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SOLVING A REAL WORLD HIGHWAY NETWORK DESIGN PROBLEM
USING BILEVEL LINEAR PROGRAMMING

OMAR BEN-AYED and CHARLES E. BLAIR

Department of Business Administration
University of Illinois at Urbana-Champaign, IL 61820

DAVID E. BOYCE

Department of Civil Engineering
University of Illinois at Urbana-Champaign, IL 61801

(May 1988)

This paper is concerned with the solution of a real world Bilevel Linear
Program (BLP) of the highway Network Design Problem (NDP), based on empirical
data for Tunisia. The problem includes 2,683 variables (2,571 at the lower

level) and 820 constraints; it is far beyond the capacity of any existing
algorithm. A new algorithm is devised and the solution is found successfully
despite the NP-hardness of BLP and the large scale of the problem. The computa-
tional difficulties of BLP should not present a barrier against the effective
use of such a powerful optimization technique.

Bilevel Linear Programming (BLP) is a mathematical model of an organiza-

tional hierarchy in which two decision makers have to choose their strategies

from the polyhedron {(x,y): Ax + By < b; x, y > 0). The upper decision maker,

who has control over x, makes his decision first, hence fixing x before the

lower decision maker selects y [Bialas and Karwan 1982 and 1984, Bard 1983,

and, Ben-Ayed 1988]

.

The ability of BLP to represent decentralized decision-making problems

motivated the development of several applications of the model, including

resource allocation [Cassidy 1971, Fortuny-Amat and McCarl 1981], military

planning [Bracken and McGill 1973, 1974a and 1974b, Shere and Wingate 1976,

Falk 1977] and government policy [Candler and Norton 1977, DeSilva 1978, Bialas

et al. 1980, Falk and McCormick 1982, Candler and Townsley 1982 and 1985].



2

Recently, attention has been focused on applying bilevel formulations to a

transportation decision making problem referred to as the Network Design

Problem (NDP) [LeBlanc and Boyce 1986, Marcotte 1986, Ben-Ayed, Boyce and Blair

1988]. NDP is concerned with the optimal improvement of a transportation

network in order to minimize the system total costs.

Most BLP applications are limited to the theoretical formulation, thereby

lacking the practical significance of solving real problems. Actually, the

overwhelming majority of real-world problems are formulated and solved as

single-level (single-objective) programs even when they are virtually bilevel.

This is mainly due to the inefficiency associated with BLP algorithms [Ben-Ayed

and Blair 1988], which presents a real barrier against the effective use of the

model. In trying to motivate further applications of BLP going beyond the

theoretical formulations and the small illustrative examples to interesting

real world problems, Ben-Ayed, Blair and Boyce [1988] presented a BLP formula-

tion of the interregional highway NDP based on empirical data for Tunisia. This

paper gives the solution to the problem formulated there. This problem includes

2,683 variables (2,571 of which are lower) and 820 constraints, which makes it

too large to be solved by any of the existing algorithms.

Section 1 presents the problem. In Section 2, we develop a new algorithm

that takes advantage of the special structure of the problem. There are two

reasons for having a BLP formulation; first the user-optimized flow requirement

(user-equilibrium), and second the nonconvex improvement functions. The

algorithm deals with each of the two lower problems separately; at each

iteration we try to find a better compromise with the user, while including the

smallest possible number of nonconvex improvement functions to get the exact

solution with the minimum computation effort. In Section 3, the solution is

presented and the results are analyzed. We conclude in the last section with

some suggestions.



1. The Problem to be Solved

In this section we give a short description of the formulation resulting

from the empirical study conducted by Ben-Ayed, Blair and Boyce [1988] on the

Tunisian interregional highway transportation network. We are concerned with a

system of roads connecting the regions of Tunisia. Each region is represented

by a centroid-node which is usually the largest city in the region. The traffic

entering and leaving a centroid-node is assumed to be that of the whole region;

every centroid-node is simultaneously an origin-node and a destination-node.

The other nodes in the network are intersections of roads generally correspond-

ing to intermediate cities. A road connecting any two cities is called a link

and a sequence of links is called a route. We have empirical data on the number

of people who want to travel from each region to each other region. Typically,

a traveller has a choice of routes and makes his decision based on road

conditions. Improvements in various links in the network sill cause some

travellers to change their choice of routes. We will not provide details about

the empirical data, the construction of the objective functions and the

constraints in the formulation; however, a brief discussion on the inclusion of

the bilevel presentation is relevant to the object of this paper.

The principal variables in the formulation are the traffic flow and the

added capacity resulting from the improvement, both measured in Passenger Car

Units per hour (PCU). The designers of a road network wish to find the best

combination of improvements to make. Their objective takes into account the

cost of improvements and also factors which depend on the pattern of road use,

including system travel time, system operating cost and frequency of accidents.

The users of the network decide which routes to use primarily based on their

individual cost; therefore, their choices do not necessarily coincide with the

choices that are optimal for the system [Wardrop 1952]. The system can in-

fluence users choices, however, by improving some links and making them more
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attractive than others. When deciding on these improvements, the system tries

to influence the users' preferences in order to minimize total system costs.

