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PREFACE TO THE FIRST EDITION.

The present work is intended as an introductory text-boo

for the use of Students reading for the Mathematics

Tripos. Many of the higher applications of the subje<

are therefore either omitted entirely or treated very brief!;

At the same time the Author believes that the book ii

eludes as much as the great majority of Cambridge Studen

have time to master thoroughly, while those who ai

desirous of making farther acquaintance with the subje<

will perhaps find a work like the present not unsuitable i

an introduction to the more complete treatises of Salmc

and others.

The Author begs to thank those of his friends who ha^

kindly assisted him by revising the manuscript and proo

sheets, and will feel obliged to any one who will offer corre

tions or improvements.



PREFACE TO THE FIRST EDITION.

Examples, selected chiefly from recent College and Uni-

srsity Examination Papers, will be found at the end of each

hapter.

Cambridge, August, 1865.

SECOND EDITION.

The present Edition has been revised and re-arranged

id somewhat enlarged.

Newcastle-on-Tyne, September, 1873.

THIRD EDITION.

The Third Edition has been revised and farther

olarged, chiefly by the addition of hints for the solution of

le Examples.

Nkwcastle-on-Tyne, September, 1879.
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CHAPTER I.

INTRODUCTORY THEOREMS.

1. The position of a point in space is usually deter-

mined by referring it to three planes meeting in a point.
This point is called the origin, the three planes the co-

ordinate planes, and their three lines of intersection the

co-ordinate axes. The point of intersection of the' three

planes is usually designated by the letter 0, and their lines

of intersection by the letters Ox, Oy, Oz. They are called

the axes of x, y, and z respectively, and the planes yOz, zOx,

xOy are called the planes of yz, zx, xy respectively. If the

three planes of yz, zx, xy, and consequently the three lines

Ox, Oy, Oz, are at right angles to each other, the co-ordinates

are said to be rectangular, and in all other cases oblique. We
shall generally make use of rectangular co-ordinates, but in

some cases the proofs and the results obtained will hold good
equally whether the axes be at right angles or not.

2. The position of any point P relatively to these three

planes is known, if its distance from each, measured parallel
to the intersection of the other two, be known.

For let PH, PK, PL be drawn through P parallel to

Ox, Oy, Oz respectively to meet the planes of yz, zx, xy in

H,K,L; and let a plane through PL, PK, which by Euclid, XI.

15, is parallel to the plane of yz, meet Ox in M. Let also a

plane through PH, PL meet Oy in N, and a plane through
PH, PK meet Oz in K Then if KR, KM be joined,KMOR
is obviously a parallelogram, and KR therefore equal to OM.

Similarly RKPH is a parallelogram, and KR equal to PH.
A. G. 1



INTRODUCTORY THEOREMS.

Hence PIl is equal to OM, and similarly PL to OB, PK to

ON. If therefore we measure off from Ox, Oy, Oz, respec-

tively, lengths OM, ON, OR equal to the given distances of

P from the co-ordinate planes, and through M, N, R draw

H
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the co-ordinates of any point indicate in which of these com-

partments it is situated, while their absolute magnitudes
indicate its position in that compartment. Thus the co-ordi-

nates of a point whose absolute distances from the co-ordinate

planes are a, /3, 7 are represented by (a, A, 7), (—a, A> 7),

(a, -A 7), (a, A -y),(<x,
-A -7), (7* A -7)> (-«, "A 7),

(— a,
—A —

7), according as the point lies in the compart-
ment Oxyz, Oxyz} Oxy'z, Oxyz, Oxy'z', Oxyz , Ox'y'z, Oxy'z ,

respectively.

4. To find the distance of a pointfrom the origin in terms

of its co-ordinates.

In this and Articles o, 6 and 8 the co-ordinates are sup-
posed rectangular.

Let P be the point, x, y, z its co-ordinates. Through P
draw planes parallel to the co-ordinate planes and forming
with them a parallelepiped of which OP is the diagonal and
PL the edge through P parallel to Oz.

Join OP and OL, Then since PL is parallel to Oz which
is perpendicular to the plane of xy, PL is perpendicular to

the plane of xy, and therefore to the line OL which lies in

that plane. (Euclid, xi. Def. 3.)

Hence OP2 =OL2 + PL\
1—%
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6. To find the distance between two points whose co-ordi-
nates are given.

Let P and Q be the two points; w
19 yxt

z
x \

x
2 , y2 ,

2
2
their

co-ordinates. Join PQ, and through P and Q draw planes
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7. To find the co-ordinates of a point which divides the

straight line joining two given points in a given ratio.

&

Let P, Q be the two given points, and R the point in PQ
which divides PQ in the given ratio of n

x
to n

2
. Let a

%i yv z

be the co-ordinates of P, a?
2 ,

o£R.
2/2 ,

z
2 t^ose of Q, x, y\ z those

Draw PM, RH, QK parallel to the axis of z to meet the

plane of xy in M, H, K. These points all lie in one straight

line, namely that in which a plane through PQ parallel to

the axis of z cuts the plane of xy. Draw PEF parallel to

MHK to meet RH in E and QK in F.

Then
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If R be the middle point of PQ, n
x
=n

2 ,
and we have

/
x + x

x = 1

CT

2

8. To ^M the angle between two straight lines whose

direction-cosines are given.

Since by Euclid, XI. 10, the angle between any two straight
lines is equal to that between any other two respectively

parallel to them, we need only consider the case of two lines

through the origin.

Let 0P} OQ be the two lines; I, m, n the direction-cosines

of OP\ l', m, n those of OQ. Let x
l9 ytt

z
x ,
be the co-ordi-

nates of P any point in OP; x
2 , y2 ,

z
2
those of Q any point

in OQ.

Then by Art. (6)

-< + yt + < +< + y? +<~ 2 0% + m* + *i*$

Bat by Art. (4)

x? + y? + z?=OP\
<+y:+*:=0Q\
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And by Art. (5)

x
x
= OP.l, yx

= OP.m, z
1
= OP.n,

x,
= OQ.l\ y^OQ.m', z

2 =0Q.ri;
and .'. x

x
x

2 + yxy2 + z
x
z
2
= OP . OQ (IV + mm + nri).

Hence PQ> m OP' + OQ
2 -2 OP. OQ (IV + mm + nn).

But by Trigonometry we have from the triangle OPQ
PQ* = OP2 + OQ

2 -20P.OQ. cos POQ.

Comparing these two expressions for PQ2

,
we get

cos POQ = W + mm' + nn (6).

The formula (1), (3), (4) and (G) are of very frequent use,

and should be carefully remembered by the student.

From (6) we can deduce

sin
2 POQ = 1 - (IV + mm + nn)*

m [f + w2 + w
2

) (r + m
'2 + w/2

)
-

(Jf + mm' + nn')*

=
(win'

- mnf + (nV - n'l)
2 + (Im -

I'm?.

9. If from the ends of a straight line PQ of limited

length there be drawn perpendiculars on a fixed plane and
the feet of these perpendiculars be joined by a straight line,

the joining line is called the projection of PQ on the plane.
Thus in the figure to Art. (6) if the edges LP, QN of the

parallelepiped PKQM be produced to meet the plane of xy
in i?and F, EF is the projection of PQ on the plane of xy,
and is equal and parallel to PN. Also

Pl\r = PQ cos QPK
But QPN is equal to the angle which PQ makes with

the plane of xy. Hence we derive the theorem :

The projection of a straight line of limited length on a

given plane is equal to the length of the line multiplied by the

cosine of the angle between the line and plane.

10. If again from P and Q we draw perpendiculars on
some fixed line, the portion of the second line intercepted
between the feet of these perpendiculars is called the projec-
tion of PQ on the fixed line, and the following theorem holds:
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The projection of a straight line of limited length on a
second straight line, is equal to the length of the first line mul-

tiplied by the cosine of the angle between the two lines ; under-

standing by the angle between two lines which do not meet, the

angle between any two lines parallel to them which do meet.

This theorem is proved as follows :

Let PQ be the line of limited length, and AB the line on
which it is to be projected. Through P draw PR parallel,
and PA perpendicular to AB. Through Q draw a plane

perpendicular to AB meeting AB in B, and PR in R. Join

QR, RB, BQ. Then AB is the projection of PQ, for AB is

perpendicular to QB which lies in the plane QBR. Then

since PR is parallel to AB, which is perpendicular to the

plane RB Q, PR is also perpendicular to this plane and there-

fore perpendicular to QR and RB. Hence PRBA is a paral-

lelogram, and therefore AB = PR. But PR = PQ cos QPR,
since PR Q is a right angle.

Therefore

AB = PQ cos QPR,

the theorem required.

11. If we take any two points P, Q, and draw from P
in any direction a straight line PR of an}' length, from R
a straight line R8, and join SQ; and from P, R, #and Q
draw perpendiculars PA, R C, SB, QB on AB

;
A C, CD and

DB will be the projections of PR, R8 and SQ on AB
;
and

as long as A, G, I), B fall in the order represented in the

figure, the arithmetic sum of these projections is equal to
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AB, the projection of PQ. The same would be true if we
had taken any number of lines between P and Q. If how-
ever C fall to the right of D, or C or D fall to the right of

A C D B

B or to the left of A, this will be no longer the case. We
may agree to consider the projection of a line to be equal
to its length multiplied by the cosine of the angle which
it makes with the second line, those angles being always
taken which are formed by the successive lines PR, RS, SQ
with AB towards the same part. Thus if D come to the

left of G, the angle between RS and AB will be obtuse, and
the projection of RS will be negative. And since

AC-CD + DB = AB,

we still have the theorem that "
the algebraical sum of the

projections on a given line, of a series of lines by which we

pass from one point to a second, is equal to the projection
on the same line, of the straight line joining the two points."

This statement may be illustrated thus. Suppose a point
to move from P to Q along PR, RS, SQ, and from each
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of its successive positions imagine a perpendicular let fall

on AB. As the point moves along PR, the foot of this

perpendicular will move along AB from A towards B, or

in the opposite direction, according as the angle between
PR and AB is acute or obtuse, and the length traversed

by it along AB is the projection of PR, and is positive if it

travels from A towards B, and negative if in the opposite
direction. It is clear that as the moving point passes from

P to Q, the foot of the perpendicular will pass from A to B,
and hence AB which is the projection of PQ will also be the

algebraical sum of the distances travelled by the foot of the

perpendicular, or of the projections of PR, RS, SQ. The
same theorem will be obviously true if instead of three lines

we have any number. By the angle between PR and AB
is meant the angle which would be formed if from any point
were drawn lines in the directions of PR and AB. Thus
the angle between PR and AB is the supplement of that

between RP and AB.

12. By means of the result of the last Article, another

proof of the formula (6) of Art. 8 can be obtained.

, If, in the figure of that Article,. QN~ be drawn parallel
to the axis of z to meet the plane of xy in N, and NM drawn
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parallel to Oy to meet Ox in M, it follows that the pro-

jection of OQ on OP is equal to the sum of the projections
of OM, MN and NQ on OP, that is, if 6 be the angle POQ,
and I, m, n; V

, m\ ri be the direction-cosines of OP and Q
respectively,

OQcoa0=OM.l + MIT.m + NQ.n
= 0Q.r.l+0Q.m'.m + 0Q.n'.n;

.*. cos 6 = IX + mm + nri.

13. To find the distance of a pointfrom the origin when
the co-ordinates are oblique.

The formulae of Arts. 4, 5, 6 and 8 were obtained on the

supposition of rectangular co-ordinates. Let Ox, Oy, Oz be

oblique axes, and P any point. Through P draw planes

parallel to the co-ordinate planes to meet the axes in M,
K, R ;

and join OP. The ratios of OM, ON and OR to OP

will be clearly the same whatever be the position of P, pro-
vided it lie in the same straight line through 0. These
ratios are called the direction-ratios of the line OP, and are

usually denoted by the letters I, m, n. We then get formulae

corresponding to those of Art. (5),

x = LOP, y = m.OP, z = n.OP.



INTRODUCTORY THEOREMS. 13

Again, let A,, ft, v be the angles between [Oy, Oz), ( Oz, Ox),

{Ox, Oy). Then we have, if PL be the edge of the paral-

lelepiped through P parallel to Oz,

OL2 = OM2 + ML* - 2 OM . ML cos OML
= x2 + y

2 + 2#y cos v.

And OP2 =0L* + PL 2 -20L.PL cos OXP.

But the projection of OL on 072 is equal to the sum of

the projections of OM and ML on OR, or by Art. 9,

OL cos BOL =0M cos
fju +ML cos\=- OLcos OLP;

and therefore

OP2 = x2 + y
2 + z

2 + 2yz cos \ + 22# cos
//, + 2#y cos i\

Combining this with the formulas x = I . OP, y =m . OP,
z = n. OP, we get

1 = I
2 + m2 + n2 + 2mn cos \ + 2nl cos p + 2lm cos v. . .(1),

the relation which holds between the direction-ratios of any
straight line.

In the same manner we could shew that the distance be-

tween two points ®
x,yx,zx ',

x
2 , y% ,

z
2
is

te
- x^ + (#i

-
y*Y + (*i

-
^)

2 + 2
(2/1
- #2) (*i

-
*J cos ^

+ * (V" *
a) fo

-
sj cos /a + 2 (^

- a?
a) (ff%

-
y2 )

cos 1/:

And as in (8) that the cosine of the angle between two lines

whose direction-ratios are I, m, n; V, m, ri is

IV +mm + nri + (mri + rn'n) cos \

+ (nl' + ril) cos
//, + (lm

f + Z'???) cos v. . .(2).

14. The volume of the parallelepiped of which OP is the

diagonal is evidently equal to the product of the. area of the

parallelogram OMLN into the perpendicular from J? on the

plane of xy. If 6 be the angle between OR and a line per-

pendicular to the plane of xy, this volume would equal

OM. ON sin vx OR cos 6

= xyz . sin v . cos 6.

But if l'
, rri, n be the direction-ratios of the line through

perpendicular to the plane of xy, since it is perpendicular
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to Ox and Oy whose direction-ratios are (1, 0, 0), (0, 1, 0)

respectively, we have, by formula (2) of the last Article,

X + m cos v + ri cos
/j,
=

(1),

X cos v + m' +n cosX = (2).

And since it makes an angle 6 with Oz whose direction-ratios

are (0, 0, 1) we have

ri + X cos fi + rri cos X — cos 6 (3).

From these, since by formula (1) of the last Article

X (V + rri cos v + ri cos /x) -\- rri (rri + ri cos X + X cos
7')

+ n (ri + X cos fi + m cos X)
= X

2 + m*+ ri
2

+ 2m ri cos X -1- 2riX cos /^ + 2ZW cos v = 1,

we have »' cos = 1
(4).

And from (1) and (2) we have

X _ m _ ri

COS
/Jb

— COS X COS V COS X — COS
fJb

cos j/ cos
2
v — 1

= cosfl

COS
2X+ COS

2

/L6 + cos
2

z/
— 2 COS X COS /X COS V— 1

^ ^ '*

whence we get

cos
2
6 sin

2 v=l— cos
2 X — cos

2

fi
— cos

2
v + 2 cos X cos

jjl
cos //.

And the volume of the parallelepiped becomes

xyz Vl
— cos

2 X — cos
2

/j,

— cos
2
1/+2 cos X . cos

/j,
. cos za

The volume of the tetrahedron cut off from the co-ordi-

nate axes by a plane through It, M, N}
is evidently one-sixth

of the above expression.

15. The position of a point in space is sometimes de-

termined by means of polar co-ordinates. Thus if Ox, Oy,
Oz be rectangular axes and P any point, the position of P is

clearly determined if we know OP the distance of P from
the origin ;

the angle POz which OP makes with a fixed

line the axis of z
;
and thirdly, the angle between the plane

through OP and Oz and some fixed plane through Oz, as the
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plane of zx. These are called the polar co-ordinates of P
and are usually denoted by the letters r, 0, </>. They are

connected with the rectangular co-ordinates of P referred to

the axes Ox, Oy, Oz by very simple relations which can

be obtained thus. Draw PN parallel to Oz to meet the

plane of xy in N, and NM parallel to Oy to meet Ox in M.
Join ON.

Then

x = OM = ON cos
<f>
— OP sin cos

cj>
= r sin cos

<f>,

y — MN= ON sin
<j>
= OPs'm sin

cj>
= r sin sin

<£,

z = PN=OP cos0 = r cos 0,

from which we can obtain the equivalent system

r
2 = a?

2 + y
2 + 2

2

,

tan# =
vV + #

2

tand)=^- :

-Sly r
a?

which give r, 0, (j>
in terms of x, y, z.
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EXAMPLES. CHAPTER I.

1. Find the distances between each pair of the points
whose co-ordinates are (1, 2, 3), (2, 3, 4), (3, 4, 5) respectively.

2. Prove that the triangle formed by joining the three

points whose co-ordinates are (1, 2, 3), (2, 3, 1), (3, 1, 2)

respectively is an equilateral triangle.

3. The direction-cosines of a straight line are propor-
tional to 1, 2, 3

;
find their values.

4. The direction-cosines of a straight line are propor-
tional to 2, 3 and 6

;
find their values. Find also the angle

between this line and that in question (3).

5. Find the angle between two straight lines whose
direction-cosines are proportional to 1, 2, 3 and (5, —4, 1)

respectively.

6. A, B, C are three points on the axes of co, y, z

respectively ;
if OA = a, OB = b, OG— c, find the co-ordi-

nates of the middle points of AB, BG and GA respectively.

7. In the last question find the co-ordinates of the
centre of gravity of the triangle ABG and the distances of

this point from A, B, C respectively.

8. Shew that if D, E be the middle points of BG, GA in

the last question, DE=^BC.
t

9. Find the distance between two points in terms of their

polar co-ordinates.

10. The co-ordinates of a point are (V3, 1, 2 V.3) ;
find

its polar co-ordinates.

7T 7T
11. The polar co-ordinates of a point are (4, -^ , -J;

find its rectangular co-ordinates.



CHAPTER II.

THE STRAIGHT LINE AND PLANE.

16. Before proceeding to find the equations of the

straight line and plane, we must examine the nature of the

locus represented by an equation of the form

*>,**) -0 (1).

Solving with respect to z we obtain

where z may have one or more values for each set of values

of x and y. Hence if we take any point in the plane of xy
whose co-ordinates are a, b we get one or more values of z,

that is, the straight line drawn through the point (a, b)

parallel to the axis of z will meet the locus in one or more
definite points. Hence the equation (1) must represent
a surface and not a solid figure.

Two equations
F

1 (x,y,z)
= 0,

F
2 {x,y,z)=0,

considered as simultaneous will be satisfied by the co-ordi-

nates of all the points of intersection of the two surfaces

F
1 (x,y,z)

=
0,

F
2 (x,y,z)

= 0,

that is, will represent a line.

The simplest line with which we are acquainted is the

straight line, and the simplest surface the plane. It would

perhaps be more logical to find the equation of the plane

first, and then, since any two planes intersect in a straight

A. g. 2
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line, the equations of two planes considered as simultaneous
would represent a straight line. The equations of a straight
line can however be obtained most simply without reference

to that of a plane, and we shall therefore invert the ap-

parently natural order.

17. To find the equations of a straight line.

Let I, m, n be the direction-cosines of the straight line,

a, /3, 7 the co-ordinates of some fixed point in it, and x, y, z

those of any other point in it. Also let r be the distance

between these points. Then by Art. (6) we have

x — a = lr, y
—

ft
= mr, z —<y = nr,

^ =^=£-2«>
(i).

I m n K '

These are the symmetrical equations of a straight line.

If A, B, G be any quantities which are proportional to I, m, n,

we can replace these equations by

%-z_y-0_z-y
A B G W>

but these fractions are no longer equal to r. Conversely any
equations of the form (2) represent a straight line whose
direction-cosines are proportional to A, B, G. The values of

these direction-cosines can be found
;
for supposing them to

be I, m, n}
we have
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y= mx
+p\ (3)(

z = nx + q )

which are the simplest forms of the equations of a straight

line, and useful in many cases. The student is however ad-

vised especially to attend to the forms (1) and (2).

The equations in (3) are those of planes drawn through
the line parallel to the axes of z and y respectively, the inter-

sections of which with the planes of xy and zx are the pro-

jections of the given line on those planes. (Art. 19.)

18. To find the equations of a straight line passing

through two given points.

Let a, /3, 7 ; a, /3', 7' be the co-ordinates of the two given

points.

By the last article the equations of any straight line

through (a, /3, 7) can be written in the form

x — a y — (S z— 7
I m n (!)•

But if the line also pass through the point (a, ft', 7') we
must have _^_

I m n

Dividing each member of (1) by the corresponding mem-
ber of (2), we get as the equations required

x— a _y —
/3 _ z— 7

a — a #
' —

fi 7'
— 7

*

19. To find the equation of a plane.

Let OD be drawn perpendicular on the plane from the

origin, and let the length of OD be p, and I, m, n its direc-

tion-cosines. Let P be any point in the plane. Then since

OD is perpendicular to the plane it is perpendicular to PD.
Hence OD is the projection of OP on OD.

Draw PM parallel to Oz to meet the plane of xy in M,
and MN parallel to Oy to meet Ox in N. Then the projec-
tion of OP on OD is the sum of the projections of 0N

y
NM

2—2
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and MP on OD. But these are Ix, my, nz, respectively, and
the projection of OP on OD is p. Hence

Ix -J- my + nz = p (1) ;

a relation which is satisfied by the co-ordinates of any point
in the plane, and therefore the equation of the plane.

If the plane is perpendicular to one of the co-ordinate

planes, as for instance that of xy, OD will lie in that plane,
and we have n = 0. Hence the equation in that case be-

comes

Ix+my—p (2),

and does not contain the variable z.

If the plane is perpendicular to two of the co-ordinate

,planes, as those of xy and zx, 1 = 1, ra = 0, n = 0, and the

equation becomes

«=P (3).

These results are geometrically evident.

20. To find the equation of the plane in terms of its in-

tercepts on the axes. m^
This can be deducedirom the equation (1) in the last

article, but may also be obtained independently thus.

Let the plane cut the axes in A, B, G; and let any plane

parallel to that of yz cut the co-ordinate planes of zx, xy in
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the lines RN, NQ, and the given plane in RQ. Let P be

any point in RQ and therefore any point in the plane. Then

by Euclid, xi. 16, the lines RN, NQ, QR are parallel to the

lines CO, OB and BO, respectively. Draw PM parallel to

RN to meet QN in M.

Let ON=x, NM =
y, MP=z, 0A = a, OB=b, OC = c.

Then by similar triangles

Also

Hence

PM MQ NM
RN~NQ~ NQ'
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For let a, /3, y ; a', /3', 7' be the co-ordinates of any two

points in the locus represented by (5). The equations of the

straight line joining these two points are

g-g y-ft «-7 /ftv

a' -a /3'-/3 7-7 w'

But since (a, ft, 7), (a', /3', 7') lie on (5) we have

Aa+Bj3 + Gy=J),
AJ + Bp+Gy' = D.

Subtracting, A (a
-

a') + B (j3
-

J3') + C(y-y')= 0.

And therefore by (6)

A {x -a) + B (y
-

/3) +€ (z-y) = 0,

where xy yf
z are the co-ordinates of any point in the line (6),

or Ax + By^Cz=Aa+Bl3+Cy = D.

Hence x, y, z; the co-ordinates of any point in the line

(6), satisfy the equation of the locus. That is, if any two

points be taken in the locus of (5) and be joined by a straight

line, this straight line lies wholly in that locus. Therefore

the surface represented by (5) is a plane.

An equation of the form

Ax + By = D
represents a plane perpendicular to the plane of xy, and an

equation of the form
Ax = D

represents a plane perpendicular to the axis of x, (Art. 19).
These are particular cases of (5), and may be obtained from
it by making first G to vanish, and secondly both B and G
to vanish.

22. To find the distance from the origin of the point
at which the plane (5) cuts the axis of x we must put y =

and z = 0. We thus obtain Ax = D or x = -j ;
or if this

distance be called a, -j
= a. Similarly -^ = b, -jt

= c
; and

substituting for A, B, G in (5) we get
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is the same as the angle between the perpendiculars on them
from the origin. But the direction-cosines of these perpen-
diculars are (Art. 23)

A B C

s/A' + B'+C2
'

Ja< + B2+U 2
'

JA2 +B2 +C2
'

A' B' C
JA'

2 + B'2+C 2
'

JA'* + B'* + Cr*'
JA'

2 + B'* + C,2>

and the cosine of the angle between the planes is therefore

equal to

AA' + BB'+CC
JA2 + B2 +C2 JA" + B'

2 +C' 2
'

The condition that the two planes should be at right

angles is therefore

AA' + BF + CC = 0.

The conditions that they should be parallel may be

obtained by equating ihe- cosine of the angle between them
to unity. It will be found that this leads to the con-

ditions

A_B C_
A' B'~ G"

These may be also obtained independently from the con-

sideration that the direcik>n-cosines of the perpendicular on
the one plane are proportional to A, B, (7, and those of

the perpendicular on the other to A', B\ & ;
and if the

planes be parallel, and consequently the perpendiculars from
the origin on them coincident, we must have A, B, C pro-

portional to A', B\ C'
y
or

A B C
A'~ B'~G"

25. The equation of a plane through a point (a, (3, <y)

parallel to the plane

Ax+By + Cs = D (1)

is easily seen to be

A(x ~ z) + B (y- j3) + C(z - y)
= 0,

or Aao+By + Cz = Atx + B/3 + Cy (2).
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For this equation does represent a plane parallel to (1) by
the last article, and it is satisfied by the values

x = a, y=& z = y.

Now the length of the perpendicular from the origin on

the plane (1) D

and the length of the perpendicular from the origin on the

plane (2) is similarly
Aol + B$+ Cy

The difference of these, or

(Aa + B/3+ Cy)~D
t/A' + B^+C*

'

is the length of the perpendicular from the point (a, /3, 7) on

the plane (1).

If we take the equation of the plane in the form

Ix + my 4 nz —p = 0,

the numerical value of the length of the perpendicular from

any point ix, y, z) on this plane is

+ {Ix + my + nz —p).

It is easily seen that the expression

lx+ my + nz —p -

is positive if the point (x, y, z) is on the opposite side of the

plane from the origin, and negative when the point (x, y> z)

is on the same side of the plane as the origin. If the ex-

pression be denoted by a, the length of the perpendicular
from any point on the plane

a=0
is + a or — a, according as the point and the origin are on

the same or opposite sides of the plane.

26. If we take four planes forming a tetrahedron, whose

equations are

a = 0,
=

0, 7 = 0, 3 = 0,
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all expressed in the form

Ix + my + nz —p = 0,

any other plane may be represented by the equation

la. + m/3 + ny + q& = 0.

For this represents some plane, being of the first degree in

x
f y, z, and since it contains three arbitrary constants, namely,

the ratios of three of the quantities I, m, n, q to the fourth,
it may be made to satisfy three conditions, and may therefore

be made to represent any plane.

This method of representing planes may be developed in

a similar manner to that used for straight lines in Plane Co-
ordinate Geometry (Todhunter's Conic Sections, Chap. IV.).

Thus the equations of the two planes bisecting the angles
between the planes a = 0, /3

=
0, will be

a-/3 = Oanda + /3
=

0,

the former bisecting that angle within which the origin lies,

and the latter the supplementary angle.

Any equation which is not homogeneous in a, /3, y, S, can

be rendered so by means of the relation

where V is the volume of the tetrahedron, and A, B, C, D
the areas of its faces. This equation merely states that the

algebraic sum of the four tetrahedra whose vertices are at the

point (a, ft, 7, B) is equal to the fundamental tetrahedron.

27. If a straight line

x-a. y-ft s-7 m
a~ b a [)

is parallel or perpendicular to a plane

A'x + B'y+Cz = D (2),

it is perpendicular or parallel respectively to the perpen-
dicular on that plane, whose direction-cosines are proportional
to A, F, C.

The condition that (1) may be parallel to (2) is therefore

AA' + BF + CC =
0,

Mf *
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and the conditions that (1) may be perpendicular to (2) are

A_B_G
A'~ B'~~C"

28. It is often requisite to know the length of the per-

pendicular on a given straight line from a given point.

Let the equations of the straight line be

x — ol y
— $ z — 7

a b a
and let a, j3\ y be the co-ordinates of the given point.

The equation of.any plane through (a', $', y) is

(1),

If this plane be perpendicular to (1) we have

\
fJb

v

A=B~~C'
and its equation becomes

A {x-a)+B (y-0) + C{z - y) = (3).

The point where this plane meets the line (1) is evidently
the foot of the perpendicular from (a, y6', 7') on (1).

Let then P be the point (a, £, 7), F the point (a , /3', 7),

and Q the foot of the perpendicular from P' on the line (1)
therefore PQ is the perpendicular from P on the plane (3),
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and we have PQ -^±$±*W ~® + °M^)
,

*JA* + £* + 0*

and PQ2 = PF*-PQ2

by the right-angled triangle P'QP;

.-. P'Q
2 . («- aT + 08

- py + (7
- 77

{A(a'-a)+B(ff-0)+C(y'-y)Y
A' + B'+G*

29. To ^mo! the conditions that a straight line may lie

wholly in a given plane.

be the equations of the line,

A'x + By + Ce = D (2)

the equation of the plane.

Put each of the fractions in (1) equal to k.

Therefore

x = ol + Ah,s y ~fi+.Bk, z = 7 + Ck,

and if the line (1) lies wholly in (2), these values of x, y, z
must satisfy (2) whatever be the value of k. Hence the

equation

Aa + B'/3 +C'y-D+ (AA + BE + CC) k = 0,

must be satisfied independently of fe? This gives us the two
conditions

A'a + B'/3 + C'y-J)~(},
AA' + BB'+ CC' = 0;

The first of these equations denotes that the point (a, /9, 7)
lies in the plane (2), and the second that the angle between
the line (1) and the perpendicular on the plane (2) is a

right angle. These are evidently necessary and sufficient

conditions.

30. To find the shortest distance between two straight
•lines whose equations are given.

We must first prove that the shortest line between two

given straight lines is perpendicular to each of them.



THE STRAIGHT LINE AND PLANE. 29

Let BC, AD be the two straight lines, and AB a line

perpendicular to each of them. Then AB is clearly shorter

than the line joining A with any other point of BC, and
also than the line joining B with any other point of AD.
Let P be any point in AD, and Q any point in BC. Then

PA and QB are both perpendicular to AB, and therefore AB
is the projection of PQ on AB, and is equal to the length
of PQ multiplied by the cosine of the angle betwe an them,
and is therefore less than PQ, since the cosine of a)^ angle
is less than unity. U * U t~** o ° +*> +**oM^& *f 7/

Let ABC
x—ol _ y—fi _ z — y

•(2),A' B'

be the equations of the two straight lines. Let the equation
of any plane through (1) be

P(x-a)+Q(y-l3) + B(z-ry)=0 (3).

Then we have, since (3) contains (1),

PA + QB + BC=0 (4).

And if we take the plane through (1) to be also parallel
to (2), we have

PA' + QB' + BC =
(5).

From (4) and (5) we have

P_ Q _ B
BO'-EC~ CA'-CA AE-A'B'
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The equation of a plane through (1) parallel to (2) is

therefore

(BC'-BC)(x-CL)+(CA'-GA)(y-/3)+(AB'-A'B){z-y)=0 (6).

*

Similarly the equation of a plane through (2) parallel to

(BC-B'G)(x-a.')+(CA'-GA)(y-/3')+(AB'-A'B) {z-y)=0 (7).

The length of the perpendicular from the origin on (6) is

(BC'-B'C)ol+( GA' - CA) + (AB - A'B) y

^(BCT^BGf + (GA'
- OAf + (AB - A'Bf

'
'

and the length of the perpendicular on (7) is

(BC -BG)a!+(CA - GA) ff + (AB - A'B) y'

*J(BG
- BGf + (GA'

- G'Af +^AB ~^W
The difference of these, or

(BG'-B'C) (a-q') + (GA'~ GA) Q3-ff) + (AB-A'B) (7-V)

J(BG'-BGf + (CA'-CAf + (AB-A'B)*
is^ clearly the perpendicular distance between the two given
lines.

The equations of the line AB can be obtained by finding
the equations of two planes, one of which contains the straight
line BG and is perpendicular to the plane (6), and the other

contains the line AD and is perpendicular to the same plane.
Each of these planes evidently contains the straight line AB,
and their equations considered as simultaneous determine the

line. The requisite conditions for the two planes will be
found in Articles 24 and 29.

31. To find the condition that two straight lines whose

equations are given may intersect.

Let the equations of the straight lines be

x-a _y-& _z-y
A B G {i) >

x-a! _y-/3' _z-y
A'

" B "
G"

" {Z) '
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Then if they intersect, a plane can be made to pass through
both of them. Let this plane be

Px + Qy + Rz = D.

Since this contains the line (1) we have, by Art. 29,

Poi + Q/3 + Ry = D (3),

PA + QB + RC=0 (4).

And since it contains the line (2) we have

Pa'+Qff + &/=D (5),

PA' + QI? + BC' = (6).

From (3) and (5) we have

{P(a-ot) + Q(P-l3)+R{y-y') = (7).

And eliminating P, Q, R from (4), (6) and (7) we get with
the usual notation of determinants,ABC

A' B a = 0,

a-a' P-p 7-7
or

(a-a'liBC'-B'Cj + i/S-^iCA'-C'AWv-y'XAB'-A'B^Q.
A result which might have been obtained from the last

article by the consideration that if two straight lines intersect

their shortest distance vanishes.

If the two straight lines be given by the equations

Ax + By+Cz = D\ (

A'x + Bf

y+C'z=D')
W '

Px + Qy + Rz = S\
(9),Fx + Q'y + R'z

the condition of intersection is obtained from the considera-

tion that these four equations must be able to be satisfied

by the same values of x, y, z. The condition for this is

A B G D
A' B' a k
P Q R 8
F Q E S'

= 0.
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EXAMPLES. CHAPTER II.

^. Find the equations! of a straight line passing through
the point (1, 2, 3) and whose direction-cosines are proportional
to V3, 1 and 2 V3.

^2. Find the equations of the straight line joining the
two points whose co-ordinates are (1, 2, 3) and (3, 2, 1) re-

spectively.

l/S. Find the equations of the sides of the triangle formed

by joining the points (1, 2, 3), (3, 2, 1), (2, 3, 1). Deduce the
values of the angles of the triangle.

4. Find the equation of the plane which passes through
the three points in the last question, and the length of the

perpendicular on it from the origin.

^o. Find the equations of a straight line which passes

through the point (1, 2, 3), and is perpendicular to the plane

x + 2y + Sz = 6.

6. Find the equations of a straight line which passes

through the point (1, 2, 3), and is perpendicular to the two

straight lines in questions (1) and (2).

7. Find the equation of a plane passing through two

given points and perpendicular to a given plane.

8. Find the equations of a straight line passing through
the point (1, 2, 3) and parallel to the plane in question (4)

and to the plane of xy.

9. Find the equation of a plane passing through the

point (2, 3, 4) and the straight line in question (1).

10. Find the equations of a straight line drawn from

the origin of co-ordinates at right angles to one given straight

line, and making a given angle with another. If the given

straight lines be at right angles to each other and the given
77°

angle be -
, shew that there are two solutions, and that the

two straight lines so found are at right angles to each other.
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11. Find the equation of a plane which passes through
a given point, and is perpendicular to each of two given

planes.

12. Shew that the equation of a plane in oblique co-

ordinates can be put in the form

x cos a + y cos /3 + z cos 7 = p,

where p is the length of the perpendicular on the plane from
the origin, and a, fiy 7 the angles which it makes with the

axes.

13. Shew that if a, /3, 7 be the angles between any
straight line and the axes of co-ordinates, I, m, n the direc-

tion-ratios of the line, and X, fi, v have the meanings given
in Art. 13,

cos a = I + m cos v + n cos
/j,,

cos /3
=m + n cos X + 1 cos v>

cos 7 = n + 1 cos fi + m cos X.

14. Deduce the conditions that in oblique co-ordinates

the straight line

x _ y _z
I m n

may be perpendicular to the plane

Ax + By + Cz=D.

y 15. Shew that the locus of a point which moves so as

always to be equidistant from two given points, is a plane
which bisects at right angles the straight line joining the two

points.

16. What loci are represented by each of the equations

/»=O;/(r) = O;/(0) = O;/(4>)=O;

where r, 6, (j>
are the usual polar co-ordinates ?

17. Interpret the equations:

ft
e =°-> w {J:?;

<
8
>

{?:«:
A. G. 3
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18. Find the polar equation of a plane.

19. Find the angle between the two lines given by

x+y+z=3 \

b :

*4Hrfa-i«J
(1) '

and *=^* W-

20. Three planes are at perpendicular distances p t , p2 , pH

from the origin; three planes are drawn through the lines of

intersection of any two perpendicular to the third; shew that

the last three planes will intersect in a straight line passing

through the origin if

px
cos A = p2

cos B —ps
cos C,

where A, B, (7. are the angles between the first three planes.

21. Shew that through two given points (a, b, c), (a, b', c
T

),

two planes may be drawn cutting off from the axes intercepts
whose sum is zero; and these two planes will be at right

angles to each other if

a — a b — b

22. Find the cosine of the angle between the two straight
lines represented by

+ y + z = 0,

3
tiXi

y
— z z — x x — y

23. Find the condition that the two straight lines whose
direction-cosines are given by the equations

Al +Bm+ Cn = 0,

may be at right angles to each other.

