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FROM  THE  AUTHOR'S  PREFACE  TO 
THE  FIRST  EDITION 

EINSTEIN'S  Theory  of  Kelativity  has  advanced  our 
ideas  of  the  structure  of  the  cosmos  a  step  further.  It 
is  as  if  a  wall  which  separated  us  from  Truth  has 

collapsed.  Wider  expanses  and  greater  depths  are  now  ex- 
posed to  the  searching  eye  of  knowledge,  regions  of  which  we 

had  not  even  a  presentiment.  It  has  brought  us  much  nearer 
to  grasping  the  plan  that  underlies  all  physical  happening. 
C  Although  very  recently  a  whole  series  of  more  or  less 

popular  introductions  into  the  general  theory  of  relativity  has 
appeared,  nevertheless  a  systematic  presentation  was  lacking. 
I  therefore  considered  it  appropriate  to  publish  the  following 
lectures  which  I  gave  in  the  Summer  Term  of  1917  at  the 
Eidgen.  Technische  Hochschule  in  Zurich.  At  the  same  time 

it  was  my  wish  to  present  this  great  subject  as  an  illustra- 
tion of  the  intermingling  of  philosophical,  mathematical,  and 

physical  thought,  a  study  which  is  dear  to  my  heart.  This 
could  be  done  only  by  building  up  the  theory  systematically 
from  the  foundations,  and  by  restricting  attention  throughout 
to  the  principles.  But  I  have  not  been  able  to  satisfy  these 

self-imposed  requirements  :  the  mathematician  predominates 
at  the  expense  of  the  philosopher.  ) 

The  theoretical  equipment  demanded  of  the  reader  at  the 
outset  is  a  minimum.  Not  only  is  the  special  theory  of  rela- 

tivity dealt  with  exhaustively,  but  even  Maxwell's  theory  and 
analytical  geometry  are  developed  in  their  main  essentials. 
This  was  a  part  of  the  whole  scheme.  The  setting  up  of  the 

Tensor  Calculus — by  means  of  which,  alone,  it  is  possible  to 
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express  adequately  the  physical  knowledge  under  discussion 

— occupies  a  relatively  large  amount  of  space.  It  is  therefore 
hoped  that  the  book  will  be  found  suit  able  for  making  physicists 
better  acquainted  with  this  mathematical  instrument,  and 
also  that  it  will  serve  as  a  text-book  for  students  and  win 
their  sympathy  for  the  new  ideas. 

HEEMANN  WEYL 
RIBBITZ  IN  MECKLENBURG 

Easter,  1918 

PEEFACE  TO  THE  THIRD  EDITION 

ALTHOUGH  this  book  offers  fruits  of  knowledge  in  a 
refractory  shell,  yet  communications  that  have  reached 
me  have  shown  that  to  some  it  has  been  a-  source  of 

comfort  in  troublous  times.     To  gaze  up  from  the  ruins  of 
the  oppressive  present  towards  the  stars  is  to  recognise  the 
indestructible  world  of  laws,  to  strengthen  faith  in  reason,  to 

realise  the  "  harmonia  rnundi  "  that  transfuses  all  phenomena, 
and  that  never  has  been,  nor  will  be,  disturbed. 

My  endeavour  in  this  third  edition  has  been  to  attune  this 
harmony  more  perfectly.  Whereas  the  second  edition  was 
a  reprint  of  the  first,  I  have  now  undertaken  a  thorough 
revision  which  affects  Chapters  II  and  IV  above  all.  The 

discovery  by  Levi-Civita,  in  1917,  of  the  conception  of  infini- 
tesimal parallel  displacements  suggested  a  renewed  examina- 

tion of  the  mathematical  foundation  of  Riemann's  geometry. 
The  development  of  pure  infinitesimal  geometry  in  Chapter 
II,  in  which  every  step  follows  quite  naturally,  clearly,  and 
necessarily,  from  the  preceding  one,  is,  I  believe,  the  final 
result  of  this  investigation  as  far  as  the  essentials  are  con- 

cerned. Several  shortcomings  that  were  present  in  my  first 
account  in  the  Matheniatische  Zeitschrift  (Bd.  2,  1918)  have 
now  been  eliminated.  Chapter  IV,  which  is  in  the  main 

devoted  to  Einstein's  Theory  of  Gravitation  has,  in  considera- 
tion of,  the  various  important  works  that  have  appeared  in  the 

meanwhile,  in  particular  those  that  refer  to  the  Principle  of 
Energy-Momentum,  been  subjected  to  a  very  considerable 
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revision.  Furthermore,  a  new  theory  by  the  author  has  been 
added,  which  draws  the  physical  inferences  consequent  on  the 
extension  of  the  foundations  of  geometry  beyond  Kiemann, 
as  shown  in  Chapter  II,  and  represents  an  attempt  to  derive 
from  world-geometry  not  only  gravitational  but  also  electro- 

magnetic phenomena.  Even  if  this  theory  is  still  only  in  its 
infant  stage,  I  feel  convinced  that  it  contains  no  less  truth 

than  Einstein's  Theory  of  Gravitation — whether  this  amount 
of  truth  is  unlimited  or,  what  is  more  probable,  is  bounded  by 
the  Quantum  Theory. 

I  wish  to  thank  Mr.  Weinstein  for  his  help  in  correcting 
the  proof-sheets. 

HERMANN  WEYL 

ACLA   POZZOLI,    NEAR   SAMADEN 

August,  1919 

PEEFACE  TO  THE  FOURTH  EDITION 

IN  this  edition  the  book  has  on  the  whole  preserved  its 
general  form,  but  there  are  a  number  of  small  changes  and 
additions,  the  most  important  of  which  are :  (1)  A  para- 

graph added  to  Chapter  II  in  which  the  problem  of  space  is 
formulated  in  conformity  with  the  view  of  the  Theory  of 
Groups ;  we  endeavour  to  arrive  at  an  understanding  of  the 
inner  necessity  and  uniqueness  of  Pythagorean  space  metrics 
based  on  a  quadratic  differential  form.  (2)  We  show  that  the 
reason  that  Einstein  arrives  necessarily  at  uniquely  determined 
gravitational  equations  is  that  the  scalar  of  curvature  is  the 

only  invariant  having  a  certain  character  in  Riemann's  space. 
(3)  In  Chapter  IV  the  more  recent  experimental  researches 
dealing  with  the  general  theory  of  relativity  are  taken  into  con- 

sideration, particularly  the  deflection  of  rays  of  light  by  the 
gravitational  field  of  the  sun,  as  was  shown  during  the  solar 
eclipse  of  29th  May,  1919,  the  results  of  which  aroused  great 

interest  in  the  theory  on  all  sides.  (4)  With  Mie's  view  of 
matter  there  is  contrasted  another  (vide  particularly  §  32  and 
§36),  according  to  which  matter  is  a  limiting  singularity  of 
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the  field,  but  charges  and  masses  are  force-fluxes  in  the  field. 
This  entails  a  new  and  more  cautious  attitude  towards  the 

whole  problem  of  matter. 
Thanks  are  due  to  various  known  and  unknown  readers  for 

pointing  out  desirable  modifications,  and  to  Professor  Nielsen 

(at  Breslau)  for  kindly  reading  the  proof-sheets. 

HEKMANN  WEYL 
ZDBICH,  November,  1920 



TRANSLATOR'S  NOTE 

IN  this  rendering  of  Professor  Weyl's  book  into  English, 
pains  have  been  taken  to  adhere  as  closely  as  possible  to 
the  original,  not  only  as  regards  the  general  text,  but  also 

in  the  choice  of  English  equivalents  for  technical  expressions. 
For  example,  the  word  affine  has  been  retained.  It  is  used 
by  Mobius  in  his  Der  Barycentrische  Calcul,  in  which  he 
quotes  a  Latin  definition  of  the  term  as  given  by  Euler. 
Veblen  and  Young  have  used  the  word  in  their  Protective 
Geometry,  so  that  it  is  not  quite  unfamiliar  to  English 
mathematicians.  Abbildung,  which  signifies  representation,  is 
generally  rendered  equally  well  by  transformation,  inasmuch 
as  it  denotes  a  copy  of  certain  elements  of  one  space  mapped 
out  on,  or  expressed  in  terms  of,  another  space.  In  some 
cases  the  German  word  is  added  in  parenthesis  for  the  sake 
of  those  who  wish  to  pursue  the  subject  further  in  original 
papers.  It  is  hoped  that  the  appearance  of  this  English 

edition  will  lead  to  further  efforts  towards  extending  Einstein's 
ideas  so  as  to  embrace  all  physical  knowledge.  Much  has 
been  achieved,  yet  much  remains  to  be  done.  The  brilliant 
speculations  of  the  latter  chapters  of  this  book  show  how  vast 

is  the  field  that  has  been  opened  up  by  Einstein's  genius. 
The  work  of  translation  has  been  a  great  pleasure,  and  I  wish 
to  acknowledge  here  the  courtesy  with  which  suggestions 
concerning  the  type  and  the  symbols  have  been  received  and 
followed  by  Messrs.  Methuen  &  Co.  Ltd.  Acting  on  the 
advice  of  interested  mathematicians  and  physicists  I  have 
used  Clarendon  type  for  the  vector  notation.  My  warm 
thanks  are  due  to  Professor  G.  H.  Hardy  of  New  College  and 
Mr.  T.  W.  Chaundy,  M.A.,  of  Christ  Church,  for  valuable  sug- 

gestions and  help  in  looking  through  the  proofs.  Great  care 
has  been  taken  to  render  the  mathematical  text  as  perfect  as 
possible. 

HENKY  L.  BEOSE 
CHRIST  CHDECH,  OXFORD 

December,  1921 
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INTEODUCTION 

SPACE  and  time  are  commonly  regarded  as  the  forms  of 
existence  of  the  real  world,  matter  as  its  substance.  A 

definite  portion  of  matter  occupies  a  definite  part  of  space 
at  a  definite  moment  of  time.  It  is  in  the  composite  idea  of 

motion  that  these  three  fundamental  conceptions  enter  into  inti- 
mate relationship.  Descartes  defined  the  objective  of  the  exact 

sciences  as  consisting  in  the  description  of  all  happening  in  terms  . 
of  these  three  fundamental  conceptions,  thus  referring  them  to 
motion.  Since  the  human  mind  first  wakened  from  slumber,  and 
was  allowed  to  give  itself  free  rein,  it  has  never  ceased  to  feel  the 

profoundly  mysterious  nature  of  time-consciousness,  of  the  pro- 
gression of  the  world  in  time, — of  Becoming.  It  is  one  of  those 

ultimate  metaphysical  problems  which  philosophy  has  striven  to 
elucidate  and  unravel  at  every  stage  of  its  history.  The  Greeks 

made  Space  the  subject-matter  of  a  science  of  supreme  simplicity 

and  certainty.  Out  of  it  grew,  in  the  mind -of  classical  antiquity, 
the  idea  of  pure  science.  Geometry  became  one  of  the  most  power- 

ful expressions  of  that  sovereignty  of  the  intellect  that  inspired  the 
thought  of  those  times.  At  a  later  epoch,  when  the  intellectual 
despotism  of  the  Church,  which  had  been  maintained  through  the 
Middle  Ages,  had  crumbled,  and  a  wave  of  scepticism  threatened  to 
sweep  away  all  that  had  seemed  most  fixed,  those  who  believed 

in  Truth  clung  to  Geometry  as  to  a  rock,  and  it  was  the  highest 

ideal  of  every  scientist  to  carry  on  his  science  "  more  geo- 

metricQ  ".  Matter  was  imagined  to  be  a  substance  involved  in 
every  change,  and  it  was  thought  that  every  piece  of  matter  could 
be  measured  as  a  quantity,  and  that  its  characteristic  expression  as  a 

"  substance  "  was  the  Law  of  Conservation  of  Matter  which  asserts 
that  matter  remains  constant  in  amount  throughout  every  change. 
This,  which  has  hitherto  represented  our  knowledge  of  space  and 
matter,  and  which  was  in  many  quarters  claimed  by  philosophers 

1 
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as  a  priori  knowledge,  absolutely  general  and  necessary,  stands 
to-day  a  tottering  structure.  First,  the  physicists  in  the  persons  of 

Faraday  and  Maxwell,  proposed  the  "  electromagnetic  field  "  in 
contradistinction  to  matter,  as  a  reality  of  a  different  category. 

Then,  during  the  last  century,  the  mathematician,  following  a  differ- 
ent line  of  thought,  secretly  undermined  belief  in  the  evidence  of 

Euclidean  Geometry.  And  now,  in  our  time,  there  has  been  un- 
loosed a  cataclysm  which  has  swept  away  space,  time,  and  matter 

hitherto  regarded  as  the  firmest  pillars  of  natural  science,  but  only 
to  make  place  for  a  view  of  things  of  wider  scope,  and  entailing  a 
deeper  vision. 

This  revolution  was  promoted  essentially  by  the  thought  of  one 
man,  Albert  Einstein.  The  working-out  of  the  fundamental  ideas 
seems,  at  the  present  time,  to  have  reached  a  certain  conclusion  ; 
yet,  whether  or  not  we  are  already  faced  with  a  new  state  of  affairs, 
we  feel  ourselves  compelled  to  subject  these  new  ideas  to  a  close 

analysis.  Nor  is  any  retreat  possible.  The  development  of  scien- 
tific thought  may  once  again  take  us  beyond  the  present  achieve- 

ment, but  a  return  to  the  old  narrow  and  restricted  scheme  is  out 
of  the  question. 

Philosophy,  mathematics,  and  physics  have  each  a  share  in  the 
problems  presented  here.  We  shall,  however,  be  concerned  above 
all  with  the  mathematical  and  physical  aspect  of  these  questions. 
I  shall  only  touch  lightly  on  the  philosophical  implications  for  the 
simple  reason  that  in  this  direction  nothing  final  has  yet  been 
reached,  and  that  for  my  own  part  I  am  not  in  a  position  to  give 
such  answers  to  the  epistemological  questions  involved  as  my  can- 
science  would  allow  me  to  uphold.  The  ideas  to  be  worked  out  in 
this  book  are  not  the  result  of  some  speculative  inquiry  into  the 
foundations  of  physical  knowledge,  but  have  been  developed  in 
the  ordinary  course  of  the  handling  of  concrete  physical  problems — 
problems  arising  in  the  rapid  development  of  science  which  has,  as 
it  were,  burst  its  old  shell,  now  become  too  narrow.  This  revision 
of  fundamental  principles  was  only  undertaken  later,  and  then 
only  to  the  extent  necessitated  by  the  newly  formulated  ideas. 
As  things  are  to-day,  there  is  left  no  alternative  but  that  the 
separate  sciences  should  each  proceed  along  these  lines  dogmati- 

cally, that  is  to  say,  should  follow  in  good  faith  the  paths  along 
which  they  are  led  by  reasonable  motives  proper  to  their  own 
peculiar  methods  and  special  limitations.  The  task  of  shedding 
philosophic  light  on  to  these  questions  is  none  the  less  an  impor- 

tant one,  because  it  is  radically  different  from  that  which  falls  to 
the  lot  of  individual  sciences.  This  is  the  point  at  which  the 
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philosopher  must  exercise  his  discretion.  If  he  keep  in  view  the 
boundary  lines  determined  by  the  difficulties  inherent  in  these  prob- 

lems, he  may  direct,  but  must  not  impede,  the  advance  of  sciences 
whose  field  of  inquiry  is  confined  to  the  domain  of  concrete 
objects. 

Nevertheless  I  shall  begin  with  a  few  reflections  of  a  philo- 
sophical character.  As  human  beings  engaged  in  the  ordinary 

activities  of  our  daily  lives,  we  find  ourselves  confronted  in  our 

acts  of  perception  by  material  things.  We  ascribe  a  "real"  ex- 
istence to  them,  and  we  accept  them  in  general  as  constituted, 

shaped,  and  coloured  in  such  and  such  a  way,  and  so  forth,  as  they 

appear  to  us  in  our  perception  in  "general,"  that  is  ruling  out 
possible  illusions,  mirages,  dreams,  and  hallucinations. 

These  material  things  are  immersed  in,  and  transfused  by,  a 
manifold,  indefinite  in  outline,  of  analogous  realities  which  unite 

to  form  a  single  ever-present  world  of  space  to  which  I,  with  my 
own  body,  belong.  Let  us  here  consider  only  these  bodily  objects, 
and  not  all  the  other  things  of  a  different  category,  with  which  we 
as  ordinary  beings  are  confronted ;  living  creatures,  persons,  objects 
of  daily  use,  values,  such  entities  as  state,  right,  language,  etc. 
Philosophical  reflection  probably  begins  in  every  one  of  us  who  is 
endowed  with  an  abstract  turn  of  mind  when  he  first  becomes 

sceptical  about  the  world-view  of  naive  realism  to  which  I  have 
briefly  alluded. 

It  is  easily  seen  that  such  a  quality  as  " green"  has  an  exist- 
ence only  as  the  correlate  of  the  sensation  "  green "  associated 

with  an  object  given  by  perception,  but  that  it  is  meaningless  to 
attach  it  as  a  thing  in  itself  to  material  things  existing  in  them- 

selves. This  recognition  of  the  subjectivity  of  the  qualities 
of  sense  is  found  in  Galilei  (and  also  in  Descartes  and  Hobbes)  in 
a  form  closely  related  to  the  principle  underlying  the  constructive 

mathematical  method  of  our  modern  physics  which  repudi- 

ates "qualities".  According  to  this  principle,  colours  are 
"really"  vibrations  of  the  aether,  i.e.  motions.  In  the  field  of 
philosophy  Kant  was  the  first  to  take  the  next  decisive  step  to- 

wards the  point  of  view  that  not  only  the  qualities  revealed  by  the 
senses,  but  also  space  and  spatial  characteristics  have  no  objective 
significance  in  the  absolute  sense ;  in  other  words,  that  space,  too, 
is  only  a  form  of  our  perception.  In  the  realm  of  physics  it  is 
perhaps  only  the  theory  of  relativity  which  has  made  it  quite 

clear  that  the  two  essences,  space  and  time,  entering  into  our  in- 
tuition have  no  place  in  the  world  constructed  by  mathematical 

physics.  Colours  are  thus  "really"  not  even  aether-vibrations, 
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but  merely  a  series  of  values  of  mathematical  functions  in  which 

occur  four  independent  parameters  corresponding  to  the  three 
dimensions  of  space,  and  the  one  of  time. 

Expressed  as  a  general  principle,  this  means  that  the  real 
world,  and  every  one  of  its  constituents  with  their  accompanying 
characteristics,  are,  and  can  only  be  given  as,  intentional  objects  of 
acts  of  consciousness.  The  immediate  data  which  I  receive  are  the 

experiences  of  consciousness  in  just  the  form  in  which  i  receive 
them.  They  are  not  composed  of  the  mere  stuff  of  perception, 
as  many  Positivists  assert,  but  we  may  say  that  in  a  sensation 

an  object,  for  example,  is  actually  physically  present  for  me — to 
whom  that  sensation  relates — in  a  manner  known  to  every  one, 
yet,  since  it  is  characteristic,  it  cannot  be  described  more  fully. 

Following  Brentano,  I  shall  call  it  the  "intentional  object". 
In  experiencing  perceptions  I  see  this  chair,  for  example.  My 

attention  is  fully  directed  towards  it.  I  "  have  "  the  perception, 
but  it  is  only  when  I  make  this  perception  in  turn  the  intentional 
object  of  a  new  inner  perception  (a  free  act  of  reflection  enables 

me  to  do  this)  that  I  "  know  "  something  regarding  it  (and  not 
the  chair  alone),  and  ascertain  precisely  what  I  remarked  just 
above.  In  this  second  act  the  intentional  object  is  immanent, 
i.e.  like  the  act  itself,  it  is  a  real  component  of  my  stream  of 
experiences,  whereas  in  the  primary  act  of  perception  the  object 
is  transcendental,  i.e.  it  is  given  in  an  experience  of  consciousness, 
but  is  not  a  real  component  of  it.  What  is  immanent  is  absolute, 
i.e.  it  is  exactly  what  it  is  in  the  form  in  which  I  have  it,  and  I 
can  reduce  this,  its  essence,  to  the  axiomatic  by  acts  of  reflection. 
On  the  other  hand,  transcendental  objects  have  only  a  phenomenal 
existence ;  they  are  appearances  presenting  themselves  in  manifold 

ways  and  in  manifold  "  gradations  ".  One  and  the  same  leaf  seems 
to  have  such  and  such  a  size,  or  to  be  coloured  in  such  and  such 

a  way,  according  to  my  position  and  the  conditions  of  illumina- 
tion. Neither  of  these  modes  of  appearanca  can  claim  to  present 

the  leaf  just  as  it  is  "  in  itself  ".  Furthermore,  in  every  perception 
there  is,  without  doubt,  involved  the  thesis  of  reality  of  the 
object  appearing  in  it ;  the  latter  is,  indeed,  a  fixed  and  lasting 
element  of  the  general  thesis  of  reality  of  the  world.  When, 
however,  we  pass  from  the  natural  view  to  the  philosophical  atti- 

tude, meditating  upon  perception,  we  no  longer  subscribe  to  this 

thesis.  We  simply  affirm  that  something  real  is  "  supposed  "  in 
it.  The  meaning  of  such  a  supposition  now  becomes  the  problem 
which  must  be  solved  from  the  data  of  consciousness.  In  addition 

a  justifiable  ground  for  making  it  must  be  found.  I  do  not  by  this 
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in  any  way  wish  to  imply  that  the  view  that  the  events  of  the 
world  are  a  mere  play  of  the  consciousness  produced  by  the  ego, 

contains  a  higher  degree  of  truth  than  naive  realism ;  on  the  con- 
trary, we  are  only  concerned  in  seeing  clearly  that  the  datum  of 

consciousness  is  the  starting-point  at  which  we  must  place  our- 
selves if  we  are  to  understand  the  absolute  meaning  as  well  as  the 

right  to  the  supposition  of  reality.  In  the  field  of  logic  we  have  an 
analogous  case.  A  judgment,  which  I  pronounce,  affirms  a  certain 

set  of  circumstances ;  it  takes  them  as  true.  Here,  again,  the  philo- 
sophical question  of  the  meaning  of,  and  the  justification  for,  this 

thesis  of  truth  arises  ;  here,  again,  the  idea  of  objective  truth  is 
not  denied,  but  becomes  a  problem  which  has  to  be  grasped  from 

what  is  given  absolutely.  "  Pure  consciousness  "  is  the  seat  of 
that  which  is  philosophically  a  priori.  On  the  other  hand,  a  philo- 

sophic examination  of  the  thesis  of  truth  must  and  will  lead  to 
the  conclusion  that  none  of  these  acts  of  perception,  memory,  etc., 
which  present  experiences  from  which  I  seize  reality,  gives  us  a 
conclusive  right  to  ascribe  to  the  perceived  object  an  existence  and 
a  constitution  as  perceived.  This  right  can  always  in  its  turn  be 

over-ridden  by  rights  founded  on  other  perceptions,  etc. 
It  is  the  nature  of  a  real  thing  to  be  inexhaustible  in  content ; 

we  can  get  an  ever  deeper  insight  into  this  content  by  the  con- 
tinual addition  of  new  experiences,  partly  in  apparent  contradiction, 

by  bringing  them  into  harmony  with  one  another.  In  this  inter- 
pretation, things  of  the  real  world  are  approximate  ideas.  From 

this  arises  the  empirical  character  of  all  our  knowledge  of  reality.* 
Time  is  the  primitive  form  of  the  stream  of  consciousness.  It 

is  a  fact,  however  obscure  and  perplexing  to  our  minds,  that  the 
contents  of  consciousness  do  not  present  themselves  simply  as 
being  (such  as  conceptions,  numbers,  etc.),  but  as  being  now  filling 
the  form  of  the  enduring  present  with  a  varying  content.  So  that 
one  does  not  say  this  is  but  this  is  now,  yet  now  no  more.  If  we 
project  ourselves  outside  the  stream  of  consciousness  and  repre- 

sent its  content  as  an  object,  it  becomes  an  event  happening  in 
time,  the  separate  stages  of  which  stand  to  one  another  in  the 
relations  of  earlier  and  later. 

Just  as  time  is  the  form  of  the  stream  of  consciousness,  so  one 

may  justifiably  assert  that  space  is  the  form  of  external  material 
reality.  All  characteristics  of  material  things  as  they  are  presented 
to  us  in  the  acts  of  external  perception  (e.g.  colour)  are  endowed 
with  the  separateness  of  spatial  extension,  but  it  is  only  when 
we  build  up  a  single  connected  real  world  out  of  all  our  experi- 

ences that  the  spatial  extension,  which  is  a  constituent  of  every *Note  1. 
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perception,  becomes  a  part  of  one  and  the  same  all-inclusive  space. 
Thus  space  is  the  form  of  the  external  world.  That  is  to  say, 
every  material  thing  can,  without  changing  content,  equally  well 
occupy  a  position  in  Space  different  from  its  present  one.  This  im- 

mediately gives  us  the  property  of  the  homogeneity  of  space  which 
is  the  root  of  the  conception,  Congruence. 

Now,  if  the  worlds  of  consciousness  and  of  transcendental 
reality  were  totally  different  from  one  another,  or,  rather,  if  only 
the  passive  act  of  perception  bridged  the  gulf  between  them,  the 
state  of  affairs  would  remain  as  I  have  just  represented  it,  namely, 
on  the  one  hand  a  consciousness  rolling  on  in  the  form  of  a  lasting 
present,  yet  spaceless ;  on  the  other,  a  reality  spatially  extended, 
yet  timeless,  of  which  the  former  contains  but  a  varying  appearance. 
Antecedent  to  all  perception  there  is  in  us  the  experience  of  effort 
and  of  opposition,  of  being  active  and  being  passive.  For  a  person 
leading  a  natural  life  of  activity,  perception  serves  above  all  to 
place  clearly  before  his  consciousness  the  definite  point  of  attack 
of  the  action  he  wills,  and  the  source  of  the  opposition  to  it.  As 
the  doer  and  endurer  of  actions  I  become  a  single  individual  with 
a  psychical  reality  attached  to  a  body  which  has  its  place  in  space 
among  the  material  things  of  the  external  world,  and  by  which  I 
am  in  communication  with  other  similar  individuals.  Conscious- 

ness, without  surrendering  its  immanence,  becomes  a  piece  of 
reality,  becomes  this  particular  person,  namely  myself,  who  was 
born  and  will  die.  Moreover,  as  a  result  of  this,  consciousness 
spreads  out  its  web,  in  the  form  of  time,  over  reality.  Change, 
motion,  elapse  of  time,  becoming  and  ceasing  to  be,  exist  in  time 
itself;  just  as  my  will  acts  on  the  external  world  through  and 
beyond  my  body  as  a  motive  power,  so  the  external  world  is  in  its 

turn  active  (as  the  German  word  "  Wirklichkeit,"  reality,  derived 
from  "  wirken  "  =  to  act,  indicates).  Its  phenomena  are  related 
throughout  by  a  causal  connection.  In  fact  physics  shows  that 
cosmic  time  and  physical  form  cannot  be  dissociated  from  one 
another.  The  new  solution  of  the  problem  of  amalgamating  space 
and  time  offered  by  the  theory  of  relativity  brings  with  it  a  deeper 
insight  into  the  harmony  of  action  in  the  world. 

The  course  of  our  future  line  of  argument  is  thus  clearly  out- 
lined. What  remains  to  be  said  of  time,  treated  separately,  and 

of  grasping  it  mathematically  and  conceptually  may  be  included  in 
this  introduction.  We  shall  have  to  deal  with  space  at  much 
greater  length.  Chapter  I  will  be  devoted  to  a  discussion  of 
Euclidean  space  and  its  mathematical  structure.  In  Chapter  II 
will  be  developed  those  ideas  which  compel  us  to  pass  beyond  the 
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Euclidean  scheme ;  this  reaches  its  climax  in  the  general  space- 

conception  of  the  metrical  continuum  (Riemann's  conception  of 
space).  Following  upon  this  Chapter  III  will  discuss  the  problem 
mentioned  just  above  of  the  amalgamation  of  Space  and  Time  in 
the  world.  From  this  point  on  the  results  of  mechanics  and 
physics  will  play  an  important  part,  inasmuch  as  this  problem  by 
its  very  nature,  as  has  already  been  remarked,  comes  into  our  view 
of  the  world  as  an  active  entity.  The  edifice  constructed  out  of 
the  ideas  contained  in  Chapters  II  and  III  will  then  in  the  final 

Chapter  IV  lead  us  to  Einstein's  General  Theory  of  Relativity, 
which,  physically,  entails  a  new  Theory  of  Gravitation,  and  also 
to  an  extension  of  the  latter  which  embraces  electromagnetic 
phenomena  in  addition  to  gravitation.  The  revolutions  which  are 
brought  about  in  our  notions  of  Space  and  Time  will  of  necessity 
affect  the  conception  of  matter  too.  Accordingly,  all  that  has  to 
be  said  about  matter  will  be  dealt  with  appropriately  in  Chapters 
III  and  IV. 

To  be  able  to  apply  mathematical  conceptions  to  questions  of 
Time  we  must  postulate  that  it  is  theoretically  possible  to  fix 
in  Time,  to  any  order  of  accuracy,  an  absolutely  rigorous  now 

(present)  as  a  point  of  Time — i.e.  to  be  able  to  indicate  points  of 
time,  one  of  which  will  always  be  the  earlier  and  the  other  the 

later.  The  following  principle  will  hold  for  this  "  order-relation  ". 
If  A  is  earlier  than  B  and  B  is  earlier  than  G,  then  A  is  earlier 

than  C.  Each  two  points  of  Time,  A  and  B,  of  which  A  is  the 
earlier,  mark  off  a  length  of  time  ;  this  includes  every  point 
which  is  later  than  A  and  earlier  than  B.  The  fact  that  Time  is 

a  form  of  our  stream  of  experience  is  expressed  in  the  idea  of 
equality :  the  empirical  content  which  fills  the  length  of  Time 
AB  can  in  itself  be  put  into  any  other  time  without  being  in  any 
way  different  from  what  it  is.  The  length  of  time  which  it  would 
then  occupy  is  equal  to  the  distance  AB.  This,  with  the  help  of 
the  principle  of  causality,  gives  us  the  following  objective  criterion 
in  physics  for  equal  lengths  of  time.  If  an  absolutely  isolated 
physical  system  (i.e.  one  not  subject  to  external  influences)  reverts 

once  again  to  exactly  the  same 'state  as  that  in  which  it  was  at 
some  earlier  instant,  then  the  same  succession  of  states  will  be 
repeated  in  time  and  the  whole  series  of  events  will  constitute,  a 
cycle.  In  general  such  a  system  is  called  a  clock.  Each  period 
of  the  cycle  lasts  equally  long. 

The  mathematical  fixing  of  time  by  measuring  it  is  based  upon 

these  two  relations,  "  earlier  (or  later)  times  "  and  "  equal  times  ". 
The  nature  of  measurement  may  be  indicated  briefly  as  follows  : 
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Time  is  homogeneous,  i.e.  a  single  point  of  time  can  only  be  given 

by  being  specified  individually.  There  is  no  inherent  property 

arising  from  the  general  nature  of  time  which  may  be  ascribed  to 

any  one  point  but  not  to  any  other ;  or,  every  property  logically 
derivable  from  these  two  fundamental  relations  belongs  either  to 

all  points  or  to  none.  The  same  holds  for  time-lengths  and 

point-pairs.  A  property  which  is  based  on  these  two  relations  and 

which  holds  for  one  point-pair  must  hold  for  every  point-pair  AB 

(in  which  A  is  earlier  than  B).  A  difference  arises,  however,  in  the 

case  of  three  point-pairs.  If  any  two  time-points  0  and  E  are 

given  such  that  0  is  earlier  than  E,  it  is  possible  to  fix  conceptually 

further  time-points  P  by  referring  them  to  the  unit-distance  OE. 

This  is  done  by  constructing  logically  a  relation  t  between  three 

points  such  that  for  every  two  points  0  and  E,  of  which  0  is  the 
earlier,  there  is  one  and  only  one  point  P  which  satisfies  the 
relation  t  between  0,  E  and  P,  i.e.  symbolically, 

OP  =  t . OE 

(e.g.  OP  =  2  .OE  denotes  the  relation  OE  =  EP).  Numbers  are 
merely  concise  symbols  for  such  relations  as  t,  defined  logically 

from  the  primary  relations.  P  is  the  "  time-point  with  the 

abscissa  t  in  the  co-ordinate  system  (taking  OE  as  unit  length)". 
Two  different  numbers  t  and  t*  in  the  same  co-ordinate  system 

necessarily  lead  to  two  different  points  ;  for,  otherwise,  in  con- 
sequence of  the  homogeneity  of  the  continuum  of  time-lengths, 

the  property  expressed  by 

t.AB  =  t*.  AB, 

since  it  belongs  to  the  time-length  AB  =  OE,  must  belong  to  every 

time-length,  and  hence  the  equations  AC  =  t .  AB,  AC  =  t* .  AB 

would  both  express  the  same  relation,  i.e.  t  would  be  equal  to  t*. 
Numbers  enable  us  to  single  out  separate  time-points  relatively  to 
a  unit-distance  OE  out  of  the  time-continuum  by  a  conceptual, 
and  hence  objective  and  precise,  process.  But  the  objectivity  of 
things  conferred  by  the  exclusion  of  the  ego  and  its  data  derived 

directly  from  intuition,  is  not  entirely  satisfactory ;  the  co-ordinate 
system  which  can  only  be  specified  by  an  individual  act  (and  then 
only  approximately)  remains  as  an  inevitable  residuum  of  this 
elimination  of  the  percipient. 

It  seems  to  me  that  by  formulating  the  principle  of  measurement 

in  the  above  terms  we  see  clearly  how  mathematics  has  come  to 
play  its  r61e  in  exact  natural  science.  An  essential  feature  of 

measurement  is  the  difference  between  the  "determination"  of  an 
object  by  individual  specification  and  the  determination  of  the  same 
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object  by  some  conceptual  means.  The  latter  is  only  possible 
relatively  to  objects  which  must  be  defined  directly.  That  is  why 

a  theory  of  relativity  is  perforce  always  involved  in  measure- 
ment. The  general  problem  which  it  proposes  for  an  arbitrary 

domain  of  objects  takes  the  form  :  (1)  What  must  be  given  such  that 

relatively  to  it  (and  to  any  desired  order  of  precision)  one  can  single 
out  conceptually  a  single  arbitrary  object  P  from  the  continuously 
extended  domain  of  objects  under  consideration  ?  That  which  has 

to  be  given  is  called  the  co-ordinate  system,  the  conceptual 

definition  is  called  the  co-ordinate  (or  abscissa)  of  P  in  the  co- 
ordinate system.  Two  different  co-ordinate  systems  are  completely 

equivalent  for  an  objective  standpoint.  There  is  no  property,  that 

can  be  fixed  conceptually,  which  applies  to  one  co-ordinate  system 
but  not  to  the  other ;  for  in  that  case  too  much  would  have  been  given 

directly.  (2)  What  relationship  exists  between  the  co-ordinates 

of  one  and  the  same  arbitrary  object  P  in  two  different  co-ordinate 
systems  ? 

In  the  realm  of  time-points,  with  which  we  are  at  present  con- 

cerned, the  answer  to  the  first  question  is  that  the  co-ordinate 
system  consists  of  a  time-length  OE  (giving  the  origin  and  the 
unit  of  measure).  The  answer  to  the  second  question  is  that  the 

required  relationship  is  expressed  by  the  formula  of  transformation 

t  =  at'  +  b  (a>o) 

in  which  a  and  b  are  constants,  whilst  t  and  t'  are  the  co-ordinates 

of  the  same  arbitrary  point  P  in  an  "  unaccented  "  and  "  accented  " 
system  respectively.  For  all  possible  pairs  of  co-ordinate  systems 
the  characteristic  numbers,  a  and  b,  of  the  transformation  may  be 

any  real  numbers  with  the  limitation  that  a  must  always  be  posi- 
tive. The  aggregate  of  transformations  constitutes  a  group,  as 

their  nature  would  imply,  i.e., 

1.  "  identity  "  t  =  t'  is  contained  in  it. 
2.  Every  transformation  is  accompanied   by  its  reciprocal  in 

the  group,  i.e.  by  the  transformation  which  exactly  cancels  its 

effect.     Thus,  the  inverse  of  the  transformation  (a,  b),  viz.  t  =  at'  +  b, 
/I         b\                     li      b 

is  (  -,   i,    viz.  t  =  -  ff   . 

3.  If  two  transformations  of  a  group  are  given,  then  the  one 
which  is  produced  by  applying  these  two  successively  also  belongs  to 

the  group.  It  is  at  once  evident  that,  by  applying  the  two  trans- 
foimations 

t  =  at'  +  b  t'  =  a't"  +  b' 
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in  succession,  we  get 
t  =  a-p  +  bl 

where  ax  =  a  .  a'  and  &x  =  (ab')  +  b ;  and  if  a  and  a'  are  positive, 
so  is  their  product. 

The  theory  of  relativity  discussed  in  Chapters  III  and  IV  pro- 

poses the  problem  of  relativity,  not  only  for  time-points,  but  for 
the  physical  world  in  its  entirety.  We  find,  however,  that  this 
problem  is  solved  once  a  solution  has  been  found  for  it  in  the  case 
of  the  two  forms  of  this  world,  space  and  time.  By  choosing  a 

co-ordinate  system  for  space  and  time,  we  may  also  fix  the  physi- 
cally real  content  of  the  world  conceptually  in  all  its  parts  by 

means  of  numbers. 

(  All  beginnings  are  obscure.  Inasmuch  as  the  mathematician 
operates  with  his  conceptions  along  strict  and  formal  lines,  he, 
above  all,  must  be  reminded  from  time  to  time  that  the  origins  of 

things  lie  in  greater  depths  than  those  to  which  his  methods  en- 
able him  to  descend.  Beyond  the  knowledge  gained  from  the  in- 

dividual sciences,  there  remains  the  task  of  comprehending.  In 
spite  of  the  fact  that  the  views  of  philosophy  sway  from  one 
system  to  another,  we  cannot  dispense  with  it  unless  we  are  to 
convert  knowledge  into  a  meaningless  chaos.  \ 



CHAPTEE  I 

EUCLIDEAN  SPACE.    ITS  MATHEMATICAL  FOKMULATION  AND 
ITS  ROLE  IN  PHYSICS 

§  1.  Deduction  of  the  Elementary  Conceptions  of  Space  from 
that  of  Equality 

JUST  as  we  fixed  the  present  moment  ("  now  ")  as  a  geometrical 
point  in  time,  so  we  fix  an  exact  "  here,"  a  point  in  space, 
as  the  first  element  of  continuous  spatial  extension,  which, 

like  time,  is  infinitely  divisible.  Space  is  not  a  one-dimensional 
continuum  like  time.  The  principle  by  which  it  is  continuously 

extended  cannot  be  reduced  to  the  simple  relation  of  "  earlier"  or 
"  later  ".  We  shall  refrain  from  inquiring  what  relations  enable 
us  to  grasp  this  continuity  conceptually.  On  the  other  hand,  space, 
like  time,  is  a  form  of  phenomena.  Precisely  the  same  content, 
identically  the  same  thing,  still  remaining  what  it  is,  can  equally 
well  be  at  some  place  in  space  other  than  that  at  which  it  is  actually. 

The  new  portion  of  Space  S'  then  occupied  by  it  is  equal  to  that 
portion  S  which  it  actually  occupied.  S  and  S'  are  said  to  be 
congruent.  To  every  point  P  of  S  there  corresponds  one  definite 

homologous  point  P'  of  S'  which,  after  the  above  displacement  to  a 
new  position,  would  be  surrounded  by  exactly  the  same  part  of  the 
given  content  as  that  which  surrounded  P  originally.  We  shall  call 

this  "  transformation  "  (in  virtue  of  which  the  point  P'  corresponds 
to  the  point  P)  a  congruent  transformation.  Provided  that  the 
appropriate  subjective  conditions  are  satisfied  the  given  material 
thing  would  seem  to  us  after  the  displacement  exactly  the  same  as 
before.  There  is  reasonable  justification  for  believing  that  a  rigid 
body,  when  placed  in  two  positions  successively,  realises  this  idea 
of  the  equality  of  two  portions  of  space  ;  by  a  rigid  body  we  mean 
one  which,  however  it  be  moved  or  treated,  can  always  be  made  to 
appear  the  same  to  us  as  before,  if  we  take  up  the  appropriate 
position  with  respect  to  it.  I  shall  evolve  the  scheme  of  geometry 
from  the  conception  of  equality  combined  with  that  of  continuous 
connection — of  which  the  latter  offers  great  difficulties  to  analysis 11 
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— and  shall  show  in  a  superficial  sketch  how  all  fundamental  con- 
ceptions of  geometry  may  be  traced  back  to  them.  My  real  object 

in  doing  so  will  be  to  single  out  translations  among  possible  con- 
gruent transformations.  Starting  from  the  conception  of  translation 

I  shall  then  develop  Euclidean  geometry  along  strictly  axiomatic 
lines. 

First  of  all  the  straight  line.  Its  distinguishing  feature  is  that 
it  is  determined  by  two  of  its  points.  Any  other  line  can,  even 
when  two  of  its  points  are  kept  fixed,  be  brought  into  another 
position  by  a  congruent  transformation  (the  test  of  straightness). 

Thus,  if  A  and  B  are  two  different  points,  the  straight  lice 
g  =  AB  includes  every  point  which  becomes  transformed  into  itself 
by  all  those  congruent  transformations  which  transform  AB  into 
themselves.  (In  familiar  language,  the  straight  line  lies  evenly 
between  its  points.)  Expressed  kinematically,  this  is  tantamount 
to  saying  that  we  regard  the  straight  line  as  an  axis  of  rotation. 
It  is  homogeneous  and  a  linear  continuum  just  like  time.  Any 

arbitrary  point  on  it  divides  it  into  two  parts,  two  "  rays  ".  If  B 
lies  on  one  of  these  parts  and  G  on  the  other,  then  A  is  said  to 
be  between  B  and  G  and  the  points  of  one  part  lie  to  the  right  of 
A,  the  points  of  the  other  part  to  the  left.  (The  choice  as  to 
which  is  right  or  left  is  determined  arbitrarily.)  The  simplest 

fundamental  facts  which  are  implLd  by  the  conception  "between  " 
can  be  formulated  as  exactly  and  completely  as  a  geometry  which 
is  to  be  built  up  by  deductive  processes  demands.  For  this  reason 
we  endeavour  to  trace  back  all  conceptions  of  continuity  to  the 

conception  "  between,"  i.e.  to  the  relation  "  A  is  a  point  of  the 
straight  line  BG  and  lies  between  B  and  C  "  (this  is  the  reverse  of 
the  real  intuitional  relation).  Suppose  A'  to  be  &  point  on  g  to 
the  right  of  A,  then  A'  also  divides  the  line  g  into  two  parts.  We 
call  that  to  which  A  belongs  the  left-hand  side.  If,  however, 

A'  lies  to  the  left  of  A  the  position  is  reversed.  With  this  con- 
vention, analogous  relations  hold  not  only  for  A  and  A'  but  also 

for  any  two  points  of  a  straight  line.  The  points  of  a  straight 
line  are  ordered  by  the  terms  left  and  right  in  precisely  the  same 
way  as  points  of  time  by  the  terms  earlier  and  later. 

Left  and  right  are  equivalent.  There  is  one  congruent  trans- 
formation which  leaves  A  fixed,  but  which  interchanges  the 

two  halves  into  which  A  divides  the  straight  line.  Every  finite 
portion  of  straight  line  AB  may  be  superposed  upon  itself  in  such 
a  way  that  it  is  reversed  (i.e.  so  that  B  falls  on  A,  and  A  falls  on 
B).  On  the  other  hand,  a  congruent  transformation  which  trans- 

forms A  into  itself,  and  all  points  to  the  right  of  A  into  points  to 
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the  right  of  A,  and  all  points  to  the  left  of  A  into  points  to  the  left 
of  A,  leaves  every  point  of  the  straight  line  undisturbed.  The 
homogeneity  of  the  straight  line  is  expressed  in  the  fact  that  the 
straight  line  can  be  placed  upon  itself  in  such  a  way  that  any 

point  A  of  it  can  be  transformed  into  any  other  point  A'  of  it,  and 
that  the  half  to  the  right  of  A  can  be  transformed  into  the  half  to 

the  right  of  A',  and  likewise  for  the  portions  to  the  left  of  A  and 
A'  respectively  (this  implies  a  mere  translation  of  the  straight 
line).  If  we  now  introduce  the  equation  AB  =  A'B'  for  the  points 
of  the  straight  line  by  interpreting  it  as  meaning  that  AB  is  trans- 

formed into  the  straight  line  A'B'  by  a  translation,  then  the  same 
things  hold  for  this  conception  as  for  time.  These  same  circum- 

stances enable  us  to  introduce  numbers,  and  to  establish  a  rever- 
sible and  single  correspondence  between  the  points  of  a  straight  line 

and  real  numbers  by  using  a  unit  of  length  OE. 
Let  us  now  consider  the  group  of  congruent  transformations 

which  leaves  the  straight  line  g  fixed,  i.e.  transforms  every  point 
of  g  into  a  point  of  g  again. 

We  have  called  particular  attention  to  rotations  among  these 
as  having  the  property  of  leaving  not  only  g  as  a  whole,  but 

also  every  single  point  of  g  unmoved  in  position.  How  can  trans- 
lations in  this  group  be  distinguished  from  twists  ? 

I  shall  here  outline  a  preliminary  argument  in  which  not  only 
the  straight  line,  but  also  the  plane  is  based  on  a  property  of 
rotation. 

Two  rays  which  start  from  a  point  0  form  an  angle.  Every 
angle  can,  when  inverted,  be  superposed  exactly  upon  itself,  so 
that  one  arm  falls  on  the  other,  and  vice  versa.  Every  right  angle 
is  congruent  with  its  complementary  angle.  Thus,  if  h  is  a  straight 
line  perpendicular  to  g  at  the  point  A,  then  there  is  one  rotation 

about  g  ("  inversion  ")  which  interchanges  the  two  halves  into  which 
h  is  divided  by  A.  All  the  straight  lines  which  are  perpendicular 

g  at  A  together  form  the  plane  E  through  A  perpendicular  to  g. 
pair  of  these  perpendicular  straight  lines  may  be  produced 

>m  any  other  by  a  rotation  about  g. 

A 
A')\ 

1         \ 

r 

-     i 
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If  g  is  inverted,  and  placed  upon  itself  in  some  way,  so  that  A 
is  transformed  into  itself,  but  so  that  the  two  halves  into  which  A 

divides  g  are  interchanged,  then  the  plane  E  of  necessity  coincides 
with  itself.  The  plane  may  also  be  denned  by  taking  this  pro- 

perty in  conjunction  with  that  of  symmetry  of  rotation.  Two 
congruent  tables  of  revolution  (i.e.  symmetrical  with  respect  to 
rotations)  are  plane  if,  by  means  of  inverting  one,  so  that  its  axis 
is  vertical  in  the  opposite  direction,  and  placing  it  on  the  other, 
the  two  table-surfaces  can  be  made  to  coincide.  The  plane  is 
homogeneous.  The  point  A  on  E  which  appears  as  the  centre  in  this 
example  is  in  no  way  unique  among  the  points  of  E.  A  straight 

line  g'  passes  through  each  one  A'  of  them  in  such  a  way  that  E 
is  made  up  of  all  straight  lines  through  A  perpendicular  to  g'. 
The  straight  lines  g'  which  are  perpendicular  to  E  at  its  points  A 
respectively  form  a  group  of  parallel  straight  lines.  The  straight 
line  g  with  which  we  started  is  in  no  wise  unique  among  them. 
The  straight  lines  of  this  group  occupy  the  whole  of  space  in  such 
a  way  that  only  one  straight  line  of  the  group  passes  through  each 
point  of  space.  This  in  no  way  depends  on  the  point  A  of  the 
straight  line  g,  at  which  the  above  construction  was  performed. 

If  A*  is  any  point  on  g,  then  the  plane  which  is  erected 
normally  to  g  at  A*  cuts  not  only  g  perpendicularly,  but  also 
all  straight  lines  of  the  group  of  parallels.  All  such  normal 

planes  E*  which  are  erected  at  all  points  A*  on  g  form  a  group 
of  parallel  planes.  These  also  fill  space  continuously  and  uniquely. 
We  need  only  take  another  small  step  to  pass  from  the  above 

framework  of  space  to  the  rectangular  system  of  co-ordinates. 
We  shall  use  it  here,  however,  to  fix  the  conception  of  spatial 
translation. 

Translation  is  a  congruent  transformation  which  transforms 
not  only  g  but  every  straight  line  of  the  group  of  parallels  into 
itself.  There  is  one  and  only  one  translation  which  transfers  the 

arbitrary  point  A  on  g  to  the  arbitrary  point  A*  on  the  same 
straight  line. 

I  shall  now  give  an  alternate  method  of  arriving  at  the  con- 
ception of  translation.  The  chief  characteristic  of  translation  is 

that  all  points  are  of  equal  importance  in  it,  and  that  the  behaviour 
of  a  point  during  translation  does  not  allow  any  objective  assertion 
to  be  made  about  it,  which  could  not  equally  well  be  made  of  any 
other  point  (this  means  that  the  points  of  space  for  a  given  trans- 

lation can  only  be  distinguished  by  specifying  each  one  singly 

["  that  one  there"],  whereas  in  the  case  of  rotation,  for  example, 
the  points  on  the  axis  are  distinguished  by  the  property  that  they 
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preserve  their  positions).  By  using  this  as  a  basis  we  get  the 
following  definition  of  translation,  which  is  quite  independent  of 
the  conception  of  rotation.  Let  the  arbitrary  point  P  be  trans- 

formed into  P'  by  a  congruent  transformation  :  we  shall  call  P 
and  P'  connected  points.  A  second  congruent  transformation 
which  has  the  property  of  again  transforming  every  pair  of  con- 

nected points  into  connected  points,  is  to  be  called  interchange- 
able with  the  first  transformation.  A  congruent  transformation 

is  then  called  a  translation,  if  it  gives  rise  to  interchangeable  con- 
gruent transformations,  which  transform  the  arbitrary  point  A 

into  the  arbitrary  point  B.  The  statement  that  two  congruent 
transformations  I  and  II  are  interchangeable  signifies  (as  is  easily 
proved  from  the  above  definition)  that  the  congruent  transformation 
resulting  from  the  successive  application  of  I  and  II  is  identical 
with  that  which  results  when  these  two  transformations  are 

performed  in  the  reverse  order.  It  is  a  fact  that  one  translation 
(and,  as  we  shall  see,  only  one)  exists,  which  transforms  the 

1  arbitrary  point  A  into  the  arbitrary  point  B.  Moreover,  not  only 
is  it  a  fact  that,  if  T  denote  a  translation  and  A  and  B  any  two 

points,  there  is,  according  to  our  definition,  a  congruent  trans- 
formation, interchangeable  with  T,  which  transforms  A  into  J5, 

but  also  that  the  particular  translation  which  transforms  A  into 

B  has  the  required  property.  A  translation  is  therefore  inter- 
changeable with  all  other  translations,  and  a  congruent  trans- 

formation which  is  interchangeable  with  all  translations  is  also 
necessarily  a  translation.  From  this  it  follows  that  the  congruent 
transformation  which  results  from  successively  performing  two 

translations,  and  also  the  "  inverse "  of  a  translation  (i.e.  that 
transformation  which  exactly  reverses  or  neutralises  the  original 
translation)  is  itself  a  translation.  Translations  possess  the 

"group"  property.*  There  is  no  translation  which  transforms 
A  into  A  except  identity,  in  which  every  point  remains  un- 

disturbed. For  if  such  a  translation  were  to  transform  P  into  P', 
then,  according  to  definition,  there  must  be  a  congruent  trans- 

formation, which  transforms  A  into  P  and  simultaneously  A  into 

P';  P  and  P'  must  therefore  be  identical  points.  Hence  there 
cannot  be  two  different  translations  both  of  which  transform  A 

into  another  point  B. 
As  the  conception  of  translation  has  thus  been  defined  in- 

dependently of  that  of  rotation,  the  translational  view  of  the 
straight  Hue  and  plane  may  thus  be  formed  in  contrast  with  the 
above  view  based  on  rotations.  Let  a  be  a  translation  which 

('transfers  the  point  AQ  to  A.     This  same  translation  will  transfer *Note  2. 
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A-L  to  a  point  A%,  A2  to  Az,  etc.  Moreover,  through  it  A0  will 
be  derived  from  a  certain  point  A_v  A—^  from  A_2,  etc.  This 
does  not  yet  give  us  the  whole  straight  line,  but  only  a  series  of 

equi-distant  points  on  it.  Now,  if  n  is  a  natural  number  (integer), 

a  translation  -  exists  which,  when  repeated  n  times,  gives  a.      If, 
o 

then,  starting  from  the  point  AQ  we  use  -  in  the  same  way  as  we 

just  now  used  a  we  shall  obtain  an  array  of  points  on  the  straight 
line  under  construction,  which  will  be  n  times  as  dense. 

If  we  take  all  possible  whole  numbers  as  values  of  n  this  array 
will  become  denser  in  proportion  as  n  increases,  and  all  the  points 
which  we  obtain  finally  fuse  together  into  a  linear  continuum,  in 
which  they  become  embedded,  giving  up  their  individual  existences 
(this  description  is  founded  on  our  intuition  of  continuity).  We 
may  say  that  the  straight  line  is  derived  from  a  point  by  an  infinite 
repetition  of  the  same  infinitesimal  translation  and  its  inverse.  A 
plane,  however,  is  derived  by  translating  one  straight  line,  g,  along 
another,  h.  If  g  and  h  are  two  different  straight  lines  passing 
through  the  point  A0,  then  if  we  apply  to  g  all  the  translations 
which  transform  h  into  itself,  all  straight  lines  which  thus  result 
from  g  together  form  the  common  plane  of  g  and  h. 

W,B  succeed  in  introducing  logical  order  into  the  structure  of 
geometry  only  if  we  first  narrow  down  the  general  conception  of 
congruent  transformation  to  that  of  translation,  and  use  this  as  an 
axiomatic  foundation  (§§2  and  3).  By  doing  this,  however,  we 
arrive  at  a  geometry  of  translation  alone,  viz.  ajfine  geometry 
within  the  limits  of  which  the  general  conception  of  congruence 
has  later  to  be  re-introduced  (§  4).  Since  intuition  has  now 
furnished  us  writh  the  necessary  basis  we  shall  in  the  next 
paragraph  enter  into  the  region  of  deductive  mathematics. 

§  2.  The  Foundations  of  Affine  Geometry 

For  the  present  we  shall  use  the  term  vector  to  denote  a 
translation  or  a  displacement  a  in  the  space.  Later  we  shall  have 
occasion  to  attach  a  wider  meaning  to  it.  The  statement  that  the 

displacement  a  transfers  the  point  P  to  the  point  Q  ("  transforms  " 
P  into  Q)  may  also  be  expressed  by  saying  that  Q  is  the  end-point 
of  the  vector  a  whose  starting-point  is  at  P.  If  P  and  Q  are  any 
two  points  then  there  is  one.  and  only  one  displacement  a  which 
transfers  P  to  Q.  We  shall  call  it  the  vector  defined  by  P  and  Q, 
and  indicate  it  by  PQ. 
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The  translation  c  which  arises  through  two  successive  transla- 
tions a  and  b  is  called  the  sum  of  a  and  b,  i.e.  c  =  a  +  b.  The 

definition  of  summation  gives  us  :  (1)  the  meaning  of  multiplication 
(repetition)  and  of  the  division  of  a  vector  by  an  integer ;  (2)  the 
purport  of  the  operation  which  transforms  the  vector  a  into  its 

inverse  —  a;  (3)  the  meaning  of  the  nil-vector  o,  viz.  "identity,"' 
which  leaves  all  points  fixed,  i.e.  a  +  0  =  a  and  a  +  (-  a)  =  0. 

It  also  tells  us  what  is  conveyed  by  the  symbols  +  -  -  =  Aa,  in 

which  m  and  n  are  any  two  natural  numbers  (integers)  and  A 

denotes  the  fraction  +  — .  By  taking  account  of  the  postulate  of 

continuity  this  also  gives  us  the  significance  of  Aa,  when  A  is  any 
real  number.  The  following  system  of  axioms  may  be  set  up  for 

affine  geometry : — 
1.  Vectors 

Two  vectors  a  and  b  uniquely  determine  a  vector  a  +  b  as  their 
sum.  A  number  A  and  a  vector  a  uniquely  define  a  vector  Aa, 

which  is  "A  times  a"  (multiplication).  These  operations  are 
subject  to  the  following  laws  : — 

(a)  Addition — 

(1)  a  +  b  =  b  +  a  (Commutative  Law). 
(2)  (a  +  b)  +  c  =  a  +  (b  +  c)  (Associative  Law). 
(3)  If  a  and  c  are  any  two  vectors,  then  there  is  one  and  only 

one  value  of  x  for  which  the  equation  a  +  X  =  C   holds.     It  is 
called  the  difference  between  c  and  a  and  signifies  c  —  a  (Possibility 
of  Subtraction). 

(/?)  Multiplication — 

(1)  (X  +  /A)  a  =  (Xa)  +  (/Aa)  (First  Distributive  Law). 
(2)  A(//,a)  =  (A/*) a  (Associative  Law). 
(3)  1  a  =  a. 
(4)  A(a  +  b)  =  (Aa)  +  (Ab)  (Second  Distributive  Law). 

For  rational  multipliers  A,  /A,  the  laws  (J3)  follow  from  the 
axioms  of  addition  if  multiplication  by  such  factors  be  defined 
from  addition.  In  accordance  with  the  principle  of  continuity  we 

shall  also  make  use  of  them  for  any  arbitrary  real  numbers,  but  we" 
purposely  formulate  them  as  separate  axioms  because  they  cannot 
be  derived  in  the  general  form  from  the  axioms  of  addition  by 
logical  reasoning  alone.  By  refraining  from  reducing  multipli- 

cation to  addition  we  are  enabled  through  these  axioms  to  banish 
continuity,  which  is  so  difficult  to  fix  precisely,  from  the  logical 

2 
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structure  of  geometry.  The  law  (/?)  4  comprises  the  theorems  of 
similarity. 

(y)  The  "  Axiom  of  Dimensionality,"  which  occupies  the  next 
place  in  the  system,  will  be  formulated  later. 

2.  Points  and  Vectors 

1.  Every  pair  of  points  A  and  B  determines  a  vector  a ;   ex- 

pressed symbolically  AB  =  a.     If  A  is  any  point  and  a  any  vector, 

— > 

there  
is  one  and  only  

cne  point  
B  for  which  

AB  =  a. 

2.  If  AB  =  a,  BC  =  b,  then  AC  =  a  +  b. 
In  these  axioms  two  fundamental  categories  of  objects  occur, 

viz.  points  and  vectors  ;  and  there  are  three  fundamental  relations, 

those  expressed  symbolically  by — 

a  +  b  =  c  b  =  Aa  AB  =  a        .     (1) 

All  conceptions  which  may  be  defined  from  (1)  by  logical  reasoning 
alone  belong  to  affine  geometry.  The  doctrine  of  affine  geometry 
is  composed  of  all  theorems  which  can  be  deduced  logically  from 
the  axioms  (1),  and  it  can  thus  be  erected  deductively  on  the 
axiomatic  basis  (1)  and  (2).  The  axioms  are  not  all  logically 
independent  of  one  another  for  the  axioms  of  addition  for  vectors 
(la,  2  and  3)  follow  from  those  (II)  which  govern  the  relations 
between  points  and  vectors.  It  was  our  aim,  however,  to  make 
the  vector-axioms  /  suffice  in  themselves,  so  that  we  should  be 
able  to  deduce  from  them  all  those  facts  which  involve  vectors 

exclusively  (and  not  the  relations  between  vectors  and  points). 
From  the  axioms  of  addition  la  we  may  conclude  that  a  definite 

vector  o  exists  which,  for  every  vector  a,  satisfies  the  equation 

a  +  o  =  a.  From  the  axioms  II  it  further  follows  that  AB  is 

equal  to  this  vector  o  when,  and  only  when,  the  points  A  and  B 
coincide. 

If  0  is  a  point  and  e  is  a  vector  differing  from  o,  the  end-points 
of  all  vectors  OP  which  have  the  form  £e  (£  being  an  arbitrary  real 

number)  form  a  straight  line.  This  explanation  gives  the  trans- 
lational  or  affine  view  of  straight  lines  the  form  of  an  exact  definition 
which  rests  solely  upon  the  fundamental  conceptions  involved  in 
the  system  of  affine  axioms.  Those  points  P  for  which  the  abscissa 
£  is  positive  form  one-half  of  the  straight  line  through  0,  those  for 
which  £  is  negative  form  the  other  half.  If  we  write  ex  in  place  of 
6,  and  if  e2  is  another  vector,  which  is  not  of  the  form  £e15  then  the 

end-points  P  of  all  vectors  OP  which  have  the  form  ̂   +  £,62 
form  a  plane  E  (in  this  way  the  plane  is  derived  affinely  by  sliding 
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one  straight  line  along  another).  If  we  now  displace  the  plane  E 
along  a  straight  line  passing  through  0  but  not  lying  on  E,  the 
plane  passes  through  all  space.  Accordingly,  if  e3  is  a  vector  not 

expressible  in  the  form  £j8  +  £2e»  ̂ en  every  vector  can  be  repre- 
sented in  one  and  only  one  way  as  a  linear  combination  of  61,  62, 

and  e3,  viz. 
£161  +  £2«s  +  £363- 

We  thus  arrive  at  the  following  set  of  definitions  :  — 
A  finite  number  of  vectors  81,  82,  •  •  •  6/t  is  said  to  be  linearly 

independent  if 

only  vanishes  when  all  the  coefficients  £  vanish  simultaneously. 
With  this  assumption  all  vectors  of  the  form  (2)  together  constitute 
a  so-called  h-dimensional  linear  vector-manifold  (or  simply 
vector-field)  ;  in  this  case  it  is  the  one  mapped  out  by  the  vectors 
81,  82>  .  .  .  64.  An  /i-dimensional  linear  vector-manifold  M  can 
be  characterised  without  referring  to  its  particular  base  e,  as 
follows  :  — 

(1)  The   two    fundamental    operations,    viz.    addition    of    two 
vectors  and  multiplication  of  a  vector  by  a  number  do  not  transcend 
the  manifold,  i.e.  the  sum  of  two  vectors  belonging  to  M  as  also 
the  product  of  such  a  vector  and  any  real  number  also  lie  in  M. 

(2)  There  are  h  linearly  independent  vectors  in  M,  but  every 
h  +  1  are  linearly  dependent  on  one  another. 

From  the  property  (2)  (which  may  be  deduced  from  our  original 
definition  with  the  help  of  elementary  results  of  linear  equations) 
it  follows  that  7i,  the  dimensional  number,  is  as  such  characteristic 
of  the  manifold,  and  is  not  dependent  on  the  special  vector  base  by 
which  we  map  it  out.  The  dimensional  axiom  which  was  omitted 
in  the  above  table  of  axioms  may  now  be  formulated. 

There  are  n  linearly  independent  vectors,  but  every  n  +  1 
are  linearly  dependent  on  one  another, 
or  :  The  vectors  constitute  an  w-dimensional  linear  manifold. 

If  n  =  3  we  have  affme  geometry  of  space,  if  TO  =  2  plane 
geometry,  if  TO  =  1  geometry  of  the  straight  line.  In  the  deductive 
treatment  of  geometry  it  will,  however,  be  expedient  to  leave  the 

value  of  n  undetermined,  and  to  develop  an  "  ̂ -dimensional  geom- 

etry "  in  which  that  of  the  straight  line,  of  the  plane,  and  of  space 
are  included  as  special  cases.  For  we  see  (at  present  for  affine 
geometry,  later  on  for  all  geometry)  that  there  is  nothing  in  the 
mathematical  structure  of  space  to  prevent  us  from  exceeding  the 
dimensional  number  3.  In  the  light  of  the  mathematical  uni- 

formity of  space  as  expressed  in  our  axioms,  its  special  dimensional 
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number  3  appears  to  be  accidental,  so  that  a  systematic  deductive 
theory  cannot  be  restricted  by  it.  We  shall  revert  to  the  idea  of 
an  n-dimensional  geometry,  obtained  in  this  way,  in  the  next  para- 

graph.* We  must  first  complete  the  definitions  outlined. 
If  0  is  an  arbitrary  point,  then  the  sum-total  of  all  the  end- 

points  P  of  vectors,  the  origin  of  which  is  at  0  and  which  belong 
to  an  7&-dimensional  vector  field  M  as  represented  by  (2),  occupy 
fully  an  h-dimensional  point-configuration.  We  may,  as  before, 
say  that  it  is  mapped  oat  by  the  vectors  ep  e2,  .  .  .  e^,  which 
start  from  0.  The  one-dimensional  configuration  of  this  type  is 
called  a  straight  line,  the  two-dimensional  a  plane.  The  point  0 

does  not  play  a  unique  part  in  this  linear  configuration.  If  0'  is 

any  other  point  of  it,  then  O'P  traverses  the  same  vector  manifold 
M  if  all  possible  points  of  the  linear  aggregate  are  substituted  for 
P  in  turn. 

If  we  measure  off  all  vectors  of  the  manifold  M  firstly  from  the 

point  0  and  then  from  any  other  arbitrary  point  0'  the  two  re- 
sulting linear  point  aggregates  are  said  to  be  parallel  to  one  an- 
other. The  definition  of  parallel  planes  and  parallel  straight  lines 

is  contained  in  this.  That  part  of  the  /^-dimensional  linear  as- 
semblage which  results  when  we  measure  off  all  the  vectors  (2) 

from  0,  subject  to  the  limitation 

will  be  called  the  Ti-dimensional  parallelepiped  which  has  its 
origin  at  0  and  is  mapped  out  by  the  vectors  ex,  82,  .  .  .  8A.  (The 
one-dimensional  parallelepiped  is  called  distaiice,  the  two-dimen- 

sional one  is  called  parallelogram.  None  of  these  'conceptions 
is  limited  to  the  case  n  =  3,  which  is  presented  in  ordinary  ex- 

perience.) ,  -^ 
A  point  0  in  conjunction  with  n  linear  independent  vectors 

e1?  e2,  .  .  .  ew  will  be  called  a  co-ordinate  system  (c).  Every  vector 
X  can  be  presented  in  one  and  only  one  way  in  the  form 

x  =  ̂ 81  +  £262  +  .  .  .  +  ̂ en     .  .     (3) 

The  numbers  £,  will  be  called  its  components  in  the  co-ordinate 

system  (C).  If  P  is  any  arbitrary  point  and  if  OP  is  equal  to  the 
vector  (3),  then  the  &  are  called  the  co-ordinates  of  P.  All  co- 

ordinate systems  are  equivalent  in  amne  geometry.  There  is  no 
property  of  this  geometry  which  distinguishes  one  from  another.  If 

0'  ;  e'lf  e'2  .  .  .  e'w 
denote  a  second  co-ordinate  system,  equations *Note  3. 
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*tJ* 

*i  =  2 a*< e' /t=l 

will  hold  in  which  the  aki  form  a  number  system  which  must  have 
a  non-vanishing  determinant  (since  the  e\  are  linearly  independent). 
If  £  are  the  components  of  a  vector  x  in  the  first  co-ordinate 
system  and  gt  the  components  of  the  same  vector  in  the  second 
co-ordinate  system,  then  the  relation 

**'»  ....     (5) 
*=i 

holds  ;  this  is  easily  shown  by  substituting  the  expressions  (4)  in 
the  equation 

i  i 

Let  alt  a2,  .  .  .  an  be  the  co-ordinates  of  0'  in  the  first  co-ordinate 
system.  If  xt  are  the  co-ordinates  of  any  arbitrary  point  in  the 

first  system  and  x't  its  co-ordinates  in  the  second,  the  equations 

Oft  #',  +  a,        .  .       (6) 
*=1 

hold.     For  xt  -  at  are  the  components  of 

OP  =  OP  -  00' 

—  > 

in  the  first  system  ;  x\  are  the  components  of  O'P  in  the  second. 
Formulae  (6)  which  give  the  transformation  for  the  co-ordinates  are 
thus  linear.  Those  (viz.  5)  which  transform  the  vector  components 
are  easily  derived  from  them  by  cancelling  the  terms  at  which  do 

not  involve  the  variables.  An  analytical  treatment  of  affine  geom- 

etry is  possible,  in  which  every  vector  is  represented  by  its  com- 

ponents and  every  point  by  its  co-ordinates.  The  geometrical 
relations  between  points  and  vectors  then  express  themselves  as 

relations  between  their  components  and  co-ordinates  respectively 
of  such  a  kind  that  they  are  not  destroyed  by  linear  arbitrary 
transformations. 

Formula  (5)  and  (6)  may  also  be  interpreted  in  another  way. 

They  may  be  regarded  as  a  mode  of  representing  an  affine  trans- 

formation in  a  definite  co-ordinate  system.  A  transformation, 

i.e.  a  rule  which  assigns  a  vector  x'  to  every  vector  x  and  a  point 

P'  to  every  point  P,  is  called  linear  or  affine  if  the  fundamental 
affine  relations  (1)  are  not  disturbed  by  the  transformation  :  so 
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that  if  the  relations  (1)  hold  for  the  original  points  and  vectors 
they  also  hold  for  the  transformed  points  and  vectors : 

a'  +  b'  =  c'  b'  =  X  a'  A'B'  =  a'  -  b' 
and  if  in  addition  no  vector  differing  from  o  transforms  into  the 
vector  o.  Expressed  in  other  words  this  means  that  two  points 
are  transformed  into  one  and  the  same  point  only  if  they  are 
themselves  identical.  Two  figures  which  are  formed  from  one 
another  by  an  affine  transformation  are  said  to  be  affine.  From 
the  point  of  view  of  affine  geometry  they  are  identical.  There  can 
be  no  affine  property  possessed  by  the  one  which  is  not  possessed 
by  the  other.  The  conception  of  linear  transformation  thus  plays 
the  same  part  in  affine  geometry  as  congruence  plays  in  general 

geometry;  hence  its  fundamental  importance.  In  affine  trans- 
formations linearly  independent  vectors  become  transformed  into 

linearly  independent  vectors  again ;  likewise  an  /t-dimensional 
linear  configuration  into  a  like  configuration ;  parallels  into  par- 

allels ;  a  co-ordinate  system  0  elt  62,  .  .  .  6,,  into  a  new  co- 

ordinate system  0'  \  e\,  e'2>  •  •  •  6'n. 
Let  the  numbers  aki,  a,  have  the  same  meaning  as  above.  The 

vector  (3)  is  changed  by  the  affine  transformation  into 

If  we  substitute  in  this  the  expressions  for  e'f  and  use  the  original 
co-ordinate  system  0  \  Qv  62,  .  .  .  6n  to  picture  the  affine  trans- 

formation, then,  interpreting  &  as  the  components  of  any  vector 

and  £'t  as  the  components  of  its  transformed  vector, 

A   (5') 

If  P  becomes  P',  the  vector  OP  becomes  O'P',  and  it  follows  from 
this  that  if  xi  are  the  co-ordinates  of  P  and  x \  those  of  P',  then 

o?Y- 

In  analytical  geometry  it  is  usual  to  characterise  linear  con- 
figurations by  linear  equations  connecting  the  co-ordinates  of  the 

"current"  point  (variable).  This  will  be  discussed  in  detail  in  the 
next  paragraph.  Here  we  shall  just  add  the  fundamental  concep- 

tion of  "  linear  forms  "  upon  which  this  discussion  is  founded.  A 
function  L(JL),  the  argument  x  of  which  assumes  the  value  of  every 
vector  in  turn,  these  values  being  real  numbers  only,  is  called  a 
linear  form,  if  it  has  the  functional  properties 

i(a  +  b)  =  L(a)  +  L(b) ;         £(Aa)  =  A  .  £(a). 
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In  a  co-ordinate  system  ev  62,  .  •  •  6,,  each  of  the  n  vector-com- 
ponents £t  of  x  is  such  a  linear  form.  If  x  is  denned  by  (3),  then 

any  arbitrary  linear  form  L  satisfies 

Thus  if  we  put  L(ei)  =  a,[,  the  linear  form,  expressed  in  terms  of 
components,  appears  in  the  form 

#1^1  +  ̂ £2  +  ••'•  +  an£n  (^e  a/s  are  its  constant  co-  efficients). 
Conversely,  every  expression  of  this  type  gives  a  linear  form.  A 
number  of  linear  forms  Llt  L/%,  L3  .  .  .  Lh  are  linearly  independent, 
if  no  constants  \i  exist,  for  which  the  identity-equation  holds  : 

V^x)  +  V*i(x)  +  .  .  .  A;t£,t(x)  =  0 
except   \i  =  0.     n  +  1   linear   forms   are   always   linearly   inter- 
dependent. 

§  3.  The  Conception  of  n-dimensional  Geometry.     Linear 
Algebra.    Quadratic  Forms 

To  recognise  the  perfect  mathematical  harmony  underlying  the 
laws  of  space,  we  must  discard  the  particular  dimensional  number 

n  =  3.  Not  only  in  geometry,  but  to  a  still  more  astonishing 
degree  in  physics,  has  it  become  more  and  more  evident  that  as 
soon  as  we  have  succeeded  in  unravelling  fully  the  natural  laws 

which  govern  reality,  we  find  them  to  be  expressible  by  mathe- 
matical relations  of  surpassing  simplicity  and  architectonic 

perfection.  It  seems  to  me  to  be  one  of  the  chief  objects  of 
mathematical  instruction  to  develop  the  faculty  of  perceiving  this 
simplicity  and  harmony,  which  we  cannot  fail  to  observe  in  the 

theoretical  physics  of  the  present  day.  It  gives  us  deep  satis- 
faction in  our  quest  for  knowledge.  Analytical  geometry,  presented 

in  a  compressed  form  such  as  that  I  have  used  above  in  exposing 
its  principles,  conveys  an  idea,  even  if  inadequate,  of  this  perfection 
of  form.  But  not  only  for  this  purpose  must  we  go  beyond  the 
dimensional  number  n  =  3,  but  also  because  we  shall  later  require 
four-dimensional  geometry  for  concrete  physical  problems  such  as 
are  introduced  by  the  theory  of  relativity,  in  which  Time  becomes 
added  to  Space  in  a  four-dimensional  geometry. 

We  are  by  no  means  obliged  to  seek  illumination  from  the 

mystic  doctrines  of  spiritists  to  obtain  a  clearer  vision  of  multi- 
dimensional geometry.  Let  us  consider,  for  instance,  a  homo- 

geneous mixture  of  the  four  gases,  hydrogen,  oxygen,  nitrogen,  and 
carbon  dioxide.  An  arbitrary  quantum  of  such  a  mixture  is  speci- 

fied if  we  know  how  many  grams  of  each  gas  are  contained 
in  it.  If  we  call  each  such  quantum  a  vector  (we  may  bestow 
names  at  will)  and  if  we  interpret  addition  as  implying  the 
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union  of  two  quanta  of  the  gases  in  the  ordinary  sense,  then 
all  the  axioms  1  of  our  system  referring  to  vectors  are  fulfilled 

for  the  dimensional  number  n  =  4,  provided  we  agree  also  to 

talk  of  negative  quanta  of  gas.  One  gram  of  pure  hydrogen,  one 

gram  of  oxygen,  one  gram  of  nitrogen,  and  one  gram  of  carbon  di- 

oxide are  four  "  vectors,"  independent  of  one  another  from  which 
all  other  gas  quanta  may  be  built  up  linearly  ;  they  thus  form  a  co- 

ordinate system.  Let  us  take  another  example.  We  have  five 

parallel  horizontal  bars  upon  each  of  which  a  small  bead  slides. 

A  definite  condition  of  this  primitive  "  adding-machine  "  is  defined 
if  the  position  of  each  of  the  five  beads  upon  its  respective  rod  is 

known.  Let  us  call  such  a  condition  a  "  point  "  and  every  simul- 

taneous displacement  of  the  five  beads  a  "  vector,"  then  all  of  our 
axioms  are  satisfied  for  the  dimensional  number  n  =  5.  From 

this  it  is  evident  that  constructions  of  various  types  may  be 

evolved  which,  by  an  appropriate  disposal  of  names,  satisfy  our 
axioms.  Infinitely  more  important  than  these  somewhat  frivolous 

examples  is  the  following  one  which  shows  that  our  axioms 

characterise  the  basis  of  our  operations  in  the  theory  of 

linear  equations.  If  o7-  and  a  are  given  numbers, 

a^  +  a2iC2  +    .    .    .   a>tXn  =  0       .  .  .      (7) 

is  usually  called  a  homogeneous  linear  equation  in  the  unknowns 
Xi,  whereas 

a^j  +  a2Z2  +    .    .    .   OnXn  =  a       .  .  .      (8) 

is  called  a  non-homogeneous  linear  equation.  In  treating  the  theory 
of  linear  homogeneous  equations,  it  is  found  useful  to  have  a  short 
name  for  the  system  of  values  of  the  variables  xi ;  we  shall  call  it 

"  vector  ".  In  carrying  out  calculations  with  these  vectors,  we 
shall  define  the  sum  of  the  two  vectors 

(oj,  «2>  .  .  .  O  and  (bv  b2,  .  .  .  bH) 

to  be  the  vector     (ax  +  bv  a2  +  b2,  .  .  .  an  +  bn) 
and  X  times  the  first  vector  to  be 

(Aflj,  Xa2,  .  .  .  \an). 

The  axioms  I  for  vectors  are  then  fulfilled  for  the  dimensional  num- 
ber n. 

ex  =  (1,  0,  0,  .  .  .  0), 
e2  -  (0,  1,  0,  ...  0), 

e»  =  (0,  0,  0  ...  1) 

form  a  system  of  independent  vectors.  The  components  of  any 

arbitrary  vector  (xi}  x2,  .  .  .  xn)  in  this  co-ordinate  system  are  the 
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numbers  xt  themselves.  The  fundamental  theorem  in  the  solution 

of  linear  homogeneous  equations  may  now  be  stated  thus  : — 

if^to.-Mx), . . .  .MX) 
are  h  linearly  independent  linear  forms,  the  solutions  x  of  the 
equations 

L,  (x)  =  0,  L,  (x)  =  0,  .  .  .  Lh  (x)  =  0 
form  an  (n  —  /&) -dimensional  linear  vector  manifold. 

In  the  theory  of  non-homogeneous  linear  equations  we  shall 
find  it  advantageous  to  denote  a  system  of  values  of  the  vari- 

ables xt  a  "  point  ".  If  Xi  and  x\  are  two  systems  which  are  solu- 
tions of  equation  (8),  their  difference 

X  j    —    X^    X  2    —    #2>     •     •     '     %  n    ~    ̂ n 

is  a  solution  of  the  corresponding  homogeneous  equation  (7).  We 
shall,  therefore,  call  this  difference  of  two  systems  of  values  of  the 

variables  xi  a  "  vector,"  viz.  the  "  vector "  defined  by  the  two 
"  points  "  (xi)  and  (x'i) ;  we  make  the  above  conventions  for  the 
addition  and  multiplication  of  these  vectors.  All  the  axioms  then 

hold.  In  the  particular  co-ordinate  system  composed  of  the  vec- 

tors 6;  given  above,  and  having  the  "  origin  0  =  (0,  0,  .  .  .  0), 
the  co-ordinates  of  a  point  (#,;)  are  the  numbers  o?»  themselves. 
The  fundamental  theorem  concerning  linear  equations  is  :  those 

points  which  satisfy  h  independent  linear  equations,  form  a  point- 
configuration  of  n  —  h  dimensions. 

In  this  way  we  should  not  only  have  arrived  quite  naturally  at 
our  axioms  without  the  help  of  geometry  by  using  the  theory  of  linear 
equations,  but  we  should  also  have  reached  the  wider  conceptions 
which  we  have  linked  up  with  them.  In  some  ways,  indeed,  it 
would  appear  expedient  (as  is  shown  by  the  above  formulat.ion  of 
the  theorem  concerning  homogeneous  equations)  to  build  up  the 
theory  of  linear  equations  upon  an  axiomatic  basis  by  starting  from 
the  axioms  which  have  here  been  derived  from  geometry.  A  theory 
developed  along  these  lines  would  then  hold  for  any  domain  of 
operations,  for  which  these  axioms  are  fulfilled,  and  not  only  for  a 

"  system  of  values  in  n  variables  ".  It  is  easy  to  pass  from  such 
a  theory  which  is  more  conceptual,  to  the  usual  one  of  a  more 
formal  character  which  operates  from  the  outset  with  numbers  Xi  by 
taking  a  definite  co-ordinate  system  as  a  basis,  and  then  using  in 
place  of  vectors  and  points  their  components  and  co-ordinates 
respectively. 

It  is  evident  from  these  arguments  that  the  whole  of  affine 
geometry  merely  teaches  us  that  space  is  a  region  of  three  di- 

mensions in  linear  quantities  (ths  meaning  of  this  statement 
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will  be  sufficiently  clear  without  further  explanation).  All  the 
separate  facts  of  intuition  which  were  mentioned  in  §  1  are  simply 
disguised  forms  of  this  one  truth.  Now,  if  on  the  one  hand  it  is  very 
satisfactory  to  be  able  to  give  a  common  ground  in  the  theory  of 
knowledge  for  the  many  varieties  of  statements  concerning  space, 
spatial  configurations,  and  spatial  relations  which,  taken  together, 
constitute  geometry,  it  must  on  the  other  hand  be  emphasised  that 
this  demonstrates  very  clearly  with  what  little  right  mathematics 
may  claim  to  expose  the  intuitional  nature  of  space.  Geometry 
contains  no  trace  of  that  which  makes  the  space  of  intuition  what  it 
is  in  virtue  of  its  own  entirely  distinctive  qualities  which  are  not 

shared  by  "states  of  addition-machines"  and  "gas-mixtures"  and 
"  systems  of  solutions  of  linear  equations ".  It  is  left  to  meta- 

physics to  make  this  "  comprehensible "  or  indeed  to  show  why 
and  in  what  sense  it  is  incomprehensible.  We  as  mathematicians 
have  reason  to  be  proud  of  the  wonderful  insight  into  the  knowledge 
of  space  which  we  gain,  but,  at  the  same  time,  we  must  recognise 
with  humility  that  our  conceptual  theories  enable  us  to  grasp  only 
one  aspect  of  the  nature  of  space,  that  which,  moreover,  is  most 
formal  and  superficial. 

To  complete  the  transition  from  affine  geometry  to  complete 
metrical  geometry  we  yet  require  several  conceptions  and  facts 
which  occur  in  linear  algebra  and  which  refer  to  bilinear  and 
quadratic  forms.  A  function  Q(xy)  of  two  arbitrary  vectors  x 
and  y  is  called  a  bilinear  form  if  it  is  a  linear  form  in  x  as  well  as 

in  y.  If  in  a  certain  co-ordinate  system  £  are  the  components  of 

X,  -Y)i  those  of  y,  then  an  equation 

Q(xy)  = 
<.*«! 

with  constant  co-efficients  a&  holds.  We  shall  call  the  form  "  non^ 

degenerate"  if  it  vanishes  identically  in  y  only  when  the  vector 
x  =  0.  This  happens  when,  and  only  when,  the  homogeneous 
equations 

n 
'V  £.           s\ 

1  =  1 

have  a  single  solution  £f  =  0  or  when  the  determinant  |  a^-  |   =*=  0. 
From  the  above  explanation  it  follows  that  this  condition,  viz.  the 

non-vanishing  of  the  determinant,  persists  for  arbitrary  linear  trans- 
formations.    The  bilinear  form  is  called  symmetrical  if  Q(yx)  = 

Q(xy).     This  manifests  itself  in  the  co-efficients  by  the  symmetrical 
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property    aki  =  a,*.     Every   bilinear   form    Q(xy)   gives   rise  to   a 
quadratic  form  which  depends  on  only  one  variable  vector  x 

71 

Q(X)  =  Q(XX)  =  ]>  a,, 

In  this  way  every  quadratic  form  is  derived  in  general  from  one, 
and  only  one,  symmetrical  bilinear  form.  The  quadratic  form 
Q(x.)  which  we  have  just  formed  may  also  be  produced  from  the 
symmetrical  form 

i  Wxy)  +  <3(y*)l 
by  identifying  x  with  y. 

To  prove  that  one  and  the  same  quadratic  form  cannot  arise 
from  two  different  symmetrical  bilinear  forms,  one  need  merely 
show  that  a  symmetrical  bilinear  form  Q(xy)  which  satisfies  the 
equation  Q(xx)  identically  for  x,  vanishes  identically.  This, 
however,  immediately  results  from  the  relation  which  holds  for 
every  symmetrical  bilinear  form 

0(x  +  y,  x  +  y)  =  g(xx)  -t-  2  Q(xy)  +  Q(yy)  .  (9) 
If  Q(x)  denotes  any  arbitrary  quadratic  form  then  Q(xy)  is  always 
to  signify  the  symmetrical  bilinear  form  from  which  Q(x)  is  derived 
(to  avoid  mentioning  this  in  each  particular  case).  When  we  say 
that  a  quadratic  form  is  non-degenerate  we  wish  to  convey  that  the 
above  symmetrical  bilinear  form  is  non-degenerate.  A  quadratic 
form  is  positive  definite  if  it  satisfies  the  inequality  Q(x)  >  0  for 

every  value  of  the  vector  x  --^  0-  Such  a  form  is  certainly  non- 
degenerate,  for  no  value  of  the  vector  x  4  0  can  make  Q(xy)  vanish 
identically  in  y,  since  it  gives  a  positive  result  for  y  =  x. 

§  4.  The  Foundations  of  Metrical  Geometry 

To  bring  about  the  transition  from  affine  to  metrical  geometry 
we  must  once  more  draw  from  the  fountain  of  intuition.  From  it 

we  obtain  for  three-dimensional  space  the  definition  of  the  scalar 
product  of  two  vectors  a  and  b.  After  selecting  a  definite  vector 
as  a  unit  we  measure  out  the  length  of  a  and  the  length  (negative 
or  positive  as  the  case  may  be)  of  the  perpendicular  projection  of 
b  upon  a  and  multiply  these  two  numbers  with  one  another.  This 
means  that  the  lengths  of  not  only  parallel  straight  lines  may  be 
compared  with  one  another  (as  in  affine  geometry)  but  also  such 
as  are  arbitrarily  inclined  to  one  another.  The  following  rules 
hold  for  scalar  products  : — 

Aa .  b  =  X(a  .  b)        (a  +  a') .  b  =  (a  .  b)  +  (a' .  b) 
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and  analogous  expressions  with  reference  to  the  second  factor  ;  in 

addition,  the  commutative  law  a  .  b  =  b  .  a.  The  scalar  product 

of  a  with  a  itself,  viz.  a  .  a  =  a2,  is  always  positive  except  when 
a  =  0,  and  is  equal  to  the  square  of  the  length  of  a.  These  laws 
signify  that  the  scalar  product  of  two  arbitrary  vectors,  i.e.  x  .  y  is 
a  symmetrical  bilinear  form,  and  that  the  quadratic  form  which 
arises  from  it  is  positive  definite.  We  thus  see  that  not  the  length, 

but  the  square  of  the  length  of  a  vector  depends  in  a  simple  "rational 
way  on  the  vector  itself  ;  it  is  a  quadratic  form.  This  is  the  real 

content  of  Pythagoras'  Theorem.  The  scalar  product  is  nothing 
more  than  the  symmetrical  bilinear  form  from  which  this  quadratic 

form  has  been  derived.  We  accordingly  formulate  the  following  :  — 
METBICAL  AXIOM  :  If  a  unit  vector  e,  differing  from  zero,  be 

chosen,  every  two  vectors  x  and  y  uniquely  determine  a  number 

(x  .  y)  =  Q(xy)  ;  the  latter,  being  dependent  on  the  two  vectors,  is  a 
symmetrical  bilinear  form.  The  quadratic  form  (x  .  x)  =  $(x)  which 
arises  from  it  is  positive  definite.  Q(o)  =  1. 

We  shall  call  Q  the  metrical  groundform.  We  then  have 
that  an  affine  transformation  ivhich,  in  general,  transforms  the  vector 

X  into  x'  is  a  congruent  one  if  it  leaves  the  metrical  groundform 
unchanged  :—  Q(z')  =  Q(j)  ....  (10) 
Two  geometrical  figures  which  can  be  transformed  into  one  another 

by  a  congruent  transformation  are  congruent*  The  conception  of 
congruence  is  defined  in  our  axiomatic  scheme  by  these  state- 

ments. If  we  have  a  domain  of  operation  in  which  the  axioms 

of  §  2  are  fulfilled,  we  can  choose  any  arbitrary  positive  definite 

quadratic  form  in  it,  "  promote  "  it  to  the  position  of  a  funda- 
mental metrical  form,  and,  using  it  as  a  basis,  define  the  conception 

of  congruence  as  was  just  now  done.  This  form  then  endows  the 

afnne  space  with  metrical  properties  and  Euclidean  geometry  in 
its  entirety  now  holds  for  it.  The  formulation  at  which  we  have 

arrived  is  not  limited  to  any  special  dimensional  number. 

It  follows  from  (10),  in  virtue  of  relation  (9)  of  §  3,  that  for  a 
congruent  transformation  the  more  general  relation 

<2(x'y')  =  g(xy)  holds. 
Since  the  conception  of  congruence  is  defined  by  the  metrical 

groundform  it  is  not  surprising  that  the  latter  enters  into  all 

formulae  which  concern  the  measure  of  geometrical  quantities. 

Two  vectors  a  and  a'  are  congruent  if,  and  only  if, 

*  We  take  no  notice  here  of  the  difference  between  direct  congruence  and 
mirror  congruence  (lateral  inversion).  It  is  present  even  in  affine  transfor- 

mations, in  M-dimensional  space  as  well  as  3-  dimensional  space, 
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We  could  accordingly  introduce  Q(&)  as  a  measure  of  the  vector  a. 
Instead  of  doing  this,  however,  we  shall  use  the  positive  square 
root  of  g(a)  for  this  purpose  and  call  it  the  length  of  the  vector  a 
(this  we  shall  adopt  as  our  definition)  so  that  the  further  condition 
is  fulfilled  that  the  length  of  the  sum  of  two  parallel  vectors  point- 

ing in  the  same  direction  is  equal  to  the  sum  of  the  lengths  of  the 

two  single  vectors.  If  a,  b  as  well  as  a',  b'  are  two  pairs  of 
vectors,  all  of  length  unity,  then  the  figure  formed  by  the  first  two 
is  congruent  with  that  formed  by  the  second  pair,  if,  and  only  if, 

g(a,  b)  =  g(a',  b'). 
In  this  case  again  we  do  not  introduce  the  number  g(a,  b)  itself 

as  a  measure  of  the  angle,  but  a  number  0  which  is  related  to  it  by 
the  transcendental  function  cosine  thus  — 

cos  6  =  g(a,  b) 

so  as  to  be  in  agreement  with  the  theorem  that  the  numerical 
measure  of  an  angle  composed  of  two  angles  in  the  same  plane  is 
the  sum  of  the  numerical  values  of  these  angles.  The  angle  which 
is  formed  from  any  two  arbitrary  vectors  a  and  b  (  4=  0)  is  then 
calculated  from 

cos*--    _  (11) 
)  .  g(bb) 

In  particular,  two  vectors  a,  b  are  said  to  be  perpendicular  to  one 
another  if  g(ab)  =  0.  This  reminder  of  the  simplest  metrical 
formula  of  analytical  geometry  will  suffice. 

The  angle  defined  by  (11)  which  has  been  formed  by  two  vectors 
is  shown  always  to  be  real  by  the  inequality 

Q2(ab)  ̂   g(a)  .  g(b)  ....  (12) 
which  holds  for  every  quadratic  form  Q  which  is  >  0  for  all  values 

of  the  argument.  It  is  most  simply  deduced  by  forming 

Since  this  quadratic  form  in  A  and  /x,  cannot  assume  both  positive 

and  negative  values  its  "discriminant"  Q2(ab)  -  (Q)(a)  .  (Q)(b) cannot  be  positive. 
A  number,  n,  of  independent  vectors  form  a  Cartesian  co- 

ordinate system  if  for  every  vector 

g(x)  =  x*  +  x./  +  .  .  .  x*  ".." .         .         .     (13) holds,  i.e.  if 

g(e*,  ej  = 
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From  the  standpoint  of  metrical  geometry  all  co-ordinate 

systems  are  of  equal  value.  A  proof  (appealing  directly  to  our 

geometrical  sense)  of  the  theorem  that  such  systems  exist  will 

now  be  given  not  only  for  a  "  definite  "  but  also  for  any  arbitrary 
non-degenerate  quadratic  form,  inasmuch  as  we  shall  find  later  in 

the  theory  of  relativity  that  it  is  just  the  "  indefinite  "  case  that 

plays  the  decisive  role.  We  enunciate  as  follows  :  — 

Corresponding  to  every  non-degenerate  quadratic  form  Q  a  co- 
ordinate system  e;  can  be  introduced  such  that 

e^2  +  €2a;22  +    .  .  .   +  €Ba;,2         (ef  =  ±  1)  (14) 

Proof.  —  Let  us  choose  any  arbitrary  vector  ex  for  which  Q(eJ  = 
=j=  0.  By  multiplying  it  by  an  appropriate  positive  constant  we 
can  arrange  so  that  Q(*i)  =  +  1.  We  shall  call  a  vector  x  for  which 

C^x)  =  0  orthogonal  to  e^  If  x*  is  a  vector  which  is  ortho- 
gonal to  Qv  and  if  xl  is  any  arbitrary  number,  then 

x  =  xfa  +  x*  .         .         .     (15) 

satisfies  Pythagoras'  Theorem  :  — 

2s1Q(e1x*)  +  Q(x*)  =  ±  x*  +  Q(x*). 

The  vectors  orthogonal  to  6j  constitute  an  (n  -  1)  -dimensional 
linear  manifold,  in  which  Q(x)  is  a  non-degenerate  quadratic  form. 
Since  our  theorem  is  self-evident  for  the  dimensional  number  n  =  1, 

we  may  assume  that  it  holds  for  n  —  1  dimensions  (proof  by 

successive  induction  from  the  case  n  —  1  to  that  of  n).  According 

to  this,  n  -  1  vectors  e3,  .  .  .  e«,  orthogonal  to  Q1  exist,  such  that 
for 

X*  =  Z2e2  +     •    •    •     +   X'&n 
the  relation 

Q(x*)  =  +  x}  +   .  .  .   +  XJ  holds. 

This  enables  §(x)  to  be  expressed  in  the  required  form. 

Then  Q(Qi)  =  ei         Q(Qi,  e*)  =  0         (i  f  k). 

These  relations  result  in  all  the  e/s  being  independent  of  one 

another  and  in  each  vector  x  being  representable  in  the  form  (13). 
They  give 

Xi  =  Ci  .  Q(Qi,  x)      .  (16) 

An  important  corollary  is  to  be  made  in  the  "  indefinite  "  case. 
The  numbers  r  and  s  attached  to  the  e/s,  and  having  positive  and 

negative  signs  respectively,  are  uniquely  determined  by  the  quad- 
ratic form  :  it  may  be  said  to  have  r  positive  and  s  negative 

dimensions,  (s  may  be  called  the  inertia!  index  of  the  quadratic 
form,  and  the  theorem  just  enunciated  is  known  by  the  name 

"  Law  of  Inertia  ".  The  classification  of  surfaces  of  the  second 
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order  depends  on  it.)  The  numbers  r  and  s  may  be  characterised 
invariantly  thus  : — 

There  are  r  mutually  orthogonal  vectors  e,  for  which  Q(e)  >  0  ; 
but  for  a  vector  x  which  is  orthogonal  to  these  and  not  equal  to 
0,  it  necessarily  follows  that  Q(x)  <  0.  Consequently  there  cannot 
be  more  than  r  such  vectors.  A  corresponding  theorem  holds 
for  s. 

r  vectors  of  the  required  type  are  given  by  those  T  funda- 
mental vectors  e*  of  the  co-ordinate  system  upon  which  the 

expression  (14)  is  founded,  to  which  the  positive  signs  e;  corre- 
spond. The  corresponding  components  Xi  (i  —  1,  2,  3,  .  .  .  r)  are 

definite  linear  forms  of  x  [cf.  (16)]  :  XL  =  Ivt-(x).  If,  now,  6; 
(i  —  1,  2,  .  .  .  r)  is  any  system  of  vectors  which  are  mutually 
orthogonal  to  one  another,  and  satisfy  the  condition  Q(et-)  >  0,  and 
if  x  is  a  vector  orthogonal  to  these  6;,  we  can  set  up  a  linear  com- 
bination 

y  =  X1Qi  +    ...  \rQr  +  ̂ x 

in  which  not  all  the  co-efficients  vanish  and  which  satisfies  the  r 
homogeneous  equations 

A(y)  =  0,  .  .  .  Lr(y)  =  0. 
It.  is  then  evident  from  the  form  of  the  expression  that  Q(y)  must 
be  negative  unless  y  =  0.  In  virtue  of  the  formula 

0(y)  -  {VQ(e,)  +  .  .  .  +  V«(e,)}  =  f?Q(*) 

it  then  follows  that  Q(x)  <[  0  except  in  the  case  in  which  if  y  =  0, 
A!  =   ...   =  Xr  also  =  0.     But  then,  by  hypothesis,  ̂   must  =f=  0, 
i.e.  x  =  0. 

In  the  theory  of  relativity  the  case  of  a  quadratic  form  with  one  nega- 
tive and  n  -  1  positive  dimensions  becomes  important.  In  three-dimensional 

space,  if  we  use  affine  co-ordinates, 

-  flBj2  +  X22  +  X32  =  0 

is  the  equation  of  a  cone  having  its  vertex  at  the  origin  and  consisting  of 

two  sheets,  as  expressed  by  the  negative  sign  of  Xj2,  which  are  only  con- 
nected with  one  another  at  the  origin  of  co-ordinates.  This  division  into 

two  sheets  allows  us  to  draw  a  distinction  between  past  and  future  in  the 
theory  of  relativity.  We  shall  endeavour  to  describe  this  by  an  elementary 
analytical  method  here  instead  of  using  characteristics  of  continuity. 

Let  Q  be  a  non-degenerate  quadratic  form  having  only  one  negative 
dimension.  We  choose  a  vector,  for  which  Q(Q)  =  -  1.  We  shall  call 

these  vectors  x,  which  are  not  zero  and  for  which  $(x)  <  0  "  negative 

vectors".  According  to  the  proof  just  given  for  the  Theorem  of  Inertia, 
no  negative  vector  can  satisfy  the  equation  $(ex)  =  0.  Negative  vectors 

thus  belong  to  one  of  two  classes  or  "  cones  "  according  as  $(ex)  <C  0  or 
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>  0  ;  e  itself  belongs  to  the  former  class,  latter.     A  m 

vector  x  lies  "inside"  or  "on  the  sheet"  of  its  cone  according  a- 
<  0  or  =  (X     To  show  that  the  two  cones  are  independent  of  th 
the  Teeter  e,  one  must  proTe  that,  from  Q(e)  =  ̂ e^  =  -  1,  and  Q( 

<0,  it  follows  that  the  sign  of  Tr  is  the  same  as  that  of  -  (,' 

Every  rector  X  can  he  resolved  into  two  summands 

x  =  xe  -t-  x* 
such  that  the  first  is  proportional  and  the  second  (x*)  is  orthogonal 
One  need  only  take  x  =  -  ftex  and  we  then  get 

«*)--*»+  <?(X*) 
as  we  know,  necessarily  >  0.     Let  us  denote  it  by  Q*. 

The  eouA:i.n 

then  shows  that  Q*  is  a  quadratic  form  (degenerate),  which  satisfi 
identity  or  inequality,  C*(x)  >  0.     We  now  have 

From  the  inequality  (12)  which  holds  for  Q*,  it  follows  that 

has  the  same  sign  as  the  first  summand  e'x. 

Let  us  DOW  revert  to  the  case  of  a  definitely  positive  metrical 

groundform  with  which  we  are  at  present  concerned.     If  w-. 
a  Cartesian  co-ordinate  system  to  represent  a  congruent  trar 

mat  ion,  the  co-efficients  of  transformation  o*t  in  formula  (5*). 
will  have  to  be  such  that  the  equation 

&*1  +  £*  +  ..-  +  t*  -  tf  +  fe1  +  .-.  +  tf 
is  identically  satisfied  by  the  £'s.     This  gives  the  "  conditions  for 
orthogonality" * 

l 

They  signify  that  the  transition  to  the  inverse  transformation  con- 
Terts  the  co-efficients  <m  into  a*,  :  — 

It  furthermore  follows  that   the  determinant  A  =  |  cm  |  of  a  con- 
gruent transformation  is  identical  with  that  of  its  inverse,  and  s 

their  product  must  equal  1,  A  =  ±  1.     The  positive  or  the  neg 
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sign  would  occur  according  as  the  congruence  is  real  or  inverted  as 

in  a  mirror  ("  lateral  inversion  "). 
Two  possibilities  present  themselves  for  the  analytical  treatment 

of  metrical  geometry.  Either  one  imposes  no  limitation  upon  the 
affine  co-ordinate  system  to  be  used  :  the  problem  is  then  to  de- 

velop a  theory  of  invariance  with  respect  to  arbitrary  linear  trans- 
formations, in  which,  however,  in  contra-distinction  to  the  case  of 

affine  geometry,  we  have  a  definite  invariant  quadratic  form,  viz. 
the  metrical  groundform 

• 

g(x)  =  ]>  git  6  & 
t,  k=i 

once  and  for  all  as  an  absolute  datum.  Or,  we  may  use  Cartesian 
co-ordinate  systems  from  the  outset  :  in  this  case,  we  are  concerned 
with  a  theory  of  invariance  for  orthogonal  transformations,  i.e. 

linear  transformations,  in  which  the  co-efficients  satisfy  the  second- 
ary conditions  (17).  We  must  here  follow  the  first  course  so  as  to 

be  able  to  pass  on  later  to  generalisations  which  extend  beyond  the 
limits  of  Euclidean  geometry.  This  plan  seems  advisable  from  the 
algebraic  point  of  view,,  too,  since  it  is  easier  to  gain  a  survey  of 
those  expressions  which  remain  unchanged  for  all  linear  trans- 

formations than  of  those  which  are  only  invariant  for  orthogonal 
transformations  (a  class  of  transformations  which  are  subjected  to 
secondary  limitations  not  easy  to  define). 

We  shall  here  develop  the  Theory  of  Invariance  as  a  "  Tensor 
Calculus  "  along  lines  which  will  enable  us  to  express  in  a  con- 

venient mathematical  form,  not  only  geometrical  laws,  but  also 
all  physical  laws. 

§5.  Tensors 
Two  linear  transformations, 

?,         (KI  +  O)     .        .        .     (18) 

in  the  variables  £  and  rj  respectively,  leading  to  the  variables  I,  ̂ 
are  said  to  be  contra-gredient  to  one  another,  if  they  make  the 

bilinear  form  \  rj^  transform  into  itself,  i.e. 

t*     ....     (19) 
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Contra-gredience  is  thus  a  reversible  relationship.  If  the  variables 

£,  rj  are  transformed  into  f ,  97  by  one  pair  of  contra-gredient  trans- 

formations A,  A,  and  then  £,  ij  into  £  rj  by  a  second  pair  5,  5  it 
follows  from 

that  the  two  transformations  combined,  which  transform  £  directly 

into  £,  and  rj  into  77  are  likewise  contra-gredient.  The  co-efficients 
of  two  contra-gredient  substitutions  satisfy  the  conditions 

If  we  substitute  for  the  £'s  in  the  left-hand  member  of  (19)  their 
values  in  terms  of  £  obtained  from  (18),  it  becomes  evident  that 

the  equations  (18')  are  derived  by  reduction  from 
^ = z 

(21) 

There  is  thus  one  and  only  one  contra-gredient  transformation 
corresponding  to  every  linear  transformation.  For  the  same  reason 
as  (21) 

holds.  By  substituting  these  expressions  and  (21)  in  (19),  we 
find  that  the  co-efficients,  in  addition  to  satisfying  the  conditions 
(20),  satisfy 

An  orthogonal  transformation  is  one  which  is  contra-gredient  to 
itself.  If  we  subject  a  linear  form  in  the  variables  &  to  any 
arbitrary  linear  transformation  the  co-efficients  become  transformed 

contra-grediently  to  the  variables,  or  they  assume  a  "  contra-variant " 
relationship  to  these,  as  it  is  sometimes  expressed. 

In  an.  affine  co-ordinate  system  0;  elf  62,  •  •  •  6n  we  have  up 
to  the  present  characterised  a  displacement  x  by  the  uniquely  de- 

nned components  £*  given  by  the  equation 
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If    we    pass    over    into   another    affine   co-ordinate   system    0; 
61,  ea,  ...  euf  whereby 

the  components  of  X  undergo  the  transformation 

as  is  seen  from  the  equation 

x= 

These  components  thus  transform  themselves  contra-grediently 
to  the  fundamental  vectors  of  the  co-ordinate  system,  and  are  re- 

lated contra-  variantly  to  them  ;  they  may  thus  be  more  precisely 
termed  the  contra-variant  components  of  the  vector  x.  In 
metrical  space,  however,  we  may  also  characterise  a  displacement 
in  relation  to  the  co-ordinate  system  by  the  values  of  its  scalar 
product  with  the  fundamental  vectors  C;  of  the  co-ordinate  system 

&  =  (x  .  *). 

In  passing  over  into  another  co-ordinate  system  these  quantities 
transform  themselves—  as  is  immediately  evident  from  their  defi- 

nition —  "  co-grediently  "  to  the  fundamental  vectors  (just  like  the 
latter  themselves),  i.e.  in  accordance  with  the  equations 

they  behave  "  co-variantly  ".  We  shall  call  them  the  C0-Yariant 
components  of  the  displacement.  The  connection  between  co-vari- 

ant and  contra-variant  components  is  given  by  the  formulae 

or  by  their  inverses  (which  are  derived  from  them  by  simple  re- 
solution) respectively 

^  =  ]>>&         ....     (22') k 

In  a  Cartesian  co-ordinate  system  the  co-variant  components  coin- 
cide with  the  contra-variant  components.  It  must  again  be  empha- 

sised that  the  contra-variant  components  alone  are  at  our  disposal 
in  affine  space,  and  that,  consequently,  wherever  in  the  following 
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pages  we  speak  of  the  components  of  a  displacement  without 
specifying  them  more  closely,  the  contra-variant  ones  are  implied. 

Linear  forms  of  one  or  two  arbitrary  displacements  have  already 
been  discussed  above.  We  can  proceed  from  two  arguments  to 
three  or  more.  Let  us  take,  for  example,  a  trilinear  form  ̂ 4(xyz). 
If  in  an  arbitrary  co-ordinate  system  we  represent  the  two  dis- 

placements x,  y  by  their  contra-variant  components,  z  by  its 
co-variant  components,  i.e.  £*,  77*,  and  &  respectively,  then  A  is 
algebraically  expressed  as  a  trilinear  form  of  these  three  series  of 
variables  with  definite  number-coefficients 

ft>          ....     (23) ikl 

Let  the  analogous  expression  in  a  different  co-ordinate  system, 
indicated  by  bars,  be 

^<4£*?£'         ....     (23') ikl 

A  connection  between  the  two  algebraic  trilinear  forms  (23)  and 

(23')  then  exists,  by  which  the  one  resolves  into  the  other  if  the 
two  series  of  variables  £,  77  are  transformed  contra-grediently  to  the 
fundamental  vectors,  but  the  series  £  co-grediently  to  the  latter. 

This  relationship  enables  us  to  calculate  the  co-efficient  d^  of 

A  in  the  co-ordinate  system  if  the  co-efficients  c4  and  also  the 
transformation  co-efficient  a*  leading  from  one  co-ordinate  system 
to  the  other  are  known.  We  have  thus  arrived  at  the  concep- 

tion of  the  "  r-fold  co-variant,  s-fold  contra-variant  tensor  of  the 

(r  +  s)th  degree  "  :  it  is  not  confined  to  metrical  geometry  but  only 
assumes  the  space  to  be  affine.  We  shall  now  give  an  explanation 
of  this  tensor  in  abstracto.  To  simplify  our  expressions  we  shall 
take  special  values  for  the  numbers  r  and  s  as  in  the  example 

quoted  above  :r  =  2,  s  =  l,r  +  s  =  3.  We  then  enunciate  : — 
A  trilinear  form  of  three  series  of  variables  which  is  independent 

of  the  co-ordinate  system  is  called  a  doubly  co-variant^  singly  con- 
tra-variant tensor  of  the  third  degree  if  the  above  relationship  is  as 

follows.  The  expressions  for  the  linear  form  in  any  two  co-ordinate 

viz.  : — 
V 

resolve  into  one  another,  if  two  of  the  series  of  variables  (viz.  the 

first  two  £  and  rj)  are  transformed  contra-grediently  to  the  funda- 
mental vectors  of  the  co-ordinate  system  and  the  third  co-grediently 
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to  the  same.  The  co-efficients  of  the  linear  form  are  called  the 

components  of  the  tensor  in  the  co-ordinate  system  in  question. 
Furthermore,  they  are  called  co-variant  in  the  indices,  i,  k,  which 
are  associated  with  the  variables  to  be  transformed  contra-grediently, 
and  contra-variant  in  the  others  (here  only  the  one  index  I). 

