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ERRATA.

Page 11, last line for ,
read — - cos a x.^ ' ''a a

14, to the end of last line but one add 4— .^
6

15, to the end of lines 2, 4, 5, 6 add -i .

In line 7 insert -I— within the bracket.
6

16, line 6 from bottom, for a'
, , read u^..

24, for (velocity), read (velocity) 2.

32, last line but two, for gives, read give.

33, line 4 from bottom, for rectangular, read polar.

—— 46, line 10 from bottom, for c"^"*', read A'c^os*.

55, line 6 from bottom, for — — .sin m (, read — sin m 14. at.

86, line i, for Vl + cfi, read v/(l + x"^).

89, line 7, for expressions, read expression.

line 18 /or _ 2
-^,

read C
z^.

91, for functions of M, read functions of m.

95, line 12, for — —
, read : .

—
.





PREFACE.

It was intended, in the original plan of this Work, to

give the Solutions of the Morning and Evening Pro-

.
blems proposed by the Moderators in the form they

are usually given at their Examinations. It appeared,

however, that the benefits to be derived from solutions

of the Problems of past Examinations would be ma-

terially increased by putting them (whenever the case

admitted of it,) in such forms as might permit a more

extensive application of their uses. Accordingly,

many of them have been generalised, and explanations

added, as each particular case seemed to require : on

the other hand, many little
^

steps' and simple details

have been omitted which are capable of being supplied

by any reader acquainted with the first elements of

the science ; it being considered, that their only effect

would be to unnecessarily augment the size, and con-

sequently to increase the price of the Work. For

similar reasons, the use of Figures or Diagrams has

been avoided, and whenever a reference has been made
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to them, it has been accompanied by a description

sufficiently clear to enable any one, accustomed to the

Books of Euclid, to delineate them without difficulty.

With an object similar to that which suggested the

presentWork, the Author has in progress, A Collection

of Mechanical Problems, with their Solutions, on a

plan similar to that of the valuable collection, given

by Mr. Peacock, of Examples of the Differential and

Integral Calculus.

The Author takes this opportunity of acknowledging the

kindness of the Moderators in permitting the publication of

their Problems.



SOLUTIONS

OF THE

CAMBRIDGE PROBLEMS.

JANUARY 1830.

Monday Morning.

1. If ?i be a whole number^ prove that

—
zr^
— is also a whole number.

6

Since every number is either divisible by G, or leaves one

of the remainders 1, 2, 3, 4, 5
;

.*. every number is of one of the forms

6m, 6m + I, 6m + 2, Gm + 3, 6m -Jr 4, 6m + o;

.*. every cube number is of one of the forms

(6 mf which is of the form G m

(G m + 1)3 6m + 1

{6 m + 2f m -f- 2

(6 m + 3)3 Gm-^'S

(G w + 4)3 G m + 4

(G m + 5)3 6m + 5

which appears, by expanding each of the cube forms ;

A



.•. as every number, when divided by 0, leaves the same re-

mainder as its cube divided by G,

if we make ?i^ r= Gp + r

we may also make n zz 6q -\- r
;

.'. Multiplying 2nd equation by 5, and adding it to the first;

n^ + 5n zz GjJ + r+5.6^ + 5r

z=6p + 5.Qq -+- 6r

= 6*.

Q. E.D.

2. The ratio between the area of an equilateral

and equiangular decagon described about a circle^ and

that of another within the same circle, is equal to

8

' + 7+1
4 +

Dividing each of the decagons into ten isosceles triangles,

we have

Area of circumscribed decagon = 10. tan 18°

Area of inscribed decagon = 10 .sin 18°. cos 18°

tan 18°
.-. ratio of l^t to 2"^ — _

sin 18° . cos 18°

1

cos^ 18°

8

5 + l/l



Now, the approximate integral value of V 5 being 2, we

obtain successively,

y- VH — 2 1 1

1/5=2+ — = 2 + —j^ = 2 +
1/5 + 2 1/5 + 2

1

^^ + ^=4+^^J^" = 4+-J— =4+i
1 1 1/5 + 2 4 + ....

8 8
1

5 + t/5 ^ + 2 + 7_l1
4 + ..

8

' +
-4 + i

4 +
Q.E. D.

3. If a and & be the sides of a plane triangle, A
and B their opposite angles, then will

hyp. log h — hyp. log a = cos 2 ^ — cos 2 S

+ -
(cos 4 ^ - cos 4 5) + -

(cos 6 1 — cos G jB) + . . .

Since in any plane triangle, - = ——
-r ;^ ^ ^ '

a sin ^ '
•

^2 sin^ B
a^~ sin^ A

_ 1 -e^g^^-e-^-6^-' + 1



.'. 2 (hyp. log h — hyp. log a)

= -
hyp. log (1

-
e^-^V^) - hyp. log (1

- e-2^^^)

+ byp. log (1
-

e^lJv-i) ^ iiyp. log (1
-

e-''^^-')

+
3(e6^^-i + e-6^4v_>^ ^^_

.*. (dividing by 2)

hyp. log b — hyp. log a — (cos 2 A — cos 2 B)

+ -(cos 4 J. — cos 4 JB) + -3 (cos 6 A — cos 6 i^) + ....
•a 3

Q. E. D.

4. Of all spherical triangles which have the same

base and equal perpendiculars from the vertex to the

base, shew that the isosceles has the greatest vertical

angle ; and, from the result prove, that the same is

true in plane triangles.

From the vertical /_ C of triangle ABC let fall perpendicular

CD upon the base AB.

Let ^ ACD = a .'. Z DCB = C-a
AD=e .-. DB-c-0
CD = d

By Napier's Rules (making c the middle part) we have in

triangles JCD, DCB
sin S . tan a — tan

sin ct , tan (C — «) — tan (c
—

0]



Reducing 2°^ equation in order to substitute in it the value

of tan a, found from the 1st, there results

sin . tan C — sin ^ . tan a =. tan (c
—

6) . (1 + tan C . tan a)

^ sin ^ . tan a + tan (c
—

6)
.'. tan C = -—

.
;
—

-,sin c — tan a . tan (c
—

6)

tan + tan (c — 0) . ,:= -:
—

r^;
• Sin 0,

sin- d — tan d . tan (c
—

0)

_ sin 0.COS (c — 0) 4- co^3 0. sin (c
—

0) . .

sin" c cos . cos (c
—

0)
— sin . sin (c

—
0)

'

(multiplying numerator and denominator by cos . cos (c —0))

sin c . sin c
a maximum :

«;; ^^c H ,.<,o f^ _ fl\
" "'""""""'>

cos c — cos* . cos . cos (c
—

0)

•*• -T7T« 5 fees 0.COS (C — 0)i =0,
a ? ^ 5 '

or — sin . cos (c
—

0) + cos . sin (c
—

0) =
or sin (c

— 2 0) = 0,

/. c — 2 = 0,

c
.*. =—

;
.'. J_ CD bisects the base.

Now, supposing the radius of the sphere to become indefi-

nitely great, while the distance between the points A, B re-

mains invariable
; the triangle will tend continually to become

plane. But, for any value of the radius, however great, we

shall always have c — 2 = 0, in case of C being a maximum
;

and as this is true without any limit, it will also be true when

the triangle becomes plane.

Q. E. D.

5. Having given

log 8801 = 3 . 9445320

log 8802 = 3 . 9445814

log 8804 = 3 . 944G800

log 8805 = 3.9447294

find log 8803.
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Vq,v^, v^. V3, being 4 equidistant values of any function,

we Lave

A *
Vq = f^

— 4 ^3 + 6i;„ — 4 Vj + Vq = ;

. _ 4 (r, + v^)
-

(v^ + t;J ^

But, in this case, v^ = log 8801 v„ = log 8803

Vj^
= log 8802

«;3
= log 8804

.-. v^= 3.9440307

G. Two Straight lines which are always tangents

to a given parabola, are so inclined to the axis of x,

that the sum of the co-tangents of the angles which

they make with that axis is constant ; prove that the

locus of their intersections is a straight line parallel to

the axis.

Let a = latus rectum of the given parabola,

(a, /3), (a', /3') the co-ordinates of two corresponding points of

contact.

Then, the equations of two corresponding tangents being

Y-ft =Vl {X - a)

Y~ft'=m' {X- a!)

M'hich, by substituting for m and m their values, become

2F/3 =aX+ aa

2Yfi'=aX+aa'
we have, by subtraction,

2 F(/3-/3')=«(«-a'). U)

1 1 2/3 2/3'
But — + —;

=
i = c by hypothesis.

or 2 (/3 + /3')
= a c (B)

.-. 4 F (/32
-

/3' 2) := a- c (a
-

«') (C)

by multiplying {A) by (B)



But since /5' = a a

and .'. j3^
—

/3'- =: a (a
—

a')

.*. (C) becomes

4 a Y {a
— a) = a^ c (o

— a)

or 4 Y = ac

the equation to a straight line parallel to the axis of ^.

7= Find the surface in which the tangent plane

always cuts the axis of z at distances from the origin

proportional to _„ , and when n=i give to the arbi-

trary function that particular form which will produce

the equation to the ellipsoid.

In the equation of the tangent plane,

z — z' = p {x - .v') + qiv — y')

we have at the same time

a-'=0,y=0, z'- —-,

by the conditions of the problem; so that in this case^ it will be

px + qy-
>»i+l c""*"^

a partial diflerential equation of the form

Pp+ Qq-B.
Now, by the theory of such equations,

if we call the integrals of the equations,

P dy — Qdx —
Pdz — Rdx=0

respectively (a) & (ft) ; we shall have

/3 = ./.(a).
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But Pdy — Qdx — X dy — ydx—fi;

. . a — •- .

X\so Pdz-Rdx-xdz- -;,
dx-O,

or (w + 1
) ^J, __\n^,

- (« + 1 ) rf :«: = ;

.-. /3
= hyp. log.

-^ -^, ^

••• hyp. log. [

-^

^.^: ]= ^ (,7. j^

or, when n "= 1,

— x^ .^(—^ suppose.

a:^ w^ z"^

there results -5 + V5 ^—t= ^
5

a* o"^ c-

the equation to the ellipsoid, which may easily be shewn to

possess the required property.*

* It may be here remarked, that giving to any one of the variables {z

for instance) a particular value (y), and assigning the form of the arbitrary

function of
•-,,

is equivalent to subjecting the surface to pass through a given

plane curve (in this case an ellipse), parallel to the plane of a', ;/,
and at a

distance from it equal to y. But supposing z to remain indeterminate, and.



are the equations to a straight line and curve of

double curvature; find the equation to the surface

generated by a straight line, moving always parallel to

the plane of oCi/, and passing through the straight line

and the curve.

The curve of double curvature is formed by the intersection

of the surfaces of a cone and cylinder, the vertex of the cone

being the origin, and its axis coinciding with that of z
;
while

the axis of tbe cylinder is parallel to that of z, and at a distance

from it = c the radius of its circular base.

Now, since we have only to consider those points in the

surfaces that are common to both of them, we may consider the

cotemporary values of x and y to be common to both of the

equations, and may therefore make 2cx = m^z^.

Let now y =. (ix + y\
z = c S

be the equations to the generating line in one of its positions.

But, as this line is to pass through a point where, from equa-

tions, (1) z ^= c, y =z b B, X zz a c, these equations must become,

by this condition,

y-'bc=zijfx-ac)1 ,.

z= ^
^

w;

assigning, as before, the form of the arbitrary function, amounts to making
the solution represent a surface of which all the sections parallel to the

plane of a-r/ shall be ellipses. The introduction of the constants in the

arbitrary function determines the species, magnitude, and position of one of

the sections. This, together with the other condition of the problem, com,

pletely determines the surface.

B
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Also, since the same line is to pass through a point where,

f . , s ^ mh
^ ,
— T-^ m^ c^

from equations (2), z = c, y zz -— v 4 c' — m* c-
, x =—— ,

ml
(W2

0~ ^

Substituting the value of ft found from this last equation in

1st of equations (3), and putting z for o, we have finally

X — az lac — w^z

y —h z 'lb c — m -1/4 c^ — m^ z^^

an equation to a surface of the 4*^ order, consisting of four

sheets, or two ungular figures, one above and the other below

the plane of x y. These figures will not be equal nor similar,

unless the line represented by equations (1) be supposed to coin-

cide with the axis of z
;
that is, unless a =. 0, and 6 = 0; in

which case the surface has for its equation

mz X
}

V^c^ — m'^z' y

which is of the well-known form

-Q) (See Peacock's Examples, p. AAO.)

9. Integrate

(1) -r-^ + a^ V = ^' cos a X.
^ ax*

(2) z— px — qy'=.m{x-\-y-\- -'-)•

(1). The solution of the equation

being y = c.cos ax '( c'.sin ax, will also be that of the more

general equation,

if c and c, instead of being constants, be functions of x.
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The forms of these functions may be determined in the

following manner :

Differentiating y •=. c , cos « x 4- c' . sin ax on the above

supposition, gives

dy . dc
-^— zz— ca.sm ax + c a , cos ax + cos a x .

-—
dx dx

^ . dc'
+ sm a X .

—— =. — c a ,sin a X + c a. cos a x,dx '

making cos (^x ,-—[- sin a x . -7— = 0. (A)

Differentiating again,

d'^y

^^i
r= — «2 (c . cos ax -^ c' sin a x)

— a . sin a :r . -5- + a cos « X .
^ •

dx dx

'^ + fl2 ,,
_ _ ^ •„ ^ ^ dc

, „ dc'^^
;rfi-^

^ J/ = - (I sm a X ."LL + a cos ax.^"'^ dx dx
= X;

.'. a cos ax. dc' -^ a sin ax.dc=: X dx.

This last equation, combined with (A), gives

dczz — -.X sin ax .dx
a

dc'zz —.Xcosax.dx;

.'. c zz C / X sin ax .d x.
a%J '

^' — C*
'

+ — / X cos a ^ , rf a:.

Substituting these expressions for c, c' in that for
5/, gives

y-Ccosax^r C sin ax + \ sin axfXcos ax.dx

"~ ~
• / X sin a x . dx.
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but X =: £^ cos ax;

.'. sill a xj X cos a x dx — cos ax I X sin a x .dx

1 f."= - £' sin a X +
-^^p—

_--
J
2 a cos « ;i-

- sin a *
( 5

.*. making C cos « ;r + C" sin « ^' = J. cos {a x + B),

y=z A cos (« ;i- + £) H \ 2 a sin a x + cos ax\'
1 + 4 rt^ f '

(2) s — p X — qy =. m {x \- y -\- z).

This equation is of the same kind as that in Problem 7.

.*. in the equations P dy — Q d x =. 0^

Pdz — Rdx=i 0,

we have P zz x, Q = y, R =. — {m — 1) z — m(x + y) ;

,'. from the first of these, we obtain a = —
,

X

which makes i? = — (?«
— 1)2 — w (I + a).r : so that the 2d

of the above equations becomes

xdz + {m — 1) z dx + m{l + a) x dx =

or, making z-=z ux',

mdx {I +« + ?/) + X du -=
;

d X
,

d u
.'. m f — =

;X 1 + a + M

.". /3= log ^'"(1 + a + u)

— log x'^-"' {x + y + s) ;

.-. a;'"-' {x + y + z)= e'f'(:v^

10. Solve the following equations of differences :

(1)
A .r + A2 X + A=* X = a-\

(2) u^. M
^^^,

+ tf
^^

. ^^
^^^.

+ u
_^., .

. u
^^^,
= m«.
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(l). This is equivalent to finding a series of numbers, such,

that the sum of the first terms of the l^t, 2"^^, and 3'^ orders of

differences may equal the cube of the 1** term of the series.

If then X, .Tj , x„, a'3
. . . . . x^ . be the several values of x

which compose the series, they may be determined from the

general expression

n w(w— 1),., nin — \){n— 2) ,

^„ = or + - ^x+ -A__^ A-\r +
^^^^3

^' ^ +• ••

by giving successively to n as many values 1, 2, 3, &c., (and

therefore obtaining as many simple equations) as may be neces-

sary. In these equations, however, the values of A^, A^a;, A' a:,

&c. will remain indeterminate; but it is easy to see, by a process

of reasoning similar to that employed in integrating an equation

of differences of the 3^^^ order, that three of these values must be

arbitrary ;
and in general, as many as are denoted by the order

of the equation to be integrated. We may, therefore, obtain an

indefinite number of series which answer the required con-

ditions.

Thus, if we had A ar = 4, A^^ = 3, ^^ x =1,

then A a; + l^~ x -t -i? x — x^ =. 8.

and the general expression gives

A-j
= a- + A X = 6,

X. = X + 2 A ;r + A- x — 13,

aTj
= .r + 3 A :i' + 3 A= X + A^ a- =: 24

;

.*. the required series is 2, 6, 13, 24, &c.

