,

- D BY M. GIBSON.

WHICFIS ANNEXED AN APPENDIX, CONTAINING
~RAEION OA: SIRFACES, TABLES OE FORKICYN MONEY, AND BOOE-FEENNG.

STERRJOTYPE EDITION.

RICIMNOND:

WEST \& JOHNSTON, 145 MAIN STREET.
1864.

THE

WILLIAM R. PERKINS LIBRARY

OF
DUKE UNIVERSITY

Rare Books

SOUTHERN SCIIOOL ARITHMETIC;

 _Or,
KOUTH'S ASSISTANT.
 coxtalemisg

THE MOST (ONCISE AND ACCURATE RULES FOR ILRFORMLNG OPERATIONS IN

ARITHMETIC,

adAPEED to the easy and regular instruction of youtir,

EOR, THE USE OF SCHOOLS, \&C.
By A. \& J. FOWLER, teachers of arithmetio.

たEVISED BY M. GIBSON.

TY WILCEIS ANNEXED AN APPENDIX, CONFAINING
MENSIJRATIUN Or' SIRFACES, TABLES OF FORGIGN MONEY, AND BOOE-FERPNG.

STENREOTYPE EDITIOIV.

RICHMOND:

WEST \& JOHNSTON, 145 MAIN STREET. 1864.
 sof Amsal \& Juasan Fowikn, in the Clerk's (Mlice for the E.atern D) trici of Temmessee, at Kimsville.
 hy I.. (infont, in the Clerk's Olice for the Eactern Distmei

Fit-rxtman according to act of Comgress, in the jear 小ian

RECOMMENDATIONS.

MESSRS. FOWLERS' ARITHMETIC.

This work, which was handed me some time since, for examination, exhibits a degree of industry and ability highly creditable to the authors. The order of arrangement appears to be judicious, and the illustrations clear and plain. The circumstance that it is primarily adapted to our national currency, is, to me , one of its chief recommendations; and were no works of an opposite character introduced into our cominon schools, we should soon have a currency or mode of reckoning, simple, uniform, and intelligible to every one. I trust the gentlemen will meet with such encouragement from the public, as will more than compensato for the trouble and expense of publication.

Joseph Estabrook,
President of the East Tennessee College.
Knoxville, April 29th, 1834.

MESSRS. FOWLERS' ARITHMETIC.

From a hasty examination of this work, I would say, its judicious arrangement, the perspicuity and conciseness of its rulee, the clearness and simplicity of its illustrations, and its adaptation to our national currency, render it a desirable companion for the beginning in this important branch of education. I trust the industry and ability exhibited by its youthful authors, will meet with liberal encouragement.

Allen II. Mathes,
Late Principal of the Male Academy.
Madisonville, June 14th, 1834.
THE FEDERAL INSTRUCTOR; OR, yOUTHS AEsistant.
The above work, in my opinion, has considerable merit. The rules appear to me, to be made plain to tho understanding of beginners, and unadvanced learners, in the very useful branch of knowledge on which it treats. Hope is entertained that Messrs. Fowlers', the authors of it, will be liberally rewarded for their undertaking, by the patronage of a generous public.

Henry C. Saffill,
Principal of the Holston Seminary.
New-Market, June 26th, $183 \overline{5}$.

Having carefully examined "Fowlers' Arithmetic," I make no hesitation in saying that I fully concur with the foregoing gentlemen in opinion, with respect to the merits of the work, and cordially unite with them in recommending its introduction into our schools and academies, as well as particularly into the Tyro's Library.

Kingston, Oct., 1836.

Josiah P. Smite, Philom.

Messrs. Fowlers:

I have carefully examined your Arithmetic, and must say, after twenty-five years experience as a teacher, that I have not seen a work of the kind that I would prefer before it, especially for young beginners. The shortness, simplicity, and plainness of the rules, as you have very justly remarked in your prefacé, must I think greatly accelerate the progress of learners. I trust you will meet with the patronage of our fellow-citizens generally.

Landon Dunca̧n.
Giles County, Virginia, March 15th, 1836.

Messrs. Fowlers:
Gentlemen - I have carefully examined your treatise on Arithmetic, and I think it superior to any other now in use to facilitate the progress of the young learner, and is fully adequate for all the common business of our country. It well merits a place in our schools and Academies, as well as in our houses.

Michael Morris,
Teacher of the Estillville Academy.
Estillville, Va., 13th July, 1836. SIGNIFICATIONS.
$=$ Equal, as $100 \mathrm{cts} .=\$ \mathbf{1}$.

+ Morc, as $4+2=6$.
- Less, as $6-2=4$.
\times Into, with, or multiplied by, as $4 \times 2=8$.
\div By, i. c. divided by, as $6 \div 2=3$. or 2$) 6(3$.
$:::$ Proportion, as $2: 4:: 6: 12$.
$\sqrt[\because]{ }$ Square Root, as $\sqrt[3]{ } 64=8$.
$\sqrt[3]{ }$ Cube Root, as $\sqrt[3]{ } 64=4$.
$\sqrt[4]{ }$ Fourth Root, as $\sqrt[4]{ } 16=2$, de.

PREFACE.

'The design of the authors in bringing this work before the public is, to teach the science of. Anmphatic in a different and easier manner than has been customary. 'To attain this object, we have simplified the necessary rults, thus leading the student out of the darkness of ignorance by a plain path, into the light of knowledge. The shortness, simplicity and plainness of the rules, will enable the student to adrance with greater case and spleeu than those hitherto promuleed.

As calculating in English money is measurably obsolete, the authors have, with but few exceptions, employed, in this work, the legal currency of our country, Dollars and Cenrs. 'Iwo things among us have been but too well fitted to retard the progress of Arithmetical knowledge; calculations in pounds, shillings, pence and farthings, a currency unknown among us, and unsuited to the transactions of our common country concerns; and long, complex rules, difficuit to be remembered, and still more difficult to comprehend. But, make your rules short, fumiliar, and easy to be understond, and the student is encouraged to pursue the shining path of science, thus plainly poillted out to him with alacrity and delight.

Though this work may appear short, yet there are in it 1300 questions, or upwards-a sufficiency, we should think, in point of number; selected so as to be useful, and adapted to the circumstances of our country.

Many persons who have ciphered for months, and some who have gone through the Arithmetic, are at a loss because they do not understand, or have not paid attention to the rules. This evil will be the more easily remedied on our system, as our rules are plain and short, and may, with but little labour, be committed to memory.

When our Saviour came into the world, he was condemned by the Jews by askiner a simple question-acin any thing good come out of Nazareth? If any are disposed, in a similar way, to denounce our work, we would beg of them to examine carefully and candidly before they decide, and to remember, that, as the Messiah did come out of N^{n} zareth, so, it is possible for a good Arithmetic to be made in 'Temnessec. We are, indeed, devotedly attached to this study, and as we think we have made improvements in the mode of teaching it, we have risked our all to give publicity to the book, to enable others to judge of it and to profit by it.

CONTENTS.

Numeration 9
Addition 10
Multiplication 12
Subtraction 16
Short Division 18
Long Division 20
Tables of Money, Weights and Measures 23
Compound Addition 25
Compound Multiplication 32
Compound Subtraction 38
Compound Division 43
Reduction Descending 46
Reduction Ascending 49
Rule of Two 59
Rule of Three 56
Double Rule of Three 61
Practice 64
Interest 68
Brokerage 77
Discount 78
Tare and Tret 80
Equation 83
Barter 85
Loss and Gain 87
Partnership 89
Exchange 91
Vulgar Fractions 97
Decimal Fractions 107
Inrolutions or Raising of Porrers 113
Square Root 114
Cube Root 117
Single Position 118
Double Position 120
Allegation 121
Arithraetinad Feperession 122
CONTENTS.
Page.
Geometrical Progressiou 125
Compound Interest by Decimals 127
Permutation 131
Combination 131
Duodecimals 132
Promiscuous Lixamples 134
Appendix 141
Mensuration of Surfaces 141
Parallelogram, \&c. 141
Triangle 142
Circle 142
Elipsis 143
Mensuration of Solids 144
Hewn Timber, Box, \&c. 144
To Gauge a Corn House or Box 144
To make a Box of a given length or width to contain a given number of bushels, \&c. 145
The Cylinder 146
A Vessel in the shape of a Frustrum of a Cone 147
Gauging of Casks 147
'Tonnage of Flat Boats 148
'Tables of Foreign Money 150
A Short Method of Counting Interest 166
lieduction of Coins 166
A Table of Interest 171
Book-Keeping 172
Form of Notes, Receipts, \&c. 181

ARITHMETIC.

Arithmetic is that part of the Mathematics which teaches the art of computation by numbers. All operations in Arithmetic are performed by means of the following figures, viz: One 1, two 2, three 3, four 4, five 5, six 6, seven 7 , eight 8 , nine 9 , cipher 0 .

NUMERATION.

Numbration teaches the different value of figures by their different places, and to express any proposed numbers cither by words or characters ; or' to read and write any sum or number.

NUMERATION TABLE.

The preceding contains only nine digits, which render it sufficiertly large for young students or common business, although it may be extended much farther, thus:
$\overbrace{\text { Quintillions }}^{\text {Quatrillions. }}$ Trulions. $\overbrace{\text { Billions. }}^{\text {Millions. }} \overbrace{\text { Units. }}^{\text {inn }}$ 987,654; 327,241; 278,325; 256,148; 212,563; 652,324.

ADDITION:

The use of Addition is to ascertain the amount of tiwo or more numbers when put together.

RULE.

1st. Set down any one of the numbers and place under it all the rest in such a manner that units may stand under units, tens under tens, hundreds under hundreds, and so on, and draw a line under the last.

2d. Begin at the right hand column and add together all the figures contained in that column. If it amounts to ten or more, set down the right hand figure and carry the left hand figure or figures, which add to the next line, and so proceed till adding the last line. Then set down the whole amount.

EXAMPLEE.

13. Add the following numbers, viz: $14,16,23,29,80$, 31, and 100, and tell their amount. Ans. 293.
14. What is the amount of $36,97,125,384,1176$?

Ans. 1818.
15. Add $640,79,80,100,210,450,787,21$, and 2. Ans. 2369.
16. John gave Joseph 33 apples; James gave him 91 ; Peter gavo him 56 ; Joel gave him 107; and David gave him 95 ; how many had he?

Ans. 382.
17. A person went to collect money, and receired of one man $\$ 5.42$; of another 654 ; of another 550 ; of another 787 , and of another 3405 . I demand the sum collected. Ans. 5938 .
18. John owes to one man $\$ 302$; to another 540 ; to another 70 ; to another 2356 , and to another 999 . How much dues he owe in all?

Ans. \$4267.
19. John and Charles went to collect nuts; when they collected a quantity, sat down to count them; when ono had collected 275 and the other 196, what number did both of them collect?

Ans. 471.
20. Desired to purchase a suit of clothes which cost as follows, viz: a coat $\$ 25$, a pair of pantaloons 10, a waisteout 6, a shirt 2, and a pair of socks 1. What is the cost of the whole?

Ans. $\$ 44$.
21. A butcher bonght of one man 25 head of cattle; of
another 15 ; of another 40, and of another 9 . How many did he buy in all? Ans. 89 head.
22. A man in buying cider received of one man 90 gallons; of another 200; of another 300 ; of another 400 , and of another 500. How many gallons did he buy in all?

Ans. 1490.
23. A gentleman went to purchase brandy, and bought of one man 125 gallons; of another 160 ; of another 190, and of another 210 . . How much did he buy in all?

Ans. 685 gallous.
24. A man in buying corn, received of one person 400 bushels; of another 500 ; of another 600, and of another 700. How many bushels did he buy in all? Ans. 2200 bushels.

MULTIPLICATION.

When the multiplier does not exceed 12 , worl by RULE I.
Set the multiplier under the right hand figure or figures of the multiplicand: then beginning with the units, multiply all the figures of the multiplicand in succession, and set down the several products; but if cither of the products be more than 9_{2} set down its right hand figure only, and add its left hand figure or figures to the next product. The whole of the last product must be set down.
Proof. Divide the answer by the multiplier, and the quotient will equal the given sum.

MULTIPLICATION TABLE.

The learner should commit the following table to memory before he proceeds further:

Twice	3 times	4 times	5 times	6 times	7 times
1 nake 2	1 make 3	1 make 4	1 make 5	1 make 6	1 make 7
$\because 4$	26	28	210	212	214
3	39	312	315	318	$3 \quad 21$
48	412	416	$4 \quad 20$	424	4
$5 \quad 10$	$5 \quad 15$	$5 \quad 20$	25	530	535
612	618	$6 \quad 24$	$6 \quad 30$	$6 \quad 36$	6
$7 \quad 14$	$7 \quad 21$	$7 \quad 28$	$7 \quad 35$	42	$7 \quad 49$
8	$8 \quad 24$	$8 \quad 32$	$8 \quad 40$	848	856
918	$9 \quad 27$	936	$9 \quad 45$	954	963
$10 \quad 20$	$10 \quad 30$	1040	$10 \quad 50$	$10 \quad 60$	$10 \quad 70$
$11 \quad 22$	$11 \quad 33$	114	1155	$11 \quad 66$	$11 \quad 77$
12.24	1\% 36	1248	126	12	1284

(4.) 12349172
 (5.) $\begin{array}{r}98754 \\ \hline 592524\end{array}$
\qquad
(8.) $\begin{array}{r}21938 \\ 9\end{array}$
(7.) 64115928
(6.) $\begin{array}{r}12345678910 \\ 86419752370\end{array}$
$\frac{8}{512927424}$

197442
(9.) $\begin{array}{r}98765432144 \\ 10\end{array}$

987654321440
(10.) 5324786

11
(11.) 84532911 12

Ans. 1014394932
(12.) 1481000763

Aus. 4443002289
(14.) 110008191

Ans. 440032764
(16.) 17853440

5
Ans. 89267200
(13.). 150000000000 2

Ans. 300000000000
(15.) 987554321 2

Ans. 1975108642
(17.) 1888880000

5
Ans. 9444400000

When the multiplier exceeds 12 , work by

RULE II.

Multiply by each figure separately. First by the one at the right hand, then by the next, and so on, placing their respective products one under another, with the right hand figure of each product directly under that figure of the multiplior by which it is produced. Add these products together, and their amount will bo the answer.

EXAMPLES.

(32.)120 multiplicand. $\frac{14}{\text { multiplier. }}$	(33.)
$\frac{1451}{480}$	$\frac{16}{8706}$
$\frac{120}{1680}$	$\frac{1451}{23216}$

Note. When there are ciphers at the right of either the multiplicand or multiplier, multiply as in the preceding case, only omitting the ciphers. Then add together the several products, and place to the right of the amount as many ciphers as are to the right of both factors. -

EXAMPLES.
(42.) Minltiply $\frac{400}{\frac{200}{80000}}$ by 200 Answer 80000

Note. When the multiplier exceeds 12, and is the exact product of any 2 factors in the multiplication table, the operation may be performed thus:-Multiply the given sum by one of said factors, and that product by the other factor.

EXAMPLES.

(47.) Multiply $\begin{array}{rl}2851 & \text { by } \\ & 15 \\ 3 & 3 \text { times } 5 \text { are } 15\end{array}$

8559

Ans. 42765

48.	Multiply	476 by	25	Answer 11900
49.		7696	81	. 623376
50.		8976	48	. . . 430848
51.		87698.	72	6314256
52.		20784.	108	2244672
53.		81207	182	10719324
54.		47696	144	- 6868224
55.		75687	56	4238472
56		34075	. 36	1226700

PRACXICAL EXAMPIES.

57. A man has 25 stables, and in each stable there are five horses, how many has he in all? Ans. 125.
58. A man has four chests, and in each chest there are four dollars, how many dollars are there in all? Ans. 16.
59. Josiah has 30 apples, and James has six times that number, how many has James?

Ans. 180.
60. A man has three tracts of land, each containing 52 acres, how many acres has he in all?

Ans. 156.
61. A laborer hired himself for six years, at $\$ 75$ per year, how much did he receive for the six years' labor? Ans. $\$ 450$.
62. A certain potato field is 90 hills in length, and breadth 100, how many hills are there in the field? Ans: 9000.
63. A certain cornfield is 98 hills in length, and 10 in breadth, how many hills are there in the field? Ans. 980.
64. A man having built a house, found he had used 18,175 bricks, how many bricks will be necessary to build 14 houses of the samo size? Ans. 251450.

SUBTRACTION.

Subtraction is used to know the difference between a larger and smaller number.

RULE.

Sct down the larger number first, and under it with units under units, tens under tens, the smaller. Then begin at the right hand or unit's place, and take the lower figure from the one above it, if the upper figure be more than the lower, and set down the remainder. But if the upper figure be less than the lower, add 10 to the upper figure, take the lower figure from the amount, set down the remainder, and carry one to the next lower figure.

Proof. Add the lower number and the answer together, and their amount will equal the upper.

> EXAMPLES.

(1.) From961 Take $\frac{333}{}$ Ans. 631	(2.) $\frac{841}{\frac{579}{2}}$
Ans. 262	

3.	From 487
4.	875
5.	967
6.	1001
7.	9765
8.	87696
9.	45692
10	1000000
11.	10000

Tako 96	Ans. 391
302	573
351	616
487	514
1307	8458
1009	77605
300120	155572
1	999999
9	9991

12. Junes has 44 apples, and Joln 24. How many more has James than John?
13. Henry has 25 marbles, and Charles 8 . How many more has Henry than Charles? Ans. 17.
14. William holds Jesse's note for $\$ 99$. He has now paid $\$ 37$. How much does he still owe? Aus. $\$ 62$.
15. A merchant liad $\$ 1000$, but has lent 105. Horr much has he left? Ans. $\$ 895$.
16. I owe $\$ 560$. After I pay $\$ 69$, how much will I still owe? Ans. 8491.
17. A merchant had 180 yards of cloth, but sold 75 . How many had he left?

Ans. 105 yds .
18. A farmer had 999 acres of land, but has given his son 500 . How much lias he left? Ans. 499 acres.
19. There are two piles of bricks. In the greater pile there are 7896, and in the less 4389 . IIow many more are there in the greater pile thian in the less? Ans. 3507.
20. A merchant bought 4875 bushels of wheat, out of which he sold 2976 bushels. How many bushels had he left?

Ans. 1899 bushels.
21. I deposited in bank $\$ 1240$. I have sinco taken out \$1082. How much remains?

Ans. $\$ 158$.
22. A farmer had 5487 acres of land. He sold to A 325 , to 13750 , and to C 1000 acres. How many had he left?

Ans. 3412 acres.
23. I had 1200 pounds of porl, and. sold to one man 400 , to another 350, and to another 125. How much was left?

Ans. 325.
24. In a certain milk house there were 44 crocks of milk, but it so happened an unruly cat, broke in and destroyed 19 . How many were left? Ans. 25.
25. In a certain barrel are 94 gallons of wine. If 20 be drawn out, how many will be left?

Ans. 74.
26. A ship's crew consisted of 75 men, 21 of whom died at sea. How many arrived safe in port? Ans. 54 .
27. Λ tree had 647 apples on it, but 158 of them foll off. How many were there then remaining on the tree?

Ans. 489.
28. I saw 15 ladies; 8 returned back. How many passed on?

Ans. 7.
29. A general had an army of $43250 \mathrm{mcn} ; 15342$ of them deserted. How many remained? Ans. 27908.
30. A man starting a journey of 950 miles. When he may have gone 348 miles, how far has he still to go?

Ans. 602 miles.
31. A trader had 655 hogs; 99 of them were stolen; 24 died of sickness; he then sold 400. How many had he left?

SHORT DIVISION.

By Division we ascertain how often one number is contained in another. The number to be divided is called the dividend. The number to divide by is called the divisor. The number of times the dividend contains the divisor is called the quotient. If on dividing there be a remainder it is ealled the ovorplus.

RUTSE

Place the divisor to the left of the number you wish to divide. Consider how many times the number by which you wish to divide is contained in the first figure or figures of the number to be divided, and set down the result, noting whether there be any remainder. If there be no remainder, consider how often the divisor is contained in the next figure or figures; but if there be a remainder, conceive it to be placed to the left of the next figure; into which divide as before, and set down the result.

Proof. Multiply the quotient by the divisor; add in the remainder, if any. The prodact will equal the dividend.

EXAMPLES.

17. Divide 336 pounds of sugar equally among 3 boys?

Ans. 112.
18. Divide 1284 pounds of cotton equally among 4 girls?

Ans. 321.
19. Divide 8655 acres of land equally between 2 heirs? Ans. 4327 :
20 Bought 6 horses for 318 dollars. How much did each cost? Ans. 53 dollars.
21. John would divide 120 ears of corn among 10 horses. What was the share of each? Ans. 12.
22. Divide 1260 pounds of coffee among 12 women?

Ans. 105.
23. I would divide 8880 apples among 8 boys. What was the share of each?

Ans. 1110.

LONG DIVISION.

Long Division is used when the divisor exceeds 12.

RULE.

Place the divisor to the left of the dividend, as in short division. Consider how often the divisor is contained in the least number of figures into which it can be divided, and set down the result to the right of the dividend. Multiply the figures set at the right of the dividend by the divisor, and set the product under the figure in which you considered how often the divisor was contained. Subtract the product from the line above it, and set down what remains, which must always be less than the divisor. Bring down the next figure to the right of the remainder, and proceed as before, till all the figures of the dividend are brought down. When there are ciphers at the right of both factors, the operation may be shortened by cutting off an equal number of ciphers from each.

EXAMPLES.
(1.) Divisor $\begin{aligned}24) & 480 \text { dividend. Ans. } 20 . \\ & 48\end{aligned}$ (2.) $\begin{array}{r}25) 450 \\ \frac{25}{200} \\ \\ \\ \hline 200\end{array}$

3.	Divide	456	by 21	Ans. 21
4.	361	19	19	Remainder 15
5.	958	18	53	4
6.	12350	15	823	5
7.	1475	28	52	19
8.	4277	31	137	30
9.	25757	37	696	5
10.	256976	41	6267	29
11.	997816	59	16912	8
12.	4697680424	125	37581443	49
13.	9924000	54000	183	42
14.	74000000	3700	20000	

15. Divide 80906000	by 180 Ans. 449477 Remainder. 14			
16.	555555555	55555	10000	5555
17.	3875642	7.898	490	5622
18.	98765432	1234	80036	1008
19.	12486240	87654	142	39372
20.	57289761	7569	7569	
21.	99607765	27000	3689	4765
22.	15463420	1600	9664	1020

PRACTICAL EXAMPLES.

23. If 1860 pounds of beef be divided equally among 60 men, what will be the share of each? Ans. 31 pounds.
24. 4556 pounds of salt are to be equally divided among an arny of 44 men . What will be the share of each man? Ans. $103+24$.
25. 4006 pounds of malt are to be divided equally among an army of 8.4 men. What will be the share of each man? Ans. $47+58$
26. 1600 bushels of corn are to be divided equally among 40 men, how much is that a picce?

Ans. 40.
27. A regiment consisting of 500 men are allowed 1000 pounds of pork per day. How much is each man's part?

Ans. 2 lb .
28. If a field of 32 acres produce 1920 bushels of corn, how much is that per acre? Ans. 60 bushels.
29. A prize of $\$ 25526$ is to be equally divided among 100 men. What will be each man's part? Ans. $\$ 255+26$.
30. How many horses, at $\$ 30$ per head, may be bought for $\$ 38040$?

Aus. 1268.
31. If a field containing 25 acres produces 375 bushels of wheat, how much does one acre produce?

Ans. 15 bushels.
. 32. 96 persons are to have 480 pounds of beef divided equally among then. What is the share of each?

Ans. 5 pounds.
33. 144 men are to pay equal shares of a debt which amounts to $\$ 144000$. How much must cach man advance to make up the sum?

Ans. $\$ 100$.
34. If $\$ 2400$ be equally divided among 16 persons, what will be the share of cach?

Ans. $\$ 150$.
35. A man gave 35 reapers $\$ 385$, each to have au equar part. How much did each man receive? Ans. \$11.
36. A man travelled 560 miles in 40 days. How far was that in one day? Ans. 14 miles.
37. A boy hired 60 days, for which he was to receive $\$ 120$. How much was one day's labor worth? Ans. \$2.
38. When I have labored 60 days for the sum of $\$ 180$, how much is one day's labor worth at that rate? Ans. $\$ 3$.
eXAMPLES TO TRY THE STUDENT IN ORDER THAT HE MAY understand the foregoina rules, viz: Addition, MULTIPLICATION, SUBTRACTION AND DIVISION.
39. John had 40 apples. He gave his brother 10 ; kept 10 ; and divided the rest equally between his two sisters. How many had each sister?

Ans. 10.
40. John owes James $\$ 50$. Peter owes him $\$ 80$. David owes him $\$ 105$. Samuel \$91. Eli \$7. And Joseph $\$ 40$. After James collects the above debts and pays \$99, which he owes, how much will he have?

Ans. \$274.
41. A farmer has three tracts of land, each containing 20 acres; buys an adjoining one of 90 acres. If he sell 40 acres, and divide the rest equally between his two sons; what will be the share of each?

Ans. 55.
42. A person has 50 sheep; buys from his neighbor 50 more; he then sells 25 to the butcher. How many has he left?

Ans. 75.
43. A gentleman dying left $\$ 2500$, to be divided as folinws: To his son 1500 dollars, and the rest equally between his two daughters. How much did each daughter receive? Ans. 500 dollars.
44. A person went to collect money, and received of one man 800 dollars; of another 50 ; of another 18 ; of another 440, and of another 25. After which, by gambling, he lost 103 dollars. How much had he left? Ans. 1230 dollars.
45. Suppose a certain field be 140 hills in length, and 124 in breadth. Admit there be two stalks in every hill, and on each stalk an ear of corn, how many bushels are there in the field, suppose 100 cars to make a bushel?

Ans. 347 bushels +20 .
46. Bought 25 yards of fine cloth for 250 dollars. How much was it per yard?

Ans. 10 dollars.
47. Bought 16 loads of hay at 4 dollars per load. What did it amount to?

Ans. 64 dollars.
48. How many yards of cloth, at 6 dollars per yard, can I have for 90 dollars? Ans. 15 yards. 49. How many pair of gloves, at 1 dollar per pair, can I have for 4 dollars?

TABLES
 of money, Weights, and measures.

FEDERAL MONEY.

The denominations are,
10 Mills (marked m.) makc 1 Cent, ct.
10 Cents 1 Dime, d.
10 Dimes (or 100 cts.) . . 1 Dollar, D. or $\$$

- 10 Dollars 1 Eagle, E.

AVOIRDUPOIS WEIGHT.

The denominations are,
16 Drams (marked dr.) makc 1 Ounce, oz.
16 Ounces 1 Pound, lb.
28 Pounds 1 Quarter, qu:
4 Quarters (or 112 lbs .) . 1 Hundred weight, owt.
20 Hundred weight . . 1 Ton, T.
TROY WEIGHT.
The denominations are,

24 Crains	make 1 Pennyweight, divt.		
20 Pennywoights	\cdot	.	1 Ounce,
12 Ounces.	.	.	1 Pound,
	$l b$.		

APOTHECARIES WEIGHT.

The deuominations are,
20 Grain (gr.) make 1 Scruple, 9
5 Scruples 1 Dram, 3
8 Drams 1 Ounce, 3
12 Ounces 1 Pound, it
Note. $13 y$ Avoirlupois Weight are weighed all things of a coarse, drossy nature ; and all metals, but gold or silver, by Troy Weight. Jewrels, gold, silver, and liquors, are weighed by Apothecaries Weight. Apothecaries mix their medicine by Troy, but buy and sell by Aroirdupois Weight.

LONG MEASURE.

The denominations are,

360 Degrees the circumference of the Harth.

LAND OR SQUARE MEASURE.

The denominations are,
144 Scquare inches (in.) make 1 Syuare foot, . . fl.
9 Square fcet 1 Square yard, . . yd .
$30 \frac{1}{1}$ Square yards . . . Rod, pole, or perch, P.
40 Square perches 1 Rood, . . . R.
4 Roods 1 Acre, . . . A.
10 Acres 1 Squarc Mile, . . M.

CLOTH MEASURE.

21.1 Inches (in.)	make	1 Nail,
4 Nails.		1 Quarter of
4 Quarters.		1 Jard,
\% Quarters		1 Ell Flemish,
${ }_{5}^{5}$ Quarters		1 Ell Enerlish,
$6{ }_{6}$ Quarters		1 Fill Frouch,

LIQUID MEASURK.

The denominations are,
4 Gills (gi.) malte 1 Pint, . . . $1^{\prime \prime}$
\therefore Pint. 1 Quart, . . . gt.
I Quarts 1 Ciallon, . . . gul.
813 Gallums
1 Barrel, bar.
($5: 3$ G Gallons
1 Inogsheard, . . hhd:
2 Hogsheads
1 Pipe or butt, . P. or B.
2 Pipes (252 gal. of 4 hhds.) 1 Ton,

DRY MEASt RE.

The denominations are,
2 Pints (pt.) make 1 Quart, $q t$. 8 Quarts 1 Peck, pe. 4 Pecks 1 Bushel, bu. Note. Long Measure is used for measuring lengths, distauces, de. Land or Square Measure is used for measuring lands, \&c. Cloth Mcasure is used for measuring cloth, tape, \&c. Liquid Measure is used for measuring vinegar, rum, brandy, wine, cider, perry, oil, \&c. And Dry Measure is used for measuring grain, fruit, salt, \&c.

TIME.

The denominations are,
60 Seconds (sec.) make 1 Minute, min.
60 Minutes 1 Hour, $h r$.
24 Hours 1 Day, da.
7 Days 1 Week, \quad w.
52 Weeks, 1 day and 6 hours, or $\} 1$ Year, $\quad y$.

13 Lunar months 1 Year,
The following is a statement of the number of days in cach of the twelve calender months:

Thirty days hath September, April, June and Novenber; All the rest have thirty-one, Except the second month alone, Which has but twenty-sight in fine, Till leap year gives it twenty-nine.

COMPOUND ADDITION.

Compound Addition consists of several denominations.

RULF.

Set the numbers of like denomination under each other, learing a space between. Then begin at the right hand column, and add, as in Simple Addition. Divide the amount by as many as will make one of tha next greater. If there be any remainder, set it down under the column auded. If no remainder, set down a cipher. Carry the quotient pro-
duced by dividing, to the next higher donomination, and so proceed.

Proor. As in Siosple Addition.
Notc. In adding fractions, count $\frac{1}{4}$ one, $\frac{7}{8}$ two, $\frac{3}{4}$ three, becruse four fourths make a whole one. Or if thirds, count $\frac{1}{8}$ one, $\frac{a}{3}$ two; because three thirds make a whole one.

EXAMPIES.

10. Laid out in market for cloth 12 dollars 50 cents; for tobacco 20 dollars 75 cents; for salt 13 dollars 50 cents; for calico 40 collams ; for cimnamon 18 dollars $29 \frac{3}{4}$ cents; and for sugar 90 dollars 22 cents. How much did the whole exvernt to?
11. I have bought 4 yards of lace for 5 dullars; a vei! for 8 dollars 50 cents; 9 yards of silk for 18 dollars $87 \frac{1}{2}$ cents; 12 yards of ribbon for 1 dollar $18 \frac{3}{4}$ cents; 19 yards of linen for 14 dollars 50 cents; 2 pair of gloves for $87 \frac{1}{2}$ cents; 3 pieces of domestic for 5 dollars $37 \frac{1}{2}$ cents; 9 yards of lace for 7 dollars $87 \frac{1}{2}$ cents, and 6 yards of cambrick for 20 dollars. What did the whole amount to?

$$
\text { Ans. } 82 \text { dollars } 18 \frac{3}{4} \text { cents. }
$$

12. Bought of Buckner Willingham, cloth for a coat, for 25 dollars; a pair of pantalons for 12 dollars 50 cents; a vest for 6 dollars $12 \frac{1}{2}$ cents; a hat for 8 dollars 50 cents ; a shirt for 2 dollars; a cravat for 1 dollar; a pair of socks for 1 dollar 50 cents; a pair of boots for 7 dollars 564 cents; a pair of slips for 1 dollar 25 cents; a pair of suspenders for 75 cents; a pair of gloves for 1 dollar; a handkercliief for 1 dollar; and a greal coat for 35 dollars. What did the whole suit cost?

Ans. 103 dollars $18 \frac{3}{4}$ cents.
13. A gentleman in building a fine house, finds his plank costs 950 dollars; his workmen will have 1000 dollars; the stone will cost 260 dollars; the window glass 40 dollars, boarding his hands 600 dollars. What is the cost of the whole?