24. If the co-ordinates of four points be a—b, a — c,

a — d; b — c, b — d, b — a; c — d, c — a, c — b; d — a,d — b,

d—c, respectively, prove that the straight line joining the

middle points of any two opposite edges of the tetrahedron

formed by joining the points, will pass through the origin.
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25. Shew analytically that the least distance between
two straight lines is perpendicular to each of them.

26. The shortest distance between the lines

x-a. 2/-/3 z-y _ A x-a! _y-& _z-y
j

—
j

— ctLLU.
jft -,

——
7
—

,

intersects the latter in the point whose co-ordinates are

a + V cosec
2

(u +u cos 0),

and two similar expressions where 6 is the angle between the

lines and

w = I (a
-

a) + m (£'
-
£) + n (y -y),

u' = t (a
-

a) + m (J3
-

/3') + n' {y- y).

27y Prove that the straight lines joining the middle

points of opposite edges of a tetrahedron all meet in a point
and bisect one another.

28. If x, y be the lengths of two of the straight lines

joining the middle points of opposite edges of a tetrahedron,
co the angle between these lines, and a, a those edges of the

tetrahedron which are not met by either of the lines, prove
that

a?- a'*
COS ft) =

4txy

29. Find the shortest distance between the diagonal of

a cube and any edge which it does not meet.

30. Find the area of the triangle formed by joining the

three points where the plane

a b g

cuts the axes.

31. From the origin are drawn three equal straight lines

of length p, such that the inclinations of the first to the axes

of x, y, z respectively, are the same as those of the second to

y, z, x, and of the third to z, x, y. A plane is drawn perpen-
dicular to each of them through its extremity. Find the co-

3—2
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ordinates of the point of intersection of these three planes
and the equations of the line joining it with the origin.

32. A straight line is drawn from the origin to meet
the straight line

x—a_y—b_ z — c

I m n

at right angles. Shew that its equations are

x y z

a — It b — mt G — nt
y

, al 4- bm + en
where t = -n~

i

—
ri
—

*•

33. Shew that by a proper choice of axes the equations
of any two straight lines can be put in the forms

—
c, y = — mx.



CHAPTER III.

ON CERTAIN SURFACES OF THE SECOND ORDER.

32. We have shewn that the general equation of the

first degree represents a plane. Before proceeding to the

discussion of the general equation of the second degree, we
shall find the equations of certain special surfaces included in

the class represented by the equation of the second degree.

33. The Sphere.

A sphere is a surface every point of which is at a constant

distance from a fixed point called the centre. The constant

distance is called the radius.

Let a, b, c be the co-ordinates of the centre, r the radius,

#, y, z the co-ordinates of any point on the surface. Then
the distance of the point (x, y, z) from the centre is equal to

>J(x-a,y + (y-by+(z-cy.
But this distance must equal the radius r. Hence for all

points on the surface

J(x-ay+(y-by+(z-cy = r,

or (a>-a)*+(y-by+{z-cy = i* (1),

which is the equation required.

Conversely any equation of the form

x2 + f + z
2 + Ax + By + Cz +D =

represents a sphere. For it can be put into the form
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and, comparing this with (1), we see that it represents a

sphere whose centre is at a point (

—~
,

—
•=; ,

— —
j
and whose

radius is

jA* + B* + C* B

34. The Cone.

A cone is a surface generated by a straight line which al-

ways passes through a fixed point called the vertex, and through
a fixed curve.

"We shall only discuss in this and the next Article the

case when the fixed curve is a plane curve of the second

degree.

Take the plane of the curve as the plane of xy, and let

the equation of the curve be

Ax2 + Cf + JEx = (1),

to which form the equation of any conic section can be re-

duced
;
and let a, /3, y be the co-ordinates of the vertex.

The equations of any straight line through the vertex are

~t~~ ^m~-~^r W '

when this meets the plane of xy we have z = 0, and therefore

I m
x = a y, V = p 7.n" u n '

These values of x and y must satisfy the equation (1),

since the line always passes through some point in the Curve

represented by (1). Hence we have

or, multiplying by n2

,

A (na
-

ly)
2

+C(nj3- my)
2 + En (na

-
ly)

= 0.
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This is a relation which must be satisfied by I, m, n if the

straight line (2-)
meet the curve (1). But if (x, y, z) be any

point in (2) we have

I m n

x — a. y
—

ft z — y'

Consequently, if (%> y, z) be any point in any straight line

joining (a y ft 7) with some point of the curve (1), we must
have

+ E{z-y){<z(z-y)-y{x-CL)}=0;
or reducing,

A (a* -yx)
2 + G (j3z -yy)

2 +E [z -7) (a* -yx) =0...(3),

which is therefore the equation of the cone.

If we transfer the origin to the point (a, ft 7) we must

put
x = x' + a, y = y+P, z = z +y,

and the equation becomes

A («*'
- yx)

2 + G (j3z'
-

yy')
2 + Ez' («#'

-
yx')

=
0,

of which every term is of the second degree in x, y\ z. The

equation of a cone of the second degree whose vertex is at

the origin is therefore homogeneous. Conversely every homo-

geneous equation of the second degree represents a cone

whose vertex is at the origin. For let

Px2 + Qy
2 + Bz2

+P'yz + Q'zx + B'xy = Q (4),

be the equation. And let xv yv z
x
be the co-ordinates of any

point on the locus. Then the equations of the straight line

joining (x
t , yi}

z
t) with the origin are

x — y — z
(5).

But, since (xlt y1}
z

t)
is a point in (4),

P< + Qy' + %< + PVA + #Vi +KxMi = °>

and therefore by (5), if (x, y, z) be any point in (5),

IV + Qy* + Bz
2 + Fyz + Q'zx + B'xy = 0.
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Hence every point on the straight line joining the origin with

{xv yx ,z^ lies on the surface. Thus, the surface is generated

by a straight line which always passes through the origin, and
is therefore a cone.

35. The Cylinder.

A cylinder is a surface generated by a straight line which

always passes through a fixed curve and remains parallel to

itself.

Let the plane of the curve be taken as the plane of xy,
and let its equation be

Ax2

+Cy
2 + Ex=0 (1).

Also let ?, m, n be the direction-cosines of the straight
line to which the generating line always continues parallel.
Let a, @, be the co-ordinates of the point in the curve (1)

through which any generating line passes. The equations of

this line will therefore be

x-a_ y-p _z
I m ~n w '

Iz n mz
n' 9 n

But a, /3 are the co-ordinates of some point in (1), and
therefore we have by substitution

'(-*M»-=M~3-*
or A (nx

-
Iz)

2

+C(ny- mz)
2 + nE (nx

-
Iz)
=

(3),

which, being a relation satisfied by the co-ordinates of any
point in any one of the generating lines, is the equation of

the surface.

36. The Ellipsoid.

The ellipsoid is a surface generated by a variable ellipse
which always moves parallel to itself, and has its vertices on

two ellipses whose planes are perpendicular to each other and
to the plane of the moving ellipse, and ivhich have one axis

common.
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Let the planes of the fixed ellipses be taken as the planes
of zx and xy, and the direction of their common axis as the

axis of x. The plane of the moving ellipse will be parallel to

the plane of yz.

Let COA, A OB be the fixed ellipses, OA = a, OB = b,

OG= c. And let EPS be any position of the moving ellipse,

MB, MS its semi-axes, P any point in it.

Draw PN parallel to Oz to meet MS in JSf.

Let OM = x, MN = yy NP = z.

From the ellipse EPS,

** - f _-,
. BM 2

From the ellipse COA }

BM2

c
2

From the ellipse A OB,
MS2

+
MS" (1).

= 1-
.(2).

= 1
or

(»)
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Whence substituting in (1)



OF THE SECOND OEDER.

2

43

MQ2

from the hyperbola AQ, —J£- —1+ -3,

i/E2
s
2

from the hyperbola BR, —rr- = 1 + -3 ;

C

2 ' 22 ' 2 >

o 6 c

or
*

1,

the equation required.

38. The Hyperboloid of two Sheets.

This is generated as the last surface except that the

hyperbolas have a common transverse axis.

Take the direction of the common axis as axis of x, the

planes of the hyperbolas as the planes of zx, xy, and the

plane of yz parallel to that of the moving ellipse. Let
OA = a be the common transverse semi-axis, and OB = b,

OG—c, the two conjugate semi-axes. Let QPR be any
position of the moving ellipse, MQ, MR its semi-axes, and
P any point in it. Draw PN parallel to QM to meet
RMinN.
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Let OM=x, MN=y, NP=z.
z*

From the ellipse QPR, j^+ jj^
= h

from the hyperbola A Q,
MQ* (V

-3--1.

MR2
a?

from the hyperbola AR, —
^- =

— — 1

f .
z* x2

"
6
2 +

c
2 -?~*

or
a2

6
2

c
2 !

the equation required.

These three surfaces, the ellipsoid, the hyperboloid of one

sheet, and the hyperboloid of two sheets, are all included in

the equation

39. The Elliptic Paraboloid.

The elliptic paraboloid is generated by a parabola which
moves with its vertex in a fixed parabola, the planes of the two
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parabolas being at right angles, their axes parallel, and their

concavities turned in the same direction.

Take the plane of the fixed parabola as plane of xy, its

vertex as origin, and its axis as axis of x. Then the plane of

the moving parabola is parallel to that of zx.

Let PQ be any position of the moving parabola, P any

point in it, V its latus rectum, and let I be the latus rectum

of the fixed parabola. Draw PM parallel to Oz to meet the

axis of the moving parabola in if, and draw QH and MN
parallel to the axis of y.

Then from the parabola PQ,

PM2 = z
2 = l'.QM,

and from the parabola Q 0,

QH2

=y
2 = l.OH = lx-l.QM

h:

£ — iy

I V f
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40. The Hyperbolic Paraboloid.

This is generated in the same manner as the last sur-

face except that the concavities are turned in opposite
directions.

Let OQ be the fixed parabola in the plane of xy, PQ any
position of the moving parabola parallel to the plane of zx,

N H

P any point in it. Draw PM parallel to Oz, MN and QH
parallel to Oy. Let I and V be the latera recta of the two

parabolas OQ, PQ.

From the parabola PQ,
PM2 = z

2

=l'.QM,
from the parabola OQ,

QH2

~y*=l.OH
= L(x + QM)

lx + p
7 x

"*
The two paraboloids are both included in the equation

By*+ Cz* = x.
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We shall shew hereafter that any equation of the second

degree in x
} y, z can be reduced to that of one of the surfaces

whose equations we have considered in this chapter.

41. Asymptotic surfaces.

The equation of the hyperboloid of one sheet is

ifi-i-i a).

s+ ^T.

which can be put into the form

c w by \ ay + 6V.

_
(«? , yy ab

V«* bV 2{ay + b
2x2

)

h
'"'

where the remaining terms contain higher powers of

ay 4-ftV* in the denominator.

Hence, if we increase % or y, or both, indefinitely, the
value of z approaches indefinitely near to

z
And if we construct the surface

*-s+f »
(which by Art. 34 represents a cone whose vertex is the

or-igin)t,, the ordinate of this surface parallel to Oz, corre-

sponding to any given values of x and y, approaches indefi-

nitely near to equality with the ordinate of the hyperboloid
corresponding to the same values of x and

?/,
when these

values are increased indefinitely ;
that is, the cone (2) is

asymptotic to the hyperboloid.

Similarly the -cone whose equation is

a? ¥ c
2 '

is asymptotic to the surface
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42. The equation of the hyperbolic paraboloid is

t-f=* to

, 1 1
(-,

t'x

Vr(1+S + -)

Now if 2; be increased indefinitely and on be not very large,
the second and all the succeeding terms of the series on the

right will diminish indefinitely. Hence the equations

y = ±Vr w>

represent two planes which are asymptotic to the surface (1)
at points for which y and z are increased indefinitely while x
remains finite.

EXAMPLES. CHAPTER IIL

1. Find the polar equation of a sphere, any point not the
centre being the pole. Shew that if through a fixed point

any chord OPQ be drawn meeting a sphere in P and Q, the

rectangle OP . OQ is invariable.

2. From any point a straight line is drawn to meet a

given plane in P. In OP a point Q is taken so that the rect-

angle OP .OQ is equal to a given constant k\ Find the
locus of Q.

3. From any point a straight line is drawn to meet a

given sphere in P. In OP a point Q is taken so that the

rectangle OP . OQ is equal to a given constant Jc
2
. Find the

locus of Q.
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4. Shew that if through any point of a sphere a plane
be drawn perpendicular to the straight line joining the

centre with that point, the plane will only meet the sphere
in that one point.

5. A and B are two fixed points, P a point which moves
so that PA is to PB in a constant ratio. Find the locus

of P.

6. A and B are two fixed points, P a point which moves
so that the angle APB is a right angle. Find the locus

of P.

7. Find the surface generated by the line of intersection

of two planes which pass each through a fixed straight line

and are at right angles to each other.

8. Shew that all the points of intersection of two spheres
lie on a circle whose plane is perpendicular to the straight
line joining the centres of the spheres.

9. About three fixed points as centres, spheres are

described having variable radii which are always in the same
ratio to each other. Shew that they always intersect two
and two on three fixed spheres, and that these three spheres
have one circle common.

10. Prove that the planes of the three circles in which
three spheres intersect each other two and two, all intersect in

a straight line which is perpendicular to the plane containing
the centres of the three spheres.

11. Prove that the six planes of intersection of four

spheres two and two have one point common to them all.

12. Shew that if each of six equal spheres intersects all

the rest but one, so that the radii at the line of intersection

are inclined at 60°, the portion of space common to all will

have eight solid angles coinciding with those of a cube whose

side is -== of the diameter of the sphere.

13. A straight line moves so that three given points of it

lie respectively in three planes at right angles to eacli other.

A. G. 4)
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Shew that a fourth point in the straight line, whose distances

from the other three are respectively a, b, c, traces out an

ellipsoid.

14. The two straight lines

x ± a ±y z

cos a sin a

meet the axis of x in 0, 0\ and P, P' are points on the two
lines such that OP . O'P' = c

2
;
shew that the surface traced

out by the straight line PP is the hyperboloid

a2
c

2
cos

2
a c

2
sin

2
a

'

P, P' being taken on the same side of the plane xy.

15. Find the surface generated by a straight line which
revolves round a fixed straight line which it does not meet.

'

16. Find the surface which is the locus of the family of

curves defined by the equations

x2 + y
2+ z

2 = a2 and y
2 + z

2 — n2a2 - c
2
,

where a is a variable parameter and c an absolute constant;
and discuss its form for different values of n.

17. A perpendicular PJV is let fall from a point P in a

right cone on a plane through the vertex perpendicular to

the axis, and a point P' is taken in PN or PiV" produced
such that PN. P'N is constant. Find the locus of P'.



CHAPTEK IV.

TRANSFORMATION OF CO-ORDINATES.

43. Many of the equations which we shall have occasion

to employ will be much simplified by a proper choice of axes.

It is necessary therefore to investigate the relations which
hold between the co-ordinates of any point when referred to

two different sets of axes.

The simplest case is that in which the directions of the

two sets of axes are identical, the origin only being different.

Let x, y, z be the co-ordinates of P referred to the old set

of axes; x, y, z, the co-ordinates of the same point referred

to the new set. Let a, /3, 7 be the co-ordinates of the new

origin referred to the old axes. Then the distance of P from

the old plane of yz is equal to the distance of P from the

new plane of yz together with the distance between these

two planes, or

x = x + a.

Similarly y = y+j3,
z—z+<y.

These results will hold whether the axes be oblique or

rectangular.

44. To find the co-ordinates of a point P referred to one

set of rectangular axes, in terms of the co-ordinates of the

same point referred to another set of axes, also rectangular,
with the same origin.

Let Ox, Oy, Oz be the old axes
; Ox, Oy, Oz the new.

Let x, y, z be the co-ordinates of P referred to the old axes
;

4—2
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x, y',
z the co-ordinates of the same point referred to the

new axes. Let l
x ,
m

x ,
n

x
be the direction-cosines of Ox re-

ferred to Ox, Oy, 0z\ l
2 , ra

2 ,
n

%
those of Oy, and l

3i
m

3 ,
n

z

those of Oz.

Through P draw PM parallel to Oz' to meet the plane

Ox'y in M, and through M draw MN parallel to Oy to meet
Ox in JV. Then 0N= x, NM= y', MP m z\

Also the projection of OP on Ox is x. And the projec-
tions of ON, NM, MP on Ox are l

xx, l
2y ,

l
3z\ respectively!

since lv l
2 ,

l
3
are the cosines of the" angles between Ox and

ON, NM and MP, respectively. But the projection of OF
on any straight line is equal to the sum of the projections oi

ON, NM and MP on the same line. Hence

x=l
x
x +l2y' + l/.

Similarly by projecting on the lines Oy and Oz we get

y =mx
x + ray + m/,

z = n
x
x + n

2y' + n/.
The nine quantities l

x , mx ,
n

x ,
l
% ,

ra
2 ,
n

% ,
l
3 , m,

independent, but are connected by six relations.

l
x ,
m

x ,
n

x
are the direction-cosines of Ox, we have

n
3
are not

For since

Similarly Z
2

2 + m2

2 +^2

2

=l,

/
3

2 + ra
3

2 +< = l.
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Also the cosine of the angle between Oy' and Oz is equal
to y3 + m2

m
3 + ^2^3> but this angle being a right angle, its

cosine is equal to zero
;

Similarly lj,x +m37^1
+ n

a
n

x
= 0,

kh + mi
m

2 + n
i
n

2
= 0.

These relations may be replaced by the six equations

m^ + ra
2

2 + ra
3

2

,

= l, ^

m
1
w

1
+^2 +m3

n
3
=

0,

n
t
l
t
+n2

l
2 +nz

l
3
=

0,

^-t^m2 +^m3
=0 -

These equations can d^ algebraically deduced from the

previous set, but they can be more easily j)r(£vfed independ-

ently thus :

v ^ft* r
L, m,, n

t
are the cosines of the angles between Oaf and

Ox, Oy, Oz; Z
2 ,

ra
2 ,

n
2
those of the angles between Oy and

0#, Oy, Oz; and Z
3 ,
m

3 ,
w

3
of the angles between 0/ and Ox,

Oy, Oz. Consequently l
x ,

l
2 , l

3
are the cosines of the angles

between Ox and Ox', Oy', Oz
\ m,, ra

2 ,
m

3
those of the angles

between Oy and 0#', Oy', Oz; and 7^, n2,
n

3
those

,of
the angles

between Os and 0#', Oy ,
Oz. Considering Ox, Oy, Oz' as

axes, and remembering that Ox, Oy, Oz are mutually at right

angles, we obtain the above formulas at once.

45. The formulas given in the last Article are extremely
useful, and from their symmetrical character are easy to re-

member. They are liable to the objection that nine con-

stants are introduced of which six are superfluous, and other

formulas have been proposed which employ only three con-

stants.

Let Ox, Oy, Oz be the old axes
; Ox', Oy', Oz' the new

ones. Let the plane of xy cut the plane of xy in 0x
x ,
and

let a plane through Oz and Oz, which is therefore by Euclid,
XI. 18, perpendicular to the planes of xy and xy, cut these

planes in 0y1} 0y2 , respectively.
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Then since Oz is perpendicular to the plane of xy it is

perpendicular to 0x
x ,
and since Oz' is perpendicular to the

plane of xy', it also is perpendicular to 0x
x

. Hence 0x
x

is

perpendicular to the lines Oz and 0z\ and is therefore per-

pendicular to the plane in which they lie, and therefore

perpendicular to 0yx , 0y2
. Hence by Euclid, XI. Def. 6, the

angle yfiy2
is the angle between the planes of xy and x'y.

Let this angle be called 0, and let the angle between Ox
and 0x

x
be called

<f>,
and the angle between 0x

x
and Ox be

called
-x/r.

Let x, y, z be the co-ordinates of any point P referred to

the axes Ox, Oy, Oz. Then if we take 0x
x , 0yv and Oz as

axes, the ordinate z will be unaltered, and if xv yt
be the new

co-ordinates parallel to 0xv 0yx ,
we have by the ordinary

formulas of transformation in plane co-ordinates,

x b= x
t
cos

<f>

—
yx

sin
<£,

y = x
x
sin

cf>
+ yx

cos $.

Again, if we take 0xv 0y2 , Oz' as axes, the x
x
will be un-

altered, and if y2 ,
z be the new co-ordinates parallel to 0yi}

0z\ we have

! Vi
—

V* cos ^ ~ z
' sm ft

2 = y2
sin + 2' cos 0.
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- And lastly, taking Ox\ Oy, Oz' as axes, the z will be un-

altered, and we get

x
t

— x cos
"fy
—
y sin

i/r,

yt
— x sin ^ + y cos

\jr.

: And, making the substitutions for oc^y^y^ we get finally

x = x (cos <f>
cos

sfr
— sin

<f)
sin

yjr
cos 6)

—
;?/ (sin -^r

cos
(f>
+ cos cos ty sin

<£) 4- z sin
<£ sin 0,

y = x (sin $ cos
ijr -f cos (/>

sin
i|r

cos 6)

—
2/' (sin </>

sin
>/r
— cos <£ cos -vfr

cos 0)
— z sin cos

(£,

2 = #' sin ^ sin + y' cos ^ sin # + z cos 0.

These are called Euler's Formulae. They are useful in

discussing the nature of the sections of surfaces, but their

unsymmetrical character renders them difficult to remember.

46. If we wish to change both the origin and the direc-

tion of the axes we have only to combine the formulas of

Arts. 43 and 44. For changing the origin to a point whose
co-ordinates are a, /3, 7, and keeping the direction of the axes

unchanged, we get x = x
1
+ ol, y = y1

+ j3i
z = z

x -f 7. And
then changing the directions of the axes we get

x
x
m \x + Iff + l

zz\

or x m l
x
x + l

2y' + 1/ + or.

Similarly y =mxx+m2y+mz
z' + l3J

z — n
t
x + n

2y + njf + 7.

47. The formulae for transformation of co-ordinates in

I

Art. 44 hold also when the axes are oblique if l
lt
m

lt
n

x
denote

the direction-ratios of the new axis of x with respect to the

old axes. The six relations which hold between the nine
constants involved, which can be obtained from Art. 13, are

in general very cumbrous.

48. A proof exactly similar to that given in Todhunter's
Conic Sections, Art. 87, will shew that the degree of any ex-

pression involving x, y}
z is unaltered by transformation of

co-ordinates. ......
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49. The following proposition is useful in many ques-
tions of transformation of co-ordinates.

The condition that the expression

Ax2 + By
2 + Gz2

+2A'yz + 2B'zx+ 2G'xy (1)

should be the product of two linear expressions in x, y, z, is

ABC + 2A'BG' - AA'2 - BB' 2 - GC'2 = 0.

For if one of the factors be

Xx + fiy + vz (2),

it is evident, by considering the coefficients of x2
} y

2 and z
2
in

(1), that the other factor must beABC
x* +^ +r (ft

Multiplying (2) by (3) and equating the coefficients of yz,
zx and xy in the product, to those of the same terms in (1)

we have

fX V

V A

A /M

whence by multiplication we get

SA'FCr m 2ABG+ A (b
2 -

2 + G 2

£\
+ B

((J

2

^ +A 2

~)

+ cH+ Bi2
)

= 2ABG+A {4A'
2 - 2BG) +B(m2 - 2GA) + G (4(7'*

- 2AB),

or transposing and dividing by 4,

2A'B'G' + ABG - AA'2 - BB'2 - GG'2 = 0.

The expression 2A'B'G
f +ABG- AA'2 -BB'2 - GG'2

is

called the discriminant of the expression (1).



TKANSFOEMATION OF CO-ORDINATES. 57

50. It is evident that in any transformation of co-ordi-

nates from one set of axes to another, the origin being un-

changed, the expression x2 + y
2 + z2

will be transformed into

x
'2+ y'

2 + z
2

if k°tn se*s 9? axes ^ rectangular; or the ex-

pression

#* + y
2 + ^

2 + 2;*/2
cos \ + 2.z# cos ft + 2#y cos v

11 be transformed into

so
2 + y'

2 + s'
2 + 2yz cosV + 2/a/ cos ft + 2xy cos v

if the axes are oblique, the expressions in each case repre-

senting the square of the distance of the point whose co-

ordinates are considered, from the common origin.

Thus if the axes are rectangular, and the expression

Ax2 + Bif + Cz2

+2A'yz + 2B'zx+2C'xy (1)

become by transformation

Px'2 + Qy
2 + Rz 2 + 2P'y

f

z' + 2Q'zV + 2Rlx'y'.. . . (2) ;

we shall have also the expression

Ax2 + Btf+Cz
2 + 2A'yz + 2B

r

zx + 2G'xy
- \ {x

2 +f +z2

)
. . . (3),

where X is any constant, transformed into

;

P^+Qy
,2+Rz 2+2Pf

y
,

z
,

+2Q
f

z
,

x
r+2R,

x
,

y
,

~X(x
/2

+y
,2
+z

,i

)
. . . (4).

But if, for any values of \ the expression (3) be the pro-
duct of two linear expressions in x, y, z, the expression (4)

must, for the same values of \ be the product of the two

expressions in x\ y, z into which the former two would be
reduced by the transformation. Hence the discriminant of

(3) is identical with that of (4), or the two equations

(A-\){B-\){C-\)-A'
2

(A-\)-B'
2

(B-X)-C
,2

(C-X)
+ 2A'B'C' = (5),

(P-*)(Q-*)(R-\)-P*(P-\)-Qr(Q-\)-Br
t

(R-\)
+ 2P'Q'R' = (6),

are identical, and satisfied by the same values of \. Thus



(7).

58 TRANSFORMATION OF CO-ORDINATES.

the coefficients of the different powers of \ in these equations
nlust be equal, and we have

A + B+C =P+Q + R,

BC + CA + AB - A'2 - B2 - C*
= QR + RP+PQ-P'2

-Q'
2 -R'2

i

ABC + 2A'B'C - AA'2 - BB'2 - CC2

=PQR + ZP'Q'R' - PP'2 - QQ'
2 - BR'2

}

The expressions on the left-hand side of the equations

(7) are called invariants of the expression (1).

51. As a particular case of the foregoing, let us suppose
if possible, as it will be proved to be hereafter, that the ex-

pression (1) is transformed into an expression of the form

Px,2

+Qy'
2 + R2f\

The equation (6) then becomes

{P-X)(Q-\)(R-\)=0,
and the roots of this equation are P, Q, R, the coefficients of

a?'
2
, y'

2

, z'
2
in the transformed expression. These coefficients

are therefore the roots of the equation (5) with which (6) is

identical, namely,

(A-\)(B-\){C-\)-A'
2

{A-\)-B
2

{B-\)-C'
2

(C-\)
+ 2A'B'C'=0.

Another proof of this result will be given hereafter (Art. 86).

EXAMPLES. CHAPTER IV.

1. The co-ordinates of a point are (1, 2, 3). Find its co-

ordinates relative to new axes whose equations are x = y = z\
2x = —y — 2z; x = — z, y = 0.

-

2. Transform the expression xy+yz + zx to the new
axes in, the last question.
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3. Shew that x2 + y
2 + z

2 + yz + zx + xy can be reduced

by transformation of co-ordinates to the form

A(x'
2 + y'

2

)+Bz'\

4. From the formulas in Art. 44 prove that

5. Find the values of P, Q y
B when the expression

x* +y
2+ z

2 —
4#j/

— 4?^ — 4<zx

is transformed into the form Px' 2 + Q?/'
2 + Bz 2

.

6. Shew that if the expression

Ax2 + By
2 + Cz2 + 2A'yz + 2Bzx + 2C'xy

be transformed into Px'2 + Qy'
2 + Bz'2 where the first axes

are inclined at angles \, //,, v, and the new axes are

rectangular, P, Q, B will be the values of k given by the
cubic equation

•

{A - k){B -h)(0± k)- (A'
- k cos X)

2

(A
-

k)

:- (B'-kcosfi)
2

(B-k) - (<7 -k cos v)
2

{G- k)

+ 2 (-4'"
- k cos X) (£'

- k cos
/a) (0'

- k cos
j/)
= 0.

7. Prove that the equation

\lx+ Vy-f V2 =

represents a cone of revolution round the line

x = y = z
}

whose semi-vertical angle is cot"
1

J%,



CHAPTER V.

ON GENERATING LINES AND SECTIONS OF QUADRICS.

52. We have seen (Arts. 34, 35) that the cone and

cylinder admit of being generated by the motion of a

straight line. This is also the case with the hyperboloid
of one sheet and with the hyperbolic paraboloid, but not

with any other surfaces whose equations are of the second

degree in a, y, z.

Surfaces whose equations are of the second degree in

(x, y, z) are called Quadrics, or, following the analogy of the

terms ellipsoid, &c, Conicoids.

53. On the generating lines of the hyperboloid of one

sheet.

The equation of the hyperboloid of one sheet is

a2
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whatever be the value of
fi.

Each of these pairs represents a

straight line. There are thus two systems of straight lines

lying wholly on the surface. We shall first prove that all

the straight lines of one system intersect all the straight
lines of the other

;
and secondly, that no two lines of the

same system intersect one another.

54. The equations of any two straight lines of opposite

systems are

* JL* — -
a c fM(»
H-4-8
? + f=i/i_f)
a c /a\ b) -

(i),

(2).

And if the straight lines represented by these equations

meet, these four equations must be satisfied by the same
values of x, yt

z. But the four equations are all satisfied

if we take
x z (

X z- + -
a c JK (3).

(*).

and,/(l
+

f)
=
4-f)_

From which we obtain

b
fju + jj," a

fjt,
+ fjt,'' c~~

fjb + fju'

Hence any two generating lines of opposite systems meet
in a point.

Conversely, through any point of a hyperboloid of one
sheet two straight lines can be drawn lying wholly on the
surface. For if we assume the co-ordinates of the point to

be x, y, z\ from equations (3) we can determine
/j,

and //,
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and therefore the equations of the two generating lines

through the point in question.

55. Secondly, no two lines of the same. system intersect.

For let their equations be .

From the first and third we get by subtraction,

Gi-zO (i-f)=o;
therefore

//,
—

//, or y = b.

From the second and fourth we get by subtraction,

H)MH;
/. /*

=
//, or y = -I).

.Hence since we eannot have y equal both to b and — b we
must have

//,
=

/*', or the lines must coincide. Therefore no
two lines of the same system intersect. .

56. The equation of the Hyperbolic paraboloid is

which will be satisfied by all values of x, y, z, which satisfy
either of the pairs of equations

VI vr ^J
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y z an
or -£=—=*

rfl VZ' y

y z

Hence in this case also there are two systems of straight
lines lying wholly on the surface. A proof similar to that of

the last two articles -will shew that all the straight lines of

one system intersect all those of the other, and that no two

straight lines of the same system intersect one another.

It may be noticed that from the form of the second equa-
tion in each set, it follows that all the lines of each system
are parallel to a fixed plane.

: 57. We have shewn in the preceding articles that the

hyperboloid of one sheet and the hyperbolic paraboloid ad-

mit of rectilinear generators ;
we shall now shew that these

are the only surfaces among those which we have considered,

besides the cone and cylinder, with which this is the case.

Let us first take the equation

Ax2 + By
2 + Cz2 =l (1),

which includes the ellipsoid and the two hyperboloids ;
and

if possible let the line whose equations are

x-a._y-$ _z-y _
I

~
m

~
n Kh

lie wholly on the surface (1).

From (2),

x = a + lr, y=/3 + mr, z = y + nr;

and if the straight line (2) lies wholly on (1) the equation

A
(QL + lr)

2 + B(/3 + mr)
2 + C (y + nr)

2 = 1

must be satisfied for all values of r.

The conditions for this are

Az2 + B/3
2 + Cy

2 m 1 (3),

Alz + Bm/3+Cny=0 (4),

AP + Bm2 + Cn2 =0 (5).

The first of these equations merely expresses the condi-
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tion that the point (a, ft, 7) may lie on the surface. The
second and third are the conditions which l

f m, n must

satisfy. They will in general give two values for the ratios

I : m : n. It remains to examine whether these values are

real or not.

From (4) we have

On— ^ fa + Jfa
*.

7

Substituting in (5) we get

CAiy + CBmV + (Ah + Bm/3)* m 0,

which is a quadratic in — .

The roots of this quadratic will be possible or impossible

according as

(AC<f + A*a*) {BCy* + B*/3
2

)
< or > iWjg1

,

or as ABCy + A*BCa*<f + B*AC/3y < or > 0,

or as ABGy* (Az* + B^ + Cfy
2

) < or > 0,

or as ABC< or > 0. */

Hence that the generating lines may be real we must
have ABC a negative quantity ;

thus one or three of the

quantities A, B> G must be negative. If they are all three

negative, the surface is impossible, so that the only possible
surface is the hyperboloid of one sheet in which one is nega-
tive. In this case we may take

A--
ai

, JJ-¥ , 0--j,
and the equations which determine the directions of the

generating lines are

? m2
n*

a2+ b* W
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and for any point in either line we have

x—VL_y — ft^z
— y

I m n '

we must also have the equation

Aol {x
- a)+B/3(y-j3) + Cy (z-y) = 0,

satisfied for any point in either of the straight lines through
the point (a, /?, 7). But this is the equation of a plane :

it is therefore the equation of the plane containing the two

straight lines.

The equation can be written

Aax+B/3y + Cyz = A*2 + Bj3
2 + C7

* =
1,

and it may be noticed that whether the lines themselves be
real or not, this plane is a real plane. We shall prove here-

after that it is the tangent plane to the surface at any point
k A 7).

59. The equation of the projection of either line on the

plane of xy is

I m >

Or y = j X + @-jCt (1),

the values of
-j- being deduced from the quadratic equation

given in Art. 57.

A r
( Cy

2 + Aol
2

) + 2ABrf Im + Bm2

(Cy
2 + B,8

2

)
=

0,

or Af (1
-

Bj3
2

) + 2ABxj3 Im + Bm2

(1
-
Ao?) = ;

/. Al2 + Bm2 = AB (1/3
- ma)

2
.

Hence the equation (1) can be written

m /l 1

T x± Vb + a'A' Y'
which is a well-known form of the equation of tli3 tangent
to the curve

Ax2 + By
2 = l.

A. G. 5
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But this curve is the ellipse in which the given surface ia

cut by the plane of xy. Hence the projections of the gene-

rating lines on the plane of xy are tangents to the curve in

which the surface is cut by that plane.

The same is true for the planes of yz and zx.

60. The equations of the two paraboloids are both in-

cluded in the equation

By
2 +Cz2 = x

(1).

The conditions that a straight line

x — ol _y~ ft _z — 7
nl m <

2
)>

should lie wholly on the surface (1) are found by a process
similar to that of Art. 57 to be

Bj3*+Cy
2 = a

(3),

Bnf + Cn^O.... ....\(4),

2Bm{3 + 2Cny-l = ..
(5).

The first equation indicates that the point (a, fl, 7) lie:

on the surface (1). The second and third give the value;

of the ratios I : m : n. These values will be real if B and (

have opposite signs, so that the surface must be the hyper
bolic paraboloid.

61. The equation of the projection of one of the gene
rating lines on the plane of xy is •

m ( n m \

,2

But from (5)

(2Bmj3-l)
2 =4!G 2ny
= -4<BCyWfrom (4);

/. 4£m2

(£/3
2 + C7

2

)
- ±Blmp + f =

;

.'. 4>Em2
x - 4Blmj3 + l

2 = Q from
(3) ;

or fp~mx=-rb .
-

,

4iB m
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And the equation (6) becomes

m 11

a well-known form of the equation of the tangent to the

curve Bif=%.

Hence the projection of the generating line on the plane of

xy is a tangent to the curve in which that plane is cut by the

surface. A similar proof holds for the projection on the plane
of zx.

The equation of the projection on the plane of yz is

m n *

Pr y=n Z+@~n y W "

But Bm* + Cn* = 0; .\- = ±\/-„,
and the equation (7) becomes

2/
= ±/

V/-J.^ +
(^

+ /

V/-J.7).

Hence the projections of the generating lines on the

plane of yz are parallel to the two straight lines in which
the surface is cut by that plane.

62. The sections of the ellipsoid

5+? + ? =1 «
made by planes parallel to either of the co-ordinate planes
are ellipses. For taking the equation of a plane parallel to

that of xy to be
* = 7 (2),

we get for the points where this meets (1)

„2 '

1,2
X -2

5—2
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This is the equation of the projection of the curve of

section on the plane of xy. But since the cutting plane is

parallel to the plane of xy, the projection of the curve of

section on that plane is equal and similar to the curve itself.

Hence this curve is an ellipse. And it may be noticed that

x2
y

2

this ellipse is always similar to the ellipse -2+^ = 1, in

which the surface is cut by the plane of xy.

In a similar manner the sections by planes parallel to the

other co-ordinate planes may be shewn to be ellipses.

The sections of the hyperboloid of one sheet

2 2 2

a* T b
2 &

~
'

by planes parallel to that of xy are ellipses, and those by
planes parallel to the planes of yz or zx are hyperbolas.