The same result might have been obtained by integrating tho

several terms of the proposed equation, on the supposition that

the successive increments of the variable x were not constant.
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This would have led to a numerical equation in a:, of which the

roots would be terms of the required series, indeterminate as

before, since three terms of the resulting equation would have

arbitrary co-efficients.

(2). To integrate

Assume w^ n m tan Vx ;

.'. tan VjAan v^.^^
+ tan t;^ .tan v^+o + tan Vj.^^ .tan ^^g = 1,

... tan vx = '"^^"^-^^-^""^-^S
tan v^.+j + tan v^^

- cot (i\,+i + v^^^) ;

or fr+2 + i'l+i + vx— ^ .

To integrate this equation, assume v^ = a" + K;

.*. it becomes a^* 4- a^^' + a^ = - — 3 A",
St

or a- + a + 1 = •

making
- — 3 jfiC= 0, or jfiC = J .

And since the values of a are

we have

But = cos and — = sm — ;

2 3 2 3
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(2 2 \*
cos - TT + V — I. sin -

TT
^

+ C'(cos-7r- -l/'^.sin-,r^*^3 3 /

= C (cos ^— + 1/_1 .sin -^
—

j

+ C\cos
—

V-1.S1I1__^

= (C+ C')cos^ + V^^ {C-C) siu ?^^
3 3

= C\ COS + C„ . sm
;^ 3

- 3

.'. Uxzz m tan . <{ C, cos + Co sin >
•

^
^

3
-

3 5

11. Sum the following series :

-I 1 + 4- ad infinitum.
1.3 4.6 7.9 10.12

sec . COS e + 4 (sec 6)- cos 2 + 13 (sec df cos 3 0,

+ 40 (sec d)* cos 4 + . . &c. to n terms.

Let « = 1+ jr3 + a-6 + A^* + . . . . ad inf. = ——^ ;

1 — x^

.-. Csdx-- +'!-4-^ + ^+J 1 4
^

7 10

:rdar/ jd^a;=±- + -^ + -^ + _f + ....
t/ 1 .3 4.6 7.9 10.12

Then, if iSbe the value oifxdxfsdx, between the limits

x = and j: = 1, it will be the sum required.
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But A- d .r A dx= ^ j^s
dx ~- j s x- d x

= 1/1^3 + ^log (I
- .) + ^. log ./TTTT^

../
Also f-^ = - i

log (1
-

a-) + ^log
1/ 1+ X + #

H = . tan '

^ \ ; /

/. A' (^xfsdx
-
\ log (1

-
^0'"^'

^ 1
(l

-. log ^TT^T^ -. ,-^ . tan->
^^-^^

(2). The co-efficient of (sec 0)". cos n 6, being the general

term of the recurring series

1 + 4 + 13 + 40 +

in which the scale of relation is 4 — 3,

we have, for determining it, the equation of differences

«x+2 = 4 •^"' +1
— ^ "' 5

.-. making w.,— a^, leads to the equation

a«_4a + 3=:0:

.-. the roots of this being 1 and 3, there results

w.,- C + 3-. C.
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But «o = = C + 6" > r _ _ 1
Wj = 1 = C + 3 C 5

•'• ^ -
2

3' - 1
/. 2/j. = r— .

2

The general terra
(w^ ) of the proposed series thus becomes

w^
= -

(3»
-

1) (sec 0)°. cos n d.

Let now sec 6 = z,

2 cos d=v + Wy ( where w =- )
;

.'. 2 cos ndzz V* + w"
;

=
4(^" -!)(«" + 6"), (making v z = a, w z - b).

.-. A ^„ = w^^, = -
^
3 « . (3 a)"

- « . a"
J
+ ^ J

3 6 . (3 i)"
--

ft . 5"
^

•

Now 2 53ft.(3r/)»-a.ft«J = ^oT^ __ _«;;^ ^.
t > 3 a— 1 a— 1

•

_ 3"+^ a"+' -3a _ a^^' - a

3 a — 1 a— 1
'

.
1 ^3"+' a"+i - 3 a 3»+' 6"+' - 3 ?; >

4(. 3 a -I ^
3ft-l S

jn+i

4 ^ « - 1
"*"

h -I s

V,
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__ 2 V :V'^V/^(g" + ^>")-3"+'(ft"+i 4- ^"+')+ 3(rt+ />)-2. 3^«/j^

_ 1
5 fl ^> (flr" + 6") - (a"+' + 6"+') + (a + b) — 2nb ^ ^

4 J a6 — (a + 6) + 1 i

But, since a b = z- = (sec 0)",

(a" + &") = 2 2" cos w = 2 (sec 0)" . cos u d,

&c. = &c. ;

by substituting these values, we have, finally,

^ _IS 3"+^ (sec e)"+" cos n d- 3"+' (sec 6)"+^ cos(;2 + 1)0 + 3 sec cos 0-3^ (sec
"~

2} »2 ^sec 0)'
— 2 . 3 sec (i . cos d + I

-^^
1

^ (sec 0)"+^ cos 71 e— (sec 0)"+' cos (^.i + 1) + sec 9 . cos — (sec 0)^7

(sec 0)*
— 2 sec . cos + 1 S

12. Find sin x from the equation

sin X . cos X + a sin' x zz. b,

and shew its use in the solution of the following' pro-

blem. To determine how much the azimuth of a

known star on the horizon is affected by refraction.

Let sin a: = w
;

.'. u Vl —u^ + au^ =. b
-J

or, transposing, squaring, and arranging,

a^ + 1 a^ + 1

Whence, by proceeding as in a quadratic equation,

sin

^=l/|2(l«+l)S'^^«*
+
'±^l'-''(*'-'"^)Sl-

Let Z, P, S denote respectively the zenith, pole, and star's

place ;
the star being below the horizon by a vertical distance

= R the horizontal refraction.
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Draw the meridian EZPO cutting the horizon in points E, O.

Let the vertical circle ZS cut the horizon in A, and take,

in EA, a point B, such, that PB =. star's true polar distance.

Join, by great circles, BS, BZ, PS, PA.

Now A being the point at which the star appears to rise,

and B the point at which it really rises
;

the Z BPA expresses

the difference between the true azimuth and that affected by
refraction.

Let PO = X, /_ PZS = z, L OPS = k,

PB = 90°-\/.PZB=z +Sz,Z.OPB= h + Sh;
S z and S h being very small angles.

The triangle ZPS gives

cos PS — cos ZS . cos ZP
cos PZS -

sin ZtS . sin ZP
sin A

cos R . cos X

Also in the triangle ZPB,

+ tan il . tan \.

^„^ sin A
cos PZB =

.% cos PZS — cos PZB =: tan i2 . tan X +

cos X »

sin A sin A

= tan ^ . tan X +

cos R . cos X cos X

sin A — sin A . cosR
cos R . cos X

sin i? . sin X + 2 sin A . sin*— R_ 2

cos R . cos X

But cos PZS - cos PZB

= sin I {PZB - PZS) . sin ^ {PZB + PZS)

z=: 2 s'm — Sz . sin fz + o ^ ^
)

= 2 sin z . sin
2

^ ^ • cos — S z + 2 cos z sin^ o ^ ^'
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.'. sin - ^ 5r . cos - 3 + cot z . sin- -Iz

sin i? . sin X + 2 sin A . sin- — i?

~
2 cos Li . cos A . sin sr

'

which, by making —Iz— x,

cot 2 = a,

sin iJ sin X + 2 sin A . sin^— R
——. — = h)

2 cos R . cos X . sin z

becomes, sin x . cos x + a sin* x = h.

13. A right-angled triangle vibrates in its own

plane about an axis passing through its vertex, find the

length of the isochronous simple pendulum; and if

one of the sides be slightly diminished and the other

as much increased, determine the variation of the

pendulum.

The triangle JBC being right-angled at C, draw CE bi-

secting, and CD perpendicular, to base AB.

Take, in JB, any point P, and another point P' very near

to it ; and, with centre C, and radius CP, describe the circular

arc PQ cutting CP' in Q.

Then, retaining the usual notation for the side and angles of

ABC, let

CJDzzk, L DCP = e,

CP-r, L PCP' = a e.

Now the momentum ofinertiaof the sector PCQ — —^ ;

/. if u — moment of inertia of triangle ABC, we have

dd~ 4
~

4 COS*
'
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•••«~4jcosM

4 ^c/ cos'' J COS* e 5

= -\f tan^ 9 . d (tan d)+fd (tan 0) J
,

4 ^ '

/&4 rtan-'' 6 , ^> C0 = - /^ i'CA = -S,=
4l-3- +

'""^5 le = +ADCB=+A,

= ^51 (tanS A + tan^ B) + tan ^ + tan b\
•

4 C " '

a b . .

But. tan J. = -r ' tan B = -: also, since twice area
a

ABC^ah — kc, k'^zz—--^ ;

4(««-t-6'^)^

=
^a5(a"-

+ n

12

Now, if Z( = length of isochronous pendulum, taking the

point G in CjG, such that

1,=
area yl CC x CG 2
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Now, \etSL be the variation of L corresponding to the

small variations Sa, ^ b of the sides a, b
;

f. f dL ^ dL ^
c Jj zz —— ' a -T -n 'f^"

da do
• •

/dL dL\ .

since, by hypothesis, ib =.— ^ a .

dL_ldc__ a __ a

da 2 a a \/(^a^^b-i) c

,dL_l dc _ b _h ^

^"^
db ~2'db- x/i^a"- + b')^ c'

^ a — b ^
,', c Ld ::z •

. c a .

14. If a hemisphere and paraboloid of equal bases

and similar materials have their bases cemented tog-e-

ther, the whole solid will rest on a horizontal plane on

any point of the spherical surface, if the altitude of

the paraboloid = a \/ '^,
(«) being the radius of the

hemisphere.

Since the body rests on any point of the spherical surface,

its centre of gravity must always lie in the vertical line, passing

through the point of contact of the hemisphere with the hori-

zontal plane.

Therefore the centre of gravity of the body is the centre

of the spherical surface;

therefore mass of paraboloid x distance of its centre of gravity

from centre of sphere = mass of hemisphere x distance of its

centre of gravity from centre of sphere.
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1 12 3
that is,

- TT «2 /^ X - A = -TT a' x -a;

{h being the altitude of the paraboloid)

2
or, -h^=.a-\

.:h^as/\.
Q. E.D.

15. Prove that the eye cannot be achromatic for

objects at all distances.*

16. A body is acted on by two forces^ the one re-

pulsive and varying as the distance from a given point,

the other constant and acting in parallel lines. Deter-

mine the motion of the body.

The centre of repulsive force being the origin of co-ordinates,

let the constant force act always in the direction of y.

Let absolute central force = m^
constant force zz mk

]

.'. resolving these forces in directions of x and y,

dt
zz mXf

d^ 11 , ,.

Multiplying 1^* of these equations by 2dx, and 2^^ hy 2 dy
and integrating, gives

dx""

df"

dy'_

= m {x"
- a%

/^^
= '^\{y^ky-{^ + hr\

* See the Appendix.
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(It being constant, and (a) {h) being co-ordinates of the point

from which the body begins to move by the action of these

forces.

.*. combining the last two equations,

d (if + k) _ dx X

.. by the integration of this last, we have, for the path of the

body,

c being an arbitrary constant, which is determined by consider-

ing that a and b are corresponding values of x and y ; a con-

k -{ h
dition which gives c — ——— •

17. A body falls towards a centre of force v/hich

varies as — ,
in a medium of which the density varies

as (velocity)2.
Prove that at any distance {r) from

the centre,

(velocity)
= ^ 1

1 - .
^'^

'''^l^

where m = force at distance }, h- density at distance

1, and a = distance from centre at the beginning of

motion.

Let P represent the variable central force, k the density, v

the velocity.

Then, the resistance being as kv% may, for similar and equal

bodies, be considered eq?ial to it : so that the equation

V dv :=-fd s becomes, in this case,

vdv -— Pdr -{- kv"- dr,

or xdv— k V- dr - - /' d r.
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But, observing that

we may make the last equation integrable by multiplying it by

.'. multiplying and integrating, we have

01% multiplying again by £-^
**''•,

m , , k
—,, and k — —^.
IT ir

But P = -3, and ^ = 3,

Also

It



\l\J

, m m ^ _i

Q E. D.

18. A uniform rod vibrates in a medium, the re-

sistance of which varies as the velocity ; find the time

of one of its small oscillations.

Since the velocity of any point of the rod is as its distance

from the point of suspension, the whole effect of the resistance

is that of a set of parallel forces, varying as that distance, and

acting perpendicularly to the rod. These resistances, therefore,

are equivalent to a single force equal to their sum, and applied

at a certain point which may be called the centre of resistance.

Let h = resistance to a unit of length of the rod at a dis-

tance =. 1 from centre of suspension, and for a velocity := 1 :

a = length of rod,

:=. distance of centre of resistance from that of suspension ;

.•. resistance at a distance x r= A.r;

.*. whole resistance :=.fhxdx,

ha? ix = y

Cx = « >

/ h oc~ tl X
Also, by theory of parallel forces, o rr

'
-

2a C.V =X = 0} ^

ay

This result shews, that the centre of resistance coincides

with that of oscillation
;
which reduces the problem to finding

the time of a small vibration of a point in a circular arc

(*> \ . h (i^

radius rr f «
J

> the resistance being equal to --- •
velocity.
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Now, (Whewell's Dynamics, p. 20C), T =
^.

,

where T is the time of an oscillation in any arc of a cycloid

and 2 ^ = resistance for velocity 1, .-. T will be time required,*

if for 2 ^ we substitute

-—
, or makCiJ- =: -—-

, and/ = —^ (see page 101; ,

\/rd- 16

SATURDAY EVENING.

1. Iy X =.m . tan {%
—
nx) where x is small com-

pared with z,

m sin 2z ,

prove that ^ = -r n— very nearly.

If w be a function of x, we have, by Maclaurin's Theorem,

/ , /du\

very nearly when x is small : (m)o denoting the particular value

of u when a: = 0.

Let u— m , tan (a
—

wa:), .*. (Mq) = /w tan ar;

dx cos2(sr
—

war)
— war)'

*

\cfxxo~" cos'ar*

* This will be obvious, by considering that the ohly property of the

cycloid made use of in the article alluded to, is, that the accelerating force

in a cycloid is as the length of the arc from the lowest point, whicli is also

true in a circle when the arcs described are small.
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, Tfin
.-. n=z X zz m tan z r— . x,

cos- z

(mn \
1 T ^— ) a; =^ m tan s :

tan ar . cos^ z
.'. X zz m mn + cos- jst

»n sin 2 z

mn -^ cos" ar

Q. E. D.

2. If - ^™,„ . A'""-?,
- P^„ . A-™-^ - P^ ,

. .r"*-^,
- &c.

be the negative terms of an equation of m dimensions,

then will the greatest root of this equation be less

than the sum of the two greatest of the quantities

P\.,, P\.,, &c.

Let P^^ = P, pK-, = a &c. = &c.
;

then, transposing all the negative terms to the right hand side

of the equation, it may be put in the form

^"^ + . . . . = ppx'^-p + Q^A-""'-? + Rx"^ +

Suppose P to be the greatest, and Q the next greatest, of

the quantities P, Q, R, &c.

If P > X, a fortiori, P + Q > or.

p
If P < JT,

— is a proper fraction.

pp p
x^ a;

.-. pp x"^ < P a"-'.
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^ A .1 1 Mi. • ,

.V - Q
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.'. C =1 — n {it —1)0— '^ {>i
—

1) (^^
—

-) 7: •

Substituting this value of C, and making ac = w, we have

S\,
—

\2n {2 n — l) — n {n
—

^)\
-

+ \2}i{2n— l)(2w— 2)
— n{n— l){u

—
2)( -,

a b= (3 72 — I) ?2 .

- + (7 « — 2) {n
—

1) ?^ .
-

.

Q. E. D.

4. A vertical prismatic column, tlie horizontal

section of which is an equilateral and equiangular

pentagon, is cut by a given plane; find the sides and

angles of the section.

Conceive the prism to be inscribed in a cylinder, so that the

horizontal sections of the two soHds may be regular pentagons

inscribed in circles, and the oblique sections irregular penta-

tagons inscribed in ellipses.

Let AB be the diameter of the circular section APB; C
being the centre, and P any one of the angular points of the

polygon.