Ans. 2850 dollars.
14. My agent has bought in market a turkey for 1 dollar $87 \frac{1}{2}$ cents; a pair of shoes for 1 dollar $68 \frac{3}{4}$ conts; a ham of pork for 433 cents; a quarter of venison for 1 dollar $37 \frac{1}{2}$ cents; a picce of beef for $93 \frac{3}{4}$ cents; a hog for $56 \frac{3}{4}$ cents; a quart of strawberries for $37 \frac{1}{2}$ cents; some lard for $31 \frac{1}{4}$ cents; and a peck of potatoes for 1212 cents. What did the whole amount to? Ans. 7 dollars $68 \frac{3}{4}$ cents.
15. A man desirous to set up a store, laid out monies as follaws, viz: for cloth 650 dollars 91 cents; for iron 220 dollars; for calicoes, \&cc, 1200 dollars 5 cents; sugar 90 dollars $40 \frac{1}{2}$ cents; coffee 553 dollars $99 \frac{3}{4}$ cents; mails 80 dollars; books 1000 dollars ink-stands 40 dollars; slates 60 dollars; leather 100 dollars; iobacco 96 dollars; blankets 205 dollars 1 cent; cinnamon 13 dollars 51 cents; oil 29 dollars 19 cents; steel 30 doiliars $33 \frac{1}{4}$ cents; molasses 16 dollars; hats 109 dollars $4 \frac{1}{2}$ cents; castings 400 dollars 55 cents; thread 75 dollars $71 \frac{1}{4}$ cents; and for rum 227 dollars 37 tents. What is the cost of the whole? Ans. 5204 dollars 83 centr.

AVOIRDUPOIS WEIGHT.

(16.)	T.	cwt.	qr.	l)	(17.)	T.	cwl.	q r.	lb.	az
	2	14		b		3	2	1.	5	6
	4	11	3			4	12	3	7	. 8
	5	6	2	$1!$		5	6	2	0	2
	1		1	(4	19	0	27	15

Ans. $13 \quad 16 \quad 0 \quad 9 \quad$ Ans. $18 \quad 0 \quad 3 \quad 12 \quad 15$
18. Add 12t. 16 cwt . 1 qr . 191 lb . 15 oz . 114t. 10 cwt . $2 q \mathrm{qr}$. 27lb. 40 oz. 13dr. 72 t .4 ew . 2 qr. 241 lb . 14oz. 3dr. 176 t . 15 cwt . 3qr. 4lb. 15oz. 11dr. Ans. 376t. 7cwt. 2qr. 21lb. 1oz. 11dr
19. Add 139t. 19cwt. 3qr. 181b. 13oz. 10dr. 1754t. 10cwt.
 Ans. 1922t. 6 cwt . 2 qr. 17 llb .8 oz .8 dr . 20. Add 20 t . 2 cwt . 2 qr . 12 t . 15 t . 2 qr . and 2 t .

Ans. 49t. 3cwt.
TROY WEIGHT.

(21.)			dwt	(22.)	lb. oz. cwt. gr.			
	4	5	${ }^{6}$		185	2	19	20
	8	9	13		56	9	15	6
	1	4	7		1472	11	2	17
	5	8	11		385	0	8	5
	1	3	2		10	8	7	12
	21	6	19		2110	8	13	12

23. Add 7 lb b. 9 zz .11 dwt . 22 gr . 16 lb . 4 oz . 18 dwt .6 gr . 163 lb . 7 oz .12 dwt .18 gr .17 lb . 13 dwt .

Ans. 2041b. 10 oz .15 dwt .22 gr .
34. Add 101b. 5oz. 2dwt. 10gr. 5lb. 10oz. 10 dwt . 2 gr . 22 lb .9 oz .15 dwt . 1 gr .8 oz .10 gr .3 lb .4 oz .2 dwt .1 gr.

Ans. 431 lb . 1 oz. 10 dwt.
25. Add 12lb. 10oz. 2dwt. 3gr. 4lb. 50z. 8dwt. 19gr. 131b. 7oz. 11dwt.

Ans. 301b. 11oz. 1dwt. 22 gr .
APOTHECARIES' WEIGHT.

29. Add 16 lb . 1oz. 1 dr . 2 sc .12 gr .175 lb .10 oz .5 dr .10 gr . 320 lb .3 zz .1 dr . 15 gr .11 oz . 2 dr . 3sc.

Ans. 513lb. 2oz. 3dr. 0sc. 17 gr . 30. Add 18 lb . 11 oz .7 dr .1 sc .19 gr .126 lb .7 oz .5 dr .2 sc. 15 gr .96 lb .1 dr .3 gr.

Ans. 241 lb .7 oz .6 dr .1 sc. 17 gr .

LONG MEASURE.

(31.)	L.	M.	fur.	\boldsymbol{P}	(32.)	$y d$.	f ft.	in.
2	4	7	10	2	1	4		
4	6	5	1	5	2	7		
1	3	2	20	6	0	11		
75	9	8	25	9	3	5		
256	0	1	16	1	1	1		
Ans. 346	1	0	32		26	0	4	

33. Add 500L. 1M. 2fur. 20P. 1yd. 2ft. 4in. 14P. 1yd. 3 in .1 M .2 fur .29 P .10 in .4 fur. 2fur. 10 in .1 yd .2 ft .3 in . Ans. 501 L .0 M .3 fur. 23P. 5 yd . 0 ft .6 in.
3t. Add 462L. 1M. 7 fur. 29P. 1yd. 1ft. 10in. 11P. 1ft. $10 \mathrm{in} . \leq \mathrm{L} .1 \mathrm{M} .2$ fur. 28 P .1 yd .2 ft .9 in .13 P .

Ans. 467 L .3 fur. 1P. 4yd. 5 in .

CLOTH MEASURE.

| (35.) | $y d$. | $q r . n a$. | (36.) $y d$. | $q r . n a$. | (37.) | E.E. q r. na. | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 3 | 4 | 1 | 1 | 1 | 19 | 3 | 2 |
| 5 | 1 | 3 | 2 | 2 | 2 | 4 | 2 | 3 |
| 76 | 2 | 1 | 3 | 3 | 3 | 27 | 3 | 1 |
| 21 | 1 | 2 | 5 | 4 | 2 | 14 | 1 | 4 |
| 106 | 1 | 2 | 14 | 0 | 0 | 66 | 1 | 2 |

38. Add 19 yd. 2 qr. $3 n a .14 y d .2 q r .32 y d .2 n a .3 q r .1 n a$ 142 yd . 3 qr. 2 na.

Ans. 210 yds .
39. Add 20E.F. 2qr. 3na. 401.E.F. 3qr. 2na. 126E.F. 5qr. 1na. 782E.F.

Ans. 1330 E.F. $5 q$ r. 2 na. 40. Add 2E.Fl. 1qr. 3na. 1E. Fl. 1qr. 1na. 3qr.

Ans. 5E.FI.
$\left.\begin{array}{rrrrrrrrr}\text { (41.) } A . & I R & f & (42 .) & R & R & P & (43 .) & R\end{array}\right) R$.

47 Add B26A 2R. 20I. 908A. 1T. 39P. 173A. 3R.
 4!. Add !09A. 3R. 331. 1821 A. 14P. 25A. 3R. 19P. 100A. Il. 11P', and 2000A. Ans. 499° A. 1R. 37 P.

LIQUID MRNSURE.

45	$\ddot{1}$	49	0	0	1	1	0
75	3	2	3	17	2	0	2
31	2	55	0	21	0	1	0
87	$\ddot{3}$	-5	0	0	0	0	1
304	3	51		5	58	0	1

4S. Aild 24 bar. 1 gal. $1 q \mathrm{t} .1 \mathrm{pt}$.1 mi .13 gal. $2 q t .0 \mathrm{pt}$.3 gi.

Ans. 31 bar. 19 gal . 2 qt . 1 pt . 0 gi .
19. Aud 385 hh . 47 gral. $3 q \mathrm{tt}$ 1pt. 27 hhd .36 gal .2 qt
 Ans. T09hhd. 18 gal. Oçt. $0 \mathrm{pt}$.2 gi .

VRY MEASURは,

(50.) but. pe.ģt. (51.) bu. pe. qt. pt. (5)...) bu. pe. qt. pt.
 53. 1 ddd 141 bu. 3pe. 2 qt .1 pt . 1 pe . 2qt. 3qt. 1pt. $462 \mathrm{bu} .$. 8 pe. 1 pt. 72 hu. $5 q$ t. 1 pt . Ans. 680bu. Ope. 6qt. Opt.
54. Add 60bu. 1pe. 1qt. 1pt. 41 bu .3 pe. 4 qt. 0 pt. 500 bu . 2 pe. 7 qt. 1 pt. 183 bu .0 pe. $5 q \mathrm{t} .0 \mathrm{pt}$. .

Aus. 786bu. Ope. 2qt. Opt.
TIME.
(55.) Y. M. (56.) w. da. lur. min. (5t.) da. Itr. min. sec.

80	5	3	2	9	20	4	23	45	30
12	3	1	5	10	30	1	12	14	16
15	7	2	1	9	25	3	19	17	22
20	8	3	3	15	57	2	00	00	10
		12	5	21	12		12	7	17
128	11	18							

58. Add 25 y 7 m .12 y .3 m .96 y .10 m .26 y .9 m . 11 y . 7 m . and 9 y .

APDiLICATION.

59. Bought potatoes to the amount of $\$ 3750$ cts. ; corn to the amonent of $\$ 1921$ cts.; wheat to the amount of $\$ 81$ $37 \frac{1}{2}$ cts. What is the cost of tho whole?

Ans. $\$ 13808 \frac{3}{4}$ centã.
60. Bourght pepper to the ampunt of $\$ 35875$ cents ; oil to the amount of $\$ 10506 \frac{1}{1}$ cents; molasses to the amount of $\$ 4433$ cis. What did the whole amount to?

Ans. $\$ 46825$ cents.
61. Bougltt 6 pieces of linen; the frist contains 57 yds . $2 q \mathrm{r} . ;$ the second 29 yds .3 qr .2 na . ; the third 45 yds .1 qr . ; the fourth $32 \mathrm{yds} 3 q$.r . Ina.; and the other two each 38 yd .s. ?qr. What number of yards are there in the whole?

Ans. 242 y ds. 1 qr. 3 na.
62: There are 4 bags of corn; the first contains 2 hu. 2 pe. ; the second 3 bu . 3pe. 5qt.; the third 3bu. Ipe. Int.; the fourth 2 bur. and 4 q t . How much is in the four bags?

Ans. 11lut. Spe. Iqt.
63. A man has three farms ; the furst contains $14: 2 \mathrm{a}$. 2r. ; the sccond 32a. Br. 12p. $\%$ the third 108a. Br. 18p. Horr many acres are there in all? Ans. D8ta. 0r. 30 n ?
64. Thicre are 3 picces of tape; the first measures $15 y d$ s. Bqr. ; the second 18yds. 1qr. 2na.; the third 25yds. 3qr. Ena. How many yards are there in the three pieces? Ans. $60 y \mathrm{yd}$.
65. If a man ou a journey, travel the furst day 43 m . Sfur., the second 29 m .34 p ., the third 57 m . 2 fur. 32 p ., and the fourth 12 m . 3fur. 18p., how many miles did he travel in the four days?

Ans. 142 m .2 fur. 4 p .
66. Suppose a man to have, in one barrel 40 bu .3 pe . 1qt. of wheat, in another $50 \mathrm{bu} .6 q \mathrm{t}$. 1pt., in another 41 bu .2 pe ., in another 64 bu .5 qt ., in another $6 \mathrm{bu} .1 \mathrm{pe} .$, in another 19 bu . 1 pe. $2 q$ t. 1 pt., and in another 65bu. 6qt. $2 p t$. , how many bushels are there in the whole?:

Ans. 287 bu .1 pe. 6 t. 0 pt.
67. Suppose a man has in one trunk 487lb. 10oz. 18dwt. 22 gr ., in another 500 lb . 8oz. 11dwt. 10 gr ., in another 234 lb . 11 oz .10 dwt . 16 gr ., how much has he in all?

Ans. 1223lb. 7oz. 1dwt. 0 gr .
68. A physician received from Baltimore three boses of medicine, which cost him as follows, viz. ; the first box $\$ 21$ $32 \frac{1}{2}$ cts.; the second $\$ 1937 \frac{1}{2}$ cts.; the third $\$ 4017 \frac{3}{4}$ cts. What did the whole cost?

Ans. \$80 87 $\frac{1}{3}$ cts.

COMPOUND MULTIPLICATION.

When the multiplier does not exceed 12, work by fULE I.
Sct down the number to be multiplied, and place the multiplier under its right hand denomination; and in multiplying observe the same rules for carrying from one denomination to another, as in Compound Addition.

Note. If there be $\frac{1}{4}$ in the sum, divide the multiplier by $4 ;$ a $\frac{1}{2}$ by $2 ; \frac{3}{4}$ by 2 and $4 ;$ a $\frac{1}{3}$ by 3 ; or if there be a fraction in the multiplier, divide the sum in like manner, and add oncir amount to the sum produced by the whole number.

EXAMPLES.
FEDERAL MONEY.

(1.) $\begin{array}{r}\$ \\ 2\end{array}$	$\begin{gathered} \text { cts. } \\ 50 \\ 2 \end{gathered}$	(2.) $\$$	cts. $56 \frac{1}{4}$ 4	(3.) $\$$	cts. $12 \frac{1}{2}$ 6
Ans. 5	00	Ans. 50	25	Ans. 132	75
$\begin{array}{r} \text { (4.) } \$ \\ 26 \end{array}$	cts.	(5.) 8	cts.	(6.) ${ }_{125}^{\$}$	cts.
	3		5		7
Ans. 78	564	Ans. 293	$93 \frac{3}{4}$	Ans. 875	$43{ }^{3}$

AVOIRDUPOIS WEIGHT.

(12.) T. cwt.qr.7b. (13.)'T.cwt.qr.lb.oz.dr. (14.) qr.lb.oz.dr.

15. Bought cight bags of sugar, each weighing 2cwt. 1q. 41 b . What is the weight of the whole?

Ans. 18cwt. 1qr. 41 lb .
16. Multiply 4 cwt. $3 q$ r. 17 lb . by 11 .

Ans. $53 \mathrm{cwt}$.3 ar . 191 h .
TROY WEIGHT.
(17.) 7b. oz. dwot. (18.) lb. oz. dwt. gr. (19.) lb. oz. dwt. gr.

20. Multiply $96 \mathrm{lb}, ~ 9 \mathrm{oz}$. 11 dwt . 10 gr. by 8 .

Ans. 7741 lb .40 z .11 dwt . 8 gr .
APOTHECARIES' WEIGHT.

24. Multiply 671b. 6oz. 3dr. 2sc. by 7.

Ans. 472 lb .9 oz . 1 dr . 2 sc .
25. There are 9 parcels, each weighing 1091b. 7 oz . Gdr. 2 sc . 2 gr . what is their weight?

Ans. 9861 b . 10 oz. 4 dr . 0 sc. 18 gr

LONG MEASURE.

28. Multiply 14M. 5Fur. 39P. by 11.

Ans. 162M. 1 Fur. 29p.
29. Multiply 1L. 2M. 3Fur. 1P. 1yd. 1ft. 2in. by 2.

Ans. 3L. 1M. 6Fur. 2P. 2yd. 2ft. 4 in .

CLOTF MEASURE.

(30.) yd. qr.na. (31.) E.E. qr.na. (32.) E.F. qr.na.

33. If 20 yd . 2 qr. 3 na . be multiplied by 7 , what number of yards will there be? Ans. $144 y d .3 q r .1$ na.

LAND OR SQUARE MFASURF.

37. Multiply 40A. 1R. 19P. by 12. Ans. $48+$ A. 1R. 28 P .
38. How many acres will 7 tcams plough in one day, allowing them 1 A .3 R . 39 P . each? Ans. 18A. 3R. 33 P .

LIQUID MEASURE.

42. Multiply 2 T .1 p .40 gal . $3 q \mathrm{qt} .1 \mathrm{pt}$. by 6 .

Ans. 151. 1p. ihhd. 56 gal . ${ }^{\prime} \mathrm{qt}$ t.
43. Multiply 4 'T. 1hhd. 10 gal . 1pt. by 10.

Ans. 42 T. Shhd S8gal. 1qt.

DRY MEASURE.

(44.) bu. pe. qt. pt. | 180 | 5 | 2 | 1 |
| :---: | ---: | ---: | ---: |
| | | 88 | |
| 1450 | 2 | 4 | 0 |

(45.)	bu.	pc.	$q t$.	$p t$
12	2	7	1	
38	0	6	1	

46. Multiply 120 bu. 3pe. Oqt. 2 pt. by 4. Aus. 483bu. 0pe. 4 qqt. 0 pt. 47. Multiply 189 bu. 3pe. Tqut. by 7.

$$
\text { Ans. } 1329 \text { bu. } 3 \text { pe. } 1 \mathrm{qt} \text {. }
$$

48. Multiply 98 bu . 0 pe. 5 qt . 1 pt. by 9 .

Ans. 883bu. 2pe. 1qt. 1 pt.
TIME.

55. Multiply 49Y. 9M. by 7.
53. Multiply 19Y. 29 Da . by 9 .

Ans. 348Y. 3M1. Ans. 171Y. 261 Da .
When the multiplier is more than twelve, and is the exact product of two factors in the multiplication table, work by rule 2. Multiply the given sum by one of the faction; then multiply that product hy the other factor.

EXAMPLES.

\& cts. $\mathrm{m} . \quad$ \& ds.
(51.) Multiply $66 \quad 37 \quad 56$ liy 36 (55.) $5 \quad 09$ by 11
$398 \quad 25 \quad 0$
6

$$
\begin{array}{r}
10 \quad 18 \\
\hline \quad 8 \\
\hline 81 \quad 4
\end{array}
$$

An3. $2339 \quad 50 \quad 0$

	\$	Cls.				3	cts.	m
57.	66	$37 \frac{1}{3}$	ky	36	Ans.	2389	50	0
59	12	183		96		1170	00	0
60	22	12	5	42		929	25	0
61.	26	18	7	4.8		1256	97	6
2	75	21	9	81		6095	10	9

When the multiplier is not the exact product of any two factors in the multiplication table, work by rule 3 . Use the two factors whose product comes nearest the multiplier; then multiply the given sum by the number which supplies the deficiency, and add its product to the sum produced by the two factors.

EXAMPLES.

*Ten times 5 make 50 , and 2 supplies the deficiency.

78. 4 m . 6fur. 21p. by 87 Ans. 418 m . 7fur. 27p. 79. 50 a . 2 r . 5 p . $\quad 34$ 1718a. Or. 10 p . 80. 60bu. 2pe. 5 qt. $43 \quad 2608$ bu. 0 pe. $7 \mathrm{qt}$. $81.2 \mathrm{hhd} .41 \mathrm{gal} .2 \mathrm{q} .1 \mathrm{pt} .17 \quad 45 \mathrm{hhd} .14 \mathrm{gal}$. $2 \mathrm{qt}$.1 pt .

When the multiplier is greater than the product of any two factors in the multiplication table, worl by rule 4.

Multiply continually by as many tens, less one, as there are figures in the multiplier. Theu multiply the product of the last ton by the left hand figure of the multiplier. If greater than 1 , again multiply the given sum by the units figure of the multiplier; the product of the first ton by the tens figure; the product of the second ten, if any, by the hundreds figure, \&c. Then add the products of these several figures together for the answer.

APPLICATION.
93. Sold 125 bushels of wheat at 26 conts per bushel. What did it amount to?

Ans. \$27 50 cents.
94. Sold 60 bushels of apples at 15 cents per bushel. What did they amount to?

Ans. 89.
95. If I buy 13 yards of cloth at 10 cents per yard, what must I pay?

Ane. \$1 30 centa.
96. When one cord of moud cost $\frac{10}{} 10$ conte, what will be the price of nias cords at the same rate?

Ans. $\$ 1890$ cents.
97. Sold 5ewt of tobaceo at $\$ 1250$ cents per cwrt., what did the whole ambunt to? Aus. $\$ 6250$ conts.

100. Bought 24 bushels of wheat at $\$ 112 \frac{7}{2}$ ceuts per bushel. What did the whole amount to? Aus. $\$ 27$.
101. Bought 44 bu . of corn at $37 \frac{1}{2}$ cents per bushel. What dil the whole cost?

Ans. $\$ 1650$ cents.
102. A merchant bought two pieces of linen, the one contained 38 yards and the other 26 yards. What did the two pieces coist at $\$ 887 \frac{1}{3}$ cents per yard? Aus. 248.
103. What cost a box of sugar weighing 106 lbs , at $15 \frac{1}{4}$ cents, per pound?

Ans. $1616 \frac{1}{2}$ cts.
104. What will 131 galtons of molasses come to at 40 cents per gallon?

Ans. $\$ 40$.
105. How nuch will 25 bushels of oats come to at 15 ceuts per bushel?

Ans. \$3 75 cents.

COMPOUND SUB'IRAC'ION.

RUTEE.

Place the numbers under each other which are of the same denomination: the less always being under the greater.

Begin at the right hand figure, and if it be larger than the oue above it, consider the upper one as having as many added to it as make one of the next greater denomination. Subtract the lower from the upper figure thus increased; and set down the remainder, observing to carry one to be added to the next higher denomination, and sn proceed.

Proof as in Simple Subtraction.
EXAMPLES.
REDERAL MONEY.

10. I owed $\$ 55922$ cents, but have paid $\$ 14950$ cts How much remains unpaid? Ans. $\$ 410724$ cente. 11. .Lent a man $\$ 400$; he now returns $\$ 21112 \frac{1}{2}$ centa. How much does he still owe? Ans. $\$ 18887 \frac{1}{3}$ cents. 12. A merchant had in his desk $\$ 50087 \frac{1}{\frac{1}{2}}$ cents, but drew out $\$ 12093$ cts. to pay a debt. How much had he left in the desk?

Ans. 379 dollars 941 cents.
13. I had 303 dollars $6 \pm$ cents, but lent 9 dollara 91 cents. How much had I left? Ans. 293 dollars 15 cents. 14. From $\$ 1000$ take 1 mill. Ans. 899999 cts 9 m .

AVOIRDUPOIS WEIGHT.

T. cut.	qr.	16.	
16.) 28	3	1	27
13	1	0	19
15	2	1	08

17. From 14t. 10 cwt . 2qr. 161b, take 111b.

Ans. 14 t . 10 cirt. $2 q \mathrm{r} .51 \mathrm{~b}$.
18. Bcught 400 cwt . of sugar, but have since sold 2 cwt . 3qr. 14 lb . What quantity remains?

Ans. 397 cwt . Oqr. 141 lb .

TROY WEIGHT.

21. From 27lb. 9oz. 16dwt. take 19 dwt .

Ans. 27 lb .8 za. 17 dwt .
22. Subtract 11 b . 0 oz. 17 dwt . 15 gr . from 151 lb . 9 oz . 18dwt. 8 gr. Ans. 141 lb .9 oz .0 dwt .17 gr .

APOTHECARIES' WEIGHT.

CLOTH MEASURE.

\(\begin{array}{r}

(26.)\)| yds. |
| ---: |
| 160 |
| r. |
| 3 |
| 37 |
| 37 |
| 3 | 1

\hline\end{array}

$y d s$.	$q r$.	$n a$.	
(27.)	969	2	1
786	1	2	
183	0	3	

29. Bought 27 yards of domestic, but have since sold 9yds. 3qr. How much remains? Ans. 17 yds . 1 qr.

E.E. qr.na.				E.Fr.qr.na.				E.E			
	.) 44			(81.)							
	23	3	1		43	3	2		19	3	
n	s. 21	0	1		18	5	1		8	1	

LONG MEASURE.

L. JI. fur.p. ycl.in.ft.
(33.) $6 \begin{array}{rlllll}6 & 2 & 5 & 9 & 4 & 2 \\ 4 & 6 \\ 4 & 2 & 8 & 1 & 3 & 7\end{array}$

Ans. $1 \quad 2 \quad 3112111$

35. I'wo men travelling the same road; one travels at the rate of 27 m . 2 fur. 39 p .; the other at the rate of 19 m . 1fur. 17p. At night how fir are they distant?

Ans. 8m. 1fur. 22 p.

LAND OR SQUARE MEASURE.

A. R. P.	R. P	A. R. P.	
(36.) 96216	640312	06	50 B 19
87318	11443	74.24	131
Ans. 8238	52539	21214	3721

40. Λ father dying left his son Joseph 200a. 2 r .20 p ., and to James 180a. 3r. 39 p . What is the difference ir their shares?

LIQUID MEASURE.

	T. hkd.gal. gt. pt.							
(41.)	8	2		,				
	3	2		14				

$\left.\begin{array}{r}\text { T. } \\ \text { (42.) } \\ 186 \\ 186 \\ 96 \\ 9\end{array}\right)$

Ans. $5 \quad 0 \quad 27 \quad 3 \quad 1$
$\begin{array}{llll}90 & 1 & 0 & 3\end{array}$
43. A person bought 4 hihd. 25 gal. of cider; - he has since sold 2hhd. 15gal. 3qt. Ipt. How much has he re maining? 2gal. 2qt. Ipt. how nuch will remain?

Ans. 1hhd. 1 gal. 1qt. 0p.
DRI NEASURE.

48. From 719bu. Spe. 5qt. take 533bu. 2pe. Gqt.

Ans. 186bu. Ope. Ïqt.
49. Faised 189 bu .1 pe. 7 qt . 1 pt . of corn; have siuce sold 167bu. 2pe. 1qt.; what quantity have I remaining?

Aus. 21 bu .3 pe . 6qt. 1pt.
TIME.
53. Subtract $125 y$. 9 m . from 450 y .11 m .

Ans. $325 y .2 \mathrm{~m}$.
51. Take 36 da . 14 hr . 30 min . and 25 see. from 44 da . 1 hr . 48 min . and 58 sec. Ans. Tda. 11 hr . 18 min . 33 sec.
Fote. The interval or space of time between two given dates is thus found: Set down the greater date, and under it the less: Begin with the days. If the upper number of days be greater thian the lower, subtract the lower from it, and set down the remainder. But if the lower number be greater, add as many days to the upper as make a month of the lower, and subtract the lower therefrom; then earry one to the months of the less date, and subtract as before, and so proceed.

EXAMPLES.

55. Abijah was korn on the 15 th of November, 1807, and Josiah on the 16th of July, 1811. What is the differcnce in their ages?

Y.	M.	de.
Ans.	7^{*} 1811 1807	11
	15	15

[^0]57. William was born on the 11th day of August, 1813, and John on the 5th day of July, 1827. How much older is William than John? Ans. 13y. 10m, 25da.
58. A man gave his note on the 10th day of May, 1824, and lifted it on the 8th day of December, 1829. . For what time did he pay interest?

Ans. 5y. 6m. 29da.

APLILIOATION.

59. Bought 2 pair of stockings, at 75 cts. per pair; $16 y \mathrm{ds}$. of linen, at $87 \frac{1}{2}$ cts. per yard; 28 yd s . of domestic, at 22 cts . per yard; and 5 pair of gloves, at $31 \frac{1}{4}$ cts. per pair ; and to him from whom I bought those articles, I deliver $\$ 5000$, out of which he is to take the sum due him. How much change will there be coming to me?

Ans. $\$ 2677$ cts.
60 . If I buy 660 yds . of muslin for $\$ 9060$ cts., and sell the same again for $\$ 10004$ cts., how much do 1 gain by the sale? Ans. $\$ 944$ cts.
60. Bought 50 yds . of superfine cloth at $\$ 875$ cents per yard; 30 pounds of coffee, at $2 \frac{1}{2}$ cts. per pound; and 44 bushels of salt, at $\$ 2$ per bushel. What sum must I pay for the whole?

Ans. \$532 25 cts.
62. I have several tracts of land; one of them contains 690a. 2r. 16p.; another 400a.; and two others, each 63a. 3r. 24 p. If I sell 200 acres, what number remains?

Ans. 1018a. 1r. 24p.
63. Bought 400 bu. 3 pe . of wheat; 160 bu . of rye; 150 bu . 2 pe . of oats. I have since sold 225 bu . Ipe. of wheat; 37 bu . 2 pe. of rye; 78 bu .3 pe. of oats. How many bushels of each have I remaining?

$$
\text { Ans. }\left\{\begin{array}{l}
1 \\
122 \mathrm{bu}, ~ \% \text { pe. rye, } \\
71 \mathrm{bu} .8 \text { pe. oats. }
\end{array}\right.
$$

COMPOUND DIVISION.

Componud Division teaches to divide any sum or quantity which consists of several denominations.

RULE.

Begin at the highest denomination, and divide the several denominations of the given sum or quantity one after ano-
ther, and set their respective quotients underneath. When a remainder occurs, reduce it to the next lower denomination by multiplying it by as many of the next denomination as make one of that denomination from which the remainder is derived, and the next denomination to the product; then divide as before, and so proceed.

Note. If the dividend be not large enough to contain the divisor reduce it till it will be, and proceed as before.

EXAMPLES.
$\begin{array}{llll}\text { (1.) } & \text { cts. } & \text { (2.) } \\ 2) 1261 . & \text { cts. m. } & \text { (3.) } \$ 187914 & \text { cts. }\end{array}$ 2) $1261 \quad 3) 187914$

Ans. 6 30 $\frac{1}{2} \quad$ Ans. $62638 \quad$ Ans. 4224

\mathcal{N} ote. When the divisor is more than 12, work by Long Division. Divide the highest denomination of the given sum by the divisor, and reduce the remainder, if any, to the next lower denomination, adding to it when reduced the
number there is of that denomination in the given sum or quautity. Then divide as before, and so proceed.

EXAMPLES.
(16.) Divide 88456 by 19 . (17.) Divide 25050 by 25.
\$ cts.m.
19)8845 6. (Ans. 465 5. 25)25050. (Ans. 1002.

76

124
114

105
00
95
106
95
11 Remạinder.

	s	${ }^{\text {cls. }}$	m.		\$	cts.	m.
18.	Divide 98	77	8 by		Ans.	24	$4+$
19.	45	66	5	. 36	1	26	$8+$
20.	77	87	5	96	0	81	$1+$
21.	288	683	0	108	2	674	
22.	496	$37 \frac{1}{2}$	0	132	3	76	$0+$
23.	47	68	7	45	1	05	$9+$
24.	196	75	0	78	2	52	$2+$
25.	496	87결	0	97	5	12	2
26.	376	81	0	123	3	06	

27. A laborer received for thirty days $\$ 900$. How much did he receive per day?

Ans. \$30.
28. If a boy receive $\$ 60$ for twelve months work, how much is that for one month?

Ans. \$5.
29. How many bushels of corn may be bought for $\$ 400$, at $\$ 2$ per bushel? Ans. 200 bushels.
30. When 72 bushels of corn cost $\$ 5625$ cents, what is the price of one bushel? Ans. 78 cets. 1 m . +
31. Suppose $\$ 187581 \pm$ cents to be equally divided among 125 men, what will be the share of each man?

Ans. $\$ 1500 \frac{1}{2}$ cent. +
32. 89 men agree to equally divide 150 gals. $2 q$ ts. 1 pt. of brandy among them, how much will be the share of each? Ans. 1gal. 2qt. 1pt. +48 .

REDUCTION DESCENDING.

Reduction Descending teaches to clange any sum or quantity to a lower denomination, but retaining the same value.

rule.

Multiply the highest denomination of the given sum or quantity by as many of the next lower denomination as make one of the higher, adding to the product the number there is of that denomination in the given sum or quantity.

Note. To reduce dollars to cents, aunex two ciphers to the dollars.

EXAMPLES.

FEDERAL MONEY.

(1.) Reduce $\$ 1850$ ets. to cts. 100

Ans. 1850
3. Bring $\$ 100$ to cents.
4. Reduce 20 dollars to cents.
5. Bring 25 dollars to cents.
6. Reduce 45 dollars to cents.

Note. To reduce dollars to halves, quarters or thirds of a cent, bring them first into cents, and then bring the cents into halves, quarters or thirds, as required.
(7.) Bring $\$ 50$ into half cts. (8.) Bring $\$ 40$ into thirds of a ct. $100 \quad 100$

5000
$\quad 2$

Ans. 10000 halves.
(9.) Reduce 25 cts. to fourths. (10.) Reduce 12 cts. to thirds.

Ans. 100 fourths.
11. Reduce 10 dollars to dimes.

Ans. 36 thirds.
Ans. 100 dimes.
12. Reduce 220 dollars to mills. Ans. 220,000 mills.
13. Reduce $\$ 42688 \mathrm{z}$ cts. to halves of a cent. Ans. 85377 halves.
14. Bring $\$ 48744{ }^{3}$ cents to fourths of a cent. Ans, 194979 fourths.
15. Bring $\$ 1718$ cents to fourths of a cent.

Ans. 6875 fourths.

AVOIRDUPOIS WEIGHT.