Thus in our BLP, the upper decision maker chooses the amount of improvement to

make on each of the different roads (links in the network) while the lower

decision maker chooses how much traffic there will be on each road. A similar

approach is used by LeBlanc and Boyce [1986], and Ben-Ayed, Boyce and Blair

[1988]

.

In addition to the user-optimized flow requirement, BLP formulation allows

the analysis of nonconvex piecewise linear functions [Ben-Ayed, Blair and Boyce

1988]. A typical improvement function might be:

f(Z) = 10Z < Z < 200

= 2000 + 3(Z-200), 200 < Z < 500 (1)

= 2900 + 8(Z-500), 500 > 500.

where Z is the amount of improvement of a link and f(Z) is the cost of that

improvement. Note that f(Z) is neither convex nor concave, thus making it

difficult to analyze. However, the function can be included in the upper

objective of a BLP with an appropriate lower objective. The technique is based

on the following:

f(Z) = F(Z,W) = 10Z - 7W
X

+ 5W2 , where W^MAXfO, Z-200} , W2
=MAX( , Z-500] .

The variables Wm are controlled by the lower problem; the lower objective

trying to make the Wm as small as possible, and the constraints W^ > Z-200, W2

> Z-500 guarantee that Wm are least upper bounds. This technique can be used

for any piecewise linear function.

Two drawbacks should be mentioned. First, the method described does increase

the number of lower variables, and this increase may be considerable if there

are many piecewise linear functions in the problem. Second, the resulting BLP
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is typically distinguished by the conflict between its upper and lower

objectives; there are many variables which the upper objective wants to be as

large as possible, while the lower objective wants them as small as possible.

Experience suggests this type of BLP is difficult to solve.

Including user-optimized flow and nonconvex improvement functions, the BLP

problem obtained by Ben-Ayed, Blair and Boyce [1988] is synthesized in the

following:

MINZ F(Z,W) + G(C)

where [C, C, W, X and Y] solve:

MIN F(W) + G(C)

subject to:

%(¥) =

(2)
H
2
(X,Y) =

H
3
(Z,C,X) >

H4 (Z,C,X) >

H
5
(Z,W) >

H
6
(Z) >

Z, C, C, W, X, Y >

where the function F is the improvement cost. The function G is the inter-

regional system travel cost. The vector X is the amount of traffic on each

link. Any traveller from one origin-node to a destination-node has a choice of

different routes to use, corresponding to different sets of links. We use the

components of the vector Y to indicate the number of people using each route.

These numbers determine the numbers of users of each link, shown by the vector

X; the relationship between X and Y is given by the equation constraints

H2(X,Y) while the requirement that specified numbers of people go between

specified nodes is given by the constraints H^Y) referred to as the conserva-
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tion of flow conditions. F is the lower objective of nonconvex improvement cost

functions. The components of the vector Z are the amounts of improvement on

each of the different links. W is the vector of the second-stage variables used

in computing the improvement cost functions as described previously in (1). G

gives the interregional travel costs on each link for the user. C and C are

vectors of second-stage variables giving total travel costs on each link for

the system and the user, respectively. H3(Z,C,X) and H^(Z,Z,X) are the ine-

quality constraints needed to the formulation of convex travel cost functions

and the effect on improvement on decreasing those costs for the system and the

user, respectively. Hr(Z,W) correspond to the nonconvex piecewise linear

functions constraints. Hg(Z) are the improvement limit constraints. A more

detailed description of the variables and the functions is provided in the

Appendix A.

In the above formulation (2), the total number of variables (see Appendix A)

is 2,683 and the total number of constraints is 820, excluding upper and lower

bound constraints (improvement limit constraints and nonnegativity const-

raints). Those numbers are partitioned as follows:

Variables Constraints
(excluding bound constraints)

112 (X)

112 (C) 120 (conservation of flow conditions )

112 (C) 112 (link flow definition constraints)
112 (Z) 224 (system travel costs formulation)
104 (W^) 224 (cumulative user costs formulation)
36 (Wo) 68 (convex improvement costs formulation)

2,095 (Y) 72 (nonconvex functions formulation)

2,683 820.

The Z are the only variables controlled by the upper problem; therefore

among the 2,683 variables, 2,571 are lower. The nonconvex improvement cost

functions all have 3 pieces; two constraints are needed by each link. The

convex improvement functions require only one constraint per link because they



all consist of two pieces only.

An ideal solution (lower bound) for any BLP minimization problem can be

obtained by ignoring the lower objective function and solving the problem as an

LP. If we call (Z°, X°, C°, C°, Y°, W°) the obtained solution, the ideal

solution is equal to F(Z ,W ) + G(C ). To get an incumbent solution (upper

bound), we substitute Z by Z and solve the lower LP problem. If we call (X
,

C , C , Y , W ) the obtained solution, the incumbent solution is equal to

F(Z ,W ) + G(C ). Let us refer to the gap between incumbent and ideal solutions

as:

gap = (incumbent - ideal)/ideal

.

The gap for the BLP problem (2) is larger than 111 % [Ben-Ayed 1988]; this high

value, mainly due to the nonconvex functions formulation, makes the task of

heuristic algorithms extremely difficult, if not impossible. Heuristic al-

gorithms, such as the Parametric Complementary Pivot algorithm (PCP) [Bialas-

Karwan-Shaw 1980, and Bialas-Karwan 1984] and the Grid Search Algorithm (GSA)

[Bard 1983], lead to very unsatisfactory results when applied to BLP problems

with combinatorial nature, such as Knapsack problems or nonconvex formulation

problems [Ben-Ayed and Blair 1988].