The sections of the hyperboloid of two sheets

a2 V c
2
~

'

by planes parallel to those of zx or xy are hyperbolas, and

by planes parallel to that of yz are ellipses, which are im-

possible if the value of x for points in the cutting plane is

numerically less than a.

The sections of the two paraboloids

I
+

f
~ X>

i r
~ X}

by planes parallel to those of zx or xy are parabolas whose
latera recta are X and I respectively.

Their sections by planes parallel to that of yz are re-

spectively ellipses and hyperbolas, the former being impos-
sible when the cutting plane is to the left of the origin.

To find the nature of the sections of these surfaces by
planes not parallel to the co-ordinate planes it is no longer
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sufficient to find the equations of the projections of the curve

of section on the co-ordinate planes, since the projection will

not in general be similar to the curve itself. The simplest
method is to transform the co-ordinates so that the plane
of xy shall be parallel to the cutting plane, and then the

nature of the section will be given as above by its projection
on the plane of xy. For this transformation the formulae

of Art. 45 are very useful. We may in general avoid the

third substitution, and since we wish to find merely the nature

of the sections by planes parallel to that of xy, which we
shall prove in the next article to be always similar to the

section by the plane of xy itself, we may before substitu-

tion put z — 0. The required substitutions will then be
derived from the formula} in Art. 45 by putting yfr

= and
z = 0. We thus get

x — x cos 4>
—

y' cos 6 sin
<£,

y = x sin
(f> + y cos 6 cos

<£,

z = y sin 6.

If the equation of the cutting plane be given in the form

Ix + my + nz =p, we have tan
cf>

=
, and cos = n. The

above substitutions then become

mx' + Iny ran?/ — laf , .

x = — *
. y= ,

J
^--, z — y VZ'4-w 2

where we assume that Z
2 + ra

2+ n2 = 1.

63. We shall first prove the following general propo-
sition.

All sections of surfaces of the second order made by

'parallel planes are similar and similarly situated.

Take the plane of xy parallel to the system of cutting

planes. The equation of the surface can be put into the form

Ax2 + By
2 + Cz2 + 2A'yz + 2Bzx + 2 C'xy

+ 2A"x + 2B"y+2C"z+F=0 (1).

The curve in which this is cut by the plane

* = Y (2),
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is given by the equation

Ax2 + By
2 + 2 G'xy + (2B'y + 2A") X + (2A'y +2B

f

) y
+ Cy

2 + 2G"y+F=0.
And whatever be the value of 7 this curve is always

similar and similarly situated to the curve

Ax' + By
2 +2 G'xy + 2A!'x + 2B'y + F= 0,

in which the surface is cut by the plane of xy.

Hence in discussing the form of the sections of surfaces

by a series of planes, we need only consider planes through
the origin.

This method will not fail even if the curve of section by
a plane through the origin become impossible, since the

terms of the second degree in the equation of this curve are

the same as in the equations of the possible curves formed

by the intersection of parallel planes with the surface.

64. We shall consider first the equation

Aa?+By
2 +Cz2 = l

}

which includes the three central surfaces.

Making the substitutions suggested in Art. 62, we get as

the equation of the curve of section

x 2

(A cos
2

cj> +B sin
2

<f>)'+ 2xy (B — A) cos <£
sin

<£ cos 9

+ y'
2

{A cos
2
6 sin

2

$+B cos
2 6 cos

2

<f>
+ G sin

2

<9)
= 1.

And the section will therefore be an ellipse or hyperbola
according as "''.''

(5-^)
2
cos

20cos2

<£sin
2

<£

-{A cos
2

cj> + B sin
2

$) {A cos
2 6 sin

2

cf>
+B cos

2
cos

2

<£+ <7sin
2

0)

is negative or positive. This expression can be .reduced to

the form

- {BCsm
2

sin
2

<£ + CA sin
2
6 cos

2

<£ +AB cos
2

0}.

In the case of the ellipsoid A, B and G are all positive,
and this expression is therefore always negative. All sec-

tions of the ellipsoid are therefore ellipses. The investigation
of the nature of the sections in the other surfaces is long and
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I

the results uninteresting, except in the particular case in

which the section becomes a circle.

The conditions that this may be the case are, that the co-

efficient of xy should vanish and the coefficients of x'
2 and y

2

should be equal. We have therefore

(B— A) cos 6 sin
<£

cos $ = 0,

A cos
2

$ + B sin
2 = A cos

2
# sin

2

</>
+ B cos

2 6 cos
2

<£ 4- G sin
2
0.

From the first equation we must have either B=A, in

which case it is already obvious that all sections parallel 10

the plane of xy are circles, or

cos 6 . sin
<j)

. cos
<j>
= 0. :

If cos = 0, we have Q— 90°, and the second equation gives

A cos
2

cf>
+ B sin

2

<£
= G = G (cos

2

</>
+ sin

2

</>) ;

2 ,
L> — A

.-.tan <£
=
;#—-q>

and if the values of tan
<£ be real, we get circular sections by

two planes through the axis of z.

If we take cos
<f>
=

;
we have

(f>
= 90°, or the plane

passes through the axis of y, and the second condition gives

£ = ^lcos
2 <9+Osin2

0;

A-B
and therefore tan2 6 — B-G*
and if the values of tan 6 be real, we get circular sections by
planes through the axis of y.

Similarly from the condition sin
(f>
=

0, we get circular

sections by planes through the axis of x inclined to the

plane of xy at angles given by the equation

A-B
tan2 =

G-A
In all cases the circular sections are made by planes

passing through one of the axes. It only remains to examine
in what cases they are real.
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Only one of the three quantities

G-A A-B A-B
B-C B-C G-A

can be positive, consequently there are only two real central

circular sections, and they pass through the axis of z, y or x,

according as the first, second, or third of these expressions is

positive.

(1) In the ellipsoid A, B, G are all positive, and if we
take them in order of magnitude, the second of the above

expressions is positive. Consequently the central circular

sections of an ellipsoid are made by planes through the mean
axis.

(2) In the hyperboloid of one sheet G is negative, and
if we suppose A > B

f
it is again the second of the above ex-

pressions that is positive, and the circular section is made by
a plane through the greater real axis, since

A- 1 B- 1

and A being >B, a<b.

(3) In the hyperboloid of two sheets, B and G are

negative, and if we suppose B numerically greater than 0,
or b < c, B—G will be negative, the first of the above ex-

pressions is positive, and the circular section is made by a

j)lane through the greater impossible axis.

65. We have shewn in the last article that the only

planes which give circular sections of central quadrics are

certain planes through one of the axes. It is easy to shew
without transformation that these planes do give circular

sections.

Thus the equation of the ellipsoid can be written in the

form

¥ +X W bV
+ z

[c
2

b
2
)

*'

or

*2 +1 + ** +H^v^~lv^rj I- v
7

^"?^ *fjfcm m b\
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which shews that either of the planes

£VF^?--V^^F=0 (1),

x
or ~V62 -c2 + -Va2 -&2 =

(2),
c a K *

cuts the ellipsoid in the same points in which it cuts the

sphere

But every plane section of a sphere is a circle. Hence
the planes (1) and (2) and consequently by Art. 63 all planes

parallel to them cut the ellipsoid in circles.

The circular sections of the hyperboloids of one and two
sheets can be deduced in a similar manner.

66. The two paraboloids are included in the equation

By
2 +Gz2 =x.

Making the same substitutions as in Art. 64 we obtain

for the equation of the curve of intersection,

B sin
2

<f>x

2 + 2B sin
<f)

cos
(f>

cos 6 xy
+ y

2

(B cos
2 6 cos

2

cj>
+ G sin

2

6)
— x cos

<f>

— y cos 6 sin
<f>,

which will represent an ellipse, parabola, or hyperbola, ac-

cording as

B2
sin

2

<£ cos
2

<£ cos
2 - B sin

2

<£ (B cos
2

cos
2

<£ + sin
2

0)

is negative, zero, or positive. That is, according as

BG sin
2

<t>
sin

2 6

is positive, zero, or negative.

The sections of both paraboloids are therefore parabolas
if

<f>
or 6 vanish, that is, if the cutting plane pass through the

axis of x or coincide with the plane of xy. In all other

cases the sections of the elliptic paraboloid are ellipses, and

of the hyperbolic paraboloid, hyperbolas.
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The conditions that the section may be a circle are

B sin
<f>

cos <£ cos 6 = 0,

B sin
2

<£
= B cos

2

<£
cos

2 + C sin
2
0.

From the first equation

sin
<p>
—

0, cos $ = 0, or cos 6 = 0.

If sin
<£
=

0, the coefficient of a/
2

vanishes, and the section

reduces to a straight line or parabola.

If cos =
0, we have from the second equation B=C sin

2

6,

and if B and C are of the same sign and B <C this gives

two possible values of 0. If cos = 0, we get sin
2

^>
=

-^ ,
and

this gives two possible values of
(j>

if G < B, and B and O have
the same sign. Thus we get real circular sections of the

elliptic paraboloid passing through the axis of y or z, accord-

ing as B < or > C, that is as I > or < V.

If B and C have opposite signs, there are no real circular

sections.

67. The equation of the elliptic paraboloid can be put
into the form

a? + y* + z
2

a? y
2

y
2

l'

+
'l ~l'-

X>

of + tf + z*
,or

1
+

Thus each of the planes

y\/]-T +xs/i
=0

'

and therefore all planes parallel to them will cut the surface

in circles. These planes are real if I' > I If I' < I we can

shew similarly that the planes
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3ut the surface in circles.

68. We shall conclude this chapter with the investiga-
tion of the position and magnitude of the axes of the section

of an ellipsoid by a plane through its centre.

Let •§+F+7-1 •••••- (1)

be the equation of the ellipsoid,

Ix + my + nz = (2)

the equation of the cutting plane.

Let ? = y = * = r ...... (3)A ./A V

be the equations of any straight line in the plane (2), and let

r be the distance from the origin of the point where it meets
the ellipsoid ;

therefore

- V a2+ 6
2

c
2 K)i

and l\ + m/ju + nv = (5),

since the line (3) lies in the plane (2).

Also if r be the length of one of the semiaxes of the

section of (1) by (2), we must have r a maximum or mini-
mum by the variation of X, //,, v, which are connected by the

relation (5) and also by the relation

X2 + ^ +J,
2 =l (6).

Differentiating (4) we get when r is a maximum or mini-
mum

a — ^^ A^A* vdp

a b c
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And from (5) and (6) respectively,
= ld\ + md/ub + ndv,

= \d\ + pdfjL +" vdv.

Whence by indeterminate multipliers,

\+M+k'\ = (7),

j&+fm+Kl*~b (8),

V
+ kn+k'v = (9).

Multiplying (7) by X, (8) by fi, (9) by v, and adding, w<

get

and therefore

x(i,4)=-«,
,.*.«

a — f

7cmr*b
2

Jcnr*c

c — r

And therefore from (5),

which is a quadratic equation and gives two values of r
2
.

The product of these two values

~W + m2
&
2 + rcV'

and the area of the section is therefore

wabc
. (11 )
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The directions of the two axes may be obtained by elimi-

nating k and M from equations (7), (8) and (9) ;
we then get

a*

v
-o n v
c

or
ly.v (i

-
J)

+ mvXg
-
1)

+ r»V (J
-
p)

=
. . . (12),

which united with (5) and (6) gives two sets of values of

K ft, v.

The expression for the area of a section of an ellipsoid by
% plane not passing through the centre will be given in a
future article. (Art. 79.)

EXAMPLES. CHAPTER V.

1. Shew that the two generating lines of the surface

drawn through a point for which s = ±Ca/ —% ,

right angles to each other.

2. Shew that all the points on the surface

are at

°? + y" -- = i
a"

for which the generating lines are inclined at an angle a, lie

in one or other of two fixed planes.

3. Find the angle between the two generating lines of

the surface

at the point a, fi} y.

di+ b
f I = 1
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4. If the surface

(^
2 + 2/

2 + ^)
2 = aV + 6y + cV

be cut by a central circular section of the ellipsoid

a b g

the sum of the squares on any two perpendicular radii vec-

tores of the curve of section is constant.

5. The equation of a surface can be put into the form

a? + y
1 + z

2 + {loo + my + nz —p) (I'x +my + nz—p) =
0,

find the planes which give circular sections.

6. Prove that the sections of the surface.

xy + yz + zx m 1,

by planes parallel to x + y + z = 0, are circles.

7. If the two generators drawn from a point on the

surface

intersect the principal ellipse in points P, F at the ends of

conjugate diameters, then will

OP 2 + 6>P'
2 -a2 + 6

2 +2c2
.

8. Find the circular sections of the surface
, ;

a2 +r c
2 *

9. Prove that if the section of the surface

yz ,w^ al
*•?#.TV j

by the plane Za? + my + n^ = 0bea rectangular hyperbola,

n +^ + ^-o.
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10. The angle between the generating lines of

x2
y

2
z
2

- ., ,- .
, . N . _, X, + X„— + j- + - = 1 at the point (x, y, z) is cos r-

1——2
,

where \ and \ are the two roots of

a (a + X) J (6 + X) c (c + X)

11. Prove that the foci of all centric sections of the

surface

ax2

+by
2 + cz

2 = l

lie on the surface

z
3

+/+s
2

)(l-az
2-%2-c^

-
(ax

2+ by
2+ cz

2

) {(c
-

b)
2

y
2
z
2+ (a

- c)'W+(& - a)
2x2

y%
12. Find the equation of a right circular cylinder whose

axis is the line

m _ y _ ^

I m n?

and whose radius is a.

13. Find the condition that the cone

Ax2 + By
2 + Cz2 + tA'i/M + 2#z# + 2 G'xy m

may have three generating lines mutually at right angles.

14. Find the equation of the right cone which has a

centric circular section of the ellipsoid

c?
+

b*
+

(?

for its base and its altitude equal to b.

15. Find the equation of a right circular cone referred to

rectangular axes, having its vertex at the origin, and meeting-
each of the co-ordinate planes in one line only.

16. Find the equation of a right circular cone whose

axis is the line T = *- m -
, and semi-vertical angle a.

17. Find the equation of a right circular cone which
contains three given straight lines passing through the

origin.
.

'

.
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18. Find the locus of the points at which the two gene-

rating lines of the surface

Ax2 + By'+Cz
2 = l

are at right angles.

19. If a plane be drawn through the straight line

x _ y _z
I m n

y

the two other straight lines in which it cuts the cone

(B-C)yz (mz—ny)+ (G—A) zx (nx— Iz) + (A--B)xy (ly
—mx)=

will be at right angles to each other.

20. Shew that any point on the hyperboloid of one sheet

may be represented by the equations

x = a cos
<f>

sec 0,

y = b sin
<£

sec 0,

z—c tan
;

and find the equations of the generating lines through thai

point.

21. Shew that if the two generating lines at any point o]

the surface

rf*y »» i

be at right angles respectively to those of opposite system!

through a second point, the two points are either in a plant

through the axis of z or equally distant from the plane of xy

22. If two planes be drawn passing respectively througl
two generating lines of the same system at the extremities o

the major axis of the principal elliptic section of a hyperbolok
of one sheet and intersecting in any third generating line, th(

traces of these planes on either of two fixed planes will be a

right angles.

23. If a=0, /3=0, 7=0, 8=0 be the equations of the fou

faces of a tetrahedron expressed as in Art. 26, the equatioi
of a hyperboloid of one sheet passing through two oppositi

edsjes is

Pa/3 + Q7S + jRSa +^7 = 0.



CHAPTER VI.

DIAMETRAL PLANES.

69. It will be useful to commence the chapter with the

bllowing definitions.

1. The centre of a surface is a point such that all chords

)assing through it are bisected by it.

2. The locus of the middle points of a system of parallel
hords of a surface is called the diametral surface of the

ystem.

We shall shew that if the original surface be a quadric,
he diametral surface of any system of parallel chords is a
)lane. In this case we shall require the following definition.

3. A principal plane of a quadric is a plane perpen-
Ucular to the chords which it bisects.

We shall shew hereafter that such a plane can always be
ound.

70. If a quadric have a centre and be referred to a,

ystem of axes with the centre as origin, the equation will not

ontain any terms of the first degree.

For the general equation of the second degree is

ia?+ By*+Cz* + 2A'yz + 2B'zx + 2G'xy
+ 2A"x + 2B"y + 2G"z + F= (1).

Then if x^yv z
x
be the co-ordinates of any point on the

urface,
— x

1} —yv —z
x
must also satisfy the equation (1),

ince the origin is the centre. Hence we have

A. G. 6
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Ax?+ By?+Cz*+ %£ytzt+ 2B'z
1
x

1
+2C'x

1y1

+ 2A"x
t
+ 2B"yt

+ 2C'z
1+F= 0,

Ax*+ By?+Cz?+ 2A'y1
z

l
+2B'z

1
x

1+Wx$t

- 2A"x
x
- 2B"y- 2C\+F= 0.

Subtracting we obtain

^{A"x1
+ B"y^C'

f

z
1)^0 (2).

This equation must be satisfied for all values of x
t , ylt I

consistent with (1). But unless A" = 0, B" — 0, 0" = 0, equa-
tion (2) can only be satisfied by the co-ordinates of points

lying in the plane

A"x + B"y+C"z = 0.

Consequently we must have

i''=0, £"=0, C" = 0,

or the equation (1) does not involve the first powers oi

x, y, z.

Conversely, if the equation of a quadric do not involve

the first powers of x, y, z, the origin is the centre of the sur-

face. Moreover, if the equation can be put in the form

Ax* + By
2 +Cz2 =F (3),

the axes being rectangular, the co-ordinate planes will be

princijDal planes. For if x
t , yv z

x satisfy the equation (3), so

do — x
xy yv z

x
. Hence the plane of yz bisects all ordinates

parallel to the axis of x, and similarly for the other co-

ordinate planes.

Conversely, if each co-ordinate plane bisect all chords

parallel to the corresponding axis the equation must assume
the above form.

71. To find the locus of the middle points of a system of

parallel chords drawn in an ellipsoid.

Let the equation of the ellipsoid be

*+ £.!*
a2± b

2±
c

+ C + ^ = 1 (1),
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aid let the equations of any one of the system of parallel
chords be

x — aLy —ftz — y ...—r- =^—- = r =r (2),
I m n v

vhere I, m, n are direction-cosines.

To find the points where (2) meets (1) we have

(* + lr)
2

(/3 + mr)
2

(y + nr)
2

^,2 JL2 Ji
~~

•*•>

»/P m 2 n2
\ a fh m@ ny\ a

2 £2

7
2

_ A /ox

This equation gives two values of r which are the distances

rom the point (a, /?, 7) of the two points where the straight line

'2) cuts the ellipsoid. If (2, j3, 7) be the middle point of the

bhord these two values must be equal, and opposite in sign; the

3oefficient of r in the equation (3) must therefore vanish, or

lot m& wi a
a2 +

b
2 +

c
2_U *

6.lence (a, /3, 7) always lies in the plane

Ix^rrvy nz__

which is therefore the equation of the locus of the middle

points of the system of chords.

72. If
a?!, yv z

x
be the co-ordinates of the point in which

X 11 z
the line T = — = - meets the ellipsoid, that is, the co-ordi-

aates of the extremity of the diameter drawn parallel to the

system of parallel chords, we have

l m n'

and the equation (4) of the last article may be written

a2+ v + e
u (ij -

6—2



I

84 DIAMETRAL PLANES.

Also if #
2 , y2)

z
2
be the co-ordinates of any point in tli

curve in which this plane cuts the ellipsoid, we have

a2 +
6
2

c
2
~ U'

which shews that the point (xlf yv z
t )

lies in the plan
which bisects all chords parallel to the diameter throug

The planes which bisect chords parallel to the two diam*
ters through \x%i yv zj, (x2 , y2 ,

z
2)

will intersect in a straigl:
line. Let the co-ordinates of the point where this line meet
the ellipsoid be x

3 , y3>
z
3

. Then since (x3> y3 ,
z
3)

lies in tli

plane which bisects chords parallel to the diameter throug
K> v%*

z
i)
we nave

a' c

and since it lies in the plane which bisects chords parallel t

the diameter through (xv y2 ,
z
2),

we have

Vs , M* 4.
Zl* -

a b c

These last equations shew that (xv ylf #,), (x2 , y2 ,
z
2)
bot

lie in the plane which bisects all chords parallel to the diame
ter through (x3 , y3 ,

z
3).

Hence the three diameters have this property, that th

plane through any two of them bisects chords parallel to th

third.

The three diameters are called conjugate diameters.

73. The equation of the ellipsoid when referred to a syi
tern of three conjugate diameters as axes assumes theform

x2 f z
2

,

a/2 %'2i
e*

'

where a', b', c' are the lengths of the conjugate semi-diameters

For the equation must be of the second degree by Art. 4$

and since each co-ordinate plane bisects chords parallel t

the corresponding axis, by Art. 70 the equation must assum
the form

Ax* + By
2 + Cz2 = F.
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When the axis of x meets the surface we have

x = a'y y = 0,.z = 0,

F
A'

F
B'

c -
c

.

And the equation becomes

85

and therefore

Similarly b'
2

x2 r
v2

74. The co-ordinates of the extremities of three conju-

gate diameters are connected by the relations

a2 +
6
2 +

c
2

xl+.yLi. zl
a2 ^

b
2 ^

c
2

a2 +
b
2 +

c
2

1 =

1 = (1):

^3 , v*y* , v.
a2 "*"

6
2 *"

c
2
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Expanding, and rearranging the terms we get
2 ~ 2 « 2 \ 2

(2+2+2 A\(y2+y2 + y2- 1)\(2^+^- 1
c c

V 6c be be J \ ca ca ca) \ ab ab ab J 1

Whence w* + x* 4- #
3

2 = a2

1

y,
?+tf**V#| (3),

2/l
S

i
+ ^2 + 2/3^3

=
)^ +^2 + ^3=0 (4).

^1 + ^2 + ^3=° I

This transformation can be easily seen to be equivalent to

that effected in Art. 44, using
—* for l

x ,
and so on. And the

method of that article may be employed to deduce (3) and

(4) from (1) and (2).

Similar relations exist between the direction-cosines of

the normals to the three planes, each of which bisects chords

parallel to the intersection of the other two. For if l
x ,
m

x ,
n

x

be the direction-cosines of the normal to the plane bisecting
chords parallel to the line

we have

or

and similar relations for l
2 ,
m

2 , »,.
Whence equations (2)

easily give

a\l3
+ b

2m
2
m

3
+ c\n 3

= 0> (5),

a\lx
+ b*m

3
m

x + c\nx
= J

X
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jind obviously also

C +< +< = l (6).

£*+«/+<- 1 1

75. From equations (3) of the last article we obtain by
addition

a'
2 + &'

2 + c'
2 = a

2 + &
2 + c

2

(1),

Iwhere a', b ', c' are the lengths of the conjugate semi-diameters.

Let X, fi, v be the angles between (b'y c), (c\ a) and

(a, b') y respectively.

Then since the direction-cosines of a referred to the prin-
SC 1/ z

cipal axes of the ellipsoid are —,,—,, -\
,
and similarly for

those of b', c'}
we have, by Art. (8),

sin a —
£,2^,2

,

/. bV sin
2 X - (yA -^2 )

2 + (^3
-^2)

2 + foy8
-^2)

2
.

But we have
oc

i.°^ +hh + ?i5 ==0
a a o o c c

a a b b c c

a .&
!

&
a 6 c

yfi-ytP* ¥3-¥2 %^Mi
6c ca a&

= / a2 +
6
2 +

c
2

V U2 S2
"

cVU2 +
6
2 +

c
2
; U2

&
2

c
2
J

by equations (1) and (2) of the last article.
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Hence &'V2
sin

2 \ m Vc* -^ + cV |^ + a2
b
2% .

a b c

Similarly c'W sin
2

p = bV^+ cV^ + a2
b
2

^ ,

a'
2
6'

2
sin

2
1/ = 6V^ + cW^ + a2

6
2% .

a2
6
2

c
2

Adding, we get

(b'c sin X)
2 + (cV sin /*)

2 + {ijfV sin z/)

2= 6V + cV + a2
6
2

. . . (2).

Again, ifp be the perpendicular from the point (a?8> ys> zl

on the plane which contains a and &', whose equation is

ft2

+
6
2 i"

C
2 v,

we have p

i , 2/3 , 5l
a2 +

6
s
"
*"

c
2

/fe
2

+ ^-+^

^ Venus'
Hence squaring and multiplying by the value previously

obtained for a'
2
6'

2
sin

2
v we get

^V 2
6
,2
sin

2
i/ = a26V (3).

But aV sin v is the area of the parallelogram whose edges
are a' and &', and pa'b' sin v is the volume of the parallel-

epiped whose base is this parallelogram and whose altitude is

p, that is, the volume of the parallelepiped whose three edges
are a, b', c.

By Art. 14 this volume can be expressed in the form

ab'c v 1 — cos
2 X — cos

2

fj,
— cos

2
v + 2 cos X cos ja cos v.

Hence this expression is equal to abc.

76. Another method of obtaining these relations is

afforded by the consideration that the expression
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is transformed by taking three conjugate diameters as axes to

the expression

x2
y
2

z2

-7g + jt2 +
—

2 +k {x
2 + y

2 + z2 + 2yz cos X + 2zx cos fi+2xy cos v).
d c

Consequently, if for any value of k the first expression split

up into two linear factors, the second expression will do so

likewise for the same value of k.

By Art. 49 the requisite values of h for the two expres-
sions are given respectively by the equations

(*4)(*+J)(*-4)-o,
and

p+*X*+*).(*+*)
- F COS

2 X [h + —A - F COS
2

fl(k + prA
- k

2
cos

2 v(k + —J

+ 2&8
cos X cos yu cos */ = 0,

which when cleared of fractions and expanded become re-

spectively,

a'&W + {a
2
b
2 + b

2
c
2 + cV) h2 + {a

2 + b
2 + c

2

)
& + 1 - 0,

and

a z
b'

2
c'

2

(1
— cos

2 X — cos
2

//,

— cos
2
v + 2 cos X cos

//,
cos v) k

3

+ (&'V2
sin

2 X + c'V2
sin

2

^ + a'
2
b'

2
sin

2

*) F
+ {a

2 + b'
2 + c'

2

)k + l = 0.

And since these equations are identical we get the rela-

tions (1), (2) and (3).

They can also be obtained geometrically by a series of

transformations; or by finding the values of the maximum
radius vector of the surface when referred to three conjugate
diameters as axes. The result will be a cubic equation in r2

,

and the three values of r
2

will be a2
,

b
2
, c

2

;
whence the

values of

aW, a2
6
2+cV + 6

2
c
2
,
a2 + b

2 + c
2

are known in terms of a', b\ c.
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The formulae obtained in Arts. 71—76 hold for the other

central surfaces if the proper changes be made in the signa
of a2

, b
2 and c

2
.

77. The equation of the plane which bisects all chords

of the ellipsoid parallel to the line

* = y = z-
.....a)

*i fx *%

^
«^+y.J»+*.J=q (2).

Conversely the chords which are bisected by the plane

Ix + my + nz = (3)

are parallel to the line

a2
l Vm c

2n
* W

The line (4) is said to be conjugate to the plane (3).

By Art. 72 every system of chords parallel to any line

which lies in the plane (3) is bisected by some plane passing

through (4).

Hence the plane passing through the origin which bisects

any system of parallel chords of the section of the ellipsoid

by a plane
Ix + my +nz —p = (5)

parallel to (3), must contain the straight line (4). Whence
it easily follows that the point where (4) meets (5) is the

centre of the section of the ellipsoid made by (5). The co-

ordinates of this centre are therefore given by

x _ y z Ix -f my + nz _ p . x

aH ~Vm~~fri ~ar + b*m2 + c*n
2
~
a2T2T^2m2 + c

2n2"" ( h

78. The co-ordinates of the centre of the section of the

ellipsoid
x2 v2

z
2

a°
+ V + ?

=1 (1)

by the plane lx + my + nz = p (2)

can also be obtained in the following manner.
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Let a, /3, 7 be the co-ordinates required, and let

a? —ay— B z — 7 ,-;--—m*—£» l= r (3)

be the equations of any straight line drawn in the plane (2)
to meet the ellipsoid, r being the length of the radius vector.

Then if w, y, z be the co-ordinates of the point where (3)
meets (1), we have from (3)

x = a + \r, 2/
=

/3 + fir, z = y+vr,

and therefore from (1) by substitution

LV' + ^+Sr^ +^ +^ + ^ +^ + SLl-

But if a, /?, 7 be the co-ordinates of the centre of the

section of (1) by (2), the two values of r given by (4) must

be equal in magnitude and of opposite sign for all straight
lines lying in (1); that is, we must have

tf
+
lf

+
tf- (5)

for all values of \, fi, v consistent with the equation

Xl + fjum + vn = (6),

which is the condition that (3) may lie in (2).

Hence the equations (5) and (6) must be identical, or we
have

a m j$_ = ^y
la

2 mb2 n& '

and as in the last article each of these fractions

P
aH2 + b

2m2 + c
2n2 '

79. The equation (4) of the last article, when the values

of a, /3, 7 are substituted in it, becomes

Comparing this with equation (4) of Art. 68 we see that
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if
r, be the central radius vector which is parallel to r, we

have

Consequently, since the areas of similar figures are pro-

portional to the squares of any corresponding lines in the!

figures, if A be the area of the section of (1) by (2), and A
x

'-
'

the area of the parallel central section,

A=A fl p"
1

wabc L p* \~
7a¥+ bV+cV \

"
a'F + bW + cVj

'

80. The result of the last article can also be obtained in

the following manner.

Let a, /3, 7 be the co-ordinates of the centre of the sec-

tion. Then the equation

represents an ellipsoid whose centre is at (a, /3, 7), and whose
semi-axes are ha, kb, Jcc.

At the points where this cuts the given ellipsoid we have

by subtraction

2ax 2/3y 2yz _o^ S2

<f

a2 +
b
2 +

c
2 ~a2 +

b
2+

c
2 + *

:

Or, putting for a, ft, 7 their values from equation (6) of

Art. 77,

a2
l
2 + b

2m2 + c
2n2

( p
2

)
2 (Ix + my + nz)

=
\ %n

> A t , vj + 1 - #> ,

r '

p [a
2
l
2 + b

2m2 + c
2n

j

and if this equation be identical with

Ix + my + nz =p (2),

the sections of the two ellipsoids by this latter plane will

coincide.
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The condition for this is

l-&2 = f
aJV + bW + tfn*

'. &' = 1- K
a*?+b*m*+<?n*'

But the area of the section of (1) by the plane (2) which

passes through its centre, by Art. (68)

7rk
3
abc irabck

2

irabc L p
2

{i
£ I

*Jtfl* + bW
which is therefore the area required.

81. It can be shewn by an investigation similar to that

in Art. 71, that the locus of the middle points of a system
of parallel chords of the surface

whose direction-cosines are 7, m, n, is

2Bmy + 2Cnz = l

Also the equation of the surface, when two diametral

planes and a plane through the point where their line of

intersection cuts the surface, parallel to the two systems of

chords bisected by them, are taken as planes of zx, xy and yz

respectively, will assume the form

where B' and C have the same or opposite signs according
as B and have.

We shall however at once proceed to the more general

problem.

82. To find the locus of the middle points of a system of

'parallel chords in any quadric.

Let the equation of the surface be

Ax2 +%2 + Cz* + 2A f

yz + 2B'zx + 2 Cxy
+ 2A"x+2B"y + 2C"z +F=0 (1),

which we will denote by F (x, y, z)
= 0.
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And let —=— = -—- = L—r (2),
I m n

be the equations of any one of the system of parallel chords.

To find the points where (2) meets (1) we must substitute

a+lr, /3 + mr, y + nr for x, y}
z in (1). We thus get

F (a + lr, /3 + mr, y + nr)
=

0,

where j, -^, -r- are the partial differential coefficients

of F (a, ft 7) with respect to a, ft 7 respectively and P is

some function of I, m, n.

The equation (3) gives two values of r, which are the

distances from (a, ft 7) of the two points where the line (2)

cuts the surface (1). If (a, ft 7) be the middle point of the

chord these two values must be equal and opposite in sign,
and the coefficient of r in the above quadratic must vanish

;

7 dF^ dF ^ dF n

i- a 1 f dFdF A dF ,

or writing out the values of -7- , -7-5
and -=-

,
and rearrang-

ing,

a (Al + Cm + B'n) +(3((7l+Bm + An) + 7 (B'l + A'm + Cn)

+ A"l + B"m + C"n = 0,

which shews that the locus required is a plane.

83. The diametral plane will not in general be perpen-
dicular to the chords which it bisects. There are however
certain directions of the chords for which this is the case.

Let us suppose I, m, n to be the direction-cosines of any chord

of the system.

The equation of the diametral plane is therefore by the

last article,

x (Al + Cm + Bn)+y (CI + Bm + An) + z (B'l + A'm + Cn)

+A"l+B"m + C"n = 0.
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If this plane be perpendicular to the system of chords we

jmust have, by Art. 23,

Al+C'm + Bn C'l + Bm + A'n B'l + A'm + Cn
I m

Let each of these fractions be put equal to some quantity
We have then

(A-s)l + Cm + B'n = 0'

C'l+(B-s)m + A'n = O
l

Bl + A'm+(C-s)n = 0\

Whence eliminating I, m, n, we get

(A-s), C, B
C", (B-s), A'

B\ A', (C-s)

(1).

=
0,

or (A-s)(B-s)(C-s)-A'
2

(A-s)-B"(B-s)-C
2

(C-s)
+ 2A'BC' = (2).

This cubic equation will certainly give one real value of s,

and the corresponding values of I, m, n are known from any
two of the three equations (1). From the second and third

we get
m n

A'B-C'{C-s)
"
A TC^B (B-s)

'

I or m [A'C'-B (B-s)} = n [A'B
- C (C-s)}

= l{BC-A'(A-s)} (3),

by symmetry.

And when the value of s is known, equations (3) give the

corresponding values of Z, m, n.

In Todhunter's Theory of Equations, Art. 176, it is shewn
that all three roots of the cubic are real.

The equation (2) is frequently called the discriminating
cubic of the quadric (1).
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EXAMPLES. CHAPTER VI.

1. UA V
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8. Find the locus of the centres of sections of an ellipsoid
made by planes at a constant distance from the origin.

9. If A, B, C be the areas of any three conjugate dia-

metral sections of an ellipsoid ; X, Y, Z those of the sections

pnade by planes respectively parallel to them and intersecting
in a point on the surface, prove that

A + B + C 2"

10. Any generating line of the cone

Pa?+ Qy* + Bz2 =

:>eing taken, a plane is drawn diametral to it with respect to

the surface

Ax2 + By* + Cz2 = l.

Shew that the principal axes of the sections of the latter

surface by such planes all lie on the surface

™{(A-B)f + (A-C)zJ+ 9y*
{{B-C)z>+(B-A)xr

~Rz2

+
™
J-{{C-A)x' + (C-B)yJ=Q.

11. Find the co-ordinates of the centre of the section of
the surface

By* + Cz* = x

made by the plane lx + my + nz — p.

Find the locus of the centres of all sections made by
planes passing through a fixed point.

12. If in question 3, the point L remain fixed, shew
that the perpendicular from the origin on the plane LMN
describes the cone

aV + by + cV = 3 (xxi + yyi + zz
x)\

13. If the plane lx + my + nz =p cut the surface

a b* c

in a parabola, prove that

a
2
l
2 + bW-c2n2 =0.

A. G. 7



CHAPTER VII.

THE GENERAL EQUATION OF THE SECOND DEGREE.

84. The general equation of the second degree can be

written

Ax' + By" + Cz* + 2A'yz + 2B'zx + 2G'xy

+ 2A"x + 2B"y + 2C"z +F=0 (1),

which we will denote by F (a?, y, z)
= 0.

The object of the present chapter is to examine the

nature of the different surfaces represented by (1), and the

conditions that it may represent any particular kind of sur-

face.

We shall first examine whether the locus represented by
(1) has a centre.

If it has a centre and this point be taken for origin we
know, by Art. (70), that the terms of the first degree must

disappear.

Assume a, ft, y as the co-ordinates of the centre. The

equation when the origin is transferred to this point is ob-

tained by substituting in (1) x + a, y 4- ft, z +y for x, y, z,

respectively (Art. 43), and is therefore

F(x+a, y' + ft, z+y)=0,
which can be written

-, .
t ,dF ,dF ,dF
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the remaining terms being of the second order in x\ y\ /,
,dF dF dF, . .. . •

A . coand -j- , -v^ ,
-T- having the same meaning as in Art. 82.

If the coefficients of x', y', z' vanish, we have

dx
Uj

d/3
'

dy
U

'

or writing them out at length,

C'a + Bj3 + A'y + B" = ol (2).

0m+A'fi+Oy±.Cr.-o\
These equations determine a, ft 7. We get from them

A'
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85. We see from the last article that it is not always
possible to get rid of the teims involving x, y, z. We shall

now shew that it is always possible to simplify the equation

by transformation so as to get rid of the terms involving yz,
zx and xy.

By Art. 83 we know that there is at least one system.of

parallel chords which is perpendicular to its diametral plane.

Let a straight line parallel to these chords be taken as the

axis of z and let the transformed equation be

iV + Qif + Rz* + 2P'yz + 2 Q'zx + 2R'xy
+ 2P"x + 2Q"y + 2R"z + F=0.

