF ANNUAL MEANS FOR A SUCCESSION OF YEARS.

The annual fluctuation of the temperature.-The annual fluctuation in the temperature of the lower atmosphere is exhibited in the progression of the successive monthly means, for a great number of stations in the General TemperatureTables of Section I, but it may also be shown by the tabulation of the mean temperature, derived from a series of years, of every day of the year. The latter method, while more advantageous, is also more laborious than the first, but is indispensable in inquiries respecting certain suspected irregularities in the annual fluctuation.

In the application of Bessel's periodic function to the case of the annual fluctuation of the temperature as derived from the monthly means, corrections are required for the inequality in the length of the calendar months, and for curvature or difference in the mean monthly temperature, and the temperature for the middle of the month. The first correction, for unequal length, affects principally the mean annual temperature, and but slightly the periodic terms in the epochs; the second correction, for curvature, affects only the amplitude of the fluctuations. These corrections may be applied separately and for each month before the application of the periodic function, especially in the case where the temperature for each day is known. When we have to make many applications of the formula, it becomes desirable to reduce this labor as far as is possible, without sacrifice of accuracy There is no need for introducing these small corrections to results from short series, and it suffices to state the rules for complete quadriennia, in which, consequently, the mean length of February equals 28.25 days, and the year 365.24 days nearly; the average or normal month comprises 30.44 days nearly.
'The mean temperature for the months of normal length may readily be computed by means of the following epochs of the ending of each month-

Normal months: January ends with 0.44 of the 3 1st of Calendar month.

To make use of these expressions we require to know the mean temperature of certain days near the begimning of each month; this may either be taken directly from the observations or may be computed from the monthly means. In Silliman's Journal of Science and Arts, May numbers of 1866 and of 1867, Mr. E. L. De Forest has presented the case in a different and very convenient form ${ }^{1}$ by using the monthly means already computed and finding corrections thereto, employing the means of the months preceding and following. Practically the results by the two methods are identical. The general effect of the correction for inequality is to increase the annual means by a small fraction of a degree.

To exhibit the magnitude of the monthly corrections, the results for the New Haven series, extending over nearly 86 years, may serve as a sample. The second column contains the uncorrected or calendar means, the third and fourth the correction to reduce to months of mean length, according to first and second methods, the last column gives the corrected means.

[^118]Mr. De Forest also remarks that the term $T=A+B_{1} \sin \left(\theta+C_{1}\right)$ obtained on the supposition of calendar months will be very nearly corrected, for temperate climates, for the inequality of months by taking $T=A+.0041 B_{1}+B_{1} \sin \left(\theta+C_{1}+46^{\prime}\right)$. The effect on the periodical terms involving multiples of θ is small and variable. They are preferred in the form $\pm A_{n} \sin n\left(\theta-e_{n}\right)$, as determined by $\sin \left(n \theta+E_{n}\right)=\sin n\left(\theta-\frac{1}{n}\left(360^{\circ}-E_{n}\right)\right)$ or $-\sin n\left(\theta-\frac{1}{n}\left(180-E_{n}\right)\right)$ according to $E_{n}>$ or < than 180°, the are e_{n} indicates the position of the first intersection, and the ascending or descending wave is shown by the sign of the term. In the usual form the signs are all positive.

The monthly corrections, beginning with January and continuing in regular progression, for two extreme cases are given below, viz., for Key West, Flo., with an annual range of about $14^{\circ} .7$, for New Haven, Conn., with about $46^{\circ} .7$ and for Fort Snelling, Minn., with about $61^{\circ} .8$.

Key West New Haven Fort Snelling	0 .00 .00 .00	0 +.04 +.12 +.21	$\begin{array}{r} \circ \\ +.11 \\ +.44 \\ +.67 \end{array}$	$\begin{array}{r} \circ \\ +.14 \\ +.46 \\ +.63 \end{array}$	$\begin{array}{r} \circ \\ +.13 \\ +.42 \\ +.47 \end{array}$	$\begin{array}{r} \circ \\ +.09 \\ +.28 \\ +.28 \end{array}$	$\begin{array}{r} \circ \\ +.02 \\ +.07 \\ +.04 \end{array}$	$\begin{array}{r} 0 \\ -.01 \\ -.07 \\ -.12 \end{array}$	$\begin{array}{r} 0 \\ -.04 \\ -.17 \\ -.19 \end{array}$	$\begin{array}{r} \circ \\ -.05 \\ -.16 \\ -.19 \end{array}$	$\begin{gathered} \circ \\ -.04 \\ -.12 \\ -.18 \end{gathered}$	0 -.03 -.08 -.11

Expressed in parts of the half of the annual range or nearly as a multiplier of B_{1}, the correction to the mean temperature of the year derived from the mean temperature of the calendar months, in order to obtain the true mean derived from the daily means, has been determined for a number of stations as follows:-

The factor seems to diminish with a diminishing range, but is sufficiently constant and equal to 0.0043 for half ranges above 20°, and equal to 0.0036 for half ranges below 20°. The San Francisco value is known to be exceptional.

The effect or correction to the epochal angles, $C_{1} C_{2} C_{3}$, may be seen from the following selected expressions of typical stations:-

Station.	Extent of Series in Years.	$\begin{gathered} \text { Calendar } \\ \text { or } \\ \text { Mean Mo. } \end{gathered}$	A	B_{1}	B_{2}	B_{3}	C_{1}	C_{2}	C_{3}
Fort Snelling, Min.	42	Cal. \{	$44^{\circ} \cdot 52$	$30^{\circ} .03$	I ${ }^{\circ} .60$	0.65	$238^{\circ} 5^{8}$	$208^{\circ} .8$	184 ${ }^{\circ} 4$ \}
		Mean	44.65	30.03	1.71	0.69	23946	209.4	182.7
New Haven, Conn.	86	Cal.	49.00	22.66	0.27	0.39	23337	298.0	I 39.4$\}$
		Mean	49.10	22.66	0.26	0.41	23425	283.2	$140.2\}$
Marietta, Ohio	49	Cal.	52.24	2 I. 16	0.79	0.41	23838	284. 1	72.6
		Mean	52.33	21.16	0.80	0.42	23925	279.7	77.6
San Diego, Cal.	20	Cal.	62.11	8.78	1.59	0.17	22407	285.7	$156.7\}$
		Mean	62.14	8.78	1. 5^{8}	0.19	22450	285.8	161.7
Key West, Flo.	26	Cal.	77.05	7.23	0.29	0.20	22849	235.7	243.6
		Mean	77.08	7.23	0.31	0.19	22934	233.0	243.2

The terms in B_{4} and B_{5} are of no practical consequence in the present inquiry. The difference in the angle C_{1} for calendar and mean months is for Fort Snelling, Min., $+48^{\prime}$; for New Haven, Conn., $+48^{\prime}$; for Marietta, Ohio, $+47^{\prime}$; also (Sill. Journ., May, 1866, p. 377-378) for St. Paul, Min.; New York; and Charleston, S. C., $+46^{\prime}$, and for San Diego, Cal. $+43^{\prime}$; for Key West, Flo., $+45^{\prime}$. We can therefore correct our expressions derived from the calendar months, for their inequality in length, by substituting for stations having a range between the hottest and coldest months exceeding 40°,

$$
A+0.0043 B_{1} \text { for } A \text { and } C_{1}+47^{\prime} \text { for } C_{1},
$$

and for stations having a less range,

$$
A+0.0036 B_{1} \text { for } A \text { and } C_{1}+45^{\prime} \text { for } C_{1} \text {. }
$$

The effect on C_{2} and C_{3} appears irregular, and may therefore be omitted as of little importance; the values of B_{2} and B_{3} are not sensibly affected.

The preceding five expressions for the annual fluctuation refer to the middle of December for their epoch; hence, in order to count the angle θ from the first day of January, we must increase C_{1} by $15^{\circ}, C_{2}$ by twice 15°, and C_{3} by thrice 15°.

The second correction is nearly zero in April and May, and again in Oct. and Nov., and reaches a maximum (a few tenths of a degree) in July or August, and again in January or February, the monthly amounts changing gradually, with opposite sign for the half year when the temperature is above, and the half year when it is below the mean. Since the mean monthly temperature is numerically less than the temperature corresponding to the middle of the month, the parameters of the fluctuations must be increased, and the correction for curvature is effected ${ }^{1}$ by multiplying the parameters or values, $B_{1} B_{2} B_{3} \ldots$, as found without regard to this, by the factors,

$$
\frac{\frac{\pi}{12}}{\sin \frac{\pi}{12}}, \quad \frac{\frac{2 \pi}{12}}{\sin \frac{2 \pi}{12}}, \frac{\frac{3 \pi}{12}}{\sin \frac{3 \pi}{12}} \cdots \text { respectively. To allow, there }
$$

fore, for curvature, we increase the co-efficients $B_{1} B_{2} B_{3}$. . as ordinarily obtained

[^119]by their $\frac{1}{8} \frac{1}{8}, \frac{1}{9}$. . . part respectively. Inversely, if we wish to compare computed monthly means with observed means, the respective multipliers are

$\frac{\sin \frac{2 \pi}{12}}{\frac{2 \pi}{12}}$,

$\frac{\sin$| 3π |
| :--- |
| 12 |}{$\frac{3 \pi}{12}$}\cdots.

In the case of incomplete monthly means, one or more being wanting, the function may still be employed by first finding, by interpolation, graphical or analytical, values for the terms omitted, and obtaining first an approximate, and by a second or third (if necessary) application an exact expression for T. For the supposition of one month being omitted in the observations or y_{0} in the values, $y_{1} y_{2} y_{3} \ldots y_{11}$, wanting, Mr. Bravais gives the formula - -

$$
\begin{aligned}
& y_{0}=\frac{2}{7}\left(y_{1}+y_{5}+y_{7}+y_{11}\right)+\frac{1}{7}\left(y_{2}-y_{3}-y_{4}+y_{6}-y_{8}-y_{0}+y_{10}\right) \\
& \quad+\frac{1}{7} \sqrt{ } 3\left(y_{1}-y_{5}-y_{7}+y_{11}\right)
\end{aligned}
$$

The expressions for two or more adjacent ordinates are too complicated, and of too little use to be inserted here.

In connection with the use of the periodic function, a table giving the value of θ for each day (noon) is herewith appended. ${ }^{1}$

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	$0^{\circ} 30^{\prime}$	$31^{\circ} 3^{\prime}$	$5^{8}{ }^{\circ} 53^{\prime}$	$89^{\circ} 26^{\prime}$	$119^{\circ} 1^{\prime}$	$149^{\circ} 34^{\prime}$	$179^{\circ} 8^{\prime}$	$209^{\circ} 41^{\prime}$	$240^{\circ} 15^{\prime}$	$269^{\circ} 49^{\prime}$	$300^{\circ} 22^{\prime}$	$329^{\circ} 5^{\prime \prime}$
2	129	322	5952	9026	120 -	55033	180	21040	24114	27048	30121	33055
3	228	331	6051	9125	12059	15132	1816	21140	24213	27147	30220	33155
4	327	34 o	6151	9224	12158	15231	1825	21239	24312	27246	30320	33254
5	426	3459	6250	$93 \quad 23$	12257	15330	1835	21338	244 II	27345	30419	33353
6	525	3559	6349	9422	12356	15430	184	21437	245 10	27444	30518	33452
7	624	3658	6448	9521	12455	r55 29	1853	21536	$246 \quad 9$	27544	30617	33551
8	724	3757	6547	9620	12555	$\begin{array}{ll}156 & 28 \\ 157\end{array}$	186	21635	2479	27643	30716	33650
9	823	3856	6646	9719	12654	15727	187	21734	248	27742	30815	33749
10	922	3955	6745	$98 \quad 19$	12753	15826	188 -	21834	2497	27841	30914	33849
11	1021	4054	6844	9918	12852	15925	18859	21933	2506	27940	31013	33948
12	II 20	4153	6944	10017	12951	16024	18959	22032	2515	28039	31113	34047
13	$\begin{array}{ll}12 & 19\end{array}$	4253	7043	10116	13050	16124	19058	22131	2524	28138	31212	34146
14	1318	435^{2}	7142	10215	13149	16223	19157	22230	2533	28238	31311	34245
15	1418	44 51	7241	10314	13248	16322	19256	22329	254	28337	31410	34344
16	1517	4550	7340	10413	13348	16421	19355	22428	255	28436	315	34443
17	1616	4649	7439	10513	13447	16520	19454	22528	256 I	28535	3168	34542
18	1715	4748	7538	10612	13546	16619	19553	22627	257 -	28634	317	34642
19	I8 14	4847	7638	10711	13645	16718	19653	22726	25759	28733	318	34741
20	1913	4947	7737	10810	13744	16817	19752	22825	25858	28832	3196	34840
21	2012	5046	7836	109	13843	16917	19851	22924	25957	28932	$320 \quad 5$	34939
22	211	5145	7935	1108	13942	17016	19950	23023	26057	29031	3214	35038
23	2211	5244	8034		14042	$\begin{array}{lll}171 & 15 \\ 172\end{array}$	20049	23122	26156	29130	322	351 37
24	2310	5343	S1 33		14141	17214	20148	23222	26255	29229	3231	$35^{2} 36$
25	249	5442	8232	L.13 6	14240	17313	20247	23321	26354	29328	324 I	$353 \quad 36$
26		5541	8332	1145	14339	$\begin{array}{llll}174 & 12\end{array}$	20346	23420	26453	29427	325	35435
27	$26 \quad 7$	5640	84 85 85	115	14438	I75 11	20446	235 236 19	26552	29526	326	35534
28	27 28	57 58 58	85 86 86 29			176 177 10	20545	236 237 23 17	26651	29626 297	326 327 39	356 357 35
29 30	$\begin{array}{ll}28 & 5 \\ 29 & 5\end{array}$	5816	86 86 87 28	$\begin{array}{ll} 117 & 2 \\ 118 & 1 \end{array}$	$\begin{aligned} & 14636 \\ & 14736 \end{aligned}$	$\begin{array}{lr} 177 & 10 \\ 178 & 9 \end{array}$	20644	23717 23816	26751 26850	29725 29824	32758 328	357 358 358 35
30 31	$\begin{array}{ll}29 & 5 \\ 30 & 4\end{array}$		86 88 88		14835		20842	23915		29923		35930

The are from the beginning of the year to the middle of each calendar month is found in the above table opposite the 16 th for months of 31 days, and by subtracting 30^{\prime}, for months of 30 days; the are to the middle of February is $44^{\circ} 28^{\prime}$.

To exhibit the annual fluctuation in a concise form, suitable for comparisons and further deductions, a number of characteristic stations have been selected, representing various climatological features, and for which the numerical values of the several quantities entering in the expression-

$$
T=A+B_{1} \sin \left(\theta+C_{1}\right)+B_{2} \sin \left(2 \theta+C_{2}\right)+B_{3} \sin \left(3 \vartheta+C_{3}\right)
$$

have been computed and tabulated. In preference, stations having long and reliable series of observations have been selccted, and they comprise with some rough approximation to uniformity of distribution, the area of the United States, with a few representative stations in Arctic and British North America. The results are based on the monthly means presented in the general table of temperatures (Section I), they were first corrected for daily fluctuation ${ }^{1}$ according to the hours of observation, whenever needed, those depending on $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis receiving no correction. They were next corrected for inequality in length of months and for curvature, as explained. It was deemed sufficient for the present purpose to stop at the term involving $B_{3} C_{3}$, considering that this and any subsequent term represent rather local peculiarities and, moreover, are subject to considerable changes with the use of additional observations. The days of average epochs of maxima and minima were computed by the formula-
$0=B_{1} \cos \left(\theta+C_{1}\right)+2 B_{2} \cos \left(2 \theta+C_{2}\right)+3 B_{3} \cos \left(3 \theta+C_{3}\right)$
resulting from putting $\frac{d T}{d \theta}=0$
The 46 stations are given in five groups, each arranged according to latitude.

[^120]TABLE 0F COMPUTED ANNUAL FLUCTUATION

OF TLE

TEMPERATURE OF 46 STATIONS.

[The angle θ counts from January \mathbf{I},

BRITISH NORTH AIMERICA AND CANADA.

	Fort Franklin, Great Bear Lake .		6512	12245	230	1	9	+17.18	37.64	24855
6	Fort Chipewayan, Athabasca Lake		5843	11115	700	3	6	+28.69	$34 \cdot 36$	24655
7	Nain, Labrador . .	-	5710	6150	...	9	6	+23.46	25.09	24118
8	Toronto, Canada West .		4339	7923	342	31	\bigcirc	+44.26	22.37	24611

ALASKA.

1 Through the courtesy of Dr. E. Bessels, who had charge of the scientific observations in the Hall Polar expedition, I have received in advance of the publication, the monthly mean temperatures as observed at Polaris Bay, between Sept. 1871, and Aug. 1872, together with some other information bearing on the same.

These results are given in the table below, to which I have added a reduction to refer them to months of average length, also the results computed by the formula-
$7^{\circ}=+4^{\circ} .19+33.09 \sin \left(\theta+247^{\circ} 5^{\prime}\right)+7.15 \sin \left(2 \theta+81^{\circ} .9\right)+1.83 \sin \left(3 \theta+51^{\circ}\right)+2.59 \sin \left(4 \theta+211^{\circ}\right)$.
For the fourth term the correction for curvature $\frac{\frac{4 \pi}{12}}{\sin \frac{4 \pi}{12}}$ amounts to nearly $\frac{7}{5}$ of B_{4}.
Polaris Bay, Hall Land.

	Observed Temp. Calendar Month.	Red'n.	Temp. for Average Month.	Comp'd.	Obs'd.Com'd.
1872 January	- $22^{\circ} .42$	$-{ }^{\circ}$. 01	-22 ${ }^{\circ} .43$	$-22^{\circ} .78$	$+{ }^{\circ} .35$
February	-23.52	+.01	-23.51	-24.15	+. 64
March	-22.65	+.17	-22.48	-21.98	$-.50$
April	-7.66	+. 56	- 7.10	-8.95	+1.85
May	$+17.59$	$+.20$	+17.79	+19.19	-1.40
June	+36.94	+.05	+36.99	$+37.27$	$-.28$
July	$\underline{+39.28}$	-.01	+39.27	+39.24	$+.03$
August	+35.88	+.05	+35.93	$+37.21$	-1.28
1871 September	+23.07	-. 76	$+22.31$	+21.62	+.69
October	- 1.59	-. 03	- 1,62	- I.ir	-. 51
November	-8.76	-. 22	-8.98	-10.17	+1.19
December.	- 15.79	-. 09	-15.88	-15.11	$-.77$

OF THE TEMPERATURE.
and T is expressed in degrees of Fahrenheit.

ARCTIC REGIONS.

1	7.15	$81^{\circ} .9$	I. 83	51°	2.59	211°	July 10	$+39^{\circ} \cdot 4$	Jan. 30	$-24^{\circ} \cdot 3$	$63^{\circ} \cdot 7$	May 2; Oct. 8	1
2	7.02	69.8	3.56	17	3.79	328	July 8	$+39.3$	Mar. I	-28.6	67.9	Apr. 25; Oct. 12	2
3	6.62	119.0	0.82	318	4.80	250	July 15	+41.6	Feb. 16	-28.0	69.6	May 1; Oct. 31	2
4	0.84	256.9	I. 18	275	I. 16	79	July 15	$+42.0$	Jan. 22	-38.3	80.3	Apr. 23; Oct. 25	
						Mean:	July 12		Feb. 9			Apr. 28; Oct. 19	

BRITISH NORTH AMERICA AND CANADA.

	0.91	213.0	1.24	32	\cdots	\cdots	July 22	$+52.7$	Jan. 23	-21.0	73.7	Apr. 22; Oct. 24	
6	3.06	147.1	1.10	259	.	.	July 13	+63.9	Jan. 28	-7.1	71.0	Apr. 26; Oct. 28	a
7	2.85	245.2	1.91	200	\therefore	.	Aug. 3	+48. I	Jan. 24	-6.0	54. 1	May I; Oct. 26	a
8	0.70	48.4	0.53	151	..	.	July 28	$+67.7$	Jan. 28	+22.1	45.6	Apr. 26; Oct. 24	

ALASKA.

9 10	0.88 2.73	324.9 8.4	0.20 0.44	351 103	\cdots	\ldots	Aug. 13 Aug. 12	+54.9 +50.6	$\begin{array}{cr}\text { Jan. } & 30 \\ \text { Feb. } & 9\end{array}$	+30.3 +30.0	24.6 20.6	May 9; Nov. 4 May 21 (?); Oct. 26	$b\} *$

2 At Van Rensselaer Harbor and Port Foulke the epochs and amount of maxima and minima are those resulting from 3 variable ternis, as preferable to those resulting from 4 terms. The dates are quite uncertain on account of the shortness of the series.
a Monthly means corrected for daily variation by the general table p. xiv.

* Expressions referred to new style, by subtracting $10^{\circ} 51^{\prime}$ from $C_{1}, 21^{\circ} .7$ from C_{2}, and 33° from C_{3}.
b Monthly means corrected for daily variation by the Sitka table; for Astoria allowance was made for change of style.

No.	Locality.	Lat.	Long. W. of Gr.	Height.	Extent of Series	A	B_{1}	C_{1}
UNITED STATES EAST OF THP 98th MERIDIAN.								
11	Fort Brady, Michigan -	$46^{\circ} 30^{\prime}$	$84^{\circ} 28^{\prime}$	$\begin{aligned} & \text { feet. } \\ & 600 \end{aligned}$	$\begin{array}{cc}\text { yrs. } & \text { mos. } \\ 32 & \text { I }\end{array}$	$40^{\circ} .22$	24.70	$247^{\circ} \mathrm{I} 8$
12	Fort Snelling (St. Paul), Minnesota	4453	9310	820	42	44.23	30.14	25437
13	Dennysville, Maine	4453	6714		40 0	42.25	23.72	24716
14	Burlington, Vermont	4428	7312	346	296	44.52	25.95	24933
15	Brunswick, Maine	4354	6957	74	51	44.50	23.3 r	24845
16	Milwaukee, Wisconsin	4304	88 о0	604	267	45.84	23.84	24824
17	Penn Yan, New York	4242	7704	740	310	45.51	22.79	25033
18	Detroit, Michigan . . .	4220	8303	597	30	47.33	22.79	25036
19	New Bedford, Massachusetts	4139	7056	90	58 I	48.30	21.16	24520
20	Muscatine, Iowa	4 r 26	9105	586	$27 \quad 6$	47.08	25.60	25353
21	New Haven, Connecticut	4118	7257	45	86 o	49.10	22.90	24925
22	Marietta, Ohio . .	3928	8I 26	670	49 10	52.33	21.40	25425
23	Fort Leavenworth, Kansas . . . ${ }^{\text {a }}$	3921	9454	896	39 II	52.84	25.21	25452
24	Fort McHenry, Baltimore, Maryland	3916	7635	36	36	54.59	22.39	24957
25	Cincinnati, Ohio	3906	8430	540	$36 \quad 8$	54.80	22.79	25412
26	St. Louis, Missouri . .	3837	9012	48 I	410	55.09	23.94	25456
27	Chapel Hill, North Carolina -	3558	7854	\because	20	59.83	18.87	25352
28	Fort Gibson, Indian Territory - .	3548	9520	560	2910	60.56	21.48	25455
29	Columbus, Mississippi - ${ }^{\text {S }} \dot{\text { C }}$	3331	8828	227	159	62.25	18.57	256 O1
30	Fort Moultrie, Charleston, S. C. .	3245	79 51	25	3211	66.43	16.15	25054
3 I	Fort Barrancas, Pensacola, Florida	3021	8718	20	20	68.44	15.10	25316
32	Austin, Texas . . .	3017	9744	650	19 O	66.78	16.91	25636
33		29 29 29	90 81 81 10	25	$\begin{array}{ll}32 & 9 \\ 25 & 4\end{array}$	69.12 69.73	14.11 12.33	25553 24838
34 35	Fort Marion, St. Augustine, Florida . . Fort Brown, Texas	2954 2550	81 19 97	25 50	$\begin{array}{rr}25 & 4 \\ 13 & 5\end{array}$	69.73 73.74	12.33 12.04	248 255 22
36	Key West, Florida	2433	8 r 48	10	266	77.08	7.3I	24434

UNITED STATES WEST OF THE 98th MERIDIAN.

37	Fort Stevenson, Dakota.		4736	10110		2	II	41.84	33.82	25333
38	Fort Shaw, Montana .		4730	III 42	6000	3	4	46.13	23.03	25344
39	Astoria, Oregon	- .	46 II	12348	52	18	3	49.22	10.87	24244
40	Fort Laramic, Wyoming	- .	4212	10431	4472	17	9	49.22	23.63	25237
4I	Salt Lake City, Utah. .		4046	11154	4260	9	-	51.95	23.72	25032
42	Presidio, San Francisco, California		3747	12228	150	19	\bigcirc	54.80	4.22	23455
43	Fort Garland, Colorado .	-	3732	10540	8365	15	3	42.53	23.65	25509
44	Fort Mojave, Arizona		3506	11435	60.4	6	5	73.20	20.95	25431
45	Fort Craig, New Mexico		3336	10700	4576	13	10	60.03	22.17 8.85	25931
46	San Diego, California		3242	11714	150		10	62.14	8.88	23950

[^121]OF THE TEMPERATURE.-Continued.

No.	B_{2}	C_{2}	B_{3}	C_{3}	B_{1}	C_{4}	Warmest Day.		Coldest Day.		Annual Range.	Yearly Means reached.	Notes.
							Average date.	Temp.	Average date.	Temp.			
UNITED STATES EAST OF THE 98th meridian.													
11	0. 64	$171^{\circ} .8$	0.80	163°		\cdots	July 26	$+65^{\circ} .2$	Jan. 28	+14.4	$50^{\circ} .8$	Apr. 22; Oct. 24	a
12	1.75	243.2	0.78	226		..	July is	+73.4	Jan. 16	+11.6	61.8	Apr. 14; Oct. 20	${ }^{a}$
13	0.62	238.6	0.86	225 56			July 23	+66.2 +69.8	Jan. 21	+17.1	49.1	Apr. 24; Oct. 27 Apr. 21 ; Oct 23	${ }_{\text {a }}$
15	0.59 0.92	191.9 258.0	0.19 0.88	225	\cdots	\cdots	July 24	+69.8 +67.9	Jan. 24	+18.3 +19.5	51.5 48.4	Apr. $21 ;$ Apr. 20 ; Oct. 23 Oct. 24	$\stackrel{a}{d}$
16	r. 19	313.8	0.86	24 I	\cdots	\cdots	July 25	+70.3	Jan. 15	+21.0	49.3	Apr. 23; Oct. 24	
17	0.68	90.7	0.36	163	..	.	July 22	+69.1	Jan. 24	+22.9	46.2	Apr. 22; Oct. 20	a
18	0.34	36.5	0.49	168			July 24	$+70.8$	Jan. 23	+24.5	46.3	Apr. 22; Oct. 20	
19	0.40 L	13.3	0.42	222	\ldots		July 27	$\underline{+70.2}$	Jan. 23	+27.1	43.1	Apr. 28; Oct. 27	a
20	I. 75	273.3	0.04	325	\ldots	\cdots	July 23	+71.3	Jan. 13	+19.9	51.4	Apr. I5; Oct. 15	
21	0.27	313.2	0.46	185	\cdots	\cdots	July 25	+72.4	Jan. 2 I	+25.7	46.7	Apr. 21 ; Oct. 22	
22	0.84	309.7	0.47	123	\cdots		July 24	+73.6.	Jan. 15	$+30.7$	42.9	Apr. 15; Oct. 16	
23	I.90	284.7	22	190		\cdots	July 26	+77.0	Jan. 12	+26.1	50.9	Apr. 14; Oct. 20	a
24	0.62	317.0	0.15	170	\cdots	\cdots	July 26	$+77.0$	Jan. 19	$+32.0$	45.0	Apr. 21; Oct. 22	a
25	0.98	341.2	0.48	120	\ldots		July 26	+77.9	Jan. 14	$+32.3$	45.6	Apr. 17; Oct. 16	
26	1. 14	291.2	0.29	147	\cdots	\cdots	July 24	+78.5	Jan. 13	+30.3	48.2	Apr. 15; Oct. 19	
27	0.68	337.5	0.29	299	.	.	July 19	+78.9	Jan. 10	+40.9	38.0	Apr. 19; Oct. 18	
28	2.14	296.2	0.64	143	.	.	July 31	+81.7	Jan. 12	$+37.7$	44.0	Apr. 13; Oct. 18	
29	I. 38	330.9	$\stackrel{0.32}{0 .}$	97			July 26	+81.0	Jan. 9	+43.7	37.3	Apr 15; Oct. 15	
30	0.73	302.4	0.15	22	..		July 26	+82.2	Jan. 15	+50.1	32.1	Apr. 2I; Oct. 2 I	e
31	1.08	287.0	0.39	45		\cdots	July 28	+82.6	Jan. 12	+52.9	29.7	Apr. 16; Oct. 21	c
32	I. 95	316.8	0.01	315	\cdots	\cdots	July 29	+81.7	Jan. 12	+37.7	44.0	Apr. 13; Oct. 17	
33	I. 37	301.5	0.81	349	\cdots		July 18		Dec. 3I		28.7 24.3	Apr. 16; Oct. 20	
34 35	I. 36 I. 24	296.2 270.0	0.82 0.30	335 247	.	\because	July 30	+81.0 +85.0	${ }_{\text {Jan. }}{ }^{4}$	+56.7 +60.3	24.3 24.7	Apr. 23; Oct. 27 Apr. 11; Oct. 21	${ }_{c}^{c}$
36	0.32	263.0	0.2I	288	..	.	July 27	+84.2	Jan. 21	+69.5	14.7	Apr. 27; Oct. 29	

UNITED STATES WEST OF THE 98th MERIDIAN.

37	2.30	198.0	2.21	21	\cdots		July 16	+76.1	Jan. 21	$+4.0$	72.1	Apr. 14 ; Oct. 22	a
38	0.70	205.7	1.98	242	.		July 14	$+70.6$	Jan. 15	+20.8	49.8	Apr. 19; Oct. 21	a
39	1.25	280.9	0.38	168	-	\ldots	Aug. 2	+59.2	Jan. 23	$+37.4$	2 L .8	Apr. 26; Oct. 31	b
40	3.24	9.7	0.58	252			July 25	+75.8	Jan. 4	+26.7	49.1	Apr. 26; Oct. 16	a
41	1. 4^{2}	330.1	1.59	234	\cdots	\cdots	July 23	+77.4	Jan, 14	$+25.8$	51.6	Apr. 24; Oct. 22	
42	I. 46	258.7	6	307	*	\cdots	Sept. 23	+59.1	Jan. 9	$+49.3$	9.8	May I ; Nov. 13	
43	I.91	313.3	1.00	249	.		July 21	+66.6	Jan. 8	$+17.1$	49.5	Apr. 14; Oct. 19	
44	1.91	330.0	0.71	239	.		July 22	+95.0	Jan. 8	$+51.2$	43.8	Apr. 18; Oct. 17	
45	2.39	312.1	1.15	304	.	\cdots	July 15	+81.6	Dec. 31	$+35.5$	46.1	Apr. 12; Oct. 16	
46	1.66	315.8	0.21	207	\cdots	.	Aug. I5	+72.0	Jan. 13	+52.9	19.1	May 6; Oct. 3r	

d See Smithsonian Contributions to Knowledge, No. 204; Washington, June, 1867, p. 32. The expression is here corrected for curvature.
e Monthly means corrected for daily variation by one-half of the value given by the general table p. xiv.

The positions of the meteorological stations, embraced in the preceding table, are shown on the accompanying chart by dots, to which the tabular number has been attached.

If we examine the variability of the respective dates, given in the columns of "warmest day," "coldest day," and "days of mean temperature," we shall find the latter confined to the narrowest limit; near these epochs the expression for T reaches its greatest daily change and consequently fixes them with comparative accuracy, whereas near the epochs of maxima and minima the daily change is least, in consequence of which greater uncertainty must attach to these dates.

The results for the 4 Arctic stations have been united into a mean for each epoch; even these means have less weight than corresponding values at any other station, since they are based upon less than 5 years of observation. The epoch when the mean of the year is reached, with a falling temperature, is the most constant for all the stations; its dates are comprised between October 8, at Polaris Bay, and November 13, at San Francisco, both stations being of an exceptional character; all the rest cluster closely around the 22 d of October, which follows 30 days after
the autumnal equinox. The average deviation from this date is 4 days, earlier or later.

The epochs of the mean value of the year, reached with rising temperature, are comprised, with the exception of Illoolook which is doubtful, between April 11, at Fort Brown, Texas, and May 9, at Sitka; the average date for all other stations being April 21, which is 32 days after the vernal equinox. The average deviation from this date is 5 days, earlier or later.

The dates for the maximum temperature, with the exception of that for San Francisco which is anomalous and delayed to Sept. 23, are comprised between the limits of July 8, at Van Rensselaer Harbor, and August 15, at San Diego; all the other stations cluster about July 24, which is 33 days after the summer solstice. The average deviation from this date is $4 \frac{1}{2}$ days, earlier or later.

The dates for the minimum temperature vary between the limits of December 31, at New Orleans and at Fort Craig, and February 16, at Port Foulke; we have to except, however, the date for Van Rensselaer Harbor, which has the highly uncertain date March 1; the remainder of the stations cluster about January 18, which is 28 days after the winter solstice. The average deviation from this date is 6 days, earlier or later.

We thus see that the daily balance between the decreasing radiation and the increasing insolation at the midwinter extreme is struck earlier by 5 days than the opposite balance between the decreasing insolation and the increasing radiation at the midsummer extreme, as compared with the corresponding astronomical epochs.

Altogether, then, the curve expressive of the annual distribution of heat, for our stations, follows in epoch, on the average 31 days, or very nearly $\frac{1}{12}$ of a year, the corresponding astronomical epochs depending on the revolution of the earth around the sun.

Examining the dates of the four epochs with respect to geographical distribution of stations within the area of the United States, we find for the 9 Atlantic coast stations, Nos. $13,15,19,21,24,27,30,34,36$, the average dates: July 25 , January 17, for maximum and minimum, and April 23, October 24, for an average of the year in spring and autumn. Compared with the normal epochs, viz: -

July 24, January 18, April 21, and October 22, they appear about 1 day later than the normals. No dependence on the latitude is indicated,

The 10 centrally located stations in the valley of the Mississippi and east of the foot of the Rocky Mountains, also including two Texas stations, viz.: Nos. 37, 12, $20,23,26,28,29,32,33$, and 35 , give the respective dates:-

July 23, January 12, April 14, and October 19, which are on the average 4 days earlier than the normal values. The latitude of the stations is apparently of no consequence in this inquiry. Similarly we find for the three Pacific coast stations, Nos. 9, 39, and 46 the respective dates: August 10, January 22, May 4, and November 1, which are on the average 15 days later than the respective normal values, while at San Francisco the dates for the maximum and for the autumnal mean are still later. With respect to the annual thermal epochs we thus notice the apparent effect on the coast stations by the Atlantic is to retard them by about

1 day and by the Pacific for about 15 days, the later effect being necessarily the greater, owing to the prevalence of westerly winds over the whole area under consideration. In the interior, on the contrary, the epochs appear about 4 days earlier than the average values. Our data are yet too scanty to allow of any precise estimate respecting the effect of elevation on these epochs, but they appear to occur earlier for greater elevation.

The result arrived at respecting the shifting of the epochs in different longitudes may also be stated as follows: The seasons occur 5 days earlier in the valley of the Mississippi and the western plains than on the Atlantic seacoast, and 19 days earlier than on the Pacific coast.

We may arrive at a tolerably fair estimate of the annual mean temperature at any place by observing for a few days the temperature about the two epochs when the mean is reached, and still better by observing in addition about the epochs of maximum and minimum. The least labor will be spent by observing only at 8 P.M. ($8^{\text {b }} 05^{\text {n2 }}$ may still improve the result), an hour which has the advantage of convenience for the observer and which produces equally good results in all months of the year, the values will probably keep within a half degree, during any month, and within one-tenth of a degree, for the year, of the true value.

If we now turn our attention to the annual range, we find it to vary between the limits of 80°, nearly, at Port Kennedy (in approximate latitude 72°) and of 10°, nearly, at San Francisco. The next smallest annual range is attained at Key West, of about 15°, next follows San Diego with 19°, and Illoolook (approximate latitude 54°) with $20 \frac{1}{2}^{\circ}$. The smaller ranges are due almost entirely to the proximity and equalizing effect of the sea.

The magnitude of the annual range depends principally on the latitude and the distance from the ocean, apparently less on the altitude of the station; it is greater in the higher latitudes and appears to reach its maximum value in the region about the Great Bear and the Great Slave Lakes ; from the vicinity of Lake Athabasca high values extend towards Lake Winnipeg and even within the northern boundary of the United States. Our four Arctic stations in the average latitude of $77 \frac{1}{2}^{\circ}$ show an average amplitude of $70 \frac{1_{2}^{\circ}}{}{ }^{\circ}$, at Peel River in latitude $67^{\circ} 32^{\prime}$ the amplitude probably exceeds ${ }^{1} 83^{\circ}$, Fort Simpson in latitude $62^{\circ} 10^{\prime}$ has an annual amplitude probably greater than 75°, our stations Nos. 5 and 6 in the average latitude of 62° have an amplitude of nearly ${ }^{7} 72^{\frac{1}{2}}{ }^{\circ}$, Norway House in latitude $53^{\circ} 50^{\prime}$ shows nearly 71°, while at Fort Stevenson, Dakota, in latitude $47^{\circ} 36^{2}$ the observed amplitude is as high as 72°, and at Fort Pierre, Dakota, in latitude $44^{\circ} 23^{\prime}$ a range above 70° is indicated; these last two stations exhibit a range of a truly arctic character.

The rigor of a climate may be supposed measurable by two factors, viz. : the mean annual temperature and its range, which latter is approximated by the value $2 B_{1}$ (provided $B_{2} B_{3}$. . are small in comparison). The values of A in our table fluctuate between the extreme limits of $-2^{\circ} .2$ at Van Rensselaer Harbor, and of

[^122]$+77^{\circ} .1$ at Key West, Florida; their geographical distribution and relations within the limits of the United States are sufficiently shown on the chart of the mean annual isothermals.

Apparent interruptions in the regularity of the ammal fluctuation.

While, for all general purposes of comparison, monthly means will be found quite sufficient for the clucidation of the character of the annual fluctuation, they will not be adequate in the case of a special and detailed examination, having for its object to ascertain the reality of certain anomalies in the otherwise regular progression.

It has been noticed, elsewhere, that at certain stations and at certain periods of the year, the regularity of the annual march of the temperature appears interrupted for a few days by interfering with the ordinary rising or falling of the temperature, as we should expect it, at these periods of the year. The phenomenon has been attributed to local as well as to cosmical influences; it would seem to be referable to the setting in of a particular wind at these times, causing the mean temperature to be more or less influenced.

Of such periods of apparent irregularities, pointed out by different meteorologists, ${ }^{1}$ the following may be mentioned: About the beginning of December and the middle of May; about the 12th of February and between the first and second week in March ; it cannot be said, however, that any such periods have been fully tested or confirmed for stations in the United States, but the subject demands further research. From observations at Geneva, N. Y., Dr. Wilson ${ }^{2}$ suspects an arrest of the increasing warmth during about 16 days, commencing with May 25, and a retrocession of the increasing cold in autumn from October 28th to about November 10th.

To meet the requirements of such investigations the observed temperatures have, by some, been united into 5 day means or penthemers, while others have gone through the extremely laborious process of determining the mean temperature of every day, resulting from a long series of years. Owing to the great labor of preparation but few of such tables exist, and they extend yet over too limited a period to be conclusive in their results. In places where the annual range is small, a 15 year series is quite valuable, but in our temperate and higher latitudes a combination of observations embracing at least double this time is requisite to eliminate the greater irregularities in the daily means.

There is another use of tables of daily average temperatures; by their means we can ascertain for any given day (and in combination with the known daily fluctuation, for any given hour) how much the observed temperature will be in excess or defect of the normal (or tabular) temperature belonging to that day, a

[^123]question to which an answer is often demanded in the study of the progress of certain unusually hot or cold terms or waves spreading themselves over large surfaces.

In the following series of tables of the average temperature of each day of the ycar, the observing hours as well as the corrections applied (if possible or necessary) to reduce to daily mean are added to each station.

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Albion Mines, Nova Scotia. Lat. $45^{\circ} 34^{\prime}$. Long. $62^{\circ} 42^{\prime}$ W. of G. Alt. I20 feet. Io years of observation, between 1843 and 1852 , inclusive. H. Poole.											
I	$21^{\circ} .8$	$13^{\circ} .0$	$22^{\circ} .0$	$33^{\circ} .9$	$4{ }^{10} .8$	$50^{\circ} .9$	$59^{\circ} \cdot 3$	$70^{\circ} .0$	$59^{\circ} \cdot 9$	$50^{\circ} .6$	$42^{\circ} .8$	$26^{\circ} .8$
2	17.4	15.7	20.5	3 E .0	46.2	52.3	60.5	69.6	60.9	48.0	44.5	28.1
3	22.6	20.4	20.1	32.9	43.6	55.5	61.9	67.9	63.2	49.5	$44 \cdot 5$	27.1
4	20.5	20.7	18.0	34.4	43.7	57.5	63.0	67.3	63.5	48.7	43.9	31.0
5	19.8	22.9	20.2	34.5	43.8	57.4	64.2	67.9	62.0	49.5	41.5	35.0
6	20.6	22.8	19.3	33.0	46.5	$55 \cdot 3$	65.1	66.7	61. x	49.3	41.8	27.8
7	19.8	21.7	2I. 2	36.3	48.3	54.5	63.7	65.7	63.4	47.8	38.2	26.0
8	23.7	19.6	24.8	38.7	50.0	55.4	64.6	66.5	62.3	48.4	38.5	27.6
9	18.9	18.5	29.9	38.9	49.0	56.7	65.4	67.8	58.4	44.6	36.1	27.2
10	23.4	21.5	24.8	34.7	47.2	57.1	66.1	68.9	55.9	47.2	36.8	27.9
II	19.7	21.1	24.6	36.0	47.5	57.2	68.8	68.3	58.0	47.1	36.7	26.3
12	19.5	20.2	23.5	33.9	47.0	53.8	67.9	67.6	58.2	48.0	33.8	24.8
13	20.4	15.1	25.9	35.0	42.7	53.2	67.4	64.7	56.9	51.7	$33 \cdot 3$	23.4
14	23.9	15.0	28.8	37.6	49.0	56.2	66.7	68.4	55.4	49.6	30.2	19.8
15	19.9	19.9	25.1	37.8	50.9	57.2	66.9	67.1	54.8	46.3	31.8	25.1
16	20.0	19.2	24.1	37.3	52.6	55.8	66.3	62.4	54.2	$44.0{ }^{-}$	33.1	25.8
17	18.7	19.0	28.5	36.6	52.2	55.6	68.1	65.1	53.5	44.5	34.7	25.4
18	17.5	18.5	26.5	35.4	50.3	58.8	69.5	63.9	54.5	47.2	36.8	24.0
19	II. 3	16.5	28.9	37.7	47.3	63.6	66.6	64.1	55.6	50.8	36.2	20.2
20	10.3	17.3	28.5	38.0	50.1	64.5	69.3	62.8	53.8	47.7	$35 \cdot 9$	23.6
21	16.7	20.6	32.2	42.3	49.5	62.0	71.0	62.2	58.8	$43 \cdot 4$	35.9	22.4
22	14.6	20.8	29.9	41.1	48.9	62.8	73.5	$63 \cdot 3$	53.8	44.7	35.4	14.7
23	12.9	22.4	27.2	40.5	53.6	$63 \cdot 3$	71.8	$64 \cdot 5$	52.3	47. 1	34.8	18.9
24	18.2	20.3	31.2	40.9	50.1	$6 \mathrm{~L} \cdot 2$	67.1	62.7	52.3	$43 \cdot 5$	36.4	21.1
25	23.0	19.3	30.2	38.6	50.1	$63 \cdot 3$	65.0	$64 \cdot 3$	50.3	$43 \cdot 7$	34-7	20.6
26	23.7	21.2	31.9	40.3	50.4	60.2	64.8	63.1	50.1	44.2	$37 \cdot 3$	21.6
27	18.9	21.9	34-7	40.1	5 I .1	6 I .4	64.6	63.5	51.9	$43 \cdot 7$	31.3	17.3
28	13.4	16.7	33.9	40.2	49.7	61.6	64.6	$63 \cdot 7$	50.1	41.7	30.6	19.8
29	18.7	20.5	35.0	41.0	51.2	62.0	$64 \cdot 3$	64.1	51.0	40.4	26.3	26.5
30	21.3		34.7	40.5	50.5	63.5	64.7 67.3	65.0 64.1	51.9	45.3 42.6	26.8	$\begin{aligned} & 24.2 \\ & 24.0 \end{aligned}$
31	12.8		34.2		49.8		67.3	64. 1		42.6		24.0

Observations at \odot rise, 9 A. M., 3 and 9 P. M. To the mean at these hours the correction for daily fluct lation is very small, throughout the year, and judging from the Montreal table probably does not exceed 0°. 1 ; no correction was therefore applied.

Day of Month.	Alt. 342 feet. Observed temperature at Toronto, in groups of 10 and 30 years. Communicated to the Smithsonian Institution by G. T. Kingston, Director of the Toronto observatory.											
	January.				February.				March.			
	$1840^{1}-9$	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	1840-69
1	$25^{\circ} .9$	$25^{\circ} \cdot 2$	$23^{\circ} \cdot 7$	$25^{\circ} .0$	$20^{\circ} \cdot 1$	$26^{\circ} \cdot 7$	$22^{\circ} .8$	$23^{\circ} .{ }^{\circ}$	$28^{\circ} .1$	$25^{\circ} .2$	$29^{\circ} \cdot 3$	$27^{\circ} .2$
2	21.4	24.2	20.3	21.8	27.8	18.9	21.7	22.6	24.9	24.2	28.5	24.9
3	21.5	25.6	21.3	22.9	25.2	20.7	17.3	21.4	26.9	25.6	27.1	25.7
4	21.1	27.0	18.3	2 I .9	23.7	21.9	21.3	22.2	28.2	25.1	20.2	24.6
5	23.6	23.7	23.7	23.6	25.1	18.1	23.9	22.3	29.7	27.3	22.6	26.4
6	26.7	23.8	21.5	24.2	24.5	16.9	24.9	22.3	28.6	22.5	25.7	25.7
7	29.3	20.2	18.2	22.1	22.9	22.3	17.8	21.0	31.0	26.6	28.6	28.7
8	23.4	18.r	20.4	20.6	23.0	20.9	20.9	21.6	32.3	25.3	29.2	28.8
9	23.7	23.8	23.7	23.7	19.9	22.3	22.9	21.7	29.9	27.6	29.4	29.1
10	20.5	21.5	23.4	21.8	23.8	18.6	18.4	20.6	28.8	24.2	26.6	26.5
II	20.3	26.1	18.0	21.7 .	18.7	19.1	23.9	20.7	27.3	29.8	26.3	27.9
12	25.6	25.4	19.5	23.6	19.2	17.5	28.5	21.5	29.8	28.4	26.3	28.1
13	26.3	25.6	21.7	24.7	19.0	23.5	25.7	22.9	30.7	32.1	26.1	29.5
14	28.6	25.8	22.0	25.3	2 L .6	24.2	21.3	22.4	28.7	32.4	28.3	29.7
15	29.6	22.8	21.7	24.8	20.3	26.1	22.0	22.7	23.4	33.4	28.4	28.6
16	23.2	26.4	19.6	22.8	19.8	25.2	21.0	22.1	27.4	34.1	29.3	31.3
17	21.2	19.9	15.3	18.8	21.4	23.1	20.4	21.7	29.2	$35 \cdot 4$	30.6	31.8
18	20.8	23.8	19.8	21.4	$25 \cdot 3$	21.3	22.5	22.9	29.5	33. 1	22.9	28.4
19	19.5	20.6	22.4	20.8	28.2	20.2	25.4	24.6	33.5	28.9	23.7	28.5
20	25.9	25.2	25.1	25.5	28.6	24.8	25.2	26.1	34.5	26.2	28.6	29.9
21	27.1	23.0	23.3	24.4	29.8	26.4	22.1	26.1	30.7	31.9	27.3	29.8
22	20.2	17.8	20.2	19.4	28.9	25.6	27.3	27.3	3 I I	32.4	28.2	30.6
23	27.2	16.9	28.2	24.4	21.5	22.5	28.8	24.2	33.1	33.4	32.7	33.0
24	24.6	21.1	28.1	24.1	$23 \cdot 7$	25.8	21.3	24.3	33.8	31.8	30.2	32.0
25	23.5	23.6	22.0	23.0	$24 \cdot 2$	26.5	22.9	24.6	35.5	30.8	31.1	32.4
26	22.4	23.0	21.6	$23 \cdot 3$	27.0	25.4	26.0	26. I	36.6	32.4	29.0	32.7
27	23.8	22.0	20.0	22.1	26.9	24.4	26.6	26.0	$34 \cdot 3$	30.3	33.4	32.7
28	28.3	23.7	22.5	24.7	29.4	25.2	27.3	27.3	37.5	29.4	32.7	33.2
29	28.2	23.1	24.7	$25 \cdot 4$	36.3	25.9	23.9	28.4	36.0	34.2	30.5	33.6
30	23.3	19.5	23.2	22.1					33.6	36.1	38.3	36.0
31	19.3	25.5	21.3	22.2					34.6	35.9	38.4	36.2
Day of APRIL. MAy. June.												
Day of Month.	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	840-69
1	32.7	35. I	34.2	34.0	48.0	$45 \cdot 3$	40.7	44.5	54.6	56.8	57.2	56.2
2	38.7	29.3	34.4	33.7	47.5	45.1	41.4	44.5	56.9	59.3	56.8	57.7
3	39.7	36.2	35.9	37.4	46.5	46.5	42.4	45. I	58.0	59.0	58.2	58.4
4	40.7	36.6	36.9	38.0	47.3	49.2	47.3	47.9	59.5	53.6	57.2	56.8
5	35.6	37.0	40.0	37.6	46.1	49.1	49.1	48.0	56.5	57.3	57.4	57.1
6	39.2	25.2	38.4	37.7	49.2	48.7	48.2	48.7	53.4	58.9	57.9	56.8
7	38.8	34.5	34.8	36.1	48.1	50.2	48.4	49.0	57.0	59.3	59.5	58.6
8	38.5	37.2	34.2	36.7	49.4	49.0	50.6	49.7	58.2	57.2	59.3	58.3
9	39.6	39.1	36.2	38.2	47.6	48.1	52.7	49.6	62.0	56.3	$57 \cdot 9$	58.8
10	43.0	36.7	38.3	39.5	50.1	48.7	49.8	49.5	58.5	57.0	59.5	58.3
11	42.5	36.0	41.0	39.9	50.5	46.1	49.7	48.9	58.8	55.9	59.4	58.0
12	42.0	39.5	42.6	41.3	52.6	50.9	53.0	52.1	58.0	58.0	63.2	59.8
13	40.1	36.8	38.1	38.4	51.8	53.1	49.2	51.5	58.8	61.9	6 r .7	60.8
14	37.6	40.5	$3^{8.7}$	39.0	52.2	51.3	51.6	51.7	56.7	63.4	61.2	60.6
15	41.5	38.4	44.0	41.2	52.1	$53 \cdot 7$	51.4	52.4	60.8	64.9	63.7	63.0
16	40.0	40.0	45.0	41.7	52.4	53.8	53.7	53.3	59.7	61.8	61.7	6 I .0
17	41.0	40.1	43.7	41.7	53.2	52.0	52.6	52.6	60.3	61.4	63.9	6 I .8
18	40.1	41.8	41.6	41.1	55.3	49.4	50.8	51.9	$63 \cdot 3$	63.2	62.4	62.9
19	39.6	43.5	43.8	42.3	54.3	50.4	52.6	52.4	63.5	64.9	62.2	63.5
20	42.7	43.1	44.6	43.5	53.1	48.9	52.6	51.5	63.4	64.7	62.9	63.6
21	46.2	45.1	46.3	45.8	50.8		52.6	52.0	63.9	65.3	63.0	64.2
22	48.3	$45 \cdot 7$	43.5	45.9	52.9	52.6	53.2	52.9	64.3	64.1	64.2	64.2
23	48.5	40.3	40.0	42.9	54.7	54.0	52.2	53.6	65.4	63.1	63.8	64.1
24	47.8	44.2	42.1	44.6	54.8	54.5	54.2	54.5	66.1	62.4	64.3	64.3
25	46.4	45.6	4 I .0	44.2	57.9	56.7	58.0	57.6	65.2	64.3	$67 \cdot 2$	65.6
26	45.7	44.9	44.0	44.9	56.4	56.0	56.6	56.3	67.1	69.1	67.0 64.8	67.7 65.5
27	42.0	41.8	43.5	42.4	58.6	56.4	55.9	57.0	66.1	$65 \cdot 7$	64.8	65.5
28	46.2	44.3	46.3	45.6	59.4	56.7	52.9	56.2	65.1	69.8	62.9	66.1
29	44.6	45.0	45.0	44.8	56.5	$54 \cdot 2$	55.5	$55 \cdot 4$	67.2	70.0	64.9	67.3 66.7
30	49.1	47. I	47.4	47.8	53.5 51.0	52.1	56.7 57	54.2	66.6	66.9	66.6	66.7
31					51.0	53.2	57.8	54.0				
${ }^{1}$ Observations made 6 times each day, excluding Sundays, at the hours $6,8 \mathrm{~A} . \mathrm{M}$. and 2,4 , 10 , and 12 P. M.; their mean is sufficiently near the true daily mean.												

Day of Month.	Toronto.-Continued.											
	July.				August.				September.			
	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	x840-69
1	$64^{\circ} .0$	$62^{\circ} .2$	$66^{\circ} .0$	$63^{\circ} \cdot 9$	$63^{\circ} .0$	$69^{\circ} \cdot 3$	$69^{\circ} .9$	$67^{\circ} \cdot 5$	$65^{\circ} .1$	$63^{\circ} \cdot 7$	$60^{\circ} .9$	$63^{\circ} \cdot 3$
2	62.8	63.3	66.1	64.1	63.4	67.9	68.2	66.5	66.5	64.3	60.5	63.9
3	60.7	67.3	70.1	66.0	66.2	68.4	68.0	67.9	63.5	62.8	60.8	62.4
4	62.1	67.0	69.7	66.4	67.0	68.4	69.9	67.6	66.1	64.2	63.2	64.4
5	63.4	65.3	66.5	65.1	67.8	68.3	70.2	68.7	63.0	65.2	64.3	64.2
6	65.5	65.6	68.5	66.6	66.8	68.6	67.6	67.7	6 x .3	65.2	64.5	63.7
7	66.1	66.4	69.7	67.2	66.7	67.8	67.6	67.3	63.3	61.0	61.5	61.9
8	66.1	68.7	70.6	68.4	66.6	67.6	71.5	68.7	60.0	63.7	60.2	6 T .4
9	68.1	66.7	68.2	67.7	68.3	68.4	69.6	68.7	58.7	63.9	60.5	61.1
10	69.1	68.7	66.6	68.1	65.0	69.9	69.3	67.7	60.2	65.7	58.1	61.4
II	68.4	69.0	67.2	68.2	65.8	68.3	66.3	66.8	57.9	64.7	61.9	6I, 4
12	70.7	66.9	65.2	67.6	66.8	69.8	64.6	67.1	56.8	62.6	60.6	60.
13	69.7	67.4	66.4	67.9	65.6	69.4	64.8	66.6	56.6	55.2	59.4	56.9
14	67.6	69.9	67.8	68.5	66.9	65.8	64.9	65.9	58.8	55.8	59.9	58.3
15	66.8	70.2	67.4	68.2	66.2	64.9	65.4	65.5	57.5	$55 \cdot 3$	60.9	57.7
16	67.5	71.2	68.9	69.3	69.7	65.4	63.6	66.2	$57 \cdot 7$	55.0	59.8	57.4
17	67.4	74.6	65.6	69.0	67.0	$64 \cdot 7$	64.3	65.4	59.9	58.7	59.8	59.5
18	68.9	70.3	68.0	69.0	65.8	62.5	64.8	64.3	56.7	57.2	57.9	57.2
19	69.6	68.3	67.4	68.4	65.2	62.6	67.1	64.1	56.9	56.9	56.3	56.7
20	66.4	68.7	67.6	67.5	65.2	65.8	66. 1	65.0	57.5	$55 \cdot 5$	57.9	56.9
21	68.0	67.8	65.5	67.2	66.3	66.3	66.2	66.2	53.0	55.2	53.1	53.7
22	68.2	69.8	66.8	68.3	66.5	67.3	64.0	65.9	51.0	51.8	55.2	52.6
23	67.0	67.5	67.0	67.2	64.9	65.5	62.7	64.4	$55 \cdot 5$	55.0	57.9	56.0
24	66.9	69.0	69.0	68.3	63.4	67.8	64.0	64.8	52.5	54.6	55.7	54.3
25	65.3 66.1	70.6	67.5	67.8 67.6	65.9	63.2 64.6	64.0	64.4	53.2 47.8	55.3	54.6 50.6	54.4 51.8
26	66.1	67.8	69.0	67.6	65.9	64.6	66.0	65.5	47.8	57.2	50.6	51.8
27	64.5	67.2	69.1	66.9	63.9	60.2	64.2	62.7	49.6	52.3	51.8	51.3
28	66.1	68.1	67.8	67.3	65.2	6 r .8	65.3	64.2	49.9	51.6	52.2	51.2
29	66.3	68.8	66.4	67.3	66.9	61.4	6 I .2	63.1	53.8	50.2	53.2	52.4
30	63.8	67.5	68.4	66.6	66.2	63.6	59.3	63.1	52.6	49.8	51.0	51.1
31	64.3	65.9	67.4	65.9	65.6	63.1	60.3	63.0				
Day of October. November.												
Day of Month.	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	1840-69	1840-9	1850-9	1860-9	1840-69
1	48.6	51.1	51.3	50.4	43.2	45.2	45.8	44.7	27.5	32.3	29.3	29.7
2	50.2	51.0	54.4	51.9	42.5	42.3	42.0	42.3	29.8	28.6	28.5	29.4
3	50.0	50.4	50.8	50.4	41.9	39.3	40.0	40.4	29.5	28.8	29.2	29.2
4	48.9	53.1	50.9	51.1	40.0	40.4	40.5	40.3	31.1	28.7	31.9	30.6
5	50.6	52.0	49.2	50.6	42.6	40.9	39.2	40.8	26.5	28.6	28.7	28.0
6	50.2	50.4	48.2	49.7	38.7	42.2	35.1	38.5	28.2	33.0	28.9	30.1
7	51.0	48.8	53.2	50.9	41.0	40.2	35.9	38.9	30.7	28.5	31.0	30.1
8	51.7	48.7	50.4	50.2	38.0	39.3	38.8	38.8	33.9	26.7	26.6	29.2
9	50.1	53.3	52.7	51.2	39.1	38.5	40.5	39.4	33.0	28.1	25.8	29.1
Io	47.8	49.7	51.2	49.7	39.3	35.9	35.9	37.1	30.4	27.0	26.7	27.9
11	47.3	50.7	48.6	48.9	38.2	35.6	36.8	36.9	27.5	27.0	26.6	27.0
12	47.1	47.2	44.2	46. 1	41.4	40.3	36.6	39.4	24.6	24.8	23.4	24.2
13	43.6	48.6	43.2	45.2	38.2	35.7	38.3	37.5	30.2	26.1	21.4	25.9
14	44.0	44.9	46.2	45.0	36.6	35.4	38.6	$35 \cdot 5$	31.9	31.1	20.1	27.6
15	43.0	42.6	45.6	43.8	35.7	36.2	34.0	$35 \cdot 3$	29.1	28.7	23.3	27.2
16	45.4	42.5	47.8	$45 \cdot 3$	37.7	35. I	36.9	36.6	26.3	26.8	27.5	26.8
17	41.2	45.8	48.2	45.2	38.7	35.2	41.5	38.4	23.7	21.8	28.0	24.5
18	42.2	47.4	49.2	46.3	35.5	36.5	34.7	35.6	23.4	16.8	26.0	22.5
19	41.6	44.5	47.6	44.6	34.2	$35 \cdot 3$	37.4	$35 \cdot 7$	26.3	19.0	25.9	23.8
20	41.1	45.0	$45 \cdot 3$	43.7	36.2	32.3	36.7	35.1	22.9	24.7	20.3.	22.7
21	39.5	44.6	44.1	42.7	34.4	34.7	34.4	34.6	23.8	$25 \cdot 7$	23.2	24.2
22	40.0	45.4	44.9 ${ }^{\text {' }}$	43.6	37.6	$35 \cdot 3$	32.8	35.2	19.6	22.1	21.9	21.2
23	40.7	43.2	40.3	41.3	37.3	34.7	33.6	35.2 32.0	23.2	19.7	19.8	20.9
24	42.7	40.6	40.4	41.2	36.0	29.1	30.8	32.0	24.1	18.4	23.1	21.8
25	40.8	40.3	40.6	40.6	29.7	31.4	26.6	32.4	1	1	1	1
26	38.6	39.8	40.3	39.6	27.5	33.6	34.6	32.3	25.2	20.6	29.9	25.7
27	38.1	4 I .4	38.7	39.4	25.1	34.8	35.4	31.7 32.8	26.0	24.0	31.4	27.0
28	38.9	43.4	40.0	40.8	27.6	$34 \cdot 3$	35.9	32.8	27.8	20.5	27.1	25.3
29	42.4	42.1	43.4	42.6	26.2	33.5	37.8	32.6	30.2	18.5	28.4	25.6
30	4 4 .3	45.8	43.8	43.6	28.4	$33 \cdot 7$	31.7	31.2	28.4	23.7	24.7	25.6
31	38.2	42.2	44.6	41.8					26.7	22.0	24.5	28.2
1 No observations made on this day.												

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.

Portland, Maine. Lat. $43^{\circ} 39^{\prime}$. Long. $70^{\circ} 15^{\prime}$ W. of G.
Alt. 87 feet. 37 years of observation; from 1816 to 1852 , inclusive. Moody. MS. in Smithsonian Coll.

I	$2 \stackrel{\circ}{21.0}$	$16^{\circ} .4$	$\stackrel{\circ}{24.7}$	$36^{\circ} .0$	$46^{\circ} \cdot 7$	$55^{\circ} 0$	64.8	64.7	$6 \mathrm{r}^{\circ} 1$	$\stackrel{\circ}{51.2}$	41.9	28.2
2	20.1	16.1	23.8	36.1	46.9	56.4	65.7	66.2	61.6	51.9	42.1	29.3
3	18.4	19.2	23.3	36.1	46.8	57.0	63.8	66.3	6 x .8	52.0	40.1	28.9
4	18.5	18.3	24.5	36.5	46.4	57.6	64.5	66.6	62.7	50.3	40.5	29.3
5	18.0	14.7	26.8	36.4	45.7	58.5	65.0	66.2	62.6	50.3	40.6	29.0
6	18.8	17.7	28.1	37.6	46.4	58.7	66.3	65.0	62.8	51.8	39.3	26.0
7	20.3	19.2	28. 1	38.8	48.2	58.4	66.9	65.9	60.5	49.6	39.4	27.1
8	20.0	19.2	28.1	38.7	48.6	59.8	66.0	66.4	60.0	$49 \cdot 3$	39.8	28.5
9	21.1	17.2	29.2	38.9	48.8	59.8	66.8	65.6	60.1	50.7	38.6	28.8
IO	22.0	20.0	28.7	38.9	47.7	60.3	67.0	66.4	60.2 .	49.5	37.9	27.1
II	18.0	21.2	28.6	37.8	48.8	59.9	67.1	65.7	59.3	48.2	37.3	24.1
12	20.4	18.5	29.4	37.9	50.1	59.4	67.5	66.2	58.0	47.8	37.4	24.1
13	18.3	17.9	31.1	38.7	49.3	59.1	67.8	66.5	57.5	47.6	35.2	23.1
14	17.9	17.8	29.1	38.4	49.4	60.0	66.6	65.8	57.I	46.1	36.1	25.3
15	19.3	18.3	28.6	39.0	50.2	59.6	67.5	65.1	57.4	45.2	35.7	24.8
16	21.1	19.8	28.3	38.2	51.2	60.5	66.7	64.0	55.7	46.4	35.7	22.4
17	20.6	19.0	29.2	40.2	52.7	60.6	67.6	64.1	55.8	46.4	36.2	22.5
18	19.8	20.9	28.9	39.6	52.6	60.3	66.8	64.2	58.0	47.3	36.3	22.1
19	17.5	21.5	29.7	40.6	51.6	62.7	67.4	63.9	58.2	48.5	34.5	21.6
20	18.8	24.9	30.9	4I.3	5 I .5	61.7	67.5	64.2	59.1	$45 \cdot 3$	$33 \cdot 7$	22.2
21	19.9	26.6	30.8	4r.3	54.2	62.0	68.0	63.6	56.1	$43 \cdot 5$	33.6	21.6
22	17.8	$27 \cdot 3$	29.7	43.9	51.9	61.8	68.3	63.8	53.7	$43 \cdot 3$	33.4	16.1
23	17.1	25.3	32.0	43.0	53.5	61.3	67.4	64.3	53.9	$43 \cdot 7$	33.4	16.2
24	16.9	22.0	34.0	$42 \cdot 7$	52.9	62.5	66.1	63.9	53.5	44.9	31.2	21.5
25	18.8	22.4	33.7	41.3	53.4	$6 \times .7$	65.8	64.2	53.5	41.9	30.2	23.9
26	21.1	$24 \cdot 3$	33.1	$44 \cdot 4$	53.2	62.7	$64 \cdot 7$	63.4	53.2	41.5	30.2	20.1
27	20.8	24.8	33.2	$44 \cdot 5$	53.0	62.8	65.4	62.8	52.8	41.2	29.2	19.6
28	20.1	24.4	33.9	43.6	$55 . \pi$	63.3	65.6	62.0	53.1	41.3	27.3	22.1
29	19.3	26.0	33.6	$45 \cdot 5$	$53 \cdot 7$	63.2	66.2	62.0	51.9	41.8	28.9	21.6
30	18.6		33.2	45.6	52.8	61.3	66.0	63.1	52.3	42.0	29.9	20.8
31	16.7		34.9		54.5		$65 \cdot 7$	62.9		39.8		21.8

Observations at \odot rise, noon, and 8 P. M. Means uncorrected.
Using the tables for Montreal and Amherst, the correction to mean deduced from observations at \odot rise, noon, and 8 P. M., to refer to mean of day is very small, for 6 months it is nearly o, and probably does not rise to 0.2 or 0.3 in any one month.

Salem, Mass. Lat. $42^{\circ} 3 \mathrm{I}^{\prime}$. Long. $70^{\circ} 53^{\prime}$ W. of G.
Alt. 30 feet. ${ }^{1} 43$ years of observation; from 1786 to 1828, inclusive. Dr Holyoke.
MS. in Smithsonian Coll.

1	28.0	23.5	31.9	41.3	54.8	62.7	73.5	73.1	67.2	55.4	41.5	35.0
2	28.2	24.9	30.6	41.7	53.5	63.2	73.1	72.6	68.8	56.7	41.6	34.2
3	24.9	26.5	31.3	41.2	52.2	65.1	72.8	71.5	68.4	56.6	42.8	32.3
4	26.9	27.1	30.7	42.8	54.5	64.1	72.0	72.1	68.0	56.5	42.9	33.7
5	24.6	22.8	30.2	44.2	53.7	64.9	72.7	73.7	66.2	56.1	43.9	31.6
6	25.2	24.2	32.5	43.2	52.6	65.7	72.9	71.4	65.4	57.2	$43 \cdot 4$	33.0
7	25.6	28.2	31.1	43.8	52.7	$65 \cdot 3$	72.9	72.2	63.6	52.1	42.4	33.3
8	26.3	28.3	$3 \mathrm{I} \cdot 3$	43.9	52.7	65.8	72.9	73.6	64.9	52.2	41.5	33.0
9	25.6	27.2	30.9	43.2	53.7	65.0	72.8	73.4	64.7	52.5	41.5	32.1
10	26.3	25. I	32.0	41.8	54.7	66.7	73.6	73.4	65.0	54.4	43.2	30.4
II	25.1	26.4	34.5	43.0	54.4	66.6	73.0	72.9	65.3	52.6	4 I .3	30.0
12	26.5	28.6	$35 \cdot 7$	43.1	54.4	66.6	73.9	72.6	65.1	53.6	39.3	29.0
13	24.6	27.2	35.2	44.5	55.4	68.1	73.3	72.3	64.5	53.2	38.6	30.8
14	23.9	27.8	34.1	$45 \cdot 7$	56.3	66.8	72.0	71.0	64.9	52.2	38.8	31.6
15	26.5	26.4	34.8	45.6	55.9	67.4	73.6	70.7	65.0	53.4	39.1	3 O . 1
16	26.0	25.0	35.8	45.8	55.9	66.8	72.9	71.1	63.6	5 I .1	39.3	28.7
17	26.7	26.5	36.3	47.1	55.3	68.9	73.1	71.1	62.7	50.4	38.4	28.6
18	24.8	29.7	36.2	47.8	56.7	67.7	73.5	71.0	62.6	47.4	38.1	28.7
19	23.0	27.1	36.9	48.1	56.7	69.6	72.1	70.6	62.5	47.4	36.4	30.3
20	25.2	30.2	36.4	48.9	57.9	68.7	73.0	71.1	60.3	46.0	$35 \cdot 7$	29.0

${ }^{1}$ Given as 75 feet in the general table.

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Salem.-Continued.												
21	$25^{\circ} 3$	3 I .0	$\stackrel{\circ}{\circ}$	$4{ }^{\circ} \cdot 7$	58.8	$68^{\circ} .4$	71.9	69.6	60.8	48.6	37.5	$\stackrel{\circ}{\circ} \mathrm{P} .9$
22	23.8	30.4	36.5	46.3	60.4	68.6	72.6	69.5	58.1	47.7	36.3	26.3
23	23.4	27.7	38.3	48.1	6 I .1	70.6	74.0	68.8	58.7	44.9	$35 \cdot 7$	26.6
24	24.6	29.8	38.4	47.8	62.4	71.7	74.2	68.4	58.5	45.2	35.8	28.5
25	23.1	28.8	38.9	48.4	6 I .1	71.5	73.5	69.3	58.7	43.7	34.3	26.3
26	24.4	29.1	38.1	50.4	6 I .4	69.2	72.2	68.9	57.5	46.8	33.2	26.8
27	25.4	30.0	38.0	50.2	60.2	70.3	72.4	68.6	57.2	44. I	35.7	28.4
28	27.5	30.9	39.1	49.6	61.6	71.8	72.5	68.3	56.8	45.6	35.0	29.5
29	26.0	30.5	38.4	50.5	62.9	72.6	73.1	69.3	56.4	44.9	$35 \cdot 7$	31.0
30	24.7		38.5	52.3	63.1	72.4	72.9	68.7	56.5	43.5	36.0	28.5
31	${ }_{24} \cdot 1$		39.9		61.5		74.0	67.4		41.7		29.9

Observations at 8 A . M. Tabular numbers corrected for daily fluctuation.
To correct the table of temperatures observed at 8 A . M., for daily fluctuation, two sets of corrections were applied; first, the observed means were referred to the means from observations at 8 A. M., Noon, sunset, and ro P. M., taken at Salem from a ro year series between I819 and I828, inclusive; secondly, the means so corrected were referred to the daily mean by means of the Amherst table. The two sets of corrections and their sum are as follows:-

	I.	II.	I \& II.		I.	II.	I \& II.
January	+ ${ }^{\circ} \mathrm{C}$ -	$\underline{-0.89}$	\circ +3.63	July	+2.26	-0.96	\circ +1.30
February	+-4.48	-0.47	$+4.01$	August	+2.51	-0.82	+1.69
March	+3.52	-0.91	+2.6r	September	+3.49	-1.25	+2.24
April	+2.49	-1.03	+1.46	October	+4.54	-1.62	$+2.92$
May	+1.94	-0.98	+0.96	November	$+3.57$	-1.03	+2.54
June	+1.70	-0.99	+0.71	December	+4.16	-0.46	+3.70

The above corrections refer to the middle of each month, and by interpolation they were found for each day.

Williamstown, Mass. Lat. $42^{\circ} 43^{\prime}$. Long. $73^{\circ} 13^{\prime}$ W. of G.
Alt. 721 feet. 23 years of observation; from 1816 to 1838 , inclusive. Prof. C. Dewey and Prof, E. Kellogg. MS. in Smithsonian Coll.

1	25.8	16.1	26.2	38.6	54.9	63.9	70.4	69.9	62.5	53.5	40.7	31.6
2	22.8	18.9	24.8	38.6	53.9	64.5	70.4	69.3	62.8	54.8	40.5	30.8
3	22.0	20.7	23.9	39.8	54.4	63.3	68.8	69.5	63.6	52.9	39.7	29.3
4	22.1	19.5	25.5	39.2	52.9	65.1	69.7	68.4	64.6	50.4	41.4	28.5
5	23.2	14.8	29.6	40.3	51.6	65.4	70.3	67.7	64.4	52.9	41.3	28.0
6	22.9	17.6	30.8	40.6	54.1	63.4	70.7	67.4	63.6	52.0	37.9	28.5
7	21.5	21.7	28.6	42.0	52.3	67.4	72.0	69.3	61.7	50.7	40.1	29.8
8	22.7	21.2	28.3	42.8	51.6	$65 \cdot 7$	71.1	69.6	61.4	50.0	40.1	30.0
9	23.9	21.3	29.2	41.5	49.3	66.0	70.3	68.0	62.0	52.0	39.1	29.0
10	23.1	24.5	31.0	41.4	51.7	64.7	70.0	69.0	61.2	50.5	40.0	25.9
11	19.4	22.5	31.9	41.3	53.3	66.6	70.9	70.0	61.5	49.5	39.3	27.3
12	22.4	21.7	33.1	41.0	56.0	66.8	70.5	70.9	59.8	47.9	39.0	27.1
13	24.0	21.2	33.6	41.6	55.0	66.0	69.0	69.1	59.5	47.8	34.3	25.4
14	18.8	20.3	30.3	43.9	54.3	65.9	69.1	68.5	59.7	46.7	35.8	26.7
15	21.4	21.7	29.8	$43 \cdot 5$	55.6	65.9	69.2	67.4	58.6	46.4	35.2	25.5
16	22.5	22.4	30.1	44.6	56.2	66.8	69.1	66.6	57.7	48.2	36.4	19.4
17	24.3	22.9	29.0	43.9	57.4	66.7	68.6	66.7	58.4	47.0	38.2	22.8
18	24.9	23.9	29.7	$43 \cdot 5$	59.3	66.3	69.2	67.1	59.2	48.0	36.3	26.9
19	23.2	23.3	30.1	44.7	58.6	65.9	70.3	66.9	58.1	46.7	35.3	26.7
20	20.5	27.9	33.8	46.8	59.0	63.9	70.8	66.9	57.9	46.9	35.4	26.0
21	20.3	30.6	31.8	47.1	61.0	66.2	69.5	66.7	56.7	44.9	35.0	22.7
22	20.7	29.0	32.2	44. 1	61.2	66.2	69.6	66.2	$55 \cdot 3$	43.4	35.0	${ }^{7} 7.8$
23	18.7	26.5	$35 \cdot 4$	46.2	59.3	66.4	70.8	69.7	55.0	46.3	33.7	17.5
24	17.9	23.7	37.9	$43 \cdot 3$	59.7	67.1	70.3	63.8	55.2	45.0	29.9	24.4
25	18.1	24.8	37.7	$46 \cdot 2$	59.6	66.4	69.2	63.6	55.4	40.3	29.1	26.7
26	23.0	24.6	$35 \cdot 3$	48.9	58.1	67.0	68.0	64.7	54.0	40.9	30.0	24.0
27	23.3	27.5	$35 \cdot 5$	46.8	60.1	67.1	68.9	63.8	55.6	41.9	29.3	
28	24.0	24.4	36.7	$47 \cdot 5$	62.7	67.3	69.6	62.7	54.2	40.3	30.0	23.0
29	20.6	26.7	34.5	51.6	60.7	67.3	70.5	62.6	63.0	39.9	31.4	25.2
30	19.8		35.5	51.5	60.5	70.0	71.3	69.3	51.8	39.9	32.0	22.1
31	20.8		37.7		62.5		70.5	64.9		39.7		28.0

Day of Month.	Jan. (29)	Feb. (29)	Mar. (29)	April. (29)	May. (29)	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec. (29)

Providence, Rhode Island. Lat. $41^{\circ} 50^{\prime}$. Long. $71^{\circ} 24^{\prime}$ W. of G.
Alt. 155 feet. $28 \frac{1}{2}$ years of observation; Dec. 1831, to May, 1860, inclusive. Prof. A. Caswell, observer.
Smithsonian Cont. to Knowl. Washington, 1860.

I	28.3	24.6	29.8	41.0	$5_{1}^{\circ} \cdot 7$	$5 \stackrel{\circ}{59 \cdot 5}$	69.7	70.4	65.4	56.5	$44^{\circ} \cdot 7$	$33 \cdot 5$
2	25.9	24.6	29.0	39.5	51.6	62.4	69.7	70.4	65.6	57.6	46.6	33.1
3	25.3	24.8	27.5	41.6	52.1	63.9	69.0	70.0	67.2	54.5	45.8	34. I
4	26.2	23.8	29.2	42.6	52.0	63.2	69.9	69.9	67.7	$53 \cdot 7$	45.8	33.3
5	26.4	24.7	30.4	42.4	51.3	62.3	70.4	71.1	67.8	53.6	45.2	32.2
6	26.4	24.7	32.5	43.4	53.4	62.2	67.6	71.0	67.2	54.6	$43 \cdot 3$	31.2
7	28.1	25.8	32.1	43.6	53.5	61.9	67.5	70.7	$65 \cdot 9$	52.9	42.8	32.4
8	27.1	26.0	34.0	44.5	53.1	63.1	71.3	70.8	$64 \cdot 5$	54.0	44. I	32.7
9	27.3	26.0	34.8	45.5	$53 \cdot 7$	64.3	71.2	71.2	65.6	54.2	$44 \cdot 3$	32.3
10	27.7	25.4	33.6	44.6	52.9	65.2	71.3	69.7	63.7	52.7	41.6	33.0
11	27.5	25.9	32.7	44.3	53.7	63.9	71.2	69.7	65.0	52.2	40.6	31.3
12	27.5	23.9	$33 \cdot 3$	45.9	56.3	63.2	71.2	71.2	63.0	54.0	$42 \cdot 4$	29.4
13	27.4	24.0	36.4	44.9	55.8	64.5	71.9	72.1	60.7	53.5	42.4	28.6
14	28.2	26.4	$34 \cdot 3$	42.4	$55 \cdot 5$	65.8	72.1	71.8	59.4	50.1	40.3	30.7
15	29.4	27.1	34.5	42.7	$55 \cdot 7$	65.6	71.9	69.5	61.3	48.7	38.3	30.9
16	29.5	28.0	34.4	43.0	57.5	65.6	70.0	68.5	60.3	50.7	39.7	28.3
17	29.6	25.5	36.1	43.8	58.2	65.6	71.6	68.3	60.5	52.0	40.2	28.9
18	25.5	25.5	36.2	44.2	58.1	65.8	72.7	68.3	63.4	53.9	42.1	26.4
19	23.3	27.4	$35 \cdot 5$	45.5	58.5	67.1	72.8	68.1	62.7	52.8	40.2	26.4
20	26.3	30.2	37.0	45.8	57.0	67.0	72.2	67.4	63.2	49.5	37.3	27.6
21	29.6	3 I .1	38.1	47.3	57.1	67.9	72.3	67.9	61.6	$47 \cdot 5$	37.2	26.9
22	25.2	32.5	34.8	49.0	56.4	67.0	72.3	68.8	57.6	48.9	$39 \cdot 4$	25.4
23	23.9	32.3	35.0	48.4	58.2	67.8	71.9	68.4	57.0	49.1	39.5	25.5
24	26.2	$2 \mathrm{S}$.	37.0	48.5	58.2	68.0	72.2	68.8	57.6	$49 \cdot 3$	36.6	26.7
25	*28. 5	27.8	37.2	47.5	57.4	68.3	72.1	67.9	58.0	46.9	$34 \cdot 2$	27.7
26	29.6	28.4	37.7	50.1	58.4	68.5	72.1	66.7	57.4	44.3	$34 \cdot 2$	26.8
27	26.8	29.6	$39 \cdot 7$	49.9	58.3	69.0	70.8	67.4	57.4	45.8	$32 \cdot 7$	24.9
28	26.5	29.6	$39 \cdot 7$	49.1	60.8	69.7	70.3	66.4	57.4	$45 \cdot 3$	32.6	27.5
29	27.7	32.4	39.1	50.7	59.0	70.4	70.7	66.1	$55 \cdot 4$	46.6	33.0	27.4
30	29.1		39.7	51.1	56.8	70.3	$7 \mathrm{I} .0$	66.7	$55 \cdot 4$	47.5	34.8	26.4
31	26.5		40.9		56.4		71.0	$67 \cdot 3$		44.8		27.7

Observing hours various, generally \odot_{T}, I_{a} or $2_{B}, 1 O_{a}$, from Oct. to March, inclusive, and σ_{m}, I_{a} or $2_{R}, 1_{a}$, in the remaining months. The tabular quantities are corrected for daily fluctuation.

To correct the observed daily means resulting from three observations a day, taken at various hours, the following table was prepared and used:-

		$\xrightarrow{0} 0$		$\stackrel{\circ}{\circ}$		-0.2		-
$\begin{aligned} & \text { January } \\ & \text { February } \end{aligned}$	$7,1,9$ $7,1,10$	-0.2	$\stackrel{\odot}{\odot}, 1,10$	-0.1	\bigcirc	-0.2 0.0		
March	6, 1, 10	+0.5	\bigcirc ©, 1,10	+0.4	6, 2, 10	+0.3	$\bigcirc, 2,10$	+0.2
April	-, 1, 9	+0.5	$\bigcirc, 1,10$	+0.8	6, 1, 10	+o.8	$\left.\begin{array}{l}6,2,10 \\ , 2,10\end{array}\right\}$	$+_{0.6}^{0.6}$
May	$\bigcirc, 1,10$	+r.2	6, 1, 10	+0.7	6, 2, 10	+0.5		
June	6, 1, 10	+0.5	$\left.\begin{array}{c}5,1,10 \\ \odot\end{array}\right\}$	+ $\left.\begin{array}{r}1.2 \\ 1.3\end{array}\right\}$	6, 2, 10	+0.3		
July	$\odot, 1,10$	+1.0	5, 1, 10	1.3 +0.9	6, 1, 10	+0.5	6, 2, 10	+0.4
August	$\odot \cdot 1,10$	+0.9	6, 1, 10	+0.6	5, 1, 10	+0.5	6,2, 10	+0.5
September	$\bigcirc \cdot ⿻ \bigcirc$	+0.7	6, 1, 10	+0.7	6, 2, 10	+0.5		
October	$\odot) 1,10$	+o. 4	6, 1, 10	+o. 4	$\odot, 2,10$	+0.3		
November	$\bigcirc \cdot 1,10$	-0.1			$\bigcirc, 2,10$	-0.1		
December	\bigcirc © I, 10	-0.2	7, 1, 9	-0.3	$\bigcirc \cdot 2,10$	-0.3		

The above corrections apply to the middle of each month, and were interpolated for every day.

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.

Albany, New York. Lat. $42^{\circ} 39^{\prime}$. Long. $73^{\circ} 44^{\prime} \mathrm{W}$. of G.
Alt. 130 feet. 21 years of observation; including the years 1820 to 1829 , inclusive. MS. in Smithsonian Coll.

1	$25^{\circ} \cdot 4$	18.4	$\stackrel{\circ}{27 \cdot 2}$	42.6	53.3	64.5	$\stackrel{\circ}{73} 3$	71.6	64.3	$55^{\circ} 7$	43.6	35.8
2	23.4	22.7	29.5	43.1	54.7	66.6	7 x .2	71.4	67.2	57.0	43.3	34.2
3	22.8	23.4	28.0	43.4	57.0	66.6	70.8	73.4	65.2	56.3	$43 \cdot 4$	32.8
4	19.8	19.9	29.3	43.3	55.9	68.6	71.4	71.4	66.7	56.0	44.0	31.7
5	22.1	20.1	33.3	43.9	55.1	68.8	72.0	71.6	65.0	56.3	42.9	31.0
6	23.0	22.7	31.6	45.7	57.4	68.7	72.5	72.8	64.9	53.8	41.1	$3^{2.3}$
7	24.3	24.4	30.6	45.9	55.2	70.0	73.5	74.2	62.2	53.8	42.8	34.7
8	23.3	24.1	32.2	$45 \cdot 7$	55.6	68.6	73.1	73.0	6 I .9	53.7	42.4	32.9
9	24.3	23.6	33.9	45.7	54.6	67.5	72.0	71.3	62.5	55.1	42.0	31.4
10	22.8	27.2	35.1	48.6	54.9	66.3	72.3	72.0	62.6	53.6	42.0	29.8
11	21.4	25.9	35.8	46.6	57.1	68.9	70.6	73.2	63.3	51.0	40.8	30.5
12	24.8	23.3	36.9	47.1	59.4	69.5	70.3	72.2	61.2	50.5	38.7	${ }_{2} 8.1$
13	24.3	25.2	33.7	46.6	58.5	69.4	69.4	71.3	62.2	52.3	37.6	29.2
14	23.7	23.8	31.5	49.8	59.8	68.2	72.2	$7 \mathrm{7r} 3$	6 I .9	49.6	38.0	30.3
15	23.7	26.2	34.0	50.4	58.7	70.0	72.3	69.8	61.3	50.0	36.0	28.9
16	24.4	28.2	32.3	48.7	58.6	70.4	72.3	70.1	62.3	49.5	38.4	28.9
17	24.9	30.0	32.8	48.6	62.3	68.8	72.1	71.6	60.5	50.6	39.0	25.9
18	24.7	29.1	33.5	49.9	63.7	68.8	71.9	68.5	60.0	51.5	37.1	27.6
19	25.6	28.5	$35 \cdot 3$	51.9	62.5	69.1	73.1	68.5	60.7	48.5	37.0	28.0
20	23.0	30.1	37.4	53.5	63.8	67.7	71.3	69.7	61.0	47.5	36.6	29.9
21	20.6	30.7	33.5	50.9	6 x .7	68.3	73.6	68.7	60.2	45.7	36.7	28.9
22	22.8	29.5	$35 \cdot 7$	50.5	61.7	67.9	73.3	69.1	57.3	44.6	36.7	26.0
23	21.1	27.9	37.5	50.7	64.3	68.2	72.6	68.9	57.9	48.9	37.0	21.7
24	17.9	26.3	40.0	47.5	62.9	69.0	72.9	69.1	57.6	46.6	34.4	28.9
25	21.3	26.6	38.5	48.9	63.2	69.5	72.4	68.5	57.9	46.6	35.7	26.7
26	25.0	30.4	39.1	51.8	63.1	70.7	$7 \times .6$	67.6	55.9	$45 \cdot 3$	34.8	24.2
27	25.6	28.1	42.4	52.7	. 65.1	73.4	72.3	66.6	56.9	$45 \cdot 7$	34.1	25.9
28	25.9	27.4	40.9	51.0	-67.0	70.4	$7 \times .7$	66.3	55.3	$44 \cdot 7$	34.3	27.5
29	22.6	24.7	40.3	53.9	64.2	$7 \mathrm{~F} \cdot 3$	- 72.2	67.3	54.9	$45 \cdot 3$	33.8	27.6
30	21.0		40.4	53.5	64.2	$73 \cdot 3$	73.1	68.9	$55 \cdot 5$	44.2	$34 \cdot 3$	27.7
31	20.8		41.8		64.3		73.6	69.6		42.6		28.3

Observations at 3 P. M. for 2 years, at 9 P. M. for 10 years, and at 7 A. M., 2 and 9 P. M. for 9 years. Tabular numbers corrected for daily fluctuation.

In computing the original table, the observations at 3 P. M. were used for two of the years, those at $9 \mathrm{P} . \mathrm{M}$. for ten, and the daily means at 7 A. M., 2 and 9 P. M. for the remaining nine. When combined they afford a tolerable approximation to the true mean, as may be seen from the following statement, which shows the correction for daily fluctuation at 2 and 9 P. M. deduced from the observations of ten years of this series, from 1820 to 1829, inclusive, and the reduction from $2 \mathrm{P}, \mathrm{M}$. to $3 \mathrm{P} . \mathrm{M}$. from the Mohawk table of daily fluctuation:-

	$\begin{gathered} \text { Corr'n } \\ \text { at } \\ 2 \mathrm{P} . \mathrm{M} . \end{gathered}$	$\begin{aligned} & \text { Refer' }^{3} \\ & \text { to } \\ & 3 \text { P. M. } \end{aligned}$	$\begin{gathered} \text { Corr'n } \\ \text { at } \\ 3 \text { P. M. } \end{gathered}$	$\begin{gathered} \text { Corr'n } \\ \text { at } \\ 9 \text { P. M. } \end{gathered}$	$\begin{gathered} \text { Corr'n } \\ \text { to } \\ 7_{\mathrm{m}}, 2_{\mathrm{a}}, 9_{\mathrm{a}} \end{gathered}$		$\begin{gathered} \text { Corr'n } \\ \text { at } \\ 2 \text { P. M. } \end{gathered}$	Refer'd $3{ }^{\text {P. }} \mathrm{M}$.	Corr'n at 3 P. M.	$\begin{aligned} & \text { Corr'n } \\ & \text { at } \\ & 9 \text { P. M. } \end{aligned}$	$\begin{gathered} \text { Corr'n } \\ \text { to } \\ 7_{m}, 2_{\mathrm{a}}, 9 \mathrm{an} \end{gathered}$
January	- ${ }^{\circ}$	-. 1	-4.5	+0.7	-0.3	July	-7.7	-. 3	-8.0	\circ +1.9	-0.3
February	-5.4	. 2	-5.6	+0.6	-0.3	August	-8.3	-. ${ }^{-6}$	-8.9	+1.9 +1.7	-0.2
March	-6.6	-. 3	-6.9	+1.0	-0.1	September	-7.3	-. 6	-7.9	+1.4	-0.2
April	-8.3	-. 6	-8.9	+2.2	-0.1	October	-6.8	-3	-7.1	+1.3	-0.2
May	- -8.4	-. 5	-8.9	+1.7	--0.3	November	-4.3	-. 1	-4.4	+0.9	-0.1
June	-7.9	-. 5	-8.4	+1.8	-0.5	December	-3.8	+. 1	-3.7	+0.7	-0.3

The correction to mean of $7,2,9$ is from the Mohawk table; now twice the correction 3 P. M. + ten times that at 9 P. M. 十 nine times that at $7,2,9$, divided by 21 , gives the following table of corrections :-

January February March	0 -0.2 -0.4 -0.2	April May June	\% +0.1 -0.1 -0.1	July August September	0 0.0 -0.1 -0.1	October November December	0.1 -0.1 0.0 -0.1

These small corrections were applied, they answer to the middle of each month, and were interpolated for any other day.

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.

Geneva, New York. Lat. $42^{\circ} 53^{\prime}$. Long. 77° o1 1^{\prime} W. of G.
Alt. 567 feet. From 12 years of observation; from 1854 to 1865 , inclusive. Dr. W. D. Wilson. In the 20th Annual Report of the Regents of the University of the State of New York, Albany, 1868.

1	${ }_{24.73}$	27.81	29.29	$33 \cdot 32$	$49 \cdot 19$	62.00	$68^{\circ} 19$	73.29	63.93	$\stackrel{\circ}{54.13}$	48.25	$\stackrel{\circ}{ }{ }^{\circ} 98$
2	23.31	21.45	28.72	38.45	48.98	62.92	68.21	73.12	62.72	55.45	47.92	32.01
3	26.19	19.09	31.81	41.44	48.14	62.40	69.68	71.64	63.76	58.94	44.75	30.26
4	27.22	19.41	30.84	41.42	50.38	60.15	64.54	70.93	63.65	58.54	44.23	29.84
5	24.82	23.10	29.26	41.29	53.12	60.49	68.67	71.34	65.38	56.87	43.42	31.30
6	25.34	23.34	28.26	37.80	52.17	60.89	70.62	71.15	65.17	54.51	$4 \mathrm{I} \cdot 32$	32.17
7	24.74	26.11	27.82	41.98	51.63	61.55	71.98	70.78	65.01	54.60	$43 \cdot 38$	32.03
8	19.09	24. 19	29.78	34.92	55.31	60.34	71.47	71.44	65.12	52.82	43.13	28.35
9	22.54	24.43	29.66	41.81	55.18	61.68	71.36	71.94	64.45	50.12	41.69	30.43
10	25.00	19.93	26.30	40.23	53.66	61.10	71.43	72.40	66.94	50.59	40.58	30.70
11	23.57	21.28	30.62	42.63	51.63	60.81	70.09	71.53	66.56	52.41	40.85	29.84
12	28.11	23.68	29.53	44.63	54.31	63.13	69.35	70.03	63.03	50.65	42.37	28.25
13	27.32	25.05	29.50	42.17	51.71	6 r .94	69.02	70.59	59.39	49.48	39.98	33.63
14	27.52	25.00	35.16	42.79	56.27	63.72	70.52	63.35	61.38	48.48	36.82	35.69
15	28.29	27.54	35.31	41.92	58.22	66.04	72.35	67.88	62.71	45.73	34.87	31.06
16	26.10	27.15	36.71	43.64	58.17	61.53	71.57	67.99	60.37	48.62	38.84	33.08
17	24.21	25.16	35.67	43.72	55.92	64.49	72.24	67.87	63.69	48.74	38.61	27.96
18	22.42	29.12	33.06	46.54	56.23	67.75	72.41	68.23	61.03	51.74	39.70	25.01
19	25.57	22.78	30.24	45.46	55.76	66.45	74.32	66.90	58.21	49.06	38.87	27.31
20	27.10	26.59	30.76	44.02	55.82	66.00	71.38	68.45	58.89	46.37	35.03	26.22
21	25.89	26.93	32.52	47.07	58.29	67.12	67.79	69.29	59.20	47.30	35.30	25.96
22	24.19	30.51	32.82	49.16	56.71	69.89	68.26	68.53	55.54	47.62	35.5I	23.48
23	26.49	29.71	35.65	45.88	59.91	65.48	68.32	65.88	56.94	45. 14	36.32	24.25
24	26.28	27.86	32.96	45.25	63.29	66.61	70.12	68.00	57.90	45.07	31.40	21.87
25	27.62	27.04	33.62	45.94	6 c .84	70.17	71.79	66.86	55.84	43.09	34.05	24.26
26	25.55	27.72	33.00	47.70	68.65	72.25	72.53	67.55	57.18	41.29	34.27	30.61
27	24.34	31.02	33.10	47.68	60.25	69.88	71.66	65.39	57.64	41.54	36.13	28.73
28	27.32	29.92	32.70	46.76	57.32	72.35	72.12	65.38	56.53	45.17	35.75	27.38
29	26.08	33.37	37.22	49.30	57.57	72.88	71.37	63.77	55.37	47.85	34.62	25.22
30	25.22		37.82	49.70	57.65	69.48	70.96	6 L .55	52.88	49.68	36.22	27.82
31	22.18		40.00		62.31		71.46	62.41		48.66		22.85

Value of April 8 doubtful. Observing hours, $7_{m}, 2_{a}, 9_{a}$. Tabular quantities uncorrected for daily fluctuation.

Marietta, Ohio. Lat. $39^{\circ} 28^{\prime}$. Long. $81^{\circ} 26^{\prime}$ W. of G.
Alt. 580 feet. 3^{2} years; between $1818-1823$ and $1829-1859$. J. Wood and Dr. S. P. Hildreth. Smithsonian Cont. to Knowl. No. 120. Washington, June, 1867.

				(3I yr's)	(3I yr's)							${ }^{2}$
1	33.2	30.2	38.6	47.3	60.8	65.0	72.6	71.4	68.9	59.6	47.1	37.2
2	3 I .1	31.5	35.7	47.2	59.8	66.8	72.3	71.5	68.6	59.0	48.0	36.9
3	30.0	31.4	34.8	49.4	60.0	67.3	70.8	73.0	68.7	57.4	47.9	36.3
4	31.1	30.1	37.2	50.4	60.6	67.1	68.9	72.5	69.0	55.8	47.7	36.0
5	30.4	29.2	37.5	49.3	6 I .1	67.2	71.6	71.9	69.6	54.9	46.3	35.6
6	32.7	30.2	38.4	49.1	59.2	67.0	72.5	72.7	68.7	54.8	46.0	35.7
7	33.9	30.0	42.0	53.1	60.2	68.4	73.6	72.5	68.7	54.4	46.3	35.7
8	30.9	30.7	41.6	51.2	59.5	68.4	73.8	72.6	69.0	56.2	45.6	35.4
9	30.9	31.6	41.4	50.7	59.4	69.2	73.3	72.4	68.6	56.4	44.6	34.7
10	30.4	31.6	41.3	52.5	58.9	68.9	73.0	72.7	68.3	55.1	44.1	33.4
11	31.4	31.9	41.8	53.0	61.1	68.5	72.4	72.9	65.7	54.5	45.6	33.8
12	30.6	33.0	$43 \cdot 3$	53.0	60.5	69.1	72.5	72.7	63.5	53.4	45.5	32.4
13	31.0	32.4	42.7	53.2	60.7	69.4	73.5	73.7	63.3	51.6	41.3	33.8
14	33.6	33.6	41.6	51.5	62.0	70.0	73.2	74.3	64.3	50.3	41.0	35.1
15	34.7	33.7	40.9	50.6	60.6	70.0	72.0	73.3	64.2	49.8	40.2	32.9
16	32.6	32.7	41.5	51.6	62.3	70.3	71.8	72.8	63.3	52.7	40.8	32.4
17	32.8	30.9	41.8	52.6	62.8	70.7	72.9	72.3	63.4	52.8	43.0	31.6
18	31.9	33.6	40.9	50.6	61.9	70.6	73.2	71.9	63.8	52.6	42.2	31.4
19	29.8	36.1	40.1	52.1	60.8	70.0	74.3	71.8	64.1	50.5	39.4	33.4
20	33.4	36.5	41.1	54.5	60.7	70.0	73.6	70.5	64.5	49.6	40.0	32.3

${ }^{1}$ Stated to be 670 feet in the general table.
${ }^{2}$ After 16th 30 years.

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Dec.
Marrietta.—Continued.												

Hours of observations various: During 5 years $\bigodot_{\mathrm{r}}, 2_{\mathrm{a}}, \bigodot_{\mathrm{s}}$, during the remaining years generally $6_{\mathrm{m}}, 2_{\mathrm{a}}, 9_{\mathrm{a}}$ in summer, and $7_{m}, 2_{a}, 9_{a}$ in winter; the tabular numbers are corrected for daily fluctuation; see table on p. 16 of the Smithsonian Cont. to Knowl., No. 120. Washington, 1867.

Mean Temperature of Each Day of the Year.
Washington, Arkansas. Lat. $33^{\circ} 44^{\prime}$. Long. $93^{\circ} 41^{\prime}$ W. of G.
Alt. 660 feet. From 20 years of observations; from 1840 to 1859 , inclusive. Dr. N. D. Smith.
Smithsonian Cont. to Knowl. Washington, 1860.