The problem is even harder for branch and bound or related implicit enumera-

tion techniques [Falk 1973, Gallo and Ulkiicu 1977, Fortuny-Amat and McCarl

1981, Bialas and Karwan 1982, Papavassilopoulos 1982, Candler and Townsley

1982, Bard and Falk 1982, Bard and Moore 1987]. The Bard-Moore algorithm, which

is supposed to be one of the most efficient, does not accept a problem with

more than 100 lower variables; our problem has more than 25 times this number.

As for any large NP-hard problem, the use of general algorithms is not

efficient. A new algorithm taking advantage of the special structure of the

problem has to be devised to solve the problem at hand.



(4)

2. A Proposed Algorithm

Formulation (2) shows that there are two separate lower objective functions.

In fact, each of the two objectives has its own constraints that are indepen-

dent of the constraints of the other objective, provided that Z are fixed (they

are fixed by the upper objective). This can be better seen when the BLP problem

(2) is restated as follows:

MIN
Z> F(Z,W) + G(C) (3)

such that {W) solve (4):

MIN F(W)

subject to:

H
5
(Z,W) >

W >

and {C, C, X and Y) solve (5):

MIN G(C)

subject to:

H(X,C,C,X,Y) >

C, C, X, Y >

where H(X,C,C,X,Y) > substitutes the constraints H
1
(Y) = 0, H

2
(X,Y) = 0,

H
3
(Z,C,X) > 0, H4 (Z,C,X) > 0, and H6 (Z)

> 0.

The first lower problem (4) corresponds to the nonconvex functions formula-

tion and the other lower problem (5) corresponds to the equilibrium problem.

Because of the NP-hardness of BLP, it is more convenient to take advantage of

the structure of the problem and solve it as two separate smaller problems.

As we mentioned in our discussion of improvement cost functions in the

previous section, the BLP corresponding to (4) is difficult. However, the

situation is different for the BLP corresponding to the equilibrium problem

(5); the travel cost functions of the system and the user are very similar

(5)



9

[Ben-Ayed, Blair and Boyce 1988]. The coefficients of the two functions always

have the same sign, and are even fairly proportional; therefore the use of BLP

heuristics is safe for this second part.

Our approach to satisfy (5) tries to identify a solution that is good for

both the upper and lower objectives by using a convex combination of the two:

tG(C) + (l-t)G(C)

so that we are looking at the problem:

MIN
Z
F(Z,W) + tG(C) + (l-x)G(C)

such that {Z, C, C, X and Y) solve:

H(X,C,C,X,Y) >

Z, C, C, X, Y >

and such that (W) solve: (6)

MIN F(W)

subject to:

H
5
(Z,W) >

W > 0.

In general, a BLP solution (x ,y ) is called feasible if it belongs to the

polyhedron (Ax° + By < b; x
,

y° > 0}; and satisfies the optimality of the

lower solution y to the lower problem when the upper variable x is fixed at

x . In our case, for a feasible solution to (6) to be feasible to (2), it must

be the case that, for the given choice of the upper variables Z, the values of

the lower variables are such as to minimize the lower objective G. This will

clearly be the case for t = 0. To make the upper objective as small as pos-

sible, we want to find the largest x for which this is the case.

We will assume that if, for some T , the solution to (6) is feasible, then

the same will be true for any < t < t . This is not always true, but counter-
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examples are not easy to construct, and a simulation suggests this is a safe

assumption. Granted this assumption, the optimal t, call it x , can be located

by a binary search, which is much quicker than a grid search, as used in Bard

[1983].

For a given t, (6) is still a BLP with too many lower variables to be solved

in a straightforward way. We approach this problem by trying to identify links

on which no improvement will be made. For those links, we replace the nonlinear

improvement cost function f(Z) by aZ + B, chosen so that aZ + /3 < f(Z) for all

Z. We are temporarily assuming that the costs for those links we think are

unlikely to be improved are less than they really are. This produces a smaller,

more tractable, problem. If the solution to this smaller problem does not use a

link with the simplified, cheaper cost it certainly would not want an improve-

ment with the real cost. In the case where the small problem does recommend an

improvement based on the simplified cost, we must solve a new problem with the

real cost as part of the formulation. Thus we solve a sequence of problems in

which links with real costs are added when it seems necessary, but not other-

wise. Fortunately, in practice the process terminates (no new links added) with

a relatively small number of links showing improvement.

Let us call S the set of the links having convex or linear cost improvement

cost functions, T the set of the links having nonconvex improvement cost

functions, T the subset of T containing all links for which Z are different

from 0, and T the subset containing the remaining elements of T. The links

belonging to T are considered as candidates for improvement and must have

their three-piece improvement cost functions f(Z) included in the formulation.

