SOME FEATURES OF A MODERN OVERHEAD DISTRIBUTING SYSTEM BY
 A. R. REDMAN
 ARMOUR INSTITUTE OF TECHNOLOGY 1916

Illinois Institute of Technology
 UNIVERSITY LIBRARIES

AT 426
Redman, A. R. Some features of a modern overhead distributing

For Use In Library Only

. :
A THESIS
presented to the TRUSTTGS AND FACULTY of the ARMOUR INSTITUTE OF TECHNOLOGY
together with
A RECORD of COMMERCIAL WORK
for a degree of
ELECTRICAI ENGINEER
ILLHOOIS INSTITUTE OF TECHNOKOGY PALL V. GALVIAN LIBRARY 35 WEST 33RD STREET CHICAGO, IL 60616

EJを近HTA

YINUOAG CLIA EATJEUGT
0ヶ゙土 10

S゙さ上w Teritegot
3ss OW JAIDHMMKOO Io C月OOUS A
Iの la なgeb \＆rot

An exhaustive study of the modern distributing system as it is now in use would entail a masn more comprehensive study than is intended to be covered by this article and the probleirs that arise are so complex and are possible of so many variations and combinations that it is inpossible to cover in any but a general way these problems in the scope of this paper, and in this connection it will be unierstood that any statements, excent the fundamental laws, may fit a particular case and not be generally applicable.
"ith this in mind it will be sufficient to state
that in this paper it is not intended to introduce any thing new into the theuretical considerations involved, but to rake freo use of existing literature for all theory and to devote the bulk of the matter to the consideration of some of the practical conditions which have come under the personal observation of the vritor and to indicate their solution, which may not moan the only possible solution or even the best, but in any event a good and practical solution under the existing conditions. And it may be well to note that these local conditions may and do include national, state and munioipal laws; the aesthetic tasto of property owners expressed in their reluctance to have a line of poles injected into their outlook or to have some special pet tree cut down or disfigured; and many such things not encountered in the theoretical consideration of the problem. Those conditions nake the use of such expressions as "in some cases",
为
"possibly", et cet imperative.
The inspection of a distributing system offors none of the sensational features of the high voltage tranamission line with its heavy construction and long distances, regulating features et cet, nor any of the bustlo and activity of the main hydro-electric generating station with its wator ways and large machines with their regulators, or the immense facilities of the steam plant, and the observer who spends hours and days studying thepperation of a device at the generating station which is intended to cut the cost of production a fraction of a cent per K.W.H. looses interest when shown the hole in the floor or wall where the low voltagf cables leave for either the underground or overhead distributing systems. However the fact that this distributing system may represent from 30 to 70% of the total investment makes it a very important iter and it is imperative that special attention should be given to the seemingly unimportant details of distribution where any inattentiveness will result in a loss per K.F.H. far greater than what can be saved by the installation of special machines at the power house.

To conforn to good practice the distributing system must embody the folloving essentials;

1. Reliability
2. Bfficient operation
3. Good regulstion

It is not to be undecstood that this is the order of importance of these features for it is hard to say that any one is of more importance than the otners. In addition these features are to be obtained with a minimun expend-
． 31 ．．．．．＇
$+1+2$
－阳
iture. This necessitates that the engineer who may be laying uut a rev system or planning extensions to an old system use a great deal of judgemert as to which iten. shall be given the preference in viey of the rather uncertain conditions which the future ray oring un, and the ertire design is a compromise betveen the relative importance of these details.

Reliability must include the factor of safe construction - both for the general public and for the employee who must work on the lines. In addition the system must be so laid out that the chance of intermuption to service in case of trouble will be reduced to a minimum. Some methods of securing this condition will be taken up later.

The efficiency of the system is the ratio of the total energy registered by customers' meters (provided all energy sold is metered) plus that used in the street lighting sirstem to the energy delivered to the bus bar. The losses are divided into several kirds - line loss, transformer loss, converter loss, error and unaccounted for. This latter may be stolen, due to leakage through tree grounds, et cet. These losses are divided into two parts - that part which is fixed, independent of the load,1ncluding core loss of Eransformers, copper loss in the constant current circuits, loss in the shunt coils of metors, friction and vindage irs converter apparatus, and a variable loss varying as a function of the current including copper loss in constant potential circuits, transformers ard converter apparatus. One of the largest factors in the cost of a distributing syster is the cost of conductors and it is imvortant to see that these are of the proper size compatible with an

allowance for growth and good regulation. According to I,ord Kelvin the most economical size of conductor is that in which the interest on the investment is eoual to the cost of the lost power.

In applying this mule the iter of regulation rust be borne in mind in selecting a size of conductor,for it is quite possible to comply with Kelvin's lav and not have the regulation of the circuit within the limits of good practice. By rogulation is meant the variation of voltage above or below a certair point and is usually expressed in per cent of this standard which is usually the nominal rated voltage or the average delivered voltage.

Ordinarily the regulation of a lighting system should be within 5% or $21 / 2 \%$ above or below the rated voltgge, and is usually kept well within these linits. For power work the limit is usually lo\% but may exceeत this without giving serious trouble.
\square
\qquad
\square

in

\qquad - 11~~~
$-$
-

Preliminary considerations

1. Selection of voltages
2. Selection of routes
3. Selection of type
D.C. or A.C. - frequency

Division of cirouits for light ank power Feejer and main or tree system
4. Design of system
calculations
Graphic solution

1. The voltage of the secondary lines is deterinined by the type of appliances that are to be served and the distributing apparatus (transformers et cet) which are manufactured for this use, $\theta \cdot g$;
100 to 120 volts for lamps and smell power uses
200 " 240 " " pover - mentum

400 " 480 " "
500 " 600 " " street railway power and some commercial
wost of the standard voltages on the primary side are derived from the lamp voltages of 50 or 100 volts in the ratio of multiples of 10: I increased by 5, 10 or 20% for various reasons, principally to compensate for line loss. In adoitiun there are voltages on the primary side which arise from the use of a star - delta connection of transformers in a three phase system snd are related to the above voltages by the $\sqrt{3}$ used either as a divisor or as a multiplier. The early type of transformers were nade in ratios of $1000-3000 / 100-200$ volts or $1040-2080 / 52-104-$

$$
7 \quad \Delta \mathrm{~L}-\quad-3
$$

\square
\square

- 10

1 \square
ClO_{2} \square ! \square 16 BE 00: 0
1.
$\frac{1}{1}$ \square
; 1.
\square 3

- $18-2+10$ \square
लात तान -
but in as much as motors on these circuits did not operate Well on account of voltage drop in transfommers and secunxary leads " powertmasformers " were introduced with a ratio of $9: 1$ or $1040-2080 / 125-230$, but this brought trouble by having transformers of two ratios where lighting and power were taken off of the same scoondaries so that the manufacturers soon discontimed the making of two types and standardized on the lo:1 ratio because it allows the higher voltage on the primary side and asrees with the general principles according to which the voltages are standardized.

In direct current work the standard voltages are as given above and owing to their low value the distance from the power house over which the D.C. net work extends is not very great and is usually confined to the crowied business districts of a city except in the case of the 500 volt D.C. for the rallway sistem which is supplemented by feeders, anc in the case of interurban or large city system, by transmission as A.C. with suitably located transforming stations. The rost comon voltages for prirary distribution are; 2000 to 2400 volts for lighting arict power 4000 " 5000 (" large power in rural districtis, and 6000 " 7200 for interneniate distribution 10000 " 25000 " " "
2. In the newer cities, winere it is probable that the contents of this paper would apply, the streets are laid out along a well defined system in which the blocks are uniform in shape and size and usually rectangular and under these conditions the pole lines should nave the following characteristics:
$84=8$

(1) , ór
[10 l_{1} $\begin{array}{ll}1 & , ~\end{array}$
?
$-1 \quad, \quad$, $2+2$

- $11 \quad 1 \quad+\quad=$ Yis GED
 - 418-4

P

ง + $+2=$

The pole line should be on the same side of the street throughout its entire length and on corresponding sides of parallel streets.

The spacing of poles should be an exact divisor of the length of a block to secure uniformity. which
Where a line crosses a street onathere is or may be an intersecting line there should be a poie set on the proner corner to form a junction.

