
UC-NRLF

35 fibl



GIFT OF







SOLID GEOMETRY





SOLID GEOMETRY

By

MABEL SYKES
Instructor in Mathematics, Bowen High School, Chicago
Author of "A Source- Book of Problems for Geometry"
and (with Clarence E. Comstock) of "Plane Geometry"

and

CLARENCE E. COMSTOCK
Professor of Mathematics, Bradley Polytechnic Institute

Author (with Mabel Sykes) of ''Beginners' Algebra"

RAND M9NALLY & COMPANY
CHICAGO NEW YORK



J of ' '

.

Copyright, 1922, by

RAND MCNALLY & COMPANY

/
r

Made in U. S. A.



THE CONTENTS
PAGE

The Preface vii

CHAPTER I. Lines and Planes

Introductory 1

Parallel Lines and Planes 6

Perpendicular Lines and Planes 12

Equal Angles in Space 17

Perpendiculars and Parallels 18

Dihedral Angles . 21

Perpendicular Planes 23

Proportional Segments 29

Loci in Space 29

Projection 35

Polyhedral Angles 38

Summary and Supplementary Exercises 42

CHAPTER II. Properties of Polyhedrons, Cylinders, and Cones

Solids in General 48

Some Elementary Surfaces 48

Prisms 51

Cylinders 55

Pyramids 60

Cones 64

Regular Polyhedrons 69

Supplementary Exercises 72

CHAPTER III. The Sphere

Introductory 76

Tangents to Spheres 77

Determination of Spheres 79

Circles of Spheres 81

Spherical Angles 86

Spherical Triangles 87

Supplementary Exercises .102



vi THE CONTENTS

CHAPTER IV. Areas and Volumes
PAGE

Areas of Polyhedrons 106

Volumes of Polyhedrons 109

The Measurement of Round Bodies in General 125

The Measurement of the Cylinder 125

The Measurement of the Cone 129

The Measurement of Frustums of Cones 132

General Formula 134

Volumes by Cavalieri's Theorem 138

Spherical Measurements 142

Summary and Supplementary Exercises 156

CHAPTER V. Similarity and Symmetry

Similarity 162

Symmetry . . . . '. 172

Miscellaneous Exercises 173

Notes on Arithmetic and Algebra 174

Tables 180

Outline of Plane Geometry 185

References and Topics for Mathematics Clubs 202

The Index 209



THE PREFACE

The Solid Geometry is prepared for the same purpose and
with the same general features as is the Plane Geometry.
In both books the two main characteristics are analysis and

emphasis.

One of the great objectives in education is to train young
people to attack difficulties through an analysis of the

problems presented. It is because of this fact that both the

Plane and the Solid Geometry are prepared as suggestive
method texts with the suggestions in the form of a logical

analysis.

Moreover, if the mind is to retain any lasting impression
of the work covered, distinctions in emphasis are necessary.
The material presented in both the Plane and the Solid

Geometry has been arranged with this fact in mind. Atten-

tion is called particularly to chapters ii, iv, and v. Chap-
ter ii discusses the nature and properties of the various sur-

faces and solids ordinarily studied in solid geometry with

the exception of the sphere, which is studied in chapter iii.

All areas and volumes are considered in chapter iv. Simi-

larity is considered in chapter v.

There are several advantages gained from this arrangement.
It enables the pupil to take up the study of areas and
volumes with a clear idea of the solids considered. It makes

possible a more logical arrangement of material. Cylinders
are compared with prisms and cones with pyramids when
the properties of these solids are studied; but as the volume

of the pyramid is obtained from that of the prism, a different

order is used when volumes are studied. Moreover, -the

theorems concerning areas and volumes may be worked into

a logical whole when considered together, which is not possi-

ble in the traditional arrangement. For example, Theorems

121, and 122 serve not only as a necessary preparation for

vii



viii THE PREFACE

the measurement of the sphere, but also as a fitting climax

to the work on cylinders and cones.

Both the Plane and the Solid Geometry are written with the

firm conviction that if geometry is taught by analysis and

if at the same time proper distinctions in emphasis are made,

pupils will reach the end of their course with more real

education and with a much clearer and more lasting impres-

sion of the meaning of the great concepts of geometry than

can possibly be the case under traditional methods.

Attention is called also to certain minor features:

The approach to the early theorems through the intro-

ductory material is natural and easy.

As the first difficulty, perhaps the only real difficulty, in

solid geometry, is the inability of pupils to visualize figures

in space, the use of models made by pupils is strongly recom-

mended. These models should be used for demonstration

work and should precede the use of blackboard figures until

the pupil is clearly out of "flatland." If possible, spherical

triangles should be studied from a slated globe.

The treatment of loci in 41-47 and the treatment of

similarity in chapter v deserve attention.

The formal study of the theory of limits is omitted. The

treatment of areas and volumes of round bodies by this

method is given in outline only. It is intended merely to

make the results appear reasonable to the pupil.

By proper choice of material the study of volumes may be

made to depend upon Cavalieri's theorem. See 173-179

and 154.

The ''Notes on Arithmetic and Algebra" and the ''Outline

of Plane Geometry" given will be found convenient for

reference. The "Topics and References for Mathemalic

Clubs" are intended as suggestions only.

M. S.

CHICAGO, ILLINOIS C. E. C.
March, 1922



SOLID GEOMETRY
CHAPTER I

LINES AND PLANES

INTRODUCTORY

SUBJECT MATTER OF GEOMETRY
1. In plane geometry our study was confined to figures

that could be drawn on a plane and drawn with ruler and

compass only. Such figures are constructed of points and

lines.

In solid geometry we extend our study to figures in

space. These figures are constructed of points, lines, sur-

faces, and solids.

2. The space occupied by a ball is a geometrical solid.

The outside of the ball is a surface; it is the boundary of the

solid and separates the space within

from the space without (Fig. 1).

In general we may say that

The space occupied by any object is

called a geometrical solid.

The boundaries of a solid are called

surfaces.

The surfaces of a solid separate the FIG i

solid from the remainder of space.

We may define a surface as any boundary between

two parts of space.

The space occupied by a tomato can is a

geometrical solid. The surface of the can

separates the space within from the space with-

out. We may consider the total surface of the

can as composed of three parts separated by
the edges of the can (Fig. 2). FIG. 2

1



SOLID GEOMETRY

The edges of a solid are called lines. We may consider

the edges of a solid as separating the parts of its surface.

We may define a line as the boundary between two parts
of any surface.

The equator is a line separating the northern and south-

ern hemispheres, two parts of the surface of the earth.

The space occupied by a rectangular block is a geomet-
rical solid. The lateral surface

of the block (Fig. 3) consists of

four parts which we may think

of as separated by the lateral
j

edges, or lines. The edge about
"F*Tr* ^

the upper base may be consid-

ered as composed of four parts separated by the corners, or

points.

The corners of a solid are called points. We may con-

sider the corners of a solid as separating the parts of its edges.

We may define a point as the boundary between two

parts of any line.

A point on a straight line divides the line into two parts

called rays.

DETERMINATION OF PLANES

3. The following assumptions concerning planes are

important :

As. 1. A straight line joining any two points in a plane

lies wholly in the plane.

This is the fundamental characteristic of planes.

Exercise. Is it possible to find two points on the curved sur-

face of a tomato can, such that the line joining them lies wholly on

the surface ? Why is this surface not a plane ?

As. 2. A plane is unlimited in extent.

As. 3. Through a given straight line an unlimited number

of planes may be passed.
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If a number of planes pass through a given line, they
are said to form a pencil of planes, and the line is said to

be the axis of the pencil.

In Fig. 4, AB is said to be the' axis of the pencil of planes.

As. 4. If a plane passes through a given straight line,

it may be revolved so as to contain any

given point in space. C/^x^xV
As. 5. Through a given straight line

L

/^fC. )

and a given point without the line only
^

one plane can be passed.

COR. I. A plane is located definitely if it contains three

given points not in the same straight line.

Suggestion. Show that this is equivalent to locating the plane by
a straight line and a point without the line.

COR. II. A plane is located definitely by two given

intersecting straight lines.

Suggestion. Show that this is equivalent to locating the plane by
one of the lines and any point in the other. See As. 1.

COR. III. A plane is located definitely by two parallel

straight lines.

Suggestion. By definition two parallel lines lie in the same plane.

Only one plane can contain the two parallel lines. If there could be

two planes each containing the two parallels, there could be two

planes each containing a line and the same point without the line.

This is impossible.

RELATIVE POSITIONS OF TWO PLANES

4. Two planes either intersect or do not intersect.

Two planes that do not intersect are said to be parallel.

This definition is the fundamental test for parallel planes.

If two planes intersect, the intersection of the two planes

is the locus of the points common to the two planes.

As. 6. Two intersecting planes have at least two common

points.
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5. THEOREM 1. The intersection of two planes is a

straight line.

Analysis: To prove that the intersection is a straight

line, join two points in the intersection by a straight line

and prove that

I. Every point in this line lies in each plane.

II. No point outside this line lies in both planes.

Theorem 1 may be stated
t
thus: The intersection of two

given planes determines a straight line.

RELATIVE POSITIONS OF A STRAIGHT LINE
AND A PLANE

6. If a straight line lies in a plane, the plane is said to

contain the line.

If the plane does not contain the line, the line may
intersect the plane, or it may not intersect the plane.

If the line and the plane do not intersect, they are said

to be parallel. This definition is the fundamental test for

lines parallel to planes.

When a given straight line intersects a given plane, one

point and only one point is determined; or

As. 7. A straight line can intersect a plane in but one

point.

RELATIVE POSITIONS OF STRAIGHT LINES IN SPACE

7. Two straight lines in a plane either intersect or are

parallel. Two straight lines in space either intersect or are

parallel or skew.

Two straight lines are said to be parallel if they are in the

same plane and do not meet.

Two straight lines in space are said to be skew if they

neither intersect nor are parallel.

Exercise. Hold two pencils to represent two skew lines. Point

out two skew lines in the. room in which you are sitting.
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EXERCISES INVOLVING THE DETERMINATION
OF LINES AND PLANES

8. 1. Will an object mounted on three legs always stand firm?

Why? Will one mounted on four legs always stand firm? Why?
2. What practical uses are made of the fact referred to in the

previous exercise?

3. Will three concurrent straight lines always lie in the same

plane? Illustrate your answer. How many planes may be deter-

mined by three concurrent straight lines?

Tell how many planes would be determined in each of the

following cases (Ex. 4-10) and discuss all possibilities. Illustrate

your answers with pencils or toothpicks and give reasons.

4. Two intersecting straight lines and a point not in the plane
of the lines.

5. Four concurrent straight lines.

6. Three concurrent straight lines and one point.

7. Four points not all in the same plane. How many lines

are determined in this case?

8. Five points no four of which lie in the same plane. How
many lines are determined in this case?

9. Three parallel lines that are not all in the same plane.

10. Four parallel lines no three of which lie in the same plane.

11. Must three intersecting straight lines lie in the same plane?

Why?
12. Hold three pencils to illustrate the various relative positions

of three straight lines in space. How many planes are determined

in each case?

13. Answer Ex. 12 for four straight lines.

14. What is a skew quadrilateral? Can a skew quadrilateral

be a parallelogram? How many planes are determined by the

sides of a skew quadrilateral?

15. Hold two cards to illustrate the possible relative positions

of two planes in space. How many lines are determined in each

case?

16. Answer Ex. 15 for three planes.
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17. Can skew straight lines be parallel to the same plane?
Illustrate your answer with two pencils and a card.

18. What are the least number of planes that can completely
inclose a space? How many lines are determined in this case?

Illustrate your answer.

19. If five planes intersect so as completely to inclose a space,

how many lines are determined?

PARALLEL LINES AND PLANES
TEST FOR LINES PARALLEL TO PLANES

9. THEOREM 2. If a plane contains one and only one

of two parallel straight lines, it is parallel to the other.

FIG. 5

Hypothesis: Lines a and b are parallel and plane M con-

tains line a but not line b.

Conclusion: Line b is parallel to plane M.

Analysis:

I. To prove line b
\\ plane M, prove that line b cannot

meet plane M.
II. /. show that if line b met plane M, it would also meet

line a.

Proof:

STATEMENTS

I. a. Lines a and b lie in the

same plane.

b. Line a is the intersec-

tion of plane M and

plane ab.

REASONS

I. a. Two parallel lines

determine a plane.

b. Line a lies in both

planes.
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c. If line b meets plane M,
it will meet line a.

d. But line b cannot meet

line a.

II. .'. line b cannot meet plane
M and is II it.

c. Line a is the inter-

section of plane
M and plane ab.

d. Why?

II. The supposition that

line b would meet

plane M is elimi-

nated.

Ex. 1. Show that one plane and only one may be passed

through one of two skew lines and parallel to the other.

Suggestion. Let a and b represent the two given skew lines.

Through any point in a draw b' parallel to b. Lines a and b' determine

a plane parallel to b. Why?

Ex. 2. Show that one plane and only one may be passed

through a given point and parallel to two given skew lines in

space.

Suggestion. Let a and b represent the two given skew lines and
the given point. Draw through 0, a'

\\
a and b'

\\
b. Lines a' and

b' determine a plane parallel to line a and to line b. Why?

TESTS FOR PARALLEL LINES

10. THEOREM 3. If a straight line is parallel to a plane,

it is parallel to the intersection of the given plane with any

intersecting plane containing the line.

N

FIG. 6

Analysis: To prove a
\\ b, prove that they are in the same

plane and cannot meet.
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COR. If a straight line and a plane are parallel, a straight

line through any point of the given plane parallel to the

given line lies wholly in the given plane.

Analysis:

I. To prove b lies in plane M, prove that b coincides

with a line that does lie a

in plane M.
II. .*. pass a plane through a

and point P, intersecting

M in line x, and prove
that x coincides with b.

III. To prove that x coincides FlG - 7

with b, show that x and b are both parallel to a

through P (Fig. 7).

11. THEOREM 4. If two parallel planes are cut by a

third plane, the intersections are parallel.

FIG. 8

Hypothesis: M and N are two parallel planes cut by

plane P in lines a and b respectively.

Conclusion: Lines a and b are parallel.

Analysis: To prove lines a and b parallel, prove that

they are in the same plane and do not meet.

Exercise. Illustrate Ths. 1-4 by planes from the room in which

you are sitting and by pencils and pieces of cardboard.
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V-
TEST FOR PARALLEL PLANES

12. THEOREM 5. If two intersecting straight lines are

parallel respectively to two other intersecting straight lines,

the plane of the first pair is parallel to the plane of the second

pair.

M

FIG. 9

Hypothesis: M and N are two planes with lines a and b

in plane M parallel respectively to lines a' and b
r
in plane N.

Conclusion: Planes M and N are parallel.

Analysis:

I. Show that plane M cannot meet plane N.
II. .*. show that if plane M met plane N in any line,

this line would be parallel to each of the intersect-

ing lines a and 6 (Th. 3).

III. .*. prove that a and b are each parallel to plane N.

Proof:

STATEMENTS REASONS

I. a. Line a
||
line a'.

b. Line a
|| plane N. Th. 2

c. Similarly line b
\\ plane N.

II. a. Suppose M and N meet in some

line. Call this intersection line p.

b. .'. a would be
|| p. Th. 3

c. Similarly b would be
|| p.

III. But a and b cannot both be
||
same

line. Why?
IV. /. M cannot meet N and is

||
N.

The pupil should quote in full all theorems referred to by number.

2



SOLID GEOMETRY

TEST FOR PARALLEL LINES

13. THEOREM 6. Two straight lines parallel to a third

straight line are parallel to each other.

FIG. 10

Hypothesis: Lines a and b are each parallel to c.

Conclusion: Line a is parallel to line b.

Analysis and construction:

I. To prove a
|| b, prove that b coincides with a line

that is
||
a.

II. Let M be the plane of b and c, and N be the plane

of a and X, any point in b. Let N intersect M in

line d. Prove that d is
||
a and that d coincides

with b.

III. To prove that d and b coincide, prove that they are

both parallel to c through X.

Proof:

STATEMENTS

I. a. Line c
\\
N.

b. Line d
\\
line c, through X.

c. Line b
\\
line c, through X.

d. .'. lines d and b coincide.

REASONS

I. a. Th. 2

6. Th. 3

c. Hypothesis
d. As. 30, Plane

Geometry

II. Ths. 2 and 3

Why?
II. but line d

\\
a.

.'. line b
\\
a.

NOTE. Th. 6 is proved here for the sake of the exercises in 14.

Another proof is given on page 19.
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EXERCISES INVOLVING PARALLELS

14. To prove two planes parallel, prove that

1. They cannot meet, or

2. Two intersecting lines in one are parallel respec-

tively to two intersecting lines in the other.

To prove a line and a plane parallel, prove that

1. They cannot meet, or

2. The plane contains a line parallel to the given line.

To prove two lines parallel, prove that

1. They are in the same plane and do not meet, or

2. One is parallel to a given plane and the other is

the intersection of the given plane and any plane

containing the line, or

3. They are the intersection of two parallel planes

cut by a third, or

4. They are parallel to the same line.

1. Are two lines parallel to the same plane parallel to each

other? Hold a card and two pencils so as to illustrate your answer.

2. Are two planes parallel to the same line parallel to each

other? Illustrate your answer.

3. Through a given point how many lines can be drawn parallel

to a given plane? Why?
4. Parallel segments between parallel planes are equal and cut

off on the given planes segments that are equal and parallel.

5. If a line is parallel to a given plane, what is its relation to

the lines of the plane? Illustrate your answer. To what lines of

the plane is it parallel?

6. If a straight line and a plane are parallel, a pencil of planes

through the given line intersects the given plane in parallel lines.

7. If a line is parallel to one of two parallel planes, it is parallel

to the other or lies in the other.

Suggestion. Pass a plane through the given line so as to cut the

two parallel planes.

8. If one of two parallel lines is parallel to a given plane, the

other is also parallel to the plane or lies in the plane.
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PERPENDICULAR LINES AND PLANES

PRELIMINARY THEOREMS

15. THEOREM 7. In space but one line can be drawn

perpendicular to a given line from a given point without

the line.

THEOREM 8. In space any number of lines can be drawn

perpendicular to a given line through a given point on the

line.

The proofs to Ths. 7 and 8 are left to the pupil.

FUNDAMENTAL TEST FOR PERPENDICULARS TO PLANES

16. THEOREM 9. If a line is perpendicular to each of two

lines at their intersection, it is perpendicular to all lines that

are in their plane and are drawn through their intersection.

> \ \ \

~o s

x~-;r^:r/;^
~a \

FIG. 11

Hypothesis: Line AO _L lines a and b at their intersection

0. M is the plane of a and b.

Conclusion: AO _L all lines in M through 0.

Analysis and construction:

I. To prove AO _L all lines in M through 0, draw

c any line in M through and prove AO J_ c.

II. Draw any line in M intersecting a, b, and c in

X, Y, and Z, respectively. Extend AO, making
AO = OB. Join AX, AZ, AY. BX, BZ, and BY.
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III. To prove AO _L c, prove ZA =ZB (Plane Geometry,
Th. 86, Cor.).

IV. /. prove AAXZ^ABXZ.

V. /.
" = Z.BXZ.

VI. To prove AXZ = Z.BXZ, prove &AXY &
ABXY.

VII. prove =BXa.ndAY =

In the same way AO may be proved perpendicular to all

lines in M through 0.

Exercise. Make a model of toothpicks, string, and cardboard

to illustrate Fig. 1 1 and give the analysis above from your model.

The intersection of a line and a plane is called the foot

of the line.

A line that is perpendicular to all lines in a plane passing

through its foot is said to be perpendicular to the plane.

Theorem 9 may be stated : If a line is perpendicular to

each of two lines at their point of intersection, it is per-

pendicular to their plane.

COR. If a line is perpendicular to a plane, it is perpen-
dicular to all lines in the plane passing through its foot.

17. THEOREM 10. If from a point in a

perpendicular to a plane equal oblique seg-

ments are drawn to the plane, they cut off

equal distances on the plane from the foot

of the perpendicular and conversely (Fig. 12).

Exercise. If from a point in a

perpendicular to a plane unequal

oblique segments are drawn to the

plane, the longer segment cuts

off the greater distance from

the foot of the perpendicular

and conversely (Fig. 13).

FIG. 12

FIG. 13
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DETERMINATION OF PLANES

18. THEOREM 11. Not more than one plane can be drawn

containing a given point and perpendicular to a given line.

Case A. When the given point is on the given line.

A

B
FIG. 15FIG. 14

Analysis and construction (Fig. 14) :

I. Suppose that two planes M and N are both J_ AB
at 0.

II. Show that this supposition would give two lines in

the same plane _L the same line at the same point.

III. /. pass any plane through AB intersecting M and N
in lines a and b respectively.

Outline of proof:

I. a. Line a J_ AB at in plane P.

b. Line b _L AB at in plane P.

c. This is impossible. (Plane Geometry, As. 7.)

II. /. M and N are not both _L AB at 0.

Case B. When the given point is without the given line.

Analysis and construction (Fig. 15) :

I. Suppose that two planes M and N are both _L AB
from 0.

II. Show that this supposition would give two lines _L

AB from a point without AB.

III. .*. join with X and Y, the intersection of AB with

M and N respectively. Prove OX and OY J_ AB.
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We will assume from Th. 9 that one plane can be drawn

perpendicular to a given line and contain a given point (see

57, Ex. 1 and 2).

19. THEOREM 12. All perpendiculars to a given straight
line at a given point lie in a plane that is perpendicular to

the line at the given point.
A

Suggestion. Prove that the plane deter-

mined by OX and OY coincides with the

plane determined by O Y and OZ. .'. prove

planes XOY and YOZ each J_ AB at O.

DETERMINATION OF LINES

20. THEOREM 13. Not more than one perpendicular can

be drawn to a given plane from a given point.

Case A. When the point is in the plane.

Suggestion. Suppose a and b

(Fig. 17) are two perpendiculars
to M from O. Let the plane of

a and b intersect M in line RS.

Show that there would be at

point two lines in the same

plane perpendicular to line RS.
FIG. 17

Case B. When the point is without the plane.

o

Suggestion. How is line RS (Fig.

18) determined? Show that there would
be from point O two lines in the same

plane perpendicular to the line RS.

FIG. 18

We will assume that one line can be drawn perpendicular
to a given plane from a given point (see 57, Ex. 3 and 4).
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COMPARATIVE LENGTHS OF SEGMENTS

21. THEOREM 14. The perpendicular from a point to a

plane is the shortest distance from the point to the plane.

FIG. 19

Suggestion. If OA is not the shortest distance from to plane M ,

suppose OB to be the shortest distance. Find the intersection of

plane AOB and M. Show that this contradicts Th. 56, Plane Geometry,
the perpendicular is the shortest segment from a point to a straight
line.

EXERCISES INVOLVING PERPENDICULARS

22. 1. In Fig. 20, AO is perpendicular

to plane M. OB is perpendicular to line

x, any line in M. Prove that AB is per-

pendicular to x and that x is perpendicular

to plane AOB.

2. In Fig. 20, suppose that AO is per-

pendicular to plane M and that AB is drawn

from point A perpendicular to line x. Line x is any line in M.
Prove that BO is perpendicular to line x and that x is perpendicular

to plane AOB.

3. In Fig. 21, AB is perpendicular to plane M and BC is oblique

to plane M. CD and CE are two lines in plane M making equal

angles with CB. Prove that CD and CE
make equal angles with CA .

4. In Fig, 21, suppose that AB is drawn

perpendicular to plane M and BC is oblique

to planeM . If CD and CE are in plane M
and make equal angles with A C, prove that

they make equal angles with line BC.
FIG. 21

FIG. 20
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5. If CA bisects /.DCE and AB is perpendicular to the plane
of /.DCE, prove that any point in AB is equally distant from
CD and CE. (Use Ex. 2, p. 16.)

6. If three segments are equal and parallel and are not all in

the same plane, the segments joining corresponding extremities

form congruent triangles.

EQUAL ANGLES IN SPACE

23. THEOREM 15. If two angles lying in different planes
have their sides respectively parallel and lie on the same
side of the line joining their vertices, the angles are equal.

FIG. 22

Hypothesis: ABAC and B'A'C', lying in planes N and

M, have AB
\\ A'B', AC \\ A'C', and AB

t A'B', AC, and
A'C' lying on the same side of the line AA' which joins

their vertices.

Conclusion: Z.BAC= B'A'C'.

Analysis and construction:

I. To prove /.A=Z.A'
t prove them corresponding

angles of congruent triangles.

II. /. make AB =A'B r

,
AC= A'C', join BC and B'C,

and prove BC= B'C'.

III. To prove BC= B'C, join BB' and CC and prove
BB'C'Ca O.

IV. /. prove BB'
\\
and = 07'.

V. /. prove BB' and CC' each
||
and equal to AA r

.

VI. .'. prove AA'B'B and AA'CC ZS7.

The proof is left to the pupil.
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PERPENDICULARS AND PARALLELS

TEST FOR PERPENDICULARS TO PLANES

24. THEOREM 16. If one of two parallel lines is perpen-
dicular to a plane, the other is also perpendicular to the plane.

F
B

M

D E

FIG. 23

Hypothesis: AB and DF are two parallel straight lines

cutting plane M at A and D respectively. AB J_ plane M.

Conclusion: DF JL plane M.

Analysis and construction.

I. To prove DF JL M, prove DF J_ to two lines in M.
To prove DF _L one line, as DE, in M, draw AC

in M from A and
||
DE and prove that

(1) ZFDE= ^BAC and (2) Z.BAC is art. Z.

In the same way DF can be proved JL any other

line in M through D.

II.

III.

TEST FOR PARALLEL LINES

25. THEOREM 17. Two lines perpendicular to the same

plane are parallel to each other.

\
FIG. 24

Hypothesis: Lines a and b are each _L plane M.
Conclusion: a II b.
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Analysis and construction:

I. To prove b
\\ a, prove that b coincides with a line

that is
||

a.

II. /. construct c from a point in b
\\
a and prove that

c coincides with b.

III. To prove that c and b coincide, show that c and 6

are both JL M from the same point.

COR. Two straight lines parallel to a third are parallel

to each other.

Suggestion. If lines a and b are both parallel to line c, pass a plane

J. line c and prove that a and b are both JL this plane.

TEST FOR PERPENDICULARS TO PLANES

26. THEOREM 18. If a straight line is perpendicular to

one of two parallel planes, it is perpendicular to the other.

FIG. 25

Hypothesis: Plane M
|| plane N. Line h _L plane N.

Conclusion: Line h JL plane M.

Analysts and construction:

I. To prove line h J_ M, prove h J_ two lines in M.
.'. construct BC and BD any two lines in M through

B and prove h A. BC and BD.
To prove h _L BC and BD, prove h JL lines that are

||
BC and ZX

IV. /. let the plane of h and BC cut N in line AE and the

plane of h and BD cut A/" in line AF and prove

BC and AF II >.

II.

Ill
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TEST FOR PARALLEL PLANES

27. THEOREM 19. Two planes perpendicular to the same

straight line are parallel.

Outline of proof:

I. If the two planes were not parallel, they would

intersect.

II. Suppose the two planes intersect. Let P represent

some point in the intersection.

III. We should then have two planes containing a given

point and perpendicular to a given line.

IV. This is impossible.

V. .'. the planes are parallel.

MISCELLANEOUS EXERCISES

28. 1. If two angles lying in different planes have their sides

parallel and lying on opposite sides of the line joining their vertices,

the angles are equal.

2. When are two angles lying in different planes supplementary?
Give proof.

3. Two planes parallel to a third are parallel to each other.

Analysis:

I. To prove plane M \\ plane N, prove them _J_ the same line.

II. .*. construct a line _L the third plane and prove this line J_

M and N.

4. Are two lines perpendicular to the same plane coplanar? Are

three lines perpendicular to the same plane coplanar?

5. How many planes are determined by three lines perpendic-

ular to the same plane? Show that each of these planes is parallel

to one of the given lines.

6. Show that it is not always true in space that a line perpen-

dicular to one of two parallels is perpendicular to the other. State

this theorem so that it is always true in space.

7. Do you know any other theorems that may be true on a

plane that are not true in space?

8. If a line is parallel to a plane, it is everywhere equally distant

from thejplane.
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9. Two points on the same side of a plane and equally distant

from it determine a line parallel to the given plane.

10. Two parallel planes are everywhere equally distant.

11. If lines a and b are parallel and planes M and N are per-

pendicular respectively to lines a and b, prove that plane M is

either parallel to or coincides with plane N.

12. If planes M and N are parallel and lines a and b are per-

pendicular respectively to planes M and N, then line a is either

parallel to or coincides with line b.

13. A line and a plane perpendicular to the same line are

parallel unless the line lies in the plane.

14. If a line and a plane are parallel, is any line perpendicular
to the given line perpendicular also to the given plane? Illustrate

your answer by using pencils and pieces of cardboard.

15. Given line a parallel to plane M . From any point in a draw

line b perpendicular to M. Prove that b is perpendicular to a.

16. If each of two intersecting planes contains one of two

parallel lines, the intersection of the planes is parallel to each of

the lines and to their plane.

17. AB, CD, and EF are three equal segments perpendicular
to plane M at the points A

, C, and E, respectively. Prove that

the plane determined by points B, D, and F is parallel to plane M.

DIHEDRAL ANGLES

29. The two parts into which a straight line divides a

plane are called half-planes. The line is called the edge of

the half-plane.

Two half-planes with a common edge form a dihedral

angle. The common edge is the edge of the

dihedral angle. The half-planes are the faces of

the dihedral angle.

In Fig. 26, the half-planes ABDC and ABFE
have a common edge AB. AB is the edge and

ABDC and ABFE are the faces of the dihedral

angle. The angle may be read D-AB-E, or, if

there is no ambiguity, AB.
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MEASUREMENT OF DIHEDRAL ANGLES

30. An angle formed by two straight lines, one in each face

of the dihedral angle, perpendicular to the edge at the same

point is called a plane angle of the dihedral

angle. In Fig. 27, Z.XOY is a plane angle
of the dihedral angle D-AB-E if OX is in

face ABFE and OY is in face ABDC and

OX and OY are each perpendicular to AB at

the same point 0.

THEOREM 20. All plane angles of the

same dihedral angles are equal.

The proof is left to the pupil.

THEOREM 21. If a plane is perpendicular to the edge
of a dihedral angle, its intersections with the faces of the

dihedral angle form a plane angle of the dihedral angle.

31. Two dihedral angles are said to be congruent if they
can be made to coincide. Two dihedral angles are said

to be equal if they have the same measure number.

The measure of a dihedral angle will be denned as the

measure of its plane angle. From this definition we have

THEOREM 22. If two dihedral angles are equal, their

plane angles are equal.

THEOREM 23. If the plane

angles of two dihedral angles are

equal, the dihedral angles are equal.

Exercise. Cut and fold a card as

shown in Fig. 28 so as to illustrate the

definition of the measure of a dihedral

angle.

As. 8. Two dihedral angles that are congruent are equal,

and, conversely, two dihedral angles that are equal are

congruent.

FIG. 28
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RELATED DIHEDRAL ANGLES

32. Two dihedral angles are said to be complementary
or supplementary according as their plane angles are com-

plementary or supplementary.

Two dihedral angles are said to be adjacent if they have

a common edge and a common face separating the angles.

Two dihedral angles are said to be vertical if the faces of

one are prolongations of the faces of the other.

33. THEOREM 24. Two vertical dihedral angles are

equal.

Suggestion. In this theorem and in the following exercises pass a

plane perpendicular to the edge of one of the dihedral angles and show
that this will determine the plane angles of all the dihedral angles.

Ex. 1. If one plane meets another, the adjacent dihedral

angles formed are supplementary.

Suggestion. Pass a plane perpendicular to the common edge and
reduce to a plane geometry theorem.

Ex. 2. If two parallel planes are cut by a third plane, the

alternate interior dihedral angles are equal.

Ex. 3. Prove Ex. 2 for the corresponding dihedral angles.

Ex. 4. Can you state any other cases of equal or supplementary
dihedral angles? Give proof.

PERPENDICULAR PLANES

FUNDAMENTAL TEST

34. If the plane angle of a dihedral angle is a right angle,
the dihedral angle is said to be a right dihedral angle and
the faces of the dihedral angle are said to be perpendicular
to each other.

If two planes are perpendicular to each other, the dihedral

angles formed are equal and the plane angles of the dihedral

angles are right angles.

These definitions follow at once from the definition of the

measure of a dihedral angle.
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TEST FOR PERPENDICULAR PLANES

35. THEOREM 25. If a straight line is perpendicular to

a given plane, every plane passed through the line is per-

pendicular to the given plane.

D
FIG. 29

II.

III.

Hypothesis: Line AO _L plane M at point 0. N is any

plane passed through line AO intersecting planeM in line CD.

Conclusion: Plane N J_ plane M.

Analysis and construction:

I. To prove plane N _L plane M, prove dihedral angle

A-CD-B a right dihedral angle,

prove a plane angle of dihedral angle A-CD-B
a right angle.

, draw OB in planeM JL CD at and prove

(1) Z.AOB the plane angle of dihedral angle

A-CD-B.

(2) Z.AOB a right angle.

Ex. 1. If a plane is perpendicular to the edge of a dihedral

angle, it is perpendicular to each of its faces.

Ex. 2. The rays that form a plane angle of a dihedral angle lie

in a plane which is perpendicular to the faces of the dihedral angle.

Ex. 3. If three or more planes intersect in parallel lines, a

plane perpendicular to one of the lines is perpendicular to all of

the planes.

Ex. 4. A given line is oblique to a given plane. Show how to

pass a plane through the given line so that it will be perpendicular

to the given plane.
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36. THEOREM 26. If two planes are perpendicular to

each other, a line drawn in one of them perpendicular to

the intersection is perpendicular to the other.

FIG. 30

Hypothesis: Plane N J_ plane M, intersecting plane M
in line CD. AO is a line in plane N J_ CD at O.

Conclusion: Line AO J_ plane M.

Analysis and construction:

I. To prove AO J_ plane M, prove AO J_ two lines in

plane M through point O.

II. Since AO CD, construct OB in plane M JL CD
at O and prove AO J_ OJ5.

III. To prove AO JL OB, prove ZAOB a plane angle of

dihedral angle A-CD-B.

The proof is left to the pupil.

Ex. 1. If a line and a plane not containing the line are per-

pendicular to the same plane, they are parallel.

Suggestion. Line a and plane M are both _L plane N. Draw a line

in M J_ the intersection of M and N. Prove the line
||
a.

Ex. 2. If a line is parallel to a given plane, any plane perpen-
dicular to the line is perpendicular also to the given plane.

Suggestion. Line a is
|| plane M and J_ plane N. Pass any plane

through a intersecting M in line b. Prove b _j_ N.

Ex. 3. A plane perpendicular to one of two parallel planes is

perpendicular to the other.

