UC-NRLF
 |||||||||||||||||||| \$В 543 4b3

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

MATHEMATICAL MONOGRAPHS.

EDITED BY
Mansfield Merriman and Robert S. Woodward.
Octavo, Cloth, $\$ 1.00$ each.
No. 1. HISTORY OF MODERN MATHEMATICS.
By David Eugene Smith.
No. 2. SYNTHETIC PROJECTIVE GEOMETRY.
By George líuce Halsted.
No. 3. DETERMINANTS.
By Laevas Gifford Weld.
No.4. hYPERBOLIC FUNCTIONS.
By James Mcmahon.
No. 5. HARMONIC FUNCTIONS. By William E. Byerly.
No. 6. GRASSMANN'S SPACE analysis. By Edward W. Hyde.
No. 7. PROBABILITY AND THEORY OF ERRORS.
By Robert S. Woodward.
No. 8. VECTOR ANALYSIS AND QUATERNIONS.
By Alexander Macfarlane.
No. 9 DI =FERENTIAL EQUATIONS.
By William Woolsey Johnson.
No. 10 THE SOLUTION OF EQUATIONS.
By Mansfield Merriman.
No. 11. FUNCTIONS OF A COMPLEX VARIABLE.

- By Thomas S. Fiske.

PUBLISHED BY
JOHN WILEY \& SONS, NEW YORK. CHAPMAN \& HALL, Limited, LONDON.

MATHEMATICAL MONOGRAPHS.

EDITED BY
MANSFIELD MERRIMAN and ROBERT S. WOODWARD.

$$
\text { No. } 10 .
$$

THE SOLUTION OF EQUATIONS.

BY
MANSFIELD MERRIMAN,
Professor of Civil Engineering in Lehigh University.
FOURTH EDITION, ENLARGED.
FIRST THOUSAND.
NEW YORK:
JOHN WILEY \& SONS.
London• CHAPMAN \& HALL, Limited.
1906.

Copyright, 1896,

By
MANSFIELD MERRIMAN and ROBERT S. WOODWARD
UNDER THE T.TLE
HIGHER MATHEMATICS.

First Edition, September, 1896.
Second Edition, January, 1898.
Third Edition, August, 1900.
Fourth Edition, January, 1906.

EDITORS' PREFACE.

The volume called Higher Mathematics, the first edition of which was published in 1896, contained eleven chapters by eleven authors, each chapter being independent of the others, but all supposing the reader to have at least a mathematical training equivalent to that given in classical and engineering colleges. The publication of that volume is now discontinued and the chapters are issued in separate form. In these reissues it will generally be found that the monographs are enlarged by additional articles or appendices which either amplify the former presentation or record recent advances. This plan of publication has been arranged in order to meet the demand of teachers and the convenience of classes, but it is also thought that it may prove advantageous to readers in special lines of mathematical literature.

It is the intention of the publishers and editors to add other monographs to the series from time to time, if the call for the same seems to warrant it. Among the topics which are under consideration are those of elliptic functions, the theory of numbers, the group theory, the calculus of variations, and nonEuclidean geometry; possibly also monographs on branches of astronomy, mechanics, and mathematical physics may be included. It is the hope of the editors that this form of publication may tend to promote mathematical study and research over a wider field than that which the former volume has occupied.

December, 1905.

AUTHOR'S PREFACE.

The following pages are designed as supplementary to the discussions of equations in college text-books, and several methods of solution not commonly given in such works are presented and exemplified. The aim kept in view has been that of the determination of the numerical values of the roots of numerical equations, and algebraic analysis has been used only to further this end. Historical references are given, problems stated as exercises for the student, and the attempt has everywhere been made to present the subject clearly and concisely. The volume has not been written for those thoroughly conversant with the theory of equations, but rather for students of mathematics, computers, and engineers.

This edition has been enlarged by the addition of five articles which render the former treatment more complete and also give recent investigations regarding the expression of roots in series. While not designed for college classes, it is hoped that the book may prove useful to postgraduate students in mathematics, physics and engineering, and also tend to promote general interest in mathematical science.

South Bethlehem, Pa.,

December, 1905.

CONTENTS.

Art. i. Introduction Page 1
2. Graphic Solutions 3
3. The Regula Faisi 5
4. Newton's Approximation Rule 6
5. Separation of the Roots 8
6. Numerical Algebraic Equations 10
7. Transcendental Equations 13
8. Algebraic Solutions 15
9. The Cubic Equation 17
10. The Quartic Equation 19
ir. Quintic Equations 21
12. Trigonometric Solutions 24
13. Real Roots by Series 27
14. Computation of All Roots 28
15. Roots of Unity 31
16. Solutions by Maclaurin's Series 33
17. Symmetric Functions of Roots 37
18. Logarithmic Solutions 39
19. Infinite Equations 43
20. Notes and Problems 45
Index 47

THE SOLUTION OF EQUATIONS.

Art. 1. Introduction.

The science of algebra arose in the efforts to solve equations. Indeed algebra may be called the science of the equation, since the discussion of equalities and the transformation of forms into simpler equivalent ones have been its main objects. The solution of an equation containing one unknown quantity consists in the determination of its value or values, these being called roots. An algebraic equation of degree n has n roots, while transcendental equations often have an infinite number of roots. The object of the following pages is to present and exemplify convenient methods for the determination of the numerical values of the zoots of both kinds of equations, the real roots receiving special attention because these are mainly required in the solution of problems in physical science.

An algebraic equation is one that involves only the operations of arithmetic. It is to be first freed from radicals so as to make the exponents of the unknown quantity all integers; the degree of the equation is then indicated by the highest exponent of the unknown quantity. The algebraic solution of an algebraic equation is the expression of its roots in terms of the literal coefficients; this is possible, in general, only for linear, quadratic, cubic, and quartic equations, that is, for equations of the first, second, third, and fourth degrees. A numerical equation is an algebraic equation having all its coefficients real numbers, either positive or negative. For the four degrees
above mentioned the roots of numerical equations may be computed from the formulas for the algebraic solutions, unless they fall under the so-called irreducible case wherein real quantities are expressed in imaginary forms.

An algebraic equation of the $n^{\text {th }}$ degree may be written with all its terms transposed to the first member, thus:

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0
$$

and, for brevity, the first member will be called $f(x)$ and the equation be referred to as $f(x)=0$. The roots of this equation are the values of x which satisfy it, that is, those values of x that reduce $f(x)$ to 0 . When all the coefficients $a_{1}, a_{2}, \ldots a_{n}$ are real, as will always be supposed to be the case, Sturm's theorem gives the number of real roots, provided they are unequal, as also the number of $r \in a l$ roots lying between two assumed values of \boldsymbol{x}, while Horner's method furnishes a convenient process for obtaining the values of the roots to any required degree of precision.

A transcendental equation is one involving the operations of trigonometry or of logarithms, as, for example, $x+\cos x=0$, or $a^{2 x}+x b^{x}=0$. No general method for the literal solution of these equations exists ; but when all known quantities are expressed as real numbers, the real roots may be located and computed by tentative methods. Here also the equation may be designated as $f(x)=0$, and the discussions in Arts. 2-5 will apply equally well to both algebraic and transcendental forms. The methods to be given are thus, in a sense, more valuable than Sturm's theorem and Horner's process, although for algebraic equations they may be somewhat longer. It should be remembered, however, that algebraic equations higher than the fourth degree do not often occur in physical problems, and that the value of a method of solution is to be measured not merely by the rapidity of computation, but also by the ease with which it can be kept in mind and applied.

Prob. 1. Reduce the equation $(a+x)^{\frac{2}{t}}+(a-x)^{\frac{2}{b}}=2 b$ to an equation having the exponents of the unknown quantity all integers.

Art. 2. Graphic Solutions.

Approximate values of the real roots of two simultaneous algebraic equations may be found by the methods of plane analytic geometry when the coefficients are numerically expressed. For example, let the given equations be

$$
x^{2}+y^{2}=a^{2}, \quad x^{2}-b x=y^{2}-c y,
$$

the first representing a circle and the second a hyperbola. Drawing two rectangular axes $O X$ and $O Y$, the circle is described from \dot{O} with the radius a. The coordinates of the center of the hyperbola are found to be $O A=\frac{1}{2} b$ and $A C=\frac{1}{2} c$, while its diameter $B D=\sqrt{ } b^{2}-c^{2}$, from which the two branches may be described. The intersections of the circle with the hyperbola give the real values of x and y., If $a=\mathrm{I}, b=4$, and $c=3$, there are but two real values for x and two real values for y, since the circle intersects but one branch of the hyperbola;
 here $O m$ is the positive and $O p$ the negative value of x, while $m n$ is the positive and $p q$ the negative value of y. When the radius a is so large that the circle intersects both branches of the hyperbola there are four real values of both x and y.

By a similar method approximate values of the real roots of an algebraic equation containing but one unknown quantity may be graphically found. For instance, let the cubic equation $x^{3}+a x-b=0$ be required to be solved.* This may he written as the two simultaneous equations

$$
y=x^{3}, \quad y=-a x+b
$$

[^0]and the graph of each being plotted, the abscissas of their points of intersection give the real roots of the cubic. The
 curve $y=x^{3}$ should be plotted upon cross-section paper by the help of a table of cubes; then $O B$ is laid off equal to b, and $O C$ equal to a^{2} / b, taking care to observe the signs of a and b. The line joining B and C cuts the curve at p, and hence $q p$ is the real root of $x^{3}+a x-b=0$. If the cubic equation have three real roots the straight line $B C$ will intersect the curve in three points.

Some algebraic equations of higher degrees may be graphically solved in a similar manner. For the quartic equation $z^{4}+A z^{2}+B z-C=0$, it is best to put $z=A^{\frac{1}{x}} x$, and thus reduce it to the form $x^{4}+x^{2}+b x-c=0$; then the two equations to be plotted are

$$
y=x^{4}+x^{2}, \quad y=-b x+c,
$$

the first of which may be drawn once for all upon cross-section paper, while the straight line represented by the second may be drawn for each particular case, as described above.*

This method is also applicable to many transcendental equations; thus for the equation $A x-B \sin x=0$ it is best to write $a x-\sin x=0$; then $y=\sin x$ is readily plotted by help of a table of sines, while $y=a x$ is a straight line passing through the origin. In the same way $a^{x}-x^{2}=0$ gives the curve represented by $y=a^{x}$ and the parabola represented by $y=x^{2}$, the intersections of which determine the real roots of the given equation.

Prob. 2. Devise a graphic solution for finding approximate values of the real roots of the equation $x^{5}+a x^{3}+b x^{2}+c x+d=0$.

Prob. 3. Determine graphically the number and the approximate values of the real roots of the equation arc $x-8 \sin x=0$. (Ans.-Six real roots, $x= \pm 159^{\circ}, \pm 430^{\circ}$, and $\pm 456^{\circ}$.)

[^1]
Art. 3. The Regula Falsi.

One of the oldest methods for computing the real root of an equation is the rule known as "regula falsi," often called the method of double position.* It depends upon the principle that if two numbers x_{1} and x_{2} be substituted in the expression $f(x)$, and if one of these renders $f(x)$ positive and the other renders it negative, then at least one real root of the equation $f(x)=0$ lies between x_{1} and x_{2}. Let the figure represent a part of the real graph of the equation $y=f(x)$. The point X, where the curve crosses the axis of abscissas, gives a real root $O X$ of the equation $f(x)=0$. Let $O A$ and $O B$ be inferior and superior limits of the root $O X$ which are determined either by trial or by the method of Art. 5 . Let $A a$ and $B b$ be the values of $f(x)$ corresponding to these limits. Join $a b$, then the intersection C of the straight line $a b$ with the axis $O B$ gives an approximate value $O C$ for the root. Now compute
 $C c$ and join $a c$, then the intersection D gives a value $O D$ which is closer still to the root $O X$.

Let x_{1}-and x_{2} be the assumed values $O A$ and $O B$, and let $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ be the corresponding values of $f(x)$ represented by $A a$ and $B b$, these values being with contrary signs. Then from the similar triangle $A a C$ and $B b C$ the abscissa $O C$ is

$$
x_{3}=\frac{x_{2} f\left(x_{1}\right)-x_{1} f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)}=x_{1}+\frac{\left(x_{2}-x_{1}\right) f\left(x_{1}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)}=x_{2}+\frac{\left(x_{2}-x_{1}\right) f\left(x_{2}\right)}{f\left(x_{1}\right)-f\left(x_{2}\right)} .
$$

By a second application of the rule to x_{1} and x_{3}, another value x_{4} is computed, and by continuing the process the value of x can be obtained to any required degree of precision.

As an example let $f(x)=x^{6}+5 x^{2}+7=0$. Here it may be found by trial that a real root lies between -2 and - I. 8 .

* This originated in India, and its first publication in Europe was by Abraham ben Esra, in rizo. See Matthiesen, Grundzüge der antiken und modernen Algebra der litteralen Gleichungen, Leipzig, 1878.

For $x_{1}=-2, f\left(x_{1}\right)=-5$, and for $x_{2}=-1.8, f\left(x_{2}\right)=+4.304$; then by the regula falsi there is found $x_{3}=-\mathrm{I} .90$ nearly. Again, for $x_{3}=-\mathrm{I} .90, f\left(x_{3}\right)=+0.290$, and these combined with x_{1} and $f\left(x_{1}\right)$ give $x_{4}=-\mathrm{I} .906$, which is correct to the third decimal.

As a second example let $f(x)=\operatorname{arc} x-\sin x-0.5=0$. Here a graphic solution shows that there is but one real root, and that the value of it lies between 85° and 86°. For $x_{1}=85^{\circ}$, $f\left(x_{1}\right)=-0.01266$, and for $x_{2}=86^{\circ}, f\left(x_{2}\right)=+0.00342$; then by the rule $x_{3}=85^{\circ} 44^{\prime}$, which gives $f\left(x_{3}\right)=-0.00090$. Again, combining the values for x_{2} and x_{3} there is found $x_{4}=85^{\circ} 47^{\prime}$. which gives $f\left(x_{4}\right)=-0.0000$. Lastiy, combining the values for x_{2} and x_{4} there is found $x_{6}=85^{\prime \prime} 47^{\prime} \cdot \frac{4}{4}$, which is as close an approximation as can be made with five-place tables.

In the application of this method it is to be observed that the signs of the values of x and $f(x)$ are to be carefully regarded, and also that the values of $f(x)$ to be combined in one operation should have opposite signs. For the quickest approximation the values of $f(x)$ to be selected should be those having the smallest numerical values.

Prob. 4. Compute by the regula falsi the real roots of $x^{5}-0.25=0$. Also those of $x^{2}+\sin 2 x=0$.

Art. 4. Newton's Approximation Rule.

Another useful method for approximating to the value of the real root of an equation is that devised by Newton in $1666 . *$
 If $y=f(x)$ be the equation of a curve, $O X$ in the figure represents a real root of the equation $f(x)=0$. Let $O A$ be an approximate value of $O X$, and $A a$ the corresponding value of $f(x)$. At a let $a B$ be drawn tangent
to the curve; then $O B$ is another approximate value of $O X$.

* See Analysis per equationes numero terminorum infinitas, p. 269, Vol. I of Horsely's edition of Newton's works (London, J 779), where the method is given in a somewhat different form.

Let $B b$ be the value of $f(x)$ corresponding to $O B$, and at b let the tangent $b C$ be drawn; then $O C$ is a closer approximation to $O X$, and thus the process may be continued.

Let $f^{\prime}(x)$ be the first derivative of $f(x)$; or, $f^{\prime}(x)=d f(x) / d x$. For $x=x_{1}=O A$ in the figure, the value of $f\left(x_{1}\right)$ is the ordinate $A a$, and the value of $f^{\prime}\left(x_{1}\right)$ is the tangent of the angle $a B A$; this tangent is also $A a / A B$. Hence $A B=f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)$, and accordingly $O B$ and $O C$ are found by

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}, \quad x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

which is Newton's approximation rule. By a third application to x_{3} the closer value x_{4} is found, and the process may be continued to any degree of precision required.

For example, let $f(x)=x^{5}+5 x^{2}+7=0$. The first derivative is $f^{\prime}(x)=5 x^{4}+$ Iox. Here it may be found by trial that -2 is an approximate value of the real root. For $x_{1}=-2$ $f\left(x_{1}\right)=-5$, and $f^{\prime}\left(x_{1}\right)=60$, whence by the rule $x_{2}=-$ I.92. Now for $x_{2}=-1.92$ are found $f\left(x_{2}\right)=-0.6599$ and $f^{\prime}\left(x_{2}\right)=29052$, whence by the rule $x_{3}=-1.906$, which is correct to the third decimal.

As a second example let $f(x)=x^{2}+4 \sin x=0$. Here the first derivative is $f^{\prime}(x)=2 x+4 \cos x$. An approximate value of x found either by trial or by a graphic solution is $x=-\mathrm{I} .94$, corresponding to about $-111^{\circ}{ }^{\circ} 09^{\prime}$. For $x_{1}=-\mathrm{I} .94$, $f\left(x_{1}\right)=0.03304$ and $f^{\prime}\left(x_{1}\right)=-5.323$, whence by the rule $x_{2}=-$ I.934. By a second application $x_{3}=-$ I.9328, which corresponds to an angle of $-110^{\circ} 54 \frac{1}{2}^{\prime}$.

In the application of Newton's rule it is best that the assumed value of x_{1} should be such as to render $f\left(x_{1}\right)$ as small as possible, and also $f^{\prime}\left(x_{1}\right)$ as large as possible. The method will fail if the curve has a maximum or minimum between a and b. It is seen that Newton's rule, like the regula falsi, applies equally well to both transcendental and algebraic equations, and moreover that the rule itself is readily kept in mind by help of the diagram.

Prob. 5. Compute by Newton's rule the real roots of the algebraic equation $x^{4}-7 x+6=0$. Also the real roots of the transcendental equation $\sin x+\operatorname{arc} x-2=0$.

Art. 5. Separation of the Roots.

The roots of an equation are of two kinds, real roots and imaginary roots. Equal real roots may be regarded as a special class, which lie at the limit between the real and the imaginary. If an equation has p equal roots of one value and q equal roots of another value, then its first derivative equation has $p-1$ roots of the first value and q-I roots of the second value, and thus all the equal roots are contained in a factor common to both primitive and derivative. Equal roots may hence always be readily detected and removed from the given equation. For instance, let $x^{4}-9 x^{2}+4 x+12=0$, of which the derivative equation is $4 x^{3}-18 x+4=0$; as $x-2$ is a factor of these two equations, two of the roots of the primitive equation are +2 .

- The problem of determining the number of the real and imaginary roots of an algebraic equation is completely solved by Sturm's theorem. If, then, two values be assigned to x the number of real roots between those limits is found by the same theorem, and thus by a sufficient number of assumptions limits may be found for each real root. As Sturm's theorem is known to all who read these pages, no applications of it will be here given, but instead an older method due to Hudde will be presented which has the merit of giving a comprehensive view of the subject, and which moreover applies to transcendental as well as to algebraic equations.*

If any equation $y=f(x)$ be plotted with values of x as abscissas and values of y as ordinates, a real graph is obtained whose intersections with the axis $O X$ give the real roots of the

[^2]equat ion $f(x)=0$. Thus in the figure the three points marked X gire three values $O X$ for three real roots. The curve which repr sents $y=f(x)$ has points of maxima and minima marked A, a ad inflection points marked B. Now let the first deriva-

tive equation $d y / d x=f^{\prime}(x)$ be formed and be plotted in the same manner on the axis $O^{\prime} X^{\prime}$. The condition $f^{\prime}(x)=0$ gives the abscissas of the points A, and thus the real roots $O^{\prime} X^{\prime}$ give limits separating the real roots of $f(x)=0$. To ascertain if a real root $O X$ lies between two values of $O^{\prime} X^{\prime}$ these two values are to be substituted in $f(x)$: if the signs of $f(x)$ are unlike in the two cases, a real root of $f(x)=0$ lies between the two limits; if the signs are the same, a real root does not lie between those limits.

In like manner if the second derivative equation, that is, $d^{2} y / d x^{2}=f^{\prime \prime}(x)$, be plotted on $O^{\prime \prime} X^{\prime \prime}$, the intersections give limits which separate the real roots of $f^{\prime}(x)=0$. It is also seen that the roots of the second derivative equation are the abscissas of the points of inflection of the curve $y=f(x)$.

To illustrate this method let the given equation be the quintic $f(x)=x^{5}-5 x^{3}+6 x+2=0$. The first derivative equation is $f^{\prime}(x)=5 x^{4}-15 x^{2}+6=0$, the roots of which are approximately - I.59, $-0.69,+0.69,+$ I.59. Now let each of these values be substituted for x in the given quintic, as also the values $-\infty, 0$, and $+\infty$, and let the corresponding values of $f(x)$ be determined as follows:
$x=-\infty,-\mathrm{I} .59,-0.69, \quad 0,+0.69,+\mathrm{I} .59,+\infty$; $f(x)=-\infty,+2.4, \quad-0.6,+2,+4.7, \quad+\mathrm{I} .6, \quad+\infty$. Since $f(x)$ changes sign between $x_{0}=-\infty$ and $x_{1}=-1.59$, one real root lies between these limits; since $f(x)$ changes sign between $x_{1}=-1.59$ and $x_{2}=-0.69$, one real root lies between these limits ; since $f(x)$ changes sign between $x_{2}=-0.69$ and $x_{3}=0$, one real root lies between these limits; since $f(x)$ does not change sign between $x_{3}=0$ and $x_{4}=\infty$, a pair of imaginary roots is indicated, the sum of which lies between +0.69 and ∞.