Let (Z 1
, X 1

, C 1
, C 1

, Y 1
, W 1

) be the solution of the LP where all nonlinear

functions f(Z) in (6) are substituted by aZ + J3 , for each link of T. We obtain

the following BLP problem with relatively few lower variables:



11

MINZ
Z agS Fa (Z a ,Wma ) + Z a£T1 Fa (Z a ,Wma ) + Z a£T2 (a QZ a+l3 a ) + xG(C) + (l-x)G(C)

such that [Z, C, C, X and Y} and {Wma , m=l,M a , aeS} solve:

H(X,C,C,X,Y) >

Z, C, C, X, Y >

H5a(Za> Wma) * °

Wma * ° (7)

and such that {Wma , m=l,Ma , acT 1
} solve:

MIN E aeTl Zm=l,Ma Wma

subject to:

Wma " Z a - "^ma

Wma * °-

where M a is the number of breakpoints in the piecewise improvement cost

function of link a; F a is the upper objective function of nonconvex improvement

cost on link a; and, Hc a gives the corresponding constraints.

Let us call (Z 2
, X 2

, C 2
, C 2 , Y 2 , W2 ) the solution of (7). If there exists a

1
")

link j such that j does not belong to T and Z- is different from 0, then j

has to be subtracted from T , added to T , and (7) has to be resolved until all

? 1links a having Z a positive are elements of T , in which case the exact

solution of (6) is found.

We have constructed from the main BLP problem (2) two other secondary BLP

formulations: a parameterized BLP (6) and a BLP with few lower variables (7).

Problem (7) is solved to give a feasible and optimal solution to (6). If this

solution is user-optimized (i.e. solves the lower LP problem (5) when Z is

fixed at its optimal value for (7)), then it is feasible for (2) and a higher

value of t can be tried. Otherwise, we continue our search for the optimum by

decreasing the value of t.

For any solution (Z 1
, X 1

, C , C , Y 1
, W 1

), we have to distinguish between

two different values. The first value is that of the upper objective function
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of formulation (2), equal to F(Z,W) + G(C); let us call it 1
. The second value

is the actual cost incurred by the system given a specific value Z
1 of Z; let

us call it A 1
. A 1 includes actual improvement cost and actual system travel

cost. The actual improvement cost is obtained by plugging Z
1 in the actual

improvement functions f(Z), whether they are linear, convex, or nonconvex. The

actual travel cost, on the other side, is obtained after we solve the lower LP

problem (5) with Z fixed at Z 1
, obtain the solution (XJ, C J

, C J
, Y J ) and plug

the XJ into the convex system travel costs; in other words, A 1 is equal to

fCZ 1
) + G(CJ). The first value 1 corresponds to a potential optimal, but not

necessarily feasible solution; it allows to find ideal solutions to the BLP

problem (2). The second value A 1 corresponds to a feasible, but not necessarily

optimal, solution; it allows to find incumbent solutions for (2).

The proposed algorithm is an iterative procedure that tries at each itera-

tion to reduce the gap between ideal solution and incumbent solution. The

procedure terminates when the gap is brought below a desired value e, or when

the number of iterations exceeds a fixed limit N. The following flow chart

gives a general description of the iterative procedure; more details are

provided by Appendix B:

Searching for x (Using Binary Search)

Start with t=1
-

A. Solve (6)

B. Test whether solution of (6)

is feasible to (2)

Feajsible Inf easib!Le

r 1 Mn1. n t 1«-~„_ PO M«1, ~ n- _~,.11 M .~
Li 1 . i iom* i iai 6 ej. \j£. . >.e oiua iici
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The most difficult step in the algorithm is step A, in which (6) has to be

solved. Using the concepts explained above in this section, the solution of (6)

is obtained as shown in the following flow chart:

t Fixed

Al. Start with T X=0, T2=T

A2. Solve (7)

A3. Test whether new elements
should be added to T

New elements added No element?; added

A/. M~r» Tl r^r.T T2 K ( C\ r.~1,r~^
J. , new

Several improvements can be added to the algorithm to make it more effi-

cient. The starting ideal and incumbent solutions can be found in a more effi-

cient way. A better ideal solution for (2) can be obtained when solving the LP

obtained after substituting at x = l all nonlinear functions f(Z) in (6) by ccZ+B;

there is no situation better for the system than having cheap improvement and

system-optimized flow. Also, the actual cost incurred by the system when the

problem is solved as a BLP must be lower than the actual cost incurred when a

simpler technique is used; otherwise, there is no justification for using

complex techniques. Therefore, to obtain an incumbent solution, we can just

solve the problem as an LP; we approximate improvement cost functions by their

best linear fit, ignore the lower objective and solve the problem. Let us call

(Z°, X°, C°, C°, Y°) the obtained solution, A is the value of the starting

incumbent solution. Using those techniques makes the gap between starting ideal
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solution and starting incumbent solution as low as 3 % instead of the 111 %

found earlier in the previous section.

Moreover, since the procedure is iterative, it is more efficient to use the

information from the previous iterations in order to make the next one easier

to solve. One way to do this is to introduce to the problem the constraint:

L < F(Z,W) + G(C) < U

where L and U are the values of the current ideal and incumbent solutions,

respectively.

Similarly, the solution of step 2 may require solving (7) more than once.