Draw AD, meeting the vertical side BE of the cylinder in

any point D. Then, if the oblique section be perpendicular to

the plane ABE, AD may be the axis major of the circum-

scribing ellipse, and the angle DAB the angle which the oblique

section makes with the horizontal section. Draw PQ, vertical,

and meeting the circumference of the ellipse AQD in Q: then,

as all the points Q are in the same plane, the height of any one

of them above the section APB will be as its distance from a

tangent plane, to the cylinder, passing through A
;

that is,

(letting fall the perpendicular PN on yi B) as AN, which is as

the versed sine of angle A CP.
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Let L DAB- a, AC -a,
L ACP-i'y, VQ.-Z.

rrx
• BD PQ z

Then, since —= = --^ tan a =
,AB /IA -ia.versin/j

or s = 2a . tan a . ver sin
/3.

Therefore, if P,,P„, P„ be the angular points of
a regular polygon of w sides, inscribed in the circle APB, and
*^i ' ^2 5 Q« the corresponding points of the irregular
polygon inscribed in the ellipse :

making z PCP, = '^ , L PCP„ =^,....^PCP ="-^,
and P,Q^:=z,, P^Q=z ,*

in, ^m m '

we shall have, in general,

3„=2a.tana.versin('/3 + ^^^).n

So that, h-a sin - being the side of the regular polygon, the

corresponding side of the irregular polygon will be

In the above particular case, w = 5
; and giving m the

several values 1, 2, 3, 4, 5, we obtain the several expressions for
tlie respective lengths of the sides of the oblique section.

To find the angles, we have only to calculate, from the

general form, the line Q^ Q^^^, and then, from the three sides

of the triangle Q^ Q^^^ ^^^^ to find one angle.

Having obtained, in this manner, n - 1 equations, and ad-

ding the condition that the sum of the angles of the section
= (« — 2) TT, the angles are completely determined.

This solution, which is perfectly genera), admits of very
considerable simplification in particular cases.
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5. Eliminate by differentiation/ ("^.^
and (x y)

from the equation

T dz dz

dx '

dy dx '

dy
'

.'. taking the partial differential co-efficients of

9=/'(|) +^<?>'(i^^'X (2)

/. multiplying (2) by y, and (3) by x^ and adding,

'px + qy- .r/(-) + 2xy(p'{yx);

.*. subtracting (1) from this,

px -^ qy — sr = '2xy<p' {1/ x)
—

<p{7/ x). (4}

Differentiating (4) with respect to x and y, gives

rx + sy-y f (y x) + 2 x y^ f" {y x), (0)

sx-\-ty-xci>' iy x) -}- 2 a-^y ,/," (?/ x). (6)

/. multiplying (5) by x, and (6) by y, and subtracting the last

from the last but one of the results, gives

r x" — 1
7j^

=. 0,

„d^ z „ d- z
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6. Find the locus of the intersections of the tan-

gents of an hyperbola with the perpendiculars upon
them from the centre : determine its maximum ordi-

nate, its area, and the angles at which it intersects the

axis.

cL %i

The general equation to the tangent being y
—

y' ^=^ t^

{x — x), that of a perpendicular upon it from the origin is

dx . •

t/
= —

-J

—
,
X

;
where x, y denote the co-ordinates of any point

in the curve touched, and x, y those of any point in the tan-

gent;

.*. the equation of the hyperbola being

a^ y'""

-
h^ {x^-

- a% (1).

those of its tangent and perpendicular from the centre are

found, from the above forms, to be respectively,

a^yy-b'^'xx' + a^b^ =0, (2).

b'^x'y ^- a'^y' xzzO. (3).

Eliminating, therefore, x and y' from equations (1) (2) and (3)

there results the equation

(1/2 -f x'^Y^a-'x'^ -b-'y-,

which, as it comprises all the values of a: and y which can be

common to equations (2) and (3), or the co-ordinates of all the

points where an intersection can take place between the lines

they represent, is the locus required.

This, when referred to rectangular co-ordinates, by making

xz=. r cos Q, y — r sin Q, becomes

r2 = (a2 4. £2) cos^ -
62, (4).

, a2 _ ^2 , ^ ^2
or r* = ;

— + —-: cos 2 5. (5).
•2 2 ^ '

B



34

Now, y or r sin will be a raaximuni when y^ or r^ sin- 9 is

a maximum
;

d?-— b'^ a^ + b^ b^
.*. r'^ sin^ =. — cos^ 2 H cos 2 = a maximum.

4 4 2

.-. A. (^2 sine y) 3:0,

or (a^ + 62) cos 2 — 6« = 0;

6^
.*. cos 2 =

a' + b^

This value of cos 2 0^ substituted in the above expression for

r' sin' 0, gives the value of the greatest ordinate

««

'2x/{a" + b")

To find the angles at which the curve cuts the axis, we have

rr/0_ 2 r°

~ch- (a--t- b'')
sin 2 0'

which becomes infinite when = or 180°,

for both of which values of 0, r =. a-,

.-. the curve cuts the extremities of the axis major of the hyper-

bola at right angles.

Also, from the equation (4), when

h
r = 0, cos0 =

±^^^,_^^,^,

at which angles, the radius vector becomes a tangent to the curve

at its intersections with the axis at the pole, and limits all the

angles which the radii can make with the axis.

Lastly, as the curve is symmetrical on each side of the

axes of X and y,

Pr^ d
its whole area = 4 y

—
^^—

— Ifr^d 0,
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= (a'
-

*2) . tan-'
|
+ « ^

;

the limits of d being: from to sin"' rr- or tan"' - .
"=

V^ {a' + 6*) b

7. Having given the two first terms of the expan-

sion of (a* + 62 + 2 a o . cos 0) Mn a series of the form

^o + ^1 • cos + Ig . cos 2 + &c, shew how, from them
the two first terms of the expansion of

-2.

(a« + 6« + 2 a 6 cos 0)
^

may be determined.*

8, If ^^i represent the sumf of the ordinates in the

quadrant of a circle whose radius is 1,

S^ represent the sum of their squares,

*^3 cubes,

&c &c.

prove that S,^, . S^ = ^^ . S, . S^ .

Since the magnitude of each sine depends upon its distance

(x) from the centre of the circle, we may make this distance the

independent variable.

.-.
'i^ = sin- 9,
a X

.'. Sm —fdx s\n'"e = —fdd. sin^+'e, since xzz cos 6;

the sign /being supposed, throughout this problem, to denote

an integral taken between the limit = 0, and = — .'2
* See Woodhouse's Physical Astronomy, p. 294.

t The limit of the siim.
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sin*""' . cos

m
m 1

Cae .sm^H',m J

„ sm™ . cos m , , „ • m_i «

in -\- I m -\--^fdo.

Therefore, giving, successively, to m the values

w, w — 1, 1, 2, there result

^ q _ n{n — \) 3.2.1 x
"-^ • " ~

[n +1) n 3.2.1
•

2
'

S, . S„z=.^ 2
"

2 . 3
•

which expressions are the same whether ii be even or odd, since,

if n be even, w — 1 is odd, and vice versa ;

Q. E. D.

9. A straight line, revolving in its own plane

about a given point, intersects a curve line in two

points ;
find the curve when the rectangle of the lines

intercepted between the given point and the points of

intersection is constant.

Making the given point the origin, let (x, y), {x', y) be the

respective co-ordinates of the two points of intersection, r, r'

their respective distances from the origin.

Assume y = <p (r), and .*. y' — ^ ir'); also, to generaUze the

problem, let r' be any given function of r, or let r' — a (r).

Then, from similar triangles,

r r
'

a (r)
r

'

from which equation the form of
(j> (r) is to be determined.
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Now, it is evident that this last equation will be satisfied if

we can find such a function y*(r) = ^—
, that, when a(r) is

substituted for r, it may not be changed ; that is, if we can find

solutions of the equationjf \a
(r)| -^fir).

But the solution of this equation is y (r)
* =: x \^j

°
^^)\i

where x denotes an arbitrary but symmetrical function of r

and a {r), when a is such that a \a
(^r)\

'= r.

This condition is fulfilled in the above problem, since

r r' =. a', or a
(/•) = -^

;
r

and therefore the equation comprising all the curves which

satisfy the required condition is

=
r/(r),(

since /(r) = ^^)

= r. x(r, y).

One of the most obvious cases of this is when

,2 X 1 y /»2

and .*. 2 & y 1= r* + a^,

zz x^ -^ y^ + a^.

an equation to the circle.

*
Babbage on Functional Equations, p. 12. See also Philosophical

Transactions for 1815.
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10. Prove that if the tangent plane to any curve

surface make with the three co-ordinate planes the

least possible volume, the distance of the intersections

of the plane and axes from the origin are respectively

3jc,3i/, and 3 z, x, 1/
and z being the co-ordinates of

the point of contact.

Let a, b, c be the respective distances of the intersections of

the plane and axes of x, y, z : this plane will then have for its

equation

^+f + ?=l. (A).a b c
^

Now, since the volume cut off by the plane, and which is

expressed by
—

;— , is,to be a maximum
;

.'. ab c (which \ei—u)

will be a maximum. Hence, determining c from {A), and

.'. makmff u — —.
;

;° ab — X— ay
the theory of maxima and minima gives the equations

du _ dii _
'd~a~

' db~ '

and .'. 2 (a b — b X — a y)
— a {b

—
y) =z 0,

2 (ab — bx — ay)
— b [a — x) =. 0.

From these last two equations, we find a = 3^-, and bzzSy ;

which values, substituted in (A) give c r= 3 2..

Q. E. D.

11. A plane is so moved as always to cut off from

a given paraboloid of revolution equal volumes ; de-

termine the equation to the surface to which it is

always a tangent.

Let the indefinite straight line AX be the axis of the gene-

rating parabola APQ-, the vertex being at A. Draw the chord
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Q^'^Q parallel to the tangent at any point P, draw PV parallel

to AX, and from P let fall the perpendicular NP on AX.

Suppose now, the pljhie that cuts off equal volumes from the

paraJ)oloid, to be perpendicular to the plane APQ, and to pass

through QQ: then (Hustler's Conic Sections, p. 65.) the section

will be an ellipse, whose major axis is QQ!, and whose semi-axis

minor is a mean proportional between the latus rectum of the

parabola and PV.

Let the latus rectum = a, AN= s, constant volume =: c.

parameter at P =
/>, Z-P VA = 0,

Now, since the volume of any segment of a paraboloid, cut

off by a plane, = - its circumscribing cylinder,

= area of elliptic section x altitude of cylinder ;

.'. c=l \/(a.PV.QV:}.PVsmd,

— lyV (dp) ' sin e.PV.

But p = a + 4z, and sin = \ / —-—--
;

.-. c^—.PV, ovPV= \/~.
2 V TT a

Hence, it appears that if c be constant, PF is constant;

and .'. that a plane cutting off a given volume from the para-

boloid is parallel to a tangent plane at any point P, and at a

given distance PF from it, in the direction of the axis AX.

If therefore the equation to the surface of the given para-

boloid be X- + 1/^
z= az, and consequently, that of its tangent

plane 2 {xa;' + i/i/')-= a z + a z
',

the tangent plane to the

surface required will have for its equation

2 (a:y + 1/1/') zza^z- \/'^] + «s'.
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,*. comparing this last equation with the two preceding, we

have, for the surface required, the equation

which is that of a paraboloid equal, and similarly situated to

the given paraboloid; the distance between the vertices being

V TV a

1*2. Integrate the following diflferentials and dif-

ferential equations :

dx dx dx
^ + ]

'
^-^ 1/1 - a-2' Va-x-Vx

(:r« + 2/*) dx + x'^ydy = 0, (1 + :»:)
.^ + a.^ = 0,

and also the following equations of differences :

To integrate x*+ 1
'

since a,-^ + \
~

(^-^ -\- x \/2 + 1) (a;^
— x \/2 -\- 1),

1 1^+ i? J'a- + JB'

we may assume
^-^-^

_^^r^^^ +
>_^^., + l

'

Clearing the equation of fractions, arranging according to

the powers of x, and transposing all the terms to one side, give

{A -{- A') x^ + {A x/2 - A\/2 + B + B') ^«

+ (il +1' + 5V2 - B \/'2) X + B + B - \ ^ Q.

.'. making each of the co-efficients of ;r = 0, and determining

A, A', B, B' from the four equations thus produced; there result

A A' « T>i _
-'I — O ^/O J

-^ ~ ~
•> </•> » » — ^ —

•> >

and

2 |/2'
—

-2 -1/2

^ -f V'2 1 X — i/2

X* + 1 2 1/ 2
'

.r^ -h .r >|/2 + 1 2 v^2
*

.r'—^V^ + 1
'
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To make this integrable, assume, in the first fraction

A' = ^^
—

, and in the second, x =. v -^
—

j-r :

•••^^n =
'2^2

•
—

:

——
'^''~T^2

'
"—

f- ^'''

U- + - v^ + -

C n d u V d V ^ , c , , ")

1_) ^- ^r _2 ) t/2.f/ef V'2.dv (-
2 t/ 2 i «' +

2
^' +

2 >
'^ ^"

^.
i"+^^^

"^
\ + 'lV'S

* V ;r'*+l 4 1/2 1 -y^2 1 — ^^/2 + A"*

+ -—
;7^ ^tan-^ (^- v'2 + 1) + tan-' (.r ^/2 - 1)

j

= . log . H —
. tan ' —-—

41/2
^
i-aV^ + -^' 2^/2 i_a-,2

P,=

To integrate
^;,;^^-:

Assume

_ 3 2
_

. p _ ., r^A^ , o r _Li^_ 1/(1 ->r^)
• ^^-- V.v^ 1/(1

-
^i-l

"-^ x"" V (1
-

a-j Y^
'

c dx _ v^d — ^•") - /* ^**"

F
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Again letP .= ^lliZ^ • • '^-- ^^^ " "^^

1 1

V' (1
-

^')

To integrate

it X
, assume \/(a

—
x) — \/x = u,

l/(a
—

.t)
—

v/;r

.-. x = f +lv/(2a«^-«^),
2

(tl
—

M*) C? U

V' (2 a - M^)
'

and d X :=.

/ *
f/ar _ /

*«/ -/ (a
—

;r)
— V'^ ~^ 2/ i/ ('2 a ~ M^}

1 /a C ^(2 «-;/-)- 1/(2 a)^
rz v^ (2 « - e^^) + - ^ -

. log
^ ^(, ^_,,.) + ^(, «)^

V/ Ja
+ 2v/(«^-^-')$ +t/(2a)l

To integrate {x^ + j/^) dx -]- x"" y dx - 0,

assume if — 2 z, which gives it the form

d% + -.,.zdz—— d X,
x^
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which being that of a linear equation^ we have

2
^ or - = £ ^

\-fr'^dx + C\

— i 12 12^
But £- i = 1 — - • - + --: • ^

\ X 1.2 a:''

f)m+I

^^ '''

, •l.2.3...7,.(//i+l)a™+'^'*''

m being the number of terms after the 2"^
,

/-\
1 22

£ Z=. X— 1 log X • — + ....'^
I''. 2 X

. .

9m+l

^ ' 'l .2 m*(»i -t-. l)-*'"'

'

?/*
- - C 12^

,'.
•—• = C e

^ — £ ^
-< A' — 2 log X 5

—- •
1- ...

+ C—i)"*. S- -4-^ -*

1.2... 7/i*(m + l)j"'5
**'

To integrate (» + ^)^ + « •^ = »'

let^=» /. tM-iE-^
d X ^ > ' '

dx^ dx^

.-. (1 + a:)-7^ + «p = 0, or -^ + ,
= 0.^ dx p \ j^ X

.'. log J9 + rt log (I + x) — log C,

or p {\ -\- xY z=. c \

dy _ cdx _ d{\ + x)
•*•

rf^~ (1 -^xY
"" ^'

(1 i- ;r)«
'

"^~
(a-l)(l +^-)''-''



44

To integrate 1 + p^ + q^=z m",

consider q as a function of j), ,r, y, z, and substitute for

^ and
-J—

\\\ the equation of conditiooj

dp dq dp do

dy dx ^ dz ^ dz

this will lead to a partial differential equation of four variables

p, X, y, z, the integral of which expresses the value of p, and

therefore of q in terms of x, y, z, and an arbitrary constant a.

Substituting these values of p and q in the equation

dz =. pdx + qdy,

and integrating, we shall find

/ (•^•, y, -, a) = /3
= ^ (a) ;

,

from which a may be eliminated by differentiation, when a par-
ticular value of ^ is assigned. (Peacock's Examples, p. 445.)

Now, from the proposed equation, q = \/(m^—p" — i), and

. ^9'_ P . , dq dq dp" TZ,^ ^V"" ~2 ^^ ' whence :r-~ ^•~dp 1/ [m- — 2j^—\) dx dp dx

__ p dp
V [m'^

—
jr — 1) ax

Also ^ =^.^ = ^-^- - = 1
dp^^

dz dp dz dp dx p V {^n^—p'— l)' dx'

The above equation of condition thus becomes

dy \/{m^ — p-—l)dx ^ ' dz '

.'. dp =. 0, or /J
= a, and .*. q = -[/(ni^

— a^ —
i).