As a second example let $f(x)=e^{x}-e^{2 x}-4=0$. The first derivative equation is $f^{\prime}(x)=e^{x}-2 e^{2 x}=0$, which has two roots $e^{x}=\frac{1}{2}$ and $e^{x}=0$, the latter corresponding to $x=-\infty$. For $x=-\infty, f(x)$ is negative; for $e^{x}=\frac{1}{2}, f(x)$ is negative; for $x=+\infty, f(x)$ is negative. The equation $e^{x}-e^{2 x}-4=0$ has, therefore, no real roots.

When the first derivative equation is not easily solved, the second, third, and following derivatives may be taken until an equation is found whose roots may be obtained. Then, by working backward, limits may be found in succession for the roots of the derivative equations until finally those of the primative are ascertained. In many cases, it is true, this process may prove lengthy and difficult, and in some it may fail entirely; nevertheless the method is one of great theoretical and practical value.

Prob. 6. Show that $e^{x}+e^{-3 x}-4=0$ has two real roots, one positive and one negative.

Prob. 7. Show that $x^{6}+x+1=0$ has no real roots; also that $x^{6}-x-1=0$ has two real roots, one positive and one negative.

Art. 6. Numerical Algebraic Equations.
An algebraic equation of the $n^{\text {th }}$ degree may be written with all its terms transposed to the first member, thus:

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0
$$

and if all the coefficients and the absolute term are real numbers, this is commonly called a numerical equation. The first member may for brevity be denoted by $f(x)$ and the equation itself by $f(x)=0$.

The following principles of the theory of algebraic equations with real coefficients, deduced in text-books on algebra, are here recapitulated for convenience of reference:
(1) If x_{1} is a root of the equation, $f(x)$ is divisible by $x-x_{1}$; and conversely, if $f(x)$ is divisible by $x-x_{1}$, then x_{1} is a root of the equation.
(2) An equation of the $n^{\text {th }}$ degree has n roots and no more.
(3) If $x_{1}, x_{2}, \ldots x_{n}$ are the roots of the equation, then the product $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ is equal to $f(x)$.
(4) The sum of the roots is equal to $-a_{1}$; the sum of the products of the roots, taken two in a set, is equal to $+a_{2}$; the sum of the products of the roots, taken three in a set, is equal to $-a_{3}$; and so on. The product of all the roots is equal to $-a_{n}$ when n is odd, and to $+a_{n}$ when n is even.
(5) The equation $f(x)=0$ may be reduced to an equation lacking its second term by substituting $y-a_{1} / n$ for x.*
(6) If an equation has imaginary roots, they occur in pairs of the form $p \pm q i$ where i represents $\sqrt{-\mathrm{I}}$.
(7) An equation of odd degree has at least one real root whose sign is opposite to that of a_{n}.
(8) An equation of even degree, having a_{n} negative, has at least two real roots, one being positive and the other negative.
(9) A complete equation cannot have more positive roots than variations in the signs of its terms, nor more negative roots than permanences in signs. If all roots be real, there are as many positive roots as variations, and as many negative roots as permanences. \dagger
(io) In an incomplete equation, if an even number of terms, say $2 m$, are lacking between two other terms, then it has at least $2 m$

[^3]imaginary roots; if an odd number of terms, say $2 m+1$, are lacking between two other terms, then it has at least either $2 m+2$ or $2 m$ imaginary roots, according as the two terms have like or unlike signs.*
(ir) Sturm's theorem gives the number of real roots, provided that they are unequal, as also the number of real roots lying between two assumed values of x.
(12) If a_{r} is the greatest negative coefficient, and if a_{s} is the greatest negative coefficient after x is changed into $-x$, then all real roots lie between the limits $a_{r}+1$ and $-\left(a_{s}+1\right)$.
(13) If a_{h} is the first negative and a_{r} the greatest negative coefficient, then $a_{r}^{\frac{1}{h}}+_{I}$ is a superior limit of the positive roots. If a_{k} be the first negative and a_{s} the greatest negative coefficient after x is changed into $-x$, then $a_{s}^{\frac{1}{k}}+\mathbf{I}$ is a numerically superior limit of the negative roots.
(14) Inferior limits of the positive and negative roots may be found by placing $x=z^{-1}$ and thus obtaining an equation $f(z)=0$ whose roots are the reciprocals of $f(x)=0$.
(15) Horner's method, using the substitution $x=z-r$ where r is an approximate value of x_{1}, enables the real root x_{1} to be computed to any required degree of precision.

The application of these principles and methods will be familiar to all who read these pages. Horner's method may be also modified so as to apply to the computation of imaginary roots after their approximate values have been found. \dagger The older method of Hudde and Rolle, set forth in Art. 5, is however one of frequent convenient application, for such algebraic equations as actually arise in practice. By its use, together with principles (13) and (I4) above, and the regula falsi of Art. 3, the real roots may be computed without any assumptions whatever regarding their values.

For example, let a sphere of diameter D and specific gravity

[^4]g float in water, and let it be required to find the depth of immersion. The solution of the problem gives for the depth x the cubic equation
$$
x^{3}-\frac{3}{2} D x^{2}+\frac{1}{2} D^{3} g=0 .
$$

As a particular case let $D=2$ feet and $g=0.65$; then the equation

$$
x^{3}-3 x^{2}+2.6=0
$$

is to be solved. The first derivative equation is $3 x^{2}-6 x=0$ whose roots are o and 2. Substituting these, there is found one negative root, one positive root less than 2 , and one positive root greater than 2. The physical aspect of the question excludes the first and last root, and the second is to be computed. By (I 3) and (I4) an inferior limit of this root is about 0.5 , so that it lies between 0.5 and 2. For $x_{1}=0.5, f\left(x_{1}\right)=+1.975$, and for $x_{2}=2, f\left(x_{2}\right)=-\mathrm{I} .4$; then by the regula falsi $x_{3}=\mathrm{I} .35$. For $x_{3}=1.35, f\left(x_{3}\right)=-0.408$, and combining this with x, the regula falsi gives $x_{4}=\mathrm{I} .204$ feet, which, except in the last decimal, is the correct depth of immersion of the sphere.

Prob. 8. The diameter of a water-pipe whose length is 200 feet and which is to discharge roo cubic feet per second under a head of 10 feet is given by the real root of the quintic equation $x^{5}-38 x-101=0$. Find the value of x.

Art. 7. Transcendental Equations,

Rules (1) to (15) of the last article have no application to trigonometrical or exponential equations, but the general principles and methods of Arts. 2-5 may be always used in attempting their solution. Transcendental equations may have one, many, or no real roots, but those arising from problems in physical science must have at least one real root. Two examples of such equations will be presented.

A cylinder of specific gravity g floats in water, and it is required to find the immersed arc of the circumference. If this be expressed in circular measure it is given by the transcedental equation

$$
f(x)=x-\sin x-2 \pi g=0
$$

The first derivative equation is $\mathrm{I}-\cos x=0$, whose root is any even multiple of 2π. Substituting such multiples in $f(x)$ it is found that the equation has but one real root, and that this lies between O and 2π; substituting $\frac{1}{2} \pi, \frac{3}{4} \pi$, and π for x, it is further found that this root lies between $\frac{3}{4} \pi$ and π.

As a particular case let $g=0.424$, and for convenience in using the tables let x be expressed in degrees; then

$$
f(x)=x-57^{\circ} .2958 \sin x-152^{\circ} .64
$$

Now proceeding by the regula falsi (Art. 3) let $x_{1}=180^{\circ}$ and $x_{2}=135^{\circ}$, giving $f\left(x_{1}\right)=+27^{\circ} .36$ and $f\left(\dot{x}_{2}\right)=-58^{\circ} .16$, whence $x_{3}=166^{\circ}$. For $x_{3}=166^{\circ}, f\left(x_{3}\right)=-0^{\circ} .469$, and hence 166° is an approximate value of the root. Continuing the process, x is found to be $166^{\circ} .237$, or in circular measure $x=2.9014$ radians.

As a second example let it be required to find the horizontal tension of a catenary cable whose length is 22 feet, span 20 feet, and weight io pounds per linear foot, the ends being suspended from two points on the same level. If l be the span, s the length of the cable, and z a length of the cable whose weight equals the horizontal tension, the solution of the problem leads to the transcendental equation $s=\left(e^{\frac{l}{2 z}}-e^{-\frac{l}{2 z}}\right) z$, or inserting the numerical values,

$$
f(z)=22-\left(e^{\frac{10}{z}}-e^{-\frac{10}{z}}\right) z=0
$$

is the equation to be solved. The first derivative equation is

$$
f^{\prime}(z)=-\left(e^{\frac{10}{z}}-e^{-\frac{10}{z}}\right)+\frac{10}{z}\left(e^{\frac{10}{z}}+e^{-\frac{10}{z}}\right)=0,
$$

and this substituted in $f(z)$ shows that one real root is less than about 20. Assume $z_{1}=15$, then $f\left(z_{1}\right)=0.486$ and $f^{\prime}\left(z_{1}\right)=0.206$, whence by Newton's rule (Art. 4) $z_{2}=13$ nearly. Next for $z_{3}=13, f\left(z_{2}\right)=-0.0298$ and $f^{\prime}\left(z_{2}\right)=0.322$, whence $z_{3}=13.1$. Lastly for $z_{3}=13.1 f\left(z_{3}\right)=0.0012$ and $f^{\prime}\left(z_{3}\right)=0.3142$, whence $z_{4}=\mathrm{I} 3.096$, which is a sufficiently close approximation. The horizontal tension in the given catenary is hence I 30.96 pounds.*
${ }^{*}$ Since $e^{\theta}-e^{-\theta}=2 \sinh \theta$. this equation may be written $11 \theta-10 \sinh \theta$, where $\theta=10 z^{-1}$, and the solution may be expedited by the help of tables of hyperbolic functions. See Chapter IV.

Prob. 9. Show that the equation $3 \sin x-2 x-5=0$ has but one real root, and compute its value.

Prob. io. Find the number of real roots of the equation $2 x+\log x-10000=0$, and show that the value of one of them is $x=4995.74$.

Art. 8. Algebraic Solutions.

Algebraic solutions of complete algebraic equations are only possible when the degree n is less than 5 . It frequently happens, moreover, that the algebraic solution cannot be used to determine numerical values of the roots as the formulas expressing them are in irreducible imaginary form. Neverthefess the algebraic solutions of quadratic, cubic, and quartic equations are of great practical value, and the theory of the subject is of the highest importance, having given rise in fact to a large part of modern algebra.

The solution of the quadratic has been known from very early times, and solutions of the cubic and quartic equations were effected in the sixteenth century. A complete investigation of the fundamental principles of these solutions was, however, first given by Lagrange in 1770.* This discussion showed, if the general equation of the $n^{\text {th }}$ degree, $f(x)=0$, be deprived of its second term, thus giving the equation $f(y)=0$, that the expression for the root y is given by

$$
y=\omega s_{1}+\omega^{2} s_{2}+\ldots+\omega^{n-1} s_{n-1},
$$

in which n is the degree of the given equation, ω is, in succession, each of the $n^{\text {th }}$ roots of unity, $1, \epsilon, \epsilon^{2}, \ldots \epsilon^{n-1}$, and $s_{1}, s_{2}, \ldots s_{n-1}$ are the so-called elements which in soluble cases are determined by an equation of the $n-I^{\text {th }}$ degree. For instance, if $n=3$ the equation is of the third degree or a cubic, the three values of ω are
$\omega_{1}=1, \quad \omega=-\frac{1}{2}+\frac{1}{2} \sqrt{-3}=\epsilon, \quad \omega=-\frac{1}{2}-\frac{1}{2} \sqrt{-3}=\epsilon^{2}$,

* Memoirs of Berlin Academy, 1760 and 1770: reprinted in CEuvres de Lagrange (P’aris, 1868). Vol. II, pp. 539-562. See also Traité de la résolution des équations numeriques, Paris, 1798 and 1808.
and the three roots are expressed by

$$
y_{1}=s_{1}+s_{2}, \quad y_{2}=\epsilon s_{1}+\epsilon^{2} s_{2}, \quad y_{3}=\epsilon^{2} s_{1}+\epsilon s_{2},
$$

in which $s_{1}{ }^{3}$ and s_{2}^{3} are found to be the roots of a quadratic equation (Art. 9).

The n values of ω are the n roots of the binomial equation $\omega^{n}-\mathrm{I}=0$. If n be odd, one of these is real and the others are imaginary ; if n be even, two are real and $n-2$ are imaginary.* Thus the roots of $\omega^{2}-\mathrm{I}=0$ are +I and -I ; those of $\omega^{3}-1=0$ are given above; those of $\omega^{4}-1=0$ are $+\mathrm{I},+i,-\mathrm{I}$, and $-i$ where i is $\sqrt{-\mathrm{I}}$. For the equation $\omega^{5}-\mathrm{I}=0$ the real root is +I , and the imaginary roots are denoted by $\epsilon, \epsilon^{2}, \epsilon^{3}, \epsilon^{4}$; to find these let $\omega^{6}-\mathbf{I}=0$ be divided by $\omega-\mathrm{I}$, giving

$$
\omega^{4}+\omega^{3}+\omega^{2}+\omega+1=0,
$$

*which being a reciprocal equation can be reduced to a quadratic, and the solution of this furnishes the four values,
$\epsilon=-\frac{1}{4}(1-\sqrt{5}+\sqrt{-10-2 \sqrt{5}}), \quad \epsilon^{2}=-\frac{1}{4}(1+\sqrt{5}+\sqrt{-10+2 \sqrt{5}})$,
$\epsilon^{4}=-\frac{1}{4}(1-\sqrt{5}-\sqrt{-10-2 \sqrt{5}}), \quad \epsilon^{3}=-\frac{1}{4}(1+\sqrt{5}-\sqrt{-10+2 \sqrt{5}})$, where it will be seen that $\epsilon \cdot \epsilon^{4}=\mathrm{I}$ and $\epsilon^{2} \cdot \epsilon^{3}=\mathrm{I}$, as should be the case, since $\epsilon^{6}=\mathrm{I}$.

In order to solve a quadratic equation by this general method let it be of the form

$$
x^{2}+2 a x+b=0,
$$

and let x be replaced by $y-a$, thus reducing it to

$$
y^{2}-\left(a^{2}-b\right)=0 .
$$

Now the two roots of this are $y_{1}=+s_{1}$ and $y_{2}=-s_{1}$, whence the product of $\left(y-s_{1}\right)$ and $\left(y+s_{1}\right)$ is

$$
y^{2}-s^{2}=0 .
$$

Thus the value of s^{2} is given by an equation of the first degree,

[^5]$s^{2}=a^{2}-b$; and since $x=-a+y$, the roots of the given equation are
$$
x_{1}=-a+\sqrt{a^{2}-b}, \quad x_{2}=-a-\sqrt{a^{2}-b}
$$
which is the algebraic solution of the quadratic.
The equation of the $n-1^{\text {th }}$ degree upon which the solution of the equation of the $n^{\text {th }}$ degree depends is called a resolvent. If such a resolvent exists, the given equation is algebraically solvable; but, as before remarked, this is only the case for quadratic, cubic, and quartic equations.

Prob. ir. Show that the six $6^{\text {th }}$ roots of unity are +1 , $+\frac{1}{2}(\mathrm{r}+\sqrt{-3}),-\frac{1}{2}(\mathrm{r}-\sqrt{-3}),-\mathrm{r},-\frac{1}{2}(\mathrm{r}+\sqrt{-3}),-\frac{1}{2}(\mathrm{r}-\sqrt{-3})$.

Art. 9. The Cubic Equation.

All methods for the solution of the cubic equation lead to the result commonly known as Cardan's formula.* Let the cubic be

$$
\begin{equation*}
x^{3}+3 a x^{2}+3 b x+2 c=0 \tag{I}
\end{equation*}
$$

and let the second term be removed by substituting $y-a$ for x, giving the form,

$$
y^{3}+3 B y+2 C=0,
$$

in which the values of B and C are

$$
\begin{equation*}
B=-a^{2}+b, \quad C=a^{3}-\frac{3}{2} a b+c . \tag{2}
\end{equation*}
$$

Now by the Lagrangian method of Art. 8 the values of y are

$$
y_{1}=s_{1}+s_{2}, \quad y_{2}=\epsilon s_{1}+\epsilon^{2} s_{2}, \quad y_{3}=\epsilon^{2} s_{1}+\epsilon s_{2},
$$

in which ϵ and ϵ^{2} are the imaginary cube roots of unity. Forming the products of the roots, and remembering that $\epsilon^{3}=\mathrm{I}$ and $\epsilon^{2}+\epsilon+\mathrm{I}=0$, there are found

$$
\begin{aligned}
y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3} & =-3 s_{1} s_{2}=+3 B, \\
y_{1} y_{2} y_{3} & =s_{1}^{3}+s_{2}^{3}=-2 C .
\end{aligned}
$$

For the determination of s_{1} and s_{2} there are hence two equations from which results the quadratic resolvent $s^{6}+2 C s^{3}-B^{3}=0$, and thus

$$
\begin{equation*}
s_{1}=\left(-C+\sqrt{B^{3}+C^{2}}\right)^{\frac{1}{3}}, \quad s_{2}=\left(-C-\sqrt{B^{3}+C^{2}}\right)^{\frac{1}{3}} . \tag{3}
\end{equation*}
$$

* Deduced by Ferreo in 1515 , and first published by Cardan in 1545.

One of the roots of the cubic in y therefore is

$$
y_{1}=\left(-C+\sqrt{B^{3}+C^{2}}\right)^{\frac{1}{3}}+\left(-C-\sqrt{B^{3}+C^{2}}\right)^{\frac{1}{3}}
$$

and this is the well-known formula of Cardan.
The algebraic solution of the cubic equation (i) hence consists in finding B and C by (2) in terms of the given coefficients, and then by (3) the elements s_{1} and s_{2} are determined. Finally,

$$
\begin{align*}
& x_{1}=-a+\left(s_{1}+s_{2}\right), \\
& x_{2}=-a-\frac{1}{2}\left(s_{1}+s_{2}\right)+\frac{1}{2} \sqrt{-3}\left(s_{1}-s_{2}\right), \tag{4}\\
& x_{3}=-a-\frac{1}{2}\left(s_{1}+s_{2}\right)-\frac{1}{2} \sqrt{ } \overline{-3}\left(s_{1}-s_{2}\right),
\end{align*}
$$

which are the algebraic expressions of the three roots.
When $B^{3}+C^{2}$ is negative the numerical solution of the cubic is not possible by these formulas, as then both s_{1} and s_{2} are in irreducible imaginary form. This, as is well known, is the case of three real roots, $s_{1}+s_{2}$ being a real, while $s_{1}-s_{2}$ is a pure imaginary.* When $B^{3}+C^{2}$ is o the elements s_{1} and s_{2} are equal, and there are two equal roots, $x_{2}=x_{3}=-a+C^{\frac{3}{3}}$, while the other root is $x_{1}=-a-2 C^{\frac{1}{3}}$.

When $B^{3}+C^{2}$ is positive the equation has one real and two imaginary roots, and formulas (2), (3), and (4) furnish the numerical values of the roots of (I). For example, take the cubic

$$
x^{3}-4.5 x^{2}+12 x-5=0,
$$

whence by comparison with (1) are found $a=-\mathbf{1 . 5}, b=+4$, $c=-2.5$. Then from (2) are computed $B=1.75, C=+3.125$. These values inserted in (3) give $s_{1}=+0.9142, s_{2}=-1.9142$; thus $s_{1}+s_{2}=-$ I.O and $s_{1}-s_{2}=+2.8284$. Finally, from (4)

$$
\begin{aligned}
& x_{1}=1.5-1.0=+0.5 \\
& x_{2}=1.5+0.5+1.4142 \sqrt{-3}=2+2.4495 i \\
& x_{3}=1.5+0.5-1.4142 \sqrt{-3}=2-2.4495 i
\end{aligned}
$$

which are the three roots of the given cubic.

[^6]Prob. 12. Compute the roots of $x^{3}-2 x-5=0$. Also the roots of $x^{3}+0.6 x^{2}-5.76 x+4.32=0$.

Prob. 13. A cone has its altitude 6 inches and the diameter of its base 5 inches. It is placed with vertex downwards and one fifth of its volume is filled with water. If a sphere 4 inches in diameter be then put into the cone, what part of its radius is immersed in the water? (Ans. o. 5459 inches).

Art. 10. The Quartic Equation.

The quartic equation was first solved in 1545 by Ferrari, who separated it into the difference of two squares. Descartes in 1637 resolved it into the product of two quadratic factors. Tschirnhausen in 1683 removed the second and fourth terms. Euler in 1732 and Lagrange in 1767 effected solutions by assuming the form of the roots. All these methods lead to cubic resolvents, the roots of which are first to be found in order to determine those of the quartic.