16. Bring
20
2

Ans. 40 cwt.
Ans. 1040 quarters.
18. Reduce $36 q \mathrm{r}$, to pounds. Ans. 10081b.
19. Bring 17 pounds to ounces.

Ans. 2720 .
20. Bring 2qr. 25lb. 10oz. to drams.

Ans. 20896dr. TROY WEIGHT.
21. Reduce 20 penuyweights to grains.
$\frac{.24}{80}$
$\frac{40}{480}$ grains.
22. Reduce 5 ounces to grains. Ans. 2400 gr . 23. Bring 40 pounds to pennyweights. Aus. 9600 divt. 24. How funa grains are there in 191b. 11oz. 14dwt. 21 gr .

Ans. 115077 gr .

AFOIHECARIES' WEIGHT.

25. Reduce 40 pounds to ounces.

Ans. 480 oz .

$$
\frac{12}{480}
$$

26. Bring 72 oz . to drans.
27. Reduce 15lb. 9 oz .4 dr . 2 sc .17 gr . to grains.

Ans. 9101 gr.

LONG MEASURE.

28. Reduce 10 ft . to inches.

12
120
29. Bring 40 yd . to feet.
30. Reduce 120 yd . 1ft. 4 in . to inches.
31. Reduce 20 miles to yards.
32. Reduce 450 m . 6 fur. 32 p . to poles.
33. In 2 L . 1 m . 3fur. 16 p. 3yd. 2 ft .10 in . how many inches?

Ans. 120 ft .
Ans. 4336 in .
Ans. 35200 yd .
Ans. 144272 p . Ans. 470590 in .

CLOTH MEASURE.
34. Reduce 22 quarters to nails.

Ans. 88na. 88
35. Bring 36 yd . to qr .

Ans. 144 qr .
36. Bring 20 English Ells to quarters. Ans. 100 qr
37. Bring 20 French Ells to quarters.

Ans. 120 qr .
38. Bring 8yd. Iqr. to qr:
39. In 19yd. 2qr. Ina. how many nails? Aos. s13ua.

LAND OR SQUARE MEASURE.

40. Bring 2 roods to perches.

Ans. 80 perches. $\overline{80}$
41. Reduce 140 acres to perches. Ans. 22400 perches. 42. Bring 54 acres, 3 roods, 23 poles, to poles.

Ans. 8783p.
43. Bring 6 square feet to square inches. Ans. 864in.

44: Bring 120 square yards to square inches.
Ans. 155520 in .
45. Bring 29 square Jards, 2 squarc feet, 102 square inches to square inches. Ans. 37974 square inches.

LIQUID MEASURE.

46. Reduce 31 quarts to pints. .$\frac{2}{.62}$
47. Bring 28 gal. to quarts.
48. Reduce 5hhd. to gallons.
49. In 6 tons, how many pints?
50. Reduce 4 hh d. 3qt. to pints.

Ans. 62pt.
51. Bring 5 tons. 1hhd. 15 gal. 1qt. 1pt. to pints.

Ans. 10707pt.

DRY MEASURE.

52. Reduce 16 qgt. to pints.

Ans. 32 pts .
$\frac{2}{32}$

53 Bring 32pe. to quarts.
Ans. 256 qt.
54. Reduce 7bu to pecks.

Ans. 28pe.
55. Reduce 12 bu . to pints.
56. Bring 24 hu. 1 pe. 2qt. 1 pt. to pints.

Ans. 768 pts.
Ans. $155^{\circ} \mathrm{pt}$.
TIME.
57. Bring 40 minutes to seconds.

60
2400
58. Bring 20 hours to seconds.

Ans. 72000 sec
59. Reduce 12 years to months.

Ans. 144 m .
60. Bring 45 years to days.

Ans. 16425 da.
61. Reduce 3 days, 5 hr . 29 min . to minutes.

Ans. 4649 min
62. Reduce 7y. 3 w. 4 da. 20hr: 20 min . and 20 sec . to seconds.

Ans. 222380420sec

REDUCTION ASCENDING.

Reduction Ascending teaches to change any sum or quantity to a higher denomination.

RULE.

Divide the given sum or quantity in the lowest denomination, by as many of that denomination as make one of the next higher, and so on, until you have brought it into that denomination which your question requires.

Note. Mills may be brought to dollars, cents and mills, by cutting off one figure on the right for mills, two more for cents; the rest will be dollars. Or to bring cents to dollars and cents, cut off two figures on the right for cents.

EXAMPEES.

FEDERAJ MONEY.

1. Bring 2800 cents to dollars.

Ans. $\$ 28$.

$$
28100
$$

2. Bring 11222 mills to dollars, cents and mills.

$$
1112212
$$

Ans. $\$ 1122 \mathrm{cts} .2 \mathrm{~m}$.
3. Bring 4444 cents to dollars and cents.

Ans. $\$ 1444 \mathrm{cts}$.
4. Bring 864 halves of a cent to whole cents.

Aus. 432 cts .
5. In 963 thirds how many cents?

Ans. ${ }^{3} 21$ cts.
6. In 591 fourths how many couts?

Ans. 1473 cts.
7. Ering 630 thirds to cents. Ans: 210 cts .

AYOTRDUPOIS WEIGH'T.

8. Bring 1181b. to guarters.
28) 118 (Ans. 4qr. 6lb.

112
9. Bring 90 qr . to cwt: Ans 22ewt. 2 qr .
10. Bring 17811b. to chert. 11. In 1872 Z dr. how many pounds? Ans. 71 b . 50 z .
12. Bring 75 cmt. to tons.
13. Bring 9856 lb . to cwt.

Ans. 3t. 15 cwt . Ans. 88cwt.

TROX WUIGHT.
14. Bring 1860z. to pounds. 12)186

151b. 6oz.
15. In 544 dwt. how many pounds? Ans. 2lb. 3oz. 4 dwt. 16. Bring 960 dwt. to pounds. 17. Bring 9624 gr . to pounds. Aus. 1lb. 8oz. Idwt. APO'PHECARTES' WELGHT.
18. Bring 2103 to seruples. $210) 2410$

Ans. 15lb. 6oz. N'us. 15 cwt Bqr. 17 lb .
23. Bring 1280 poles to fur. 24. Bring 2880 poles to leagues. 25. Bring 5760 poles to leagues.

Ans. 32 fur. Ans. 31. Ans. 61.

CLOTH MEASURE.

26. In 60 quarters how many yards? Ans. $15 y d s$.

$$
\text { 4) } 60
$$

15
27. Bring 4000 nails to yards.

Ans. 250 yds .
28. Bring 1260 quarters to E. F. Ans. 210 E. F. 29. Bring 1818 nails to yards. Ans. 113yds. $2 q \mathrm{r}$. 2na.

I IAND OR SQUARE MEASURE.

30. In 2400 perches how many Roods? Ans. 60 R . $\frac{4 \mid 0) 24010}{60}$
31. Bring 2040 perches to Acres. Ans. 12A. 3R. 32. Bring 1908020 perches to A. Ans.11925A. 0R. 20P. 33. In 1728 square inches how many square fcet? Ans. 12 fect.

LIQUID MEASURE.

34. In 480 gills how many pints? 4)480

120
35. Bring 1840 pts. to gals.
36. Bring 1890 gal. to hids.
37. In 504 gallons how many bar.?

Ans. 230 gals. Ans. 30 hhds. Ans. 16 bar.

DRY MEASURE.

38. In 800 pints how many qts.? Ans. 400 qts. 2) 800

400
39. Bring 240 pints to pe.
40. Mring 8888 pecks to bu.

Ans. 15 pe.
41. In 12840 pints how many hu? Ans. 2222 bu.

TIME.

42. Bring 2400 seconds to minutes.

$$
\frac{6 \mid 0) 240 \mid 0}{40}
$$

43. In 7200 seconds how many hours? Ans. 2 hours. 44. Bring 144 months to yearis. Ans. 12 years. 45. In 4649 minutes how many days? Ans: 3 da. 5 hr: 29 m .

PROMISCUOUS EXAMPİES.

1. In 20 dollars how many cents? Ans. 2000 cents.
2. In 63 roods how many perches? Ans. 2520 per.
3. How many miles are there in 98 fur. ? Ans. 12 m . 2 fur.
4. In 175 pecks how many bushels? Ans. 43 bu. Spe.
5. How many min. are these in 720 sec .? Ans. 12 min .
6. In 103 pints how many quarts? Ans. 51 qts. 1pt.
7. In 1824 cents how many dollars? Ans. $\$ 1824$ cts.
8. In 8 t. 15 cwt . how many hundred weight?

Ans. 175 ewt.
9. How many English Ells are there in one hundred quarters of a yard? Ans. 20 E. Ells. 10. How many scruples are there in 93 ? Ans. 27 ?.
11. In 203 days how many weeks? Ans. 29w. 12. In 108dwt. how many ounces? Ans. 5oz. 8dwt. 13. How many cwt. are there in 20 tons? Ans. 400 crst . 14. In 202 cents how many qrs. of a cent? Ans. 808 qrs. 15. How many dollars are there in 8762 cents?

Ans. ©87 62ets.
16. How.many fur. are there in 3 m . Ifur.? Ans. 25 fur. 17. In 131b. avoirdupois how many drams? Ans. 3328dr. 18. In 21 gallons $3 q t s$. 1pt. how many pints?

Ans. 175 pints.
19. How many Ells F. are there in 60 qrs. ? Ans. 10E.F. 20. How many lbs. are there in 2461 dwt.

Ans. 101b. 3oz. 1dwt. 21. How many drams are there in 7251 b . 6 oz. av. ?

Ans. 185696dr. 22. In 12 yds. 2 qrs. 1na. how many nails? Ans. 201na. 23. How many cwt. are there in 275521 lb .? Ans. 246 cwt .

RULE OF TWO.

The Rule of Two is that in which two terms are given to find a third, which is the answer.

To find the whole enst of any number of articles at any price per article.

RULE.

Mulliply the articles by the given price of one article; the product will be the answer.

EX. 1 MPLES゙.

1. What will eleven oranges come to at $12 \frac{2}{2}$ eents each?
2. How much will 60 bushels of apples come to at $8 \frac{1}{4}$ conts per bushel?

11 60
$12 \frac{2}{2}$ the given prof one article. $8 \frac{1}{5}$
$\overline{132} \quad \overline{480}$
$5 \frac{1}{2}$ the half of 11 is $5 \frac{1}{2} \quad 15$ the fourth of 60 is 15
Ans. $\$ 1378$
Ans. \$t 95
3. Tĩow much will 105 pounds of sugar come to at $12 \frac{1}{2}$ cts. per pound?

Ans. $\$ 13$ 12 $\frac{1}{2}$ conts.
4. What will 60 apples come to at $2 \frac{1}{4}$ cents each?

Aus. $\$ 135$ cents.
5. What swill $87 \frac{1}{2}$ pounds of beof come to at tlfrec cents per pound?

Ans. $\$ 262 \frac{1}{2}$ cents.
6. 13nught to pounds of coffee at $31 \frac{1}{3}$ cents per pound; what did it amount to?

Ans. $\$ 1250$ cts.
7. Purchased ninety gallons of molasses at 56 a conts per galim ; what did it amount to? Ans. $\$ 5062 \frac{1}{2}$ cts.
8. What will nincteen pounds oí biwon come to at $8 \frac{1}{3}$ cents per pemid? Aus. $\$ 158 \frac{1}{3}$ cents.
9. What is the cost of 400 pounts of cheese at $8 \frac{1}{3}$ cents per pound?

Ans. $\$ 3333 \frac{1}{3}$ cents.
10. Bought 101 bushels of wheat at $\$ 104$ cents per bushel ; what did it amount tn? Ans. \$105 04 cents.
11. What will 6212 gallois of whiskey come to at $6: \frac{1}{2}$

12. What will 25 bushels of oats come to at 25) cents per bushel?

Ans. sif 25 cents.
13. How much will cleven pounds of butter come to at $8 \frac{1}{3}$ cents per pound? Ans. $91 \frac{2}{z}$ cents.
14. What will 84 pounds of lard come to at ten cents per pound?

Ans. $\$ 840$ ecuts.
15. How much will two thousand books come to at 20 cents per book?

Ans. \$400.
16. What cost 789 pounds of iron at $4 \frac{2}{2}$ conts per pound? Ans. $\$ 3550 \frac{1}{2}$ cents.
17. What cost 40 bushels of rye, at 20 ets. per bushel? Ans. $\$ 8$.
18. What will 6 puands of soap come to at ten cents per pound?

Ans. 60 cents.
When it is rerquired to fonow how many articles may be beught with any sum of money.

> RULE.

Divide the sum by the price of one artiele; have the lividend and divisor of one denomination. The quotient will be the namber of articles.

EXAMDLES.

1. How many. pounds of butter may be bought with $\$ 160$ cents, at 8 cents per pound?
2. How many pounds of iron can I buy with $\$ 700$ cts. at $3 \frac{1}{2}$ cents per pound?

Price of article. 8) 160
Aus. 20 lbs .

$3 \frac{1}{2}$	7	00
2	2	

i) 1400 halves.

Ans. 200 pounds.
3. When one pound of sugar eosts $12 \frac{1}{2}$ cents, how many pounds may be had for 30 dollars? Ans. 240 pounds.
4. A gentleman gave his son 60 dollars, which he was to lay out for tea at 37 zents per pound. How many pounds did he buy?

Ans. 160 pounds.
5. How many bushels of corn can I buy for 400 dollars, if I give 13 cents per bushel?

Ans. 3076 bu .3 pe. $5 q \mathrm{t} .1 \mathrm{pt} .+$
6. When I can buy one pound of tobacco for 25 cents, how many pounds can I buy for $\$ 75$? Ans. 300 pounds.
7. How many pounds of iron may be bought with 37 dollars, at 4 ceuts per pound? Ans. 925 pounds.
S. Having $\$ 87810$ conts, and wishing to purchase feathers, what quantity can I purchase at $33 \frac{1}{3}$ cents per pound?

Ans. $1134 \frac{1}{4}$ pound. +
9. If sisty dollars be the price of an acre of land, how many acres cau I have for $\$ 19260$ cents?

Ans. 3a. 0r. 33p. +
10. Suppose a man has $\$ 190006 \neq$ cents, and is desirous to purchase salt. How many bushels ean he buy, at 1 dollar $62 \frac{2}{2}$ conts?

Ans. 1169 bu. +
11. How many pounds of coffec, at 22 cents per pound, can I have for 22 dollars?

Ans. 100 pounds.
12. How many pounds of pork, at three conts per pound, can I have for 960 dollars 60 . cents? Ans. 32020 pounds.
13. How many yards of eloth, at 15 conts per yard, can I have for 450 dollars 45 cts. ? Ans. 3003 yards.
14. How, many fowls, at 63 couts cach, can I buy for ninety dollars? © Ans. 1440 fowls.

When a number of articles cost any sum of moncy, and the price of one article is required at the same rate.

RULE.
Divide the whole cost by the number of articles; the quotient will be price of one article.

Note. If the dividend be not large enough to contain the divisor, reduce it till it will be.

EXAMPLES.

1. If 100 busheks of corn cost 12 collars 50 conts, whet, is the price of one bushel at the same rate?
2. If $4 \frac{1}{2}$ pounds of pepper cost $\$ 200$ cents, what cost oue pound at the same rate?

The articles.	$10 \mid 0$	1250	$4 \frac{1}{2}$
ins.	200		
$12 \frac{1}{2}$ cts.	2	2	

9) 400

Ans. 44 cts. 4 m. +
3. If 6 fish cont 50 ote., what will one cost?

Ans. $8 \frac{1}{6}$ cents.
4. If I buy 40 bushels of flaxsecd for 40 dollars 40 cents, how much do I give per bushel? Aus. \$101 cent.
5. A man travelled 420 miles in twelre days. How far did he travel each day?

Ans. 35 miles.
6. Bought 120 pair of shoes for 400 dollars 60 cents. What was the cost of one pair? Ans. $\$ 333 \frac{2}{4} \mathrm{cts}$.
7. Bought 6000 gallons of whiskey for nine hundred dollars. What was the price of one gallon?

Ans. 15 cents.
8. If I buy $1517 \frac{1}{2}$ acres of land for 7500 dollars $37 \frac{1}{2}$ cents, horv much does it cost me per acre?

Aus. $\$ 494 \frac{1}{4}$ ets. +
9. A merchant bought 1950 penkuives for 960 dollars $4 \frac{1}{4}$ cents. What did one cost? Ans. $49 \frac{1}{4}$ cts. +
10. If I buy $22 \frac{1}{2}$ yards of cloth with 7 dollars 50 cents, what cost one yard?

Ans. $33 \frac{1}{3}$ cents.
11. I was offered 2000 books for $\$ 50000$ cents. Tell me what one book would cost at that rate? Ans. 25 cents.
12. I was offered 2000 books for $\$ 38050$ cents. How much was that for one book? Ans. 19 cents. +
13. When a man's yearly income is $\$ 47450$ cents, how much is it per day?

Ans. $\$ 130$ cents.
14. If seven months' work bring $\$ 2500$ cents, how much will one month bring? Ans. $\$ 357$ cents. +
15. Suppose the President of the United States reccire $\$ 2500000$ cents a year, how much is that per day?

Ans. $\$ 6849$ cts. $3 \mathrm{~m} .+$

PROPORTION; OR, RULE OF THREE.

The Rule of Three is that in which three terms are given to find a fourth or answer.

RULE.

Sct that term in the third place which is the same lind of the answer. Consider from the nature of the question whether the answer ought to be greater or less than this third term. If it is to be greater, set the greater of the two remaining terms in the middle for the sccond, and the less for the first; but if it is to be less, set the less of those two
termas in the middle for the second term, and the other for the first. Then have the first and second terms of one denomination. If the third term consist of several denominations, reduce it to the lowest denhmination in it; then multiply the second and third terms together, and divide the product hy the first term. The ansirer will be of the same denomination as the third term.

Note. The nperation may frequently be performed, thus: If the tirst term will divide the sccond by the quotient, multiply the third; or if the second will divide the first by the quotient, divide the third term.

EXAMPLES.

1. If four bushels of corr cost 80 cente, how much will S bushels cost?
\therefore. If three jards of cloth cost fifty cents, how much will ten yards cost:

Ans. $\$ 166_{3}^{3}$
3. If four yards of muslin cost six cents, what will cight cost?

Ans. 12 cents.
4. If six yards of cloth cost 17 cents, what will seren yards come to at the same rate? Ans. 19 cents Sm. +
5. If five bushels of potatoes cost 80 cents; what cost 14 busbeld at the same rate? Ans. $32.2 \frac{1}{2}$ cents.
6. If four lushels of corn cost $\$ 200$ cents, how much will 12 bushels cost at the same rate? Ans. $\$ 000$ cents.
7. If cight yards of silk cost 40 cents, how much will 16 yards cost?

Ans. 80 cents.
S. If three pounds of cheese cost 10 cents, what will 80 pounds come to at the same rate? Ans. $\$ 2.263$ cents.
9. If six pounds of coffee cost 55 cents, what will 75 pounds come to at the same rate? Ans. 86872 cts.
10. If $2 \frac{1}{2}$ bushels of salt cost $8+08$ cents, how much will $15^{\frac{1}{4}}$ buskals come to at the same rate?

Ans. \$2 488 ? cents.
11. Bought 24 pounds of beef for $\$ 162 \frac{1}{2}$ cents, how much is $90 \frac{1}{2}$ pounds worth at that rate?

Ans. \$6 $12 \frac{3}{4}$ cents. +
12. What are 60 bushels of apples worth, when 13 bushels cost 45 cents? Ans. 2 dollars $07 \frac{{ }^{2}}{3}$ cents. +

1is. If 8 bushels of potatoes cost 3 dollars 94 cents, what will 105 bushels cost? Ans. 51 dollars 71_{4}^{1} cents.
14. If 45 ceuts buy 11 pounds of tobacco, how much will $91 \frac{2}{3}$ ceuts buy at that rate? Ans. $22 \frac{1}{3} 1 \mathrm{lb} .+$
15. What will 22 books come to, if 60 cost 20 dollars 51 cents?

Ans. 7 dollars 52 cents. +
16. If 1 yard 2 quarters of cloth cost $56 \frac{1}{4}$ cents, what will 17 yards 1 quarter cost? Ans. 6 dollars $46 \frac{3}{2}$ cts. -+
17. If 4 dollars will pay for 16 days' mork, how many days work may be had for 98 dollars? Ans. 392 days.
18. If $2 \frac{1}{2}$ bushels of salt cost 2 dollars $62 \frac{1}{2}$ cents, how many bushels may be had for 556 dollars $18 \frac{3}{4}$ cents?

Ans. $529 \frac{2}{3}$ bushels. +
19. If 7 pounds of coffee cost $87 \frac{1}{2}$ cents, what must I pay for 244 pounds?

Ans. 30 dollars 50 cts.
20. If 450 barrels of flour cost 1350 dollars, what will 8 barrels cost?

Ans. 24 dollars.
21. If 750 mon require 22500 rations of bread for a month, what will a garrison of 1200 require?

Ans. 36000 rations.
22. If 12 men can do a piece of work in 20 days, in what time will 18 men do it?

Ans. $13 \frac{1}{3}$ days.
23. What will be the cost of 17 tons of lead, if 5 tons cost 500 dollars?

Ans. 1700 dollars.
24. If a pasture be sufficient for 3000 horses 18 days, how long will it be sufficient for 2000? Ans. 27 days.
25. If 8 men can build a tower in 12 days, in what time can 12 do it? Ans. 8 days.
26. How much carneting that is $1 \frac{1}{2}$ yards in breadth, will cover a floor that is $7 \frac{1}{2}$ yards in length, and 5 yards in breadth?

Ans. 25 yards.
27. How many yards of matting, $2 \frac{1}{2}$ feet hroad, will cover a. floor that is 27 feet long and 20 fect broad? Ans. $72 y d s$. 28. What must be the length of a board that is 9 inches in wilth, to make a surface of 144 inches or a square foot?

Ans. 16 inches.
29. If 5 yards of cloth cost 1 dollar $12 \frac{2}{2}$ cents, what is
the value of 4 picees, each containing 8 yards and 1 quarter? Ans. 7 dollars $42 \frac{1}{2}$ cents.
30. If $1 \frac{1}{2}$ ounces of spice cost 13 cents, what cost $16 \frac{1}{4}$ ounces? Aus. 1 dollar 40 eents. +
31. If 100 skeins of silk cost 25 dollars 21 cents, how many may be bought for 1800 dollars 50 cents?

Ans. 7142 skeins. +
32. If 2 dollars 50 cents pay for two weeks' boaxding, how long can I board for 40 dollars 40 cents !

Aus. 32 wecks 2 days. +
33. Supposo Λ hired to BB 12 months for 60 dollars, after rooking 7 months B agreed to pay A at that rate, what must he pay?

Ans. 35 dollius.
34. If 1 cwt. of sugar cost 11 dollars $37 \frac{1}{2}$ cents, what will 18 evt. Bqr. 191h. cost? Aus. 215 dollars 21 ets. $+10 \frac{1}{3}$
35. How many meu will it require to repair a picee of work in 50 days, when 14 men can do it in 100 days?

Ans. 28 men.
36. In what time will 600 dollars gain the interest which 80 dollars mould gain in 15 years?

Ans. 2 years.
37. If 2 yards of tape cost 50 cents, what will 54 English Lills Bqr. cost at the same rate? Ans, 17 dollars $6 \frac{1}{4}$ cts.
38. If the price of 1 acre of land be 5 dollars 25 cents, what will 350 aeres 1 rood 18 perches come to at that rate?

Ans. 1839 dollars 40 cts. $3 \mathrm{~m} .+$
Note. In all cases whercin labor is required to be perforned, the day must be reckoued at 12 hours.
39. Suppose 20 days be recquired for 12 men to build a house, in what time can 18 men do the same?

Ans. 13da. 4br.
40. In what time will 48 men make a fence which 12 meu can do in 24 days? Ans. 6da.
41. If 6 men can do a pieec of work in 18 days, how long will it require 12 meu to do it? Ans. 9da.
42. If 8 men can mow a piece of meadow in 24 days, how many men can do it in 1 days? Ane. 48 men.
43. If a traveller perfom a joumer in 5 days, when the days are 11 hours loug, how long will he require to do it When the days are 15 hours long?

Ans. Sda. Shr.
44. How many yoxds of paper $2 \frac{1}{2}$ feet wide will be
required to corer a wall which is 12 feet long and 9 feet high ?

Ans. 14 yd . $1 \mathrm{ft} .2 \mathrm{in} .+$
45. What quantity of linen that is 3 quarters of a yard wide, will line $7 \frac{1}{2}$ yards of cloth that is $1 \frac{1}{2}$ yards wide? Ans. 15 yards.
46. Λ ship's crew consisting of 45 men are provided with 4500 pounds of bread, of which each man eats one pound perday; how mauy weeks will it last them?

Ans. 14 w. $2 d a$.

PROMISCUOUS EXAMPLES,

IN THE RULE OF TWO AND THREE.

47. If 7 oxen be worth 10 cows, how many cows will 21 oxen be worth?

Ans. 30 cows.
48. If board for one year amount to 182 dollars, what will 39 weeks come to? Ans. $\$ 136.50 \mathrm{cts}$,
49. If 30 bushels of rye be bought for 120 bushels of potatoes, how many bushels of rye can be bought for 600 bushels of potatoes?

Ans. 150 bar . rye.
50. A firmer made 146 barrels of cider, which he afterwards sold at 3 dollars 12? cents a barrel; what was the amount of the whole? Ans. 456 dollars 25 ets.
51. A lady purchased a set of silver weighing 51b. Goz. 5 dwt . at 1 dollar 50 cents an ounce; what was the cost of the whole?

Ans. $89937 \frac{1}{2}$ cts.
52. A lady intending to make a bed-quilt containing 6 square yards, desired her daughter to inform her how much domestic, 3 quarters of a yard wide, would be required to line the same. How many did it take? Ans. 8yds.
53. A pipe will drain off a cistern of water in 12 hours. How many pipes of the same size will empty it in 30 minutes?

Ans: 2.4 pipes.
51. A gentlenan bought a bag of coffee for his own use, Treightiug 127 lb ., for which he gave 15 dollars 25 cents. What was it a pound?

Ans. 12 cts. +
55. If a mau spend 4 dollars 62 z cents each day, horr much will that amount to in a year? Ans. $168812 \frac{1}{2}$ cts.
66. I lent my friend 350 dollars for five months, he promisisig to do mie the same favor, but whon requestel, he could spare only 125 dollar:. How long ought I to keep it to balance the favor?

Ans. 14 months.
67. If a person's income be 1000 dollars a year, haw
much can he save provided he spend $\$ 150$ cents each day? Ans. 452 dollazs 50 cts.
58. If the third of six be three, what may one-iourth of twenty be? As 2:5::3. Ans. $7 \frac{1}{2}$.
59. If 30 days tuition cost 3 dollars 50 cents, how much is one day worth at that rate? Ans. $11 \frac{2}{3}$ cts.
60. How many planks 6 inches wide and 12 feet long will it require to lay a floor that is 18 feet wide and 24 feet long?

Ans. 72 planks.
61. A certain boat is 80 feet long and 18 feet wide. I demand the number of planks required to floor is, 13 feet long and 1 foot 3 inches wide?

Note. The diameter of a circle given to find the circumference. State, if 7 give 22, what will the diameter give? Or the circumference given to find the diameter. As 22 is to 7 , so is the circumference.
62. If a wheel be 20 feet in diameter, what is its circumference?

$$
7: 20:: 22 \text {. (A.ns. } 62 \frac{\rho}{7} \text {. }
$$

63. If a wheel be 60 feet in circumference, what is its diameter? $22: 60:: 7$. (Ans. 19. +

DOUBLE RULE OF THREE.

Double Rule of Three is that in which five terms are given to find the sixth or answer.

れULE.

That which is the priacipal cause of gain, loss, or action, is the first term. Space of time or distance of place the second. The gain, loss, or the action, the third. Then place tho other two terms under those of the samo name. If the blank fall under the third term, multiply the first and second terms together for a divisor; the other three for a dividend. But if the blank fall under the first or second terms, multiply the third and fourth terms together for a divisor; the other three for a divideud. The answer will be of the same denomination as the blank term.

Note. If the blank fall under the third term, it is direct proportions. If under the first or second, inverse proportion.

EXAMPLES.

1. If 6 men iu 10 days mow 60 acres of grass, how long will it take 5 men to mow 80 acres?
2. If 7 men can reap 81 acree of wheat in 12 days, how many men can reap 100 acres in 5 days?

3. If 4 men in 8 days eat 5 lb . of bread, how much will 12 men eat in 20 days?

Aus. 37 2tlb.
4. Suppose 4 men mow 48 acres in 12 days, how many acres can 8 men mow in 16 days? Ans. 128a.
5. If $\$ 100$ gain 86 in twelve months, what will $\$ 400$ gain in 9 months? Aus. 18 dollars.
6. If 8 men in 16 days can earn 96 dollars, how much cari 12 men cara in 26 days? Ans. 284 dollars.
7. It ten men in 18 days can earn 56 dollars, how many dollars can 20 men earn in 35 days?

Ans. 821777 cte. $7 \mathrm{~m} .+$
8 Suppose 8 men can make 120 pair of ehoes in 30 days, how many can 12 men make in 90 days? Ane. 540 pair.
9. If 56 dollars 31 cents be the wages of 20 men for 5 days, what will to men earn in 32 days? Ans. 882892 cts.
10. If 100 dollars in a year give 6 dollars interest, what will 335 dollars give in 3 years? Ans. 60 dollars 30 cts.
11. When 10 oxen in 18 days eat 2 acres of grass, hows many acres will serve 20 oxen 27 days? Ans. 6 acres.
12. Suppose the wages of 6 persons for 21 weeks be 288 dollarrs, what must 14 persons receive for 46 weeks?

Ans. 1472 dollars.
13. If 37 lb . of beef be sumicient for 12 persons 4 days, how many pounds will suffice 38 men 16 days?

Ans. 4681 b .10 ofoz
14. If 30 horses in 4 days eat 40 bushels of corn, how many bushels will suffice 100 horses 20 days?

Ans. $666 \frac{2}{3} b u$.
15. If the carriage of 9 cwst. 45 miles, cost 54 dollars 54 cents, how far may 36 cwt . be carried for 98 dollars 72 cts. ? Ans. 20 m . 2 fur. $36 \mathrm{p} .+$ 16. If 100 dollars in 12 monthy gain 6 dollars interest, what will be the interest of 400 dollars for 14 mouths?

Ans. 23 dollars.
17. If 100 dollars in 12 months gain 8 dollars interest, what sum will gain 50 dollars in 24 months?

Ans. 312 dollars 50 cts.
18. If 100 dollars in 365 days gain 6 dollars interest, what will be the interest of 1000 dollars for 27 days?

Ans. 4 dollars 44 cts. nearly.
19. If 100 dollars in 52 weeks gain 10 dollars interest, what will be the interest of 75 dollars for 7 weeks?

Ans. 1 dollar 00 采 ct.
20. If 12 bushels of oats be sufficient for 20 horses 22 days, how many bushels will serve 62 horses 36 days?

Ans. 60 bu. 3pe. 3qt. 1pt. +
21. When 4 boys, in 20 days, collect 1500 bushels of apples, how many days will it require 25 persons to collect 4000 bushels?

Ans. 8 days. +
22. What is the interest of 563 dollars for $4 \frac{1}{2}$ years, at 6 per cent. per anuum?

Ans. 152 dollars 01 ct.
23. What will be the interest of 80 dollars for 10 months at 10 per cent.?

Ans. 6 dollars $66{ }^{3}$ cts.
24. If 100 dollars in 12 months gain 33 dollars $33 \frac{1}{2}$ cts., what will be the interest of $6 t$ dollars for $8 \frac{1}{2}$ months?

Ans. 15 dollars 11 cts. +
25. If 100 dollars in oue year gain 7 dollars 50 cents interest, what sum will gain 9 dollars in 4 months?

$$
\text { Ans. } 360 \text { dollars. }
$$

26. What is the interest of 19 dollars for $5 \frac{1}{4}$ months at 6 per cent.?

Ans. $49{ }^{3}$ cts. +
27. What sum at 6 per cent. will produce 500 dollars interest in one year?

Ans. $8333 \frac{1}{8}$ dollars.
28. A gentleman said the money he had on interest at 6 per cent., produced one dollar per day. What sum had he on interest?
29. With how many dollars could I gain 6 dollars in one
year, if with 560 dollars I gain 56 dollars in one year and 8 months?

Ans. 100 dollars. 30. A wall which is to be built to the height of 40 feet has been raised 20 feet in 10 days by 16 men, how many men must be employed to finish the work in 5 days?

Ans. 32 men.

PRACTICE.