Substituting these values of p and q in the equation

dz —pdx — q dy — 0, and integrating, we get

Z — ax — \/ [m^ — (x?' — \
) y
—

^ (a) ;
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and, differentiating this with respect to a,

From this last equation, together with the preceding, we

may eliminate «, after arbitrarily assigning the value of f.

We now proceed to the solution of the equation

The method, given by Laplace, for the reduction of equa-

tions of this kind to equations of Differences, being rarely met

with in Elementary Treatises, a brief explanation of it may not

be unacceptable.

This method applies to every equation of the form

f\a{a;)l +X.fix)+X'=0, (1)

where a (x), X, and X' denote given functions of x, and/ (or)

the function to be determined.

Let X = ti., where Ug is such a function of ;:, that

a (x)
~

U^^^ ,
a 5 a (a) ^

==
?/.-+„

^^C. :=. &,C.
;

from which condition u~.^^
=. «

{ti.), an equation from which ii^

may be determined, since the form of a is known. By the sub-

stitution of u- for X in equation (1), it becomes

/ (w.-^J + Z ./ (?/.) + Z' =
;

or, making/ (wj = v,, and /(w.+J = v,^^ ,

t'^+i + Z.!;, + Z'=0, (2),

Z and Z being the same functions of z thatX and X' are of x.

Lastly, determining Vr from equation (2),

we have v^ orf{u,) = F {z, C),

which determines the form of/.
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In the above example, we have a (.r)
= x^, or m,^^ = ?/,',

an equation which is satisfied by making u, = C ;

.*. .r = C* , .*. z = log (log x')

1

The proposed equation thus becomes

/(m.-+i) -f{t(,)=m,

or (making f{u,) — v^),

Vj+i
—

I'z = m, .-. v^ =. mz+ C

or/ (a-)
= m . log (log x^y^"^

^ + C.

For a more extensive apphcation of this method, see a very-

ingenious paper by Mr. Herschel in Vol. I. of the Cambridge

Philosophical Transactions.

To integrate the equation w^. m^+tt
= ^", we may observe that

cos A' + cos (tt + s)— 0,

.'. U,
—

ccos 1-
.

As this value of u, satisfies the proposed equation, and

moreover contains an arbitrary constant r, it is the complete

solution.

13. There are two urns A and 5, the former con-

taining- three white and the latter three black balls : a

ball is taken from each at the same time and put into

the other, and this operation is repeated three times ;

what is the probability that A will contain three black

and B three white balls ?
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In addition to the two principles given in Arts. 433, 443 of

Wood's Algebra, we shall make use of the following one of

Laplace.*

The probability that two events will take place, when one is

dependent on the other, is the product of the probability of one

of these events, by the probability that, this event having taken

place, the other will take place.

After the first exchange, the urn A will contain one black

and two white balls
;
and the urn B one white and two black

balls. Then, the separate probabilities that, in the second

exchange, a white ball will be taken from A, and a black one

from B, being each | ;
the probability that both these events

will happen will be f . | or |. Now, supposing these events to

have taken place, or that the urn A now contains one white and

two black balls, and the urn B, one black and two white balls
;

the separate probabilities, that, in the third exxhange, a white

ball will be taken from A, and a black one from B, are each ^;

and therefore the probability that the exchange will be made in

this manner is V . 4 or ^. Lastly, since the probabilities that

the second and third exchanges will be effected in the manner

above specified being respectively ^ and ^ ;
we shall have (by

applying the principle of Laplace) the probability that the ex-

changes will be made according to the conditions of the problem,— ± X or 4-

14. A uniform rod rests with one of its extremi-

ties in a semi-circle whose axis is vertical, find the

nature of the line supporting- its other extremity so that

it may rest in every position.

* " La probabilite d'un evenement compose de deux evenements

simples, est le produit de la probabilite d'un de ces evenemens, par la pro-

babilite que cet evenement ctant arrive, I'autre evenement aura lieu." Tkeo-

rie Analytique des Probabilites, p. 181.
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The conditions of equilibrium will be the same, if, for the

uniform rod, we substitute two material points P, Q, connected

by an inflexible straight line, and then separately consider the

forces acting on P and Q. Now the forces acting on P are, 1®*-

gravity in a vertical direction^ 2^^, the re-action of the curve

on which it rests in a normal direction, and ^^^, a force

or thrust in the direction QP in consequence of its connection

with Q, which is evidently equal to the force of P on () in the

direction PQ, since the rod remains at rest. By thus taking

into consideration all the forces that act on P and Q, the equa-

tions of equilibrium of the rod will be the same as for two free

points, subject, however, to the condition of remaining at an

invariable distance from each other : so that if JT, K denote

respectively the whole forces acting on P in the directions of a-

and y ;
and X', Y similar forces acting on Q, we shall have the

four equations X = 0, 1^=: 0, X' = 0, F' = 0, which together

with an equation expressing the invariability of the distance of

P from Q, and that of the curve on which one of the points

P, Q rests, will furnish us with the complete solution of the

problem.

Taking the lowest point of the semi-circle for the origin of

co-ordinates, and a vertical line for the axis of x, let r, y be the

co-ordinates of any point in the semi-circle, or of P; and.r', y
those of any point in the required curve, or of Q. Let i^, P!

be the respective re-actions of the semi-circle, and the other

curve on P and Q, T the thrust or force in direction of the

rod's length, the variable angle which the rod makes with the

horizon in any position, and Ij its length.

By the above principles we have for the equilibrium of P,

the equations

X-R'^-^-TsxnQ-fj-O, (I).

Y=-R~+ Tcose = o, (2).
it «3
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Similarly, for Q,

X' = B:'^, + T %m d- g
-

0, (3).
CI s

Y'zz-R'~,-\- T cos = 0, (4).
Cc s

The invariability of the distance of P from Q is expressed by
the equation

(^ _ ^)2 + (y _ yf = L\ (5).

Multiplying (1) by (/^, (2) by dy, and adding, we get

Tcos d .dy — T sm Q . d X — g d X
—

0.

Similarly, from (3) and (4),

T cos B .dy -i- T sin Q .dx — n d x' = 0.

Eliminating T from the two last equations,

(dy'
d7/\ „ ^ . „V^ — :7^ ) . cos + 2 sin 6—0,ax dx/

d y' d IS ,

or T^,
-

-7^ +2 tan = 0.*dx dx

But // sin = X — X, and h cos =
.y'
—

,y ;

.-. tan0 = -; ,

y -y
. <lyL_<iy ,^ ^' - ^-

a X ax y —y

Now, by this last equation, combined with (5), and the equa-
tion of the curve in whichP rests, we may eliminate x and y\
and the resulting equation will be that of the curve required.

* This result agrees mth Cor. 1. of the Problem given in p. 85. of

A^Tiewcll's Mechanics.
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We have, therefore, in the present case, to eliminate x and 3^

from the equations,

d y' o — X ^ x' — X , .

-r-. + 2 . , (a)

(.r'
-

a:)2 + (3/'
- yf = L\ (/3)

yf^ z=.1ax
— x^'. (y)

(fl being the radius of the semi-circle).

But as this elimination is of a difficult nature, and our only-

object is to determine the nature of the curve, we may, without

obtaining a final equation, construct the curve by means of the

equations (a), {fl), (7), conjointly. Now the equation (a) is

dii

readily integrable for particular values of x, y and -~, and the

integral thus found would be the equation to a curve, which,

though not the curve required, might yet be made subservient

to its construction. In fact, it is evident that only an indefi-

nitely small portion of such a curve would satisfy the conditions

of the problem, and that its intersection with another immedi-

ately consecutive, and described according to the same law,

would be a point in the curve required ;
we may, therefore, infer

that the required curve is the locus of the continual intersec-

tions of all the curves derived from the equation (a) by giving

d V
all possible values to x, y, and

-f-
•

To apply this reasoning, let

x—h, ij
— k,

--^— m\' -^ dx

then, eliminating y'
- y by equation (/3), the equation (a)

becomes

fly' ,

2 (.r' -h) _ ^

dx'
^
V\L"'-{x'-hT^s
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.*. by integration,

c being an arbitrary constant which may be suppressed, as we

only wish to find a curve satisfying the equation (a). This curve

being an ellipse whose species, magnitude, and position, are

expressed in known functions of h, the curve required is there-

fore the locus of the continual intersections of a set of ellipses

described according to a law expressed by the equation

in which h is supposed to have every value in succession from

to a.

In applying the principle of virtual velocities to this problem,
we should have commenced by assuming the equations

X rfx + Ydy — 0,

X'c/.r'+ Ydy'=0.

15. Having given the variation of the obliquity of

the ecliptic ; find the corresponding variations in right

ascension and declination.

In the right-angled spherical triangle ABC, right-angled at

4, let EC — I he an arc of the ecliptic to which corresponds
the arc BD=a of the equator, the Z. ABC = o) being the

obliquity :

then cos w = tan a . cot I, or =^ cot /,
tan a

If ^ w, B a denote corresponding small variations of w and

a, we may obtain the relation between them, from the above

equation, in the same manner as for differentials
;

^ cos w -

.*. sm w . tan a .cto -\ .d a = 0,
ccs-«

or sin w . sin a, cos a . 5 w + cos o .^ a — 0,
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or sin 2 a . ^ w + 2 cot w .^a — 0,

, sin 2 a 5
.*. da=.

:

— .0 0).

2 cot w

Again, since — = sin I, {D being the declination.).

sin w . cos D .S D — sin D . cos w . ^ w ;

.'. B D =. tan D . cot w . ^ w.

16. Determine the latitude of the place of obser-

vation from observing the times of the rising of two

known stars.

The times of rising are supposed to be observed by the clock,

and therefore the hour angle corresponding to their interval only

is known
;

that is, if A, li' be the respective hour angles (reck-

oned from the meridian belovr the pole) at the rising of each

star, /i' — h is known, while h and H are unknown.

Let I, B' be the respective declinations of the two stars and

\ the latitude of the place ; then, by Napier's rules,

cos h = tan ^ . tan X,

cos h' = tan c' . tan X
;

.'. cos h + cos h'=. (tan c + tan ^')
. tan X,

and cos^ — cos h =. (tan o — tan o) . tan X;

1 //( 7s A /7/ 7\ sin (3 + o')
or 2 cos - {h' + h) . cos - (/.' -h)= ^^^^^^^^,

• tan X, {A)

and 2 sin - ih' + h) . sin - (h' — h) =
^^"

\

~
I, . tan X

; {B)
2 2 cos . cos c

.-. dividing {B) by {A),

tan i (/,• + /<). tan i (A'- A) :=?|ii^,,

.-. h' + ^ is known, and .•. from either of equations {A), {B),

X is known.
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17. The axis of a given cone tilled with fluid is

inclined at a given angle to the horizon ;
find how

much of the fluid will flow out and determine the

pressure exercised by the remainder upon the conical

surface.

Let ABDChe a vertical section of the cone passing through

the axis AD; from the vertex A draw an indefinite horizontal

line AR in the same plane with this section, and Ci? parallel to

AR, meeting the upper slant side AB in H: draw i?iC perpen-

dicular to AD, and meeting the lower slant side AC in K.

Let the axis AD =. k, semi-angle at vertex BAD = a,

radius of base BD r= a, inclination of axis to the horizon r: /3.

From the above construction, HC := the major axis of the

ellipse made by the surface of the remaining fluid, the minor axis

being a mean proportional between BC and UK. {Hustler's

Conic Sections, p. 40.)

From the triangles HBC, HCK, and KAH, we have

^^^ 2a cos a
^^^^^_sin_0^-a)^

SUl (/J + a) Sni (/J + a)

^^^_^,sin03-a).
sm a sm (p + a)

.*. area of the surface of the fluid

= 7r.^HC.\/{BC.HK)

= TT a^ , cos a J
sin f/3

—
a)

J

^sin(/3 +a)^
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Also, the altitude of the fluid above AR

= AH. sin (/3 + a),

= -T—- .sin(/3 -a);
sin a

.*. volume of remaining fluid

7ra3 Ssin(/3-a)>'= ——-.cot a .

^——.COX a .
-5

-——
J

»

3 { sin (/3 + a)}

nra^h Csin (/3-a)>\ZZ • % ?- J

3 (sin (/3 -f a)3

.*. volume of fluid discharged

1 3 -,

a" A Uin^ (/3 + a) - sin'' (ft-a)(

C sin'
(/3 + a)

-'

18. A body attracting* with a force varying directly

as the distance moves uniformly in a straight line ; de-

termine the motion of another body situated in the

same plane and subject to its influence.

Referring the position of the bodies to two rectangular axes

of co-ordinateSj let the attracting body move along the axis of

:v, its co-ordinates being .v' -=. at^ y' =. Q, at the end of any
time t. Also, let x, y be the co-ordinates of the attracted body
at the same time; then r being their mutual distance, we have

the force of the attracting body rz. w^ r
;
the absolute force being

expressed by m^ for the sake of avoiding irrational forms, as will

* To find the pressure, toiifetlier with a g'eneral explanation of the

steps of the process used for finding the area of any surface by double in-

tegrals, see Appendix II.
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presently be seen. Resolving, therefore, the force m*r into

directions of a; and
3/, the general equations of motion give

j^ + m^a;-at) = 0, (1).

jj,
+ mV = 0, (2).

The integration of these by the process given in page 10, gives

X — C^. cos m t ->r C^, sm mt -^ at^ (3).

y
— C . cos mt + C . sin jn t, (4).

The arbitrary constants must be determined by some hypo-
thesis respecting the positions of the two bodies, and the velo-

city of the attracted body, at some given time : let us suppose
then thattiie co-ordinates of the attracted body, at the beginning
of the time ty are x — a, y = j3, and that it has no other motion

than that arising from the attraction of the other body. The
first hypothesis reduces the equations (3) and (4) to

X =: a
, cos mf + C„ . sin mt 4- at,

7/ = /3 . cos mt + C . sin m t
;

then since the second hypothesis gives -r— =: 0, and^ = 0,

when ^ =: 0, the equations (3) and (4) finally become

X = a . COS mi ^ .sinmt (5).mt ^ ^

y=.p. cos m t.
(6).

Now, to find the equation of the curve described by the

attracted body, we have to eliminate t between equations (5) and

(6) : the last gives cos ;w ^ = =^ , and .•. sin w ^ = 1/ ( 1 — ^ ) ;
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Since, then, the curve is defined by a transcendental equa-

tion, it cuts the axis of x in an infinite number of points : to

find any number of these points, make y=.0, which gives

x-=2. — (cos""'0 — 1),

in which the several values of

TT 3 IT 5 TT
f,

cos""' are - j
-—

,
—-

, etc.
2 2 2

To find the times at which the attracted body cuts the path

of the attracting body, make y=0 in the equation y^=. /3 cos m t,

and the values of t corresponding to this are

TT 3 TT 5 TT p-—
> J ) cxc.

2 /w 2m 2 m

To find the angles at which the curve cuts the axis, we have

d y _dy dt _ 7n(3 . sin m t

d X dt dx m a . sin mt + a . cos rnt — a

Ttl 3
which, for the above values of f, becomes + > the

a ^ m a

upper sign being taken when the body passes from the negative

to the positive side of the axis of x, and the lower sign in the

contrary case.

d ij

By making -^ = 0, it appears that the distance of the at-

tracted body from the axis never exceeds its primitive distance.

19. Determine the orbit described and the time

of describing- any angle when a body is projected

round a centre of force varying as
^^

at an angle
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1.

3^
whose tangent = -j, and with a velocity which is to the

velocity in a circle at the same distance :: i/2 : i/3.

Let V = velocity > ^
^ _ .,„„ „„j-„ 1 i. i. r lor the distance r:
p = perpendicular on tangent >

n~ T 1 . X f for the distance i2,
Jr = perpendicular on tangent 3

the body being supposed to be projected with a velocity Fat a

distance R, and at an angle d.

Now, if F denote the variable central force, we have

v^-C-2fFdr,

= C + ...
m

But when r = il, v=: F;

•. F2= C+ -^,or C= Y" - "^

3 jK«
'

3 ii«

7W

Again, since (velocity)^ in circle (rad = R)=.FR = jj^
»

2 ... 2 wi
and F* = —(velocity)^ in circle= —

^rg ;

C =

3' '^ ~
3ii«

3li«

Also, F^ :?;«:: p* : P«;

H

.-. 1;^=^^^

OrjP'= -X-- P6^..6'
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wliich is an equation to the orbit in terms of the perpendicular

and distance. To have this in terms of r and an angle Q, we

must put for p" its expression -7— ;—7-^, 5 which then gives

Also, since dt =. —=— 5 where h—PV,
h

\/(2).Pr'dr

V
\r^-'2P-.r*-\-

R^^

where P = jR sin =
1/(3 + 2^')

By making r^ = z, the expressions {A) and {B) are re-

duced to

,^ P dz .