Suggestion. Use a construction line.

3
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DETERMINATION OF LINES

37. THEOREM 27. If two planes are perpendicular, a

line drawn perpendicular to the first from any point in the

second lies wholly in the second.

N A

j^l
FIG. 31 FIG. 32

Hypothesis: Planes M and N JL each other and intersect

in line CD. Line AO is drawn from a point in plane N _L

plane M.

Conclusion: AO lies wholly in plane N.

Case I. AO is drawn from point A, a point not in CD.

Analysis and construction (FiG. 31) :

I. To prove that AO lies wholly in plane N, prove
that AO coincides with a line that does lie in

plane N.

.'. construct AP from A _L CD and prove that AO
coincides with AP.

To prove that AO coincides with AP, show that

AO and AP are both J_ plane M from A.

Case II. AO is drawn from point in line CD (Fig. 32) .

Analysis and proof are left to the pupil.

Ex. 1. The plane perpendicular to the edge of a dihedral angle

from any point P contains the perpendiculars from P to the

faces of the dihedral angle.

Ex. 2. Prove that the perpendiculars from P referred to in

Ex. 1 form an angle which is the supplement of a plane of the

dihedral angle.

II.

III.
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38. THEOREM 28. If two intersecting planes are per-

pendicular to a third plane, their intersection's perpendicular
to that plane.

FIG. 33

Hypothesis: Planes P and Q _L plane M. Planes P and

Q intersect in line AB.

Conclusion: AB _L plane M.

Analysis and construction:

I. To prove AB J_ plane M, prove that AB coincides

with a line that J_ plane M.
II. /. construct AC from any point in AB _L plane M

and prove that AC coincides with AB.

III. To prove that AC coincides with AB, prove that AC
lies in both plane P and plane Q.

The proof is left to the pupil.

Ex. 1. Prove Th. 28 by drawing the construction line referred

to in step I of the analysis from B perpendicular to plane M.

Ex. 2. If three non-parallel planes are each perpendicular to

a third plane, their intersections are parallel.

Ex. 3.- If two intersecting planes are perpendicular respectively
to two intersecting lines, the line determined by the planes is

perpendicular to the plane determined by the lines.

Ex. 4. Two dihedral angles with their edges parallel and their

faces perpendicular to each other are either equal or supplemen-

tary.

Suggestion. Pass a plane J. the two parallel edges.
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DETERMINATION OF PLANES

39. THEOREM 29. Through a straight line oblique to a

plane one plane can be passed perpendicular to the plane
and only one.

FIG. 34

Hypothesis: Line a is oblique to plane M .

Conclusion: (1) One plane can be passed through a J_ M.

(2) Only one plane can be passed through a \_ M.

Analysis and construction (1) :

I. A plane J_ M must contain a line _L M.
II. .". from any point in a draw PQ J_ M and prove the

plane of a and PQ J_ M.

Analysis (2) : To prove plane N the only plane through
a _L M, prove that there is

a. Only one _L from P to M.
b. Only, one plane containing a and PQ.
c. Perpendiculars to M from all points in a lie wholly

in AT.

Let the pupil give the proof.

Ex.~~l. In Fig. 34 how many planes could be drawn perpen-

dicular to plane M and containing line a if line a were perpendicular

to plane M?
Ex. 2. How many planes can be drawn to contain a given

point and perpendicular to a given plane? How would these

planes be obtained?

Ex. 3. Can a plane be drawn through a given point perpen-

dicular to each of two given planes, (1) when the planes intersect;

(2) when the planes do not interesect? Show how this plane is

obtained in each case...



LINES AND PLANES 29

PROPORTIONAL SEGMENTS
40. THEOREM 30. If two straight lines are cut by three

parallel planes, the corresponding segments are propor-
tional.

I /

FIG. 35

Hypothesis: The parallel planes M, N, and P cut the

lines h and k at points A, E, C, and D, G, B respectively.

AE DG
Conclusion : -=^= -7^5-

,C LrD

Analysis and construction:

AE DG
I. Po prove -r= -(^ft>

prove each ratio equal to a third

ratio.

AE AF , DG AF
II. /. join AB and prove and ^=

LOCI IN SPACE

41. As in plane geometry, so in solid geometry the locus

of points that obey one or more requirements consists of all

points that satisfy the requirements and of no other points.
For a complete proof of a locus theorem it is necessary to

prove that

(1) All points on the locus obey the requirements.

(2) All points that obey the requirements are on the

locus.
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IMPORTANT SPECIAL CASES

42. THEOREM 31. The locus of points equally distant

from the faces of a dihedral angle is the half-plane bisecting
the dihedral angle.

D

Hypothesis: A-BC-D is a dihedral angle bisected by the

plane E.

Conclusion: Plane E is the locus of points equally dis-

tant from the facesM and N; that is,

a. Every point in E is equally distant from M and N.

b. Every point equally distant from M and N lies in E.

Analysis and construction for a:

I. Let P be any point in plane E.

II. /. draw PXJL-MandPYN and prove PX=PY
III. To prove PX= PY, let the plane of PX and PY

intersect M in XZ, and N in FZ, and E in PZ
and prove APXZmAPYZ.

IV. To prove APXZ&APYZ, prove ZPZX= ZPZ7.
V. .'. prove Z PZX and Z PZF plane angles of the

dihedral angles A-BC-E and D-BC-E.
VI. /. prove plane PXY JL 5C.

Analysis and construction for b:

I. Let P be any point equally distant from M and N.

/. let PX=
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II. To prove that P lies in plane E, draw plane PBC
and prove that plane PBC bisects the dihedral

angle A-BC-D.

III. /. let the plane of PX and PY intersect M in XZ,
N in ZY, and PBC in PZ and prove that

(1) ZPZX = Z PZF. (Prove APZX ^ &PZY.) .

(2) A PZX and PZY are plane angles of the dihedral

angles.

43. THEOREM 32. The locus of points equally distant

from two given points is a plane bisecting at right angles

the segment joining the given points.

FIG. 37

Hypothesis: M is a plane bisecting at right angles the

segment joining A and B.

Conclusion: M is the locus of points equally distant

from A and B; that is,

a. Every point in M is equally distant from A and B.

b. Every point equally distant from A and B lies in M.

Analysis for a:

I. Let P be any point in M.
II. To prove P equally distant from A and B, join PO

and prove PO J_ AB (Plane Geometry, Th. 86).

Analysis for b:

I. Let Q be any point equally distant from A and B;
that is, let QA=QB.

II. To prove Q lies in M, prove QO AB (see Th. 12).
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GENERAL DISCUSSION

44. In solid geometry two kinds of loci of points are to

be considered:

I. Loci of points fulfilling one requirement. In this case

the locus is, in general, a surface or a number of surfaces.

II. Loci of points fulfilling two requirements. In this

case the locus is, in general, a line or a number of lines.

If three requirements are given, one or more points are,

in general, determined.

LOCUS OF POINTS FULFILLING ONE REQUIREMENT

45. The definitions and exercises in this article give

examples of loci of points fulfilling

one condition.

The surface formed when a

circle is revolved about a diameter

is called a spherical surface. A
spherical surface may be defined as

the locus of points in space at a

given distance from a given point

(Fig. 38).

Ex. 1. From what plane locus is a

spherical surface obtained? How?

The surface formed when one of

two parallel lines revolves about the

other is called a cylindrical surface

of revolution. It is the locus of

points in space at a given distance

from a given line (Fig. 39).

Ex. 2. From what plane locus may a cylindrical surface be

obtained. How?

Ex. 3. Find the locus of points in space that are equally

distant from two parallel planes.

Ex. 4. Find the locus of points in space that are at a given

distance from a given plane.

FIG. 38

FIG. 39
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LOCI OF POINTS FULFILLING TWO REQUIREMENTS

46. In the
'

following exercises the loci required are

obtained by the intersection of two surfaces. The method
of treatment is indicated in the suggestions that follow Ex. 1.

Ex. 1. Find the locus of points in space that are equally dis-

tant from two given parallel planes and also equally distant from

two given points.

Solution:

I. All points equally distant from two given parallel planes lie in

what plane? Call this plane locus I.

II. -All points equally distant from two given points lie in what

plane? Call this plane locus II.

III. Let locus I intersect locus II in line a. .: all points 'that

fulfill both requirements lie in line a.

Discussion:

I. Ordinarily the required locus consists of one line, the intersec-

tion of loci I and II.

II. If loci I and II coincide, the required locus is a plane.

III. If loci I and II are parallel, the problem has no solution.

Find the locus of points in a given plane which are also

Ex. 2. Equally distant from two given parallel planes.

Ex. 3. Equally distant from two given points not in the given

plane.

Ex. 4. At a given distance from a second given plane.

Ex. 5. Equally distant from two other given intersecting planes.

Find the locus of points in space which fullfiill the require-

ments given in Ex. 6-9.

Ex. 6. At a given distance from a given plane and also equally
distant from two given points not in the given plane.

Ex. 7. Equally distant from two given points A and B and
also equally distant from two other given points C and D.

Ex. 8. Equally distant from three given points.

Ex. 9. Equally' distant from three planes that meet in a point.

Ex. 10. Equally distant from two given points A and B and

also equally distant from two given planes, (1) when the planes
are parallel, (2) when the planes intersect.
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EXERCISES INVOLVING MISCELLANEOUS LOCI

47. 1. Find the locus of points in space equally distant from

the vertices of a triangle. Prove.

2. Find the locus of points in space equally distant from every

point on a circle. Prove.

3. Determine a point in a given plane which is equally distant

from the vertices of a triangle. Discuss all possibilities.

4. Determine a point in a given plane that is equally distant

from every point in a circle. Discuss all possibilities.

5. Why are there two parts to Fig. 40?

We have in solid geometry not only loci of points, but

also loci of lines and even of surfaces. The following defini-

tions and exercises illustrate some of the possibilities.

The surface formed when one of two intersecting lines

that form an acute angle with each other revolves about the

other as an axis is called a conical surface of revolution.

It is the locus of lines that make a given acute angle

with a given line at a given point in the line (Fig. 40).

The line used as an axis about which the other line revolves

is not shown in Fig. 40. What is the position of this axis ?

What does the figure show ?

6. What is the locus generated when the lines

are at right angles?

7. What is the locus of lines that are parallel

to a given line and at a given distance from it?

8. What is the locus of lines that make a

given angle with a given plane at a given point

in the plane? Discuss various possibilities.

9. What is the locus of lines that pass through a

fixed point and are parallel to a fixed plane?

10. Cut out a rectangle and imagine it to move in a direction

perpendicular to its surface. What is the path of the surface of

the moving rectangle?

11. Answer the preceding question using a circle instead of a

rectangle.
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12. Can you move the rectangle referred to in Ex. 10 so that

the path of its surface will be different from that obtained in

Ex. 10?

13. Answer questions 10 and 12 for various kinds of triangles

instead of for a rectangle.

14. Can you make any general statement concerning the path
of (1) a moving point; (2) a moving line; (3) a moving surface?

Suppose in each case that the moving point, line, or surface obeys
one or more requirements.

15. What is the path of a moving solid?

PROJECTION
48. Objects are represented or pictured on surfaces by

means of projection. Projections are of two kinds, parallel

and central.

Fig. 41 illustrates parallel projection. Parallel rays

through the points A, B, C, D intersect the plane M in the

points A', B', C'
t
D'. A'B'C'D' is the

projection of ABCD on the plane M.
The projecting lines may make any angle

with the plane. The plane M may be

replaced by any surface whatsoever.

A shadow made by the sun is an ex-
A

~B

ample of parallel projection. FIG. 41

By the projection of a point on a plane is meant the inter-

section of the projecting ray and the plane.

By the projection of a line on a plane is meant the locus

of the projections of all of its points.

If the projecting rays are perpendicular to the plane, the

projection is said to be orthogonal.

If the rays start from a common origin, instead of being

parallel, the projection is said to be central. A shadow made

by a candle is an example of central projection.

Hereafter when the word "projection" is used orthogonal

projection is intended.
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49. THEOREM 33. The projection of a straight line not

perpendicular to a plane upon that plane is a straight line.

FIG. 42

Analysis and construction:

I. Prove that the projection of a on M coincides with

a line that is straight.

II. .'. construct plane N through a J_ M, intersecting

M in b. Prove that b is the projection of a on M.
III. .'. prove that b contains the projections of all points

in a.

IV. /. prove that _Ls to M from all points in a lie in N.

COR. If a straight line is oblique to a given plane, its

projection upon that plane is the intersection of the given

plane with a plane through the line perpendicular to the

plane.

The projection of a segment on a plane is the segment
between the feet of the perpendiculars drawn to the plane

from the extremities of the given segment.

Ex. 1. If a segment is parallel to a plane, it is parallel and

equal to its projection on the plane.

Ex. 2. Can the projection of a curve upon a plane be a straight

line? How?

Ex. 3. Can the projection of a curve upon each of two inter-

secting planes be straight lines? How?

Ex. 4. If two lines are parallel, their projections on the same

plane coincide or are parallel.

Ex. 5. The projections of a segment upon two parallel planes

are parallel and equal.
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50. THEOREM 34. The acute angle that a straight line

makes with its own projection on a plane is the least angle

that it makes with any line of the plane.

FIG. 43

Analysis and construction: To prove BAC<Z.BAD,
construct BC J_ M from B, any point in /, and intersecting

line x at C. Make AD on line y equal to AC. Join BD.
Prove BC<BD (see Plane Geometry, Th. 60).

An angle that a straight line makes with its own projec-

tion on a plane is called the inclination of the line to the

plane or the angle of the line and the plane.

Ex. 1. If a line is oblique to a plane, what is the largest angle

that it makes with any line of the plane? Why?
Ex. 2. If a straight line intersects two parallel planes, it makes

equal angles with them.

51. THEOREM 35. The length of the projection of a

given segment on a plane is the length of the segment

multiplied by the cosine of the angle of inclination of the

line to the plane (Fig. 44).

Suggestion. Show that A B - A C cos /.BAG. :. XY = ACcos /.BAG.

Exercise. Using the tables, find the lengths of the projections of

the following segments. The

lengths and the angles made
with the planes are given:

a. 15 in., 42.
b. 27 in., 38.

c. 36 in., 67. ^ ^---g M'
d. 23 in., 52. FIG. 44
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POLYHEDRAL ANGLES

62. If a ray has a fixed origin and moves so as continually
to intersect the perimeter of a fixed polygon not in the plane
of its origin, the ray is said to generate a polyhedral angle.

In Fig. 45, 0-ABCD etc. is a poly-
hedral angle. is the fixed origin of

the ray and is called the vertex of the

polyhedral angle. ABCD etc. is the fixed

polygon. OA, OB, etc., are called the

edges of the polyhedral angle. The planes

AOB, BOC, etc., are called its faces.

The angles AOB, BOC, etc., made by
two consecutive edges are called the face

angles of the polyhedral angle. The dihedral angles made

by two consecutive faces are called its dihedral angles.

The parts of a polyhedral angle are its face angles, its

faces, and its dihedral angles.

A polyhedral angle is said to be convex or concave accord-

ing as the fixed polygon is convex or concave. Only convex

polyhedral angles will be considered.

A polyhedral angle with three faces is called a trihedral

angle.

The size of a polyhedral angle depends upon the spread

of the planes forming the faces of the polyhedral angle. The
measure of the polyhedral angle is too difficult for this book.

A polyhedral angle is one kind of a solid angle. Another

kind of a solid angle is the conical angle. A conical angle is

generated by a ray that has a fixed origin and moves so as

continually to intersect a fixed closed curve.

If the face angles and the dihedral angles of one poly-

hedral angle are equal respectively to the corresponding parts

of the other, and arranged in the same order, the polyhedral

angles are said to be congruent.
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If the face angles and the dihedral angles of one poly-

hedral angle are equal respectively to the corresponding

parts of the other, but arranged in the opposite order, the

polyhedral angles are said to be symmetric.

Ex. 1. Construct out of cardboard two congruent trihedral

angles; also two symmetric trihedral angles.

Ex. 2. If the edges of one polyhedral angle are extended through
the vertex, a polyhedral angle is formed which is symmetric to the

given polyhedral angle.

63. THEOREM 36. Any face angle of a trihedral angle is

less than the sum of the other two.

Hypothesis: A-BCD is a trihedral angle with the face

angles 1, 2, 3, and the edges AY, AZ, and AW.
Conclusion: ZKZ2-hZ3.
Case A. When Z 1 = either Z 2 or Z 3.

Case B. When Z 1 < either Z 2 or Z 3.

CaseC. When Zl>either Z2 or Z3.

Proof is required for Case C only. Why?
Analysis and construction:

I. To prove Z 1< Z2+ Z 3, construct Z.XAW in Zl
so that ZX,W=Z3 and prove ZYAX<Z2.

II. .*. lay off equal segments AE and AC on AX and
AZ respectively. Pass any plane through points
TTand C cutting AW and AY at D and B respec-

tively. Prove EB<BC (Plane Geometry, Th. 60).

III. /. since BD<BC+CD, prove DE= CD.
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54. THEOREM 37. The sum of the face angles of any

polyhedral angle is less than four right angles.

FIG. 47

Hypothesis: A-BCDE etc. is any polyhedral angle with

face angles 1, 2, 3, etc.

Conclusion: Z1 + Z2 + Z3 + etc. < 4 rt. A .

Analysis and construction:

I. To prove Z1+Z2 + Z3 + etc. < 4 rt. A
, compare

them with angles that are equal to 4 rt. A .

II. .'. construct plane BCDE etc. cutting all the edges
of A-BCDE etc., but not containing point A.

Take any point in polygon ABCD etc., join

BO, CO, DO, etc., and prove the sum of the A
about A< the sum of the A about 0.

III. /. compare the sum of the A of the AA with the

sum of the A of the OA and the sum of the

base A of AA with the sum of the base A of OA N

Outline oj proof:

I. Sum of the A of AA =sum of the A of OA.
II. ABCA+Z.ACD>ABCD.

Z CDA+ ZADE> Z CDE, etc.

/. sum of the base A of A A >sum of base A of A.

III. .*. sum of vertex A of AA <-sum of vertex A of A .

(See Plane Geometry, As. 34.)

.'. Z1+Z2 + Z3 + etc.<4 rt. A .

Exercise. If a trihedral angle has two face angles right angles,

two of its dihedral angles are right dihedral angles.
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65. THEOREM 38. If two trihedral angles have the three

face angles of one equal to the three face angles of the other,

the dihedral angles opposite equal face angles are equal.

II.

Fig. 48

Analysis and construction:

I. To prove dihedral angle OA equals dihedral angle

O'A', prove their plane angles equal.

take O'A' = 0'B' = 0'C' =OA=OB = OC. Join

AB, BC, CA and A'B'
t B'C, C'A'. Take OX

in OA equal to O'X' in O'A'. Draw XV J_ OA
at X in AOB, XZ J_ OA at X in AOC. Let XY
and XZ meet AB and AC at Y and Z respectively.

X'Y' and AT'Z' are similarly drawn in the faces

of angle 0'. Join YZ and Y'Z'. . Prove Z YXZ
= Z Y'X'Z'.

prove AXYZ^AX'Y'Z'.
prove XY=X'Y', XZ= X'Z' t YZ=Y'Z'.

V. To prove XY = X'Y'
; prove AAXY giAA'X'Y'.

VI. To prove AAXY a AA'AT'Y', prove ....
Let the pupil complete the analysis and give proof.

In the same way the other dihedral angles may be

proved equal.

Question. It is necessary for the proof that XY does not meet AB
on BA extended. How does the construction provide for this?

COR. If the three face angles of one trihedral angle are

equal to the three face angles of another, the trihedral

angles are congruent if the parts are arranged in the same
order and symmetric if arranged hi the opposite order.

III.

IV.
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SUMMARY AND SUPPLEMENTARY EXERCISES

56. SUMMARY OF IMPORTANT POINTS IN CHAPTER I

A. DETERMINATION OF LINES AND PLANES:

I. Only one plane can be drawn containing

a. Three given points (3).
b. One given line and a given point not in the

line (3).
c. Two given intersecting lines (3).

d. Two given parallel lines (3).

e. One given point and be perpendicular to a

given line (18).

/. One given line oblique to a given plane and

be perpendicular to the given plane (39).

II. Only one line can be drawn containing a given

point and

a. Be perpendicular to a given line if the point

is not on the line (15).
b. Be perpendicular to a given plane (20).

c. Be parallel to a given line.

d. Contain a second given point.

III. A given line lies in a plane if it contains

a. A point in the plane and is parallel to a line

that is parallel to the plane (10)'.

b. A point in the plane and is perpendicular to

a line that is perpendicular to the plane

(19).
c. A point in one of two perpendicular planes

and is perpendicular to the other (37).

d. Two points in the plane (3).

B. TESTS:

I. To prove planes parallel to planes, prove that

a. They cannot meet (4).

b. Two intersecting lines in one, etc. (12).

c. They are perpendicular to the same line (27) .
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IF To prove a line and a plane parallel, prove that

a. They cannot meet (6).
b. The plane contains a line that is parallel to

the given line (9).

ft I. To prove two lines parallel, prove that

a. They are in the same plane and do not meet

(7).
b. One is parallel to a given plane and the other

is the intersection of the given plane with

a plank containing the given line (10).
c. They are the intersections of two parallel

planes cut by a third (11).
d. They are parallel to the same line (13, 25).

e. They are perpendicular to the same plane

(25).

IV. To prove a line perpendicular to a given plane,

prove that

a. It is perpendicular to two lines of the plane
at their intersection (16).

b. It is parallel to a line that is perpendicular to

the plane (24).
, c. It is perpendicular to one of two parallel

planes (26).
d. It lies in one of two perpendicular planes and

is perpendicular to their intersection (36).
e. It is the intersection of two planes that are

each perpendicular to the given plane (38) .

V. To prove two lines perpendicular, prove that one

is perpendicular to a plane containing the other,

at a point in the other (16).

VI. To prove two planes perpendicular, prove that

a. One contains a line perpendicular to the other

(35).
b. The dihedral angle formed is a right dihedral

angle (34).



44 SOLID GEOMETRY

EXERCISES IN CONSTRUCTION

57. 1. Show how to construct a plane perpendicular to a given
line at a given point in the line.

2. Show how to construct a plane perpendicular to a given
line and containing a given point without the line.

3. From a point in a given plane
construct a line perpendicular to

the plane.

A nalysis and construction (Fig. 49) :

I. Draw OB any line in M through
0. Construct plane N J_ OB
at 0. Draw A in TV J_ the

intersection of M and N at 0.

'

II. Prove N J_

FIG. 49

Use Ths. 25 and 26.

4. From a point without a given plane construct a line per-

pendicular to the given plane.

Analysis and construction (Fig. 50):

I. AO is to be in a plane that is

J_ M and _L the intersection

of this plane and M.

II. Draw AB from A J_ x any line in

M. Draw line c from
,
in M,

_L #. Draw AO J_ line c

from A.

5. Show that in Ex. 3 and 4 (M
may be proved _L Af by proving it JL

to two lines in plane M .

6. Show that Ex. 4 may be solved as follows: Draw three equal

segments from A to the plane, meeting the plane at B, C, and D.

Find 0, the center of the circle through B, C, and D. Join AO.

7. Through a given line pass a plane perpendicular to a given

plane. How many such planes are possible? Discuss various cases.

8. Through a given point construct a plane that shall be per-

pendicular to each of two given planes: (1) when the planes

intersect; (2) when the planes are parallel.

9. Construct a plane through a given point and parallel to a

given plane. Is more that one such plane possible?

E

FIG. 50
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FIG. 51

10. Through a given point in one of two planes draw a line

parallel to the other plane: (1) when the planes intersect; (2) when
the planes are parallel.

11. Through a given point in space draw a line parallel to

each of two given planes (1) when the planes intersect; (2) when
the planes are parallel.

12. Construct a common perpen-
dicular to two skew lines (Fig. 51).

Analysis and construction:

I. If d is the required perpendic-

ular, d must (1) be _|_ b, (2) be

JL a line as c which is
||
a and

intersects 6, (3) lie in same

plane as a and c.

II. Draw plane M through b
||

a. Line a will be
|| any line in

M that lies in the same plane as a.

III. .'. draw through a plane TV _L M, cutting M in line c. Let c

cut b in point . I .

IV. /. drawd J_ Mat A.

13. Show that only one common perpendicular can be drawn

to two skew lines.

Suggestion (Fig. 51). Show that if any other line (as/) is J_ lines

a and b, and if / intersects line a at point X, we could have two perpen-

diculars to M from X.

14. Show that the common perpendicular to two skew lines is

the shortest distance between them.

Suggestion. Line / > XY and .'. > d.

15. Through a given point draw a straight line that will inter-

sect each of two given skew lines.

Suggestion. Draw two planes each determined by the given point
and one of the given lines.

16. Given three non-parallel non-intersecting straight lines.

Show that any number of straight lines can be drawn that will

intersect the three.

Suggestion. Construct a pencil of planes through one of the lines.

17. Construct a pair of parallel planes so that each shall con-

tain one of two skew lines.
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EXERCISES INVOLVING LOCI AND CONCURRENT LINES

58. 1. Prove that the planes bisecting the dihedral angles of a

trihedral angle are concurrent.

Analysis:

I. Let a, b, and c be the faces of dihedral angle 0.

II. To prove the bisectors of the dihedral angles concurrent,

prove that the bisector of the angle made by a and b and
that made by b and c meet in a line and that this line lies

in the bisector of the angle made by a and c.

III. .'. prove that every point in this line is equally distant from a

and c.

2. What locus is obtained by the intersection of three planes
referred to in Ex. 1?

3. Find the locus of points in space that are equally distant

from three given planes that intersect each other in three parallel

lines.

4. Prove that the locus of points in space that are equally

distant from two intersecting lines is the plane that is perpen-
dicular to the plane of the lines and that contains the bisectors of

the angles formed by the lines.

5. Prove that the planes perpendicular to the faces of a tri-

hedral angle and passing through the bisectors of the face angles

are concurrent. What locus is obtained?

6. Prove that the planes that pass through
the edges of a trihedral angle and the bisec-

tors of the opposite face angles are concur-

rent (Fig. 52).

Analysis and construction:

I. To prove OA Y, OBZ, and OCX concur-

rent, prove that they have two points
I/ IG

in common.

II. .'. make OA = OB = OC and prove that OA Y, OBZ, and OCX
intersect plane ABC in concurrent lines.

III. /. prove A Y, BZ, and CX the medians of A ABC.

7. Prove that the planes that are perpendicular to the chords

of a circle at their midpoints are concurrent.

8. What locus is obtained by the intersection of the three

planes referred to in Ex. 7? Give proof.
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EXERCISES INVOLVING PROJECTIONS

69. 1. If two parallel lines are oblique to a plane, they make

equal angles with the plane.

2. Two equal segments from a point to a plane have equal

projections on the plane and make equal angles with the plane.

3. If a segment is oblique to a plane, it is longer than its pro-

jection on the plane.

4. If two unequal segments are drawn from a point to a plane,

which has the longer projection on the plane? Give proof. Which
makes the greater angle with the plane? Give proof.

5. If a straight line is perpendicular to one of two intersecting

planes, its projection on the other is perpendicular to the inter-

section of the two planes.

6. If a right angle has one side parallel to a plane, its projec-

tion on the plane is a right angle. When is this not true?

7. When is the projection of a parallelogram on a given plane
a parallelogram? Why?

8. Answer the question in the preceding exercise for a rec-

tangle instead of a parallelogram.

9. The sides of an isosceles triangle make equal angles with

any plane containing its base.

10. Parallel segments are proportional to their projections on

the same plane.

11. If the projection of a given line upon each of two inter-

secting planes is a straight line, the given line is, in general, a

straight line.

12. A point is 12 in. from a given plane. What is the length

of a projection of a segment 13 in. long drawn from the point to

the plane?

13. What is the length of the projection of a segment 5 in. long

on a plane if the segment makes an angle of 30 with the plane?

If it makes an angle of 60 with the plane? If it makes an angle

of 45 with the plane? Trigonometry tables are not necessary.



CHAPTER II

PROPERTIES OF POLYHEDRONS, CYLINDERS, AND CONES

SOLIDS IN GENERAL

60. An inclosed portion of space is called a solid.

Solids are bounded or inclosed by surfaces.

If any solid is intersected by a plane, the figure formed

by the intersections of the plane and the boundaries of the

solid is called a section of the solid.

POLYHEDRONS IN GENERAL

61. In general, a solid all of whose bounding surfaces are

planes is called a polyhedron (Fig. 53).

The lines of intersection of

the bounding planes are called

the edges of the polyhedron.

The points of intersection of

the edges are called the vertices

of the polyhedron.

The polygons bounded by the edges of the polyhedron
are called the faces of the polyhedron.

SOME ELEMENTARY SURFACES

62. We have seen that sometimes a surface is the locus

of a point or of a line that obeys certain requirements.

The surfaces studied in solid geometry are of this nature.

We shall study the following special surfaces :

If a straight line moves so as continually to intersect a

given straight line, and at the same time to remain parallel

to a third straight line not in the plane of the second, the

surface generated is a plane surface.
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A plane surface, or merely a plane, may
be defined from its fundamental characteris-

tic (3) as a surface such that if any two

points in it are chosen the straight line pass-

ing through these points will lie wholly in the

surface.

If a straight line moves so as continually

to intersect a chain of straight-line segments
that lie in one plane, and at the same time

to remain parallel to a fixed straight line not

in this plane, the surface generated is called

a prismatic surface (Fig. 54).

If a straight line moves so as continually

to intersect a fixed plane curve, and at the

same time to remain parallel to a fixed straight

line not in the plane of the curve, the surface

generated is called a cylindrical surface

(Fig. 55).

If a straight line moves so as con-

tinually to intersect a chain of straight-

line segments that lie in one plane, and

at the same time to pass through a given

point not in this plane, the surface gen-

erated is called a pyramidal surface (Fig.

56). The fixed point is called the vertex

of the surface.

If a straight line moves so as continually
to intersect a fixed plane curve, and at the

same time to pass through a given point not

in the plane of the curve, the surface gener-
ated is called a conical surface (Fig. 57).

The fixed point is called the vertex of the

surface.

FIG. 54

FIG. 55

FIG. 57
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The prismatic and the pyramidal surfaces are examples
of plane surfaces. The cylindrical and the conical surfaces

are special kinds of curved surfaces. A curved surface is a

surface no part of which is plane.

NOTE. There are many kinds of curved surfaces besides those

mentioned above. If a circle is revolved about a diameter, a spheri-

cal surface is formed. We shall study spherical surfaces later. The
reflector of a locomotive headlight is a surface formed by the revolution

of a parabola.

63. In the surfaces defined above the moving line is called

the generator. The series of straight-line segments or the

curve is called the director. In Figs. 54-57, g is

the generator and d is the director.

When the director is a closed polygon or a

closed curve and the generator moves com-

pletely around the director, the surface is said

to be a closed surface (Fig. 58) .

If the director is a convex polygon or curve,

the surface generated is said to be a convex
. FIG. 58

surface.

The generator in any position is called an element of the

surface.. The edges of a prismatic or pyramidal surface are

the elements that pass through the points of intersection of

the segments of the series that form the director.

Pyramidal and conical surfaces each consist of two parts

called nappes. The generator of a pyramidal or conical sur-

face is a line, not a ray. If, in Figs. 56, 57, and 58, is

the fixed point through which the generator passes, the part

below point generates one part or nappe of the surface

formed, while the part above point generates the other

part or nappe.

The two nappes of a closed convex pyramidal surface

contain polyhedral angles. The edges of one are prolonga-

tions of the edges of the other. Are the polyhedral angles

equal or symmetric? Why?
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If a plane cuts all the elements of a closed surface, the

figure formed by the intersection of the plane and the sur-

face is called a transverse section of the surface.

A transverse section formed by a plane perpendicular to

the elements of a prismatic or cylindrical surface is called a

right section of the surface (VWXYZ, Fig. 60).

PRISMS

DEFINITIONS

64. An unlimited closed prismatic surface is said to

inclose a prismatic space.

A solid bounded by a closed pris-

matic surface and two parallel trans-

verse sections is called a prism

(Figs. 59 and 60). It is a portion
of a prismatic space.

The two transverse sections are

called the bases of the prism. The FIG- 59

prismatic surface and its

edges are called respec-

tively the lateral surface

and lateral edges of the

prism.

The perpendicular
distance between the

bases of a prism is called

the altitude of the prism.

Since the form of a prismatic space depends upon the

form of its right section, prisms may be named from the

form of their right sections, thus: A prism will be called a

square prism if its right section is a square.

Exercise. Make of wood or cardboard a square prism in

which the edges are not perpendicular to the base. Is the base

a square?

FIG. 60
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GENERAL PROPERTIES OF PRISMS

65. THEOREM 39. Two parallel transverse sections of

a prismatic space are congruent.

FIG. 61

Analysis:

I. To prove s ^s f

prove the sides and angles equal
in the same order.

II. To prove AB = A'B f

, prove ABB'A' a O.
III. To prove /.ABC= ^A'B'C', prove AB\\A'B' and

BC\\B'C'.

66. The following theorems are corollaries of Th. 39 and

of the definition of a prism.

COR. I. The bases of a prism are congruent polygons.

COR. II. The lateral edges of a prism are parallel and

equal.

COR. III. The lateral faces of a prism are parallelo-

grams.

COR. IV. All right sections of a prism are congruent.

Ex. 1. Is it possible for only one lateral face of a prism to be

a rectangle? Illustrate by a model.

Ex. 2. Is it possible for only two lateral faces of a prism to be

rectangles? Prove.

Ex. 3. Every pair of lateral edges of a prism determines a

plane parallel to each of the other lateral edges.

Ex. 4. If two intersecting planes each contain one and only
one lateral edge of a prism, their intersection is parallel to the

other lateral edges.
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FIG. 62

67. That part of a prism included

between one base and a transverse

section oblique to the base is called a

truncated prism (Fig. 62).

SPECIAL PRISMS*

68. A prism is said to be a right prism if its base is a right
section (Fig. 63). A prism that is not a right prism- is

called an oblique prism (see Fig. 59).

THEOREM 40. The lateral faces of a

right prism are rectangles.

THEOREM 41. The lateral faces of a

right prism are perpendicular to the

base - PIG. 63

69. A prism is said to be regular if it is a right prism whose
base is a regular polygon.

70. A prism is called a parallelepiped if its bases are

parallelograms (Fig. 64).

THEOREM 42. Any two oppo-
site faces of a parallelepiped are

congruent and parallel.

Ex. 1 . The edges of a parallele-

piped may be divided into three

groups of four parallel edges each.

Ex. 2. The diagonals of a parallelepiped meet in a point which

is the midpoint of each diagonal.

NOTE. The intersection of the diagonals, of a parallelepiped is

called the center of the parallelepiped.