The direction-cosines, of the chords which are perpen-
dicular to their diametral plane are given by the equations

Pl+R'm+ Qn =
sl,

R'l + Qm + P'n — sm,

Q'l + P'm + Rn — sn.

But since these chords are parallel to the axis of z, these

equations must be satisfied by

1=0, 7n= 0, n — 1.

Whence we get Q =
0, P' =

;
and the equation of the

surface is

px* + Qtf + Ez
2 + 2Rxy + 2P"x + 2Q"y + 2E'z +F=0.

. Turning the axes of x and y in their own plane through
an angle 6 given by the equation

2R!
tan 26= p

—
tj (Todhunter's Conic Sections, Art. 271),P —
Q,

the term involving xy disappears, and the equation assumes

the form

Pj? + Q }f + fa? + 2P"x + 2 Q'y + 2R"z + F=0.

The equations which determine the directions of the

principal diametral planes are now satisfied by 1 = 1, m = Q,

n= 0, or by 1=0, m= l, n= 0. Consequently each of the axes

of x and y as well as that of z is parallel to one of the three

lines determined by equations (1) of Art. 83.
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We thus have an independent proof lhat fhes4 'tlire'e

directions are all real and at right angles to each other.

86. We have now shewn that by a proper choice of

axes the terms involving yz, zx and xy can be made to

disappear. It remains to explain how the coefficients of

the different terms in the resulting equation can be de-

termined.

Let
Zj,
m

x ,
n

x \
l
2 ,
m

% ,
n

2 ;
Z
3 ,
m

3 ,
n

3
be the direction-

cosines of the new axes. These values all satisfy the equa-
tions (1) of Art. 83. Let s

x ,
s
2 ,

s
3
be the corresponding

values of s.

By Art. 44 the required transformation will be effected

by substituting for x, y, z the expressions

l
x
x + l

2y + I/, m
x
x + ra.y + m3z, n

x
x + n

%y + n
3z,

respectively. If therefore the original equation be

Ax* + Bif + Cz* + 2A'yz + 2B'zx + 2G'xy

+ 2A"x + 2B"y + 2C"z + F = 0,

the coefficient of x 2
in the result will be

Al* + Bm* + fa? + 2A'm
x
n

x
+ 2B\ll

+ 2G\m x
.

But from Art. 83 we have

Al
x
+ C'm

x
+ B'n

x
=s

x
l
xi

G'l
x
+ Bm

l
+ A'n

x
=
^m,,

B'l
x
+ A'm

l
+ Ga

x
= s

x
n

x
.

Multiplying these equations by l
%%
m

li
n

x , respectively,
and adding, we get

All + Bmi + Cn
i
+ 24'*»ini

+ 2B\lx + 2 G'l
x
m

x
= s

x
.

Hence P the coefficient of x* is s
x

. Similarly Q=s2 ,

R = gp or P, Q, R are the three roots of the discriminating
cubic.

It follows from this that the coefficients of the discrimi-

nating cubic remain unaltered in value however the axes

may be turned about the origin.
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The result's^ tMs article have been already obtained by
a different method in Art. 51.

87. It is easy to verify that the coefficients of yz, z'x

and x'y disappear; since l
lt m,, n

x ;
Z
2 ,

ra
2 ,
n

2 \
l
3 ,
m

3 ,
n

3
are

the direction-cosines of lines such that any one is parallel to

each of the planes which bisect chords parallel to either

of the others, and thus l
lt
m

lt
n
lt

l
2 , m2 ,

r?
2 , satisfy the

relation

Al
t
l
t + Bmx

m
2 + Cnji2 + A' (mt

n
% + mjij

+ B' (4& + nJJ + C (Zx
m

2 + \mx)
=

0,

and the expression on the left-hand side of this equation is

the coefficient of x^ in the transformed equation.

The coefficients of x, y and z in the transformed equa-
tion will be

2 {A'% + B"mx
+ C"nJ, 2 (A% + B"m, + C"n)

and 2(A"l3 + B"ms + C"ri
B),

respectively, and the constant term remains unchanged.

88. The equation when transformed to

pj + Qf + Bz* + 2P"x + 2Q"y + 2R'z +F=0
can be farther simplified by a change of origin.

Suppose first that none of the quantities P, Q, R vanish,
that is, that none of the roots of the discriminating cubic

vanish, which will "be the case if the constant term of the

cubic, or

ABC + 2A'B'C - AA'2 - BB 2 - CG'\

be different from zero.

In this case the equation can be written
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and transferring' the origin to the point whose co-ordi-

nates are

\ P' Q* RJ'
this becomes

This represents an ellipsoid, a hyperboloid of one or two

sheets, or an impossible locus, respectively, according as the

F' F F
quantities -p , -^ , -p are all positive, two positive and one

negative, one positive and two negative, or all negative.

Thus unless

ABC+ 2A'FC -AA'2 - BB'2 - CC'2

vanish, the surface has a centre and is one of the surfaces

whose equations we have already investigated.

Now if we had first changed the origin to be the centre,

we should have got rid of the terms of the first degree, and
the equation would have been

Aa?+Bif+C2? + 2A'yz + 2Kzx+2C'xy =F (1),

which by turning round the axes would become

Px2 + Qy
2 + Rz2 = F\

and consequently, if F' be positive the surface (1) will re-

present an ellipsoid, a hyperboloid of one or two sheets,

or an impossible locus according as the roots of the dis-

criminating cubic are all positive, two positive and one

negative, one positive and two negative, or all negative.
If F' be negative the order of the statement must be
reversed.

89. If F vanish the surface is a cone. Now returning
to Art. 84 we see that F' = — F(a, 0, 7), where a, p, 7 are

determined from the equations

Jt + fffi+By+ A* -V
C'a+B0+A'y+ff' = O}

B'2+A'/3+Cy + C" =
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Multiplying the first of these by a, the second by 0, the
third by 7 and adding, we get

Aa2 + Bj3
2 + CV+ 2A'/3y + 2B'ya + 2G'a/3

+ A"(x + B"{3 + C"v = 0.

But

Aol
2 + B&2 + C7

2 + %A'fy + 25'7a + 2C'a/3

+ 2A"a + 2B"/3 + 2 0"7 + F= F (a, ft 7)
= - F,

Subtracting the first of these from the second, we get

rJTm A"a + g'0 + G"y + F.

Hence if the surface be a cone

A"ol + B"{3+C"v+F=0.
And eliminating a, /?, 7 between this equation and the

three equations (2), we get as the condition that the surface

represents a cone

A C B' A"
C B A' B"

B A' G G"

A" B" G" F

= 0.

90. Suppose, secondly, that one of the quantities P, Q, R
vanishes, as P. From this it follows that the constant term
of the cubic in s must vanish, or

ABC+ 2A'B'G'-AA'*-BB'2 - CG' 2 =
0,

which we saw in Art. 84 indicated that there was not a defi-

nite centre.

The equation becomes

Qy
2 + Rz2 + 2P"x + 2 Q"y + 2R"z + F= 0,

and by changing the origin we can get rid of the terms
in y and t, and the constant term; the equation thus

becomes

Qf + Rz
2 +2P"w = 0,

which represents an elliptic or hyperbolic paraboloid ac-
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cording as Q and R have the same or opposite signs, or

according as

BC+CA + AB-A,2 -B'2 -C' 2
,

which is the coefficient of s in the cubic, and therefore

equal to the product of the two finite roots, is positive or

negative.

91. Thirdly, let two of the quantities P, Q, R vanish,
which necessitates the two conditions,

ABG+ 2A'B'G
f - AA' 2 - BB'2 - GO' 2 =

0,

BC+CA + AB-A'2 - B'
2 -C' 2 = 0.

The equation now becomes

Rz2 + 2P"x + 2 Q"y + 2R"z + F= 0.

And by changing the origin, the term involving z and the

constant term may be removed, and we get

Rz2 + 2P"x + 2Q"y = 0.

By turning the axes of x and y round in their own plane,
the equation can be reduced to the form

ik2 +2P'"a = Q,

which represents a parabolic cylinder whose generating lines

are parallel to the axis of y.

The two conditions

ABC+ 2A'B'C - AA' 2 - BB'2 - CC'2 =
0,

BC+CA + AB-A'2-B2 -O'2 =
0,

can be replaced by simpler ones. For the first equation is

equivalent to either of the forms

(CA - B'2

) (AB - G'
2

)
=

(B'G'
- AA')

2
,

(AB-C'
2

)(BG-A'
2

)
= (G'A'-^BB')

2

,

(BG - A?) (GA - P' 2

)
= (A'B - GGJ,

whence it follows that the three quantities AB — G'
2

, CA—B'2
,

BG — A'2 have all the same sign, and therefore if their sum
vanishes they must vanish separately, and we must have

BG-A'2 =
}
CA-B,2 =

0, AB-C'2 = 0.
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We must also have

0C'-AA' = Qt CA'-BP-mO, A'B'-CC' = Q,

but these are included in the former.

92. If only one of the quantities P, Q, B, as P, vanish,
and P" also vanish, the equation becomes

Qy* + Bz
l + 2Q"y + 2R"z + Fm 0,

which can be reduced to the form

Qf + Rz^ + F'^O,

and therefore represents an elliptic or hyperbolic cylinder ac-

cording as Q and li have the same or opposite signs, that is,

according as

BC-A'*+CA-B' 2 +AB-C*
is positive or negative.'

If Q, B and F' have all the same sign the locus is an

impossible one.

The condition that P" may vanish is, that

A!'l
x
+ B"m

x
+ C"n

x

should vanish, where lt>
mv nx

are the values of I, m, n de-

rived from equations (1) of Art. 83 by putting 5 = 0. But
these values are proportional to

1 1 1

B'C'-AA" C'A' - BB' '
A'B' - CC '

so that we get

I g |

Q"
-o

B'C -AA! '

C'A' - BB' '

A'B' - CC

This condition may be obtained in another form from the

consideration that the equations

A"l
l
+ B"m1 +C"n1

=

Al
x
+ C'm

l
+ B'n

x
="0

C% + Bm
1
+ A\ =

B'l
x
+ A'm

x + Cn
x
=0

(1)
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must be all satisfied by the same values of l
x ,
m

x ,
n

x , and the

requisite conditions that this may be the case are

ABC+ 2A!BC - AA'2 - BE 2 - CC 2 = 0,

united with any one of the. set,

A" {CC - A'F) + B"(B" - CA) + C" (AA' - EC) - 0,

A" [A'
2

-BC) + B"(CC - A'B) + G" [BE - CA') = 0,

A" [BE - CA') + B 1

(AA' - B C) -f G" {C
2 - AB) M 0.

The equations (1) are evidently the conditions that the

three equations (2) of Art. 84 should not be independent, and

consequently there is a line of centres.

93. If two of the roots of tne discriminating cubic as P
and Q vanish, and P", Q" also vanish, the locus reduces to

Bz2 + 2R"z + F=0,
which represents two parallel planes'. The conditions for the

two roots vanishing are

BC-A'2 = 0, (Li-E,2

=0, 4&-tf*«0. : ....(2),

and l
x ,
m

lt
n

x
are only restricted by the equation

Al
x+Cmx + B'n

x
=

I (3),

with which the other two equations in (1) Art. 83 become
identical.

If we have also A"l
x + B"mx

+ C"n
x
= 0, for all values of

l
XJ
m

x>
n

x
consistent with (3)' we must have

A^_B^_CT
A

~ C~W>
, m A" W G"

or from (2)
— -

^-^
94. On the whole then we have the following results.

I. If ABC + 2A'BC - AA' 2 - BE2 - CC 2 be not zero,

the equation represents an ellipsoid, a hyperboloid, or an

impossible locus, with the cone as a variety of the hyper-
boloids. A Rp\

or the X
NIVER8ITY /
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II. If ABC + 2A'B'C - AA' 2 - BB' 2.- CC'2
vanishes,

the equation in general represents an elliptic or hyperbolic

paraboloid according as

BG + CA + AB - A! 2 - B' 2 - C'
2

is positive or negative ;
which may degenerate into an

elliptic or hyperbolic cylinder, with an impossible locus, a

straight line or two intersecting planes, as particular cases.

III. If BC-A'2

,
CA-B' 2

,
AB-C'2

all vanish, the

equation represents a parabolic cylinder which may degene-
rate into two parallel or coincident planes.

The conditions that the equation may represent a surface

of revolution may be obtained from the consideration that

two roots of the cubic in s are equal. This is discussed in

Todhunter's Theory of Equations, Art. 179, to which the

reader is referred.

The reduction of the equation in the particular case

when
ABC + 2A'B'C - AA! 2 - BB' 2 - CC' 2 =

may be effected by writing it in the form

(Ax + C'y+B'z)
2 +(AB- C'

2

)y
2

+2(AA'- B'C')yz

+ {CA-B'
2

)
z
2 + A (2A"x + 2B"y + 2G"z + F) = 0,

AA'-B'C CA-B'2

or putting JB^C* =P =
A4.rrBff

'

(Ax + C'y + B'z)
2
-f {AB - C'

2

) {y + pz)
2

+ A (2A"x + 2B"y + 2 C"z + F) = 0.

And if we take as co-ordinate planes the planes

Ax + C'y -4- B'z = 0,

y+pz = 0,

2A"x+2B"y + 2C"z+F = 0,

this equation will in general assume the form

Py
2 +Qz

2 + Bx=0,
which represents one of the paraboloids. The axes are not

however rectangular. The exceptional cases can be deduced
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from the consideration that the reduction fails when any
two of the three planes are parallel, or when one of them
is parallel to the intersection of the other two.

We shall conclude this chapter with the following general

proposition.

95. If two surfaces of the second degree intersect in one

plane'curve, all their other points of intersection lie in another

plane curve.

For let S=0 and $'=0 be the equations of the two

surfaces, and lx + my + nz —p = 0, or a=0
;
the equation of

the plane of intersection. Then the curve in which a =
cuts the surface S = coincides with the curve in which it

cuts the surface S' = 0. So that the three equations S= 0,

S' = 0, a = are satisfied by an indefinite number of values

of x, y and z.

Consequently the expression S must be identical with
kS' + olj3, where k is a constant and /3 a linear function of

x, y, z.

Hence when S= and S' = 0, we have a = or j3
= ()

t

that is, all the points of intersection lie in one of the two

planes a = 0, or /3
= 0,

EXAMPLES. CHAPTER VII.

1 . Investigate the nature of the surfaces,

(1) 1x%
4- 5y* + Sz

2 + 2yz
- 8zx - 2xy -1=0.

(2) x2 + 4y
2 - z* - 2yz

- zx + kxy + 2z = 0. •

2. Interpret the equations :

(1) yz + zx + xy — x — 2y
— 3z + 2 + a — 0.

(2) x2 + 2y
2 - Sz

2 + 2yz
- izx - 2xy + dx = 0.

(3) x2 + 9y
2

-6.ry + 2y- 4.3=0.

(4) x2
+ f - z

2 + 2yz + 2zx - 2xy + 2x +2y + 2z = a"
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3. Shew that the two surfaces whose equations are

{h
2 + b

2 + c
2

)x
2

+{h
2 + c

2 + a2

)y
2

+(h
2 + a2 + b

2

)z
2

—
2bcyz

— 2cazx — 2abxy = 1,

and (cy
—

bz)
2
-f (az — ex)

2
-f (bx

—
ay)

2 =
1,

have their axes coincident in direction. What kind of sur-

face are they respectively ?

4. Discuss the surfaces obtained by giving different

values to fi in the equation
x2 + 2y

2 + 2z2 -
(2
-

2/m) yz
- 2zx = c

2
.

5. Find the nature of the surface

a2
b
l

c
z

be ca ab a b c

and shew that it touches the co-ordinate planes.

6. If one of the angles between the co-ordinate axes be

a right angle and the other two be supplementary, prove that

the sum of the squares of the axes of the surface

* xy + yz + zx + d2 =
is 12d2

(Ex. I, Chap. IV.).

7. Shew that if two generators of a hyperboloid of one
sheet be taken as two of the axes of co-ordinates, the equa-
tion is of the form

z
2 + az = lyz + mzx + nxy.

8. Find by the method of Art. 68 the position and mag-
nitude of the axes of the section of the surface

Ax2 + By
2 + Cz2 + 2A'yz + 2B'zx + 2 G'xy = 1

by the plane
Ix -f- my + nz = 0.

9. Find by the method of Art. 78 the axes of the section

of the surface

Jx + Jy + Jz =
by the plane

lx + my + nz = l.

10. If the equation

ax2+ by
2+ cz

2+ 2b'zx + 2c xy + 2a"x + 2b"y + 2c"z + d=
represent a paraboloid of revolution, prove that c — b±a* If
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the upper sign be taken, prove that the equations to the

axis are

cz + c" = 0, {ex + a") Ja+ (cy + b") Jb = 0,

and find the condition that the paraboloid may reduce to a

circular cylinder.

11. Find the equation of a surface of the second degree
which contains two given straight lines at right angles, and
the condition that it may be a hyperboloid of one sheet.

Take the shortest distance between the lines as axis of z,

the middle point of it as origin, and the axes of x and y
parallel to the two lines,

12. Find the equation of the surface generated by a

straight line which meets three straight lines which are

mutually at right angles, but which do not intersect.

13. Shew that the section of the surface

Ax2 + By
2 + Cz2 + 2A'yz + 2B'zx + 2C'xy = 1,

by the plane Ix -f my + nz = 0, will be a circle if

Bn2+Cm2- 2A'mn Cl
2+An2- 2B'nl _ Am2+Bl2- 2C'lm

m2 + n2 n2 + l
2 F + m* ~~*

14. Shew that the axes of the surface

Ax2 + By
2 + Cz2 + 2A'yz + 2B'zx + 2C'xy = 1

lie on the two cones

C'O
2 -

2/

2

)
-B

'y
z +^zx ~(A-B)xy = 0,

A\y
2 - z

2

) -(B-C)yz- Uzx + B'xy = 0.

15. A cone whose equation referred to its principal
axes is

aV + /3y=(a
2 + /3

2

)s
2

,

is thrust into an elliptical hole whose equation is

Shew that when the cone fits the hole its vertex must lie

on the ellipsoid

a>
+

b
i + * W W~* *



CHAPTER VIII.

ON TANGENT LINES AND PLANES.

9G. The straight line joining any point P on a surface

to another point Q on the surface, is called a chord. If the

point Q be made to approach indefinitely near to P, the

limiting position of the chord PQ is said to be a tangent line

to the surface at the point P.

In general all the tangent lines at the point P lie in a

plane, which is called the tangent plane at P. This we will

now prove.

Let x\ y, z be the co-ordinates of any point P on a surface

whose equation is

F{x,y,z) = (1).

And let the equations of any straight line through P be

x— x y'
— y z—z ,_,

—7— = ^—*«• --r (2),

where x, y\ z' are current co-ordinates.

To find the points where (2) meets (1) we must substitute

x + lr
7 y + mr, z + nr for x, y, z in (1) j

we thus get the equation

F (x + lr, y + mr, z + nr)
= 0;
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dF dF dF^

r d d d
+ rd* -r+™in. + n ji\ F (

x
> v> z)

2 \ dx dy dz\

+

supposing F (x, y, z) to be of the p
th

degree in x, y, z.

This equation gives the distances from P of the different

points in which (2) cuts (1), and since [x, y y z) is a point on
the surface (1), F (x, y, z) vanishes and the equation (3) is

satisfied by one value of r equal to zero.

If I, m, n be such as to satisfy the equation

,dF dF dF n
l

dx-
+m

Wj
+ n

dz-° W'

two values of r are zero, and the line (2) meets the surface in

two coincident points, and is therefore a tangent line to the

surface at (x, y, z). Equation (4) is therefore a condition

which must be satisfied by the direction-cosines of all tangent
lines at the point P.

But for all points in any such tangent line we have

x' — x _i/
—
y _z'

— z

I m n

Consequently for all points in any such tangent line we
have

., .dF dF , , .dF .

whence it follows that all the tangent lines in general lie in

a plane whose equation is (5).

97. It may happen that at a given point of a surface the
., .... dF dF .dF „three quantities -y- ,

-— and -j- all vamsh.
ax dy dz

A. G. 8



114 ON TANGENT LINES AND PLANES.

If this be the case, the equation (3) of the last article

always gives two
*

values of r equal to zero, and all lines

through the point P meet the surface in two coincident

points. The vertex of a cone is such a point. If we take

I, m, n such as to satisfy the condition

n tfF. ,d
2F ^ 2

d2F
F

da?
+m W + n ^

d2F a ,
d2F

, 07
r

d2F A n .

+ 2mn -T-^r +2nl-i
—

i-+2lm^—=- =0 ... (1),
dydz dzdx dxdy

w
three values of r will be zero, and the straight lines whose

direction-cosines satisfy this equation meet the surface in

three coincident points ; eliminating I, on, n, we have as the

equation of the locus of all such straight lines

d2F
. , , so d

2F
. , , „d2F

^-<»+«-»»#***-« dz*

+ 2(y'-y)(z'-z)^ + 2(z'-z)(x'
dydz

K * * dzdx

+tW^V-f)££mQ (2),

which is the equation of a cone of the second degree whose
vertex is at the point (a?, y, z). See Art. 34.

A point at which -=-
, -j-

and
-j-

all vanish is called a
(XX Ctlj CLZ

singular point on the surface, and the cone (2) is called the

tangent cone at that point.

98. In the case of Art. 96 we see that all straight lines

whose direction-cosines satisfy (4) meet the surface in two
coincident points. If we take I, m, n such as to satisfy both

the conditions

'dF
,

dF dF _

dx dy dz

d2F ,d
2F

, ,d
2F

dx2+m df
+n M

d2F a 7
d2F

, oz d?F
+ 2mn -

7
—=- + 2nl -,

—r + 2lm
dy dz dz dx dx dy

a).
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the straight lines whose direction-cosines are obtained from
these equations meet the surface in three coincident points.

They are therefore tangents to the curve in which the tan-

gent plane meets the surface. This curve, therefore, has a
double point at the point of contact, since the above equa-
tions in general give two values of the ratios I: mm, which
values may be possible or impossible.

If the surface be of the second degree, the two straight
lines given by (1) lie wholly on the surface, and are possible
if the surface be a hyperboloid of one sheet or a hyperbolic

paraboloid, and impossible in other cases.

99. The equation of a surface is often given in the form

z mf(& y)> or * -f(x> y) o.

T ,,. dF, df dz dF, dz
In this case -y- becomes •*-

-f- or—r* * -f- becomes — -y- ,ax ax ax dy dy

and -=- becomes unity. The equation of the tangent plane

becomes therefore

It is usual to denote the quantities -y- and ,- by the

letters p, q, and the quantities -3-5 , j^ , by the letters

r, t, s, respectively.

100. The equation of the tangent plane being

the length of the perpendicular on it from the origin is

dF dF dF
dx *

dy dz ._.

(1).AdF\ 2

(dFV (dF\*
dx)

+
{dy)

+
\dz)

8—2
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The letters U, V, W are frequently used to denote

dF dF dF
dx '

dy
y

dz
'

and the letters u, v, w, u', v, w to denote

#F d*F d*F d2F d2F d2F
dx2 '

dy
2 '

dz2 '

dydz' dz dx
'

dxdy'

respectively. With this notation the above expression be-

comes

Ju2 + v 2+w 2

\

}
'

If we take the form of the equation in Art. 99, the length
of the perpendicular is

z-vx-qy
Jl+M

101. As an example take the tangent plane at any point

(x, y, z) of an ellipsoid whose equation is

a b (i).

TT 7T 2iZr
-IT

2« TJr 2z
Here U=-2> F=/ ; JF= ? ;

and the equation of the tangent plane is

x'x yy ,
zz x2

y
2

z
2

*

The equation of every plane can be expressed in the form

\x + py' -f vz =p (3),

where p is the length, and \, fi, v are the direction-cosines, of
the perpendicular on it from the origin.
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If we suppose (2) identical with (3), we get

w,x y 1

aX b/j, cv Ja?\* + &V -t- cV
/ Kx , , 72 2 =-*

or^ =— =— = — = *—
, i —;

= VaV + 6V + cV
*

3? 5 /a? 7 i
a 6 c Vo, + F +

c
J

And the equation of the tangent plane becomes

W +^ + **' PJaW + 6V + cV (5),

a form which is often useful.

The length of the perpendicular on (2) from the origin

1

7Xl + V- + -
a*
+

6
4

c
4

The values of \, /i, v the direction-cosines of this perpen-

dicular are *5 ,
~

, ^ by (4), and the co-ordinates of the
(X c

^2^. ^2,,, „%.

foot of this perpendicular are consequently
1
~^ , ^ , ^-g- .

102. The equation of a paraboloid being

f *
J + T

= x

the equation of the tangent plane at (x, y, z) becomes

{
x
>-x)-*f{y'-y)-

2
*(z'-z) = Q

i

, 2y , 2z , 2y
2

2z*
x -T' y -T' z=x-l-T = -*>

2y , 2z , , ftts
or

.

-j-
.y'+ j.z =x+x (2).

f+rr (1) -
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This can be put into another form, for comparing it with

\x + fiy' -p vz —p,

ii v X j»p

l V

p , III Vv

»"*•;»"*»'?—*L«

and therefore from (1),

W + IV _ ~p . Itf + l'v* .

4A.
2

~
X' />i?

~
4X

'

and the equation of the tangent plane becomes

\x +fiy + vz = —-—
(3).

103. The normal to a surface at any point is the straight
line drawn through that point perpendicular to the tangent

plane.

The equation of the tangent plane at (x, y, z) is

. , . dF . , . dF . ,
-

. dF

and the equations of a straight line through the point (x, y, z)

perpendicular to this plane are

x-x tf- y _ z'-z m
dF

"
dF dF { }

'

dx dy dz

These are therefore the equations of the normal.

The equations of the normal to an ellipsoid at the point

(x, y, z) are

o>M = y(y
,

-y) jfiJ-z)
x y ' z
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If we take the equation of the surface to be

*»/(*, y)i

the equation of the tangent plane is

z-z-p{x-x)-q(y'-y) =
0,

and the equations of the normal are therefore

x-x+p(z'-z) =
Q\

y-y + q{z-z) = o]""
W

104. The equation of the tangent plane to a surface

F(x,y,z) = (1)

at the point (x, y, z) is

. , . dF .
,

. dF , s N
dF n

If this plane pass through a point whose co-ordinates are

a, ft, 7, we have

<—)5 + (^-»)f+^-)J-o (2).

This relation is satisfied by the co-ordinates of all points,
the tangent planes at which pass through a given point

(
a

> A 7)- It is the equation of a surface which by its inter-

section with (1) determines the points of contact of tangent
planes to (1) drawn through (a, ft, 7).

105. We can shew that all these points of contact lie on
a surface of the degree next below that of the original surface.

For let F (x, y, z) be of the p
th

degree, and let us assume

F(x, y, z)=up + 1^-1 + mm + ••• + u
* + u

i + u
o>

where up ,
u
p_x

... denote the terms of the p
th

, (p
—

l)
th

... de-

grees respectively.

Then the points of contact are determined by (1) and (2),
and the latter may be written

dx dy
' dz dx ^ dy dz

'
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But by a well-known theorem (see Todhunter's Biff. Calc.

Chapter VIII. Ex. 3),

dun .
du dup

•af+itf+'a?-^
du„_, du„_. du, , _ N

dF dF dF
,

_ 6
•'' W

fa'Jry ~d&
+ Z

di
=
pUp + (j)

~ 1>p-i+ '" + 2w
t+wx ...(3).

But for all the points of contact we have

therefore = ^wp + pty,|
+ . . . + pu2 + pux +puQ (4). .

Subtracting (4) from (3) we get

dF dF
,
dF a , ON %

-

X
fa +y dy

+
*dz

=~u*-~ 2u*-~' "~if-%V"(P-^-P1^

and equation (2) becomes

AT dF dF dF . ., , 1Nth ,

Now -T- , t- , -7- are oi the y?
—

l)
m

degree, conse-

quently (5) represents a surface of the {p
—

l)
th

degree.

If the original surface be of the second degree, all the

points of contact lie in a plane.

106. The equation of the tangent plane to an ellipsoid
at the point (x, y, z) is

#5 , yy , zz_
a?
+

b*
*
e

If this pass through a point (a, J3, 7), we. must have

a2 +
6
8

c*
{) '
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a relation which is satisfied by the co-ordinates of all the

points of contact, and which is therefore the equation of the

plane of contact.

The plane (1) is called the polar plane of the point (a, ft, 7)
with respect to the ellipsoid; and (a, ft, 7) is called the pole
of the plane (1).

If all the points in which (1) cuts the ellipsoid be joined
with (a, ft, 7) the joining lines will form a cone, and will all

touch the ellipsoid, since each of them lies in the tangent

plane at the point where it meets the surface. This cone is

called an enveloping cone.

Conversely, if at all points at which any plane cuts an

ellipsoid, tangent planes be drawn, these planes will all meet
in one point, which is the pole of the cutting plane.

If a series of planes be drawn passing through a fixed

point and cutting an ellipsoid, the poles of these planes will

all lie in a fixed plane which is the polar of the fixed point.
Let (a, ft, 7) be the fixed point, and (x, y, z) the pole of any
plane through (a, ft, 7).

The equation of the polar of (x, y, z) is

ar 6 c

If this plane pass through (a, ft, 7) we must have

a*
"*"

6*
+

c*
'

which shews that (x, y, z) lies on the polar of (a, ft, 7).

If a series of planes be drawn passing through two fixed

points and therefore through a fixed straight line, the poles
of these planes will all lie in each of two fixed planes which
are the polar planes of the two fixed points, that is, they will

all lie in a fixed straight line.

Similar results hold for all the surfaces of the second

degree.
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107. The equation of the enveloping cone can be found

by a process similar to that adopted in Art. 34. The equa-
tions of any generating line can be written

I m n

and the equations of the curve of contact are

F(x,y, z)=0

By substituting for x, yy
z from (1) in the equations (2)

their values a + lr, &+mr, <y + nr and eliminating r, we
obtain a relation which I, m, n must satisfy in order that the

line (1) may pass through some point of the curve (2).

The equations (2) can be reduced to one equation of the

p
th

degree, and one of the (p
—

l)
th

,
and the result of substi-

tuting for x
} y, z from (1) will therefore be

A;r" +^.^' + ...+^+^=01
(3);%P-2

'P-V + ... + B
1
r + B

where A
p

is a homogeneous function in I, m; n of the p
th
de-

gree, Ap_x
and Bp_l

are homogeneous functions of the (p
—

I)*

degree, and so on.

The equations (3) can therefore be expressed in the form

AJ (nry +A'p_1 (nry-
1 + ...+A;nr+A o

= 0,

-S'p-i (^r
1 + Bp_z (nry-

2
4- . . . +B

t
'nr + B m 0,

where AJ, A'^, ...AJ, A ,
Bp_x , ...5/, B are functions

of -
,
—

,
and the result 61 eliminating nr between them will

n n
be of the form

^ = 0,
*fc' n)~

and the equation of the cone is therefore^ = 0.r
\*-7 2 — 7
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108. In the case of an ellipsoid the equation of the plane
of contact is

a2± b*^ c*
[ } '

and we have to substitute a + Ir, ft + rnr, y + nr, for x, y, z

in (1), and in the equation of the ellipsoid

a*£+>-i - ma be
We thufe get w

\_

ltd 8m ynX a* 8* 7* f
- .,«

l^t"^ 7 ' ^ ^ ?

: ^\ 444-^ ui,

and substituting for r from (3) in (4) we obtain

This is the relation which £, w, w must satisfy in order

that the straight line'O'

a;— a _y~ $_z—y _
I m n

may pass through some point in the curve of intersection of

(1) and (2).

The equation of the enveloping cone is obtained by sub-

stituting x — a, y — ft z — 7 for I, m, n, and is therefore

m f(«-a)« (y-8)ff (3-7)7
a, ...(G).
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109. This equation can be obtained in another form by
the aid of the following proposition.

Let 8 = be the equation of any surface of the second

degree, and let u = 0, v = be the equations of two planes.
Then the equation

S+\uv = (1),

where \ is some constant, will represent any surface of the

second degree passing through the curves of intersection of

8 = with u = and v = 0. For if 8' = be the equation of

any such surface, it is evident that 8' cannot assume any
other form than k (8+Xuv) consistently with the suppositions
that it is of the second degree, and ;is satisfied by all values

of x, y, z which make 8 and u vanish simultaneously, and
also by all values which make 8 and v vanish.

Again, if we suppose the plane u = to change its position
so as to coincide with v = 0, the equation (1) represents any
surface touching 8=0 along the curve in which the latter is

cut by v = 0, and becomes

8±\v*=0.
Hence the equation

-
2 + p+ c,-l+X^ ¥ +-r -lJ

-0 (2),

represents any surface of the second degree touching the

ellipsoid at all the points of contact of tangent planes through

(a, /3, 7). If we take X such that (2) shall pass through
(a, ft, 7) it must represent the enveloping cone. Substituting

a, fa, 7 for x, y, z, we get ^
*
+g+2_1+xg+|+V_ 1Y=0.

a2 ¥ cr \a c J

Whence the equation of the enveloping cone becomes

[a'
+ ¥ + ?~ x

)w+ v + 7- 1
)
-w +v + ? V -™

This equation can of course be deduced from that of the

last article.

*_ • M - ^ , o ^ Mi-"- !
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110. If we suppose the point (a, ft, 7) to recede from

the origin to an infinite distance, the cone will ultimately
become a cylinder whose generating lines are parallel to the

line joining (a, ft, 7) with the origin. This is called an en-

veloping cylinder, and the equation of any such cylinder can

be found from that of the cone, by putting a = \k, ft = fik,

7 = vk, where X, fi, v are the direction-cosines of the generat-

ing lines, dividing by the highest power of k, and then mak-

ing k infinite. The equation of the enveloping cylinder of

an ellipsoid deduced in this manner from either of the equa-
tions in Arts. 108, 109 is

W +
P.
+ e VW &

2
J) w + v +

cv
•

111. The equation of the cylinder which envelopes a

given surface

F(x,y,z) = (1)

can however be obtained independently of the enveloping
cone.

For let \, fi, v be the direction-cosines of one of the gene-

rating lines; x, y, z the co-ordinates of the point where it

touches (1). Then since this generating line of the cylinder
is a tangent line to (1) at (x, y, z), we must have

; dF dF dF A ,asX
dx^ fl d^

+ V
dz-
=0 ' (2) *

Vjth tvu U/Z

This equation combined with (1) gives the locus of the

points at which the enveloping cylinder touches the surface,

and we have only to find the equation of a cylinder with its

generating lines in a given direction, and passing through the

curve given by (1) and (2), which can be done as in Art. 35.

If x, y', z be the co-ordinates of any point in the gene-

rating line which touches (1) at the point (x, y, z), we have

x — x y —y z
' — z ,

~-r— = » = = — k suppose,
A

/JL
V

or x — x + \Jc, y — y' + /*k, z — z + vk.

Substituting these values of x, y, z in the equations (1)

and (2), and eliminating k between the two equations, we get
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a relation between x, y, z which is the equation of the en-

veloping cylinder.

112. In the case of the ellipsoid, the curve of contact is

determined by the equations

a2 +
6
2

c
2 '

Putting x' + \k, y + fik, z' + vk for x, y, z we get

Substituting for k from the second in the first we get

a*
+ ¥ + ?

X
) W + V +

cV V a
2 +

6' cV
'

the same equation as we obtained in Article 110.

113. Let the equation of a surface be given in the form

*(a,A 7,8) = 0.. (1),

where a, & 7, S are the lengths of the perpendiculars from

any point on the four faces of a tetrahedron, and let any
straight line be drawn through the point (a, ft, 7, 8). Then
if a', ft', 7', B' be the values of a, /3, 7, S for any other point in

the line we shall have by obvious geometry

<^ =^ =^ =^ = jt (2);
I m n q

where I, m, n, q are the cosines of the angles between the

line and the perpendiculars on the four faces of the tetrahe-

dron, and k is the distance between the two points.

We obtain the value of k for the points where the line (2)
meets (1) from the equation

<j>((z + lk, ft + mk, 7 + n/j, S + ^) = 0,
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+ Ak2 + Bk* + ... =
(3).

This equation gives as many values of h as the degree of

the equation (1).

Since (a, /3, 7, 8) is a point on (1), <j> (a, ft, 7, 8) vanishes,
and one value of k is zero. If l

t m. n, q be restricted by the
relation

two values of k vanish, and the line (2) is a tangent line to

(1) at (a, /3, 7, 8), Hence eliminating Z, m, n, q by means
of (2) the equation of the locus of the tangent lines at

(a, A % S) is

or

, dd> &d& . ,dd>
,
~ dd> dd> a d& ,

d6
t

~ d<f>

But the expression ^ (a, /3, 7, 8) may be supposed homo-

geneous, since if it be not, it can be made so by means of

the relation given in Art. 26; and if it be of the p
th

degree,
we have by a well-known formula

since the point (a, /9, 7, 8) is on the surface (1). Hence the

equation of the tangent plane at (a, ft, 7, 8) becomes

<i+?S+'S+8f-° »
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EXAMPLES. CHAPTER VIII.

1. Find the locus of the point of intersection of three

tangent planes to an ellipsoid which are mutually at right

angles.

2. Find the locus of a point which moves so that the

locus of the centre of the section of an ellipsoid by its polar

plane with respect to that ellipsoid is a similar and similarly
situated ellipsoid whose axes are each half of the correspond-

ing axis of the original ellipsoid.