1/(2) t/ {z-^
- 2 P* . z'^ + R^)

'

_ p g</a
,

or

"-fVO- isr fi?;

-V/ (s^
- 2 P^ . z- + R^)&\'

The integration of these expressions, which are called ellip-

tic transcefidajiis, may be effected by the process given by

Legendre, [Exercices de Calcul. Integral, Vol. I. Part I.) by

means of elliptic arcs: it may, however, be obtained in the

following manner :

Since z^ — '2.P^ .z^ + R^ is of the third degree, with respect

to Zy it may always be resolved into two possible factors, one of
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the first, and the other of the second degree : we may, there-

fore, make

and .

Next, expaudinff
-— bv the Binomial Theorem, and

multiplying each term by the remaining part of the differential

expression, we shall have to integrate a set of terms of the form

and a set of terms of the form

Bz''+'dz

-
, in finding 6,

- in finding i ;V (a -l3z + Z-)
"=

the relation between t and 6 is thus readily determined.

^rith the same law of force, and with a velocity which is to

that in a circle as 1 to \/3, the orbit would be theLemniscata.

20. A body descends down the arc of a vertical

catenary having- its vertex at the lowest point ;
find

the curve of ascent when the oscillations are isochro-

nous, the two curves being so united at the lowest

point as to have a common tangent.

To take the problem in its most general form, let u.s first

suppose the curve of descent to be any given curve whatever.

Let s' be the arc of the given curve corresponding to the

vertical abscissa .v, measured from the lowest point, and s, x

similar quantities for the curve of ascent.

Let the velocity at ihe lo\^est point be due to the altitude It
;

then, since the vertical ascent of the body in the required curvc^
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is equal to its vertical descent in the given curve, trie time of

the whole oscillation will be expressed by

_1 C r ds' / * ds I ,..

X/{-2 cj)

'

iJ V [h
-

x) "V 1/ (A - a-} r
the limits of the integrals being respectivelj'

Now, since, by the conditions of
'

the problem, the time of

the whole oscillation is to be the same, whatever be the value

of h, the integrals in {A) must be independent of Aj

let then d s = "^"^'^^
+ Pdx', (B),

and ds —— ±.— Qdx;y X

p and q being constants, and P and Q certain functions of .r'

and X, respectively.

Substituting these expressions for ds' and ds in {A), the

part multiplied by ,,^
becomes

pdxWp p dxVq ,r Pd^' f Q^^

which, when x — h, is to be independent of h.

Now, the two first terms of this already satisfy this con-

dition, since, by eflfecting the integration, they give

*^ x' . _2x
ver

sin-^-^
* V^P + ver sm

'-^
. Vq,

which, when x = h, and x' — h, is equal to

TT \/p + TT V q :

if then, we so determine P and Q, that the two last terms may

destroy each other, the conditions of the problem will be ful-

filled.
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But as both these integrals are taken between the same limits,

we may make x' =. x; so that, if P be the same function of oc

that Q is of x, these two last terms will destroy each other, and

the expression for the time of an oscillation will thus become in-

dependent of h.

We thus have, by adding together the equations (5),

dx
ds ^ds- {x/p + Vq)':^^^

or s + 5' = 2 ( Vjo + \/q) \/x,

an equation expressing the relation between the two curves ;

from which it appears, that the sum of their corresponding arcs,

measured from the lowest point, is proportional to the square
root of their common abscissa.

Also, if a be the diameter of the generating circle of a

cycloid, the arc, for the abscissa .r, is '2\/{a x) ;
we may, there-

fore, say, that the sum of the two arcs is equal to the arc of a

cycloid, for the same abscissa, the diameter of whose gene-

rating circle is ( Vp + Vq)^.

To apply this to the case proposed, let the equation to the

catenary be s — \/('2 c x' + x'^) j therefore, that of the curve

required is

s =:2\/{ax) — \/{2cx + x"^).

21. A corpuscle is attracted by two straight lines

at right angles to each other, the particles of which at-

tract with forces varying as
-rp

: having given the

position of the corpuscle and the length of one of the

lines, find the length of the other when the direction

in which the corpuscle begins to move is towards their

common intersection.
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Let the t'.vo lines AB =. a, AC — b, be measured along the

axes of X and y respectively; the origin being at their inter-

section A.

Let a, ft be the co-ordinates of the corpuscle P ;
then the

attraction of any small portion dx of the line AB, at a distance

r from B, will =. —^: the resolved pan of this in the direction

BA-_dx ft
— .T

Q * *

.'. the whole attraction of a in direction BA

_ P(ft-x)flx _ /* (ft-x)dx

_ 1
]_

(X =0
I~ V

\a''+ {ft
-

a)-'\

~
c

'

ix = a i

making a- + ft"-
= c-.

CA =
Again the resolved part of the attraction of d x in direction

adx
f.3

'

.*. the whole attraction of a in direction C d = /*-
"^ '^

wr^Cd = r "^^

_ ft- a
ft_ ^

X - Q\~
« V/

J
a-' -\-{p —

af*<^

~
ac\x — aS'

Now, it is evident that by writing a for ft, ft for a, and b for

a, in the above expressions for the attraction of a, we shall have

similar expressions for the attraction of b.

Thus, the attraction of ^ in direction CM

1 1

o — b a
that in direclion BA =. 't •

^'y
\ft''-\-{»-oy\

I'f^
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If then, X, Y denote the whole forces acting on P in direc-

tions of x and^, in order that their resultant may pass through

A, we must have

5=^, oxaY-(iX-o'.
JL a

that is, since X
_ 1 1 ^ a — Ij

- C~ v/
Ja^ + (/3

-
a)^5

^
/^^

~
/^ 1/

{l^'
+ («

-
bfl'

_ 1 1 ^ ft /3-«
and F_

^ -^ j^..^ ^^
_

^),?^

+
ac a^y- + (/3^-. «)^5

o b

or a"" c^ - 2 a a'^b = b- c^- - -2 13 a b^
;

from which equation, either of the quantities a or b may be

found when the other is given.

22. A body descends in a straight line in a medium

whereof the density varies as the square root of the

distance from a given point, and is urged by a constant

force tending to that point : find the velocity and time

corresponding to a given space, supposing the resist-

ance to vary as the density and velocity jointly.

Let t, V denote respectively the time and velocity for the

distance x from the given point ;
let g represent the constant

force, and k the density at distance 1 :

(Jv

Then, from the general equation -j^ =/we shall have

L_ = + gr
- kvx , (1),

.•. v:=: C + g i —fkx^ vdt.
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But vdt = ds=z — dx,

2 ^

/. V "=. C — q t — -kx^^ 3

Supposing that the body begins to move from a distance «,

we have v =z 0, t t=. 0, x zz a together, and

2 4
• • O —* ~ K (t 3

O

.'.V = lk(J -xh-gfy (2).

The equation (2) alone is not sufficient to establish a relation

between^, v, x, but, by means of another, obtained from (1), we

may obtain any two of these quantities when the third is given

„. dv d /dx\ d?' X , dx
^''''^dt

=
-dtKdt)'=-d¥'^''^''

=
-df'

equation (1) becomes

^ = kJ.ll-g, (3),

which may be integrated by approximation in the following

manner:

Since a: is a function of t, Maclaurin's Theorem, gives us

where A, A^, A„, &c. denote the values of

^1 -TT' -T75"' ^-c. when ^ = 0.
dt dt^

But when t — 0, x — a, and J.^
=

;

Also, from (3) A„~ — g.

Differentiating (3) and then dividing it by t,
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2x
1 i

.*. A^^=. Jca~ J„=. — k a' g.

Similarly, by differentiating (4) and dividing by t, we have

1

An — ka^A^=- — k"-ag',

and we may thus obtain as many terms as we please :

1

qt^ ka'qt'^ k'^agt^
.'. X — a — -— z—r —

•2 1.2.3 1.2.3.4

The two first terms express the space moved through in

vacuo, which is that which should result from making ^ = 0.

This equation, together with (2), completely establishes the

relation between x, f, and v.

23. A body describes a circle of given radius iirii-

formly, acted upon by two forces each varying as the

distance and without the plane of the circle ; find the

velocity of the body and the position of the plane of

its orbit.

Let the centre of the circle be the origin of three rectangular

co-ordinate planes ;
the plane of the circle being in that of xy,

and the two centres of force in certain positions without it. If

the positions of the two centres of force be known, those of the

co-ordinate planes will be unknown, and vice versa; but the

relations between these positions being once exhibited by the

conditions of the problem, either of them may be determined

from the others.

Let then {x^, i/\, z.^), (x^, y^, z^ be the respective co-

ordinates of the two centres of force,

/«, ^' their absolute intensities,

1
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Let also the equations of the circle be y^ — a" ~ x^\

and let r^, r^ be the distances of any point in the circle, or of

the body, from the two centres of force.

Now the force from

l**^ centre on the body = {.i r^")

from 2"d =
ji r^S

.'. the resolved part of l^t in direction of

.r — X .

and so for the others ; so that if X, Y, Z be respectively the

whole forces, soliciting the body in the directions of x, y, z, we

shall have

X =:
jti {x^

—
x) + fj! {x„

—
x),

Z "=.
fx z^ + ^ z„.

But since the body moves in the plane of xi/, the resultant

of all the forces must always lie in that plane; we must, there-

fore, have

Z=zO, or-^, = -^,

which shews, that the two centres of force nmst lie on different

sides of the plane of the circle, and that their perpendicular

distances from that plane must be inversely as their absolute

intensities.

Also, since the body moves uniformly in a circle, the re-

sultant must always pass through the centre, (Xewton, Prop. 2.

Lib. 1), and be of constant magnitude.

So that if the constant magnitude of the force be represented

byy, we have

X = — -
. X, nndY = — -

. 7/ ;a a
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or, n a
{a.\

— x) + ii a {x„
— x) =. — fx,

and
i^i
a {i/\

—
y) + ij! a{y„

—
y) — — fy ;

which equations must always give the same value of/, whatever

be the value of x. Thus, if a- =: 0, and .'. y = a, these equa-

tions become

Atx^ + /x'.r„= 0, "^
^j.

A» (^1
-

«) + ^'' (yo
-

«) = -/.5

Again, if ?/ rz 0, and .'. x — a\

fi (x^
-

a) + /i' (.^2
-

«) = ~/,7 ro\

The l^t of equations (1) and the 2"^ of (2) give the same

property of the positions of the planes of x z, and
i/ z, as that

obtained above for the plane of xy.

For the velocity {v) we have in general v- :=-f a (Newton,

Prop. 4. Lib. 1.); but, by combining the systems of equations

(i;, (2),weget/=(/x+//)«;

/. vs =
{^i + yu') a^

This result is remarkable, as it shews, that the velocity and

periodic time in the circle are the same as if the two centres of

force were together transferred to the centre of the circle.'o*

24. If a body revolve in an ellipse round the

focus, prove that a progressive motion of the apse will

be the effect of any continual addition of force in the

direction of the radius vector during the prog'ress of

the body from the higher to the lower apse, and point

out the effect on the eccentricity.

It appears from Newton (Prop. 44. Lib. 1.) that if the ap-

sides of an ellipse be progressive, while the body moves from

the higher to the lower apse, it must be from the action of a

force greater than that at a similar point of the quiescent ellipse j
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and since, the force in the quiescent ellipse increases during the

motion from the higher to the lower apse, the extra force in the

moveable ellipse must increase also. Hence, the converse of

this must be true, or an addition of force must fcceferis paribusj

produce a progression of the apsides; for, by,assuming the

contrary, Prop. 44, would be absurd. This is without reference

to the particular law by which the extra force varies, that of the

inverse cube of the distance being only necessary when the

species of the moveable and quiescent ellipses are required to be

the same.

To shew the effect on the eccentricity, let J^ a be the

greatest and least apsidal distances in the quiescent ellipse ; F,f

the forces at those distances : then ^ ='^; but since, in the

case of the problem, an extra force is supposed to begin from

nothing at the higher apse, and to attain to a maximum at the

lower apse, /is increased while i^ remains the same; therefore

f A^
-jpOr

—
;
is increased, and hence the eccentricity, which increases

A^
with —

, is increased.

25. Two balls connected together ?jy an inflexible

and inextensible line are constrained to move the one

on a horizontal plane, the other on an inclined plane
which is at liberty to move freely on the horizontal

plane ;
find the motion of the balls and of the plane,

supposing the motion of the rod to be in a vertical

plane.

Let P, Q represent the masses of the two balls, TFthat of

the inclined plane, and a the angle of its inclination with the

horizon.
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Taking a fixed point in the horizontal plane for the origin,

let X, be the co-ordinates of P, and x', y' those of Q, P being

on the horizontal, and Q on the inclined plane"^: let Q =. the

variable angle made by the line PQ, with the horizon, and Tg
the thrust or force of P on ^ in the direction PQ, which is

equal to that of ^ on P in the direction QP.

Now the moving forces of W are 1st, the resolved part of

T g \n di direction perpendicular to the plane and equal to

Tg . sin (a
—

Q), and 2nd, the pressure arising from the weight

ofQ which = Q^.cosa. The whole accelerating force of W
in the direction of x is therefore equal to

-^
• sm (a

-
6; . sm a + p^^Qj^^ cos a . sm a.

The vertical motion of Q is the same whether the inclined

plane be moveable or not, and is therefore due to the resolved

parts of the forces Tg, and ^^ sin a in that direction : the ho-

rizontal motion is partly due to the forces Tg, Q sin a, and

partly to the motion of the plane in a contrary direction.

The equations of motion thus give

^,--^.cos0, (1),

d-^^' Tg ^ . Tg .
, ^^ .

-r-To
— -yr

' cos —
<7 . sm a . cos a + ^ • sm (

a — 0) . sm a
at- (^

^ W
Qq . / N^ P -t (J+ w

' *^^^ " • ^'" "• ^^^'

J|=^.sine-^sin«a, (3).

Also, if x^ be the distance of the foot of the inclined plane

from the origin.

* The motion of the plane is supposed to be in the direction of
-|-

x.
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iPx. Tq . , , . On
;n^--#-Sl"(«-^)-^'n«-^pT^nf

<^OSa.Sina' (4).

Multiplying (1) by P, (2) by Q, adding and reducing by (4),

^^2+
^ -^~ ^-^ = - QS'-Sina.COS a, (5).

But, if X, Kbe the co-ordinates of the common centre of

gravity of P and Q,

Px+Qx'={P + Q)X,

"
dT^ -^^ + ^^* rfF'

.-. (P+ g)
.

-^ - Q .

'^i^r
-

Qgr. sin a . cos a, (6)

from which equation, if we know the motion of the plane for a

given time, that of the rest of the system is determined. Or,

integrating twice in succession, and supposing the system to be

set in motion by gravity, (which supposition gives

-^-r = 0, and ^
—

0, when t = 0,) we havedt at

(P + Qi)X- Qx^- C- -^1^".
sin 2 a,

where C is determined by the given position of the parts of the

system, at a given time.

But if / = length of the line joining P, Q,

y := a sin 9,

x'=: X -j- I cos 6,

x^zz X -{ I cos — / sin 9 . cot a,

d-x' _ (P_x (P . cos
'''

dt""
~

dt~^ dV '

d" . sin 6/

dt^
~ "'

dt' '
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and thus T may be exj^ressed from (3) in terms of 8 : substi-

tuting this expression in (1) and (2), putting

dr X
and then, eliminating

-— from (1) and (2), ^^'e arrive at a

differential equation between and t. This process, together
with the integration of the final equation, would occupy more

space than the limits of this work admit of.

FRIDAY EVENING.

1. FixD the value of
.^yj^ -qs

y when 0=0.

Since sin changes its sign with 0, and has a limiting ratio

of equality with it, we may assume

sin = + ^1 0^ + jB 6^ + . . .

.-. (sin0)-=e2+ 2^0^ + _B'06 + ...

1 1 0^-^ (sin 0)2 2^104+ 75' 06 + ..• — or :: i_~ — .

'

• •

(sin 0)2 02 0"- (sin 0)^ 0"* + 2 ^ 0« 4- . .

2 1 + _B 0-1 + . .

1 + 20^ + ..

— — 1A, when = 0.