Ex. 3. Any line through the center of a parallelepiped and

terminated by a pair of opposite faces is bisected by the center of

the parallelepiped.

* Let the pupil construct a model for each of the special cases mentioned. These

models may be constructed of wood, soap, or cardboard.

FIG. 64
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71. A parallelepiped is said to be a right parallelepiped

if the base is a right section.

Ex. 1. What properties has a right parallelepiped by virtue

of the fact that it is a parallelepiped and at the same time a right

prism?

Ex. 2. Show by means of a model that a right parallelepiped

is not right in all positions in which it may be placed.

72. A right parallelepiped is said to be a rectangular

parallelepiped if its base is a rectangle (Fig. 65).

THEOREM 43. If a parallelepiped is so constructed that

each of its three edges that meet at a common vertex is

perpendicular to the other two, the parallelepiped is rec-

tangular.
H

_^-*

FIG. 65

Analysis:

I. Let each of the edges AB, AD, and AE be _L the

other two.

II. To prove that the parallelepiped is rectangular,

prove that

(1) the base ABCD is a rectangle.

(2) the parallelepiped is 'a right parallelepiped.

III. To prove that it is a right parallelepiped, prove the

edges AE, BF, CG, and DH each _L the base ABCD.

Ex. 1. Each face of a rectangular parallelepiped is a rectangle.

Ex. 2. Show that a rectangular parallelepiped is a right paral-

lelepiped in all positions in which it may be placed.

Ex. 3. The diagonals of a rectangular parallelepiped are equal.

Ex. 4. Find the diagonal of a rectangular parallelepiped if

three edges that meet in a point are respectively 4, 8, and 6 in.

Find the diagonal if these edges are o, b, and c.
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73. If the three edges of a rectangular parallelepiped

that meet at one vertex are equal, the rectangular parallele-

piped is called a cube.

THEOREM 44. The faces of a cube are all squares.

Ex. 1. Are the diagonals of a cube perpendicular to each

other? Why?
Ex. 2. If the edge of a cube is E, the diagonal is E^S.

Ex. 3. One edge of a cube is 5 in. Find the area of a section

made by passing a plane through two diagonally opposite edges.

CYLINDERS

DEFINITIONS

74. An unlimited closed cylindrical

surface is said to inclose a cylindrical

space.

A solid bounded by a closed cylin-

drical surface and two parallel trans-

verse sections is called a cylinder

(Figs. 66 and 67). It is a portion of

a cylindrical space.

The transverse sections are called

the bases of the prism. The cylin-

drical surface and its elements are

calledrespectively the lateral surface

and the elements of the cylinder.

The perpendicular distance be-

tween the bases of the cylinder is-

called the altitude of the cylinder.

A cylinder is said to be a convex cylin-

der if its cylindrical surface is convex.

That portion of a cylinder included

between one base and a transverse section

oblique to the base is called a truncated

cylinder (Fig. 68). FlG . 6g

FIG. 66

FIG. 67
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GENERAL PROPERTIES OF CYLINDERS

76. THEOREM 45. Two parallel transverse sections of a

closed cylindrical space are congruent.

FIG. 69

Hypothesis: P and P' are two parallel transverse sec-

tions of a closed cylindrical space.

Conclusion: P & P' .

Analysis and construction:

I. To prove P & P', prove that P will coincide with P'

if superposed.

II. Take A, B, and C any three points in P. Draw the

elements AA f

, BB', and CC' and show that P can

be placed upon P' in such a way that A, B, and C
fall respectively on A', B', and C' and at the same

time any fourth point in P will fall on a point in P'.

III. To prove that A, B, and C can be made to fall on.

A ',.', and C', prove AB = A'B', AC= A'C', and

IV. To prove that a fourth point in P falls on a point in

P', draw the element XX' and prove
and ABAX= /.B'A'X'.

Outline of proof:

I. AA'
||

'.

A'B'.

AA'BB'isa O.

Similarly AC= A'C'.
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Also Z.BAC=
II. If P is placed on P' so that ZBAC falls on Z.B'A'C,

B will fall on B' and C on C .

III. As in I, AX=A'Xf and ZAX= tB'A'X'.

IV. /. if P is placed on P' so that Z.BAC falls on

Z.B'A'C', point X will fall on point X'.

V. In the same way every point on P will fall on a point

on P' if the three points A, B, and C fall on the

three points A', B', and C'.

Let the pupil give the reasons.

COR. The bases of a closed cylinder are congruent.

76. THEOREM 46. If a plane contains one element of a

cylindrical surface and one other point of that surface, then

it contains the element through that point.

FIG. 70

Hypothesis: C is a cylindrical surface. P is a plane

containing the element AA' and the point K of the cylin-

drical surface.

Conclusion: P contains the element BB' through K.

Analysis:

I. To prove that P contains the element BB', prove that

BB' is parallel to AA'.

We will assume, without proof,

As. 9. If C is a closed convex cylindrical surface, the

plane P (Th. 46) will intersect the cylindrical surface in the

two elements AA' and BB' and in no other points (Fig. 70).

5
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77. COR. Any section of a closed convex cylinder made

by a plane containing an element and one other point of

the cylindrical surface is a parallelogram.

FIG. .71

Analysis:

I. To prove ABB'A' a O, prove each side parallel

to its opposite.

II. To prove AB \\
A'B'

III. To prove AA' \\ BE', prove BB' an element of the

cylinder (Th. 46 and As. 9).

Ex. 1. If a plane contains two elements of a convex cylinder,

the section of the cylinder formed by this plane is a parallelogram.

Ex. 2. If a plane contains two elements of a cylinder, it is

parallel to the elements of the cylinder.

Ex. 3. If two planes each containing two elements of a cylinder

intersect, the line of intersection is parallel to the elements of the

cylinder.

Ex. 4. Are the two previous exercises true if the planes con-

tain only one element of the cylinder?

RIGHT CIRCULAR CYLINDERS

78. Since the form of a cylindrical space depends upon
the form of its right section, cylinders may be named from

the form of their right sections, thus: a cylinder is called a

circular cylinder if its right section is a circle
;
it is called an

elliptical cylinder if its right section is an ellipse.
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FIG. 72

NOTE. Transverse sections of circular cylinders that are not

right sections are ellipses. This fact can be illustrated by means of

a broomstick cut so that the section is not a right section. An ellip-

tical cylinder may be cut by a plane so that the section is a circle.

In higher mathematics other kinds of cylinders are studied, such as

hyperbolic and parabolic cylinders.

If the base of a cylinder is a

right section, the cylinder is said

to be a right cylinder (Fig. 72).

A cylinder that is not a right

cylinder is called an oblique

cylinder (Fig. 73).

A right cylinder whose base

is a circle is called a right circular

cylinder.

A right circular cylinder

may be generated by the

revolution of a rectangle

about one side as an axis.

For this reason a right cir-

cular cylinder is sometimes

called a cylinder of revolu-

tion (Fig. 72).

The axis about which the rectangle revolves is called the

axis of the cylinder. It is the line joining the centers of the

bases. The sides of the rectangle perpendicular to the axis

generate the bases of the cylinder. The side parallel to the

axis generates the cylindrical surface.

Ex. 1. What is a cylindrical surface of revolution? How may
it be considered a locus?

Ex. 2. Every section of a right convex cylinder made by a

plane containing an element and one other point of the cylindrical

surface is a rectangle.

Ex. 3. Every element of a right cylinder is equal to the altitude
m

Ex. 4. Every section of a right circular cylinder made by a

plane parallel to the base is a circle.

FIG. 73
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PYRAMIDS

DEFINITIONS

79. A closed pyramidal surface is said to inclose a pyram-
idal space. A pyramidal space is composed of two parts

called nappes which correspond to the two nappes of the

pyramidal surface.

A solid bounded by one nappe of a closed pyramidal sur-

face and a transverse section is called a pyramid (see Fig. 74) .

It is a portion of a pyramidal space.

The vertex of the pyramidal surface is called the vertex

of the pyramid. The transverse section is called the base

of the pyramid. The pyramidal surface and its elements

are called respectively the lateral surface and the lateral

edges of the pyramid.

The perpendicular from the vertex to the base is called

the altitude of the pyramid.

GENERAL PROPERTIES OF PYRAMIDS

80. THEOREM 47. If a pyramid is cut by a plane parallel

to. the base,

I. The edges and altitude are divided proportionally.

II. The section is a polygon similar to the base.

FIG. 74

Suggestion for I. Pass a plane through- parallel to P and P'.

Use Th. 30.
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Analysis for II:

I. To prove P~P', prove
a. Z/1=ZA', ', ZC=ZC', etc.

AB BC CD _
''

A'B'~B'C'~C'D'~

II. To prove /.A= /.A', prove

AB BC AB OB BC
III. To prove

-
,
= - -

/f prove -77= =-^7 = -=

A'E', AB \\
A'B'.

COR. I. If a pyramid is cut by a plane parallel to the

base, the ratio of the area of the section to the area of the

base equals the ratio of the squares of their distances from

the vertex.

areaP "OX* areaP ~AB
2

Analysis: 1 o prove - =-
f
= n , prove-=r. =-

areaP' > areaP' T/2 '

DA
and - -

2 (Plane Geometry,Th. 127) (Fig. 74) .

A'' OA' OX'

COR. II. If two pyramids have equal altitudes and

equal bases, sections parallel to the bases at equal distances

from the vertices are equal.

FIG. 75

a , . > , ,
areas' OK1

Analysis: To prove area s' = area r
, prove

-- =-^area 5 -

and - (see P/aw^ Geometry, Th. 92) .

arear 2
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Ex. 1. At what distance from the vertex of a pyramid must
a plane be passed parallel to the base so that the area of the sec-

tion may be one-half the area of the base?

Ex. 2. If a plane is passed parallel to the base of a pyramid
and through the mid-point of the altitude, what is the ratio of the

area of the section to the area of the base?

Ex. 3. It is stated in physics that the intensity of illumination

received on a screen is inversely proportional to the square of the

distance of the screen from the source of light. Show that this is

an application of Cor. I, Th. 47.

REGULAR PYRAMIDS

81. A pyramid is said to be regular if its base is a regular

polygon and the altitude passes through the center of the

base (Fig. 76).

THEOREM 48. The lateral edges of a regular pyramid
are equal.

THEOREM 49. The lateral faces of a regular pyramid are

congruent isosceles triangles.

THEOREM 50. The altitudes of all of the lateral faces

of a regular pyramid are equal.

The altitude of any one of the lateral faces of a regular

pyramid is called the slant height of the pyramid.

Ex. 1. Any section of a regular square pyramid made by a

plane containing the altitude is an isosceles triangle.

Ex. 2. The altitudes of

the face triangles of a regular

pyramid meet the base at the

points of tangency of the circle

inscribed in the base (Fig. 76).

Suggestion. Join O t
the foot

of the altitude of the pyramid,
with Y, the point of tangency of

AB. Join YX and prove YX
<-

the altitude of A ABX. FIG. 70
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FIG. 78

FRUSTUMS OF PYRAMIDS

82. The portion of a pyramid
included between the base and a

section oblique to the base cut-

ting all of the lateral edges is

called a truncated pyramid

(Fig. 77).

The portion of a pyramid in-

cluded between the base and a

section parallel to the base

and cutting all of the lateral

edges is called a frustum of

a pyramid (Fig. 78).

The altitude of a frustum

of a pyramid is the perpen-
dicular distance between the -

bases (YY', Fig. 78).

THEOREM 51. The lateral faces of a frustum of a pyra-

mid are trapezoids.

THEOREM 52. The lateral faces of a frustum of a regular

pyramid are congruent isosceles trapezoids.

THEOREM 53. The altitudes of the faces of a frustum

of a regular pyramid are equal.

The altitude of any face of a frustum of a regular pyra-
mid is called the slant height of the frustum.

Ex. 1. The sum of the segments connecting the mid-points of

the lateral edges of a frustum of a pyramid is one-half the sum of

the perimeters of the bases.

Ex. 2. Prove that the medians re-

ferred to in the previous exercise are

co-planar.

Suggestion. Let X be the mid-point
of A A''. Through X pass a plane parallel

to ABCDE. Prove that the medians of

the several lateral faces lie in this plane

(Fig. 791. FIG. 79

A'
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CONES

DEFINITIONS

83. A closed conical surface is said to inclose a conical

space. A conical space is composed of two parts called

nappes, which correspond to the two nappes of the conical

surface.

A solid bounded by one nappe of a closed conical surface

and a transverse section is called a cone (Fig. 80). It is a

portion of ,a conical space.

The vertex of the conical surface is called the vertex of

the cone. The transverse section is called the base of the

cone. The conical surface and its elements are called

respectively the lateral surface and the elements of the cone.

The perpendicular from the vertex to the base is called

the altitude of the cone.

GENERAL PROPERTIES OF CONES

84. THEOREM 54. If the base of a cone is a circle, every

section parallel to the base is also a circle.

FIG. 80

Analysis and construction:

I. To prove p
f

a circle, prove that all points on p
r
are

equally distant from a point within p''.

II. .*. choose C1 and D r

any two points on p', and prove

C* and D' equally distant from a point (X') within p'.
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III. To find X', join and X, the center of Op. Let

OX cut p' at X'.

IV. /. join C'X' and >'X' and prove -C'X'^D'X'.

V. To prove C'X' = D'X', draw the elements OC' and

OD'\ let the planes COX' and D'OJT cut in

CX and >X respectively, and prove
CJC OJC

'

D'X' = OX'
CX 'OX'* DX OX'

COR. I. If the base of a cone is a circle, the area of a

section parallel to the base is to the area of the base as the

square of the distance of the section from the vertex is to

the square of the altitude.

FIG. 81 FIG. 82

area p' OK'
Analysis: To prove

-- =
, , prove

area p QK*

= = =
area/? r

2 QX2 OK2

COR. II. If two cones have equal circular bases and

equal altitudes, areas of sections at equal distances from

the vertices are equal.

Analysis: To prove p'
=

s', prove

area s' 01"

area p
and

area 5 VY (Fig. 82).

Exercise. Investigate Th. 54 and its two corollaries if the plane
fo ming section p cuts the other nappe of the conical surface.
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85. THEOREM 55. If a plane contains one element of a

conical surface and one other point of that surface, then it

contains the element through that point.

FIG. 83

Hypothesis: OAB is a conical surface cut by the plane P
which contains the element OC and the point K of the conical

surface.

Conclusion: The plane P contains the element OD
through K.

Analysis: To prove that P contains the element OD
through K, show that

a. Points K and are both in P.

b. Points K and determine an element.

If the conical surface of a cone is convex, the cone is said

to be a convex cone. Unless otherwise stated, all cones

referred to will be considered convex cones.

We will assume, without proof,

As. 10. If C is a closed convex conical surface, the

plane P (Th. 55) will intersect the conical surface in the two

elements CO and DO and in no other point (Fig. 83).

COR. If a plane contains one element of a conical sur-

face and one other point of that surface, the section of the

cone made by the plane is a triangle.

Exercise. Any section of a cone made by a plane that passes

through the vertex and intersects the base is a triangle.
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RIGHT CIRCULAR CONES

86. If a cone has a circular section such that the line from
the vertex to the center of the section is perpendicular to

the plane of that section, the cone is called a circular cone.

If the base of a cone is a circle, and if the line from the

vertex to the center of the base is perpendicular to the base,

the cone is called a right circular cone.

A circular cone that is not a right circular cone is called

an oblique circular cone.

THEOREM 56. All elements of a right circular cone are

equal.

An element of a right circular cone is called its slant

height.

A right circular cone may be gener-

ated by the revolution of a right tri-

angle about one leg as an axis. For

this reason a right circular cone is

sometimes called a cone of revolution ________
(Fig. 84). FIG. 84

The axis about which the triangle revolves is called the

axis of the cone. The other leg generates the base of the

cone. The hypotenuse generates the conical surface.

The axis of a right circular cone is, therefore, the segment
from the vertex to the center of the base

;
it is perpendicular

to the base and is the altitude of the cone.

Ex. 1. What is a conical surface of revolution? Why may it

be considered a locus?

Ex. 2. A section of a right circular cone made by a plane

containing the vertex and intersecting the base is an isosceles

triangle.

Ex. 3. What kind of a triangle is the section referred to in the

previous exercise if the cone is an oblique circular cone?
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Ex. 4. Can a section of an oblique circular cone made by a

plane which contains the vertex and intersects the base be an

isosceles triangle? How? Give proof.

NOTE. The various forms of the sections of a right circular cone

are interesting. The complete study of them is beyond this book.

For each case shown in the figure the construction of the cutting

plane and the form of the section are given below:

No. 1. Contains the vertex and intersects the base. A triangle.

No. 2. Parallel to the base. A circle.

No. 3. Cuts all of the elements of the same nappe, but not parallel

to the base. An ellipse.

No. 4. Parallel to an element. A parabola.

No. 5. Perpendicular to the base. The plane cuts both nappes.
The section has two parts. A hyperbola.

No. 1 No. 2 No. 3

FIG. 85

No. 4 No. 5

FRUSTUMS OF CONES

87. The portion of a cone included

between the base and a transverse sec-

tion oblique to the base is called a

truncated cone (Fig. 86).

The portion of a cone included

between the base and a transverse

section parallel to the base is called

the frustum of a cone (Fig. 87).

FIG. 86

FIG. 87
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THEOREM 57. The elements of a frustum of a right
circular cone are equal.

An element of a frustum of a right circular cone is called

the slant height of the frustum.

Ex. 1. Any section of a frustum of a cone made by a plane

containing an element and one other point in the conical surface

is a trapezoid.

Ex. 2. Show that if the frustum referred to in the previous
exercise had been the frustum of a right circular cone the section

would have been an isosceles

trapezoid. /CZZHX
Ex. 3. The perimeter of a sec-

tion of a frustum of a cone made

by a plane parallel to the bases

and midway between them is

equal to one-half the sum of

the perimeters of the two bases

(Fig. 88). FIG. 88

A frustum of a right circular cone may be generated by
the revolution of an isosceles trapezoid about the segment

joining the mid-points of the bases as an axis. For this

reason a frustum of a right circular cone may be called a

frustum of revolution.

The axis about which the trapezoid revolves is called the

axis of the frustum. The bases of the trapezoid generate
the bases of the frustum.

REGULAR POLYHEDRONS

88. A polyhedron is said to be regular if its faces are

congruent regular polygons and if its polyhedral angles are

congruent.

Polyhedrons may be named from the number of faces:

A polyhedron of 4 faces is called a tetrahedron; of 6 faces,

a hexahedron; of 8 faces, an octahedron; of 12 faces, a

dodecahedron; of 20 faces, an icosahedron.
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89. THEOREM 58. Not more than five regular poly-
hedrons are possible.

Outline of proof:

A. In general.

I. The faces of the regular polyhedrons must be equi-
lateral triangles, squares, regular pentagons, or some other

regular polygons.

II. At least three faces must meet at each vertex to form

a polyhedral angle.

III. The sum of the face angles of each polyhedral angle
must be less than 360.

B. When the faces are equilateral triangles.

How many degrees in each angle of an equilateral triangle ?

What would be the sum of the face angles of a polyhedral

angle if 3 equilateral triangles met at the vertex ? If 4 such

triangles met at a vertex? If 5? If 6 or more? Tabulate

the results.

How many regular polyhedrons could be formed whose

faces are equilateral triangles? How many triangles meet

at each vertex ?

C. When the faces are squares.

What would be the sum of the face angles of a polyhedral

angle if 3 squares met at the vertex? If 4 squares met at

the vertex ?- If more than 4 squares were used ?

How many regular polyhedrons could be formed whose

faces are squares? How many squares would meet at each

vertex ?

D. When the 'faces are regular pentagons.

In the same way, how many regular polyhedrons could

be formed whose faces would be regular pentagons? How
many pentagons would meet at each vertex ?

E. When the faces are other regular polygons.

Show that in this case no regular polyhedron could be

formed.
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Exercise. Tabulate the results of your study of Th. 58, show-

ing in your table

(1) the kinds of polygons used as faces

(2) the number of faces that meet at each vertex

(3) the sum of the face angles at each vertex

(4) the total number of faces

(5) the name of the polyhedron

90. There are five regular polyhedrons. This fact may
be verified by models made by the pupil.

FIG. 89

Fig. 89 shows these polyhedrons, and Fig. 00 shows the

patterns for making them.

No. 5

No. 4
FIG. 90

NOTE. When making the models, cut out the patterns, cutting

only halfway through along the dotted lines. Fold along the dotted

lines and fasten the edges together with gummed paper.
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91. NOTE. Star polyhedrons. Fig. 91 shows two star polyhedrons.

To make No. 1, construct a regular dodecahedron and paste a pyra-
mid upon each face. To construct the pyramids, draw a regular

pentagon congruent with one of the faces of the dodecahedron ; extend
the sides of the pentagon, forming a pentagram-star; turn up the tri-

angles to form the pyramid whose base is the regular pentagon.

No. 1 No. 2
FIG. 91

To make No. 2, paste on each face of the regular icosahedron

a regular tetrahedron one face of which is congruent with the faces

of the icosahedron.

The strings joining the vertices of these pyramids form what has

been called the case of the star polyhedron. The case of No. 1 is the

regular icosahedron. The case of No. 2 is the regular dodecahedron.

The regular polyhedron used as the basis has been called the core of

the star polyhedron.

SUPPLEMENTARY EXERCISES

92. 1. Name a solid which has for faces (1) four equilateral

triangles, (2) two triangles and three parallelograms, (3) two

triangles and three rectangles, (4) one square and four triangles,

(5) six parallelograms, (6) two parallelograms and four rectangles,

(7) six rectangles, (8) eight equilateral triangles.

2. Construct a parallelepiped that has its edges on three given

skew lines.

3. Given three segments equal to the three edges of a rectangu-

lar parallelepiped th'at meet in one vertex. Construct a segment

equal to the diagonal.
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4. What is the form of a section of a prism made by a plane
which is (1) parallel to a lateral edge and intersects the base; (2)

parallel to one lateral face and intersects the base? Give proof.

5. What is the answer to Ex. 4 if the prism is a right prism?

6. What is the section of a parallelepiped made by a plane
located as given below: (1) if the parallelepiped is oblique; (2) if

it is right; (3) if it is rectangular:

a. Passes through two diagonally opposite edges?

b. Cuts four parallel edges?

c. Is perpendicular to a face and cuts four parallel edges?

d. Is perpendicular to an edge and cuts four parallel edges?

7. How can you cut a cube so that the section will be (1) a

parallelogram, (2) a rectangle, (3) a square, (4) an equilateral

triangle, (5) an isosceles triangle,

(6) a regular hexagon?

Analysis for 6 (Fig. 92):

I. To prove UVWXYZ a

regular hexagon, prove

(1) C7, Vt W,X, Y,Z are co-

planar.

(2) UVWXYZ is equilateral.

(3) UVWXYZ can be 'in-

scribed in a circle.

IT. To prove I, prove VY, UX,
and WZ each _L FD at

(the mid-point of FD).

III. .'. show (1) that VY lies in

plane EBCH; (2) that O
and F are equally distant

from the extremities of VY.

FIG. 938. The section of a tetrahedron

made by a plane parallel to two

non-intersecting edges is a parallelogram (Fig. 93).

9. Find the sum of the plane angles of the dihedral angles whose

edges are the lateral edges of a triangular prism.

Suggestion. Construct a right section of the prism.

6
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FIG. 94

10. What is the sum of the plane angles referred to in Ex. 9

if the prism is quadrangular instead of triangular? Can the

exercise be solved for any other kind of prisms?

11. If the bases of a cylinder are circles, a

line parallel to an element of a cylinder contain-

ing the center of one base contains also the

center of the other base.

Analysis and construction (Fig. 94):

I. To prove 0' the center of O A'B', prove that

any two points in O A'B' are equally

distant from 0'.

11. That is, if A' and C are any two points in A'B', prove
0'A' = 0'C'.

III. .'. draw the elements through A' and C' meeting base AB in

A and C respectively, and prove A'0' =AO =OC = 0'C.

If the bases of a cylinder are circles, the line joining the

centers of the bases is called the axis of the cylinder.

12. If the bases of a cylinder are circles, the axis of the cylinder

is parallel to the elements.

Suggestion. Use Ex. 11 and prove that the axis

coincides with a line that is parallel to the elements.

13. In every cylinder whose bakes are circles

there is one set of parallel planes that cut the

cylinder in sections that are rectangles.

Suggestion (Fig. 95). Let 00' be the axis of the

cylinder. Construct CD, the projection of 00' upon
the lower base. Draw AB J_ CD at 0. Pass a

FIG
plane through AB and the element through A.

To prove A'A L AB, prove OO r

_L AB, and OO' \\AA'.

14. How many vertices and how many edges has a tetrahedron?

A regular octahedron? A prism whose base has 5 sides? 6 sides?

n sides?

regular poly-15. Verify the following formula for the

hedrons:
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where F, F, and E are the number of faces, vertices, and edges

respectively.

NOTE. The formula above is known as Euler's Theorem. It is

true for all convex polyhedrons. A proof is too difficult for this book.

16. Construct a regular tetrahedron

(Fig. 96).

Suggestion. Construct the equilateral

triangle ABC. Let O be the center of

the circle circumscribed about A ABC.
Construct OX J_ plane of ABC at 0.

Find X so that XB=AB.
FIG. 96

1 7. Construct a regular octahedron (Fig. 97) .

Suggestion. Construct the square ABCD.
Let be the intersection of the diagonals AC
and BD. Construct EF _L ABCD at 0. Take
OE = OF= OA. Join EA, EB, EC, etc.

A

18. The altitude of a regular tetrahedron

meets the base at the intersection of the

medians.

E i7-
19. If an edge of a regular tetrahedron is E, the altitude is -5V6.o

20. The segments joining in order the mid-points of two pairs of

opposite sides of a regular tetra-

hedron form a square (Fig. 98).

21. The mid-points of the edges
of a regular tetrahedron are the

vertices of a regular octahedron.

22. Inscribe a regular octahe-

dron in a cube. FIG. 98



CHAPTER III

THE SPHERE

INTRODUCTORY

DEFINITIONS

93. A spherical surface has been defined as the locus of

points in space at a given distance from a given point.

The given point is called the center.

The given distance is called the radius.

A sphere is a solid bounded by a spherical surface.

The center and the radius of the spherical surface are

called respectively the center and the radius of the sphere.

A segment through the center of the sphere and termi-

nating in the spherical surface is called a diameter of the

sphere.

ASSUMPTIONS CONCERNING SPHERES

94. We will assume the following:

As. 11. Spheres with equal radii or with equal diameters

are congruent.

As. 12. All radii of the same sphere or of congruent

spheres are equal.

As. 13. All diameters of the same or of congruent spheres

are equal.

As. 14. A diameter of a sphere is twice the radius of that

sphere.

As. 15. A sphere is located definitely if its center and its

radius are known.

As. 16. A segment joining a point within a sphere and the

center is shorter than the radius.

76
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As. 17. If a segment that has one end at the center of

the sphere is shorter than the radius, it lies wholly within the

sphere.

As. 18. A segment joining a point without a sphere and
the center is longer than the radius.

As. 19. If a segment that has one end at the center of

the sphere is longer than the radius, it extends without the

sphere and cuts the sphere but once.

As. 20. If a straight line passes through a point within

a sphere, it intersects the sphere in two and only two points.

As. 21. If a straight line passes through a point without

the sphere, it may (1) have no point in common with the

sphere, (2) have one point in common with the sphere, or

(3) it may intersect the sphere in two and only two points.

As. 22. A plane through a point within a sphere inter-

sects the sphere in a closed curve.

As. 23. A plane through a point without a sphere may
(1) have no point in common with the sphere, (2) have one

point in common with the sphere, or (3) may intersect the

sphere in a closed curve.

96. The following preliminary theorem is evident:

THEOREM 59. If a plane is passed through the center

of the sphere, the intersection of the plane and the spherical
surface is a circle.

TANGENTS TO SPHERES

FUNDAMENTAL THEOREM

96. A line or a plane that has one point in common with

the sphere, but 1 does not intersect it, is said to be tangent
to the sphere.

The point which the tangent line or plane has in common
with the sphere is called the point of contact or the point of

tangency.
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97. THEOREM 60. A plane that is perpendicular to a

radius of a sphere at its outer extremity is tangent to the

sphere.

FIG. 99

Hypothesis: is any sphere with center O. OA is any
radius of sphere O. Plane M is perpendicular to OA at A.

Conclusion: Plane M is tangent to sphere 0.

Analysis and construction:

I. To prove plane M tangent to sphere at A, prove
that all points in M, except A, lie outside the

sphere.

II. /. take B any point in M except A, join B and 0,

and prove that B lies outside the sphere.

III. /. prove OB > OA. (See Th. 14 and As. 19.)

THEOREM 61. A plane that is tangent to a sphere is per-

pendicular to the radius of the sphere at the point of contact.

Analysis and construction: Use an indirect proof. If OA is

not J_ M, suppose some other line as OB _L M and show that

the supposition that OB _L M contradicts the hypothesis.

, Outline of proof:

I. If OB _L M, OB<OA.
II. If OB < OA, point B is within the sphere.

III. If B is within the sphere, M is not tangent to the

sphere (As. 22).

IV. But M is given tangent to the sphere.

V. .'. OA is _L M.
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Ex. 1. Are Ths. 60 and 61 true for straight lines instead of

planes? Give proof.

Ex. 2. If a plane is tangent to a sphere, every line in the plane

drawn through the point of contact is tangent to the sphere'.

Ex. 3. All lines tangent to a sphere at a given point on the

sphere lie in the plane tangent to the sphere at that point.

Ex. 4. If two lines are tangent to a sphere at the same point,

the plane of these lines is tangent to the sphere at that point.

Ex. 5. Show how to construct a line that shall be tangent to a

given sphere and shall contain a given point. Discuss three cases.

Suggestion. Reduce to a plane geometry construction by passing

any plane through the given point and the center of the sphere.

Ex. 6. Answer Ex. 5 for a plane tangent to the sphere instead

of for a line tangent to the sphere.

Ex. 7. All segments tangent to a sphere from a given point

without the sphere are equal.

CIRCUMSCRIBED AND INSCRIBED SPHERES

98. If all the faces of a polyhedron are tangent to a

sphere, the polyhedron is said to be circumscribed about the

sphere and the sphere is said to be inscribed in the poly-

hedron.

If all the vertices of a polyhedron lie in a given spherical

surface, the polyhedron is said to be inscribed in the sphere
and the sphere is said to be circumscribed about the poly-

hedron.

DETERMINATION OF SPHERES

99. The following exercise is preliminary and may be

quoted as a theorem in proving Th. 62.

Exercise. Lines that are perpendicular to two intersecting

planes cannot be parallel.

Analysis: Use indirect proof.

I. Show that if a\\b,M would be
||
N. b

II. To show that M would be
|| N, show M and .V

would both be X a. FIG. 100
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THEOREM 62. One and only one spherical surface can

be passed through four given points that are not co-planar.

FIG. 101

Hypothesis: ABCD is any tetrahedron.

Conclusion:

a. A sphere can be passed through points A, B, C, and D.

b. Only one sphere can be passed through A, B, C, and

D.

Analysis in general for a:

I. It is necessary to prove that there is a point equally

distant from A, B,C, and D.

II. .*. find the locus of points equally distant from A,

B, and C and the locus of points equally distant

from A, B, and D. Prove that these loci intersect.

Construction:

I. To find the locus of points equally distant from A,

B, and D, find the perpendicular to the plane of A,

B
}
and D at the center of the circle circumscribing

AABD. Let this locus be XV.
II. In the. same way find the locus of points equally

distant from A, B, and C. Let this locus be ZW.
'NOTE. To prove XV and ZW intersect, prove that they lie in the

same plane and are not parallel. .*. prove XYand ZW are in a plane

_L AB at its mid-point.

Analysis for b: Show that there is only one point equally

distant from points A, B, C, and D.
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CIRCLES OF SPHERES

81

FUNDAMENTAL THEOREM

100. THEOREM 63. Every section of a spherical surface

made by a plane is a circle.

FIG. 102

Hypothesis: is the center of the given sphere cut by

plane M in section ABCD.

Conclusion: The section ABCD is a circle.

Analysis and construction:

I. To prove ABCD a circle, prove that every point in

ABCD is equally distant from some point within.

. draw a perpendicular from O to plane M meeting

plane M at point X. Join X with B and C, any
two points in ABCD, and prove BX= CX.
join BO and CO and prove ABXO = ACXO.

Since we have seen in Th. 59 that a plane passing through

II

III.

NOTE.

the center of the sphere is a circle, it is only necessary in Th. 63 to prove
that the section of the spherical surface is a circle if the plane does

not pass through the center.

DEFINITIONS

101. A section of a sphere made by a plane through the

center of the sphere is called a great circle.

A section of a sphere made by a plane that does not

pass through the center of the sphere is called a small circle.
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The diameter of a sphere perpendicular to the plane of

a circle of a sphere is called the axis of that circle.

The ends of axis of a circle of a sphere are called the poles
of that circle.

THEOREMS CONCERNING CIRCLES ON SPHERES

102. THEOREM 64. The axis of a circle of a sphere

passes through the center of that circle.

Suggestion. Th. 64 is a corollary of Th. 63. In Th. 63, OX was
constructed from O_L the plane of the circle and meeting the plane at

X. The point X was proved to be the center of the circle. Why is

OX the axis of the circle ? Use Fig. 103, No. 1.

THEOREM 65. All great circles on a given sphere are

congruent.

THEOREM 66. Any two great circles on a sphere bisect

each other.

Suggestion. Show that the intersection of the planes of the two

great circles is a diameter of each circle.

THEOREM 67. Every great circle on a sphere bisects the

sphere.

THEOREM 68. Three points on a sphere no two of which

are at the ends of a diameter determine a small circle of

a sphere.

THEOREM 69. Two points on a sphere not the ends of

a diameter determine a great circle of a sphere.

The length of the minor arc of a great circle on a sphere

joining two given points on the sphere is called the spherical

distance between the two given points. This is the shortest

distance between the two points on the spherical surface.

Ex. 1. How many great circles of a sphere can pass through

the opposite ends of a diameter? Why?

Ex. 2. How many small circles of a sphere can pass through

two points on a sphere if the two points are (1) the opposite ends

of a diameter; (2) not the opposite ends of a diameter?
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POLAR DISTANCE

103. THEOREM 70. Every point on a circle on a sphere

is equally distant from each of its poles.

,Vo. 1 No. 2
FIG. 103

Hypothesis: is any sphere. C is a circle on the sphere.

P and P' are the poles of circle C. A and B are any two

points on circle C.

Conclusion: A and B are equally distant from P and also

from P'.

Analysis and construction:

A. I. To prove A and B equally distant from P, draw

minor arcs of great circles joining AP and BP
X*^N /"""^S

and prove AP = BP.
II. /. draw PA and PB and prove AP = BP.