1	40.57	46.02	50.60	57.50	66.52	73.40	77.82	77.48	75.97	66.37	58.60	48.27
2	. 42.97	45.57	50.17	60.70	67.65	74.58	77.57	77.80	75.80	65.62	59.00	47.42
3	42.25	42.22	47.80	62.00	66.97	75.11	$77 \cdot 37$	77.83	76.27	65.12	59.67	43.87
4	41.90	43.37	50.85	62.77	66.27	74.82	78.30	78.80	76.80	66.27	58.05	44.57
5	46.65	44.60	53.50	59.35	66.00	74.98	78.20	78.60	76.10	66.32	57.55	45.47
6	46.62	46.27	54.90	58.95	66.58	74.47	79.32	78.90	75.90	65.17	53.92	43.42
7	41.30	45.90	53.65	61.22	66.98	75.53	79.75	79.50	76.67	66.05	54.17	44.35
8	42.00	44.90	55.47	61.82	66.79	75.66	80.12	79.10	76.10	$64 \cdot 37$	52.32	44. 17
9	40.12	44.32	54.45	63.50	66.63	$75 \cdot 56$	79.85	79.55	75.72	63.82	52.47	44.50
10	40.00	43.42	52.17	64.70	67.90	73.92	79.97	78.68	74.57	65.72	52.35	43.65
11	41.85	45.25	51.87	62.97	68.21	73.63	78.90	79.28	74.72	66.27	54.40	42.10
12	42.75	48.20	50.85	61.87	69.50	74.28	79.57	79.00	74.50	64.00	49.90	43.77
13	43.87	50.17	50.95	62.85	70.61	75.53	79.95	79.98	74.07	6 r .70	47.85	44.63
14	44.25	46.55	55.00	61.45	69.95	75.92	80.37	79.92	74.67	62.45	49.30	44.85
15	47.37	45.77	53.22	61.32	70.00	75.40	81.17	79.58	74.37	$6 \mathrm{o} \cdot 32$	51.12	45.12
16	45.77	46.87	54.72	62.92	70.29	77.27	81.10	79.23	73.57	61.22	54.07	45.30
17	40.42	47.95	55.77	62.55	69.61	78.34	80.85	80.00	74.82	59.92	51.17	40.00
18	37.72	50.22	54.95	62.35	68.79	77.24	79.87	79.65	73.82	58.95	46.65	40.52
19	39.07	51.60	54.55	62.95	69.92	77.42	79.92	79.43	71.80	58.32	44.70	45.00
20	43.90	50.00	54.77	63.12	70.82	77.50	79.37	78.83	70.32	58.75	48.15	42.82
21	40.20	49.67	56.57	65.20	70.84	76.16	$79 \cdot 52$	79.30	67.55	60.37	51.57	40.67
22	40.07	50.82	$55 \cdot 30$	66.70	72.24	76.61	$79 \cdot 47$	$79 \cdot 30$	67.90	58.20	47.85	41.70
23	41.45	49.72	54.70	65.71	72.19	75.85	79.82	77.95	68.35	58.97	49.37	41.42
24	46,70	50.27	57.87	66.72	72.82	$75 \cdot 37$	79.97	77.50	69.62	59.77	47.20	42.07
25	48.27	49.13	56.87	65.55	72.19	75.77	80.00	78.18	69.60	$55 \cdot 45$	47.50	44.75
26	48.82	51.89	57.79	67.08	72.37	76.87	79.92	77.43	69.60	56.27	46.82	44.52
27	48.57	52.65	57.17	62.95	73.13	78.37	79.82	77.38	67.80	55.97	48.60	47.47
28	46.42	54.50	58.05	63.27	73.74	79.32	80.45	76.58	67.85	55.70	47.32	47. 10
29	45.80	56.20	58.22	64.70	72.65	7 C .85	80.27	76.03	67.47	55.10	47.67	46.50
30	44.45		59.60	67.65	73.13	79.67		76.73	65.69	55.90	48.32	43.16
3 I	43.80		57.62		73.12		78.78	76.50		56.55		42.06

Two observations a day; \bigodot_{r} and 2_{a}, Nov. to April, inclusive; \bigodot_{r} and 3_{a}, May to Oct. inclusive. Means uncorrected for daily fluctuation.

The tabular numbers for five stations, having the longest series of observations, are graphically represented on the accompanying plate.

The greater irregularity for the shorter series is sufficiently well marked, and the zigzag lines of the Salem temperature, derived from a 43 year series, are yet inconveniently large for the purposes of comparison.

The Marietta and Providence daily temperatures show many coincidences in the zigzag lines or in the differences from their respective mean values and particularly so in the winter season; the Portland temperatures, also, frequently conform to the same fluctuations. From this we infer that changes from the normal temperatures extend, especially in the winter season, over large tracts of country, and there are also indications of the occurrence of the same phase about one day later in Rhode Island than in Ohio, showing that the normal state of the weather has a tendency (especially in the winter) to an easterly progression, the same as recognized in the case of storms or unusual thermal disturbances of the atmosphere. About the 20th of Fcbruary, all stations indicate a rapid rise of temperature, this epoch, therefore, deserves further attention; there are also fainter indications of an unusual depression about May 31, of a constancy between September 13 and 18, and of a rapid decline about Nov. 26.

The temperatures recorded at the above stations refer nearly to the same period of time, and consequently exhibit many coincidences of departures from regularity which only belong to this period, but as soon as we compare with recorded temperatures covering another period, these coincidences disappear, and it is only by such comparisons of different epochs that we can assure ourselves of the reality or non-reality of any suspected deviation from the regular annual progression. The character of the Salem line is essentially different from that of any of the other lines, its period terminating about the time of the beginning of the others. This is the only station where the record extends, in part, to the past century.

Examining now, specially, the suspected periods of irregularity they will possess a strong probability of existence if cxhibited alike for two independent epochs, for instance, those of the Salem and Providence series. About the beginning of December the march of temperature, at all the stations given, appears to be normal, though there is a remarkable depression about November 26, 27, 28, which latter feature seems to demand further attention. There is no thermal anomaly about the middle of May, ${ }^{1}$ and the progression about February 12th and in the first and second week of March appears regular enough; at this season, however, the accidental irregularities are very great, and may hide any smaller fixed deviation. The suspected arrest of increasing temperature after May 25 is not supported by the Marietta and Salem observations, and the rise or constancy of temperature noted

[^124]at Marietta and Providence between October 27, and November 2, is contradicted by the ordinary fall of temperature observed at Salem during this period, but appears supported by Toronto.

The smooth curves, given in the Marietta and Providence diagrams, which cut off the zigzags, equally, above and below, are obtained by the method of successive means, and in this instance represent the sixth order of means. ${ }^{1}$ This process facilitates comparison and enables us to construct tables of daily temperature, the values of which have thus become more consistent by the removal of the greater accidental irregularities.

In the tables which follow, the annual fluctuation is given either directly by the daily ordinates or by those of smooth curves, obtained by the process just explained, or by means of Bessel's periodic function with constants supplied by observation, as stated at the top of each table.

The director of the Toronto observatory noticed the curious fact, that the daily means or normals of temperature made out by General Sabine for the epoch $18 \not 11$ to 1852 had now become totally inapplicable, in consequence of which a new set of normals was prepared, employing the series of observations from 1859 to 1868, and calculating the table with the help of Bessel's periodic function as had been done before.

The two sets of tables given for Toronto will, therefore, represent the variability of the annual fluctuation for two epochs not very remote from those when the extreme values obtain, as has been found from a further study of this phenomenon of the shifting of the epoch of maximum cold and of apparent changes in the curve of the annual fluctuation. ${ }^{2}$

On account of this variability of the annual fluctuation, the years of observation from which the daily means were deduced, are stated at the head of each table.

[^125]| Day of Month. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | Oct. | Nov. | Dec. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resulting annual fluctuation from a series of 12 years of observations between 1841 and 1852 , or mean temperature of every day derived from computation by Bessel's periodic function,$\begin{gathered} T=14^{\circ} .23-21^{\circ} .8 \mathrm{I} \sin \left(\theta+81^{\circ} 27^{\prime}\right)+\mathrm{I}^{\circ} .06 \sin \left(2 \theta+71^{\circ} 32^{\prime}\right)-0^{\circ} .80 \sin \left(3 \theta+347^{\circ} 42^{\prime}\right)+0^{\circ} .22 \sin \left(4 \theta+37^{\circ} 27^{\prime}\right) \\ +0^{\circ} .88 \sin \left(5 \theta+50^{\circ} 4 \mathrm{I}^{\prime}\right)+0^{\circ} .325 \cos 6 \theta, \text { the angle } \theta \text { reckoning from Jan. } 15 . \end{gathered}$ | | | | | | | | | | | | |
| I | $25^{\circ} .2$ | $23^{\circ} \cdot 9$ | $25^{\circ} \cdot 4$ | $3^{60} \cdot 3$ | $4^{6} \cdot 4$ | $56^{\circ} .9$ | $64^{\circ} .7$ | $66^{\circ} .9$ | 63°. 1 | $50^{\circ} .5$ | $40^{\circ} \cdot 5$ | $30^{\circ} .8$ |
| 2 | 25.2 | 23.9 | 25.6 | 36.7 | 46.7 | 57.2 | 64.9 | 66.8 | 62.8 | 50.0 | 40.3 | 30.5 |
| 3 | 25.1 | 23.8 | 25.9 | 37.1 | 47.0 | 57.5 | 65.1 | 66.8 | 62.5 | 49.6 | 40.0 | 30.1 |
| 4 | 25.1 | 23.7 | 26.2 | 37.4 | 47.4 | 57.8 | 65.2 | 66.8 | 62.2 | 49.1 | 39.8 | 29.8 |
| 5 | 25. 1 | 23.6 | 26.4 | 37.8 | 47.7 | 58.1 | 65.3 | 66.8 | 61.9 | $4^{8.7}$ | 39.5 | 29.4 |
| 6 | 25.1 | 23.6 | 26.7 | 38.1 | 48.0 | 58.4 | 65.5 | 66.8 | 61.5 | 48.3 | 39.2 | 29.1 |
| 7 | 25.1 | 23.5 | 27.0 | 38.5 | 48.4 | 58.7 | 65.6 | 66.7 | 61.2 | 47.9 | 39.0 | 28.7 |
| 8 | 25.1 | 23.5 | 27.4 | 38.8 | 48.7 | 59.0 | 65.7 | 66.7 | 60.8 | 47.5 | 38.7 | 28.5 |
| 9 | 25.1 | 23.4 | 27.7 | 39.I | 49.1 | 59.4 | 65.9 | 66.6 | 60.4 | 47.1 | 38.4 | 28.2 |
| 10 | 25.1 | 23.4 | 28.0 | 39.5 | 49.4 | 59.7 | 66.0 | 66.6 | 60.1 | 46.7 | 38.1 | 27.9 |
| 11 | 25.0 | 23.4 | 28.4 | 39.8 | 49.8 | 59.9 | 66.1 | 66.5 | 59.7 | $4^{6.3}$ | 37.8 | 27.7 |
| 12 | 25.0 | [23.4] | 28.7 | 40.2 | 50.1 | 60.2 | 66.2 | 66.4 | 59.3 | 46.0 | 37.5 | 27.4 |
| 13 | 25.0 | 23.4 | 29.1 | 40.5 | 50.5 | 60.5 | 66.3 | 66.3 | 58.9 | 45.6 | 37.2 | 27.2 |
| 14 | 25.0 | 23.4 | 29.5 | 40.8 | 50.8 | 60.8 | 66.3 | 66.3 | 58.4 | $45 \cdot 3$ | 36.9 | 27.0 |
| r | 25.0 | 23.4 | 29.9 | 41.1 | 51.2 | 6 I .1 | 66.4 | 66.2 | 58.0 | 44.9 | 36.5 | 26.8 |
| 16 | 24.9 | 23.5 | 30.2 | 41.5 | 51.5 | 6 I .3 | 66.5 | 66.1 | 57.6 | 44.6 | 36.2 | 26.6 |
| 17 | 24.9 | 23.5 | 30.6 | 41.8 | 51.9 | 61.6 | 66.6 | 66.0 | 57.1 | 44.3 | 35.8 | 26.4 |
| 18 | 24.9 | 23.6 | 31.0 | 42.1 | 52.2 | 61.9 | 66.6 | 65.9 | 56.7 | 44.1 | 35.5 | 26.2 |
| 19 | 24.8 | 23.7 | $3 \mathrm{I}-4$ | 42.4 | 52.5 | 62.1 | 66.7 | 65.8 | 56.2 | 43.8 | 35.1 | 26.1 |
| 20 | 24.8 | 23.8 | 31.8 | 42.8 | 52.9 | 62.4 | 66.7 | 65.6 | 52.7 | 43.6 | 34.8 | 25.9 |
| 21 | 24.7 | 23.9 | 32.2 | 43.1 | 53.2 | 62.6 | 66.7 | 65.5 | 55.2 | $43 \cdot 3$ | 34.4 | 25.8 |
| 22 | 24.7 | 24.0 | 32.6 | $43 \cdot 4$ | 53.6 | 62.9 | 66.8 | 65.4 | 54.7 | 43.0 | 34. I | 25.7 |
| 23 | 24.6 | 24.1 | 32.9 | $43 \cdot 7$ | 53.9 | 63.1 | 66.8 | 65.2 | 54.3 | 42.8 | 33.7 | 25.6 |
| 24 | 24.5 | 24.3 | $33 \cdot 3$ | 44.0 | 54.2 | 63.3 | 66.8 | 65.0 | 53.8 | 42.5 | $33 \cdot 3$ | 25.5 |
| 25 | 24.5 | 24.5 | $33 \cdot 7$ | 44.4 | 54.6 | 63.5 | 66.9 | 64.8 | 53.3 | $42 \cdot 3$ | 33.0 | 25.4 |
| 26 | 24.4 | 24.7 | 34. I | 44.7 | 54.9 | 63.8 | 66.9 | 64.6 | 52.8 | 42.0 | 32.6 | 25.3 |
| 27 | 24.3 | 24.9 | 34.5 | 45.0 | 55.2 | 64.0 | 66.9 | 64.4 | 52.3 | 41.8 | 32.2 | 25.3 |
| 28 | 24.3 | 25.1 | 34.8 | 45.4 | 55.6 | 64.2 | [66.9] | 64.2 | 51.9 | 4 I .5 | 31.9 | 25.2 |
| 29 | 24.2 | | 35.2 | 45.7 | 55.9 | 64.4 | 66.9 | 63.9 | 51.4 | 4 I .3 | 31.5 | 25.2 |
| 3° | 24.1 | | 35.6 | 46.0 | 56.2 | 64.5 | 66.9 | 63.7 | 50.9 | 41.0 | 3 I .1 | 25.2 |
| 31 | 24.0 | | 36.0 | | 56.5 | | 66.9 | 63.4 | | 40.8 | | 25.2 |

Toronto, Canada West.

[Received from G. T. Kingston, Director of the Toronto Mag. Observatory, May 23, 1870.]
Resulting annual fluctuation from a series of 10 years of observation between 1859 and 1868 , or mean temperature of every day derived from computation by Bessel's periodic function.

1	21.3	22.5	25.6	35.6	46.8	57.5	66.4	68.1	62.5	51.0	42.2	30.5
2	21.3	22.6	25.8	36.0	47.2	57.8	66.5	68.0	62.3	50.6	41.9	30.0
3	21.3	22.7	26.0	36.4	47.6	58.1	66.7	67.9	62.0	50.2	41.7	29.6
4	21.2	22.7	26.2	36.8	$47 \cdot 9$	58.5	66.9	67.8	61.7	49.9	4I. 4	29.1
5	21.2	22.8	26.5	37.1	48.3	58.8	67.1	67.8	6 I .4	49.5	41.2	28.6
6	21.2	22.8	26.7	37.6	48.6	59.1	67.2	67.7	61.1	49.2	40.9	28.2
7	[21.2]	22.9	27.0	37.9	49.0	59.3	67.4	67.6	60.7	48.8	40.6	27.7
8	21.2	23.0	27.3	38.4	$49 \cdot 3$	59.7	67.5	67.4	60.4	48.5	40.3	27.3
9	21.2	23.0	27.5	38.7	$49 \cdot 7$	60.0	67.7	67.3	60.0	48.1	40.0	26.8
10	21.3	23.1	27.9	39.0	50.0	60.4	67.8	67.2	59.6	47.8	39.7	26.4
II	21.3	23.1	28.1	39.4	50.4	60.7	67.9	67.0	59.2	47.5	39.3	26.0
12	21.4	23.2	28.5	39.8	50.7	61.0	68.0	66.9	58.8	47.2	39.0	25.6
13	21.4	23.3	28.8	40.2	5 I .1	61.3	68.1	66.7	58.4	46.9	38.6	25.3
14	21.5	23.4	29.1	40.6	5 I .4	61.7	68.2	66.6	58.0	46.6	38.2	24.9
15	21.5	23-5	29.4	40.9	51.8	62.0	68.2	66.4	57.6	46.3	37.8	24.5
16	21.6	23.6	29.7	41.3	52.2	62.3	68.3	66.2	57.2	46.1	37.4	24.2
17	21.6	23.7	30.1	41.7	52.5	62.6	68.3	66.1	56.8	45.8	37.0	23.9
18	21.7	23.8	30.4	42.1	52.8	62.9	68.4	65.9	56.4	$45 \cdot 5$	36.6	23.6
19	21.8	23.9	30.8	42.4	53.2	63.2	68.4	65.7	56.0	$45 \cdot 3$	36.2	23.3
20	21.8	24.0	3 I. I	42.8	53.5	63.5	68.4	$65 \cdot 5$	$55 \cdot 5$	45.0	35.7	23.1
21	21.9	24.2	31.4	43.2	53.9	63.8	68.5	$65 \cdot 3$	55. I	44.8	$35 \cdot 3$	22.8
22	21.9	24.3	3 I .8	$43 \cdot 5$	$54 \cdot 2$	64.1	[68.5]	65.1	$54 \cdot 7$	$44 \cdot 5$	34.8	22.6
23	22.0	24.5	32.3	$43 \cdot 9$	54.5	64.4	[68.4	64.8	$54 \cdot 3$	44.3	34.4	22.4
24	22.1	24.6	32.6	$44 \cdot 3$	54.9	64.6	68.4	64.6	53.8	44.1	33.9	22.2
25	22.1	24.8	32.9	$44 \cdot 7$	$55 \cdot 2$	64.9	68.4	$64 \cdot 4$	53.4	43.8	$33 \cdot 4$	22.0
26	22.2	25.0	$33 \cdot 3$	45.0	$55 \cdot 6$	65.1	68.4	64.1	53.0	43.6	32.9	21.9
27	22.3	25.2	33.7	$45 \cdot 4$	55.9	$65 \cdot 3$	68.3	63.8	52.6	$43 \cdot 3$	32.5	21.7
28	22.3	25.4	34.1	45.8	56.2	65.6	68.3	63.6	52.2	43.1	32.0	21.6
29	22.4	25.5	34.5	46.1	56.5	65.9	68.2	$63 \cdot 3$	51.8	42.9	31.5	21.5
30	22.4		34.8	46.5	56.9	66.1	68.2	63.1	51.4	42.6	3 L .0	21.4
31	22.5		35.2		$57 \cdot 2$		68.1	62.8		42.4		21.4

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Providence, Rhode Island.												
Resulting annual fluctuation from a series of $28 \frac{1}{2}$ years, $1831-1860$, or mean temperature of every day, derived from the 6 th order of successive means.												
1	27°. 1	$25^{\circ} .6$	$30^{\circ} .0$	$40^{\circ} \cdot 5$	$5 \mathrm{I}^{\circ} \cdot 3$	$59^{\circ} \cdot 5$	$69^{\circ} .8$	$70^{\circ} .6$	$66^{\circ} .2$	$56^{\circ} .1$	$45^{\circ} .6$	$33^{\circ} .6$
2	26.6	24.8	29.3	40.8	51.6	61.3	69.8	70.5	66.2	55.9	$45 \cdot 7$	33.5
3	26.2	24.6	29.0	4 L .3	51.8	62.5	69.7	70.4	66.7	55.1	45.7	33.4
4	26.2	24.5	29.4	42,0	52.0	62.8	69.6	70.4	67.2	$54 \cdot 3$	45.4	33.0
5	26.4	24.6	30.4	42.2	52,2	62.7	69.3	70.5	67.2	54.0	44.7	32.6
6	26.8	24.9	31.6	43.2	52.6	62.5	69.0	70.7	66.7	53.9	44.0	32.2
7	27.1	25.3	32.6	43.8	53.0	62.6	68.9	70.8	66.0	53.8	43.6	32.2
8	27.3	25.6	33.4	$44 \cdot 3$	53.2	63.2	69.9	70.7	65.3	53.7	43.4	32.3
9	27.4	25.6	33.8	44.6	53.3	63.8	70.7	70.5	64.7	53.6	43.0	32.3
10	27.4	25.5	33.7	44.7	53.6	64.1	71.1	70.3	64.3	53.2	42.4	32.0
11	27.5	$25 \cdot 2$	33.7	$44 \cdot 7$	54.2	64.1	71.2	70.4	63.7	53.1	4 I .9	31.1
12	27.6	24.9	34.9	44.5	55.0	64.2	71.3	70.8	62.6	52.8	4 4 .6	30.2
13	27.7	25. I	34.5	44.0	55.5	64.5	71.5	71.1	61.4	52.0	41.2	29.8
14	28.3	25.9	34.7	43.4	55.7	65.0	71.6	70.7	60.7	50.8	40.4	29.8
15	28.8	26.6	34.7	43.1	56.1	65.4	7 r .5	69.8	60.6	50.2	39.8	29.7
16	28.8	26.7	35.0	43.2	56.9	65.5	71.4	69.0	60.8	50.7	39.8	29.0
17	27.7	26.5	35.5	43.6	57.7	65.7	71.6	68.5	61.3	51.7	40.1	28.1
18	26.5	26.8	35.9	44. 1	58.0	66.2	72.1	68.3	61.9	52.2	40.3	27.3
19	25.8	27.8	36.2	44.9	57.8	66.6	72.3	68.0	62.3	51.7	39.7	27.0
20	26. 1	29.4	36.5	45.8	57.5	67.1	72.4	67.9	61.9	50.3	38.7	26.8
21	26.4	30.7	36.4	47.0	57.3	67.2	72.4	68.0	60.6	49. I	38.3	26.6
22	26.1	$3 \mathrm{I} \cdot 3$	36.1	47.9	57.2	67.4	72.3	68.2	58.9	48.7	38.3	26.3
23	25.9	30.8	36.0	48.2	57.5	67.6	72.2	68.2	57.9	48.6	37.9	26.3
24	26.5	$29 \cdot 7$	36.5	$4 \mathrm{~S} \cdot 3$	57.8	67.9	72.1	68.2	57.6	48.0	36.7	26.5
25	27.4	28.9	$37 \cdot 3$	48.6	58.0	68.2	71.9	67.8	57.6	47.4	35.1	26.7
26	27.9	28.8	38.1	$49 \cdot 1$	58.3	68.6	71.6	67.3	57.5	$45 \cdot 9$	34.0	26.6
27	27.7	29.3	38.8	49.5	58.8	69.1	71.2	67.0	57.2	45.5	33.3	26.6
28	27.5	30.0	39.2	49.8	59.0	69.5	70.9	66.7	56.7	45.8	33.2	26.7
29	27.5	30.3	39.5	50.3	58.6	69.9	70.7	66.6	56.2 56.1	46. I	33.3	26.9
30	27.3		39.9	50.9	58.0	69.9	70.7	66.6 66.5	56.1	46.1 45.8	33.6	27.1
31	26.6		$40 \cdot 3$		58.1		70.7	66.5		45.8		$27 \cdot 3$

New Haven, Conn.

[Conn. Acad. vol. i, part 1, 1866.]
Resulting annual fluctuation from a series of 86 years of observations between 1778 and 1865 , or mean temperature of every day derived from computation by Bessel's periodic function,
$7^{\prime}=49^{\circ} .11+22^{\circ} .92 \sin \left(\theta+263^{\circ} 33^{\prime}\right)+0^{\circ} .29 \sin \left(2 \theta+345^{\circ} 24^{\prime}\right)+0^{\circ} .45 \sin \left(3 \theta+229^{\circ} 50^{\prime}\right)$ $+0^{\circ} .02 \sin \left(4 \theta+150^{\circ}\right)+0^{\circ} .3^{8} \sin \left(5 \theta+54^{\circ} 31^{\prime}\right)-0.08 \cos 6 \theta$, where θ counts from Jan. I5

1	27.4	26.4	3 I .1	41.8	52.1	62.8	70.5	71.9	67.4	56.5	45.5	34.6
2	27.3	26.5	31.4	42.1	52.5	63.1	70.6	71.9	67.1	56.1	45.2	34.3
3	27.2	26.5	31.7	42.5	52.8	63.4	70.8	71.8	66.8	55.7	44.8	33.9
4	27.1	26.6	32.0	42.9	53.1	63.8	70.9	71.7	66.5	55.3	44.5	33.6
5	27.0	26.7	32.3	43.2	53.4	64.1	71.0	71.7	66.2	55.0	44. 1	33.3
6	26.9	26.8	32.6	43.6	53.8	64.4	71.1	71.6	65.9	54.6	43.8	32.9
7	26.8	26.9	32.9	43.9	54.1	64.7	71.2	71.5	65.6	54.3	43.4	32.6
8	26.7	27.0	33.2	44.3	54.5	65.1	71.3	71.5	65.3	53.9	43.1	32.3
9	26.6	27.1	33.6	44.6	54.8	65.4	71.4	71.4	65.0	53.5	42.7	32.0
10	26.6	27.2	33.9	45.0	55.2	65.7	71.5	71.3	64.6	53.2	42.3	31.7
II	26.5	27.3	34.2	$45 \cdot 3$	55.5	66.0	71.6	71.2	64.3	52.8	42.0	$3^{1.4}$
12	26.5	27.4	34.6	45.7	55.9	66.2	71.7	71.1	64.0	52.5	41.6	$3^{\text {I. I }}$
13	26.4	27.6	34.9	46.0	56.2	66.5	71.7	71.0	63.6	52.1	41.3	30.9
14	26.4	27.7	35.3	46.4	56.6	66.8	71.8	70.9	63.3	51.8	40.9	30.6
15	26.3	27.9	35.6	46.7	56.9	67.1	71.8	70.8	62.9	51.4	40.5	30.3
16	26.3	28.0	36.0	47.1	57.3	67.3	71.9	70.6	62.5	5 I .1	40.2	30.1
17	26.3	28.2	36.3	47.4	57.6	67.6	71.9	70.5	62.1	50.7	39.8	29.8
18	26.3	28.4	36.7	47.8	58.0	67.8	72.0	70.3	61.8	50.4	39.4	29.6
19	26.3	28.6	37.1	4S. I	58.3	68.1	72.0	70.2	61.4	50.0	39.1	29.4
20	26.2	28.8	37.4	4S.4	58.7	68.3	72.0	70.0	61.0	49.7	38.7	29.2
21	26.2	29.0	37.8	48.7	59.0	68.5	72.1	69.8	60.6	49.3	38.3	29.0
22	26.2	29.2	38.2	49.1	59.4	68.8	72,1	69.6	60.2	49.0	38.0	28.8
33	26.3	29.5	38.5	49.4	59.8	69.0	72.1	69.5	59.8	48.6	37.6	28.6
24	26.3	$29 \cdot 7$	38.9	$49 \cdot 7$	60.1	69.2	72.1	$69 \cdot 3$	59.4	48.3	37.2	28.4
25	26.3	29.9	39.3	50.1	60.4	69.4	72.1	69.1	59.0	47.9	36.8	28.2
26	26.3	30.2	39.6	50.4	60.8	69.6	72.1	68.9	58.6	47.6	36.5	28.1
27	26.3	30.5	40.0	50.7	61.1	69.8	72.1	68.6	58.1	47.2	36.1	27.9
28	26.3	30.8	40.4	5 I . I	6 I .4	70.0	72.0	68.4	$57 \cdot 7$	46.9	35.8	27.8
29	26.4		40.7	51.4	61.8	70.1	72.0	68.2	57.3	46.6	35.4	27.7
30	26.4		41.1	51.8	62. 1	70.3	72.0	67.9	56.9	46.2	35.0	27.6
31	26.4		41.4		62.5		71.9	$67 \cdot 7$		45.9		27.5

Day of Month.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Resulting annual fluctuation from a series of 32 years, $1818-1859$, or mean temperature of every day, derived from the 6th order of successive means.												
1	31.8	31.3	37.3	47.7	$60^{\circ} .3$	65.6	72.3	72.3	69.0	58.6	47.1	37.1
2	31.4	31.0	36.6	48.1	60.3	66.3	71.8	72.1	69.0	58.3	47.4	36.8
3	31.0	30.7	36.4	48.8	60.3	66.8	71.1	72.2	68.9	57.4	47.4	36.4
4	30.9	30.3	36.8	49.4	60.3	67.0	70.8	72.3	68.9	56.3	47.2	36.1
5	31.1	30.0	37.9	49.5	60.2	67.2	71.4	72.4	68.9	$55 \cdot 3$	46.7	35.8
6	31.5	30.0	39.2	50.3	60.1	67.5	72.2	72.4	68.9	55.0	46.3	35.6
7	31.9	30.3	40.4	50.9	60.0	68.0	72.9	72.4	68.8	55.2	45.9	35.5
8	31.7	30.7	41.2	51.3	59.8	68.4	73.2	72.5	68.7	55.4	45.4	35.2
9	31.1	31.2	41.4	51.5	59.7	68.7	73.2	72.6	68.2	55.5	45.0	34.6
10	30.9	31.6	41.6	52.0	59.9	68.8	73.0	72.7	67.3	55.0	44.8	33.9
11	31.0	32.0	42.0	52.5	60.2	68.9	72.9	72.8	65.9	54.2	44.5	33.5
12	31.2	32.5	42.2	52.6	60.6	69.1	72.8	73.0	64.6	53.1	43.8	33.5
13	31.9	32.8	42.1	52.4	60.9	69.4	72.8	$73 \cdot 3$	64.0	52.0	42.5	33.6
14	32.7	33.0	41.8	51.9	61.1	69.6	72.7	73.5	63.8	51.2	4 I .4	33.6
15	33.2	33.0	4 T .5	51.6	61.5	69.9	72.5	$73 \cdot 3$	$63 \cdot 7$	51.2	41.1	33.3
16	33.0	32.7	4I. 4	51.6	6 r .8	70.2	72.5	72.9	63.6	51.7	41.3	32.6
17	32.4	32.8	4 T .3	51.7	61.9	70.3	72.8	72.4	63.6	52.0	41.5	32.2
18	31.9	33.7	4 T .1	52.0	6 r .7	70.3	73.2	71.9	63.7	51.7	41.3	32.2
19	31.9	35.I	4I. I	52.8	6 I .4	70.2	73.6	71.5	63.7	50.7	40.8	32.2
20	31.9	36.2	41.4	54.3	61.5	$7 \mathrm{O}, 1$	73.7	71.1	63.2	49.7	40.7	31.8
21	31.6	36.9	42.0	56.1	62.1	70.0	73.8	70.6	$62 \cdot 3$	49.4	41.0	3 I .0
22	30.8	36.9	42.8	57.3	62.9	7 O .1	73.9	70.1	61.3	49.3	4 T .0	30.4
23	30.3	36.6	43.6	57.8	63.3	7 O .1	74.0	69.8	60.8	49.2	40.0	30.6
24	30.3	36.2	44.4	57.9	$63 \cdot 4$	70.4	74.1	69.7	60.8	48.7	38.4	31.3
25	30.9	36.1	$45 \cdot 3$	57.8	63.5	70.9	74.0	69.6	60.7	48.0	36.8	32.0
26	31.4	36.2	46.0	57.6	63.9	71.6	74.0	69.5	$60 \cdot 3$	47.5	35.8	32.0
27	31.8	36.5	46.4	57.5	64.5	72.2	74.0	69.5	$59 \cdot 7$	47.0	$35 \cdot 7$	31.9
28	32.2	37.1	46.5	58.1	65.2	72.5	74.1	69.4	59.0	46.6	36.2	32.0
29	32.6	37.6	46.7	59.2	65.5	72.5	74.2	69.3	58.6	46.3	36.9	32.2
30	32.6		46.9	60.0	65.4	72.4	73.8	69.2	58.6	46.3	37.2	32.3
31	32.0		$47 \cdot 3$		$65 \cdot 3$		73.0	69.I		46.8		32.2

Variability in the mean temperature of any one day, in a succession of years.
The fact that the amount of departure of the observed temperature of any day of the year from the normal value assigned to that day from a series of years, is variable at different periods of the year may be verified at a glance by an examination of the accompanying diagram of the annual fluctuation showing the progression of the temperature from day to day. The zigzag lines or irregularities are evidently much greater in winter than in summer.

To obtain a measure of this irregularity we deduce the probable error of each normal, and thus secure the advantage of comparative numbers of the amount of this irregularity, as well as a knowledge of the degree of reliability of our normal temperatures.

Let $n=$ number of years from which the mean temperature of any one day is deduced.
$\Delta=$ difference from this mean and any observed temperature.
$e=$ probable error of a single value observed, or the probable amount of ordinary departure from the mean or normal value.
$\varepsilon=$ probable error of normal value; then, with sufficient accuracy for our purpose,

$$
e=0.845 \frac{\Sigma \Delta}{\sqrt{n(n-1)}} \quad \text { and } \quad \varepsilon=\frac{e}{\sqrt{n}} .
$$

To shorten the labor, I shall here only present the values of e and ε for four epochs of the annual fluctuation, and for three days in each case, viz.: for January 20, 21, 22, for April 21, 22, 23, for July 22, 23, 24, for October 21, 22, 23; epochs which correspond respectively nearly to the times of maximum cold, of average temperature, of maximum heat, and again of average temperature.

Selecting a station near the Atlantic sea-board, one on the western slope of the Alleghanies, and one near the Red River, we have the following results:-

Probable error (e) of the mean temperature of any day about the periods of maximum cold and heat-

and about the periods of average temperature-

	21st.	April. 22 d .	23 d.	Mean.	21st.	October. 22d.	23d.	Mean.
Providence, R. I. .	$4^{\circ} \cdot 4$	$4^{\circ} .2$	$3^{\circ} \cdot 9$	$\pm 4^{\circ} .2$	$5^{\circ} \cdot 9$	$6^{\circ} \cdot 3$	$4^{\circ} \cdot 7$	$\pm 5^{\circ} .6$
Marietta, Ohio .	$5 \cdot 7$	5.8	6.6	± 6.0	6.2	6.4	$5 \cdot 3$	± 6.0
Washington, Ark. .	- 5.2	4.6	$5 \cdot 2$	± 5.0	$5 \cdot 2$	$5 \cdot 5$	7.0	± 5.9

We have also the probable error (ε) of our daily normals as given in the preceding tables for Providence (from a scries of $28 \frac{1}{2}$ years), for Marietta (from a series of 32 years), and for Washington, Ark. (from a series of 20 years).

In midwinter the mean temperature of any day will, therefore, fluctuate, in different years, from 2 to 5 times as much as in midsummer, and the fluctuation for days in that part of the year where its mean temperature is reached, are intermediate between the maxima and minima values.

In our annual curve of the temperature at Providence, the daily means for any trwo adjacent days in midwinter, will, therefore, ordinarily differ by $\varepsilon \sqrt{2}$ or by $\pm 1^{\circ} .8$, and in midsummer by $\pm 0^{\circ} .8$, and at the intermediate times by $\pm 1^{\circ} .3$, and may differ by three times these amounts, or even more, before positively indicating any abnormal influence in the annual fluctuation. In a series of observations comprehending 100 years, the probable error of the resulting average temperature of any day, in the colder half of the year, would still be $\pm 0^{\circ} .6$, and in the warmer half $\pm 0^{\circ} .4$, and on the average, the normals for two consecutive days will differ $\pm 0^{\circ} .7$, thus showing the difficulty of clearly making out small deviations at certain suspected periods of the year. If a series of observations can be had long enough to be divided into two or more parts, and the same apparent
deviations are noted in each, the probability of their being real and not accidental would be much strengthened.

At Providence, for any day in the winter, a deviation of 20° (or of three times the probable error [e] assigned), either in excess or defect of the normal temperature of that day, is a limit which is but rarely surpassed, and for any day in summer this limit becomes 10°. At Washington, Arkansas, these limits must be changed to 25° in winter, and to 6° in summer.

As a specimen of a table exhibiting the extreme heat and cold experienced, during a number of years, on the same_calendar day, the following table is given from Dr. Wilson's paper, 20th Annual Report of the Regents of the University, State of New York (Albany), for 1868.

Day of Month.	Jan.	Feb.	Mar.	Apr.		May		Jun		Jul			Aug.		et.		ct.		v.		Dec.
Geneva, New York. Lat. $42^{\circ} 52^{\prime}$. Long. $77^{\circ} 02^{\prime} \mathrm{W}$. of G. Alt. 567 feet. From 12 years of observations; 1854 to 1865, inclusive.																					
I	$51^{\circ} \quad 5^{\circ}$	$50^{\circ}-2^{\circ}$	$53^{\circ} 13^{\circ}$	$6 \mathrm{I}^{\circ}$		69°				86°			56°			69°		73°	34°	59°	12
2	$4 \mathrm{I}-2$		$53 \quad 7$					84		84	49		59	81	46		39	68	31	54	14
3	4 I	$\left\lvert\, \begin{array}{ll}35 & -5\end{array}\right.$	575	65		68		80	50	88	49	186	57	82	46	So	44	62	34	59	12
4	527	$36-6$	576	61	28	67		87	38	84	32	92	62	82	47	79°	42	69	23	54	I
5	536	42 -1	57 -1	68	23	78	40	84	44	87	52	84	61	87	50	82	40	72	20	48	8
6	427	53-19	4110	54				86	48	88	54	84	62	81	49	74	36	62	24	53	12
7	465	55-12	584	61		84		86		88	55	90	57	88	56	79	36	58	22	53	S
8	42 - 1	39 -9	5 I 5	63		81		78		${ }^{8} 7$	57	88	58	89	52	85	35	58	22	6I	4
9	41 -8	46 II	48 -4	68						89	58	89	58	88	47	75	34	65	29	5 I	14
10	$46-16$	44	49 -5	55	3 I	77	41	85	47	90	62	90	59	87	47	74	38	58	28	64	11
11	535	513	54 I 3	72	29	69	30	86	41	90	57	90	58	86	53	76	4 I	59	27	54	13
12	$65 \quad 2$	$5 \mathrm{I}-2$	53 IO	66	32	78		83	46	9 I	56	86	60	87	44	68	37	58	26	47	9
13	436	$42-6$	648	63	22	75	39	79	50	90	55	92	58	84	50	63	33	55	22	47	12
14	425	42 -I	5415	62	27	74	39	79	54	89	59	9°	55	77	46	65	34	57	20	58	7
15	446	56	56	62	26	82	46	87	54	SS		82	56	86	37	70	29	50	22	54	
16	46 o	468	$60 \quad 16$	67	32	84	39	8o	46	90	58	84	55	82	52	66	30	48	27	58	15
17	40	56 -	59 S	75	30	8		SI	50	97	56	84	54	85	48	77	35	58	26	45	8
18	39-15	47	608	74 3	31	S2		89	48	91	58	86	52		4^{8}	73	37	56	29	49	5
19	422	46 - I	546	64	35	68		87	53	91	63	85	50	78	41	74	31	63	28	46	6
20	54	$44 \quad 12$	63 II	673	32		41	88	54	92	61		54	86	37	70	30	45	20	45	5
21	51.10	489	72 10	643	34	82		87	55	89	56	85	57	76	48	70	29	48	23	40	14
22	43 -S	494	$50 \quad 15$	79 3	34	84		88	55	82	56	86	53	78	41	63	33	52	24	137	I
23	51 -I	527	$52 \quad 15$	66	32	85		\$6		8_{4}					40	57	36	50	23	44	7
24	486	59 8	$49 \quad 12$	77 3	32			S5	57	85	54		52	75	45	65	32	57	19	40	9
25	50	457	5616	70	318	854		$9{ }^{1}$	55	90	60	82	53	74	42	65	32	47	10	52	12
26	52	49 Io	5119	72	328	84		88	62	91	62	86	52	74	41	63	28	44	20	50	10
27	54	60 Io	$52 \quad 19$	76	30	80		86		87		75		79	41	69	28	47	20	44	-
28	406	5111	$61 \quad 13$	78	30	82		89	54	88				76	45	66	30	46	23	44	2
29	$39 \quad 17$	50 I5	5917	693	33			94	56			78	55	71	34	71	34	59	18	46	-5
30	4 I		68 18	68 3	37	80		90	52	86		80	48	74	34	72	33	60	20	38	10
3 I	$38-8$		7016			S2 4				$9{ }^{1}$			4^{S}							39	3

Inequality in the epoch of the annual fluctuation of the temperature.
A secular inequality in the law of the annual distribution of the temperature has lately been noticed by Mr. Kingston, director of the Toronto observatory, who stated that about the end of 1868 , it was noticed that the normals given in General Sabine's paper (Phil. Trans. vol. 143, 1853), derived from 12 years of observations at Toronto, between 1841 and 1852, were wholly inapplicable to observations of recent years, and that a new set of normals had been prepared in consequence, using the records for ten years between 1859 and 1868 and Bessel's interpolation formula.

He further communicated two tables, ${ }^{1}$ showing by five-year means that January was warmer than February in 1841-5, and has since become gradually colder, and that by forming two groups of years, whose centres were distant about 20 years, the temperature of winter and spring (1841-50) had now (1861-8) become lower, and the temperature of summer and autumn higher, and suggests an examination of the larger scries of places in the United States with a view of learning whether the progressive change is general or confined to special localities.

In taking up the study of this subject the existence of such an inequality was confirmed for a number of places, and its geographical range and epochs were approximately determined. Selecting, from our general tables of monthly temperatures, such stations as appeared to me best suited for the purpose, on account of their location and length of record, the differences (J.-F.) of the monthly means of January and February, as well as the differences (J.-A.) of the monthly means of July and August, were formed for each year, and the results were united into means of five years:-

Table of differences (J.-F.): $a+$ sign indicates February colder than January, $a-$ sign the reverse.

Epochs.						$\begin{aligned} & \text { 岂 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							
${ }_{1781-85}$.	\therefore	\therefore	-	\therefore	-1.9	\therefore	\therefore	\therefore	\therefore	\therefore		
1786-90	.	\ldots	\because	+2.1		-0.0	\cdots		\cdots				
1791-95		\ldots	.	-r.8	--0.8	-0.5	\ldots	\ldots	\because	\ldots	\because	\ldots	
1796-1800	-1.8	\cdots		-2.5	-r. 6	-1.4	\cdots	
1801-05	-4.x		\cdots	-2.3	-2.4	-2.2	..						
${ }_{1}^{1806-10}$	- ${ }^{2.3}$	-4.6	\because	-3.4	-4.2	-4.5	\cdots	-4.5	\cdots	..			
${ }_{1811-15}$	-4.6	-4.0	\cdots	-2.9	-5.4	-2.5	\cdots	-2.0	..	\cdots		\cdots	
1816-20	.	-2.9	\cdots	-r.9	.	-1.2	..	-3.6	\cdots	.			
IS 812 -25 $1826-30$	\because	-4.2	\cdots	-2.7	\cdots	-2.4	\cdots	-2.7	\cdots	\cdots	-2.9	-3.3	\cdots
1831-35	\because	- ${ }_{-1.5}$	\cdots	-2.1	\cdots	-2.8	\because	-2.1	-3.1	-4.6	. 0	-3.6	
1836-40	\ldots	-2.8	-3.3	\cdots	\cdots	-1.3	+1.4	-1.7	-3.1	-4.6	- ${ }^{-1.0}$	-1.1 -3.3	+0.3
1841-45	.	-0.1	+0.1	.	-0.7	+0.3	+2.6	[+2.1]	[+1.7]	[+0.3]	[+0.5]	[-1.7]	-0.2
1846-50	.	[+0.1]	[+1.2]	.	+[2.3]	[+1.6]	$[+2.6 \mathrm{~J}$	+1.5	+0.5	+0.2	-0.1	-4.0	
1851-55	.	-4.9	,		[-1.1	+0.8	-2.0	-4.2	-6.5	-3.8	-6.0	-6.6
1856-60	..	5.8	\cdots	\cdots	.	-3.4	-0.4	-2.6	-5.1	..	-4.4	-3.9	-5.3
1866-65					.	-2.9	-1.6	-2.6	-3.7	..		-4.2	-5.6
1866-69	\cdots	.	\cdots	\cdots	.	..	-2.1	-3.9		

${ }^{1}$ Comparison of means of Jan. and Felb. in groups of five years, from observations at Toronto:-1841-45 Jan. warmer than Feb. $2^{\circ} .6 \mid 1850-60$ Jan. colder than Feb. $0^{\circ} .3$ | $1846-50$ | $"$ | $"$ | $"$ | $"$ | 2.6 | $1861-65$ | $"$ | $"$ | $"$ | $"$ | 1.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1851-55$ | $"$ | $"$ | $"$ | $"$ | 0.9 | $1866-69$ | $"$ | $"$ | " | " | 2.1 |

Comparison of seasons in two groups of years :-

				Winter.	Spring.	Summmer.	Autumn.
1841-50	.	.	.	$25^{\circ} .1$	$41^{\circ} .0$	$64^{\circ} .7$	$46^{\circ} .4$
$1861-68$	23.4	40.3	65.6
Difference	.	.	.	-1.7	-0.7	+0.9	+1.0

In General Sabine's paper, the coldest day is Feb. 14, the warmest July 28. In 1849-68 " " " Jan. 6, " " " 22. (Letter to the Secretary of the Smithsonian Institution of Jan. 25, 1870.)

In a few instances the means are derived only from 3 or 4 years，and to complete the table means from a station adjacent to that heading the column were introduced； upon the whole，the table required the use of monthly records for an aggregate of 540 years．Notwithstanding the incidental irregularities in the successive values of this table，they appear to point conclusively to an epoch between 1841 and 1850 when the positive values reached a maximum，in other words，when the mean temperature of February was the lower（or when the lowest temperature of the year fell in that month）．They also indicate，though with less certainty，a preceding epoch about the beginning of the century，when the coldest epoch of the year fell early in January，in which month it is again found at the present time．Such a shifting in the epoch of greatest annual cold can only be of a periodic nature，and we may，therefore，look forward in the course of a few years to a return motion．

To elucidate the point，whether the epoch of maximum annual heat was accompanied by a corresponding movement，a similar table was prepared contain－ ing the differences（J．－A．），a + sign indicating July warmer than August，a－sign would indicate the reverse．The successive annual values of which this table is made up were found to be much more irregular than the corresponding values for the cold period，though the individual differences are smaller，a fact which might have been anticipated from our knowledge of the greater variability of temperature in winter when compared with that of summer．The parallelism of the movement over large areas，also，is less distinctly pronounced in summer than in winter．

Table of differences（J．－A．）for supposed change in epoch of the greatest annual heat．

Epochs．			$\begin{aligned} & \text { 感 } \\ & \text { 或 } \\ & \text {. } \end{aligned}$			$\begin{aligned} & \text { 启 } \\ & 0 \\ & \text { 递 } \\ & \text { 缶 } \\ & \stackrel{訁}{4} \end{aligned}$	$\begin{aligned} & \text { 息 } \\ & \text { 言 } \\ & \stackrel{0}{4} \end{aligned}$						部
	\therefore	\therefore	\therefore	\therefore	－	－0．2	\therefore			－	。	。	
$1786-90$		\because	\cdots	$\therefore \mathrm{O} .7$		＋1．2	\because	\because	\cdots		\because		\because
$1791-95$ $1796-1800$	＋1．1	\because	\because	0.0 +1.9	+2.8 +1.9	${ }_{+1.3}^{+0.6}$	\ldots	\because	．．		\cdots	\because	
	＋0．1	\because	\because	＋1．2	＋1．8	＋0．9	\cdots		\because	\because	\cdots	\because	
ISO6－10	＋1．	${ }_{+1.2}^{-0.5}$	\because	$\stackrel{+0.8}{+2.5}$	${ }_{-0.7}^{+1.2}$	＋1．2	\because	${ }_{+}^{+0.6}$	\％	．．			
${ }_{1} 1816-20$	＋1．7	＋1．8	\because	＋2．5	－	＋2．5	\cdots	＋1．2		\because	＋1．7		\because
（1821－25	\cdots	${ }_{-2.1}^{+2.8}$	＋1．2	＋2．4	\cdots	＋2．2	\cdots	${ }_{+1.2}^{+1.8}$	${ }_{+}^{+0.9}$	\cdots	＋0．I	${ }_{+1.7}^{+1.7}$	
1831－35	\because	＋1．7	＋3．0	＋2．2	\because	＋1．5		＋2．3	+0.7 +0.7	$\because 0.6$	＋2．2	＋4．0	$+$
$1836-40$ $1841-45$	．．	${ }_{-0.7}^{+2.7}$	${ }_{-1.4}^{+4.3}$	．．		＋3．0		${ }^{+2.9}$		${ }_{+}^{+2.2}$	${ }^{2.0}$	＋3．9	＋2．0
（184－45	\because	${ }_{+1}$	${ }_{+}^{1.4}$	\because	＋+1.5	$\stackrel{+0.5}{+2.0}$	－0．5	$+12++07+1$	＋1．8	$\underbrace{+1.0}_{-1.2}$	${ }_{\substack{\text {＋} \\+1.2 \\ \hline 2.0 \\ \hline}}$	+3.4 +3.0	+3.5 +2.0
＋1851－55	\because	+4.1 +2.9		\because		${ }_{+1.3}^{+3.3}$	${ }_{-1.4}^{+1.4}$	＋3．5	+0.6 +0.5	＋1．7	+2.3 +3.2	+4.0 +5.7	＋1．1
18506－65	\because	＋2．9	\because	\because	\because	＋1．9	$\stackrel{+1.6}{+0.1}$	＋3．4	+0.5 +0.3	．	$+3.2$	${ }_{+3.1}^{+5}$	－4．7 +0.5
1866－69	\cdots	．	．．	\because	\because	＋．	＋6．1	＋4．6		\because	：．	＋ 3	

There appears to be no regular progression in any of the figures of this table that could be ascribed as accompanying the singular anomaly of values betreen 1841－50，and even when means are taken for each five－year combination，the result remains inconclusive．If there is any variation in the epoch of maximum heat，it 26 MARCH， 1875.
must be confined within much narrower limits than the variation in the epoch of maximum cold.

On the western coast the records of three stations were examined (San Diego, San Francisco, and Sitka), but, owing to the shortness of the record, only a glimpse of the existence of an inequality could be obtained with an indication of the occurrence of the extreme shift in winter later than in 1844.

Taking means of the values for the different stations, for winter and summer, we obtain the following results:-

Epochs.	Cold Season.		Warm Season.		Epochs.	Cold Season.		Warm Season.	
	No. of Stations.	$\begin{aligned} & \text { Mean of } \\ & \text { Jan.-Feb. } \end{aligned}$	No. of Stations.	Mean of July-Aug.		No. of Stations.	$\begin{aligned} & \text { Mean of } \\ & \text { Jan.-Feb. } \end{aligned}$	No. of Stations.	$\begin{aligned} & \text { Mean of } \\ & \text { July-Aug } \end{aligned}$
1786-90	2	\circ +1.0	2	0 +1.5	1831-35	10	0 -1.6	10	0 +2.0
1791-95	3	-1.0	3	+1.1	1836-40	9	-1.8	8	+2.9
1796-1800	4	-1.8	4	$\underline{+1.5}$	184 T-45	10	[+0.6]	10	+1.1
1801-05	4	-2.7	4	$+1.0$	1846-50	10	0.0	10	+1.4
1806-10	6	[-3.9]	6	[+o.6]	$1851-55$	9	-3.4	9	+2.4
1811-15	6	-3.6	6	+1.5	1856-60	8	-3.9	8	$+3.0$
1816-20	4	-2.4	6	+1.9	1861-65
1821-25	6	-3.0	6	+1.9	1866-69	.	.	.	-
1826-30	6	-3.0	8	$+1.8$					

Extreme values are indicated by being contained within brackets, and they point approximately to the epochs 1809 and 1844 , when the greatest cold fell on the average early in January and about the middle of February, respectively. Respecting the epoch of greatest heat, the figures leave us in no doubt, though the probability would seem to be in favor of a corresponding lateness about 1808 and an earlier occurrence in the position of the maximum at some rather undefined later epoch.

If the preceding result could be considered as well established, the cycle of the shifting of these dates of maximum cold (and heat) would be about twice 35 years.

Tables of observed extremes of temperature, for every month, for a series of years.

'I' complete our information respecting the annual fluctuation of the temperature, it is necessary to examine the extreme variations from the normal values; with this view the following table of monthly extremes has been prepared for a number of selected stations. They comprise nearly all the longer series, for which maxima and minima have been tabulated; the extreme values given are those fourd in the record, entered at the regular hours of observation, as adopted by the respective observers, the cases of maxima and minima thermometers being very restricted. They do not, therefore, exhibit the absolute extremes, but only approximations to them; besides, the intervals of time over which the series extend are far too restricted to entitle the extremes to be regarded as anything more than approximations. For the geographical position, and the actual duration of each series, after the deduction of breaks, the reader will have to consult the
general tables of mean temperatures, given in Section I. Observations of a later date than 1870 are included in our table.

The tabular values are taken from a large manuscript collection, which embraces the observed monthly extremes for every year separately; in this form the table was found far too bulky to conform to the plan of this paper, and only an abstract of the manuscript is here presented.

The headings to the table give all the explanation needed. To render it easy to refer to the general tables for any further information, the table of extremes is arranged alphabetically, by States or Territories, and the stations in each are also given in alphabetical order.

TABLES OF OBSERVED EXTREMES OF TEMPERATURE

FOR EVERY MONTH, FROM A SERIES OF YEARS.
PRINCIPALLY FOR STATIONS WITHIN THE UNITED STATES.
ald values are expressed in degrees of the fahrenheit scale.

BRITISH NORTH AMERICA AND CANADA．

during Each Month．

Lowest Temperature during Each Month．

官	辰	¢	岕	䁉	号	宫	安	$\begin{gathered} \text { 芯 } \\ \text { in } \end{gathered}$	نٌ	号	¢ٌ	Cold．
						，		${ }^{\circ}$				1868
	1	4	10	22	32	36	42	36				1868
36	29	－ 12	13	30	58	62	55	30	23	－ 5	－22	1822
53	－54	46	－49	22.	31	41	35	29	7	－54	－55	1851
5	－ 14	－ 5	10	22	32	46	41	34	19		－7	1866
－20	－32	－9	8	25	40	47	47	30	18	－ 2	－18	1861
54	－55	－53	－20	－3	28	35	30	19	－15	－51	－56	1865
1	35	－21	－14	19	30	28	29	28	7	－	－24	1863
－2I	II	－3	10	29	39	45	46	36	22	10	－14	1866
II	－14	－15	12	18	27	30	33	30	21	12	2	1863
33	－36	－34	11	25	38	52	45	32	16		－19	1865
－27	－25	－16	6	13	28	39	40	28	16	－4	－15	1859
	－13	－3	12.	26	41	55	49	39			－7	1861

ALABAMA．

1		96	91	86	78	68	I 838	－9	－ 7	11	31	40	50	51	54	39	29		－ 7	18362
2	98	96	96	94	85	76	1873	19	33	31	44		51	68	70	60	42	36	27	1873
3	100	104	98	96	88	84	1860			23	33	48	58	61	57	46	32	24		1852

ALASKA．

$\mathbf{1}$	92	81	67	58	51	46	1870	6	23	-2	33	38	43	52	47	38	37	32	24	$\mathbf{1 8} 80$
2	78	80	68	58	48	42	1868	0	16	-10	32	36	38	47	47	38	32	28	20	1870
3	76	77	59	55	55	47	1832^{9}	3	-1	0	16	27	34	39	38	26	21	6	5	1830
4	82	80	70	62	57	53	1833^{4}	-4	2	9	19	28	30	34	30	28	19	4	2	$\mathbf{1 8 7 4}$

ARIZONA．

1	103						
2	107	99	96	85	80	1873	
2	106	108	104	101	90	68	1869
3	105	94	92	89	76	69	1868
4	111	105	106	97	86	84	1870
5	111	102	98	98	83	72	1869
6	116	106	106	100	98	88	1871
7	112	102	101	96	98	78	1869
8	114	108	110	108	99	89	1869^{5}
9	113	105	101	99	89	75	1873
10	100	91	94	90	82	76	1867
11	102	98	95	93	75	78	1858
12	99	96	87	79	72	65	1855
13	118	16	109	105	90	$8 \mathbf{1}$	1870^{6}
14	105	91	92	93	88	83	1865

－	20	32	32	47	55	62	57	56	
30	33	31	49	54	61	80	74	63	
25	23	29	40	49	56	61	59	57	39
20	22	25	38	45	4^{8}	65	58	52	
10	20	30	34	54	59	71	70	50	
19	16	27	24	30	50	58	55	53	
22	22	27	36	52	53	72	70	62	
16	18	30	29	43	49	62	65	51	
5	12	19	27	34	43	48	50	36	
23	3	30	36	49	50	64	61	52	
14	24	13	28	42	57	60	56	55	
－20	－12	－ 1	12	19	30	36	43	30	
21	14	36	40	47	39	47	52	45	
－10	10	11	13	31	36	31	48	32	

31	22	20	1873
52	43	31	1869
39	27	17	1869
32	27	16	1869
34	27	14	1866
35	26	21	1874
40	31	20	1869
20	17	21	1874
16	6	6	1874
35	17	16	1867
28	24	15	1858
17	0	-25	1855
27	20	23	1873
12	1	-9	1866

ARKANSAS．

CAHIFORNIA．													
Name of Station．				Meight．	Degins．${ }^{\text {Series．}}$ Ends．		Highest Temperature						
				苟			$\underset{i=1}{e}$	密	离		$\stackrel{ \pm}{\Xi}$		
I．Alcatraz Island	：－	．				Feb．1860；	June，1874	${ }^{\circ} 8$	$\stackrel{\circ}{70}$	${ }_{7}{ }^{\circ}$	8	86	88
2．Angel Island ．	．．	．	．	30	Dec．1867；	June， 1874	72	75	76	83	93	88	
3．Benicia Barracks	－	．	．	64	Nov．1849；	June，IS74	70	78	82	98	95	103	
4．Camp Bidwell ．	－	．	．	4680	Nov．1863；	June， 1874	72	77	82	85	90	97	
5．Camp Cady	－	－	．	3000	Jan．1868；	Dec． 1870	71	76	90	98	104	rr_{4}	
6．Camp Gaston ．	－	．	．		Sept．186r；	June， 1874	66	69	83	89	103	108	
7．Camp Independence	－	－	．	4800	Nov．1862；	June， 1874	73	78	86	95	95	105	
S．Camp Lincoln ．	－	．	．	．．．	Sept．1866；	May， 1869	62	70	70	77	86	75	
9．Camp Wright－	－	．	．	\ldots	July，I864；	June， 1874	77	81	89	91	102	108	
10．Drum Barracks ．	－	．		32	May，1864；	Nov． 1870	81	80	85	95	IoI	99	
II．Fort Bragg	－	－	－	\ldots	Dec．1860；	Sept． 1864	64	65	70	75	72	72	
12．Fort Crook	－	－	－	3390	Jan．1858；	Apr． 1869	53	68	76	84	89	99	
13．Fort Humboldi ．	－	－	－	50	Jan．1854；	Dec． 1869	66	70	72	75	73	78	
14．Fort Jones ．	－	－	－	2570	Jan．1853；	June， 1858	60	70	82	92	98	99	
15．Fort Miller	－	．	．	402	Aug．1851；	Aug． 1864	70	74	88	101	II3	121	
16．Fort Point ．	－．	．	．	27	Jan．1860；	Dec． 1870	65	74	70	77	83	76	
17．Fort Reading	－	－	－	674	Apr．1852；	Mar．1856	72	So	89	89	95	106	
18．Fort Tijon	－．	－	－	3240	Mar．1855；	Aug． 1864	72	73	83	84	90	100	
19．Fort Ter－Waw	－	－	－	\cdots	Apr．1859；	Oct．1861	58	67	So	82	78	84	
20．Fort Yuma	－	－	．	200	Dec．1850；	June， 1874	83	86	94	106	IoS	117	
21．Monterey ．	．	．		40	May，1847；	Dec． 1869	76	74	S6	85	85	92	
22．Point San José	－	．	．	．．．	Mar．I866；	June， 1874	65	75	78	90	81	87	
23．Presidio．	－	．	－	150	Oct．－1847；	June， 1874	72	74	82	82	86	89	
24．Sacramento	－	－	－	52	July，1849；	Dec． 1866	63	73	89	94	91	IOI	
25．San Diego ．	－	－	．	150	July，I849；	Apr． 1866	So	83	90	93	96	102	
26．Union Ranche	．	．			Jan．1861；	Dec． 1862	64	70	So	87	92	102	
27．Yerba Buena Island	－	－	－		Feb．1869；	Oct． 1873	70	74	83	So	88	90	
COHORADO．													
I．Fort Garland				8365	Sept． 1852 ；	June， 1874		64	70	80	93	93	
2．Fort Lyon ．				4000	Jan．186I；	June， 1874	72	75	81	98	98	107	
CONNECTICUT．													
I．Colebrools ．				1210	Jan．1861；	Nov． 1870	53	56	72	8 r	87	91	
2．Columbia ．	．			．	Jan．1861；	Dec． 1870	70	64	78	82	92	96	
3．Fort Trumbull	．．			23	Jan．1827；	June， 1874	62	61	69	82	92	93	
4．Middletown	－．	－		$\times 75$	Jan．1860；	Dec．1870	56	63	78	85	86	95	
5．New Haven	－．			45	July，1778；	Oct． 1865	64	68	76	85	93	102	
6．Pomfret ．	．．			587	Jan．1861；	Dec． 1868	56	57	69	8o	87	89	
DAKOTA．													
1．Fort Abercrombie 2．Fort Buford 3．Fort Randall 4．Fort Ransom 5．Fort Sully ． 6．Fort Wadsworth	－．		－		Feb．I859；	June， 1874					102	99	
	．．	－	－	1900	Sept．1866；	June， 1874	52	51	78	88	99	106	
	．．			1245	Jan．IS60；	June， 1874	65	68	79	95	ror	105	
				．	Dec．1868；	Dec． 1870	34	39	63	82	85	97	
			．	．．．	Jan．I 866 ；	June， 1874	61	64	71	98	101	108	
			－		Sept． 1866 ；	June， 1874	40	42	54	84	93	96	
DEI．AWARH．													
1．Fort Delaware	－．			10	Jan．1826；	Sept． 1870	62	65	So	S5	9 I	97	
${ }^{1}$ Also in 1874.		2 Also in 1870．			${ }^{3}$ Also in 1873.		4 Also in 1857.						

CALIFORNIA.
during Eachi Month.

	July.
	Aug.
	Sept.
	Oct.
	Nov.
	Dec.

Lowest Temperature during Each Month.

Year of Extreme
Heat.

CONNECTICUT.

DELAWARE.

I	101	IOI	90	88	75	65	IS65	-5	-	5	24	38	49	53	51	47	32	20		1866

DISTRICT OF COLUMBIA．

during Each Month．						Year of Heat．	Lowest Temperature during Each Month．												Year of Extrem Cold．	
官	安	落	$\stackrel{\square}{8}$	公	－		发	定	學	妾	突	邑		$\begin{array}{\|l\|} \hline \frac{\varepsilon_{0}}{4} \end{array}$		ஃ̈	会	คั		
$1{ }^{1} 1{ }^{\circ} \mathrm{O}$	ror	$\stackrel{\circ}{95}$	90	75	${ }_{72}$	1838	$-_{14}$	－	$\bigcirc^{\circ} 5$	24	${ }^{\circ}$	$\stackrel{\circ}{45}$	${ }_{50}^{\circ}$	$\stackrel{\circ}{49}$	$\stackrel{\circ}{3}$	$\stackrel{\circ}{22}$				1835

FLORIDA．

IDAHO．

ILLINOIS．

INDIANA．

1	99	99	93	S6	75	70	1868	－15－2	7	28	34	48	56	48	38	20	10－2	1864
2	100	97	94	82	71	61	1864	－19－21	－	25	34	49	55	48	39	15	$4-11$	1866
3	100	98	99	96	78	76	1865^{11}	｜－4｜－10	6	23	35	50	58	50	42	21	10－9	1867

${ }^{1}$ Also in 1827.
2 Also in 1852.
3 Also in 1857.
4 Also in 1870.
5 Also in 1845 ．
5 Also in 1873.
7 Also in 1835 ．
${ }^{8}$ Also in 1843.
9 Also in 1861．
${ }^{10}$ Also in 1864.
${ }^{11}$ Also in 1865 and 1866.

INDIAN TERRITORY．

during Each Month．							Year of Extreme Heat．	Lowest Temperature during Each Month，												
	宝	范	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { (} \\ & \text { in } \end{aligned}$	U	$\begin{aligned} & \text { 号 } \\ & \text { 号 } \end{aligned}$	نٌ		碞	E	美	矣	㝕	㡙	穾	药	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{u} \end{aligned}$	Ü	$\begin{aligned} & 3 \\ & 8 \\ & 8 \end{aligned}$	¢ٌ	Extreme
	$\stackrel{\circ}{10}$	107	$\begin{gathered} \circ \\ 99 \end{gathered}$	$\stackrel{\circ}{94}$	83	$\stackrel{\circ}{75}$	1856		－4	${ }^{\circ}$	$\stackrel{\circ}{25}$	$\begin{gathered} \circ \\ 35 \end{gathered}$	$\begin{gathered} \circ \\ 5 \mathrm{I} \end{gathered}$	$\stackrel{\circ}{54}$	$5^{\circ} 6$	${ }^{\circ} 8$	26		1	$1856{ }^{1}$
2	106	116	103	95	86	91	1834	－20	－12	7	28	32	50	54	37	30	18		－ 8	1857
3	109	109	IO3	96	84	75	1871	－20		20	27	39	54	50	59	46	21		－II	1873
4	102	101	100	88	82	78	1845		－	10	30	38	52	54	56	35	24	10	－	1835^{2}
5	106	106	100	92	84	78	$1845{ }^{3}$		－I	10	28	38	52	61	58	42	29	17		1857

IOWA．

I	97	96	89	86	72	58	1864	－29	－26	－25	13	30	45	55	43	30	10	－ 6	－18	1862
2	105	98	97	86	68	51	1868	－26	－35	－ 11	10	33	47	50	44	29	10	－I	－27	1868
3	95	91	88	82	69	56	1868	－22	－24	－ 8	19	32	32	51	51	35	19		-17	1868
4	100	98	$9 \mathrm{9I}$	85	67	58	1870	－29	－20	7	13	36	50	53	46	34	19		-23	1864
5	99	92	92	84	78	46	1844	－19	－22	-16	4	29	40	44	44	22	2	－12	－22	1842^{4}
6	99	93	90	82	70	58	1868	－28	25	－19	16	31	5 I	57	50	34	18	－I	－18	1852
7	105	103	97	85	72	66	1870	33	－20	-12	18	33	44	40	4I	29	16	－	－20	1864
8	99	99	87	82	68	52	1870	－30	37	－20	16	27	41	50	42	26	8	－	－22	1868
9	99	97	88	8 I	69	52	1870	－30	21	－16	17	34	47	58	48	34	12	－ 5	－16	1864
0	100	99	92	86	72	62	1870	－26	25	－ 13	20	31	42	46	43	33	16		－17	1864
1	101	98	90	82	68	55	1870	－22	30	－10	22	33	35	59	48	34	16		－18	1868
12		95^{4}	90	80	76	53	1868	－24	-20	－15	11	30	43	52	49	30	16		－18	1864
13	98	roi	96	87	75	70	61	－26	5	－10	5	23	33	42	36	30	8	－1	-22	1860
14	92	94	86	78	68	47	$1867{ }^{5}$	－29	14	－19	10	30	34	50	42	30	19		－13	1864
15	103	97	89	81	71	58	1868	18	－16	－12	17	36	49	33	47	33	13		－21	1868
16	100	96	88	80	68	48	1868			－20	15	32	46	50	40	30	14		－19	1868

KANSAS．

1	100	101	96	90	76	62	1870	6	6－6－14	23	34	52	6 I	53	39	2	4	－ 7	1867
2	106	100	95	86	79	70	1868		－7 6	32	46	54	70	62	46	24	22	－10	1870
3	106	102	96	93	78	67	1868	－ 12	$2-6-17$	24	36	50	58	48	33	24	6	－15	1867
4	96	102	94	86	68	60	1853	－ 6	6.29	22	43	45	64	56	40	30		－12	1850
5	103	102	93	90	82	69	1868	5	5－1 4	31	42	52	60	50	38	10		－10	$1869{ }^{6}$
6	Ito	104	102	97	96	82	1868	－－15	5－15 4	23	30	49	57	46	30	5	－7	－15	1872^{7}
7	115	105	104	98	82	79	1871	－22	2－9 4	11	3 I	49	54	47	34	1	1	－13	1861
8	105	105	104	93	78	71	$186 c^{8}$	－30	－26－9	13	21	43	50	48	30	11	-14	－r9	1834
9	111	108	108	97	8 SI	71	1860	－29	9－18－20	10	34	45	50	48	28	9	6	－16	1862
10	98	104	98	95	80	69	1850	-9	9－12－10	22	31	46	47	48	31	21	－10	－14	1848
II	III	102	93	83	77	66	1868	－II	$-10-2$	22	40	52	61	52	32	11		－19	1868
12	101	98	93	82	73	64	18686	－7	$7-5-1$	I8	35	37	47	53	29	15		－16	1868
13	109	103	97	90	80	69	1868	－12	－16－18	19	30	42	55	41	26	12		－19	1868
14	$1 \mathrm{IO}_{3}$	Ior	97	94	96	68	1862	－12	－9－9	19	41	46	56	52	34	14		－16	1868
15	108	102	94	89	77	66	1868		$2\|-14\|-8 \mid$	22	37	51	60	51	30	21		－20	1868

KENTUCKY．

LOUISIANA．

1	99	102	97	91	90	82	1860	8	10	26		49	57	63	63	47	3^{2}	26	18	1852
2	IOI	100	100	91	88	86	1824	1 I	7		34	44	54	50	58	36	23	17	14	1823^{9}
3	98	100	97	90	86	76	$1835{ }^{10}$	30	14		46	62	62	68	69	51	43	31	30	1835
4	98	100	94	89	83	82	1870	21	23	26	42	54	64	70	66	48	38	30	22	1832
5	100	100	94	96	90	86	$1840^{\text {I }}$	${ }^{1} 7$.	26	29	38	48	58	70	70	62	40	29	19	1852
${ }^{6}$ Also in 1870.				7 Also in 1873.			8 Also in 1834 ．			9 Also in 1838.				10 Also in 1845.				${ }^{11}$ Also in 1841		

MAINE.

during Each Month.

	$\stackrel{\square}{\Xi}$	号	号	U	\%	¢
I	$\stackrel{0}{\circ}$	$\stackrel{\circ}{98}$	${ }_{9}^{06}$	$\stackrel{8}{88}$	72	${ }_{6}^{6}$
2	94	93	86	78	65	58
3	96	96	88	74	70	58
4	98	91	85	87	66	56
5	96	94	89	77	72	58
6	99	97	90	81	73	55
7	96	90	94	77	70	56

Lowest Temperature during Each Month

Year of Extreme Heat. | Heat. |
| :---: |
| |
| 1808 |
| 1849 |
| 1822^{1} |
| 1826 |
| 1841 |
| 1836 |
| 1846^{3} |

 \begin{tabular}{c}
$\stackrel{6}{3}$

$\underset{4}{3}$

\hline 0

35

43

45

45

42

34

42

$\ddot{3}$
\vdots
n

\hline 0

23

30

32

33

28

27

31
\end{tabular}

 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 19 & - \\ 21 & \\ 24 & - \\ 16 & \\ 16 & - \\ 18 & -\end{array}$ \begin{tabular}{c|c}
\circ \& 0

\vdots \& 0

\hline \multicolumn{1}{c}{}

\hline 0 \& 0

-3 \& -2

2 \& -1

1 \& -1

-5 \& -20

3 \& -2

-6 \& -2

-2 \& -1

Extreme

Cold.
\end{tabular}

MARYLAND.

MASSACHUSETTS.

1	95	98	89	83	70	59	1864	-22	$-20-9$	5	27	34	40	38	26	15.	$3-15$	1844
2	99	92	89	83	69	60	$1854{ }^{7}$	-1	-10-6	18	31	35	35	40	34	24	$5-10$	1857
3	100	95	100	73	65	58	1872	-10	$8-2$	16	35	39	50	50	41	30	$9-8$	1866^{8}
4	95	97	85	75	66	55	I 864	-	$-16-7$	22	32	44	54	48	33	23	13-8	1861
5	98	96	89	83	71	66	1868	-29	$-26-6$	10	26	42	50	44	32	20	$8-16$	1855
6	92	98	89	84	71	58	1864	-	$-17-6$	19	30	46	50	49	30	22	II-5	$186 \mathrm{x}^{9}$
7	89	88	83	76	70	60	1849	-	-5 3	17	40	46	53	44	36	25	$15-2$	1859
8	96	91	88	83	71	64	1818	-I	-16 0	18	26	38	55	44	33	23	6-10	1861
9	97	90	88	78	70	51	1868	-	-22-I I	22	32	48	50	43	34	16	12-9	1868
10	97	96	90	87	72	61	1861^{10}		$-24-8$	18	29	42	54	50	34	18	16-3	1861
I I	97	94	91	82	72	49	1840	-I	-II O	17	27	30	42	42	29	24	$5-3$	$1839{ }^{11}$
12	97	96	95	85	72	59	1820^{12}		$-26-12$	17	28	35	43	39	25	13	$3-19$	1835
13	94	89	85	85	70	60	I 866	-15	$\|-19\|-2 \mid$	21	33	44	53	51	39	25	$12-3$	1861

MICHIGAN.

1	96	98	91	86	So	78	1861	-19	14	5	11	24	32	41	37	31	15		-13	1864
2.	96	96	98	82	72	60	1854	-42	47	9	-4	16	24	33	37	29	10	-9	-4I	1873
3	98	94	91	78	74	72	1834	-15	-18	-7	2	22	33	40	39	30	19		-16	1836
4	88	86	82	70	62	5 I	1835	-27	-24	-19	6	21	32	41	4 I	30	17	-4	-16	1851
5	90	91	81	75	62	57	1861	5	-16	,	8	27	28	33	48	28	17		0	1861
6	96	99	89	81	71	52	1864	2	-15	- 2	20	30	44	52	38	22	18		-17	1864
7	103	100	93	85	69	61	1862	-31	-33	-19	3	16	30	33	38	23	15	- 4	-19	1861
8	103	99	98	89	71	59	1866	-17	-21	-8	19	29	38	41	34	27	20		-13	1868
9	98	98	91	89	69	53	$1864{ }^{4}$	-34	-37	-22	-5	I8	30	30	33	20	4	3	-r6	1861
10	86	87	85	75	59	60	1864	-25	-25	-10	9	17	27	34	31	28	23	11	-6	18619 ${ }^{9}$
II	9°	93	81	73	61	51	1864	-17	-25	-12	8	25	35	4 I	40	3.3	26		- 5	1861

so in 1834 and $\mathbf{1 8 3 5}$.	${ }^{2}$ Also in 1833 and 1839.	${ }^{3}$ Also in 1849.
${ }^{4}$ Also in 1868.	${ }^{5}$ Also in 1820, 1850, and 1851.	6 Also in 1849 and 1872.
7 Also in 1872.	8 Also in 1873.	9 Also in 1866.
${ }^{10}$ Also in 1866 and 1868.	11 Also in 1840.	12 Also in 1825 and 1826.

MINNESOTA.

during Each Month.

covour + wn	
ロu \% ototo	July.
¢885000 \% \%	Aug.
	Sept.
	Oct.
	Nov.
	Dec.

Year of
Extreme
Cold

Cold.

IMISSISSIPPI.

1 2 3	100 94 96	99 92 96	94 90 95	89 86 90	80 80 85	76 79 91	$\begin{aligned} & 1862 \\ & 1860 \\ & 1868 \end{aligned}$	10	14 20 25 25	20 22 25 25	37 37 37	$\begin{aligned} & 47 \\ & 45 \\ & 53 \end{aligned}$	59 63 64	$\begin{aligned} & 72 \\ & 60 \\ & 69 \end{aligned}$	$\begin{aligned} & 56 \\ & 60 \\ & 67 \end{aligned}$	$\begin{aligned} & 47 \\ & 46 \\ & 50 \end{aligned}$	$\begin{aligned} & 29 \\ & 36 \\ & 35 \end{aligned}$	22 22 26	15 16 17	$\begin{aligned} & 1864 \\ & 1860^{2} \\ & 1868 \end{aligned}$
MISSOURI.																				
1	109	103	100	Ioo	84		1868				26	36	48			35	14			1870
2	105	95	90	86	76	64	1868	- 8	-8		26	36	50	58	52	34	20		-14	1868
3	Io3	102	99	93	78	69	1860	-14	-18		17	32	44	52	35	37	22			1835
4	Io5	96	93	91	78	72	1868	-12	-10	-7.	20	38	48	57	50	34	15		-16	1868
5	97	93	91	81	77	68	1870	-	- 3	10	23	39	44	61	58	39	18		-23	1870
6	IO3	ıo8	98	95	SI	74	1834	$\left.\right\|^{-19}$	-25		23	31	37	54	49	35	22			1835

IMONTANA.

1	92	93	82	82	69	56	1873	-32	-43-12	14	30	32	40	43	19	0	-42-53	1871
2	92	95	85	81	68	56	1870	-36	-33-28	16	32	35	45	32	26	-	8-16	1870
3	105	101	92	85	70	62	1870	-38	-35-23	11	27	29	40	28	9	4	$-36 \cdot 51$	1871
4	102	100	93	75	71	60	1869	-53	--53-36	10	25	28	30	28	18	-3	-19-45	1872
5	I12	102	94	91	80	74	1872	-43	-31-25	10	24	30	34	24	17	-5	$-37-37$	1870

NEBRASKA.

1	102	103	99	84	76	63	I 861	-	-13	-15	19	32	49	60	50	36	6		-14	1860
2	104	95	86	81	70	52	1868	19	-17	- 9	19	41	42	56	53	33	10		-19	1868
3	108	104	94	96	87	63	1862	-21	-16	3	13	30	48	54	50	40	13	- 6	-17	1864
4	102	100	97	91	77	68	1857	-28	-22	-4	10	26	39	45	37	27	8		-23.	1852
5	115	110	102	102	8I	76	1870	-	-24	-3	no	28	35	35	40	19	6	- 4	-18	1874
6	106	97	95	87	78	68	1868	-26	-22	-20	22	35	51	57	52	30	22	-	-30	1868
7	100	101	93	88	78	65	1873	-21	-16	- 1	16	28	24	54	46	34	24	- 7	-20	1873
8	102	98	91	78	72	70	1870	-	-14	- 5	18	40	48	59	50	40	20		-15	1870
9	105	104	99	87	76	61	1862			\|-15	17	34	49	56	50	32	11		-21	1864

NEVADA.

x	x07	100	88	93	68	60	1871	-22	-18	- 8	7	13	25	23	24	19	3	-12	-13	1868
2	100	104	95	S8	73	58	1870	9	-9	3	11	23	29	40	35	24	11		-4	1868
3	90	88	86	76	71	47	$1867{ }^{1}$	-18	-10	- 6	15	20	32	40	48	32	16		-13	1868
4	98	99	93	So	64	59	1868	15	-12.	- 2	29	35	27	51	49	39	25	15	10	1868
6	100	97	92	85	71	65	1863	-9	0		25	27	42	57	59	43	16		- 1	1866
6	100	99	94	101	88	78	1863		-19		19	32	34	48	47	25	8		-15	1864

${ }^{1}$ Also in 1868.

NWW HAMPSHIRE．

during Each Month．

	$\stackrel{\square}{3}$	¢	范	U	－	¢ٌ
	2	\bigcirc	\bigcirc	8	\bigcirc	7
1	92	92	90	80	73	57
2	98	93	91	80	68	57
3	96	96	92	79	69	58
4	96	94	90	76	68	59
5	99	97	87	70	68	50
6	100	90	86	79	70	50

Year of Extreme Extreme
Heat．百

Lowest Temperature during Each Month．

号	号	豆	总	芸	邑	官	安
${ }_{-22}$	－30	${ }_{-18}$	${ }^{\circ} 6$	${ }_{3}^{\circ}$	${ }_{4}{ }^{\circ}$	50	${ }^{\circ} 2$
－32	－20	－9．	18	29	38	43	40
－34	－33	－23	－	22	26	40	27
－ 12	－10	－ 7	16	30	36	47	48
－11	3	－2	14	28	36	48	46
33	－37	22	2	20	36	43	40

 $-\frac{8}{0}$
 Year of
Extreme Cold． 1861
1835
1848
1821^{3}
1839
1861

NEW JERSEY．

1	95	93	86	79	73	67	1864	－9 2	7	30	40	53	55	53	45	29	19	5	1866
2	102	94	90	78	72	62	I866	－12 3	16	30	32	45	46	51	42	3 I	19	I	1866
3	92	92	86	83	70	66	1864	－5－7	2	21	31	44	52	49	39	28		－I	186 r
4	99	95	90	81	70	60	1866	－13 ${ }^{1}$－ 5	－	22	37	50	38	48	42	26	16		1866

NEW IMEXICO．

1	110	105	98	96	86	66	1857	-4.0	12	22	28	38	50	44	40	20		－5	1850
2	100	99	90	86	68	65	1850	$9 \quad 2$	20	25	31	44	50	53	50	38	11		1851
3	109	108	99	93	78	76	1870	－ 10	10	28	48	54	56	59	46	25		－18	1869
4	96	97	89	85	71	68	1871	8－1	12	9	29	35	50	50	40	12			1873
5	101	100	95	90	81	67	1852	411	17	27	31	45	55	60	41	25	14	11	1852
6	112	105	103	96	84	81	1857	－3 8	16	20	36	45	57	54	42	25	10	－ 2	1874
7	102	101	102	106	90	94	1871	$\begin{array}{ll}-5 & 13\end{array}$	23	10	36	45	56	54	47	23	3	20	1873
8	107	106	100	99	86	8o	1852^{4}	－ 20	14	26	40	50	50	58	50	30	14	15	1859
9	116	107	103	90	78	81	1873	$3 \quad 9$	2	22	37	46	55	59	44	20	22	4	1874
10	104	105	99	94	79	74	1872	－12 11	15	27	33	52	49	52	39	18	4		1873
II	93	98	90	87	75	65	1867	-2		21	32	44	50	50	29	22	2	－	1856
12	98	97	98	84	75	75	1865	1	8	28	40	57	60	58	46	26	2		1 865^{5}
13	110	107	95	95	79	76	1854	7	5	25	30	39	51	50	41	19	10		1854
14	101	96	90	89	87	72	1871	－13－	-4	15	20	25	40	32	28			－28	1855
15	99	102	97	95	89	68	1870	－16 3		18	30	38	51	50	30	18	－3	－8	1864
16	99	100	91	82	78	68	1850	－9－2		19	28	39	50	49	34	3		－11	1850

NEW YORK．

1	97	96	89	80	70	62	1830^{6}	－23	－16	－12	6	28	40	50	31	30	21		－I3	18357
2	98	110	90	85	70	63	1861	-14	－16	－ 6	6	14	28	44	42	30	18		－6	1861^{8}
3	98	98	90	78	65	57	1834	－28	－34	－22	14	23	23	39	30	19	14	1	－36	1835
4	96	95	88	78	70	53	1868	O	－10		25	34	50	57	52	40	25	18	－2	1868
5	94	93	88	7^{6}	68	52	1834	－31	－18	－16	15	17	30	38	33	21	17	4	－23	1835
6	98	97	9 I	80	73	60	1868	－ 11	－15	－II	13	22	36	44	41	32	23	10	－6	1861
7	96	96	90	78	74	60	1831	－36	－32	－20	12	23	37	41	36	23	14	－ 6	－29	1835
8	97	96	94	80	69	50	1830	-36	－16	－ 6	22	28	43	48	38	26	22		－18	1835
9	94	93	84	79	70	61	1834	－10	－11	－ 8	22	27	42	50	41	32	20		－9	1832
10	97	92	93	83	70	59	1838	－28	－22	－19	11	17	27	37	32	25	10	－ 6	－21	1840
11	98	96	92	84	73	66	1866	$-{ }^{-15}$	－20	-3	7	13	32	38	35	26	17		－22	1866
12	98	90	88	83	67	57	1834	－30	－30	－12	4	21	31	34	36	26	17		－19	1835^{9}
13	93	92	88	78	68	60	1841	8	-1	－ 2	20	25	32	47	42	30	20	10.	－ 2	1835
14	94	96	90	78	69	60	1838	－21	22	8	－ 1	23	26	32	30	22	14	－10	－26	1835
15	96	96	92	81	72	68	${ }_{1} 827^{10}$	－6	－ 6		24	28	39	53	48	32	22	12		$1835{ }^{11}$
16	104	99	92	86	71	69	1825	－12	－7	2	17	31	42	54	49	39	29		3	1866
17	99	96	90	84	76	65	1864	－10	－ 7		18	34	40	47	50	37	29	1	－ 2	1866
18	98	95	94	82	72	63	1830	－9	15		14	18	37	48	46	33	25		－8	1861
19	96	98	96	82	73	67	1870	20	-16	－2I		26	35	43	41	3 I	26		－20	1872
	${ }^{1}$ Also in 1845. 5 Also in 1867. 9 Also in 1836.					2 Also in 1852.						3 Also in 1851.						4 Also in $\mathbf{1} 860$.		
							Also in	845 an	nd 18			7 Also in 1840.						8 Also in $\mathbf{1} 865$.		
							10 Also in 1849 and 1864．					11 Also in 1861．								

28 April，I875．

NORTH CAROLINA.

1. Fort Johnson

2. Fort Macon
... Jan. I820; June, 1874
\cdots Jan. \cdots IS34; Aug. 1849

NEW YORK．－Continued．

during Each Month．

	July．
	Aug．
	Sept．
	Oct．
	Nov．
	Dec．

Vear Lowest Temperature during Eack Month． Extreme

曾菅

完
1868
-7
-7
-3
훈
842
831^{3}
826
Heat．

$$
\begin{aligned}
& -17 \\
& -4 \\
& -2
\end{aligned}
$$

1845
$\mathbf{I} 827^{4}$
1830
1828^{5}
1845
1845
＋im

\section*{661} | 8i |
| :--- |
| 子 |
| 0 |
| 44 |
| 41 |
| 40 |
| 36 |
| 32 |
| 33 |
| 36 |
| 34 |
| 44 |
| 37 |
| 45 |
| 38 |
| 38 |
| 41 |
| 42 |
| 42 |
| 44 |
| 33 |
| 38 |
| 40 |
| 42 |
| 32 |
| 42 |
| 41 |
| 38 |
| 51 |
| 49 |
| 43 |
| 53 |
| 44 |
| 31 |
| 37 |
| 44 |
| 40 |
| 44 |
| 32 |
| 45 |
| 34 |
| 34 |
| 40 |
| 34 |
| 36 |
| 40 |
| 44 |
| 43 |
| 41 |
| 46 |
| 34 |
| 50 |
| 37 |
| 47 |
| 46 |
| 34 | | 苟 |
| :--- |
| 0 |
| 2 |
| 0 |
| 33 |
| 32 |
| 30 |
| 32 |
| 22 |
| 19 |
| 27 |
| 28 |
| 30 |
| 28 |
| 29 |
| 25 |
| 26 |
| 30 |
| 25 |
| 31 |
| 33 |
| 16 |
| 28 |
| 23 |
| 28 |
| 24 |
| 28 |
| 29 |
| 25 |
| 44 |
| 34 |
| 30 |
| 40 |
| 30 |
| 26 |
| 22 |
| 35 |
| 30 |
| 37 |
| 17 |
| 29 |
| 25 |
| 26 |
| 28 |
| 23 |
| 28 |
| 30 |
| 28 |
| 28 |
| 27 |
| 33 |
| 25 |
| 39 |
| 30 |
| 30 |
| 36 |
| 23 |

 $\frac{\stackrel{3}{\circ}}{\substack{2 \\ 0}}$

Extreme
Cold

186
\qquad

$$
\begin{array}{r|r|}
7 & -40 \\
4 & -20 \\
2 & -10 \\
7 & -14
\end{array}
$$

$$
\left.\begin{aligned}
-1 \\
-4 \\
-4 \\
-4 \\
-7
\end{aligned} \right\rvert\,-
$$

$$
\begin{aligned}
& 183 \\
& 183 \\
& 183 \\
& 183
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{mon}^{\infty} \\
& 0 \\
& 0
\end{aligned}
$$

-4
125
-12
-12 $\min _{\infty}^{\infty}{ }^{\infty}$$-2$

1
\qquad183
183
1832^{8}
1835
1871
183
182

1 000 008 $00 y$ $n i n$

$||\mid$
$\infty \rightarrow \infty$
∞
∞
∞
∞
1866
$\mathbf{I} 868$
1849
1841
1864
182610
1863
1829
1868
$\begin{array}{r}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 1\end{array}$

NORTH CAROLINA．

${ }^{1}$ Also in 1868.	2 Also in 1842.	3 Also in 1843.	4 Also in 1849.
${ }^{5}$ Also in 1831.	${ }^{6}$ Also in 1844.	7 Also in 1846 and 1850.	8 Also in 1837.
${ }^{3}$ Also in 1839.	to Also in 1828.	${ }^{11}$ Also in 1841．	12 Also in 1840.
Also in 1852.			

${ }^{13}$ Also in 1852 ．

SOUTH CAROLINA．									
Name of Station．	Height．	Begins．Serits．${ }_{\text {Ends．}}$		Highest Temperature					
				㤩		嵒	㝽，	夽	号
r．Charleston ． 2．Fort Moultrie	20 25	$\begin{aligned} & \text { Jan. I750; } \\ & \text { Jan. } 18223 ; \end{aligned}$	Dec．${ }^{\text {d }}$ Dec． 1854 1860	${ }_{7} 7$	i9 77	8 88 88	$\begin{aligned} & 88 \\ & 88 \\ & 89 \end{aligned}$	$\stackrel{9}{94}$	96 96 96
TENNESSEE．									
1．Glenwood Cottage 2．Humboldt ．	48 r	Jan．1860； July，1870；	Dec． 1870 June， 1874	$\left.\begin{array}{\|l\|} 73 \\ 70 \end{array} \right\rvert\,$	$\begin{aligned} & 73 \\ & 77 \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|} 80 \\ 82 \\ \hline \end{array}\right.$	$\begin{aligned} & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 88 \\ & 98 \end{aligned}$	¢194
TEXAS．									
				87 78 88 82 78 78 78 87 80 84 84 81 91 80 80 88 73 90 80 83 78 76 86 80 82 82	87 85 85 87 87 87 86 90 83 92 94 93 93 84 86 96 90 85 101 89 85 86 86 82 100 93	96 92 98 90 94 99 93 94 94 98 95 100 96 92 96 95 105 102 92 84 95 97 100 94 9	102 92 105 93 95 95 98 99 99 99 96 96 104 92 100 100 101 98 108 100 100 101 94 92 94 104 104 98		
UTAH．									
$\begin{aligned} & \text { I. Camp Douglas : Cort Crithanden : } \\ & \text { 2. Forty } \\ & \text { 3. Great Salt Lake City } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 4800 \\ 4860 \\ 4860 \end{array} \\ & 4220 \end{aligned}$			62 49 46	$\left\lvert\, \begin{aligned} & 64 \\ & 52 \\ & 52 \\ & 58 \end{aligned}\right.$	$\begin{array}{\|c\|} 70 \\ 67 \\ 68 \end{array}$	$\begin{aligned} & 82 \\ & 85 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 9 \mathrm{r} \\ & 90 \\ & 88 \end{aligned}$	（108 $\begin{gathered}98 \\ 103 \\ 90\end{gathered}$
VERIMONT．									
1．Craftsbury 2．Lumenburg 3．Middlebury 4．Randolph	$\begin{gathered} 1100 \\ 1124 \\ 398 \\ 790 \\ 790 \end{gathered}$		Dec． 1870 Dec． 18780 De． 1889 Dec． 1897	45 42 44 47	$\begin{array}{\|l} 54 \\ 65 \\ 68 \\ 58 \\ 49 \end{array}$	$\begin{array}{\|l\|} \hline 58 \\ 78 \\ 66 \\ 60 \\ \hline 0 \end{array}$	$\begin{aligned} & 69 \\ & 78 \\ & 76 \\ & 77 \end{aligned}$	$\begin{aligned} & 83 \\ & 88 \\ & 79 \\ & 86 \end{aligned}$	90 98 85 95
VIRGINIA．									
I．Alexandria 2．Fortress Monroe	${ }_{8}^{56}$			70 72		$\left.\right\|_{78} ^{79}$	$\begin{aligned} & 92 \\ & 91 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \end{aligned}$	${ }_{9}^{96}$
${ }^{2}$ Also in 1872.		${ }^{3}$ Also in 187 T ．		${ }^{4}$ Also in 1852.					

SOUTH CAROLINA．

during Each Month．							Year of Extreme Heat．	Lowest Temperature during Each Month．												Year of Extreme Cold．
	离	$\stackrel{8}{4}$	$\begin{aligned} & \text { 苟 } \\ & \stackrel{y}{0} \end{aligned}$	$\dot{\circ}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { B } \end{aligned}$	$\begin{array}{\|c\|c} \dot{\sim} \\ \hline \end{array}$		㤐	远	淢	安	䉼	$\stackrel{\ddot{\Xi}}{\dot{\Xi}}$	立	$\frac{\text { 安 }}{\frac{8}{4}}$	运		$\stackrel{0}{4}$	คٌ	
1	101 99	96 96	\circ 92 93	8 88 88	8 8 82	¢ 78 79	1752 1851	16	0 22 6	0 31 25	0 32 35	46 45	0 53 52	6 62 64	¢ 6， 59	0 49 52	33 38	O 28 27	\circ 20 19	1852 1835

TENNESSEE．

TrXAS．

1	107	106	104	98	91	86	1860	6	19	21	28	44	61	66	65	49	29	18	10	1864
2	107	104	97	92	87	76	1857	7	17	22.	28	46	58	70	64	55	4 I	21	9	1860
3	111	108	109	102	88	88	1873	-3	15	24	22	32	54	49	58	44	24	14	－9	1859
4	102	102	97	98	85	86	1857	10	9	16	29	45	57	61	63	43	37	14	12	1857
5	108	110	101	96	84	80	I 855	2	11	23	31	42	52	62	57	46	32	10	1	1855
6	109	107	103	99	85	78	1871	11	12	18	28	41	54	58	56	51	25	II	11	1869^{2}
7	102	100	96	98	9 I	89	I 860^{3}	20	28	36	44	48	63	63	67	51	44	31	22	1873
8	109	$1{ }^{1} \mathrm{O}$	100	99	S9	90	1855	－1	9	20	28	36	55	48	61	44	26	15	3	1860
9	109	II_{3}	103	98	88	82	1871	1	20	29	30	51	59	68	68	50	40	10	12	1873
10	99	103	101	92	88	83	1851	8	15	25	32	40	50	62	60	50	40	28	9	1852
11	101	98	96	98	85	78	1873	－15	17	9	－2	3^{8}	45	56	45	30	21	10	7	1873
12	IoS	109	104	99	94	85	1860	12	19.	24	36	43	62	63	67	54	38	27	12	1850^{4}
13	112	112	105	96	87	82	1852	15	20	25	36	40	56	68	64	49	32	27	5	1850
14	106	108	101	96	88	82	1871	－4	10	14.	27	39	55	4^{8}	50	38	16	9	－ 7	1870
15	106	106	Ior	92	93	84	1859	11	20	26.	33	4^{8}	57	65	63	49	36	22	19	1868
16	109	106	97	94	85	79	1860	5.	16	25	31	44	53	64	62	49	31	14	10	1857
17	108	109	106	104	97	93	1871	19	23	28	37	48	62	68	69	48	38	23	17	1850
18	105	104	100	91	85	81	1873	6	8	20	27	39	55	50	63	19	31	19	7	1873
19	II4	103	96	91	86	83	1860	11	20	24	30	44	59	66	52	51	4 I	27	20	1860
20	109	107	102	94	85	74	1868	－10	10	23	9	40	45	55	50	48	30	8	2	1873
21	104	107	103	96	86	75	1850	5	16	25	34	44	60	62	61	44	30	26	7	1852
22	108	102	98	90	90	79	1860	10	16	22	38	40	62	71	63	47	31	21	17	1868
23	107	105	105	98	95	90	1871	20	26	32	30	49	63	69	70	56	40	22	18	1850
24	IoS	109	102	98	90	89	1871	14	25		32	46	62	60	60	55	36	27	14	1852^{5}
UTAH．																				
1			89			68	1871	4		－	15	19		38	44	31	21	11	4	I864
2	96	95	90	86	69	60	1859	5			20	21	43	58	56	30	12	S	－22	1859
3	95	95	85	83	72	52	$1864{ }^{6}$	－			22	38	45	56	60	35	30	22	6	I864
VERIMONT．																				
1	101	92		80			1868	－25	－18							28	1	3	－18	
2	97	100	90	83	70	48	1864	－25	－25	－23	4	25	32	38	43	25	15	5	－30．	I 868
3	90	82	82	70	65	49	1868	－2I	－16	－20	13	31	43	54	48	34	23	7	－13	18667
4	102	97	88	77	63	48	1868	－22．	-31		4	28	37	49	42	30	15	1	－24	1868
VIRGINIA．																				
1	100		96	80													25	22	12	1855
2	102	96	97	89	82	69	1837		4	13	31	43	50	61	60	40	30	15	17	1857
5 Also in 1870.								${ }^{6}$ Also in 1865.					7 Also in 1867 and 1868.							

29 April, 1875.

Although the contents of the tables of observed extremes of temperature can readily be scanned by simple inspection, there are a few brominent features which deserve to be specially noticed.

With respect to extreme heat, perhaps the most remarkable contrast is presented in the case of Fort Simpson, in latitude $62^{\circ} 10^{\prime}$, having a greater recorded maximum (104°) than even stations on the Gulf of Mexico; as for instance, New Orleans $\left(100^{\circ}\right)$ and Key West $\left(98^{\circ}\right)$. This arises on the one hand from the prolonged insolation and consequent accumulation of heat and from the dryness of the air at the northern station, and, on the other hand, mainly from the presence of a large amount of moisture at the southern stations. The difference of latitude is not less than $37^{\frac{1}{2}}$. Of places showing high extremes in all months, Forts Fillmore and Cummings, New Mexico, are prominent examples; at these stations the heat in January rises to 95° but only to 107° in June. The former fort has an altitude of 3937 feet. Other stations of high January heat are Fort Duncan, Texas, with 91°, and Camp McDowell, Arizona, Fort McIntosh and Ringgold Barracks, Texas, with 90° each.

If we regard 110° Fah. as an exceptionally high temperature we shall find it excceded in the following states or territories and stations, according to our limited table:-

Arizona	. Fort Mojavé	- 1188°
California	. Fort Miller .	. I2I, also Camp Cady ir 8°, elevation 3000 feet.
Dakota	. Fort Sully .	. 114
Idaho	. Fort Boisé	- 121
Indian Territory	. Fort Gibson	${ }_{11} 6$
Kansas	. Fort Larned	- ir5, elevation 1932 feet.
Montana .	. Fort Shaw .	. il2, elevation 6000 feet.
Nebraska.	. Fort McPherson	. 115
Nevada	. Camp Halleck .	. iri, elevation 5600 feet.
New Mexico .	. Fort McRae	. 120, elevation 4500 feet, also
	Albuquerque .	. il4, elevation 5032 feet.
Texas .	. Fort Mason .	. II4.

These stations are all in the western part of the United States, and many of them at considerable elevations.

Exceptionally depressed heat, in January, we find noted at: Fort Ransom 34° and Fort Wadsworth 40° in Dakota; at New Ulm and Sibley, Minn., 41°, and at Lunenburg, Vt., Stratford, N. H., and Fort Wrangel, Alaska, of 42°.