The system should be laid out to ultimately cover every building site with a view also to possible growth and the building of extensions with a minimum of changes in existing lines.

Where the location of the power house is fixed by the price of land or by ordinance or by natural or railroad facilities the trunk lines must be laid out from this point, and if this be a central location there should be a trunk line in each of the four principal airections and they should follow the back streets or alleys where the heavy construction and guying will be most inconspicuous, and so that interruptions due to fire in adjacent buildings will be infrequent and on streets where there are few trees and as fev jogs as possible which necessitate guving and a weakening of the line and on streets which lead firectly to the center of distribution of the district which they are to serve. fven under the best of conditions due to a good selection of power house site these conditions will have to be compromised to a large extent.

The pole line performs two functions - that of carrying feeders from the power house to the centers of distribution and of carrying the mains fed by these feeders to the
(n)

4 50 50

> Diagram of Feeder and Tree Systems
> Showing Voltage Drop.

points adjacent to wrere the power is to be used, thence by service wires to the building or power site.

The feeders may be arranged in what is known as the "tree system" or in the "feedor and main" system. In tre former (fig. /.) a tapered conducior may be used and run through the district to De served, taps being taken off where necessary. In the latter (Fig. 2) a feeder is mun to the to the center of distribution of the district to be served and from this point mains are branched out to reach the customer.
3. For certin purposes, mainly those using the electric current for heating purposes such as cooking, heating, lighting of carbon and tungsten lamps, either A.C. or D.C. current may be used. For other purposes such as charging storage batteries and eioctro-plating D.C. current is essential - for operating arc lamps and tantalum lamps it is preferrable and for some uther classes of work such as Nernst lamps the A.c.current is bettcr. For motive power in certain classes of work, notably wrere variable speed is necessary, D.C. current is advisable and where constant speed motors are the rule A.C. is desirable. These fields overla: to such an exient that it is usual in the larger cities to find both and it is usual to find all the power originally generated as A.C. and the part necessary as D.C. is converted to this form at a point near its apolication. For the usual type of loaz consisting of both lighting and motors in a medium or sparsely settied distriot it is customary to use A.C. ana services may be taken fror the same set of secondaries mbich are supplied from a sinele primary main because the motor load is apt to come at a

time when $\ddagger t$ will not interffer with the lighting load. Under conditions where the loads over-lap it may be advisable to supply power and light from separate secondary mains ard where the conditions are severe to separate them on the primary side as well. See sketch of transformer connections Fig. 3

As reniiuned before the D.C. is confined to the close in sections on account of the low voltages involved, ano nence it is usualiy carried underground because of the congestion of poles in a business district should it he overhead. It lends itself well to this trpe of constmation since it can be carried in singlo conductor cabies of a size that can be conveniently pulled into the ducts.

The most expensive part of the A.C. underground system
is the getting rhe current from the rrains to the customers' premises which includes the secondary mains, transiomers, services and man holes. This leads to a type of constmetion known as the composite type where the primary feeders are man under ground through the streets and taken up a pole in the rear of puildings and from here the consurers in this particular bluck are served. A main is taken up in each block under this system an the secondaries extent only a span or twu in each block. The objection tu this is the fact that in nearly avery case where polos are set on orivate property in the rear of vuildings they are not permanent but are subject to the changing pians of owners of the property and in thickly kuilt polocks trere is a mass of over head wixes ard services that constitute a fire menace and the construction is mostly used as the inter-
mediate step between underground and over head distribution.
The various systems of distribution are as follows:
D.C. The simplest form is the two wire systom, in which all devices are connected in multiple across the leads and is used for light and power from isulated plants, and for 500 volt power, commercial and railway.

The Fidison 3-wire system (Fig. H.) consists of two two wire systems combining one wire of each systom to form the neutral, and is used extensively, with the lighting load connected from noutral to either outside wire, and power connected between the two outside pires. With a belancod load the saving of copper is $621 / 2 \%$ over the use of a two wire system to carry the same load with the same regulation. This is the usual type of under-ground syster. used, and consists of an inter-connected 3-wire network fed by two vire feeders from the power house and the neutrals all ticd together outside the power house. Where there is a great difference in the length of feeders they are sometimes fed from two sets of busses known as the "high bus" and the "low bus" (from the corresponiing voltages) vhich are operatex in parallel when the luad is light and separated for the heavy load.
A.C. The simplest form of this is the single phase system which is used just as the D.c. system given above. It is usually used in connection with a polyphase system to take care of the lighting and small power, either as a part of the poly-phase system or as a separate system (outside of the power house,- though of course the two systers come from the same gererator.) Where the lighting is taken from the poly-phase system it is uswally attempted to bal-
. \& . - .
 -

ance it over all phases to avoid generator troubles, and Where a separate circuit is run from the power house for lignting, the districts are usually divided arong the various phases for the same reason.

The two- phase system consists of two single-phase systems set at 180 electrical degrees apart and, Aistributed on either the 3 -wire, 4 -wire or 5 -wire systems, of which the 4 -vire is most extersively used.

The must widely used is the 3 -phase system which is a composition of tree single-phase currents set l20 electrical degrees apart and may be distributed on a three, four, or six-wire system, of which the 3 -wire is the most used.

The six-phase systemis only in use in the power house or sub-station and is never used for distribution.

Only the systems which are standard should be considered and the choice is governed by local conditions. In the case of a new system the problem is bsaen on existing conditions ard the probable growth along any particular line.

The frequency should be chosen the same as that of other operating companies in the same neignborhood, to provide for an interchange of power should the occasion require. It is also deoendent on the proportion of the total power that is to be used for motors. There are only two frequencies considered standard at present e.g. 25 and 60 cycles; 25 cycles being used for power purposes and 60 cycles for lighting and a system may include both is the load warrants it, either generated separately or generated as 25 cycles and changed by means of frequency changers to 60 cycles for the lighting load, though by far the most general use is of one or the other and not a ombination.

 (.7 . . . $14-1+2$

4. Calculations of the various items entering into the distributing circuit will be taken up very briefly here reference being made to "Electric central station Distributing Systems"by Gear \& "williams: "Flectrical conductors" by Perrine: articles in the Proceedings A.I.T.F. by Rhodes, Stillwell and others over a period of the past five or six years in case more detailed information is required.

If the $\%$ power loss $=Q$

$$
Q=100--- \text { total power lost in line }
$$

and $\%$ voltage drop $=\mathrm{D}$
$\mathrm{D}=100$ (voltage at generator end)-(voltage at load end)
voltage at load end

The problem may be either;-

1. Pith a line of known constants to calculate power loss and voltage drop for a given load or;
2. With a given distance to transmit a given amount of power with a given loss and voltage drop.

In a 2 -wipe line with loan concentrated at the far end In a D.C. circuit:-

I, $E=$ volts between wires at load end

$$
\begin{aligned}
& P= E I \\
& 1000 \\
& 1000 \mathrm{P} \\
& I= \text { load in } K . W . \\
& E
\end{aligned}
$$

$1=$ length of each wire in feet
$r=0$ ms per 1000 ft . of conductor (see wire tables)
$R=-\frac{r 1}{500}$
500 resistance of line
then
: •
 - $12+0$

 $3=6.1$ it

$$
\cdots: \quad i, \quad+\quad=
$$

\square

 -: - + . . $+1+a$

$$
\begin{array}{ll}
2+\infty \\
\ldots-i
\end{array}
$$

$$
\begin{aligned}
& \text {. . }-1+\frac{1}{-}-\frac{1}{-} \\
& 1-\ldots+2
\end{aligned}
$$

I OSS in $\mathrm{K} \cdot \mathrm{V} \cdot=\mathrm{p}=\frac{R I^{2}}{1000}=\frac{r I I^{2}}{500000}=\frac{2 r I P^{2}}{\mathrm{~F}^{2}}$
I.OSS in volts $=V=R I=\frac{r l I}{500}=\frac{2 r l P}{T}$

$$
\begin{equation*}
100 \mathrm{p} \quad \mathrm{rl} \mathrm{I}^{2} \quad 200 \mathrm{rlP} \tag{4}
\end{equation*}
$$

$\%$ voltage loss $=\mathrm{D}=\frac{100 \mathrm{v}}{\mathrm{F}}=\frac{\mathrm{rlI}}{5 \mathrm{~F}}=\frac{200 \mathrm{rlp}}{\mathrm{F}^{2}}$
resistance per 1000 ft . of conductor

$$
\begin{equation*}
r=-\frac{500 \mathrm{~V}}{I I} \quad=-----=-----\frac{D F^{2}}{200 I P} \quad 200 I P \tag{7}
\end{equation*}
$$

From any of the reiations in (7) the resistance may be obtained and by reference to wire tables the corresponding guage noted. Usually take the next larger vire, though in practice it is not usual to find any thing under $\psi 6 \mathrm{~B}$ \& S used in over head work and not all gauges larger than this are kept in stock, usually orly the even numbers $6-4-2-$ $0-00-0000$.