3. Shew that the polar equation of the locus of the foot

of the perpendicular from the origin on the tangent plane to

an ellipsoid is

r2 m a2
sin

2
cos

2

<f>
+ fc

2
sin

2
sin

2

<£ + c
2
cos

2
0.

4. Find the equation of the locus of the foot of the per-

pendicular from a point (a, j3, 7) on the tangent planes of the

ellipsoid
x* f z* ,—

\-
—

-\
— = 1

5. Find the equation of the locus of the poles of all

tangent planes of the ellipsoid

a2 +
6
2+

c
2

with respect to a sphere whose centre is at the point (a, /?, 7)
and whose radius is k.

6. Shew that in general six normals can be drawn

through a given point to an ellipsoid, and that these six all

lie on a cone of the second degree, three of whose generating
lines are parallel to the axes of the ellipsoid.

7. If normals be drawn to an ellipsoid

di +
t>'

+
c'

x
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at the points where it is cut by the cone

I m n-+- + - = 0,x y z

prove that these normals all pass through a diameter of the

ellipsoid.

8. In an ellipsoid whose semi-axes are a, b, c, plane
sections are drawn so as always to touch a confocal ellipsoid

(see Art. 160). Shew that the centres of these sections

always lie on a surface of the fourth degree which intersects

the ellipsoid in the cone

a* b* c*

9. Prove that through any central radius of an ellipsoid
one plane can be drawn cutting the ellipsoid in a curve of

which that radius is a semi-axis. Shew that if it be so for

more than one section it must be so for all such sections.

10. On a plane section of a given ellipsoid as base two
cones are constructed of which the vertices are the centre

of the surface and the pole of the section. If the ratio of

the volumes of these cones is constant, prove that each of

them is constant
;
and find the volume when the ratio is one

of equality.

11. Find the locus of a luminous point, in order that the

boundary of the shadow of an ellipsoid cast by it upon a given

principal plane may be circular.

12. Prove that the right circular cylinders described

about the ellipsoid

x2

y
2

z%
,—v — ^— =1

a1 T V +
c
2 '

b being the mean semi-axis, are represented by the equation

(b
2-c2

)x
2

-(c
2

-a?) f+(a
2-b2

)z
2

± 2 (a
2-b2

)*(b
2-c2

)hx=(a
2-c2

)b
2

.

13. The shadow of a ball is cast by a candle on an in-

clined plane in contact with the ball; prove that as the

candle burns down, the locus of the centre of the shadow is

a straight line.

A. G. 9
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14. Find the equation of the tangent plane to the sur-

face

xyz = as

,

and the volume cut off by this plane from the axes.

15. Find the equation of the tangent plane at any point
of the surface

oo -f y + z s = a .

Find also the length of the perpendicular on it from the

origin, and the area of the triangle intercepted on the tangent

plane by the co-ordinate planes. Shew that the sum of the

squares of the intercepts on the axes of co-ordinates is con-

stant.

16. Find the equation of the enveloping cone of the sur-

face By
1 + Cz2 m x, whose vertex is at a point (a, /3, 7).

17. Find the length of the normal at any point of an

ellipsoid cut off by the plane of xy. Find also the co-ordi-

nates of its point of intersection with the plane of xy.

18. Find the equations of the normal at any point of the

surface

Bf+Gz
2 = x.

Find the locus of the points in which the normals to the

surface drawn at all points of its intersection with the plane
x = a. cut the plane of yz.

19. Shew that the points on the surface

xyz = c*

at which the normals intersect a fixed line

x — a _ y
— @ _ z — y

I m n

all lie on the surface

ax (my
-

nz) + /3y (nz
-

Ix) + yz (Ix
- my) = x* (my

-
nz)

+ 2/

2

(nz
—

Ix) + z
2

(Ix
—
my),
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20. Find the locus of the point of intersection of three

tangent planes to a paraboloid which are mutually at right

angles.

21. Find the equation of a surface of the second degree
which passes through all the points of contact of tangent

planes drawn through an external point {a, ft, y) to the

surface .

a?-\ tf +z*
-
Sxyz = c

3

,

and discuss its nature for different positions of (a, /3, 7).

22. Find the equation of a surface of the second degree
which passes through all the points of contact of tangent

planes drawn through an external point (a, /3, 7) to the

surface

xyz — a 3

,

and discuss its nature for different positions of (a, /3, 7).

23. Find the equation of the locus of the foot of the

perpendicular from the origin on the tangent planes of the

surface

By
2 +Cz* = x.

24. Shew that the plane

Ix + my + nz =
will touch the cone

Ax* + By
2 +Cz* =

if I, m, n satisfy the condition

l
2 m2

7i
2

\

A + B + C=°'

25. Shew that the axes of a central section of the ellip-

x2
y

2
z*

soid -2 + Ta + -2
= l by a plane parallel to the tangent planea c

at (a, /3, 7) are given by the equation

r
* _

(a
1 + 6

2 + c
2 - a

2

-/3
2 - 7

2

)
r* +~f =

0,

where p is the perpendicular from the centre on the tangent

plane.

9—2



CHAPTER IX.

ON CURVES IN SPACE.

114. We have seen (Art. 16) that any two equations

f
2 (x, v,z)=o] y>>

since they are satisfied by the co-ordinates of all the points of

intersection of the surfaces represented by each equation, will

in general represent a curve.

These equations can be reduced to the form

by eliminating y and z in turn between the two equations

(1). It may be noticed that the two equations (2) will in

some cases represent a curve not included in (1). For in-

stance, if the two equations (1) were of the first and second

degrees respectively, by eliminating y and z in turn we
should get two equations of the second degree, and the first

two equations would represent one plane curve, while the

second pair would represent the original curve, and another

plane curve besides. (See Art. 95.)

Assuming x to be any arbitrary function of a new vari-

able t, the equations (2) can be replaced by the three

x = <j>(t),y
= + (t),

z = X (t) (3).

This third form possesses many advantages from its sym-
metrical character, and we shall in general use it.
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115. As an example the pair of equations

Ax + By+Gz=B
A'x + By + C'z = D' (1)

represent a straight line.

Eliminating y and z in turn we get the two equations

A'B-AB B'D-BD'^
B'C-BC ' B'G-BG'

= aa - ga' an - cd \ (2),

BC-BC ' BC-BC j

which correspond to the form (2) in the last Article.

Lastly, assuming x = {B'G
— BC) t, we get

CTY — C'D~\
x = (EC- BC) t,y

= (C'A- GA') t +^ _ B(J
.

\

(••••(3),

z = {A'B-AB*)t +*^\
which correspond to the form (3) in the last Article.

116. The curves of the most frequent occurrence and

greatest importance are plane, curves, the discussion of which

properly belongs to plane geometry. As an instance of a

curve not plane we may take the helix.

This is the curve formed by the thread of a screw. It

may be produced by wrapping a right-angled triangle round
a circular cylinder, the base of the triangle being at right

angles to the axis of the cylinder.

Take the axis of the cylinder as axis of z, a plane through
the base of the triangle as plane of xy, and a line through the

acute angle at the base of the triangle as axis of x.

Let be the origin ; x, y, z the co-ordinates of any point
P in the curve, a the radius of the cylinder, the angle AOM
between the axis of x and OM the projection of OP on the
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plane of xy, and a the acute angle at the base of the triangle.
We obtain without difficulty,

x= OiV= OM cos = a cos
}

y =MJSf= OM sin = a sin 0,

z —PM = arcAM x tan a = a0 tan a,

Whence

or if a tan a = c,

x — a cos 0, y = asm0, z = c0

z . z
x = a cos -

, y = a sin -

,
C G

(2).

Either (1) or (2) may be considered as the equations of

the helix.

117. The limiting position of the straight line joining
two points of a curve when the second point moves up in-

definitely near to the first, is called the tangent to the curve
at that point.

Let the equations of the curve be

* = £(*), y = f(t), z = %(0 (1),

and let t and t + r be the values of t for two points on the

curve. The equations of the straight line joining these are
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x, y\ z being current co-ordinates
;

x'-${t) j/-jr(t) Z'-X(t)

4>(t + r)-<j>(t) jr(t + r)-f(t) x (t + r)- X (t)

-

T T T

But when t is diminished indefinitely the two points
coincide and the straight line joining them becomes the

tangent at (x, y, z). Also the limit of -^ '—zA± js
T

dx
</>' (t) or -j- ,

and similarly for the other denominators.

Hence the equations of the tangent at (x, y, z) are

x'-xy'-y z'-z
dx dy dz * *

dt di dt

118. The length of the chord joining two points (x, y, z)

and [xti ylt
z

x )
is

J\xx

- xy + (yx -yy + (zt

-
z)\

But by Newton (Section I. Lemma vn.) when the two points

approach indefinitely near to each other, the ratio of the arc

to the chord becomes ultimately a ratio of equality. Hence
if s and s + 8s be the lengths of the arcs measured from some
fixed point up to the points (x, y, z), (xv ylt

z
x) respectively,

the fraction

becomes ultimately equal to unity, or

-(th&Ht) »
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From this result we see that the cosine of the angle which
the tangent at (#, y, z) makes with the axis of x, which by
Art, 17 is

dx

di

JWWW
dx

,
,

dt dx
is ecjual

to -r or ^-.

It

And similarly, the cosines of the angles which the tan-

gent makes with the axes of y and z are -¥ and -7- re-& 9 ds ds

spectively.

Dividing by (-77)
the equation (1) reduces to the form

©MtHI)'- 1 »•

119. Any straight line through the point (x, y, z) per-

pendicular to the tangent is called a normal line. All

such lines lie in a plane through (x, y, z) perpendicular to

the tangent, which is called the normal plane. Its equation
is at once seen to be

(rf-.)g+V-*)| + ('-.)£-a

120. It is always possible to draw a plane through any
three points of a curve. The limiting position of this plane
when two of the points move up indefinitely near to the

third is called the oscidating plane at that point.

Let the equations of the curve be

*=*(<). r-jHft 9mx$ CO*

and let t, t + r, t+2r be the values of t corresponding
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to three points on the curve. Let the equation of any
plane be

Ax +By'+Gz=D (2).

If this plane pass through the three points t, t + r, t + 2r,
we have

A+ (0 + Bf {t) + Cx (t) =2> (3),

A(f>{t + T)+Byjr(t + r) + CX (t + r)^D (4),

A<f> (t + 2r) + Byjr (t + 2r) + CX {t + 2r)
= D (5).

Subtracting the first of these equations from the second

we have

A{4>(t+T)-<l>(t)}+B{+(t+T)-+(t)}
+ C{x(t+T)- X (t)}=0.

Or, dividing by r,

, gX(^T)- X (<) _
ft

T

Subtracting twice the second from the sum of the first

and third and dividing by r
2

,
we get

A <t>(t+2r) -2<f> (t+r) +<j>{t) B f(t+2r)-2yjr(t-hr)+ylr(t)

T T

., c X(t + ^)-2x {t+ r)+ X (t)
ft

But if we make the three points coincide, t vanishes,

and these two equations become (Todhuriter's Biff. Gale.

Art. 127)
A dx t „ dy t

„dz A

A B G

dy d 2
z dz d2

y dz d2x dx d 2z dx d2

y dy d2x

didf~diW di ~df
"

~dt ~d?. di W ~
diW



138 ON CURVES IN SPACE.

And subtracting (3) from (2) we have

A (V - x)+B(y'-y) + C(z'
-

z)
= 0.

Whence the equation of the osculating plane at the point
(a, y, z) becomes

(x' - or) [%L
d*z _ dz &, 4. tfJ-\ [

d± d *x
__^ d*

z
\r x)

\dt df dt dt*\
+ {y y)

\dt df dt de]

; f , Adx d?y dy d2
x)

121. The osculating plane is sometimes denned as the

plane which lies closer to a curve at a given point than

any other plane, and its equation is obtained in the fol-

lowing manner.

Let A{x -
x) + B (y' -y) + C (z -z) = (1)

be the equation of any plane through (x, y, z). The perpen-
dicular on this from a point (xx , yx ,

z
x)

is

A (xx -x)+B (yx -y) + C(zx -z)

JA* + B*+G?

But if (xx> yx ,
z

x)
be a point on the curve corresponding

to a value t + r of t,

dx t2 d2x
X

>
= x + T

di
+ £W +

, dy ,
t2

d*y ,y^y +rdt^J +

dz t2 d*z
z^ z + T

Tt
+
]2de

+

Hence the length of the perpendicular becomes

JA2 + B2 + C*
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And when t is diminished indefinitely, the succeeding
terms are very small compared with the first and second,
and the smallest value which this fraction can assume will be
when A, B, G are determined by the equations

whence we obtain the same result as in the last Article.

122. All straight lines drawn through the point (x, y, z)

perpendicular to the tangent at that point are normals. That
normal which lies in the osculating plane may be considered
as the normal drawn in the plane of the curve, and is called

the principal normal. The equations of the normal plane
and the osculating plane considered as simultaneous are the

equations of this line. These are

(-*)t + (/- y)i + (*'-)g=o,

{x
'\dt df dt df]

+ Ky y)
\dtdt* dt df)

If we put these equations in the form

x — x _y — y _z'
— z

* *
q b :

the value of P is

dy (dx d2

y dy d2

x\ dz (dz d2x dx d2

z\

di (diW ~
di~d?)

"
di [dt ~d?

"
di ~dt

2

]

_ dx (dy d
2

y dz d 2

z\ d2x (/dy

~dt\didf~*~di df]~"df \{di.

2
'dz

+
\dt

But by Art. 118

'ds\

dt) ~\dt) ! \dt)
'

\dt

ds\
2

_fdx\
2

fdyV fdz^
2

~\dt)
+

{dt)
"
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therefore differentiating,

ds d2
s _ dx d 2x dy d?j£

dz d2
z

p- -p_dx (ds d2
s dx d2

x\ d2x {fds\
2

Hence
j?-—^ ^ -^ jp|- ^
_ cfe fcfaj JV cfo d?x\

~~dt\dt de~~dt~Ey

v((ds\
2

_(dx^
F|W \dt)

and similar values may be found for Q and R. Hence the

equations of the principal normal are .

x —x y —y
ds dfx d'

l
s dx ds d 2

y d?s dy ds arz d 2
s dz

*

dtWdfdi di'WWdi lft~d?~df ~dt

which may be written in either of the forms

X
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By Art. 26 the equations of two planes which bisect the

angles between (1) and (2) are

(X
- V) x + (/*

-
//) y + (v

-
v) z = 0.

And the direction-cosines of the normals to these planes,
which are evidently parallel to the bisectors of the angles
between the two original straight lines, are proportional to

X+ X\ fM + fiy v + v and X — V, p — p, v — v respect-

ively.

If I, m, n be the actual values of the direction-cosines of

the latter line, we have

x-V
z =

V(\ - xy + o*-y)
2+ {v-yy

X — Xf

l
, Vv=

/o o d
=

9 (
X ~* X )

C0SeC
9 »

V2 - 2 cos 2 ^

if be the angle between the two straight lines.

124. Let now X, fi, v be the direction-cosines of the

tangent to a curve at the point (%, y, s)> and V, fi t
v their

values at an adjacent point on the curve distant 8s from the

former. Then ultimately if the two points be made to

approach indefinitely near to each other and coincide, of

the two bisectors considered in the last article, the one
will coincide with either tangent, and the other will be
the principal normal. The former will evidently have its

direction- cosines proportional to X + Xf

, fi + p, v + v, and
the latter must have its direction-cosines proportional to

X — X'
} /jl

—
fj! , v— v .

But Xr — X + -T- 8s + terms involving (8s)*

H= /J
, +

ls
&s +dfj,

ds

dv' = v +— 8s +
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Hence the direction-cosines of the principal normal are

,
,

dX <v da ~ dv ^ dX dii dv .,

proportional to -7- bs, -f bs, -7- bs, or to -=-
,
~

, -r- , and

die du dz
putting for ,\, fi, v their values

-j- , -j- ,
-=r the equations

of the principal normal become as before

af — x _y —y _z'
— z

d2x d 2

y d2
z

~ds
2

~d? d?

125. If the curve be a plane curve, the equation of the

osculating plane must reduce to the equation of the plane in

which the curve lies. Hence the ratios

dy d2
z dz d2

y\ (dz d2x dx d?z\
>

/dx d2

y dy d2
x\

dtWdi'dt2

)
:

[dt di2 ~~~dt df)
''

[di'df "didfj

must be constant for all points on the curve.

We may therefore assume

dy d
2
z dz d2

y
dtdf'Jt d?~ Xv (1) '

dz d2x dx d2z _ .

di'dt
2 ~~dtdiz

~
fiv {Z) '

dx d2

y dy d2x _ r

~dtdf~~dtdf~
VV W'

where X, \i, v are constants, and v some function of t.

Eliminating X, fi and v from (1) and (2) by differentiating,
we get

dz d?x dx d?z\
(dy

ds
z dz d\

didf di WJ \di~df~"dt 3?

/dy d?z
dz_

d2

y\ /dz d5x dx d3
z\ _

U* df
*

dt df) \did?~didf)~ °'
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dz
or reducing and dividing by -r. ,

'dy d?z dz d2

y\ dz

y /dz cfx
_
doc d2

z\

^W^Ttdf) +
df\dtdf didf)

d3
z (dx d?y dy cfx

d»x

df

drz /dx

df\dt df dt df 0,

which may be written

dx

dt'
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126. If a curve be drawn on a given surface such that

the inclination of its tangent to a given fixed plane is always
greater than that of any other tangent line to the surface at

the same point, the curve is called a line of greatest slope to

the given plane.

Let F(fr$,g)mQ (1)

be the equation of the given surface, and let

Ax + By + Cz = D..... (2)

be the equation of the given plane.

The direction-cosines of the tangent line to the curve at

. , , s dx dy dz
any point (x,y,z) are ^, £,£-.

The equation of the tangent plane to (1) at (x, y, z) is

.dF , ,
.dF /f s

dF A

and the direction-cosines of the line of intersection of this

plane with the plane (2) are proportional to

B dF_ c
dF

cdF_ A dF_ A dF_ B dF
dz dy

' dx dz' dy dx '

and it is evident that the tangent line to the curve of greatest

slope must be perpendicular to the intersection of the tangent

plane with the plane (2), whence we get

ds \ dz dy ) ds\ dx dz ) ds\ dy dx) '"^'

The integral of this equation united with (1) gives the

curves required. The integration will introduce one arbitrary
constant which is determined if one point on the curve be
known. Hence, a line of greatest slope can be drawn through

any point on the surface.

If the given plane be the plane of xy, A = 0, B = 0, and
the equation (3) becomes

dF dy_dF dx _
dx ds dy ds

'

dF^y__dF_ () (4
s

dx dx dy~
"

^ '"
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As an example of the last case take the equation of the

ellipsoid

& f £ i

Equation (4) becomes

a2 dx V >

r • ~i l°g 2/
— p log # — constant

;

.*. y = mxb*

(6).

This equation united with (5) gives the lines of greatest

slope. If a = b, (6) becomes

y = mx,

so that in the case of a spheroid the meridians are the lines

of greatest slope to the plane of circular section.

127. We shall devote the remainder of this Chapter to

the discussion of the curvature of curves in space. This is of

two kinds, the first being the curvature of the curve con-

sidered as lying in its osculating plane, and the second, the

curvature by which it leaves the osculating plane, which is

called the curvature of torsion. On this account curves in

space are called curves of double curvature.

Before proceeding to the formulae relating to the two
kinds of curvature at any point of a curve some geometrical

explanations and definitions must be given.

Let PQ, QR, BS, ST,... be a series of lines of equal

length, which when their length is diminished indefinitely
become ultimately small portions of a continuous curve. Let

p, q, r, s ... be their middle points.

Through p let a plane be drawn perpendicular to PQ and

through q, r, s ... planes perpendicular to QR, R8, ST,...

respectively. These will ultimately be normal planes to the

curve at consecutive points. Let the planes through p, q

A. G. 10
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intersect in a line AE, and the planes through q, r in a line

BF which cuts AE in some point A, and so on.

Let the plane which passes through P, Q, R meet AE
in O

t ,
and the plane through Q, B, 8 meet BF in

2
. It is

evident that the point 0. is equidistant from P, Q and i£,

and a circle with centre 0. and radius O
x
P will pass through

Q and JR. This circle will ultimately pass through three

consecutive points of the curve, and lies in the plane PQBOv
which is ultimately the osculating plane at Q. Hence it is

the circle of curvature of the curve considered as a plane
curve lying in the osculating plane. It is called the circle of
absolute or circular curvature, and the point O

x
is called the

centre of absolute or circular curvature.

Again, all points in the straight line AE are equidistant
from the three points P, Q and B. All points in the straight
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line BF are equidistant from Q, R and S. Hence the point

A, where AE and BF meet, is equidistant from the four

points P, Q, B, and S, and a sphere with centre A and radius

AP will ultimately pass through four consecutive points of

the curve. The point A is called the centre of spherical

curvature, and the length AP the radius of spherical curva-

ture.

The lines AE, BF, CO ... ultimately generate a surface

which is touched by the normal planes of the curve, and the

ultimate intersections of these lines produce a curve which
is called the edge of regression of this surface.

128. The locus of the centres of absolute curvature is

not an evolute, but an infinite number of evolutes can be
drawn on the surface generated by the lines AE, BF,... For
let

t
be any point in AE, and let pOiy qOt

be joined and

qOt
be produced to meet BF in u; join ru and produce it

to meet CG in v
; join sv and produce it to meet DH in w,

and so on. We have

0,p = iq ;

.*. u0
1 + O

lp = uq,

vu + uO
x
+

xp = vu + uq = vu + ur = vr,

Hence if a string be laid along the curve wvuO
t
and its

end be at p, as it is unwrapped this extremity will pass

through qrst. . . and describe ultimately the original curve.

An evolute can thus be found passing through any point of

any one of the lines AE, BF. . .

129. The centre of absolute curvature may be defined as

the point where the line of intersection of two consecutive

normal planes meets the osculating plane.

Let the equation of the normal plane at a point (x, y, z)

be denoted by
f(0 = o (i).

Any other normal plane can be represented by

J(OH> • (
2
)>

where t
t
is the corresponding value of t,

10—2
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At the points where (1) and (2) meet, we have

F(tl)-F(t)=0,

^W-fQ-o.t
x
-t

And this latter equation when t
t
— t is indefinitely diminished

becomes

g-° %
Hence the line of intersection of two consecutive normal

planes is given by the two equations

F«>-«, f-0.

Bit
i-<<).(«'-«)J

+(y- 5)4+ (/-«)|,

f=(«'-.»S+ <y-S)S +(^,S-©'-(|)'-g

Hence the line of intersection of two consecutive normal

planes is given by

(*'-*)!
+ </-y)§ + (*'-)J

=
(4),

and
(f,

-
x)^ +{y-y)-JHz

-
z)^=^ (5).

The point where this line meets the osculating plane is

given by (4) and (5) united with

r }
\dt d?

~
dt de)

t , N fdz d2x dx d 2

z\

+ {z z)
{dt dt* dt del

u



ON CUEVES IN SPACE. 149

From (4) and (6) we obtain, as in Art. 122,

x — x y
—
y

d'
lx ds dx d*s cry ds dy d's d*z ds dz d*s

~dfdt~~dtdF Wdt ~~dt W ~d?di dt df

and by equation (5) each of these fractions is equal to

(7),

(£)'

\\d?)
+
U?)

+
\dr) J dt dtW

ds

dt
rr?...(8).

(d^xV (<Py\* (<TzY _ fd^s\

\dt)
+
[df)

+
{dr) Uv

Also each of them is equal to

//d
2x ds dx d*s\* (dl

y ds dy d?s\*
(d

2
z ds dz d'W

\/\di
2 di~didf)

+
{dfdt~dtdf)

+
\di? di

~
dt df )

Md
2
x\*

, (d
2

y\
2

, (d*z\* fd
2
s\

2

where p is the radius of absolute curvature.

Hence

f=(S)MSHSH8)' «
or if s be taken as independent variable,

1 fd
2
x\

2 (dW fd
2zV ,, m

Equation (9) or (10) gives p, and equations (7) and (8)

give x, y, z the co-ordinates of the centre of absolute cur-

vature.
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130. The results of the last article can be obtained by
means of the formulae proved in Article 123.

For if 8s be the arc between two points of a curve, 6 the

angle between the tangents at those points, and X, /x, v\

X, jjl, v the direction-cosines of those tangents, we have

p
= limit

-0,

when 8s is indefinitely diminished.

Also if I, m, n be the direction-cosines of the principal

normal, we have

1 6
I = limit of = (\

~
X') cosec ~

,. . J\ & 2 dX d*x= limltof
Ts--0-—

=
Pds

=* p
ds*-

sing

Similarly m
*PTs =p l3

dv d*z

But also by Art. 6 if x, y', z be the co-ordinates of the

centre of absolute curvature,

, »d%
y
_ y=mp=p ^L f

z — z = np=p
2 d

2
z

ds*'

whence squaring and adding and dividing by p
4

,
we get

,ds\H£)'+(2K
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131. To find the centre and radius of spherical curva-

ture.

The centre of spherical curvature is the point in which
three consecutive normal planes intersect.

If F (t)
= be the equation of any normal plane, the line

of intersection of this with the consecutive plane is given by

F(t) = 0, and F'(f)=0 (1).

And if F (^)
=

0, F' (tt )
= be the equations of any other

line of intersection of consecutive normal planes, at the point
of intersection of these two lines,

F'(tx)-F'(t)
t
x
-t v ;

And ultimately when t = t
t
the four equations give

F(t) = 0,F'(t) = 0,

and from (2)

F"(t) = (
3

)-

But

dx dy
F(t)=(X~x)^ + (Y-y)^ + (Z-z)dt dt

dz

dt

P"0) = (x-,)S+( r-y)§ +(z-,)$-3$S = o
dt dt'

y, z
df

' v ^ df
' x ' df

These equations determine X—
x, Y—y, Z—z, where

X, Y, Z are the co-ordinates of the centre of spherical curva-

ture. We set from them

Z-x=

AfeV
fdz^ d^y __ dy d3

z\ ds d 2
s fdy d 2

z _ dz d2

y\

\dt) [dt if \ di Wr ~dtle\itdf didf)
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and similar values for Y— y, Z—z. The radius of spherical
curvature B, which

=J{X-xY + {Y- yy+{Z-zY,
is then known.

132. To find the angle and radius of torsion at any point
of a curve.

The angle of torsion (Se) is the angle between two con-

secutive osculating planes.

Let \ /jl,
v be the direction-cosines of the normal to one

osculating plane; then those of the normal to the osculating

plane corresponding to the value t + r of the independent
variable will be

.
,
d\ da dvX+ ._. T+ ..., M+ „. T+ ..., V +

Tt
.T + ...

And the sine of the angle between these lines is (Art. 8)M d/A
2

( d\ . dv\
2

/. da dX

ran"
But

V
dt

+
{
v
it-

x
dt'tlVa

_ , fdz
d2x dx d2

z\ _ , fax d
2

y dy d2

dt df dt dfj
'

\dt dt
2

dt di

, 1 _ /dy d2
z dz d 2

y
x 2

6 P~ltto¥~dtM
fdz

d 2x dx d2
z\

2

+
{didf~dio¥J

fdx
d2

y dy d2
x\

2

'
{4iWdidf '

dv^ dp_i2 (dz
d2x

.
dx d2

z\
fdx d3

y dy d3x\
'

,fl di~
v
di~ \di~di

2 foW)\Ma7~Mdf)

_ , 2 fdz
d?x _ dx d3

z\
fdx

d2

y dy d2x\
'

[dt dt foW)\TtW~ ~dt ~dt
2
J

*
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= #
dx

TV

dx

Tt

d?x

df

<Fx

df

dy
dt'

df

df

dz

di

<fz

df

cfz

df

(1).

Whence the sine of the angle of torsion becomes equal to

dx dy dz

V,
ds

dt

dV
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This is in fact the condition that four consecutive points
of the curve should lie in one plane (see Art. 125).

We have also

. /ax d?x dy d?y dz d2
z\*~

Ve5"3?
+

cS d?
+
did?)

ds\* f/d^\
2

(d?y\* fa?z\
2

_ (d?s\*)

dt) \[df)
+

\df)
+

[dfj \df) J

dp*
(It;

(1),

where p is the radius of absolute curvature.

Hence if we denote the above determinant by the symbol
A we have

L_jflL (2).

EXAMPLES. CHAPTER IX.

1. Find the equations of the osculating plane at any
point of the curves

(1) x — a cos 0, y = asm0, z = cd.

(2) x~ + y
2 —

ry
=

0, z* +ry = r
2
.

Find also the length of the arc of (1) between two points
whose co-ordinates are given.

2. The equations of a curve of double curvature being

given, find the equation of the surface formed by making it

revolve round the axis of z.

Ex. x— a cos 6} y = a sin 6, z = cO,
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3. A helix joins two points, the distance between which
is b, the angle between the tangent lines and the axis of the

generating cylinder being a given angle a.
; prove that if the

length of the helix is a maximum, the helix has a constant

length, and that the radius of the generating circle is —
,

where n is a positive integer.

4. A curve is traced on a right circular cylinder of radius

a, such that if the cylinder were unrolled into a plane the

curve would become a catenary whose axis formed one of the

generating lines, and directrix the base, of the cylinder.
Shew that

az* _ a£

p, px being the radii of absolute curvature and torsion, z the

ordinate, s the arc measured from the vertex, and c the con-

stant of the catenary.

5. Find the equation of the osculating plane at any
point of the curve given by the equations

ax* + hf + cz* = l.

6. Find the equations of a curve traced on a sphere so

as to cut all the great circles passing through a fixed point
at the same angle.

7. Find the equations of the lines of greatest slope to

the plane of xy on the surfaces

(1) xyz = a\

/on .

a
i

x? + y*
(2) z ~ x

+-\og--jJL.

8. Shew geometrically and analytically that if a sphere
be described concentric with a given ellipsoid, the tangent
line to the curve of intersection of the sphere and ellipsoid is

parallel to one of the principal axes of the central section of

the ellipsoid which passes through that tangent line.
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9. Find the equations of a curve traced on a sphere, such
that the sum of the arcs of great circles joining any point on
it with two fixed points on the sphere, the arc joining which
is a quadrant, is constant.

10. Find the equations of a curve traced on a sphere by
a point which moves with constant velocity along the arc of

a great circle while the great circle revolves with constant

velocity round a fixed diameter,

11. A point moves on an ellipsoid so that its direction of

motion always passes through the perpendicular from the

origin on the tangent plane to the ellipsoid at that point.
Shew that the curve traced out by the point is given by the

intersection of the ellipsoid with the surface

xm-n y
n-i

jr* = congtant)

I, m, n being inversely proportional to the squares of the axes

of the ellipsoid.

12. Find the equation of a curve traced on a right cone

which cuts all the generating lines at a constant angle.

Find the length of the curve measured from the vertex.

13. A straight line is drawn on a plane which is then

wrapped on a cone. Shew that if p be the radius of absolute

curvature of the curve on the cone at a distance r from the

vertex

r^tfp,
where a is a constant.

14. Find the values of the radii of absolute and spheri-
cal curvature at any point of a helix.

15. Find the locus of the centres of spherical curvature

of a helix.

16. If, at any point of a curve, equal lengths 8s be
measured along the curve and its circle of curvature, the dis-
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tance between the extremities of these lengths is ultimately

equal to

p being the radius of curvature and cr the radius of torsion at

the point.

17. Shew that the normal plane at any point to the

locus of the centres of circular curvature of any curve bisects

the radius of spherical curvature at the corresponding point
of the original curve.

18. If a curve be drawn on a right circular cone cutting
all the generating lines at a constant angle /?, shew that the

radius of absolute curvature at any point is to the correspond-

ing radius of curvature when the cone is developed in the

ratio of sin a. to Vsin
2
a cos

2

v3 + sin
2

~/3.



CHAPTER X.

ON ENVELOPES.

134. Let the equation of any surface be

F(x,y>
z

) a)
=

(1),

where a is a constant. If a be changed to a we obtain the

equation of another surface

i^,y,s,a')==0 (2),

differing from (1) in magnitude or position or both, but of the

same general nature.

These two equations will both be satisfied by the co-

ordinates of all points in the curve of intersection of the two

surfaces, and if we suppose the value of a! to approach indefi-

nitely near to that of a, this curve of intersection approaches
some limiting position. The locus of all such limiting positions
for different values of a is a surface which is called the envelope
of the surface (1). Its equation can be found in the following
manner.

At all points for which (1) and (2) are satisfied, we have

F(aj,y,*,a)-0,

F(x, g,
z, a) - F Q, y, z, a) =

a' — a

But ultimately when a' becomes equal to a these equa-
tions reduce to

F{x,yt z,a)
=

(3),

~Ffa%z,a)-0 (4),
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which are therefore the equations of the ultimate position of

the curve of intersection of (1) and (2). Eliminating a be-

tween (3) and (4) we obtain the equation of the locus of such

curves, or the envelope of the surface (1).

135. The curve given by the two equations (3) and (4)

of the last article is called the characteristic of the envelope.

If we take the equations of two consecutive characteristics

and treat them as in Art. 131 we get, to determine their point
of intersection, the three equations

F{x, y, z, a)
=

0,

F(x,y ) z,a)=0 >

F"(x,y,z,a) = 0.

If between these three equations we eliminate a we shall

get two relations between x, y, z which are the equations of

the locus of ultimate intersections of two consecutive charac-

teristics. The curve so obtained is called the edge of regres-
sion of the envelope, or sometimes simply the edge of the

envelope.

Thus the line given by equations (4) and (5) of Art. (129)
is the characteristic of the envelope of the normal planes to

the curve, while the locus of the centres of spherical curvature

is the edge of regression of the same envelope.

136. We will now shew that the envelope obtained in

Article 134 touches each of the series of intersecting surfaces.

For suppose from equation (4) of that article we obtain a

value of a,

a = (j>(x } ?/, *).

Substituting in (3), the equation of the envelope becomes

F{x> y,z> <f>{x) y,z))^0 (1).

The values of -v- and -7- at any point of this surface are

given by the equations

dF dFdz
dF/a\j) d^_dz\_

dx dz dx
d(f> \dx dz dx)

^,^<kdF/d$ #^nj
dy dz dy dcf> \dy dz dyj . J

.(2).
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At any point of the surface F (x, y, z
y a) = the values of

-, and -r- are given by the equations

dF dFdz
doc dz dx

dF dFdz

dy dz dy

But at the points where the envelope meets the surface

F(x} y, z, a)
=

0,

we have

Now Tr only differs from -7- in having <£ (#, y, z) instead of

a, consequently at all the points of intersection of the surface

dW
with the envelope, tt = 0, and the equations (2) become iden-

nz (1z
tical with equations (3). The values of -7- and -5- being the

same for the surface and its envelope, the two surfaces touch.

137. If the equation of a surface be

F(x, v,z,a,b) = (1),

when a and b are constants, any two other surfaces formed by
giving new values to a and b will intersect (1) in a point or

points, which assume a limiting position when the new values

of a and b approach indefinitely near to their first values.

The locus of such limiting positions is called the envelope
of the surface (1).

Let a and b become a + h, b-\-h respectively.
The equa-

tion of the corresponding surface is

F(x, y} z,a+h,b + k)=z0,

or F{x, y, z, a, b) + hF (a + 6h)+kF' (b + 6k)
=

0...(2),
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where is a proper fraction and F' (a + 6h) means that

F (x, y, z, a, b) has been differentiated with respect to a, and

a+ Oh put in the result for a.

At the points of intersection of (1) and (2) we have

, F(x,y,z,a) b)
=

\

hF'(a + 6h) + kF'(b+dk) = 0)
K°'9

and whatever be the ratio of h to Jc,
when h and Jc are di-

minished indefinitely all the curves of intersection given by
(3) pass through the points given by

Fix, y, z,a, 6)
= 0, F'(a) = 0, F'{b)

= 0.

By eliminating a and b between these equations we obtain

the equation of the envelope.

138. The envelope in this case also touches each of the

series of intersecting surfaces. For let the equation of one

of the surfaces be

Ffay,z,a,b) =
(1).

The corresponding point on the envelope is given by (1) com-
bined with

'^ = dF = (2).
da ' db

U {)

From (2) we can obtain by solving for a and b

a = & fa y> z)> h = & fa y> z
) ;

and the equation of the envelope becomes

F{x, y, z, fa fa y, z), fa (x, y, z)\
= 0.

dz dz
The values of -r- and -r- for any point of the envelope

are given by the equations

dF d^dz dF_/dfa dfadz\ dF_fdfa dfa dz\ _
dx dz dx dcpt \ dx dz dxj d(j>2 \ dx dz dxj

'

dF dFdz dF/dfa dfadz\ dF_ /dfa d(f>2 dz\ _
dy dz dy dcf) 1 \ dy dz dy) dfa \ dy dz dy)

A. G. 11
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But at the points where (1) meets the envelope

jl t \
dF n

h =
(j>2 (oc,.y,z), rg =0;

'AW dF
consequently at those points -j-r-

=
0, -j-r-

=
0, and the above

equations become

dF dF dz

>dx dz dx
'

dF dF dz_
dy dz dy

'

which are the same as the equations which give -z- and -r-

for the point (a?, y, z) of the surface (1). Hence at the points

where (1) meets the envelope the values of
-j-

and
-j-

are

the same for the surface and the envelope, which therefore

touch one another at those points.