With respect to extreme cold its geographical distribution depends mostly on the latitude, and not like the extreme heat, as we have seen, mostly on the longitude. Outside the boundaries of the United States, we have at Van Rensselaer Harbor the lowest temperature recorded - 66°.4. At Peel River we find -56° recorded, at Fort Simpson - 55°. The temperature sinks below that at which mercury congeals, which is $-39^{\circ} \mathrm{Fah} . \pm 1^{\circ}$, in the following States and places, according to our limited table:-

To the above would certainly have been added the States of Iowa, Maine, New Hampshire, Vermont, and Wisconsin, and most probably others bordering on these to the southward, but for our limited collection both in number of stations and in length of interval of time.

In the warmest month in the year, that is, for July, the temperature is recorded to have sunk to the freezing point of water $\left(32^{\circ}\right)$ or below it, in Arizona, Maine (at Brunswick, 27°), Michigan, Minnesota, Montana, Nevada, New York, Oregon, Washington Territory, and Wyoming.

Subtracting the lowest from the highest temperature recorded at any one station we obtain the extreme range of recorded variability, of which the following selected values may serve as examples: Extreme ranges at one or more stations equaling or exceeding 140°. British North America (Fort Simpson) 159°. Dakota 146°, Iowa 140°, Kansas 140°, Michigan 140°, Minnesota 147°, Montana 156°, New York 142°, Wisconsin 140°, and Wyoming 147°.

The least annual extreme range is recorded at Indian Key, ${ }^{1}$ Florida, 42°, and very small ranges at Key West, Florida, 54 ${ }^{\circ}$, at Fort Point, Golden Gate, California, 52°, and at Alcatraz Island, Harbor of San Francisco, of 53°. The ratio of the highest to the lowest range within the limits of the United States (excepting Alaska) is as 3.7 to 1 .

If we investigate the extreme range for each month separately we find, for instance, from the 72 stations in our table for the State of New York, the average values:-

Averages.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Highest temperature Lowest temperature Absolute monthly range Ratio, the average being 69	$6^{\circ} \mathrm{I}$	$6{ }_{1}$	73	$8{ }^{\circ}$	91	95	98	96	9 I	$8{ }_{82}$	72	6°
	-21	-19	-10	II	24	35	45	40	29	19	4	-14
	82	80	83	74	67	60	53	56	62	63	68	75
	1.2	1.2	I. 2	1.1	1.0	0.9	0.8	0.8	0.9	0.9	1.0	1. 1

${ }^{1}$ A very short series.

The monthly absolute range is least in summer and greatest in winter, a result which has already been reached in a different way in reference to variations in the monthly means, and the ratios indicate a regular progression in the yearly period; the January variability in the temperature is one and a half times as great as the July variability.

The 11 stations given in the table for Florida yield the following results :-

Averages.	Jan:	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Highest temperature	84.2	85.4	88°.	90.2	94. 1	97.0	95.7	97. 1	95.5	90.8	$87^{\circ} 2$	85.4
Lowest temperature	30.4	32.4	$39 \cdot 3$	$45 \cdot 9$	55.1	64. I	68.8	66.7	63.0	49. I	40.2	33.0
Absolute monthly range	53.8	53.0	48.7	44.3	39.0	32.9	26.9	30.4	32.5	41.7	47.0	52.4
Ratio, the average being 41.9	1.3	1.3	1.2	I. I	0.9	0.8	0.6	0.7	0.8	1.0	I.I	I. 2

We have the same regularity in the law of the annual progression, but the ratio of the variability in January to that of July is as 2 to 1 . The average variability during the year in the latitude of New York is to the variability in the latitude of Florida as 69 to 42 .

Tabulation of the Mean Annual Temperature in the United States, and at some places in British North America, for a succession of years, from the earliest records to the close of the year $18 \% 0$.

The object of this tabulation was to furnish, in a convenient form, a basis for discussions relating to the study of the variations of our climate-as far as the same depends on temperature-during long intervals, involving questions of permanency, of periodic variations, of irregular fluctuations, and other relations. The tables will, therefore, be of permanent value, since they furnish the earliest material available, and they have consequently been made as complete as possible, at least within the area of the United States. The arrangement is that by States and Territories and by stations in each, the whole in alphabetical order.

In conformity with previous investigation the annual means have been corrected, as far as that could be done now, for daily variation, excepting those few cases where the hours of observation were unknown, as indicated by foot notes. To give to the tables the fullest extent compatible with accuracy, broken records (extending over less than one year) have been completed by interpolation, but only when observations were found recorded during at least 9 months of the calendar year. This interpolation for 1,2 , or 3 months (as the case may be) was effected as follows: comparison by differences was made with records complete during the period at an adjacent station or at near places for some months preceding and following the lacuna, and the average difference was applied to the record to furnish the interpolated value for the incomplete station. If no suitable adjacent station for comparison could be found, the general mean from the whole series for the particular months or month was substituted in the place of the blank record. The first
method of interpolation is quite perfect, the second is less satisfactory, yet it is not apprehended that the annual mean could in the worst case be vitiated or in general rendered uncertain by more than $\pm 0^{\circ} .5$. In all cases where such limited interpolation had to be resorted to the fact is indicated in the tables by an asterisk affixed.

It should also be understood that all tabular annual means were found by dividing by 12 , the sum of the monthly means belonging to the calendar months; the small correction for inequality of months (previously referred to) is nearly constant, and would not affect any conclusions we may deduce from the tables; of the same nature are index errors to the thermometers and reductions for difference of elevation or different exposures of stations at no great distance apart, as for instance within the limits of a city.

The bottom line of the tables contains the resulting mean temperatures for the respective stations; they are in general the mean of all the annual means in their respective columns, but they are made up from the separate monthly means, and include consequently all monthly means whether they belong to complete or incomplete years, in fact we might have a resulting annual mean from observations scattered over all the months but in different years and yet no single year complete. This explains the occasional differences of the resultant temperature from the simple mean of the individual complete years, and has nothing to do with interpolation.

In conformity with custom the mean temperatures are given to two places of decimals, but the hundredths of a degree have very little real value, and that only differentially.

Tables 0F THE MEAN annual temperature in the untted states AND BRITISH NORTH AMERICA

FORASUCCESSIONOF YEARS.

BRITISH NORTH AIVFRICA．－Continued．																
$\begin{gathered} \dot{\Xi} \\ \text { ジ心 } \end{gathered}$								$\stackrel{\text { ®̈ }}{\sim}$						碳	¢	嵳
	－	－	－	${ }^{\circ}$	－	－	－		－	－	－	－	\bigcirc	0		－
1795	．	\ldots	\cdots	52.44	\ldots	\ldots	\cdots	．．．	\ldots	\ldots	\ldots	．．．	\ldots	\cdots	\ldots	\cdots
${ }^{1} 796$	．．．	．．．	．．．	50.48	\ldots	．．．	．．＇	．．．	．．．	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\cdots
1797	．．．	．．．	．．．	48.72	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots
1798	．．．	．．．	．．．	51.93	．．．	．．．	．．．	1824	41.0	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1799	．．．	．．．	．．．	49.16	．．．	．．．	．．．	1825	． 42.5	．．．	\ldots	．．．	．．．	．．．	．．．	．．．
1800	．．．	\cdots	\ldots	52.72	．．．	．．．	．．．	1826	40.3	\cdots	45.9	．．．	．．．	．．．	．．．	．．．
1801	\cdots	．．．	．．．	52.31	．．．	．．．	．．．	1827	40.0	．．．	43.5	．．．	．．．	．．．	．．．	．．．
1802	．．．	．．．	．．．	51．38＊	．．．	．．．	．．．	1828	42.4	．．．	46.1	\ldots	\cdots	．．．	\cdots	．．．
1803	．．．	．．．	．．．	50.95	．．．	．．．	．．．	1829	42.3	．．．	44.8	．．．	．．．	．．．	．．．	．．．
1804	．．．	\ldots	．．．	49．10	．．．	．．．	．．．	1830	40.4	．．．	46.6	．．．	．．．	．．．	\cdots	．．．
1805	\ldots	\cdots	．．．	51.80	\cdots	\cdots	．．．	1831	40.7	．．．	45.6	．．．	\ldots	．．．	．．．	．．．
1806	．．．	．．．	\cdots	50.61	．．．	．．．	．．．	1832	．．．	．．．	43.5	．．．	．．．	．．．	．．．	．．．
1807	．．．	．．．	．．．	52.09	．．．	．．．	．．．	1833	．．．	．．．	43.6	．．．	\ldots	．．．	\cdots	．．．
1808	\ldots	－．．	．．．	，	\ldots	\cdots	．．．	1834	\cdots	\cdots	43.8	．．．	．．．	．．．	．．．	．．．
1809	．．．	．．．	．．．	52.54	．．．	\cdots	．．．	1835	．．．	\cdots	41.7	\cdots	．．．	．．．	\cdots	．．．
1810	\cdots	\cdots	\cdots	52.50	．．．	\cdots	\ldots	${ }_{18} 8_{36}$	\cdots	\cdots	39.5	40.05	\ldots	\cdots	\cdots	．．．
1811	．．．	．．．	．．．	53.20	．．．	\cdots	\ldots	1837	\cdots	．．．	40.8	40.84	\ldots	\ldots	．．．	．．．
								1838	\cdots	\cdots	41.3	41.20	．．．	\cdots	．．．	．．．
1856	\ldots	\ldots	\cdots	\cdots	\cdots	43．32＊	\cdots	1839	\cdots	．．．	43.8	43.69	．．．	．．．	\cdots	\cdots
1857	\cdots	\ldots	\cdots	．．．	\cdots	45.48	．．．	${ }^{1} 8_{4}{ }^{\circ}$	\ldots	42.54	42.8	43.91	．．．	\cdots	\cdots	\ldots
1858	\cdots	\ldots	\cdots	．．．	41.71	$43.02{ }^{\text {² }}$	．．．	1841	\cdots	．．．	43.2	．．．	\ldots	．．．	．．．	．．．
1859 1860	43.5	\cdots	\cdots	\cdots	43.15	44．04＊	．．．	1842	．．．	\cdots	42.7	．．．	\ldots	．．．	．．．	．．．
1860	43.5	．．．	．．．	．．．	．．．	．．．	．．．	1843	\cdots	．．．	42.5	\ldots	．．．	\ldots	\ldots	．．．
1861	42.7	\cdots	\ldots	．．．	．．．	\cdots	．．．	1844	\cdots	\cdots	42.2	．．．	\cdots	．．．	\cdots	．．．
1862	43.9	\cdots	\ldots	\cdots	\cdots	43.97 ＊	．．．	1845	\cdots	．．．	43.3	．．．	42.75	\cdots	．．．	．．．
1863	44.5	43.4	\ldots	\cdots	．．．	‥	…	1846	\cdots	\cdots	45.4	．．．	44.39	42.9	\cdots	．．．
1864	．．．	42.7	\cdots	\cdots	\cdots	$43.97{ }^{\text {² }}$	40.45	1847	．．．	\cdots	43．I	\ldots	42.07	41.0	1856	42.99
1865	\cdots	42.8	．．．	\cdots	．．．	43．65＊＊＊＊＊＊＊＊＊＊＊＊	40.92	1848	．．．	\cdots	44.0	\cdots	42.88	44.0	1857	42.86
1866	\cdots	42.4	\ldots	\ldots	\ldots	$43.54^{\text {＊}}$	40.21	1849	\ldots	．．．	43．1	．．．	42.45	42.1	1858	41.95
1867	\cdots	．．．	41.98	\cdots	\cdots	$42.80{ }^{\text {² }}$	39.72	1850	\cdots	．．．	43.4	\cdots	42.56	43.8	1859	42.22
1868	\cdots	\cdots	42.05	．．．	．．．	41．72 ${ }^{\text {\％}}$	38.60	1851	．．．	．．．	42.2	．．．	41.70	．．．	1860	．．．
1869	\cdots	\ldots	43.20	．．．	\ldots	44．17＊	41.31	1852	．．．	．．．	43.4	．．．	42.93	．．．	1861	44.41
1870	\cdots	\ldots	．．．	\cdots	．．．	．．．	41．56＊	1853	\cdots	\cdots	．．．	\cdots	43.15	\cdots	1862	43.99
	43.65^{1}	42.83^{2}	42.41	$51.43{ }^{\text {t }}$	42.95	43.75	40.35		41．18	42，12	43.44	44.48	42.75	42.77^{1}		43．II
${ }^{1}$ Hours of observation unknown．${ }_{2}$ Three observations daily；hours not stated．																

BRITISH NORTH AMERICA.-Continued.														
范					-									
	-	-	-	-		-	${ }^{\circ}$	-	-	-	-	\bigcirc	-	-
...	\ldots	1835	...	43.93	-..	\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	...	\cdots	\cdots	1836	...	44.01	\cdots	\cdots	\ldots	\ldots	...
...	...	\ldots	...	\ldots	1837	...	44.85	49.2	...	\cdots	\cdots	\cdots	\cdots	...
\cdots	...	\cdots	\cdots	...	$\underline{1838}$...	45.81	49.0	\cdots	...	\cdots	\cdots	\ldots	\cdots
1809	39.35	\ldots	1839	...	48.23	51.7	...	\cdots	\cdots	\cdots	\cdots	\cdots
1810	41.50	...	1840	...	48.42	51.7	43.62
1811	42.94	...	1841	...	48.03	50.7	\cdots	...	43.92
1812	40.20	...	1842	...	48.01	49.7	43.96
1813	41.07	...	1843	...	49.42	49.7	\cdots	42.35
1814	41.12	...	1844	...	48.67	52.5	44.48
1815	39.75	...	1845	...	48.65	5	\ldots	44.58
1816	$3^{8.12}$...	1846	\cdots	...	\cdots	50.82	\cdots	\cdots	46.36
1817	38.62	\cdots	1847	\ldots	48.77	38.59	\cdots	43.70
1818	40.49	...	1848	\cdots	49.91	\cdots	45.08
					1849	...	\ldots	\cdots	48.72	\ldots	\ldots	\cdots	\cdots	44.09
1838	\ldots	40.3	1850	\ldots	\ldots	...	49.34	\cdots	...	44.45
1839	\cdots	41.4	1851	...	\ldots	\ldots	49.37	...	\ldots	...	\ldots	43.98
1840	...	41.5	1852	...	\ldots	...	48.86	...	\cdots	43.84
1841	...	41.2	1853	50.08	44.80
1842	...	40.2	1854	49.61	\ldots	...	45.23
1843	...	40.3	...	\cdots	1855	\cdots	\cdots	\ldots	\cdots	…	ㅈ."	...	\cdots	43.98
1844	...	39.8	1856	I	...	\cdots	44.66	40.55	41.5	\cdots	...	42.18
1845	...	40.8	1857	41.93	46.48	41.08	43.7	...	\cdots	42.75
1846	...	42.3	1858	41. 10	\cdots	...	48.77	41.96	43.1	\cdots	\cdots	44.76 44.21
					I859	41.43	...	\ldots	47.49	40.75'	-..	44.21
1851	\cdots	...	\cdots	42.09	1860	42.68*	42.16	\cdots	\cdots	-..76*	44.34
1852	...	\cdots	...	42.82	1861	4 L .42	\cdots	39.20	\cdots	\cdots	35.76*	44.24
1853 1854	\cdots	\cdots	42.56 41.52	1862 1863	41.23	\ldots	\cdots	\cdots	...	\cdots	\cdots	...	44.37
1854 185	\cdots	\cdots	\ldots	41.52 41.63	1863 1864	41.35 43.80	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	44.59 44.70
1855 1856	\ldots	\cdots	\ldots	41.63 39.91	1864	43.89	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	...	44.70 44.92
1857	40. 5^{8}	\ldots	...	40.93	1866	\ldots	...	\cdots	\ldots	\cdots	...	43.51
1858	40.06	40.35	1867	\ldots	43.84
1859	\cdots	41.58	1868	40.59	\cdots	43.33
1860	43.42	\cdots	1869	41.20	\ldots	...	43.13
1861	41.72	...	\cdots	42.96	1870	44.41	\cdots	\cdots	\cdots	\cdots	\cdots	45.94
	41.45 ${ }^{\text {² }}$	40.84	40.31^{1}	41.62		41.89	47.09	50.54^{1}	48.64	40.95	42.77^{1}	38.59	35.01	44.17
					1 H	rs of ob	rvation	nknown						

AIABAMA．																
¢	荣	荮							O．	－	$\begin{array}{r}\text { g } \\ 0 \\ \square \\ 0 \\ \hline\end{array}$				号 W	立
${ }^{1} 835$	\cdots	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$	\cdots	66.20°	\cdots	\cdots	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ} \times$	\cdots	\cdots	\cdots	\bigcirc	$\stackrel{\square}{\circ}$
1840	．．．	\ldots	．．．	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	70．05＊	\ldots	\ldots	\ldots			
184 r	\cdots	\cdots	\cdots	\ldots	．．．	．．．		．．．	．．．	68.41	．．．	\ldots	\cdots	\ldots	\ldots	70．01
1842	\cdots	\ldots	．．．	．．．	．．．	．．．	66.56%	．．．	．．．	69.74	．．	65．01＊	\ldots	\ldots	\ldots	\％．．．
1843	\ldots	\ldots	\cdots	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots	65.48	．．．	．．．	\ldots	\ldots
1844	\cdots	\cdots	．．．	．．．	．．．	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots			\ldots	．．．	\cdots
1845	\ldots	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	\cdots	\cdots	65.03	\ldots	\ldots	\ldots	\ldots
1846	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	65.85	\ldots	\cdots	\ldots	\cdots
1847	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．		\ldots	\cdots	64.68	\ldots	\cdots	\ldots	\cdots
1848	．．．	．．．	．．．	．．．	\ldots	．．	\cdots	\ldots	\ldots	\ldots	\ldots	65.68	\cdots	\cdots	\ldots	\cdots
I 849	\cdots	\cdots	\cdots	．．．	\cdots	62.52	\cdots	\ldots	．．．	\ldots	\ldots	65.87	\ldots	\cdots	\cdots	\cdots
1850	\cdots	．．．	．．．	\ldots	\cdots	．．．	．．．	\ldots	\ldots	\ldots	．．．	66.82	\ldots	\cdots	\cdots	\cdots
1851	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots	66.57	\ldots	\ldots	\cdots	\cdots
1852	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots	68.16	\ldots	\ldots	\ldots	\cdots
1853	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	．．．	．．．	．．．	\ldots	66.49	．．	\ldots	\cdots	\cdots
1854	\cdots		\cdots	\cdots	．．．	．．．	\cdots		\ldots	\ldots	\ldots	66.67	\ldots	\ldots	\cdots	．．．
1855	\ldots	$64.3{ }^{6 \cdots}$	．．．	．．．	．．．	．．．	\cdots	65．24＊＊	\ldots	．．．	．．．	66.61	\ldots	\cdots	\cdots	\ldots
1856		62.48	．	．．．	．．．	．．．	．．．	62.99^{*}	\cdots	\cdots	\cdots	65.18	\ldots	\ldots	\ldots	\cdots
1857	56.45	61.96	62.89	．．．	．．．	．．．	．．．	60.80	60．64＊	．．．	\ldots	64.58	\cdots	\cdots	\cdots	\ldots
1858	．．．		$63.95{ }^{*}$	．．．	．．．	．．．	．．．	62.40	62.65^{*}	\ldots	\ldots	64.58 66.32	\ldots		63.81 ＊	\ldots
1859	．．．	\cdots	$65.62 *$	\ldots	．．．	．．．	．．．	63.06	62．64＊＊	．．．	\ldots	66.22	\ldots	\cdots	64.29^{*}	\cdots
1860	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots	．．．		\ldots	．．．	69．25＊	．．．	．．．	．．．	\ldots
1861	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	64.56 ＊	\cdots	．．．	．．．	．．．	．．．	．．．	．．．
1867 1868	\cdots	．．	66.35^{*}	\cdots	\cdots	\ldots	\ldots	63.65		\ldots	60．66＊	\cdots	64.36%	$66.43 *$	．．．	\cdots
1869	\ldots	\cdots	64.61 64.51	．．．	\cdots	\cdots	\cdots	6I．93	61.80	\cdots	59.32	\ldots	62.30	．．．	\ldots	．．．
1870		\ldots	64.58	$61.7{ }^{1} \times$	61．28＊	\ldots	\ldots	61.74 1.76	61．85	\ldots	58.63	\ldots	62．74＊	\ldots	\ldots	
									\cdots	\ldots	\cdots	\cdots	．．．	\cdots	\cdots	\ldots
	56.45	63.18	64.72	\ldots	61.28	$62.52^{\text {1 }}$	67.59	62.57	62.73	68.75	59.83	66.15	63.13	66.43	64．10	70.01

1 Hours of observation unknown．

AH．ASKA．							ARIZONA．									
$\begin{gathered} \text { む゙ } \\ \text { 汤 } \end{gathered}$				\％ $\frac{8}{8}$ \％ 1	$\frac{\text { 号 }}{\substack{3 \\ \cline { 1 - 1 }}}$	$\frac{\dot{5}}{\bar{n}}$		$\begin{aligned} & \text { o. } \\ & \text { 苟 } \\ & \frac{0}{0} \\ & \text { E. } \\ & \text { É } \end{aligned}$							$\begin{aligned} & \text { O. } \\ & \text { 心 } \\ & \text { ~ } \\ & \text { E } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { ~ } \\ & \stackrel{\sim}{*} \\ & \text { E } \\ & \text { E } \end{aligned}$
1828	\bigcirc	\bigcirc	\bigcirc	$35^{\circ} .06$	．．．	\bigcirc	\bigcirc	\bigcirc	\cdots	$\stackrel{\square}{\circ}$	\bigcirc	\cdots	．．．	\bigcirc	\bigcirc	。
I829	\ldots	\ldots	．．．	33.96	．．．	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots
IS30	．．．	．．．	\ldots	34.97	．．．	\ldots	．	\cdots	\ldots	\ldots	\ldots	．．．	．．．	\cdots	\ldots	\ldots
1831	．．．	．．．	\ldots	35.20	．．．	．．．	．．．	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	．．．	\cdots	\cdots
1832	．．．	．．．	．．．	38.37	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．
1833	．．．	\cdots	\cdots	37.67	\cdots	．．．										
1848	．．．	\cdots	\cdots	\cdots	41.77	．．．	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots
1849	．．．	．．．	．．．	．．．	$40.37{ }^{\text {\％}}$	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	．．．	\cdots	\cdots
1850	．．．	．．．	．．．	．．．	40.27	．．．	．．．	．．．	．．．	\ldots	\ldots	\cdots	\ldots	．．．	\cdots	．．．
1851	．．．	．．．	．．．	．．．	43.67	．．．	．．．	．．．	\cdots	\cdots	\ldots	\ldots	．．．	\ldots	\cdots	\cdots
1852	．．．	．．．	．．．	．．．	42.26	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	．．．	\ldots	\cdots
1853	．．．	\cdots	\ldots	\ldots	40.87	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	．．．	．．．	\cdots	\cdots
1854	\cdots	\cdots	\cdots	\cdots	41.81	．．．	\cdots	\cdots	\ldots	\cdots	\ldots	．．．	．．．	．．．	\ldots	．．．
1855	．．．	．．．	\ldots	．．．	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	．．．
1856	．．．	．．．	．．．	．．．	$43 \cdot 36$	．．．	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	．．．	．．．	\cdots
1857	．．．	．．．	．．．	．．．	43.05	．．．	\ldots	．．．	\ldots	\cdots	\ldots	．．．	\ldots	\ldots	\ldots	．．．
1858	．．．	．．．	．．．	．．．	41.32	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots	．．．
1859	．．．	\cdots	\cdots	\ldots	40.84	．．．	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1860	．．．	\ldots	\ldots	．．．	43.23	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	．．．
1861	．．．	\ldots	\ldots	．．．	42.55	．．．	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots
1862	．．．	．．．	．．．	．．．	41.28	\cdots	．．．	．．．	\cdots	．．．	\ldots	\cdots	\cdots	\cdots	．．．	．．．
1863	．．．	．．．	．．．	．．．	42.34	\ldots	．．．	．．．	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	．．．	\cdots
1864	\ldots	\cdots	\cdots	\cdots	43.31	\cdots	\cdots	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	．．．	\cdots
I 867	\ldots	．．．	\cdots	\ldots	．．．	\ldots	．．	．．．	\cdots	．．	66.33	68．00\％	69．39＊＊	72.12	．．．	
1868	\cdots	\cdots	\ldots	．．．	．．．	44.74	62.79	\cdots	．．．	61.79	63.93	67.28	68.87	68．88＊	\cdots	
1869	$4^{2.17}{ }^{*}$	47.37	$43 \cdot 30^{\circ}$	．．．	．．．	46.39	61.87	72.04	59.26	63.01	$65 \cdot 34$	67.91	67.24	71.16	69.75	62.38
1870	．．．	$45 \cdot 38^{*}$	43．16＊	\cdots	\cdots	44.58	63.81	72.13	60.35	64.04	．．．	66.84	67.15	70.92	．．．	62.89
	41.66	46.19	43.48	37.51^{1}	42.05^{1}	45.14	63.09	72.09	60.58	62.91	65.78	67.25	68.27	70.67	69.90	62.79

1 Old style．

ARIZONA．－Continued．							ARKANSAS．					CALIFORNIA．				
运	$\begin{aligned} & \text { 霜 } \\ & \text { 筇 } \end{aligned}$			咅										荡	\％	
1840	\cdots	．．．	．．．	\cdots	\ldots	\bigcirc	$60^{\circ} .03$	59．67	\cdots	62.28	$60^{\circ} 29$	\ldots	－	$\stackrel{\circ}{.}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{.}$
1841	．．．	．．．	\ldots	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	58．8I	\ldots	．．．	．．．	．．．	．．．
1842	\ldots	\ldots	．．．	\ldots	\ldots	．．．	59.35	\ldots	\ldots	．．．	59.88	．．．	．．．	\ldots	\cdots	\cdots
I843	\ldots	．．．	\ldots	．．．	．．．	\cdots	56.93	\ldots	\cdots	\cdots	57.54	\cdots	\ldots	\ldots	\ldots	\ldots
I844	\ldots	．．．	．．．	\ldots	．．．	．．．	59.71	．．．	．．．	．．．	61.15	\ldots	\ldots	\ldots	\ldots	\ldots
1845	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	60.25	．．．	．．．	\cdots	60.62	\cdots	\ldots	\cdots	\cdots	\cdots
1846	\ldots	．．．	\ldots	．．．	\ldots	\ldots	61.16 59.00	\ldots	\ldots	\ldots	60.57 58.74	\ldots	\ldots	\ldots	\ldots	．．．．
1847	\ldots	\ldots	\cdots	\cdots	．．．	\ldots	59.00	．．．	\cdots	\cdots	58.74	\ldots	\cdots	\ldots	\cdots	\ldots
1848 1849	\ldots	．．．	\ldots	．．．	．．．	\cdots		\ldots	\ldots	\ldots	61.06 63.10	\ldots	\ldots	．．	\ldots	．．．．
1849 1850	\cdots	\ldots	\ldots	．．．．	\ldots	\ldots	61.00	\ldots	\ldots	\ldots	63.10 62.00	\ldots	\ldots	58．63＊	\ldots	\ldots
1851	．．．	．．．	．．．	．．．	．．．	\cdots	\ldots	\ldots	\ldots	．．．	63.06	\cdots	．．．	59.58	\ldots	．．．
1852	\ldots	\ldots	．．．	\cdots	．．．	\ldots	62.23	\ldots	\ldots	\cdots	62.94	．．．	\cdots	55.88	\ldots	\cdots
1853	\ldots	．．．	\ldots	47.60	\ldots	\ldots	60.05	\ldots	\ldots	\ldots	62.76	\ldots	\cdots	58.24	\ldots	．．．
1854	\ldots	\ldots	\ldots	47．11	．．．	\ldots	61.62	．．．	\cdots	．．．	64.05	\ldots	\cdots	56.39	\cdots	\cdots
1855	\ldots	\ldots	．．．	46.99^{*}	．．．	\ldots	60.82 58.15	\cdots	\cdots	\cdots	62.90 6.36	\ldots	\cdots	${ }_{5}^{58.67 \%}$	\cdots	\cdots
1856	．．．	\cdots	\cdots	44.44	\ldots	\cdots	58.15	\ldots	\ldots	\cdots	61． 36 61.50	\cdots	\cdots	${ }_{6} 5.30$	\cdots	\cdots
1857 1858 18	．．．	．．．	\ldots	48.84	\ldots	\cdots	58.20	\ldots	\cdots	…	61.50 62.78	．．．．	\ldots	60.05 59.27	．．．．	．．．
1858 1859	\ldots	\ldots	57.50 57.85	46．23＊	\ldots	\ldots	60.65%	．．．	．．．	\ldots	62.78 63.42	．．．．	\cdots	56.54	\ldots	\ldots
1860	．．．	\ldots	60.39	49．20＊	72.74	．．．	$62.2 \mathrm{I}^{\text {＊}}$	．．．	．．．	．．．	63.89	．．．	．．．	57．83＊＊	．．．	．．．
1861	\ldots	．．．	．．．	．．．	．．．	\ldots	．．．	\cdots	．．．	\cdots	．．．	54.46	\cdots	59．17	\ldots	．．．
1862	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	\cdots	\cdots	\ldots	54.61 55.09	\ldots	$58.08 *$	\cdots	\cdots
1863	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\cdots	．．．	\cdots	\cdots	55.09	\cdots	58.43 60.48	\cdots	64．04＊
1864	\ldots	\cdots	\cdots	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots		\cdots		\ldots	
1865 1866	\ldots	\ldots	\ldots	\cdots	\ldots	53．74	\cdots	\ldots	62．10	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots
1867	61．91＊	．．．	．．．	．．．	．．．	57．00＊	．．．	\ldots	．．．	63．61＊	\ldots	56.33	．．．	．．．	．．．	．．．
1868	61． 39	53．97＊	\ldots	\ldots	72.91	51．38＊	．．．	．．．	．．．	．．．	．．．	55．16	57.15	\ldots	．．．	\ldots
1869 1870	61.50	55．67＊	\ldots	．．．	72.69	．．． 60	．．．	．．．		\ldots	．．．	59.44	58.03	．．．		
1870	．．．	．．．	\cdots	．．．	72.54	53．60	．．．	．．．	61.26	\ldots	．．．	57.83	58.41	．．．	58.16	\cdots
	61.33	54.82	59.15	47.26	72.82	54.03	60.12	59.67	$6 \mathrm{I}, 15$	62.30	61.56	56.27	57.94	58.36	58.16	．．．
－																

CAIIHORNIA．－Continued．																	
$\begin{gathered} \stackrel{.}{\\|} \\ \stackrel{y y}{*} \end{gathered}$							$\begin{aligned} & \text { 范 } \\ & \text { E } \end{aligned}$	ن゙্̄					范	䓌	茳	号	
1851	－．	－．	60.72	．．．	．．．	\bigcirc	－	$\stackrel{\square}{\circ}$	－	\bigcirc	\cdots	$\stackrel{\square}{\circ}$	－	\bigcirc	$\stackrel{ }{\circ}$	\cdots	
1852	．．．	．．．		\ldots	\ldots	\ldots	\cdots	．．．	．．．	．．．	．．．	．．．	\ldots	67．17 ${ }^{\text {\％}}$	．．．		
1853	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	51．80＊	66.64	．．．	62.72	
1554	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	51.64	49.75	$64.7{ }^{\text {\％}}$	．．．	61.55	
1855	\ldots	．．．	．．．	53．84＊	50．76	66.85	．．．	63.18%									
1856	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	．．．	53.66	52.63	65.58	．．．	．．．	
1857	．．．	\ldots	\ldots	．．．	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	．．．	53．44＊	52．98＊	66.06	\cdots	．．．	
1858	．．．	．	\ldots	\cdots	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	49.27	51.74	．．．	．．．	\cdots	\ldots	
1859	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	47.98	5 I .91	．．．	．．．	．．．	．．．	
1860	\ldots	\ldots	\cdots	\ldots	\ldots	．．．	．．．	\ldots	\cdots	\cdots	48.04	51.20	\ldots	．．．	54.23	．．．	
1861	\ldots	\ldots	\ldots	…	．．．	\ldots	\ldots	\ldots	．．．	51．97\％	51．29＊	51．77＊	\ldots	．．．	54.17	\ldots	
1862	\ldots	\ldots	\ldots	59.33	．．．	．．．	．．．	\cdots	．．．	51.50%	48.93	．．．	．．．	．．．	53.60	．．．	
1863	．．．	\ldots	\ldots	61.86	\ldots	．．．	．．．	\ldots	．．．	53.36	50.64	52.44	\cdots	．．．	53.89	．．．	
1864	．．．	．．．	\ldots	57.27	\ldots	．．．	…	\cdots	6．．65	．．．	52.93	53．70＊	．．．	．．．	55.86	．．．	
1865	．．．	．．．	\ldots	55.10	\ldots	\ldots	56.17	\ldots	60.65	\ldots	50.67^{*}	51.87	\ldots	．．．	54.26	．．．	
1866	\cdots	\cdots	\cdots	．．．	…	$5{ }^{*}$	－${ }^{\text {\％}}$	．．．		\ldots	… ${ }^{*}$	\cdots	\ldots	\cdots	54.94	．．．	
1867	49.48	68．${ }^{\text {c }}$	．．．	\cdots	59．96＊	52．47＊	57．22＊	．．．	64．28 ${ }^{\text {\％}}$	．．．	50．36\％	．．．	．．．	．．．	55.16	．．．	
IS008	45.57	68.23	．．．	54． 17	57.73	52.54	57.27	．．．	$66.52^{\prime \prime}$	．．．	$5 \mathrm{I} .30^{\prime \prime}$	．．．	．．．	．．．	55.01	\cdots	
IS69	50.87	67．71	．．．	56.85	58.42	．．．	58.85	…	62.10	．．．	．．．	\ldots	\cdots	．．．	56.50 \％	．．．	
1870	49.56	65.70	\cdots	56.73	57．81＊	．．．	57.50	62.79	62．06＊	．．．	\cdots	\ldots	\ldots	．．．	57.41	．．．	
	50．39	67.22	60.65	57.37	58.33	53.47	57.39	62.89	63.16	52.44	50.31	52.46	51.85	66.15	55．00	62.44	
CAIIFORNIA．－Continued．																	
$\underset{\sim}{\dot{y}}$			岕				$\begin{aligned} & \text { U. } \\ & \text { E. } \\ & \text { E. } \end{aligned}$										
1837	5 F .43	．．．	．．	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	
IS3S	50，16	\cdots	\ldots	\cdots	．．．	\ldots	．．．										
I S39	51． 8	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	．．．	\cdots	．．．	\cdots	
IS40	50.79	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	．．．	\cdots	\ldots	\cdots	
IS50	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	54.40	\ldots	\ldots	\cdots		\cdots		60.72	\cdots	\cdots	
1851	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	\ldots	．．．	56.59	\ldots	\ldots	6．．．	．．．	\ldots	
1852	\ldots	\ldots	\ldots	75	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots				61.95	\cdots	\cdots	
1853	\cdots	\ldots	\ldots	75.41	\cdots	．．．	\ldots	\ldots	\cdots	\cdots	55.28	64.64	$62.4 \mathrm{I}^{*}$	63.39	\ldots	\ldots	
1854	\cdots	56．22\％	\cdots	73.85	\cdots	\cdots	\cdots	．．．	\ldots	\cdots	54.76	．．．	59.51	61.97	56．00	60.14	
1855 1856	\cdots	56．22＊	\cdots	74．96\％	\cdots	\cdots	\cdots	．．．	\ldots	\ldots	55.87	．．．	59.29	62.50	．．．	．．．	
1856	\cdots	58.12	．．．	73.84	\cdots	．．．	\cdots	\ldots	．．．	．．．	54.42	．．．	59.62	60.97	\cdots	．．．	
1857	\ldots	59.99 56.67	．．．	74．98＊	6．．．	．．．	．．．	\ldots	．．．	．．．	54.75	．．．	59.60	61.85	57.02	．．．	
i858	．．．	56.67	… ${ }^{*}$	74.79	62.91	\ldots	\ldots	\ldots	．．．	．．．	53.80	．．．	59.17	6 I .11	55.82	．．．	
1859 1860	\ldots	57.38% 56.48%	52．67＊	73.60	．．．	\cdots	54．37＊	\cdots	\cdots	\cdots	52.98	．．．	58.33	61.09	54．94＊	．．．	
1860 1861	\ldots	56．48\％	52．52＊	74.74 76.44	\ldots	40．54＊	54．27＊	\cdots	\ldots	．．．	53.80	\ldots	58.76	61.30	．．．	．．．	
1801 1862	\ldots	．．．	\ldots	76.44 73.85	59.91	49．54	．．．	\cdots	\cdots	\cdots	$53.48 *$	．．．	60.00	63.32	55.92	\cdots	
1863	\ldots	\cdots	\cdots	73.05	59.91	．．．	\ldots	\cdots	．．．	．．．	54．55\％	．．．	60.03 ＊	62.46 61.60	55．02	．．．	
1864	．．．	．．．	．．．	．．．	．．．	49.65	56.31	\ldots	．．．	\ldots	54.55	．．．	61．42＊	63.41	55.66	．．．	
I 865	．．．	．．．	．．．	．．．	．．．	48.05	54.84	\ldots	61.24	\ldots	53.41	．．．	60.77	62.08	53.82		
1866	\ldots	．．	．．．	\cdots	．．．	．．．	56.42	．．．	．．．	55．83＊	54．46＊	．．．	61.59	62.98	54.10	．．．	
I 867	\cdots	．．．	\cdots	76.46	．．．	\cdots	56.21	．\cdots	．．．	．．．	54.74^{*}	．．．	．．．	63.77^{*}	．．．	．．．	
1863	．．．	\ldots	．．．	74.46	．．．	．．．	54.70	$55 \cdot 5$ \％	－．．	．．．	53.51	．．．	．．．	63.08	$53.92{ }^{*}$	－	
1869	\ldots	\ldots	\ldots	72.39	．．．	\cdots	55．50	．．．	．．．	．．．	55.27	．．．	\ldots	62.17	．．．	．．．	
1870				72.18	\ldots	\ldots	55．71 ${ }^{\text {² }}$	\ldots	\ldots	．．．	54.93	\ldots	．．．	61.20	．．．		
	50．S9	57.62	52.71	74.36	61.55	48.72	55.45	．．．	62．08	\ldots	54.38	63.81	60.00	62.11	55.23	60.35	

CALIFORNIA．－Continued．						COLORADO．						CONNECTICUT．				
腎	驾皆	$\begin{aligned} & \text { 䃾 } \\ & \stackrel{y y y y}{\circ} \end{aligned}$						$\begin{aligned} & \text { 高 } \\ & \text { 淢 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 㝬 } \\ & \text { 品 } \\ & \text { 藻 } \end{aligned}$						$\begin{aligned} & \frac{0}{0} \\ & \frac{1}{y} \\ & \hline \end{aligned}$	雨
$\begin{aligned} & 1827 \\ & 1828 \end{aligned}$	\cdots	\cdots	\cdots	\ldots	\cdots			\cdots	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	．．．	52.69 56.40
$1{ }^{1831}$	\ldots	\ldots	．．．	．．．		．．．	．．．	．．．		．．．		\cdots		．．．		53.60
1832 1833	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	…	\ldots	．．．	\ldots	\ldots	¢ 54．34 52.59
1834 1835 185	\ldots	\ldots	\cdots	．．．	．．．	．．．	\ldots	\ldots	\cdots	\cdots	．．．．	\cdots	\cdots	\cdots	\cdots	－ 50.11
1843 1844 184	\cdots	\cdots	\cdots	．．．	．．．	．．．	\ldots	\cdots	\cdots	\cdots	\ldots	．．．	\cdots	\cdots	．．．	46.57
1845	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．．	．．．	49．70
1850	\cdots	．．．	．．．	．．．	．．．	\cdots	．．．	\cdots	\cdots	\cdots	．．．	\cdots	．．．	．．．	．．．	50.38
IS51	\cdots	\ldots	\cdots	\ldots	．．．	\ldots	\ldots	．．．．	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	50．17
${ }_{185}^{185}$	\cdots	\cdots	\cdots	\cdots	\cdots	．．．	40．39＊＊	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．．	${ }_{\text {51．22＊}}$
1854 1855 185	\cdots	．．．	\cdots	\ldots	．．．．	\ldots	$40.71^{\text {T4 }}$	．．．	\ldots	\cdots	\cdots	\ldots	．．．	．．．	．．．	\ldots
${ }_{1556}^{150}$	\ldots	\ldots	．．．	．．．	．．．	．．．．		\ldots	．．．	．．．	．．．	\cdots	\cdots	\ldots	．．．	\cdots
18578	\ldots	．．．	\cdots	\ldots	．．．	．．．			\ldots	\cdots	．．．	\ldots	\cdots	．．．	46.28	．．．
1.559	．．．．	．．．	\cdots	．．．	．．．．	．．．．	39．79	．．．	\cdots	．．．	．．．．	\cdots	\cdots	\ldots	46．92	．．．
1850	60．54＊	．．．	．．．	…	\cdots	．．．	42.05		\cdots	\cdots	\ldots	\cdots	．．．			．．．
1861 1862	63． 28 60.98	．．．	\ldots	\ldots	\ldots	．．．．	45.48 44.24	53．22	\ldots	\ldots	\cdots	\cdots	． $1 .$.	45.12	47.18	\cdots
1863	．．．	．．．	．．．	\cdots	\ldots	\cdots	43．24	\cdots	\cdots	．．．．	\cdots	\cdots		45.96	49．96	
1864 1865 18	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	．．．	．．．		50．34	50．91
1886	．．．	…	\ldots	…	\cdots		．．．．	．．．		．．．	\ldots	\cdots	\cdots	${ }_{44.57}^{45.83}$	51．13	52．14
18	．．．	．．．	．．．	．．．	．．．	．．．	47.71	55．09	51．03＊	．．．		．．．	．．．	44.12	47.52	49．25
11869	\ldots	${ }_{63} \times 9_{5}{ }^{*}$	．．．	58．85＊	${ }_{56.37^{* \prime *}}$		${ }_{4}^{44.52}$		．．．	51．16	${ }_{47 \cdot 43^{*}}^{50.05}$	48.180^{*}	．．．	43.12 44.06	46.99 48.45	48．45
1870	．．．	．．．	61.47	58．34＊＊	56.53	48.23	44.94	51.07	．	53.26	50.01	${ }_{5}^{4.45}$	．．．．	46．92＊	50．99	51．52
	6 r .7 I	62.91	61.47	58.60	56.45	48．13	42.45	51．6r	．．．	2．29	49．51	49.57	45.63	44.	48.2	50.64

l Hours of observation unknown.

FLORIDA.-Continued.																
$\stackrel{\ddot{\Xi}}{\underset{\sim}{0}}$									¢ّ					䓂		¢
\ldots	\ldots	\ldots	\ldots	-.	\bigcirc	$\stackrel{\circ}{.}$	r 825	\bigcirc	-	$7 \mathrm{I} .{ }^{\circ} \mathrm{So}$	$\stackrel{\circ}{\circ}$	\cdots	\bigcirc	...
\ldots	\ldots	1826	...	\ldots	$72.12{ }^{\prime \prime}$
\ldots	...	\cdots	\ldots	\ldots	...	\ldots	\ldots	\ldots	1827	71.27 "	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	I828	\ldots	\ldots	72.91 68.62	...	\ldots	\cdots	\cdots
...	\ldots	1829 I 80	\ldots	\ldots	${ }^{68.62}$	\ldots	...	\ldots	\ldots							
\cdots	...	\ldots	\ldots	...	\ldots	\ldots	1831	\cdots	...	68.32	\ldots	\cdots	\cdots	...
${ }_{1}{ }^{82} 2$	68.56	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	IS32	\cdots	\ldots	70.19	\cdots
1823	67.85	…	...	\ldots	\ldots	...	\ldots	...	I833	\ldots	72.00 72.49	70.16 $69.93 *$	\ldots	\ldots	\ldots	\ldots
1824	68.70	1835	...	68.15	-9	\ldots	\cdots	\cdots	\ldots
1825		71.98	\ldots								
1826	69.51	72.91	\ldots	1837	\cdots	\cdots	67.29	\ldots	...	\cdots	...
1827 1828	69.87	73.78	\ldots	\ldots	\ldots	...	\ldots	...	1838	66.22	...	\ldots
1828 1829	69.86	73.47	\ldots	...	\cdots	\cdots	...	\ldots	1839	66.58	\cdots	70.55	...	
1839 180	68.57	(72.58	\ldots	...	\ldots	\ldots	1840 1841 18	\cdots	67.90	66.74	\ldots	69.93 68.48	\ldots	71.97 \ldots
${ }_{1831}$...	71.01	1842	...	68.45	68.01	...	69.61	...	
									1843	\cdots	\cdots	68.68	\ldots	\ldots
1839	\ldots	7	$74.7 \mathrm{I}^{*}$...	\cdots	\ldots	67.08	68. ${ }^{\text {a }} 8$	$\begin{array}{r}1844 \\ 1845 \\ \hline\end{array}$	\ldots	\ldots	69.18 69.51%	\cdots	\cdots	\cdots	\ldots
1840	\ldots	70.46	74.9 I	68.90\%	...		\ldots	\cdots		\ldots	\cdots
${ }^{1841}$...	71.18	74.56*	\ldots	71.15		1851	\cdots	\ldots	70.39	,	\ldots	74.90	
1842		71.16	,	...	69.48	69.56	...	\ldots	1852	\%	71.91	\ldots	76.14	73.30
1843	68.54	70.33	\ldots	1853	71.06	...	75.28	75.07
1844	69. 24	70.40	\cdots	...	\cdots	\ldots	1854	...	\ldots	...	72.15*	\cdots	74.37	74.64
1845	67.57*	70.60	1855	...	\ldots	...	\ldots	...	73.37	74.58*
1846 1847	68.26*	71.59 71.66	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	1856 1857	\ldots	\cdots	69.04	...	\cdots	73.53	73.44
1848	${ }_{72.80 *}$	\ldots	\ldots	\ldots	\ldots	\ldots	...	I 1857	\ldots	\ldots	69.04 71.42^{*}	\ldots	...	72.53 \ldots	73.33
1849	...	74.36	1859	71.20
1850		73.47*	78.09*	\ldots	\ldots	\cdots								
1851	68.38*	71.33	1861	78.01*	\cdots	\cdots	\cdots	\cdots
1852 1853	67.73*	71.98	\cdots	...	1862	${ }_{76.12}^{78.12}$	\ldots	...
IS54	68.73	72.54	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	1864 I 86	76.30 75.88	...	\cdots	\ldots	\ldots	\cdots	\ldots
1855	67.82	70.94*	74.38	72.91*	\ldots	\ldots	1865	78.42**	\cdots	\ldots	...
1856	65.95	70.70	75.59	...	\ldots								
1857	...	70.52*	75.87	${ }^{1867}$	79.53	\ldots	
1858		\ldots	\ldots	\ldots	\ldots	...	1808	78.17	\cdots	\cdots
1860	67.67	\ldots	1870	77.02	\ldots	
	68.08	71.51	74.90	72.44	69.80	69.16	68.29	68.39		77.67	69.65	69.39	71.51	69.71	74.04	73.26

$\underset{\text { Conti }}{\mathrm{FI}}$	A．－	G［ORGIA．												IDAHO．		
$\stackrel{\text { ®̀ }}{\underset{y}{0}}$		$\stackrel{\text { 总 }}{\stackrel{y y y y}{E}}$	$\begin{aligned} & \text { 悉 } \\ & \text { 菏 } \end{aligned}$			$\stackrel{\text { ®゙ }}{\stackrel{\text { ® }}{0}}$		$\begin{aligned} & \text { 蔦 } \\ & \text { B } \\ & \text { a } \end{aligned}$		$\begin{aligned} & \text { 辟 } \\ & \text { 范 } \end{aligned}$			$\begin{aligned} & \text { Bi } \\ & \text { B̃ } \\ & \text { N } \end{aligned}$	䔍	宮	
${ }^{1819}$	\bigcirc	$\stackrel{-}{-}$	$\stackrel{\circ}{\circ}$	\cdots	\cdots	．．．	$\stackrel{\circ}{\text { ．．}}$	\cdots	64.60°	－．	\bigcirc	\bigcirc	$\stackrel{.}{ } \times$	\ldots	\ldots	$\stackrel{\square}{.}$
1826	\ldots	．．．	\ldots	\ldots	67.10		．．．		\ldots	\ldots	\ldots	\ldots	\ldots	…	．．．．	．．．
${ }_{1}^{1827}$	．．．	．．．	．．．	．．．	66.41	．．．	．．．	\ldots	\ldots	．．．	\ldots	．．．	\ldots	\ldots	\ldots	．．．
1828	\ldots	\ldots	\cdots	\ldots	67.40	．．．	．．．	\cdots	．．．	\ldots	．．．	．．．	\ldots	．．．	．．．	．．．
1829	\cdots	\ldots	\ldots	\cdots	${ }^{61.22}$	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	．．．	\ldots
1830 1831	\ldots	．．．	\ldots	\ldots	65.64 61.78	\cdots	…	．．．	\ldots	．．．						
1832	．．．	．．．	\ldots	．．．	64.23	．．．	$66.35 *$	．．．		．．．	．．．	．．．	．．．	．．．	\cdots	．．．
1833	．．．	．．．	\ldots	．．．	65.72	．．．		\ldots	67.64	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
1834	．．．	\cdots	\ldots	．．．	64.99	\cdots	69.64	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	．．．
1835	\ldots	．．．	\ldots	．．．	61.93	\ldots	65.71	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\cdots	\ldots
1836	\ldots	．．．	．．．	\ldots	62．09＊	\cdots	\cdots	\ldots	62.20	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	．．．
1837	\ldots	\cdots	\ldots	\ldots	62．36＊	\ldots	．．．	．．．	62.20 61.96	\ldots						
1838 1839	\ldots	\ldots	\ldots	64．00	6 r .64	\ldots	．．．	．．．	63.62	\ldots	．．．．	\ldots	．．．	．．．	\cdots	\ldots
1840	\ldots	．．．	．．．	61.42	61.24	．．．	．．．	．．．	67.06	．．．	6 r .71	．．．	．．．	．．．	\ldots	．．．
1841	\ldots	．．．	．．．	61.09	61． 58	\ldots	．．．	．．．	68.32	．．．	61.15	．．．	．．．	\ldots	\ldots	．．．
1842	\ldots	．．．	\ldots	62.61	62.58	\ldots		．．．	66.45	．．．	$62.35 *$	．．．	．．．	．．．	\ldots	．．．
1843	\ldots	．．．	\ldots	61.97	64.61	．．．	67.22	．．．	66.13	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．
1844	．．．	\cdots	．．．	．．．	65.14	．．．	66.41	．．．	65.36	．．．	．．．	\cdots	\ldots	．．．	\ldots	．．．
1845	．．．	．．．	\ldots	．．．	65.44	．．．	66.94	\cdots	62.09	．．．	．．．	\cdots	．．．	\cdots	\cdots	\cdots
1846	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	66．96＊	\cdots	64.27 65.51	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	
1847 1848	\ldots	．．．	\ldots	\cdots	\ldots	．．．	．．．．	．．．	65.51 66.63	\ldots	．．．	\ldots	．．．	\ldots	\ldots	．．．
1849	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	67.46^{*}	．．．	66.34	．．．	．．．	\ldots	．．．	．．．	．．．	．．．
1850	\ldots	．．．	\ldots	\ldots	\ldots	．．．	－	．．．	${ }^{67.41}$	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．
1851	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\cdots	65.80	\cdots	\ldots	\cdots	．．．	\cdots	\ldots	\cdots
1852	\ldots	\ldots	\ldots	．．．	．．．	\ldots	\ldots	．．．	66.09	．．．	．．．	．．．	\cdots	\ldots	\ldots	．．．
1853	60.4	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	65.45 66.37		\ldots		\ldots	\ldots	\ldots	\ldots
1854	69.42	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	66.37 65.83	63.24 61.97	59.37	64.71 65.13	\cdots	\ldots	\ldots	\ldots
1855 1856	68.23 69.07	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	65.83 64.42	61.97 60.78	59.37	65.13 63.49	63.01	\ldots	\ldots	．．．
1857	68.69	．	．．．	．．．	\ldots	．．．	\cdots	．．．	63.87	6 I .3 x	61．00	$63.48^{\text {＊}}$	62.53	\ldots	\cdots	．．．
1858		59．47＊	\ldots		\ldots	．．．	\ldots	．．．	66.27	62.74	．．．	65．So	．．．	．．．	\ldots	．．．
$\begin{array}{r}1859 \\ 1860 \\ \hline\end{array}$	69．60＊＊	60．73＊	59.44	66．46＊	\ldots	\ldots	．．．	．．．	65．84＊	60．77＊	\cdots	${ }^{66.01}$	\cdots	\cdots	\cdots	．．
1860	68.82	．．．	．．．	．．．	\cdots	\ldots	\cdots	．．．	．．．	61．32＊	\cdots	$65.93{ }^{*}$	．．．		51．．43＊	－ 73.55
1866	．．．	\ldots	57．60＊	\cdots	\cdots	\cdots		\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	1865	51.39	51.82^{*}
1867	\ldots	．．．	56.85	\ldots	．．．	\cdots	65.87	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	1868	49.97	51.44
1869	\ldots	\ldots	56．98＊＊	\ldots	$6 \dddot{3.83}$	\cdots	66．12	61．22	\ldots	\ldots	\ldots	\ldots		I869	54.16	53.73
1870	．．．	．．．	60.21^{*}	．．．	63.67	63.49	65．64＊	61．36	\cdots	\ldots	\ldots	．．．	．．．	1870	52.11	52.54
	69.18	60.93	58.36	63.30	63.77	63.04	66.70	61.33	65.40	61.98	61．33	64.92	63.49		52.05	52.45

ILLINOIS．－Continued．

$\begin{aligned} & \text { 号 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \dot{5} \\ & \text { 荡 } \\ & \tilde{y} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { 芸 } \\ & \text { 荡 } \end{aligned}$		$\begin{aligned} & \text { 芌烒 } \\ & \text { 范 } \\ & \text { in u } \end{aligned}$	$\begin{aligned} & \dot{60} \\ & \text { 烒 } \\ & \text { 0. } \\ & \text { 0. } \end{aligned}$		荷	$\begin{aligned} & \text { 号 } \\ & \text { 号 } \\ & \text { En } \\ & \text { B } \end{aligned}$								
	－	－		－	－	－	－	－	－	－	－	\bigcirc	－	－	－	－
	\cdots	\cdots	49.33	\cdots	\cdots	\cdots	\ldots	．	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots
1825	\ldots	\cdots	52．18	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	．．．	\ldots	\cdots	\cdots	\cdots
IS26	\cdots	\cdots	50.19	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots
1827	\ldots	．．．	51.42	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1528	\cdots	\cdots	51.25	\ldots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots
1829	．．．	\ldots	49.07	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
1830	．．．	．．．	52.89	．．．	．．．	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots
1831	．．．	．．．	45.46	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	\ldots
1832	．．．	．．．	．．．	．．．	．．．	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	．．．	\cdots	\cdots	\cdots
1833	．．．	．．．	50.5 I	．．．	\ldots	\ldots	．．．	．．．	\cdots	．．．	\ldots	．．．	\ldots	\ldots	\ldots	\cdots
1834	\ldots	．．．	49.71	．．．	\ldots	\cdots	\ldots	\cdots	\cdots							
1835	．．．	\ldots	46.22	\ldots	．．．	．．．	\cdots	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots
1841	\ldots	\ldots	．．．	．．．	\ldots	．．．	\ldots	53.69	\ldots	．．．	\ldots	\ldots	\cdots	\cdots	．．．	\cdots
1842	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	54.45	\cdots	\cdots	\cdots	\cdots	\ldots	．．．	\cdots	．．．
${ }_{1 S}{ }^{\text {d }}$	．．．	．．．	．．．	\ldots	\ldots	\ldots	\cdots	50.44	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots
1544	\cdots	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	54.43	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
1845	\cdots	\cdots	\cdots	\ldots	．．．	\ldots	．．．	54.37	\cdots	\cdots	\cdots	．．．	．．．	\ldots	\ldots	\ldots
IS．46	\ldots	．．．	．．．	．．．	\ldots	\ldots	\ldots	55.82	．．．	\ldots	\ldots	\ldots	．．．	\cdots	．．．	\cdots
${ }^{1} \mathrm{~S} 47$	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	55.08	\ldots	\ldots	．．．	\ldots	\ldots	．．．	．．．	\cdots
$19_{4} 8$	\ldots	．．．	．．．	．．．	．．．	．．．	\ldots	55.85	\ldots	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	．．．
1349	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	55.88	\cdots	\ldots	\ldots	\ldots	\cdots	．．．	\cdots	．．．
$1 \mathrm{I}^{\text {jo }}$	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	56.68	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots
iSji	．．．	．．．	．．．	．．．	．．．	．．．	．．．	56.97	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots
1852	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	56.10	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots
1 S53	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots
I S54	\ldots	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots		\cdots	\cdots
1855	．．．	\ldots	\ldots	\ldots	．．．	．．．	\cdots	51.26		\cdots						
1856	\cdots	．．．	．．．	．．．	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	48.82	45．69＊＊	\cdots
1857	\cdots	\ldots	\ldots	45．13	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	．．．	48.59	45．23	\cdots
1853	\ldots	\cdots	\ldots	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	53．22＊	\cdots	．．．	\cdots	51.88	48.47	\ldots
1859	\cdots		\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．	\cdots	\ldots	\cdots	51.24	45.97	\cdots
1800	．．．	46．58＊	．．．	\ldots		\cdots	\cdots		\cdots	…		\cdots		53.69	44.96	．．．
1861	．．．	．．．	．．．	．．．	$48.7 \mathrm{I}^{*}$	．．．	．．．	55．65＊	\ldots	53.21	56.30	．．．	\ldots	52.95	45.81	\cdots
1562	．．．	\ldots	\cdots	．．．	47.42	．．．	\cdots	53.43	\ldots	．．．	．．．	\ldots	\cdots	51.59	45.02	．．．
1853	\cdots	\ldots	\cdots	\ldots	48．62＊	\cdots	\cdots	52．84＊	$\cdots{ }^{*}$	\cdots	\cdots	\ldots	．．．	$50.57{ }^{\text {\％}}$	．．．	\cdots
1564		\ldots	\cdots	\ldots	47.53	\cdots	\cdots	\cdots	52．46＊	\cdots	\cdots	\cdots	\cdots	51.38	\cdots	\cdots
1865	48.54	．．．	．．．	\cdots	49.45	…	\cdots	\cdots	．．	\cdots	\cdots	\cdots	\cdots	\cdots	．．．	\cdots
1866	．．	\cdots	\cdots	\cdots	47.20	59.03	\cdots	．．．	．．．	\ldots	\ldots	49.97		52.31	\ldots	\cdots
IS67	．	．．．	．．．	．．．	48.38	57.04	．．．	\ldots	\ldots	．．．	．．．	51．05＊	．．．	52.16	\cdots	．
1868	．．．	\ldots	．．．	\cdots	48.24	58.65	\cdots	．．．	\cdots	\cdots	\cdots	．．．	\cdots	52.05	44.89	\cdots
1869	46.71	\ldots	．．．	\ldots	47.52	57.82	\cdots	\ldots	\cdots	\cdots	\cdots	50．08＊	52．74＊	51.33	．．．	\cdots
1870	49.02	\cdots	\cdots	\ldots	51．62＊	57．85＊	52.48	．．．	\cdots	\cdots	\cdots	．．．	55.13	53.63	．．．	53.09
	47.67	46.58	49.82	46.19	48.48	58.08	52．48	54.73	\cdots	52.82	55.79	50.34	53.93	51.60	46.04	52.62

IIIINOIS．－Continued．																
～	苞			gi 0 0 0		⿷匚⿱㇒㠯\zh22	蒠	$\begin{gathered} \text {. } \\ \text { 䔍 } \\ \text { ~ } \end{gathered}$		穿					$\begin{aligned} & \text { gi } \\ & \text { 芯 } \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	
1850	\bigcirc	－．．	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\circ}{\circ}$	．．．	49．27
1851	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	50.37
$1 \$_{52}$	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots	．．．	．．．	．．．	\cdots	．．．	\ldots	\cdots	50．07＊
1853	．．．	\ldots	．．．	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	．．．	．．．
1854	49.42	．．．	．．．	．．．	51.28	．．．	…7	．．．	．．．	\cdots	\cdots	\ldots	．．．	．．．	55.41^{*}	$\cdots{ }^{\prime \prime}$
1855	．．．	\cdots	\ldots	\cdots	$48.84 *$	\ldots	48.77	50．．．3＊＊	．．．	… ${ }^{*}$	\ldots	\ldots	．．．	．．．	52.51	48.56^{*}
1856	\ldots	\cdots	\ldots	\ldots	47.60	\cdots	46.47	50．22＊＊	．．．	44．15＊	\ldots	\ldots	．．．	．．．	50.32^{*}	46.23
1857	．．．	\cdots	\cdots	\cdots	45.47	\cdots	46.82	46.31	．．．	42.73	\cdots	\ldots	\cdots	．．．	．．．	49.18
1858	．．．	．．．	\cdots	\ldots	48.60	\ldots	49.68	52.05	\ldots	45.86	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots
1859	\ldots	．．．	\cdots	\cdots	47.96	．．．	49.98	51.81	\ldots	45.60	\cdots	48.08	．．．	\cdots	52．28＊	\ldots
1860	．．．	\ldots	50.47	50.12	48．94＊	．．．		52.80	\cdots	$45 \cdot 32^{*}$	\cdots	49.14	．．．	．．．	．．．	．．．
1861	．．．	．．．	$50.04{ }^{\text {\％}}$	．	48.68	．．．	．．．	52.96	\ldots	44.42	．．．	49．14	．．．	．．．	\ldots	．．．
1862	\cdots	\ldots	48.68	\ldots	48.32	．．．	．．．	51.78	\cdots	44.04	\ldots	48.33^{*}	．．．	．．．	\ldots	．．．
1863	\ldots	\ldots	50.29 ＊	\ldots	$48.37 *$	\ldots	．．．	51．97	\cdots	44．12＊	\ldots	49．21＊＊	57．04＊＊	\cdots	\ldots	．．．
1864	．．．	．．．	．．．	．．．	47．17	．．．	50.50	51.57	48.32	44．27	．．．	46.58	58．74＊	\cdots	．．．	\cdots
1865	．．．	51.8	\ldots	．．．	49．12＊	．．．	$51.63 *$	52.35	50.15	45.85^{*}	\cdots	48.22	．．．	54.28	\ldots	\cdots
I 866	．．．	51.89	．．．	．．．	$48.30{ }^{\text {\％}}$	．．．	．	50.40	48．17	$43.67^{\prime \prime}$	．	45.42	．．．	49.59	\ldots	\ldots
1867	\cdots	52.85	．．．	．．．	49.82	．．．	．．．	50.81	48.00	．．．	48.97	46.22	\ldots	49.71	．．．	\cdots
1868	\cdots	52.48	．．．	\ldots	48．88＊＊	．．．	．．．	50.44	47.84	\cdots	49.03	45.40	．．．	48.83	\ldots	…
1869	．．．	49.89	．．．	．．．	49．15＊＊＊	．．．	\ldots	50.09	47.83	\cdots	47.94	45.27	54．90＊	49.71	．．．	50.13
1870	．．．	54．15＊	．．．	\ldots	52．39＊＊	52.84	．．．	53.48	．．．	47.86	51．83＊	．．．	．．．	．．．	\cdots	52.69
	$49.42^{\text {t }}$	52.25	49.81	49.54	48.92	52．09	49.09	51．36	48.37	44.76	49.40	46.94	56.62	49.74	51．10	50.49
IIIHNOIS．－Continued．										INDIANA．						
－	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\substack{0 \\ 0}}$					$\begin{aligned} & \dot{0} \\ & \text { 俞 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			H ¢ ¢ 4		$\begin{aligned} & \text { 䔍 } \\ & \text { 1 } \\ & \text { N゙ } \\ & \text { む̃ } \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { I } \\ & \text { H } \\ & \text { تु } \end{aligned}$			
1855	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	45.41	\cdots	\ldots	\ldots	\cdots
1856	\ldots	\ldots	\cdots	52.15%	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	42.40	．．．	\cdots	．	．．．
1857	\ldots	．．．	\cdots	52.88	47．82＊	．．．	…	\ldots	．．．	\ldots	\cdots	43.80	\ldots	\ldots	54．06＊	\cdots
1858	．．．	．．．	50.25	55.76	51.70	47.19	47.35	\ldots	\cdots	－ $5 \cdot$	\ldots	47．44＊＊＊＊＊＊＊＊＊	54．04＊	\cdots	57.42^{*}	．．．
1859	．．．	．．．	．．．	55.73	51． 14	46.72	46.00	．．．	．．．	$55 \cdot 55$	\cdots	45．99＊＊	55.47	\ldots	．．．	．．．
1860	．．．	\ldots	．．．	．．．	．．．	．．．	45.86	\cdots	\cdots	．．．	\cdots	48.43	．．．	\cdots	\cdots	\cdots
1861	\cdots	．．．	\cdots	\cdots	\cdots	\ldots	44.70	\cdots	\cdots	\cdots	\cdots	50.36	55．58	\ldots	\cdots	\cdots
1862	\cdots	52．85＊	．．．	．．．	\ldots	．．．	44．84＊＊	\cdots	．．．	．．．	．．．	．．．	－	．．．	．．．	．．．
1853	\ldots	50．08＂	\ldots	．．．	．．．	\ldots	45.96^{*}	．．．	．．．	\cdots	．．．	50．62＊	\cdots	．．．	\cdots	\cdots
1864	．．．	50.84	．．．	．．．	．．．	．．．	45.07	\cdots	50，47	．．．	\ldots	50.04	\ldots	\ldots	\ldots	\ldots
1865	．．．	5 x .69	．．．	．．．	．．．	．．．	46.86	49.59	51.94	…	\ldots	．．．	\cdots	\cdots	\ldots	．．．
1866	\cdots	．．．	\ldots	\cdots	\cdots	．．．	44.37	48．01	．．．	52．90＊	\cdots	\cdots	．．．	46.97	\cdots	\cdots
1867	56.12	．\cdot	\cdots	\cdots	．．．	．．．	45．10	48．66	\cdots	52.17	51．02＊	\cdots	\cdots	48．14	．．．	\ldots
1868	56．53＊	．．．	\cdots	\ldots	．．．	．．．	44.22	48．14＊	．．．	52.30 \％	51．02＊	．．．	．．．	47．76＊	．．．	．．．
1869	．．．	．．．	\ldots	．．．	\ldots	\ldots	43.96	47．78	．．．	51.51	．．．	．．．	．．．	48．08＊	．．．	50.14
1870	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	47.55	49．16＊	\cdots	54.27	\cdots	\cdots	\cdots	52．18＊	．．．	，
	56.3 x	51.37	50.58	54.46	50.18	47.07	$45 \cdot 53$	48.61	51．201	53.09	51.38	$47 \cdot 32$	54.86	48.79	55.74	49－9I
${ }^{1}$ Hours of observation unknown．																

INDIANA．－Continued．																
苐								$\begin{aligned} & \text { 号 } \\ & \text { 荡 } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { 苞 } \\ & \text { H } \end{aligned}$				$\begin{aligned} & \text { 递 } \\ & \text { U } \\ & \text { 蔓 } \end{aligned}$			䓂
1819	\bigcirc	60.17	\bigcirc	－	－．	－．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－．	－．	\cdots	$\stackrel{\circ}{\circ}$
1851	\ldots	．．．	．．．	\ldots	43.41	．．．	．．．	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots
1852	．．．	\cdots	\ldots	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots		\ldots	．．．	\cdots	．．．	\ldots
1853	\ldots	\ldots	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	\ldots	51.38	．．．	\ldots	\cdots	\ldots	
1854	\ldots	．．．	．．．	\ldots	．．．	．．．	\ldots	\ldots	\cdots	．．．	52.95	\cdots	\ldots	\cdots	\cdots	57．72
1855	．．．	\cdots	．．．	\ldots	．．．	\ldots	$\cdots{ }^{1}{ }^{\text {S }}$	\ldots	\ldots	．．．	50.80	\ldots	．．．	\ldots	．．．	55.21
1856	．．．	\ldots	\ldots	．．．	．．．	．．．	47.82	．．．	\ldots	\ldots	．．．	\ldots	．．．	\ldots	\ldots	
1857	．．．	\ldots	．．．	．．．	．．．	．．．	47.64		\cdots	45．73	\ldots	\cdots	\cdots	\cdots	\cdots	52.85 56.10
1858 I 859	．．．	\ldots	．．．	\cdots	\ldots	．．．	52.38 52.37	${ }_{5}^{52.85}$	\ldots	$\stackrel{48.50^{*}}{\ldots}$	．．．	\ldots	．．．	\ldots	\ldots	56.10 55.32
1859 1860	．．．	\ldots	．．．	\ldots	\ldots	\ldots	52.37 \ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	55.32 56.33
1861	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	56.35
1862	\ldots	．．．	．．．	\cdots	．．．	．．．	．．．	\ldots	\cdots	55.81						
1863	0，67	．．．	．．．	\ldots	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	\ldots	\ldots	\ldots	82＊	54．72＊
1864	50.67	\ldots	\ldots	\cdots	\ldots	\cdots		54．19＊								
1865 1866	51.84	\ldots	\cdots	\ldots	．．．	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	54．96	56.31 55.49
1867	50．42＊	．．．	．．．	\ldots	．．．．	\ldots	\ldots	\ldots	51.83	．．．	．．．	．．．	．．．	49.79	．．．	55.05
1868	49.65	．．．		．．．	\ldots	\ldots	\ldots	\ldots	53．11	\ldots	\ldots	．．．	\cdots	49.36	\ldots	55.04
1869	50.04	\ldots	48．27＊＊		．．．	．．．	．．．	．．．	51.77	\ldots	．．．		50．01	49.57	．．．	54.60
1870	52.07	．．．	．．．	54.87	．．．	51.03	\ldots	．．．	55．39＊	．．．	\ldots	52.63	52.98	．．．	\ldots	56.03
	50.66	60.17	48.22	54．20	$43 \cdot 4{ }^{11}$	49.39	50.66	54.63	52.8 I	47.66	51.62	52.05	51.32	49.90	53.41	55.22

1 Hours of observation unknown．

INDIANA．－Continued．								INDIAN TMRRTTORY．					IOWA．			
荡							$\begin{aligned} & \stackrel{\vdots}{\circ} \\ & \stackrel{5}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \text { む̀ } \\ & \text { む̃ } \end{aligned}$					皆		皆	
	\bigcirc	－	－	－	－	－	－	－	－	\bigcirc	－	－	－	\bigcirc	－	－
1829	\cdots	．．．	\ldots	\cdots	．．．	\cdots	\cdots	．．．	．．．	60.85	．．．	\ldots	．．．	\ldots	\ldots	\ldots
1830	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	64.65	．．．	．．．	\ldots	\cdots	．．．	\cdots
1831	\cdots	．．．	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	57.71	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots
1832	\ldots	\ldots	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	61.32	6．．．	\cdots	\cdots	\ldots	\cdots	\cdots
1833	．．．	．．．	．．．	\cdots	\cdots	\ldots	．．．	\ldots	\ldots	61.67	61.58	\cdots	\cdots ．	\ldots	\cdots	\cdots
1834	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	\cdots	\cdots	62.75	61.60	．．．	．．．	\ldots	\cdots	．．．
1835	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	55.78	58.59	．．．	\ldots	\ldots	\ldots	\cdots
1836	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	59.49	59.69	．．．	．．＇	\cdots	\cdots	\cdots
1837	\cdots	\ldots	\ldots	\ldots	．．．	\cdots	\ldots	\cdots	．．．	61.06	61.72	\cdots	\cdots	\cdots	\cdots	\cdots
1838	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	58.03	59.32	\cdots	\ldots	\cdots	\cdots	\cdots
$\underline{1839}$	\cdots	\cdots	．．．	．．．	．．．	\cdots	\ldots	\ldots	．．．	62.18	62.83	．．．	．．．	\ldots	\cdots	\cdots
1840	．．．	．．．	\ldots	\ldots	\cdots	．．．	．．．	\ldots	\cdots	59.66	62.49	．．．	\ldots	\cdots	\cdots	\cdots
I841	．．．	．．．	\ldots	\ldots	．．．	\cdots	\ldots	\ldots	\cdots	59.79	59.59	\cdots	\cdots	\cdots	\cdots	\cdots
1842	．．．	\ldots	\ldots	．．．	．．．	\cdots	\cdots	\ldots	．．．	60.69	63.67	\cdots	．．．	\cdots	\cdots	\ldots
1843	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	．．．	58.94	61.19	60.82	\cdots	\ldots	\cdots	\cdots
1844	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	\cdots	\ldots	60.64	63.00	63.94	．．．	\cdots	\ldots	\cdots
1845	\cdots	\cdots	\ldots	．．．	．．．	\ldots	．．．	\ldots	\cdots	61.58	62.19	63.41	．．．	\ldots	．．．	．．．
1846	\cdots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	．．．	61.03	．．．	64.02	．．．	．．．	\ldots	．．．
1847	．．．	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	58.91	\cdots	61.23	\cdots	\ldots	\cdots	\cdots
1848	．．．	\ldots	\ldots	\ldots	\ldots	．．＇	\ldots	\cdots	\cdots	59.37	\cdots	61.66	\ldots	\cdots	\cdots	\ldots
1849	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	59.20	．．．	61.70	．．．	\cdots	\cdots	\ldots
1850	．．．	\cdots	\ldots	．．．	．．．	\ldots	\ldots	\cdots	\cdots	60.24	61.95	62.13	\ldots	．．	\ldots	．．．
1851	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	．．．	\cdots	61.14	61.22	62.92	63.08	．．．	\ldots	\cdots	\ldots
1852	\ldots	\cdots	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	59.58	59.54	．．．	60.42	\cdots	\ldots	\cdots	\cdots
1853	\cdots	．．．	\ldots	\cdots	\cdots	\cdots	．．．	\ldots	61.18	60.53	61.69	61.24	\cdots	\ldots	\cdots	\cdots
1854	\ldots	$52.63 *$	\cdots	．．．	．．．	\cdots	\cdots	\cdots	62.55	62.22	．．．	63.28	\cdots	\ldots	．．．	．．．
1855	\cdots	．．．	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	61.91	59.98	\ldots	62.73	．．．	．．．	\cdots	\ldots
1856	\ldots	…	\ldots	\ldots	\ldots	\cdots	\cdots	．．．	58.70	58.34	\ldots	60.45	．．．	．．．	43.76	\ldots
1857	\cdots	48.11	．．．	\cdots	\cdots	\cdots	\cdots	．．．	58.46	\cdots	．．．	60.60	．．．	．．．	44.16	\cdots
1858	．．．	51.75	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	．．．	\ldots	\cdots	\cdots	\cdots	47.39	\cdots
1859	\cdots	52.40	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	62.31	\ldots	\cdots	\ldots	\ldots	．．．	47．13	\ldots
1860	．．．	53：02\％	\ldots	．．．	\ldots	\cdots	\cdots	59．01＊	64.01	．．．	\cdots	．．．	．．．	．．．	．	\ldots
1865	\ldots	．．．	\ldots	\cdots	\cdots	\ldots	\ldots	．．．	\ldots	\cdots	\cdots	\cdots	．．．	．	．．．	\ldots
1862	\cdots	\cdots	50.40	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	41.94	．．．	\cdots	\ldots
1863	．．．	．．．	50.40	50．13＊	47．62＊	… 77	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	43．08＊	\cdots	\cdots	\cdots
1864	… $*$	… ${ }^{*}$	50.20	．．．	47.99	49.77	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	43.55	\cdots	\cdots	\cdots
1865	49．02＊	50．13＊	51.30	\ldots	．．．	51.34	55.40	\cdots	\cdots	\ldots	\cdots	\cdots	．．．	\cdots	\ldots	\cdots
1866	．．．	48．17	50.00	．．．	\cdots	49.54	55.55	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots
1867	48．37＊	48.58	．．．	\ldots	\cdots	50.22	55.70	\cdots	\cdots	\cdots	\cdots	\cdots	43．06＊	41．10	\cdots	
1868	48．37＊	．．．	\cdots	\cdots	\cdots	49.74 49.69	5499	\cdots	59.64	\cdots	\ldots	\cdots	42.71 42.63	42．26＊	\ldots	44．65＊
1870	50．81\％	\ldots	\cdots	\cdots	\cdots	52.16	54．96	\ldots	59.64	\ldots	\ldots	\ldots	45.49	41.8	．．．	46.69
	48.70	50.78	50.11^{1}	49.71	48.78	50.27	54.68	59.01	61.05	60.48	61.50	62.18	43.29	41.86	46.00	45.75
1 Hours of observation unknowa．																

IOW A．－Continued．																
$\begin{aligned} & \dot{\tilde{x}} \\ & \stackrel{y y}{*} \end{aligned}$	苞荡淢					$\begin{aligned} & \text { 品 } \\ & \text { B } \end{aligned}$	式运		－				永		$\begin{aligned} & \dot{3} \\ & \stackrel{y}{3} \\ & \text { 范 } \\ & 0 \\ & 0 \end{aligned}$	
1820	－	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	。	－
1821	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	47.12	\cdots	．．．	\ldots	．．．	．．．	\cdots	\ldots	\cdots	\cdots
1822	\ldots	\ldots	\ldots	\ldots	．．．	．．．	50.25	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	．．．
1823	．．．	\ldots	．．．	．．．	\ldots	．．．	51.28	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\ldots
1824	\ldots	\ldots	．．．	．．．	\ldots	\ldots	4 S .25	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots	\ldots
1825	．．．	．．．	．．．	\ldots	．．．	．．．	52.21	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
18_{42}	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	．．．	\cdots	\ldots	\cdots	．．．	46.87
1843	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	41.76
1844	\cdots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	49．54	．．．	．．．	．．．	．．．	．．．	45.36
1845	\cdots	．．．	50．20＊	－．	\cdots	\cdots	\cdots	\cdots	46.21							
I854	．．．	．．．	．．．	．．．	\cdots	\cdots	\cdots	\ldots	\ldots	．．．	50.18	\cdots	\cdots	\ldots	\ldots	\cdots
1855	\ldots	．．．	\ldots	\ldots	\cdots	．．．	．．．	．．．	．．．	\cdots	47.80	50.08	＝．．．	\ldots	．．．	．．．
1856	\ldots	\ldots	\ldots	\cdots	．．．	\ldots	\cdots	\ldots	\ldots	\cdots	．．．	．．．	\ldots	．．．	\cdots	．．．
1857	44．31	．．．	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	．．．	\cdots	．．．	47．20	．．．	．．．	．．．
1858	47．48	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	．．．	．．．	．．．	47.98	\cdots	49.49	．．．	．．．	．．．
1859	47．97＊	．．．	$5 \mathrm{I} \cdot 3 \mathrm{I}^{\text {\％}}$	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	47.62	．．．	48.91	．．．		．．．
I 860	．．．	．．．		\ldots	．．．	\cdots	．．．	．．．	\cdots	．．．	49.72	．．．	，	45.23 \％	45．64＊	．．．
1861	\cdots	\ldots	\ldots	8	\cdots	47．14	\ldots	\ldots	47． 59^{*}	\cdots	47.65	\cdots	\cdots	．．．	44.86	．．．
1862	\cdots	\cdots	\cdots	45．85＊	\cdots	46.28	\cdots	\cdots	46.24	．．．	46.65	．．．	．．．	．．．	．．．	．．．
1863	\ldots	．．．	\ldots	$46.74{ }^{\text {＊}}$	\ldots	47．02＊	．．．	\ldots		．．．	47.96	．．．	．．．	．．．	．．．	．．．
1864	．．．	．．．	．．．	45．32	．．．	$47.4 \mathrm{I}^{*}$	．．．	．．．	46.60	．．．	46.92	．．．	．．．	．．．	．．．	．．．
IS65	．．．	．．．	．．．	45．18	．．．	49.08	．．．	．．．	48.45	\cdots	48．31	．．．	．．．	．．．	．．．	．．．
1866	\cdots	\ldots	\cdots	43.19	43.62	47.24	\ldots	\ldots	46.91	46.82	45.76	．．．	．．．	．．．	．．．	．．．
1867	．．．	．．．	．．．	$43.47{ }^{\text {＊}}$	46.33	48．76＂	\cdots	41．33＊	47.32	\ldots	47．10	\ldots	．．．	．．．	．．．	．．．
1868	．．．	\ldots	．．．	43.57	．．．	48.37	．．．	，	46.86	．．．	46.09	．．．	．．．	．．．	．．．	．．．
1869	．．．	44.45	．．．	43．55＊	\ldots	46.01	\ldots	．．．	46.51	．．．	46.15	．．．	．．．	．．．	．．．	．．．
1870	\ldots	48.17	\cdots	47．37＊	\cdots	48.75	\cdots	\cdots	．	\cdots	49.54	．．．	．．．	．．．	．．．	．．．
	46.45	46.28	51.36	44.94	$45 \cdot 35$	47.65	49.55	42.63	47.33	48.94	47.69	50.081	49.00	．．．	44.83	45.29

${ }^{1}$ Hours of observation unknown．

KANSAS．－Continued．																
－								$\begin{aligned} & \text { 密 } \\ & \text { ت} \\ & \text { 芯 } \end{aligned}$	$\begin{aligned} & \text { 若 } \\ & \text {. } \\ & \text { 莎 } \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { in } \end{aligned}$				$\begin{aligned} & \text { E } \\ & \text { 震 } \\ & \text { E. } \end{aligned}$		既
	．．．	\cdots	．．．	\cdots	\therefore	．．．	${ }_{56.56}$	\cdots	\therefore	\therefore	\therefore	\cdots	．．．	\cdots	．．．	\cdots
	\cdots	\cdots	\cdots	．．．	．．．	．．．	50.56 49.78	．．．	\cdots	\cdots	\cdots	．．．	\ldots	\cdots	\cdots	．．．
	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	533．39	\ldots	\cdots	．．．	．．．	．．．	\cdots	\cdots	．．．	\ldots
	\ldots	\cdots	\ldots	\cdots	．．．	．．．．	55．54	\ldots	\cdots	\cdots	．．．	\ldots	\cdots	\cdots	\ldots	．．．
	．．．	\cdots	\cdots	．．．	\cdots	．．．	51．65＊	\ldots	\cdots	．．．	．．．	．．．	\ldots	\ldots	\ldots	\ldots
	\cdots	\cdots	．．．	\cdots	\ldots	\cdots	（ $\begin{aligned} & 43.73 \\ & 52.89\end{aligned}$	\ldots	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	\ldots	．．．
	．．．	\cdots	．．．	．．．	．．．	．．．	${ }_{5}^{5.154}$	．．．	\ldots	\ldots	．．．	．．．	\cdots	\cdots	\ldots	．．．
	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	（ $\begin{gathered}53.64 \\ 51.36\end{gathered}$	\ldots	\ldots	．．．	\cdots	．．．．	\cdots	\cdots	\ldots	．．．
	\ldots	\cdots	．．．	\cdots	\ldots	\cdots	$5 \mathrm{5r} 20$	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots
	\ldots	\cdots	\ldots	\cdots	．．．．	\cdots	52.85 49.01	．．．	${ }_{52.58}$	\ldots	\ldots	\ldots	\cdots	\cdots	．．．	．．．
	\ldots	\cdots	\cdots	．．．	\cdots	\cdots	${ }_{52.67}^{49}$	\cdots	55．00	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	．．．．
	\cdots	\cdots	\ldots	\cdots	．．．	\cdots		．．．．	555．85	\ldots	\cdots	\cdots	．．．	\cdots	．．．	．．．
	\ldots	\cdots	\ldots	\cdots	．．．	…	55.71 49.79	．．．	55.95 52.65	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots
	\ldots	．．．	．．．	\ldots	．．．	．．．	…	．．．	54．00	．．．	\ldots	\ldots	．．．		．．．	．．．
	\cdots	…	\cdots	\cdots	\cdots	\cdots	${ }_{\substack{52.22 \\ 52.04}}$	．．．．	－ $\begin{aligned} & 53.67 \\ & 55.12\end{aligned}$	．．．．	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots
	．．．	55．44	．．．	．．．	．．．	．．．	53.19	…	56.05	．．．	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots
	\cdots	${ }_{\text {5 }}^{53} 5.344^{\text {a }}$	\cdots	\ldots	\cdots	\cdots	cinti．54	．．．	$\stackrel{54.85}{. .}$	\ldots	．．．	\ldots	\cdots	\cdots	\ldots	．．．
	．．．		．．．	．．．	．．．	．．．	55.94	57.40	\cdots	．．．	．．．	\ldots	．．．．	\ldots	\cdots	\ldots
	\ldots	\ldots	\cdots	．．．	．．．	．．．	54.30	54．59	．．．	．．．	．．．		．．．	．．．	．．．	．．．
	\ldots	\cdots	\cdots	\cdots	\cdots	．．．．	${ }_{5}^{49.19}$	${ }_{51.14}^{52.08}$	．．．	\cdots	\ldots	．．．．	\cdots	53．71	\ldots	\ldots
	．．．	\ldots	\ldots	．．．	\ldots	．．．	55.35	53.93	．．．	．．．	54．10	53．28＊	\cdots			．．．．
	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	${ }_{5}^{52.86}$	54．20	．．．	．．．	．．．	．．．	．．．	53．92	54．19＊＊	．．．
	\ldots	\cdots	\cdots	\cdots	…	54.50	54.01	52．61	\ldots	\ldots	55.05	54．72	．．．	53．98	${ }_{\text {che }}^{50.35 *}$	
	．．．	\ldots	\ldots	．．．	．．．	54．41	52.72	54.88	．．．	．．．			．．．			
	．．．．	\cdots	\cdots	\ldots	．．．．	54.20 52.66	$\underset{\substack{52.95 \\ 5.99}}{ }$	55.04 55.91	\ldots	．．．．	54．0．\％	\ldots	．．．．		\cdots	
	53．50\％	\cdots	\cdots	\cdots	\cdots	53.77	53.53	54．57	\ldots	\cdots	\cdots	－	\ldots		．．．．	
	53.50 52.96	．．．．	．．．．	5．．06＊	．．．			52.89	．．．．	．．．	…	50．44	\cdots		．．．	
	54．15	．．．	54.62	\％．．．	53.89	$57.62 *$	52.87	52．32	\cdots	52．05	52．8r	50.51	．．．			
	${ }_{5}^{53.67}$	\cdots	${ }_{5}^{54.63}$		52.92			51.09	．．．	${ }^{51.30}$	49.59	49.71	53．66			
	$55.5+$	\ldots	56.38	53．24＊	54．42	53．71		53．73	．．．	53.62	53.70	52.25	．．．	53．76	50．1．	53.11
	53．88	54.77	55.32	51.81	5＋44	53.91	52.75	54.21	54.58	52.51	53．49	5 F .45	53．26	52.89	54.	