To obtain the weight of wire w in pounds:
Iet $w=$ meight of wime per 1000 ft. from wire tables

$$
\begin{equation*}
\pi=-\frac{W I}{500} \tag{8}
\end{equation*}
$$

or $\quad W=-\frac{K P}{Q}\left(\begin{array}{l}1 \\ - \\ E\end{array}\right)^{2}$
Where values of K are given in the following table:
K

Material

Copper 98% conductivity
Aluminum 61%
13.5

380
$6.5 \quad 185$

\therefore • i.

$$
\frac{I \because \omega}{T}=\frac{T}{T}
$$

$1-1+\quad+1+1$
1.1

 \qquad
\qquad
Wry
7
$-\cdots \cdots-\cdots-\cdots-\cdots=1$
$\because 1+10+1020$ \square

\square
-510
Tn \square $-1 \mid 0-14$ a $-1 \mid-11 \cdots=$
$1+1$
00:

181

$$
1=\frac{1}{0}=110
$$

Note: These values are about 5\% higher than theoretical to allow for practical working conditions.

These weights apply only to bare mire but corrections can bo made from the wire tables for insulated vire, -that insulation for over head work being single, double, and triple braid; referring to the number of layers of braid covering the wire. Above 10000 volts bare wire is used though at the lower voltages its use is to alleviate rather than prevent arcs due to accidental whipning togetner of wires. For under-ground work the insilation is usually rubber, paper or cambric with a lead sheath and where necessary to protect against mechanical injury this is covered with a jute wrapping and a steel armor laid over all.

All the above values may be obtained in tems of the generated voltage by noting that if $E_{g}=$ gonerator voltage
then

$$
\begin{equation*}
E=\frac{E_{g}}{2}\left[1+\sqrt{1-\frac{4000 \mathrm{RP}}{\mathrm{~F}_{g}}}\right] \tag{10}
\end{equation*}
$$

and applying the value of E so calculated in equations (3) to (9).
Calculation of a D.C. 2-wire Iine with a distributed 1oad:

When the line supplies a numbor of power consuming devices at various distances from the generator the voltage loss is the same as that of a line of a length equal to that of the given Iino from the generator to the center of distribution, assuming both lines of equal cross sectional area for the full distance. The center of distribution is found as follows;

Iet A, B, C, et cet be connected ioads
and $\dot{I}_{d}, I_{b}, I_{c}$, et cet be current respectively

```
\ddots
```


 r.........

(37) 18: +16. 78.
-
. * \cdot 10 N. 14:
. $-x$. $=$ 41-2t.
11 $\%=$ Tism

 3 51.

18:$\therefore=1-4.4-1$

- Lath

- 1 .

at distances I_{q}, I_{b}, l_{c}, from the generator en
and R_{a}, R_{b}, R_{c}, be total Ine resistances from the generator to the respective loads;
then

$$
\begin{equation*}
I=I_{a}+I_{b}+I_{c}+I_{\ldots} \ldots \tag{11}
\end{equation*}
$$

and resistance from center of distribution to senerator (both wires) is

$$
\begin{equation*}
R_{g}=\frac{R_{a} I_{d}+R_{b} I_{l}+R_{c} I_{c}+\cdots-}{I} \tag{12}
\end{equation*}
$$

and the distance l_{g} to the center of distribution from the generator is

$$
\begin{equation*}
I_{g}=\frac{I_{a} I_{a}+I_{b} I_{p}+I_{c} I_{c}+---}{I} \tag{13}
\end{equation*}
$$

The voltage loss to the end of the lime is tren
from (4)

$$
\begin{equation*}
\mathrm{v}=\mathrm{R}_{g} \mathrm{I}=\frac{\mathrm{rl} I_{g} \mathrm{I}}{500} \tag{14}
\end{equation*}
$$

and loss in K. W. in the line is

$$
\begin{equation*}
0=\frac{1}{1000}\left[\mathrm{R}_{b} \mathrm{I}_{a}^{2}+\mathrm{R}_{b} \mathrm{I}_{b}^{2}+\mathrm{R}_{c} \mathrm{I}_{b c}^{2} \cdots\right] \tag{15}
\end{equation*}
$$

whore I a current to load A
and $I_{\text {ap }} "$ between load A and $B=I_{a}+I_{t} t \ldots-$
or $\quad p=\frac{r}{500000}\left[I_{0} I_{0}^{2}+I_{a b} I_{a b}^{2}+\cdots \cdots\right.$
where $l_{a}, l_{a p}, l_{a c}$, are in feet and r is resistance of Ine conductor per 1000 ft .
from (7) $r=-\frac{500 \mathrm{~V}}{I_{g} \mathrm{I}}$
from which the gauge of wire can be found from wire tables. Under some conditions - notably when the bulk of the
load is near the station, it may be advisable to use a tapered conductor then for a given voltage loss in the er-

$\therefore-1$ $\ldots-\ldots-\ldots$
1

$\gamma 1$

$$
-2 y=2 y+1 y
$$

tire line the ninimum weight of conductor is obtainen when the volts lost per unit length of cofuctor in each section of the line is proportional to the square root of the current in this section. Then in the case of the conductor between A and B (Fig. 5)

$$
\begin{equation*}
I_{a b}=\frac{1}{\mid I_{a b} I_{a}\left(I+I_{a b}\right)} 500 \mathrm{~V} \tag{17}
\end{equation*}
$$

and similarly for each section whence the weight per section from wire tables. The line proportioned from (17) vill not have a minimm power loss for the weight of conductor used. For a given total weight of conductor the power loss will be a minimum when the power loss por unit length of conductor in each section is proportional to the current in this section or when the weight per 1000 ft . of line in section $A-B$ is

$$
\begin{align*}
& 500 \text { w } \\
& { }^{W} a_{a b}=I_{a b} X-\cdots I_{a}+I_{a b} I_{a b}+I_{b c} I_{b c}+\cdots-\cdots-\cdots-\cdots \tag{18}
\end{align*}
$$

and similarly for the other sections

$$
\text { Where } r \text { = total weight of conductor. }
$$

Where the values for sizes of wire differ greatly between (17) and (18) the engineer must compromise, being gulded by which of the two considerations is of the most importance - to keep down voltage loss or to keep nown power loss.

In calculating size and weight of copper for the $3-$ wire D.C. IIne it is assumed that the loan is balanced because every effort is rade in prectice to keep it so by the use of various balancing devices ana the formulas given above apply dircctly where Fis the voltage between the outside wires and $\#$ becones the reight of the two outside


```
                                    - - %%%
```



```
                                    O-2,0
```



```
                                    -_1 1, -------
```



```
                                    . - - 
```



```
                                    & _ . . . .
```


wires. The neutral - or ridile wire - is usually made the same size as the outside wires to allow for the extrere case of unbalanced load in which case the total weight of copper is 1.5%. The exact calculation of voltape and power loss in the case of an unoalanced load can be effected by an application of Kirchofi's tiar, but is selam. neoessary.
A.C. calculations. Size and weight of conductors. The preliminary considerations to be noted are:

1. A power loss of 10% is usually alloved.
2. A line voltage of approximately 1000 volts per rile is good practice, with 2200 volts as the standard for city work - that being low enough for comparative safety and high erough for economical distribution.

At unity power factor, with the above assumptions and copper at 15 cents per lb., the conductors for a three phase line will cost $\$ 4.00$ ant a single phase or 4-wire two phase Iine will cust $\$ 5.33$ per K. . delivered per mile of line.