B. I. To prove A and B equally distant from P', draw

minor arcs of great circles joining AP1 and

BP' and prove AP' = BP'.

The spherical distance from the nearer pole of a circle

of a sphere to any point on the circle is called the polar

distance of the circle.

COR. The polar distance of a great circle of a sphere

is a quadrant, or an arc of 90.

NOTE. The proof of Th. 70 shows that the theorem is true if dis-

tance means either (I) rectilinear distance or (2) spherical distance.
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NOTE. In order that a true conception of much of the work in

this chapter may be obtained a slated globe should be used in class,

and the pupil should prepare his lessons with a ball on which lines

may be drawn. To draw a circle on a sphere, it is evident that its

pole and the polar distance or the linear distance must be known.

104. THEOREM 71. If a point is a quadrant's distance

from each of two points in a sphere, it is the pole of the great

circle passing through these two points.

Hypothesis: is any sphere. PA and PB are quadrants.

. Conclusion: P is the pole of the great circle ABC through

points A and B.

Analysis and construction:

I. To prove P the pole of great circle ABC, join PO and

prove PO _L plane ABC.

II. To prove PO J_ plane ABC, join OA and BO and

prove /.POA and /.POB right angles.

MISCELLANEOUS EXERCISES

105. 1. If a plane is tangent to a sphere, the plane of every

great circle through the point of contact is perpendicular to the

tangent plane.

2. A line perpendicular to the plane of a circle of a sphere at

the center of the circle passes through the center of the sphere.

3. A segment joining the center of a circle on a sphere with the

center of the sphere is perpendicular to the plane of the circle.
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4. If the planes of two great circles on a sphere are perpen-
dicular to each other, each circle passes through the pole of the

other.

5. Points A and B are at the opposite ends of a diameter of a

sphere, and a given point P is at a quadrant's distance from both

.4 and B. Of which great circle or circles through A and B is P
the pole?

6. Into how many parts do three great circles of a sphere
divide the surface of the sphere? Discuss two cases.

7. The sections of a sphere made by parallel planes have the

same poles.

8. State and prove the converse to Ex. 7.

9. If two planes cut a sphere at equal distances from the center

of the sphere, the circles thus formed are congruent.

Analysis and construction:

I. To prove the circles congruent, prove their diameters equal.

II. Let OA and OB be the perpendiculars from the center of the

sphere to the planes of the two circles. The plane of OA
and OB will cut the planes of the two circles in diameters.

Use plane geometry.

10. State and prove the converse to Ex. 9.

11. On the same sphere or on congruent spheres congruent
circles have equal polar distances.

12. State and prove the converse to Ex. 11.

13. The plane of a circle of a sphere is perpendicular to the

planes of all great circles passing through its poles.

14. A plane that bisects at right angles a chord of a sphere
contains the center of the sphere.

15. Show that a sphere can be inscribed in a given cube. Show
that one can be circumscribed about a given cube.

16. Given a segment equal to the edge of a cube. Construct

on a plane a segment equal to the radius of the inscribed sphere,
and one equal to the radius of the circumscribed sphere.

17. It can be proved that the six planes bisecting the dihedral

angles of any tetrahedron meet in a point. Show from this how
to inscribe a sphere in any given tetrahedron.
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SPHERICAL ANGLES

106. If two great circle arcs on a sphere intersect, they
are said to form a spherical angle. The point of intersection

is called the vertex of the angle. The two great circle arcs

are called the sides of the angle.

The measure of a spherical angle is defined as the measure

of the plane angle made by the tangents to the two arcs at

their intersection.

107. THEOREM 72. A spherical angle has the same
measure as (1) the dihedral angle formed by the planes of

its sides, and (2) the arc of a great circle drawn with its

vertex as a pole and included between its sides.

FIG. 105

Hypothesis: AXB is a spherical angle formed by the

two great circle arcs AX and BX on sphere O. The planes

oi AX and BX intersect, forming the dihedral angle whose

edge is XO. AB is the arc of a great circle drawn with X
as pole and included between the sides of ZAXB. XY and

XZ are tangents to AX and BX at X.

Conclusion:

a. /.AXB has the same measure as dihedral angle XO.

b. /AXB has the same measure as AB.

Analysis for a: To prove that /.AXB has the same

measure as dihedral angle XO, prove that /. YXZ is the

plane angle of the dihedral angle XO.
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Analysis and construction for b:

I. To prove that Z.AXB has the same measure as AB,

join AO and BO and prove Z YXZ= Z.AOB, and

Z.AOB has the same measure as AB.

II. To prove 4YXZ= Z.AOB, prove XY\\OA, and

XZ OB.

III. /. prove OA and OJS _L XO at 0.

COR. I. Two great circle arcs are perpendicular to each

other if their planes are perpendicular to each other.

COR. II. If two great circle arcs are perpendicular to

each other, then each passes through the pole of the other.

Ex. 1. If an arc of one great circle passes through the pole of

the second, the two arcs are perpendicular to each other.

Ex. 2. If one great circle arc passes through the pole of a second,

then the second passes through the pole of the first.

Ex. 3. If two points on a sphere are a quadrant's distance

apart, then each is the pole of one great circle passing through the

other.

SPHERICAL TRIANGLES

LINES ON SPHERES

108. We have stated that the shortest distance between

two points on the surface of a sphere is the minor arc of a

great circle passing through these points. This fact is

important for two reasons.

I. It is important theoretically. Arcs of great circles

on a sphere take the place in our work of straight lines on a

plane. As we study figures made up of straight lines on a

plane in plane geometry, so we are to study figures made up
of arcs of great circles on a sphere in solid geometry. The

geometry of these figures can be studied by the use of the

same methods as those used in studying triangles and poly-

gons on a plane, but this method is out of place here.
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II. It is important practically. Use is made of it in

sea sailing and airplane work. To obtain the answers to

the following questions, use a small geographical globe.

Suppose the earth to be a perfect sphere.

Ex. 1. What kinds of circles are the parallels of latitude on

the earth? What kinds of circles are the meridians? What kind

of a circle is the equator.

Ex. 2. Of what circle is the North Pole of the earth the pole?

Ex. 3. What is the shortest route from the Pacific end of the

Panama Canal to Japan? Stretch a string between the two points

on the globe.

Ex. 4. What is the shortest route from New York to England?
From Cape Town, South Africa, to Melbourne, Australia?

Ex. 5. What is meant by the statement that there are no

lines on a sphere that correspond to parallel straight lines on a

plane?

Ex. 6. Why are the parallels of latitude on the earth called

parallels?

DEFINITIONS

109. A closed figure formed of two or more arcs of great

circles on a sphere, no one of which is greater than a semi-

great circle, is called a spherical polygon.

NOTE. Spherical polygons can be constructed in which one or

more sides are greater than a semi-great circle. Such polygons are

called general spherical polygons and will not be considered in this

book.

The intersection of the arcs are

called the vertices of the polygon.

In Fig. 106, A, B,C, and D are the

vertices of the spherical polygon

ABCD.
The arcs are called the sides of

the spherical polygon. In Fig. 106, FIG. 106

AB, BC, CD, and DA are the sides of the polygon ABCD.
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FIG. 107

The spherical angles formed by the arcs are called the

angles of the spherical polygon. What are the angles of

the spherical polygon ABCD in Fig. 106?

A spherical polygon of two sides

is called a lune. In this case the

sides of the spherical polygon are

semi-great circles. 'In Fig. 107, the

figure formed by ACB and ADB is a

lune. There is, obviously, no figure

on a plane that corresponds to a lune

on the sphere.

A spherical polygon of three sides
"

is called a spherical triangle. In

Fig. 108, ABC is a spherical triangle.

Spherical triangles are isosceles or

equilateral as in plane geometry.
A convex spherical polygon is one

in which if any side is extended the

whole polygon lies on one side of the

extended arc. Unless otherwise stated, convex spherical

polygons are intended.

Exercise. Using a slated globe or a ball of some kind on which

marks can be made, draw a spherical triangle with one side greater

than a semi-great circle. Is it concave or convex? Draw one in

which two sides are greater than semi-great circles. Can you
draw one in which two sides are semi-great circles? Why?

SPHERICAL POLYGONS AND CENTRAL
POLYHEDRAL ANGLES

110. A polyhedral angle with its vertex at the center of

the sphere cuts the surface of the sphere in a convex spherical

polygon. Conversely, if the vertices of a convex spherical

polygon are joined to the center of the sphere, a polyhedral

angle is formed with its vertex at the center of the sphere.
This polyhedral angle is called the corresponding central

polyhedral angle of the spherical polygon.

7

FIG. 108
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NOTE. The theorems that we have studied about polyhedral

angles are for convex polyhedral angles only. This is one reason why
we are confining our study of spherical polygons to those whose sides

are less than 180 and to convex figures.

To each side of the spherical polygon corresponds one

face angle of the polyhedral angle, namely: that face angle

that is subtended by the side of the polygon. To each

angle of the spherical polygon corresponds one dihedral angle

of the polyhedral angle, namely : that dihedral angle which

is formed by the planes of the sides of the spherical angle.

The next two theorems follow at once.

THEOREM 73. Any side of a spherical polygon has the

same measure as the corresponding face angle of the corre-

sponding central polyhedral angle. (See Fig. 109.)

Suggestion. As the sides of a spherical polygon are arcs, they may
be measured in degrees.

THEOREM 74. Any angle of a spherical polygon has the

same measure as the corresponding dihedral angle of the

corresponding central polyhedral angle. (See Fig. 109.)

Suggestion. This is a restatement of what theorem?

SOME PROPERTIES OF SPHERICAL TRIANGLES

111. THEOREM 75. The sum of two sides of a spherical

triangle is greater than the third side.

FIG. 109

Suggestion. The proof follows at once from Ths. 73 and 30
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Some theorems concerning spherical polygons bear a

certain peculiar relation to the corresponding theorems

concerning polyhedral angles. This relation is called

reciprocal and follows at once from Ths. 73 and 74. When
the measures of arcs and angles are concerned, one theorem

may be obtained from the other by the substitution of the

measure of the sides of the polygon and the measure of the

corresponding face angles of the polyhedral angle for each

other, or the measure of the spherical angles and the meas-

ure of the corresponding dihedral angles for each other.

THEOREM 76. The sum of the sides of a spherical

polygon is less than a great circle.

Ex. 1. Describe the corresponding central trihedral angle of a

spherical triangle that has (1) two sides equal; (2) three sides

equal; (3) two angles equal; (4) three angles equal. Give reasons.

Ex. 2. Describe the spherical triangle that would correspond
to a central trihedral angle that has three right dihedral angles.

Can you draw this triangle on the surface of a given sphere such

as a slated globe?

Ex. 3. Can you answer Ex. 2 if the initial trihedral angle has

only two right dihedral angles? Two obtuse dihedral angles?

POLAR TRIANGLES

112. If A, B, and C are the vertices of a spherical tri-

angle, and a, b, and c are, respectively, the sides opposite
these vertices, and if A' is that pole

of side a that is on the same side of a

as the vertex A, B' of b, and C' of c,

then A'B'C' is called the polar triangle

of AABC. In Fig. 110, A' and

A" are the poles of the side a in

AA5C. A and A' are on the same

side of a. Then A' is one vertex of FIG. 110

the polar triangle of AABC. In the same way the other

vertices are C' and B'.
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113. THEOREM 77. If one spherical triangle is the polar

of a second, then reciprocally the second is the polar of

the first.

Q

FIG. Ill

Hypothesis: ABC is a spherical triangle. A'B'C' is UK-

polar triangle of AABC.
Conclusion: ABC is the polar triangle of AA'B'C'.

Analysis:

I. To prove ABC the polar of AA'B'C, prove A the

pole of B'C, B the pole of A'C', and C the pole of

B'A'.

II. To prove A the pole of B'C', prove A a quadrant's

distance from B' and C'

.

Outline of proof:

B' is the pole of AC.

.'. B'A is a quadrant.

C' is the pole of AB.
.'. C'A is a quadrant.
/. A is the pole of B'C:

Similarly

B is the pole of A'C'.

C is the pole of B'A'.

:. ABC is the polar of A'B'C'.

Ex. 1. Show how to construct on a ball or spherical black-

board two polar spherical triangles.

Ex. 2. Construct on a ball or spherical blackboard the polar

of a spherical triangle that has each side less than a quadrant.
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Ex. 3. Construct as in EX. 2 the polar of a triangle that has

a. One side greater and two sides less than a quadrant.

b. Two sides greater.and one side less than a quadrant.

c. Each side greater than a quadrant.

d. One side a quadrant.

e. Two sides quadra'nts.

/. Three sides quadrants.

Ex. 4. Describe the corresponding central trihedral angle of

each triangle mentioned in Ex. 3 and of each polar.

114. THEOREM 78. In two polar spherical triangles the

sum of the measures of any angle of one and that side of

the other of which it is a pole is 180.

C

FIG. 112

Hypothesis: ABC and A'B'C' are two polar spherical

triangles. Let A represent the measure of ZA, and a' the

measure of B'C'.

Conclusion: A+a f = 180.

Analysis and construction:

I. To prove A -fa' = 180, compare A with an arc which

is the supplement of a
1

'.

II. /. continue AB and AC to meet C'B' in X and Y
respectively. Let m represent the measure of XV.

Prove (1) 'A=m.

(2) m+a' = 180.

III, To prove ra+a' = 180, prove

(1) C'X+B'Y = C'B'+XY
(2) C'X+B'Y=m.

IV. /. prove C'X = 90, and #'F = 90.
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COR. I. On the same sphere or on congruent spheres,
if two spherical triangles are mutually equilateral, their

polars are mutually equiangular (Fig. 113).

COR. II. On the same sphere or on congruent spheres,
If two spherical triangles are mutually equiangular, their

polars are mutually equilateral (Fig. 113).

FIG. 113

Exercise. The sides of a spherical triangle are 65, 115, and

120. Find the number of degrees in each angle (1) of its polar,

(2) of each of the triangles formed by the intersection of the great

circles of which the sides of the polar are arcs.

THE SUM OF THE ANGLES OF A SPHERICAL TRIANGLE

116. THEOREM 79. The sum of the angles of a spherical

triangle is more than two and less than six right angles.

FIG. 114

Hypothesis: AABC is any spherical triangle. A, B,

and C represent the measures of AA,B, and C respectively.

Conclusion: A+B+C > 2 rt. A and < 6 rt. A
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Analysis and construction: To find the value of A+B+
C, construct the polar of &ABC. Let a', b

f

, and c
r

represent

the measures of the sides .of the polar. Compare A+B+C
with a'+b'+c'.

Outline of proof:

= 180.

/. A+B+C+a'+b'+c' = 5ttf or 6 rt. A,
but a'+b'+c' >Q.
.'. A+B+C<6rt. A.

II. Again, a'+b'+c' < 4 rt. A .

In giving the reasons note the application of the inequality assump-
tions.

Ex. 1. On a ball or a spherical blackboard draw a spherical

triangle with two right angles; with three right angles; with two

obtuse angles.

A spherical triangle with two right angles is called a

birectangular spherical triangle. One with three right angles

is called a trirectangular spherical triangle.

The number of degrees by which the sum of the angles

of a spherical triangle exceeds 180 is called the spherical

excess of the triangle.

Ex. 2. What can you say concerning the sum of the measures

of the dihedral angles of a trihedral angle? Why? What do you
know concerning the sum of the face angles of a trihedral angle?

Ex. 3. In a birectangular spherical triangle the sides opposite
the right angles are quadrants.

Ex. 4. The sides of a trirectangular spherical triangle are

quadrants.

Ex. 5. The polar triangle of a birectangular spherical triangle

is birectangular.

Ex. 6. What is the polar of a trirectangular spherical triangle?

Why?
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CONGRUENT AND SYMMETRIC SPHERICAL TRIANGLES

116. Two spherical triangles on the same sphere or on

congruent spheres are said to be congruent if the sides and

angles of one are equal respectively to the sides and angles

of the other and arranged in the same order.

As. 24. Two spherical triangles or two trihedral angles

congruent to a third are congruent to each other.

The next two theorems follow at once from the defini-

tion above. See the remark on p. 91 concerning the proof

of Th. 75.

What are congruent trihedral angles? (52.)

THEOREM 80. On the same sphere or on congruent

spheres, if two spherical triangles are congruent, the corre-

sponding central trihedral angles are congruent (Fig. 115).

FIG. 115 FIG. 116

THEOREM 81. In the same sphere or in congruent

spheres, if two central trihedral angles are congruent, the

corresponding spherical triangles are congruent (Fig. 115).

THEOREM 82. On the same sphere or on congruent

spheres, if two spherical triangles are congruent, their

polar triangles are congruent (Fig. 116). (See Th. 78.)

117. Two spherical triangles on the same sphere or on

congruent spheres are said to be symmetric if the sides and

angles of one are equal respectively to the sides and angles

of the other and arranged in the opposite order.

What are symmetric trihedral angles? (52.)

In general, two symmetrical spherical triangles or two

symmetric trihedral angles cannot be made to coincide.
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Ex. 1 Show how two plane figures that are symmetric with

respect to a point or to a line can be made to coincide.

Ex. 2. Draw on a spherical blackboard figures to illustrate

two congruent and two symmetric spherical triangles.

Ex. 3. Construct from cardboard two symmetric trihedral

angles, making the faces circular sectors with equal radii.

As. .25. Two spherical triangles or two trihedral angles

symmetric to a third are congruent to each other.

The next two theorems follow at once from the above

definition and the remarks following. Th. 75.

THEOREM 83. On the same sphere or on congruent

spheres, if two spherical triangles are symmetric, the

corresponding central trihedral angles are symmetric

(Fig. 117).

FIG. 117

THEOREM 84. In the same sphere or in congruent

spheres, if two central trihedral angles are symmetric, the

corresponding spherical triangles are symmetric (Fig. 117).

THEOREM 85. On the same sphere or on congruent

spheres, if two spherical triangles are symmetric, then-

polar triangles are symmetric (Fig. 118).

118. If the edges of one trihedral angle are prolongations

of the edges of another trihedral angle, the trihedral angles

are said to be vertical trihedral angles, and the correspond-

ing spherical triangles cut out on the sphere are said to be

vertical spherical triangles.

THEOREM 86. Two vertical trihedral angles are sym-
metric.
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THEOREM 87.

metric (Fig. 119).

Two vertical spherical triangles are sym-

B

FIG. 119

119. THEOREM 88. If two spherical triangles on the

same or on congruent spheres have two sides and the in-

cluded angle of one equal to two sides and the included

angle of the other,

a. The triangles are congruent if the parts are arranged
in the same order.

b. The triangles are symmetric if the parts are arranged
in the opposite order.

FIG. 120

Hypothesis: ABC and A'B'C' are two spherical triangles

in which Z A = Z.A', b = b', and\ = c'.

Conclusion:

a. If /.A, b, and c are arranged in the same order as

ZA', b', and c', AABC^AA'B'C' (AI^AII).
b. If /.A,b, and c are arranged in the opposite order to

ZA', b
1

,
and c', AABC and AA'B'C' are sym-

metric (All symmetric to Alii).

Analysis for a: To prove A I ^ AH, show that they will

coincide if superposed as in plane geometry.
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Analysis and construction for b:

I. To prove AIII symmetric to All, prove AIII

congruent to a triangle that is symmetric to All.

II. .*. construct AIV symmetric to All and prove AIV

congruent to AIII.

NOTE. AIV is not shown in the figure.

COR. If two trihedral angles have two face angles and

the included dihedral angle of one equal to two face angles

and the included dihedral angle of the other, the trihedral

angles are congruent if the parts are arranged in the same

order, and symmetric if they are arranged in the opposite

order.

120. THEOREM 89. If two spherical triangles on the

same or on congruent spheres have two angles and the

included side of one equal to two angles and the included

side of the other,

a. The triangles are congruent if the parts are arranged
hi the same order.

b. The triangles are symmetric if the parts are arranged
in the opposite order.

Analysis for a:

I. To prove A I ^ All, prove that their polars are con-

gruent.

II. To prove the polars congruent, prove that they have

two sides and the included angle of one equal
to A, etc.

Analysis for b: To prove AIII symmetric to All, prove
that their polars are symmetric.

COR. If two trihedral angles have two dihedral angles
and the included face angle of one equal to two dihedral

angles and the included face angle of the other, the trihedral

angles are congruent if the parts are arranged in the same

order, and symmetric if they are arranged in the opposite
order.
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121. THEOREM 90. If two spherical triangles on the

same or on congruent spheres have three sides of one equal

to three sides of the other, the triangles are either con-

gruent or symmetric.

C' , C . C

FIG. 121

Analysis: To prove &ABC congruent or symmetric
to AA'B'C', prove that the corresponding central trihedral

angles are congruent or symmetric. (See Th. 38, Cor.)

122. THEOREM 91. If two spherical triangles on the same

or on congruent spheres have three angles of one equal

to the three angles of the other, the triangles are either

congruent or symmetric.

Analysis: To prove AABC congruent or symmetric to

AA'B'C', prove their polars congruent or symmetric.

COR. If two trihedral angles have the three dihedral

angles of one equal to the three dihedral angles of the other,

the trihedral angles are either congruent or symmetric.

ISOSCELES SPHERICAL TRIANGLES

123. THEOREM 92. The angles opposite the equal sides

of an isosceles spherical triangle are equal.

Suggestion. Join the vertex C with X,
the mid-point of the base AB, by an arc of

a great circle. Prove Z.A and Z.B corre-

sponding angles of symmetric spherical tri-

angles (Fig. 122).

FIG. 122
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THEOREM 93. If two angles of a spherical triangle are

equal, the sides opposite the equal angles are equal (Fig.

122).

Analysis: To prove AC CB, prove that A A' and B' of

the polar are equal.

Ex. 1. If one of two polar spherical triangles is isosceles, the

other is.

Ex. 2. If a spherical triangle is equilateral, its polar is also

equilateral.

THEOREM 94. If two symmetric spherical triangles are

isosceles, they are congruent.

FIG. 123

Hypothesis: ABC and A'B'C' are two symmetric
isosceles spherical triangles with AB = A'B', AC=A'C',
Cll = C'B', Z6

Conclusion :

Analysis: To prove AABC ^ AA'B'C', prove AC
C'B', ZC= ZC', CB = C'A'.

EQUIVALENT SPHERICAL TRIANGLES

124. We have seen that, in general, two symmetric

spherical triangles cannot be made to coincide. Why?
We will prove, however, that two symmetric spherical tri-

angles are equivalent; that is, they cover the same extent

of spherical surface. In general, we have

As. 26. Two spherical polygons are equivalent if they
are congruent or are made up of parts congruent in pairs.
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THEOREM 95. Two symmetric spherical triangles are

equivalent.

FIG. 124

Hypothesis: AABC and AA'B'C' are two symmetric

spherical triangles.

Conclusion: AABC= AA'B'C'.

Analysis and construction:

I. To prove AABC= AA'B'C', prove that they can

be divided into parts congruent in pairs.

II. .'. divide &ABC and AA'B'C' into isosceles

spherical triangles symmetric in pairs.

III. ,*. find X and X1

', the poles of the small circles

through A, B, and C and through A', B', and C'

respectively. Draw AX, BX, CX, A*X', &X',

CX', and prove AXAB and AX'A'B', AXBC
and AX''C', also &XAC and X'A'C'

t
isosceles

and symmetric.

IV. /. prove AX=BX=CX = A^Xf = B^X f = CX' .

V. .'. prove QABC&QA'B'C.
VI. .'. prove plane AABC g plane

SUPPLEMENTARY EXERCISES

MISCELLANEOUS EXERCISES

125. 1. If two sides of a spherical triangle are quadrants, the

included angle has the same measure as the third side.

2. The spherical excess of a birectangular spherical triangle is

the measure of the third angle.
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3. Find the locus of poles of small circles that pass through
two given points in a sphere.

4. Find the locus of poles of great circles that pass through
the ends of a diameter on a sphere.

5. The central trihedral angles that correspond to two polar

spherical triangles have the edges of one perpendicular to the

faces of the other.

6. Find the diameter of a given material sphere.

Nd. 1 No. 2

FIG. 125

A nalysis:

I. We can find the diameter of the sphere if we can construct on

paper or blackboard a circle equal to a great circle of the

sphere and find its diameter.

II. To construct a circle equal to a great circle of the sphere,
locate three points on this circle. These three points may
be the ends of a diameter of any small circle and its pole

(Fig. 125, No. 3).

III. .'. construct a circle equal to any small circle on the sphere.

Construction:

I. .'. with any point, P, as a pole draw any small circle on the

sphere. Draw, on paper or blackboard, AABC (Fig. 125,

No. 2) whose sides are equal to the chords AB, BC, CA
(No. 1 ) . (The segments A B, B C, and CA may be transferred

with the dividers.) Pass a circle about points A, B, and
C. This circle is equal to small circle XY of the sphere in

Fig. 125, No. 1.

II. Find diameter XY of the small circle. Draw (Fig. 125, No. 3)

a segment XY. With X and Y as centers and XP (Fig. 125,

No. 1) as radius locate point P. Pass a circle about points

X, Y, and P. This circle is equal to a great circle of the

sphere, and its diameter is equal to the diameter of the

sphere.
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7. The intersection of two spherical surfaces is a circle (Fig. 1 21 >) .

Analysis and construction (Fig. 126):

I. To prove that the intersection of spheres
A and B is a circle, prove that the in-

tersection may be generated by the

revolution of a straight line that is

bisected at right angles by the line of

centers of the two spheres.

II. .'. pass any plane through the line of centers of the two spheres.

This plane will cut the spheres in great circles that intersect

in two points C and D. Prove AB a _L bisector of (7).

(See Plane Geometry, Ths. 72 and 73.)

8. If two spheres intersect, the line of centers meets the spheres

in points which are poles of the common circle of the two

spheres.

9. The locus of points of contact of lines tangent to a given

sphere from a given point without the sphere is a circle.

Suggestion. Show that this locus may be regarded as the inter-

section of two spheres.

10. The locus of lines tangent to a sphere from a given point

without the sphere is a conical surface.

NOTE. If the elements of a conical surface are tangent to a sphere,

the conical surface is said to be tangent to the sphere and is circum-

scribed about the sphere.

Suppose (Fig. 127) that a conical sur-

face is tangent to a given sphere and that

the vertex of the conical surface recedes

from the sphere. What change will take

place in the circle in which the elements

of the cone are tangent to the sphere?

What is the limiting position of this circle? What is the limiting form

of the cone? From these considerations we may infer that

(1) The locus of the points of contact of parallel tangents to a

sphere is a great circle.

(2) The locus of parallel tangents to a sphere is a cylindrical surface.

If the elements of a cylindrical surface are tangent to a sphere,

the cylindrical surface is said to be tangent to the sphere and is

circumscribed about the sphere.

11. Find the locus of centers of spheres that pass through

'(1) two given points; (2) three given points.
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12. Find the locus of centers of spheres that shall be tangent

to (1) a given line at a given point; (2) a given plane at a given

point.

EXERCISES ANALOGOUS TO CERTAIN PLANE
GEOMETRY THEOREMS

126. NOTE. Many plane geometry theorems are true also on the

surface of the sphere if we replace the straight line by the great circle

arc. No plane geometry theorems that depend in any way upon

parallels can be applied to the sphere. The following exercises are

illustrations of some of the theorems that are true for both plane and

spherical geometry. It is well for the teacher to assign these exercises

in the given order, as the later ones depend in some cases on the earlier

ones.

1. Give the plane geometry definitions for each of the follow-

ing terms, and if possible give the definitions for the corresponding

terms in spherical geometry: adjacent angles, right angles, vertical

angles, supplementary angles, complementary angles.

2. Only one great circle can be drawn through a given point

perpendicular to another great circle, unless the given point is

the pole of the second great circle. In this latter case how many
great circle arcs can be drawn?

3. Construct an arc of a great circle that is a perpendicular

bisector of a given great circle arc.

4. Construct the great circle arc that bisects a given spherical

angle.

5. Construct a circle circumscribed about a given spherical

triangle.

6. The great circle arc that bisects the vertex angle of an

isosceles spherical triangle is perpendicular to the base and bisects

the base.

7. The great circle arc that passes through the vertex and the

mid-point of the base of an isosceles spherical triangle is perpen-

dicular to the base and bisects the vertex angle.

8. Are plane geometry Theorems 54 and 55 true for the

spherical surface? If so, give proof.

8



CHAPTER IV

AREAS AND VOLUMES

AREAS OF POLYHEDRONS

GENERAL STATEMENT

127. The area of any polyhedron is the sum of the areas

of its faces.

Exercise. Find the total area of a regular tetrahedron if each

side is 4 in., 6 in.; if each side is s.

THE LATERAL AREA OF PRISMS

128. THEOREM 96. The lateral area of any prism is

the product of the perimeter of a right section and a lateral

edge.

FIG. 128

Hypothesis: P is any prism. R is its right section. FI,

F2 , etc., are its faces. e\, e2 , etc., are its edges. ai-f-a2+etc.

is the perimeter of R.

Conclusion: The lateral area of P is 0(01+02+ etc.).

Analysis:

I. To find the lateral area of P, find the area of each of

the lateral faces and add.

II. To find the area of Flt use e^ as the base and prove

that ai is the altitude.

106
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Proof:

STATEMENTS

I. ai, 02, etc., are the altitudes of FI, F2 , etc., respec-

tively.

II. e\ ez
=

3
= etc.

III. /. area F\=
area F^

area Fz=
.... etc.

IV. Adding, the sum of the areas of the lateral faces is

Let the pupil give all reasons. In IV use: The sum of numbers

having a common factor is the common factor multiplied by the sum
of the coefficients. How does this theorem apply?

COR. The lateral area of a right prism is the product
of the perimeter of the base and a lateral edge.

THE LATERAL AREA OF A REGULAR PYRAMID

129. THEOREM 97. The lateral area of a regular pyramid
is one-half the product of the perimeter of its base and the

slant height.

FIG. 129

Analysis: To find the lateral area of P, find the sum of

the areas of the lateral faces. In the figure FI, F2, etc., are

the faces of the pyramid. eit <?2 , etc., are the edges of the

base, ai, a2 ,
etc.

;
are the altitudes of the lateral faces.

Let the pupil give the proof. Use the proof of Th. 96 as a model.
The slant height is the common factor in adding.
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THE LATERAL AREA OF A FRUSTUM OF A
REGULAR PYRAMID

130. THEOREM 98. The lateral area of a frustum of a

regular pyramid is one-half the product of its slant height

and the sum of the perimeters of its bases.

FIG. 130

Analysis: To find the lateral area of the frustum, find

the area of each of the lateral faces and add.

EXERCISES INVOLVING AREAS OF POLYHEDRONS

131. 1. Find the total area of a regular triangular prism if one

side of its base is 3 in. and the lateral edge is 5 in.

2. Find the total area of a regular hexagonal prism if one side

of the base is 2 in. and a lateral edge is 4 in.

3. What will be the cost at 10 p a square yard of painting the

lateral surface of a tower in the form of a regular octagonal prism

if each side of the base is 5 ft. and the height is 25 ft.?

4. The total area of a rectangular parallelepiped is 82 sq.

in. Two dimensions are 7 in. and 2 in. Find the third dimension.

5. Find the lateral area of a regular octagonal pyramid if the

slant height is 15 in. and one edge of the base is 7 in. Find the

cost of gilding the same at 5<? a square inch.

6. What is the cost at 15? a square foot of painting a steeple

in the form of a regular square pyramid if one side of the base is

9 ft. and the height is 40 ft.?

7. Find the total area of a regular square pyramid if one edge

of the base is 10 in. and one lateral edge 13 in; if one edge of the

the base is a and one lateral edge e.
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8. Find the total area of a regular tetrahedron whose edge
is 10 in.

9. Find the total area of a regular octahedron whose edge is

7 in.

10. Find the total area of a frustum of a regular hexagonal

pyramid if the sides of the bases are 2 ft. and 1 ft. 10 in. respectively

and a lateral edge is 4 ft.

VOLUMES OF POLYHEDRONS

MEASURING SPACE

132. To measure the space inclosed by the surface of a

polyhedron is to find how many times it contains another

solid used as a unit of measure.

The volume of a polyhedron is the measure number of

the space inclosed by the surface of the polyhedron.

While any solid might be used as a unit of volume, it is

the common practice to use a cube whose edge is a unit of

length. Any segment may be used as a unit of length with

the corresponding units of area and of volume. It is, how-

ever, most convenient practically to use one of the recog-

nized standard units of length; thus we have one inch, one

square inch, one cubic inch; one foot, one square foot, one

cubic foot; one centimeter, one square centimeter, one cubic

centimeter, etc.

FUNDAMENTAL ASSUMPTION

133. As. 27. The number of units of volume in a rec-

tangular parallelepiped is the product of the number of

linear units in three edges that meet at a common vertex.

If V represents the volume of the rectangular parallele-

piped, and a, 6, and c the length of three edges that meet
at a common vertex, As. 27 may be stated as a formula:

V = abc



110 SOLID GEOMETRY

The assumption will be discussed under two heads:

134. A. When the edges of the rectangular parallele-

piped are all commensurable with a given unit of length.

In this case the unit

of length can be applied
an integral number of

times to each edge. Sup-

pose the unit of length

is contained in one side

of the base a times, and

in the adjacent side of

the base b times; then the base of the rectangular paral-

lelepiped can be divided into ab unit squares. The unit of

length may be contained in the height of the parallelepiped

c times. By planes passing through the points of division,

the parallelepiped may be divided into c layers with ab

unit cubes in a layer. The volume is, therefore, abc units

of volume (Fig. 131).

Suppose one or more edges of the parallelepiped are not

exactly divisible by the unit chosen, but are divisible by
some aliquot part of the unit. In this case this part of the

chosen unit may be taken as a new unit of length, and a

cube whose edge is this new linear unit may be considered

as the unit of volume. The assumption is then evident as

above.

Let the pupil give special cases as illustrations.

135. B. When one or more edges of the rectangular

parallelepiped are incommensurable with the chosen unit.

In this case it is not possible to measure one side or per-

haps all sides of the parallelepiped in integral or fractional

terms of the chosen unit. Since the ratio of two incom-

mensurable segments is an irrational number, these sides

may be expressed in irrational terms of the chosen unit and

the volume found. This volume may be irrational or

rational according to the measure number of the sides.
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The following illustrations come under this case:

1. Length incommensurable expressed as an irrational

number :

Length 3V27width 3, height 5, volume 45>/2~

2. Length and width incommensurable:

a. Length V27 width 2Vs7 height 5, volume 10V(T

b. Length 2V2,"width 3>/27 height 5, volume 60

Let the pupil give illustrations of cases in which all three dimen-

sions are expressed by irrational numbers.