9 9 9 9 9
Let us assume that we solved (7), obtained the solution (Z , X , C , C , Y

,

9
W ) and have to add a new element and resolve (7). We use the fact that the new

cost will be at most as low as the value we got for the objective when we used

9 1cheap linear improvement costs (a-Z- + J3-) for the links j to be added to T
;

which gives a lower bound for the solution. An upper bound can also be found by

9
noticing that the new cost is at least as high as the actual cost f(Z )

9
incurred by the system for an added capacity equal to Z . The difference

9between upper and lower bounds, when step 2 has to be repeated, is E^ti ( a i^i

+ Bj) - f(Z 2
).

Finally, a feasible solution to a BLP problem is obtained by finding the

optimal solution to the lower problem after substituting values for the upper

variables. In our case, any optimal solution (Z 1
, X 1

, C 1
, C , Y 1

, W 1
) of the

BLP problem (6) satisfies the optimality requirement of W 1 to the lower problem

(A); therefore (Z 1
, X 1

, C 1
, C 1

, Y 1
, W 1

) is a feasible solution of the BLP

problem (2) if it satisfies the optimality requirement for the second problem

(5). Even when the solution (Z 1
, X 1

, C 1
, C 1

, Y , W 1
) is not feasible a new

solution (Zk , Xk , Ck , Ck , Yk , Wk ) can be obtained, with feasibility guaranteed.
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It is known from the theory of Linear Programming [see for instance Chvatal

1983, Chapter 10 pp. 148-168] that given two LP problems LP1: (MIN ex, Ax = b,

x > 0} and LP2: (MIN ex, Ax = b' , x > 0), where b and b' are different, any

basic feasible solution x of LP2 that has the same nonbasic variables as the

optimal solution x of LP1, is an optimal solution of LP2. Therefore to

generate feasible solutions for BLP problem (2),. which is equivalent to

generating optimal solutions to the lower problem, we can solve BLP problem (7)

with the additional requirement that all nonbasic variables of the solution

(XJ, CJ , C J
, Y J ) of the lower problem (5) with Z fixed at Z 1 and all nonbasic

slack and surplus variables be locked. This is added to the algorithm as shown

in Appendix B.

Regarding the reliability of the algorithm, there are no heuristics involved

in finding the incumbent and the ideal solutions. The values given by the

algorithm for those solutions are exact. As long as the algorithm converges,

the solution it gives is the actual optimum within the accuracy desired.

However, it is possible that one finds bad examples for this algorithm where

the convergence is not satisfactory; in such a case the algorithm ends with a

large gap between upper and lower bounds, but does not give a wrong solution.

3. Solution of the Real World Problem

When trying to solve the BLP problem (7) we faced a major constraint, since

we could find no reliable BLP software that could handle problems this large.

Fortunately, (7) can be transformed into an equivalent Mixed Integer Program-

ming problem (MIP), with the number of zero-one variables in the latter equal

to the number of lower variables in (7). It should be emphasized that the use

of MIP does not mean that it is easier to solve. MIP and BLP are both NP-hard

problems and are equally difficult to solve; however, MIP is older and benefits
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from the availability of good software to solve it. One such package is the

Zero/One Optimization Method (ZOOM), which is an extension of the XMP Linear

Programming system. ZOOM and XMP are both written in Fortran 77 and revised in

1986 by R. E. Marsten from the Department of Management and Information Systems

at the University of Arizona. A description of the XMP library is given in

Marsten [1981]. The subroutines of ZOOM and XMP are used by our program

whenever an LP or an MIP needs to be solved. The computational study, to be

presented in this section, was conducted on the CRAY X-MP/24 supercomputer of

the National Center for Supercomputing Applications at the University of

Illinois at Urbana-Champaign.

First, we show how to transform BLP (7) into MIP. The constraint:

Wm = MAX{(Z - qm ), 0)

is equivalent to:

either: Wm = Z - qm , or: Wm =

which can be equivalently restated, after introducing zero-one variables Vma ,

as

:

Wm - Z < -qm + MVm , -Wm + Z < qm + MVm
(8)

Wm * "(l-V, "Wm * ^-V

where M is a large number (it is sufficient to make M larger than the maximum

possible road improvement).

The formulation of (7) as MIP is obtained by replacing the lower problem in

(7) by the constraints (8) for each link a. The constraints Wm
< M(l-Vm ) are

trivial because of the nonnegativity of Wm ; we take them out, and obtain the

following problem to be solved whenever we need to solve (7):
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« INZ Z aeS Fa( Z a' Wma )
+ E aeTl Fa^a' Wma )

+ Z aeT2 (°a Z a
+6

a)
+ * G^ + (l-t)G(C)

such that (Z, C, C, X and Y} and {Wma , m=l,Ma , aeS) solve:

H(X,C,C,X,Y) >

Z, C, C, X, Y >

H5 a( Z
a>
Wma) *

and such that {Wma , m=l,Ma , aeT ) solve:
(9)

"Wma + Z a " MVma * ^ma

Wma " Z a " MVma * "^ma

*ma + MVma * M

Vma e (0, 1).

The technique used to transform (7) into MIP is different from the technique

used by Fortuny-Amat and McCarl [1981]. The use of this latter would have

doubled the number of zero-one variables (requiring a zero-one variable for

each lower variable and a zero-one variable for each lower constraint).