In as much as this article is not a theoretical consideration of the problems involved, no attempt is made at a great refinement of formias because the asmuptions rare in cegard to the practical application - load facton, power factor, diversity factor et cet - are subject to such variation that they outweigh the fine corrections madn in the formulas. Hence these formulas are based on the assumption that the charging current is negligible in comparison with the load current, which is true except in lorg transmission lines.
(n)

Let $F=$ voltage betreen winges at load end.
$P=$ total power delivered
$\cos \phi=$ power factor of luar expresser in a recimal
$I=$ length of line leroth of each conductur $Q=$ pover loss in per cent of deliverer nower

Tren the weight of all conductors is:

$$
\begin{equation*}
W=-\frac{K P}{Q}\left[\frac{1}{F, \cos \phi}\right]^{Z} \text { in pounds } \tag{19}
\end{equation*}
$$

Where K depends or the rumber of phases, naterial of the conductors and the units in which various quantities are expressed and is given below:

K
single phase or balanced
balanced 3 -wire 3-phase
4-wire two phase

Material and units

Copver 98% conductivity

13.510

FinK.V., 1 in miles, $\}$
380
23.5

Aluminum 6I\% conductivity
Fin volts, 1 in feet, $\}$
6.5

Fin K.V., I in miles, $\}$
185
140
(These values are about 5 \% higher than theoretical
to allow for working conditions.)
The value of $\%$ in (19) does not take into account
conmercial sizes of wire so that it is necessary to calculate the resistance per unit of length of conductor (r) and from wire tables obtain the commercial size and weight per unit length (w)

$$
\text { where } r=\frac{K, Q[F \cos \phi]^{z}}{1 P} \text { in ohms }
$$

Where K, is of value given below and depends on the same
factors as K.

Where K is given below:

$$
\begin{array}{lcc}
\text { Single } & \text { Balanced } & \text { Balanced } \\
\text { phase } & 4 \text {-wire } & 3 \text {-wire } \\
& \text { 2-phase } & 3 \text {-phase }
\end{array}
$$

in volts, 1 in feet, P in $\mathrm{K} . \mathrm{W}$.	$\int K_{1}=.005$	$K_{1}=.01$	K, =. 01
in ohms per 1000 ft "	$\left\{\mathrm{K}_{2}=.002\right.$	$K_{z}=.004$	$\mathrm{K}_{2}=.003$
in K.V., 1 in miles, P in K. W .	$\int K,=5$	$K,=10$	$\mathrm{K},=10$
in ohms per mile,	$\left\{\begin{array}{l}K_{2}=2\end{array}\right.$	$\mathrm{K}_{2}=4$	$\mathrm{K}_{2}=3$

The current per conductor may be calculated from the following-

	P
Single phase	$I=------\infty$
	P
2-phase 4-wirs	$I=-\cdots \cos \phi$
	P
3-phase 3-wire	$\mathrm{I}=-$

Where E is in kilo-volts (K.V.), P is in K. W. (total) and $\cos \phi$ is a fraction.
calculation of conductors for a given voltage loss.
Tre voltage loss depends not only on the resistance of the circuit but also on the reactance, and in the case of long lines, upon the capacity; this latter will not be considerөd.

The most practical method of making trese calculations is to assume that the pover loss is equal to tho given of voltage loss and obtain the size of conductors from (20), then using this size of wire in formulas given below to calculate the voltage loss and if, after solving it is found that tinere is a discrepancy, take the next higher - or lowersize of wire, as the case may be, and again solve for volt-
\square
\qquad
4:15
$1+1-$

The line consbants entering into these calculations are: r =resistance per unit length of conauctor

$L=$ inductance	$"$	$"$	$"$	$"$	$"$
$C=$ capacity	$"$	$"$	$"$	$"$	$"$

From the ininctance and capacity por unjt length (see wire tables) the reactance $x=2 \pi f$ and the capacity susceptance $b=2 \pi f 0$ per unit length of conductor at a frequency f.

The skin effect is negligible for coppor conductors up to $1000000 \mathrm{c} . \mathrm{m}$. at 25 cycles and up to 450000 cm . at 50 c cycles. The corresponding values for aluminum are about 30% higher. Also the leakage current is negligible in the scope of this article.

The various methods of calculating A.c.lines in the order of their simnlicity are;

1. The simple impedance method
2. The single end condonser method
3. The middle cordenser or T method
4. The split condenser or methor

In short distributing lines the first method is accurate for all practical purposes and this will be the only method discussed, the others applying to higher voltages and longer lines such as are found in transmission work.

The calculations are based on the assumption of a sine wave in currents and voltages and a balanced load. The voltage value used is that between vires and the neutral,instead of that between conductors, in order that the formulas may have a wider application, applying directly to single phase, 2-phase 4-wire, and to 3-phase 3-wire systers. simple imperance method.

In this the capacitr of the line is neslecter

and the impedance of the line js simply a resistance eoral tu the total resistance of the line conductor,and a reactance equal to the total inductive reactance of the line conductor. Fig. (ba) is a diagram of such a line and Fig. (6.b) is the voctor diagram or the relations betmeen current and voltage.

$A H=I$	$B C \quad V \sin \phi$	$C F=2 I I$
$A C=V$	$C D-r I I$	$A F=V_{g}$
$A B=V \cos \phi$	$D F=X I I$	$F F=V_{g}-V$

Let
$V=$ Volts to neutral at no load
$=1$ between wires 2 for single phase line
" " " " 3 " three " "
$V_{g}="$ to neutral at generator end of line
I = amperes per wire from (22)
$l=l e n g t h$ of each conductor in miles
V
$Z=--$ equivalent impedance of the load per mile II of line
$\cos \phi=$ power factor at load end
$\sin \phi=\sqrt{1-\cos ^{2} \phi}=r e s o t i v e$ factor of the load and is positive for a lagging and negative for a leading current

$z=\sqrt{x^{2}+x^{2}}{ }^{\prime \prime}$ imperance " " " "
$Q=c^{\prime}$ porer loss in terms of neliveren power
D = \% voltage " " " " voltage
From Fig. ($6 \cdot 6$) it is seen that

$$
\begin{align*}
V_{g} & =\sqrt{(V \cos \phi+r I I)^{2}+(V \sin \phi+x l I)^{2}} \tag{23}\\
& \left.\left.=V \sqrt{\left.(\cos \phi+-)^{r}\right)^{2}+(\sin \phi+-}\right)^{x}\right)^{2} \tag{24}
\end{align*}
$$

的
since the current at load end is the same as at renerator end the power loss is: 100 ris

$$
\begin{equation*}
Q=\frac{-}{V} \cos \phi=\frac{-----\bar{Z} \phi}{Z \cos \phi} \tag{25}
\end{equation*}
$$

and the $\%$ voltage loss is:

$$
\begin{array}{rl}
D & =-100\left(V_{g}-V\right) \\
V & 100\left[\sqrt{\left.\left(\cos \phi+\frac{\mathrm{V}}{\mathrm{Z}}\right)^{2}+\left(\sin \phi t-\frac{\mathrm{X}}{\mathrm{Z}}\right)^{2}\right]}\right. \tag{25}
\end{array}
$$

the power factor at generator end is:

$$
\cos \phi_{9}=\frac{100+Q}{100+D} \cos \phi
$$

the \% impodance drop is:

$$
100 \frac{\sqrt{x^{2}+x^{2}}}{z}
$$

Care should be taker to differentiate betveen voltage drop ($\mathrm{V}_{g}-\mathrm{V}$) and the impedanco drop (zII). For a given impedance arop the generator voltage may be any thing from A \% greater to $A \%$ less thar that at the recelving end depending on whether the current be leading or lagging.

A grapinical method of obtaining the voltage loss is from a chart devised by lershon and known as Mershon's Diagram. To use the chart caloulate;
the per cent resistance drop

$$
\begin{equation*}
=x\left(\frac{1001 I}{V}\right) \tag{29}
\end{equation*}
$$

the per cont reactance drop

$$
\begin{equation*}
=x\left(\frac{1001 I}{V}\right) \tag{30}
\end{equation*}
$$

and from a point on the curve mariken o corresponding to the power factor of the load lay off in a horizontal direction

the per cent resistance drop (29) and from the end of this line in a vertical direction lay ofit the por cent reactance drop (30). The per cent voltage loss is then given by the curve passing through the end of this line.