Since an irrational number cannot be expressed exactly

as an integer or a fraction, rectangular parallelepipeds such

as those mentioned in the illustrations above cannot be

divided into unit cubes by planes passing through points

of division as in Case A. These dimensions can, however,

be expressed as approximate decimals, and these approxi-

mations may be made as close as we choose to make them

to the true dimensions. From the approximate dimensions

an approximate volume may be computed, and this approxi-

mate volume may be as close as we choose to make it to the

true volume.

Illustration. If the length is V27 the width VST the

height 5, we may have the following approximations:

Length 1.4, width 1.7, height 5, volume 12

Length 1.41, width 1.73, height 5, volume 12.2

Length 1.414, width 1.732, height 5, volume 12.24

This process may be continued indefinitely, as the deci-

mals expressing V2 and V3 do not terminate.

Ex. 1. Find the approximate volume of a rectangular parallele-

piped correct to two decimal places, if its dimensions are V3,

2V27 and VsT Find the total area.

Ex. 2. What is the answer to Ex. 1 if the dimensions of the

parallelepiped are V3
,
2\/2

,
and V(T? Find the total area.

Ex. 3. Find the total area and the volume of a rectangular

parallelepiped whose dimensions are 2% in., 5H in., 'and 3% in.
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THE VOLUME OF ANY PARALLELEPIPED

136. NOTE. If the teacher desires, the treatment of volumes by
Cavalieri's theorem (173-175) maybe substituted for 142 and 144.

In this case 136-141 may be omitted.

Two solids that fill the same extent of space are said to

be equivalent. Congruent solids are the simplest examples
of equivalent solids.

137. THEOREM 99. Two truncated right prisms are con-

gruent if their right bases are congruent and three lateral

edges of one are equal respectively to three corresponding
lateral edges of the other, and similarly placed.

C'

FIG. 132

Hypothesis: P and P' are two truncated right prisms
with the right bases b and b' congruent, and the edges

A'F'
t
BG= B'G r

,
and CH= C'H'.

Conclusion: P ^ P'.

Outline of proof:

L Base b can be made to coincide with base b'.

II. The lateral edges of P will fall along the correspond-

ing lateral edges of P'.

III. The points F, G, and H will fall on the points F',

G'
t
and H f

respectively.

IV. The plane of the upper base of P will fall on the

plane of the upper base of P'.

V. Points 7, /, etc., will fall on points /', ]' respectively.

VI. P and P' will coincide and be congruent.

Is it necessary for the given lateral edges to be consecutive?
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COR. Two right prisms are congruent if they have

congruent bases and equal altitudes.

138. THEOREM 100. If an oblique prism and a right

prism are cut from the same prismatic space and have

equal lateral edges, they are equivalent.

A

A'

A

7

FIG. 133 FIG. 134

Hypothesis: R is a right prism and O an oblique prism
cut from the same prismatic space. The edge AB equals

the edge A 'B' (Fig. 133).

Conclusion : R = 0.

Analysis: To prove R = O, prove the truncated right

prisms R+T and T+0 congruent and subtract from each

the truncated prism T.

Discussion: A complete proof of Th. 100 requires a

discussion of two cases.

Case A. When the prisms are not telescoped.

Case B. When the prisms are telescoped.

Let the pupil give the proof for Case B, using Fig. 134. Notice

that two solids are equivalent if they are sums, differences, or equal

parts of equivalent solids.

COR. Two prisms having equal edges and congruent

right sections are equivalent.
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139. THEOREM 101. The volume of any parallelepiped

is the product of the area of its base and its altitude.

FIG. 135

Hypothesis: P is any parallelepiped, b is its base, and h

its altitude.

.
Conclusion: The volume of P = bh.

Analysis in general: To prove that the volume of P = bh,

compare P with a rectangular parallelepiped that has a base

equivalent to b and an altitude equal to h.

Construction:

I. Extend the edges of P that are parallel to BA and

take B'A'=BA. Pass planes A'H' and B'G' _L

A'B' at A' and B' respectively. This gives paral-

lelepiped PI.

II. Extend the edges of Pl that are parallel to B'C, and

take B"C" = B'Cr
. Pass planes B"E" and C"H"

_L B"C" at B" and C" respectively. This gives

parallelepiped P^
Outline of proof:

It is necessary to prove:
I. P=P2 .

II. PZ is a rectangular parallelepiped.

III. b" = ba.ndk = h.

.'. since vol. P2
=

6"fc, vol. P = b"k; but b" = b and k = h.

:. vol. P = bh.
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Analysis for I: To prove P =P2 , prove P = Pi = P2 .

(Use Th. 100.)

Analysis for II:

a. To prove P2 rectangular, prove that the edges B"A",
B"C", and B"F" are each _L the other two.

b. To prove B"F" _L A"B" and B"C", prove B"F"
J_ plane of b" .

c. :. prove planes B"C"G"F" and B"A"E"F" each _L

A"5"C">". (See Ths. 25 and 28. Use the con-

struction.)

Analysis for III: Prove b = b' = b". (See Plane Geom-

etry, Th. 116.)

THE VOLUME OF TRIANGULAR PRISMS

140. THEOREM 102. A plane passed through two diago-

nally opposite edges of a parallelepiped divides the paral-

lelepiped into two equivalent triangular prisms.

7*

FIG. 136

Analysis:

I. To prove T\ T^ prove that they have equal edges

and congruent right sections.

II. /. construct the right section WXYZ and prove that

(1) The edges of T\ are equal to the edges of TV

(2) The right section WXZ of TI is congruent to

the right section XYZ of T2 .

III. .*. prove WXYZ a parallelogram.

Are TI and T2 congruent? Illustrate with a model.
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141. THEOREM 103. The volume of a triangular prism
is the product of the area of its base and its altitude.

FIG. 137

Hypothesis: T is a triangular prism with base b (ABC)
and altitude h.

Conclusion: The volume of T = bh.

Analysis in general: To find the volume of T, compare
it with a parallelepiped.

Construction: Complete the parallelogram that has AB
and BC for sides. Complete the parallelogram that has EF
and FG for sides. Join HD.

Outline of proof:

I. ABCD-EFGH is a parallelepiped (P).

II. Volume of T=H volume of P.

III. Volume of P =ABCD h.

IV. /. volume of T = MABCD-h.
V. AABC = y2ABCD = b.

VI. .'. volume of T = bh.

Analysis for I:

a. To prove ABCD-EFGH a parallelepiped, prove HD \\

AE.
b. :. prove AEHD SL O:

Exercise. In Fig. 137, construct the parallelepiped by passing

planes through GC and AE parallel to planes ABFE and BCGF

respectively and extending the planes of the upper and lower

bases. Prove that the solid formed is a parallelepiped.
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THE VOLUME OF ANY PRISM

142. THEOREM 104. The volume of any prism is the

product of the area of its base and its altitude.

j_
i

FIG. 138

Analysis arid construction: To find the volume of P,

divide it into triangular prisms and add their volumes.

In the proof use the theorem: The sum of numbers having a

common factor is the common factor multiplied by the sum of the

coefficients.

THEOREM 105. If two prisms have equivalent bases and

equal altitudes, they are equivalent.

EXERCISES INVOLVING VOLUMES OF PRISMS

143. 1. Find the volume of a regular triangular prism if one

side of the base is 15 in. and the height is 10 ft.

2. The corner of a cellar is boarded off to form a triangular

coal bin. How many tons will it hold if the base is an isosceles

right triangle each leg of which is 8 ft. and it is 4 ft. deep? Allow

35 cu. ft. to one ton.

3. The base of a triangular prism is an isosceles right triangle

with the hypotenuse 8 in. If the height of the prism is 15 in.,

find its volume.

4. Find the volume of a regular hexagonal prism if its height

is 10 in. and one side of the base is 3 in.

5. The base of a parallelepiped is a rhombus with one side

12 in. and one angle 60. Find its volume if its height is 24 in.
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6. A stick of timber is 8 in. x 15 in. and 20 ft. long. Find the

weight if 1 cu. ft. weighs 50 Ibs.

7. The space left in the basement for a coal bin is 10 ft. X 12 ft.

How deep must the bin be to hold 10 tons?

8. The area of a cube is 96 sq. in. Find its volume and

its diagonal.

n

THE VOLUME OF A TRIANGULAR PYRAMID

144. In Fig. 139, the altitude of pyramid P is divided into

any number of equal parts. Through the points of division

planes are passed parallel to

the base of the pyramid.
These planes cut the pyramid

the sections AiBiCi,

,
etc. On these sections

as upper bases prisms are

constructed by planes passing

through the lines Bid, BZC2 ,

etc., parallel to the edge AP.
The series of prisms thus FlG - 139

formed is said to be inscribed in the pyramid. Show that

the edges of these prisms are parallel to the edge PA of

the pyramid.
It is evident that if we

increase the number of divi-

sions in the altitude we
shall increase also the num-
ber of inscribed prisms, and

that the number of inscribed

prisms may be increased in-

definitely (Fig. 140).

It is evident also that if a ___
series of prisms is inscribed FlG - 14U

in a pyramid, and if their number is increased indefinitely,
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a series of prisms will soon be obtained that can with

difficulty be distinguished from the pyramid.
The following theorem can be proved in higher mathe-

matics and will be assumed here :

As. 28. There is a definite limit to the sum of the vol-

umes of a series of prisms inscribed in a given pyramid if

their number is increased indefinitely.

This limit is by definition the volume of the pyramid.

FIG. 141

Fig. 141 shows two pyramids, P and P', standing on

the same plane. They have equal altitudes and equivalent
bases. Suppose that the altitude h is divided into equal

parts, and that through the points of division planes are

passed cutting both pyramids, and that on these sections as

upper bases a series of prisms is inscribed in each pyramid.

Prove that the sum of the volumes of the prisms in P is

always equal to the sum of the volumes of the prisms in P'.

It can be proved in higher mathematics that, since the

sum of the volumes of the prisms of the series in P is always
equal to the sum of the volumes of the prisms in P'

t the

limits of these two sums are equal.

We will, therefore, assume

THEOREM 106. If two pyramids have equivalent bases
and equal altitudes, they are equivalent.
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145. THEOREM 107. Any triangular prism may
divided into three equivalent triangular pyramids.

be

FIG. 142

Hypothesis: P is a triangular prism cut by the planes

XBC and XYC, forming three triangular pyramids.
Conclusion: X-ABC = C-XYZ =X-CBY .

Analysis:

I. To prove pyramid I = pyramid II, prove base

ABC = base XYZ, and their altitudes equal.

II. To prove pyramid 11= pyramid III, regard X as the

vertex of each, and CYZ and CBY as bases.

146. THEOREM 108. The volume of a triangular pyramid
is one-third the product of the area of its base and its

altitude.

FIG. 14.,

Hypothesis: D-ABC is a triangular pyramid with base b

(ABC) and altitude h.

Conclusion: The volume of D-ABC =
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Analysis in general: To find the volume of DABC,
compare it with a triangular prism having the same base

and altitude.

Construction: From A and C draw lines parallel to BD.

Through D pass a plane parallel to ABC.

Outline of proof:

I. ABC-DEF is a prism.

II. Volume of D-ABC= }/$ volume of ABC-DEF.
III. Volume of ABC-DEF = bh.

IV. .'. volume of D-

147. THEOREM 109. The volume of any pyramid is one-

third the product of the area of its base and its altitude.

FK;. 144

Suggestion. Divide P into triangular pyramids, and add their

volumes.

GENERAL FORMULA FOR THE VOLUME OF PRISMS,
PYRAMIDS, AND FRUSTUMS

148. A prismatoid is a polyhedron that has for bases two

polygons in parallel planes, and for lateral faces triangles,

trapezoids, or parallelograms that have one side in common
with one base and the opposite vertex or side in common
with the other base. The altitude of a prismatoid is the per-

pendicular distance between the bases. The mid-section of

a prismatoid is a section made by a plane parallel to the

bases and bisecting the altitude.

9
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THEOREM 110. The volume of a prismatoid is one-sixth

the altitude times the sum of the areas of the bases and

four times the area of the mid-section.

X

FIG. 145

Hypothesis: P is a prismatoid with b the lower base, b'

the upper base, m the mid-section, h the altitude, and V the

volume.

Conclusion: V= Xh(b+b'+4m).
Analysis: To find V, divide P into triangular pyramids

and add their volumes.

Construction: Join any point in m with the vertices

of b and &'. Draw one diagonal in each of these lateral faces

which are trapezoids and parallelograms. is the common
vertex of a series of triangular pyramids and also of those

pyramids whose bases are the upper and the lower bases of

the prismatoid.

Outline of proof:

I. Vol. of 0-XYZ= X-)4h-b' = Xhb'.

II. Vol. of 0-ABC etc. = Y* Xh - b = Hhb.

III. Vol. of 0-XAB =XAB H altitude from to XAB.
R and 5 are mid-points of AX and BX respec-

tively.

AABX= &RSX.
.'. vol. 0-XAB = 4 vol. of 0-RSX.

0-RSX=X-ORS.
:. vol. 0-XAB = 4 H Mfc ORS = Xh - 4 ORS.
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IV. The sum of the volumes of these pyramids that have
as a vertex and the lateral faces as bases is

l/Qh 4 m.

V. /. the sum of the volumes of all pyramids is

Xh(b+b'+4m)

149. Prisms, pyramids, and frustums of pyramids are

special cases of prismatoids. How? Their volumes may
be obtained from the volume of the prismatoid as shown
below. In each case it is necessary to find the volume in

terms of b and b'.

COR. I. The volume of any prism is bh.

Suggestion. b = b' = m. Then

COR. II. The volume of any pyramid is

Suggestion. b'=0,m = }4b. Then

COR. III. The volume of a frustum of a pyramid is

Outline of proof (Fig. 146) :

b a2

A V a'2=
-5 and =

;m %* m %z

V~6 a . VF a'
/.-== = - and F^ =x Vm x

Vfr +V& /

= q+o
/

= 2
Vw x

,
7 / FIG. 146

= 4.

Since VMh(b+b'+4m), where /i is altitude.
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EXERCISES INVOLVING VOLUMES OF POLYHEDRONS

160. 1. A grain bin is 2^ ft. wide, 6 ft. long, and 4 ft. deep.

How many bushels of grain will it hold? 2150.42 cu. in. = l bu.

2. What would be the area of the base of a grain bin 6 .ft. deep
to hold 250 bu.?

3. The volume of any prism is the product of the area of a

right section and a lateral edge.

4. The lateral edge of a triangular prism is 15 in. The right

section is an equilateral triangle 5 in. on a side. Find the volume.

5. If the dimensions of a rectangular parallelepiped are a, b,

and c, write a formula for (1) the sum of the edges ; (2) the diagonal ;

(3) the total area; (4) the volume.

6. When the rainfall is y% in., how many barrels of water will

fall per acre? 1 cu. ft. of water =7^ gal.; 313/2 gal.
= 1 bbl.

7. The plane determined by one edge of a tetrahedron and

the mid-point of the opposite edge divides the pyramid into two

equivalent parts.

8. Lines drawn from the center of a cube to the vertices divide

it into six equivalent pyramids.

9. Find the volumes of the following pyramids if

a. Base is a regular hexagon 5 cm. on a side and the altitude

is 9 cm.

b. Base is a rectangle 10 in. Xl4 in. and the altitude is 18 in.

10. Find the volume of a regular octahedron 8 in. on a side.

1 1 . Find the total area and the volume of a regular hexagonal

pyramid if one edge of the base is 8 in. and one lateral edge is

10 in.

12. Find a formula for the volume of a pyramid whose base

is an equilateral triangle with one side e and the altitude h.

13. What is the formula called for in the previous exercise if

the base is (1) a square; (2) a regular hexagon?

14. The edges of the bases of a frustum are 15 in. and 9 in.

respectively, and its height is 4 ft. Find its volume if it is a frus-

tum of (1) a regular square pyramid; (2) a regular triangular

pyramid.

15. Find the volume of the pyramids from which the frustums

mentioned in the previous exercise are cut.



AREAS AND VOLUMES 125

THE MEASUREMENT OF ROUND BODIES
IN GENERAL

151. NOTE. Rigorous proofs for the theorems concerning the

measurement of round bodies are too difficult for this book. The

following treatment will make the theorems concerning the measure-'

ment of cylinders and cones appear reasonable to the pupil. If the

teacher desires, the proofs of theorems concerning volumes, based on

Cavalieri's theorem (173, 177, 178), may be substituted for 156

and 163.

The surface of a polygon that can be drawn on a plane

may be measured by finding how many times it would con-

tain another polygon used as a unit of measure. It is evi-

dent that the measure of a curved surface like the lateral

surface of a cylinder or of a cone cannot be found in this way.
We will assume, however, that the area of curved surfaces

can be expressed in terms of plane units, but it will be neces-

sary for us to define what is meant by the area of these sur-

faces. These definitions will be given later.

Similarly, we will assume that the measure of the space
inclosed by cylinders and cones can be expressed in terms of

unit cubes, and will define later what is meant by the volume

of these solids.

THE MEASUREMENT OF THE CYLINDER

INSCRIBED PRISMS

152. A polygon is said to be inscribed in any curve if

its vertices lie on the curve.

If the bases of a prism are in-

scribed in the bases of a cylinder,

and the lateral edges of the

prism are elements of the cylin-

der, the prism is said to be in-

scribed in the cylinder and the

cylinder is said to be circum-

scribed about the prism (Fig. 147) . FIG. 147
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We will also assume

As. 29. Any plane that cuts all of the elements of a

cylinder will cut any inscribed prism in a section which is

inscribed in the section of the cylinder.

Fig. 148 shows a triangular prism inscribed in a circular

cylinder. AD represents the plane that cuts the cylinder
and the prism in right sec-

tions. ACE is the right
section of the prism. If the

arcs between the vertices of

AACE are bisected, and the

points of division are joined,

a hexagon is inscribed in the

right section of the cylinder.

Ifelements of the cylinder are -

drawn through the points of

division A, B, C, D, E, and F, they will form the edges of

an inscribed hexagonal prism whose right section ABCDEF
is inscribed in the right section of the cylinder. It is evident

that if this process is continued the number of lateral faces

of the inscribed prism can be increased indefinitely. It is

to be noted that this definition applies to any closed cylinder

and is independent of the number of lateral faces of the

original prism.

THE LATERAL AREA OF CIRCULAR CYLINDERS

153. It is evident that if a prism is inscribed in a circular

cylinder, and if the number of lateral faces is increased

indefinitely, a prism will soon be obtained that can with

difficulty be distinguished from the cylinder.

The following theorem from higher mathematics will be

assumed:

THEOREM 111. There is a definite limit to the lateral

areas of a series of prisms inscribed hi a circular cylinder

when the number of lateral faces is increased indefinitely.
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NOTE. Theorem 111 is true no matter what is the nature of the

initial prism of the series.

The lateral area of the cylinder is defined as the limit of

the lateral areas of a series of inscribed prisms as the number

of lateral faces is increased indefinitely.

Therefore, since the lateral area of a prism is the prod-

uct of the perimeter of a right section and an element, no

matter how many lateral faces the prism may have, we will

assume

THEOREM 112. The lateral area of a circular cylinder is

the product of the perimeter of a right section and an element.

NOTE. As proved in higher mathematics, Th. 112 is true for any

cylinder. It can be used here only for circular cylinders, because in

high-school mathematics we do not learn how to find the perimeters

of curves other than circles.

COR. I. If r is the radius of the right section, e an ele-

ment, and L the lateral area of a circular cylinder,

In Cor. II, r represents the radius of the base, h repre-

sents the height, L represents the lateral area, A represents

the total area.

COR. II. In right circular cylinders

(fi+ r)

154. NOTE 1. Since the value of TT can be found only approximately,
it follows that the area of circular cylinders can be found only approxi-

mately. In brief, the lateral area of an inscribed prism of a great

many lateral faces is taken as an approximation to the lateral area

of the cylinder.

165. NOTE 2. The lateral surface of a right circular cylinder may
be developed or rolled out into a rectangle. Cut a rectangular strip

of paper whose width is equal to an element of the given cylinder.

Wrap the strip about the cylinder and cut it with a sharp knife so that

it exactly fits about the cylinder without overlapping. Find its area.

Find the development of the lateral surface of an oblique circular

cylinder.
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THE VOLUME OF CYLINDERS WITH CIRCULAR BASES

166. In studying the volumes of cylinders we will imagine
that a series of prisms is inscribed in a cylinder with a cir-

cular base, and that the number of lateral faces of the prisms.

is increased indefinitely.

The following theorem from higher mathematics will be

assumed :

THEOREM 113. There is a definite limit to the volumes

of a series of prisms inscribed in a cylinder with a circular

base when the number of lateral faces of the prisms is

increased indefinitely.

NOTE. Theorem 113 is true no matter what is the nature of the

initial prism of the series.

The volume of the cylinder is defined as the limit of the

volumes of a series of inscribed prisms as the number, of

lateral faces is increased indefinitely.

Therefore, since the volume of a prism is the product of

the area of the base and the altitude, no matter how many
lateral faces the prism may have, we will assume

THEOREM 114. The volume of a cylinder with a cir-

cular base is the product of the area of its base and its

altitude.

NOTE. As proved in higher mathematics, Th. 114 is true for any

cylinder. It can be used here, however, only for cylinders with circu-

lar bases, because in high-school mathematics we do not learn how to

find the areas of surfaces inclosed by curves other than circles.

COR. If r is the radius of the base of a cylinder, h the

altitude, and V the volume,

167. NOTE 1. The volume of cylinders can be found only approxi-

mately; in fact, the volume of an inscribed prism of a great many
lateral faces is taken as an approximation to the volume of the cylinder.

158. NOTE 2. By similar processes the lateral area and the volume

of cylinders can be obtained from circumscribed prisms.
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THE MEASUREMENT OF THE CONE
INSCRIBED PYRAMIDS

169. If the base of a pyramid is inscribed in the base of

a cone, and the lateral edges of the pyramid coincide with

elements of the cone, the pyramid is said to be inscribed in

the cone and the cone is said to be circumscribed about the

pyramid (Fig. 149).

to

FIG. 149 FIG. 150

Fig. 150 shows a triangular pyramid 0-ACE inscribed in

a cone. If the arcs between the vertices of &ACE are

bisected, and the points of division are joined, a hexagon is

inscribed in the base of the cone. If elements of the cone

are drawn through the vertices of this hexagon, they will

form the edges of an inscribed hexagonal pyramid. It. is

evident that if this process is continued the number of

lateral faces of the pyramid may be increased indefinitely.

This definition applies to any convex cone and is indepen-

dent of the number of lateral faces of the original pyramid.

THE LATERAL AREA OF RIGHT CIRCULAR CONES

160. In our work we can find the lateral areas of right

circular cones only. Th. 97 gives us a formula for the lateral

area of regular pyramids only, and not for all pyramids.
In studying the lateral areas of cones, therefore, we will

imagine that a series of regular pyramids is inscribed in a

right circular cone, and that the number of sides of the

pyramids is increased indefinitely. It is evident that a

pyramid will soon be found that can with difficulty be dis-

tinguished from the cone.
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The following theorem from higher mathematics will be

assumed :

THEOREM 115. There is a definite limit to the lateral

areas of a series of regular pyramids inscribed in a right

circular cone when the number of lateral faces is increased

indefinitely.

The lateral area of a right circular cone is defined as the

limit of the lateral areas of a series of regular inscribed

pyramids as the number of lateral faces is increased indefi-

nitely. Therefore, since the lateral area of a regular pyramid
is one-half the product of the perimeter of the base and the

slant height, no matter how many lateral faces the pyramid

may have, we will assume

THEOREM 116. The lateral area of a right circular cone

is one-half the product of the perimeter of its base and

its slant height.

COR. If r is the radius of the base, / the slant height,

L the lateral area, and A the total area of a right circular

cone,

161. NOTE 1. The lateral areas of cones can be found only

approximately; in fact, the lateral area of a regular inscribed pyramid
of a great many lateral faces is taken as an approximation to the lateral

area of a right circular cone.

162. NOTE 2. The lateral surface of a right circular cone may be

developed into a sector of a circle. Cut out a circle whose radius is

equal to the slant height of the cone. Wrap the circle about the cone

and cut it so that the sector exactly fits about the cone without over-

lapping. Open out the paper.
If r is the radius of the circle and a the angle of the sector, the area

of the sector is by plane geometry -^- or -^77 M^! that is, one-half
ooU obU

the product of the radius and the length of its arc.
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THE VOLUME OF CONES WITH CIRCULAR BASES

163. In studying the volumes of cones we will imagine
that a series of pyramids is inscribed in a cone with a cir-

cular base, and that the number of lateral faces of the pyra-

mid is increased indefinitely.

The following theorem from higher mathematics will be

assumed :

THEOREM 117. There is a definite limit to the volumes

of a series of pyramids inscribed in a cone with a circular

base when the number of lateral faces of the pyramid is

increased indefinitely.

NOTE. Theorem 117 is true no matter what is the nature of the

initial pyramid of the series.

The volume of the cone is defined as the limit of the

volumes of a series of inscribed pyramids as the number of

lateral faces is increased indefinitely.
'

Therefore, since the volume of a pyramid is one-third

the product of the area of the base and the altitude; no

matter how many lateral faces the pyramid may have, we
will assume

THEOREM 118. The volume of a cone with a circular

base is one-third the product of the area of its base and its

altitude.

NOTE. As proved in higher mathematics, Th. 118 is true for any
cone. It can be used here, however, only for cones with circular bases.

COR. If r is the radius of the base of a cone, h its alti-

tude, and V its volume,

164. NOTE 1. The volume of cones can be found only approxi-

mately; in fact, the volume of an inscribed pyramid of a great many
lateral faces is taken as an approximation to the volume of the cone.

166. NOTE 2. By similar processes the lateral area and the volume

of cones can be obtained from circumscribed pyramids.
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THE MEASUREMENT OF FRUSTUMS
OF CONES

166. The theorems for the measurement of the lateral

surface and the volume of certain frustums of cones may be

obtained from the corresponding theorems concerning the

lateral surface and the volume of frustums of pyramids.
The method is similar to that used in obtaining the theorems

for the lateral surface and the volume of certain cones from

the corresponding theorems concerning pyramids.
If the bases of a frustum

of a pyramid are inscribed

in the bases of a frustum of

a cone, and the lateral edges

of the frustum of the pyr-

amid -are elements of the

frustum of the cone, the

frustum of the pyramid is FlG - 151

said to be inscribed in the frustum of the cone.

By a process similar to that used on pages 125 and 126,

the number of lateral faces of the inscribed frustum may be

increased indefinitely. It is evident that a frustum of a

pyramid will soon be obtained that can with difficulty be

distinguished from the frustum of the cone.

167. The following theorems will be assumed without

further discussion:

THEOREM 119. If r l and r2 are the radii of the upper and

lower bases of a frustum of a right circular cone, and / is

its slant height, the lateral area of the frustum is

7r/(r 1+r2)

THEOREM 120. If r 1 and r2 are the radii of the upper
and lower bases of a frustum of a cone with a circular base,

and h is its altitude, the volume of the frustum is

7rr 2
2
)
= 1

/^/i7r(r ]

2 +r 2
2
+r,r,)
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EXERCISES INVOLVING THE AREAS AND VOLUMES OF
CYLINDERS, CONES, AND FRUSTUMS

168. 1. Find the total area and the volume of a right circular

cylinder 30 ft. high and 8 ft. in diameter.

2. Find the cost of digging a cistern 25 ft. deep and 6 ft. in

diameter at 5^ a cubic foot.

3. How many gallons of paint are required for the lateral sur-

face of a cylindrical tower 100 ft. high and 30 ft. in diameter?

Allow 1 gal. of paint for 500 sq. ft. of surface.

4. Find the total area of a right circular cone whose slant

height is 15 in. and whose radius is 6 in.

5. Find the total area and volume of a right circular cone if

its altitude is 12 in. and its diameter is 18 in.

6. Find the total area and volume of a right circular cone if

its slant height is 13 in. and its radius 5 in.

7. What must be the depth of a cylindrical measure 12 in. in

diameter if it holds 1 bushel?
, 2150.42 in. = 1 bu.

8. A cylindrical tower has a conical top. Find the total cost

of painting the tower'at 25 ^ a square foot. The total height of

the tower is 50 ft., the height of the cylindrical part is 42 ft., and

the diameter is 18 ft.

9. Find the total area and the volume of a frustum of a right

circular cone if the radii of its bases are 3 in. and 10 in. respectively

and its slant height is 5 in.

10. Find the total area and the volume of the solid formed by
revolving a square about one side if one side is (1) 15 in.; (2) 5.

11. Find the total area and the volume of the solid formed by
revolving a rectangle whose sides are 5 in. and 7 in. (1) about the

side 5 in.; (2) about the side 7 in.

12. What are the answers called for in Ex. 11 if the sides of the

rectangle are a and b?

13. What are the answers called for in Exs. 11 and 12 if a

right triangle whose legs are 7 in. and 5 in. is used instead of a

rectangle?

14. Find the total area and the volume of the solid formed by
revolving an isosceles triangle about its base, if the base is 8 in.

and one leg is 10 in. .
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15. Answer Ex. 14 if the triangle is revolved about its altitude.

16. Find the total area and the volume of the solid formed by
the revolution of an isosceles right triangle about the hypotenuse

(1) if one leg is 6 in.; (2) if one leg is a.

17. ABC is an isosceles right triangle each of whose legs is 3 in.

/ is a line perpendicular to hypotenuse AB at B. Find the total

area and the volume of the solid formed by revolving AABC
about /.

GENERAL FORMULA

LATERAL AREA OF SOLIDS OF REVOLUTION

169. THEOREM 121. The area of the surface generated

by a segment revolving about an axis in The same plane
with it, but not crossing it, is the product of the projection

of the line segment on the axis and the circumference of

a circle whose radius is the perpendicular erected at the

mid-point of the segment and terminated by the axis.

D

No. 1 No. 2
FIG. 152

No. 3

Hypothesis: AB is a line segment revolving about an

axis which is in the same plane with AB, but does not cross

AB. CD is the projection of AB on the axis. E is the

mid-point of AB. EF _L AB and is terminated by CD.

Let L represent the area generated by AB.

Conclusion: L =CD 2irEF.

Case A. When AB is parallel to the axis, L is the lateral

area of a right circular cylinder (Fig. 152, No. 1).

The proof is left to the pupil.
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Case B. When AB meets the axis at A, L is the lateral

area of a right circular cone (Fig. 152, No. 2).

For right circular cones L = ABirBD, or AB2irEG.

To prove L = CD- 2irEF, prove CD - 2irEF =AB 2irEG.

That is, AB EG must be replaced by CD EF.

Use similar triangles ABD and EFG.

Let the pupil complete the proof.

Case C. When AB is not parallel to the axis and does

not meet the axis, L is the lateral area of a frustum of a

right circular cone (Fig. 152, No. 3) .

The lateral area of a frustum of a right circular cone is

ir/(rH-rt).

Since EG= %(r\-\-rz), L =AB 2irEG.

To prove L = CD- 2wEF, prove CD 2wEF=AB 27rC.

That is, replace AB EG by CD F.

Let the pupil complete the proof. Draw AH from A JL BD.

Ex. 1. Fig. 153 shows half of a regular hexagon
inscribed in a semicircle. Find the area of the

surface generated by the broken line ABCD revolv-

ing about the diameter AD. The radius of the

circle is 3 in.

Ex. 2. What would be the area of the surface

formed in Ex. 1 if ABCD were circumscribed about

the semicircle?

170. NOTE. The lateral area of a frustum of a
FlG ' 153

right circular cone may be found from its development. Show that

this development is a sector of a circular ring (Fig. 154).

For the area of the sector of the circular

ring we have (a is the angle of the sector) :

Area =^ (TTrJ-irr&

. 2ira
ri)

360
Cr2+ri) " "'

L 360
T

360" J
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GENERAL FORMULA FOR THE VOLUMES OF SOME
SOLIDS OF REVOLUTION

171. THEOREM 122. The volume of a solid generated

by a triangle that revolves about an axis in its plane, passing

through one of its vertices, but not crossing it, is one-third

the product of the area of the surface generated by the side

opposite the fixed vertex and the corresponding altitude of

the triangle.

Case A. When one side of the triangle coincides with

the axis.

No. 1

Hypothesis: AABC reyolves about side AB as an axis.

The axis is supposed to pass through A. BC is the side

opposite A. h is the altitude from A to BC. r is the _L from

C to AB. V is the volume generated by AABC.

Conclusion: V = Hh area generated by BC.

Analysis and construction (Fig. 155, Nos. 1 and 2):

I. a. The volume generated by AABC is

(1) y3Trr
zBX+ l

/3irr
2AX, or Xirr*AB.

(2) Kvr*BX-Kvr*AXt orXirr*AB.

b. The area generated by BC is irrBC.

.'. we are to prove V = Yzk wrBC.

II. /. prove Hh- irrBC = lA irr
2AB.

III. /. prove h-BC = r- AB.
AB h

IV. .'. prove g
= -.

V. /. prove AABD ~ ABCX.
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Ex. 1. Give the analysis and proof for the case in which B
is taken as the fixed point instead of point A .

Ex. 2. Apply the theorem to the special case (Fig. 155) in

which BC is perpendicular to the axis.

Case B. When no side of the triangle coincides with the

axis.

Hypothesis: AABC revolves about line / as an axis.

Line / is in plane ABC, passes through vertex A, but does

not cross the triangle. BC is the side of AABC opposite

vertex A. h is the altitude from A to BC. V represents

the volume generated by AABC (Fig. 155, No. 3).

Conclusion: -V = Hh area generated by BC.

Analysis and construction: To find the volume generated

by AABC, extend CB to meet the axis at E and subtract the

volume generated by &EBA from the volume generated by
AECA.

Outline of proof:

I. Volume generated by AECA = Hh area CE.

II. Volume generated by AEBA=%h area BE.

.'. volume generated by ABCA=Hh area CB.

FIG. 156

Ex. 3. Apply the theorem to the special cases (Fig. 155, No.

3) in which (1) BC is parallel to /; (2) BC extended cuts / below A .

Ex. 4. Describe the figure formed in each case of Th. 122

and in Exs. 1,2, and 3.

10
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VOLUMES BY CAVALIERTS THEOREM
172. NOTE. The treatment of volumes that follows may be sub-

stituted for the treatment in 142, 144, 156, and 163 if the teacher

desires.

CAVALIERTS THEOREM

173. The following theorem is proved in higher mathe-

matics. It will be assumed here.

THEOREM 123. If two solids lie between parallel planes,

and if the two sections made by any plane parallel to then-

bases are equivalent, then the solids are equivalent.

VOLUME OF ANY PRISM

174. THEOREM 104. The volume of any prism is the

product of the area of its base and its altitude.

FIG. 157

Hypothesis: P is any^prism with base b, altitude h
t
and

V its volume.

Conclusion: V of P = bh.