But, by differentiating, twice in succession, the expression
for sin 0, we obtain

-sin0=2.37l0 + 4.5i?03 + ...

or, sin = — 2.3yl0 — 4.5^03-...

comparing this with

sin = + il e-'^ + . . .
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gives
— 2 . 3 At= I, or^=— -—-,

- w>= :^> ^^^ie» ^ = ®-

(sin 0)* 0- 3

2. A person spends in the first year w times the

interest of his property, in the second 2??i times that of

the remainder, in the third 3m times that at the end of

the second, and so on ;
and at the end of 2p years he

has nothing remaining; shew, that in the p^^ year he

spends as much as he has left at the end of that year.

If P, be his property at the end of the x^'^ year, and r the

interest of £1. for one year, the interest of his property in the

(.r + 1)* year will he r Pr,

.-. his expenditure in the (x + l)th year = (x + 1) tn r F„

.'. his property at the end of the (r + l)*^ year will be ex-

pressed by

P, + rP, -(.r + i)mrP,,

or, Jl + r — (x + l)mrl Pr- (')•

By writing 2p — 1 for a- in (1), we have, by the question,

Jl
+ r —2p}nr^ P„^_^ = ;

.'.1 + r = 2p mr. (2).

Similarly, his expenditure in the p^^ ygj^j. is pmr Pp-^, and

his property at the end of that year,

J
I } r~pmr^ P,,_^,

which by (-2)
is reduced to p 7nrP,,^^.
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3. Given

4
tan + tan f + tau ^z

=: 1 + —^
4

tan d . tan f + tau . tan i^ + tan ^ . tan ^=\ + —^
tan . tan ^ . tan c/ := \,

find e, ,/,,
and ip; and sum the series

Since the three given expressions are the co-efficients of the

terms of an equation whose roots are tan Q, tan 9, tan -^j these

roots may be obtained by the solution of the recurring equation

^'-0+75)^' + +
7-3)"-'

= "-

One root being 1, the equation divided by .r — 1 = gives

4
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To sum the series

— sec - ) + (
— sec -^ ^

+,,.ad infirdtum.

(1
\ 2

—J sec • —J J ,

(^2-. cos-;

But since (Herschel's Examples, p. 3. Ex. 16),

.
1 L__—

(2'. sin-) (2^+'.cos^j

we have, by making z = .r — 1 ,

A^S-^rr-A

(2'-'.sin^)

2»

22'. sin2 ~

^-'^o=C^^^=0,r,C=^^:
4

^^^^
2-.si„=A^

By making x infinite, this expression for S, takes the form

-: its value may be determined by considering that

sin^ ^1=
- I I — cos r—

2 j

\S _JL
2^2.2'^'-* 2.4.2'''-^

"^ '"5
IC 0- ^

., \



75

.•.2-.sin%-^=|{Ba^-.^-^3 +
...}

.-. S

r: 4 e^ when x is infinite
;

4 1

sin^ 2 ^2

4. In any polygon with n sides A^ A^,, A^A^j ... ,

respectively represented by «i , «2

a^ sin J.J
—

«2 sin (^^ + A^ + at,
sin (^^ + ^2 + -^3^

""

± ttn-i sin (1^ + 7I2 + ilg + . . . + Ar^-^ = 0.

From A„ let fall a perpendicular ^2 ^ upona„, and from tiie

angles A^, A^, ^«_i ,

let fall the perpendiculars

^3 P3 , J4 P4 , . . . ^„_i P„,l on ilg ^,

produced if necessary :

then A„Kz=. J„P^ + P^P^+...+ Pn-^K . (A).

Let the angles made by a^, a^ with a„ be respectively

denoted by

(a^, ttn), (a^, an),

and we have

A„K = «j. sin A^,

A„P^= O2 . sin («2 . ««)

P^P^ = «3- sin (a^, an) }* (B).an) r

Pn-i-t^ — ttn—i • Sin An>

But, producing each of the sides flgj ^3} ^4> to meet a„, we

have, from Euclid B. I. Prop. 32, and Cors.

(a„f ttn)
= Tr — {A^ + A,),

{a^, a„)=z (a„, an) + -!r — A^,

= 2 7r-{A^ + A„ + A^)',

(a^ , an) = («3 , a„) + tt — ^^ ,
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and finally,

(ff„_3 , a„) or J„ = (m
— 2)7r

—
(A^ + A,_ + A^ + . . . A„_^).

The equations B, therefore, become

A„K = a^ . sin A-^ ,

A^P^— — a„ .sin {A^ + A„),

P, P^ = + a^ sin {J^ + J„ 4- ^3),

P„_i K = ± f/„_, . sin (^^ + ^0 + • • • + ^«-i)'

Substituting these values in equation (^), and transposing

all the terms to one side, W2 have

«j sin A^
— a„ sin (A^ + A„^ +

± <7„_i . sin (Jj + ^2 + • • • -^"-i)-

Q. E. D.

5. A ray of liglit is refracted through a prism, the

angle of which is (30° and index of refraction v''2, so as

to undergo the least possible deviation ; determine that

deviation. Shew also that no ray can be directly trans-

mitted through a prism of the same refracting power
when the angle exceeds 90°.

Let =z Z of incidence, -l
—

/_ of emergence

0' z=. L q{ l^t refraction, ^ =: /. of deviation

^' zz L o{ i."*^ refraction, « = /. of the prism.

From the well known properties of the prism (Coddington's

Optics) v/e have the following relations ;

sin ^/^ sin il- / , , ,, _ _ ^„o

sin </>' sm -^

^/ ',\ 1

/. sin
i//'
= sin (00°

—
<;>')
=

--^ cos f — -
• sin 9/;
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/3 1
.-. sm^p=z ^ -

. cos f - -^ . sin
<j>',

/3 ^ 1— V o • "^^C^
~ sin" 6')

— —T". sin
^',

But in tlie case of minimum deviationj sin 4' = sin ^ ;

.•.smd,= \/ -. Y/ i^l
~

J--sin^,

1

.*- sm ~ ± —r- .

t/2

To determine which of these two values corresponds to the

minimum deviation, we must substitute them in the expression
.72 ?

for
y-^ , obtained from the equation c

—
<p + -d,

—
i. This sub-

stitution is found to give a positive result for sin ^ = -—-, and

a negative one for sin ^ = — —
tt^ ; we have, therefore, when o

is a minimum,

= 45°, and .-. c = 45° + 45° - 00° = 30°.

Lastly, since sin
-^p

z=. \/-2 . sin (I
—

r//)

= i/'I . sin t . \/ ( I — "^ )
-~ cos I sin

(p,

and the last term of this expression becomes positive when i ex-

ceeds 00°, and therefore sin \Ij becomes greater than unity, no

ray can, in such a case, be directly transmitted through the

prism.

C. If a X+h }'+ c Z— ) where X— ax -y a^ x, -\- a„,
*, 1 1 •

a^X + bJ'+ c^Z=0^ }'= hx + b, x^ + b.,

Z= ex + ClXi -i- Cny
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then ^2 + F2 + Z^

_ i flo {h Ci
—

Z*, c) 4- h„ (a ^ c
— a c^) + Cz (a h^

—
«i Z>) (

(b Cy
—

bi cy + {a^ c — a
Ci)'^ i- {ab^

—
a^ bf

Eliminating x from the l^t and 2"'^, and afterwards from the

2nd and S^d of the equations

Jl = a X + «j ^\ + a„

Y=.bx + b^^x^-^h„

Z =. c X -\- c^x^ + c^,
we have

aY — b X=L {ab^— a^b) x^-{- {ab„ — a„ b)

b Z ~ c Y= {b c^
—

b^c) x\ + {,bc„
— b„ c)

Again, ehminating ^r^
from these two last equations, by

multiplying the 1st of them by b c^
—

b^ c, the 2nd by 6 c„ — b^ c,

and subtracting ;
we have, after reducing, dividing by b, and

arranging,

{b c^
—

bj^c) X -{ {a^c
— a c^ Y + (ab^

—
a^b) Z

= «2 {b c^
—

b^c) + b„ [a-^c
— a cJ + c„ {a b^

—
^j Ij),

C Y Z }
or X<{b c^

—
b^ c) + {a^c

— a
c^) j^

+ (^ '^i

~
«, ^) X S

=r «2 (b ^1
~

b^c) + b^ {a^c
— a c^) + c„ (a b^

—
a^ b). (A).

But from the equations

aX + b Y + c Z=
a^X+bj^ Y + c^Z— 0,

Z ab — a,b Y a^c — ac^
we have -^

—
,- ~—

? -^ — -,

;

—
»X b

c-^
—

b^c X oc^
—

b^c

by which the equation {A) becomes

X < U) c,
— O.c) -\ y 7

— H 7— TTT i
^^

^ ^ ^

bc^
—

b^c oc^
—

b^c )

= a^ (b c,
-

b^ c) + b„ (a, c-a cj + c^ (a b^ -a^b):

ajhr^—b^r) + hja^c— ac^)+ c^(ab^
— a^b )

•*• Xzz{bc,-b,c).
(6e, -^c)'^+ {a,c-acX+{ab,~aJr
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= {b c^— b^c) . ^ suppose.

N
Similarly, Y={ac^ — a^c) .

-^
,

JV
and Z =. {abi

—
a^b) .lyj)

x^+ r^ + Z^

=
{{bc,

- b,c)- + (a,c - a c,f + {ab^- a,by\ ^^,

Q. E. D.

7. Trace the curve, the equation to which is

y
—

^^^ ^, and express in a series the area which recurs.

Giving to x the several values

' 2' '^^
"2"'

' ~^* ' ~^'

the corresponding values of y are

1 1 p
1, f, 1, -, 1, £, 1, -, CXC.

£ £ »

' and those of -r- = cos x . £^'°
'

ax

1,' 0, - 1, 0, 1, 0,
—

1, 1, &c.

These expressions follow in the same order, if the above

values of x be made negative.

As every value of y recurs and also that of —^ correspond-

ing to it, it is evident that the curve will consist of a set of

recurring figures ;
also from the above values of y and — >

(I X

it appears that it consists of a set of equal, similar, and con-
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tinuous undulationS;, the greatest and least distances of which,

from the axis of .v, are respectively £ and — ,
and which are

symmetrical on each side of the ordinates, corresponding to

these greatest and least distances, and parallel to the axis of x

at these distances.

We may suppose the recurring area to be contained between

the greatest and least ordinates of any undulation, that is, to be

measured from an ordinate ?/ = £ to an ordinate ?/ =: -, or in the

reverse order.

Hence, the area =fe^^^'^ da;

TV

But the {m + 1)*^^ term of the expansion of

jsin
X- is

1 . 2 . 3 . . . . m

.•. the {m + 1)*^ term of the series expressing the area will be

r . a .V y \— ' f sin
1 . 2 . 3 . . . . ?w

'^

H'-iS
But the integral/" shi'" a-. tLv between these limits is

1.3.5 {m — .3) (m — 1
)

.TT

or — 2.

2.4.0' {m — 2) m
1.3.5 (???

— 3) (m — I )

2 . 4 . G {i/i
—

•!)
til

'

according as m is an odd or even number
;

.*. any even term of the required series being

•

(2.4. G {m —2). mf
r,i

the following term will be

(2.4 . (5 [jn —'2).mf
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8. A perfectly smooth rod in a vertical plane re-

volves uniformly round a vertical axis, and a ring

placed on it is attracted to a horizontal plane by a

force varying- as the distance in addition to the uniform

force of gravity ; required the form of the rod that the

ring may remain on whatever point it is placed.

Let X, F" denote respectively the forces applied to the ring

in the directions of the vertical axis of x, and the horizontal

axis of 2/; the origin being in the horizontal plane : then the

principles of virtual velocities gives the equation

Xd.v + Ydy — Q,

But, if w be the angular velocity of the rod, and .*. w^y ^^^

centrifugal force of the ring, we have

X-=.— g
— mx,

.*. — {g -\- VI x) d X + (x)^
7/
d y = 0,

.-. C — {g -h mx)° + mio^7/ rr 0.

But, if we suppose the rod to be inserted into the vertical

axis in the horizontal plane, we must have y = 0, when ^ z= 0,

and.*. C— 9^ = 0; and the equation to the form of the rod

thus becomes

b>
e

~.'^.
m in

which is that of an hyperbola, of which the major and minor

semi-axes are respectively

^and^x/1-m «> V 111

9. An ellipse may be constructed, so that if any
abscissa be taken to represent the aberration in longi-

tude of a given star, the corresponding ordinate will
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represent the aberration in latitude, co-ordinates being-
measured from the centre along the axes ; prove this
and determine the axes.

^Maddy's Astronomy (pp. 130, 131), if /:= star's longitude,X _
latitude, and O = sun's longitude,

aberr". in long. =z - ^2ll^5^cos^O-^)
cos \ '

aberr". in lat. = - 20" . 25 . sin \ . sin (O - /) :

•'• if — 20" . 25 = a, we have

^ = .
• cos (G — I),cos \ ^ "

y — li. sin X . sin (0 — /) j

if = a\ sin^ \ . sin« (O - /),

= a* . sin* X — a- sin* X . cos^ (e - /},

= a2 . sin" X - sin^ X . cos'' X.x";

... _ .y"- ^'^ _
"a^sinU a.sec^X"^'

the equation to an ellipse, of which the semi-axes are a . sec X
and a . sin X.

'

10. The equation to the path of a projectile is

7/ = «x + J . log (1
-

6^), gravity (= g)

acting parallel to the axis of 3,; shew that the resist-
ance = k .

velocity.

Since the resistance R acts in the direction of the curve the
resolved parts in the direction of a: and i/ are

as fig-
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the equations of motion, therefore, give

dl^~~ 77'

.
Idxd^x + Idyd^y

• •

j^o
—-——=—'^f]d,y- 2Rds,

(I),

or '^'i%) =-2gdjy-2Rds, (2),

Also, by (1),

da; d^y — dy d^ x -- gdx,

In deducing the equations (1), dtv/hs supposed constant ;

but as the equations (2) and (3) are true independently of any
such condition, we may, in applying them, suppose dx con-

stant
; effecting the differentiation in (3) according to this hy-

pothesis, we have

d'i y
-jj^

= — g; and substituting the value of d f,

found i'rom this, in (2),

or, since d .ds^=. 2 dy d^y,

^^9ciy-^^/='29dy
+ 2Rds:

• n- 9^^sd'y

'2{d^yy
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To find the velocity, we have —^ =. — q, and

dt^ d-y

But, in the problem.

, «7 /> d X
dxi zn adx — "^ •

-J

—
•^

k' \ — b X

Ji

Also, (velocity )2 = ^'.c?*-. (1
- 6x)^

or velocity — - .dsi\ — o x)\

.'. Rzz: k . velocity.
Q. E. D.

11. Find the volume of a solid the equation to

which is ;r = c

between J^^^j
and

^^^^^5

^•^ ,„ « + h tan

and integrate rr' "
a + ^ tan o

'

(l-.r'')'
*
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Let u = the volume required ;

then u =ff z dx dy.

—fdxfdyt

• c

d- -t x'-

JNow the values of e
'^

wlien
ij
— 0, and 3/^:00, are

respectively 1 and
;

" dxr dx
1/ «^ + X^

c _^x ix=0 }- • tan ' - ' > '

a rt (^^ — 00 3

C TT

a 2

To integrate (/ ?/ =.
^, ^ ,

2

(l-.r^)

let .r
~

^^
;

.*. du —
-^

;

(1
- z^r

.. tizzZ I
^ r<2z^ d z

{i-z^r

=
'f^''^'-VTrzX/{1 - z')

'^ ^3Sz~
^(1

~
.2)

+ 32 1/1-,-^^ - 3 sin- z,

_ 3s
~~

TTTi iV
~ 3 sin~' 2;V (1 — 2*}

3 a:"^ . L
;; 3 sm~' .r' .

V(i-^')
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a + b tan 6

A + Btdind'

dx
let tan Q =. x \ .'. dd =.

1 + x^

_ (a + h x) d X

which being a rational fraction^ we may assume

a + bx Kx + L
,

M ,,.

(1 + x^) {J + Bx) 1 + x" A-^ Bx

K, L, M being constants, to be afterwards determined.

By integration,

M
M = ^ log -i/l + x^ -h ~\og {A -^ B x) + L tan"' x,

M= K log sec + -^ log {A + B tan 0) + i y.

Adding together the fractions on the right side of (1), and

equating the numerator so found with that on the left, we get

a +bx- {BK+ M)x^+ (AK + BL) x ^ AL ->i- M.

and equating the homologous terms,

BK-\- M=o,

AK + BL - b,

AL + M=a;

r. Ab- Ba
from which cquatione, K —

.^ ,,., ?