To express these values in terms of the generaten voltage we have:

$$
\begin{equation*}
V=A \sqrt{i \pm \sqrt{1-\frac{\left(R^{2}+X^{2}\right) P^{2} \times 10^{6}}{---\operatorname{A}^{4}} \not \cos ^{2}}} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
A=V_{g} \sqrt{\frac{1}{2}-\frac{1000 P(R \cos \phi+X \sin \phi)}{2} \frac{V_{g} \cos \phi}{2}+\cdots} \tag{32}
\end{equation*}
$$

and

$$
\begin{aligned}
& V_{g}=\text { volts to neutral at senerator end } \\
& R=\text { ohms rasistance per wire } \\
& \text { X = " reactance " " } \\
& P=K \cdot \mathbb{W} \text { load " " } \\
& =\frac{1}{2} \text { total K.W. delivered in a single phase line } \\
& \begin{array}{lllllllll}
=\frac{1}{3} & " & " & " & " & " & 3- & " & " \\
=\frac{1}{4} & " & " & " & " & " & 2- & " & 4-\text { wire } \\
\text { line }
\end{array}
\end{aligned}
$$

Practical considerations.
Perhaps the first requisite of a distributing system is that it shall be reliable under all conditions that may arise except those entailex in a wide spresd fire or flood. This presupposes good construotion which means good materiail and workmanship in the first place and the following out of some definite plan for extensions to the system already construsted, together with a well balanced soheme as a groundwork. In this connection it is well to bear in mind the: tendenoy of all municipalities towardian elimination of unneoessery poles and itiniat well for the varinus oompanies,telephone,. light and street railroad - operating in any one distriot to make their plans toward this end before being forced into it at a greater expense. This is acoomplished by a system of jorint pnle. ownership where the varinus companies having lines on the same street, combine their systems on the same pole line e.g...the poles supporting trolley spans being used for supporting stre et lighting fixtures, and the main or auxilliary feeder of the light company's or the light and telephone companies combine on one lead of poleset cet.

Troubles from the existience of two sets of poles on one street may arfise from objectinns by the property owners to the congestion of poles, and should the two lines be on the same side of the street it is sonnetimes found that the serVioes taken from the poles of one line may tend to pull them over until the wires of the other company come into contaot with a pole, and either burning the pole off if the lines be high valtage or of making trouble if they carry telephone lines..

Routrs should be selected that are practicable for all

 - ter, jeeglaq

parties using them and care must be taker to select streets that are free, or nearly so from trees,for all lines carrying primary lines .. This tree problem is one of the worst which confronts the operating company and must be handled with tact on account of the property owners who are always beautifying the streets by setting out trees; which constitute a continual menace to continuous operation by the electric company..

The arrangement of wires on the pole is governed mainly In the distributing system by mechanical and practical considerations among which are the following:

That the largest wires be on the lowest possible cross arm in order to reduce the bending stress on the pole to a minimum.

That the largest wires be on the pins nearest the pole In order to reduce the bending on the cross arm to a minimum.

That the wires be arranged symetrically on either side of the pole, especially where they are dead-ended, in order toreduce the twisting stress on the pole to a minimum.

That the highest voltage wires be on the upper cross arms. With the lower voltages. the secondary, and the telephone wires arranged down the pole in the order named..

That the arrangement be systematic throughout.
It is customary to allow Inoo volts per mile of line, with the minimum for primary distribution at $230 n$ volts. (The use of 1100 volts is not now considered good practioe and is practically obsolete.) Due to an increase of load on a. system and a desire to take care of it without increasing the copper may lead to the standard of 2300 volts growing. by the use of the "Y""connection of transformers, to approximately 4500 volts and then by use of the standard 6600 volt

 Vraquno ult

 : altmonfot nct ota notiv gmoar emolabmoble

cantitalla
ALOq ent taurnon entq ent mo ed asxiw tevyrbl orft tent

transformers conneoted in Y a voltage of approximately Io.000 volts is obtained. Thus Io,000 volts has beonme standard and a regular: line of transformers: for this voltage has been developed. The transformers now manufactured include 3-phase and single phase of types: and voltages suitable for distribution work. Many operating companies standardize on the three-phase transformers for power work on account of the ease and safeys of installation . Where power and lighting ane taken off of the same: mains the practice is to use two transformers connected in open delta. For large ammounts: of power such as would be required in an industrial district it is well to run separate feeders for light and power but where the power is only inoinental to the lighting. or vice:versa, both may be taken off of the same main and, in cases where the motors do not interfere with the lighting load, from the: same transformers. Where such banks of transformers are in service from the same primary main it is well to keep the aecondary cirouits of each transformer bank separate, for should the secondaries be inter-connected and the transformers be loaded to capacity,. the blowing of a fuse on one transformer would overload the others so that they would go out in succession and it would be necessary to kill the primary feeding them untill all fuses had been replaced or to wait until such a time of day as the load could be carried on one, to replace the fuses..

Over-head distribution transformers are usually hung as pole top transformers in one of two ways: either near the top of the pole where the primary leads are short, being connected to the transformer thru fuse boxes or other suitable disconnecting and protecting device, or they may be

 BLNOW TOMTOIENBYJ OMO KO OBUI B to gMIWOLD USI. KJLORGBO OJ

$$
.800 \text { en erit }
$$

hung below the secondary leads where the primary leads are brought down the pole either in conduit or open. This latter method makes for a more accessible installation and is easier to install tho the objection of oourse lies in bringing the primary leads down the pole which introduces a source: of danger to the linemen.

There is a great deal of discussinn regarding the relative merits of the use of two single phase transformers connected in open delta and three single phase or one threephase forming the closed delta. A selection of either scheme is based on local conditions. A comparison of the two schemes is as follows::

The total transformer capacity required for an open delta bank to carry a given load is 15% greater than for a clnsed delta. This total capacity is in two units instead o of th ree - or its equivalent, one three-phase transformar. The voltage drop in the open delta bank is unsymetrical which causes a slight unbalance in the three full load voltages, which is however negligible in most cases.

When one transformer in the closed delta bank is injured the two remaining will carry 58% of the load with the same heating but with slightly porer regulation on two phases.. Shinuld the closed delta be in ane unit, that circuit is at once shut down..

When transformers are chosen for a given load the: above: nojections to the open delta bank partially disappear on account of the larger units used. In addition transformers of different sizes may be used on a mixed power and light load -- one to carry the lighting and in open delta with the nther , the power lnad.

In efficiency and weight the npen delta bank is on a par

arater

 - Mercorli ont of yszabh In

Fig. 7.
Diagram showing a particular case of the arrangement of feeder circuits.
with the closed delta, while in cost it shows a slight gdvantage over three transformers in clnsed delta but is inferior on both counts to the single three phase transformer..

The open delta is made up of two units and hangs on the pole better than three, though not so readily or cheaply as nne three phase transformer:

The tendency is that the use of three phase transformers will become more general and ultimately gain the popularity they enjoy in Eurnpean practice - tho at present thera are so many minor advantages to be claimed for each that any one of them may become the ruling factor in a given case and throw the decision..

Assuming then that the lines have been constructed in a sturdy and safe manner we can take up the arrangement of circuits to best accomplish the result of continuous operation. A method in general use is to so arringe circuits between substations that with the operation of a tie switch Incated approximately midway between stations the lines which ordinarily are used as main feeder circuits are used to tie the two districts together and any station may be cut out tn allow for changes in trensformers or wiring or to make repairs in case of trouble.. (see Fig..(1) for such a system.) The high voltage lines supplying the stations should be brought in over separate routis in so far as possible to minimize the danger of a general shut down from trouble on any one of them. For the tie switches used on these circuits a 2200 volt three pole oil break switch may be used and on the 10,000 or 15,000 volt lines a type of switch similar to the Baum \#413 may be used which is an air break switch, either disconnecting or fused with the three poles operated by a lever extending

- romtoientit oesnq osTnt ern

-rolelos? ort

 noowtod eftcoato osn gae ne of at sek foycaga mi boritcm A

Fig． 8.
sketch showing arrangement of Loop System for Feeders．
down the pole which may be locked in either open or closed position..