The large size of the problem (2) is mainly due to the high number (2,095)

of routes included in the formulation. Since not all those routes are going to

be used, the problem can be simplified by keeping the most attractive ones and

discarding the rest. We will solve the problem with the reduced number of

routes (we refer to this problem as the small version of the problem), and we

solve also the original problem with all routes included; next we will compare

the solutions of the two problems. The attractive routes are found by solving

both the user equilibrium problem (5) and the system equilibrium problem (same

as (5) except that G(C) is replaced by G(C)) as we increase the values of the

entries of the trip matrix to make the users and the system choose their next

desirable routes. When solving the system equilibrium, we vary also the

improvement cost because of its effect on the routes choice. The accumulated

number of routes chosen by both the system and the user reaches 389 as the flow
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fluctuates between the original trip matrix and three times that matrix. Those

389 routes, averaging more than three routes per origin destination pair are

the ones to be included in the small version of the problem as compared to the

2,095 included in the large version.

About 15.25 minutes CPU time and 1.4 million words (64 bits per word)

computing storage space were required to obtain the solution of the small

version of the problem. At iteration 0, we compute starting ideal and incumbent

solutions using the ordinary techniques of BLP; the obtained gap is 111.36 %;

next, we use the techniques proposed in Section 2 to get better starting

solutions. At the same iteration, we solve the problem as an LP and we use the

actual cost incurred by the system (namely 257,037.230) as a new incumbent

solution. Then we start the iteration 1 with T=l, TflAX
13

-'- anc* TMIN
=^' When we

find, in the first step (A1-A2 in the flow chart) of iteration 1, the list of

links that are candidates for improvement, we use the solution as a new better

ideal solution; the gap decreases to 3.03 %. In the second step (A3-A4-A2 in

the flow chart), the MIP (9) is solved with only six integer variables. The

solution obtained shows that no more integer variables need to be added; a

slightly improved ideal solution is found for the problem (new gap equals 2.93

%) . The feasibility of the solution is tested in step 3 (B in the flow chart);

the flow is not user-optimized. We generate a feasible solution using the

solution obtained when testing feasibility; a new incumbent solution is

obtained and the gap is reduced to 2.57 % at the end of the first iteration. At

iterations 2 and 3 there is no success in improving the incumbent solution.

Iteration 4, where x = .125, i^x = -250 and t^IN = 0, gives another slight

improvement at the end of step 3, when generating a new feasible solution. The

procedure is stopped at Iteration 5 because the solution seems to be reaching a

steady state; Iteration 5 gives exactly the same solutions as Iteration 4 in

all steps. The final solution retained incurs a cost to the system equal to



19

256115.006.

The small version of the problem is not hard to solve even on an ordinary

computer. However, the large version is more demanding; it required about 4

minutes CPU time and 2.7 million words computing storage space for running one

single iteration. No more iterations were needed because the solution, at the

end of the first iteration, was the same as the solution obtained by the small

version of the problem at that point; which suggests that our choice for the

attractive routes was successful.

Table 1 gives a summary of the intermediate and final results related to the

solution of the real world problem; the complete presentation of those results

is provided by Appendix E in Ben-Ayed [1988]. The Table includes only the

iterations and the steps resulting in an improvement of the gap (increase of

the ideal solution or decrease of the incumbent solution). It can be seen from

the table that, as is usually the case for iterative algorithms, most progress

is made during the first iterations while convergence is slower as the number

of iterations increases. The first two columns of the Table are very different

from the others because of the instability of the "maximum" variables W in the

absence of the corresponding lower objective function; the negative value of

the improvement in the first column is a consequence of this instability. The

fourth row of the Table specifies whether a solution is ideal or incumbent;

when a solution is incumbent, the rows 5, 6 and 7 refer to the actual cost

incurred by the system (A 1
), and when the solution is ideal, those rows refer

just to the value of the objective function (0 1
). Starting from the third

column, the solution has a tendency to stabilize; the numbers of used links,

used routes and improved links are almost the same in all six last columns.

Several results can be inferred from the computational experience and the

solution of the real world problem. Concerning the tradeoff between efficiency

and accuracy, the equivalence of the solutions of the large version and the
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small version shows that a complex problem can be simplified without affecting

the optimality of the solution. However the simplification must be done

carefully and efficiently; other simplifications, such as reducing the problem

to a single-level could lead to bad results.

The actual cost incurred by the system when the problem is solved as an LP

exceeds the actual cost incurred when a BLP solution is used by 922.224

thousands of Tunisian Dinars. There are two reasons for not having this

difference as high as it is supposed to be. First, the travel cost at stable

flow is a one-piece linear function that does not depend on the added capacity.

However, if stable flow, which is the overwhelming proportion of the flow, does

not depend on the added capacity, which is the only instrument in the model for

the system to influence the user's choice of the routes, the ability of the

system to affect the user-optimized equilibrium is almost paralyzed. Second,

the limitation of the added capacity resulted in low improvement costs. It can

be seen from Table 1 that improvement costs are about fifty times smaller than

travel costs. The introduction of the sophisticated BLP formulation of the

improvement costs did not give much saving as compared to the simpler LP

formulation because those costs are already low according to the data of the

problem. The ability of BLP to give better results is conditioned by the

availability of realistic data; providing more representative data to our

problem would definitely lead to a larger difference between the solution of

the problem when solved as a BLP and its solution when solved as a single

level

.