The methods of Euler and Lagrange, which are closely similar, first reduce the quartic to one lacking the second term,

$$
y^{4}+6 B y^{2}+4 C y+D=0 ;
$$

and the general form of the roots being taken as

$$
\begin{array}{ll}
y_{1}=+\sqrt{s_{1}}+\sqrt{s_{2}}+\sqrt{s_{3}}, & y_{3}=-\sqrt{s_{2}}+\sqrt{s_{2}}-\sqrt{s_{3}}, \\
y_{2}=+\sqrt{s_{1}}-\sqrt{s_{2}}-\sqrt{s_{3}}, & y_{4}=-\sqrt{s_{1}}-\sqrt{s_{2}}+\sqrt{s_{3}},
\end{array}
$$

the values s_{1}, s_{2}, s_{2}, are shown to be the roots of the resolvent,

$$
s^{3}+3 B s^{2}+\frac{1}{4}\left(9 B^{2}-D\right) s-\frac{1}{4} C^{2}=0 .
$$

Thus the roots of the quartic are algebraically expressed in terms of the coefficients of the quartic, since the resolvent is solvable by the process of Art. 9.

Whatever method of solution be followed, the following final formulas, deduced by the author in 1892, will result.* Let the complete quartic equation be written in the form

$$
\begin{equation*}
x^{4}+4 a x^{3}+6 b x^{2}+4 c x+d=0 . \tag{I}
\end{equation*}
$$

[^7]First, let g, h, and k be determined from
$g=a^{2}-b, \quad h=b^{3}+c^{2}-2 a b c+d g, \quad k=\frac{4}{3} a c-b^{2}-\frac{1}{3} d$. (2)
Secondly, let l be obtained by

$$
\begin{equation*}
l=\frac{1}{2}\left(h+\sqrt{h^{2}+k^{3}}\right)^{\frac{3}{3}}+\frac{1}{2}\left(h-\sqrt{h^{2}+k^{3}}\right)^{\frac{3}{3}} \tag{3}
\end{equation*}
$$

Thirdly, let u, v, and w be found from

$$
\begin{equation*}
u=g+l, \quad v=2 g-l, \quad w=4 u^{2}+3 k-12 g l . \tag{4}
\end{equation*}
$$

Then the four roots of the quartic equation are

$$
\left.\begin{array}{l}
x_{1}=-a+\sqrt{u}+\sqrt{v+\sqrt{w}} \tag{5}\\
x_{2}=-a+\sqrt{u}-\sqrt{v+\sqrt{w}} \\
x_{3}=-a-\sqrt{u}+\sqrt{v-\sqrt{w}} \\
x_{1}=-a-\sqrt{u}-\sqrt{v-\sqrt{w}},
\end{array}\right\}
$$

in which the signs are to be used as written provided that $2 a^{3}-3 a b+c$ is a negative number; but if this is positive all radicals except $\sqrt{v} w$ are to be reversed in sign.

These formulas not only serve for the complete theoretic discussion of the quartic (1), but they enable numerical solutions to be made whenever (3) can be computed, that is, whenever $h^{2}+k^{3}$ is positive. For this case the quartic has two real and two imaginary roots. If there be either four real roots or four imaginary roots $h^{2}+k^{3}$ is negative, and the irreducible case arises where convenient numerical values cannot be obtained, although they are correctly represented by the formulas.

As an example let a given rectangle have the sides p and q, and let it be required to find the length of an inscribed rectangle whose width is m. If x be this length, this is a root of the quartic equation

$$
x^{4}-\left(p^{2}+q^{2}+2 m^{2}\right) x^{2}+4 p q m x-\left(p^{2}+q^{2}-m^{2}\right) m^{2}=0
$$

and thus the problem is numerically solvable by the above formulas if two roots are real and two imaginary. As a special case let $p=4$ feet, $q=3$ feet, and $m=1$ foot; then

$$
x^{4}-27 x^{2}+48 x-24=0
$$

By comparison with (1) are found $a=0, b=-4 \frac{1}{2}, c=+12$, and $d=-24$. Then from (2), $g=+4 \frac{1}{2}, h=-\frac{44}{8} 1$, and $k=+\frac{49}{4}$. Thus $l^{2}+k^{3}$ is positive, and from (3) the value of l is -3.6067 . From (4) are now found, $u=+0.8933, v=12.6067$, and $w=+16 \mathbf{1} .20$. Then, since c is positive, the values of the four roots are, by (5),

$$
\begin{aligned}
& x_{1}=-0.945-\sqrt{12.607+12.697}=-5.975 \text { feet, } \\
& x_{2}=-0.945+\sqrt{12.607+12.697}=+4.085 \text { feet }, \\
& x_{3}=40.945-\sqrt{12.607-12.697}=+0.945-0.30 i, \\
& x_{4}=+0945+\sqrt{12.607-12.697}=+0.945+0.30 i,
\end{aligned}
$$

the second of which is evidently the required length. Each of these roots closely satisfies the given equation, the slight discrepancy in each case being due to the rounding off at the third decimal.*

Prob. 14. Compute the roots of the equation $x^{4}+7 x+6=0$. (Ans. - 1.388, - 1.000, r.194 \pm 1.701i.)

Art. 11. Quintic Equations.

The complete equation of the fifth degree is not algebraically solvable, nor is it reducible to a solvable form. Let the equation be

$$
x^{6}+5 a x^{4}+5 b x^{3}+5 c x^{2}+5 d x+2 e=0
$$

and by substituting $y-a$ for x let it be reduced to

$$
y^{5}+5 B y^{3}+5 C y^{2}+5 D y+2 E=0 .
$$

The five roots of this are, according to Art. 8,

$$
\begin{aligned}
& y_{1}=s_{1}+s_{2}+s_{3}+s_{4}, \\
& y_{2}=\epsilon s_{1}+\epsilon^{2} S_{2}+\epsilon^{3} S_{3}+\epsilon^{4} s_{4}, \\
& y_{3}=\epsilon^{2} S_{1}+\epsilon^{4} S_{2}+\epsilon s_{2}+\epsilon^{3} S_{4}, \\
& y_{4}=\epsilon^{3} S_{1}+\epsilon s_{2}+\epsilon^{4} S_{3}+\epsilon^{2} S_{4}, \\
& y_{5}=\epsilon^{4} S_{1}+\epsilon^{3} S_{2}+\epsilon^{2} S_{2}+\epsilon S_{4},
\end{aligned}
$$

in which $\epsilon, \epsilon^{\mathbf{2}}, \epsilon^{3} \epsilon^{4}$ are the imaginary fifth roots of unity. Now if the several products of these roots be taken there will be

[^8]found, by (4) of Art. 6, four equations connecting the four elements s_{1}, s_{2}, s_{3}, and s_{4}, namely,

- $B=s_{1} s_{4}+s_{2} s_{3}$,
$-C=s_{1}^{2} s_{3}+s_{2}{ }^{2} s_{1}+s_{3}{ }^{2} s_{4}+s_{4}^{2} s_{2}$,
$-D=s_{1}{ }^{3} s_{2}+s_{2}{ }^{3} s_{4}+s_{3}{ }^{3} s_{1}+s_{4} s_{3}{ }^{3}-s_{1}{ }^{2} s_{4}{ }^{2}-s_{2}{ }^{2} s_{3}+s_{1} s_{2} s_{3} s_{4}$,
$-2 E=s_{1}{ }^{5}+s_{2}{ }^{5}+s_{3}^{5}+s_{4}^{5}+5\left(s_{1}{ }^{2} s_{2}{ }^{2} s_{4}+s_{1}{ }^{2} s_{3}{ }^{2} s_{2}+s_{2}{ }^{2} s_{4}{ }^{2} s_{3}+s_{3}{ }^{2} s_{4}{ }^{2} s_{1}\right)$
$-5\left(s_{1}{ }^{3} s_{2} s_{4}+s_{2}{ }^{3} s_{1} s_{3}+s_{3}{ }^{3} s_{2} s_{4}+s_{4}{ }^{3} s_{1} s_{2}\right) ;$
but the solution of these leads to an equation of the 120th degree for s, or of the 24th degree for s^{5}. However, by taking $s_{1} s_{4}-s_{2} s_{3}$ or $s_{1}^{5}+s_{2}^{5}+s_{3}^{5}+s_{4}^{5}$ as the unknown quantity, a resolvent of the 6th degree is obtained, and all efforts to find a resolvent of the fourth degree have proved unavailing.

Another line of attack upon the quintic is in attempting to remove all the terms intermediate between the first and the last. By substituting $y^{2}+p y+q$ for x, the values of p and q may be determined so as to remove the second and third terms by a quadratic equation, or the second and third by a cubic equation, or the second and fourth by a quartic equation, as was first shown by Tschirnhausen in 1683. By substituting $y^{3}+p y^{2}+q y+r$ for x, three terms may be removed, as was shown by Bring in 1786. By substituting $y^{4}+p y^{3}+q y^{2}+r y+t$ for x it was thought by Jerrard in 1833 that four terms might be removed, but Hamilton showed later that this leads to equations of a degree higher than the fourth.

In 1826 Abel gave a demonstration that the algebraic solution of the general quintic is impossible, and later Galois published a more extended investigation leading to the same conclusion.* The reason for the algebraic solvability of the quartic equation may be briefly stated as the fact that there exist rational three-valued functions of four quantities. There are, however, no rational four-valued functions of five quantities, and accordingly a quartic resolvent cannot be found for the general quintic equation.

[^9]There are, however, numerous special forms of the quintic whose algebraic solution is possible. The oldest of these is the quintic of De Moivre,

$$
y^{6}+5 B y^{3}+5 B^{2} y+2 E=0
$$

which is solved at once by making $s_{2}=s_{3}=0$ in the element equations; then $-B=s_{1} s_{4}$ and $-2 E=s_{1}^{5}+s_{4}^{5}$, from which s_{1} and s_{4} are found, and $y_{1}=s_{1}+s_{4}$, or

$$
y_{1}=\left(-E+\sqrt{B^{5}+E^{2}}\right)^{\frac{1}{t}}+\left(-E-\sqrt{B^{5}+E^{2}}\right)^{\frac{1}{t}}
$$

while the other roots are $y_{2}=\epsilon s_{1}+\epsilon^{4} s_{4}, y_{3}=\epsilon^{2} s_{1}+\epsilon^{3} s_{1}$, $y_{4}=\epsilon^{3} s_{1}+\epsilon^{2} s_{4}$, and $y_{5}=\epsilon^{4} s_{1}+\epsilon s_{4}$. If $B^{5}+E^{2}$ be negative, this quintic has five real roots; if positive, there are one real and four imaginary roots.

When any relation, other than those expressed by the four element equations, exists between $s_{1}, s_{2}, s_{3}, s_{4}$, the quintic is solvable algebraically. As an infinite number of such relations may be stated, it follows that there are an infinite number of solvable quintics. In each case of this kind, however, the coefficients of the quintic are also related to each other by a certain equation of condition.

The complete solution of the quintic in terms of one of the roots of its resolvent sextic was made bý McClintock in 1884.* By this method $s_{1}{ }^{5}, s_{2}{ }^{5}, s_{3}{ }^{6}$, and s_{4}^{5} are expressed as the roots of a quartic in terms of a quantity t which is the root of a sextic whose coefficients are rational functions of those of the given quintic. Although this has great theoretic interest, it is, of course, of little practical value for the determination of numerical values of the roots.

By means of elliptic functions the complete quintic can, however, be solved, as was first shown by Hermite in 1858. For this purpose the quintic is reduced by Jerrard's transformation to the form $x^{3}+5 d x+2 e=0$, and to this form can also be reduced the elliptic modular equation of the sixth degree. Other solutions by elliptic functions were made by

[^10]Kronecker in 1861 and by Klein in 1884.* These methods, though feasible by the help of tables, have not yet been systematized so as to be of practical advantage in the numerical computation of roots.

Prob. 15. If the relation $s_{1} s_{4}=s_{2} s_{\text {, exists }}$ between the elements show that $s_{1}{ }^{5}+s_{2}{ }^{5}+s_{3}^{5}+s_{4}^{5}=-2 E$.

Prob. 16. Compute the roots of $y^{5}+10 y^{3}+20 y+6=0$, and also those of $y^{5}-10 y^{3}+20 y+6=0$.

Art. 12. Trigonometric Solutions.

When a cubic equation has three real roots the most convenient practical method of solution is by the use of a table of sines and cosines. If the cubic be stated in the form (1) of Art. 9, let the second term be removed, giving

$$
y^{3}+3 B y+2 C=0 .
$$

Now suppose $y=2 r \sin \theta$, then this equation becomes

$$
8 \sin ^{3} \theta+6 \frac{B}{r^{2}} \sin \theta+2 \frac{C}{r^{3}}=0
$$

and by comparison with the known trigonometric formula

$$
8 \sin ^{3} \theta-6 \sin \theta+2 \sin 3 \theta=0
$$

there are found for r and $\sin 3 \theta$ the values

$$
r=\sqrt{-\bar{B}}, \quad \sin 3 \theta=C / \sqrt{-B^{3}}
$$

in which B is always negative for the case of three real roots (Art. 9). Now $\sin 3^{\theta}$ being computed, 3^{θ} is found from a table of sines, and then θ is known. Thus,
$y_{1}=2 r \sin \theta, y_{2}=2 r \sin \left(120^{\circ}+\theta\right), y_{3}=2 r \sin \left(240^{\circ}+\theta\right)$, are the real roots of the cubic in $y . \dagger$

[^11]For example, the depth of flotation of a sphere whose diameter is 2 feet and specific gravity 0.65 , is given by the cubic equation $x^{3}-3 x^{2}+2.6=0$ (Art. 6). Placing $x=y+1$ this reduces to $y^{3}-3 y+0.6=0$, for which $B=-\mathrm{I}$ and $C=+0.3$. Thus $r=1$ and $\sin 3 \theta=+0.3$. Next from a table of sines, $3 \theta=17^{\circ} 27^{\prime}$, and accordingly $\theta=5^{\circ} 49^{\prime}$. Then

$$
\begin{aligned}
& y_{1}=2 \sin \quad 5^{\circ} 49^{\prime}=+0.2027, \\
& y_{2}=2 \sin 125^{\circ} 49^{\prime}=+1.6218, \\
& y_{3}=2 \sin 245^{\circ} 49^{\prime}=-1.8245 .
\end{aligned}
$$

Adding i to each of these, the values of x are

$$
x_{1}=+\mathrm{i} .203 \text { feet, } x_{2}=+2.622 \text { feet, } x_{3}=-0.825 \text { feet } ;
$$

and evidently, from the physical aspect of the question, the first of these is the required depth. It may be noted that the number 0.3 is also the sine of $162^{\circ} 11^{\prime}$, but by using this the three roots have the same values in a different order.

When the quartic equation has four real roots its cubic resolvent has also three real roots. In this case the formulas of Art. IO will furnish the solution if the three values of l be obtained from (3) by the help of a table of sines. The quartic being given, g, h, and k are found as before, and the value of k will always be negative for four real roots. Then

$$
r=\sqrt{-k}, \quad \sin 3 \theta=-h / r^{3}
$$

and 3θ is taken from a table; thus θ is known, and the three values of l are
$l_{1}=r \sin \theta, \quad l_{2}=r \sin \left(120^{\circ}+\theta\right), \quad l_{3}=r \sin \left(240^{\circ}+\theta\right)$.
Next the three values of u, of v, and of w are computed, and those selected which give u, w, and $v-\sqrt{v} w$ all positive quantities. Then (5) gives the required roots of the quartic.

As an example, take the case of the inscribed rectangle in Art. io, and let $p=4$ feet, $q=3$ feet, $m=\sqrt{13}$ feet; then the quartic equation is

$$
x^{4}-51 x^{2}+48 \sqrt{13} x-156=0
$$

Here $a=0 . j=-8 \frac{1}{2}, c=+12 \sqrt{\mathrm{I} 3}$, and $d=-156$. Next $g=+8 \frac{1}{2}, h=-\frac{54}{8}$, and $k=-\frac{81}{4}$. The trigonometric work now begins; the value of r is found to be $+4 \frac{1}{2}$, and that of $\sin 3^{\theta}$ to be +0.7476 ; hence from the table $3^{\theta}=48^{\circ} 23^{\prime}$, and $\theta=16^{\circ} 07^{\prime} 40^{\prime \prime}$. The three values of l are then computed by logarithmic tables, and found to be,

$$
l_{1}=+1.250, \quad l_{2}=+3.1187, \quad l_{4}=-4.3687
$$

Next the values of u, v, and v are obtained, and it is seen that only those corresponding to l_{1} will render all quantities under the radicals positive ; these quantities are $u=9.75, v=15.75$, and $w=$ i92.0. Then the four roots of the quartic are
$x_{1}=-8.564, \quad x_{2}=+2.319, \quad x_{3}=+1.746, \quad x_{4}=+4.499$ feet, of which only the second and third belong to inscribed rectangles, while the first and fourth belong to rectangles whose corners are on the sides of the given rectangle produced.

Trigonometric solutions of the quintic equation are not possible except for the binomial $x^{6} \pm a$, and the quintic of De Moivre. The general trigonometric expression for the root of a quintic lacking its second term is $y=2 r_{1} \cos \theta_{1}+2 r_{2} \cos \theta_{2}$, and to render a solution possible, r_{1} and r_{2}, as well as $\cos \theta_{1}$ and $\cos \theta_{2}$, must be found; but these in general are roots of equations of the sixth or twelfth degree: in fact $r_{1}{ }^{2}$ is the same as the function $s_{1} s_{4}$ of Art. II, and $r_{2}{ }^{2}$ is the same as $s_{2} s_{3}$. Here $\cos \theta_{1}$ and $\cos \theta_{2}$ may be either circular or hyperbolic cosines, depending upon the signs and values of the coefficients of the quintic.

Trigonometric solutions are possible for any binomial equation, and also for any equation which expresses the division of an angle into equal parts. Thus the roots of $x^{6}+1=0$ are $\cos m 30^{\circ} \pm i \sin m 30^{\circ}$, in which m has the values $\mathrm{I}, 2$, and 3. The roots of $x^{6}-5 x^{3}+5 x-2 \cos 5 \theta=0$ are $2 \cos \left(m 72^{\circ}+\theta\right)$ where m has the values $0,1,2,3$, and 4 .

Prob. 17. Compute by a trigonometric solution the four roots of the quartic $x^{4}+4 x^{3}-24 x^{2}-76 x-29=0$. (Ans. -6.734, - 1.550, $+0.262,+4.022)$.

Prob. 18. Give a trigonometric solution of the quintic equation $x^{5}-5 b x^{3}+5 b^{2} x-2 e=0$ for the case of five real roots. Compute the roots when $b=1$ and $e=0.75^{2798}$. (Ans. - 1.7940, -1.395^{2}, $0.2864,0.9317,1.9710$.

Art. 13. Real Roots by Series.

The value of x in any algebraic equation may be expressed as an infinite series. Let the equation be of any degree, and by dividing by the coefficient of the term containing the first power of x let it be placed in the form

$$
a=x+b x^{2}+c x^{3}+d x^{4}+c x^{5}+f x^{6}+\ldots
$$

Now let it be assumed that x can be expressed by the series

$$
x=a+m a^{2}+n a^{3}+p a^{4}+q a^{6}+\ldots
$$

By inserting this value of x in the equation and equating the coefficients of like powers of a, the values of m, n, etc., are found, and then

$$
\begin{aligned}
x= & a-b a^{2}+\left(2 b^{2}-c\right) a^{3}-\left(5 b^{3}-5 b c+d\right) a^{4}+\left(14 b^{4}-21 b^{2} c+6 b d+3 c^{2}-c\right) a^{4} \\
& -\left(42 b^{5}-84 b^{3} c+28 b^{2} d+28 b c^{2}-7 b c-7 c d+f\right) a^{6}+\ldots,
\end{aligned}
$$

is an expression of one of the roots of the equation. In order that this series may converge rapidly it is necessary that a should be a small fraction.*

To apply this to a cubic equation the coefficients d, e, f, etc., are made equal to o, For example, let $x^{3}-3 x+0.6=0$; this reduced to the given form is $0.2=x-\frac{1}{3} x^{3}$, hence $a=0.2$, $b=0, c=-\frac{1}{3}$, and then

$$
x=0.2+\frac{1}{3} \cdot 0.2^{3}+\frac{1}{3} \cdot 0.2^{5}+\text { etc. }=+0.20277
$$

which is the value of one of the roots correct to the fourth decimal place. This equation has three real roots, but the series gives only one of them; the others can, however, be found if their approximate values are known. Thus, one root is about +I .6 , and by placing $x=y+\mathrm{I} .6$ there results an equation in y whose root by the series is found to be +0.02 I 8 , and hence +I .62 I 8 is another root of $x^{3}-3 x+0.6=0$.

* This method is given by J. B. Mott in The Analyst, I882, Vol. IX, p. 104.

Cardan's expression for the root of a cubic equation can be expressed as a series by developing each of the cube roots by the binomial formula and adding the results. Let the equation be $y^{3}+3 B y+2 C=0$, whose root is, by Art. 9 ,

$$
y=\left(-C+\sqrt{B^{3}+C^{2}}\right)^{\frac{2}{3}}+\left(-C-\sqrt{B^{3}+C^{2}}\right)^{\frac{3}{3}},
$$

then this development gives the series,
$y=2(-C)^{3}\left(\mathrm{I}-\frac{2}{2} r-\frac{2 \cdot 5 \cdot 8}{2 \cdot 3 \cdot 4} r^{2}-\frac{2 \cdot 5 \cdot 8 \cdot 11 \cdot 14}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} r^{3}-\ldots\right)$, in which r represents the quantity $\left(B^{3}+C^{2}\right) / 3 C^{2}$. If $r=0$ the equation has two equal roots and the third root is $2(-C)^{\frac{1}{3}}$. If r is numerically greater than unity the series is divergent, and the solution fails. If r is numerically less than unity and sufficiently small to make a quick convergence, the series will serve for the computation of one real root. For example, take the equation $x^{3}-6 x+6=0$, where $B=-2$ and $C=3$; hence $r=1 / 8 \mathrm{I}$, and one root is
$y=-2.8845(1-0.01235-0.0005 \mathrm{I}-0.00032-)=-2.846$, which is correct to the third decimal. In comparatively few cases, however, is this series of value for the solution of cubics.

