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Abstract

This paper extends the work of Pauly (1973) by analysing the optimal
organization of an economy in which individuals experience spatially-
limited altruism. With such altruism, the nonpoor members of society care
more about the poor living near them than about those living farther away.

The main theme of the paper is that while the proximity of the poor gives
mixed communities an altruistic advantage over homogeneous communities, the
intermixing of rich and poor generates an efficiency loss in that public
consumption in mixed communities cannot be tailored to suit individual
preferences. As a result, a mixed community configuration (where income
redistribution proceeds through local transfers) may or may not be superior
to a homogeneous configuration (in which redistribution is conducted by the
federal government). In addition to analysing this altruism/efficiency
loss trade-off, the paper characterizes equilibrium outcomes when
communities are organized by competitive developers.
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by
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1._. Intrpductioii

In an important paper, Pauly (1973) introduced the notion of

spatially-limited altruism into the income redistribution literature. With

this type of altruism, the nonpoor members of society care more about the

poor living near them than about those living far away. Using this

assumption, Pauly argued that income redistribution should be locally

controlled and tailored to suit the features of each community. He argued

that national redistribution, which imposes a nationally uniform policy,

generates an efficiency loss by preventing such local discretion.

The purpose of the present paper is to give a more complete treatment

of Pauly' s idea by analysing the optimal organization of an economy in

which people experience spatially-limited altruism. In contrast to Pauly's

normative analysis, which assumed a fixed spatial distribution of the

population, the present paper attempts to determine the spatial grouping of

rich and poor that is best for society. Although a direct application of

Pauly's model would suggest that the rich and poor should live together so

that the rich can reap the greatest benefit from their generosity, the

issue is more complex in the present framework. This is a consequence of

the additional assumption that individuals in the economy consume public

goods. Since public consumption in mixed communities cannot be tailored to

suit individual preferences, enjoyment of the altruistic benefits of such

communities entails an efficiency loss on the consumption side. This loss
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is avoided in homogeneous communities but enjoyment of altruism is

sacrificed. Much of the analysis in the paper is devoted to analysing

this altruism/efficiency loss trade-off and to identifying the different

conditions under which mixed and homogeneous communities are desirable.

The paper also analyses equilibrium community configurations under the

assumption that communities are organized by competitive, profit-maximizing

developers. 1 It is shown (subject to certain qualifications) that mixed

communities emerge in equilibrium whenever such a configuration is

desirable from an efficiency standpoint.

The lessons of the analysis regarding which level of government

should carry out income redistribution are somewhat different than in

Pauly's paper. It is clear that if the optimal organization of the economy

entails mixed communities, then there is no need for a national

redistribution program since local transfers can achieve identical results.

While local redistribution can thus be optimal in that it may be no worse

than a national policy, a national system is clearly required if the

economy is to be organized into homogeneous communities. For this reason,

reliance on local redistribution can be inefficient even in the presence of

spatially-limited altruism, in contrast to Pauly's conclusion.

The paper's analytical framework is based on the standard economic

model of clubs, as developed by Buchanan (1965), Berglas (1976b), and

Berglas and Pines (1981 ).
a Although the connection to Pauly makes the

local redistribution question an important focus of the analysis, the

paper's main contribution is to extend the theory of clubs by stating new

conditions under which mixed clubs might be optimal. There has been

considerable interest in this issue in the literature. Berglas (1976a),

for example, showed that mixing is desirable when different types of people
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are complementary in production. More recently, Berglas (1984) proved the

much less obvious result that mixing may be optimal in the presence of

multiple public goods. In analysing spatially-limited altruism, this paper

identifies a new force favoring the formation of mixed clubs.

2 . Normative Analysis

The model has two types of individuals, a and b, with the a's feeling

altruism for the b's, as specified further below. The b's comprise a

fraction 6 of the economy's total population N, with the a's accounting for

1-9 of the total. Exogenous incomes for the two groups are I
a and I

b
.