In cases where there is but one supply station - substation or generating plant - in the district, this scheme is applied to the feeder circuits and tie points are arranged so that sections of the feeder may be cut out in case of need or emergency. Fig. 8.

Due to the usual syatem of Y-delta connected transformers trouble may ardise when paralleling feeders from the so called "right and left connectinn" on the Y side which produces a reversed polarity in the delta which will not parallel. See Fig. (9) It is necessary to phase nut and change connections where necessary. This trouble developed in the earlier three phase transformers put out by some of the manufacturers and caused some trouble before being located.

Another precaution found very usefuly is a portable substation of a convenient size mounted - in the case of a rotary convertier station for street railway work - on a flat or box earg or if for lighting or power work on a truck which can be drawn by horses or automobile, and fitted with proper high tension switoh, meters, regulator, et. cet. It is well to note that all high tension apparatus is being perfected for use on out door installations so that it is becoming more and more general that buildings for sub-stations are being replaced, particularily for small installations, by out door substatinns, and it is no t uncommon to see out door instalation as large as 50,000 k.y.a. and operating at as high as 150,000 volts..

In the early stages of the electrical industry no particular attention was paid to the regulation of the system bub

- Korsy Tous yo fegr

 - botsoof gnied eyoIed olduort omoe beense - dua sfdetroq e el Ifrioer vrov bruot moljußosqg yedtnci

$$
. \leftrightarrow \pm \boxed{*}
$$

but of late as the bad effects of poor regulation are being better understood and the public is more critical this is receiving much more attention and it is becoming the aim of an operating company to make "service first" their slogan. Snme of the bad effects of poor regulation are. for too high a voltage:
decreased life of electric lamps,
excessive speed of D.C..motors..
excessive field current of A.C. motors resulting in burnouts or over heating.

Some of the bad effects of low voltage are:
decreased efficiency and life of electric lamps.
decreased power out put of motors and a corresponding increase of current, resulting in heating. These effects of poor regulation are much more noticfible on lighting than on power circuits so that special devices are in use on the former which are omitted on the latter.. Where the voltage varies from a higher to a lower levelthan normal these effects are cumulative on lamp service, since When the voltage is high the lamps are blackened and their lile shortened and when the voltage drops below normal the lamps appear to be very much further from their normal candie power than before. Part of this is psychological but the effect on the power company is just as bad as tho it were all real. For a variation of 5% above or below normal the following gives an idea of the effects produced:

Each \% decrease in V nltage decreases the
candle power of carbon lamps 5%

 ー－

；egestinv β
－Bquel ozqucelo in oilf bersotcol
 エ上 gntflueor arojax－D．A In fnstrue bleti ovieeocxe
－amtfors zovn th etcorsmed
：9T0 gyeviov wol to evestio bad ont in ounz －aqmbl otuvosis Io oltl frro ronototilo beeseroob

 －Tor mbiflevel rewol b of rocisid a mott estrsv ggeflov oct

 －תbo famtar Itorit moti Tontrul nowar riov od of rbeqq．eqmal
 STow t上 ont eb best ab Jekt al vreqmoo rowoq ont no togizo sit
 ：bocubniq efoelto edf To BybL $x \in$ Bevts gatwofln？

 eqmsl nodrse i n rewna EfbNBo

Paralleling two banks of trans formers $r-\Delta$ connection.

Diagram of Feeder System
for an underground met work.

Each \% increase in voltage decreases the life^carbon lamps 13%
(This is an average. The variation of 5% giving for the first $\%$ a decrease of 18% and for the fifth 8%) Increases the magnetizing current in inductinn moters-----2 $\%^{\circ}$ The first attempts at regulation were made by hand from either the single buss of in connection with the "end cells" on a battery kept floating on the line for D.C. distribution. Then was developed the multiple bus which fed long feeders from the "high" bus and short feeders from the "low" bus, both being operated in parallel for light lnads and separated on heavy loads. One system developed a scheme shown in Fig.(10) for their under-ground D.C. system when confronted with the problem of more than two sets of busses. which consists of using a single bus and pulling out or throwing in feeders as the load increases or decreases so as to maintain uniform voltage on the network. Pressure wires are run to the station from each center of distribution so that the operator is at all times in touch with the conditions of voltage at each center.

With the circuits of a system arranged on the tree system Fig. (1) regulation can only be accomplished for.the average condition and wide variations will be found on the various branches. With the use however of the feeder system Fig.(2) the voltage can be kept well within any prescribed limitson practically the entire network. On A.C.. circuits use is made of the automatic induction type of regulator which serves every requirement $n f$ voltage rekulatinn admirably. This is usually a station type of apparatus, thn there is now on the market a pole type A.C. voltage regulator suitable for small single phase sircuits that is goo. With these

Lood Curre
Rotio 20:1

8
0
∞

$$
\begin{aligned}
& \text { _- Regulated in . } \\
& \text { - Poming Voltage } \\
& \text { Voltage delivered at } \\
& \text { Consumers premiscs. }
\end{aligned}
$$

0

$\lim _{z}$

81

//.

regulators it is possible to maintain a regulation that is much batter than could possibly be notained by the hand method. See voltage chart Fit. (/I). These charts were obsimultaneous
tained from the symitterreors readings of recording instruments showing the load in amperes on this feeder, the incoming station voltage, regulated station voltage, and vo ltage at the consumers premises..

Assuming that these conditions of successful operation have been fulfilled we must take into docount the fact that investors will not be attracted to the securities of the company unless the returns seem adequate. This means efficiency in every departmentand it can b a obtained in the distributing end the same as in all others by a carefull attention to details.

Reference has been made to Kelvin's Law applied to the selection $n f$ size of conductor and it may be noted that applying it to the case of the circuit from which the above charts were taken that the loss of power in this aase was $\$ 124.00$ per year and the interest on the investment at 6% was $\$ 150$. These items are sufficiently clnse so that allowing for a reasonable increase in the power to be distrinuted over this ie circuit. it complns with the law.

In additinn to the copper losses in the line there are the losses in the line transformers and the line losses due to the exaiting current of the line transformers. These may be minimized by the carefull selection of transfinmers with regard to the load carried, diversity factor. distribution of the load, and by exercising care in the location and proportion of load carried by each transformer, it be-

 －esetwota eremuarns snt j β

－efietsb

 e上Nさ revn bofkゃよ －W尺L ent Nさ上w enfganc j上，さよucog上o

ing advisable at times to arrange the transformers for large consuners so that they can be disconnected from the line by the castomer during periods of inactivity..

This means that all extensinns to a system must be carefully planned and be forwarded under some definite plan which looks to the ultimate betterment of the system , tho it may appear at the time that the income from a particular extension does not warrant such heavy construction,. If it is in the general scheme of betterment that the more expensive type be used. it will be found cheaper than to use the alternative and then later rebuild. It is well to remember that cheap construction at any point on the distributing system where the constant effort is for continuity of service, does not pay - either in the so called "temporary job" which may be left for years before getting back to put in permanently, or in the case that the business to be taken on does not warrant the expense of standard construction. Rither do it right or not at all, for either an accident may occur or business may develop on the line so asto make it necessary to strengthen the, Iine and the cost of changes more than equals the interest on the investment saved by the cheaper construction..

Street illumination is a science in itself and deserves more than the brief reference which it is possible to accord it here. It is well to go over the ground and outline the requirements and the most oommon methods of meeting them.

An idea of the increasing im portance of street lightIng may be gathered by noting the greater amount of space given to it in the engineering pablications during the past few years as compared to that given it ten years ago..

The determination of the intehsity of illumination required and the best method of producing it with a minimum cost forms the fundamental problem of street lighting. The area to be lighted is a long narrow strip with an approximately uniform illumination its full length except at street intersections where a higher intensity is desirable. The cost involves the energy expended, maintainance of lamps, interest and depreciation on the lamps, plant and auxilliary equipment.