Many other series for the expression of the roots of equations, particularly for trinomial equations, have been devised. One of the oldest is that given by Lambert in 1758, whereby the root of $x^{n}+a x-b=0$ is developed in terms of the ascending powers of b / a. Other solutions were published by Euler and Lagrange. These series usually give but one root, and this only when the values of the coefficients are such as to render convergence rapid.

Prob. 19. Consult Euler's Anleitung zur Algebra (St. Petersburg, ${ }^{1771}$), pp. 143-150, and apply his method of series to the solution of a quartic equation.

Art. 14. Computaticn of all Roots.

A comprehensive and valuable method for the solution of equations by series was developed by McClintock, in 1894, by
means of his Calculus of Enlargement.* By this method all the roots, whether real or imaginary, may be computed from a single series. The following is a statement of the method as applied to trinomial equations:

Let $x^{n}=n A x^{n-k}+B^{n}$ be the given trinomial equation. Substitute $x=B y$ and thus reduce the equation to the form $y^{n}=n a y^{n-k}+\mathrm{I}$ where $a=A / B^{k}$. Then if B^{n} is positive, the roots are given by the series

$$
\begin{aligned}
y=\omega & +\omega^{1-k} a+\omega^{1-2 k}(\mathrm{I}-2 k+n) a^{2} / 2! \\
& +\omega^{1-3 k}(\mathrm{I}-3 k+n)(\mathrm{I}-3 k+2 n) a^{3} / 3! \\
& +\omega^{1-4 k}(\mathrm{I}-4 k+n)(\mathrm{I}-4 k+2 n)(\mathrm{I}-4 k+3 n) a^{4} / 4!+\ldots
\end{aligned}
$$

in which ω represents in succession each of the roots of unity. If, however, B^{n} is negative, the given equation reduces to $y^{n}=n a y^{n-k}-\mathrm{I}$, and the same series gives the roots if ω be taken in succession as each of the roots of -I .

In order that this series may be convergent the value of a^{n} must be numerically less than $k^{-k}(n-k)^{k-n}$; thus for the quartic $y^{4}=4 a x+\mathrm{I}$, where $n=4$ and $k=3$, the value of a must be less than $27^{-\frac{1}{2}}$.

To apply this method to the cubic equation $x^{3}=3 A x \pm B^{3}$, place $n=3$ and $k=2$, and put $y=B x$. It then becomes $y^{3}=3 a y \pm 1$ where $a=A / B^{2}$, and the series is

$$
y=\omega+\omega^{2} a-\frac{1}{3} \omega a^{3}+\frac{1}{3} \omega^{2} a^{4}+\ldots,
$$

in which the values to be taken for ω are the cube roots of I or -1 , as the ease may be. For example, let $x^{3}-2 x-5=0$. Placing $y=5^{\frac{1}{3}} x$, this reduces to $y^{3}=0.684 y+\mathrm{I}$. Here $a=0.228$, and as this is less than $4^{-\frac{1}{3}}$ the series is convergent. Making $\omega=1$, the first root is

$$
y=\mathrm{I}+0.2280-0.0039+0.0009=1.2250
$$

[^12]Next making $\omega=-\frac{1}{2}+\frac{1}{2} \sqrt{-3}, \omega^{3}$ is $-\frac{1}{2}-\frac{1}{2} \sqrt{-3}$, and the corresponding root is found to be

$$
y=-0.6125+0.3836 \sqrt{-3}
$$

Again, making $\omega=-\frac{1}{2}-\frac{1}{2} \sqrt{-3}$ the third root is found to be the conjugate imaginary of the second. Lastly, multiplying each value of y by 5^{3},

$$
x=2.095, \quad x=-1.047 \pm 1.136 \sqrt{-1},
$$

which are very nearly the roots of $x^{3}-2 x-5=0$.
In a similar manner the cubic $x^{3}+2 x+5=0$ reduces to $y^{3}=-0.684 y-1$, for which the series is convergent. Here the three values of ω are, in succession, $-1, \frac{1}{2}+\frac{1}{2} \sqrt{-3}$, $-\frac{1}{2}+\frac{1}{2} \sqrt[1]{-3}$, and the three roots are $y=-0.777$ and $y=0.388 \pm 1.137$ i.

When all the roots are real, the method as above stated fails because the series is divergent. The given equation can, however, be transformed so as to obtain $n-k$ roots by one application of the general series and k roots by another. As an example, let $x^{3}-243 x+330=0$. For the first application this is to be written in the form

$$
x=\frac{x^{3}}{243}+\frac{330}{243}
$$

for which $n=\mathrm{I}$ and $k=-2$. To make the last term unity place $x=\frac{330}{243} y$, and the equation becomes

$$
y=\frac{330^{3}}{243^{2}} y^{3}+1
$$

whence $a=330^{3} / 3.243^{2}$. These values of n, k, and a are now inserted in the above general value of y, and ω made unity: thus $y=0.9983$, whence $x_{1}=\mathrm{I} .368$ is one of the roots. For the second application the equation is to be written

$$
x^{2}=-\frac{330}{243} x^{-1}+243
$$

for which $n=2$ and $k=3$. Placing $x=243^{\frac{3}{2} y \text {, this becomes }}$

$$
y^{2}=-\frac{340}{243^{3}} y^{-1}+1
$$

whence $a=-110 / 243^{\frac{3}{2}}$, and the series is convergent. These values of n, k, and a are now inserted in the formula for y, and ω is made +1 and -1 in succession, thus giving two values for y, from which $x_{2}=14.86$ and $x_{3}=-16.22$ are the other roots of the given cubic.

McClintock has also given a similar and more general method applicable to other algebraic equations than trinomials. The equation is reduced to the form $y^{n}=n a . \phi y \pm \mathrm{r}$, where $n a . \phi y$ denotes all the terms except the first and the last. Then the values of y are expressed by the series

$$
\begin{aligned}
y=\omega+\omega^{\mathrm{I}-n} \phi \omega \cdot a & +\omega^{\mathrm{I}-n} \frac{d}{d \omega^{1}} \omega^{\mathrm{I}-n}(\phi \omega)^{2} \cdot \frac{a^{2}}{2!}+ \\
& +\left(\omega^{\mathrm{I}-n} \frac{d}{d \omega}\right)^{2} \omega^{\mathrm{T}-n}(\phi \omega)^{2} \cdot \frac{a^{3}}{3!}+\ldots,
\end{aligned}
$$

in which the values of ω are to be taken as before. The method is one of great importance in the theory of equations, as it enables not only the number of real and imaginary roots to be determined, but also gives their values when the convergence of the series is secured.

Prob. 20. Compute by the above method all the roots of the quartic $x^{4}+x+10=0$.

Art. 15. Roots of Unity.
The roots of +I and -I are required to be known in the numerical solution of algebraic equations by the method of the last article. From the theory of binomial equations given in all text-books on algebra, the n roots of +1 are

$$
\begin{equation*}
(+\mathrm{I})^{\frac{m}{n}}=\cos (m / n) 2 \pi+i \sin (m / n) 2 \pi, \quad m=\mathrm{I}, 2,3, \ldots n, \tag{I}
\end{equation*}
$$

while those of -1 are expressed by

$$
\begin{equation*}
(-1)^{\frac{m}{n}}=\cos (m / n) \pi+i \sin (m / n) \pi, \quad m=1,2,3, \ldots n, \tag{2}
\end{equation*}
$$

in which i represents the square root of -I . From these general formulas it is seen that the two imaginary cube roots of +1 are

$$
\begin{aligned}
& \varepsilon_{1}=-\frac{1}{2}+\frac{1}{2} i \sqrt{3}=-0.5+0.8660254 i, \\
& \varepsilon_{2}=-\frac{1}{2}-\frac{1}{2} i \sqrt{3}=-0.5-0.8660254 i,
\end{aligned}
$$

and that the two imaginary cube roots of -1 are

$$
\begin{aligned}
& \dot{\varepsilon}_{1}^{\prime}=+\frac{1}{2}+\frac{1}{2} i \sqrt{3}=+0.5+0.8660254 i, \\
& \varepsilon_{2}^{\prime}=+\frac{1}{2}-\frac{1}{2} i \sqrt{3}=+0.5-0.8660254 i .
\end{aligned}
$$

For the first case $\varepsilon_{1}+\varepsilon_{2}+\mathrm{I}=0$ and $\varepsilon_{1} \varepsilon_{2}=\mathrm{I}$, as also $\varepsilon_{1}=\varepsilon_{2}{ }^{2}$ and $\varepsilon_{2}^{2}=\varepsilon_{1}^{2}$, and similar relations apply to the other case.

The imaginary fifth roots of positive unity are given in Art. 8 expressed in radicals; reducing these to decimals, or deriving them from the above formula (1) with the help of a trigonometric table, there result

$$
\begin{array}{lll}
\varepsilon=+0.3090170+0.9510565 i, & \varepsilon^{2}=-0.8090170+0.5877853 i, \\
\varepsilon^{4}=+0.3090170-0.9510565 i, & \varepsilon^{3}=-0.8090170-0.5877853 i,
\end{array}
$$

while the imaginary fifth roots of negative unity are obtained from these by changing the signs. In general, if ω is an imaginary $n^{\text {th }}$ root of positive unity, $-\omega$ is an imaginary $n^{\text {th }}$ root of negative unity.

The imaginary sixth roots of positive unity may be expressed in terms of the cube roots. Let ε be one of the imaginary cube roots of +1 , then the imaginary sixth roots of +1 are $+\varepsilon,+\varepsilon^{2}$; $-\varepsilon,-\varepsilon^{2}$; these are also the imaginary sixth roots of -1 .

From (1) the imaginary seventh roots of +1 are found to be

$$
\begin{array}{ll}
\varepsilon=+0.6234898+0.7818316 i, & \varepsilon^{6}=+0.6234898-0.7818316 i, \\
\varepsilon^{2}=-0.2225209+0.9749234 i, & \varepsilon^{5}=-0.2225209-0.9749234 i, \\
\varepsilon^{3}=-0.9009688+0.4338837 i, & \varepsilon^{4}=-0.9009688-0.4338837 i,
\end{array}
$$

and if the signs of these be reversed there result the imaginary seventh roots of -I .

The imaginary eighth roots of +I are $+\boldsymbol{i},-\boldsymbol{i},+\frac{1}{2} \sqrt{2}(\mathrm{I} \pm i)$, and $-\frac{1}{2} \sqrt{2}(1 \pm i)$. The imaginary ninth roots of +I are the two
imaginary cube roots of $+\mathrm{I}, \cos \frac{2}{9} \pi \pm i \sin \frac{2}{9} \pi$, and $\cos \frac{4}{9} \pi \pm i \sin \frac{4}{9} \pi$. The imaginary tenth roots of +1 are the five imaginary roots of $+I$ and the five imaginary roots of $-I$. For any value of n the roots of +1 may be graphically represented in a circle of unit radius by taking one radius as +1 and drawing other radii to divide the circle into n equal parts; if unit distances normal to +I and -I be called $+i$ and $-i$, the n radii represent all the roots of +1 . When this figure is viewed in a mirror, the image represents the n roots of -I . Or, in other words, the $(m / n)^{\text {th }}$ roots of +1 are unit vectors which make the angles $(m / n)_{2 \pi}$ with the unit vector +I , while the $(m / n)^{\text {th }}$ roots of -I are unit vectors which make the angles $(m / n) 2 \pi$ with the unit vector -I .

The n roots of any unit vector $\cos \theta+i \sin \theta$ are readily found from De Moivre's theorem by the help of trigonometric tables. Accordingly the cube roots of this vector are $\cos \frac{1}{3} \theta+i \sin \frac{1}{3} \theta$, $\cos \frac{1}{3}(\theta+2 \pi)+i \sin \frac{1}{3}(\theta+2 \pi)$ and $\cos \frac{1}{3}(\theta+4 \pi)+i \sin \frac{1}{3}(\theta+4 \pi)$; the vectors representing these three roots divide the circle into three parts. The trigonometric solution of the cubic equation (Art. I2) is one application of De Moivre's theorem.

Prob. 21. Compute to six decimal places two or more of the eleventh imaginary roots of unity.

Prob. 22. Compute to five decimal places the five roots of the equation $x^{5}-0.8-0.6 i=0$.

Prob. 23. Compute to five decimal places the six roots of the equation $x^{6}-80+60 i=0$.

Art. 16. Solutions by Maclaurin's Formula.

In 1903 Lambert published a method for the expression by Maclaurin's formula of the roots of equations in infinite series.* It applies to both algebraic and transcendental equations, and for the former it gives all the roots whether they be real or imaginary. The method is based on the device of introducing a

[^13]factor x into all the terms but two of the equation $f(y)=0$, whereby y becomes an implicit function of x. The successive derivatives of y with respect to x are then obtained, and their values, as also those of y, are evaluated for $x=0$. By Maclaurin's formula, the expansions of y in powers of x become known, and if x be made unity in these expansions, the roots of $f(y)=0$ are found, provided the resulting series are convergent.

To illustrate this method by a numerical example, take the quartic equation

$$
\begin{equation*}
-y^{4}-3 y^{2}+75 y-10000=0 \tag{I}
\end{equation*}
$$

and introduce an x into the second and third terms, thus,

$$
\begin{equation*}
y^{4}-3 x y^{2}+75 x y-10000=0 \tag{2}
\end{equation*}
$$

By Maclaurin's formula y may be expressed in terms of x, and then when x is made unity, the four series thus obtained furnish the four roots of (I). Maclaurin's formula is •

$$
y=y_{0}+\left(\frac{d y}{d x}\right)_{0} x+\left(\frac{d^{2} y}{d x^{2}}\right)_{0} \frac{x^{2}}{2!}+\left(\frac{d^{3} y}{d x^{3}}\right)_{0} \frac{x^{3}}{3!}+\ldots,
$$

where $y_{0},(d y / d x)_{0},\left(d^{2} y / d x^{2}\right)_{0}$, etc., denote the values which y and the successive derivatives take when x is made o. Differentiating equation (2) twice in succession, and then placing $x=0$, there are found

$$
\begin{aligned}
y_{0} & =+10, \quad+10, \\
(d y / d x)_{0} & =-0.1125,-0.2625,+0.1875-0.0750 i,+0.1875+0.0750 i \\
\left(d^{2} y / d x^{2}\right)_{0} & =-0.0030,+0.0030,-0.0000+0.0039 i,-0.0000-0.0039 i
\end{aligned}
$$

in which i represents the square root of negative unity. Substituting each set of corresponding values in Maclaurin's formula and then placing $x=1$, there result

$$
\begin{array}{ll}
y_{1}=+9.886, & y_{3}=0.1875+9.927 i, \\
y_{2}=-10.26 \mathrm{I}, & y_{4}=0.1875-9.927 i,
\end{array}
$$

which are the roots of (I), all correct to the last decimal.

This method may be readily applied to the trinomial equation $y^{n}-n a y^{n-k}-b=0$. When x is inserted in the second term, the series obtained is

$$
\begin{aligned}
y=b^{\frac{1}{n}} & +\left(b^{\frac{1}{n}}\right)^{1-k} a+\left(b^{\frac{1}{n}}\right)^{1-2 k}(\mathrm{I}-2 k+n) a^{2} / 2! \\
& +\left(b^{\frac{\mathrm{I}}{n}}\right)^{1-3 k}(\mathrm{I}-3 k+n)(\mathrm{I}-3 k+2 n) a^{3} / 3! \\
& +\left(b^{\frac{1}{n}}\right)^{1-4 k}(\mathrm{I}-4 k+n)(\mathrm{I}-4 k+2 n)(\mathrm{I}-4 k+3 n) a^{4} / 4!+\ldots
\end{aligned}
$$

and each of the roots is hence expressed in an infinite series, since $b^{\frac{1}{n}}$ has n values. This series is convergent when a^{n} is numerically less than $k^{-k}(n-k)^{k-n} b^{k}$, and for this case the roots can be computed. Now the condition $a^{n}=k^{-k}(n-k)^{k-n} b^{k}$ is that of equal roots in the trinomial equation; hence for the cubic equation the above series is applicable when one root is real and the others imaginary, while for the quartic equation it is applicable when two roots are real and two imaginary. For the irreducible case in cubics and quartics the above series does not converge and the roots cannot be computed from it; this case is treated on the next page by inserting x in other terms. This series is the same as that derived for trinomial equations by McClintock's method of enlargement (Art. 14).

As a special case take the quintic equation $y^{5}-5 a y-1=0$, in which the value of n is 5 , that of k is 4 , and those of $b^{\frac{1}{3}}$ are the five imaginary roots of unity (Art. i5). When a is less than 4^{-4}, or a less than about 0.33 , the above series applies, and if ε designates one of the imaginary fifth roots of unity (Art. 15), the five roots of the equation are

$$
\begin{aligned}
& y_{1}=1+a-a^{2}+a^{3}-\frac{21}{5} a^{5}+\frac{78}{5} a^{7}-\frac{18}{5} 1 a^{7}+\frac{28}{5} a^{8}-\ldots, \\
& y_{2}=\varepsilon+\varepsilon^{2} a-\varepsilon^{3} a^{2}+\varepsilon^{4} a^{3}-\frac{21}{5} \varepsilon a^{5}+\frac{78}{5} \varepsilon^{2} a^{7}-\frac{18}{5} \frac{8}{5} \varepsilon^{3} a^{7}+\frac{28}{5} \frac{8}{5} \varepsilon^{4} a^{8}-\ldots, \\
& y_{3}=\varepsilon^{2}+\varepsilon^{4} a-\varepsilon a^{2}+\varepsilon^{3} a^{3}-\frac{2}{5} \varepsilon^{2} a^{5}+\frac{78}{5} \varepsilon^{4} a^{7}-\frac{18}{5} 7 \varepsilon a^{7}+\frac{28}{5} \frac{8}{6} \varepsilon^{3} a^{8}-\ldots, \\
& y_{4}=\varepsilon^{3}+\varepsilon a-\varepsilon^{4} a^{2}+\varepsilon^{2} a^{3}-\frac{21}{5} \varepsilon^{3} a^{5}+\frac{78}{15} \varepsilon a^{7}-\frac{18}{5} \varepsilon^{4} a^{7}+\frac{28}{5} \frac{6}{5} \varepsilon^{2} a^{8}-\ldots, \\
& y_{5}=\varepsilon^{4}+\varepsilon^{3} a-\varepsilon^{2} a^{2}+\varepsilon a^{3}-\frac{2}{5} \varepsilon^{4} a^{5}+\frac{78}{5} \varepsilon^{3} a^{7}-\frac{18}{5} \varepsilon^{2} \varepsilon^{2} a^{7}+\frac{286}{5} \varepsilon a^{8}-\ldots .
\end{aligned}
$$

For example, let $a=0.1$, or $y^{5}-\frac{1}{2} y-\mathrm{I}=0$; then the value of y_{1} is found to be +1.09097 , while the other roots are

$$
\begin{array}{ll}
y_{2}=+0.23649+\mathrm{I} .01470 i, & y_{3}=-0.781975+0.48372 i, \\
y_{4}=+0.23649-\mathrm{I} .01470 i, & y_{4}=-0.781975-0.48372 i,
\end{array}
$$

which are correct in the fifth decimal place.
For the case where a^{n} is greater than $k^{-k}(n-k)^{k-n} b^{n}$ in the trinomial equation $y^{n}-n a y^{n-k}-b=0$, the roots may be obtained by inserting x in other terms than the second. To illustrate the method by the quintic $y^{5}-5 a y-1=0$, let x be placed in the last term, giving $y^{5}-5 a y-x=0$; obtaining the derivatives and making $n=0$, there is found a series giving four of the roots, since $(5 a)^{\frac{1}{t}}$ in this series has four values. Again, placing x in the first term the equation is $x y^{5}-5 a y-1=0$; and applying the method, there is found a series which gives the other root. It may also be shown that these series are convergent when a^{5} is numerically greater than 4^{-4}. When $a^{5}=4^{-4}$ the quintic has two equal roots and the series do not apply, but in this case the equal roots are readily found (Art. 5) and after their removal the other three roots are found by the solution of a cubic equation.

When this method is applied to an algebraic equation of the $n^{\text {th }}$ degree which contains more terms than three, there may be obtained several series by inserting x in different terms, and the series desired are those which are convergent. A general rule for selecting the terms which are to contain x is given by Lambert, and he applies the method to the solution of the quintic equation $y^{5}-10 y^{3}+6 y+1=0$. First, writing $y^{5}-10 y^{3}+6 x y+x=0$, the values of y_{0} are +3.167 and -3.167 , those of $(d y / d x)_{0}$ are -I .00 and +0.090 , and those of ($d^{2} y / d x^{2}$) are -0.016 and +0.016; inserting these in Maclaurin's formula there are found $y_{1}=+3.05$ and $y_{2}=-3.06$. Secondly, writing $x y^{5}-10 y^{3}+6 y+$ $x=0$, a series results which gives $y_{3}=+0.87$ and $y_{4}=-0.69$. Lastly, writing $x y^{5}-10 x y^{3}+6 y+\mathrm{I}$, there is found $y_{5}=-0.17$.