Given the a's altruism, it is natural to suppose that the b's are

relatively poor (I to < I"*) , although this assumption plays no role in the

analysis. Consumption goods in the economy include a private good x and a

congested public good z. The cost in terms of x of providing public

consumption z to a community (hereafter "club") of n people is C(z,n). C

is increasing and convex in z, and congestion implies that the partial

derivative C n is positive. A further assumption is that for any z > 0, per

capita cost C(z,n)/n is a U-shaped function of n, which guarantees the

existence of a positive finite optimal club size.

The (well-behaved) type-a and type-b utility functions are U(x,z,k)

and V(x,z), where the k argument captures the altruism felt by the a's. A

fundamental assumption is that this altruism is spatially limited, which

means that an a-type cares more about the b's living in his own club than

those living in other clubs. Moreover, the possibility of joint

consumption of public goods means that k does not depend simply on the

post-transfer income of the b's (as in the usual formulation of altruism)

but instead reflects their achieved utility level. There are various ways

of modeling the spatially-limited utility interdependence implied by these
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assumptions. One possibility would be to assume that k equals a

population-weighted average of the utility levels of type-b consumers, with

a higher weight applied to b's in the home club of a representative a- type.

In other words, for an a-type living in a club containing n b b-types, k

would equal [(a + p)n lJvhom '' + p(9N - n b ) v"w~ y ] /8N , where vhom" is the type-

fa utility in the home club, v aweiy is the (average) type-b utility in other

clubs, [5 > is a parameter measuring "generalized" altruism (which is felt

regardless of the location of the b's), and a > is parameter measuring

"local" altruism (which is felt only toward b's in the same club). Recall

from above that 9N equals the number of b-types in the economy. While this

is in some ways a natural formulation, it has the peculiar implication that

for a given uniform b-type utility (

v

home, =V*way = constant ) , k is increasing

in n b , implying that an a-type is happier in a club with a larger type-b

population. This seems inconsistent with typical behavior, under which the

nonpoor care about the welfare of the poor but do not wish to live

surrounded by them. A modification that addresses this objection would be

to write the vHom" term above as [ag(n b ) + (3n
b ]vhomeV0N, where g is a

function satisfying g(n b ) > 0, g(0) = 0, and g'(0) > 0. This formulation

allows k to rise initially with the type-b population when vhom *'=v'*
way

, but

the possibility that g' could turn negative means that further increases in

n b may ultimately depress k in a realistic fashion.

Since the appearance of the absolute population size n b in the

modified k formula is inconvenient in the later analysis, the formula is

further altered to read k = [(af(o) + p)vhom,s + (3v*w" y ], where o is the

proportion of b-types in the club population and f is a function satisfying

f(o) > 0. f(0) = 0. and f'(0) > 0. This formulation eliminates the

population weights on generalized altruism, so that for given home and away
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utilities, generalized altruism is independent of the distribution of the

type-b population. This is plausible given that altruism may reflect an

implicit division of the poor population into local and nonlocal components

that ignores the relative sizes of these groups. An additional change is

that local altruism now depends on the proportion of b's in the local

population rather than their absolute number (the factor 1/9N is also

suppressed). In the spirit of the earlier formulation, k initially rises

with o but further increases in the type-b proportion may be make the a's

worse off. While this formulation is somewhat arbitrary, it captures the

essential aspect of spatially-limited altruism and it proves to be

convenient in the analysis.

The normative problem is to characterize Pareto-ef f icient club

configurations in the model. For purposes of clarity, it is desirable to

focus first on two simple configurations: one consisting of homogeneous

type-a and type-b clubs and another consisting of identical mixed clubs.

The first part of this section analyses these two configurations and proves

a number of results regarding their relative merits. Once this analysis is

complete, the discussion considers more complex configurations containing

both mixed and homogeneous clubs. The ultimate goal is to state conditions

which allow the optimal club configuration among all those considered to be

identified.