139. If the equation of a family of surfaces contains n

arbitrary constants connected by (n
—

1) equations there is

really one independent constant, and the envelope can be

found by substituting for (n
—

1) of the constants their values

in terms of the nth
. It is better in general to consider

(n
—

1) of the constants to be functions of the nih
,
and dif-

ferentiating all the equations to eliminate by undetermined

multipliers.

If the n constants be connected hy.(n
—

2). equations, two

of the constants are arbitrary, and the envelope falls under

the second class. The method of undetermined multipliers
can be used in this case also.

For examples of the solution of problems the reader is

referred to Todhunter's Differential Calculus, Chapter xxv.,

the methods employed there being equally applicable to the

problems of Solid Geometiy.
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140. The polar plane of any point (a, /?, 7) with respect
to any quadric can be obtained as in Art. 106. If the point
(a, /3, 7) be constrained to lie on any given surface

/(*,y.*)-o (i),

the equation of its polar plane will contain three parameters
a, ft, 7 connected by one relation

/(*,/3,7) = 0.

The equation of its envelope can therefore be found by
the methods of Art. 137.

Suppose this equation to be

f(*,SM)-0 (2).

Then any point (a', /3', 7') in (2) is the limiting position of

the point of intersection of the polar plane of some point

(a, (B, 7) on (1) with the polar planes of points on (1) adja-
cent to {a, /3, 7). Hence by Art. 106 the polar plane of

(a, ft', 7') with respect to the given quadric must pass

through the point (a, j3, 7) and other points on (1) contiguous
to (a, /3, 7), that is the polar plane of (a', 0', 7') is a tangent
plane to (1) at (a, /3, 7). Thus the surface (1) is the en-

velope of the polar planes of all points on (2) with respect
to the same quadric. The two surfaces are from this pro-

perty called reciprocal polars.

Each surface may be also denned as the locus of the

poles of the tangent planes to the other with respect to the

given quadric.

141. Let the quadric with respect to which the polars
are taken be the sphere,

x2

+y
2 + 22 = Jc

2

(1).

The equation of the polar plane of any point {a, /5, 7) with

respect to this sphere is

ax + Py+vz = k* (2).

Let the surface to be reciprocated be the ellipsoid

£+£+£= 1 . (3)x \°J-

11—2
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Hence we have to get the envelope of the plane (2), a, /3, 7

being parameters connected by the relation

M+$-' *
Using the method of undetermined multipliers we get to

determine the envelope,

ft c

whence 1 + \Jc* =
;

and substituting in (2) the envelope becomes

ftV + &y + cV = &4

(5).

The .surface represented by (5) is often called the reci-

procal ellipsoid of that represented by (1).

EXAMPLES. CHAPTER X.

1. Find the envelope of the series of planes

ax + /3y + yz = 1,

where a, ft, 7 are parameters connected by the relations

a
2 + /3

2 + 7
2 =

l,

leu -f m/3 + wy = 0.

2. Find the envelope of a sphere of constant radius

which moves with its centre on a fixed circle.

3. Find the envelope of central sections of an ellipsoid
of which one axis is constant and equal to h
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4. Find the envelope of planes which are the polars of

points on the ellipsoid

a2 + ¥ +
c
2 '

with respect to the ellipsoid

5. Find the envelope of a sphere of constant radius which
moves with its centre in a fixed plane.

6. Find the envelope of an ellipsoid whose axes are

given in direction and the product of whose axes is constant

and equal to 8k3
.

7. Find the envelope of the series of planes

Ix + my + nz = v,

where I, m, n, v are parameters connected by the relations

P + »»' + w" = l,

2 2m n
~^

„.2 7,2
~t"

„,2 JZ
— U.

v
2 — a2 v — o~ v — or

8. Find the envelope of a sphere whose centre is at a

point (a, j3, 0), and radius is 7 where a, /3, 7 are connected

by the relation

k being a constant.

9. Find the envelope of the surface

where a, /3, 7 are parameters connected by the relations

°L - & - t-
a2 F "

7
2 '

a, b, c being constants.
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10. Find the envelope of all planes which cut off a

constant volume from the co-ordinate axes.

11. Find the envelope of a series of planes which move
so that the perpendicular on them from the origin is constant

in length.

12. Find the envelope of a series of planes which move
so that the area of the section of an ellipsoid made by any

*$ one is in a constant ratio to the area of the parallel section

through the centre of the ellipsoid.

13. Find the envelope of a sphere of constant radius

which moves with its centre on a fixed sphere.

14. Find the envelope of the plane

a2 r V "*"

c
2 '

when a, /3, 7 are connected by the relations

dl + ¥ ^
c
2 '

h + m/3 + wy = 1.

15. Through a given point (a, /9, 7) a series of chords

are drawn to an ellipsoid whose equation is

x* y* z* ,

a b c

in such directions that the line of intersection of the tangent

jDlanes at the extremities of each chord is perpendicular to

that chord. Prove that the envelope of the lines of inter-

section of the tangent planes is a parabola which is the

intersection of the polar plane of (a, /3, 7) with the cone whose

equation is

*J(K
2

-&)ax \V-a2

)/fy V(a
2 -62

)7^ _ n
1 7 "\

" — "•
a c



CHAPTER XL

ON FUNCTIONAL AND DIFFERENTIAL EQUATIONS OF

FAMILIES OF SURFACES.

142. To find the general equation of conical surfaces.

A conical surface is generated by a straight line which

always passes through a fixed point and meets a fixed curve.

Let (a, /3, 7) be the fixed point, and let the equations of

any generating line be

I m n ^ '*

Let the equations of the curve through which (1) always

passes be

y = ${x), z = yjr(x) (2).

Since (1) always meets (2) we have

7+ j(x-a)-^(x).

And eliminating x between these equations, we shall get

a relation between
-j
and -7 ,

which can be put into the

form

n „(m\

r
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whence the equation of the cone becomes

g-7 _ v(y-P
*=f(*^S) (3).
a \x — aj '

This is the functional equation of conical surfaces. In

all cases it is clear that the equation is homogeneous in

% — a, y
—

ft, z — y, in fact the result we have obtained is

the analytical statement of the fact that the equation of

any conical surface whose vertex is at a point (a, ft, 7) is

homogeneous in x — a, y — ft, z — y; an extension of the

result of Art. 34.

A differential equation holding for all such surfaces can

be deduced thus.

From (3) differentiating with respect to x,

dx \x - a/ \x — aj \x — aj

and with respect to y,

dy \x — oJ

dz _ z — 7 ='

'

y — ft dz

dx x — a x — a'dy'

ox
(
x-^% +(y-®% =z-i w-

143. To find the general equation of cylindrical surfaces.

A cylindrical surface is generated by a straight line which
moves always parallel to itself and meets a fixed curve.

Let I, m, n be the direction-cosines of any one of the

generating lines, and

*-£_Z=*_*=f_ P
I m n v '

the equations of the line. Let the equations of the directing
curve be

r=*(j), z=^{x) (2).

Since (1) meets (2), we have

y + mr =
<j> (x + Ir), z + nr = y{r(x + Ir),
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and by eliminating r between these two equations we get a

relation between x, y, z, the co-ordinates of any point in any
one of the generating lines, which is therefore the equation
of the surface.

The general form of the result is obtained thus.

From (1) mX—IY= mx — ly,

nY—mZ— ny — mz.

But from (2) mX — IY and nY— mZ can ordinarily both

be expressed as functions of X, and we can therefore deduce

a relation of the form

mX-lY= F(nY-mZ);
.'. mx — ly

— F (ny
—
mz) (3),

which is the general functional equation of cylindrical
surfaces.

The differential equation can be deduced. For from (3),

differentiating with respect to x,

m =
-mF'(ny-mz)-^,

and differentiating with respect to y

-l=^n-m-^)F' (ny-mz),

, 7 dz dz
whence I -y-

= n — m -j-~ ,ax ay

?
dz

,
dz ...

l
dx
+m

dy
= n

<*)•

If the direction of the generating line of the cylindrical
surface be parallel to the axis of y we have I = 0, m = 1,

n = 0, and equation (3) becomes

x = F(-z) or /(a?,«)
=

(5).

Any equation of this form represents therefore a cylin-
drical surface whose base is the curve of which (5) is the

equation regarded as an equation restricted to the plane
of zx.
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Similarly the equations

/(«,y)-0,

/(y,*)=6,

represent cylindrical surfaces whose generating lines are

parallel to the axes of z and x.

These results are obvious also from general consider-

ations.

144. To find the general equation of conoidal surfaces.

A conoidal surface is a surface generated by a straight
line which always- meets a fixed straight line, is parallel to a

fixed plane, and meets a fixed curve.

Let the equations of the fixed line be

x — a.y — Sz—y ,, x

—7—=-— L = r (1),
I m n w

and let the equation of the fixed plane be

l'x + my + w'2 = 0...». (2).

The co-ordinates of any point in (1) can be represented

by OL+lr, /3 + mr, 7 + nr, and the equations of any straight
line through this point are

x — a.
— Ir _y — /3

— mr z — 7 — nr ._.

\ jM V

If this be parallel to (2),. we have

\T + pm'+im'=Q (4).

From (3) and (4)

. I' (x
— a)+ m (y

—
J3) -Hi'(*

"~
t)
=

(^' +mm
' + nn

')
r-"(5)i

and from (3) eliminating r

n\ — lv_ n(x — a)—l(z — y)

nfx
— mv

~
n (y

—
J3)
—m (z

—
7)

^ '"

Now the condition that the straight line (3) may meet the

fixed curve, combined with (4), will ordinarily enable us to
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express
- and - as functions of r, and consequently we can

arrive at a result of the form

= F
{{11! + mm! + nri) r),

11/jl
— mv

or

which is the general functional equation of conoidal surfaces.

If the fixed plane be taken as the plane of xy, and the

point where the fixed line meets it as the origin, we have

J' = 0, m' = 0, n'=l, a = 0, £=0, 7 = 0,

and the equation (7) becomes

J^^=F(z) (8).
ny
— mz v ' v '

If the fixed line be perpendicular to the fixed plane

I= 0, m = 0, w = 1,

and the equation of the surface becomes

y
v

* =*© (°)-

In this case the surface is called a W^Ai conoid,

145. The differential equation of conoidal surfaces can be
deduced from (7) ;

for differentiating it with respect to x> we
have

/ dz\ dz

v~ l

dx) {" (y-®-m (
z-ri}+m dx {

n
(
x - a)- 1 (*-w

=
(l>
+ n'^)F'{l'(x-a)+m(y-/3)+n'(z- 7)} ;
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and differentiating with respect to y, we have

{^(2/-/3)-m(s-7)}
2

=
(
m' +w'

s) F l
r

(
^~ a) + m'(y~® + »'(*- v)T-

and reducing and eliminating

F
[1! (x-z) + m'(i,-/3) + *! (*-?)}

we obtain

(
m' + n

'

fi/J* (y-&~ m (
z -v) + -£{

m (x-z)
-
i(y-P)\l

or ??i' {n [y
—

/3)
— m(z — 7)} + Z'{w (x

—
a)
- Z (z

—
7)}

+
j- [m [m {x

-
a)
- 1 (y

-
ft) } + ri [n (x

-
a)
- I (z

-
7) }]

+
jK^(2/-/3)-m(^-7)}

+ r^(2/-^)-m(^-a)}]= 0...(10).

The differential equation corresponding to equation (8) is

obtained by putting

a = 0, 13=0, 7=0, JT-ft m' = 0, »'*1,

and is therefore

(^~^^ +^~ m^^ ==0 (11 )*

The differential equation of a right conoid is obtained
from (11) by putting

I = 0, m =
0, ?i = 1,

and is therefore

4* .
&* r, /ion

•»**$* °^ W
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The forms (11) and (12) can of course be obtained di-

rectly from (8) and (9) by differentiation.

For instance from (9), differentiating with respect to x}

we have

dx y
^

\y)
*

y \y.

and differentiating with respect to y,

dz _ x , /x\

whence eliminating yjr' f-J,
we have

dz dz _ n
dx **

dy

146. The three classes of surfaces we have considered

are all included in the general class of ruled surfaces, that is,

surfaces which can be generated by the motion of a straight
line. The first and second differ from the third in this, that

any two consecutive generating lines in any surface of the

first or second classes lie in one plane, whereas this is not

in general the case with the third class. Kuled surfaces

in which consecutive generating lines lie in one plane are

called developable surfaces, while all other ruled surfaces are

called skew surfaces. Thus the surface generated by the

ultimate intersections of the normal planes to a given curve

is developable.

Developable surfaces are so named for the following
reason. Let a series of consecutive generating lines be

drawn. The plane which passes through the first and
second line intersects the plane which passes through the

second and third line in'the- second line. The first plane may be

turned round the second line till it coincides with the second

plane, and thus three generating lines of the surface can be
made to lie in one plane. Again, this plane can be turned

round the third line till it coincides with the plane which

passes through the third and fourth lines, and so four con-

secutive lines can be made to lie in one plane. In this
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manner the whole surface can be developed so as to lie in

one plane without tearing.

Since any two consecutive generating lines of a develop-
able surface lie in one plane, any such surface may be pro-
duced by the ultimate intersections of a series of planes, and
since any two consecutive planes intersect in a line on the

surface, the equation representing any one of the series can

only involve one arbitrary constant (Art. 134).

147. Let the equation of one of the planes be

Ax + By+Cz-D =
(1).

Then since the equation only involves one arbitrary con-

stant, A, B, C, D must be functions of one constant which
we may call a. Thus equation (1) may be written

*fc to + y&W + **. to -&(*) = o (2),

and the envelope is found by eliminating a between (2)
and the equation obtained by differentiating it with respect
to a, viz.

#/ to + yfc'to +#/to -
&' to = o (3).

To obtain the general differential equation of developable
surfaces we must differentiate (2), considering a as a function

of x, y, z determined from (3).

Differentiating with respect to x}
we get

or by (3), fc-(«) +
g*b(«)-0 (4).

Similarly, differentiating with respect to y, we get

dz

&«+g&(«)
=

(5).
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Eliminating a between (4) and (5), we get

£=/©• <«>

and differentiating again with respect to x and y in turn,
we get

d?z _„ fdz\
oW "~*

\dy)dx* J
\dyj

'

dxdy*
d?z _ f

, /dz\ <Pz_

dxdy^^ \dy)' dy
i%

And eliminating f (
-y-

)
>
we get

*" «*'*
(
d*

z V - q
dx*

'

dy* \dx dy)
~~

'

which is the differential equation of developable surfaces.

143. To find the general equation of surfaces of re-

volution.

A surface of revolution is the surface produced by the

revolution of a plane curve round a fixed straight line in its

plane called the axis of revolution.

Let the equations of the axis of revolution be

I m n ^ '"

And let y=f(a) be the equation of the revolving curve
when the axis of revolution is taken as the axis of x, and
the point (a, ft, 7) as origin. Let P be any point on the

surface, PR perpendicular on the line (1), and Q the point
(a, @, 7). Then from the definition of a surface of revo-

lution,

PR=f(RQ) (2).

But BQ =* l(&
—

a) + m (y- £) + n («- 7),

since it is the perpendicular from Q on a plane through P
perpendicular to (1), and

PE2 = (*-«)
2 + (y-/3)

2 + (S
- 7)

2

~{l(x-a) + m (y-fi+n(fi-y)}\



176 ON FUNCTIONAL AND DIFFEKENTIAL EQUATIONS

Hence

(a;
- a)

2

+(2/-/9)
!!

+(^- 7)

!!

={Z(a! -a) + TO(y-/3)+»(^- 7)P

+ [f{l (x
-

a) + m (y
-
P) + n {z

- 7)}]
2
,

or (
fl
._ a)«+ (y_ j8)» + (,_ 7)i

= {*(*-*) +m(y- /8) + »(*- 7)} (3),

which is the functional equation of surfaces of revolution.

The differential equation can be thus deduced.

Differentiating (3) with respect to x we get

2{(*-a)
+ (*~ 7)J}

=
{

J + n
£}*'

t^-«)+™(2/-/3)+»(*-7)l.

and differentiating with respect to y

2{(j-ffl+fr-7)|}

!
w + n ~r \ $' P (^

~ a
) + m (y

~
£) + n

(
z ~ ?) J

•

dy

Eliminating <j>
and reducing, we get

dz
m(x-a)-l(y-/3) + [m {z-y)-n(y- £)} ^

+
{n(x-«)-l(z-y)}^

=
(4),

which is the differential equation required.

149. The conditions that the general equation of the

second degree should represent a surface of revolution, can

be obtained either from the functional or differential equa-
tion of the last Article. We will obtain them from the func-

tional equation.
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Let the equation be

Ax2 + By
2 + Cz2 + 2A!yz + 2B'zx + 2G'xy

+ 2A"x + 2B"y + 2C"z + F = (1).

If this equation represents a surface of revolution it can

be put into the form

(x -a)
2

+(y-ft)
2

+(z- 7)
2 = P 9* + my + nz)

2

+ Q(lx+my + nz) + R (2),

where P, Q, R, are constants. This is evident from the

considerations that the right-hand member must be some
function of

I (x
-

a) + m (y
-

j3) + n (z
-

7),

or of Ix + my + nz — (la + ra/3 -f ny),

and that it cannot contain x, y, z to a higher degree than
the second. Making the equations (1) and (2) identical,

we obtain from the terms of the second degree

Pl2 -l=kA (3), Pmn = kA' (G),

Pm2-\=kB (4), Pnl = kF (7),

Pn 2 -l=kC (5), Plm = kC (8),

where k is some constant.

Multiplying (7) by (8) and dividing the product by (6),

we obtain
jyrn

These are the conditions which must be satisfied by the

coefficients of the equation.

The relations which must subsist between a, ft, 7 are ob-

tained by equating the coefficients of the terms of the first

degree in (1) and (2). We thus obtain

Ql + 2a = 2kA'\

Qm+2j3 = 2kB" t

I Qn + 2y = 2kC".

A. G. 12
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Whence *£^J*^J*b=l (10).

I
2 m2 n2

But
-grjj,

=
^tj ^-jrg, ,

and h is given by (9).

The three equations (10) being the relations which

a, )3, 7 must satisfy are the equations of the axis of re-

volution.

150. The preceding investigation fails if the quantities

B'C
A

C'A' D A'B' n ..

-j7--A, -g--B, -Q-,
G vanish,

for then k is required to be infinite.

We know that the equation (1) in this case represents a

parabolic cylinder, or two parallel planes (Art. 91), conse-

quently the surface cannot be a surface of revolution.

The investigation also fails if A\ B\ or C vanish. Sup-
pose A' = 0. From equation (6), mn = 0; .*. m = orw = 0,

and therefore, B' or C must vanish also. Suppose n = 0,

and therefore B' — 0, we get then

Pirn = hC\

JfeC=-l,

and (1+M)(1 + JcB) = PTm2 m k2
G'

2

;

.-. (C-A)(C-B)=C
2
,

which with B' = is the condition required. The other

exceptional cases can be treated in the same way.

151. The differential equations of the different classes of

surfaces can be put into a more symmetrical form by the sub-

stitutions

dF dF
dz _ dx dz _ dy

dx~~dF_' ty~~2F>
dz dz
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and corresponding substitutions for the second differential

coefficients of z, the equation of the surface being assumed
to be

Thus the differential equation of cylindrical surfaces

becomes

jdF ,

dF
t

dF
ft m

l

fa
+m

~d^
+ n

~dz-
= ° (1) '

LLJu LIU ULZ

The equations can be more conveniently used in this

form to discover whether a surface whose equation is given

belongs to the peculiar class considered.

For instance, if the surface be cylindrical, there must be

some values of I, m, n which shall make the expression

,dF dF dF /sn
l^ + m

-di
+ n

di (2)

vanish identically for all values of x, y, z corresponding to

any point on the surface.

The conditions that this may be possible will be that the

coefficients of the several powers and products of x, y> z in

(2) must vanish for the same values of I, m, n.

The differential equations can be found independently of

the functional. For instance, equation (1) is the algebraical
statement of the fact that at all points of the surface

F(x,y,z) = 0,

a straight line whose direction-cosines are I, m, n is a tangent
line to the surface, a condition obviously satisfied by cylin-
drical surfaces only.

In the case of conical surfaces we at once obtain the dif-

ferential equation

.dF
, a ,

dF .dF n

from the consideration that the straight line joining any
point (x, y, z) with the vertex is a tangent line to the surface

at the point (x, y} z),

12—2
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EXAMPLES. CHAPTER XL

1. Shew how to find the functional and differential

equations of a tubular surface, that is, a surface which is the

envelope of a sphere of constant radius which moves with its

centre on a fixed curve.

2. Prove that the surface

x3 + y
3 + z

3 -
Sxyz m a3

is a surface of revolution round the line x = y — z. Find the

equation of the generating curve.

3. Find the equation of a conoidal surface of which the

generating lines pass through the axis of z and are parallel to

the plane of xy, and whose directing curve is a circle with its

centre in the axis of x and its plane parallel to that of yz.

(The Cono-Cuneus.)

4. Find the equation of the surface generated by a

straight line which passes through two fixed straight lines

at right angles to each other, and also through a circle

whose plane is parallel to each of the straight lines and
whose centre is at the middle point of the shortest distance

between them.

5. Find the equation of the surface generated by a

straight line which always passes through the axis of z and
some point of the curve

x = a cos 0, y — ci sin 0, z = c0;

and is parallel to the plane of xy.

6. Find the equation of the surface generated by the

tangent lines of the curve

x = a cos 0, y = a sin 0, z — c0.

7. Find the equation of a conical surface whose vertex

is at any point on the surface of a sphere, and whose base is

a small circle of the sphere.
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Find also the curve in which the cone is cut by a plane

through the centre of the sphere perpendicular to the dia-

meter through the vertex.

8. Find the equation of the surface generated by the

revolution of a circle round a straight line in its own plane
which does not cut it.

9. Prove that all tangent planes to the surface in the

last question which pass through its centre cut it in two

circles.

10. A fixed straight line AB meets a fixed plane in A.
A straight line AP moves so that the sine of the angle which

it makes with AB bears a constant ratio to the sine of the

angle which it makes with the fixed plane. Find the surface

generated by AP.

11. Find the conditions that the surface

Ax' + Bif + Cz2 + 2A'yz + 2B'zx + 2G'xy

+ 2A"x + 2B"y + 2C"z + F=
may be a cylindrical surface.

12. Shew that with the notation of Art. 100 the con-

dition that the surface F(x,y, z)
= may be develop-

able is

U2

(vw
- u"

z

) + V2

(wu
- v

2

) + TP (uv
- w 2

)

+ 2 VW{v'w - uu)+2WU(w'u -
vv) + 2 UV(u'v-icw)= 0.

Deduce the conditions that the surface in (11) may be

developable.

13. Find the equation of the surface generated by all

the normals drawn to an ellipsoid

a2 +
6
2

c
2 '

at the points where it is cut by the cone

a b c A-+-+- = 0.
x y z
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14. A surface is generated by a straight line which

passes through the axis of z, and the line x = a, z —
;
re-

maining parallel to the plane y = hz. Shew that its equa-
tion is x (y

—
kz) = ay.

15. Describe the general nature of the surfaces repre-
sented by the several equations

(1) f(r, 6) = 0. (2) f(r, </>)
= 0. (3) f{0, </>)

= 0.

16. Examine the nature of the surfaces represented by

(1) r
2 = a

2
cos2<9. (2) r

2 = a2
cos 2<£.

17. Find the equation of a cylindrical surface having
one central circular section of an ellipsoid for its guiding

curve, and its axis perpendicular to the other circular

section.

18. With the axis of z as axis a series of helices are

described, all intersecting two given curves; prove that the

functional equation of the surfaces generated is

tan
-1 2 = z . F(a? + f) +f(x

2 + y"),x

and that the differential equation is

„ d 2
z - d2

z o d 2
z dz

,
dz

u dx- J dx dy dy
i dx 9

dy

19. A candle is placed at a given distance in front

of a plane vertical circular mirror on a line perpendicular
to the plane of the mirror through the extremity of its

horizontal diameter; shew that the boundary of the re-

flected light which falls on a wall of which the plane is per-

pendicular to that of the mirror is a parabola, and deter-

mine its latus rectum.

20. A straight line AB moves on two fixed straight
lines not in the same plane so that the portion between

the lines subtends a right angle at a fixed point 0. Prove

that the locus of this line is a skew surface of the second

order.
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21. Obtain the differential equation of surfaces of revo-

lution from the consideration that at every point of such
surfaces one tangent line is perpendicular to the plane con-

taining that point and the axis of revolution.

22. Shew that if a section of a right conoid whose

generating lines are parallel to the plane of xy be made

by any plane parallel to that of xy, the normals at points in

the lines of section will meet the plane of xy in concentric

hyperbolas.

23. Prove that the general functional equation of the

surfaces generated by a circle which always touches the axis

of z at the origin may be written in the form

x* + y* + z* =
2cxf(^),

and that the differential equation is



CHAPTER XII.

ON FOCI AND CONFOCAL QUADRICS.

152. A FOCUS of a conic section is a point such that the

distance of any point on the curve from it can be expressed
as a linear function of the co-ordinates of that point.

There are certain points which have analogous properties
in reference to quadrics, and which may therefore be called

foci of quadrics.

153. For instance the equation of the ellipsoid is

^ +t + ? = 1 (1)

where we will suppose a, b, c in descending order of magni-
tude. Also let ev e

2 ,
e
3
be the excentricities of the sections

of (1) by the planes of yz, zx, xy respectively.

The co-ordinates of the focus of the section by the plane
of xy are ae

3 , 0, 0. The square of the distance of any point

{x, yf z) in (1) from this focus

= (x-ae3Y + y*+z
2

-2as
3x+a\* + b*(l-^-?)

+ z*

b
2 — c

2

2ae
<t
x + a- ^— z

2

(e3x-a)
2

-J-

be
a)(e3

x + e'z — a)> if e = —1

c
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Hence the square of the distance of any point on (1)
from the focus of the section of (1) by the plane of xy is

equal to the product of two linear functions of the co-ordi-

nates of the point.

Or, geometrically, we may say that the square of the

distance of any point on the quadric from the focus of the

section of the quadric by the plane of xy, is proportional to

the product of the distances of the point from two planes
whose equations are

e
3
x — ez — a = (2),

e
8
x + ez — a = (3).

These two planes intersect in a line whose equations are

z = 0, e
z
x — a = 0, that is in the directrix of the section of

the quadric by the plane of xy.

Similar properties hold for the foci of the sections of the

quadric by the planes of yz and zx, but in these cases the

two planes corresponding to (2) and (3) are impossible,
though their line of intersection is real.

154. These points are not however the only points which
have the same property. We will examine the conditions

which must be satisfied by the co-ordinates of any point, in

order that the square of its distance from any point on a

given central quadric, may be proportional to the rectangle
contained by the distances of the latter point from two

planes, real or impossible.

If a, /?, 7 be the co-ordinates of such a point, we must
have the expression (x

—
a)

2 + (y
—

ftf + (z
—

y)
2

identically

equal to

{l(x-anMy-^+n(z-y
,

)}{r(x-oL
,

)+m(y-^)+n
f

(z-y%

for all values of x, y, z which satisfy the equation of the

quadric ; a', ft', y being the co-ordinates of any point in the

line of intersection of the planes.
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Let the equation of the quadric be

Ax* + Btf+Cz
2 =l

(1).

Then the equation

(*-a)
2

+(2/-/5)
2

+(*-7)
2

must be satisfied by all values of x, y, z which satisfy (1).

This can only be the case when the two equations are

identical, and as first conditions for this the coefficients of

yz, zx and xy in (2) must vanish. We thus get

mri + rim = 0, nV + ril = 0, Im + I'm = 0,

which can only be satisfied by one of the sets of conditions

m ri i

or

z = o, r = o,

m = 0, m =
0,

n = 0, ri = 0, 7 =

111
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And by comparing the terms involving x, y, z
%
and the

constant term in (4) with the corresponding terms in (1) we
have

a-£ZV=0, /3
=

0, 7 + /™y = (G),

a* + & + y* -7d* a!* + hi2

y
2 =- ±

(7).

And substituting for a
, y from (6) in (7) we obtain by help

of (5),
2 9

tVtV' »
2 £ 2

The equation (8) combined with /3
=

gives a conic

section in the plane of zx, all the points on which may be

considered as foci of the quadric. This curve is called a focal
conic of (1).

155. The equations (6) give values of a and y cor-

responding to any particular focus (a, ft 7). These values

determine the position of a straight line which we may call

the directrix corresponding to that particular focus.

The directrices corresponding to the different foci lying
on the conic (8) all lie on a cylinder whose equation will be
found by eliminating a and 7 between (6) and (8), to be

156. The other conditions in (3) will similarly give us
two other focal conies in the planes of xy and yz whose

equations are

tVt^t-' <»»•

A G B G

T7T
+
T7T=

1
<
10>;

BACA
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and corresponding to any focus there will be a directrix per-

pendicular to the plane in which the focal conic lies.

Of these conies, whatever be the signs and relative mag-
nitudes of A, B, C> one will be an ellipse, another an hyper-
bola, and the third an impossible locus.

157. For instance, in the ellipsoid whose equation is

x* f £
-,

2 « £» » 2
— J

-fa b c

the equations of the focal conies will be

+ jr-
—

a
= 1 in the plane of xy,

zx,

+ -2--2 = l yz.a2
cr -

And if we assume a, b, c to be in descending order of mag-
nitude, the first of these is an ellipse the extremities of

whose axes are the foci of the sections of the original

ellipsoid by the planes of yz and zx: the second a hy-

perbola with its real axis in the axis of x, the extremities

of this real axis being the foci of the section of the ellipsoid

by the plane of xy : while the third is altogether an im-

possible locus.

Similar results may be obtained for the two hyper-
boloids.

158. The focal conies of a cone

Ax2 + By
2 + Cz2 =

(1)

can be deduced from those of a central quadric

Ast+Bf+ Cz2 = \ (2),

by putting X equal to zero.
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The focal conies of (2) would be, writing
—

, c
-

> t in-

stead of A, B, G in the formulas (8), (9), (10) of Articles

154 and 156,

A A A A

A~B G~B
or

+ /3
2

A A A A

A~G B~C

A_ A ^_^:
^ 4 -4

Or, multiplying these equations by A and then making A

to vanish, the focal conies of the cone (1) become

a2



190 ON FOCI AND CONFOCAL QUADMCS.

we must as in Art. 154 make the equation (1) identical with

(x-*y+(y-f3y+(z-yy

-[^- a04-m(2/~/30+w(^-70)^X^-O+^(3/-/3>^(^-7)i=0(2

The first conditions for this identity are the same as

equations (3) of Art. 154, and if we take the second of those

V
conditions and put j

=
k, equation (2) becomes as in that

Article

(x
-

a)
2 + (y

-
/3)

2 + (z
- 7)

2 -W (x
-

a')

2 + kn' (z
- 7')

2 = 0.

And since (1) contains no term involving x2 and no con-

stant term, we get

1 - M2 = 0, or + j3
2 + 7

2 - hi
2
a!

2 + bfy'
2 =

;

and by comparing the remaining terms in the two equations,
we have

C ~B~ 1

and thus we get for the locus of the foci the two equations

/
8 = Oanda2 + 7

2

-(«- 2-^)

2

+^g=0)

or

cy i/ _ jly

and j3=o\

By taking the third of the conditions (3) of Art. 154 we
shall similarly get another focal conic in the plane of xy
whose equations are

7=0,

B-C~ C\ 4C7*

The first of the conditions (3) of Art. 154 is in this case

inadmissible inasmuch as (1) contains no term involving x2
.
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Thus in this case the focal conies are two parabolas whose
vertices are the foci of the sections of the surface (1) by the

planes of xy and zx.

160. Two central quadrics

Ax* + By*+Cz* = l,

A'af + By+C'^^l,
will have the same focal conies if

A B~ A' B"
1
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quadrics confocal to (1) which pass through the point (a, /3, 7),

of which one can be shewn to be an ellipsoid, and the others

to be hyperboloids of one and two sheets respectively.

162. Any two confocal quadrics intersect at right angles
at all points where they meet.

For let x, y,
z be the co-ordinates of any point common to

the two quadrics

A^ B^ G
l

{l)t

*V ,'/•' ,
"* m i (2 )A+k + B+k^C+k~ Vf

;'

The equation of the tangent plane to (1) at the point

(w, y, z) is

xx yy zz
., ,«..

A + B + C- 1 ^-

And the equation of the tangent plane to (2) at the same

point is

xx yy z'z _ (
.

A^k + TTk +
C+ k~ W *

But from (1) and (2) by subtraction we obtain at all their

points of intersection

x2 f z*

A{A + k)
+
B(B+k)

+
C(G + k)

'

which is the condition that (3) and (4) should be at right

angles to each other,
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EXAMPLES. CHAPTER XII.

1. Find the equations of the focal conies of the quadric

2. Find the equations of the quadrics confocal with the

quadric

which pass through the point (1, 1, 1).

3. Find the locus of the points of contact of tangent

planes drawn from a point in the axis of x to a series of con-

focal surfaces whose axes coincide with the axes of co-ordi-

nates.

4. Shew that the surfaces

a ax — a ax-^b

+ y+
**

, -ir Q~ /J.. . ~2 Z.2
x >

intersect everywhere at right angles.

5. Shew that if the foci of the principal sections of two

paraboloids coincide, their focal conies will also coincide.

6. Extend the proposition of Art. 162 to the case of two
confocal paraboloids.

A. G. 13
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ON CURVATURE OF SURFACES.

163. Two surfaces are said to have contact of the firs1

order at any point where they meet when they have a com-

mon tangent plane at that point. The necessary and suffi-

cient conditions for this are that for the same values of x anc

y the values of z, -=- and -7- shall be the same for the two

surfaces.

Two surfaces are said to have contact of the nth order at 1

point where they meet when the sections of the two surface:

by every plane passing through that point have contact of th<

nth.
or(jer# This we will prove to be the case if the sections o

the surfaces by all planes which contain any given straigh
line through the point of contact not lying in the tangen
plane have contact of the nth

order.

For let the common point be taken as origin and th<

given line as axis of z. Let the equations of the two surface

be

*«/<*, y) (i),

*~*{«,v) (2).

Expanding (1) and (2) we obtain

-©•+(D»+~+K-s+4)' /+ *

=S)«(f)^-+-K+4)"*+ ""<ft
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where z
x
and 2

2
are the ordinates of the two surfaces corre-

sponding to the same values of x and y\ and in the quantities

4- , -j- ,
... x and y are put equal to zero after the differen-

tiations are performed.

Now since all sections of (1) and (2) by planes which con-

tain the axis of z have contact of the ?i
th

order, the difference

of z
x
and z

2
must be of the (n + If

1

degree in x and y. Hence
we have

df^dF df = dF dV= d*F d*f = d*F
dx dx

'

dy dy
'

dx* dx*
*

dxdy dxdy
'

'

dy^d^F dn
f dnF

dxn dxn>
'"

dafdy"-* dafdf^

If now the axes be changed in position, the origin remain-

ing the same, since the new co-ordinates x
, y, z' of any point

are, linear functions of the old co-ordinates, it is clear that any
dr+

*z'
differential coefficient of the form

, ,r , IS can be expressed in

terms of the differential coefficients of z with respect to x and

y of orders up to but not exceeding the (r + s)
th

. Hence if the

differential coefficients of z with respect to x and y for one

surface, up to those of the nth
order inclusive, be respectively

equal to the corresponding quantities for a second surface, the

same will be true of the differential coefficients of z with

respect to x and y \
that is, if conditions (5) be satisfied for

two surfaces with any one set of axes, they will be also satis-

fied with any other set of axes.

Thus if the sections of the two surfaces (1) and (2) by all

planes through the axis of z have contact of the nth
order, so

will their sections by all planes through the common point.

The conditions that two surfaces should have contact of

the ntli

order at a given point are therefore that the values of

<fe dz
d^z

dn
z dn

z
Z>

dx' d^
y '"d^ } dxn-x

dy
,%
"dy

ni

should be the same for the two surfaces for the given values

of x and y.

13—2
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164. If two surfaces touch at a given point and the

sections by a plane through the normal and any tangent line

have contact of the second order, then all sections by planes

through the same tangent line have contact of the second order.

Take the common point as origin and the common normal

as axis of z. Then, z =f{x, y), z = F(x, y) being the equa-

tions of the two surfaces, the values of -—
, -J- , -j- , -*?

ax ay ax dy
vanish at the origin and the equations of the surfaces can be

put in the form

z — ax* + hxy + cy* -f (1),

z=Aa?+Bscy+Cy*+ , (2),

where a, b, c are the values of \
~~

,
,

•*

, }
-~~ at the

origin, and A, B, G those of \^ , ^- , \^ .

Also if the given tangent line be the axis of x, the sec-

tions by the plane of zx have contact of the second order, and
we have a — A.