The  terminology  is  based  upon  the  fact  that  the  co-efficients  of 
a  uni-linear  form  behave  co-variantly  if  the  variables  are  trans- 

formed contra-grediently,  but  contra-variantly  if  they  are  transformed 

co-grediently.  Co-  variant  indices  are  always  attached  as  suffixes 
fco  the  co-efficients,  contra-variant  ones  written  at  the  top  of  the 
co-efficients.  Variables  with  lowered  indices  are  always  to  be 

transformed  co-grediently  to  the  fundamental  vectors  of  the  co- 
ordinate system,  those  with  raised  indices  are  to  be  transformed 

contra-grediently  to  the  same.  A  tensor  is  fully  known  if  its  com- 
ponents in  a  co-ordinate  system  are  given  (assuming,  of  course, 

that  the  co-ordinate  system  itself  is  given)  ;  these  components  may, 

however,  be  prescribed  arbitrarily.  The  tensor  calculus  is  con- 
cerned with  setting  out  the  properties  and  relations  of  tensors, 

which  are  independent  of  the  co-ordinate  system.  In  an  extended 
sense  a  quantity  in  geometry  and  physics  will  be  called  a  tensor  if  it 

defines  uniquely  a  Linear  algebraic  form  depending  on  the  co-ordinate 
system  in  the  manner  described  above  ;  and  conversely  the  tensor  is 

fully  characterised  if  this  form  is  given.  For  example,  a  little 
earlier  we  called  a  function  of  three  displacements  which  depended 

linearly  and  homogeneously  on  each  of  their  arguments  a  tensor 

of  the  third  degree  —  one  which  is  twofold  co-variant  and  singly 

contra-variant.  This  was  possible  in  metrical  space.  In  this 
space,  indeed,  we  are  at  liberty  to  represent  this  quantity  by  a 

"none"  fold,  single,  twofold  or  threefold  co-  variant  tensor.  In 
affine  space,  however,  we  should  only  have  been  able  to  express 

it  in  the  last  form  as  a  co-variant  tensor  of  the  third  degree. 
We  shall  illustrate  this  general  explanation  by  some  examples 

in  which  we  shall  still  adhere  to  the  standpoint  of  affine  geometry 
alone. 

1.  If  we  represent  a  displacement  a  in  an  arbitrary  co-ordinate 

system  by  its  (contra-variant)  components  a*  and  assign  to  it  the 
linear  form 

having  the  variables  £t-  in  this  co-ordinate  system,  we  get  a  contra- 
variant  tensor  of  the  first  order. 

From  now  on  we  shall  no  longer  use  the  term  "  vector  "  as 
being  synonymous  with  "  displacement  "  but  to  signify  a  "  tensor 
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of  the  first  order,"  so  that  we  shall  say,  displacements  are  contra- 
variant  vectors.  The  same  applies  to  the  velocity  of  a  moving 

point,  for  it  is  obtained  by  dividing  the  infinitely  small  displace- 
ment which  the  moving  point  suffers  during  the  time-element  dt 

by  dt  (in  the  limiting  case  when  dt  ->  0).  The  present  use  of  the 
word  vector  agrees  with  its  usual  significance  which  includes  not 
only  displacements  but  also  every  quantity  which,  after  the  choice 

of  an  appropriate  unit,  can  be  represented  uniquely  by  a  displace- 
ment. 

2.  It  is  usually  claimed  that  force  has  a  geometrical  character 

on  the  ground  that  it  may  be  represented  in  this  way.  In  opposi- 
tion, however,  to  this  representation  there  is  another  which,  we 

nowadays  consider,  does  more  justice  to  the  physical  nature  of  force, 
inasmuch  as  it  is  based  on  the  conception  of  work.  In  modern 
physics  the  conception  work  is  gradually  usurping  the  conception 
of  force,  and  is  claiming  a  more  decisive  and  fundamental  r6le.  We 
shall  define  the  components  of  a  force  in  a  co-ordinate  system 
0  ;  Ci  to  be  those  numbers  pi  which  denote  how  much  work  it  per- 

forms during  each  of  the  virtual  displacements  6;  of  its  point  of 
application.  These  numbers  completely  characterise  the  force. 
The  work  performed  during  the  arbitrary  displacement 

x  =  ̂ B!  +  £2e2  +  .  .  .  +  Te,t 

of  its  point  of  application  is  then  =  2p^\     Hence  it  follows  that 

for  two  definite  co-ordinate  systems  the  relation 

holds,  if  the  variables  £*,  as  signified  by  the  upper  indices,  are 
transformed  contra-grediently  with  respect  to  the  co-ordinate 
system.  According  to  this  view,  then,  forces  are  co-variant 
vectors.  The  connection  between  this  representation  of  forces 
and  the  usual  one  in  which  they  are  displacements  will  be  discussed 
when  we  pass  from  afiine  geometry,  with  which  we  are  at  present 
dealing,  to  metrical  geometry.  The  components  of  a  co-variant 
vector  become  transformed  co-grediently  to  the  fundamental  vectors 
in  passing  to  a  new  co-ordinate  system. 

Additional  Remarks. — Since  the  transformations  of  the  com- 

ponents a*  of  a  co-variant  vector  and  of  the  components  ¥  of  a 
contra -variant  vector  are  contra-gredient  to  one  another,  I  a$*  is 

a  definite  number  which  is  defined  by  these  two  vectors  and  is 
independent  of  the  co-ordinate  system.  This  is  our  first  example 
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of  an  insanant.  tensor  operation.     Numbers  or  scalars  are  to  be 
classified  as  tensors  of  zero  order  in  the  system  of  tensors. 

It  has  already  been  explained  under  what  conditions  a  bilinear 
form  of  two  series  of  variables  is  called  symmetrical  and  what 

makes  a  symmetrical  bilinear  form  non-degenerate.  A  bilinear 
form  F(&j)  is  called  skew-symmetrical  if  the  interchange  of 
the  two  sets  of  variables  converts  it  into  its  negative,  i.e.  merely 
changes  its  sign 

This  property  is  expressed  in  the  co-officients  a^  by  the  equations 
aki  =-#;&.  These  properties  persist  if  the  two  sets  of  variables  are 
subjected  to  the  same  linear  transformations.  The  property  of 

being  skew-symmetrical,  symmetrical  or  (symmetrical  and)  non- 
degenerate,  possessed  by  co-variant  or  contra-variant  tensors  of  the 
second  order  is  thus  independent  of  the  co-ordinate  system. 

Since  the  bilinear  unit  form  resolves  into  itself  after  a  contra- 
gredient  transformation  of  the  two  series  of  variables  there  is 
among  the  mixed  tensors  of.  the  second  order  (i.e.  those  which  are 
simply  co-variant  -or  simply  contra-variant)  one,  called  the  unit 

tensor,   which   has   the.  components   8J"  =  Q^  7  jl    in   every   co- 
ordinate system. 

3.  The  metrical;  structure  underlying  Euclidean  space  assigns 
to  every  two  displacements 

X  = i  i 

a  number  which  is  independent  of  the  co-ordinate  system  and  is 
their  scalar  product 

(x  .  y)  =  2^  guc  &  rjk  gut  =  fa .  e^). ilc 

Hence  the  bilinear  form  on  the  right  depends  on  the  co-ordinate 
system  in  such  a  way  that  a  co-variant  tensor  of  the  second  order 
is  given  by  it,  viz.  the  fundamental  metrical  tensor.  The 
metrical  structure  is  fully  characterised  by  it.  It  is  symmetrical 
and  non-degenerate. 

4.  A  linear  vector  transformation  makes  any  displacement  x 

correspond  linearly  to  another  displacement,  x',  i.e.  so  that  the  sum 
x'  +  y'  corresponds  to  the  sum  x  +  y  and  the  product  Ax'  to  the 
product  Ax.  In  order  to  be  able  to  refer  conveniently  to  such 
linear  vector  transformations,  we  shall  call  them  matrices.  If 

the  fundamental  vectors  6,;  of  a  co-ordinate  system  become 

e!-  = 
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as  a  result  of  the  transformation  it  will  in  general  convert  the 
arbitrary  displacement 

frt  into  x  =       ?ej  =       a^ek        .     (24) 

We  may,  therefore,  characterise  the  matrix  in  the  particular  co- 
ordinate system  chosen  by  the  bilinear  form 

a 

It  follows  from  (24)  that  the  relation 

ik  ik 

holds  between  two  co-ordinate  systems  (we  have  used  the  same 
terminology  as  above)  if 

t  t 
thus 

if  the  -rf  are  transformed  co-grediently  to  the  fundamental  vectors 
and  the  &  are  transformed  contra-grediently  to  them  (the  latter 
remark  about  the  transformations  of  the  variables  is  self-evident 
so  that  in  future  we  shall  simply  omit  it  in  similar  cases).  In 
this  way  matrices  are  represented  as  tensors  of  the  second  order. 

In  particular,  the  unit  tensor  corresponds  to  "  identity  "  which 
assigns  to  every  displacement  x  itself. 

As  was  shown  in  the  examples  of  force  and  metrical  space  it 
often  happens  that  the  representation  of  geometrical  or  physical 
quantities  by  a  tensor  becomes  possible  only  after  a  unit  measure 
has  been  chosen  :  this  choice  can  only  be  made  by  specifying  it  in 
each  particular  case.  If  the  unit  measure  is  altered  the  represen- 

tative tensors  must  be  multiplied  by  a  universal  constant,  viz.  the 
ratio  of  the  two  units  of  measure. 

The  following  criterion  is  manifestly  equivalent  to  this  ex- 
position of  the  conception  tensor.  A  linear  form  in  several  series 

of  variables,  which  is  dependent  on  the  co-ordinate  system,  is  a  tensor 
if  in  every  case  it  assumes  a  value  independent  of  the  co-ordinate 
system  (a)  whenever  the  components  of  an  arbitrary  contra-variant 
vector  are  substituted  for  every  contra-gredient  series  of  variables,  or 
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(b)  ivhenever  the  components  of  an  arbitrary  co-variant  vector  are 
substituted  for  a  co-gredient  series. 

If  we  now  return  from  affine  to  metrical  geometry,  we  see 
from  the  arguments  at  the  beginning  of  the  paragraph  that  the 
difference  between  co-variants  and  centra-variants  which  affects 
the  tensors  themselves  in  affine  geometry  shrinks  to  a  mere 
difference  in  the  mode  of  representation. 

Instead  of  talking  of  co-variant,  mixed,  and  contra-variant 
tensors  we  shall  hence  find  it  more  convenient  here  to  talk  only  of 

the  co-variant,  mixed,  and  contra-variant  components  of  a  tensor. 
After  the  above  remarks  it  is  evident  that  the  transition  from 
one  tensor  to  another  which  has  a  different  character  of  co-variance 

may  be  formulated  simply  as  follows.  If  we  interpret  the  contra- 
gredient  variables  in  a  tensor  as  the  contra-variant  components 
of  an  arbitrary  displacement,  and  the  co-gredient  variables  as 
co-variant  components  of  an  arbitrary  displacement,  the  tensor  be- 

comes transformed  into  a  linear  form  of  several  arbitrary  dis- 
placements which  is  independent  of  the  co-ordinate  system.  By 

representing  the  arguments  in  terms  of  their  co-variant  or  contra- 
variant  components  in  any  way  which  suggests  itself  as  being 
appropriate  we  pass  on  to  other  representations  of  the  same 
tensor.  From  the  purely  algebraic  point  of  view  the  conversion 

of  a  co-variant  index  into  a  contra-variant  one  is  performed  by 
substituting  new  £/s  for  the  corresponding  variables  £l  in  the  linear 
form  in  accordance  with  (22).  The  invariant  nature  of  this  pro- 

cess depends  on  the  circumstance  that  this  substitution  transforms 

contra-gredient  variables  into  co-gredient  ones.  The  converse 

process  is  carried  out  according  to  the  inverse  equations  (22'). 
The  components  themselves  are  changed  (on  account  of  the 

symmetry  of  the  gf^'s)  from  centra-variants  to  co-variants,  i.e.  the 
indices  are  "lowered"  according  to  the  rule  : 

Substitute  a;  =    >  QUO?  for  a* 

irrespective  of  whether  the  numbers  a1"  carry  any  other  indices  or 
not  :  the  raising  of  the  index  is  effected  by  the  inverse  equations. 

If,  in  particular,  we  apply  these  remarks  to  the  fundamental 
metrical  tensor,  we  get 

ik  i  k  ik 

Thus  its  mixed  components  are  the  numbers  8J.,  its  contra-variant 

components  are  the  co-efficients  gik  of  the  equations  (22'),  which 
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are  the  inverse  of  (22).     It  follows  from  the  symmetry  of  the  tensor 

that  these  as  well  as  the  g^'s  satisfy  the  condition  of  symmetry 
gki   _    j* 

With  regard  to  notation  we  shall  adopt  the  convention  of  de- 
noting the  co-variant,  mixed,  and  contra-variant  components  of 

the  same  tensor  by  similar  letters,  and  of  indicating  by  the  position 

of  the  index  at  the  top  or  bottom  respectively  whether  the  com- 
ponents are  contra-variant  or  co-variant  with  respect  to  the  index, 

as  is  shown  in  the  following  example  of  a  tensor  of  the  second 
order  : 

ik 

(in  which  the  variables  with  lower  and  upper  indices  are  connected 
in  pairs  by  (22)). 

In  metrical  space  it  is  clear,  from  what  has  been  said,  that  the 
difference  between  a  co-variant  and  a  contra-variant  vector  dis- 

appears :  in  this  case  we  can  represent  a  force,  which,  according 

to  our  view,  is  by  nature  a  co-variant  vector,  as  a  contra-variant 
vector,  too,  i.e.  by  a  displacement.  For,  as  we  represented  it 

above  by  the  linear  form  ̂   pi£i  in  the  contra-gredient  variables  £*, 

we  can  now  transform  the  latter  by  means  of  (22')  into  one  having 

co-gredient  variables  £»,  viz.      '  #*'£».     We  then  have 

ik 

the  representative  displacement  p  is  thus  defined  by  the  fact  that 

the  work  which  the  force  performs  during  an  arbitrary  displace- 
ment is  equal  to  the  scalar  product  of  the  displacements  p  and  x. 

In  a  Cartesian  co-ordinate  system  in  which  the  fundamental 
tensor  has  the  components 

(i  =  k) 

the  connecting  equations  (22)  are  simply  :  &  =  |*.  If  we  confine 
ourselves  to  the  use  of  Cartesian  co-ordinate  systems,  the  difference 
between  co-variants  and  contra-variants  ceases  to  exist,  not  only 
for  tensors  but  also  for  the  tensor  components.  It  must,  however, 

be  mentioned  that  the  conceptions  which  have  so  far  been  out- 
lined concerning  the  fundamental  tensor  guc  assume  only  that  it  is 

symmetrical  and  non-degenerate,  whereas  the  introduction  of  a 
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Cartesian  co-ordinate  system  implies,  in  addition,  that  the  corre- 
sponding quadratic  form  is  definitely  positive.  This  entails  a 

difference.  In  the  Theory  of  Relativity  the  time  co-ordinate  is 
added  as  a  fully  equivalent  term  to  the  three-space  co-ordinates, 
and  the  measure-relation  which  holds  in  this  four-dimensional 
manifold  is  not  based  on  a  definite  form  but  on  an  indefinite  one 

(Chapter  III).  In  this  manifold,  therefore,  we  shall  not  be  able  to 
introduce  a  Cartesian  co-ordinate  system  if  we  restrict  ourselves  to 
real  co-ordinates ;  but  the  conceptions  here  developed  which  are 
to  be  worked  out  in  detail  for  the  dimensional  number  n  —  4  may 
be  applied  without  alteration.  Moreover,  the  algebraic  simplicity 
of  this  calculus  advises  us  against  making  exclusive  use  of  Cartesian 

co-ordinate  systems,  as  we  have  already  mentioned  at  the  end  of 
§  4.  Above  all,  finally,  it  is  of  great  importance  for  later  extensions 
which  take  us  beyond  Euclidean  geometry  that  the  affine  view 
should  even  at  this  stage  receive  full  recognition  independently  of 
the  metrical  one. 

Geometrical  and  physical  quantities  are  scalars,  vectors,  and 
tensors  :  this  expresses  the  mathematical  constitution  of  the  space 
in  which  these  quantities  exist.  The  mathematical  symmetry 
which  this  conditions  is  by  no  means  restricted  to  geometry  but, 
on  the  contrary,  attains  its  full  validity  in  physics.  As  natural 
phenomena  take  place  ini  a  metrical  space  this  tensor  calculus  is 
the  natural  mathematical  instrument  for  expressing  the  uniformity 
underlying  them. 

§  6.  Tensor  Algebra.     Examples 

Addition  of  Tensors. — The  multiplication  of  a  linear  form, 
bilinear  form,  trilinear  form  ...  by  a  number,  likewise  the 
addition  of  two  linear  forms,  or  of  two  bilinear  forms  .  .  . 
always  gives  rise  to  a  form  of  the  same  kind.  Vectors  and  tensors 
may  thus  be  multiplied  by  a  number  (a  scalar),  and  two  or  more 
tensors  of  the  same  order  may  be  added  together.  These  operations 
are  carried  out  by  multiplying  the  components  by  the  number  in 
question  or  by  addition,  respectively.  Every  set  of  tensors  of  the 
same  order  contains  a  unique  tensor  0,  of  which  all  the  components 
vanish,  and  which,  when  added  to  any  tensor  of  the  same  order, 
leaves  the  latter  unaltered.  The  state  of  a  physical  system  is 
described  by  specifying  the  values  of  certain  scalars  and  tensors. 

The  fact  that  a  tensor  which  has  been  derived  from  them  by 
mathematical  operations  and  is  an  invariant  (i.e.  dependent  upon 
them  alone  and  not  upon  the  choice  of  the  co-ordinate  system)  is 
equal  to  zero  is  what,  in  general,  the  expression  of  a  physical  law 
amounts  to. 
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Examples.  —  The  motion  of  a  point  is  represented  analytically 
by  giving  the  position  of  the  moving-point  or  of  its  co-ordinates, 

sj>y*- 

respectively,  as  functions  of  the  time  t.     The  derivatives  -^  are 

the  contra-  variant  components  ul  of  the  vector  "  velocity  ".  By 
multiplying  it  by  the  mass  m  of  the  moving-point,  m  being  a  scalar 

which  serves  to  express  the  inertia  of  matter,  we  get  the  "  impulse  " 
(or  "  momentum  ").  By  adding  the  impulses  of  several  points 
of  mass  or  of  those,  respectively,  of  which  one  imagines  a  rigid 

body  to  be  composed  in  the  mechanics  of  point-masses,  we  get  the 
total  impulse  of  the  point-system  or  of  the  rigid  body.  In  the  case 
of  continuously  extended  matter  we  must  supplant  these  sums  by 
integrals.  The  fundamental  law  of  motion  is 

^  =  pi  ;  tfi  =  mui  ....     (25) 

where  G{  denote  the  contra-variant  components  of  the  impulse  of  a 
mass-point  and  p{  denote  those  of  the  force. 

Since,  according  to  our  view,  force  is  primarily  a  co-variant 
vector,  this  fundamental  law  is  possible  only  in  a  metrical  space, 
but  not  in  a  purely  affine  one.  The  same  law  holds  for  the  total 
impulse  of  a  rigid  body  and  for  the  total  force  acting  on  it. 

Multiplication  of  Tensors.  —  By  multiplying  together  two  linear 

forms  ̂   aift  \  bvf1  in  the  variables  $  and  77,  we  get  a  bilinear  form 

and  hence  from  the  two  vectors  a  and  b  we  get  a  tensor  c  of  the 
second  order,  i.e. 

a,ibk  =  cik  .....     (26) 

Equation  (26)  represents  an  invariant  relation  between  the  vectors 
a  and  b  and  the  tensor  c,  i.e.  if  we  pass  over  to  a  new  co-ordinate 
system  precisely  the  same  equations  hold  for  the  components 
(distinguished  by  a  bar)  of  these  quantities  in  this  new  co-ordinate 
system,  i.e. 

a-bk  =  cik. 

In  the  same  way  we  may  multiply  a  tensor  of  the  first  order  by 
one  of  the  second  order  (or  generally,  a  tensor  of  any  order  by  a 
tensor  of  any  order).  By  multiplying 
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in  which  the  Greek  letters  denote  variables  which  are  to  be  trans- 

formed contra-grediently  or  co-grediently  according  as  the  indices 
are  raised  or  lowered,  we  derive  the  trilinear  form 

and,  accordingly,  by  multiplying  the  two  tensors  of  the  first  and 
second  order,  a  tensor  c  of  the  third  order,  i.e. 

7*  I 
&{  .  Ok  =  Gifo. 

This  multiplication  is  performed  on  the  components  by  merely 

multiplying  each  component  of  one  tensor  by  each  component  of 
the  other,  as  is  evident  above.  It  must  be  noted  that  the  co-variant 

components  (with  respect  to  the  index  Z,  for  example)  of  the  re- 

sultant tensor  of  the  third  order,  i.e.  c\k  =  diblkj  are  given  by  :  CM  = 
a/ibjci.  It  is  thus  immediately  permissible  in  such  multiplication 
formula  to  transfer  an  index  on  both  sides  of  the  equation  from 
below  to  above  or  vice  versa. 

Examples  of  Skew-symmetrical  and  Symmetrical  Tensors. 
—If  two  vectors  with  the  contra-variant  components  a,*,  b1  are  multi- 

plied first  in  one  order  and  then  in  the  reverse  order,  and  if  we  then 

subtract  the  one  result  from  the  other,  we  get  a  skew-symmetrical 

tensor  c  of  the  second  order  with  the  contra-variant  components 

This  tensor  occurs  in  ordinary  vector  analysis  as  the  "  vectorial  pro- 

duct "  of  the  two  vectors  a  and  b.  By  specifying  a  certain  direction 
of  twist  in  three-dimensional  space,  it  becomes  possible  to  establish 
a  reversible  one-to-one  correspondence  between  these  tensors  and 
the  vectors.  (This  is  impossible  in  four-dimensional  space  for  the 
obvious  reason  that,  in  it,  a  skew-symmetrical  tensor  of  the  second 
order  has  six  independent  components,  whereas  a  vector  has  only 
four ;  similarly  in  the  case  of  spaces  of  still  higher  dimensions.) 

In  three-dimensional  space  the  above  method  of  representation  is 
founded  on  the  following.  If  we  use  only  Cartesian  co-ordinate 
systems  and  introduce  in  addition  to  a  and  b  an  arbitrary  displace- 

ment £,  the  determinant 

a1  a2  a3 
61  b2  bz 

£1  £2    C3 
becomes  multiplied  by  the  determinant  of  the  co-efficients  of  trans- 

formation, when  we  pass  from  one  co-ordinate  system  to  another. 
In  the  case  of  orthogonal  transformations  this  determinant  =  +  1. 

If  we  confine  our  attention  to  "  proper  "  orthogonal  transformations, 
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i.e.  such  for  which  this  determinant  =  -f  1  the  above  linear  form  in 

the  £'s  remains  unchanged.     Accordingly,  the  formulae 

express  a  relation  between  the  skew-symmetrical  tensor  c  and  a 

vector  c*,  this  relation  being  invariant  for  proper  orthogonal  trans- 

formations. The  vector  c*  is  perpendicular  to  the  two  vectors 
a  and  b,  and  its  magnitude  (according  to  elementary  formulae  of 

analytical  geometry)  is  equal  to  the  area  of  the  parallelogram  of 
which  the  sides  are  a  and  b.  It  may  be  justifiable  on  the  ground 

of  economy  of  expression  to  replace  skew-symmetrical  tensors  by 
vectors  in  ordinary  vector  analysis,  but  in  some  ways  it  hides  the 

essential  feature ;  it  gives  rise  to  the  well-known  "  swimming-rules" 
in  electro-dynamics,  which  in  no  wise  signify  that  there  is  a  unique 

direction  of  twist  in  the  space  in  which  electro-dynamic  events 
occur ;  they  become  necessary  only  because  the  magnetic  intensity 

of  field  is  regarded  as  a  vector,  whereas  it  is,  in  reality,  a  skew- 

symmetrical  tensor  (like  the  so-called  vectorial  product  of  two 

vectors).  If  we  had  been  given  one  more  space-dimension,  this 
error  could  never  have  occurred. 

In   mechanics   the   skew-symmetrical  tensor  product   of   two 
vectors  occurs — 

1.  As  moment  of  momentum    (angular   momentum)  about  a 

point  0.     If  there  is  a  point-mass  at  P  and  if  £*,  £2,  £3  are  the 

components  of  OP  and  u*  are  the  (contra-variant)  components  of 
the  velocity  of  the  points  at  the  moment  under  consideration,  and 
m  its  mass,  the  momentum  of  momentum  is  defined  by 

Lik  =  m  (u^k  -  M*£»). 

The  moment  of  momentum  of  a  rigid  body  about  a  point  0  is  the 

sum  of  the  moments  of  momentum  of  each  of  the  point-masses 
of  the  body. 

2.  As  the  turning-moment  (torque)  of  a  force.     If  the 

latter  acts  at  the  point  P  and  if  p1'1  are  its  contra-variant  com- 
ponents, the  torque  is  defined  by 

The  turning-moment  of  a  system  of  forces  is  obtained  by  simple 
addition.  In  addition  to  (25)  the  law 

holds  for  a  point-mass  as  well  as  for  a  rigid  body  free  from  con- 

straint. The  turning-moment  of  a  rigid  body  about  a  fixed  point 
0  is  governed  by  the  law  (27)  alone. 
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A  further  example  of  a  skew-symmetrical  tensor  is  the  rate  of 
rotation  (angular  velocity)  of  a  rigid  body  about  the  fixed  point  0. 

If  this  rotation  about  0  brings  the  point  P  in  general  to  P',  the 

vector  OP'  is  produced,  and  hence  also  PP',  by  a  linear  trans- 

formation from  OP.  If  £*  are  the  components  of  OP,  8£*  those  of 

PP',  v'k  the  components  of  this  linear  transformation  (matrix),  we 
have 

ff          ....     (28) 

We  shall  concern  ourselves  here  only  with  infinitely  small  rotations. 

They  are  distinguished  among  infinitesimal  matrices  by  the  ad- 
ditional property  that,  regarded  as  an  identity  in  £ 

s 
i  ik 

This  gives 

8£  =  0. 

By  inserting  the  expressions  (28)  we  get 

a 

This  must  be  identically  true  in  the  variables  &,  and  hence 

i.e.  the  tensor  which  has  vtk  for  its  co-variant  components  is  skew- 
symmetrical. 

A  rigid  body  in  motion  experiences  an  infinitely  small  rotation 

during  an  infinitely  small  element  of  time  St.  We  need  only  to 

divide  by  St  the  infinitesimal  rotation-tensor  v  just  formed  to 

derive  (in  the  limit  when  $t  -»  0)  the  skew-symmetrical  tensor 

"angular  velocity,"  which  we  shall  again  denote  by  v.  If  w 
signify  the  contra-variant  components  of  the  velocity  of  the  point 
P,  and  m  its  co-variant  components  in  the  formulae  (28),  the  latter 
resolves  into  the  fundamental  formula  of  the  kinematics  of  a  rigid 
body,  viz. 

?  (29) 
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The  existence  of  the  "  instantaneous  axis  of  rotation  "  follows  from 
the  circumstance  that  the  linear  equations 

0 

with  the  skew-symmetrical  co-efficients  v^  always  have  solutions 

in  the  case  n  =  3,  which  differ  from  the  trivial  one  I1  =  £2  = 

£3  =  0.  One  usually  finds  angular  velocity,  too,  represented  as 
a  vector. 

Finally  the  "  moment  of  inertia  "  which  presents  itself  in  the 
rotation  of  a  body  offers  a  simple  example  of  a  symmetrical  tensor 
of  the  second  order. 

If  a  point-mass  of  mass  m  is  situated  at  the  point  P  to  which 

—  > 

the  vector  
OP  starting  

from  
the  centre  

of  rotation  
0  and  with  

the 
components  ̂   leads,  we  call  the  symmetrical  tensor  of  which  the 

contra-variant  components  are  given  by  m&£*  (multiplication  !),  the 

"  inertia  of  rotation  "  of  the  point-mass  (with  respect  to  the 
centre  of  rotation  0).  The  inertia  of  rotation  2**  of  a  point- 
system  or  body  is  defined  as  the  sum  of  these  tensors  formed 

separately  for  each  of  its  points  P.  This  definition  is  different 
from  the  usual  one,  but  is  the  correct  one  if  the  intention  of 

regarding  the  velocity  of  rotation  as  a  skew-symmetrical  tensor  and 
not  as  a  vector  is  to  be  carried  out,  as  we  shall  presently  see. 

The  tensor  T&  plays  the  same  part  with  regard  to  a  rotation  about 
0  as  that  of  the  scalar  m  in  translational  motion. 

Contraction.  —  If  a\  are  the  mixed  components  of  a  tensor  of  the 

second  order,  J>  a*  is  an  invariant.     Thus,  if,  a\  are  the  mixed  com- 

ponents  of  the  same  tensor  after  transformation  to  a  new  co-ordinate 

system,  then 

Proof.  —  The  variables  £*,  77;  of  the  bilinear  form 

must  be  subjected  to  the  contra-gredient  transformations 



TENSOR  ALGEBRA.     EXAMPLES  49 

if  we  wish  to  bring  them  into  the  form \-^7 

ft 

ik 

.  by  (20'). 

ik 
From  this  it  follows  that 

,and 

The  invariant   ya*  which   has   been   formed   from   the   com- 
i 

ponents  a}  of  a  matrix  is  called  the  trace  (spur)  of  the  matrix. 

This  theorem  enables  us  immediately  to  carry  out  a  general 

operation  on  tensors,  called  "contraction,"  which  takes  a  second 
place  to  multiplication.  By  making  a  definite  upper  index  in  the 
mixed  components  of  a  tensor  coincide  with  a  definite  lower  one, 
.and  summing  over  this  index,  we  derive  from  the  given  tensor  a 
new  one  the  order  of  which  is  two  less  than  that  of  the  original 

one,  e.g.  we  get  from  the  components  ajjJJ.  of  a  tensor  of  the  fifth 
order  a  tensor  of  the  third  order,  thus : — 

The  connection  expressed  by  (30)  is  an  invariant  one,  i.e.  it  preserves 
its  form  when  we  pass  over  to  a  new  co-ordinate  system,  viz. 

To  see  this  we  only  need  the  help  of  two  arbitrary  contra-variant 

vectors  £*',  -rf  and  a  co-variant  one  £,;.  By  means  of  them  we  form 
the  components, 

hil 

of   a   mixed  tensor   of   the  second  order  :  to  this  we  apply  the 
theorem 
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which  was  just  proved.     We  then  get  the  formula 

hU  hit 

in  which  the  c's  are  denned  by  (30),  the  c's  by  (31).  The  cAr/s  are 
thus,  in  point  of  fact,  the  components  of  the  same  tensor  of  the 
third  order  in  the  new  system,  of  which  the  components  in  the  old 
one  =  cAV 

Examples  of  this  process  of  contraction  have  been  met  with 
in  abundance  in  the  above.  Wherever  summation  took  place  with 
respect  to  certain  indices,  the  summation  index  appeared  twice  in 
the  general  member  of  summation,  once  above  and  once  below  the 

co-efficient  :  each  such  summation  was  an  example  of  contraction. 

For  example,  in  formula  (29)  :  by  multiplication  of  v&  with  £*  one 
can  form  the  tensor  vatf  of  the  third  order  ;  by  making  k  coincide 
with  I  and  summing  for  k,  we  get  the  contracted  tensor  of  the  first 
order  ui.  If  a  matrix  A  transforms  the  arbitrary  displacement  x 

into  x'  =  A(K),  and  if  a  second  matrix  B  transforms  this  x'  into 
x"  =  -B(x'),  a  combination  BA  results  from  the  -two  matrices, 
which  transforms  x  directly  into  x"  =  BA(x).  If  A  has  the  com- 

ponents a*  and  B  components  b\,  the  components  of  the  combined 
matrix  BA  are 

Here,  again,  we  have  the  case  of  multiplication  followed  by  con- 
traction. 

The  process  of  contraction  may  be  applied  simultaneously  for 
several  pairs  of  indices.  From  the  tensors  of  the  1st,  2nd,  3rd, 

.  .  .  order  with  the  co-variant  components  at,  04^,  am,  .  .  .  ,  we  thus 
get,  in  particular,  the  invariants 

ik  ikl 

If,  as  is  here  assumed,  the  quadratic  form  corresponding  to  the 
fundamental  metrical  tensor  is  definitely  positive,  these  invariants 
are  all  positive,  for,  in  a  Cartesian  co-ordinate  system  they  disclose 
themselves  directly  as  the  sums  of  the  squares  of  the  components. 
Just  as  in  the  simplest  case  of  a  vector,  the  square  root  of  these 
invariants  may  be  termed  the  measure  or  the  magnitude  of  the 
tensor  of  the  1st,  2nd,  3rd,  .  .  .  order. 

We  shall  at  this  point  make  the  convention,  once  and  for  all 
that  if  an  index  occurs  twice  (once  above  and  once  below)  in  a 
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term  of  a  formula  to  which  indices  are  attached,  this  is  always  to 
signify  that  summation  is  to  be  carried  out  with  respect  to  the 
index  in  question,  and  we  shall  not  consider  it  necessary  to  put  a 
summation  sign  in  front  of  it. 

The  operations  of  addition,  multiplication,  and  contraction  only 

require  amne  geometry  :  they  are  not  based  upon  a  "  fundamental 

metrical  tensor  ".  The  latter  is  only  necessary  for  the  process  of 
passing  from  co-variant  to  contra-variant  components  and  the 
reverse. 

Euler's  Equations  for  a  Spinning  Top 

As  an  exercise  in  tensor  calculus,  we  shall  deduce  Euler's  equa- 
tions for  the  motion  of  a  rigid  body  under  no  forces  about  a  fixed 

point  0.  We  write  the  fundamental  equations  (27)  in  the  co-vari- 
ant form 

-  0 

dt 

and  multiply  them,  for  the  sake  of  briefness,  by  the  contra-variant 
components  wik  of  an  arbitrary  skew-symmetrical  tensor  which  is 
constant  (independent  of  the  time),  and  apply  contraction  with  re- 

spect to  i  and  k.  If  we  put  Hik  equal  to  the  sum 

which  is  to  be  taken  over  all  the  points  of  mass,  we  get 

jia^*  =  H&W*  =  H, 
an  invariant,  and  we  can  compress  our  equation  into 

£-«  .....  « 
If  we  introduce  the  expressions  (29)  for  Ui,  and  the  tensor  of  inertia 
T,  then 

Ha-Vir^  ....       (33) 

We  have  hitherto  assumed  that  a  co-ordinate  system  which  is 
fixed  in  space  has  been  used.  The  components  T  of  inertia  then 
change  with  the  distribution  of  matter  in  the  course  of  time.  If, 
however,  in  place  of  this  we  use  a  co-ordinate  system  which  is  fixed 
in  the  body,  and  consider  the  symbols  so  far  used  as  referring  to 
the  components  of  the  corresponding  tensors  with  respect  to  this 

co-ordinate  system,  whereas  we  distinguish  the  components  of  the 
same  tensors  with  respect  to  the  co-ordinate  system  fixed  in  space 
by  a  horizontal  bar,  the  equation  (32)  remains  valid  on  account  of 
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the  invariance  of  H.     The  T*'s  are  now  constants  ;  on  the  other 

hand,  however,  the  wik's  vary  with  the  time.     Our  equation  gives  us 

To  determine     ,,  ,  we  choose  two  arbitrary  vectors  fixed  in  the 

body,  of  which  the  co-variant  components  in  the  co-ordinate  system 
attached  to  the  body  are  &  and  rji  respectively.  These  quantities 

are  thus  constants,  but  their  components  &,  ̂ i  in  the  space  co- 
ordinate system  are  functions  of  the  time.  Now, 

and  hence,  differentiating  with  respect  to  the  time 

dwik 

dt    ' 
By  formu

la  
(29) 

g- «»*• -is* dt 

We  thus  get  for  the  right-hand  side  of  (35) 

and  as  this  is  an  invariant,  we  may  remove  the  bars,  obtaining 

dwik This  holds  identically  in  £  and  ?;;  thus  if  the  Hik  are  arbitrary 
numbers, 

/77/)iAf 

Hik  ̂   =  w**(^  J5Trfc  +  vl  Hir). 

If  we  take  the  Hik  9  to  be  the  quantities  which  we  denoted  above 
by  this  symbol,  the  second  term  of  (34)  is  determined,  and  our 
equation  becomes 

(vri  Hrt  +  v*  Hir)  }wik  =  0> 
which  is  an  identity  in  the  skew-symmetrical  tensor  wik  ;  hence 

d(Hik  -  HK)       r      vr  Hr,  +  vi  Hir  I 
dt  L-  VlHri  -  t^flirJ 

We  shall  now  substitute  the  expression  (33)  for  H^.     Since,  on 
account  of  the  symmetry  of  Tik, 



EULER'S  EQUATIONS  FOR  A  SPINNING  TOP     53 

is  also  symmetrical  in  i  and  k,  the  two  last  terms  of  the  sum  in  the 

square  brackets  destroy  one  another.  If  we  now  put  the  sym- 
metrical tensor 

we  finally  get  our  equations  into  the  form 

It  is  well  known  that  we  may  introduce  a  Cartesian  co-ordinate 
system  composed  of  the  three  principal  axes  of  inertia,  so  that  in 
these 

(!;J)  and  *-°  *""+* 
If  we  then  write  T-^  in  place  of  T-^,  and  do  the  same  for  the  re- 

maining indices,  our  equations  in  this  co-ordinate  system  assume 
the  simple  form 

These  are  the  differential  equations  for  the  components  vue  of  the 
unknown  angular  velocity  —  equations  which,  as  is  known,  may  be 
solved  in  elliptic  functions  of  t.  The  principal  moments  of  inertia 

Ti  which  occur  here  are  connected  with  those,  Tt-*,  given  in  ac- 
cordance with  the  usual  definitions  by  the  equations 

T*  =  T2  +  Ts,         T*  =  T3  +  Tv         T*  =  T,  +  T,. 

The  above  treatment  of  the  problem  of  rotation  may,  in  contra- 
distinction to  the  usual  method,  be  transposed,  word  for  word,  from 

three-dimensional  space  to  multi-dimensional  spaces.  This  is, 
indeed,  irrelevant  in  practice.  On  the  other  hand,  the  fact  that  we 
have  freed  ourselves  from  the  limitation  to  a  definite  dimensional 

number  and  that  we  have  formulated  physical  laws  in  such  a  way 
that  the  dimensional  number  appears  accidental  in  them,  gives 
us  an  assurance  that  we  have  succeeded  fully  in  grasping  them 
mathematically. 

The  study  of  tensor-calculus*  is,  without  doubt,  attended  by 
conceptual  difficulties  —  over  and  above  the  apprehension  inspired 
by  indices,  which  must  be  overcome.  From  the  formal  aspect, 
however,  the  method  of  reckoning  used  is  of  extreme  simplicity  ; 
it  is  much  easier  than,  e.g.,  the  apparatus  of  elementary  vector- 
calculus.  There  are  two  operations,  multiplication  and  contraction  ; 
then  putting  the  components  of  two  tensors  with  totally  different 
indices  alongside  of  one  another;  the  identification  of  an  upper 

*  Note  4, 
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index  with  a  lower  one,  and,  finally,  summation  (not  expressed) 
over  this  index.  Various  attempts  have  been  made  to  set  up  a 
standard  terminology  in  this  branch  of  mathematics  involving  only 
the  vectors  themselves  and  not  their  components,  analogous  to  that 
of  vectors  in  vector  analysis.  This  is  highly  expedient  in  the  latter, 
but  very  cumbersome  for  the  much  more  complicated  framework 
of  the  tensor  calculus.  In  trying  to  avoid  continual  reference  to 
the  components  we  are  obliged  to  adopt  an  endless  profusion  of 
names  and  symbols  in  addition  to  an  intricate  set  of  rules  for 
carrying  out  calculations,  so  that  the  balance  of  advantage  is  con- 

siderably on  the  negative  side.  An  emphatic  protest  must  be 
entered  against  these  orgies  of  formalism  which  are  threatening 
the  peace  of  even  the  technical  scientist. 

§  7.  Symmetrical  Properties  of  Tensors 

It  is  obvious  from  the  examples  of  the  preceding  paragraph  that 
symmetrical  and  skew-symmetrical  tensors  of  the  second  order, 
wherever  they  are  applied,  represent  entirely  different  kinds  of 
quantities.  Accordingly  the  character  of  a  quantity  is  not  in 
general  described  fully,  if  it  is  stated  to  be  a  tensor  of  such  and 
such  an  order,  but  symmetrical  characteristics  have  to  be  added. 

A  linear  form  of  several  series  of  variables  is  called  sym- 
metrical if  it  remains  unchanged  after  any  two  of  these  series  of 

variables  are  interchanged,  but  is  called  skew-symmetrical  if  this 
converts  it  into  its  negative,  i.e.  reverses  its  sign.  A  symmetrical 
linear  form  does  not  change  if  the  series  of  variables  are  subjected 

to  any  permutations  among  themselves ;  a  skew-symmetrical  one 
does  not  change  if  an  even  permutation  is  carried  out  with  the  series 
of  variables,  but  changes  its  sign  if  the  permutation  is  odd.  The 

co-efficients  a^  of  a  symmetrical  trilinear  form  (we  purposely 
choose  three  again  as  an  example)  satisfy  the  conditions 

a>iki  =  dm  =  aiik  =  a>ku  =  o>iki  =  <*>uk> 

Of  the  co-efficients  of  a  skew-symmetrical  tensor  only  those  which 

have  three  different  indices  can  be  =(=  0  and  they  satisfy  the  equa- 
tions 

o-iki  =  a.itu  =  aiijc  =    -  akii  =   -  aiu  =    -  a«jt- 

There  can  consequently  be  no  (non-vanishing)  skew-sym- 
metrical forms  of  more  than  n  series  of  variables  in  a  domain  of  n 

variables.  Just  as  a  symmetrical  bilinear  form  may  be  entirely  re- 
placed by  the  quadratic  form  which  is  derived  from  it  by  identify- 

ing the  two  series  of  variables,  so  a  symmetrical  trilinear  form  is 

uniquely  determined  by  the  cubical  form  of  a  single  series  of  van- 



SYMMETRICAL  PROPERTIES  OF  TENSORS       55 

ables  with  the  co-efficients  a^,  which  is  derived  from  the  trilinear 
form  by  the  same  process.     If  in  a  skew-symmetrical  trilinear  form 

F  = 7W 

we  perform  the  3  !  permutations  on  the  series  of  variables  £,  77,  £, 
and  prefix  a  positive  or  negative  sign  to  each  according  as  the  per- 

mutation is  even  or  odd,  we  get  the  original  form  six  times.  If 

they  are  all  added  together,  we  get  the  following  scheme  for  them  : — 

F  =  $T^M  Vir)krll         •         •         •     (36) 

In  a  linear  form  the  property  of  being  symmetrical  or  skew- 
symmetrical  is  not  destroyed  if  each  series  of  variables  is  subjected 
to  the  same  linear  transformation.  Consequently,  a  meaning  may 

be  attached  to  the  terms  symmetrical  and  skew-symmetrical, 
co-variant  or  contra-variant  tensors.  But  these  expressions  have 
no  meaning  in  the  domain  of  mixed  tensors.  We  need  spend  no 

further  time  on  symmetrical  tensors,  but  must  discuss  skew-sym- 
metrical co-variant  tensors  in  somewhat  greater  detail  as  they  have 

a  very  special  significance. 

The  components  £*  of  a  displacement  determine  the  direction  of 
a  straight  line  (positive  or  negative)  as  well  as  its  magnitude.  If 

£*  and  77*  are  any  two  linearly  independent  displacements,  and  if 
they  are  marked  out  from  any  arbitrary  point  0,  they  trace  out  a 
plane.  The  ratios  of  the  quantities 

define  the  "  position  "  of  this  plane  (a  "  direction  "  of  the  plane)  in 
the  same  way  as  the  ratios  of  the  &  fix  the  position  of  a  straight 

line  (its  "  direction  ").  The  £**  are  each  =  0  if,  and  only  if,  the  two 

displacements  £*',  if  are  linearly  dependent ;  in  this  case  they  do  not 
map  out  a  two-dimensional  manifold.  When  two  linearly  inde- 

pendent displacements  £  and  77  trace  out  a  plane,  a  definite  sense  of 
rotation  is  implied,  viz.  the  sense  of  the  rotation  about  0  in  the 

plane  which  for  a  turn  <  180°  brings  £  to  coincide  with  77 ;  also  a 
definite  measure  (quantity),  viz.  the  area  of  the  parallelogram  en- 

closed by  £  and  77.  If  we  mark  off  two  displacements  £,  77  from  an 

arbitrary  point  0,  and  two  £*  77^  from  an  arbitrary  point  '0*,  then 
tha  position,  the  sense  of  rotation,  and  the  magnitude  of  the  plane 

marked  out  are  identical  in  each  if,  and  only  if,  the  £ifc's  of  the  one 
pair  coincide  with  those  of  the  other,  i.e. 
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So  that  just  as  the  £*'s  determine  the  direction  and  length  of  a 
straight  line,  so  the  £**'s  determine  the  sense  and  surface  area  of  a 
plane  ;  the  completeness  of  the  analogy  is  evident. 

To  express  this  we  may  call  the  first  configuration  a  one- 
dimensional  space-element,  the  second  a  two-dimensional 
space-element.  Just  as  the  square  of  the  magnitude  of  a  one- 
dimensional  space-element  is  given  by  the  invariant 

so  the  square  of  the  magnitude  of  the  two-dimensional  space- 
element  is  given,  in  accordance  with  the  formulae  of  analytical 
geometry,  by 

for  which  we  may  also  write 

(1*9*)  -  (trf) 

In  the  same  sense  the  determinants 

*  r," 

which  are  derived  from  three  independent  displacements  £,  ?/,  £, 

are  the  components  of  a  three-dimensional  space-element,  the 
magnitude  of  which  is  given  by  the  square  root  of  the  invariant 

In  three-dimensional  space  this  invariant  is 

and   since   £*z  =  +  |123,    according  as  ikl  is  an  even  or  an  odd 
permutation  of  123,  it  assumes  the  value 

g 

where  g  is  the  determinant  of  the  co-  efficients  g^  of  the  funda- 
mental metrical  form.  The  volume  of  the  parallelepiped  thus 

becomes 

£
3
 

(taking  the  absolute, 
i.e.  positive  value  of 
the  determinants). 

This  agrees  with  the  elementary  formulae  of  analytical  geometry. 
In  a  space  of  more  than  three  dimensions  we  may  similarly  pass 
on  to  four-dimensional  space-elements,  etc. 

Just  as  a  co-variant  tensor  of  the  first  order  assigns  a  number 
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linearly  (and  independently  of  the  co-ordinate  system)  to  every 
one-dimensional  space-element  (i.e.  displacement),  so  a  skew- 

symmetrical  co-variant  tensor  of  the  second  order  assigns  a 
number  to  every  two-dimensional  space-element,  a  skew-sym- 

metrical tensor  of  the  third  order  to  each  three-dimensional 

space-element,  and  so  on  :  this  is  immediately  evident  from  the  form 
in  which  (36)  is  expressed.  For  this  reason  we  consider  it  justifiable 

to  call  the  co-variant  skew-symmetrical  tensors  simply  linear 
tensors.  Among  operations  in  the  domain  of  linear  tensors 

we  shall  mention  the  two  following  ones  :  — 

a&k  -  cckbi  =  cik      .         .         .         .     (37) 
Qibki  +  ctkbu  +  aibik  =  CM       .         .         .     (38) 

The  former  produces  a  linear  tensor  of  the  second  order  from  two 

linear  tensors  of  the  first  order  ;  the  latter  produces  a  linear  tensor 
of  the  third  order  from  one  of  the  first  and  one  of  the  second. 

Sometimes  conditions  of  symmetry  more  complicated  than 

those  considered  heretofore  occur.  In  the  realm  of  quadrilinear 

forms  F  (£,  ?],  g,  ?/)  those  play  a  particular  part  which  satisfy  the 
conditions 

)         .         .     (39,) 

•        -        -     (392) 
Q     .        .     (393) 

For  it  may  be  shown  that  for  every  quadratic  form  of  an  arbitrary 

two-dimensional  space-element 

there  is  one  and  only  one  quadrilinear  form  F  which  satisfies 

these  conditions  of  symmetry,  and  from  which  the  above  quadratic 

form  is  derived  by  identifying  the  second  pair  of  variables  £',  rf 
with  the  first  pair  £,  rj.  We  must  consequently  use  co-variant 
tensors  of  the  fourth  order  having  the  symmetrical  properties  (39) 

if  we  wish  to  represent  functions  which  stand  in  quadratic  relation- 
ship with  an  element  of  surface. 

The  most  general  form  of  the  condition  of  symmetry  for  a 
tensor  F  of  the  fifth  order  of  which  the  first,  second,  and  fourth 

series  of  variables  are  contra-gredient,  the  third  and  fifth  co-gredient 
(we  are  taking  a  particular  case)  are 

=  0 

in  which  S  signifies  all  permutations  of  the  five  series  of  variables 

in  which  the  contra-gredient  ones  are  interchanged  among  them- 
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selves  and  likewise  the  co-gredient  ones  ;  F$  denotes  the  form  which 

results  from  F  after  the  permutation  S  ',  eg  is  a  system  of  definite 
numbers,  which  are  assigned  to  the  permutations  S.  The  sum- 

mation is  taken  over  all  the  permutations  S.  The  kind  of 
symmetry  underlying  a  definite  type  of  tensors  expresses  itself 
in  one  or  more  of  such  conditions  of  symmetry. 

§  8.  Tensor  Analysis.     Stresses 

Quantities  which  describe  how  the  state  of  a  spatially  extended 
physical  system  varies  from  point  to  point  have  not  a  distinct  value 

but  only  one  "  for  each  point  "  :  in  mathematical  language  they 
are  "functions  of  the  place  or  point".  According  as  we  are  deal- 

ing with  a  scalar,  vector,  or  tensor,  we  speak  of  a  scalar,  vector,  or 
tensor  field. 

Such  a  field  is  given  if  a  scalar,  vector,  or  tensor  of  the  proper 
type  is  assigned  to  every  point  of  space  or  to  a  definite  region  of  it. 
If  we  use  a  definite  co-ordinate  system  the  value  of  the  scalar 
quantities  or  of  the  components  of  the  vector  or  tensor  quantities 

respectively,  appear  in  the  co-ordinate  system  as  functions  of  the 
co-ordinates  of  a  variable  point  in  the  region  under  consideration. 

Tensor  analysis  tells  us  how,  by  differentiating  with  respect  to 
the  space  co-ordinates,  a  new  tensor  can  be  derived  from  the  old 
one  in  a  manner  entirely  independent  of  the  co-ordinate  system. 
This  method,  like  tensor  algebra,  is  of  extreme  simplicity.  Only 
one  operation  occurs  in  it,  viz.  differentiation. 

If 

denotes  a  given  scalar  field,  the  change  of  <£  corresponding  to  an 

infinitesimal  displacement  of  the  variable  point,  in  which  its  co- 
ordinates Xi  suffer  changes  dxi  respectively,  is  given  by  the  total 

differential 

This  formula  signifies  that  if  the  A#;  are  first  taken  as  the  com- 
ponents of  a  finite  displacement  and  the  A/  are  the  corresponding 

changes  in  /,  then  the  difference  between 
T"V 

A/  and  £te^Xi 

does  not  only  decrease  absolutely  to  zero  with  the  components  of 

the  displacement,  but  also  relatively  to  the  amount  of  the  dis- 
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placement,  the  measure  of  which  may  be  defined  as  |  Ao^  |  +  |  Az2  1 

+  .  .  .  +  |  A#n  |.  We  link  up  the  linear  form 

^ lxf 
i 

in  the  variables  £*  to  this  differential.  If  we  carry  out  the  same 
construction  in  another  co-ordinate  system  (with  horizontal  bars 

over  the  co-ordinates),  it  is  evident  from  the  meaning  of  the  term 
differential  that  the  first  linear  form  passes  into  the  second,  if  the 

£*'s  are  subjected  to  the  transformation  which  is  contra-gredient 
to  the  fundamental  vectors.  Accordingly 

are  the  co-variant  components  of  a  vector  which  arises  from  the 
scalar  field  <£  in  a  manner  independent  of  the  co-ordinate  system. 
In  ordinary  vector  analysis  it  occurs  as  the  gradient  and  is 
denoted  by  the  symbol  grad  <£. 

This  operation  may  immediately  be  transposed  from  a  scalar 

to  any  arbitrary  tensor  field.  If,  e.g.,  f\k(x)  are  components  of  a 

tensor  field  of  the  third  order,  contra-variant  with  respect  to  h, 

but  co-variant  with  respect  to  i  and  k,  then 

is  an  invariant,  if  we  take  &  as  standing  for  the  components  of  an 

arbitrary  but  constant  co-variant  vector  (i.e.  independent  of  its 
position),  and  vft  £  each  as  standing  for  the  components  of  a 

similar  contra-variant  vector  in  turn.  The  change  in  this  invariant 
due  to  an  infinitesimal  displacement  with  components  dxi  is 
given  by 

hence 

fh  ̂ fik 

J  {fa     =
  —   

are  the  components  of  a  tensor  field  of  the  fourth  order,  which 

arises  from  the  given  one  in  a  manner  independent  of  the  co- 
ordinate system.  Just  this  is  the  process  of  differentiation ; 

'  as  is  seen,  it  raises  the  order  of  the  tensor  by  1.  We  have  still  to remark  that,  on  account  of  the  circumstance  that  the  fundamental 

metrical  tensor  is  independent  of  its  position,  one  obtains  the 
components  of  the  tensor  just  formed,  for  example,  which  are 

'  contra-variant  with  respect  to  the  index  k,  by  transposing  the 
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•ftfhki index  k  under  the  sign  of  differentiation  to  the  top,  viz.   J-  —  .'    The 

ooH 

change  from  co-variant  to  contra-  variant  is  interchangeable  with 
differentiation.  Differentiation  may  be  carried  out  purely  formally 
by  imagining  the  tensor  in  question  multiplied  by  a  vector  having 
the  co-variant  components 

> 

and  treating  the  differential  quotient  -L  as  the  symbolic  product 

of  /  and  —  —  .     The  symbolic  vector  (40)  is  often  encountered  in 
OXi 

mathematical  literature  under  the  mysterious  name  "  nabla-vector  ". 
Examples.  —  The   vector   with   the   co-variant  components  Ui 

gives  rise  to  the  tensor  of  the  second  order  —  —  =  U&-     From  this 

^XK 

we  form 

These  quantities  are  the  co-variant  components  of  a  linear  tensor 
of  the  second  order.  In  ordinary  vector  analysis  it  occurs  (with 

the  signs  reversed)  as  "rotation"  (rot,  spin  or  curl).  On  the 
other  hand  the  quantities 

JL  f^i  4-  * 

*w»  ~ are  the  co-variant  components  of  a  symmetrical  tensor  of  the 
second  order.  If  the  vector  u  represents  the  velocity  of  continu- 

ously extended  moving  matter  as  a  function  of  its  position,  the 
vanishing  of  this  tensor  at  a  point  signifies  that  the  immediate 
neighbourhood  of  the  point  moves  as  a  rigid  body  ;  it  thus  merits 
the  name  distortion  tensor.  Finally  by  contracting  u\  we  get 
the  scalar 

which  is  known  in  vector  analysis  as  "divergence"  (div.). 
By  differentiating  and  contracting  a  tensor  of  the  second  order 

having  mixed  components  S*  we  derive  the  vector 

If  Vik  are  the  components  of  a  linear  tensor  field  of  the  second 
order,  then,  analogously  to  formula  (38)  in  which  we  substitute  V 
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or  b  and  the  symbolic  vector  "  differentiation  "  for  a,  we  get  the 
inear  tensor  of  the  third  order  with  the  components 

+       i  +      1*  .  (42) 
~f)Xi          l)Xk         ̂ Xi 

?ensor  (41),  i.e.  the  curl,  vanishes  if  Vi  is  the  gradient  of  a  scalar 
ield  ;  tensor  (42)  vanishes  if  VM  is  the  curl  of  a  vector  Ui. 

Stresses.  —  An  important  example  of  a  tensor  field  is  offered  by 
ihe  stresses  occurring  in  an  elastic  body  ;  it  is,  indeed,  from  this 

xample  that  the  name  "  tensor  "  has  been  derived.  When  tensile 
r  compressional  forces  act  at  the  surface  of  an  elastic  body,  whilst, 

Q  addition,  "  volume-forces  "  (e.g.  gravitation)  act  on  various 
tortions  of  the  matter  within  the  body,  a  state  of  equilibrium  es- 
iblishes  itself,  in  which  the  forces  of  cohesion  called  up  in  the 
aatter  by  the  distortion  balance  the  impressed  forces  from  without. 
f  we  imagine  any  portion  J  of  the  matter  cut  out  of  the  body  and 
uppose  it  to  remain  coherent  after  we  have  removed  the  remaining 
:ortion,  the  impressed  volume  forces  will  not  of  themselves  keep 
his  piece  of  matter  in  a  state  of  equilibrium.  They  are,  however, 
<alanced  by  the  compressional  forces  acting  on  the  surface  O  of  the 
riortion  J,  which  are  exerted  on  it  by  the  portion  of  matter  removed. 
Ve  have  actually,  if  we  do  not  take  the  atomic  (granular)  structure 
'f  matter  into  account,  to  imagine  that  the  forces  of  cohesion  are 
nly  active  in  direct  contact,  with  the  consequence  that  the  action 
if  the  removed  portion  upon  /must  be  representable  by  superficial 
orces  such  as  pressure  :  and  indeed,  if  Sdo  is  the  pressure  acting 

>n  an  element  of  surface  do  (S  here  denotes  the  pressure  per  unit 
urface),  S  can  depend  only  upon  the  place  at  which  the  element  of 
.urface  do  happens  to  be  and  on  the  inward  normal  n  of  this  element 

f  surface  with  respect  to  /,  which  characterises  the  "  position  "  of 
We  shall  write  Sra  for  S  to  emphasise  this  connection  between 

»  and  n.  If  -  n  denotes  the  normal  in  a  direction  reversed  to  that 

•f  n,  it  follows  from  the  equilibrium  of  a  small  infinitely  thin  disc, 
bat 

S_.  =  -  S,        .        .        .        .     (43) 

We  shall  use  Cartesian  co-ordinates  xit  x.2,  xy  The  compres- 
ional  forces  per  unit  of  area  at  a  point,  which  act  on  an  element 

'  f  surface  situated  at  the  same  point,  the  inward  normals  of  which 
oincide  with  the  direction  of  the  positive  xr,  x2-,  #3-axis  re- 
pectively  will  be  denoted  by  S^  S2,  S3.  We  now  choose  any 
hree  positive  numbers  ax,  a2,  a3,  and  a  positive  number  e,  which  is 
D  converge  to  the  value  0  (whereas  the  04  remain  fixed).  From 
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the  point  0  under  consideration  we  mark  off  in  the  direction  of 

the  positive  co-ordinate  axes  the  distances 

OP1  =  ealf  OP2  =  ea2,  OP3  =  ca3 

and  consider  the  infinitesimal  tetrahedron  OP1P2P3  having  OP2P3, 

OPgPj,  OPjP2  as  walls  and  PiP2P3  as  its  "  roof  ".  If  /  is  the 
superficial  area  of  the  roof  and  alt  a2,  a3  are  the  direction  cosines  of 
its  inward  normals  n,  then  the  areas  of  the  walls  are 

The  sum  of  the  pressures  on  the  walls  and  the  roof  becomes  for 
evanescent  values  of  e  : 

/{Sn-   (aA  +  OjS2  +  o8S,)}. 

The  magnitude  of  /is  of  the  order  e2:  but  the  volume  force  acting 
upon  the  volume  of  the  tetrahedron  is  only  of  the  order  of  mag- 

nitude «3.  Hence,  owing  to  the  condition  for  equilibrium,  we  must 
have 

SM  =»  ̂ Si  +  a2S2  +  a3S3. 

With  the  help  of  (43)  this  formula  may  be  extended  immediately 
to  the  case  in  which  the  tetrahedron  is  situated  in  any  of  the  re- 

maining 7  octants.  If  we  call  the  components  of  S;  with  respect 

to  the  co-ordinate  axes  Sn,  Si%,  S&,  and  if  £*,  rf  are  the  components 
of  any  two  arbitrary  displacements  of  length  1,  then 

(44) ik 

is  the  component,  in  the  direction  77,  of  the  compressional  force 
which  is  exerted  on  an  element  of  surface  of  which  the  inner 

normal  is  £.  The  bilinear  form  (44)  has  thus  a  significance  in- 

dependent of  the  co-ordinate  system,  and  the  S^'s  are  the  com- 
ponents of  a  "  stress  "  tensor  field.  We  shall  continue  to  operate 

in  rectangular  co-ordinate  systems  so  that  we  shall  not  have  to 
distinguish  between  co-variant  and  contra-variant  quantities. 

We  form  the  vector  S\  having  components  Su,  821,  831.  The 

component  of  S'j  in  the  direction  of  the  inward  normal  n  of  an 
element  of  surface  is  then  equal  to  the  aq-component  of  Sn.  The 
^-component  of  the  total  pressure  which  acts  on  the  surface  fl 
of  the  detached  portion  of  matter  J  is  therefore  equal  to  the  surface 

integral  of  the  normal  components  of  S'j  and  this,  by  Gauss's 
Theorem,  is  equal  to  the  volume  integral 
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The  same  holds  for  the  x2  and  the  x3  component.     We  have  thus 
to  form  the  vector  p  having  the  components 

(this  is  performed,  as  we  know,  according  to  an  invariant  law). 
The  compressional  forces  S  are  then  equivalent  to  a  volume  force 
having  the  direction  and  intensity  given  by  p  per  unit  volume  in 

the  sense  that,  for  every  dissociated  portion  of  matter  J", 

=  [pdF       ....     (45) 

If  k  is  the  impressed  force  per  unit  volume,  the  first  condition  of 
equilibrium  for  the  piece  of  matter  considered  coherent  after  being 
detached  is 

J< 
(p  +  k)  dV  =  0, 

j 

and  as  this  must  hold  for  every  portion  of  matter 

p  +  k  =  0          .         .         .         .     (46) 

ilf  we  choose  an  arbitrary  origin  0  and  if  r  denote  the  radius 
vector  to  the  variable  point  P,  and  the  square  bracket  denote  the 

"  vectorial  "  product,  the  second  condition  for  equilibrium,  the 
equation  of  moments,  is 

|[r,  SJ  do  +  J[r,  k]  dV  =  0, 

and  since  (46)  holds  generally  we  must  have,  besides  (45), 

[r,  Sn]Jo=    [P,  p]dF. ( 

The  xl  component  of  [r,  SJ  is  equal  to  the  component  of  #2S'3  - 
r3S'2  in  the  direction  of  n.  Hence,  by  Gauss's  theorem,  the  x± 
component  of  the  left-hand  member  is 

-  I  div  (#2S'3  -  z3S'2)  dV. 1 
Hence  we  get  the  equation 

div  (*2S'3  - 
But  the  left-hand  member 

=  (x2  div  S'3  -  xs  div  S'2)  +  (S'3 .  grad  x2  -  S'2  grad  xs 
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Accordingly,  if  we  form  the  x.2  and  xz  components  in  addition  to 
the  x1  component,  this  condition  of  equilibrium  gives  us 

^23   =   ̂ 32»  ̂ 31  =   ̂ 13'  ̂ 12  =   ̂21' 

i.e.  the  symmetry  of  the  stress- tensor  S.     For  an  arbitrary  dis- 
placement having  the  components  £*, 

is  the  component  of  the  pressure  per  unit  surface  for  the  component 
in  the  direction  £,  which  acts  on  an  element  of  surface  placed  at 

right  angles  to  this  direction.  (We  may  here  again  use  any  arbi- 
trary affine  co-ordinate  system.)  The  stresses  are  fully  equi- 

valent to  a  volume  force  of  which  the  density  p  is  calculated 
according  to  the  invariant  formulae 

-,-g    •    •    .    .  m 
In  the  case  of  a  pressure  p  which  is  equal  in  all  directions 

As  a  result  of  the  foregoing  reasoning  we  have  formulated  in 
exact  terms  the  conception  of  stress  alone,  and  have  discovered 
how  to  represent  it  mathematically.  To  set  up  the  fundamental 
laws  of  the  theory  of  elasticity  it  is,  in  addition,  necessary  to  find 
out  how  the  stresses  depend  on  the  distortion  brought  about  in 
the  matter  by  the  impressed  forces.  There  is  no  occasion  for  us  to 
discuss  this  in  greater  detail. 

£  9.  Stationary  Electromagnetic  Fields 

Hitherto,  whenever  we  have  spoken  of  mechanical  or  physical 
things,  we  have  done  so  for  the  purpose  of  showing  in  what  manner 

their  spatial  ̂ nature  expresses  itself  :  namely,  that  its  laws  mani- 
fest themselves  as  invariant  tensor  relations.  This  also  gave  us  an 

opportunity  of  demonstrating  the  importance  of  the  tensor  cal- 
culus by  giving  concrete  examples  of  it.  It  enabled  us  to  prepare 

the  ground  for  later  discussions  which  will  grapple  with  physical 
theories  in  greater  detail,  both  for  the  sake  of  the  theories  them- 

selves and  for  their  important  bearing  on  the  problem  of  time.  In 
this  connection  the  theory  of  the  electromagnetic  field,  which 
is  the  most  perfect  branch  of  physics  at  present  known,  will  be  of 
the  highest  importance.  It  will  here  only  be  considered  in  so  far 
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as  time  does  not  enter  into  it,  i.e.  we  shall  confine  our  attention 
to  conditions  which  are  stationary  and  invariable  in  time. 

Coulomb's  Law  for  electrostatics  may  be  enunciated  thus.  If 
any  charges  of  electricity  are  distributed  in  space  with  the  density  p 
they  exert  a  force 

K  =  e  .  E  .....     (48) 

upon  a  point-charge  e,  whereby 

-  <«> 

r  here  denotes  the  vector  OP  which  leads  from  the  "  point  of  emerg- 
ence 0  "  at  which  E  is  to  be  determined,  to  the  "  current  point  "  or 

source,  with  respect  to  which  the  integral  is  taken  :  r  is  its  length 
and  dV  is  the  element  of  volume.  The  force  is  thus  composed  of 
two  factors,  the  charge  e  of  the  small  testing  body,  which  depends 

on  its  condition  alone,  and  of  the  "  intensity  of  field  "  E,  which  on 
the  contrary  is  determined  solely  by  the  given  distribution  of  the 
charges  in  space.  We  picture  in  our  minds  that  even  if  we  do 

not  observe  the  force  acting  on  a  testing  body,  an  "  electric  field  " 
is  called  up  by  the  charges  distributed  in  space,  this  field  being 
described  by  the  vector  E  ;  the  action  on  a  point-charge  e  expresses 

'itself  in  the  force  (48).  We  may  derive  E  from  a  potential  -  </> in  accordance  with  the  formulae 

=  ferfF.         .         .     (50) 
E  = 

From  (50)  it  follows  (1)  that  E  is  an  irrotational  (and  hence  lamellar) 
vector,  and  (2)  that  the  flux  of  E  through  any  closed  surface  is  equal 
to  the  charges  enclosed  by  this  surface,  or  that  the  electricity  is  the 
source  of  the  electric  field  ;  i.e.  in  formulae 

curl  E  =  0         div  E  =  p       .         .         .     (51) 

Inversely,  Coulomb's  Law  arises  out  of  these  simple  differential 
laws  if  we  add  the  condition  that  the  field  E  vanish  at  infinite 

distances.  For  if  we  put  E  =  grad  $  from  the  first  of  the  equations 

•  (51),  we  get  from  the  second,  to  determine  <£,  Poisson's  equation 
A<£  =  p,  the  solution  of  which  is  given  by  (50). 

Coulomb's  Law  deals  with  "action  at  a  distance".  The 
intensity  of  the  field  at  a  point  is  expressed  by  it  independently  of 
'the  charges  at  all  other  points,  near  or  far,  in  space.  In  contra- 

distinction from  this  the  far  simpler  formulae  (51)  express  laws 

relating  to  "  infinitely  near"  action.  As  a  knowlege  of  the  values 
of  a  function  in  an  arbitrarily  small  region  surrounding  a  point  is 

'sufficient  to  determine  the  differential  quotient  of  the  function  at 
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the  point,  the  values  of  p  and  E  at  a  point  and  in  its  immediate 

neighbourhood  are  brought  into  connection  with  one  another  by 
(51).  We  shall  regard  these  laws  of  infinitely  near  action  as  the 
true  expression  of  the  uniformity  of  action  in  nature,  whereas  we 

look  upon  (49)  merely  as  a  mathematical  result  following  logically 
from  it.  In  the  light  of  the  laws  expressed  by  (51)  which  have 

such  a  simple  intuitional  significance  we  believe  that  we  under- 

stand the  source  of  Coulomb's  Law.  In  doing  this  we  do  indeed 
bow  to  dictates  of  the  theory  of  knowledge.  Even  Leibniz  formu- 

lated the  postulate  of  continuity,  of  infinitely  near  action,  as  a 

general  principle,  and  could  not,  for  this  reason,  become  reconciled 

to  Newton's  Law  of  Gravitation,  which  entails  action  at  a  distance 
and  which  corresponds  fully  to  that  of  Coulomb.  The  mathe- 

matical clearness  and  the  simple  meaning  of  the  laws  (51)  are 

additional  factors  to  be  taken  into  account.  In  building  up  the 

theories  of  physics  we  notice  repeatedly  that  once  we  have  suc- 
ceeded in  bringing  to  light  the  uniformity  of  a  certain  group  of 

phenomena  it  may  be  expressed  in  formulae  of  perfect  mathematical 

harmony.  After  all,  from  the  physical  point  of  view,  Maxwell's 
theory  in  its  later  form  bears  uninterrupted  testimony  to  the 
stupendous  fruitfulness  which  has  resulted  through  passing  from 

the  old  idea  of  action  at  a  distance  to  the  modern  one  of  infinitely 
near  action. 

The  field  exerts  on  the  charges  which  produce  it  a  force  of 

which  the  density  per  unit  volume  is  given  by  the  formula 

p  =  pE   (52) 

This  is  the  rigorous  interpretation  of  the  equation  (48). 

If  we  bring  a  test  charge  (on  a  small  body)  into  the  field,  it 

also  becomes  one  of  the  field-producing  charges,  and  formula  (48) 
will  lead  to  a  correct  determination  of  the  field  E  existing  before 

the  test  charge  was  introduced,  only  if  the  test  charge  e  is  so  weak 
that  its  effect  on  the  field  is  imperceptible.  This  is  a  difficulty 

which  permeates  the  whole  of  experimental  physics,  viz.  that  by 
introducing  a  measuring  instrument  the  original  conditions  which 

are  to  be  measured  become  disturbed.  This  is,  to  a  large  extent., 

the  source  of  the  errors  to  the  elimination  of  which  the  experi- 
menter has  to  apply  so  much  ingenuity. 

The  fundamental  law  of  mechanics  :  mass  x  acceleration  = 

force,  tells  us  how  masses  move  under  the  influence  of  given  forces 

(the  initial  velocities  being  given).  Mechanics  does  not,  however, 

teach  us  what  is  force ;  this  we  learn  from  physics.  The  funda- 
mental law  of  meclianics  is  a  blank  form  ivhich  acquires  a  concrete 
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content  only  when  the  conception  of  force  occurring  in  it  is  filled  in 

by  physics.  The  unfortunate  attempts  which  have  been  made  to 
develop  mechanics  as  a  branch  of  science  distinct  in  itself  have,  in 

consequence,  always  sought  help  by  resorting  to  an  explanation  in 

words  of  the  fundamental  law  :  force  signifies  mass  x  accelera- 
tion. In  the  present  case  of  electrostatics,  i.e.  for  the  particular 

category  of  physical  phenomena,  we  recognise  what  is  force,  and  how 

it  is  determined  according  to  a  definite  law  by  (52)  from  the  phase- 
quantities  charge  and  field.  If  we  regard  the  charges  as  being 
given,  the  field  equations  (51)  give  the  relation  in  virtue  of  which 
the  charges  determine  the  field  which  they  produce.  With  regard 
to  the  charges,  it  is  known  that  they  are  bound  to  matter.  The 

modern  theory  of  electrons  has  shown  that  this  can  be  taken  in  a 

perfectly  rigorous  sense.  Matter,  is  composed  of  elementary  quanta, 
electrons,  which  have  a  definite  invariable  mass,  and,  in  addition, 

a  definite  invariable  charge.  Whenever  new  charges  appear  to 

spring  into  existence,  we  merely  observe  the  separation  of  positive 
and  negative  elementary  charges  which  were  previously  so  close 

together  that  the  "  action  at  a  distance  "  of  the  one  was  fully  com- 
pensated by  that  of  the  other.  In  such  processes,  accordingly,  just 

as  much  positive  electricity  "  arises  "  as  negative.  The  laws  thus 
constitute  a  cycle.  The  distribution  of  the  elementary  quanta  of 

matter  provided  with  charges  fixed  once  and  for  all  (and,  in  the 

case  of  non-stationary  conditions,  also  their  velocities)  determine 
the  field.  The  field  exerts  upon  charged  matter  a  ponderomotive 

force  which  is  given  by  (52).  The  force  determines,  in  accordance 
with  the  fundamental  law  of  mechanics,  the  acceleration,  and  hence 

the  distribution  and  velocity  of  the  matter  at  the  following  moment. 
We  require  this  whole  network  of  theoretical  considerations 

to  arrive  at  an  experimental  means  of  verification, — if  we 
assume  that  what  we  directly  observe  is  the  motion  of  matter. 

(Even  this  can  be  admitted  only  conditionally.)  We  cannot  merely 
test  a  single  law  detached  from  this  theoretical  fabric  !  The  con- 

nection between  direct  experience  and  the  objective  element  behind 

it,  which  reason  seeks  to  grasp  conceptually  in  a  theory,  is  not  so 

simple  that  every  single  statement  of  the  theory  has  a  meaning 
which  may  be  verified  by  direct  intuition.  We  shall  see  more  and 

more  clearly  in  the  sequel  that  Geometry,  Mechanics,  and  Physics 
form  an  inseparable  theoretical  whole  in  this  way.  We  must 
never  lose  sight  of  this  totality  when  we  enquire  whether  these 
sciences  interpret  rationally  the  reality  which  proclaims  itself 
in  all  subjective  experiences  of  consciousness,  and  which  itself 

transcends  consciousness  :  that  is,  truth  forms  a  system.  For  the 
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rest,  the  physical  world-picture  here  described  in  its  first  outlines 
is  characterised  by  the  dualism  of  matter  and  field,  between 
which  there  is  a  reciprocal  action.  Not  till  the  advent  of  the 
theory  of  relativity  was  this  dualism  overcome,  and,  indeed,  in 
favour  of  a  physics  based  solely  on  fields  (cf.  §  24). 

The  ponderomotive  force  in  the  electric  field  was  traced  back 
to  stresses  even  by  Faraday.  If  we  use  a  rectangular  system  of 

co-ordinates  xlt  X2,  x3  in  which  Ev  E2,  E2  are  the  components  of 
the  electrical  intensity  of  field,  the  Xi  component  of  the  force- 
density  is 

f^El      *&E 

—  i  +  —  — 
\  ̂x         <)# 

By  a  simple  calculation  which  takes  account  of  the  irrotational 
property  of  E  we  discover  from  this  that  the  components  pi  of  the 

force-density  are  derived  by  the  formulae  (47)  from  the  stress  tensor, 
the  components  Sue  of  which  are  tabulated  in  the  following  quad- 

ratic scheme 

(53) 

We  observe  that  the  condition  of  symmetry  Ski  =  S&  is  fulfilled.  It 
is,  above  all,  important  to  notice  that  the  components  of  the  stress 
tensor  at  a  point  depend  only  on  the  electrical  intensity  of  field  at 
this  point.  (They,  moreover,  depend  only  on  the  field,  and  not  on 
the  charge.)  Whenever  a  force  p  can  be  retraced  by  (47)  to  stresses 
S,  -which  form  a  symmetrical  tensor  of  the  second  order  only  de- 

pendent on  the  values  of  the  phase-quantities  describing  the  physical 
state  at  the  point  in  question,  we  shall  have  to  regard  these  stresses 

as  the  primary  factors  and  the  actions  of  the  forces  as  their  conse- 
quent. The  mathematical  justification  for  this  point  of  view  is 

brought  to  light  by  the  fact  that  the  force  p  results  from  differenti- 
ating the  stress.  Compared  with  forces,  stresses  are  thus,  so  to 

speak,  situated  on  the  next  lower  plane  of  differentiation,  and  yet 

do  not  depend  on  the  whole  series  of  values  traversed  by  the  phase- 
quantities,  as  would  be  the  case  for  an  arbitrary  integral,  but  only 
on  its  value  at  the  point  under  consideration.  It  further  follows 
from  the  fact  that  the  electrostatic  forces  which  charged  bodies 
exert  on  one  another  can  be  retraced  to  a  symmetrical  stress  tensor, 
that  the  resulting  total  force  as  well  as  the  resulting  couple  vanishes 
(because  the  integral  taken  over  the  whole  space  has  a  divergence 
F=  0).  This  means  that  an  isolated  system  of  charged  masses 
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which  is  initially  at  rest  cannot  of  itself  acquire  a  translational  or 
rotational  motion  as  a  whole. 

The  tensor  (53)  is,  of  course,  independent  of  the  choice  of  co- 
ordinate system.  If  we  introduce  the  square  of  the  value  of  the 

field  intensity 

|  E  |  2  =  EiEi then  we  have Sik 

These  are  the  co-variant  stress  components  not  only  in  a  Cartesian 
but  also  in  any  arbitrary  affine  co-ordinate  system,  if  EI  are  the  co- 
variant  components  of  the  field  intensity.  The  physical  significance 
of  these  stresses  is  extremely  simple.  If,  for  a  certain  point,  we 
use  rectangular  co-ordinates,  the  X1  axis  of  which  points  in  the 
direction  E  :  then 

E1  =  \E]        E2  =  0        E3  =  0 

we  thus  find  them  to  be  composed  of  a  tension  having  the  intensity 

$  }  E  |  2  in  the  direction  of  the  lines  of  force,  and  of  a  pressure  of 
the  same  intensity  acting  perpendicularly  to  them. 

The  fundamental  laws  of  electrostatics  may  now  be  sum- 
marised in  the  following  invariant  tensor  form  :  — 

.     (54) 
i  ]c  rv  -n "      =  °'  or  Ei 

(III)  Sik  = 

A  system  of  discrete  point-charges  elt  e2,  e3,  .  .  .  has  potential 
energy 

[7.15  — 
STT  tL-  TH- 

*+* 

in  which  nk  denotes  the  distance  between  the  two  charges  &i  and 
et.  This  signifies  that  the  virtual  work  which  is  performed  by  the 
forces  acting  at  the  separate  points  (owing  to  the  charges  at  the 
remaining  points)  for  an  infinitesimal  displacement  of  the  points 
is  a  total  differential,  viz.  BU.  For  continuously  distributed  charges 
this  formula  resolves  into 

in  which  both  volume  integrations  with  respect  to  P  and  P'  are  to 
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be  taken  over  the  whole  space,  and  rpp  denotes  the  distance  be- 
tween these  two  points.     Using  the  potential  <f>  we  may  write 

C7=  - 

The  integrand  is  <f> .  div  E.     In  consequence  of  the  equation 

div  ($E)  =  <f> .  div  E  +  E  grad  <f> 

and  of  Gauss's  theorem,  according  to  which  the  integral  of  div 
taken  over  the  whole  space  is  equal  to  0,  we  have 

f  f  f 

\p(j>dV  =  I  (E  grad  <f>)dV  =  \\E\2dV; 

i.e.  U  =  h  E  |  W    .        .        .        .     (55) 

This  representation  of  the  energy  makes  it  directly  evident  that 
the  energy  is  a  positive  quantity.  If  we  trace  the  forces  back  to 
stresses,  we  must  picture  these  stresses  (like  those  in  an  elastic 
body)  as  being  everywhere  associated  with  positive  potential  energy 
of  strain.  The  seat  of  the  energy  must  hence  be  sought  in  the  field. 
Formula  (55)  gives  a  fully  satisfactory  account  of  this  point.  It 

tells  us  that  the  energy  associated  with  the  strain  amounts  to  \\  E  2 
per  unit  volume,  and  is  thus  exactly  equal  to  the  tension  and  the 
pressure  which  are  exerted  along  and  perpendicularly  to  the  lines 
of  force.  The  deciding  factor  which  makes  this  view  permissible  is 
again  the  circumstance  that  the  value  obtained  for  the  energy- 
density  depends  solely  on  the  value,  at  the  point  in  question,  of 
the  phrase-quantity  E  which  characterises  the  field.  Not  only  the 
field  as  a  whole,  but  every  portion  of  the  field  has  a  definite 

amount  of  potential  energy  =  J-J-  E  \  2dV.  In  statics,  it  is  only  the 
total  energy  which  comes  into  consideration.  Only  later,  when 
we  pass  on  to  consider  variable  fields,  shall  we  arrive  at  irrefutable 
confirmation  of  the  correctness  of  this  view. 

In  the  case  of  conductors  in  a  statical  field  the  charges  collect 
on  the  outer  surface  and  there  is  no  field  in  the  interior.  The 

equations  (51)  then  suffice  to  determine  the  electrical  field  in  free 

space  in  the  "  aether ".  If,  however,  there  are  non-conductors, 
dielectrics  in  the  field,  the  phenomenon  of  dielectric  polarisation 
(displacement)  must  be  taken  into  consideration.  Two  charges 

+  e  and  -  e  at  the  points  Pl  and  P2  respectively,  "  source  and 
sink"  as  we  shall  call  them,  produce  a  field,  which  arises  from 
the  potential 

£ 

i~7T 
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in  which  rx  and  r2  denote  the  distances  of  the  points  Pv  P2  from 

the  origin,  0.  Let  the  product  of  e  and  the  vector  PXP2  ̂ e  called 

the  moment  m  of  the  "  source  and  sink  "  pair.  If  we  now  suppose 
the  two  charges  to  approach  one  another  in  a  definite  direction  at 
a  point  P,  the  charge  increasing  simultaneously  in  such  a  way 
that  the  moment  m  remains  constant,  we  get,  in  the  limit,  a 

"  doublet  "  of  moment  m,  the  potential  of  which  is  given  by 

The  result  of  an  electric  field  in  a  dielectric  is  to  give  rise  to 
these  doublets  in  the  separate  elements  of  volume  :  this  effect  is 
known  as  polarisation.  If  m  is  the  electric  moment  of  the 
doublets  per  unit  volume,  then,  instead  of  (50),  the  following 
formula  holds  for  the  potential =  [ 

,-^          .        .    (56) 

From  the  point  of  view  of  the  theory  of  electrons  this  circumstance 
becomes  immediately  intelligible.  Let  us,  for  example,  imagine  an 

atom  to  consist  of  a  positively  charged  "  nucleus"  at  rest,  around 
which  an  oppositely  charged  electron  rotates  in  a  circular  path. 
The  mean  position  of  the  electron  for  the  mean  time  of  a  com- 

plete revolution  of  the  electron  round  the  nucleus  will  then 
coincide  with  the  position  of  the  nucleus,  and  the  atom  will  appear 
perfectly  neutral  from  without.  But  if  an  electric  field  acts,  it 
exerts  a  force  on  the  negative  electron,  as  a  result  of  which  its 
path  will  lie  excentrically  with  respect  to  the  atomic  nucleus,  e.g. 
will  become  an  ellipse  with  the  nucleus  at  one  of  its  foci.  In  the 
mean,  for  times  which  are  great  compared  with  the  time  of  re- 

volution of  the  electron,  the  atom  will  act  like  a  doublet  ;  or  if  we 

treat  matter  as  being  continuous  we  shall  have  to  assume  con- 
tinuously distributed  doublets  in  it.  Even  before  entering  upon 

an  exact  atomistic  treatment  of  this  idea  we  can  say  that,  at  least 
to  a  first  approximation,  the  moment  m  per  unit  volume  will  be 
proportional  to  the  intensity  E  of  the  electric  field  :  i.e.  m  =  &E, 
in  which  k  denotes  a  constant  characteristic  of  the  matter,  which 
is  dependent  on  its  chemical  constitution,  viz.  on  the  structure  of 

its  atoms  and  molecules." 
,.    /m\  ,1      div  m 

Since  div    —  )  =  m  grad  -  +  - \r  J  r  r 
we  may  replace  equation  (56)  by 
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From  this  we  get  for  the  field  intensity  E  =  grad  <f> 

div  E  =  p  -  div  m. 

If  we  now  introduce  the  "  electric  displacement  " 
D  =  E  +  m 

the  fundamental  equations  become  : 

curl  E  =  0,  div  D  =  p     .         .         .     (57) 

They  correspond  to  equations  (51)  ;  in  one  of  them  the  intensity 
E  of  field  now  occurs,  in  the  other  D  the  electric  displacement. 

With  the  above  assumption  m  =  &E  we  get  the  law  of  matter 

D  =  eE   (58) 

if  we  insert  the  constant  e  =  1  +  k,  characteristic  of  the  matter, 
called  the  dielectric  constant. 

These  laws  are  excellently  confirmed  by  observation.  The 

influence  of  the  intervening  medium  which  was  experimentally 

proved  by  Faraday,  and  which  expresses  itself  in  them,  has  been 

of  great  importance  in  the  development  of  the  theory  of  action  by 
contact.  We  may  here  pass  over  the  corresponding  extension  of 
the  formulae  for  stress,  energy,  and  force. 

It  is  clear  from  the  mode  of  derivation  that  (57)  and  (58)  are 

not  rigorously  valid  laws,  since  they  relate  only  to  mean  values  and 

are  deduced  for  spaces  containing  a  great  number  of  atoms  and  for 

times  which  are  great  compared  with  the  times  of  revolution  of  the 

electrons  round  the  atom.  We  still  look  upon  (51)  as  ex- 
pressing the  physical  laws  exactly.  Our  objective  here  and 

in  the  sequel  is  above  all  to  derive  the  strict  physical  laws.  But  if 

we  start  from  phenomena,  such  "  phenomenological  laws"  as  (57) 
and  (58)  are  necessary  stages  in  passing  from  the  results  of  direct 
observation  to  the  exact  theory.  In  general,  it  is  possible  to  work 

out  such  a  theory  only  by  starting  in  this  way.  The  validity  of 
the  theory  is  then  established  if,  with  the  aid  of  definite  ideas 
about  the  atomic  structure  of  matter,  we  can  again  arrive  at  the 

phenomenological  laws  by  using  mean  value  arguments.  If  the 
atomic  structure  is  known,  this  process  must,  in  addition,  yield  the 

values  of  the  constants  occurring  in  these  laws  and  characteristic 

of  the  matter  in  question  (such  constants  do  not  occur  in  exact 
physical  laws).  Since  laws  of  matter  such  as  (58),  which  only  take 
the  influence  of  massed  matter  into  account,  certainly  fail  for  events 

in  which  the  fine  structure  of  matter  cannot  be  neglected,  the 

range  of  validity  of  the  phenomenological  theory  must  be  furnished 
by  an  atomistic  theory  of  this  kind,  as  must  also  those  laws  which 
have  to  be  substituted  in  its  place  for  the  region  beyond  this  range. 
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In  all  this  the  electron  theory  has  met  with  great  success,  although, 
in  view  of  the  difficulty  of  the  task,  it  is  far  from  giving  a  complete 
statement  of  the  more  detailed  structure  of  the  atom  and  its  inner 
mechanism. 

In  the  first  experiments  with  permanent  magnets,  magnetism 

appears  to  be  a  mere  repetition  of  electricity :  here  Coulomb's  Law 
holds  likewise  !  A  characteristic  difference,  however,  immediately 

asserts  itself  in  the  fact  that  positive  and  negative  magnetism  can- 
not be  dissociated  from  one  another.  There  are  no  sources,  but 

only  doublets  in  the  magnetic  field.  Magnets  consist  of  infinitely 
small  elementary  magnets,  each  of  which  itself  contains  positive 
and  negative  magnetism.  The  amount  of  magnetism  in  every 
portion  of  matter  is  de facto  nil;  this  would  appear  to  mean  that 
there  is  really  no  such  thing  as  magnetism.  The  explanation  of 

this  was  furnished  by  Oersted's  discovery  of  the  magnetic  action  of 
electric  currents.  The  exact  quantitative  formulation  of  this  action 

as  expressed  by  Biot  and  Savart's  Law  leads,  just  like  Coulomb's 
Law,  to  two  simple  laws  of  action  by  contact.  If  s  denotes  the 
density  of  the  electric  current,  and  H  the  intensity  of  the  magnetic 
field,  then 

curl  H  =  s,         div  H  =  0      .         .         .     (59) 

The  second  equation  asserts  the  non-existence  of  sources  in  the 
magnetic  field.  Equations  (59)  are  exactly  analogous  to  (51)  if  div 
and  curl  be  interchanged.  These  two  operations  of  vector  analysis 
correspond  to  one  another  in  exactly  the  same  way  as  do  scalar  and 
vectorial  multiplication  in  vector  algebra  (div  denotes  scalar,  curl 

vectorial,  -multiplication  by  the  symbolic  vector  "differentiation  "). 
The  solution  of  the  equations  (59)  vanishes  for  infinite  distances ; 
for  a  given  distribution  of  current  it  is  given  by 

.     (60) 

which  is  exactly  analogous  to  (49)  and  is,  indeed,  the  expression  of 

Biot  and  Savart's  Law.  This  solution  may  be  derived  from  a 
"  vector  potential  " — f  in  accordance  with  the  formulae 

H=  -  curl  f  (A)        -  47rf  =  (*dV. 

Finally  the  formula  for  the  density  of  force  in  the  magnetic  field  is 

p  =  [sH]   .....     (61) 
corresponding  exactly  with     (52) 

There  is  no  doubt  that  these  laws  give  us  a  true  statement  of 
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magnetism.  They  are  not  a  repetition  but  an  exact  counterpart 
of  electrical  laws,  and  bear  the  same  relation  to  the  latter  as 

vectorial  products  to  scalar  products.  From  them  it  may  be 

proved  mathematically  that  a  small  circular  current  acts  exactly 
like  a  small  elementary  magnet  thrust  through  it  perpendicularly 
to  its  plane.  Following  Ampere  we  have  thus  to  imagine  the 
magnetic  action  of  magnetised  bodies  to  depend  on  molecular 

currents  ;  according  to  the  electron  theory  these  are  straightway 
given  by  the  electrons  circulating  in  the  atom. 

The  force  p  in  the  magnetic  field  may  also  be  traced  back  to 
stresses,  and  we  find,  indeed,  that  we  get  the  same  values  for  the 

stress  components  as  in  the  electrostatic  field :  we  need  only 

replace  E  by  H.  Consequently  we  shall  use  the  corresponding 

value  -|H2  for  the  density  of  the  potential  energy  contained  in  the 
field.  This  step  will  only  be  properly  justified  when  we  come  to 
the  theory  of  fields  varying  with  the  time. 

It  follows  from  (59)  that  the  current  distribution  is  free  of 

sources  :  div  s  =  0.  The  current  field  can  therefore  be  entirely 
divided  into  current  tubes  all  of  which  again  merge  into  themselves, 

i.e.  are  continuous.  The  same  total  current  flows  through  every 
cross-section  of  each  tube.  In  no  wise  does  it  follow  from  the 

laws  holding  in  a  stationary  field,  nor  does  it  come  into  considera- 
tion for  such  a  field,  that  this  current  is  an  electric  current  in  the 

ordinary  sense,  i.e.  that  it  is  composed  of  electricity  in  motion ; 
this  is,  however,  without  doubt  the  case.  In  view  of  this  fact  the 

law  div  s  =  0  asserts  that  electricity  is  neither  created  nor  destroyed. 
It  is  only  because  the  flux  of  the  current  vector  through  a  closed 

surface  is  nil  that  the  density  of  electricity  remains  everywhere 

unchanged — so  that  electricity  is  neither  created  nor  destroyed. 
(We  are,  of  course,  dealing  with  stationary  fields  exclusively.) 

The  expression  vector  potential  f,  introduced  above,  also  satisfies 

the  equation  div  f  =  0. 
Being  an  electric  current,  s  is  without  doubt  a  vector  in  the 

true  sense  of  the  word.  It  then  follows,  however,  from  the  Law  of 
Biot  and  Savart  that  H  is  not  a  vector  but  a  linear  tensor  of 

the  second  order.  Let  its  components  in  any  co-ordinate  system 
(Cartesian  or  even  merely  aflfine)  be  HOC.  The  vector  potential  f  is 

a  true  vector.  If  fa  are  its  co-variant  components  and  si  the 
contra-variant  components  of  the  current-density  (the  current  is 
like  velocity  fundamentally  a  contra-variant  vector),  the  following 
table  gives  us  the  final  form  (independent  of  the  dimensional 

number)  of  the  laws  which  hold  in  the  magnetic  field  produced 
by  a  stationary  electric  current. 
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>      •        •        -        -     (62,11) 

The  stresses  are  determined  by  : 

Sf  =  HirH»-t8f\Hf    .        .        .  (62,111) 

in  which  |  H  \  signifies  the  strength  of  the  magnetic  field  : 

The  stress  tensor  is  symmetrical,  since 

HirHkr  =  HfH*  =  9r8SirHks. 

The  components  of  the  force-density  are 

Pi  =  Hiksk      ....    (62,  IV) 

The  energy-density  =  -J-  j  H  \  2. 
These  are  the  laws  that  hold  for  the  field  in  empty  space.  We 

regard  them  as  being  exact  physical  laws  which  are  generally  valid, 
as  in  the  case  of  electricity.  For  a  phenomenological  theory  it  is, 

however,  necessary  to  take  into  consideration  the  magnetisation, 
a  phenomenon  analogous  to  dielectric  polarisation.  Just  as  D 

occurred  in  conjunction  with  E,  so  the  "  magnetic  induction  "  B 
associates  itself  with  the  intensity  of  field  H.  The  laws 

curl  H  =  s,  div  B  =  0 

hold  in  the  field,  as  does  the  law  which  takes  account  of  the 

magnetic  character  of  the  matter 

B  =  /*H     .....     (63) 

The  constant  /x  is  called  magnetic  permeability.  But  whereas  the 
single  atom  only  becomes  polarised  by  the  action  of  the  intensity 
of  the  electrical  field  (i.e.  becomes  a  doublet),  (this  takes  place 

in  the  direction  of  the  field  intensity),  the  atom  is  from  the  outset 
an  elementary  magnet  owing  to  the  presence  of  rotating  electrons 

in  it  (at  least,  in  the  case  of  para-  and  ferro-magnetic  substances). 

All  these  elementary  magnets,  however,  neutralise  one  another's 
effects,  as  long  as  they  are  irregularly  arranged  and  all  positions 
of  the  electronic  orbits  occur  equally  frequently  on  the  average. 
The  imposed  magnetic  force  merely  fulfils  the  function  of  directing 
the  existing  doublets.  It  evidently  is  due  to  this  fact  that  the 

range  within  which  (63)  holds  is  much  less  than  the  corresponding 
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range  of  (63).  Permanent  magnets  and  ferro- magnetic  bodies 
(iron,  cobalt,  nickel)  are,  above  all,  not  subject  to  it. 

In  the  phenomenological  theory  there  must  be  added  to  the 
laws  already  mentioned  that  of  Ohm : 

S  =  orE  (a-  =  conductivity). 

It  asserts  that  the  current  follows  the  fall  of  potential  and  is 

proportional  to  it  for  a  given  conductor.  Corresponding  to  Ohm's 
Law  we  have  in  the  atomic  theory  the  fundamental  law  of  mechanics, 

according  to  which  the  motion  of  the  "  free  "  electrons  is  determined 
by  the  electric  and  magnetic  forces  acting  on  them  which  thus 
produce  an  electric  current.  Owing  to  collisions  with  the  molecules 
no  permanent  acceleration  can  come  about,  but  (just  as  in  the  case 
of  a  heavy  body  which  is  falling  and  experiences  the  resistance  of 
the  air)  a  mean  limiting  velocity  is  reached,  which  may,  to  a  first 
approximation  at  least,  be  put  proportional  to  the  driving  electric 

force  E.  In  this  way  Ohm's  Law  acquires  a  meaning. 
If  the  current  is  produced  by  a  voltaic  cell  or  an  accumulator, 

the  chemical  action  which  takes  place  maintains  a  constant  differ- 

ence of  potential,  the  "  electro-motive  force,"  between  the  two 
ends  of  the  conducting  wire.  Since  the  events  which  occur  in  the 
contrivance  producing  the  current  can  obviously  be  understood 
only  in  the  light  of  an  atomic  theory,  it  leads  to  the  simplest  result 

phenomenologically  to  represent  it  by  means  of  a  cross-section 
taken  through  the  conducting  circuit  at  each  end,  beyond  which 
the  potential  makes  a  sudden  jump  equal  to  the  electromotive 
force. 

This  brief  survey  of  Maxwell's  theory  of  stationary  fields  will 
suffice  for  what  follows.  We  have  not  the  space  here  to  enlarge 
upon  details  and  concrete  applications. 



CHAPTER  II 

THE  METEICAL  CONTINUUM 

§10.  Note  on  Non-Euclidean  Geometry* 

DOUBTS  as  to  the  validity  of  Euclidean  geometry  seem  to 
have  been  raised  even  at  the  time  of  its  origin,  and  are  not, 
as  our  philosophers  usually  assume,  outgrowths  of  the 

hypercritical  tendency  of  modern  mathematicians.  These  doubts 
have  from  the  outset  hovered  round  the  fifth  postulate.  The  sub- 

stance of  the  latter  is  that  in  a  plane  containing  a  given  straight 
line  g  and  a  point  P  external  to  the  latter  (but  in  the  plane)  there 
is  only  one  straight  line  through  P  which  does  not  intersect  g :  it 
is  called  the  straight  line  parallel  to  P.  Whereas  the  remaining 

ixioms  of  Euclid  are  accepted  as  being  self-evident,  even  the 
jsarliest  exponents  of  Euclid  have  endeavoured  to  prove  this 
]heorem  from  the  remaining  axioms.  Nowadays,  knowing  that 
:his  object  is  unattainable,  we  must  look  upon  these  reflections 

ind  efforts  as  the  beginning  of  "  non-  Euclidean  "  geometry,  i.e.  of 
the  construction  of  a  geometrical  system  which  can  be  developed 
ogically  by  accepting  all  the  axioms  of  Euclid,  except  the  postulate 
}f  parallels.  A  report  of  Proclus  (A.D.  5)  about  these  attempts 
las  been  handed  down  to  posterity.  Proclus  utters  an  emphatic 

vvarning  against  the  abuse  that  may  be  practised  by  calling  pro- 
3ositions  self-evident.  This  warning  cannot  be  repeated  too  often  ; 
on  the  other  hand,  we  must  not  fail  to  emphasise  the  fact  that,  in 
spite  of  the  frequency  with  which  this  property  is  wrongfully  used, 

he  "  self-evident  "  property  is  the  final  root  of  all  knowledge,  in- 
cluding empirical  knowledge.  Proclus  insists  that  "  asymptotic 

ines  "  may  exist. 
We  may  picture  this  as  follows.  Suppose  a  straight  line  g  be 

,riven  in  a  plane,  also  a  point  P  outside  it  in  the  plane,  and  a 
straight  line  s  passing  through  P  and  which  may  be  rotated  about 

P.  Let  s  be  perpendicular  to'P  initially.  If  we  now  rotate  s,  the 
)oint  of  intersection  of  s  and  (/'glides  along  g,  e.g.  to  the  right,  and 
f  we  continue  turning,  a  definite  moment  arrives  at  which  this 
)oint  of  intersection  just  vanishes  to  infinity ;  s  then  occupies  the 

*  Note  1. 
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position  of  an  "asymptotic"  straight  line.  If  we  continue  turning, 
Euclid  assumes  that,  at  even  this  same  moment,  a  point  of  inter- 

section already  appears  on  the  left.  Proclus,  on  the  other  hand, 
points  out  the  possibility  that  one  may  perhaps  have  to  turn  s 
through  a  further  definite  angle  before  a  point  of  intersection  arises 

to  the  left.  We  should  then  have  two  "  asymptotic  "  straight  lines, 
one  to  the  right,  viz.  s',  and  the  other  to  the  left,  viz.  s".  If  the 
straight  line  s  through  P  were  then  situated  in  the  angular  space 

between  s"  and  s'  (during  the  rotation  just  described)  it  would  cut 
g ;  if  it  lay  between  s'  and  s",  it  would  not  intersect  g.  There  must 
be  at  least  one  non-intersecting  straight  line ;  this  follows  from  the 
other  axioms  of  Euclid.  I  shall  recall  a  familiar  figure  of  our  early 
studies  in  plane  geometry,  consisting  of  the  straight  line  h  and  two 

straight  lines  g  and  g'  which  intersect  h  at  A  and  A'  and  make 
equal  angles  with  it,  g  and  g'  are  each  divided  into  a  right  and  a 
left  half  by  their  point  of  intersection  with  h.  Now,  if  g  and  g' 
had  a  common  point  s  to  the  right  of  h,  then,  since  BAA'B'  is  con- 

\ 
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FIG.  2.  FIG.  3. 

gruent  with  C'A'AC  (vide  Fig.  3),  there  would  also  be  a  point  of 
intersection  S*  to  the  left  of  h.  But  this  is  impossible  since  there 
is  only  one  straight  line  that  passes  through  two  given  points 
S  and  fif*. 

Attempts  to  prove  Euclid's  postulate  were  continued  by  Arabian 
and  western  mathematicians  of  the  Middle  Ages.  Passing  straight 
to  a  more  recent  period  we  shall  mention  the  names  of  only  the 
last  eminent  forerunners  of  non-Euclidean  geometry,  viz.  the  Jesuit 
father  Saccheri  (beginning  of  the  eighteenth  century)  and  the 
mathematicians  Lambert  and  Legendre.  Saccheri  was  aware  that 
the  question  whether  the  postulate  of  parallels  is  valid  is  equivalent 
to  the  question  whether  the  sum  of  the  angles  of  a  triangle  are 

equal  to  or  less  than  180°.  If  they  amount  to  180°  in  one  triangle, 
then  they  must  do  so  in  every  triangle  and  Euclidean  geometry  holds. 

If  the  sum  is  <180°  in  one  triangle  then  it  is  <  180°  in  every 
triangle.  That  they  cannot  be  >  180°  is  excluded  for  the  same 
reason  for  which  we  just  now  concluded  that  not  all  the  straight 

lines  through  P  can  cut  the  fixed  straight  line  g.  Lambert  dis- 
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covered  that  if  we  assume  the  sum  of  the  three  angles  to  be  <180° 
there  must  be  a  unique  length  in  geometry.  This  is  closely  related 
to  an  observation  which  Wallis  had  previously  made  that  there  can 

be  no  similar  figures  of  different  sizes  in  non-Euclidean  geometry 
(just  as  in  the  case  of  the  geometry  of  the  surface  of  a  rigid  sphere). 

Hence  if  there  is  such  a  thing  as  "form"  independent  of  size, 
Euclidean  geometry  is  justified  in  its  claims.  Lambert,  moreover, 
deduced  a  formula  for  the  area  of  a  triangle,  from  which  it  is  clear 

'  that,  in  the  case  of  non-Euclidean  geometry,  this  area  cannot  in- 
crease beyond  all  limits.  It  appears  that  the  researches  of  these 

men  has  gradually  spread  the  belief  in  wide  circles  that  the  postu- 
late of  parallels  cannot  be  proved.  At  that  time  this  problem 

occupied  many  minds.  D'Alembert  pronounced  it  a  scandal  of 
geometry  that  it  had  not  yet  been  decisively  settled.  Even  the 

authority  of  Kant,  "whose  philosophic  system  claims  Euclidean 
geometry  as  a  priori  knowledge  representing  the  content  of  pure 
space-intuition  in  adequate  judgments,  did  not  succeed  in  settling 
these  doubts  permanently. 

Gauss  also  set  out  originally  to  prove  the  axiom  of  parallels,  but 

he  early  gained  the  conviction  that  this  was  impossible  and  there- 
i  upon  developed  the  principles  of  a  non-Euclidean  geometry,  for 
which  the  axioms  of  parallels  does  not  hold,  to  such  an  extent  that, 
from  it,  the  further  development  could  be  carried  out  with  the 

same  ease  as  for  Euclidean  geometry.  He  did  not  make  his  in- 
vestigations known  for,  as  he  later  wrote  in  a  private  letter,  he 

feared  "the  outcry  of  the  Boeotians  " ;  for,  he  said,  there  were  only 
a  few  people  who  understood  what  was  the  true  essence  of  these 
.questions.  Independently  of  Gauss,  Schweikart,  a  professor  of 
jurisprudence,  gained  a  full  insight  into  the  conditions  of  non- 
Euclidean  geometry,  as  is  evident  from  a  concise  note  addressed  to 
.  Gauss.  Like  the  latter  he  considered  it  in  no  wise  self-evident,  and 
established  that  Euclidean  geometry  is  valid  in  our  actual  space. 
His  nephew  Taurinus  whom  he  encouraged  to  study  these  questions 
was,  in  contrast  to  him,  a  believer  of  Euclidean  geometry,  but  we 
are  nevertheless  indebted  to  Taurinus  for  the  discovery  of  the  fact 
that  the  formulae  of  spherical  trigonometry  are  real  on  a  sphere 

which  has  an  imaginary  radius  =  V  -  1,  and  that  through  them  a 
geometrical  system  is  constructed  along  analytical  lines  which 

'satisfies  all  the  axioms  of  Euclid  except  the  fifth  postulate. 
For  the  general  public  the  honour  of  discovering  and  elaborat- 
ing non-Euclidean  geometry  must  be  shared  between  Nikolaj 

Iwanowitsch  Lobatschefskij  (1793-1856),  a  Eussian  professor  of 
mathematics  at  Kasan,  and  Johann  Bolyai  (1802-1860),  a 
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Hungarian  officer  in  the  Austrian  army.  The  ideas  of  both 
assumed  a  tangible  form  in  1826.  The  chief  manuscript  of  both, 
by  which  the  public  were  informed  of  their  discovery  and  which 
offered  an  argument  of  the  new  geometry  in  the  manner  of  Euclid, 

had  its  origin  in  1830-1831.  The  discussion  by  Bolyai  is  par- 
ticularly clear,  inasmuch  as  he  carries  the  argument  as  far  as 

possible  without  making  an  assumption  as  to  the  validity  or  non- 
validity  of  the  fifth  postulate,  and  only  afterwards  derives  the 

theorems  of  Euclidean  and  non-Euclidean  geometry  from  the 

theorems  of  his  "  absolute  "  geometry  according  to  whether  one 
decides  in  favour  of  or  against  Euclid. 

Although  the  structure  was  thus  erected,  it  was  by  no  means 
definitely  decided  whether,  in  absolute  geometry,  the  axiom  of 
parallels  would  not  after  all  be  shown  to  be  a  dependent  theorem. 

The  strict  proof  that  non-Euclidean  geometry  is  absolutely 
consistent  in  itself  had  yet  to  follow.  This  resulted  almost  of 

itself  in  the  further  development  of  non-Euclidean  geometry.  As 
often  happens,  the  simplest  way  of  proving  this  was  not  discovered 
at  once.  It  was  discovered  by  Klein  as  late  as  1870  and  depends 
on  the  construction  of  a  Euclidean  model  for  non-Euclidean 
geometry  (v.  Note  2).  Let  us  confine  our  attention  to  the  plane  ! 
In  a  Euclidean  plane  with  rectangular  co-ordinates  x  and  y  we 
shall  draw  a  circle  U  of  radius  unity  with  the  origin  as  centre. 
Introducing  homogeneous  co-ordinates 

(so  that  the  position  of  a  point  is  defined  by  the  ratio  of  three 
numbers,  i.e.  xl:x2:  x3),  the  equation  to  the  circle  becomes 

—  x\  —  x\  +  x\  =  0. 

Let  us  denote  the  quadratic  form  on  the  left  by  £l(x)  and  the  cor- 
responding symmetrical  bilinear  form  of  two  systems  of  value, 

Xi  x'i  by  £l(xx').  A  transformation  which  assigns  to  every  point  x 
a  transformed  point  x'  according  to  the  linear  formulae 

(  |  aik  |  4=  0) 

is  called,  as  we  know,  a  collineation  (affine  transformations  are  a 
special  class  of  collineations).  It  transforms  every  straight  line, 

point  for  point,  into  another  straight  line  and  leaves  the  cross-ratio 
of  four  points  on  a  straight  line  unaltered.  We  shall  now  set  up  a 
little  dictionary  by  which  we  translate  the  conceptions  of  Euclidean 
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geometry  into  a  new  language,  that  of  non-Euclidean  geometry  ; 
we  use  inverted  commas  to  distinguish  its  words.  The  vocabulary 
of  this  dictionary  is  composed  of  only  three  words. 

The  word  "  point  "  is  applied   to  any  point  on  the  inside  of 
U  (Fig.  4). 

A  "  straight  line  "  signifies  the  portion  of  a  straight  line  lying 
wholly  in  U.  The  collineations  which  transform  the  circle  U  into 
itself  are  of  two  kinds  ;  the  first  leaves 
the  sense  in  which  U  is  described 
unaltered,  whereas  the  second  reverses 

it.  The  former  are  called  "  congru- 
ent "  transformations  ;  two  figures 

composed  of  points  are  called  "  con- 
gruent "  if  they  can  be  transformed 

into  one  another  by  such  a  transforma- 
tion. All  the  axioms  of  Euclid  except 

the  postulate  of  parallels  hold  for 

these  "  points,"  "  straight  lines,"  and 
the  conception  "  congruence  ".  A 
whole  sheaf  of  "  straight  lines  "  passing  through  the  "  point  "  P 
which  do  not  cut  the  one  "  straight  line  "  g  is  shown  in  Fig.  4. 
This  suffices  to  prove  the  consistency  of  non-Euclidean  geometry, 
for  things  and  relations  are  shown  for  which  all  the  theorems 
of  Euclidean  geometry  are  valid  provided  that  the  appropriate 
nomenclature  be  adopted.  It  is  evident,  without  further  explana- 

tion, that  Klein's  model  is  also  applicable  to  spatial  geometry. 
We  now  determine  the  non-Euclidean  distance  between  two 

"  points  "  in  this  model,  viz.  between 

A  =  (xl  :  x2  :  x3)  and  A'  =  (x\  :  x'2  :  x'3). 