Practice is a short method of ascertaining the value of any numiner of articles at any given price per article.

TABLE OF ALIQUOT PARTS.

CASE 1.
When the price is $t, \frac{1}{2}, \frac{1}{3}, \frac{5}{3}$, or $\frac{8}{4}$ of a cent per article, pound, yard, acre, bushel, \&c.

RULE.

Divide the given sum or ruuantity by the aliquot parte of a cent for the answer in cents.

EXAMPLES

1. What is the value of 124 apples at it of a cent each?
2. What is the value of 1260 peaches at $\frac{1}{2}$ cent each?

$\frac{1}{4}$	$\frac{124}{31}$	Ans.
Ans.	$\frac{1}{2}$	$\frac{1260}{\$ 6.30}$ cents.

3. What is the value of 192 plums, at of a cent each? Ans. \$1 44 cts.
4. What is the value of 24 quills, at is of a cent each? Ans. 8 cents.
5. What is the value of 12 cherries, at 会 of a cent? Ans. 8 cents.
6. Hot much will 29 come to, at $\frac{1}{+}$ of a cent each? Ans. 71 cents.
7. How much will 11 coms to, at ? of a cent each? Ans. $8 \frac{1}{4}$ cents.
8. What is the ralue of 19 , at $\frac{1}{2}$ cent each?

Ans. $9 \frac{1}{3}$ cents.
9. What is the ralue of 20 , at 2 mills each?

Ans. 4 cents.
10. What is the value of 40 , at 5 mills each?

Aus. 20 cents.
11. What is the value of 30 , at I mill each? Ans. 3 cts.

$$
\text { CASE } 2 .
$$

When the given price is cents:

IUUEE.

Divide the giren sum by the aliquot parts of a dollar for the answer in dollars.

EXAMMES.

1. What is the value of 3216 , at $6 \frac{2}{3}$ cents?
2. What is the value of 8620 , at 10 ents?

3. What is the valuo of 4260,	at	20	chs. ? Ans.	852	00

Whan the given price is collars and centa:

1RULE.

Multiply the giveu sum by the dollara, nud take parts for the conts, and add the products together for the answer in dollars.
EXAMPLES.

1. What is the value of 420 bushels of wheat, at 1 dollar 20 cents per bushel?

When the giver sum consistr of several denominations, such as yd., qr., na., \&c.:

RUEE.
Set down the given price of one of the highest denomination, aud multiply it by the whole of the highest denomina-
tion given; then take aliquot parts of the next lowest de nomination, continually, and add the products together fos the answer.

EXAMPLEG.

1. What is the ralue of 10 cw . 2qr. 7lb. at $\$ 1025$ centr per cwt.?

gr.		cts.	
	$\frac{1}{2}$	10	25
${ }_{7}^{16 .}$			10 cmt .
	${ }_{2}^{2}$	102	50
		5	124
			64

2. What is the ralue of 5cwt. 1 qr . 141b., at 2 dollars $5(1$ cents per cwt.?

Ans. $\$ 1343 \frac{3}{4}$ cents.
3. What is the value of 7 cwt . 8qr. 101b., at 4 dollars 15 cents per cwt.?

Ans. $\$ 3286 \frac{1}{2}$ cents.
4. What is the value of 780 bu . 3pe. 2qt., at 1 dollar 17 cts. per bushel?

Ans. $\$ 91855$ cents +
5 . What is the value of 129 cwt . 1qr. 10lb., at 1 dollar 5 cents per cwt.?
6. What is the value of 25 cwt . 1q1. 91b., at 1 dollar 75 cents per cwt.? Ans. $\$ 4432$ cents. +
7. What is the value of $2 q r .141 \mathrm{~b}$., at $\$ 2710$ cents per cwt.?
8. What is the ralue of 12 cut. $3 q$ r., at $\$ 4020$ cents per cwt.?
9. What is the value of 19 bi . 1 pe. of corn, at 35 cts. per bushel?
10. What is the value of 810 ounces 13 dwt . 12 gr ., at $12 \frac{1}{2}$ cents per nunce?

Ana. 102 dollare $8 \frac{1}{8}$ cents
11. What is the ralue of 27 gds .3 q 1. , at $\$ 965$ cents per yard? Ans. "6 6 i dollars 78 cts . 7 m .
12. That is the value of $960 y$ yls. 1ri., at 84 cents per yard?

$$
\text { Ans. } 72 \text { dollars } 61 \text { cents. }
$$

13. What is the ralue of 126 yds . $2 q \mathrm{r} .: 2 \mathrm{na}$., at 4 dollars 75 cents per yard? Ans. 601 dollars $46 \mathrm{cts} .8 \mathrm{~m} .+$
14. What is the value of 17 hhd . 15 gal . 3 gt ., at Ct do!lars 75 cents per hhd:? Ans. 1116 dollars 93 cts. 7 m .

INTEREST.

Iuterest is a consideration allowed for the use of money, relative to which are 4 particulars, viz: Principal, Time, Rate per Cent. and Amount. The principal is the money for which interest is to be received; the rate per cent. per annum is the interest of 100 dollars for one year ; the time is the number of years or months, \&c., for which interest is to be calculated; the amount is the principal and interest added togother.

$$
\text { case } 1 .
$$

Tio sind the interust for any number of years, or years and month.

RULE.
Sultiply the principal, consisting of dollars, by the rate per cent., and that product by the number of years; or if there be months, take aliquot parts of a year, cut off two tigures on the right of the product for cents; or if there be cents in the principal, cut off one figure on the right as a remainder; one more for mills; two more for cents; those on the left will be dollars.

CASE 2.

To find the interest for any number of months.

RULE.

Find the interest at 6 per cent., by multiplying the principal by half the number of months; or at any other per cent., find the interest at 6 ; then state, if 6 give that interest, what will the per cent. you wish to calculate give, and cut off figures in the proilect for cents, as in Case Ist.

OASE 3.

To find the interest for any number of duye.

RULE.

Multiply the principal by the number of days; divide the product by 6 , the quotient will be the interest in mills at 6 per cent. If the principal consist of dollars and cents, destroy 2 figures on the right of the product; the balance
will be the interest as before. If any other per cent. is requirect, tàke aliquot parts and add or subtract, aceording as the per cent. is more or less than 6.

Note. Case 3 d is estimating 360 days in a year, which will make the intprest rather large; it may be more accurately found by multiplying the principal by the number of days, and dividing the product by a proper divisor in the following tabie, which divisors are found by the following stating:
per cent. \$ da. per cent. \$ da.
Thus: $4: 100:: 365$. Again, thus : $5: 100:: 365$

Rate per cent. Divisors. Rate per cent. Divisors.
$\left|\begin{array}{c|c}4 \\ 4 \\ 5 \\ 5 & 9125 \\ 5 & 8111 \\ 6 & 7300 \\ 6 & 6636 \\ 63 \\ 0\end{array}\right|$

$|$| 7 | 5214 |
| :--- | :--- |
| $7 \frac{1}{2}$ | 4566 |
| 8 | 4562 |
| $S_{\frac{1}{2}}$ | 4294 |
| 0 | 4055 |
| 93 | 3842 |
| 10 | 3650 |

A divisor may also be found for weeks or months, by using 52 weelss or 12 mouths in room of 365 days.

$$
\text { c.ses } 1 .
$$

EXAMPLEE.

1. What is the interest of $\$ 500$ for 1 year, at 6 per cent. per aunum?
2. What is the interest of 40 dollars 50 cents for one year and six months, at sic per cent. per annum?

\$			$\$$	cts
500			40	¢0
6				6
Ans. 830100 cts	6	$\frac{1}{2}$	243	00
			243	00
			121	50

Ans. $\$ 364$ cts. 5 m .
3. What is the interest of 400 dollars for one year, at six per cont.! Ans. 24 dollars̄.
4. What is the interest of 600 dollars for one year, at six per cent. per annum?

Ans. 36 dollars.
5. What is the interest of 250 dollars for one jear, at fire per cent.?

Ans. 12 dollars 50 cents.
6. What is the interest of 51 dollars for one jear, at six per cent.? Ans. 3 dollars 6 cents.
7. What is the interest of 44 dollars for two years, at seven per cent. per annum?

Ans. 6 dollars 16 cts.
8. What is the interest of 90 dollars for three years, at five per cent.?

Ans. 13 dollars 50 cents.
9. What is the interest of 68 dollarn for four years, at four per cent.?

Ans. 10 dollars 88 cents.
10. What is the interest of 1000 dollars for fum years, at eight per cent.? Ans. 320 dollars.
11. What is the interest of 50 dollars for five years, at five per cent.?

Ans. 12 dollars 50 cents.
12. What is the interest of 19 dollars for tro years, at four per cent.? Ans. 1 dollar 52 cents.
13. What will be the interest of 1772 dollars for two yeara, at six per cent.?

Ans. 212 dollars 64 cents.
14. How much interest will 75 dollars draw in five years, at $\frac{1}{2}$ per cent.? Ans. 16 dollars $87 \frac{2}{2}$ cts.
15. What is the interest of 100 dollars for two. years and six months, at 6 per cent. per annum? Ans. 15 dollars.
16. What will be the interest of 350 dollars for three jears and four months, at 6 per cent. per annum?

Ans. 70 dollars.
17. What will be the interest of 48 dollars for four years and one month, at 5 per cent. per annum?

Ans. 9 dollars 80 cents.
18. What is the interest of 64 dollars for one year and seven months, at 7 per cent. per amum?

Ans. 7 dollars 9 f cents.
19. What is the interest of 14 dollars for four years and 11 months, at 7 per cent.? Ans. 4 dollars 817 cts.

CABE 2.

EXAMPLES.

1. What is the interest of 40 dollars for four months, at 6 per cent. per annum?
2. What is the interest of 60 dollars for 6 mouths, at 8 per cent. per aunum? Ans. 2 dollars 40 cts.

3. What is the interest of 18 dollars for six months, at six per cent. per aunum? Ans. $\$ 054$ cents.
4. What is the interest of 50 dollars for eight months, at seven per cent. per annum? Ans. $\$ 233 \frac{1}{3}$ cts.
5. What is the interest of $\$ 900$ for five months, at five per cent. per annum? Ans. 18 dollars 75 cts.
6. What is the interest of 91 dollars 50 cents for four months, at 4 per cent.? Ans. 1 dollar 22 cents.
7. What is the interest of 80 dollars for five months, at seren per ceut.?

Ans. 2 dollars $83 \frac{7}{3}$ cents.

- Vote. Then the amount is required, add the interest to the principal.

8. What is the suount of $\$ 5250$ cents for thirteen monthe, at b per cent. per annum? Ans. $\$ 56$ 6̈6ets. 5 m .
9. What in the interest of \$i5 for fourteen monthis, at six per cent. ?

Ans. 5 dollàrs 25 cente.
10. What is the interect of 8550 cents for $5 \frac{1}{2}$ monthe, at six per cent.?

Ans. 15 cents. +
Note. In this ase, after fonding the interest at, six per cent., if any other rate per cent. be required, take aliquot parts and atd or subiract, according as the rate per cent. is more or lers than six.
11. What is the interest of so dollars for right montix, at firoper cent.
12. What is the intorest of 60 dollars for four months, at eight per cent.?

Ans. 8266 年
13. What is the interent of 120 dollars 60 -cents for fifteen months, at 6 per cent.? Ans. 9 dollars 4 ets. 5 m . 14. What is the interest of 5420 dollars for 17 months, at 4 per cent. jer annmm? Ans. 307 dollars $13 \frac{1}{3}$ ets.
15. What is the interest of 7200 dollars for 14 months, at δ per cent. per annum?

Ans. 504 dollars.
16. What is the interest of 8050 dollars $87 \frac{1}{2}$ cents for 45 months, at 6 per cent. per annum?

Ans. 1891 dollars 95 cts .5 m .
17. What is the interest of 948 dollars 62 d cents for eight months, at 8 per cent. per annum?

Ans. 50 dollars 50 cents. +
18. What is the interest of 36 dollars for one month, at 8 per cent. per amum?

Ans. 24 cents.
19. What is the interest of 1000 dollars for 40 months, at 0 per cent. per ammum? Ans. 200 dollars.
20. What is the interest of 328 dollars for 12 months, at 6 yer cent.? Aus. 19 dollars 68 cents.

When there is a fraction in the rate per cent., as $5 \frac{1}{2}, 6 \frac{1}{5}$, or 6 录, multiply and add $\frac{1}{6}$ or $\frac{d}{2}$ (as the caso may be,) of the principal to the product, and proceed as before.
21. What will be the interest of 540 dollars for 24 months, at 5 per cent. per ahuum?

Ans. 54 dollars.
22. What would be the interest of 482 dollars for 84 mouths, at 6 ciollars per cent. per annum?
23. What is the interest of 325 dollars for 50 months, at 4 per cent. per amum? \quad Ans. \$5 46 cents 6 m .
24. What is the interest of 840 dollars for 6.3 months, at 4 per cent. per annum? Ans. $\$ 17640$ cents.
25. What is the interest of 840 dollars for 64 months, at 7 per cent. per anuxu? Ans. $\$ 31360$ cents.
26. What is the interest of 560 dollars for 4 months, at six per cent. per annum?

Ans. $\$ 1120$ cents.
27 . What is the interest and amount of 100 dollars for ten months, at 10 per cent. per amum?

$$
\text { Answer: }\left\{\begin{array}{r}
\$ 835 \frac{3}{3} \text { iuterest. } \\
\$ 10833 \frac{1}{3} \text { amount. }
\end{array}\right.
$$

28. What is the amount of 76 dollars 25 cenis for 25 months, at 6 per cent. per annum? Ans. $\$ 8578$ cts. $1 \mathrm{~m} .+$

$$
\text { CASE } 3 .
$$

Note. Multiply any principal by the rate per cent., and that product by the number of days it has been on interest, and divide the last product by 365 . The quotient will be the interest.

EXAMPLES.

1. What is the interest of 1000 dollars for five days, at 6 per cent. per annum?

Ans. 83 cents $3 \mathrm{~m} .+$
2. What is the interest of 500 dollars for 60 days, at 8 por cent. per annum?

Aus. $\$ 6$ 66cts. 6 m . +

3. What is the interest of 400 dollars for 40 clays, at 6 per cent. per annum?

Ans. \$2 66cis. $6 \mathrm{~m} .+$
d. What is the interest of 900 dollars for fourteen days, at 6 per cent.? Ans. \$2 10 cents.
5. What is the interest of 1000 dollars for 4 daya, at 6 per cent.?

Ans. $66 \frac{2}{2}$ cents.
6. What is the interest of 500 dollars for one day, at 6 prr cent.? Ans. 8 cents $3 m .+$
7. What is the interest of 16 dollars $33 \frac{1}{3}$ cents for 21 dsys, at 6 per cent. ?

Ans. 6 cents $5 \mathrm{~m} .+$
8. What is the interest of 04 dollars 64 cents for 18 days 3. G per cent. per annum? Ans. 19 cents 3 3n.
9. What is the interest of 45 dullars for 22 days, at $5 \frac{2}{2}$ pur cent. per annam? Ans. 15 cents. +
10. What is the interest of 90 dollars for 51 days, at 3 pris cent. per ammum?

Ans. 1 dollar 2 cents.
Note. When tho time is years, months, and days, prococd with the ycars and months as in Case 1st, and for the curys tabe tiliquot parts of 30 .
11. What is the interest of 50 dollars for 1 year, 2 months, and 5 days, at 6 per cent. per annum? Ans. 8354 cents.
12. What is the interest of 100 dollars for one year, 7 nonths, and 11 days, at 6 per cent.? Ans. $\$ 968$ cents. +
13. What is the interest of 21 dollars for 4 yoars, 4 munths, and 4 days, at 5 per cent.? Ans. $\$ 456$ cents. 1 .
14. What is the interest of 5 dollars for 10 years, 3 months, aud 19 days, at 6 per cent.? Ans. $\$ 309$ cents. f-
15. What is the interest of 5 dollars $87 \frac{1}{2}$ ceuts for 9 monthe, and $2 \frac{1}{2}$ days, at 6 per cent. per annum?

Ans. 28 rents im. +
CABE 4.
The amount, time and rate per cent. given to find the principal.

』012t.

Find the amount of 100 dollars at the rate per cent. and time giren, which amount is the first term; the giren sum the $2 \mathrm{~d} ; 100$ dollars the $3 d$; proceed by the Rule of Three; the quotiont will be the principal required.

EXAMPLES.

1. What principal at interest for 8 years, at 5 per cent., will amount to 840 dollars?

$\$$	$140: 840:: 100$
100	100
5	$1410) 8 \frac{810010}{5}$ (Ans. $\$ 600$.
500	84
8	$\frac{80}{8}$

Interest. 40100

$$
100
$$

Amount. 140
2. What principal at interest for 5 years, at 6 per cent. per anumm, will amount to 650 dollars? Ans. $\$ 500$.
3. What principal at interest for 5 years, at 6 per cent. per annum, will amount to 2470 dollars? Ans. $\$ 1900$.

$$
\text { CARE } 5 .
$$

To find the rate per cent. when the amount, time and principal are given.

RULK:

Subtract the principal from the amount; then state if the principal give the interest or remainder, what will 160 dollars give. Divide the answer by the number of yeara; the quotient will be the rate per cent.

1. At what rate per cent. per annum will $\$ 500$ amount to s650 in five years?

2. At what rate per cent. will 600 dollars amount to \$7. 44 in our years?

Ans. 6 per cent.
4. If 384 dollars, at interest 2 years and 6 months, amount io $\$ 927$ 82, cं.s., what was the rate per cent. per anuum?

Ans. $4 \frac{1}{2}$ per cent.

$$
\text { CASE } 6 .
$$

To find the time when the principal, amount, and rate per cent. are given.

RULE.

Divirn the whole interest by the interest of the priacipal for one year. The quotient will be the time required.

1. In what tine will 400 dollars amount to 520 dollars, at 5 per cent. per annum?

$\$$	$\$$
409	520
5	400
$20 \mid 00$	$2 \mid 0) \underline{1210}$

Aus. 6 years.
2. In what time will 600 dollars amount to 798 , at 6 per cent. per annum?

Ans. 5 years.
3. Suppose 1000 dollars, at $4 \frac{1}{2}$ per cent. per annum, amount to 1281 dollars ! 5 cts., how long was it at interest? Ans. 6 years 3 months.

PROMISCUOUS EXAMPLES,

1. What is the interost of 500 dollars for one yeur and 2 monthe', at 6 per cent. ?

Ans. 35 dollars.
2. What is the interest of 450 dollars for 2 years and 6 months, at 5 per cent. per anmum? Aus. 56 dollars 25 cts.
3. What is the inter sst of 65 dollars $87 \frac{1}{2}$ cents for 9 months, at 6 per cent. ? Ans. 2 dollars $96 \frac{1}{3}$ cts.
4. What is the inter st of 800 dollars for four years, 5 months and 19 days, at 13 per cent. per annum?

$$
\text { Ans. } 214 \text { dollars 53cts. 3m. }+
$$

5. What is the interest of 18 dollars 75 cts. for 1 year, 2 months ad 7 days, at 6 per cent. per annum?

Aus. 1 dollar $33 \frac{1}{3}$ cents.
6. What is the interest of 90 dollars for S monthe, at 9 per cont.?

Ans. 5 doll uss 40 cts.
7. What is the interest of 6 collars fur (6 day 2 , at 6 per cent. ?

Aus. 6 mills.
8. What is the amount of 1000 dollars 25 cts. for 4 years, A sionths, and 5 days, at $7 \frac{1}{2}$ per cent. per ammm?

Ans. 1326 dollars 37 cts. 3 nı. +
9. In what time will 1000 dollars amount to 1500 dollars, at 8 per cent. per annum? Ans. 6 years 3 months.
10. What is the interest of 25 cts. for 25 years, at 6 per cent. per annum? Aus. $37 \frac{1}{2}$ cts.
11. What is the interest of $87 \frac{1}{2}$ cents for 1 year and 6 months, at 6 per cent. per annum? Ans. 7 cts. 8 m. +
12. At what rate per cent. per annum will 1200 dollars amount to 1800 dollars in 5 years? Ans. 10 per ct.

INSURANGE, COMMISSION, AND BROKERAGE.

Brokerage is an allowance to insure factors and brokers at a stipulated rate per cent., agreed on by the parties concerned.

RULE.

Multiply the sum by the rate per cont. If the rate be less than one per cent., take aliquot parts.

EXAMITHS.

1. What is the commission on 500 dollars, at 5 per cont. ?
2. What is the commission on 400 dollars, at $\frac{3}{4}$ dollars per cent.?

$\frac{\$}{4}$			
500			
5	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{400}{4}$
Ans. 3.2500	$\frac{1}{2}$	$\frac{200}{200}$	
Ans. $\$ 300$			

3. What is the insurance of 60 dollars, at 3 per cent.?
Ane. I uullar SO cents.
4. What is the commissiun on 1351 dollars 50 cente, at $5 \frac{2}{2}$ per cent.? Aus. 714 dollars 33 cents. +
5. The sales of certain goods amount to 1680 dollars, what sum is to be received for them, allowing 23^{3} per cent. for commission? Ans. $16 ? 3$ dollars 80 cents.
6. What is the commission on 3450 dollars, at $4 \frac{1}{2}$ per cent. ?

Ans. 155 dollars 25 cents.
7. When a broker sells goods to the amount of 984 dollars 50 cents, what is his commission, at if per cent.?

Ans. 12 dollars 30 cents $6 \mathrm{~m} .+$
8. What is the insurance of 1250 dollars. at $7 \frac{1}{2}$ per cent. ?

Ans. 6 dollars 75 cents.
9. If a broker buyg goods for me, amounting to 1650 dollare 75 cente, what sum must I pay him, allowing $1 \frac{1}{2}$ per cont.? Ans. 24 dnllars 76 cents $1 \mathrm{~m} .+$
10. What in the commission on a sale of grods, amounting to 1184 dullars, at 5 per cent.? Aus. 59 dollars 20 cts.
11. What is the commission on a sale of goods, amounting to 4820 dollars, at 43 per cent.?

Aus. 216 dollars 90 cents.

DISCOUNT.

Discount is an allowance made for the payment of a sum of money before it becomes due, and is the difference between that sum due sometime hence and its present worth.

RULE.

Find the interest of 100 dollars at the per cont. and time given; to this interest add 100 dollars, which amount is the first term ; the given sum the second; 100 dollars the third. Proceed by the Rule of Three. The answer will be the preseat worth. Subtract the answer from the given sum, and the remainder will be the diseount.

EXAMPLES.

1. What is the discount of 500 dollars for 4 years, discount at 5 per cent. per annum?

$\$$
100
5
500
4
20100

$\frac{100}{120: 500}:$
100
$12 \mid 0) 5000 \mid 0$
present worth. 416 66?

2. What is the present worth of 600 dollars, due in 2 ycars, discount at 6 per cent, per annum?

Ans. $\$ 53571$ cts. 4 m. +
8. What is the discount of 590 dollars for 2 years, discount at 6 per cent. per anmum? Ans. $\$ 6321 \frac{1}{2}$ cts.
4. What is the present worth of 480 dollars, due in 4 years, at 4 per cent. discount? Ans. 413 dollars 79 cts. +
5. What is the discount of 645 dollars for 9 months, at 6 per cent. per aunum? Ans. $\$ 2777 \mathrm{cts} .6 \mathrm{~m}$.
6. What is the present worth of 580 dollars, due in 8 mouths, discount at 6 per cent. per annum?

Ans. 55760 cents. +
7. What is the present worth of 775 dollars 50 cents, due in 4 years, at 5 per cent. per anum?

Ans. $\$ 64625$ cents.
8. Bought gools amounting tu fi15 dollars 75 cents, at 6 months' credit, how much ready money must be paid if a discount of $4 \frac{1}{2}$ per cent. be allorved? Aus. $\$ 60220$ cts.
9. Bought grools amountiug to 900 dollare, at 4 years' credit, how much realy money must be paid if a discount of 6 per cent. be allowed? Ans. $872580 \frac{1}{2}$ cents.
10. What is the discount of 90 dollars for 1 year and 6 monthe, at 6 per cont. per anuum? Ans. $\$ 743 \neq$ cents.
11. What is the discount of 205 dollars, duc in 15 month3, at 7 per cent. per annum? Ans. $\$ 1649 \frac{1}{2}$ cts. +
12. A. owes B. 100 dollars, due in one year, but B. agrees to allow \mathbf{A}. a discount of 25 per cent. per annum for presest payment. What sum will discharge the debt?

Ans. 80 dollars.
13. What is the discount of 100 dollars, due in 12 montbs, at 25 per cent. per annum?

Ans. 20 dollars.
Note. When discount is made without regard to time, it is found precisely like the interest for one year.
14. What is the discount of 800 dollars, at 6 per cent.? 15. What is the discount of 99 dollars, at 5 per cent.?

\$	\$
800	99
6	
00	

16. What is the discount of 476 dollars, at 3 per cent. ? Ans. 14 dollars 28 cents.

TARE AND TRET.

Tare and Tret are certain allowances made by merchants in sclling their goods by weight. Tare is an allowance made for the weight of the barrel, box, \&c., that contains the commodity bought. Tret is an allowance of 4 lb . in every 104 lb . for waste, dust, \&ce. Gross weight is the goods, together with the barrel, box, or whatever contains them. When the tare is deducted from the gross, what remains is called suttle. Neat weight is the weight of articles after all allowances are deducted.

RULE.

1st. Subtract the whole tare from the whole gross; the remainder will be neat. - 2 nd . When the tare is so much per barrel, box, \&c., multiply the tare per barrel, box, \&c.,
by the number of barrels, boxes, fe. The product will be the whole tare. Subtract the whole tare from the whole gross, and the remainder will be neat. 3 d . When the tare is so much per cwt., run aliquot purt, or parts of a cwt., through the whole gross. Subtract the quotient therefrom, and the remainder will be neat. 4th. When tret is allowed with tare, subtract the tare from the gross, as before. The remainder will be suttle. Divide the suttle by 26 . The yuotient will be tret. Subtract the tret from the suttle, and the remainder will be neat.

EXAMPLES.

1. What is the neat weight of a hogshead of tobacco, weighing 2cwt. 3qr. 25lb. gross, tare in all 1cwt. 2qr. 12lb.?

- ciot. qr. lb.

2325 gross.
1212 tare.
Ans. $1 \quad 13$ neat.
2. What is the neat weight of a hogshead of tobacco, weighing 5 ewt. $2 q \mathrm{r} .15 \mathrm{lb}$. gross, when the tare is $3 q \mathrm{r}$. 7 lb .? Ans. 4 ctrot. $3 q \mathrm{P}$. 81b.
3. What is the neat weight of 369 cwt . 2qrs. 211b. gross, tare in the whole 10 cwt . 1 qr. 121 b .?

Ans. $359 \mathrm{cwt}$.1 qr .9 lb .
4. What is the neat weight of 6 hogsheads of sugar, each weighing 4 crrt .1 qr . 41 b . gross, tare in the whole $13 \mathrm{cwt} 3 q$.r .19 lb .?

> | cwt. | qr. | lb. |
| :---: | :---: | :---: |
| 4 | 1 | 4 |
| | | 6 |
| 25 | 2 | 24 |
| 13 | 3 | 19 |
| 11 | 3 | 5 |
| whole gross weight. | weat. | |

5. Iow much is the neat weight of 7 casks of indigo, cach weighing 3cwt. 2qr. 121 lb . gross, tare 25lb. per cask?

Ans. 23221 neat.
6. What is the neat weight of 6 casks of raisins, each weighing 3cirt. 2qr. 10lb. gross, tare 201b. per cask? Ans. 20 cwt . 1 qr. 24 lb .
7. What is the neat wright of 35 kegs of figs, gross weight 37 cwt . 1 gr. 201 b ., tare per cwt. 141 b .?

$$
\begin{aligned}
& \text { cut. qr. } 7 b . \\
& \text { lib. }\left.\right|^{\frac{1}{8}} \left\lvert\, \begin{array}{rrr}
37 & 1 & 20 \\
4 & 2 & 20 \\
\hline
\end{array}\right. \\
& \text { Ans. } 22300 \text { neat. }
\end{aligned}
$$

8. What is the neat weight of 6 hogsheads of sugar, each weighing 7 cwt. Bqr. 14lb. gross, tare 201b. per cwt.?

Ans. $38 \mathrm{cwt}$.3 qr . 7lb.
9. What is the neat weight and value of 12 bags of coffee, each 2 cwt. 1qr. 101bs. gross, tare 18 lb . per cwt., tret 41 lb . per 1041 b ., at 19 dollars 60 cents per cwt.?

$$
\text { Answer. }\left\{\begin{array}{l}
22 \text { cwt. } 2 \mathrm{qr} .18 \mathrm{lb} . \text { neat. } \\
444 \text { dollars } 15 \text { cts. value. }
\end{array}\right.
$$

10. What is the cost of 24 casks of prunes, each cask weighing 1 cwt . 1qr. 23lb. gross, tare 18lb. per cask, at 5 dollars $17 \frac{3}{4}$ cents per cwt.? Ans. $\$ 16079 \mathrm{cts}$. 4 m .
11. What is the neat weight of 5 hogsheads of sugar, each 10 cwt . 1qr. 201b. gross, tare 3qr. 25lb. per hogshead, tret 41b. per 104lb.?

$$
\begin{array}{rr}
\text { cwt. qr. } \\
10 & 1 b . \\
& 20 \\
& 5
\end{array}
$$

$\begin{array}{rrrl}52 & 0 & 16 & \text { gross. } \\ 4 & 3 & 13 & \text { tare. }\end{array}$
Divide by 26)47 13 suttle.
$\begin{array}{lll}1 & 3 & 7 \\ \text { tret quotient. }\end{array}$
Ans. $45 \quad 1 \quad 24$ neat.
cut. qr. 7 l .
$0-3 \quad 25$
5
4313 tare.

To find the neat weight of Pork, established by custom, when the gross is given.

RULE.

Place each hundred separately. Then subtract $\frac{1}{4}$ or 25 from the first hundred: 핳 or $12 \frac{2}{2}$ from the second hundred. The remainders will be neat. All over the second hundred is neat. Add the remainders and all oror the second hundred together for the neat.

Note. I must be taken from any unnber of pounds gross, under 100 including: - $\frac{1}{8}$ from all over 100 pounds, and under 200 including.

EXAMPLES.

1. What is the neat of a hog weighing 184 pounds gross? 2. What is the neat of a hog weighing 212 pounds gross?

Ans. 174률 Neat.
3. What is the neat of a hog weighing 305 pounds gross? Ans. 267실ㄴ. neat.
4. What is the neat of 3 logs weighing gross as follows, viz. : no. 1, 191 lb . ; no. 2, 76 lb . ; no. $3,201 \mathrm{lb}$.?

Ans. $375+1 \mathrm{lb}$. neat.
5. What is the neat of 2 hogs weighing gross ats follows, Viz. : no. 1, 219 1b.; no. 2, 118 lb . ? Ans. 268 lbs . neat.

EQUATION.

Equation is :ased to find the mean time of yeveral. payments clue at diferent times.

- RULE.

Multiply each payment by its time. .. Add up the sereral products, and divide the sum by the whole debt.

EXAMPI,ES.

1. A. owes B. 60 dollars, of which 40 dollars is to the paid at 6 months, and 20 dollars at 3 months, but they agree that the whole shall be paid at one time. When must it be paid?
8
$40 \times(6=240$
$20 \times 3=-\frac{60}{20}$
$6,0) \overline{3010}$
Ans. 5 months.
2. C. owes D. 380 dollars, of which 100 dollats is to lo paid at 6 months, 120 dollars at 7 months, and 1150 d lllar: at 10 monthe, but they agree that the whole shall be paid at one time. When must it he paid? Ans. 8 months.
i3. A merelant has owing to him 300 dollars, to be paid as follows, viz: 100 dollars at 2 months; 100 dollars at 1 months; 100 dollars at 6 months; but they agree that the whole shall be paid at one time. When must it I e paid?

Ans. + months.
4. A merchant has purchased ghods to the amoment of 2000 dollars, of which sum 400 dollars are to he prid at present, 800 dollars at $(6$ months, and the rest at ! mosihs; but it is agreed to make one paymut of the whole. When musl, it lic paid?

Ans. (i month:.
5. A. uwes J. oul dollats, which will he due fome monthes hence. It is agreed that 100 dollans shall be paid now, aud that the rest-remain ungaid a longer time than four months. When must it, be pairl?

Ans. 5 monthe.
(i. A. nwes B. 100 dollars, of which 75 dollats is to be paid at 1 momblas, aml 25 dollarg at 2 monthe; lat thes agren that the whote shall he paid at one time. Th hen move it hepmid?