Efficient configurations are analysed under the standard requirement

of horizontal equity (identical utilities for identical people). Moreover,

all clubs of a given type (mixed, homogeneous type-a, homogeneous type-b)

are constrained to be identical (configurations violating this requirement

are inefficient). 3 To analyse a homogeneous club configuration (denoted H

hereafter), the first step is to note that since type-b utilities are
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uniform under the horizontal equity requirement, the altruism expression k

is evaluated with vhom"'=v~w,*y =v. Furthermore, since clubs are homogeneous,

the type-b proportion o equals zero in each club where the a-types live.

Recalling that f(0) = 0. these facts mean that the altruism argument under

H satisfies k = 2(Jv = 6v, where v is the uniform type-b utility and 6 = 2(3

.

A Pareto-ef f icient H configuration then solves the following problem:

max U(x a ,

z

M ,6v)

s.t. V(x b .zb ) = v (1

)

(l-e)Nxa + 9Nxb + [(l-9)N/nm ]C(za ,n-)

+ (6N/n b )C(z b ,n b ) = (1-8)NI- + 6NI b
. (2)

Eq. (2) above is the resource constraint for an economy with homogeneous

clubs. The RHS is total income in the economy, and the first two terms on

the LHS give total consumption of the private good x. The remaining terms

give the cost of public good provision in all the economy's clubs. Note

that the number of clubs of each type equals group population [(1-9)N for

the a's, 0N for the b's] divided by the relevant club population (n™ or

nb ). As is standard in club theory, we ignore the fact that these

expressions need not be integer-valued (the problem is inconsequential if N

is large relative to optimal club sizes). The necessary conditions for an

optimum in the above problem are the two constraints together with

n~U,/Ux = C,- (3)

n bV x /V„ = C x
b (4)

C„* = CVn 1
, i=a,b, (5)

where subscripts denote partial derivatives and where the i superscripts on

C and Cn indicate that the functions are evaluated at (zSn 1
), i=a.b. Eqs

.
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(3) and (4) are the Samuelson conditions for the two types of clubs, and

(5) indicates that club populations are chosen to minimize the per capita

cost of (optimal) public consumption. 4

Consider now a configuration of identical mixed clubs, each of which

mirrors the overall composition of the population (having a type-b

proportion equal to 0). Let this configuration be denoted by CM, for

"completely mixed." A key feature of the CM configuration is that, because

of the proximity of the b's, the altruistic benefits enjoyed by the a's are

greater than in the homogeneous clubs formed under H. This can be seen by

computing the value of k in mixed clubs. Since vHomo =vaway =v and f is now

evaluated at 9 rather than zero, k = [af(8) + [5]v + (iv = [af(8) + 6]v.

which exceeds the previous value of 6v. A disadvantage of CM, however, is

that in contrast to the H configuration, the public good level in its mixed

clubs cannot be tailored to suit individual preferences. Substituting the

new value of k, a Pareto-ef f icient CM configuration solves the following

problem:

max UU-.z, [af (9) + 6]v)

s.t. V(xb ,z) = v (6)

(l-9)nx» + 9nx b
+ C(z,n) = (l-9)nl~ + 9nl b

. (7)

Eq. (7) is the resource constraint for a representative club, with n giving

the club's population and z the common public good level consumed by its

residents. The necessary conditions for an (interior) optimum are the two

constraints along with

(l-9)nlWUx + enV./V,, = C x (8)

C„ = C/n. (9)
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Eq. (8) is the Samuelson condition for the mixed club, which reflects the

compromise of tastes imposed by heterogeneity, and (9) is the per capita

cost-minimization condition. The number of clubs N/n need not be integer-

valued, but this problem is again ignored. e

It should be noted that although the formulation of the H and CM

problems uses a common parametric v, achievement of a given type-b utility

is not always feasible in both problems^ It is easy to see, for example,

that the lowest possible v value under H (which equals V(0,0), reflecting

complete expropriation of the b's) is lower than the lowest v under CM,

which is based on a positive value of z. Similarly, it may be shown that

the highest feasible value of v is higher under H than under CM."7 As a

result, the feasible set of v's under CM is a subset of feasible set under

H.