IN THE UNITED STATES AND BRITISH NORTHAMERICA． 253

IOUISIANA．－Continued．							MAINE．								
											－		H゙®	苍	
	，	\bigcirc	－	－	0	－	\bigcirc	－	－	－		－		\bigcirc	－
1823	67.33	．．．	\cdots	\cdots	．．．	．．．	\ldots	．．	．．．	．．．	＊＊	．．．	4．．	\cdots	．．．
1824	69.16	．．．	．．．	，．．．	＊＊	．．．	\ldots	．．．	＊＊	．．．	\cdots	\ldots	．．．	\cdots	\ldots
1825	67.74	70.26^{*}	\cdots	69.17	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	\cdots	\cdots
1826	68.91	．．．	．．．	72，16	\cdots	．．．	\ldots	．．．	．．．	．．．	．．．	\cdots	．．＇	．．．	．．．
1827	69.10	70.67	．．．	71．11＊	\cdots	\cdots	．．．	．．．	＊＊	\cdots	．．．	\cdots	\cdots	\cdots	\cdots
1828	68.13	72.59	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	\cdots	\cdots	\cdots	．．．	\cdots
I829	65.08	69.16	．．．	．．．	．．．	＊＊＊	．．．	．．．	＊．	＊＊	．．．	\cdots	\cdots	．．．	＊．．
1830	66.41	72.26	\ldots	\cdots	．．．	．．．	．．．	－．	．．．	．．．	．．．	\cdots	\cdots	．．．	．．．
183 I	62.57	67.80	．．．	\cdots	\cdots	．．．	．．．	．．．	．．．	．．．	＊＊＊	\cdots	＊＊	\cdots	．．．
1832	66.04	70.63	68．	．．．	．．．	\cdots	42.97	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	\cdots
1833	67.15	70.37	68.91	＊＊	\cdots	\ldots ．．．	42.87	．．．	\cdots	．．．	\ldots	．．．	\cdots	．．．	．．．
1834	67.54	70．10	68	．	．．．	．．．	43.57	．．．	\cdots	．．．	－	－	－	\cdots	\cdots
1835	63.95	68.71^{*}	68.16	．．．	．．．	．．．	42.37	－••	\ldots	．．．	…	\cdots	\cdots	\cdots	＊＊
1836	63.69	相	．．．	．．．	66.17	\ldots	41.27	．．．	．．．	．．．	1807	43．66 ${ }^{\circ}$	\cdots	\cdots	\cdots
1837	65.12	．．．	．．．	\cdots	－	．．．	41．37	．．．	－\cdot	．．．	1808	43.43	\cdots	＊＊	\cdots
1838	64.18	70.14^{*}	．．．	67.49	．．．	\ldots	42.97	．．．	\ldots	．．．	1809	42．14	…	．${ }^{\circ}$	\cdots
1839	67.30	，	．．．	69.29	．．．	．．．	44.97	．．．	．．	＊．	1810	43.57	1835	44.42	\cdots
1840	67.80	＊＊＊	．．．	71.95	．．．	\cdots	46.17	．．．	．．．	．．．	1811	44.71	1836	43.00	＊＊
1841	65.05	．．．	\ldots	70.33	\ldots	．．．	45.47	\cdots	．．．	．．．	1812	40.94	$1837 \dagger$	49.60	\ldots
1842	66.41	－•	．．．．	68.12	．．．	．．．	，	－．．．	\ldots	．．．	1813	43.18	$1838+$	50.69	\ldots
1843	64.29	67.84	68.19	68.98^{*}	\ldots	．．．	\ldots	\ldots	．．．	．．．	1814	43.29	18391	5 E .45	\ldots
1844	66.26	69.64	70.06	71．32\％	\ldots	．．．	．．．	\ldots	．．．	．．．	1815	42.87	$1840 \dagger$	51.60	\ldots
1845	65.71 \％	－	69．45＊	－	＊＊	．．．	．．．	\cdots	\ldots	＊＊	1816	42.09	1841	46.58	\ldots
		．			．			．	－	，	1817	41.64	1842	45.84	．．．
1847	．．．	．．．	\cdots	69.39	．．．	\cdots	－．	．．．	．．．	＊＊	1818	44.78	1843	43.87	．．．
1848	．．．	．．．	\ldots	70.45	\ldots	．	．．．	\ldots	\ldots	44.60	1819	45.46	1844	42.32	．．．
I849	．．．	．．．	．．．		\ldots	68.96	\ldots	．．．	\ldots	44.28	1820	44.03	1845	43.27	\ldots
1850	\ldots	\ldots	．	68.60^{*}	．．．	－	．．．	．．．	\ldots	46.57	1821	43.91	1846	44.01	．\cdot
1851	＊＊	．．．	\ldots	．．．	＊＊	．．．	．．．	\cdots	．＊＊	45．76＊	1822	43.06	1847	43.08	．．．
		，	．								$1 \mathrm{~S}_{23}$	41.03	1848	43.70	．．．
1854	．．．	\ldots	\ldots	67.74	＊＊	＊＊	\cdots	\cdots	．．．	．．．	I 824	43．86＊	IS49	43.00	\ldots
1855	．．．	．．．	．．．	68.35	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	1825	45.73	1850	． $43 \cdot 37$	\ldots
1856	\ldots	\ldots	．．．	68.97	．．．	．．．	．．．	．．．	．．．	．．．	1826	$45 \cdot 46$	1851	42.60	\cdots
1857	．\cdot	．．．	．．．	69.24	．．．	＊．．	．．．	\ldots	．．．	\ldots	1827	43.87	1852	43.91	．．．
1858	．	．．．	．．．	71.40	．．．	\cdots	\cdots	．．．	．．．	－	1828	46.94	1853	44.53	－
1859	．．．	．．．	．．．	71.07	．．．	＊＊	．．．	．．．	．．．	．．．	$\underline{1829}$	46.19	1854	42.73	45.06
I 860	．．．	\ldots	\ldots	$72.23 *$	．．．	＊－．	．．．	43.21	\ldots	．．．	1830	47.50	1855	42．95＊	41．44＊
1861	\ldots	．．．	．．．	－	\ldots	＊＊	\ldots	4 L .75	41．91	．．．	1831	47.66	1856	41：78	40． 54 ＊
1862	＊＊	\ldots	＊＊	＊＊	\cdots	\cdots	\cdots	40．75＊＊	．．．	－\cdot	1832	45.17	1857	43.62	\cdots
－											1833	45.61	1858	43.75	\cdots
1870	\cdots	\cdots	．．．	65.70	\cdots		\cdots	\cdots	\cdots	＊＊	1834	$45 \cdot 36$	1859	40.31	\cdots
	66.32	69.88	69.32	69.06	$66.17{ }^{\text {l }}$	68.961	$43 \cdot 58$	41.72	41.68	$45 \cdot 57$	\％			44.40	41.46

[^126]| IVATNW．－Continued． | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{シ ゙}{\stackrel{\omega}{y}}$ | $\begin{gathered} \dot{\Xi} \\ \stackrel{y}{n} \\ \tilde{U} \end{gathered}$ | － | | | － | | ¢ | | $\begin{aligned} & \stackrel{\Delta}{\stackrel{\Delta}{\circ}} \\ & \stackrel{\leftrightarrow}{\oplus} . \end{aligned}$ | | 空 | | | 第 | － | 䔍 |
| | － | | － | － | | － | | \bigcirc | － | － | － | － | － | \square° | | － |
| \cdots | ．．． | \cdots 。 | ．．． | ．．． | －．＊ | ．．． | 1822 | \ldots | ．． | ．．． | ．．． | ．．． | ．．． | 42.20 | \ldots | \cdots |
| ．．． | \ldots | ．．． | ．．． | ．．． | ．．． | \ldots | 1823 | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | 40.90 | \ldots | ．．． |
| ．．． | \ldots | \ldots | ．．． | ．．． | \ldots | \ldots | 1824 | ．．． | \ldots | \ldots | \cdots | \cdots | 45.46 | 41.54 | \ldots | ．．． |
| ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | 1825 | ．．． | ．．． | ．．． | ．．． | ．．． | 46.87 | 43.98 | \ldots | ．．． |
| \cdots | \ldots | ．．． | ．．． | \cdots | ．．． | \cdots | 1826 | \cdots | \cdots | \ldots | \ldots | \cdots | 46.67 | 44.55 | \cdots | \cdots |
| \ldots | \cdots | \cdots | \cdots | \ldots | \cdots | \ldots | 1827 | \cdots | \ldots | ．．． | \ldots | ．．． | 45.52 | 44.29 | \ldots | ．．． |
| \cdots | $\ldots{ }^{*}$ | \ldots | \cdots | \ldots | ．．． | ．．． | 1828 | \cdots | ．．． | ．．． | \cdots | \cdots | 48.18 | $43 \cdot 38$ | ㅇ．． | |
| ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | \ldots | 1829 | ．．． | ．．． | ．．． | ．．． | ．．． | 45.03 | 42.22 | 1837 | 40.68 |
| ．．． | ．．． | ．．． | \ldots | ．．． | ．．． | ．．． | 18.30 | ．．． | \ldots | \ldots | \cdots | ．．． | 46.34 | 43．10 | 1838 | 42.74 |
| \cdots | \ldots | ．．． | ．．． | \ldots | ．．． | \cdots | 1831 | ．．． | \ldots | ．．． | ．．． | ．．． | 46.63 | 44.21 | 1839 | 44.09 |
| ．．． | ．．． | ．．． | ．．． | \ldots | ．．． | \ldots | 1832 | ．．． | ．．． | \cdots | \cdots | ．．． | 44．13＊ | 40.98 | 1840 | 45.04 |
| | ．．． | | … | ．．． | ．． | \cdots | 1833 | \cdots | \cdots | 41.48 | \ldots | ．．． | 45．10 | 42.52 | 1841 | 45.52 |
| 1810 | 43.08 | 1838 | 43.07 | ．．． | 1816 | 40.43 | 1834 | ．．． | ．．． | 42.64 | ．．． | ．．． | 45.60 | 42.74 | 1842 | 43.85 |
| 1814 | 44.88 | 1839 | $43 \cdot 36$ | ．．． | 1817 | 40.63 | 1835 | ．．． | ．．． | ．．． | ．．． | ．．． | 44.05 | 41.23 | 1843 | 42.57 |
| 1812 | 41.48 | I 840 | 43.65 | ．．． | 1818 | 41.23 | － | | | | | | | | 1844 | 40.54 |
| 1813 | 43.57 | 1841 | 43.91 | ．．． | 1819 | 43.23 | 1841 | \ldots | ．．． | ．．． | ．．． | … | 43.81 | 43.14 | 1845 | 41.74 |
| ${ }^{181} 4$ | 44.00 | 18.42 | 44． 10 | ．．． | 1820 | 41．13 | 1842 | \ldots | ．．． | ．．． | 37.50 | 36.26 | 43.87 | 42.08 | 1846 | 44．47 |
| 1815 | 42.44 | 1843 | 43.68 | ．．． | 1821 | 41.03 | 1843 | \cdots | \ldots | \ldots | | ． | 43．53＊ | 42.86 | 1847 | 44.26 |
| 1816 | 41.85 | 1844 | 42.94 | \ldots | 1822 | 41.73 | 1844 | 42.03 | ．．． | ．．． | ．．． | ．．． | 43.05 | 43.49 | 1848 | 43.82 |
| 1857 | 41.95 | 1845 | 45.19 | ．．． | 1823 | 40.73 | I845 | 42.53 | ．．． | ．．． | ．．． | ．．． | 44．55＊＊ | ．．． | 1849 | 43.38 |
| 1818 | 42.81 | 1846 | 48.40 | ．．． | 1824 | 42.23 | 1846 | 42.73 | \cdots | ．．． | \ldots | ．．． | ， | ．．． | 1850 | 44.19 |
| 1819 | 44.73 | 1847 | 45.02 | ．．． | 1825 | 43.43 | 1847 | 43.33 | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | 1851 | 43.98 |
| 1820 | 43．50 | 1848 | 45.01 | ．．． | 1826 | 43.73 | 1848 | 44.03 | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | 1852 | 44.71 |
| 1821 | 42.83 | 1849 | 44.02 | \cdots | 1827 | 41.53 | 1849 | 42.33 | \ldots | \ldots | \cdots | ．．． | … | ．．． | － 5 | |
| 1822 | 44.51 | | | | 1828 | 44．13 | 1850 | 43.83 | \ldots | \ldots | \ldots | \cdots | 44.97 | 43.17 | 1855 | 45．18 |
| $\mathrm{I}_{18} \mathrm{I}_{3}$ | 42.97 | 1856 | \ldots | ．．． | 1829 | 41.73 | 1851 | 41.93 | ．．． | ．．． | ．．． | ．．． | 44.3 I | 42.79 | 1856 | 43.53 |
| IS24 | 44.97 | 1857 | \ldots | 42.12 | 1830 | 42.73 | 1852 | 43.33 | \ldots | ．．． | ．．． | \ldots | 44.63 | $43 \cdot 56$ | 1857 | 44.36 |
| 1825 | 46.34 | 1858 | ．．． | 42.06 | 1831 | 43.33 | 1853 | 43.93 | ．．． | \ldots | \cdots | ．．． | ．．． | ， | 1858 | 42.42 |
| 1826 | 46.56 | 1859 | ．．． | 42.43 | 1832 | 40.13 | 1854 | 43.13 | ．．． | ．．． | ．．． | ．．． | \ldots | ．．． | ${ }^{1} 859$ | 4 r .43 |
| 1827 I 828 | 43.98 | 1860 | ．．． | 43.8 .4 | 1833 | 40.83 | 1855 | 43．13 | ．．． | \cdots | \cdots | \cdots | \cdots | \cdots | | |
| 1828 | 47.46 | 1861 | \cdots | 42.64 | 1834 | 40.13 | － | | | | | | | | 1861 | 43．10 |
| 1829 | 44.46 | 1862 | \ldots | 42.39 | 1835 | 40.63 | IS61 | \ldots | 41.56 | \cdots | \ldots | \ldots | \cdots | \cdots | 1862 | 42.89 |
| 1830 1831 | 44.65. | 1863 | \cdots | 43.17 | 1836 | 40.33 | 1862 | \cdots | 43.07 | \ldots | \cdots | \ldots | ．．． | \ldots | 1863 | $43.14{ }^{\text {＊}}$ |
| 1831 1832 | 44.95 42.08 | 1864 | \cdots | 43.29 | 1837 | 40，23 | － | | | | | | | ．．． | 1864 | 44.56 |
| 1832 | 42.08 | 1865 | \cdots | 44.99 | 1838 | 40.93 | 1865 | ．．． | \cdots | \cdots | \cdots | ．．． | 48．37＊ | ．．． | 1865 | 44.47 |
| 1833 | 42.02 | 1866 | \cdots | 44.04 | 1839 | 42.33 | － | | | | | | | | 1866 | 43.61 |
| I834 IS35 | 43.03 | 1867 | \cdots | 42.53 | 1840 | 42.33 | 1867 | \cdots | \cdots | ．．． | \cdots | \cdots | 44.94 | \cdots | 1867 | 42.52 |
| IS35 I 836 | 42.61 | 1868 | \ldots | 42.00 | $1 \$_{4} 1$ | 42.73 | 1868 | \cdots | \cdots | \ldots | \ldots | \cdots | 42.49 | ．．． | 1868 | 42.38 |
| 1836 1837 | 40.86 | 1869 | \ldots | 44.14 | 1842 | 42.23 | 1869 | \ldots | ．．． | \ldots | \ldots | ．．． | 43．87＊ | ．．． | 1869 | 43.79 |
| 1837 | 41.20 | 1870 | \cdots | 46.46 | 1843 | 41.93 | 1870 | \ldots | \cdots | \cdots | \ldots | －．．． | 45.51 | ．．． | 1870 | 46.09 |
| | | | 43.79^{1} | 43.30 | | | | 42.13 | 42.65 | 42.061 | 37.73 | 36.87 | 45.26 | 42.83 | | 43.53 |
| | | | | | | 1 Ho | urs of | bservat | on ：mk | own． | | | | | | |

IVAINP．－Continued．																
ジ்		$\begin{aligned} & \text { C } \\ & \text { 号 } \\ & \text { 总 } \end{aligned}$	－	$\begin{gathered} \text { 号 } \\ \text { 角 } \end{gathered}$		$\begin{aligned} & \text { 这 } \\ & \text { 苞 } \\ & 0 \end{aligned}$		$\begin{gathered} \text { B. } \\ 0 \end{gathered}$	－	$\begin{aligned} & \text { ت̈ } \\ & \text { 䔍 } \\ & \text { a } \end{aligned}$						$\begin{aligned} & \text { 品 } \\ & \text { 号 } \\ & \text { E } \\ & \text { 寻 } \end{aligned}$
	－	－	－	－	\bigcirc	－	－	－		， 8	－	－	－	。	－	－
\cdots	\ldots	．．．	\ldots	．．．	\cdots	\ldots	．．．	\cdots	1820	42.98	．．．	\ldots	\cdots	\cdots	\ldots	\ldots
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	．．．	1821	42.73	．．．	．．．	\ldots	．．．	．．．	．．．
\cdots	．．	\ldots	\ldots	\cdots	－．．	．．．	．．．	\cdots	1822	43.64	．．．	：．．	．．．	．．．	．．．	\cdots
－．．	\ldots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	．．．	1823	41.64	．．．	．．．	．．．	\cdots	．．．	\cdots
\cdots	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	1824	43.23	．．．	\ldots	．．．	．．．	．．．	．．．
\cdots	．．．	\cdots	\cdots	．．．	\cdots	\cdots	\ldots	\cdots	1825	45.23	．．．	．．．	．．．	\cdots	\ldots	\ldots
．．．	\cdots	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	1826	44.98	．．．	\ldots	．．．	．．．	．．．	．．．
\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	1827	43.23	．．．	．．．	．．．	\cdots	．．．	．．．
ㄲ．．	…	\cdots	\cdots	\cdots	\cdots	．．．	．．．	．．．	1828	45.39	\ldots	\cdots	．．．	\cdots	\ldots	．．．
1829	39.47	．．．	．．．	．．．	．．．	．．．	．．．	．．．	1829	43.23	．．．	．．．	．．．	．．．	．．．	．．．
1830	41.87	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	1830	44.48	．．．	．．．	．．．	．．．	．．．	．．．
1831	42.24	42.83	\ldots	．．．	\ldots	．．．	．．．	．．．	1831	44.23	．．．	．．．	．．．	．．．	．．．	．．．
1832	39.26	41.03	\ldots	．．．	\ldots	．．．	．．．	．．．	1832	41.98	．．．	．．．	．．．	．．．	．．．	．．．
1833	39.54	41.33	．．．	．．．	．．．	．．．	．．．	．．．	1833	42.23	．．．	．．．	．．．	．．．	．．．	．．．
1834	40．11	41.13	．．．	．．．	．．．	．．．	．．．	．．．	1834	42.73	．．．	．．．	．．．	\ldots	．．．	．．．
1835	38.31	40.63	．．．	\ldots	．．．	．．．	．．．	．．．	1835	41.89	．．．	．．．	．．．	．．．	．．．	．．．
1836	39.29	39.43	．．．	．．．	．．．	．．．	．．．	．．．	1836	40.23	．．．	．．．	．．．	．．．	．．．	．．．
1837	39.68	39.13	\cdots	．．．	\cdots	\ldots	\cdots	．．．	1837	40．23	．．．	．．．	．．．	．．．	．．．	．．．
1838	40.82	39.33	．．．	．．．	．．．	．．．	．．．	．．．	1838	42.03	．．．	．．．	．．．	．．．	．．．	．．．
1839	41.58	41.93	．．．	．．．	．．．	．．．	．．．	．．．	1839	43.06	．．．	．．．	．．．	．．．	．．．	．．．
1840	41．36	42.33	．．．	．．．	．．．	．．．	．．．	．．．	IS40	43.23	．．．	．．．	．．．	．．．	．．．	．．．
1841	41．13	42.03	．．．	．．．	．．．	\ldots	．．．	\cdots	1841	43.06	．．．	－．	\cdots	．．．	．．．	．．．
1842	40.12	42.13	．．．	．．．	．．．	．．．	．．．	\ldots	I_{1842}	43.06	．．．	．．．	．．．	\ldots	．．．	．．．
1843	4 C .13	41.43	．．．	．．．	．．．	．．．	．．．	\ldots	1843	42.05	．．．	．．．	．．．	．．．	．．．	．．．
1844	39.09	42.03	．．．	．．．	．．．	．．．	．．．	\cdots	$1 \mathrm{I}_{44}$	42.73	42.24	．．．	\ldots	\ldots	\ldots	\ldots
1845	．．．	41.73	．．．	．．．	．．．	．．．	．．．	．．．	1845	43.31	44.24	．．．	．．．	\ldots	．．．	．．．
1846	．．．	43.03	．．．	．．．	．．．	．．．	．．．	\ldots	I 846	44.39	46.14	\cdots	\cdots	\ldots	\cdots	．．．
1847	．．．	41.93	．．．	．．．	．．．	．．．	．．．	\cdots	1847	43.06	44.74	．．．	．．．	．．．	\ldots	．．．
1848	．．．	42.73	．．．	．．．	．．．	．．．	．．．	．．．	1848	44.56	．	．．．	．．．	\ldots	．．．	．．．
1849	．．．	41.93	．．．	．．．	．．．	．．．	\cdots	\cdots	1849	43.64	\ldots	．．．	．．．	\ldots	．．．	\ldots
1850	\cdots	41.53	\cdots	\cdots	\cdots	．．．	．．．	．．．	1850	44.39	．．．	．．．	．．．	\ldots	．．．	．．．
1851	．．．	40.43	．．．	．．．	．．．	．．．	．．．	\cdots	1851	43.11	\cdots	．．．	．．．	．．．	．．．	．．．
1852	．．．	42.53	．．．	．．．	．．．	．．．	．．．	\cdots	1852	43.65	．．．	．．．	．．．	．．．	\ldots	\ldots
1853	．．．	42.53	．．．	．．．	．．．	．．．	．．．	．．．	1853	－	．．．	．．．	\cdots	．．．	\ldots	．．．
1854	．．．	40.53	．．．	\ldots	\cdots	．．．	．．．	42．35＊	1854	．．．	．．．	．．．	\cdots	．．．	．．．	．．．
1855	\ldots	41.93	\ldots	．．．	．．．	．．．	．．．	40.93	1855	…	\ldots	．．．	42.07	\ldots	．．．	．．．
1856	．．．	40.53	．．．	．．．	\ldots	．．．	\ldots	40.22	1856	44.30	．．．	．．．	40.63	．．．	\ldots	\ldots
1857	\cdots	41.33	\cdots	\cdots	\cdots	\cdots	．－．	41.38	1857	44.35	\ldots	．．．	41.86	\cdots	．．．	．．．
1858	．．．	40.13	\cdots	． 8	\cdots	\cdots	\cdots	40.06	1858	43.48	\cdots	．．．	40.53	．．．	\ldots	．．．
1859	．．．	40.93	\cdots	43．18＊	\cdots	．．．		40.79	1859	42.96	．．．	．．．	41.47	．．．	\cdots	\ldots
1860	．．．	42.23	\cdots	45.35	\cdots	\ldots	42.97^{*}	．．．	1860	－．	．．．	\ldots	42.47	44．22＊	\cdots	\cdots
186 r	．．．	40.83	．．．	44.69	43.03	\cdots	．．．	40.97	1861	．．．	．．．	．．．	42.10	42．13 ${ }^{\text {\％}}$	\ldots	\cdots
1862	．．．	41.73	\ldots	44.94	．．．	．．．	．．．	40.52	1862	\ldots	\ldots	\cdots	41.30	42．84＊＊	\cdots	\cdots
1863	．．．	42.13.	\cdots	45．38＊＊	\ldots	\ldots	\ldots		1863	\ldots	\cdots	－．．．	42.08	．．．		\cdots
1864	\cdots	42.33	．${ }^{2} .82$	44．09＊	\ldots	\ldots	．．．	41.77	1864	\ldots	\ldots	．．．	42.40	\cdots	44.82	\cdots
1865	\cdots	．．．	42.82	…	\cdots	\cdots	\ldots	．．．	1865	．．．	．．．	\ldots	42.83	．．．	44.61	\cdots
1866	\cdots	\cdots	42．65＊	43.01	\cdots	\cdots	\cdots	\ldots	1866	\cdots	\cdots	\cdots	42.22	．．．	44.18	．．．
									1867	．．．	\cdots	43．40＊	40.83	\cdots	42.88	－．．
1868	41．82＊	\cdots	\cdots	\cdots	\cdots	\cdots	40.84	\ldots	1868	\ldots	\cdots	42.25	39.56	\cdots	42.01	
1869 I 870	$41.82 *$ 43.89^{*}	\ldots	\cdots		\cdots	． 76	42.55	\cdots	1869.	\ldots	．．．	．．．	42.24	．．．	44.35	38．72
1870	43.89	\ldots	\cdots	45.67	．．．	43.76	45.25	．．．	1870	\cdots	\cdots	．．．	．．．	\ldots	46.58	41．13
	40.48	41.45	42.53	$44 \cdot 32$	43.03	40.57	42.81	41.57		43.23	44． 14	44.03	41.72	42.94	44.21	40.15

MARYLAND．																
兌										告	\| 窓					
		\bigcirc	－	－	\cdots	\therefore	$\stackrel{\circ}{\circ}$	\therefore	\therefore		\therefore		\therefore	\cdots	－	－
\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots	\cdots	$1 \begin{aligned} & 1822 \\ & 1824\end{aligned}$	\cdots	$\stackrel{57.02}{\ldots}$	57．74	\cdots	\cdots	\cdots
．．．	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots	\ldots	．．．	．．．．	1825 1826	\cdots	．．．．	年 $\begin{aligned} & 58.92 \\ & 59.68\end{aligned}$	\ldots	\cdots	．．．
\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	\ldots	…	\ldots	1827	…	\cdots	58.50^{*}	\cdots	\cdots	…
\ldots	\cdots	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．	1829						
．．．．	\cdots	．．．	．．．	\cdots	\cdots	\cdots	．．．．	\cdots	\cdots	1829 1830	．．．	．．．	56.24 59.25	\ldots	\cdots	\cdots
．．	\ldots	．．．	．．．	\cdots	．．．	\cdots	．．．	．．．	．．．	1831 1832 183	53．73	53．41	${ }^{56.92 *}$	．．．	\cdots	．．．
\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	${ }_{1}^{1832}$	55．45 55.69	55.49 55.93	${ }_{\text {cki }}^{57.87}$	\cdots	\cdots	\cdots
\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	${ }_{1}^{1834}$	55.28	54.91	57．34	．．．	\cdots	．．．
．．．	．．．	\ldots	\cdots	．．．	\ldots	\cdots	\ldots	\ldots	．．．．	1835 $\begin{array}{r}1836 \\ 18\end{array}$	52.59 51.17	．．．	$\stackrel{54.90 *}{ }$	\ldots	\cdots	．．．．
18	\cdots	\ldots	52.68	．．．	\cdots	\cdots	\cdots	\ldots	…	1837	52.69	．．．	．．．	…	\ldots	．．．
${ }_{181}^{181}$	\ldots	\cdots	51．89	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	18388 ${ }_{18}^{183}$	${ }_{\substack{52.71 \\ 54.15}}^{\text {che }}$	\ldots	\cdots	\cdots	．．．	\cdots
${ }_{182}$	\cdots	\cdots	52．30 52.30	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	IS40	${ }_{52.51}$	\cdots	\cdots	\cdots	\cdots	\cdots
${ }_{1}^{182}$	．．．	\cdots	年 $\begin{aligned} & 52.86 \\ & 56.08\end{aligned}$	\ldots	\ldots	\cdots	\ldots	\ldots	．．．．	（1841	${ }_{\text {cke }}^{52.03}$	\ldots	\cdots	\cdots	\cdots	．．．
${ }_{1}^{182}$	\cdots	．．．．	－53．76	\ldots	．．．	\ldots	．．．	．．．＇．	．．．．	1843	53．04	53．27＊	\ldots	\cdots	\cdots	．．．．
${ }^{152}$	．．．	．	54．64	．．．	．．．	．．．	，	．．．	．．．	${ }_{18}^{184}$	53.45	55.57	\ldots	．．．	．．．	．．．
1846	．．．	．．．					．．．	．．．	51.41^{*}	1846	${ }_{53.82}$	\cdots	\cdots	．．．．	．．．	．．．
${ }_{184} 18$	．．．	．．．	${ }^{52.89}$	．．．	．．．	．．．	\cdots	．．．	．．．	${ }_{18}^{1847}$	54．78．	．．．	\ldots	\cdots	．．．	．．．
184 184 184 1	\cdots	．．．	53．47 52.27	\ldots	\cdots	．．．．	．．．．	\ldots	．．．．			\ldots	\cdots	\ldots	\cdots	．．．
185	\ldots	．．．	53.08	．．．	\cdots	．．．	\ldots	\ldots	．．．	1850	56．56	\ldots	\ldots	\cdots	\cdots	\ldots
	．．．	\cdots	53.93 52.56	\cdots	\cdots	\cdots	\ldots	\cdots	．．．．	${ }_{1}^{1851} 1$		．．．	5．．73	\cdots	．．．	\cdots
185	．．．．		54．04＊	．．．	．．．	．．．．	．．．	．．．	\cdots	1853	55．45	．．．	57．30＊	．．．	…	\cdots
										1854	55．70	．．．		54．45	．．．	．．．
$\begin{aligned} & 185 \\ & 185: \end{aligned}$	\cdots		．．．	53．23＊		\cdots	\ldots	\cdots	\cdots	1855	${ }_{\text {cke }}^{55} 5$	．．．	．．．	52．89		
$\begin{aligned} & 185 \\ & 155 \end{aligned}$	…		…	${ }_{51.85 *}$	．．．．	．．．	．．．．	\ldots	…	${ }_{1 S 57}$	53．56	．．．．	…	50.82	．．．	…
189	．．．	55．10	54.42	52.77	．．．	53．85		．．．	．．．	1858	55．37	．．．	．．．	52．92		
$\begin{aligned} & 185 \\ & 186 \end{aligned}$	．．．．	$\stackrel{5+.89}{ }$	．．．		\cdots	53．16	${ }_{5}^{52.14}$	\cdots	\cdots	1859 1860 1		\cdots	．．．	5 ${ }_{52.79}$	${ }_{\text {51．}}^{\substack{51.44 \\ 502^{*}}}$	55．$\ldots 7$
186	56．97＂	55．80	．．．	43．0S＊	．．．	55．18	53．18	．．．	．．．	${ }_{1861}^{1861}$	55．25＊＊	．．．	．．．	52.09	51.42	．．．
	．．．	S5．33．	\cdots	53．50\％	\cdots	54.02	51．45	\cdots	\cdots		．．．	．．．	．．．	$5^{2.39}$		．．．
$\begin{aligned} & 1868 \\ & 1868 \end{aligned}$	\cdots	${ }^{55} 5.61$	\ldots	54．92	．．．．	\ldots	${ }^{51.63}$	\cdots	\cdots	${ }_{1}^{1864}$	55．86	．．．	\cdots	．．．	\cdots	\cdots
$\begin{aligned} & 186 \\ & 186 \end{aligned}$	．．．．	${ }_{5}^{56.68}$	．．．．	．．．	¢1．59	．．．	52．25	．．．．	．．．．	1865 1866	56．75	．．．	\cdots	52．20\％		\cdots
$\begin{aligned} & 180 \\ & 186 \end{aligned}$	\cdots	55.80	．．．．	．．．	${ }_{51.52}$	．．．	49.94	50．41	．．．．	1867	54．25	．．．．	\ldots	$\stackrel{\text { c．e．}}{ }$		\ldots
186	．．．	55.38		．．．		．．．	$50.44 *$	49．27		1868		．．．	．．．	．．．		．．．
186	．．．	56．95	．．．	．．．	．．．	．．	51．06＊	50.50			55.05	\cdots	\cdots	．．．	．．．	．．．
187	．．．		．．．	．．．	．．．	．．．	52．＋3	52．34	．．．	1870	57．12	\ldots	$\ldots \cdot$	．．．	．．．	．．．
	56.60	55．38	53.46	53．02	50.93	54.04	5 F .59	50.67	5 r 4 4		54.50	55.27	57.17	53．09	5r．10	55－30

IMD．－Continued．				MASSACHUSETTS．											
㞱			$\begin{aligned} & \text { É } \\ & \text { E } \\ & \text { ت } \\ & \text { 若 } \end{aligned}$		䔍			$\begin{aligned} & \dot{0} \\ & \text { ì } \\ & \text { H0 } \\ & \text { on } \end{aligned}$		$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { 訁 } \\ & \text { H } \\ & \text { H } \\ & \text { M } \end{aligned}$	¢			$\begin{aligned} & \text { む́ } \\ & \text { 出 } \\ & \text { む } \end{aligned}$	
	$\stackrel{\circ}{\circ}$	．．．	$\stackrel{\circ}{\circ}$	\cdots	\ldots	\cdots	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	1781	$49.81 *$	\therefore	$\stackrel{\circ}{\circ}$	\cdots
．．．	．．．	\ldots	．．．	\cdots	．．．	．．．	．．．	．．．	\ldots	．．．	－				
．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	${ }_{17}{ }^{1} 8$	50.00	．．．	\ldots	\cdots
．．．	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots					
\cdots	${ }_{1} 1790$	\cdots	48.72	\cdots	\ldots										
．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．	1791	\cdots	49.71	\cdots	\cdots
．．．	\cdots	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	1792	．．．	48.01	\ldots	\ldots
．．．	\cdots	\cdots	．．．	．．．	\cdots	．．．	\ldots	\cdots	．	\cdots	1793	．．． 5	50.67	．．．	．．．
\ldots	\ldots	\cdots	\cdots	\cdots	1772	\ldots	：\cdot	\cdots	48.88	\cdots	1794	．．．	51.53	\ldots	．．．
\ldots	\cdots	\ldots	\ldots	．．．							1795	．．．	49.79	．．．	．．．
．．．	．．．	．．．	\ldots	．．．	1798	48.87	\cdots	\cdots	\ldots	\ldots	1796	\cdots	47.01	．．．	．．．
．．．	．．．	\ldots	．．．	．．．	I799	47.97	．．．	．．．	．．．	．．．	1797	．．．	46.82	\cdots	．．．
．．．	．．．	．．．	．．．	．．．	ISOO	48.87	．．．	．．．	．．．	．．．	1798	．．．	47.85	．．．	．．．
．．．	．．．	．．．	．．．	．．．	1801	49.87	．．．	．．．	．．．	．．．	1799	\ldots	46.76	．．．	．．．
．．．	\cdots	．．．	．．．	．．．	ISo2	49.87	\ldots	．．．	\ldots	．．．	1800	\cdots	48.52	\ldots	．．．
．．．	．．．	．．．	．．．	．．．	1803	49.57	\ldots	．．．	．．．	．．．	1801	．．．	49.32	\cdots	．．．
．．．	．．．	．．．	．．．	．．．	1804	$47 \cdot 37$	．．．	．．．	．．．	．．．	1802	．．．	49.68	．．．	．．．
	．．．	\ldots	．．．	．．．	1805	50.37	．．．	\ldots	．．．	．．．	18 O 3	．．．	48.57	．．．	．．．
\cdots	\cdots	\ldots	\cdots	\cdots	1806	47.37	\cdots	\cdots	．．．	．．．	$1 \mathrm{ISO}_{4}$	\ldots	47.01	\cdots	\ldots
\ldots	\cdots	\cdots	．．．	．．．	${ }_{1} \mathrm{SO} 07$	43.27	．．．	\ldots	．．．	．．．	${ }^{1805}$	\ldots	49.47	\cdots	…
\cdots	\cdots	\cdots	\cdots	\cdots	1808	44．17	\cdots	\cdots	\cdots	\cdots	1806	．．．	46.80	\cdots	47．13 ${ }^{3}$
\ldots	\ldots	\ldots	\cdots	\cdots							1807	\ldots	46.66	．．．	46.43 ＂
．．．	．．．	\ldots	\cdots	\cdots	1820	\cdots	\cdots	47.95	\cdots	\cdots	1808	\cdots	47.52	\cdots	．．．
．．．	\cdots	\ldots	\cdots	\cdots	1821 1822	\ldots	\cdots	47.63 49.40	\ldots	\cdots	1809 I 810	\cdots	46.14	\cdots	\ldots
1836	：	\ldots	\cdots	41.12	1822 1823	\cdots	\cdots	49.40	\cdots	\cdots	ISIO ISII	\cdots	47.94 48.80	\cdots	\ldots
1836	\ldots	\cdots	\cdots	41.12	1823 1824	\cdots	…	46.90 48.82	\ldots	\cdots	1811 1812	\ldots	48.80 44.40	\cdots	\cdots
1837 1835	\cdots	\cdots	．．．	40.66 42.35	1824 1825	．．．	．．．	48.82 51.01	\ldots	\ldots	1812 1813	\ldots	44.40 47.20	．．．	\ldots
1839	．．．．	\ldots	\ldots	42.81	1826	．．．	．．．	50.30	\ldots	\ldots	－	\ldots		．	\cdots
1840	．．．	．．．	．．．	45.62	1827	．．．	．．．	48.71	．．．	．．．	1816	．．．	46.17	．．．	．．．
1841	\cdots	．．．	．．．	45．16	1828	\ldots	．．．	51.72	．．．	．．．	1817	．．．	45.00	．．．	．．．
1842	．．．	．．．	．．．	45.95	1829	．．．	．．．	48.30	．．．	．．．					
1843	．．．	．．．	．．．	44.67	1830	．．．	．．．	49.85	．．．	．．．	1841	．．．	46.75	．．．	\ldots
1844	\ldots	．．．	\cdots	45.26	1835	\ldots	．．．	49.16	．．．	．．．	1842	．．．	46.73	\cdots	\cdots
1845	\ldots	\cdots	\cdots	46.69	1832	\ldots	．．．	48． 12	．．．	\ldots	1843	．．．	45.47	\ldots	．．．
1846	．．．	53.64	．．．	47.39	1833	．．．	．．．	48.42	．．．	．．．	1844	．．．	46.15	\cdots	．．．
1847	．．．	52.80	．．．	46.67	1834	．．．	．．．	48.30	．．．	．．．	1845	．．．	48.87	\cdots	\cdots
1848	．．．	52．77\％	．．．	46.36	1835	．．．	．．．	47.27	．．．	．．．	1846	．．．	49.06	．．．	．．．
1849	\cdots	51.55	\cdots	45.56	1836	\cdots	\cdots	45.63	．．．	．．．	1847	\ldots	47.74	．．．	\cdots
1850	\ldots	$53.23 *$	\cdots	46.06	1837	\cdots	\cdots	46.16	．．．	\ldots	I8．48	．．．	47.83	．．．	．．．
1851	．．．	53.20	．．．	45.74	1838	．．．	．．．	47.81	．．．	\cdots	18.49	．．．	47.02	．．．	．．．
1852	．．．	52.64	．．．	$46.57{ }^{\text {\％}}$	1839	．．．	．．．	48.96	．．．	．．．	IS50	．．．	47.38	\cdots	\ldots
1853	\ldots	53.63	．．．	$46.52^{\text {\％}}$	1840	\ldots	．．．	49.79	．．．	．．．	1851	．．．	47.39	．．．	\ldots
1854	\cdots	54.32	\cdots	46.38	1841	\ldots	\ldots	49.11	．．．	\ldots	1852	\ldots	47.69	\cdots	．．．
1855	．．．	52.08	．．．	46.09	1842	\cdots	．．．	49.95	．．．	．．．	1853	．．．	47.77	\ldots	\ldots
1856	．．．	48.83	．．．	44． 56	1843	．．．	．．．	48.62	．．．	．．．	1854	．．．	47.47	．．．	．．．
1857	．．．	50.24	．．．	45.79	1844	．．．	\cdots	49.30	．．．	\ldots	1855	．．．	47．I9	\cdots	\cdots
1858	．．．	52.35	．．．	46．18\％	1845	\ldots	．．．	50.36	．．．	\ldots	1856	．．．	45.66	\ldots	．．．
1859	\cdots	52.27	\ldots	45.73	1846	\ldots	．．．	50.57	．．．	\cdots	1857	．．．	47.07	．．．	．．．
1860	．	5 I .44	．．．	46.23	1847	．．．	．．．	50.28	．．．	．．．	1858	．．．	46.77	\cdots	．．．
1861	56．82＊	52.10	\cdots	45.98	1848	．．．	\cdots	50.04	\cdots	\cdots	I859	\cdots	46.86	\cdots	．．．
1862 1863	56.82^{*} \ldots	50.77	\cdots	45．98	1849	\cdots	\cdots	49.21	\cdots	\cdots	$\overline{1861}$			50.00	
1864	56．13＊	51．47	．．．	46.98	I855	\cdots	\ldots	49．53＊	．．．		1862	．．．	\ldots	49．07＊	．．．
1865	57.59 ＂	52．09＊	54．10＊	47.51	1856	．．．	．．．	46．07＊	．．．	46．05＊	$\overline{\square 64}$				
IS66	．．．	．．．	52.86	46.37	$\overline{\square 85}$						1864	\ldots	\cdots	47.50	\cdots
I 867	54．03＊	\ldots	51.79 50.04 5	45.78 44.90	1858	\cdots	\cdots	．．．	\cdots	46．59＊＊	$\overline{1868}$	．．．	46.94	．．．	．．．
1869	54．．	．．．	51.71	46.41	1864	\ldots	44．05＊	\cdots	\cdots	．．．	1869	\ldots	48.40	．．．	．．．
1870	．．．	\ldots	53.35	48.87	1865		44．91＊	．．．	．．．	．．．	1870	．．．	51．41	．．．	．．．
	55.98	52.15	52.30	45.64		47－94	44.39	48.35	48.88	46.83		$50.01{ }^{1}$	47.54	49.03	45．61
						Hours of	f observ	ation un	nknown						

MASSACHUSETTS．－Continued．																
$\begin{gathered} \dot{\sim} \\ \stackrel{y}{\sim} \end{gathered}$				$\begin{gathered} \dot{1} \\ \stackrel{0}{0} \\ 0 \\ 0 \\ \stackrel{0}{0} \\ 0 \\ 0 \end{gathered}$				－i				$\begin{aligned} & \text { 号 } \\ & \text { 荧 } \end{aligned}$			¢	
\ldots	\bigcirc	\cdots	．．．	\cdots	$\stackrel{\circ}{\circ}$	\cdots	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots	\cdots	$\stackrel{\circ}{\circ}$	\cdots	\cdots	\cdots	1813	$48^{\circ} .25$
．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．	．．．	．	ISI4	48.35
．．．	\ldots	\cdots	．．．	．．．	\ldots	．．．	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	．．．	．．．	1815	47.35
\cdots	．．．	\ldots	\cdots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\cdots	．．．	\ldots	\ldots	IS16	46.65
．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．	1817	47.25
．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	\ldots	\ldots	．．．	1818	47.95
\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	1819	49．35
\cdots	\ldots	\ldots	\cdots	．．．	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	1820	48.55
\cdots	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	．．．	\ldots	IS21	47.95
．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	\cdots	．．．	\ldots	．．．	\ldots	\ldots	1822	50.05
\cdots	．．．	8.	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	1823	47.45
1824	\ldots	48.71	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	1824	49.35
IS25	．．．	50.67	．．．	．．．	\cdots	\ldots	\ldots	\ldots	\cdots	．．．	\cdots	．．．	\cdots	．．．	I825	50.85
IS26	．．．	49.62	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	… 6	．．．	1826	50.65
I827	．．．	47．95＊	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	49．60＊	．．．	1827 I828	48.75
I 828	．．．	50.64	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	52.03	．．．	1828 1829	50.45
I829	\cdots	47．70\％	\ldots	．．．	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	．．．	．．．	．．．	．．．	I 829 I 830	47.05
1830	\ldots	50.44	．．．	．．．	\ldots	\cdots	\cdots	\cdots	．．．	\ldots	\ldots	\cdots	．．．	\ldots	I830	49.55
1831	．．．	49.26	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	47.02	\ldots	．．．	．．．	．．．	1831 1832	48.65
1832	．．．	48.41	．．．	．．．	．．．	\cdots	\cdots	\cdots	\ldots	45.84	4．．76	\cdots	\cdots	\ldots	1832 1833	47.46 48.18
I 833	\ldots	49.07^{*}	\cdots	．．．	\ldots	\ldots	\cdots	\ldots	．．．	．．．	47.76	．．．	\cdots	\cdots	1833 1834	48．18
1834	\ldots	47.79	\ldots	．．．	．．．	\cdots	\cdots	\cdots	\cdots	．．．	47.36	\cdots	．．．	．．．	1834	48.17
IS35	．．．	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	45.06	\cdots	\cdots	\cdots	1835 1836	46.65 44.90
IS36	\cdots	45.93	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots	43.26 44.56	\ldots	\ldots	．．．	1836 1837	44.90 45.72
1837 I 83	\ldots	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	\ldots 46.57	\ldots	44.56 45.76	．．．	\ldots	．．．．	1838	45.72 47.09
I839	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	47.43	．．．	46.76	．．．	．．．	\ldots	IS39	47.70
I 840	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	47.90	．．．	46.26	．．．	．．．	．．．	1840	47.47
1841	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	47.41	．．．	45.66	．．．	．．．	．．．	1841	46.63
1842	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．	48．59	．．．	46.76	．．．	．．．	．．．	IS42	47.24
I843	\cdots	\ldots	\cdots	\cdots	．．．	\cdots	\ldots	\cdots	46.84	．．．	43.86	．．．	．．．	．．．	I843	47.17
I 844	．．．	\ldots	\ldots	．．．	\ldots	．．．	\ldots	．．．	47.54	\ldots	45.80	．．．	．．．	．．．	I844	48.47
1845	．．．	．．．	\ldots	\ldots	．．．	\ldots	．．．	48．	47.67	．．．	47．10	．．．	．．．	．．．	1845	49.13
1846	\cdots	\cdots	\cdots	．．．	．．．	\ldots	．．．	48.13	47.75	．．．	47.30	．．．	．．．	．．．	1846	49.33
IS_{47}	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	47.03	49.50	．．．	46.30	．．．	50.33	\cdots	1847	49.13
1848	\cdots	\ldots	\cdots	．．．	．．．	\ldots	．．．	46.73	49.25	．．．	46.70	．．．	51.42	．．．	1848	49.20
IS49	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	46.53	45.33	．．．	46.20	．．．	51.75	．．．	I 849	48.52
IS50	．．．	．．．	．．．	\ldots	．．．	\ldots	\ldots	46.63	48.42	\cdots	46.49	．．．	52.13	．．．	I 850	48.41
1851	．．．	．．．	\cdots	\ldots	\ldots	\cdots	\ldots	46.33	49.75	．．．	，	．．．	51.95	．．．	$\underline{1851}$	48.08
IS52	\cdots	4 4．23	\cdots	\cdots	\cdots	．．．	\cdots	47.53	＋8．38	．．．	\ldots	．．．	50.04	．．．	$\mathrm{I}^{\text {S }} 52$	48.36
IS53	\cdots	49.49	\cdots	．．．	\ldots	\cdots	\ldots	．＇	48.16	．．．		．．．	49.86	\cdots	IS53	46．10
1854	．．．	48.81	．．．	．．．	\ldots	．．．	．．．	．．．	47.50	．．．	46．IS	．．．	．．．	49.95	IS54	48.53
I 855	．．．	48.88	．．．	．．．	．．．	\cdots	431	．．．	46.99	．．．	46.71	．．．	．．．	50.25	1855	48.06
1856	\cdots	47．01＊	．．．	．．．	\ldots	\ldots	43．61	．．．	42.15	．．．	44.93	．．．	．．．	49.02	1856	46.71
I857	\cdots	48.01	\cdots	\cdots	\cdots	\cdots	45．80	\cdots	46.34	\cdots	46.29	\cdots	\cdots	49.45	1857	47.23
I858	．．．	48.22	．．．	．．．	．．．	．．．	45.39	．．．	45.73	．．．	46.39	．．．	．．．	49.45	1858	47.65
IS59	．．．	47.42	\ldots	．．．	\ldots	．．．	45.48	．．．	45.80	．．．	46.47	．．．	．．．	50.37	1859	47.68
1860	．	$49 \cdot 3 x$	．．．	\ldots	．．．	\ldots	46.21	．．．	46.86	．．．	47.25	．．．	．．．	－	1860	48.51
I861	47.87%	．．．	\cdots	．．．	．．．	．．．	46.06	．．．	46.45	\cdots	47.21	．．．	．．．	．．．	1861	49.25
1862	．．	\cdots	…	\cdots	．．．	\cdots	$45.52^{\prime \prime}$	\cdots	46.90	\cdots	46.78	\ldots	\cdots	．．．	1862	49.33
I863	\cdots	\cdots	47.94	\cdots	\cdots	\cdots	45.72^{*}	\cdots	47.24	．．．	47．17	\cdots	\cdots	．．．	1863	49.61
I864	\cdots	\ldots	47.76^{*}	．	\cdots	\cdots	45．81	\cdots	48.12	\cdots	47.17	\cdots	\ldots	\cdots	1864	48.19
I 865	．．．	\ldots	49.39	47．04＊	\cdots	\ldots	\％	\ldots	47.69	\cdots	48．73	\ldots	\cdots	．．．	I 865	50.34
1866	\cdots	．．	．．．	．．．	\cdots	．	46.17	\ldots	46.43	．．．	46.94	\ldots	\cdots	．．．	1866	47.91
1867 1868	\ldots	48.77	47．36\％	45．34＊＊＊＊＊＊＊＊＊＊＊）	．．．	46.30 47.28	45.44	\cdots	45.30	\ldots	45.19	…	\cdots	．．．	1867	47.83
1868	．．．	45.64	45.47	4．4．01		47.28	44.49	．．．	44.74	．．．	43.90	44.15	\cdots	．．．	1868	46.32
1869	．．．	4S． 14	46.82	．．．	42.80	47.64	46.37	．．．	46.46	\ldots	46.12	49：15	．．．	．．．	1869	47.95
1870	．．．	49.31	49.69	．．．	$44.78^{\text {\％}}$	49.04	48．37＊＊	\cdots	48.77	\ldots	48.26	51．10	\ldots	\ldots	1870	49.00
	47.87	48.35	47.84	46.05	43.61	47.65	45.77	46.86	46.91	46.86	46.32	47.60	$51.02{ }^{1}$	49.74		48.21
						1 H	ars of o	bservat	on unk	own．						

MIASSACHUSTHTS．－Continued．																
热	$\begin{aligned} & \text { 言 } \\ & \text { 芯 } \\ & \text { Z } \end{aligned}$		r	咢号	$\begin{aligned} & \text { 号 } \\ & \text { Ü } \\ & \text { 芭 } \\ & \text { 促 } \end{aligned}$		号	号	号	－			完	䂸云		E゙ छ E 3
	－	。	\bigcirc	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	－	$\stackrel{\circ}{\circ}$		47．70		\cdots	$\stackrel{\square}{\circ}$	\cdots	$\stackrel{\circ}{\circ}$	－	$\stackrel{\circ}{\circ}$
\ldots	\ldots	．．．	\cdots	\ldots	．．．	．．．	\cdots	$1{ }_{1} 1787$	47.70 47.02	．．．	\ldots	\cdots	\cdots	．．．	\ldots	．．．
\ldots	\cdots	．．．	\ldots	\cdots	．．．	．．．	\cdots	1788	47.01	\ldots	\ldots	\ldots	\cdots	\cdots	．．．	\cdots
．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	1789	46.83	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．
．．．	\ldots	\ldots	．．．	．．．	\ldots	\ldots	\ldots	1790	45.97	\cdots	．．．	．．．	．．．	．．．	．．．	．．．
．．．	\ldots	\ldots	\ldots	．．．	\ldots	．．．	．．．	1791	48.04	\cdots	．．．	．．．	．．．	．．．	．．．	．．．
．．．	\ldots	．．．	\ldots	\ldots	\cdots	\ldots	．．．	1792	47．71	．．．	\ldots	．．．	．．．	．．．	．．．	．．．
\cdots	\cdots	\cdots	\cdots	．．．	\cdots	\ldots	．．．	1793	50.13	\ldots	．．．	．．．	．．．	\ldots	\ldots	．．．
．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	${ }^{1} 794$	49.93	．．．	．．．	．．．	．．．	\ldots	．．．	．．．
．．．	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	1795	49.34	．．．	\cdots	\cdots	．．．	．．．	\ldots	\cdots
\ldots	．．．	\ldots	．．．	\ldots	．．．	．．．	\cdots	1796	47.84	\ldots	\ldots	．．．	．．．	\cdots	．．．	\cdots
\cdots	\cdots	\ldots	\ldots	．．．	\cdots	\ldots	\cdots	1797	47.30	\ldots	\ldots	．．．	．．．	\ldots	\cdots	－．．
\ldots	．．．	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots	1798	48.64	\ldots	．．．	．．．	\ldots	\ldots	\cdots	．．．
．．．	\ldots	\ldots	\ldots	．．．	\ldots	．．．	．．．	1799	48.63	\cdots	\cdots	\cdots	\ldots	\ldots	．．．	\cdots
\ldots	\cdots	．．．	\ldots	\ldots	\cdots	．．．	\cdots	1800	49.16	．．．	．．．	\cdots	．．．	．．．	．．．	＊
\ldots	\cdots	\ldots	\ldots	．．．	\cdots	\cdots	\ldots	ISol	49.60	\cdots	\ldots	．．．	\cdots	．．．	．．．	．．．
．．．	．．．	\ldots	\ldots	．．．	\ldots	\ldots	\cdots	1802	49.96	\ldots	．．．	．．．	\ldots	\ldots	．．．	．．．
\ldots	\ldots	\ldots	．．．	\ldots	．．．	．．．	\cdots	1803	49.41	1837	．．．	．．．	\ldots	45.51	\cdots	．．．
\ldots	\ldots	\cdots	\ldots	\ldots	．．．	\ldots	\cdots	$\mathrm{I}_{1} \mathrm{SO} 4$	47.49	1838	．．．	．．．	．．．	46.92	\ldots	．．．
\cdots	\cdots	．．．	\cdots	\ldots	．．．	\cdots	．．．	${ }^{1} 805$	49.96	1839	．．．	．．．	．．．	48.02	．．．	\cdots
\ldots	\cdots	\ldots	\ldots	．．．	\cdots	\ldots	\ldots	I So6	47．15	1840	\cdots	．．．	．．．	48.10	\ldots	．．．
．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	ISo7	47.30	1841	．．．	\cdots	．．．	47.87%	．．．	\cdots
\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	I SOS	48.65	－						
\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	．．．	．．．	${ }_{\text {I }} \mathrm{SO} \mathrm{O}$	47.09	1843	\cdots	\cdots	\cdots	46.25	．．．	．．．
1 $\quad 1849$	\cdots	\cdots	\cdots	\ldots	．．．	\ldots	．．． 49.4	1810	48.17	1844	．．．	．．．	．．．	46．40\％	\cdots	．．．
	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots		1812	$44 \cdot 45$	I854	\cdots	47．33	\ldots	\cdots	\cdots	\cdots
1854	\cdots	46.71	47.08	\cdots	43.61	45．14 ${ }^{\text {\％}}$	\cdots	1813	46.77	1855	．．．	47.82	．．．	．．．	45.54	．．．
1855	\cdots	46.25	45.61	\cdots	43.49	$45 \cdot 79$ \％	\cdots	${ }_{1} \mathrm{ISI}_{4}$	47.44	1856	．．．	\cdots	．．．	\cdots	44.41	1．． 8
1856	\cdots	44．16	45.02	\cdots	41.87	44． 12	．．．	1815	46.77	1857	\ldots	．．．	．．．	\ldots	45.27	47.85
1857	．．．	46.88	．．．	．．．	．．．	45．61＊	\ldots	1816	46.28	1858	\ldots	．．．	．．．	．．．	45.67	．．．
1858	．．．	46．11＊	．．．	．．．	．．．	45．67＊	\cdots	1817	46.44	1859	．．．	．．．	…	\ldots	45．13	．．．
1859 1860	\cdots	．．．	．．．	\cdots	．．．	45．65＊	\cdots	1818	47.17	1860	．．．	．．．	46．07 ${ }^{\text {＂}}$	\ldots	¢6．．	\cdots
1860	\cdots	．．．	．．．	．．．	．．．	46．12＊	\cdots	1819	49.87	1861	．．．	．．．	46.20	．．．	46.11	－．．
1861 1862	\cdots	\cdots	．．	\cdots	\ldots	47.07	\cdots	1820	48.01	I 862	\cdots	\cdots	．．．	\cdots	46.06	\cdots
1862	．．．	．．．	\cdots	．．．	\cdots	46．68＊	．．．	I 821	47.28	I863	¢ $\times 1.11$	49． S_{9} \％	48．15＊	\ldots	45．23＊＊	．．．
1865	47．49＊＊	\cdots	\cdots	\cdots	\cdots	48．08＊	\cdots	1822 1823	48.97 46.73	I864 I 865	48.11 \ldots	49．${ }^{\text {a }}$ \％ ．．．	$48.15 *$ 50.40	．．．	46.98 47.48	\ldots
1866	46.36	．．．	\cdots	47．39＊＊	．．．	46．77＊	．．．	1824	48.42	1866	．．．	．．．	49.83	\cdots		．．．
1867	45.46	．．．	．．．	46.41	\cdots	46．96＊	\cdots	1825	50．16	IS67	．．．	\ldots	48.50	47．77\％	．．．	＊．
I868	$43 \cdot 37 \%$	．．．	．．．	45.22	\ldots	．．．	．．．	1826	49.46	1868	．．．	\ldots	43.42	46．64＊	\ldots	．．．
$\text { I } \$ 69$	．．．	．．．	\cdots	47.32	\cdots	46．12＊	\cdots	1827	47.57	1869	．．．	．．．	45.64	48．87	．．．	．．．
1870	．．．	\cdots	\cdots	49.48	．．．	49．12＊	．．．	1828	50.28	1870	\cdots	\ldots	47．59＊	51．52＊	．．．	\cdots
	46． 15	46.00	47.78	47.16	43.25	46.30	49.41		48.08		$48.25{ }^{\text {²}}$	48.71	47.20	47．61	46.39	47.27
								．								

MIICHIGAN．－Continued．																
范			范			$\begin{aligned} & \text { 官 } \\ & \text { 霞 } \end{aligned}$		$\begin{aligned} & \text { 苞 } \\ & \text { 品 } \\ & \text { H } \\ & \hline \end{aligned}$						$\begin{aligned} & \text { 言 } \\ & \text { 号 } \\ & \text { 号 } \end{aligned}$		\％ 0 00 0 0
1845	$40^{\circ} 34$	\ldots	\ldots	$\stackrel{\circ}{\circ}$	\cdots	．．．	．．．	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots	$\stackrel{\circ}{\circ}$	…	．．．	\cdots	\cdots	．．．
$\overline{1851}$	\cdots	\ldots	．．．	\ldots	：－	．．．	47．78＊	\cdots	\ldots	．．．						
1854	．．．	．．．	49．58＊	．．．	\ldots	．．．	\ldots	\cdots	\ldots	\cdots						
1855	．	\cdots	45.62	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	．．．	．．．
1856 1857 185	\ldots	\ldots	43.58 44.71	．．．	\ldots	\ldots	．．．．	\ldots	．．．．	．．．	．．．	\cdots	\cdots	\ldots	\ldots	…
1858	\cdots	．．．	47．73	．．．	．．．	．．．	．．．．	．．．	40.73	．．．	．．．	．．．	48.76	\ldots	．．．	\ldots
1859 1860 180	\ldots	46.89	47.49^{*} \cdots	45．57	\cdots	\cdots	\ldots	．．．．	39.46 40.61	－ 44.75	48.08	．．．	47．78＊＊	\ldots	39.94	\ldots
1860	\ldots	46.89 46.99	．．．	$45.57 *$ 45.95	\ldots	\ldots	．．．	\ldots	40.61 40.32	44.75 ．．	48.08 46.04	\ldots	\ldots	．．．	${ }_{4}^{39.94}$	\ldots
1862	．	46.79	．．．	45.77^{*}	．．．	．．．	．．．	．．．	39.51	．．．	48.42	．．．	．．．	．．．	38.23	．．．
1863	\ldots	\cdots	．．．	$45 \cdot 36 *$	．．．		．．．	．．．	41.42	\cdots	48.86	\ldots	\ldots	\cdots	39.83	\ldots
1864	．．．	．．．	．．．	．．．	\ldots	46.76	\ldots	．．．	42.39	．．．	48.66	\ldots	\cdots	\ldots	40.20 40.68	\cdots
1865	．．．	\ldots	\cdots	\ldots	44.77	47.28 45	\ldots	\cdots	43.33	\ldots	49.66 48.26	．．．．	\ldots	．．．．	40.68	．．．
1866 1867	\ldots	\ldots	45.59 47.15	45．33＊	${ }_{\text {42．50 }}^{\text {．．}}$	45.20 46.25	\ldots	45.95	40.34 41.48	．．．	48.26 49.76	\ldots	\ldots	43.48	39．02	48．20＊＊
IS68	\cdots	\ldots	46.56	46.11	．．．	45.23^{*}	．．．	44.62	．．．	．．．	45.09		．．．	42.86	40.53	44.21
1869	．．．	．．．	46.70		．．．	45.34	．．．	45.11	．．．	．．．	47.19	49．58＊	．．．	42.34	41.27	48.61
1870	．．．	．．．	50.01	48．37＊	．．．	47．52＊	\ldots	47.76	．．．	．．．	52．05＊	．．．	．．．	45.71	43.78	51．62＊
	41．10	46.95	46.90	46.37	43.99	46.55	47.82^{1}	45.77	40.88	43.63	48.17	50.34	48.31	43.43	40.03	48．1．6

1 Hours of observation unknown．

MINNESOTA．－Continued．												MISSISSIPPI．				
辰	㖴宫	边迢				言号				$\begin{aligned} & \text { B } \\ & \text { M } \\ & \stackrel{\rightharpoonup}{w} \end{aligned}$	$\begin{aligned} & \text { 密 } \\ & \stackrel{0}{6} \end{aligned}$		息	$\begin{aligned} & \text { 苞总 } \\ & \text { 密 } \end{aligned}$	$\begin{gathered} \stackrel{0}{0.0} \\ \text { 茁 } \end{gathered}$	空
	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc			－	－	\bigcirc	－		\bigcirc	－	－
1854	．．．	．．．	\ldots	\cdots	\cdots	\ldots	\cdots	$44.57^{\text {²0 }}$	$37.8{ }^{3}$	\cdots	\ldots	\ldots		\cdots	\cdots	68．55
I 855	41．94＊	．．．	\ldots	．．．	\cdots	．．．	．．．	．．．	．．．	\cdots	．．．	\ldots	63.84	\ldots	\ldots	．．．
1856	39．56＊	．．．	．．．	．．．	\ldots	．．．		．．．	\ldots	．．．	．．．	．．．	60.37	．．．	\cdots	．．．
1857	$39.12{ }^{2}$	．．．	\ldots	\ldots	．．．	\ldots	39.20	\cdots	\ldots	\ldots	\ldots	\cdots	60.13 62.63	．．．	\ldots	\ldots
1858	42.65	．．．	．．．	\cdots	\ldots	．．．	43．99＊	\ldots	．．．	\cdots	．．．	．．．	62.63	\cdots	\cdots	．．．
1859 1860	40.89	．．．	．．．	\ldots	\ldots	．．．	42.47	\cdots	\ldots	\ldots	\cdots	\cdots	62.42 63.17	\ldots	\cdots	\cdots
IS6ı	42．39＊	．．．	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	63.73	\ldots	\ldots	\ldots
1862	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	64.46	．．．	．．．	．．．
1863	．．．	．．．	\ldots	\ldots	．．．		\ldots	\ldots	．．．	42.22%	．．．	．．．	${ }^{61.70}$	．．．	．．．	\ldots
1864	\cdots	561	．．．	．．．	．．．	44．87＊	\cdots	\ldots	．．．	42.76	．．．	．．．	60.73	\cdots	\cdots	\cdots
${ }_{1}^{1865}$	．．．	43.61	\ldots	\cdots	43.92 41.17	45.62	．．．	．．．	\ldots	43.22 40.43	41．06\％	．．．	63.35 61.86	\cdots	\ldots	\cdots
ז867	．．．	．．．	．．．	\cdots	40.11	42.78	．．．	\ldots	．．．	39．95	40.77	．．．	63.13	\ldots	61．49	\ldots
1868	．．．	．	．．．	．．．	40.78	43.37	\ldots	．．．	．．．	41.67	41.08	63.93	62.43	\ldots	．．．	．．．
1869	．．．	．．．	38．68＊	42.25	40.71	42.51	．．．	．．．	．．．	42.38	41．12	64.68	61.15		．．．	．．．
1870	．．．		42．12＂	45.40	43.84	45.62	．．．	．．．	．．．	45.99	44.47	63.26	62.19	64．90＊	．．．	．．．
	41．24	43.61	40.40	43.83	4 I .67	44.08	41.63	44.63	37.94	42.32	42.01	63.94	62.19	64.90	6r． 64	68.25
MIISSISSIPPI．－Continued．								MISSOURI．								
$\stackrel{\text { 䔍 }}{\sim}$		號总				我		$\begin{aligned} & \text { 部 } \\ & \text { 苞菏 } \end{aligned}$	$\frac{\dot{L}}{\frac{\dot{E}}{4}}$		首家	隠总总	$\begin{aligned} & \hline \text { \#̈ } \\ & \text { 窇 } \\ & \text { Ü } \end{aligned}$	宛	$\begin{gathered} \text { Bi } \\ \text { 侖 } \end{gathered}$	
1799 189	\cdots	．．．	64．89＊	．．．	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots
1801	\ldots	\ldots	65.05	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
1802	\ldots	．．．．	66.70°	\ldots	\ldots	\ldots	．．．	．．．	．．．	．	．．．	\cdots	．．．	．．．	．．．	．．．
1803	．．．	．．．	67.58	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1836	\cdots	\cdots	65.03	．．．	\ldots	\ldots	．．．	．．．	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	\cdots	\ldots
1837	\ldots	．．．	66.64	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	．．．	．．．	．．．	\ldots	\cdots	\cdots	\cdots
1838	\ldots	\ldots	63.85	\ldots	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots	\cdots	\ldots	．．．	\ldots
1839	．．．	．．．	67.21	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．
1840	．．．	．．．	66.76	\ldots	．．．	\cdots	．	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	．．．	．．．	．．．
1841	\ldots	．．．	67.63	．．．	\ldots	\ldots	67.35	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．	\cdots	．．．
1842	\ldots	\ldots	67.62	．．．	\ldots	．．．	66．60\％	\ldots	\cdots	．．．	．．．	．．．	\cdots	．．．	．．．	\ldots
1843	\ldots	\ldots	66.61	．．．	\ldots	\ldots	．．．	\ldots	．．．	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	．．．
1844	\ldots	\ldots	67.97	．．．	\ldots	．．．	．．．	．．．	．．．	．．．		\cdots	\cdots	\cdots	\cdots	\cdots
1845 r 846	\cdots	\ldots	66.79 67	．．．	\ldots	．．．	\cdots	\ldots	．．．		56.76	\cdots	\ldots	\cdots	\cdots	\ldots
1847	\ldots	\cdots	66．40	\ldots	\ldots	．．．	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	\ldots
$1 \mathrm{IS}_{4}{ }^{3}$	\ldots	\ldots		．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	．．．
1849	\ldots	．．．	66.07 \％	\ldots	．．．	\ldots	\ldots	．．．	．．．	\ldots	．．．	\ldots	\ldots	．．．	．．．	．．．
1850	\ldots	．．．	$65 \cdot 34$	．．．	\ldots	\ldots	\ldots	．．．	．．．	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
1851	．．．	．．．	．．．	．．．	\ldots	．．．	\cdots	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．
1854	\ldots	\ldots	\ldots		．．．	．．．	\ldots	．．．	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	54．72
1855 1856 I	\ldots	\cdots	\ldots	61．44＂	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	\cdots	\ldots	\ldots	\ldots	．．．．
1856 I 857	\cdots	\cdots	．．．	\cdots		．．．	\cdots	．．．	\cdots	\ldots	．．．	$\ldots 3.14^{*}$	\ldots	\ldots	\cdots	．．．
r 1858	\ldots	．．．	66．27＊	\ldots	66．$\stackrel{3}{7} \times$	\ldots	\ldots	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	\ldots	\ldots
I 859	．．．	．．．	65．30	\cdots	67．37\％	\ldots	．．．	．．．	．．．	\ldots	\ldots	\ldots	58．01＊	．．．	．．．	．．．
IS60	．．．	．．．	66.39	\ldots		\cdots	．．．	\cdots	\therefore	\ldots	．．．	\ldots	58．01＊	．．．	\ldots	．．．
1861	．．．	\cdots	65．92	\cdots	65．59＊	\ldots	．．．	．．．	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1862	．．．	．．．	66．57＊	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．
1864	\ldots	\ldots		\ldots	\cdots	\cdots	\cdots	51.71^{*}		…	\cdots	\cdots		\ldots		．．．
1865 r 866	\ldots	\ldots	65.06 $6+37$	．．．	．．．	\ldots	．．．．	50．46＊＊	$53.74 *$..	\ldots	．．．	\ldots	\ldots	．．．	${ }^{53 \cdot 4{ }^{\text {² }}}$	\ldots
1869	62．35＊	．．．	65．24＊	\ldots	．．．	．．．	66.52	52.29	．．．	．．．	\ldots	．．．	\ldots		\ldots	\ldots
1868	62．86＊		63.68	．．	\cdots	．．	64.64	52.23	\ldots		\cdots	\cdots	\cdots	55.86	\cdots	\ldots
1869	63.06	63.67	63.52	\ldots	．．．	650．0．	64.53	51.88	．．．	56.59	．．．	．．．	\ldots	55.56 55.26	\ldots	．．．．
1870	63.40	．．．		．．．	．．．	61．99＊＊	．．．	53.60	．．．	．．．	\ldots	\ldots	\ldots	55.26	\ldots	
	62.55	64.08	66.01	．．．	66.43	6r．99	65.45	52.01	54.44	56.18	56.76	53.68	57.54	55.55	52.39	54.68

MONTANA．								NEBRASKA．								
范						$\begin{aligned} & \text { 启 } \\ & \text { 命 } \\ & \text { 若 } \end{aligned}$		$\begin{aligned} & \stackrel{3}{\ddot{0}} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { ì } \\ & \text { ì } \\ & \text { A. } \end{aligned}$					遏	㜢	管
1820	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	\cdots	．．．	48.19	\ldots	．．．	\ldots	－	\bigcirc
1821	．．．	．．．	．．．	．．．	\cdots	\ldots	．．．	．．．	…	\cdots	47.12	\ldots	．．．	\ldots	\ldots	．．．
1822	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	．．．	\ldots	．．．	50.25	．．．	．．．	．．．	．．．	．．．
1823	\ldots	\ldots	．．．	\ldots	．．．	．．．	\ldots	．．．	\ldots	．．．	51.28	．．．	．．．	．．．	．．．	\ldots
1824 1825	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．	48.25	\ldots	\ldots	．．．	．．．	．．．
1825 1826	\ldots	\ldots	\ldots	\ldots	．．．．	．．．．	．．．	\ldots	\ldots	．．．	52.20 51.40	\ldots	\cdots	\ldots	\cdots	\ldots
1849	\ldots	\ldots	\cdots	\ldots	\cdots	．．．	\ldots	\ldots	\cdots	．．．	．．．	45.30	\cdots	\ldots	\ldots	．．．
1850 185	\cdots	\cdots	\ldots	．．．	\cdots	．．．	\cdots	\cdots	\ldots	．．．	．．．	46.53	．．．	\cdots	．．．	．．．
185	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	\cdots	48.97	\ldots	\ldots	\ldots	．．．
1853	\ldots	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	48.40	\ldots	．．．	\ldots	．．．
1854	\ldots	\ldots	．．．	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	\cdots	50.57	．．．	\ldots	．．．	．．．
1855	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	．．．	．．．	\ldots	．．．	48．70\％	\ldots	．．．	．．．	．．．
1856	．．．	\ldots	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	45.83	\ldots	．．．	．．．	．．．
1857	\ldots	．．．	．．．	\cdots	\ldots	．．．	．．．		．．．	．．．	．．．	45.25	．．．	\cdots	．．．	．．．
1858	\cdots	\ldots	\ldots	\ldots	．．．	\cdots	\cdots	48.73	．．．	\ldots	．．．	48.10	\ldots		．．．	
1859 1860	\cdots	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	48.50	\cdots	\ldots	．．．	49．19	．．．	．．．	．．．	47．3I
	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	${ }_{51}^{51.78} 5$	\cdots		．．．	51.30	\ldots	\ldots	．．．	．．．
1862	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	48.91	\ldots	$\stackrel{40.17}{\ldots}$	\ldots	${ }_{49.109 *}$	\cdots	\cdots	\ldots	．．．
1863	．．．	．．．	．．．	．．．	．．．	\ldots	．．．		\ldots	．．．	．．．	．．．	．．．．	\ldots	\ldots	．．．
1864	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	48.41	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．
1865	．．．	．．．	．．．	\cdots	\cdots	\cdots	\ldots	50.14	．．．	．．．	．．．	\cdots	\ldots		\cdots	．．．
1866 1867		．．．	．．．	${ }_{47} \ldots$	\cdots	．．．	43.42 \ldots	49.17 \ldots	45．66＊	\ldots	\ldots	43.66^{*} 44.28^{*}	．．．．	$46.76 *$ 45.83	\ldots	\ldots
1868	45.48		．．．	．．．		45.06	．．．	49．70＊	46.65	．．．	．．．	＋．．	51.60	46.90	…	．．．
1869	46.67	41.84	．．．	．．．	45.35	46.26	．．．	49.23	46.01	．．．	．．．	．．．	51.11	46．72＊	50．00＊	47．56＊
1870	．．．	41．15	47.24	．．．	44.27	45.83	\cdots	51.57	48．66＊	．．．	．．．	．．．	52.76	．．．	51.39	51.24
	44.85	41.49	47.02	48.39	44.80	46.06	43.04	49.53	46.74	46.24	49.82	47.12	5x．86	46.60	50.81	48.87

NEB．－Cont＇d．			NEVADA．						NHW HAMPSHIRE．							
$\begin{gathered} \stackrel{\rightharpoonup}{5} \\ \stackrel{y y}{0} \end{gathered}$		$\begin{aligned} & \text { 覆 } \\ & \text { न̈ } \\ & \text { ت } \end{aligned}$							$\begin{aligned} & \text { 芌 } \\ & \text { 弟 } \\ & \text { 苞 } \end{aligned}$		¢		窵			
1822		$\stackrel{\circ}{\circ}$	\cdots	$\stackrel{\circ}{\circ}$	\cdots	－	\cdots	－	\cdots	\cdots	\bigcirc	\cdots	$\stackrel{\circ}{\circ}$	\cdots	$47^{\circ} 49$	\cdots
1825	\ldots	\cdots	\ldots	．．．	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	47.77	．．．
IS26	．．．	．．．	\ldots	．．．	\ldots	\cdots	\cdots	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\cdots	48.07	．．．
1827	．．．	\cdots	\cdots	\ldots	．．．	\cdots	\cdots	．．．	\ldots	…	\ldots	．．．	\cdots	．．．	45.8 I	．．．
1828	．．．	\ldots	．．．	\ldots	．．．	\ldots	\ldots	．．．	\cdots	47.52	\ldots	．．．	\cdots	\cdots	49．II	\ldots
1829	\cdots	．．．	\ldots	\ldots	．．．	\ldots	\cdots	\ldots	．．．	44.42	\cdots	\cdots	\ldots	\cdots	45.59	\cdots
1830	．．．	．．．	\ldots	\ldots	．．．	．．．	．．．	\ldots	\cdots	46.42	\cdots	\ldots	．．．	\cdots	46.98	．．．
1831	\cdots	．．．	．．．	．．．	\cdots	\cdots	\cdots	．．．	．．．	45.72	．．．	．．．	．．．	．．．	46.32	．．．
1832	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	\ldots	44.02	\cdots	\cdots	\ldots	．．．	44.84	．．．
1833	．．．	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	44．12	44.87	\ldots	．．．	\cdots	45.31	\ldots
1834	\ldots	．．．	．．．	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	45.82	45.86	\cdots	．．．	．．．	45.39	\cdots
1835	．．．	．．．	．．．	\ldots	．．．	\cdots	\cdots	\ldots	．．．	43.12	43.66	．．．	\cdots	．．．	44.23	．．．
1836	\ldots	．．．	42.72	$43 \cdot 39$	\ldots	\cdots	\cdots	42.45	\ldots							
1837	\ldots	．．．	．．．	\cdots	\ldots	\cdots	\ldots	\ldots	．．．	42.92	43.88	\cdots	\ldots	．．．	42.78	．．．
1838	\cdots	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	45.90	\ldots	\cdots	\cdots	44.17	\cdots
1839	．．．	．．．	．．．	．．．	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	47.43	．．．	\ldots	\cdots	45.12	\ldots
1840	\cdots	．．．	\ldots	．．．	．．．	\cdots	．．．	\cdots	．．．	\cdots	$47 \cdot 36$	\ldots	\ldots	\cdots	45.62	．．．
1841	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	\ldots	．．．	47.38	．．．	\ldots	\cdots	．	\ldots
$1{ }_{1}{ }_{42}$	\cdots	．．．	．．．	\cdots	\cdots	\cdots	\ldots	．．．	．．．	．．．	47.5 S	\ldots	\cdots	\ldots	45.70	\cdots
IS43	\ldots	．．．	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	．．．	．．．	\cdots	\cdots	46.25	．．．
1844	\cdots	\ldots	．．．	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	\ldots	\ldots	\cdots	\cdots	\cdots	$45 \cdot 31$	\cdots
IS45	\cdots	．．．	\cdots	．．．	\cdots											
IS49	．．．	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	$46.20{ }^{\circ}$	\cdots	．．．	\ldots	\ldots	…	\cdots
1550	\cdots	\ldots	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\cdots	45.50	\ldots	\ldots	\cdots	\cdots	45.62	．．．
1851	．．．	．．．	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	45.60	．．．	．．．	\cdots	\cdots	44.97	．
IS52	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	\ldots	．．．	45.70	\ldots	\ldots	\cdots	．．．	45.06	．．．
IS53	\cdots	．．．	\ldots	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	47.03	…	\ldots	\cdots	\cdots	45.46	\cdots
I854	\ldots	．．．	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots	45.24	46.03	．．．	43.69	\ldots	．．．	．．．
1855	\cdots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	45.28	\cdots	\cdots	43.57	\ldots	\cdots	．．．
I856	．．．	\cdots	\ldots	\cdots	\ldots	．．．	\ldots	\cdots	\ldots	$44.49{ }^{\circ}$	\ldots	．．．	．．．	\ldots	\ldots	\cdots
1857	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots	$45.49{ }^{\circ}$	\cdots	\cdots	．．．	\ldots	．．．	44.05
1858	．．．	\cdots	．．．	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	$45 \cdot 33^{*}$	\cdots	\cdots	\cdots	\cdots	\cdots	．．．
1859	．．．	47.24	．．．	．．．	．．．	\cdots	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1860	\ldots	49．15＊	\ldots	\ldots	．．．	\ldots	\cdots	．．．	45.23	\ldots	\cdots	\ldots	\cdots	\cdots	．．．	\cdots
1861	\ldots	47.56	\ldots	\ldots	．．．	\cdots	$5+53$	\cdots	44.93	．．	\cdots	\ldots	46．17＊＊	\cdots	\cdots	\cdots
1862	．．．	46.78	\cdots	\ldots	\cdots	\cdots	51．48	…	44.56	\ldots	\ldots	\ldots	46.47	\ldots	\ldots	．．．
1863	．．．	．．．	．．．	\cdots	\ldots	\ldots	54． 27%	51．71＊	45．37	\cdots	\cdots	\cdots	．．．${ }^{\text {a }}$	\cdots	\cdots	．．．
1864	．．．	47.54	．．．	．．．	．．．	\ldots	55．37＊＊＊	52．10	46.13	．．．	．．．	\ldots	47．16	．．．	\ldots	\cdots
1865	．．．	48.26	\cdots	\cdots	\cdots	．．．	54．07＊＊	51．79	44.94	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	．．．
1866	\cdots	47.50	．．．	\cdots	45．1S	\cdots		…	44.45	\cdots	\cdots	\cdots	\ldots	\cdots	．．．	\ldots
1867	．．．	45.54	\cdots	$4 \mathrm{S}$.	42.80	50.85	$54.62^{3 / 6}$	47．42	43.63	\ldots	．．．	\ldots	\ldots	\cdots	\cdots	\ldots
IS68	48．94＊	47.07	44.40	46.8 S －	$40.26 "$	46．80	50．34＊	$45.67^{\prime \prime}$	43．70\％	．．．	\cdots	46．99＊＊	．．．	．．．	\cdots	．．．
1869	48.77	47.01	48.74	49.87	．．．	52．03＊	．．．	．．．	．．．	\ldots	\cdots	45.30	\cdots	\cdots	\cdots	．．．
1870	50.92	．．．	47．29＊＊	48.93	．．．	．．．	\cdots	\cdots	\cdots	\ldots	\cdots	48．35	\ldots	45．12	\cdots	\cdots
	49.77	47.26	46.80	48.59	42.59	50.28	53.72	49.31	44.74	45.24	45.60	46.87	45.08	45.03	45.68	44.49

	 	Year．			 	Year，
$\frac{\ddagger}{\infty}$	氙出む心にら8in	Cantonment Burgwin．		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Freehold．
$\underset{i}{i}$		Cebolleta．		N 0 0	MGMNGMN 4． 	Greenwich．
ur		Fort Bascom．		$\begin{gathered} \underset{\sim}{c} \\ \underset{\sim}{9} \end{gathered}$		Haddonfield．
先		Fort Bayard．		u cos m		Lamberts－ ville．
$\begin{aligned} & 0 \\ & 0 \\ & i \\ & + \end{aligned}$		Fort Conrad．				Mt．Holly．
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Fort Craig．		g － -1	 	Newark．
$\stackrel{\square}{2}$		Fort Cum－ mings．		u 0 i 0		New Brunswick．
$\begin{aligned} & \infty \\ & i \\ & i \end{aligned}$		Fort Fillmore．		ch \sim \sim		Newfield．
$\begin{gathered} \text { G } \\ \text { is } \\ \text { is } \end{gathered}$	べing：：：：：：：：：：：：：：：：：：	Fort McRae．		n 0 N \sim		New German－ town．
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		Fort Selden．		n 0 is is		Paterson．
		Fort Stanton．				Rio Grande．
n 0 0 0		Fort Sumner．		－		Seaville．
us 0 ∞ +		Fort Thorn．				Sergeants－ ville．
$\begin{aligned} & n \\ & \text { in } \\ & \text { in } \end{aligned}$		Fort Union．		－		Trenton．
u $i n$ $i n$ i		Fort Webster．		告		Vineland．
\cdots		Fort Wingate．		M		Albuquerque．

NEW MEXICO．－Cont＇d．					NEW YORK．											
先			$\begin{aligned} & \text { in } \\ & \text { in } \\ & \text { 荡 } \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{4} \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{G} \\ & \text { 信 } \end{aligned}$	$\begin{aligned} & \text {-邑 } \\ & \text { 典 } \end{aligned}$		$\begin{aligned} & \text { Ey } \\ & \text { 䴟 } \end{aligned}$		容言	$\begin{aligned} & \text { 岂 } \\ & \text { 岂 } \\ & \text { ๓ } \end{aligned}$	$\begin{aligned} & \stackrel{\vdots}{0} \\ & \text { 言 } \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \stackrel{0}{0} \\ & \text {. } \end{aligned}$			
1795 1796 1815	$\stackrel{\circ}{\ldots} \times$	\circ \cdots \cdots	\ldots	$\stackrel{\circ}{\ldots} \times$	49.55 46.61%	…	\circ \cdots \cdots	\circ \cdots \cdots	\cdots	\cdots	\circ \cdots \cdots	\circ \cdots \cdots	\circ \cdots \cdots	…	\cdots	…
1813 1814 r 18	\cdots	\ldots	\ldots	\ldots	47.92 49.41	\cdots	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	．．．	…
1820	\ldots	\ldots	．．．	\ldots	48.57	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	．．．
1S21	\ldots	．．．	．．．	．．．	47.68	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．
1832	\ldots	\ldots	\ldots	．．．	48.77	\cdots	\ldots	\ldots	．．．	\ldots	．．．	\ldots	．．．	．．．	\ldots	\cdots
1323	\ldots	\ldots	．．．	．．．	46.90	．．．	．．．	\ldots	．．．	\ldots	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots
1824 1825	\ldots	．．．	\ldots	\ldots	47.47 50.05	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	．．．
1825 1826	\ldots	\ldots	\ldots	\ldots	50.05 50.59	\ldots	\cdots	．．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	\ldots
1827	\ldots	\ldots	\ldots	\ldots	48.14	\ldots	．．．	47.76	．．．	\ldots	\ldots	．．．	\ldots	．．．	\ldots	\ldots
1328	．．．	．．．	．．．	\ldots	50．88	．．．	．．．	48.48	\ldots	\ldots	\ldots	．．．	\ldots	．．．	．．．	\cdots
1829	\ldots	\ldots	\ldots	\ldots	47.72	\ldots	\ldots	45.88	．．．	．．．	63	．．．	\ldots	\ldots	\ldots	．．．
1830	\ldots	．．．	\ldots	\ldots	50.17	．．．	\cdots	46.89	．．．	．．．	44.63	\ldots	\cdots	\cdots	．．．	．．．
${ }_{\text {IS }}^{1} \mathrm{SI}$	\ldots	\ldots	\ldots	\ldots	48.67	\ldots	．．．		\cdots	\ldots	45.67	\ldots	\ldots	\ldots	．．．	．．．
IS32 I 83 183	\ldots	\ldots	\ldots	\ldots	47.62 47.14	\ldots	\ldots	46.44 47.32	\ldots	．．．	$\stackrel{\text { …00 }}{45.0}$	\ldots	\ldots	．．．	．．．	43.37
1834	\ldots	\ldots	\ldots	．．．	48.05	\ldots	\cdots	48.45 48	\ldots	\ldots	46.04	\cdots	．．．	\ldots	\ldots	42.31
1835	\cdots	．．．	．．．	\ldots	45.69	．．．	．．．	46.06	\ldots	．．．	44.64	\cdots	．．．	\ldots	．．．	40.66
1836	\ldots	．．．	．．．	\cdots	44.25	．．．	．．．	44.27	．．．	．．．	42.63	\cdots	\ldots	\cdots	\cdots	．．． 42.39
1837 I 838 LS	\cdots	\cdots	．．．	\cdots	45.31	\ldots	\cdots	43.92	\cdots	\ldots	．．．	．．．	\ldots	\ldots	\ldots	42.39 \ldots
IS38 IS39	\ldots	\ldots	\ldots	\ldots	46.67 47.72	．．．	\ldots	44.63 46.77	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	…
1840	\ldots	．	．．．	．．．	48.22	\ldots	．．．	47.07	．	\ldots	\ldots	．．．	\ldots	\ldots	．．．	．．．
1841	\ldots	\ldots	\cdots	\cdots	47.70	\cdots	\cdots	45.92	．．．	．．．		．．．	\ldots	\ldots	\cdots	\cdots
1842	．．．	．．．	\ldots	\ldots	47.98	\ldots	．．．	46.65	\ldots	．．．	45．71	\ldots	\cdots	\ldots	\cdots	\ldots
1843 1844	\ldots	\cdots	\ldots	\ldots	46.40	\cdots	．．．	45.04	\ldots	\ldots	49.50	\cdots	\ldots	\cdots	\ldots	\cdots
1844	\ldots	\ldots	．．．	．．．	47.68	\ldots	．．．	47.84	．．．	\ldots	49.65	\cdots	\cdots	\cdots	．．．	\ldots
1845 1846	\cdots	\ldots	\cdots	\cdots	49．10	\ldots	\cdots	44.65 48.28	\cdots	\cdots	\ldots	\ldots	\ldots	．．．	51．95	\ldots
1847	\ldots	\cdots	．．．	．．．	48.65	\ldots	\ldots	44.36	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots
1848	\cdots	\ldots	\％${ }^{*}$	．．．	49.35	…	．．．	44.83	\ldots	．	．．．	．．．	．．．	\ldots	\cdots	\cdots
1849	．．．	\ldots	51．67＊	51	47.32	45.98	\ldots	44.16	\ldots	．．．	．．．	\cdots	\ldots	\cdots	\ldots	\ldots
1850	49.00	\ldots	\cdots	57．61		\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	．．．	\cdots	\ldots		\ldots
1851 1852 185	．．．	\ldots	\ldots	．．．．	47.65 48.06	．．．	\ldots	．．．．	．．．	\ldots	\ldots	\ldots	\ldots	\cdots	．．．．	\ldots
${ }_{1853}^{185}$	\ldots	\ldots	49.80	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	…	\ldots	．．．	5	．．．	\ldots	．．．
1854	\ldots	\ldots	50.57	．．．	．．．	．．．	\ldots	．．．	45.89	48．18＊	\cdots	\cdots	49.50 48.26	．．．．	\cdots	\cdots
1855	\ldots	．．．	50.44	．．．	．．．	．．．	44.14	\ldots	44.76	．．．	\cdots	．．．	48.26	－ 40.66	．．．	\cdots
1856	\ldots	．．．	149.12	．．．	\ldots	．．．	42.47	\ldots	43.31	．．．	\ldots		${ }^{46.77}$	＋ 49.66	\ldots	\ldots
1857 1858 185	．．．	\ldots	$\left\lvert\, \begin{aligned} & 50.03 \\ & 48.65\end{aligned}\right.$	．．．	．．．	．．．	．．．	\cdots	44.25 ...	．．．	\ldots	48.83	${ }^{47.97}$	${ }_{\text {50．40＊}}^{\text {．．．}}$	…	．．．
$\begin{array}{r}1859 \\ 185 \\ \hline\end{array}$	\ldots	\ldots	$47.3{ }^{1}$	．．．	．．．	．．．	\ldots	\cdots	．．．	．．．	．．．	48.94	47.36	．．．	\ldots	．．．
1860 1861	．．．	．．．	50.28	．．．	\ldots	．．．	．．．	48.01	45．74＊	．．．	．．．	49．36	47．79＂	．．．	\ldots	\cdots
$\begin{aligned} & \text { I86I } \\ & \text { I } 862 \end{aligned}$	．．．	．．．	52.0 S	．．．		\ldots	．．．	47.64	45.76	．．．	\cdots	50.12	48．72＂	\cdots	\cdots	\cdots
1862 1863	\ldots	57.67	50.66	．．．	$46 \cdot 35$ 46.05	\ldots	\ldots	47.74 48.34	45.75 44.62%	\ldots	\ldots	\ldots	．．．	．．．	\cdots	\ldots
1864	\ldots	\ldots	49.51	．．．	47.99	\ldots	．．．	50.09	45.79	．．．	．．．	．．．	48.98	．．．	．．．	\cdots
1865	\ldots	55．15＊	48.98	\ldots	49.27	\ldots	．．．	49.72	45.47	\ldots	\ldots	．．．	49.95	\ldots	\cdots	\cdots
1866	．．．	．．．	．．．	．．．	48.41	\ldots	\cdots	．．．	44.07	\cdots	\cdots	\cdots	48.19 48.49	．．．	\ldots	\ldots
1867 1868	\ldots	\cdots	48.97	．．．	46.99 45.76	\ldots	\ldots	\ldots	．．．	\cdots	\ldots	\cdots	47.20	\ldots	\ldots	\ldots
1869	．．．	．．．	48.12	．．．	47.01	．．．	．．．	．．．	．．．	．．．	．．．	．．．	49.08	．．．	．．．	．．．
1870	\ldots	．．．	52.44	．．．	50.06	．．．	\ldots	\ldots	．．．	．．．	\ldots	．．．	50.77	．．．	．．．	．．．
	49.06	55.40	50.13	57.92	47.95	45.86	4365	46．80	45.28	48.18	45.94	49.33	48.66	50.03	51.95	42.19

NEW YORK．－Continued．																
$\stackrel{\text { ¢゙® }}{\text { ¢ }}$	菷										$\begin{aligned} & \dot{y} \\ & \text { 言 } \\ & \text { 旁 } \\ & \stackrel{0}{\circ} \\ & 0 \end{aligned}$					彧
	…	$4{ }^{\circ} .62$		\therefore	\ldots	\cdots	．．．	$4{ }^{\circ} 53$	\ldots	－．．	－．	\cdots	－	\cdots	$48^{\circ} .83$	\cdots
182	．．．	＋ 4.52	．．．	\ldots	\ldots	．．．	\cdots	46.60	\ldots	．．．	．．．	．．	46.41	．．．	50.8 S	\ldots
IS2	\ldots	45.41	\cdots	45.74 ，	．．．		\ldots	43.85	\ldots	\ldots	．．．	．．．	．．．	．．．	47.71	\ldots
I 8_{3}		47.44	46.05	47.08	．．．	44.89	\ldots	44.69	\cdots	\ldots	．．．	\cdots	．．．	．．．	49.34	\ldots
183	46.30	46.31	．．．	45.80	\cdots	43.00	\ldots	44.40	．	\ldots	\ldots	\ldots	\cdots	\cdots	48.30	\cdots
183	45.03	45．13	6.00	46.68	\ldots	43.58	．．．	44.30	\ldots	．．．	．．．	．．．	．．．	．．．	47.52	．．．
$1{ }^{183}$	．．．	44.57	46.00	46.82	\ldots	43.96	．．．	44.07	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	48.61	．．．
${ }_{1} \mathrm{~S}_{3}$	．．．	45.72	\cdots	46.44	．．．	44．49	．．．	44.74	．．．	．．．	．．．	\ldots	\ldots	\ldots	48.90	\ldots
183	．．	43.09	43.83	43.95	．．．	42.55	\ldots	42.96	\ldots	．．．	\ldots	．．．	．．．	\ldots	46.12	．．．
$1{ }^{1} 83$	\ldots	42.20 ；	．．．	43.30	\ldots	${ }^{\text {41．} 10}$	\ldots	40.77	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	46.44	．．．
${ }_{1} \mathrm{~S}_{3}$	\ldots	42.21	．．．	42.44	．．．	41.68	．．．	．．．	．．．	．．．	．．．	\ldots	45.97	\ldots	45.72	．．．
183	．．．	43.73	．．．	43.72	\ldots	42.49	\ldots	．．．	．．．	\ldots	\ldots	．．．	．．．	\ldots	46.51	．．．
183 184 1	\cdots	44.04	\cdots	\cdots	\cdots	＋3．55	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	48．77	\ldots
184	44．3S	45.35	\ldots	．．．	．．．	42.79	\ldots	42.49	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	49.17	\ldots
$18+$	46.72	．．．	．．．	．．．	\ldots	43.69	．．．	43.80	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	50.42	．．．
184	45.28	．．	\ldots	\ldots	\ldots	41．91	\ldots	4.85	\ldots	．．．	\ldots	．．．	．．．	\ldots	48.32	．．．
18	47.21	．．．	\ldots	\ldots	．．．	43．32	\ldots	43.63	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
184	\ldots	．．．	．．．	．．．	．．．	＋3．32	．．．	＋5．19	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
188	．．．	．．．	\ldots	．．．	．．．	43.67	．．．	\ldots	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	．．．
184	．．．	．．．	．．．	．．．	\ldots	42.94	\cdots	．．．	\ldots	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．
18	．．．	\cdots	\ldots	．．．	．．．	43.42	．．．	\ldots	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．
1849 1850	\cdots	．．．	\ldots	．．．	．．．	42.25	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	．．．	\ldots	\ldots
185	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	．．．	．．．	\ldots	\cdots						
185	．．．	\ldots	．．．	．．．	\ldots	．．．	\ldots	．	．．．	．．．	．．．	．．．	44.45	．．．	\ldots	．．．
1853	$\cdots 6 \times{ }^{\prime}$	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	．．．	\ldots	\cdots	\cdots	．．．	\ldots	\ldots	．．．
185	46．69．＊	\ldots	\ldots	．．．	44.33	．．．	．．．	\ldots	．．．	\ldots	\ldots	．．．	\ldots	．．．	．．．	．．．
185	\ldots	\ldots	\cdots	\ldots	44.21	\ldots	．．．	．．．	${ }_{43.23}$	\ldots	\ldots	\ldots	\cdots	．．．	\ldots	．．．
185	\ldots	\ldots	\ldots	．．．	\ldots	${ }^{11.55}$	\ldots	\ldots	43.23 45.55	．．．	\ldots	\ldots	\ldots	\cdots	\cdots	$\stackrel{\cdots}{45 \cdot 5}$
185	47.81	\ldots	．．．	．．．	\cdots	．．．	．．．	．．．	47.18	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．
185	47.33	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．						
186	47.16	．．．	\ldots	．．．	．．．	\ldots	46.79	\cdots	．．．		\ldots	…	．．．	．．．	\ldots	．．．
186	47.25	．．．	．．．	．．．	\ldots	43.63	46.59	．．．	．．．	46.46	．．．	47．94＊	．．．	．．．	．．．	．．．
186	47.29	\cdots	\cdots	\cdots	\ldots	43．39	47.39	\ldots	$48.50{ }^{4}$	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots
186	． 46.63	．．．	．．．	．．．	．．．	．．．	＋8．39	．．．	49.50	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．
186	47.31	．．．	\ldots	．．．	．．．	\ldots	48.59	．．．	．．．	．．．	．．．	\ldots	．．．	46.18%	．．．	．．．
1860	45.29	．．．	．．．	．．．	．．．	．．．	47．19	\ldots	．．．	\ldots	\ldots	\ldots	．．．	43.75	\ldots	．．．
1866 1868	4.04	．．．	．．．	．．．	\ldots	44.37	47．89	\ldots	．．．	．．．	．．．	．．．	．．．	43.90	．．．	．．．
186	45．76	．．．．	\ldots	\ldots	．．．	43.25 44.04	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	．．．	43.09	\cdots	．．．
1870	48.44	\％	．．．	\ldots	．．．	46.56	．．．	\ldots	．．．	\ldots	46.92	．．．	．．．	46.19	．．．	\ldots
	46.55	＋4．88							46.82		46.61	48.20	45.50		48.37	45.73

NEW YORK．－Continued．																
$\underset{\sim}{\text { E }}$					号		它	芭	艺	－					$\begin{aligned} & \text { 药 } \\ & \sum_{z}^{2} \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{0}{5} \\ & \stackrel{y}{5} \\ & \hline \end{aligned}$
1824	－．．	$\stackrel{\square}{\circ}$	．．	－	－	－	－	－	。	。	\bigcirc	－	。	$46^{\circ} 3$	－	。
1825	．．．	\cdots	．．．	\ldots	．．．	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots	48．37 ${ }^{\text {4＊}}$	\ldots	\cdots
1826	．．．	．．．	49.20	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	48．51	．．．	．．．
1827	．．．	．．．	47.64	．．．	．．．	．．．	．．．	．．．	．．．	．．．	43.29	．．．	．．．	－	．．．	．．．
1828	．．．	\cdots	50.27	\cdots	\cdots	\ldots	．．．	．．．	\ldots	．．．	46.47	\ldots	\cdots	\ldots	．．．	．．．
1829	47.95	．．．	47.22	\cdots	\ldots	．．．	．．．	\ldots	．．．	\cdots	42.90	\cdots	\cdots	47.11	\ldots	．．．
1830	50.99	．．．	49.16	48.99	\cdots	．．．	．．．	．．．	．．．	．．．	44.12	\ldots	．．．	49.01	\ldots	\ldots
1831	50.58	．．．	47.15	48.00	49.04	．．．	．．．	．．．	．．．	．．．	43.49	．．．	．．．	48.56	\ldots	．．．
1832	50.02	．．．	46.88	47.62	48.81	．．．	．．．	．．．	．．．	．．．	43.67	．．．	．．．	－	．．．	\ldots
1833	50.92	．．．	47.63	\cdots	49.21	\ldots	．．．	．．．	．．．	．．．	43.54	．．．	．．．	\ldots	．．．	．．．
1834	49.62	．．．	48.16	47.60	$50 \cdot 22$	．．．	．．．	．．．	．．．	．．．	45.55	．．．	．．．	．．．	\ldots	．．．
1835	47.77	．．．	47.62	．．．	47.88	．．．	．．．	．．．	．．．	．．．	42.06	\cdots	．．．	\cdots	\cdots	．．．
1836	45.46	．．．	$47 \cdot 34$	\cdots	43.06	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．
1837	46.64	\cdots	48.07	．．．	44.03	．．．	．．．	．．．	．．．	．．．	41．19	．．．	．．．	．．．	．．．	．．．
1838	48.09	\ldots		$47 \cdot 57$	\cdots	\ldots	．．．	\ldots	．．．	．．．	\cdots	\ldots	\ldots	\cdots	．．．	\cdots
1839	50.01	\ldots	46.98	．．．	46.43	．．．	．．．	．．．	．．．	．．．	44.62	．．．	．．．	46．49＊	．．．	42.74
1840	48.92	．．．	46.68	49．14	48.46	．．．	．．．	\cdots	．．．	\cdots	44.39	．．．	．．．	．．．	．．．	44.42
1841	47.83	．．．	46.43	50.03	48.37	．．．	．．．	．．．	．．．	\cdots	43.23	．．．	．．．	\cdots	．．．	．．．
1842	51.03	\ldots	45.74	51.14	47.39	\ldots	．．．	\cdots	．．．	．．．	43.60	．．．	．．．	44.75	．．．	41.63
1843	．	．．．	44.75	48.03	46.29	．．．	．．．	．．．	．．．	．．．	41.38	．．．	．．．	43.50	．．．	．
1844	\cdots	．．．	45．12	47.04	47.28	．．．	．．．	．．．	．．．	．．．	42.25	．．．	．．．	44． 15	．．．	\ldots
1845	49.84	．．．	48.06	48.45	47.19	．．．	．．．	．．．	．．．	．．．	39.24	．．．	．．．	44.45	\cdots	．．．
1846	45.69	．．．	48.76	49.96	50.24	．．．	．．．	．．．	．．．	．．．	44.88	．．．	．．．		．．．	\ldots
1847	48.77	．．．	\cdots		48.01	．．．	．．．	\cdots	．．．	．．．	$43 \cdot 30$	．．．	．．．	．．．	．．．	．．．
1848	48.68	－．	．${ }^{\prime}$	．．．	49.33	．．．	\cdots	\ldots	…	．	43.82	．．．	．．．		．．．	．．．
1849	50.26	\ldots	．．．	－8	48.05	．．．	\cdots	\ldots	47．11＊	．．．	．．．	．．．	．．．	46．95＊	．．．	．．．
1850	．．．	\cdots	\cdots	49.28	．．．	\cdots	\cdots	\cdots	46．26＊	．．．	\cdots	\cdots	\cdots	45.81	\cdots	．．．
1851	\cdots	46.49	．．．	．．．	．．．	\cdots	\cdots	\ldots	．．．	\cdots	43.86	．．．	\ldots	45.18	．．．	．．．
1852	．．．	．．．	．．．	\cdots	．．．	．．．	43．09＊＊	\cdots	\ldots	．．．	．．．	\ldots	．．．	．．．	．．．	\cdots
1853	．．．	．．．	．．．	\ldots	．．．	．．．	．＊＇	\cdots	．．．		－	\cdots	．．．	．．．		．．＇
1854	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．＇	47.88	＊．	．．．	．．．	．．．	43．41＊	．．．
1855	．．．	．．．	\cdots	\cdots	\cdots	．．．	\ldots	．．．	\cdots	45.24	\cdots	\cdots	\cdots	\ldots	．．．	\cdots
1856	\cdots	．．．	－．	\cdots	\ldots	\cdots	\cdots	．．．	\cdots	43.82	\cdots	\ldots	\cdots	．．．	\cdots	．．．
1857	．．．	\cdots	．．．	\ldots	\ldots	．．．	．．＊	．．．	\cdots	44.97 \％	41.25	\cdots	43．04＊	．．．	．．．	．．．
1858	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	－••	\cdots	．．．	．．．	．．．	．．．
1859	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．
1860	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	．．．	．．．	\ldots	46.49	．．．	．．．	\ldots	．．．
1861	．．．	\cdots	．．．	\cdots	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	45.87	．．．	．．．	\cdots	．．．
1862	\cdots	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	．．．
1863	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1864	\cdots	\cdots	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	．．．
1865	．．．	．．．	\ldots	\cdots	\cdots	\cdots	\cdots	… ${ }^{\text {\％}}$	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
I866	\cdots	．．．	－	．	\cdots	\cdots	．．．	44．31＊	\cdots	．．．	\cdots	．．．	．．．	\ldots	\ldots	．．．
1867	\cdots	\cdots	\cdots	．．．	\cdots	．．．	\cdots	44.76	\cdots	．．．	\cdots	\ldots	\ldots	\ldots	．．．	\cdots
1868	．．．	．．．	\cdots	\cdots	\cdots	．．．${ }^{*}$	\cdots	43.82	．．．	．	\cdots	\cdots	\cdots	\cdots	．．．	．．．
I869	．．．	\cdots	．．．	\cdots	\cdots	40．52＊	\cdots	43.58 45.68	\cdots	\cdots	\cdots	\cdots	\cdots	46.51	\cdots	\cdots
1870	\cdots	．${ }$	＊．	－	\cdots	．．．	\cdots	45.68	．．．	\cdots	\cdots	\cdots	\cdots	46.51	．．．	\cdots
	49.16	46.49	47.29	48.68	47.86	41.14	43.09	44.43	$47 \cdot 39$	46.21	43.33	45.95	43.12	46.15	43.94	42.93

N． Conti	ued．	OHIO．														
岂	$\begin{aligned} & \text { घ゙ } \\ & \text { 咢 } \\ & = \end{aligned}$	$\stackrel{\text { 雨 }}{\underset{\sim}{4}}$	$\begin{aligned} & \dot{0} 0 \\ & \text { 苞 } \\ & \text { 䔍 } \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & \dot{\tilde{O}} \\ & \stackrel{3}{4} \end{aligned}$			$\begin{aligned} & \text { En 品 } \\ & \text { 苞 } \\ & \text { unu } \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { 品 } \\ & \text { B } \end{aligned}$			$\begin{aligned} & \text { ej } \\ & \text { 寽 } \\ & \text { o } \\ & 0 \end{aligned}$	先	$\begin{aligned} & \text { 雨 } \\ & \text { 品 } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 总 } \\ & \text { E } \\ & \text { B } \end{aligned}$	茍 O U	
	－	－	\bigcirc	－	。	$\stackrel{\square}{\circ}$	\bigcirc	\bigcirc	－	\cdots	－	1814	52．0	－	－	\bigcirc
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	．．．	\cdots	\ldots	\ldots	ISI5	51.7	\cdots	\ldots	\ldots
\ldots	\ldots	\ldots	\cdots	\ldots	1Si6	51.0	．．．	．．．	．．．							
．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	ISI7	50.4	．．．	\ldots	．．．
\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	1818	50.4	\ldots	\cdots	\cdots						
\cdots	\ldots	．．．	．．．	\cdots	\cdots	\cdots	．．．	．．．	…	\ldots	\cdots	1819	53.7	\cdots	\cdots	\ldots
I So6	．．．	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	54．I	\cdots	\ldots	1820	52.1	\cdots	\cdots	\cdots
1807	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	54.4	．．．	\ldots	1821	51.0	\cdots	\cdots	\ldots
I 803	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	56.4	\ldots	．．．	IS22	52.2	．．．	\ldots	．．
r 809	\cdots	．．．	\cdots	\cdots	．．．	\cdots	．．．	\ldots	54.4	\cdots	\cdots	1823	51.7	\cdots	\cdots	．．．
1810	．．．	．．．	．．．	．．．	．．．	\cdots	\cdots	．．．	52.8	\cdots	：．．	1824	52.5	\ldots	\cdots	\cdots
1811	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	56.6	．．．	．．．	1825	53.6	\cdots	\ldots	\ldots
${ }_{1812}$	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	52.6	\ldots	\ldots	1826	53.1	\cdots	\cdots	\cdots
${ }_{1813}$	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	52.7	．．．	．．．	1827 1828	52.9 54.0	\ldots	\ldots	．．．
1819	\cdots	\ldots	\ldots	\cdots	．．．	．．．	．．．	58.34	56.8	\ldots	．．．	1828 1829	54.0 50.8	\cdots	\ldots	\cdots
	．	，	S	．		，						1830	53.5	．．．	\cdots	．．．
1835	\ldots	\ldots	\ldots	．．	\ldots	\ldots	．．．	\cdots	\ldots	50.93	\ldots	$\mathrm{IS}^{1} 1$	48.0	\cdots	\ldots	\cdots
${ }_{18} 8_{3} 6$	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	51.17	．．．	$\mathrm{I}_{1} 32$	51.8	．．．	\cdots	．．．
1837	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	53.00	．．．	I 833	52.5	\cdots	\cdots	\cdots
1838	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	51.80	．．．	1834	52.6	\cdots	\cdots	\cdots
IS39	．．．	\ldots	．．．	\cdots	\ldots	．．．	．．．	\ldots	．．．	54． 10	…	1835	49.2	\cdots	．．．	．．．
IS 40	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	．．．	\cdots	53.41	46.12	1836	49.0	\cdots	\cdots	\cdots
1841	．．．	．．．	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	．．．	53.93	45.73	1837	50.3	．．．	．．．	．．．
1842	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots	．．．	．．．	53.52	46.27	IS38	49.5	\cdots	\cdots	\cdots
1843	．．．	．．．	\ldots	\cdots	．．．	\cdots	\ldots	\ldots	\ldots	51.39	44.78	1839	52.8	\cdots	\cdots	\ldots
${ }_{18} \mathrm{ISH}_{14}$	．．．	．．．	．．．	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	54.43	47.01	1840	52.3	\cdots	．．．	\ldots
1845 1846	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\cdots	53.08	47.08	$1{ }^{1} 81$	52.0	．．．	．．．	．．．
18.46	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	．．．	54.93	48.98	1842	52.7	\ldots	．．．	\ldots
1847	\cdots	\cdots	\cdots	．．．	\ldots	\cdots	\ldots	\ldots	\cdots	52.62	．．．	1843	48.8	\cdots	\cdots	\cdots
1848	．．．	．．．	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	．．．	54.00	\cdots	IS44	53.0	\ldots	\cdots	\cdots
1849	\cdots	．．．	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	53.61	\ldots	1845	52.6	\cdots	\cdots	\cdots
1850	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	54.12	．．．	1846	54.0	\ldots	\ldots	\cdots
1851	\ldots	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	54.89	\cdots	1847	52.0	\cdots	\ldots	\cdots
1852	\cdots	51.64	．．．	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	54.25	\cdots	1848	52.6	\cdots	．．．	\ldots
1853 1854 185	．．．	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－．．	54．12	\cdots					
1854 I 855	－．．．	．．．	\cdots	56.15	\cdots	I 554	55．9＊	\cdots	\cdots	．．．						
I 855	\ldots	\ldots	－ 44.0	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	${ }_{\substack{55.10 . \\ 52.78}}$	45.87	1856				
IS56	\ldots	\ldots	44．50＂	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	52.78	45.87	1857	\ldots			40.55
1857 1858	\cdots	\cdots	51．85	\cdots	5151	\cdots	50.71	\cdots	\cdots	53.43	40.99		\ldots	\ldots	\cdots	．．．
1858 1859	\cdots	\cdots	51.85	50．00	51．51	．	50.71 50.30	\cdots	\ldots	57.17 56.27	49.57 49.50%	1858 1859	$52 .{ }^{\text {¢ }}$	\ldots	\ldots	\ldots
1859 1860	\cdots	\ldots	\cdots	50.00 \cdots	49.57 \ldots	51．${ }^{\text {a }}$ \％	50.30 ．．．	\ldots	\ldots	56.27 56.12	49.50 49.10	1859 1860	52.8^{*} \ldots	\ldots	49．75＊	\ldots
1861	\cdots	．．．	\ldots	\ldots	\cdots	$\left\lvert\, \begin{gathered}51.5 \\ \ldots . .\end{gathered}\right.$	50．55	\cdots	．．．	55.87	50.32	1861	52．9＊	．．．	51.74	\ldots
1862	．．．	．．．	\cdots	\cdots	．．．	．．．	50．60＊	．．．	．．．	56.28	49.63	1862	53．1＊＊	\cdots	$50.67 *$	．．．
1863	．．．	．．．	46．75＊	．．．	．．．	49．56＊	50．60＊	．．．	．．．	55.39^{*}	49.88	1863	$52.4 *$	\cdots	．．．	\cdots
1864	．．．	．．．	47.31	．．．	．．．	49.58	．．．	．．．	．．．	53.88	49.77	1864	52.1	53.42 \％	\ldots	\cdots
1865		．．．	47.68	．．．	．．．	51.43	\cdots	．．．	．．．	56.40	50.38	1865	53．5＊	．．．	\cdots	\cdots
IS66	$60.54 *$	．．．	．．．	\cdots	\cdots	48.48	49.83	．．．	．．．	54.75	48.65	1866	51.1	\cdots	．．．	\cdots
1867	．．．	．．．	\cdots	．．．	．．．	49.68	48.80	．．．	．．．	55.77	49.41	1867	52.7	\cdots	．．．	\cdots
1868	．．．	．．．	．．．	．．．	．．．	49.57	48.95	．．．	．．．	54.33	47.10	1868	50.8	\ldots	\cdots	\cdots
1869	．．．	．．．	．．．	．．．	．．．	50.69	49.09	．．．	．．．	55.39	47.47	1869	52.3	．．．	．．．	．．．
1870	\cdots	．．．	．．．	．．．	．．．	52.44	52.43	．．．	．．．	55.82	48.89	1870	54.6	\cdots	\cdots	\cdots
	60.54	52.29	47.96	50.21	49.50	50.37	50.22	58.34	$53.73{ }^{1}$	54.29	48.14		51．91	53.29	50.42	50.07
						${ }^{1} \mathrm{Hou}$	urs of ob	bservati	ion unkn	nown．						