Analysis in general: To find the V of P, compare P
with a . rectangular parallelepiped that has an equivalent

base and the same altitude.

Construction: Construct P' a rectangular parallelepiped

with base b' = 6, and an edge h' = h. Let P' and P stand on

the same plane. Pass a plane parallel to 6 and b' cutting

both P' and P.

respectively.

Let s
f and 5 be the sections of P' and P
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Analysis:

I. To prove V of P= bh, prove P' = P.

II. To prove P' = P, prove the sections of P and P'

made by planes parallel to the bases are equivalent.

III. /. prove 5 = 5'.

Outline of proof:

I. s
' = b'= b = s. :. s' = s.

II. In the same way, the sections of P and P' made by

every plane parallel to the bases are equivalent.

III. /. P'=P.
IV. VotP' = b'h'.

V. .'. V oiP = b'ti = bh.

NOTE. If this proof of Th. 104 is used, 136-141 may be omitted.

EQUIVALENT TRIANGULAR PYRAMIDS

176. THEOREM 106. If two triangular pyramids have

equivalent bases and equal altitudes, they are equivalent.

FIG. 158

Hypothesis: P and P' are two pyramids with equivalent
bases b and b' and equal altitudes h and h'.

Conclusion : P = P'.

Analysis and construction: Suppose P and P' are stand-

ing on the same plane. Pass any plane through P and P'

parallel to b and b', cutting P in section c, and P' in section

c', and prove c = c
f

.

NOTE. At this point the theorems concerning the volumes of

pyramids follow as given in 145-147.
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THE VOLUME OF CYLINDERS WITH CIRCULAR BASES

176. We know that it is not possible to construct with

straight edge and compass, only, a triangle, square, or

rectangle that has the same area as a given circle. We do

know, however, that there are instruments by which these

figures can be constructed. This must be assumed in the

next two proofs.

177. THEOREM 114. The volume of a cylinder with a

circular base is the product of the area of its base and its

altitude.

FIG. 159

Hypothesis: C is a cylinder with a circular base b; h is

its altitude; V is its volume.

Conclusion: V of C= bh.

Analysis in general: To find V of C, compare it with a

prism that has an equivalent base and the same altitude.

Let the pupil give the construction, complete the analysis, and give

proof. Use 174 as a model.

THE VOLUME OF CONES WITH CIRCULAR BASES

178. THEOREM 118. The volume of a cone with a cir-

cular base is one-third the product of the area of its base

and its altitude.

Analysis: To find the volume of the cone, compare it

with a pyramid that has an equivalent base and the same

altitude.
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MISCELLANEOUS EXERCISES

179. 1. A sheet of paper 6 in. X8 in. is bent into a right circular

cylinder. Find the total area and the volume. (Two answers.)

2. Water is flowing through a pipe 2 in. in diameter at the

rate of 150 ft. per minute. How many cubic feet is that per hour?

3. A cylindrical tomato can is 4T% in. high and 4 in. in diam-

eter. Find its capacity in quarts. 231 cu. in. = 1 gal.

4. A regular four-sided prism is inscribed in a right circular

cylinder. Find the volume and the lateral area of the prism if

the radius of the cylinder is 10 in. and its altitude is 25 in.

5. The section of a right circular cone made by a plane through
the altitude is a triangle whose base angles are 45. If the height

of the cone is 6 in., find the total area and the volume.

6. The volume of an irregular body that will not absorb water

may be found by placing it in water and finding the volume of the

water displaced. What is the volume of a stone if, when it is

dropped into a cylindrical tank 2 ft. in diameter, it causes the

water in the tank to rise 2 in.?

7. A regular hexagonal pyramid is inscribed in a right circular

cone whose radius is 10 in. and whose height is 24 in. Find the total

area and the volume of the pyramid.

8. Find the lateral area of the

frustum of a cone formed by rolling

the sector of the circle shown in Fig.

160. Use the data given.

9. The altitude of a cone equals

the diameter of its base. Using 2r for FlG - 16

the diameter, find formulas for the volume and for the total area.

10. Find a formula for the volume of a hollow column in the

form of a right circular cylinder. Use h= height,

t = thickness, and d = outside diameter. The column /* "\

is open at both ends.

11. The cross section of a straight tunnel % mi.

long is of the form shown in Fig. 161. Find the

quantity of material taken out, using the dimen-

sions given in the diagram. Height of rectangular 20'~

part, 30 ft. FIG. 161



142 SOLID GEOMETRY

SPHERICAL MEASUREMENTS
AREAS OF SPHERES

180. We have seen in plane geometry that if a regular

polygon is inscribed in a circle, and if the number of sides

is increased indefinitely, a polygon is soon

formed which can with difficulty be distin-

guished from the circle. (See Plane Geometry,

295.) The perimeter of such a polygon may
be taken as an approximation to the circum-

ference of the circle. An approximation to the

surface of the sphere may be obtained in a

somewhat similar way.

Suppose a semicircle is divided into any
T^rr* 1 fi9

number of equal arcs and the points of division

are joined. A chain of equal chords is obtained which is half

of an inscribed regular polygon, with two of its vertices at

the ends of the diameter XY (Fig. 162). If we bisect the

original arcs and join the points of division, half of a regular

polygon of twice as many sides will be inscribed in the semi-

circle. This process can be continued indefinitely. If now
we revolve the figure about the diameter XY as an axis, we
know that the semicircle will generate a spherical surface.

The chain of equal chords will generate the lateral surface of

a series of cones and frustums of cones inscribed in the sphere.

We have seen that if the semicircle is divided into a very

great number of equal arcs, the chain of equal chords obtained

can with difficulty be distinguished from the semicircle. It

is evident, therefore, that if this semicircle is revolved about

its diameter, the lateral surface of the sets of cones and frus-

tums obtained can with difficulty be distinguished from the

spherical surface.

The measure of the surface of one of these sets of inscribed

solids may be taken as an approximation to the measure of

the surface of the sphere.
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181. PROBLEM. To find the area of the surface gener-

ated by the revolution of a chain of equal chords inscribed

in a semicircle as it revolves about the diameter of that

semicircle as an axis.

FIG. 163

Given AB+BC+CD+ etc., a chain of equal chords

inscribed in the semicircle ADG, revolving about the diam-

eter AG as an axis.

To find the area of the surface generated by AB -\-BC-\-

CD+ etc.

Analysis in general:

I. To find the area of the surface generated by AB+
BC+CD+etc., find the area of the surface gen-

erated by AB, by BC, by etc., and add the results.

II. To find the area of surfaces generated by AB, BC,

CD, + etc., use Th. 121.

Construction: .'. draw the J_s from B, C, D, etc., to

the diameter AG, meeting the diameter in X, Y, 0, etc.,

respectively. Draw the _L bisectors of chords AB, BC, etc.

Outline of solution:

XY.
.... etc.

HO =KO = etc.

/. area (AB+BC'+etc.) =2wHO(AX+XY+etc.)
or area (AB+BC+etc.) =2irHO AG.
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182. The following theorem from higher mathematics

will be assumed:

THEOREM 124. The areas of the surfaces generated by a

series of chains of equal chords inscribed in the same semi-

circle, and revolving about the diameter of that semicircle

as an axis, have a definite limit if the number of chords

is increased indefinitely.

183. Since we cannot measure any spherical surface in

terms of plane units, we shall have to define what is meant

by the area of a spherical surface.

The area of a spherical surface is defined as the limit

of the areas of the surfaces generated by a series of chains

of equal chords inscribed in the same semi-

circle, and revolving about the diameter of

that semicircle as an axis as the number of

chords is increased indefinitely.

184. Therefore, since the area of the sur-

face generated by a chain of equal chords

inscribed in a semicircle, and revolving

about the diameter of that semicircle as an

axis, is always 2wHO - XY (Fig. 164), no

matter how many chords there may be in

the chain, we will assume FlG - 164

THEOREM 125. The area of a spherical surface is

2?rr d when r represents the radius of the sphere, and d
its diameter.

Since 2 TIT represents the circumference of a great circle

of the sphere, Th. 125 may be stated:

The area of a spherical surface is the product of its

diameter and the circumference of a great circle.

If we substitute 2r for d in the first statement in Th. 125,

we have :

The area of the spherical surface =4?rr2
.
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Since ?rr
2
represents the area of a great circle, Th. 125

may be stated:

The area of a sperical surface is equal to the area of

four great circles. .

Ex. 1. Find the area of a sphere whose radius is 3 in.; 4}/2 in.

Ex. 2. If the area of a sphere is 265 sq. in., find its radius.

Ex. 3. Find a formula for obtaining the radius of a sphere from

its area.

Ex. 4. A tank consists of a cylindrical portion with hemispher-

ical ends. The diameter of the ends equals the. diameter of the

cylinder, which is 2 ft. The total length is 7 ft. Find the total

area.

AREAS OF ZONES

185. The portion of a spherical surface included between

two parallel planes is called a zone (Fig. 165).

The circles in which the parallel
A

planes cut the sphere are called the

bases of the zone. The perpendicular

distance between the parallel planes is

called the altitude of the zone.

If one of the planes is tangent to the

sphere, the zone is called a zone of one

base.

Just as a spherical surface is considered as generated by
the revolution of a semicircle about a diameter as an axis,

so a zone is considered as generated by the revolution of

an arc of that semicircle about the same diameter as an axis.

In Fig. 165 the revolution of the semicircle ABCD about

the diameter AD generates the spherical' surface. The

revolution of AB about AD generates a zone of one base;

the revolution of BC about AD generates a zone of two

bases BCEF. XY is the altitude of zone BCEF. The

circles BF and CE are the bases of the zone BCEF.
Exercise. What are the bases of the North Temperate Zone

of the earth? Of the Arctic Zone?
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FIG. 166

186. COR. The area of a zone is 2irr times the altitude

of the zone.

The corollary may be verified by the

same method as was used in verifying Th.

125. The arc AD (Fig. 166) is divided into

any number of equal parts, and the points
of division joined. Find the area generated

by AB+BC+ etc. Imagine the number of

divisions to be increased indefinitely.

Since 2irr is the circumference of a great

circle, the corollary may read :

The area of a zone is the product of the altitude of the

zone and the circumference of a great circle.

If h is the altitude of the zone and L its

area, we have L = 2irrh

Ex. 1. The radius of a sphere is 10 in. and

the altitude of a zone is 6. Find the area of

the sphere and of the zone.

Ex. 2. The diameter of a circle (Fig. 167) is

6 in. AB subtends a central angle of 60. Find

the area of the zone of one base formed if AB
revolves about AD.

Ex. 3. In Fig. 168, the diameter of circle is

51". The chord BD is 24". Find the area of the

zone generated if AB revolves about AC.

Suggestion. Draw BC and use Th. 108, Plane

Geometry.
AREAS OF LUNES

187. We have defined a lune as a spherical

polygon of two sides. In other words, it is

a portion of a sphere between two semi-great

circles (Fig. 169).

The following corollary of this definition

is evident: FIG. 169

COR. The two angles of a lune are equal.
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188. Since the stun of the possible adjacent spherical

angles that have a common vertex on the sphere is 360,
we will assume that the surface of the sphere can be divided

into 360 equal parts by great circles that have a common
diameter. Any two of these semi-great circles form a lune.

We will assume that the ratio of the surface of this lune to

the surface of the sphere is equal to the ratio of the number
of degrees in the angle of the lune to 360. If, however, a

lune is drawn at random on the sphere, its angle may be

incommensurable with 360. It can be proved that the

same relation holds in this case. We have, therefore,

As. 30. The area of a lune is to the area of a sphere as

the angle of the lune is to 360.

If L represents the area of a lune, a the measure of its

angle, and A the area of the sphere, we have -r

Solving for L,

T _ * a a
A 2 _ a7rf2

360" 360*
=

"90"

189. A birectangular spherical triangle

whose vertex angle is one degree is called

a spherical degree (Fig. 170).

It is evident that a spherical degree is FlG - 17

half a lune whose angle is one degree. A spherical degree

is, therefore, ^20 of the surface of the sphere. Its area is

constant for any given sphere.

The following theorem is, therefore, evident:

THEOREM 126. The area of a lune in spherical degrees
is equal to twice the measure of its angle in angle degrees.

If L represents the area of the lune, and a the measure of

its angle, L = 2a spherical degrees

But a spherical degree is =^: . 47rr2
.

2a a in-
2
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AREAS OF SPHERICAL TRIANGLES

190. THEOREM 127. The area of a spherical triangle

expressed in spherical degrees is equal to the spherical
excess of the triangle.

Hypothesis: ABC is a spherical triangle. A, B, and C
are the measures of /.A, /.B, and Z.C respectively.

Conclusion: The area of AABC is (A+B+C-18Q)
spherical degrees.

Analysis and construction:

I. To find the area of AABC, compare AABC with

the lunes whose angles are /.A, /.B, and Z.C.

II. /. complete the great circles ABA'B', ACA'C', and

BCB'C'.

Outline of proof:

I. a. Area of lune CAC'B = 2C sph. deg.

b. Area of lune BCB'A = 2B sph. deg.

c. Area of lune ACA fB = 2A sph. deg.

II. a. Or area Al+area AIV = 2C sph. deg.

b. Area Al+area All = 25 sph. deg.

c. Area Al+area ACBA' = 2A sph. deg.

III. a. ACBA'and AIII are symmetric.
b. .'. ACBA'=AIII.
c. .'. area Al+areaAHI = 2A sph. deg.

IV. Adding,
Areas (3AI+ AII+ AIII+ AIV) =2(,4+B+Q sph. deg.
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V. AI+ AII+ AIII+ AIV make one hemisphere.

/. area (AI+ AII+ AIII+ AIV) =360 sph. deg.

VI. /. 2 area Al+360 sph. deg. =2(A+B+Q sph. deg.

/. area Al+ 180 sph. deg. = (A+B+C) sph. deg.

VII. /. area AI = G4+5+C-180) sph. deg.

COR. If r represents the area of the sphere, the

spherical excess of the triangle, and A its area,

EXERCISES INVOLVING AREAS OF LUNES AND
SPHERICAL TRIANGLES

191. 1. Find the area of a lime on a sphere if the radius of the

sphere is 6 in. and the angle of the lime is 25; 50; 60; 120.

2. Find the area of a spherical triangle in spherical degrees if

the angles of the triangle are :

a. GO
, 150, 120. c. 140, 72, 60.

b. 120, 75, 150. . </. 72, 65, 90.

3. Find the area of a spherical triangle on a sphere whose

radius is 18 in. if the angles of the triangle are:

a. 60, 72, 120. c. 45, 90, 105.

b. 50, 80, 150. rf. 68, 74, 96.

4. The area of a lune is 154 sq. in. Find its angle if the radius

of the sphere is 8 in.

5. The area of a lune whose angle is 75 is 65 sq. in. Find the

area and the radius of the sphere.

6. What is the angle of a lune whose area is H', H\ %\ %
the area of the sphere?

7. The area of a trirectanguJar spherical triangle is ^ the

surface of the sphere.

8. How many degrees in the angle of a lune if its area is equal

to the area of a great circle of the sphere?

9. What portion of a sphere is covered by a spherical triangle

whose angles are 68, 72, and 124?

10. What is the area in spherical degrees of a. spherical tri-

angle if the sides of its polar are 30, 75, 54?
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THE VOLUME OF THE SPHERE

192. If a chain of a great many equal chords be inscribed

in a semicircle, and this chain of chords be revolved about

the diameter of this semicircle as an axis, the surface gen-
erated by the chain of chords will inclose a solid whose

volume may be taken as an approximation to the volume

of the sphere.

PROBLEM. To find the volume of the solid inclosed by
the surface generated when a chain of equal chords inscribed

in a semicircle revolves about the diameter of that semi-

circle as an axis.

FIG. 172

Analysis and construction:

I. To find the volume inclosed by the surface generated

by AB+BC+CD+etc., join the vertices A, B,

C, D, etc., with 0, and find the volume generated

by AAOB, ABOC, ACO>, etc. Add the results.

II. .'. draw the J_s from to AB, EC, etc. (Th. 122).

Outline of solution:

I. a. Vol. A05 = area AB ysOX.
b. Vol. 50C= area BC- HOY.
c. Vol. COD =area CD HOZ.
.... etc.

II. a. Adding, since OX=OY = OZ,

b. Vol. (AOB + BOC + COD + etc.)
=

\OX - area(AB+BC+CD+etc,).
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The solution obtained to the foregoing problem may be

translated thus:

THEOREM 128. The volume inclosed by the surface

generated when a chain of equal chords inscribed hi a

semicircle revolves about the diameter of that semicircle

as an axis is the product of the area of that surface and one-

third the radius of the semicircle.

193. The following theorem from higher mathematics

will be assumed:

THEOREM 129. The volumes of the solids inclosed by
the surfaces generated when a series of chains of equal

chords inscribed in a semicircle revolves about the diameter

of that semicircle as an axis has a definite limit if the num-
ber of chords in the chain is increased indefinitely.

194. Since we cannot measure the space inclosed by any

sphere in terms of cubic units, we shall have to define what

is meant by the volume of a sphere.

The volume of a sphere is defined as the limit of the

volumes of the solids inclosed by the surfaces generated
when a series of chains of equal chords inscribed in a semi-

circle revolves about the diameter of that semicircle as an

axis, as the number of chords in the chain is increased

indefinitely.

196. Therefore, since the volume inclosed by the surface

generated when a chain of equal chords inscribed in a

semicircle revolves about the diameter of that semicircle

as an axis is always the product of the area of that surface

and one-third the radius, we will assume

THEOREM 130. The volume of a sphere is the product
of the area of its surface and one-third its radius.

If r represents the radius of the sphere, V its volume, and
A the area of its surface, we have

or V =K
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Ex. 1. Find the volume of a sphere whose radius is 2 in.;

3 in.; 7 in.

Ex. 2. How many iron balls 2 in. in diameter can be made
from one 15 in. in diameter?

Ex. 3. Find the volume of a spherical shell

3/2 in. thick if its outer diameter is 6 in.

Ex. 4. Make a formula for the volume of a

spherical shell if its thickness is h and its outer

diameter d.

Ex. 5. A solid is in the form of a right circular

cone with hemisphere on its base (Fig. 173). If

the diameter of the base is 6 in. and the slant height of the cone

8 in., find the total area and the volume.

VOLUMES OF SPHERICAL SECTORS

196. The solid generated by a circular sector revolving

about a diameter that does not cross the sector is called a

spherical sector (Fig. 174),

COR. The volume of a spherical sector

is the product of the area of the zone which

forms its base and one-third of the radius \

of the sphere.

The corollary may be verified as follows: FIG. 174

Describe on the arc of the circular sector any number
of equal chords (Fig. 175). Join the points of

division on the arc with the center of the

circle, thus inscribing in the sector a series

of congruent triangles. Find the volume

generated when the series of triangles revolves

about the diameter, and proceed as in the ^

discussion for Th. 130.

If r represents the radius of the sphere, A the area of the

zone, and V the volume of the spherical sector, we have

Since A = 2 wrh
,

V =

where h is the altitude of the zone.
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VOLUMES OF SPHERES BY CAVALIERI'S THEOREM
197. THEOREM 131. Any section of a sphere is con-

stantly equal to that of the solid between the circumscribed

cylinder of revolution and a double cone of revolution

inscribed in the cylinder.

CC D
YYX

BB
FIG. 176

Hypothesis: is any sphere, ABCD the circumscribed

cylinder of revolution, and AOB-COD a double cone of

revolution inscribed in the cylinder. XY is a plane cutting
the three solids. KW, KZ

t and KY are the radii of the

circles cut from the cone, the sphere, and the cylinder.

Conclusion: Area of circle KZ= area of ring WY.
Outline of proof:

Area of ring WY = irKY*- wKW*

= ir(KY -KO) (prove KO =KW)
= ir(OZ-KO) (prove KY = OZ)_ 2

= irKZ = area of circle KZ.

THEOREM 130. The volume of the sphere is tiwr3 .

Suggestion. It follows at once from Cavalieri's Theorem that the

volume of the sphere is the difference between the volumes of the

circumscribed cylinder of revolution and a double cone inscribed in

the cylinder.

/. vol. of sphere =7rr2/*-i^7rr
2A = %7rr2A. But h=2r.

/. F
11
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VOLUMES OF SPHERICAL WEDGES AND SPHERICAL
PYRAMIDS

198. A solid bounded by a lune and the plane of its

sides is called a spherical wedge.

A solid 'bounded by a spherical polygon and the planes
of its sides is called a spherical pyramid.

The volume of a spherical wedge or of a spherical pyra-
mid may be obtained from the following assumption:

As. 31. The ratio of the volume of a spherical wedge
or of a spherical pyramid to the volume of the sphere equals
the ratio of the area of the base of the wedge or of the

pyramid to the area of the sphere.

If A is the area of the base of the wedge or of the pyramid
and V its volume,

Since the area of a lune is ^

COR. I. The volume of the spherical wedge is j= Trr
3

.

2Tv

Since the area of a spherical triangle is T^nr2
,

loU

COR. II. The volume of the spherical pyramid is =^r Trr3 .

Ex. 1. Find the volume of a spherical wedge cut from a sphere
whose radius is 6 in. if the angle of the lune is 72.

Ex. 2. Find the volume of a spherical pyramid whose base is

a spherical triangle with angles 156, 94, and 128, cut from a

sphere 8 in. in diameter.

A spherical cone is something like a spherical pyramid.
Its base is a zone of one base.

Ex. 3. Make a formula for the volume of a spherical cone.

As. 31 holds.
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VOLUMES OF SPHERICAL SEGMENTS

155

199. A portion of a sphere included between two parallel

planes is a spherical segment.

THEOREM 132. If a and b represent the radii of the

bases of a spherical segment, h its altitude, r the radius of

the sphere, and V the volume of the segment, then

FIG. 177

Analysis:

I. Find the volume of the frustum generated by
CAHBD and add the volume generated by AKBH.

II. To find the volume generated by AKBH, subtract

the volume generated by &ABO from the volume

generated by the circular sector AKBO.

Outline of proof:

I. Vol. of sector = %7rr2
/t.

II. Vol. of AABO = YzOH area AB.
But area AB = 2?r OH h,

III.

vol. of

vol. of = 2
/3Trh(r*-OH*)

y6 irhAB2
.

From

/.vol. of

From &ABE, AB
2= h*+(a-b)\

.'. vol. AKBH = M7rh(h
z+a?+bz

-2ab).

IV.

V.

Vol. of

/. vol. of sph. seg.
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SUMMARY. AND SUPPLEMENTARY EXERCISES

FORMULAE OBTAINED

200. NOTE. In the formulae below L = lateral area, A = total

area, V= volume, b base, r= radius, h = height, /= slant height,

p = perimeter, e = edge of prisms, elements of cylinders, spherical

excess of spherical triangles, a = angle.

A. PRISMS:

L (any prism) = p of rt. sec. e.

L (rt. prisms) = p of base e.

V (any prism) =?bh.

B. PYRAMIDS:

L (regular) =Y^(p of base) /.

V (any pyramid)

C. PRISMATOIDS :

D. FRUSTUMS OF PYRAMIDS:

L (regular) =K/(sum of p of bases).

E. CYLINDERS:

L (circular) =p of rt. sec. e

L (rt. circular) =2irrh .

A (rt. circular) =2 irr(r-\-h}.

V (circular base) = 7rr
2h.

F. CONES:

L (rt. circular) = irrl.

A (rt. circular) = irr(r+l).

V (circular base)

G. FRUSTUMS OF CONES:

L (rt. circular)
= 7r/

V (circular base) =

H. Area generated by a segment revolving about an axis

= projection of segment on axis times 2ir perpen-

dicular from mid-point of segment to axis.
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I. Volume of solid formed by revolving a triangle about an

axis = Yz area generated by revolving one side about

a fixed vertex times the corresponding altitude.

J. SPHERES:

A of sphere = 47^.

A of zone = 2?rrk

A of lune = 2a sph. deg. = -^- .

A of sph. triangle = e sph. deg. =7^77.loU
V of sphere = H irr

3
.

V of sph. sector = H irr
2h.

V of sph. wedge = ^TTT TIT*.

V of sph. pyramid= TTTT Trr
3

.

V of sph. segment = %wh(a
2+62

)+^7r/i
3 when a

and 6 are the radii of the bases of the segment.

NUMERICAL PROBLEMS
201. 1. Find the number of cubic yards of concrete required

for the foundation walls of a house 24 ft. X 20 ft. The walls are

to be 10 in. thick and 8 ft. high. No deductions for windows.

2. Two congruent regular square pyramids stand on opposite
sides of the same base. The distance between their vertices is

16 cm. The diagonal of the com-

mon base is 16 cm. Find the

total area and the volume.

3. Find the volume of the

wedge shown in Fig. 178. The
base ABCD is a rectangle 10 in. FlG 178

X18 in. XEF and YGH are

right sections and are isosceles triangles. Use the data given.

XZ is _L base.

4. Solve the previous exercise by the prismatoid formula.

5. Find the formula for the volume of a wedge if the dimensions

of the base are a and b, the altitude is h, and the edge XY (Fig. 178)

is c.
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6. Find the volume of a regular octahedron if one edge is 6 in.;

if one edge is E.

7. Find the volume of a regular tetrahedron if one edge is 6 in.
;

if one edge is E.

8. A berry box is in the form of a frustum of a regular square

pryamid 5 in. square at the top and 4^ in. square at the bottom.

What should be the depth of the box if it holds a quart? Use
1 dry qt.

= 67.2 cu. in.

9. A pail is in the form of a frustum of a right circular cone

the radii of whose bases are 12 in. and 10 in. respectively. Find

the depth of the pail if it holds 2^ gal. 1 gal= 231 cu. in.

10. Fig. 179 shows a

cylindrical tank partly rilled

with water. The tank is

6 ft. long and 4 ft. in diam-

eter. If the greatest depth
of the water is 3 ft., find the

number of gallons of water -

in the tank.
FIG. 179

NOTE. Problems like Ex. 10 cannot be solved without trigonometry

except in special cases.

11. Find the total area and the volume of the

solid formed by revolving the square ABCD
(Fig. 180) about line /, if / is JL diagonal AC
at C. Use data given.

12. Find the total area and the volume of the

solid formed by revolving the equilateral triangle

ABC (Fig. 181) about line /, if / is JL the altitude

DB at point B. Use data given.

13. How many shot % in. in diameter can

be made from a cylindrical bar 10 in. long and

^8 in. in diameter?

14. Find the weight of a spherical shell of iron

if its outside diameter is 6 in. and it is % of an

inch thick. Use 1 cu. in. of iron weighs . 28 Ib.

15. Given a 'cube whose side is 2 in. Find the area and the

volume of (1) the inscribed sphere; (2) the circumscribed sphere.

FIG. 181
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16. Find the radius of a sphere that is equal in volume to two

spheres whose radii are (1) 2 in. and 5 in. respectively; (2) .Rand

r respectively.

17. Find the area of a trirectangular spherical triangle on a

sphere whose radius is 18 in.

18. If the earth is a perfect sphere, prove that one-half of its

surface lies within 30 of the equator.

19. What is the area in spherical degrees of a spherical triangle

if the sides of its polar are 72, 96, and 40?

20. Find each angle of an equilateral spherical triangle if its

area is one-third the area of the sphere.

21. Find the angle of a lune if its area is two-ninths the area of

the sphere.

22. Find the angle of a lune that is equivalent to a spherical

triangle each angle of which is 84.

23. The area of a lune is 154 sq. in. Find its angle if the

radius of the sphere is 9 in.

24. The area of a lune whose angle is 48 is 54 sq. in. Find the

radius and the area of the sphere.

25. How many degrees are there in the angle of a lune if its

area is equal to Y$ the area of a great circle of the sphere.

26. The polar distance of a small circle

on a sphere is 60. The radius of the sphere
is 15 in.Find the radius of the circle, the dis-

tance of the plane of the circle from the center

of the sphere, and the area of the zone of one

base cut off by the circle.

27. The circumference of a great circle of a sphere
is 8ft. Find the radius of the sphere; also its area and

volume.

28. Given a sphere whose center is 0, and A a point

of light outside of sphere 0. Find the area illuminated

by A. Let the radius of the sphere be 10 ft., and

OA be 15 ft. (Fig. 182).

29. Fig. 183 shows a post which is capped by a

portion of a sphere. The height of the post without FIG. 183

the sphere is 3 ft. Its diameter is 15 in. The radius of the sphere
is 15 in. Find the total volume.
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30. The water tank shown in Fig. 184 consists of a cylinder

with a hemisphere below and a cone above. The diameter is

20 ft. and the height of the cylinder is 32 ft. The conical

roof is 10 ft. high. Find the capacity of the tank in

gallons. 231 cu. in. = l gal. How much paint will be

required to paint the outside of the tank, allowing one

gallon of paint for 500 sq. ft. of surface?

31. A hemispherical cap of aluminum is 3 in. in diam-

eter. Find the diameter of the blank from which it is
N /
FIG. 184

pressed.

NOTE. The blank is a circular piece of metal cut from a flat sheet.

This is pressed into the desired form by means of a die. Assume that

the area of the blank is equal to the area of the finished article.

32. Find the diameter of the blank if the cap in the preceding
exercise has a flat ring ^2 in. around it.

33. A spherical shell of iron whose outer diameter is 1 ft. is

filled with lead. Find the thickness of the iron if the filled shell

weighs twice the unfilled shell. A cubic inch of iron weighs 4.2 oz.
;

a cubic inch of lead weighs 6.6 oz.

34. What is the ratio of the surface of a sphere to the entire

surface of its hemisphere?

35. A plane is drawn tangent to the inner of two concentric

spheres 8. in. and 12 in. in diameter. Find the circumference of

the circle cut out on the outer sphere.

36. What is the altitude of a zone of a sphere which equals a

trirectangular triangle in area?

37. The diameter of a right circular cylinder equals its height.

Find its dimensions if its capacity is one gallon. 231 cu. in. = 1 gal.

38. The area of a sphere is equal to the lateral area of the

circumscribed cylinder of revolution.

39. With the compasses open 4 in. a circle is drawn on a 12-in.

globe. Find the circumference of the circle, and. the area of the

zone of one base cut off.

40. A cylindrical bore is made through a sphere. If the radius

of the sphere is 6 in., and the diameter of the bore 6 in., find the

entire area of the part removed.
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EXERCISES INVOLVING PROOFS

202. 1. The volume of a triangular prism is the product of

one lateral face and one-half the distance of that face from the

opposite edge.

2. The volume of a regular prism is the product of the lateral

area and one-half the altitude of the base.

3. Any plane passed through

the center of a parallelepiped di-

vides it into two equivalent parts.

4. A truncated triangular prism

is equivalent to three pyramids
whose common base is the lower

base of the prism and whose ver-

tices are the vertices of the upper

base (Fig. 185). FlG 185 .

. 1 milysis:

I. ABC-DEF = E-ABC+E-A CD+E-CDF.
II. E-ABC is one of the required pyramids.

III. Prove E-A CD = D-ABCby proving both equivalent to B-A CD.

IV. Prove E-CDF= F-ABCby proving F-ABC = B-A CF= B-CFD
= E-CFD.

5. The volume of a truncated right triangular prism is the

product, of the area of its base and one-third the sum of the lateral

edges. (See Ex. 4.)

6. The volume of any truncated triangular prism is the prod-

uct of the area of a right section and one-third the sum of its

lateral edges.

Suggestion. The right section divides it into two

truncated right prisms.

7. The area of a zone of one base is equal to the

area of a circle whose radius is the generating arc.

Suggestion. Since the area of the zone generated

by AB (Fig. 186) is 2irrBE, and the area of the circle_
whose radius is AB is wAB

BCBE-

_
prove that 2irrBE = irAB . prove



CHAPTER V

SIMILARITY AND SYMMETRY

SIMILARITY

TESTS FOR SIMILAR SOLIDS

203. Two polyhedrons are said to be similar if they have

the same number of faces respectively similar, and similarly

placed, and their corresponding polyhedral angles equal.

For convenience, corresponding parts will be lettered

alike; for example, AB and A 'B' are corresponding edges.

204. THEOREM 133. Two tetrahedrons are similar if

three faces meeting at a common vertex in one are respec-

tively similar to three faces meeting at a common vertex

of the other, and arranged in the same order.

FIG. 187

Hypothesis: T and T' are two tetrahedrons with ADB ~

A'D'B', BDC**B'D'Cf

,
and ADC**A'D'C'.

Conclusion: T co T'.

I. To prove T^T', prove AABC> &A'B'C', and

the trihedral angles at A, B, C, and D equal

respectively to the trihedral angles at A f

, B', C',

and D'.

162
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Analysis:

II. To prove the trihedral angle at A equal to the tri-

hedral angle at A', prove the face angles of one

equal to the face angles of the other, and arranged
in the same order.

III. .'. prove AABC^AA'B'C.

AB _ EC CA
e A 7B ) ~B fCf "CrA f

'

206. If the segments that join the vertices of a given

polyhedron with a given point are divided in the same
ratio from the given point, and if the points of division are

joined in the same order as the vertices of the given poly-

hedron, the polyhedron so formed and the given polyhedron
are radially placed. The given point may be called the

radial center.

FIG. 188

The radial center of the two radially placed polyhedrons

may be within or without the polyhedrons. If it is without

them, the two polyhedrons may be on the same or on

opposite sides of the center. Let the pupil draw figures

for each case.

206. THEOREM 134. Two dihedral angles are equal if

the faces of one are parallel to the faces of the other and
extend in the same direction from their edges.

For proof see suggestion to Th. 24, p. 23.
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207. THEOREM 135. If two polyhedrons are radially

placed, and are on the same side of the radial center, the

polyhedrons are similar.

K G

FIG. 189

Hypothesis: P and P f

are two polyhedrons radially

placed on the same. side of the radical center 0.

Conclusion: P<P'.

Analysis:

I. To prove P^P', prove

(1) The faces of P similar to the corresponding

faces of P'.

(2) The polyhedral angles of P equal to the cor-

responding polyhedral angles of P' .

(3) The parts are similarly placed.

II. To prove face ABFE ~ face A'B'F'E', prove . . . .

III. To prove the polyhedral angle at B equal to the

polyhedral angle at B f

, prove that the face angles

and the dihedral angles of one are equal respec-

tively to the corresponding parts of the other.

IV. Verify that the parts are arranged in the same order.

When two polyhedrons are radially placed, the radial

center is called the center of similitude.

The ratio of the distances of corresponding vertices from

the center of similitude is called the ratio of similitude.
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208. THEOREM 136. If two polyhedrons are radially

placed, with the center of similitude within the polyhedrons,
the polyhedrons are similar.

209. THEOREM 137. If two polyhedrons are radially

placed, and are on opposite sides of the radial center, the

faces of one are similar to the corresponding faces of the

other, the polyhedral angles of one are equal to the corre-

sponding polyhedral angles of the other, but the parts are

arranged in the reverse order.