Ar: : 3 ? monthe.
7. C. is indebted to a merchant to the amount of 2000 dollars, of which 1000 dollars is payable at the end of t monthes, 800 dollars in 8 monthes, and 700 dollar: in 12 months; when nughti, payment to be made if all are paid tngerner? Ans. $7 \frac{1}{2}$ monthet

BARTER.

Bartor is the exchanging of one commodity for another, according to a certain price or value agreed on by the parties concerned. Questions in Barter may be solved by the Rule of Three.

When any articles, at a given price per article, are to be bartered for any other articles, at a given price per article.

RUEE.

Find the value of the articles whose quantity is given. Then find how many of the other articles may be bought with that money.

EXAMPLES.

1. A. has 400 yards of cloth, at 20 conts per yard, for which B. is to give him books, at 50 cents each. How many books must A. receive?
2. C. has 100 bushels of wheat, at 75 cents per bushel, for which D. is to give him rye, at $37 \frac{1}{2}$ cents per bushel. How many bushels of rye ought C. to receive?

3. M. has 500 barrels of flour, at 6 dollars per barrel, for which R. is to give him salt, at, 1 dollar 25 cents per bushel. How many bushels of salt ought M. to receive?

$$
\text { Ans. } \because 100 \text { lu. }
$$

4. A. has 20 pounds of sugar, at $12 \frac{1}{2}$ cents per pound, for which J. is to give him fowls, at 10 cents a piece. How many fowls ought A. to receive? Ans. 25 fowls.

Fi. Ilow many labiels if rye at to cents per buthel, are uqual t: ! O bush I! of wheat, at ou cents per buchel? Ans. 11:2 2 bu.
6. (1. Las 160 yauds ní istuff, at 14 cents poer yaxd, for which N . igrees to gire hin oats, at 20 cente por bushch. How many Lushels of oats ought G. to receive".

Ans. 112ta.
7. P. sold 108 yards of catico, at 10 cents por yaud, for Thich 7 . gave him 6 dollars in money, and the rest in Haxsced, at 8 couts per bushol. Fow many bishels of flaxueed did I' receive?

Ans. GUbu.
8. Ilow many pounds of tea, at 10 cents per pound, must be give: in baster for 25 younds of coflice, at $20 \frac{1}{2}$ ceuts per pound? 'Ans. 1 sỉ p pounds.
9. A merchan has 1000 yards of cinvass, at 20 ecuts per yarl, wheh he is to barle? for serge, at 22 2 cents per yard. How many yards of serge should he receive?

Ans. $888 \frac{40}{2} \frac{0}{5}$ Jarls.
10. A. has sugur at 121 cunts per pound, for a quantity of which (1 is to give him $\frac{150}{150}$ pounds of tea, at 1 dollar per pound. How much suçar mist U. receive?

Ans. 3600 pounds.
11. IT. has 1000 buehels of sait, at 1 dollar 10 conts per bushel; fur which WV. is to give him 80 gallons of brandy, at $87 \frac{1}{2}$ corts per gallow, and the rest in cotton, at 15 cents por pound. How many ounds of cotton must II. receive? Ans. 6866? pounds.
12. What quantity ni candles, at 50 cento per cwt., must be giver fin 15 ewt Ugr. 27ll, of tobacen, at ?20 ceuts per pound?

13. T'\& parsons barter-- - A. has 17ewt. of iron; at $13 \frac{1}{2}$ cents per lin. - B. has 12001b. of cheese, at 14 dollars per cwt. - waich o.' then mus receive money, and how miach? Ans. A. 107 dollars 4 cents.
1.2. L. Las 21081 b . of bacon, at 10 cents per pound, and 31 hushels of appief, it 11 d cents per bushel, which he bariens with i. thas: le to have 19, dollars "5 conts in money, and the rest in pork, at 1 dollai 58 cents per barrel. How many baryels is he to cocuive? Ans. 50 barrels. t
15. K. bouglt of Y. 102llo. of lard, at $8 \frac{1}{3}$ conts per pound, and is to pay him as follows, viz: in canh 1 dollar 1 cent, 20 th. of leather, at 20 ceuts per pound, and 40 pounds
of lief, at $2 \frac{1}{3}$ cents per pound, and the rust in butter, at fl? cents per pound. How many pounds of butter must Y receive? Aus. $39 \frac{2}{2} \frac{1}{5}$ pound,

LOSS AND GAIN.

Loss and gain is used to show hows much is gained or lost in dealing.

RULE.

1st. Subtract the cost from the ale; the remainder will be the gain. Or, if the cost be more than the sale, subtanet the sale from the cost, and the remainder will le the loss. dd. When you wish to sell any commodity at a certain gain per cent, and wish to know what sum it must be sold for, say; if 100 give 100 with the per cent. added, what will the first east give? Bd. When the amount is given at a certain rate gain per cent., to find the first cost, say ; if 100 , with the rate per cent. added, give 100, what will the amour give? 4 th. When any commodity is sold at a certain rate per cent. Inse, to find the storm received, say ; if 100 give 100 less the per cent. lost, what will the first cost give?

EXAMPLES.

1. What mill a merchant gain by buying 95 husliels of salt, at 1 dollar 20 cents per bushel, and selling it again, it 1 collar 50 cents per bushel?

$\$$ cts.	95 binhlels
150	30
120	300

Gain on me bushel, 30 Ans. $\$ 2850$ conte.
\because Bought 55 yards of cloth, it 13 cents per yard, aud
 gained by the transaction! dat. 8110 cis.
 sol the fame again for ont cen's pere yard, l women do I

LOES ANI G.AIN.

5. If I buy 40 saddles, at 11 doll:urs 50 cents earh, and sell them again at 10 dollars 99 eents; how muel do I lose by the sale?

Ans. 20 dollars 40 ct-
6. lbonght 12 bushels of corn, at 22 $\frac{3}{2}$ cents per bushel, and sold it again at 22 cents per bushel. How much diel I lose by the transaction? Ans. 6 cents.
7. A man bought flour, at $\$ 5$ per barrel, aud sold it at $\$ 5: 25$ cents per barrel. How much did he gain on $36: 3$ barrels?

Ans. 90 dollars 75 cts.
8. If I lay out 500 dollars in cloth, at 5 cents per yarl, and sell the same again at $12 \frac{1}{2}$ cents per yard, how much do I gain? Ans. 750 dellars.
9. If I buy a horse for 60 dollars, at how much must 1 sell him to gain 20 per cent.?

$$
\text { If } 100: 60:: 120 . \text { Ans } \$ 72 .
$$

10. If I buy 100 yards of cloth fo: $\$ 50$, at how much must I scll it per yard to gain 20 per cent. by the whole? Ans. (i0) cents.
11. If I buy 54 yards of muslin for 20 clullars $4 \pm$ cents, and sell the stme again at 60 cents per yard, how much do I gain?

Ans. 2 dollars 56 cents.
12. If I buy 90 horses for 1800 dollars, at how much must I sell each horse to gain 180 dollars in the whole?

Áns. 22 dullars.
13: A merchant sold 40 yards of cloth, at 20 cents per yard, and by so doing gained 10 per cent. What was the first cost of cach yard?

Ans. 18 cents. +

14. Bought a quantity of tea for $\$ 250$, and sold it for 275 dollars. What is the gain, and gain per cent.? Ans. 25 dollars gained, 10 per cent.
15. Bough: 190 bushels of corn for 326 dollares, and sold the same for 370 dollars 10 cents. What was the profit ons each bushel? Ans. 9 cents
16. Bought a parcel of gonds for 60 dollars, and sold the same immediately for 90 dollars, with 6 months' credif How much per cent. per amum was gained?

Ans. 100 per cent
17. When a broker receives in exchange 5 cents per dol lar profit, how much is the gain per cerat.? Ans. \$
1s. A mam purchated 7 picces of eloth, at $\$ 1375$ cents per piese; but finding it somewhat damaged, he paid $\$ 312 \frac{1}{8}$ pents per piece for dycing it. At how much must each pione ho sold to gain 12 per eent. on the whole?

$$
\text { Ans. } \$ 1890 \text { ccn.s. }
$$

19. A trader bought 250 barrel: of flow, at $\$+50$ cencs a barrel. LInw must he sell cach barrel to gain 100 dollars by the bargain?

Ans. $\$ 490$ cents.
20 . If 1 purchase 16 pieces of cloth at 14 doll:urs per piece, and soll 5 picces at 17 dollars per piece, and 6 at 15 dollar- per piece, what must I sell the rest at per piece to guin 12 per cent. on the whole? Ans. $\$ 1517$ cts. 6 m .

PARTNERSIIP.

Iartnership is a joint interest or property, the union of two or more persons in the sume trade, by which rule, persons in company trading together, are cnabled to make a just division of the gain or loss, in proportion to each man's stock.

When the respective stucks have no time -

hule.

Ald the several shares together, which amount is the first term; either person's share, the 2nd.; the whole gain or loss, the : ird. Proceed by the Rule of Three. and. When the respective stocks have time, multiply each man's stock by its time. Add the several products together, which anmunt is the first term; cither praticular profluct, the 2nh..; the whate gain or loss, the Brel. Procced as before.

J'ioone. Add together all the slares of gain or loss.
 what is cuch matis than of the gain?

$\$ \mathrm{~m}$.

13. $50 \times 2=200$
C. 100×6600
D. 150×81200

14. O. P. and R. traded together; O. put in 100 doliars iom 2 months, J. 200 dollars for four months, ind If. 400 dellas fin 5 mouthe, ant by trading together thoy gaine Ge! dollars 50 cents. Thow much is bech mea's gain in propertion to his stock?
15. 40 dollaris 3.3 cents. ins. $\{\mathrm{P} .160$ dollan 1 at: cant: (R. 100 (iellara : Ba $_{3}^{3}$ conto.
16. 17. an! W. male a stock ; A. pat in 500 dowam for 6 months, and WY. 2000 dollars for 8 monthes, and by treting they gained "2000 dollars. I lemamd nach man's shave of the gain?
1. S. G. and W. mata a stock for 12 months ; Bet in at furst 500 dollars, and two months after "he but in 3 !) dollare mme ; C. put in at first 805 dollars 50 cents, and at tion em of tem months he took out 300 cinllars; W. put in at frest 600 dollars 25 colte, anl $\frac{1}{2}$ mominis after he put in log dollars, and 6 months after that lat put in 50 dollars 5) rents more. At the expration of 12 months their gain is 1804 dollars 50 cenis; what is ench man's share of the gain? $\quad 58.3889$ conts 2 m . Aus: 1. ($1 \% .54190$ cents 0 m .

- 20 similling. I nomad. \&

TABLH,

Showing the value of English Money in. Federal Money

Note. In calculating the above table, remainders are not marked, being less than $\frac{1}{4}, \& c$.
\&1 of New York and North Carolina, is $\$ 250$
$£ 1$ of South Carolina and Gcorgia, is $\$ 428 \frac{1}{2}+$ $£ 1$ of New Jersey, Pennsylvania, Delaware, and Maryland, is.
$\$ 266 \frac{?}{3}$
$£ 1$ New Hampshire, Massachusetts, Rhode Island, Comnecticut, Virginia, Kentucky, and Tennessec, is

Temmesse arrency, bow many dollars and centr, a dullar being ia punce?

$$
\begin{aligned}
& \mathcal{L} \\
& 90 \\
& \therefore 0 \\
& 1800 \\
& 14 \\
& \text { 72) } 2160000(\$ 300 \quad 00 \\
& 216
\end{aligned}
$$

$$
0000
$$

2. Brinse 12 pmands, ä shillings and ! pence to dollatis and cent- samedurrency. Sus. $\$ 10$ (i2 $\frac{1}{2}$ ets.
3. Reatuce 19 shillings am 10 pence to dollars and conts, sume umpency.
1 - 1 - . Ans. 33 30cts. im.

 reney.
4. In $27 e^{2} 2$.s. how many dollars and conts, Now Yosi and Nowth Cirolina currency, one dollar being 0 pence?
5. In 30 e how many dollars and cents, sime cumerne?
 rency? .
 Aaryland cumency, how many dollars aud (onts, a dolliar beines 10 pence?
6. In $12 E$ how many dollars and couts, sume curreney?

Ans. $\$ 3200$ cts.
11. Tis 36 : (4s 5d. how many dollars, cents and pith \because

 may collars and conte, being uü pence in ia dollar?

An... Sill 10 0n chs.
13. In $21 £$ hent many dullats sudd cents, same cillte ney?
14. In $460 £$ and 16 s., sterling moncy, how many dollars and cents, being 5.4 pence in a dollar? Ans. $\$ 20.1800$ cts.

To bring dollars, or dollars and cents, to pounds, shillings, \&c.

RULE.

Multiply the dollars, or clollars and cents, by the number of pence which make a dollar of the currency into which you wish to bring the given sum. The answer will bo pence, which bring to pounds.

Note. If there be cents in the given sum, two figures must be cert off from the right of the product, before bringing them into pounds, \&c..

EXAMPLES.

1. In 33 dollars how many pounds, \&c. sterling, a dollar being 54 pence?

$$
\begin{aligned}
& 8 \\
& 83 \\
& \frac{34}{132} \\
& 165 \\
& 1 2 \longdiv { 1 7 8 2 \mathrm { d } } \\
& 2(0) \overline{1+\mid 8-6 \mathrm{~d}} . \\
& \text { Aus. } 7 \& 8 \mathrm{~s} .6 \mathrm{~d}
\end{aligned}
$$

2. $1,000,000$ dollars how many founds, same currency? Ans. 225,000£.
3. In 150 dollars 25 cents how many pounds, de., New Fingland, Virginia, Kontucky and Tonnessce currency, ? dollar being 72 pence?

Ans. $45 £ 1 \mathrm{~s} .6 \mathrm{~d}$.
4. In 2070 dollars, New England, Virginia, Kentucky and Tennessee currency, how many pounds, \mathbb{A}., a dollar boing 72 pence?

Ans. (i2 $1 x^{2}$.
5. In 24 dollars 50 cents how many pounds aud shillings, \&c., in New York and Eurth Carolina currency, a dollar being 96 cents?

Ans. 9 : 1 (is. 0rl.
6. In 2512 dollars, how many pounds of New Jersey, Pennsylvania, Delaware, and Maryland currency, a dollar being 90 pence?
7. In 90 dollars, how many pounds Soutlr Carolina and Georgia curreucy, a dollar being 56 ponce? Ans. 21£.

To change the currency of one state or country into that of another.
ROLE.

Place the sum you wish to change, in the third place the number of shillings in a dollar of that currency into which you wish to change it, in the second - and the number of shillings in a dollar of that currency you wish to change, in the first. Proceed by the Rule of Three.

1. What is the value of $50 £$ Tennessee curreney, in New York?

$$
\begin{array}{r}
\text { S. S. } \begin{array}{r}
\text { £. } \\
6: 8: \\
8 \\
8 \\
\hline
\end{array} \frac{8}{8} \\
\hline
\end{array}
$$

Ans. $66 £ .13$ s. 4 d .
2. What is the value of $500 £$ Massachusetts currency, in Pennsylvania?
3. What is the value of $100 £$ South Carolina or Georgia currency, in Kentucky? Ans. 128£. 11s. 5d. +
4. What is the value of $750 £$ Now Hampshire currency, in North Carolina?

Ans. $1000 £$.

VULGAR FRACTIONS.

A Vulgar Fraction is a part of a whole number, and is read by first mentioning the upper part of the fraction, and then the lowier, thus: $\frac{1}{}, \frac{5}{8}$, \&cc. The upper part of the fraction is called the numerator, and shows the part of a whole number expressed by the fraction. The lower number is called the denominator, and shows the number of such parts contained in a whole number. Vulgar Fractions are either proper, improper, compound, or mized. A proper
fraction has its numerator less than its denominator，as $\frac{7}{8}$ ，$\frac{3}{8}$ ， \＆c．An improper fraction has its numerator greater than its denominator，as $\frac{5}{3}, \frac{4}{3}$ ，\＆e．\AA compound fraction is a fraction of a fraction，with the word＂of＂expressed between them，as $\frac{1}{2}$ of $\frac{n}{3}$ ，of $\frac{3}{3}$ ，dic．A mixed number is a whole number and a fraction，as $\frac{51}{2}, 8 \frac{7}{3}$ ，\＆o．

REDUCTION OF VUEGAR FRACTIONS． CASE 1.

To reduce a fraetion to its lowest terms．

Rモ゙ゃE．

Divide the numerator and denominator continually by any number that will divide them both without a remainder： When they cannot be divided by any number without a re－ mainder，the fraction is then at its lowest terms．

EXAMPEES．

1．Reduce $\frac{24}{63}$ to its lowest terms．

$$
\text { 24) } \frac{24}{\frac{2}{8}}=\frac{1}{2} \text { Ans. }
$$

2．Reduce $\frac{48}{56}$ to its lowest terme．
3．Reduce $\frac{\mathrm{r}}{4} \frac{1}{8}$ to its lowest terms．
4．Reduce $\frac{10}{1} \frac{8}{4} \frac{8}{4}$ to its lowest terme．
5．Reduce $\frac{2^{5} 5}{200}$ to its lowest terms．
6．Reduce $\frac{1276}{2} \frac{6}{3}$ to its lowest terms．

case 2.

To reduce a mixed number to an improper fraction．

ruce．

Multiply the whole number by the denominator of the fraction，and add the numerator to the product for a new numerator，under which place the given denominator．

EXAMPLEE．

1．lieduce 11% to an improper fraction．Ane． 8% ．

$$
112
$$

New numerator． 57
Denominator．
5
2. Reduce $8 \frac{3}{7}$ to an improper fraction. Ans. $\frac{59}{7}$.
3. Reduce $14 \frac{1}{2}$ to an improper fraction. Ans. $\quad \frac{20}{2}$.
4. Reduce $99 \frac{8}{17}$ to an improper fraction.

Ans. ${ }^{30}{ }^{11}{ }^{2}$.

CASE 3.

To reduce an improper fraction to a whole or mixed number.

RULE.

Divide the numerator by the denominator.

EXAMPLES.

1. Reduce $\frac{400}{17}$ to its proper terms.

$$
\begin{aligned}
& \text { 17) } 400 \text { (Ans. } 233^{-8} \text {. } \\
& 34^{\prime \prime}
\end{aligned}
$$

2. Reduce $\frac{9.1}{4}$ to its proper terms. -
3. Reduce ${ }^{511} \mathbf{1}$ to its proper terms.
4. Reduce $\frac{199}{84}$ to its proper terms.

Ans. 223
Ans. $5 \frac{1}{10}$
Ans. 2f:1

Note. Case 2 d . and 3 rd . prove each other.

$$
\text { CASE } 4
$$

To reduce compound fractions to single ones.

nure.

Multiply all the numerators together for a new numerator, and all the denominators for a new denominator; whick reduce to their lowest terms.

EXAMPLES.

1. Reduce $\frac{1}{2}$ of $\frac{2}{8}$ of $\frac{3}{4}$ of $\frac{4}{5}$ to a single fraction. Ans. $\frac{1}{5}$.

$$
\left.\begin{array}{l}
1 \times 2 \times 3 \times 4= \\
2+3 \times 4 \times 5=
\end{array} \quad 24\right) \frac{24=}{120}
$$

2. Reduce $\frac{2}{3}$ of $\frac{9}{4}$ of $\frac{4}{5}$ to a single fraction. Ans. $\frac{2}{5}$.
3. Reduce $\frac{4}{5}$ of $\frac{5}{8}$ of $\frac{7}{9}$ to a single fraction. Ans. $\frac{7}{18}$.
4. Reduce $\frac{1}{1} \frac{2}{4}$ of $\frac{5}{6}$ of $\frac{1}{2}$ to a single fraction. Ans. $\frac{5}{14}$.

$$
\text { CASE } 5 .
$$

To find a common denominator, viz: one whose denomisators are all alike.

RULE.

Multiply all the denominators together for a common aenominator, into which divide each denominator, and multiply the quotient by its own numerator for a new numerator, and place the new numerator over the common denominator.

EXAMPLES.

1. Reduce $\frac{1}{2}$, $\frac{3}{3}$ and $\frac{3}{4}$ to a common denominator.

$$
\begin{array}{r}
\frac{2}{2} \frac{3}{4} \quad 12 \times 1=12 \\
38 \times 2=16 \\
-6 \times 3=18
\end{array}
$$

Divide by $2,3,4$. 24 common denominator.

$$
\text { Ans. } \frac{12}{2}, \frac{18}{2} \frac{18}{2}, \frac{18}{24} .
$$

2. Reduce $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{7}{8}$ to a common denominator.

$$
\text { Ans. } \frac{3}{6} \frac{4}{4}, \frac{4}{6} \frac{5}{4}, \frac{5}{6} \text {. }
$$

3. Reduce $\frac{7}{8}, \frac{2}{3}, \frac{3}{5}, \frac{6}{7}$, to a common denominator.

Ans. $\frac{73}{8} \frac{5}{5}, \frac{5}{3} \frac{50}{4} \frac{0}{0}, \frac{5}{8} \frac{0}{4} \frac{4}{0}, \frac{72}{84} 8$.
4. Reduce $\frac{1}{2}, \frac{7}{3}, \frac{5}{6}$ and $\frac{7}{8}$, to a common denominator.

Ans. $\frac{1}{2} \frac{4}{8} \frac{4}{8}, \frac{1}{2} \frac{9}{8} \frac{2}{8}, \frac{2}{2} \frac{4}{8} \frac{9}{8}, 2 \frac{2}{2} \frac{2}{8} \frac{2}{8}$.

case 6.

To reduce the fraction of one denomination to the fraction of another, but greater, retaining the same value.

RULE.

Make the fraction a cempound one, by comparing it with all the denominations between it and that to which it is to be reduced; which fraction reduce to a single one.

EXAMPLES.

1. Reduce $\frac{3}{5}$ of a pennyweight to the fractio of a pound, Troy.

$$
\left.\frac{3}{5} \text { of } \frac{1}{2} \sigma \text { of } \frac{1}{12} \quad 3\right)_{\frac{1}{1} \frac{3}{2} 0 \sigma}=\frac{1}{4} \frac{1}{0} \text { Ans. }
$$

2. Reduce $\frac{s}{8}$ of a nail to the fraction of a yard.

Ans. I $^{\frac{3}{3}} \overline{3} \mathrm{yd}$.
3. Reduce $\frac{3}{9}$ of a cent to the fraction of a dollar. Ans. $\frac{1}{1}^{\frac{1}{8} 0}$ dollar.
4. Reduce $\frac{5}{8}$ of a pint to the fraction of a hogshead.

$$
\text { Ans. }{ }_{40}-\frac{5}{3} \frac{1}{2} \text { hhd. }
$$

$$
\text { CASE } 7 .
$$

To reduce the fraction of one denomination to the fraction of another, but less, retaining the same value.

> RULE.

Multiply the given numerator by the parts of the denominator between it and that to which it is reduced, for a new numerator, and place it over the given denominator, which reduce to its lowest terms.

EXAMPLES.

1. Reduce ${ }_{i \frac{1}{8} \delta}$ of a dollar to the fraction of a cent.

$$
\frac{c l s .}{\left.\left.\mathrm{T}^{\frac{1}{8}} 0 \times 1 \frac{0}{1}=2 \right\rvert\, 0\right) \frac{1}{18} \left\lvert\, \frac{0}{0}=\frac{5}{9} .\right.}
$$

2. Reduce $\frac{2^{2}}{2}$ of a pound, troy, to the fraction of an ounce.
3. Reduce $\frac{2}{2} \frac{2}{2}$ of a cwt. to the fraction of a pound, avoirdupois. Ans. $\frac{8}{3} \mathrm{lb}$.
4. Reduce $\frac{1}{5 \frac{1}{8} \frac{1}{4}}$ of a day to the fraction of a minute.

$$
\text { case } 8 .
$$

To reduce a fraction to its proper ralue.
rure.
Multiply the numerator by the next lowest denomination, and-rivide by tlie denominator.

EXAMPLES.

1. Reduçe ${ }_{3}^{4}$ of a dollar to its proper valuo. 100
5) 400

Ans. 80 cents.
2. Reduce $\frac{3}{4}$ of a dollar to its proper value.

Ans. 75 ceuts.
3. Feduce $\frac{1}{2}$ of a day to its proper quantity.

Ans. 6 hours.
4. Reduce $\frac{4}{5}$ of a mile to its proper quantity.

$$
\text { Ans. } 4 \text { fur. } 125 y \mathrm{y} \text {. } 2 \mathrm{ft} \text {. 1in. } \frac{5}{7} \text {. }
$$

5. Reduce $\frac{\pi}{16}$ of an acre to its proper fuantity. Ans. 1R. 10P'
6. Feduce $\frac{10}{10}$ of a year to its proper quantity.

Aus. 328da. 12hr. case 9.
To refluee nuy given value, or quantity, to a fraction of any greater denomination of the same kind.

RULE.

Reduce the given sum to the lowest denomination mentioned for a numerator, and the denomination of which. you wish to make it a fraction to the same name for a denominator.

EXAMPLES.

1. Reduce 60 cents to the fraction of a dollar.

Ans. $\frac{3}{5}$ dollar.

$$
2 \mid 0)\left._{\frac{5}{10}}\right|_{\frac{2}{0}}=\frac{3}{3}
$$

2. Reduce 90 cents to the fraction of a dollar.

Aus. $\frac{10}{\text { io dollar. }}$
3. Reduce 9 ounces, troy, to the fraction of a pound.

$$
\text { Ans. } \frac{\frac{3}{4} \mathrm{lb} \text {. }}{}
$$

4. Reduce $9 \mathrm{oz} .2 \mathrm{dr} . \frac{2}{7}$, avoirdupois, to the fraction of a pound.

Ans. $\frac{4}{7} \mathrm{lb}$.
5. Reduce 3qr. 3na. to the fraction of a yiard. Ans. $\frac{15}{36}$.
6. Reduce 7 months to the fraction of a year.

ADDITION OF VULGAR FRACTIONS.

RULE.

Reduce the fractions to a common denominator; then add all the numerators together, and place their sum over the common denominator. If fractions be of different denominations, find their valuc scparately, and add as in Compound Addition.

Note. If mixed numbers be given, reduce them to improper fractions, or only use the fractional part in performing the operation. Then add the whole numbers, as in Simple Λ ddition. If compound fractions be given, reduce them to single ones.

EXAMPLES.

1. Add $\frac{1}{8}, \frac{1}{2}$, and $\frac{1}{4}$, together.

$$
\begin{array}{cc}
1 & 1 \\
2 & 32 \\
\hline 8 & 16 \\
8 & \frac{56}{64}
\end{array}
$$

$$
\text { 8) } \frac{56}{84}=1
$$

Divide by $8,2,4) 64$
2. Add ${ }_{50}^{2}$ and $\frac{5}{10}$, together.
3. Add $\frac{3}{4}, \frac{7}{6}, \frac{9}{\frac{9}{0}}$, and $\frac{9}{3}$, together.
4. Add $\frac{1}{11}, \frac{3}{15}, \frac{3}{15}$, and $\frac{4}{15}$, together.
5. Add $\frac{1}{3}, \frac{1}{2}$, and $\frac{3}{4}$, together.
6. Add $3 \frac{1}{4}, 8 \frac{2}{7}$, and $\frac{4}{9}$, together.
7. Add $7 \frac{3}{7}$, and $5 \frac{4}{5}$, together.
8. Add $\frac{1}{3}$ of an acre to $\frac{7}{30}$ of a mod. Ans. 2R. $1 \frac{1}{3} \mathrm{P}$.
9. Add $\frac{3}{4}$ of a mile to $\frac{7}{7}$ of a furlong. Ans. 6fur. 28P.
10. Add $\frac{3}{6}$ of $\frac{5}{8}$ and $\frac{1}{2}$ of $\frac{7}{\frac{7}{2}}$ tgether.
11. Add $\frac{1}{2}$ of $\frac{7}{8}$ and $\frac{4}{6}$ of $\frac{1}{20} \frac{9}{6}$ together.

Ans. io. Ans. $3 \frac{23}{\mathrm{~T}^{2} \mathrm{~B}^{2}}$.

Ans. $\frac{10}{1} \frac{0}{1}$.
Ans. $1 \frac{1}{2}$. Ans. $11 \frac{2}{2} \frac{1}{5} \frac{7}{2}$. Ans. $13 \frac{8}{35}$.

Ans. $\frac{7}{8}$.

Ans. $\frac{2}{4} \frac{2}{8}$.
Aus. ${ }^{\frac{17}{4} \frac{7}{8} \text {. }}$

MULTIPLCAIION OF VULGAR FRACTIONS.

צปむE.

Multiply ino entrators Angether for a zew numerator, and the deacmiesturs for: nen donominator.

Note. If compound fractions be given, reduce them to single ones; or, if mixed numbers, recduce them to improper fractions; and procced as before.

EXAMPLES.

1. Muitiply $\frac{1}{2}$ by $\left.\frac{3}{3}, \frac{1}{2} \times \frac{2}{3}=\frac{2}{6} 2\right) \frac{{ }_{3}^{2}}{6}$. Ans. $\frac{1}{8}$.
2. Multiply $\frac{5}{6}$ by $\frac{4}{5}$.
3. Multiply $\frac{2}{10}$ by $\frac{1}{3}$.
4. Multiply $4 \frac{3}{4}$ by
5. Multiply $\frac{1}{3}$ of $\frac{4}{5}$ by $\frac{7}{10}$ of $1 \frac{16}{12}$.
6. Multiply $\frac{1}{2}$ of 7 by $\frac{1}{2}$. Ans. 7^{7}. Ans. 15°. Ans. 3 \%. Ans. $\frac{75}{45}$.

$$
\frac{1}{2} \times \frac{7}{1} \times \frac{1}{2}=\frac{4}{7} \quad \frac{4) 7}{1 \frac{3}{4}} .
$$

SUBTRACTION OF VULGAR FRACTIONS.

RULE.

Reduce compound fractions to single ones, and mixed numbers to improper fractions. Then reduce these fractions to a common denominator, and subtract the less numerator from the greater, and place the difference over the common denominator.

Note. When the fractions are of different denominations, reduce them to their proper value, each separately, and take their difference by Compound Subtraction.

examples.

1. From $\frac{5}{8}$ take $\frac{5}{\frac{5}{2}}$.

$$
12 \times 5=60
$$

Divide by 8,12$) \overline{96}$

$$
8 \times 5=40
$$

$$
\text { 4) } \frac{20}{6}=\frac{5}{2 \pi} \text {. }
$$

2. From $\frac{7}{8}$ take $\frac{4}{5}$.
3. Trom $\frac{9}{10}$ take $\frac{5}{10}$.
4. From $\frac{7}{7^{7}}$ take ${ }_{20}^{9}$.
5. From $\frac{1}{2}$ of $\frac{2}{3}$ take $\frac{3}{5}$ of $\frac{5}{8}$.
6. From $\frac{2}{5}$ of $\frac{7}{16}$ take $\frac{1}{4}$ of $\frac{3}{8}$.

Ans. $\frac{3}{4 \pi}$. Ans. $\frac{2}{5}$.
Ans. $\frac{7}{6}$.
Ans. $\frac{1}{8}$.
7. From $\frac{3}{3}$ of a league take $\frac{7}{10}$ of a mile.

Ans. 1m. 2fur. 16p.
8. Trom $\frac{1}{6}$ of a yad take $\frac{?}{3}$ of an inch. \quad Ans. $5 \frac{1}{3}$ in

Note. When fractions or mixed numbers are to be subtracted from whole nambers, subtract the numerator of the fraction from its denominator, and under the remainder place the denominator; then carry one, to be subtracted from the whole number.
9. From 5 take $\frac{8}{15} .5$
10. From 10 take $\frac{1}{10}$.

Ans. $4_{\frac{8}{14}}$.
11. From 9 take $5 \frac{1}{2}$.

Ans. $99^{\circ} \mathrm{T}$.
12. From 25 take $24 \frac{8}{10}$.

Ans. $3 \frac{1}{2}$.
Ans. $\frac{1}{5}$.

DIVISION OF VULGAR FRACTIONS.

RULE.
Reduce compound fractions to single ones, and mixed numbers to improper fractions. Theu invert the dividing term, and multiply all the numorators into each other for a dividend, and denominators for a divisor.

EXAMPLES.

1. Divide $\frac{1}{2}$ by $\frac{3}{4}$. inverted $\left.\frac{4}{3} \times \frac{1}{2} \quad 2\right) 4=\frac{4}{6}$.

Ans. $\frac{7}{3}$.
2. Divide 6 by $\frac{1}{8}$.

Ans. 48.
3. Divide $\frac{5}{5}$ by 3 .
4. Divide $\frac{17}{2} \frac{1}{7}$ by $\frac{3}{5}$.
5. Divide $6 \frac{2}{3}$ by $\frac{1}{3}$.