OHIO．－Continued．																
告		䂞䂞	宮	枵	号	䔍	笑	菢	$\begin{gathered} \text { 淢 } \\ \text { 1 } \end{gathered}$	䂙	$\begin{aligned} & \text { 菏 } \\ & \text { 苞 } \\ & \text { 莹 } \end{aligned}$	管		言	寅	
	\bigcirc	．．．	\bigcirc	\cdots	1818	53.45 \％		$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots	\ldots	\bigcirc	\therefore	\bigcirc	－	－
．．．	．．．	．．．	．．．	\ldots	1819	54.07	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	
\ldots	\cdots	\cdots	\cdots	\ldots	${ }_{1}^{1820}$	53．07			\cdots	\cdots	\ldots	\ldots	．．．	\ldots	\cdots	．．．
\ldots	\ldots	\ldots	\ldots	\ldots	1821 1822	31.61 54.09	1846 1847	${ }_{51.62}$	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	．．．	\ldots
\ldots	．．．	\ldots	\ldots	\ldots	IS23	51．86\％	1848	53.28	\cdots	\ldots	\cdots	\cdots	\ldots	．．．	\ldots	\ldots
．．．	．．．	．．．	．．．	\ldots	1824	．．．	1849	51.85	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots
\cdots	\ldots	\ldots	．．．	．．．	1825	析	1850	52.07	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
\cdots	\cdots	\ldots	．．．	\ldots	1826	54.07	1851	52．33	．．．	\ldots	\cdots	\ldots	．．．	．．．	．．．	．．．
\cdots	\ldots	\cdots	\cdots	\cdots	1827 1828 r	54.25	1852	52.20	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．
．．．	\ldots	\ldots	．．．．	．．．	1828 1829	52．33	1853 1854	52.61 53.96	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	．．．	\ldots
I855	．．．	\ldots	48．01\％	\ldots	1830	54．67	185	52．84	\ldots	\ldots	\cdots	\ldots	．．．	47．94	．．．	\ldots
1856	．．．	．．．	44.95	．．．	1831	50.36	1856	49.7 I	．．．	．．．	51．33＊＊	\cdots	\ldots	47.11 45.15	\ldots	\ldots
1857		．．．	46.80	．．．	1832	52.66	1857	50.84	．．．	46．57＂	，	\ldots	．．．	51.40	．．．	
1858	$5 \mathrm{I} .8 \mathrm{r}^{*}$	．．．	49.15	\ldots	1833	53.04	1858	53.44	．．．	49.37	．．．	．．．	．．．	55.38	．．．	
1859	．．．	．．．	49.18	．．．	1834	53.39	1859	52.93	．．．	48.64	．．．		．．．	52.56	．．．	．．．
1860 1861	\ldots	．．．．	47.83 48.98	\ldots	1835 1836	50.54 50.43	1860 1861	52.42 52.54	\ldots	48.30 49.16	54.28	49.24 51.85	\cdots		\cdots	
1862	\ldots	．．．．	48.60	\ldots	1837	51．28	1862	52．42	\ldots	49.02	54．37	52．49＊	．．．	${ }_{50.21}$	51．63＊	．．．．
1863	\ldots	．．．	．．．	．．．	1838	50.57	1863	51.50	．．．	，	5．37	．．．	\ldots	49.53	－．．	\ldots
1864	\ldots	．．．	．．．	\cdots	1839	52.42	1864	50.59	\ldots	．．．	．．．	．．．	47．84＊	49.53	．	．．．
1865	．．．	\ldots	．．．	\ldots	1840	52．27	1865	52.32	49．46＊	．．．	．．．	．．．	49．05＊	50．86＊	\ldots	
1866	\cdots		\cdots	\cdots	1841	52.05	1866	50．33	47.00	．．．	\ldots	．．．	47．65＊	49.28	\ldots	．．．
1867	\ldots	47．81\％	\cdots	47.77	1842	52.39 50.38	1807 1868	50．45	48.22	\cdots	\cdots	\cdots		49．30	\ldots	\ldots
1869	．．．	$47.20{ }^{\circ}$	\ldots	49.04	1844	52．84	1869	${ }_{5}^{50.32}$	47.64	\ldots	55.62	\ldots	47.93 47.5	49．72 \cdots	\ldots	\ldots
1870	．．．	49.64	．．．	51.36	1845	52.16	1870	5 5 .91	50.18	．．．	55.29	．．．．	47.5	\ldots	\ldots	51.39
	51.14	47.70	47.98	49.39				52.24	48.40	48.79	54.34	51.07	48.23	50.09	51.78	50.20

OHIO．－Continued．									ORFGON．							
$\stackrel{\text { ジ }}{\sim}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{H}{H} \end{aligned}$	¢	号	芯	$\begin{aligned} & \text { 己 } \\ & \text { B } \\ & \text { H } \\ & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { 哥 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 起 } \\ & \text { Hig } \\ & 0 \\ & 0 \end{aligned}$							号它		哏
IS51	$\stackrel{\circ}{\circ}$	－．	\bigcirc	$\stackrel{\circ}{\circ}$	\cdots	$\stackrel{\circ}{\circ}$	\bigcirc	\bigcirc	92＊	\bigcirc	－	\bigcirc	－	－	－	－
1852	\cdots	\cdots	\cdots	．．．	\cdots	．．．	\cdots	\ldots	51.9 ...	．．．	．．．	．．．	．．．	．．．	\ldots	．．．
1853	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots
1854	．．．	．．．	52．30＊	．．．	．．．	．．．	．．．	．	$48.67{ }^{*}$	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1855	．．．	\ldots	49.59	\cdots	\cdots	．．．	\cdots	51．47＊＊	49．76 ${ }^{\text {\％}}$	\cdots	\cdots	\cdots	\cdots	．．．	．．．	．．．
1856	\cdots	\cdots	46.43	\cdots	\cdots	，	\cdots	．．．	49．79＊	\cdots	\cdots	\cdots	\cdots	．．．	．．．	．．．
1857	47.07	．．．	47.27	46．54＊＊	．．．	46．57＊	\ldots	．．．	50.30	，	\cdots	．．．	\ldots	．．．	．．．	．．．
1858	50．00＊	．．．	50.52	49.37	52.03	48.90	．．．	．．．	48.99	50．64＊＊	．．．	．．．	．．．	\ldots	．．．	．．．
1859	50.01	51.75	49.79	48.78	51.64	48.63	．．．	．．．	48.25	49．30＂	\ldots	．．．	．．．	．．．	．．．	．．．
1860	49.24	52.65	．．．	47．99＊＊	51.23	．．．	．．．	．．．	49.81	50．71＊	\cdots	．．．	．．．	．．．	．．．	．．．
1861	50.01	52.05	．．．	48.80	51．71	．．．	．．．	．．．	48.49	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
1862	50.52	51.70	50.52	48.39	50.92	．．．	．．．	．．．	47.34	47.81	．．．	．．．	．．．	．．．	．．．	．．．
1863	50.81	．．．	50.72	47.87	48．85＊	\cdots	… ${ }^{\text {a }}$	\cdots	48.81	．．．	．．．	\ldots	\ldots	．．．	．．．	．．．
1864	49.56	．．．	49.19	47.59	49．71 ${ }^{\text {² }}$	．．．	48．65＊	\ldots	49.13	．．．	\cdots	．．．	．．．	\ldots	．．．	．．．
1865	50.07	．．．	50.69	49.17	51．18＊	．．．	50.08	．．．	47.46	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1866	47.84	．．．	49.19	．．．	50.55	\ldots	\cdots	\ldots	48.66	\cdots	\cdots	．．．	\ldots	\ldots	\cdots	．．．
1867	48.43	\ldots	50.17	\cdots	\cdots	．．．	50．63＊	\cdots	48.62	\ldots	\cdots			\cdots	45．68＊	．．．
1868	47．41	\cdots	48.99	\ldots	$48.51{ }^{\text {\％}}$	．．．	50.71	\cdots	47.94	\cdots	45.90	48．01＊	46.69	42.95	42.55	．．．
1869	48．19	．．．	49.12	．．．	49.45	．．．	50.32^{*}	．．．	50.16	．．．	50.59	．．．	48.99	46.17		．
1870	．．．	\cdots	51.46	\ldots	52.06	．．．	．．．	\cdots	49.48	\ldots	49.57	\cdots	．．．	46.62	\ldots	49.24
	49.20	51.95	50.26	48．17	50.74	48.23	50.21	53.35	48.95	49.89	48.69	47.63	47.84	$45 \cdot 36$	44.48	49.24

OREGON．－Continued．												PHNNSYHVANIA．				
$\begin{aligned} & \text { ジ } \\ & \stackrel{y}{\circ} \end{aligned}$				¢			第		$\begin{aligned} & \text { 㐫 } \\ & \text { Z } \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	等			为気	$\begin{aligned} & \text { 䔍 } \\ & \text { 荷 } \\ & \text { 药 } \end{aligned}$	㖴	－
I825	－	－	－	－	－	－	－	－	－	－	－	－		－	－	－
1826	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	．．．	\ldots	．．．	\cdots	${ }_{53.75}{ }^{\text {\％}}$ \％	\cdots	\cdots	．．．
1827	．．．	\cdots	．．．．	\ldots	${ }_{54.2 \mathrm{~S}}^{53.51}$	\ldots	\ldots	\ldots								
1828	．．．	\ldots	．．．	．．．	．．．	\ldots	54．．．	\ldots	\ldots	．．．						
1829	．．．	．．．	\cdots	\ldots	．．．	．．．	\ldots	．．．	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots
1830	．．．	\ldots	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	\ldots	\ldots	\ldots	．．．	\cdots	．．．	．．．
1831	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1832	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	．．．
1833	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	\ldots	\ldots	．．．
1834	．．．	\ldots	\cdots	\ldots	．．．	\ldots	．．．	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．
1835	\ldots	\cdots	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots	\cdots	．．．	\cdots	\cdots	\ldots	\ldots	\cdots
1836	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	47.84	．．．	．．．	．．．
1837	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	46.50	．．．	\ldots	．．．
1838	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	49.61	．．．	．．．	．．．
1839	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	\cdots	\ldots	．．．	．．．	．．．	50.58	．．．	．．．	．．．
1840	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	\ldots	．．．	\cdots	．．．	50.15	\cdots	\cdots	．．．
1841	\cdots	\cdots	\ldots	\ldots	\ldots	．．．	\ldots	．．．	\cdots	．．．	\ldots	\cdots	49.23	\ldots	\ldots	\cdots
1842	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	\ldots	．．．	．．．	\cdots	50.42	．．．	．．．	．．．
1843	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	49.01	．．．	．．．	\ldots
1844	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	．．．	．．．	．．．	．．．	．．．	50.91	．．．	\ldots	\ldots
1845	\cdots	\cdots	．．．	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	50.02	\ldots	\cdots	\cdots
1846	．．．	\cdots	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	52.94	．．．	．．．	．．．
1847	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	50.70	．．．	．．．	．．．
1848	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	\ldots	．．．	\cdots	50.92	．．．	．．．	．．．
1849	．．．	\cdots	\ldots	\ldots	．．．	．．．	．．．	\ldots	52.4	．．．	．．．	．．．	50.37	\ldots	－．	．．．
1850	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	53．8＊	．．．	．．．	．．．	50.48	．．．	．．．	．．．
1851	．．．	．．．	．．．	．．．	\cdots	．．．	\ldots	．．．	54.1	．．．	\ldots	\ldots	50.94	\ldots	\cdots	．．．
1852	\cdots	\cdots	．．．	\ldots	．．．	\ldots	．．．	．．．	5	．．．	．．．	\ldots	50.46	．．．	．．．	\cdots
1853	53.54	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	51.54	．．．	．．．	\cdots
1854	52.10	．．．	\ldots	\cdots	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	52.67	．．．	\cdots	52.16
1855	54．94＊	\cdots	\cdots	54.5 \％${ }^{\text {＊}}$	53．16＊	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	49.78	．．．	．．．	49．40\％
1856	．．．	\ldots	\ldots	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	$47 \cdot 38$	．．．	\cdots	48.30
1857	53.71	52.49	．．．	．．．	．．．	．．．	53.96	50.98	．．．	．．．	55．41＊	\ldots	49.48	．．．	．．．	49.02
1858	52.92	51.90	．．．	．．．	．．．	．．．	52.88	48.63	．．．	．．．	5	．．．	52.05	．．．	．．．	51．38＊
1859 1860	50.88	49.72 51.58	\cdots	\cdots	\cdots	．．．	50.97	47.78	．．．	．．．	．．．	．．．	$51.30{ }^{\circ}$	．．．	．．．	50.83 ＊
1860	53.89	51.58	．．．	\ldots	\cdots	．．．	52.64	49.89	\ldots	．．．	\cdots	．．．	52.41	\cdots	．．．	50.91
1861	53.54	50．83＊	\ldots	．．．	\cdots	．．．	52.44	49．63＊＊	．．．	\cdots	\ldots	．．．	51．25＊	\ldots	．．．	51.66
1862	49.26	49.03	\cdots	\cdots	\cdots	\cdots	．．．	45.46	\ldots	\cdots	\ldots	．．．	52.04	．．．	．．．	
1863	54.62	51.24	\cdots	．．．	．．．	．．．	\cdots	49．46＊	\ldots	\ldots	\cdots	\cdots	51．55＊＊	．．．	．．．	．．．
1864	53．54＊	51．66＊	42.02	\cdots	\ldots	\ldots	．．．	50.03	．．．	．．．	．．．	46.18	51.65	\ldots	．．．	．．．
1865	52.02	．．．	38.21	\ldots	．．．	…	\ldots	．．．	．．．	．．．	．．．	46.74	53.04	．．．	．．．	．．．
1866	．．．	\cdots	．．．	\ldots	\ldots	50．73＊＊	\ldots	\cdots	．．．	．．．	\cdots	45.72	．．．	．．．	\cdots	．．．
1867	\cdots	\cdots	．．．	\ldots	\ldots	51.20	\cdots	\cdots	\cdots	\cdots	\cdots	45.29	．．．	．．．	．．	\cdots
1868	\cdots	\cdots	\ldots	\cdots	\cdots	50．16＊	．．．	\cdots	\cdots	．．．	．．．	44.59	．．．	47.58	50.13	．．．
1869 1870	\ldots	\cdots	\cdots	\cdots	\cdots	－．．．	\cdots	．．．	\cdots	．．．	\cdots	45.42	．．．	．．．	49.9 I	\ldots
	\cdots	\cdots	．．．	\cdots	\cdots	．．．	．．．	\cdots	\cdots	54.25	\cdots	47.81	．．．	\cdots	51.86	\ldots
	52.82	50.96	40.06	54.37	53.46	50.52	52.16	48.90	53.45	53.23	$55.4{ }^{\text {I }}$	45.96	50.78	48.64	50.74	50.54
						${ }^{1} \mathrm{Ho}$	ars of	bservati	n unk	own．						

PENNSYLVANIA．－Continued．																
䔍		$\begin{aligned} & \text { 宸 } \\ & \text { 兵 } \\ & \text { M } \end{aligned}$		$\begin{aligned} & \text { 蔦 } \\ & \text { 言 } \\ & \text { 品 } \end{aligned}$				$\begin{aligned} & \text { థix } \\ & \text { Uu } \end{aligned}$			$\begin{aligned} & \text { 育 } \\ & \text { 啻 } \end{aligned}$		$\begin{aligned} & \text { 苞 } \\ & \text { 畐 } \end{aligned}$			
1836	．．．	\cdots	$\stackrel{\circ}{.}$	．．．	\ldots	．．．	\cdots	43.92	\ldots	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots
1837	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	．．．	．．．	\ldots	\ldots	\ldots	．\cdot	．．．	．．．	．．．	．．．
1838	．．．	\ldots	\ldots	\ldots	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．		\ldots	\ldots	．．．	．．．
1839	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots		\ldots	\ldots	\ldots	\cdots		．．．	\cdots	\ldots	\ldots
1840 1841 18	．．．．	\ldots	．．．	．．．	\ldots	\ldots	49.48 49.06	\ldots	．．．	\ldots	．．．	\ldots	．．．	\ldots	\ldots	．．．
1842	\ldots	．	\cdots	．．．	．．．	．．．	49.29	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
1843	．．．	．．．	．．．	．．．	．．．	．．．	49.76	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1844	\ldots	\ldots	\ldots	．．．	．．．	\cdots	53.27		\ldots	\cdots	\cdots	\cdots	\ldots	．．．	\ldots	．．．
1845	．．．	\ldots	．．．	．．．	．．．	．．．	55.75	47．24＊	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	．．．
1846	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	45．79＊＊	．．．	\cdots	\ldots	\ldots	．．．	．．．	\ldots	\ldots
1847	．．．	\ldots	．．．	．．．	\ldots	．．．	49.04	46．03＊	．．．	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．
1848	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	${ }_{50} 50.22$	46.20 \％	．．．	\cdots	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots
1849	\ldots	\ldots	．．．	．．．	\ldots	．．．	50.35	45．76	．．．	5 I .21	\ldots	．．．	\cdots	\cdots	．．．	．．．
I850	\ldots	．．．	．．．	\ldots	．．．	\cdots	50.66	44.27	\cdots	51.12	\cdots	\ldots	\ldots	\ldots	．．．	．．．
1851	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	50．49＊	45.08	．．．	51.34	．．．	．．．	\cdots	．．．	．．．	\ldots
1852	\ldots	．．．	．．．	\ldots	．．．	．．．	50.03	46.23	\ldots	50.28	．．．	\ldots	\ldots	\ldots	\ldots	\ldots
1853	．．．	．．．	．．．	．．．	．．．	\cdots	51．48＊	．．．	．．．	51.30	．．．	．．．	．．．	．．．	．．．	．．．
I854	\cdots	\ldots	．．．	\cdots	\ldots	．．．	\ldots	．．．	\ldots	51.62	\ldots		\ldots	\ldots		
I855	\cdots	\cdots	\ldots	\ldots	\cdots	$\cdots{ }^{-1}{ }^{\text {2＊}}$	50.38 ＊	．．．	\cdots	50.83	．．．	50.60	\cdots	．．．	\ldots	46．01\％
1856 $\times 85$	49．24＊	\ldots	\ldots	\cdots	\ldots	${ }_{4}^{45.82}$	47.84 49.34	．．．	\ldots	49.08 49.69	．．．	48.64 47.66	．．．	\ldots	\cdots	46．01\％
1858	50.85	．．．	．	．．．	．．．	51.93	51.54	\ldots	．．．	4.69	．．．．	49.14	\ldots	．．．．	．．．．	49.49
1859	50.72	\cdots	．．．	．．．	．．．	51.57	51．34＊	\ldots	52.60	．．．	\cdots	49.16	\ldots		．．．	49.85
1860	50.32	．．．	．．．	．．．	．．．		50.66	．．．		\ldots	．．．	．．．	．．．	50.77	．	48．61＊
1861	50．49＊	\ldots	\ldots	．．．	53.15	49.83	51.78	．．．	53．28＊			．．．	．．．	52.00	．．．	48.97
1862	．．．	42．12＊	\ldots	\cdots	52.17^{*}		50．98	\cdots	\cdots	．．．		．．．		51.34	50.54	48.82
1863	．．．		．．．	．．．	52．49＊＊	48.45^{*}	50．94＊	\ldots	\ldots	\ldots	．．．	\ldots	．．．	51.64	50．04＊	48.57
1864 1865	\cdots	45．63＊	\cdots	\cdots	．．．	49.26 49.18	50.93 52.03	\cdots	\ldots	．．．	$\ldots 2.81$	\cdots	\ldots	51.87 52.79	${ }_{50}^{49.22}$	48.40
1866	．．．	．．．．	44．07＊	．．．	．．．	48.52^{*}	．．．	\cdots	\cdots	．．．	43．25＊	\ldots	51.71	52．00	49.01	46.86
1867	．．．	．．．	44.12	．．．	\cdots	48．82＊	50.43	．．．	\ldots	．．．	43.60	．．．	52.42	50.88	49.07	．．．
1868	．．．	．．．	43.64	．．．	．．．	49.22	49.74	．．．	．．．	．．．	44.24	\ldots		49.91	48.83	．．．
1869 I 870	\ldots	\cdots	46．37 ${ }^{46}$		\cdots	49．53	${ }_{5}^{50.69}$	\cdots	\cdots	\cdots	44.90	\cdots	53.65	51.57	48.57	\ldots
1870	．．．	．．．	46．39＊	55．33＊	\ldots	51.45	52．46	．．．	\cdots	．．．	．．．	\ldots	53.03	53.62	51.35	．．．
	50.15	44.51	44.48	55．36	51.94	50.23	50.83	45.48	53.07	50.86	44.05	48.91	52.59	51.67	49．80	48.38

PWINNSYTVANIA．－Continued．																
$\begin{gathered} \dot{4} \\ \stackrel{y y}{む} \\ \hline \end{gathered}$		$\begin{aligned} & \dot{4} \\ & \stackrel{y}{E} \\ & \stackrel{y}{*} \end{aligned}$	$$	$\begin{aligned} & \dot{j} \\ & 0 \\ & 0 \\ & 0 . \\ & \text { E. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \text { 崔 } \\ & \text { 岕 } \\ & \text { む } \\ & \text { Z } \end{aligned}$	$\begin{gathered} \text { 品 } \\ 0 \\ 3 \\ 0 \\ 0 \\ Z \end{gathered}$				号	襉	$\begin{aligned} & \text { 彩 } \\ & \text { 呂 } \\ & \text { ت } \\ & \text { 豆 } \end{aligned}$	
	\bigcirc		－	－	－	\bigcirc	－	0	－	－	\bigcirc	－		－	\bigcirc	\bigcirc
I790	52.7	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	．．．	．．．	\cdots	．	\cdots	．．．	\cdots	＊．
1791	53.6	\cdots	．．．	\ldots	\cdots	－．	\ldots	\ldots	＊－．	\cdots	．．．	＊＊＊	．．．	．${ }^{\text {a }}$	．．．	．
I 792	51.9	\cdots	＊＊	．．．	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	．\cdot	\cdots	\cdots	\cdots	\ldots	－\cdot
1793	54．3	\cdots	\cdots	．．．	\cdots	．．．	\cdots	．．．	\cdots	\cdots	．．．	．．	\cdots	．．．	\cdots	\cdots
1794	50.5	\cdots	\cdots	\cdots	－．	－\cdot	＊＊	＊＊	＊＊＊	＊＊	－	\cdots	\cdots	＊＊＊	．．．	．$*$
1795	51.8	＊＊	－	－\cdot	＊＊＊	\cdots	＊＊	＊＊	－\cdot	\cdots	－	＊＊	＂．＇	＊＊	\cdots	．．．
1796	52.1	．．．	＊．．	．．．	－．	\cdots	．．．	＊＊	．．．	\cdots	\cdots	－\cdot	1758	53.60	\cdots	＊＊
1797	$5^{1.6}$	＊＊	\cdots	．．．	\ldots	\cdots	－	＊＊	\cdots	\cdots	－＊＇	\cdots	1759	52.73	\cdots	＊＊
1798	$5^{2.1}$	\cdots	\cdots	\cdots	．．．	\cdots	－•，	\cdots	\cdots	\ldots	\cdots	．．．	1760	\cdots	\cdots	＊－＊
1799	51.5	．．．	．．．	．．．	．．．	＊＊	．	\cdots	－．	．．．	．．．	＊＊	1761	．．．	．．．	＊＊
1800	51.8	．．．	．．．	．．．	．．．	－\cdot	．．．	．．．	．．．	．．．	．．．	．．．	1762	．．．	．．．	．．．
ISOI	52.4	．．．	\ldots	．．．	．．．	．．．	．．．	＊－	．．．	．．＇	．．．	．．．	1763	．．．	．．．	＇．
1802	54.2	．．．	．．．	．．．	．．．	．．．	．．．	＊＊	．．．	．\cdot	．．．	＊＊	1764	．．．	．．．	\cdots
1803	52.2	${ }^{1} 787$	．．．	．．．	．．．	＊＊	50.85	\cdots	－．	＊－	．．．	＊＊	1765	\ldots	\cdots	\ldots
1804	$5^{1.6}$	I788	．．．	．．．	．．．	＊＊	49.13	－．．	－．．	\cdots	．．．	\cdots	1766	…	＊＊＊	＊＊
1805	52.0	1789	－＊＊	－．．	．．．	＊＊＊	49.58	－．．	．．．	\cdots	．．．	．．．	1767	53.25	＊＊＊	＊＊
1806	51.9	1790	－	＊＊	－．．	－$*$	48.85	\cdots	－＊＊	－．．	\cdots	＊＊	1768	51.50	．．．	＊＊
$\mathrm{I}_{18} \mathrm{SO}_{7}$	52.4	I791	＊＊＊	＊＊	－	－\cdot ．	49.24	－${ }^{\circ}$	＊＊	．．．	．${ }^{\text {c }}$	\cdots	I769	51.83	\cdots	＊＊＊
ISo8	52.6	1792	\cdots	－	\cdots	．．．	47.42	＊＊	＊＊	＊＊	\cdots	\cdots	1770	52.00	＊＊＊	＊＊＊
1809	$5^{1.6}$	－											1771	51.83	＊．	．．．
1810	51.4	I 835	．．．	．．．	．．．	＊＊	＊＊＊	\cdots	＊＊	\cdots	50.7	\cdots	1772	52.50	\cdots	．．．
ISII	52.5	1836	\cdots	＊＊	．．．	．．．	\cdots	\cdots	\cdots	\cdots	5 I .4	＊．＊	1773	54.70	＊＊＊	－
1812	51.4	1837	．．．	．．．	．．．	．．．	．．．	．．．	$48.32^{\text {\％}}$	．．．	50.9	．．．	1774	52.90	．．．	．．．
1813	50.9	1838	＊＊＊	－．	\cdots	＊＊	－．．	－\cdot	50.73	．．．	52.7	\cdots	1775	54.40	．．．	．．．
1814	5 I .4	1839	．．．	．．．	．．．	．．．	．．．	．．．	52.76	．．．	$53 \cdot 3$	．．．	1776	53.47	－	＇．
1815	51.7	IS40	．．．	．．．	．．．	．．．	．．．	．．．	$5 \mathrm{I} \cdot 3^{8}$	＊＊	52.2	＊．	1777	50.96	＊＊	＊＊
1816	49.2	184 I	\cdots	＊．．	\ldots	＊＊＊	．．．	＊＊＊	48.80	\ldots	53.6	．．．	－			
1817	53.1	I842	．．．	．．．	．．．	．．．	\ldots	．．．	50.49	．．．	51.5	\ldots	1798	\cdots	54.9	－＊＊
1818	53.2	1843	＊＊	．．．	＊＊	＊＊	．．．	．．．	．．．	－$*$	52.9	．．．	1799	．．．	53.1	．．．
1819	51.6	1844	＊＊	．．．	．．．	\cdots	．．．	＊－	\cdots	．．＂	55.2	－．	1800	．．．	53.4	．．．
1820	52.1	1845	．．．	．．．	．．．	＊＊	＊＊	．${ }^{\text {c }}$	．．．	－••	53.9	．．．	1801	\ldots	$53 \cdot 3$	．．．
1821	51.9	1846	53.9	．．．	－	．．．	．．．	．．．	．．．	＊＊	54.4	．．．	1802	．．．	54.9	\ldots
1822	53.6	1847	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	54.3	．．．	1803	．．．	54．1	．
1823	53.9	I848	\cdots	＊＊＊	\cdots	＊＊	＊＊＊	＊＊	．．．	．．．	52.0	．．．	1804	．．．	54.5	．
1824	54.0	1849	$5 \mathrm{I}, 2^{\text {\％}}$	．．．	．．．	＊＊	－	．．．	－．．	＊＊	53.5	．．．	1805	．．．	．．．	．．．
1825	54.4	1850	52.2	＊＊＊	．．．	＊＊	\cdots	．．．	＊＊	．．．	54．0	．．．	1806	．．．	\cdots	…
1826	53.4	1851	51.3	．．．	．．．	．．．	．．．	\ldots	．．．	\cdots	52.6	．．．	1807	．．．	\cdots	54.5
1827	50.7	1852	50.4	＊－	\cdots	\cdots	．${ }^{\text {c }}$	．．＊	．\cdot	\ldots	52.9	＊＊	I Sos	．．．	＊．＇	59.4
1828	56.7	1853	52.3	\cdots	\cdots	\ldots	．．．	．．．	\ldots	＊＊＊	53.2	\cdots	1809	．．．	\cdots	57.2
1829	53.4	1854	51.0	47．63 ${ }^{*}$	＊－．	\cdots	．．．	\cdots	．．．	52.29	53.2	．．．	1810	．．．	．．．	58.2
1830	52.9	1855	50.1	46.83%	－	．．．	．．．	＊＊	．．．	50． 11	48.7	．．．	I8II	．．．	\ldots	59.2
1831	53.4	1856	48.9	43．26＊	．．．	．${ }^{\text {c }}$	46.95	．．．	．．．	49.26	51.6	－${ }^{\text {c }}$	I8I2	．．．	＊＊＊	57.4
1832	50.6	1857	49.2	．．．	＊＊＊	$47.82{ }^{\text {\％}}$	46.91	＊＊＊	．．．	49.16	51.1	．．．	$1 \mathrm{SI}_{3}$	．．．	．．．	$5 \mathrm{S}$.
1833	53.0	I858	51.1	．．．	54.29	49.93	．．．	＊＊	－＊	50.87	52.8	．．．	1814	．．．	．．．	58.5
1834	52.8	IS59	50.2	．．．	54.46	．	．．．	．．．	．．．	50.94	5	．．．	1815	．．．	．．．	5 S .5
1835	52.6	1860		．．．	53.25	．．．	．．．	．．．	．．．	50.66	．．．	．．．	$18: 6$	．．．	．．．	57.5
1836	50.6	I 861	－	．．．	54.12	－••	49．41＊	\cdots	．．．	51.09	．．．	．．．	1817	\ldots	\ldots	57.0
I 837	52.7	1862	．．．	＊＊	53．85＊	－．．	．．．	\cdots	\cdots	50.26	\ldots	＊＊	1818	\ldots	\ldots	57.1
1838	52.7	1863	－	＊＊＊	53.40^{*}	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	1819	．．．	．．．	59.2
I839	52.4	1864	．．．	．．．	54.08	＊＊	50.94	＊＊	．．．	＊＊	－．．	＊．＊	1820	．．．	．．．	58.0
1840	52.7	1865	．．．	＊＊＊	55.99	＊＊	50.67 \％	．．．	．．．	．．．	．．．	46.68	1821	．．．	．．．	58.3
1841	52.1	I 866	\cdots	－．	52.97	．．．	49．79＊	50.09	＊＊＊	＊＊＊	．．．	45.00	1822	．．．	．．．	60.9
1842	53.2	1867	\cdots	＊＊	51．77＊	－＊	．．．	49.50	\cdots	．．．	＊．．	43.92	I 843	\ldots	．．．	57.7
IS43	52.0	1868	．．．	＂＊	50．93 ${ }^{\text {\％}}$	＊＊	－	49.87	．．．	\cdots	－•＇	42.64	I 824	＊．	\cdots	5 S .5
1844	53.5	1869	＊＊	＊＊	52.46	．．．	．．．	49.95	＊＊＊	．．．	＊＊＊	42.69	1825	\cdots	＊．	61.1
1845	54.3	1870	．．．	＊＊	54．94＊	．．．	＊＊	52.00	＊＊	\cdots	－••	45.27	1826	＊＊	．．．	60.8
			52.19	46.79	$53 \cdot 52$	48.93	49.15	50.28	50.32	51．6I	$52.6 \mathrm{I}^{1}$	44.47		$52.75{ }^{1}$	$54.2{ }^{1}$	58.61

I Hours of observation unknown．

SOUTH CAROHTNA．																
－	$\begin{aligned} & \text { E. } \\ & \frac{3}{3} \end{aligned}$			$\underset{\underset{\sim}{\rightleftarrows}}{\stackrel{y}{\Xi}}$	$\begin{aligned} & \text { gi } \\ & \text { B̈ } \\ & \text { Hु } \end{aligned}$				苞					$\begin{aligned} & \stackrel{0}{3} \\ & \stackrel{y}{4} \\ & \vdots \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \stackrel{\text { ® }}{\substack{0}} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	总 总 空
1738	\cdots	$\stackrel{\circ}{\circ}$	－	．．．	．．．	$66^{\circ} \mathrm{O} 3$	$\stackrel{\square}{\circ}$	．．．	．．	－	－	\cdots	\cdots	\cdots	\bigcirc	0
1739	．		．．．	，	\ldots	64.83	\cdots	\cdots	\ldots	．．．	\ldots	．．．	\ldots	\ldots	\cdots	\ldots
1740	\cdots	\cdots	\cdots	\cdots	\cdots	63.93	\cdots	\ldots	\cdots	\cdots	\cdots	．．	\ldots	\ldots	\cdots	\cdots
1742	\cdots	．＊	\cdots	＊＇	\cdots	64.73	\cdots	＊＊	\cdots	．．．	＊．＇	．．．	\cdots	．．．	\cdots	．．．
1750	\cdots	\ldots	．．．	\cdots	．．．	64.63	＊＇	\ldots	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots
1751	\cdots	\cdots	\cdots	\ldots	\ldots	66.33	\ldots	．．．	\ldots	\cdots	\cdots	\cdots	．．．	\ldots	\cdots	\cdots
1752	．．．	\cdots	\cdots	\ldots	\cdots	66.93	．．．	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots
1753	\ldots	\cdots	\cdots	．．．	\cdots	66.43	．．．	\cdots	\cdots	\cdots	\cdots	．．．	．．．	\cdots	\cdots	\cdots
1754	\cdots	\cdots	\ldots	．．．	．．．	67.43	．．．	\ldots	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots
1755	\ldots	\cdots	\cdots	\cdots	\cdots	63.23	．．．	\cdots	\cdots	．．．	\cdots	．．．	．．．	\cdots	\cdots	\ldots
1756	\cdots	\cdots	\ldots	＊＊	\ldots	66.63	\ldots	\ldots	\cdots	\cdots	\cdots	．．．	\ldots	\cdots	．．．	\cdots
I757	\ldots	\ldots	\cdots	．．．	．．．	$65 \cdot 33$	\cdots	\cdots	．．．	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots
1758	\cdots	\cdots	\cdots	\cdots	\cdots	63.93	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	．＊
I759	\cdots	\cdots	\cdots	\ldots	\cdots	64.73	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots
1823	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	64.31	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots
1824	．．．	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	66.47	\cdots	\ldots	．．．	\cdots	\cdots	\cdots	\cdots
IS25	．．．	\ldots	\cdots	－．	\cdots	\cdots	．．．	\cdots	$66.80{ }^{\circ}$	．．．	\cdots	\cdots	．．．	．．．	．＊＊	\cdots
1826	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	67.95%	\cdots	．．．	．．．	\cdots	\ldots	\cdots	\cdots
1827	\ldots	\ldots	\cdots	＊＊	\cdots	\cdots	．．＊	．．．	67．03＊＊	．．．	．．．	．．．	．．．	\cdots	\cdots	\cdots
182 S	\ldots	\cdots	\cdots	＊．．	\ldots	\cdots	－．	．．．	70.73	\ldots	．．．	\cdots	\cdots	\cdots	．．．	\cdots
1829	．．．	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	65.53 ＊	\cdots	\cdots	\cdots	\ldots	．．．	．	\cdots
IS30	\cdots	\ldots	\cdots	．．＊	\cdots	\ldots	\cdots	．．．	69.75	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
1831	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	65.44	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots
1832	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	65.85	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots
1833	．．．	\ldots	\cdots	．．．	\cdots	\cdots	．．．	．．．	65.66	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
1834	\cdots	\cdots	\cdots	．．．	\ldots	．．．	\cdots	\cdots	66.33	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots
1835	\cdots	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	63.78	\cdots	\ldots	\ldots	．．．	＊．．	＊＊	．．．
1838	\ldots	\ldots	．．．	．．．	59.98	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	．．．	\ldots	＊＊
1840	\ldots	\ldots	\cdots	．．．	\ldots	66.57	＊．．	\cdots	65.59	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots
IS4I	\ldots	\cdots	\cdots	．．．	\cdots	65.79	\cdots	．．	65.41	\ldots	\ldots	．．．	．．．	\ldots	．．．	\ldots
IS42	\cdots	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	64.83	．．．	．．．	．．．	．．．	＊．．	．．．	\ldots
I 8.43	\cdots	．．．	\cdots	．．．	\cdots		．．．	．．．	65.82	．．．		\cdots	．．．	61.33	\cdots	\cdots
I844	\ldots	\ldots	\cdots	．．．	．．．	65.17	．．．	．．．	67.10	．．．	$60.12 *$	．．．	．．．	．．．	．．．	．．．
IS 45	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	66.35	．．．	$60.84 *$	\ldots	．．．	．．．		\ldots
IS46	\ldots	\ldots	\ldots	\ldots	．．．	\cdots	．．．	．．．	67．18\％	．．．	．．．	\ldots	．．．	．．．	$64.05^{\prime \prime}$	\ldots
I 8_{47}	\ldots	\cdots	\ldots	\ldots	．．．	64.82	\cdots	．．．	66.47	．．．	．．．	．．．	．．．	．．．	$63 \cdot 36$	．．．
IS48	\ldots	\ldots	\ldots	\ldots	\cdots	．．．	63.23%	．．．	$66.75{ }^{\text {\％}}$	\cdots	\cdots	\ldots	\cdots	．．．	64.04	．．．
IS49	\ldots	\ldots	\cdots	\cdots	．．．	\ldots	64.12	．．．	66.29	．．．	．．．	．．．	$64.43 *$	．．．	64.00	．．．
1850	\cdots	\cdots	\cdots	\cdots	．．．	－	．．．	．．．	66.72	－	．．．	\cdots	．．．	\cdots	－65．09	．．．
IS5I	\cdots	\cdots	\cdots	\ldots	\cdots	65.85	\ldots	\cdots	66.71	\cdots	．．．	\cdots	\ldots	．．．	63.73	．．．
IS52	\ldots	\ldots	\cdots	\cdots	．．．	．．．	．．．	．．．	66.08	\ldots	．．．	．．．	．．．	\cdots	64.22	\ldots
1853	\ldots	\ldots	\cdots	\cdots		\cdots	．．．	\ldots	66.78	\ldots	\cdots	\cdots	\cdots	\cdots	63.26	\cdots
I854	\ldots	＊＊＊	\ldots	\cdots	62.85	6 ${ }^{\circ}$	．．．	\ldots	66.50	\ldots	．．．	\ldots	．．．	．．．	63.00	\ldots
IS55		63.42	－．．	\ldots	62.38	65.56	\cdots	．．．	65.67	\ldots	．．．	．．．	．．．	．	62.37	\cdots
1856	60.79^{*}	61.84	．．．	\cdots	59.90	64.00	\cdots	$63.96 *$	63.69	．．．	．．．	．．．	．．．	－．	60.91	\cdots
1857	61.70	61.92	．．．	．．．	59.54	64．16	．．．	．．．	${ }^{\circ} 63.67$	．．．	．．．	．．．	．．．	\cdots	60.16	\ldots
I858	61.62	63.77	\cdots	\cdots	\cdots	65.83	\cdots	\cdots	65.66	．．．	＊＊	．．．	．．	．．．	63．23＊	．．．
1859	61.54	63.49	．．．	．．．	．．．	65.76	－．	\cdots	65.48	．．．	．．．	．．．	．．．	．．．	62.92	．．．
I 860	．．．	$63.75{ }^{\circ}$	\cdots	\cdots	\cdots		\cdots	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	62.70	．．．
I 861	\ldots	－	\cdots	\cdots	．．．	65．92＊	\cdots	\cdots	．．．	\cdots	\cdots	．．．	\cdots	＊＊	\cdots	\ldots
1864	\ldots	\cdots	$64.89^{* *}$	\ldots	\cdots	．．．	\cdots	．．．	\ldots	－	\cdots		\cdots	\cdots	\cdots	\cdots
1865	\cdots ．	＊${ }^{\prime}$	．．．＊	\cdots	\cdots	\cdots	．．．	．．．	．．．	．．．	．．．	$66.59^{\prime \prime}$	．	．．．	＊＊	．．．
1866	61.67	\cdots	\cdots	\ldots	\cdots	＂．	\cdots	\cdots	．．．	．．．	．．．	64.49 ＊	．．．	．．．	．．．	．．．
1867	6 I .67	＊＊	．．．	．．．	\cdots	．．＊	．．．	．．．	\ldots	\ldots	．．．	66.12	．．．	\ldots	．．．	\cdots
1868	61.11	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	59.98^{*}
I 869	61.97	．．．	\ldots	－	\cdots	．．．	．．．	．．．	．．．	62.43 ＊	．．．	．．．	．．．	．．．	．．．	5
1870	62．35＊	．．．	＊＊	67.09	．．．	．．．	．．．	\cdots	－	62.33 ＊	．．．	\cdots	．．．	\cdots	\ldots	\cdots
	61．61	63.02	64.69	67.09	61.75	65.53	61.62	63.96	66.16	62.38	60.83	66．11	64.43	61.33	63.22	59.86

TENNESSEF．													TEXAS．			
守	淢	（		$\begin{gathered} \text { 荌 } \\ \text { 号 } \\ \text { 荡荡 } \end{gathered}$	或	\％ 0 0 0 0			$\begin{aligned} & \text {. } \\ & \text { 荡 } \\ & \text { 怘 } \end{aligned}$	¢ ¢ ¢ a	d d H H	$\begin{aligned} & \text { 总 } \\ & \text { 号 } \\ & \text { 号 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { 范 } \\ & \stackrel{y y}{c} \end{aligned}$		关	
1819	\cdots	$\stackrel{\circ}{\circ}$	\ldots	$\stackrel{\circ}{\circ}$	$60^{\circ} 6 \%$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots	$\stackrel{-}{ }$	$\stackrel{ }{\circ}$	$\stackrel{.}{\circ}$	\cdots	－	$\stackrel{-}{\circ}$	\cdots	$\stackrel{\circ}{\circ}$
1852	\ldots	58．63＊	\ldots	．．．	\cdots	．$\%$	．．．	\ldots	\cdots							
I853	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	．．．		．．．	\ldots	．．．	\ldots	\ldots	．．．	．．．
1854	．．．	．．．	．．．	＊．．．	\cdots	59.14	57.28	．．．	$62.16 *$	\cdots	\ldots	．．．	66.02	．．．	．．．	．．．
$\underline{1855}$	．．．	．．．	\ldots	．．．	．．．	57.02	．．．	．．．	．．．	．．．－	．．．	\ldots	65.43	\cdots	\ldots	\cdots
1856	．．．	．．．	．．．	．．．	．．．	53.82	\cdots	\ldots	．．．	\ldots	\ldots	\cdots	64.23	\cdots	\cdots	
1857	．．．	．．．	．．．	\ldots	\ldots	54.13	．．．	．．．	59，20＊	\cdots	\cdots	\ldots	65.44	\ldots	．．．	63.67
1858	\cdots	\cdots	．．．	\cdots	．．．	56.71	．．．	\ldots	61.03	\ldots	\ldots	\cdots	67.36	\ldots	\cdots	$65.00{ }^{*}$
1859	\cdots	．．．	．．．	\cdots	\cdots	56.21	\cdots	\cdots	$60.52^{\text {＊}}$	\cdots	\ldots	．．．	67.35	\cdots		66.00
1860	．．．	．．．	．．．	．．．	．．．	57.92 ＊	．．．	．．．	$6 \mathrm{r} .55^{\text {＂}}$	55.82	\ldots	57.09	67.07	．．．	64.96	65.09
1861	\ldots	．．．	．．．	．．．	．．．	57.26	．．．	．．．	．．．	．．．	．．．	．．．	67.17	\cdots	．．．	\cdots
1862	．．．	．．．	．．．	．．．	．．．	57．19	．．．	．．．	．．．	．．．	．．．	．．．	67.25	．．．	．．．	\ldots
1863	．．．	．．．	．．．	．．．	．．．	55.43	．．．	．．．	\ldots	．．．	\ldots	\cdots	67.16	．．．	\ldots	．．．
1864	．．．	\ldots	\ldots	\ldots	．．．	54.59	\ldots	\cdots	\cdots	\ldots	．．．	\cdots	65.88	．．．	\ldots	．．．
1865	．．．	．．．	．．．	．．．	．．．	57.19	．．．	．．．	．．．	．．．	\ldots	．．．	66.20	\ldots	\ldots	．．．
1866	．．．	．．．	．．．	．．．	．．．	56.30	．．．	．．．	．．．	－．．．	．．．	．．．	66.93	．．．	\cdots	．．．
1867	\ldots	．．．	．	．．．	．．．	56.25	．．．	59.12	．．．	．．．	．．．	．．．	68.21	．．．	．．．	．．．
I868	58.57	\cdots	54.64	\cdots	\ldots	55.41	．．．	58.28^{*}	59.43	\cdots	．．1\％	－．＂	66.41	6．＂．	．．．	\cdots
1869		．．．	54.46		\ldots	55．10		$58.62^{\text {＂}}$	58.25	\cdots	59．11＊	．．．	65.21	65．13	\cdots	\cdots
1870	57．35＊	．．．	55.79	61．90＊	\ldots	56.44^{*}	$56.29 *$	59.08	．．．	．．．	60.46^{*}	－	66.57	67.15	．．．	．．．
	58.09	58.63	54.96	61.90	60.6	56.53	56.74	58.92	60.71	56．16	59.76	56.98	66.72	66．14	6500	64.83

TEXAS．－Continued．

䔍					范范范		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { 苞 } \end{aligned}$	8								管
1846	．．	\cdots	\ldots	\cdots	．．．	\ldots	\ldots	70.47^{*}	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	．	．．．
1847	．．．	．．．	．．．	．．．	\cdots	\ldots	\cdots	．．．	\ldots	\ldots	\ldots	74.57	\ldots	\ldots	\cdots	\cdots
1848	\ldots	\cdots	\cdots	\cdots	．．．	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	．．．	\ldots	\cdots	\cdots	．．．
18.49	\ldots	．．．	．．．	．．．	．．．	．．．	\cdots	\ldots	\ldots	．．．	\ldots	7．．．	\ldots	．．．		\ldots
1850	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	\cdots	\cdots	．．．	73.70	\cdots	．．．	65.62	\cdots
1851	．．．	．．．	．．．	．．．	．．．	．．．	．．．	71．52＊	\ldots	\cdots	．．．	72.72	．．．	．．．	（6．36	．．．
1552	\cdots	．．．	．．．	．．．	\ldots	．．．	．．．		．．．	62.13	．．．	73.92	．．．	．．．	66．50	．．．
1853	．．．	\ldots	．．．	\cdots	．．．	\ldots	\ldots	\ldots	．．．	64.18	\ldots	72.99	60.45	66.30	．．．	．．．
1854	．．．	．．．	．．．	．．．	\ldots	\cdots	\cdots	\cdots	\cdots	65.58	67， 10 嗞	74.01	63.80	68.85	\ldots	
1855	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	\cdots	\cdots	65.27	67．12＊＊	73.12	63.66^{*}	66.50	．．．	63.39
1856	．．．	\ldots	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	63.65	62.76	71.58	61.78	68.23	．．．	60.10
1857	．．．	62．05＊	．．．	．．．	62.70	．．．	．．．	．．．	．．．	62.96	$63.01 *$	72.54	61.47	68．69＊＊	．．．	61．35
1858	．．．		．．．	．．．	62．14＊	\cdots	\ldots	\cdots	．．．	．．．	63.15	73.22	63.28	69.54	\ldots	62.03
1859	．．．	．．．	69.23		66.29	．．．	．．．	\ldots		．．．	63.62	．．．	64.40	70.21	．．．	62.33
1860	．．．	．．．	69.98	65.63	66.87	\ldots	．．．	．．．	68．86\％	\ldots	65.41	\cdots	64.89	70.06	．．．	63.19
1861	．．．	\ldots	．．．	．．．	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	．．．	\cdots	．．．	．．．	\ldots	．．．
1862	\cdots	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	．．＇	\ldots	\cdots	\ldots	\ldots	\cdots	．．．
1863	．．．	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	．．．	．．．	\ldots	\cdots	\cdots
1864	．．．	．．．	．．．	．．．	．．．	\cdots	\ldots									
1865	\ldots	\ldots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1866	\cdots	．．．	．．．	\ldots	，	\ldots	\cdots	\cdots	\cdots	\cdots	．	\cdots	\cdots	\cdots	\cdots	\cdots
1867		．．．	\cdots	\ldots	69.26%	70．25＊＊	\cdots	\cdots	\ldots	．．．	65.94	\cdots	\cdots	\ldots	\ldots	．．．
1868	66.33^{*}	－	．．．	．．．	64.65	68.11		…	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots
1869 1870	\cdots	\ldots	\ldots	65.82	．．．	\ldots	$\begin{aligned} & 67.95^{*} \\ & 68.33 \end{aligned}$	\ldots	\cdots	\ldots	64.62^{*}	72．04	\ldots	67.82	\cdots	60．95＊
	66.33	62.73	69.01	65.67	64.70	68.67	68．18	70，20	68.54	63.91	64.78	73.40	62.90	68.28	65.84	61.73

TEXAS．－Continued．																
－					$\begin{aligned} & \text { 苞 } \\ & \text { 芯 } \end{aligned}$									蓸 党 党	盛	言
${ }^{1842}$	\therefore	\cdots	\therefore	\therefore	\cdots	73.03	．．．	\cdots	\cdots	\bigcirc	\cdots	\therefore	\cdots	．．．	\cdots	\cdots
${ }_{\substack{1849 \\ 1850}}$	71.14	．．．			\cdots	\cdots		\ldots					\cdots			
${ }_{\substack{1850 \\ 185 \\ 185 \\ 185}}$	${ }_{7}^{72.41}$	．．．．	${ }^{65.51}$	－ 65.6 \％	\ldots	\cdots	67．39	\cdots	$\stackrel{68.21}{. .}$	$\xrightarrow{73.11} 7$	．．．	62．32	．．．	70．40	．．．．	\ldots
${ }_{\text {I }}^{1852}$	71．76	71.59	．．．	65．99	\cdots	\cdots	${ }^{67.31}$ 67．10	．．．	\cdots	${ }^{74.86}$	63．57	\cdots	${ }^{65.37 \%}$	\cdots	．．．	\cdots
${ }_{1854}$	70．70	${ }_{70.25}$	．．．	\cdots	\ldots	\cdots	－${ }^{\text {65．7．76 }}$	．．．	\cdots	${ }_{72.98}^{73.20}$	${ }_{64.08}^{1.0}$	…	$\stackrel{65.10}{ }{ }^{6}$	${ }_{72.82}$	\cdots	\cdots
${ }_{1855}^{185}$	69．37	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	72.80	62．79	．．．		70.37	．．．	．．．
${ }_{1857}$	${ }^{70.62}$	．．．	．．．	\ldots	\ldots	\ldots	．．．．	\ldots	\ldots	${ }_{73.28}^{71.69}$	${ }_{\text {c }}^{64.04}$	．．．	${ }^{65.19}{ }^{\text {64．75 }}$	\cdots	．．．．	．．．
IS58	72.97	．．．	．．．	\ldots	\cdots	．．．	…	64．79	．．．	73.50	63．70	．．．	67．11	\ldots		．．．
1859 1860	\cdots	\ldots	．．．	\cdots	\cdots	\ldots	${ }^{70.75 \%}$	67．46	．．．．	\cdots	\ldots	．．．	68.12	．．．．	${ }^{61.65}$	．．．．
${ }_{1861}^{1862}$	．．．	．．．	…	\cdots	\cdots	\ldots		．．．	\cdots	．．．．	\cdots	\ldots	$\stackrel{\text { 63．12 }}{\ldots}$	．．．．		\cdots
1806	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	．．．
I864	．．．	．．．	．．．	…	．．．	…	．．．．	\cdots	\cdots	…	\cdots	…	．．．	\cdots	\cdots	．．．．
${ }_{1865}^{1866}$	\cdots	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	…	．．．	．．．	…	\cdots	\ldots
1867	．．．	．．．	．．．．	．．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots
I869 186	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	．．．．	\ldots	．．．	\cdots	\cdots	\ldots	\cdots	\cdots	${ }^{64 \cdot 43^{*}}$
1879 187	\ldots	．．．	．．．．	．．．．	6．．．93			．．．．	．．．		\ldots	．．．	\cdots	\ldots	63.26	64.27
	${ }^{71.51}$	71.40	65.95	65.87	63．17	73.03^{1}	68．65	65．67	67．63	72.98	63．69	62.48	66.40			
TEXAS．－Continued．																
$\dot{\sim}$		$\begin{aligned} & \text { 荡 } \\ & \text { 薄 } \end{aligned}$			淢									$\begin{aligned} & \text { 䂞 } \\ & \text { 总荗 } \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { 磁 } \end{aligned}$
${ }_{18}{ }^{18} 8$	．．．	．．．	．．．	．．．	．．．	${ }^{71.36 *}$			．．．				．．．	．．．		
${ }_{\text {IS }}$	\cdots	$6 \ldots$	\cdots	\ldots	．．．	72.18	\ldots	\cdots	\cdots	．．．	\ldots	．	\cdots	．．．		．．．
1851	…	64.00	．．．	．．．	．．．	．．．	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	．．．．	${ }^{75.22}$	．．．
${ }_{1}^{1852}$	64．40＊＊	63．35	．．．	．．．	．．．	．．．	．．．	…	．．．	\cdots	．．．	．．．	\cdots	63.19	${ }_{75.31}$	．．．
${ }_{\text {IS }}^{1853}$	$\stackrel{63.29}{. .}$	\cdots	．．．	\ldots	．．．	\ldots	．．．．	．．．．	\cdots	．．．	64．20	\ldots	．．．	64．26	${ }_{73}^{73.88}$	．．．
1855	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	68.44	．．．		．．．	${ }_{72.11{ }^{\text {\％}}}$	．．．
${ }_{\substack{1856 \\ 185 \\ 185}}$	\ldots	\ldots	\ldots	．．．	．．．	－	．．．	．．．	．．．	．．．	68.48	．．．	64．29	．．．	${ }_{71}{ }^{1} 32$	．．．
r858	\ldots	\cdots	．．．．	\ldots	68.63	．．．	．．．．	\cdots	65.50	\cdots	69．33＊	\ldots	\ldots	\cdots	72.44	．．．
I859	．．．	．．．	．．．			．．．	．．．	．．．．	66.38	\cdots	69．66	\cdots	\cdots	．．．	73.41	69.76
1860 1865	\cdots	\ldots	．．．	65.51	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	69.16
1862	\ldots	…	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	\cdots	．．．	．．．	．．．	．．．
1863	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．．	．．．	\cdots	\cdots	\ldots	．．．．	…	．．．．
1864 1865	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1866	\cdots	\cdots	．．．	．．．	．．．．	．．．．	\cdots	．．．	\cdots	\ldots						
1867 1868	\cdots	．．．	\ldots		．．．	．．．		．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
${ }_{1869}^{186}$	．．．	\cdots	¢ 78.78	（6．7．92	\ldots	…		．．．．	．．．				．．．．	\ldots	\cdots	\ldots
1870	．．．			66.52^{*}		．．．	．．．	67．09	．．．		．．．	69.28	．．．	．．．	\ldots	．．．
	63.74	63.81	69.38	65.22	69.93	71.36	67.26	66.45	65.94	68.17	68.49	69.28	64.29	63.83	73.78	69.29
	${ }^{1}$ Hours of observation unknown．															

TEXAS.-Continued.							UTAH.							VPRIMONT.		
-				$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$				$\frac{\tilde{y y}}{5}$						E.		E ¢ U U
1828	$\stackrel{ }{\circ}$	\bigcirc	\bigcirc	,	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	$4 \square^{\circ}$	\bigcirc
1829	\ldots	\cdots	\ldots	47.92	\cdots
1830	\ldots	\ldots	\ldots
1831	\ldots	...	\cdots	\ldots	\ldots	...	\cdots	\cdots	\cdots	\ldots	\cdots	...
1832	\ldots	\ldots	\ldots	\ldots	...	\ldots	44.09	...
1833	\ldots	\ldots	43.64	*..
1834	\ldots	\ldots	...	\ldots	\ldots	\ldots	\cdots	...	\cdots	\cdots
1835	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots
1836	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	\cdots	\cdots	\ldots
1837	\ldots	...	\ldots	\ldots	...	\cdots	...	\ldots	...	40.96 ${ }^{\text {\% }}$	\ldots
1838	\ldots	\ldots	...	\ldots	\ldots	\cdots	43.95	...
1839	\ldots	\ldots	\ldots	\ldots	45.82	-..
1840	...	\cdots	\ldots	\ldots	...	\ldots	...	\ldots	\ldots	\cdots	46.02	...
1841	...	\ldots	...	\ldots	\ldots	\ldots	...	\cdots	\ldots	\ldots	\cdots	45.09	...
1842	\ldots	\ldots	$45 \cdot 92$...
1843	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	...	$43 \cdot 57$...
1844	\cdots	\ldots	\ldots	\ldots	...	\ldots	\cdots	$44 \cdot 72$...
1845	\ldots	...	\ldots	...	\cdots	\ldots	\cdots	...	\ldots	\ldots	45.74	...
1846	\ldots	\ldots	\ldots	...	\ldots	46.47	...
1847	\cdots	...	\ldots	\cdots	...	\ldots	\ldots	\ldots	44.78	\cdots
1848	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	45.71	...
1849	6.58	\cdots	\cdots	...	\ldots	\cdots	...	\cdots	\ldots	44.72	\ldots
1850	69.88	...	\ldots	\cdots	\cdots	...	\cdots	\cdots	...	\ldots	...	\cdots	45.46	\cdots
I 851	67.47	\ldots	...	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	...	44.86	\ldots
1852	71.33*	\ldots	\ldots	\ldots	\ldots	\ldots	45. II	...
1853	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	45.55	\cdots
1854	\ldots	\ldots	\ldots	\ldots	\ldots	44.05	45.28	45.87
1855	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	44.20	45.28	\cdots							
1856	\cdots	\ldots	\cdots	\cdots		\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	41. 63	42.35	...
1857	…	...	66.76	\cdots	\cdots	\cdots	\cdots	42.55	\cdots	...
1858	67.42	\cdots	63.80	\cdots		...	\ldots	\ldots.	\cdots	\cdots	\cdots	\cdots	\cdots	43.02	42.22	\cdots
1859	69.91	66.12	66.45	...	66.98	69.67%	48.24	51.28*	\ldots	\ldots	\ldots	43.81	42.43	\ldots
1860	71.80	\cdots	67.77 \%	48.60		\cdots	\cdots	\cdots	44.35*	...	\ldots
1861	...	\ldots	...	\cdots	\ldots	\ldots	\ldots	\cdots	...	51.23**	\cdots	\cdots	\cdots	43.85	42.92	\ldots
1862	\cdots	\cdots	\cdots	\cdots	\cdots	...	44.45 \%	42.17 ${ }^{\text {\% }}$	\cdots
1863	...	\ldots	\ldots	52.42	\cdots	\cdots	\cdots	\ldots	45.65	$42.12{ }^{\text {\% }}$...
1864	\cdots	\ldots	...	\cdots	52.22	\cdots	...	52.41	6...	\cdots	\cdots	...	$43 \cdot 3 \mathrm{~S}^{*}$	\cdots
1865	\ldots	\cdots	\cdots	\cdots	\cdots	...	50.96	\cdots	\cdots	50.54	61.80\%		...	\ldots	\ldots	\cdots
1866	\ldots	\ldots	$52.39^{\prime \prime}$	\ldots	\ldots	51.85	...	44.3*	...	45.21\%	\cdots	\ldots
1867	\ldots	...	\cdots.	$6 . .1$	\cdots	\cdots	51.78	\ldots	\cdots	...	\ldots	\cdots	$45.97^{* *}$	\cdots
1868 1869	\ldots	\ldots	\cdots	65.91	\cdots	\cdots	50.46	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots
1869	67..3	\cdots	\cdots	...	\ldots	...	51.70^{*}		\cdots	\cdots	\ldots
1870	67.35	...	\ldots	\cdots	\cdots	\cdots	50.00	44.72*	\ldots	\cdots	-	\ldots	...	47.06
	69.22	66.12	66.15	65.22	67.29	69.34	51.49	45.14	48.45	51.86	6 r .37	43.87	45.48	44.12	44.44	45.76

$\stackrel{\dot{\tilde{j}}}{\stackrel{y}{\sim}}$	VERIMONT．－Continued．															
				$\begin{aligned} & \text { 号 } \\ & \text { 言 } \\ & \text { \# } \\ & \vec{H} \\ & \end{aligned}$	高 总 药		宮		$\begin{aligned} & \text { si } \\ & \text { 艺 } \\ & 0 \\ & \text { B } \end{aligned}$		$\begin{gathered} \text { 芯 } \\ \underset{4}{3} \\ \text { 2 } \end{gathered}$	$\begin{aligned} & \text { 吕 } \\ & \text { 品 } \\ & \underset{\sim}{3} \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { 言 } \\ & \text { ज } \end{aligned}$		
1789	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots	\cdots	\cdots	$\stackrel{\circ}{\circ}$	$43^{\circ} .62$	\cdots	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots
1827	\ldots	43.87	\ldots	\ldots	\cdots	\cdots	\ldots	\ldots	．．．	\cdots	．．＇	\cdots	\ldots	\cdots	\cdots	\cdots
1828	\ldots	46.96	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\ldots	．．．	．．．
1829	．．．	42.75	．．．	．．．	\therefore	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1830	\cdots	45.09	．．．	．．．	．．．	．．．	．．．	．．．	．．	．．．	．．．	\ldots	．．．	．．．	\cdots	．．．
1831	\cdots	43.98	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	．．．
1832	\cdots	42.75	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1833	\ldots	42.14	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．
1834	\ldots	43.41	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．
1835	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	．．．
1836	\ldots	．．．	\cdots	\cdots	．．．	．．．	39.55	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．＊
1840	\cdots	\ldots	\ldots	．．．	\cdots	\ldots	43.21	．．．	\cdots	．．．	\ldots	\ldots	．．．	\ldots	\cdots	\cdots
1841	．．．	．．．	．．．	．．．	．．．	．．．	43.32	\cdots	\ldots	\ldots	．．．	\cdots	．．．	．．．	\cdots	\cdots
1842	\cdots	．．．	\ldots	．．．	．．．	．．．	42.72	．．．	．．．	．．．	．．．	．．．	．．．	\cdots	\ldots	．．．
1843	\cdots	．．．	\ldots	\cdots	．．．	．．．	42.10	\ldots	\ldots	．．．	．．．	\ldots	．．．	．．．	\ldots	\cdots
1844	．．．	．．．	．．．	．．．	．．．	．．．	42.05	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
1845	．．．	\cdots	\cdots	\cdots	．．．	．．．	42.39	\cdots	．．．	．．．	\ldots	．${ }^{\text {．}}$	．．．	\cdots	\ldots	\cdots
1846	\ldots	．．．	．．．	．．．	．．．	．．．	44.38.	．．．	．．．	\ldots	．．．	＊．．．	\ldots	\ldots	\cdots	．．．
1847	．．．	\cdots	\cdots	．．．	．．．	．．．	43.40	\cdots	．．．	\ldots	\cdots	\ldots	\cdots	\cdots	．．．	．．．
1848	\ldots	．．．	\cdots	．．．	\cdots	\ldots	43.77	\cdots	．．．	\ldots	\ldots	\ldots	．．．	\ldots	\cdots	\ldots
$\underline{1849}$	．．．	\cdots	\cdots	．．．	\cdots	\ldots	42.69	．．．	．．．	\cdots	\ldots	\cdots	．\cdot	\cdots	．．．	\cdots
1853	\cdots	．．．	\cdots	\cdots	\ldots	\cdots	42.44	\cdots	\cdots	－						
1854	40.72	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	41．55	\ldots	．．．	\ldots
1855	39.33	\cdots	\cdots	\cdots	\cdots	41.93	\cdots	\cdots	．．．	\cdots	．．．	\cdots	．．．	\cdots	\cdots	\cdots
1856	39.05	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	\cdots	\cdots	．．．	41．81＊＊	．．．	\cdots
1857	39.55	\ldots	．．．	．．．	\cdots	\ldots	．．．	\ldots	43.13^{*}	．．．	46.85	\cdots	41.03	42.68	\cdots	\cdots
1858	39.49	\ldots	．．．	．．．	．．．	\cdots	．．．	．．．	\cdots	\cdots	47.99	．．．	39.30	．．．	\ldots	．．．
1859	40.28	．．．	．．．		．．．	．．．	\ldots	．．．	．．．	．．．	47.37	\ldots	39.59	\ldots	\ldots	．．．
1860	41．19＊＊	\cdots	．．．	43.40%	．．．	\ldots	\ldots	\ldots	．．．	\cdots	47.86	．．．	．．．	．．．	．．．	\ldots
1861	39．52＊	．．．	．．．	41．98＊	．．．	．．．	\cdots	\ldots	\ldots	\cdots	．．．	．．．	．．．	．．．	42.99	\ldots
1862	39.38	．．．	\cdots	42.21	．．．	\ldots	．．．	．．．	\ldots	．．．	47.17	\cdots	\cdots	\cdots	43．65＊	\cdots
1863	39．36＊	．．．	．．．	42．59＊	．．．	\cdots	．．．	\ldots	\cdots	．．．	\cdots	\cdots	．．．	．．	．．．	\cdots
1864	40.76	．．．	．．．	44.52	46．91＊	\cdots	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．
1865	40.28	\cdots	\cdots	41.98	45.57	．．．	．．．	．．．	\cdots	\cdots	\ldots	\cdots	．．．	\ldots	．．．	．．．
I 866	39.58	\cdots	．．．	42.13 \％	43.97	．．．	\cdots	\cdots	\ldots	42.64	\cdots	\ldots	．．．	．．．	\ldots	\ldots
1867	39.44	\cdots	\cdots	40．20＊	42.83	．．．	\cdots	\cdots	．．．	41.39	\cdots	．．．	．．．	．．．	．．．	．．．
I868	39.78	．．．	．．．	39.70	42.24	\cdots	．．．	\cdots	．．．	41.00	．．．	\ldots	．．．	\cdots	\ldots	
1869	38.78	．．．	\ldots	41.61	43.95	\cdots	．．．	． 8^{*}	\cdots	42.38	．．．	\cdots	．．．	\cdots	\cdots	45.48
I870	40.99	．．．	47.00	43.92	－．	．．．		44．28＊		45.08	．．．	．．．	．．．	．．．	．．．	48.50
	39.89	44.26	46.65	41.41	44.57	42.14	42.46	44.20	42.78	42，61	47.44	43.621	40.37	42.28	43．44	46.81
${ }^{1}$ Hours of observation unknown．																

VERIMONT．－Continued．					VIRGINIA．											
苐	苋	免总害	$\begin{aligned} & \dot{0} \\ & \text { 淢 } \\ & \end{aligned}$													
I806	\cdots	$\stackrel{\circ}{\circ}$	44.92	\cdots	\cdots	\cdots	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	\cdots	\bigcirc	$\stackrel{\square}{\circ}$	\ldots	\cdots	\cdots	$\stackrel{\circ}{\circ}$	\bigcirc
1824						56．39＊	．．．	．．．	．．．	．．．		\cdots	\ldots			\cdots
1825	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	${ }^{61.95}$	\cdots	．．．	\ldots	．．．	．．．
1826	．．．	．．．	．．．	．．．	\cdots	－ 6	．．．	．．．	．．．	．．．	61.66	\ldots	．．．	．．．	\ldots	\ldots
1827	．．．	．．．	\ldots	．．．	．．．	60．16＂	\ldots	．．．	\ldots	．．．	59.96	\ldots	．．．	\ldots	．．	．．．
1828	\ldots		．．．	\cdots	\ldots	61.74	．．．	\ldots	．．．	．．．	63.18	\ldots	\cdots	\ldots	\ldots	．．．
${ }^{1829}$	\ldots	39．2＊	．．．	\％	．．．	57.41	．．．	\％	．．．	\cdots	59.07	\ldots	\ldots	\ldots	．．．	．．．
1830	\ldots	41.0	．．．	．．．	．．．	59.43	．．．	．．．	\ldots	．．．	60.71	．．．	．．．	．．．	．．．	．．．
1831	\ldots	39.7	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	57.26	．．．	\ldots	\ldots	．．．	．．．
1832	．．．	39.9 ＊	．．．	\ldots	\ldots	59．26	．．．	\ldots	．．．	．．．	54.10	\ldots	\cdots	\ldots	\ldots	\cdots
1833	．．．	39.8	\ldots	\ldots	．．．	60．48＊	．．．	\ldots	\ldots	．．．	57．18	．．．	．．．	\ldots		．．．
1834	\ldots	40.5	\ldots	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	60.30	\ldots	．．．	\ldots	．．．	\ldots
1835	．．．	39．1	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	\ldots	58.19	\ldots	\ldots	\ldots	．．．	．．．
1836	．．．	38.0	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	55.65	．．．	．．．	．．．	．．．	．．．
1837	．．	37.8	．．．	．．．	．．．	\ldots	．．．	\ldots	\ldots	\cdots	${ }_{58}^{58.33}$	\ldots	\cdots	\cdots	．．．	\cdots
1838	\ldots	39.4	\ldots	\ldots	．．．	\ldots	．．．	\ldots	．．．	．．．	58.09	．．．	\ldots	\ldots	\ldots	．．．
1839	．．．	40.5	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	58.49	\ldots	．．．	．．．	．．．	．．．
1840	．．．	40.2	．．．	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	59．71	．．．	．．．	\cdots	．．．	\ldots
1841	．．．	40.3	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	\ldots	59.03	．．．	．．．	\ldots	．．．	\ldots
1842	\ldots	．．．	．．．	．．．	\ldots	\ldots	．．．	\ldots	．．．	．．．	59.93	\ldots	\ldots	．．．	．．．	．．．
1843	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	57.77	．．．	\ldots	．．．	．．．	\ldots
1847	．．．	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	59.06	\ldots	．．．	．．．	\ldots	．．．
1845	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	59.76	．．．	．．．	\ldots	．．．	．．．
18.46	\ldots	．．．	\ldots	\ldots	．．．	\ldots	\cdots	\ldots	\cdots	\cdots	60．51	\cdots	\ldots	\ldots	\ldots	．．．
1847	\ldots	．．．	．．．	．．．	\cdots	\ldots	\ldots	\cdots	．．．	\cdots	58．19	．．．	\cdots	．．．	．．．	\ldots
1848 1849	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	58.83	．．．	\ldots	\ldots	．．．	．．．
1850	\ldots	．．．	…	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	．．．	57.82 58.92	\ldots	\ldots	\ldots	\ldots	．．．
1851	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	．．．	58.84	．．．	．．．	\ldots		．．．
1852	\ldots	\ldots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	58.48	．．．	\ldots	\cdots	\ldots	．．．
1853	．．．	\ldots	\ldots	．．．		\cdots	\ldots	\cdots	．．．		59.36	．．．	．．．	．．．	．．．	．．．
1854	．．．	．．．	．．．	．．．	56.06	．．．	．．．	．．．	．．．	61.02	61.24	．．．	．．．	\ldots	．．．	．．．
1855 1856 18	．．．	\ldots	．．．	．．．	53.68	\cdots	… ${ }^{\text {\％}}$	\cdots	\cdots	59．93＊＊	59．58＊		\ldots	\cdots	．．．	．．．
1857	43.35	\cdots	\ldots	\ldots	54.18	\ldots	50.43	\ldots	\cdots	58.07	57.68	52．78	\ldots	\cdots	\cdots	\cdots
1858	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	59.73	59.53	．．．	…	\ldots		\ldots
1859	．．．	．．．	．．．	\ldots	．．．	．．．	\cdots	\ldots	．．．	59.83	59．97＊	．．．	\ldots	\cdots	55．69＊	．．．
1860	．．．	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots	．．．	59．39＊	59.70	\ldots	．．．	\ldots	．．．	\ldots
${ }_{1861}^{1862}$	\ldots	\ldots	．．．	．．．	．．．	\ldots	．．．	\ldots	\cdots	．．．	60.89	\ldots	\cdots	\ldots	．．．	\cdots
1862	．．．	\ldots	\ldots	\cdots	86	．．．	．．．	\cdots	．．．	．．．	59.71	．．．	．．．	．．．	\ldots	．．．
1863	．．．	\cdots	\ldots	．．．	54．86＊	\ldots	．．．	．．．	\ldots	．．．	58.26	\ldots	．．．	\cdots	\ldots	\ldots
1884	\ldots	\ldots	\ldots	\ldots	．．．	\ldots	\cdots	\cdots	\ldots	．．．	5.30	\ldots	\ldots	\cdots	\ldots	\cdots
1866	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	…	．．．	\cdots	59.55	\cdots	\cdots	\cdots	\cdots	\cdots
1867	．．．	．．．	．．．	．．．	．．．	．．．	．．．	56．56＊	\ldots	\ldots	57.56	\ldots	55.77	\ldots	\cdots	\ldots
1868	\ldots	．．．	．．．	39．01＊	\ldots	．．．	．．．	．．．	58.05	\ldots	57.21	\ldots	55．00＊	．．．	\ldots	
1869	．．．	．．．	．．．	40．16	\cdots	\ldots	\ldots	．．．	59.40	．．．	57.24	．．．	．．．	57.66	\ldots	55.64
1870	．．．	．．．	．．．	42.86	．．．	．．．	\ldots	\cdots	60.27^{*}	\cdots	58.64	\cdots	．．．	58.98	\ldots	55．32
	42.90	39.68	44.92	40.65	54.45	59.21	50.45	56.02	59．41	59.49	59． 11	52．78	$55.3{ }^{\text {or }}$	58.32	56.17	55.27

1 Ifours of observation unknown．

WASHINGTON TPR．－Cont＇d．						WEST VIRGINIA．										
先		$\begin{array}{r} \dot{0} \\ 0 \\ 0 \\ 0.0 \\ 0.0 \\ 0 \end{array}$	\|r				$\begin{aligned} & \text { 品 } \\ & \text { न्यु } \\ & \text { 4 } \end{aligned}$			$\begin{aligned} & \text { ü } \\ & 0.0 \\ & 0 \\ & \text { io } \\ & 0.0 \end{aligned}$		答				苞
1829	．．．	\cdots	\cdots	．．．	\cdots	\ldots	．．．	\therefore	\cdots	\cdots	．．．	${ }_{53.2}^{\circ}$	\cdots	\cdots	．．．	\cdots
1830	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots	55.7	，	．．．	\ldots	．．．
1831	．．．	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	${ }_{5}^{52.0}$	\ldots	\ldots	．．．	．．．
183 1833	51．87\％	\ldots	\ldots	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	53.8^{*}	\cdots	\cdots	\cdots	\cdots
	51.87	\ldots	．．．	\ldots	．．．	．．．		\ldots	\ldots	\ldots	\cdots	．．	\cdots	\ldots	．．．	．．．
1836	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots	\cdots	\cdots	52.2	\cdots	\cdots	．．．	．．．
1840	\cdots	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	53.7	\cdots	．．．	．．．	．．．
1850	\cdots	52.01	\ldots	\ldots	\ldots	．．．	\cdots	．．．	\cdots	．．．	\ldots	．．．	\cdots	\ldots	\ldots	\ldots
1851	．．．	\ldots	．．．	\ldots	\ldots	．．．	．．．	\ldots	\ldots	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．
1852	．．．	52．06＊	\ldots	．．．	．．．	\ldots	．．．	54.29	\ldots	．．．	．．．	．．．	\ldots	\cdots	．．．	\ldots
1853	．．．	53.40	\ldots	．．．	\ldots		\cdots	\cdots		\ldots	\cdots	\cdots	\ldots		\ldots	\cdots
I854	．．．	${ }^{51.95}{ }^{\text {5 }}$	\cdots	\cdots	\cdots	57．65	\cdots.	\ldots	\ldots	\ldots	\ldots	\ldots	．．．	5496 53.48	\ldots	\ldots
1855 1856 1858	．．．	${ }_{52.12}^{52.42}$	．．．	\ldots	\ldots	54．10＊＊	\ldots	\ldots	46．88＊＊	\ldots	\ldots	\ldots	51．96	53.48 50.17	．．．	．．．
1857	．．．	53．19＊＊	53．56＊	．．．	\ldots	50．88＊	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．	47.53	52．62＊＊	．．．
1858	\cdots	51.86	52.60	．．．	\ldots	\cdots	．．．	\cdots	．．．	\cdots	．．．	．．．	．．．	51．90＊	55.52	．．．
1859	\ldots	50.32	53．20	．．．	．．．	\ldots	．．．	．．．	\ldots	45． 15	\ldots	\ldots	．．．	53.42	54．78	．．．
1860	．．．	52.61	53.78	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	50.64	54．85＊	．．．
1861	\ldots	51.93	54．17	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	．．．	．．．
${ }_{1862}$	．．．	48.51	49．24＊＊	\ldots	\ldots	\ldots	．．．	\ldots	．．．	\ldots	．．．	．．．	\cdots	\ldots	．．．	\cdots
1863	．．．	52.92	54．40＊＊	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\cdots	．．．	．．．	\ldots
1864	．．．	52.71	54.89	47．32 ${ }^{\text {\％}}$	．．．	．．．	5．7＊＊＊＊＊＊＊＊＊＊＊＊	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots
1865 I 866	．．．．	51．19＊＊	$53 \cdot 30^{*}$	45．．．9＊	\ldots	．．．	55.14 53.57°	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	．．．
1867	．．．	51.40	．．．	．．．	．．．	．．．	55.06	．．．	\ldots	．．．	55．04＊	\ldots	\ldots	\ldots	．．．	\ldots
1868	．．．	．．．	．．．	．．．		．．．	\ldots	\ldots	\ldots	．．．	．．．	．．．	．．．	\ldots	．．．	51．57
1869	．．．	．．．	．．．	．．．	$\left\|\begin{array}{c} 51.07 \% \\ 51.19 \end{array}\right\|$	．．．	52.82 \ldots	．．．	－．．．．	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots
1870	\cdots	\ldots	\ldots	．．．	51.19		．．．	．．．		．．．		．．．	\ldots	\cdots	．．．	．．．
	51.87	51.83	53.22	47.64	51.13	53.83	54.18	54.29	47.50	49.49	54．99	53.65	52.50	51.81	54.3 I	51.95

WISCONSIN．－Continued．																
亗			$\begin{aligned} & \text { تีं } \\ & \text { 营 } \\ & \text { 出 } \end{aligned}$	号 淢 品		Fís				烒		$\begin{aligned} & \text { घ̈ } \\ & \text { 俞 } \\ & \text { 苋 } \\ & z \end{aligned}$				等
1844	．．．	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\ldots	\bigcirc	$\stackrel{\square}{\circ}$	\bigcirc	－	47.65	－	－	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ} \times$	．．．	$\stackrel{\square}{\circ}$	－．
1845	\cdots	\cdots	．．．	\ldots	\ldots	．．．	．．．	\ldots	49.21	．．．	．．．	\ldots	．．．	．．．	．．．	．．．
1846	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	51.01	．．．	\ldots	\ldots	\ldots	．．．	\ldots	．．．
1847	．．．	．．．	．．．	\cdots	\ldots	\cdots	\ldots	．．．	46.44	．．．	．．．	\cdots	\cdots	\cdots	\ldots	．．．
1848	．．．	．．．	．．．	．．．	\cdots	\ldots	．．．	\cdots	47.41	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots
1849	．．．		．．．	．．．	．．．	\cdots	\ldots	．．．	44．65＊	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	．．．
1850	．．．	45.63	．．．	．．．	．．．	．．．	．．．	．．．	46.86	．．．	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
1851	．．．	．．．	．．．	\ldots	\ldots	\ldots	．．．	\cdots	47.03	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots
1852	．．．	．．．	．．．	\cdots	\cdots	\ldots	．	45． 19	45.84	\cdots	\cdots	\cdots	\cdots	．．．	\cdots	\cdots
1853	．．．	．．．	．．．	45.83	．．．	\cdots	45.77	45.80	…	．．．	．．．	\cdots	．．．	．．．		\cdots
1854	．．．	．．．	．．．	47.19	．．．	\cdots	46．80＊	46.25	47．45＊	\cdots	\cdots	\ldots	．．．	．．．	48.48	\cdots
1855	．．．	．．．	．．．	44.96	．．．	．．．	．．．	44.32	43.34	\ldots	．．．	\ldots	77	\ldots	47.74	\ldots
1856	\cdots	\ldots	\cdots	42.95	43．15	．．．	．．．．	42.23	42.00	\ldots	\ldots	．．．	43．77 ${ }^{\prime \prime}$	．．．	45.00	\ldots
1857	\ldots	\ldots	．．．	44.66	43.74	42.93	43.16	43.01	42.13	\cdots	…	\ldots	．．．	．．．	44.83	．．．
I 858	．．．	．．．	．．．	47．27＊	46.93	．．．	45．97＊	45.83	45.84	\cdots	43．94＊	．．．	．．．	．．．	48.29	．．．
1859	．．．	．．．	．．．	．．．	46.67	．．．	．．．	44.56	45．76	．．．	．．．	\cdots	\cdots	\cdots	46.28	\ldots
1860	．．．	．．．	．．．	47.04		\ldots	\ldots	45.11	46.12	\ldots	\cdots	\cdots	\ldots	\cdots	．．．	\cdots
1861	．．．	．．．	．．．	46．1 ${ }^{\text {\％}}$	46.84	．．．	44．47 ${ }^{\text {＂}}$	44.79	46．06	\cdots	\cdots	\ldots	\cdots	46．05＊	\cdots	\cdots
1862	．．．	．．．	．．．	．．．	46.25	．．．	．．．	44.46	45.38	\cdots	\cdots	\cdots	\cdots	．．．	\ldots	\ldots
1863	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	44.93	46.28	\cdots	\cdots	．．．	\cdots	\ldots	\cdots	\cdots
1864	42.85	．．．	．．．	．．．	．．．	．．．	．．．	44.11	44.62	\cdots						
1865	43．6\％	．．．	．．．	．．．	．．．	．．．	．．．	45.17	45.67	\cdots	\cdots	\ldots	\ldots	\ldots	\cdots	．．．．
1866	．．．	\cdots	\cdots	\cdots	．．．	．．．	\cdots	42.97	43.80	\cdots	\cdots	\cdots	\ldots	\ldots	．．．	42．13
1867	．．．	\cdots	\ldots	．．．	\cdots	\ldots	\ldots	44.10	45.34	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	43.82
1868	\ldots	．．．	．．．	．．．	．．．	\cdots	\cdots	43.15	43.90	\cdots	\cdots	\cdots	\cdots	．．．	\cdots	41.89
1869	．．．	．．．	43.00	．．．	．．．	．．．	43.23 ＊	42.96	44．16	\cdots	\cdots	43.70	．．．	．．．	\ldots	42.24
1870	．．．		46．97＊	\cdots	\ldots	．．．	47.31	46.65	47.29	42.03	\cdots	．．．	．．．	\ldots	．．．	．．．
	43.65	45.16	44.20	45.66	45.64	$42.93{ }^{1}$	$45 \cdot 40$	44.48	45.75	42.33	43.06	44.85	44.33	45．91	46.81	42.71
WISCONSIN．－Continted									WYOMING．							
芴										$\begin{aligned} & \text { \&ं } \\ & \dot{Q} \\ & \text { 荡 } \\ & \text { ung } \end{aligned}$					淢	
1850	\cdots	\ldots	\ldots	\ldots	．．．	\cdots	．．．	\cdots	\ldots	\cdots	\cdots	．．．	\cdots	49.69	\cdots	．．．
1851	．．	．．．	\cdots	\cdots	\ldots	．．．	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	50.64	\cdots	\cdots
1852	．．．？	．．．	\cdots	．．．	\ldots	\ldots	\cdots	46.97	＊－	\cdots						
1853	．．．	．．．	．．．	．．．	\cdots	\cdots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	50.00	．．．	．．．
1854	\cdots	．．．	\cdots	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	52.76	．．．	．．．
1855	\cdots	．．．	．．．	\cdots	\ldots	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	50.83	．．．	．．．
1856	41．98＊	．．．	．．．	38.07	43．26＊	．．．	．．．	．．．	＇	．．．	．．．	．．．	．．．	48.78	．．．	．．．
1857	．．．	．．．	．．．	．．．	43．98＊	．．．	\cdots	．．．	．．．	．．．	\cdots	\cdots	\cdots	48.90	．．．	．．．
1858	．．．	．．．	．．．	\ldots	47．44＊	．．．	\cdots	．．．	\cdots	．．．	．．．	．．．	．．．	48.08	．．．	．．．
1859	\cdots	…＊	．．．	\cdots	．．．	．．．	42.69	．．．	38．81＊	．．．	．．．	．．．	\ldots	48.90	．．．	．．．
1860	．．	45．45＊	\cdots	38.74	．．．	\cdots	．．．	\cdots	41.35	．．．	\cdots	．．．	．．．	49.3 I	．．．	．．．
1861	\cdots	45.09	\cdots	38.13	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	50．44＊	．．．	．．．
1862	．．．	44.47	\cdots	37.16	．．．	．．．	．．．		\cdots	．．．	\cdots	．．．	．．．	49.31	\cdots	．．．
1863	\ldots	45．76＊	\ldots	38.71	．．．	．．．6	．．．	$45 \cdot 5{ }^{*}$	41.78	．．．	．．．	．．．	43.12	50.02	．．．	．．．
1864	\ldots	44.89	．．．	38.39	\ldots	45.68	\ldots	．．．	41.30	．．．	．．．	．．．	\cdots	50.59	．．．	．．．
1865	\ldots	45.7 F	．．．	38.89	．．．	46.92	．．．	．．．	38.86	．．．	\ldots	\ldots	40．81＊	．．．	．．．	．．．
1866	．．．	43．66＊	\ldots	36.99	．．．	44.63	．．．	．．．	42．44＊＊	－．	\ldots	．．．	\cdots	．．．	．．．	\cdots
1867	－．．．	44.80	．．．	37.09	．．．	44.59	．．．	．．．	40.92	．．．	．．．	．．．	．．．	．．．	42.90	．．．
1868	\cdots	43．57＊＊＊＊	\ldots	．．．	\cdots	44.30	\cdots	．．．	39.42	．．．	\cdots	\cdots	．．．	\ldots	．．．	40．94＊
1869 1870	\cdots	43.72^{*} 47.46		\cdots	．．．	44．04	\cdots	．．．	41．48＊		43．47＊	42.38 44.66	\cdots	$44.43{ }^{-}$	\cdots	41.26
1870	．．．	47.46	45．20\％	．．．	．．．	47．47＊	．．．	．．．	41.63	42.88	44．34＊	44.66	．．．	47.46	．．．	41.70
	43.83	44.96	45.20	37.74	45.28	45．31	42.90	44.27	40.86	42.94	43.77	43.52	42.20	49.15	45.92	41.47

Mexico．						Costa Rica．		Gua－ temala．\qquad	British Hon－ duras．	Bahama Islands．\qquad	Bermuda Islands．		Caribbean Islands．			
$\begin{aligned} & \stackrel{. 亡}{0} \\ & \stackrel{y y}{*} \end{aligned}$	$\begin{aligned} & \text { B. } \\ & \text { Bेँ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { gig } \\ & \text { 荡 } \\ & \text { 范 } \end{aligned}$			命 号 号						留					
1833	\cdots	\cdots	$\stackrel{\circ}{.}$	\cdots	$\stackrel{\circ}{\circ}$	\cdots	$\stackrel{\circ}{\circ}$	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{\circ}{\circ}$	\cdots	SI． S $2^{\text {2 }}$	\cdots
${ }_{1834}$	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	79．38＊	．．．	．．．	．．．
${ }_{1} 8_{3} 6$	\cdots	．．．	．．．	\ldots	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	．．．	79.68	．．．	．．．	．．．
1841	\cdots	．．．	\cdots	\cdots	\ldots	\ldots	\ldots	．．．	．．．	78.25	\cdots	\ldots	\cdots	\cdots	．．．	．．．
1844	\cdots	．．．	．．．	．．．	．．．	\cdots	\ldots	．．．	\ldots	．．．	．．．	\ldots	．．．	80.93	．．．	．．．
1848	\ldots	．．．	\cdots	\cdots	．．．	\cdots	\ldots	\cdots	\ldots	\cdots	68.24	．．．	\cdots	．．．	\cdots	\ldots
1849 1850 185	\ldots	\cdots	\ldots	．．．	\ldots	\cdots	\ldots	．．．	．．．	\ldots	68.50^{*} 68.87	\ldots	\cdots	．．．	\cdots	．．．
1850 1851	\ldots	\cdots	68.87	．．．	．．．	．．．	\ldots	．．．								
185	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	69.28 68.27	\ldots	\cdots	\ldots	\cdots	．．．
1853	．．．	\cdots	．．．		．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	\cdots	\cdots	\cdots	\ldots
1854	．．．	．．．	．．．	67.19	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	．．．	．．．	\cdots	\ldots
1855 1856 185	\cdots	\cdots		65.81	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	．．．
1856 1857	\ldots	\ldots	61.00% \ldots.	．．．	\ldots	\ldots	．．．．	64．89	\ldots	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
1858	68.76	．．．	．．．	67.83	78.16	．．．	．．．	65.57	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	．．．	\ldots
1859	69.50	．．．	．．．	68.18	．．．	．．．	．．．	65.57	．．．	\ldots	．．．	．．．	．．．	\ldots	．．．	．．．
1860		\ldots	．．．		．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
186\％	68.89	．．．	．．．	66.77	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	．．．
1862 1863	69.96 68.54	\ldots	．．．．	67.25 66.38	．．．	．．．	$67 \cdot 30^{*}$ \ldots	\ldots	79.90	\ldots	\cdots	．．．	\cdots	\cdots	\cdots	$\underset{78.62}{ }$
1864	68.61	．．．	．．．	66.75	．．．	．．．	．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	\ldots	\ldots
1865	．．．	．．．	．．．	67.43	．．．	．．．	68.86	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	．．．	\ldots
1866	．．．	．．．	．．．	67.56	．．．	．．．	67.98	．．．	．．．	．．．	\ldots	．．．	．	．．．	．．．	．．．
1867	．．．	．．．	．．．	68.30	．．．		．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	\ldots	．．．
1868	．．．	79.43	．．．	67.22	．．．	69.59	．．．	．．．	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．
1870	\ldots	…	\ldots	66.30	\ldots	．．．	．．．	\ldots	．．．	．．．	\ldots	\ldots	\ldots	\ldots	．．．	．．．
	69.04	79.43	6 r .10	67.19	77.72	69.59	69.28	66.26	79.90	79.59	69.46	69.10	79－53 ${ }^{1}$	80.93	81.82	78.74

[^127]| Cuba． | | | | Jamaica．
 | Hayti．
 莫 | Dutch Guiana． | | | Venezuela．总菏 | Brazil． | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| : | | | $\begin{aligned} & \text { 范 } \\ & \text { E } \\ & \text { E } \end{aligned}$ | | | | | | | | |
| 1779 | \cdots | ．．． | \cdots | \cdots | 73.72 | \cdots | \therefore | －． | \cdots | \cdots | \cdots |
| 1794 | 8r． 80 | \ldots | \ldots | ．．． | ．．． | ．．． | \cdots | ．．． | ．．． | \cdots | ．．． |
| 1832 | ．．． | ．．． | \ldots | 78.77 | \ldots | ．．． | ．．． | \cdots | ．．． | \ldots | 75.89 |
| 1833 | ．．． | ．．． | ．．． | ．．． | \ldots | \cdots | \cdots | \ldots | \cdots | \ldots | 78.11 76.11 |
| 1834 | ．．． | ．．． | \ldots | ．．． | ．．． | ．．． | ．．． | \ldots | \ldots | ．．． | 76.11 |
| 1835 1836 | \ldots | \ldots | \cdots | \ldots | \ldots | \ldots | ．．．． | ．．． | \ldots | \ldots | 75.35 75.51 |
| 1837 18 | \cdots | \cdots | \cdots | \ldots | ．．． | \ldots | ．．． | \ldots | ．．． | ．．． | 74.15 |
| 1838 | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | \ldots | ．．． | ．．． | ．．． | 75.40 |
| 1839 | \ldots | ．．． | \ldots | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | \cdots | 74.68 |
| 1840 | ．．． | ．．． | ．．． | ．．． | \ldots | \ldots | \ldots | ．．． | ．．． | ．．． | 76.41 |
| 1841 | \ldots | | \cdots | \cdots | \ldots | \ldots | \ldots | \ldots | \ldots | ${ }_{7} \mathbf{8 . 9 5}$ | 75.66 76.49 |
| $\begin{aligned} & 1842 \\ & 1843 \end{aligned}$ | \ldots | 79.69 \ldots | \ldots | \ldots | \cdots | ．．． | ．．．． | \cdots | ．．． | $\stackrel{\text {－．}}{ }$ | 76.19 |
| 1854 | ．．． | ．．． | \ldots | \ldots | ．．． | ．．． | ．．． | ．．． | 62．40\％ | \ldots | \cdots |
| 1855 | ．．． | \ldots | ．．． | ．．． | ．．． | | ．．． | ．．． | \cdots | \cdots | \ldots |
| 1856 | \ldots | ．．． | ．．． | ．．． | ．．． | 80． 33 \％ | \ldots | ．．． | ．．． | \cdots | ．．． |
| 1857 | \ldots | \ldots | ．．． | \ldots | ．．． | 80.3 I＊* | \ldots | \cdots | \cdots | \cdots | \cdots |
| 1858 | \cdots | \cdots | 77．${ }^{\text {7．}}$ ． | \ldots | \cdots | 79.49 79.64 | \ldots | \cdots | \ldots | \cdots | \ldots |
| 1859 1860 | \ldots | \cdots | 77.96 78.42^{*} | \ldots | \ldots | 79.64 ．．． | ．．． | \ldots | \ldots | \ldots | \cdots |
| 1861 | ．．． | ．．． | 77．88\％ | ．．． | ．．． | ．．． | | \ldots | ．．． | \ldots | ．．． |
| 1862 | ．．． | ．．． | 78.03 | ．．． | \ldots | ．．． | 78.75 | | ．．． | ．．． | ．．． |
| 1863 | ．．． | ．．． | 77.72 \％ | \ldots | ．．． | ．．． | 77．52＊ | 77．69\％ | ．．． | \ldots | \cdots |
| 1864 | ．．． | ．．． | 78．24＊ | ．．． | ．．． | ．．． | ．．． | 78．54＊ | ．．． | \ldots | ．．． |
| 1865 | ．．． | ．．． | 78.72 | ．．． | ．．． | ．．． | ．．． | 79.39 | \cdots | \cdots | \cdots |
| 1866 | ．．． | ．．． | 78.53 | ．．． | ．．． | ．．． | \cdots | 78.93 78.47% | \cdots | \ldots | \cdots |
| 1867 1868 18 | \cdots | \cdots | 79.37 78.83 | \ldots | ．．．． | ．．． | \ldots | $8{ }^{78.47^{*}}$ | \ldots | \ldots | \ldots |
| 1869 | \cdots | \ldots | 79.35 | | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． |
| 1870 | ．．． | ．．． | 78.30^{*} | ．．． | \ldots | ．．． | ．．． | ．．． | \cdots | ．．． | ．．． |
| | 81．80＇ | 79.36 | 78.44 | ${ }^{78.771}$ | $73.72^{\text {t }}$ | 79.88 | 77.77 | 78.66 | 6 r .44 | $78.95{ }^{1}$ | 75.83 |

${ }^{1}$ Hours of observation unknown．

Investigation of the Secular Variation. -The following discussion, which is based upon the preceding tabular numbers, ${ }^{1}$ will be limited to the examination of the secular variations of the temperature for places within the United States or for adjacent stations. To ascertain in general the character of these variations a number of stations were selectēd possessing the requisite length of series or from which, by proper combination from several stations at no great distance apart, such a series could be produced having as few interruptions as possible. These separate or combined series were plotted (see accompanying illustration); this could be done either by plotting directly the annual means, as in the case of New Haven (see isolated dots), or by smooth curves, as shown for all the stations which resulted from the application of the process of successive means (to the 4 th order) which has been explained before. This process, while it preserves all the characteristic features of any systematic progression of temperature during a succession of years, also relieves us in a great degree from the embarrassing presence of the accidental and minor irregularities. The 4th order of means was found quite sufficient; the 8th is given for New Haven.

Further, the process of combination of the results from several adjacent stations, either for the purpose of producing a more extended series, or for filling up gaps, must be such as to preserve exactly any feature or features common to all the stations, whether of a progressive or a periodic character as might be produced by a disturbing influence of a general or cosmical nature. This will be done by the method of differences, as will be explained further on. If we examine any of the numerical and graphical results, for instance those for New Haven, we recognize in the first place certain apparently altogether irregular fluctuations in the annual means, their influence will be greatly reduced or destroyed by successive means and by combination of series (since they are equally liable to + and - deviations, which will tend to cancel themselves) ; in the second place, we notice certain systematic changes or undulations of irregular epochs and extent which will be subjected to further study with respect to their character and geographical distribution. If all the series, proposed for combination to a normal series, were of equal extent and complete, the simple mean for each year would be all that is needed, but for indirectly connected, overlapping, or defective series, the combination is more laborious, as we must take account of all possible differences or combinations, ${ }^{2}$ which can only be done by application of the method of least squares. After the series have all been rendered homogeneous, by application to each of the corrections indicated with consideration of all possible combinations and their weights, the means for each year can be taken as before. A full example of the method is given below, ${ }^{3}$ and the same is intended to show also the amount of local variation in the annual means after they have been reduced to a uniform series.