210. Two polyhedrons in the position called for in Th.

135 are said to be in the direct radial position and are said

to be directly similar. If, however, the two polyhedrons
are in the position called for in Th. 137, they are said to be

in the inverse radial position and are said to be inversely

similar.

FIG. 190

Although the proofs are too difficult for this book, the

statements above apply to all kinds of solids. These

definitions may be used as fundamental definitions of

similar solids (Figs. 190 and 191).

FIG. 191



166 SOLID GEOMETRY

PROPERTIES OF SIMILAR SOLIDS

211. As. 32. Two solids similar to a third are similar

to each other.

THEOREM 138. Two similar polyhedrons may be placed
in the direct radial position.

p

G

FIG. 192

Hypothesis: P and Q are two similar polyhedrons.

Conclusion: P and Q can be placed in the direct radial

position.

Analysis and construction:

I. It is necessary to prove Q congruent to a polyhedron
that is in the direct radial position with P.

II. /. draw rays to any point 0, and construct Q' in

OA AB
direct radial position with P so that -~-r>

=
. /p/ .

C//I './i JD

III. To prove Q^Q', prove the polyhedral angles of Q
equal to the corresponding polyhedral angles of

Q', and the faces of Q congruent to the corre-

sponding faces of Q' .

IV. To prove the corresponding polyhedral angles equal,

prove Q^Q'.
V. To prove A^F^ ^A'B'F'E', prove Ai5iFii~

A'B'F'E' and A^^A'B'.
AB OA AB

VI.
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212. THEOREM 139. Two similar polyhedrons can be

divided into the same number of tetrahedrons similar each

to each and similarly placed.

Suggestion. Pass a plane through ACF and AiC\Fi in P and Q
(Fig. 192) and show that the tetrahedrons cut from P and Q are

similar. Continue in this way until P and Q are completely divided

into tetrahedrons.

213. THEOREM 140. If two polyhedrons are similar,

the ratio of any two corresponding edges equals the ratio

of similitude.

Suggestion. Place the two similar polyhedrons in the direct radial

position.

214. NOTE. It is also true that if two polyhedrons are similar

the ratio of any two corresponding segments equals the ratio of simili-

tude. We will prove here only one special case under this theorem.

This special case is Th. 141 and is needed in the proof to Th. 143. Let

the pupil name other special cases.

THEOREM 141. If two tetrahedrons are similar, the ratio

of corresponding altitudes equals the ratio of similitude.

D'

FIG. 193

Analysis and construction:

T _ DX AB DX AD AB
I. To prove 7^=^,, proveg^ --j^,.

II. To prove 7^77 = -p^-p, , place T' on T so that the tri-U A LJ A
hedral angle D' fits upon the trihedral angle D and

prove (1) A'B'C' parallel to ABC; (2) D'X' falls on

DX.
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215. THEOREM 142. If two polyhedrons are similar, the

ratio of the areas of corresponding faces equals the square

of the ratio of similitude.

Show^that this reduces to a plane geometry theorem.

216. THEOREM 143. If two tetrahedrons are similar,

the ratio of the volumes equals the cube of the ratio of

similitude.

D

D'

B'

Hypothesis: D-ABC D-A'B'C', b and b' represent

the bases, a and a' the altitudes, and V and V the volumes.

Conclusion: =
V A'B'

Analysis: To prove == ~, prove (1) TT/
=

-777 J (2)

V A'B'

a_AB b.^AB*
a' 'A'B- )

b
, A&-

Outline of proof:

V = y3ab _>ab
' V a'b' a'b

1

b AB'
*

a' A'B A'B'

ab _ AB
a'b' A'B73

V A'B'
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THEOREM 144. If two polyhedrons are similar, the ratio

of the volumes is equal to the cube of the ratio of similitude.

FIG. 195

Hypothesis: P^P'. V and V represent the volumes.
4

y
Conclusion: =

V A'B'*

Analysis and construction:

I. To prove
V AB

,
divide P and P' into similar

V A'B'
S

tetrahedrons T\ and 7Y, T2 and 7Y, T3 and TV,

ri+r2+r3 , etc. AB*
etc., and prove

Ti AB 72
II. /. prove =

r.
=

TY+TY+Ty, etc. ^7^7
3

*

,
etc.

Suggestion. See Th. 124, P/ane Geometry.

Ex. 1. Are regular polyhedrons of the same number of faces

similar? Why?
Ex. 2. The bases of two similar pyramids are in the ratio of

4 : 9. What is the ratio of their volumes? Of their altitudes?

Ex. 3. The dimensions of a box are 6, 8, and 12. Find the

dimensions of a similar box that will hold twice as much.

217. Two cylinders or two cones of revolution are said

to be similar if they are generated by the revolution of

similar figures revolving about corresponding sides.

12
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THEOREM 145. The lateral areas or the total areas of

two similar cylinders of revolution have the same ratio as

the squares of their radii or the squares of their altitudes.

h'
C'

FIG. 196

Hypothesis: C and C' are two similar cylinders of revo-

lution; r and r' represent the radii, h and h' the altitudes,

L and L' the lateral areas, and A and A' the total areas.

Conclusion:

T ~L =
T' v't h'%J-/ / i If

Outline of proof:

T
L _ 2irrh _ rh

" V~2^7k f ~7h''

r h rh r2 h2

2. Since p-p, /.

-^,=-5=

L_r2 _^2

^
I/-^-^2-

A 27rr(^+r) r(fe+r)
1X - * T> = ;A' 27rr

/

(/t

/+r /

) r
/

(/t'+?

r /z. r h+r
~h"

'

r'-h'+r'

r(h+r) r
2 h2

.

r
f

(h
f+rf

)
.r'

2 h'2

4 ' '* Z>
=

r75== Sr2
'

NOTE for II. 2. See P/awe Geometry, Th. 124.
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THEOREM 146. The lateral areas or the total areas of

two similar cones of revolution have the same ratio as the

squares of the radii or the squares of the altitudes.

FIG. 19

THEOREM 147. The volumes of two similar cylinders

of revolution have the same ratio as the cubes of the radii

or the cubes of the altitudes (Fig. 196).

Outline of proof:

' V irrW- r'
2h'2

II.
Sincep-p'

/.

pj-j^andpi-p-

III. .*. = = .

r^
2h^ h^ T^

iv ?-,*-." y r '3 7/3

THEOREM 148. The volumes of two similar cones of

revolution have the same ratio as the cubes of the radii or

the cubes of the altitudes (Fig. 197).

218. Any two spheres are similar.

THEOREM 149. The areas of two spheres have the

same ratio as the squares of their radii.

THEOREM 150. The volumes of two spheres have the

same ratio as the cubes of their radii.

Exercise. The radii of two spheres are in the ratio of 2:5.

The sum of their volumes is 3994 cu. in. Find the volumes.
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219. The fundamental definition for similar solids is

given in 210. The following facts are true for all similar

solids regardless of shape:

I. The ratio of corresponding segments is equal to the

ratio of similitude.

II. The ratio of the areas of corresponding surfaces

equals the square of the ratio of similitude.

III. The ratio of the volumes is equal to the cube of the

ratio of similitude.

Only special cases have been proved in this book.

SYMMETRY
220. We have defined two polyhedrons as symmetric if

the parts of one are equal respectively to the parts of the

other, but arranged in the reverse order.

THEOREM 151. If two polyhedrons are in the inverse

radial position, and the ratio of similitude is one, the poly-

hedrons are symmetric with respect to the center of simili-

tude.

FIG. 198

Analysis: To prove that P and P' are symmetric, prove
that the parts of one are equal respectively to the parts of

the other, but arranged in the reverse order.

By a method similar to that used in proving Th. 138, we

may prove that if two polyhedrons are symmetric they may
be placed in the inverse radial position.
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FIG. 199

221. Two solids may be so situated on opposite sides of

a plane that the plane bisects at right angles all segments

joining corresponding points of the

two solids. We can prove that

in this case the two solids arc

symmetric. They are said to be

symmetric with respect to the

plane. We can prove also that if

two solids are symmetric they can

be placed on opposite sides of a

plane as indicated above.

It is to be noted that two figures in plane geometry that

are symmetric with respect to a point or to a line can be made
to coincide, but that two solids that are symmetric with

respect to a point or to a plane cannot be made to coincide.

Two solids may be so situated in regard to a line that the

line bisects at right angles all segments joining corresponding

points of the two solids. In this case the solids are said to

be symmetrically situated with regard to the line. The two

solids are, however, congruent, and can be made to coincide.

MISCELLANEOUS EXERCISES

222. 1. Name as many solids as you can that have a center of

symmetry. Tell what is the center of symmetry in each case.

2. Name as many solids as you can that have a plane of sym-

metry. Tell what is the plane of symmetry in each case.

3. Give an everyday illustration of figures that are symmetric
with respect to a plane.

4. In shipping goods, which would be more economical of the

material of which the packing boxes are made: .(1) to use two

boxes of the same dimensions or (2) to use one box similar to the

first that will hold twice as much? Why?
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FRACTIONS

223. The following fundamental law of fractions under-

lies all operations that involve fractions !

Multiplying or dividing numerator and denominator of

a fraction by the same number does not alter the value of

the fraction.

A. The sum or difference of two or more fractions that

have a common denominator is the sum or difference of the

numerators divided by the common denominator.

Two or more fractions that have not a common denomi-

nator must be reduced to a common denominator before

adding or subtracting. To reduce fractions to a common
denominator, apply the fundamental law given above.

Add and subtract the following:

.5,7 a b x to*
l '

12+F8
3 "

b+~c
5 ' 4 ~ +4

"
24

'

36 6
~

be
'

ac ab

B. The product of two fractions is the product of the

numerators divided by the product of the denominators.

Where possible, divide numerator and denominator by com-

mon factors.

Multiply the following:

3 8 3a b*
L

16
X
l5

2'T X7
174
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C. The quotient of one fraction divided by a second is

the product of the first multiplied by the reciprocal of the

second.

Divide the following:

6* 3* ' Da7 -L '

20
'

25
'

8&3
' '

16a& 2a

SQUARE ROOTS

224. The rule for square root is based on the algebraic

formula (a+b)- = a2+2ab+h2
. Notice that a2+2a&+62 may

be written a 2 +6(2a+6). The method is illustrated below:

Illustration 1. Find V694. 563

694.56,3 |26.3

4_
2(20) = 40 294

40+6 = 46 276

2(260) = 520 1856

520+3 = 523 1569

287

In the illustration above, notice:

(1) The number was divided into periods of two figures

each, counting to the left and to the right from the decimal

point.

(2) The largest square under 6 is 4. The 4 was sub-

tracted from 6 and the next period annexed. This gave a

remainder of 294. The square root of 4, or 2, was written

as the first figure in the root.

(3) A zero was placed after the 2, making 20. The 20

was doubled, making 40. The 40 is used as a trial divisor

for the remainder 294. The next figure of the root is either

6 or 7. The 6 is added to the 40, making 46. The 46 is

multiplied by 6, giving 276. The 276 is subtracted from

294, leaving 18. The next period is annexed, giving 1856.

(4) The process above is repeated at each step of the

work; thus, a zero is placed after 26 and the result doubled,

giving the 520. The work is then continued as above.
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In general we may say: Annex a zero to the part of the

root already found and double the result. To this result

add the next figure of the root. Multiply the result by the

last figure of the root found.

Show that this statement may be regarded as a trans-

lation of 6(2a+6) in the formula (a-f-6)
2 = a2

-f-&(2a+&).

Find the square root of the following:

1. 1369 4. 106276 7. 6

2. 3744 5. 3 8. 15

3. 2304 6. 5 9. 7

Because of the frequent occurrence of the square roots

of 2 and 3 in geometry work, the application of the following

law should be noted:

225. The square root of a product is the product of the

square roots of the factors.

Illustration 2. 36 = 4X9 .'. V36= V4X V9

This law is used most conveniently for inexact square
roots when one factor is a perfect square.

Illustration 3, 18 = 9X2 /. V 18 = V9 X V2 = 3 V2

Notice that V2 occurs when the side of a square and a

diagonal of the square are used in the same exercise.

Illustration 4. 12 = 4X3. '. Vl2= V4 X V3 = 2 V3

Notice that V3 occurs when the side of an equilateral tri-

angle and its altitude occur in the same exercise.

Illustration 5. 20 = 4X 5 /.. V20 = V4 X V5 = 2 V5

The V5 occurs in connection with the regular decagon and

pentagon.

Find the value of the following correct to three decimal

places. Apply the law given above.

1. V8 4. Vl08 7. Vl28 10. V150 13. V54

2. Vl8 5. V32 8. V?5 11. Vl25 14. V45

3. V27 6. V80 9. V320 12. V98 15. Vl80
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16. V20 18. V48 20. V50 22. V288 24. .V243

17. V96 19. V72 21. V300 23. VI62 25. V242

226. The square root of a fraction.

A. If the denominator is a perfect square : Find the

square root of the numerator and of the denominator sepa-

rately and divide the first result by the second.

Illustrationion 7. J- =K V

B. If the denominator is not a perfect square, two methods

are suggested:

(1) The fraction may be reduced to a decimal and the

square root of the result found.

(2) Numerator and denominator may be multiplied by
some number that will make the denominator a perfect

square and method A above used.

Illustration 8. To find Vlg either

1. Find square root of .333333+; or

2. Write H = % and use H V3.

Find the value of the following correct to three decimal places:

1. Jl 5.JL 9. Jl
\25 \5 \5

13.

^ 6 - \/^ 10. JL 14. JL
16 \7 \11 \20

18

l" 16
12 3 27

_

\ ^r
four
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EQUATIONS

227. The method of solving linear equations is illustrated

below :

Illustration 1. Solve for x: ^~--2 =4-

Multiply both sides by the L. C. M. of the

denominators ........ 3(3*+ 1) -24= 48 -*

performing multiplications..... 9*+3 24 = 48 4x 4

Combining terms ........... 9# 21=44 4*

Add +21 and +4* to each side ..... 13*= 65

Divide both sides by 13 .......... x=5

Solve the .following equations:

^H?=izl 3.
4 3

3 5 *-5
2. 2*-7 3+2* _ 4 3-4* 5-2ac_ t *

~~T~ 4 ~8~ 3 ~4

228. If an equation contains both the first and the second

powers of the unknown, two methods of solution are

suggested.

A. The equation may be solved by factoring.

Illustration 2. Solve for x : *2 - *= 20

(*-5) (*+4)=0

Notice that to solve an equation by factoring, one member

of the equation must be zero.

B. The equation may be solved by completing the square.

Illustration 3. Solve for x: 3x*-5x= 7 . . . (1)

Divide both sides by 3 *2

~~3"
=

3~
(2 )

Add the square of (y %) to each

side *~+< *W*+ - - (3)
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Take the square root of each side

5
of the equation .... * = ^-=MVl09 . (4)

5 10.44

s-g-i-fl- .... (5)

5 . 10.44 5 10.44
*=

6
+ ~6~ *=

6 6~

= 15.44 5.44

6
'

6

= 2.57+ =-.90+
Notice in (3), (M 2s)

2
is added to the left side to make the

left side a perfect square. It is added to the right side to

preserve the balance of the equation. (>2 H) 2
,
or 2

^s, is

obtained by squaring half the coefficient of x. Notice that

in step (2) the equation is divided by 3 to make the first

term x2
,
which is a perfect square.

Solve the following equations:

2. 2*2 -*= 15 4. 2*2+5* =17

229. To solve a system of equations consisting of two

equations containing two unknowns, eliminate one of the

unknowns and solve the resulting equation for the other.

A. When both equations are of the first degree, eliminate

by addition or subtraction.

\5x-4y
Illustration 4. Solve for x and y ,

_
, P _

5*-4y= 6.5 (1)

7^+5^= 38.25 (2)

35*-28y= 45.5 (1) X 7

35^+25^= 191.25 (2) X 5

-53y=-145.75 Subtract the third

y= 2.75 equation from the second

Notice that % may be found by multiplying equation (1)

by 5 and equation (2) by 4 and adding the results or by

substituting 2.75 for y in either equation (1) or (2) and

solving the result for x.
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B. When one of the equations is of the first degree and
one of the second, solve the first-degree equation for one oi

the unknowns in terms of the other unknown and substitute

in the other equation.

Illustration 5. Solve for x and y: 1*2+2^34
Solve (1) for x, x = 8-y ... (3)

Substitute 8 - y for x in (2) (8
- 1

3,2-83,4-15=

(y-5) (y-3)=0
y = 5 and y= 3

To find x, substitute the values of y in (3) :

x=8-y
=8-5
= 3

The solutions are

=8-3
= 5

Solve the following systems for x and y :

3.

TABLES

230. TABLE OF SQUARE ROOTS

TABLE OF SQUARE ROOTS OF NUMBERS FROM TO '99
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CUBE ROOT

231. The rule for cube root is based on the algebraic

formula

Notice that

may be written

a3+6(3a2+3a6+6-)

The method is illustrated below:

Illustration: Find ^41523.629

. 41,523.629 {34.6+

27

3 X (30)
2= 3 X900= 2700 14523

3X30X4 = 360

4' = 16

3076 12304

2219629

3 X (340)
2= 3X115600 =

346800

3X340X6= 6120

6*= 36

352956 2117736

101893

232. TABLE OF CUBE ROOTS
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233. TABLE OF SINES, COSINES, AND TANGENTS

Deg.
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UNITS OF MEASURE

234. Units of Length

ENGLISH

12 inches (in.)
= 1 foot (ft.)

3 feet = 1 yard (yd.)

5J yards = 1 rod (rd.)

320 rods or 5280 ft. = 1 mile (mi.) .

METRIC
10 centimeters (cm.) = 1 decimeter (dm.)

10 decimeters =1 meter (m.)

1000 meters = 1 kilometer (km.)
1 meter = 39. 37 in.

1 kilometer = . 62 of a mile

1 foot = 30.48 centimeters

1 mile =1.6093 kilometers

235. Units of Surface

ENGLISH

144 square inches (sq. in.)
= 1 square foot (sq. ft.)

9 square feet = 1 square yard (sq. yd.)

3034 square yards = 1 square rod (sq. rd.)

160 square rods = 1 acre (A.)

4840 square yards = 1 acre (A.)

640 acres = 1 square mile (sq. mi.)

METRIC
ICO square centimeters = 1 square decimeter

100 square decimeters = 1 square meter

236. Units of Volume
ENGLISH METRIC

1728 cu. in. = 1 cu. ft. 1000 cu. mm. = 1 cu. cm.

27 cu. ft. = 1 cu. yd. 1000 cu. cm. = 1 cu. dm.
128 cu. ft. = 1 cord (of wood) 1000 cu. dm. = 1 cu. m.
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237. Units of Capacity
ENGLISH

Dry Measure Liquid Measure

2 pints (pt.)
= 1 quart (qt.) 4 gills (gi.)

= 1 pint (pt.)

8 quarts = 1 peck (pk.) 2 pints = 1 quart (qt.)

4 pecks=1 bushel (bu.) 4 quarts =1 gallon (gal.)

1 bushel = 2150. 42 cu. in. 1 gallon = 231 cu. in. .

1 cu. ft. of water weighs
62.4 Ibs.

METRIC

1 liter = 1 cu. dm.
= 1000 cu. cm.
= 61.02 cu. in.

== 1 . 0567 liquid quarts
1 quart = 9463 liters

= 946.3 cu. cm.

238. Units of Weight

ENGLISH
. A voirdupois Weight Troy Weight

16 ounces (oz.)
= l pound 24 grains (gr.) = l penny-

(lb,) weight (pwt. or dwt.)

100 pounds =1 hundred- 20 pwt. = 1 Troy ounce

weight (cwt.) 12 Troy ounces=1 Troy
2000 pounds =1 ton (T.) pound
2240 pounds = 1 long ton 7000 grains=1 avoirdupois Ib.

5760 grains= 1 Troy Ib.

METRIC

1 gram = weight of 1 cu. cm.

of water at 39.2 F.

1000 grams = 1 kilogram

(kg.)

1kg. =2. 2046 Ibs.

1 Ib. =.45359 kg.
= 453. 59 g.
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INTRODUCTORY AND GENERAL

When a ray starts from a point in a straight line and forms two

congruent angles, the angles are called right angles, and the ray is said

to be perpendicular to the line.

Two angles are called complementary if their sum is an angle of 90.

Each of two 'Complementary angles is called the complement of the

other.

Two angles are said to be supplementary if their sum is an angle of

180. Each of two supplementary angles is called the supplement

of the other.

As. 1. Two different straight lines can intersect in only one point,

or two intersecting straight lines locate a point.

As. 2. A segment can have only one mid-point.

As. 3. Only one segment can be drawn between two points, or a

segment is located definitely if its extremities are given.

As. 4. Only one ray can be drawn having a given origin and passing

through a second given point.

As. 5. Only one ray can be drawn bisecting a given angle.

As. 6. Only one straigh t line can pass through two given points.

As. 7. Only one perpendicular can be drawn to a line from a given

point in the line.

As. 8. Only one perpendicular can be drawn to a line from a given

point not in the line.

As. 9. Circles with equal radii are congruent.

As. 10. Congruent circles have equal radii.

As. 11. All straight angles are equal.

As. 12. All right angles are equal.

As. 13. Complements of equal angles are equal.

As. 14. Supplements of equal angles are equal.

As. 15. Vertical angles are equal.

As. 16. If a ray starts from a point in a straight line, the sum of the

two adjacent angles formed on one side of the line is 180, or a straight

angle.

As. 17. The sum of the adjacent angles on one side of a straight

line formed by any number of rays having a common origin on the

line is 180, or a straight angle.

13 185
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As. 18. The sum of the adjacent angles formed by a number of rays
from the same origin is 360, or a perigon.

As. 19. If two supplementary angles are adjacent, their exterior

sides are collinear.

As. 20. If equal segments (or angles) are added to equal segments

(or angles), the results are equal segments (or angles).

As. 21. If equal segments (or angles) are subtracted from equal

segments (or angles), the results are equal segments (or angles).

As. 22. If equal segments (or angles) are multiplied by the same

number, the results are equal segments (or angles).

As. 23. If equal segments (or angles) are divided by the same

number, the results are equal Segments (or angles).

As. 24. Segments (or angles) that are equal to the same segment
(or angle) are equal.

As. 25. Equal segments (or angles) may be substituted for equal

segments (or angles).

CONGRUENT TRIANGLES

Any two figures that can be made to coincide are called congruent

figures.

As. 26. Any figure can be moved about in space without changing
either its size or its shape.

As. 27. Figures congruent to the same figure are congruent to each

other.

THEOREM 1. If two sides and the included angle of one triangle are

equal to two sides and the included angle of another triangle, the tri-

angles are congruent in all corresponding parts and are called congruent

triangles.

THEOREM 2. If two angles and the included side of one triangle are

equal to two angles and the included side of another triangle, the tri-

angles are congruent in all corresponding parts and are called congruent

triangles.

THEOREM 4. If three sides of one triangle are equal to three sides

of another triangle, the triangles are congruent.

THEOREM 22. Two right triangles are congruent if the hypotenuse
and an acute angle of one are equal to the hypotenuse and an acute

angle of the other.

THEOREM 23. Two right triangles are congruent if the hypotenuse
and a side of one are equal t6 the hypotenuse and a side of the other.

COR. If a perpendicular is erected to a straight line, equal segments
drawn from the same point in the perpendicular cut off equal distances

from the foot of the perpendicular.
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THEOREM 5. If a perpendicular be erected to a straight line,

oblique segments drawn from the same point in the perpendicular cut-

ting the straight line at equal distances from the foot of the perpen-

dicular are equal.

PARALLELS AND ANGLES

As. ;>(). ( )nly one line can be drawn through a given point parallel

to a given line.

THEOREM 9. If two straight lines in the same plane are cut by a

third straight line so that the alternate interior angles are equal, the

two straight lines arc parallel.

THEOREM 10. If two straight lines in the same plane are cut by a

third straight line so that one pair of corresponding angles are equal,

the two straight lines are parallel.

THEOREM 11. If two straight lines in the same plane are cut by a

third straight line so that the interior angles on the same side of the

transversal are supplements, the two straight lines are parallel.

THKMKKM 12. Two straight lines in the same plane perpendicular

to the same straight line are parallel.

THKOKKM n. Two lines parallel to a third line are parallel to each

other.

THKOKKM II. If two parallel lines are cut by a third straight line,

the alternate interior angles are equal.

THEOREM 15. If two parallel lines are cut by a third straight line,

the corresponding angles are equal.

THEOREM 16. If two parallel lines are cut by a third straight line,

the interior angles on the same side of the transversal are supplements
of each other.

THEOREM 17. A line which is perpendicular to one of two par-
allels is perpendicular to the other.

ANGLE SUMS
THEOREM 18. The sum of the interior angles of a triangle is two

right angles.

COR. I. Each angle of an equilateral triangle is 60.

COR. II. If two angles of one triangle are equal respectively to

two angles of a second triangle, the third angles are equal.

COR. III. The acute angles of a right triangle are complements
of each other.

THEOREM 19. The exterior angle of a triangle is equal to the sum of

the two non-adjacent interior angles.

THEOREM 20. The sum of the interior angles of a polygon of n sides

is 2(n 2) right angles.

13A
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THEOREM 21. The sum of the exterior angles of a polygon of n sides

is four right angles.

ISOSCELES TRIANGLES
A triangle that has at least two sides equal is called an isosceles

triangle.

THEOREM 3. The angles opposite the equal sides of an isosceles

triangle are equal.

COR. An equilateral triangle has all of its angles equal; that is,

it is equiangular.

THEOREM 24. If two angles of a triangle are equal, the triangle

is isosceles.

THEOREM 6. The bisector of the vertex angle of an isosceles triangle

is the perpendicular bisector of the base.

THEOREM 7. The segment which joins the vertex of an isosceles

triangle with the mid-point of the base bisects the vertex angle and

is perpendicular to the base

THEOREM 25. A segment from the vertex of an isosceles triangle

perpendicular to the base bisects the base and the vertex angle.

THEOREM 26. The bisector of the vertex angle of an isosceles tri-

angle is an axis of symmetry of the triangle.

SYMMETRY
A figure is said to be symmetric with respect to a line as an axis if

one part coincides with the remainder when it is folded on that line as

an axis. Two figures are said to be symmetric with respect to a line as

an axis if one figure coincides with the other when the plane in which

it lies is folded on that line as an axis.

Such a figure or such figures are said to have axial symmetry.

A figure is said to be symmetric with respect to a point as a center

if one part of the figure coincides with the remainder when it is rotated

through an angle of 180 about the point as a center. Two figures are

said to be symmetric with respect to a point as a center if one figure

coincides with the other when it is rotated through an angle of 180

about the point as a center.

Such a figure or such figures are said to have central symmetry.
THEOREM 27. Two polygons are symmetric with respect to an axis

if the vertices of one are symmetric to the corresponding vertices of

the other.

THEOREM 28. Two polygons are symmetric with respect to a center

if the vertices of one are symmetric to the corresponding vertices of

the other.
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THEOREM 29. Any figure that has two axes of symmetry at right

angles to each other has the intersection of the axes as a center of

symmetry.

QUADRILATERALS
A quadrilateral with each side parallel to its opposite is called a

parallelogram.

The perpendicular distance between the bases of a parallelogram is

called the altitude of the parallelogram.

A quadrilateral with but one pair of parallel sides is called a trapezoid.

If a trapezoid has its non-parallel sides equal, it is called an isosceles

trapezoid.

A
| >arallelogram with one right angle is called a rectangle.

A parallelogram with two consecutive sides equal is called a rhombus.
A rec tangle with two consecutive sides equal is called a square.
The segment joining the mid-points of two opposite sides of a quadri-

lateral is called a median of the quadrilateral.

THEOREM 30. Each diagonal of a parallelogram divides it into two

congruent triangles.

THEOREM 31. The opposite sides of a parallelogram are equal.

THEOREM 32. The opposite angles of a parallelogram are equal.

THEOREM :J3. The diagonals of a parallelogram bisect each other.

THEOREM 34. The intersection of the diagonals of a parallelogram
is the center of symmetry of the parallelogram.
THEOREM 3"). Two parallelograms are congruent if two sides and

the included angle of one are equal to two sides and the included angle
of the other.

THEOREM 36. If a quadrilateral has one side equal and parallel to

its opposite, it is a parallelogram.

THEOREM 37. If a quadrilateral has each side equal to its opposite,
it is a parallelogram.
THEOREM 38. If the diagonals of a quadrilateral bisect each other,

the quadrilateral is a parallelogram.

THEOREM 39. Segments of parallels intercepted between parallel

lines are equal.

THEOREM 40. Segments of perpendiculars intercepted between

parallel lines are equal.

THEOREM 41. The diagonals of a kite are perpendicular to each

other, and the one which is an axis of symmetry bisects the other.

THEOREM *42. All the angles of a rectangle are right angles.

THEOREM 43. All the sides of a rhombus are equal.

THEOREM 44. The diagonals of a rhombus are perpendicular to

each other and bisect the angles through which they pass.
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PARALLELS AND TRANSVERSALS

THEOREM 45. If a series of parallels cuts off equal segments on one

transversal, it cuts off equal segments on all transversals.

THEOREM 46. A segment parallel to the base of a triangle and bisect-

ing one side is equal to half the base.

THEOREM 47. A segment parallel to the base of a triangle and bisect-

ing one side bisects the other side also.

THEOREM 48. A segment bisecting two sides of a triangle is parallel

to the third side.

The segment joining any vertex of a triangle with the mid-point of

the opposite side is called a median of the triangle.

THEOREM 50. The median from the vertex of the right angle of a

right triangle to the hypotenuse is one-half the hypotenuse.
THEOREM 51. The segment joining the mid-points of the non-

parallel sides of a trapezoid is parallel to the bases.

THEOREM 52. The segment joining the mid-points of the non-

parallel sides of a trapezoid is equal to one-half the sum of the bases.

INEQUALITIES

As. 28. If one angle or segment is greater than a second and the

second is equal to or greater than a third, then the first is greater than

the third.

As. 29. The whole is greater than any of its parts.

As. 31. If equal segments (or angles) are added to unequal seg-

ments (or angles), the resulting segments (or angles) are unequal in

the same order.

As. 32. If equal segments (or angles) are subtracted from unequal

segments (or angles), the resulting segments (or angles) are unequal
in the same order.

As. 33. If unequal segments (or angles) are added to unequal seg-

ments (or angles), the greater to the greater and the lesser to the

lesser, the resulting segments (or angles) are unequal in the same order.

As. 34. If unequal segments (or angles) are subtracted from equal

segments (or angles), the resulting segments (or angles) are unequal in

the opposite order.

As. 35. If unequal segments (or angles) are multiplied by the same

number, the resulting segments (or angles) are unequal in the same

order.

As. 36. If unequal segments (or angles) are divided by the same

number, the resulting segments (or angles) are unequal in the same

order.
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As. 37. The sum of two sides of a triangle is greater than the

third.

As. 38. The difference between two sides of a triangle is less than

the third side.

THEOREM 8. An exterior angle of a triangle is greater than either

of the non-adjacent interior angles.

THEOREM 53. If from a point within a triangle segments are drawn

to the extremities of one side, their sum is less than the sum of the

other two sides of the triangle.

THEOREM 54. If one angle of a triangle is greater than a second,

the side opposite the first angle is greater than the side opposite the

second angle.

THEOREM 55. If one side of a triangle is greater than a second, the

angle opposite the greater side is greater than the angle opposite the

lesser side.

THEOREM 56. The perpendicular is the shortest segment from a

point to a straight line-.

THEOREM 57. If from a point in a perpendicular to a straight line

two oblique segments are drawn cutting the straight line at unequal
distances from the foot of the perpendicular, the more remote is the

greater.

THEOREM 58. If from a point in a perpendicular to a straight line

two unequal oblique segments are drawn, the greater cuts the straight

line at the greater distance from the foot of the perpendicular.

THEOREM 59. If two triangles have two sides of one equal to two

sides of the other, but the included angle of one greater than the

included angle of the other, the third side of the first is greater than the

third side of the second.

THEOREM 60. Jf two triangles have two sides of one equal to two

sides of the other, but the third side of one greater than the third side

of the other, the angle opposite the third side of the first is greater than

the angle opposite the third side of the second.

CIRCLES

A closed curved line every point of which is equally distant from a

given point in the same plane is called a circle. The given point is

ealled the center of the circle.

As. 39. The diameter of a circle is twice its radius.

As. K). A circle is located definitely if its center and its radius are

known.

As. 41. If a line passes through a point within a circle, the line and

the circle intersect in two and only two points.
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As. 42. Every diameter bisects the circle,

As. 43. A circle is symmetric with respect to any diameter as an

axis and with respect to its center as a center.

As. 44. Between the same two points on a circle there is one and

only one minor arc of the circle, provided these points are not the ends

of a diameter.

As. 45. A segment joining a point within a circle and the center is

shorter than the radius.

As. 46. If a segment that has one end at the center of a circle is

shorter than the radius, it lies wholly within the circle.

As. 47. A segment joining a point without a circle and the center

is longer than the radius.

As. 48. If a segment that has one end at the center of a circle is

longer than the radius, it extends without the circle and cuts the circle

but once.

As. 49. In the same circle or in congruent circles equal central

angles intercept equal minor arcs.

As. 50. In the same circle or in congruent circles equal minor arcs

intercept equal central angles.

As. 54. In the same circle, or in congruent circles, if two central

angles are unequal, the minor arc subtended by the greater angle is

greater than the minor arc subtended by the lesser angle.

As. 55. In the same circle or in congruent circles, if two minor arcs

are unequal, the angle subtended by the greater arc is greater than the

angle subtended by the lesser arc.

CIRCLES AND RELATED LINES

A line that touches a circle at one point but does not cut it is called

a tangent to the circle. This definition is the fundamental test for

tangents.

The point at which the tangept touches the circle is called the

point of contact or the point of tangency of the tangent.

THEOREM 61. In the same circle or in congruent circles

A. Equal chords intercept equal central angles.

B. Equal central angles intercept equal chords.

THEOREM 62. In the same circle or in congruent circles

A. Equal chords have equal minor arcs.

B. Equal minor arcs have equal chords.

THEOREM 63. A radius perpendicular to a chord bisects the chord

and its arc.

THEOREM 64. The perpendicular bisector of a chord passes through
the center of the circle.
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THEOREM 65. One and only one circle can be drawn through three

non-collinear points.

THEOREM 66. If in the same circle or in congruent circles perpen-

diculars from the center to two chords are equal, the chords are equal.

THEOREM 67. In the same circle or in congruent circles perpendic-

ulars from the center to two equal chords are equal.

THEOREM 68. A line which is perpendicular to a radius at its outer

extremity is a tangent to the circle.

THEOREM 69. A tangent to a circle is perpendicular to the radius

drawn to the point of contact.