Let  the  straight  line  A  A'  cut  the  circle  U  in  the  two  points,  Blt 
J52.  The  homogeneous  co-ordinates  y^  of  these  two  points  are  of 
the  form 

yi  =  \Xi  + 

and  the  corresponding  ratio  of  the  parameters,  A  :  A/,  is  given  by 
the  equation  ti(y)  =  0,  viz. 

Hence  the  cross-ratio  of  the  four  points,  A  A'  B-^B^  is 

Q(xx')  - 
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This  quantity  which  depends  on  the  two  arbitrary  "  points,"  A  A', 
is  not  altered  by  a  "  congruent  "  transformation.  If  A  A'  A"  are 
any  three  "  points "  lying  on  a  "  straight  line "  in  the  order 
written,  then 

[AA"]  =  [AA'} .  [A A"}. 
The  quantity 

£  log  [AA'}  =  ZI7  =  r has  thus  the  functional  property 

ZI7"  +  I7I77  =  AA^. 

As  it  has  the  same  value  for  "  congruent  "  distances  AA'  too,  we 
must  regard  it  as  the  non-Euclidean  distance  between  the  two 

points,  AA'.  Assuming  the  logs  to  be  taken  to  the  base  e,  we  get 
an  absolute  determination  for  the  unit  of  measure,  as  was  recog- 

nised by  Lambert.  The  definition  may  be  written  in  the  shorter 
form  : 

«»hr-        °^  .        -         .     (1) 

(cosh  denotes  the  hyperbolic  cosine). 

This  measure-determination  had  already  been  enunciated  before 

Klein  by  Cayley  *  who  referred  it  to  an  arbitrary  real  or  imaginary 
conic  section  O(#)  =  0 :  he  called  it  the  "  projective  measure- 
determination  ".  But  it  was  reserved  for  Klein  to  recognise  that 
in  the  case  of  a  real  conic  it  leads  to  non-Euclidean  geometry. 

It  must  not  be  thought  that  Klein's  model  shows  that  the  non- 
Euclidean  plane  is  finite.  On  the  contrary,  using  non-Euclidean 

measures  I  can  mark  off  the  same  distance  on  a  "straight  line" 
an  infinite  number  of  times  in  succession.  It  is  only  by  using 
Euclidean  measures  in  the  Euclidean  model  that  the  distances 

of  these  "  equi-distant "  points  becomes  smaller  and  smaller.  For 
non-Euclidean  geometry  the  bounding  circle  U  represents  un- 

attainable, infinitely  distant,  regions. 

If  we  use  an  imaginary  conic,  Cayley' s  measure-determination 
leads  to  ordinary  spherical  geometry,  such  as  holds  on  the  surface 
of  a  sphere  in  Euclidean  geometry.  Great  circles  take  the  place 
of  straight  lines  in  it,  but  every  pair  of  points  at  the  end  of  the 

same  diameter  must  be  regarded  as  a  single  "  point,"  in  order  that 
two  "straight  lines"  may  only  intersect  at  one  "point".  Let  us 
project  the  points  on  the  sphere  by  means  of  (straight)  rays  from 
the  centre  on  to  the  tangential  plane  at  a  point  on  the  surface  of 
the  sphere,  e.g.  the  south  pole.  Two  diametrically  opposite  points 
will  then  coincide  on  the  tangential  plane  as  a  result  of  the  trans- 

*  Vide  note  3. 
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formation.  We  must,  in  addition,  as  in  projective  geometry,  furnish 

this  plane  with  an  infinitely  distant  straight  line ;  this  is  given  by 
the  projection  of  the  equator.  We  shall  now  call  two  figures  in  this 

plane  "  congruent "  if  their  projections  (through  the  centre)  on  to 
the  surface  of  the  sphere  are  congruent  in  the  ordinary  Euclidean 

sense.  Provided  this  conception  of  "congruence"  is  used,  a  non- 
Euclidean  geometry,  in  which  all  the  axioms  of  Euclid  except  the 

fifth  postulate  are  fulfilled,  holds  in  this  plane.  Instead  of  this 

postulate  we  have  the  fact  that  each  pair  of  straight  lines,  without 

exception,  intersects,  and,  in  accordance  with  this,  the  sum  of  the 

angles  in  a  triangle  >  180°.  This  seems  to  conflict  with  the 
Euclidean  proof  quoted  above.  The  apparent  contradiction  is  ex- 

plained by  the  circumstance  that  in  the  present  "spherical"  geometry 
the  straight  line  is  closed,  whereas  Euclid,  although  he  does  not 
explicitly  state  it  in  his  axioms,  tacitly  assumes  that  it  is  an  open 
line,  i.e.  that  each  of  its  points  divides  it  into  two  parts.  The 
deduction  that  the  hypothetical  point  of  intersection  S  on  the 

"right-hand"  side  is  different  from  that  S*  on  the  "left-hand" 

side  is  rigorously  true  only  if  this  "  openness  "  be  assumed. 
Let  us  mark  out  in  space  a  Cartesian  co-ordinate  system 

ojj,  x%,  x3,  having  its  origin  at  the  centre  of  the  sphere  and  the  line 
connecting  the  north  and  south  poles  as  its  xs  axis,  the  radius  of 

the  sphere  being  the  unit  of  length.  If  xv  x2,  x%  are  the  co-ordinates 
of  any  point  on  the  sphere,  i.e. 

/y»  rp 

then  -1  and  -2  are  respectively  the  first  and  second  co-ordinate  of x2         x3 

the  transformed  point  in  our  plane  xs  =  1,  i.e.  x1  :  x2  :  x3  is  the 

ratio  of  the  homogeneous  co-ordinates  of  the  transformed  point. 
Congruent  transformations  of  the  sphere  are  linear  transformations 

which  leave  the  quadratic  form  f}(#)  invariant.  The  "  congruent  " 
transformations  of  the  plane  in  terms  of  our  "  spherical  "  geometry 
are  thus  given  by  such  linear  transformations  of  the  homogeneous 

co-ordinates  as  convert  the  equation  Q(#)  =  0,  which  signifies  an 
imaginary  conic,  into  itself.  This  proves  the  statement  made 

above  concerning  the  relationship  between  spherical  geometry  and 

Cayley's  measure-relation.  This  agreement  is  expressed  in  the 
formula  for  the  distance  r  between  two  points  A,  A',  which  is  here 

At  the  same  time  we  have  confirmed  the  discovery  of  Taurinus 
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p  that  Euclidean  geometry  is  identical  with  non-Euclidean  geometry 
on  a  sphere  of  radius  */  —  1. 

Euclidean  geometry  occupies  an  intermediate  position  between 

that  of  Bolyai-Lobatschefsky  and  spherical  geometry.  For  if  we 
make  a  real  conic  section  change  to  a  degenerate  one,  and  thence 

to  an  imaginary  one,  we  find  that  the  plane  with  its  corresponding 

Cayley  measure-relation  is  at  first  Bolyai-Lobatschefskyan,  then 
Euclidean,  and  finally  spherical. 

§  11.  The  Geometry  of  Riemann 

The  next  stage  in  the  development  of  non-Euclidean  geometry 
that  concerns  us  chiefly  is  that  due  to  Eiemann.  It  links  up  with 
the  foundations  of  Differential  Geometry,  in  particular  with  that 

of  the  theory  of  surfaces  as  set  out  by  Gauss  in  his  Disquisition^ 
circa  superficies  curvas. 

The  most  fundamental  property  of  space  is  that  its 

points  form  a  three-dimensional  manifold.  What  does  this 
convey  to  us?  We  say,  for  example,  that  ellipses  form  a  two- 
dimensional  manifold  (as  regards  their  size  and  form,  i.e.  con- 

sidering congruent  ellipses  similar,  non-congruent  ellipses  as 
dissimilar),  because  each  separate  ellipse  may  be  distinguished  in 

the  manifold  by  two  given  numbers,  the  lengths  of  the  semi-major 
and  semi-minor  axis.  The  difference  in  the  conditions  of  equilibrium 
of  an  ideal  gas  which  is  given  by  two  independent  variables,  such 

as  pressure  and  temperature,  form  a  two-dimensional  manifold, 
likewise  the  points  on  a  sphere,  or  the  system  of  pure  tones  (in 
terms  of  intensity  and  pitch).  According  to  the  physiological 

theory  which  states  that  the  sensation  of  colour  is  determined  by 
the  combination  of  three  chemical  processes  taking  place  on  the 

retina  (the  black-white,  red-green,  and  the  yellow-blue  process, 
each  of  which  can  take  place  in  a  definite  direction  with  a  definite 

intensity),  colours  form  a  three-dimensional  manifold  with  respect 

to  quality  and  intensity,  but  colour  qualities  form  only  a  two- 

dimensional  manifold.  This  is  confirmed  by  Maxwell's  familiar- 
construction  of  the  colour  triangle.  The  possible  positions  of  a 

rigid  body  form  a  six-dimensional  manifold,  the  possible  positions 
of  a  mechanical  system  having  n  degrees  of  freedom  constitute, 

in  general,  an  ?z-dimensional  manifold.  The  characteristic  of 
an  n-dimensional  manifold  is  that  each  of  the  elements 

composing  it  (in  our  examples,  single  points,  conditions  of  a  gas, 

colours,  tones)  may  be  specified  by  the  giving  of  n  quantities, 

the  "  co-ordinates,"  which  are  continuous  functions  within 
the  manifold.  This  does  not  mean  that  the  whole  manifold  with 
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all  its  elements  must  be  represented  in  a  single  and  reversible 

manner  by  value  systems  of  n  co-ordinates  (e.g.  this  is  impossible 
in  the  case  of  the  sphere,  for  which  n  =  2) ;  it  signifies  only  that 
if  P  is  an  arbitrary  element  of  the  manifold,  then  in  every  case 
a  certain  domain  surrounding  the  point  P  must  be  representable 

singly  and  reversibly  by  the  value  system  of  n  co-ordinates.  If  Xi 

is  a  system  of  n  co-ordinates,  x'i  another  system  of  n  co-ordinates, 
then  the  co-ordinate  values  Xi,  x'i  of  the  same  element  will  in 
general  be  connected  with  one  another  by  relations 

xt  =  /•(#/,  XJ,  .  .  .  x'n)         (i  =  1,  2,  .  .  .  n)          .     (3) 
which  can  be  resolved  into  terms  of  x{  and  in  which  the  fja  are 
continuous  functions  of  their  arguments.  As  long  as  nothing  more 
is  known  about  the  manifold,  we  cannot  distinguish  any  one  co- 

ordinate system  from  the  others.  For  an  analytical  treatment  of 
arbitrary  continuous  manifolds  we  thus  require  a  theory  of  in- 
variance  with  regard  to  arbitrary  transformation  of  co-ordinates, 
such  as  (3),  whereas  for  the  development  of  affine  geometry  in  the 
preceding  chapter  we  used  only  the  much  more  special  theory  of 
invariance  for  the  case  of  linear  transformations. 

Differential  geometry  deals  with  curves  and  surfaces  in  three- 
dimensional  Euclidean  space ;  we  shall  here  consider  them  mapped 

out  in  Cartesian  co-ordinates  x,  y,  z.  A  curve  is  in  general  a  one- 
dimensional  point-manifold ;  its  separate  points  can  be  distinguished 
from  one  another  by  the  values  of  a  parameter  u.  If  the  point  u 
on  the  curve  happens  to  be  at  the  point  x,  y,  z  in  space,  then  x,  y,  z 
will  be  certain  continuous  functions  of  u : 

x  =  x(u),         y  =  y(u),         z  =  z(u)        .         .     (4) 

and  (4)  is  called  the  "parametric"  representation  of  the  curve.  If 
we  interpret  u  as  the  time,  then  (4)  is  the  law  of  motion  of  a  point 
which  traverses  the  given  curve.  The  curve  itself  does  not,  how- 

ever, determine  singly  the  parametric  representation  (4)  of  the 
curve ;  the  parameter  u  may,  indeed,  be  subjected  to  any  arbitrary 
continuous  transformation. 

A  two-dimensional  point-manifold  is  called  a  surface.  Its 
points  can  be  distinguished  from  one  another  by  the  values  of  two 
parameters  u^  u2.  It  may  therefore  be  represented  parametrically 
in  the  form 

x  =  x(uv  u2),         y  =  y(uv  w2),         z  =  z(ult  tt2)  .    (5) 

The  parameters  ult  u2  may  likewise  undergo  any  arbitrary  con- 
tinuous transformation  without  affecting  the  represented  curve. 

We  shall  assume  that  the  functions  (5)  are  not  only  continuous 
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but  have  also  continuous  differential  co-efficients.  Gauss,  in  his 
general  theory,  starts  from  the  form  (5)  of  representing  any 
surface  ;  the  parameters  ult  u2  are  hence  called  the  Gaussian  (or 
curvilinear)  co-ordinates  on  the  surface.  For  example,  if,  as  in 
the  preceding  section,  we  project  the  points  of  the  surface  of  the 

unit  sphere  in  a  small  region  encircling  the  origin  of  the  co-ordinate 
system  on  to  the  tangent  plane  z  =  1  at  the  south  pole,  and  if  we 
make  x,  y,  z  the  co-ordinates  of  any  arbitrary  point  on  the  sphere, 
Wj  and  u2  being  respectively  the  x  and  y  co-ordinates  of  the  point 
of  projection  in  this  plane,  then 

U-  U  1 

This  is  a  parametric  representation  of  the  sphere.  It  does  not, 
however,  embrace  the  whole  sphere,  but  only  a  certain  region 
round  the  south  pole,  viz.  the  part  from  the  south  pole  to  the 
equator/  including  the  latter.  Another  illustration  of  a  parametric 

/  representation  is  given  by  the  geographical  co-ordinates,  latitude 
and  longitude. 

In  thermodynamics  we  use  a  graphical  representation  consisting 
of  a  plane  on  which  two  rectangular  co-ordinate  axes  are  drawn, 
and  in  which  the  state  of  a  gas  as  denoted  by  its  pressure  p  and 
temperature  0  is  represented  by  a  point  having  the  rectangular 
co-ordinates  p,  0.  The  same  procedure  may  be  adopted  here. 
With  the  point  ult  u2  on  the  surface,  we  associate  a  point  in  the 

"representative"  plane  having  the  rectangular  co-ordinates  uv  U2. 
The  formulae  (5)  do  not  then  represent  only  the  surface,  but  also  at 
the  same  time  a  definite  continuous  representation  of  this  surface 
on  the  ult  u2  plane.  Geographical  maps  are  familiar  instances  of 
such  representations  of  curved  portions  of  surface  by  means  of 

planes.  A  curve  on  a  surface  is  given  mathematically  by  a  para- 
metric representation 

whereas  a  portion  of  a  surface  is  given  by  a  "  mathematical  region  " 
expressed  in  the  variables  uv  u2,  and  which  must  be  characterised 
by  inequalities  involving  ult  and  u2  ;  i.e.  graphically  by  means  of 
the  representative  curve  or  the  representative  region  in  the  u-^-u^- 
plane.  If  the  representative  plane  be  marked  out  with  a  network 
of  co-ordinates  in  the  manner  of  squared  paper,  then  this  becomes 
transposed,  through  the  representation,  to  the  curved  surface  as  a 
net  consisting  of  meshes  having  the  form  of  little  parallelograms, 

and  composed  of  the  two  families  of  "  co-ordinate  lines  "  u^  —  const., 
7f,0  =  const.,  respectively.  If  the  meshes  be  made  sufficiently  fine 



THE  GEOMETRY  OF  RIEMANN  87 

it  becomes  possible  to  map  out  any  given  figure  of  the  representa- 
tive plane  on  the  curved  surface. 

The  distance  ds  between  two  infinitely  near  points  of  the  sur- 
face, namely, 

(uv  u2)         and         (i^  +  duv  u%  +  du<2) 

.    is  determined  by  the  expression 

ds*  =  dx*  +  dy*  +  dz* 
if  we  set 

dx  =  — •du-L  +   du.2          .         .  (8) 

in  it,  with  corresponding  expressions  for  dy  and  dz.     We  then  get 

a  quadratic  differential  form  for  ds*  thus  : 

(gki  =  gik)    .         .         .     (9) 

in  which  the  co-efficients  are 

gik  =  <^J^_  +  ̂L^IL  +  *z   ** !)ui'duk       'buj'dub       ̂ Uj^Ujf 
and  are  not,  in  general,  functions  of  u-^  and  %2. 

In  the  case  of  the  parametric  representation  of  the  sphere  (6)  we 
have 

(1  +  V  +  V)2 
Gauss  was  the  first  to  recognise  that  the  metrical  groundform  is 

the  determining  factor  for  geometry  on  surfaces.  The  lengths  of 
curves,  angles,  and  the  size  of  given  regions  on  the  surface  depend 
on  it  alone.  The  geometries  on  two  different  surfaces  is  accord- 

ingly identical  if,  for  a  representation  in  appropriate  parameters, 

the  co-efficients  g^  of  the  metrical  groundform  coincide  in  value. 

Proof.  —  The  length  of  any  arbitrary  curve,  given  by  (7),  on  the 
surface  is  furnished  by  the  integral 

i/c 

If  we  fix  our  attention  on  a  definite  point  P°  =  (w1°,w20)  on  the 
surface  and  use  the  relative  co-ordinates 

u-i  -  u.p  =  dui      x  -  x®  =  dx      y  -  y®  =  dy      z  -  2°  =  dz 

for  its  immediate  neighbourhood,  then  equation  (8),  in  which  the 
derivatives  are  to  be  taken  for  the  point  P°,  will  hold  more  exactly 

the  smaller  dult  duz,  are  taken  ;  we  say  that  it  holds  for  "  infinitely 
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small"  values  du-^  and  du2.  If  we  add  to  these  the  analogous 
equations  for  dy  and  dz,  then  they  express  that  the  immediate 

neighbourhood  of  P°  is  a  plane,  and  that  duv  du2  are  affine  co- 

ordinates on  it."*  Accordingly  we  may  apply  the  formulae  of  affine 
geometry  to  the  region  immediately  adjacent  to  P°.  For  the  angle 
0  between  two  line-elements  or  infinitesimal  displacements  having 
the  components  dult  du2  and  8uly  Su2  respectively,  we  get 

Q(d8) "  jQ(dd)Q(8B) 

in  which  Q(d8)  stands  for  the  symmetrical  bilinear  form 

g&du&Uk  corresponding  to  (9). 
H 

The  area  of  the  infinitesimal  parallelogram  marked  out  by  these 
two  displacements  is  found  to  be 

g 

in  which  g  denotes  the  determinant  of  the  g^s.  The  area  of  a 
curved  portion  of  surface  is  accordingly  given  by  the  integral 

taken  over  the  corresponding  part  of  the  representative  plane. 

This  proves  Gauss'  statement.  The  values  of  the  expressions 
obtained  are  of  course  independent  of  the  choice  of  parametric 

representation.  This  invariance  with  respect  to  arbitrary  trans- 
formations of  the  parameters  can  easily  be  confirmed  analytically. 

All  the  geometric  relations  holding  on  the  surface  can  be  studied 
on  the  representative  plane.  The  geometry  of  this  plane  is  the 

same  as  that  of  the  curved  surface  if  we  agree  to  accept  the  dis- 
tance ds  of  two  infinitely  near  points  as  expressed  by  (9)  and  not  by 

Pythagoras'  formula 
ds2  =  du^  +  duf. 

*  We  here  assume  that  the  determinants  of  the  second  order  which  can  be 
formed  from  the  table  of  co-efficients  of  these  equations, 

'dx 

do  not  all  vanish.  This  condition  is  fulfilled  for  the  regular  points  of  the 

surface,  at  which  there  is  a  tangent  plane.  The  three  determinants  are  iden- 
tically equal  to  0,  if,  and  only  if,  the  surface  degenerates  to  a  curve,  i.e.  the 

functions  x,  y,  z  of  wa  and  u<±  actually  depend  only  on  one  parameter,  a 
function  of  ul  and  u2, 
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The  geometry  of  the  surface  deals  with  the  inner  measure 
relations  of  the  surface  that  belong  to  it  independently  of  the 
manner  in  which  it  is  embedded  in  space.  They  are  the  relations 
that  can  be  determined  by  measurements  carried  out  on  the 

surface  itself.  Gauss  in  his  investigation  of  the  theory  of  surfaces 

started  from  the  practical  task  of  surveying  Hanover  geodetically. 
The  fact  that  the  earth  is  not  a  plane  can  be  ascertained  by 

measuring  a  sufficiently  large  portion  of  the  earth's  surface.  Even 
if  each  single  triangle  of  the  network  is  taken  too  small  for  the 
deviation  from  a  plane  to  come  into  consideration,  they  cannot  be 

put  together  to  form  a  closed  net  on  a  plane  in  the  way  they  do  on 

the  earth's  surface.  To  show  this  a  little  more  clearly  let  us  draw 
a  circle  C  on  a  sphere  of  radius  unity  (the  earth),  having  its  centre 
P  on  the  surface  of  the  sphere.  Let  us  further  draw  radii  of  this 

circle,  i.e.  arcs  of  great  circles  of  the  sphere  radiating  from  P  and 

ending  at  the  circumference  of  C  (let  these  arcs  be  <[o)-     By 

carrying  out  measurements  on  the  sphere's  surface  we  can  now 
ascertain  that  these  radii  starting  out  in  all  directions  are  the 

shortest  lines  connecting  P  to  the  circle  C,  and  that  they  are  all  of 
the  same  length  r ;  by  measurement  we  find  the  closed  curve  C  to 

be  of  length  s.  If  we  were  dealing  with  a  plane  we  should  infer 

from  this  that  the  "radii"  are  straight  lines  and  hence  the  curve 
C  would  be  a  circle  and  we  should  expect  s  to  be  equal  to  2-n-r. 
Instead  of  this,  however,  we  find  that  s  is  less  than  the  value  given 
by  the  above  formula,  for  in  the  actual  case  s  =  %TT  sin  r.  We 

thus  discover  by  measurements  carried  out  on  the  surface  of  the 

sphere  that  this  surface  is  not  a  plane.  If,  on  the  other  hand,  we 

draw  figures  on  a  sheet  of  paper  and  then  roll  it  up,  we  shall  find 

the  same  values  for  measurements  of  these  figures  in  their  new 

condition  as  before,  provided  that  no  distortion  has  occurred  through 

rolling  up  the  paper.  The  same  geometry  will  hold  on  it  now  as 
on  the  plane.  It  is  impossible  for  me  to  ascertain  that  it  is  curved 

by  carrying  out  geodetic  measurements.  Thus,  in  general,  the--; 
same  geometry  holds  for  two  surfaces  that  can  be  transformed  into 

one  another  without  distortion  or  tearing. 

The  fact  that  plane  geometry  does  not  hold  on  the  sphere  means 

analytically  that  it  is  impossible  to  convert  the  quadratic  differential 
form  (10)  by  means  of  a  transformation 

nt       __    /7* 

u\  —  u\ 

into  the  form 
Mil  '\2  _i_   Mil  '\2 



90  THE  METRICAL  CONTINUUM 

We  know,  indeed,  that  it  is  possible  to  do  this  for  each  point  by  a 
linear  transformation  of  the  differentials,  viz.  by 

duj  =  andi^  +  ai2du2        (i  =  1,  2)        .        .     (11) 

but  it  is  impossible  to  choose  the  transformation  of  the  differentials 
at  each  point  so  that  the  expressions  (11)  become  total  differentials 

for  dui,  du2'. 
Curvilinear  co-ordinates  are  used  not  only  in  the  theory  of 

surfaces  but  also  in  the  treatment  of  space  problems,  particularly  in 
mathematical  physics  in  which  it  is  often  necessary  to  adapt  the 

co-ordinate  system  to  the  bodies  presented,  as  is  instanced  in  the 
case  of  cylindrical,  spherical,  and  elliptic  co-ordinates.  The  square 
of  the  distance,  ds*,  between  two  infinitely  near  points  in  space,  is 
always  expressed  by  a  quadratic  form 

....     (12) 

in  which  xlt  x.2,  X3  are  any  arbitrary  co-ordinates.  If  we  uphold 
Euclidean  geometry,  we  express  the  belief  that  this  -quadratic  form 
can  be  brought  by  means  of  some  transformation  into  one  which 
has  constant  co-efficients. 

These  introductory  remarks  enable  us  to  grasp  the  full  meaning 
of  the  ideas  developed  fully  by  Eiemann  in  his  inaugural  address, 

"  Concerning  the  Hypotheses  which  lie  at  the  Base  of  Geometry  ".* 
It  is  evident  from  Chapter  I  that  Euclidean  geometry  holds  for  a 

three-dimensional  linear  point-configuration  in  a  four-dimensional 
Euclidean  space ;  but  curved  three-dimensional  spaces,  which  exist 
in  four-dimensional  space  just  as  much  as  curved  surfaces  occur  in 
three-dimensional  space,  are  of  a  different  type.  Is  it  not  possible 
that  our  three-dimensional  space  of  ordinary  experience  is  curved? 
Certainly.  It  is  not  embedded  in  a  four-dimensional  space ;  but  it 
is  conceivable  that  its  inner  measure-relations  are  such  as  cannot 

occur  in  a  "plane"  space;  it  is  conceivable  that  a  very  careful 
geodetic  survey  of  our  space  carried  out  in  the  same  way  as  the 

above-mentioned  survey  of  the  earth's  surface  might  disclose  that  it 
is  not  plane.  We  shall  continue  to  regard  it  as  a  three-dimensional 
manifold,  and  to  suppose  that  infinitesimal  line  elements  may  be 
compared  with  one  another  in  respect  to  length  independently  of 
their  position  and  direction,  and  that  the  square  of  their  lengths, 
the  distance  between  two  infinitely  near  points,  may  be  expressed 
by  a  quadratic  form  (12),  any  arbitrary  co-ordinates  X{  being  used. 
(There  is  a  very  good  reason  for  this  assumption ;  for,  since  every 
transformation  from  one  co-ordinate  system  to  another  entails 

*  Vide  note  4. 
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linear  transformation-formulae  for  the  co-ordinate  differentials,  a 
quadratic  form  must  always  again  pass  into  a  quadratic  form  as  a 
result  of  the  transformation.)  We  no  longer  assume,  however, 

that  these  co-ordinates  may  in  particular  be  chosen  as  affine  co- 

ordinates such  that  they  make  the  co-efficients  g^  of  the  ground- 
form  become  constant. 

The  transition  from  Euclidean  geometry  to  that  of  Eiemann  is 
founded  in  principle  on  the  same  idea  as  that  which  led  from 

1  physics  based  on  action  at  a  distance  to  physics  based  on  infinitely 
near  action.  We  find  by  observation,  for  example,  that  the  current 

flowing  along  a  conducting  wire  is  proportional  to  the  difference  of 

potential  between  the  ends  of  the  wire  (Ohm's  Law).  But  we  are 
firmly  convinced  that  this  result  of  measurement  applied  to  a  long 
wire  does  not  represent  a  physical  law  in  its  most  general  form  ; 

we  accordingly  deduce  this  law  by  reducing  the  measurements  ob- 
tained to  an  infinitely  small  portion  of  wire.  By  this  means  we 

arrive  at  the  expression  (Chap.  I,  p.  76)  on  which  Maxwell's  theory 
is  founded.  Proceeding  in  the  reverse  direction,  we  derive  from 

this  differential  law  by  mathematical  processes  the  integral  law, 

which  we  observe  directly,  on  the  supposition  that  conditions  are 

everywhere  similar  (homogeneity).  We  have  the  same  circum- 
stances here.  The  fundamental  fact  of  Euclidean  geometry  is  that 

the  square  of  the  distance  between  two  points  is  a  quadratic  form 

of  the  relative  co-ordinates  of  the  two  points  (Pythagoras'  Theorem). 
•  But  if  we  look  upon  this  law  as  being  strictly  valid  only  for  the 
case  when  these  two  points  are  infinitely  near,  we  enter  the  domain  of 
Riemanns  geometry.  This  at  the  same  time  allows  us  to  dispense 

with  defining  the  co-ordinates  more  exactly  since  Pythagoras'  Law 
expressed  in  this  form  (i.e.  for  infinitesimal  distances)  is  invariant 

for  arbitrary  transformations.  We  pass  from  Euclidean  "  finite  " 
geometry  to  Eiemann's  "  infinitesimal "  geometry  in  a  manner 
exactly  analogous  to  that  by  which  we  pass  from  "  finite  "  physics 

to  "  infinitesimal  "  (or  "  contact ")  physics.  Kiemann's  geometry 
is  Euclidean  geometry  formulated  to  meet  the  requirements  of  con- 

tinuity, and  in  virtue  of  this  formulation  it  assumes  a  much  more  " 
'  general  character.  Euclidean  finite  geometry  is  the  appropriate 
instrument  for  investigating  the  straight  line  and  the  plane,  and 
the  treatment  of  these  problems  directed  its  development.  As 

'  soon  as  we  pass  over  to  differential  geometry,  it  becomes  natural 
and  reasonable  to  start  from  the  property  of  infinitesimals  set  out 
by  Riemann.  This  gives  rise  to  no  complications,  and  excludes 
all  speculative  considerations  tending  to  overstep  the  boundaries 

of  geometry.  In  Riemann's  space,  too,  a  surface,  being  a  two- 
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dimensional  manifold,  may  be  represented  parametrically  in  the 
form  xi  =  Xi^u^  w2).     If  we  substitute  the  resulting  differentials, 

,  ~&Xi     j  T)Xi     j ax   =  — -  .  du,  +  -  —  .  du2 dtff  dW2 

in  the  metrical  groundform  (12)  of  Eiemann's  space,  we  get  for  the 
square  of  the  distance  between  two  infinitely  near  surface-points  a 
quadratic  differential  form  in  dult  du.2  (as  in  Euclidean  space). 
The  measure-relations  of  three-dimensional  Eiemann  space  may  be 
applied  directly  to  any  surface  existing  in  it,  and  thus  converts  it 
into  a  two-dimensional  Eiemann  space.  Whereas  from  the  Eucli- 

dean standpoint  space  is  assumed  at  the  very  outset  to  be  of  a  much 
simpler  character  than  the  surfaces  possible  in  it,  viz.  to  be  rect- 

angular, Eiemann  has  generalised  the  conception  of  space  just 
sufficiently  far  to  overcome  this  discrepancy.  The  principle  of 
gaining  knowledge  of  the  external  world  from  the  behaviour 
of  its  infinitesimal  parts  is  the  mainspring  of  the  theory  of 

knowledge  in  infinitesimal  physics  as  in  Eiemann's  geometry,  and, 
indeed,  the  mainspring  of  all  the  eminent  work  of  Eiemann,  in 
particular,  that  dealing  with  the  theory  of  complex  functions.  The 

question  of  the  validity  of  the  "  fifth  postulate,"  on  which  historical 
development  started  its  attack  on  Euclid,  seems  to  us  nowadays 
to  be  a  somewhat  accidental  point  of  departure.  The  knowledge 
that  was  necessary  to  take  us  beyond  the  Euclidean  view  was,  in  j 
our  opinion,  revealed  by  Eiemann. 

We  have  yet  to  convince  ourselves  that  the  geometry  of  Bolyai 
and  Lobatschefsky  as  well  as  that  of  Euclid  and  also  spherical 
geometry  (Eiemann  was  the  first  to  point  out  that  the  latter  was 

a  possible  case  of  non-Euclidean  geometry)  are  all  included  as 

particular  cases  in  Eiemann's  geometry.  We  find,  in  fact,  that  if 
we  denote  a  point  in  the  Bolyai-Lobatschefsky  plane  by  the  rect- 

angular co-ordinates  ul  u2  of  its  corresponding  point  in  Klein's 
model  the  distance  ds  between  two  infinitely  near  points  is  by  (1) 

,  2       (1  -  V  -  u*)  (duf  +  du*)  +  fadu!  +  u2du2)z      Q3) 
n      _     a,    '2  a,    2\a  V         ' 
(•*-          al     ~    U>fL) 

By  comparing  this  with  (10)  we  see  that  the  Theorem  of  Taurinus 
is  again  confirmed.  The  metrical  groundform  of  three-dimensional 
non-Euclidean  space  corresponds  exactly  to  this  expression. 

If  we  can  find  a  curved  surface  in  Euclidean  space  for  which  for- 
mula (13)  holds,  provided  appropriate  Gaussian  co-ordinates  uv  U2 

be  chosen,  then  the  geometry  of  Bolyai  and  Lobatschefsky  is  valid 
on  it.  Such  surfaces  can  actually  be  constructed ;  the  simplest  is 
the  surface  of  revolution  derived  from  the  tractrix.  The  tractrix 
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is  a  plane  curve  of  the  shape  shown  in  Fig.  5,  with  one  vertex  and 
one  asymptote.  It  is  characterised  geometrically  by  the  property 
that  any  tangent  measured  from  the  point  of  contact  to  the  point 
of  intersection  with  the  asymptote  is  of  constant  length.  Suppose 

the  curve  to  revolve  about  its  asymptote  as  axis.  Non-Euclidean 
geometry  holds  on  the  surface  generated.  This  Euclidean  model 
of  striking  simplicity  was  first  mentioned  by  Beltrami  (vide  note  5). 
There  are  certain  shortcomings  in  it ;  in  the  first  place  the  form  in 

'which  it  is  presented  confines  it  to  two-dimensional  geometry; 
secondly,  each  of  the  two  halves  of  the  surface  of  revolution  into 

which  the  sharp  edge  divides  it  represents  only  a  part  of  the  non- 
Euclidean  plane.  Hilbert  proved  rigorously  that  there  cannot  be 
a  surface  free  from  singularities  in  Euclidean  space  which  pictures 

the  whole  of  Lobatschef sky's  plane  (vide  note  6).  Both  of  these 
weaknesses  are  absent  in  the  elementary  geometrical 
model  of  Klein. 

So  far  we  have  pursued  a  speculative  train  of 

thought  and  have  kept  within  the  boundaries  of  mathe- 
matics. There  is,  however,  a  difference  in  demonstrat- 

ing the  consistency  of  non-Euclidean  geometry  and 
Inquiring  whether  it  or  Euclidean  geometry  holds 
in  actual  space.  To  decide  this  question  Gauss  long 

igo  measured  the  triangle  having  for  its  vertices  In- 
selsberg,  Brocken,  and  Hoher  Hagen  (near  Gottingen),  pIG>  5. 
jsing  methods  of  the  greatest  refinement,  but  the 

leviation  of  the  sum  of  the  angles  from  180°  was  found  to  lie 
ivithin  the  limits  of  errors  of  observation.  Lobatschefsky  con- 

cluded from  the  very  small  value  of  the  parallaxes  of  the  stars 

;hat  actual  space  could  differ  from  Euclidean  space  only  by  an 
extraordinarily  small  amount.  Philosophers  have  put  forward 

>he  thesis  that  the  validity  or  non-validity  of  Euclidean  geometry 
jannot  be  proved  by  empirical  observations.  It  must  in  fact 

)e  granted  that  in  all  such  observations  essentially  physical  as- 
sumptions, such  as  the  statement  that  the  path  of  a  ray  of  light  is 

i  straight  line  and  other  similar  statements,  play  a  prominent  part. 

This  merely  bears  out  the  remark  already  made  above  that  it  is' 
>nly  the  whole  composed  of  geometry  and  physics  that  may  be 

<ested  empirically.  Conclusive  experiments  are  thus  possible  only 

pf  physics  in  addition  to  geometry  is  worked  out  for  Euclidean 
'pace  and  generalised  Eiemann  space.  We  shall  soon  see  that 
vithout  making  artificial  limitations  we  can  easily  translate  the 
aws  of  the  electromagnetic  field,  which  were  originally  set  up  on 

he  basis  of  Euclidean  geometry,  into  terms  of  Riemann's  space. 
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Once  this  has  been  done  there  is  no  reason  why  experience  should 

not  decide  whether  the  special  view  of  Euclidean  geometry  or  the 

more  general  one  of  Eiemann  geometry  is  to  be  upheld.  It  is 
clear  that  at  the  present  stage  this  question  is  not  yet  ripe  for 
discussion. 

In  this  concluding  paragraph  we  shall  once  again  present  the 

foundations  of  Eiemann's  geometry  in  the  form  of  a  resume,  in 
which  we  do  not  restrict  ourselves  to  the  dimensional  number 

n  =  3. 

An  n-dimensional  Riemann  space  is  an  n-dimensional  manifold, 

not  of  an  arbitrary  nature,  but  one  which  derives  its  measure-rela- 
tions from  a  definitely  positive  quadratic  differential  form.  The  two 

principal  laws  according  to  which  this  form  determines  the  metrical 
quantities  are  expressed  in  (1)  and  (2)  in  which  the  #/s  denote  any 
co-ordinates  whatsoever. 

1.  If  g  is  the  determinant  of  the  co-efficients  of  the  ground- 
form,  then  the  size  of  any  portion  of  space  is  given  by  the  integral 

I  Jgdx-jdXi  .  .  .  dxn         .  .  .     (14) 

which  is  to  be  taken  over  the  mathematical  region  of  the  variables 

Xi,  which  corresponds  to  the  portion  of  space  in  question. 

2.  If  Q(d&)  denote  the  symmetrical  bilinear  form,  correspond- 
ing to  the  quadratic  groundform,  of   two  line  elements  d  and  8 

situated  at  the  same  point,   then  the  angle  6  between   them  is 

given  by 

An  w-dimensional   manifold   existing  in  w-dimensional  space 
(1  <  m  <  n)  is  given  in  parametric  terms  by 

Xi  =  Xi(u^  .  .  .  um)         (i  =  1,  2,  ...  n). 

By  substituting  the  differentials 

in  the  metrical  groundform  of  space  we  get  the  metrical  ground- 
form  of  this  w-dimensional  manifold.  The  latter  is  thus  itself  an 

m-dimensional  Eiemann  space,  and  the  size  of  any  portion  of  it 

may  be  calculated  from  formula  (14)  in  the  case  m  =  n.  In  this 

way  the  lengths  of  segments  of  lines  and  the  areas  of  portions  oJ 
surfaces  may  be  determined. 

i 
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§12.  Continuation.     Dynamical  View  of  Metrical  Properties 

We  shall  now  revert  to  the  theory  of  surfaces  in  Euclidean 

space.  The  curvature  of  a  plane  curve  may  be  defined  in  the 
following  way  as  the  measure  of  the  rate  at  which  the  normals  to 
the  curve  diverge.  From  a  fixed  point  0  we  trace  out  the  vector 

Op,  the  "  normal "  to  the  curve  at  an  arbitary  point  P,  and  make  it 
of  unit  length.  This  gives  us  a  point  P,  corresponding  to  P,  on  the 
circle  of  radius  unity.  If  P  traverses  a  small  arc  As  of  the  curve, 

the  corresponding  point  p  will  traverse  an  arc  Ao-  of  the  circle ;  ACT 
is  the  plane  angle  which  is  the  sum  of  the  angles  that  the  normals 
erected  at  all  points  of  the  arc  of  the  curve  make  with  their  respec- 

tive neighbours.  The  limiting  value  of  the  quotient  —  for  an 

element  of  arc  As  which  contracts  to  a  point  P  is  the  curvature  at  P. 
Gauss  defined  the  curvature  of  a  surface  as  the  measure  of  the  rate 

at  which  its  normals  diverge  in  an  exactly  analogous  manner.  In 

FIG.  6. 

place  of  the  unit  circle  about  0,  he  uses  the  unit  sphere.  Applying 
the  same  method  of  representation  he  makes  a  small  portion  da>  of 
this  sphere  correspond  to  a  small  area  do  of  the  surface;  dot  is 
;equal  to  the  solid  angle  formed  by  the  normals  erected  at  the 

points  of  do.    The  ratio  -r  for  the  limiting  case  when  do  becomes 

vanishingly  small  is  the  Gaussian  measure  of  curvature.  Gauss 
made  the  important  discovery  that  this  curvature  is  determined  by 
the  inner  measure-relations  of  the  surface  alone,  and  that  it  can  be 
calculated  from  the  co-efficients  of  the  metrical  groundform  as  a 
iifferential  expression  of  the  second  order.  The  curvature  accordingly 
remains  unaltered  if  the  surface  be  bent  without  being  distorted  by 
^retching.  By  this  geometrical  means  a  differential  invariant 
Df  the  quadratic  differential  forms  of  two  variables  was  dis- 

covered, that  is  to  say,  a  quantity  was  found,  formed  of  the  co- 
sfficients  of  the  differential  form  in  such  a  way  that  its  value 
was  the  same  for  two  differential  forms  that  arise  from  each  other 
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by  a  transformation   (and  also  for  parametric  pairs  which  corre- 
spond to  one  another  in  the  transformation). 

Eiemann  succeeded  in  extending  the  conception  of  curvature  to 
quadratic  forms  of  three  and  more  variables.  He  then  found  that 
it  was  no  longer  a  scalar  but  a  tensor  (we  shall  discuss  this  in  §  15 
of  the  present  chapter).  More  precisely  it  may  be  stated  that 

Eiemann's  space  has  a  definite  curvature  at  every  point  in  the 
normal  direction  of  every  surface.  The  characteristic  of  Euclidean 

space  is  that  its  curvature  is  nil  at  every  point  and  in  every  direc- 

tion. Both  in  the  case  of  Bolyai-Lobatschefsky's  geometry  and 
spherical  geometry  the  curvature  has  a  value  a  independent  of  the 
place  and  of  the  surface  passing  through  it  :  this  value  is  positive 

in  the  case  of  spherical  geometry,  negative  in  that  of  Bolyai- 
Lobatschefsky.  (It  may  therefore  be  put  =  +  1  if  a  suitable  unit 
of  length  be  chosen.)  If  an  w-dimensional  space  has  a  constant 
curvature  a,  then  if  we  choose  appropriate  co-ordinates  Xi,  its 
metrical  groundform  must  be  of  the  form 

l  +  a ?  -  a       > 

('+•2") 
It  is  thus  completely  defined  in  a  single-valued  manner.  If  space 
is  everywhere  homogeneous  in  all  directions,  its  curvature  must  be 
constant,  and  consequently  its  metrical  groundform  must  be  of  the 
form  just  given.  Such  a  space  is  necessarily  either  Euclidean, 
spherical,  or  Lobatschefskyan.  Under  these  circumstances  not  only 
have  the  line  elements  an  existence  which  is  independent  of  place 
and  direction,  but  any  arbitrary  finitely  extended  figure  may  be 
transferred  to  any  arbitrary  place  and  put  in  any  arbitrary  direction 
without  altering  its  metrical  conditions,  i.e.  its  displacements  are 
congruent.  This  brings  us  back  to  congruent  transformations 
which  we  used  as  a  starting-point  for  our  reflections  on  space  in 
§  1.  Of  these  three  possible  cases  the  Euclidean  one  is  characterised 
by  the  circumstance  that  the  group  of  translations  having  the 

special  properties  set  out  in  §  1  are  unique  in  the  group  of  con- 
gruent transformations.  The  facts  which  are  summarised  in  this 

paragraph  are  mentioned  briefly  in  Eiemann's  essay;  they  have 
been  discussed  in  greater  detail  by  Christoffel,  Lipschitz,  Helmholtz, 
and  Sophus  Lie  (vide  note  7). 

Space  is  a  form  of  phenomena,  and,  by  being  so,  is  necessarily 
homogeneous.  It  would  appear  from  this  that  out  of  the  rich 

abundance  of  possible  geometries  included  in  Eiemann's  conception 
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only  the  three  special  cases  mentioned  come  into  consideration 
from  the  outset,  and  that  all  the  others  must  be  rejected  without 
further  examination  as  being  of  no  account :  parturiunt  montes, 
nascetur  ridiculus  mus !  Eiemann  held  a  different  opinion,  as  is 
evidenced  by  the  concluding  remarks  of  his  essay.  Their  full 
purport  was  not  grasped  by  his  contemporaries,  and  his  words  died 
away  almost  unheard  (with  the  exception  of  a  solitary  echo  in  the 
writings  of  W.  K.  Clifford).  Only  now  that  Einstein  has  removed 

'the  scales  from  our  eyes  by  the  magic  light  of  his  theory  of  gravita- 
tion do  we  see  what  these  words  actually  mean.  To  make  them 

quite  clear  I  must  begin  by  remarking  that  Eiemann  contrasts 
discrete  manifolds,  i.e.  those  composed  of  single  isolated  elements, 
with  continuous  manifolds.  The  measure  of  every  part  of  such  a 

discrete  manifold  is  determined  by  the  number  of  elements  be- 
longing to  it.  Hence,  as  Eiemann  expresses  it,  a  discrete  manifold 

has  the  principle  of  its  metrical  relations  in  itself,  a  priori,  as  a 

consequence  of  the  concept  of  number.  In  Eiemann's  own  words  : — 
"The  question  of  the  validity  of  the  hypotheses  of  geometry  in 

the  infinitely  small  is  bound  up  with  the  question  of  the  ground  of 
the  metrical  relations  of  space.  In  this  question,  which  we  may 
still  regard  as  belonging  to  the  doctrine  of  space,  is  found  the 
application  of  the  remark  made  above ;  that  in  a  discrete  manifold,-, 
the  principle  or  character  of  its  metric  relations  is  already  given  in 
the  notion  of  the  manifold,  whereas  in  a  continuous  manifold  this 
ground  has  to  be  found  elsewhere,  i.e.  has  to  come  from  outside. 
Either,  therefore,  the  reality  which  underlies  space  must  form  a 
liscrete  manifold,  or  we  must  seek  the  ground  of  its  metric  relations 

(measure-conditions)  outside  it,  in  binding  forces  which  act  upon  it. 

"  A  decisive  answer  to  these  questions  can  be  obtained  only  by 
starting  from  the  conception  of  phenomena  which  has  hitherto 
oeen  justified  by  experience,  to  which  Newton  laid  the  foundation, 
ind  then  making  in  this  conception  the  successive  changes  required 
)y  facts  which  admit  of  no  explanation  on  the  old  theory;  re- 
learches  of  this  kind,  which  commence  with  general  motions, 
cannot  be  other  than  useful  in  preventing  the  work  from  being 
tampered  by  too  narrow  views,  and  in  keeping  progress  in  the 
knowledge  of  the  inter-connections  of  things  from  being  checked 
>y  traditional  prejudices. 

This  carries  us  over  into  the  sphere  of  another  science,  that  of 
)hysics,  into  which  the  character  and  purpose  of  the  present  dis- 
iussion  will  not  allow  us  to  enter." 

If  we  discard  the  first  possibility,  "  that  the  reality  which  under- 
ies  space  forms  a  discrete  manifold  " — although  we  do  not  by  this 7 
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in  any  way  mean  to  deny  finally,  particularly  nowadays  in  view  of 
the  results  of  the  quantum-theory,  that  the  ultimate  solution  of  the 
problem  of  space  may  after  all  be  found  in  just  this  possibility— 
we  see  that  Eiemann  rejects  the  opinion  that  had  prevailed  up  to 
his  own  time,  namely,  that  the  metrical  structure  of  space  is  fixed 
and  inherently  independent  of  the  physical  phenomena  for  which 
it  serves  as  a  background,  and  that  the  real  content  takes  possession 
of  it  as  of  residential  flats.  He  asserts,  on  the  contrary,  that  space 

in  itself  is  nothing  more  than  a  three-dimensional  manifold  devoid  of 
all  form  ;  it  acquires  a  definite  form  only  through  the  advent  of  the 
material  content  filling  it  and  determining  its  metric  relations. 
There  remains  the  problem  of  ascertaining  the  laws  in  accordance 
with  which  this  is  brought  about.  In  any  case,  however,  the 
metrical  groundform  will  alter  in  the  course  of  time  just  as  the 
disposition  of  matter  in  the  world  changes.  We  recover  the 
possibility  of  displacing  a  body  without  altering  its  metric  relations 

by  making  the  body  carry  along  with  it  the  "  metrical  field  "  which 
it  has  produced  (and  which  is  represented  by  the  metrical  ground- 
form  ;  just  as  a  ma-s,  having  assumed  a  definite  shape  in  equilibrium 
under  the  influence  of  the  field  of  force  which  it  has  itself  produced, 
would  become  deformed  if  one  could  keep  the  field  of  force  fixed 
while  displacing  the  mass  to  another  position  in  it ;  whereas,  in 
reality,  it  retains  its  shape  during  motion  (supposed  to  be  sufficiently 
slow),  since  it  carries  the  field  of  force,  which  it  has  produced, 
along  with  itself.  We  shall  illustrate  in  greater  detail  this  bold 
idea  of  Eiemann  concerning  the  metrical  field  produced  by  matter, 
and  we  shall  show  that  if  his  opinion  is  correct,  any  two  portions 
of  space  which  can  be  transformed  into  one  another  by  a  continuous 
deformation,  must  be  recognised  as  being  congruent  in  the  sense 
we  have  adopted,  and  that  the  same  material  content  can  fill  one 
portion  of  space  just  as  well  as  the  other. 

To  simplify  this  examination  of  the  underlying  principles  we 
assume  that  the  material  content  can  be  described  fully  by  scalar 
phase  quantities  such  as  mass-density,  density  of  charge,  and  so 
forth.  We  fix  our  attention  on  a  definite  moment  of  time.  During 
this  moment  the  density  p  of  charge,  for  example,  will,  if  we  choose, 
a  certain  co-ordinate  system  in  space,  be  a  definite  function 
/  (x}x2xs)  of  the  co-ordinates  xlt  but  will  be  represented  by  a  different 

function/*  (x{*x%*xz*)  if  we  use  another  co-ordinate  system  in  #;*. 
A  parenthetical  note.  Beginners  are  often  confused  by  failing  to 
notice  that  in  mathematical  literature  symbols  are  used  throughout 
to  designate  functions,  whereas  in  physical  literature  (including 
the  mathematical  treatment  of  physics)  they  are  used  exclusive!) 



CONTINUATION  99 

io  denote  "magnitudes"  (quantities).  For  example,  in  thermo- 
dynamics the  energy  of  a  gas  is  denoted  by  a  definite  letter,  say  E, 

irrespective  of  whether  it  is  a  function  of  the  pressure  p  and  the 
temperature  0  or  a  function  of  the  volume  v  and  the  temperature 
0.  The  mathematician,  however,  uses  two  different  symbols  to  ex- 

press this  :  — 
E  =  0(p,  0)  =  t(v,  0). 

(  The  partial  derivatives  -?,  -•-,  which  are  totally  different  in  mean- 

ing, consequently  occur  in  physics  books  under  the  common  ex- A   7^7 

pression  -—  .     A  suffix  must  be  added  (as  was  done  by  Boltzmann), 06 

or  it  must  be  made  clear  in  the  text  that  in  one  case  p,  in  the  other 
case  v,  is  kept  constant.  The  symbolism  of  the  mathematician  is 

clear  without  any  such  addition.* 
Although  the  true  state  of  things  is  really  more  complex  we 

shall  assume  the  most  simple  system  of  geometrical  optics,  the 
fundamental  law  of  which  states  that  the  ray  of  light  from  a  point 

1  M  emitting  light  to  an  observer  at  P  is  a  "  geodetic  "  line,  which  is 
the  shortest  of  all  the  lines  connecting  M  with  P:  we  take  no 

I  account  of  the  finite  velocity  with  which  light  is  propagated.  We 
ascribe  to  the  receiving  consciousness  merely  an  optical  faculty  of 

perception  and  simplify  this  to  a  "point-eye"  that  immediately 
observes  the  differences  of  direction  of  the  impinging  rays,  these 

i  directions  being  the  values  of  6  given  by  (15)  ;  the  "  point-eye  " 
thus  obtains  a  picture  of  the  directions  in  which  the  surrounding 
objects  lie  (colour  factors  are  ignored).  The  Law  of  Continuity 

'  governs  not  only  the  action  of  physical  things  on  one  another  but 
'  also  psycho-physical  interactions.  The  direction  in  which  we  ob- 

serve objects  is  determined  not  by  their  places  of  occupation  alone, 
but  also  by  the  direction  of  the  ray  from  them  that  strikes  the 
retina,  that  is,  by  the  state  of  the  optical  field  directly  in  contact 

'  with  that  elusive  body  of  reality  whose  essence  it  is  to  have  an 
objective  world  presented  to  it  in  the  form  of  experiences  of  con- 

!  sciousness.     To  say  that  a  material  content  G  is  the  same  as  the 

i  material  content  G'  can  obviously  mean  no  more  than  saying  that 
to  every  point  of  view  P  with  respect  to  G  there  corresponds  a 

point  of  view  P'  with  respect  to  G'  (and  conversely)  in  such  a  way 
'  that  an  observer  at  P'  in  G'  receives  the  same  "  direction  -picture  " 
;  as  an  observer  in  G  receives  at  P. 

*  This  is  not  to  be  taken  as  a  criticism  of  the  physicist's  nomenclature 
which  is  fully  adequate  to  the  purposes  of  physics,  which  deals  with 
magnitudes. 
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Let  us  take  as  a  basis  a  definite  co-ordinate  system  x^.  The 
scalar  phase-quantities,  such  as  density  of  electrification  p,  are  then 
represented  by  definite  functions 

Let  the  metrical  groundform  be 
3 

in  which  the  gr^'s  likewise  (in  "  mathematical  "  terminology)  denote 
definite  functions  of  xv  #.,,  xs.  Furthermore,  suppose  any  con- 

tinuous transformation  of  space  into  itself  to  be  given,  by  which 

a  point  P'  corresponds  to  each  point  P  respectively.  Using  this 
co-ordinate  system  and  the  modes  of  expression 

P  =  (X&X&        P'  =  (x\x'2x's) 
suppose  the  transformation  to  be  represented  by 

x'i  =  frfaxpi)       .  .     (16) 

Suppose  this  transformation  convert  the  portion  S  of  space  into  S', 
I  shall  show  that  if  Eiemann's  view  is  correct  S'  is  congruent  with 
S  in  the  sense  defined. 

I  make  use  of  a  second  co-ordinate  system  by  taking  as  co- 

ordinates of  the  point  P  the  values  of  x'i  given  by  (16)  ;  the  ex- 
pressions (16)  then  become  the  formulae  of  transformation.  The 

mathematical  region  in  three  variables  represented  by  S  in  the 

co-ordinates  x'  is  identical  with  that  represented  by  S'  in  the  co- 
ordinates x.  An  arbitrary  point  P  has  the  same  co-ordinates  in  x' 

as  P'  has  in  x.  I  now  imagine  space  to  be  filled  by  matter  in  some 
other  way,  namely,  that  represented  by  the  formulae 

at  the  point  P,  with  similar  formulae  for  the  other  scalar  quantities. 
If  the  metric  relations  of  space  are  taken  to  be  independent  of  the 
contained  matter,  the  metrical  groundform  will,  as  in  the  case  of 
the  first  content,  be  of  the  form 

ik  ik 

the  right-hand  member  of  which  denotes  the  expression  after 
transformation  to  the  new  co-ordinate  system.  If,  however,  the 
metric  relations  of  space  are  determined  by  the  matter  filling  it  — 
we  assume,  with  Eiemann,  that  this  is  actually  so  —  then,  since  the 

necond  occupation  by  matter  expresses  itself  in  the  co-ordinates  x' 
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in  exactly  the  same  way  as  does  the  first  in  x,  the  metrical  ground- 
form  for  the  second  occupation  will  be 

In  consequence  of  our  underlying  principle  of  geometrical  optics 

assumed  above,  the  content  in  the  portion  S'  of  space  during  the 
first  occupation  will  present  exactly  the  same  appearance  to  an 

observer  at  P'  as  the  material  content  in  8  during  the  second 
occupation  presents  to  an  observer  at  P.  If  the  older  view  of 

"  residential  flats  "  is  correct,  this  would  of  course  not  be  the  case. 
The  simple  fact  that  I  can  squeeze  a  ball  of  modelling  clay  with 

my  hands  into  any  irregular  shape  totally  different  from  a  sphere 

would  seem  to  reduce  Kiemann's  view  to  an  absurdity.  This,  how- 
ever, proves  nothing.  For  if  Biemann  is  right,  a  deformation  of 

the  inner  atomic  structure  of  the  clay  is  entirely  different  from  that 
which  I  can  effect  with  my  hands,  and  a  rearrangement  of  the  masses 
in  the  universe,  would  be  necessary  to  make  the  distorted  ball  of 
clay  appear  spherical  to  an  observer  from  all  points  of  view. 
The  essential  point  is  that  a  piece  of  space  has  no  visual  form  at 
all,  but  that  this  form  depends  on  the  material  content  occupying 
the  world,  and,  indeed,  occupying  it  in  such  a  way  that  by  means 
of  an  appropriate  rearrangement  of  the  mode  of  occupation  I  can 
give  it  any  visual  form.  By  this  I  can  also  metamorphose  any 
two  different  pieces  of  space  into  the  same  visual  form  by  choos- 

ing an  appropriate  disposition  of  the  matter.  Einstein  helped  to 

lead  Biemann'  s  ideas  to  victory  (although  he  was  not  directly 
influenced  by  Biemann).  Looking  back  from  the  stage  to  which 
Einstein  has  brought  us,  we  now  recognise  that  these  ideas  could 
give  rise  to  a  valid  theory  only  after  time  had  been  added  as  a 
fourth  dimension  to  the  three-space  dimensions  in  the  manner  set 
forth  in  the  so-called  special  theory  of  relativity.  As,  according  to 

Biemann,  the  conception  "  congruence  "  leads  to  no  metrical  system 
at  all,  not  even  to  the  general  metrical  system  of  Biemann,  which  is 
governed  by  a  quadratic  differential  form,  we  see  that  "  the  inner 

ground  of  the  metric  relations"  must  indeed  be  sought  elsewhere. 
Einstein  affirms  that  it  is  to  be  found  in  the  "  binding  forces  "  of 
Gravitation.  In  Einstein's  theory  (Chapter  IV)  the  co-efacients 
(jik  of  the  metrical  groundform  play  the  same  part  as  does  gravita- 

tional potential  in  Newton's  theory  of  gravitation.  The  laws 
according  to  which  space-filling  matter  determines  the  metrical 
structure  are  the  laws  of  gravitation.  The  gravitational  field  affects 

light  rays  and  "rigid"  bodies  used  as  measuring  rods  in  such  a 
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way  that  when  we  use  these  rods  and  rays  in  the  usual  manner  to 
take  measurements  of  objects,  a  geometry  of  measurement  is  found 
to  hold  which  deviates  very  little  from  that  of  Euclid  in  the  regions 
accessible  to  observation.  These  metric  relations  are  not  the  out- 

come of  space  being  a  form  of  phenomena,  but  of  the  physical 
behaviour  of  measuring  rods  and  light  rays  as  determined  by  the 
gravitational  field. 

After  Riemann  had  made  known  his  discoveries,  mathematicians 

busied  themselves  with  working  out  his  system  of  geometrical  ideas 
formally;  chief  among  these  were  Christoffel,  Kicci,  and  Levi- 
Civita  (vide  note  8).  Riemann,  in  the  last  words  of  the  above 
quotation,  clearly  left  the  real  development  of  his  ideas  in  the 
hands  of  some  subsequent  scientist  whose  genius  as  a  physicist 
could  rise  to  equal  flights  with  his  own  as  a  mathematician.  After 
a  lapse  of  seventy  years  this  mission  has  been  fulfilled  by  Einstein. 

Inspired  by  the  weighty  inferences  of  Einstein's  theory  to 
examine  the  mathematical  foundations  anew  the  present  writer 

made  the  discovery  that  Riemann's  geometry  goes  only  half-way 
towards  attaining  the  ideal  of  a  pure  infinitesimal  geometry.  It  still 

remains  to  eradicate  the  last  element  of  geometry  "  at  a  distance," 
a  remnant  of  its  Euclidean  past.  Riemann  assumes  that  it  is  possible 
to  compare  the  lengths  of  two  line  elements  at  different  points 
of  space,  too ;  it  is  not  permissible  to  use  comparisons  at  a 

distance  in  an  "  infinitely  near  "  geometry.  One  principle  alone 
is  allowable ;  by  this  a  division  of  length  is  transferable  from  one 
point  to  that  infinitely  adjacent  to  it. 

After  these  introductory  remarks  we  now  pass  on  to  the 
systematic  development  of  pure  infinitesimal  geometry  (vide 
note  9),  which  will  be  traced  through  three  stages  ;  from  the 
continuum,  which  eludes  closer  definition,  by  way  of  affinely 
connected  manifolds,  to  metrical  space.  This  theory  which, 

in  my  opinion,  is  the  climax  of  a  wonderful  sequence  of  logically- 
connected  ideas,  and  in  which  the  result  of  these  ideas  has  found 
its  ultimate  shape,  is  a  true  geometry,  a  doctrine  of  space  itself 
and  not  merely  like  Euclid,  and  almost  everything  else  that  has 

been  done  under  the  name  of  geometry,  a  doctrine  of  the  configura- 
tions that  are  possible  in  space. 

§  13.  Tensors  and  Tensor-densities  in  any  Arbitrary 
Manifold 

An  n-dimensional  Manifold.  —Following  the  scheme  outlined 
above  we  shall  make  the  sole  assumption  about  space  that  it  is 
an  ̂ -dimensional  continuum.  It  may  accordingly  be  retei T 
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M-co-ordinates  xl  x.2  .  .  .  xn,  of  which  each  has  a  definite  numerical 

value  at  each  point  of  the  manifold  ;  different  value-systems  of  the 
co-ordinates  correspond  to  different  points.  If  xl  x2  .  .  .  xn  is  a 
second  system  of  co-ordinates,  then  there  are  certain  relations 

xi  =fi(x1&2  •••#«)  where  (i  =  1,  2,  .  .  .  n)         .     (17) 

between  the  #-co-ordinates  and  the  #-co-ordinates  ;  these  relations 
are  conveyed  by  certain  functions  /».  We  do  not  only  assume  that 
they  are  continuous,  but  also  that  they  have  continuous  derivatives 

whose  determinant  is  non-  vanishing.  The  latter  condition  is 
necessary  and  sufficient  to  make  affine  geometry  hold  in  infinitely 
small  regions,  that  is,  so  that  reversible  linear  relations  exist 
between  the  differentials  o$  the  co-ordinates  in  both  systems,  i.e. 

a&Xt       ....      (18) 

ft 

We  assume  the  existence  and  continuity  of  higher  derivatives  where- 
ever  we  find  it  necessary  to  use  them  in  the  course  of  our  investi- 

gation. In  every  case,  then,  a  meaning  which  is  invariant  and 
independent  of  the  co-ordinate  system  has  been  assigned  to  the 
conception  of  continuous  functions  of  a  point  which  have  con- 

tinuous first,  second,  third,  or  higher  derivatives  as  required  ;  the 
co-ordinates  themselves  are  such  functions. 

Conception  of  a  Tensor.  —  The  relative  co-ordinates  dx  of  a 
point  P  =  (xi  +  dxi)  infinitely  near  to  the  point  P  =  (xj)  are  the 
components  of  a  line  element  at  P  or  of  an  infinitesimal  dis- 

placement PP  of  P.  The  transformation  to  another  co-or- 
dinate system  is  effected  for  these  components  by  formulae  (18), 

in  which  atf  denote  the  values  of  the  respective  derivatives  at  the 
point  P.  The  infinitesimal  displacements  play  the  same  part  in  the 
development  of  Tensor  Calculus  as  do  displacements  in  Chapter  I. 

It  must,  however,  be  noticed  that,  here,  a  displacement  is  essen- 
tially bound  to  a  point,  and  that  there  is  no  meaning  in  saying 

that  the  infinitesimal  displacements  of  two  different  points  are  the 
equal  or  unequal.  It  might  occur  to  us  to  adopt  the  convention 
of  calling  the  infinitesimal  displacements  of  two  points  equal  if 
they  have  the  same  components  ;  but  it  is  obvious  from  the  fact 
that  the  aVs  in  (18)  are  not  constants,  that  if  this  were  the  case 
for  one  co-ordinate  system  it  need  in  no  wise  be  true  for  another. 
Consequently  we  may  only  speak  of  the  infinitesimal  displacement 
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of  a  point  and  not,  as  in  Chapter  I,  of  the  whole  of  space ;  hence 
we  cannot  talk  of  a  vector  or  tensor  simply,  but  must  talk  of  a 
vector  or  tensor  as  being  at  a  point  P.  A  tensor  at  a  point  P  is 
a  linear  form,  in  several  series  of  variables,  which  is  dependent  on 

a  co-ordinate  system  to  which  the  immediate  neighbourhood  of  P 
is  referred  in  the  following  way :  the  expressions  of  the  linear  form 
in  any  two  co-ordinate  systems  x  and  x  pass  into  one  another  if 
certain  of  the  series  of  variables  (with  upper  indices)  are  trans- 

formed co-grediently,  the  remainder  (with  lower  indices)  contra- 
grediently,  to  the  differentials  dxi,  according  to  the  scheme 

and  &  =  \ afgk  respectively  .         .     (19) 
k 

By  ajfci  we  mean  the  values  of  these  derivatives  at  the  point  P.  The 
co-efficients  of  the  linear  form  are  called  the  components  of  the 
tensor  in  the  co-ordinate  system  under  consideration ;  they  are  co- 
variant  in  those  indices  that  belong  to  the  variables  with  an  upper 

index,  contra -variant  in  the  remaining  ones.  The  conception  of 
tensors  is  possible  owing  to  the  circumstance  that  the  transition  from 

one  co-ordinate  system  to  another  expresses  itself  as  a  linear  trans- 
formation in  the  differentials.  One  here  uses  the  exceedingly  fruitful 

mathematical  device  of  making  a  problem  "  linear"  by  reverting  to 
infinitely  small  quantities.  The  whole  of  Tensor  Algebra,  by 
whose  operations  only  tensors  at  the  same  point  are  associated, 
can  now  be  taken  over  from  Chapter  I.  Here,  again,  we  shall 
call  tensors  of  the  first  order  vectors.  There  are  contra-variant 
and  co-variant  vectors.  Whenever  the  word  vector  is  used  without 
being  defined  more  exactly  we  shall  understand  it  as  meaning  a 
contra-variant  vector.  Infinitesimal  quantities  of  this  type  are  the 
line  elements  in  P.  Associated  with  every  co-ordinate  system  there 

are  n  "  unit  vectors  "  e^  at  P,  namely,  those  which  have  components 

1,  0,  0,  ...  0 
0,  1,  0,  ...  0 

0,  0,  0,  ...  1 

in  the  co-ordinate  system.  Every  vector  x  at  P  may  be  expressed 
in  linear  terms  of  these  unit  vectors.  For  if  &  are  its  components, 
then 

x  -  ?e  +  £3e  -h  .  .  .  +  £"en  holds. 
The  unit  vectors  e*  of  another  co-ordinate  system  x  are  derived 
from  the  e/s  according  to  the  equations 
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]>  art*. The  possibility  of  passing  from  co-variant  to  contra-variant  com- 
ponents of  a  tensor  does  not,  of  course,  come  into  question  here. 

Each  two  linearly  independent  line  elements  having  components 
</,r,,  8xt  map  out  a  surface  element  whose  components  are 

'  Each  three  such  line  elements  map  out  a  three-dimensional  space 
element  and  so  forth.  Invariant  differential  forms  that  assign  a 
number  linearly  to  each  arbitrary  line  element,  surface  element, 

etc.,  respectively  are  linear  tensors  (  =  co-  variant  skew-sym- 
metrical tensors,  vide  §  7).  The  above  convention  about  omitting 

signs  of  summation  will  be  retained. 

Conception  of  a  Curve.  —  If  to  every  value  of  a  parameter  s 
a  point  P  =  P(s)  is  assigned  in  a  continuous  manner,  then  if  we 

interpret  s  as  time,  a  "  motion  "  is  given.  In  default  of  a  better 
expression  we  shall  apply  this  name  in  a  purely  mathematical 
sense,  even  when  we  do  not  interpret  s  in  this  way.  If  we  use  a 

definite  co-ordinate  system  we  may  represent  the  motion  in  the 
form 

Xi  =  Xi(s)  .         .  .         .     (20) 

by  means  of  n  continuous  functions  Xi(s),  which  we  assume  not 

only  to  be  continuous,  but  also  continuously  differentiable.*  In 

;  passing  from  the  parametric  value  s  to  s  4-  ds,  the  corresponding 
point  P  suffers  an  infinitesimal  displacement  having  components 

dxi.  If  we  divide  this  vector  at  P  by  ds,  we  get  the  "  velocity,"  a 

dr- 

vector 
 
at  P  having

  
compon

ents  
-p  =  «*.     The  formul

ae  
(20)  is  at 

the  same  time  a  parametric  representation  of  the  trajectory  of 
the  motion.  Two  motions  describe  the  same  curve  if,  and  only 
if,  the  one  motion  arises  from  the  other  when  the  parameter  s  is 

subjected  to  a  transformation  s  =  w(s),  in  which  w  is  a  continuous 
and  continuously  differentiable  uniform  function  w.  Not  the  com- 

ponents of  velocity  at  a  point  are  determinate  for  a  curve,  but  only 
their  ratios  (which  characterise  the  direction  of  the  curve). 

Tensor  Analysis.  —  A  tensor  field  of  a  certain  kind  is  defined  in 
,  a  region  of  space  if  to  every  point  P  of  this  region  a  tensor  of  this 
kind  at  P  is  assigned.  Eelatively  to  a  co-ordinate  system  the 
components  of  the  tensor  field  appear  as  definite  functions  of  the 
co-ordinates  of  the  variable  "  point  of  emergence  "  P:  we  assume 
them  to  be  continuous  and  to  have  continuous  derivatives.  The 

*I.e.  have  continuous  differential  co-efficiente. 
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Tensor  Analysis  worked  out  in  Chapter  I,  §  8,  cannot,  without 
alteration,  be  applied  to  any  arbitrary  continuum.  For  in  denning 
the  general  process  of  differentiation  we  earlier  used  arbitrary  co- 
variant  and  contra-variant  vectors,  whose  components  were  inde- 

pendent of  the  point  in  question.  This  condition  is  indeed 
invariable  for  linear  transformations,  but  not  for  any  arbitrary 

ones  since,  in  these,  the  a\  's  are  not  constants.  For  an  arbitrary 
manifold  we  may,  therefore,  set  up  only  the  analysis  of  linear 
tensor  fields  :  this  we  proceed  to  show.  Here,  too,  there  is 

derived  from  a  scalar  field  /  by  means  of  differentiation,  indepen- 
dently of  the  co-ordinate  system,  a  linear  tensor  field  of  the  first 

order  having  components 

From  a  linear  tensor  field  ft  of  the  first  order  we  get  one  of  the 
second  order 

'-&-$  •    -.  •    •  (22>: 
From  one  of  the  second  order,  /*,  we  get  a  linear  tensor  field  of 
the  third  order 

/«  _  5/S  +  ̂«  +  W*  .     (23) OXi  OXk         OXi 

and  so  forth. 
_ 

If  <f>  is  a  given  scalar  field  in  space  and  if  #»,  xi  denote  any  two  ! 
co-ordinate  systems,  then  the  scalar  field  will  be  expressed  in  each 

in  turn  as  a  function  of  the  Xi's  or  xjs  respectively,  i.e. 

If  we  form  the  increase  of  <f>  for  an  infinitesimal  displacement  of 
the  current  point,  we  get 

From  this  we  see  that  the  —  's  are  components  of   a   co- variant to 

tensor  field  of  the  first  order,  which  is  derived  from  the  scalar  field 
<f>  in  a  manner  independent  of  all  co-ordinate  systems.     We  have 
here  a  simple  illustration  of  the  conception  of  vector  fields.     At 

the  same  time  we  see  that  the  operation  "  grad  "  is  invariant  not 
only  for  linear  transformations,  but  also  for  any  arbitrary  t. 
formations  of  the  co-ordinates  whatsoever,  and  this  is  whir 
enunciated. 
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To  arrive  at  (22)  we  perform  the  following  construction.     From 

thr  point  P  =  P00  we  draw  the  two  line  elements  with  components 
;i.nd  &ri,  which  lead  to  the  two  infinitely  near  points  P10  andP01. 

We  displace  (by  "variation")  the  line  element  dx  in  some  way  so 
that  its  point  of  emergence  describes  the  distance  PQO-^OI  '•>  suppose 

it  to  have  got  to  POI-^II  finally.     We  shall  call  this  process  the  dis- 
placement 8.     Let  the  components  dxt  have  increased  by  Sdx;,  so 

,  that 

Bd-xt  =  |^(Pn)  -  Xi(PQl)}  -  {xi(Pw)  -  xt(PM)} 
We  now  interchange  d  and  8.     By  an  analogous  displacement  d  of 

the  line  element  Bx  along  P0oP10,  by  which  it  finally  takes  up  the 

position  Pfo-P/i'  its  components  are  increased  by 

ll)  -  xf{PlQ)}  -  [xi(Pn)  -  Xi(POQ)\. 
Hence  it  follows  that 

Uxi  -  dtoi  =  Xi(Pu)  -  Xi(P\j  .  .     (24) 

If,  and  only  if,  the  two  points  Pn  and  P'n  coincide,  i.e.  if  the  two 
line  elements  dx  and  8x  sweep  out  the  same  infinitesimal  "  parallelo- 

gram "  during  their  displacements  8  and  d  respectively  —  that  is  how 
i  we  shall  view  it  —  then  we  shall  have 

Uxi  -  dSx;  =  0       .         .         .         .     (25) 

If,  now,  a  co-variant  vector  field  with  components  fi  is  given,  then 

we  form  the  change  in  the  invariant  df  =  fidxi  owing  to  the  dis- 
placement 8  thus  : 

Uf  =  8/fte  +  fiUxi. 

Interchanging  d  and  8,  and  then  subtracting,  we  get 

A/  =  (8d  -  dS)f  =  (Sfidxi  -  dfiSxi)  +fi(Sdxi-d8xi) 

and  if  both  displacements  pass  over  the  same  infinitesimal  paral- 
lelogram we  get,  in  particular, 

A/'  .  8/4*.  -  rf/M  =          -        fc«^  .        .    (26) 

If  one  is  inclined  to  distrust  these  perhaps  too  venturesome 

operations  with  infinitesimal  quantities  the  differentials  may  be 
replaced  by  differential  co-efficients.     Since  an  infinitesimal  element 

of  surface  is  only  a  part  (or  more  correctly,  the  limiting  value  of  the 

part)  of  an  arbitrarily  small  but  finitely  extended  surface,  the  argu- 
ment will   run  as  follows.     Let  a  point  (st)  of  our  manifold  be 

.^ned  to  every  pair  of  values  of  two  parameters  s,  t  (in  a  certain 
ion  encircling  s  =  0,  t  =  0).     Let  the  functions  Xi  =  x-i(st),  which 

represents  this  "two-dimensional  motion"  (extending  over  a  sur- 
i  in  any  co-ordinate  system  Xi,  have  continuous  first  and  second 
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differential  co-efficients.     For  every  point  (st)  there  are  two  velocity  ' 
dxi       ,  dxi     _T 

vectors  with  components  -T-  and  —r.  .     We  may  assign  our  para- 

meters so  that  a  prescribed  point  P  =  (00)  corresponds  to  s  =  0, 
t  =  0,  and  that  the  two  velocity  vectors  at  it  coincide  with  two  arbi- 

trarily given  vectors  u\  vl  (for  this  it  is  merely  necessary  to  make 

the  xja  linear  functions  of  s  and  t).  Let  d  denote  the  differentia- 

tion  r,  and  8  denote  ̂ .    Then 

if  i     Mf  i 
dJ  =  ̂Ts'     bdS  =  a^TdF  "3*  +  fi  dtds 

By  interchanging  d  and  8,  and  then  subtracting,  we  get 

By  setting  s  =  0  and  £  =  0,  we  get  the  invariant  at  the  point  P 

(V     V*\  ̂  
~      u 

which  depends  on  two  arbitrary  vectors  u,  v  at  that  point.  The 
connection  between  this  view  and  that  which  uses  infinitesimals 

consists  in  the  fact  that  the  latter  is  applied  in  rigorous  form  to 

the  infinitesimal  parallelograms  into  which  the  surface  xi  =  Xi(st) 
is  divided  by  the  co-ordinate  lines  s  =  const,  and  t  =  const. 

Stokes'  Theorem  may  be  recalled  in  this  connection.  The 
invariant  linear  differential  fidxi  is  called  integrable  if  its  integral 

along  every  closed  curve  (its  "  curl  ")  =  0.  (This  is  true,  as  we 
know,  only  for  a  total  differential.)  Let  any  arbitrary  surface  given 
in  a  parametric  form  xi  =  Xi(st)  be  spread  out  within  the  closed 

curve,  and  be  divided  into  infinitesimal  parallelograms  by  the  co- 
ordinate lines.  The  curl  taken  around  the  perimeter  of  the  whole 

surface  may  then  be  traced  back  to  the  single  curls  around  these 
little  surface  meshes,  and  their  values  are  given  for  every  mesh  by 

our  expression  (27),  after  it  has  been  multiplied  by  dsdt.  A  differ- 
ential division  of  the  curl  is  produced  in  this  way,  and  the  tensor 

(22)  is  a  measure  of  the  "  intensity  of  the  curl"  at  every  point. 
In  the  same  way  we  pass  on  to  the  next  higher  stage  (23).  In 

place  of  the  infinitesimal  parallelogram  we  now  use  the  three- 
dimensional  parallelepiped  mapped  out  by  the  three  line  elements 
d,  f,  and  d.  We  shall  just  indicate  the  steps  of  the  argument 
briefly. 
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&x*  +  *&xk .  dxt)   (28) 

Since  /';.-,  =   -  /;*,  the  second  term  on  the  right  is 

=  fa&dxi .  Bxk  -  *&»i  -  dxt)      .         .         .     (29) 

If  we  interchange  rf,  8,  and  4  cyclically,  and  then  sum  up,  the  six 
members  arising  out  of  (29)  will  destroy  each  other  in  pairs  on 
account  of  the  conditions  of  symmetry  (25). 

Conception  of  Tensor-density. — If  \Wdx,  in  which  dx  repre- 
^  briefly  the  element  of  integration  dxv  dx2  .  .  .  dxn,  is  an  in- 

variant integral,  then  W  is  a  quantity  dependent  on  the  co-ordinate 
system  in  such  a  way  that,  when  transformed  to  another  co- 

ordinate system,  its  value  become  multiplied  by  the  absolute 
(numerical)  value  of  the  functional  determinant.  If  we  regard 
this  integral  as  a  measure  of  the  quantity  of  substance  occupying 
the  region  of  integration,  then  W  is  its  density.  We  may,  there- 

fore, call  a  quantity  of  the  kind  described  a  scalar-density. 
This  is  an  important  conception,  equally  as  valuable  as  the  con- 

ception of  scalars;  it  cannot  be  reduced  to  the  latter.  In  an 

analogous  sense  we  may  speak  of  tensor-densities  as  well  as 
1  scalar-densities.  A  linear  form  of  several  series  of  variables  which 
is  dependent  on  the  co-ordinate  system,  some  of  the  variables 
carrying  upper  indices,  others  lower  ones,  is  a  tensor-density  at 
a  point  P,  if,  when  the  expression  for  this  linear  form  is  known 

*  for  a  given  co-ordinate  system,  its  expression  for  any  other  arbitrary 
co-ordinate  system,  distinguished  by  bars,  is  obtained  by  multiply- 

ing it  with  the  absolute  or  numerical  value  of  the  functional  de- 
terminant 

A  =  abs.  |  aj  i  i.e.  the  absolute  value  of  j  af  | , 

and  by  transforming  the  variable  according  to  the  old  scheme  (19). 
The  words,  components,  co-variant,  contra-variant,  symmetrical, 
skew-symmetrical,  field,  and  so  forth,  are  used  exactly  as  in  the 
case  of  tensors.      By  contrasting  tensors  and  tensor-densities,  it 

'  seems  to  me  that  we  have  grasped  rigorously  the  difference  be- 
;  tween  quantity  and  intensity,  so  far  as  this  difference  has  a 
physical  meaning:   tensors  are  the  magnitudes  of  intensity, 
tensor-densities  those  of  quantity.    The  same  unique  part  that 

'  co-variant  skew-symmetrical  tensors  play  among  tensors  is  taken 
among  tensor-densities  by  contra-variant  symmetrical  tensor-den- 

sities, which  we  shall  term  briefly  linear  tensor-densities. 
Algebra  of  Tensor-densities. — As  in  the  realm  of  tensors  so 
have  here  the  following  operations  : — 
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1.  Addition  of  tensor-densities  of  the  same  type  ;  multiplication 
of  a  tensor-density  by  a  number. 

2.  Contraction. 

3.  Multiplication  of  a  tensor  by  a  tensor-density  (not  multiplica- 
tion of  two  tensor-densities  by  each  other).     For,  if  two  scalar 

densities,  for  example,  were  to  be  multiplied  together,  the  resnl 
would  not  again  be  a  scalar-density  but  a  quantity  which,  to  b( 
transformed  to  another  co-ordinate  system,  would  have  to  be  multi 
plied  by  the  square  of  the  functional  determinant.     Multiplying  j 

tensor  by  a  tensor-density,  however,  always  leads  to  a  tensor-densitj 
(whose  order  is  equal  to  the  sum  of  the  orders  of  both  factors) 
Thus,  for  example,  if  a  contra- variant  vector  with  components/  am 
a  co-variant   tensor-density   with   components  WM  be   multiplier 
together,  we  get  a  mixed  tensor-density  of  the  third  order  wit) 
components  f'Viki  produced  in  a  manner  independent  of  the  co 
ordinate  system. 

The  analysis  of  tensor-densities  can  be  established  only  fo ' 
linear  fields  in  the  case  of  an  arbitrary  manifold.  It  leads  to  th 

following  processes  resembling  the  operation  of  divergence  :- 

TT:  =  w   (3C 

As  a  result  of  (30)  a  linear  tensor-density  field  is*  of  the  first  orck 
gives  rise  to  a  scalar-density  field  w,  whereas  (31)  produces  from 
linear  field  of  the  second  order  (w*'  =  -  W1*)  a  linear  field  of  tb 
first  order,  and  so  forth.  These  operations  are  independent  of  th 

co-ordinate  system.  The  divergence  (30)  of  a  field  w*  of  the  fin 

order  which  has  been  produced  from  one,  w1'*,  of  the  second  orde 
by  means  of  (3 1)  is  =  0 ;  an  analogous  result  holds  for  the  high* 
orders.  To  prove  that  (30)  is  invariant,  we  use  the  following  know 
result  of  the  theory  of  the  motion  of  continuously  extended  masse 

If  £*'  is  a  given  vector  field,  then 
Xi  =  Xi  +  e  .  U      .         .         .         .     (35 

expresses  an  infinitesimal  displacement  of  the  points  of  th 
continuum,  by  which  the  point  with  the  co-ordinates  Xi  is  transferre 
to  the  point  with  the  co-ordinates  a?/.  Let  the  constant  infinites 
mal  factor  St  be  defined  as  the  element  of  time  during  which  th 

deformation  takes  place.  The  determinant  of  transformatic 

dre*l  d£1' 
A  =    jp   differs  from  unity  by  Bt  ̂-;     The  displacement  causei 
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portion  G  of  the  continuum,  to  which,  if  o^'s  are  used  to  denote 
its  co-ordinates,  the  mathematical  region  X  in  the  variables  Xi  cor- 

responds, to  pass  into  the  region  G,  from  which  G  differs  by  an 
infinitesimal  amount.  If  s  is  a  scalar-density  field,  which  we 

regard  as  the  density  of  a  substance  occupying  the  medium,  then 
the  quantity  of  substance  present  in  G 

a 

whereas  that  which  occupies  G 

=  |s(a;)rfa;  =  Ig8 

whereby  the  values  (32)  are  to  be  inserted  in  the  last  expression  for 

the  arguments  Xi  of  s.  (I  am  here  displacing  the  volume  with  re- 
spect to  the  substance  ;  instead  of  this,  we  can  of  course  make  the 

substance  flow  through  the  volume  ;  s£';  then  represents  the  inten- 
sity of  the  current.)  The  increase  in  the  amount  of  substance  that 

the  region  G  gains  by  the  displacement  is  given  by  the  integral 

a(x)A  -  s(#)  taken  with  respect  to  the  variables  ay  over  X.  We, 
however,  get  for  the  integrand 

s(i)  (A  -  1)  +  {•(*)  -t(x)  }  -  Si  (sg  +  gf«)  -  it  . 
Consequently  the  formula 

-  w 

blishes  an  invariant  connection  between  the  two  scalar-density 
fields  s  and  w  and  the  contra-  variant  vector  field  with  the  com- 

ponents £».  Now,  since  every  vector-density  w*  is  representable  in 

the  form  s£*'  —  for  if  in  a  definite  co-ordinate  system  a  scalar-density 
S  and  a  vector  field  £  be  defined  by  s  =  1,  £*  =  W*,  then  the  equation 

W  =  s£1'  holds  for  every  co-ordinate  system  —  the  required  proof  is complete. 
In  connection  with  this  discussion  we  shall  enunciate  the 

Principle  of  Partial  Integration  which  will  be  of  frequent  use 
below.  If  the  functions  w*  vanish  at  the  boundary  of  a  region  G, 
then  the  integral 

pur  _ 

J  W<  dx  = 
 °' 

G 

For  this  integral,  multiplied  by  8$,  signifies  the  change  that  the 

"volume"   \dx  of  this  region  suffers  through  an  infinitesimal  de- 
formation whose  components  =  8£  ,  w*f 
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The  invariance  of  the  process  of  divergence  (30)  enables  us 
easily  to  advance  to  further  stages,  the  next  being  (31).  We  enlist 

the  help  of  a  co-variant  vector  field  /,-,  which  has  been  derived 
from  a  potential  f;  i.e. 

r.  -  V. 

•''       Dx,- 

We  then  form  the  linear  tensor-density  W^//  of  the  first  order 
and  also  its  divergence 

The  observation  that  the  //s  may  assume  any  arbitrarily  assigned 
values  at  a  point  P  concludes  the  proof.  In  a  similar  way  we 
proceed  to  the  third  and  higher  orders. 

§  14.  Affinely  Related  Manifolds 

The  Conception  of  Affine  Relationship.  —  We  shall  call  a  point 
P  of  a  manifold  affinely  related  to  its  neighbourhood  if  we  are  given 

the  vector  P'  into  which  every  vector  at  P  is  transformed  by  a 
parallel  displacement  from  P  to  P'  ;  P'  is  here  an  arbitrary  point 
infinitely  near  P  (vide  note  10).  No  more  and  no  less  is  required  of 
this  conception  than  that  it  is  endowed  with  all  the  properties  that 
were  ascribed  to  it  in  the  affine  geometry  of  Chapter  I.  That  is, 
we  postulate  :  There  is  a  co-ordinate  system  (for  the  immediate 
neighbourJiood  of  P)  such  that,  in  it,  the  components  of  any  vector  at 
P  are  not  altered  by  an  infinitesimal  parallel  displacement.  This 
postulate  characterises  parallel  displacements  as  being  such  that 
they  may  rightly  be  regarded  as  leaving  vectors  unchanged.  Such 
co-ordinate  systems  are  called  geodetic  at  P.  What  is  the  effect 
of  this  in  an  arbitrary  co-ordinate  system  Xi  ?  Let  us  suppose  that, 

in  it,  the  point  P  has  the  co-ordinate  X?,  P'  the  co-ordinates  x°  + 
dxi  ;  let  £1'  be  the  components  of  an  arbitrary  vector  at  P,  £*  +  d£l 
the  components  of  the  vector  resulting  from  it  by  parallel  displace- 

ment towards  P'.  Firstly,  since  the  parallel  displacement  from  P 
to  P'  causes  all  the  vectors  at  P  to  be  mapped  out  linearly  or 
afBnely  by  all  the  vectors  at  P',  d&  must  be  linearly  dependent  on 

.  .     (33) 

Secondly,  as  a  consequence  of  the  postulate  with  which  we  started, 

the  dyV's  must  be  linear  forms  of  the  differentials  dx+,  i.e. 

dy\  =  V^          ....     (33') 

in  which  the  number  co-efficients  F,  the  "  components  of  the  affine 

relationship,"  satisfy  the  condition  of  symmetry 

n,,>kn,«.     .  "  .     .     .  (33") 
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To  prove  this,  let  Xi  be  a  geodetic  co-ordinate  system  at  P  ;  the 
formulae  of  transformation  (17)  and  (18)  then  hold.  It  follows 

from  the  geodetic  character  of  the  co-ordinate  system  Xi  that,  for  a 
parallel  displacement, 

d&  =  d(a?'rjr)   =  da*,?. 

I  i  we  regard  the  ̂ 's  as  components  &ct-  of  a  line  element  at  P  we must  have 

(in  the  case  of  the  second  derivatives  we  must  of  course  insert 
their  values  at  P).  The  statement  contained  in  our  enunciation 
follows  directly  from  this.  Moreover,  the  symmetrical  bilinear  form 

-v  2  £ 

-  r^XydXg  is  derived  from  _   **_  Sxrdx^  .         .     (34) OXrOXs 

hy  transformation  according  to  (18).  This  exhausts  all  the  aspects 

of  the  question.  Now,  if  1"%$  are  arbitrarily  given  numbers  that 
satisfy  the  condition  of  symmetry  (33"),  and  if  we  define  the 
affine  relationship  by  (33)  and  (33'),  the  transformation  formulae lead  to 

Xi  -  XiQ  =  Xi   -   $ririSXrXs, 

that  is,  to  a  geodetic  co-ordinate  system  x^  at  P,  since  the  equations 
(34)  are  fulfilled  for  them  at  P.  In  fact  this  transformation  at  P 

•  gives  us 

Xi  =  o,  dxi 

The  formulae  according  to  which  the  components  f~V«  of  the 
affine  relationship  are  transformed  in  passing  from  one  co- 

ordinate system  to  another  may  easily  be  obtained  from  the  above 
discussion;  we  do  not,  however,  require  them  for  subsequent 
work.  The  Ps  are  certainly  not  components  of  a  tensor  (contra- 
variant  in  i,  co-variant  in  r  and  s)  at  the  point  P  ;  they  have  this 
character  with  regard  to  linear  transformations,  but  lose  it  when 
subjected  to  arbitrary  transformations.  For  they  all  vanish  in  a 
geodetic  co-ordinate  system.  Yet  every  virtual  change  of  the 
iffine  relationship  [fy  ,  whether  it  be  finite  or  "  infinitesimal,"  is 
i  tensor.  For 

:s  the  difference  of  the  two  vectors  that  arise  as  a  result  of  the  two 
parallel  displacements  of  the  vector  i  from  P  to  P'. 

The  meaning  of  the  parallel  displacement  of  a  co-Yariant 8 
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vector  &  at  the  point  P  to  the  infinitely  near  point  P'  is  defined 
uniquely  by  the  postulate  that  the  invariant  product  ̂ rf  of  the 
vector  &  and  any  arbitrary  contra-variant  vector  rf  remain  un- 

changed after  the  simultaneous  parallel  displacements,  i.e. 

d(t*f)  =  Wi'if)  +  (Wif)  =  (#<  -  df&W  =  0 whence 

.        .        .     (35) 

We  shall  call  a  contra-variant  vector  field  £?:  stationary  at  the  point 

P,  if  the  vectors  at  the  points  P'  infinitely  near  P  arise  from  the 
vector  at  P  by  parallel  displacement,  that  is,  if  the  total  differential 
equations 

dp  +  dy\£-  =  0  for  ̂  +  r*r£'  =  O] V     MS  J 

are  satisfied  at  P.  A  vector  field  can  obviously  always  be  found 

such  that  it  has  arbitrary  given  components  at  a  point  P  (this  re- 
mark will  be  used  in  a  construction  which  is  to  be  carried  out  in 

the  sequel).  The  same  conception  may  be  set  up  for  a  co-variant 
vector  field. 

From  now  onwards  we  shall  occupy  ourselves  with  affine 
manifolds;  they  are  such  that  every  point  of  them  is 

affinely  related  to  its  neighbourhood.  For  a  definite  co- 

ordinate system  the  components  I~V«  of  the  affine  relationship 
are  continuous  functions  of  the  co-ordinates  a?;.  By  selecting  the 

appropriate  co-ordinate  system  the  FVS'S  may,  of  course,  be  made  to 
vanish  at  a  single  point  P,  but  it  is,  in  general,  not  possible  to 
achieve  this  simultaneously  for  all  points  of  the  manifold.  There 
is  no  difference  in  the  nature  of  any  of  the  affine  relationships 

holding  between  the  various  points  of  the  manifold  and  their  im- 
mediate neighbourhood.  The  manifold  is  homogeneous  in  this 

sense.  There  are  not  various  types  of  manifolds  capable  of  being 

distinguished  by  the  nature  of  the  affine  relationships  govern- 
ing each  kind.  The  postulate  with  which  we  set  out  admits  of 

only  one  definite  kind  of  afifine  relationship. 
Geodetic  Lines. — If  a  point  which  is  in  motion  carries  a 

vector  (which  is  arbitrarily  variable)  with  it,  we  get  for  every  value 
of  the  time  parameter  s  not  only  a  point 

P  =  (s) :  x  =  Xi(s) 

of  the  manifold,  but  also  a  vector  at  this  point  with  components 
t>»  —  vi(s)  dependent  on  s.  The  vector  remains  stationary  at  the 
moment  s  if 
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£+rv#-o.      .      .     .  (36) 
(This  will  relieve  the  minds  of  those  who  disapprove  of  opera- 

tions with  differentials;  they  have  here  been  converted  into 

differential  co-efficients.)  In  the  case  of  a  vector  being  carried  along 

according  to  any  arbitrary  rule,  the  left-hand  side  Vi  of  (36)  consists 
of  the  components  of  a  vector  in  (s)  connected  invariantly  with  the 

motion  and  indicating  how  much  the  vector  vi  changes  per  unit 
'of  time  at  this  point.  For  in  passing  from  the  point  P  =  (s)  to 

P'  =  (§  +  ds),  the  vector  v*  at  P  becomes  the  vector 
•»•+&• 

ds 

at  P'.  If,  however,  we  displace  v*  from  P  to  P'  leaving  it  un- 
changed, we  there  get 

Accordingly,  the  difference  between  these  two  vectors  at  P',  the 
shange  in  v  during  the  time  ds  has  components 

_  „.    •  8v*  =  V'-ds. ds 

In  analytical  language  the  invariant  character  of  the  vector  V  may 
;be  recognised  most  readily  as  follows.  Let  us  take  an  arbitrary 

luxiliary  co-variant  vector  &  =  (s)  at  P,  and  let  us  form  the  change 

i.n  the  invariant  &y*  in  its  passage  from  (s)  to  (s  +  ds),  whereby  the 
•vector  &  is  taken  along  unchanged.  We  get 

7  vanishes  for  every  value  of  s,  the  vector  v  glides  with  the 
;point  P  along  the  trajectory  during  the  motion  without  becoming 
'hanged. 

Every  motion  is  accompanied  by  the  vector  ul  =  — •   of  its as 
/elocity ;  for  this  particular  case,  V  is  the  vector 

77*  _  dui   ,    r-  d'2x        r-    dxadxft -  -s  +  r'*»«*  - -3?  +  r «-%  w 

'lamely,  the  acceleration,  which  is  a  measure  of  the  change  of 
velocity  per  unit  of  time.  A  motion,  in  the  course  of  which  the 

velocity  remains  unchanged  throughout,  is  called  a  translation. 
The  trajectory  of  a  translation,  being  a  curve  which  preserves  its 

lirection  unchanged,  is  a  straight  or  geodetic  line.  According 
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to  the  translational  view  (cf.  Chapter  I,  §  1)  this  is  the  inherent 
property  of  the  straight  line. 

The  analysis  of  tensors  and  tensor-densities  may  be  de- 
veloped for  an  affine  manifold  just  as  simply  and  completely  as 

for  the  linear  geometry  of  Chapter  I.  For  example,  if  f,-k  are  the 
components  (co-variant  in  i,  contra-variant  in  k)  of  a  tensor  field  of 
the  second  order,  we  take  two  auxiliary  arbitrary  vectors  at  the 
point  I\  of  which  the  one,  £,  is  contra-  variant  and  the  other,  77,  is 
co-variant,  and  form  the  invariant 

and  its  change  for  an  infinitesimal  displacement  d  of  the  current 
point  P,  by  which  £  and  fj  are  displaced  parallel  to  themselves. 
Now 

hence 

are  the  components  of  a  tensor  field  of  the  third  order,  co-variant 
in  il  and  contra-variant  in  k  :  this  tensor  field  is  derived  from  the 

given  one  of  the  second  order  by  a  process  independent  of  the  co- 
ordinate system.  The  additional  terms,  which  the  components  of 

the  afdne  relationship  contain,  are  characteristic  quantities  in 
which,  following  Einstein,  we  shall  later  recognise  the  influence  of 

the  gravitational  field.  The  method  outlined  enables  us  to  differ- 
entiate a  tensor  in  every  conceivable  case. 

Just  as  the  operation  "  grad  "  plays  the  fundamental  part  in 
tensor  analysis  and  all  other  operations  are  derivable  from  it,  so  the 

operation  "div"  defined  by  (30)  is  the  basis  of  the  analysis  of 
tensor-densities.  The  latter  leads  to  processes  of  a  similar  char- 

acter for  tensor-densities  of  any  order.  For  instance,  if  we  wish 
to  find  an  expression  for  the  divergence  of  a  mixed  tensor-density 
Wi*  of  the  second  order,  we  make  use  of  an  auxiliary  stationary 
vector  field  £*Wt*  at  P  and  find  the  divergence  of  the  tensor- 

density  £*W;fc  : 
** **  =  */ 

Da*       *  \ 

This  quantity  is  a  scalar-density,  and  since  the  components  of  a 
vector  field  which  is  stationary  at  P  may  assume  any  values  at  the 
this  point  (P),  namely, 
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S*  -  r,,w   '   -  (37, 
it  is  a  co-variant  tensor-density  of  the  first  order  which  has  heen 

derived  from  wtx'  in  a  manner  independent  of  every  co-ordinate •m. 

Moreover,  not  only  can  we  reduce  a  tensor-density  to  one  of  the 
next  lower  order  by  carrying  out  the  process  of  divergence,  but  we 

can  also  transpose  a  tensor-density  into  one  of  the  next  higher  order 
by  differentiation.  Let  s  denote  a  scalar-density,  and  let  us  again 

use  a  stationary  vector  field  £*'  at  P  :  we  then  form  the  divergence 
of  current-density,  s£* : 

,. 
55*      S^. We  thus  get 

as  the  components  of  a  co-variant  vector-density.  To  extend 
differentiation  beyond  scalar  tensor-densities  to  any  tensor-densities 
whatsoever,  for  example,  to  the  mixed  tensor-density  w**  of  the 

i  second  order,  we  again  proceed,  as  has  been  done  repeatedly  above, 

to  make  use  of  two  stationary  vector  fields  at  P,  namely,  £*  and  ?;;, 
the  latter  being  co-variant  and  the  former  contra-variant.  We 

differentiate  the  scalar-density  Wi*£*%.  If  the  tensor-density  that 
<  has  been  derived  by  differentiation  be  contracted  with  respect  to 
the  symbol  of  differentiation  and  one  of  the  contra-variant  indices, 
the  divergence  is  again  obtained. 

$  15.  Curvature 

If  P  and  P*  are  two  points  connected  by  a  curve,  and  if  a  vector 
is  given  at  P,  then  this  vector  may  be  moved  parallel  to  itself  along 

the  curve  from  P  to  P*.  Equations  (36),  giving  the  unknown 
components  v*  of  the  vector  which  is  being  subjected  to  a  continuous 
parallel  displacement,  have,  for  given  initial  values  of  v\  one  and 
only  one  solution.  The  vector  transference  that  comes  about  in 

this  way  is  in  general  non-integrable,  that  is,  the  vector  which  we 

get  at  P*  is  dependent  on  the  path  of  the  displacement  along 
.which  the  transference  is  effected.  Only  in  the  particular  case,  in 
which  integrability  occurs,  is  it  allowable  to  speak  of  the  same 
vector  at  two  different  points  P  and  P*;  this  comprises  those 
vectors  that  are  generated  from  one  another  by  parallel  displace- 

ment, Let  such  a  manifold  be  called  Euclidean-affine.  If  we 
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subject  all  points  of  such  a  manifold  to  an  infinitesimal  displacement, 

which  is  in  each  case  representable  by  an  "  equal "  infinitesimal 
vector,  then  the  space  is  said  to  have  undergone  an  infinitesimal 
total  translation.  With  the  help  of  this  conception,  and  following 
the  line  of  reasoning  of  Chapter  I.  (without  entering  on  a  rigorous 

proof),  we  may  construct  "linear"  co-ordinate  systems  which  are 
characterised  by  the  fact  that,  in  them,  the  same  vectors  have  the 
same  components  at  different  points  of  the  systems.  In  a  linear 

co-ordinate  system  the  components  of  the  affine  relationship  vanish 
identically.  Any  two  such  systems  are  connected  by  linear 
formulae  of  transformation.  The  manifold  is  then  an  affine  space 
in  the  sense  of  Chapter  I. :  The  inter/rability  of  the  vector  trans- 

ference is  the  infinitesimal  geometrical  property  which  distinguishes 

"  linear  "  spaces  among  affinely  related  spaces. 
We  must  now  turn  our  attention  to  the  general  case ;  it  must 

not  be  expected  in  this  that  a  vector  that  has  been  taken  round  a 
closed  curve  by  parallel  displacement  finally  returns  to  its  initial 

position.  Just  as  in  the  proof  of  Stokes's  Theorem,  so  here  we 
stretch  a  surface  over  the  closed  curve  and  divide  it" into  infinitely 
small  parallelograms  by  parametric  lines.  The  change  in  any 

arbitrary  vector  after  it  has  traversed  the  periphery  of  the  sin-face 
is  reduced  to  the  change  effected  after  it  has  traversed  each  of  the 
infinitesimal  parallelograms  marked  out  by  two  line  elements  dxi 
and  &r,  at  a  point  P.  This  change  has  now  to  be  determined.  We 

shall  adopt  the  convention  that  the  amount  Ax  =  (A£'),  by  which 
a  vector  x  =  &  increases,  is  derived  from  x  by  a  linear  transforma- 

tion, a  matrix  AF,  i.e. 

Ax  =  AF(x) ;  A£n  =  AF;  .  ̂  .  .  .  (38) 
If  AF  =  0,  then  the  manifold  is  "  plane  "  at  the  point  P  in  the 
surface  direction  assumed  by  the  surface  element ;  if  this  is  true 
for  all  elements  of  a  finitely  extended  portion  of  surface,  then  every 
vector  that  is  subjected  to  parallel  displacement  along  the  edge  of 
the  surface  returns  finally  to  its  initial  position.  AF  is  linearly 
dependent  on  the  element  of  surface  : 

AF  =  FikdXfSx,  =  -JF/fcAate      (Aa?/t  =  dx$xk  -  dxj&x,-, 

and  Fkl;  =  -  Fit)  .     (39) 
The  differential  form  that  occurs  here  characterises  the  curvature, 

that  is,  the  deviation  of  the  manifold  from  plane-ness  at  the  point  P 
for  all  possible  directions  of  the  surface;  since  its  co-efficients  ;ue 

not  numbers,  but  matrices,  we  might  well  speak  of  a  "  linear 
matrix-tensor  of  the  second  order,"  and  this  would  undoubtedly 
best  characterise  the  quantitative  nature  of  curvature.  If,  how- 
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ever,  we  revert  from  the  matrices  back  to  their  components  — 

supposing  Fpik  to  be  the  components  of  F»*  or  else  the  co-efficients 
of  the  form 

*Fl  =  Fteto$xk     .  .        .     (40) 
—  then  we  arrive  at  the  formula 

AxjF^e^feS^    ....    (41) 

From  this  we  see  that  the  Fjjib'a  are  the  components  of  a  tensor  of  the 
1  fourth  order  which  is  contra-variant  in  a  and  co-variant  in  ft,  i  and  k. 
Expressed  in  terms  of  the  components  f^s  of  the  affine  relationship, 
it  is 

I       ̂   -  (§  -  1|)  +  (^  -  I-WT.)  .   •  (42) According  to  this  they  fulfil  the  conditions  of  "skew"  and 
"  cyclical  "  symmetry,  namely  :  — 

FPK  =  -  Ft*  '  *t*  +  *S*  +  tf#  =  0  •  •  (43) 
The  vanishing  of  the  curvature  is  the  invariant  differential  law 
which  distinguishes  Euclidean  spaces  among  affine  spaces  in  terms 
of  general  infinitesimal  geometry. 

To  prove  the  statements  above  enunciated  we  use  the  same 
process  of  sweeping  twice  over  an  infinitesimal  parallelogram  as 

we  used  on  p.  107  to  derive  the  curl  tensor  ;  we  use  the  same  nota- 
tion as  on  that  occasion.  Let  a  vector  x  =  x(P00)  with  components 

&  be  given  at  the  point  P00.  The  vector  x(P10)  that  is  derived 
from  x(P00)  by  parallel  displacement  along  the  line  element  dx  is 
attached  to  the  end  point  P10  of  the  same  line  element.  If  the 

components  of  x(P10)  are  £*'  +  dg* 
then  d°-  = 

Throughout  the  displacement  8  to  which  the  line  element  dx  is  to 

be  subjected  (and  which  need  by  no  means  be  a  parallel  displace- 
ment) let  the  vector  at  the  end  point  be  bound  always  by  the 

specified  condition  to  the  vector  at  the  initial  point.  The  d£a'a  are 
then  increased,  owing  to  the  displacement,  by  an  amount 

If,  in  particular,  the  vector  at  the  initial  point  of  the  line  element 

remains  parallel  to  itself  during  the  displacement,  then  Sgr  must  be 

replaced  in  this  formula  by  -  8y^.     In  the  final  position  P01Pn 
of  the  line  element  we  then  get,  at  the  point  P01,  the  vector  x(P01), 

which  is  derived  from  x(P00)  by  parallel  displacement  along  P0o-Po\  '•> 
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at  Pu  we  get  the  vector  x(Pn),  into  which  x(P01)  is  converted  by 
parallel  displacement  along  P01Pn,  and  we  have 

If  the  vector  that  is  derived  from  x(P10)  by  parallel  displacement 

along  P10Pn  is  denoted  by  X^.Pn,  then,  by  interchanging  d  and  8, 
we  get  an  analogous  expression  for 

By  subtraction  we  get 

-  dS£« 

i  +  <Jy»yJ  - / 

~~ 

* 

Since  Sdxi  =  d§Xi  the  two  last  terms  on  the  right  destroy  one  another, 
and  we  are  left  with 

in  which  the  A£a's  are  the  components  of  a  vector  Ax  at  Pn,  which 
is  the  difference  of  the  two  vectors  x  and  x*  at  the  same  point, 
i.e. 

-  Aif*  =  i?(Pn)  -  £(PU). 

Since,  when  we  proceed  to  the  limit,  Pn  coincides  with  P  =  P00, 
this  proves  the  statements  enunciated  above. 

The  foregoing  argument,  based  on  infinitesimals,  become  rigor- 
ous as  soon  as  we  interpret  d  and  8  in  terms  of  the  differentiations 

—  and  -;•-   as  was  done  earlier.     To  trace  the  various  stages  of  the 

vector  x  during  the  sequence  of  infinitesimal  displacements,  we 
may  well  adopt  the  following  plan.  Let  us  ascribe  to  every  pair 
of  values  s,  t,  not  only  a  point  P  =  (st),  but  also  a  co-variant  vector 
at  P  with  components  fi(st).  If  &  is  an  arbitrary  vector  at  P, 

then  dtfig1)  signifies  the  value  that  assumes  if   £*'  is  taken 
along  unchanged  from  the  point  (st)  to  the  point  (s  +  ds,  t).  And 

d(fi&)  is  itself  again  an  expression  of  the  form  /t-£*  excepting  that 
instead  of  fi  there  are  now  other  f  unctions  /,•  of  s  and  t.  We  may, 
therefore,  again  subject  it  to  the  same  process,  or  to  the  analogous 
one  S.  If  we  do  the  latter  and  repeat  the  whole  operation  in  the 
reverse  order,  and  then  subtract,  we  get 

and  then,  since          Mfi  -          -          -  <«/,, 
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we  have  A(/rf*)  =  (Sd  - 

In  the  last  expression  A£1'  is  precisely  the  expression  found  above. 
The  invariant  obtained  is,  for  the  point  P  =  (00), 

It  depends  on  an  arbitrary  co-variant  vector  with  components  /»  at 

this  point,  and  on  three  contra-variant  vectors  £,  u,  v;  the  JPj&'s 
are  accordingly  the  components  of  a  tensor  of  the  fourth  order. 