[^128]The series of annual means thus obtained，after undergoing the process of suc－ cessive means，are given in the following table．A combination series is indicated
see preceding tables．Designating these series in the order named by $A B C D E$ ，we proceed to find the differences $A-B$ from each year from the 33 years common to the two series；this gives the mean value $A-B=+0^{\circ} .8$ with the weight 33 ；in like manner we form the other differences designated by $V_{1} V_{2} V_{3} \ldots$ subject to the small corrections $v_{1} v_{2} v_{3} \ldots$ as follows．

whence the equations of correlatives and the normal equations－

	$\frac{100}{p}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	
v_{1} v_{2} v_{3} v_{4} v_{5} v_{5}	9 18 8 8 100 15	＋1	-1 +1	-1 +1	－1 +1	-1 +1	$\left\{\begin{array}{l}0=-0.8 \\ 0=+0.5 \\ 0=-1.8 \\ 0=+1.2 \\ 0=+0.2\end{array}\right.$	+42 $+\quad 9$ +9 -18 -18	+9 +27 +9 +8	$\left.\begin{array}{r} +\quad 9 \\ +\quad 9 \\ +209 \\ +100 \end{array} \right\rvert\,$	$\begin{aligned} & -1 S \\ & +8 \\ & +49 \\ & +18 \end{aligned}$	－ 18 +100 +18 +141	
v_{1} v_{9} v_{9}	$\begin{array}{r} 10 \\ 100 \\ 23 \\ 23 \end{array}$		${ }^{-1}$	－ 1	-1	－ 1	hence：		$\begin{aligned} & +0.01 \\ & -0.02 \\ & +0.01 \\ & -0.01 \\ & -0.00 \end{aligned}$	$\begin{aligned} & 63 \\ & 86 \\ & \hline 98 \end{aligned}$	$\begin{aligned} & v_{1}= \\ & z_{2}= \\ & z_{2}= \\ & z_{4}^{3}= \end{aligned}$	$\begin{array}{r} +0.02 \\ +0.60 \\ +0.29 \\ +0.55 \end{array}$	$\left\{\begin{array}{l} A-B=+0^{\circ} .8 \\ A=C=+0.5 \\ A-D=0.0 \\ A-E=+1.0 \end{array}\right.$

and applying these differences to the respective series－the Brunswick series remaining unchanged－ they become as follows：－

$\begin{aligned} & \dot{\text { En }} \\ & \text { 2 } \end{aligned}$				¢	$\begin{gathered} \text { 合 } \\ 0 \\ 0 \\ 0 \end{gathered}$			ジ				－	荋			$\stackrel{\dot{4}}{\stackrel{4}{3}}$					$\stackrel{\text { B }}{\stackrel{y}{E}}$		
	A	B	C	D	E				A				E				A	13	C	D	E．		
1807	$43 \cdot 7$	．．．	\cdots	．．．	\cdots	$43 \cdot 7$		I 829	46.2	44.0	\cdots	44.5	\cdots	44.9	45.6	1851	72.6	$43 \cdot 9$	44.5	\cdots	．．．	43.7	44．I
1808	43.4	．．．	\cdots	\ldots	\cdots	43.4	（43．1）	1830	47.5	45.3	．．．	44.6	．．．	＋15．8	45.5	I852	43.9	$44 \cdot 5$	45.2	\cdots		44.5	44．I
I 809	42.1	\cdots	\cdots	．．．	\ldots	42.1	43.1	1831	47.7	45．0	．．．	45.0	．．．	45.9	45.0	I853	44.5	．．．	．．．	．．．	．．．	44.5	43.9
1810	43.6		\ldots	43．I	\ldots	43.3	43.2	1832	45.2	42.8	\cdots	42.1	\cdots	43.4	44.2	IS54	42.7	．．．	．．．	．．．	．．．	42.7	43.8
I8II	44.7	\ldots	．．．	44.9	\ldots	44.8	43.2	1833	45.6	43.0	．．．	42，0	\ldots	$43 \cdot 5$	$43 \cdot 7$	IS55	42.9	．．．	45.7	\ldots	．．．	44.3	43.8
ISI2	40.9		\cdots	41.5	\ldots	41．2	43.0	1834	45.4	43.5	．．．	43.0	．．．	44.0	$43 \cdot 4$	1856	41.8	45．I	$1+4.0$	\ldots		43.6	43.8
I 813	43.2	．．．	\cdots	43.6	．．．	43.4	43.0	1835	44.4	42.7	．．．	42.6	．．．	43.2	42.9	1857	43.6	45.1	$+4.9$	\cdots	43．I	44.2	43.7
1814	$43 \cdot 3$		\ldots	44.0		43.6	43.0	1836	43.0	\＄1．0	．．．	40.9	\cdots	41.6	42.2	1858	43.8	44.3	42.9	\cdots	43.1	43.5	43.5
1815	42.9	．．．	\cdots	42.4	\ldots	＋2．7	42.7	1837	．．．	41.0	41．5	41．2	．．．	4 I． 2	42．1	1859	4.3	43.8	41.8	\ldots	43.4	42.3	43.4
1816	42.1		．．．	41.9	\ldots	42.0	42.4	$18_{3} 8$	．．．	42.8	43.2	43.1	\cdots	43.0	42.8	1860	．．．．	．．．	．．．	．．．	44.8	44.8	43.6
I817	41.6		．．．	42.0	．．．	41.8	42.7	1839	．．．	43.9	44.6	43.4	\ldots	44.0	$43 \cdot 7$	1861	．．．	．．．	43.6		43.6	43.6	43.7
ISIS	44 S	．．．	．．．	42.8	\ldots	43.8	$43 \cdot 5$	18.40	．．．	44.0	45.5	43.6	\ldots	44.4	$44 \cdot 3$	1862	．．．	．．．	43.4		43.4	43.4	43.7
1819	$45 \cdot 5$		．．．	44.7	\cdots	45.1	44.1	$18+1$	46.6	43.9	46.0	$43 \cdot 9$	\ldots	45.1	44.5	1863	．．．	．．．	43.6		44．2	43.9	44.0
1820	44.0	43.8	．．．	43.5	\cdots	43.8	44.0	$184=$	75.8	43.9	44.4	44．I		44.5	44.2	1864	．．．	．．．	45．I		44.3	44．7	44.5
1821	43.9	$43 \cdot 5$	．．．	42.8	\ldots	43.4	$43 \cdot 7$	1843	43.9	42.9	43.1	43.7		43.4	$43 \cdot 5$	1865	．．．	．．．	45．0		46.0	45.5	44.8
1822	43.1	44.4	＊．．	44.5	\cdots	44.0	$43 \cdot 5$	1844	42.3	43.5	41.0	42.9	\ldots	42.4	$43 \cdot 3$	1866	．．．	．．．	44．I	\ldots	45.0	44．5	44.4
1823	41.0	42.4	．．．	43.0	\ldots	42．I	$43 \cdot 5$	1845	$43 \cdot 3$	44．I	42.2	45.2	．．．	$43 \cdot 7$	43.8	1867	．．．	．．．	43.0	．．．	$43 \cdot 5$	$43 \cdot 3$	43.8
1824	43.9	44.0	＊．．	45.0	．．．	44.3	44.2	1846	44.0	45.2	45.0	4 S .4	．．．	$45 \cdot 6$	44.4	1868	．．．	．．．	12.9	．．．	43.0	43.0	43.5
1825	$45 \cdot 7$	46.0	\cdots	46.3	\ldots	46.0	45.2	1847	43.1	43.9	44.8	45.0	\ldots	44.2	44.5	I 869	．．．	．．．	$45 \cdot 3$	\ldots	45．I	45.2	（45．I）
1826	$45 \cdot 5$	45.8	．．．	46.6		46.0	45.4	1848	$43 \cdot 7$	$45 \cdot 4$	44.3	45.0	\ldots	44.6	44.3	1870	．．．	．．．	46.6	\cdots	475	47.0	（45．1）
1827	$43 \cdot 9$	44.0	．．．	44.0	．．．	44.0	45.4	1849	43.0	44.4	$43 \cdot 9$	44．0	\cdots	43.8	44.2								．
1828	46.9	46.2		$47 \cdot 5$	\ldots	46.9	$45 \cdot 5$	1850	43.4	45.2	44.7		．．．	44.4	44．I								

by having the letter C and a Roman numeral expressing the number of individual scries attached to the name of the principal station. These combinations are as follows:-

Brunswick, Me.	$\left\{\begin{array}{lllll} \text { Brunswick } & . & . & . & 49 \\ \text { years. } \\ \text { Portland } & . & . & . & 37 \\ \text { " } \\ \text { Gardiner } & . & . & 3 I & " \\ \text { Castine } & . & . & . & 40 \\ \text { " } \\ \text { Cornish } & . & . & . & .14 \end{array}\right.$	$\begin{array}{ccc}\text { Constant Reduction } & ++^{\circ} .8 \\ " & " 6 & +0.5 \\ " & " & 0.0 \\ " & " & +1.0\end{array}$
Salem, Mass.	$\left\{\begin{array}{lllll} \text { Salem } & . & \text { years. } \\ \text { New Bedford } & \cdot & \cdot & 5^{8} & " \\ \text { Cambridge } & \cdot & \cdot & 5^{0} & " \\ \text { Boston . } & \cdot & \cdot & \cdot 3^{2} & " \\ \text { Fort Independence } & 25 & " \\ \text { Providence . } & \cdot & .34 & " \end{array}\right.$	Constant Reduction $\begin{aligned} &-0^{\circ} .5 \\ &+0.4 \\ &-1.1 \\ &-0.7 \\ &-0.6\end{aligned}$
Montreal, Can. .	$\left\{\begin{array}{lllllll} \text { Montreal } & . & . & . & . & 27 & \text { years. } \\ \text { Second series } & . & . & . & 5 & " \\ \text { Third } & \text { "6 } & . & . & . & 9 & " \\ \text { Fourth } & \text { " } & . & . & . & 5 & " \\ \text { Fifth } & \text { " } & . & . & . & 6 & " \\ \text { Sixth } & \text { " } & . & . & . & 4 & " \\ \text { St. Martin } & . & . & . & 10 & " \end{array}\right.$	$\begin{aligned} & \text { Constant Reduction }-0^{\circ} .3 \\ &+0.7 \\ &+0.9 \\ &-1.1 \\ &+1.2 \\ &+0.6\end{aligned}$
New Haven, Conn.	New Haven . . . 85 years.	
Toronto, Can.	Toronto . . . 3 r years.	
New York, N. Y.	$\left\{\begin{array}{l}\text { Flatbush } 39 \text { years. } \\ \text { Fort Columbus }\end{array}\right.$	$\begin{aligned} & \text { Constant Reduction }-0.6 \\ &-0.3 \\ &-0.7\end{aligned}$
	$\left\{\begin{array}{l} \text { Philadelphia, series } \\ \text { Nos. 80, 81, } 83 \text { of } \\ \text { general table } \cdot 30 \text { years. } \\ \text { Philadelphia, series } \\ \text { No. } 8 z \text { of gen'l table } 20 \quad \text { s } \\ \text { Philadelphia, series } \\ \text { No. } 87 \text { of gen'l table } 40 \quad \text { "، } \end{array}\right.$	Constant Reduction - $5^{\circ} .8$ " "، +0.5
Philadelphia, Penn.	$\left\{\begin{array}{l}\text { Morrisville, series No. } \\ 65 \text { of general table } \\ \text { to } 1847 \text {. . . } 57 \\ \text { Morrisville, series No. } \\ 65 \text { of general table, } \\ 1849 \text { to i870... II } \\ \text { Germantown, series } \\ \text { No. } 40 \text { of gen'l table } 15 \\ \text { West Chester, series } \\ \text { No. ing of gen'l table } 16\end{array}\right.$	$"$ 6 +0.1 $"$ 6 +3.3 $"$ $"$ +2.2 $"$ \therefore +3.0
Charleston, S. C.	$\left\{\begin{array}{llll} \text { Charleston } & . & 25 & \text { years. } \\ \text { Fort Moultrie } & \cdot & \cdot 33 \\ \text { St. Johns . } & \cdot & 15 & " \end{array}\right.$	Constant Reduction ——o . 1 " " +2.7

Savannah, Ga.	$\left\{\begin{array}{lllll} \text { Savannah } & 25 & \text { years. } \\ \text { Augusta Arsenal . . . } & 22 & " \\ \text { Augusta } & 6 & " \\ \text { Oglethorpe Barracks } & 12 & " \end{array}\right.$	Constant Reduction $+2^{\circ} \cdot 3$ $\begin{array}{lll}\text { " } & \text { " } & +2.7 \\ " & " & -0.9\end{array}$
Fort Brooke, Fla	Fort Brooke . . . 27 years.	
Cincinnati, Ohio		$\begin{array}{ccc}\text { Constant } \\ \text { Reduction } & +2^{\circ} . \mathrm{I} \\ " ، & " & +2.3 \\ " & " & -0.1\end{array}$
Fort Snelling, Minn.	$\left\{\begin{array}{l} \text { Fort Snelling . } \end{array} .\right.$	Constant Reduction $+1^{\circ} .9$
Muscatine, Iowa	Muscatine 26 years. Fort Madison . . 22 "	Constant Reduction $-3^{\circ} \cdot 4$
St. Louis, Mo.	St. Louis 35 years. Jefferson Barracks . 32 "	Constant Reduction - 0°. 1
Ft. Leavenworth, Kan	$\left\{\begin{array}{l} \text { Fort Leavenworth } \\ \text { Leavenworth City } \\ \text {. } \end{array} 5\right. \text { years. }$	Constant Reduction $+\mathbf{I}^{\circ} .6$
Fort Gibson, Indian Territory	Fort Gibson . . . 29 years. Fort Towson . . . i6 " Fort Washita . . . 15 "	
Fort Jesup, La. .	Fort Jesup . . . 23 years.	
San Francisco, Cal.	$\left\{\begin{array}{l}\text { Alcatraz Island } \\ \text { Angel Island }\end{array}\right.$	$\begin{array}{ccc}\text { Constant } \\ \text { ، Reduction } & \text { - } \\ \text { r }\end{array}$

On the whole the constant reduction deduced by a rigorous method and applied to each separate series to refer to the central station, answered well enough, yet there were indications, when the several series were thus brought side by side, of deviations from constant reduction for some consecutive years, which imperfections may have been produced by a change of thermometer, a change in the location of the instrument, or a change of observing hours; in the latter case, it would indicate an imperfect correction for daily variation.

 	Year．
	〕
 \square	烒
	$\begin{aligned} & \text { H 苞 } \\ & \text { H } \\ & 0 \end{aligned}$
古かん 	$\begin{array}{ll} 0 & y_{1} \\ -1 & 0_{0}^{0} \end{array}$
	$\begin{array}{ll} \Omega & \ddots \\ H & 0 \\ & \\ \hline \end{array}$
	$\begin{array}{ll}\text { 节 } & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
	$\begin{aligned} & \text { 范 品 } \\ & 0 \end{aligned}$
 \qquad	
 	旁

ジ	Brunswick, Me .		Salem, Mass. C. VI. $4^{\text {th }}$ or.		Montreal, Can.		New Haven, Con.		Toronto, Can.		New York, N. Y.		Philadelphia, Pa .	
	C. V	or			C. V	or.	C. I.	Sth or.	C. 1.	$4^{\text {th or. }}$	C. IV	th or.	C.	
I820	$43^{\circ} .8$	$4 \stackrel{\circ}{\circ}^{\circ} \mathrm{O}$	$47^{\circ} 6$	$\stackrel{\circ}{47.9}$			47.9	48.0	\bigcirc		-	$\stackrel{\square}{\circ}$	2	$5 \stackrel{\circ}{\circ}$
1821	43.4	43.7	47.1	47.8		...	47.6	48.3						
1822	44.0	$43 \cdot 5$	48.9	47.7	\ldots		49.7	48.6			53.2	-- -		
1823	42. 1	$43 \cdot 5$	46.5	47.7	48.1	49.0			49.6	0.9	53.6	3.8
IS24	44.3	44.2	48.3	$4 \mathrm{S}$.	49.9	49.4	\ldots	*..	5 I .1	51.5	53.6	54.1
1825	46:0	. 45.2	49.6	48.9	50.7	49.7	53.4	52.1	55.2	54.4
IS26	46.0	45.4	49.7	49.1	$45 \cdot 9$	--	$49 \cdot 7$	49.8	52.5	52.2	54.8	$5+\cdot 5$
1827	44.0	45.4	48.1	48.9	43.5	44.8	48.9	49.9	51.0	52.0	53.2	5+. 5
1828	46.9	$45 \cdot 5$	49.5	48.7	46.1	45.2	51.8	49.8	...	*..	53.1	51.9	56.8	$54 \cdot 3$
1829	44.9	45.6	47.9	48.4	44.8	45.5	48.7	49.7	50.8	51.8	52.1	53.6
1830	45.8	$45 \cdot 5$	48.3	48.2	46.6	45.6	50.8	$49 \cdot 5$...	*.	52.9	51.7	53.2	52.7
1831	45.9	45.0	48.6	48.1	45.6	45.1	49.2	49.0	-..	\cdots	50.7	51.3	52.1	52.2
I832	43.4	44.2	47.4	47.9	$43 \cdot 5$	44.2	$47 \cdot 7$	48.5	...	\cdots	50.8	50.8	51.4	52.0
1833	43.5	$43 \cdot 7$	47.6	47.5	43.6	43.6	48.3	48.2 \cdot	50.9	50.5	52.1	52.0
1834	44.0	43.4	47.7	47.0	43.8	42.9	48.9	$47 \cdot 7$*	50.4	49.9	52.9	51.8
1835	43.2	42.9	46.3	46.2	$4 \mathrm{I} \cdot 7$	41.7	46.6	47.0	\ldots	...	48.8	48.8	51.2	51.2
1836	41.6	42.2	44.6	45.6	39.6	40.8	45.2	46.6	46.7	48.1	49.3	50.7
1837	4 I .1	42.1	45.2	45.7	40.7	40.8	46.4	46.9	48.5	48.4	51.4	$5 \mathrm{I} \cdot 2$
1838	43.0	42.8	46.7	46.5	4 I .1	41.7	48.2	47.6	49.7	49.4	52.5	52.1
1839	44.0	$43 \cdot 7$	47.6	47.2	43.6	42.6	$49 \cdot 2$	48.5		...	50.5	50.2	52.9	52.6
1840	44.4	44.3	47.9	47.5	43.2	43.0	49.0	49.0	43.6	\cdots	50.5	50.6	53.0	52.3
1841	45.1	44.5	47.2	47.6	43.2	43.0	$49 \cdot 5$	49.1	43.9	43.8	50.6	51.0	52.3	52.8
1842	$4+5$	44.2	47.9	47.5	42.7	42.8	$49 \cdot 9$	49.1	40.0	43.6	. 51.9	51.2	53.5	52.8
1843	43.4	43.5	46.8	47.5	42.5	42.6	$47 \cdot 4$	49. I	42.4	43.6	50.9	51.3	52.2	53.0
I 844	42.4	$43 \cdot 3$	47.7	47.8	42.2	42.8	50.2	$49 \cdot 4$	44.5	44. I	5 x . I	51.5	53.4	53.4
1845	43.7	43.8	48.7	48.3	$43 \cdot 4$	43.3	50.2	49.6	44.6	44.8	$52 \cdot 7$	51.8	54.4	53.9
1846	45.6	44.4	48.9	48.6	44.8	43.6	50.1	49.6	46.4	45.0	51.5	51.8	54.2	$54 \cdot 1$
1847	44.2	44.5	48.7	48.6	42.6	43.6	49.4	49.4	43.7	44.8	51.6	51.5	53.9	54.0
1848	44.6	$44 \cdot 3$	48.8	48.4	44.2	$43 \cdot 5$	49.2	49.1	45. I	44.6	51.4	51.0	54.0	54.0
I849	43.8	44.2	47.9	48.2	43.1	$43 \cdot 4$	48.3	48.9	44.1	44.4	$49 \cdot 9$	50.8	53.8	54.1
1850	44.4	44. I	48.0	48.1	43.8	$43 \cdot 3$	48.8	48.8	44.5	44.3	51.1	51.0	54.8	$54 \cdot 2$
1851	43.7	44.1	47.8	48.0	42.4	$43 \cdot 2$	49.0	48.8	44.0	44.2	51.6	5 I .2	$54 \cdot 5$	$54 \cdot 3$
1852	44.5	44. I	48.0	48.1	$43 \cdot 5$	43.1	48.8	48.9	43.8	44.2	51.3	51.3	53.7	54.4
1853	44.5	43.9	48.5	48. I	$43 \cdot 5$	42.9	49.6	49.0	44.8	$44 \cdot 5$	51.8	51.3	$55 \cdot 3$	54.6
I 854	42.7	43.8	47.9	47.9	42. 1	42.5	$49 \cdot 3$	48.9	45.2	44.5	51.0	50.9	54.7	$54 \cdot 4$
I 855	44.3	43.8	47.9	47.5	42.2	42.0	49.0	48.5	44.0	43.8	50.3	50.2	54.1	$53 \cdot 7$
I 856	43.6	43.8	46.4	47.1	41.2	41.7	47.0	48.1	42.2	43.2	$49 \cdot 0$	49.6	52.2	53.1
1857	44.2	43.7	47.1	47.1	41.7	41.5	$47 \cdot 5$	47.9	42.8	$43 \cdot 3$	$49 \cdot 3$	49.5	52.8	$53 \cdot 1$
1858	43.5	$43 \cdot 5$	47.4	47.2	41.0	41.6	$48 \cdot 3$	48.0	44.8	43.9	50.0	49.7	54.3	$53 \cdot 5$
1859	42.3	43.4	47.2	$47 \cdot 4$	41.6	42.3	48.0	48.3	44.2	44.2	50.0	50.1	53.7	53.7
I 860	44.8	43.6	48.2	47.7	44.4	43.2	$4^{8.6}$	48.7	44.3	44.3	$50 \cdot 7$	50.5	53.5	53-7
1861	43.6	$43 \cdot 7$	47.8	47.8	43.6	43.6	50.1	49.1	44.2	44.3	$5 \mathrm{I} \cdot 2$	50.9	54.1	$53 \cdot 7$
1862	43.4	43.7	47.8	47.9	42.9		$49 \cdot 5$	49.6	44.4	44.4	50.7	5 I. I	53.2	53.8
1863	43.9	44.0	48.4	48.0	50.0	49.8	44.6	44.5	51.8	51.3	54.2	54-1
I 564	$4 \pm .7$	44.5	47.6	4S. 2*	49.9	50.0	44.7	44.6	51.4	51.5	54.7	54.6
I 865	45.5	44.8	49.8	48.3	50.0	- -	44.9	44.4	$52 \cdot 1$	51.3	55.6	54.9
1866	44.5	44.4	47.3	47.9	\ldots	43.5	44.0	50.5	50.7	54.7	54.6
1867	$43 \cdot 3$	43.8	47.7	$47 \cdot 4$			\cdots	\ldots	43.8	$43 \cdot 7$	50.2	50.1	54.2	53.9
IS6S	43.0	43.5	46.0	47.3	...	\ldots	...		$43 \cdot 3$	43.6	48.7	50.0	52.7	53.7
1869	45.2	45.1	47.9	47.8	\ldots	43.1	43.8	50.4	50.6	54.2	54.2
I 870	47.0	---	49.6	- . -	\ldots	\cdots	\cdots	\ldots	$45 \cdot 9$. -	52.9	5	55.9	-.

	Year．
	B ? 룰
	亿
	著
	$\stackrel{?}{\dot{H}}$
	$\begin{aligned} & \Omega \\ & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & 0 \end{aligned}$
	$\begin{aligned} & \Omega \\ & -B_{0} \\ & \text { 号 } \end{aligned}$
	$\begin{aligned} & \text { 学总 } \\ & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$
	$\begin{array}{ll} 0 & \% \\ \hdashline-7 & 5 \\ \hdashline-1 \end{array}$
	$\begin{array}{ll} \stackrel{y}{3} \\ \stackrel{y}{*} & 0 \\ 0 & 0 \\ \hline \end{array}$

ジ	Charleston， S．C．		Savamnah，Ga．		Fort Brooke,Fla.		Cincinnati， Ohio．		Fort Snelling， Minn．		Muscatine， Iowa．		St．Louis，Mo．	
	C．III	$4^{\text {th }}$ or．	C．IV	$4^{\text {th }}$ or．	C．I．	$4^{\text {th }}$ or．	C．IV．	$4^{\text {th }}$ or．	C．II	$4^{\text {th }}$ or．	C．I	$4^{\text {th }}$ or．	C．II	4th or
ISoo	－	－	－	\bigcirc	\bigcirc	－	－	－	。	－	－	－	－	－
1 SoI	\ldots	．．．	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots			\cdots	\cdots	．．
ISO2	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\ldots	\ldots	．．．		\ldots	．．	
$1 \mathrm{I}_{2}$	．．．	．．．	．．．	\ldots	．．．	\ldots	\ldots	．．．	\ldots	．．．		．．．		
1804	．．．	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	．．．	\ldots		
1805	\ldots	．．．	\ldots	\ldots		．．．		．．	．．．	．．．		．．．	\ldots	
1So6	．．．	．．．	\ldots	\ldots		．．．	54．I	\cdots	．．．	\cdots	．．．	．．．		．．．
ISo7	．．．	．．．	．．．	．．．	．．．	．．．	54.4	54.8	．．．	．．．	．．．	．．．	．．．	．．．
I Sos	\ldots	\ldots	\ldots	\ldots	．．．	．．．	56.4	55.1	\ldots	\ldots	．．．	\cdots	\ldots	
1809	．．．	．．．	\ldots	\cdots	\ldots	\cdots	54.4	54.7	\cdots	\cdots	．．．	．．．	\cdots	
I 110	．．．	．．．		．．．	．．．	．．．	52.8	54.4	．．．		．．．	．．．		
ISII	．．．	．．．	．．．	\cdots	\cdots	\ldots	56.6	54.3	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
ISI_{1}	．．．	．．．	．．．	．．．	．．．	．．．	52.6	53.8	．．．	．．．	．．．	．．．	\ldots	．．．
－ SI_{1}	\ldots	\cdots	\ldots	\cdots	\ldots	．．．	52.7	53.5	\ldots	\ldots	\cdots	．．．	\cdots	\ldots
ISI4	．．．	\ldots	\ldots	\cdots	\ldots	\cdots	54.3	53.7	．．．	\ldots	\ldots	．．．	\ldots	
ISi5	．．．	\cdots	\ldots	\cdots	\ldots	．．．	54.0	53.7	\ldots	\ldots	\ldots	\ldots	\cdots	
ISI6	．．．	．．．	．．．	．．．	．．．	\cdots	53.3	53.4	\ldots	．．．	．．．	\ldots	\ldots	
1817	．．．	．．．	\cdots	．．．	\ldots	．．．	52.7	53.5	\ldots	\cdots	．．．	\ldots	．．．	\ldots
ISIS	\ldots	\ldots		\ldots	\ldots	．．．	54.1	54.2	\ldots	．．．	\ldots	\cdots	\cdots	\cdots
IS19	\cdots	\cdots	64.6		\ldots	\ldots	56.3	54.9	\cdots	\ldots	\cdots	\cdots	\cdots	
1820	\ldots	\ldots			\cdots	\cdots	54.8	54.8	43.0	－－－	\ldots	\ldots	\cdots	\ldots
1821	．．．	．．．			\ldots	\ldots	53.5	54.5	42.9	43.2	\cdots	\ldots	\ldots	．．．
$1 \mathrm{I}_{22}$		．．．			\cdots	\cdots	$55 \cdot 3$	54.5	43.7	43.3	\ldots	\ldots	\cdots	．．．
1823	64.2	－－			．．．	．．．	54.0	54.6	43.4	43.5	\cdots	．．．	\ldots	
1824	66.4	65.9			\cdots	．．．	55.0	54.9	42.8	44.2	．．．	\ldots	．．．	
1825	66.7	66.8			72.0	－．	55.4	55.2	47．I	45.0	．．．	\ldots	\cdots	．．．
1826	67.9	67.5	69.4		72.9	72.9	55.7	55.6	44.4	45.3	．．．	\ldots		\cdots
1827	66.9	67.9	68.7	69.1	73.8	73.1	55.8	55.8	45.7	45.5	．．．	．．．	58.8	
1828	70.6	68.1	69.7	67.7	73.5	72.9	57.0	55.7	46.0	45.7	．．．	．．．	58.7	57.8
IS29	65.4	67.9	63.5	66.5	71.2	72.4	53.8	55.0	$45 \cdot 3$	45.8	．．．	．．．	55.0	56.6
1830	69.7	67.3	67.9	65.8	72.6	71.9	55.7	54.1	47.9	45.6	．．．	．．．	58.0	55.3
1831	65.3	66.5	64.1	65.8	71.0	－	51.4	53.6	42.4	45.1	．．．	\ldots	50.6	54.4
1832	65.7	65.8	66.0	66.3	－．	\cdots	54.4	53.9	45.4	45.3	\ldots	\ldots	55.6	54.8
1833	65.6	65.6	67.8	66.9	－－－	．．．	54.9	54.4	47.5	46．I	．．．	\cdots	56.9	55.5
1834	65.2	65.5	68.0	66.6		．．．	55.2	53.9	46.7	45.5	．．．	．．．	55.7	55.0
1835	63.7		64.5	65.4		．．．	51.7	52．8	43.0	44.1	．．．	\cdots	52.8	53.9
IS36	－－－		64.4	64.4		．．．	51.7	52.2	42.5	43.1	\ldots	．．．	53.2	53.4
1837	－．－		63.5	63.9	－	\cdots	53.0	52.4	43.6	43.0	\cdots	\cdots	54.1	53.5
$15_{3} 8$			$63 \cdot 3$	63.9	70.1	－－	52， 1	52.9	41.3	43.5		\ldots	52.7	53.7
1839			$6+7$	6.4	71.6	70.9	54.6	53.6	46.8	44.4	51.3		54.6	54.1
$1 S_{40}$	66.0		64.9	64.9	70.5	－ 70.9	54.1	54.0	44.4	44.6	49．1	49.0	54.4	54.5
IS ¢ $^{\text {I }}$	65.6	65.5	65.3	65.2	71.2	70.9	54.1	54.0	43.9	44.0	46.5	47.5	54.9	54.9
${ }_{1} S_{42}$	64.7	65.4	65.5	65.5	71.2	70.8	54.3	53.6	42.8	42.7	47.3	46.3	56.2	54.9
$\mathrm{I}_{4} \mathrm{~S}_{4}$	65.7	65.6	66.0	65.7	70.3	70.7	51.7	53.5	39.9	42.0	43.7	46.0	52.9	54.8
1844	66.1	65.0	66.1	65.7	70.4	70.7	54.9	53.9	42.7	43．1	47.7	46.6	55.8	$55 \cdot 3$
1845	66.2	66.2	$65 \cdot 3$	65.6	70.6	70.9	54.1	54.5	45.8	44.9	47.3	47.2	56.7	56.0
1846	66.9	66.3	65.2	65.5	71.6	71.3	55.8	54.6	48.3	45.3	48.6	46.6	56.7	55.8
1847	65.8	66.3	65.5	65.8	71.7	72.0	53.5	54.4	41.9	43.9	43.2	45.5	53.8	54.9
IS48	66.6	66.4	66.6	66.1	72.8	72.8	54.4	54.2	42.6	42.8	$45 \cdot 5$	45.2	54.4	54.5
1849	66.4	66.6	66.3	66.4	74.4	73.4	53.8	54.2	42.3	43.0	45.5	45.8	54.1	54.6
IS50	67.2	65.6	67.0	66.4	73.5	73.1	54.2	54.2	43.7	44.0	47.0	46.6	55.2	55.0
1851	66.3	66.5	65.8	66.1	71.3	72.4	54.6	54.3	46.7	44.6	47.6	47．1	55.5	55.2
$1 S_{52}$	66.4	66.4	66.1	65.9	72.0	72.1	54.3	54.6	43.8	44.2	46.7	47.5	55.1	55.5
IS_{53}	66.3	66.2	65.4	65.9	73.0	72.1	54.4	55.0	42.3	43.6	47.8	48.2	55.7	56.0
1854	66.1	65.9	66.4	65.8	71.5	7 7 .7	56.8	55.2	44.8	43.5	50.5	48.3	57.9	56.0
18_{55}	65.4	65.1	65.8	65.4	70.9	71.2	55.0	54.6	43.2	43.2	47.2	47.1	54.8	55.0
${ }_{1 S}{ }_{5} 6$	63.7	64.4	64.4	64.9	70.7	70.7	52.3	53.8	42.4	42.3	45.2	45.6	52.4	53.8
1857	63.6	64.4	63.9	65.0	70.5	－．	53.1	54.0	4 I .1	－．	44．I	45.3	53.3	54.0
1858	65.8	65.0	66.3	66.0	，	．．．	56.3	54.9	－－－	\ldots	47.1	46.0	56.1	54.9
1859	65.6	65.5	67.5	．－．	．．．	．．．	55.4	55.4	－－	．．．	46.4	47.0	55． 1	55.6
1860	65.4	65.6	－	．．．	．．．	．．．	$55 \cdot 3$	55.4	－－－	．．．	48.0	47.4	56.3	55.9
1861	65.9		－－－	\cdots	\ldots	\cdots	55.2	$55 \cdot 3$	－－－	\cdots	48.3	47.5	56.5	55.9
1862		．．．		\ldots	．．．	．．．	55.6	$55 \cdot 2$	－－－	．．．	46.6	47．I	55.6	55.5
1863		．．．	－－－	．．．	．．．	．．．	55．1	55.0	44．I	－－	46.9	46.9	54.4	55．1
1864		．．．	－－－	．．．	．．．	．．．	54.1	55.0	44.7	44.6	46.7	46.9	54.8	55.2
I 865		．．．		．．．	．．．	．．．	56.1	55.0	45．1	44． I	47.8	46.8	56.4	55.5
I 866		\cdots	－－－	\cdots	．．．	\cdots	54． 1	54．S	42.3	43.5	45.9	46.5	55.2	55.4
I 867	…	．．．	65.0	…	．．．	．．．	55.4	54.5	43.2	43.2	46.2	46.2	$55 \cdot 3$	55.0
1868		．．．	64.8	65.0	．．．	．．．	53.2	54.2	43.7	43.5	46.0	46.2	54.3	54.7
1869		．．．	65.6	65.3	\ldots	\cdots	54． 1	54.2	43.1	44.2	45.5	46.4	54．I	54.6
1870	－－－	．．．	65.4	－．．	．．．	．．．	55.6	－．－	47.2		48.7	－－	55.9	－．－

¢	Fort Leavenworth, Kan.		Fort Gib C. III.	dian Ter. $4^{\text {th }}$ or.	Fort C. I.	La. $4^{\text {th }}$ or.	San Francisco, Cal.	
I 820	-	-	-.	$\stackrel{\circ}{\circ}$	\ldots	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$
IS2I	\ldots			
IS22	\ldots	\ldots	\ldots
1823	67.3	--	\ldots	\ldots
1824	...	\ldots	69.2	68.4
1825	\ldots	...	67.7	68.5
1826	68.9	68.6
1827	69.1	68.4
1828	63.0	-.	68.1	67.6
1829	\ldots	...	60.9	62.3	65.1	66.2
1830	56.6	-. -	64.6	61.6	66.4	65.1
1831	49.8	52.4	57.7	60.7	62.6	64.8
1832	53.4	53.1	61.3	60.5	66.0	65.5
1833	55.5	53.6	61.1	60.7	67.1	66.4
1834	52.4	52.8	61.5	60.3	67.5	66 I
1835	51.7	51.5	58.1	59.6	64.0	65.0
1836	48.7	51.0	59.0	59.5	63.7	64.4
1837	52.9	51.4	60.8	59.7	65.1	64.6
1838	51.1	52.0	58.1	60.0	64.2	65.4
1839	53.6	52.2	61.9	60.3	67.3	66.4	\ldots	...
$\mathrm{I}_{4} \mathrm{~S}_{0}$	51.4	52.0	60.5	60.4	67.8	66.6
1841	51.2	51.6	59.1	60.3	65.1	66.1
1842	52.8	5 I .4	61.6	60.3	66.4	65.7
I 843	49.0	5 F .4	59.3	60.5	64.3	65.5
1844	52.7	52.3	61.5	60.8	66.3	65.7
${ }^{1} \mathrm{~S} 45$	54.8	53.6	61.4	6 I .1	65.7	-
$1 \mathrm{~S}_{46}$	55.3	53.3	61.5	60.7	...	\cdots
1847	49.8	52.1	59.1	60.0
1848	51.7	51.7	59.6	59.6
I849	52.2	51.9	59.5	59.9
1850	52.0	52.2	60.4	60.2	\ldots
1851	53.2	52.3	61.4	60.3	58.5	-.
1852	51.5	53.0	59.0	60 I	5	57.8
1853	53.1	53.9	60.1	60.3	57.2	57.7
1854	55.9	54. I	61.8	60.6	56.3	57.3
1855	$54 \cdot 3$	53.4.	60.4	60.1	\ldots	...	57.8	56.8
1856	50.0	52.4	58.4	59.0	...	\ldots	56.3	56.6
1 IS57	52.2	52.6	58.7		56.8	56.2
1858	$55 \cdot 3$	53.6	5	\ldots	55.7	55.7
1859	52.9	54.3	54.9	55.4
1860	56.0	54.4	\ldots	\ldots	...	\ldots	55.4	55.2
1861	54.0	54.0	...	\ldots	55.5	55.2
1862	52.7	53.1	...	\cdots	54.7	55.2
1863	52.9	52.7	55.2	55.3
I 864	52.0	52.6	...	\ldots	...	\ldots	56.3	55.4
1865 1866	53.5	52.5	\ldots	\ldots	54.8	55.5
1866	52.0	52.3	\ldots	\ldots	\cdots	\cdots	55.4	55.6
1867 1868	51.8	52.0 52.0	\cdots	\cdots	\cdots	\cdots	56.3	55.9
1869	52.1 51.3	52.0 52.2	\cdots	\ldots	\cdots	\cdots	55.3	56.3
1870	$54 . \mathrm{I}$	5.2.	...	\ldots	\ldots	\cdots	58.0 57.6	57.2

The character of the secular variation in the mean annual temperature, as exhibited on the accompanying plate, is that of a series of irregular waves representing a succession of warmer and colder periods, during which, however, the mean temperature deviates only about one or two degrees, in excess or defect, from its normal value. Irrespective of the minor irregularities, which have to some extent been eliminated, some of the single progressions appear quite systematic; thus, for instance, at New Haven, the temperature steadily declined from 1802 to 1817, it then increased till 1827, after which it again decreased, reaching a decided minimum in 1836. These undulations, when compared for a number of stations exposed to similar climatological conditions, approach to parallelism over large tracts of country, and exhibit considerable uniformity in their general character ;

为

꿀 $\frac{11 n}{11} \frac{n}{n}$
 ry 4

Talley of the Mississipui.

 ォ f.

$$
*
$$

thus from Maine to Georgia these waves are of a broad and well-defined shape, as at New Haven, but they become somewhat changed in their appearance over the vast area watered by the Mississippi and its tributaries; here the undulations become more narrow and numerous, as at Fort Snelling. The change from one form into the other is very gradual, and with an increase of the geographical distances some of the old features become obliterated and new ones make their appearance. The curve for Cincinnati, for instance, partakes of an intermediate character between the eastern or Atlantic type and that of the Mississippi basin. On our western coast, as might have been expected, a new feature is developed, subject perhaps to less irregularities than in any other part of the country, and for this reason well suited for the study of the proximate causes which determine its laws. The curve for San Francisco is presented as a type for the Pacific coast.

The remarkably cold epoch about 1837 with cold years preceding and following

- is common to all stations represented between the Atlantic coast and the eastern flank of the Rocky Mountains, and the exceptionally warm period about 1827 perhaps extended likewise over a very large area.

There is nothing in these curves to countenance the idea of any permanent change in the climate having taken place, or being about to take place; in the last 90 years of thermometric records, the mean temperatures showing no indication whatever of a sustained rise or fall. The same conclusion was reached in the discussion of the secular change in the Rain-Fall, which appears also to have remained permanent in amount as well as in annual distribution.

The degree of parallelism of the curves is sufficiently close to warrant an additional consolidation of results for a few characteristic stations, for further study; one typical curve will be given for the Atlantic coast and another for the Mississippi valley.

The first is composed of the long series of mean annual temperatures at Brunswick, Me., Salem, Mass., New Haven, Conn., and Philadelphia, Penn., to represent during 91 years the type of the secular change for those eastern States which are situated between the Atlantic and the Alleghany Mountains. These four series are unbroken between 1807 and 1865 , and for these 59 ycars the individual means are set down, as in the table below; to reduce those values which lie outside of these limits to uniformity, the 59 differences for each series from the mean series were formed, and the respective mean difference applied as reductions; they are, for Brunswick $+4^{\circ} .5$, for Salem $+0^{\circ} .6$, for New Haven $-0^{\circ} .4$, and for Philadelphia $-4^{\circ} .7$. After this the means were taken for each of these years, except for the years $1780,1783,1784$, and 1785 , which are covered by one serics only.

Table of consolidated mean annual temperatures at Brunswick, Salem, New Haven, and Philadelphia.

	\bigcirc	1	2	3	4	5	6	7	8	9
1780	$49^{\circ} \cdot 3$	50.4	48.7	49.5	46.9	$47 \cdot 3$	48.2	47.9	48.5	48.3
1790	48.5	49.2	47.9	50.3	49.1	48.7	47.9	$47 \cdot 5$	48.9	48.1
1800	49.1	$49 \cdot 7$	50.5	49.6	48.6	49.7	48.1	47.7	48.7	47.5
1810	48.4	49.2	46.1	47.9	48.0	47.2	46.4	46.7	47.8	49.0
1820	47.9	475	49.2	47.6	49.0	50.4	50.0	48.6	51.2	48.4
1830	49.5	48.9	47.5	47.9	48.4	46.8	45.2	46.0	47.6	48.4
I $8+0$	48.6	48.5	48.9	$47 \cdot 5$	48.4	$49 \cdot 3$	$49 \cdot 7$	49.0	49.2	48.5
1850	49.0	48.8	48.8	49.5	48.7	48.8	$47 \cdot 3$	47.9	48.4	47.8
1860	48.8	48.9	48.5	49.1	49.2	50.2	49.0	48.5	47.4	49.2
1870	51.0									
General mean, 48.52.										

From the preceding table we form the successive means of the 4th order, as follows:-

	\bigcirc	I	2	3	4	5	6	7	8	9
1780	---	(49.6)	49.2	48.5	47.8	47.6	$47 \cdot 7$	48.0	48.2	48.4
1790	48.6	48.7	49.0	49.2	49.1	48.6	48.1	48.1	48.3	48.6
1800	49.1	49.5	49.8	49.6	49.2	48.9	48.5	48.2	48.1	48.1
1810	48. I	48.0	47.6	$47 \cdot 5$	47.4	47.2	46.8	47.1	47.7	48.1
1820	48.1	48.2	48.3	48.5	49.0	49.6	49.8	$49 \cdot 7$	49.6	49.4
1830	49.1	48.6	48. 1	47.8	47.5	$+6.8$	46.2	46.4	$47 \cdot 3$	48.1
18.40	48.4	48.5	48.4	48.3	48.6	49.0	$49 \cdot 3$	49.2	49.0	48.9
I 850	48.8	48.8	48.9	49.0	48.8	48.4	48.1	48.0	48.1	48.3
1860 1870	48.5 .--	48.7	48.9	49.1	$49 \cdot 3$	49.4	49.1	48.5	48.4	(49.2)

Also the following table of differences from the mean $48^{\circ} .5, a+s i g n$ indicating a warmer, a - sign a colder year than the normal one.

	\bigcirc	I	2	3	4	5	6	7	8	9
I 780	-- -	+I.I	+0.7	0.0	-0.7	-0.9	-0.8	-0.5	-0.3	-0.I
1790	to. 1	+0.2	+0.5	+0.7	+0.6	+0.1	-0.4	-0.4	-0.2	+0. I
I 800	+0.6	+1.0	+1.3	+r.I	$+0.7$	+0.4	0.0	-0.3	-0.4	-0.4
I 810	-0.4	-0.5	-0.9	-r.0	-1.I	-1.3	-1.7	-1.4	-0.8	--0.4
I820	-0.4	-0.3	-0.2	0.0	+0.5	+1.1	+1.3	+1.2	+I.I	+0.9
1830	+0.6	+0.1	-0.4	-0.7	-1.0	-1.7	-2.3	-2.1	-1.2	-0.4
1840	-0.1	0.0	-0.1	-0.2	+0.1	+0.5	+0.8	+0.7	+0.5	+0.4
1850	+0.3	+0.3	+0.4	+0.5	$+0.3$	-0.1	-0.4	-0.5	-0.4	-0.2
1860	0.0	$+0.2$	+0.4	+0.6	+0.8	+0.9	+0.6	0.0	-0.1	(+0.7)

The use of this table for obtaining the normal annual temperature from a single year or from a few years of observation is obvious ; we have only to apply the tabular quantity with its sign reversed as a correction to the mean (observed) temperature of each year

The second type-curve is made up from the stations: Fort Snelling, Minn., Muscatine, Iowa, St. Louis, Mo., Fort Leavenworth, Kan., and Fort Gibson, Indian Ter. These series have 19 years in common (1839 to 1857 inclusive), for each of which the means from the five values were set down, the observed annual temperatures for years before and after were first referred to the same mean series by the reductions $+7^{\circ} .9,+4^{\circ} .7,-3^{\circ} .2,-0^{\circ} .8$, and $-8^{\circ} .6$ to the stations respectively (these numbers were deduced fron: comparisons of each series with every other). We have the following tables:-

Table of consolidated mean annual temperatures at Fort Snelling, MLuscatine, St. Louis, Fort Leavenworth, and Fort Gibson.

	0	I	$\mathbf{2}$	3	4	5	6	7	8	9
$\mathbf{1 8 2 0}$	50.9	50.8	51.6	51.3	50.7	55.0	52.3	54.6	54.6	52.4
$\mathbf{1 8 3 0}$	55.6	48.9	52.7	54.1	53.1	50.2	49.7	51.7	49.6	53.6
1840	52.0	51.1	52.1	49.0	52.1	53.2	54.1	49.6	50.8	50.7
$\mathbf{1 8 5 0}$	51.7	52.9	51.2	51.8	54.2	52.0	49.5	49.9	53.1	51.7
$\mathbf{1 8 6 0}$	53.7	53.2	51.9	51.7	51.7	52.8	51.0	51.3	51.4	50.6
$\mathbf{1 8 7 0}$	53.6									

General mean, 51.95.

From the above table we derive the following successive means of the 4 th order: -

	-	I	2	3	4	5	6	7	8	9
1820	---	(55.1)	51.3	51.4	52.0	53.0	53.6	53.9	53.9	53.6
1830	52.9	52.1	52.3	52.9	52.3	5 L .1	50.5	50.7	51.4	52.1
I840	52.1	5 F .6	5 I .1	51.0	51.8	52.6	52.4	5 1.3	50.8	51.0
1850	51.6	51.9	52.I	52.3	52.5	51.8	50.7	50.8	5 I .8	52.5
1860	52.8 $-\cdots$	52.7	52.2	51.9	51.9	51.9	51.5	$5 \mathrm{I} \cdot 3$	5x.3	(51.6)

Table of differences from the mean 52°.o.

	-	I	2	3	4	5	6	7	8	9
1820		(-0.9)	-0.7	-0.6	0.0	+1.0	+i. 6	+ r .9	+1.9	+r. 6
1830	+0.9	+o. 1	+0.3	+0.9	+0.3	-0.9	-1.5	-I. 3	-0.6	+o. 1
1840	+0.1	-0.4	-0.9	-1.0	-0.2	+0.6	+0.4	-0.7	-1.2	-1.0
1850	-0.4	-0.1	+o.I	$+0.3$	+0.5	-0.2	-1.3	-1.2	-0.2	+0.5
1860 1870	+0.8	+0.7	$+0.2$	--. I	--.1	-0.1	-0.5	-0.7	-0.7	(-0.4)

[This table can be used to obtain normal temperatures at places in the Mississippi valley, as explained above.]

$$
40 \text { June, } 1875 .
$$

These differences from the normal values have been thrown into curves, and are given, together with the exhibit of the relative frequency and amount of solar spots, in the bottom line of the accompanying plate; the Atlantic type-curve is shown heavy, the Mississippi type-curve dotted, and the sun-spot curve by a zigzag line, according to Prof. R. Wolf's numbers. ${ }^{1}$

The distinguishing features, as described above, of these two type-curves appear well marked, the longer waves of the Atlantic stations show:
$\begin{array}{lllll}\text { Principal maxima in } & 1802 & 1826 & 1846 & 1865\end{array}$
and principal minima in $1785 \quad 1816 \quad 1836 \quad 1857$
the average interval being about 22 years; the shorter waves of the interior states show:-
$\begin{array}{llllllll}\text { Principal maxima in } & 1827 & 1833 & 1839 & 1845 & 1854 & 1860\end{array}$ $\begin{array}{llllllll}\text { and principal minima in } & 1831 & 1836 & 1843 & 1848 & 1856 & 1867\end{array}$ the average interval being about 7 years. These undulations, however, are not sufficiently regular nor sufficiently distinct, being mixed with subordinate fluctuations, to serve as a basis of prediction; all that can be claimed for them is a general exponent of the character of the secular change.

Comparison of the secular variation of the temperature with the variations in the frequency of the solar spots.-It is evident, from the preceding statements respecting the average duration of successions of warmer and colder years, that no intimate relation appears to exist between the two phenomena-they seem to have no feature in common, the sun-spot period of about 11 years is not systematically followed by any of the temperature waves; the chief characteristic of connection, that of equality of average periods, being wanting, we necessarily have coincidence, viz., greater development of sun-spots corresponding to greater cold, as for the years between 1810 and 1822, as well as opposition, viz., a greater development of sun-spots during a time of increased heat, as for the years 1799 to 1806 , and in general we have phases of the two curves presented in all possible combinations. If we consider the small difference in the radiating energy of the surface of a spot and of the unbroken surface of the sun, as well as the comparatively small collective area of

[^129] (March, 1874) and No. 2014 (Nov. 1874), those prior to 1759 from his "Mittheilungen."

	\bigcirc	1	2	3	4	5	6	7	S	9
1740										63.8
5750	68.2	40.9	33.2	23.1	13.8	6.0	8.8	30.4	38.3	48.6
1760	48.9	75.0	50.6	37.4	34.5	23.0	17.5	33.6	52.2	108.3
1770	79.4	73.2	49.2	39.8	47.6	27.5	35.2	63.0	94.8	90.2
1780	72.6	67.7	33.2	22.5	5.0	21.2	68.6	104.8	107.8	110.7
1790	84.4	53.4	47.5	40.2	34.3	22.3	15.1	7.8	4.4	10.2
1800	18.5	38.6	57.8	65.0	75.0	50.0	25.0	15.0	7.2	3.4
1810	0.0	1.2	$5 \cdot 4$	13.7	20.0	35.0	45.5	43.5	34.1	22.5
1820	8.9	4.3	2.9	1.3	6.7	17.4	29.4	39.9	52.5	53.5
1830	59.1	38.8	22.5	7.5	11.4	45.5	96.7	111.0	82.6	68.5
1840	51.8	29.7	19.5	8.6	13.0	37.0	47.0	79.4	100.4	95.6
IS50	64.5	61.9	52.2	37.7	19.2	6.9	4.2	21.6	50.9	96.4
1860	98.6	77.4	59.1	44.0	46.9	30.5	16.3	$7 \cdot 3$	$37 \cdot 3$	73.9
1870	139.1	111.2	101.7	66.3						

the spotted surface as contrasted with the whole sun, the failure in the detection of any close relationship between the annual changes of spots and of terrestrial temperature (as examined by the comparatively crude process of annual means) should not be surprising, unless there should be connected with these solar disturbances some other less direct cause producing changes of radiation. Still it is very desirable to follow up the subject by further comparisons of the American results with those obtained on the Eastern Continent, and especially with results from stations in the Southern Hemisphere. ${ }^{1}$

Comparison of the secular variation in the temperature and the rain-fall, in the United States.-The data for the annual rain-fall are taken from p. 154 of my memoir on the Rain-Fall (Smithsonian Contributions to Knowledge, No. 222; Washington, May, 1872), from which groups I and IV have been selected as representative stations of the same climatological conditions to which the temperature types I and II refer. The fourth order of successive means are tabulated below; these proportional numbers have already been charted on p. 157 of the RainFall Memoir. The average annual amount of rain deduced from the whole series is put equal to 100 .

Secular variation in the Rain-Fall, sea-coast, Maine to Virginia.

	-	I	2	3	4	5	6	7	8	9
I800	-.-	--	--	---	-- -	(94)	96	102	106	101
1810	94	96	101	104	103	97	92	90	87	87
1820	93	94	96	97	94	89	91	96	102	108
1830	III	108	104	99	94	9 I	90	90	93	98
1840	103	105	106	103	98	96	100	102	99	100
1850	105	106	105	105	102	98	9^{8}	102	106	108
1860	108	108	III	110	106	104	(107)			

Secular change in the Rain-Fall, Ohio Valley, Ohio, Indiana, Illinois, Kentucky, and part of Missouri.

	-	I	2	3	4	5	6	7	8	9
1810	--	---	---	---	--	\cdots	- -	---	-- -	(96)
1820	95	100	105	107	106	104	103	103	102	97
1830	95	101	102	97	93	93	93	89	84	86
1840	92	95	98	99	100	104	110	114	113	IIo
1850	106	102	97	93	93	94		99	109	109
1860	103	101	99	95	93	97	(103)			

${ }^{1}$ To mention but one case of evidence, supposed to be in favor of a correspondence of the sunspot and temperature periods, the reader may consult: The London, Edinburgh, and Dublin Phil. Mag., vol. xlii, July to Dec. 1871. "On the approximate decennial variation of the temperature at the Observatory at the Cape of Good Hope, between the years 1841 and 1870, viewed in connection with the variation of the solar-spots." By E. J. Stone, F.R.S, Astron. Roy. at the Cape of Good Hope. Here it is believed that the same cause which leads to an excess of mean annual temperature leads equally to a dissipation of the solar spots.

On the annexed diagram, the upper pair of curves refer to stations on the Atlantic coast, the lower pair to stations in the Mississippi valley; the heavy lines represent the secular change in the temperature, the light ones that of the rain-fall. Though the connection between the changes of temperature and rain-fall is not, in detail, any way conclusive, yet in general following out the larger waves, there seems to be some ground for concluding that years with a mean temperature above the normal have a rain-fall above the normal or average amount, and years deficient in the mean temperature present also a deficiency in the rain-fall.

That this apparent law is not expressive in the minor undulations may be explained by the small number of stations contributing information to both temperature and rain-fall, and thus admitting the presence to some extent of local peculiarities; yet it cannot be overlooked that there is some similarity in the general character of the two phenomena; further comparisons, however, are desirable.

In explanation it may be remarked, that the greater the heat of the air, the greater the amount of vapor it can hold, hence the greater the capacity for precipitation as well as for evaporation.

Comparison of the secular variation in the temperature with the average annual direction of the wind. - The following numbers have been extracted from p. 42 of my discussion of the Meteorological Observations ${ }^{1}$ at Brunswick, Maine, made by Prof. P. Cleaveland; they give the deflections in degrees, + to the north (increasing azimuth), - to the south (decreasing azimuth), from the mean assumed direction of the wind $x=101^{\circ}$, counted like azimuths from the south around by west to 360°.

[^130]The table below contains the deflections from the normal direction of the wind $x=68^{\circ}$ at Marietta, Ohio, taken from p. 36 of my discussion of the Meteorological Observations ${ }^{1}$ at Marietta, made by Dr. S. P. Hildreth.

	\bigcirc	I	2	3	4	5	6	7	8	9
1830 I840 1850	$\begin{array}{r} +18 \\ 0 \\ -22 \end{array}$	+18 +8 +--	$\begin{array}{r} +11 \\ 0 \\ -20 \end{array}$	+20 -10 -1	+20 -11	+13 -12	+14 -23 ---	+21 -35 --	+19 -34 $\ldots-$	+2 -25 -

To interpret the above diagrams correctly, the true relation between the secular change, as shown by a succession of annual means, of the direction of the wind and of the temperature, will appear with sufficient distinctness by considering the zero line or axis of abscissæ, not as a straight line but as a curve, drawn midway between the two curves; in other words, either the normal direction of the wind is imperfectly made out (through insufficiency or imperfection of observations), or the relation of the mean direction of the wind to the mean temperature of the air is not constant; I incline to the former alternative. So far as our evidence goes, for years of northerly $(+)$ deflections of the winds, the temperature appears to be lower, and for southerly deflections higher than the normal value. This subject also demands further investigation.

Enough has been shown to make it evident that for final explanation the secular variations in the temperature, in the rain-fall, and in the direction of the wind must be studied together, and it will probably be found that the former depend directly on the latter, though, ultimately, the deflections in the resulting direction of the wind must be referred to effects of solar radiation; the discussion must take a wider range so as to include long series of records at stations representing all parts of the globe.

[^131]Range of variability in the secular variation of the annual temperature.-If we consider the deviations of the annual means from the normal temperature of the place as fortuitous, we may employ a simple formula for the mean deviation as a measure of the amount of variability, and deduce also a value for the probable uncertainty to which the normal temperature, or the mean of the whole series, may be liable.

Let $\varepsilon=$ the mean deviation of any yearly value,
$\Delta=$ the difference of any annual mean from the normal temperature,
$\Sigma \Delta=$ their sum, irrespective of sign,
$n=$ number of yearly values,
then, with sufficient precision for our comparison,

$$
\varepsilon= \pm 1.253_{n}^{\Sigma \Delta},
$$

which expression supposes the positive and negative Δ 's to balance. The probable uncertainty attaching to the mean of the scries is given by

$$
r_{0}= \pm 0.845 \frac{\Sigma \Delta}{n_{n} \sqrt{n}} .
$$

Applying these expressions to a few of our larger and systematic series, we deduce the following results:-

Stations.	$\underset{T}{\text { Normal }}$	2	:	ro	Lowest and Highest value	Difference from normal.	Range.
Brunswick, Me. ${ }^{1}$	43.9.	49	$\pm 1^{\circ} .78$	$\pm 0^{\circ} \cdot 15$	$\left\{\begin{array}{l}40.3 \\ 47.7\end{array}\right.$	$\left\{\begin{array}{l}-3.6 \\ +3.8\end{array}\right.$	$7^{\circ} \cdot 4$
Salem, Mass.	48.1	43	1.48	. 15	$\left\{\begin{array}{l}4.5 \\ 50.3\end{array}\right.$	$\left\{\begin{array}{l}\text {-3.6 } \\ +2.2\end{array}\right.$	5.8
					$\left\{\begin{array}{l}5.3 \\ 44.9\end{array}\right.$	$\left\{\begin{array}{l}+2.2 \\ -3.3\end{array}\right.$	6.
New Bedford, Mass.	48.2	58	1.15	. 10	\{ 50.9	$\{+2.7$	6.0
New Haven, Conn.	49.0	85	1.25	.09	$\left\{\begin{array}{l}45.2 \\ 51.8\end{array}\right.$	$\left\{\begin{array}{l}-3.8 \\ +2.8\end{array}\right.$	6.6
Marietta, Ohio	52.4	46	1.24	. 12	4 49.7	$\{-2.7$	5.7
					55.4	+3.0	$5 \cdot 7$
Fort Snelling, Minn. .	44. I	42	2.07	. 21	$\left\{\begin{array}{l}41.3 \\ 48.3\end{array}\right.$	$\left\{\begin{array}{l}+2.8 \\ +4.2\end{array}\right.$	7.0
Fort Leavenworth, Kan.					4 48.7	$\{-4.0$	
Fort Leavenworth, Kan.	52.7	40	1.83	. 20	56.6	$\{+3.9$	7.9
Fort Brooke, Fla. . . .	71.7	27	I. 21	. 16	$\left\{\begin{array}{l}70.1 \\ 74.4\end{array}\right.$	$\left\{\begin{array}{l}-1.6 \\ +2.7\end{array}\right.$	$4 \cdot 3$

${ }^{1}$ The annual means for $1837-\mathbb{S}-9-40$ are omitted, as defective.

The weighted average value of the mean annual direction ε is $\pm 1^{\circ} .44$, hence means derived from series of 25,50 , and 100 years are uncertain by a probable amount of $r_{0}=\frac{0.6745 \varepsilon}{\sqrt{n}}= \pm 0^{\circ} .19, \pm 0^{\circ} .14$, and $\pm 0^{\circ} .10$ respectively. To these values any crrors that may exist in the graduation of the instruments would have to be added.

Secular variation in the annual maxima and minima, compared with the variation in the annual means.-In conclusion of this section of the paper, it is still desirable to inquire into the changes of the maxima and minima, and to ascertain how far these partake of the character of the secular change of the mean annual temperature. For this purpose it will suffice to examine the two typical series at New Haven and Marietta. Since the minima fall generally in January and February, and the maxima in July and August, the respective mean temperatures of these months were formed and compared with the corresponding annual means. To eliminate irregularities, the fourth order means were employed and tabulated; comparing each value with the mean from the whole sexies, the differences were formed, $a+$ sign indicating higher temperature, $a-$ sign lower temperature than the mean-they are as follows:-

New Haven series.

	$\begin{aligned} & \frac{1}{2}(J . \& F .) \\ & 4 \text { th order. } \end{aligned}$	$\frac{1}{2}(\mathrm{~J} \cdot \& \mathrm{~A} .)$ $4^{\text {th }}$ order.	$\begin{aligned} & \frac{1}{12}(\mathrm{~J} . \text { to } \mathrm{D} .) \\ & 4 \text { th order. } \end{aligned}$	Differences from Mean.				$\frac{1}{2}(\Gamma . \& F .)$$4 \text { th order. }$	$\frac{1}{2}(\mathrm{~J} . \& \mathrm{~A} .)$$4^{\text {th }} \text { order. }$	$\left\lvert\, \begin{gathered} \frac{1}{1}(\mathrm{~J}, \text { to } \mathrm{D} .) \\ 4 \text { th order. } \end{gathered}\right.$	Differences from Mean.		
				Jan. and Feb.	$\begin{aligned} & \text { July } \\ & \text { and } \\ & \text { Aug. } \end{aligned}$	Year.					Jan. and Feb.	$\begin{aligned} & \text { July } \\ & \text { and } \\ & \text { Aug. } \end{aligned}$	Year.
1780	(29.6)	${ }^{\circ} \mathrm{\circ} \cdot 3$	(49.9)	$+2.4$	+3.6	+1.0	IS25	29.5	71.2	$\stackrel{\circ}{\circ}$	+2.3	$+0.5$	+0.9
1781	29.5	73.3	49.7	+2.3	+2.6	+0.7	1826	29.0	71.0	49.9	+r.8	+0.3	+1.0
1782	2 S. 1	72.0	49.2	+0.9	+1.3	+o. 3	1827	29.1	70.7	49.9	+1.9	0.0	+0.9
${ }_{17} 73$	26.0	71.3	48.5	-1.2	+0.6	-0.5	1828	29.1	71.0	50.0	+1.9	+0.3	+1.1
1784	24.5	7 I .1	48.0	-2.7	+0.4	-0.9	1829	27.5	71.4	49.9	+0.3	+0.7	+0.9
1785	24.7	70.7	47.9	-2.5	0.0	-I.0	1830	25.5	71.7	49.6	-1. 7	+1.0	+0.7
1786	26.0	70.3	48.2	-1.2	-0.4	-0.7	1831	25.3	71.6	49.0	-1.9	+0.9	0.0
1787	26.5	70.6	48.8	-0.7	-0.1	-0.2	1832	26.5	70.6	48.5	-0.7	-0. 1	-0.4
1788	26.5	71.7	49.2	-0.7	+1.0	+0.3	1833	27.7	69.9	48.2	+0.5	-0.8	-0.8
1789	27.1	72.2	49.4	-0.1	+1.5	+0.4	IS34	27.3	69.8	47.8	+0.1	-0.9	-1.1
1790	27.8	71.7	49.4	+0.6	+1.0	+0.5	1835	25.0	69.8	46.8	-2.2	-0.9	-2.2
1791	27.1	70.9	49.2	-0.1	+0.2	+0.2	1836	23.5	68.8	46.3	-3.7	-1.9	-2.6
1792	26.5	70.7	49.2	-0.7	0.0	+0.3	1837	24.5	68.8	46.7	-2.7	-1.9	-2.3
1793	27.3	70.9	49.5	+0.1	+0.2	+0.5	1838	26.5	69.3	47.8	-0.7	-1.	-1.1
1794	27.8	71.0	49.6	+0.6	+0.3	+0.7	1839	27.3	69.6	48.7	+0.1	-1.	-0.3
${ }^{1} 795$	27.5	71.1	49.1	-0. 3	+0.4	+0.1	1840	27.8	69.8	49.1	+0.6	-0.9	+0.2
1796	$27 \cdot 3$	71.6	48.6	+0. 1	+0.9	-0.3	1841	29.1	69.8	49.3	+1.9	-0.9	+0.3
1797	27.0	72.5	48.5	-0.2	+1.8	-0.5	1842	29.6	69.3	49.1	+2.4	-1.4	+0.2
1798	26.5	73.0	48.7	-0.7	+2.3	-0.2	1843	28.1	68.8	49.0	+0.9	-1.9	0.0
1799 180	26.4	72.9	49.2	-0.8	+2.2	+0.2	1844	27.1	69.3	49.4	-0.1	-1.4	+0.5
1800	27.3	72.5	49.9	+0.1	+1.8	+1.0	1845	27.4	70.3	49.9	+0.2	-0.4	+0.9
I801	28.9	72.5	50.6	+1.7	+r.8	+1.6	1846	27.7	71.2	49.9	+0.5	+0.5	+1.0
1802	29.8	- 72.7	50.8	+2.6	$+2.0$	+1.9	1847	27.7	7 r .4	49.4	+0.5	+0.7	+0.4
$1 \mathrm{SO}_{3}$	29.3	72.7	50.7	-2. I	+2.0	+1.7	I848	27.1	71.0	49.0	-0.1	+o. 3	+o. 1
1804	28.3	72.6	50.6	1.1	+1.9	+1.7	IS49	27.1	70.6	48.7	-0.1	-0.1	-0.3
1805	28.2 28.6	72.3 71.8	50.5	+1.0	+1.6	+1.5	1850	28.4	7 O .3	48.7	+1.2	-0.4	-0.2
1806	28.6	71.8	50.1	-1.4	+1.1	+1.2	185 I	29.1	70.15	48.9	+1.9	-0.7	-0.1
1807 I 808 18	28.4	71.2	49.8	+1.2	+0.5	+0.8	1852	28.7	69.8	49.1	+1.5	-0.9	0.
1808	27.9 27.7	70.3	49.7	$+0.7$	-0.4	+o:8	1853	28.6	70.0	49.2	+1.4	-0.7	+0.2
1809 1810	27.7	69.6	$49 \cdot 7$	$+0.5$	-I.I	+0.7	1854	27.9	70.4	49.1	+0.7	-0.3	+0.2
1810 1811	27.8	$69 \cdot 4$	$49 \cdot 5$	$+0.6$	-1.3	+0.6	1855	26.1	70.4	48.5	-1.1	-0.3	-0.5
1811	27.2	69.5	49.1	0.0	-I.2	+0. 1	1856	24.6	69.8	47.9	-2.6	-0.9	-1.0
1813	26.2 25.9	69.8 70.2	48.5 48.3	-1.0	-0.9	-0.4	1857	25.5	69.1	47.7	-1.7	-1.	-1.3
1814	25.8	70.0	48.2	-1.4	-0.7	-0.7	I859	28.1	68.7	48.3	+0.9	-2.0	-0.7
1815	25.4	69.0	47.6	-1.8	-1.7	-1.4	1860	28.1	69.4	48.8	+0.9	-1.3	-0.1
ISI6	$24 \cdot 5$	68.3	47.0	-2.7	-2.4	-1.9	1861	28.1	70.4	$49 \cdot 3$	+0.9	-0.3	+0.3
1817	24.0	68.5	46.8	-3.2	-2.2	-2.2	1862	28.5	71.6	49.6	+1.3	+0.9	+0.7
1818	25.1	$69 \cdot 4$	$47 \cdot 3$	2.1	-I.3	-1.6	1863	28.9	72.5	49.7	+1.7	+1.8	+0.7
1819	26.8	70.2	47.9	-0.4	-0.5	-I. 1	1864	(28.5)	(72.7)	(49.7)	+1.3	+2.0	+o.8
1820	27.0	70.3	48.1	-0.2	-0.4	-0.8							
1821 1822	$25 \cdot 9$ 25.7	70.2 70.2	48.6	-1.3	-0.5								
1823	27.0	70.5	49.1	-0.2		+0.1	$\text { of } 85$	27.24	70.69	48.93			
1824	28.7	71.0	49.6	+1.5	+0.3	+0.7	years.						

Marietta series.

				Differ	Mean	from					Diffe	rences Mean.	from
	$\frac{1}{2}(J . \& F .)$ $4 \text { th order. }$	$\begin{aligned} & \frac{1}{2}(\mathrm{~J} . \& \mathrm{A.}) \\ & 4 \text { th order. } \end{aligned}$	$\begin{array}{\|l} \frac{1}{2}(J . \text { to } D .) \\ 4 \text { th order. } \end{array}$	$\begin{aligned} & \text { Jan. } \\ & \text { and } \\ & \text { Feb. } \end{aligned}$	July and Aug.	Year.		$\frac{1}{2}(J . \& F)$ $4^{\text {th }} \text { order. }$	$\begin{aligned} & \frac{1}{2}(\mathrm{~J} . \& A .) \\ & 4 \text { th order. } \end{aligned}$	$\frac{1}{12}(\mathrm{~J}$, to D.) $4^{1 \mathrm{~h}}$ order.	Jan. and Feb.	$\left\lvert\, \begin{aligned} & \text { July } \\ & \text { and } \\ & \text { Aug. }\end{aligned}\right.$	Year.
ISI9	-	$\left(75^{\circ} .2\right)$	(53.7)	-	+3.0	+1.5	1847	$3{ }^{\circ} .6$	$70^{\circ} .9$	52.5	0 +0.9	-1.3	$+$
IS20	(34.8)	74.5	53.1	+2.1	+2.3	+0.9	1848	33.3	70.7	52.1	+0.6	-1.5	-0
1821	32.0	74.1	52.8	-0.7	+1.9	+0.6	1849	33.2	71.3	52.1	$+0.5$	-0.9	-0
1822	31.0	73.5	52.8	-1.7	+1.3	+0.6	1850	33.4	72.0	52.1	$+0.7$	-0.2	-0
1823	32.0	72.9	52.8	-0.7	+0.7	+0.6	1851	34.1	71.9	52.2	$+1.4$	-0.3	0
1824	(34.3)	(72.9)	(53.2)	+1.6	+0.7	+1.0	I852	33.2	71.9	52.4	$+0.5$	-0.3	+o
1825	(35.3)	(73.2)	(54.1)	+2.6	+r.O	+1.9	1853	32.8	72.6	52.6	+0.1	+0.4	+0
1826	35.2	73.3	54.4	+2.5	+I.I	$+2.2$	1854	32.0	73.7	52.9	-0.7	+1.5	+0.
1527	36.0	73.2	54.3	$+3.3$	+1.0	+2.1	1855	29.4	74.0	52.2	-3.3	+1.8	0
IS2S	36.0	72.8	54.2	+3.3	+0.6	+2.0	1856	27.8	73.5	51.3	-4.9	+1.3	-0.
1829	33.8	72.6	53.6	+1.1	+0.4	+1.4	1857	29.6	73. 1	51.4	-3.1	$+0.9$	-0
1830	31.2	72.3	52.9	-1.51	+O. I	+0.7	1858	32.6	72.9	52.2	-0.1	+0.7	
183 L	30.8	71.6	52.3	--1.9	-0.6	$+0.1$	I 859	34.0	72.5	52.7	+1.3	+0.3	$+0$
IS32	32.4	71.1	52.4	-0.3	-I. I	$+0.2$	I 860	34.4	71.7	52.6	+1.7	-0.5	+o
1833	33.9	71.6	52.7	+1.2	-0.6	+0.5	I 861	34.6	71.1	52.4	+1.9	-r.I	+0
$1 \mathrm{IS}_{34}$	33.1	71.7	52.3	+0.4	-0.5	+0.1	1862	34.5	71.5	52.1	+1.8	-0.7	-0.
IS35	31.0	71.0	5 I .4	-1.7	-I. 2	-0.8	I 863	$33 \cdot 3$	72.2	51.7	+0.6	0.0	-0.
IS36	29.8	70.8	50.8	-2.9	-I. 4	-1.4	I 864	31.1	72.0	51.4	-1.6	-0.2	-0.
I837	29.9	71.8	50.9	-2.8	-0.4	-I. 3	I 865	29.6	71.1	51.2	-3.1	-I. 1	- I
IS38	30.8	72.6	5 I .3	-1.9	+0.4	-0.9	1866	29.2	70.8	50.9	-3.5	-1.4	-I
IS39	32.2	72.0	51.8	-0.5	-0.2	-0.4	1867	29.3	71.5	50.5	-3.4	-0.7	-I
IS40	33.0	71.2	52.1	+0.3	-I. 0	--0.1	$186 S$		72.4	50.5	-2.3	+0.2	-I
1841	33.6	70.6	52.1	$+0.9$	-1.6	-0.1	I 869	(32.6)	(72.8)	(50.7)	-0.1	+0.6	- 1
IS42	34.8	70.5	51.8 51.8	$\left\|\begin{array}{l} +2.1 \\ +2.5 \end{array}\right\|$	-1.7	-0.4							
1843	$35 \cdot 2$	71.0	51.8		-1.2	-0.4							
1844	34.9	71.8	52.1	$+2.2$	-0.4	—O. I	Mean						
1845	34.5	72.1	52.6	$+\mathbf{I} .8$	-0.1	$+0.4$		32.67	72.19	52.24			
1846	33.9	71.7	52.8	+1.2	-0.5	$+0.6$	years.						
Note.-Values in parenthesis are imperfect.													

If we examine, by means of the successive signs of the tabular differences, whether or not a cold winter is followed by a cold summer, and whether the average temperature of the year is below or above the normal, we find, from the New Haven series, by comparisons of the signs for the cold months with those for the year, the following results: an accord, a + sign being followed by $a+$ sign, or a - sign by a - sign, in 64 cases; and a discord, a + sign being followed by a - sign, or the reverse, in 18 cases; there are 3 indifferent cases, one of the differences being zero ; in all, 85 cases. Comparing the signs of the warmest months with those of the year, we find 61 accords. 19 discords, and 5 indifferent cases; and comparing directly the coldest and warmest months there are 50 accords, 31 discords, and 4 indifferent cases. Altogether strongly favoring the conclusion that the changes which constitute the secular variation are generally exhibited in winter as well as in summer; in other words, the causes of these variations are alike, active at all seasons of the year. In the case of Marietta, we have likewise for winter and year 30 accords, 17 contradictions, and 3 neutral cases; for summer and year 32 accords, 15 contradictions, and 4 neutral cases, and for winter and summer 19 accords, 30 contradictions, and 1 neutral case. Here the evidence is somewhat weaker, probably owing to the greater number and shorter secular undulations, due to the more western position of the station.

LIST OF STATIONS.

Abheville, S. C., 76
Abbitibbe, Brit. No. Amer., 2
Abington, Pa., 70, 284
Abiquin, N. M., 04
Academus, P. H., Miss., 46
Adirondack, N. Y., 54
Afton, Minn., 44, 262
Agricultural College, Md., 38, 256
Aiken, S. C., 76, 290°
Alabama, $8,9,112,122,135,150$, $154,155,158,204,205,233$
Alaska, 10, 11, 109, 112, 122, 124,
$138,141,142,154,155,157,162$,
$163,171,176,177,181,182,202$,
$204,205,226,227,234$
Albany, N. Y., 54, 190, 199, 216, 269
Albany (near), Oreg., 70
Albiou, Ill., 22
Albion, N. Y., 54
Albion Mines, N. S., 6, 171, 184, 230
Albuquerque, N. M., $54,109,161,162$, $216,226,268$
Alcatraz Island, Cal., 12, 206, 227, 235, 305
Alleghany Arsenal, Pa., 70, 220, 284
Alleghany City, Pa., 70
Alleghany 'I'unnel, Pa., 70
Alexander, N. Y., 54
Alexandria, Minn., 44
Alexandria, Tenn., 78
Alexandria, Va., 84, 222, 295
Alfred, N. Y., 54
Algona, Iowa, 28, 210, 248
Algona, Iowa (10 miles S. W. of), 28 , 248
Allentown, Mo., 48, 214, 263
Alligator, Fla., 20
All Saints, S. C., 76, 290
Alto, Ill., 22, 244
Alton, Ill., 22
Altoona, Pa., 70
Amenia, N. Y., 54, 269
Ames, Iowa (b miles N. of), 28
Amherst, Mass., 38, 112, 122, 131, 138,
$146,154,155,158,212,257$
Asahuac, Tex., 78
Ancaster, Ontario, 8
Andalusia, Ill., 23, 244
Andover, Mass., 38, 257
Angelica, N. Y., 54, 269
Angel Island, Cal., 12, 206, 235, 305
Annapolis, Ind., 26
Annapolis, Md., 38, 212, 256
Am Arbor, Mich., 42, 260
Anoma, Ind., 26
Antigua, Carib. Isl., 94, 300
Antisana, Equador, 98
Apalachian range, 105
Appleton, Wisc., 88,298
Aquidneset, R. I., 76^{3}
Aransas Canal, Tex., 78
41 Felruary, 1876.

Arcadia, Ky., 34, 252
Arcola, Ohio, 67
Arctic Ocean, Brit. No. Amer., 2, 157, 174
Adrian, Mich., 42
Arizona, 10, 11, 161, 204, 205, 226, 227, 234, 235
Arkansas, 12, 13, 192, 198, 199, 204, 205, 235
Armstrong Academy, Ind. T., 28
Asheville, N. C., 64, 277
Ashland, Pa., 70
Ashland, Va., 84
Ashland, W. Va., 86, 297
Ashlaud, Wisc., 88
Ashville, Ala., 8, 233
Aspinwall, New Granada, 96, 224, 301 Assistauce Bay, Brit. No. Amer., 2 Astoria, Oreg., 70, 176, 178, 220, 283
Asuncion, Paraguay, 98
Atalissa, Iowa, 28
Atchison, Kas., 32, 210, 250
Athabasca Lake, Brit. No. Amer., 2,
176, 182
Athens, Ga., 20, 243
Athens, III., 22, 244
Athens, Mo., 48, 263
Athens, Ohio, 64, 279
Atlanta, Ga., 20, 208, 243
Atlantic Ocean, 105
Atlantic sea-board, 105
Atsena Otie, Fla., 18
Attaway Hill, N. C., 64, 278
Auburn, Ala., 8, 233
Auburn, Cal., 12
Auburn, N. Y., 54, 216, 269
Auburn, Oreg., 70
Augusta, Ga., $20,243,305$
Augusta Arsenal, Ga., 20, 208, 243, 305
Augusta, Ill., 22, 208, 244
Augusta, Me., 36
Aurora, Ill., 22, 244
Aurora, Ind., 20, 246
Austin, Tenn., 78, 291.
Austin, Tex., 78, 171, 178, 222, 291
Austinburgh, Ohio, 64, 279
Avon, Kas., 32
Avon, Ohio, 64, 279
Avondell, Pa., 70, 284
Aztalan, Wisc., 88

Babac, Ind., 26
Bahama Islands, 92, 93, 300
Baldwinsville, N. Y., 54, 269
Baldwinsville, Mass., 38, 257
Ballardsville, Ky., 34, 252
Baltimore, Md., 38, 178, 212, 256
Bangor, Iowa, 28
Bangor, Me., 36

Baptist Mission, Ind. T., 28
Baraboo, Wisc., 88, 298
Barbacoas, New Granada, 96
Barbadoes, Carib. Isl., 94,300
Bardstown, Ky., 34, 252
Barnesville, N. Y., 56
Barnet, Vt., 82
Barnstable, Mass., 38
Barnstead, N. H., 52
Bar of Tabasco, Mex., 90
Barratsville, S. C., 77
Bath, Me., 36
Batavia, Ill., 22, 244
Baton City, Mont., 48
Baton Rouge, La., 34, 210, 252
Battle Creek, Mich., 42, 260
Batty Bay, Brit. No. Amer., 2
Baxter Springs, Kas., 32, 210, 250
Bay City, Wisc., 88, 298
Bayfield, Wisc., 88, 298
Bay of Mercy, Brit. No. Amer., 2
Bay of San Francisco, Cal., 106, 160
Bay of St. Louis, Miss., 46
Beaufort, N. C., 64, 278
Beaufort, S. C., 76, 290
Beaver, Pa., 70
Beaver Bay, Minn., 44, 214, 262
Beaver Brook, N. Y., 56, 269
Beaver River Valley, Minn., 44
Beaver Seminary, Pa., 70, 284
Bedfont House, Brit. No. Amer., 2
Bedford, Pa., 70, 284
Beechey Island, Brit. No. Amer., 2
Beech Fork, Ky., 34
Belair, Fla., 18, 240
Belfast, Me., 36, 253
Belize, Hondur., 92, 300
Beloit College, Wisc., 88, 224, 2988
Belvidere, Ill., 22, 244
Bellefontaine, Ohio, 64, 279
Bellefontaine, Pa., 72
Bellefontaine, Wisc., 88, 298
Belleville, Ill., 22, 244
Belleville, N. J., 52
Belleville, N. Y., 56, 216, 269
Bellevue, Iowa, 28, 248
Bellevue, Nebr., 50, 214, 265
Bellona Arsenal, Va., 84, 295
Bellport, N. Y., 56, 269
Benicia Barracks, Cal., 12, 206, 235
Benton, La., 34, 252
Beuzonia, Mich., 42
Berea, Ohio, 69
Berlin, Germany, 193
Berne, Ga., 20, 243
Bermuda, Bermuda, 92, 300
Bermuda Islands, 92, 93, 300
Berryville, Va., 84, 295
Berwick, Pa., 70, 285
Bethel, Me., 36, 253
Bethel, Ohio, 64, 220, 279

LISTOFSTATIONS.

Bethlehem, Pa., 70
Bethmont, N. C., 64, 278
Beverly, N. Y., 56, 216, 269
Biddeford, Me., 36, 253
Bird Island, Mass., 38
Blackbird Hill, Nebr., 51
Black Oak, S. C., 76
Black River Plant'n, La., 34, 252
Blackwell's Island, N. Y., 56, 269
Bladeusburg, Md., 38, 256
Blairsville, Pa., 70, 285
Blake, Me., 253
Block Honse, Oreg., 70, 220, 283
Bloorufield, N. .J., 52, 267
Bloomfield, Wisc., 88, 298
Bloomingdale, N. Y., 56, 269
Bloomingdale, lud., 26
Blooming Grove, Pa., 70, 285
Bloomington, Ind., 26, 246
Blue Branch, Tex., 78, 291
Blue Hill, Me., 36
Bluff Settlement, Tex., 78
Bluffon, S. C., 76, 290
Bogota, New Granada, 96
Bolivar, Mo., 48, 263
Bonham, Tex., 78
Bon Secour, Ala., 8
Boonesboro, Iowa, 30, 248
Boothia Felix, Brit. No. Amer., 2, 138,
141, 154, 155, 158
Border Plains, Iowa, 30, 249
Boston, Ga., 20
Boston, Mass., 38, 257 , 304
Boweu's Prairie, Iowa, 30, 249
Bowles' Creek, MTinn., 44
Bowling Green, Ky., 34
Bowling Green, Ohio, 64, 279
Bradford, Mass., 38, 257
Bradford, Vt., 82
Branchburg Township; N. J., 52
Brandon, Vt., 82, 293
Brautford, Ontorio, 8, 232
13rattleboro, Vt., 82
Brazil, 96, 97, 138, 152, 301
Brecksville, Ohie, 64
Brest, Mich., 44
Bridgewater, Mass., 38, 257
Bridgewater, N. Y., 56, 216, 269
Brighton, IIl., 22, 244
British North America.-Arctic
Region, 2, 109, 110, 155, 156, 157,
$158,174,176,177,180,182,204$, 205, 230
British North America.-South
of Latitude $660^{\circ} 0^{\prime}, 2,174,176$,
$177,182,204,205,226,227,230$
Brookfield, Ct., 16, 237
Brookfield, Vt., 82
Brookhaven, Miss., 46, 263
Brookhaven, N. Y., 60
Brooklyn, Mich., 42
Brooklyn, N. Y.. 56, 122, 132, 138,
$147,148,154,155,157$
Brookside, Iowa, 30, 210, 249
Brookville, Pa., 70
Brown Cottage, N. Y., 56
Brownsville, Pa., 70, 285
Brownville, Nebr., 50
Bruce, Ill., 22
Brunswick, Ga., 20
Brunswick, Me., $36,171,178,200,201$,
$212,227,253,302,303,304,3116,307$,
311, 312, 316, 318
Brunswick, Mo., 48, 263
Buchanan, Minn., 44
Bucksport, Me., 36
Buenos Ayres, S. A., 96
Buffalo, N. Y., 56, 216, 270
Buffalo, W. Va., S6, 297

Buffalo Springs, Tex., 78
Butfalo Township, Pa. 70
Burkeville, Tex., 78, 291
Burlingame, Kas., 32, 250
Burlington, Iowa, 30, 249
Burlington, near, Kas., 32
Burlington, Minn., 44, 262
Burlington, N. J., 52, 267
Burlington, Vt., 82, 178, 293
Burning Springs, W. Va., 86
Bustleton, Pa., 70
Butler, Pa., 70
Byberry, P'a., 70, 285
Byfield, Mass., 38
Byron, Iowa, 30
Byron Sound, Falkland Island, 98

Cadiz, Ind., 26, 246
Cahawba, Ala., 8
Cahto, Cal., 12, 235
Calais, Vt., 82
Caldwell, N. Y., 56
Caldwell's Prairie, Wisc., 90
Caledonia Coal Mine, N. S., 6, 204, 230
California, 12, 13, 14, 103, 105, 106,
160, 161, 171, 172, 180, 181, 182,
$202,206,207,226,227,235,236$,
237, 305, 310, 311
California, Gulf of, 105
Callao, Peru, 98
Calvert College, Md., 38
Camanche, Iowa, 30
Camden, Ark., 12
Camden, S. C., 76, 290
Cambridge, Mass., 38, 122, 130, 138,
$146,154,155,200,201,257,304$
Cambridge, N. Y., 56, 216, 270
Camp Baker, Mont., 48, 214, 227
Camp Babbitt, Cal., 12, 235
Camp Bidwell, Cal., 12, 206, 236
Camp Bowie, Ariz., 10, 204, 234
Camp Cady, Cal., 12, 206, 236
Camp Cimarron, N. M., 5!
Camp Colorado, Ariz., $10,204,234$
Camp Colorado, Tex., 78, 222, 291
Camp Concordia, Tex., 78, 291
Camp Connor, Idaho, 22
Camp Cook, Mont., 48, 265
Caup Cooper, Tex., 78, 291
Camp Crittenden, Ariz., 10, 204, 234
Camp Date Creek, Ariz., 10, 204, 234
Camp Dennison, Ohio, 66
Camp Donglas, Utah, $82,222,293$
Camp El Dorado, Ariz., 10
Camp Far West, Cal., 12, 236
Camp Floyd, Utah, 82
Camp Gaston, Cal., 12, 206, 236
Camp Grant, Ariz., 10, 204, 23 !
Camp Goodwin, Ariz., 10, 204, 234
Camp Halleck, Nev., 50, 214, 220, 266
Camp Harvey, Oreg., 70, 220, 283
Camp Hualpai, Ariz., 10
Camp Hudson, Tex., 78, 291
Camp Independence, Cal., 12, 206, 236
Camp Lawrence, La., 34
Camp Lincoln, Ariz., 10
Camp Lincoln, Cal., 12, 206, 236
Camp Logan, Oreg., 70
Camp Lowell Tucson, Ariz., 10, 204, 234
Camp Lyons, Oreg., 70, 283
Camp McDermit, Nev., 50, 214, 266
Camp McDowell, Ariz., $10,204,226$, 234
Camp McGarry, Nev., 50, 214, 266
Camp Moore, Tex., 78
Camp McPherson, Ariz., 11
Camp Pickett, Wash., 87

Camp Plummer, N. M., 54
Camp Reno, Ariz., 10, 234
Camp Reynolds, Cal., 12
Camp Rio Mimbers, N. M., 54
Camp Salubrity, La., 34
Camp Scott, Wyom., 90
Camp Simiahmoo, Wash., 86, 296
Camp Skull Valley, Ariz., 10
Camp Stanbaugh, Wyom., 90
Camp Steele, 'Wash., 86, 224, 296
Camp Stnckton, T'ex., 78, 222, 291
Camp Three Forks, Oreg., 70, 283
Camp Union, Cal., 12
Camp Verde, Ariz., 12, 204, 234
Camp Verde, Tex., 78, 222, 291
Camp Wallen, Ariz., 12, 204, 235
Camp Warner, Oreg., 70, 220, 283
Camp Watson, Oreg., 70, 283
Camp Willow Grove, Ariz., 12, 235
Camp Winfield Scott, Nev., 50, 214, 266
Camp Wright, Cal., 12, 206, 236
Canada, xiii, xiv, 6, 7, 8, 9, 109, 112,
$125,126,143,144,145,151,155$,
$157,158,162,163,176,185,186$,
$193,194,195,200,201,204,205$,
231, 232, 304, 306, 307
Canajoharie, N. Y., 56, 216, 270
Canandaigua, N. Y., $56,216,270$
Caney, Ind. T., 28, 245
Caunelton, Ind., 26, 246
Cannousburg, Pa., 70, 285
Canton, Ct., 16, 237
Cauton, Mass., 40
Canton, Mo., 48
Cauton, N. Y., 56, 270
Cantonment Loring, Idaho, 22
Cantonment Stevens, Mont., 48
Cantonment Burgwin, N. M., 54, 268
Cantonment Clinch, Fla., 19
Cape Charles Light, Va., 84, 295
Cape Diamond, Quebee, 6
Cape Disappointment, Wash., 86, 224, 296
Cape Girardeau, Mo., 48, 263
Cape Horn, Patagonia, 98
Cape Oxford, Falkland Island, 98
Capon Bridge, W. Va., 86
Caracas, Venez., 96
Caribbean Islands, 94, 95, 300
Caribou Castle, Brit. No. Amer., 2
Carlisle (Barracks), Pa., 70, 220, 285
Carlowville, Ala., 8, 233
Carlton House, Brit. No. Amer., 2
Carmel, Me., 36, 253
Carpenter, Pa., 70
Carp Lake Mine, Mich., 42
Carrollton, Mo., 48
Carthagena, Ohio, 64
Cascade Range, 105
Cass Lake, Minn., 44
Cassville, Mo., 48, 263
Castleton, Vt., 82, 293
Castine, Me., 36, 212, 253, 302, 303, 304
Catawba, Ga., 20
Catawissa, Pa., 72
Catharina Sophia, Duteh Guiana, 96 , 301
Cathlamet (near), Wash., S6
Catonsville, Nd., 38, 256
Carthage, Ill., 22, 244
Carthage, Ind., 28
Cayuga, Kas., 32
Cayuga Acad., N. Y., 58
Cazenovia, N, Y., 56, 216, 270
Cebolleta, N. M., 54, 216, 268
Cedar Grove Plantation, Tex., 78, 291
Cedar Keys, Fla., 18, 240

Central City, Colo., 14
Centralia, Ill., 22
Central Mine, Mich., 42, 260
Ceres, Iowa, 30,249
Ceres, Pa., 72,285
Chagres, New Granada, 96
Chambersburg, Pa., 72, 285
Chambley, Quebec, 204
Champion, N. Y., 56
Chanarcillo, Chili, 96
Chamahon, Ill., 22
Chapel Hill, N. C., 64, 178, 278
Chapel Hill, Tex., 78
Charleston, III., 22, 244
Charleston, S. C., 76, 171, 172, 178,
200 , 201, 222, 290, 304, 308, 309
Charlestown, N. H., 50
Charlotte, N. Y., 56, 216, 270
Charlottesville, Va., 84
Charlottetown, Pr. Ed. I'd, 6
Chatield, Minn., 44
Chatham, N. Y., 56
Chattahoochie Ars., Fla., 18
Chattauooga, Teun., 78
Chelemta Depot, Idaho, 22
Chelsea, Mass., 40,257
Cheneyville (near), La., 34
Cherry Valley Acad., N. Y., 56, 216, 270
Chester, N. J., 52, 267
Chestertown, Md., 38, 256
Cheviot, Ohio, 67
Chicago, III., 22, 208, 244
Chico, Cal., 12, 236
Chilesbarg, Ky., 34, 210, 252
Chili, 96,97
Chillicothe, Ohio, 64, 279
Christiansburgh, Va., 84
Chromedale, Pa., 72, 285
Cincinnati, Ohio, 64, 178, 220,. 279, 305, 30S, 309, 311
Claremont, N. H., 50, 216, 266
Clarinda, Iowa, 30
Clarkeville, Tex., 78
Clarksville, Gaz., 20
Clayton, Cal., 12
Clearmont, Tenn., 78
Clearwater Lake, Minn., 44
Clevelaud, "Ohio, $104,220,279$
Clifton, Ohio, 64
Clifton, Ontario, 8, 232
Clinton, $111 ., 22$
Clinton, Iowa, 30, 249
Clinton, Ky., $3 t$
Clintou, Mass., 40
Clinton, Mich., 42
Clinton, Miss., 46
Clinton, N. Y., 56, 270
Cliuton, Tes., 78,291
Clockville, N. Y., 56
Clyde (near), N. Y., 56, 270
Coalville, Utah, 84,293
Coatopa, AJa., 8, 233
Coldwater, Mich., 42, 260
Colebrook, Ct., 16, 206, 237
College Hill, Ohio, $64,220,279,305$
Colliugwood, Obio, 69
Collins, La., 34
Coloma (uear), Ill., 22, 244
Colonia Tovar, Venez., 964,301
Colorado, 14, 15, 16, 17, 106, 161, 181, 206, 207, 227, 237, 311
Colorado River, N. M., 106, 161
Columbia, Ct., 16, 206, 237
Columbia, S. C., 76,290
Columbia City, Ind., 26, 246
Columbia River, N. M., 106
Columbus, Ga., 20
Columbus, Miss., 40, 178, 214, 263

Columbus, Ohio, 66, 279
Colville Depot, Waslı., 87
Commervine, Dutch Guiana, 96
Concord, Mass., 40
Concord, N. H., $50,216,266$
Connecticut, 16, 17, 112, 122, 131,
$132,135,147,154,155,170,171$,
172, 178, 179, 196, 200, 201, 206,
$207,237,238,239,302,304,306$,
$307,310,311,312,318,319,320$, xiii, xiy
Connellsville, Pa., 72
Constableville, N. Y., 56
Constantia, N. Y., 56
Contoocooksville, N. H., 50
Cooper, Mich., 42, 260
Cooper Sem., Ohio, 66
Cooperstown, N. Y., 56, 270
Copper Falls Mine, Mich., 42, 260
Cordova, Mex., $90,224,300$
Coruing, Mo., 48
Cornish, Me., $30,253,302,303,304$
Corpus Christi, Tex., 78, 291
Corvallis, Oreg., 70
Coshocton, Ohio, 66
Costa Rica, 92, $93,224,225,300$
Cottage Home, Va., 84,295
Council Bluffs, Iowa, 30, 249
Council City, Kas., 32, 210
Council Grove, Kas., 32, 251
Courtland Acad., N. Y., 58
Covert, N. Y., 59
Crack Whip, W. Va., 86, 297
Craftsbury, Vt., $82,222,294$
Crawfordville (near), Kas., 32
Crescent City, Cal., 12
Cresco, Wisc., 88
Crichton's Store, Va., 84, 295
Cross Creek, W. Va., 86, 297
Cross Roads, Tex., 78, 291
Croton, Ohio, B' ${ }^{\circ}, 279$
Cuba, 94, 95, 224, 225, 301
Cuba, N. Y., 56
Culloden, Ga., 20
Cumasa, Venez., 96
Cumberlaud, Md., 38, 256
Cumberland House, Brit. No. Amer., 2
Cumberland Univ., Tenu., 78
Curaçoa, Venez., 96
Cuthbert, Ga., 20
Cuyahoga Fallis, Ohio, 66

Dakota, 16, 17, 105, 182, 206, 207, 226, 227, 239, 240
Dakota, Iowa, 30, 249
Dakota, Nebr., 50
Daltas, Tex., 78
Dalton, Ga., 20
Dansville, N. Y., 56, 270
Danville, Ky., 34, 254
Danville, Minu., 44
Dauvers, Mass., 40
Dartford, Wisc., 88, 298
Dartmonth College, N. H., 50, 216
Davenport, Iowa, 30, 210, 249
Davidson College, N. C., 64,278
Dayton, Ohio, 66, 279
Dealy Island, Brit. No. Amer., 2
Dearbornville, Mich., 42, 260
Decatur, III., 22, 244
Deeatur, Nelr., 50
Deer Creek Agency, Wyom., 90
Deerfield, Mass., 40, 257
Deer Lodge City, Mont., 48, 214, 265
Delafield, Wise., 88, 298
Delavan, Wisc., 88, 298
Delaware, 18, 19, 205, 207, 240
Delaware Academy, N. Y., 56

Delaware City, Del., 18
Delhi, N. Y., 56,270
Demerara, Brit. Guiana, 94
Denver, Colo., 14, 237
Deunysville, Me, 36, 178, 253
Depauville, N. Y. (1 ml. N. of), 56, 270
Des Moines City, Iowa, 30, 249
De Soto, Nebr., 50, 214,. 265
Detroit, Mich., 42, 44, 175, 212, 260
Dexter, Me., 36, 253
Disaster Bay, Brit. No. Amer., 2
District of Columbia, 18, 19, 222,
$134,138,149,150,154,155,157$,
15S, 208, 209, 240
Dison's Springs, T'enn., 78, 291
Doña Aua, N. M., 54
Douglas, Kas., 32
Douver's Station, Kas., 32
Dover, Del., 18
Dover, N. H., 50, 266
Dover, N. J., 52, 267
Dover, Temn., 78
Downieville, Cal., 12
Drum Barracks, Cal., 12, 206, 236
Dublin, N. H., 50
Dubuque, Iowa, 30, 210, 249
Dunbarton, N. H., 50, 266
Dundee, Mo., 48
Dutchess Acad., N. Y., 62
Duxbury, Mass., 40
Dyberry, Pa., 72, 285

Eagle River, Mich., 42, 260
Early Grove, Miss., 40
Easton, Mo., 48, 263
Easton, Pa., 72, 285
East Cleveland, Ohio, 66
East Douglas, Mass., 40
East Exeter (or Exeter), Me., 36
East Fairfield, Ohio, 66, 280
East Hamptou, N. Y., 56, 216, 270
East Montpelier, Vt., 83
East Pascagoula, Miss., 46
Eastport, Me., 36, 253
East Prairie, Mo., 48, 263
East Teunessee Univ., Tenn., 78
East Wilton, Me., 36
Eaton, Ohio, 66
Ecuador, 98, 99
Edeu, N. Y., 56, 270
Edgar Co. (near S. W. corner), Ill., 24
Edgefield, S. C., 76
Edgerton, Ohio, 66
Edgerton, Wisc., 88, 298
Elgington. Ill., 22
Edinburg, Mo., 48
Edinburg, Ohio, 66, 280
Edisto Island, S. C., 76, 290
Effingham, Ill., 24
Eh-yoh-hee, Ind. T., 28
Elgin, Ill., 24, 244
Elkhorn City, Nebr., 51
Elkton, Md., 38
Ellisburg, N. Y., 56
Ellsworth, Kas., 32
Elmira, I11., 24, 244
Elmira, N. Y., 56, 271
El Paso, N. M., 54
Elk Run, Ohi", 66
Elwood, N. J., 52, 267
Elmwood, Ohio, 66
Elyton (near), Ala., 8, 233
Elizabethton, Tenn., 78, 291
Elizabethtown, W. Va., 89
Embarrass, Wise., 88, 224, 298
Emerald Grove, Wisc., 88
Emmittsburg, Md., 38, 256

Emporia, Kas., 32
Enterprise, Miss., 46, 263
Eola, Oreg., 70, 283
Ephrata, Pa., 72, 285
Epping, N. H., 50
Erasmus Hall, N. Y., 56
Erie, Ala., 8
Estate San Isidro, Porto Rico, 94
Eureka Valley, Mich., 42, 260
Eutaw, Ala., 8
Livanston, Ill. (N. W. Univer.), 24, 245
Evansville, Ind., 26, 246
Evergreen, S. C., 76
Exeter, N. H., 50, 266
Eya Fiord, Iceland, 2
Eyrie House, Md., 38, 256

Factory Mills, Ga., 20
Fairfield, Iowa, 30, 249
Fairfield Acad., N. Y., 56, 216, 271
Fairfax, Vt., 82
Fairfax Co. Ho., Va., 85
Fairmount Inst., N. Y., 60
Fairview (near Pilatka), Fla., 18, 240
Falconer, N. Y., 56
Falkland Islands, 98, 99
Falkland Islands, Falkl. Islds., 98
Fallmouth, Mass., 40
Fall River, Mass., 40
Fallsington, Pa., 72, 220, 285
Fallston, Md., 38
Falmouth, Va., 84
Farmer's College, Ohio, 64
Farmer's Hall, N. Y. 58
Farmer's Institute, Ind., 26
Farmington (near), Ct., 16
Farmington, N. H., 50
Farm Ridge, Ill., 24, 245
Farmouth, N. H., 50, 260
Fayette, Miss., 46, 263
Fayette Tannery, Pa., 72, 220, 285
Fayette Village, Iowa, 30, 249
Fayetteville, Ark., 12
Fayetteville, Vt., 82, 294
Fayetteville, Tenn., 78
Fellowship, Miss., 47
ernandina, Fla., 18
Ferrisburg, Vt., 82, 294
Ferris Plantation, 'Tex., 79
Fishkill Landing, N. Y., 56, 271
Fish River, Ala., 9
Fitchburg, Mass., 40, 258
Flatbush, N. Y , 56, 216, 271, 304
Fleming, Pa., 72, 220, 285
Flint, Mich., 42, 260
Flippin's Barrens, Ark., 12
Florence, Ala., 8, 233
Florida, 18, 19, 20, 21, 105, 109; 112, $136,138,151,152,154,155,158$, $171,172,178,182,183,208,209$, $226,227,228,240,241,242,243$, $305,308,309,318$
Flushing, N. Y., 56, 57, 271
Folsom, Cal., 12
Fond du Lac., Minn., 44
Fontanelle, Iowa, 32
Fontanelle, Nebr., 50, 265
Fordham, N. Y. 56
Forest City, Minn., 44, 262
Forestvill θ, Mich., 42
Furrestville, Iowa, 30,249
Fort Abercrombie, Dak., 16, 206, 227, 239
Fort Adams, R. I., 76, 220, 289
Fort à la Corne, Brit. No, Amer., 2
Fort Anderson, Brit. No. Amer., 2
Fort Ann, N. Y., 56, 271

LIST OF S'ATIONS.