The intensity of illumination at any point is proportional to the light intensity of the unit usedand inversely proportional to the square of the distance from the light source - where this may be comsidered as a point, which is true of the arc lamp or the incandescent as used in street lighting. It is evident that to secure a given illumination the energy to be supplied will vary directly with the separation of the lamps, 1.e., if the distance between lamps be doubled, each lamp must have four times the light flux and the energy per unit of length of street will be doubled. If the problem could be solved on the basis of energy alone, it wauld be advisable to use a maximum number of lamps with a corresponding reduction in their light flux and energy sonsumption. Inoreasing the number of light units however increases the in-

- dront gritogm in ebonfom ancuno faom sif bro ednemstivpst

 SNT - gntfrigil footta to moldora lefrsmabrut ont earnit fanc

e
stallation and maintwinance costs, and a spacing must be selected where the saving of energy is balanced by the cost of the increased number of lamps. A general solution is impossible on account of the numerous variables involved such as difference in intensity requirements, 0 bstacles such as trees which prevent the proper locating and spacing of poles and lamps, energy costs, et \downarrow cet. When considered from the standpoint of economy onlt, if the cost of energy is low large units spaced at larger intervals are advisable, and if the energy cost is high smaller units more frequently spaced are advisable.

It should be noted that this only applies to the lishting of long narrow areas where the area lighted varies with the distance retween units. It dnes not apply to the illumination of large areas, parks etb cet. Where the lights are placed on the square as the unit, since here the area lighted by each unit varies with the square of the distance between units and the light efficiency is independent of the spacing of the units used.

The requirements for good street illumination may be considered from the following standpoints:-

Tniform intensity distribution: diffusion; intrinsdc brilliancy of the lamp used: and shadows.

Experience has shnwn that good street lighting attracts traffic and stimulates trade which acco unts for the more general lighting of the business districts-tho from the standpoint of design the problem is complicated by the lights ing effects from the stores and builiing fronts which are lighted with a view toward decoration. This idea of attracting trade to these districts calls for a higher intensity

 - ByEC ETINK \&it In

 - vunbadr bsh : coac quBL sif Io vombjifito

tnan is necessary for the rabidence or more sparsely sttled districts where the need is for sufficient light to clearly reveal persons.. vehicles, obstructions, inequalities in the pavement and to allow the reading of addresses and watches.. The primary reason for street lighting is safety for the public and illumination that is sufficient for the above purposes is sufficient for protection.

The development of the "white ways" is almost entirely dependent on their value as an advertisement. The average annual cost per front foot of the store frontage for these white ways is about $\$.90$ or $\$ 45.00$ per year for a 50 font store front. The displaced system cost from \$. 10 to $\$.40$ pen fnot, say an average of $\$.25$ or $\$ 2.50$ for the 50 font store front. Assuming that the profits on the business done in this store are 10% of the total business, the merchant must expect an increase of more than $\$ 325.00$ in his sales due directly to the increased lighting effects.

From this intense illumination the gradations proceed down thru the stages of separated lights with the attendant multiplicity of types of units from which to choose and the varying degrees of illumination sought, - parks, boulevards. residential districts, wholesale districts etb cet. all of which makes the problems each one to be solved by itself and each a problem for a specialist on illuminating engineering. There is no definite system which will apply to different cities or to different streets in any one city.

In the business districts if arcs are to be used they should be hung above the middle $n f$ the streetand not less than 25 feet above it. In residential districts the most serious

 －โ゙

－MnL゙さoedora tot jrsiolitua e上 as

 bMt ILSed上 र．V bovine of nt omn nobo emslontu ont eozam notivy

problem is the trees. For the majority of cases the use of low candle power units along the curb line will give satisfactory illumination. It is necessary to hang the lamps low in order to clear the trees which results in spots and an objectionable glare in the eyes making the darker areas even more pronounced, due to the contraction of the pupil of the eye. If the lamps can be hung near the middle of the street they may be hung higher and still the light will not be obstructed by the trees. A further handicap in parks, boulevards and residential streets is found in the selectinn of ornamental standardswhich are not always of a design to help in the distribution of the light, and whose cost is too often a large part of the approjriation leaving too little to be expended in getting light.

A consideration of the units from which to select is confinedneither arcs or incandescent lamps with a wide range in either type, both as regards the lamp itself but its mounting type of reflector, or diffusing glassware et \downarrow cet.

Arc lamps are divided into the fodlowing general classes:

$$
\begin{aligned}
& \text { Multiple - } 110 \text { and } 220 \text { volt D.C. and A.C. } \\
& \text { Series - both D.C. and A.C. } \\
& \text { Multiple - series. }
\end{aligned}
$$

This latter is for use in such cases as where it is desired to use five or six lamps in series over the 550 volt railway service the lamp being provided with an auxilliary compensating resistance that is sut in automatically if the lamp is put out of service. It is not in extensive use for street lighting.

The multiple lamp for either D.C.. or A.C. is available

 －tペg上 gn上寸tog r上 bobrsqxo

$$
\begin{aligned}
& \text { - D. A bis . D. a n土õ - Bevrac } \\
& \text {-avさroz - sโutさよu゙ }
\end{aligned}
$$

for industrial plants and local street or yard work, but is unreliable in outdoor installations where a slight film of oxtde on the contact clips due to exposure to the weather will render the lamp inoperative because the low llo voltage will not jump over it. It is built with a resistance in series with the arc to cut down the voltage over the arc to the proper value.

The series arc in both D.C. and A.C. . In one of its many forms is better suited to street lighting than either of the fotmer. The D.C. lamp is mare efficient than the A.C. lamp but has its disadvantages in that it requires a specialmachine at the plant to energize it - either a D.C. arc generator or mercury arc rectifier outfit - either of which is a snurce of trouble and operates at a comparitively low efficiency. The use of the constant current resulating transforner to be connected across the constant potential mains of the A.C. station makes possible a much more general use of the A.C.. series arc lamp.

The carbon flame arc lamp gives off a yellow light with a high efficiency but due to this yellow light, special expensive carbons which are cored with calcium, and the fact t that quantities of gas are given off when rurning, this lamp is restricted in its use and is generally used for advertising purposes.

The mettallic flame arc lamp overcomes some of these objections. It gives a white light at an extremely high efficiency and is excellent for street lighting purpnses. It operates on D.C. and with a mercury rectifier set is a very desirable solution of the street lighting problem. The outfit

 - qumal otb asjroe.. D. A ynt

for supplying the D.C. from the constant potential A.C. kus consists of a constant current regulator (which can be wound for any ∇ oltage up to 13000 volts) a rectifier bulb and tank, together with a switchboard and instruments. switches etb cet. The regulator is similar to the repulsion automatic regulator in use for constant current A.C. series carbon lamps. The current is rectified between the secondaries of the regulator and the lamps.. In the mercury rectifier, it is necessary to maintain the vapor in a conducting condition and to reduce the fluctuations of current in the arc to such an extent that flickering of the light is prevented. This is accnmplished by constructing the regulator so that it receives energy from the primary circuit and gives it out during the period of zero value of the current in the primary. In addition then to providing a constant current in the circuit it stores up sufficient energy to maintain a current flow over the zero point of the A.C. wave. The use of a choke coil or other inductance in either lead is thus made unnecessary. The regulator and bulh are enclosed in an iron tank filled with oil which af fords good insulation and a more even temperature of each. The efficiency of this outfit at full load is in the neighhorhnod of 90% and the pover factor on 60 cycle current is about 70%. The average life of the buln is 1500 hours.

If it is desired to furnish an arc circuit from the 60 cycle A.C. bus bars the energy consumption for various types of arc lamps at the bus bars - neglecting line losses - will be as follows:-

Assuming the arc machine supplying the 6.6 amp . D.C. open arcs and the 6.6 amp . D.C.enclosed arcs to be driven by an

 ToさBf心y

 - ：\＆wn上fnt z® of

Fig.12. Light distribution for various are Lamps.
A-Series D.C. 6.6 amp enclosed. C-Series D.C. 6.6 amp
B. Series A.C. 6.6 amp. enclosed. metallic flame.

Fig. 13. Anolasis of distribution lasses for various types of series arc light systems.
induction motor, the efficiency of the set will be 70%.
The efficiency of an A.C. constant current regulating transformer and mereury rectifier is 90%.

The energy required at the lamp terminals is;
for the 0.6 amp . D.C. open arc …-................. 480 watts
 and the energy per lamp at the A.C. bus will be;

If the metallic flame arc is compared to the 7.5 amp . A.C. enclosed arc it will be found that the increased cost of the metallic flame electrodes is offset by their longer life over that of the carbons. The life of a trim of the metalic flame arcs is 165 - 170 hours and can be increased by sacrificing efficiency - depending on the proportion of the light giving materials used in the electrodes.