§16.  Metrical  Space 

The  Conception  of  Metrical  Manifolds.  —  A  manifold  has  a 
measure-determination  at  the  point  P,  if  the  line  elements  at  P 
may  be  compared  with  respect  to  length  ;  we  herein  assume  that 

the  Pythagorean  law  (of  Euclidean  geometry)  is  valid  for  in- 
finitesimal regions.  Every  vector  x  then  defines  a  distance  at  P  ; 

and  there  is  a  non-degenerate  quadratic  form  x2,  such  that  x  and  y 
define  the  same  distance  if,  and  only  if,  x2  =  y2.  This  postulate 
determines  the  quadratic  form  fully,  if  a  factor  of  proportionality 
differing  from  zero  be  prefixed.  The  fixing  of  the  latter  serves  to 

calibrate  the  manifold  at  the  point  P.  We  shall  then  call  x2  the 
measure  of  the  vector  x,  or  since  it  depends  only  on  the  distance 
defined  by  x,  we  may  call  it  the  measure  1  of  this  distance. 
Unequal  distances  have  different  measures  ;  the  distances  at  a 

point  P  therefore  constitute  a  one-dimensional  totality.  If  we  re- 
place this  calibration  by  another,  the  new  measure  I  is  derived 

from  the  old  one  I  by  multiplying  it  by  a  constant  factor  X  =f  0, 

independent  of  the  distance  ;  that  is,  I  =  XL  The  relations  be- 
tween the  measures  of  the  distances  are  independent  of  the  cali- 

bration. So  we  see  that  just  as  the  characterisation  of  a  vector  at 
P  by  a  system  of  numbers  (its  components)  depends  on  the  choice 
of  the  co-ordinate  system,  so  the  fixing  of  a  distance  by  a  number 
depends  on  the  calibration  ;  and  just  as  the  components  of  a  vector 
undergo  a  homogeneous  linear  transformation  in  passing  to  another 
co-ordinate  system,  so  also  the  measure  of  an  arbitrary  distance 
when  the  calibration  is  altered.  We  shall  call  two  vectors  x  and  y 
(at  P),  for  which  the  symmetrical  bilinear  form  x  .  y  corresponding 

to  x2  vanishes,  perpendicular  to  one  another  ;  this  reciprocal  re- 
lation is  not  affected  by  the  calibration  factor.  The  fact  that  the 

form  x2  is  definite  is  of  no  account  in  our  subsequent  mathematical 
propositions,  but,  nevertheless,  we  wish  to  keep  this  case  upper- 

most in  our  minds  in  the  sequel.  If  this  form  has  p  positive  and 
q  negative  dimensions  (p  +  q  =  n),  we  say  that  the  manifold  is 

(P  +  #)-dimensional  at  the  point  in  question.  If  p  =f  5»  we 
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fix  the  sign  of  the  metrical  fundamental  form  x2  once  and  for  all 
by  the  postulate  that  p  >  q  ;  the  calibration  ratio  X  is  then  always 
positive.  After  choosing  a  definite  co-ordinate  system  and  a  certain 
calibration  factor,  suppose  that,  for  every  vector  x  with  components 
£*  we  have 

a 

We  now  assume  that  our  manifold  has  a  measure-deter- 
mination at  every  point.  Let  us  calibrate  it  everywhere,  and 

insert  in  the  manifold  a  system  of  n  co-ordinates  xi  —  we  must  do 
this  so  as  to  be  able  to  express  in  numbers  all  quantities  that 

occur  —  then  the  g^'s  in  (44)  are  perfectly  definite  functions  of  the 
co-ordinates  xi  ;  we  assume  that  these  functions  are  continuous 

and  differentiate.  Since  the  determinant  of  the  gr^'s  vanishes  at 
no  point,  the  integral  numbers  p  and  q  will  remain  the  same  in  the 
whole  domain  of  the  manifold  ;  we  assume  that  p  >  q. 

For  a  manifold  to  be  a  metrical  space,  it  is  not  sufficient  for  it 
to  have  a  measure-determination  at  every  point  ;  in  addition,  every 
point  must  be  metrically  related  to  the  domain  surrounding  it. 
The  conception  of  metrical  relationship  is  analogous  to  that  of 
affine  relationship  ;  just  as  the  latter  treats  of  vectors,  so  the 
former  deals  with  distances.  A  point  is  thus  metrically  related  to 
the  domain  in  its  immediate  neighbourhood,  if  the  distance  is 
known  to  which  every  distance  at  P  gives  rise  when  it  passes  by  a 

congruent  displacement  from  P  to  any  point  P'  infinitely  near  P. 
The  immediate  vicinity  of  P  may  be  calibrated  in  such  a  way  that 
the  measure  of  any  distance  at  P  has  undergone  no  change  after 

congruent  displacements  to  infinitely  near  points.  Such  a  cali- 
bration is  called  geodetic  at  P.  If,  however,  the  manifold  is 

calibrated  in  any  way,  ancj.  if  Z  is  the  measure  of  any  arbitrary 

distance  at  P,  and  I  +  dl  the  measure  of  the  distance  at  P'  re- 
sulting from  a  congruent  displacement  to  the  infinitely  near  point 

P',  there  is  necessarily  an  equation 

dl  =  -  Id*         .         .         .         .     (45) 

in  which  the  infinitesimal  factor  d<f>  is  independent  of  the  displaced 

distance,  for  the  displacement  effects  a  representation  of  the  dis- 

tances at  P  similar  to  that  at  P'.  In  (45),  d<f>  corresponds  to  the 
rfyVs  in  the  formula  for  vector  displacements  (33).  If  the  cali- 

bration is  altered  at  P  and  its  neighbouring  points  according  to  the 

formula  1  =  IX  (the  calibration  ratio  X  is  a  positive  function  of  the 
position),  we  get  in  place  of  (45) 
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dJ=-  ld$  in  which  df=  d<j>  -  ̂   >     ̂  A. 

The  necessary  and  sufficient  condition  that  an  appropriate  value  of 

A  make  d(j>  vanish  identically  at  P  with  respect  to  the  infinitesimal 

displacement  PP'  =  (dx;)  is  clearly  that  d<j>  must  he  a  differential 
form,  that  is, 

....     (45') 

The  inferences  that  may  be  drawn  from  the  postulate  enunciated 

at  the  outset  are  exhausted  in  (45)  and  (45').  (In  short,  the  <£/s 
are  definite  numbers  at  the  point  P.  If  P  has  co-ordinates  X{  =  o, 

we  need  only  assume  log  A  equal  to  the  linear  function    y<fax;.  to 

get  d(f>  =  o  there.)  All  points  of  the  manifold  are  identical  as 

regards  the  measure-determinations  governing  each  and  as  regards 
their  metrical  relationship  with  their  neighbouring  points.  Yet, 

according  as  n  is  even  or  odd,  there  are  respectively  -  +  1  or  —  -  — 2  2 

different  types  of  metrical  manifolds  which  are  distinguishable  from 
one  another  by  the  inertial  index  of  the  metrical  groundform.  One 

kind,  with  which  we  shall  occupy  ourselves  particularly,  is  given 

by  the  case  in  which  p  =  n,  q  —  o  (or  p  =  o,  q  =  n)  ;  other  cases 

are  p  =  n  -  1,  q  =  1  (or  p  =  1,  q  =  n  -  1),  OY  p  =  n  -  2,  q  =  2 
(or  p  —  2,  q  =  n  —  2),  and  so  forth. 

We  may  summarise  our  results  thus.  The  metrical  character 

of  a  manifold  is  characterised  relatively  to  a  system  of  reference  (  = 
co-ordinate,  system  +  calibration)  by  two  fundamental  forms, 

namely,  a  quadratic  differential  form  Q  =      g&dXidXk  and  a  linear ik 

one  d<J>  =       fyHxi.     They  remain  invariant  during  transformations 

to  new  co-ordinate  systems.  If  the  calibration  is  changed,  the  first 
form  receives  a  factor  A,  which  is  a  positive  function  of  position  with 
continuous  derivatives,  whereas  the  second  function  becomes  di- 

minished by  the  differential  of  log  A.  Accordingly  all  quantities 
or  relations  that  represent  metrical  conditions  analytically  must 
contain  the  functions  #;&,(£/  in  such  a  way  that  in  variance  holds 
(1)  for  any  transformation  of  co-ordinate  (co-ordinate  invariance), 
(2)  for  the  substitution  which  replaces  #&-  and  <£,:  respectively  by 
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no    matter,    in    (2),  what  function  of  the  co-ordinates  A  may  he. 
(This  may  be  termed  calibration  invariance.) 

In  the  same  way  as  in  j$  15,  in  which  we  determined  the  change 

in  a  vector  which,  remaining  parallel  to  itself,  traverses  the  peri- 

phery of  an  infinitesimal  parallelogram  hounded  by  dxi,  £r,-,  so  here 
we  calculate  the  change  A£  in  the  measure  /  of  a  distance  subj 

to  an  analogous  process.     Making  use  of  dl  =  -  ld<f>  we  get 

i.e.  AZ  =  Ml  -  dU  =  -  ZA<£  whore 

(M  -  d8)<t>  =  /#teM  and  /*  =          -  *-*      .      (47) 

Hence  we  may  call  the  linear  tensor  of  the  second  order  with  com- 
ponents fa  the  distance  curvature  of  metrical  space  as  an  analogy 

to  the  vector  curvature  of  affine  space,  which  was  derived  in  $15. 

Equation  (46)  confirms  analytically  that  the  distance  curvature  is 
independent  of  the  calibration  ;  it  satisfies  the  equations  of  invariance 

It*  vanishing  is  the  necessary  and  sufficient  com!  /(ion  that 
distance  may  be  transferred  from  it*  initial  pimitiun,  in  a  manner 

independent  of  the  path,  to  all  points  of  the,  apt  ice.  This  is  the  only 
case  that  Riemann  considered.  If  metrical  space  is  a  Riemann 

space,  there  is  meaning  in  speaking  of  the  same  distance  at  different 
points  of  space  ;  the  manifold  may  then  be  calibrated  (normal 
calibration)  so  that  d<f>  vanishes  identically.  (Indeed,  it  follows 

from  fa  =  0,  that  d<f>  is  a  total  differential,  namely,  the  differential 

of  a  function  log  A  ;  by  re-calibrating  in  the  calibration  ratio  A,  d<f> 

may  then  be  made  equal  to  zero  everywhere.)  In  normal  calibra- 

tion the  metrical  groundform  Q  of  Riemann's  space  is  determined 
except  for  an  arbitrary  constant  factor,  which  may  be  fixed  by 

choosing  once  and  for  all  a  unit  distance  (no  matter  at  which 
point  ;  the  normal  meter  may  be  transported  to  any  place). 

The  Affine  Relationship  of  a  Metrical  Space.  —  We  now 

arrive  at  a  fact,  wrhich  may  almost  be  called  the  key-note  of 
infinitesimal  geometry,  inasmuch  as  it  leads  the  logic  of 
geometry  to  a  wonderfully  harmonious  conclusion.  In  a  metrical 

space  the  conception  of  infinitesimal  parallel  displacements  may 

be  given  in  only  one  way  if,  in  addition  to  our  previous  postulate, 

it  is  also  to  satisfy  the  almost  self-evident  one  :  parallel  displace- 

ment  of  a  vector  must  leave  unchanged  the  distance  which  it  deter- 
mines, Thus,  the  principle  of  transference  of  distances  or  lengths 
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which  is  the  basis  of  metrical  geometry,  carries  with  it  a 

principle  of  transference  of  direction;  in  other  words,  an  afflne 
relationship  is  inherent  in  metrical  space. 

Proof. — We  take  a  definite  system  of  reference.  In  the  case 

of  all  quantities  a*  which  carry  an  upper  index  i  (not  necessarily 
excluding  others)  we  shall  define  the  lowering  of  the  index  by 

equations 

and  the  reverse  process  of  raising  the  index  by  the  corresponding 

inverse  equations.  If  the  vector  £»'  at  the  point  P  =  (#,•)  is  to  be 
transformed  into  the  vector  |*  +  d&  at  P'  (  =  Xi  +  dxt)  by  the 
parallel  displacement  to  P'  which  we  are  about  to  explain,  then 

and  the  equation 
dl  =  -  ld<f> 

must  hold  for  the  measure 

according  to  the  postulate  enunciated,  and  this  gives 

The  first  term  on  the  left 

Hence  we  get 
dytk  +  dyki 

or 

.  .   (48) 

By  interchanging  the  indices  ikr  cyclically,  then  adding  the  last 
two  and  subtracting  the  first  from  the  resultant  sum,  we  get,  bear- 

ing in  mind  that  the  Ps  must  be  symmetrical  in  their  last  two 
indices, 

From  this  the  p'a-  are  determined  according  to  the  equation 

rV.o:  =  <7«rfijfc  or,  explicitly,  F^  =  ̂ F^t*  .        .     (50) 

These  components  of  the  amne  relationship  fulfil  all  the  postulates 
that  have  been  enunciated.  It  is  in  the  nature  of  metrical  space  to 
be  furnished  with  this  amne  relationship  ;  in  virtue  of  it  the  whole 
analysis  of  tensors  and  tensor-densities  with  all  the  conceptions 
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worked  out  above,  such  as  geodetic  line,  curvature,  etc.,  may  be 
applied  to  metrical  space.  If  the  curvature  vanishes  identically, 
the  space  is  metrical  and  Euclidean  in  the  sense  of  Chapter  I. 

In  the  case  of  vector  curvature  we  have  still  to  derive  an  im- 

portant decomposition  into  components,  by  means  of  which  we 
prove  that  distance  curvature  is  an  inherent  constituent  of  the 
former.  This  is  quite  to  be  expected  since  vector  transference  is 
automatically  accompanied  by  distance  transference.  If  we  use  the 

symbol  A  =  SfZ  -  d&  relating  to  parallel  displacement  as  before, 
then  the  measure  I  of  a  vector  £l  satisfies 

.          .     (47) 

Just  as  we  found  for  the  case  in  which  /;   are  any  functions  of 
position  that 

so  we  see  that 

and  equation  (47)  then  leads  to  the  following  result.  If  for  the 

vector  x  =  (£*)  we  set 
Ax  =  *Ax  -  X  .  £A4, 

then  Ax  appears  split  up  into  a  component  at  right  angles  to  x  and 

another  parallel  to  X,  namely,  *Ax  and  -  x  .  -£A<£  respectively.  This 
is  accompanied  by  an  analogous  resolution  of  the  curvature  tensor, 
i.e. 

Ft*  =  *f#k  -  W*  .     (51) 

The  first  component  *F  will  be  called  "  direction  curvature  "  ;  it 
is  defined  by 

*Ax  =  *Fhfi&dx$xt. 

The  perpendicularity  of  *Ax  to  x  is  expressed  by  the  formula 

*Fpikt*&dx$xk  =  *Faftafr&dxfr;k  =  0. 

The  system  of  numbers  *Fa^k  is  skew-symmetrical  not  only  with 
respect  to  i  and  k  but  also  with  respect  to  the  index  pair  a  and  0. 
In  consequence  we  have  also,  in  particular, 

*F&  =  0. 

Corollaries.  —  If  the  co-ordinate  system  and  calibration  around 
a  point  P  is  chosen  so  that  they  are  geodetic  at  P,  then  we  have, 

at  P,  fa  =  0,  rrik  =  0,  or,  according  to  (48)  and  (49),  the  equivalent 

*  -  0,  I&  -  0. 
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The  linear  form  d<{>  vanishes  at  P  and  the  co-efficients  of  the 
quadratic  groundform  become  stationary ;  in  other  words,  those 
conditions  come  about  at  P,  which  are  obtained  in  Euclidean  space 
simultaneously  for  all  points  by  a  single  system  of  reference.  This 

results  in  the  following  explicit  definition  of  the  parallel  displace- 
ment of  a  vector  in  metrical  space.  A  geodetic  system  of  reference 

at  P  may  be  recognised  by  the  property  that  the  </>/s  at  P  vanish 

relatively  to  it  and  the  gr^-'s  assume  stationary  values.  A  vector  is 
displaced  from  P  parallel  to  itself  to  the  infinitely  near  point  P'  by 
leaving  its  components  in  a  system  of  reference  belonging  to  P 
unaltered.  (There  are  always  geodetic  systems  of  reference ;  the 
choice  of  them  does  not  affect  the  conception  of  parallel  displace- 
ments.) 

dxi 

Since,  in  a  translation  XL  =  Xi(s),  the  velocity  vector  Ui  =  -^ 
moves  so  that  it  remains  parallel  to  itself,  it  satisfies 

rLlqi  '77 'M 

v  ,*       +  (viiU*)  (fan1)  =  0  in  metrical  geometry     .     (52) 

If  at  a  certain  moment  the  UL'S  have  such  values  that  uau1  =  0  (a 
case  that  may  occur  if  the  quadratic  groundform  Q  is  indefinite), 
then  this  equation  persists  throughout  the  whole  translation :  we 

shall  call  the  trajectory  of  such  a  translation  a  geodetic  null-line. 
An  easy  calculation  shows  that  the  geodetic  null-lines  do  not  alter 
if  the  metric  relationship  of  the  manifold  is  changed  in  any  way,  as 
long  as  the  measure-determination  is  kept  fixed  at  every  point. 

Tensor  Calculus. — It  is  an  essential  characteristic  of  a  tensor 

that  its  components  depend  only  on  the  co-ordinate  system  and  not 
on  the  calibration.  In  a  generalised  sense  we  shall,  however,  also 
call  a  linear  form  which  depends  on  the  co-ordinate  system  and  the 
calibration  a  tensor,  if  it  is  transformed  in  the  usual  way  when 

the  co-ordinate  system  is  changed,  but  becomes  multiplied  by  the 
factor  \e  (where  A.  =  the  calibration  ratio)  when  the  calibration  is 

changed ;  we  say  that  it  is  of  weight  e.  Thus  the  </i&'s  are  com- 
ponents of  a  symmetrical  co-variant  tensor  of  the  second  order  and 

of  weight  1.  Whenever  tensors  are  mentioned  without  their  weight 
being  specified,  we  shall  take  this  to  mean  that  those  of  weight  0 
are  being  considered.  The  relations  which  were  discussed  in  tensor 
analysis  are  relations,  which  are  independent  of  calibration  and 
co-ordinate  system,  between  tensors  and  tensor-densities  in  this 
special  sense.  We  regard  the  extended  conception  of  a  tensor, 
and  also  the  analogous  one  of  tensor-density  of  weight  e,  merely  as 
an  auxiliary  conception,  which  is  introduced  to  simplify  calculations. 
They  are  convenient  for  two  reasons  :  (1)  They  make  it  possible  to 
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"juggle  with  indices  "  in  this  extended  region.  By  lowering  a  contra- 
variant  index  in  the  components  of  a  tensor  of  weight  e  we  get  the 
components  of  a  tensor  of  weight  e  +  1,  the  components  being  co- 
variant  with  respect  to  this  index.  The  process  may  also  be  carried 
out  in  the  reverse  direction.  (2)  Let  g  denote  the  determinant  of 

the  {/it's,  furnished  with  a  plus  or  minus  sign  according  as  the 
number  g  of  the  negative  dimensions  is  even  or  uneven,  and  let  N/# 
be  the  positive  root  of  this  positive  number  g.  Then,  by  multiply- 

ing any  tensor  by  \/g  we  get  a  tensor-density  whose  weight 

is  5  more  than  that  of  the  tensor ;  from  a  tensor  of  weight  - 

we  get,  in  particular,  a  tensor-density  in  the  true  sense.  The 

proof  is  based  on  the  evident  fact  that  Jg  is  itself  a  scalar-density 
71 

oi  weight  Q'  We  shall  always  indicate  when  a  quantity  is  multi- 

plied by  ,Jg  by  changing  the  ordinary  letter  which  designates  the 
quantity  into  the  corresponding  one  printed  in  Clarendon  type. 

Since,  in  Riemann's  geometry,  the  quadratic  groundform  Q  is  fully 
determined  by  normal  calibration  (we  need  not  consider  the  arbi- 

trary constant  factor),  the  difference  in  the  weights  of  tensors  dis- 
appears here  :  since,  in  this  case,  every  quantity  that  may  be 

represented  by  a  tensor  may  also  be  represented  by  the  tensor- 

density  that  is  derived  from  it  by  multiplying  it  by  Jg,  the  differ- 
ence between  tensors  and  tensor-densities  (as  well  as  between 

co-variant  and  contra-variant)  is  effaced.  This  makes  it  clear  why 
for  a  long  time  tensor-densities  did  not  come  into  their  right  as 
compared  with  tensors.  The  main  use  of  tensor  calculus  in 
geometry  is  an  internal  one,  that  is,  to  construct  fields  that  are 
derived  invariantly  from  the  metrical  structures.  We  shall  give 
two  examples  that  are  of  importance  for  later  work.  Let  the 
metrical  manifold  be  (3  +  1) -dimensional,  so  that  —  g  will  be 

the  determinant  of  the  g^'s.  In  this  space,  as  in  every  other,  the 
distance  curvature  with  components  /;&  is  a  true  linear  tensor 
field  of  the  second  order.  From  it  is  derived  the  contra-variant 

tensor  fik  of  weight  -  2,  which,  on  account  of  its  weight  differing 
from  zero,  is  of  no  actual  importance ;  multiplication  by  ,Jg  leads 

to  f1'*,  a  true  linear  tensor-density  of  the  second  order. 
1  =  tfrf«  .  (53) 

is  the  simplest  scalar-density  that  can  be  formed;  consequently 

I  Idx  is  the  simplest  invariant  integral  associated  with  the  metrical 

basis  of  a  (3  +  l)-dimensional  manifold.  On  the  other  hand,  the 
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integral  I  *Jgdx,  which  occurs  in  Riemann's  geometry  as  "  volume," 

is  meaningless  in  general  geometry.  We  can  derive  the  intensity 

of  current  (vector-density)  from  fik  by  means  of  the  operation 
divergence  thus  : 

In  physics,  however,  we  use  the  tensor  calculus  not  to  describe  the 
j  metrical  condition  but  to  describe  fields  expressing  physical  states 
in  metrical  space  —  as,  for  example,  the  electromagnetic  field  —  and 
to  set  up  the  laws  that  hold  in  them.  Now,  we  shall  find  at  the 
close  of  our  investigations  that  this  distinction  between  physics  and 
geometry  is  false,  and  that  physics  does  not  extend  beyond  geometry. 
The  world  is  a  (3  +  1)  -dimensional  metrical  manifold,  and  all 
physical  phenomena  that  occur  in  it  are  only  modes  of  expression 
of  the  metrical  field.  In  particular,  the  affine  relationship  of  the 
world  is  nothing  more  than  the  gravitational  field,  but  its  metrical 

character  is  an  expression  of  the  state  of  the  "  aether"  that  fills  the 
world  ;  even  matter  itself  is  reduced  to  this  kind  of  geometry  and 

loses  its  character  as  a  permanent  substance.  Clifford's  prediction, 
i  in  an  article  of  the  Fortnightly  Review  of  1875,  becomes  con- 

firmed here  with  remarkable  accuracy;  in  this  he  says  that  "the 
theory  of  space  curvature  hints  at  a  possibility  of  describing  matter  , 

and  motion  in  terms  of  extension  only". 
These  are,  however,  as  yet  dreams  of  the  future.  For  the 

present,  we  shall  maintain  our  view  that  physical  states  are  foreign 
states  in  space.  Now  that  the  principles  of  infinitesimal  geometry 
have  been  worked  out  to  their  conclusion,  we  shall  set  out,  in  the 
next  paragraph,  a  number  of  observations  about  the  special  case  of 

Riemann's  space  and  shall  give  a  number  of  formulae  which  will bo  of  use  later. 

§17.  Observations  about  Riemann's  Geometry  as  a  Special 
Case 

General  tensor  analysis  is  of  great  utility  even  for  Euclidean 

;  geometry  whenever  one  is  obliged  to  make  calculations,  not  in  a 
Cartesian  or  affine  co-ordinate  system,  but  in  a  curvilinear  co- 

ordinate system,  as  often  happens  in  mathematical  physics.     To 

'  illustrate  this   application  of  the  tensor  calculus  we  shall  here 
;  write  out  the  fundamental  equations  of  the  electrostatic  and  the 
magnetic  field  due  to  stationary  currents  in  terms  of  general  cur- 

vilinear co-ordinates. 

Firstly,  let  EI  be  the  components  of  the  electric  intensity  of  field 
9 
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in  a  Cartesian  co-ordinate  system.  By  transforming  the  quadratic 
and  the  linear  differential  forms 

ds2  =  dx*  +  dxf  +  dxs*        El  dx1  +  E2dx2  +  Esdx3 

respectively,  into  terms  of  arbitrary  curvilinear  co-ordinates  (again 
denoted  by  #;),  each  form  being  independent  of  the  Cartesian  co- 

ordinate system,  suppose  we  get 

dsz  =  gikdxidxk  and  Eidxi. 

Then  the  Ei's  are  in  every  co-ordinate  system  the  components  of 
the  same  co-variant  vector  field.  From  them  we  form  a  vector- 
density  with  components 

Et=  Jg-gikEk        (g  =  \gik\). 

We  transform  the  potential  -  <f>  as  a  scalar  into  terms  of  the  new 
co-ordinates,  but  we  define  the  density  p  of  electricity  as  being  the 

electric  charge  given  by  {pdx^dx^dx^  contained  in  any  portion  of 

space ;  p  is  not  then  a  scalar  but  a  scalar  density.  The  laws  are 
expressed  by 

(54) 

in  which  S,  =  ̂ E{,  are  the  components  of  a  mixed  tensor-density 
of  the  second  order,  namely,  the  potential  difference.  The  proof  is 
sufficiently  indicated  by  the  remark  that  these  equations,  in  the 
form  we  have  written  them,  are  absolutely  invariant  in  character, 
but  pass  into  the  fundamental  equations,  which  were  set  up  earlier, 
for  a  Cartesian  co-ordinate  system. 

The  magnetic  field  produced  by  stationary  currents  was  charac- 
terised in  Cartesian  co-ordinate  systems  by  an  invariant  skew- 

symmetrical  bilinear  form  Hikdxfixk.  By  transforming  the  latter 
into  terms  of  arbitrary  curvilinear  co-ordinates,  we  get  HM,  the 
components  of  a  linear  tensor  of  the  second  order,  namely,  of  the 
magnetic  field,  these  components  being  co-variant  with  respect  to 
arbitrary  transformations  of  the  co-ordinates.  Similarly,  we  may 
deduce  the  components  fa  of  the  vector  potential  as  components  of 

a  co- variant  vector  field  in  any  curvilinear  co-ordinate  system.  We 
now^introduce  aJHnear  itensor-density  of  the  second  order  by  means 
of  the^equations 
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The  laws  are  then  expressed  by 

rr        c%      d<£fc Hik  =      -       or 

3JL*  =  8> 
respectively 

S   =  HHkr  -    8*S        S  = 

.     (55) 

The  Bl''s  are  the  components  of  a  vector-density,  the  electric  intensity 
of  current ;  the  potential  differences  S*  have  the  same  invariant 
character  as  in  the  electric  field.  These  formulae  may  be  specia- 

lised for  the  case  of,  for  example,  spherical  and  cylindrical  co- 
ordinates. No  further  calculations  are  required  to  do  this,  if  we 

have  an  expression  for  ds*,  the  distance  between  two  adjacent 
points,  expressed  in  these  co-ordinates;  this  expression  is  easily 
obtained  from  considerations  of  infinitesimal  geometry. 

It  is  a  matter  of  greater  fundamental  importance  that  (54)  and 

(55)  furnish  us  with  the  underlying  laws  of  stationary  electro- 
magnetic fields  if  unforeseen  reasons  should  compel  us  to  give  up 

the  use  of  Euclidean  geometry  for  physical  space  and  replace  it  by 

Riemann's  geometry  with  a  new  groundform.  For  even  in  the 
case  of  such  generalised  geometric  conditions  our  equations,  in 
virtue  of  their  invariant  character,  represent  statements  that  are 

independent  of  all  co-ordinate  systems,  and  that  express  formal 
relationships  between  charge,  current,  and  field.  In  no  wise  can 
it  be  doubted  that  they  are  the  direct  transcription  of  the  laws  of 
the  stationary  electric  field  that  hold  in  Euclidean  space;  it  is 
indeed  astonishing  how  simply  and  naturally  this  transcription  is 
effected  by  means  of  the  tensor  calculus.  The  question  whether 
space  is  Euclidean  or  not  is  quite  irrelevant  for  the  laws  of  the 
electromagnetic  field.  The  property  of  being  Euclidean  is  ex- 

pressed in  a  universally  invariant  form  by  differential  equations 

of  the  second  order  in  the  g^'s  (denoting  the  vanishing  of  the 
curvature)  but  only  the  gik's  and  their  first  derivatives  appear  in 
these  laws.  It  must  be  emphasised  that  a  transcription  of  such 
a  simple  kind  is  possible  only  for  laws  dealing  with  action  at 
infinitesimal  distances.  To  derive  the  laws  of  action  at  a 

distance  corresponding  to  Coulomb's,  and  Biot  and  Savart's  Law 
from  these  laws  of  contiguous  action  is  a  purely  mathematical 
problem  that  amounts  in  essence  to  the  following.  In  place  of  the 
usual  potential  equation  A<£  =  0  we  get  as  its  invariant  generalisa- 

tion (vide  (54))  in  Biemann's  geometry  the  equation 
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that  is,  a  linear  differential  equation  of  the  second  order  whose 

co-efficients  are,  however,  no  longer  constants.  From  this  we  are 

to  get  the  "  standard  solution,"  tending  to  infinity,  at  any  arbitrary 
given  point  ;  this  solution  corresponds  to  the  "  standard  solution  " 

-  of  the  potential  equation.     It  presents  a  difficult  mathematical 

problem  that  is  treated  in  the  theory  of  linear  partial  differential 

equations  of  the  second  order.  The  same  problem  is  presented 

when  we  are  limited  to  Euclidean  space  if,  instead  of  investigating 

events  in  empty  space,  we  have  to  consider  those  taking  place  in  a 

non-homogeneous  medium  (for  example,  in  a  medium  whose  di- 
electric constant  varies  at  different  places  with  the  time).  Con- 

ditions are  not  so  favourable  for  transcribing  electromagnetic  laws, 

if  real  space  should  become  disclosed  as  a  metrical  space  of  a  still 

more  general  character  than  Kiemann  assumed.  In  that  case  it 

would  be  just  as  inadmissible  to  assume  the  possibility  of  a  calibra- 

tion that  is  independent  of  position  in  the  case  of"  currents  and 
charges  as  in  the  case  of  distances.  Nothing  is  gained  by  pursuing 
this  idea.  The  true  solution  of  the  problem  lies,  as  was  indicated 

in  the  concluding  words  of  the  previous  paragraph,  in  quite  another 
direction. 

Let  us  rather  add  a  few  observations  about  Riemann's  space 
as  a  special  case.  Let  the  unit  measure  (1  centimetre)  be  chosen 
once  and  for  all  ;  it  must,  of  course,  be  the  same  at  all  points.  The 

metrical  structure  of  the  Kiemann  space  is  then  described  by  an 

invariant  quadratic  differential  form  g^  dxi  dx^  or,  what  amounts 

to  the  same  thing,  by  a  co-variant  symmetrical  tensor  field  of  the 
second  order.  The  quantities  fa,  that  are  now  equal  to  zero,  must 
be  struck  out  everywhere  in  the  formulae  of  general  metrical 

geometry.  Thus,  the  components  of  the  affine  relationship, 

which  here  bear  the  name  "  Christoffel  three-indices  symbols  "  and 
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(We  give  way  to  the  usual  nomenclature  —  although  it  disagrees 
flagrantly  with  our  own  convention  regarding  rules  about  the 

position  of  indices.  —  so  as  to  conform  to  the  usage  of  the  text- 
books.) 
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The  following  formulae  are  now  tabulated  for  future  reference  :  — 

<«"> 

These  equations  hold  because  >Jg  is  a  scalar  and  \/gr .  gik  is  a  tensor-density  ; 

1    hence,  according  to  the  rules  given  by  the  analysis  of  tensor-densities,  the  left- 
hand  members  of  these  equations,  multiplied  by  *Jg,  are  likewise  tensor- densities. 

If,  however,  we  use  a  co-ordinate  system  I  ̂ —  =  0  ),  which  is  geodetic  atP,  then 

all  terms  vanish.     Hence,  in  virtue  of  the  invariant  nature  of  these  equations, 

they  also  hold  in  every  other  co-ordinate  system.     Moreover, 

.       .       .    (58) 
g  ig 

For  the  total  differential  of  a  determinant  with  n2  (independent  and  variable) 

elements  gik  is  equal  to  G^dg^,  where  Oifc  denotes  the  minor  of  g^.  If  t**(=t**'). 
is  any  symmetrical  system  of  numbers,  then  we  always  have 

From 

it  follows  that 

9ijdgjk  =  -
 If  these  equations  are  multiplied 

 
by  tj;  (this  symbol  cannot  be  misinterpre

ted 

*    the  required  result  follows.     In  particular,  in  place  of  (58)  we  may  also  write 

4  =  -  gikdgik   (58') y 

The  co-variant  components  Rapik  of  curvature  in  Riemann's  space, 
which  we  denote  by  R  instead  of  F,  satisfy  the  conditions  of  symmetry 

(for  the  "distance  curvature  "  vanishes).  It  is  easy  to  show  that,  from  them,  ifc 
follows  that  (vide  note  11) 

Rika?  =  Rapik' 

As  the  result  of  an'  observation  on  page  57,  it  follows  that  all  those  conditions  taken 
together  enable  us  to  characterise  the  curvature  tensor  completely  by  means  of  a 
quadratic  form  that  is  dependent  on  an  arbitrary  element  of  surface,  namely, 

If  this  quadratic  form  is  divided  by  the  square  of  the  magnitude  of  the  surface 

element,  the  quotient  depends  only  on  the  ratio  of  the  Acer's,  i.e.  on  the  position 
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of  the  surface  element  ;  Riemann  calls  this  number  the  curvature  of  the  space 
at  the  point  P  in  the  surface  direction  in  question.  In  two-dimensional 
Riemann  space  (on  a  surface)  there  is  only  one  surface  direction  and  the 

tensor  degenerates  into  a  scalar  (Gaussian  curvature).  In  Einstein's  theory  of 
gravitation  the  contracted  tensor  of  the  second  order 

which   is    symmetrical    in   Riemann's    space,   becomes   of    importance  :    its 
components  are 

Only  in  the  case  of  the  second  term  on  the  right,  the  symmetry  with  respect  to 
i  and  k  is  not  immediately  evident  ;  according  to  (57),  however,  it  is  equal  to 

^  &  (logy) 
Finally,  by  applying  contraction  once  more  we  may  form  the  scalar  of 
curvature 

In  general  metrical  space  the  analogously  formed  scalar  of  curvature  F  is 
expressed  in  the  following  way  (as  is  easily  shown)  by  the  Riemann  expression 
/?,  which  is  dependent  only  on  the  g^a  and  which  has  no  distinct  meaning  in 
that  space  :  — 

1-  .  B  -  (—  1)  ±%^  -  ("  -  W*  -  2)  («rt  •        •    (CD 
F  is  a  scalar  of  weight  -  1.  Hence,  in  a  region  in  which  F  =^=  0  we  may  define  a 
unit  of  length  by  means  of  the  equation  F=  constant.  This  is  a  remarkable  result 
inasmuch  as  it  contradicts  in  a  certain  sense  the  original  view  concerning  the 
transference  of  lengths  in  general  metrical  space,  according  to  which  a  direct 
comparison  of  lengths  at  a  distance  is  not  possible  ;  it  must  be  noticed,  however, 
that  the  unit  of  length  which  arises  in  this  way  is  dependent  on  the  conditions 
of  curvature  of  the  manifold.  (The  existence  of  a  unique  uniform  calibration  of 
this  kind  is  no  more  extraordinary  than  the  possibility  of  introducing  into 

Riemann's  space  certain  unique  co-ordinate  systems  arising  out  of  the  metrical 
structure.)  The  "volume"  that  is  measured  by  using  this  unit  of  length  is 
represented  by  the  invariant  integral 

/ 
(62) 

For  two  vectors  £»,  -rf  that  undergo  parallel  displacement  we  have, 
in  metrical  space, 

<W)  +  (foW  =  0. 

In  Eiemann's  space,  the  second  term  is  -absent.  From  this  it 
follows  that  in  Eiemann's  space  the  parallel  displacement  of  a 
contra-variant  vector  £  is  expressed  in  exactly  the  same  way  in 
terms  of  the  quantities  &  =  g^p  as  the  parallel  displacement  of  a 
co-variant  vector  is  expressed  in  terms  of  its  components  & : 

j    =  0    or   <7&  -        ~dxa&  =  0. 
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Accordingly,  for  a  translation  we  have 

for,  by  equation  (48), 

r*a-|     ran  _  ̂  Lw+L-J  15 
and  hence  for  any  symmetrical  system  of  numbers  ta/3  :  — 

Since  the  numerical  value  of  the  velocity  vector  remains  unchanged 
during  translations,  we  get 

const.      .         .         .     (65) 

If,  for  the  sake  of  simplicity,  we  assume  the  metrical  groundform 

to  be  definitely  positive,  then  every  curve  x^  =  xi(s)  [a  <  s  <  b]  has  a 

length,  which  is  independent  of  the  mode  of  parametric  representa- 
tion. This  length  is 

If  we  use  the  length  of  arc  itself  as  the  parameter,  Q  becomes  equal 
to  1.  Equation  (65)  states  that  a  body  in  translation  traverses  its 

path,  the  geodetic  line,  with  constant  speed,  namely,  that  the  time- 

parameter  is  proportional  to  s,  the  length  of  arc.  In  Eiemann's 
space  the  geodetic  line  possesses  not  only  the  differential  property 
of  preserving  its  direction  unaltered,  but  also  the  integral  property 
that  every  portion  of  it  is  the  shortest  line  connecting  its 
initial  and  its  final  point.  This  statement  must  not,  however, 
be  taken  literally,  but  must  be  understood  in  the  same  sense  as 
the  statement  in  mechanics  that,  in  a  position  of  equilibrium,  the 
potential  energy  is  a  minimum,  or  when  it  is  said  of  a  function 
f(x,  y)  in  two  variables  that  it  has  a  minimum  at  points  where  its 
differential 

vanishes  identically  in  dx  and  dy  ;  whereas  the  true  expression  is 

that  it  assumes  a  "stationary"  value  at  that  point,  which  may  be 
a  minimum,  a  maximum,  or  a  "point  of  inflexion".  The  geodetic 
line  is  not  necessarily  a  curve  of  least  length  but  is  a  curve  of 
stationary  length.  On  the  surface  of  a  sphere,  for  instance,  the 
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great  circles  are  geodetic  lines.  If  we  take  any  two  points,  A  and 
B,  on  such  a  great  circle,  the  shorter  of  the  two  arcs  AB  is  indeed 
the  shortest  line  connecting  A  and  B,  but  the  other  arc  AB  is  also 

a  geodetic  line  connecting  A  and  B',  it  is  not  of  least  but  of 
stationary  length.  We  shall  seize  this  opportunity  of  expressing 
in  a  rigorous  form  the  principle  of  infinitesimal  variation. 

Let  any  arbitrary  curve  be  represented  parametrically  by 

We  shall  call  it  the  "  initial  "  curve.  To  compare  it  with 
neighbouring  curves  we  consider  an  arbitrary  family  of  curves 
involving  one  parameter: 

Xi  =  Xi(s  \e)  (a  <  s  <  6). 
The  parameter  €  varies  within  an  interval  about  e  =  0  ;  Xi(s  ;  e)  are 
to  denote  functions  that  resolve  into  Xi(s)  when  c  =  0.  Since  all 
curves  of  the  family  are  to  connect  the  same  initial  point  with  the 
same  final  point,  Xi(a  ;  c)  and  Xi(b  ;  e)  are  independent  of  e.  The 
length  of  such  a  curve  is  given  by 

Further,   we   assume  that  s  denotes  the  length  of  an  arc  of  the 
initial  curve,  so  that  Q  =  1  for  e  =  0.     Let  the  direction  compon- 

ents -—of  the  initial  curve  e  =  0  be  denoted  by  ui.     We  also  set ds 

These  are  the  components  of  the  "  infinitesimal  "  displacement 
which  makes  the  initial  curve  change  into  the  neighbouring  curve 

due  to  the  "  variation  "  corresponding  to  an  infinitely  small  value 
of  e  ;  they  vanish  at  the  ends. 

SL 

is  the  corresponding  variation  in  the  length.  SL  =  Q  is  the  con- 
dition that  the  initial  curve  has  a  stationary  length  as  compared 

with  the  other  members  of  the  family.  If  we  use  the  symbol  SQ 
in  the  same  sense,  we  get 

6  6 

SL  =  f  JSL  ds  =  i(sQds       .         .         .     (66) 
a 

since  Q  =  1  in  the  case  of  the  initial  curve.     Now 

dxi  dxadxp      2      dxk  d2Xj 
dt   ds  ds          Jlk  dsdtds 
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and  hence  (if  we  interchange  "  variation  "  and  "  differentiation," that  is  the  differentiations  with  respect  to  e  and  s)  we  get 

If  we  substitute  this  in  (66)  and  rewrite  the  second  term  by  apply- 

ing partial  integration,  and  note  that  the  £»'s  vanish  at  the  ends 
of  the  interval  of  integration,  then =  {( 

J\ 

BL ds 

Hence  the  condition  &L  =  0  is  fulfilled  for  any  family  of  curves  if, 
and  only  if,  (63)  holds.  Indeed,  if,  for  a  value  s  =  s0  between  a 
and  b,  one  of  these  expressions,  for  example  the  first,  namely,  i  =  1, 
differed  from  zero  (were  greater  than  zero),  say,  it  would  be  possible 
to  mark  off  a  little  interval  around  s0  so  small  that,  within  it,  the 

above  expression  would  be  always  >  0.  If  we  choose  a  non- 
negative  function  for  $l  such  that  it  vanishes  for  points  beyond  this 

interval,  all  remaining  £*'s,  however,  being  =  0,  we  find  the  equation 
BL  =  0  contradicted. 

Moreover,  it  is  evident  from  this  proof  that,  of  all  the  motions 
that  lead  from  the  same  initial  point  to  the  same  final  point  within 
the  same  interval  of  time  a  <  s  <  b,  a  translation  is  distinguished 

6 

by  the  property  that  I  Qds  has  a  stationary  value. 
a 

Although  the  author  has  aimed  at  lucidity  of  expression  many 
a  reader  will  have  viewed  with  abhorrence  the  flood  of  for- 

mulae and  indices  that  encumber  the  fundamental  ideas  of 

infinitesimal  geometry.  It  is  certainly  regrettable  that  we  have  to 
enter  into  the  purely  formal  aspect  in  such  detail  and  to  give  it  so 
much  space  but,  nevertheless,  it  cannot  be  avoided.  Just  as  any- 

one who  wishes  to  give  expressions  to  his  thoughts  with  ease  must 
spend  laborious  hours  learning  language  and  writing,  so  here  too 
the  only  way  that  we  can  lessen  the  burden  of  formulae  is  to 
master  the  technique  of  tensor  analysis  to  such  a  degree  that  we 
can  turn  to  the  real  problems  that  concern  us  without  feeling  any 
encumbrance,  our  object  being  to  get  an  insight  into  the  nature  of 
space,  time,  and  matter  so  far  as  they  participate  in  the  structure 
of  the  external  world.  Whoever  sets  out  in  quest  of  this  goal  must 
possess  a  perfect  mathematical  equipment  from  the  outset.  Before 
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we  pass  on  after  these  wearisome  preparations  and  enter  into  the 
sphere  of  physical  knowledge  along  the  route  illumined  by  the 
genius  of  Einstein,  we  shall  seek  to  obtain  a  clearer  and  deeper 
vision  of  metrical  space.  Our  goal  is  to  grasp  the  inner  necessity 
and  uniqueness  of  its  metrical  structure  as  expressed  in  Pytha- 

goras' Law. 

§  18.  Metrical  Space  from  the  Point  of  Yiew  of  the  Theory 
of  Groups 

Whereas  the  character  of  affine  relationship  presents  no  further 

difficulties — the  postulate  on  page  124  to  which  we  subjected  the 
conception  of  parallel  displacement,  and  which  characterises  it  as  a 

kind  of  unaltered  transference,  defines  its  character  uniquely — we 
have  not  yet  gained  a  view  of  metrical  structure  that  takes  us 
beyond  experience.  It  was  long  accepted  as  a  fact  that  a  metrical 
character  could  be  described  by  means  of  a  quadratic  differential 
form,  but  this  fact  was  not  clearly  understood.  Eiemann  many 
years  ago  pointed  out  that  the  metrical  groundform  might,  with 
equal  right  essentially,  be  a  homogeneous  function  of  the  fourth 
order  in  the  differentials,  or  even  a  function  built  up  in  some  other 
way,  and  that  it  need  not  even  depend  rationally  on  the  differentials. 
But  we  dare  not  stop  even  at  this  point.  The  underlying  general 
feature  that  determines  the  metrical  structure  at  a  point  P  is  the 
group  of  rotations.  The  metrical  constitution  of  the  manifold  at 
the  point  P  is  known  if,  among  the  linear  transformations  of  the 
vector  body  (i.e.  the  totality  of  vectors),  those  are  known  that  are 
congruent  transformations  of  themselves.  There  are  just  as  many 
different  kinds  of  measure-determinations  as  there  are  essentially 
different  groups  of  linear  transformations  (whereby  essentially 
different  groups  are  such  as  are  distinguished  not  merely  by  the 
choice  of  co-ordinate  system).  In  the  case  of  Pythagorean 
metrical  space,  which  we  have  alone  investigated  hitherto,  the 
group  of  rotations  consists  of  all  linear  transformations  that  convert 
the  quadratic  groundform  into  itself.  But  the  group  of  rotations 
need  not  have  an  invariant  at  all  in  itself  (that  is,  a  function  which 

is  dependent  on  a  single  arbitrary  vector  and  which  remains  un- 
altered after  any  rotations). 

Let  us  reflect  upon  the  natural  requirements  that  may  be  im- 
posed on  the  conception  of  rotation.  At  a  single  point,  as  long  as 

the  manifold  has  not  yet  a  measure-determination,  only  the  n- 
dimensional  parallelepipeds  can  be  compared  with  one  another  in 
respect  to  si2e.  If  a;  (i  =•=  1,  2,  .  .  .  n)  are  arbitrary  vectors 
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that  are  defined  in  terms  of  the  initial  unit  vectors  6;  according  to 
the  equations 

then  the  determinant  of  the  a^'s  which,  following  Grassmann,  we 
may  conveniently  denote  by 

is,  according  to  definition,  the  volume  of  the  parallelepiped  mapped 
out  by  the  n  vectors  a;.  If  we  choose  another  system  of  unit 
vectors  6i  all  the  volumes  become  multiplied  by  a  common  constant 

factor,  as  we  see  from  the  "  multiplication  theorem  of  deter- 

minants," namely 
.  .  an]      [a^  .  .  .  an] 

The  volumes  are  thus  determined  uniquely  and  independently  of 
the  co-ordinate  system  once  the  unit  measure  has  been  chosen^ 

Since  a  rotation  is  "  not  to  alter  "  the  vector  body,  it  must  obviously 
be  a  transformation  that  leaves  the  infinitesimal  elements  of  volume 

unaffected.  Let  the  rotation  that  transforms  the  vector  x  =  (£*) 

into  x  =  (£*)  be  represented  by  the  equations 

Ci  =  c^e*  or  £  =  afk. 
The  determinant  of  the  rotation  matrix  (aj.)  then  becomes  equal  to 
1.  This  being  the  postulate  that  applies  to  a  single  rotation, 
we  must  demand  of  the  rotations  as  a  whole  that  they  form  a 
group  in  the  sense  of  the  definition  given  on  page  9.  Moreover, 
this  group  has  to  be  a  continuous  one,  that  is  the  rotations  are  to 
be  elements  of  a  one-dimensional  continuous  manifold. 

If  a  linear  vector  transformation  be  given  by  its  matrix  A  = 

(a£)  in  passing  from  one  co-ordinate  system  (e;)  to  another  (§*') 
according  to  the  equations 

U:Qi  =  «£e*       .  '      .  .     (67) 
then  A  becomes  changed  into  UAU'1  (where  U'1  denotes  the  in- 

verse of  U\  UU~l  and  U~1U  are  equal  to  identity  E)*  Hence 
every  group  that  is  derived  from  a  given  matrix  group  G  by  apply- 

ing the  operation  UGU~l  on  every  matrix  G  of  G  (U  being  the 
same  for  all  G's)  may  be  transformed  into  the  given  matrix  group 
by  an  appropriate  change  of  co-ordinate  system.  Such  a  group 

UC(U~l  will  be  said  to  be  of  the  same  kind  as  G  (or  to  differ  from 
G  only  in  orientation).  If  G  is  the  group  of  rotation  matrices  at  P 

and  if  UCdJ'1  is  identical  with  G  (this  does  not  mean  that  G  must 
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again  pass  into  G  as  a  result  of  the  operation  UGU~l,  but  all  that 
is  required  is  that  G  and  UGU~l  belong  to  G  simultaneously)  then 
the  expressions  for  the  metrical  structures  of  two  co-ordinate 
systems  (67),  that  are  transformed  into  one  another  by  U,  are 
similar ;  U  is  a  representation  of  the  vector  body  on  itself,  such 
that  it  leaves  all  the  metrical  relations  unaltered.  This  is  the 

conception  of  similar  representation.  G  is  included  in  the 

group  G*  of  similar  representations  as  a  sub-group. 
From  the  metrical  structure  at  a  single  point  we  now  pass  on 

to  "  metrical  relationship  ".  The  metrical  relationship  between 
the  point  P0  and  its  immediate  neighbourhood  is  given  if  a  linear 

representation  at  P0  =  x^  of  the  vector  body  on  itself  at  an  infinitely 

near  point  P  =  (x^  +  dx{)  is  a  congruent  transference.  Together 
with  A  every  representation  (or  transformation)  AG(),  in  which  A 
is  followed  by  a  rotation  GQ  at  P0,  is  likewise  a  congruent  transfer- 

ence ;  thus,  from  one  congruent  transference  A  of  the  vector  body 
from  P0  to  P,  we  get  all  possible  ones  by  making  G0  traverse  the 
group  of  rotations  belonging  to  P0.  If  we  consider  the  vector  body 
belonging  to  the  centre  P0  for  two  positions  congruent  to  one 
another,  they  will  resolve  into  two  congruent  positions  at  P  if 
subjected  to  the  same  congruent  transference  A  ;  for  this  reason, 

the  group  of  rotations  G  at  P  is  equal  to  ̂ Go^""1.  The  metrical 
relationship  thus  tells  us  that  the  group  of  rotations  at  P  differs 
from  that  at  P0  only  in  orientation.  If  we  pass  continuously  from 
the  point  P0  to  any  point  of  the  manifold,  we  see  that  the  groups 
of  rotation  are  of  a  similar  kind  at  all  points  of  the  manifold ;  thus 
there  is  homogeneity  in  this  respect. 

The  only  congruent  transferences  that  we  take  into  consideration 

are  those  in  which  the  vector  components  £*'  undergo  changes  dp 
that  are  infinitesimal  and  of  the  same  order  as  the  displacement  of 
the  centre  P0, 

d&  =  dtfk .  ?. 
If  L  and  M  are  two  such  transferences  from  P0  to  P,  with  co- 

efficients d\l  and  dpi  respectively,  then  the  rotation  ML'1  is 
likewise  infinitesimal :  it  is  represented  by  the  formula 

d&  =  dai  .  £*  where  da*  =  d^k  -  d\\.       .        .     (68) 

The  following  will  also  be  true.  If  an  infinitesimal  congruent 
transference  consisting  in  the  displacement  (dxi)  of  the  centre  P0  is 
succeeded  by  one  in  which  the  centre  is  displaced  by  (8xt),  we  get 

a  congruent  transference  that  is  effected  by  the  resultant  displace- 
ment dxi  +  Bxi  of  the  centre  (plus  an  error  which  is  infinitesimal 

compared  with  the  magnitude  of  the  displacements).  Hence,  if 
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for  the  transition  from  P0  =  (rrj,  x\,  .  .  .  x%)  to  the  point 

(#$  +  e,  #!j,  .  .  .  a?2),  this  being  an  infinitesimal  change  c  in  the 
direction  of  the  first  co-ordinate  axis, 

is  a  congruent  transference,  and  if  Al2,  .  •  •  AL  have  a  corre- 
sponding meaning  for  the  displacements  of  P0  in  the  direction  of 

the  2nd  up  to  the  nih  co-ordinate  in  turn  ;  then  the  equation 

dP-tirdXr.p       ....       (69) 

gives  a  congruent  transference  for  an  arbitrary  displacement  having 
components  dxi. 

Among  the  various  kinds  of  metrical  spaces  we  shall  now 
designate  by  simple  intrinsic  relations  the  category  to  which, 

according  to  Pythagoras'  and  Riemann's  ideas,  real  space  belongs. 
The  group  of  rotations  that  does  not  vary  with  position  exhibits 
a  property  that  belongs  to  space  as  a  form  of  phenomena;  it 
characterises  the  metrical  nature  of  space.  The  metrical  relation- 

ship,* from  point  to  point,  however,  is  not  determined  by  the 
nature  of  space,  nor  by  the  mutual  orientation  of  the  groups  of 
rotation  at  the  various  points  of  the  manifold.  The  metrical 
relationship  is  dependent  rather  on  the  disposition  of  the  material 

content,  and  is  thus  in  itself  free  and  capable  of  any  "  virtual  " 
changes.  We  shall  formulate  the  fact  that  it  is  subject  to  no 
limitation  as  our  first  axiom. 

I.  The  Nature  of  Space  Imposes  no  Restriction  on  the 
Metrical  Relationship 

It  is  possible  to  find  a  metrical  relationship  in  space  between 
the  point  P0  and  the  points  in  its  neighbourhood  such  that  the 
formula  (69)  represents  a  system  of  congruent  transferences  to 

these  neighbouring  points  for  arbitrarily  given  numbers  A^.. 

Corresponding  to  every  co-ordinate  system  Xi  at  P0  there  is  a 
possible  conception  of  parallel  displacement,  namely,  the  displace- 

ment of  the  vectors  from  P0  to  the  infinitely  near  points  without 
the  components  undergoing  a  change  in  this  co-ordinate  system. 
Such  a  system  of  parallel  displacements  of  the  vector  body  from  P0 
to  all  the  infinitely  near  points  is  expressed,  as  we  know,  in  terms 
of  a  definite  co-ordinate  system,  selected  once  and  for  all  by  the 
formula 

dt?  =  -  dyL  .  £k  in  which  the  differential  forms  dy\  =  r\rdxr 

*  Although,  as  will  be  shown  later,  it  is  everywhere  of  the  same  kind. 
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satisfy  the  condition  of  symmetry 

ri  =  rrt  .  .  (70) 
And,  indeed,  a  possible  conception  of  parallel  displacement  cor- 

responds to  every  system  of  symmetrical  co-efficients  F.  For  a 
given  metrical  relationship  the  further  restriction  that  the  "  parallel 

displacements "  shall  simultaneously  be  congruent  transferences 
must  be  imposed.  The  second  postulate  is  the  one  enunciated 
above  as  the  fundamental  theorem  of  infinitesimal  geometry ;  for 
a  given  metrical  relationship  there  is  always  a  single  system  of 
parallel  displacements  among  the  transferences  of  the  vector  body. 
We  treated  affine  relationship  in  §  15  only  provisionally  as  a 
rudimentary  characteristic  of  space;  the  truth  is,  however,  that 
parallel  displacements,  in  virtue  of  their  inherent  properties,  must 
be  excluded  from  congruent  transferences,  and  that  the  conception 
of  parallel  displacement  is  determined  by  the  metrical  relationship. 

This  postulate  may  be  enunciated  thus  : — 

II.  The  Affine  Relationship  is  Uniquely  Determined  by  the 
Metrical  Relationship 

Before  we  can  formulate  it  analytically  we  must  deal  with 
infinitesimal  rotations.  A  continuous  group  G  of  r  members  is 

a  continuous  r-dimensional  manifold  of  matrices.  If  s^  .  .  .  sr 
are  co-ordinates  in  this  manifold,  then,  corresponding  to  every 
value  system  of  the  co-ordinates  there  is  a  matrix  A  (s^  .  .  .  sr) 
of  the  group  which  depends  on  the  value-system  continuously. 
There  is  a  definite  value-system — we  may  assume  for  it  that  sx  =  0 
— to  which  identity,  E,  corresponds.  The  matrices  of  the  group 
that  are  infinitely  near  E  differ  from  E  by 

AJ^S!  +  A2ds2  +    .  .  .  AA, 

in   which  A;  =  (  - — )  .      We    call   a   matrix   A   an    infinitesimal 
W;  /o 

operation  of  the  group  if  the  group  contains  a  transformation 
(independent  of  e)  that  coincides  with  E  and  eA  to  within  an 
error  that  converges  more  rapidly  towards  zero  than  e,  for  de- 

creasing small  values  of  e.  The  infinitesimal  operations  of  the 
group  form  the  linear  family 

g  :  XjAi  +  A2A2  +   .  .  .   +  X,-Ar   (A.  being  arbitrary  numbers)    (71) 

g  is  exactly  r-dimensional  and  the  A's  are  linearly  independent  of 
one  another.  For  if  A  is  an  arbitrary  matrix  of  the  group,  the 
group  property  expresses  the  transformations  of  the  group  which 
are  infinitely  near  A  in  the  formula  A(E  +  eA),  in  which  €  is  an 
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infinitesimal  factor  and  A  traverses  the  group  g.  If  g  were  of 
less  dimensions  than  r,  the  same  would  hold  at  each  point  of 
the  manifold ;  for  all  values  of  Si  there  would  be  linear  relations 

between  the  derivatives  — -,  and  A  would  in  reality  depend  on  less 

than  r  parameters.  The  infinitesimal  operations  generate  and 
determine  the  whole  group.  If  we  carry  out  the  infinitesimal 

transformation  E  +  —  A    (n  being   an    infinitely   great    number) 

w-times  successively,  we  get  a  matrix  (of  the  group)  that  is  finite 
and  different  from  E,  namely, 

and  thus  we  get  every  matrix  of  the  group  (or  at  least  every  one 
that  may  be  reached  continuously  in  the  group,  by  starting  from 
identity)  if  we  make  A  traverse  the  whole  family  g.  Not  every 

arbitrarily  given  linear  family  (71)  gives  a  group  in  this  way,  but 

only  those  in  which  the  A's  satisfy  a  certain  condition  of  integrability. 
The  latter  is  obtained  by  a  method  quite  analogous  to  that  by  which, 

for  example,  the  condition  of  integrability  is  obtained  for  parallel 
displacement  in  Euclidean  space.  If  we  pass  from  Identity, 

'Efa  =  0),  by  an  infinitesimal  change  dsL  of  the  parameters,  to  the 
neighbouring  matrix  Ad  =  E  +  dA,  and  thence  by  a  second  infini- 

tesimal change  8st,  from  A§  to  A&Aj.  and  then  reverse  these  two 

operations  whilst  preserving  the  same  order,  we  get  A&lAdlAsAd, 
a  matrix  (of  the  group)  differing  by  an  infinitely  small  amount 

from  E.  Let  d  be  the  change  in  the  direction  of  the  first  co- 
ordinate, and  8  that  in  the  direction  of  the  second,  then  we  are 

dealing  with  the  matrix 

formed  from 

A  =  A(s,  0,  0,  ...  0)    and    At  =  A(Q,t,Q,  ...  0). 

Now,  ASQ  =  AQt  =  E,  hence 

lim      Ast  ~  E  = *— >o,  *— >  o    s  .  t 

Since  Ast  belongs  to  the  group,  this  limit  is  an  infinitesimal  operation 
of  the  group.     We  find,  however,  that 

^t  2 
leading  to 
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Accordingly  AXA2  -  A^,  or,  more  generally,  AtAfc  -  A^At  must 
be  an  infinitesimal  operation  of  the  group  :  or,  what  amounts  to 
the  same  thing,  if  A  and  B  are  two  infinitesimal  operations  of  the 

group,  then  AB  —  BA  must  also  always  be  one.  Sophus  Lie,  to 
whom  we  are  indebted  for  the  fundamental  conceptions  and  facts 
of  the  theory  of  continuous  transformation  groups  (vide  note  12), 
has  shown  that  this  condition  of  integrability  is  not  only  necessary 
but  also  sufficient.  Hence  we  may  define  an  r-dimensional  linear 
family  of  matrices  as  an  infinitesimal  group  having  r  members  if, 
whenever  any  two  matrices  A  and  B  belong  to  the  family,  AB  -  BA 
also  belongs  to  the  family.  By  introducing  the  infinitesimal  opera- 

tions of  the  group,  the  problem  of  continuous  transformation  groups 
becomes  a  linear  question. 

If  all  the  transformations  of  the  group  leave  the  elements  of 

volume  unaltered,  the  "  traces  "  of  the  infinitesimal  operations  =  0. 
For  the  development  of  the  determinant  of  E  +  cA  in  powers  of 
e  begins  with  the  members  1  +  e  .  trace  (A).  U  is  a  similar  trans- 

formation, if,  for  every  G  of  the  group  of  rotations,  UGU~l  or, 
what  comes  to  the  same  thing,  UGU-lG~l,  belongs  to  the  group 
of  rotations  G.  Accordingly,  AJ  is  an  infinitesimal  operation  of  the 

group  of  similar  transformations  if,  and  only  if,  AJA  -  AA*,  also 
belongs  to  g,  no  matter  which  of  the  matrices  A  of  the  group  of 
infinitesimal  rotations  is  used. 

The  infinitesimal  Euclidean  rotations 

that  is,  the  infinitesimal  linear  transformations  that  leave  the  unit 

quadratic  form 

invariant,  were  determined  on  page  47.  The  condition  which 
characterises  them,  namely, 

%dQ0  =  £*d£*  =  0,  implies  that  v*  =  -  v\. 
Thus  it  is  seen  that  we  are  dealing  with  the  infinitesimal  group 

8   of   all   skew-symmetrical   matrices ;    it  obviously  has  - 2 

members.  It  may  be  left  to  the  reader  to  verify  by  direct  calcula- 
tion that  it  possesses  the  group  property.  If  Q  is  any  quadratic 

form  that  remains  invariant  during  the  infinitesimal  Euclidean 
rotations,  i.e.  dQ  =  0,  then  Q  necessarily  coincides  with  QQ  except 
for  a  constant  factor.  Indeed,  if 

then  for  all  skew-symmetrical  number  systems  v\  the  equation 

+  arivrk  =  0       .  .     (72) 
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must  hold.  If  we  assume  k  =  i  and  notice  that  the  numbers 

^J,  flfi  •  •  •  ̂ ?  may  be  chosen  arbitrarily  for  each  particular  i, 

excepting  the  case  v\  =  0,  we  get  ari  =  0  for  r  =)=  *'•  If  we  write 
an  for  at-f  equation  (72)  becomes 

Vi(*i  -  a*)  =  0 

from  which  we  immediately  deduce  that  all  o/s  are  equal.  The 

corresponding  group  8*  of  similar  transformations  is  derived  from 

t  8  by  "  associating  "  the  single  matrix  E ;  this  here  signifies  dp  =  e£*. 

'  For  if  the  matrix  C  =  (cj)  belongs  to  8*,  that  is,  if  for  every  skew- 

symmetrical  v$,  c\v\  —  vlrcrk  is  also  a  skew-symmetrical  number 
system,  then  the  quantities  c].  +  c\  =  OM  satisfy  equation  (72)  ; 

whence  it  follows  that  o^  =  2a .  8* ;  that  is,  C  is  equal  to  aE  plus 
a  skew-symmetrical  matrix. 

More  generally,  let  8$  denote  the  infinitesimal  group  of  linear 
,  transformations  that  transform  an  arbitrary  non-degenerate  quad- 

ratic form  Q  into  itself.  Sq  and  8^  are  distinguished  only  by  their 

orientation,  if  Q'  is  generated  from  Q  by  a  linear  transformation. 
Hence  there  are  only  a  finite  number  of  different  kinds  of  infini- 

tesimal groups  SQ  that  differ  from  one  another  in  the  inertial  index 
attached  to  the  form  Q.  But  even  these  differences  are  eliminated 
if,  instead  of  confining  ourselves  to  the  realm  of  real  quantities,  we 
use  that  of  complex  members ;  in  that  case,  every  8^  is  of  the  same 
type  as  8. 

These  preliminary  remarks  enable  us  to  formulate  analytically 
the  two  postulates  I  and  II.  Let  g  be  the  group  of  infinitesimal 

rotations  at  P.  We  take  A^.  to  denote  every  system  of  n3  numbers, 

AjJ.  to  denote  every  system  that  is  composed  of  matrices  (A^), 

(Aa),  •  •  .  (Ajfc*n)  belonging  to  g  and  F^  to  denote  an  arbitrary 
system  of  numbers  that  satisfies  the  condition  of  symmetry  (70). 
If  the  group  of  infinitesimal  rotations  has  N  members,  these 

member  systems  form  linear  manifolds  of  n?,  nN  and  n  .  -^— ̂    
dimensions  respectively.  Since,  according  to  I,  if  the  metrical 

1  relationship  runs  through  all  possible  values,  any  arbitrary  number 
systems  A^,  AV2,  .  .  .  A**n  may  occur  as  the  co-efficients  of  n 
infinitesimal  congruent  transferences  in  the  n  co-ordinate  directions 
(cf.  (69)),  then,  by  II  (cf.  (68))  each  A  must  be  capable  of  resolution 
in  one  and  only  one  way  according  to  the  formula 

A£  =  At,  -  ri. 
10 
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This  entails  two  results 

12  (n  +  1)  n(n  -  1) 
1.  n*  =  nN  +  n  .  -    2     -  or  N  =  -^-g — - ; 

2.  Afo.  -  r/*r  is  never  equal  to  zero,  unless  all  the  A's  and  f's 
vanish  ;  or,  a  non-vanishing  system  A  can  never  fulfil  the  condition 
of  symmetry,  A^t  =  A4-     To  enable  us  to  formulate  this  condition 
invariantly  let  us  define  a  symmetrical  double  matrix  (an  infini- 

tesimal double  rotation)  belonging  to  g  as  a  law  expressed  by 

(f  =  A,Uv        (A*  =  Ast), 
which  produces  from  two  arbitrary  vectors,  £  and  17,  a  vector  £ 
as  a  bilinear  symmetrical  form,  provided  that  for  every  fixed  vector 

7],  the  transition  £  ->  £  (and  hence  also  for  every  fixed  vector  £  the 
transition  ?/->£)  is  an  operation  of  g.  We  may  then  summarise 
our  results  thus  : — 

The  group  of  infinitesimal  rotations  has  the  following  properties 
according  to  our  axioms  : 

(a)  The  trace  of  every  matrix  =  0 ; 
(b)  No  symmetrical  double  matrix  belongs  to  g  except  zero; 
(c)  The  dimensional  number  of  g  is  the  highest  that  is  still  in 

agreement  with  postulate  (b),  namely,  N  =     .  ̂  — • 
These  properties  retain  their  meaning  for  complex  quantities  as 

well  as  for  real  ones.  We  shall  just  verify  that  they  are  true  of  the 

infinitesimal  Euclidean  group  of  rotations  8,  that  is,  that  nz  numbers 
vfa  cannot  simultaneously  satisfy  the  conditions  of  symmetry 

*&  =  v«,         4  =  -  <>«, 

without  all  of  them  vanishing.  This  is  evident  from  the  calculation 
which  was  undertaken  on  page  125  to  determine  the  affine 
relationship.  For  if  we  write  down  the  three  equations  that  we 

get  from  v^  +  v^  =  0  by  interchanging  the  indices  i  k  I  cyclically, 
and  then  subtract  the  second  from  the  sum  of  the  first  and  the 

third,  we  get,  as  a  result  of  the  first  condition  of  symmetry,  vfo  =  ( 

It  seems  highly  probable  to  the  author  that  8  is  the  only  infini- 
tesimal group  that  satisfies  the  postulates  a,  b,  and  c;  or,  more 

exactly,  in  the  case  of  complex  quantities  every  such  infinitesimal 
group  may  be  made  to  coincide  with  S  by  choosing  the  appropriate 
co-ordinate  system.  If  this  is  true,  then  the  group  of  infinitesimal 
rotations  must  be  identical  with  a  certain  group  8Q,  in  which  Q 
is  a  non-degenerate  quadratic  form.  Q  itself  is  determined  by  | 
except  for  a  constant  of  proportionality.  It  is  real  if  g  is  real. 
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?or  if  we  split  Q  (in  which  the  variables  are  taken  as  real)  into  a 

•eal  and  an  imaginary  part  Ql  +  iQ2,  then  g  leaves  both  these  forms 
5X  and  Q2  invariant.  Hence  we  must  have 

Qi  =  o,Q         Q2  =  c2Q. 
Dne  of  these  two  constants  is  certainly  different  from  zero,  since 

?1  +  ic.2  =  1,  and  hence  Q  must  be  a  real  form  excepting  for  a 
constant  factor.  This  would  link  up  with  the  line  of  argument 
Allowed  in  the  preceding  paragraph  and  would  complete  the 
Analysis  of  Space ;  we  should  then  be  able  to  claim  to  have  made 
ntelligible  the  nature  of  space  and  the  source  of  the  validity  of 

Pythagoras'  Theorem,  by  having  explored  the  ultimate  grounds 
bccessible  to  mathematical  reasoning  (vide  note  13).  If  the 

supposed  mathematical  proposition  is  not  true,  definite  charac- 
eristics  and  essentials  of  space  will  yet  have  escaped  us.  The 
uuthor  has  proved  that  the  proposition  holds  actually  for  the 
owest  dimensional  numbers  n  =  2  and  n  =  3.  It  would  lead  too 
ar  to  present  these  purely  mathematical  considerations  here. 

In  conclusion,  it  will  be  advisable  to  call  attention  to  two  points. 
firstly,  axiom  I  is  in  no  wise  contradicted  by  the  result  of  axiom 
I  which  states  that  not  only  the  metrical  structure,  but  also  the 
netrical  relationship  is  of  the  same  kind  at  every  point,  namely,  of 
he  simplest  type  imaginable.     For  every  point  there  is  a  geodetic 
o-ordinate  system  such  that  the  shifting  of  all  vectors  at  that  point, 
diich  leaves  its  components  unaltered,  to  a  neighbouring  point  is 

(lways  a  congruent  transference.    Secondly,  the  possibility  of  grasp- 
ag  the  unique  significance  of  the  metrical  structure  of  Pythagorean 
pace  in  the  way  here  outlined  depends  solely  on  the  circumstance 
bat  the  quantitative  metrical  conditions  admit  of  considerable  virtual 
hanges.     This  possibility  stands  or  falls  with  the  dynamical  view 
f  Kiemann.     It  is  this  view,  the  truth  of  which  can  scarcely  be 

oubted  after  the  success  that  has  attended  Einstein's  Theory  of 
rravitation  (Chapter  IV),  that  opens  up  the  road  leading  to  the 

iscovery  of  the  "  Eationality  of  Space  ". 
The  investigations  about  space  that  have  been  conducted  in 

hapter  II  seemed  tc  the  author  to  offer  a  good  czample  of  the 
ind  of  analysis  of  the  modes  of  existence  (Wesensanalyse)  which  is 

le  object  of  Husserl's  phenomenological  philosophy,  an  example 
lat  is  typical  of  cases  in  which  we  are  concerned  with  non- 
•nmanent  modes.  The  historical  development  of  the  problem  of 
pace  teaches  how  difficult  it  is  for  us  human  beings  entangled 
i  external  reality  to  reach  a  definite  conclusion.  A  prolonged 

:iase  of  mathematical  development,  the  great  expansion  of  geo- 
etry  dating  from  Euclid  to  Riemann,  l^he  discovery  of  the  physical 
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facts  of  nature  and  their  underlying  laws  from  the  time  of  Galilei, 
together  with  the  incessant  impulses  imparted  by  new  empirical 

data,  finally  the  genius  of  individual  great  minds — Newton,  Gauss, 
Biemann,  Einstein — all  these  factors  were  necessary  to  set  us  free 
from  the  external,  accidental,  non-essential  characteristics  which 
would  otherwise  have  held  us  captive.  Certainly,  once  the  true 
point  of  view  has  been  adopted  reason  becomes  flooded  with  light, 
and  it  recognises  and  appreciates  what  is  of  itself  intelligible  to  it. 
Nevertheless,  although  reason  was,  so  to  speak,  always  conscious  of 
this  point  of  view  in  the  whole  development  of  the  problem,  it  had 
not  the  power  to  penetrate  into  it  with  one  flash.  This  reproach 
must  be  directed  at  the  impatience  of  those  philosophers  who 
believe  it  possible  to  describe  adequately  the  mode  of  existence  on 
the  basis  of  a  single  act  of  typical  presentation  (exemplarischer 
Vergegenwdrtiguitg) :  in  principle  they  are  right :  yet  from  the  point 
of  view  of  human  nature,  how  utterly  they  are  wrong !  The  problem 
of  space  is  at  the  same  time  a  very  instructive  example  of  that 
question  of  phenomenology  that  seems  to  the  author  to  be  of 
greatest  consequence,  namely,  in  how  far  the  delimitation  of  the 
essentialities  perceptible  in  consciousness  expresses  the  structure 
peculiar  to  the  realm  of  presented  objects,  and  in  how  far  mere 
convention  participates  in  this  delimitation. 



CHAPTEK  III 

RELATIVITY  OF  SPACE  AND  TIME 

§  19.  Galilei's  Principle  of  Relativity 

WE  have  already  discussed  in  the  introduction  how  it  is 

possible  to  measure  time  by  means  of  a  clock  and  how, 

after  an  arbitrary  initial  point  of  time  and  a  time-unit  has 
been  chosen,  it  is  possible  to  characterise  every  point  of  time  by  a 

,  number  t.  But  the  union  of  space  and  time  gives  rise  to  diffi- 
cult further  problems  that  are  treated  in  the  theory  of  relativity. 

The  solution  of  these  problems,  which  is  one  of  the  greatest  feats  in 

the  history  of  the  human  intellect,  is  associated  above  all  with  the 

1  names  of  Copernicus  and  Einstein  (vide  note  1). 
By  means  of  a  clock  we  fix  directly  the  time- conditions  of 

only  such  events  as  occur  just  at  the  locality  at  which  the  clock 
happens  to  be  situated.  Inasmuch  as  I,  as  an  unenlightened  being, 
fix,  without  hesitation,  the  things  that  I  see  into  the  moment  of 

their  perception,  I  extend  my  time  over  the  whole  world.  I  believe 
that  there  is  an  objective  meaning  in  saying  of  an  event  which  is 

happening  somewhere  that  it  is  happening  "  now  "  (at  the  moment  at 
which  I  pronounce  the  word  !) ;  and  that  there  is  an  objective  mean- 

ing in  asking  which  of  two  events  that  have  happened  at  different 
places  has  occurred  earlier  or  later  than  the  other.  We  shall  for 

the  present  accept  the  point  of  view  implied  in  these  assump- 
tions. Every  space-time  event  that  is  strictly  localised,  such  as 

the  flash  of  a  spark  that  is  instantaneously  extinguished,  occurs  at 

a  definite  space-time-point  or  world-point,  "  here-now  ".  As  a 
result  of  the  point  of  view  enunciated  above,  to  every  world-point 
there  corresponds  a  definite  time-co-ordinate  t. 

We  are  next  concerned  with  fixing  the  position  of  such  a  point- 
I  event  in  space.  For  example,  we  ascribe  to  two  point-masses  a 
distance  separating  them  at  a  definite  moment.  We  assume  that 

the  world-points  corresponding  to  a  definite  moment  t  form  a  three- 
dimensional  point-manifold  for  which  Euclidean  geometry  holds. 

i  (In  the  present  chapter  we  adopt  the  view  of  space  set  forth  in 
149 
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Chapter  I.)  We  choose  a  definite  unit  of  length  and  a  rectangular 

co-ordinate  system  at  the  moment  t  (such  as  the  corner  of  a  room). 
Every  world-point  whose  time-co-ordinate  is  t  then  has  three 
definite  space-co-ordinates  xv  x2,  xs. 

Let  us  now  fix  our  attention  on  another  moment  t'.  We  assume 
that  there  is  a  definite  objective  meaning  in  stating  that  measure- 

ments are  carried  out  at  the  moment  t'  with  the  same  unit  length 
as  that  used  at  the  moment  t  (by  means  of  a  "  rigid "  measuring 
staff  that  exists  both  at  the  time  t  and  at  the  time  t').  In  addition 
to  the  unit  of  time  we  shall  adopt  a  unit  of  length  fixed  once  and 
for  all  (centimetre,  second).  We  are  then  still  free  to  choose  the 
position  of  the  Cartesian  co-ordinate  system  independently  of  the 
choice  of  time  t.  Only  when  we  believe  that  there  is  objective 

meaning  in  stating  that  two  point-events  happening  at  arbitrary 

FIG.  7. 

moments  take  place  at  the  same  point  of  space,  and  in  saying  that 

a  body  is  at  rest,  are  we  able  to  fix  the  position  of  the  co-ordinate 
system  for  all  times  on  the  basis  of  the  position  chosen  arbitrarily  at 

a  certain  moment,  without  having  to  specify  additional  "  individual 

objects";  that  is,  we  accept  the  postulate  that  the  co-ordinate 
system  remains  permanently  at  rest.  After  choosing  an  initial 

point  in  the  time-scale  and  a  definite  co-ordinate  system  at  this 
initial  moment  we  then  get  four  definite  co-ordinates  for  every 
world-point.  To  be  able  to  represent  conditions  graphically  we 

suppress  one  space-co-ordinate,  assuming  space  to  be  only  two- 
dimensional,  a  Euclidean  plane. 

We  construct  a  graphical  picture  by  representing  in  a  space 
carrying  the  rectangular  set  of  axes  (xv  x>2,  t)  the  world-point  by  a 

"  picture  "-point  with  co-ordinates  (xv  o!2J  t).  We  can  then  trace 
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out  graphically  the  "  time-table  "  of  all  moving  point-masses ;  the 
motion  of  each  is  represented  by  a  "  world-line,"  whose  direction 
has  always  a  positive  component  in  the  direction  of  the  £-axis.  The 
world-lines  of  point-masses  that  are  at  rest  are  parallels  to  the 
£-axis.  The  world-line  of  a  point-mass  which  is  in  uniform  transla- 

tion is  a  straight  line.  On  a  section  t  =  constant  we  may  read  off 
the  position  of  all  the  point-masses  at  the  same  time  t.  If  we 
choose  an  initial  point  in  the  time-scale  and  also  some  other  Car- 

tesian co-ordinate  system,  and  if  (xv  x2,  t),  (x\,  x'2,  t')  are  the  co- 
ordinates of  an  arbitrary  world-point  in  the  first  and  second 

co-ordinate  system  respectively,  the  transformation  formulae 

Xl  =  alXl  +  al2X'z  +  al] 
X2  =  a.2lx\  +  a22#'2  +  a2  I-  I 
t  =  t'  +  a  J 

hold;  in  them,  the  a's  and  the  a  denote  constants,  the  a^'s,  in 
particular,  are  the  co-efficients  of  an  orthogonal  transformation.  The 
world-co-ordinates  are  thus  fixed  except  for  an  arbitrary  trans- 

formation of  this  kind  in  an  objective  manner  without  individual 
objects  or  events  being  specified.  In  this  we  have  not  yet  taken 
into  consideration  the  arbitrary  choice  of  both  units  of  measure. 
If  the  initial  point  remains  unchanged  both  in  space  and  in  time, 

so  that  aj  =  a2  =  a  =  0,  then  (x'1?  x'2,  t')  are  the  co-ordinates  with 
respect  to  a  rectilinear  system  of  axes  whose  t'  axis  coincides  with 
the  £-axis,  whereas  the  axes  x'1}  x'2  are  derived  from  x1?  x2  by  a 
rotation  in  their  plane  t  =  0. 

A  moment's  reflection  suffices  to  show  that  one  of  the  assump- 
tions adopted  is  not  true,  namely,  the  one  which  states  that  the 

conception  of  rest  has  an  objective  content.'55'  When  I  arrange  to 
meet  some  one  at  the  same  place  to-morrow  as  that  at  which  we 
met  to-day,  this  means  in  the  same  material  surroundings,  at  the 
same  building  in  the  same  street  (which,  according  to  Copernicus, 
may  be  in  a  totally  different  part  of  stellar  space  to-morrow).  All 
this  acquires  meaning  as  a  result  of  the  fortunate  circumstance 
that  at  birth  we  are  introduced  into  an  essentially  stable  world,  in 
which  changes  occur  in  conjunction  with  a  comparatively  much 
more  comprehensive  set  of  permanent  factors  that  preserve  their 
constitution  (which  is  partly  perceived  directly  and  partly  deduced) 
unchanged  or  almost  unchanged.  The  houses  stand  still;  ships 
travel  at  so  and  so  many  knots  :  these  things  are  always  under- 

stood in  ordinary  life  as  referring  to  the  firm  ground  on  which  we 

*Even  Aristotle  was  clear  on  this  point,  for  he  denotes  "place"  (T^TTQS)  as 
the  relation  of  a  body  to  the  bodies  in  its  neighbourhood. 



152  RELATIVITY  OF  SPACE  AND  TIME 

stand.  Only  the  motions  of  bodies  (point-masses)  relative  to 
one  another  have  an  objective  meaning,  that  is,  the  distances 
and  angles  that  are  determined  from  simultaneous  positions  of  the 

point-masses  and  their  functional  relation  to  the  time-co-ordinate. 

The  connection  between  the  co-ordinates  of  the  same  world-point 
expressed  in  two  different  systems  of  this  kind  is  given  by  formulae 

xi  =  an(^'Xi 
II 

an(t')x\  +  o^'Xa  +  Oi(*'n 

an(t')x\  +  a22(*>'2  +  a2(*')  \ 
t'  +  a 

in  which  the  a»'s  and  o^'s  may  be  any  continuous  functions  of  t', 
and  the  a#'s  are  the  co-efficients  of  an  orthogonal  transformation  for 

all  values  of  t'.  If  we  map  out  tho  curves  V  =  const.,  as  also  x\  = 
const,  and  x'%  =  const,  by  our  graphical  method,  then  the  surfaces 
of  the  first  family  are  again  planes  that  coincide  with  tho  planes 

t  =  const. ;  on  the  other  hand,  the  other  two  families  of 'curves  are 
curved  surfaces.  The  transformation  formulae  are  no  longer  linear. 

Under  these  circumstances  we  achieve  an  important  aim,  when 

investigating  the  motion  of  systems  of  point-masses,  such  as 
planets,  by  choosing  the  co-ordinate  system  so  that  the  functions 

xi(fy>  xJf)  ̂ at  exPre88  now  tne  space-co-ordinates  of  the  point- 
masses  depend  on  the  time  become  as  simple  as  possible  or  at 

least  satisfy  laws  of  the  greatest  possible  simplicity.  This  is  the 
substance  of  the  discovery  of  Copernicus  that  was  afterwards 

elaborated  to  such  an  extraordinary  degree  by  Kepler,  namely,  that 

there  is  in  fact  a  co-ordinate  system  for  which  the  laws  of  planetary 
motion  assume  a  much  simpler  and  more  expressive  form  than  if 

they  are  referred  to  a  motionless  earth.  The  work  of  Copernicus 

produced  a  revolution  in  the  philosophic  ideas  about  the  world  inas- 
much as  he  shattered  the  belief  in  the  absolute  importance 

of  the  earth.  His  reflections  as  well  as  those  of  Kepler  are  purely 

kinematical  in  character.  Newton  crowned  their  work  by  dis- 
covering the  true  ground  of  the  kinematical  laws  of  Kepler  to  lie  in 

the  fundamental  dynamical  law  of  mechanics  and  in  the  law  of 
attraction.  Every  one  knows  how  brilliantly  the  mechanics  of 
Newton  has  been  confirmed  both  for  celestial  as  well  as  for  earthly 

phenomena.  As  we  are  convinced  that  it  is  valid  universally  and 

not  only  for  planetary  systems,  and  as  its  laws  are  by  no  means 
invariant  with  respect  to  the  transformations  II,  it  enables  us  to 

fix  the  co-ordinate  system  in  a  manner  independent  of  all  individual 
specification  and  much  more  definitely  than  is  possible  on  the 
kinematical  view  to  which  the  principle  of  relativity  (II)  leads. 

Galilei's    Principle    of   Inertia    (Newton's    First    Law   of 
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Motion)  forms  the  foundation  of  mechanics.  It  states  that  a  point- 
;  which  is  subject  to  no  forces  from  without  executes  a  uniform 

translation.  Its  world-line  is  consequently  a  straight  line,  and  the 

space-co-ordinates  xv  xz  of  the  point-mass  are  linear  functions  of 
the  time  t.  If  this  principle  holds  for  the  two  co-ordinate  systems 
connected  by  (II),  then  X1  and  X2  must  become  linear  functions  of 

t',  when  linear  functions  of  t'  are  substituted  for  x\  and  oj'2.  It 
straightway  follows  from  this  that  the  a^'s  must  be  constants,  and 
that  at  and  a2  must  be  linear  functions  of  t ',  that  is,  the  one  Car- 

tesian co-ordinate  system  (in  space)  must  be  moving  uniformly  in 
a  straight  line  relatively  to  the  other  co-ordinate  system.  Con- 

versely, it  is  easily  shown  that  if  Cj,  C2  are  two  such  co-ordinate 
systems,  then  if  the  principle  of  inertia  and  Newtonian  mechanics 

holds  for  C  it  will  also  hold  for  C'.  Thus,  in  mechanics,  any  two 
"allowable"  co-ordinate  systems  are  connected  by  formulae 

Xl  =  anX\  +  a12z'2  +  y/  +  a^ 

X,  =  a21X\  +  <X22Z'2  +  y/  +  a2  [  .      Ill 
t=  t'  +  a  j 

in  which  the  a^'s  are  constant  co-efficients  of  an  orthogonal  trans- 
formation, and  a,  ctj  and  y;  are  arbitrary  constants.  Every  trans- 

formation of  this  kind  represents  a  transition  from  one  allowable 

co-ordinate  system  to  another.  (This  is  the  Principle  of  Re- 
lativity of  Galilei  and  Newton.)  The  essential  feature  of  this 

transition  is  that,  if  we  disregard  the  naturally  arbitrary  directions 
of  the  axis  in  space  and  the  arbitrary  initial  point,  there  is  invariance 
with  respect  to  the  transformations 

xl  =  x\  +  y/f         x2  =  x\2  +  y/,         t=  t'          .     (I) 

In  our  graphical  representation  (vide  Fig.  7)  x\,  x'z,  t'  would  be 
the  co-ordinates  taken  with  respect  to  a  rectilinear  set  of  axes  in 

which  the  x\-,  x'2-  axes  coincide  with  the  o^-,  a?2-  axes,  whereas  the 
new  t'-  axis  has  some  new  direction.  The  following  considerations 
show  that  the  laws  of  Newtonian  mechanics  are  not  altered  in  pass- 

ing from  one  co-ordinate  system  C  to  another  C'.  According  to  the 
law  of  attraction  the  gravitational  force  with  which  one  point-mass 
acts  on  another  at  a  certain  moment  is  a  vector,  in  space,  which  is 
independent  of  the  co-ordinate  system  (as  is  also  the  vector  that 
connects  the  simultaneous  positions  of  both  point-masses  with  one 
another).  Every  force,  no  matter  what  its  physical  origin,  must 
be  the  same  kind  of  magnitude ;  this  is  entailed  in  the  assumptions 
of  Newtonian  mechanics,  which  demands  a  physics  that  satisfies 
this  assumption  in  order  to  be  able  to  give  a  content  to  its  con- 

ception of  force.  We  may  prove,  for  example,  in  the  theory  of 
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elasticity  that  the  stresses  (as  a  consequence  of  their  relationship 
to  deformation  quantities)  are  of  the  required  kind; 

Mass  is  a  scalar  that  is  independent  of  the  co-ordinate  system. 
Finally,  on  account  of  the  transformation  formulae  that  result  from 

(1)  for  the  motion  of  a  point-mass, 

dx±  _  dx\  dx^  _  Ax\  fej  _  d2x\     fe2      rfV 
dt  ==  W  +  ft'     dt  ==  ~W  +  r2  ;    ~W  ==  ~dt^ 

not  the  velocity,  but  the  acceleration  is  a  vector  (in  space)  in- 
dependent of  the  co-ordinate  system.  Accordingly,  the  funda- 

mental law  :  mass  times  acceleration  =  force,  has  the  required 
invariant  property. 

According  to  Newtonian  mechanics  the  centre  of  inertia  of 

every  isolated  mass-system  not  subject  to  external  forces  moves  in 
a  straight  line.  If  we  regard  the  sun  and  his  planets  as  such  a 
system,  there  is  no  meaning  in  asking  whether  the  centre  of  inertia 
of  the  solar  system  is  at  rest  or  is  moving  with  uniform  translation. 
The  fact  that  astronomers,  nevertheless,  assert  that  the  sun  is 
moving  towards  a  point  in  the  constellation  of  Hercules,  is  based 
on  the  statistical  observation  that  the  stars  in  that  region  seem  on 

the  average  to  diverge  from  a  certain  centre  —  just  as  a  cluster  of 
trees  appears  to  diverge  as  we  approach  them.  If  it  is  certain  that 
the  stars  are  on  the  average  at  rest,  that  is,  that  the  centre  of 
inertia  of  the  stellar  firmament  is  at  rest,  the  statement  about  the 

sun's  motion  follows.  It  is  thus  merely  an  assertion  about  the relative  motion  of  the  centre  of  inertia  and  of  that  of  the  stellar 
firmament. 

To  grasp  the  true  meaning  of  the  principle  of  relativity,  one 

must  get  accustomed  to  thinking  not  in  "  space,"  nor  in  "  time," 
but  "  in  the  world,"  that  is  in  space-time.  Only  the  coincidence 
(or  the  immediate  succession)  of  two  events  in  space-time  has  a 
meaning  that  is  directly  evident,  it  is  just  the  fact  that  in  these 
cases  space  and  time  cannot  be  dissociated  from  one  another 
absolutely  that  is  asserted  by  the  principle  of  relativity.  Following 
the  mechanistic  view,  according  to  which  all  physical  happening 
can  be  traced  back  to  mechanics,  we  shall  assume  that  not  only 
mechanics  but  the  whole  of  the  physical  uniformity  of  Nature  is 
subject  to  the  principle  of  relativity  laid  down  by  Galilei  and 
Newton,  which  states  that  it  is  impossible  to  single  out  from  the 
systems  of  reference  that  are  equivalent  for  mechanics  and  of  which 
each  two  are  correlated  by  the  formula  of  transformation  III  special 
systems  without  specifying  individual  objects.  These  formula 
condition  the  geometry  of  the  four-dimensional  world  in  exactly 
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the  same  way  as  the  group  of  transformation  substitutions  con- 

necting two  Cartesian  co-ordinate  systems  condition  .the  Euclidean 

geometry  of  three-dimensional  space.  A  relation  between  world- 
points  has  an  objective  meaning  if,  and  only  if,  it  is  defined  by  such 

arithmetical  relations  between  the  co-ordinates  of  the  points  as  are 
invariant  with  respect  to  the  transformations  (III).  Space  is  said 
to  be  homogeneous  at  all  points  and  homogeneous  in  all  directions 

at  every  point.  These  assertions  are,  however,  only  parts  of  the 

complete  statement  of  homogeneity  that  all  Cartesian  co- 
ordinate systems  are  equivalent.  In  the  same  way  the  principle 

of  relativity  determines  exactly  the  sense  in  which  the  world 

(=  space-time  as  the  "form"  of  phenomena,  not  its  "accidental" 
non-homogeneous  material  content)  is  homogeneous. 

It  is  indeed  remarkable  that  two  mechanical  events  that  are 

fully  alike  kinematically,  may  be  different  dynamically,  as  a  com- 
parison of  the  dynamical  principle  of  relativity  (III)  with  the  much 

more  general  kinematical  principle  of  relativity  (II)  teaches  us.  A 

rotating  spherical  mass  of  fluid  existing  all  alone,  or  a  rotating  fly- 
wheel, cannot  in  itself  be  distinguished  from  a  spherical  fluid  mass 

or  a  fly-wheel  at  rest ;  in  spite  of  this  the  "  rotating  "  sphere  becomes 
flattened,  whereas  the  one  at  rest  does  not  change  its  shape,  and 

stresses  are  called  up  in  the  rotating  fly-wheel  that  cause  it  to 
burst  asunder,  if  the  rate  of  rotation  be  sufficiently  great,  whereas 

no  such  effect  occurs  in  the  case  of  a  fly-wheel  which  is  at  rest. 
The  cause  of  this  varying  behaviour  can  be  found  only  in  the 

"  metrical  structure  of  the  world,"  that  reveals  itself  in  the  centri- 
fugal forces  as  an  active  agent.  This  sheds  light  on  the  idea  quoted 

from  Eiemann  above ;  if  there  corresponds  to  metrical  structure  (in 
this  case  that  of  the  world  and  not  the  fundamental  metrical  tensor 

of  space)  something  just  as  real,  which  acts  on  matter  by  means  of 

forces,  as  the  something  which  corresponds  to  Maxwell's  stress 
tensor,  then  we  must  assume  that,  conversely,  matter  also  reacts  on 
this  real  something.  We  shall  revert  to  this  idea  again  later  in 
Chapter  IV. 

For  the  present  we  shall  call  attention  only  to  the  linear 

character  of  the  transformation  formulae  (III) ;  this  signifies  that 

the  world  is  a  four-dimensional  affine  space.  To  give  a 
systematic  account  of  its  geometry  we  accordingly  use  world- 
vectors  or  displacements  in  addition  to  world-points.  A  displace- 

ment of  the  world  is  a  transformation  that  assigns  to  every  world- 

point  P  a  world-point  P',  and  is  characterised  by  being  expressible  in 
an  allowable  co-ordinate  system  by  means  of  equations  of  the  form 

Xi  =  Xi  +  CM  (i  =  0,  1,  2,  3) 
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in  which  the  #/s  denote  the  four  space-time-co-ordinates  of  P 

(t  being  represented  by  x0),  and  the  x'i's  are  those  of  P'  in  this  co- 
ordinate system,  whereas  the  a/s  are  constants.  This  conception 

is  independent  of  the  allowable  co-ordinate  system  selected.  The 

displacement  that  transforms  P  into  P'  (or  transfers  P  to  P1)  is 

—> 

denoted  
by  PP'.     

The  world-points  

and  displacements  

satisfy  
all the  axioms  of  the  affine  geometry  whose  dimensional  number  is 

n  =  4.  Galilei's  Principle  of  Inertia  (Newton's  First  Law  of 
Motion)  is  an  affine  law;  it  states  what  motions  realise  the 

straight  lines  of  our  four-dimensional  affine  space  ("world"), 
namely,  those  executed  by  point-masses  moving  under  no  forces. 

From  the  affine  point  of  view  we  pass  on  to  the  metrical  one. 
From  the  graphical  picture,  which  gave  us  an  affine  view  of  the 

world  (one  co-ordinate  being  suppressed),  we  can  read  off  its 
essential  metrical  structure;  this  is  quite  different  from  that  of 

Euclidean  space.  The  world  is  "  stratified"  ;  the  planes,  t  =  const., 
in  it  have  an  absolute  meaning.  After  a  unit  of  time  has  been 

chosen,  each  two  world-points  A  and  B  have  a  definite  time- 

difference,  the  time-component  of  the  vector  AB  =  x ;  as  is 
generally  the  case  with  vector-components  in  an  affine  co-ordinate 
system,  the  time-component  is  a  linear  form  tf(x)  of  the  arbitrary 
vector  x.  The  vector  x  points  into  the  past  or  the  future  according 

as  £(x)  is  negative  or  positive.  Of  two  world-points  A  and  B,  A  is 
earlier  than,  simultaneous  with,  or  later  than  B,  according  as 

t(AB)>0,  =  0,  or<0. 

Euclidean  geometry,  however,  holds  in  each  "  stratum " ;  it  is 
based  on  a  definite  quadratic  form,  which  is  in  this  case  defined 

only  for  those  world-vectors  x  that  lie  in  one  and  the  same 
stratum,  that  is,  that  satisfy  the  equation  £(x)  =  0  (for  there  is 
sense  only  in  speaking  of  the  distance  between  simultaneous 

positions  of  two  point-masses).  Whereas,  then,  the  metrical 
structure  of  Euclidean  geometry  is  based  on  a  definitely  positive 
quadratic  form,  that  of  Galilean  geometry  is  based  on 

1.  A  linear  form  t(x)  of  the  arbitrary  vector  x  (the  "duration" 
of  the  displacement  x). 

2.  A  definitely  positive  quadratic  form  (xx)  (the  square  of  the 

"  length "    of   x),  which  is  defined  only  for  the  three-dimensional 
linear  manifold  of  all    the  vectors   x   that    satisfy   the  equation 

t(x)  =  0. 
We  cannot  do  without  a  definite  space  of  reference,  if  we  wish  to 

form  a  picture  of  physical  conditions.  Such  a  space  depends  on  the 
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choice  of  an  arbitrary  displacement  e  in  the  world  (within  which 

the  time-axis  falls  in  the  picture),  and  is  then  defined  by  the  con- 

vention that  all  world-points  that  lie  on  a  straight  line  of  direction 
6,  meet  at  the  same  point  of  space.  In  geometrical  language,  we 
are  merely  dealing  with  the  process  of  parallel  projection.  To 
arrive  at  an  appropriate  formulation  we  shall  begin  with  some 

geometrical  considerations  that  relate  to  an  arbitrary  n-dimensional 
affine  space.  To  enable  us  to  form  a  picture  of  the  processes  we 

shall  confine  ourselves  to  the  case  n  =  3.  Let  us  take  a  family  of 
straight  lines  in  space  all  drawn  parallel  to  the  vector  e  ( =f  0).  If  we 

look  into  space  along  these  rays,  all  the  space-points  that  lie  behind 
one  another  in  the  direction  of  such  a  straight  line  would  coincide ; 

it  is  in  no  wise  necessary  to  specify  a  plane  on  to  which  the  points  are 
projected.  Hence  our  definition  assumes  the  following  form. 

Let  e,  a  vector  differing  from  0,  be  given.     If  A  and  A'  are  two 

— > 

points  
such  

that  
AA'  

is  a  multiple  
of  e,  we  shall  

say  that  
they  

pass into  one  and  the  same  point  A  of  the  minor  space  defined  by  e. 
We  may  represent  A  by  the  straight  line  parallel  to  e,  on  which  all 

these  coincident  points  A,  A'  .  .  .  in  the  minor  space  lie.  Since  every 
displacement  x  of  the  space  transforms  a  straight  line  parallel  to  e 
again  into  one  parallel  to  e,  x  brings  about  a  definite  displacement 

X  of  the  minor  space  ;  but  each  two  displacements  x  and  x'  become 
coincident  in  the  minor  space,  if  their  difference  is  a  multiple  of  e. 

We  shall  denote  the  transition  to  the  minor  space,  "  the  projection 

in  the  direction  of  e,"  by  printing  the  symbols  for  points  and  dis- 
placements in  heavy  oblique  type.  Projection  converts 

Ax,  x  +  y,  and  AB  into  \x,  x  +  y,  AB 

that  is,  the  projection  has  a  true  affine  character ;  this  means  that 
in  the  minor  space  aflQne  geometry  holds,  of  which  the  dimensions 

are  less  by  one  than  those  of  the  original  "  complete  "  space. 
If  the  space  is  metrical  in  the  Euclidean  sense,  that  is,  if  it  is 

based  on  a  non-degenerate  quadratic  form  which  is  its  metrical 
groundform,  Q(x)  =  (xx), — to  simplify  the  picture  of  the  process  we 
shall  keep  the  case  for  which  Q  is  definitely  positive  in  view,  but 
the  line  of  proof  is  applicable  generally, — then  we  shall  obviously 
ascribe  to  the  two  points  of  the  minor  space,  which  two  straight 
lines  parallel  to  e  appear  to  be,  when  we  look  into  the  space  in  the 
direction  of  e,  a  distance  equal  to  the  perpendicular  distance 
between  the  two  straight  lines.  Let  us  formulate  this  analytically. 
The  assumption  is  that  (ee)  =  e  =f  0.  Every  displacement  x  may 
be  split  up  uniquely  into  two  summands 

X  =  £e  +  x*  .         .         .     (2) 
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of  which  the  first  is  proportional  to  e  and  the  second  is  perpen- 
dicular to  it,  viz. : 

(x*e)  =  0,  i  =  I  (xe)    .        .        .        .    (3) 6 

We  shall  call  £  the  height  of  the  displacement  x  (it  is  the  differ- 

ence of  height  between  A  and  B,  if  x  =  AB).  We  have 

(xx)  =  e&  +  (x*x*)    ....     (4) 
x  is  characterised  fully,  if  its  height  £  and  the  displacement  x  of 
the  minor  space  produced  by  x  are  given ;  we  write 

X  =  £|JT 

The  "  complete  "  space  is  "  split  up  "  into  height  and  minor  space, 
the  "  position-difference  "  x  of  two  points  in  the  complete  space  is 
split  up  into  the  difference  of  height  £,  and  the  difference  of  position 
X  in  the  minor  space.  There  is  a  meaning  not  only  in  saying  that 
two  points  in  space  coincide,  but  also  in  saying  that  two  points  in 
the  minor  space  coincide  or  have  the  same  height,  respectively. 
Every  displacement  x  of  the  minor  space  is  produced  by  one  and 

only  one  displacement  x*  of  the  complete  space,  this  displacement 
being  orthogonal  to  e.  The  relation  between  x*  and  x  is  singly 
reversible  and  affine.  The  defining  equation 

(XX)  =  (X*X*) 
endows  the  minor  space  with  a  metrical  structure  that  is  based  on 

the  quadratic  groundform  (xx).  This  converts  (4)  into  the  funda- 
mental equation  of  Pythagoras 

(xx)  =  e?  +  (xx)      .         .         .         .     (5) 
which,  for  two  displacements,  may  be  generalised  in  the  form 

(xy)  =  eft  +  (xy)     .  .     (5') 
Its  symbolic  form  is  clear. 

These  considerations,  in  so  far  as  they  concern  affine  space,  may 
be  applied  directly.  The  complete  space  is  the  four-dimensional 
world  :  e  is  any  vector  pointing  in  the  direction  of  the  future  :  the 

minor  space  is  what  we  generally  call  space.  Each  two  world- 
points  that  lie  on  a  world-line  parallel  to  e  project  into  the  same 
space-point.  This  space-point  may  be  represented  graphically  by 
the  straight  line  parallel  to  e  and  may  be  indicated  permanently 

by  a  point-mass  at  rest,  that  is,  one  whose  world-line  is  just  that 
straight  line.  The  metrical  structure,  however,  is,  according  to  the 
Galilean  principle  of  relativity,  of  a  kind  different  from  that  we 
assumed  just  above.  This  necessitates  the  following  modifications. 

Every  world-displacement  x  has  a  definite  duration  £(x)  =  t  (this 
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takes  the  place  of  "  height "  in  our  geometrical  argument)  and 
produces  a  displacement  x  in  the  minor  space ;  it  splits  up  ac- 

cording to  the  formula 
x  =  £  I  x 

corresponding  to  the  resolution  into  space  and  time.  In  particular 

every  space-displacement  x  may  be  produced  by  one  and  only  one 

world-displacement  x*,  which  satisfies  the  equation  £(x*)  =  0.  The 

quadratic  form  (x*X~*)  as  defined  for  such  vectors  x*,  impresses  on 
space  its  Euclidean  metrical  structure 

(xx)  =  (x*x*) 
The  space  is  dependent  on  the  direction  of  projection.  In  actual 

cases  the  direction  of  projection  may  be  fixed  by  any  point-mass 
moving  with  uniform  translation  (or  by  the  centre  of  mass  of  a 

closed  isolated  mass-system). 
We  have  set  forth  these  details  with  pedantic  accuracy  so  as  to 

be  armed  at  least  with  a  set  of  mathematical  conceptions  which 

have  been  sifted  into  a  form  that  makes  them  immediately  applicable 

to  Einstein's  principle  of  relativity  for  which  our  powers  of  intuition 
are  much  more  inadequate  than  for  that  of  Galilei. 

To  return  to  the  realm  of  physics.  The  discovery  that  light  is 

propagated  with  a  finite  velocity  gave  the  death-blow  to  the 
natural  view  that  things  exist  simultaneously  with  their  perception. 

As  we  possess  no  means  of  transmitting  time-signals  more  rapid 
than  light  itself  (or  wireless  telegraphy)  it  is  of  course  impossible  to 
measure  the  velocity  of  light  by  measuring  the  time  that  elapses 

whilst  a  light- signal  emitted  from  a  station  A  travels  to  a  station  B. 

In  1675  Koemer  calculated  this  velocity  from  the  apparent  ir- 

regularity of  the  time  of  revolution  of  Jupiter's  moons,  which  took 
place  in  a  period  which  lasted  exactly  one  year :  he  argued  that  it 
would  be  absurd  to  assume  a  mutual  action  between  the  earth  and 

Jupiter's  satellites  such  that  the  period  of  the  earth's  revolution 
caused  a  disturbance  of  so  considerable  an  amount  in  the  satellites. 

Fizeau  confirmed  the  discovery  by  measurements  carried  out  on 

the  earth's  surface.  His  method  is  based  on  the  simple  idea  of 
making  the  transmitting  station  A  and  the  receiving  station  B 

coincide  by  reflecting  the  ray,  when  it  reaches  B,  back  to  A. 
According  to  these  measurements  we  have  to  assume  that  the 

centre  of  the  disturbances  is  propagated  in  concentric  spheres  with 

a  constant  velocity  c.  In  our  graphical  picture  (one  space-co- 

ordinate again  being  suppressed)  the  propagation  of  a  light-signal 
emitted  at  the  world-point  0  is  represented  by  the  circular  cone 
depicted,  which  has  the  equation 

c2^2  -  (xl  +  xl)  =  0  .         .         .         .     (6) 
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Every  plane  given  by  t  =  const,  cuts  the  cone  in  a  circle  composed 
of  those  points  which  the  light-signal  has  reached  at  the  moment  t. 
The  equation  (6)  is  satisfied  by  all  and  only  by  all  those  world- 
points  reached  by  the  light-signal  (provided  that  £]>0).  The 
question  again  arises  on  what  space  of  reference  this  description  of 
the  event  is  based.  The  aberration  of  the  stars  shows  that, 
relatively  to  this  reference  space,  the  earth  moves  in  agreement 

with  Newton's  theory,  that  is,  that  it  is  identical  with  an  allowable 
reference  space  as  defined  by  Newtonian  mechanics.  The  propa- 

gation in  concentric  spheres  is,  however,  certainly  not  invariant 

with  respect  to  the  Galilei  transformations  (III) ;  for  a  £'-axis  that 
is  drawn  obliquely  intersects  the  planes  t  =  const,  at  points  that 
are  excentric  to  the  circles  of  propagation.  Nevertheless,  this 

cannot  be  regarded  as  an  objection  to  Galilei's  principle  of  relativity, 
if,  accepting  the  ideas  that  have  long  held  sway  in  physics,  we 
assume  that  light  is  transmitted  by  a  material  medium,  the  SBther, 
whose  particles  are  movable  with  regard  to  one  another.  The 
conditions  that  obtain  in  the  case  of  light  are  exactly  similar  to 
those  that  bring  about  concentric  circles  of  waves  on  a  surface  of 
water  on  to  which  a  stone  has  been  dropped.  The  latter  phenom- 

enon certainly  does  not  justify  the  conclusion  that  the  equations 

of  hydrodynamics  are  contrary  to  Galilei's  principle  of  relativity. 
For  the  medium  itself,  the  water  or  the  aether  respectively,  whose  j 
particles  are  at  rest  with  respect  to  one  another,  if  we  neglect  the  i 

relatively  small  oscillations,  furnishes  us  with  the  same  system  of  ' 
reference  as  that  to  which  the  statement  concerning  the  concentric  ; 
transmission  is  referred. 

To  bring  us  into  closer  touch  with  this  question  we  shall  here 

insert  an  account  of  optics  in  the  theoretical  guise  that  it  has  pre- 
served since  the  time  of  Maxwell  under  the  name  of  the  theory  of 

moving  electromagnetic  fields. 

§  20.  The  Electrodynamics  of  Moving  Fields 

Lorentz's  Theorem  of  Relativity 
In  passing  from  stationary  electromagnetic  fields  to  moving 

electromagnetic  fields  (that  is,  to  those  that  vary  with  the  time)  we 

have  learned  the  following  : — 
1.  The  so-called  electric  current  is  actually  composed  of  moving 

electricity :  a  charged  coil  of  wire  in  rotation  produces  a  magnetic:  j 
field  according  to  the  law  of  Biot  and  Savart.     If  p  is  the  density   i 

of  charge,  Y  the  velocity,  then  clearly  the  density  s  of  this  con-; 
vection  current  =  py ;  yet,   if  the  Biot-Savart  Law  is  to  remain 
valid  in  the  old  form,  s  must  be  measured  in  other  units.     Thue 



ELECTRODYNAMICS  OF  MOVING  FIELDS      161 

we  must  set  s  =  —  ,  in  which  c  is  a  universal  constant  having  the 

dimensions  of  a  velocity.  The  experiment  carried  out  by  Weber 
and  Kohlrausch,  repeated  later  by  Eowland  Ind  Eichenwald,  gave 
a  value  of  c  that  was  coincident  with  that  obtained  for  the  velocity 
of  light,  within  the  limits  of  errors  of  observation  (vide  note  2). 