This method may likewise be used for computing one of the roots of a transcendental equation, provided the resulting
series is convergent. For example, take $2 y+\log y-10000=0$. Writing $2 y+x \log y-10000=0$, there are found the values $y_{0}=+5000,(d y / d x)_{0}=-\frac{1}{2} \log y_{0}$, and $\left(d^{2} y / d x^{2}\right)_{0}=+0.0001 \log y_{0}$. When the logarithm is in the common system the root is $y=4998.15$; when it is in the Naperian system the root is $y=4995.74$.

Prob. 24. Compute the roots of $x^{3}-2 x-2=0$ by the above method and also by that of Art. 9 .

Prob. 25. The equation $y^{4}-11727 y+40385=0$ occurs in a paper on the precession of a viscous spheroid by G. H. Darwin in Philosophical Transactions of the Royal Society, 1879, Part ii, p. 508. Compute the four roots to five significant figures.

Art. 17. Symmetric Functions of Roots.

The coefficients of an algebraic equation are the simplest symmetric functions of its roots. Let the equation be

$$
\begin{equation*}
x^{n}-a x^{n-1}+b x^{n-2}-c x^{n-3}+d x^{n-4}-\ldots=0, \tag{I}
\end{equation*}
$$

and let $x_{1}, x_{2}, x_{3}, \ldots$ be its n roots. Then

$$
\begin{array}{ll}
a=x_{1}+x_{2}+x_{3}+\ldots, & b=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+\ldots, \\
c=x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\ldots, & d=x_{1} x_{2} x_{3} x_{4}+x_{2} x_{3} x_{4} x_{5}+\ldots,
\end{array}
$$

and the last term is $\pm x_{1} x_{2} x_{3} \ldots x_{n}$. All symmmetric functions of the roots may be expressed in terms of the coefficients.

The sums of the powers of the roots are important symmetric functions. Let S_{m} represent $x_{1}{ }^{m}+x_{2}{ }^{m}+x_{3}{ }^{m}+\ldots$; then when m is equal to or less than n, the following atre the Newtonian expressions for the sums of the powers of the roots:

$$
\begin{array}{ll}
S_{1}=a, \quad S_{2}=a^{2}-2 b, & S_{3}=a^{3}-3 a b+3 c, \\
S_{4}=a^{4}-4 a^{2} b+4 a c+2 b^{2}-4 d, & \cdots
\end{array}
$$

Let $\pm l$ represent the coefficient of the $(m+1)^{\text {th }}$ term in the general equation (I), this being + when m is even and - when m is odd. Then the following general formulas furnish values of S_{m} for all cases:

$$
\begin{array}{ll}
S_{m}-a S_{m-1}+b S_{m-2}-c S_{m-3}+\ldots \pm m l=0, & m \leq n, \\
S_{n+m}-a S_{n+m-1}+b S_{n+m-2}-\ldots \pm l S_{m}=0, & m>n .
\end{array}
$$

For example, take $x^{3}-2 x-2=0$, for which $a=0, b=-2$, $c=+2$; then from the first formula $S_{1}=0, S_{2}=4, S_{3}=6$, and from the second formula $S_{4}=8, S_{5}=20, S_{6}=28$, etc.

Other important symmetric functions of the roots are the sums of the squares of the terms in the above expressions for the coefficients b, c, d, etc. Let these be called B, C, D, etc., or

$$
B=x_{1}{ }^{2} x_{2}{ }^{2}+x_{2}{ }^{2} x_{3}{ }^{2}+\ldots, \quad C=x_{1}{ }^{2} x_{2}{ }^{2} x_{3}{ }^{2}+x_{2}{ }^{2} x_{3}{ }^{2} x_{4}{ }^{2}+\ldots,
$$

and let it be required to find the values of B, C, D, etc., in terms of a, b, c, etc. For this purpose let (I) be written

$$
x^{n}+b x^{n-2}+d x^{n-4}+\ldots=a x^{n-1}+c x^{n-3}+e x^{n-5}+\ldots,
$$

and let both members be squared and the resulting equation be reduced to the form

$$
\begin{equation*}
y^{n}-A y^{n-1}+B y^{n-2}-C y^{n-3}+D y^{n-4}-\ldots=0, . \tag{2}
\end{equation*}
$$

in which y represents x^{2}. This equation has n roots $x_{1}{ }^{2}, x_{2}{ }^{2}$, $x_{3}{ }^{2}, \ldots$; hence the value of A is $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+\ldots$, and the values of B and C are the symmetric functions above written. The algebraic work shows that

$$
A=a^{2}-2 b, \quad B=b^{2}-2 a c+a d, \quad C=c^{2}-2 b d+2 a e-2 f, \ldots,
$$

and thus in general any coefficient in (2) is obtained from those in (1) by the following rule: the coefficient of y^{m} in (2) is found by taking the square of the coefficient of x^{m} in (I) together with twice the products of the coefficients of the terms equally removed from it to right and left, these products being alternately negative and positive.

An equation whose roots are the squares of those of (2) may be obtained by a similar process, the equation being

$$
\begin{equation*}
z^{n}-A_{1} z^{n-1}+B_{1} z^{n-2}-C_{1} z^{n-3}+D z^{n-4}-\ldots=0, . \tag{3}
\end{equation*}
$$

in which $A_{1}, B_{1}, C_{1}, \ldots$ are computed from A, B, C, in the same manner that A, B, C, \ldots "were computed from (I). For example, take the equation $x^{7}+3 x^{4}+6=0$; the equation whose roots are
squares of those of the given equation is $y^{7}+9 y^{4}+36 y^{2}+36=0$, and that whose roots are the fourth powers of those of the given equation is $z^{7}+8{ }_{1} z^{4}-648 z^{3}+1944 z^{2}-2592 z+1296=0$.

Prob. 26. Find an equation the roots of which are the fourth powers of the roots of $x^{3}+x+10=0$.

Prob. 27. For the cubic equation $x^{3}-a x^{2}+b x-c=0$ show that the value of $x_{1}{ }^{3} x_{2}{ }^{3}+x_{2}{ }^{3} x_{3}{ }^{3}+x_{3}{ }^{3} x_{1}{ }^{3}$ is $b^{3}-3 a b c+3 c^{2}$.

Prob. 28. For the quartic equation $x^{4}-a x^{3}+b x^{2}-c x+d=0$ show that the value of S_{5} is $a^{5}-5 a^{3} b-5 a b^{2}+5 a^{2} c-5 a d-5 b c$.

Art. 18. Logarithmic Solutions.

A logarithmic method for the solution of algebraic equations with numerical coefficients was published by Gräffe in 1837 and exemplified by Encke in 1841.* The method involves the formation of an equation whose roots are high powers of the roots of the given equation; to do this an equation is first derived, by help of the principles in Art. 17, whose roots are the squares of those of the given equation, then one whose roots are the squares of those of the second equations or the fourth powers of those of the given equation, and so on. With the use of addition and subtraction logarithms, the greater part of the numerical work may be made logarithmic. The method is of especial value when all the roots of the given equation are real and unequal.

To illustrate the theory of the method, let p, q, r, s, etc., denote the roots, each of which is supposed to be a real negative number; let $[p]$ denote $p+q+r+\ldots,[p q]$ denote $p q+q r+r s+\ldots$, and so on. Then the general algebraic equation may be written

$$
\begin{equation*}
x^{n}-[p] x^{n-1}+[p q] x^{n-2}-[p q r] x^{n-3}+[p q r s] x^{n-4}-\ldots, \tag{I}
\end{equation*}
$$

and the equation whose roots are $p^{2}, q^{2}, r^{2}, \ldots$ is, by Art. I7,

$$
y^{n}-\left[p^{2}\right] y^{n-1}+\left[p^{2} q^{2}\right] y^{n-2}-\left[p^{2} q^{2} r^{2}\right] y^{n-3}+\left[p^{2} q^{2} r^{2} s^{2}\right] y^{n-4}-\ldots,
$$

in which $\left[p^{2}\right]$ denotes $p^{2}+q^{2}+r^{2}+\ldots,\left[p^{2} q^{2}\right]$ denotes $p^{2} q^{2}+q^{2} r^{2}+\ldots$,

[^14]and so on. From this equation another may be derived having the roots $p^{4}, q^{4}, r^{4}, \ldots$, and then another may be found having the roots $p^{8}, q^{8}, r^{8}, \ldots$ This process can be continued until an equation is derived whose roots are $p^{m}, q^{m}, r^{m}, \ldots$, where m is a power of 2 sufficiently high for the subsequent operations. This equation is
$$
z^{n}-\left[p^{m}\right] z^{n-1}+\left[p^{m} q^{m}\right] z^{n-2}-\left[p^{m} q^{m} r^{m}\right] z^{n-3}+\ldots
$$

Now let p be the root of (I) which is largest in numerical value, q the next, r the next, and so on. Then, as m increases the value of $\left[p^{m}\right]$ approaches p^{m}, that of $\left[p^{m} q^{m}\right]$ approaches $p^{m} q^{m}$, that of $\left[p^{m} q^{m} r^{m}\right]$ approaches $p^{m} q^{m} r^{m}$, and so on. Hence when m is large $\left[p^{m}\right]$ is an approximation to the value of p^{m}, and [$\left.p^{m} q^{m}\right] /\left[p^{m}\right]$ is an approximation to the value of q^{m}. Accordingly by making m sufficiently large, the values of $p^{m}, q^{m}, r^{m}, \ldots$, and hence those of p, q, r, \ldots, may be obtained to any required degree of numerical precision. When two roots are nearly equal numerically, it will be necessary to make m very large; when equal roots exist they should be removed by the usual method.

To illustrate the application of the method, let it be required to find the roots of the quintic equation

$$
x^{5}+13 x^{4}-8 \mathrm{r} x^{3}-34 x^{2}+464 x-18 \mathrm{I}=0 .
$$

By comparison with (I) of Art. I 7 it is seen that $a=-\mathrm{I} 3, b=-8 \mathrm{I}$, $c=+34, d=+464, e=+18 \mathrm{r}$. The equation whose roots are the squares of those of the given quintic is now found from (2) of Art. 17, by computing $A=a^{2}-{ }_{2} b=331, B=b^{2}-2 a c+2 d=8373$, $C=c^{2}-2 b d+2 a e=71618, \quad D=d^{2}-2 c e=202988, \quad E=e^{2}=3276 \mathrm{I}$, and then

$$
y^{5}-331 y^{4}+8373 y^{3}-71618 y^{2}+202988 y-3276 \mathrm{I}=0 .
$$

Taking the logarithms of the coefficients, this equation may be written

$$
\begin{array}{r}
y^{5}-(2.51983) y^{4}+(3.92288) y^{3}-(4.85502) y^{2}+(5.30747) y \\
-(4.51536)=0,
\end{array}
$$

in which the coefficients are expressed by their logarithms inclosed in parentheses. The logarithms of the coefficients for the equation whose roots are the fourth powers of the given quintic are now found by the use of addition and subtraction logarithmic tables, and this equation is

$$
\begin{array}{r}
z^{5}-(4.96762) z^{4}+(7.36364) z^{3}-(9.24342) z^{2}+(10.56243) z \\
-(9.03072)=0 .
\end{array}
$$

Next the equation whose roots are the eighth powers of the roots of the given quintic is derived from the preceding one in a similar manner and is found to be

$$
\begin{aligned}
w^{5}-(9.93290) w^{4}+(14.31934) w^{3}-(\mathrm{i} 8.14025) w^{2}+ & (21.12363) w \\
& -(18.06144)=0,
\end{aligned}
$$

and then the equation whose roots are the sixteenth powers of the roots of the given quintic is

$$
\begin{aligned}
v^{5}-(19.86580) v^{4}+(28.29778) v^{3}-(36.13131) v^{2}+ & (42.24726) v \\
& -(36.12288)=0 .
\end{aligned}
$$

It is now observed that the coefficients of the second, fourth, and fifth terms in the equation for v are the squares of those of the similar terms in the equation for w. Hence two of the roots are now determined as follows:

$$
\begin{array}{lll}
\log p^{8}=9.93290, & \log p=1.2416 \mathrm{I}, & p=17.443 ; \\
\log t^{8}=18.06 \mathrm{I} 44-2 \mathrm{I} .12363, & \log t=1.61723, & t=0.4142 .
\end{array}
$$

These are the numerical values of the largest and smallest roots of the given quintic, but the method does not determine whether they are positive or negative; by trial in the given quintic it will be found that -17.443 and +0.4142 are roots. To obtain the others, the process must be continued until two successive equations are found for which all the coefficients in the second are the squares of those in the first. Since in this case two roots lie near together, the process does not terminate, with five-place logarithms, until the $5 \mathrm{I}^{\text {th }}$ powers are reached. The three
remaining roots are thus found to be $q=+3.230, r=+3.2 \mathrm{I} 3$, and $s=-\mathrm{I} .4142$.

When this method is applied to an algebraic equation which has imaginary roots, this fact is indicated by the deviation of signs of the terms in the power equations from the form as given in (2) of Art. 17 ; that is, these signs are not alternately positive and negative. As an example of such a case Encke applies the process to the equation

$$
x^{7}-2 x^{5}-3 x^{3}+4 x^{2}-5 x+6=0,
$$

and deduces for the equation of the $256^{\text {th }}$ powers of the roots

$$
\begin{aligned}
v^{7}-(74.95884) v^{6} & \left.+(122.8 \mathrm{I} 202) v^{5}+(151.32153) v^{4}\right\}+(\mathrm{I} 79.58882) v^{3} \\
& -(190.99129) v^{2}-(195.21132) v-(199.20704)=0 .
\end{aligned}
$$

Here it is seen that the coefficients of v^{4} and v have signs opposite to those of the normal form, and hence two pairs of imaginary roots are indicated. The real roots of the given equation are then determined as follows:
$\begin{array}{lll}\log x_{1}{ }^{256}=74.95884, & \log x_{1}=0.29281, & x_{1}=-1.9625, \\ \log x_{2}{ }^{256}=122.81202-74.95886, & \log x_{2}=0.18693, & x_{2}=+1.5379, \\ \log x_{6}{ }^{256}=190.99129-179.58882, & \log x_{8}=0.04454, & x_{8}=+1.1080,\end{array}$
while the logarithms of the moduli of the imaginary pairs may be obtained by taking the difference of the logarithms of v^{5} and v^{3} and that of v^{2} and v^{0}, and dividing each by 512 . It is then not difficult to show that the two quadratic equations

$$
x^{2}-0.60921 x+1.07668=0, \quad x^{2}+1.292634+\mathrm{I} .66642=0,
$$

furnish the imaginary roots of the given equation of the seventh degree.

Prob. 29. Compute the roots of $x^{5}-10 x^{3}+6 x+1=0$.
Prob. 30. How many real roots has the equation $x^{7}+3 x^{4}+6=0$? Can they be advantageously computed by the above method? What is the best method for finding the roots to four decimal places?

Art. 19. Infinite Equations.

An infinite series containing ascending powers of x may be equated to zero and be called an infinite equation. For example, consider the equation

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots=0
$$

in which the first member is the expansion of $\sin x$; this equation has the roots $0, \pi, 2 \pi, 3 \pi$, etc., since these are the values which satisfy the equation $\sin x=0$. Again,

$$
1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{8}}{6!}+\frac{x^{8}}{8!}+\ldots=0
$$

is the same as $\cosh x=0$, and hence its roots are $\frac{1}{2} \pi i, \frac{3}{2} \pi i$, etc.
The series known as Bessel's first function when equated to zero furnishes an infinite equation whose roots are of interest in the theory of heat*; this equation is

$$
\mathrm{I}-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\frac{x^{8}}{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot 8^{2}}-\ldots=0,
$$

and it has an infinite number of real positive roots, the smallest of which is 2.4048 . The roots of equations of this kind may be computed by tentative methods, and when they are approximately known Newton's rule (Art. 4) may be used to obtain more precise values.

As an example take another equation which also occurs in the theory of heat, namely,

$$
\mathrm{I}-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\frac{x^{5}}{(5!)^{2}}+\ldots=0 .
$$

It is plain that this equation can have no negative roots, for a negative value of x renders all the terms of the first member

[^15]positive. Calling the first member $f(x)$, the first derivative is
$$
f^{\prime}(x)=-1+\frac{x}{2}-\frac{x^{2}}{2^{2} \cdot 3}+\frac{x^{3}}{2^{2} \cdot 3^{2} \cdot 4}-\frac{x^{4}}{2^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5} .
$$

By trial it may be found that one root of $f(x)=0$ lies between 1.44 and 1.45. For $x=1.44, f(x)$ becomes +0.002508 and $f^{\prime}(x)$ becomes +0.4334 . Then $f(x) / f^{\prime}(x)=0.0058$, and accordingly $x_{1}=1.44+0.0058=1.4458$ is one of the roots. Another root of this equation is $x_{2}=7.6 \mathrm{r} 78$. In general equations of this kind have an infinite number of roots.

The term infinite is sometimes applied to an algebraic equation having an infinite root, and cases of this kind are often stated as curious mathematical problems. For instance, the solution of the equation

$$
x-a=\left(x^{2}-a \sqrt{x^{2}+a^{2}}\right)^{\frac{1}{2}},
$$

when made by squaring each member twice, gives the roots $x=\frac{4}{3} a$ and $x=0$. But $x=0$ does not satisfy the equation as written, although it applies if the sign of the second radical be changed. The equation, however, may be put in the form

$$
\mathrm{I}-\frac{a}{x}=\left(\mathrm{I}-\sqrt{\frac{a^{2}}{x^{2}}+\frac{a^{4}}{x^{4}}}\right)^{\frac{1}{2}},
$$

and it is now seen that $x=\infty$ is one of its roots. The false value $x=0$ arises from the circumstance that the squaring operations give results which may be also derived from equations having signs before the radicals different from those written in the given equation.

Prob. 31. Differentiate the above function of Bessel and equate the derivative to zero. Compute two of the roots of this infinite equation.

Prob. 32. Find the roots of $2 \sqrt{x-2}=\sqrt{x-3}+\sqrt{x-1}$.
Prob. 33. Consult a paper by Stern in Crelle's Journal für Mathematik, 1841, pp. r-62, and explain his methods of solving the equations. $\cos x \cosh x+\mathrm{I}=0$ and $\left(4-3 x^{2}\right) \sin x-4 x \cos x=0$.

Art. 20. Notes and Problems.

The algebraic solutions of the quadratic, cubic, and quartic equations are valid for imaginary coefficients also. In general the roots of such equations are all imaginary. The method of McClintock (Art. 14) and that of Lambert (Art. 16) may also be applied to the expression of the roots of these equations in infinite series.

As an illustration take the equation $x^{3}-3 x+4 i=0$. By any method may be found the roots $x_{1}=-i, x_{2}=-0.5 i+\mathrm{r} .936$ and $x_{3}=-0.5 i-$ I. 936 ; two of the roots here form a pair in which the imaginary part is the same for both, the real and imaginary parts of the complex quantities having changed places. There are, however, many equations with imaginary and complex coefficients in which pairs of roots do not occur.

The most general case of an algebraic equation is when the coefficients a, b, c, \ldots in (1) of Art. 17 are complex quantities of the form $m+n i, p+q i, \ldots$ Such equations rarely, if ever, occur in physical investigations, but the general methods explained in the preceding pages will usually suffice for their solution, approximate values of the roots being first obtained by trial if necessary. In general the roots of such equations are all complex, although conditions between m and n, p and q, etc., may be introduced which will render real one or more of the roots.

Prob. 34. Show that the equation $x-e^{x}=0$ has many pairs of imaginary roots and that the smallest roots are $0.3181 \pm 1.3372 i$.

Prob. 35. Solve $\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots=-$ I.
Prob. 36. Discuss the equation $x-\tan x=0$ and show that its smallest root is 4.4934 I .

Prob. 37. Find the value of x in the equation $e^{\pi x}+1=0$, and also that in the equation $e^{\frac{1 \pi}{2} x}-i=0$.

Prob. 38. Show that $x^{2}+(a+b i) x+c+d i=0$ has one real and one complex root when the coefficients are so related that $b^{2} c+d^{2}-a b d=0$.

Prob. 39. When and by whom was the sign of equality first used? What reason was given as to the propriety of its use for this purpose?

Prob. 40. There is a conical glass, 6 inches deep, and the diameter at the top is 5 inches. When it is one-fifth full of water, a sphere 4 inches in diameter is put into the glass. What part of the vertical diameter of the sphere is immersed in the water?

Prob. 4I. When seven ordinates are to be erected upon an abscissa line of unit length in order to determine the area between that line and a curve, their distances apart in order to give the most advantageous result are, according to Gauss, determined by the equation

$$
x^{7}-\frac{7}{2} x^{6}+\frac{63}{13} x^{5}-\frac{175}{52} x^{4}+\frac{175}{14} \frac{5}{3} x^{3}-\frac{63}{286} x^{2}+{ }_{4} \frac{7}{29} x-\frac{1}{3432}=0 .
$$

Compute the roots to five decimal places and compare them with those given by Gauss.

INDEX.