THEOREM 70. If two tangents meet at a point without a circle, the

distances from the intersection to the points of tangency are equal.

THEOREM 71. A perpendicular to a tangent at the point of contact

passes through the center of the circle.

MEASUREMENT OF ANGLES

As. 53. The measure of a central angle and its intercepted arc are

expressed by the same number, or a central angle is measured by its

intercepted arc.

An angle is said to be inscribed in a circle if its vertex is on the

circle and its sides are chords of the circle.

The arc cut off between the sides of an inscribed angle is called its

intercepted arc.

THEOREM 77. An inscribed angle is measured by one-half its inter-

cepted arc.

COR. I. Inscribed angles measured by the same or by equal arcs

are equal, and, conversely, arcs that measure equal inscribed angles
are equal.

COR. II. An angle inscribed in a semicircle is a right angle.

COR. III. Inscribed angles are supplementary if the sum of their

intercepted arcs is 360.
THEOREM 78. An angle formed by two chords intersecting within a

circle is measured by one-half the sum of the intercepted arcs.

THEOREM 79. An angle formed by two secants intersecting without

a circle is measured by one-half the difference of the intercepted arcs.

THEOREM 80. Parallel chords intercept equal arcs on a circle.

THEOREM 81 . An angle formed by a tangent and a chord is measured

by one-half its intercepted arc.

THEOREM 82. If a chord and a tangent are parallel, they cut off equal
arcs.

THEOREM 83. An angle formed by a secant and a tangent is meas-

ured by one-half the difference of the intercepted arcs.
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THEOREM 84. An angle formed by two tangents is measured by
one-half the difference of the intercepted arcs.

TWO CIRCLES

As. 51. The line of centers of two circles is an axis of symmetry
of the two circles. *

THEOREM 72. If two circles intersect in one point not on the line

of centers, they intersect in two points.
COR. If two circles intersect, the points of intersection are sym-

metric points.

As. 52. Two circles cannot intersect at more than two points.
THEOREM 73. If any two circles intersect, the line of centers is the

perpendicular bisector of the common chord.

THEOREM 74. If two congruent circles intersect, the common chord
is an axis of symmetry of the figure.

COR. If t.wo congruent circles intersect, the segment joining the

centers and the common chord are perpendicular bisectors of each

other.

Two circles are said to be tangent if they have but one common
point. They may be tangent internally or tangent externally.

THEOREM 75. If two circles meet at a point on their line of centers,

the circles are tangent.
COR. I. If the segment joining the centers of two circles is equal to

the sum of the radii, the circles are tangent externally.

COR. II. If the segment joining the centers of two circles is equal
to the difference between the radii, the circles are tangent internally.

THEOREM 76. If two circles are tangent, the point of contact is on

the line of centers.

LOCI

A point which moves so as to fulfill some given requirement is called

a variable point.

The path of a point which moves so as to fulfill some given require-

ment is called a locus.

A line or group of lines is called a locus if they contain all points

which fulfill some given requirement and contain no other points.

THEOREM 85. The bisector of an angle is the locus of points equally

distant from the sides of the angle.

THEOREM 86. The perpendicular bisector of a segment is the locus

of a point equally distant from the ends of the segment!

COR. If two points are each equally distant from the extremities

of a segment, the line passing through these points is the perpendicular

bisector of the segment.
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THEOREM 87. The perpendicular bisectors of the sides of a triangle

are concurrent at a point which is equally distant from the vertices.

A perpendicular from any vertex of a triangle to the opposite side is

called an altitude of the triangle.

THEOREM 88. The altitudes of a triangle are concurrent.

THEOREM 89. The bisectors of the angles of a triangle are concurrent

at a point equally distant from the sides of the triangle.

THEOREM 49. The medians of a triangle are concurrent in a point
that is two-thirds the distance from each vertex to the mid-point of

the opposite side.

Each triangle has four sets of concurrent lines. The intersection of

each set has a special name as shown below.

I. The medians . . : centroid or center of gravity

II. Perpendicular bisectors of the sides circumcenter

III. The altitudes orthocenter

IV. Bisectors of the angles incenter

RATIOS
As. 56. Multiplying or dividing both terms of a ratio by the same

number does not change the value of the ratio.

As. o7. Ratios equal to the same ratio are equal.

As. 58. Equal ratios may be substituted for equal ratios.

THKOREM 90. If four numbers are in proportion, the product of

the means is equal to the product of the extremes.

THEOREM 91. If the product of two numbers equals the product
of two other numbers, either pair of factors may be made the extremes

and the other pair the means of a proportion.

THEOREM 92. If three terms of one proportion are equal respectively

to three corresponding terms of another proportion, the fourth terms

are equal.

THEOREM 93. If four numbers are in proportion, the first is to the

third as the second is to the fourth; that is, they are in proportion by
mean alternation.

THEOREM 94. If four numbers are in proportion, the fourth is to

the second as the third is to the first; that is, they are in proportion by
extreme alternation.

THEOREM 95. If four numbers are in proportion, the second is to

the first as the fourth is to the third; that is, they are in proportion by
inversion.

THEOREM 9(i. If four numbers are in proportion, the first plus the

second is to the second as the third plus the -fourth is to the fourth;

that is, they are in proportion by addition. This is sometimes called

proportion by composition.
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THEOREM 97. If four numbers are in proportion, the first minus
the second is to the second as the third minus the fourth is to the fourth

;

that is, they are in proportion by subtraction. This is sometimes called

proportion by division.

THEOREM 124. In a series of equal ratios the sum of the antecedents

is to the sum of the consequents as any antecedent is to its consequent.
THEOREM 98. If three parallels cut two transversals, the segments

on one transversal have the same ratio as the corresponding segments
on the other transversal.

THEOREM 99. If a line is parallel to the base of a triangle, the ratio

of the segments on one side equals the ratio of the corresponding seg-

ments on the other side.

COR. If a line is parallel to the base of a triangle, one side is to either

of its segments as the other side is to its corresponding segment.
THEOREM 100. If a line divides the sides of a triangle so that one

side is to one segment as a second side is to its corresponding segment,
the line is parallel to the third side of the triangle.

COR. If a line divides the sides of a triangle so that the ratio of the

segments on one side is equal to the ratio of the segments on the other,

the line is parallel to the third side of the triangle.

THEOREM 101. If two triangles have the angles of one respectively

equal to the angles of the other, the corresponding sides have equal
ratios.

THEOREM 102. Two mutually equiangular triangles are similar..

If the product of two segments equals the square of a third segment,
the last segment is called a mean proportional between the other" two.

In b2 = cm, b is a mean proportional between c and m.

Our fundamental methods for proving ratios equal are :

1. By parallels and transversals.

2. By similar triangles.

Before either of these methods can be applied it is often necessary to

find a third ratio to which each of the given ratios can be proved equal.

THEOREM 103. If two chords intersect within a circle, the product
of the segments of one is eqxial to the product of the segments of the

other.

THEOREM 104. If two secants intersect without a circle, the product
of one secant and its external segment is equal to the product of the

other secant and its external segment.
THEOREM 105, If a secant and a tangent meet without a circle,

the tangent is a mean proportional between the whole secant and its

external segment.
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THEOREM 106. The bisector of an angle of a triangle divides the

opposite side internally into segments that have the same ratio as the

other two sides of the triangle.

THEOREM 107. The bisector of an exterior angle of a triangle divides

the opposite side externally into segments that have the same ratio as

the other two sides of the triangle.

THEOREM 108. If a perpendicular is drawn from the vertex of the

right angle of a right triangle to the hypotenuse, the perpendicular is

a mean proportional between the segments of the hypotenuse.
THEOREM 109. If a perpendicular is drawn from the vertex of the

right angle of a right triangle to the hypotenuse, either leg is a mean

proportional between the whole hypotenuse and the segment adjacent
to that leg.

THEOREM 110. The sum of the squares of the legs of a right tri-

angle is equal to the square of the hypotenuse.
THEOREM 111. If one side of a square is

s,_its diagonal is sV2 . If

the diagonal of a square is d, the side is % dV2 .

THEOREM 112. If one side of an equilateral triangle is s, its altitude

is Yz sV3 . If the altitude is a, one side of the equilateral triangle is

SIMILAR FIGURES

Similar polygons are polygons that have

1. The angles of one equal to the corresponding angles of the other,

and
2. Corresponding sides proportional.

The ratio of similitude of two similar polygons is the ratio of any two

corresponding sides.

If the segments which join the vertices of a polygon with a given point
are divided in the same ratio from the given point and the points of

division joined in the same order as the vertices of the polygon, the

polygon so formed ami the ^iven polygon are radially placed. The

point may be without the polygon, or within the polygon. The radial

point is called the center of similitude of the polygons.

THEOREM 102. Two mutually equiangular triangles are similar.

THEOREM 119. Two triangles are similar if an angle of one is equal
to an angle of the other and the ratios of the including sides are equal.

THEOREM 120. Two triangles are similar if the corresponding sides

have equal ratios.

THEOREM 121. Two polygons are similar if diagonals drawn from

two corresponding vertices divide the polygons into the same number
of triangles similar each to each and similarly placed.
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THEOREM 122. If two polygons are similar, diagonals drawn from
two corresponding vertices divide the polygon into the same number
of triangles similar each to each and similarly placed.
THEOREM 123. The ratio of corresponding altitudes of two similar

triangles equals the ratio of the bases.

THEOREM 125. The ratio of the perimeters of two similar triangles
is equal to the ratio of similitude.

THEOREM 126. The areas of two similar triangles have the same
ratio as the squares of the bases or the squares of the altitudes.

THEOREM 127. The areas of two similar polygons have the same
ratio as the squares of two corresponding sides.

REGULAR POLYGONS
A polygon of 3 sides is called a triangle.

A polygon of 4 sides is called a quadrilateral.

A polygon of 5 sides is called a pentagon.
A polygon of 6 sides is called a hexagon.
A polygon of 7 sides is called a heptagon.
A polygon of 8 sides is called an octagon.
A polygon of 10 sides is called a decagon.
A polygon of 12 sides is called a duodecagon.
A polygon of 15 sides is called a pentadecagon.
A polygon with all of its sides and alt of its angles equal is a regular

polygon.
A polygon is said to be inscribed in a circle if its vertices are on the

circle and its sides are chords of the circle. In this case the circle is

said to be circumscribed about the polygon. A polygon is said to be

circumscribed about a circle if its sidss are tangant to the circle. In

this case the circle is said to be inscribed in the polygon.

THEOREM 128. If a circle is divided into n equal arcs, the chords

joining the points of division form a regular polygon.
THEOREM 129. If a circle is divided into n equal arcs, the tangents

drawn fo the points of division form a regular polygon.

To construct regular 4-, 8-, or 16-sided polygons, construct two

perpendicular diameters.

To construct regular 3-, 6-, or 12-sided polygons, construct a central

angle of 60 by means of an equilateral triangle.

To construct regular 5-, 10-, or 16-sided polygons, divide the radius

of the circle into extreme and mean ratio.

THEOREM 130. A circle can be circumscribed about any regular

polygon.
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COR. The radius of the circumscribed circle of a regular polygon

bisects the angle through whose vertex it passes.

THEOREM 131. A circle can be inscribed in any regular polygon.

The center of the circumscribed and of the inscribed circle of a

regular polygon is called the center of the polygon.

The radius of the circumscribed circle of a regular polygon is called

the radius of the polygon.

The radius of the inscribed circle of a regular polygon is called the

apothem of the polygon.

By the central angle of a regular polygon is meant the angle between

two consecutive radii.

COR. I. The central angle of a regular polygon of n sides is l
/n of

360.
COR. II. The radius of a regular polygon bisects the angle between

two consecutive apothems, and the apothem bisects the angle between

two consecutive radii.

COR. III. The radius of a regular polygon bisects the arc between

the points of contact of the inscribed circle.

THEOREM 132. Each angle of a regular polygon of n sides is

2w-4
4

rt. A.
n

THEOREM 133. The area of a regular polygon is one-half the product
of the perimeter and the apothem.
THEOREM 134. Two regular polygons of the same number of sides

are similar.

THEOREM 135. If two regular polygons have the same number of

sides, the ratio of the perimeters is equal to the ratio of the radii or of

the apothems.
COR. The ratio of the perimeter to the diameter of the inscribed

or of the circumscribed circle is the same for all regular polygons of the

same number of sides.

THEOREM 136. If two regular polygons have the same number of

sides, the ratio of the areas is equal to the ratio of the squares of the

radii or of the apothems.

MEASUREMENT AND EQUIVALENCE
To measure a segment is to find the number of times that it contains

another segment which is taken as a unit.

The number found is called the measure number, the measure, or

the length of the segment.
Two segments are said to be commensurable if they can be measured

exactly by a common unit of measure.
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Two segments are said to be incommensurable if there is no common
unit that will measure each exactly.

An irrational number is a number that cannot be expressed as an

integer or as the quotient of two integers.

To measure the surface inclosed by the sides of a polygon is to find

how many times it contains another surface chosen as a unit of measure.

The area of a polygon is the measure number of the surface of the

polygon.
Two polygons that cover the same extent of surface are called

equivalent polygons. The symbol (
=

) is used for equivalence.

As. 59. If equivalent polygons are added to equivalent polygons,

the results are equivalent polygons.
As. GO. If equivalent polygons are subtracted from equivalent

polygons, the results are equivalent polygons.

As. 61. If equivalent polygons are divided into the same number
of equivalent polygons, each part of one is equivalent to any part of

the other.

As. 62. Polygons equivalent to the same polygon or to equivalent

polygons are equivalent.

Any two polygons are equivalent if they are sums, differences, or

equal parts of equivalent polygons.

As. 63. The number of units of area in a rectangle is equal to the

product of the number of units of length in the base and altitude.

THEOREM 113. The area of a parallelogram is the product of the

base and altitude.

THEOREM 114. The area of a triangle is one-half the product of

the base and altitude.

THEOREM 115. The area of a trapezoid is equal to one-half the prod-

uct of the altitude and the sum of the bases.

THEOREM 116. Two parallelograms or two triangles are equivalent if

1. They have equal bases and are between the same parallels.

2. a=a f and b = b'.

3. ab = a'b
f

.

THEOREM 117. If a triangle and a parallelogram have equal bases

and equal altitudes, the triangle is equivalent to half the parallelogram-

THEOREM 118. The square constructed on the hypotenuse of a

right triangle is equivalent to the sum of the squares constructed on

the other two sides.

The length or the circumference of a circle is defined as the limit

of the perimeters of a series of polygons inscribed in or circumscribed

about a circle as the number of sides is increased indefinitely.
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As. 64. The limit of the perimeters of a series of regular polygons
inscribed in or circumscribed about the same circle as the number of

sides is increased indefinitely is the same.

This limit does not depend upon the number of sides of the initial

polygon nor upon the method of increasing the number of sides. This

limit is TTd.

THEOREM 137. The circumference of a circle of diameter d is wd.

The area of a circle is defined as the limit of the areas of a series of

inscribed or circumscribed regular polygons as the number of sides is

increased indefinitely.

As. 65. The limit of the areas of a series of regular polygons
inscribed in or circumscribed about the same circle as the number of

sides is increased indefinitely is the same. This limit is one-half the

product of the radius of the circle and its circumference.

THEOREM 138. The area of a circle is one-half the product of its

radius and circumference.

A sector of a circle is a figure bounded by two radii and the sub-

tended arc.

As. 66. The area of a sector has the same ratio to the area of a circle

of which it is a part as the angle of the sector has to four right angles.

THEOREM 139. The ratio of the circumference to the diameter is

the same for all circles.

THEOREM 140. The ratio of the circumferences of two circles equals
the ratio of their diameters or of their radii.

THEOREM 141. The ratio of the areas of two circles equals the ratio

of the squares of their radii or of their diameters.
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properties of 64

pyramid inscribed in 129

right circular (See Right
circular cone)

sections of 04, 66

spherical 154
total area of '. . . 130
truncated 68
vertex of 64
volume of 131, IK), ir.li

with circular base

131, 140, 156
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Cone of revolution 67
axis of 67
lateral area of 134, 156
volume of 131, 140, 156

Cones, similar (See Similar

cones of revolution)

Congruent dihedral angles ... 22

Congruent polyhedral angles
38, 41

Congruent right prisms 113

Congruent solids 112

Congruent triangles : plane.. 186

spherical 96-101

Congruent trihedral angles
41,96-101

Congruent truncated prisms. 112
Conical angle 38
Conical space 64
Conical surface 49

circumscribed about sphere 104

nappes of 50
of revolution 34

tangent to sphere 104
vertex of 49

Construction : of inscribed

frustums of pyramids . . . 132
of inscribed polyhedrons. . . 142
of inscribed prisms. . . .118, 125
of inscribed pyramids 129
of perpendicular lines and

planes 44
of rectangular parallele-

piped 54
of regular polygons 198
of regular polyhedrons. ... 71
of star polyhedrons 72

Contact, point of 77
Convex cone 66
Convex cylinder 55
Convex polyhedral angle .... 38
Convex spherical polygon . . 89, 90
Convex surface 50

Corresponding central poly-
hedral angle '. . 89

Cosines, table of 182
Cube 55
Cube root 181
Cube roots, table of 181
Curved surface 50

Cylinder 55, 58
altitude of 55

approximate lateral area of. 127

approximate volume of ... 128

axis of 74
bases of 55
circular (See Circular cyl-

inder)
circumscribed :. 104, 125
convex 55
elements of 55

elliptical 58
lateral area of. . . .127, 134, 156
lateral surface of 55

naming of 58

oblique 59
of revolution (See Cylinder

of revolution)

prisms inscribed in 125

properties of 56

right... .. 59

right circular (See Right
circular cylinder)

sections of 56-58
total area of 127, 156
truncated 55
volume of 128, 140, 156
with circular base

128, 140, 156

Cylinder of revolution 59
axis of 59
lateral area of 134, 156
volume of 128, 140, 156

Cylinders, similar (See Sim-
ilar cylinders of revolu-

tion)

Cylindrical space 55
section of 56

Cylindrical surface . 49
circumscribed about sphere 104
of revolution 32

right section of 51

tangent to sphere 104

Decagon 198
Definite location (See Deter-

mination)
Degree, spherical 147
Determination: of lines

12, 15, 26, 42
of planes 3, 14, 28, 42
of spheres 79

Development of lateral sur-

face: of frustum 135
of right circular cone 130
of right circular cylinder . . 127

Diameter of sphere . . 76, 103, Ex.



212 THE INDEX

Dihedral angle 21

edges of 21
faces of 21
measure of 22

plane angle of 22
Dihedral angles: adjacent. . . 23

complementary 23

congruent 22

equal.... v.. 22
of polyhedral angle 38
related 23

supplementary 23
vertical 23

Direct radial position 165

Directly similar, definition. . . 165
Director of surface 50
Distance: from point to plane 16

polar 83

spherical 82
Division or subtraction 196

Dodecahedron, regular 69

Duodecagon 198

Edge: of dihedral angle 21
of half-plane 21

Edges: lateral, of prism 51

lateral, of pyramid 60
of polyhedral angle 38
of polyhedrons 48
of prismatic surface 50
of pyramidal surface 50

Element of a surface 50
Elements : of cone 64

of cylinder 55

Elliptical cylinder 58

Equal angles in space 17

Equal dihedral angles 22, 163

Equal ratios, tests for 196

Equal segments from point to

plane 13

Equations 178

Equilateral spherical triangle. 89

Equivalent figures of plane
geometry 199

Equivalent prisms 113

Equivalent pyramids 119

Equivalent sections 61, 65

Equivalent solids 112

Equivalent triangular prisms. 115

Equivalent triangular pyra-
mids 119, 139

Excess, spherical 95
Extreme alternation . . .195

Face angles of polyhedral
angle 38

Faces: of dihedral angle .... 21
of polyhedral angle 38
of polyhedron 48

Formulae for areas and vol-

umes 156
Fractions 174
Frustum of cone 68

properties of 69
Frustum of cone with circular

base, volume of 132
Frustum of revolution 69

axis of 69
Frustum of right circular

cone: development of

surface of 135
lateral area of 132, 135, 156

properties of 69
slant height of 69
volume of 132, 156

Frustum of pyramid 63
altitude of 63

properties of 63
volume of 123, 156

Frustum of regular pyramid:
lateral area of 108, 156

properties of 63
slant height of 63

Frustum of revolution 69
axis of 69
lateral area of . . . .132, 135, 156
volume of 132, 156

Fundamental assumption
concerning volumes 109

Fundamental characteristic

of planes 2.

Fundamental tests: for par-
allel lines and planes ....

for parallel planes. . . .

for perpendicular lines and

planes 12

for perpendicular planes. . . 23

General spherical polygons. .

Generator of surface 50

Geometry, spherical, com-

pared with plane 87, 89, 105

Gravity, center of, of triangle. 195

Great circle of sphere 81

Half-plane 21
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Height, slant (See Slant

height)

Heptagon 198

Hexagon 198

Hexahedron, regular 69

Icosahedron, regular 69
Incenter of plane triangle 195
Inclination of line and plane. 37

Incommensurable, definition. 200

Inequalities in plane geom-
etry 190

Inscribed circle : 198
Inscribed polygons 198
Inscribed polyhedrons 79
Inscribed prisms in cylinders 125
Inscribed prisms in pyramids 118
Inscribed pyramids in cones. . 129
Inscribed spheres 79
Intersection of two planes. . . .3, 4
Irrational numbers 200
Isosceles spherical triangle 89, 100
Isosceles trapezoid 189
Isosceles triangle 188
Inverse radial position 165

Inversely similar, definition. . 165
Inversion . . . 195

Lateral area, formulae for: 156
of circular cylinder 126, 127
of cone of revolution 134
of cylinder of revolution. . . 134
of frustum of regular pyra-
mid 108

of frustum of right circu-

lar cone 132, 135
of polyhedron 106
of prism 106
of regular pyramid 106
of right circular cone

129, 130, 134
of right circular cylinder . .

127, 134

of solids of revolution 134
Lateral edges: of prism 51

of pyramid 60
Lateral surface : of cone .... 64

of cylinder 55
of prism 51
of pyramid 60

Lateral surfaces, develop-
ment of 127, 130, 135

Length : of segment 199
units of 183

Line 2

angle with plane 37
as locus 32
inclination to plane 37

lying in plane, tests for

2, 8, 15, 26, 42

projection of, on plane. ... 35

tangent to sphere 77
Lines: determination of

15, 16, 26, 42
on spheres 87-88

parallel 4, 11, 43

parallel to planes 4, 11, 43

perpendicular 13, 43

perpendicular to planes
12, 13, 19, 25, 27, 43

ratios of 167
related to circles 192
relations to planes 4
relative positions of 4
skew 4

Location, definite (See Deter-

mination)
Locus : in plane geometry ... 1 94

in space 29
Lune 89

area of 146, 147
ratio of surface to surface

of sphere 147

Mean alternation 195
Mean proportional 196
Measure: of segments 199

of surface 109, 200
Measurement: of angles. ... 193

of cones 129
of cylinders 125
of dihedral angles 22
of frustums of cones 132
of polyhedral angles 38
of round bodies 125
of space 109
of spherical angles 86
(See Areas; Volumes)

Measurements : in plane
geometry 199

spherical 142
Median 189, 190
Metric units 184
Mid-section of prismatoid. . . 121
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Naming : of cylinders 58
of prisms . 51

Nappes : of conical surface . . 50
of pyramidal surface 50

Numbers, irrational 200

Oblique circular cone 67

Oblique cylinder 59

Oblique prism 53

Octagon 198

Octahedron, regular 69
Orthocenter of triangle ] 95

Orthogonal projection 35

Parallel lines, tests for

4, 7, 8, 10, 11, 18, 19, 36, 43
Parallel lines and planes, tests

for 4, 6, 11, 43
Parallel planes, tests for

3, 9, 11,20,42
Parallel projection 35

Parallelepiped 53
center of 53

properties of 53

rectangular (See Rectangu-
lar parallelepiped)

right 54
volume of 112

Parallelogram 189
Parallels: and angles 187
and transversals 190

Pencil of planes 3
axis of

,
3

Pentadecagon 198

Pentagon 198

Perpendicular lines 13, 43

Perpendicular lines and planes,
tests for. 12,13,18,19,25,27,43

Perpendicular planes, tests

for 23,24,43
Plane 49

angle of line and 37

containing line ..2,8, 15, 26, 42
distance from point to. ... 16
half. 21
inclination of line to 37

projection of line on 35

projection of point on 35

tangent to sphere 77
Plane angle of dihedral angle 22
Plane geometry, spherical

compared with. . .87, 89. 105
Plane surface . . 48

Planes: determination of

3, 14, 15,28,42
fundamental characteristic

of 2
intersection of 3, 4

parallel 3,9, 11, 20,42
parallel to lines 4, 6, 11, 43

pencil of '. 3

perpendicular 23, 24, 43

perpendicular to lines

12, 13, 18, 19, 25, 27, 43
relations of, to lines 4
relative positions of 3

Point 2
distance from, to plane .... 16
of contact 77
of tangency 77

projection of 35
Polar distance 83
Polar triangles 91

relations of 92, 93
Poles of circle of sphere 82

Polygons (plane): area of . . . 200
circumscribed 198
inscribed 198

radially placed 197

Polygons, regular (See Regu-
lar polygons)

Polygons, spherical (See Spher-
ical polygons)

Polyhedral angle 38
concave 38
convex 38

corresponding central 89
dihedral angles of 38

edges of 38
face angles of 38
faces of 38
measure of 38

properties of 39, 40
vertex of 38

Polyhedral angles: congru-
ent 38

symmetric 39

Polyhedron 48
area of... 106
circumscribed 79

edges of 48
faces of 48
inscribed 79
vertices of 48

Polyhedrons: radial center
of.. . 163
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radially placed 163

regular (See Regular poly-
hedrons)

similar (See Similar poly-
hedrons)

star 72

Position, radial 165

Positions: of planes 3

of straight lines 4

relative, of line and plane . 4
Prism 51

altitude of 51

bases of 51

inscribed in cylinder 125

inscribed in pyramid 118
lateral area of 106
lateral edges of . . 51
lateral surface of . 51

naming of .--. 51

oblique 53

properties of 52

regular 53

right 53

square 51
truncated 53, 161
volume of. . .117, 123, 138, 156

Prismatic space 51
section of 52

Prismatic surface 49

edges of 50

right section of 51
Prismatoid 121

altitude of 121
mid-section of 121
volume of 122, 156

Prisms: equivalent 115
inscribed in cylinders 125
series of inscribed, in pyra-
mids 118

special 53

Projection: central 35
of line on plane 35
of point on plane 35
of segment 36

orthogonal 35

parallel 35

Proportion 195, 196

Proportional segments ..... 29, 60

Pyramid 60
altitude of 60
base of 60
frustum of (See Frustum of

pyramid)

inscribed in cone 129
lateral area of 107, 156
lateral edges of 60
lateral surface of 60

prisms inscribed in 118

properties of 60

regular (See Regular pyra-
mid)

section of 60

spherical (See Spherical
pyramid)

truncated 63
vertex of 60
volume of 121, 156

Pyramidal space 60

Pyramidal surface 49

edges of 50

nappes of 50
vertex of 49

Pyramids, equivalent 119, 139

Quadrilaterals 189

Radial center 163

Radially placed polygons .... 197

Radially placed polyhedrons . 163
Radial position 163

direct 165
inverse 165

Radius: of regular polygon .. 199
of sphere 76
of spherical surface 76

Ratio of similitude 164
Ratios: general 195, 196
methods for proving equal. 196
of areas

61, 65, 147, 168, 170, 171
of lines 167
of volumes... 154, 168, 169, 171

Ray 192

Reciprocal relations 91

Rectangle 189

Rectangular parallelepiped . . 54
volume of 109

Regular polygons (plane).. . . 198

apothem of 199
center of 199
construction of 198

properties of 198-199

Regular polyhedrons 69
construction of 71, 75, Ex.
number of 70

Regular prism 53
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Regular pyramid 62
lateral area of 107

properties of 62
slant height of 62

Related dihedral angles 23
Relative positions: of lines.. 4

of lines and planes 4
of planes 3

Revolution: cone of.. 67, 134, 156
conical surface of 34

cylinder of 59, 134, 156

cylindrical surface of 32
frustum of 69
sectors of . . .

, 152
similar solids of 169
solids of 134, 136

Rhombus 189

Right circular cone 67

approximate lateral area of 130

development of surface of . 130
lateral area of 130, 134, 156

properties of 67
sections of 65
slant height of 67
total area of 130, 156
volume of 131, 140, 156

Right circular cylinder 59

approximate lateral area of 127

development of lateral sur-

face of 127
lateral area of. . .127, 134, 156

properties of 59
total area of 127, 156
volume of 128, 140, 156

Right cylinder 59

Right parallelepiped 54

Right prism 53

Right section 51
Roots (See Cube root; Square

root)

Section: of cone 64-66, 68
of cylinder 57, 58, 74, Ex.
of cylindrical space 56
of prismatic space 52
of prisms; 73, Ex.
of pyramid 60
of solid 48
of spherical surface 81

right 51
transverse 51

Sections: equivalent 61, 65
of right circular cone 68

Sector: of circle 201

spherical (See spherical
sector)

Segment: measure of 199

projection of 36
spherical 155

Segments, proportional. . . .29, 60
Sides of spherical polygbn ... 88
Similar cones of revolution . . 169

ratio of lateral areas of. ... 171
ratio of total areas of 171
ratio of volumes of 171

Similar cylinders of revolu-
tion 169

ratio of lateral areas of 170
ratio of total areas of 170
ratio of volumes of 171

Similar plane figures 197
center of similitude of .... 197

Similar polyhedrons 162
center of similitude of 164

directly similar 165

inversely similar 165

properties of 166
radial center of 163

radially placed 163
ratio of areas of 168
ratio of similitude of 164
ratio of volumes of 168, 169
tests for 162-165

Similar solids 164, 165

properties of 172
Similar tetrahedrons 162

Sines, table of 182
Skew lines 4
Slant height: of frustum of

cone 69
of frustum of pyramid .... 63
of regular pyramid 62
of right circular cone 67

Small circle of sphere (See
Circle of sphere)

Solid 1, 48
section of 48

Solid angle 38
Solids, equivalent 112
Solids of revolution: lateral

area of 134
similar (See Similar solids)
volume of 136

Space: conical 64

cylindrical 55
measurement of . . .109
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prismatic 51

Syramidal
60

ere 76
*

approximate area of 142

approximate volume of. ... 150
area of 142, 144, 157
center of 76
circumscribed 79
determination of 79
diameter of 76
inscribed 79
lines on 87
radius of 76

tangents to 77, 104
volume of. . .150, 151, 153, 157

Spheres: determination of ... 79
ratio of areas of 171
ratio of volumes of 171

Spherical angle 86
measure of 86
sides of 86
vertex of 86

Spherical cone 154

Spherical degree 147

Spherical distance 82

Spherical excess 95

Spherical geometry compared
with plane 87, 89, 105

Spherical measurements ...... 142

Spherical polygons 88

angles of 89
convex 89

corresponding central poly-
hedral angle of 89

general 88
sides of 88
vertices of

_
88

Spherical pyramid 154
volume of 154, 157

Spherical sector 152
volume of 152, 157

Spherical segment 155
volume of 155, 157

Spherical surface 32, 76
center of 76
of revolution 32
radius of 76

Spherical triangle 89
area of 148, 149

birectangular 95
central trihedral angle of . . 89

equilateral 89
isosceles 89, 100

polar of (See Polar tri-

angles)

properties of 90
spherical excess of 95
sum of angles of 94
trirectangular 95

Spherical triangles : congruent 96

equivalent 101, 102

polar 91

symmetric 96
vertical 97

Spherical wedge 154
volume of 154

Square 189

Square prism 51

Square root 175

Square roots, table of 180
Star polyhedrons 72
Subtraction or division 196

Supplementary angles 185

Supplementary dihedral

angles 23
Surface 1, 48

as locus 32
closed 50
conical (See Conical surface)
convex 50
curved 50

cylindrical (See Cylindrical
surface)

director of 50
element of 50

generator of 50
lateral (See Lateral surface)
measurement of 200

plane 48

prismatic (See Prismatic

surface)

pyramidal (See Pyramidal
surface)

spherical (See Spherical sur-

face)
units of 183

Surface of revolution: area
of 134

conical 34

cylindrical 32
spherical 32
zone 145

Symmetric polyhedral angles. 41

Symmetric polyhedrons 172

Symmetric spherical tri-

angles 96-100
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Symmetric trihedral angles
41, 96-100

Symmetry 172, 188

Tables: of cube roots 181
of sines, cosines, and tan-

gents 182
of square roots 180
of units of capacity 184
of units of length 183
of units of surface 183
of units of volume 183
of units of weight 184

Tangency, point of 192

Tangent to circle 192

Tangent to sphere: conical
surface 104

cylindrical surface 104
lines 77

planes 77
tests for 78

Tangents, table of 182
Tests (See various congruent,

equal, equivalent, paral-
lel, perpendicular, pro-
portional, symmetric,
and tangent figures)

Tetrahedron, regular 69
Tetrahedrons, similar. ...... 162
Total area: of cone, right

circular 130, 156
ofcylinder, right circular 127, 156

Transverse section 51

Trapezoid 189
isosceles 189

Triangle (See Spherical tri-

angles)

Triangular prism, volume of. . 1 16

Triangular pyramid, volume
of 120

Trihedral, angles 38

congruent 41, 96-100

symmetric 41, 96-100
vertical 97

Trirectangular spherical tri-

angle 95
Truncated cone 68
Truncated cylinder 55
Truncated prism 53, 161, Ex.
Truncated pyramid 63

Units: metric
of area...

.183-184
. 183

of capacity 184
of length 183
of volume 183
of weight 184

Vertical dihedral angles 23
Vertical spherical triangles . . 97
Vertical trihedral angles .... 97
Vertices: of polyhedron 48

of spherical polygon 88
Vertex: of cone 64

of polyhedral angle 38
of pyramid GO

Volume: formulae for, listed. 156

general formula for 121
of cone with circular base

131, 140
of cylinder with circular

base .....128, 140
of frustum of cone 132
of frustum of pyramid .... 123
of parallelepiped 112
of prism 117-123, 138
of prismatoid 122
of pyramid 121-123
of rectangular parallele-

piped 109
of spheres 150,- 151, 153
of spherical cone 154
of spherical pyramid 154
of spherical sector 152
of spherical segment 155
of spherical wedge 154
of triangular prism 115
of triangular pyramid 120
of truncated triangular

prism 161
units of 183

Volumes: by Cavalieri's

theorem 138, 153
fundamental assumption

concerning 109
ratios of 168, 169, 171

Wedge 157, Ex.

spherical 154

Weight, units of 184

Zone 145
altitude of 145
area of 145, 146
bases of 145

of one base 145
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