We  call  -  —  p  the  electromagnetic  measure  of  the  charge-density c 

and,  so  as  to  make  the  density  of  electric  force  =  p'E'  in  electro- 
magnetic units,  too,  we  call  E'  =  cE  the  electromagnetic  measure 

of  the  field-intensity. 
2.  A  moving  magnetic  field  induces  a  current  in  a  homogeneous 

wire.  It  may  be  determined  from  the  physical  law  s  =  o-E  and 
Faraday's  Law  of  Induction  ;  the  latter  asserts  that  the  induced 
electromotive  force  is  equal  to  the  time-decrement  of  the  magnetic 
flux  through  the  conductor  ;  hence  we  have 

E'dr  =  -  jBndo    .  .        .     (7) 

On  the  left  there  is  the  line-integral  along  a  closed  curve,  on  the 
right  the  surface-integral  of  the  normal  components  of  the  magnetic 
induction  B,  taken  over  a  surface  which  fills  the  curve.  The  flux 
of  induction  through  the  conducting  curve  is  uniquely  determined 
because 

div  B  =  0  .         .         .         .     (8') 

that  is,  there  is  no  real  magnetism.  By  Stokes'  Theorem  we  get 
from  (7)  the  differential  law 

The  equation  curl  E  =  0,  which  holds  for  statistical  cases,  is  hence 
1    ̂ Ti 

increased  by  the  term  -  -^-r  on  the  left,  which  is  a  derivative  of 

the  time.  All  our  electro-technical  sciences  are  based  on  it  ;  thus 
the  necessity  for  introducing  it  is  justified  excellently  by  actual 
experience. 

3.  On  the  other  hand,  in  Maxwell's  time,  the  term  which  was 
added  to  the  fundamental  equation  of  magnetism 

curl  H  =  S  .....     (9) 

j  was  purely  hypothetical.  In  a  moving  field,  such  as  in  the  dis- 
;  charge  of  a  condensor,  we  cannot  have  div  S  =  0,  but  in  place  of  it 

.  the  "  equation  of  continuity  " 
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must  hold.     This  gives  expression  to  the  fact  that  the  current  con- 
sists of  moving  electricity.     Since  p  =  div  D,  we  find  that  not  s, 

1  <>D 

but  s  +  -  -^r  must  be  irrotational,  and  this  immediately  suggests 
that  instead  of  equation  (9)  we  must  write  for  moving  fields 

1  ?)D 

Besides  this,  we  have  just  as  before 

div  D  =  p .         .         .  .    (11') 
From  (11)  and  (IT)  we  arrive  conversely  at  the  equation  of  con- 

tinuity (10).  It  is  owing  to  the  additional  member  - -^r-  (Maxwell's 
displacement  current),  a  differential  co-efficient  with  respect  to 
the  time,  that  electromagnetic  disturbances  are  propagated  in  the 
aether  with  the  finite  velocity  c.  It  is  the  basis  of  the  electro- 

magnetic theory  of  light,  which  interprets  optical  phenomena  with 
such  wonderful  success,  and  which  is  experimentally  verified  in  the 

well-known  experiments  of  Hertz  and  in  wireless  telegraphy,  one  of 
its  technical  applications.  This  also  makes  it  clear  that  these  laws 
are  referred  to  the  same  reference-space  as  that  for  which  the  con- 

centric propagation  of  light  holds,  namely,  the  "  fixed  "  aether.  The 
laws  involving  the  specific  characteristics  of  the  matter  under  con- 

sideration have  yet  to  be  added  to  Maxwell's  field-equations  (8)  and 
(8'),  (11)  and  (11'). 

We  shall,  however,  here  consider  only  the  conditions  in  the 
aether ;  in  it 

D  =  E  and  H  =  B, 

and  Maxwell's  equations  are 
1     "v  TJ  ' 

curl  E  +  -  -^  =  0,        div  B  =  0 

curl  B  -  -     T-  =  s,        div  E  =  p C     ut 

According  to  the  atomic  theory  of  electrons  these  are  generally 

valid  exact  physical  laws.  This  theory  furthermore  sets  s  =  —  5  in' 
which  Y  denotes  the  velocity  of  the  matter  with  which  the  electric 
charge  is  associated. 

The  force  which  acts  on  the  masses  consists  of  components 

arising  from  the  electrical  and  the  magnetic  field :  its  density  if1 

(13 
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Since  s  is  parallel  to  Y,  the  work  performed  on  the  electrons  per 
unit  of  time  and  of  volume  is 

p  •  Y  =  pE  •  Y  =  c(sE)  =  S '  E'. 
It  is  used  in  increasing  the  kinetic  energy  of  the  electrons,  which 
is  partly  transferred  to  the  neutral  molecules  as  a  result  of  collisions. 
This  augmented  molecular  motion  in  the  interior  of  the  conductor 
expresses  itself  physically  as  the  heat  arising  during  this  pheno- 

menon, as  was  pointed  out  by  Joule.  We  find,  in  fact,  experimen- 

tally that  s  *  E'  is  the  quantity  of  heat  produced  per  unit  of  time 
and  per  unit  of  volume  by  the  current.  The  energy  used  up  in 
this  way  must  be  furnished  by  the  instrument  providing  the  current. 

If  we  multiply  equation  (12J  by  -  B,  equation  (12n)  by  E  and  add, 
we  get 

-  c  •  div  [EB]  -  |-(|E2  +  |B2)  =  c(sE). ot 

If  we  set 

[EB]  =  s        iE2  +  iB2  -  W 
and  integrate  over  any  volume  V,  this  equation  becomes 

c[sndo  =  (c(sE)dF. I       I 
The  second  member  on  the  left  is  the  integral,  taken  over  the  outer 
surface  of  Vv  of  the  component  sn  of  s  along  the  inward  normal. 
On  the  right-hand  side  we  have  the  work  performed  on  the  volume 
V  per  unit  of  time.  It  is  compensated  by  the  decrease  of  energy 

I  WdV  contained  in  V  and  by  the  energy  that  flows  into  the  portion 

of  space  V  from  without.  Our  equation  is  thus  an  expression  of 
the  energy  theorem.  It  confirms  the  assumption  which  we 

made  initially  about  the  density  W  of  the  field -energy,  and 

we  furthermore  see  that  cS,  familiarly  known  as  Poynting's  vector, 
represents  the  energy  stream  or  energy -flux. 

The  field-equations  (12)  have  been  integrated  by  Lorentz  in  the 
following  way,  on  the  assumption  that  the  distribution  of  charges 
and  currents  are  known.  The  equation  div  B  =  0  is  satisfied  by 
setting 

-  B  =  curl  f       .  .  (14) 

in  which  -  f  is  the  vector  potential.     By  substituting  this  in  the 

first  equation  above  we  get  that  E  -  -  -«-  is  irrotational,  so  that  we 
c  at 

can  set 

E-^-giaa*  .  .     (15) 
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in  which  —  cf>  is  the  scalar  potential.  We  may  make  use  of  the 
arbitrary  character  yet  possessed  by  f  by  making  it  fulfil  the  sub- 

sidiary condition 

This  is  found  to  be  expedient  for  our  purpose  (whereas  for  a 
stationary  field  we  assumed  div  f  =  0).  If  we  introduce  the 
potentials  in  the  two  latter  equations,  we  find  by  an  easy 
calculation 

An  equation  of  the  form  (16)  denotes  a  wave  disturbance  travelling 

with  the  velocity  c.  In  fact,  just  as  Poisson's  equation  A$  =  p  has the  solution =  { 

so  (16)  has  the  solution 

on  the  left-hand  side  of  which  0  is  the  value  at  a  point  0  at  time  t ; 
r  is  the  distance  of  the  source  P,  with  respect  to  which  we  integrate, 
from  the  point  of  emergence  0 ;  and  within  the  integral  the  value 

of  p  is  that  at  the  point  P  at  time  t  -  -.  Similarly  (16')  has  the 
solution 

The  field  at  a  point  does  not  depend  on  the  distribution  of  charges 
and  currents  at  the  same  moment,  but  the  determining  factor  for 

every  point  is  the  moment  that  lies  back  just  as  many  (-Ys  as 

the  disturbance  propagating  itself  with  the  velocity  c  takes  to  travel 
from  the  source  to  the  point  of  emergence. 

Just    as   the   expression   for   the   potential    (in   Cartesian   co- 
ordinates), namely, 
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is  invariant  .with  respect  to  linear  transformations  of  the  variables 

a?lf  a?2,  x3,  which  are  such  that  they  convert  the  quadratic  form 

•JC  i    "T"  tJu   0   "T"  vU   o 

into  itself,  so  the  expression  which  takes  the  place  of  this  ex- 
pression for  the  potential  when  we  pass  from  statical  to  moving 

fields,  namely, 

/ 

-  +        +  »5  +5     (retarded  Potentials) 
is  an  invariant  for  those  linear  transformations  of  the  four  co- 

ordinates, t,  x:,  X2,  #3,  the  so-called  Lorentz  transformations,  that 
transform  the  indefinite  form 

-  c2*2  +  x\  +  x\  +  x\       .  •     (17) 

into  itself.  Lorentz  and  Einstein  recognised  that  not  only  equation 
(16)  but  also  the  whole  system  of  electromagnetic  laws  for  the  cether 
has  this  property  of  invariance,  namely,  that  these  laws  are  the  ex- 

pression of  invariant  relations  between  tensors  which  exist  in  a  four- 
dimensional  affine  space  whose  co-ordinates  are  t,  xlt  x.2,  x  and  upon 
which  a  non-definite  metrical  structure  is  impressed  by  the  form  (17). 
This  is  the  Lorentz-Einstein  Theorem  of  Relativity. 

To  prove  the  theorem  we  shall  choose  a  new  unit  of  time  by 

putting  ct  =  XQ.  The  co-efficients  of  the  metrical  groundform  are 
then 

gik  =  0  (i  =(=  k)  ;     ga  =  a, 

in  which  e0  =  -  1,  €1  =  €2  =  e3  =  +  1  ;  so  that  in  passing  from 
components  of  a  tensor  that  are  co-variant  with  respect  to  an  index 

i  to  the  contra-variant  components  of  that  tensor  we  have  only  to 

multiply  the  ith  component  by  the  sign  of  a.  The  question  of  con- 
tinuity for  electricity  (10)  assumes  the  desired  invariant  form 

if  we  introduce  s°  =  p,  and  s1,  s2,  s3,  which  are  equal  to  the  com- 
ponents of  s,  as  the  four  contra  -variant  components  of  a  vector 

in  the  above  four-dimensional  space,  namely,  of  the  "  4-vector 

current".  Parallel  with  this  —  as  we  see  from  (16)  and  (16')  —  we must  combine 

<£0  =  <f>  and  the  components  of  f,  namely,  <f>1,  <£2,  </>3, 

to  make  up  the  contra  -variant  components  of  a  four-dimensional 

vector,  which  we  call  the  electromagnetic  potential;  of  its  co- 

variant  components,  the  0th,  i.e.  <£0,  =  -</>,  whereas  the  three 
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others  ̂ >lf  <£2,  (f>3  are  equal  to  the  components  of  f.     The  equations 

(14)  and  (15),  by  which  the  field-quantities  B  and  E  are  derived 
from  the  potentials,  may  then  be  written  in  the  invariant  form 

tfa      t<f>k 
^  -  —    •;  -   =  £  ik  '  -  . da;*       ̂ Xi 

in  which  we  set 

This  is  then  how  we  may  combine  electric  and  magnetic  intensity 

of  field  to  make  up  a  single  linear  tensor  of  the  second  order  F, 

the  "field".  From  (18)  we  get  the  invariant  equations 

and  this  is  Maxwell's  first  system  of  equations  (12J.  We  took  a 
circuitous  route  in  using  Lorentz's  solution  and  the  potentials 
only  so  as  to  be  led  naturally  to  the  proper  combination  of  the 

three-dimensional  quantities,  which  converts  them  into  four- 

dimensional  vectors  and  tensors.  By  passing  over  to  contra- 
variant  components  we  get 

E  =  OF01,  F92,  .F03),     B  =  (F23,  F*\  F1*). 

Maxwell's  second  system,  expressed  invariantly  in  terms  of  four- 
dimensional  tensors,  is  now 

«  •     (20) 
k 

If  we  now  introduce  the  four-dimensional  vector  with  the  co-variant 

components 

pi  =  FikSk.  •     (21) 
(and  the  contra-variant  components 

pi  =  Fiksjc) 

—  following  our  previous  practice  of  omitting  the  signs  of  sum- 

mation —  then  pQ  is  the  "  work-density,"  that  is,  the  work  per 
unit  of  time  and  per  unit  of  volume  :  pQ  =  (sE)  [the  unit  of  time  is 

to  be  adapted  to  the  new  measure  of  time  a?0  =  ct],  and^1,  p2,  p2  are 
the  components  of  the  density  of  force. 

This  fully  proves  the  Lorentz  Theorem  of  Eelativity.  We 

notice  here  that  the  laws  that  have  been  obtained  are  -exactly  the 
same  as  those  which  hold  in  the  stationary  magnetic  field  (§  9  (62)) 

except  that  they  have  been  transposed  from  three-dimensional  to  four- 
dimensional  space.  There  is  no  doubt  that  the  real  mathematical 

harmony  underlying  these  laws  finds  as  complete  an  expression  as 

is  possible  in  this  formulation  in  terms  of  four-dimensional  tensors. 
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Further,  we  learn  from  the  above  that,  exactly  as  in  the  case  of 

throe-dimensions,  we  may  derive  the  "  4-force"  =  pi  from  a  sym- 
metrical four-dimensional  "  stress-tensor  "  S,  thus 

»•  - 
-  •  •  (22') 

The  square  of  the  numerical  value  of  the  field  (which  is  not  neces- 
sarily positive  here)  is 

I  p  1 2  _  ±FikFik. 

We  shall  verify  formula  (22)  by  direct  calculation.     We  have 

The  first  term  on  the  right  gives  us 

-  Firsr  =  -  pi. 

If  we  write  the  co-efficient  of  F^'  skew-symmetrically  we  get  for 
the  second  term 

which,  combined  with  the  third,  gives 

-  i-W^  +  \-£ 

The  expression  consisting  of  three  terms  in  the  brackets  =  0,  by 
(19). 

Now  |  F  |  2  =  B2  -  W.     Let  us  examine  what   the   individual 
components   of   Sit   signify,    by  separating  the  index  o  from  the 
others  1,  2,  3,  in  conformity  with  the  partition  into  space  and  time. 

SM  =  the  energy-density  W  =  |(E2  +  B2) 
S™  =  the  components  of  S  =  [EB]         i,k  =  (1,  2,  3) 
Sik  =  the  components  of  the  Maxwell   stress-tensor,   which   is 

composed  of  the  electrical  and  magnetic  parts  given  in  §  9.     Ac- 

cordingly the  0th  equation  of  (22)  expresses  the  law  of  energy.     The 
1st,    2nd,    and    3rd    have    a    fully    analogous    form.      If,    for    a 

moment,  we  denote  the  components  of  the  vector  -  S  by  G1,  Or2,  G3 c 

and  take  t®  to  stand  for  the  vector  with  the  components  S*1,  Si2, 
/S1'3  we  get 

-  pi  =  ̂   +  div  tw         (i  =  1,  2,  3)     .        .    (23) dt 

The   force   which   acts  on  the  electrons  enclosed  in  a  portion  of 
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space  7  produces  an  increase  in  time  of  momentum  equal  to  itself 
numerically  This  increase  is  balanced,  according  to  (23),  by  a 

corresponding  decrease  of  the  field-momentum  distributed  in  the o 
field  with  a  density  — ,  and   the   addition  of  field-momentum  from c 

without.  The  current  of  the  iih  component  of  momentum  is  given 
by  t(i),  and  thus  the  momentum-flux  is  nothing  more  than  the 
Maxwell  stress-tensor.  The  Theorem  of  the  Conservation  of 
Energy  is  only  one  component,  the  time-component,  of  a  law  ivhich 
is  invariant  for  Lorentz  transformations,  the  other  components  being 

the  space-components  which  express  the  conservation  of  momentum. 
The  total  energy  as  well  as  the  total  momentum  remains  un- 

changed :  they  merely  stream  from  one  part  of  the  field  to 
another,  and  become  transformed  from  field-energy  and  field- 
momentum  into  kinetic-energy  and  kinetic-momentum  of  matter, 
and  vice  versa.  That  is  the  simple  physical  meaning  of  the 
formulae  (22).  In  accordance  with  it  we  shall  in  future  refer 
to  the  tensor  S  of  the  four-dimensional  world  as  the  energy- 
momentum-tensor  or,  more  briefly,  as  the  energy -tensor. 

Its  symmetry  tells  us  that  the  density  of  momentum  =  —  times c 

the  energy- flux.  The  field-momentum  is  thus  very  weak, 
but,  nevertheless,  it  has  been  possible  to  prove  its  existence  by 
demonstrating  the  pressure  of  light  on  a  reflecting  surface. 

A  Lorentz  transformation  is  linear.  Hence  (again  suppressing 

one  space  co-ordinate  in  our  graphical  picture)  we  see  that  it  is 
tantamount  to  introducing  a  new  afnne  co-ordinate  system.  Let  , 

us  consider  how  the  fundamental  vectors  e'0,  e\,  e'2  of  the  new 
co-ordinate  system  lie  relatively  to  the  original  fundamental  vectors 
60,  elt  62,  that  is  to  the  unit  vectors  in  the  direction  of  the  x0  (or  t), 
xv  #2  axes.  Since,  for 

X    =     XQ&Q    +    #161    +     *^2®2     ==     ̂   0®  0    ~^~     X  1®  1    *^~     X  2®  2' 

we  must  have 

we  get  Q(e'0)  =  - 1.  Accordingly,  the  vector  e'0  starting  from  0 
(i.e.  the  £'-axis)  lies  within  the  cone  of  light-propagation  ;  the 
parallel  planes  t'  —  const,  lie  so  that  they  cut  ellipses  from  the 
cone,  the  middle  points  of  which  lie  on  the  i'-axis  (see  Fig.  7) ;  the 
x\~*  #Vaxis  are  m  ̂ ne  direction  of  conjugate  diameters  of  these 
elliptical  sections,  so  that  the  equation  of  each  is 

a/,2  +  x'9z  =  const. 
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As  long  as  we  retain  the  picture  of  a  material  aether,  capable  of 

executing  vibrations,  we  can  see  in  Lorentz's  Theorem  of  Eelativity 
only  a  remarkable  property  of  mathematical  transformations ;  the 
relativity  theorem  of  Galilei  and  Newton  remains  the  truly  valid 
one.  We  are,  however,  confronted  with  the  task  of  interpreting 
not  only  optical  phenomena  but  all  electrodynamics  and  its  laws 

as  the  result  of  a  mechanics  of  the  aether  which  satisfies  Galilei's 
Theorem  of  Eelativity.  To  achieve  this  we  must  bring  the  field- 
quantities  into  definite  relationship  with  the  density  and  velocity  of 

the  aether.  Before  the  time  of  Maxwell's  electromagnetic  theory  of 
light,  attempts  were  made  to  do  this  for  optical  phenomena ;  these 
efforts  were  partly,  but  never  wholly,  crowned  with  success.  This 
attempt  was  not  carried  on  (vide  note  3)  in  the  case  of  the  more 

comprehensive  domain  into  which  Maxwell  relegated  optical  phe- 
nomena. On  the  contrary,  the  idea  of  a  field  existing  in  empty 

space  and  not  requiring  a  medium  to  sustain  it  gradually 
began  to  win  ground.  Indeed,  even  Faraday  had  expressed  in 
unmistakable  language  that  not  the  field  should  derive  its  meaning 
through  its  association  with  matter,  but,  conversely,  rather  that 
particles  of  matter  are  nothing  more  than  singularities  of  the  field. 

§  21.  Einstein's  Principle  of  Relativity 
Let  us  for  the  present  retain  our  conception  of  the  aether.  It 

should  be  possible  to  determine  the  motion  of  a  body,  for  example, 
the  earth,  relative  to  the  fixed  or  motionless  aether.  We  are  not 
helped  by  aberration,  for  this  only  shows  that  this  relative  motion 
changes  in  the  course  of  a  year.  Let  Alt  0,  Az  be  three  fixed  points 
on  the  earth  that  share  in  its  motion.  Suppose  them  to  lie  in  a 

straight  line  along  the  direction  of  the  earth's  motion  and  to  be 
equidistant,  so  that  A-fl  =  OA2  =  I,  and  let  v  be  the  velocity  of 

translation  of  the  earth  through  the  aether;  let  -  =  q,  which  we c 

shall  assume  to  be  a  very  small  quantity.     A  light-signal  emitted 

at  0  will  reach  A»  after  a  time    has  elapsed,  and  A-,  after  a  time c  -  v 

c  +  v'     Unfortunately,  this  difference  cannot  be  demonstrated,  as 
we  have  no  signal  that  is  more  rapid  than  light  and  that  we  could 
use  to  communicate  the  time  to  another  place.*    We  have  recourse 

*  It  might  occur  to  us  to  transmit  time  from  one  world-point  to  another  by 
carrying  a  clock  that  is  marking  time  from  one  place  to  the  other.  In  practice, 
this  process  is  not  sufficiently  accurate  for  our  purpose.  Theoretically,  it  is  by 
no  means  certain  that  this  transmission  is  independent  of  the  traversed  path. 
In  fact,  the  theory  of  relativity  proves  that,  on  the  contrary,  they  are  dependent 
on  one  another ;  cf .  §  22. 
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to  Fizeau's  idea,  and  set  up  little  mirrors  at  Al  and  A2  which  reflect 
the  light-ray  back  to  0.  If  the  light-signal  is  emitted  at  the 
moment  0,  then  the  ray  reflected  from  A2  will  reach  A  after  a  time 

1,1  2Zc 

c  —  v      c  +  v      c2  —  v'* 
whereas  that  reflected  from  Al  reaches  0  after  a  time 

I  I  Sic 

c  +  v      c  —  v  ~  c2  -  v2 ' 
There  is  now  no  longer  a  difference  in  the  times.  Let  us,  however, 
now  assume  a  third  point  A  which  participates  in  the  translational 
motion  through  the  aether,  such  that  OA  =  I,  but  that  OA  makes 

an  angle  0  with  the  direction  of  OA.  In  Fig.  8,  0,  0',  0"  are  the 
successive  positions  of  the  point  0  at  the  time  0  at  which  the  signal 

is  emitted,  at  the  time  t'  at  which  it  is  reflected  from  the  mirror  A 

0       ut'      o'  vt"  Q" FIG.  8. 

placed  at  A',  and  finally  at  the  time  t'  +  t"  at  which  it  again  reaches 
0,  respectively.  From  the  figure  we  get  the  proportion 

OA' :  0"A'  =  00' :  0"0'. 

Consequently  the  two  angles  at  A'  are  equal  to  one  another.  The 
reflecting  mirror  must  be  placed,  just  as  when  the  system  is  at 
rest,  perpendicularly  to  the  rigid  connecting  line  OA,  in  order  that 
the  light-ray  may  return  to  0.  An  elementary  trigonometrical 
calculation  gives  for  the  apparent  rate  of  transmission  in  the 
direction  6 

*  -  *  (24) 
t'  +  t"        Vc2  -  vz  sin20 

It  is  thus  dependent  on  the  angle  0,  which  gives  the  direction  of 
transmission.  Observations  of  the  value  of  0  should  enable  us  to 
determine  the  direction  and  magnitude  of  v. 

These  observations  were  attempted  in  the  celebrated  Michelson- 

Morley  experiment  (vide  note  4).  In  this,  two  mirrors  A,  A'  are 
rigidly  fixed  to  0  at  distances  I,  I',  the  one  along  the  line  of  motion 
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the  other  perpendicular  to  it.  The  whole  apparatus  may  be  rotated 
about  0.  By  means  of  a  transparent  glass  plate,  one-half  of  which 
is  silvered  and  which  bisects  the  right  angle  at  0,  a  light-ray  is  split 

up  into  two  halves,  one  of  which  travels  to  A,  the  other  to  A'.  They 
are  reflected  at  these  two  points  ;  and  at  0,  owing  to  the  partly 
silvered  mirror,  they  are  again  combined  to  a  single  composite  ray. 

We  take  I  and  I'  approximately  equal  ;  then,  owing  to  the  difference 
in  path  given  by  (24),  namely, 

interference  occurs.  If  the  whole  apparatus  is  now  turned  slowly 

through  90°  about  0  until  A'  comes  into  the  direction  of  motion, 
this  difference  of  path  becomes 

4  a   
Observer. 

T   M 

Source  of  Light. 
FIG.  9. 

Consequently,  there  is  a  shortening  of  the  path  by  an  amount 

This  should  express  itself  in  a  shift  of  the  initial  interference  fringes. 

1  Although  conditions  were  such  that,  numerically,  even  only  1  per 
cent,  of  the  displacement  of  the  fringes  expected  by  Michelson  could 

\  not  have  escaped  detection,  no  trace  of  it  was  to  be  found  when  the 
experiment  was  performed. 

Lorentz  (and  Fitzgerald,  independently)  sought  to  explain  this 
I  strange  result  by  the  bold  hypothesis  that  a  rigid  body  in  moving 
relatively  to  the  aether  undergoes  a  contraction  in  the  direction  of 

the  line  of  motion  in  the  ratio  1  :  ̂ /1~Z~^2".  This  would  actually 
account  for  the  null  result  of  the  Michelson-Morley  experiment. 

1  For  there,  OA  has  in  the  first  position  the  true  length  I  Ji  _  ̂  
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and  OA'  the  length  I',  whereas  in  the  second  position  OA  has  the 

true  length  I  but  OA'  the  length  I'.  *JT~^~(p.     The  difference  of  path 
20  -  V) 

would,  in  each  case,  be     ,          '• vl  -  f 

It  was  also  found  that,  no  matter  into  what  direction  a  mirror 

rigidly  fixed  to  0  was  turned,  the  same  apparent  velocity  of 

transmission  \/c2  —  v2  was  obtained  for  all  directions ;  that  is,  that 
this  velocity  did  not  depend  on  the  direction  0,  in  the  manner  given 

by  (24).  Nevertheless,  theoretically,  it  still  seemed  possible  to 
demonstrate  the  decrease  of  the  velocity  of  transmission  from  c  to 

>/(?  -  v*.  But  if  the  aether  shortens  the  measuring  rods  in  the 

direction  of  motion  in  the  ratio  1  :  \/l  —  q2,  it  need  only  retard 
clocks  in  the  same  ratio  to  hide  this  effect,  too.  In  fact,  not  only 

the  Michelson-Morley  experiment  but  a  whole  series  of  further  experi- 

ments designed  to  demonstrate  that  the  earth's  motion  has  an  influence 
on  combined  mectianical  and  electromagnetic  phenomena,  have  led  to 

a  null  result  (vide  note  5).  .ZEther  mechanics  has  thus  to  account 

not  only  for  Maxwell's  laws  but  also  for  this  remarkable  interaction 
between  matter  and  aether.  It  seems  that  the  aether  has  betaken 

itself  to  the  land  of  the  shades  in  a  final  effort  to  elude  the  in- 

quisitive search  of  the  physicist ! 

The  only  reasonable  answer  that  was  given  to  the  question  as 
to  why  a  translation  in  the  aether  cannot  be  distinguished  from 

rest  was  that  of  Einstein,  namely,  that  there  is  no  cether !  (The 
aether  has  since  the  very  beginning  remained  a  vague  hypothesis 
and  one,  moreover,  that  has  acted  very  poorly  in  the  face  of  facts.) 

The  position  is  then  this :  for  mechanics  we  get  Galilei's  Theorem 
of  Eelativity,  for  electrodynamics,  Lorentz's  Theorem.  If  this 
is  really  the  case,  they  neutralise  one  another  and  thereby  define 
an  absolute  space  of  reference  in  which  mechanical  laws  have  the 

Newtonian  form,  electrodynamical  laws  that  given  by  Maxwell. 
The  difficulty  of  explaining  the  null  result  of  the  experiments  whose 
purpose  was  to  distinguish  translation  from  rest,  is  overcome  only 

by  regarding  one  or  other  of  these  two  principles  of  relativity  as 
being  valid  for  all  physical  phenomena.  That  of  Galilei  does  not 
come  into  question  for  electrodynamics  as  this  would  mean  that,  in 

Maxwell's  theory,  those  terms  by  which  we  distinguish  moving  fields 
from  stationary  ones  would  not  occur :  there  would  be  no  induction, 

no  light,  and  no  wireless  telegraphy.  On  the  other  hand,  even 

the  contraction  theory  of  Lorentz-Fitzgerald  suggests  that  Newton's 
mechanics  may  be  modified  so  that  it  satisfies  the  Lorentz-Einstein 
Theorem  of  Eelativity,  the  deviations  that  occur  being  only  of 
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the  order  (-  )2;  they  are  then  easily  within  reach  of  observation  for \c  / 

all  velocities  v  of  planets  or  on  the  earth.  The  solution  of  Einstein 

(vide  note  6),  which  at  one  stroke  overcomes  all  difficulties,  is  then 

this :  the  world  is  a  four -dimensional  affine  space  whose  metrical 

structure  is  determined  by  a  non-definite  quadratic  form 

which  has  one  negative  and  three  positive  dimensions.     All  physical 

i  quantities  are  scalars  and  tensors  of  this  four-dimensional  world, 
and  all  physical  laws  express  invariant  relations  between  them. 

The  simple  concrete  meaning  of  the  form  Q(JL)  is  that  a  light-signal 
which  has  been  emitted  at  the  world-point  0  arrives  at  all  those  and 

-> 

only  
those  

world-points  

A  for  which  
x  =  OA  belongs  

to  the  one 
of  the  two  conical  sheets  denned  by  the  equation  Q(x)  =  0  (cf.  §  4). 

Hence  that  sheet  (of  the  two  cones)  which  "  opens  into  the  future  " 
namely,  Q(x)  <  0  is  distinguished  objectively  from  that  which  opens 

into  the  past.  By  introducing  an  appropriate  "  normal  "  co-ordinate 
system  consisting  of  the  zero  point  0  and  the  fundamental  vectors 

8i,  we  may  bring  Q(x)  into  the  normal  form 

(OAt  65)  =  -  V  +  *i2  +  *22  +  *32> 

in  which  the  #/s  are  the  co-ordinates  of  A ;  in  addition,  the 
fundamental  vector  e0  is  to  belong  to  the  cone  opening  into  the 
future.  It  is  impossible  to  narrow  down  the  selection  from 

these  normal  co-ordinate  systems  any  farther :  that  is,  none 
are  specially  favoured ;  they  are  all  equivalent.  If  we  make  use 

of  a  particular  one,  then  XQ  must  be  regarded  as  the  time ;  xv  x2,  xs 

as  the  Cartesian  space  co-ordinates ;  and  all  the  ordinary  expressions 
referring  to  space  and  time  are  to  be  used  in  this  system  of  reference 

as  usual.  The  adequate  mathematical  formulation  of  Einstein's 
discovery  was  first  given  by  Minkowski  (vide  note  7)  :  to  him  we 

are  indebted  for  the  idea  of  four-dimensional  world-geometry,  on 
which  we  based  our  argument  from  the  outset. 

How  the  null  result  of  the  Michelson-Morley  experiment  comes 
about  is  now  clear.  For  if  the  interactions  of  the  cohesive  forces 

of  matter  as  well  as  the  transmission  of  light  takes  place  according 

to  Einstein's  Principle  of  Eelativity,  measuring  rods  must  behave  so 
that  no  difference  between  rest  and  translation  can  be  discovered  by 

means  of  objective  determinations.  Seeing  that  Maxwell's  equations 

satisfy  Einstein's  Principle  of  Eelativity,  as  was  recognised  even  by 
Lorentz,  we  must  indeed  regard  the  Michelson-Morley  experiment  as 
a  proof  that  the  mechanics  of  rigid  bodies  must,  strictly  speaking,  be 
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in  accordance  not  with  that  of  Galilei's  Principle  of  Relativity,  but 
with  that  of  Einstein. 

It  is  clear  that  this  is  mathematically  much  simpler  and  more 

intelligible  than  the  former :  world-geometry  has  been  brought  into 
closer  touch  with  Euclidean  space-geometry  through  Einstein  and 

Minkowski.  Moreover,  as  may  easily  be  shown,  Galilei's  principle 

is  found  to  be  a  limiting  case  of  Einstein's  world-geometry  by 
making  c  converge  to  oo  .  The  physical  purport  of  this  is  that 

we  are  to  discard  our  belief  in  the  objective  meaning  of 
simultaneity;  it  was  the  great  achievement  of  Einstein  in  the 

field  of  the  theory  of  knowledge  that  he  banished  this  dogma  from 
our  minds,  and  this  is  what  leads  us  to  rank  his  name  with  that  of 

Copernicus.  The  graphical  picture  given  at  the  end  of  the  pre- 

ceding paragraph  discloses  immediately  that  the  planes  x'0  =  const. 
no  longer  coincide  with  the  planes  XQ  =  const.  In  consequence 
of  the  metrical  structure  of  the  world,  which  is  based  on  Q(x), 

each  plane  a/0  =  const,  has  a  measure-determination  such  that 

the  ellipse  in  which  it  intersects  the  "  light-cone,"  is  a  circle,  and 
that  Euclidean  geometry  holds  for  it.  The  point  at  which  it  is 

punctured  by  the  x'0-a,xis  is  the  mid-point  of  the  elliptical  section. 
So  the  propagation  of  light  takes  place  in  the  "accented"  system 
of  reference,  too,  in  concentric  circles. 

We  shall  next  endeavour  to  eradicate  the  difficulties  that  seem 

to  our  intuition,  our  inner  knowledge  of  space  and  time,  to  be 
involved  in  the  revolution  caused  by  Einstein  in  the  conception  of 

time.  According  to  the  ordinary  view  the  following  is  true.  If  I 
shoot  bullets  out  with  all  possible  velocities  in  all  directions  from  a 

point  0,  they  will  all  reach  world-points  that  are  later  than  0; 
I  cannot  shoot  back  into  the  past.  Similarly,  an  event  which 

happens  at  0  has  an  influence  only  on  what  happens  at  later 

world-points,  whereas  "  one  can  no  longer  undo "  the  past :  the 
extreme  limit  is  reached  by  gravitation,  acting  according  to 

Newton's  law  of  attraction,  as  a  result  of  which,  for  example,  by 
extending  my  arm,  I  at  the  identical  moment  produce  an  effect  on 

the  planets,  modifying  their  orbits  ever  so  slightly.  If  we  again 

suppress  a  space-co-ordinate  and  use  our  graphical  mode  of  repre- 
sentation, then  the  absolute  meaning  of  the  plane  t  =  0  which 

passes  through  0  consists  in  the  fact  that  it  separates  the  "future" 
world-points,  which  can  be  influenced  by  actions  at  0,  from  the , 

"past"  world-points  from  which  an  effect  may  be  conveyed  to  or, 

conferred  on  0.  According  to  Einstein's  Principle  of  Eelativity,  we  j 
get  in  place  of  the  plane  of  separation  t  =  0  the  light  cone 
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(which  degenerates  to  the  above  double  plane  when  c  —  CD).  This 
makes  the  position  clear  in  this  way.  The  direction  of  all  bodies 

projected  from  0  must  point  into  the  forward-cone,  opening  into 
the  future  (so  also  the  direction  of  the  world-line  of  my  own  body, 

my  "  life-curve  "  if  I  happen  to  be  at  0).  Events  at  0  can  influence 
only  happenings  that  occur  at  world-points  that  lie  within  this 
forward-cone  :  the  limits  are  marked  out  by  the  resulting  propagation 

of  light  into  empty  space.*  If  I  happen  to  be  at  0,  then  0  divides 
my  life-curve  into  past  and  future ;  no  change  is  thereby  caused. 
As  far  as  my  relationship  to  the  world  is  concerned,  however,  the 
forward-cone  comprises  all  the  world-points  which  are  affected 
by  my  active  or  passive  doings  at  0,  whereas  all  events  that  are 
complete  in  the  past,  that  can  no  longer  be  altered,  lie  externally 

to  this  cone.  The  sheet  of  the  forward-cone  separates  my 
active  future  from  my  active  past.  On  the  other  hand,  the 

Active  future. 

Passive  past. 

FIG.  10. 

interior  of  the  backward-cone  includes  all  events  in  which  I  have 
participated  (either  actively  or  as  an  observer)  or  of  which  I  have 
received  knowledge  of  some  kind  or  other,  for  only  such  events 
may  have  had  an  influence  on  me;  outside  this  cone  are  all 
occurrences  that  I  may  yet  experience  or  would  yet  experience  if  my 
life  were  everlasting  and  nothing  were  shrouded  from  my  gaze. 

The  sheet  of  the  backward-cone  separates  my  passive  past 
from  my  passive  future.  The  sheet  itself  contains  everything 
on  its  surface  that  I  see  at  this  moment,  or  can  see;  it  is  thus 
properly  the  picture  of  my  external  surroundings.  In  the  fact  that 
we  must  in  this  way  distinguish  between  active  and  passive,  present, 

*  The  propagation  of  gravitational  force  must,  of  course,  likewise  take  place 
with  the  speed  of  light,  according  to  Einstein's  Theory  of  Relativity.  The  law  for 
the  gravitational  potential  must  be  modified  in  a  manner  analogous  to  that  by 
which  electrostatic  potential  was  modified  in  passing  from  statical  to  moving 
fields. 
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and  future,  there  lies  the  fundamental  importance  of  Komer's 

discovery  of  the  finite  velocity  of  light  to  which  Einstein's 
Principle  of  Eelativity  first  gave  full  expression.  The  plane  t  =  0 

passing  through  0  in  an  allowable  co-ordinate  system  may  be 

placed  so  that  it  cuts  the  light-cone  Q(x)  =  0  only  at  0  and  thereby 
separates  the  cone  of  the  active  future  from  the  cone  of  the  passive 

past. 
For  a  body  moving  with  uniform  translation  it  is  always 

possible  to  choose  an  allowable  co-ordinate  system  (=  normal  co- 
ordinate system)  such  that  the  body  is  at  rest  in  it.  The  individual 

parts  of  the  body  are  then  separated  by  definite  distances  from  one 

another,  the  straight  lines  connecting  them  make  definite  angles 

with  one  another,  and  so  forth,  all  of  which  may  be  calculated  by 

means  of  the  formulae  of  ordinary  analytical  geometry  from  the  space- 

co-ordinates  ftp  #2,  x3  of  the  points  under  consideration  in  the  allow- 
able co-ordinate  system  chosen.  I  shall  term  them  the  static 

measures  of  the  body  (this  defines,  in  particular,  the  static 
length  of  a  measuring  rod).  If  this  body  is  a  clock,  in  which  a 
periodical  event  occurs,  there  will  be  associated  with  this  period  in 
the  system  of  reference,  in  which  the  clock  is  at  rest,  a  definite  time, 

determined  by  the  increase  of  the  co-ordinate  XG  during  a  period ; 

we  shall  call  this  the  "proper  time"  of  the  clock.  If  we  push  the 
body  at  one  and  the  same  moment  at  different  points,  these  points 

will  begin  to  move,  but  as  the  effect  can  at  most  be  propagated 

with  the  velocity  of  light,  the  motion  will  only  gradually  be  com- 
municated to  the  whole  body.  As  long  as  the  expanding  spheres 

encircling  each  point  of  attack  and  travelling  with  the  velocity  of 
light  do  not  overlap,  the  parts  surrounding  these  points  that  are 

dragged  along  move  independently  of  one  another.  It  is  evident 

from  this  that,  according  to  the  theory  of  relativity,  there  cannot 
be  rigid  bodies  in  the  old  sense;  that  is,  no  body  exists  which 
remains  objectively  always  the  same  no  matter  to  what  influences 
it  has  been  subjected.  How  is  it  that  in  spite  of  this  we  can  use 

our  measuring  rods  for  carrying  out  measurements  in  space?  We 

shall  use  an  analogy.  If  a  gas  that  is  in  equilibrium  in  a  closed 

vessel  is  heated  at  various  points  by  small  flames  and  is  then  re- 

moved adiabatically,  it  will  at  first  pass  through  a  series  of  com- 
plicated stages,  which  will  not  satisfy  the  equilibrium  laws  of 

thermo-dynamics.  Finally,  however,  it  will  attain  a  new  state  of 
equilibrium  corresponding  to  the  new  quantity  of  energy  it  contains, 
which  is  now  greater  owing  to  the  heating.  We  require  of  a  rigid 

body  that  is  to  be  used  for  purposes  of  measurement  (in  particular, 

a  linear  measuring  rod)  that,  after  coming  to  rest  in  an 
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allowable  system  of  reference,  it  shall  always  remain  exactly 
the  same  as  before,  that  is,  that  it  shall  have  the  same  static 
measures  (or  static  length) ;  and  we  require  of  a  clock  that 

goes  correctly  that  it  shall  always  have  the  same  proper- 
time  when  it  has  come  to  rest  (as  a  whole)  in  an  allowable 
system  of  reference.  We  may  assume  that  the  measuring  rods 
and  clocks  which  we  shall  use  satisfy  this  condition  to  a  sufficient 
degree  of  approximation.  It  is  only  when,  in  our  analogy,  the  gas 
is  warmed  sufficiently  slowly  (strictly  speaking,  infinitely  slowly) 
that  it  will  pass  through  a  series  of  thermo-dynamic  states  of 
equilibrium ;  only  when  we  move  the  measuring  rods  and  clocks 
steadily,  without  jerks,  will  they  preserve  their  static  lengths  and 
proper-times.  The  limits  of  acceleration  within  which  this  as- 

sumption may  be  made  without  appreciable  errors  arising  are 
certainly  very  wide.  Definite  and  exact  statements  about  this 
point  can  be  made  only  when  we  have  built  up  a  dynamics  based 
on  physical  and  mechanical  laws. 

To  get  a  clear  picture  of  the  Lorentz-Fitzgerald  contraction  from 

the  point  of  view  of  Einstein's  Theory  of  Eelativity,  we  shall 
imagine  the  following  to  take  place  in  a  plane.  In  an  allowable 

system  of  reference  (co-ordinates  t,  x^  a?2,  one  space-co-ordinate 
being  suppressed),  to  which  the  following  space- time  expressions 
will  be  referred,  there  is  at  rest  a  plane  sheet  of  paper  (carrying 

rectangular  co-ordinates  xlt  X2  marked  on  it),  on  which  a  closed 
curve  c  is  drawn.  We  have,  besides,  a  circular  plate  carrying  a 
rigid  clock-hand  that  rotates  around  its  centre,  so  that  its  point 
traces  out  the  edge  of  the  plate  if  it  is  rotated  slowly,  thus  proving 
that  the  edge  is  actually  a  circle.  Let  the  plate  now  move  along  the 
sheet  of  paper  with  uniform  translation.  If,  at  the  same  time,  the 
index  rotates  slowly,  its  point  runs  unceasingly  along  the  edge  of 
the  plate  :  in  this  sense  the  disc  is  circular  during  translation  too. 
Suppose  the  edge  of  the  disc  to  coincide  exactly  with  the  curve  c 
at  a  definite  moment.  If  we  measure  c  by  means  of  measuring 
rods  that  are  at  rest,  we  find  that  c  is  not  a  circle  but  an  ellipse. 
This  phenomenon  is  shown  graphically  in  Fig.  11.  We  have 

added  the  system  of  reference  t',  x\,  x\  with  respect  to  which  the 
disc  is  at  rest.  Any  plane  t'  =  const,  intersects  the  light  cone 
in  this  system  of  reference  in  a  circle  "that  exists  for  a  single 

moment".  The  cylinder  above  it  erected  in  the  direction  of  the 
i'-axis  represents  a  circle  that  is  at  rest  in  the  accented  system, 
and  hence  marks  off  that  part  of  the  world  which  is  passed  over 
by  our  disc.  The  section  of  this  cylinder  and  the  plane  t  =  0  is 
not  a  circle  but  an  ellipse.  The  right-angled  cylinder  constructed 

12 
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on  it  in  the  direction  of  the  £-axis  represents  the  constantly  present 
curve  traced  on  the  paper. 

If  we  now  inquire  what  physical  laws  are  necessary  to  dis- 
tinguish normal  co-ordinate  systems  from  all  other  co-ordinate 

systems  (in  Riemann's  sense),  we  learn  that  we  require  only 
Galilei's  Principle  of  Eelativity  and  the  law  of  the  propagation  of 
light ;  by  means  of  light-signals  and  point-masses  moving  under  no 
forces — even  if  we  have  only  small  limits  of  velocity  within  which 
the  latter  may  move — we  are  in  a  position  to  fix  a  co-ordinate 
system  of  this  kind.  To  see  this  we  shall  next  add  a  corollary 

to  Galilei's  Principle  of  Inertia.  If  a  clock  shares  in  the  motion  of 
the  point-mass  moving  under  no  forces,  then  its  time-data  are  a 

measure  of  the  "  proper-time  "  s  of  the  motion.  Galilei's  principle 
states  that  the  world-line  of  the  point  is  a  straight  line ;  we 
elaborate  this  by  stating  further  that  the  moments  of  the  motion 

FIG.  11. 

characterised  by  s  =  0,  1,  2,  3,  .  .  .  (or  by  any  arithmetical  series 
ofi  values  of  s)  represent  equidistant  points  along  the  straight  line. 
By  introducing  the  parameter  of  proper-time  to  distinguish  the 
various  stages  of  the  motion  we  get  not  only  a  line  in  the  four- 

dimensional  world  but  also  a  "  motion  "  in  it  (cf.  the  definition  on 
p.  105)  and  according  to  Galilei  this  motion  is  a  translation. 

The  world-points  constitute  a  four-dimensional  manifold ;  this  is 
perhaps  the  most  certain  fact  of  our  empirical  knowledge.  We 

shall  call  a  system  of  four  co-ordinates  xi  (i  =  0,  1,  2,  3),  which  are 
used  to  fix  these  points  in  a  certain  portion  of  the  world,  a  linear 

co-ordinate  system,  if  the  motion  of  point-mass  under  no  forces 
and  expressed  in  terms  of  the  parameter  s  of  the  proper-time  be 

represented  by  formulae  in  which  the  xi's  are  linear  functions  of  s. 
The  fact  that  there  are  such  co-ordinate  systems  is  what  the  law  of 
inertia  really  asserts.  After  this  condition  of  linearity,  all  that  is 

necessary  to  define  the  co-ordinate  system  fully  is  a  linear  trans- 
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formation.  That  is,  if  Xi,  x'i  are  the  co-ordinates  respectively  of 
one  and  the  same  world-point  in  two  different  linear  co-ordinate 

systems,  then  the  x'i  a  must  be  linear  functions  of  the  x  Js.  By 
simultaneously  interpreting  the  Xi's  as  Cartesian  co-ordinates  in  a 
four-dimensional  Euclidean  space,  the  co-ordinate  system  furnishes 
us  with  a  representation  of  the  world  (or  of  the  portion  of  world 
in  which  the  #/s  exist)  on  a  Euclidean  space  of  representation. 
We  may,  therefore,  formulate  our  proposition  thus.  A  re- 

presentation of  two  Euclidean  spaces  by  one  another  (or  in  other 
words  a  transformation  from  one  Euclidean  space  to  another),  such 
that  straight  lines  become  straight  lines  and  a  series  of  equidistant 
points  become  a  series  of  equidistant  points  is  necessarily  an 

affine  transformation.  Fig.  12  which  represents  Mobius'  mesh- 
construction  (vide  note  8)  may  suffice  to  indicate  the  proof  to 
the  reader.  It  is  obvious  that  this  mesh-system  may  be  arranged 
so  that  the  three  directions  of  the  straight  lines  composing  it  may 
be  derived  from  a  given,  arbitrarily  thin,  cone  carrying  these 

PIG.  12. 

directions  on  it ;  the  above  geometrical  theorem  remains  valid  even 
if  we  only  know  that  the  straight  lines  whose  directions  belong  to 
this  cone  become  straight  lines  again  as  a  result  of  the  transfor- 
mation. 

Galilei's  IVinciple  of  Inertia  is  sufficient  in  itself  to  prove 
conclusively  that  the  world  is  affine  in  character:  it  will  not, 

however,  allow  us  deduce  any  further  result.  The  metrical  ground- 
form  (xx)  of  the  world  is  now  accounted  for  by  the  process  of  light - 
propagation.  A  light-signal  emitted  from  0  arrives  at  the  world- 

point  A  if,  and  only  if,  x  =  OA  belongs  to  one  of  the  two  conical 
sheets  denned  by  (xx)  =  0.  This  determines  the  quadratic  form 
except  for  a  constant  factor ;  to  fix  the  latter  we  must  choose  an 
arbitrary  unit-measure  (of.  Appendix  I). 

§  22.  Relativistic  Geometry,  Kinematics,  and  Optics 

We  shall  call  a  world-vector  x  space-like  or  time-like,  accord- 
ing as  (xx)  is  positive  or  negative.  Time-like  vectors  are  divided 



180  RELATIVITY  OF  SPACE  AND  TIME 

into  those  that  point  into  the  future  and  those  that  point  into  the 
past.  We  shall  call  the  invariant 

As  =  V  -  (xx)      ....     (25) 

of  a  time-like  vector  x  which  points  into  the  future  its  proper-time. 
If  we  set 

x  =  As .  e 

then  e,  the  direction  of  the  time-like  displacement,  is  a  vector  that 
points  into  the  future,  and  that  satisfies  the  condition  of  normality 

(ee)  -  -  1. 
As  in  Galilean  geometry,  so  in  Einstein's  world-geometry  we 

must  resolve  the  world  into  space  and  time  by  projection 

in  the  direction  of  a  time-like  vector  e  pointing  into  the  future  and 
normalised  by  the  condition  (ee)  =  -  1.  The  process  of  projection 
was  discussed  in  detail  in  §  19.  The  fundamental  formulae  (3),  (5), 

(5')  that  are  set  up  must  here  be  applied  with  e,  —  —  1.*  World- 
points  for  which  the  vector  connecting  them  is  proportional  to  e 

coincide  at  a  space-point  which  we  may  mark  by  means  of  a  point- 
mass  at  rest,  and  which  we  may  represent  graphically  by  a  world- 
line  (straight)  parallel  to  e.  The  three-dimensional  space  /?e  that 
is  generated  by  the  projection  has  a  metrical  character  that  is 

Euclidean  since,  for  every  vector  x*  which  is  orthogonal  to  e,  that 
is,  every  vector  x*  that  satisfies  the  condition  (x*e)  =  0,  (x*x*)  is 
a  positive  quantity  (except  in  the  case  in  which  x*  =  0 ;  cf.  §  4). 
Every  displacement  x  of  the  world  may  be  split  up  according  to 
the  formula 

x  =  It  |  x : 

A£  is  its  duration  (called  "  height "  in  §  19)  :  x  is  the  displacement 
it  produces  in  the  space  /?e. 

If  e'i,  62,  63  form  a  co-ordinate  system  in  /?e,  then  the  world- 
displacements  elf  62,  63  that  are  orthogonal  to  e  =  60,  and  that  pro- 

duce the  three  given  space-displacements,  form  in  conjunction  with 
e0  a  co-ordinate  system,  which  belongs  to  Re,  for  the  world-points. 
It  is  normal  if  the  three  vectors  e^  in  /?e  form  a  Cartesian  co-ordinate 
system.  In  every  case  the  system  of  co-efficients  of  the  metrical 
groundform  has,  in  it,  the  form 

-  1      0       0       0 
0  011  012  013 

0  021  022  023 

0  031  032  033 

*  Here  the  units  of  space  and  time  are  chosen  so  that  the  velocity  of  light 
in  vacuo  becomes  equal  to  1.  To  arrive  at  the  ordinary  units  of  the  c.g.s. 

systems,  the  equation  of  normality  (ee)  =  -  1  must  be  replaced  by  (ee)  =  -  °2i 
and  e  must  be  takea  equal  to  -  c2. 
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The  proper  time  As  of  a  time-like  vector  x  pointing  into  the 
future  (and  for  which  x  =  As  .  e)  is  equal  to  the  duration  of  x  in  the 
space  of  reference  /?e,  in  which  x  calls  forth  no  spatial  displacement. 
In  the  sequel  we  shall  have  to  contrast  several  ways  of  splitting  up 

quantities  into  terms  of  the  vectors  e,  e',  .  .  .  ;  6  (with  or  without 
an  index)  is  always  to  denote  a  time-like  world-vector  pointing  into 
the  future  and  satisfying  the  condition  of  normality  (ee)  =  -  1. 

Let  K  be  a  body  at  rest  in  /?e,  K'  a  body  at  rest  in  /?'e.  K' 
moves  with  uniform  translation  in  /?e.  If,  by  splitting  up  e'  into 
terms  of  e,  we  get  in  /?e 

e  =  h  |  hu          .        .        .        .     (26) 

then  K  undergoes  the  space-displacement  hu  during  the  time  (i.e. 

with  the  duration)  h  in  /?e.  Accordingly,  u  is  the  velocity  of  K'  in 
Re  or  the  relative  velocity  of  K'  with  respect  to  K.  Its  magni- 

tude is  determined  by  v2  =  (uu).  By  (3)  we  have 

h  =  -  (e'e)         ....    (27) 
on  the  other  hand,  by  (5) 

thus  we  get 

If,  bet 
jtween  two  moments  of  K"s  motion,  it  undergoes  the  world- 

displacement  As  .  e',  (26)  shows  that  h  .  As  =  A£  is  the  duration  of 
this  displacement  in  Re.  The  proper  time  As  and  the  duration  A£  of 
the  displacement  in  /?e  are  related  by 

Since  (27)  is  symmetrical  in  e  and  e',  (28)  teaches  us  that  the 
magnitude  of  the  relative  velocity  of  K'  with  respect  to  K  is 
equal  to  that  of  K  with  respect  to  K'.  The  vectorial  relative 
velocities  cannot  be  compared  with  one  another  since  the  one 

exists  in  the  space  Re,  the  other  in  the  space  Re'. 
Let  us  consider  a  partition  into  three  quantities  e,  Qv  62.  Let 

Kv  K.2  be  two  bodies  at  rest  in  /?ep  /?62  respectively.  Suppose  we 
have  in  /?e 

e.2  =  ̂   |  h,u.2       h2  =  ̂ r—  - 
Then 

-  (6162)  =  h 
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Hence,  if  K^  and  K2  have  velocities  ult  U2  respectively  in  /?e,  with 

numerical  values  vv  v2,  then  if  these  velocities  ylf  u2  make  an  angle 

0  with  each  other,  and  if  vl2  =  v2l  is  the  magnitude  of  the  velocity 
of  K2  relatively  to  K-^  (or  vice  versa),  we  find  that  the  formula 

1  -  VjV^ooB  0  ^L   

Jl=-j?Jtt?=    VF^V 
holds :  it  shows  how  the  relative  velocity  of  two  bodies  is 
determined  from  their  given  velocities.  If,  using  hyperbolic 
functions,  we  set  v  =  tanh  v  for  each  of  the  values  v  of  the  velocity 
(v  being  <1),  we  get 

cosh  u1  cosh  u2  -  sinh  u-^  sinh  u2  cos  6  =  cosh  u12. 

This  formula  becomes  the  cosine  theorem  of  spherical  geometry 

if  we  replace  the  hyperbolic  functions  by  their  corresponding  trigo- 
nometrical functions ;  thus  u12  is  the  side  opposite  the  angle  0  in  a 

triangle  on  the  Bolyai-Lobatschef  sky  plane,  the  two  remaining  sides 
being  u^  and  u2. 

Analogous  to  the  relationship  (29)  between  time  and  proper- 
time,  there  is  one  between  length  and  statical-length.  We  shall 

use  Be  as  our  space  of  reference.  Let  the  individual  point- 

masses  of  the  body  at  a  definite  moment  be  at  the  world- 

points  0,  A,  .  .  .  The  space -points  0,  A,  .  .  .  at  /?e  at  which  they  • 
are  situated  form  a  figure  in  /?e,  on  which  we  can  confer  duration,  by 

making  the  body  leave  behind  it  a  copy  of  itself  at  the  moment  under 
consideration  in  the  space  /?e ;  an  example  of  this  was  presented  in 

the  illustration  given  at  the  close  of  the  preceding  paragraph.  If, 

on  the  other  hand,  the  world-points  0,  A,  .  .  .  are  at  the  space- 

points  0',  A',  .  .  .  in  the  space  E6  in  which  K'  is  at  rest,  then 
0',  A',  .  .  .  constitute  the  statical  shape  of  the  body  K  (cf.  Fig.  13, 
in  which  orthogonal  world-distances  are  drawn  perpendicularly). 
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There  is  a  transformation  that  connects  the  part  of  /?e,  which  re- 
ceives the  imprint  or  copy,  and  the  statical  shape  of  the  body  in 

RQ.  This  transformation  transforms  the  points  A,  A'  into  one 
another.  It  is  obviously  affine  (in  fact,  it  is  nothing  more  than 

an  orthogonal  projection).  Since  the  world-points  0,  A  are  simul- 
taneous for  the  partition  into  e,  we  have 

OA  =  x  =  0  |  x  in  /?e,  and  x  =  OA. 
By  formula  (5) 

OA*  =  (xx)  =  (xx) 
O'A'2  =  (xx)  +  (xe')2. 

If.  however,  we  determine  (xe')  in  /?e  by  (5')  we  get 

(xe')  =  h(xu) 
and  hence 

If  we  use  a  Cartesian  co-ordinate  system  xlt  #2,  xz  in  /?e  with  0  as 
origin,  and  having  its  #raxis  in  the  direction  of  the  velocity  v,  then 

if  xv  x2,  xs  are  the  co-ordinates  of  A,  we  have 

OA  2  =  x*  .+  'x*  +  x./ 

in  the  last  term  of  which  we  have  set 

' 

By  assigning  to  every  point  in  /?e  with  co-ordinates  (xlt  xz,  x3)  the 

point  with  co-ordinates  (x\,  x\,  x'3)  as  given  by  (31),  we  effect  a 
dilatation  of  the  imprinted  copy  in  the  ratio  1  :  ̂ /l  _  ̂ 2  along  the 

direction  of  the  body's  motion.  Our  formulae  assert  that  the  copy 
thereby  assumes  a  shape  congruent  to  that  of  the  body  when  at 

rest  ;  this  is  the  Lor  entz-  Fitzgerald  contraction.  In  particular, 
the  volume  V  that  the  body  K  occupies  at  a  definite  moment  in  the 

space  RQ  is  connected  to  its  statical  volume  VQ  by  the  relation 

V=  Fox/r^2. 

Whenever  we  measure  angles  by  optical  means  we  determine 

the  angles  formed  by  the  light-rays  for  the  system  of  reference  in 
which  the  (rigid)  measuring  instrument  is  at  rest.  Again,  when 
our  eyes  take  the  place  of  these  instruments  it  is  these  angles  that 

determine  the  visual  form  of  objects  that  lie  within  the  field  of  vision. 

To  establish  the  relationship  between  geometry  and  the  observation 
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of  geometrical  magnitudes,  we  must  therefore  take  optical  con- 

siderations into  account.  The  solution  of  Maxwell's  equations  for 
light-rays  in  the  aether  as  well  as  in  a  homogeneous  medium,  which 
is  at  rest  in  an  allowable  reference  system,  is  of  a  form  such  that 

the  component  of  the  "phase"  quantities  (in  complex  notation) are  all 

=  COnst.  02irt0(/») 

in  which  0  =  ®(P)  is,  with  the  omission  of  an  additive  constant, 
the  phase  determined  by  the  conditions  set  down  ;  it  is  a  function 
of  the  world-point  which  here  occurs  as  the  argument.  If  the 
world  co-ordinates  are  transformed  linearly  in  any  way,  the  com- 

ponents in  the  new  co-ordinate  system  will  again  have  the  same 
form  with  the  same  phase-function  ®.  The  phase  is  accordingly 
an  invariant.  For  a  plane  wave  it  is  a  linear  and  (if  we  ex- 

clude absorbing  media)  real  function  of  the  world-co-ordinates 
of  P  ;  hence  the  phase-difference  at  two  arbitrary  points  ®(B)  -  ®(A) 

is  a  linear  form  of  the  arbitrary  displacement  x  =  AB,  that  is, 
a  co-variant  world-vector.  If  we  represent  this  by  the  corre- 

sponding displacement  1  (we  shall  allude  to  it  briefly  as  the  light- 
ray  1)  then 

If  we  split  it  up  by  means  of  the  time-like  vector  e  into  space  and 
time  and  set 

l-*l£«  •     (33) 

so  that  the  space-vector  a  in  /?e  is  of  unit  length 
I  -  A*  |  Jf, 

then  the  phase-difference  is 

q 
From  this  we  see  that  v  signifies  the  frequency,  q  the  velocity  of 

transmission,  and  a  the  direction  of  the  light-ray  in  the  space  /?e. 

Maxwell's  equations  tell  us  that  .the 'velocity  of  transmission  q  =  1, or  that 

(11)  =  0. 
If  we  split  the  world  up  into  space  and  time  in  two  ways, 

firstly  by  means  of  e,  secondly  by  means  of  e',  and  distinguish  the 
magnitudes  derived  from  the  second  process  by  accents  we  imme- 

diately find  as  a  result  of  the  invariance  of  (11)  the  law 

3  -  l)  =  •"(ps  -  l)      •        •        •     (33) 
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If  we  fix  our  attention  on  two  light-rays  llt  12  with  frequencies 

i/j,  1/2  and  velocities  of  transmission  qv  q2  then 

If  they  make  an  angle  to  with  one  another,  then 

cos  w 

,q.v 

' 

For  the  aether,  these  equations  become 

q  =  q'(  =  1),          vxv2  sin2  g  =  v>'2  sin^  .     (35) 

Finally,  to  get  the  relationship  between  the  frequencies  v  and  v 

we  assume  a  body  that  is  at  rest  in  Rb>  ;  let  it  have  the  velocity  u 
in  the  space  /?e,  then,  as  before,  we  must  set 

e'  =  h  |  hu  in  tfe     .         .         .         .     (26) 

From  (26)  and  (32)  it  follows  that 

Accordingly,  if  the  direction  of  the  light-ray  in  R&  makes  an  angle 
6  with  the  velocity  of  the  body,  then 

vcos  9 

v-~      ~       q          .  .         .     (36) v         Vl  -  & 

(36)  is  Doppler's  Principle.  For  example,  since  a  sodium  -molecule 
which  is  at  rest  in  an  allowable  system  remains  objectively  the 

same,  this  relationship  (36)  will  exist  between  the  frequency  v  of  a 

sodium-molecule  which  is  at  rest  and  v  the  frequency  of  a  sodium- 
molecule  moving  with  a  velocity  v,  both  frequencies  being  observed 

in  a  spectroscope  which  is  at  rest  ;  0  is  the  angle  between  the 

direction  of  motion  of  the  molecule  and  the  light-ray  which  enters 
the  spectroscope.  If  we  substitute  (36)  in  (33)  we  get  an  equation 

between  q  and  q  which  enables  us  to  calculate  the  velocity  of  pro- 
pagation q  in  a  moving  medium  from  the  velocity  of  propagation  q 

in  the  same  medium  at  rest;  for  example,  in  water,  v  now  re- 
presents the  rate  of  flow  of  the  water  ;  0  represents  the  angle  that 

the  direction  of  flow  of  the  water  makes  with  the  light-rays.  If 
we  suppose  these  two  directions  to  coincide,  and  then  neglect  powers 

of  v  higher  than  the  first  (since  v  is  in  practice  very  small  compared 
with  the  velocity  of  light),  we  get 

q  =  q'  +  V(l  -  q'2) 
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that  is,  not  the  whole  of  the  velocity  v  of  the  medium  is  added  to 

the  velocity  of  propagation,  but  only  the  fraction  1  -  — 2  ( in  which 

n   \ 

n  =«=  —  is  the  index  of  refraction  of  the  medium  J.  Fresnel's  "  con- 

vection- co-efficient "  1  —  —2  was  determined  experimentally  by  Fizeau 
long  before  the  advent  of  the  theory  of  relativity  by  making  two 
light-rays  from  the  same  source  interfere,  after  one  had  travelled 
through  water  which  was  at  rest  whilst  the  other  had  travelled 
through  water  which  was  in  motion  (vide  note  9).  The  fact  that  the 
theory  of  relativity  accounts  for  this  remarkable  result  shows  that 
it  is  valid  for  the  optics  and  electrodynamics  of  moving  media 
(and  also  that  in  such  cases  the  relativity  principle,  which  is  derived 
from  that  of  Lorentz  and  Einstein  by  putting  q  for  c,  does  not  hold ; 
one  might  be  tempted  to  believe  this  erroneously  from  the  equation 
of  wave- motion  that  holds  in  such  cases).  We  shall  find  the 
special  form  of  (34)  for  the  ather,  in  which  q  =  q  =  1  (cf.  35),  to  be 

„  O)          (1-1?  COS  0,)   (1    -   V  COS  02)     .    0  o>' 

Sln2  a  -  5   nr|i   * sin3  a ' 
If  the  reference-space  /?e  happens  to  be  the  one  on  which  the 
theory  of  planets  is  commonly  founded  (and  in  which  the  centre  of 
mass  of  the  solar  system  is  at  rest),  and  if  the  body  in  question 
is  the  earth  (on  which  an  observing  instrument  is  situated),  v  its 
velocity  in  /?e,  w  the  angle  in  /?e  that  two  rays  which  reach  the 
solar  system  from  two  infinitely  distant  stars  make  with  one  another, 
Olt  02  tne  angles  which  these  rays  make  with  the  direction  of  motion 
of  the  earth  in  Re,  then  the  angle  a/,  at  which  the  stars  are  observed 
from  the  earth,  is  determined  by  the  preceding  equation.  We 
cannot,  of  course,  measure  <o,  but  we  note  the  changes  in  a/  (the 
aberration)  by  taking  account  of  the  changes  in  Ol  and  02  in  the 
course  of  a  year. 

The  formulae  which  give  the  relationship  between  time,  proper- 
time,  volume  and  statical  volume  are  also  valid  in  the  case  of  non- 
uniform  motion.  If  dx  is  the  infinitesimal  displacement  that  a 

moving  point-mass  experiences  during  an  infinitesimal  length  of  time 
in  the  world,  then 

dx  =  ds .  u        (uu)  =  -  1,        ds  >  0 

give  the  proper-time  ds  and  the  world-direction  u  of  this  displace- 
ment. The  integral 

f  ds  =  [  J  -  (dx,  dx) 



RELATIVISTIC  GEOMETRY  187 

taken  over  a  portion  of  the  world-line  is  the  proper-time  that 

elapses  during  this  part  of  the  motion  :  it  is  independent  of  the 
manner  in  which  the  world  has  been  split  up  into  space  and  time 

and,  provided  the  motion  is  not  too  rapid,  will  be  indicated  by  a 

clock  that  is  rigidly  attached  to  the  point-mass.  If  we  use  any 
linear  co-ordinates  Xi  whatsoever  in  the  world,  and  the  proper-time 

s  as  our  parameters  to  represent  our  world-line  analytically  (just 
as  we  use  length  of  arc  in  three-dimensional  geometry),  then 

ds~= 
 U% are  the  (contra

- 
variant

)  
compon

ents  
of  u,  and  we  get  ̂   uiui  =   -  1. 

i 

If  we  split  up  the  world  into  space  and  time  by  means  of  e,  we  find 

_!           » 
u  =  ~UT^7    jr=~&  m  Rt 

in  which  u  is  the  velocity  of  the  mass-point ;  and  we  find  that  the 
time  dt  that  elapses  during  the  displacement  rfx  in  /?e  and  the 

proper-time  ds  are  connected  by 

ds  =  dt  Jl^lj*     .         .         .         .     (37) 

If  two  world -points  A,  B  are  so  placed  with  respect  to  one  another 

that  AB  is  a  time-like  vector  pointing  into  the  future,  then  A  and 

B  may  be  connected  by  world-lines,  whose  directions  all  likewise 

satisfy  this  condition  :  in  other  words,  point-masses  that  leave  A 
may  reach  B.  The  proper-time  necessary  for  them  to  do  this  is 

dependent  on  the  world-line ;  it  is  longest  for  a  point-mass  that 
passes  from  A  to  B  by  uniform  translation.  For  if  we  split  up 
the  world  into  space  and  time  in  such  a  way  that  A  and  B  occupy 
the  same  point  in  space,  this  motion  degenerates  simply  to  rest,  and 

we  derive  the  proposition  (37)  which  states  that  the  proper-time 
lags  behind  the  time  t.  The  life-processes  of  mankind  may  well 

be  compared  to  a  clock.  Suppose  we  have  two  twin-brothers  who 
take  leave  from  one  another  at  a  world-point  A,  and  suppose  one 
remains  at  home  (that  is,  permanently  at  rest  in  an  allowable 

reference-space),  whilst  the  other  sets  out  on  voyages,  during 

which  he  moves  with  velocities  (relative  to  "  home  ")  that  approxi- 
mate to  that  of  light.  When  the  wanderer  returns  home  in  later 

years  he  will  appear  appreciably  younger  than  the  one  who  stayed 
at  home. 

An  element  of  mass  dm  (of  a  continuously  extended  body)  that 
moves  with  a  velocity  whose  numerical  value  is  v  occupies  at  a 
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particular   moment   a   volume   dV  which   is   connected  with   its 
statical  volume  dV$  by  the  formula 

Accordingly,  we  have  the  relation  between  the  density  —=  =  /x  and 

the   statical  density  —  —  =  yu,0 

fj,0  is  an  invariant,  and  /x0u  with  components  ^u  is  thus  a  contra- 

variant  vector,  the  "  flux  of  matter,"  which  is  determined  by  the 
motion  of  the  mass  independently  of  the  co-ordinate  system.  It 
satisfies  the  equation  of  continuity 

The  same  remarks  apply  to  electricity.     If  it  is  associated  with 
matter  so  that  de  is  the  electric  charge  of  the  element  of  mass  dm, 

then  the  statical  density  p0  =  -^  is  connected  to  the  density  p  = 

Po  =  P  x1  -  v^ 
then s*  =  p0W 

are  the  contra-variant  components  of  the  electric  current  (4-vector)  ; 

this  corresponds  exactly  to  the  results  of  §  20.  In  Maxwell's 
phenomenological  theory  of  electricity,  the  concealed  motions  of 
the  electrons  are  not  taken  into  account  as  motions  of  matter,  con- 

sequently electricity  is  not  supposed  attached  to  matter  in  his 

theory.  The  only  way  to  explain  how  it  is  that  a  piece  of  matter 

carries  a  certain  charge  is  to  say  this  charge  is  that  which  is  simul- 
taneously in  the  portion  of  space  that  is  occupied  by  the  matter 

at  the  moment  under  consideration.  From  this  we  see  that  the 

charge  is  not,  as  in  the  theory  of  electrons,  an  invariant  determined 

by  the  portion  of  matter,  but  is  dependent  on  the  way  the  world 
has  been  split  up  into  space  and  time. 

§  23.  The  Electrodynamics  of  Moving  Bodies 

By  splitting  up  the  world  into  space  and  time  we  split  up  all 
tensors.  We  shall  first  of  all  investigate  purely  mathematically 

how  this  comes  about,  and  shall  then  apply  the  results  to  derive 
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the  fundamental  equations  of  electrodynamics  for  moving  bodies. 
Let  us  take  an  w-dimensional  metrical  space,  which  we  shall  call 

"  world,"  based  on  the  metrical  groundform  (xx).  Let  e  be  a 
vector  in  it,  for  which  (ee)  =  e  =)=  0.  We  split  up  the  world  in  the 
usual  way  into  space  /?e  and  time  in  terms  of  e.  Let  ev  62,  •  .  . 
e,i  - 1  be  any  co-ordinate  system  in  the  space  /?e,  and  let  e1}  62  .  .  . 
en_i  be  the  displacements  of  the  world  that  are  orthogonal  to 
6  =  60  and  that  are  produced  in  /?e  by  ev  62,  .  .  .  en-i-  In  the 

co-ordinate  system  Qi  (i  =  0,  1,  2,  .  .  .  n  - 1)  "  belonging  to  /?e  " 
and  representing  the  world,  the  scheme  of  the  co-variant  com- 

ponents of  the  metrical  ground-tensor  has  the  form 
0       0 

#22 

921 

(n 

As  an  example,  we  shall  consider  a  tensor  of  the  second  order  and 

suppose  it  to  have  components  T&  in  this  co-ordinate  system. 
Now,  we  assert  that  it  splits  up,  in  a  manner  dependent  only  on 
e,  according  to  the  following  scheme  : 

oo 

T 

T 

•^20 

that  is,  into  a  scalar,  two  vectors  and  a  tensor  of  the  second  order 
existing  in  /?e,  which  are  here  characterised  by  their  components  in 

the  co-ordinate  system  ei  (i  =  1,  2,  .  .  .  n  -  1). 
For  if  the  arbitrary  world-displacement  x  splits  up  in  terms  of 

e  thus 

and  if,  when  we  divide  x  into  two  factors,  one  of  which  is  pro- 
portional to  e  and  the  other  orthogonal  to  e,  we  have 

x  =  £e  +  x* 

then,  if  x  has  components  £*,  we  get 
n-l 

Thus,  without  using  a  co-ordinate  system  we  may  represent  the 
splitting  up  of  a  tensor  in  the  following  manner.  If  x,  y  are  any 
two  arbitrary  displacements  of  the  world,  and  if  we  set 

e  +  x*     y  =  77e  +  y*    .  .    (38) 
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so  that  x*  and  y*  are  orthogonal  to  e,  then  the  bilinear  form 
belonging  to  the  tensor  of  the  second  order  is 

T(xy)  =  ̂ T(ee)  +  7?T(x*e)  +  £T(ey*)  +  T(x*y*). 
Hence,  if  we  interpret  x*,  y*  as  the  displacements  of  the  world 
orthogonal  to  e,  which  produce  the  two  arbitrary  displacements 
x,  y  of.  the  space,  we  get 

1.  a  scalar  T(ee)  =  /  =  c/, 
2.  two  linear  forms  (vectors)  in  the  space  /?e,  denned  by 

A(x)  =  T(x*e),     L'(x)  =  T(ex*), 
3.  a  bilinear  form  (tensor)  in  the  space  /?e,  denned  by 

T(xy)  =  T(x*y*). 
If  x,  y  are  arbitrary  world-displacements  that  produce  x,  y, 
respectively  in  Re  we  must  replace  x*,  y*  in  this  definition  by 
X  -  £e,  y  -  ̂ 6  in  accordance  with  (38) ;  in  these, 

£  =  -(xe),     T]  =  -(ye). 
If  we  now  set 

T(xe)  =  L(x),     T(ex)  =  L'(x), 
we  get 

L(x)  =  i(x)  -  £(»),    L'(x)  =  L'(x)  -  J 1  1 
T(xy)  =     _,     t 

The  linear  and  bilinear  forms  (vectors  and  tensors)  of  /?e  on  the  left 
may  be  represented  by  the  world- vectors  and  world-tensors  on  the 
right  which  are  derived  uniquely  from  them.  In  the  above  re- 

presentation by  means  of  components,  this  amounts  to  the  following : 
that,  for  example, 

000 

is  represented  by     0  Tu  T12 
"    *JI    -^22 

It  is  immediately  clear  that  in  all  calculations  the  tensors  of  space 
may  be  replaced  by  the  representative  world-tensors.  We  shall, 
however,  use  this  device  only  in  the  case  when,  if  one  space-tensor 
is  A  times  another,  the  same  is  true  of  the  representative  world- 
tensors. 

If  we  base  our  calculations  of  components  on  an  arbitrary 
co-ordinate  system,  in  which 

then  the  invariant  is 

J  =  Tik&c   and  6  =  el&i. 
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But  the  two  vectors  and  the  tensor  in  /?e  have  as  their  representatives 

in  the  world,  according  to  (39),  the  two  vectors  and  the  tensor  with 
components : 

L:  Li-  -ei          L  =  TUB*, 

T:  Tik  - 

In   the   case  of  a  skew-symmetrical   tensor,  /  becomes   =  0  and 

/.'  =  -  L ;  our  formulae  degenerate  into 
L:  Li 

A  linear  world-tensor  of  the  second  order  splits  up  in  space  into  a 
vector  and  a  linear  space-tensor  of  the  second  order. 

Maxwell's  field-equations  for  bodies  at  rest  have  been  set  out  in 
§  20.  H.  Hertz  was  the  first  to  attempt  to  extend  them  so  that 

they  might  apply  generally  for  moving  bodies.  Faraday's  Law  of 
Induction  states  that  the  time-decrement  of  the  flux  of  induction 

enclosed  in  a  conductor  is  equal  to  the  induced  electromotive  force, 
that  is 

-  ~ji\Bndo  =  \Edv     ....     (40) 
c  atj  j 

The  surface-integral  on  the  left,  if  the  conductor  be  in  motion,  must 
be  taken  over  a  surface  stretched  out  inside  the  conductor  and 

moving  with  it.  Since  Faraday's  Law  of  Induction  has  been  proved 
for  just  those  cases  in  which  the  time- change  of  the  flux  of  induction 
within  the  conductor  is  brought  about  by  the  motion  of  the  con- 

ductor, Hertz  did  not  doubt  that  this  law  was  equally  valid  for 
the  case,  too,  when  the  conductor  was  in  motion.  The  equation 
,div  B  =  0  remains  unaffected.  From  vector  analysis  we  know  that, 
,taking  this  equation  into  consideration,  the  law  of  induction  (40) 
may  be  expressed  in  the  differential  form : 

curlE=  -  --  +  ccurl[yB]  .     (41) 
<)B 

in  which  -^  denotes  the  differential  co-efficient  of  B  with  respect 
to  the  time  for  a  fixed  point  in  space,  and  y  denotes  the  velocity  of 
the  matter. 

Eemarkable  inferences  may  be  drawn  from  (41).    As  in  Wilson's 
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experiment  (vide  note  10),  we  suppose  a  homogeneous  dielectric  be- 
tween the  two  plates  of  a  condenser,  and  assume  that  this  dielectric 

moves  with  a  constant  velocity  of  magnitude  Y  between  these  plates, 

which  we  shall  take  to  be  connected  by  means  of  a  conducting 
wire.  Suppose,  further,  that  there  is  a  homogeneous  magnetic  field 

H  parallel  to  the  plates  and  perpendicular  to  Y.  We  shall  imagine 
the  dielectric  separated  from  the  plates  of  the  condenser  by  a 

narrow  empty  space,  whose  thickness  we  shall  assume  ->  0  in  the 
limit.  It  then  follows  from  (41)  that,  in  the  space  between  the 

plates,  E  -  -  [YB]  is  derivable  from  a  potential;  since  the  latter c 

must  be  zero  at  the  plates  which  are  connected  by  a  conducting 

wire  it  is  easily  seen  that  we  must  have  E  =  -  [YB].  Hence  a C 

homogeneous  electric  field  of  intensity  E  =  —  vH  (in  which  //,  de- c 

notes  permeability)  arises  which  acts  perpendicularly  to  the  plates. 

Consequently,  a  statical  charge  of  surface-density .  —  vE  (c  =  di- 

electric constant)  must  be  called  up  on  the 
plates.  If  the  dielectric  is  a  gas,  this  effect 
should  manifest  itself,  no  matter  to  what  degree 

the  gas  has  been  rarefied,  since  e/x  converges, 

not  towards  0,  but  towards  1,  at  infinite  rare- 
faction. This  can  have  only  one  meaning  if 

we  are  to  retain  our  belief  in  the  aether, 

namely,  that  the  effect  must  occur  if  the  j 
aether  between  the  plates  is  moving  relatively 

to  the  plates  and  to  the  aether  outside  them. 
To  explain  induction  we  should,  however, 

be  compelled  to  assume  that  the  aether  is 

dragged  along  by  the  connecting  wire.* 
General  observations,  Fizeau's  experiment 

dealing  with  the  propagation  of  light  in  flowing  water,  and 

Wilson's  experiment  itself,  prove  that  this  assumption  is  incor- 
rect. Just  as  in  Fizeau's  experiment  the  convection-co-efficient 

1  -  -TJ  appears,  so  in  the  present  experiment  we  observe  only  a 

change  of  magnitude 
•i^vH 

FIG.  14. 

*  In  (41)  v  signified  the  velocity  of  the  sether,  not  relative  to  the  mattei 
but  relative  to  what  ? 



ELECTRODYNAMICS  OF  MOVING  BODIES       193 

which  vanishes  when  c/x  =  1.  This  seems  to  be  an  inexplicable 
contradiction  to  the  phenomenon  of  induction  in  the  moving 
conductor. 

The  theory  of  relativity  offers  a  full  explanation  of  this.  If,  as 
in  §  20,  we  again  set  ct  =  x0,  and  if  we  again  build  up  a  field  F 
out  of  E  and  B,  and  a  skew-symmetrical  tensor  H  of  the  second 
order  out  of  D  and  H,  we  have  the  field-equations 

_  Q 

=  Sl 

(42) 

These  hold  if  we  regard  the  Fas  as  co-variant,  the  Hik's  as  contra- 
variant  components,  in  each  case,  of  a  tensor  of  the  second  order, 

but  the  s^s  as  the  contra-variant  components  of  a  vector  in  the 
four-dimensional  world,  since  the  latter  are  invariant  in  any 
arbitrary  linear  co-ordinate  system.  The  laws  of  matter 

D  =  cE  B  =  /^H  s  =  o-E 

signify,  however,  that  if  we  split  up  the  world  into  space  and  time 
in  such  a  way  that  matter  is  at  rest,  and  if  F  splits  up  into  E  |  B, 
H  into  D  |  H,  and  s  into  p  \  s,  then  the  above  relations  hold.  If 
we  now  use  any  arbitrary  co-ordinate  system,  and  if  the  world - 
direction  of  the  matter  has  the  components  ul  in  it  then,  after  our 
explanations  above,  these  facts  assume  the  form 

•(a)  £?-«*?  .         .         .         .  (43) 

in  which  F*  =  Fikuk  and  H*  =  Hikuk 

(b)  Fik  -  (uiFl  -  ukFf)  =  p  {Ha  ~  (uiffi  -  ukH})}     .  (44) 

and  (c)  Si  +  Ui(skuk)  =  a-F*  ....  (45) 
This  is  the  invariant  form  of  these  laws.  For  purposes  of  calcu- 

lation it  is  convenient  to  replace  (44)  by  the  equations 

Fkim  +  Fauk  +  Fikut  =  fj.  {HkiUi  +  HnUk  +  Hikui}  .     (46) 

.  which  are  derived  directly  from  them.     Our  manner  of  deriving 
I  them  makes  it  clear  that  they  hold  only  for  matter  which  is  in 
uniform  translation.     We  may,  however,  consider  them  as  being 
valid  also  for  a  single  body  in  uniform  translation,  if  it  is  separated 

;  by  empty  space  from  bodies  moving  with  velocities  differing  from 

its  own.*    Finally,  they  may  also  be  considered  to  hold  for  matter 

*This  is  the  essential  point  in  most  applications.     By  applying  Maxwell's 
statical  laws  to  a  region  composed,  in  each  case,  of  a  body  K  and  the  empty 

1  space  surrounding  it  and  referred  to  the  system  of  reference  in  which  K  is  at 13 
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moving  in  any  manner  whatsoever,  provided  that  its  velocity  does 
not  fluctuate  too  rapidly.  After  having  obtained  the  invariant  form 
in  this  way,  we  may  now  split  up  the  world  in  terms  of  any 
arbitrary  e.  Suppose  the  measurirfg  instruments  that  are  used  to 
determine  the  ponderomotive  effects  of  field  to  be  at  rest  in  RQ. 

We  shall  use  a  co-ordinate  system  belonging  to  Re  and  thus  set 

we  hereby  again  arrive  at  Maxwell's  field-equations,  which  are 
thus  valid  in  a  totally  unchanged  form,  not  only  for  static, 
but  also  for  moving  matter.  Does  this  not,  however,  conflict 
violently  with  the  observations  of  induction,  which  appear  to 
require  the  addition  of  a  term  as  in  (41)  ?  No  ;  for  these 
observations  do  not  really  determine  the  intensity  of  field  E,  but 
only  the  current  which  flows  in  the  conductor  ;  for  moving  bodies, 
however,  the  connection  between  the  two  is  given  by  a  different 
equation,  namely,  by  (45). 

If  we  write  down  those  equations  of  (43),  (45),  which  correspond 
to  the  components  with  indices  i  =  1,  2,  3,  and  those  of  (46),  which 
correspond  to 

(ikl)  =  (230),  (310),  (120) 

(the  others  are  superfluous),  the  following  results,  as  is  easily  seen, 
come  about.  If  we  set 

E  +  [yB]  =  E*  D  +  [vH]  =  D* 

B  -  [YE]  =  B*  H  -  [YD]  =  H* 
then 

D*  =  «E*  B*  =  MH* 

If,  in  addition,  we  resolve  s  into  the  "  convection-current  "  c  and 
the  "  conduction-current  "  s*,  that  is, 

S  =  C  +  S* 

C  =  p*Y          p*  =       =-&>  =  p  -  (YB*) 

rest,  we  find  no  discrepancies  occurring  in  empty  space  when  we  derive  results 
from  different  bodies  moving  relatively  to  one  another,  because  the  principle 
of  relativity  holds  for  empty  space. 
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then 

o-E* Everything  now  becomes  clear  :  the  current  is  composed  partly  of 

a  convection-current  which  is  due  to  the  motion  of  charged  matter, 

and  partly  of  a  conduction-current,  which  is  determined  by  the 

conductivity  o-  of  the  substance.  The  conduction-current  is  cal- 

culated from  Ohm's  Law,  if  the  electromotive  force  is  denned 

by  the  line-integral,  not  of  E,  but  of  E*.  An  equation  exactly 
analogous  to  (41)  holds  for  E*,  namely  : 

-v  T> 

curl  E*  =  -  77-  +  curl  [vB]  (we  now  always  take  c  =  1) ot 

or  expressed  in  integrals,  as  in  (40), 

This  explains  fully  Faraday's  phenomenon  of  induction  in  moving 
conductors.  For  Wilson's  experiment,  according  to  the  present 
theory,  curl  E  =  0,  that  is,  E  will  be  zero  between  the  plates.  This 
gives  us  the  constant  values  of  the  individual  vectors  (of  which  the 

electrical  ones  are  perpendicular  to  the  plates,  whilst  the  magnetic 
ones  are  directed  parallel  to  the  plates  and  perpendicular  to  the 
velocity)  :  these  values  are  : 

E*  =  vB*  =  v^H*  =  po  (H  +  vD) 
D  =  D*  _  vH  =  eE*  -  vH. 

If  we  substitute  the  expression  for  E*  in  the  first  equation,  we  get 

This  is  the  value  of  the  superficial  density  of  charge  that  is  called 
up  on  the  condenser  plates  :  it  agrees  with  our  observations  since, 

on  account  of  v  being  very  small,  the  denominator  in  our  formula 
differs  very  little  from  unity. 

The  boundary  conditions  at  the  boundary  between  the  matter 
and  the  aether  are  obtained  from  the  consideration  that  the  field- 

magnitudes  F  and  H  must  not  suffer  any  sudden  (discontinuous) 

changes  in  moving  along  with  the  matter  ;  but,  in  general,  they  will 

undergo  a  sudden  change,  at  some  fixed  space-point  imagined 
in  the  aether  for  the  sake  of  clearness,  at  the  instant  at  which  the 

matter  passes  over  this  point.  If  s  is  the  proper-time  of  an  ele- 
mentary particle  of  matter  then 

ds 
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must  remain  finite  everywhere.     If  we  set 

a*a=  _  (*FU    *FU\ 
~bxi   ~          \tXi         ~bxk) 

we  see  that  this  expression 

Consequently,  E*  cannot  have  a  surface-curl  (and  B  cannot  have  a 
surface-divergence). 

The  fundamental  equations  for  moving  bodies  were  deduced  by 
Lorentz  from  the  theory  of  electrons  in  a  form  equivalent  to  the 
above  before  the  discovery  of  the  principle  of  relativity.  This  is 

not  surprising,  seeing  that  Maxwell's  fundamental  laws  for  the 
aether  satisfy  the  principle  of  relativity,  and  that  the  theory  of 

electrons  derives  those  governing  the  behaviour  of  matter  by  build- 

ing up  mean  values  from  these  laws.  Fizeau's  and  Wilson's  ex- 
periments and  another  analogous  one,  that  of  Eontgen  and  Eichwald 

(vide  note  11),  prove  that  the  electromagnetic  behaviour  of  matter  is 
in  accordance  with  the  principle  of  relativity  ;  the  problems  of  the 
electrodynamics  of  moving  bodies  first  led  Einstein  to  enunciate  it. 
We  are  indebted  to  Minkowski  for  recognising  clearly  that  the 
fundamental  equations  for  moving  bodies  are  determined  uniquely 

by  the  principle  of  relativity  if  Maxwell's  theory  for  matter  at  rest 
is  taken  for  granted.  He  it  was,  also,  who  formulated  it  in  its 
final  form  (vide  note  12). 

Our  next  aim  will  be  to  subjugate  mechanics,  which  does  not 
obey  the  principle  in  its  classical  form,  to  the  principle  of  relativity 
of  Einstein,  and  to  inquire  whether  the  modifications  that  the  latter 
demands  can  be  made  to  harmonise  with  the  facts  of  experiment. 

§  2$.  Mechanics  according  to  the  Principle  of  Relativity 

On  the  theory  of  electrons  we  found  the  mechanical  effect  of  the 

electromagnetic  field  to  depend  on  a  vector  p  whose  contra-variant 
components  are 

pi  =  pik  Sk  =  pQFikuk. 

It  therefore  satisfies  the  equation 

piui  =  (pu)  =  0      .         .         .         .     (47) 

in  which  u  is  the  world-direction  of  the  matter.  If  we  split  up  p 
and  u  in  any  way  into  space  and  time  thus 

u  =  fc    hu  (48) 
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we  get  p  as  the  force-density  and,  as  we  see  from  (47)  or  from 

h{\  -  (pu) }  =  0 
that  A.  is  the  work-density. 

We  arrive  at  the  fundamental  law  of  the  mechanics  which 

agrees  with  Einstein's  Principle  of  Eelativity  by  the  same  method 
as  that  by  which  we  obtain  the  fundamental  equations  of  electro- 

magnetics. We  assume  that  Newton's  Law  remains  valid  in  the 
system  of  reference  in  which  the  matter  is  at  rest.  We  fix  our 
attention  on  the  point-mass  m,  which  is  situated  at  a  definite  world- 
point  0  and  split  up  our  quantities  in  terms  of  its  world-direction  u 
into  space  and  time,  m  is  momentarily  at  rest  in  /?u.  Let  ̂ 0  be 
the  density  in  /?u  of  the  matter  at  the  point  0.  Suppose  that,  after 
an  infinitesimal  element  of  time  ds  has  elapsed,  m  has  the  world- 
direction  u  +  du.  It  follows  from  (uu)  =  -  1  that  (u  .  du)  =  0. 
Hence,  splitting  up  with  respect  to  u,  we  get 

u  =  1  |  0,       du  =  0  |  du,       p  =  0  |  p. 
It  follows  from 

u  +  du  =  1  I  du 

that  du  is  the  relative  velocity  acquired  by  m  (in  #u)  during  the 
time  ds.  Thus  there  can  be  no  doubt  that  the  fundamental  law  of 
mechanics  is 

-  =0 

From  this  we  derive  at  once  the  invariant  form 

f<o^  =  P-  •         -         -     (49) 

which  is»quite  independent  of  the  manner  of  splitting  up.  In  it,  /x0 
is  the  statical  density,  that  is,  the  density  of  the  mass  when  at 
rest ;  ds  is  the  proper- time  that  elapses  during  the  infinitesimal 
displacement  of  the  particle  of  matter,  during  which  its  world- 
direction  increases  by  ̂u. 

Eesolution  into  terms  of  u  is  a  partition  which  would  alter 
during  the  motion  of  the  particle  of  matter.  If  we  now  split  up 
our  quantities,  however,  into  space  and  time  by  means  of  some 
fixed  time-like  vector  e  that  points  into  the  future  and  satisfies  the 
condition  of  normality  (ee)  =  -  1,  then,  by  (48),  (49)  resolves  into 

d/_l   \ 

**U-W     ,  (50) 
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If,  in  this  partition  or  resolution,  t  denotes  the  time,  dFthe  volume, 
and  dV0  the  static  volume  of  the  particle  of  matter  at  a  definite 
moment,  its  mass,  however,  being  m  =  />t0^F0,  and  if 

pdv  =  P,        XdV  =  L 

denotes  the  force  acting  on  the  particle  and  its  work,  respectively, 
then  if  we  multiply  our  equations  by  d  V  and  take  into  account  that 

and  that  the  mass  m  remains  constant  during  the  motion,  we  get 
finally 

'    .  .     (51) 

p  ,  .     (52) I  -  v 

These  are  the  equations  for  the  mechanics  of  the  point-mass.  The 
equation  of  momentum  (52)  differs  from  that  of  Newton  only  in 

that  the  (kinetic)  momentum  of  the  point-mass  is  -  not  mu  but 

=  ~7r=  ==5'      The  equation  of  energy  (51)  seems  strange  at  first  : 

if  we  expand  it  into  powers  of  v,  we  get 

m  mvz 

so  that  if  we  neglect  higher  powers  of  v  and  also  the  constant  m 
we  find  that  the  expression  for  the  kinetic  energy  degenerates  into 
the  one  given  by  classical  mechanics. 

This  shows  that  the  deviations  from  the  mechanics  of  Newton 

are,  as  we  suspected,  of  only  the  second  order  of  magnitude  in  the 
velocity  of  the  point-masses  as  compared  with  the  velocity  of  light. 
Consequently,  in  the  case  of  the  small  velocities  with  which  we 

usually  deal  in  mechanics,  no  difference  can  be  demonstrated  ex- 
perimentally. It  will  become  perceptible  only  for  velocities  that 

approximate  to  that  of  light  ;  in  such  cases  the  inertial  resistance  of 
matter  against  the  accelerating  force  will  increase  to  such  an  extent 

that  the  possibility  of  actually  reaching  the  velocity  of  light  is  ex- 
cluded. Cathode  rays  and  the  /3-radiations  emitted  by  radio- 

active substances  have  made  us  familiar  with  free  negative  electrons 
whose  velocity  is  comparable  to  that  of  light.  Experiments  by 
Kaufmann,  Bucherer,  Eatnowsky,  Hupka,  and  others,  have  shown  in 
actual  fact  that  the  longitudinal  acceleration  caused  in  the  electrons 
by  an  electric  field  or  the  transverse  acceleration  caused  by  a  magnetic 
field  is  just  that  which  is  demanded  by  the  theory  of  relativity.  A 
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further  confirmation  based  on  the  motion  of  the  electrons  circulating 
in  the  atom  has  been  found  recently  in  the  fine  structure  of  the 

spectral  lines  emitted  by  the  atom  (vide  note  13).  Only  when  we 
have  added  to  the  fundamental  equations  of  the  electron  theory, 
which,  in  §  20,  was  brought  into  an  invariant  form  agreeing  with 

the  principle  of  relativity,  the  equation  si  =  p0w*,  namely,  the  asser- 
tion that  electricity  is  associated  with  matter,  and  also  the  funda- 

mental equations  of  mechanics,  do  we  get  a  complete  cycle  of 
connected  laws,  in  which  a  statement  of  the  actual  unfolding  of 
natural  phenomena  is  contained,  independent  of  all  conventions  of 

notation.  Now  that  this  final  stage  has  been  carried  out,  we  may 

at  last  claim  to  have  proved  the  validity  of  the  principle  of  relativity 
for  a  certain  region,  that  of  electromagnetic  phenomena. 

In  the  electromagnetic  field  the  ponderomotive  vector  pi  is 
derived  from  a  tensor  Sit,  dependent  only  on  the  local  values  of 

the  phase-quantities,  by  the  formulae  : .  W 

P         -*5' In  accordance  with  the  universal  meaning  ascribed  to  the  conception 
energy  in  physics,  we  must  assume  that  this  holds  not  only  for  the 

electromagnetic  field  but  for  every  region  of  physical  phenomena, 

and  that  it  is  expedient  to  regard  this  tensor  instead  of  the  pondero- 
motive force  as  the  primary  quantity.  Our  purpose  is  to  discover 

for  every  region  of  phenomena  in  what  manner  the  energy-momen- 

tum-tensor (whose  components  SM  must  always  satisfy  the  condition 
of  symmetry)  depends  on  the  characteristic  field-  or  phase-quantities. 
The  left-hand  side  of  the  mechanical  equations 

may  be  reduced  directly  to  terms  of  a  "  kinetic  "  energy-momentum- tensor  thus  : 

Uik 

For 

The  first  term  on  the  right  =  0,  on  account  of  the  equation  of  con- 

du*' 

tinui
ty  

for  matte
r  

;  the  seco
nd  

=  /*0  -r-  beca
use 

k^Ui       ~biii  ~bxjc       dm 
~bxk  ~  ̂ Xk~^s         ds  ' 

Accordingly,  the  equations  of  mechanics  assert  that  the  complete 

energy-momentum-tensor  TM  =  U&  +  S^  composed  of  the  kinetic 
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tensor  U  and  the  potential  tensor  S  satisfies  the  theorems  of  con- 
servation 

The  Principle  of  the  Conservation  of  Energy  is  here  expressed  in 
its  clearest  form.  But,  according  to  the  theory  of  relativity,  it  is 
indissolubly  connected  with  the  principle  of  the  conservation  of 
momentum  and  the  conception  momentum  (or  impulse)  must 
claim  just  as  universal  a  significance  as  that  of  energy. 
If  we  express  the  kinetic  tensor  at  a  world-point  in  terms  of  a 
normal  co-ordinate  system  such  that,  relatively  to  it,  the  matter  itself 
is  momentarily  at  rest,  its  components  assume  a  particularly  simple 
form,  namely,  ?700  =  /^0  (or  =  cV0,  if  we  use  the  c.g.s.  system,  in 
which  c  is  not  =  1),  and  all  the  remaining  components  vanish. 
This  suggests  the  idea  that  mass  is  to  be  regarded  as  concentrated 
potential  energy  that  moves  on  through  space. 

§  25.  Mass  and  Energy 

To  interpret  the  idea  expressed  in  the  preceding  sentence  we 
shall  take  up  the  thread  by  returning  to  the  consideration  of  the 
motion  of  the  electron.  So  far,  we  have  imagined  that  we  have  to 
write  for  the  force  P  in  its  equation  of  motion  (52)  the  following  : 

P  =  e(E  +  [vH])  (e  =  charge  of  the  electron) 

that  is,  that  P  is  composed  of  the  impressed  electric  and  magnetic 
fields  E  and  H.  Actually,  however,  the  electron  is  subject  not 
only  to  the  influence  of  these  external  fields  during  its  motion  but 
also  to  the  accompanying  field  which  it  itself  generates.  A 
difficulty  arises,  however,  in  the  circumstance  that  we  do  not 
know  the  constitution  of  the  electron,  and  that  we  do  not  know  the 
nature  and  laws  of  the  cohesive  pressure  that  keeps  the  electron 
together  against  the  enormous  centrifugal  forces  of  the  negative 
charge  compressed  in  it.  In  any  case  the  electron  at  rest  and  its 
electric  field  (which  we  consider  as  part  of  it)  is  a  physical  system, 
which  is  in  a  state  of  statical  equilibrium  —  and  that  is  the  essential 
point.  Let  us  choose  a  normal  co-ordinate  system  in  which  the 
electron  is  at  rest.  Suppose  its  energy-tensor  to  have  components 
tik.  The  fact  that  the  electron  is  at  rest  is  expressed  by  the  vanish- 

ing of  the  energy-  flux  of  whose  components  are  t0i  (i  =  1,  2,  3). 
The  0th  condition  of  equilibrium 

.     (53) 
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then  tells  us  that  the  energy-density  £00  is  independent  of  the  time 
X0.  On  account  of  symmetry  the  components  tio  (i  =  1,  2,  3)  of 
the  momentum-density  each  also  vanish.  If  t^  is  the  vector  whose 
components  are  tllt  t12,  t13,  the  condition  for  equilibrium  (53), 
(i  =  1),  gives 

divt(D  =  0. 

Hence  we  have,  for  example, 

div  (£2t«)  =  x.2  div  tf  D  +  tlz  =  tw 

and  since  the  integral  of  a  divergence  is  zero  (we  may  assume  that 

the  t's  vanish  at  infinity  at  least  as  far  as  to  the  fourth  order)  we  get 

U^da^iTjda?,  =  0. 

In  the  same  way  we  find  that,  although  the  ̂ 's  (for  i,  k  =  1,  2,  3) 
do  not  vanish,  their  volume  integrals  I^F0  do  so.  We  may 

regard  these  circumstances  as  existing  for  every  system  in  statical 
equilibrium.  The  result  obtained  may  be  expressed  by  invariant 

formulae  for  the  case  of  any  arbitrary  co-ordinate  system  thus  : 

ft&~0,  1,2,  3)       .         .     (54) 

EQ  is  the  energy-content  (measured  in  the  space  of  reference  for 
which  the  electron  is  at  rest),  Ut  are  the  co-  variant  components  of 
the  world-direction  of  the  electron,  and  dVQ  the  statical  volume  of 
an  element  of  space  (calculated  on  the  supposition  that  the  whole 
of  space  participates  in  the  motion  of  the  electron).  (54)  is 
rigorously  true  for  uniform  translation.  We  may  also  apply  the 
formula  in  the  case  of  non-uniform  motion  if  u  does  not  change 
too  suddenly  in  space  or  in  time.  The  components 

of  the  ponderomotive  effect,  exerted  on  the  electron  by  itself,  are 
however,  then  no  longer  =  0. 

If  we  assume  the  electron  to  be  entirely  without  mass,  and  if 

pl  is  the  "4-force"  acting  from  without,  then  equilibrium  demands that 

pi  +  pi  =  0          .         .         .         .     (55) 
We  split  up  u  and  p  into  space  and  time  in  terms  of  a  fixed  e,  getting 

u  =  h\hu,     p  =  (p*)  =  A|/J 
and  we  integrate  (55)  with  respect  to  the  volume  dV  = 

dV0  ̂ /l  -  v2.  Since,  if  we  use  a  normal  co-ordinate  system 
corresponding  to  /?e,  we  have 
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r_.        r_.  d  f 

(in  which  XQ  =  £,  the  time),  we  get 

These  equations  hold  if  the  force  P  acting  from  without  is  not  too  ; 

great  compared  with  — ,  a  being  the  radius  of  the  electron,  and  if  • 

its  density  in  the  neighbourhood  of  the  electron  is  practically 
constant.  They  agree  exactly  with  the  fundamental  equations  of 
mechanics  if  the  mass  ra  is  replaced  by  E.  In  other  words,  i 
inertia  is  a  property  of  energy.  In  mechanics  we  ascribe  to 
every  material  body  an  invariable  mass  m  which,  in  consequence  of 
the  manner  in  which  it  occurs  in  the  fundamental  laW  of  mechanics,  ; 
represents  the  inertia  of  matter,  that  is,  its  resistance  to  the 
accelerating  forces.  Mechanics  accepts  this  inertial  mass  as  given 

and  as  requiring  no  further  explanation.  We  now  recognise  that  the  • 
potential  energy  contained  in  material  bodies  is  the  cause  of  this 
inertia,  and  that  the  value  of  the  mass  corresponding  to  the  energy 
EQ  expressed  in  the  c.g.s.  system,  in  which  the  velocity  of  light  is 
not  unity,  is 

We  have  thus  attained  a  new,  purely  dynamical  view  of  matter.* 
Just  as  the  theory  of  relativity  has  taught  us  to  reject  the  belief  that 
we  can  recognise  one  and  the  same  point  in  space  at  different  times, 
so  now  we  see  that  there  is  no  longer  a  meaning  in  speaking 
of  the  same  position  of  matter  at  different  times.  The 
electron,  which  was  formerly  regarded  as  a  body  of  foreign 
substance  in  the  non-material  electromagnetic  field,  now  no  longer 
seems  to  us  a  very  small  region  marked  off  distinctly  from  the 
field,  but  to  be  such  that,  for  it,  the  field-quantities  and  the 

electrical  densities  assume  enormously  high  values.  An  "  energy- 
knot  "  of  this  type  propagates  itself  in  empty  space  in  a  manner  no 
different  from  that  in  which  a  water-wave  advances  over  the  surface 

*  Even  Kant  in  his  Metaphysischen  Anfangsgriinden  der  Naturwissenschaft, 
teaches  the  doctrine  that  matter  fills  space  not  by  its  mere  existence  but  in 
virtue  of  the  repulsive  forces  of  all  its  parts. 
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of  the  sea ;  there  is  no  "  one  and  the  same  substance  "  of  which  the 
electron  is  composed  at  all  times.  There  is  only  a  potential ;  and 

no  kinetic  energy-momentum-tensor  becomes  added  to  it.  The 
resolution  into  these  two,  which  occurs  in  mechanics,  is  only 

the  separation  of  the  thinly  distributed  energy  in  the  field 

from  that  concentrated  in  the  energy-knots,  electrons  and 
atoms ;  the  boundary  between  the  two  is  quite  indeterminate. 

The  theory  of  fields  has  to  explain  why  the  field  is  granular  in 

'structure  and  why  these  energy-knots  preserve  themselves  per- 
manently from  energy  and  momentum  in  their  passage  to  and  fro 

(although  they  do  not  remain  fully  unchanged,  they  retain  their 
identity  to  an  extraordinary  degree  of  accuracy) ;  therein  lies  the 
problem  of  matter.  The  theory  of  Maxwell  and  Lorentz  is 

incapable  of  solving  it  for  the  primary  reason  that  the  force  of 
cohesion  holding  the  electron  together  is  wanting  in  it.  What  is 

commonly  called  matter  is  by  its  very  nature  atomic;  for 
we  do  not  usually  call  diffusely  distributed  energy  matter.  Atoms 
and  electrons  are  not,  of  course,  ultimate  invariable  elements, 

which  natural  forces  attack  from  without,  pushing  them  hither  and 

thither,  but  they  are  themselves  distributed  continuously  and  subject 

(to  minute  changes  of  a  fluid  character  in  their  smallest  parts.  It  is 

not  the  field  that  requires  matter  as  its  carrier  in  order  to  be  able  to 
.exist  itself,  but  matter  is,  on  the  contrary,  an  offspring  of  the 

field.  The  formulae  that  express  the  components  of  the  energy - 
t  tensor  Tik  in  terms  of  phase-quantities  of  the  field  tell  us  the  laws 

according  to  which  the  field  is  associated  with  energy  and  momen- 
tum, that  is,  with  matter.  Since  there  is  no  sharp  line  of  demar- 

cation between  diffuse  field-energy  and  that  of  electrons  and  atoms, 
i  we  must  broaden  our  conception  of  matter,  if  it  is  still  to  retain  an 
exact  meaning.  In  future  we  shall  assign  the  term  matter  to  that 

.real  thing,  which  is  represented  by  the  energy-momentum-tensor. 
,  In  this  sense,  the  optical  field,  for  example,  is  also  associated  with 

matter.  Just  as  in  this  way  matter  is  merged  into  the  field,  so 
mechanics  is  expanded  into  physics.  For  the  law  of  conservation  of 
matter,  the  fundamental  law  of  mechanics 

^*  =  0  .  .     (57) 
<>#* 

in  which  the  2V  s  are  expressed  in  terms  of  the  field-quantities, 
represents  a  differential  relationship  between  these  quantities,  and 

'  must  therefore  follow  from  the  field-equations.  In  the  wide  sense, 
in  which  we  now  use  the  word,  matter  is  that  of  which  we  take 

:  cognisance  directly  through  our  senses.  If  I  seize  hold  of  a  piece 

of  ice,  I  experience  the  energy-flux  flowing  between  the  ice  and 
,  my  body  as  warmth,  and  the  momentum-flux  as  pressure.  The 
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energy-flux  of  light  on  the  surface  of  the  epithelium  of  my  eye 
determines  the  optical  sensations  that  I  experience.  Hidden  behind 
the  matter  thus  revealed  directly  to  our  organs  of  sense  there  is, 
however,  the  field.  To  discover  the  laws  governing  the  latter 
itself  and  also  the  laws  by  which  it  determines  matter  we  have  a 

first  brilliant  beginning  in  Maxwell's  Theory,  but  this  is  not  our 
final  destination  in  the  quest  of  knowledge.* 

To  account  for  the  inertia  of  matter  we  must,  according  to; 

formula  (56),  ascribe  a  very  considerable  amount  of  energy-content 

to  it :  one  kilogram  of  water  is  to  contain  9'10'23  ergs.  A  small  por- 
tion of  this  energy  is  energy  of  cohesion,  that  keeps  the  molecules 

or  atoms  associated  together  in  the  body.  Another  portion  is  the 
chemical  energy  that  binds  the  atoms  together  in  the  molecule  and 
the  sudden  liberation  of  which  we  observe  in  an  explosion  (in  solid 
bodies  this  chemical  energy  cannot  be  distinguished  from  the  energy 
of  cohesion).  Changes  in  the  chemical  constitution  of  bodies  or  ic 
the  grouping  of  atoms  or  electrons  involve  the  energies  due  to  the 
electric  forces  that  bind  together  the  negatively  charged  electrons 
and  the  positive  nucleus ;  all  ionisation  phenomena  are  included 
in  this  category.  The  energy  of  the  composite  atomic  nucleus,  oJ 
which  a  part  is  set  free  during  radioactive  disintegration,  far  exceeds 
the  amounts  mentioned  above.  The  greater  part  of  this,  again, 
consists  of  the  intrinsic  energy  of  the  elements  of  the  atomic  nucleus 
and  of  the  electrons.  We  know  of  it  only  through  inertial  effects 

as  we  have  hitherto — owing  to  a  merciful  Providence — not  dis- 

covered a  means  of  bringing  it  to  "  explosion  ".  Inertial  mass 
varies  with  the  contained  energy.  If  a  body  is  heated,  its 
inertial  mass  increases ;  if  it  is  cooled,  it  decreases ;  this  effect  is,  o. 
course,  too  small  to  be  observed  directly. 