Abel's discussion of quintic, 22.
Algebraic equations, $1,2$. solutions, I^{-24}.
Approximation of roots, 3, 12, 49. rule, 6.

Bessel's function, 43 .
Binomial equations, $16,26,31$.
Cardan's formula, $17,18,28,29$.
Catenary, 14.
Cube roots of unity, 32 .
Cubic equations, $3,17,28$.
Cylinder, floating, 13 .
De Moivre's quintic, 22, 26.
theorem, 33 .
Derivative equation, 9 -
Elliptic solution of quintic, 23 .
Fifth roots of unity, 16, 32 .
Graphic solutions, 3 .
Graphs of equations, 9 .
Gräffe's method, i\&.
Horner's process, $2,12$.
Howe truss strut problem, 21 .
Hudde's method, 8, 12.
Imaginary coefficients, 45 .
roots, $1 \mathrm{I}, 18,20,30,34,42$.
Infinite equations, 43 .
Lagrange's resolvent, 15 .
Lambert's method, 33 .
Literal equations, I , 10 .

Logarithmic solutions, 39 .
Maclaurin's formula, 34 .
McClintock's quintic discussion, 23.
series method, 29.
Newton's approximation rule, 6 .
Numerical equations, r, 10 .
Powers of roots, 38,40 .
Properties of equations, II.
Quadratic equations, 16.
Quartic equations, 19, 20.
Quintic equations, 21,36 .
Real roots, 2, 3, 12, 40 .
Regula falsi, 5 .
Removal of terms, 22.
Resolvent, 17 .
Root, r .
Roots in series, 27, 29, 31,34
of unity, 16, 31.
Separation of roots, 8 .
Sixth roots of unity, 17, 32 .
Sphere, floating, 13, 25 .
Sturm's theorem, 8, 12.
Symmetric functions, 37
Transcendental equations, 2, 4, 13.
Trigonometric solutions, 24, 26 .
Trinomial equations, 29, 35 .
Tschirnhausen's transformation, 22.
Vectors, 16, 33.
Water-pipe problem, I3.

Short-title Catalogue

OF THE

PUBLICATIONS
 of

 JOHN WILEY \& SONS

 JOHN WILEY \& SONS
 New York
 London: CHAPMAN \& HALL, Lmmited

ARRANGED UNDER SUBJECTS

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold at net prices only. All books are bound in cloth unless otherwise stated.

AGRICULTURE-HORTICULTURE-FORESTRY.

Armsby's Principles of Animal Nutrition. $8 \mathrm{vo}, \$ 400$
Budd and Hansen's American Horticultural Manual:
Part I. Propagation, Culture, and Improvement 12 mo , 150
Part II. Systematic Pomology 150
Elliott's Engineering for Land Drainage 150
Practical Farm Drainage. (Second Edition, Rewritten.)......... 12mo, 50
Graves's Forest Mensuration. 400
Green's Principles of American Forestry 150
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)............. . 12mo, 200

* Herrick's Denatured or Industrial Alcohol .8vo, 400
Kemp and Waugh's Landscape Gardening. (New Edition, Rewritten. InPreparation.)
* McKay and Larsen's Principles and Practice of Butter-making 8vo, 150
Maynard's Landscape Gardening as Applied to Home Decoration......12mo, 50
Sanderson's Insects Injurious to Staple Crops........................ . . . 12 mo , 150
Sanderson and Headlee's Insects Injurious to Garden Crops. (In Prepa- ration.)
* Schwarz's Longleaf Pine in Virgin Fo-est 25
Stockbridge's Rocks and Soils. 50
Winton's Microscopy of Vegetable Foods. 50
Woll's Handbook for Farmers and Dairymen. 50
ARCHITECTURE.
Baldwin's Steam Heating for Buildings 12 mo , 250
Berg's Buildings and Structures of American Railroads. 00
Birkmire's Architectural Iron and Steel. 8vo, 50
Compound Riveted Girders as Applied in Buildings 200
3
Planning and Construction of American Theatres....
Planning and Construction of High Office Buildings. 350
Skeleton Construction in Buildings. 300
Briggs's Modern American School Buildings. 8vo, $\$ 400$Byrne's Inspection of Materials and Wormanship Employed in Construction.16 mo ,
Carpenter's Heating and Ventilating of Buildings. 0000
25
Freitag's Architectural Engineering. 50
Fireproofing of Steel Buildings 250
Gerhard's Guide to Sanitary Inspections. (Fourth Edition, Entirely Re- vised and Enlarged.) 150
* Modern Baths and Bath Houses. 300
Sanitation of Public Buildings. 150
Theatre Fires and Panics. 150
* The Water Supply, Sewerage and Plumbing of Modern City Buildings.
8 vo , 400
Johnson's Statics by Algebraic and Graphic Methods. 200
Kellaway's How to Lay Out Suburban Home Grounds 200
Kidder's Architects' and Builders' Pocket-book. 500
Merrill's Stones for Building and Decoration 500
Monckton's Stair-building. 400
Patton's Practical Treatise on Foundations. 500
Peabody's Naval Architecture. 750
Rice's Concrete-block Manufacture. 200
Richey's Handbook for Superintendents of Construction 16mo, mor. 400
Building Foreman's Pocket Book and Ready Reference. 16 mo , mor. 500
* Building Mechanics' Ready Reference Series:
* Carpenters' and Woodworkers' Edition 16 mo , mor. 150
* Cement Workers' and Plasterers' Edition 16 mo , mor. 150
* Plumbers', Steam-Fitters', and Tinners' Edition. . .16mo, mor. 150
* Stone- and Brick-masons' Edition. 16 mo , mor.
Sabin's House Painting. $12 \mathrm{mo}, 100$
Siebert and Biggin's Modern Stone-cutting and Masonry 150
Snow's Principal Species of Wood 350
Towne's Locks and Builders' Hardware. 300
Wait's Engineering and Architectural Jurisprudence. 600
Sheep,
Law of Contracts. 650
300
Law of Operations Preliminary to Construction in Engineering and Architecture 500
Wilson's Air Conditioning. 150
Worcester and Atkinson's Small Hospitals, Establishment and Maintenance, Suggestions for Hospital Architecture, with Plans for a Small Hospital 125
ARMY AND NAVY.
Bernadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Cellu- lose Molecule. 12 mo , 250
Chase's Art of Pattern Making. 12 mo ,
Screw Propellers and Marine Propulsion
* Cloke's Enlisted Specialists' Examiner 3008vo,
* Gunner's Examiner
Craig's Azimuth. 50 350200
Craigs Azim
Craigs Azim
Crehore and Squier's Polarizing Photo-chonograph 8vo,
* Davis's Elements of Law 250
* Treatise on the Military Law of United States 700
* Dudley's Military Law and the Procedure of Courts-martial...Large 12mo, 250
8vo,Durand's Resistance and Propulsion of Ships.
* Dyer's Handbook of Light Artillery. 300
Eissler's Modern High Explosives
Eissler's Modern High Explosives
, 400
* Fiebeger's Text-book on Field Fortification. 200
Hamilton and Bond's The Gunner's Catechism 18 mo , 100* Hoff's Elementary Naval Tactics.. . 8 vc ,
Ingalk's Handbook of Problems in Direct Fire 8vo, $\$ 400$
* Lissak's Ordnance and Gunnery. 600
* Ludlow's Logarithmic and Trigonometric Tables. 8vo, 100
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II..8vo, each, 600
* Mahan's Permanent Fortifications. (Mercur.) 8vo, half mor. 750
Manual for Courts-martial. 150
* Mercur's Attack of Fortified Places. 200
* Elements of the Art of War. 400
Nixon's Adjutants' Manual 100
Peabody's Naval Architecture 750
* Phelps's Practical Marine Surveying. 250
Putnam's Nautical Charts 200
Rust's Ex-meridian Altitude, Azimuth and Star-Finding Tables. 500
Selkirk's Catechism of Manual of Guard Duty. (In Press.)
Sharpe's Art of Subsisting Armies in War. 150
Taylor's Speed and Power of Ships. (In Press.)
* Tupes and Poole's Manual of Bayonet Exercises and Musketry Fencing.24 mo , leather,50
* Weaver's Military Explosives. 300
* Woodhull's Military Hygiene for Officers of the Line. Large 12 mo , 150
ASSAYING.
Betts's Lead Refining by Electrolysis. 400
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe. 16 mo , mor. 150
Furman and Pardoe's Manual of Practical Assaying. (Sixth Edition, Re- vised and Enlarged.). 300
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments..Svo, 300
Low's Technical Methods of Ore Analysis. 300
Miller's Cyanide Process 12 mo ,
Manual of Assaying 100
Minet's Production of Aluminum and its Industrial Use. (Waldo.)...12mo, 250
 300
Robine and Lenglen's Cyanide Industry. (Le Clerc.) 400
Seamon's Manual for Assayers and Chemists. (In Press.)
Ulke's Modern Electrolytic Copper Refining. 8 vo, 300
Wilson's Chlorination Process. 150
Cyanide Processes. 12 mo , 50
ASTRONOMY.
Comstock's Field Astronomy for Engineers. 250
Craig's Azimuth 350
Crandall's Text-book on Geodesy and Least Squares. 300
Doolittle's Treatise on Practical Astronomy. 00
Hayford's Text-book of Geodetic Astronomy 300
Hosmer's Azimuth 100
Merriman's Elements of Precise Surveying and Geodesy 50
* Michie and Harlow's Practical Astronomy 00
Rust's Ex-meridian Altitude, Azimuth and Star-Finding Table 12 mo , 200
CHEMISTRY.
* Abderhalden's Physiological Chemistry in Thirty Lectures. (Fiall and Defren.) 500
* Abegg's Theory of Electrolytic Dissociation. (von Ende.)...........12mo, 125
Alexeyeff's General Principles of Organic Syntheses. (Matthews.).......8vo, Allen's Tables for Iron Analysis 300
Armsby's Principles of Animal Nutrition 400
Arnold's Compendium of Chemistry. (Mandel.) Large 12 mo , 350
Association of State and National Food and Dairy Departments, Hartford Meeting, 1906 8vo, 8300
Jamestown Meeting, 1907 8vo, 300
Austen's Notes for Chemical Students 150
Baskerville's Chemical Elements. (In Preparation.)Bernadou's Smokeless Powder.-Nitro-cellulose, and Theory of the CelluloseMolecule. 12 mo ,* Biltz's Introduction to Inorganic Chemistry. (Hall and Phelan.). . . 12mo, 125
125
Laboratory Methods of Inorganic Chemistry. (Hall and Blanchard.) 8vo, 300
* Blanchard's Synthetic Inorganic Chemistry 00
* Browning's Introduction to the Rarer Elements. 8vo, 150
* Claassen's Beet-sugar Manufacture. (Hall and Rolfe.) 300
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo, 300
Cohn's Indicators and Test-papers 200
Tests and Reagents. 8vo, 300
* Danneel's Electrochemistry. (Merriam.) 125
Dannerth's Methods of Textile Chemistry 200
Duhem's Thermodynamics and Chemistry. (Burgess.) 100
Effront's Enzymes and their Applications. (Prescott.) 300
Eissler's Modern High Explosives. $+00$
Erdmann's Introduction to Chemical Preparations. (Dunlap.).......12mo, 125
* Fischer's Physiology of Alimentation Large 12 mo , 200
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe. 16 mo , mor. 150
Fowler's Sewage Works Analyses. 2mo, 200
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.) 8vo, 500
Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.) 8vo, 300Quantitative Chemical Analysis. (Cohn.) 2 vols.................8ve, 1250When Sold Separately, Vol. I, $\$ 6$. Vol. II, $\$ 8$.
Fuertes's Water and Public Health. 150
Furman and Pardoe's Manual of Practical Assaying. (Sixth Edition, Revised and Enlarged.) 300
* Getman's Exercises in Physical Chemistry 200
Gill's Gas and Fuel Analysis for Engineers. 125
* Gooch and Browning's Outlines of Qualitative Chemical Analysis.
Large 12 mo , 125
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)............. 12mo, 200
Groth's Introduction to Chemical Crystallography (Marshall) 12 mo , 12 mo ,
Hammarsten's Text-book of Physiological Chemistry. (Mandel.) 8vo,
Hanausek's Microscopy of Technical Products. (Winton.)................8vo,* Hashins and Macleod's Organic Chemistry......................... 12mo,
Hering's Ready Reference Tables (Conversion Factors)............16mo, mor.
* Herrick's Denatured or Industrial Alcohol. 8vo,
Hinds's Inorganic Chemistry Svo,
12 mo ,* Laboratory Manual for Students.
* Holleman's Laboratory Manual of Organic Chemistry for Beginners.
(Walker.) 12 mo .
Text-book of Inorganic Chemistry: (Cooper.) Svo, 250
Text-book of Organic Chemistry. (Walker and Mott.).............. Svo, 250
* Holley's Lead and Zinc Pigments............................ . . . Large 12mo,Holley and Ladd's Analysis of Vixed Paints, Color Pigments, and Varnishes,Large 12 mo ,250
Hopkins's Oil-chemists' Handbook. 300
Jackson's Directions for Laboratory Work in Physiological Chemistry. . 8vo, 125
Johnson's Rapid methods for the Chemical Analysis of Special Steels, Steel- making Alloys and Graphite Large 12 mo , 300
Landauer's Spectrum Analysis, (Tingle.).................................... Svo, 300Lassar-Cohn's Application of Some General Reactions to Investigations inOrganic Chemistry. (Tingle.).................................... . . 12 mo ,
Leach's Inspection and Analysis of Food with Special Reference to StateControl
100
750
Lob's Electrochemistry of Organic Compounds. (Lorenz.). 300
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments..8vo, 30.
Low's Technical Method of Ore Analysi:
Lowe's Paint for Steel Structures. 2mo, 100
Lunge's Techno-chemical Analysis, 12 mo ,300100
* McKay and Larsen's Principles and Practice of Butter-making. Svo.2mo$\xrightarrow{2 m o}$
$12 \mathrm{mo}, \quad 150$
Mandel's Handbook for Bio-chemical Laboratory pipeMaire's Modern Pigments and their Vehicles.
12 mo () 60
Mason's Examination of Water. (Chemical and Bacteriological.).......12mo, 125
Water-supply. (Considered Principally from a Sanitary Standpoint.) 8vo, 400
* Mathewson's First Principles of Chemical Theory....................... . . 8vo, 100
Matthews's Laboratory Manual of Dyeing and Textile Chemistry.8vo, 350
Textile Fibres. 2d Edition, Rewritten $+00$
* Meyer's Determination of Radicles in Carbon Compounds. (Tingle.) Third Edition. 25
Miller's Cyanide Process. 00
Manual of Assaying. 00
Minet's Production of Aluminum and its Industrial Use. (Waldo.)...12mo, 250
* Mittelstaedt's Technical Calculations for Sugar Works. (Bourbakis.) 12mo, 50
Mixter's Elementary Text-book of Chemistry.... 12 mo , 50
Morgan's Elements of Physical Chemistry. 12 mo , 00
Outline of the Theory of Solutions and its Results. 00
* Physical Chemistry for Electrical Engineers. 50
* Moore's Outlines of Organic Chemistry 50
Morse's Calculations used in Cane-sugar Factories.
50
50
* Muir's History of Chemical Theories and Laws. 00
Mulliken's General Method for the Identification of Pure Organic Compounds. Vol. 1. Compounds of Carbon with Hydrogen and Oxygen. Large 8vo, 500
Vol. II. Nitrogenous Compounds. (In Preparation.)
Vol. III. The Commercial Dyestuffs. .Large 8vo,500
* Nelson's Analysis of Drugs and Medicines.. 12 mo , 300
O'Driscoll's Notes on the Treatment of Gold Ores........................ . . 8vo, 200
Ostwald's Conversations on Chemistry. Part One. (Ramsey.).......12mo,
Part Two. (Turnbull.)..... 12mo, " 200
Introduction to Chemistry. (Hall and Williams.) (In Preparation.)
Owen and Standage's Dyeing and Cleaning of Textile Fabrics.50
00
* Palmer's Practical Test Book of Chemistry. Palmer's Practical Test Book of Chemistry. 12mo, 100* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.)..12mo,Penfield's Tables of Minerals, Including the Use of Minerals and Statisticsof Domestic Production. v vo,
Pictet's Alkaloids and their Chemical Constitution. (Biddle.)........... .8vo12500
Poole's Calorific Power of Fuels. 00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer- ence to Sanitary Water Analysis. 12mo, 50
* Reisig's Guide to Piece-Dyeing Richards and Woodman's Air, Water, and Food from a Sanitary Stand-point.00
Ricketts and Miller's Notes on Assaying. 00
Rideal's Disinfection and the Preservation of Food 00
Sewage and the Bacterial Purification of Sewage. 00
Riggs's Elementary Manual for the Chemical Laboratory 25
Robine and Lenglen's Cyanide Industry. (Le Clerc.) 00
Ruddiman's Incompatibilities in Prescriptions. 00
Whys in Pharmacy. 00
* Ruer's Elements of Metallography. (Mathewson.) 09
Sabin's Industrial and Artistic Technology of Paint and Varnish.8vo, 00Salkowski's Physiological and Pathological Chemistry. (Orndorff.).....8vo,
Schimpf's Essentials of Volumetric Analysis.250125
Manual of Volumetric Analysis. (Fifth Edition, Rewritten)......8vo, 00
* Qualitative Chemical Analysis.Seamon's Manual for Assayers and Chemists. (In Press.)
Smith's Lecture Notes on Chemistry for Dental Students
5025Spencer's Handbook for Cane Sugar Manufacturers.16mo, mor
Handbook for Chemists of Beet-sugar Houses 16mo, mor
Stockbridge's Rocks and Soils. 5.00300
Stone's Practical Testing of Gas and Gas Meters. 5
* Tillman's Descriptiwe General Chemistry. * Tillman's Descriptive General Chemistry. o.
* Elementary Lessons in Heat 50
Treadwell's Qualitative Analysis. (Hall.). 00
Treadwell's Quantitative Analysis. (Hall.) 8vo, \$t 00
Turneaure and Russell's Public Water-supplies. 500
Van Deventer's Physical Chemistry for Beginners. (Boltwood.)..... . 12 mo 150
Venable's Methods and Devices for Bacterial Treatment of Sewage, 300
Ward and Whipple's Freshwater Biology. (In Press.)
Ware's Beet-sugar Manufacture and Refining. Vol. I................... . 8 vo, 400
Vol. 11...... 8vo, 00
Washington's Manual of the Chemical Analysis of Rocks. 200
* Weaver's Military Explosives 300
Wells's Laboratory Guide in Qualitative Chemical Analysis 150
Short Course in Inorganic Qualitative Chemical Analysis for Engineering Students
12 mo , 150 125
Text-book of Chemical Arithmetic.
Text-book of Chemical Arithmetic.
Whipple's Microscopy of Drinking-water 350
Wilson's Chlorination Process
Wilson's Chlorination Process 150
Cyanide Processes. 150
Winton's Microscopy of Vegetable Foods. 750
Zsigmondy's Colloids and the Ultramicroscope. (Alexander.). Large 12 mo 300
CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEER-
ING. RAILWAY ENGINEERING.
Baker's Engineers' Surveying Instruments. 300
Bixby's Graphical Computing Table.
Bixby's Graphical Computing Table. 25 25
Breed and Hosmer's Principles and Practice of Sur............. $192 \times 24 \frac{1}{2}$ inches.
Breed and Hosmer's Principles and Practice of Sur............. $192 \times 24 \frac{1}{2}$ inches. 300
Vol. II. Higher Surveying. 250
* Burr's Ancient and Modern Engineering and the Isthmian Canal. 350
Comstock's Field Astronomy for Engineers. 250
* Corthell's Allowable Pressure on Deep Foundations 125
Crandall's Text-book on Geodesy and Least Squares. 300
Davis's Elevation and Stadia Tables. 100
Elliott's Engineering for Land Drainage.
150
150
Practical Farm Drainage. (Second Edition Rewritten.) 150
* Fiebeger's Treatise on Civil Engineering
50
50
Flemer's Photographic Methods and Instruments. 500
Folwell's Sewerage. (Designing and Maintenance.) 300
Freitag's Architectural Engineering. 350
Goodhue's Municipal Improvements 150
* Hauch and Rice's Tables of Quantities for Preliminary Estimates. . . 12mo, 125
Hayford's Text-book of Geodetic Astronomy
300
300
Hering's Ready Reference Tables (Conversion Factors.) .16 mo , mor. 250
Hosmer's Azimuth
Hosmer's Azimuth 16 mo , mor. 16 mo , mor. 100 100
Howe' Retaining Walls for Earth 25
* Ives's Adjustments of the Engineer's Transit and Level. 16mo, bds. 25
Johnson's (J. B.) Theory and Practice of Surveying. Large 12mo, 400
Johnson's (L. J.) Statics by Algebraic and Graphic Methods. 200
Kinnicutt, Winslow and Pratt's Purification of Sewage. (In Preparation.)
* Mahan's Descriptive Geometry 150
Merriman's Elements of Precise Surveying and Geodesy 50
Merriman and Brooks's Handbook for Surveyors. 16mo, mor. 00
Nugent's Plane Surveying.
Ogden's Sewer Construction. 8vo,
00Sewer Design.
Parsons's Disposal of Municipal Refuse. 00
Patton's Treatise on Civil Engineering. 200
Reed's Topographical Drawing and Sketching. 50
Rideal's Sewage and the Bacterial Purification of Sevage 500
Riemer's Sbaft-sinking under Difficult Conditions. (Corning and Peele.).8vo, 300Siebert and Biggin's Modern Stone-cutting and Masonry................ . . 8vo,
50Smith's Manual of Topographical Drawing. (McMillan.)8vo,
Soper's Air and Ventilation of Subways $.12 \mathrm{mo}, \$ 250$
* Tracy's Exercises in Surveying 12 mo , mor. 100
Tracy's Plane Surveying. 16 mo , mor. 300
* Trautwine's Civil Engineer's Pocket-book. 16 mo , mor. 500
Venable's Garbage Crematories in America. 200
Methods and Devices for Bacterial Treatment of Sewage. 8vo, 300
Wait's Engineering and Architectural Jurisprudence 600
Sheep, 650
Law of Contracts. 300
Law of Operations Preliminary to Construction in Engineering and Architecture. 500
Sheep, 50
Warren's Stereotomy-Problems in Stone-cutting. 250
* Waterbury's Vest-Pocket Hand-book of Mathematics for Engineers. $2_{5}^{7} \times 5_{8}^{3}$ inches, mor. 100
* Enlarged Edition, Including Tables 150
Webb's Problems in the Use and Adjustment of Engineering Instruments. 16 mo , mor. 125
Wilson's Topographic Surveying 350
BRIDGES AND ROOFS.
Boller's Practical Treatise on the Construction of Iron Highway Bridges..Svo, 200
* Thames River Bridge Oblong paper, 500
Burr and Falk's Design and Construction of Metallic Bridges. 506
Influence Lines for Bridge and Roof Computations. 300
Du Bois's Mechanics of Engineering. Vol. II. 1000
Foster's Treatise on Wooden Trestle Bridges. 500
Fowler's Ordinary Foundations. 350
Greene's Arches in Wood, Iron, and Stone. 250
Bridge Trusses. 250
Roof Trusses. 125
Grimm's Secondary Stresses in Bridge Trusses. 250
Heller's Stresses in Structures and the Accompanying Deformations. 300
Howe's Design of Simple Roof-trusses in Wood and Steel. 200
Symmetrical Masonry Arches. 250
Treatise on Arches. 400
* Jacoby's Struc tural Details, or Elements of Design in Heavy Framing, 8vo, 225
Johnson, Bryan and Turneaure's Theory and Practice in the Designing of Modern Framed Structures Small to, 1000
* Johnson, Bryan and Turneaure's Theory and Practice in the Designing of Modern Framed Structures. New Edition. Part I. 300
Merriman and Jacoby's Text-book on Roofs and Bridges:
Part I. Stresses in Simple Trusses. 250
Part II. Graphic Statics. 250
Part III. Bridge Design. 250
Part IV. Higher Structures. 250
Morison's Memphis Bridge. 1000
Sondericker's Graphic Statics, with Applications to Trusses, Beams, andArches200
Waddell's De Pontibus, Pocket-book for Bridge Engineers....... 16mo, mor. 200
* Specifications for Steel Bridges 50
Waddell and Harrington's Bridge Engineering. (In Preparation.)Wright's Designing of Draw-spans. Two parts in one volume.350
HYDRAULICS.
Barnes's Ice Formation 8vo, 300
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from
an Orifice. (Trautwine.)
Bovey's Treatise on Hydraulics. 00
Church's Diagrams of Mean Velocity of Water in Open Channels.Oblong 4to, paper, 150
Hydraulic Motors. 200
Coffin's Graphical Solution of Hydraulic Problems.............. . 16mo, mor. $\$ 250$
Flather's Dynamometers, and the Measurement of Power.............. . . 12mo, 00
Folwell's Water-supply Engineering. 00
Frizell's Water-power $\begin{array}{lll}8 \mathrm{vo}, & 400 \\ 8 \mathrm{vo}, & 5 & 00\end{array}$
Fuertes's Water and Public Health. 50
Water-filtration Works. 12 mo , 250
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in Rivers and Other Channels. (Hering and Trautwine.)....... . 8vo, 400
Hazen's Clean Water and How to Get It 150
Filtration of Public Water-supplies. 300
Hazelhurst's Towers and Tanks for Water-works 250
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal Conduits 200
Hoyt and Grover's River Discharge. 8vo, 00
Hubbard and Kiersted's Water-works Management and Maintenance.8vo, 400
* Lyndon's Development and Electrical Distribution of Water Power. 300
Mason's Water-supply. (Considered Principally from a Sanitary Stand- point.) 400
Merriman's Treatise on Hydraulics. 500
* Molitor's Hydraulics of Rivers, Weirs and Sluices 200
Morrison and Brodie's High Masonry Dam Design. (In Press.)
* Richards's Laboratory Notes on Industrial Water Analysis.50
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water- supply. Second Edition, Revised and Enlarged........ Large 8vo, 600
* Thomas and Watt's Improvement of Rivers. 600
Turneaure and Russell's Public Water-supplies......................... 8vo, 500
Wegmann's Design and Construction of Dams. 5th Ed., enlarged......4to, 6 CO
Water-Supply of the City of New York from 1658 to 1895 4to, 000
Whipple's Value of Pure Water. 00
Williams and Hazen's Hydraulic Tables 50
Wilson's Irrigation Engineering. 00
Wood's Turbines. 50
MATERIALS OF ENGINEERING.
Baker's Roads and Pavements. 500
Treatise on Masonry Construction 500
Black's United States Public Works. Oblong 4to 500
Blanchard's Bituminous Roads. (In Press.)
Bleininger's Manufacture of Hydraulic Cement. (In Preparation.)
* Bovey's Strength of Materials and Theory of Structures 750
Burr's Elasticity and Resistance of the Materials of Engineering........8vo, 750
Byrne's Highway Construction. 500
Inspection of the Materials and Workmanship Employed in Construction.
16 mo , 300
Church's Mechanics of Engineering. 600
Du Bois's Mechanics of Engineering.
Vol. 1. Kinematics, Statics, Kinetics 750
Vol. II. The Stresses in Framed Structures, Strength of Materials and Theory of Flexures. 1000
* Eckel's Cements, Limes, and Plasters. 600
Stone and Clay Products used in Engineering. (In Preparation.) Fowler's Ordinary Foundations. 350
* Greene's Structural Mechanics 250 8vo,
* Holley's Lead and Zinc Pigments. 300
Holley and Ladd's Analysis of Mixed Paints, Color Pigments and Varnishes, Large 12 mo , 250
* Hubbard's Dust Preventives and Road Binders 8vo, 300
Johnson's (C. M.) Rapid Methods for the Chemical Analysis of Special Steels, Steel-making Alloys and Graphite. Large 12 mo 300
Johnson's (J. B.) Materials of Construction. Large 8 vo ,
Keep's Cast Iron.600
250
Lanza's Applied Mechanics. 750 8 vo,
Lowe's Paints for Steel Structures. 100
Maire's Modern Pigments and their Vehicles. 12 mo . se 00
Maurer's Technical Mechanics. 00
Merrill's Stones for Building and Decoration 500
Merriman's Mechanics of Materials 500
* Strength of Materials. 100
Metcalf's Steel. A Manual for Steel-users. 200
Morrison's Highway Engineering. 250
Patton's Practical Treatise on Foundations. 500
Rice's Concrete Block Manufacture. 200
Richardson's Modern Asphalt Pavement. 300
Richey's Building Foreman's Pocket Book and Ready Reference. 16 mo,mor. 500
* Cement Workers' and Plasterers' Edition (Building Mechanics' Ready Reference Series) 150
Handbook for Superintendents of Construction.............. 16 mo , mor. 400
* Stone and Brick Masons' Edition (Building Mechanics' Ready Reference Series) . 16 mo , mor. 150
* Ries's Clays: Their Occurrence, Properties, and Uses. 500
* Ries and Leighton's History of the Clay-working Industry of the United States. 250
Sabin's Industrial and Artistic Technology of Paint and Varnish. 300
* Smith's Strength of Material. 125
Snow's Principal Species of Wood. 350
Spalding's Hydraulic Cement 200
Text-book on Roads and Pavements. 200
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced......Svo, 500
Thurston's Materials of Engineering. In Three Parts.
Part I. Non-metallic Materials of Engineering and Metallurgy.... Svo, 800
Part II. Iron and Steel 350
Part III A Treatise on Brasses, Bronzes, and Other Alloys and their
Constituents Svo,
Tillson's Street Pavements and Paving Materials. 250
400
400* Trautwine's Concrete, Plain and Reinforced
16 mo ,
200Turneaure and Maurer's Principles of Reinforced Concrete Construction
Second Edition, Revised and Enlarged 8vo,
350Waterbury's Cement Laboratory Manual12 mo,
Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on the Preservation of Timber.... 8vo, 200
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron andSteel..8vo,100400