Fort Arbuckle, Ind. T., 28, 210, 248
Fort Armstrong, 111., 24, 208, 245
Fort Atkinson, lowa, 30, 210,249
Fort Atkinson, Kas. (Arkas. River), 32, 210, 251
Fort Barrancas, Fla., 18, 178, 208, 241
Fort Bascom, N. M., 54, 216, 268
Fort Bayard, N. M., 54, 216, 268
Fort Belknap, Tex., 80, 222, 291
Fort Bellingham, Wash., 86, 296
Fort Bentou Mont., 48, 214, 227, 265
Fort Berthold, Dak., 17
Fort Bliss, Tex., 80, 222, 291
Fort Boisé, Idaho, 22, 208, 226, 243
Fort Brady, Mich., 42, 178, 212, 227, 260
Fort Bragg, Cal., 12, 206, 236
Fort Breckeuridge, Ariz., 11
Fort Bridger, W yom., 90, 224, 299
Fort Brooke, Fla., 18, 208, 241, 305, 308, 309, 318
Fort Brown, Tex., 80, $178,181,222$, 291
Fort Buford, Dak., 16, 206, 227, 239
Fort Buchanan, Ariz., 12, 161, 2(14, 235
Fort Calhoun, Nebr., 50, 214, 265
Fort Canky, Ariz., 12, 204, 235
Fort Cascades, Wash., S6, 296
Fort C. F. Smith, Mont., 48, 265
Fort Chadbourn, Tex., 80, 161, 222, 291
Fort Chehalis, Wash., 86
Fort Childs, Nebr., 50
Fort Chipewayan, Brit. No. Amer., 2, 176
Fort Churchill, Brit. No. Amer., 4, 230
Fort Churchill, Nev., 50, 214, 266
Fort Clarke, Tex., 80, 222, 291
Fort Columbus, N. Y., 56, 216, 271, 304
Fort Colville, Waslı., 86, 224, 296
Fort Confidence, Brit. No. Amer., 2
Fort Courad, N. M., 54, 216, 268
Fort Constitution, N. H., 50, 216, 266
Fort Coulonge, Quebec, 6, 231
Fort Craig, N. M., 54, 161, 181, 216, 268
Fort Crawford, Wisc., 88, 224, 298
Fort Crittendeı, Utah, 82, 232, 293
Fort Cioghan, Iowa, 30, 250
Fort Croghan, Tex., 80, 222, 291
Fort Crook, Cal., 12, 161, 206, 236
Fort Cummings, N. M., 54, 216, 226, 268
Fort Dakota, Dak., 16
Fort Dallas, Fla., 18, 208, 241
Fort Dalles, Oreg., 70, 220, 284
Fort D. A. Russell, Wyom., 90, 224, 299
Fort Davis, Tex., 80, 222, 291
Fort Dearborn, Ill., 23
Fort Delaware, Del., 18, 206, 240 Fort des Moines, Iowa, 30 Fort Deynaud, Fla., 18, 241 Fort Dodge, Iowa, 30, 210, 250 Fort Dodge, Kas., 32, 210, 251 Fort Duncan, Tex., E0, 222, 226, 292 Fort Edward, N. Y., 56, 271
Fort Ellis, Mont., 48, 214, 227, 265
Fort Enterprise, Brit. No. Amer., 4 Fort Ewell, Tex., 80, 292
Fort Fairfield, Me., 36, 254
Fort Fanning, Fla., 18, 241
Fort Fauntleroy, N. M., 54
Fort Fetterman, Wyom., 90, 224, 227, 299
Fort Fillmore, N. M., 54, 216, 226, 268
Fort Foote, Md., 212

Fort Franklin, Brit. N. Amer., 4, 174, 176, 177
Fort F. Steele, Wyom., 90, 224, 299
Fort Graines, Ala., 5
Fort Gamble, Fla., 18, 241
Fort Garland, Colo., 14, 206, 227, 237
Fort Gates, Tex., 80, 292
Fort George, Wash., 86
Fort Gibson, Ind. T., 28, 178, 210, 226, 248, 305, 310, 313
Fort Graham, Tex., 80, 222, 292
Fort Gratiot, Mich., 42, 212, 260
Fort Griffin, Tex., 80, 222, 292
Fort Halleck, W yom., 90, 299
Fort Hamer, Fla., 18
Fort Hamilton, N. Y., 58, 216, 271, 304
Fort Harker, Kas., 32, 251
Fort Harley, Fla., 19
Fort Hays, Kas., 32, 210, 251
Fort Heiloman, Fla., 18
Fort Hendersou, Fla., 18, 241
Fort Holmes, Fla., 19
Fort Hope, Brit. No. Amer., 2
Fort Hoskins, Oreg., 70, 220, 284
Fort Houston, Tex., 80, 292
Fort Howard, Wisc., 88, 224, 298
Fort Humboldt, Cal., 12, 206, 236
Fort Humboldt, Temn., 78, 222, 291
Fort Independence, Mass., 40, 212, 258, 304
Fort Inge, Tex., 80, 222, 292
Fort Jackson, La., 34, 252
Fort Jefierson, Fla., 18, 208, 241
Fort Jessup, La., 34, 210, 253
Fort Johnston, N. C., 64, 218, 278
Fort Jones, Cal., 12, 206, 236
Fort Kadiak, Alaska, 10, 234
Fort Kearney, Nebr., 50, 214, 265
Fort Kenai, Alaska, 10
Fort Kent, Me., 36, 254
Fort King, Fla., 18, 208, 241
Fort Klawath, Oreg., 70,284
Fort Lancaster, Tex., 80, 222, 292
Fort Lave, Oreg., 70, 284
Fort Lapwai, Idaho, 22, 208, 243
Fort Laramie, Wyom., 90, 171, 224, 227, 299
Fort Larned, Kas., 32, 210, 226, 251
Fort Lauderdale, Fla., 19
Fort Leavenworth, Kas., 32, 178, 200,
201, 210, 251, 305, 310. 313, 318
Fort Lincoln, Tex., 80, 292
Fort Lowell, N, M., 54
Fort Lyon, Colo., 16, 206, 237
Fort Lyon, N. M., 54
Fort McHenry, Md., 38, 178, 212, 256
Fort McIntosh, Tex., 80, 222, 226, 292
Fort McKavett, Tex., 80, 222, 292
Fort Mackinac, Mich., 42, 212, 260
Fort Macon, N. C., 64, 218, 278
Fort MePherson, Brit. No. Amer., 2
Fort McPherson, Nebr., 50, 214, 22.6, 265
Fort McRae, N. M., 54, 216, 226, 268 Fort Madison, Iowa, 30, 210, 251, 305 Fort Marey, N. M., 54
Fort Marion, Fla., 18, 19, 178, 208, 241
Fort Martin Scott, Tex., 80, 292
Fort Mason, 'lex., 80, 222, 226, 292
Fort Massachusetts, Colo., 15
Fort Meade, Fla., 18, 208, 241
Fort Merrill, Tex., 80, 292
Fort Micanopy, Fla., 18, 241
Fort Mifllin, Pa., 72, 220, 286
Fort Mill, S. C. 76
Fort Miller, Cal., 12, 206, 226, 236
Fort Mojavê, Ariz, 12, 204, 226, 235
Fortress Monroe, Va., 84, 222, 295

Fort Morgan, Ala., 8, 9, 112, 122, 135, $138,150,154,155,158,233$
Fort Morgan, Colo., 16, 237
Fort Moultrie, S. C. $76,178,222,290$, 304
Fort Myers, Fla., 18, 208, 241
Fort Nascopie, Brit. No. Ander., 4
Fort Niagara, N. Y., 58, 216,271
Fort Nichols, Alaska, 10
Fort Norman, Brit. No. Amer, 4
Fort Ontario, N. Y., 58, 216, 271
Fort Oxford, Oreg., 70, 220, 284
Fort Pierre, Dak., 16, 182, 239
Fort Pierce, Fla., 18, 208, 241
Fort Pike, La., 34, 210, 253
Fort P. Kearney, Wyom., 90, 299
Fort Preble, Me., 36, 212, 254
Fort Prince of Wales, Brit. No. Aner., 4
Fort Polk, Tex., 80
Fort Point, Cal., 14, 206, 227, 236, 305
Fort Porter, N. Y., 58, 218, 271
Fort Quitmann, T'ex., 80, 161, 292
Fort Rae, Brit. No. Amer.; 4
Fort Randall, Dak., 16, 206, 239
Fort Ransom, Dak., 16, 206, 226, 239
Fort Reading, Cal., 14, 206, 236
Fort Reliance, Brit. No. Amer., 4
Fort Resolation, Brit. No. Amer., 4
Fort Reynolds, Colo., 16, 237
Fort Rice, Dak., 16, 239
Fort Richardson, Tex., 80, 222, 292
Fort Ridgeley, Minne., 44, 200, 201, 214,262
Fort Riley, Kas. (Kansas River), 32, 210, 251
Fort Ripley, Minne., 44, 214, 227, 262
Fort Ross, Cal., 14, 236
Fort Ruby, Nev., 50, 214, 266
Fort Russell, Fla., 15, 19, 243
Fort Sabine, La., 34
Fort St. Michael, Alaska, 10
Fort St. Philip, La., 35
For't Sanders, Wyom., 90, 224, 227 299
Fort Schuyler, N. Y., 57
Fort Scott, Kas., 32, 210, 251
Fort Sedgwick, Colo., 16, 237
Fort Selden, N. M., 5t, 216, 268
Fort Severn, Md., 38, 212, 256
Fort Sewall, Mass., 40
Fort Shannon, Fla., 18, 212
Fort Shaw, Mont., 48, 214, 226, 227, 265
Fort Sill, Ind. T., 28, 210
Fort Simeoe, Wash., 86, 296
Fort Simpson, Brit. No. Amer., 4, 182, $204,226,227,230$
Fort Smith, Ark., 12, 204, 235
Fort Snelling, Minne., 44, 171, 172, $178,200,201,214,262,305,308,309$, 311, 313, 318
Fort Stantou, N. M., 54, 216, 268
Fort Steilacoom, Wash., 86, 224, 296
Fort Stevens, Oreg., 70, 220, 284
Fort Stevenson, Dak., 16, 182, 239
Fort Sully, Dak., 16, 206, 220, 239
Fort Sullivan, Me., 36, 212, 254
Fort Sumner, N. M., 54, 216, 268
Fort Tejon, Cal., 14, 206, 236
Fort Terrett, Tex., 80, 292
Fort Ter-Waw, Cal., 14, 206, 236
Fort Thompson, Wyom., 90
Fort Thorn, N. M., 54, 161, 216, 268
Fort Tollgate, Ariz., 11
Fort Tongass, Alaska, 10, 204, 234
Fort Totten, Dak., 16, 240
Fort Townshend, Wash., 86, 224
Fort Towsou, Ind. T., 28, 210, 248, 305

Fort Trumbull, Ct., 16, 206, 237
Fort Unpqua, Oreg., 70, 220, 284
Fort Union, N. M., 54, 216, 268
Fort Vancouver, Wash., 86, 224, 297
Fort Villegaguon, Brazil, 152
Fort Wacassassa, Fla., 20, 242
Fort Wacohootee, Fla., 20, 242
Fort Wadsworth, Dak., 16, 206, 226, 240
Fort Walla-Walla, Wash., 86, 224, 297
Fort Warren, Mass., 40, 212, 258
Fort Washington, Md., 38, 212, 256
Fort Washington, Ohio, 66
Fort Washita, Iud. T., 28, 210, 248, 305
Fort Wayne, Ark., 12, 235
Fort Wayue, Ind., 26
l'ort Wayne, Mich., 42
Fort Webster, N. M., 54, 268
Fort West, N. M., 54
Fort Wheelock, Fla., 19
Fort Whipple, Ariz., 12, 204, 235
Fort Wilkins, Mich., 42, 261
Fort Williams, Ontario, 8,232
Fort Wingate, N. M., 54, 216, 268
Fort Winnebago, Wisc., $88,224,298$ Fort Wise, Colo., 16
Fort Wolcott, R. I., 76, 220, 289
Fort Wood, La., 34, 210, 253
Fort Wood, N. Y., 58
Fort Worth, Tex., 80, 222, 292
Fort Wrangel, Alaska, 10, 204, 226, 234
Fort Yamhill, Oreg., 70, 220, 284
Fort Yukon, Alaska, 10
Fort Yuma, Cal., 14, 161, 206, 236
Fountain Dale, Pa., 72, 286
Foxcraft, Me., 36
Framingham, Mass., 40
Francestown, N. H., 50, 266
Frankford Arsenal, P'a., 72, 112, 138,
$148,154,155,220$
Franklin, Iowa, 30, 250
Franklin, Obio, 66
Franklin, Pa., 72, 286
Franklin, Teun., 78
Franklin, Tex., 80
Frankiin Acad., N. Y., 60, 62
Franklin Coll., Ohio, 68
Frederick City, Md., 38, 256
Fredericksburg, Va., 84
Fredericton, N. Br., 6
Fredonia, N. Y., 58, 218, 271
Freedom, Ohio, 66, 280
Freehold, N. J., 52, 268
Freeport, Pa., 72
Fremont, Ohio, 66
Fremont Ceutre, Ill., 24, 245
Friedrichsthal, Greenl., 2
Friendship, N. Y., 58, 271
Friendship, Tenn., 78
Frontera, Mex., 90
Fryeburg, Me., 36

Gardner, Kas., 32
Gaines, Minn., 44
Gaines, N. Y., 58, 218, 271
Gainesville, Fla., 20, 242
Galesburg (Uviversity), Ill., 24, 208, 245
Galesville, Wisc., 88
Gallatin, Tenn., 78, 291
Gallipolis, Ohio, 66, 280
Galveston, Tex., $80,122,135,136,138$, 151, 158, 292
Gambier, Ohio, 66
Gardiner, Me., 36, 212, 254, 302, 303, 304

Garlandsville, Miss., 46, 263
Garlick, Mich., 43
Garysville, Va., 84, 295
Garrettsville, Ohio, 66
Gaston, N. C., 64, 278
Geueva, N. Y., 58, 183, 191, 271
Genera Hall, Ohio, 68
Georgia, 20, 21, 22, 23, 201, 208, 209,
$243,305,308,309,311$
Georgetown, Brit. Guiana, 94
Georgetomn, Ct., 16, 238
Georgetown, D. C., 18, 210
Georgetomn, Del., 18, 240
Georgetown, Mass., 40, 258
Germantown, N. Y., 58
Germantown, Olio, 66, 280
Germantown, Pa., 72, 220, 286, 304
Germany, 110, 193
Gettysburg, Pa., 72, 286
Gila River, N. M., 106
Gilbert's Trading Post, W yom., 90
Gilmer, Tex. (3 m'ls W. of), 80,222 , 292
Gilmore, Ohio, 66, 280
Glasco, N. Y., 58, 272
Glasgow Station, near, Va., 84, 295
Glendale, near, Nebr., 50, 214, 265
Glenwood Cottage, Tenn., 78, 222, 291
Golconda, Ill., 24, 245
Golden City, Colo., 16
Golden Gate, Cal., 10G, 227
Godthaab, Greenl., 2
Goliad, Tex., 80, 292
Goldsboro, N. C., 64, 278
Gonzales, Tex., 80, 292
Good Water Mission, Ind. T., 28
Gordon, Fla., 20
Goshen, Ct., 16, 238
Cosheu, N. Y., 58, 218, 272
Gosport Nary Yard, Va., 85
Gouverneur, N. Y., 5S, 218, 227, 272
Gowdysville, S. C., 76,290
Grafton, Mass., 40
Grafton, Vt., 82
Grafton, W. Va., 88, 297
Grand Haven, Mich., 42, 212, 261
Grand Portage, Minn., 44
Grand Rapids, Mich., 42, 261
Grand Traverse Lt. Ho., Mich., 44
Grant City, Iowa, 30, 250
Granville, Ill., 24
Granville, Ohio, 66, 220, 280
Great Bear Lake, Brit. No. Amer., 182
Great Falls, N. H., 50
Great Lakes, 105
Great Salt Lak θ City, Utah, 82, 222, 293
Great Slave Lake, Brit. No. Amer, 182
Green Bay, Wisc., 88, 299
Greencastle, Ind., 26
Greencastle, Pa., 72
Greene Springs, Ala., 8, 233
Greenfield, Wisc., 88
Green Lake, Wisc., 88, 299
Greenland, 2, 3, 110, 112, 122, 123,
$138,139,154,155,158,174,176,177$,
181, 182, 226, 230
Green Mount, Ind., 26
Green Plains, N. C., 64
Greensboro, Ala., 8, 9, 233
Greenville, N. Y., 58, 272
Greenville, S. C., 76, 290
Greenville, Tenn., 78
Greenwich, N. J., 52, 216, 268
Greenwood, Dak., 17
Grenada, Miss., 46, 263
Griffin, Ga., 20
Grifith's Island, Brit. No. Amer., 2

326

Guadeloupo, Carib. Isl., 94
Guanabacoa, Dutch Guiana, 96
Guatemala, 92, 93, 300
Guatemala, Guat., 92, 300
Gulf of California, 105
Gulf of Mexico, Mex., 90
Gulf stream, 105
Guiana (British), 94, 95
Guiana (Dutch), 96, 97, 301
Guttenberg, lowa, $30,210,250$

Haddonfield, N. J., 52, 216, 268
Hagerstown, Md., 38
Halifax, N. S., 6, 204, 230, 231.
Hall Land, Brit. No. Amer., 176, 177
Hamilton, N. Y., 58, 218, 272
Hamilton College, N. Y., 50
Hamilton, Ontario, 8, 232
Hamlinton, Pa., 72
Hampden, Me., 36
Hampton, Va., 84, 295
Hancock Barracks, Me., 36, 212, 255
Hannibai, Mo., 48, 263
Hanover, N. H., 50, 267
Harmar, Ohio, 167
Harney Depot, Wash., 87
Harper's Ferry, Va., 84
Harrisburg, Pa., 72, 220, 256
Harris Grove, Iowa, 30,250
Harrisonville, Mo., 48, 214, 263
Hartford, Ct., 16, 238
Hartford, Vt., 83
Harwich, Mass., 40
Hartwick, N. Y., 58, 218, 272
Hartwood, Va., 84
Harveysburg, Ind., 26, 240
Hastings, Minn., 44
Havana, Ala., 9
Havana, Cuba, 94, 224, 301
Havana, Ill., 24
Havana, N. Y., 58
Haverford College, Pa., 72, 286
Hazelwood, Minn., 46
Hazleton, Pa., 72
Hazlewood, Minu., 44, 263
Hatley, Quebec, 6
Heathville, Va., 84
Heberville, Utah, 82, 293
Hebron, Brit. No. Amer., 4
Helena, near, Ark., 12, 235
Helena, Tex., 80
Helena City, Mont., 48, 265
Hematite, Mo., 48, 263
Hemnepin, 111., 24, 245
Hennepin Co., Mina., 44, 263
Hemrietta, N. Y., 58, 272
Heredia, Costa Rica, 92, 300
Hermitage, Mo., 48, 263
Hermitage, N. Y., 58, 272
Hernando, Miss., 40
Hesper, Iowa, 30
Mewlett's Station, near, Va., 84
Hibernia, Fla., 20
IIighland, Ill., 24, 208, 245
High Open Prairie, III., 23
IIillsboro, Ohio, 66, 220, 280
Hillsborough, (9a., 20
Hillsborough, Ill., 21
Hilton Head, S. C., 76, 290
Hinsdale, Mass., 40, 258
Hiram, Me., 36, 255
Hiramb, Ohio, 66, 280
Holland, Wise., 88,299
Holland, Mich., 42, 261
Hollidaysburg, Pa., 72, 286
Holliday's Cove, W. Va., 88
Holly Springs, Miss., 46
Holton, Kå., 32, 210, 251

Homer, N. Y., 58, 218, 272
liomestead, Mich., 42, 261
Honduras, 92, 93, 300
Honesdale, Pa., 72
Homersville, Mo., 48, 203
IIoughton, Mich., 45
Houlton, Me., 36
Houseville, N. Y., 58, 272
Houston, Tex., 80,292
Hoyleton, Ill., 24, 245
Hudson, N. Y., 58, 218, 272
IIndson, Ohio, 66, 220, 280
Hadson Valley, N. Y., 106
IIantingdon, N. Y., 58
Ifuntingdon, 1’a., 72
IIuntsville, Ala., 8, 204
Unntsville, Tex., 80
IIuron, Obio, 66

Iberia, Ohio, 66
Iceland, 2, 3
Idaho, 22, 23, 208, 209, 226, 243
Igloolik, Brit. No. Amer., 2
Illinois, 22, $23,24,25,26,27,208,209$, $244,245,246,315$
Illoolook, Alaska, 10, 176, 181, 182, 204, 234
Independence, Iowa, 30, 210, 250
Indiana, 26, 27, 28, 29, 208, 200, 246, 247, 248, 315
Indiana, Pa., 72
Indianapolis, Iud., 26, 247
Indian Key, Fla., 208, 227
Indianola, Tex., 80
Indian Territory, 28, 29, 178, 210,
$211,220,248,305,310,313$
Indian Valley, Cal., 14
Ionia, Nebr., 50
Iowa, $28,29,30,31,32,33,178,210$,
$211,227,248,249,250,305,308,309$, 313
Iowa City, Iowa, 30, 210, 250
Iowa Falls, Iowa, 30, 250
Ipswich, Mass., 40
Island of St. Helen, Quebec, 231
Isthmus, Md., 38
Isthmus Bay, Brit. No. Amer., 4
Itasca, Minn., 44
Ithaca, N. Y., 58, 218, 272

Jackson, La. 34
Jackson, Mich., 4
Jackson, Miss., 40
Jackson, N. C., 64
Jackson, Ohio, 66, 122, 133, 134, 154, 280
Jacksonburg, Ohio, 66, 280
Jacksouport, Ark., 12
Jacksouville, Fla., 20, 242
Jacksonville, Ill., 24, 245
Jacobshavn, Greenl., 2
Jalapa, Ind., 26
Jamaica, 94, 95, 301
Jamaica, N. Y., $58,218,272$
Jamestown, N. Y., 58, 272
Janesville, Wisc., 88, 299
Japonski Island, Alaska, 11
Janaja, Peru, 95
Jefferson, Ohio, 64
Jefferson, Tex., 80, 292
Jefferson Barracks, Mo., 48, 214, 263, 305
Tefferson City, Mo., 48, 263
Jeffersou College, Pa., 70
Teffersonville, Ind., 26, 247
Jericho, N. Y., 58
Joaquin Valley, Cal., 100

Johnstown, N. Y., 58, 218, 272
Johnstown, Pa., 72, 286
Joliet, Ill., 24
Junction City, Kas., 32

Kalamazoo, Mich., 43
Kanawah, W. Va., 88, 297
Kanawah Solines, V. Va., 89
Kandotta, Minn., 44
Kansas, 32, 33, 178, 200, 201, 210, $211,226,227,250,251,252,305$, 310, 313, 318
Kausas City, Mo., 48, 264
Keene, N. H., 50
Keene, Ohio, 66
Kelley's Island, Ohio, 66, 220, 280
Eenansville, N. C., 64, 278
Kendallville, Ind., 26
Kennebee Ars., Me., 36
Kenosha, Wisc., 88, 299
Kentland, Ind., 26, 247
Kenton, Ohio, 66, 280
Kentucky, 34, 210, 211, 252, 315
Kenyon Coll., Ohio, 66
Keokuk, Iowa, 30
keytesville, Mo. 48
Key West, Fla., $109,112,154,155,158$, 171, 172, 178, 182, 183, 208, 226, 227, 242
Kinderhook, N. Y., 58, 218, 272
King's Mill, Ill., 24
Kingston, Jamaica, 94, 301
Kingston, Mass., 40, 258
Kingstou, Miss., 46
Kingston, N. Y., $58,218,273$
Kingston, Ohio, 66, 280
Kingston, Ontario, 8, 232
Kinosumissee, Brit. No. Amer., 4
Knight Hospital, Ct., 16
Knox Hill, Fla., 20, 242
Knoxville, Temn., 78, 291
Koniska, Minn., 44, 263
Koos-koos-kee, Wash., 86
Kotzebue Sound, Alaska, 10

Laborville, Mo., 48
Labrador, Brit. No. Amer., 170, 230
Laconia, Iud., 26, 247
Lac qui parle, Minn., 41
La Fargeville, N. Y., 58, 273
Lafayette, Ind., 26
Lafayette, Ohio, 66
Laguna, N. M., 54
La Grange, Ga., 20
La Grange Temn., 78
La Guayra, Venez., 96
Lake City, Fla., 20, 242
Lake George, Mich., 42
Lake Mills, Wisc., 88
Lake Seuppernong, N. C., 64
Lake Temiscamingue, Ontario, 8
Lake Washington, Miss., 46
Lake Washington, Wash., 86
Lake Winibigoshish, Minn., 46
Lambertsville, N. J., 52, 268
Lancaster, Ohio, 66, 281
Lancaster, Pa., 72
Lancaster Colliery, Pa., 72, 286
Lansing, Mich., 42, 212, 261
Lausingburgh, N. Y., 58, 218, 273
Laphamsville, Mich., 42, 261
Laporte, Ind., 26
Lapwai, Idaho, 22
Larissa, Tex., 80, 292
Las Vegas, N. M., 54, 269
Latrobe, Pa., 72
Lavaca, T'ex., 80, 292

Lawn, Ill., 24
Lawrence, Kas., 32, 210, 251
Lawrence, Mass., 40, 212, 258
Leavenworth City, Kas., 32, 210, 251, 305
Lebanon, Ill., 24, 245
Lebanon, Ky., 34
Lebanon, Ohio, 66
Lebanon, Tenin., 78
Lebanon, Wisc., 88
Lecompton, Kas., 32
Ledyard, N. Y., 58, 218, 273
Lee, Me., 36, 25 丂ै
Lee Centre, Ill., 24
Lee's Creek, Ind. T., 28
Lehigh University, Pa., 72, 286
Leitersburg, Md., 38, 256
Lenox, Mass., 40
Leominster, Mass., 40
Leon, Nicar., 92
Leonardtown, Md., 38, 256
Le Roy, Kas., 32, 251
Leroy, N. Y., 58
Lesser Cross Roads, N. J., 52
Lewisville, Va., 84, 295
Lewisburg, W. Va., 88, 297
Lewisburg Univ., Pa., 72, 22), 286
Lewiston, N. Y., 58, 218, 273
Lewistown, Pa., 72, 286°
Lexington, Ky., 34
Lexington, Va., 84, 295
Leyden, N. Y., 58, 273
Liberty, N. Y., 58, 273
Lichtenau, Greenl., '2
Lichtenfels, Greenl., 2
Lima, N. Y., 58
Lima, Pa., 72
Lima, Peru, 98
Lincoln, Nebr., 50
Linden, Pa., 72
Linneas, Me., 36
Lisbon, Me, 36, 255
Lisle, N. Y., 58
Litehfield, Ct., 16
Litchfield, Mich., 42, 261
Litchfield, Minn., 415
Little Comptou, R. I., 76
Little Genesee, N. Y., 58, 273
Little Mountain, Ohio, 66, 281
Little Rock, Ark., 12, 204, 23:3
Littleton, N. H., 52, 267
Little Whale River, Brit. No. Amer., 4, 230
Livingston, Ala., 9
Lizard, Iowa, 30
Lo, Ind., 26
Loami, Ill., 24, 245
Loekhart, Tex., 80
Lockport, N. Y., 58, 273
Lodi, N. Y., 58, 273
Logan, Iowa, 31
Logansport, Ind., 20, 247
London, Ky., 34
Londonderry, N. H., 52, 207
Loudon Ridge, N. II., 52, 267
Long Branch, N. J., 52
Long Point, Tex., 81
Lougivood, Va., 84
Lookout Mountain, Tenn., 78, 291
Los Angeles, Cal., 14
Los Pinos, N. M., 54, 269
Louisiana, $34,35,178,181,210,211$, $226,252,253,305,310$
Louisville, Ill., 24, 245
Louisville, Ky., 34, 252
Louisvilie, Ohio, 66
Lowell, Mass., 40,258
Lowell, Wisc., 88,299
Lowville, N. Y., 58, 218, 227, 273

Ludlowville, N. Y., 58
Luvenburgh, Mass., 40, 212, 258
Lunenburg, Vt., 82, 222, 294
Luzerne, N. Y., 58
Lyuchburg, Va., 84, 296
Lyuchburg, Va. (6 m 'ls W. of), 84
Lynde Point Lt. Ho., Ct., 10, 238
Lynu, Mass., 40
Lyons, Iowa, 30
Lyons, N. Y., 58, 273

MeGratyville, N. Y., 58, 273
Macon, Ga., 20
Macon (Lewis High School), Ga., 20
Macon, Mich., 42
Madelia, Minn., 46, 263
Madison, Ind., 26, 247
Madison, Ohio, 66, 281
Madison, C. H., Va., 84
Madison, Wisc., 88, 299
Madison Barraoks, N. Y., 58, 218, 227, 273
Madrid, N. Y., 58, 273
Magnolia (near), M1., 24
Maine, 36, 37, 171, 178, 187, 193, 200, $201,212,213,227,253,254,255$, $302,303,304,306,307,311,312$, 315, 316, 318
Malone, N. Y., 60, 218, 273
Manatee, Fla.; 20, 242
Manchester, Ill., 24, 208, 245
Manchester, Iowa, 30, 250
Manchester, Mich., 42
Manchester, N. H., 52, 267
Manchester, Pa., 72
Manhattan, Kas., 32, 210, 251
Manheim, Germany, 110
Manitowoc, Wisc., 88, 224, 299
Manketo, Minn., 46
Manlius, Ill., $2 \pm$
Mansfield, Ohio, 66
Manzanilia Island, New Granada, 96
Mapleton, Kas., 32
Marjuoketa, Iowa, 30
Maracaybo, Venez., 96
Marathon, N. Y., 60
Marble Rock, lorra, 30
Mare Island, Naval Hospital, Cal., 14
Marengo, Ill., 24, 245
Margaretta, Ohio, 66, 281
Marietta, Ohio, 66', 171, 172, 178, 191, $192,193,194,190,200,201,220$, $281,305,317,315,319,320$
Marion, C. H., Miss., 46, 263
Marion, Ohio, 66, 220, 281
Marlborough, N. C., 64
Marquette, Mich., 44, 212, 261
Marsiı Ranche, Cal., 14
Martinsburg, N. Y., 60
Martiu's Ferry, Ohio, 66
Maryland, 38, 39, 178, 212, 213, 256, 257
Marysville, Cal., 14, 236
Masnu, N. H., 52
Massachusetts, 38, 39, 40, 41, 42, 43, $112,122,130,131,138,146,154$, $155,157,158,178,187,188,193$, $194,200,201,212,213,257,258$, $259,260,304,306,307,311,312,318$
Matamoras, Mex., 90
Matanzas, Cuba, 94
Mattoon, 111., 24, 245
Maysville, Ky., 34
Mazatlan, Mex. 90, 300
Meadow Dale, Va., 84, 296
Meadow Valley, Cal., 14, 236
Meadville, Pa., 72, 286
Mercersburg, Pa., 72

Mechanicsville, N. J., 53
Mechanicsville, Va., St, 296
Medfield, Mass., $40,25 \mathrm{~S}$
Medina, Ohio, 66
Meeker's Store, Ill., $2 \pm$
Melville Island, Brit. No. Amer., 2, 138, 140
Memphis, Tenn., 78, 291
Menasha, Wisc., 88
Mendon, Mass., 40, 212, 258
Merom, Ind., 2S, 247
Mexico, $90,91,92,93,224,225,300$
Mexico City, Mex., 90, 92, : 00
Mexico, N. Y., $60,218,274$
Micanopy, Fla., 20, 242
Michigan, 42, 43, 44, 45, 112, 113 $122,125,126,138,144,154,155$, $158,178,179,212,213,227,260$, 261, 262
Michigan City, Ind., 28, 247
Michipicoten, Ontario, 8, 232
Middlebury, N. Y., 60, 218, 274
Middlebury, Vt., 82, 222, 294
Middletown, Ct., 16, 206, 238
Middletown, N. J., 52
Mifllintown, Pa., 72
Milford, Del., 18, 240
Milford, Il1., 24, 246
Milford, Pa., 72
Military Academy, N. Y., 62
Military Posts, U. S., 111
Milledgeville, Ga., 20
Millersburg, Ky., 34, 252
Mill Point, Mich., 44, 261
Millville, N. Y., 60, 218, 274
Milnersville, Ohio, 68
Milo, N. Y., 60, 274
Milton, Ind., 28, 247
Milton, Mass., 40, 258
Milwaukee, Wisc., 88, 178, 224, 299
Minatitlan, Mex., 92
Mimaville, N. Y., 60, 274
Mine Creek, Tex., 79
Mineral Ridge, Iowa, 30
Minneapolis, Minn., 46, 214, 227, 263
Minnesota, 44, 45, 46, 47, 105, 171, $172,178,179,200,201,214,215$, $226,227,262,263,305,308,309$, 311, 313, 318
Mirador, Mex., 92, 224, 300
Mishawaka, Ind., 28
Mississippi, 46, 47, 178, 179, 214, 215, 263
Mississippi River, 104
Mississippi valley, 157
Missoula, Mont., 48
Missourl, 4S, 49, 171, 178, 179, 214, $215,263,264,305,308,309,313$, 315
Mobile, Ala., 8, 204, 233
Mohawk, N. Y., $60,109,112,122,127$, $128,129,130,138,145,154,155$, $158,162,163,218,274$, xiii, xiv
Moneka, Kas., 32
Monroe, Ala., 8
Monroe, Ill., 24
Monroe, La., 34
Monroe, Mich., 44, 212, 261
Monroe C., Ohio, 6G, 280
Monroeville, Ala., 8
Montana, 48, 49, 106, 214, 215, 226, 227, 265
Monterey, Cal., 14, 206, 230
Monterideo, Uruguay, 98
Montgomery, Ala., 8
Montgomery, Colo., 16
Montgomery, N. Y., 60, 218, 274
Monticello, Iowa, 30, 210, 250
Monticello, Miss., 46

Montpelier, Vt., 82, 294
Montreal, Quebec, 6, 122, 125, 138, $143,154,155,200,201,204,231$, $232,304,306,307$
Montross, Va., 84, 296
Montville, Ohio, 66, 281
Mooreland, Pa., 72, 220, 286
Moorestown, N. Y., 52
Moose Factory, Brit. No. Amer., 4, 230
Morgantown, N. C., 64
Moriches, N. Y., 60, 218, 27.4
Morley, N. Y., 60
Morris Island, S. C., 76
Morrisania, N. Y., 60, 274
Morrisville, Pa., 72, 287, 304
Mosinee, Wisc., 90, 299
Mosquito Inlet, Fla. (12 miles N.W. of), 20
Moss Grove, Pa., 72, 287
Moss Grove Plant'n, La., 35
Mossy Creek, Va., 84, $2: 36$
Mound City, Ill., 24
Moulton, Ala., 8
Mountain City, Colo., 15
Mountain City, Kas., $3: 2$
Mount Airy, Ala., 8
Mit. Auburn Inst., Ohio, 66, 281
Mount Carmel, Ind., 28, 217
Mt. Holly, N. J., 52, 268
Mount Hope, Ind., 28, 247
Mount Joy, Pa., 72, 220, 287
Mt. Morris, Wisc., 90
Mount Olive, N. C., 64
Mount Pleasant, Iowa, 30, 250
Mt. Pleasant, N. Y., 60, 218, 274
Mount Pleasant, S. C., 76
Mt. St. Mary's College, Md., 212
Mount Savage, Md., 38
Mount Solon, Va., 84, 296
Mount Sterling, Ill., 24, 2 ± 6
MI. Tabor, Ohio, (is

Mit. Union, Ohio, 68
Mount Vernon, Iowa, 30, 210, 250
Mount Vernon, Ohio, 66
Mt. Vernon (near), Va., 86
Mit. Vernon Arsenal, Ala., 8, 204, 233
Mount View, Va., 84, 296
Mt. Washington, N. H., 52
Murfreesboro, N. C., 64, 278
Mulberry Hill, Va., 84, 296
Muncie, Ind., 28, 247
Murphy's, Cal., 14, 236
Murrayville, Ill., 24
Murraysville, Pa., 72, 287
Muscatine, Iowa, 30, 178, 210, 250, 305, 308, 309, 313
Muskegon, Mich., 44, 261

Nachusa Nursery, Ill., 24
Nain, Brit. No. Amer., 4, 176
Nantucket, Mass., 40, 212, 258
Naperville, Ill., 24
Nashville, Tenn., 78
Nassau, Bahama Isls., 92, 300
Natchez, Miss., 46, 214, 263
Navesink Highlands, N. J., 52
Nazareth, Pa., 72, 287
Nebraska, 50, 51, 214, 215, 226, 265, 266
Nebraska City, Nebr., 50, 265
Nee-ah-Bay, Wash., 86, 297
Neosho Falls, Kas., 32, 251
Nevada, 50, 51, 214, 215, 226, 227, 266
New Albany, Ind., 28, 247
Newark, Del., 18, 240
Newark, Mich., 44
Newark, N. J., 52, 216, 268

Newark Valley, N. Y., 60, 274
Newark, Ohio, 68, 281
Newark (near), Va., 84
New Athens, Ohio, 68
New Bedford, Mass., 40, 178, 212, 258, 304, 318
Newbern, Ala., 8
New Birmingham, Ohio, 68, 251
New Braunfels, Tex., 80, 292
New Brunswiek, N. J., 52, 268
New Brunswick, Province of, 6,
7, 204, 205, 231
New Buffalo, Mich., 44, 261
Newburg, N. Y., 60, 218, 274
Newbury, Mass., 40,259
Newbury, Vt., 82, 294
Newburyport, Mass., 40, 259
Newcastle, Ind., 27
Newcastle, Me., 36
Newcastle, Nebr., 50
Neweastle, Pa., 72, 287
New Concord, Ohio, 68
New Creek Depot, W. Va., 88
New Danemore, Wisc., 90, 299
New Fane, Vt., 82
Newfield, N. J., 52, 268
New Foundland, 4, 5, 204, 205, 230
New Germantown, N. J., 52, 268
New Granada, 9b, 97, 224, 225, 301
New Hampshire, $50,51,52,53,216$,
$217,226,227,266,267$
New Harmony, Ind., 28, 208, 247
New Haven, Ct., 16, 112, 122, 131, 132,
$138,147,154,155,170,171,172$,
$178,196,200,201,206,238,302$,
$304,306,307,310,311,312,318$,
319,320 , xiii, xiv
New Holland, Ohio, 68
New Holstein, Wisc., 90
New Jersey, 52, 53, 216, 217, 267, 268
New Lisbon, Ohio, 68, 220, 281
New Lisbon, Wisc., 90,299
New London, Ct., 16, 238
New London, Wisc., 89
New Mexico, 55, 106, 109, 161, 162, 181, 216, 217, 226, 268, 269
New York, 54, 55, 56, 57, 58, 59, 60, 61, 62, 106, 109, 112, 122, 127, 128 , $129,130,132,138,145,147,154$, $155,157,158,162,163,178,179$ $183,191,216,217,218,219,227$, 228, 269, 270, 271. 272, 273, 274, $275,276,277,304,306,307$, xiii, xív New York, N. Y., 60, 218, 274, 304, 306, 307
New Orleans, La., 34, 178, 181, 210, 226, 253
Newport, Fla., 20
Newport, Ind., 28
New port, R. I., 76, 220, 289
Newport, Vt., 82, 294
Newport Barracks, Ky., 34, 210, 252
New Providence, Bahama Isls., 92
New Richmond, Wisc., 90
New San Diego, Cal., 14, 236
New Sinyma, Fla., 20, 242
New Stone, N. J., 52
Newton, Iowa, 30
Newton, N. J., 52
Newton, Pa., 72, 287
New Ulm, Minn., 46, 214, 226, 263
New Westfield, Ohio, 68, 281
New Wied, Tex., 81
New Windsor, Md., 38
Niagara, Ontario, 8
Nicaragua, 92, 93
Nicaragua, Nicar., 92
Nicholsville, Ky., 34, 252

Nicholsville, Ohio, 68
Nichols, N. Y., 60, 218, 274
Nicolet, Quebec, 6, 232
Nightingale Hall, S. C., 76, 290
Nolin, Ky., 34
Nortolk, Va., 84, 296
Norristown, Pa., 74, 287
Northampton, Mass., 40
North Argyle, N. Y., 60
North Attleboro, Mass., 40, 259
North Barnstead, N. H., 52, 267
North Bass Island, Ohio, 68, 281
North Bend, Ohio, 68, 282
North Billerica, Mass., 40, 212, 259
North Bridgeton, Me., 36,255
North Carolina, 64, 65, 105, 178,
179, 218, 219, 277, 278, 279
North Colebrook, Ct., 16
Northern tier of Counties, Tex., 80
North Fairfield, Ohio, 68, 282
North Grauville, N. Y., 60, 218, 274
North Greenwich, Ct., 16
North Hammond, N. Y.. 60, 274
North Littleton, N. H., 52
North Nassau, N. Y., 60
Northport, Mich., 44, 261
North Salem, N. Y. 60, 218, 275
North Scituate, R. I., 76, 289
Northumberland, Pa., 74
Northumberland Sound, Brit. No. Amer., 2
North Union, Iowa, 30, 250
North Volney, N. Y., © 0,275
Northwood, Ohio, 68
Norton, Ohio, 68
Norwalk, Ohio, 68, 220, 282
Norway, Wise., 90, 299
Norway, Me., 37
Norway House, Brit. No. Amer., 4, 182
Norwich, Ct., 16, 238
Norwich, Vt., 82, 294
Nova Scotia, Province of, 6, 7,
$171,184,200,201,204,205,230$, 231
Notre Dame, Ind., 28
Nottingham, Md., 38
N. R. Mills, W. Va., 88

Nulato, Alaska, 10
Nursery Hill., Nebr., 50
Nye Hernhut, Greenl., 2

Oakland, Md., 38
Oaklands, N. Y., 60
Oakland, Tex., 80,292
Oakland Observ., Pa., 74
Oberlin, Ohio, 68, 282
Ocala, Fla., 20, 242
Ogdensburgh, N. Y., 60, 275
Oglethorpe B'ks, Ga., 22, 208, 243, 305
Ohio, $64,65,66,67,68,69,122,133$,
$134,154,171,178,179,191,192$, $193,194,196,198,200,201,220$,
$221,279,280,281,282,283,305$, $308,309,311,315,317,318,319,320$
Ohio River ($\$ \mathrm{ml}$. above Cincinnati), Ky., 34
Oil City, Pa., 74
Okhak, Brit. No. Amer., 4
Olathe, Kas., 32, 210, 251
Old Council Bluffs, Nebr., 50
Old Fort Defiance, Ariz., 12, 161.
Old Fort Hall, Idaho, 22, 208
Old Mission, Mich., 44
Oldtown, Me., 36, 255
Olney, Ill., 24
Omaha, Nebr., 50, 214, 265
Omaha Agency, Nebr., 50, 214, 266
Omenak, Greenl., 2

Oneida, N. Y., 60, 218, 275
Oneida Inst., N. Y.. 62
Onondago, N. Y., $60,218,275$
Onowa City, Iowa, 30
Ontario, Province of (Canada West), $8,9,109,112,122,126^{\circ}, 138$, $144,145,154,155,158,162,163$, $171,176,177,185,186,193,194$, 195, 200, 201, 232, 304, 306, 307
Ontonagou, Mich., 44, 212, 261
Oomahoo, Minn., 44
Opelika (near), Ala., 8, 233
Oquawka, Ill., 24
Orangeburg, S. C., 76
Orauge Grove, Fla., 20
Orange Hill, Fla, 20
Orchard Farm, Ill, 24, 246
Oregon, 70, 71, 176, 178, 179, 220, 221, 227, 283, 284
Oregon, Mo., 48, 214, 264
Oregon City, Oreg., 70, 284
Orono, Me., 36
Orville, Ala., 8
Osage, Iowa, 30
Osceola, Ill., 24, 246
Oswego, N. Y., 60, 218, 275
Ottawa, Ill., 24, 246
Otsego, Mich., 44, 261
Ovid, N. Y., 60, 275
Oxford, Me., 36, 255
Oxford, Miss., 46, 263
Oxford, N. Y., 60, 218, 275
Oxford, N. C., 64, 278
Oxford, Ohio, 68, 282
Oxford, Pa., 74
Oxford House, Brit. No. Amer., 4
Oyster Bay, N. Y., 60, 275

Pacific Coast, 105
Pacific Ocean, Cal., 105, 160, 311
Paddystown, Va., 84
Palermo, N. Y., 60, 218, 275
Palestine, Tex., 80
Palmyra, Mo., 48
Palmyra, N. Y., 60, 275
Pana, Ill., 24, 246
Panama, New Granada, 96
Paola ($3 \frac{1}{2} \mathrm{mls}$. N.W. of), Kas., 32, 252
Paradise, Pa., 74, 287
Paradise City, Cal., 14
Paraguay, 98, 99
Paramaribo, Dutch Guiaua, 96
Pardeeville, Wisc., 90
Parfreyville, Wisc., 90, 299
Paris, Ill., 24
Paris, Ky., 34, 252
Paris (near), Mo., 48, 264
Parson's Sem., Tex., 80
Pass Christian, Miss., 46
Patagonia, 98, 99
Paterson, N. J., 52, 216, 268
l'atten, Me., 36
Paulding, Miss., 46, 263
Peach Grove Lodge, W. Va., 88
Peach Lawn, Va., 84, 296
Peel River, Brit. No. Amer., 2, 204, 230
Pekin, Ill., 24, 246
Pella, Iowa, 30, 250
Pelly Banks, Brit. No. Amer., 4
Pembina, Minu., 46
Pembroke, Me., 36
Penetangushene, Ontario, 8
Penfield, Ga., 22, 243
Pennville, Ind., 28
Pennsville, Pa., 74, 220, 287
Pennsville, Ohio, 68 42 March, 1876.

Pennsylvania, 70, 71, 72, 73, 74, 75, $76,77,112,122,123,138,148,149$, $154,155,157,158,162,163,200$, 201, 220, 221, 284, 285, 286, 287, 288, 289, 304, 306, 307, 311, 312, xiii, xiv
Pennsylvania Mine, Mich., 44
Penn-Yan, N. Y., 60, 178, 218, 275
Pensacola, Fla., 20, 178
Peoria, Ill., 24, 246
Pernambuco, Brazil, 301
Perry, Ga., 22
Perry, Me., 36, 255
Perry City, N. Y., 60
Perrysburg, Ohio, 68, 282
Peru, 98, 99
Peru, Nebr., 50
Petite Coquille, La., 34
Phantom Hill, Tex., 81, 292
Philadelphia, Miss., 46, 263
Philadelphia, Pa., 74, 112, 122, 133, $138,149,154,155,158,162,163$, $200,201,220,287,288,304,306$, 307, 311, 312, xiii, xiv
Phœuixville, Pa., 74
Picolata, Fla., 20, 242
Piedmont, Va., 84, 296
Pin Oak, Tex., 80, 292
Pioneer Grove, Nebr., 50
Pittsburg, Pa., 74, 288
Pittsfield, Mass., 40
Plainfield, Mass., 40
Plainville, N. Y., 60
Plantation Hill, Tex., 80
Platteville, Wisc., 90,299
Plattsburgh, N. Y., 60, 218, 275
Pleasant Plain, Iowa, 30, 250
Pleasant Ridge Nursery, 111., 24, 208, 246
Pleasanton, Mich., 44, 262
Pleasant Valley Mills, Ky., 34
Plymouth, Ct., 15, 238
Plymouth, Wise., 90, 299
Plymouth Meeting, Pa., 74, 288
Pocopson, Pa., 74, 220, 288
Point Clarence, Alaska, 10
Point Pleasant, W. Va., 88°
Point Providence, Alaska, 10
Polaris Bay, Brit. No. Amer., 176, 177, 180
Pomfret, Ct., 16, 206, 238
Pomona, Tenn., 78, 291
Pompey, N. Y., 60, 218, 275
Pompey Hill, N. Y., 62
Ponce, Porto Rico, 94
Pontiac, Mich., 44, 262
Poplar Grove, W. Va., 88, 297
Portage Lake, Mich., 44
Port Bowen, Brit. No. Amer., 2
Port Carbon, Pa., 74
Port Deposit, Md., 38
Port Egmont, Falkland Isl'd, 98
Port Famine, Patagonia, 98
Port Foulke, Greenl., 2, 122, 123, 138, $139,154,155,158,174,176,181$
Port Gibson, Miss., 46
Port Huron, Mich., 44, 262
Port Kennedy, Brit. No. Amer., 2, 155 , 156, 157, 158, 174, 176, 182
Portland, Me., 36, 187, 193, 212, 255, 302, 303, 304
Fortland, Oreg., 70, 284
Port Leopold, Brit. No. Amer., 2
Port of Limon, Costa Rica, 92
Port of Spain, Carib. Isl., 94
Port Orange, Fla., 20, 242
Porto Rico, 94, 95
Porto Rico, Porto Rico, 94
Point San José, Cal., 14, 206, 236

Portsmouth, N: H., 52, 216, 267
Portsmouth, Ohio, 68, 282, 305
Portsmouth, Va., 84, 296
Port Townsend, Wash., 86
Port Union, Mont., 48
Potsdam, N. Y., 62, 218, 275
Pottsville, Pa., 74, 288
Poughkeepsie, N. Y., 62, 218, 275
Poultney, Iowa, 30, 250
Powelton, Ga., 22
Powhatan Hiil, Va., 84, 206
Prairie Bluff, Ala., 10, 233
Prattsburgh, N. Y., 62, 276
Prescott, Wisc., 90
Presidio, Ca!., 14, 206, 236, 305
Prince Edward C. H., Va., 84
Prince Edward Island, 6, 7
Prince of Wales' Strait, Brit. No.
Amer., 2
Princeton, Mass., 40, 259
Princeton, Minn., 46, 263
Prospect, Me., 36
Prospect Hill, Ky., 34
Prospect Hill, Ohio, 68
Prospect Hill Farm, Va., 84, 296
Providence, R. I., 76, 171, 189, 193,
$194,195,198,199,220,289,304$
Puerto Cabello, Venez., 96
Punxatawney, Pa., 74

Quasqueton, Iowa, 30, 250
Quebec, Province of, Canada
East, 6, 7, 122, 125, 338, 143, 154,
$155,157,200,201,204,205,231$,
$232,304,306,307$
Quebec, Quebec, 6, 200, 201, 232
Quincy, Ill., 24
Quitman (10 mls. S.W. of), Ga., 22
Quito, Equador, 98

Racine, Wisc., 90, 299
Raleigh, N. C., 64, 278
Rancho de Jurupa, Cal., 14, 236
Rancho del Chino, Cal., 14
Randolph, Pa., 74
Randolph, Vt., 82, 222, 294
Raudolph Macon Coll., Va., 84
Rapides, La., 34
Rayado, N. M., 54
Reading, Pa., 74, 288
Readington, N. J., 53
Redford Centre, Mich., 44
Red Hook, N. Y., 62, 218, 276
Red Lake, Minn., 46
Red River Settlement, Brit. No. Amer., 4, 230
Red Wing, Mimn., 46
Reikjavik, Iceland, 2
Rensselaer, Ind., 28, 248
Rensselaer Inst., N. Y., 62
Republic, Ohio, 68
Repulse Bay, Brit. No. Amer., 2
Rhineland, Mo., 48
Rhode Island, 76, 77, 171, 189, 193,
$194,195,198,199,220,221,289$, 304
Richland, Nebr., 50, 214, 266
Richmond, Ind., 28, 248
Richmond, Mass., 40,259
Richmond, Va., 84, 296
Richmond Hill, Ga., 22
Richmond Hill, S. C., 76
Ridge, Md., 38
Ridge Farm, Ill., 24
Rigolet, Brit. No. Amer., 4, 204, 230
Riley, III., 24, 246

Ringgold Barracks, Tex., 80, 222, 226, 292
Rio Berbice, Dutch Guiana, 96
Rio de Condon, Chili, 96
Rio Grande, N. J., 52, 268
Rio Grande, N. M., 106, 161, 162
Rio Hacha, New Granada, 90
Rio Janeiro, Brazil, 138, 152, 301
Ripley (Brown Co.), Ohio, 48,252
Ripley (Huron Co.), Ohio, 68, 282
Ripon College, Wisc., 90
Robertville, S. C., 76, 290
Rochelle, Ill., 22
Rocheport, Mo., 48
Rochester, N. Y., 62, 218, 276
Rock Bluff, Nebr., 50
Rnckford, Iowa, 30
Rock Island Arsenal, I11., 24, 208, 246
Rockland, N. Y., 62
Rookport, Ohio, 68, 282
Rockville, Ind. (1 ml . N. of), 28, 248
Rocky Mountains, Colo., 161, 181, 311
Rocky Run, Wisc., 90, 299
Rolfe, Iowa, 30, 250
Rolla ($3 \frac{1}{2} \mathrm{ml}$. W. of), Mo., 48, 214, 264
Romeo, Mich., 44, 262
Romney, W. Va., 88, 297
Roseau, Carib. Isl., 94
Rose Cottage, Pa., 74
Rose Hill, Va., 84
Rossville, Iowa, 30, 250
Rougemont, Va., 84, 296
Round Top, Tex., 80, 292
Rouse's Point, N. Y., 62, 276
Roxbury, Mass., 40, 259
Rumford, Me., 36
Rupert, Vt., 82, 294
Rupert House, Brit. No. Amer., 4
Rural, Wisc., 90
Rushville, Ill., 24
Rustenburg, Dutch Guiana, 96, 301
Rutherfordton, N. C., $6 \pm$
Rutland, Vt., 82, 294
Ruthven, Va., 84, 296

Sac City, Iowa, 30
Sackett's Harbor, N. Y., 62, 218, 227, 276
Saco, Me., 36, 255
Sacramento, Cal., 14, 206, 236
Sacramento Valley, Cal., 106°
Sag Harbor, N. Y., 62, 276
Saginaw, Mich., 44
Salem, Mass., 40, 187, 188, 193, 194, $200,201,259,304,306,307,311$,
312, 318
Salem, Miss., 46
Salem, N. Y., 62, 218, 227, 276
Salem, Ohio, 68, 282
Salem, Oreg., 70, 284
Salem, Pa., 74
Salem, W. Va., 88
Salisbury, Ct., 16, 239
Salisbury, N. H., 52
Salmon F'alls, N. H., 51
Salt Cay, Bahama, 93
San Autonio, Jamaica, 94
San Antonio, Tex., 80, 222, 293
San Beuito, Cal., 14
Sand Fly, Tex., 79
San Diego, Cal., 14, 171, 172, 181, 182,
202, 206, 236
San Domingo, 94, 95, 301
Sau Domingo, San Domingo, 94
Sandwich, Ill., 24, 208, 246
Sandwich, Mass., 40, 259
Sandy Lake, Minn., 46
San Fernando, Cuba, 94

San Francisco, Cal., 14, 105, 158, 160, 171, 180, 181, 202, 236, 305, 310, 311
San José, Costa Rica, 92, 224, 300
San Joaquin, Cal., 14
San Juan Bautista, Mex., 92
Sau Juan Islavd, Wash., 87
San Luis Rey, Cal., 14
St. Anne, Quebec, 6
St. Anthony's Falls, Minn., 46, 263
St. Augustine, Fla., 18, 19, 17 s
Sauta Barbara, Cal., 14
St. Bartholomew, Carib. Isl., 94
Santa Catilina Island, Cal., 14
St. Christopher, Carib. Isl., 94
St. Clairsville, Ohio, 68
Sauta Clara, Cal., 14
St. Cload, Minn., 46
St. Croix Falls, Wisc., 90
Santa Cruz, Carib. Isl., 94
Santa Fé, N. M., 54, 216, 269
St. Francisville, La., 34
St. George, Bermuda, 92, 300
St. George, Utah, 82
St. James, Mich., 44, 262
St. John, N. Br., 6, 204, 231
St. John's, N. Foundl., 4, 204, 230
St. John's College, N. Y., 56
St. Johns, S. C., 76, 290, 304
St. Johnsburg, Vt., 82, 294
St. Joseph, Minu., 46, 263
St. Joseph, Mo., 48, 264
St. Lawrence Acad., N. Y., 62
St. Lawrence Valley, N. Y., 106
St. Louis, Mo., 48, 171, 178, 214, 264 ,
305, 308, 309, 313
St. Mary's, Ga., 22
St. Mary's, lowa, 30
St. Mary's, Pa., ' 74
St. Mary's, Utah, 82, 293
St. Mary's City, Md., 38, 257
St. Mary's River, Mich., 44
St. Martin, Quebec, 6, 232, 304
St. Paul, Minn., 46, 172, 178, 214, 263, 305
St. Paul's Island, Alaska, 10
St. Timotly Hall, Md., 38
St. Thomas, Carib. Isl., 94,300
St. Vincent, Carib. Isl., 94 St. Vincent's Coll., Pa., 74, 288
Saratoga, N. Y., 62, 276
Saugatuck, Mich., 44, 262
Sauk Centre, Minn., 46
Sault de St. Marie, Mich., 44
Savannah, Ga., 22, 201, 208, 243, 305,
308, 309
Savannah, Ohio, 68, 282
Saybrook, Ohio, 68, 282
Schellman Hills, Md., 38, 257
Schenectady, N. Y., 62, 218, 276 Scuppernong, N. C., 64 Seaville, N. J., 52, 268
Sections 17 and 22, Tomnship 126 N.,
Range 38 W., Minn., 46 Selma, Ala., 10, 233 Seneca Coll. Inst., N. Y., 60 Seneca Falls, N. Y., 62, 276 Sennett, N. Y., 62 Sergeantsville, N. J., 52, 268 Seville, Fla., 20, 242 Seville, Ohio, 68, 282 Sewickleyville, Pa., 74, 288 Shamokin, Pa., 74, 288 Sharon, Ct., 16, 239 Shelbourne, N. H., 52, 207 Shelburn, Vt., 82, 294 Sherbrook, Quebec, 6 Sherburne, N. Y., 62
Ship Island, Miss., 46

Shirleysburg, Pa., 74
Sibley, Minn., 46, 214, 226, 263
Sidney, Ohio, 68
Sierra Madre, Cal., 161
Sierra Nevada, Cal., 161
Silver Creek, Cal., 14
Silver Lake, Pa., 74
Silver Spring, Pa., 74, 288
Sing-Sing, N. Y., 62
Sinyakwateen Depot, Wash., SG
Sioux City, Iowa, 30, 250
Sisterdale, Tex., 80, 293
Sisterville, W. Va., 88
Sitka, Alaska, 10, 109, 112, 122, 124,
$138,141,142,154,155,162,163$,
$171,176,202,204,234$
Skaneateles, N. Y., 62, 276
Sloansville, N. Y., 62
Smithfield, R. I., 76
Smithfield, Va., 84, 296
Smithport, Pa., 74
Smithville, N. Y., 62, 276
Smithville, Ohio, 68
Snowville, Va., 84, 290
Socorro, N. M., 54, 269
Sombrero Island, Carib. Isl., 94, 300
Somerset, Pa., 74, 288
Somerville, N. Y., 62
Sonoma, Cal., 14
South Alabama, N. Y., 62
South Bend, Ind., 28, 248
Sonth Bethlelem, Pa., 72
South Carolina, 76, 77, 171, 172,
$178,179,200,201,222,223,290$, 304, 308, 309
South Edmeston, N. Y., 62
South Hartford, N. Y., 62, 276
Sonthington, Ct., 16, 239
South Orange, N. J., 52
South Pass (near), Ill., 24, 246
Southiport, Wisc., 90
South Thomaston, Me., 36
South Trentou, N. Y., 62, 276
Southwick, Mass., 40
Sparta, Ga., 22, 243
Spencertown, N. Y., 62, 276
Spiceland, Ind., 28, 208, 248
Springdale, Ky., 34, 252
Springdale, Wisc., 90
Springfield, Ohio, 68
Springfield, Ill., 24, 208, 246
Springfield, Mass., 40, 259
Springfield, Mo., 48
Springfield, Vt., 82, 294
Spring Grove, Iowa, 31, 210
Springhill, Ala., 10, 233
Springhill College, Ala., 10
Springhill, Ark., 12
Springville, N. Y., 62, 218, 276
Stanbridge, Quebec, 6, 204, 232
Standish, Me., 36, 255
Stapleton, N. Y., 62
Star City, Nev., 50
Statesville, N. C., 64, 278
Staunton, Va., 84, 296
Steuben, Me., 36, 255
Steubenville, Ohio, 68, 282
Stevensville, Pa., 74
Stillwater, Minn., 46
Stockton, Cal., 14, 236
Stockton, Mo., 48
Stony Point, Cal., 14
Stratford, N. H., 52, 216, 226, 267
Stribling Springs, Va., 84
Sturgeon Bay, Wisc., 90, 299
Suffern, N. Y., 62
Sugar Grove, Pa., 74
Sugar Island, Mich., 44
Summerville, Ga., 21

Summit, Wisc., 88
Superior, Wisc., $90,224,299$
Surry, Me., 36
Susquehanna Depot, Pa., 74
Sweetwater Bridge, Wyom., 90
Sykesville, Md., 38
Syracuse, N. Y., 62, 277

Talcahuana, Chili, 96
Tamaqua, Pa., 74
Tamarack, Minn., 46
'Tamworth, N. H., 51
Tarentum, Pa., 74, 288
T'arlton, Ohio, 68, 282
Tatoosh Isiand, L. H., Wash., 86, 297
Taunton, Mass., 40
Tawas City, Mich., 44, 212, 262
Taylor Barracks, Ky., i3 4
Taylorville, Ky., 34
Tennessee, 78, 79, 222, 223, 224
Texas, 78, 79, 80, 81, 122, 135, 136,
$138,151,158,161,162,171,178$,
$179,181,222,223,226,291,292,293$
The Plains (near), Va., 84
Theresa, N. Y., 62, 277
The Rock, Ga., 22, 243
The Shades, Va., 84
Thomaston, Ga., 22
Thomson, Ga., 22
Thombury, N. C., 64, 278
Thornhill, Ga., 22
Throg's Neek, N. Y., 62, 277
Thunder Bay Island, Mich., 44, 112,
$113,122,125,126,138,143,144$,
$154,155,158,212,262$
Tierra del Fuego, Patagonia, 98
Tioga, Pa. 74, 288
Tivoli, San Domingo, 94, 301
Tobacco Landing, Ind., 27
Toledo, Ohio, 68, 220, 283
Topeka, Kas., 32
Topsfield, Mass., 40, 212, 259
Topsham, Me., 36
Toronto, Ontario, 8, 109, 112, 122, 126 , $138,144,145,154,155,162,163$, $171,176,185,186,193,194,195$, $200,201,204,232,304,306,307$, xiii, xiv
Tortola, Caril. Isl., 94
Towanda, Pa., 74
Tower Grove, Mo., 48, 264
Towusendville, N. Y., 59
Travers des Sioux, Minu., 46
Trenton, N. J., 52, 268
Trenton, T'eun., 78, 391
Trinidad, Carib. Isl., 94
Trinity (near), La., 34
Trinity College, N. C., 64
Tribrook Farm, Va., 84
Trout Run Valley, W. Va., 87
Troy, N. Y., 62, 218, 277
Troy, Ohio, 68, 283
Troy Hill, Pa., 74
Truxillo, Hondur., 92
Tubac, Ariz., 12
Turk's Island, Bahama Isls., 92
Turner's Point, Tex., 80
Turtle Creek Valley, Pa., 74
Juscaloosa, Ala., 10
Tusculum College, Tenn., 78
Tuskegee, Ala., 10
Tuxpan, Mex., 92
Twinsburg, Ohio, 68

Ubajay, Cuba, 94
C'nalaklik, Alaska, 10
Union, Mo., 48, 264

Union Academy, N. Y., 56
Union Bridge, Md., 38
Union Hall, N. Y., 58
Union Hill, Tex.. 80, 293
Union Ranche, Cal., 14, 206, 237
Union Springs, N. Y., 62
Unionville, Ohio, 67
University of N. C., 64
University Place, T'enn., 78, 291
University (Washington and Lee), Va., 86
Upernavik, Greenl., 2
Up Park Camp, Jamaica, 94
Upper Alton, Ill., 26, 246°
Urbana, Ohio, 68, 220, 283
Uruguay, 98,99
U. S. Military Posts, 111

Utah, 82, 83, 222, 223, 293
Utica, N. Y., 62, 218, 277

Vacaville, Cal., 14, 237
Valdivia, Chili, 96
Valparaiso, Chili, 96
Vandalia, ill., 26
Van Rensselaer Harbor, Greenl., 2, $110,112,122,123,138,139,154$, $155,158,174,176,181,182,226,230$
Vassalboro, Me., 36, 255
Vawtex's Grove, Iowa, 32, 210, 250
Venezuela, 96, 97, 301
Vera Cruz, Mex., 92, 300
Vermont, $82,83,178,179,222,223$, 227, 293, 294, 295
Vernon Springs, Iowa, 32
Veta Grand, Mex., 92
Vevay, Ind., 28, 208, 248
Vicksburg, Miss., 46, 214, 263
Vietoria, Brit. No. Amer., 4
Vidalia Plant'n, La., 34
Vienna, Va., 84, 296
Vineland, N. J., 52, 268
Vinton, Iowa, 32
Virgin Bay, Nicar., 92
Virginia, 84, 85, 86, 87, 222, 223, 295, 296, 315
Visalia, Cal., 14, 237

Wabashaw, Minn., 46
Waco, Tex., 80, 293
Wakefield, N. H., 52
Wales, N. Y., 62
Walla-Walla, Wash., 86
Wallingford, Ct., 16, 239
Walnut Grove, Teun., 78
Walnut Hills, Ind., 28
Wampsville, N. Y., 62, 277
Wanship, Utah, 82, 293
Wapella, Ill., 26
Wardensville, IV. Va., 87
Warren Centre, Ct., 16, 239
Warrensburg, Mo., 48
Warrenton, Mo., 48, 264
Warrenton, N. C., 64, 278
Warrington, Ela., 20, 243
Warrior's Mark, Pa., 74
Warsaw (near), Ill., 26, 246
Warsaw, Ind., 28
Warsaw, N. Y., 62
Warwick, Mass., 40
Washington (near), Ark., 12, 192, 198, 199, 204, 235
Washington, D. C., 18, 122, 134, 138, $149,150,154,155,208,240$
Washington, Iowa, 32
Washington, Tex., 80, 293
Washington College, Md., 38

Washington Territory ${ }^{\text {W }}$-86, 87, 105 , $224,225,227,296,297$
Waterbury, Ct., 16, 239
Waterbury, N. Y., 62, 277
Waterford, N. Y., 62, 277
Waterford, Wisc., 90
Waterloo, Ill., 26, 246
Waterloo, lowa, 32, 210, 250
Watertown, N. Y., 62, 277
Watertown, Wisc., 90
Watertown Arseval, Mass., 42, 212, 259
Waterville, N. Y., 62
Watervliet Arsenal, N. Y., 62, 218, 277
Watsonville, Cal., 14, 237
Waukegan, IIl., 26
Waukesha, Wise., 90,299
Waukon, lowa, 32
Waupacea, Wisc., $90,224,299$
Wausau, Wisc., 90,299
Waverly, N. Y., 62
Waverly, 1ll., 20, 246
Waynesville, Ill., 26, 246
Webster, Me., 36
Webster City, Iowa, 32, 250
Webster lust., N. C., 64
Webberville, Tex., 80, 293
Welchfield, Ohio, 68, 283
Wellington, Ohio, 68
Wellsville, N. Y., 62, 277
West Barre, Ohio, 68
West Bedford, Ohio, 68
West Charlotte, Vt., 82, 294
West Chester, Pa., 76, 288
West Cornwall, Ct., 16, 239
West Day, N. Y., 62
West Denis, Mass., 42
West Enfield, N. H., 52, 267
Westenholme Sound, Greenl., 2
Westville, Miss., 46
Westerville, Ohio, 68, 283
West Fairlee, Vt., 295
West Feliciana, La., 34
Westfield, Mass., 42, 259
Westminster, N. C., 64
West Newton, Mass., 42
Weston, W. Va., 88
West Point, N. Y., 62, 218, 277
W. Reserve Coll., Ohio, 66

West salem, 111., 26, 246
West Stockbridge, Mass., 42
Westtown, Pa., 76, 288
West Union, Iowa, 31
West Union, Ohio, 68
West Urbana, Ill., 26, 246
West Virginia, $86,87,88,89,297$, 298
West Waterville, Me, 36, 255
Westwood, Va., 86, 296
Wewokaville, Ala., 10
Weyauwega, Wisc., 90,299
Weymouth, Mass., 42, 259
Wheaton, I11., 26, 246
Wheeling, W. Va., 88
White Bear Lake, Minn., 46
White Day, W. Va., 88
Whiteboro, Iowa, 32, 250
White Earth, Minn., 46
Whitefield, N. H., 52, 267
Whitehall, Pa., 76, 220, 289
Whitemarsh Island, Ga., 22, 243
White Plains, N. Y., 62, 277
White Springs, Fla., 20
Whitestown, N. Y., 62, 218, 277
Whyteville, Va., 86, 296
Wilson, N. Y., 62, 277
Wilkinsville, S. C., 76, 290
Willamette Univ., Oreg., 70
Willett's Point, N. Y., 57

Williamsburg, Me., 36, 255
Williamsburg, Va., 86
Williamsport, Ohio, 68
Williamsport (Monroe Co.), Ohio, Є8
Williamsport, Pa., 76
Williamstown, Kas., 32
Williamstown, Mass., 42, 110, 188, 212, 260
Williamstown, Vt., 82, 295
Willow Creek Nursery, Ill., 26
Wilmington, Del., 18, 240
Wilmington, Vt., 82
Wilson, N. C., 64, 278
Winchester, Tenn., 78
Winchester', Va., 86, 296
Windham, Me., 36
Windham, Ohio, 68, 283
Windsor, Ct., 16
Windsor, N. S., 6, 200, 201, 231
Windsor, Vt., 82, 295
Winnebago, Ill., 26, 208, 246
Winnipeg, Brit. No. Amer., 4, 182, 230

Winowkupa, Brit. No. Amer., 4
Winter Island, Brit. No. Amer., 4
Wirt C. H., W. Va., 88,298
Wisconsin, 88, 89, 90, 91, 178, 179, $224,225,227,298,299$
Witchfield, Ohio, 220
Wolfville, N. S., 6, 204, 231
Wood bine, Iowa, 32, 250
Woodlands, The, Iowa, 32, 250
Woodlawn, Md., 38, 257
Woodlawn, Va., 86
Woodmere Cemetery (Detroit), Mich., 44
Wood's Hole, Mass., 42
Woodstock, Ill., 26
Woodstock, Mr., 38
Woodstock, Vt., 82, 295
Woodstown, N. J., 52
Woodward College, Ohio, 64
Wooster, Ohio, 68, 283
Worcester, Mass., 42, 212, 260
Worthington, Pa., 76, 289

Wy aconda Prairie, Mo., 48, 264
Wyandotte City, Kas., 32
Wyanet (4 m 'ls N. W. of), Ill., 26, 246
Wyoming, $90,91,224,225,247,249$

Yankeetown, Ohio, 68
Yankton Indian Agency, Dak., 16, 240 .
Yellow Spring, Ohio, 68
Yellville, Ark., 12
Yerba Buena Island, Cal., 14, 206, 237
York Factory, Brit. No. Amer., 4
York Neck, 111., 26, 246
Yorkville, Ala., 10
Youngsville, N. Y., 62
Youngsville, Pa., 76
Ypsilanti, Mich., 44, 262

Zanesfield, Ohio, 68
Zanesville, Ohio, 68, 283
Zebulon, Ga., 22, 243

LIST OF OBSERVERS.

Abbe, C., 43
Abell, B. F., 69
Abell, J. R., 85
Abernethy, W. M., 47
Adams, D. P., 67
Allams, E. W., 65
Adams, J. F., 21, 85
Adams, J. Q., 19
Adams, Prof. E. W., 65
Adams, R. W., 21
Albert, Maj. J. W., 77
Alba, Dr. E. M., 55
Alcott, W. P., 17
Aldrich, T. H., 77
Aldrich, V., 25
Alison, Dr. H. L., 9
Allan, J. T., 51
Allen, G. N., 69
Allen, J., 45
Allen, J. S., 63
Allin, L. C., 41
Allison, Col. T. P., 65
Allison, F., 7
Allison, W., 71
Alsop, S., 77
Alzate, 91,93
Ammon, J., 69
Anderson, Dr. C. L., 47
Anderson, Dr. J., 23
Anderson, H. H., 29
Anderson, J., 79
Anderson, Mary, 29
Andrass, W. C., 19
Andres, F. G., 27
Andrews, D. S. L., 45
Andrews, L., 17
Anguire, 99
Anthony, 13
Anthony, N., 69
Applegate, J. A., and
daughter, 29
Appleyard, J., 85
Arden, T. B., 57
Arnold, 95
Arnold, E. G., 77
Arnold, Mrs. J. T., 23
Armstrong, S., 91
Arthur, J., 93
Aston, E. J., 65
Astrop, R. F., 85
Atkins, 73
Atkins, Rev. L. S., 69
Atkins, Rev. S. L., 67
Atkinsou, G. M., 71
Atkinson, T. C., 39
Atkinson, W. O., 31
Atler, 73
Atwater, H. H., 75
Atwood, G. W., 19
Atwood, J., 89
Aubier, J., 57

Austin, 3
Austin, W. W., 29
Avery, C. P., 45
Ayres, 91
Ayres, Dr. W. O., 15

Babcock, A. J., 23
Babcock, Dr. B. F., 45
Babcock, E., 25, 31
Babcock, Mrs., 45
Bache, A. D., 75, 133
Back, 5
Bacon, E. E., 27
Bacon, F. M., 45
Bacon, H. S., 45
Bacon, W. 41
Baer, H. M., 39
Baer, Miss H. M., 39
Bailey, 77
Bailey, S. S., 49
Bailey, J. B., 21
Bailly, 93
Baird, J. H., 71, 75
Baker, F., 25
Baker, G. D., 61
Baker, G. H., 45
Baker, J. C., 7
Baker, Miss M. E., 89
Baker, N. T., 23
Baker, W. E., 71
Baldwin, E., 25
Batdwin, Dr. A. S., 21
Ball, 61, 73
Ball, Dr. J. B., 31
Ball, Mrs. I. E.; 31
Ballou, Dr. N. E., 25
Bancroft, J., 21
Bancroft, Rev. C. F. P., 79
Bandelier, A. F., 25
Banning, R., 39
Banuister, H. M., 11
Barber, Prof. G. M., 69
Barber, W. A., 77
Bardon, R., 45
Barker, E., 21, 23
Barker, T. M., 9
Barnard, 45
Barnard, A. D., 71
Barnes, C., 27, 29
Barney, C. R., 79
Barratt, 77
Barrett, J., 73
Barringer, W., 65
Barrows, Capt. S., 63
Barrows, Dr. E. B., 37
Barrows, Dr. N., 41
Bartlett, E. B., 61
Bartlett, J., 37
Barto, D. C., 83
Barto, M. E., 83

Barton, 35
Barton, Dr. E. H., 77
Barton, E. H., 35
Bassett, G. R., 27
Batchelder, 41
Batchelder, F. L., 21
Batchelder, J. M., 37
Bateman, J. H., 19
Baxter, Miss E., 81
Bea and son, 57
Beach, Dr., 55
Beal, D., 31
Beal, Mirs. C., 31
Beale, J., Dr., 41
Bean, Dr. J. B. 21
Bean, J. B., 79
Bean, J. M., 11
Bean, Prof. S. A., 91
Beans, E. W., 77
Beans, T. J., 53
Beans, T. S., 53
Beardsley, 63
Beatly, 69
Beatty, Prof. O., 35
Beauchamp, W. M., 63
Beckwith, Dr. T. F., 85
Beckwith, W., 33
Beechey, 11
Beeman, C. D., 31
Behmau, Asst. Surg. F., 17
Belcher, W. C., 15
Bell, J. E., 39
Bell, J. J., 37
Bell, J. L., 85
Bell, L., 51
Bell, Mrs., 85
Bell, S. N., 53
Belle, Dr. E. H., 35
Belle, Mrs. E. M. A., 23
Bemis, 63
Benagh, G., 11
Benjamin, 41
Benkird, 73
Bennett, C. D., 81
Bernett, H., 69
Benmett, Miss S. E., 69
Benner, J. F., 69
Bentley, E. T., 75
Bentley, S. S., 87
Benton, 67
Benton, F. A., 67
Berard, 91
Berendt, Dr. G., 93
Berlandier, Dr. J. L., 91
Bertherd, 97
Berthoud, E. L., 17, 27, 35
Bessels, Dr. E., 174, 176
Bethel, E., 83
Bethune, Dr., 7
Bevard, 91
Bidwell, 31, 67

Bidwell, Dr. E. C., 31
Bigelow, A., 41
Binford, R., 85
Bingham, 65
Bingman, J. T., 69
Binkerd, J. S., 67
Birney, 45
Bishop, H., 13
Bixby, 35
Bixby, A. H., 27, 51
Bixby, J. H., 43
Blackburn, C. B., 35
Blackburn, W. J. R., 33
Blair, D., 95
Blake, 95
Blake, H., 29
Blake, J. R., 79
Blake, J. W., 15
Blaker, G. H., 79
Blakeslee, S. V., 13
Blanehard, O. A., 25
Blanding, W. M., 91
Blascom, J. Van, 37
Blewett, W., 21
Bliss, G., 83
Bliss, L.' W., 83
Bloch, 3
Blodget, Dr. A. P., 77
Blodgett, W. O., 75
Bloomfield, S., 45, 47
Blue, 49
Blunt, M. L., 17
Bly, E. H., 91
Boadle, J., 53
Boerner, C. G., 29
Bogardus, E. H., 53
Boliven, R. H., 87
Bond, Prof., 41
Boshwick, J. B., 79
Bosworth, Prof. R. S., 65
Bowden, Ida S., 47
Bowden, Lucy A., 47
Bowen, J. S., 51
Bowen, M. J. A., 51
Bowman, Dr. E. H., 23
Bowman, J., 55
Bowman, J. B., 85
Boyd, S. T., 67
Boyers, W. R., 71, 73, 87, 89
Brackett, G. E., 37
Brantz, L., 39
Bratt, John, 63
Brayton, 89
Breed, E. E., 89
Breed, J. E., 63, 89
Breed, M. A., 25
Brendel, Dr. F., 25
Brewer, 75
Brewer, F. A., 41
Brewer, F. P., 65
Brewster, A., 51

Brickenstein, H. A., 25
Briggs, Rev. E. L., and daughter, 31
Brightman, J. C., 81
Brinkerhoff, G. M., 25
Brookes, S., 23
Brooks, 41
Brooks, J., 41
Brooks, N. S., 81
Brooks, Rev. J., 47
Brooks, W., 53
Brown, 29
Brown, B., 53
Brown, B. B., 49
Brown, B. G., 53
13rown, G. H., 99
Brown, G. W., 33
Brown, H. H., 51
Brown, J. A., 87
Brown, J. J., 57
Brown, J. M., 15
Brown, J. W., 24
Brown, N. B., 41
Brown, S., 71
Brown, W. B. G., 53
Browne, 81
Brownson, Dr. M. K., 25
Bruce, J. J., 31
Brugger, S., 73
Bryant, A. F., 33
Bryant, Asst. Surg. C., 11
Bucher, C., 21
Buck, R., 37
Buckland, D., 83
Buckland, H., 83
Buckner, H. F., 29
Bull, 3
Bullard, H., 49
Bullard, R., 43
Bullock, T., 83
Burckart, H. I., 75
Burkhardt, 91, 93
Burr, 49
Burras, O., 69
Burrell, J. I., 73
Burroughs, R., 29
Bush, A., 31
Bussing, J. W., 61
Butterfield, W. W., 27
Byers, W. N., 15, 51
Byers, S. M., 47
Byram, E. N., 63

Caldwell, 65
Caldwell, E. E., 51
Caldwell, J. T., 49
Caldwell, J. H., 41
Calhoun, Secretary, 110
Campbell, 5, 21
Campbell, Dr. W. W., 43
Campleil, J. L., 87
Canfield, Dr. C. A., 15
Cantril, J. E., 27
Carey, Dr., 23
Carothers, A. G., 93
Carpenter, 35, 63
Carpenter, B., 29
Carpenter, T., 77
Carr, O. W., 65
Carter, 39, 67
Carter, J. H., 35
Case, Dr. S. C., 51
Case, J., 17
Cassidy, Asst. Surg. A., 15
Caswell, A., 77
Caswell, Prof. A., 189
Caswell, R. C., 5
Catting, J. R., 21

Canndas, A., 93
Cavilur, 47
Cenerd, 7
Chadwick, 75
Chalmers, 77
Chamberlain, J., 31
Chamberlin, S. N., 21
Chandler, Dr. C. Q., 49
Chandler, Dr. W. J., 53
Chandler, M. I'. W., 91
Chapman, 57
Cbapman, N. A., 69
Chappelsmith, J., 29
Charles, 5
Chase, A., 51
Chase, C. T., 57
Cliase, Dr., 53
Chase, Dr. C. D., 35
Chase, Dr. D. H., 25
Chase, Dr. M., 43,45
Chase, Mrs., 45
Cheney, W., 47
Cheney, W. F., 13
Chevalier, 85
Chickering, J. W., 61, 83
Chief Justice, 93
Child, Dr. A. L , 51
Child, J. E., 51
Childs, E. W., 07
Chorpenning, Dr. F., 75
Christian, J., 49
Church, J. W., 45
Clark, 17, 39
Clark, B. W., 59
Clark, Dr. D., 43
Clark, S., 57
Clark, W. J., 21
Clark, W. P., 67
Clarke, Dr. J. T., 85
Clarke, J. 65
Clarke, L., Jr., 5
Clarke, T1., 45
Cleaveland, Prof. P., 37, 316
Cleland, Rev. T. H., 35
Cleveland, Rev. T. H., 47
Clough, J. B., 45
Coachman, B. A., 21
Cobly, 17
Cobleigh, N. E., 25
Cochrane, J., 25
Cockburn, S., 93
Coflin, Prof. J. H., 61
Coffin, S. J., 73, 75
Coffin, Prof. W., 23, 25
Coffman, Dr. J. L., 75
Cofran, L. R., 39
Cogswell, J. F., 61
Colb, 53
Colbrunn, E., 69
Colby, A., 51
Colby, J. K., 83
Cole, B., 53
Collier, D. C., 15
Collier, Pıof, G. H., 27
Collins, H. C., 35
Collin, Prof. A., 31
Collins, Rev. S., 27
Comings, G. P., 49
Comley, J., 71
Compton, Dr. A. J., 15
Conkey, L. W., 63
Connolly, H., 5
Comrad, Dr., 75
Consul, U. S., 93,97
Cook, E. R., 53
Cook, G. H., 53
Cook, H. W., 71
Cooke, Prof. G., 79
Cooke, R. L., 53

Cooley, J. S., 57
Coolidge, Dr., U. S. A., 111
Cooper, 23
Corey, H. M., 19
Cornette, A., 11
Cornish, J. H., 77
Corse, J. M. 31
Corson, L. E., 75
Corson, M. H., 75
Cotton, Dr. D. B., 69
Cotton, J. M., 29, 33
Cotton, Mrs., 33
Couch, E. D., 51, 53
Couch, S., 87
Courrier, A. O., 43
Covell, J. C., 85
Coventing, W. B., 27
Cowing, P., 63
Coxe, Dr. J. R., 75
Craigie, 9
Craigie, Dr. W., 9
Crandall, W. H. 77
Crandon, F., 23
Crane, G. W., 65 Craw ford, 19
Crawford, T. H., 71
Cribbs, Prof. J. R., 47
Crisp, J. F., 27
Crisson, J. C., 93
Crocker, A., 33
Crockett, J. M., 79
Croft, C. L., 33
Crookham, G. L., 67, 133
Crosby, J. B., 45
Crosier, A., 27
Crosier, D. E. L., 29
Crowther, B., 93
Culbertson, 73
Cumming, S., 9
Cunninghav, G. A., 41
Currier, J. M., 83
Curtis, A. 73
Curtis, W. W., 91
Curtis, G. G., 39
Curtiss, J., 63
Cutler, Col., 45
Cutler, J. L., 23
Cutter, 17
Cutting, E. 15
Cutting, H. A., 83
Cygnaeus, 11

Dade, 9
Dale, J. G., 65
Dahl, W. H., 11
Dalrymple, 39
Dana, W. D., 37
Daniels, N. C., 89
Daniels, P., 33
Darby, Prof. J., 9, 21
Darling, L. A., 39
Darlington, F., 75
Davidson, H. M., 67
Davidson, ir., W., 67
Davis, Rev. E., 43
Davis, R. J., 85
Dawes, J. P. 95
Dawson, Dr. J. L., 77
Dawson, W., 27, 29
Day, T., 73
Dayton, E. A., 59
Dayton, J. H., 29
Dayton, L. M., 67, 69
1)eacon, J. C., 53

Deans, R. B., 11
Deckner, F., 89
Deckner, F., and son, 21
Deem, D., 29

Deering, D. S., 31, 71
De La Lerve, 61
Delaney, Dr., 53
Delaney, E. M. J., 5
Delaney, J., and sons, 5
Denig, E. T., 49
Denison, H. L., 33
Denning, W. H., 57
Dennis, W. C., 21
Densmore, 89
Desanniers, 7
Deville, 95
Deweg, 97
Dewey, Frof. C., 43, 110, 111, 188
Dewharst, E., 37, 39, 41
Dewhurst, Rev. E., 17
De Witt, 55
Dickinson, G. C., 85
Dickinson, J. P., 31
Dickson, W., 5
Dieperink, 97
Dill, J. B., 55
Dille, J., 69
Doak, W. S., 35, 79
Doak, S. S., 79
Docharty, G. B., 61
Dodd, C. M., 27
Dodge, J. W., and son, 79
Donoghtue, J. O., 91
Dorev, A. Van, 85
Dorfel, 97
Dorr, E., 57
Dorsay, 69
Dorsey, E. B., 97
Dorta, 97
Dorweiler, P., 29, 31
Doton, H., 83
Dougherty, W. II., 21
Dow, 53
Downey, Prof. C. J., 27
Doyle, J. B., 69
Doyle, L. H., 33
Drake, 65
Draper, J., 43
Drew, T. R., 33
Drummond, 3
Drumore, 63
Dudley, 'T. $\mathrm{D}, 23,25,27$
Duffield, D. H., 75
Duffield, H., 71
Dunbar, W., 47
Duncan, Rev. A., 25
Dunegan, J. L., 91
Dunkum, E. S., 15
Dunkum, W. L., 15
Dunn, F. K., 67
Dunwoody, W. P., 31
Durham, J. W., 91
Dutton, I. R., 75
Dutton, Prof. J. R., 39

Earle, 57
Earle, E. J., 77
Easter, Prof. J. D., 21
Eastman, Prof. J. R., 19
Eaton, V. G., 37
Eaton, Dr. B. F., 83
Eddy, L., 89
Edmondson, Dr., 39
Edwards, Dr., 59
Edwards, J., 73
Edwards, Rev. T., 17
Eggert, J., 71
Egle, Dr. W. H., 73
Eldredge, W. V., 25
Eldredge, Rev. W. V., 23
Ehiott, 77

Elliott, Prof. J. B., 47
Elliott, S., 21
Ellis, D. H., 41
Ellis, Dr. E., 43, 45, 89
Ellis, Dr. W. T., 15, 33
Ellis, T. H., 87
Ellsworth, J., 25
Ellsworth, L., 25
Ellsworth, M. S., 25
Tmory, Major, 97
Engelbrecht, L., 69
Engelman, Dr. G., 49
Engleman, 75
Ervendberg, Prof. L. C., 81, 91
Evans, J., 51
Eveleth, S., 37
Eveleth, S. A., 37
Everett, Prof. J. D., 7
Ewing, Dr. F. A., 53
Eyhts, Dr., 55

Fabre, 11
Fahlberg, 95
Fahs, C. F., 11
Failer, A., 31
Fairall, H. H., 31
Fairbanks, F., 83
Fairchild, 57, 63
Fairchild, Prof. J. H., 69
Fallcott, 57
Fallon, J., 41
Farmer, J., 51
Farquier, 87
Farrar, Prof., 41
Farwell, 31
Favell, 79
Fellows, H. B., 63
Fendler, A., 49, 97
Fenton, E., 75
Ferguson, 77
Ferguson, G. T., 21
Fernald, C. H., 37
Fernald, M. C., 37
Ferris, E. J., 67
Ferris, W. A., 79
Field, (ren. M., 83
Fietsam, J., 79
Finch, F., 39
Finley, A. J., 31
Finley, Dr. T'., 25
Finley, P. F., 13
Fish, E., 33
Fish, L., 33
Fisher, Dr. J. C., 67
Fiske, W. M. L., 19
Fitch, I., 23
Fitz-Gerald, Rev. T., 65
Fleming, J., 53
Flett, A., 3, 5
Flint, Rev. A., 17
Flint, W., 63
Flippin, W. B., 13
Florer, Dr. T-W., 47
Fogarty, N. J., 21
Foote, H. A., 65
Fountleroy, H. H., 85
Fox, J. L., Dr., 41
France, G. S., 57
Franklin, 5
Franklin, Dr. W. E., 79
Frantz, J., 75
Frantzius, Dr. A., 93
Fraser, J. B., 69
Freeman, F. A., 51
Freeman, H. C., 25
Freeman, Mrs., 25
French, 39

French, D. I. S., 53
French, F^{\prime}. H., 79
Friel, P., 73, 75
Fries, G. W., 59
Friquinet, 99
Frombes, Prof. O. S., 15
Frost, 83
Frost, E. C., 59
Frost, Rev. A., 53
Fuller, A. W., 33
Fuller, Dr. E. N., 77
Fuller, E. A., 77
Fuller, W. H., 67

Gaines, A. G., 37
Gale, W., 89
Catloway, 65
Gantt, Dr. W., 79, 81
Gardner, 97
Gardner, J. S., 33
Gardiner, F., 37
Gardiner, R. H., 37
Garland, J. G., 37
Garland, S. S., 93
Garrison, O. E., 47
Gaskel, 75
Gautier, 7
Gay, 89
Gay, V. P., 27
Geological surveyors, 95
Gibbon, L., 21
Gibbons, Dr., 158, 160
Gibbons, Dr. H., 15
Gibbs, 95
Gibbs, T., 81
Gibson, H., 51
Giluson, R. T., 23
Giddings, 25, 59
Gidley, J. M., 29
Gifford, B. R., $9,35,43$
Gifford, R. R., 39, 43
Giles, F. W., 33
Gill, J. H., 25
Gilliland, S. W., 71
Gillingham, C. 87
Gillingham, W., 39
Gilliss, Lieut. J. M., U. S. N.,
19, 134, 149
Gilman, S., 37
Gilman, W. H., 33
Gilmore, M., 67
Gilmour, A. H. I., 7
Glasco, J. M., 81
Glenuie, Rev. A., 77
Glover, E. S., 21
Goff, Mrs. M. A., 43
Gold, Z. L., 17
Good, W. H., 79
Goodman, W. R., 39
Goodnow, I. T., 33
Goodrich, Dr. G. A., 51
Gordon, A., 21
Gordon, Dr. W. A., 91
Gordon, R., 13
Goss, B. F., 33
Goss, W. K , 31
Gould, Dr. Mr., 37
Goulding, Dr. W. J., 13
Graham, 97
Gramesby, C., 23
Grant, 23
Grant, J., and daughter, 25
Grape, G. S., 39
Grathwohl, J., 71
Grave, Mary A., 47
Green, 73
Green, A. R., 47
Green, J. C., 77

Gregory, S. O., 63
Greiner, J., 67
Gridley, 91
Gridley, Dr. G., 89
Gridley, Rev. J., 89
Grier, Rev. J., 75
Griest, 61
Griest, Miriam, 27, 29
Griffing, G. S. S., 65
Griffith, R. H., 45
Grigsby, W. T., 79
Grimman, 85
Grinnell, J., 35
Groesbeck, Mrs. E. W., 33
Groff, T. L., 27
Groneweg, L., 67
Guald, 65
Guerard, J. S. J., 77
Gumn, D. 5
Guptill, G. W., 37

Haas, H., 57
Hachenberg, G. P., 69
Haeuser, E., 91
Hagensick, J. M., 31
Hayne, J. B., 93
Haines, 73
Haines, J., 27, 29
Haines, W., 21
Hall, Dr. A., 7
Hall, J. P., 39
Hall, J. S., 53
Hall, Prof. J., 23
Hallarn, 99
Halle, 97
Hallowel, B., 85
Hamacker, M. F', 49
Hamilton, Prof. J., 79
Hamilton, W., 51
Hammitt, J. W., 65
Hauce, E., 73
Haneock, E. M., 33
Hannaford, E., 67
Hanshew, H. E., 39
Hanshew, J. K., 39
Harding, 5
Hardison, 65
Harkuess, W., 57
Harper, Prof. L., 47, 53
Harper, G. W., 65
Harris, 73
Harris, A. J., 9
Harris, Dr. J. O., 25
Harrisou, B. F., 17
Harrisou, C., 7
Harrison, J., 35
Hart, L. S., 61
Hartshorn, 93
Hartt, C. F., 7
Hasbrouck, J. E., 53
Haswell, Rev. J. R., 63
Haworth, J., 73
Hatch \& Co., 47
Hatch, Dr. F. W., 15
Hatch, J., 53
Hatch, N., 47
Hatchez, F., 91
Hatfield, J. C., 67
Hawks, Dr., 21
Hawks, Mrs. J. W., 21
Haworth, J., 75
Hayden, John, 37
Hayes, Dr. I. I., 3, 123, 139 174
Hays, Dr. W. W., 15
Haywood, Prof. J., 67, 69
Hearne, F. J., 25
Heaton, L. D., 81

Heckerman, H., 71
Hedges, Dr. U. D., 19
Heger, Dr. A., 75
Heimstreet, J, W., 47
Heisely, J., 73
Helm, T. B., 27
Hempstead, Dr. G. B., 69
Hevan, J. H., 69
Henderson, W., 11
Hendrick, 17, 25
Hendricks, D. B., 59
Henry, Dr. W. E., 25
Hensley, Prof. J. M., 7
Hering, C. T., 97
Herrick, F. C., 35
Herrick, J., 37
Herrick, J. D., 65
Herrick, L., 69
Hewes, 75
Hewson, Dr. Thomas, 75
Heyser, W., 73
Hibbard, A. A., 45, 59
Hickock, W. O., 73
Hicks, Dr. W. Q., 65
Hicks, J. C., 89, 91
Hieto, J. A., 91
Higgins, A. W., 45
Higgins, D. F., 7
Higgins, F. W., 45
Hildreth, Dr. G. O., 67
Hildreth, Dr. S. P., 67, 191, 316
Hill, L. T., 51
Hillier, Rev. I. Z, 47
Hillier, Rev. S. S., 63, 65, 67, 91
Hillyer, H. L., 21
Himoe, Dr. S. O., 33
Himoe, J. E., 91
Hindman, S. M. W., 71
Hitchoock, 41
Hitcheock, J. B., 29
Hoadley, 17
Hobart, E. F., 31
Hobbs, C. M., 29
Hobus, O. T., 75
Hobbs, W. H. and Mary A. 27

Hoff, Dr. J. W., 89
Hoffer, Dr. J. R., 73
Hoffer, Miss M. E., 73
Hogan, 85
Hough, 63
Hough, Dr. F. B., 57, 61, xii
Houghton, G. R., 73
Holbrook, Dr. M., 21, 77
Holbronk, Dr. S. H., 21
Holcomb, 41
Hollenbeck, D. K., 69
Hollenbeck, F., 69
Holley, B. T., 11
Hollingsworth, G. W., 33
Holmes, Dr. E. S., 43, 63
Holmes, J. C., 43
Holmes, T., 29
Holston, Dr. J. G. F., 69
Holt, 45, 47
Holyoke, Dr., 41, 187
Honeyman, W. E., 71
Hoover, W., 69
Hopkins, 47, 99
Hopkins, Prof. A., 43
Horn, Dr. H. B., and
daughter, 33
Horner, W., 49
Horr, Asa, 31
Hosmer, 59
Hotchkiss, J., 85
Houghton, S. W., 79

House, J. C., 63
How, Prof. H., 7
Howe, H., 57
Howell, D., 43
Howell, R., 61
Iloyt, E., 41
Hubbs, Dr. J. A., 71
Huestes, 27
Hull, A. B., 17
Humboldt, 95
Hunt, A. D., 9
Hunt, Asst. Surg. W. H., 19
Hunt, G. M., G1
Huntington, G. C., 67
Hurd, Dr. I., 41
Huston, 75
Hyde, 41
Hyde, G. A., 65, 69
Hyde, Mrs., 65
Hyde, S., 61

Ingalsbe, G. M., 63
Iugraham and IIyland, 33
Iugram, Dr. J., 53, 69
Ironside, R. B., 71
Irvine, 69
Ives, E. R., 21
Ives, W., 57
Irwin, Dr. A. C., 27

Jackman, Prof. A., 83
Jackson, R. S., 35
Jacobs, 21
Jacobs, Prof. M., 73
Jackson, 65
Jackson, R. S., 47
Jaeger, H. W., 67
James, 27
James, Dr. L., 27
James, J. W., 25
James, Prof. C. S., 73
Jaque, A., 69
Jenkins, 53, 63
Jenkins, J. L., 25
Jeunings, Dr. S. K., 9, 11, 79
Jerome, A. E., 69
Johuson, 23, 77
Johnson, C., 83
Johuson, D., 83
Johnson, Dr. H. A., 67
Johnson, E. D., 67, 89
Johnson, E. W., 57
Johnson, Kate E. 67
Johnson, R. C., 51
Johnson, Rev. S., 61
Johnson, S. C., 57
Johnson, T. H., 67
Johnson, W., 21, 37
Johnston, Prof. J., 17
Johnston, Dr. W. M., 47, 65
Jones, 39
Jones, B. W., 85
Jones, Dr. M., 39
Jones, W. M., 9
Jorgensen, C. N., 31
Joslyn, Dr. Wm., 27
Jourdan, P. C. H., 39
Jozéfé, Dr. C.. 27
Julien, 69
Julien, A. A., 95

Kakel, W. S., 7
Kalin, Bertram, 75
Kane, Dr. E. K., 3, 123, 139
Kapp, E., 81
Karston, 97