The  foregoing  treatment  of  systems  in  statical  equilibrium,  ir 
which  we  have  in  general  followed  Laue,t  was  applied  to  the  electron 
with  special  assumptions  concerning  its  constitution,  even  before 

Einstein's  discovery  of  the  principle  of  relativity.  The  electron  \va^ 
assumed  to  be  a  sphere  with  a  uniform  charge  either  on  its  surface 
or  distributed  evenly  throughout  its  volume,  and  held  together  b} 
a  cohesive  pressure  composed  of  forces  equal  in  all  directions  am 

directed  towards  the  centre.    The  resultant  "  electromagnetic  mass ' 

-p 

—£-  agrees   numerically  with   the   results   of    observation,   if    om c 

ascribes  a  radius  of  the  order   of   magnitude  10  ~13  cms.  to  thf 
electron.     There  is  no  cause  for  surprise  at  the  fact  that  even  beforf 

*  Later  we  shall  once  again  modify  our  views  of  matter;  the  idea  of  th< 
existence  of  substance  has,  however,  been  finally  quashed, 

t  Vide  note  14. 
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he  advent  of  the  theory  of  relativity  this  interpretation  of  electronic 

icrtia  was  possible;  for,  in  treating  electrodynamics  after  the 
ia iiner  of  Maxwell,  one  was  already  unconsciously  treading  in  the 

\  of  the  principle  of  relativity  as  far  as  this  branch  of  pheno- 
icna  is  concerned.  We  are  indebted  to  Einstein  and  Planck, 

hove  all,  for  the  enunciation  of  the  inertia  of  energy  (vide  note  15). 

'lanck,  in  his  development  of  dynamics,  started  from  a  "  test  body  " 
,-hich,  contrary  to  the  electron,  was  fully  known  although  it  was 
«ot  in  the  ordinary  sense  material,  namely,  cavity-radiation  in 

lermo-dynamical  equilibrium,  as  produced  according  to  Kirchoff's 
;iw,  in  every  cavity  enclosed  by  walls  at  the  same  uniform 

3mperature. 
In  the  phenomenological  theories  in  which  the  atomic  structure 

f  matter  is  disregarded  we  imagine  the  energy  that  is  stored  up 
i  the  electrons,  atoms,  etc.,  to  be  distributed  uniformly  over  the 

odies.  We  need  take  it  into  consideration  only  by  introducing  the 

tatical  density  of  mass  ^  as  the  density  of  energy  in  the  energy- 
lomenturn-tensor — referred  to  a  co-ordinate  system  in  which  the 

latter  is  at  rest.  Thus,  if  in  hydro-dynamics  we  limit  ourselves  to 
diabatic  phenomena,  we  must  set 

000 

0  ^00 
0  Op  0 
0  Q  0  p 

ji  which  p  is  the  homogeneous  pressure ;  the  energy-flux  is  zero 
i  adiabatic  phenomena.  To  enable  us  to  write  down  the  com- 

onents  of  this  tensor  in  any  arbitrary  co-ordinate  system,  we  must 

3t  /AO  =  (j*  —  p,  in  addition.  We  then  get  the  invariant  equations 

Tk.  =  fji*UiUh  +  p^. 

or  TM  =  pj*UiUk  +  p  .  gik        .         .         .     (58) 

'he  statical  density  of  mass  is 

nd  hence  we  must  put  /x0,  and  not  /A*,  equal  to  a  constant  in  the 
ise  of  incompressible  fluids.  If  no  forces  act  on  the  fluid,  the 
ydrodynamical  equations  become La"0t 

ust  as  is  here  done  for  hydrodynamics  so  we  may  find  a  form  for 
theory  of  elasticity  based  on  the  principle  of  relativity  (vide 

'ote  16).     There  still  remains   the  task   of   making  the  law  of 
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gravitation,  which,  in  Newton's  form,  is  entirely  bound  to  the 
principle  of  relativity  of  Newton  and  Galilei,  conform  to  that  of 
Einstein.  This,  however,  involves  special  problems  of  its  own  to 
which  we  shall  return  in  the  last  chapter. 

§  26.  Mie's  Theory 

The  theory  of  Maxwell  and  Lorentz  cannot  hold  for  the  interior 

of  the  electron  ;  therefore,  from  the  point  of  view  of  the  ordinary 
theory  of  electrons  we  must  treat  the  electron  as  something  given 

a  priori,  as  a  foreign  body  in  the  field.  A  more  general  theory 
of  electrodynamics  has  been  proposed  by  Mie,  by  which  it  seems 

possible  to  derive  the  matter  from  the  field  (vide  note  17).  We 

shall  sketch  its  outlines  briefly  here  —  as  an  example  of  a  physical 
theory  fully  conforming  with  the  new  ideas  of  matter,  and  one  that 
will  be  of  good  service  later.  It  will  give  us  an  opportunity  of 
formulating  the  problem  of  matter  a  little  more  clearly. 

We  shall  retain  the  view  that  the  following  phase-quantities 

are  of  account  :  (1)  the  four-dimensional  current-vector  s,  the 

"  electricity  "  ;  (2)  the  linear  tensor  of  the  second  order  F,  the 
"field".  Their  properties  are  expressed  in  the  equations 

« 
Equations  (2)  hold  if  F  is  derivable  from  a  vector  <£<•  according  to 
the  formulae 

/ox 

Conversely,  it  follows  from  (2)  that  a  vector  $  must  exist  such  that 

equations  (3)  hold.  In  the  same  way  (1)  is  fulfilled  if  s  is  derivable 

from  a  skew-  symmetrical  tensor  H  of  the  second  order  according  to 

Conversely,  it  follows  from  (1)  that  a  tensor  H  satisfying  these 
conditions  must  exist.  Lorentz  assumed  generally,  not  only  for 
the  aether,  but  also  for  the  domain  of  electrons,  that  H  =  F. 

Following  Mie,  we  shall  make  the  more  general  assumption  that 
H  is  not  a  mere  number  of  calculation  but  has  a  real  significance, 

and  that  its  components  are,  therefore,  universal  functions  of  the 

primary  phase-quantities  s  and  F.  To  be  logical  we  must  then. 



MIE'S  THEORY  207 

make  the  same  assumption  about  <£.     The  resultant  scheme  of 
quantities 

s  I  H 

contains  the  quantities  of  intensity  in  the  first  row  ;  they  are  con- 
nected with  one  another  by  the  differential  equations  (3).  In  the 

second  row  we  have  the  quantities  of  magnitude,  for  which  the 
differential  quantities  (4)  hold.  If  we  perform  the  resolution  into 
'space  and  time  and  use  the  same  terms  as  in  §  20  we  arrive  at  the 
well-known  equations 

(1)  ||+divS     =0, 

7  p
 

(2)  ̂   +  curl  E   =  0  (div  B  =  0), 

(3)  ̂   +  grad<£  =  £        (-  curl/  =  £), 

(4)  jj  -  curl//  =  -  s          (div£  =  P). 

If  we  know  the  universal  functions,  which  express  <£  and  H  in 
iterms  of  s  and  F,  then,  excluding  the  equations  in  brackets, 

and  counting  each  component  separately,  we  have  ten  "  principal 
equations"  before  us,  in  which  the  derivatives  of  the  ten  phase- 
quantities  with  respect  to  the  time  are  expressed  in  relation  to 
ithemselves  and  their  spatial  derivatives  ;  that  is,  we  have  physical 
laws  in  the  form  that  is  demanded  by  the  principle  of  causality. 
The  principle  of  relativity  that  here  appears  as  an  antithesis,  in 
i  certain  sense,  to  the  principle  of  causality,  demands  that  the 

principal  equations  be  accompanied  by  the  bracketed  "  subsidiary 
equations,"  in  which  no  time  derivatives  occur.  The  conflict  is 
ivoided  by  noticing  that  the  subsidiary  equations  are  superfluous. 

'For  it  follows  from  the  principal  equations  (2)  and  (3)  that 

^  (B  +  curl/)  -  0, 

ind  from  (1)  and  (4)  that 

It  is  instructive  to  compare  Mie's  Theory  with  Lorentz's  funda- 
nental  equations  of  the  theory  of  electrons.  In  the  latter,  (1),  (2), 
tnd  (4)  occur,  whilst  the  law  by  which  H  is  determined  from  the 
)rimary  phase-quantities  is  simply  expressed  by  D  =  £,  //  =  B. 

On  the  other  hand,  in  Mie's  theory,  <£  and  /  are  defined  in  (3)  as 



208  RELATIVITY  OF  SPACE  AND  TIME 

the  result  of  a  process  of  calculation,  and  there  is  no  law  that 

determines  how  these  potentials  depend  on  the  phase-quantities  of 
the  field  and  on  the  electricity.  In  place  of  this  we  find  the  formula 
giving  the  density  of  the  mechanical  force  and  the  law  of  mechanics, 
which  governs  the  motion  of  electrons  under  the  influence  of  this 
force.  Since,  however,  according  to  the  new  view  which  we  have  put 
forward,  the  mechanical  law  must  follow  from  the  field-equations, 
an  addendum  becomes  necessary  ;  for  this  purpose,  Mie  makes  the 
assumption  that  <f>  and  f  acquire  a  physical  meaning  in  the  sense 

indicated.  We  may,  however,  enunciate  Mie's  equation  (3)  in  a 
form  fully  analogous  to  that  of  the  fundamental  law  of  mechanics. 

We  contrast  the  ponderomotive  force  occurring  in  it  with  the  "  elec- 

trical force  "  £  in  this  case.  In  the  statical  case  (3)  states  that 
E  -  grad  <£  =  0      .         .         .         .     (59) 

that  is,  the  electric  force  £  is  counterbalanced  in  the  aether  by  an 

"electrical  pressure"  <£.  In  general,  however,  a  resulting  elec- 
trical force  arises  which,  by  (3),  now  belongs  to  the  magnitude  / 

as  the  "  electrical  momentum".  It  inspires  us  with  wonder  to 
see  how,  in  Mie's  Theory,  the  fundamental  equation  of  electrostatics 
(59)  which  stands  at  the  commencement  of  electrical  theory, 
suddenly  acquires  a  much  more  vivid  meaning  by  the  appearance 
of  potential  as  an  electrical  pressure  ;  this  is  the  required  cohesive 
pressure  that  keeps  the  electron  together. 

The  foregoing  presents  only  an  empty  scheme  that  has  to  be 
filled  in  by  the  yet  unknown  universal  functions  that  connect  the 
quantities  of  magnitude  with  those  of  intensity.  Up  to  a  certain 
degree  they  may  be  determined  purely  speculatively  by  means  of 
the  postulate  that  the  theorem  of  conservation  (57)  must  hold  for 

the  energy-momentum-tensor  Tfk  (that  is,  that  the  principle  of 
energy  must  be  valid).  For  this  is  certainly  a  necessary  condition, 
if  we  are  to  arrive  at  some  relationship  with  experiment  at  all. 
The  energy-law  must  be  of  the  form 

in  which  W  is  the  density  of  energy,  and  s  the  energy-flux.  We 

get  at  Maxwell's  Theory  by  multiplying  (2)  by  H  and  (4)  by  £,  and 
then  adding,  which  gives 

H**+  f^  +  div  [EH]-  -(ft)        .        -     (60) ot  ot 

In  this  relation  (60)  we  have  also  on  the  right,  the  work,  which  is 
used  in  increasing  the  kinetic  energy  of  the  electrons  or,  according 
to  our  present  view,  in  increasing  the  potential  energy  of  the  field 
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of  electrons.  Hence  this  term  must  also  be  composed  of  a  term 

differentiated  with  respect  to  the  time,  and  of  a  divergence.  If  we 

now  treat  equations  (1)  and  (3)  in  the  same  way  as  we  just  above 

treated  (2)  and  (4),  that  is,  multiply  (1)  by  </>  and  (3)  scalarly  by  s, 
we  get 

(60)  and  (61)  together  give  the  energy  theorem  ;  accordingly  the 

energy-flux  must  be 
S  =  [EH]  +  <j>s 

and 

^Sp  +  sS/  +  HZB  +  ESD  =  SW 

is  the  total  differential  of  the  energy-density.  It  is  easy  to  see  why 
a  term  proportional  to  s,  namely  <f)S,  has  to  be  added  to  the  term 

(EH)  which  holds  in  the  aether.  For  when  the  electron  that 

generates  the  convection-current  s  moves,  its  energy-  content  flows 
also.  In  the  aether  the  term  (£//)  is  overpowered  by  <9,  but  in  the 
electron  the  other  <£s  easily  gains  the  upper  hand.  The  quantities 

/>,/,  B,  D  occur  in  the  formula  for  the  total  differential  of  the 

energy-density  as  independent  differentiated  phase-quantities.  For 
i  the  sake  of  clearness  we  shall  introduce  <£  and  £  as  independent 

variables  in  place  of  p  and  D.  By  this  means  all  the  quantities  of 
intensity  are  made  to  act  as  independent  variables.  We  must 
build  up 

L  =  W  -  ED  -  p<j>  .         .         .         .     (62) 
and  then  we  get 

SL  =  (HSB  -  DSE)  +  (sSf  -  p8<£). 
If  L  is  known  as  a  function  of  the  quantities  of  intensity,  then 
these  equations  express  the  quantities  of  magnitude  as  functions  of 

the  quantities  of  intensity.  In  place  of  the  ten  unknown  uni- 
versal functions  we  have  now  only  one,  L  ;  this  is  accomplished 

by  the  principle  of  energy. 
Let  us  again  return  to  four-dimensional  notation,  we  then  have 

SL=^Hi^Fik+si8fa          .        .        .     (63) 

From  this  it  follows  that  8L,  and  hence  L,  the  "  Hamiltonian 

Function  "  is  an  invariant.  The  simplest  invariants  that  may  be 
formed  from  a  vector  having  components  fa  and  a  linear  tensor  of 

the  second  order  having  components  F&  are  the  squares  of  the 
following  expressions  : 

the  vector  <£*,  fafi 
•  the  tensor  F^  2I/° 

14 
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the  linear  tensor  of  the  fourth  order  with  components  2  +. 
(the  summation  extends  over  the  24  permutations  of  the  indices 
i,  k,l,m;  the  upper  sign  applies  to  the  even  permutations,  the  lower 

ones  to  the  odd)  ;  and  finally  of  the  vector  Fucfi0. 
Just  as  in  three-dimensional  geometry  the  most  important 

theorem  of  congruence  is  that  a  vector-pair  a,  b  is  fully  charac- 
terised in  respect  to  congruence  by  means  of  the  invariants  a2,  ab, 

b2,  so  it  may  be  shown  in  four-dimensional  geometry  that  the  in- 
variants quoted  determine  fully  in  respect  to  congruence  the  figure 

composed  of  a  vector  <£  and  a  linear  tensor  of  the  second  order  F. 
Every  invariant,  in  particular  the  Hamiltonian  Function  L,  must 
therefore  be  expressible  algebraically  in  terms  of  the  above  four 

quantities.  Mie's  Theory  thus  resolves  the  problem  of  matter  into 
a  determination  of  this  expression.  Maxwell's  Theory  of  the  aether 
which,  of  course,  precludes  the  possibility  of  electrons,  is  contained 

in  it  as  the  special  case  L  =  Zr°.  If  we  also  express  W  and  the 
components  of  S  in  terms  of  four-dimensional  quantities,  we  see 
that  they  are  the  negative  (0th)  row  in  the  scheme 

2?  =  FirH*r  +  fas*  -  L.Si     -  -  -     (64) 

The  Ti  's  are  thus  the  mixed  components  of  the  energy-momentum- 
tensor,  which,  according  to  our  calculations,  fulfil  the  theorem  of 
conservation  (57)  for  i  =  0  and  hence  also  for  i  =  1,  2,  3.  In  the 
next  chapter  we  shall  add  the  proof  that  its  convariant  components 
satisfy  the  condition  of  symmetry  TU  =  T^. 

The  laws  for  the  field  may  be  summarised  in  a  very  simple 

principle  of  variation,  Hamilton's  Principle.  For  this  we  regard 
only  the  potential  with  components  fa  as  an  independent  phase- 
quantity,  and  define  the  field  by  the  equation 

Hamilton's  invariant  function  L  which  depends  on  the  potential 
and  the  field  enters  into  these  laws.  We  define  the  current-vector 
3  and  the  skew-symmetrical  tensor  H  by  means  of  (63).  If  in  an 
arbitrary  linear  co-ordinate  system 

is  the  four-dimensional  "volume-element"  of  the  world  (-  g  is  the 

determinant  of  the  metrical  groundform)  then  the  integral  \Ldu 

taken  over  any  region  of  the  world  is  an  invariant.  It  is  called  the 

Action  contained  in  the  region  in  question.  Hamilton's  Principle 
states  that  the  change  in  the  total  Action  for  each  infinitesima] 
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variation  of  the  state  of  the  field,  i  which  vanishes  outside  a  finite 

region,  is  zero,  that  is, 

i-O.        .        .        .     (65) 

This  integral  is  to  be  taken  over  the  whole  world  or,  what  comes  to 
the  same  thing,  over  a  finite  region  beyond  which  the  variation  of 

the  phase  vanishes.  This  variation  is  represented  by  the  infini- 
tesimal increments  8fa  of  the  potential-components  and  the  ac- 

companying infinitesimal  change  of  the  field 

IK 

in  which  8<fo  are  space-time  functions  that  only  differ  from  zero 
within  a  finite  region.  If  we  insert  for  8L  the  expression  (63),  we 

get 

By  the  principle  of  partial  integration  (vide  page  111)  we  get 

and,  accordingly, 

.  .     (66) 

Whereas  (3)  is  given  by  definition,  we  see  that  Hamilton's  Principle 
furnishes  the  field-equations  (4).     In  point  of  fact,  if,  for  instance, 

but  is  >  0  at  a  certain  point,  then  we  could  mark  off  a  small  region 

encircling  this  point,  such  that,  for  it,  this  difference  is  positive 

throughout.  If  we  then  choose  a  non-negative  function  for  8^  that 
vanishes  outside  the  region  marked  off,  and  if  8<£2  =  8<£3  =  S$4  =  0, 

we  arrive  at  a  contradiction  to  equation  (65)  -  (1)  and  (2)  follow 
from  (3)  and  (4). 

We  find,  then,  that  Mie's  Electrodynamics  exists  in  a  com- 

pressed form  in  Hamilton's  Principle  (65)  —  analogously  to  the 
manner  in  which  the  development  of  mechanics  attains  its  zenith 
in  the  principle  of  action.  Whereas  in  mechanics,  however,  a 

definite  function  L  of  action  corresponds  to  every  given  mechanical 
system  and  has  to  be  deducted  from  the  constitution  of  the  system, 
we  are  here  concerned  with  a  single  system,  the  world.  This  is 
where  the  real  problem  of  matter  takes  its  beginning  :  we  have  to 

determine  the  "function  of  action,"  the  world-function  L,  belonging  to 
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the  world.  For  the  present  it  leaves  us  in  perplexity.  If  we  choose 

an  arbitrary  L,  we  get  a  "  possible  "  world  governed  by  this  function 
of  action,  which  will  be  perfectly  intelligible  to  us  —  more  so  than 
the  actual  world  —  provided  that  our  mathematical  analysis  does  not 
fail  us.  We  are,  of  course,  then  concerned  in  discovering  the  only 
existing  world,  the  real  world  for  us.  Judging  from  what  we  know 

of  physical  laws,  we  may  expect  the  L  which  belongs  to  it  to  be 
distinguished  by  having  simple  mathematical  properties.  Physics, 

this  time  as  a  physics  of  fields,  is  again  pursuing  the  object  of  reducing 
the  totality  of  natural  phenomena  to  a  single  physical  law  :  it 
was  believed  that  this  goal  was  almost  within  reach  once  before 

when  Newton's  Principia,  founded  on  the  physics  of  mechanical 
point-  masses  was  celebrating  its  triumphs.  But  the  treasures  of 
knowledge  are  not  like  ripe  fruits  that  may  be  plucked  from  a  tree. 

For  the  present  we  do  not  yet  know  whether  the  phase-quantities 

on  which  Mie's  Theory  is  founded  will  suffice  to  describe  matter  or 

whether  matter  is  purely  "  electrical  "  in  nature.  Above  all,  the 
ominous  clouds  of  those  phenomena  that  we  are  with  varying 

success  seeking  to  explain  by  means  of  the  quantum  of  action,  are 
throwing  their  shadows  over  the  sphere  of  physical  knowledge, 
threatening  no  one  knows  what  new  revolution. 

Let  us  try  the  following  hypothesis  for  L  : 
~~'  .         .         .     (67) 

(w  is  the  symbol  for  a  function  of  one  variable)  ;  it  suggests  itself 

as  being  the  simplest  of  those  that  go  beyond  Maxwell's  Theory. 
We  have  no  grounds  for  assuming  that  the  world-function  has 
actually  this  form.  We  shall  confine  ourselves  to  a  consideration 
of  statical  solutions,  for  which 

£  =  //  =  0,          s  =  /  =  0 

we  have  £  =  grad  <£,         div  D  =•=  p 

D  =  £,  p  =  -  w'(<f>) 
(the  accent  denoting  the  derivative).  In  comparison  with  the 

ordinary  electrostatics  of  the  aether  we  have  here  the  new  circum- 
stance that  the  density  p  is  a  universal  function  of  the  potential,  the 

electrical  pressure  <£.  We  get  for  Poisson's  equation 
A0  +  «/(<£)  =  0       .         .         .         .     (68) 

If  w(4>)  is  not  an  even  function  of  <j>,  this  equation  no  longer  holds 

after  the  transition  from  </>  to  -  <£  ;  this  would  account  for  the 
difference  between  the  natures  of  positive  and  negative 
electricity.  Yet  it  certainly  leads  to  a  remarkable  difficulty  in  the 

case  of  non-statical  fields.  If  charges  having  opposite  signs  are  to 
occur  in  the  latter,  the  root  in  (67)  must  have  different  signs  at 



MIE'S  THEORY  213 

different  points  of  the  field.  Hence  there  must  be  points  in  the 

field,  for  which  <£;<^'  vanishes.  In  the  neighbourhood  of  such  a 
point  <£;<£*  must  be  able  to  assume  positive  and  negative  values 
(this  does  not  follow  in  the  statical  case,  as  the  minimum  of  the 

function  <£02  for  <£0  is  zero).  The  solutions  of  our  field-equations 
must,  therefore,  become  imaginary  at  regular  distances  apart.  It 
would  be  difficult  to  interpret  a  degeneration  of  the  field  into 

separate  portions  in  this  way,  each  portion  containing  only  charges 
of  one  sign,  and  separated  from  one  another  by  regions  in  which 
the  field  becomes  imaginary. 

A  solution  (vanishing  at  infinity)  of  equation  (68)  represents 

a  possible  state  of  electrical  equilibrium,  or  a  possible  corpuscle 

capable  of  existing  individually  in  the  world  that  we  now  proceed 
to  construct.  The  equilibrium  can  be  stable,  only  if  the  solution 
is  radially  symmetrical.  In  this  case,  if  r  denotes  the  radius 

vector,  the  equation  becomes 

If  (69)  is  to  have  a  regular  solution 

,      -  0  =  £  +  £  +  •  •  •          ...     (70) 

at  r  =  GO,  we  find  by  substituting  this  power  series  for  the  first  term 

of  the  equation  that  the  series  for  w'(<f>)  begins  with  the  power  r~4 
or  one  with  a  still  higher  negative  index,  and  hence  that  w(x)  must 

be  a  zero  of  at  least  the  fifth  order  for  x  =  0.  On  this  assumption 
the  equations  must  have  a  single  infinity  of  regular  solutions  at 

r  =  0  and  also  a  singular  infinity  of  regular  solutions  at  r  —  oo. 

We  may  (in  the  "  general  "  case)  expect  these  two  one-dimensional 
families  of  solutions  (included  in  the  two-dimensional  complete 
family  of  all  the  solutions)  to  have  a  finite  or,  at  any  rate,  a  discrete 

number  of  solutions.  These  would  represent  the  various  possible 
corpuscles.  (Electrons  and  elements  of  the  atomic  nucleus  ?)  One 
electron  or  one  atomic  nucleus  does  not,  of  course,  exist  alone  in 

the  world  ;  but  the  distances  between  them  are  so  great  in  com- 
parison with  their  own  size  that  they  do  not  bring  about  an 

appreciable  modification  of  the  structure  of  the  field  within  the 

i  interior  of  an  individual  electron  or  atomic  nucleus.  If  <f>  is  a 

solution  of  (69)  that  represents  such  a  corpuscle  in  (70)  then  its 
total  charge 
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but  its  mass  is  calculated  as  the  integral  of  the  energy-density  W 
that  is  given  by  (62)  : 00 

Mass  =  4?r  {i(grad  <£)2  +  w(<f>)  -  <l>w' (<f>)}r*dr 

These  physical  laws,  then,  enable  us  to  calculate  the  mass  and 
charge  of  the  electrons,  and  the  atomic  weights  and  atomic  charges 
of  the  individual  existing  elements  whereas,  hitherto,  we  have  always 
accepted  these  ultimate  constituents  of  matter  as  things  given  with 
their  numerical  properties.  All  this,  of  course,  is  merely  a  suggested 
plan  of  action  as  long  as  the  world-function  L  is  not  known.  The 
special  hypothesis  (67)  from  which  we  just  now  started  was 
assumed  only  to  show  what  a  deep  and  thorough  knowledge  of 
matter  and  its  constituents  as  based  on  laws  would  be  exposed  to 

our  gaze  if  we  could  but  discover  the  action-function.  For  the 
rest,  the  discussion  of  such  arbitrarily  chosen  hypotheses  cannot 
lead  to  any  proper  progress  ;  new  physical  knowledge  and  principles 
will  be  required  to  show  us  the  right  way  to  determine  the 
Hamiltonian  Function. 

To  make  clear,  ex  contrario^  the  nature  of  pure  physics  of  fields, 
which  was  made  feasible  by  Mie  for  the  realm  of  electrodynamics 
as  far  as  its  general  character  furnishes  hypotheses,  the  principle 
of  action  (65)  holding  in  it  will  be  contrasted  with  that  by  which 
the  theory  of  Maxwell  and  Lorentz  is  governed  ;  the  latter  theory 
recognises,  besides  the  electromagnetic  field,  a  substance  moving  in 
it.  This  substance  is  a  three-dimensional  continuum  ;  hence  its 
parts  may  be  referred  in  a  continuous  manner  to  the  system  of 
values  of  three  co-ordinates  a,  (3,  y.  Let  us  imagine  the  substance 
divided  up  into  infinitesimal  elements.  Every  element  of  substance 
has  then  a  definite  invariable  positive  mass  dm  and  an  invariable 

electrical  charge  de.  As  an  expression  of  its  history  there  corre- 
sponds to  it  then  a  world-line  with  a  definite  direction  of  traverse 

or,  in  better  words,  an  infinitely  thin  "  world-filament  ".  If  we  again 
divide  this  up  into  small  portions,  and  if 

ds  =  v  — 

is  the  proper-time  length  of  such  a  portion,  then  we  may  introduce 
the  space-time  function  //,0  of  the  statical  mass-density  by  means  of 
the  invariant  equation 

dmds  =  xdo>        .         .         .         .     (71) 
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We  shall  call  the  integral 

I/V^°>  =  \dmds  —  \dm  I  N/  -  gikdxidxk 
x 

taken  over  a  region  X  of  the  world  the  substance-action  of  mass. 
In  the  last  integral  the  inside  integration  refers  to  that  part  of  the 

world-line  of  any  arbitrary  element  of  substance  of  mass  dm,  which 
belongs  to  the  region  X,  the  outer  integral  signifies  summation 
taken  for  all  elements  of  the  substance.  In  purely  mathematical 

language  this  transition  from  substance-proper-time  integrals  to 
space-time  integrals  occurs  as  follows.  We  first  introduce  the 

substance-density  v  of  the  mass  thus  : 
dm  =  vdad(3dy 

(v  behaves  as  a  scalar-density  for  arbitrary  transformations  of  the 
substance  co-ordinates  a,  /?,  y).  On  each  world-line  of  a  substance- 

point  a,  /?,  y  we  reckon  the  proper-time  s  from  a  definite  initial 
point  (which  must,  of  course,  vary  continuously  from  substance- 
point  to  substance-point).  The  co-ordinates  Xi  of  the  world-point 

at  which  the  substance-point  a,  (3,  y,  happens  to  be  at  the  moment 
s  of  its  motion  (after  the  proper-time  s  has  elapsed),  are  then 
continuous  functions  of  a,  (3,  y,  s,  whose  functional  determinant 

we  shall  suppose  to  have  the  absolute  value  A.     The  equation  (71) 
then  states  that 

In  an  analogous  manner  we  may  account  for  the  statical  density 
of  the  electrical  charge.     We  shall  set  down 

as  substance-action  of  electricity;  in  it  the  outer  integration 
is  again  taken  over  all  the  substance-elements,  but  the  inner  one  in 

each  case  over  that  part  of  the  world-line  of  a  substance-element 

carrying  the  charge  de  whose  path  lies  in  the  interior  of  the  world- 
region  X.  We  may  therefore  also  write 

l^erfs.  ̂ >u  —  \pQUi<f>id(D=  Is^i 

e  components  of  the  world-dir 

are  the  components  of  the  4-current  (a  pure  convection  current). 

if  ul  =  — l-  are  the  components  of  the  world-direction,  and  si 
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Finally,  in  addition  to  the  substance-action  there  is  also  a  field- 

action  of  electricity,  for  which  Maxwell's  Theory  makes  the  simple convention 

Hamilton's  Principle,  which  gives  a  condensed  statement  of  the 
Max  well  -Lorentz  Laws,  may  then  be  expressed  thus  : 

The  total  action,  that  is,  the  sum  of  the  field-action  and  substance- 
action  of  electricity  2^lus  the  substance-  action  of  the  mass  for  any 
arbitrary  variation  (vanishing  for  points  beyond  a  finite  region)  of 

the  field-phase  (of  the  ̂ Is)  and  for  a  similarly  conditioned  space-time 
displacement  of  the  world-lines  described  by  the  individual  stib- 
stance-points  undergoes  no  change. 

This  principle  clearly  gives  us  the  equations 

if  we  vary  the  <£/s.  If,  however,  we  keep  the  <£/s  constant,  and 
perform  variations  on  the  world-lines  of  the  substance-points,  we 
get,  by  interchanging  differentiation  and  variation  (as  in  §  17  in 
determining  the  shortest  lines),  and  then  integrating  partially  : 

{  <f>idxi  =  f  (Sfrdxi  +  frdSxi)  =  f 

In  this  the  S#;'s  are  the  components  of  the  infinitesimal  displace- 
ment, which  the  individual  points  of  the  world-line  undergo. 

Accordingly,  we  get 

f  (de  \fadxj)  =     deds  .  Fiku^xk  =  I 

If  we  likewise  perform  variation  on  the  substance-action  of  the 
mass  (this  has  already  been  done  in  §  17  for  a  more  general  case, 
in  which  the  g^s  were  variable),  we  arrive  at  the  mechanical 

equations  which  are  added  to  the  field-equations  in  Maxwell's 
Theory;  namely 

/Jt°  ~      = 

This  completes  the  cycle  of  laws  which  were  mentioned  on  page 
199.  This  theory  does  not,  of  course,  explain  the  existence  of  the 
electron,  since  the  cohesive  forces  are  lacking  in  it. 

A  striking  feature  of  the  principle  of  action  just  formulated  is 
that  a  field-action  does  not  associate  itself  with  the  substance-action 
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of  the  mass,  as  happens  in  the  case  of  electricity.  This  gap  will 
be  filled  in  the  next  chapter,  in  which  it  will  be  shown  that  the 

gravitational  field  is  what  corresponds  to  mass  in  the  same  way 
as  the  electromagnetic  field  corresponds  to  the  electrical  charge. 

The  great  advance  in  our  knowledge  described  in  this  chapter 

consists  in  recognising  that  the  scene  of  action  of  reality  is  not  a 

three-dimensional  Euclidean  space  but  rather  a  four-dimensional 

world,  in  which  space  and  time  are  linked  together  indis- 
solubly.  However  deep  the  chasm  may  be  that  separates  the 
intuitive  nature  of  space  from  that  of  time  in  our  experience, 

nothing  of  this  qualitative  difference  enters  into  the  objective  world 

which  physics  endeavours  to  crystallise  out  of  direct  experience. 

It  is  a  four-dimensional  continuum,  which  is  neither  "  time "  nor 

"  space  ".  Only  the  consciousness  that  passes  on  in  one  portion 
of  this  world  experiences  the  detached  piece  which  comes  to  meet 

it  and  passes  behind  it,  as  history,  that  is,  as  a  process  that  is 
going  forward  in  time  and  takes  place  in  space. 

This  four-dimensional  space  is  metrical  like  Euclidean  space, 
but  the  quadratic  form  which  determines  its  metrical  structure  is 

not  definitely  positive,  but  has  one  negative  dimension.  This  cir- 
cumstance is  certainly  of  no  mathematical  importance,  but  has  a 

deep  significance  for  reality  and  the  relationship  of  its  action.  It 

was  necessary  to  grasp  the  idea  of  the  metrical  four-dimensional 
world,  which  is  so  simple  from  the  mathematical  point  of  view,  not 

only  in  isolated  abstraction  but  also  to  pursue  the  weightiest  infer- 
ences that  can  be  drawn  from  it  towards  setting  up  the  view  of 

physical  phenomena,  so  that  we  might  arrive  at  a  proper  under- 
standing of  its  content  and  the  range  of  its  influence :  that  was 

what  we  aimed  to  do  in  a  short  account.  It  is  remarkable  that 

the  three-dimensional  geometry  of  the  statical  world  that  was  put 
into  a  complete  axiomatic  system  by  Euclid  has  such  a  translu- 

cent character,  whereas  we  have  been  able  to  assume  command 

over  the  four-dimensional  geometry  only  after  a  prolonged  struggle 
and  by  referring  to  an  extensive  set  of  physical  phenomena  and 

empirical  data.  Only  now  the  theory  of  relativity  has  succeeded 

in  enabling  our  knowledge  of  physical  nature  to  get  a  full  grasp  of 
the  fact  of  motion,  of  change  in  the  world. 



CHAPTEE  IV 

THE  GENERAL  THEORY  OF  RELATIVITY 

§  27.  The  Relativity  of  Motion,  Metrical  Fields,  Gravitation  * 

HO  WE  VEE  successfully  the  Principle  of  Eelativityof  Einstein 
worked  out  in  the  preceding  chapter  marshals  the  physical 
laws  which  are  derived  from  experience  and  which  define 

the  relationship  of  action  in  the  world,  we  cannot  express  ourselves 
as  satisfied  from  the  point  of  view  of  the  theory  of  knowledge. 
Let  us  again  revert  to  the  beginning  of  the  foregoing  chapter. 

There  we  were  introduced  to  a  "  kinematical  "  principle  of  relativity; 
xv  x2,  xs,  t  were  the  space-time  co-ordinates  of  a  world-point 
referred  to  a  definite  permanent  Cartesian  co-ordinate  system  in 

space ;  x\,  x\,  x's,  t'  were  the  co-ordinates  of  the  same  point  relative 
to  a  second  such  system,  that  may  be  moving  arbitrarily  with  re- 

spect to  the  first ;  they  are  connected  by  the  transformation  formulae 
(II),  page  152.  It  was  made  quite  clear  that  two  series  of  physical 
states  or  phases  cannot  be  distinguished  from  one  another  in  an 

objective  manner,  if  the  phase-quantities  of  the  one  are  represented 

by  the  same  mathematical  functions  of  x\,  x'2,  x'a,  t'  as  those  that 
describe  the  first  series  in  terms  of  the  arguments  xlt  xz,  x3,  t. 
Hence  the  physical  laws  must  have  exactly  the  same  form  in  the 
one  system  of  independent  space-time  arguments  as  in  the  other. 
It  must  certainly  be  admitted  that  the  facts  of  dynamics  are 

apparently  in  direct  contradiction  to  Einstein's  postulate,  and  it  is 
just  these  facts  that,  since  the  time  of  Newton,  have  forced  us  to 
attribute  an  absolute  meaning,  not  to  translation,  but  to  rotation. 
Yet  our  minds  have  never  succeeded  in  accepting  unreservedly 
this  torso  thrust  on  them  by  reality  (in  spite  of  all  the  attempts 
that  have  been  made  by  philosophers  to  justify  it,  as,  for  example, 

Kant's  Metaphysische  Anfangsgrunde  der  Naturwissenschaften), 
and  the  problem  of  centrifugal  force  has  always  been  felt  to  be  an 
unsolved  enigma  (vide  note  2). 

Where  do  the  centrifugal  and  other  inertial  forces  take  their 

origin?     Newton's  answer  was:  in  absolute  space.     The  an 
*  Vide  note  1. 
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given  by  the  special  theory  of  relativity  does  not  differ  essentially 
from  that  of  Newton.  It  recognises  as  the  source  of  these  forces 
the  metrical  structure  of  the  world  and  considers  this  structure  as 

a  formal  property  of  the  world.  But  that  which  expresses  itself  as 
force  must  itself  be  real.  We  can,  however,  recognise  the  metrical 

structure  as  something  real,  if  it  is  itself  capable  of  undergoing 

changes  and  reacts  in  response  to  matter.  Hence  our  only  way 

out  of  the  dilemma  —  and  this  way,  too,  was  opened  up  by 

,  Einstein  —  is  to  apply  Eiemann's  ideas,  as  set  forth  in  Chapter  II, 
to  the  four-dimensional  Einstein-Minkowski  world  which  was 

treated  in  Chapter  III  instead  of  to  three-dimensional  Euclidean 
space.  In  doing  this  we  shall  not  for  the  present  make  use  of  the 
most  general  conception  of  the  metrical  manifold,  but  shall  retain 

Eiemann's  view.  According  to  this,  we  must  assume  the  world- 
points  to  form  a  four-dimensional  manifold,  on  which  a  measure- 
determination  is  impressed  by  a  non-degenerate  quadratic  differential 

form  Q  having  one  positive  and  three  negative  dimensions.*  In 

any  co-ordinate  system  xi  (i  =  0,  1,  2,  3),  in  Kiemann's  sense,  let 

Q  =  2_gik  dxidxk      .  .      (1) ft 

Physical  laws  will  then  be  expressed  by  tensor  relations  that  are 

invariant  for  arbitrary  continuous  transformations  of  the  arguments 

Xi.  In  them  the  co-efficients  </&  of  the  quadratic  differential  form 

(1)  will  occur  in  conjunction  with  the  other  physical  phase- 
quantities.  Hence  we  shall  satisfy  the  postulate  of  relativity 
enunciated  above,  without  violating  the  facts  of  experience,  if  we 

regard  the  g^'s,  in  exactly  the  same  way  as  we  regarded  the  com- 
ponents fa  of  the  electromagnetic  potential  (which  are  formed  by 

the  co-efficients  of  an  invariant  linear  differential  form  f  <j>idxi),a,s 

physical  phase-quantities,  to  which  there  corresponds  some- 

thing real,  namely,  the  "  metrical  field  ".  Under  these  circum- 
stances invariance  exists  not  only  with  respect  to  the  transforma- 

tions mentioned  (II),  which  have  a  fully  arbitrary  (non-linear) 
character  only  for  the  time-co-ordinate,  but  for  any  transformations 

whatsoever.  This  special  distinction  conferred  on  the  time-co- 
ordinate by  (II),  is,  indeed,  incompatible  with  the  knowledge  gained 

*  We  have  made  a  change  in  the  notation,  as  compared  with  that  of  the 
preceding  chapter,  by  placing  reversed  signs  before  the  metrical  groundform. 
The  former  convention  was  more  convenient  for  representing  the  splitting  up 
of  the  world  into  space  and  time,  the  present  one  is  found  more  expedient  in 
the  general  theory. 



220     THE  GENERAL  THEORY  OF  RELATIVITY 

from  Einstein's  Principle  of  Eelativity.  By  allowing  any  arbitrary 
transformations  in  place  of  (II),  that  is,  also  such  as  are  non-linear 
with  respect  to  the  space-co-ordinates,  we  affirm  that  Cartesian 
co-ordinate  systems  are  in  no  wise  more  favoured  than  any 

"curvilinear"  co-ordinate  system.  This  seals  the  doom  of  the 
idea  that  a  geometry  may  exist  independently  of  physics  in  the 
traditional  sense,  and  it  is  just  because  we  had  not  emancipated  our- 

selves from  the  dogma  that  such  a  geometry  existed  that  we  arrived 
by  logical  considerations  at  the  relativity  principle  (II),  and  not  at 
once  at  the  principle  of  invariance  for  arbitrary  transformations  of 

the  four  world-co-ordinates.  Actually,  however,  spatial  measure- 
ment is  based  on  a  physical  event :  the  reaction  of  light-rays  and 

rigid  measuring  rods  on  our  whole  physical  world.  We  have 
already  encountered  this  view  in  §  21,  but  we  may,  above  all,  take 
up  the  thread  from  our  discussion  in  §  12,  for  we  have,  indeed,  here 

arrived  at  Eiemann's  "  dynamical "  view  as  a  necessary  consequence 
of  the  relativity  of  all  motion.  The  behaviour  of  light-rays  and 
measuring  rods,  besides  being  determined  by  their  own  natures,  is 

also  conditioned  by  the  "  metrical  field,"  just  as  the  behaviour  of  an 
electric  charge  depends  not  only  on  it,  itself,  but  also  on  the  electric 
field.  Again,  just  as  the  electric  field,  for  its  part,  depends  on  the 
charges  and  is  instrumental  in  producing  a  mechanical  interaction 
between  the  charges,  so  we  must  assume  here  that  the  metrical 
field  (or,  in  mathematical  language,  the  tensor  with  components 
gae)  is  related  to  the  material  content  filling  the  world. 
We  again  call  attention  to  the  principle  of  action  set  forth  at  the 
conclusion  of  the  preceding  paragraph ;  in  both  of  the  parts  which 
refer  to  substance,  the  metrical  field  takes  up  the  same  position 
towards  mass  as  the  electrical  field  does  towards  the  electric  charge. 

The  assumption,  which  was  made  in  the  preceding  chapter,  con- 
cerning the  metrical  structure  of  the  world  (corresponding  to  that 

of  Euclidean  geometry  in  three-dimensional  space),  namely,  that 

there  are  specially  favoured  co-ordinate  systems,  "linear"  ones,  in 
which  the  metrical  groundform  has  constant  co-efficients,  can  no 
longer  be  maintained  in  the  face  of  this  view. 

A  simple  illustration  will  suffice  to  show  how  geometrical 
conditions  are  involved  when  motion  takes  place.  Let  us  set  a 
plane  disc  spinning  uniformly.  I  affirm  that  if  we  consider 
Euclidean  geometry  valid  for  the  reference-space  relative  to  which 
we  speak  of  uniform  rotation,  then  it  is  no  longer  valid  for  the 
rotating  disc  itself,  if  the  latter  be  measured  by  means  of  measuring 
rods  moving  with  it.  For  let  us  consider  a  circle  on  the  disc 
described  with  its  centre  at  the  centre  of  rotation.  Its  radius 
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remains  the  same  no  matter  whether  the  measuring  rods  with 
which  I  measure  it  are  at  rest  or  not,  since  its  direction  of  motion 

is  perpendicular  to  the  measuring  rod  when  in  the  position  required 
for  measuring  the  radius,  that  is,  along  its  length.  On  the  other 
hand,  I  get  a  value  greater  for  the  circumference  of  the  circle  than 
that  obtained  when  the  disc  is  at  rest  when  I  apply  the  measuring 

rods,  owing  to  the  Lorentz-Fitzgerald  contraction  which  the  latter 
undergoes.  The  Euclidean  theorem  which  states  that  the  circum- 

ference of  the  circle  =  2?r  times  the  radius  thus  no  longer  holds 
on  the  disc  when  it  rotates. 

The  falling  over  of  glasses  in  a  dining-car  that  is  passing 
round  a  sharp  curve  and  the  bursting  of  a  fly-wheel  in  rapid  rotation 

are  not,  according  to  the  view  just  expressed,  effects  of  "an  absolute 
rotation  "  as  Newton  would  state  but  whose  existence  we  deny ; 
they  are  effects  of  the  "  metrical  field "  or  rather  of  the  affine 
relationship  associated  with  it.  Galilei's  principle  of  inertia  shows 
that  there  is  a  sort  of  "  forcible  guidance  "  which  compels  a  body 
that  is  projected  with  a  definite  velocity  to  move  in  a  definite  way 

which  can  be  altered  only  by  external  forces.  This  "  guiding  field," 
which  is  physically  real,  was  called  "  affine  relationship  "  above. 
When  a  body  is  diverted  by  external  forces  the  guidance  by  forces 
such  as  centrifugal  reaction  asserts!  itself.  In  so  far  as  the  state  of 
the  guiding  field  does  not  persist,  and  the  present  one  has  emerged 
from  the  past  ones  under  the  influence  of  the  masses  existing  in 
the  world,  namely,  the  fixed  stars,  the  phenomena  cited  above  are 

'  partly  an  effect  of  the  fixed  stars,  relative  to  which  the  rotation 
takes  place.* 

Following  Einstein  by  starting  from  the  special  theory  of 
relativity  described  in  the  preceding  chapter,  we  may  arrive  at  the 
general  theory  of  relativity  in  two  successive  stages. 

I.  In  conformity  with  the  principle  of  continuity  we  take  the 
same  step  in  the  four-dimensional  world  that,  in  Chapter  II, 

brought  us  from  Euclidean  geometry  to  Eiemann's  geometry.  This 
causes  a  quadratic  differential  form  (1)  to  appear.  There  is  no 
difficulty  in  adapting  the  physical  laws  to  this  generalisation.  It  is 

*  We  say  "partly"  because  the  distribution  of  matter  in  the  world  does 
not  define  the  "guiding  field"  uniquely,  for  both  are  at  one  moment  in- 

dependent of  one  another  and  accidental  (analogously  to  charge  and  electric 

'•  field).  Physical  laws  tell  us  merely  how,  when  such  an  initial  state  is  given, 
all  other  states  (past  and  future)  necessarily  arise  from  them.  At  least,  this  is 
how  we  must  judge,  if  we  are  to  maintain  the  standpoint  of  pure  physics  of 
fields.  The  statement  that  the  world  in  the  form  we  perceive  it  taken  as  a 
whole  is  stationary  (i.e.  at  rest)  can  be  interpreted,  if  it  is  to  have  a  meaning  at 

'    all,  as  signifying  that  it  is  in  statistical  equilibrium.     Of.  §  34. 
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expedient  to  represent  the  magnitude  quantities  by  tensor-densities 
instead  of  by  tensors  as  in  Chapter  III ;  we  can  do  this  by  multiply- 

ing throughout  by  *]g  (in  which  g  is  the  negative  determinant  of 

the  gikS)-  Thus,  in  particular,  the  mass-  and  charge-densities  //, 
and  p,  instead  of  being  given  by  formula  (71)  of  §  26,  will  be 
given  by 

dmds  =  pdx,        deds  =  pdx        (dx  =  dx^dx^x^dx^. 

The  proper  time  ds  along  the  world-line  is  determined  from 

ds2  =  gucdxidxk 

Maxwell's  equations  will  be 
*<fo      tte        ̂ )F 

**  =  tet  ~  ̂?       tei  =  s ' 
in  which  the  </>/s  are  the  co-efficients  of  an  invariant  linear 

differential  form  fadxi,  and  F*  denotes  *Jg .  Fik  according  to  our 

convention  above.  In  Lorentz's  Theory  we  set 

The  mechanical  force  per  unit  of  volume  (a  co-variant  vector- 
density  in  the  four-dimensional  world)  is  given  by  :  * 

Pi  =    -  Fa&  (2) 
and  the  mechanical  equations  are  in  general 

*    •   •   •  (3) 
with  the  condition  that  PJW*  always  =  0.  We  may  put  them  into 
the  same  form  as  we  found  for  them  earlier  by  introducing,  in 
addition  to  the  p/s,  the  quantities 

i3g.jMI^       .  (4) 

(cf.  §  17,  equation  (64))  as  the  density  components  p;  of  a 

"  pseudo-force  "  (force  of  reaction  of  the  guiding  field).  The 
equations  then  become 

The  simplest  examples  of  such  "  pseudo-forces  "  are  centrifugal 
forces  and  Coriolis  forces.  If  we  compare  formula  (4)  for  the 

"  pseudo-force  "  arising  from  the  metrical  field  with  that  for  the 
mechanical  force  of  the  electromagnetic  field,  we  find  them  fully 

*  The  sign  is  reversed  on  account  of  the  reversal  of  sign  in  the  metrical 
groundform. 
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analogous.  For  just  as  the  vector-density  with  the  contra-variant 
components  s*  characterises  electricity  so,  as  we  shall  presently 
see,  moving  matter  is  described  by  the  tensor-density  which  has 
the  components  Ti*  =  pUiUk.  The  quantities 

correspond  as  components  of  the  metrical  field  to  the  compon- 
ents Fik  of  the  electric  field.  Just  as  the  field-components  F 

are  derived  by  differentiation  from  the  electromagnetic  potential  ̂ ;, 

so  also  the  Ps  from  the  g^'s  ;  these  thus  constitute  the  potential  of 
the  metrical  field.  The  force-density  is  the  product  of  the  electric 
field  and  electricity  on  the  one  hand,  and  of  the  metrical  field  and 
matter  on  the  other,  thus 

pi  -  -  F<at,      ft  =  rj,Ti 
If  we  abandon  the  idea  of  a  substance  existing  independently  of 

physical  states,  we  get  instead  the  general  energy-momentum- 

density  T*  which  is  determined  by  the  state  of  the  field.  According 
to  the  special  theory  of  relativity  it  satisfies  the  Law  of  Conservation 

w$    o 
55 

This  equation  is  now  to  be  replaced,  in  accordance  with  formula 
(37)  §  14,  by  the  general  invariant 

2-r^  =  o     ....  (5) 
If  the  left-hand  side  consisted  only  of  the  first  member,  T  would 
now  again  satisfy  the  laws  of  conservation.  But  we  have,  in  this 

case,  a  second  term.  The  "  real  "  total  force 

does  not  vanish  but  must  be  counterbalanced  by  the   "pseudo- 

force  "  which  has  its  origin  in  the  metrical  field,  namely 

F;    -  ra  T3       i  dffa£  Ta£  /fix i  -  I     i    =  1  .         •         •      o 

These  formulae  were  found  to  be  expedient  in  the  special  theory 
of  relativity  when  we  used  curvilinear  co-ordinate  systems,  or  such 
as  move  curvilinearly  or  with  acceleration.  To  make  clear  the 
simple  meaning  of  these  considerations  we  shall  use  this  method 
to  determine  the  centrifugal  force  that  asserts  itself  in  a  rotating 
system  of  reference.  If  we  use  a  normal  co-ordinate  system 
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for  the  world,  namely,  t,  xlt  x2,  x3,  but  introduce  r,  z,  0,  in  place 
of  the  Cartesian  space  co-ordinates,  we  get 

ds*  =  dP  -  (dz*  +  dr*  +  rW). 
Using  cu  to   denote  a   constant   angular   velocity,    we   make   the 
substitution 

e  =  &  +  <^',      t  =  tr 
and,  after  the  substitution,  drop  the  accents.     We  then  get 

ds2  =  dt*(l  -  rV2)  -  WodOdt  -  (dz*  +  dr*  +  rW). 
If  we  now  put 

t  =  XQ,         0  =  xv        z  =  x2,        r  =  xs, 

we  get  for  a  point-mass  which  is  at  rest  in  the  system  of  reference 
now  used 

ul  =  it?  =  u3  =  0;  and  hence  (^°)2(1  -  rV)  =  1. 

The  components  of  the  centrifugal  force  satisfy  formula  (4) 

and  since  the  derivatives  with  respect  to  XQ,  xv  xz  of  ̂ 00,  which  is 

equal  to  1  -  r2o>2,  vanish  and  since 

then,  if  we  return  to  the  usual  units,  in  which  the  velocity  of  light 

is  not  unity,  and  if  we  use  contra-variant  components  instead  of 
co-variant  ones,  and  instead  of  the  indices  0,  1,  2,  3  the  more 
indicative  ones  t,  6,  z,  r,  we  obtain 

c 

Two  closely  related  circumstances  characterise  the  "pseudo- 
forces"  of  the  metrical  field.  Firstly,  the  acceleration  which  they 
impart  to  a  point-mass  situated  at  a  definite  space-time  point  (or, 
more  exactly,  one  passing  through  this  point  with  a  definite  velocity) 
is  independent  of  its  mass,  i.e.  the  force  itself  is  proportional  to  the 
inertial  mass  of  the  point-mass  at  which  it  acts.  Secondly,  if  we 
use  an  appropriate  co-ordinate  system,  namely,  a  geodetic  one,  at 
a  definite  space-  time  point,  these  forces  vanish  (cf.  §  14).  If  the 
special  theory  of  relativity  is  to  be  maintained,  this  vanishing  can 

be  effected  simultaneously  for  all  space-time  points  by  the  intro- 
duction of  a  linear  co-ordinate  system,  but  in  the  general  case  it  is 

possible  to  make  the  whole  40  components  F~J  of  the  aifine  relation- 
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ship  vanish  at   least   for   each   individual   point   by  choosing  an 

appropriate  co-ordinate  system  at  this  point. * 
Now  the  two  related  circumstances  just  mentioned  are  true,  as 

we  know,  of  the  force  of  gravitation.  The  fact  that  a  given 

gravitational  field  imparts  the  same  acceleration  to  every  mass  that 
is  brought  into  the  field  constitutes  the  real  essence  of  the  problem 

of  gravitation.  In  the  electrostatic  field  a  slightly  charged  particle 
is  acted  on  by  the  force  e  .  E,  the  electric  charge  e  depending  only 

on  the  particle,  and  E,  the  electric  intensity  of  field,  depending 
only  on  the  field.  If  no  other  forces  are  acting,  this  force  imparts 
to  the  particle  whose  inertial  mass  is  m  an  acceleration  which  is 

given  by  the  fundamental  equation  of  mechanics  nib  =  eE.  There 
is  something  fully  analogous  to  this  in  the  gravitational  field.  The 
force  that  acts  on  the  particle  is  equal  to  gG,  in  which  g,  the 

"  gravitational  charge,"  depends  only  on  the  particle,  whereas  G 
depends  only  on  the  field  :  the  acceleration  is  determined  here  again 

by  the  equation  wb  =  gG.  The  curious  fact  now  manifests  itself 

that  the  "gravitational  charge"  or  the  ''gravitational  mass"  g 
is  equal  to  the  "  inertial  mass  "  m.  Eotvos  has  comparatively 
recently  tested  the  accuracy  of  this  law  by  actual  experiments  of 

the  greatest  refinement  (vide  note  3).  The  centrifugal  force  im- 

parted to  a  body  at  the  earth's  surface  by  the  earth's  rotation  is 
proportional  to  its  inertial  mass  but  its  weight  is  proportional  to  its 
gravitational  mass.  The  resultant  of  these  two,  the  apparent  weight, 
would  have  different  directions  for  different  bodies  if  gravitational  and 

inertial  mass  were  not  proportional  throughout.  The  absence  of  this 
difference  of  direction  was  demonstrated  by  Eotvos  by  means  of  the 

exceedingly  sensitive  instrument  known  as  the  torsion-balance :  it 
enables  the  inertial  mass  of  a  body  to  be  measured  to  the  same 
degree  of  accuracy  as  that  to  which  its  weight  may  be  determined 

by  the  most  sensitive  balance.  The  proportionality  between  gravita- 
tional and  inertial  mass  holds  in  cases,  too,  in  which  a  diminution 

of  mass  is  occasioned  not  by  an  escape  of  substance  in  the  old  sense, 
but  by  an  emission  of  radioactive  energy. 

The  inertial  mass  of  a  body  has,  according  to  the  fundamental 

;  law  of  mechanics,  a  universal  significance.     It  is  the  inertial  mass 
that  regulates  the  behaviour  of  the  body  under  the  influence  of  any 

;  forces  acting  on  it,  of  whatever  physical  nature  they  may  be ;  the 
.  inertial  mass  of  the  body  is,  however,  according  to  the  usual  view 

associated  only  with  a  special  physical  field  of  force,  namely,  that 

*  Hence  we  see  that  it  is  in  the  nature  of  the  metrical  field  that  it  cannot  be 
described  by  a  field-tensor  p  which  is  invariant  with  respect  to  arbitrary  trans- 

',  formations. 
15 
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of  gravitation.  From  this  point  of  view,  however,  the  identity 
between  inertial  and  gravitational  mass  remains  fully  incomprehen- 

sible. Due  account  can  be  taken  of  it  only  by  a  mechanics  which 
from  the  outset  takes  into  consideration  gravitational  as  well  as  in- 

ertial mass.  This  occurs  in  the  case  of  the  mechanics  given  by  the 
general  theory  of  relativity,  in  which  we  assume  that  gravitation, 
just  like  centrifugal  and  Coriolis  forces,  is  included  in  the 

"pseudo-force"  which  has  its  origin  in  the  metrical  field. 
We  shall  find  actually  that  the  planets  pursue  the  courses  mapped 
out  for  them  by  the  guiding  field,  and  that  we  need  not  have  re- 

course to  a  special  "  force  of  gravitation,"  as  did  Newton,  to  account 
for  the  influence  which  diverts  the  planets  from  their  paths  as 

prescribed  by  Galilei's  Principle  (or  Newton's  first  law  of  motion). 
The  gravitational  forces  satisfy  the  second  postulate  also  ;  that  is, 

they  may  be  made  to  vanish  at  a  space-time  point  if  we  introduce 
an  appropriate  co-ordinate  system.  A  closed  box,  such  as  a  lift,  whose 
suspension  wire  has  snapped,  and  which  descends  without  friction 
in  the  gravitational  field  of  the  earth,  is  a  striking  example  of  such 
a  system  of  reference.  All  bodies  that  are  falling  freely  will  appear 
to  be  at  rest  to  an  observer  in  the  box,  and  physical  events  will 
happen  in  the  box  in  just  the  same  way  as  if  the  box  were  at  rest 
and  there  were  no  gravitational  field,  in  spite  of  the  fact  that  the 
gravitational  force  is  acting. 

II.  The  transition  from  the  special  to  the  general  theory  of 
relativity,  as  described  in  I,  is  a  purely  mathematical  process.  By 
introducing  the  metrical  groundform  (1),  we  may  formulate  physical 
laws  so  that  they  remain  invariant  for  arbitrary  transformations ; 
this  is  a  possibility  that  is  purely  mathematical  in  essence  and 
denotes  no  particular  peculiarity  of  these  laws.  A  new  physical 
factor  appears  only  when  it  is  assumed  that  the  metrical  structure 
of  the  world  is  not  given  a  priori,  but  that  the  above  quadratic  form 
is  related  to  matter  by  generally  invariant  laws.  Only  this  fact 

justifies  us  in  assigning  the  name  "  general  theory  of  relativity"  to 
our  reasoning ;  we  are  not  simply  giving  it  to  a  theory  which  has 
merely  borrowed  the  mathematical  form  of  relativity.  The  same 
fact  is  indispensable  if  we  wish  to  solve  the  problem  of  the  relativity 
of  motion ;  it  also  enables  us  to  complete  the  analogy  mentioned  in 
I,  according  to  which  the  metrical  field  is  related  to  matter  in  the 
same  way  as  the  electric  field  to  electricity.  Only  if  we  accept 
this  fact  does  the  theory  briefly  quoted  at  the  end  of  the  previous 
section  become  possible,  according  to  which  gravitation  is  a 
mode  of  expression  of  the  metrical  field ;  for  we  know  by  ex 
perience  that  the  gravitational  field  is  determined  (in  accordant 
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with  Newton's  law  of  attraction)  by  the  distribution  of  matter. 
This  assumption,  rather  than  the  postulate  of  general  invariance, 
seems  to  the  author  to  be  the  real  pivot  of  the  general  theory  of 
relativity.  If  we  adopt  this  standpoint  we  are  no  longer  justified 
in  calling  the  forces  that  have  their  origin  in  the  metrical  field 

pseudo-forces.  They  then  have  just  as  real  a  meaning  as  the 
mechanical  forces  of  the  electromagnetic  field.  Coriolis  or  centri- 

fugal forces  are  real  force  effects,  which  the  gravitational  or 
guiding  field  exerts  on  matter.  Whereas,  in  I,  we  were  confronted 
with  the  easy  problem  of  extending  known  physical  laws  (such  as 

Maxwell's  equations)  from  the  special  case  of  a  constant  metrical 
fundamental  tensor  to  the  general  case,  we  have,  in  following  the 

ideas  set  out  just  above,  to  discover  the  invariant  law  of  gravita- 
tion, according  to  which  matter  determines  the  components 

r^i  of  the  gravitational  field,  and  which  replaces  the  Newtonian 

law  of  attraction  in  Einstein's  Theory.  The  well-known  laws  of  the 
field  do  not  furnish  a  starting-point  for  this.  Nevertheless  Einstein 
succeeded  in  solving  this  problem  in  a  convincing  fashion,  and  in 
showing  that  the  course  of  planetary  motions  may  be  explained  just 
as  well  by  the  new  law  as  by  the  old  one  of  Newton ;  indeed,  that 
the  only  discrepancy  which  the  planetary  system  discloses  towards 

Newton's  Theory,  and  which  has  hitherto  remained  inexplicable, 
namely,  the  gradual  advance  of  Mercury's  perihelion  by  43"  per 
century,  is  accounted  for  accurately  by  Einstein's  theory  of  gravi- tation. 

Thus  this  theory,  which  is  one  of  the  greatest  examples  of  the 
power  of  speculative  thought,  presents  a  solution  not  only  of  the 
problem  of  the  relativity  of  all  motion  (the  only  solution  which 
satisfies  the  demands  of  logic),  but  also  of  the  problem  of  gravitation 
(vide  note  4).  We  see  how  cogent  arguments  added  to  those  in 
Chapter  II  bring  the  ideas  of  Eiemann  and  Einstein  to  a  successful 
issue.  It  may  also  be  asserted  that  their  point  of  view  is  the  first 
to  give  due  importance  to  the  circumstance  that  space  and  time, 
in  contrast  with  the  material  content  of  the  world,  are  forms  of 

phenomena.  Only  physical  phase-quantities  can  be  measured, 
that  is,  read  off  from  the  behaviour  of  matter  in  motion ;  but  we 

cannot  measure  the  four  world-co-ordinates  that  we  assign  a  priori 
arbitrarily  to  the  world-points  so  as  to  be  able  to  represent  the 
phase-quantities  extending  throughout  the  world  by  means  of 
mathematical  functions  (of  four  independent  variables). 

Whereas  the  potential  of  the  electromagnetic  field  is  built  up 
from  the  co-efficients  of  an  invariant  linear  differential  form  of 

the  world-co-ordinates  fadx,;,  the  potential  of  the  gravitational  field 
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is  made  up  of  the  co-efficients  of  an  invariant  quadratic  differential 
form.  This  fact,  which  is  of  fundamental  importance,  constitutes 

the  form  of  Pythagoras'  Theorem  to  which  it  has  gradually  been 
transformed  by  the  stages  outlined  above.  It  does  not  actually 
spring  from  the  observation  of  gravitational  phenomena  in  the  true 

sense  (Newton  accounted  for  these  observations  by  introducing  a 

single  gravitational  potential),  but  from  geometry,  from  the  observa- 

tions of  measurement.  Einstein's  theory  of  gravitation  is  the  result 
of  the  fusion  of  two  realms  of  knowledge  which  have  hitherto  been 

developed  fully  independently  of  one  another ;  this  synthesis  may 
be  indicated  by  the  scheme 

Pythagoras      Newton 

Einstein 

To  derive  the  values  of  the  quantities  ga-  from  directly 

observed  phenomena,  we  use  light-signals  and  point-masses  which 
are  moving  under  no  forces,  as  in  the  special  theory  of  relativity. 

Let  the  world-points  be  referred  to  any  co-ordinates  Xi  in  some  way. 
The  geodetic  lines  passing  through  a  world-point  0,- namely, 

~W  +  \  i   }  ~di  W  =  °        '         '         '     <8) 

split  up  into  two  classes ;  (a)  those  with  a  space-like  direction, 

(b)  those  with  a  time -like  direction  (C  <  0  or  >  0  respectively). 

The  latter  fill  a  "  double  "  cone  with  the  common  vertex  at  0  and 
which,  at  0,  separates  into  two  simple  cones,  of  which  one  opens 
into  the  future  and  the  other  into  the  past.  The  first  comprises 

all  world-points  that  belong  to  the  "  active  future  "of  0,  the  second 
all  world-points  that  constitute  the  "passive  past"  of  0.  The 
limiting  sheet  of  the  cone  is  formed  by  the  geodetic  null-lines 

(C  —  0) ;  the  "  future "  half  of  the  sheet  contains  all  the  world- 
points  at  which  a  light-signal  emitted  from  0  arrives,  or,  more 
generally,  the  exact  initial  points  of  every  effect  emanating  from  0. 

The  metrical  groundform  thus  determines  in  general  what  world- 
points  are  related  to  one  another  in  effects.  If  dxi  are  the  relative 

co-ordinates  of  a  point  0'  infinitely  near  0,  then  0'  will  be  tra- 
versed by  a  light- signal  emitted  from  0  if,  and  only  if,  gikdxidxk 

=  0.  By  observing  the  arrival  of  light  at  the  points  neighbouring 

to  0  we  can  thus  determine  the  ratios  of  the  values  of  the  g^'s  at 
the  point  0 ;  and,  as  for  0,  so  for  any  other  point.  It  is  impossible, 

however,  to  derive  any  further  results  from  the  phenomenon  of  the 

propagation  of  light,  for  it  follows  from  a  remark  on  page  127  thai 
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the  geodetic  null-lines  are  dependent  only  on  the  ratios  of  the 

The  optical  "  direction  "  picture  that  an  observer  ("  point-eye  " 
as  on  p.  99)  receives,  for  instance,  from  the  stars  in  the  heavens, 
is  to  be  constructed  as  follows.  From  the  world-point  0  at  which 
the  observer  is  stationed  those  geodetic  null-lines  (light-lines)  are  to 
be  drawn  on  the  backward  cone  which  cuts  the  world-lines  of  the 

stars.  The  direction  of  every  light-line  at  0  is  to  be  resolved  into 
i  one  component  which  lies  along  the  direction  e  of  the  world-line  of 
the  observer  and  another  s  which  is  perpendicular  to  it  (the  meaning 
of  perpendicular  is  denned  by  the  metrical  structure  of  the  world 

as  given  on  p.  121)  ;  s  is  the  spatial  direction  of  the  light-ray. 
Within  the  three-dimensional  linear  manifold  of  the  line-elements 

at  0  perpendicular  to  e,  —ds2  is  a  definitely  positive  form.  The 
angles  (that  arise  from  it  when  it  is  taken  as  the  metrical  ground- 
form,  and  which  are  to  be  calculated  from  formula  (15),  §  11) 
between  the  spatial  directions  s  of  the  light-rays  are  those  that 
determine  the  positions  of  the  stars  as  perceived  by  the  observer. 

The  factor  of  proportionality  of  the  g^'s  which  could  not  be 
derived  from  the  phenomenon  of  the  transmission  of  light  may  be 

,  determined  from  the  motion  of  point-masses  which  carry  a  clock 
with  them.  For  if  we  assume  that  —  at  least  for  unaccelerated 
motion  under  no  forces  —  the  time  read  off  from  such  a  clock  is  the 

proper-time  s,  equation  (9)  clearly  makes  it  possible  to  apply  the 
;  unit  of  measure  along  the  world-line  of  the  motion  (cf.  Appendix  I). 

§28.  Einstein's  Fundamental  Law  of  Gravitation 
According  to  the  Newtonian  Theory  the  condition  (or  phase)  of 

matter  is  characterised  by  a  scalar,  the  mass-density  ̂   ;  and  the 

gravitational  potential  is  also  a  scalar  <£  :  Poisson's  equation  holds, 
that  is, 

A<£    =    47T&/X,  ....         (10) 

(A  =  div  grad;  k  =  the  gravitational  constant).      This  is  the  law 
according  to  which  matter  determines  the  gravitational  field.     But 
according   to    the    theory    of    relativity    matter   can   be  described 

'rigorously   only    by   a    symmetrical   tensor   of   the   second   order 
Tik,   or  better   still   by   the    corresponding    mixed   tensor-density 

T*;  in  harmony  with  this  the  potential  of  the  gravitational  field 
'  consists  of  the  components  of  a  symmetrical  tensor  g^.     Therefore, 
in  Einstein's  Theory  we  expect  equation  (10)  to  be  replaced  by  a 

•  system  of  equations  of  which  the  left  side  consjsts  of  differential 
<  expressions  of  the  second  order  in  the  g^a,  and  the  right  side  of 

'  components  of  the  energy-density  ;  this  system  has  to  be  invariant 
with  respect  to  arbitrary  transformations  of  the  co-ordinates.     To 
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find  the  law  of  gravitation  we  shall  do  best  by  taking  up  the  thread 

from  Hamilton's  Principle  formulated  at  the  close  of  §  26.  The 
Action  there  consisted  of  three  parts  :  the  substance-action  of 

electricity,  the  field-action  of  electricity,  and  the  substance-action  of 
mass  or  gravitation.  In  it  there  is  lacking  a  fourth  term,  the  field- 
action  of  gravitation,  which  we  have  now  to  find.  Before  doing 

this,  however,  we  shall  calculate  the  change  in  the  sum  of  the  first 
three  terms  already  known,  when  we  leave  the  potentials  fa  of  the 

electromagnetic  field  and  the  world-lines  of  the  substance-elements 

unchanged  but  subject  the  g^'s,  the  potentials  of  the  metrical 
field,  to  an  infinitesimal  virtual  variation  8.  This  is  possible 

only  from  the  point  of  view  of  the  general  theory  of  relativity. 

__  This  causes  no  change  in  the  substance-action  of  electricity,  but 
the  change  in  the  integrands  that  occur  in  the  field-action,  namely 

s 

The  first  summand  in  the  curved  bracket  here  =  Frs8-Frs  and  hence, 
since 

FTS 

we  immediately  get  the  value 

2 

The  second  summand,  by  (58')  §  17, 

Thus,  finally,  we  find  the  variation  in  the  field-action  to  be 

(cf.  (59),  §  17) 

S?  =  iSSf  =  JWF*  ....    (11) 

are  the  components  of  the  energy-density  of  the  electromagnetic 

field.*  It  suddenly  becomes  clear  to  us  now  (and  only  now  that  we 

have  succeeded  in  calculating  the  variation  of  the  world's  metrical 
field)  what  is  the  origin  of  the  complicated  expressions  (11)  for  the 

energy-momentum  density  of  the  electromagnetic  field. 

We  get  a  corresponding  result  for  the  substance-action  of  the 
mass  ;  for  we  have 

*  The  signs  are  the  reverse  of  those  used  in  Chapter  III  on  account  of  the 
change  in  the  sign  of  the  metrical  groundform. 
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and  hence 

Hence  the  total  change  in  the  Action  so  far  known  to  us  is,  for  _ 
a  variation  of  the  metrical  field, 

in  which  Tf  denotes  the  tensor-density  of  the  total  energy. 
The  absent  fourth  term  of  the  Action,  namely,  the  field- 

action  of  gravitation,  must  be  an  invariant  integral,  \Gdx,  of 

which  the  integrand  G  is  composed  of  the  potentials  g^  and  of  the 

field-components  -j  j-  of  the  gravitational  field,  built  up  from  the 

gte's  and  their  first  derivatives.  It  would  seem  to  us  that  only  under 
such  circumstances  do  we  obtain  differential  equations  of  order 
not  higher  than  the  second  for  our  gravitational  laws.  If  the  total 
differential  of  this  function  is 

SG  =  iG«%fc  +  iG*»%fc,,    (G*  =  G**  and  G*^  =  G*.')  (13) 

!    we  get,  for  an   infinitesimal  variation  Sgik  which  disappears   for 
regions  beyond  a  finite  limit,  by  partial  integration,  that 

.  .     (14) 

in  which  the  "  Lagrange  derivatives  "  [Gp,  which  are  symmetrical 
in  i  and  fc,  are  to  be  calculated  according  to  the  formula 

The  gravitational  equations  will  then  actually  assume  the  form 
which  was  predicted,  namely 

[G]l  =  -  Tf  .    (15) 
There  is  no  longer  any  cause  for  surprise  that  it  happens  to  be  the 

energy-momentum  components  that  appear  as  co-efficients  when 
we  vary  the  g^a  in  the  first  three  factors  of  the  Action  in  accordance 
vsith  (12).  Unfortunately  a  scalar-density  G,  of  the  type  we  wish, 

does  not  exist  at  all  ;  for  we  can  make  all  the  j    V  s  vanish  at  any 

given  point  by  choosing  the  appropriate  co-ordinate  system.  Yet 

the  scalar  R,  the  curvature  defined  by  Eiemann,  has  made  Us" familiar  with  an  invariant  which  involves  the  second  derivatives 

of  the  g^s  only  linearly:  it  may  even  be  shown  that  it  is  the 
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only  invariant  of  this  kind  (vide  Appendix  II,  in  which  the  proof  is 
given).     In  consequence  of  this  linearity  we  may  use  the  invariant 

integral   l-J.R\/<7<fcc  to  get  the  derivatives  of  the  second  order  by 

partial  integration.     We  then  get 

UR  J~gdx  =  \  Gdx 

+  a  divergence  integral,  that  is,  an  integral  whose  integrand  is  of 

the  form    :    G  here  depends  only  on  the  g^s  and  their  first 

derivatives.     Hence,  for  variations  8^,  that  vanish  outside  a  finite 
region,  we  get =  8  ( 

since,  according  to  the  principle  of  partial  integration, 
-3<fe  =  o. 

Not  I  Gdx  itself  is  an  invariant,  but  the  variation  8  1  GdXj  and  this  is 

the  essential  feature  of  Hamilton's  Principle.  We  need  not,  there- 

fore, have  fears  about  introducing  I  Gdx  as  the  Action  of  the  gravita- 

tional field  ;  and  this  hypothesis  is  found  to  be  the  only  possible  one. 
We  are  thus  led  under  compulsion,  as  it  were,  to  the  unique 
gravitational  equations  (15).  It  follows  from  them  that  every  kind 
of  energy  exerts  a  gravitational  effect:  this  is  true  not  only 
of  the  energy  concentrated  in  the  electrons  and  atoms,  that  is  of 

matter  in  the  restricted  sense,  but  also  of  diffuse  field-energy  (for 

the  T^'s  are  the  components  of  the  total  energy). 
Before  we  carry  out  the  calculations  that  are  necessary  if  we 

wish  to  be  able  to  write  down  the  gravitational  equations  explicitly, 
we  must  first  test  whether  we  get  analogous  results  in  the  case  of 

Mie's  Theory.    The  Action,  I  Ldx,  which  occurs  in  it  is  an  invariant 

not  only  for  linear,  but  also  for  arbitrary  transformations.  For  L 
is  composed  algebraically  (not  as  a  result  of  tensor  analysis)  of  the 
components  </>;  of  a  co-variant  vector  (namely,  of  the  electromagnetic 
potential),  of  the  components  Fik  of  a  linear  tensor  of  the  second 
order  (namely,  of  the  electromagnetic  field),  and  of  the  components 
gik  of  the  fundamental  metrical  tensor.  We  set  the  total  differential 
SL  of  this  function 
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equal  to  iTik8gik  +  80L,  in  which  80L 
(T«  =  T*      H«  =  -  H*)      .  .     (16) 

We  then  call  the  tensor-density  T*  the  energy  or  matter.  By  doing 
this,  we  affirm  once  again  that  the  metrical  field  (with  the  potentials 

gik)  is  related  to  matter  (T**)  in  the  same  way  as  the  electromagnetic 

field  (with  the  potentials  </>;)  is  related  to  the  electric  current  s*. 
We  are  now  obliged  to  prove  that  the  present  explanation  leads 

accurately  to  the  expressions  given  in  (64),  §  26,  for  energy  and 
momentum.  This  will  furnish  the  proof,  which  was  omitted  above, 

of  the  symmetry  of  the  energy-tensor.  To  do  this  we  cannot  use 
the  method  of  direct  calculation  as  above  in  the  particular  case  of 

Maxwell's  Theory,  but  we  must  apply  the  following  elegant  con- 
siderations, the  nucleus  of  which  is  to  be  found  in  Lagrange,  but 

which  were  discussed  with  due  regard  to  formal  perfection  by  F.  Klein 
(vide  note  5). 

We  subject  the  world-continuum  to  an  infinitesimal  deformation, 
as  a  result  of  which  in  general  the  point  (xi)  becomes  transformed 

into  the  point  (xj) 

Xi  =  Xi  +  e  .  Pfax&Xs)  .      (17) 

(in  which  e  is  the  constant  infinitesimal  parameter,  all  of  whose 

higher  powers  are  to  be  struck  out).  We  imagine  the  phase- 
quantities  to  follow  the  deformation  so  that  at  its  conclusion  the 

new  <£/s  (we  call  them  <fa)  are  functions  of  the  co-ordinates  of 
such  a  kind  that,  in  consequence  of  (17),  the  equations 

fr^dx-i  =  fr(x)dxi   ....     (18) 

hold  ;  and  in  the  same  sense  the  symmetrical  and  skew-  symmetrical 
bilinear  differential  form  with  the  co-efficients  g^,  F&,  respectively, 

remains  unchanged.  The  changes  <f>i(x)  —  <f>i(x)  which  the  quantities 

<f>i  undergo  at  a  fixed  world-point  (x$  as  a  result  of  the  deformation 
will  be  denoted  by  8<fc  ;  §gik  and  8Fa  have  a  corresponding  meaning. 

If  we  replace  the  old  quantities  0;  in  the  function  L  by  the  <£; 

arising  from  the  deformation,  we  shall  suppose  the  function  L  = 
L  +  8L  to  result  ;  the  8L  in  it  is  given  by  (16).  Furthermore,  let 

X  be  an  arbitrary  region  of  the  world  which,  owing  to  the  defor- 

mation, becomes  X.     The  deformation  causes  the  Action  I  Ldx  to 

x 

undergo  a  change  S'  I  Ldx  which  is  equal  to  the  difference  between 
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the  integral  L  taken  over  X  and  the  integral  L  taken  over  H.     The 
invariance  of  the  Action  is  expressed  by  the  equation 

.0        .        .  .     (19) 

We  make  a  natural  division  of  this  difference  into  two  parts  :  (1) 

the  difference  between  the  integrals  of  L  and  L  over  X  (2)  the 

difference  between  the  integral  of  L  over  X  and  X.  Since  •£  differs 
from  X  only  by  an  infinitesimal  amount,  we  may  set 

x  x 

for  the  first  part.     On  page  111  we  found  the  second  part  to  be 

m 

To  be  able  to  complete  the  argument  we  must  next  calculate  the 

variations  fyi,  8gik,  &Fik.  If  we  set  fa(x)  -  <f>i(x)~=  S'</>;  for  a 
moment,  then,  owing  to  (18),  we  get 

8'<£t  .  dxi  +  €<t>rd£r  =  0 
and  hence 

Moreover,  since 

we  get,  suppressing  the  self-evident  factor 

In  the  same  way,  we  get 

(,        .        .        .     (20) 

OXr 

And,  on  account  of 

.     (21) 

for  since  the  former  is  an  invariant  relation,  we  get  from  it 

ft       .  *M*1  -  MM?),  and  also  *«(*) 
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Substitution  gives  us 

-  SL  -  (Tf 

If  we  remove  the  derivatives  of  &  by  partial  integration,  and  use 
the  abbreviation 

Y*  =  Tj  +  ̂ VH^  +  <frs* 
we  get  a  formula  of  the  following  form 

-  8'  f  Ldx  =  PW&dx  +  [(titfdx  =  0   .  (22) 
J  J    ~bxk  J XX  X 

It  follows  from  this  that,  as  we  know,  by  choosing  the  £*'s  appro- 
priately, namely,  so  that  they  vanish  outside  a  definite  region, 

which  we  here  take  to  be  X,  we  must  have,  at  every  point, 

fc-0     .  .     (23) 

Accordingly,  the  first  summand  of  (22)  is  also  equal  to  zero.  The 
identity  which  comes  about  in  this  way  is  valid  for  arbitrary 
quantities  &  and  for  any  finite  region  of  integration  X.  Hence, 
since  the  integral  of  a  continuous  function  taken  over  any  and 
every  region  can  vanish  only  if  the  function  itself  =  0,  we  must 
have 

*(Y?tQ  -  Y?  ?£  +  ******  =  0. 
Dxk  *   ̂xk     '^X]e 

Now,   &  and-^  may   assume   any  values  at  one  and  the  same 
OXk 

point.     Consequently, 

This  gives  us  the  desired  result 

These  considerations  simultaneously  give  us  the  theorems  of  con- 
servation of  energy  and  of  momentum,  which  we  found  by  calculation 

in  §  26  ;  they  are  contained  in  equations  (23).  The  change  in  the 
Action  of  the  whole  world  for  an  infinitesimal  deformation  which 

vanishes  outside  a  finite  region  of  the  world  is  found  to  be 

.         .     (24) 

In  consequence  of  the  equations  (21)  and  of  Hamilton's  Principle, 
namely 

=  0  (25) 
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which  is  here  valid,  the  second  part  (in  Maxwell's  equations) 
appears.     But  the  first  part,  as  we  have  already  calculated,  is 

*> 

Thus,  as  a  result  of  the  laws  of  the  eleotromagnetic  field,  we 
get  the  mechanical  equations 

aTf.^T^o  (26) 

^          *M (On  account  of  the  presence  of  the  additional  term  due  to  gravi- 
tation these  equations  can  no  longer  in  the  general  theory  of 

relativity  be  fitly  termed  theorems  of  conservation.  The  question 
whether  proper  theorems  of  conservation  may  actually  be  set  up 
will  be  discussed  in  §  33.) 

The  Hamiltonian  Principle  which  has  been  supplemented  by 
the  Action  of  the  gravitational  field,  namely 

B  J(L  +  G)  dx  =  0  ,        .        .    (27) 
and  in  which  the  electromagnetic  and  the  gravitational  condition 
(phase)  of  the  field  may  be  subjected  independently  of  one  another 
to  virtual  infinitesimal  variations  gives  rise  to  the  gravitational 
equations  (15)  in  addition  to  the  electromagnetic  laws.  If  we 
apply  the  process  above,  which  ended  in  (26),  to.G  instead  of  to 
L  —  here,  too,  we  have,  for  the  variation  8  caused  by  a  deformation 
of  the  world-continuum  which  vanishes  outside  a  finite  region,  that 

8  \G(dx  -  8  IfR  «/£<&;  =  0—  we  arrive  at  mathematical  iden- 

tities analogous  to  (26),  namely 

r 

The  fact  that  G  contains  the  derivatives  of  the  gtk's  as  well  as  the 
gib's  themselves  is  of  no  account.  Accordingly,  the  mechanical 
equations  (26)  are  just  as  much  a  consequence  of  the  gravitational 
equations  (15)  as  of  the  electromagnetic  laws  of  the  field. 

The  wonderful  relationships,  which  here  reveal  themselves, 
may  be  formulated  in  the  following  way  independently  of  the 

question  whether  Mie's  theory  of  electrodynamics  is  valid  or  not. 
The  phase  (or  condition)  of  a  physical  system  is  described  relatively  to 

a  co-ordinate  system  by  means  of  certain  variable  space-time  phase- 
quantities  </>  (these  were  our  <£/s  above).  Besides  these,  we  have 
also  to  take  account  of  the  metrical  field  in  which  the  system  is 
embedded  and  which  is  characterised  by  its  potentials  g^.  The 
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uniformity  underlying  the  phenomena  occurring  in  the  system  is 

expressed  by  an  invariant  integral  I  "Ldx ;  in  it,  the  scalar-density 

L  is  a  function  of  the  </>'s  and  of  their  derivatives  of  the  first  and 
if  need  be,  of  the  second  order,  and  also  a  function  of  the  gik's, 
but  the  latter  quantities  alone  and  not  their  derivatives  occur  in  L. 
We  form  the  total  differential  of  the  function  L  by  writing  down 

explicitly  only  that  part  which  contains  the  differentials  &gik,  namely, 
SL  =  iT*%a  +  S0L. 

T*  is  then  the  tensor-density  of  the  energy  (identical  with  matter) 
associated  with  the  physical  state  or  phase  of  the  system.  The 
determination  of  its  components  is  thus  reduced  once  and  for  all 

to  a  determination  of  Hamilton's  Function  L.  The  general  theory 
of  relativity  alone,  which  allows  the  process  of  variation  to  be  applied 
to  the  metrical  structure  of  the  world,  leads  to  a  true  definition  of 

energy.  The  phase-laws  emerge  from  the  "  partial "  principle  of 
action  in  which  only  the  phase-quantities  <£  are  to  be  subjected  to 
variation ;  just  as  many  equations  arise  from  it  as  there  are 
quantities  $.  The  additional  ten  gravitational  equations  (15)  for 
the  ten  potentials  g^  result  if  we  enlarge  the  partial  principle  of 

action  to  the  total  one  (27),  in  which  the  gr^'s  are  also  to  be  sub- 
jected to  variation.  The  mechanical  equations  (26)  are  a  con- 

sequence of  the  phase-laws  as  well  as  of  the  gravitational  laws ; 
they  may,  indeed,  be  termed  the  eliminant  of  the  latter.  Hence, 
in  the  system  of  phase  and  gravitational  laws,  there  are  four 
superfluous  equations.  The  general  solution  must,  in  fact,  contain 
four  arbitrary  functions,  since  the  equations,  in  virtue  of  their 

invariant  character,  leave  the  co-ordinate  system  of  the  xjs  in- 
determinate ;  hence,  arbitrary  continuous  transformations  of  these 

co-ordinates  derived  from  one  solution  of  the  equations  always 
give  rise  to  new  solutions  in  their  turn.  (These  solutions,  how- 

ever, represent  the  same  objective  course  of  the  world.)  The  old 
subdivision  into  geometry,  mechanics,  and  physics  must  be  re- 

placed in  Einstein's  Theory  by  the  separation  into  physical  phases 
and  metrical  or  gravitational  fields. 

For  the  sake  of  completeness  we  shall  once  again  revert  to  the 
Hamiltonian  Principle  used  in  the  theory  of  Lorentz  and  Maxwell. 

Variation  applied  to  the  fa's  gives  the  electromagnetic  laws,  but 
applied  to  the  g^'s  the  gravitational  laws.  Since  the  Action  is  an 
invariant,  the  infinitesimal  change  which  an  infinitesimal  deforma- 

tion of  the  world-continuum  calls  up  in  it  =  0 ;  this  deformation  is 
to  affect  the  electromagnetic  and  the  gravitational  field  as  well  as 
the  world-lines  of  the  substance-elements.  This  change  consists  of 
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three  summands,  namely,  of  the  changes  which  are  caused  in  turn 
by  the  variation  of  the  electromagnetic  field,  of  the  gravitational 
field,  and  of  the  substance-paths.  The  first  two  parts  are  zero  as 
a  consequence  of  the  electromagnetic  and  the  gravitational  laws; 
hence  the  third  part  also  vanishes  and  we  see  that  the  mechanical 
equations  are  a  result  of  the  two  groups  of  laws  mentioned  just 
above.  Kecapitulating  our  former  calculations  we  may  derive 
this  result  by  taking  the  following  steps.  From  the  gravitational 
laws  there  follow  (26),  i.e. 

in  which  S*  is  the  tensor-density  of  the  electromagnetic  energy  of 
field,  namely,  of 

and  M  is  the  left-hand  member  of  the  equation  of  continuity  for 
matter,  namely 

As  a  result  of  Maxwell's  equations  the  right-hand  member  of  (28) 

=  Pi  =  -  FU&         (s*  =  pwO- 

If  we  then  multiply  (28)  by  iti  and  sum  up  with  respect  to  i,  we 

get  M  =  0  ;  in  this  way  we  have  arrived  at  the  equation  of  contin- 
uity for  matter  and  also  at  the  mechanical  equations  in  their  usual 

form. 

After  having  gained  a  full  survey  of  how  the  gravitational  laws 
of  Einstein  are  to  be  arranged  into  the  scheme  of  the  remaining 

physical  laws,  we  are  still  faced  with  the  task  of  working  out  the 

explicit  expression  for  the  [G]£'s  (vide  note  6).  The  virtual  change 

of  the  components  of  the  affine  relationship  is,  as  we  know 

114),  a  tensor.    If  we  use  a  geodetic  co-ordinate  system  at  a  certain 

point,  then  we  get  directly  from  the  formula  for  Rih  ((60),  §  17)  that 

If  we  set 

wr 
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we  get 

or,  for  any  arbitrary  co-ordinate  system, 

The  divergence  disappears  in  the  integration  and  hence,  since  by 
definition  we  are  to  have 

and  since  the  JS&'s  are  symmetrical  in  Biemann's  space,  we  get 

[G]f  =  V$R  -  Rf  . 
Therefore  the  gravitational  laws  are 

.        .        .        .     (29) 

Here,  of  course  (exactly  as  was  done  for  the  unit  of  charge  in 
electromagnetic  equations),  the  unit  of  mass  has  been  suitably 
chosen.  If  we  retain  the  units  of  the  c.g.s.  system,  a  universal 
constant  STTK  will  have  to  be  added  as  a  factor  to  the  right-hand  side. 
It  might  still  appear  doubtful  now  at  the  outset  whether  K  is  posi- 

tive or  negative,  and  whether  the  right-hand  side  of  equation  (29) 
should  not  be  of  opposite  sign.  We  shall  find,  however,  in  the 
next  paragraph  that,  in  virtue  of  the  fact  that  masses  attract  one 
another  and  do  not  repel,  K  is  actually  positive. 

It  is  of  mathematical  importance  to  notice  that  the  exact 
gravitational  laws  are  not  linear  ;  although  they  are  linear  in 

the  derivatives  of  the  field-components-!      V,  they  are  not  linear  in 

the  field-components  themselves.  If  we  contract  equations  (29), 
that  is,  set  k  =  i,  and  sum  with  respect  to  i,  we  get  —  R  =  T  =  Tj  > 
hence,  in  place  (29)  we  may  also  write 

K?  =  T?  ~  *8*T      .         .  .     (30) 
In  the  first  paper  in  which  Einstein  set  up  the  gravitational 

equations  without  following  on  from  Hamilton's  Principle,  the 
term  -  -£5jT  was  missing  on  the  right-hand  side;  he  recognised 
only  later  that  it  is  required  as  a  result  of  the  energy-momentum- 
theorem  (vide  note  7).  The  whole  series  of  relations  here  described 

and  which  is  subject  to  Hamilton's  Principle,  has  become  mani- 
fest in  further  works  by  H.  A.  Lorentz,  Hilbert,  Einstein,  Klein, 

and  the  author  (vide  note  8). 
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In  the  sequel  we  shall  find  it  desirable  to  know  the  value  of  G. 
To  convert 

into  2|G<fo 

by  means  of  partial  integration  (that  is,  by  detaching  a  divergence), 
we  must  set 

Thus  we  get 

By  (57/),  (57")  of  §  17,  however,  the  first  two  terms  on  the  right,  if 

we  omit  the  factor      ~, 

Hence  we  finally  arrive  at 

This  completes  our  development  of  the  foundations  of  Einstein's 
Theory  of  Gravitation.  We  must  now  inquire  whether  observation 
confirms  this  theory  which  has  been  built  up  on  purely  speculative 
grounds,  and  above  all,  whether  the  motions  of  the  planets  can  be 

explained  just  as  well  (or  better)  by  it  as  by  Newton's  law  of  at- 
traction. §§  29-32  treat  of  the  solution  of  the  gravitational  equations. 

The  discussion  of  the  general  theory  will  not  be  resumed  till  §  33. 

§  29.  The  Stationary  Gravitational  Field—  Comparison  with 
Experiment 

\  To  establish  the  relationship  of  Einstein's  laws  with  the  results 
of  observations  of  the  planetary  system,  we  shall  first  specialise 
them  for  the  case  of  a  stationary  gravitational  field  (vide  note  9). 
The  latter  is  characterised  by  the  circumstance  that,  \  if  we  use 
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appropriate  co-ordinates,  the  world  resolves  into  space  and  time,  so 
that  for  the  metrical  form 

ds2 i,  k  =  I we  get 

#00  =/"'  >  f/o*  =  9*>  =  °  '  9-ik  =  -  yik  ft  k  =  1,  2,  3) 
and  also  that  the  co-efficients  /  and  yik  occurring  in  it  depend  only 
on  the  space-co-ordinates  xlt  x2,  xz,  and  not  on  the  time  t  =  XQ. 
da*  is  a  positive  definite  quadratic  differential  form  which  deter- 

mines the  metrical  nature  of  the  space  having  co-ordinates  xlt  x%,  xz  ', 
f  is  obviously  the  velocity  of  light.  The  measure  t  of  time  is  fully 
determined  (when  the  unit  of  time  has  been  chosen)  by  the  postulates 

that  have  been  set  up,  whereas  the  space  co-ordinates  xlt  x2,  xs  are 
fixed  only  to  the  extent  of  an  arbitrary  continuous  transformation  of 
these  co-ordinates  among  themselves.  In  the  statical  case,  therefore, 
the  metrics  of  the  world  gives,  besides  the  measure-determination  of 
the  space,  also  a  scalar  field  /  in  space. 

If  we  denote  the  Christoffel  3-indices  symbol,  relating  to  the 
ternary  form  dcr2,  by  an  appended  *,  and  if  the  index  letters  i,  k,  I 
assume  only  the  values  1,  2,  3  in  turn,  then  it  easily  follows  from 
definition  that 

In  the  above,  /;  =  =*-  are  co-variant  components  of  the  three-dimen- 

1   sional  gradient,  and  /*  =  yikfk  are  the  corresponding  contra-variant 
components,  whereas    ijyf  =  $  are  the  components  of  a  contra- 

•  variant  vector-density  in  space.    For  the  determinant  y  of  the 
;   we  have  *Jg  =/\/y.     If  we  further  set 

fik  = 
(the  summation  letter  r  also  assumes  only  the  three  values  1,  2,  3), 
and  if  we  also  set 

~i)X-  V    J   ~  Y  'J  i} 

we  arrive  by  an  easy  calculation  at  the  following  relations  between 
the  components  !£&  and  P^  of  the  curvature  tensor  of  the  second 

1C 
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order   which   belongs    to   the   quadratic   groundform   ds2  for 
respectively 

=  0 

For  statical  matter  which  is  non-coherent  (i.e.  of  which  the  parts 
do  not  act  on  one  another  by  means  of  stresses),  TJ  =  /^  is  the  only 
component  of  the  energy-density  tensor  that  is  not  zero;  hence 
T  =  /A.  Matter  at  rest  produces  a  statical  gravitational  field. 
Among  the  gravitational  equations  (30)  the  only  one  that  is  of 

/0\th interest  to  us  is  the  fl    :  it  gives  us 

A/  =  J/x   (32) 

or,  if  we  insert  the  constant  factor  of  proportionality  STTK,  we  get 

A/  =  4™;*   (32') 
If  we  assume  that,  for  an  appropriate  choice  of  -the  space-co- 

ordinates xlt  x2,  X3,  ds2  differs  only  by  an  infinitesimal  amount  from 

c2^2  -  (dx\  +  dx\  +  dxl)     .        .        .     (33) 

— the  masses  producing  the  gravitational  field  must  be  infinitely 
small  if  this  is  to  be  true — we  get,  by  setting 

/=c  +  f   w 
that 

and  /x  is  c-times  the  mass-density  in  the  ordinary  units.  We  find 
that  actually,  according  to  all  our  geometric  observations,  this 
assumption  is  very  approximately  true  for  the  planetary  system. 

Since  the  masses  of  the  planets  are  very  small  compared  with 
the  mass  of  the  sun  which  produces  the  field  and  is  to  be  considered 

at  rest,  we  may  treat  the  former  as  "  test-bodies"  that  are  embedded 
in  the  gravitational  field  of  the  sun.  The  motion  of  each  of  them 

is  then  given  by  a  geodetic  world-line  in  this  statical  gravitational 
field,  if  we  neglect  the  disturbances  due  to  the  influence  of  the 
planets  on  one  another.  The  motion  thus  satisfies  the  principle  of 
variation 

sfa  =  o 
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the  ends  of  the  portion  of  world-line  remaining  fixed.    For  the  case 

of  rest,  this  gives  us 

'ft  -  tfdt  =  0 

in  which 

=  \dt)  =  ZJik~di  ~dt 

is  the  square  of  the  velocity.  This  is  a  principle  of  variation  of  the 

same  form  as  that  of  classical  mechanics  ;  the  "  Lagrange  Function  " 
in  this  case  is 

L  =  V/2  -  v2. 
If  we  make  the  same  approximation  as  just  above  and  notice  that 

in  an  infinitely  weak  gravitational  field  the  velocities  that  occur  will 
also  be  infinitely  small  (in  comparison  with  c),  we  get 

and  since  we  may  now  set 

we  arrive  at 
r  c    *—  ^ 

=  0 

that  is,  the  planet  of  mass  m  moves  according  to  the  laws  of 
classical  mechanics,  if  we  assume  that  a  force  with  the  potential 

w<£  acts  in  it.  In  this  way  we  have  linked  up  the  theory  with 
that  of  Newton :  <&  is  the  N  ewtonian  potential  that  satisfies 

Poisson's  equation  (10),  and  k  =  c2K  is  the  gravitational  constant  of 
Newton.  From  the  well-known  numerical  value  of  the  Newtonian 

constant  k,  we  get  for  STTK  the  numerical  value 
8   k 

8™  =  -^  =  1,  87  . 10-27  cm  .  gr-1. 

The  deviation  of  the  metrical  groundform  from  that  of  Euclid  (33) 

is  thus  considerable  enough  to  make  the  geodetic  world-lines  differ 
from  rectilinear  uniform  motion  by  the  amount  actually  shown  by 

planetary  motion — although  the  geometry  which  is  valid  in  space 

and  is  founded  on  da2  differs  only  very  little  from  Euclidean 
geometry  as  far  as  the  dimensions  of  the  planetary  system  are  con- 

cerned. (The  sum  of  the  angles  in  a  geodetic  triangle  of  these 

dimensions  differs  very  very  slightly  from  180°.)  The  chief  cause 
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of  this  is  that  the  radius  of  the  earth's  orbit  amounts  to  about  eight 
light-minutes  whereas  the  time  of  revolution  of  the  world  in  its 
orbit  is  a  whole  year  ! 

We  shall  pursue  the  exact  theory  of  the  motion  of  a  point-mass 
and  of  light-rays  in  a  statical  gravitational  field  a  little  further  (vide 
note  10).  According  to  §  17  the  geodetic  world-lines  may  be 
characterised  by  the  two  principles  of  variation 

O,  in  which  Q-gra  .     (35) 

The  second  of  these  takes  for  granted  that  the  parameter  s  has 
been  chosen  suitably.  The  second  alone  is  of  account  for  the 

"  null-lines  "  which  satisfy  the  condition  Q  =  0  and  depict  the 
progress  of  a  light-signal.  The  variation  must  be  performed  in 
such  a  way  that  the  ends  of  the  piece  of  world-line  under  con- 

sideration remain  unchanged.  If  we  subject  only  XQ  =  t  to 
variation,  we  get  in  the  statical  case 

S.        .     (36) 

Thus  we  find  that 

const,    holds. 

If,  for  the  present,  we  keep  our  attention  fixed  on  the  case  of  the 
light-ray,  we  can,  by  choosing  the  unit  of  measure  of  the  parameter 
s  appropriately  (s  is  standardised  by  the  principle  of  variation  itself 
except  for  an  arbitrary  unit  of  measure),  make  the  constant  wfiich 
occurs  on  the  right  equal  to  unity.  If  we  now  carry  out  the 
variation  more  generally  by  varying  the  spatial  path  of  the  ray 
whilst  keeping  the  ends  fixed  but  dropping  the  subsidiary  condition 
imposed  by  time,  namely,  that  S#0  =  0  for  the  ends,  then,  as  is 
evident  from  (36),  the  principle  becomes 

-SSJcft. 

If  the  path  after  variation  is,  in  particular,  traversed  with  the 

velocity  of  light  just  as  the  original  path,  then  for  the  varied  world- 
line,  too,  we  have 

Q  =  0,     do-=fdt 
and  we  get 

r  r/7_ 

=  0  .     (37) 

This  equation  fixes  only  the  spatial  position  of  the  light-ray ;  it  is 

nothing  other  than  Format's  principle  of  the  shortest  path.    In 
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the  last  formulation  time  has  been  eliminated  entirely ;  it  is  valid 

for  any  arbitrary  portion  of  the  path  of  the  light-ray  if  the  latter 
alters  its  position  by  an  infinitely  small  amount,  its  ends  being  kept 
fixed. 

If,  for  a  statical  field  of  gravitation,  we  use  any  space-co- 
ordinates xv  X2,  xSJ  we  may  construct  a  graphical  representation  of 

a  Euclidean  space  by  representing  the  point  whose  co-ordinates  are 

xv  x2,  xs  by  means  of  a  point  whose  Cartesian  co-ordinates  are 
xv  x.2,  xs.  If  we  mark  the  position  of  two  stars  Sv  S2  which  are  at 

rest  and  also  an  observer  B,  who  is  at  rest,  in  this  picture-space, 
then  the  angle  at  which  the  stars  appear  to  the  observer  is  not 

equal  to  the  angle  between  the  straight  lines  BSV  BS2  connecting 
the  stars  with  the  observer ;  we  must  connect  B  with  Slf  S2  by 
means  of  the  curved  lines  of  shortest  path  resulting  from  (37)  and 

then,  by  means  of  an  auxiliary  construction,  transform  the  angle 
which  these  two  lines  make  with  one  another  at  B  from  Euclidean 

measure  to  that  of  Eiemann  determined  by  the  metrical  ground- 
form  dcr  (cf.  formula  (15),  §11).  The  angles  which  have  been 
calculated  in  this  way  are  those  which  determine  the  actually 
observed  position  of  the  stars  to  one  another,  and  which  are  read 

off  on  the  divided  circle  of  the  observing  instrument.  Whereas 

B,  Sv  S2  retain  their  positions  in  space,  this  angle  8^8%  may 
change,  if  great  masses  happen  to  get  into  proximity  of  the  path  of 

the  rays.  It  is  in  this  sense  that  we  may  talk  of  light-rays  being 
curved  as  a  result  of  the  gravitational  field.  But  the  rays  are 
not,  as  we  assumed  in  §  12  to  get  at  general  results,  geodetic  lines 

in  space  with  the  metrical  groundform  da-2 ;  they  do  not  make  the r  r/7 

integral   \dv  but    ly   assume  a  limiting  value.     The  bending  of 

light-rays  occur,  in  particular,  in  the  gravitational  field  of  the  sun. 
If  for  our  graphical  representation  we  use  co-ordinates  xv  x2,  xs, 

for  which  the  Euclidean  formula  da-2  =  dx\  +  dxl  +  dx\  holds 
at  infinity,  then  numerical  calculation  for  the  case  of  a  light-ray 
passing  by  close  to  the  sun  shows  that  it  must  be  diverted  from  its 

path  to  the  extent  of  1'74  seconds  (vide  §  31).  This  entails  a  dis- 
placement of  the  positions  of  the  stars  in  the  apparent  immediate 

neighbourhood  of  the  sun,  which  should  certainly  be  measurable. 

These  positions  of  the  stars  can  be  observed,  of  course,  only  during 
a  total  eclipse  of  the  sun.  The  stars  which  come  into  consideration 

must  be  sufficiently  bright,  as  numerous  as  possible,  and  sufficiently 
close  to  the  sun  to  lead  to  a  measurable  effect,  and  yet  sufficiently 

far  removed  to  avoid  being  masked  by  the  brilliance  of  the  corona. 

The  most  'favourable  day  for  such  an  observation  is  the  29th  May, 
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and  it  was  a  piece  of  great  good  fortune  that  a  total  eclipse 
of  the  sun  occurred  on  the  29th  May,  1919.  Two  English 
expeditions  were  dispatched  to  the  zone  in  which  the  total 
eclipse  was  observable,  one  to  Sobral  in  North  Brazil,  the 
other  to  the  Island  of  Principe  in  the  Gulf  of  Guinea,  for  the 
express  purpose  of  ascertaining  the  presence  or  absence  of  the 
Einstein  displacement.  The  effect  was  found  to  be  present  to  the 
amount  predicted ;  the  final  results  of  the  measurements  were 

1-98"  ±  0  12"  for  Sobral,  1-61"  ±  0'30"  for  Principe  (vide  note  11). 
Another  optical  effect  which  should  present  itself,  according  to 

Einstein's  theory  of  gravitation,  in  the  statical  field  and  which, 
under  favourable  conditions,  may  just  be  observable,  arises  from 
the  relationship 

ds  =  fdt 

holding  between  the  cosmic  time  dt  and  the  proper-time  ds  at  a 
fixed  point  in  space.  If  two  sodium  atoms  at  rest  are  objectively 

fully  alike,  then  the  events  that  give  rise  to  the  light-waves  of  the 
D-line  in  each  must  have  the  same  frequency,  as  measured  in 
proper-time.  Hence,  if/  has  the  values /j,  /2,  respectively  at  the 
points  at  which  the  atoms  are  situated,  then  between  /x,  /2  and  the 
frequencies  vv  v2  in  cosmic  time,  there  will  exist  the  relationship 

/?"? But  the  light-waves  emitted  by  an  atom  will  have,  of  course,  the 
same  frequency,  measured  in  cosmic  time,  at  all  points  in  space 

(for,  in  a  static  metrical  field,  Maxwell's  equations  have  a  solution 
in  which  time  is  represented  by  the  factor  eivt,  v  being  an  arbi- 

trary constant  frequency).  Consequently,  if  we  compare  the 
sodium  D-line  produced  in  a  spectroscope  by  the  light  sent  from  a 
star  of  great  mass  with  the  same  line  sent  by  an  earth- source  into 
the  same  spectroscope,  there  should  be  a  slight  displacement  of  the 
former  line  towards  the  red  as  compared  with  the  latter,  since  / 
has  a  slightly  smaller  value  in  the  neighbourhood  of  great  masses 
than  at  a  great  distance  from  them.  The  ratio  in  which  the 
frequency  is  reduced,  has  according  to  our  approximate  formula 

(34)  the  value  1  -       -  at  the  distance  r  from  a  mass  m0.      At 

the  surface  of  the  sun  this  amounts  to  a  displacement  of  '008 
Angstroms  for  a  line  in  the  blue  corresponding  to  the  wave-length 

4000  A.  This  effect  lies  just  within  the  limits  of  observability. 
Superimposed  on  this,  there  are  the  disturbances  due  to  the  Doppler 
effect,  the  uncertainty  of  the  means  used  for  comparison  on  the 
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earth,  certain  irregular  fluctuations  in  the  sun's  lines  the  causes  of 
which  have  been  explained  only  partly,  and  finally,  the  mutual 
disturbances  of  the  densely  packed  lines  of  the  sun  owing  to  the 

overlapping  of  their  intensities  (which,  under  certain  circumstances, 

causes  two  lines  to  merge  into  one  with  a  single  maximum  of  in- 
tensity). If  all  these  factors  are  taken  into  consideration,  the 

observations  that  have  so  far  been  made,  seem  to  confirm  the  dis- 

placement towards  the  red  to  the  amount  stated  (vide  note  12). 

This  question  cannot,  however,  yet  be  considered  as  having  been 
definitely  answered. 

A  third  possibility  of  controlling  the  theory  by  means  of  ex- 

periment is  this.  According  to  Einstein,  Newton's  theory  of  the 
planets  is  only  a  first  approximation.  The  question  suggests  itself 

whether  the  divergence  between  Einstein's  Theory  and  the  latter 
are  sufficiently  great  to  be  detected  by  the  means  at  our  disposal. 
It  is  clear  that  the  chances  for  this  are  most  favourable  for  the 

planet  Mercury  which  is  nearest  the  sun.  In  actual  fact,  after 
Einstein  had  carried  the  approximation  a  step  further,  and  after 

Schwarzschild  (vide  note  13)  had  determined  accurately  the  radially 
symmetrical  field  of  gravitation  produced  by  a  mass  at  rest  and 

also  the  path  of  a  point-mass  of  infinitesimal  mass,  both  found  that 
the  elliptical  orbit  of  Mercury  should  undergo  a  slow  rotation 
in  the  same  direction  as  the  orbit  is  traversed  (over  and  above 

the  disturbances  produced  by  the  remaining  planets),  amounting 

to  43"  per  century.  Since  the  time  of  Leverrier  an  effect  of  this 
magnitude  has  been  known  among  the  secular  disturbances  of 

Mercury's  perihelion,  which  could  not  be  accounted  for  by  the 
usual  causes  of  disturbance.  Manifold  hypotheses  have  been  pro- 

posed to  remove  this  discrepancy  between  theory  and  observation 

(vide  note  14).  We  shall  revert  to  the  rigorous  solution  given  by 
Schwarzschild  in  §  31. 

Thus  we  see  that,  however  great  is  the  revolution  produced  in 

our  ideas  of  space  and  time  by  Einstein's  theory  of  gravitation,  the 
actual  deviations  from  the  old  theory  are  exceedingly  small  in  our 
field  of  observation.  Those  which  are  measurable  have  been  con- 

firmed up  to  now.  The  chief  support  of  the  theory  is  to  be  found 
less  in  that  lent  by  observation  hitherto  than  in  its  inherent  logical 
consistency,  in  which  it  far  transcends  that  of  classical  mechanics, 

and  also  in  the  fact  that  it  solves  the  perplexing  problem  of  gravi- 
tation and  of  the  relativity  of  motion  at  one  stroke  in  a  manner 

highly  satisfying  to  our  reason. 