Ans. $\frac{5}{87}$.
6. Divide $\frac{5}{5}$ of $\frac{1}{3}$ by $\frac{1}{2}$ of $\frac{3}{5}$
7. Divide $\frac{3}{8}$ of $\frac{3}{4}$ by $\frac{1}{2}$ of $\frac{3}{5}$
8. Divide $\frac{2}{3}$ of $\frac{7}{8}$ by $\frac{1}{7}$ of $\frac{1}{4}$.
9. Divide $4 \frac{5}{9}$ by $\frac{5}{4}$ of 4 .
10. What part of $33 \frac{1}{2}+$ is $28 \frac{1}{1}$?

RULE OF THREE, IN VULGAR FRACTIONS.

RULE.

State as in whole numbers. Then invert the first term, and multiply all the numerators together for a dividend,
and denominators for a divisor. If mixed numbers be given, reduce them to improper fractions; or compound fractions to single ones. If a whole number, place it thus: $\frac{6}{1}, \frac{7}{7}$, \&c.

EXAMPLES.

1. If $\frac{2}{5}$ of a yard of cloth cost $\frac{4}{5}$ of a dollar, how much will $\frac{4}{5}$ of a yard cost at that rate? Ans. $\$ 160$ cts.

Inverted $\left.\frac{5}{2} \times \frac{4}{5} \times \frac{4}{5} \times 510\right) 810$

$$
\$ 160 \mathrm{cts} .
$$

2. If $\frac{2}{3}$ of an ounce of indigo cost $\frac{1}{4}$ of a dollar, how much will $\frac{5}{8}$ of an ounce cost? Ans. 23 裖 cts.
3. If $1 \frac{3}{4}$ bushels of corn cost $\$ 1 \frac{1}{8}$, horw much will 60 bushels cost at that rate? Ans. $\$ 3857 \frac{1}{7}$ cts.
4. If $2 \frac{1}{2}$ bushels oats cost 50 cents, what cost $13 \frac{1}{4}$ bushels at that rate?

Ans. $\$ 265^{\circ}$ cts.
5. How many yards of linen, $\frac{5}{4}$ widè, will be sufficient to line 20 yards of baize, that is $\frac{3}{4}$ of a yard wide?

Ans. 12 yd .
6. If $\frac{1}{3}$ of a pound of cinnamon bring $\frac{4}{7}$ of a dollar, what will $\frac{13}{5} \mathrm{lb}$. come to?

Ans. $\$ 274 \frac{2}{7}$ cts.
7. What will $\frac{1}{3}$ of $2 \frac{1}{2}$. cwt. of chocolate come to, when $6 \frac{1}{2} \mathrm{lb}$. cost $\frac{3}{4}$ of a dollar? Ans. $\$ 1076 \frac{12}{3}$ cts.
8. When 10 men can finish a piece of work in $20 \frac{2}{3}$ days, in how many days can 6 men do the same? Ans. $34 \frac{4}{g}$ da.
9. How many pieces of stuff, at $\$ 20 \frac{1}{5}$ per. piece, are equal in value to $240 \frac{1}{7}$ pieces, at $\$ 12 \frac{1}{2}$ per piece? Ans. $149 \frac{1}{17 \frac{1}{7} \frac{1}{7}}$.
10. If $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{3}{4}$ of 60 cents will pay for a bushel of potatoes, how many bushel will \$1 60 cts. pay for?

$$
\text { Ans. } 10 \text { 䂆bu. }
$$

DOUble RULE OF THREE IN VULGAR FRAC'TIONS.

HULE.

Prepare the terms, if necessary, by Reduction. State as in whole numbers. Then invert the two dividing terms, and multiply all numerators tagether for a dividend, and the denominators for a divisor.

EXAMPLES.

1. If $\frac{1}{2}$ of a dollar, in $\frac{9}{12}$ of a ycar, gain $\frac{1}{25}$ of a dollar interest, how much will $\frac{5}{8}$ of a dollar gain in $\frac{3}{6}$ of a year? Aus. $5 \frac{5}{6}$ cts.

$$
\text { Principal. } \begin{gathered}
\frac{7}{4}: \frac{\text { y. }}{\frac{7}{2}}: \frac{\$}{8}: \frac{5}{6} \\
\frac{5}{2}
\end{gathered}
$$

Inverted $\left.\left.\frac{2}{4} \times \frac{12}{3} \times \frac{5}{3} \times \frac{5}{6} \times \frac{1}{2}=108 \right\rvert\, 00\right) 600 \left\lvert\, 00=5 \frac{5}{6}\right.$.
540
60
2. If 21 yards of eloth, $1 \frac{3}{5}$ yards widc, cost $\$ 3 \frac{3}{5}$, what is the value of 381 yards, 2 yards vide? Ans. $\$ 7650$ cts.
3. If $\$ 50$ in $4 \frac{7}{30}$ months gain $2 \frac{1}{8}$ dollans interest, in what time will $\$ 15_{5}^{1}$ gain $\$ 2$? \quad Ans. $12 \frac{472}{96}$ months.
4. If 4 mcu in $5 \frac{4}{5}$ days cat $7 \frac{1}{2} \mathrm{lb}$. of bread, how many pounds will 20 men eat in $\frac{5}{6}$ of a day? Ans. $5 \frac{4}{11^{5}} \mathrm{lb}$.
5. If 90 dollars in $\frac{4}{5}$ of a year gain $\$ \frac{1}{5}$ interest, in what time will 900 dollars gain 20 dollars interest?

Ans. $4 \frac{9}{35}$ months.

DECIMAL FRACTIONS.

A Decimal Fraction is a part of a whole number or unit, denoted by a point placed to the left of a figure or figures; as $.2, .18, .110$. The first figure after the point denotes so many tenths of a unit; the sceond, so many hundredths; the third, so many thousandths; and so on.

Decimal Fractions are read in the same manner as vulgar fractions. .5 is equal to, and reads as $\frac{5}{1 / 0}, .10 \frac{10}{100}, .120 \frac{1200}{1000}$, and so on. A mixed number consisting of a whole number and a decimal, as 12_{70}^{5}; thus 12.5. Whole numbers, counting from the right towards the left, inerease in a tenfold proportion ; but derimals, counting from the left towards the right, decrease ixe e tenfold proportion, as will be better exemplified in the following table:

Note. Ciphers annesed to decimals, neither increase or decrease them ; thus, $.4, .10, .50$, being $\frac{4}{30}, \frac{10}{100},-500$, are of the same value; but ciphers prefixed to decimals, decrease them in a tenfold proportion; thus, $.04, .010, .050$, being

ADDIIION OF DECIMALS.

RULE.

Write down the given numbers under each other, viz. :Units under units, tens under tens, de., and add as in addition of whole numbers; observing to set the point in the auswer under those of the given number.

EXAMPLES.

(1.) 2.12	(2.) $36: 12$	(3.) .7324
103	8.112	.0962
15.115	- $\quad .12$. 132
. 74	16.182	. 09
18.078	55.534	1.0506

4. Add $56.12, .7,1.314,5837.01$, and . 15 , together: Ans. 5895.204.
5. $\operatorname{Add} 361.04, .120,78.0006,101.54,8.943$, and . 3 , Itogether.

MULTIPLICATION OF DECIMALS.

role.
Multiply as in whole numbers, and point off as many figures in the product for decimals as there are decimals in both factors. If there are not so many figures in the product as there are decimal figures in both factors, place ciphers to the loft of the product to supply the deficiency.

EXAMPLES.

1. Multiply 5.11 by .122
5.11

-122
122
610
.62342

2. Multiply 54.20 by 3 S .63 .
3. Multiply 4560 by .3720 .
4. Multiply 285 by .003 .
5. Multiply 3.92 by 196.
6. Multiply .28043 by .0005 .

Ans. 2093.7460. Aus. 1696.3200. Ans. . 000855. Ans. 768.32
Ans. . 000140215 .

SUBIRACTION OF DECIMALS.

RULE.

Place tho numbers as in addition, with the less under the greater; and subtract as in whole numbers, setting the point in the answer under those in the given numbers.

EXAMPLES.
i. From 32.456 take 1.83 1.33

Ans. 31.126
2. From 18.16 take 9.125 .
3. From 100. take. 25.
4. From 441.2 take 128.9
5. From 456.1 take $1{ }^{11} 1.9$

Ans. 312.3 Hus. 314.2.

DIVISION OF DECIMARS.

HULE.

Divide as in whole numbers; then obeerve how many more decimal figures there are in the dividend than divisor, and point off that number of decimal figures in the answer. Or if there be not figures enough in the answer, annex ciphers until there be a sufficient number.

Note. If the divilend be not large cmough to contain the divisor, annex ciphers until it will be; or if there be are mainder, procued in like manner.

EXAMPIAES.

1. Divide 148.63 by 4.21

17.00

16.84

160
2. Divide 19.25 by 38.5

Ans. . 5.
3. Divide .2142 by 3.2
4. Divide 210 . by 240.
5. Divide .1606 by 4.4
6. Divide 3 . by 4.
7. Divide 275. by 3842 .

Ans. .066. +
Ans. 875. Ans. 865.
Ans. 75.
Ang. $071577 .+$

REDUCTION OF DECIMALS.

case 1.

To reduce a vulgar fraction to a docimal.

RULTS.

Annex ciphers to the numerator, and divide by the denominator. If compound fractions be given, reduce them to single ones, and then to a decimal.

EXAMPLES.

1. Reduce to to decimal.

Ans. . 5.

$$
\text { CASE } 2 .
$$

To reduce any sum or quantity to the decimal of a higher.
RULE.

Reduce the given sum to the lowest denomination mentioned for a dividend, and one of that denomination of which you wish to make a decimal to the same denomination for a divisor. The quotient will be the answer.

HXAMPLES.

1. Retince 2qr. to the decimal of a yard.

Aus. 5 rud.

2. Reduce 2qr. Dua. to the decimal of a yard.
3. Reduce 2qt. Ipt. to the decimal of a hhd.
4. Reduce 10 gr . to the decimal of an ounce, apothicearies' weight.

Ans. .02083. +
5. Reduce 5 minutes to the decimal of an hour.

Ans. .08333. +
6. Reduce 2 r. 4 p. to the decimal of an acre. Ans. 525 .

CASE 3.

To reduce a decimal fraction to its proper value.

RULE.

Multiply the given fraction contiaually by the next lowest denomination than that of the given sum, for the proper value.

EXAMPLES.

1. What is the value of . 75 of a dollar? Ans. 7 jects. 100
75.00
2. What is the ralue of .375 of a dollar? Ans. 37 chts. 3. What is the value of .9 of an acre? Ans. 3r. 23p. 4. What is the value of .436 of a yard? Ans. 1qr. 2na. . 976.
3. What is the value of. 71 of 4 ounces, troy? Ans. 2oz. 16dwt. 19.2gr.
4. What is the value of 86 of cwt.?

$$
\text { Ans, 3qi. 121b. 5oz. } 1.92 \mathrm{dr} \text {. }
$$

7. What is the value of .07 of a barrel of 32 gallons? Ans. 2gal. 1.92pt. 8. What is the value of 235 of a day ?

Ans. 5 hr. 38 min. $2 t \mathrm{sec}$.

RULE OF THREE IN DECLMALS.

RULE.

State as in whole numbers, only observing when you multiply and divide, to place the decimal points according to the rules of multiplication and division of decimulls.

EXAMPLES.

1. If 6.4 lb . of coffee cost 1.22 dollars, what cost 25.6 lb . 6.4 : 25. $6: 1.22$? Ans. \& 488 cents.
2. If 1.4 lb . of sugar cost 16 of a dollar, what will 30 cwt . 1gr: 2. 5.5 ll . come to?

Ans. \$389.771. +
3. If I sell 1qr. of cloth for $\$ 2.345$, what is it per yard? Ans. 89.88.
4. Jinw many pieces of cloth at $\$ 20.8$ per piece are equal in value to 240 pieces at $\$ 12.6$ per piece?

Ans. $145.38 .+$
5. Ilow loag will 3 men be in performing a piece of work which will occupy 5 men for 40.5 days?

Ans. 67.5 days.
6. How much muslina 75 of a yand wide will line 25.5 yards of cloth that is 5 quarters wide?

Ans. 42.5 vards.

INVOLUTION; OR, RAISINGOF POWERS.

A power is the product produced by multipiying any given number iuto itself a certain number of times.

Thus, $8 \times 3=9$, the equare or second power. $3 \times 3 \times 3=27$, the cube or third power of Ω. $3 \times 3 \times 3 \times 3 \times=81$, the fourth power of three, \&o

The number which demotes a power is called its index. Any number multiplied by the same subia one time, the produes is its square. Thas, $2 b_{y} \times 2=\frac{1}{4}$, tiae square of 2 , de.. Any number multiplied into its square, tine product will be the cube. Thus, $2 \times 2 \times 2=8$, the cube of 2 . When any power of a valgar fraction is required, first raise the munezater to the required power for a new numerator, and then raise the denominator to the required power for "a new denominator. Thus, the thid power of $\frac{2}{3} \times \frac{2}{3} \times \frac{f}{8}=$.

Ans. $\frac{2}{7}^{\frac{8}{7}}$ the required powers.

1. What is the square of 8 ?

Ans. 64.
2. What is the square of 9 ?
8. What is the cule of 4?

Ans. 81.
Ans. 64.
4. What is the cube of 5 ?

Ans. 125.
5. What is the cube or third power of 263 ?

Aus. . 018191447.
6. What is the 6th power of 2.8 ? Ans. 481.890304.
7. What is the 8th power of :? Ans. उड 3 ?

The root of a uumber is that which will produce that number by being multiplied by itself a given number of times; thus, 2 is the square roct of 4 , because twice 2 make 4 ; and 4 is the cube root of 64, because $4 \times 4 \times 4=$ make 6.4 ; and so on.

SQUARE ROOT.

When the equare root of any giron number is required.

> RUIE.

Soparate the given number into periods of two figures each, begining at the unies' place, find the greatest square contained in the left band period, and set its root on the right
of the given number. Subtract said square from the left hand period, and to the remainder bring down the next period for a dividend. .2d. Double the ront for a divisur, and try how often this divisor is contained in the dividend, onitting the last figure, and place the result to the right of the aswertained root; and to the right of the number produced by doubling the ascertained root. Multiply and subtract ns in clivision; and bring down the next period to the remainder for a dividend. Double the ascertained root for a divisor, and proceed as before, till all the periods are hrought down.

Vote. If the square root of a whole number and decimal are required, point the whole number from right to left; then begin with the decimal, and point from left to right; if there be only one figure at the last, place a cipher to its right to make an even period.

FAAMPHES.

1. What is the square root of 451581 ?

2. What is the equare root of 106929 ?
3. What is the square root of 6.9169 ?

- Aus. 327.
t. What is the square ront of 393756 ?

5. What is the square rant of 10.4976 ?
6. What is the square root of 18.3621 ?
7. What is the square yont of 160000 ?
8. What is the 8quare root of 25,0000 ?
9. What is the square ruot of 5 ? Ans. 2.63. Ans. $627 .+$ Ans. 8.24. Ans. 4.28. +Aus. 400. Ans. 500. Ans. 2.23. +

Notc. When the square ront of a vulgar fraction is required, extract the square ront of the numerator for a new
numerator, and the square ront of the deuminator for a $11 e w$ denominator. If there be a remainder, cither to the numerator or denominator, reduce the fraction to a decimal, and extract the square root thereof; or if there be a mixed number, reduce it to an improper fraction, and proceed as before.
10. What is the square root of $\frac{1288}{128} 8$?
11. What is the square root of $\frac{245}{32} \frac{5}{611}$?
12. What is the square root of $\frac{27}{4} \frac{70}{2} \frac{4}{5}$?
13. What is the square root of $\frac{32}{5} 50$?
14. What is the square root of $27 \frac{0}{18}$?
15. What is the square root of $30 \frac{1}{4}$?

Ans. \%.
Ans. $\frac{7}{8}$. Ans. $\frac{4}{5}$. Ans. $\frac{4}{5}$.
Ans. $5 \frac{1}{4}$.
Ans. $5 \frac{5_{1}^{5}}{5}$.
16. A certain joting man gave 484 apples to a number of girls, each girl received as many apples as there were girls; how many girls were there? Ans. 22.
17. A person being desirous to lay off 3 acres, 2 roods, 5 poles of land, in such a manner as to form a square field, what must be the length of one of its squares?

Ans. 23.76 poles. +
18. The square of a certain number is 124600 , what is that number?

Ans. $352 .+$

Note. To find the longest side of a right angled triangle. Square each number, and extract the square root of their sum. If the shortest side be required, extract the square root of their difference.
19. Suppose two men depart from Baltimore; one of them travels due east 90 miles; the other due north 40 miles; how far are they asunder?

Ans. 98.48 miles. +
20. Suppose a wall be 20 feet high, and be surounded by a creek 50 feet wide; how long must a line be to reach from the top of the wall to the opposite bank of the creek? Ans. 53.85 feet. +
21. Said James to Joseph, I see a tree known to be 100 feet high, and from the spot where I stand it is 40 feet to its root, but I demand the distance from where I stand to its top?

Ans. 107.70 feet.
22. A certain castle which is 45 feet high, is surrounded
by a diteh 60 feet broad. What length must a ladiler be to reach from the outside of the diteh to the top of the castle?

Ans. 75 feet.
23. What is the height of a steeple, when a line $20 \pm$ feet long will reach from the top of the steeple to the opposite bank of a river, known to be 41 feet broad?

Ans. 199.83 feet. +
24. A certain gencral has an army of 5625 men; how many must he place in rank and file to form them into a square?

Ans. 75 men .
25. Suppose a ladder, 60 feet long, be so planted as to reach a mindow 37 fect from the ground on one side of the strect, and without moving it at the foot will reach a window 23 feet high on the other side. What is the breadth of the street?

Ans. 102.6t feet

CUBE ROOT

When the cube root of any number is required.

RULE.

1st. Separate the given number into periods of three figures, each begimning at the units' place. 2nd. Find the greatest cube contained in the left hand period, and set its root on the right of the given number. Brd. Subtract said cube from the left hand period; bring down the nest period to the remainder for a dividend. 4th. Square the ront and multiply the square by 3 for a defective divisor. 5th. Iry how often the defective divisor is contained in the dividend, omitting the two right hand figures, and place tlie number of times it is contained to the right of the ascertained root, and its square to the right of the defeetive divisor, supplying the place of tens with a cipher, if the square be less than 10. 6th. Multiply the last figure of the root by all the figures in it previously ascertained; multiply that product by 30 ; and add their products to the divisor to complete it. 7 th. Multiply and sulftract, as in Division. Sth. And to the remainder bring down the next period for a new dividend. Dth. Find a divisur as before : and thus proceed until all the periorls are brought down.

Note. When remainders occur, annex ciphers for decimal periods; and point decimals as in the Square Root.

EXAMPLES.

1. What is the cube root of 10793361 ?

Ans. 221. 10.793.861(221. 8

Defective divisor and square of $2=1204$)2793
$+120=$ complete divisor $\quad 1324$)2648
Defective divisor and square of $1=145201$)145.861
$+660=$ complete divisor $\quad 145861$)145:861
2. What is the cube root of 16194277 ? Ans. 253.
3. What is the cube root of 5735339 ?
4. What is the cube root of 7532641 ?
5. What is the cube root of 12.113847 ?

Anc. 179.
6. What is the cube root of . 378621 ? Ans. 196. + Ans. 200. + Ans. .io. +

Note. When the cube root of a vulgar fraction is required, reduce it to its lowest terms, and extract the cube root of the numerator and of the denominator. If there be a remainder to the numerator or denominator, reduce the fraction to a decimal, and extract the cube root thereof. When mixed numbers are given, reduce them to improper fractions, or to a decimal, and proceed as before.
7. What is the cube root of $\frac{2}{6} \frac{5}{8} \frac{0}{6}$?

Aus. $\frac{5}{7}$.
8. What is the cube root of $\frac{648}{3007}$?

Ans. $\frac{3}{5}$.
9. What is the cube root of $\frac{2}{3} 0$?

Ans. 3.32. +
10. There has been a cellar dug, out of which has been taken 3456 cubical feet; what is the length, breadth, and depth of it?

Ans. $15 \mathrm{ft} .+$

SINGLE POSITION.

Single position is used when it in required to malare use of only me supposed number to find an unknown number.

RUEE.

Suppose any number most snitable, and proceed with it
as if it were the true one; setting down the result, which is the first term; the given number the second; the supposed number the third. Proceed by Rule of Three. The quotient will be the number sought.

EXAMPLES.

1. A person having about him a certain number of dollare, said, if a $\frac{1}{3}$, a $\frac{1}{4}$, and a $\frac{1}{8}$, were added together, the sum rrould be 90 ; how many had he?

2. A merchant received a number of dollars, said $\frac{1}{3}, \frac{1}{6}, \frac{1}{2}$, and $\frac{1}{3}$ of the number is 90 ; what number of dollars has he?

Ans. 75.
3. A. and 13. having found a purse of money, disputed who should have it ; A. said that $\frac{1}{5}, \frac{1}{5}$, and $\frac{1}{2} \sigma$ of it amounted to 35 dollars, and if B. could tell him how much was in it he should have the whole, othervise he should have nothing; how much did the purse contain? Ans. $\$ 100$.
4. A person after spending $\frac{1}{3}$ and $\frac{1}{3}$ of his money, had $26 \frac{2}{3}$ dolliars left, how much had he at first? Ans. $\$ 160$.

5 . A certain sum of money is to be divided among 5 men,
 and E. the remainder, which is $\frac{10}{4} 0$ dollary; what is the simm?

Aus. 8100.
6. A gentloman being asked his age, replied: if the years of my life were doubled, and 3 of the product divided by 3 , the result would be 14 ; what was his age? Ans. 35 years.
7. In a certain web of cloth there is $\frac{1}{2}$ blue, $\frac{1}{3}$ black, and ? yards white, how many yards are there in the rebb?

Ans. 54 rards.
8. A. youth who was desirous to know the age of a fair Miss, to whom he had made his addresses, was replied to in the following manner: If you multiply the years of my life by $?, \frac{3}{3}$ of the product will be three times the square reot of 16 . What was her age?

Ans. 14 years.

DOUBLE POSITION.

Double Position teaches to find the true numbor by making use of tivo supposed numbers.

RULE.

Suppose two numbers most suitable, and work with each according to the nature of the question, observing the errors of the result. Multiply the errors of each operation into the contrary supposed number. If the errors be alike, i. e., both too much or both too little, take their difference for a divisor, and the diffcrence of the products for a dividend; but if the errors be unlike, that is, one too great, and the other too small, take their sum for a divisor, and the sum of the products for a dividend. Proof as in Single Position.

EXAMPLES.

1. A. B. and C. would divide $\$ 100$ among them, so as that A. may have 5 more than B., and B. 10 more thin C. The share of each is required.

Suppose

A. 50 A gain suppose A. 45	
B. 45	B. 40
C. 35	C. 30
130	-115
100	100

2. A laborer engaged himself for 50 days upon these conditions: that for every day he worked he should receive one dollar; and that for every day he was idle he should forfeit 50 cents. At settlement, he received $\$ 2750$ cents. How many days did he work, and how many was he idle? Ans. Worked 35, idle 15 days.
3. Bought cloth for a coat at $\$ 6$ per yard, and linen to line it at $\$ 1$ per yard. The number of yards was 12 , and the whole cost $\$ 42$; how many yards were there of each?
4. Λ farmer haring driven his Ans. 6 yards each. for them all, $\$ 320$; being paid at the rate of $\$ 24$ per ox, $\$ 16$ per cow, and $\$ 6$ per calf. There were as many oxen as cows, and four times as many calves; how many were there of each? Ans. 5 oxen, 5 cows, and 20 calres.
5. A man, when driving sheep to market, was asked where he was going with his seore of sheep? Who answered he had no score; but if he had as many more, half as many more, and two sheep and a half, he would have a seore. How many had he?

Ans. 7 sheep.

ALLIGATION.

Alligation is a rule for mixing simples of different qualities in such a manner that the composition may be of a middle quality. When the quantity and rates of the simples are given to find the rate of mixture, compounded of their simples.

RULE.

Find the value of each quantity, according to their respective costs; then divide their whole value by the sum of the several quantities.

LXAMPTES.

1. If 4 pounds, at 20 cents per pound, 6 pounds, at 25 cents, and 8 pounds, at 30 cents per pound, be mixed together, what will a pound of the mixture be worth?

$$
\begin{aligned}
& \text { 76. ctz. } \\
& 4 \text { at } 20=80 \\
& 6 \text { at } 25= 150 \\
& 8 \text { at } 30= 240 \\
& 18 \frac{18)}{170} \\
& \frac{36}{110} \\
& \frac{108}{10}
\end{aligned}
$$

2. If a perann liave 4 lb . of tea, at 90 cents per $1 \mathrm{lb} ., 8 \mathrm{lb}$. at 75 cents per 1 lb ., and 6 lb . at 110 cents per lb ., to mix together, what will a pound of the misture be worth?

Ans. 90 conts.
3. If 40 z of silvor, worth 75 cents per ounce, be melted with Soz., worth 60 cents per ounce, what will 1oz. of the mixture be worth?

Ans. 65 cents.
4. A farmer mingled 20 bushels of wheat, at 50 cents per bushel, 36 bushels of rye, at 40 cents per bushel, with 30 bushels of corn, at 20 cents per bushel, what is the worth of one bushel of the mixture?

Ans. $35 \frac{1}{4}$ cents. +
5. A grocer has 2 cwt . of coffee, at $\$ 25$ per cwt., 4 cwt. at $\$ 2050$ cents per ewt., and 7 cwt at $\$ 18,6 \frac{2}{2} \frac{3}{2}$ cents per cwt., which he will mix together; what will lowt. of this mixture be werth?

Ans. $\$ 2018 \frac{1}{1}$ conts.

ARITHMETICAL PROGRESSION.

Any rank or series of number increasing or decreasing, is by a cummon difference in Arithmetical Progression, as $1,2,3,4,5,6 ;-6,5,4,3,2,1 ;-1,3,5,7,9,11 ;-$ $11,9,7,5,3,1$. There dee five things to be particularly attended to in Arithmetical Progression, the first and last terma; the number of terins; the eommon differemer, and ther sim of all the termes.
-ACI I
The first term; common difference, aid number of teras being given, to find the latit term and sum of all the terma.

RULE.

Multiply the number of terms less one, by the common difference; to that product add the first term; the sum is the last term. Add the first and last terms together, and multiply their sum by the number of terms, and half the product will be the sum of all the terms.

EXAMPLES.

1. What is the last term and sum of all the terms of an Arithmetical Progression, whose first tern is 2 ; the common difference 4 , and number of terms 13?
number of terms $13-1=12 \quad 2+50=52$ first \& last terms. cominon difference $4 \quad 13$ number of terms.

-

$\overline{48}$	$\overline{156}$
furst term. $+\overline{2}$	$\overline{52}$
the last term. $\overline{50}$	$2) \overline{676}$
un of all the terms.	$\overline{338}$ Answer.

2. A man sold 40 yards of linen, at 2 cents for the first yard, 4 cents for the second, iucreasing 2 cents every yard; what did they amount to?

Ans. $\$ 1640 \mathrm{cts}$.
3. Bought 15 yards of linen, at 2 cents for the first yard, 4 cents for the second, 6 cents for the third, \&c., increasing 2 cents every yard; what was the cost of the last yard, and what was the cost of the whole?

Ans. The last yd. cost, 30cts,-the whole $\$ 240 \mathrm{cts}$.
4. Twenty persons gave charity to a poor woman.; the first gare 6 cents, the second 8 cents, and so on in arithmotical progression; how much did the last person give, and what sum did the woman receive?

Ans. The last person gave 44 cts,--she received $\$ 5$.
5. A man on a journey travels the first day 10 miles, the second 14 miles, increasing 4 miles every day; how many miles did he travel the tenth day, and how many miles did he travel in all?

Ans Tenth day 46 miles,-in all 280 miles.
6. Suppose a number of stones were laid a yard distant from each other for the space of a mile, and the first a yard from a basket; what length of ground will that man travel over who gathers them up singly, returning with them one by one to the basket?

Ans. 1761 miles:

CASE 2.

When the two extromes and the number of terms are given to find the common ilifference.

RULE.

Subtract the less extreme from the greater, and divide the remainder by one less than the number of terms; the quotient will be the common difference.

EXAMPLES.

7. The extremes being 20 and 40 ; and the number of terms 6; what is the common difference?

Number of terms 6°	
1	
One less 5	5)20
	ns. 4

8. A man had 10 sons whose several ages differed alike; the youngest was 3 years old, and the eldest 48; what was the common difierence of their ages? Ans. 5 years.
9. A man is to travel from Boston to a certain place in 9 days, and to go but 5 miles the first day, increasing every day by an equal excess, so that the last day's journey may be 37 miles. Required the daily increase.

Ans. 4 miles.
10. A man receired charity from 10 different persons; the first gave him 4 cents, the last 49 cents, in arithmetical progression; what was the common difference, and what did the man receive?

Ans. Received $\$ 265$ cts.-common difference 5 cts.

GEOMETRICAL PROGIEESSIOK.

11. When a debt is paid at 8 different payments, in arithmetical progression, the first payment to be $\$ 21$; the last $\$ 175$; what is the common differonce, aud what each payment, and what was the whole debt?

Ans. Commou difference, $\$ 22$ - Sccond payment, $\$ 13$ Third payment, $\$ 65$, \&c.-The whole sum, $\$ 784$.

GLOMETRICAL IROGRESSION.

Ceometrical Progression is the increase of a series of fumbers by a common multiplier, or decrease by a common divisor, as $4,8,16,32,6+;-64,32,16,8,4$. The multiplier or divisor by which any series is increased or decretsed, is called the ratio.

CASE.

To lind the last term and sum of the series.

RULE.

Raise the ratio to a power whose index is one less than the number of terms given in the sum. Multiply the product by the first term, and that product by the ratio. From this last product subtract the first term, and divide the remainder by a number that is one less than the ratio. The quotient will be the sum of the series.

EXAmpies.

1. If I buy 18 bushels of wheat, and pay 2 cents for the first bushel, 4 for the second, 8 for the third, \&e., doubling to the last, how mucle must I pay?

Ratio 2, 4,

$\begin{aligned} & \dot{8} \\ & \stackrel{8}{8} \\ & 0 \end{aligned}$	

$$
\begin{aligned}
& 128, \\
& 1288
\end{aligned}
$$

$$
1024
$$

$$
256
$$

$$
128
$$

$$
16381 \text { 14th power. }
$$

8 3rd power.
13107217 th power. 2 First term.

202144
2 Ratio.
524288
2 First torm.
Divide by Kistiv $2-1=1) 524286$

- Ang. 8524286 cts .

2. A man taught school 21 days, and received for the first day 1 cent, for the second 2, for the third 4 , and so on, until the last. What sum did he receive?

Ans. 20,971 dollars 51 cents.
3. A gentleman, whose daughter was married on a New Year's day, gave her \$1, promising to triple it on the first day of cach month in the year. What did her portion amount to? Ans. $\$ 265,720$.
4. What sum would purchase a borse with 4 shoes, and six ails in each shoe, at $\frac{1}{4}$ of a cent for the first nail, a half for the second, a cent for the third, \&c., doubling to the last?

Ans. \$41,943 03 $\frac{3}{4}$ cts.
5. A merchant sold 20 buskels of clover seed, at 1 cent for the first bushel, 4 for the second, 16 for the 1kird, and
so on; in quadruple proportion. What sum did he receive, and how much did he gain by the salc, supposing he gave 85 per bushel for the sead?

$$
\text { Aus. }\left\{\begin{array}{l}
\$ 3,665,035,75925 \mathrm{cts} \text { sum reccived. } \\
83,665,038,65925 \mathrm{cts.gained} .
\end{array}\right.
$$

COMPOUND INTERES'', BY DECIMAIS.

The ratio in Compound Interest is the imount of 1 dollar for 1 year, which is found as follows:
$100: 104$: : 1 (104 amount for 1 year at 4 per cont.
Note. The the root of the ratio will be the quarterly amount-the square root the half yearly amount-and the product arising from the half yearly aud quarter yearly, multiplied together, the three quarter yearly amount, as follows:

Thus: $\sqrt[4]{ } 1.0 t=1.009853$, quarterly amount; and $\sqrt[2]{1.04}=1.010804$, half yearly amount; then $1.009853 \times$ $1.01980 t=1.029852$, amount for 3qrs. of a year, at 4 per cent.

Notc. The 4th root is found by extracting the square root of the square root. The ratio involved to the power, whose index is the time, is the amount of one dollar for that ${ }^{\circ}$ time, as a square for two years, a cube for three years, \&c.

Thus: $1.04 \times 1.04 \times 1.04=1.124864$, amount of 1 dollar for three years, at 4 per cent.