Consider now the sections by a plane through the axis

of x whose equation is

y^rnz (3),

we have for a given value x
x
of x, in the one surface

z
}
= ax* -*- hx

1y1 + cy? + . . .
,

and in the other

z,
= Ax? + Bx

1y2 +Cy
* + ...;

•'• Si-sa
=

ffi (%1-%2)+ c
2/i

2-^2

2 + •••

But zv z
2 being of the second degree in xv yx

and y2
are so

also by (3), and therefore x (byx

— By2)
is of the third degree,

and therefore z
x
— z

%
is of the third degree in

a?,,
and the

sections of the two surfaces by (3) have contact of the second
order.

Similarly if two surfaces have complete contact of the

{n — l)
th
order at a given point, and the sections by any plane
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through the normal and a given tangent line have contact of

the nth

order, then all sections by planes through this tangent
line have contact of the nth

order.

165. From the proposition proved in the last article it

follows that if R be the radius of curvature of any normal
section of a surface, R cos is the radius of curvature of an

oblique section through the same tangent line inclined at an

angle to the normal section. For if a sphere whose radius

is R be described touching the surface at the given point,
the normal sections of this sphere and the surface through
the given tangent line have contact of the second order and
therefore also any oblique sections.

But the radius of curvature of the oblique section of the

sphere is obviously R cos
;
hence the radius of curvature of

the oblique section of the given surface is also R cos 6. This

proposition is called Meunier's Theorem.

166. If the tangent plane at any point be taken as the

plane of xy and the point of contact as the origin, we have
seen that the equation of the surface can be put into the

form
z = ax2 + bxy + cy

2 + (1),

where the remaining terms are of a higher degree than the

second.

Consider the section of this surface by a plane through
the axis of z whose equation is

y = #taa# (2).

The radius of curvature of this section is the limit of

x2 + v
2——— when the values of x and y are diminished indefi-

2-z

nitely. Hence if p be this radius, we have

I
'

. ax* + hxy 4- cy* 4- Ax%

2p
'

x*+tf
a -f b tan -f c tan*fl -f Ax

*•

l+tan2

= aeos20+ &sin#cos0 + csin
2

(3).
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If we construct the conic section whose equation is

ax2 + b%y + cy
2 — 1 (4),

it is evident from (3) that the square of any radius vector of

this conic represents the diameter of curvature of the section

of (1) by a normal plane passing through this radius vector.

This conic section is called the indicatrix of the surface at

the given point.

If in (1) we suppose x and y so small that the terms on
the right hand after the third may be neglected, we get

z = ax2 + bay + cy* (5).

The curve in which this surface is cut by a plane z = h

parallel to the plane of xy is similar and similarly situated

to (4). Hence the indicatrix at any point of a surface may be
denned as a curve similar and similarly situated to the limit

of the curve in which the surface is cut by a plane indefi-

nitely near to the tangent plane at the given point.

167. By choosing the axes of x and y so as to coincide

with the principal axes of the indicatrix the equation (4) of

the last article assumes the form

Aa*+Cy*=l (1).

Also the radii vectores drawn in the directions of the

principal axes are respectively the least and greatest radii

of the curve. Hence the normal sections for which the
radius of curvature is least and greatest respectively, pass

through the principal axes of the indicatrix. The radii of

curvature of these sections are called the principal radii of

curvature at the given point, and the sections themselves,
the principal sections.

Let R and R be the principal radii of curvature, p and p
the radii of curvature of any other sections at right angles,
which we may take to be the sections through the axes 'of a?

and y in equation (4) of the last article. Then

1 1
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But A + C = a + c. (Todhunter's Conic Sections, Art.

274.)

And therefore

1 +1 = 1
+ 1 (2).

Also if the section whose radius of curvature is p be in-

clined at an angle to the principal section whose radius

is R, we have from (1)

l^cos^+Csin2
^;

Zp

.\i=icos2 + -Lin2
(3).

p it J.C

We can thus obtain the radius of curvature of any normal

section if we know those of the principal sections, and by
Art. 165 we can deduce that of any oblique section. Hence,
if we know the principal radii of curvature at any point of a

surface, the curvatures of all sections of the surface at that

point are known.

168. To find the radius of curvature of any normal
section of a surface at a given point.

Let the equation of the surface be

F(x,y,z)=0 (1),

and let x, y, z be the co-ordinates of the given point P. Let

I, m, n be the direction-cosines of the tangent line at (x, y, z)

through which the cutting plane passes. Also let x + a,

y + /3,z+y be the co-ordinates of a point Q in the curve of

section near to P. Let QR be drawn perpendicular on the

tangent plane. Then, by Newton, the radius of curvature

of the section is the limit of -775 when Q is made to ap-

proach indefinitely near to P.

But the equation of the tangent plane is

<*'-*>f+^>f+ c'-*>§= <2>-
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169. The principal sections are those for which p is a
maximum or minimum. Hence we have to make the ex-

pression
ul

2 + vm? + wn2 + 2umn + 2v'nl + 2wlm (1)

a maximum or minimum by the variation of I, m, n, which are

connected by the relations

l
2 +m2 + n2 = l (2),

Ul+ Vm+ Wn =
(3),

the latter expressing the fact that the line whose direction-

cosines are I, m, n lies in the tangent plane at the point

(x, y, z). We shall denote the expression (1) by the symbol h.

Differentiating (1), (2) and (3) and using undetermined

multipliers, we obtain

ul+w'm + vn + M + k'U= (4),

w'l+ vm + u'n + km + k'V = (5),

vl + um + wn + Jcn+k'W=0 (6).

Multiplying (4) by I, (5) by m, and (G) by n, and adding,
we get

h + Jc = (7).

And the three equations (4), (5), and (6), become

(u
—

h) I + w'm + vn = — 1c'U,
1

w'l + (v
—

h) m -f u'n = — k'V,

vl + um + (w
— h)n=—k' W,

whence

I m
u,
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From (9) we obtain two values of h and therefore of

p, and from (8) we deduce the corresponding values of

I, m, n.

170. The formulae of the last two articles are somewhat

simplified if we take the unsymmetrical form of the equa-
tion of a surface

or f(^,y)~z = 0.

The reductions may be effected by the substitutions

U=p, V=q, 17 =-1,
u — r, v = ty w = 0,

u' = 0, v~0t w' = s.

Moreover, instead of determining the tangent line through
which the section is made by its direction-cosines, it is usual
to determine it by its projection on the plane of xy, whose

equation we may assume to be

y
f

-y = m(x'-x) (1).

The direction-cosines of the line of intersection of this

plane with the tangent-plane at (x } y, z), whose equa-
tion is

p (x'-x) + q(y'-y) - {z - z)
=

0,

are proportional to 1, m, p + qm, respectively.

The value of p becomes with these substitutions equal to

yiTFT? {1 + p* + 2pqm + (1 + g
2

)
m2

}

r + 2sm + tm,
1

171. The result of the last article can be obtained inde-

pendently. Let a sphere be described having contact of the

first order with the given surface at (x, y, z), and let the

sections of the surface and the sphere by the plane (1) have
contact of the second order. Then the sections of the sur-

face and the sphere by a normal plane through the line

in which (1) cuts the tangent plane will, by Meunier's

Theorem, have contact of the second order with each other,
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and the radius of the sphere is therefore the radius of

curvature of the section required.

Let the equation of the sphere be

(x- ay+(Y-by + (z-cf=p'

.: (X-a) + (Z-c)^
=

(Y-l) + (Z-c)fY
= o\

, (dZ^ .„ .d?Z

(2);

(3),

dZ dZ . n
dl'dY + (

Z- c

fdZ\*

dX'

d?Z

dXdY (4).

But at the point (x, y, z)

X = xy Y=y, Z dZ
Z

> dX=P>

dZ

since the sphere and surface have a common tangent plane.
Also since their sections by the plane (1) have contact of the

second order, the values of z in terms of x —
x, ^ — y for the

sphere and surface must coincide as far as terms of the second

degree in x —
x, y

r — y for points lying in the plane (1),

whence we obtain

d*Z d*Z ,d
2Z
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Whence from (5)

1 +p
2+ 2pqm + (1 + g

2

) m2

r + 2sm + £m2

and

r. P -Ji+?+^ +? +iwm +(L + <fl<*
(6).r

• r + 2sm + tm2 v ;

The equation which gives the sections of greatest and
least curvature at any point is obtained by making this

expression for p a maximum or minimum by the variation

of m. Whence

{pq + (1 + q
2

) m] [r + 2sm + tm2

}

-
(s+ ton) {1 +p

2 + 2pqm+(l + q
2
) ra

2

}
m 0,

or m2

{5 (1 + q
2

) -pqt] + m [r (1 + q
2

) -t (1 +p
2

)}

+ {pqr-8(l+p*)} = (7).

172. It may happen that at certain points of a surface

the two principal radii of curvature become equal. It follows

from Art. 167 that the radii of curvature of all normal sec-

tions at that point are equal, the indicatrix in this case being
a circle. Such a point is called an umbilicus.

The conditions for the existence of an umbilicus can be
deduced from the consideration that at such a point the

expression

uP -f vm2 + wn2 + 2umn + 2vnl + 2wlm (1),

must retain the same value for all values of I, m, n consistent

with the conditions

Ul+ Vm+ Wh = (2),

P+m2 + n2 =1 (3).

From (2) UT + V2m2 + 2 UVlm = WV
;

W2n2-U2
l
2-V2m2

.'. 2lm = *—
jjy

.

Similarly, zni— ^jj ,

U*F-V2m2-W2n2

2mn = yw #
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Whence, substituting in
(1), the expression

n f
L 0V W Uw'\ t 2 f ,

7V Vuf Vu)
z

r + vw-w—rrm
r
+ wu—u—w\

must have the same value for all values of I, m, n consistent

with (3).

This gives the conditions

u + ^{Uu' -Vv' - Ww'} =v+ ^{Vv'
- Ww - Uu]

W= w +
-jjy{Ww'- Uu'-Vv'} (4).

If the equation of the surface be of the form

*i(*) + *,(y) + *.(*)
=

<>.

u = 0, v = 0, w =
0, and equations (4) become

u — v = w
(5).

If U, V or W vanish the investigation fails. Suppose

* V
Then Vm -f Wn —0, or ft = — -^ m,

and the expression (1) becomes

72 i ,

V*

2 2u
'V 2 , o7 ( , Vv\

ul
2
4- vm* +.w.yp.n? ^ ra

2 + 2Zm f w -
-=^J

,

which must remain constant for all values of m and w con-

sistent with the relation

r + m-
(l+jP)

= l.

Hence WW-W-0,
F2w 2aT"

v + lP J7 V2w + W2v-2VWu'
and tt=»-

p:
=

-p
2 + jp (6).

1 +
-fp
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Similarly if V=0 or TT=0 the requisite conditions may-
be deduced. In these cases, three conditions have to be

satisfied by oo, y, z besides the equation of the surface, which

will not generally be consistent.

The conditions for an umbilicus when the unsymmetrical
form of the equation of a surface is used may be deduced

from the consideration that the value of p in Art. 171 must
be independent of ra. We thus get

r s t

173. The conditions for an umbilicus can be obtained

in a slightly different form.

If h is the value of the expression (1) for all values of

I, m, n consistent with (2), it is evident that the ex-

pression

ul
2 + vm2 + wn2 + 2umn+ 2v'nl + 2wlm

-h(l
2 +m2 + n2

) (1)

must vanish for all values of I, m, n consistent with (2).

Hence Ul + Vm + Wn must be a factor of (6). The other

factor must be

u—h, v—h w —h

and multiplying these factors together and equating co-

efficients of ran, nl and Im as in Art. 49, we have

W V

and two similar equations, whence

W*v+V2w-2u'VW
km

V* + w*

V*u+Uiv-2w'UV
u*+v*

U*w+W2u-2v'WU .

$~tp by symmetry.
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174 Lines of Curvature.

A line of curvature on any surface is a curve such that
the tangent line to it at any point coincides with the tangent
line to one of the principal sections at that point.

The differential equation of such lines is obtained by

substituting -=-
, -^ ,

-=- for I, ra, n respectively, in the

equations which determine the directions of the principal
sections in Art. 169. From the equations (4), (5) and (6) of
that Article we have, eliminating k and k'

}

ul + w'm+ v'n, I, U
w'l+ vm +u'n, m, V
v'l + u m + wn, n, W

=
.(1),

and replacing I, ra, n by -7- ,
—

, -,- , respectively, we get

the differential equation of the lines of curvature.

The differential equation of the projection of the lines of

curvature on the plane of xy is obtained by writing -M- for m
in the equation (7) of Art. 171.

175. A line of curvature is sometimes defined as a curve
such that the normals to the surface drawn at any two con-

secutive points of the curve intersect each other. This defi-

nition leads at once to the equation (1) of the last Article.

For the equations of the normal at a point (x, y, z) are

x —x y —y z —z
(2).

are

U V

The equations of the normal at a point (x + a, y + /3, z + 7)

y-y-P-x X

U+UQL + wp + vy + V+ w'a + v0 + u 7 + . . .

z — z — 7
W + va + u'/3 + 107 + .

(3),
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where the remaining terms in the denominators contain

higher powers of a, /3, 7.

The condition that (2) and (3) should intersect is by
Art. 31,

27+ ui +w'/3 + v'y+ ..., U, a.

V+w'a + V0 + uy + ..., V, £
W+ va +u'/3 + wy+ ..., W, 7

uol + w'/3 + v'7, U, a

whence ma. + v/3 + w'7, F, /3 =0
(4),

v'a + u'fi + ^7, TF, 7

but ultimately a, j3, 7 are proportional to
dx dzdy
ds

'

ds
'

ds'

respectively, and the equation (4) reduces to the same
as (1).

176. The radii of curvature at any point of a quadric
can be obtained from the preceding formula?. Some of the
results are so simple and important that they deserve a

separate consideration.

Since all parallel sections of a quadric are similar, it

follows that tie indicatrix at any point of such a surface

is similar and similarly situated to the section of the quadric

by a plane through the origin parallel to the tangent plane
at the given point. Hence the tangents to the lines of cur-

vature at any point are parallel to the axes of the section

by this plane, and the umbilici are the points at which

tangent planes can be drawn parallel to the planes which

giye circular sections.

The equation, of the tangent plane at any point (a, /3, 7)
to an ellipsoid whose equation is

c
21" 'ti "fc "3— *i

qr 6
2

c
8
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If this plane be parallel to either plane of circular section

we have
«

-g- ^=, by Art. 65,

and since (a, /3, 7) is a point on the ellipsoid, each of these

ratios = + ,
—

T

Hence the ellipsoid has four umbilici whose co-ordinates

are given by

a= ± aV^c2 ' /3sas0' r/=±cV^^'
177. If a tangent line be drawn to a surface of the second

degree at the extremity of the axis of any plane section of

that surface and lying in the cutting plane, the axis of the

section and this tangent line are at right angles. This tan-

gent line to the quadric is therefore also a tangent line to a

sphere described with the origin as centre, and the length of

the semi-axis of the section as radius.

Let the equation of an ellipsoid be
»2 -» z

2x y

and let a sphere be described with the origin as centre and

any radius k. The equation of this sphere is

a? + tf + z
2 = k2

(2).

The equation of the cone formed by straight lines joining
the origin with all the points of intersection of (1) and (2) is

therefore

'(HMJ-iWG-p)- --^

For this equation does represent a cone whose vertex is

the origin and being satisfied by all values of x, y, z which

satisfy both (1) and (2) represents some surface passing
through their intersection.

Now every plane which passes through the origin and any
tangent line to the curve of intersection of (1) and (2) is evi-

A. G. 14
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dently a tangent plane to the cone (3). Hence if we draw a

tangent plane to (3) along any generating line 0PV OP1
is one

axis of the section of (1) made by this plane. Let OR be

the other axis and Q be the point of (1) at which a tangent

plane can be drawn to (1) parallel to this section, then OQ
is conjugate to the cutting plane and 0P

X
is conjugate to the

plane through OQ and OR.

The tangent to one line of curvature at Q is parallel to

OR, and consequently lies in the plane QOR which is diame-

tral to 0P
X

.

Let OP, 0P
X ,
0P

2
be three consecutive generating lines

of the cone (3); OQ, 0Q X
the lines conjugate to the planes

POPv Px
OP

2
which are ultimately consecutive tangent planes

to the cone (3). Then since 0P
X
lies in a plane which is dia-

metral to OQ, and also in a plane diametral to OQv the

plane Q0Qx
is diametral to 0P

X
and therefore coincides with

QOR, and the line joining QQ X
is ultimately parallel to OR

and therefore is the tangent line to one line of curvature

which passes through Q. Hence one line of curvature through
the point Q is the locus of the points at which tangent planes
can be drawn to (1) parallel to the tangent planes to (3).

Hence if Q be any point on an ellipsoid, and r, k the

semi-axes of the central section which is parallel to the tan-

gent plane at Q, the axis h is constant for all points on the

line of curvature whose tangent at Q is parallel to r. But ii

p be the perpendicular on the tangent plane at Q,

prk = abc Art. 75, equation (3),

and therefore pr = -j-
= constant.

178. The equation of any tangent plane to (3) is

Ix -f- my' + nz' = (4),

where
I, m, n are connected by the relation

n Li u (0);

a2
k? v \t e e

(See Chapter vm. Ex. 24.)
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rid the equation of a tangent plane to (1) at the point (x, y, z)

a2 + > +
a'"""

1 (G).

Hence if (6) be parallel to (4)

r from (5)

x _ y z

a2
l

~
b
2m c

zn *

2 (l
7.2 2a ~F b
~T?

c
~k*

nd subtracting this from the equation

a2 + ^+ c
2 A>

ve get

P + F- +^
tf

= 1,

vhich shews that the lines of curvature on an ellipsoid are its

urves of intersection with confocal surfaces.

179. In the ellipsoid

rr_^ F_% w_*
a"

'
~

b
2 '

~
c*

'

2
t; = f0 = -i t*' = 0, 0, w' = 0.

a" ¥' c

Hence the differential equation of the lines of curvature is

1 dx x dx

cfds' a2 '

ds

ldy y dy
Fds' V* ~ds

1 dz z dz

= 0,

.4£<r-*+f££^+*£&*rr»*Midsds ds ds ds ds

14—2
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180. Taking the equation

x* f ,

z* = 1.
dz + k

'

b* + k ' & + k

we have at the points where it meets the ellipsoid

x\ f .
z*

a2+ b-
+ % + -*= 1 -

by subtraction

x2

+
z*

a?(a? + Jc)

'

6
2

(&
2

+&)
'

c
2

(c
2 + &)

Also by differentiating (1) and (3) we obtain

(i).

(2).

.(3).

dx

ds
+

dy
ds

dz

ds

d' + k b
2 + k

'

e +k
= 0, (4),

x
dx

ds y
+ T5

dy
ds

+ T

dz

ds

a2

(cf + k)
'

V(b* + k) c'ic' + k)

= 0. (5).

And from (3), (4) and (5) eliminating^—^ , p-^ ,

-jq-^

we obtain

x2

f z*_

a2 '

b*' c
2

dx dy dz

ds ? ds ds

x dx y dy z dz

a*ds' Fds' c
2
ds

= 0. (0),

which is the same as equation (1) of the last Article.

Thus we obtain an independent proof of the fact that the

lines of curvature on an ellipsoid coincide with its curves of

intersection with a series of confocal quadrics.
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181. If we denote by I, m, n the direction-cosines of the

tangent to either line of curvature at the point (x, y, z) on the

sllipsoid they must satisfy the equations

-
2 + \l + fi\ = (1),

2+X»» +
/*P

=
(2),

jUto>*£«]D (3),

which are obtained from the equations (3), (4) and (5) of the

last Article by the use of undetermined multipliers X and fi.

But if r be the central radius vector of the ellipsoid paral-

lel to the tangent line considered, and p the perpendicular
from the centre on the tangent plane to the ellipsoid at the

point (x} y, z), we have

1 a? tf / ...

?"?
+t+? (0)-

Also from the equation of the ellipsoid, by differentiation

<M=|+^.+£ (6) .

a be
Differentiating (6), we have by means of (4)

dl dm dn

1 4-^4/LiSL, li£_o (7)

Multiplying (1) by —it (2) by ^ and (3) by
—
a and addinga c

we have
1

, fix , my ,
nz\
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or using the result obtained by differentiating (5),

pi* p
s
ds

Again, multiplying (1) by ^, (2) by -^ , (3) by -^
and

adding, we have by (7) and (4) since also F + m2 + n2 = 1,

1
fjb

dr

Thus we obtain

0.

1 dp __
1 dr

pds r ds'

dp ,
dr A

.-. jpr
= constant.

182. A few propositions must be added concerning a

class of lines of great importance, namely geodesic lines.

These may be defined as follows :

A geodesic line on a surface is such that every small ele-

ment PQ is the shortest line that can be drawn on the surface
between P and Q.

The general equation of geodesic lines on a surface

F(x,y,z) = 0,

can be obtained by the help of Meunier's Theorem.

For if PQ be two points on a geodesic line, so near to one

another that the arc between them may be considered as a

plane curve, the length of PQ will be least when the curva- 1

ture of the curve is least, or when the radius of curvature
of]

the small arc PQ is greatest. But this will be the case when I

the section of the surface by a plane through the element i

PQ is & normal section. Hence the osculating plane at any
point of the curve must contain the normal to the surface at 1
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that point. But the direction-cosines of that normal to the
curve which lies in the osculating plane are proportional to

d2x cfy d?z

~aV' d#* 3?'

and the direction-cosines of the normal to the surface are pro-

portional to

dF dF dF
dx

y

dy
'

dz

Hence for all points in a geodesic line

d2x d2

y d2
z

ds
2

ds2

_ ds
2

dF"dF~dF (1} '

dx dy dz

These equations can be also deduced by the Calculus of

Variations. (Todhunter's Int. Gale. Art. 351.)

183. The equations of the last Article can be applied to

discover the forms of the geodesic lines on any surface. In

the case of developable surfaces, this object can often be more

simply effected by the consideration that when the surface is

developed, the geodesic must become a straight line. Thus
the geodesic lines on a right circular cylinder are easily seen

to be helices.

As an example in the case of a surface not developable,
take the sphere

x2

+y
2 + z*=a2

(1).

The differential equations of the geodesic lines become

d2x d2

y d2
z

ds
2

_ ds
z

_ ds2

(

x y z
'

d?y <Fz_

dy dz . ,^ N

•'•*dJ-^ =constant=c
' (2) -
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Similarly,

dz dx
NX

ds-
Z
ds

=
°* (3) '

dx dy ...

yds-
x
ds=

c
> (4) -

Multiplying (2) by x, (3) by y, (4) by z, and adding, we

get
c

1
x + c

2y + c
3
z = (5),

shewing that all geodesic lines are great circles.

184. As a second example take the ellipsoid

i44 =i «
The differential equations of the geodesic lines become

d2x d2

y d2
z

ds
2

_ d£_ _ ds^ {S>
,

x y z
'

^

a2 P ?

Now let p be the perpendicular from the centre on the

tangent plane to (1) at the point (x, y, z), and let r be the

central radius of the ellipsoid drawn parallel to the tangent
to the geodesic line at the point (x, y, z).

Then -^
= —

A + f« + -i}
p a b c

I = l {<te\\l (dy\*
1
(dz\\

? a2

\ds)
r

b
2

\ds)
+

c
2
[dsJ

'

1 dp _ x dx y dy z dz

p
z
ds a* ds b*ds c

4
ds

1 dr _ 1 dx d2x 1 dy d2

y 1 dz d2
z

~?ds~a2 dsd7 + b
2 didi2+ 7dsd^2

(3),

x dx y dy z dz

<c£ ds b
A
ds c

4 ds

if k be put for each of the fractions in (2).

s

+
Vd?s

+
c*ds)

h (4)j
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Now each of the fractions in (2)

x d2x y d2

y z d?z

u7i ~a
T
sTiJr b

2
ds
2+

~6
i d?
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185. We shall conclude this subject with the following

proposition, known as Dupin's Theorem.

If there be three series of surfaces such that all the sur-

faces of each series intersect those of the other series at right

angles, then the lines of intersection of the surfaces of different
series are the lines of curvature on the surfaces.

Let be the point of intersection of three surfaces, one of

each system. Take as origin, and the tangent planes of

the three surfaces as co-ordinate planes. Let Sv 8
2,
S

3
be

the surfaces touched by the planes of yz, zx, xy, respectively,
and let P, Q, R be points near in the curves of intersection

of Sv S3 ;
S

3 , /S^;
8V $2, respectively. Then since the surfaces

8V $
3
cut at right angles, the normals at Pto these surfaces

are at right angles. Also since OP is ultimately a tangent
line to both of them at P, the normals at P are both perpen-
dicular to OP which is ultimately the axis of x. Let Q

3 , 2

be the angles which the normals at P to S
3 ,
S

2 , respectively
make with the planes of zx, xy, respectively; <f)v <j>3

those

which the normals at Q to Sv S
n
make with the planes of

xy, yz, respectively, and ^r2, fyx
those which the normals at

R to S
2 ,
S

t
make with the planes of yz, zx, respectively. Let

the lengths of OP, OQ, OR be a, /3, 7, respectively.

Since the normal to $
2
lies in the tangent plane to S

3,
the

tangent of the angle which the normal to $
2
at makes with

the plane of xy is
(-r- )

>
the suffix denoting the surface from

which the differential coefficient is obtained. Hence the tan-

gent of the angle which the normal to #
2
at P makes with

the plane of xy is

dz\ d (dz\

dy)3 dx\dy)3

©.-»•

whence e*= a
dx (e^),

ultimate1^
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Similarly,

therefore

Similarly,

But since the normals to Sv S
3
at P are at right angles,

Similarly, <j>± + <f>3
=

0, ^2 + ^3
=

0, whence
2
= 0.

Hence the normals to S
9
at and P both lie in the

plane of xy and therefore intersect one another, and therefore

OP is the tangent to the line of curvature on $
2

at 0.

Whence the theorem follows.

*»=
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4. Deduce the formulae for an umbilicus

r s
"

t

first, from the consideration that the two principal radii of

curvature are equal at an umbilicus; secondly, from the con-

sideration that the directions of the lines of curvature at an
umbilicus are indeterminate.

5. Find the condition that the two principal radii of cur-

vature at any point of a surface may be equal in magnitude
but opposite in sign.

Find the points on the surface

Ax* + By*+Cz* = l

for which this is the case.

6. Shew that if the origin be at an umbilicus and the

normal at that point the axis of z, the equation of an ellipsoid

may be put into the form

°? + y* + fc* (z
—

a) + hyz + czx = 0.

7. Any chord is drawn through an umbilicus of an ellip-

soid, and its extremity is joined with the extremity of the

normal at the umbilicus. Prove that the locus of the inter-

section of the joining line with the plane through the umbili-

cus perpendicular to the chord is a plane.

8. Prove that the lines of curvature of the surface

f.i-ip+-i k

:

-i
a ax— b ax — c

are circles, and that the plane of any one of them contains a

fixed straight line lying wholly on the surface.

9. Shew that pr is constant for all lines of curvature

which pass through the same umbilicus of an ellipsoid.

10. Shew that pr has the same value for all geodesic
lines on an ellipsoid which touch the same line of curvature.
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11. U and V are two adjacent umbilici of an ellipsoid,
P is any point on the surface which is joined by geodesic arcs

with U and V. Shew that the lines of curvature which pass

through P bisect the interior and exterior angles between PU
andPF,

12. If a point Pmove on an ellipsoid so that the sum or

difference of the geodesic arcs PU, PV joining it with two

adjacent umbilici of the ellipsoid is constant, shew that the

locus of P is a line of curvature.

13. Shew that at every point of a geodesic circle round
an umbilicus of an ellipsoid

tfd*

= a* + c
2 -r2

,

where a, h, c are the semi-axes of the ellipsoid, r the central

radius to the point, p the central perpendicular on the tan-

gent plane, and d the semidiameter parallel to the tangent to

the circle at that point.

14. The normal at each point of a principal section of

an ellipsoid is intersected by the normal at a consecutive

point not on the principal section; shew that the locus of the

point of intersection is an ellipse having four real or imagi-
nary contacts with the evolute of the principal section.

15. From the differential equation of geodesic lines in-

vestigate the nature of the geodesies on a right circular cylin-
der.

16. Find the equations of the geodesic lines on a right
circular cone; first, from the differential equations, and secondly
from the consideration that when the cone is developed the

geodesies become straight lines.

17. Shew that the distance of any point of a geodesic
traced on a surface of revolution from the axis varies inversely
as the sine of the angle between the geodesic and the meri-
dian of the surface which passes through that point.
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18. Find expressions for the principal radii of curvature

at any point of a surface of revolution round the axis of x.

19. Prove that the product of the principal radii of cur-

vature at any point of a prolate spheroid varies as the product
of the squares of the distances of the point from the foci of

the generating ellipse.

20. Shew that the locus of the focus of an ellipse rolling

along a straight line is a curve such that if it revolve about
that line, the sum of the curvatures of any two normal sec-

tions at right angles is the same at every point of the surface

generated.

21. If two surfaces cut each other at right angles, and R
be the radius of curvature of the curve of intersection at any
point, pv p2

the radii of curvature of the normal sections of

the two surfaces through the tangent line to the curve at that

point, prove that

i_
i i

22. If r, r' be the principal radii of curvature at any
point of an ellipsoid on the line of intersection with a concen-

frr')k
trie sphere, shew that the expression

J
, is invariable.

23. If a geodesic line be drawn on a developable surface

and cut any generating line of the surface at any angle ty and
at a distance t from the edge of regression measured along
the generator, prove that

^ + tcotf = p,

where p is the radius of curvature of the edge of regression at

the point where the generator touches it.

24. Prove that if r be the distance of any point of a geo-
desic from the origin, p the radius of absolute curvature, and

p the perpendicular from the origin on the tangent plane to

the surface, .

j. i *vi
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25. The centres of curvature of plane sections of a sur-

face at any point lie on the surface

Vi rr

the axes being the tangents to the lines of curvature at

that point and the normal, and pv p2 being the principal radii

of curvature.

If these sections touch a right cone of semi-vertical angle

a, about the axis of z, the centres lie on the elliptic paraboloid

—
I-
*- =a z sin' a.

Pi P*



ANSWEES TO THE EXAMPLES.

CHAPTER I.

1. J$, 2^3 and J3.

2. The length of each side is J6.

1 _2_ _3_ 2 3 6 26

JW JW JTi'
'

7' V V 7 JU'

5 90° 6 - - 0- - -• a °

7 '

3' 3' 3
;

8 . ^.g-oy +
(o-|y

+ (£-iy=^=^,
9. If !*., 0,, 4>n T

2>
@
2 > $2 ^e *ne P°lar co-ordinates of the

points, the (dist.)
2 between them by Arts. (6) and (15)

= (rx
sin 6

X
cos ^ — r

2
sin

2
cos <£2)

2

+ (rx
sin

t
sin

<^> 1
- r

2
sin 6

2
sin <£2)

2 + (rx
cos 0,

- r
2
cos

2f
» r

x

2

(sin
2

X
cos

2

£, + sin
2

^ sin
2

^'+ cos
2

0,J

+ r
2

2

(sin
2

2
cos

2

<£2
+ sin

2
6
2
sin

2

<£2
+ cos

2
6
2)

- 2^^ {sin 6
X
sin

2 (cos <jf>j
cos

<j>2
+ sin

<j> x
sin <£2) ^

+ cos 0j cos 0J

r,"
+ r

2
- 2r

1
r
g {cos 6

X
cos 2 + sin Q

x
sin

2
cos (<^

-
<f>2)}.

10. r = 4, ».| f |=|.

11. 0-I, y=J3, s = 2 v/3.
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CHAPTER II

, aj-1 . z-3 - _

3 a+z=4) aj + y=5\ _ 1 _ 2-3
2/=z/ *= 1\J

* i_2/ "~
2 J' 6' 2' 3*

4. a + 2/ + *=6; 2V3. 5.
«-f«|.

6. *-*»-?^U-3.
3^3

7. Let (a, /?, y) j (a , f3', y), be the two points, Ix + my + nz =p
the given plane. Then the required plane can have its equation
in the form

A(x-a) + B(y-p) + C(z-y) = 0,

and A, B, G must satisfy the two conditions

A{a'-a) + B{P-P) + C(y'-y) = O
i

Al + Bm + Cn = 0,

whence

A : B : C :: m (V -
y)
- n

(/5'
-

/?) : rc (a'-a)
-
Z(y'-y)

: l(P-j3)-?>i(a'-a).

8. s = 3, a; + 2/= 3.

9. Let yl (x
-

2) + i? (y
-

3) + (7 (z
-

4)
=

represent the

plane required;

... A (I
-

2) + B (2 -3) + (7(3-4) =0, or ^+£ + (7=0,

.4. V3 + .B+ (7.2^3=0,

whence i : B : (7 :: 2 J3- 1 :
- J3 : 1 - v/3,

and the plane becomes

(2 V3 -
1) {x

-
2)

- n/3 (y
-

3) + (1
- &) (*- 4)

= 0.

10. Let I, m, n
; l\ m', n' be the direction-cosines of the

given lines
; A., fi,

v those of the required one ;

.*. \l + fxm + vn = 0, \l' + fim' + vn! = cos a.

The latter equation gives

(XI + fxm + vnf = cos
2 a (X

2 + /x

2 + v
2

),

A. G. 15
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which combined with the former will give two values of the

ratios A :
//.

: v, as in Art. 57. For the latter part put cos a =
-j—

and find the value of \
}

\
2
+ fi

l fi2
+ v

1
v
2 J remembering that

IV + mm + 7i7i vanishes this will also be found to vanish.

11. Let (a, /3, y) be the given point, I, m, n; V, m', n! the

direction-cosines of the perpendiculars on the two planes. The

required plane is

{mn' - m'n) (x-a) + {nV - n't) (y-fi) + (lm'
-

I'm) (g-^ = 0.

(See Art. 30.)

12. The proof of Art. 19 holds when the axes are not

rectangular if I, m, 7i mean the cosines of the angles between

OB and the axes.

13. Draw the oblique co-ordinates of the point D, and pro-

ject OD on the axes in succession.

I + m cos v + n cos fx m + n cos X + I cos v
14. A B

n + I cos jx + m cos A

C
15. The condition is

(X
- af + <y

- pf + (z
-
yf - (X -«,-)'+ (Jf

- P7 +(z- y'Y,

which reduces to

16. (1) A series of planes parallel to that of yz j fovf(x) «

gives a series of equations x = a
1}

x = a
2 ,

&c. (2) A series of

spheres with the origin as centre. (3) A series of right circular

cones with Oz as axis. (4) A series of planes passing through
the line Oz.

17. (1) The axis of z. (2) A straight line OP through
inclined at an angle a to Oz, and such that the plane zOP makes
an angle (3 with zOx. (3) A circle whose radius is a in the

plane of zx and with its centre at the origin.

I) TT

18. A cos 6 sin 6 + B sin d> sin 6 + C cos 6 = — . 19. s -.

r 2
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20. Let l
x ,
m

l ,
n

x )
l
2 ,
m

a , n
2 ;

l
3 , ma ,

n
a ; be the direc-

tion-cosines of the normals to the three planes. Then the equa-
tion of any plane through the line of intersection of the first

and second is

(lx
+ \l

2) x+(m l
+ Xm

a) y + (n i
+ Xn

2) %**px
+ Xp2 ,

where X is a constant, and if this is perpendicular to the third,

K (h + K) + maK + Xr)\) + n
s (
n

i
+ Xn

*)
=

°>

or cos B + X cos A = 0.

Also if the plane passes through the origin px
+ \pa

=
;

.'. p x
cos A =pi cosBi

and the plane becomes

(IjX + m xy + n^) cos A -
(la
x + m

2y + n2z) cos B = 0.

If in addition p2
cos B - p3

cos C, the other two planes will

have equations of a similar form and all three planes will inter-

sect in one straight line through the origin.

21. Let lx + my + nz=p be the equation of one of the

planes ;

.-. from the data £+^+^ =
0, Or T +- + - = (1),

and l(a-a) + m(b'-b)+n(c'-c) =
(2) ;

. \ substituting for n out of the second in the first

1
_1

c'-c _ Q
I m I (a' -a)+m (b'

-
b)

?

. -. p {a'
-

a) + Pirn + m2

(b' -b)=Q,

which gives two values of — ,
and corresponding to each of thesem

from (2) we can set one value of — . If —
,
—2- be these two

values,
' 2 = —. . Similarly ——— = —r—-

.m
x
m

2
a -a m

l
m

2
c —c

Hence if the lines be at right angles

1 + AL + JV!*-,0;m
1
m

2 m^n2

b'-b b'-b
'

1 1 1
.-. 1 + -7

+ -=0j .*. + 77-^; +-7— =0.
a —a c — c a — a 6—6 c — c

15—2
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22. 5. This and Example 23 are to be solved as the last
m

example.

23. P (B
2 + C 2

)
+ Q (G

2 + A2

)+R (A
2 + B2

)
= 0.

24. The co-ordinates of the middle points of the lines joining

1, 2 and 3, 4 are, Art. (7),

i(a-c), ^(a+b-c-d), i(b-d),

and J (c
-

a), J (c + d-a —
b) i \(d — b),

whence the result follows.

25. The co-ordinates of any point on one of the lines may be

represented by a + It,
b + mt, c + nt ; and those of any point on

the other by a' + l't',
b' + m't', c' + n't'. The square of the dis-

tance between these points is

(a-a' + lt-
l't')

2 + (b-b' + mt- m't')
2 +

(
G -c'+nt- n't')

2
.