RAILWAY ENGINEERING.

Andrews's Handbook for Street Railway Engineers. 3×5 inches, mor 125
Berg's Buildings and Structures of American Railroads. 4to, 500
Brooks's Handbook of Street Railroad Location. 16mc, mor. 150
Butts's Civil Engineer's Field-book. 16 mc , mor. 250
Crandall's Railway and Other Earthwork Tables. 150
Transition Curve. 16mo, mor. 150

* Crockett's Methods for Earthwork Computations. Svo, 50
Dredge's History of the Pennsylvania Railroad, (1879)................... Paper, 500
Fisher's Table of Cubic Yards. Cardboard, 20Godwin's Railroad Engineers' Field-book and Explorers' Guide. . 16 mo , mor.
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-
bankments250
Ives and Hilts's Problems in Surveying, Railroad Surveying ans Geodesy 16 mo , mor. 150
Molitor and Beard's Manual for Resident Engineers 00
Nagle's Field Manual for Railroad Engineers. 16mo, mor. 300
* Orrock's Railroad Structures and Estimates. 8vo, 300
Philbrick's Field Manual for Engineers. 300
Raymond's Railroad Engineering. 3 volumes.Vol. I. Railroad Field Geometry. (In Preparation.)Vol. II. Elements of Railroad Engineering. 8vo, 350Vol III. Railroad Engineer's Field Book. (In Preparation.)
Roberts' Track Formule and Tables. (In Press.)
Searles's Field Engineering 16 mo , mor
16 mo , mor. 150
Taylor's Prismoidal Formulx and Earthwork 50 150 150
* Trautwine's Field Practice of Laying Out Circular Curves for Railroads.
12 mo , mor.
12 mo , mor. 250 250
* Method of Calculating the Cubic Contents of Excavations and Em- bankments by the Aid of Diagrams 200
Webb's Economics of Railroad Corsstruction Large 12 mo 250 Railroad Construction16 mo , mor. 500
Wellington's Economic Theory of the Location of Railways.....Large 12 mo
500
500
Wilson's Elements of Railroad-Track and Construction. 200
DRAWING.
Barr's Kinematics of Machinery. 250
* Bartlett's Mechanical Drawing. 300
Abridged Ed...................... 8 vo, 50
Coolidge and Freeman's Elements of General Drafting for Me................ paper,neers.cal Engi- 250
Durley's Kinematics of Machines.
Durley's Kinematics of Machines.
400
400
to Projective Geometry and its Application 250
French and Ives' Stereotomy.
250
250
Hill's Text-book on Shades and Shadows, and Perspective 8vo, 200
Jamison's Advanced Mechanical Drawing
Elements of Mechanical Drawing. 200
Jones's Machine Design: 250
Part I. Kinematics of Machinery 8vo, 150
Part II. Form, Strength, and Proportions of Parts. 300
* Kimball and Barr's Machine Design 300
MacCord's Elements of Descriptive Geometry 300
Kinematics; or, Practical Mechanism 500
Mechanical Draving. 400
Velocity Diagrams. 150
McLeod's Descriptive Geometry I 50
*: Mahan's Descriptive Geometry and Stone-cutting 150
Industrial Drawing. (Thompson.) 350
Moyer's Descriptive Geometry. 200
Reed's Topographical Drawing and Sketching. 500
Reid's Course in Mechanical Drawing 200
Text-book of Mechanical Drawing and Elementary Machine Design..8vo, 300
Robinson's Principles of Mechanism
300
300
Schwamb and Merrill's Elements of Mechanism. 300
Smith (A. W.) and Marx's Machine Design.
300
300
Smith's (R. S.) Manual of Topographical Drawing. (McMillan.) 250
* Titswarth's Elements of Mechanical Drawing. Oblong 8vo,
125
125
Warren's Drafting Instruments and Operations. 125
Elements of Descriptive Geometry, Shadows, and Perspective......8vo, 50
Elements of Machine Construction and Drawing. 50
Elements of Plane and Solid Free-hand Geometrical Drawing. . . . 12mo, I 00
General Problems of Shades and Shadows. 300
Manual of Elementary Problems in the Linear Perspective of Forms and Shadow. 100
Manual of Elementary Projection Drawing
I 50
I 50
Plane Problems in Elementary Geometry. 25
Weisbach's Kinematics and Power of Transmission. (Hermann and Klein.). 00
Wilson's (H. M.) Topographic Surveying.
30
30
* Wilson's (V. T.) Descriptive Geometry. 8vo, 8vo, 50 50
Free-hand Lettering.
Free-hand Lettering.
Free-hand Perspective. 00 00
8vo, 50
Woolf's Elementary Course in Descriptive Geometry. Large 8vo, 00

ELECTRICITY AND PHYSICS.

* Abegg's Theory of Electrolytic Dissociation. (von Ende.).......... 12mo, $\$ 125$
Andrews's Hand-book for Street Railway Engineering..... 3×5 inches, mor. 125
Anthony and Brackett's Text-book of Physics. (Magie.).... Large 12 mo , 300
Anthony and Ball's Lecture-notes on the Theory of Electrical Measure-ments.100
Benjamin's History of Electricity. 300
Voltaic Cell. 300
Betts's Lead Refining and Electrolysis. 400
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo, 300
* Collins's Manual of Wireless Telegraphy and Telephony. 12 mo , 150
Crehore and Squier's Polarizing Photo-chronograph 00
* Danneel's Electrochemistry. (Merriam.). 125
Dawson's "Engineering" and Electric Traction Pocket-book.... 16mo, mor. 00
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (von Ende.) 12 mo , 50
Duhem's Thermodynamics and Chemistry. (Burgess.).................. 8vo, 00 00Flather's Dynamometers, and the Measurement of Power. 300
* Gers Dynamometers, and the Measurement of Power
* Gers Dynamometers, and the Measurement of Power
* Getman's Introduction to Physical Science.. 150
Gilbert's De Magnete. (Mottelay) 50
* Hanchett's Alternating Currents. 100
Hering's Ready Reference Tables (Conversion Factors) 16mo, mor. 50* Hobart and Ellis's High-speed Dynamo Electric Machinery 8 vo,Holman's Precision of Measurements. .8vo,
600
Telescopic Mirror-scale Method, Adjustments, and Tests....Large 8vo, 00
* Karapetoff's Experimental Electrical Engineering.00
Kinzbrunner's Testing of Continuous-current Machines 200
Landauer's Spectrum Analysis. (Tingle.) 00
Le Chatelier's High-temperature Measurements. (Boudouard-Burgess.) 12 mo 00
Lōb's Electrochemistry of Organic Compounds. (Lorenz.) 00
* Lyndon's Development and Electrical Distribution of Water Power. .8vo, 300
* Lyons's Treatise on Electromagnetic Phenomena. Vols, I .and II. 8vo, each, 600
* Michie's Elements of Wave Motion Relating to Sound and Light.8vo, 400
Morgan's Outline of the Theory of Solution and its Results. 12 mo ,* Physical Chemistry for Electrical Engineers...................... . . . 12 mo ,* Norris's Introduction to the Study of Electrical Engineering. 8vo,
15000Norris and Dennison's Course of Problems on the Electrical Characteristics ofCircuits and Machines. (In Press.)
* Parshall and Hobart's Electric Machine Design 4 to, half mor, 4to, halt50
Large 12 mo , 350
* Rosenberg's Electrical Engineering. (Haldane Gee-Kinzbrunner.). . Svo, 00
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I.................. . 8 vo , 250Schapper's Laboratory Guide for Students in Physical Chemistry..... 12 mo ,
* Tillman's Elementary Lessons in Heat. 100 50
ory and Pitcher's Manual of Laboratory Physics. 00
Ulke's Modern Electrolytic Copper Refining.
LAW.
* Brennan's Hand-book of Useful Legal Information for Business Men. 16 mo , mor. 500
* Davis's Elements of Law 250
* Treatise on the Military Law of United States. 700
* Dudley's Military Law and the Procedure of Courts-martial..Large 12mo, Manual for Courts-martial. 16 mo, mor. 250
Wait's Engineering and Architectural Jurisprudence. 600
Sheep,
Law of Contracts. . ..
Law of Operations Preliminary to Construction in Engineering and Architecture. 300
Sheep, 500

MATHEMATICS.

Baker's Elliptic Functions $8 \mathrm{vo}, \$ 150$
Briggs's Elements of Plane Analytic Geometry. (Bôcher.) 100

* Buchanan's Plane and Spherical Trigonometry....................... 8 vo 100
Byerley's Harmonic Functions 0 G
Chandler's Elements of the Infinitesimal Calculus. 200
* Coffin's Vector Analysis. 50
Compton's Manual of Logarithmic Computations. 50
* Dickson's College Algebra. 50
* Introduction to the Theory of Algebraic Equations...... . Large 12mo, 25
Emch's Introduction to Projective Geometry and its Application 50
Fiske's Functions of a Complex Variable. 00
Halsted's Elementary Synthetic Geometry 50
Elements of Geometry 75
* Rational Geometry. 50
Synthetic Projective Geometry. 00
Hancock's Lectures on the Theory of Elliptic Functions. (In Press.) Hyde's Grassmann's Space Analysis. 00
* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size, paper, 15
* 100 copies, 500
* Mounted on heavy cardboard, 8×10 inches, 25
* 10 copies, 200
Johnson's (W. W.) Abridged Editions of Differential and Integral Calculus. Large 12 mo , 1 vol 50
100
Curve Tracing in Cartesian Co-ordinates 12 mo
Differential Equations. 8 vo 100
Elementary Treatise on Differential Calculus
Large 12 mo ,
* Theoretical Mechanics. 12 mo
Theory of Errors and the Metlod of Least Squares. 12 mo ,
Treatise on Differential Calculus. Large 12mo, 50
150150
Treatise on the Integral Calculus. Large 12 mo , 300
Treatise on Ordinary and Partial Differential Equations. . . Large 12mo, 350
Karapetoff's Engineering Applications of Higher Mathematics. (In Prepara ion.)
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). 12mo, 200
* Ludlow and Bass's Elements of Trigonometry and Logarithmic and Other Tables. 300
* Trigonometry and Tables published separately. 200
* Ludlow's Logarithmic and Trigonometric Tables. 00
Macfarlane's Vector Analysis and Quaternions. 00
McMahon's Hyperbolic Functions. 00
Manning's Irrational Numbers and their Representation by Sequences and Series. 125
Mathematical Monographs. Edited by Mansfield Merriman and Robert S. Woodiward. Octavo, each 100
- No. 1. History of Modern Mathematics, by David Eugene Smith.
No. 2. Synthetic Projective Geometry, by George Bruce Halsted.
No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-bolic Functions, by James McMahon. No. 5. Harmonic Func-tions, by William E. Byerly. No. 6. Grassmann's Space Analysis,by Edward W. Hyde. No. 7. Probability and Theory of Errors,by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,by Alexander Macfarlane. No. 9. Differential Equations, byWilliam Woolsey Johnson. No. 10. The Solution of Equations,by Mansfield Merriman. No. 11. Functions of a Complex Variable,by Thomas S. Fiske.
Maurer's Technical Mechanics.400
Merriman's Method of Least Squares. 200
Solution of Equations. 100
Rice and Johnson's Differential and Integral Calculus. 2 vols. in one.150
Large 12 mo , Elementary Treatise on the Differential Calculus. Large 12mo, 300
Smith's History of Modern Mathematics. 100
* Veblen and Lennes's Introduction to the Real Infinitesimal Analysis of One Variable. 200
* Waterbury's Vest Pocket Hand-book of Mathematics for Engineers.
$27 \times 5 \frac{3}{8}$ inches, mor. $\$ 100$
* Enlarged Edition, Including Tables mor. 150
Weld's Determinants. 100
Wood's Elements of Co-ordinate Geometry. 200
Woodward's Probability and Theory of Errors. 100
MECHANICAL ENGINEERING.
MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.
Bacon's Forge Practice. I 50
Baldwin's Steam Heating for Buildings 250
Barr's Kinematics of Machinery 250
* Bartlett's Mechanical Drawing. 300
* " " " Abridged Ed. 150
* Burr's Ancient and Modern Engineering and the Isthmian Canal 350
Carpenter's Experimental Engineering 600
Heating and Ventilating Buildings. 400
* Clerk's The Gas, Petrol and Oil Engine 400
Compton's First Lessons in Metal Working. 150
Compton and De Groodt's Speed Lathe. 150
Coolidge's Manual of Drawing 100
Coolidge and Freeman's Elements of General Drafting for Mechanical En- gineers 250
Cromwell's Treatise on Belts and Pulleys 12 mo , 150
Treatise on Toothed Gearing.
Dingey's Machinery Pattern Making.150
Durley's Kinematics of Machines 40
Flanders's Gear-cutting Machinery 300
Flather's Dynamometers and the Measurement of Power. 300
Rope Driving. 200
Gill's Gas and Fuel Analysis for Engineers. 125
Goss's Locomotive Sparks. 200
Greene's Pumping Machinery. (In Preparation.)
Hering's Ready Reference Tables (Conversion Factors) 250
* Hobart and Ellis's High Speed Dynamo Electric Machinery 600
Hutton's Gas Engine. 500
Jamison's Advanced Mechanical Drawing. 200
Elements of Mechanical Drawing. 250
Jones's Gas Engine. 400
Machine Design:
Part I. Kinematics of Machinery. 150
Part II. Form, Strength, and Proportions of Parts. 300
Kent's Mechanical Engineer's Pocket-Book. 500
Kerr's Power and Power Transmission 200
* Kimball and Barr's Machine Design 300
* Levin's Gas Engine. 400
Leonard's Machine Shop Tools and Methods. 400
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean)..8vo, 400
MacCord's Kinematics; or, Practical Mechanism 500
Mechanical Drawing. 400
Velocity Diagrams. 150
MacFarland's Standard Reduction Factors for Gases. 150
Mahan's Industrial Drawing. (Thompson.) 350
Mehrtens's Gas Engine Theory and Design 250
Oberg's Handbook of Small Tools. 00
* Parshall and Hobart's Electric Machine Design. Small 4to, half leather, 1250
Peele's Compressed Air Plant for Mines. 300
Poole's Calorific Power of Fuels. 300
* Porter's Engineering Reminiscences, 1855 to 1882 300
Reid's Course in Mechanical Drawing. 8vo, 200
Text-book of Mechanical Drawing and Elementary Machine Design.8vo, 00
Richards's Compressed Air 12 mo , $\$ 150$
Robinson's Principles of Mechanism 8vo, 300
Schwamb and Merrill's Elements of Mechanism 300
Smith (A. W.) and Marx's Machine Design. 300
Smith's (O.) Press-working of Metals 300
Sorel's Carbureting and Combustion in Alcohol Engines. (Woodward and Preston.). Large 12mo, 300
Stone's Practical Testing of Gas and Gas Meters 350
Thurston's Animal as a Machine and Prime Motor, and the Laws of Energetics.
$12 \mathrm{mo}, 100$
Treatise on Friction and Lost Work in Machinery and Mill Work. . .8vo, 300
* Tillson's Complete Automobile Instructor. 16 mo , 150
125Till
Warren's Elements of Machine Construction and Drawing. 750
* Waterbury's Vest Pocket Hand-book of Mathematics for Engineers.$2 \frac{7}{8} \times 5 \frac{3}{8}$ inches, mor.100
* Enlarged Edition, Including Tables. mor. 150
Klein.) Weisbach's Kinematics and the Power of Transmission. (Herrmann- Klein.). .8vo, 500
Machinery of Transmission and Governors. (Fermann-Klein.)..8vo, 500
Wood's Turbines. 250
MATERIALS OF ENGINEERING.
* Bovey's Strength of Materials and Theory of Structures. 750
Burr's Elasticity and Resistance of the Materials of Engineering 750
Church's Mechanics of Engineering. 600
* Greene's Structural Mechanics. 250
* Holley's Lead and Zinc Pigments., Large 12 mo 300
Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes. Large 12 mo , 250
Johnson's (C. M.) Rapid Methods for the Chemical Analysis of Special Steels, Steel-Making Alloys and GraphiteLarge 12mo, 300
Johnson's (J. B.) Materials of Construction 600
Keep's Cast Iron. 8vo,
Lanza's Applied Mechanics. 8vo, 750
Maire's Modern Pigments and their Vehicles. 200
Maurer's Technical Mechanics 8vo, 400
Merriman's Mechanics of Materials 8vo,
* Strength of Materials. .12mo,
Metcalf's Steel. A Manual for Steel-users. 12 mo , 100 100 200
Sabin's Industrial and Artistic Technology of Paint and Varnish. 8vo,
Smith's ((A. W.) Materials of Machines. 12 mo ,
* Smith's (H. E.) Strength of Material 12 mo ,
Thurston's Materials of Engineering. 3 vols., 8 vo , 125 800
Part I. Non-metallic Materials of Engineering, 8vo,
Part II. Iron and Steel. 8vo, 350
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their
Constituents.500300
100200
Wood's (De V.) Elements of Analytical Mechanics 250 300
Treatise on the Resistance of Materials and an Appendix on thePreservation of Timber. .8vo,
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. 400200