When the ratio is to be involved to years and quarters, the porver for the years must be multiplied by the quarterly amount.

Thus: $1.1910160 \times 1.014674=1.2184920$, amount for 3 years, at 6 per cent.

The power of 1 dollar may also be obtained for months and days, nearly, by adding the monthly simple interest of

128 COMPOUND INTEREST, BY DECIMALS.

1 dollar, or proper parts thereof, to the amount of the quarter next preceding the given time, for what that time exceeds the said quarter, as follows:

Amount for $\frac{1}{2}$ year, $=1.029563:$ For $4 \frac{3}{4}$ years $=1.318873$
Int. of $\$ 1$ for lmo., $=.005000$. 005000
One sixth for 5 days,$=.000833 \quad .000833$
For 7 months, 5 days $=1.035396$. for $4 y .10 \mathrm{mo} .5 \mathrm{~d} .=1.324706$.

TABLE I.

9 mount of $\$ 1$ for a year, and for Quarters, at Compound Interest.

Rate pr. ct.	Ratio.	For three Quarters.	For two Quarters.	For one Quarter.	Simple Int. of $\$ 1$ for 1 month
3	1.03	1.022416	1.014889	1.007417	.002500 3
4	1.035	1.026137	1.017349	1.008637	.002917
4	1.04	1.029852	1.019804	1.009853	.003333
$4 \frac{1}{2}$	1.045	1.033563	1.022252	1.011065	.003750
5	1.05	1.037270	1.024695	1.012272	.004167
$5 \frac{1}{2}$	1.055	1.040973	1.027132	1.013475	.004583
6	1,06	1.044671	1.029536	1.014674	.005000
$6 \frac{1}{2}$	1.065	1.048364	1.031988	1.015868	.005417
7	1.07	1.052053	1.034408	1.017058	.005833

TABLE 2. Showing the amount of one dollar from one year to forty ${ }^{\circ}$
 11.04000001 .04500001 .05000001 .05500001 .0600000 21.08160001 .09202501 .10250001 .1130250 $31.12486401 .14116611 .1576 \geq 501.1742413$ 41.16985851 .19251861 .21550621 .2388246 5) 1.21665291 .24618191 .27628151 .3069598 (61.26531901 .30226011 .34009561 .3788426 71.3159317 l. 36086181.40710041 .4546789 $81.36856901 .42 \cdot 10061.47745541 .5346862$ 9 1.42331181 .48609511 .55132821 .6190939 101.45024421 .55296941 .62389461 .7081440 111.53345101 .62255301 .71033931 .8020919 121.60103221 .69588141 .79585631 .9012069 131.66507351 .77219671 .88564912 .0057732 $141.781676 \pm 1.8519+491.9799316 \cdot 2.1160907$ 1.5 $1.80(94351.03528: 2.07892812 .2324756$ $161.8729 S 122.02237012 .1828745 \cdot 2.3552617$ $171.9+790052.1133768 \cdot 2.29201832 .4 .848011$ $182.0258161 \cdot 2.20847872 .40661922 .6214652$ $192.1068491 \cdot 2.30786032 .52695022 .7656458$ 202.19112312 .41171402 .65329772 .9177563 212.27876802 .52024112 .78596253 .0782329 222.36991872 .63365202 .92526073 .2475357 $232.46+7155 \cdot 2.75216633 .0715237 \ddot{3} .4261502$ 242.56330412 .87601383 .22509993 .6045885 252.66583633 .00543443 .38635498 .8133919 $26 \cdot 2.77246973 .14067908 .55567264 .0231279$ 272.8833685 3. 28200953.73345634 .2443999 $282.9987033 \cdot 3.4296999 / 3.92012914 .4778419$ 293.11865143 .58403644 .1161 .5564 .7241232 $303.24339753 .7453181+.3219423+.9839469$ $313.37343243 .913857 t 4.53803945 .2580671$ $323.50805874 .0899810+.76 \pm 94145.5472608$ 333.64818314 .2740301 5.00318855.8523600 343.79 ± 31634.4663015 5. 2533 ± 736.1742398 353.94608594 .66734785 .51601526 .5138230 $36+10303254.87 \pi 37845.79181016 .8720832$ $37+.26808985 .096860+6.03140697 .2500478$ $38+.43881345 .32621926 .38547727 .6488004$ $39+.61636595 .56589906 .70475118 .0694844$ $404.8010206|5.8163645| 7.0399887|8.5133060| 10.2857178$

Compound Interest is that in which the interest of 1 year is added to the principal, and that amount is the principal for the second year, and. so on for any number of yearg.

case 1.

The principal, time and rate given to find the amount.

RULE.

Multiply the principal by the ratio involved to the time, which may be taken from table 2, and the product will be the amount, from which subtract the principal for the compound interest.

EXAMPLES.

1. What is the compound intereat and amount of $\$ 300$ for 3 years, at 5 per cent.?

$$
\begin{array}{r}
1.05 \times 1.05 \times 1.05=1.1576250 \\
\text { Answer. }\left\{\begin{array}{l}
\$ 347.28 .7 .5000 \text { anount. } \\
300 \\
\$ 47.28 .7 \text { interest. }
\end{array}\right.
\end{array}
$$

2. What is the amount of $\$ 500$ for five years, at 6 per cent.? Ans. \$669.11.2.
3. What is the compound interest of $\$ 100$ for four years, at 5 per cent.? Ans. \$21.55.
4. What is the amount of five dollars for 20 years, at six per cent.?

Ans. \$16.03.5.
5. What is the compound interest of 1000 dollars for thirtenn years, at six per cent. per annum?

Ans. \$1132.92.8.
6. What is the amount of 50 dollars for 11 years, at 6 per cent.?

Ans. $\$ 94.91 .4 \mathrm{~m} .+$
7. What is the amount of 12 dollars for one half year, at 6 per cent.?

Ans. \$12.35.4.

OASE 2.

The amount, time, and rate per cent. giveri to find the principal.

RULE.

Divide the amount by the ratio involved to the time in table 2.
EXAMPLES.

1. What principal, put to interest, will amount to $\$ 400$ in five years, at 6 per cent.?

$$
1.3382256) 400: 0000000 \text { Aus. } \$ 298.90 .3
$$

2. What principal, put to interest, will amount to $\$ 1500$ in 7 years, at $5 \frac{1}{3}$ per cent.? Aus. $\$ 1031.15 \frac{1}{2} .+$

PERMUTATION.

Permutation is, used to show how many ways things may be varied in place or succession.

RULE.

Multiply all the terms of the series continually, from one to the given number, inclusive, and the last product will be the auswer required.

EXAMPLES.

1. Iu how many different positions can ten persons place ihemselves round a table?

$$
1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10=\text { Ans. } 3628800
$$

2. The church in Bostou has 8 bells; how many changes may be rung on them? Ans. $403 \% 0$.
3. In what time will a persum make all the changes that the first 12 letters of the alphabet admit of, allowing 15 seconds to each change, and $365+$ days to a year. Ans. 227y. 248da. 6h.

COMBJNATION.

Combination is used to fhow how many different mayi a less number of things can be combined out of a greater, as out of the figures $1,2,3,4$; four combinations, 12, 21,

RULE.

Take a series procceding from and increasing by a unit up to the number to be combined. Take another series of as many places decreasing by unity from the number out of which the combinations are to be made. Multiply the first continually for a divisor, and the last for a dividend, the quotient will be the answer.

EXAMPLES.

1. How many combinations of 4 persons in 8?

$$
\begin{array}{lc}
1 \times 2 \times 3 \times 4= & 24
\end{array} \quad \text { 24) } 1680(70 \text { Ans. }
$$

2. How many combinations of 10 firures may be inade uat of 20 ?

Ans. 184756.
3. How many changes may be rung with 10 bells out of 20?

Ans. 184756.

DUODECIMALS.

Duodecimals are parts of a foot; the denominations of which increase coutiuually by 12. The denominations are,

12 fourths ("'") make . . . 1 third. ${ }^{\text {." }}$
12 thirds
12 seconds
12 inches

ADDITION OF DUODECIMAIS.

RULE.

Proceed as in Compound Addition, observing to carry one for every 12.

EXAMPLES.

3. Three planks measure as foll 1 ws: $16 \mathrm{ft} .8 \mathrm{in} .-14 \mathrm{ft}$. $6 \mathrm{in} .-17 \mathrm{ft} .9 \mathrm{in} .2^{\prime \prime}$. How many feit do they contain?

Ans. 48 ft . 11in. $2^{\prime \prime}$.

SUBTRACTION OF DUODECIMALS.

 RULE.Proceed as in Compound Subtraction, observing the 12 's. EXAMPLES.
(1.) $50 \begin{array}{cccccc} & \text { fl. in. } & 11 & \prime \prime \prime \\ 17 & 1 & 1\end{array}$
$\begin{array}{lllll}17 & 5 & 10 & 11 & 4\end{array}$
Ans. 329009

	fl. in. "'"					
	400	8	7	11		
	387	9	6			

Ais. $\begin{array}{lllll}12 & 11 & 1 & 9 & 8\end{array}$
3. If 19 ft . 10 in . be cut off from a board which contains 41ft. 7in., how much will be left? Ans. 21 ft .9 in .

MULTLPLICATION OF DUODECIMALS.

rule.

Set the multiplier in such a manr er that the feet thereof may stand under the lowest denom nation of the nultiplicand; multiply and carry one for avery 12 from one denomination to another; and take parts, for the inches, as in Practice.
Note. Feet multiplied by feet, give feet.
Feet multiplied by inches, give inches.
Feet multiplied by seconds, give seconds.
Inches multiplied by inches, give seconds.
Inches multiplied by secor.ds, give thirds.
Seconds multiplied by secu nds, give fourths.

FXXAMILES.

1. Multiply 5 ft .6 in . by 2 ft . 4 in .

$$
\text { Ans. } 12 \mathrm{ft} .10 \mathrm{in} .
$$

2. Multiply 54 ft . 10 in . by 5 ft . Tin. Aus. 306 ft . 1in. 10^{\prime}. 3. Multiply 9 ft . 7in. by 3 ft . Gin. Aus. 33ft. 6in. $6^{\prime \prime}$.
3. What are the contents of a door, measuring in length 6 ft . 9 in . $3^{\prime \prime}$, and in width 3 ft . 5 in .?

Ans. 23ft. 1in. $7^{\prime \prime} 3^{\prime \prime \prime}$.
5. A certain partition is 81 ft . 10 in . $4^{\prime \prime}$ long, and 14 ft . 7in. $5^{\prime \prime}$ high. How many yards doos it contain?

Ans. 132 Jd d. $8 \mathrm{ft} .7 \mathrm{iu} .9^{\prime \prime} 7^{\prime \prime \prime} 8^{\prime \prime \prime \prime}$.
6. If a 1100 be 79 ft . 4 in . by 38 ft . 11 in ., how many square fect are there in it?

Ans. $3100 \mathrm{ft} .4 \mathrm{in} .4^{\prime \prime}$.
7. How many square fect in a board 17 ft . Tin. long, and 1 ft . 5 in ! wide? Aus. $24 \mathrm{ft} .10 \mathrm{in} .11^{\prime \prime}$.
8. What will be the expense of plastering the walls of a room 8 ft . 6 in , high, and each of the four sides 16 ft Din. long, at 50 cents per square jard? : Aus. $83069+$
9. In 40 planks, 13 ft . long and Sin . wide, how many fect?
10. In 49 plank:, 2efi. long and 11 in . wide, how many feet? Ans. 988 ft . 2in.
11. In 17 plankw, 12 ft . long and 5 in . wide, how miny Ifeet? Ans. 85 feet.

PROMISCUOUS EXAMPLES.

1. How many bushels of corr, at 22 cents per bushel, can I have for 40 dollars? Ans. 181 $\frac{9}{11}$ bu.
2. If a man's yearly inceme be $\$ 7777$, horv nuch is it per day?

Ans. $22130 \mathrm{ets} 6 \mathrm{~m} .$.
8. My agent sends me word he has lought goods to the
value of 500 dollars 54 ets. upon' my account; what will his commission come to at 4 per cent.?
4. A man had in his desk 2176 dollars 20 dollars 2cts.+ out at one time 13 dollars 6 cents, at another time 49 collars 1 cent, and at another 61 dollars 21 cts., after which le deposited at one time 88 dollars $88 \frac{1}{4}$ cts.; how much had he in desk after making the deposit?

Ans. 82142 14 $\frac{1}{4}$ cents.
5. A. is 25 years old, B. 15 years older than A., and C. is 12 years older than B. The ages of B . and C . are required?
6. Sold 6 bales of cloth, 5 of which contained 10 pieces each, and in each piece were 28 yards; the other bale contained 16 pieces, and in each piece were 20 yards. How many pieces and how many yards were there in all?

Ans. 66 pieces, and 1720 yds.
7. If goods which cost 44 dollars, be sold for 62 dollars, what is the gain per cent.?

Ans: $40 \frac{10}{11}$ per cent.
8. If $\frac{4}{7}$ of an ounce cost $\frac{7}{8}$ of a dollar, what will $\frac{4}{5}$ of a pound cost?
9. If $\frac{3}{3}$ of a gallon cost $1 \frac{1}{9}$ dollars, what will $\frac{19}{19}$ of a ton come to ?
10. A person who was possessed of $\frac{4}{5}$ of a store, sold $\frac{5}{8}$ of his share for 551 dollars $62 \frac{1}{2}$ cents, what was the whole store worth at that rate? Ans. 1241 dollars $15 \frac{2}{2}$ cents. 11. What will 27 cwt . of iron come to at $\$ 156$ cts. per cwt. ?
12. If I buy 100 yards of cloth, at 50 cents per yard, at how much must I sell it per yard to gain 100 per cent.?
13. Bought a quantity of goods for $\$ 100$, and 5 months afterwards sold them for $\$ 650$. How inueh per cent. per annum was gained by the transaction?
14. What is the interest of $\$ 51$ Ans. 150 per cent. 3 months, and 13 days, at 71 per cent $\frac{1}{2}$ cents for 2 years, 3 months, and 13 days, at $7 \frac{1}{2}$ per cent.?
15. How often would a wagon-wheel turn round in rolling from Knoxville to Baltimore ; suppose the distance to be 600 miles; admitting the wheel be 5 feet in diameter?

Ans. 201600 times.
16. A person has two silver cups of unequal weight, having one cover for both which weighs 5oz, now if the cover be put on the less cup it will be double the weight of the $\underset{\varepsilon}{ }$ reater cup, and put on the greater cup it will be thrce tines as heary as the less cup, what is the weight of each cup? Ans. The less 3 oz., the greater 4 oz .
17. A man had $\$ 20$, which he wished to lay out as follows: viz., in sugar at 0 cents, coffee at 14 cents, and rice at 11 cents per pound; so as to have an equal quantity of each. How many poarids must he have? Ans. $57 \frac{1}{7} \mathrm{lb}$.
18. A corn-crib is 5 ft . wide at the bottom, and 7 ft . wide at the top, tell me how wide it is on an average?

Ans. 6 feet.
19. When $\$ 25$ are multiplied by $\$ 25$, how much money is there in the product?

Ans. \$625.
20. When $\$ 25$ are multiplied by 25 cents, how much money is there in the product? Ans. $\$ 625$ cts.
21. When 25 cents are multiplied by 25 cents, how much money is there in the p:oduct? Ans. $6 \frac{1}{4}$ cents.
22. How much will $18 \frac{3}{4}$ bushels of corn come to at $18 \frac{3}{4}$ cents per bushel? Ans. $\$ 351$ cts. $5 \mathrm{~m} .+$
23. What will $2 \frac{1}{2}$ pounds of beef come to at $2 \frac{1}{2}$ cents per pound? Ans. $6 \frac{1}{4}$ cents.
24. In 48 planks 8 inches wide and 10 feet long, how many feet? Ans. 320 feet.
25. A house is 20 feet long, and 18 feet wide. How many feet of plank will be required to cover the floor?
26. What is the neit of a hog weighing 294 pounds gross ? Ans. $256 \frac{1}{2} \mathrm{lb}$. neat.
27. If A. can drink a pint of whiskey in 20 minutes; B. oae in 30 ; and C . one in 40 ; in what time can they drink a pint, when all drinking together?

Divide by 20,30 , and 40 . Suppose 120 .

Notc. In any question like the above, suppose any num ber into which all the given numbers may lee diviled with out any remainder, then add together their quotients, by which sum divide the same dividend. The quotient will be the answer.
28. 'Ibree young ladies met at their neighbours' for the purpose of finishing a fine quilt. Eaid M., I can finish it in six hours; said E., I can do it in f, ur hours; said L., I ean do it in three hours; but we will all work together. In what time can we finish the quilt? Ans. $1 \frac{1}{8}$ hours.
29. There is a cellar dug, that is 20 feet erery may in length, breadth and depth. How many solid feet of earth were taken out of it?

Ans. 8000 fect.
30. How many bricks, 9 inches long and 4 ineics wide, will pare a yard that is 300 feet long and 40 feet wide?

Ans. 48000 bricks.
-81. What sum will produce as much interest in five years, as $\$ 500$ would in 8 years an 14 months?

Ans. $\$ 833$ _
32. A guardian paid his ward $\$ 3500$ for $\$ 2500$, which he had held in possession 8 years. What rate of intercst did he allow him?

Ans. 5.
33. A. owes B. 100 dollars, payible in $3 \frac{1}{2}$ months; $\$ 150$ in $4 \frac{1}{2}$ months, and $\$ 204$ in $5 \frac{3}{2}$ nonths; but is willing to make one payment of the whole. In what time should the payment be made?

Ans. 4 mo. 23 days. +
34. In what time will any sum of money double itself, at 5 per cent., simple interest ?

Ans. 20 years.
35. If R. can do a piece a work alone in 10 days, and C. can do it in 19 days, im what time can they finish it, both working together?

Aus. $\operatorname{ci}_{\frac{1}{2} \frac{9}{5}}$ lays.
36. 1 . B. and C. found a purse of money, containing S60; wherevof A. is to hatra $\frac{1}{2}, \mathrm{~B} . \frac{1}{3}$, and $\mathrm{C} . \frac{1}{2}$. What will be the share of each?

$$
\text { Aus. }\left\{\begin{array}{l}
\text { A.'s share } \$ 2769 \text { cents } 2 \mathrm{~m} .+ \\
\text { B.'s share } \$ 1846 \text { cents } 1 \mathrm{~m} .+ \\
\text { C.'s skare } \$ 1884 \text { cents } 6 \mathrm{~m} .+
\end{array}\right.
$$

37. A. and B. traded tegetherer A. put in 320 dollars for Give months; E. pat is 480 dollars for 3 nonths; and they
gained 100 dullars. What was cach man's share of the gàn? Aus. $\left\{\begin{array}{l}\text { A.'s share } \$ 5369 \mathrm{cts} .1 \mathrm{~m} .+ \\ \text { B.'s share } \$ 4630 \mathrm{cts.} 8 \mathrm{~m} .+\end{array}\right.$
38. What is the difference between the interest of $\$ 1000$, at 6 per cent. for 8 years, and the discount of the same sum for the same time, and at the same rate of interest?

Aus. The int. exceeds the discount hy $\$ 15567$ cts. 5 m .
39. Said Dick to Harry, I car place four nines in such a manner that they will make precisely an cyen hundred. Can you do so too?

Ans. 99?
40. What is the sum of third and half the third of 6 t ceuts?

Ans. $3 \frac{1}{8}$ cents.
41. How many dollars are there in $£ 200$, Temncssce currency? Ans. $\$ 66661 \frac{2}{5}$ conts.
42. The clocks of Italy go on to 24 hours. How many strokes do they strike in one complete revolution of the index?

Ans. 300.
13. A line 40 yards long will exactly reach from the top of a fort, standing on the brink of a river, to the opposite bank, known to be 25 yards from the foot of the wall. What is the height of the wall? Ans. 31.22 yds.
44. What is the value of a slab of marble, the length of which is 5 ft . 7in. and the breadth 1 ft . 10 in ., at $\$ 2$ per foot? Ans. $\$ 2047$ cts. +
45. Shipped to New Orleans 4000 lb . of cotton, at $7 \frac{1}{2} \mathrm{cts}$. per lh., and 513 yards of muslin, at $62 \frac{1}{2}$ cts per yard; in return for which, I have received 37 cwt . 3qr. of sugar, at $12 \frac{1}{2}$ cents per pound, and 44 pounds of indigo, at 20 cents per pound. What remains due to me?

Ans. $\$ 83833 \frac{1}{2}$ cents.
46. If the flash of a gun was observed just 1 minute and 20 seconds before the report: What was the distance, supposing the flash to be seen the instant of its going uff, and admitting the sound to fly at the rate of 1150 feet in a second?

Ans. 17 m . 3 fur. 15 p . 4 yd . 0ft. Gin.
47. There is a certain pole, $\frac{1}{2}$ of which is in the water, $\frac{1}{3}$ in the mut, and 6 ft . on dry ground. What is the whole length of the pole?

Ans. 36 ft .
48. When $\frac{1}{2}$ of the number of an Assembly, and 15, were met, there were $\frac{1}{3}$ and 10 absent. How many did that branch of the legislature consist of?
49. Bonght goods for $\$ 500$, and sold the same inmediately for $\$ 100$. What was the loss per cent.?

Ans. 20 per cent.
50. What is the interest of $\$ 15,000,000$ for one minute, at 6 per cent. por annum? Ans. $\$ 171$ cts. $2 \mathrm{~m} .+$
51. If the earth be 360 degrees in circumference, and each degree 60 miles, how long would a man be in travelling round it, who adrances 40 miles a day, reckoning $365 \frac{1}{4}$ days a year? Ans. 1y. 174da. 18hr.
52. Sold 12 yards of cloth for $\$ 1520$ cts., by which was gnined 8 per cent. What was the first cost of a yard?

Aus. $\$ 117$ ets. $2 \mathrm{~m} .+$
53. Bought 12 pieces of white cloth for $\$ 1650$ cts. per piece; paid 8287 cts . per piece for dying. For how much must I soll them each, to gain 20 per cent.?

Ans. $\$ 2324$ cts. 4 m .
54. When I, by disposing of a yard of cloth at $\$ 7$, gain $56\}$ cents, what would I gain ly selling 3 picces, which cost me $\$ 400$?

Ans. 3214 ats. +
55. The yearly interest of Charlotte's money at 6 per cont. per aunum excceds one twentieth part of the principal by $\$ 100$, and she does not intend to marry any man who is not scholar cuough to tell her fortunc. Pray what is it?

Ans. $\$ 10,000$.
56. There is a cistern having eight pipes to discharge it. By the first it may be emptied in ten minutes; by the second in 20 ; by the third in 40 ; by the 4 th in 80 ; by the 5 th in 160 ; by the 6 th in 320 ; by the 7 th in 640 ; and hy the 8th in 1280. In what time will all eight rumning together empty it? Ans. $5 \frac{1}{15}$ minutes.
57. In 140 planks, each 12 fect long and 9 inches wide, how many fect?

Ans. 1250.
58. At a certain quilting, $\frac{1}{3}$ of the girls are cating, $\frac{1}{8}$ of them cooking, and 5 at work; I would know how many girls thore are at the place?

Ans. 30.
59. A hare starts 12 rods before a hound, hut is not percoived by him till she has been up 45 seconds. She seuds away at the rate of 10 miles an hour, and the doy on view, makes after at the rate of 16 miles an hour. Ifow long will the course hold, and what space will be run over from the spot whence the dng startcd, until the bare be overtakon?

Ans. 2285 ft . and $97 \frac{1}{2} \mathrm{scc}$.
60. Bought a watch at 10 per cent. under its value, and sold it at 10 per cent. over its value, and by so doing gained \$10. How much was the watch worth? Ans. $\$ 50$.
61. Bought a horse and saddle for $\$ 100$. The horse was worth seven times as much as the saddle. How much was the horse worth, and how much was the saddle worth?

Ans. $\left\{\begin{array}{l}\text { H. } \$ 8750 . \\ \text { S. } \$ 1250 .\end{array}\right.$
62. A. owes B. 100 bushels of corn, the tub out of which they expect to measure the same, contains 1 bu .1 pe. 1qt. 1pt. How often must it be filled to make the 100 bushels? Ans. $77 \frac{9}{83}$.
63. A merchant purchesed 200 yards of broad cloth, at $\$ 3$ per yard. A customer who was desirous of speculating, proposed to take $\$ 300$ worth of the cloth, at $\$ 275$ per yard, and then give $\$ 325$ for the remainder. What would the merchant gaiu or lose by the transaction?

Ans. He would lose $\$ 454.5$.

APPENDIX.

MENSURATION OF SURFACES.

To find the area of a Parallelogram, Square, Rhombus or Rhomboid.

Multiply the length by the perpondicular height or breadth.

EXAMPLES.

1. How many square feet are there in a floor $23 \frac{3}{2}$ feet long and 18 feet broad? Ans. $23 \frac{1}{2} \times 18=423$.
\therefore What are the contents of a piece of ground 66 poles square? Ans. 4356po. or 27 a. 36 po.
2. What are the contents of a rhombus, whose sides are 60 feet, and perpendicular 50 fect?

Ans. 3000 feet.

60 n .
4. How many acres are there in a ficld in the form of a rhomboid, the sides of which are 50 poles, and perpendicular distance 25 poles? Ans. דa. 3r. 10p.

5. How many square feet are there in a plank 13 feet long and 7 in . broad?

Ans. 7 ft .84 in .
6. How many square feet are there in a plank 18 feet long, 12 inches at one end and 8 inches at the other?

Ans. 15 feet.

$12+8=20 \div 2=10 \quad 6 |$| $\frac{1}{2} \|$$\frac{18}{}$ fect.
 4
 $\frac{9}{6}$
 15 Ans. |
| :--- |

7. How many square feet are there in 20 planks, 15 feet long, and each 3 inches wide?
\mathcal{N} ote. When there is a number of planks to be calculated of the same length and breadth, multiply the width of one in inches by the number of planks, divide the product by 12 , and multiply by the length.

$$
9 \times 20=180 \div 12=15 \times 1_{\frac{1}{2}}=225
$$

8. How many square feet are there in 50 pieces of scantling, 4 inches by 3 , counting one side and edge, and 20 feet long?

Ans. $582 \frac{1}{2}$ feet.

$$
4+3=7 \times 50=350 \div 12=29 \frac{1}{6} \times 20=583 \frac{1}{3} \text { feet. }
$$

9. How many square feet are there in 30 pieces of scantling 14 feet long, 4 inches by 2 ?

Ans. 210 feet.

To find the area of a Triangle.

Multiply one side by half the perpendicular from the opposite angle.

EXAMPLES.

1. If A. B. be 65 poles, and the perpendicular 31 poles, how many acres are contained in the Triangle?

$$
31 \div 2=15 \frac{1}{2} \times 65=1007 \frac{1}{2} \text { po. or } 6 \mathrm{a} .1 \mathrm{Rr} .7 \frac{1}{2} \mathrm{p} .
$$

2. How many square feet are there in a triangle whose base is 120 fcet and perpendicular 75 feet? Ans. 4500 .

To find the circumference of a circle from its diameter.
Multiply the diameter by 3.14159 , or multiply the diameter by 355 , and divide the product by 113 .

EXAMPLES.

1. If the diameter of the earth be 7930 miles, what is the circumference?

Ans. $7930 \times 3.14159=24912.8$ miles.
2. How many miles does the earth more, in revolviug round the sun; supposing the orbit to be a circle whose diameter is 190 millious of miles? - dus. 590.902.60-1.

To find the crameter of a circle from its circumference. Divide the circuuference by 3.14159 ; or multiply the circumference 113, and divide the product by 355 .

EXAMPLES.

1. What is the diameter of a tree which is 5? fect round? $3.14159) 5.5000000(1.75$ Ans.
2. If the circumference of the sun be 2.800 .000 miles, what is its diamcter? Ans. 891.267.

To find the area of a Circle.

Multiply the square of the diameter by the decinals .7854 .

EXAMPLES.

1. What is the surface of a circular tish-pond which is 10 poles in diancter? $10 \times 10 \times .7854=78.51$ Ans.
2. What is the area of a circle whose diameter is 623 feet?

Aus. 304836.
3. How many acres are there in a circular island whose diameter is 124 poles?

Ans. 75a. 76 po .

To find the area of an elipsis or oval.
Multiply the longest diameter by the shortenst, and that product in 78.4 .

EXAMPLES.

1. What is the area of an oval whose greatest diameter is 36 feet, and least 28? $28 \times 36 \times 7854=791.68$ foct Ans

MENSURATION OF SOLIDS

In solid measure 1728 cubic inches $=1$ cubie foot. 282 cubic inches $=1$ ale gallon. 231 cubic inches=1 wine gallou. 150.42 cubic inches $=1$ bushel.

1 cubic foot of pure water weighs $62 \frac{1}{2}$ pounds.
To find the solidity of a piece of hewn timber, box, \&©
Multiply the leugth, breadth, and depth or height, together.

EXAMPLES.

1. How many solid feet are there in a piece of square timber 3 feet by 2 , and 20 feet long?
$3 \times 2 \times 20=120$ feet Ans.
2. How many cubic inches are there in a piece of marble in a cubic form, which is 12 inches every way?

$$
12 \times 12 \times 12=1728 \text { Ans. }
$$

3. How many cubic quarters of an inch are there in one cubic inch!

Ans. 64.
4. What is the solidity of a wall $: 9$ feet long, 12 feet high, and 2 feet 6 inches thick? Ans. 660.
5. How many cubic inches are there in a box 2 feet at the bottom,* 3 fect at the top, 4 feet high, and 6 feet long?

Ans. 103680.

To find the number of bushels or gallons contained in a corn-house or box, ascertain how many cubic inches are contained inthe box or house, and divide them by the number of inches in a bushel or gallon. If the house contain cars of corn, divide the number of bushels by 2 , which will give the number of shelled corn.

EXAMPLES.

1. How many ale gallons are there in a cistern, which is

In a!! such exsmp!es teke the average widih or length.

11 feet 9 inches deep, and whose lase is 4 feet 2 inches square?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { The cistern contai } 15352500 \text { cubic inches. } \\
\text { And } 352500 \div 2.12=1250 \text { gallons. }
\end{array}\right.
$$

2. How many wine gallons wil fill a ditch 3 feet 11 inches wide, 3 feet deep, and 462 fiet long? Ans. 40608.
3. How many bushels of corn ase there in a crib 5 feet wide, 5 feet high and 10 feet long, tilled with ears?

Ans. 100bu. 1 $\frac{1}{2} \mathrm{p} .+$
4. How many bushels of corn ars there in a cril 20 feet long, 10 feet deep, and 6 feet wide?

Ans. $681 \frac{1}{5}$. +
Notc. As complete accuracy is not to be expected frora any rule to gauge a crib, the following is recommended as being accurate enough for practice. Multiply the number of cubic feet in a crib by 2 , and divide the product by 5 . Take the above example,

$$
2 \times 10 \times 6=1200 \times 2=2400 \div 5=480 .
$$

5. How many bushels of corn ard there in a crib 15 feet luag, 10 feet high, 8 foet wide at the bottom, and 6 at the top? А 2 s. 480.
6. How many bushels of coal wil a coal bed contain, 14 feet long, 4 feet wide, and 3 feet 6 inches high ?

Note. In such examples, it will produce very near tho true result to maltiply the number of cubic feet by 4 , and divide the product by 5 .

To make a box large enough to c nntwin a given cruantity, multiply the number of bushels or :sallons to be contained by the number of cubio inches in it bushel or gallon. If the box is to be in 2 cubio form, ext tact the cube root of the product. If the side or end of the box be given to ascertain how long or wide it must be, divide the product by the number of square inches contained oy the side or eud.

EXAMMLEB.

1. It is roquired to malse a bos in a cubio form larga
enough to contain I bushel. How many inches must it be every way?
The cube root of $2150=12.9+i n$. mato it 13 in. every way.
2. How large a box in the form of a cube will contain i bushel?

Ans. $10.29+$ or 101 in. nearly.
3. How large a box, in a cubic form, will contain 5 bushels?

Ans. $22+$ in.
4. How long must a box be made to contain 50 buahels, which is to bo 4 feet wide and 3 feet high ?

Aus. 5 feet 2.2 in . $2150 \times 50=107500 \div 1728=62.2=5 \mathrm{ft} .2 .2 \mathrm{in} .36 \times 48=1728$
5. What must be the length of a box, the end of which is 3 feet by 2 , to contuin 20 bushels? Ans. 5 feet $1 \frac{1}{3}$ in.
6. How wide must a box be made, which is to be 10 feet long and 5 feet deep? Ang. 4 feet 11.72 in.

To fond the solidity of a Cyinder.

Multiply the area of one end by the leagth.

ETAMPLDB.