Kaucher, W., 49
Kedzie, R. C., 43
Keenan, Mrs. W. E. A., 47
Keenan, T. J. R., 47
Keese, G. Pomeroy, 57
Keith, 9
Keith and Stewart, 3
Kellett, 3
Kellett, T. A., 45
Kellogg, Prof. E., 43, 188
Kellum, A. A., 47
Kelly, 77
Kelly, O. H., 45
Kemper, Dr. G. W. H., 29
Kent, 41
KendalI, J. E., 89
Kendall, J. F., 63
Keunedy, G. R., 5
Kennedy, T., 67
Kennicott, R., 11
Kerby, O. J., 49
Kerr, Prof. W. C., 65
Kerr, W. T., 53
Kersey, Dr. V., 29
Kibbe, Dr. T. R., 13
Kidder, L. D., 53
Kilgore, W., 47
Kilpatrick, Dr. A. R., 35
King, 71, 97, 99
King, H, C., 73
King, Mrs. A. C., 67
Kingston, G. T., 163, 185 195, 199
Kirkby, W. W., 5
Kirkpatrick, J. A., and
daughter, 75
Kluge, 71
Kluge, Dr. J. P., 97
Knapp, W., 15
Knauer, J, 27
Knight, A. B., 67
Knoble, S., 67
Knoud, Rev. J., 49
Knox, 95
Knox, J. C., 51
Koegel, 3
Kohler, E., 77
Koler, F., 79
Kounslar, Dr. R., 85
Kounslar, Miss E, 85
Kreider, M. Z., 67
Kridelbaugh, Dr. S. H., 31
Kron, F. J., 65
Künster, H., 27

Lamb, Dr. W. W., 33
Lamson, G. M., 17
Laudon, A. S., 57
Landon, S., 57
Lane, J., 45
Langdon, L. A., 57
Langguth, Jr., J. G., 23
Lapham, 69
Lapham, Dr. I. A., 89
Laselle, C. B., 27
Larsh, Mrs. O., 67
Laszlo, C., 91, 93
Latimer, G., 95
Lattimer, Prof. S. A., 59
Latour, L. A. H., 7
Lawkins, J. G., 95
Lawson, 95
Lea, 65
Lear, O. H. P., 49
Learned, D, W., 17
Lee, C., 25
Lee, E. E., 33
Lees, J. C., 93

Lefferts, J., 59
Leffman, L., 59
Lefroy, Capt., 126
Lehman, Dr. H. M., 49
Leonard, 51
Leonard, Rev. S. W., 51
Lewis, 3
Lewis, C. H., 79
Lewis, Dr. James, 61, 110 127
Lillie, D. T., 35
Lining, 77
Lincoln, T., 37
Lippincott, J. S., 53
Lippincott, J. W., 53
Litchfield, F., 97
Little, J. T., 25
Little, Rev. R., 19
Livesay, Dr. G. W., 67
Livingstone, 73
Livington, W., 25
Locke, S., 47
Lockhart, J., 3
Lockwood, G. P., 89
Logan, Dr. T. M., 15
London, 97
Loomis, Prof. E., 67
Loughride, Dr. J. H., 29
Love, L. P., 31
Lower, 63
Lowndes, B. O., 39
Lowrie, 73
Lowrie, J. R., 75
Lüneman, J. H., 35, 49
Lüps, J., 89
Lukins, J. F., 69
Lull, J. S., 47
Lundeen, Rev. W., 69
Luther, S. M. 67
Luttrell, J., 17
Lyle, Dr. L. C., 91
Lyser, J. de, 89

McAfee, Dr. J. R., 2 i
McBeth, S., 29
McCall, C., 87
McCary, R., 47
McCarty, H. D., 33, 69
MeClintock, F., 31
McClintock, Sir F. L., 3,
124, 140
McClung, C. L., 13, 69
McClure, 3
McConvell, E. M., 73
McConnell, T., 31
McCord, J. S., 7, 125, 143
MoCormick, J. O., 39
McCoy, 21
McCoy, Dr. F., 27, 29
McCoy, Miss, 27, 29
McCready, D., 31
McDonald, J., 17
McDouald, M., 59
McDougal, 9
HoDoweil, Rev. N., 65
McDowell, W. H., 89
McDowell, W. W., 65
McElrath, J. J., 13
McGregor, Sir J., 95
McHarf, 55
McHenry, B. F., 29
MeKenzie, J., 5
McKenzie, J. M., 31, 51
MeLaughlin, 87
McLeod, M. M., 3
MeMillan, S. B., 67
McMoore, P. A., 57
McMallin, F., 47

McNutt, E. L., 71
McPherson, 5
McRae, C., 77
Mc Welly, 79
McWilliaus, Dr. A., 39
Mack, A. W., 41
Mack, E. T., 61
Mack, R. C., 53
Mackee, Rev. C. B., 19, 85
MacKey, 97
Mackie, M., 57
Madison, 87
Mailler, J. P., 57
Main, 25
Malcolm, W. S., 61
Malden, J. J., 125
Mallory, 95
Mauly, 83
Mauly, S., 35
Maun, W., 91
Mansfield, 65
Marcy, 0., 25
Marks, 73
Marlow, Col. W. B., 95
Marsh, C., 83
Marsh, C. A. J., S3
Marsh, Dr. M. M., 77, 83
Marsh, F., 31
Marsh, Mrs. M. M., 69
Marsh, O. J., 25
Marsh, R., 69
Martin, Dr. G. A., 13
Martin, Dr. S. D., 35
Marshall, G., 33
Martin, H., 49
Martin, M., 19
Martin, R.* A., 19, 73
Martin, W. A., 85
Martindale, J. C., 71
Marvin, Prof. J. W., 87
Mason, E. E., 51
Mason, J. P., 69
Mason, Prof. R. Z., 89
Massé, 97
Mathew, 65
Mathews, J. McD., 67
Mathis, H. C., 35
Matthews, J. McD., 35
Mauld, Dr. D. W., 19
Mauran, Dr. P. B., 19
Maurice, 63
Maxey, W. F., 49
Maxwell, Dr. W. J., 27
Mayer, Prof. A. M., 73
Meacham, 25
Meacham, S., 23
Mead, 25
Mead, A., 31
Mead, C., 31
Mead, Dr. S. B., 23
Mead, H. C., 91
Mead, S. O., 51, 83
Mead, T., 23
Meehan, T., 73
Meeker, R., 25
Meier, W., 49
Meigs, J., 19
Meinfield, G. C., 29
Merriam, A. M., 41
Merriam, C. Collins, 59
Merriam, E., 132
Merriam, G. F., 33
Merrill, Dr. E., 35, 81
Merrill, Rev. S. H, 37
Merrick, 53
Meriwether, 85
Meriwether, C. J., 85, 87
Merwin, Mrs. E. A., 25
Metcalf, Dr. J. G., 41

Metcalf, H., 63
Metcalf, T., 59
Mettauer, 85
Meyer, Prof. N. M., 39
Michling, 71
Miles, Dr. M., 43
Miles, T. H., 35
Milit. Medic. Dep., 95
Mill, J. H., 65
Millard, A. J., 31
Millard, J. D., 45
Millar, J. H., 33
Miller, 73, 85
Miller, A., 49
Miller, C. H., 91
Miller, E., 31
Miller, L. A., 83
Miller, Mrs., 31
Miller, Rev. J., 35
Mills, 89
Minick, J. B., 45
Minnesinger, J. M., 49
Mitchell, 59
Mitchell, W., 41
Mitchell, W. A., 95
Moeller, G., 91
Monroe, Prof. J., 57
Moody, 37
Moody, 187
Moor, J. R., 41
Moor, R., 41
Moore, 47
Moore, A. P., 37
Moore and Waddell, 47
Moore, C. N., 23
Moore, C. R., 85
Moore, Dr. A. P. 13
Moore, Dr. G. F., 65
Moore, Dr. W., 49
Moore, J., 29
Moore, Miss Isabella, 49
Moore, S. M., 67
Mordecai, Major, 73
Mordecay, Capt., 148
Morelle, Prof. D., 65
Morris, E., 63
Morris, Prof. O. W., 61
Morse, Dr. G. M., 41
Morse, J. P., 63
Morton, Dr. G. R., 69
Moss, G. B., 23
Moulton, J. P., 37
Mowry, G., 75
Moyer, H. C., 77
Mudge, B. F., 33
Mudge, Mrs. B. F., 33
Müller, Prof. R., 65, 75
Muhlenpfort, 3
Mulligan, A., 57
Munger, 55
Munger, L. F., 59
Murdoch, G., 7
Marphy, C. P., 59, 61
Murphy, W. W., 47
Myers, Colonel, 7
Myers, J. H., 69

Nash, J. A., 31
Nason, E., 51
Nasou, Rev. E., 41
Neeley, E. B., 49
Neill, T., 67
Nelson, 39
Nelson, D. B., 31
Nelson, H. M., 41
Nelson, Judge, 37
Nettleton, A., 85

Newcomb, J. B., 25
Newcomb, G. S., 41
Newkirk, 27
Newton, 77
Newton, J., 21
Newton, J. W., 27
Newton, Rev. A., 69
Newton, W. H., 91
Nichols, C. L., 37
Noll, A. B., 53
North, Dr. S. B., 9
Norton, E. E., 19 Norton, J. H., 61
Norton, J. S., 61
Norton, Prof. S. A., 67
Norvell, F., 17
Nostrand, J. Van, 79
Nourse, J. H., 89
Noyes, 53

Oakfield, C. F., 33
Observat., Magn. \& Meteor.,
at Japonski Island, 124
Obervatory, R. E. Met., 93
Odell, Rev. B. F., 31, 47
Odell, F., 53
O'Donohue, J., 7
Offutt, Dr. J. J. T., 87
Oliver, J., 45
Oltmans, J. G., 21
Orden, W. Van, 43
Orta, 93
Osborn, 9
Osborn, E., 25
Osgood, H. H., 37
Owen, B., 89
Owsley, Dr. J. B., 67

Paddock, J. A., 83
Page, Capt. R. E., 93
Paine, C. S., 83
Paine, Dr. H. M., 55, 57
Paine, R. T., 39
Palm, S., 79
J'almer, C. H., 45
Palmer, Mrs. J. R., 53
Panshin, Dr. P., 11
Par-dee, 69
Pardee, H. C., 51
Park, W. K., 85
Parker, 87
Parker, J., 83
Parker, J. C., 61
Parker, J. D., 37
Parker, J. M., 79
Parker, N. H., 31
Parker, Th., 77
Parry, 3, 5, 140
Parson, L. H., 53
Parsons, L. H., 73
Partrick, J. M., 61
Parvin, Prof. T. S., 31
Pashley, Dr. J. S., 25, 91
Patterson, H. N., 25
Patterson, Rev. A. B., 47
Pattison, H. A., 45
Patton, Dr. T., 89 Patton, Dr. W. F., 41
Patrick, D. S., 65
Patrick, J. J. R., 23
Payne, Dr. J. W., 11
Payne, L. E., 85
Pazton, J. W., 45
Peabody, Prof. S. H., 83
Pearce, T., 71
Pearce, H., 83

Pearsall, E. D., 65
Pearson, J., 21
Peck, Dr. W. R., 65
Pector, 73
Peelor, D., 73
Pegler, G., 89
Peirce, C., 53
Peirce, W., 67
Pemler, A. G., 23
Pendleton, 23
Pendleton, Dr. E. M., 23
Penuy, 3
Percival, 9
Perkins, Dr. H. C., 41
Perrault, E., 43
Perry, J. B., 83
Peters, T. M., 9
Peters, W., 69
Peterson, F., 81
Pettingill, W., 37
Petty, C., 77
Petty, M. K., 83
Phelps, 17, 69
Phelps, E. S., and daughter, 27
Phelps, H. E., 83
Phelps, H. W., 91
Phelps, W. W., 83
Phillipps, H., 9
Phillipps, W. R., 19
Phillips, J. H., 65
Phillips, Prof. J., 65
Pickard, Dr. J. L., 91
Pierce, 73
Pillsbury, Mrs. M. A., 67
Pitman, E., 37
Pitman, H. W., 37
Pitman, M., 37
Pittman, C. H., 53
Plant, 41
Platt, 63
Plumb, Dr. 0., 17
Plummer, 51
Poe, G. H., 69
Poey, 95
Pollard, T. F., 83
Pollock, J. E., 49, 69
Pomeroy, F. C , 89
Poole, H., 7, 184
Porter, 75
Porter, Prof. W., 89
Posey, Dr. J. F., 23
Potter, G. W., 63
Potts, J. G., 85
Powers, M. H., 89
Prentiss, H. C., 43
Prescott, Dr., 51
Preston, Rev. N. O., 33
Prince, J. E., 33
Proctor, Miss S. M., 21
Purdie, Dr. J. R., 85
Purdot, E., 93
Purmort, 53
Pulsifer, M. E., 15
Pyle, Dr. D., 47

Rankin, D. M., 67
Rankin, J., 17
Ranlett, E. L., 35, 39
Rausom, E. D., 59
Raotte, C. M., 93
Raser, J. H., 75
Ravenel, H. W., 77
Ravenel, T. P., 77, 81
Ray, Dr. L. G., 35
Ray, G. P., 49
Ray, Prof., 65
Raymond, G., 41
Read, D. E., 31
Reasner, Dr. F. M., 43
Redding, T. B., 27
Reed, F., 39
Reed, J. S., 71
Reichel, C. J., 73
Reid, 27
Reid, Dr. R. K., 15
Reynolds, Dr. W., 31
Reynolds, H., 37
Reyoolds, R. M., 11
Reynolds, W. C., 89
Rhees, Dr. M. J., 53
Rhode, S. W., 73
Riblet, J. H., 25
Richards, Dr., 67
Richards, T., 5
Richardson, 3, 73
Rickett, J., 85
Rice, 41
Rice, E. J., 29
Rice, F. H., 43
Rice, H., 41
Riddell, Capt.. 126
Riggs, S. R., 45, 47
Riker, W. H., 63
Ritchie, 41
Riter, F. G., 49
Roberts, 29
Robertson, R. S, 27
Robey, C. H., 85
Robinson, A., 37
Robinson, E. S., 47
Robinson, General G. D., 19
Robinson, Rev. E. L., 47
Rockwell, C., 17
Rockwell, J. A., 21
Rodman, S., 41
Roe, Dr. S. W.,]7, 59
Roedel, W. D., 87
Roffe, C. L., 87
Rogers, A. P., 67
Rogers, F. M., 15, 93
Rogers, J. S., 25
Rogers, O. P., 25
Rohrmoser, Seũor, 93
Roos, C., 47
Root, 39
Root, Dr. M. N., 51
Root, Prof. O., 57
Rose, 75
Ross, 3, 141
Ross, B. R., 5
Rossiter, Prof. G., R., 87
Rothers, 59
$=$

[^132]\qquad

\qquad
\square
$-$
+

\qquad

\qquad

\qquad
7
\square

D 19
47
\qquad
\qquad
\qquad
93
93

93

Quincy, W. C., 89

Race, J. A., 49
Rothrock, 79
Royal Society, 111
Royal Society, 111
Rubio, Don, 97
Rucker, B. H., 81
Ruffiner, D., 89
Ruffner, D. L. L. 89
Ruffner, W. H., 85
Ruffin, J. C., 85
Ruggles, H., 49
Russell, O. F., 13
Rutherford, W., 81

Rae, 3
Rae, Dr. J., 3
Rain, J. G., 51
Ralston, Rev. J. C., 75
Rambo, E. W., 29
Randall, R. B., 13
Rankin, C., 9

.

Ryan, John, 77
Ryerson, Dr. T., 53
Ryhiner, Dr., 25

Sabine, Col., 193
Sabine, General, 194, 195, 199, 200
Sanger, Dr, W. W., 57
Salisbury, E. O., 57
Salisbury, S. W., 49
Samms, C. C., 67
Sampson, A., 87
Sauborn, J. A., 27
Sanders, 41, 83
Sauders, B. D., 87
Sanders, R. B., 89
Sanford, Prof. S. N., 67
Sanford, Prof. S. P., 23
Sanford, S., 67
Sartorius, C., 93
Sartwell, Dr. H. P., 61
Savage, Rev. G. S., 35
Savery, T. H., 71
Saville, Dr. J. J., 31
Sawyer, 79
Sawyer, G. B., 51, 52
Sawyer, H. E., 51, 52
Scandlin, Rev. H. W., 41
Schaffer, Dr. J. M., 31
Schaffer, J., 33
Sclauaber, H. A., 23
Scheels, Van, 3
Scheeper, E. H. A., 31
Schenck, Dr. L., 67
Schetterly, H. R., 45
Schlegel, A., 41
Schley, Jr., W., 23
Schmidt, Dr. E. R., 53
Schonburgh, 95
Schreiner, F., 73
Schuman, B., 81
Scriba, V., 75
Scribuer, C., 91
Scouler, 87
Scott, H. B., 21
Scott, J., 33
Scott, S., 77
Seabrook, 71
Seavey, C. C., 21
Seltz, C., 51
Seymour, Dr. E. W., 33
Seymour, E., 91
Severight, 7, 9
Shackelforl, J., 9
Sharp, Dr. W. A., 89
Sharp, Dr. W. H., 89
Shaw, F., 41
Shaw, J., 65, 69
Shaw, M., 33
ShayatuikoIF, I., 11
Sheerar, H. M., 63
Shelby, H., 45
Sheldon, D., 31
Sheldon, D. S., 31
Sheldon, H. A., 83
Sheldon, H. C., 77
Shepard, D., 57
Sheperd, Rev. J. A., 35
Shepherd, 65
Shepherd, J. A., 9
Shepherd, Rev. J. A., 47
Sheppard, Rebecea C., 53
Sherman, J. M., 85
Shields, 21
Shields, E. B., 9
Shields, J. H., 9
Shields, Rev. R., 69
Shintz, W. J., 89

Slioemaker, J. G., 33
Shippen, 73
Sholfield, N., 17
Shotwell, S. L., 25
Shreeve, C. R., 67
Shreeve, Martha B., 67
Shriver, H., 35, 53, 87
Shumard, Dr., 13
Sias, Prof. J.; 79
Sias, Prof. S., 57
Sibley, A. P., 49
Signal Director, 93
Simmons, A. H., 87
Simmons, Prof. J. C., 15
Simpson, F., 81
Simpson, F. T., 21
Sisson, R., 71
Slaven, J., 15, 85
Slaven, J. B., 85
Smallwood, Dr. C., 7
Smiley, W. R., 69
Smith, $9,17,75,77$
Smith, A. C., 45
Smith, A. M., 93
Smith, C. B., 51
Smith, C. E., 25
Smith, Dr. C. H., 67
Smith, Dr. C. S., 45
Smith, Dr. G. O., 23
Smith, Dr. N. D., 13, 192
smith, E., 39
Smith, E. A., and daugh
ters, 61
Smith, Gov., 17
Smith, H., Jr., 27
Smith, H. A., 25
Smith, H. B., 45
Smith, H. D., 37
Smith, H. L., 45
Smith, J. C., 69
Smith, J. E., 47
Smith, J. M., 49, 59
Smith, L. H., 25, 51
Smith, L. M. S., 45
Smith, M. D., 15
Smith, P., 27
Smith, Prof. B. W., 31
Smith, Prof. R. M., 85
Smith, R., 52, 53
Smith, Rev. G. N., 45
Smith, Rev. S. U., 9
Smith, T. L., 61
Smithsonian Institution, 19 111
Smyser, Rev. B. R., 75
Snell, Prof. E. S., 39, 131
Snow, Prof. F. H., 33
Sopris, S. T., 15
Soule, W. G., 33
Southworth, N. L., 43
Spalding, 23
Sparks, Dr., 7
Spaulding, Dr. A., 23, 25
Spaulding, Mrs., 23, 25
Spaulding, S. C., 25
Spence, E. E., 85
Spencer, Anna, 73
Spencer, E. W., 89
Spencer, Rev. D. B., 47
Spencer, W. C., 23
Spera, W. H., 73
Sperry, M., 67
Spitler, D., 27
Spooner, 67
Spooner, Dr. S., 61, 63
Spratt, Dr. W. W., 27, 69
Spring, Jr., R. A., 77
Springer, F., 13
Sprunt, J. N., 65

Squier, 93
Squier, H., 43
Sergeant, J. T., 53
Stagg, T. G., 39
Stalnaker, Dr. J. W., 85, 89
Stanard, B. A., 65
Stanton, F. J., 15
Stayman, Dr. J., 33
Stebbins, Dr. R., 31
Steele, G. E., 43
Steele, Judge A., 19
Steever, A. S., 69
Stephens, A. M., 47
Stephens, J. A., 49
Stephenson, Rev. J., 39
Stern, J. T., 31
Stevens, H., 79
Stevens, R. P., 73
Stewart, 71
Stewart, F. L., 73
Stewart, J., 5
Stewart, Prof. A. P., 79
Stewart, Prof. W. M., 79
Stewart, T. H., 73
Stibbins, G. H., 71
Stillwell, C. A., 67
Stoddard, Prof. O. N., 69
Stoker, J. D., 73, 75
Stokes, 75
Stokes, H. A., 53
Stone, E. J., F.R.S., 315
Stouffer, A., 45
Stowell, F. B., 33
Strauss, E. D., 25
Streng, L. H., 43, 45
Strong, A. M., 57, 59
Strong, E. A., 43
Strong, J. J., 45
Strong, O. J., 31
Struthers, R. H., 91
Stuart, A. P. S., 7
Stuart, C., 49
Stuntz, G. R., 91
Stump, S. J., 89
Sullivan, A. L., 31
Suter, Capt. J. R., 77
Sum, F., 27
Sutton, G., 27
Swain, Dr. J., 35
Swan, 9
Swan, J. G., 87
Swanston, 9
Swift, Dr. P., 73
Swift, L., 61
Sylvester, E. W., 59

Tabb, P., 39
Taft, 69
Tappan, E., 43
Tate, A., 89
Taylor, 77
Taylor, C. T., 85
Taylor, Dr. M. K., 43
Taylor, J., 73
Taylor, L. B., 9
Taylor, Rev. R. T., 71
Taylor, W. E., 15
Teele, Rev. A. K., 35, 41
Templeman, J., 5
Tenin, 69
Terry, C. C., 41
Thebaud, 35
Thickstun, T. F., 45, 73
Thompson, 3,83
Thompson, A. H., 25
Thompson, Asst. Surg. F.
P., 15

Thompson, E. P., 23

Thompson, G. W., 53
Thompson, Rev. D., 69
Thompson, R. $0 ., 51$
Thompson, W., 25
Thompson, Z., 7
Thompson, Prof. Z., 83
Thomson, 27
Thornton, Dr., and daugh
ter, 13, 15
Thornton, Miss E. E., 53
Thorpe, 39
Thorstenson, 3
Thralls, G. R., 29
Thritt, Lilly, 85
Tidswell, M. A., 49
Tinell, Dr. N. O., 43
Tingley, J., 27
Titcomb, 51
Titcomb, J. S., 25
Titus, H. W., 57
Titze, H. A., 27
Toby, J. K., 83
Todd, 9
Tolman, J. M., and daugh ter, 27
Tolman, Rev. M. A., 73
Tooker, N. C., 73
Tooley, Dr. H., 47
Tory, J. C., 29
Towler, B., 83
Towle, B. H., 37
Townsend, N., 31
Tracy, G. H., 75
Travelli, J. A., 75
Treat, S. W., 69
Trembley, Dr. J. B., 69
Trevor, J.-G., 59
Trifle, Anna C., 27
Tritts, J. S., 53
Trivett, W. M., Asst. Surg., 15
Trobe, M. de la, 5
Troost, 29
Trowbridge, D., 63
Troy, Dr. M., 9
Tucker, E. T., 41
Tuckerman, L. D., 65
Tuckerman, Rev. Dr., 95
Tufts, A. A., 51
Tuomey, Prof. M., 11
Tupp, L. S., 37
Tupp, O. H., 37
Turnbull, C. N., 43
Taruer, 67
Turner, D., 85
Turwer, Dr. R. T., 79
Tutwiler, H., 9
Twain, Dr. J., 27
Twiss, Maj. T. S., 91

Uhrlandt, H. E., 15
Underwood, D., 83, 89
Upshaw, G. U., 85
Uranne, 99
U. S. Coast Survey, 21, 135, 136
U. S. Naval Observatory, 19
U. S. Patent Office, 111

Vagnier, T., 29
Valecte, A. X., 39
Valentin, Philip, 93
Valentine, J., 29
Van Buren, J., 21
Vanhekle, Asst. Surg. J. M., 19

Vankirk, W. J., 9

Veatch, C., 49
Veniamisnoff, Bishop, 11
Verny, C. dela, 63
Verrill, G. W., Jr., 37
Vertez, 95
Vertress, J. E., 49
Vogel, C., 49
Voorhies, 35
Vorhes, A. Van, 47

Wade, 65
Wade, F. H., 79
Wadey, H., 31, 33
Wadsworth, A. S., 59
Wadsworth, G., 37
Wadsworth, H. L., 47
Wagner, W. H., 91
Wainwright, 43
Waite, M. C., 89
Wales, 5
Walker, Dr. D., 5
Walker, Mrs. O. C., 43
Walker, S. C., 73
Wallenstein, Jules de, 19
Waller, R. B., 9
Walrad, L. D., 33
Walsh, S., 45
Ward, Prof. W. H., 91
Ward, Rev. L. F., 65, 67, 69
Warder, A. A., 69
Warder, R. B., 69
Warren, J. H., 29, 63
Warring, 63
Washburn, D., 75
Watkins, J., 65
Watson, 85
Watson, G., 53
Watt, 7
Watters, Dr. J., 33
Wattles, J. O., 33
Weatherhead, J., 41
Webster, 85
Webster, C. D., 91
Webster, Prof. N. B., 65
Weeks, J. A., 45, 75
Weir, A. D., 73

Welch, M., 37
Wellford, 85
Wells, C. B., 51
Wells, J. C., 89
Wells, N. H., 61
Wells, S. L. D., 93
Wells, W., 49
West, Dr. N. P., 79
Westdaht, F., 11
Westmore, 43
Westmoreland, Dr. J. G., 21
West, E. W., 67
West, Silas, 37
Whalock, 51
Wheaton, A. C., 31, 49
Wheeler, B. J., 83
Wheeler, E. B., 59
Wheeler, J. T., 51
Whelpley, F. E., 45
Whelpley, H. J., 45
Whipple, Capt. A. W., 43
Whitaker, Ben., 27
Whitaker, J. S., 59
White, 73
White, Dr. A. C., 79
White, Dr. W. T., 97
White, P., 45
Whitefield, A., 45
Whitehead, 21
Whitehead, W. A., 21, 53
Whiting, Miss S. G., 21
Whiting, R. C., 52, 53
Whiting, W. H., 89
Whitlock, J. H., 15
Whitner, B. F., 19
Whittemore, C. H., 45
Whittier, A. C., 19
Whittlesey, C. S., 43
Whittlesey, G. H., 43
Wickline, T. J., 85
Wieland, C., 45
Wieland, H., 45
Wiggin, A., 53
Wigglesworth, Rev. E., 39
Wilbur, B. F., 37
Wild, E. P., 83
Wilkinson, J. R., 69

Wilson, 75
Wilson, Dr. W. D., 183, 191, 199
Wilson, J. B., 37
Wilson, L., 71
Wilson, Prof. J. H., 65
Wilson, W., 43
Wilson, W. C., 71
Wilworth, J. E., 87
Willard, J. F., 89
Williams, 23, 39, 73, 83
Williams, B. C., 25, 27
Williams, Dr. P. O., 63
Williams, E. F., 79
Williams, F., 85
Williams, H. B., 31
Williams, H. C., 87
Williams, H. G., 17
Williams, M. G., 35, 67, 69
Williams, N., 35
Williams, Rev. R. G., 17, 83
Williams, Rev. S. R., 35
Williamson, J., 9
Willis, Becket H., 37
Willis, L. L., 65
Willis, P. L., 71
Willis, Prof., 23
Willis, Prof. O. R., 53, 63
Wills, 59
Winchell, 73
Winchell, A., 9, 55
Winchell, Mrs. N. C., 43
Winchell, Prof. N. C., 43
Winchester, E. D., 65
Windle, I. E., 27
Wing, M. E., 83
Winger, M., 69
Winger, Mrs., 69
Winthrop, 39
Wislizenus, Dr. A., 49
Wister, C. J., Jr., 73
Witter, D. R., 33
Wolf, Prof. R., 314
Wood, J., 33, 67, 191
Wood, S., 53
Woodard, C. S., 57

Woodbridge, W., 29
Woodbury, C. E., 47
Woodbury, C. W., 47
Woodruff, E. N., 35
Woodruff, L., 43, 81
Woodward, C. S., 29, 45
Woodworth, S., 31
Woodworth, Dr. A., 33
Wooster, C. A., 61
Wrangel, 11
Wricoschea, Dr. E., 97
Wright, 97
Wright, E. M., 47
Wright, J. W. A., 15
Wright, R. M., 91
Wright, T. P., 79
Wright, W. A., 9
Wyl, N. de, 49
Wyzick, M. S., 49

Yale, W. D., 59
Yellowby, E. W., 81
Yeomans, W. H., 17
Yoakum, F. L., 81
Young, 37
Young, A. A., 51
Young, A. G., and daughter, 37
Young, James, 75
Young, J. A., 77
Young, J. M., 63
Young, Mary H., 45
Young, Mrs. L., 35
Young, Prof. C. A., 67
Young, Prof. I., 51
Young, R., 95
Young, T. M., 45
Younghusband, 126
Younglove, 35

Zaepffel, J., 61
Zahner, P., 51
Ziegler, A. F., 91
Zumbrock, Dr. A., 39

I N D E X.

Abbreviations used, xvi
Annual distribution of heat, curve of, following in epoch the corresponding astronomical epoch, 181
of temperature, secular inequality in the law of the, 199
Annual fluctuation, apparent interruptions in the regularity of, 183
of temperature, discussion of, 167, 169
of the temperature, irregularity in the epoch of the, 199
tables of, 180, 194
derived from the monthly means, 169
in concise form, 174
Annual fluctuations, table of computed, $175,176,177,178,179$
Annual maxima, secular variation in the, 319

- Annual means, deviations from the normal temperature, 318
plotting of the, 302
Aunual range in different localities, 182
magnitude of, depending on, 182
Annual temperature, range of variability in the secular variation of the, $318,319,320$
Anomaly produced by the Gulf stream's proximity at Key West, 112
Appalachian Range, 105
Apparent changes in the curve of the annual fluctuation, 194
Approximations to the absolute extremes, 202
Area of the U.S. conveniently divided into two parts, 104
Arrangement of tables of mean temperatures, xi-xv
Arrest of increasing temperature in May, supposed, 193
Atlantic, effect of vicinity of, on yearly average, 105
Atlantic sea-board, 105
Atmospheric disturbances, eastern progression of, 193
Authorities for geographical positions, xi, xii
Average of hourly observations equals the daily average, 113
Average temperature above or below the normal, 320

Bay of Sau Francisco temperature, 106
Bessel's periodic function, 153, 154, 169,194
interpolating formula used in preparing a new set of normals, 199
Bessels, Dr. E., courtesy of, 176
Bravais, Mr., formula for correction, 173

California, Gulf of, 105
western part, 103
Cascade Range, 105
Cause of extreme heat at Fort Simpson, 226
Changes exhibited in winter as well as in summer, 320
from the normal temperature, 193
of temperature observed, 200
Characteristic of deviation at Salem 193
Chart showing meteorological stations, 180
Charts, difference of lines adopted, 103
explauation of, 103
total number of results from series plotted on the, 106
Chesapeake Bay, high temperature, 106
Climate, increase of meteorological stations, the best means of ascertaining the separate effects on, 104
rigor of, 182
solar, 104
Climatological conditions, 310
Cold winter followed by cold summer, 320
Coldest and warmest period of day in San Francisco, 158, 160
Coldest place in the U. S. in summer, 106
Coldest region, where, 105
Colorado River, temperature, 106
Colunbia River, temperature, 106
Comparisor of the secular variation of the temperature with the variations in the frequency of the solar spots, 314, 315
in the temperature and the rain-fall, 315,316
in the temperature with the average annual direction of the wind, 316,317

Comparison, process to facilitate, 194 series of temperature for the purpose of, 193
Connection between the secular variation of temperature and rainfall, 316
Constant reduction, 305
Correction tables, xiv, x ∇
Corrections, 302, $303,304,305$ required, 169
to the mean temperature may be derived from hourly observations at Albuquerque, N. M., 161, 162
Cosmical nature, disturbing influence of a, 302
Curve of the Gulf stations, 158
of the middle latitude stations, 158
Curves for the northern stations, 158 smooth, 302

Daily fluctuation, perceptible even in mid-winter in the Arctic regious, 109
hourly observations sufficient for investigation of, 109
smali, at Key West, caused by great humidity of the air, 109
in the Arctic regions in mid. summer, cause of being small, 109
collection of monthly values for, the results of observations of 18 stations, 110
collection of monthly values for tables derived from, 110
for stations in the Mississippi , valley, material wanting for, 157
annual variation in the range of, 157
annual variation in the range of, interpolation required, 157
unsatisfactory results in deducing for any given time and place the, 164, 165
combination of the results into groups, 154
great development in Albuquerque, N. M., of, 161
no material on hand for the study of the effiect of beight on, 160
(341)

Daily rauge of temperature at San Francisco, 158
cause of diminishing of, from latitude 400 in either direction, north or south, 156
diminishing from latitude 400 in either direction, north or south, 156
minimum in December, 158
Daily variation, dryness of the air, cause, at Albuquerque, valley of the Rio Grande, of the excessive, 109
Dakota, northeastern, 105
De Forest, table in commection with the use of the periodic function, 173
Departure of the observed temperature from the normal value of that day, 197
Departures from regularity of temperature, 193
Depression of temperature, unusual, in May, 193
Deviation from the regular annual progression, 193
limit of, at Providence, R. I., 199
Diagram illustrating the relation of
the secular variation in tempera-
ture and direction of wind, 317
Diagram showing the conuection between the secular variation in temperature and rain-fall, 316
Difference in the mean monthly temperature, correction required, 169
Difference of mean values in the winter season, 193
Difference of temperature for a few selected places in Nerv Mexico, Texas, Arizona, and California, at certain hours, 161
Differences, application of tables of hourly, 110
benefit derived from tables of hourly, 110
of bi-hourly, hourly, and semihourly mean temperatures from the mean of the day, tables of, 137-152
signs employed in the tables of, 111
Different methods of exhibiting the annual fluctuation of the temperature, 169
Diurnal fluctuations, systematic comparison, 153
Dryness of air at elevated regions, and consequence thereof, 160

Eastern progression of atmospheric disturbances, 193
tendency of the normal state of weather, 193
Effect of Gulf stream, 105
Elevation, effect of, on temperature, 104
Epoch of the annual fluctuation of the temperature, irregularity in the, 199
of occurrence of annual mean temperature shifting in different longitudes, 182 cause of shifting, 182
presenting fair estimate of annual mean temperature of a place, 182
Equinox, 181

Error in computing time tables of sunrise and sunset, caused by the small variation in the sun's declination, of little moment, 113
Examination of the larger series of places in the United States desirable, 200
Exceptionally depressed heat in January, 226
Exceptionally warm period, 311
Excess of exceptioually high temperatures, 226
Excessive large daily range noticeable in the great interior vasin (Fremont Basin), 161
Explanation of charts, 103
Explanations and remarks on the consolidated tables of resulting mean temperatures, $x i-x \nabla$
Extension of meteorological observations will reveal new features, 158
Extreme lieat at Fort Simpson, 226 range for each month separately investigated, 227 ranges of temperature, 227
variations of temperature from the normal values, 202
Extremes do not take place at the hours of olservation, 161 of daily flactuation in December and June, 159
represented by diagrams, 159,160
of heat and cold observed in Albany, N. Y., on the same day, 199
of temperature in the great interior basin of the United States, 162

Fahrenheit's scale employed in tabulation, xii
Florida, 105
Fluctuation, anuual and daily, compared, 110
apparently irregular, in the annual means, 302
Fluctuations, corrections to be applied, 110
corrections when greatest and wheu least, 110
observed in certain localities are united into a mean, 158
Freeziug point of water in July, 227

Galveston, Texas, record completed by interpolations, 158
Geographical distribution of extreme cold, 226, 227
Geographical positions, authorities for, xi, xii
Gila river temperature, 106
Graphic method, value of, 103
Graphical representation of the tabular numbers, 193
Greatest constancy of temperature in summer, 163
in winter, 163
Greatest depression in the daily fluctuation of temperature in the Aretic regions, 156
in the temperate zone, 156
Greatest heat of day, time of, in high latitudes, 156
time of, in low latitudes, 156
Great lakes, influence of, on temperature, 105
Gulf stream, effect of, 105

Heat, accumulation of, greater in valleys than in plains, and most apparent in the summer season, 106
cause of accumulation of heat in valleys, 106
distribution of, irregular, in the western part of the U. S., 105
normal, in the eastern part of the U. S., 105
progress of waves of, 109
time of daily range of, 155
time of greatest, least, and average, of the day, $155,156,157$
trausfer from more southern regions, 109
yearly average, 155
Heated plains of Columbia River, 106
Heated regions along the Colorado and Gila Rivers, the lower valley of the Rio Grande, Hudson valley, St. Lawrence valley, 106
High extremes in all months, places showing, 226
High heat in January, 226
Hourly observations desirable from Albuquerque, N. M., 161 from San Fraucisco, Cal., 158, 160
Hourly temperature at Mohawk, N.Y., 162
at Philadelphia, Pa., 162
Hours of observations, xii, xiii ; adonted by the Meteorol. Sooiety in Manheim, Germany, 110 ; at the military posts of the U. S., 111; by the Smithsonian Institution and the U. S. Patent Office, 111; by the Royal Society, 111; difference of temperature at certain, 161; difference of result of meteor. observations obtained when taken at different, 110 ; improvement on, 111 Hottest region in the U. S., 106
Hypsometric chart, roughly coustructed, 103
chart of the U. S., want of, seriously felt, 103
requirements of a good, 103

Incomplete monthly means, correction in case of, 173
Inequality in the epoch of the annual fluctuation of the temperature, 199
of the progressive march of temperature, resuits of examination of, 200, 201
Insolation, increasing, 181
Interruptions in the regularity of annual fluctuation, apparent, 183
Investigations in the apparent interruption in the regularity of annual fluctuations attended by great labor, 183
Irregularities, accidental and minor, 302
Isocheimals, curves referring to the winter, 104
Isotherals, curves referring to the summer, 104
Isothermal charts, explanation of, 103 how constructed, 104 indications reviewed, 104
curves, connection of, with hypsometric features, 105

Isothermal of 440 depending on the directions of the Rocky Mountains, the Cascade range and the Sierra Nevada, 105
of 520 depending on the direction of the Appalachian range, 105
Isothermals, curve cannot abruptly come to an end, 103
curves for the yearly distribution more troublesome than those for either of the other charts, 103
curves referring to the yearly period, 104
not reduced to the sea-level, and reason why, 104

Joaquin valley temperature, 106
Law of the annual distribution of temperature, secular inequality in the, 199
Least annual extreme range, 227
Length of normal month, 169
Lewis, Dr. James, inventor of thermograph, 110
Local variation of annual means, 302
Magnitude of the monthly corrections, 170
Maxima and minima thermometers, 202
Maximum temperature, dates for the, 181
Maximum variability in summer, 163 in winter, 163
Mean annual temperature applied to measure the rigor of climate, 182
object of tabulation of, 228 tables of, 228-301
Mean annual temperatures, explanation of tables of, 228,229

- tables of consolidated, 312 , 313
Mean daily temperature subject to less variations with respect to latitude than the daily extremes, 157
Meau length of February, 169
of the year, 169
Mean temperature, character of secular variation in, 310,311
for each year, 302
for the month of normal length, to compute, 169, 170
Mr. E. L. de Forest's method of finding the, 170
of every day derived from Bessel's periodic function for New Haven, Connecticut, 196
for Toronto, Canada, 195
of the year, correctiou to the, 171, 172
epoch when reached, 180
tables of, for each month, season, and the year at various stations, principally in North America, 1-99
Mean temperatures, explanations and remarks on the consolidated tables of, $x i-x v$
Mean value of the year, epochs of, 181
Mean values applicable to most localities in the U. S., between latitudes 300 and 450 , and east of the Mississippi, 112

Measure of irregularities, 197
Meridiau, 100th, 104
Meteorological observations at Williamstown, results communicated to Secretary Cahoun, 110
difference of results obtained when taken at different hours, 110
hours adopted at the military posts of the U. S. for, 111
hours adopted by the Royal Society for, 111
hours adopted by the Smithsonian Institution and U. S. Patent Office for, 111
improvement on hours for, 111
system established by the Surgeon-General of the U. S., 111
time changed, but re-established at the military posts of the U. S., 111
Meteorological Society, Manheim, Germany, hours adopted by, 110
Meteorological stations, increase of, best means of ascertaining the separate effects on the climate, 104
Method of ascertaining the irregular variations of temperature, 162
Midsummer extreme, 181
Midwinter extreme, 181
Minima, secular variation in the annual, 319
Minimum and maximum range of temperature in Sau Francisco, 158
Minimum temperatures, dates for the, 181
Minnesota, cold region, 105
Mississippi, stations east of the, 104 stations west of the, 104
Monthly, absolute, range, 227
and annual extremes, discussion of, 167, 169
correction, regular progression of, 171
means of the range of the daily fluctuation, 157

Normals, new set of, prepared, 199
Normals of temperature made out by General Sabine, 194
North Carolina, 105
November, rapid decline of temperature in, 193

Observations, times of, xii, xiii
Pacific coast, great uniformity of the distribution of temperature along, 105
Pacific Ocean, direct influence of, on climate of the Western States, 105
influence heightened by presence of cool current running south, 105
Period of irregularity, 193
Periods of apparent interruptions in the regularity of amnual fluctuatious, 183
of irregularities of different series examined, 193
Permanent change of climate not perceivable, 311

Probable error of an observed temperature at any hour of the day, 164
of the mouthly mean temperature for any hour of the day at various places, 163
Probable variability of the monthly means of temperature, Toronto, Canada, 162, 163
Progression of unusual thermal disturbance, eastern, 193

Radiation, decreasing, 181
Rain-fall, 317
comparison of the secular variation in the temperature and the, 315,316
remained permanent in amount and distribution, 311
secular variation in the, 315
Rainy season in Florida, 105
Rapid rise of temperature in February, 193
Ratio between the fluctuation of the mean temperature of any day in roidwinter and midsummer, 198
Ratio of the highest to the lowest range within the limits of the United States, 227
Red Lake, Minnesota, low elevations, 105
Reduction, no precise data for such, 104
Regularity of annual fluctuation apparently interrupted, 183
Regularity of progression of the tabular numbers for Mohawk, 164
Regular progression in the yearly period of the monthly absolnte range, 228
Remarkably cold epoch, 311
Remarks aud explanations on the consolidated tables of resulting mean temperatures, xi-xv
Requirements of investigations of the apparent interruptions in the regularity of annual fluctuations, 183
fluctuation, tables of, 195, 196,197
Result of examination into the suspected periods of irregularity, 193
Results, combination of, 302
of examination, if the epoch of maximum annual heat is accompanied by a corresponding movement, 201
of tables from the basis of the charts, 103
Rocky Mountains, 105, 106
Rules for complete quadriennia, 169
Sacramento valley temperature, 106 Secular inequality in the law of the annual distribution of temperature, 199
Secular variation in the annual maxima and minima compared with the variation in the annual means, 319
in mean temperature, 310
in the temperature, 317
investigation of, 302-320
of temperature, discussion of, 167, 169
of temperature, stations selected for investigation of, 302

Self-registering instruments required, 109
September, constancy of temperature in, 193
Shifting of the epoch of maximum cold, 194
Short series, irregularities of, 193
Sierra Nevada, 105
Solar climate, 104
pure, apparently subverted, 105
Solar radiation, 317
Solar spots, variation in the frequency of, compared with the secular variation of temperature, 314, 315
Stations, geographical distribution of, 181, 183
increase of, best means of ascertaining the separate effects on the climate, 104
Successive means of temperature, 302
Suurise and sunset, explanation of, how computed, 113
formulæ to compute, 113
Supposed arrest of increasing temperature in May, 193
Surgeon-General of the U. S., system of meteorological observations established by, 111
Systematic changes, 302
Systematic progression of temperature, 302

Table of daily fluctuation for Albuquerque would answer for most stations situated within the great interior basin, 162
Table of extreme heat and cold on the same day, Albany, N. Y., 199
Tables of consolidated mean annual temperatures, 312, 313
Tables of corrections, xiv, x ∇
Tables of daily average temperatures, use of, 183
Tables of daily temperature, enabled to construct, $19 \pm$
Tables of differences, 110
Tables of observed extremes of temperature for every month, 202-225
Tables of resulting mean temperatures, explanations and remarks on the consolidated, xi-x σ
Tables of resulting temperatures, 167 , 169
Tables of the average temperature of each day of the yedr, $1 \checkmark \frac{1}{1}-192$
Tables of the mean amual temperature, 306, 307, 308, 309, 310
Tabulation of mean annual temperature, object of, 223
Temperature, accidental irregularities, 193
causes affecting, 109
coincidences, 193
comparison of decrease between
certain limits of the U. S. in
different seasons, 103
comparison of the average annual direction of the wind and the secular variation in the temperature, 316, 317
comparison of the rain-fall and the secular variation in the, 315, 316
constant in September, 193
corrections, results of, 104
daily fluctuation of, 107-119

Temperature, daily variation due to the sun's altitude, 109
decrease, connected with decrease of pressure, 104
diagram illustrating the relation of the direction of the wind and the secular variation in, 317
difference at elevations, differeut laws to this effect, 104
distribution, different systems, 105
effects of, proximity of Gulf stream on, 105
effect of the cold curreut between coast and Gulf stream on, 105
exceptional and remarknble distribution in the western part of California, 103
equal, in summer in Florida, 105
fiuctuations at Portland, 193
for the middle of the month, correction required, 169
high winter, associated with comparatively great precipitation, 106
hourly means of, 155
in February, rapid rise of, 193
interpolation required at some stations, 155
in November, rapid decline of, 193
in Nay, supposed arrest of increasing, 193
irregularity in the epoch of the annual fluctuation of the, 199
march of, in December apparently normal, 193
mean, subtracted from observed temperature at any hour, 110
no intimate comnection between the solar spots and the, 314
object of tabulation of mean ammual, 228
of freezing point of water in July, 227
positive sign indicates a higler and a negative sign a lower, 110
prevalence of westerly winds on, 105, 106
rapid rise in February of, 193
range of the Pacific and Atlantic coast considered, 106
remarkable depression, in November, 193
regularity in February and March of the progression of, 193
secular variation of, compared with the variation in the frequency of solar spots, 314,315
signs employed in table of average differences in, 112
summer, of the coldest place on the Pacific compared with that of the corresponding place on the Atlantic, 106
table of average differences in, 112
to be studied in connection with other phenomena, 317
true distribution of, near the surface, desired, 104
unusual depression in May of, 193
what corrections would be required in addition to that in reducing to sea level, 104
winter, contrast between the Atlantic and Pacific coasts, 100°

Temperature records, scarcity of regu larly continued, 109
Temperature charts, detailed explanations of, 103
Temperatures, tables of bi-hourly hourly, and semi-hourly meau, 121-136
tables of consolidated mean annual, 312, 313
Terms of hot or cold, 184
Thermal anomaly in May, 193
Thermograph, 109, 110
Time of mean temperature in the Arctic regious, 157
in the temperate regions, 157
Time of observations, xii, xiii
Time of sumrise in different latitudes, $113,114,115,116$
Time of sunset in different latitudes, $113,117,118,119$
Time when greatest cold will occur, 109
Time when greatest heat will occur, 109
Toronto results, cold hours are most liable to disturbances of temperature in the cold months, 163
confirmed by those of other stations, 163
warm hours are most liable to disturbances of temperature in the warin months, 163

Uniformity or range in the lorr latitudes, 158
United States, eastern part, 105

western part, 105

Variability in the mean temperature of any one day, 197
of temperature in winter more than double that of summer, 164
of the annual fluctuation at Toronto, 194
of the temperature at any hour of the day from the normal value of that hour, 162
Variation in the aunual means, 319
Variations in the monthly means of temperature, 227

Walker, Prof. F. A., Superintendent U. S. Census, furnishing the base chart, 106
Warmest period of day at San Francisco influenced by the sea breeze, 160
Washington Territory, northwestern part of, 105
Wind, comparison of the secular variation in the temperature and the average anmual direction of the, 316, 317
deflection of the, 317
diagram illustrating the relation of the secular variation in temperature and the direction, 317
direction of, 317
Winter season, changes from the normal temperature, 193

Zig-zig line of temperature, 193

ERRATA.

Page 15, (California)-Station 54, read Frombes.
" 18 , Florida " 2, " Atsena.
" 18, Florida " 4, " Pilatka.
" 21, Georgia " 13, " McAfee.
" 23, Illinois " 12, " Eldredge.
" 23, Illinois " 18, " Brookes.
" 23 , Lllinois " 18, " J. G. Langgath.
" 25, Illinois " 31, " Eldredge.
" 25, Illinois " 30, " Livingston.
" 27 , Illinois " 82 , " Jozefé.
" 27, Indiana " 26, " Berthoud.
" 27, Indiana
" 27, Indiana
" 29, Indiana
" 29, Indiana
" 31, Iowa
" 38, Maryland
" 39, Maryland
" 43, Michigan
" 45, Minnesota
" 46, Minuesota
" 48, Missouri
(6 50, Nebraska
" 53, New Jersey
" 57, New York
" 59, New York
" 61, New York
" 61, New York
" 62, New York
"63, New York
" 63, New York
" 65, N. Carolina
" 65, N. Carolina

Page 65, N. Carolina Station 23, read Morelle.
" 65, Ohio " 11, " J. H. Phillips.
" 67, Ohio " 38, " Samms.
" 67, Ohio " 45, " Owsley.
" 69, Ohio " 100, " Clung.
" 71, Oregon " 3, " Ironside.
" 71, Pennsylvania" 14, " Grathwohl.
" 71, Pennsylvania " 15, " Deering.
" 73, Pennsylvania " 31, " Spera.
" 73, Pennsylvania" 32, " Hance.
" 73, Pennsylvania " 40, " Meehan.
" 76, S. Carolina " 26, " Wickinsville.
" 77, S. Carolina " 2, " Ravemel.
" 77, S. Carolina " 25, " Ravenel.
" 78, Tennessee " 7, " Elizabethton.
" 79, Tennessee " 20, " J. M. Parker.
" 79, Texas " 3, " S. K. Jenniugs.
" 80, Texas " 65, " Pin Oak.
" 81, Texas " 61, " Ervenduerg.
" 82, Vermont " 15, " Lunenburg.
" 83, Vermont " 16, " Sheldon.
" 85, Virginia " 4, " Kounslar.
" 85, Virginia " 5, " Principal.
" 85, Virginia " 39, " Mettauer.
" 85, Virginia " 41, " Appleyard.
" 91, Wisconsin " 37, " Dunegan.
" 91, Mexico " 1, " Laszlo.
" 91, Mexico " 3, " Laszlo.
" 214, Nebraska " 4, " Kearney.
" 220, Oregon " 6, " Hoskins.
" 257, Maryland, column 2, " Schellman.
" 296, Virginia, " 5, " Montross.
"305, Georgia, line 4, " Oglethorpe.

TEMPERATURE CHART OF THE UNITED STATES

$\longrightarrow \| \ggg \gg$

TEMPERATURE CHART of the UNITED STATES

TEMPERATURE CHART of the UNITED STATES
SHOWING THE DISTRIBUTION BY ISOTHERMAL CURVES OF THE MEAN ANNUAL TEMPERATURE OF THE LOWER ATMOSPHERE

[^0]: ${ }^{1}$ This office has been abolished.

[^1]: ${ }^{1}$ Each memoir is soparately paged and indexed.

[^2]: ${ }^{1}$ The so-called Law of Bode or of Titius, it need scarcely be said, fails in both these respects.

[^3]: ' Sir J. Herschel's Outlines of Astronomy, 11th edition (357 c.)

[^4]: ${ }^{1}$ Smitbsonian Contributions to Knowledge-Investigation of the Distance of the Sun, cte., § 10.

[^5]: ${ }^{1}$ Having all the while in view the table of the first Approximate Arrangement under discussion.
 ${ }^{2}$ This was not discerned until just before the Meeting of the American Association for the Advancement of Science, in Baltimore, in 1858. It is just the non-perception of a half-planet relationship, that has seriously troubled most of the investigations into the arrangements, etc., of the planetary system, whether purely speculative or otherwise.

[^6]: ${ }^{1}$ Incidentally, it may be; for Mercury's mean distance has other relations; as will appear in Section IMI.

[^7]: ${ }^{1}$ (d) being the term pertaining to the interior half-planet Venus.

[^8]: ${ }^{1}$ In the order of discovery, it was in this region that the approximation of the series of distances to a geometrical progression, with the ratio $=1.8$ nearly, was first discerned.
 ${ }^{2}$ See Table (A), in (3).
 ${ }^{3}$ This value, 2.82293 , is greater than the mean of the distances from the sun of 122 known asteroids, which is only 2.70282. But then about $\frac{7}{12}$ of that number are distances below the mean; leaving but ${ }_{7}^{5}$ above the same. So that it seems not unreasonable to suppose that were many more included, which mostly are now unknown-partly, it may be, because of their greater distance-the mean

[^9]: would then approach more nearly to the standard value of limit (A). In this aspect of the matter, the difference of limit (A) from the mean in question would seem to be on the right side.

 If, however, we take the mean between the two extremes of the known distances, that of Flora 2.20336 , and that of Sylvia 3.49411 (as Prof. Kirkwood has done—Proceed. of Royal Ast. Soc., vol. xxix. p. 99), we shall have the value 2.84873 ; which is almost exactly the same with the value of (A) here brought out.
 ${ }^{1}$ What ought to be the mass of the missing half-planet cannot be ascertained without the introduction of theoretical considerations; of which more hereafter.
 ${ }^{2}$ As exhilhted in Article (12).

[^10]: ${ }^{1}$ Dr. Olinthus Gregory's Mechanics, 4th edition, Art. 312, Ex. III.

[^11]: ${ }^{2}$ This property of the centre of gyration of a ring like those of Saturn, as well as of the indefinitely thin ring, has about it a species of mathematical elegance. I know not whether the enunciation of it is new ; but the correspondence of the position assigned by it with that of the division between the bright ring systems of Saturn, is a curious, if not an interesting one. [See Article (19).]

[^12]: ${ }^{2}$ See Note 1 to (14).
 ${ }^{3}$ Of these relations, and what else is connected with them, more hereafter in Section III.

[^13]: ${ }^{1}$ Inclination, viz., to the plane of the ecliptic. The inclination to the plane of the planet's own orbit is about $79 \frac{1}{3}^{\circ}$.

[^14]: 1 The loss of heat will not affect the moment of rotation-the turning power-and every molecule (because of the shrinkage) having a shorter circuit, will accomplish it in less time. Then also, as shown hereafter, there will be some acceleration of the actual velocity. The original phraseology, as it were, anticipates this also, and provides for both. "La rotation doit être plus prompte, quand ces molecules se rapprochent du centre du soleil."-Exposition du Système du Monde. Note VIII
 $=$ The centrifugal force, in accordance with its law, increasing at a more rapid rate than the attractive force; the centrifugal force (with conservation of areas) varying inversely as the cube of the distance, instead of inversely as the square of the distance, so that, at a distance a little within the atmospheric limit, and at which the attractive force was still somewhat in excess, it would soon happen that a small increase of both forces (from the shrinkage of the material) would result in increasing the centrifugal force so much more rapidly as to exhaust the difference of the two forces, and leave the nebulons material ready to be "abandoned."
 ${ }^{3}$ Very different this, from the supposition of many misinformed persons, that the rings here spoken of were thrown off by an excess of centrifugal force.

[^15]: 2 The diagrams are our own. M. Laplace employs none in his Exposition du Système du Monde.
 ${ }^{2}$ The difference being $=B c$.
 ${ }^{s}$ Or a ring of small solids closely arranged, as seems to be actually true of the rings of Saturn.

[^16]: 1 "Me paraissent être des preuves toujours subsistantes de l'extension primitive de l'atmosphère de Saturn, et de ses retraites successives."
 ${ }^{2}$ Difference of density, etc. might cause the rotation of a satellite in a rare case to be in a con: trary direction, as is true of the orbital motion of the satellites of Uranus.

[^17]: " Verisimilitude rather-" vraisemblance."
 a To say nothing of the molecular changes which might be superinduced by the condensation itself.

[^18]: 2 Though the ellipticity of the same might be appreciably changed.
 ${ }^{2}$ Which may indeed, in part, be consequent on the changes adverted to in Note 2, on p. 20.
 ${ }^{3}$ The oblate form of the spheroid here alluded to; the more profuse radiation of heat due to a greater condensation of the nebulous material in the polar region; and the division of the envelope into shells were all insisted upon by the author of this paper in a communication made by him to the American Association for the Advancement of Science, at their meeting in Montreal, in 1857. The idea of a more profuse radiation of heat from the polar regions seems, since that date, to have independently occurred to others; and a profound and thorough investigation of the form of the oblate solar spheroid and its variations, as also of the density of the solar atmosphere, at the various planetary distances, the relative breadth of the rings, etc., though without reference in that connexion to a more profuse polar radiation, is given by David Trowbridge, A. M., in vol. xxxviii. (Second Series) of the American Journal of Science and the Arts, Nov. 1864.

[^19]: ${ }^{1}$ During the revolution of a whole ring or shell around the sun, every part of the outside would be presented once in its turn to the entire circuit of the heavens; and so in effect would rotate once around a point within that ring or shell. This would determine the angular velocity of rotation at the first gathering up to form a planet. The existence of more dense material outside would scem not to have superinduced a retrograde rotation in this case; but to have interfered to the preventing of an accelerated rotation, and thus the more dense material be kept outside, until, in the contest of forces, the rending into two half-planet masses took place. The existing state of things, in its various aspects, seems to look toward this; but the problem is too complicated a one to justify an assertion that such was the succession of events.

[^20]: ${ }^{1}$ A writer in the Westminster Review, vol. lxx. (July, 1858), has introduced the idea of a greatly inclined rotation in a thick ring, or even a retrograde rotation; but he has applied it in a region of the system in which the conditions which he introduces are misplaced. A different explanation is applicable in the instance of Uranus, as will be shown hereafter.
 ${ }^{2}$ Which will scarcely differ, in either case, from the very centre of the planet itself.

[^21]: 1 The point N is one of the limits of Prof. Kirkwood's spheres of attraction, made use of in his Analogy.

[^22]: ${ }^{1}$ But here the agreement of the position of the centre of gyration with the whole planet limit, will have this favoring condition; that under the less stringent circumstances, in this region of the planetary system, it is not probable that any considerable portion of the more dense material was carried to the outside, in the half-planet formation (or the tendency to it), as, (39), seemed to have been trae in the instance of the Earth.

[^23]: - In Table (B), in (14).
 ${ }^{2}$ Or $100^{\circ} 59^{\prime}$; the motion being retrograde.

[^24]: ${ }^{1}$ For the probable ratio of the densities bere in question, see the paper of Mr. Trowbridge already referred to in the Note to (38).

[^25]: ${ }^{1}$ Not that the phenomenon of a comparatively feeble light would absolutely require the supposition of a low density; but, as stated, the one thing would be consistent with the other.
 a There being material for that so far outward in the direction of the plane of the equator of the very oblate spheroid, or near to that; the spberoid being made so very oblate by the acquisition from without of the material of $\widehat{\oplus} i$.
 ${ }^{\text {s }}$ For " no planet can have a ring, unless it is surrounded by a sufficient number of properly-arranged satellites. Saturn seems to be the only planet which is in this category; and it is the only one, therefore, which could sustain a ring."-Prof. Peirce, On the Constitution of Saturn's Ring, in the Astronomical Journal No 27, p. 18. * All but that of the outer one.

[^26]: ${ }^{1}$ The distance of $\widehat{\odot} i$ being, as stated, 14.64275 ; then, to perfectly justify a ratio of the periodic times of 2 to 1 , would require the distance of the ancient Saturn \hat{h} to be 9.24562 instead of 9.44511 .
 ${ }^{2}$ [For a further discussion and application of what is here intimated; as well as that of what more the relation in question may be significant, see Articles (64) to (67) inclusive.]

[^27]: ${ }^{1}$ In the computation of this 4 th term, such a value has, of necessity, been attributed to the aste-roid-mass as would make that 4 th term in the column of Fact, absolutely the same with the corresponding term in the column of Law. But the value of the asteroid-mass thus determined, is confirmed in a way which cannot but be regarded as extraordinary. [See Article (46).]
 ${ }^{2}$ Neither the aphelion nor the perihelion distance appearing; though the one is found at a wholeplanet distance, and the other at an exterior half-planet distance, in Table (B), in (14). Mercury, then, at a distance the mean of these two (but in another arrangement) has thus characteristics approaching to those of a double-planet [as was intimated, though not explained in (9)]; and this with an appropriate place in the series in which the double-planet arrangement appears; the difference between this and the otherwise analogous terms of the arrangement being, that whereas, in the other cases, the material of the two planetary bodies (with reference to its more ancient state) is regarded as accumulated anew, and, as it were, in some measure, reconstructed about the centre of gyration of those bodies; the actual combination, in an analogous position, seems to be found in the existing planet, Mercury itself.

[^28]: ${ }^{1}$ It being among those conditions that the centre of gyration of the component masses should very closely correspond in its position with that due to the intermediate term in the quasi doubleplanet series; a fact which itself seems to indicate, that the law of apportionment of the masses is not independent of that of the distances, but that the one (in the mathematical sense of the term) is a function of the other.

[^29]: ${ }^{1}$ As R_{1} bere approximates to $r_{\frac{3}{2}}$ [r being the ratio for the whole-planet terms in Table (B)], R_{1} will also, incidentally, express very nearly the ratio of the periodic times due to the whole-planet distances. Accordingly we find that the ratio of the periodic time of Saturn to that of Jupiter $=$ 2.4697; while the nearly corresponding value of R_{1}, as stated in (45), is, as near as may be, 2.4089.
 ${ }^{3}$ Not only so, but if leaving out the hypothesis here in question, we attempt to form the 2 d term of the series with the Saturn-mass as it exists, we shall, of course, fail; since the placing of so large a portion of the same masses so much farther inward, will, at once, displace the centre of gyration in the same direction, and so make the term too small. And the same effect would even be manifest, if we might suppose a group of asteroids to exist in this region ; but that, (42), is inadmissible.

 On the first of these two suppositions, the centre of gyration would be displaced quite the whole of the Earth's distance from the Sun [being at 11.35 instead of 12.40]; and if the second supposition were admissible, the displacement would be nearly $\frac{1}{2}$ that distance [being at 11.96 instead of 12.40].

 5 December, 1874.

[^30]: ${ }^{1}$ As quoted in the translation of W. T Lynn, B. A, in the Monthly Notices of the Proceedings of the Royal Astronomical Society, vol xxxii., No. 9, p. 323.
 ${ }^{3}$ See Articles (60) and (108).

[^31]: ${ }^{1}$ This is very accurately the distance required (by Kepler's $3 d$ Law) to justify the periodic time of the so-called "planet Vulcan," as the same has recently been ascertained by Prof. Kirkwood, on the hypothesis, that the appearances of certain solar spots were due to the transits of such a body.

[^32]: ${ }^{1}$ For this purpose, $m+m^{\prime}$, the sum of the two masses, being put $=$ to $1 ; m^{\prime}=1-m$.
 Also-since the ratios of the distances are known, or may be readily ascertained-if (C) be the distance of the centre of gyration, and the distance of the outer body $=q(\mathrm{C})$, and that of the inacr $=p(C)$; then, substituting in Eq. (C) in (17), and reducing, we shall have, for the fraction of the whole mass pertaining to the inner body,

 $$
 m=\frac{q^{2}-1}{q^{2}-p^{3}}
 $$

 which will, also by substitution and subtraction, give us m^{\prime}, since it $=1-m$.

[^33]: ${ }^{1}$ This curious relation was first made known by the author of this paper to the American Association for the Advancement of Science, at their Meeting in Montreal, in 1857; also the division into shells, cte.
 ${ }^{2}$ Which might be somewhat varied, were all the masses more accurately determined.

[^34]: ${ }^{1}$ Ratios (2) and (3) are consistent with the supposition in (43), that the material of Saturn was gathered in part from the interior half-planet, now missing (the values $\hat{\boldsymbol{h}}$ and $\widehat{\delta} i$ being dependent on that) ; but they did not seem to be of such importance as to require their admission as Coincidence $12 t h$ of the series exhibited in (43) and (45).
 ${ }^{2}$ Though it should not be overlooked that ratio (4) is that existing in a satellite system, which is here compared with those found in the system of the primary planets.

[^35]: ${ }^{1}$ The mass of Neptune is the greater; Uranus having just possibly lost somewhat in the process, (43), which carried away the mass of the now missing planet.
 ${ }^{2}$ Mr. Trowbridge, in his investigation already referred to (Note to 38), [in 1864], shows that this would be true of the "abandoned" rings. But the increase of the mass of the great planets, in the progress inward, would seem to be too rapid to be explained by that alone. The other changes and relations in question may, as it would seem, have been even more efficient; and the most of these were indicated by the author of this paper in 1857, as heretofore stated in the same Note to Article (38).

 6 January, 1875.

[^36]: ${ }^{1}$ May be in a measure accounted for and explained by the special influences to which, (43), that planet appears to have been subjected.

[^37]: ${ }^{1}$ So that, as has often been surmised, the o'ermastering attraction of Jupiter must (it would seem) have interfered with the existence of the outer half-planet as such; and this, by an action not very unlike that of Saturn, (43), in preventing the continuance of anything like a half-planet interior to Uranus.

[^38]: ${ }^{1}$ All but the very distance of the interior asteroid-mass, as exhibited in (60).
 ${ }^{2}$ See, again, Consistency 9, in (44) ; referred in Note 2, on p. 30, to this place.

[^39]: ${ }^{1}$ Then, among things supposable, but not as yet fortified by groups of coincidences, and which cannot now be used in the way of induction, are these: If either of the half-planets were after all formed, the oblateness of the nebulous material must have been so great that it might le questioned whether of the two possible forms of a rotating spheroid of equilibrium-the density and the time of rotation being given-the one usually differing but little from a sphere, the other, with the equatorial diameter enormous in comparison with the axis, the latter might not be the form of the spheroid here produced; it being such as the ring of Saturn might become if the body of the planet were removed, and the ring filled up so as to be imperforate. Such a form would be eminently unstable; and if it were broken up, the fragments would all be small; as the asteroids indeed are.

 Then two such half-planets (with orbits, as has been seen, very eccentric) might all the more readily bave realized the ingenious conjecture advanced by Prof. Vaughan at the meeting of the American Association for the Advancement of Science, in 1857; viz. that the asteroids were the fragments resulting from the collision of two planetary bodies, in that region of the solar system; thus presenting a new phase of the hypothesis of Olbers.

 In the same category, as to not furnishing any induction as yet, may be included the fact that the orbit of Halley's (retrograde) comet very nearly (now) intersects that of Phocea.
 ${ }^{2}$ For additional proof of a half-planetary arrangement in the Asteroid region, see Article (108).

[^40]: ${ }^{2}$ Outlines of Astronomy (11th edition), (550).
 ${ }^{2}$ At p. 208 of the same volume.

[^41]: ${ }^{1}$ The italics are our own.

[^42]: ${ }^{1}$ But the conclusion is not a necessary one. M. Secchi makes the time of rotation shorter than that.
 ${ }^{2}$ Some recent observations of Jupiter seem to indicate that the planet itself is highly beated-possibly even to the extent of being locally self-luminous. The color of the belts and its variations together seem consistent with all this. [Witness the exquisitely beautiful chromo-lithographs accompanying the Earl of Rosse's paper in No. 5. of vol. XXXIV, of the Proceedings of the Royal Astronomical Society ; and Mr. John Browning's very beautiful representations of similar phenomena in No. 9 of the same volume. Also M. Tacchini's very remarkable diagram of Jupiter's appearance; with his explanations (Comptes Rendus, tome LXXVI, p. 423).]
 ${ }^{3}$ Conclusion of Chap. X, of Book IV, of the Système du Monde. For a discussion and an explanation of the various phenomena here in question, see two communications, by the author of this paper, to the Astronomische Nachrichten, Nos. 1986 and 2012.

[^43]: ${ }^{1}$ Système du Monde, Book IV, Chap. X. ${ }^{3}$ Système du Monde, Note VII.
 ${ }^{3}$ In Col. Forshey's manuscript notes, which he has since confided to me, the Zodiacal Light is described as being "very distinct across the heavens," Nov. 10, 1858, at 10 o'clock P. M. As delineated on star charts, the outlines on this occasion, as on many others, approach to a hyperbolic form, the central line of the laminous band being in the position of an asymptote to the two edges; or-if the comparison may be allowed-the appearance often was that of an enormous trumpet, the lower end widening rapidly and extensively; and on the oceasion here referred to, two such appearances are delineated, as having been obscrved; the broad ends spreading out to the horizon, on opposite sides, and the narrow portions united midway.

 On the 9th of May, 1860 , the phenomenon is described as being "faintly visible across the canopy;" though the whole display is characterized as being "rather faint;" while the "evening" is noted as being "splendidly clear."

 Also Nov. 13, 1859-"Not a very bright display. Still column yery distinct all the way across the sky."

 And, in a "Note" under the date of March 31, 1858, Col. Forshey expressly says: "I now begin to think that well-trained eyes can see it all the way ronnd, at all times that are clear and moonless."

[^44]: ${ }^{1}$ In a long and carefully considered Note on the Zodiacal Light in the Monthly Notices of the Royal Astronomical Society, vol. xxxi, No. 1 (Nov. 11, 1870).
 ${ }^{2}$ American Journal of Science and Arts, Third Series, vol. vii. p. 457 (No. 41-May, 1874). Will, after all, our terrestrial experience as to the conditions of polarization, justify us in making at a criterion of the state of anything so peculiar as the matter in question?

[^45]: ${ }^{1}$ Such is in effect the statement of Prof. Charles A. Young (as the result of his experience and that of others), made in a personal communication with the aathor of this paper.
 ${ }^{2}$ Report of Japan Expedition, vol. iii, No. 271, at p. 542.

[^46]: 1 "The first four of these results were not always uniform ; but the exceptions were few, and were probably occasioned by the nebulous ring's not lying exactly in the plane of the ecliptic." From the Introduction to Chaplain Jones's Report, pp. Xvi and XviI.
 ${ }^{2}$ Mr. Proctor also seems inclined to admit the possibility of a more intense illumination in special directions ; though not decided as to its cause, when he says at the close of his Note on the Zodiacal Light, referred to in (73): "If some solar action, for example, rouses luminosity in certain definite directions-as, for instance, near the plane of the Sun's equator-in some such way as light is caused to appear along radial lines through and beyond the heads of comets, our power of theorizing from such considerations as have been dealt with in this paper would be limited."

[^47]: ${ }^{1}$ Cabinet Cyclopædia-Astronomy (488).--With this Prof. Wright's conclnsions, (73), with respect to the constitution of the material in question would not be inconsistent. Sce, again, Article (73).

[^48]: - The description here is such as might, in anticipation, have been dictated by the hypothesis under discussion.

[^49]: ${ }^{1}$ See Astronomische Nachrichten, No. 989.
 ${ }^{2}$ The dates with reference to the phases of the moon are but close approximations ; yet such as are quite snfficient.

[^50]: ${ }^{1}$ But it would be more difficult to understand and account for these special phenomena presented by the material in question, if it were directly a solar, instead of a terrestrial, appendage.

[^51]: ${ }^{1}$ The present Astronomer Royal, Sir George B. Airy, is understood to have said, soon after the total eclipse of the sun, in 1842, that some of the phenomena of that eclipse required for their explanation the supposition of the existence of a material between the moon and the earth.

[^52]: ${ }^{1}$ Smithsonian Contributions to Knowledge, vol. xviii, p. 169 of the Memoir in question.
 ${ }^{2}$ As quoted in Sir J. Merschel's Outlines of Astronomy (11th edition), (392).

[^53]: ${ }^{1}$ With M. Sporer's value of the inclination of the sun's equator, the numbers in column $2 d$ will be diminished 18^{\prime}.
 ${ }^{3}$ An examination of Mr. Trowbridge's paper, already referred to [Notes to (38) and (57) respectively], shows that he has wrought with the same idea in view; though he has applied it to the change in the solar axis of rotation.
 s Unless, with Mr. Trowbridge, we say that "the invariable plane of the solar system must" (also) "be the invariable plane" for "the primitive solar spheroid, and that it must have coincided approximately with the plane of the sun's equator;" and so he compares the inclination of "the invariable plane" to the ecliptic with that of the orbit of Neptune, with which it nearly agrees. In such a case, with the average existing inclination of the plane of the sun's equator to those of the planetary orbits; it would seem that the sun's equator has itself changed its position; the vicissitudes being similar to those, (68), which, according to M. Laplace, the earth in its forming state seems to have undergone.

 But it should here be borne in mind that the invariable plane has its position ascertained by a reference to the conditions of material as now accumulated into planets with well-determined orbits; and so the invariable plane thus conditioned may very possibly be not coincident with "the invariable plane of the primitive solar spheroid."
 ${ }^{4}$ Le Ciel, par Amédée Guillemin, 4ième Edit. pp. 283 and 284.
 ${ }^{5}$ Are the white planets, then, in part derived from the one half-spheroid, and the planets of another color from the other? and is the balf-spheroid, which furnished the white series, the northern one? (?)

 For, as respects the existing state of comparative activity in the two hemispheres of the sun, as indicated by the appearance of the solar spots, "a very material difference in their frequency and magnitude sulsists in its northern and southern hemisphere; those on the northern preponderating

[^54]: in both respects" [Sir J. Herschel's Outlines, ete., (393)]. See, also, the enumeration and classiincation of solar spots, founded upon Mr. Carrington's observations, as reported by M. Faye (Comptes Rendus, tome lxxvi, p. 393).

 The white planets Jupiter and Venus seem to show in their atmospheres, now, traces of great activity, even such as ould be consistent with a high temperature. As respects Jupiter, see again Note 2 to (69).
 ${ }^{1}$ See pp. xiv, xvi, and xvii of the Introduction to the Memoir, respectively.
 As to the existence of such a relation and also as to its connexion with the times of rotation of the several planets-see, again, last Note to (44); also Article (109), and Consistency 61 st of the Summation in (110).
 ${ }^{2}$ See pp xiv, xvi, and xviii of the Introduction to the Memoir.

[^55]: ${ }^{1}$ It is at least curious that Saturn deprived of the mass of $\underset{\substack{ \\i}}{ }$ (i.e. the ancient Saturn) must here once more enter into the computation instead of the existing planet.

 10 February, 1875.

[^56]: ${ }^{1}$ The existing and not the ancient Saturn appearing here. ${ }^{2}$ Sec 5 of (43).
 ${ }^{3}$ See (99) and Note.
 ${ }^{4}$ In this connexion-see, again, Articles (56) and (57). $\quad{ }^{5}$ Proceedings, p. 208.

[^57]: ${ }^{2}$ For the interior half-planet $\widehat{\widehat{ } i}$, if it ever had the planetary form and state, the time of rotation would be $33 h .982$.
 ${ }^{3}$ Deriving the distances from the more extended series in the column of Law in Table (B), in (14), we have $27 h .46 \mathrm{~m} .3$, for the time of rotation.

[^58]: ${ }^{2}$ Outlines of Astronomy (11th Edition), (505)

[^59]: "Accordingly in the statement of the "Law" as not unfrequently made, which represents the successive distances by the numbers $4,4+1 \times 3,4+2 \times 3,4+2^{2} \times 3$, etc., Saturn's representative number exhibits a conspichous failure. For instead of the true number 95 , the distance is represented by 100; the veritable distance-as has, in effect, been stated_-being too small to conform to "Bode's Law."
 [The representative numbers 4, 7, 10, etc., appenr in Mr. Hall's series, quoted in this Article.]
 ${ }^{2}$ Especially in this connexion, see Note to (7).
 ${ }^{3}$ What has already been stated in the way of exposition of the application of this (so-called) law in the planetary system, and an inspection of our Table (E) in (21), with its two ratios in accordance with veritable laws, will at once show the reason for this discrepancy. See also Note to (7).

[^60]: ${ }^{1}$ The error is here nearly $\frac{1}{8}$ of the quantity to be determined; whereas in our Tables (B) to (E), and even (F), inclusive, the greatest difference between veritable Law and Fact is that in the instance of Uranus, in which the discrepancy is not $\frac{1}{60}$ of the quantity to be measured, and even for that [5 of (43)] a special reason is assigned. In almost every other instance the discrepaucy is far less than that; indeed, all but incomparably small. The greater differences specified in Mr. Hall's paper are such as are characteristic of "Bode's Law."

[^61]: ${ }^{1}$ Though it is also curious that we have, in both the instances in question, the product of the expressions of white planet distances, divided by that of those which are not of that description; the reason for the classification of the planets in that respect even, having (99), at least a quasirelation to the Ancient State of the system exhibited in Table (F), in (45); which is again related (in the connexion in question) to the more recent arrangements exhibited in Table (B), in (14).

[^62]: ${ }^{1}$ As stated by Prof. Kirkwood-American Journal of Science and the Arts, for Sept. 1860, p. 167 .

[^63]: ${ }^{1}$ As the annual aberration of the sun, planets, and fixed stars is without explanation, if we do not admit the doctrine of the earth's motion ; but the whole explanation is adequate in mode and in measure with that motion first admitted. There is certainly an approximation to a parallelism here.

[^64]: 1 This assuredly must have been overlooked, or else--though noticed-have been forgotten; or we would not find among the Proceedings of the Royal Astronomical Society (Dec. 1869), "A New Theory of the Milky Way, by R. A Proctor, B. A.;" which describes and figures the Milky Way as being a spiral-1hough not, indeed, with four branches.

[^65]: ${ }^{1}$ Sur une Transformation des Equations Differentielles de la Dynamique.

[^66]: ${ }^{1}$ It will be observed that the notations introduced by Lagrange and Poisson respectively, are here reversed, a proceeding which was not intentional on the part of the writer

 3 November, 1874.

[^67]: * A linear relation of which we have not spoken must sulsist between the quantities \dot{b}_{1}, b_{2}, etc., which reduces the number of really independent arguments to $3 n-1$.

[^68]: 1 "The Northwest Coast, or Three Years in Washington Territory," Harper \& Bros., 1857; and "The Indians of Cape Flattery," Smithsonian Institution (220).

[^69]: Carvings by Haidak Indians of Quein Charlotte's Islands, British Columbia, representing the carved posts set up in Front of theirTiodges showing the Totems or heraldic design of the families occupying thehouse. Descriptions given by Iit-hun Shief of the Laskeel village Geneskelos, a brother of Kit-Zun \& Capt. Shedance Chief of the Koona Tillage, cast coast of hioresby:s lstand.

 Drawn by J.G.Swan Porthomsend, WIT: May 7873.

[^70]: Smithsonian Contributions to Knowledge No. 262

[^71]: ${ }^{1}$ The following information is extracted from Gehler's Physikalisches.Wörterbuch, Leipzig, 1839

 * * * Tó Daniel G. Fahrenheit, of Dantzic (Prussia), is due the merit of having constructed,

[^72]: ${ }^{1}$ F. B. Hough, p. iv of the introduction to the results of meteorological observations made in obedience to instructions from the Regents of the University at sundry Academies in the State of New York, Albany, 1855.
 ${ }^{2}$ It should also be mentioned that for these Academy stations the monthly means are made up from the half-monthly means, there is therefore a slight inconsistency in the results for the months having an odd number of days (the first 15 days having been united into a meau for all months, excepting February). The October mean is most affected, less so May and March; the amount generally less than $0^{\circ} .1$ is small enough to be neglected.

[^73]: 7 Hours of observation $6_{m} 9_{m}$ N． $3_{\mathrm{a}} 6_{\mathrm{a}} 9_{\mathrm{a}}$ ．－Captain Lefroy，in the＂Canadian Journal＂for November， $\mathbf{1 8 5 2}$ ，notes a diminution of $2^{\circ} .5$ in the mean annual temperature，resulting from the last five years of this series，when compared with that for the first four years．It appears to be due to a change in the hours of observation．

 8 Observations for 4 years 6 months of this series were made at $\sigma_{\mathrm{ma}} 2_{\mathrm{a}} 10_{\mathrm{a}}$ ．They were referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ by means of the general table．
 ${ }^{9}$ Observations for the first five months at＂Hatley，＂a few miles to the southwest of＂Sherbrook．＂

[^74]: ${ }^{1}$ Near Niagara Falls．This series has been formed by combining the observations at＂Clifton＂with those at＂Suspension Bridge，N．Y．＂They

[^75]: ${ }^{1}$ Old Fort Defiance．The observations previous to $\mathbf{I} 855$ ，were taken at $\odot_{r} 9_{m} 3_{a} 9_{n}$ ，and have been referred to $7_{m} 2_{\mathrm{a}} 9_{\mathrm{n}}$ by means of the general table． 2 Observations in I859 at Yellville，some miles to the southwest．
 ${ }^{3}$ Olbservations at various hours；they have been corrected for daily variation by menns of the general table．

[^76]: ${ }^{5}$ Observations prior to 1855 at $\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{2} 9_{\mathrm{a}}$ ；a correction was applied，making use of the Key West Table，to refer them to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ．The annzal mean is not affected by this change of hours．

 6 Observing hours irregular ；corrected for daily variation．

[^77]: ${ }^{1}$ Observations of one series，two years and four months，at $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ，were referred to 6_{m} N． 6_{a} and combined with the other series．
 ${ }^{2}$ Observations for one year and two months at $7_{m a} 2_{a} 9_{a}$ ，referred to $\bigodot_{r} 9_{m} 3_{a} 9_{a} . \quad{ }^{3}$ Observations previous to 18_{555} at $\bigodot_{r} 9_{m} 3_{a} 9_{a}$ ，referred to $7_{m} 2_{a} 9_{a}$ ．
 4 Observations for four months in morning and evening ；assumed to be at \bigodot_{r} and \bigodot_{s} ，and referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis．
 ${ }^{5}$ Observations for four years and one month at $\odot_{r} 9_{\mathrm{m}} 3_{\mathrm{n}} 9_{\mathrm{n}}$ ，referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bis
 6 Observations prior to 1855 at $\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ ；a correction was applied，making use of the Key West Table，to refer them to $7_{\mathrm{m}} \mathrm{z}_{\mathrm{a}} 9_{\mathrm{a}}$ ．The annzal mean is not affected by this change of hours．

[^78]: ${ }_{5}$ There were from three to seventeen observations daily，between σ_{m} and 10_{a} ；corrected for daily variation by means of the New Haven Table． Thermometer tested．

 6 Observations prior to August，1867，at Fort Berthold，a few miles to the southwest．
 7 Also called＂Greenwood．＂Observations in 1862，at Yankton，to the east．

[^79]: 1 Observations in $\mathbf{1 8 5 4}$ ，at $\odot_{\mathrm{r}} 9_{\mathrm{m}} 3_{\mathrm{a}} 9_{a}$ ；they were referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ by means of the general table．The observations of $\mathbf{1 8 6 6}$ and 1867 were combined with those made at Delaware City．
 ${ }^{2}$ The observations have been corrected for daily variation．The series is much broken and many of the monthly means are imperfect，so that the results afford only a tolerable approximation to the truth．${ }^{3}$ Corrected for daily variation by means of the general table．
 ${ }^{4}$ The observations were made bi－hourly，at 0.2^{h} A．M．， 2.2^{h} A．M．，and so on．
 ${ }_{5}$ The observations were made tri－hourly at Mid．， 3 A．M．， 6 A．M．，and so on．
 ${ }^{6}$ Also called Atsuna Otie．

[^80]: ${ }^{6}$ Observations previons to Feb． 1853 ，at other hours；they were referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ．
 7 Observations previous to April，1853，at $\bigodot_{r} 9_{m} 3_{a} 9_{a}$ ；they were referred to $7_{m} 2_{a} 9_{a}$ bis．
 8 Observations at three stations within a radius of a few miles．
 10 Observations previous to 1844 were made at Fort Dearborn．

[^81]: ${ }^{1}$ Observations after 1860 made at $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ，were referred to $6_{\mathrm{m}} 9_{\mathrm{m}}$ N． 3_{a} ．

[^82]: 2 Observations previous to 1861 at other hours；they were referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ bs

[^83]: ${ }^{3}$ Observations after February，1863，were made at Newcastle very near Cadiz．

[^84]: 4 Observations corrected for daily variation by means of the general table．
 ${ }^{6}$ Observations at $7_{\mathrm{m}} \mathbf{2}_{\mathrm{a}} 9_{\mathrm{a}}$ after March，1853．No correction for change of hours has been applied．
 6 Also called＂Eh－yoh－hee．＂

[^85]: ${ }_{5}$ This series includes observations made at the Leavenworth City High School in April，May，October，November，and December， 1868.
 6 Observations after 1864 were made at Manhattan College，about one mile southeast of Manhattan．

[^86]: ${ }^{3}$ Previous to July，I831，the observations were made at Fort St．Philip，one mile N．W．of Fort Jackson．
 4 Corrected for daily variation by the Fort Morgan Table．
 ${ }^{6}$ In 1860，the observations were made at Moss Grove Plantation，near Trinity．

[^87]: ${ }^{3}$ The observations were partly made at Mount St．Mary＇s College，about one mile S．W．of Emmettsburg．
 4 Observations corrected for daily variation by means of the general table．

[^88]: ${ }^{1}$ Observations after 1844 were made at West Newton，about two miles West of Watertown Arsenal，by J．H．Bixby．
 ${ }^{2}$ Observations corrected for daily variation by means of the general table．
 ${ }^{3}$ The names of the observers from $\mathbf{1 8 3 9}$ to 1859 are not given．

[^89]: 4 The observations in 1864 were made at Garlick，about two miles east of Carp Lake Mine．
 5 The observations in 1866－7 were made at Kalamazoo，about five miles west of Cooper．
 6 Observations corrected for daily variation．

[^90]: ${ }^{3}$ This series includes observations made in August，1862，at Houghton，about four miles southwest of Portage Lake．
 4 Altitude 12 $\frac{1}{2}$ feet above Lake Superior．

[^91]: 4 Altitude 300 feet above Missouri River．
 5 This series includes observations at the St．Louis Arsenal，from Jan．I843，to Dec． 1856.
 ${ }^{6}$ Altitude 825 feet above the Gulf．

[^92]: 6 Observations for 1867 at＂Blackbird Hills，＂a few miles to the southwest of the mission．
 8 Nason gives altitude 125 feet above river bed．

 ## 7 Also known as＂Elkhorn City．＂

 ${ }^{9}$ Also called Tamzorth．
 ${ }^{10}$ This series is composed of observations at Great Falls by H．E．Sawyer，and at Salmon Falls，about two miles southeast of Great Falls，by G．B．Sawyer．
 11 Observations from January，1835，to December，1837，probably included in preceding series．

[^93]: This series is composed of observations at Littleton，by R．C．Whiting，and at North Littleton，about one mile north of Littleton，by R．Smith．
 ${ }_{2}$ The observing hours were $\bigodot_{r} 2_{a}$ ．The observations were corrected for daily variation by means of the general table．
 3．Also called Barnstead．
 4 Observations corrected for daily variation by means of the general table．
 5 The observations in March，1849，were made at Belleville，about three miles northeast of Bloomfield．

[^94]: 6 The observations composing this series were made at Branchburg Township，Mechanicsville，and Beadington，all within a radius of about three miles．
 7 The observations previous to $\mathbf{I} 865$ were made at the junction of the Delaware and Rancocus Rivers，about four miles northwest of Chester．
 8 Observations corrected for daily variation by means of the general table．

[^95]: ${ }^{2}$ Altitude 688 feet, according to Regents' Report.
 ${ }^{3}$ Corrected for daily variation by means of the general table.
 ${ }^{4}$ Series approximately corrected for daily variation; observations often interrupted and hours of observation changed.
 ${ }^{5}$ Also called Townsendville and Covert.
 ${ }^{6}$ Observations previous to 1829 not very reliable.

[^96]: ${ }^{3}$ The observations for this series were made at Columbia College, Lewis M. Rutherfurd's Observatory, Rutgers Female College, St. Francis Xavier's College, No. 232 Fifth Avenze, and one other location, not given.

 4 This series is composed of the three preceding series, corrected for daily variation. ${ }^{5}$ Corrected for daily variation by means of the general table. The observations for this series were made at various hours, $\bigodot_{r} 9_{\mathrm{a}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ predominating. They were referred to $\bigodot_{\mathrm{r}} 9_{\mathrm{a}} 3_{\mathrm{a}} 9_{\mathrm{a}}$ by means of the general table.

[^97]: ${ }^{2}$ Corrected for daily variation by means of the general table．

[^98]: 1 Observations previous to 1862 were made at Jefferson, about five miles southeast of Austinburgh.
 2 Observations corrected for daily variation by means of the general table.

[^99]: ${ }^{3}$ Observations for ten months, of 1858 and 1859 , at σ_{m} N. 6_{a}, referred to $7_{m} 2_{a} 9_{a}$ bl9*

[^100]: 3 Observations corrected for daily variation.
 ${ }^{4}$ Observations made hourly, or else corrected for daily variation.

[^101]: ${ }^{3}$ Observations after 1839 were made at Barratsville，about three miles southwest of Abbeville．
 4 Observations corrected for daily variation by means of the general table．

[^102]: 1 The observations previous to 186I were made at Cumberland University at Lebanon，very near Austin．
 ${ }_{2}$ Altitude given as 15 feet above the Gulf．

[^103]: 3 Formerly called New Wied．
 ${ }^{4}$ Also called Phantom Hill．
 6 The observations in July and August，1867，were made at Long Point，about two miles northeast of Union Hill．

[^104]: 4 The observations previous to $\mathbf{I} 863$ were made at East Montpelier，about three miles east of Montpelier．
 5 Observations in Sept． 1869 at Hartford，about one and a half miles southeast of Norwich．
 6 Observations corrected for daily variation．

[^105]: I This series is of very little value on account of great irregularity in the hours of observation．

[^106]: ${ }^{6}$ This series is composed of observations made at Gosport Navy Yard, the United States Naval Hospital, and Portsmouth proper.
 6 This series is not at all reliable.
 y The observations in Jan., Feb., June, July, Nov., and Dec. were made at Fairfax Co. Ho., about three miles southeast of Vienna.

[^107]: 5 Also known as＂Camp Pickett＂and＂San Juan Island．＂
 ${ }^{6}$ The earlier observations were made at Colville Depot，some miles to the southeast，and for five months of 1860 at Harney Depot．
 ${ }^{7}$ Observations previous to 1855 at $\bigodot_{\mathrm{r}} 9_{\mathrm{m}} 3_{a} 9_{\mathrm{a}}$ ；they were referred to $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ ．\quad s For additional observation in this vicinity，see＂Port Townshend，＂
 ${ }^{9}$ Observations for four months，in 1841 ，at $\sigma_{m} 2_{a} \sigma_{a}$ ，and for four years and one month，from Dec．1849，to Dec．1854，at $\odot_{r} 9_{m} 3_{n} 9_{\mathrm{a}}$ ；they were referred to $7_{\mathrm{m}} \mathrm{Z}_{a} 9_{\mathrm{a}}$ ．
 ${ }^{10}$ Observations at $7_{\mathrm{m}} 2_{\mathrm{a}} 9_{\mathrm{a}}$ after Jan． 1853 ．
 ${ }_{11}$ Observations in March and May imperfect．
 12 Also known as＂Trout Run Valley＂and Wardenville．

[^108]: ${ }^{2}$ The observations were made at $\epsilon_{m} 8_{m} 9_{m} 10_{m} I_{a} 2_{a} 3_{a} 4_{a} \sigma_{a} \delta_{a}$.

[^109]: ${ }^{1}$ Means of 18 daily observations．

[^110]: ${ }^{1}$ Tables and Results of the Precipitation, in Rain and Snow, in the United States. Smithsonian Contributions to Knowledge, No. 222; Washington, May, 1872.

[^111]: ${ }^{1}$ Annual Report of the Board of Regents of the Smithsonian Institution for the year 1857, p. 310; also aunual report for 1860, p. 413.
 ${ }^{5}$ In Baden, Germany.

[^112]: ${ }^{1}$ Smithsonian Contributions to Knowledge; Washington, 1859.
 ${ }^{2}$ Smithsonian Contributions to Knowledge, No. 196; Washington, 1867.
 3 The August values are interpolated, means of July and Sept. values.

[^113]: ${ }^{1}$ Phil. Trans., Roy. Soc., Vol. 143, 1853.
 2 The table given by Gen. Sabine commences with noon, it was changed to commence with midnight, for the sake of uniformity with the other tables.

[^114]: ${ }^{1}$ MS. in Sm. Coll.

[^115]: ${ }^{1}$ From Prof. Guyot's Met. and Phys. Tables, Sm. Misc. Coll.; Wash., 1858. From Aug. 18.39, to July, 1840, inclu.

[^116]: ${ }^{1}$ From Prof. A. Guyot's Meteorological and Physical Tables, Smithsonian Misc. Coll.; Washington, 1858.

[^117]: ${ }^{1}$ The climate of San Francisco; Smithsonian Annual Report for 1854, p. 231 and foll.

[^118]: ${ }^{1}$ On page 316 of Sill. Journ., No. 129 (May, 1867), we find the expressions for the normal months, $M T$, by means of the calendar months, m, as follows :-

 $$
 \begin{aligned}
 & M_{1}=m_{1}+.0037 m_{1}+.0030 m_{12}-.0067 m_{2} \\
 & M m_{2}=m_{2}-.0127 m_{2}-.0031 m_{1}+.0158 m_{1} m_{3} \\
 & M m_{3}=m_{3}+.0028 m_{3}-.0249 m_{2}+.0221 m_{1} \\
 & M m_{4}=m_{4}-.0042 m_{4}-.0200 m_{3}+.0242 m_{5} \\
 & M m_{5}=m_{5}+.0016 m_{5}-.0218 m_{4}+.0202 m_{6} \\
 & M_{6}=m_{6}-.0039 m_{6}-.0180 m_{6}+.0219 m_{7} \\
 & M T_{7}=m_{7}+.0026 m_{7}-.0200 m_{6}+.0174 m_{8} \\
 & M_{8}=m_{8}+.0025 m_{8}-.0103 m_{7}+.0078 m_{9} \\
 & M I_{9}=m_{9}-.0027 m_{9}-.0067 m_{8}+.0094 m_{10} \\
 & M M_{10}=m_{10}+.0030 m_{10}-.0085 m_{9}+.0055 m_{11} \\
 & M M_{11}=n_{11}-.0026 m_{11}-.0046 m_{10}+.0072 m_{12} \\
 & M M_{12}=m_{12}+.0032 m_{12}-.0064 m_{11}+.0032 m_{1}
 \end{aligned}
 $$

[^119]: ${ }^{1}$ A. Bravais in "Voyages en Scandinavie, etc." Pendant les années 1838, 1839, 1840. Météorologie, Vol 2, pp. 291 and 325. Paris, 18

[^120]: ${ }^{1}$ Excepting the results for Fort Franklin, to which no corrections whatever have been applied, it is a series of less than two years. The expressions for the Aretic stations, Van Rensselaer Harbor, Port Foulke, and Port Kennedy, were taken from my discussion of the Physical Observations in the Arctic Seas by Dr. I. I. Hayes; Smithsonian Contributions to Knowledge, No. 196, Washington, June, 1867 , p. 180 . To these a fourth term has now been added, and the parameters have been corrected for curvature. [On p. $180 B_{1}$ for Van Rensselaer Harbor should have been 35.39.]

[^121]: a Monthly means corrected for daily variation by the general table p. xiv.
 b Monthly means corrected for daily variation by the Sitka table; for Astoria allowance was made for change of style.
 c Monthly means corrected for daily variation by the tables for Key West and Fort Morgan.

[^122]: ${ }^{1}$ A still greater range of abont 90° probably occurs at Fort Yukon, Alaska, in latitude $66^{\circ} 34^{\prime}$, but our observations are too limited to give an exact value.

[^123]: ${ }^{1}$ See report of British Association for Advancement of Science; Birmingham meeting, 1865; also Silliman's Journal, May, 1867, p. 290.
 ${ }^{2}$ Local Climatology, in the 20th annual report of the Regents of the University of the State of New York. Albany, 1868.

[^124]: ${ }^{1}$ In an Article on the Variations of Temperature at Toronto, Canada (Phil. Trans. Roy. Soc., 1853, Vol. 143, part 1), Col. Sabine remarks: "On a reference to Table IV, it is seen that on the average of the twelve years from 1841 to 1852 the 11 th of May was $0^{\circ} .1$ below and on the 12 th and 13th of May respectively $3^{\circ} .1$ and $2^{\circ} .4$ above the general mean of the temperature. The meteorological observations at Toronto during these twelve years do not, therefore, support the supposition that the depression of temperature on the 11th, 12th, and 13th of May observed at Berlin (from a series of 86 years of observations) is a general and periodically recurring phenomenon over the whole globe."

 25 March, 1875.

[^125]: ${ }^{1}$ Supposing $y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7}$ to represent consecutive values of the daily temperature, the resulting. mean of the sixth order and corresponding in point of time to the middle ordinate y_{4} will be given by

 $$
 \frac{2}{64}\left\{y_{1}+6 y_{2}+15 y_{3}+20 y_{4}+15 y_{5}+6 y_{6}+y_{7}\right\}
 $$

 and in gencral for $n+1$ ordinates, the co-efficients are those of the nth power of a binomial and the divisor equals their sum.

 No precise rule can be given prescribing the limiting number of successive means, but as the values converge towards a constant, at first rapidly and afterwards more slowly, it will soon be found that after repeating the process a few times very little impression can be made on the results by continuing it, which sufficiently indicates that we have arrived at a practical limit. We may either compate directly by means of the formula, or we may set down each scries of consecutive means; the latter process offers the advantage of a partial check in the regularity of progression of the numbers standing in the same horizontal line. It will also be convenient to stop at an order of an even number, in which case the resulting means refer, in point of time, to noon, whereas odd numbers (which may be written between the line) refer to midnight.
 ${ }^{2}$ Referring the reader to a subsequent part of this paper for the analyzation of the results connected with this inequality, it may be stated that it probably exists over the greater part of the United States east of the Mississippi River, and, perhaps with some modification, also in other parts of the country; allied with it, but not necessarily connected, there appears also an inequality in the amount of greatest cold and heat extending over a number of years, which, however, leaves the annual range almost undisturbed. These inequalities are necessarily of a periodic nature, and consequently our daily means, in order to become truly normals, must comprise at least one full period (or at least half a period if the curve be regular and just includes the maximum and minimum).

[^126]: 1 Hours of observation unknown．
 \dagger Values for $\mathrm{I} 837-$ S－9－40 cloubtful，about 6.40 too high．

[^127]: 1 Hours of observation unknown．

[^128]: ${ }^{1}$ The tables contain altogether about 1210 stations with an aggregate of about 8500 annual means. The general tables are estimated to represent nearly $11 \frac{1}{2}$ millions of individual observations.
 ${ }^{2}$ The number of combinations of n elements by twos is expressed by $\frac{n(n-1)}{2}$.
 ${ }^{3}$ Suppose it be proposed to combino to a uniform system the results of the mean annual temperature of the 49 -year series at Brunswick, the 37-year series at Portland, the 31-year series at Gardiner, the 40 -year series at Castine, and the 14 -year series at Cornish, all in the State of Maine, for which

[^129]: ${ }^{1}$ Prof. Wolf's relative uumbers of sun-spots; from Astronomische Nachrichten, Nos. 1978

[^130]: ${ }^{1}$ Smithsonian Contributions to Knowledge, No. 204; Washington, June, 1867.

[^131]: ${ }^{1}$ Smithsonian Contributions to Knowledge, No. 120; Washington, June, 1868.

[^132]: \square