Other considerations in the problem of street lighting besiสes the source of light are the light intensity, distribution of light flux, et/ cet. Fig.(I2) gives a comparison of the values of light intensities and their distribution showing a marked superiority in the metallic flame arc thru the usefull angle. This remarkable light distribution of the metallic flame arc is only eclipsed by the high efficiency of the entire system. An analysis of the losses in a system employing various types of lamps is given in Fig. (/3).

Great improvements in the manufacture of all types of arc lamps tngether with the care of design of all parts has led to ruggedness and dependability of the mechanical and electrical parts and increased their usefullness and application. Special care has been expended in perfecting the ventilation of the type of lamp suin as the metallic flame arc where much gas and heat are evolved.

It may be usefuld to review the units in use in reference to lighting calculations. The unit universally used in expressing light intensity is the candle. From recent researches it has been determined that the mechanical equivalent of white light is approximately .07 watts per candle. Light intensity usually varies in different directions from the source and it is therefore customary to refer to distribution curves similar to fig. (12) and in some cases to the mean spherical candle power. The use of the candle power for expressing the value of the light intensity at any angle characterizes the value of the distrikution of the light flux for a particular purpose but does not indicate the total flux from the source. This distribution may be varied in inhmeri able ways - by varyations in the design of the lamp, location of the carbons, type of reflector or globe used, et. cet.

Flux density is expressed in lumens and is the flux of light in a beam of one unit solid angle (one square meter at a radius of one meter) in which the intensity is .88 of a standard British candle. The light flux is often expressed in foot candles, as this is a function of the intensity and distance in feet.

In as much as the result desired in street lighting is

 - bovfove otr jogn firb afia

a uniform illumination of low intensity the light flux should be distributed in a particular manner. When the height of the lamp and the distance between units is considered, that source of light is preferred which gives the most of the light flux between the horizontal and 25 degrees below. For the sake of economy it is of course desirable to select a lamp whoseinitial distribution of light flux is as near the desired value as possible, thus making it unnecessary to use reflectors.

A coreect theoretical arrangement of reflectors does not necessarily mean a satisfactory illumination since the results are judged by the effects produced. It is necessary to so place the lamps that the eye of the observer will not be exposed to their direct rays. It is thus advisable to decrease the:brilliancy of the source of light and place it as high as possible but this ordinarily means more frequent spacing of lamps and an additional initial expense, and unfortunately it is often the oase that first cost is of more importance than effective lighting.

A source of light giving best results for street lighting is one producing no light in the upper hemisphere and whose maximum candle power is at an angle of approximately 15 degrees below the horizontal and whose minimum candle power is directly beneath the lamp. Such a distribution makes it possible to hang the lamp high above the direct line of vision, thus eliminating the glare in the eyes of the observer at the street level and at the same time maintain a more nearly uniform illumination. In addition, the lamp being hung high, shortens the shadows, the illumination directly under the lamp is decreased and eye fatigue elimin-

 yull frimif ont in tonm grit esvig notrm bormotota et fryif in

- さNy

ate in that it then becomes unnecessary for it to adjust itself to alternate light and dark spots.

In comparing the various types of light sources for street illumination they shana be judged by the effective illumination produced at a point midway between adjacent lamps 1.e., at a point where the intensity is at its lowest value.

An examination of incandescent lamps available for street lighting shows a marked increase in the number available types with efficiencies that compare with those of arc lamps when maintainance costs are considered. This lamp has progressed. thru the stages of carbon filament, specially fired carbon, tantalum, tungsten and nitrogen filled tungsten;- these two latter, due to the refinements in their manufacture and the scientific design of reflectors have solved many of the problems of street lighting. The tungsten lamp has been improved until it is now given ratings as follows:

110 volt type 25 - 40 watts 131 watts per mean horis zontal candle power.

$60-150$	1.28	$*$	$*$	$*$	$*$

and the nitrogen filled lamp in the larger sizes is rated at approximately .6 watt per mean horizontal candle power.

Incandescent lamps are used for street lighting on both series and multiple circuits - being in the latter case abaptable to the ornamental type of cluster standard, when they may be fed from the commercial low voltage mains eliminating trouble in having the high tension wires of the series cirsuit in the metal standards.

The principal defect in street illumination is improper
 －e寸のqृ ふТ．

 bseestanty esf qmal e上ry－bstobterno ots evano soxarrizituibm

－IFwoq s โbrso โs才ro

diffusion of light and the use of units with a high intrinsic brilliancy so placed that they violate the physiological requirements. The introduction of the series tungsten lamp has made available a highly effioient light saurce which is to a large extent free from these defects. Suitable reflectors are available to deflect the light into the usefuld angle, thereby increasing the effective candle power and further reducing the cost for a given intensity. Furthermore the tungsten lamp has the proper color value for use with low intensities of illumination, and a large list of sizes is available for use under varying conditions, and by the use of lamps of a moderate candle power equipped with suitable reflectors the lamps may be so spaced and hung at such an angle that there will be no interference with trees and at the same time will not produce a glare even approximating that of the arc lamp. Incandecent series lamps can be used very successfully in cases where the results to be obtained are to be at a minimum expense, and where the conditions will not permit the use of high candle power units of the arc lamp type.

The requirements of a series system of incande ${ }_{\text {S }}^{\text {ecent }}$ lamps is as follows:

> An efficient series lamp.
> An efficient and reliable device for automatically regulating the current.

> An automatic device for cutting out a lamp when the filament breaks.

The recent developments of the series tungsten lamp has provided the first in sizes ranging from 25 to 80 candle power with a life of from 1500 to 2000 hours. They show but little reduction in candle power during normal life and the quality

 －gnef git otomrenfrce－RJ上emotat moviz B rot jeoo ont gmloub

 －OqरJ qmal ogs ont to eftire tswoq olbiso nytif to equßl fMeçhmeorst in mevave eotroa e to afMomst上cpot ont
：avollot en el
 －JMoritio ont gnifelngeg

－82097
 Towoq olbmeo 08 of eS moty acisant eoste mi jet上t ont behty

of the light remains excellent.
There are two systems of series tungsten lighting in general use known as the "adjuster socket" and the "regulator" systems - the choice depending on local conditions and to some extent on the number of lamps installed.

The adjuster ancket system consists of a series of lamps connected across the high tension mains with an impedence coil In shunt with each lamp for maintaining the continuity of the circuit if a lamp burns out. The ampere capacity of each lamp in series must be the same and the sum of the voltages of the lamps must be equal to the voltage across the mains to which they are comnected.

The regulator system differs from this in that the current in the series of lamps is controlled by a constant current regulating transformer acting automatically. In this system each socket is insulated between the clips with an insulation of such strength that it withstands the pressure due to the normal voltage across the lamp but should the filament burn out the entire voltage of the system would be thrown across these clips and puncture the insulating film. Since the tungsten lamp circuit is practically an ohmic resistance load, the ordinary series arc regulator is not satisfactory as it does not regulate sufficiently close to prevent flickering of the lamps. There has been developed a regulator for uss on these circuits of the repulsion coil type which are made very sensitive hy the use of two coils suspended in such a way that they just balance each other under normal current conditions. This type will keep the lamp current within one per cent of normal under most conditions.

 -boflefarl eqmel to toduun ont mo jrojxo equsf Io evitas s in ejalaroo mejeve foun tovaci,bs orly

 NOLNW of anism ont aeoros gybilot ont of locpe od fecia eynicl

 ont of oct orvaeorq onv abrajentiw ti fait ntanorta nowe in

The series incandencent lamp does not come into direct competition with the arc lamp - its field being in outlying districts, parks and districts where the tree problem is a serious one. It is replacing to a large extent gas lighting and is found superinr to it on nearly all counts.

In conclusion it is well to call attention to the fact that the author is well aware that it is in no sense a complete review of a distributing system but it is hoped that enough has been said to show the interest that this portion of the field should command and that its proper design will call for as high a degree of engineering skill as the plant or transmission system and that its importance in the system entitles it to as much consideration as the other departments.

Abstract

.