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram. 12 mo , 200
Carnot's Reflections on the Motive Power of Heat. (Thurston.).12mo 150
Chase's Art of Pattern Making. 12 mo250
Creighton's Steam-engine and other Heat Motors $8 \mathrm{vo}, \$ 500$
Dawson's "Engineering" and Electric Traction Pocket-book. ... 16mo, mor. 500

* Gebhardt's Steam Power Plant Engineering 600
Goss's Locomotive Performance 8vo, 500
Hemenway's Indicator Practice and Steam-engine Economy 12 mo , 200
Hutton's Heat and Heat-engines. 8vo, 500
Mechanical Engineering of Power Plants. 500
Kent's Steam boiler Economy. Svo, 400
Kneass's Practice and Theory of the Injector. svo, 150
MacCord's Slide-valves. 8vo, 200
Meyer's Modern Locomotive Construction. 1000
Moyer's Steam Turbine. Svo, 400
Peabody's Manual of the Steam-engine Indicator. 150
Tables of the Properties of Steam and Other Vapors and Temperature- Entropy Table. 100
Thermodynamics of the Steam-engine and Other Heat-engines. 8vo, 500
Valve-gears for Steam-engines. 50Peabody and Miller's Steam-boilers8vo,
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.(Osterberg.).12 mo ,125
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.
Large 12 mo , 350
Sinclair's Locomotive Engine Running and Management. 12 mo , 200
Smart's Handbook of Engineering Laboratory Practice. 12 mo , 250
Snow's Steam-boiler Practice. 300
Spangler's Notes on Thermodynamics. 12 mo , 00
Valve-gears.
Spangler, Greene, and Marshall's Elements of Steam-engineering.Svo,
Thomas's Steam-turbines$8 \mathrm{vo}, 400$
Thurston's Handbook of Engine and Boiler Trials, and the Use of the Indi- cator and the Prony Brake 8vo,
Handy Tables. 8vo, 150
Manual of Steam-boilers, their Designs, Construction, and Operation 8vo,
Manual of the Steam-engine.Part I. History, Structure, and Theory8vo, 600
Part II. Design, Construction, and Operation. 8vo, 600
Wehrenfennig's Analysis and Softening of Boiler Feed-water. (Patterson.)$8 \mathrm{vo}, 400$
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) 500
Whitham's Steam-engine Design. 500
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. .8vo, 400
MECHANICS PURE AND APPLIED.
Church's Mechanics of Engineering. 8vo,
Notes and Examples in Mechanics. 8vo, 600
Dana's Text-book of Elementary Mechanics for Colleges and Schools . 12 mo , 150
Du Bois's Elementary Principl 8vo 350
Vol. I. Kinema 400
Mechanics of Engineering. .Small 4to, 750
Vol. II
Small 4to,
..... 8vo, 250
Hartmann's Elementary Mechanics for Engineering Students. (In Press.) James's Kinematics of a Point and the Rational Mechanics of a Particle.
Large 12 mo , 200
* Johnson's (W. W.) Theoretical Mechanics. 12 mo ,
* Martin's Text Book on Mechanics, Vol. I, Statics. 12 mo , 50
* Vol. II, Kinematics and Kinetics.12mo, 50
Maurer's Technical Mechanics. 400
* Merriman's Elements of Mechanics 12 mo , 100
Mechanics of Materials
8vo, 100
+100
* Michie's Elements of Analytical Mechanics.
Robinson's Principles of Mechanism. .8vo, $\$ 300$
Sanborn's Mechanics Problems. Large 12 mo , 150
Schwamb and Merrill's Elements of Mechanism 00
Wood's Elements of Analytical Mechanics. 8vo, 30
Principles of Elementary Mechanics 125
MEDICAL
* Abderhalden's Physiological Chemistry in Thirty Lectures. (Hall andDefren.). .. 8 vo,
von Behring's Suppression of Tuberculosis. (Bolduan.). 12mo,
Bolduan's Immune Sera. 12 mo ,
Bordet's Studies in Immunity: (Gay.)00150
Chapin's The Sources and hodes of Infection. (In Press.)Davenport's Statistical Methods with Special Reference to Biological Varia-tions.16 mo , mor.Ehrlich's Collected Studies on Immunity. (Bolduan.). 8vo,50
* Fischer's Physiology of Alimentation. Large 12 mo , 200Fischer's Phy
de Fursac's Manual of Psychiatry. (Rosanoff and Collins.).... Large 12mo, 250Hammarsten's Text-book on Physiological Chemistry. (Mandel.).8vo,Jackson's Directions for Laboratory Work in Physiological Chemistry. . 8vo,Lassar-Cohn's Practical Urinary Analysis. (Lorenz.)................... . . 12 mo ,
Mandel's Hand-book for the Bio-Chemical Laboratory 12 mo ,
* Nelson's Analysis of Drugs and Medicines 12 mo* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.)..12mo,* Pozzi-Escot's Toxins and V'enoms and their Antibodies. (Cohn.). . 12mo,Rostoski's Serum Diagnosis. (Bolduan.). 12mo,
Ruddiman's Incompatibilities in Prescriptions.(10,
Whys in Pharmacy 12 mo ,
Salkowski's Physiological and Pathological Chemistry: (Orndorff.)8vo,* Satterlee's Outlines of Human Embryology. 12 mo ,
Smith's Lecture Notes on Chemistry for Dental Students 8vo,
* Whipple's Tyhpoid Fever Large 12 mo ,
* Woodhull's Military Hygiene for Officers of the Line Large 12mo,* Personal Hygiene. 12 mo ,400125100150300125100100200100250125
Worcester and Atkinson's Small Hospitals Establishment and Maintenance, and Suggestions for Hospital Architecture, with Plans for a Small Hospital. 125
METALLURGY.
Betts's Lead Refining by Electrolysis.400
Bolland's Encyclopedia of Founding and Dictionary of Foundry Terms used in the Practice of Moulding. 12 mo , 300
Iron Founder. 2mo, 250
Supplement. 12 mo ,
Douglas's Untechnical Addresses on Technical Subjects. 100Goesel's Minerals and Metals: A Reference Book16 mo , mor.
* Iles's Lead-smelting250Johnson's Rapid Methods for the Chemical Analysis of Special Steels,Steel-making Alloys and Graphite. Large 12mo,
Keep's Cast Iron.
Le Chatelier's High-temperature Measurements. (Boudouard-Burgess.)30025012 mo ,
Metcalf's Steel. A Manual for Steel-users................................ . . 12 mo ,
Minet's Production of Aluminum and its Industrial Use. (Waldo.). . 12mo,* Ruer's Elements of Metallography. (Mathewson.)....................... 8vo,
Smith's Materials of Machines. 12 mo ,
Tate and Stone's Foundry Practice. 12 mo ,
Thurston's Materials of Engineering. In Three Parts. 8vo,
Part I. Non-metallic Materials of Engineering, see Civil Engineering,page 9.
Part II. Iron and Steel. 8vo,
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo,300
Ulke's Modern Electrolytic Copper Refining Rvo. 8300
West's American Foundry Practice. $12 \mathrm{mo}=50$
Moulders' Text Book. $\because 50$
MINERALOGY.
Baskerville's Chemical Elements. (In Preparation.)
* Browning's Introduction to the Rarer Elements. 150
Brush's Manual of Determinative Mineralogy. (Penfield.) 400
Butler's Pocket Hand-book of Minerals. 16 mo, mor. 300
Chester's Catalogue of Minerals svo, paper, 100Cloth, 125
* Crane's Gold and Silver. svo, 500
Dana's First Appendix to Dana's New "System of Mineralogy" . . Large Svo, 100
Dana's Second Appendix to Dana's New "System of Mineralogy."
Large 8 vo, 150
Manual of Mineralogy and Petrography 12 mo , 200
Minerals and How to Study Them. $12 \mathrm{mo}, 150$ 250
System of Mineralogy.
System of Mineralogy. ther, ther,
Text-book of Mineralogy. 8vo, 400
Douglas's Untechnical Addresses on Technical Subjects. 100
Eakle's Mineral Tables. 8vo, 125
Eckel's Stone and Clay Products Used in Engineering. (In Preparation.)
Goesel's Minerals and Metals: A Reference Book. $16 \mathrm{mo}, \mathrm{mor}$. 300
Groth's The Optical Properties of Crystals. (Jackson.) (In Press.)
Groth's Introduction to Chemical Crystallography (Marshall). 12mo, 25
* Hayes's Handbook for Field Geologists 16 mo , mor. 50
Iddings's Igneous Rocks. 500
Rock Minerals. Svo, 500
Johannsen's Determination of Rock-forming Minerals in Thin Sections. Svo, With Thumb Index 500
* Martin's Laboratory Guide to Qualitative Analysis with the Blow-
pipe. Merrill's Non-metallic Minerals: Their Occurrence and Uses. 60 400
Stones for Building and Decoration. 500
* Pennield's Notes on Determinative Mineralogy and Record of Mineral Tests. Svo, paper, 50
Tables of Minerals, Including the Use of Minerals and Statistics of Domestic Production 100
* Pirsson's Rocks and Rock Minerals. 12 mo , 250
* Richards's Synopsis of Mineral Characters.
* Ries's Clays: Their Occurrence, Properties and Uses. 500
* Ries and Leighton's History of the Clay-working Industry of the United States. 250
* Tillman's Text-book of Important Minerals and Rocks. 20
Washington's Manual of the Chemical Analysis of Rocks. 8vo, 200
MINING.
* Beard's Mine Gases and Explosions. 300
* Crane's Gold and Silver. 500
* Index of Mining Engineering Literature. 400
00Ore Mining Methods. (In Press.)Douglas's Untechnical Addresses on Technical Subjects
100
Eissler' Morm Huh Fxplusives. Eissler's Modern H_{1} gh Explusives. 400
Goesel's Minerals and Netals: A Reference Book. 16mo, mor. 300
Ihlseng's Manual of Mining. 500
* Iles's Lead Smelting. 250
Peele's Compressed Air Plant for Mines. 300
Riemer's Shaft Sinking Under Difficult Conditions. (Corning and Peele.) 8 vo, 300
* Weaver's Military Explosives. 300
Wilson's Hydraulic and Placer Mining. 2d edition, rewritten. 250
Treatise on Practical and Theoretical Mine Ventilation 25

SANITARY SCIENCE.

Association of State and National Food and Dairy Departments, Hartford
Meeting, 1906. 8 vo, $\$ 300$
Jamestown Meeting, 1907 8vo, 300

* Bashore's Outlines of Practical Sanitation. 125
Sanitation of a Country House. $12 \mathrm{mo}, \quad 100$
Sanitation of Recreation Camps and Parks 100
Chapin's The Sources and Modes of Infection. (In Press.)
Folwell's Sewerage. (Designing, Construction, and Maintenance.).8vo, 300
Water-supply Engineering. 400
Fowler's Sewage Works Analyses 200
Fuertes's Water-filtration Works 250
Water and Public Health. 150
Gerhard's Guide to Sanitary Inspections 150
* Modern Baths and Bath Houses. 300
Sanitation of Public Buildings. 150
* The Water Supply, Sewerage, and Plumbing of Modern City Buildings. 8vo, 400
Hazen's Clean Water and How to Get It 150
Large 12 mo ,
Filtration of Public Water-supplies. 300
Kinnicut, Winslow and Pratt's Purification of Sewage. (In Preparation.) Leach's Inspection and Analysis of Food with Special Reference to State Control. 750
Mason's Examination of Water. (Chemical and Bacteriological)......12mo, 125
Water-supply. (Considered principally from a Sanitary Standpoint).
8vo,
400
* Merriman's Elements of Sanitary Engineering 200
Ogden's Sewer Construction 8vo, 300
Sewer Design
Parsons's Disposal of Municipal Refuse. 200
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-ence to Sanitary Water Analysis. 12 mo ,
* Price's Handbook on Sanitation. 150150
Richards's Cost of Cleanness. 100
Cost of Food. A Study in Dietaries. 100
Cost of Living as Modified by Sanitary Science. 100
Cost of Shelter. 100
* Richards and Williams's Dietary Computer 150
Richards and Woodman's Air, Water, and Food from a Sanitary Stand- point. 200
* Richey's Plumbers', Steam-fitters', and Tinners' Edition (Building Mechanics' Ready Reference Series). 16mo, mor. 150
Rideal's Disinfection and the Preservation of Food
400Sewage and Bacterial Purification of Sewage.
Soper'sir and Ventilat Purications. 00Turneaure and Russell's Public Water-supplies. Svo,Turneaure and Russell's Public Water-supplies. Svo,
Venable's Garbage Crematories in America. 200250,
Method and Devices for Bacterial Treatment of Sewage
Ward and Whipple's Freshwater Biology. (In Press.)
Whipple's Microscopy of Drinking-water. 8 vo, 350
* Typhoid Fever Large 12 mo , 300
Value of Pure Water. Large 12 mo , 100
Winslow's Systematic Relationship of the Coccaceæ. Large 12 mo, 250

MISCELLANEOUS.

Emmons's Geological Guide-book of the Rocky Mountain Excursion of the International Congress of Geologists. Large 8vo
Ferrel's Podular Treatise on the Winds. vo , Fitzgerald's Boston Machinist. 18mo, Gannett's Statistical Abstract of the World. 24 mo . Haines's American Railway Management. 12mo.400Hanausek's The Microscopy of Technical Products. (Winton) 8vo,250
Jacobs's Betterment Briefs. A Collection of Published Papers on Or- ganized Industrial Efficiency. .8vo, $\$ 350$
Metcalfe's Cost of Manutactures, and the Administration of Workshops.. Svo, 500
Putnam's Nautical Charts. 200
Ricketts's History of Rensselaer Polytechnic Institute 1824-1834.
Large 12 mo , (0)
Rotherham's Emphasised New Testament. Large Svo 00
Rust's Ex-Meridian Altitude, Azimuth and Star-finding Tables........ Svo, 00
Standage's Decoration of Wood, Glass, Metal, etc. 12 mo, 00
Thome's Structural and Physiological Botany. (Bennett) 25
Westermaier's Compendium of General Botany. (Schneider) (,0)
Winslow's Elements of Applied Microscopy 50
HEBREW AND CHALDEE TEXT-BJOOKS.
Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures. (Tregelles.) 00
Green's Elementary Hebrew Grammar. 25

- x Ar 18

MA

UNIVERSITY OF CALIFORNIA LIBRARY

[^0]: * See Proceedings of the Engineers' Club of Philadelphia, 1884, V: pp. 47-49

[^1]: * For an extension of this method to the determination of imaginary roots, see Phillips and Beebe's Graphic Algebra, New York, 1882.

[^2]: * Devised by Hudde in 1659 and published by Rolle in 16go. See Guvres de Lagrange, Vol. VIII, p. 190.

[^3]: * By substituting $y^{2}+p y+q$ for x, the quantities p and q may be determined so as to remove the second and third terms by means of a quadratic equation, the second and fourth terms by means of a cubic equation, or the second and fifth terms by means of a quartic equation.
 \dagger The law deduced by Harriot in 1631 and by Descartes in 1639.

[^4]: * Established by Du Gua; see Memoirs Paris Academy, i741, pp. 435-494.
 \dagger Sheffler, Die Auflösung der algebraischen und transzendenten Gleichungen, Braunschweig, 1859; and Jelink, Die Auflösung der höheren numerischen Gleichungen, Leipzig, 1865.

[^5]: * The values of ω are, in short, those of the n " vectors" drawn from the center which divide a circle of radius unity into n equal parts, the first vector $\omega_{1}=1$ being measured on the axis of real quantities. See Chapter X.

[^6]: . The numerical solution of this case is possible whenever the angle whose cosine is $-C / \sqrt{-B^{3}}$ can be geometrically trisected.

[^7]: * See American Jotrnal Mathematics, 1892, Vol. XIV, pp. 237-245.

[^8]: * This example is known by civil engineers as the problem of finding the length of a strut in a panel of the Howe truss.

[^9]: * Jordan's Traité des substitutions et des équations algébriques; Paris, 1870. Abhandlungen über die algebraische Aufösung der Gleichungen von N. H. Abel und Galois; Berlin, 1889 .

[^10]: * American Journal of Mathematics, 1886, Vol. VIII, pp. 49-83.

[^11]: * For an outline of these transcendental methods, see Hagen's Synopsis der höheren Mathematik, Vol. I, pp. 339-344.
 \dagger When B^{3} is negative and numerically less than C^{2}, as also when B^{3} is positive, this solution fails, as then one root is real and two are imaginary. In this case, however, a similar method of solution by means of xhyperbolic sines is possible. See Grunert's Archiv für Mathematik und Physik, Vol. xxxviii, pp. 48-76.

[^12]: * See Bulletin of American Mathematical Society, 1894, Vol. I, p. 3; alsc American Journal of Mathematics, 1895, Vol. XVII, pp. 89-110.

[^13]: * Proceedings American Philosophical Society, Vol. 42.

[^14]: * Crelle's Journal für Mathematik, i84r, Vol. XXII, pp. 193-248.

[^15]: *Mathematical Monograph, No. 5, pp. 23, 63.