Using  the  same  method  as  for  the  light-ray,  we  may  set  up 

for  the  motion  of  a  point-mass  in  a  statical  gravitational  field  a 
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"  minimum  "  principle  affecting  only  the  path  in  space,  corre- 
sponding to  Fermat's  principle  of  the  shortest  path.  If  s  is  the 

parameter  of  proper-time,  then, 

0  =  1,  and/2^  =  const.  =  ~   .  .     (38) as  Mi 

is  the  energy-integral.  We  now  apply  the  first  of  the  two  principles 
of  variation  (35)  and  generalise  it  as  above  by  varying  the  spatial 
path  quite  arbitrarily  while  keeping  the  ends,  XQ  =  t,  fixed.  We  get 

To  eliminate  the  proper-time  we  divide  the  first  of  the  equations 
(38)  by  the  square  of  the  second  ;  the  result  is 

in  which 

U=~-E>. 

(40)  is  the  law  of  velocity  according  to  which  the  point- mass 
traverses  its  path.  If  we  perform  the  variation  so  that  the  varied 
path  is  traversed  according  to  the  same  law  with  the  same  constant 
E,  it  follows  from  (39),  that 

dt = 
or,  finally,  by  expressing  dt  in  terms  of  the  spatial  element  of  arc 

da-,  and  thus  eliminating  the  time  entirely,  we  get =  0. 

The  path  of  the  point-mass  having  been  determined  in  this  way, 
we  get  as  a  relation  giving  the  time  of  the  motion  in  this  path, 
from  (40),  that 

For  E  =  0,  we  again  get  the  laws  for  the  light-ray. 

§  30.  Gravitational  Waves 

By  assuming  that  the  generating  energy-field  T*  is  infinitely 
weak,  Einstein  has  succeeded  in  integrating  the  gravitational 

equations  generally  (vide  note  15).  The  g^'s  will,  under  these 
circumstances,  if  the  co-ordinates  are  suitably  chosen,  differ  from 
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the  gib's  by  only  infinitesimal  amounts  y^.     We  then  regard  the 
world  as  "  Euclidean,"  having  the  metrical  groundform 

and  the  y^'s  as  the  components  of  a  symmetrical  tensor-field  of 
the  second  order  in  this  world.  The  operations  that  are  to  be  per- 

formed in  the  sequel  will  always  be  based  on  the  metrical  ground- 
form  (41).  For  the  present  we  are  again  dealing  with  the  special 

theory  of  relativity.  We  shall  consider  the  co-ordinate  system o 

which  is  chosen  to  be  a  "  normal  "  one,  so  that  9  it  —  0  for  i  =|=  k  and 
ooo 

#00  =    1,  011   =  022  =   033  =  ~    1. 

XQ  is  the  time,  xlt  x2,  xz  are  Cartesian  space-co-ordinates  ;  the  velocity 
of  light  is  taken  equal  to  unity. 

We  introduce  the  quantities 

and  we  next  assert  that  we  may  without  loss  of  generality  set 

For,  if  this  is  not  so  initially,  we  may,  by  an  infinitesimal  change, 

alter  the  co-ordinate  system  so  that  (42)  holds.  The  transfor- 
mation formulae  that  lead  to  a  new  co-ordinate  system  x,  namely, 

contain  the  unknown  functions  £*,  which  are  of  the  same  order  of 

infinitesimals  as  the  y's.  We  get  new  co-efficients  g^  for  which, 
according  to  earlier  formulae,  we  must  have 

jtefo)   -  ?«(*)  -  ?*-!£  +  9tr*£  +  %*? ^£k  ^%i       OSCr 

so  that,  here,  we  have 

^W-fcW-^  +  gj,  ̂-fl.)-*!-* and  we  finally  get 

^1  -  ?Zi   =  [7  f  +  ̂?         bL-^-I  =^ 
^%k         ~bXk  ~%Xi  ̂ Xi        tXi        %Xi 

in  which  y  denotes,  for  an  arbitrary  function,  the  differential 
operator 
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The  desired  condition  will  therefore  be  fulfilled  in  the  new 

co-ordinate  system  if  the  £*'s  are  determined  from  the  equations 

which  may  be  solved  by  means  of  retarded  potentials  (cf.  Chapter 
III,  page  165).  If  the  linear  Lorentz  transformations  are  discarded, 
the  co-ordinate  system  is  defined  not  only  to  the  first  order  of 
small  quantities  but  also  to  the  second.  It  is  very  remarkable 
that  such  an  invariant  normalisation  is  possible. 

We  now  calculate  the  components  Rik  of  curvature.     As  the 

field-quantities  {*  |  are  infinitesimal,  we  get,  by  confining  our- 
selves to  terms  of  the  first  order 

P          D      ik 

*"S£ 

Now, 

hence 

Taking  into  account  equations  (42)  or 

M  =  5_y 

DXk        ~bOCi we  get 

In  the  same  way  we  obtain 

AM.    yy 
The  result  is 

Rik 

Consequently,  
E  =  -  Fy  and 

R<i- 
The  gravitation

al  
equations 

 
are,  however, 

and  may  be  directly  integrated  with  the  help  of  retarded  potentials 
(cf.  page  165).     Using  the  same  notation,  we  get 
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Accordingly,  every  change  in  the  distribution  of  matter  produces  a 
gravitational  effect  which  is  propagated  in  space  with  the  velocity  of 
light.  Oscillating  masses  produce  gravitational  waves.  Nowhere  in 
the  Nature  accessible  to  us  do  mass-oscillations  of  sufficient  power 
occur  to  allow  the  resulting  gravitational  waves  to  be  observed. 

Equations  (43)  correspond  fully  to  the  electromagnetic  equa- 
tions 

Vtf  =  s* and,  just  as  the  potentials  <£*  of  the  electric  field  had  to  satisfy 
the  secondary  condition 

because  the  current  s*  fulfils  the  condition 

¥    =0 

ton 

so  we  had  here  to  introduce  the  secondary  conditions  (42)  for  the 

system  of  gravitational  potentials  «/^-,  because  they  hold  for  the 
matter-tensor 

Plane  gravitational  waves  may  exist  :  they  are  propagated 
in  space  free  from  matter  :  we  get  them  by  making  the  same 
supposition  as  in  optics,  i.e.  by  setting 

The  a;'s  and  the  o^'s  are  constants;  the  latter  satisfy  the  condition 
aia}  —  0.  Moreover,  a0  =  v  is  the  frequency  of  the  vibration  and 
a^  +  a2#2  +  a3#3  =  const,  are  the  planes  of  constant  phase.  The 

differential  equations  [7^*  =  0  are  satisfied  identically.  The 
secondary  conditions  (42)  require  that 

a*o*  =  0     .         .         .         .         .     (44) 
If  the  xl  -  axis  is  the  direction  of  propagation  of  the  wave,  we  have 

a2  =  a3  =  0,  -  ctj  =  a0  =  v 

and  equations  (44)  state  that 

a?  =  a]     or    a^  =  -  an       .         .         .     (45) 

Accordingly,  it  is  sufficient  to  specify  the  space  part  of  the  constant 
symmetrical  tensor  a,  namely, 

a.21  a22  a 
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since  the  a's  with  the  index  0  are  determined  from  these  by  (45) ; 
the  space  part,  however,  is  subject  to  no  limitation.  In  its  turn  it 
splits  up  into  the  three  summands  in  the  direction  of  propagation 
of  the  waves : 

au  0  0 000 
000 

0  aia  a 

a21  0  0 
a81  0  0 

13 

000 
0  a22  a 

0  a  a 

The  tensor-vibration  may  hence  be  resolved  into  three  independent 
components  :  a  longitudinal-longitudinal,  a  longitudinal -transverse, 
and  a  transverse-transverse  wave. 

H.  Thirring  has  made  two  interesting  applications  of  in- 
tegration based  on  the  method  of  approximation  used  here  for  the 

gravitational  equations  (vide  note  16).  With  its  help  he  has  in- 
vestigated the  influence  of  the  rotation  of  a  large,  heavy,  hollow 

sphere  on  the  motion  of  point- masses  situated  near  the  centre  of 
the  sphere.  He  discovered,  as  was  to  be  expected,  a  force  effect 
of  the  same  kind  as  centrifugal  force.  In  addition  to  this  a  second 
force  appears  which  seeks  to  drag  the  body  into  the  aequatorial 

plane  according  to  the  same  law  as  that  according  to  which  centri- 
fugal force  seeks  to  drive  it  away  from  the  axis.  Secondly  (in 

conjunction  with  J.  Lense),  he  has  studied  the  influence  of  the 
rotation  of  a  central  body  on  its  planets  or  moons,  respectively.  In 
the  case  of  the  fifth  moon  of  Jupiter,  the  disturbance  caused  attains 
an  amount  that  may  make  it  possible  to  compare  theory  with 
observation. 

Now  that  we  have  considered  in  §§  29,  30  the  approximate 
integration  of  the  gravitational  equations  that  occur  if  only  linear 
terms  are  taken  into  account,  we  shall  next  endeavour  to  arrive  at 
rigorous  solutions :  our  attention  will,  however,  be  confined  to 
statical  gravitation. 

§31.  Rigorous  Solution  of  the  Problem  of  One  Body* 
For  a  statical  gravitational  field  we  have 

ds2  =  J*dx£  -  do-2 

in  which  da2  is  a  definitely  positive  quadratic  form  in  the  three- 
space  variables  xv  x2,  xs ;  the  velocity  of  light  /  is  likewise  de- 

pendent only  on  these.  The  field  is  radially  symmetrical  if,  for 
a  proper  choice  of  the  space-co-ordinates,  /  and  da*  are  invariant 
with  respect  to  linear  orthogonal  transformations  of  these  co- 

Vide  note  (17). 
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ordinates.  If  this  is  to  be  the  case,  /  must  be  a  function  of  the 
distance    

/y.       /  rp    2       I       /y»    2       I       SY*    2 
/       —       ̂   tA/T         "I*     tX/rt  l^          %    J 

from  the  centre,  but  d<r*  must  have  the  form 

X(dx-^  +  dx^  +  dx.^)  +  l^x-^dx-^  +  x%dx%  +  x^dx^f        (46) 

in  which  X  and  I  are  likewise  functions  of  r  alone.  Without  dis- 

turbing this  normal  form  we  may  subject  the  space-co-ordinates  to 
a  further  transformation  which  consists  in  replacing  xlt  x2,  x3  by 
TXV  rx2,  TXS,  the  factor  of  proportionality  r  being  an  arbitrary 
function  of  the  distance  r.  By  choosing  X  appropriately  we  may 
clearly  succeed  in  getting  X  =  1 ;  let  us  suppose  this  to  have  been 
done.  Then,  using  the  notation  of  §  29,  we  have 

ya.  =  -  gik  =  8f  +  I  .  xixk         (i,  k  =  1,  2,  3). 

We  shall  next  define  this  radially  symmetrical  field  so  that 
it  satisfies  the  homogeneous  gravitational  equations  which  hold 

wherever  there  is  no  matter,  that  is,  wherever  the  energy-density 
Tf  vanishes.  These  equations  are  all  included  in  the  principle  of 
variation 

S  i Gdx  =  0. 

The  gravitational  field,  which  we  are  seeking,  is  that  which  is 
produced  by  statical  masses  which  are  distributed  about 

the  centre  with  radial  symmetry.  If  the  accent  signify  differ- 
entiation with  respect  to  r,  we  get 

and  hence 

-  [*]  =  i  %l'x0t  +  Bf*.    (i,  k,  a  =  1,  2,  3). 
Since  it  follows  from 

that 

xa  =  -r2xa  and  h?  =  1  +  lr2, 

as  may  be  verified  by  direct  substitution,  we  must  have 

(ik\          xa  I'xiXk  + 
W-*7-   "IF 
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It  is  sufficient  to  carry  out  the  calculation  of  G  for  the  point 

xl  =  r,  x2  =  0,  o?3  =  0.  At  this  point,  we  get  for  the  three-indices 
symbols  just  calculated  : 

in       h'      .  f22  33         Ir 

whereas  the  remaining  ones  are  equal  to    zero.      Of  the  three- 
indices  symbols  containing  0,  we  find  by  §  29  that 

whereas  all  the  others  =  0.     Of  the  g^Q  all  those  situated  in  the 
main  diagonal  (i  =  k)  are  equal,  respectively,  to 

whereas  the  lateral  ones  all  vanish.     Hence  definition  (31)  of  G 

gives  us 

1 
•  p 

1 
-  1 

The  terms  in  the  first  and  second  row  taken  together  lead  to 

in      rioiwifocn      irio 

The  second  factor  in  this  product,   however,  is   equal   to   zero. 
Since,  by  (57)  §  17 

i=0 

the  sum  of  the  terms  in  the  third  and  fourth  row  is  equal  to 

2/r     A' "   W  '  A  ' 

If  we  wish  to  take  the  world-integral  G  over  a  fixed  interval  with 
respect  to  the  time  x0,  and  over  a  shell  enclosed  by  two  spherical 
surfaces  with  respect  to  space,  then,  since  the  element  of  integra- 

tion is 

dx  =  dx0  .  dti  .  r2dr     (d&  =  solid  angle), 
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the  equation  of  variation  that  is  to  be  solved  is 

8  (dr^dr  =  0. 

Hence,  if  we  set 

/r3          Zr3        _  /         ̂  

W  =  1  +  lr*  -  V     ~  tf 
we  get 

0 
IwA'dr  = 

in  which  A  and  w  may  be  regarded  as  the  two  functions  that  may 
be  varied  arbitrarily. 

By  varying  w,  we  get 

A'  =  0,         A  =  const, 
and  hence,  if  we  choose  the  unit  of  time  suitably 

A  =  hf  =  1. 
Partial  integration  gives 

IwA'dr  =  [wA]  -  I  Aw 'dr. 

Hence,  if  we  vary  A,  we  arrive  at 

w'  =  0,        w  =  const.  =  2m. 
Finally,  from  the  definition  of  w  and  A  =  1,  we  get 

This  completes  the  solution  of  the  problem.  The  unit  of  time  has 

been  chosen  so  that  the  velocity  of  light  at  infinity  =  1.  For 
distances  r,  which  are  great  compared  with  m,  the  Newtonian 

value  of  the  potential  holds  in  the  sense  that  the  quantity  m0, 

introduced  by  the  equation  m  =  *m0  occurs  as  the  field -producing 
mass  in  it ;  we  call  m  the  gravitational  radius  of  the  matter 
causing  the  disturbance  of  the  field.  Since  kirm  is  the  flux  of  the 

spatial  vector-density  f*  through  an  arbitrary  sphere  enclosing  the 

masses,  we  get,  from  (32'),  for  discrete  or  non-coherent  mass =  \ 

Since/2  cannot  become  negative,  it  is  clear  from  this  that,  if  we  use 
the  co-ordinates  here  introduced  for  the  region  of  space  devoid  of 
matter,  r  must  be  >  2m.  Further  light  is  shed  on  this  by  the 
special  case  of  a  sphere  of  liquid  which  is  to  be  discussed  in  §  32, 
and  for  which  the  gravitational  field  inside  the  mass,  too,  will  be 

determined.  We  may  apply  the  solution  found  to  the  gravitational 
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field  of  the  sum  external  to  itself  if  we  neglect  the  effect  due  to  the 
planets  and  the  distant  stars.  The  gravitational  radius  is  about 

1'47  kilometres  for  the  sun's  mass,  and  only  5  millimetres  for  the earth. 

The  motion  of  a  planet  (supposed  infinitesimal  in  comparison 

with  the  sun's  mass)  is  represented  by  a  geodetic  world-line.  Of 
its  four  equations 

&ax      fo£\ <&.&*-   n 

ds*        \i  )  ds    ds   ~~ the  one  corresponding  to  the   index  4  =  0  gives,  for  the  statical 
gravitational  field,  the  energy-integral 

/2 

as  we  saw  above  ;  or,  since, 

we  get 

In  the  case  of  a  radially  symmetrical  field  the  equations  corre- 
sponding to  the  indices  *  =  I,  2,  3  give  the  proportion 

(this  is  readily  seen  from  the  three-indices  symbols  that  are  written 
down).  And  from  them,  there  results,  in  the  ordinary  way,  the 
three  equations  which  express  the  Law  of  Areas 

dx»         dx-, 
..............  '    xi~ds~  "  x*~ds~  =  const> 

This  theorem  differs  from  the  similar  one  derived  in  Newton's 
Theory,  in  that  the  differentiations  are  made,  not  according  to 
cosmic  time,  but  according  to  the  proper-time  s  of  the  planet.  On 
account  of  the  Law  of  Areas  the  motion  takes  place  in  a  plane 
that  we  may  choose  as  our  co-ordinate  plane  xs  =  0.  If  we 
introduce  polar  co-ordinates  into  it,  namely 

x1  =  r  cos  <£,         #2  =  r  sm  ̂  
the  integral  of  the  area  is 

r^  =  const.  =  &  .     (47) 
CIS 

The  energy-integral,  however,  since 

dx\  +  dx\  =  dr2  +  r2d<j>\         x1dx1  +  x2dx2  =  rdr 
do*  =  (dr* 
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becomes 

since  fh  =  1,  we  get,  by  substituting  for/2  its  value,  that ..  <«> 

Compared  with  the  energy-equation  of  Newton's  Theory  this 
equation  differs  from  it  only  in  having  r  —  2m  in  place  of  r  in  the 
last  term  of  the  left-hand  side. 

The  succeeding  steps  are  the  same  as  those  of  Newton's  Theory. 

We  substitute  -*—  from  (47)  into  (48),  getting 

2m  62(r  -  2m) 

r  r3        ' 

or,  using  the  reciprocal  distance  p  =  -  in  place  of  r, 

-  E  - 

To  arrive  at  the  orbit  of  the  planet  we  eliminate  the  proper-time 
by  dividing  this  equation  by  the  square  of  (47),  thus 

2m         E 

rzj  —  pz  +  2mprf. 

In  Newton's  Theory  the  last  term  on  the  right  is  absent.  Taking 
into  account  the  numerical  conditions  that  are  presented  in  the  case 

of  planets,  we  find  that  the  polynomial  of  the  third  degree  in  p  on 

the  right  has  three  positive  roots  p0  >  pl  >  p2  and  hence 

=  2m(Po  -  p)  (pj  -  p)  (p  -  p2) 

p  assumes  values  ranging  between  pl  and  p2.  The  root  p0  is  very 

great  in  comparison  with  the  remaining  two.  As  in  Newton's 
Theory,  we  set 

and  call  a  the  semi-major  axis  and  e  the  eccentricity.     We  then 

get 

- 

If  we  compare  the  co-efficients  of  p2  with  one  another,  we  find  that 

Po  +  Pi  +  />2  =  2m" 
<t>  is  expressed  in  terms  of  p  by  an  elliptic  integral  of  the  first  kind 
and  hence,  conversely,  p  is  an  elliptic  function  of  <j>.     The  motion 17 
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is  of  precisely  the  same  type  as  that  executed  by  the  spherical 
pendulum.  To  arrive  at  simple  formulae  of  approximation,  we 
make  the  same  substitution  as  that  used  to  determine  the  Kepler 
orbit  in  the  Newtonian  Theory,  namely 

Then dO 

•     (49) 

The  perihelion  is  characterised  by  the  values  0  =  0,  27r.  .  .  .  The 
increase  of  the  azimuth  <£  after  a  full  revolution  from  perihelion  to 
perihelion  is  furnished  by  the  above  integral,  taken  between  the 
limits  0  and  2?r.  With  easily  sufficient  accuracy  this  increase  may 
be  set 

27T 

We  find,  however,  that 

Po  ~    !L2-fi8  =  (Po  +  Pi  +  P2)  -  l(pi  +  P2)  =  2^1  ~  a(l  - 
Consequently  the  above  increase  (of  azimuth) 

2?r 

Jl  -.    ̂  

and  the  advance  of  the  perihelion  per  revolution 

In  addition,  m,  the  gravitational  radius  of  the  sun  may  be  expressed 

according  to  Kepler's  third  law,  in  terms  of  the  time  of  revolution 
T  of  the  planet  and  the  semi-major  axis  a,  thus 

Using  the  most  delicate  means  at  their  disposal,  astronomers  have 
hitherto  been  able  to  establish  the  existence  of  this  advance  of  the 

perihelion  only  in  the  case  of  Mercury,  the  planet  nearest  the  sun 
(vide  note  18). 

Formula  (49)  also  gives  the  deflection  a  of  the  path  of  a  ray  of  light. 

If  00  =  ̂   +  €  is  the  angle  0  for  which  p  =  0,  then  the  value  of  the 2 
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integral,  taken  between  -  00  and  +  00,  =  TT  +  a.  Now  in  the 
present  case 

2»*0>0  -  P)(Pl  -  P)(p  -  P,)  =  ~  -  P2  +  2wpa. 

The  values  of  p  fluctuate  between  0  and  p, .    Moreover,  —  =  r  is  the 

Pi 

nearest  distance  to  which  the  light-ray  approaches  the  centre  of 

mass  0,  whilst  b  is  the  distance  of  the  two  asymptotes  of  the  light- 
ray  from  0  (for  in  the  case  of  any  curve,  this  distance  is  given  by 

the  value  of  ̂  for  p  =  0).     Now, 

dp 

2w(p0  +  Pl  +  p2)  =  1 

is  accurately  true.     If  —is   a   small  fraction,  we  get  to   a   first 

degree  of  approximation  that 

mm/  \       /m\2  m 
mPl  =  -  mp2  =  T        -(Pl  +  P2)  =  ( 

+  *0  ^_ 

a  =  |  (1  +  _  cos  8}dO  -  TT  =  2c  +  ——  and  hence    a  =    ' 

T  "U 

=  f  (1  +  ̂   cos  B)dB  -  TT  =  2€  + 

If  we  calculate  the  path  of  the  light-ray  according  to  Newton's 
Theory,  taking  into  account  the  gravitation  of  light,  that  is,  considering 
it  as  the  path  of  a  body  that  has  the  velocity  c  at  infinity,  then  if  we 
set 

1    .   2m 

in  which  pl  >  0,  p2  <  0  and  set 

cos  #0  =  - Pi  ~  P2 
we  get 

Thus  Newton's  law  of  attraction  leads  to  a  deflection  which  is  only 
half  as  great  as  that  predicted  by  Einstein.  The  observations 

made  at  Sobral  and  Principe  decide  the  question  definitely  in 

favour  of  Einstein  '(vide  note  19). 

§  32.  Additional  Rigorous  Solutions  of  the  Statical  Problem 
of  Gravitation 

In  a  Euclidean  space  with  Cartesian  co-ordinates  xlt  x2,  x3,  the 
equation  of  a  surface  of  revolution  having  as  its  axis  of  rotation  the 
,#3-axis  is 

x3  -  F(r),          r  =  Jx*  +  x\. 
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On  it,  the  square  of  the  distance  da-  between  two  infinitely  near 
points  is 

do-2  =  (dx\  +  dx\)  +  (.F 

=  (dx\  +  dx\)  +  (* 

In  a  radially  symmetrical  statical  gravitational  field  we  have  for  a 

plane  (xs  =  0)  passing  through  the  centre 

da2  =»  (dx\  +  dx\)  +  l(xldxl  +  x^dx^ 
in  which 

The  two  formulae  are  identical  if  we  set 

F'(r)  - 

The  geometry  ivhich  holds  on  this  plane  is  therefore  the  same  as  that 
which  holds  in  Euclidean  space  on  the  surface  of  revolution  of  a 

parabola 
z  =  N/8m(r  -  2m) 

(vide  note  20). 

A  charged  sphere,  besides  calling  up  a  radially  symmetrical 
gravitational  field,  calls  up  a  similar  electrostatic  field.  Since  both 
fields  influence  one  another  mutually,  they  may  be  determined  only 
conjointly  and  simultaneously  (vide  note  21).  If  we  use  the  ordinary 
units  of  the  c.g.s.  system  (and  not  those  of  Heaviside  which  dispose 
of  the  factor  4:7r  in  another  way  and  which  we  have  generally  used 
in  the  foregoing)  for  electricity  as  well  as  for  the  other  quantities, 
then  in  the  region  devoid  of  masses  and  charges  the  integral  becomes 

dr 

It  assumes  a  stationary  value  for  the  condition  of  equilibrium.  The 
notation  is  the  same  as  above,  $  denoting  the  electrostatic  potential. 
The  square  of  the  numerical  value  of  the  field  is  used  as  a  basis  for 
the  function  of  Action  of  the  electric  field,  in  accordance  with  the 
classical  theory.  Variation  of  w  gives,  just  as  in  the  case  of  no 
charges, 

A'  =  0          A  =  const.  =  c. 

But  variation  of  $  leads  to 
*(?*} 
dr  \  A  / -0     and  hence     *  -  «-«.. 
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For  the  electrostatic  potential  we  therefore  get  the  same  formula  as 

when  gravitation  is  disregarded.  The  constant  eQ  is  the  electric 

charge  which  excites  the  field.  If,  finally,  A  be  varied,  we  get 

<J>'2r2 «/-K±J:=O 
and  hence 

w  =  2m-^,    i.^M"-l- 
K  e,if      1       //\2      -,       2Kmn  .    K  en2 

in  which  w0  denotes  the  mass  which  produces  the  gravitational 

field.  In  /2  there  occurs,  as  we  see,  in  addition  to  the  term 
depending  on  the  mass,  an  electrical  term  which  decreases 

more  rapidly  as  r  increases.  We  call  m  =  Km0  the  gravitational 

radius  of  the  mass  mQ,  and  —  —  eQ  =  e  the  gravitational  radius  of c 

the  charge  e0.  Our  formula  leads  to  a  view  of  the  structure  of 

the  electron  which  diverges  essentially  from  the  one  commonly 
accepted.  A  finite  radius  has  been  attributed  to  the  electron  ;  this 
has  been  found  to  be  necessary,  if  one  is  to  avoid  coming  to  the 
conclusion  that  the  electrostatic  field  it  produces  has  infinite  total 

energy,  and  hence  an  infinitely  great  inertial  mass.  If  the  inertial 

mass  of  the  electron  is  derived  from  its  field-energy  alone,  then  its 
radius  is  of  the  order  of  magnitude 

—A 

w0c2 

But  in  our  formula  a  finite  mass  m0  (producing  the  gravitational 
field)  occurs  quite  independently  of  the  smallness  of  the  value  of  r 
for  which  the  formula  is  regarded  as  valid  ;  how  are  these  results 

to  be  reconciled  ?  According  to  Faraday's  view  the  charge  enclosed 
by  a  surface  O  is  nothing  more  than  the  flux  of  the  electrical  field 

through  O.  Analogously  to  this  it  will  be  found  in  the  next  para- 

graph that  the  true  meaning  of  the  conception  of  mass,  both  as  field- 
producing  mass  and  as  inertial  or  gravitational  mass,  is  expressed 

by  a  field-flux.  If  we  are  to  regard  the  statical  solution  here  given 
as  valid  for  all  space,  the  flux  of  the  electrical  field  through  any 
sphere  is  47re0  at  the  centre.  On  the  other  hand  the  mass  which  is 
enclosed  by  a  sphere  of  radius  r,  assumes  the  value 

which  is  dependent  on  th^  "••  r      The  mass  is  consequently 
distributed  continuously.     The  u  f  or>urse, 

with  the  density  of  energy.     The  "  n 
which  the  mass  is  to  be  calculated,  is  not  e^u^A  t^  ̂   ,  —  u., 
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Therefore  the  mass  w0  of  the  electron  cannot  be  determined  from 

this  level  at  all,  but  signifies  the  "  ultimate  level "  at  an  infinitely 
great  distance,  a  now  signifies  the  radius  of  the  sphere  which 

encloses  the  mass  zero.  Contrary  to  Mie's  view  matter  now 
appears  as  a  real  singularity  of  the  field.  In  the  general 
theory  of  relativity,  however,  space  is  no  longer  assumed  to  be 
Euclidean,  and  hence  we  are  not  compelled  to  ascribe  to  it  the 

relationships  of  Euclidean  space.  It  is  quite  possible  that  it  has 

other  limits  besides  infinity,  and,  in  particular,  that  its  relationships 
are  like  those  of  a  Euclidean  space  which  contains  punctures 

(cf.  §  34).  We  may,  therefore,  claim  for  the  ideas  here  developed — 
according  to  which  there  is  no  connection  between  the  total 

mass  of  the  electron  and  the  potential  of  the  field  it  produces,  and 

in  which  there  is  no  longer  a  meaning  in  talking  of  a  cohesive 

pressure  holding  the  electron  together — equal  rights  as  for  those 
of  Mie.  An  unsatisfactory  feature  of  the  present  theory  is  that  the 

field  is  to  be  entirely  free  of  charge,  whereas  the  mass  ( =  energy)  is 
to  permeate  the  whole  of  the  field  with  a  density  that  diminishes 
continuously. 

It  is  to  be  noted  that  a  :  e  =  e  :  m  or,  that  e  =  .Jam.     In  the  case 

of  the  electron  the  quotient  —  is  a  number  of  the  order  of  magnitude 

1020,  —  of  the  order  1040 ;  that  is,  the  electric  repulsion  which  two wi  \ 

electrons  (separated  by  a  great  distance)  exert  upon  one  another  is 

1040  times  as  great  as  that  which  they  exert  in  virtue  of  gravitation. 
The  circumstance  that  in  an  electron  an  integral  number  of  this 

kind  occurs  which  is  of  an  order  of  magnitude  varying  greatly  from 

unity  makes  the  thesis  contained  in  Mie's  Theory,  namely,  that  all 
pure  figures  determined  from  the  measures  of  the  electron  must 
be  derivable  as  mathematical  constants  from  the  exact  physical 

laws,  rather  doubtful :  on  the  other  hand,  we  regard  with  equal 

scepticism  the  belief  that  the  structure  of  the  world  is  founded  on 

certain  pure  figures  of  accidental  numerical  value. 
The  gravitational  field  that  is  present  in  the  interior  of  massive 

bodies  is,  according  to  Einstein's  Theory,  determined  only  when  the 
dynamical  constitution  of  the  bodies  are  fully  known ;  since  the 
mechanical  conditions  are  included  in  the  gravitational  equations, 

the  conditions  of  equilibrium  are  given  for  the  statical  case.  The 

simplest  conditions  that  offer  themselves  for  consideration  are  given 
when  we  deal  with  bodies  that  are  composed  of  a  homogeneous 

incompressible  fluid.  The  energy-tensor  of  a  fluid  on  which  no 
volume  forces  are  acting  is  given  according  to  §  25,  by 



ADDITIONAL  RIGOROUS  SOLUTIONS          263 

in  which  the  Ui's  are  co-variant  components  of  the  world-direction 

of  the  matter,  the  scalar  p  denotes  the  pressure,  and  /**  is  deter- 
mined from  the  constant  density  /x0  by  means  of  the  equation  p*  = 

^0  +  p.  We  introduce  the  quantities 

as  independent  variables,  and  set 

1  _ 

Then,  if  we  vary  only  the  gik's,  not  the  Vi'a, 
dL  =  -  iTijfcfyor. 

Consequently,  by  referring  these  equations  to  this  kind  of  variation, 
we  may  epitomise  them  in  the  formula 

i  +  G)dx  =  0. 

It  must  carefully  be  noted,  however,  that,  if   the  vja  are  varied 
as  independent  variables  in  this  principle,  it  does  not  lead  to  the 
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which  leads  to  nowhere).  But  these  conservation  theorems  of  energy 
and  momentum,  are  already  included  in  the  gravitational  equations. 

In  the  statical  case,  i\  =  v.,  =  v3  =  0,  and  all  quantities  are  in- 
dependent of  the  time.  We  set  VQ  =  v  and  apply  the  symbol  of 

variation  S  just  as  in  §  28  to  denote  a  change  that  is  produced  by  an 

infinitesimal  deformation  (in  this  case  a  pure  spatial  deformation). 
Then 

SL  =  £T^Sa,:z.  -  hSv  (h  =  ~ 

in  which  &v  denotes  nothing  more  than  the  difference  of  v  at  two 
points  in  space  that  are  generated  from  one  another  as  a  result  of 

the  displacement.  By  now  arguing  backwards  from  the  conclusion 

which  gave  us  the  energy-momentum  theorem  in  §  28,  we  infer  from 
this  theorem,  namely 

{TikSgikdx  =  0 

and  from  the  equation 

=  0, 

which  expresses  the  invariant  character  of  the  world-integral  of  L, 
that  8v  =  0.  This  signifies  that,  in  a  connected  space  filled  with 
fluid,  Y  has  a  constant  value.  The  theorem  of  energy  is  true 
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identically,  and  the  law  of  momentum  is  expressed  most  simply  by 
this  fact.  A  single  mass  of  fluid  in  equilibrium  will  be  radially 
symmetrical  in  respect  of  the  distribution  of  its  mass  and  its  field. 

In  this  special  case  we  must  make  the  same  assumption  for  ds2, 
involving  the  three  unknown  functions  X,  I,  f,  as  at  the  beginning 
of  §  31.  If  we  start  by  setting  X  =  1,  we  lose  the  equation  which 
is  derived  by  varying  X.  A  full  substitute  for  it  is  clearly  given  by 
the  equation  that  asserts  the  invariance  of  the  Action  during  an 
infinitesimal  spatial  displacement  in  radial  directions,  that  is,  the 
theorem  of  momentum  :  v  =  const.  The  problem  of  variation  that 
has  now  to  be  solved  is  given  by 

SUA'fC  +  r>0A  -  r*vh}dr  =  0 

in  which  A  and  h  are  to  undergo  variation,  whereas 

t*  -  (l  -  p)r. 

Let  us  begin  by  varying  A ;  we  get 

w'  —  //,0r2  =  0  and  w  =  ̂ r3 o 

that  is 

*H 

.        .        .        .     (50) 

Let  the  spherical  mass  of  fluid  have  a  radius  r  =  r0.     It  is  obvious 
that  r0  must  remain 

The  energy  and  the  mass  are  expressed  in  the  rational  units  given 
by  the  theory  of  gravitation.  For  a  sphere  of  water,  for  example, 
this  upper  limit  of  the  radius  works  out  to 

=  4-108  km.  =  22  light-minutes. O7TK 

Outside  the  sphere  our  earlier  formulae  are  valid,  in  particular 

1        '       2™,     A  =  l. 

The  boundary  conditions  require  that  h  and  /  have  continuous 
values  in  passing  over  the  spherical  surface,  and  that  the  pressure 
p  vanish  at  the  surface.  From  the  continuity  of  h  we  get  for  the 
gravitational  radius  m  of  the  sphere  of  fluid 

m 
6 
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The  inequality,  which  holds  between  r0  and  ̂ ,0,  shows  that  the 

radius  r0  must  be  greater  than  2w.  Hence,  if  we  start  from  in- 

finity, then,  before  we  get  to  the  singular  sphere  r  =  %m  mentioned 
above,  we  reach  the  fluid,  within  which  other  laws  hold.  If  we 

now  adopt  the  gramme  as  our  unit,  we  must  replace  /*0  by  STTK/AO, 
whereas  m  =  KWO,  if  m0  denotes  the  gravitating  mass.  We  then 
find  that 

Since 

is  a  constant,  and  assumes  the  value  ̂ -°  at  the  surface  of  the  sphere, 

in  which  hQ  denotes  the  value  of  h  there  as  given  by  (50),  we  see 
that  in  the  whole  interior 

«  =  O^o  +  P)f  =  ̂   -  .     (51) 
Variation  of  h  leads  to 

Since  it  follows  from  (50)  that h'       u0 

we  get  immediately 

— h  +  const. 

Further,  if  we  use  the  value  of  the  constant  v  given  by  (51), 
and  calculate  the  value  of  the  integration  constant  that  occurs,  by 
using  the  boundary  condition  A  =  1  at  the  surface  of  the  sphere, 
then 

A  . 
Finally,  we  get  from  (51) 

P  = 
These  results  determine  the  metrical  groundform  of  space 

da*  =  (dx\  +  dxl  +  dx*)  +  K^i  +  My  V^s).^    (52) 

the   gravitational   potential   or   the   velocity  of   light  /,   and   the 
pressure-field  p. 
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If  we  introduce  a  superfluous  co-ordinate 

#4  =  \/a2  -  r2 
into  space,  then 

x\  +  x\  +  x\  +  x\  =  a2       .         .         .     (53) 
and  hence 

rr1^ic1  +  #2^#2  +  #3d#3  +  x4dx^  =  0 

(52)  then  becomes 

In  the  whole  interior  of  the  fluid  sphere  spatial  spherical  geometry 

is  valid,  namely,  that  which  is  true  on  the  "  sphere  "  (53)  in  four- 
dimensional  Euclidean  space  with  Cartesian  co-ordinates  X{.  The 
fluid  covers  a  cap-shaped  portion  of  the  sphere.  The  pressure  in 

it  is  a  linear  fractional  function  of  the  "vertical  height,"  z  =  x±  on 
the  sphere  : 

L  _  z  ~  2o 

Mo      3*o  -  z
' Further,  it  is  shown  by  this  formula  that,  since  the  pressure  p  may 

not  pass,  on  a  sphere  of  latitude,  z  =  const.,  from  positive  to  negative 
values  through  infinity,  3z0  must  be  >  a,  and  the  upper  limit  a 

found  above  for  the  radius  of  the  fluid  sphere  must  be  correspond- 
. 

ingly  reduced  to  —  « 

These  results  for  a  sphere  of  fluid  were  first  obtained  by 

Schwarzschild  (vide  note  22).  After  the  most  important  cases  of 
radially  symmetrical  statical  gravitational  fields  had  been  solved, 

the  author  succeeded  in  solving  the  more  general  problem  of  the 

cylindrically  symmetrical  statical  field  (vide  note  23).  We 

shall  here  just  mention  briefly  the  simplest  results  of  this  investiga- 
tion. Let  us  consider  first  uncharged  masses  and  a  gravitational 

field  in  space  free  from  matter.  It  then  follows  from  the  gravita- 

tional equations,  if  certain  space-co-ordinates  r,  0,  z  (so-called 
canonical  cylindrical  co-ordinates)  are  used,  that 

6  is  an  angle  whose  modulus  is  2?r  ;  that  is,  corresponding  to  values 

of  6  that  differ  by  integral  multiples  of  2?r  there  is  only  one 
point.  On  the  axis  of  rotation  r  =  o.  Also,  h  and  /  are  functions 

of  r  and  z.  We  shall  plot  real  space  in  terms  of  a  Euclidean  space, 

in  which  r,  0,  z  are  cylindrical  co-ordinates.  The  canonical  co- 
ordinate system  is  uniquely  defined  except  for  a  displacement  in 

the  direction  of  the  axis  of  rotation  z'  =  z  +  const.  When 



ADDITIONAL  RIGOROUS  SOLUTIONS          267 

h  =  f  =  1,  da2  is  identical  with  the  metrical  groundform  of  the 
Euclidean  picture-space  (used  for  the  plotting).  The  gravitational 
problem  may  be  solved  just  as  easily  on  this  theory  as  on  that  of 
Newton,  if  the  distribution  of  the  matter  is  known  in  terms  of 
canonical  co-ordinates.  For  if  we  transfer  these  masses  into  our 

picture-space,  that  is,  if  we  make  the  mass  contained  in  a  portion 
of  each  space  equal  to  the  mass  contained  in  the  corresponding 

portion  of  the  picture-space,  and  if  \ty  is  then  the  Newtonian 
potential  of  this  mass-distribution  in  the  Euclidean  picture-space, 
the  simple  formula 

/=^/c2    .  .     (54) 

holds.  The  second  still  unknown  function  h  may  also  be  deter- 
mined by  the  solution  of  an  ordinary  Poisson  equation  (referring  to 

the  meridian  plane  0  =  0).  In  the  case  of  charged  bodies,  too, 

the  canonical  co-ordinate  system  exists.  If  we  assume  that  the 
masses  are  negligible  in  comparison  with  the  charges,  that  is,  that 

for  an  arbitrary  portion  of  space  the  gravitational  radius  of  the 

electric  charges  contained  in  it  is  much  greater  than  the  gravita- 
tional radius  of  the  masses  contained  in  it,  and  if  <f>  denotes  the 

electrostatic  potential  (calculated  according  to  the  classical  theory) 

of  the  transposed  charges  in  the  canonical  picture-space,  then  /  and 
the  electrostatic  potential  <3>  in  real  space  are  given  by  the  formulae 

It  is  not  quite  easy  to  subordinate  the  radially  symmetrical  case  to 

this  more  general  theory  :  it  becomes  necessary  to  carry  out  a  rather 

complicated  transformation  of  the  space-co-ordinates,  into  which 
we  shall  not  enter  here. 

Just  as  the  laws  of  Mie's  electrodynamics  are  non-linear,  so 

also  Einstein's  laws  of  gravitation.  This  non-linearity  is  not 
perceptible  in  those  measurements  that  are  accessible  to  direct 

observation,  because,  in  them,  the  non-linear  terms  are  quite 
negligible  in  comparison  with  the  linear  ones.  It  is  as  a  result  of 

this  that  the  principle  of  superposition  is  found  to  be  confirmed 

by  the  interplay  of  forces  in  the  visible  world.  Only,  perhaps,  for 
the  unusual  occurrences  within  the  atom,  of  which  we  have  as  yet 
no  clear  picture,  does  this  non-linearity  come  into  consideration. 

Non-linear  differential  equations  involve,  in  comparison  with  linear 
equations,  particularly  as  regards  singularities,  extremely  intricate, 

unexpected,  and,  at  the  present,  quite  uncontrollable  conditions. 
The  suggestion  immediately  arises  that  these  two  circumstances, 
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the  remarkable  behaviour  of  non-linear  differential  equations  and 
the  peculiarities  of  intra-atomic  occurrences,  are  to  be  related  to 

one  another.  Equations  (54)  and  (54')  offer  a  beautiful  and  simple 
example  of  how  the  principle  of  superposition  becomes  modified  in 

the  strict  theory  of  gravitation  :  the  field-potentials  /  and  3>  depend 
in  the  one  case  on  the  exponential  function  of  the  quantity  ̂ ,  and 
in  the  other  on  a  trigonometrical  function  of  the  quantity  <£,  these 
quantities  being  those  which  satisfy  the  principle  of  superposition. 
At  the  same  time,  however,  these  equations  demonstrate  clearly 

that  the  non-linearity  of  the  gravitational  equations  will  be  of  no 
assistance  whatever  for  explaining  the  occurrences  within  the 
atom  or  the  constitution  of  the  electron.  For  the  differences 

between  <£  and  3>  become  appreciable  only  when  —  <f>  assumes c 

values  that  are  comparable  with  1.  But  even  in  the  interior  of  the 
electron  this  case  arises  only  for  spheres  whose  radius  corresponds 
to  the  order  of  gravitational  radius 

VK 
e  =  — e0«^10~33  cms. 

for  the  charge  e0  of  the  electron. 

It  is  obvious  that  the  statical  differential  equations  of  gravita- 
tion cannot  uniquely  determine  the  solutions,  but  that  boundary 

conditions  at  infinity,  or  conditions  of  symmetry  such  as  the 
postulate  of  radial  symmetry  must  be  added.  The  solutions  which 
we  found  were  those  for  which  the  metrical  groundform  converges, 
at  spatial  infinity,  to 

dxl  -  (dxl  +  dxl  +  dxl) 

the  expression  which  is  a  characteristic  of  the  special  theory  of 
relativity. 

A  further  series  of  elegant  investigations  into  problems  of 
statical  gravitation  have  been  initiated  by  Levi-Civita  (vide  note 
24).  The  Italian  mathematicians  have  studied,  besides  the  statical 

case,  also  the  "stationary"  one,  which  is  characterised  by  the 
circumstance  that  all  the  gr&'s  are  independent  of  the  time-co- 

ordinate #0,  whereas  the  "  lateral  "  co-efficients  gQ1,  gQ2,  gQ3  need  not 
vanish  (vide  note  25) :  an  example  of  this  is  given  by  the  field  that 
surrounds  a  body  which  is  in  stationary  rotation. 

§  33.  Gravitational  Energy.    The  Theorems  of  Conservation 

An  isolated  system  sweeps  out  in  the  course  of  its  history  a 
"  world-canal  "  ;  we  assume  that  outside  this  canal  the  stream-density 
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S1'  vanishes  (if  not  entirely,  at  least  to  such  a  degree  that  the 
following  argument  retains  its  validity).  It  follows  from  the 
equation  of  continuity 

that  the  flux  of  the  vector-density  s*  has  the  same  value  e  through 

every  three-dimensional  "  plane  "  across  the  canal.  To  fix  the  sign 
of  e,  we  shall  agree  to  take  for  its  direction  that  leading  from  the 
past  into  the  future.  The  invariant  e  is  the  charge  of  our  system. 

If  the  co-ordinate  system  fulfils  the  conditions  that  every  "  plane  " 
xQ  =  const,  intersects  the  canal  in  a  finite  region  and  that  these 
planes,  arranged  according  to  increasing  values  of  x0,  follow  one 

another  in  the  order,  past  -»  future,  then  we  may  calculate  e  by 
means  of  the  equation 

f  o J 

in  which  the  integration  is  taken  over  any  arbitrary  plane  of  the 
family  XQ  =  const.  This  integral  e  =  e(x0)  is  accordingly  in- 

dependent of  the  "time"  #0,  as  is  readily  seen,  too,  from  (55)  if  we 
integrate  it  with  respect  to  the  "  space-co-ordinates  "  xlt  xz,  xz.  What 
has  been  stated  above  is  valid  in  virtue  of  the  equation  of  con- 

tinuity alone ;  the  idea  of  substance  and  the  convention  to  which  it 

leads  in  Lorentz's  Theory,  namely,  s*  =  pu\  do  not  come  into 
question  in  this  case. 

Does  a  similar  theorem  of  conservation  hold  true  for  energy 
and  momentum?  This  can  certainly  not  be  decided  from  the 
equation  (26)  of  §  28,  since  the  latter  contains  the  additional  term 
which  is  a  characteristic  of  the  theory  of  gravitation.  It  is 
possible,  however,  to  write  this  addition  term,  too,  in  the  form  of  a 

divergence.  We  choose  a  definite  co-ordinate  system  and  subject 
the  world- continuum  to  an  infinitesimal  deformation  in  the  true 
sense,  that  is,  we  choose  constants  for  the  deformation  components 
&  in  §  28.  Then,  of  course,  for  any  finite  region  :£ 

yjckfa  =  o 
(this  is  true  for  every  function  of  the  g^'s  and  their  derivatives :  it 
has  nothing  to  do  with  properties  of  invariance ;  8'  denotes,  as  in 
§28,  the  variation  effected  by  the  displacement).  Hence,  the  dis- 

placement gives  us 
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If,  as  earlier,  we  set 

iG«0'%aM    .  (13) 
then  partial  integration  gives 

X  »  X 

Now,  in  this  case,  since  the  £'s  are  constants, 

If  we  introduce  the  quantities 

WJ- then,  by  the  preceding  relation,  we  get  the  equation 

Since  this  holds  for  any  arbitrary  region  X,  the  integrand  must  be 

equal  to  zero.  In  it  the  l^'s  denote  arbitrary  constant  numbers  ; 
hence  we  get  four  identities  : 

The  left-hand  side,  by  the  gravitational  equations, 

and,  accordingly,  the  mechanical  equations  (26)  become 

!?5-Of          where  U*.  -  T*  +  t*<  .     (56) 

It  is  thus  shown  that  if  we  regard  the  t*'s,  which  are  dependent 
only  on  the  potentials  and  the  field-components  of  gravitation,  as 
the  components  of  the  energy-density  of  the  gravitational  field, 
we  get  pure  divergence  equations  for  all  energy  associated  with 

"physical  state  or  phase  "  and  "gravitation  "  (vide  note  26). 
And  yet,  physically,  it  seems  devoid  of  sense  to  introduce  the 

tf's  as  energy-components  of  the  gravitational  field,  for  these 
quantities  neither  form  a  tensor  nor  are  they  symmetrical. 
In  actual  fact,  if  we  choose  an  appropriate  co-ordinate  system,  we 

may  make  all  the  t;'s  at  one  point  vanish  ;  it  is  only  necessary  to 
choose  a  geodetic  co-ordinate  system.  And,  on  the  other  hand,  if 

we  use  a  curvilinear  co-ordinate  system  in  a  "  Euclidean  "  world 

totally  devoid  of  gravitation,  we  get  tl's  that  are  all  different  from 
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zero,  although  the  existence  of  gravitational  energy  in  this  case 
can  hardly  come  into  question.  Hence,  although  the  differential 

relations  (56)  have  no  real  physical  meaning,  we  can  derive  from 

them,  by  integrating  over  an  isolated  system,  an  invariant 
theorem  of  conservation  (vide  note  27). 

During  motion  an  isolated  system  with  its  accompanying  gravi- 

tational field  sweeps  out  a  canal  in  the  "world".  Beyond  the 
canal,  in  the  empty  surroundings  of  the  system,  we  shall  assume 

that  the  tensor-density  T*  and  the  gravitational  field  vanish.  We 

may  then  use  co-ordinates  XQ(  =  t),  xv  x2,  x3,  such  that  the 
metrical  groundform  assumes  constant  co-efficients  outside  the 
canal,  and  in  particular  assumes  the  form 

dt2  -  (dx\  +  dx'i  +  dxl). 

Hence,  outside  the  canal,  the  co-ordinates  are  fixed  except  for  a 

linear  (Lorentz)  transformation,  and  the  t$'s  vanish  there.  We 
assume  that  each  of  the  "  planes  t  =  const,  has  only  a  finite 
portion  of  section  in  common  with  the  canal.  If  we  integrate  the 

equations  (56)  with  respect  to  xv  x2,  x3  over  such  a  plane,  we  find 
that  the  quantities 

are  independent  of  the  time  ;  that  is  -1-*  —  0.       We   call   J"0   the at 

energy,  and  Jv  J2,  Jz  the  momentum  co-ordinates  of  the 
system. 

These  quantities  have  a  significance  which  is  independent  of 

the  co-ordinate  system.  We  affirm,  firstly,  that  they  retain  their 

value  if  the  co-ordinate  system  is  changed  anywhere  within  the 

canal.  Let  a?t-  be  the  new  co-ordinates,  identical  with  the  old  ones 

for  the  region  outside  the  canal.  We  mark  out  two  "  surfaces  " 

XQ  =  const.  =  a  and  x0  =  const.  =  a  (a  =|=  a) 

which  do  not  intersect  in  the  canal  (for  this  it  suffices  to 

choose  a  and  a  sufficiently  different  from  one  another).  We  can 

then  construct  a  third  co-ordinate  system  xl  which  is  identical 

with  the  Xi's  in  the  neighbourhood  of  the  first  surface,  identical 
with  the  Xi  in  that  of  the  second  system,  and  is  identical  with  both 

1  outside  the  canal.  If  we  give  expression  to  the  fact  that  the 

energy-  momentum  components  Ji  in  this  system  assume  the  same 

values  for  XQ  =  a  and  XQ  =  a,  then  we  get  the  result  which  we 

enunciated,  namely,  Ji  =  J^. 
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Consequently,  the  behaviour  of  the  Jj's  need  be  investigated 
only  in  the  case  of  linear  transformations  of  the  co-ordinates. 
With  respect  to  such,  however,  the  conception  of  a  tensor  with 

components  that  are  constant  (that  is,  independent  of  position)  is 

invariant.  We  make  use  of  an  arbitrary  vector  pi  of  this  type,  and 

form  IP  =  Ufa,  and  deduce  from  (56)  that =  o. OX]c 

By  applying  the  same  reasoning  as  was  used  above  in  the  case  of 
the  electric  current,  it  follows  from  this  that 

is  an  invariant  with  respect  to  linear  transformations.  Accord- 

ingly, the  J/'s  are  the  components  of  a  constant  co-variant 
vector  in  the  "  Euclidean  "  surroundings  of  the  system  ;  this 
energy-momentum  vector  is  uniquely  determined  by  the  phase  (or 

state)  of  the  physical  system.  The  direction  of  this  vector  deter- 
mines generally  the  direction  in  which  the  canal  traverses  the 

surrounding  world  (a  purely  descriptive  datum  that  can  be  ex- 
pressed in  an  exact  form  accessible  to  mathematical  analysis  only 

with  great  difficulty).  The  invariant 

is  the  mass  of  the  system. 

In  the  statical  case  /x  =  J"2  =  /3  =  0,  whereas  J"0  is  equal  to 
the  space-integral  of  Rg  -  (-JR  -  G).  According  to  §  29  and  §  28 
(p.  240),  respectively, 

R2  =  ~r-  ,  and  in  general, 

and  hence,  in  the  notation  of  §  29  and  §  31,  the  mass  J0  is  equal  to 

the  flux  of  the  (spurious)  spatial  vector-density 

(A*-i,a,s)   (5?) 

which  has  yet  to  be  multiplied  by  -  —  if  we  use   the  ordinary 
07TK 

units.  Since  at  a  great  distance  from  the  system  the  solution  of 
the  field  laws,  which  was  found  in  §  31,  is  always  valid,  and  for 

which  m*  is  a  radial  current  of  intensity 

*  -  /*  ..  *»„ 
BTTKT 
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we  get  that  the  energy,  JQ,  or  the  inertial  mass  of  the  system,  is 
equal  to  the  mass  mQ,  which  is  characteristic  of  the  gravitational 
field  generated  by  the  system  (vide  note  28).  On  the  other  hand  it 
is  to  be  remarked  parenthetically  that  the  physics  based  on  the 

notion  of  substance  leads  to  the  space-integral  of  /*//  for  the  value 
of  the  mass,  whereas,  in  reality,  for  incoherent  matter  JQ  =  w0  = 

the  space-integral  of  /x ;  this  is  a  definite  indication  of  how  radi- 
cally erroneous  is  the  whole  idea  of  substance. 

§34.  Concerning  the  Inter-connection  of  the  World 
as  a  Whole 

The  general  theory  of  relativity  leaves  it  quite  undecided  whether 

the  world-points  may  be  represented  by  the  values  of  four  co- 
ordinates Xt  in  a  singly  reversible  continuous  manner  or  not.     It 

merely  assumes  that  the  neighbourhood  of  every  world-point  admits 
of  a  singly  reversible  continuous  representation  in  a  region  of  the 

four-dimensional  "number-space"   (whereby  "point  of  the  four- 

dimensional  number-space  "  is  to  signify  any  number-quadruple)  ; 
it  makes  no  assumptions  at  the  outset  about  the  inter-connection 
of  the  world.     When,  in  the  theory  of  surfaces,  we  start  with  a 

parametric  representation  of  the  surface  to  be  investigated,  we  are 

referring  only  to  a  piece  of  the  surface,  not  to  the  whole  surface, 
which  in  general  can  by  no  means  be  represented  uniquely  and 

continuously  on  the  Euclidean  plane  or  by  a  plane  region.     Those 

properties  of  surfaces  that  persist  during  all  one-to-one  continuous 
transformations   form    the    subject-matter   of   analysis   situs    (the 
analysis  of   position) ;    connectivity,   for    example,   is   a   property 
of  analysis   situs.      Every   surface   that    is    generated   from   the 
sphere  by  continuous  deformation  does  not,  from  the  point  of  view 

:>f  analysis  situs,  differ  from  the  sphere,  but  does  differ  from  an 

inchor-ring,  for  instance.    For  on  the  anchor-ring  there  exist  closed 
lines,  which  do  not  divide  it  into  several  regions,  whereas  such  lines 
ire  not  to  be  found  on  the  sphere.     From  the  geometry  which 

LS  valid  on  a  sphere,  we  derived  "spherical  geometry"  (which, 
bllowing  Eiemann,  we  set  up  in  contrast  with  the  geometry  of 

Bolyai-Lobatschefsky)  by  identifying  two   diametrically   opposite 
points  of  the  sphere.     The  resulting  surface  F  is  from  the  point  of 
/iew  of  analysis  situs  likewise  different  from  the  sphere,  in  virtue 

.Df  which  property  it  is  called  one-sided.      If  we  imagine  on  a  sur- 
:ace  a  small  wheel  in  continual  rotation  in  the  one  direction  to 

3e  moved  along  this  surface  during  the  rotation,  the  centre  of  the 
ivheel  describing  a  closed  curve,  then  we  should  expect  that  when 

-he  wheel  has  returned  to  its  initial  position  it  would  rotate  in  the 
18 
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same  direction  as  at  the  commencement  of  its  motion.  If  this  is  the 

case,  then  whatever  curve  the  centre  of  the  wheel  may  have  de- 
scribed on  the  surface,  the  latter  is  called  two-sided ;  in  the  reverse 

case,  it  is  called  one-sided.  The  existence  of  one-sided  surfaces 
was  first  pointed  out  by  Mobius.  The  surface  F  mentioned  above 

is  two-sided,  whereas  the  sphere  is,  of  course,  one-sided.  This  is 
obvious  if  the  centre  of  the  wheel  be  made  to  describe  a  great 
circle;  on  the  sphere  the  whole  circle  must  be  traversed  if  this 
path  is  to  be  closed,  whereas  on  F  only  the  half  need  be  covered. 
Quite  analogously  to  the  case  of  two-dimensional  manifolds,  four- 
dimensional  ones  may  be  endowed  with  diverse  properties  with 
regard  to  analysis  situs.  But  in  every  four-dimensional  manifold 
the  neighbourhood  of  a  point  may,  of  course,  be  represented  in  a 
continuous  manner  by  four  co-ordinates  in  such  a  way  that  different 
co-ordinate  quadruples  always  correspond  to  different  points  of  this 
neighbourhood.  The  use  of  the  four  world-co-ordinates  is  to  be 
interpreted  in  just  this  way. 

Every  world-point  is  the  origin  of  the  double-cone  of  the  active 
future  and  the  passive  past.  Whereas  in  the  special  theory  of 
relativity  these  two  portions  are  separated  by  an  intervening  region, 
it  is  certainly  possible  in  the  present  case  for  the  cone  of  the  active 
future  to  overlap  with  that  of  the  passive  past ;  so  that,  in  principle, 
it  is  possible  to  experience  events  now  that  will  in  part  be  an  effect 
of  my  future  resolves  and  actions.  Moreover,  it  is  not  impossible 

for  a  world-line  (in  particular,  that  of  my  body),  although  it  has  a 
time-like  direction  at  every  point,  to  return  to  the  neighbourhood 
of  a  point  which  it  has  already  once  passed  through.  The  result 
would  be  a  spectral  image  of  the  world  more  fearful  than  anything 
the  weird  fantasy  of  E.  T.  A.  Hoffmann  has  ever  conjured  up.  In 

actual  fact  the  very  considerable  fluctuations  of  the  g^'s  that  would 
be  necessary  to  produce  this  effect  do  not  occur  in  the  region  of 
world  in  which  we  live.  Nevertheless  there  is  a  certain  amount  of 

interest  in  speculating  on  these  possibilities  inasmuch  as  they  shed 
light  on  the  philosophical  problem  of  cosmic  and  phenomenal  time. 
Although  paradoxes  of  this  kind  appear,  nowhere  do  we  find  any  real 
contradiction  to  the  facts  directly  presented  to  us  in  experience. 

We  saw  in  §  26  that,  apart  from  the  consideration  of  gravitation, 
the  fundamental  electrodynamic  laws  (of  Mie)  have  a  form  such 

as  is  demanded  by  the  principle  of  causality.  The  time-deriva- 
tives of  the  phase-quantities  are  expressed  in  terms  of  these 

quantities  themselves  and  their  spatial  differential  co- efficients. 
These  facts  persist  when  we  introduce  gravitation  and  thereby 
increase  the  table  of  phase-quantities  </>t,  FM,  by  the  gn/s  and  the 
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I's.     But   on   account   of  the  general  invariance  of   physical 

laws  we  must  formulate  our  statements  so  that,  from  the  values  of 

the  phase-quantities  for  one  moment,  all  those  assertions  con- 
cerning them,  which  have  an  invariant  character,  follow  as  a 

consequence  of  physical  laws ;  moreover,  it  must  be  noted  that  this 
statement  does  not  refer  to  the  world  as  a  whole  but  only  to  a 

portion  which  can  be  represented  by  four  co-ordinates.  Following 
Hilbert  (vide  note  29)  we  proceed  thus.  In  the  neighbourhood  of 

the  world-point  0  we  introduce  4  co-ordinates  xit  such  that,  at  0 
itself, 

ds2  =  dxl  -  (dx\  +  dx\  +  dx 
In  the  three-dimensional  space  #0  =  0  surrounding  0  we  may 

mark  off  a  region  R,  such  that,  in  it,  -  ds2  remains  definitely 
positive.  Through  every  point  of  this  region  we  draw  the  geodetic 

world-line  which  is  orthogonal  to  that  region,  and  which  has  a 
time-like  direction.  These  lines  will  cover  singly  a  certain  four- 
dimensional  neighbourhood  of  0.  We  now  introduce  new 

co-ordinates  which  will  coincide  with  the  previous  ones  in  the 

three-dimensional  space  R,  for  we  shall  now  assign  the  co-ordinates 
z0,  xv  #2,  x3  to  the  point  P  at  which  we  arrive,  if  we  go  from 

the  point  P0  =  (xv  x2,  xs)  in  R  along  the  orthogonal  geodetic 
line  passing  through  it,  so  far  that  the  proper-time  of  the  arc 

traversed,  P0P,  is  equal  to  XQ.  This  system  of  co-ordinates  was 

introduced  into  the  theory  of  surfaces  by  Gauss.  Since  ds*  =  dx\ 
on  each  of  the  geodetic  lines,  we  must  get  identically  for  all  four 

co-ordinates  in  this  co-ordinate  system  : 

£oo  =  l    -  -     (58) 

Since  the  lines  are  orthogonal  to  the  three-dimensional  space 

x0  =  0,  we  get  for  XQ  =  0 

0oi  =  #02  =  £03  =  0    -  •     (59) 

Moreover,  since  the  lines  that  are  obtained  when  xv  x2,  x.d  are  kept 
constant  and  XQ  is  varied  are  geodetic,  it  follows  (from  the  equation 
of  geodetic  lines)  that 

=  0  (i  =  0,  1,  2,  3) 
V.    *    J 

and  hence  also  that 

Taking  (58)  into  consideration,  we  get  from  the  latter 

^o        n  in       i    o   Q\ 
^r  =  u  U  •»  If  ̂»  oJ 
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and,  on  account  of  (59),  we  have  consequently  not  only  for  #0  =  0 

but  also  identically  for  the  four  co-ordinates  that 

gr0i  =  0  (t-1,2,8).     (60) 

The  following  picture  presents  itself  to  us  :  a  family  of  geodetic 

lines  with  time-like  direction  which  covers  a  certain  world-region 
singly  and  completely  (without  gaps)  ;  also,  a  similar  uni-para- 

metric  family  of  three-dimensional  spaces  x0  =  const.  According 
to  (60)  these  two  families  are  everywhere  orthogonal  to  one  another, 
and  all  portions  of  arc  cut  off  from  the  geodetic  lines  by  two  of 

the  "  parallel  "  spaces  x0  =  const,  have  the  same  proper-time.  If 
we  use  this  particular  co-ordinate  system,  then 

.         9    (ik\     ,  -   ,  _  1    9  ox 

,  |Q|     (v*      1,2,3) and  the  gravitational  equations  enable  us  to  express  the  derivatives 

— 

«*-!,*•) 

not  only  in  terms  of  the  <£;'s  and  their  derivatives,  but  also  in  terms 

of  the  guc's,  their  derivatives  (of  the  first  and  second  order)  with 

respect  to  o?lf  x.2,  xs,  and  the  -j  Q  j-'s  themselves. 

Hence,  by  regarding  the  twelve  quantities, 

together  with  the  electromagnetic  quantities,  as  the  unknowns,  we 

arrive  at  the  required  result  (XQ  playing  the  part  of  time).  The 

cone  of  the  passive  past  starting  from  the  point  0'  with  a  positive 

XQ  co-ordinate  will  cut  a  certain  portion  R'  out  of  R,  which,  with 
the  sheet  of  the  cone,  will  mark  off  a  finite  region  of  the  world  G 

(namely,  a  conical  cap  with  its  vertex  at  0').  If  our  assertion  that 
the  geodetic  null-lines  denote  the  initial  points  of  all  action  is 
rigorously  true,  then  the  values  of  the  above  twelve  quantities  as  welj 

as  the  electromagnetic  potentials  <f>i  and  the  field-quantities  FM  it 

the  three-dimensional  region  of  space  R'  determine  fully  the  values 
of  the  two  latter  quantities  in  the  world-region  G.  This  has 
hitherto  not  been  proved.  In  any  case,  we  see  that  the  differentia 

equations  of  the  field  contain  the  physical  laws  of  nature  in  theit 

complete  form,  and  that  there  cannot  be  a  further  limitation  du< 
to  boundary  conditions  at  spatial  infinity,  for  example. 

Einstein,  arguing  from  cosmological  considerations  of  the  inter 

connection  of  the  world  as  a  whole  (vide  note  30)  came  to  the  con 
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elusion  that  the  world  is  finite  in  space.  Just  as  in  the  Newtonian 

theory  of  gravitation  the  law  of  contiguous  action  expressed  in 

Poisson's  equation  entails  the  Newtonian  law  of  attraction  only  if 
the  condition  that  the  gravitational  potential  vanishes  at  infinity  is 

superimposed,  so  Einstein  in  his  theory  seeks  to  supplement  the 
differential  equations  by  introducing  boundary  conditions  at  spatial 

infinity.  To  overcome  the  difficulty  of  formulating  conditions  of  a 

general  invariant  character,  which  are  in  agreement  with  astrono- 
,  mical  facts,  he  finds  himself  constrained  to  assume  that  the  world 

is  closed  with  respect  to  space ;  for  in  this  case  the  boundary  con- 
ditions are  absent.  In  consequence  of  the  above  remarks  the 

author  cannot  admit  the  cogency  of  this  deduction,  since  the  differ- 
ential equations  in  themselves,  without  boundary  conditions,  contain 

the  physical  laws  of  nature  in  an  unabbreviated  form  excluding 

eve'ry  ambiguity.  So  much  more  weight" "Is  accordingly  io  Be" 
attached  to  another  consideration  which  arises  from  the  question  : 
How  does  it  come  about  that  our  stellar  system  with  the  relative 

velocities  of  the  stars,  which  are  extraordinarily  small  in  compari- 
son with  that  of  light,  persists  and  maintains  itself  and  has  not, 

even  ages  ago,  dispersed  itself  into  infinite  space?  This  system 

,  presents  exactly  the  same  view  as  that  which  a  molecule  in  a  gas 

in  equilibrium  offers  to  an  observer  of  correspondingly  small  dimen- 
sions. In  a  gas,  too,  the  individual  molecules  are  not  at  rest  but 

the  small  velocities,  according  to  Maxwell's  law  of  distribution, 
|  occur  much  more  often  than  the  large  ones,  and  the  distribution  of 
the  molecules  over  the  volume  of  the  gas  is,  on  the  average,  uniform, 
so  that  perceptible  differences  of  density  occur  very  seldom.  If 
this  analogy  is  legitimate,  we  could  interpret  the  state  of  the  stellar 

system  and  its  gravitational  field  according  to  the  same  statistical 

principles  that  tell  us  that  an  isolated  volume  of  gas  is  almost 

always  in  equilibrium.  This  would,  however,  be  possible  only  if 

the  uniform  distribution  of  stars  at  rest  in  a  static  gravita- 
tional field,  as  an  ideal  state  of  equilibrium,  is  reconcilable 

with  the  laws  of  gravitation.  In  a  statical  field  of  gravitation  the 

world-line  of  a  point-mass  at  rest,  that  is,  a  line  on  which  xlt  x2,  xs 
remain  constant  and  XQ  alone  varies,  is  a  geodetic  line  if 

{™}-0,  (t- 1,3,3) .  and  hence 

[001  =  0  ^o  =  o 
L  *  J  dxi 

Therefore,  a  distribution  of  mass  at  rest  is  possible  only  if 

\/#oo  =  /  =  const.  =  1. 
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The  equation 

A/  =  i/*         (p  =  density  of  mass)    .         .         .    (32) 

then  shows,  however,  that  the  ideal  state  of  equilibrium  under  con- 
sideration is  incompatible  with  the  laws  of  gravitation,  as  hitherto 

assumed. 

In  deriving  the  gravitational  equations  in  §  28,  however,  we 
committed  a  sin  of  omission.  R  is  not  the  only  invariant  dependent 

on  the  ffft's  and  their  first  and  second  differential  co-efficients, 
and  which  is  linear  in  the  latter ;  for  the  most  general  invariant  of 

.  this  description  has  the  form  all  +  /?,  in  which  Yt~  ancT  ft  are 
numerical  constants.  Consequently  we  may  generalise  the  laws  of 

gravitation  by  replacing  E  by  E  +  A.  (and  G  by  G  +  -JA.  Jy),  in 
which  A.  denotes  a  universal  constant.  If  it  is  not  equal  to  0,  as 
we  have  hitherto  assumed,  we  may  take  it  equal  to  1 ;  by  this 
means  not  only  has  the  unit  of  time  been  reduced  by  the  principle 

,  of  relativity,  to  the  unit  of  length,  and  the  unit  of  mass  by  the  law  • 
of  gravitation  to  the  same  unit,  but  the  unit  of  length  itself  is  fixed 
absolutely.  With  these  modifications  the  gravitational  equations 

for  statical  non-coherent  matter  (Tj  =  /x  =  /x0  ,J(j,  all  other  com- 

ponents of  the  tensor-density  T  being  equal  to  zero)  give,  if  we  use 
the  equation  /  =  1  and  the  notation  of  §  29  : 

X  =  p0  [in  place  of  (32)] 
and 

Pik  -  Ay*  =  0        (t,  k  =  1,  2,  3)         .        .     (61) 

Hence  this  ideal  state  of  equilibrium  is  possible  under  these  cir- 
cumstances if  the  mass  is  distributed  with  the  density  A.  The 

space  must  then  be  homogeneous  metrically ;  and  indeed  the  equa- 
tions (61)  are  then  actually  satisfied  for  a  spherical  space  of  radius 

a  =  A/2/A,  Thus,  in  space,  we  may  introduce  four  co-ordinates, 
connected  by 

x\  +  xl  +  xl  +  x\  =  a\        .  .     (62) 
for  which  we  get 

d<r*  =  dx\  +  dx\  +  dx\  +  dx'i. 
From  this  we  conclude  that  space  is  closed  and  hence  finite. 
If  this  were  not  the  case,  it  would  scarcely  be  possible  to  imagine 
how  a  state  of  statistical  equilibrium  could  come  about.  If  the 
world  is  closed,  spatially,  it  becomes  possible  for  an  observer  to  see 
several  pictures  of  one  and  the  same  star.  These  depict  the  star  at 
epochs  separated  by  enormous  intervals  of  time  (during  which  light 
travels  once  entirely  round  the  world).  We  have  vet  to  inquire 
whether  the  points  of  space  correspond  singly  and  reversibly  to  the 
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value-quadruples  Xj  which  satisi'y  the  condition  (62),  or  whether 
two  value-systems 

(xlt  xz,  #3,  xj  and  (  -  xlt  -  x2,  -  x3,  -  x4) 

correspond  to  tho  sarrm  point.  From  the  point  of  view  of  analysis 
situs  these  two  possibilities  are  different  even  if  both  spaces  are 
two-sided.  According  as  the  one  or  the  other  holds,  the  total  mass 
of  the  world  in  grammes  would  be 

TTd  TTO,  .  .        , 

«-  or  —  .  respectively. ZK        4/c 

Thus  our  interpretation  demands  that  the  total  mass  that  happens 
to  be  present  in  the  world  bear  a  definite  relation  to  the  universal 

2 
constant  A.  =  —  which  occurs  in  the  law  of  action  ;  this  obviously 

makes  great  demands  on  our  credulity. 

The  radially  symmetrical  solutions  of  the  modified  homogeneous     ': 
equations  of  gravitation  that  would  correspond  to  a  world  empty  of 
mass  are  derivable  by  means  of  the  principle  of  variation  (vide  §  31 
for  the  notation) =  0. 

The  variation  of  w  gives,  as  earlier,  A  =  1.     On  the  other  hand, 
variation  of  A  gives 

w'-gr*  .....     (63) 

It  we  demand  regularity  at  r  =  0,  it  follows  from  (63)  that 

X  , 

w  =  6r 

andj-/"-  1-Jr*  .     (64) 

The  space  may  be  represented  congruently  on  a  "  sphere  " 

x\  +  x\  +  x\  +  xl  =  3a2    .        .        .     (65) 
of  radius  a  \/3  in  four-dimensional  Euclidean  space  (whereby  one 
of  the  two  poles  on  the  sphere,  whose  first  three  co-ordinates,  xv  x2, 
xz  each  =  0,  corresponds  to  the  centre  in  our  case).  The  world  is  a 
cylinder  erected  on  this  sphere  in  the  direction  of  a  fifth  co-ordinate 

axis  t.  But  since  on  the  "  greatest  sphere  "  x±  =  0,  which  may  be 
designated  as  the  equator  or  the  space-horizon  for  that  centre, 
/  becomes  zero,  and  hence  the  metrical  groundform  of  the  world 
becomes  singular,  we  see  that  the  possibility  of  a  stationary  empty 
world  is  contrary  to  the  physical  laws  that  are  here  regarded  as 
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valid.  There  must  at  least  be  masses  at  the  horizon.  The  calcu- 

lation may  be  performed  most  readily  if  (merely  to  orient  ourselves 
on  the  question)  we  assume  an  incompressible  fluid  to  be  present 
there.  According  to  §  32  the  problem  of  variation  that  is  to  be 
solved  is  (if  we  use  the  same  notation  and  add  the  X  term) 

A  -  r^vh\dr  =  0. 

In  comparison  with  the  earlier  expression  we  note  that  the  only 

change  consists  in  the  constant  /x0  being  replaced  by  /x0  +  ̂ .     As 

earlier,  it  follows  that 

0,  w  =  -  2.3f  +  -^7; —  r3, 6 

^=1  +  ̂-2^6tAr2  '  '  '  (66) 
If  the  fluid  is  situated  between  the  two  meridians  x4  =  const., 

which  have  a  radius  r0  (<C  a  \/3),  then  continuity  of  argument  with 
(64)  demands  that  the  constant 

To  the  first  order  p  becomes  equal  to  zero  for  a  value  r  =»  b  be- 

tween r0  and  a  \/3.  Hence  the  space  may  still  be  represented 

on  the  sphere  (65),  but  this  representation  is  no  longer  con- 
gruent for  the  zone  occupied  by  fluid.  The  equation  for  A 

(p.  265)  now  yields  a  value  of  /  that  does  not  vanish  at  the 
equator.  The  boundary  condition  of  vanishing  pressure  gives  a 
transcendental  relation  between  ̂   and  r0>  from  which  it  follows 
that,  if  the  mass-horizon  is  to  be  taken  arbitrarily  small,  then  the 
fluid  that  comes  into  question  must  have  a  correspondingly  great 
density,  namely,  such  that  the  total  mass  does  not  become  less  than 
a  certain  positive  limit  (vide  note  31). 

The  general  solution  of  (63)  is 

p  =  /2  =  1  -    ~-  ~  Q^       (m  =  const.). 

It  corresponds  to  the  case  in  which  a  spherical  mass  is  situated 
at  the  centre.  The  world  can  be  empty  of  mass  only  in  a  zone 

r0<^  r  <^  rlt  in  which  this  /2  is  positive ;  a  mass-horizon  is  again 
necessary.  Similarly,  if  the  central  mass  is  charged  electrically; 

for  in  this  case,  too,  A  =  1.     In  the  expression  for  -,  2  =  f2  the 
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Perhaps  in  pursuing  the  above  reflections  we  have  yielded  too 

readily  to  the  allurement  of  an  imaginary  flight  into  the  region  of 
masslessness.  Yet  these  considerations  help  to  make  clear  what 

the  new  views  of  space  and  time  bring  within  the  realm  of  possi- 
bility. The  assumption  on  which  they  are  based  is  at  any  rate 

the  simplest  on  which  it  becomes  explicable  that,  in  the  world  as 
actually  presented  to  us,  statical  conditions  obtain  as  a  whole,  so 

far  as  the  electromagnetic  and  the  gravitational  field  is  concerned, 

and  that  just  those  solutions  of  the  statical  equations  are  valid 

which  vanish  at  infinity  or,  respectively,  converge  towards 
Euclidean  metrics.  For  on  the  sphere  these  equations  will  have 

a  unique  solution  (boundary  conditions  do  not  enter  into  the 

question  as  they  are  replaced  by  the  postulate  of  regularity  over 

the  whole  of  the  closed  configuration).  If  we  make  the  constant 

A.  arbitrarily  small,  the  spherical  solution  converges  to  that  which 

satisfies  at  infinity  the  boundary  conditions  mentioned  for  the  in- 
finite world  which  results  when  we  pass  to  the  limit. 

A  metrically  homogeneous  world  is  obtained  most  simply  if, 

in  a  five-dimensional  space  with  the  metrical  groundform  ds2  = 

-  Q(dx),  (—  O  denotes  a  non  -degenerate  quadratic  form  with  con- 

stant co-efficients),  we  examine  the  four-dimensional  "conic-section" & 

defined  by  the  equation   O(#)  =  -.     Thus  this  basis  gives  us  a A 

solution  of  the  Einstein  equations  of  gravitation,  modified  by  the 
A.  term,  for  the  case  of  no  mass.  If,  as  must  be  the  case,  the  re- 

sulting metrical  groundform  of  the  world  is  to  have  one  positive 
and  three  negative  dimensions,  we  must  take  for  fi  a  form  with 

four  positive  dimensions  and  one  negative,  thus 

By  means  of  a  simple  substitution  this  solution  may  easily  be  trans- 
formed into  the  one  found  above  for  the  statical  case.    For  if  we  set 

#4  =  z  cosh  t,         xb  =  z  sinh  t 
we  get 

•   x\  +  xl  +  xl  +  z*  =  ?,  -  rfs2  =  (dx\  +  dx\  +  dxl  +  &z*)  -  z"dt". A 

These  "new"  z,  t  co-ordinates,  however,  enable  only  the  "wedge- 
shaped  "  section  x\  -  #|>0  to  be  represented.     At  the  "  edge  "  of 

,    the  wedge  (at  which  x±  =  0  simultaneously  with  x5  =-  0),  t  becomes 
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indeterminate.  This  edge,  which  appears  as  a  two-dimensional 
configuration  in  the  original  co-ordinates  is,  therefore,  three-dimen- 

sional in  the  new  co-ordinates;  it  is  the  cylinder  erected  in  the 
direction  of  the  £-axis  over  the  equator  z  =  0  of  the  sphere  (65). 
The  question  arises  whether  it  is  the  first  or  the  second  co-ordinate 
system  that  serves  to  represent  the  whole  world  in  a  regular 
manner.  In  the  former  case  the  wrorld  would  not  be  static  as  a 
whole,  and  the  absence  of  matter  in  it  would  be  in  agreement  with 
physical  laws  ;  de  Sitter  argues  from  this  assumption  (vide  note  32). 
In  the  latter  case  we  have  a  static  world  that  cannot  exist  with- 

out a  mass-horizon ;  this  assumption,  which  we  have  treated  more 
fully,  is  favoured  by  Einstein. 

§  35.  The  Metrical  Structure  of  the  World  as  the  Origin  of 

Electromagnetic  Phenomena  * 
We  now  aim  at  a  final  synthesis.     To  be  able  to  characterise 

the  physical  state  of  the  world  at  a  certain  point  of  it  by  means  of 
numbers  we  must  not  only  refer  the  neighbourhood  of  this  point 

to  a  co-ordinate  system  but  we  must  also  fix  on  certain  nm't.s  nf 
/measure.     We  wish  to  achieve  just  as  fundamental  a  point  of  view 
/with  regard  to  this  second  circumstance  as  is  secured  for  the  first 

/  one,  namely,  the  arbitrariness  of  the  co-ordinate  system,  by  the 

'"Einstein  Theory  that  was  described  in  the  preceding  paragraph. 
This  idea,  when  applied  to  geometry  and  the  conception  of  distance 
(in  Chapter  II)  after  the  step  from  Euclidean  to  Eiemann  geometry 
had  been  taken,  effected  the  final  entrance  into  the  realm  of  infini- 

tesimal geometry.     Removing  every  vestige  of  ideas  of  "  action  at 
a  distance,"  let  us  assume  that  world-geometry  is  of  this  kindj  we 
then  find  that  the  metrical  structure  of  the  world,  besides  being 
dependent  on  the  quadratic  form  (1),  is  also  dependent  on  a  linear 
differential  form  <£t-  dxi. 

Just  as  the  step  which  led  from  the  special  to  the  general  theory 

of  relativity,  so  this  extension  affects  immediately  only  the  world- 
geometrical  foundation  of  physics.  Newtonian  mechanics,  as  also 
the  special  theory  of  relativity,  assumed  that  uniform  translation  is 
a  unique  state  of  motion  of  a  set  of  vector  axes,  and  hence  that  the 
position  of  the  axes  at  one  moment  determines  their  position  in 
all  other  moments.  But  this  is  incompatible  with  the  intuitive 
principle  of  the  relativity  of  motion.  This  principle  could  be 
satisfied,  if  facts  are  not  to  be  violated  drastically,  only  by  main- 

taining the  conception  of  infinitesimal  parallel  displacement  of  a 
vector  set  of  axes ;  but  we  found  ourselves  obliged  to  regard  the 
/  *  Vide  note  33. 
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affine  relationship,  which  determines  this  displacement,  as  some- 
thing physically  real  that  depends  physically  on  the  states  of 

matter  ("guiding  field").  The  properties  of  gravitation  known 
from  experience,  particularly  the  equality  of  inertial  and  gravita- 

tional mass,  teach  us,  finally,  that  gravitation  is  already  contained 
in  the  guiding  field  besides  inertia.  And  thus  the  general  theory  of 
relativity  gained  a  significance  which  extended  beyond  its  original 
important  bearing  on  world-geometry  to  a  significance  which  is 
specifically  physical.  The  same  certainty  that  characterises  the 

1  relativity  of  motion  accompanies  the  principle  of  the  relativity  of 
magnitude.  We  must  not  let  our  courage  fail  in  maintaining  this 
principle,  according  to  which  the  size  of  a  body  at  one  moment  does 
not  determine  its  size  at  another,  in  spite  of  the  existence  of  rigid 
bodies.*  But,  unless  we  are  to  come  into  violent  conflict  with 
fundamental  facts,  this  principle  cannot  be  maintained  without 
retaining  the  conception  of  infinitesimal  congruent  transformation  ; 
that  is,  we  shall  have  to  assign  to  the  world  besides  its  measure- 
determination  at  every  point  also  a  metrical  relationship.  Now 

this  is  not  to  be  regarded  as  revealing  a  "  geometrical "  property 
which  belongs  to  the  world  as  a  form  of  phenomena,  but  as  being  a 

phase-field  having  physical  reality.  Hence,  as  the  fact  of  the 
propagation  of  action  and  of  the  existence  of  rigid  bodies  leads  us 
to  found  the  affine  relationship  on  the  metrical  character  of  the 
world  which  lies  a  grade  lower,  it  immediately  suggests  itself  to  us, 

not  only  to  identify  the  co-efficients  of  the  quadratic  groundform 

1  guflxidxk  with  the  potentials  of  the  gravitational  field,  but  also  to 
identify  the  co-efficients  of  the  linear  groundform  <£tdxy  with 
the  electromagnetic  potentials.  The  electromagnetic  field  and 
the  electromagnetic  forces  are  then  derived  from  the  metrical 
structure  of  the  world  or  the  metrics,  as  we  may  call  it.  No  other 
truly  essential  actions  of  forces  are,  however,  known  to  us  besides 
those  of  gravitation  and  electromagnetic  actions ;  for  all  the  others 
statistical  physics  presents  some  reasonable  argument  which  traces 
them  back  to  the  above  two  by  the  method  of  mean  values.  We 
thus  arrive  at  the  inference  :  The  world  is  a  (3  +  1) -dimensional 

metrical  manifold;  all  physical  field-phenomena' "are  ex- 
"  pressions  of  the  metrics  of  the  Y/orld.  (Whereas  the  old  view was  ftiat  the  four-dimensional  metrical  continuum  is  the  scene  of 

*  It  must  be  recalled  in  this  connection  that  the  spatial  direction-picture 
which  a  point-eye  with  a  given  world-line  receives  at  every  moment  from  a 
given  region  of  the  world,  depends  only  on  the  ratios  of  the  gift's,  inasmuch  as 
this  is  true  of  the  geodetic  null-lines  which  are  the  determining  factors  in  the 
propagation  of  light. 
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physical  phenomena;  the  physical  essentialities  themselves  are, 

however,  things  that  exist  "in"  this  world,  and  we  must  accept 
them  in  type  and  number  in  the  form  in  which  experience  gives  us 

cognition  of  them:  nothing  further  is  to  be  "  comprehended  "  of 
them.)  We  shall  use  the  phrase  "state  of  the  worl  d-  aether  "  as 
synonymous  with  the  word  "metrical  structure,"  in  order  to  call 
attention  to  the  character  of  reality  appertaining  to  metrical  struct- 

ure ;  but  we  must  beware  of  letting  this  expression  tempt  us  to 
form  misleading  pictures.  In  this  terminology  the  fundamental 
theorem  of  infinitesimal  geometry  states  that  the  guiding  field, 
and  hence  also  gravitation,  is  determined  by  the  state  of  the 

aether.  The  antithesis  of  "  physical  state  "  and  "  gravitation  " 
which  was  enunciated  in  §  28  and  was  expressed  in  very  clear 

terms  by  the  division  of  Hamilton's  Function  into  two  parts,  is 
overcome  in  the  new  view,  which  is  uniform  and  logical  in  itself. 

Descartes'  dream  of  a  purely  geometrical  physics  seems  to  be 
attaining  fulfilment  in  a  manner  of  which  he  could  certainly  have 
had  no  presentiment.  The  quantities  of  intensity  are  sharply 
distinguished  from  those  of  magnitude. 

The  linear  groundform  fadxi  is  determined  except  for  an  additive__ 
total  differential,  but  the  tensor  of  distance-  curvature 

which  is  derived  from  it,  is  fruo  of  arbitrariness.  According  to 

Maxwell's  Theory  the  same  result  obtains  for  the  electromagnetic 
potential.  The  electromagnetic  field-tensor,  which  we  denoted 
earlier  by  F&,  is  now  to  be  identified  with  the  distance-curvature 

If  our  view  of  the  nature  of  electricity  is  true,  then  the  first 

system  of  Maxwell's  equations 

is  an  intrinsic  law,  the  validity  of  which  is  wholly  independent  of 
whatever  physical  laws  govern  the  series  of  values  that  the  physical 
phase-quantities  actually  run  through.  In  a  four-dimensional 
metrical  manifold  the  simplest  integral  invariant  that  exists  at  all  is 

'  '  (68) 

and  it  is  just  this  one,  in  the  form  of  Action,  on  which  Maxwell's 
Theory  is  founded  !  We  have  accordingly  a  good  right  to  claim  that 

the  whole  fund  of  experience  which  is  crystallised  in  Maxwell's 
Theory  weighs  in  favour  of  the  world- metrical  nature  of  electricity. 
And  since  it  is  impossible  to  construct  an  integral  invariant  at  all 
of  such  a  simple  structure  in  manifolds  of  more  or  less  than  four 
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dimensions  the  new  point  of  view  does  not  only  lead  to  a  deeper 

understanding  of  Maxwell's  Theory  but  the  fact  that  the  world  is 
four-dimensional,  which  has  hitherto  always  been  accepted  as  merely 

"  accidental,"  becomes  intelligible  through  it.  In  the  linear  ground- 
form  4>{dxi  there  is  an  arbitrary  factor  in  the  form  of  an  additive 
total  differential,  but  there  is  not  a  factor  of  proportionality  ;  the 

quantity  Action  is  a  pure  number.  But  this  is  only  as  it  should  be, 
if  the  theory  is  to  be  in  agreement  with  that  atomistic  structure  of 
the  world  which,  according  to  the  most  recent  results  (Quantum 

Theory),  carries  the  greatest  weight. 

The  statical  case  occurs  when  the  co-ordinate  system  and 
the  calibration  may  be  chosen  so  that  the  linear  groundform 
becomes  equal  to  <j>dx0  and  the  quadratic  groundform  becomes 

equal  to 

whereby  </>  and  /  are  not  dependent  on  the  time  x0,  but  only  on  the 

space-co-ordinates  xlt  x%,  x3,  whilst  do2  is  a  definitely  positive  quad- 
ratic differential  form  in  the  three  space-variables.  This  particular 

form  of  the  groundform  (if  we  disregard  quite  particular  cases)  re- 

mains unaffected  by  a  transformation  of  co-ordinates  and  a  re-calibra- 
tion only  if  xQ  undergoes  a  linear  transformation  of  its  own,  and  if  the 

space-co-ordinates  are  likewise  transformed  only  among  themselves, 
whilst  the  calibration  ratio  must  be  a  constant.  Hence,  in  the 

statical  case,  we  have  a  three-dimensional  Eiemann  space  with 

the  groundform  da2  and  two  scalar  fields  in  it  :  the  electrostatic 
potential  <£,  and  the  gravitational  potential  or  the  velocity  of  light  /. 

The  length-unit  and  the  time-unit  (centimetre,  second)  are  to  be 

chosen  as  arbitrary  units  ;  do-2  has  dimensions  cm2,  /  has  dimensions 

cm  .  sec"1,  and  <j>  has  sec"1.  Thus,  as  far  as  one  may  speak  of  a 
space  at  all  in  the  general  theory  of  relativity  (namely,  in  the  statical 
case),  it  appears  as  a  Riemann  space,  and  not  as  one  of  the  more 
general  type,  in  which  the  transference  of  distances  is  found  to  be 

non-integrable. 

We  have  the  case  of  the  special  theory  of  relativity  again,  if  the 

co-ordinates  and  the  calibration  may  be  chosen  so  that 

ds'2  =  dxl  -  (dx\  +  dx\  +  dxl). 
If  xi,  Xi  denote  two  co-ordinate  systems  for  which  this  normal  form 

for  ds2  may  be  obtained,  then  the  transition  from  x%  to  5t-  is  a  con- 
formal  transformation,  that  is,  we  find 

dxl  -  (dxl  +  dxl  +  dxl) 

except  for  a  factor  of  proportionality,  is  equal  to 
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The  conformal  transformations  of  the  four-dimensional  Minkowski 
world  coincide  with  spherical  transformations  (vide  note  34),  that 

is,  with  those  transformations  which  convert  every  "  sphere  "  of  the 
world  again  into  a  sphere.  A  sphere  is  represented  by  a  linear 

homogeneous  equation  between  the  homogeneous  "  hexaspherical  " 
co-ordinates 

(xx\  +  1   (xx\  -  1 
us  :  u±  :  ub  =  XQ  :  X1:x2:x3:  s  —  ̂   --  :  i  —  ̂ — 

where  (xx)  =  XQ  —  (x\  +  x\  +  x%). 
They  are  bound  by  the  condition 

U0    ~    U\    ~    U\  U3    ~    U\    +    U\    ~   0' 

The  spherical  transformations  therefore  express  themselves  as  those 

linear  homogeneous  transformations  of  the  w»'s  which  leave  this 
condition,  as  expressed  in  the  equation,  invariant.  Maxwell's 
equations  of  the  aether,  in  the  form  in  which  they  hold  in  the 
special  theory  of  relativity,  are  therefore  invariant  not  only  with 

respect  to  the  10-parameter  group  of  the  linear  Lorentz  transfor- 
mations but  also  indeed  with  respect  to  the  more  ^comprehensive 

15-parameter  group  of  spherical  transformations  (vide  note  35). 
To  test  whether  the  new  hypothesis  about  the  nature  of  the 

electromagnetic  field  is  able  to  account  for  phenomena,  we  must 
work  out  its  implications.  We  choose  as  our  initial  physina.1  law  a 
Hamilton  principle  which  states  that  the  change  in  the  Ac.tirm 

Wdx  for  every  infinitely  small  variation  of  the  metrical  structure 

of  the  world  that  vanishes  outside  a  finite  region  is  zero.     The 
Action  is  an  invariant,  and  hence  W  is  a  scalar-density  (in  the  true 
sense)  which  is  derived  from  the  metrical  structure.  Mie,  Hilbert, 
and  Einstein  assumed  the  Action  to  be  an  invariant  with  respect  to 
transformations  of  the  co-ordinates.  We  have  here  to  add  the 
further  limitation  that  it  must  also  be  invariant  with  respect  to  the 
process  of  re-calibration,  in  which  </>/,  gik  are  replaced  by 

<j>i  -  -  —  -  and  \gik,  respectively,  .         .     (69) A  dX 

I 

in  which  A  is  an  arbitrary  positive  function  of  position.  We  assume 
that  W  is  an  expression  of  the  second  order,  that  is,  built  up,  on  the 

one  hand,  of  the  g^'s  and  their  derivatives  of  the  first  and  second 
/  order,  on  the  other  hand,  of  the  </>/s  and  their  derivatives  of  the  first 

order.  The  simplest  example  is  given  by  Maxwell's  density  of  action  1. 
But  we  shall  here  carry  out  a  general  investigation  without  binding 
ourselves  to  any  particular  form  of  W  at  the  beginning.  According 

to  Klein's  method,  used  in  §  28  (and  which  will  only  now  be  applied 
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with  full  effect),  we  shall  here  deduce  certain  mathematical  identi- 
ties, which  are  valid  for  every  scalar-density  W  which  has  its  origin 

in  the  metrical  structure. 

I.  If  we  assign  to  the  quantities  <£$,  g&*  which  describe  the 
metrical  structure  relative  to  a  system  of  reference,  infinitely  small 
increments  8</>;,  &/&,  and  if  X  denote  a  finite  region  of  the  world, 
then  the  effect  of  partial  integration  is  to  separate  the  integral  of 
the  corresponding  change  SW  in  W  over  the  region  X  into  two 
parts  :  (a)  a  divergence  integral  and  (b)  an  integral  whose  integrand 
is  only  a  linear  combination  of  8<£i  and  Sga,  thus 

mdx  =        jdB  +    (Vrt+t  +  i  W80«)<fo        .     (70) 
X  X  X 

whereby  W«  =  W*. 

The  w*'s  are  components  of  a  contra-variant  vector-density,  but 

the  W*'s  are  the  components  of  a  mixed  tensor-density  of  the  second 

order  (in  the  true  sense).  The  SY^'S  are  linear  combinations  of 

We  indicate  this  by  the  formula 

The  SY*"'S  are  defined  uniquely  by  equation  (70)  only  if  the 
normalising  condition  that  the  co-efficients  (kiaft)  be  symmetrical 
in  the  indices  k  and  i  is  added.  In  the  normalisation  the  8yfc's  are 
components  of  a  vector-density  (in  the  true  sense),  if  the  8<£/s  are 
regarded  as  the  components  of  a  co-variant  vector  of  weight  zero 

and  the  Sg^'s  as  the  components  of  a  tensor  of  weight  unity. 
(There  is,  of  course,  no  objection  to  applying  another  normalisation 
in  place  of  this  one,  provided  that  it  is  invariant  in  the  same  sense.) 

First  of  all,  we  express  that  IWda?  is  a  calibration  invariant, 
___  1  __  ____ 

that  is,  that  it  does  not  alter  when  the  calibration  of  the  world  is 
altered  infinitesimally.  If  the  calibration  ratio  between  the  altered 
and  the  original  calibration  is  A  =  1  +  TT,  TT  is  an  infinitesimal  scalar- 
field  which  characterises  the  event  and  which  may  be  assigned 
arbitrarily.  As  a  result  of  this  process,  the  fundamental  quantities 
assume,  according  to  (69),  the  following  increments  : 
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If  we  substitute  these  values  in  SY*,  let  the  following  expressions 
result  : 

^*)..:VH-.£:W  (72) 
They  are  the  components  of  a  vector-density  which  depends  on  the 
scalar-field  TT  in  a  linear-  differential  manner.  It  further  follows 

from  this,  that,  since  the  r  —  's  are  the  components  of  a  co-variant 

oxa 

vector-field  which  is  derived  from  the  scalar-field,  s*  is  a  vector- 

density,  and  hfca  is  a  contra-variant  tensor-density  of  the  second 
order.  The  variation  (70)  of  the  integral  of  Action  must  vanish  on 
account  of  its  calibration  invariance  ;  that  is,  we  have 

a 

If  we  transform  the  first  term  of  the  second  integral  by  means  of  : 
partial  integration,  we  may  write,  instead  of  the  preceding  equation, 

X  X 

This  immediately  gives  the  identity 

in  the  manner  familiar  in  the  calculus  of  variations.  If  the 

function  of  position  on  the  left  were  different  from  0  at  a  point  Xi,  \ 
say  positive,  then  it  would  be  possible  to  mark  off  a  neighbourhood 
X  of  this  point  so  small  that  this  function  would  be  positive  at  every 
point  within  X.  If  we  choose  this  region  for  X  in  (73),  but  choose 
for  TT  a  function  which  vanishes  for  points  outside  X  but  is  ]>  0 
throughout  X,  then  the  first  integral  vanishes,  but  the  second  is 
found  to  be  positive  —  which  contradicts  equation  (73).  Now  that 
this  has  been  ascertained,  we  see  that  (73)  gives 

* 
For  a  given  scalar-field  TT  it  holds  for  every  finite  region  X,  and 
consequently  we  must  have 

=  0  .  (75) 

If  we  substitute   (72)  in  this,  and  observe  that,  for  a  particular 
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arbitrary  values  may  be  assigned  to  \ 

single  formula  resolves  into  the  identities : 
point,  arbitrary  values  may  be  assigned  to  TT,  —  ,  '^    ̂     ,  then  this 

-'      8<  +         =W<;    h*  +  h*-0.    (75,,,.,) 

According  to  the  third  identity,  h**  is  a  linear  tensor-density  of  the 
second  order.  In  view  of  the  skew-symmetry  of  h  the  first  is  a 
result  of  the  second,  since 

II.  We  subject  the  world-  continuum  to  an  infinitesimal  defor- 
mation, in  which  each  point  undergoes  a  displacement  whose 

components  are  £*;  let  the  metrical  structure  accompany  the 
deformation  without  being  changed.  Let  8  signify  the  change 
occasioned  by  the  deformation  in  a  quantity,  if  we  remain  at  the 

same  space-time  point,  8'  the  change  in  the  same  quantity  if  we 
share  in  the  displacement  of  the  space-time  point.  Then,  by  (20), 

(21'),  (71) 

in  which  TT  denotes  an  infinitesimal  scalar-field  that  has  still  been 

;left  arbitrary  by  our  conventions.  The  invariance  of  the  Action 
with  respect  to  transformation  of  co-ordinates  and  change  of 
calibration  is  expressed  in  the  formula  which  relates  to  this 
variation  : 

8'  f  Wdx  =   fP(W^')  +  3WJ  dx  =  0      .        .     (77) zv  X 

If  we  wish   to  express  the  invariance  with   respect   to   the   co- 
ordinates alone  we  must  make  ?r  =  0  ;   but  the  resulting  formulae 

of  variation  (76)  have  not  then  an  invariant  character.     This  con- 
vention, in  fact,  signifies  that  the  deformation  is  to  make  the  two 

groundforms  vary  in  such  a  way   that  the  measure  I  of  a  line- 

element  remains  unchanged,  that  is,  S'Z  =  0.     This  equation  does 
not,  however,  express  the  process  of  congruent  transference  of  a 

•'  distance,  but  indicates  that 
B'l  = 

Accordingly,  in  (76)  we  must  choose  IT  not  equal  to  zero  but  equal 

to  -  ($;£')  if  we  are  to  arrive  at  invariant  formulae,  namely, 19 
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The  change  in  the  two  groundforms  which  it  represents  is  one 
that  makes  the  metrical  structure  appear  carried  along  unchanged 

by  the  deformation  and  every  line-element  to  be  transferred  con- 
gruently.  The  invariant  character  is  easily  recognised  analytically, 
too;  particularly  in  the  case  of  the  second  equation  (78),  if  we 
introduce  the  mixed  tensor 

The  equation  then  becomes 

-  8g*  =  &  +  &«. 

Now  that  the  calibration  invariance  has  been  applied  in  I,  we  may 

in  the  case  of   (76)  restrict  ourselves  to  the  choice  of  TT,  which 
was  discussed  just  above,  and  which  we  found  to  be  alone  possible 

from  the  point  of  view  of  invariance. 
For  the  variation  (78)  let 

S*(£)  is  a  vector-density  which  depends  in  a  linear  differential 
manner  on  the  arbitrary  vector-field  £*.  We  write  in  an  explicit 
form 

(the  last  co-efficient  is,  of  course,  symmetrical  in  the  indices  a,  ft). 

The  fact  that  Sfc(£)  is  a  vector-density  dependent  on  the  vector- 

field  £*'  expresses  most  simply  and  most  fully  the  character  of  in- 
variance possessed  by  the  co-efficients  which  occur  in  the  expression 

for  S*(£) ;  in  particular,  it  follows  from  this  that  the  S*'s  are  not 
components  of  a  mixed  tensor-density  of  the  second  order :  we  call 

them  the  components  of  a  "pseudo-tensor-density".  If  we  insert 
in  (77)  the  expressions  (70)  and  (78),  we  get  an  integral,  whose 
integrand  is 

On  account  of 

^ 
OXi 

and  of  the  symmetry  of  Wa£  we  find 
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If  we  apply  partial  integration  to  the  last  member  of  the  integrand, 
we  get 

/*  i*  r 

•    *     i  L  *   *   *  J  & » 
J  u%k  ^ 

According  to  the  method  of  inference  used  above  we  get  from  this 
the  identities  : 

[  .  .  .  ]i,  that  is,  ft**  -  r^Wf)  +  /«w*  =  0        .     (79) 
and 

— - —   L    ~~   \J   •  •  •  •        \{J\J J 

The  latter  resolves  into  the  following  four  identities  : 
^ 

(Bf  +  H?a)  +  •      *     =  0; 

^xy 

If  from  (4)  we  replace  in  (3) 

f   by  -  Hf  Y  -  Hf 
we  get  that 

is  skew-symmetrical  in  the  indices  a,  /2.  If  we  introduce  H?^  in 

place  of  H^  we  see  that  (3)  and  (4)  are  merely  statements  regarding 
symmetry,  but  (2)  becomes 

(t)  follows   from   this   because,   on   account    of   the  conditions  of 
symmetry 

=0.  we  get  _0 " 

Example.  —  In  the  case  of  Maxwell's  Action-density  we  have,  as 
'  is  immediately  obvious 

Consequently 

s'  =  0,  h*  =  f»  ;  S*  =  IS*  -  /;(lf*a,  and  the  quantities  H  =  0. 
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Hence  our  identities  lead  to 

We  arrived  at  the  last  two  formulae  by  calculation  earlier,  the 
former  on  page  230,  the  latter  on  page  167  ;  the  latter  was  found 

to  express  the  desired  connection  between  Maxwell's  tensor- 
density  S*  of  the  field-energy  and  the  ponderomotive  force. 

Field  Laws  and  Theorems  of  Conservation.  —  If,  in  (70),  we 
take  for  8  an  arbitrary  variation  which  vanishes  outside  a  finite 
region,  and  for  X  we  take  the  whole  world  or  a  region  such  that. 
outside  it,  8  =  0,  we  get 

f(w«8fc 

If  |Wd#  is  the  Action,  we  see  from  this  that  the  following  in- J 

variant  laws  are  contained  in  Hamilton's  Principle : 
w*  =  0        W  =  0. 

Qf  these,  we  have  to  call  the  former  the  electromagnetic  laws, 

the  latter  the  gravitational  laws.  Between  the  left-hand  sides  of 
tKese  equations  there  are  five  identities,  which  have  been  stated 

in  (74)  and  (79).  Thus  there  are  among  the  field-equations  five 
superfluous  ones  corresponding  to  the  transition  (dependent  on 
five  arbitrary  functions)  from  one  system  of  reference  to  another. 

According  to  (752)  the  electromagnetic  laws  have  the  following 
form  : 

^  =  S*         [and  (67)]  .     (82) 

in  full  agreement  with  Maxwell's  Theory  ;  sl  is  the  density  of  the 
4-current,  and  the  linear  tensor-density  of  the  second  order  h* 
is  the  electromagnetic  density  of  field.  Without  specialising 
the  Action  at  all  we  can  read  off  the  whole  structure  of 

Maxwell's  Theory  from  the  calibration  invariance  alone.  The 
particular  form  of  Hamilton's  function  W  affects  only  the  formulae 
which  state  that  current  and  field-density  are  determined  by  the 

phase-  quantities  <fo,  g^  of  the  aether.  In  the  case  of  Maxwell's 
Theory  in  the  restricted  sense  (W  =  1),  which  is  valid  only  in 
empty  space,  we  get  hik  =  f*,  s*  =  0,  which  is  as  it  should  be. 

Just  as  the  s*'s  constitute  the  density  of  the  4-current,  so  the 
scheme  of  Sf  s  is  to  be  interpreted  as  the  pseudo-tensor-density  of 
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the  energy.  In  the  simplest  case,  W  =  1,  this  explanation  becomes 
identical  with  that  of  Maxwell.  According  to  (75X)  and  (80^  the 
theorems  of  conservation 

are  generally  valid  ;  and,  indeed,  they  follow  in  two  ways  from 

the  field  laws.     For    —  is  not  only  identically  equal  to  —  ,  but  also 

to  -  JWJ,  and  —  -  is  not  only  identically  equal  to  ̂ jr,  but  also 

to  HpWj  -  /aw*.  The  form  of  the  gravitational  equations  is  given 
by  (81).  The  field  laws  and  their  accompanying  laws  of  conserva- 

tion may,  by  (75)  and  (80),  be  summarised  conveniently  in  the  two 
equations 

as'M  afftf)  _ 
te      u'         *xt 

Attention  has  already  been  directed  above  to  the  intimate  con- 
nection between  the  laws  of  conservation  of  the  energy-momentum 

and  the  co-ordinate-invariance.  To  these  four  laws  there  is  to  be 

added  the  law  of  conservation  of  electricity,  and,  corresponding  to 

it,  there  must,  logically,  be  a  property  of  invariance  which  will  intro- 
duce a  fifth  arbitrary  function  ;  the  calibration-invariance  here 

appears  as  such.  Earlier  we  derived  the  law  of  conservation  of 

energy-  momentum  from  the  co-ordinate-invariance  only  owing  to 

the  fact  that  Hamilton's  function  consists  of  two  parts,  the  action- 

f  unction  of  the  gravitational  field  and  that  of  the  "  physical  phase  "  ; 
each  part  had  to  be  treated  differently,  and  the  component  results  had 

to  be  combined  appropriately  ($33).  If  those  quantities,  which  are 

derived  from  W|*  +  Sv*  by  taking  the  variation  of  the  fundamental 
quantities  from  (76)  for  the  case  TT  =  0,  instead  of  from  (78),  are 
distinguished  by  a  prefixed  asterisk,  then,  in  consequence  of  the 

d*Sf 

co-ordinate-invariance,  the  "  theorems  of  conservation  "        -  =  0 

^xk 

are  generally  valid.  But  the  *Sf  s  are  not  the  energy-  momentum 
components  of  the  two-fold  action-function  which  have  been  used 

as  a  basis  since  §  28.  For  the  gravitational  component  (W  =  G) 

we  defined  the  energy  by  means  of  *S*  (§  33),  but  for  the  electro- 

magnetic component  (W  =  L,  §  28)  we  introduced  W\  as  the 

energy  components.  This  second  component  L  contains  only  the 

gtk's  themselves,  not  their  derivatives  ;  for  a  quantity  of  this  kind  we 
have,  by  (802),  Wj  =  Sf-  Hence  (if  we  use  the  transformations 
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which  the  fundamental  quantitiesjmdergo  during  an  in- 
finitesimal alteration  of  tEe  calibration),  we  can  adapt  the 

two  different  definitions  of  energy  to  one  another  although  we 
cannot  reconcile  them  entirely.  These  discrepancies  are  removed 
only  here  since  it  is  the  new  theory  which  first  furnishes  us  with 

an  explanation  of  the  current  s*,  of  the  electromagnetic  density  of 

field  hik,  and  of  the  energy  S*,  which  is  no  longer  bound  by  the 
^smn^tipn__that i  the  Action  is  composed  of  two  parts,  of  which  the 
one  does  not  contain  the  <£/s  and  their  derivatives,  and  the  other 

'  does  not  contain  the  derivatives  of  the  g^'s.  The  virtual  de- 
formation of  the  world-continuum  which  leads  to  the  definition  of 

S*  must,  accordingly,  carry  along  the  metrical  structure  and  the 
_line-elements  "unchanged"  in  our  sense  and  not  in  that  of 

Einstein.  The  laws  of  conservation  of  the  sl''s  and  the  S/s  are 
then  likewise  not  bound  by  an  assumption  concerning  the  composi- 

tion of  the  Action.  Thus,  after  the  total  energy  had  been  intro- 
duced in  §  33,  we  have  once  again  passed  beyond  the  stand  taken 

in  §  28  to  a  point  of  view  which  gives  a  more  compact  survey 

of  the  whole.  What  is  done  by  Einstein's  theory  of  gravitation 
with  respect  to  the  equality  of  inertial  and  gravitational  matter, 
namely,  that  it  recognises  their  identity  as  necessary  but  not  as  a 

consequence  of  an  undiscovered  law  of  physical  nature,  is  accom- 
plished by  the  present  theory  with  respect  to  the  facts  that  find 

expression  in  the  structure  of  Maxwell's  equations  and  the  laws  of 
conservation.  Just  as  is  the  case  in  §  33  in  which  we  integrate  over 

the  cross-section  of  a  canal  of  the  system,  so  we  find  here  that,  as 

a  result  of  the  laws  of  conservation,  if  the  s*'s  and  Sf  s  vanish 
outside  the  canal,  the  system  has  a  constant  charge  e  and  a  con- 

stant energy-momentum  /.  Both  may  be  represented,  by  Max- 

well's equations  (82)  and  the  gravitational  equations  (81),  as  the 
flux  of  a  certain  spatial  field  through  a  surface  O  that  encloses  the 

system.  If  we  regard  this  representation  as  a  definition,  the  in- 
tegral theorems  of  conservation  hold,  even  if  the  field  has  a  real 

singularity  within  the  canal  of  the  system.  To  prove  this,  let  us 
replace  this  field  within  the  canal  in  any  arbitrary  way  (preserving, 
of  course,  a  continuous  connection  with  the  region  outside  it)  by  a 

regular  field,  and  let  us  define  the  s*'s  and  the  Sf  s  by  the  equations 
(82),  (81)  (in  which  the  right-hand  sides  are  to  be  replaced  byi 
zero)  in  terms  of  the  quantities  h  and  H  belonging  to  the  altered 

field.  The  integrals  of  these  fictitious  quantities  s°  and  S?,  which 
are  to  be  taken  over  the  cross-section  of  the  canal  (the  interior  of 
O),  are  constant;  on  the  other  hand,  they  coincide  with  the  fluxes 
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mentioned  above  over  the  surface  O,  since  on  O  the  imagined  field 
coincides  with  the  real  one. 