The key to comparing H and CM configurations for a common value of v

is to note that the CM constraint (7) is equivalent to the H constraint (2)

together with the side conditions

z" = z b , n" = n b . (10)

These "mixing constraints," which are necessary for common type-a and type-

b consumption of public goods, reduce the size of the CM opportunity set

relative to that of the H problem. Ordinarily, this would lead to a lower

value of the objective function (type-a utility) under CM. However, since

the altruistic advantage of mixed clubs means that, for given values of the

choice variables, the CM objective function achieves a higher value than

the H function, the effect of the smaller CM opportunity set may be

reversed. Together, these considerations imply that the preferred

configuration in a choice between H and CM cannot be determined in general.
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Intuitively, this indeterminacy arises because there is a trade-off between

the altruistic advantage of mixed clubs and the efficiency loss resulting

from common consumption of public goods by people of different types. This

trade-off will be analysed in detail below.

A critical difference between the H and the CM configurations is that

the minimal institutional structure required to carry out income

redistribution is different under the two regimes. Since income is

redistributed via transfers between type-a and type-b clubs under H, this

configuration cannot be implemented in the absence of a national

redistribution system run by the federal government. While the federal

government could also handle income redistribution in the CM configuration,

the intermixture of the a's and b's means that local governments can

achieve identical results. Since the CM configuration is potentially

efficient, it follows that local redistribution may be compatible with

efficiency in some circumstances. However, since an economy that relies on

local redistribution cannot attain the H configuration, local

redistribution may be inconsistent with the achievement of efficiency in

other situations.

The choice between H and CM can be resolved in favor of CM provided

that the the altruistic gain from mixed clubs dominates the associated

efficiency loss. This outcome will obtain when the altruistic advantage

from mixing is "large" or the efficiency loss from mixing is "small."

Focusing on the second of these conditions, the above discussion suggests

that the efficiency loss will be zero when the mixing constraints (10) hold

at the H solution and small when these constraints are approximately

satisfied. In other words, if the optimal homogeneous clubs of the groups

are identical or nearly so, then the loss from the taste compromise in
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mixed clubs will not be significant. This notion is made precise as

follows

:

Proposition 1. Suppose that for some v = v', the mixing constraints
(10) hold at the solution to the H problem, and suppose that v' is

feasible in the CM problem. Then CM is preferred to H for all v in a

neighborhood of v' when a > 0.

This result can be established by first proving that when a = (when local

altruism is absent), the CM and H solutions are identical whenever (10)

holds at the H solution. This can be seen by multiplying (3) and (4) by

(1-0) and 8 respectively and adding, which yields the Samuelson condition

(8) for a mixed club with an a value of zero (note that the RHS ' s of (3)

and (4) are identical by (10)). Since (5) and (9) are the same and (2)

reduces to (7), it follows that the H solution satisfies the CM optimality

conditions when a = 0, implying that the two solutions are the same. Since

the H and CM objective functions are also identical when a = 0, the values

of these functions are then equal at the respective solutions (in other

words, UCM = UH ) . But since UCM is increasing in a by the envelope theorem

(the derivative is f(8)vU kt
CM > 0), it follows that UCM exceeds U H for a >

when v = v'. By continuity, it then follows that CM is superior to H for

all v lying in some neighborhood of v'. a

While it is possible to construct pathological examples where (10)

holds at the H solution, this outcome arises naturally when preferences for

x and z are the same. Suppose, for example, that U(x,z,k) s V(x,z) W(k),

so that k enters the type-a utility function in an additively separable

manner and the (x.z) portion of the function is identical to the type-b

utility function. Then it is easy to see that CM is superior for all

values of v in a neighborhood of v" , where v" is the type-b utility

achieved in a homogeneous club with post-transfer income of Y~ = (1-8)1" +
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ei b
. The reason is that if the a's and b's enjoy identical post-transfer

incomes under H (Ya = Yb ), then (10) holds and CM is preferred. But since

equality of the Y's means that they both must equal the average pre-

transfer income in the economy [(1-6)1™ + 9I b ] , it follows from Proposition

1 that when a > 0, CM is preferred to H in a neighborhood of the v value

associated with this Y b . Suppose further that U satisfies the above

assumptions and in addition V(x,z) s x + S(z), where S' > and S" < 0.