A^ + B^

J.
a B A b — Ba
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To integrate the equation

we may observe, that it is readily resolvable into two factors,

and may, therefore, be put in the form

or 5-^ + 2^ + „ ]
. Jl . S'l^ + 2,«. + 4 = 0;

tax ^ dx (_dx 3

••. multiplying- by 2 rfa-, and integrating

f dx S

or ax

.'. y -r x^ \- a X r=. C X -^ C,

or 7/ + a;' + Cj a- + Cg = 0.

12. A circular sector revolves through any angie
round one of its extreme radii ; find the centre of

gravity of the solid generated, its density varying as

the v}-^ power of the distance from the centre of the

circle.

In any solid, referred in position and magnitude to three

rectangular axes of co-ordinates, if /• rz the distance of any

point from the origin ;
9 = angle made by this distance with the

axis oi z; w = angle made by the projection of this distance, on

the plane of xy, with the axis of .r
;
M z=. whole mass

; p = den-

sity at distance r
; then (Poisson. Mecanique, Vol. I. p. 169.)

M= fffpr" sind. dr. dd.dio, (i).
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Also, if
.r, , 2/,, z^he the co-ordinates of the centre of

gravity of M;

31 x^ = fffp r^ sin- d. cos u, .drdddw,
"^

Mt/^-fffpr\sm^e.sinoj.drd6d(o,
^

(2).

Mz^= f/fpr^. s'm e .cose, drdddio. )

Taking the centre of the circular sector as origin, let the

extreme radius about Avhich it revolves, be the axis of z. Let

0j
= angle of the sector ; w, = angle through which it revolves ;

a = its radius ; and let the first position of the sector be in the

plane of x z: then as r, 6, and w are independent of each other,

and p = ;« r" a function of r only, we have the following limits

of the integrations in (1) and (2) :

8 = } w = 0"^ r=07

a

We thus have M= ^ w^ (1
— cos 6^)

= 2 A Wj sin=^ -^
;

A denoting the value of fi> i' dr or . a"'^'.

Also, from (2),

A>
• /^^i sin2fl,\

Mx^ = J . sm Wj ^ -^
—-M ,

• o^^i / „ sin 2 0,\

itf 2, = ^' . ^ . sin" 9j ;

^4' denoting the value of /p r^dr^ or -— a""^^.

The position of th.e centre of gravity is thus fully deter-

mined.
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13. In the above ease, supposing the angle of the

sector and the angle through which it has revolved to

remain the same, prove that as the radius varies the

motion of the centre of gravity will be in a plane

passing through the centre of the circle ;' find the line

of motion, and the equation to the plane.

Since the expressions for each of the co-ordinates x^ , y^ , z^

of the centre of gravity consists of two factors, one of which

is a, and the other a function of w^ and 0j ,
which are constants,

we may briefly express them, by the three equations

x^ •=. ca^ y^zz. d a, z^ =: c" a.

Eliminating a from the 1^* and S^d^ and afterwards from the

2"'i and 3'^"^ of these, we have the two equations

which are those of the line of motion, which is, therefore, a

straight line passing through the centre of the sector.

Also, the combination of the two last equations gives

^1 + yi
- 2 ^1

= 0,

which is the equation to a plane passing through the centre.

14. Water issues from the horizontal surface of a

fountain, at an angle «, with a velocity due to A,

through a circular annulus of which the radius is r :

V is the volume contained by the surface of the foun-

tain, the ascending, and the descending stream ; and

M
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V by the surface, the ascending stream and a plane

V
V

touching it at the highest point: prove that
-p^,

is con-

stant when sin 2 a oc ^ •

Let O be the centre of the annulus, and, in the horizontal

line OBD, let BD be the horizontal range of the stream^ or

the base of a parabola BAD, whose vertex is at A, and wliose

vertical axis is AC.

We thus have OB =. r, and by the M'ell-known properties of

projectiles, AC — h sin 2 a, BD = 2 BC = 2 h sin a
;
and since

V may be generated by the revolution of the parabola BAD
about a vertical axis passing through ;

the theorem of Gul-

dinus gives

F='-.AC.£D.2 7r.OC,

Q
= - TT A^ sin- 2a(r + h sin 2 a).

3 ^ ^

But, by the problem, sin 2 a x - > or ^ sin 2 a = wi r, m

being any constant :

o

.-. V^z-ni^^ni + 1)/-'.3

To find V, draw a horizontal line AH, meeting a vertical

line drawn through in H; then V may be generated by the

revolution of the figure ^JBOH about the vertical axis OH.

Let G be the centre of gravity of the semi-parabola BAC,
and G' that of the figure ABOH; draw G31, G'M' perpen-
dicular to HO, and meeting it in M, 31', then

V'=27r. G'M' {AC. OC- '^AC.BC).
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But, by the property of the centre of gravity,

G'3I' \AC . OC -^AC .BC\ +^AC . BC . G3I

= -AC. 0C\
2

or, since GM r= r + — /e sin 2 a,
4

G'M' \hs\vi2a{r -\-h sin 2 a)
-

'^h^
sin^

'2a\

+ - ^® sin- 2 a ( r H— y^ sin 2 a )
3 V 4 /

= — /^ sin 2 a (r + A sin 2 a)2 ;

or, making ^ sin 2 a = ni r,

G'3I\7n(m 4- i)
— ^m^\ +^m"- {m + l)r = -m(m + iyr -,' 3 3 «i -*

.-. G 31=31 r,

31 being a function of 31 only.

.'. F = 2 TT
J
m (m + 1)

-
I

m"-
1
31 r\

= 3^1' r^ suppose.

Since, therefore, it has been shown, that V z=. Nr, ^beiog
a function of m only, "we have

y ^ y
7^ — ^,, •'•-y-^

IS constant.

Q. E. D.

15. A body acted on by gravity oscillates in a

curve, and a chain of given length, suspended from

the horizontal ordinate where the motion commences,

is divided by the ordinate at each point into two parts



92

proportional to the two parts of the tension at that

point arising from the centrifugal force and from

gravity. What is the curve ?

Taking the lowest point of the curve for the origin, let

h =. abscissa to the ordinate from which the chain is suspended,
k =. length of that part of the chain that is below the lowest

point of the curve, so that ^ + >?: r= its whole length.

Now (Whewell's Dynamics, p. 93) the two parts of the

tension arising from the centrifugal force, and from gravity are

respectively equal to ^-j^ ,
and -

, v being the velocity, and

P the radius of curvature at any point:

.*. by the question,

, 7 v" qdyh — X : k + X ::
—

'.

, »

p as

::2g{k-x):gp^^,

7 d, if
or 1 : ^ + a: :: 2 : p

—^ .

ds

As the above expressions are true, independently of any
relation between the several differentials, we may suppose dx

constant; we, therefore, have

ds^

d X d^ y

dy _ ds^ dy ^

' '

d s f/* ;/ (I X
'

.*. from the above proportion, making

dy _ —2 dp _ dx
dx ""^'

p {I + j)^)'~ X -f k

and, by integration,

c(l +?>')_

p^
' X + k — c
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But, supposing the oscillations to be symmetrical on each

side of the axis of x, the curve has a horizontal tangent at its

lowest point, and we must, therefore, have^ infinite when xzzQ:

this condition gives

c = k, and .'. p n \/ —
, or y" =. A k x.

The curve is, therefore, a parabola whose latus rectum

= four times the length of the part of the chain below the

vertex.

16. A paraboloid revolving- round its axis strikes

a body P in a direction perpendicular to the radius,

and P, being- attracted to the intersection of the radius

and axis by a force varying- as
-yr^ ,

after impact de-

scribes a parabola of the same dimensions as the gen-

erating one. Determine the velocity of rotation and

the point of impact.

Let M be the mass of the paraboloid ;
k its radius of gyra-

tion, w, w its respective angular velocities before and after

impact, and a the distance of the point of impact from the axis.

The effect of M on P at a distance Q from the axis is the

MP
same as that of a mass—^ at that distance

;
if then V, v be

the velocities of the point of impact before and after the impact

takes place, we must have

or, since v zz a(>i', and V=z a >o,

(p + EJ^\- ^^^^
w I ^ + ^ 1= —lo

3Jk' + Fa-
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Again, since P is struck in a direction perpendicular to the.

radius, and its path is a parabola, it must begin to move from

the vertex of the parabola; therefore the distance a is equal to

1 i2- latus rectum or —j if h be the altitude and b the base of the

paraboloid. Also, the velocity at the vertex of a parabola, with

a force tending to the focus, being that acquired by falling

through
- latus rectum with the force at the vertex, we have

m b- Amh \/ {:n h)

cr 4/i b"^ b

m denoting the absolute force.

••— \/(f)-

17. A given opaque sphere and a given luminous

paraboloid of revolution have their axes in the same

line
;
the distance between them being known, deduce

the equation to the surface of the shadow, and find the

form of the shadow thrown on a given plane.

Let us first suppose the axis of the paraboloid to be of in-

definite length, and it is evident that a common tangent to the

generating parabola and circle will be the generating line to the

surface of the shadow, and that no part of the paraboloid at a

greater distance from the vertex than its point of contact with

the straight line, can illuminate the sphere or affect the form or

dimensions of the shadow. To determine the position of a

common tangent to the parabola and circle, let a = radius of

the circle, c :=. distance of its centre from the vertex of the

parabola, 4c — latus rectum of the parabola : then taking the
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centre of the circle for the origin, the equations of the two

curves are

^3 = a« _ a;'\ y- = 4 c (.r
-

o);

those of their tangents are

Y
1/
~ 2cX+ 2cx — 4c5.

Now since these two tangents coincide, they must cut the

axis in the same point and have the same inclination to it ; .*.

making F^ in each of their equations, and equating the re-

sulting values of x, we have

^ = 2B-a; (1);

, . tly' dy x' '2 c ,,
and, since -f^, = -—

-,

=— (2).
da;' dx y y

Aa°- c^
From (2) we ffet x"^ — —i^ :,, which being substituted in

(1) gives, after reduction,

.^2 _
(^^

+ 4^^
^. = a^ _ '21^ + 4 a?;

from which equation,

'2 \c / V^4c^c >

The two roots of this equation indicate two positions of the

tangent; one in which the two points of contact are on the

same side, and the other in which they are on different sides of

the axis : the former determining the dark shadow and the

other the penumbra or partial shadow of the sphere : but, as the

tangent in the latter case is more inclined to the axis than in the

former, and, therefore, the abscissa in the former case is greater

than in the latter ; the greatest root of the equation determines

the required point.
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Subtracting ^ from this value of x gives the length of the

axis of a paraboloid of given latus rectum, every part of which

illuminates the sphere. If, therefore, the given axis of the

paraboloid be greater than

^ + a + «^5^+i + l| which call k,

the whole paraboloid will not affect the shadow, but only a por-

tion of it included between the vertex and a circular section at

a distance = k from it. If the given axis be less than k, the

shadow is the same as when, for the paraboloid, is substituted

a circle equal and similarly situated to its base.

The value of —"^
corresponding to the value of x, found

above, gives the tangent of inclination of the slant side of the

conical shadow to the axis. The equation to the surface is most

simply exhibited by making the origin its intersection with the

axis, and measuring z along that axis : the equation is, there-

fore, x"^ •\- if-
:=. k z.

To find the form of the shadow on a given plane, see Hamil-

ton's Analytical Geometry, p. 266.

18. In the series of quantities A^, An, A^,

if J.
J
= r tan ( sin -— + a

j , A^zz r tan (sin— + a
) ,

and the remaining ones be derived according to the

following law :

prove that A„ = r tan ^sm
—

f-
a
J

By the given law.
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13. In the above case, supposing the angle of the

sector and the angle through which it has revolved to

remain the same, prove that as the radius varies the

motion of the centre of gravity will be in a plane

passing through the centre of the circle ; find the line

of motion, and the equation to the plane.

Since the expressions for each of the co-ordinates x^, y^, z^

of the centre of gravity consists of two factors, one of which

is a, and the other a function of w^ and Q^ ,
which are constants,

we may briefly express them, by the three equations

x^ z=. ctty 1/^
— c' a, z^ = e" a.

Eliminating a from the 1^^ and ^'^'^, and afterwards from the

2"*^ and 3^^ of these, we have the two equations

c Sj = c''x^ , c' z^zz c"i/^ ,

which ax*e those of the line of motion, which is. therefore, a

straight line passing through the centre of the sector.

Also, the combination of the two last equations gives

^1 + 2/]
- 2 2, = 0,

which is the equation to a plane passing through the centre.

14. Water issues from the horizontal surface of a

fountain, at an angle a, with a velocity due to //,

through a circular annulus of which the radius is r :

^ is the volume contained bv the surface of the foun-

tain, the ascending, and the descending stream ; and

M
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V by the surface, the ascending stream and a plane

V
touching it at the highest point: prove that 77, is con-

stant when sin 2 a x ^ •

h

Let be the centre of the annuliis, and, in the horizontal

line OBD, let BD be the horizontal range of the stream, or

the base of a parabola BAD, whose vertex is at A, and whose

vertical axis is AC.

We thus have OB =. r, and by the well-known properties of

projectiles, AC = h sin 2 a, BB =. 2 BC — 2 h sin a
;
and since

V may be generated by the revolution of the parabola BAD
about a vertical axis passing through ;

the theorem of Gul-

dinus gives

V=~.AC .BD.27r.OC,
3

Q
= - TT /i^ sin- 2 a (r + ^ sin 2 a).

But, by the problem, sin 2 a ac - , or k sin 2azz m r, m

being any constant :

D

.-. V=-m^{m + 1) r\o

To find V, draw a horizontal line AH, meeting a vertical

line drawn through in H; then V may be generated by the

revolution of the figure ABOH Sihont the vertical axis OH.

Let G be the centre of gravity of the semi-parabola BAC,
and G that of the figure ABOH; draw GM, G'M' perpen-

dicular to HO, and meeting it in M, M', then

V'-2n.G'M' {AC.OC- %AC.BC).



91

But, by the property of the centre of gravity,

g'm'lac.oc--ac.bc\ +^ac.bc .gm

= Iac. oc,

or, since G3I =: r + — /^ sin 2 a,

G 31' lhsin2a{r + h sin 2 a)- -h"^ s'ui^ 2 a I

4- - h^ sin^ 2 a I r H— >^ sin 2 a )

= —k sin 2a(9- + h sin 2 a)2 ;

or, makiog ^^ sin 2 a = m r,

G'M
j »«(m 4- 1)

— f w^*f + ^m-(m + l)r =-m(m + l)2r j'
«3 3 *^ ^

.-. G M=3Ir,

M being a function of M only.

=: M' r^ suppose.

Since, therefore, it has been shown, that V— Nr, ^being
a function of m onl)', we have

V ]S V .

cp,
=: -T-?,> •'• -^r' ^s constant.

V Ivl V

Q. E.D.

15. A body acted on by gravity oscillates in a

curve, and a chain of given length, suspended from

the horizontal ordinate where the motion commences,
is divided by the ordinate at each point into two parts
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proportional to the two parts of the tension at that

point arising from the centrifugal force and from

gravity. What is the curve ?

Taking the lowest point of the curve for the origin, let

h — abscissa to the ordinate from which the chain is suspended,

k — length of that part of the chain that is below the lowest

point of the curve, so that h \- k — its whole length.

Now (Whewell's Dynamics, p. 93) the two parts of the

tension arising from the centrifugal force, and from gravity are

respectively equal to ^-—^
,
and -

, v being the velocity, and
as p

p the radius of curvature at any point:

.*. by the question,

h — X : k + X v^ gdy
P d s

::2g{h-x):gp^,

or 1 : A: + a: :: 2 : p
-^ .

ds

As the above expressions are true, independently of any

relation between the several differentials, we may suppose dx

constant; we, therefore, have

ds^

d xd^y'

dy _ ds^ dy .

d s d^ y dx^

.'. from the above proportion, making

dy _ —2 dp _ dx
Jx ~^'

2? {I + /J*;

~
X + k

and, by integration.



93

But, supposing: the oscillations to be symmetrical on each

side of the axis of x, the curve has a horizontal tangent at its

lowest point, and we must, therefore, havejp infinite when a; =0;

this condition gives
''

c = k, and /. p — \/ —
, or ^- =: 4 ^ ;r.

The curve is, therefore, a parabola whose latus rectum

= four times the length of the part of the chain below the

vertex.

16. A paraboloid revolving round its axis strikes

a body P in a direction perpendicular to the radius,

and P, being- attracted to the intersection of the radius

and axis by a force varying as
-r^ , after impact de-

scribes a parabola of the same dimensions as the gen-

erating one. Determine the velocity of rotation and

the point of impact.

Let M be the mass of the paraboloid ;
k its radius of gyra-

tion, w, w' its respective angular velocities before and after

impact, and a the distance of the point of impact from the axis.