Another harmful simplification would be the inclusion of strict capacities

on the links, even when the overflow is very small on all links, as is the case

in our solution. Imposing strict capacities results in the violation of

Wardrop's first condition and therefore the collapse of the equilibrium, which

is one of the bases of the problem.
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Summary of the Results

Iteration 1 1 1 1 4 & 5

Step - - - 1 2 3 4 4

Value of t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 < .125

Solution ideal incumb. incumb. ideal ideal incumb. incumb

.

incumb.

Travel Cost 255328. 273736. 252428. 245152. 245320. 252577. 251724. 251680.

Improvement -124325 3153. 4609. 4329. 4410. 4410. 4424. 4435.

Total Cost 131003. 276889. 257037. 249481. 249730. 256987. 256148. 256115.

Routes Used 278 279 276 275 276 276 275 275

Links Used 99 100 97 97 97 97 97 97

Linkslmproved 18 18 14 14 14 14 14 15

Gap (%) - 111.36 96.21 3.03 2.93 2.91 2.57 2.56

Table 1

In the final solution, 275 routes and 97 links are used and 15 links need

to be improved. Among the 112 links included in the empirical study, 15 are not

used by inter-regional traffic; one cannot tell whether those links are

redundant in the inter-regional network or their lack of use is due to low

values of the corresponding entries in the trip matrix. The study is more

concerned with the links to be improved; those are shown on the map in Figure

1. Almost all improvements happen to be on the roads connecting Tunis, the

capital, to its major neighboring cities. This result can be intuitively

predicted by a simple look at the trip matrix [Ben-Ayed, Blair and Boyce 1988];

the trips originating or ending in Tunis are 56 % of the sum of all the trips

of the matrix. A similar recommendation was made by the Plan Directeur Routier

[ SETEC 1982 pp. 6-8] stating that the roads corresponding to the exists of

Tunis will be highly congested by the year 2000 if no improvements are made. In

contrast, the entries of the trip matrix corresponding to regions such as the
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southern ones are very low, which results in no improvement even for unpaved

roads

.

The Links to B<2 Improved

Link Flow Existing Added Improvement Limit on Added
Capacity Capacity Cost Capacity

1 2144 1370 774 592 887
3 2537 1637 899 394 899
4 2112 1115 997 297 1083
6 2015 1055 960 615 1070

10 1980 814 1166 484 1460
12 1052 448 604 84 2046
14 306 271 35 22 1354
19 1056 447 609 89 2046
20 2275 1173 1101 463 1101
26 2537 1637 899 245 899
28 2010 1370 640 362 887
30 1517 1370 147 60 887
73 2112 862 1250 394 1496
77 1772 1055 717 156 1070
90 2058 1370 687 179 887

Table 2

In considering the specific link improvement, Table 2 gives for each link to

be improved the interregional flow, the existing capacity available to this

flow (60 % of the total existing capacity), the added capacity, its cost and

the maximum added capacity allowed by the formulation. The improvement required

for the link connecting nodes 4 and 29 is very small; a slight improvement of

the surface of this link gives it exactly the same capacity as the link

connecting nodes 29 and 28 which does not need improvement although it is

closer to the capital. All other improvements are more significant and three of

them, namely those on links 3, 20 and 26, require the maximum added capacity

allowed by the formulation. In each of those links the flow is higher than the

new capacity; more detailed study is needed to include the possibility of

upgrading them to three or four lane highways. Link 90 is also congested;

however the decision maker responsible for the system does not add more
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capacity although he has the possibility to do so. The reason is that the

congestion on those roads is less expensive than the addition of more capacity.

4. Conclusions

BLP remains a little known technique, rarely used despite all its potential

capabilities. The computational difficulties of BLP may not be the main reason

of its infrequent applications; there are other optimization techniques, such

as Mixed Integer Programming, that are not easier to solve but are widely used.

BLP is a new model; a great effort is needed to help people know it and take

advantage of its powerful formulations. Developing efficient and reliable

software that uses data structure and that includes several heuristics and

branch and bound algorithms would have considerable effect on increasing the

use of BLP.

The empirical study conducted in this research demonstrated that BLP is

tractable and can be efficiently used to formulate and solve even complex real

world problems such as the design and the improvement of a transportation

network. The complexity of BLP should not be a reason for formulating bilevel

problems as single- levels ; the solution to the single-level problem might

happen to be far away from the actual optimum, and the gain in simplicity and

computation time may not be worth the loss in optimality. By taking into

account the special structure of the problem at hand and making use of the

powerful computers available to us nowadays, it is always possible to solve the

BLP problem and get a better solution than the one obtained when approximating

it by a single level. For any BLP problem, the use of any related algorithm

always gives a solution that is better than, or at worst the same as, the

solution obtained when ignoring the lower objective and solving the problem as

a single-level. In other words, the relative inefficiency of BLP algorithms

does not justify the formulation of bilevel problems as single-levels.
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Appendix

A. Definition of the Variables and the Functions in Formulation (2)

F(Z,W) = Ea=liU2 Fa (Z a> Wma ) = I a=ljll2 ((b la Z a+b0a ) + Em=1>Ma (bm+lja -bma )Wma