1. What is the colidity of a cylinder whose length is $6 a$ inches and diameter 20 inches?

$$
20 \times 20=400 \times .7854=3141600 \times 60=18849.6 \text { Ans. }
$$

2. What is the sulidity of a cylinder whose length is 121 inches and diameter 45.2 inches? Ans. 191156.6.
3. The Winchester bushel is a hollow cylinder $18 \frac{1}{2}$ inches in diameter and 8 inches deep? Ans. 2150.42 .
4. Horr many cubic feet are there in a log of timber 2 feet in diameter and 20 feet long? Ans. 62.83.
5. A gentleman has a lushel measure which is 15 inches in diameter and 12 inches doep, how much is it too great or too small?

$$
\text { Ans. }\left\{\begin{array}{l}
20.84 \text { inches, or a little more } \\
\text { than a pint, wine measure. }
\end{array}\right.
$$

6. A gentleman has purchased a gallon measure in the form of a cylinder, which is 6 inches in diameter and 10 inchea deep. He was told it was a wine measure by the merchaut. Is it a correct measure?

To find the conterts of a vessel in the shape of a frustrum of a cone.
Square the diameter of each end, multiply their squares together, aud extract the square root of their product, to which add the tro squares, and then multiply by the decimals . 7854 and $\frac{8}{5}$ of the length.

examples.

1. How many cubic inches are contained in a vessel 9 inches deep, 4 inches in diameter at the bottom, and 3 feet at the top?

Ans. 87.18 cubic inches.
$4 \times 4=163 \times 3=9 \times 16=144$ the square root is 12
$9+16+12=37 \times .7854=29.0598 \times 3=87.18$ cubic in.
2. A measure which has beon made for a wine gallon is 6 inches at the bottom, 5 inches at the top, and 10 decp. Is is a correct measure?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { It contains } 238 \text { cubic-inches, } 7 \text { cubic } \\
\text { inches too much, or } 1 \text { gill nearly }
\end{array}\right.
$$

3. A measure which has been made to contain $\frac{1}{2}$ bushel is 12 inches at the bottom, 15 inches at the top, and 15 inches high. Is it a correct measure?

Ans. It contains 1019.7 cubic inches, 55 too little.
4. How many gallons, wine measure, will a large crout tub contain, 9 feet high, 4 feet at the bottom, and 3 at the top? Ans. 87.18 cubic feet, or 652.15 wine gallons.

GAUGING OF CASKS.

There are commonly reckoned four varieties of casks, for each of which some have a different rule, but the following rule will apply to all :

To calculate the contents of a cask, reduce the dimensions to inches; subtract the head from the bung diameter, multiply the differene ly the decimal. 7 , if there be much curve of the staves betwixt the heald and bung, by 67 , if a little more than common, .6 , if common, .57 , is hat little, .52 , if nonc. To this product ald the head diameter. Square
their sum, which multip y by the decimals .0028 , when ale, and .0024 , when wine g allons are required, and the length of the cabls.

Note. .0028 and .00 : 4 are the results of dividing .7854 by 282 and 231.

SXAMPLES.

1. What is the capaciiy of a cask which has much curve betwist the head and lung, 30 inches long, head diameter 18 , and bung 24 inches.'
A.2s. 50.26 wine, or 41.3 ale gallons.
$24-18=6 \times 7=4.2+18=22.2 \times 22.2=4928.34 \times .0034$ $=16.75656 \times 30=50.239680$ gallons.
2. How many wine gallons will a cask contrin, of common curvature, which is 30 inches long, head diameter 18, and bung 24 inches?

Ans. 45.9 gallons.
3. Wat is the capacity of a cask without curvature betrixt the head and bung, 30 inches in length, head diameter 13 , and bung 24 inches

Ans. 37.3 ale, or 45.3 wine gallons.
4. How many wine $\}$ allons will a cask contain, of the common form, whose ler gth is 27 inches, head diameter 21, aud bung 23 inches?

Ans. 46.24 gallons.

TONNAGI: OF FLAT BOA'TS.

The quantity which any vessel will carry is equal in woight to the quantity of water which the vessel displaces by loading; therefore the number of cubic feet of water dispiaced by loading a vessol, multiplied by $62 \frac{1}{2}$, will givo the number of pounds whici that vessel will carry.

To assertain how miny tons, barrels, \&c., of a certain weight, a Flat Boat will carry

RULE:

subract $\frac{1}{3}$ the rale or vakea fro n the length. Multirly the remainder by the depth to which she is surk by the load, and that product by the width measured from the outside of the gunnels. If the product is not in fect, reduce it to feet, which multiply by $32 \frac{1}{2}$, which will give the number of pounds, which reduce to tons, or divide by the Weight of a barrel, dce.

EXAMPLeg.

1. How much will a flat bont casry which is 50 feet long, rake 10 feet, 12 feet wide, and wil. bear sinking $1 \frac{1}{3}$ fect? Ans. 22 tons 12 erit.
$50-5=45 \times 1 \frac{1}{3}=67 \frac{1}{2} \times 12=810 \times 622=50625 \div 112=$ $452 \div 20=22$ tnm. 12 cwt.
2. What number of flour barrels, which weigh 186 pounds cach, will a flat boat carry which is capable of being suak 1 foot 3 inches, 50 feet long, one sake 10 feet, the other 8 feet, 15 feet wile? Ans. 515.

TABLES.

Of the present state of real and imaginary monies of the most commercial parts of the world, with the United States, and reduced to the value of the monies thereof, in Dollars, Cents and Mills.

This mari \dagger is prefired to the imaginary money, or money of account.

This maris $=$ is make, or equal to.
In the column of Mills, wherever a figure is preceded by a point (.) it converts it to decimals: Thus 6.8 reeaiss six mills and eight-tenths of a mill.

CANADA, NOVA SCOTIA, \&.c. (continurd.)
20 Shillings $=$ a pound $\ldots . .$. 1
30 Shillings a moidore
40 Shillings a half Joe
50 Shillings a Pederal Eagle
Accounts are kept in pounds, shillings. and pence; but they are also kept in some parts of Canada in Livres, sous, and deniers, according to the ancient system of Erance, and is called Oll Currency.

Wef .iccounts are kept here, and all other parts of Spanish America in Pesos and Dollars of 8 Reals, the Real being divided into halves and quarters; this Real is occasionally divided into 16 parts, and aiso into 34 Marevedis of Mexican plate.

BRAZIL.

Accounts are kept here as in Portugal, in Reas, 1000 making the Milrea; 100,000 being 100 milrcas; and $1,000,000$, one thmizand Mihreas, commonly called a Cunto of Milreas.

E0 20 PE .

AORTHERS FAMT\%.
ENGLAND AND SOOTLAND.
London, Livcrpoal. Firistol, Edinbury. Gilasgux, dec.
A \dagger Farthing
2 Tarthings $=$ a halfpenny
2 Ialfpence a penny. . .
2 Halfpence

 s, e,

\author{

MEXICO, PERU, CHILI, \&c.

}

ENGLAND AND SCOTLAND. (CONTINUED.)
4 Pence $=2$ groat
6 Pence a half shilling
12 Pence a shilling

Dolls.	Cents	Mille.
	7	4
	11	1.1
1	22	2.2
1	11	1.1
4	44	4.4
4	66	6.7

IRELAND.

Dubblin, Cork, Londonderry, \&c.
A \dagger Farthing
2 Farthings $=$ a halfpenny
2 Halfpence
a pemny
12 Pence
a shilling
13 Pence
$58 \frac{1}{2}$ Pence
an English shilling ...
20 Shillings an American dollar...
a pound.
$22 \frac{3}{4}$ Shillings an Engliwh guinea
Accounts are kept in Pounds, Shillings, Pence, and Farthings.

BREMEN.
A \dagger Prening
2 Pfenings = a sware
5 Swares
a grote

Do m.	C nts.	Milla
	3	2
	25	$5 \frac{1}{2}$
	51	1
	76	$6 \frac{1}{2}$

HANOVER.

Iunenburts, Ziell, \&e.
A Jrocning

AUSTPIA AND SWABIA.

Vienna, Trieste, Jugslnerg, Blenheim, \&co

SPAIN AND CATALONIA.

Madriả, Cadiz, Seville, \&c. new plate.

A \dagger Maravedi
2 Maravedis = a quartit.
-34 Maravedis a fReal.
2 Reals a pistareen
8 Reals a piastre of exchange
Dolls. Cents. Mills. change are estimated at 1 dollar 111.1 cts., but they only pass for 1 dollar 10 cts.

10 Reals a fdollar
375 Maravedis a ducat of exchange.
3\% Reals 36 Reals
a pistole of exchange
a pistole
Accounts are kept in Dollars, Reals, and Maravedis.

Cribraliar Malaga, Denia, \&-c. VELON.
A †Maravedi.
2 Maravedis $=$ an ochavo
4 Maravedis a quartil.
34 Maravedis a freal velon
15 Reals
a tpiastre of ex.
512 Maravedis
a piastre
a pistole of ex.
2048 Maravedis
a pistole of ex.
70 Reals
a pistole
79
1.6
3.2
6.4
3.2

Barcelona, Saragossa, Valencia, \&c. old plate.
A \dagger Maravedi
16 Maravedis = a soldo
2 Soldos a trial, old plate
16 Soldos a tdollar
20 Soldos
a libra.

Dolls.	Cents.	Milus.
	3.9	
12	21	
	5	

24 Soldos
a ducat
25
60 Soldos
a pistole
50

There are also Ducats of 21 a 1 d 22 Soldos.

Accounts are kept in Dollars, Reals and Maravedis.

Note.-Although 60 Soldos are ecual to 3 dollars and 75 cents, the Spanish Tistole is worth but 3 dollars and 60 cents.

ITALY.

Genos, Novi, \&c., Corsica, Bastea, §c. A \dagger Denari
12 Denari = a \dagger soldi.
4 Soldi a chevalet
20 Soldi a tlira
30 Soldi a testoon
5 Lires a croisade
a pezzo of exchange
6 Testnons
a genoine

20 Lires
a pistole \qquad
Accounts are kept in Lires, Soldis; and Denaris.

Leghorn, Florence, \&a.

A \dagger Denari
4 Denaris $=$ a quatrini

ITALY, \&C.-(CONTINUED.)
12 Denaris $=$ a \dagger Soldi
5 Quatrinis
a craca
.

Dolls.	Cents.	Mills.
\cdots		7.7
	1	2.8
	10	2.8
	15	4.3
	1	15
1	5.9	
3	44	4.3

Accounts are kept in Lires, Soldis, and Denaris.

A坥A

BENGAL.

Calcutta, Callicut, \&c.
A †Pice \qquad
4 Pices = a fanum .
6 Pices a viz.
12 Pices an ana.
10 Anas a piano
16 Anas a rupee
2 Rupees a French ecu or crown
2 Rupees an Eirglish crown.
56 Anas a pagoda
A Lack is 100,000 rupees.
Accounts are kept in Rupees, Anas, and Pice.

CHINA.

> Pekin, Canton, \&c.

A 「Cash
10 Cash $=$ a tcandareen
10 Candareens a tmace
10 Mace, 1 oz. 6 dwt. 16 grs. $=$ a tale Accounts are kept herc in Tales, Mace, Gandareens, and Cash.

ISLAND OF JAVA.

Batavia.

A \dagger Doir
Accounts are kept in Piastres or Mocha Dollars, and Caveers.

Isle of Bourbon, and Isle of France.

Old and Ners Cciro, Alexandria, Sayde, \&c.
An \dagger Asper
3 Aspers = a tmedino

24 Medini an Italian ducat:
80 Aspers a piastre.
30 Medini a dollar

96 Aspers an ecu
32 Medini a crowa
200 Aspers a suttanin
70 Medini a Parzo dollar
10
10
22
33
Accounts are kept in Piastres, Medini, and Aspers.

BARBARY.

Algiers, Tunis, T-ipoli, Una, \&̊c.
An \dagger Asper
3 Aspers = a medino
10 Aspers a reak, old plate
2 Reals a †doulle
4 Doubles a dollar 1
24 Medini a silver chequin
30 Medini a dollar
180 Aspers a zequin
15 Doubles a Pistole
Accounts are keptin Doubles and Aspers.

Jamaica and Bermudas.

A Farthing
4 Farthing $=$ a \dagger peuny
$7 \frac{1}{2}$ Pence a real or bit
2 Bits
a pistereen
12 Pence
a tshilling

20 Pence a $\frac{1}{4}$ of a dollar
80 Pence a dollar
16 Shillings a half English guinea
20 Shillings a tpound.
40 Shillings at inoidore
$53 \frac{1}{2}$ Shillings a half joe, 9 dwt.
Accounts are kept in Pounds, Shillings, and Pence.

Note.- As the currency of Jamaica is 1.407., its proportion to sterling is as 7 to 5. Hence 17 . sterling $=1 l .8 s$. currency; and 17. currency $=14 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d}$. sterling.

Barbadocs.
A Farthing
4 Farthings = a penny
a real or bit
2 Bits
a pistareen
12 Pence
a shilling
75 Pence
a dollar.
a pound
a moidore
50 Shillings
at half Johannes
Accounts are liept in Potinds, Shillings, Pence. and Farthings.

	Dolls.	Cents	Mills.
12 Bits $=$ a dollar	1		
20 Shillings a tpound	2	22	2.2
Accounts are kept in Pounds, Shillings, Pence, and Farthings.			
Martinique, St. Lucia, Giuadalorpe, \&\&.			
A Denicr			01
12 Deniers $=$ a sol \ldots 15. Sols an escalin			$5 \frac{1}{2}$
20 Sols a livre...		11	2.0
3 Escalins a $\frac{1}{4}$ gourde.		25	
9 Livres a piastre gourde	1		
12 Escalins a piastre gourde	1		
8 Gorrdes a $\frac{1}{2}$ johamnes, 9 dwts....	8		
${ }_{4}^{4}$ of a Quadruple $=4$ dwts. 6 grs.....	4		
$\frac{1}{2}$ of a Quadruple 8 dwts. $12 \mathrm{grs} . .$.	8		
A Quadruple $\quad 17$ divts.........	10		
Money of account, Livres, Sols, and Deniers.			
St. Domingó, (Spanish part,) Cuba, Porto			-
A Quarter Real		3	
A \dagger Halr Real .		6	21
4 Quarters $=$ a treal	-	12	5
2 Reals a Peso Medeo		35	
4 Reals a tpeso or dollar	1		
Accounts are kept in I'esos or Dollars, Reals, and Half Reals.			

St. Domingo, (French part.)

In the French part of St. Domingo or Hayti, accounts were formerly kept in Livres, Sols, and Deniers current; and the Dollar was then reckoned at 8 Livres 5 Sous current; but at present accounts are mostly kept in Dollars and Cents, as in the United States.

St. Eustatia, St. Martin, Curaçoa, §c.
A Farthing
........................

4 Farthings $=$ a tpenny
9 Pence
a bit
12 Pence
a tshilling
a dollar
1
1
2
11 Bits
a dollar
a tpound
Money of account, Pounds, Shillings, Pence, and Farthings.

St. Thomas, St. John, Santa Cruz.
A \dagger Stiver
5 Stivers $=$ an old Bit
6 Stivers a †good bit
8 Good Bits a tpiece of $\frac{3}{6}$
or 15 Old, a dollar
75 Good Bits a moidore
100 Good Bits a half joe
Accounts are made out in Pieces of $\frac{8}{8} 9$ Bits, and Stivers.

SHORT METHOD

TO

CALCULATE INTEREST.

RULE.

Multiply the sum by half the number of days,* that product being divided by 30 will give the interest in cents.
EXAMPLES.
V. Lat is the interest of 165 dollars for 16 days. 165 dollars 8 half the number of days

$$
\begin{aligned}
& 30) 1320(44 \text { cents } \\
& 120
\end{aligned}
$$

120
120

REDUCTION OF COINS.

Tle Dollar having different denominations of value throughout the United States, some simple rules for reducirg the respective nominal values to Dollars and Cents may not be unacceptable.

The Dollar is valued at 6 Shillings in the states of New Hampshire, Massachusetts, Rhode Island, Connecticut, Virginia, Kentucky, and Tennessee.

To reduce the Currency of these States to Dollars and Cents, take this

RULE.

Add a cypher to the right hand of the pounds, and divide
by 3 , the guotient will lo-dollars- If there are shillingg in the sum, whl 1 dullar for crexy 0 s.
FXAY\&1, ES..

1. Hedrue lind. on dollaro and vexie.

$$
\text { a) } 1000
$$

Anewer $3333 \frac{1}{3}$ or $30 \frac{1}{3}$ couts.
2. Roduce 46 ?. 15a. 9a. to dollare and centa.

$$
\begin{gathered}
\frac{3) 160}{103.03 \frac{1}{5}} \\
15 \%=-2.5 \% \\
12 \frac{1}{2} \%
\end{gathered}
$$

Answer $\$ 155.96$ nearly.
The Dollar is valued at To. Ord. in the States of Pennsylvania, Nep Jormes, Maryland, aud Lelaware; to reduee which to Dollars, take the following

RULE.

Multiply the pourds by 8 ; dividing that product by 3 , gives the dollera; and where there are shillings sfill one dollar firevery is. fo!

EXAMDIE

Relluen 302. 1iss to dollars and centa. 30 15s.
3) 210

80
15
Ansmer 8 號

The Dollar passes for 8 shillings in the States of New York and North Carolina; to reduce which to Dollars, ube this

RULE.

Multiply the pounds by $2 \frac{1}{2}$, and the product will be dollars; and where there are shillinge, add one dollar for every $8 s$.

```
EXAMPLES.
```

Reduce 307. 12s. to dollars and cents. 30 12s. $2 \frac{1}{8}$

$$
60
$$

$$
15
$$

$$
12 s .=1.50
$$

Answer $\$ 76.50$
In the States of South Carolina and Georgia, the Dollar passes ior $4 s$. and 8 d . to reduce which into DC llars, take this

RULE。

Add a cypher to the right hand of the pounds, then multiply by 3 , and divide by 7 , and the quotient is the dollars ; and it tnere are shillings, add a dollar for every 4 s .8 d .

> EXAMPLES.

Realuce 102.10 s . to dollars and centa 100

A TABLE，

Exhibiting the standard weight，and Federal value of the Gold Coins，that pass current in the United States，with their value in the currencies of the respective States．

	$\begin{aligned} & z \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	Standard Weight．
ज゙ びven No 00 10 0 客 V r） 88 ： 0003	Federal Money．
ートールトゥ 00000000000 a	New England States，Virgi－ nia，Kentucky and Tennessee
 00000000000 R	New York and N．Carolina．
 o as asoo00 o oso a	New Tersey， Pennsylvania， Delaware，and Maryland．
	South Caroli－ na \＆Georgia．

＊The Standard for Gold Coins of the United States is oleven parts fine，to one part alloy；Silvor Coins 1485 parts fine，to 179 parts alloy．

TABLE OF INTEREST,

Pes day, at 6 per cent. on any number of Dollars, from One to Twelve Thousand.

		No			㫶	\%	
D.	II.	D.	M.	D.	C. M.	D.	D. C. M.
1	018	31	510	61	1.002	91	-1. 1.496
2	038	32	526	62	1.019	92	1. 512
8	049	333.	519	68	1.086	93	- 1.529
4	066	34	559	63	1.052	94	-1.545
5	082	35	575	65.	1.068	95	. 1.562
6	099	36	592	66	1.085	96	-1.578
7	115	37	608	67	1.101	97	-1.595
8	132	38	625	68	1.118	98	. 1.611
9	148	39	641	69	1. 134	99	. 1.627
10	164	40	658	70	1.151	100	-1.644
11	181	41	674	71.	1.167	200	. 3.288
12	197	42	690	72	1. 184	300	- 4.932
13	214	43	707	73]. 200	400	- 6.575
14	230	44	723	7.1	1. 216	500	. 8.219
15	247	45	740	75	1.233	600	. 9.863
16	203	46	$70{ }^{\circ}$	76	1.249	700	. 11.507
17	279	47	778	7	1.266	800	. 13.151
18	296	48	789	78	1. 282	900	. 14.795
19	312	49	808	79	1.299	1000	. 16.438
20	329	50	82%	80	1.315	2000	. 32.877
21	345	51	838	81	1. 232	3000	49.815
22	362	52	855	$8{ }^{2}$	1. 318	4000	65.753
23	378	53	371	83	1. $36 \frac{1}{4}$	5000	. 82.192
21	395	54	888	84	1.381	6000	. 98.630
25	411	55	904	85	1.397	7000	1.15.058
26	427	56	021	aं	1. 11.4	8000.	1.31.507
26	4.44	57	937	8?	1. 1301	9000	1.47.945
$2 \hat{}$	¢ 50	58	0.3	S. 8	1. 144	10000	1.64.384
23	177	50	370	83	1. 463	11000	1.80 .822
30	498	60	986	90	1.479	12000	1.97 .260

A PRACTICAL ©YSTEM

©F
 BOOK-KEEPING,

FOR

FARMERS AND MFCHANICS.

Almost all persone, in the ordinary avocations of life, unless they adopt some method of keeping their aceounts in a regular manner, will be subjected to continual losses and inconveniences; to prevent which the following plan or outline is composed, embracing the principles of Book-Keeping in the most simple form. Before the pupil commences this study, it will not be necessary for him to have attended to all the rules in the Arithmetic; but he should make himself acquainted with the subject of Book-Keeping, before he is suffered to leave school. A few examples only are given, barely sufficient to give the learner a view of the manner of lieeping books; it being intended that the pupil should be required to compose similar ones, and insert them in a book adapted to this purpose.

Book-Keeping is the method of recording business transactions. It is of two kinds - single and double entry; but we shall only notice the former.

Single entry is the simplest form of Book-Keeping, and is employed by retailers, mechanics, farmers, \&c. It requires a Day-Book, Leger, and, where money is frequently received and paid out, a Cash-Book.

DAY-B00K.

This book should be a minute history of business transactions in the order of time in which they occur; it should be ruled with head lines, with one column on the left hand for post-marks and references, and two columns on the right for dollars and cents. 'The owner's name, the town or city, and the date of the first transaction, sliould stand at the head of the first page. It is the custom of many to continue inserting the name of the town on every page. 'This, however, is unnecessary. It is sufficient to write only the month, day, and year, at the head of each page after the first. This should be written in a larger hand than the entries.

On commencing an account with any individual, his place of residence should be noted, provided it is not the same is that where the book is kept. If it be the same, this is unnecessary. As it often happens that different persons bear the same name, it is well, in such eases, to designate the indicidual with whom the accomit is opened, by statigg his occupation, or particular place of residence.

When the conditions of sale or purchase sary from the ordinary customs of the place, it should be stated. Every month, or offener, the Day-Book should be copied or posted into the Leger, as hereafter directed. The crosses, on the left hand column, show that the charge or credit, against which they stand, is posted, and the tigures show the page of the Leger where the account isprosted. Some use the figures only as post-marks.

Every article sold on credit, except when a note is taken, should be immediately charged, as it is always unsafe to trust to menory. Also, all lahour performed, or any transaction wherehy another is made indebted to us, should be immediately entered on the Day-Book. If farmers and mechanics would strictly observe this rule, they would not only save many quarrels, but much money. In this respect, at least, follow the example of Dr. Franklin, who never omitted to make a charge as soon as it could be done. Never defer a charge till to-morrow, when it can be made to-day.

3+		+10
$+$	Robert Hawkins, Blacksmith.......... Dr. To 217 lbe Irun, a 8 cte .	1736
$2+$	Thomas Yoeman \qquad	75.35
$2+$	Archibald Tracy, Salem Dr. To oile pisce Broalefoth, containing 29 yds., $a \$ 3$ per yd., eit days' credit	8800
$\because+$		1800

Jon 5, 1810.

LEGER.

This book is used to collect the scattered accounts of the DayBook, and to arrange all that relates to each individual into one separate statement. The business of collecting these accounts from the Day-Book, and writing them in the Leger, is called posting. This should be done once a month, or oftener. Debts due from others, and entered upon the Day-Book, are placed on the side of Dr.; whatever is on the Day-book as due to another is placed on the side of Cr .

When an account is posted; the page of the Leger, in which this account, is kept, is written in the left hand column of the Day-Book.

Every Leger should have an alphabetical Index, where the names of the several persons, whose accounts are kept in the Leger, should be written, and the page noted down.

When one Leger is full, and a new one is opened, the accounts in the former should be all balanced, and the balances transferred to the new Leger.

EXPLANATION OF THE LEGER, AND THE MANNER OF POSTING.

It will be seen that the name of James Murray, Jr., stands first on the Day-Book; of course, we shall post his account first. We enter his neme on the first page of the Leger, in a large, fair hand, writing $D r$. on the left, and $C r$. on the right. At the top of the left hand column, we enter the year, under which we write the month and day when the first charge was made in the Day-Book, and in the next column the page of the

Day Book where the charge stands. Then, as there are several articles in the first charge, instead of specifying each article, as in the Day-Book, we merely say, To Sundries, and enter the anount in the proper columns. This charge being thus posted, we write the page of the Leger, viz., 1, in the left hand column of the Day-Book, and opposite to it a + , to show more distinctly that the charge is posted. We then pass a finger carefully over the names, till we again come to the name of Jumes Murray, Jr., which we find on the second page; but, as this is credit, we enter it on the credit side, with the date and page in their proper coluinns. We then enter the Legerpage and cross, as before, and then proceed again in search of the same name, until every charge and credit is transferred into the Leger. The next name is to be taken and proceeded with in the same way as the first; and so continue till all the accounts are posted.

As it is uncertain how extensive an account may be when once opened, it is better to take a new page for every name, until all the Ieger pages are occupied. By this time, it is probahle, several accounts will have been settled, we may then enter a second name on the same page, and so continue till all the pages are full.

Whenever any account is settled, the amount or the balance is ascertained, and the settlement entered in the Leger. The settlement may also be entered in the Day-Book; and many practice this, although it is not essentially necessary. But it is essentially necessary that one, if not both the books, should show how every account is settled, whether by cash, note, order, groods, or whatever way the amount or balance is liquidated.
N. B. In making out bills, the Leger is used as a reference to the charges in the Day-Book, which must be exactly copied.

FORM OF A LEGER.

Dr. James Murray, Jr.					
1820 Jan. 1. 1 $"$ 10. 3 13 13. 3 	To Sumdries, do. do.		2	By Corn and Oats, By Cash, to bal.,	\$ c 3 60 10 88 $\$ 24$ 44
Dr.		bert Hawkins			$C r$.
$\begin{array}{\|cc\|c\|} \hline 1859 . & \\ \text { Jan. } & 1 . & 1 \\ \text { " } & 10 . & 3 \\ & & \end{array}$	T'o Iron, " Sundries,		2	By Work, "Note, a 60 days,	$\$ 5$ 6 5 00 96 96 $\$ 31$ 90

CASH-B00K.

This book recouds the peymente cind receipts of cast
It is kept by making cerele $D+$ to cath un hend and what is :sceined, and C\%. by whatever is paid cut

At the end of every day or wack, as may best suit the natue of the basineás, the casio on hand is counted, and entered on the Cr. wide.

If there is no crroy, this will make thes bilm of the Dr. equal to that of the Cr. A Lelane is ihon otrock, aid the wash on band wried again ujon the Dh. nide.

FORM. OF A CASH-BOOK.

Itr. CASH. Cr.

J2 15.	To Cash on hand	\$ $\mid c$ 63750	$\text { Jan. } 2$	By rent of store for	\$	c
J-1. ${ }_{\text {d }}$	"J. Thompson	3794		one quarter, paid	62	50
"	" Ilart, paid acc't.	6543		Thoinas Tuylor,		
3	" H Palmer on note	127128	4	"Paid note to R.	127	¢3
4	" S. Snowdorn	8473		'Thacher,		1
5	" 1. Mervin oll acc't.	1790	5	"Family expenses,	27	61
6	" S. Crane	10090	6	"Merchandise bo't	614	427
"	Sixics of Merchandise	31118		of T. 'Thamor, Cash on hand,	5	65
		138286			1382	86
8	Casir on hand,	550,65				

Form of a Bill from the prcceding. Work. Mr. Janes Murray

To Edward L. Peckhan, Dr.
1223.

Ball. 1 .

No. $1 . \quad$ Negotiable Nosio
$878,50$.
־-shm May 25, 1827.
On Demand, I promise to pay Claude Lorraine, or Ortiss, Serenty-eight Dollars Fifty Cents, with Interest, for ralue received,

JAMES HONESTUS.

No. \% Acte payable to Bearer.
$\$ 40$.
Sept. 17, 1827.
Six months from date, I promise to pay A. B., ur Bearer, Forty Dollars for value received.

SIMEON PAYWELL.

No. 3.
Note by two Persons.
$\$ 500$.
Oct. 28, 1827.
For value received, we, jointly and severally, promise to pay C. D., or Order, on demand, Five Hundrod Dollars, with Laterest.

HORACE WALCOTr. JAMES HART.

No. 4. Note at Bank. $\$ 150$.

Feb. 25, 1819.
Finety-five days from date, I promise to pay Tho mes Andrews, or Order, at the Phomis Bank, Ono Kuuitrene and Fifty Dollarn, for value received.

JOHN REYNOIDQ

Remerks relating to Notes of Hand.

1. A negotiable note is one which is made payable to A. B. or order.-It is otherwise, when these words are omitted.
2. By endorsing a ricte is understood, that the person to whom it is payable writes his name on the back of it. For additional ssusrity, any other person may afterwards endorse it.
3. If the note be made paypble to A. B., or order, (see No. 1,) then A. B. can sell said note to whom he pleases, provided he endorsee it; and whoever buys said note may lawfully demand pasment of the signer of the note, and if the signer, through inability or otherwise, refuses to pay said note, the purchaser may lawfully demand payment of the endorser.
4. If the note be made payable to A. B., or bearer, (see No. 2) then the signer only is responsible to any one who may purchase it.
E. Unless a note be written payable on some specific future tine, it should be written on demand; but should the words on demand be omitted, the note is supposed to be recoverable wo law.
5. When a note, payable at a future day, becomes due, it is sencidered on interest from that time till payed, though no mention be made of incerest.
6. No mention r.eed be made in a note of the tate of interest : that particular is enttled by law, and may be collected according to the laws of the state where the note is dated. In some states it is 6 per cent. ; in others, 7.
7. If twe perarns, jointly and severally, (see No. 3,) sign a note, it may we collected by law of either.
8. A nste riot valid, unless the words for value received be expresed.
9. When a note is given, payable in any article of merchandıse, or property other than money, deliverable on a specified time, such articles should be rendered in payment at said itime, otherwise the holder of the note may demand the value in Imoner.

Rccornt aivib Interest.

Mr. Thomab I. Spencer

$$
\text { To H. Tisdalle, } \quad D_{r} .
$$

1816-Nor. 1. To 3 yards Cloth, a $\$ 7,50$ per yd.. $\$ 22,50$
Dec. 2. " 6 galls. Wine, a 4,25 per gall. 25,50
1:10-Jan. 1." Balance of Interest 5,80
$\$ 53,80$
Supra, Cr.
1817-Nor. 1. By Cash 822,50
1819—Jan. 1. Ditto in full 31,30

- Jan. 1, 1819.
\$53,80
H. TIMDALIL.

Receipt for Money on Account.

Received of Jrmes Wardell, Three Dollars on account. SIMEON BRANDT. . Finge $^{21,1816 .}$

A General Recipt.

Received of Jonathan Andrews. Fourtena Dollera in full of all accounts.
*... Dec. 31, 1827.
MORACE RITTER.

Receipt for Money paid on a Note.

Recoived of Laonard Temple, Seventy-two Pounda and Eleven Shillingo, on his note for the mm of One Hundred and Serenty-two Poneds, and dated at Finfield, Oct. 2\%, 18:26.
D. THOMAS.

Boston, August 27, 1828.

Sin Order for stoney.

Minsers. R. POTTE \& Co.
 this shanl be your rccespt for the same.

SHEELAF SPENCER.
Sept 16, 1828.

> Order for Goods.

瑯. Albtoh N. Oldey,
Pay the Bearer Screnty-one Dollars, in Goods from your store, and charge

Your obedient mervants
Oxford, Dec. 31, 1827.
R. RAYNALL.

Fore. A reseipt girsn in full of oil accournts cats of moounts ouly; ,but ¿ receipt given in full of all demands catis of not ouly all accounts, but all demands whatever.

An crder, when-paid, should be receipted on the back, by the person to whom it is made payable, or by some one duly authorised to eign for him; but when it is made payable to beaper, or to A. B. or bearer, it may be received by any one who presenta it for payment

[^0]: * Note. - July is thic seventh month, and Nuvember the eleventh.

 56. Charles was born on the 18th day of June, 1821. How old will he be on the 13 th day of August, 1840? Ans. 19 y. 1m. 25da.