The conditions that this may be a minimum by the variation

of t and t' are

(a-a' + lt-
l't') l+(b-b' +mt- m't') m + (c-c' + nt- n't')

n = 0,

and

(a-a' + lt-
l't') l'+(b-b' + mt- m't') m' + (c-c' + nt- n't')

n' = 0,

which shew that the line joining the two points is perpendicular
to both the given lines.

26. By the solution of the last question,

l(a-a) + m(l3- /3') + n (y
-
y) + t - t' cos 6 = 0,

I'(a
-
a) + m'((3

-
j3')

+ n(y -y) + t cos - 1' = 0,

whence t' sin
2 = u' + u cos 6.

27. Taking xv y , » ,
&c. as the co-ordinates of the angles of

the tetrahedron it is easily shewn that the co-ordinates of the

middle point of the line joining the middle points of two

opj)osite edges are

28. By the help of a figure and the last question it is easily
seen that the two lines x, y are the diagonals of a parallelogram
whose sides are \a and \d and cu is the angle between the dia-

gonals, whence by Trigonometry the result follows.
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29. —
j= if c is the edge of the cube.

30. J Jb
2
c
2 + c*a* + a2

b
2
.

31. The equations of the planes are

&c f my + nz =p, mx + ny + Iz =p, nx + ly + mz = p ;

P
,\ x-y = z

l+m + n'

32. Any point on the given line can have its co-ordinates

expressed by a — It, b-mt, c-nt; the value of t is obtained

from the condition of perpendicularity.

33. Take the shortest distance between the lines as axis

of z, its middle point as origin, and the plane of zx to bisect

the angle between the lines.

CHAPTER III.

1. r
2 + r (A sin 6 cos

<f>
+ B sin 9 sin

<f>
+ C cos 0) + D = 0.

This equation gives two values of r the product of which is D.

2. The polar equation of any plane is

A sin 6 cos d> + B sin sin <f> + C cos 6 =— .
T- T- r

k2

Hence if this be the equation of the locus of P, since OP —
n^

the equation of the locus of Q is

Br
A sin 6 cos <£ + B sin 6 sin <£ + G cos 6 =

-p- ,

which is the polar equation of a sphere.

3. If the locus of P be

r
2 + r (A sin 6 cos

<j>
+ B sin $ sin <£ + G cos 6) + D =

0,

that of Q is

¥ + k2
r (A sin 9 cos <£ + B sin sin

<f>
+ (7 cos 9) + Dr

2 =
0,

which is another sphere.
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4. The plane in question is

xx' + yy' + zz' = x'
2 + y'

2 + z'
2 = c

2

,

also where it meets the sphere x2 + y
2 + z

2 = c
2

,

whence x2 + y
2 + z

2 - 2 (xx' + yy' + zz') + x'
2 + y'

2 + z'
2 =

0,

or (x
-

x')
2

+(y~ y')
2 + (z- z')

2 =
j

.-. x=x', y = y\ z = z'.

5. Take A as origin and AB (=a) as axis of x, the equation
of the locus is

x2 + y* + z
2 -m2

{(x -a)
2 + y

2 + z
2

},

which reduces to the equation of a sphere.

6. With the same axes as in the last question the two lines

whose direction-cosines are proportional to x, y, z and x -
a, y, z

must be at right angles. Hence x (x — a) + y
2 + z

2 —
0, a sphere,

on AB as diameter.

7. Take for the equations of the fixed straight lines those

given in Ex. 33, Chap. n. The equations of the two planes can
then be written y - mx + \ (z

-
c)
= and y + mx + fi(z + c)

=
where A and

//,
are constants. The condition of perpendicularity

gives 1 —m* + \fi
= and by substituting for X and /x out of the

first two in the third we get (1
-
m*) (z

2 - c
2

)
+ y

2-m2x2 = as

the locus.

8. If S = 0, S' = be the equations of two spheres in their

simplest form, the equation S' - S = is easily seen to be a plane
perpendicular to the line joining their centres, which must cut

each sphere in a circle.

9. The equations of the spheres can be written

S-kr2 =
0, S'-k'r2 = 0, S"-k"r2 = 0,

where h, k\ k" are constants and r changes. The first and second
a a/

intersect on the sphere j -
-y

=
0, whence the rest will follow.

10 and 11. These follow easily from (8).

12. The six centres of the spheres must lie at the angular

points of a regular octahedron the edge of which is the radius.
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13. Take the three planes as co-ordinate planes, and let

I, m, n be the direction-cosines of the straight line, x, y, z the

co-ordinates of the point. Then by projecting on the axes in

saccession x = la, y = mb, z = nc;

x2

y
2

z
2

a2
b* e

14. "We have

nr. 4- n. n/ <?.

= 0P,
x + a
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CHAPTER IV.

1. 2^3, 0, -Jl 2. x
'2 - y—^

'2

3. Take x = y — z and any two straight lines perpendicular
to it as axes : the axes in the last question will do.

4. From the last two of the second set of relations the ratios

of lu l
2 ,

l
3
can be deduced, and their absolute values from the

first, with the help of the other three.

5. 1, 1, 5, use Art. 51.

6. The proof is exactly similar to Art. 50 with the excep-
tion that

x2 + y
2 + z

2 + 2yz cos A + 2zx cos
fi + 2xy cos v

is transformed into x'
2 + y'

2 + z'
2
.

7. Transform so as to take the line x-y = z as axis of x
and any two lines perpendicular to it and each other as axes

of y and z : as in Examples 1 and 2.

CHAPTER V.

1. The direction-cosines of the generating lines through any
point (a, /?, y) are given by

I
2 m2 n2

_ n
la mft ny _

The condition that these shall be at right angles is obtained as

in Examples 21—23, Chapter n., and gives by the help of the

relation
Ti \ =

1, a value of y
2
.

(% C

2 and 3. The direction-cosines of the generating lines are

given by
la mB ny A , I

2 m2 n2
.

^ + -r-i =
'
and

«2 + F-c- = -

From these we easily get, eliminating m,

L (
a\t\ _ 2lnay u*(£ F\ n

a2

\a
2

b
2
) aV c

2

\c
2 a2)~
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Whence

1,1.
<? V" b'J c' W J a' - a'

2ay

t^_ l^_ a3
C* 2ay

.-'
'

a2
\a

2 +
tf)

Whence by symmetry we get

IJt m
xm2 _ n^n^ m

l
n

2
+ m

2
n

x
n

%

l
a
+ 71^ _l1

m
a + l.i

m
l

a* -a2
~

]?^-b*
~
7T?

=
~~2/fy~" 2ya

~
2a£

"

and if be the angle between the two straight lines, each of these

ratios

COS0

sin

BJLI

J 4= \py -
(/?

2 - 6
2

) (y
2 + c

2

)} + . . . similar terms

a* + p
a + y*-a*-b' + c

a

"
2 ^y

2

(a^Tb
2

)~+0
2

Ja
2 - c

2

)
+ a2

"^
2 - c

2

)
+ 6V + aV - a2b

The solution of (2) easily follows by putting b = a, and 6 = a.

4. If Z, m, w; Z', m', n' be the direction-cosines of the two

radii vectores, these with 7 , , 0, 7 ,
- form a set of

5 Ja*-c* Ja
2 -c2

nine quantities satisfying the conditions of Art. 44. Also if r, r

be the two radii

.
r
2 = aT + b

2m2 + c
2n2

,
r'

2 = aH'
2 +bV + cV ;

. .. r
2 + r'

2 = a2

(I

2 + 1'
2

)
+ b

2

(m
2 + m'2

)
+ c

2

(n
2 + n'

2

)

- a
\
l
-b2

(a
2 -c2)r

h +c
y-bu^-j))

__
a4

(b
2 - g

s

)
+ b

4

(a
2 - c

2

) + c
4

(a
2 - b

2

)

b
2

(a'-c
2

)
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5. Planes parallel to Ix + my + nz = and Vx -\- m'y + n'z = 0.

b. xy + yz+zx = - '—
,
whence the result

\

follows.

7. By Art. 59, the projections of OP, 0Pf on the plane of xy
j

are tangents to the principal ellipse at the ends of conjugate
diameters. The sum of the squares of these projections is there-

fore a2 + b
2
. Also the height of above the plane of xy can be

|

easily shewn to be c, whence the result follows.

8 and 9. If A, /x, v be the direction-cosines and r the length
of any radius vector in the plane Ix + my + nz =

;

r*~ a" V c
2 '•'* h

while \l + /jLm + vn = ... (2). If the section be a rectangular

hyperbola two directions at right angles make
- vanish. By the

methods of Ex. 21—23, Chap. n. the condition for this is found.

The condition for a circular section is that -
. shall be invariable
r

for all values of A, /x,
v consistent with (2) ;

whence XI + fxm + vn

must be a factor of

where h is the constant value of —„ . For the rest see Art. 49.
r

10. By Art. 63 the generating lines at any point (x, y, z)
must be parallel to the asymptotes of a section by a plane through
the centre parallel to that which cuts the surface in these two
lines. The equation of such a plane is by Art. 58

a o c

if
(a, /?, y) be the point : the semi-axes of the section by this

plane are given {Art. 68 (10)} by the equation

y

a(a-r
2

)
b (b

- r
2

) c(c-

0.
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Also if r
2
, r

2 be the two values of r2 in this equation and 20
the angle between the asymptotes of the curve

r.
2 '

i

2

, cos26 =
r
-^\;

which is the required result.

1 1. The square of the distance of the focus of any section from

the centre is the difference of the squares of the semi-axes of that

section. Hence if p, A, p., v be the radius vector and direction-

cosines of any point in the locus, p
2 =r 2 *- r

2

2

,
where r„ r2 are the

two values of r in equation (10) of Art. 68, and A., p., v are de-

termined by equation (12) of that article; between these equations
and (5) we have to eliminate I, m, n, and for Xp, p.p, vp to substi-

tute x, y, z.

12. x2 + y
2 + z

2 -
(Ix + my + nz)

2
. See Art. (28).

13. A+B + C = 0. See Arts. 34 and 44.

14. If lx + my + nz = ... (1) be the equation of the plane

base, the co-ordinates of the vertex are given by -= = — = — = b.

x .l xi x-lb y-rtib z-nb ._. ,. ,. „
Let then —:

—= = =r...(2) be the equations ot
A p. v

x '

the generating line; substitute for x, y, z from these equations
in (1) and the equation of the ellipsoid, and eliminate r. Thus we

get a relation between A, p.,
v and then from (2) the equation of

the cone as in Art. 34.

15. x2 + y
2 + z

2 — 2yz
- 2zx — 2xy = 0.

16. x2 + y
2 + z

s =
{lx + my + nzf sec

2
a. See Art. 28.

17. Determine I, m, n and a in the last question so as to

make the cone contain the given lines.

18. Is solved in question (2).

19. Assume \x + py + vz = 0...(l)the plane; . \ \l + pm + vn = 0.

Eliminate z between (1) and the given cone. We get a cubic

equation in - one value of which must be
-j ;

the product of the
X

other values is easily obtained. See Ex. 23, Chapter n.
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20. These values satisfy the equation of the hyperboloid
whatever

<f>
and 6 may be. Substitute in the equations of Art. 57,

and we shall get finally

x - a cos <£ sec 6 _ y - b sin <& sec 6 _ z - c tan 6

a sin
(<£

=*=
0) b cos

(</>
±

6)
± c

21. Use the equations in the last question.

22. Any planes through the two generating lines in question

may have their equations written

a \b cj a \o cj

The condition that the line of intersection of these should be a

generating line is easily found to be kk' = — 1.

It can be shewn that the intersections of these planes with

either of the planes

b y c
*

are always at right angles to each other. These are the planes
which give circular sections.

23. Take the general homogeneous equation of the second

degree in a, (3, y, 8. Find the conditions that this may be satis-

fied by either of the pairs a = 0, 8 = 0, and /?
=

0, y = 0.

CHAPTER VI.

1. If X, /a, v be the direction-cosines of any generator of the

given cone a2A2 + b
2

fi
2 + cV = d*, whence by Art. 79 the result

follows.

2. Use equations (6) of Art. 77, and in the given case by
Art. 78,

^ =k\
a*P + b

2m? + c*»«

and the locus becomes
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3. Use formulae of Art. 74 to shew that the plane passes

through the three given points.

4. ^
—

^k>
where p is the perpendicular from the origin

on the plane LMN.

m . irabc
5.

volume^.
6. A cylinder whose axis is parallel to Oz and whose trace

on the plane of xy is given by

ab
I * • *u u i/j/i

c
2

(a
2
sin

2
fl-f&2

cos
2

fl))— = Jot sin
J + b

2
cos

2
< 1 jTi > .

7. Let a, /? be the co-ordinates of the point where the straight

line cuts the plane of xy, and let a line be drawn inclined at an
x2

y
2

angle 6 to Ox to cut the ellipse -^ + ^ = 1 in two points. If r
x ,
r
2

be the distances of these two points from a, j3, the square of the

eccentricity of the vertical section through a straight line x = a,

y = P supposed to be its directrix must = -
,
but it also equals

_ c
2

(a
2
sin

2 + 6
2
cos

8

0) , . . M J •". -

1 5
oT^ - by Art. bo, whence since r. and r are

a2
6
2 J l 2

expressed in terms of 6 we can get a quadratic equation in tan2

the roots of which must be real.

8. Use Art. 77, jp being a constant :

Jx2

y* z
2
\ (x

2

y
2

z
2V

9. If a, V, c' be the conjugate semi-diameters, and x', y', z'

the co-ordinates of the point in which the three planes meet

X _x[
2

by similar triangles and Art. 79.

10. We have to find the directions of the axes of the section

of Ax2 + By
2 + Cz2 = 1 by the plane Alx + Bmy + Cnz = 0, where

PI2 + Qm2 + En2 = 0. See Art. 68, Equations 5 and 12 and elimi-

nate I, m, n.
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n /i\ p m n m n
1L (1) a=z

l
+ W£ +

Wd> P—WS> y = ~2lC'

(2) %BfiQ-fy + *Cy(i-y)=*-m if a, b, c be co-

ordinates of the fixed point.

12. If x, y, z be the co-ordinates of any point on the perpen-
dicular,

ax by cz

oc
1
+ x

2
+ x

3 y } +y3
+ y3

z
x
+z

2
+ z

3 = Ja
2x2 + b

2

y* + cV
a b c J3

by Art. 74,

- 2 - y - m - xx
^
+ yy\ + zZi~

x,+x2
+ x~ Vl +y2

+ ys

~
z,+z2

+ zf ~T~
a2

b
2

c
s

whence the result follows.

13. If the curve be a parabola the line joining its centre

to the origin must be parallel to the plane, whence the result

follows.

' CHAPTER VII.

1. (1) The discriminating cubic is s
3 - 10s

2 + 13s + 55 - 0.

This has two positive roots and one negative root by Descartes'

rule of signs, all the roots being real. Hence the equation repre-
sents a hyperboloid of one sheet.

(2) A hyperbolic cylinder.

2. (1) Hyperboloid of revolution whose centre is at the

point (2, 1, 0) ;
of one or two sheets according as a > or < 2.

(2) Co-ordinates of centre */, §,
*
¥
5

; hyperboloid of two
sheets.

(3) A parabolic cylinder.

(4) A hyperboloid of one or two sheets as a2 > or < 3.

3. The two equations merely differ by h2

(x* + y
2 + z

2

)
which

remains unaltered by any transformation round the origin.

The second is a right circular cylinder, the first a spheroid.
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4. An ellipsoid if 1 - /x
< J'2, a hyperboloid of one sheet

if l- ft> /v
/2.

5. An ellipsoid whose centre is at the point
—

,
—

,

—-
:

the equation when z = can be put into the form

(H--Hi-'HM*-°-
6. See Example G, Chapter iv. Wrong reference in question.

7. Take the general equation of the second degree and find

the conditions that it may be satisfied when x = and z = 0, and
also when y= and z = 0.

10. See Art. 150 for the condition that the equation repre-
sents a surface of revolution, and Art. 90. These conditions give
if c = a + b, b" = 0, c'

2 = ab, and the equation can be written

(xja + yjbf + c
(«+ -)

+ 2a"x+2b"y + d-— = 0,

which can be again written

(xJa + yJb + k)
2 + c(z +

C
-\ + 2(a"-kja)x

+ 2{b" -k Jb)y + d-
v— - #• = ().

And if A- be so chosen that x Ja +y Jb + h-0
i
and the line

2x (a"
- k Jo) + 2y {b" -Jcjb) = 0,

c"
are at right angles, the former united with z + — — must give

c

the axis.

11. z
2 + cxy = k2

.

1 2. Take for the fixed straight lines x=0, y-0; x — a,z = 0;

y-b, z=*c; and take the equations (3) of Art. 17 as the gene-

rating line : the equation becomes

ayz + bxz — cy{x
—

a).

13. The condition required is that

A\2 + £fx
2 + Gv2 + 2A'fxv + 2B'v\ + 2(7V

shall retain an invariable value for all values of \, /x, v consistent

with l\ + m/x + nv - 0. See Art. 173.

14. Eliminate s between the equations (1) of Art. 83.
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15. If x, y', z' be the co-ordinates of the vertex, the equation
of the cone is

(x'z-xz'f (y'z-yz'Y—^— +—
j5
—

(«-*?.

And by Art. 50 equation (7) it follows that

S +S^,2

(i
+
p)-

1=a2^2

-(a2+^> a

CHAPTER VIII.

1. x2

+y
2 + z

2 = a2 + b
2 + c

2
. Use equation 5 of Art. 101.

2. A similar and similarly situated ellipsoid whose axes are

double those of the first.

3. Use Art. 101.

4. {x (x-a) + y (y- /?) + z (*- y)}
2 = a2x2 + b

2

y
2 + c

2
z
2
.

5. a2
x* + b

2

y
2 + c

2
z
2 =k\

6. The conditions that the normal to the ellipsoid at (x, y, z)

shall pass through (a, /3, y) are

a2

(x-a) _ b
2

(y-(3) _c
2

(z-y)
x y

and these combined with

=
*,

x* y* z
2

,
•

a2
b
2

c
2 '

give an equation of the sixth degree in h. All six lines lie on
the cone

(i'-c
g

)q
|

(<f-ef)fi
i

(ff-V)y
x — a y — fi z — y

7. Obtain the condition that the normal at the point (x, y, z)

may intersect a given diameter — = — = -
. By properly choosing

A, /x,
v this condition can be made identical with

I m n "

- + - + - = 0.
x y »
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8. The tangent plane to any such ellipsoid can have its

equation written as

Ix + my + nz = Jcfl? + 6W + c'V - k3

,

whence by Art. 77 (6) the result can be obtained.

9. There will be one straight line in the tangent plane at the

extremity of the radius, perpendicular to the radius.

10. If Ix+my + nz=pbe the equation of the cutting plane,
the first volume is given by multiplying the area of the section

given in Art. 80 by \p. The co-ordinates of the pole of the sec-

tion can be obtained from Art. 106, and the perpendicular on the

plane from this point is tound to be *-
: whence

the ratio ot the volumes is « , and if this be
P

constant it easily follows that either volume is constant.

11. The shadow is the section by the plane, of the envelop-

ing cone whose vertex is the luminous point.

12. Use Arts. 149, 150.

13. Take the centre of the ball as origin, a plane parallel
to the inclined plane as plane of xy, and a - It, ft

-
mt, y

- nt as

the co-ordinates of the luminous point at any time.

9a3

1 4. yzx' + zxy' + xyz'
= 3a3

;
—

.

15. xx~z + y'y~k + z'z~3 = cfi.

16. (B^ + OY-a)(By
i
-)-Gz

3

-x)^{Bpy+Cyz-^(x+a)Y=0.

x-a_y-p_Z-: y. Bif Cz2

16<
~^T~~2BP~ Wy' (l + 2£a)*^(l+2Ca.y

'

19. The equations of the normal at
(as, y, z) are

x(x'-x)=y(y'-y) = z(z'-z).

Use the condition of Art. 31.

20. ix + V + l = Q. Use equation (3) of Art. 102.

A. G. 16
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21. a (x
2 -

yz) + /3 (y
2 -

zx) + y(z
2 -

xy) = c
3

: a hyperboloid
of one or two sheets according as a + /3 + y is positive or negative.

22. ayz + fizx + yxy == 3d6 : a hyperboloid of one or two sheets

according as a/?y is negative or positive.

23. ±x(x
2 + y

2 + z*) +^ + £=0.

24. The equation of any tangent plane to the cone can be put
into the form Axx' + Byy + Czz' = 0, where Ax'2 + By'

2 + Cz'
2 =

0,
and if

I m n
Ax,==

By'
=

Cz:'

we get the required result,

25. Use (10) of Art. 68 putting
~

, S, \ for JrfW, w and

reducing. Or else use (1) and (3) of Art. 75.

CHAPTER IX.

1. (1) x'y-y'x + -(z'-z) = 0.
c

(2) If we assume z = r sin
<j>,

the equation of the osculating
plane can be written

2x cos
3

<£
-

y' sin <£ (1 + 2 cos
2

<£)
- 2s' + r sin <£ (2 + cos

2

<£)
= 0.

2. Length of arc =Ja2 + c
2

. (0 X

- 6
2).

From the equations
of the curve obtain x2 + y

2
as a function of z : let as

2 + y
2

=f(z).
This is the equation required. Ex. x2 + y

2 = a2
.

3. We easily get, if a be the radius of the generating cylinder,

b
2 = 4a2

sin
2°^ + a2

cot
2
a ($ l

-
2)

2 = ia2
sin

2^^ + I
2
cos

2

a,

# — #
if £ be the length. Hence, when I is a maximum, sin * 2 =

j
m

and the maximum length = . But this maximum length
cos a °

bb a cosec a (0X
-

2)
and 6

l

—
s
= 2mr ;

2?ms 6 6 tan a
.*. .
— =

; .*. a =— .

sin a cos a £nir
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4. The equations of the curve are

x = acos0, y = «sin 0, z = -~
(e

c ' + c *).

5. x + y + z = l.

a

6. r = a
t
6 = tsLii fi log ta,n-: + C ; r

t 0, <j> being polar co-
m

ordinates,

7. (1) y*-x* = c. (2) y + atan" 1^.
8. Analytically. Differentiate the equations of the sphere

f//y fiti fl2Z

and ellipsoid, and find the ratios ~y '- ~r~ '- ~T • The equat'cn

of the plane can then be found, and then the equation (12)
of Art. 68 can be used.

9; (1) cos
-1

(cos <j>
sin 6) + cos

-1
(sin <f>

sin 6)
= const.

which can be transformed into

(2) cos <£ sin J 1 - sin
2

<f>
sin

2 + sin
cj>

sin J 1 - cos*
<f>

sin* 6 = const.

or (3) xJa2 - y
2 + y Ja2 -x* = const.

10. =
a<j>.

11. By Art. 101, -=-,
—

,
-s~ will be proportional to

whence
m* en* <?-•>

fl-lM^ /I.IM^ fI_!M^=o
\6

3
c
2

/ a; ds
+

V<J
2 a2

) y ds
+
\a

2
b
2

) z ds

12. « = ^€dsinacot ^, where 2 is the distance of the point fiom
the vertex, a the semivertical angle of the cone, /? the fixed angle,
and 6 the angle made by the plane through the point on the curve

and the axis of the cone, with some fixed plane. The length of curve

between any two values of 0= :
—-

{ €Minacot/3_ t lSinacot/ 1

sin a sin p .*•-.
At the vertex 6 = — 00 .

13. From the method of producing the curve we easily see

that if s be the arc measured from the point nearest to the vertex,

10—2
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r2 = c
2 + 8

s
. Also if the axis of the cone be the axis of x, x = r cos a ;

. d2x c
2 cosa A1 ,. . . _

wnence -y-^
= —

-3
—

. Al
g
o the principal normal to the curve

is the normal to the cone at that point (Art. 182). "Whence
d?x

p y-^igina, and .'. r
3 =

ap.

14.
(1) t±l. (2) ***.

c
2 "

c
2

15. « = cos0, y — sin0, z~c9.

16. Take the common tangent to the two curves as axis of x
and the plane of the circle as plane of xy. Then if

a^, yp z
x
be the

co-ordinates of a point on the circle at the end of the arc $s,

and p the radius of the circle

1=P sin-=8S^7+ ...; ^=^1-^-)
=
^-^-....;

*

and if x
s , y2 ,

z
2
be the co-ordinates of the point on the curve

we get

and similar values for y2 ,
z
2
. But it can easily be shewn by

Arts. 119, 130 that

dx _ - dy _ n
dz _ d2

as
•

'

.

_ cfy _ 1 d2
# _ .

di
=

' Js~ ' 5"" '
ds

2
~

'

2**?' ds
2
"

'

whence the square of the distance required becomes

/S/\
2

ffd*x 1\ 2

fd
3

y\
2

/d?z\
2
)

And by differentiating the formula (10) of Art. 129, and (2)
of Art. 118 the required result may be obtained.

17. Prove geometrically from the figure in Art. 127.

18. By Ex. 12 the equations of the curve may be written

x = A tan aecfl cos 0, y = A tan at * sin 0, z = Aece
,

where c — sin a cot (3 ; whence p can be obtained by (9) in Art. 129.

When developed the curve is an equiangular spiral.
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CHAPTER X.

1. x2 + y* + z
3

-(lx + my + nz)
2 = l.

2. sfx
r+f + s/7^l = a.

4'

a*
+

yS* *Y~
5.

plane.

6.

7.
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The condition that this line may be perpendicular to the line

joining (a, /3, y) to
(a', f}' } y) can be reduced to the form

a _ a
' +

p-p
+

y -y>

Also the equation of a plane through the origin and the line

required is

*(*-*')
,

y(fi-P)
,
^{y-y

r

) _r
}

a2
b*

*
c
2

~
'

the envelope of which treating a — a, /3
—

/?', y
—
y as parameters

gives us the cone required. That the curve is a parabola can be
shewn because a plane through the origin parallel to the polar
plane of

(a, j$, y) can easily be shewn to touch the cone.

CHAPTER XI.

1. If x^f^t), y=f2 (t), z=f3 (t) be the equations of the

curve, we have to find the envelope of

& -A (t)T + \y -/,W + {* -/. (t)Y
-A

where t is the parameter. The envelope is obtained from the

intersection of the sphere with the normal plane to the curve
at the point t.

2. The equation can be put in the form

f (x + y + z){(^ +»v(^)p,
and if the line x = y=-z be taken as axis of z' this becomes,

3 /3

by Arts. 25 and 28,
—£- z' (x

2 + y'
2

)
= c

3

,
which is a surface

2c
3

formed by the revolution of the curve z'x'
2 = ——^ round the axis

ofz'. Or, apply Art. 148.

3. a?y
2 + x2

z
2 = c

2x2

; x=a, y
2 + z

2=c2

being the equations of

the circle.

4. See Ex. 11, Chap. vn. for choice of axes,

x2

y
2

__
a2

(c + z)
2+

(c-z)
2 ~~7'
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. z z
x$m- = y cos -

c

6. x cos v + y sm = a, where V =— —
.

c a

7. (1) (x
2

+y
2

) (k-na) + 2a(z- a) (Ix + my) + (k + na) (z-a)
2

,

tlie vertex being at the point (0, 0, a) and the plane of the small

circle being Ix + my + nz=k.

(2) Put z = in the above.

8. Jx
2 + y

2 + Jc
2 -z' = a, or

(x
2 + y

2 + z
2 + a2 -c2

)

2 =4:a2

(x
2 + y

2
) .(1).

9. The points at which the tangent plane passes through

the origin are given by » = ± — Ja2 — c
2

,
that is, they lie in two

CO

horizontal rings. Take one of these points in the plane of zx.

The tangent plane at this point has for its equation

* =s^^ (2).
c

Also the equation (1) can be put into the form

{x
2 + y

2 + z
2 -

(a
2 - c

2

)}
2 = 4c

2

y
2 + 4cV - 4 (a

2 - c
2

)
z
2

= ic
2

y
2 + 4:(cx-zJa2 -

c*) (ex + z Ja" - ?),

whence at the points of intersection of (2) with (1)

x2 + y
2 + z

2

-(a
2 -c2

)
=

±2c?j.

Hencs (2) cuts (1) in two circles. From the symmetry of the

surface the same will be true for all the points.

10. The fixed plane being the plane of yz, and
I, m, n the

direction-cosines of AB, the equation of the surface is

(mz
- nyf + (nx

-
Izf + (ly

-
mx)

2 = k2

(y
2 + z

2

).

11. The conditions are given in Art. 92. See Art. 151.

13
<*V b

2

y
2

c
2
z
2

(a*-*7 (b
2-k2

y (c
2-k2

)

2 '

, 7 o 7 ciyz + bzx + cxy
where tr = abc . 7

—^ j— .

bcyz + cazx + aoxy
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14. Take y=px and y — kz + q as equations of the gener-

ating line.

15. (1) A surface of revolution round Oz. (2) A surface

such that all sections by planes through Oz are circles. (3) A
cone whose vertex is 0.

16. (1) A surface produced by the revolution of the lem-

niscate in the plane of zx round Oz. (2) A surface produced
by the motion of a circle whose centre is and radius is any
radius of the same lemniscate placed in the plane of xy.

„. gy^_^.}'(l-^ sy(2,>_|,)'

18. The equations of any helix can be written

x = a cos 6
} y = a sin 0, z = cO + y,

and by virtue of the given conditions y and c must be expressible

as functions of a. Hence since az = x2 + y
2 and = tan_I - , and

x

also =— -
,
we get

c c
°

tan" 1 ¥- = zF(x* + y
2

) +/(x
2 + y

2

).

The second part easily follows by differentiation.

19. The reflected light forms a cone of the second order, and
the wall on which it falls is parallel to one of its generating
lines.

20. If a?, y., t.\ x
2 , y2l

z
2

be the co-ordinates of the

points A, B; being the origin, the condition that AB subtends a

right angle at is x
x
x
a
+ yxy2

+ s
x*y

= 0. Also the equations of

AB are

x-x
} _ y-yx _ z — z

x

and from the equations of the straight lines x
2 , y2

can be expressed
in terms of z

2
and x

lf y }

in terms of z . Then eliminating z
lt

z
a,

between these equations we get a relation between x, y, z.
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21. Equation (4) of Art. 148 is evidently the required con-

dition.

x
22. If -=f(z) be the equation of the surface, the locus

if

required is

(*'-y'/)(y+*'/)=*-^A
where ff f are the values of f(z) suidf'(z) for the given
value of z.

23. The equations of any such circle are x2 + y
2 + z* = 2ax

and y = mx, also a must be expressible as a function of m, = 2cf(m)

say. The differential equation can be easily deduced.

CHAPTER XII.

1. 6a2

-12y
2 =

l, /3=0; 4aa + 12/2
3

=l, r = 0; impossible
locus.

2x* Zy
2 4z

9

2. If ^—T + OT - + -j-,
—

=- = 9 be either of the surfaces,2&+1 3&+1 4&+1 '

the two values of k are the roots of the quadratic

72
3. 29 n

3. Let a be the distance of the point along the axis of x, and
x2

v
2 z

%

-» + tt + -5 = 1 one of the surfaces : the locus required is
a2

b
2 C *

x if z
2

,_ + ^_
1 sa 1.

a ax - (a
2 —b2

)
ax— (a

2 — c
2

)

4. At the points of intersection we easily get ax = /3y + a2
.

Also the direction-cosines of the normal to the first surface at any
such point are easily proved to be proportional to

la az
2 2 2z

a F~ (ax-b
2

)

2 '

0' 'ax~^¥'

while those of the normal to the second are proportional to

2 I ft f& 2z

a' fi a2

(ax-b
2

)

2 ' ax-b2)

and these lines are therefore perpendicular to each other since their

direction-cosines satisfy the requisite condition.
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5. If the two quadrics be By
2+Cz2 = x and B'y

2 + C'z
2=x + h,

the coincidence of the foci involves

±B~±B f *>
4(7

~
46" '

whence also the focal conies will coincide, since

B-G B'-C
BC

~
B'C

'

6. At the points where the two quadrics in (5) cut, we have

(B-B')y
2 + (C-C')z

2 + h = 0,

or iBB'y* + iCG'z2 + 1 = 0,

which is the condition that the tangent planes to the two quad-
rics at (x, y} z) should be at right angles.

CHAPTER XIII.

b
2
c
2x2 cW a2

b
2
z
2 .

1.
2 + ^+- 2

=
pp — a pp- o pp - c

where p is the perpendicular from the centre on the tangent
plane. This can be reduced to

a2
b
2
c
2

p
2

p
2 -

(a
2 + b

2 + c
2 - r

2

) pp +—2— = 0, where r
2 = x2 + y

2 + z
2
.

For the umbilici the two roots will be equal. This will require
one of the quantities x, y or z to vanish.

2. (1) x=y = z = a.

(2) When xa? = ±yb* = ± z&.

3 -

(|)

2

(^y-^)^+i^y(2/
2 -^2

)-2/
2

(^y-^)-o.

4. (1) Eliminate m between equations (6) and (7) of Art.

171, writing p = hjl+p
2 + q

2
.

(2) The coefficients of the several powers of m in the

equation (7) of Art. 171 must vanish.
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5. The two values of h in (9) of Art. 1 69 must be equal and
of opposite sign ;

\ U2

(v + w)+V
2

(w + u)+W
2

(u+v)-2u
f

rir-2v
f WU-2w,

UV=0.

The points of intersection of the surface with the sphere

. 2 2
1 1 1

6. Take the general equation of a quadric and determine

the conditions that it may touch the plane of xy at the origin,

and that sections by planes parallel to that plane may be circles.

is

7. Using the equation in the last question the locus required

ex + by + h (z
-
a)
- z = 0.

8. See Ex. 4, Chap. xn. The surface in the question and
the two surfaces

x2

y z2 , os? y
2

z ~

/^y + 6
2

/8 fiy + tf-c*
'

yz + c
2

yz + c
2 -b2

y

can be shewn to cut always at right angles, where /? and y are

any constants. Hence the intersections of these surfaces with the

given one are its lines of curvature.

At the points of intersection of the first with the given
surface we have ax — /3y + b

2 a plane ;
and by combining this with

the given equation, that can be written

- (ax- c
2

)
+ | ((3y + b

2 -c2

)
+ z

2 = ax- c
2

,a jS

which is the equation of a sphere. Hence the lines of curvature

are circles : and the plane of any one of them being ax = fiy + b
2

always contains the line ax = b
2

, y — 0.

9. The result follows from the fact that r has the same
value for all tangent lines at the umbilicus.

10. At the points of contact pr has the same value for the

geodesic and the line of curvature.

1 1 . The value of pr is the same for the two geodesies through
P since they each pass through an umbilicus. Hence the value

of r is the same. The tangents to these two geodesies are there-
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fore parallel to the equal radii of the indicatrix, and the tangents
to the lines of curvature being parallel to the axes bisect the

angles between these.

12. Can be proved from 11 by the method of infinitesimals.

13. The geodesic circle cuts all geodesies through the urn

bilicus at right angles. Hence if d, d' be the semidiameten

parallel to the tangent to the geodesic circle and the line througl
the umbilicus, and p, p be the semi-axes of the central sectioi

parallel to the tangent plane at the point

1 JL JL 1 _ p*(a
2 + b

2 +c2 -r2

)

d2
+

d'*
~

p*

+
p'* a2

b
a
c
a

Ex. 25, Chap. vm.

But p
2
d'

2 = aV as can be ascertained from the known co-ordinate

of the umbilici.

14. At any point in the principal section by the plane of y,

the two roots of the equation in (1) can be shewn to be

c
2

and — . The former root is the radius of curvature of the principa

section : the latter gives the distance along the normal of tin

point whose locus is required which can then be worked out b]

plane geometry.

15. Taking x2 + y
2 = a2 as the equation of the cylinder w

d2
z dz

easily get for the geodesies ^-2
= 0; therefore -r=c, whence th

curves are helices.

16. s = Jz
2
sec

2a-c2

f
where a is the semi-vertical angle o

the cone, and s the length of the arc from the nearest point to th

vertex.

17. If x2

-vy
2

=f(z) be the equation of the surface it easil;

follows from (1) of Art. 182 that for all points in any geodesic lin<

dy dx



ANSWERS TO THE EXAMPLES. 253

knd it can easily be proved that the sine of the angle required

c

M+?'
18. If f ~f(x) be the equation of the surface r2

being y* + z
2

;he required expressions are

{ m
/ 3 and r
art

dx2
Mil-

19. With the usual notation for an ellipse the product

required is

20. The radii of curvature of the principal sections are

r
2

f and :
—

-, where r is the focal radius of the point on
r-psm</»

bhe ellipse which is in contact, <f>
the angle between that radius

ind the tangent, and p the radius of curvature of the ellipse

(Besant on Glisaettes, &c.). Hence the sum of the curvatures

_2 psin<fr_ 2 r(2a-r) _ 1
~
r r8 r ar2 a'

21. By Meunier's Theorem.

22. Use the quadratic equation in question (1) of this chapter,
r being a constant.

23. Prove geometrically from the fact that when the surface

is developed the geodesies become straight lines.

24. Differentiate /ri

~o(?+y*+z
2 twice and use the formulae (1)

of Art. 182, (10) of Art. 129, and (1) of Art. 100.

25. Use Meunier's Theorem, and (3) of Art. 167.
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