F(W) = ^ a=lj ii2 Ia ( Wma)
= Z a=l,112 Zm=l,Ma Wma

W) = Z a=l,112 GaC C a)

G(C) = E a=l,U2 Ga (C a )

H
1
(Y) = is defined as:

H2 (X,Y)
= is defined as:

H3 (Z,C,X) > is defined as:

= Z a=l,112 ^ C a-- 4c0aka)

= Z a=l,112 ^a

H4 (Z,C,X) > is defined as:

H
5
(Z,W) > is defined as:

H^(Z) > is defined as:

for each origin-destination pair od:

ZreRod Yr ~ uod

for each link a:

Xa " Z r=l,2095 5 arY r ~ °

for each link a:

Ca " <W Xa
+ - 4ka ) * °

c a " c la( xa
+ - 4k a )

+
( c la " <W z a

+ d la * °

for each link a:

C a * c a< xa
+ - 4ka)

C a * ^la^a +
-

4ka) " tela " ^Oa) Z a
+ <ha

for each link a:

Wma " Z a
+ %,a ^ ° m=1

>
M a

for each link a:

Z„ - q3r
>

'a ^3a

Z, C, C, W, X, Y > is defined as: for each link a:

Z a> X
a'

C a' ^a> Wma - ° m=l,M.

for all reRod :

Yr >

where Cq
3 and c^ a are the slopes of the system travel cost on link a at stable

and unstable flows, respectively; cQa and c la are the slopes of the cumulative

user travel cost at stable and unstable flows, respectively; d la and d la are
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the intercepts of the travel cost at unstable flow of the system and the

cumulative user, respectively; M
fl

is the number of breakpoints in the improve-

ment cost function in link a; M
fl

is when the curve is linear, 1 when the

curve has 2 pieces and 2 when it has 3 pieces; bg a is the intercept of the

first piece of the improvement cost function on link a; bma is the slope of the

piece delimited by qm _^ a and qma , m=l,Ma+l, qQa being equal to zero and q^a+^

equal to q3 a , the maximum improvement allowed by the model; k
fl

is the existing

capacity of link a; Xa is the flow on link a; C
fl

is the system total travel

cost on link a; C_a is the cumulative user total travel cost on link a; Z a is

the number of passenger car units (PCU) added to the capacity of link a; W_ a is

the maximum of (Z a ~qma ) and 0; Y is the flow on route r; R j is the set of all

routes from origin o to destination d; u
Q(^

are the entries of the trip matrix;

6 ar is binary number equal to 1 when link a belongs to route r, and equal to

otherwise.

B. Description of the Algorithm

When describing the algorithm, we use T, T and T ,

1 as defined in Section 2:

Iteration

• Find a current ideal solution, a current incumbent solution and calculate

the current gap for BLP problem (2).

• Call Termination test.

• Set: i = 1, x MAX = 1, t min =0, 1=1.

• Start iteration I.

Iteration I

Set: T 1 =
<f>, T2 = T.

Step 1

• Solve the LP obtained after substituting all nonlinear improvement

functions by aZ + 6 for all links to find the links of T that are
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candidates for improvement.

• Get the solution (Z 1
, X 1

, C 1
, C 1

, Y 1
, W 1

).

• For every link j of T , if the corresponding Zi is not equal to zero,

7 1subtract j from T and add it to T .

Step 2

• Solve the BLP problem (7) with the set of lower variables equal to {Wma :

bm+l,a- bma < °> m=1
>
2

5
asTl )'

• Get the solution (Z 2 , X2 , C 2
, C 2

, Y 2 , W 2
).

• If there are elements j of T such that Z- is positive, then:

9 i

Subtract from T all elements j and add them to T x

Repeat Step 2

Else:

The optimal solution of (6) is obtained

End If.

2
• If x = 1 and > value of current ideal solution, then:

Update ideal solution and calculate new gap

Call termination test

End If.

Step 3

• Solve the lower LP problem (5) with Z equal to Z.

• Get the solution (X 3 , C 3
, C 3 , Y 3

)

.

9
• If A < value of current incumbent solution, then:

Update incumbent solutions and calculate new gap

Call termination test

End If.

• If A 2 = 2 (or A 2 ~ 2
), then:

(Z 2 , X 2 , C 2
, C 2

, Y 2
, W2

) is feasible

Set: x MIN " T
>

x =
( T MAX + T )/ 2
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Else:

Try to improve feasible solution

Set: x MAX = T, t = (x MIN + t)/2

End If.

•1 = 1 + 1.

• Start iteration I.

Termination Test

• If I > N, then:

Number of iterations exceeded before reaching desired accuracy

Incumbent is the best solution found

Stop

Else if gap < e:

Incumbent solution is optimal within the specified accuracy e

Stop

End If.

• Return.

Try to improve feasible solution

• Solve (6) while locking the nonbasic variables (including slack and

surplus variables) of the LP problem (5) solved with Z = Z .

• Get the solution (Z4 , X4 , C4 , C
4

, Y4 , W4 ).

• If < value of current incumbent solution, then:

Update incumbent solution and calculate new gap

Call termination test

End If.
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