The effect of iW on P at a distance Q from the axis is the

MP
same as that of a mass—^ at that distance

;
if then V, v be

Co

the velocities of the point of impact before and after the impact

takes place, we must have

or, since v zz a^', and Y =. « h^.

Mk"\ Mk^,/„ Mk"\ M

M F-

Mk" + Fa''



94

Again, since P is struck in a direction perpendicular to the

radius, and its path is a parabola;, it must begin to move from

the vertex of the parabola ;
therefore the distance a is equal to

1 ^2- latus rectum or --y if A be the altitude and b the base of the
4 Ah

paraboloid. Also, the velocity at the vertex of a parabola, with

a force tending to the focus, being that acquired by falling

through
- latus rectum with the force at the vertex, we have

m denoting the absolute force.

\/C
m\ IC, M /r + 3 P b^

h/' 'iMb^

17. A given opaque sphere and a given luminous

paraboloid of revolution have their axes in the same

line
;
the distance between them being known, deduce

the equation to the surface of the shadow, and find the

form of the shadow thrown on a given plane.

Let us first suppose the axis of the paraboloid to be of in-

definite length, and it is evident that a common tangent to the

generating parabola and circle will be the generating line to the

surface of the shadow, and that no part of the paraboloid at a

greater distance from the vertex than its point of contact with

the straight line, can illuminate the sphere or affect the form or

dimensions of the shadow. To determine the position of a

common tangent to the parabola and circle, let a =. radius of

the circle, ^ = distance of its centre from the vertex of the

parabola, 4 c = latus rectum of the parabola : then taking the
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centre of the circle for the origin, the equations of the two

curves are

^2 -a""- x\ y" = Ac {x
- o);

those of their tangents are

F.v'+ Xx' - a^,

Yy = 2cX+2c.r — 4c^.

Now since these two tangents coincide, they must cut the

axis in the same point and have the same incHnation tc it ; .*,

making 1^'= in each of their equations, and equating the re-

sulting values of x, we have

J . dy' dy x' 2 c ,^.
and, since -—-, — -r- — — — — (2)«ax' dx y y

From (2) we get x^ — —^ -. , which being substituted in

(I) gives, after reduction,

from which equation,

X- -(-+4c))±a \/i7-., + -+l^•2Vc / V<4c-^c 3

The two roots of this equation indicate two positions of the

tangent ; one in which the two points of contact are on the

same side, and the other in which they are on different sides of

the axis : the former determining the dark shadow and the

other the 'penumbra or partial shadow of the sphere : but, as the

tangent in the latter case is more inclined to the axis than in the

former, and, therefore, the abscissa in the former case is greater

tiian in the latter ; the greatest root of the equation determines

the required point.
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Subtracting S from this value of a: gives the length of the

axis of a paraboloid of given latus rectum, every part of which

illuminates the sphere. If, therefore, the given axis of the

paraboloid be greater than

^ + S + a\/\^.+- + l\ which call k,
2 c

*^
l4c- c y

the whole paraboloid will not affect the shadow, but only a por-

tion of it included between the vertex and a circular section at

a distance r= k from it. If the given axis be less than'^, the

shadow is the same as when, for the paraboloid, is substituted

a circle equal and similarly situated to its base.

The value of ~- corresponding to the value of x, found

above, gives the tangent of inclination of the slant side of the

conical shadow to the axis. The equation to the surface is most

simply exhibited by making the origin its intersection with the

axis, and measuring z along that axis : the equation is, there-

fore, a;^ \- y" =. Ic z.

To find the form of the shadow on a given plane, see Hamil-

ton's Analytical Geometry, p. 266.'

18. In the series of quantities A^, Ao, A^,

if A^ = r tan (sin — 4- a^ , A^^. r tan (sin— + a^ ,

and the remaining ones be derived according- to the

following law ;

A^.A„.A„:=r^iA^ + A„+A^),A^.A^.A^=:r-(A„+ A^ + Aj,...

sin — h a^
.

By the given law.
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Assume A,, = r tan w„ ;

/. tan w„ . tan n„+^ . tan Un+2.
— tan ^^„ + tan w„+^ + tan m„+2 ;

which equation of differences, being integrated as in page 14,

gives

u„= C cos —-- + C sin -—- ,

o o

= Cj sin (
—^ + C„J

:

.-. A„=r tan
J
C^ sin y^-^ '^ ^^) S

'

which, compared %vith the two given forms of A^, A,,,

gives Cj = 1, Cg = a:

C . /2W7r \ >
.*. ^„ = r . tan

^
sm I

—-—[-«)>•

19. If ^2/3 + 5^^a + C.T?/ + Da-+ iJy + Fx =
be the equation to a curve; Bt/- + Ci/ + 2Da; + F=o
is the equation to a parabola which bisects all the

chords parallel to the axis of a;; iBy'^-rCy + iDx
+ F=.o and Cy + 2Dx-^F—0 are equations to a

parabola and straight line which are asymptotes to

the curve ;
and the two parabolas and the straight line

have a common point of contact in the bisection of

that chord which passes through the origin.

Dividing every term of the equation by D, we may put it in

the form

ay^ + b xy- + ex y-\- x^ -\- ey -\- fx =.
j

and solving this equation with respect to x, we have

^ =—
.2

- ^
X
—

4 -^r-gy^ (1).

N
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Now, since the value of x consists of two parts, one rational,

and having one value for each value of 3/; the other irrational,

and having two equal values, with opposite signs, for each value

of y; it is clear, that the part

would express the equation to a line from which two points of

the curve are equally distant in the directions of ±0:; and

which, therefore, bisects all the chords parallel to the axis of x.

But^ restoring the values of b, c, f, transposing all the

terms to one side, and clearing it of fractions, (2) becomes

jB 2/^ + C 2/ + 2 j9 X + F= 0, (3).

Q. E. D.

Since the irrational part of (1) expresses half the length of

any one of the chords, we may find how far the curve recedes

from the parabola (3) at an infinite distance from the axis of a',

by making y infinite in that part, which reduces it to ± ~- :

the corresponding value of x is

X — ^——-^ ± -—
:

'2 —

.'. taking the lower and upper signs in succession, Vv-e have the

equations

_ 2hy^ + cy +f

„. _ _ cy +/ .•*--
2

'

or 2 By^ ^ Cy ^'2Dx ^- F-0, (4), .

Cy -\-lDx + F-0, (5),

which express the relations between x and ?/, when y is infinite.
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But since, in g-eneral, the equations (4) and (-3) respectively

represent a parabola and straight line, and coincide with the

equation to the given curve when ^ is infinite; this parabola

and straight line must be asymptotes to the given curve.

Q. E. D.

To find where the curves defined by equations (3) and (4),

have a common point, subtract (3) from (4), and we have

F f
y = 0, and x =——

r; = — —

for the co-ordinates of this point.

Similarly, the equations (4) and (5) give

y =. 0, and x = ^ r= — —

for the common point of the lines they represent.

Putting 7/ = in equation (1), the values of x are and

f— f\ .'. y = and X z= — — are the co-ordinates of the point

of bisection of that chord which passes through the origin.

Q. E. D.

20. If a pendulum of length / vibrate in a small

circular arc in a medium of which the resistance — kv"^

to velocity v^ and if s be the arc described from the

commencement of a vibration to the point where the

velocity is greatest when the friction at the axis of

suspension is taken into account, and s the corre-

sponding arc when the friction is neglected, prove that

9

f being the constant effect of friction and g gravity.

j2X-i' ^Iks :/.^%
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Since, in a small circular arc, the effective force of gravity,

at any point, is as the length of the arc measured from the lowest

point, if z be the length of the arc, the force may be expressed

hy mz:

.'. vdv rr — (_/ 4- tnz — kv'^)d z.

Let 2;^ rz 2 M, .*. vdv := du;

.'. du =— (f + ms — 2ku) d z:

Multiply by f-2*-',

.-. du . i.-'^^'' — u .e-^''\ 2 k d z = —f e"^^'- d z - mt'^'''- zdz;

whence, by integration.

a~*2k 2k Ak

in f

Suppose now, that, at the beginning of the motion z z=. a',

or that uz=. Q, when z = a;

.', o=Ce-^''' + ~{2ka + l) + fr,4/c- 2 k

or C-- ^A2ka + i)£'-2*«_X£-2^«

and Ce^'^---^, {2ka + l)6-2^(—") - -^ ^-^'(''-'J;
4 A;^

' 2 k

.'.U^^A2kz^\-i2ka^-\) e-^^C'-)?

2k ^ '

To find where the velocity is greatest, we must make

— =0, and .'. -T- — ; also at this point a — z = s' -.

dz dz
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.-. £-2*''=2^a + 1 +/.— .

But if X be the abscissa to the circular arc z (radius = I),

the force of gravity down the arc is

d:v V'l Ix — a"-' q '.

^J7='^ J --T

when X is small
; that is

mz — ^> ox m—-''

and when/= 0, s =. s\

.-. £-2*^ = 2A;a + 1;

Q. E. D.

21. Two planets Pj , P^ revolve in circular orbits

at the distances r-^ , r^ from the Sun, and when they

appear stationary to one another, cot P/s elongation

seen from Pi = i tan Q; shew that — = ^ tan- . tan e.
to "^

If Z(j, L^ be the heliocentric longitudes of P, , Pg, and \

the longitude of P„ seen from P^, we have (Maddy's Astro-

nomy, p. 191.)

tan X = ^1 «i" ^.
-

^c sin />, .

r^ coSjLj
—

r^ cos Z/„

but as the longitude of either planet may be taken at pleasure,

we may suppose L^ — 0, in which case the elongation of P^
seen from P^ = tt — X

;
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.*. tangent of elongation

= tan
(tt
—

\) =z — tan X = ~—=

A-n sin L„
. Vq • COS -M^ o

sin Ij„ 1
. r,-—

, makmg — = m.

1 +



2-2. Ax + By + C. = 0?
^,.^ j,,^ equations to

the planes in which two planets move. Apply them to

find the inclination of the orbits to one another, in

terms of their inclinations to the ecliptic and of the

longitudes of theii* ascending nodes, the ecliptic being

in the plane of x and y.

Let X, X' be the longitudes of the nodes ; 0, 0' the inclina-

tioDS of the orbits to the ecliptic; ^ their inclination to one

another ; and let the longitude be reckoned from the axis of x :

then on the plane oi x y we have

y "= — -r,x, .'. tan X := — —
,

7/
~—

jj,
x, .: tan A = — — .

Also, cosa = ±
^^^^,^^^,^^,^

,

c
cos d'=±

AA' + BB' 4. CC

fHamilton's Analytical Geometry .)

But, from the above expressions for cos 0, tan X,

sm'9 = l-cosc0=^^^—^^,-^,;

.-. tan'0 = —
7^^

— ' also sec^ X =—
^-^

—-
;

7? tan 9
CI- •, 1

S' tanO'
•• 7-'

—
7 ^

•

Similarly, -p,
= -——

,
.

C tan X "^ C tan X
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TT BE' tan 6 . tan & , AA'^'"•^^
CC'

=
ta»X.tanX' ' ="""

c(7
='="">• '^" » 5

by adding together these two last equations, and then adding 1

to the resulting equation, we get

AA' + BB' +CC' tan0.tan0' + tanX.tan\' + tan0.tan0'tanX,tanX'

CC tan A . tan X'

Finally, since

CC zzcosd. cos 6' V{A^ + B« + C^) \/(A'^ + 5'« + C'=),

there results

tan . tan & + tan X . tan X' + tan 6 . tan B' . tan X . tan X'
cos 6 =. ; -; 7.

•

tan X . tan X . sec a . sec

23. If the Earth be an oblate spheroid of small

ellipticity with semi-axes a and b, the ratio of the mean

density to that at the surface is

k^X^-^^h^^y^^y'^'^'^y'

assuming the density to be uniform throughout each

spheroidal stratum at the same distance from the

Earth's surface, and to vary as at different
r

distances, where A: is a constant quantity and r the

polar semi-axis of the surface of equal density.

The mean density of the Earth is the density of a homoge-
neous spheroid of equal mass and volume; it is therefore ex-

M
pressed by -^ , M denoting the Earth's whole mass, and V its

volume.
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All the spheroidal strata being of equal ellipticity (e), let R
denote the surface of any one of them whose polar serai-axis is

r
;

then

The surface R being generated by the revolution of an el-

lipse about its minor axis, the equation to this ellipse will be

^2 = (1 + ef (r^
-

a;«).

Hence^= 2.2, v^(l + ^,),

= 27r(l + e)^ Jr2
_ ^2 ^ (I + e)2.r«J ,

= 27r(l + £)x/ Jr^ + 2ea;^^ nearly,

= 2xr(l +
e)(l

+
'-^'),

expanding and neglecting powers of £ above the first ;

.*. integrating, and making j: = r,

il = 2,r(l +£) A + ^)r2

= 2 TT f 1 -1-
—

J r- nearly j

.-. M=4
(^1

+ ^e^f sin kr.rdr,

= —^ ( 1 + -7-^ ) (sin kb — kb .cos k b).

Also, V=^^^^;*
3

.*. — =
^., „ j

-
1 1 \— f

) \smkb — kb cos ^ 6 ^ J

V k^ a- o \ 3 / < >

and the density at the surface being
—r— 5

o
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the ratio required

.". the ratio = ,-,—7 ( 1 —,
—

7-7- ) nearly.A- a- \ 3 tan kb /

Q. E. D.

When « = h, the above expression agrees with that given in

Professor Airy's Tracts, p. 110.

24. Explain the theory of the interferences of

light, and determine the colour, origin, and intensity

of a ray resulting from the interference of two similar

rays, differing in origin and intensity.

On this subject see Dr. Young's Essay on the Theory of

Light; Encyclopaedia Metropolitana. Article Light; also an

abridged translation of the same by Quetelet and Verhiilstj a

small supplement to the Encyclopaedia Britannica, and Biot's

Traite de Physique.
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APPENDIX I.

(To page 23.)

If L\ L" be the powers of the two lenses of a double object-

glass at a distance = t from each other, p', p" their dispersive

powers^ and D the distance of the object; then, that the com-

bination may be achromatic we must have

l-t(L'^D)Y+^y^,^o.P

" Such is the condition of achromaticity. Since it depends

on D, it appears, that if the lenses of an object-glass be not

close together, it will cease to be achromatic for near objects,

however perfectly the colour be corrected for distant ones.

The eye, therefore, cannot be achromatic for objects at all

distances, its lenses being of great thickness compared to their

focal lengths; and, therefore, although in contact at their adja-

cent surfaces, yet having considerable intervals between others."

Encyclopaedia Metropolitana, Part 19, arts. 479, 480, Light.
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APPENDIX II.

{To page 54.)

It is shown, in works on the Integral Calculus, that the area

of any surface, defined by an equation referring it to three

rectangular co-ordinate planes, is expressed by

ffdxdyx/{\ +2>"- + r).

the integrals being taken between proper limits. Now

expresses the area of an indefinitely small element of the surface

intercepted by planes parallel to the co-ordinate planes, and the

integration with respect to y gives the area of one of the elemen-

tary zones into which the surface is supposed to be divided by

planes parallel to the plane oi y z: the subsequent integration

with respect to x gives the sum of all these zones or the area

of the surface.

In page 54 it is required to find the pressure of a fluid on

the surface of an oblique cone
;
for which purpose we will first

express the surface by an equation referring it to three rect-

angular co-ordinate planes, placing the origin in the vertex,

and the principal sections in the vertical plane of xy. Since

all the horizontal sections of the cone are similar ellipses whose

major axes vary as their heights from the plane of?/ z^ or as a.-;

also, since the distances of their centres from the axis of x are

as X', the equation to any one of them will be

s* — c^ \ m^ Z"' - {y -nx)'\ ;
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c being the constant ratio of the minor to the major axis, and

m and n constants readily determined from the formulas in pages

53 and 54: the equation thus found evidently defines the conical

surface.

Differentiating successively with respect to x and
i/, we have

sp == c-
^
m- .V + 71

(1/
—
nx)^,

z q =. — c'^{y
— nx);

whence dxdy V ! + />-+ g-'-
is readily expressed in terms of .r

and ?/, and being integrated with respect to y gives the area of

an elementary elliptic zone at an indeterminate distance x from

the plane oi y z\ the limits of the integral are evidently the

extremities of the minor axis of the ellipse ;
that is, it must be

taken from ?/ r= — c ?n x to y — + C7n x. Multiplying the re-

sult by ^p {k
— x) dx, we obtain the pressure on the elementary

zone at the depth h—x\ p being the density of the fluid and g

gravity. The integral of the expression last found taken between

the limits x= and x = k gives the whole pressure required.

We have restricted ourselves to a bare explanation of the process,

as the integrations are of a more complicated nature than the

value of the Problem would have warranted us in performing.
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