8  36.  Application  of  the  Simplest  Principle  of  Action.    The 
Fundamental  Equations  of  Mechanics 

We  have  now  to  show  that  if  we  uphold  our  new  theory  it  is 
possible  to  make  an  assumption  about  W  which,  as  far  as  the 
results  that  have  been  confirmed  in  experience  are  concerned, 

agrees  with  Einstein's  Theory.  The  simplest  assumption*  for 
purposes  of  calculation  (I  do  not  insist  that  it  is  realised  in 
nature)  is  : 

W  =  -  i^2  Jg  +  al  .  .     (83) 

The  quantity  Action  is  thus  to  be  composed  of  the  volume,  measured 
in  terms  of  the  radius  of  curvature  of  the  world  as  unit  of  length 

(cf.  (62),  §  17)  and  of  Maxwell's  action  of  the  electromagnetic  field  ; 
the  positive  constant  a  is  a  pure  number.  It  follows  that 

SW  =  -  $F8(F*Jg)  +  ±m  -Jg  +  o81. 
We  assume  that  -  Fis  positive  ;  the  calibration  may  then  be  uniquely 
determined  by  the  postulate  F  =  —  1  ;  thus 

8  W  =  the  variation  of  ±F  *Jg  +  £  \lg  +  al. 

If  we  use  the  formula  (61),  §  17  for  F,  and  omit  the  divergence 

which  vanishes  when  we  integrate  over  the  world,  and  if,  by  means 

of  partial  integration,  we  convert  the  world-integral  of  8(^R  *Jg) 
into  the  integral  of  SG  (§  28),  then  our  principle  of  action  takes  the 
form 

=  0,  and  we  get  Y  =  G  +  al  +  J  *Jg{I  -  3  (<£<#)}    (84) 

This  normalisation  denotes  that  we  are  measuring  with  cosmic 
measuring  rods.  If,  in  addition,  we  choose  the  co-ordinates  x%  so 
that  points  of  the  world  whose  co-ordinates  differ  by  amounts  of 
the  order  of  magnitude  1,  are  separated  by  cosmic  distances,  then 

we  may  assume  that  the  gr#.'s  and  the  <£/s  are  of  the  order  of  magni- 
tude 1.  (It  is,  of  course,  a  fact  that  the  potentials  vary  perceptibly 

by  amounts  that  are  extraordinarily  small  in  comparison  with  cosmic 

distances.)  By  means  of  the  substitution  Xi  =  ex'i  we  introduce 
co-ordinates  of  the  order  of  magnitude  in  general  use  (that  is  having 
dimensions  comparable  with  those  of  the  human  body)  ;  e  is  a  very 
small  constant.  The  g.&a  do  not  change  during  this  transformation, 

*  Vide  note  36. 
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if  we  simultaneously  perform  the  re-calibration  which  multiplies 

ds2  by  -2.  In  the  new  system  of  reference  we  then  have 

g'a  =  goc,       <f>'i  =  ̂ t ;       F'  =  -  e2. 
-  is  accordingly,  in  our  ordinary  measures,  the  radius  of  curvature 

of  the  world.  If  g&,  fa  retain  their  old  significance,  but  if  we  take 

Xi  to  represent  the  co-ordinates  previously  denoted  by  x'i,  and  if 
rrik  are  the  components  of  the  affine  relationship  corresponding  to 
these  co-ordinates,  then 

Thus,  by  neglecting  the  exceedingly  small  cosmological  terms,  we 

arrive  exactly  at  the  classical  Maxwell- Einstein  theory  of  electricity 
and  gravitation.  To  make  the  expression  correspond  exactly  with 
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gives  us  Einstein's  cosmological  term  xX  *jg.  The  uniform  dis- 

tribution of  electrically  neutral  matter  at  rest  over  the  whole  of 

(spherical)  space  is  thus  a  state  of  equilibrium  which  is  compatible 

with  our  law.  But,  whereas  in  Einstein's  Theory  (cf.  §  34)  there 
must  be  a  pre-established  harmony  between  the  universal  physical 
constant  X  that  occurs  in  it,  and  the  total  mass  of  the  earth  (because 

each  of  these  quantities  in  themselves  already  determine  the  cur- 
vature of  the  world),  here  (where  X  denotes  merely  the  curvature), 

we  have  that  the  mass  present  in  the  world  determines  the 
curvature.  It  seems  to  the  author  that  just  this  is  what  makes 

Einstein's  cosmology  physically  possible.  In  the  case  in  which  a 

physical  field  is  present,  Einstein's  cosmological  term  must  be 
3       _ 

supplemented  by  the  further  term  -  ̂ X  >Jg(<t>i<tty  ',  and  in  the  com- 

ponents r«.  of  the  gravitational  field,  too,  a  cosmological  term  that 
is  dependent  on  the  electromagnetic  potentials  occurs.  Our  theory 
is  founded  on  a  definite  unit  of  electricity ;  let  it  be  e  in  ordinary 

2* 
electrostatic  units.     Since,  in  (84),  if  we  use  these  units,  -^  occurs 

in  place  of  a,  we  have 
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our  unit  is  that  quantity  of  electricity  whose  gravitational  radius  is 

;r  times  the  radius  of  curvature  of  the  world.     It  is,  therefore, 

like  the  quantum  of  action  1,  of  cosmic  dimensions.  The  cos- 
mological  factor  which  Einstein  added  to  his  theory  later  is  part  of 
ours  from  the  very  beginning. 

Variation  of  the  <£/s  gives  us  Maxwell's  equations. 

and,  in  this  case,  we  have  simply 

3X       ,- 
s'=  ~  T**?' 

Just  as  according  to  Maxwell  the  aether  is  the  seat  of  energy  and 
mass  so  we  obtain  here  an  electric  charge  (plus  current)  diffused 
thinly  throughout  the  world.  Variatio  .  of  the  g^a  gives  the  gravi- 

tational equations 

_alj    .....    (85) 

where  T?  =  {1  +  i(<Mr)}  #  -  fa**  " 

The  conservation  of  electricity  is  expressed  in  the  divergence 
equation 

^-°  .....     (36) 

This  follows,  on  the  one  hand,  from  Maxwell's  equations,  but  must, 
on  the  other  hand,  be  derivable  from  the  gravitational  equations 
according  to  our  general  results.  We  actually  find,  by  contracting 
the  latter  equations  with  respect  to  ik,  that 

B  +  2X  =  f  (&#) 

and  this  in  conjunction  with  -  F  =  2X  again  gives  (86).  We  get 
for  the  pseudo-tensor-density  of  the  energy-momentum,  as  is  to 
be  expected 

s?  =  ail  4  {G  + 

From  the  equation  8'  Hdx  =  0  for  a  variation  8'  which  is  produced 

by  the  displacement  in  the  true  sense  [from  formula  (76)  with  |1'  = const.,  TT  =  0],  we  get 
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where 

*S*  =  YS*  - 

To  obtain  the  conservation  theorems,  we  must,  according  to  our 

earlier  remarks,  write  Maxwell's  equations  in  the  form 

0 

then  set  TT  =  -  (</>$),  and,  after  multiplying  the  resulting  equation 
by  a,  add  it  to  (87).     We  then  get,  in  fact, 

The  following  terms  occur  in  Sf  :  the  Maxwell  energy-density  of 
the  electromagnetic  field 

1%-ftrt* the  gravitational  energy 

and  the  supplementary  cosmological  terms 

The  statical  world  is  by  its  own  nature  calibrated.  The  question 
arises  whether  F  =  const,  for  this  calibration.  The  answer  is  in  the 

affirmative.  For  if  we  re-calibrate  the  statical  world  in  accordance 

with  the  postulate  F  =  —  1  and  distinguish  the  resulting  quantities 
by  a  horizontal  bar,  we  get 

   ~C1  f  ~\  "DT 

<pi  =  —     *     where  we  set  FI  =  —  (i  =  1,  2,  3) F  vXi 

-  -'I.  Qik     7T>        /~~ 

Oik  =  -  Fgik,  that  is,  gllc  =  -  ̂ -,  ,J~g  =  F*  »Jg 
and  equation  (86)  gives 

From  this,  however,  it  follows  that  F  =  const. 
From  the  fact  that  a  further  electrical  term  becomes  added  k 

Einstein's  cosmological  term,  the  existence  of  a  material  particle 
becomes  possible  without  a  mass  horizon  becoming  necessary.  Th< 
particle  is  necessarily  charged  electrically.  If,  in  order  to  deter 



SIMPLEST  PRINCIPLE  OF  ACTION  299 

mine  the  radially  symmetrical  solutions  for  the  statical  case,  we 

again  use  the  old  terms  of  §  31,  and  take  </>  to  mean  the  electro- 

static potential,  then  the  integral  whose  variation  must  vanish,  is 

(the  accent  denotes  differentiation  with  respect  to  r).     Variation  of 

w,  A,  and  c£,  respectively,  leads  to  the  equations 

,_ 

" 
8  A2          2  A2 3  KWfy 

2a    A 

As  a  result  of  the  normalisations  that  have  been  performed,  the 

spatial  co-ordinate  system  is  fixed  except  for  a  Euclidean  rotation, 
and  hence  W  is  uniquely  determined.  In  /  and  <£,  as  a  result  of  the 
free  choice  of  the  unit  of  time,  a  common  constant  factor  remains 

arbitrary  (a  circumstance  that  may  be  used  to  reduce  the  order  of 

the  problem  by  1).  If  the  equator  of  the  space  is  reached  when 

r  —  r0,  then  the  quantities  that  occur  as  functions  of  z  =  \/r§  —  r2 
must  exhibit  the  following  behaviour  for  z  —  0  :  /  and  (f>  are  regular, 

and  /  4=  0  ;  /t'2  is  infinite  to  the  second  order,  A  to  the  first  order. 
The  differential  equations  themselves  show  that  the  development  of 

h-z-  according  to  powers  of  z  begins  with  the  term  h%,  where 

this  proves,  incidentally,  that  A.  must  be  positive  (the  curvature  F 

gative)  and  that  r\ 

of  /  and  (f>  we  have 

2 
negative)  and  that  r§  >  -  — whereas  for  the  initial  values  of  /0, A 

If  diametral  points  are  to  be  identified,  (f>  must  be  an  even  function 
of  z,  and  the  solution  is  uniquely  determined  by  the  initial  values 

for  z  =  0,  which  satisfy  the  given  conditions  (vide  note  37).  It 
cannot  remain  regular  in  the  whole  region  0<^r<^r0,  but  must,  if 
we  let  r  decrease  from  r0,  have  a  singularity  at  least  ultimately 
when  r  =  0.  For  otherwise  it  would  follow,  by  multiplying  the 
differential  equation  of  </>  by  $,  and  integrating  from  0  to  r0,  that 
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Matter  is  accordingly  a  true  singularity  of  the  field.  The  fact 

that  the  phase-quantities  vary  appreciably  in  regions  whose 

linear  dimensions   are  very  small  in  comparison  with  — -.    may 

ijl 

be  explained,  perhaps,  by  the  circumstance  that  a  value  must  be 

taken  for  r%  which  is  enormously  great  in  comparison  with  -.     The 
A 

fact  that  all  elementary  particles  of  matter  have  the  same  charge 
and  the  same  mass  seems  to  be  due  to  the  circumstance  that 

they  are  all  embedded  in  the  same  world  (of  the  same  radius  r0) ; 
this  agrees  with  the  idea  developed  in  §  32,  according  to  which  the 
charge  and  the  mass  are  determined  from  infinity. 

In  conclusion,  we  shall  set  up  the  mechanical  equations  that 
govern  the  motion  of  a  material  particle.  In  actual  fact  we  have 
not  yet  derived  these  equations  in  a  form  which  is  admissible  from 
the  point  of  view  of  the  general  theory  of  relativity ;  we  shall  now 
endeavour  to  make  good  this  omission.  We  shall  also  take  this 
opportunity  of  carrying  out  the  intention  stated  in  §  32,  that  is,  to  show 
that  in  general  the  inertial  mass  is  the  flux  of  the  gravitational  field 
through  a  surface  which  encloses  the  particle,  even  when  the 
matter  has  to  be  regarded  as  a  singularity  which  limits  the  field 
and  lies,  so  to  speak,  outside  it.  In  doing  this  we  are,  of  course, 
debarred  from  using  a  substance  which  is  in  motion ;  the  hypotheses 
corresponding  to  the  latter  idea,  namely  (§  27) : 

dmds  =  pdx,  T*  =  pUiUk 
are  quite  impossible  here,  as  they  contradict  the  postulated  properties 

of  invariance.  For,  according  to  the  former  equation,  //,  is  a  scalar- 
density  of  weight  •£,  and,  according  to  the  latter,  one  of  weight  0, 

since  T*  is  a  tensor-density  in  the  true  sense.  And  we  see  that 
these  initial  conditions  are  impossible  in  the  new  theory  for  the 

same  reason  as  in  Einstein's  Theory,  namely,  because  they  lead  to  a 
false  value  for  the  mass,  as  was  mentioned  at  the  end  of  §  33.  This 
is  obviously  intimately  connected  with  the  circumstance  that  the 

integral  \dmds  has  now  no  meaning  at  all,  and  hence  cannot  be 

introduced  as  "  substance-action  of  gravitation  ".     We  took  the  first 
step  towards  giving  a  real  proof  of  the  mechanical  equations  in  §  3« 
There  we  considered  the  special  case  in  which  the  body  is  completely 
isolated,  and  no  external  forces  act  on  it. 

From  this  we  see  at  once  that  we  must  start  from  the  laws  of 
conservation 

0   (89) 
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which  hold  for  the  total  energy.  Let  a  volume  fi,  whose  dimen- 
sions are  great  compared  with  the  actual  essential  nucleus  of  the 

particle,  but  small  compared  with  those  dimensions  of  the  external 
field  which  alter  appreciably,  be  marked  off  around  the  material 
particle.  In  the  course  of  the  motion  O  describes  a  canal  in  the 
world,  in  the  interior  of  which  the  current  filament  of  the  material 

particle  flows  along.  Let  the  co-ordinate  system  consisting  of  the 

"time-co-ordinate"  XQ  =  t  and  the  "space-co-ordinates"  xlt  x<2,  x2, 
be  such  that  the  spaces  XQ  =  const,  intersect  the  canal  (the  cross- 
section  is  the  volume  O  mentioned  above).  The  integrals 

which  are  to  be  taken  in  a  space  XQ  =  const,  over  O,  and  which 
are  functions  of  the  time  alone,  represent  the  energy  (i  =  0)  and 
the  momentum  (i  =  1,  2,  3)  of  the  material  particle.  If  we  inte- 

grate the  equation  (89)  in  the  space  x0  =  const,  over  O,  the  first 

member  (k  =  0)  gives  the  time-derivative    ~ ;  the  integral  sum (it 

over  the  three  last  terms,  however,  becomes  transformed  by  Gauss' 
Theorem  into  an  integral  Ki  which  is  to  be  taken  over  the  surface 
of  O.  In  this  way  we  arrive  at  the  mechanical  equations 

§-**••  •  (90) 
On  the  left  side  we  have  the  components  of  the  "  inertial  force," 
and  on  the  right  the  components  of  the  external  "  field-force ". 
Not  only  the  field-force  but  also  the  four-dimensional  momentum 
Ji  may  be  represented,  in  accordance  with  a  remark  at  the  end  of 
§  35,  as  a  flux  through  the  surface  of  O.  If  the  interior  of  the  canal 
encloses  a  real  singularity  of  the  field  the  momentum  must,  indeed, 
be  defined  in  the  above  manner,  and  then  the  device  of  the 

"  fictitious  field,"  used  at  the  end  of  §  35,  leads  to  the  mechanical 
equations  proved  above.  It  is  of  fundamental  importance  to  notice 
that  in  them  only  such  quantities  are  brought  into  relationship  with 
one  another  as  are  determined  by  the  course  of  the  field  outside  the 
particle  (on  the  surface  of  O),  and  have  nothing  to  do  with  the 
singular  states  or  phases  in  its  interior.  The  antithesis  of  kinetic 

,  and  potential  which  receives  expression  in  the  fundamental  law  of 
mechanics  does  not,  indeed,  depend  actually  on  the  separation  of 

energy-momentum  into  one  part  belonging  to  the  external  field 
and  another  belonging  to  the  particle  (as  we  pictured  it  in  §  25),  but 
rather  on  this  juxtaposition,  conditioned  by  the  resolution  into  space 
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and  time,  of  the  first  and  the  three  last  members  of  the  divergence 
equations  which  make  up  the  laws  of  conservation,  that  is,  on  the 
circumstance  that  the  singularity  canals  of  the  material  particles 
have  an  infinite  extension  in  only  one  dimension,  but  are  very 
limited  in  three  other  dimensions.  This  stand  was  taken  most 

definitely  by  Mie  in  the  third  part  of  his  epoch-making  Founda- 
tions of  a  Theory  of  Matter,  which  deals  with  "Force  and  Inertia" 

(vide  note  38).  Our  next  object  is  to  work  out  the  full  consequences 
of  this  view  for  the  principle  of  action  adopted  in  this  chapter. 

To  do  this,  it  is  necessary  to  ascertain  exactly  the  meaning  of 
the  electromagnetic  and  the  gravitational  equations.  If  we  discuss 

Maxwell's  equations  first,  we  may  disregard  gravitation  entirely 
and  take  the  point  of  view  presented  by  the  special  theory  of  rela- 

tivity. We  should  be  reverting  to  the  notion  of  substance  if  we 

were  to  interpret  the  Maxwell-Lorentz  equation 

so  literally  as  to  apply  it  to  the  volume-elements  of  an  electron. 
Its  true  meaning  is  rather  this  :  Outside  the  O-canal,  the  homo- 

geneous equations 

aftt 

^—  =0hold        ....     (91) 
vXk 

The  only  statical  radially  symmetrical  solution  fa  of  (91)  is  that 

derived  from  the  potential  -  ;  it  gives  the  flux  e  (and  not  0,  as  it 

would  be  in  the  case  of  a  solution  of  (91)  which  is  free  from  singu- 
larities) of  the  electric  field  through  an  envelope  O  enclosing  the 

particle.  On  account  of  the  linearity  of  equations  (91),  these  pro- 
perties are  not  lost  when  an  arbitrary  solution  fa  of  equations  (91), 

free  from  singularities,  is  added  to  fa  ;  such  a  one  is  given  by  /,*  = 
const.  The  field  which  surrounds  the  moving  electron  must 

be  of  the  type  :  fa  +  fa,  if  we  introduce  at  the  moment  under 
consideration  a  co-ordinate  system  in  which  the  electron  is  at  rest. 
This  assumption  concerning  the  constitution  of  the  field  outside  O 

is,  of  course,  justified  only  when  we  are  dealing  with  quasi- 
stationary  motion,  that  is,,  when  the  world-line  of  the  particle 
deviates  by  a  sufficiently  small  amount  from  a  straight  line.  The 

term  pw*  in  Lorentz's  equation  is  to  express  the  general  effect  of  the 
charge-  singularities  for  a  region  that  contains  many  electrons. 
But  it  is  clear  that  this  assumption  comes  into  question  only  for 
quasi-  stationary  motion.  Nothing  at  all  can  be  asserted  about 
what  happens  during  rapid  acceleration.  The  opinion  which  is  so 
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generally  current  among  physicists  nowadays,  that,  according  to 

slassical  electrodynamics,  a  greatly  accelerated  particle  emits  radia- 
tion, seems  to  the  author  quite  unfounded.  It  is  justified  only  if 

Lorentz's  equations  are  interpreted  in  the  too  literal  fashion  re- 
pudiated above,  and  if,  also,  it  is  assumed  that  the  constitution  of 

the  electron  is  not  modified  by  the  acceleration.  Bohr's  Theory 
3f  the  Atom  has  led  to  the  idea  that  there  are  individual  stationary 

orbits  for  the  electrons  circulating  in  the  atom,  and  that  they  may 

move  permanently  in  these  orbits  without  emitting  radiations ;  only 
When  an  electron  jumps  from  one  stationary  orbit  to  another  is  the 

mergy  that  is  lost  by  the  atom  emitted  as  electromagnetic  energy  of 

/ibration  (vide  note  39).  If  matter  is  to  be  regarded  as  a  boundary- 
singularity  of  the  field,  our  field-equations  make  assertions  only 

ibout  the  possible  states  of  the  field,  and  not  about  the  con- 
litioning  of  the  states  of  the  field  by  the  matter.  This  gap  is 

illed  by  the  Quantum  Theory  in  a  manner  of  which  the  under- 
ying  principle  is  not  yet  fully  grasped.  The  above  assumption 

ibout  the  singular  component  /  of  the  field  surrounding  the  particle 

s,  in  our  opinion,  true  for  a  quasi-stationary  electron.  We  may, 
>f  course,  work  out  other  assumptions.  If,  for  example,  the  particle 

s  a  radiating  atom,  the/^'s  will  have  to  be  represented  as  the  field 
>f  an  oscillating  Hertzian  dipole.  (This  is  a  possible  state  of  the 

ield  which  is  caused  by  matter  in  a  manner  which,  according  to 

Bohr,  is  quite  different  from  that  imagined  by  Hertz.) 
As  far  as  gravitation  is  concerned,  we  shall  for  the  present 

jdopt  the  point  of  view  of  the  original  Einstein  Theory.  In  it  the 

homogeneous)  gravitational  equations  have  (according  to  §  31)  a 
tatical  radially  symmetrical  solution,  which  depends  on  a  single 
sonstant  m,  the  mass.  The  flux  of  a  gravitational  field  through 

.  sufficiently  great  sphere  described  about  the  centre  is  not  equal  to 

I,  as  it  should  be  if  the  solution  were  free  from  singularities,  but 
qual  to  m.  We  assume  that  this  solution  is  characteristic  of  the 

noving  particle  in  the  following  sense :  We  consider  the  values 

reversed  by  the  g^'s  outside  the  canal  to  be  extended  over  the 
anal,  by  supposing  the  narrow  deep  furrow,  which  the  path  of  the 
naterial  particle  cuts  out  in  the  metrical  picture  of  the  world, 

o  be  smoothed  out,  and  by  treating  the  stream-filament  of  the 
•article  as  a  line  in  this  smoothed- out  metrical  field.  Let  ds  be 

;he  corresponding  proper-time  differential.  For  a  point  of  the 

tream-filament  we  may  introduce  a  ("normal")  co-ordinate 
ystem  such  that,  at  that  point, 

ds2  =  dxl  -   (dx\  +  dxl  +  dx\) 
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the  derivatives  -^L  vanish,  and  the  direction  of  the  stream-filament 

is  given  by 

d/Xn :  cLx-i  :  u/Xt^ :  ciXn  =  J. :  U  :  u  :  U. 

In  terms  of  these  co-ordinates  the  field  is  to  be  expressed  by  the 
above-mentioned  statical  solution  (only,  of  course,  in  a  certain 
neighbourhood  of  the  world-point  under  consideration,  from  which 
the  canal  of  the  particle  is  to  be  cut  out).  If  we  regard  the  normal 
co-ordinates  X{  as  Cartesian  co-ordinates  in  a  four-dimensional 

Euclidean  space,  then  the  picture  of  the  world-line  of  the  particle 
becomes  a  definite  curve  in  the  Euclidean  space.  Our  assumption 

is,  of  course,  admissible  again  only  if  the  motion  is  quasi-stationary, 
that  is,  if  this  picture-curve  is  only  slightly  curved  at  the  point 
under  consideration.  (The  transformation  of  the  homogeneous 

gravitational  equations  into  non-homogeneous  ones,  on  the  right 
side  of  which  the  tensor  pUiUk  appears,  takes  account  of  the  singu- 

larities, due  to  the  presence  of  masses,  by  fusing  them  into  a  con- 

tinuum ;  this  assumption  is  legitimate  only  in  the  quasi- stationary 
case.) 

To  return  to  the  derivation  of  the  mechanical  equations !  We 

shall  use,  once  and  for  all,  the  calibration  normalised  by  F  =  const., 
and  we  shall  neglect  the  cosmological  terms  outside  the  canal.  The 
influence  of  the  charge  of  the  electron  on  the  gravitational  field  is,  as 

we  know  from  §  32,  to  be  neglected  in  comparison  with  the  influence 
of  the  mass,  provided  the  distance  from  the  particle  is  sufficiently 

great.  Consequently,  if  we  base  our  calculations  on  the  normal  co- 
ordinate system,  we  may  assume  the  gravitational  field  to  be  that 

mentioned  above.  The  determination  of  the  electromagnetic  field  is 

then,  as  in  the  gravitational  case,  a  linear  problem  ;  it  is  to  have  the 

form  fik  +  fik  mentioned  above  (with  f&  =  const,  on  the  surface  of 

fi).  But  this  assumption  is  compatible  with  the  field-laws  only  if 
e  =  const.  To  prove  this,  we  shall  deduce  from  a  fictitious  field 
that  fills  the  canal  regularly  and  that  links  up  with  the  really 
existing  field  outside,  that 

—  =  a\    [irdxidxidxi  =  e* 

~&Xk 

a 

in  any  arbitrary  co-ordinate  system  ;  e,*  is  independent  of  the  choice 
of  the  fictitious  field,  inasmuch  as  it  may  be  represented  as  a  field- 
flux  through  the  surface  of  O.  Since  (if  we  neglect  the  cosmologica) 

terms)  the  s*'s  on  this  surface  vanish,  the  equation  of  definition  gives 

us,  if  ̂ —  =  0  is  integrated,  -^r  =  0 ;  moreover,  the  arguments  set 
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out  in  §  33  show  that  e*  is  independent  of  the  co-ordinate  system 
chosen.  If  we  use  the  normal  co-ordinate  system  at  one  point,  the 

representation  of  e*  as  a  field-flux  shows  that  e*  =  e. 
Passing  on  from  the  charge  to  the  momentum,  we  must  notice 

at  once  that,  with  regard  to  the  representation  of  the  energy- 
momentum  components  by  means  of  field-fluxes,  we  may  not  refer 
to  the  general  theory  of  §  35,  because,  by  applying  the  process  of 
partial  integration  to  arrive  at  (84),  we  sacrificed  the  co-ordinate 
invariance  of  our  Action.  Hence  we  must  proceed  as  follows.  With 
the  help  of  the  fictitious  field  which  bridges  the  canal  regularly,  we 

define  aS*  by  means  of 

(K?  - The  equation
 

(92) 

is  an  identity  for  it.     By  integrating  (92)  we  get  (90),  whereby 

i  KI  expresses  itself  as  the  field-flux  through  the  surface  O.  In  these 
expressions  the  fictitious  field  may  be  replaced  by  the  real  one,  and, 
moreover,  in  accordance  with  the  gravitational  equations,  we  may 
replace 

If  we  use  the  normal  co-ordinate  system  the  part  due  to  the  gravi- 
tational energy  drops  out;  for  its  components  depend  not  only 

linearly  but  also  quadratically  on  the  (vanishing)  derivatives  -^~  - 
uXi 

We  are,  therefore,  left  with  only  the  electromagnetic  part,  which  is 
to  be  calculated  along  the  lines  of  Maxwell.  Since  the  components 

of  Maxwell's  energy-density  depend  quadratically  on  the  field/  +  /, 
each  of  them  is  composed  of  three  terms  in  accordance  with  the 
formula 

(/+/)'-/'  +  2/7  +  /2. 
In  the  case  of  each,  the  first  term  contributes  nothing,  since  the 

'flux  of  a  constant  vector  through  a  closed  surface  is  0.  The  last 
berm  is  to  be  neglected  since  it  contains  the  weak  field  /as  a  square  ; 
thei  middle  term  alone  remains.  But  this  gives  us 

Ki  =  */* 
20 
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Concerning  the  momentum-quantities  we  see  (in  the  same  way  as 
in  §  33,  by  using  identities  (92)  and  treating  the  cross-section  of  the 
stream-filament  as  infinitely  small  in  comparison  with  the  external 
field)  (1)  that,  for  co-ordinate  transformations  that  are  to  be  regarded 
as  linear  in  the  cross-section  of  ,  the  canal,  the  //s  are  the  co-variant 
components  of  a  vector  which  is  independent  of  the  co-ordinate 
system  ;  and  (2)  that  if  we  alter  the  fictitious  field  occupying  the 
canal  (in  §  33  we  were  concerned,  not  with  this,  but  with  a  charge 
of  the  co-ordinate  system  in  the  canal)  the  quantities  Ji  retain  their 
values.  In  the  normal  co-ordinate  system,  however,  for  which  the 
gravitational  field  that  surrounds  the  particle  has  the  form  calculated 
in  §  31,  we  find  that,  since  the  fictitious  field  may  be  chosen  as  a 

statical  one,  according  to  page  272  :  Jl  =  J2  =  /3  —  0,  and  J0  =  the 
flux  of  a  spatial  vector-density  through  the  surface  of  O,  and  hence 
=  m.  On  account  of  the  property  of  co-  variance  possessed,  by  Ji, 
we  find  that  not  only  at  the  point  of  the  canal  under  consideration, 
but  also  just  before  it  and  just  after  it 

Hence  the  equations  of  motion  of  our  particle  expressed  in  the 
normal  co-ordinate  system  are 

-«/*••••     (93) 

The  Oth  of  these  equations  gives  us  :  -^  =  0 ;  thus  the  field  equations 

require  that  the  mass  be  constant.    But  in  any  arbitrary  co-ordinate 
system  we  have : 

For  the  relations  (94)  are  invariant  with  respect  to  co-ordinate 
transformations,  and  agree  with  (93)  in  the  case  of  the  normal  co- 

ordinate system.  Hence,  according  to  the  field-laws,  a  necessary 
condition  for  a  singularity  canal,  which  is  to  fit  into  the  remaining 
part  of  the  field,  and  in  the  immediate  neighbourhood  of  which  the 
field  has  the  required  structure,  is  that  the  quantities  e  and  m  that 

characterise  the  singularity  at  each  point  of  the  canal  remain  con- 
stant along  the  canal,  but  that  the  world-direction  of  the  canal 

satisfy  the  equations 

, 
ds  <)x*  m 

In  the  light  of  these  considerations,  it  seems  to  the  author  that 
the  opinion  expressed  in  §  25  stating  that  mass  and  field-energy  are 
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identical  is  a  premature  inference,  and  the  whole  of  Mie's  view  of 
matter  assumes  a  fantastic,  unreal  complexion.  It  was,  of  course, 
a  natural  result  of  the  special  theory  of  relativity  that  we  should 
come  to  this  conclusion.  It  is  only  when  we  arrive  at  the  general 

theory  that  we  find  it  possible  to  represent  the  mass  as  a  field- 
flux,  and  to  ascribe  to  the  world  relationships  such  as  obtain  in 

Einstein's  Cylindrical  World  (§  34),  when  there  are  cut  out  of 
it  canals  of  circular  cross-section  which  stretch  to  infinity  in  both 
directions.  This  view  of  m  states  not  only  that  inertial  and 
gravitational  masses  are  identical  in  nature,  but  also  that  mass  as 
the  point  of  attack  of  the  metrical  field  is  identical  in  nature  with 
mass  as  the  generator  of  the  metrical  field.  That  which  is 
physically  important  in  the  statement  that  energy  has  inertia  still 
persists  in  spite  of  this.  For  example,  a  radiating  particle  loses 
inertial  mass  of  exactly  the  same  amount  as  the  electromagnetic 
energy  that  it  emits.  (In  this  example  Einstein  first  recognised  the 
intimate  relationship  between  energy  and  inertia.)  This  may  be 
proved  simply  and  rigorously  from  our  present  point  of  view. 
Moreover,  the  new  standpoint  in  no  wise  signifies  a  relapse  to  the 
old  idea  of  substance,  but  it  deprives  of  meaning  the  problem  of 
the  cohesive  pressure  that  holds  the  charge  of  the  electron  together. 

With  about  the  same  reasonableness  as  is  possessed  by 

Einstein's  Theory  we  may  conclude  from  our  results  that  a  clock 

in  quasi-stationary  motion  indicates  the   proper  time    \ds   which 

corresponds  to  the  normalisation  F  =  const.*  If  during  the  motion 
of  a  clock  (e.g.  an  atom)  with  infinitely  small  period,  the  world- 
distance  traversed  by  it  during  a  period  were  to  be  transferred 

congruently  from  period  to  period  in  the  sense  of  our  world-geo- 
metry, then  two  clocks  which  set  out  from  the  same  world-point  A 

with  the  same  period,  that  is,  which  traverse  congruent  world- 
distances  in  A  during  their  first  period  will  have,  in  general, 
different  periods  when  they  meet  at  a  later  world-point  B.  The 
orbital  motion  of  the  electrons  in  the  atom  can,  therefore,  certainly 
not  take  place  in  the  way  described,  independently  of  their  previous 

*  The  invariant  quadratic  form  F .  dsz  is  very  far  from  being  distinguished 
from  all  other  forms  of  the  type  E  .ds2  (E  being  a  scalar  of  weight  -  1)  as  is 

the  dsz  of  Einstein's  Theory,  which  does  not  contain  the  derivatives  of  the 
.  potentials  at  all.  For  this  reason  the  inference  made  in  our  calculation  of  the 

displacement  towards  the  infra-red  (p.  246),  that  similar  atoms  radiate 
the  same  frequency  measured  in  the  proper  time  ds  corresponding  to  the 
normalisation  F  =  const.,  is  by  no  means  as  convincing  as  in  the  theory  of 
Einstein  :  it  loses  its  validity  altogether  if  a  principle  of  action  other  than  that 
here  discussed  holds. 
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histories,  since  the  atoms  emit  spectral  lines  of  definite  frequencies. 
Neither  does  a  measuring  rod  at  rest  in  a  statical  field  undergo  a 

congruent  transference;  for  the  measure  I  =  d<r"2  of  a  measuring 
rod  at  rest  does  not  alter,  whereas  for  a  congruent  transference  it 

would  have  to  satisfy  the  equation  -r  =   -  I .  <£.      What  is   the 

source  of  this  discrepancy  between  the  conception  of  congruent 
transference  and  the  behaviour  of  measuring  rods,  clocks,  and 
atoms  ?  We  may  distinguish  two  modes  of  determining  a  quantity 
in  nature,  namely,  that  of  persistence  and  that  of  adjustment. 
This  difference  is  illustrated  in  the  following  example.  We  may 
prescribe  to  the  axis  of  a  rotating  top  any  arbitrary  direction  in 
space ;  but  once  this  arbitrary  initial  direction  has  been  fixed  the 
direction  of  the  axis  of  the  top  when  left  to  itself  is  determined  from 
it  for  all  time  by  a  tendency  of  persistence  which  is  active  from 
one  moment  to  another ;  at  each  instant  the  axis  experiences  an 
infinitesimal  parallel  displacement.  Diametrically  opposed  to  this 
is  the  case  of  a  magnet  needle  in  the  magnetic  field.  Its  direction 
is  determined  at  every  moment,  independently  of  the  state  of  the 
system  at  other  moments,  by  the  fact  that  the  system,  in  virtue  of 
its  constitution,  adjusts  itself  to  the  field  in  which  it  is  embedded. 
There  is  no  a  priori  ground  for  supposing  a  pure  transference, 
following  the  tendency  of  persistence,  to  be  integrable.  But  even 
if  this  be  the  case,  as,  for  example,  for  rotations  of  the  top  in 
Euclidean  space,  nevertheless  two  tops  which  set  out  from  the 
same  point  with  axes  in  the  same  position,  and  which  meet  after 
the  lapse  of  a  great  length  of  time,  will  manifest  any  arbitrary  | 
deviations  in  the  positions  of  the  axes,  since  they  can  never  be 
fully  removed  from  all  influences.  Thus  although,  for  example, 

Maxwell's  equations  for  the  charge  e  of  an  electron  make  necessary de 

the  equation  of  conservation  ^-.  =  0,  this  does  not  explain  why  an 
electron  itself  after  an  arbitrarily  long  time  still  has  the  same 
charge,  and  why  this  charge  is  the  same  for  all  electrons.  This 

circumstance  shows  that  the  charge  is  determined  not  by  per- 
sistence but  by  adjustment :  there  can  be  only  one  state  of 

equilibrium  of  negative  electricity,  to  which  the  corpuscle  adjusts 
itself  afresh  at  every  moment.  The  same  reason  enables  us  to  draw 
the  same  conclusion  for  the  spectral  lines  of  the  atoms,  for  what 
is  common  to  atoms  emitting  equal  frequencies  is  their  constitution 
and  not  the  equality  of  their  frequencies  at  some  moment  when 
they  were  together  far  back  in  time.  In  the  same  way,  obviously, 
the  length  of  a  measuring  rod  is  determined  by  adjustment ;  for  it 
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would  be  impossible  to  give  to  this  rod  at  this  point  of  the  field 

any  length,  say  two  or  three  times  as  great  as  the  one  that  it 
now  has,  in  the  way  that  I  can  prescribe  its  direction  arbitrarily. 
The  world-curvature  makes  it  theoretically  possible  to  determine  a 

length  by  adjustment.  In  consequence  of  its  constitution  the  rod 
assumes  a  length  which  has  such  and  such  a  value  in  relation  to 
the  radius  of  curvature  of  the  world.  (Perhaps  the  time  of  rotation 

of  a  top  gives  us  an  example  of  a  time-length  that  is  determined  by 
persistence ;  if  what  we  assumed  above  is  true  for  direction  then  at 
each  moment  of  the  motion  of  the  top  the  rotation  vector  would 
experience  a  parallel  displacement.)  We  may  briefly  summarise  as 
follows :  The  affine  and  metrical  relationship  is  an  a  priori  datum 
telling  us  how  vectors  and  lengths  alter,  if  they  happen  to  follow 
the  tendency  of  persistence.  But  to  what  extent  this  is  the  case 
in  nature,  and  in  what  proportion  persistence  and  adjustment 
modify  one  another,  can  be  found  only  by  starting  from  the 
physical  laws  that  hold,  i.e.  from  the  principle  of  action. 

The  subject  of  the  above  discussion  is  the  principle  of  action, 
compatible  with  the  new  axiom  of  calibration  invariance,  which 

most  nearly  approaches  the  Maxwell-Einstein  theory.  We  have 
seen  that  it  accounts  equally  well  for  all  the  phenomena  which  are 
explained  by  the  latter  theory  and,  indeed,  that  it  has  decided 
advantages  so  far  as  the  deeper  problems,  such  as  the  cosmological 
problems  and  that  of  matter  are  concerned.  Nevertheless,  I  doubt 
whether  the  Hamiltonian  function  (83)  corresponds  to  reality. 
We  may  certainly  assume  that  W  has  the  form  W \lg,  in  which  W 

is  an  invariant  of  weight  -  2  formed  in  a  perfectly  rational  manner 
from  the  components  of  curvature.  Only  four  of  these  invariants 
may  be  set  up,  from  which  every  other  may  be  built  up  linearly  by 
means  of  numerical  co-efficients  (vide  note  40).  One  of  these  is 
Maxwell's : 

i-l/W*   (95) 

another  is  the  F2  used  just  above.  But  curvature  is  by  its  nature 
a  linear  matrix-tensor  of  the  second  order  :  Fifcdrci&Bfc.  According 
to  the  same  law  by  which  (95),  the  square  of  the  numerical  value, 
is  produced  from  the  distance-curvature/^  we  may  form 

iF*F*   (96) 

from  the  total  curvature.  The  multiplication  is  in  this  case  to  be  in- 
terpreted as  a  composition  of  matrices ;  (96)  is  therefore  itself  again 

a  matrix.  But  its  trace  L  is .  a  scalar — of  weight  -  2.  The  two 
quantities  L  and  I  seem  to  be  invariant  and  of  the  kind  sought,  and 
they  can  be  formed  most  naturally  from  the  curvature ;  invariants 
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of  this  natural  and  simple  type,  indeed,  exist  only  in  a  four-dimen- 
sional world  at  all.  It  seems  more  probable  that  W  is  a  linear 

combination  of  L  and  I.  Maxwell's  equations  become  then  as 
above  :  (when  the  calibration  has  been  normalised  by  F  =  const.) 

S*  =  a  constant  multiple  of  ijgfi,  and  hik  =  f*.  The  gravitational 
laws  in  the  statical  case  here,  too,  agree  to  a  first  approximation 

with  Newton's  laws.  Calculations  by  Pauli  (vide  note  41)  have 
indeed  disclosed  that  the  field  determined  in  §  31  is  not  only  a 

rigorous  solution  of  Einstein's  equations,  but  also  of  those  favoured 

here,  so  that  the  amount  by  which  the  perihelion  of  Mercury's 
orbit  advances  and  the  amount  of  the  deflection  of  light  rays  owing 
to  the  proximity  of  the  sun  at  least  do  not  conflict  with  these 

equations.  But  in  the  question  of  the  mechanical  equations  and 

of  the  relationship  holding  between  the  results  obtained  by 

measuring-rods  and  clocks  on  the  one  hand  and  the  quadratic 
form  on  the  other,  the  connecting  link  with  the  old  theory  seems 

to  be  lost ;  here  we  may  expect  to  meet  with  new  results. 

One  serious  objection  may  be  raised  against  the  theory  in  its 

present  state :  it  does  not  account  for  the  inequality  of  positive 

and  negative  electricity  (vide  note  42).  There  seem  to  be  two 
ways  out  of  this  difficulty.  Either  we  must  introduce  into  the  law 

of  action  a  square  root  or  some  other  irrationality  ;  in  the  discussion 

on  Mie's  theory,  it  was  mentioned  how  the  desired  inequality  could 
be  caused  in  this  way,  but  it  was  also  pointed  out  what  obstacles 
lie  in  the  way  of  such  an  irrational  Action.  Or,  secondly,  there  is 

the  following  view  which  seems  to  the  author  to  give  a  truer  state- 
ment of  reality.  We  have  here  occupied  ourselves  only  with  the 

field  which  satisfies  certain  generally  invariant  functional  laws. 

It  is  quite  a  different  matter  to  inquire  into  the  excitation  or  cause 

of  the  field-phases  that  appear  to  be  possible  according  to  these 
laws ;  it  directs  our  attention  to  the  reality  lying  beyond  the  field. 

Thus  in  the  aether  there  may  exist  convergent  as  well  as  divergent 
electromagnetic  waves;  but  only  the  latter  event  can  be  brought 
about  by  an  atom,  situated  at  the  centre,  which  emits  energy  owing 
to  the  jump  of  an  electron  from  one  orbit  to  another  in  accordance 

with  Bohr's  hypothesis.  This  example  shows  (what  is  immediately 
obvious  from  other  considerations)  that  the  idea  of  causation  (in 
contradistinction  to  functional  relation)  is  intimately  connected 

with  the  unique  direction  of  progress  characteristic  of  Time, 
namely  Past  ->  Future.  This  oneness  of  sense  in  Time  exists 

beyond  doubt — it  is,  indeed,  the  most  fundamental  fact  of  our  per- 
ception of  Time — but  a  priori  reasons  exclude  it  from  playing  a  part 

in  physics  of  the  field,  But  we  saw  above  (§  33)  that  the  sign,  too, 
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of  an  isolated  system  is  fully  determined,  as  soon  as  a  definite  sense 
of  flow,  Past  ->  Future,  has  been  prescribed  to  the  world-canal 
swept  out  by  the  system.  This  connects  the  inequality  of  positive 
and  negative  electricity  with  the  inequality  of  Past  and  Future ; 
but  the  roots  of  this  problem  are  not  in  the  field,  but  lie  outside  it. 
Examples  of  such  regularities  of  structure  that  concern,  not  the 
field,  but  the  causes  of  the  field-phases  are  instanced  :  by  the 
existence  of  cylindrically  shaped  boundaries  of  the  field :  by  our 
assumptions  above  concerning  the  constitution  of  the  field  in  their 
immediate  neighbourhood  :  lastly,  and  above  all,  by  the  facts  of 
the  quantum  theory.  But  the  way  in  which  these  regularities 
have  hitherto  been  formulated  are,  of  course,  merely  provisional  in 
character.  Nevertheless,  it  seems  that  the  theory  of  statistics 
plays  a  part  in  it  which  is  fundamentally  necessary.  We  must 
here  state  in  unmistakable  language  that  physics  at  its  present 
stage  can  in  no  wise  be  regarded  as  lending  support  to  the  belief 
that  there  is  a  causality  of  physical  nature  which  is  founded  on 

rigorously  exact  laws.  The  extended  field,  "aBther,"  is  merely  theP 
transmitter  of  effects  and  is,  of  itself,  powerless ;  it  plays  a  part 
that  is  in  no  wise  different  from  that  which  space  with  its  rigid 
Euclidean  metrical  structure  plays,  according  to  the  old  view ;  but 
now  the  rigid  motionless  character  has  become  transformed  into 
one  which  gently^yields  and  adapts  itself.  But  freedom  of  action 
in  the  world  is  no  more  restricted  by  the  rigorous  laws  of  field 
physics  than  it  is  by  the  validity  of  the  laws  of  Euclidean  geometry 
according  to  the  usual  view. 

If  Mie's  view  were  correct,  we  could  recognise  the  field  as  ob- 
jective reality,  and  physics  would  no  longer  be  far  from  the  goal 

of  giving  so  complete  a  grasp  of  the  nature  of  the  physical  world, 
of  matter,  and  of  natural  forces,  that  logical  necessity  would  extract 
from  this  insight  the  unique  laws  that  underlie  the  occurrence  of 
physical  events.  For  the  present,  however,  we  must  reject  these 
bold  hopes.  The  laws  of  the  metrical  field  deal  less  with  reality 
itself  than  with  the  shadow-like  extended  medium  that  serves  as  a 
link  between  material  things,  and  with  the  formal  constitution  of 
this  medium  that  gives  it  the  power  of  transmitting  effects.  Sta- 

tistical physics,  through  the  quantum  theory,  has  already  reached 
a  deeper  stratum  of  reality  than  is  accessible  to  field  physics ;  but 
the  problem  of  matter  is  still  wrapt  in  deepest  gloom.  But  even 
if  we  recognise  the  limited  range  of  field  physics,  we  must  grate- 

fully acknowledge  the  insight  to  which  it  has  helped  us.  Whoever 
looks  back  over  the  ground  that  has  been  traversed,  leading  from 
the  Euclidean  metrical  structure  to  the  mobile  metrical  field  which 
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depends  on  matter,  and  which  includes  the  field  phenomena  of 
gravitation  and  electromagnetism ;  whoever  endeavours  to  get  a 
complete  survey  of  what  could  be  represented  only  successively 
and  fitted  into  an  articulate  manifold,  must  be  overwhelmed  by  a 
feeling  of  freedom  won — the  mind  has  cast  off  the  fetters  which 
have  held  it  captive.  He  must  feel  transfused  with  the  conviction 
that  reason  is  not  only  a  human,  a  too  human,  makeshift  in  the 
struggle  for  existence,  but  that,  in  spite  of  all  disappointments  and 
errors,  it  is  yet  able  to  follow  the  intelligence  which  has  planned 
the  world,  and  that  the  consciousness  of  each  one  of  us  is  the 
centre  at  which  the  One  Light  and  Life  of  Truth  comprehends 

itself  in  Phenomena.  Our  ears  have  caught  a  few  of  the  funda- 
mental chords  from  that  harmony  of  the  spheres  of  which  Pythag- 

oras and  Kepler  once  dreamed. 
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(Pp.  179  and  229) 

To  distinguish  "  normal  "  co-ordinate  systems  among  all  others  in  the 
special  theory  of  relativity,  and  to  determine  the  metrical  groundform  in 
the  general  theory,  we  may  dispense  with  not  only  rigid  bodies  but  also 
with  clocks. 

In  the  special  theory  of  relativity  the  postulate  that,  for  the  trans- 
formation corresponding  to  the  co-ordinates  xi  of  a  piece  of  the  world  to 

an  Euclidean  "  picture  "  space,  the  world-lines  of  points  moving  freely 
under  no  forces  are  to  become  straight  lines  (Galilei's  and  Newton's 
Principle  of  Inertia),  fixes  this  picture  space  except  for  an  affine 
transformation.  For  the  theorem,  that  affine  transformations  of  a  por- 

tion of  space  are  the  only 
continuous  ones  which 

transform  straight  lines 
into  straight  lines,  holds. 
This  is  immediately  evi- 

dent if,  in  Mo'bius'  mesh 
construction  (Fig.  12), 
we  replace  infinity  by  a 
straight  line  intersecting 
our  portion  of  space 

(Fig.  15).  The  pheno- 
menon of  light  propaga- 

tion then  fixes  infinity 
and  the  metrical  struc- 

ture in  our  four-dimen- 

sional projective  space  ; 

for  its  (three  dimensional)  "  plane  at  infinity  "  E  is  characterised  by  the 
property  that  the  light-cones  are  projections,  taken  from  different  world- 
points,  of  one  and  the  same  two-dimensional  conic  section  situated  in  E. 

In  the  general  theory  of  relativity  these  deductions  are  best  ex- 
pressed in  the  following  form.  The  four-  dimensional  Riemann  space, 

which  Einstein  imagines  the  world  to  be,  is  a  particular  case  of  general 

metrical  space  (§  16).  If  we  adopt  this  view  we  may  say  that  the  pheno- 

menon of  light  propagation  determines  the  quadratic  groundform  ds*, 
;  whereas  the  linear  one  remains  unrestricted.  Two  different  choices  of 

the  linear  groundform  which  differ  by  d(f>  =  fadxi  correspond  to  two 
different  values  of  the  affine  relationship.  Their  difference  is,  according 
to  formula  49,  §  16,  given  by 

313 



314  APPENDIX  I 

The  difference  between  the  two  vectors  that  are  derived  from  a  world- 

vector  it*  at  the  world-point  0  by  means  of  an  infinitesimal  parallel 
displacement  of  u?:  in  its  own  direction  (by  the  same  amount  dxi  —  e  .  nty,  is 
therefore  e  times 

whereby  we  assume  yapuauP  =  1.  If  the  geodetic  lines  passing  through  0 
in  the  direction  of  the  vector  ui  coincide  for  the  two  fields,  then  the 
above  two  vectors  derived  from  u*  by  parallel  displacement  must  be 

coincident  in  direction  ;  the  vector  (*),  and  hence  <£%  must  have  the  same 
direction  as  the  vector  u\  If  this  agreement  holds  for  two  geodetic  lines 

passing  through  0  in  different  directions,  we  get  <£*  =  0.  Hence  if  we 
know  the  world-lines  of  two  point-masses  passing  through  0  and  moving 
only  under  the  influence  of  the  guiding  field,  then  the  linear  groundform, 
as  well  as  the  quadratic  groundfonn,  is  uniquely  determined  at  0. 
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(Page  232) 

Proof  of  the  Theorem  that,  in  Riemann's  space,  R  is  the  sole  invariant 
that  contains  the  derivatives  of  the  gik's  only  to  the  second  order,  and  those 
of  the  second  order  only  linearly. 

According  to  hypothesis,  the  invariant  J  is  built  up  of  the  derivatives 
of  the  second  order  : 

thus 

+  X. 
/Xifc,  rstjik, 

The  X's  denote  expressions  in  the  gik's  and  their  first  derivatives  ;  they 
satisfy  the  conditions  of  symmetry  : 

,  $r  —         ,  rs- 

At  the  point  0  at  which  we  are  considering  the  invariant,  we  introduce  an 

orthogonal  geodetic  co-ordinate  system,  so  that,  at  that  point,  we  have 

•»-«.    £-«• 
The  X's  become  absolute  constants,  if  these  values  are  inserted.     The 
unique  character  of  the  co-ordinate  system  is  not  affected  by  : 

(1)  linear  orthogonal  transformations  ; 
(2)  a  transformation  of  the  type 

*i  =  X'i  +  -Tr^krsX'jfX'rX's o 

which  contains  no  quadratic  terms  ;  the  co-efficients  a  are  symmetrical  in 
k,  r,  and  s,  but  are  otherwise  arbitrary. 

Let  us  therefore  consider  in  a  Euclidean-Cartesian  space  (in  which 
arbitrary  orthogonal  linear  transformations  are  allowable)  the  biquadratic 
form  dependent  on  two  vectors  x  =  (#$),  y  =  (y^,  namely 

with  arbitrary  co-efficients  rjik,  rs  that  are  symmetrical  in  i  and  &,  as  also  in 
r  and  s  ;  then 

^ik,rs^ik,rs   ......      (-0 
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must  be  an  invariant  of  this  form.  Moreover,  since  as  a  result  of  the 

transformation  (2)  above,  the  derivatives  gik,rs  transform  themselves, 
as  may  easily  be  calculated,  according  to  the  equation 

y'ik,  rs  =  9ik,  rs  +~^(alrs  +  aii-s) we  must  have 

Xifc,  rs4rs  =  0          .  .  .      (2) 

for  every  system  of  numbers  a  sym  metrical  in  the  three  indices  &,  r,  s. 

Let  us  operate  further  in  the  Euclidean-Cartesian  space  ;  (xy)  is  to 
signify  the  scalar  product  x^-^  +  x2y2  +  .  .  .  xnyn.  It  will  suffice  to  use 
for  G  a  form  of  the  type 

G  =   a 

in  which  a  and  b  denote  arbitrary  vectors.     If  we  now  again  write  x  and  y 
for  a  and  b,  then  (1)  expresses  the  postulate  that 

A  =   hx 

is  an  orthogonal  invariant  of  the  two  vectors  x,  y.     In  (2)  it  is  sufficient 
to  choose 

and  then  this  postulate  signifies  that  the  form  which  is  derived  from 
by  converting  an  x  into  a  y,  namely, 

vanishes  identically.  (It  is  got  from  A*  by  forming  first  the  symmetrical 

bilinear  form  A**'  in  x,  x'  (it  is  related  quadratically  to  y)t  which,  if  the 
series  of  variables  x'  be  identified  with  x,  resolves  into  A*,  and  by  then 
replacing  x'  by  y.)  I  now  assert  that  it  follows  from  (1*)  that  A  is  of  the form 

A  =  a(xx)(yy)  -  /3(ay)«         •         •         - 
and  from  (2*)  that 

a  =  /3   (II) 

This  will  be  the  complete  result,  for  then  we  shall  have 

/=afe,M  -Ste,  + a) +  x 

or  since,  in  an  orthogonal  geodetic  co-ordinate  system,  the  Riemann 
scalar  of  curvature  is 

R  =  9ik,ik  -9ii,kk 
we  shall  get 

J  =   -  aR  +  X        .          .          . 

Proof  of  I :  We  may  introduce  a  Cartesian  co-ordinate  system  such  that 
x  coincides  with  the  first  co-ordinate  axis,  and  y  with  the  (1,  2)th  co- 

ordinate plane,  thus ; 

x  =  (xlt  0,  0,  ...  0),         y  =  0/j,  i/2,  0,  ...  0) 

A  =  a?  (ay!  +  26^1/3  +  cyjj) 
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whereby  the  sense  of  the  second  co-ordinate  axis  may  yet  be  chosen 
arbitrarily.  Since  A  may  not  depend  on  this  choice,  we  must  have  6  =  0, 
therefore 

A  =  Gx'i(y\  +  j/1)  +  (a  -  c)(»1i/1)2  =  c(xx)(yy)  +  (a  -  c)(xy)*. 

Proof  of  II  :  From  the  A  =  A^.  which  are  given  under  I,  we  derive  the 
forms 

If  A,/  is  to  vanish  then  a  must  equal  /3 

We  have  tacitly  assumed  that  the  metrical  groundform  of  Riemann's 
space  is  definitely  positive  ;  in  case  of  a  different  index  of  inertia  a  slight 

modification  is  necessary  in  the  "Proof  of  I".  In  order  that  the  second 
derivatives  be  excluded  from  the  volume  integral  J  by  means  of  partial 

integration,  it  is  necessary  that  the  X^jrs's  depend  only  on  the  gik's  and  not 
on  their  derivatives  ;  we  did  not,  however,  require  this  fact  at  all  in  our 

proof.  Concerning  the  physical  meaning  entailed  by  the  possibility,  ex- 

pressed in  (*),  of  adding  to  a  multiple  of  R  also  a  universal  constant  X, 
we  refer  to  §  34.  Concerning  the  theorem  here  proved,  cf.  Vermeil,  Nachr. 

d.  Ges.  d.  Wissensch.  zu  Gottingen,  1917,  pp.  334-344. 
In  the  same  way  it  may  be  proved  that  g^,  Rg^,  R^  are  the  only  tensors 

of  the  second  order  that  contain  derivatives  of  the  gik's  only  to  the  second 
order,  and  these,  indeed,  only  linearly. 
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245. 

—  scalar  of,  134. 
—  vector,  118. 
Curve,  85. 

Definite,  positive,  27. 
Density  (based  on  the  notion  of  sub- 

stance), 163,  291. 
-  (general  conception),  197. 
—  (of  electricity  and  matter),  1G7,  214, 

311. 
Dielectric,  70. 
—  constant,  72. 
Differentiation  of  tensors  and  tensor- 

densities,  58. 
Dimensions,  19. 

—  (positive  and  negative,  of  a  quad- 
ratic form),  31. 

Direction-curvature,  126. 
Displacement  current,  162. 
—  dielectric,  70. 
—  electrical,  71. 
—  infinitesimal,  of  a  point,  103. 
-  of  a  vector,  110. 
—  of  space,  38. 
—  towards  red  due  to  presence  of  great 

masses,  246. 
Distance  (generally),  121. 
-  (in  Euclidean  geometry),  20. 
Distortion  tensor,  60. 
Distributive  law,  17. 
Divergence  (div),  60. 
-  (more  general),  163,  188. 
Doppler's  Principle,  185. > 
Earlier  and  later,  7,  175. 
Einstein's  Law  of  Gravitation,  236. 
  (in  its  modified  form),  291.   v 

Electrical  charge  (as  a  flux  of  force), 
294. 

  (as  a  substance),  214.  (^ 
—  current,  131. 
—  displacement,  162. 
-  intensity  of  field,  65,  161. 
—  momentum,  208. 
-  pressure,  208. 
Electricity,  positive  and  negative,  212. ' 
Electromagnetic  field,  64. 
  and  electrostatic  units,  161. 

—  (origin   in    the    metrics   of    the 
world),  282. 

-  potential,  165. 
Electromotive  force,  76. 
Electron,  213,  260. 
Electrostatic  potential,  73. 
Energy  (acts  gravitationally),  232,  237. 
—  (possesses  inertia),  204. 
—  (total  energy  of  a  system),  301. 

Energy- density  (in  the  electric  field), 
70,  167. 

-  (in  the  magnetic  field),  73. 
Energy-momentum,  tensor  (cf.  Energy- 

momentum),  168. 

  (for  the  whole  system,  including 
gravitation),  269. 

-  (general),  199. 
—  (in  the    electromagnetic    field), 168. 

  (in  the  general  theory  of  rela. 
tivity),  269. 

—  (in  physical  events),  292. 
  (kinetic  and  potential),  199. 
  (of  an  incompressible  fluid),  205. 
  (of    the    electromagnetic    field), 291. 

  (of  the  gravitational  field),  269. 
  theorem  of  (in  the  special  theory 

of  relativity),  168. 
Energy-steam  or  energy-flux,  163. 
Eotvos'  experiment,  225. 
Equality  of  time-lengths,  7. 
—  of  vectors,  118. 
Ether,  vide  sether. 
Euclidean  geometry,  §§  1-4. 
—  group  of  rotations,  138. 
—  manifolds,    Chapter    I    (from    the 

point    of    view    of    infinitesimal 
geometry),  119. 

Euler's  equations,  51. 

FARADAY'S  Law  of  Induction,  161,  191. 
Format's  Principle,  244. 
Field  action  of  electricity,  216. 
—  (electromagnetic),  194. 
—  energy,  166. 
  of  gravitation,  231. 
—  forces     (contrasted     with     incrtial 

forces),  282. 
—  (general  conception),  68. 
—  ("guiding  "  or  gravitational),  283. 
—  intensity  of  electrical,  65. 
  of  magnetic,  75. 
-  (metrical),  100. 
—  momentum,  168. 
Finitude  of  space,  278. 
Fluid,  incompressible,  262. 
Force,  38. 

-  (electric),  68. 
—  (field  force  andinertial  force),  282. 
—  (ponderomotive,  of  electrical  field), 68. 

—  (ponderomotive,  of  magnetic  field), 

73. —  (ponderomotive,  of  electromagnetic 
field),  208. 

—  (ponderomotive,      of     gravitational 
field),  222. 
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—  of  rotations,  138. 
—  of  translations,  15. 

HAMILTON'S  function,  209. 
—  principle  (in  the  special  theory  o 

relativity),  216. 
—  (according  to  Maxwell  and  Lor 

entz),  236. 
-  (according  to  Mie),  209. 
-  (in  the  general  theory  of  rela 

tivity),  292. 
Height  of  displacement,  158. 
Hexaspherical  co-ordinates,  286. 
Homogeneity  o-  space,  91. 
—  of  the  world,  155. 
Homogeneous  linear  equations,  24. 
Homologous  points,  11. 

Hydro-dynamics  205,  263. 
Hydro-static  pressure,  205,  263. 

MPULSK  (momentum),  44. 
ndependent  vectors,  19. 
nduction,  magnetic,  75. 
—  law  of,  161,  191. 
nertia  (as  property  of  energy),  202. 
—  moment  of,  48. 

—  principle  of  (Galilei's  and  Newton's), 152. 

nertial  force,  301. 
—  index,  30. 

—  law  of  quadratic  forms,  30. 
—  mass,  225. 
—  moment,  48. 
nfinitesimal  displacement,  110. 
—  geometry,  142. 
—  group,  144. 
—  operation  of  a  group,  142. 
—  rotations,  146. 

ntegrable,  108. 
ntensity  of  field,  65,  161. 
—  quantities,  109. 

OULB  (heat-equivalent),  162. 

KLEIN'S  model,  80. 

^r,  5. 

Jight,  electromagnetic  theory  of,  164. 
-  ray,  183. 

  (curved    in  gravitational  field), 
245. 

Line,  straight  (in  Euclidean  geometry), 
12. 

  (generally),  18. 
  geodetic,  114. 
Line-element  (in  Euclidean  geometry), 

56. 
—  (generally),  103. 
Linear  equation, 
—  point-configuration,  20. 
—  tensor,  57,  104. 
—  tensor-density,  105,  109. 
—  vector  manifold,  19. 
  transformation,  21,  22. 
Linearly  independent,  19. 
Lobatschefsky's  geometry,  79,  80. 
Lorentz-Einstein  Theorem  of  Relativity, 165. 

  Fitzgerald  contraction,  171. 
—  transformation,  166. 

MAGNETIC  induction,  75. 
—  intensity  of  field,  75. 
—  permeability,  75. 
Magnetisation,  75. 
Magnetism,  74. 
Magnitudes,  99. 
Manifold,  affinely  connected,  112. 

discrete,  97. 
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Manifold,  metrical,  102,  121. 
Mass  (as  energy),  204. 
—  (as  a  flux  of  force),  305. 

^   —  inertial  and  gravitational,  225.       & 
-  —  (producing    a    gravitational    field), 

303,  306. 
Matrix,  39. 

-  Matter,  68,  203,  272. 
—  flux  of,  188. 

Maxwell's  application  of  stationary  case 
to  Eiemann's  space,  130. 

—  density  of  action,  286. 
—  stresses,  75. 

v    —  theory   (derived   from   the  world's 
metrics),  285. 

  (general  case),  161. 
  (in  the  light  of  the  general  theory 

of  relativity),  222. 
  (stationary  case),  64. 
Measure,     electrostatic     and     electro- 

magnetic, 161. 
—  relativity  of,  282. 
—  unit  of,  40. 
Measure-index  of  a  distance,  121. 
Measurement,  176. 
Mechanics,  fundamental  law  of  (de- 

rived  from  field  laws), 
290,  293. 

  (in  general  theory  of  rela- 
tivity), 222,  226. 

\.   (in  special  theory  of  rela- 
tivity), 197. 

  of  Newton's,  44,  66. 
—  of  the  principle  of  relativity,  §  24. 
Metrical  groundform,  28,  140. 
Metrics  or  metrical  structure,  156. 

-  (general),  121,  207,  282. 
Michelson-Morley  experiment,  170. 
Mie's  Theory,  206. 
Minor  space,  157. 
Molecular  currents,  74. 
Moment,  electrical,  208. 
—  mechanical,  44,  200. 
—  of  momentum,  48. 
Momentum,  44,  200. 
  density,  168. 
  flux,  168. 
Motion  (in  mathematical  sense),  105. 
—  (under  no  forces),  51,  229. 
Multiplication  of  a  tensor  by  a  number, 43. 

—  of  a  tensor- density  by  a  number,  109V 
  by  a  tensor,  110. 

-  of  tensors,  44. 
—  of  a  vector  by  a  number,  17 

NEWTON'S  Law  of  Gravitation,  229. 
Non-degenerate  bilinear  and  quadratic 

forms,  17. 
•^  Non-Euclidean  geometry,  77. 
v    —  plane  (Beltrami's  model),  93. 
  (Klein's  model),  80. 

Non-Euclidean  plane  (metrical  ground- 
form  of),  94. 

Non-homogeneous  linear  equations,  24. 
Normal  calibration  of  Riemann's  space, 

—  system  of  co-ordinates,  173,  313. 
Now,  143. 
Null-lines,  geodetic,  127. 
Number,  8,  39. 

OHM'S  Law,  76. 
One-sided  surfaces,  274. 
Order  of  tensors,  36. 
Orthogonal  transformations,  34. 

PARALLEL,  14,  21. 

—  displacement    (infinitesimal,    of    a 
contra- variant  vector), 113. 

  co-variant  vector,  115. 
-  projection,  157. 
Parallelepiped,  20. 
Parallelogram,  88. 
Parallels,  postulate  of,  78. 
Partial  integration  (principle  of),  110. 
^Passive  past  and  future,  175. 
Past,  active  and  passive,  175. 
Perihelion,  motion  of  Mercury's,  247. 
Permeability,  magnetic,  75. 
Perpendicularity,  121. 
—  (in  general),  29. 
Persistence,  308. 
Phase,  219. 
Plane,  18. 

-  (Beltrami's  model),  93. 
—  (in  Euclidean  space),  13. 
—  (Klein's  model),  82. 
—  (metrical  groundform),  94. 
-  (non-Euclidean),  80. 
Planetary  motion,  256. 
Polarisation,  71. 
Ponderomotive  force,   of  the  electric, 

magnetic  and  electromag- 
netic field,  67,  73,  194. 

  of  the  gravitational  field,  222, 223. 

Positive  definite,  27. 
Potential,  electromagnetic,  165. 
—  electrostatic,  164. 
—  energy-momentum  tensor  of,  199, 200. 

—  of  the  gravitational  field,  230. 
—  retarded,  164,  165,  250. 
—  vector-,  74,  163. 

Poynting's  vector,  163. 
Pressure,  on  all  sides,  electrical,  208. 
  hydrostatic,  205,  263. 
Problem  of  one  body,  254. 
Product,  etc.,  vide  Multiplication. 
—  of  a  tensor  and  a  number,  43. 

scalar,  27. 
—  vectorial,  45. 
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Projection,  157. 
Propagation    of    electromagnetic    dis 

turbances,  164. 
—  of  gravitational  disturbances,  251. 
-  of  light,  164. 
Proper-time,  178,  180,  197. 
Pythagoras'  Theorem,  91,  228. 

QUADRATIC  forms,  31. 
Quantities,  intensity,  109. 
—  magnitude,  109. 
Quantum  Theory,  285,  303. 

EADIAL  symmetry,  252. 

I'<-  Reality,  21
3. 

Bed,  displacemen
t  

towards  the,  246. 

•-  Relationshi
p,  

affine,  112. 
—  continuous,

  
103,  104. 

—  metrical,  142. 
—  of  a  manifold  as  a  whole  (conditions 

of),  114.. 
—  of  the  world,  273. 
Relativity  of  magnitude,  283. 
—  of  motion,  152,  282. 

-  principle    of    (Einstein's    special), 169. 

—  (general),  227,  236. 
—  Galilei's,  149. 

—  theorem  of  (Lorentz-Einstein),  165. 
*  Resolution  of  tensors  into  space  andy 

time  of  vectors,  158,  180. 
Rest,  150. 
Retarded  potential,  164,  165,  250. 

|"  Riemann's  curvature,  132. 
—  geometry,  84. 
—  space,  132. 
Right  angle,  29,  121. 
Rotation  (or  curl),  60. 
-  (general),  155. 
—  (in  geometrical  sense),  13 
—  (in  kinematical  sense),  47. 
—  relativity  of,  155. 
Rotations,  group  of,  138,  146. 

SCALAR-DENSITY,  109. 
•-  Scalar  field,  58. 

—  product,  27. 
Similar  representation  or  transforma- 

tion, 140. 
Simultaneity,  174,  183. 
Skew-symmetrical,  39,  55. 
Space  (as  form  of  phenomena),  1,  96. 
—  (as  projection  of  the  world),  158, 180. 
-  -element,  56. 
-  Euclidean,  §§  1-4. 
-  -like  vector,  179. 
-  metrical,  33,  37. 
—  n-dimensional,  24. 
Special  principle  of  relativity,  169. 
Sphere,  charged,  260. 
Spherical  geometry,  83,  266.  Jo 
-  transformations,  286. 

Static  density,  197. 
' —  gravitational  field,  §  29,  240. 
-  length,  176. 
—  volume,  183. 
Stationary  field,  114,  240. 
—  orbits  in  the  atom,  303. 
—  vectors,  114. 
Stokes'  Theorem,  108. 
Stresses,  elastic,  58,  60. 
-  Maxwell's,  75. 
Substance,  214,  273. 
Substance-action    of     electricity    and 

gravitation,  215. 
—  (=mass),  300. 
Subtraction  of  vectors,  17. 

Sum' of  tensor-densities,  109.   tensors,  43. 
  vectors,  17. 

Surface,  85,  274. 
Symmetry,  26.  AT 
Systems  of  reference,  177. 
  geodetic,  127. 

TENSOR  (general),  50,  103. 
—  (in  linear  space),  33. 
-  -density,  109. 
-  -field,  105. 

  (general),  58. 
Time,  246. 
— like  vectors,  179. 
Top,  spinning,  51. 
Torque  of  a  force,  46. 
Trace  of  a  matrix,  49,  146. 
Tractrix,  93. 
Transference,  congruent,  140. 
Transformation      or     representation, 

affine,  21.  * 

  congruent,  11,  28. 
  linear- vector,  21,  22. 
  similar,  140. 

Translation  of    a   point  (in  the  geo- 
metrical sense),  10. 

  (in  the  kinematical  sense), 115. 

Turning-moment  of  a  force,  46. Twists,  13. 

Two-sided  surfaces,  274. 

UNIT  vectors,  104. 

VECTOR,  16,  24. 
—  curvature,  126. 

7   density,  109. 
  manifold,  linear,  19. 
-  potential,  74,  163. 
-  product,  45. 
—  transference,  117. 
—  transformation,  linear,  21,  22. 
Velocity,  105. 

—  of  propagation  of  gravitation,  251. 
  of  light,  164. 
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Velocity  of  rotation,  47. 
Volume-element,  210. 

WEIGHT  of  tensors  and  tensor-densities, 127. 

Wilson's  experiment,  192. 

World  (  =  space-time),  189.   canal,  268. 

-  -law,  212,  273,  276. 
  line,  149. 

— point,  149. 
— vectors,  155. 
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THE  LAST  ESSAY  OF  ELIA.  HI.  BOOKS 
FOR  CHILDREN,  iv.  PLAYS  AND  POEMS. 
v.  and  vi.  LETTERS. 

THE  ESSAYS  OF  ELIA.  With  an  Intro- 
duction by  E.  V.  LUCAS,  and  28  Illustration 

by  A.  GARTH  JONES.  Fcap.  8va.  $s.  net. 
Lankester  (Sir  Ray).  SCIENCE  FROM 
AN  EASY  CHAIR.  Illustrated.  Thirteenth 
Edition.  Cr.  8vo.  75.  6d.  net. 

SCIENCE  FROM  AN  EASY  CHAIR 
Second  Series.  Illustrated.  Third  Edition. 
Cr.  8vo.  7S.  6d.  net. 

DIVERSIONS  OF  A  NATURALIST. 
Illustrated.  Third  Edition.  Cr.  8vo. 
7s.  6d.  net. 

SECRETS  OF  EARTH  AND  SEA.  Cr. 
&vo.  8s.  6d.  net. 

Lodge  (Sir  Oliver).  MAN  AND  THE 
UNIVERSE  :  A  STUDY  OF  THE  INFLUENCE 

OF  THE  ADVANCE  IN  SCIENTIFIC  KNOW- 
LEDGE UPON  OUR  UNDERSTANDING  OF 

CHRISTIANITY.  Ninth  Edition.  Crown  8vo. 

7s.  6d.  net. THE  SURVIVAL  OF  MAN :  A  STUDY  IN 
UNRECOGNISED  HUMAN  FACULTY.  Seventh 
Edition.  Cr.  8v0.  7*.  6d.  net. 

MODERN  PROBLEMS.  Cr.  8vo.  7s.  6d. 
net. 

RAYMOND  ;  OR  LIFE  AND  DEATH.  Illus- 
trated. Twelfth  Edition.  Demy  8v0.  155. 

net 
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Lucas  (E.  Y.)— 
THE  LIFE  OF  CHARLES  LAMB,  2  vots.,  2U. 
net.  A  WANDERER  IN  HOLLAND, ioj.  6d.  net. 
A  WANDERER  IN  LONDON,  105.  6d.  net. 
LONDON  REVISITED,  io.r.  6d.  net.  A  WAN- 

DERER IN  PARIS,  ioy.  6d.  net  and  6s.  net.  A 
WANDERER  IN  FLORENCE,  los.  6d.  net. 
A  WANDERER  IN  VENICE,  loj.  6d.  net.  THE 
OPEN  ROAD  :  A  Little  Book  for  Wayfarers, 
6s.  6d.  net  and  21*.  net.  THE  FRIENDLY 
TOWN  :  A  Little  Book  for  the  Urbane,  6s. 
net.  FIRESIDE  AND  SUNSHINE,  6s.  net. 
CHARACTER  AND  COMEDY,  6s.  net.  THE 
GENTLEST  ART  :  A  Choice  of  Letters  by 
Entertaining  Hands,  6s.  6d.  net.  THE 
SECOND  POST,  6s.  net.  HER  INFINITE 
VARIETY  :  A  Feminine  Portrait  Gallery,  6.?. 
net.  GOOD  COMPANY  :  A  Rally  of  Men,  6.?. 
net.  ONE  DAY  AND  ANOTHER,  6s.  net. 

OLD  LAMPS  FOR  NEW,  6s.  net.  LOITERER'S 
HARVEST,  6s.  net.  CLOUD  AND  SILVER,  6s. 
net.  A  BOSWELL  OF  BAGHDAD,  AND  OTHER 

ESSAYS,  6s.  net.  'TwixT  EAGLE  AND 
DOVE,  65-.  net.  THE  PHANTOM  JOURNAL, 
AND    OTHER    ESSAYS   AND    DIVERSIONS,    6s. 
net.  SPECIALLY  SELECTED  :  A  Choice  of 
Essays.  7.?.  6d.  net.  THE  BRITISH  SCHOOL  : 
An  Anecdotal  Guide  to  the  British  Painters 
and  Paintings  in  the  National  Gallery,  6^.  net. 
ROVING  EAST  AND  ROVING  WEST  :  Notes 
gathered  in  India,  Japan,  and  America. 
5-y.  net.  URBANITIES.  Illustrated  by  G.  L. 
STAMPA,  -js.  6d.  net.  VERMEER. 

M.(A.).  AN  ANTHOLOGY  OF  MODERN 
VERSE.  With  Introduction  by  ROBERT 
LYND.  Third  Edition.  Fcap.  8vo.  6s.  net. 
Thin  paper,  leather,  js.  6d.  net. 

McDougall  (William).  AN  INTRODUC- 
TION TO  SOCIAL  PSYCHOLOGY. 

Sixteenth  Edition.  Cr.  8vo.  8s.  €>d.  net. 

BODY  AND  MIND:  A  HISTORY  AND  A 
DEFENCE  OF  ANIMISM,  fifth  Edition. 
Demy  8v0.  125.  6d.  net. 

Maclver  (B.  M.).  THE  ELEMENTS  OF 
SOCIAL  SCIENCE.  Cr.  8vo.  6s.  net. 

Maeterlinck  (Maurice)— 
THE  BLUE  BIRD  :  A  Fairy  Play  in  Six  Acts, 
6s.  net.  MARY  MAGDALENE  ;  A  Play  in 
Three  Acts,  5^.  net.  DEATH,  3$.  6d.  net. 
OUR  ETERNITY,  6s.  net.  THE  UNKNOWN 
GUEST,  6s.  net.  POEMS,  5*.  net.  THE 
WRACK  OF  THE  STORM,  6s.  net.  THE 
MIRACLE  OF  ST.  ANTHONY  :  A  Play  in  One 
Act,  3$.  6d.  net.  THE  BURGOMASTER  OF 
STILEMONDE  :  A  Play  in  Three  Acts,  5*. 
net.  THE  BETROTHAL  ;  or,  The  Blue  Bird 

i  Chooses,  6s.  net.  MOUNTAIN  PATHS,  6s. 
net.  THE  STORY  OF  TYLTYL,  2ij.  net. 

Milne  (A.  A.).  THE  DAY'S  PLAY.  THE HOLIDAY  ROUND.  ONCE  A  WEEK.  All 
Cr.  8vo.  7-y.  6d.  net.  NOT  THAT  IT  MATTERS. 
Fcap.  8vo.  6s.  net  IF  I  MAY.  Fcap.  8v0. 
6s.  net.  THE  SUNNY  SIDE.  Fcap.  8v0. 
6s.  net. 

Oxenham  (John)— 
BEES  IN  AMBEK  ;  A  Little  Book  of  Thought- 

ful Verse.  ALL'S  WELL  :  A  Collection  of 
War  Poems.  THE  KING'S  HIGH  WAY.  THE 
VISION  SPLENDID.  THE  FIERY  CROSS. 
HIGH  ALTARS:  The  Record  of  a  Visit  to 
the  Battlefields  of  France  and  Flanders. 
HEARTS  COURAGEOUS.  ALL  CLEAR  ! 
All  Small  Pott  8v0.  Paper,  \s.  ̂ d.  net ; 
cloth  boards,  2S.  net.  WINDS  OF  THE 
DAWN.  GENTLEMEN — THE  KING,  2s.  net. 

Petrie  (W.  M.  Flinders).  A  HISTORY 
OF  EGYPT.  Illustrated.  Six  Volumes. 

Cr.  8v0.  Each  9-$-.  net. VOL.  I.  FROM  THE  IST  TO  THE  XVlTH 
DYNASTY.  Ninth  Edition.  (ioy.  6d.  net.) 

VOL.  II.  THE  XVIlTH  AND  XVIIlTH 
DYNASTIES.  Sixth  Edition. 

VOL.  III.  XIXTH  TO  XXXTH  DYNASTIES. 
Second  Edition. 

VOL.  IV.  EGYPT  UNDER  THE  PTOLEMAIC 
DYNASTY.  J.  P.  MAHAFFY.  Second  Edition. 

VOL.  V.  EGYPT  UNDER  ROMAN  RULE.  J.  G. 
MILNE.  Second  Edition. 

VOL.  VI.  EGYPT  IN  THE  MIDDLE  AGES. 
STANLEY  LANE  POOLE.  Second  Edition. 

SYRIA  AND  EGYPT,  FROM  THE  TELL 
EL  AMARNA  LETTERS.  Cr.  8vo. 

EGYPTIAN  TALES.  Translated  from  the 
Papyri.  First  Series,  ivth  to  xnth  Dynasty. 
Illustrated.  Third  Edition.  Cr.  8v0. 

EGYPTIAN  TALES.  Translated  from  the 
Papyri.  Second  Series,  XVIIITH  to  XIXTH 
Dynasty.  Illustrated.  Second  Edition. 
Cr.  8v0.  ss.  net. 

Pollard  (A.  P.).  A  SHORT  HISTORY 
OF  THE  GREAT  WAR.  With  19  Maps. 
Second  Edition.  Cr.  8vo.  los.  6d.  net. 

Pollitt  (Arthur  W.).  THE  ENJOYMENT 
OF  MUSIC.  Cr.  8v0.  5s.  net. 

Price  (L.  L.).  A  SHORT  HISTORY  OF 
POLITICAL  ECONOMY  IN  ENGLAND 
FROM  ADAM  SMITH  TO  ARNOLD 
TOYNBEE.  Tenth  Edition.  Cr.  Svo. 

55.  net. Reid  (G.  Archdall).  THE  LAWS  OF 
HEREDITY.  Second  Edition.  Demy  8v0. 

£i  1.9.  net. 
Robertson  (C.  Grant).  SELECT  STAT- 

UTES, CASES,  AND  DOCUMENTS, 
1660-1832.  Third  Edition.  Demy  8vo. 

155-.  net. 
Selous  (Edmund) — 
TOMMY  SMITH'S  ANIMALS,  3^.  6d.  net. 
TOMMY  SMITH'S  OTHER  ANIMALS,  3^.  6d. 
net.  TOMMY  SMITH  AT  THE  Z«o,  2s.  gd. 
TOMMY  SMITH  AGAIN  AT  THE  Zoo,  zs.  gd. 

JACK'S  INSECTS,  3*.  6d.  JACK'S  OTHER 
INSECTS,  35-.  6d. 

Shelley  (Percy  Bysshe).  POEMS.  With 
an  Introduction  by  A.  GLUTTON-BROCK  and 
Notes  by  C.  D.  LOCOCK.  Two  Volumes. 
Demy  8vo.  £i  is.  net. 
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Smith  (Adam).  THE  WEALTH  OF 
NATIONS.  Edited  by  EDWIN  CANNAN. 
Two  Volumes.  Second  Edition,  Dewy 
8vo.  £1  los.  net. 

Smith  (8.  C.  Kaines).  LOOKING  AT 
PICTURES.  Illustrated.  Fcap.  Zvo. 
6s.  net. 

Stevenson  (R.  L.).  THE  LETTERS  OF 
ROBERT  LOUIS  STEVENSON.  Edited 

by  Sir  SIDNEY  COLVIN.  A  New  Re- 
arranged Edition  in  four  volumes.  Fourth 

Edition.  Fcap.  Zvo.  Each  6s.  net. 

Surtees  (R.  S.)— 
HANDLEY  CROSS,  7^.  6d.  net.  MR. 

SPONGE'S  SPORTING  TOUR,  js.  6d.  net. 
ASK  MAMMA  :  or,  The  Richest  Commoner 

in  England,  7$.  bd.  net.  JOKROCKS'S 
JAUNTS  AND  JOLLITIES,  6s.  net.  MR. 

FACEY  ROMFORD'S  HOUNDS,  js.  6d.  net. 
HAWBUCK  GRANGE;  or,  The  Sporting 
Adventures  of  Thomas  Scott,  Esq.,  6s. 
net.  PLAIN  OR  RINGLETS  ?  7$.  6d.  net. 
HILLINGDON  HALL,  75.  6d.  net. 

Tilden  (W.  T.).  THE  ART  OF  LAWN 
TENNIS.  Illustrated.  Third  Edition. 
Cr.  Buff.  6s.  net. 

Tileston  (Mary  W.).  DAILY  STRENGTH 
FOR  DAILY  NEEDS.  Twenty  seventh 
Edition.  Medium  i6mo.  3$.  6d.  net. 

Townshend  (R.  B.)-  INSPIRED  GOLF. 
Fcap.  tvo.  zs.  6d.  net. 

Turner  (W.  J.).  MUSIC  AND  LIFE. 
Crown  8vff.  js.  6d.  net. 

Underbill  (Evelyn).  MYSTICISM.  A 
Study  in  the  Nature  and  Development  of 

Man's  Spiritual  Consciousness.  Eighth 
Edition.  Demy  Bvo.  i$s.  net. 

Vardon  (Harry).  HOW  TO  PLAY  GOLF. 
Illustrated.  Fourteenth  Edition.  Cr.  8vo. 

5S.  6d.  net. 
Waterhouse  (Elizabeth).  A  LITTLE 
BOOK  OF  LIFE  AND  DEATH. 
Twenty-first  Edition.  Small  Pott  Zvo. 
Cloth,  -2S.  6d.  net. 

Wells  (J.).  A  SHORT  HISTORY  OF 
ROME.  Seventeenth  Edition.  With  3 
Maps.  Cr.  8w.  6s. 

Wilde  (Oscar).  THE  WORKS  OF  OSCAR 
WILDE.  Fcap.  8vo.  Each  6s.  6d.  net. 

i.  LORD  ARTHUR  SAVILE'S  CRIME  AND 
THE  PORTRAIT  OF  MR.  W.  H.  11.  THE 
DUCHESS  OF  PADUA,  in.  POEMS,  iv. 

LADY  WINDERMERE'S  FAN.  v.  A  WOMAN 
OF  No  IMPORTANCE,  vi.  AN  IDEAL  HUS- 

BAND, vn.  THE  IMPORTANCE  OF  BEING 
EARNEST.  vm.  A  HOUSE  OF  POME- 

GRANATES, ix.  INTENTIONS,  x.  DE  PRO- 
FUNDIS  AND  PRISON  LETTERS.     XI.  ESSAYS. 

xii.  SALOME,  A  FLORENTINE  TRAGEDY, 
and  LA  SAINTE  COURTISANE.  xin.  A 
CRITIC  IN  PALL  MALL.  xiv.  SELECTED 
PROSE  OF  OSCAK  WILDE,  xv.  ART  AND 
DECORATION. 

A  HOUSE  OF  POMEGRANATES.  Illus- 
trated. Cr.  4/0.  sis.  net. 

Yeats  (W.  B.).  A  BOOK  OF  IRISH 
VERSE.  Fourth  Edition.  Cr.lvo.  js.net. 

PART II. — A    SELECTION 
Ancient  Cities 

OF   SERIES 

BRISTOL. 
LIN. 

General  Editor,  SIR  B.  C.  A.  WINDLE 
Cr.  Svo.     6s.  net  each  volume 

With  Illustrations  by  E.  H.  NEW,  and  other  Artists 
CANTERBURY.     CHESTER.     DUB-  i  EDINBURGH.    LINCOLN.    SHREWSBURY. 

The  Antiquary's  Books 
Demy  8vo.     los.  6d.  net  each  volume 

With  Numerous  Illustrations 
ANCIENT  PAINTED  GLASS  IN  ENGLAND. 
ARCHEOLOGY  AND  FALSE  ANTIQUITIES. 
THE  BELLS  OF  ENGLAND.  THE  BRA-SES 
OF  ENGLAND.  THE  CASTLES  A^JD  WALLED 
TOWNS  OF  ENGLAND.  CELTIC  ART  IN 
PAGAN  AND  CHRISTIAN  TIMES.  CHURCH- 

WARDENS' ACCOUNTS.  THE  DOMESDAY 
INQUEST.  ENGLISH  CHURCH  FURNITURE. 
ENGLISH  COSTUME.  ENGLISH  MONASTIC 
LIFE.  ENGLISH  SEALS.  FOLK-LORE  AS 
AN  HISTORICAL  SCIENCE.  THE  GILDS  AND 
COMPANIES  OF  LONDON.  THE  HERMITS 
AND  ANCHORITES  OF  ENGLAND.  THE 

MANOR  AND  MANORIAL  RECORDS.  THE 
MEDIEVAL  HOSPITALS  OF  ENGLAND. 
OLD  ENGLISH  INSTRUMENTS  OF  Music. 
OLD  ENGLISH  LIBRARIES.  OLD  SERVICE 
BOOKS  OF  THE  ENGLISH  CHURCH.  PARISH 
LIFE  IN  MEDIEVAL  ENGLAND.  THE 
PARISH  REGISTERS  OF  ENGLAND.  RE- 

MAINS OF  THE  PREHISTORIC  AGE  IN  ENG- 
LAND. THE  ROMAN  ERA  IN  BRITAIN. 

ROMANO-BRITISH  BUILDINGS  AND  EARTH- 
WORKS. THE  ROYAL  FORESTS  OF  ENG- 

LAND. THE  SCHOOLS  OF  MEDIEVAL  ENG- 
LAND. SHRINES  OF  BRITISH  SAINTS. 
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The  Arden  Shakespeare 
General  Editor,  R.  H.  CASE 

Demy  Svo.     6s.  net  each  volume 

An  edition  of  Shakespeare  in  Single  Plays  ;  each  edited  with  a  full  Introduction, 
Textual  Notes,  and  a  Commentary  at  the  foot  of  the  page. 

Classics  of  Art 
Edited  by  DR.  J.  H.  W.  LAING 

With  numerous  Illustrations.      Wide  Royal  Svo 
THE  ART  OF  THE  GREEKS,  15*.  net.  THE 
ART  OF  THE  ROMANS,  \6s.net.  CHARDIN, 
i5-y.  net.  DONATELLO,  i6s.  net.  GEORGE 
ROMNEY,  155-.  net.  GHIRLANDAIO,  i$s.  net. 
LAWRENCE,  25^.  net.  MICHELANGELO,  15-5-. 

net.  RAPHAEL,  155-.  net.  REMBRANDT'S 
ETCHINGS,  31$.  t>d.  net.  REMBRANDT'S PAINTINGS,  42^.  net.  TINTORETTO,  i6s.  net. 
TITIAN,  i6s.  net.  TURNER'S  SKETCHES  AND 
DRAWINGS,  155.  net.  VELAZQUEZ,  15*.  net. 

The  'Complete'  Series 
Fully  Illustrated.     Demy  Svo 

THE  COMPLETE  AIRMAN,  i6s.  net.  THE 
COMPLETE  AMATEUR  BOXER,  IDS.  6d.  net. 
THE  COMPLETE  ASSOCIATION  FOOT- 

BALLER, TOS.  6d.  net.  THE  COMPLETE 
ATHLETIC  TRAINER,  IDS.  6d.  net.  THE 
COMPLETE  BILLIARD  PLAYER,  125.  6d. 
net.  THE  COMPLETE  COOK,  los.  6d.  net. 
THE  COMPLETE  CRICKETER,  ioy.  6d.  net. 
THE  COMPLETE  FOXHUNTER,  i6j.  net. 
THE  COMPLETE  GOLFER,  i-zs.  6d.  net. 
THE  COMPLETE  HOCKEY-PLAYER,  JQS.  6d. 
net.  THE  COMPLETE  HORSEMAN,  12*.  6d. 

net.  THE  COMPLETE  JUJITSUAN.  Cr.  %vo.  $s. 
net.  THE  COMPLETE  LAWN  TENNIS  PLAYER, 
las.  6d.  net.  THE  COMPLETE  MOTORIST, 
IOT.  6d.  net.  THE  COMPLETE  MOUNTAIN- 

EER, i6s.  net.  THE  COMPLETE  OARSMAN, 
15$.  net.  THE  COMPLETE  PHOTOGRAPHER, 
15^.  net.  THE  COMPLETE  RUGBY  FOOT- 

BALLER, ON  THE  NEW  ZEALAND  SYSTEM, 
i2J.  6d.  net.  THB  COMPLETE  SHOT,  i6s. 
net.  THE  COMPLETE  SWIMMER,  icw.  6d. 
net.  THE  COMPLETE  YACHTSMAN,  i8s. 
net. 

The  Connoisseur's  Library 
With  numerous  Illustrations.      Wide  Royal  Svo.     2$s.  net  each  volume 

ENGLISH  COLOURED  BOOKS.  ETCHINGS. 
EUROPEAN  ENAMELS.  FINE  BOOKS. 

GLASS.  GOLDSMITHS'  AND  SILVERSMITHS' 
WORK.  ILLUMINATED  MANUSCRIPTS. 

IVORIES.  JEWELLERY.  MEZZOTINTS. 
MINIATURES.  PORCELAIN.  SEALS. 
WOOD  SCULPTURE. 

Handbooks  of  Theology 
Demy  Svo 

THE  DOCTRINE  OF  THE  INCARNATION,  i$s. 
net.  A  HISTORY  OF  EARLY  CHRISTIAN 
DOCTRINE,  i6s.  net.  INTRODUCTION  TO 
THE  HISTORY  OF  RELIGION,  i2s.  6d.  net. 
AN  INTRODUCTION  TO  THE  HISTORY  OF 

THE  CREEDS,  12..?.  6d.  net.  THE  PHILOSOPHY 
OF  RELIGION  IN  ENGLAND  AND  AMERICA, 
12*.  6d.  net.  THE  XXXIX  ARTICLES  OF 
THE  CHURCH  OF  ENGLAND,  15$.  net. 

Health  Series 
Fcap.  Svo.     2s.  6d.  net 

THE  BABY.  THE  CARE  OF  THE  BODY.  THE 
CARE  OF  THE  TEETH.  THE  EYES  OF  OUR 
CHILDREN.  HEALTH  FOR  THE  MIDDLE- 
AGED.  THE  HEALTH  OF  A  WOMAN.  THE 
HEALTH  OF  THE  SKIN.  How  TO  LIVE 

LONG.  THE  PREVENTION  OF  THE  COMMON 
COLD.  STAYING  THE  PLAGUE.  THROAT 
AND  EAR  TROUBLES.  TUBERCULOSIS.  THB 
HEALTH  OF  THE  CHILD,  zs.  net. 
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The  Library  of  Devotion 
Handy  Editions  of  the  great  Devotional  Books,  well  edited. 

With  Introductions  and  (where  necessary)  Notes 

Small  Pott  8vo,  cloth,  35.  net  and  $s.  6d.  net 

Little  Books  on  Art 

With  many  Illustrations.     Demy  i6mo.     $s.  net  each  volume 

Each  volume  consists  of  about  200  pages,  and  contains  from  30  to  40  Illustrations, 
including  a  Frontispiece  in  Photogravure 

ALBRECHT  DURER.  THE  ARTS  OF  JAPAN. 
BOOKPLATES.  BOTTICELLI.  BUKNE-JONES. 
CELLINI.  CHRISTIAN  SYMBOLISM.  CHRIST 
IN  ART.  CLAUDE.  CONSTABLE.  COROT. 
EARLY  ENGLISH  WATER-COLOUR.  ENA- 

MELS. FREDERIC  LEIGHTON.  GEORGE 
ROMNEY.  GREEK  ART.  GREUZE  AND 

BOUCHER.  HOLBEIN.  ILLUMINATED 
MANUSCRIPTS.  JEWELLERY.  JOHN  HOPP- 
NER.  Sir  JOSHUA  REYNOLDS.  MILLET. 
MINIATURES.  OURLADY  IN  ART.  RAPHAEL. 
RODIN  TURNER.  VANDYCK.  VELAZQUEZ. 
WATTS. 

The  Little  Guides 

With  many  Illustrations  by  E.  H.  NEW  and  other  artists,  and  from  photographs 

Small  Pott  Svo.     43.  net,  $s.  net,  and  6s.  net 

Guides  to  the  English  and  Welsh  Counties,  and  some  well-known  districts 

The  main  features  of  these  Guides  are  (i)  a  handy  and  charming  form  ;  (2) 

illustrations  from  photographs  and  by  well-known  artists  ;  (3)  good  plans  and 
maps  ;  (4)  an  adequate  but  compact  presentation  of  everything  that  is  interesting 
in  the  natural  features,  history,  archaeology,  and  architecture  of  the  town  or 
district  treated. 

The  Little  Quarto  Shakespeare 
Edited  by  W.  J.  CRAIG.     With  Introductions  and  Notes 

Pott  i6mo.     40   Volumes.     Leather,  price  is.  gd.  net  each  volume 
Cloth,  is.  6d. 

Plays 

Fcap.  Svo.     3^.  6d.  net 
MILESTONES.  Arnold  Bennett  and  Edward 
Knoblock.  Ninth  Edition. 

IDEAL  HUSBAND,  AN.  Oscar  Wilde.  Acting 
Edition. 

KISMET,  Edward  Knoblock.  Fourth  Edi- tion. 
THE  GREAT  ADVENTURE.  Arnold  Bennett. 

Fifth  Edition. 

TYPHOON.    A  Play  in  Four  Acts.     Melchior 
Lengyel.       English    Version    by  Laurence 
Irving.     Second  Edition. 

WARE  CASE,  THE.     George  Pleydell. 
GENKKAL  POST.    J.  E.  Harold  Terry.    Second 

Edition. 
THE  HONEYMOON.    Arnold  Bennett.     Third Edition. 
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Sports  Series 
Illustrated.     Fcap.  8vo 

ALL  ABOUT  FLYING,  y.  net.  GOLF  Do's 
AND  DONT'S,  zs.  6d.  net.  THE  GOLFING 
SWING,  zs.  6d.  net.  QUICK  CUTS  TO  GOOD 
GOLF,  zs.  6d.  net.  INSPIRED  GOLF,  2*.  6d. 

net.  How  TO  SWIM,  zs.  net.  LAWN 
TENNIS,  3*.  net.  SKATING,  35.  net.  CROSS- 

COUNTRY SKI-ING,  $s.  net.  WRESTLING, 
zs.  net.  HOCKEY,  4^.  net. 

The  Westminster  Commentaries 
General  Editor,  WALTER  LOCK 

Demy  Svo 
THE  ACTS  OF  THE  APOSTLES,  i6s.  net. 
AMOS,  8$.  6d.  net.  I.  CORINTHIANS,  8s. 
6d.  net.  EXODUS,  15^.  net.  EZEKIEL, 
izs.  6d.  net.  GENESIS,  i6s.net.  HEBREWS, 
8s.  6d.  net.  ISAIAH,  i6s.  net.  JEREMIAH, 

i6j.  net.  JOB,  8s.  6J.  net.  THE  PASTORAL 
EPISTLES,  8s.  6d.  net.  THE  PHILIPPIANS, 
8s.  6d.  net.  ST.  JAMES,  8s.  6d.  net.  ST. 
MATTHEW,  15$.  net. 

Methuen's  Two- Shilling  Library 
Cheap  Editions  of  many  Popular  Books 

Fcap.  8vo 

PART  III. — A    SELECTION   OF   WORKS   OF   FICTION 

Bennett  (Arnold)— 
CLAYHANGER,  8s.  net.  HILDA  LESSWAYS, 
8s.  6d.  net.  THESE  TWAIN.  THE  CARD. 
THE  REGENT:  A  Five  Towns  Story  of 
Adventure  in  London.  THE  PRICE  OF 
LOVE.  BURIED  ALIVE.  A  MAN  FROM  THE 
NORTH.  THE  MATADOR  OF  THE  FIVE 
TOWNS.  WHOM  GOD  HATH  JOINED.  A 
GREAT  MAN  :  A  Frolic.  All  75.  6d.  net. 

Birmingham  (George  A.)— SPANISH     GOLD.      THE    SEARCH    PARTY. 

LALAGE'S  LOVERS.    THE  BAD  TIMES.    UP, THE  REBELS.     All  js.  6d.  net.     INISHEENY, 
8s.  6d.  net.    THE  LOST  LAWYER,  js.  6d.  net. 

Burroughs  (Edgar  Rice)— 
TARZAN  OK  THE  APES,  6s.  net.  THE 
RETURN  OF  TARZAN,  6s.  net.  THE  BEASTS 
OF  TARZAN,  6s.  net.  THE  SON  OF  TARZAN, 
6s.  net.  JUNGLE  TALES  OF  TARZAN,  6s. 
net.  TARZAN  AND  THE  JEWELS  OF  OPAR, 
6s.  net.  TARZAN  THE  UNTAMED,  -js.  6d.  net. 
A  PRINCESS  OF  MARS,  6s.  net.  THE  GODS 
OF  MARS,  6s.  net.  THE  WARLORD  OF 
MARS,  6s.  net.  THUVIA,  MAID  OF  MARS, 
6s.  net.  TARZAN  THE  TERRIBLE,  zs.  6d.  net. 
THE  MAN  WITHOUT  A  SOUL.  6s.  net. 

Conrad  (Joseph).  A  SET  OF  Six,  7s.  6d.  net. 
VICTORY:  An  Island  Tale.  Cr.  &vo.  gs. 
net.  THE  SECRET  AGENT  :  A  Simple  Tale. 
Cr.  8vo.  gs.  net.  UNDER  WESTERN  EYES. 
Cr.  8vo.  gs.  net.  CHANCE.  Cr.  8vo.  gs.  net. 

Corell!  (Marie)— 
A  ROMANCE  OF  Two  WORLDS,  js.  6d.  net. 
VENDETTA:  or,  The  Story  of  One  For- 

gotten, 8s.  net.  THELMA  :  A  Norwegian 
Princess,  8s.  6d.  net.  AKDATH  :  The  Story 
of  a  Dead  Self,  7*.  6d.  net.  THE  SOUL  OF 
Lii.iTH,  js.  6d.  net.  WORMWOOD  :  A  Drama 
of  Paris,  8s.  net.  BARABBAS  :  A  Dream  of 
the  World's  Tragedy,  8s.  net.  THE  SORROWS 
OF  SATAN,  js.  6d.  net.  THE  MASTER- 
CHRISTIAN,  8s.  6d.  net.  TEMPORAL  POWER  : 

A  Study  in  Supremacy,  6s.  net.  GOD'S GOOD  MAN  :  A  Simple  Love  Story,  8s.  6d. 
net.  HOLY  ORDERS  :  The  Tragedy  of  a 
Quiet  Life,  8s.  6d.  net.  THE  MIGHTY  ATOM, 
•js.  6d.  net.  BOY  :  A  Sketch,  js.  6d.  net. 
CAMEOS,  6s.  net.  THE  LIFE  EVERLASTING, 
8s.  6d.  net.  THE  LOVE  OF  LONG  AGO,  AND 
OTHER  STORIES,  8s.  6d.  net.  INNOCENT, 
js.  6d.  net.  THE  SECRET  POWER  :  A 
Romance  of  the  Time,  7*.  6d.  net. 

Hichens  (Robert)— 
TONGUES  OF  CONSCIENCE,  7$.  6d.  net. 
FELIX  :  Three  Years  in  a  Life,  js.  6d.  net. 
THE  WOMAN  WITH  THE  FAN,  7*.  6d.  net. 
BYEWAYS,  js.  6d.  net.  THE  GARDEN  OF 
ALLAH,  8s.  6d.  net.  THE  CALL  OF  THE 
BLOOD,  8s.  6d.  net.  BARBARY  SHEEP,  6s. 
net.  THE  DWELLER  ON  THE  THRESHOLD, 
js.  6d.  net.  THE  WAY  OF  AMBITION,  js. 
6d.  net.  IN  THE  WILDERNESS,  js.  6d.  net. 
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Hope  (Anthony)— 
A  CHANGE  OF  AIR.  A  MAN  OF  MARK. 
THE  CHRONICLES  OF  COUNT  ANTONIO. 
SIMON  DALE.  THE  KING'S  MIRROR. 
QUISANTK.  THE  DOLLY  DIALOGUES. 
TALES  OF  Two  PEOPLE.  A  SERVANT  OF 
THE  PUBLIC.  MRS.  MAXON  PROTESTS. 
A  YOUNG  MAN'S  YEAR.  BEAUMAROY 
HOME  FROM  THE  WARS.  Alljs.  6d.  net. 

Jacobs  (W.  W.)- 
MANY  CARGOES,  5*.  net.  SEA  URCHINS, 
5*.  net  and  3*.  6d.  net.  A  MASTER  OF 
CRAFT,  5*.  net.  LIGHT  FREIGHTS,  y.  net. 
THE  SKIPPER'S  WOOING,  $s.  net.  AT  SUN- 
WICH  PORT,  5J.  net.  DIALSTONE  LANE, 
5*.  net.  ODD  CRAFT,  55.  net.  THE  LADY 
OP  THE  BARGE,  ss.  net.  SALTHAVEN,  ss. 
net.  SAILORS'  KNOTS,  ss.  net.  SHORT 
CRUISES,  6s.  net. 

London  (Jack).  WHITE  FANG.  Ninth 
Edition.  Cr.  8vo.  js.  6d.  net. 

Lucas  (E.Y.)- 
LISTENER'S  LURE  :  An  Oblique  Narration, 
dr.  net.  OVER  BEMERTON'S:  An  Easy- 

going Chronicle,  6*.  net.  MR.  INGLESIUE, 
6s.  net.  LONDON-  LAVENDER,  6s.  net. 
LANDMARKS,  7*.  6d.  net.  THE  VERMILION 
Box,  js.  6d  net.  VERENA  IN  THE  MIDST, 
8s.  6d.  net.  ROSE  AND  ROSE,  7-$-.  6d.  net. 

McKenna  (Stephen)— 
SONIA  :     Between    Two    Worlds,    8-r.    net. 
NINETY-SIX    HOURS'  LEAVE,  js.    6d.   net. 
THE  SIXTH  SENSE,  6s.  net.    MIDAS  &  SON, 
8s.  net. 

Halet  (Lucas)- 
THK  HISTORY  OF  SIR  RICHARD  CALMADY: 
A  Romance.  IQS.  net.  THE  CARISSIMA. 
THE  GATELESS  BARRIER.  DEADHAM 
HARD.  All  js.  6d.  net.  THE  WAGES  OF 
SIN.  8s.  net. 

Mason  (A  E.  W.).  CLEMENTINA. 
Illustrated.  Ninth  Edition.  Cr.  8vo.  js. 
6d.  net. 

Maxwell  (W.  B.)— VIVIEN.  THE  GUARDED  FLAME.  ODD 
LENGTHS.  HILL  RISE.  THE  REST  CURE. 
All  7s.  6d.  net. 

Oxenham  (John)— 
PROFIT  AND  Loss.  THE  SONG  OF  HYA- 

CINTH, and  Other  Stories.  THE  COIL  OF 
CARNE.  THE  QUEST  OF  THE  GOLDEN  ROSE. 
MARY  ALL-ALONE.  BROKEN  SHACKLES. 
"1914."  All  is.  6d.  net. 

Parker  (Gilbert)- 
PlERRE  AND  HIS  PEOPLE.      MRS.  FALCHION. 
THE  TRANSLATION  OF  A  SAVAGE.  WHEN 
VALMOND  CAME  TO  PONTIAC  :  The  Story  of 
a  Lost  Napoleon.  AN  ADVENTURER  OF  THE 
NORTH  :  The  Last  Adventures  of  '  Pretty 
Pierre.'  THE  SEATS  OF  THE  MIGHTY.  THB 
BATTLE  OF  THE  STRONG  :  A  Romance 
of  Two  Kingdoms.  THE  POMP  OF  THE 
LAVILETTES.  NORTHERN  LIGHTS.  All 

7s.  6al.  net. 

Phlllpotts  (Eden)— 
CHILDREN  OF  THE  MIST.  THE  RIVER. 
DEMETER'S  DAUGHTER.  THE  HUMAN  BOY 
AND  THE  WAR.  All  is.  6d.  net. 

Ridge  (W.  Pett)— 
A  SON  OF  THE  STATE,  7.?.  6d.  net.  THE 
REMINGTON  SENTENCE,  js.  6d.  net. 
MADAME  PRINCE,  -js.  6d.  net.  TOP  SPEED, 
7s.  6d.  net.  SPECIAL  PERFORMANCES,  6s. 
net.  THE  BUSTLING  HOURS,  -jx.  6af.  net. 
BANNERTONS  AGENCY,  7$.  6d.  net.  WELL- 
TO-DO  ARTHUR,  ?s.  6d.  net. 

Rohmer  (Sax)— 
THE  DEVIL  DOCTOR.  *  TALES  OF  SECRB- EGYPT.  THE  ORCHARD  OF  TEARS.  THJ 
GOLDEN  SCORPION.  A  UTS.  6d.  net. 

Swinnerton  (P.).   SHOPS  AND  HOUSES 
Third  Edition.     Cr.  8vo.     js.  6d.  net. 

SEPTEMBER.      Third  Edition.     Cr.    8w. 
•js.  6d.  net. 

THE   HAPPY  FAMILY.     Second  Edition. 

7s.  6d.  net. ON    THE    STAIRCASE.      Third  Edition. 
•js.  6d.  net. 

COQUETTE.     Cr.  8vo.     ̂ s.  6d.  net. 

Wells  (H.  G.).     BEALBY.    Fourth  Edition. 
Cr.  8vo.     js.  6d.  net. 

Williamson  (C.  N.  and  A.  M.)- 
THE  LIGHTNING  CONDUCTOR  :  The  Strange 
Adventures  of  a  Motor  Car.  LADY  BETTY 
ACROSS  THE  WATER.  LORD  LOVELAND 
DISCOVERS  AMERICA.  THE  GUESTS  OF 
HERCULES.  IT  HAPPENED  IN  EGYPT.  A 
SOLDIER  OF  THE  LEGION.  THE  SHOP 
GIRL.  THE  LIGHTNING  CONDUCTRESS. 
SECRET  HISTORY.  THE  LOVE  PIRATE. 
All  7s.  f>d.  net.  CRUCIFIX  CORNER.  6s. net. 

Methuen's  Two-Shilling  Novels 
Cheap  Editions  of  many  of  the  most  Popular  Novels  of  the  day 

Write  for  Complete  List 

Fcop.  8vo 
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