Then CM is superior to H for any common value of v when a > 0. This

follows because when utility has the given transferable form, homogeneous

clubs are identical regardless of the value of v (conditions (3)-(5) do not

involve x, so that they yield the same common (z,n) solution for all values

of v). Intuitively, the absence of income effects with transferable

utility makes the earlier result hold regardless of the distribution of

income

.

In addition to the above results, it is intuitively clear that the

efficiency loss from mixed clubs will be small when preferences are

"similar" since this reduces the required compromise of tastes from joint

consumption of public goods. In the first case above, for example, suppose

that the (x,z) component of U is a function that is "similar" to V rather

than identically equal to it. Then the efficiency loss from mixing will be

low for v values near v" , and CM will be superior in this range. This

argument can be made precise in the transferable utility case, as follows:

Proposition 2. Suppose that U(x.z.k) = x + fiS(z) + W(k) and V(x,z) h

x + S(z). with S' > and S" < and Q > 0. Then when a > 0, there
exist positive numbers Ui(v) and u 2 (v) such that CM is preferred to H

at a given v when satisfies 1 - Ui(v) < < 1 + u 2 (v) and H is

preferred to CM when fl > 1 + u 2 (v) or Q < 1 - u a (v).
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This result says that when the groups' tastes are sufficiently similar. CM

is preferred to H. To prove the proposition, first note that the

derivative of UCM - U H with respect to Q equals S(zOM )
- S(z~") (the z's in

this expression are optimal values under the two configurations). This

expression can be signed by comparing the Samuelson conditions (4) and (8),

which reduce to n^OS

'

a = C x " and (l-9)nfiS' + 9nS '
= C x respectively under

the present assumptions. The key is to note that the first condition comes

from setting 9 equal to zero in the second condition. The optimal z values

can be therefore be compared by computing the derivative of z in a mixed

club with respect to 9. Totally differentiating the mixed-club Samuelson

condition along with the cost-minimization condition (9) and using the

second-order conditions for the CM problem, it is easy to show that z is an

decreasing (increasing) function of 9 when Q is greater than (less than)

unity. 9 It follows therefore that the z value corresponding to 9 = (z aH )

is greater than (less than) the mixed-club value (z CM ) as fl is greater than

(less than) unity. Referring to the above derivative expression, it is

then clear that UCM - UH is decreasing (increasing) in Q when ft is greater

than (less than) unity. Recalling from the discussion following

Proposition 1 that UCM - UH > when Q = 1, the existence of the Ui(v) and

u a (v) values in Proposition 2 then follows by continuity. 10

With the superiority of CM demonstrated under a "small" efficiency

loss from mixing, consider now the first of the earlier conditions: a

"large" altruistic gain from CM. The altruistic advantage of CM depends on

the magnitude of the parameter a, with larger values indicating a larger

gain. Clearly, if a is large enough, this gain will be sufficient to

offset any efficiency loss, making CM preferred to H. This notion is made

precise as follows:
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Proposition 3. For any common v in the H and CM problems, there

exists a critical value of a, denoted a*(v) > 0, such that CM is

preferred to H for all a satisfying a > a*(v) and H is preferred to

CM for all a satisfying a*(v) > a > 0. If the mixing constraints

(10) are satisfied at the H solution, then a*(v) = 0. Otherwise,

a*(v) > 0.

This result is established by first recalling from the proof of Proposition

1 that if (10) holds at the H solution, then UCM - UH is zero for a = and

positive for a > 0. This shows that a*(v) = for any v where the mixing

constraints hold. If, on the other hand, (10) is not satisfied at the H

solution for a given v, then the smaller size of the CM opportunity set

matters and UCM - UH < holds when a = (recall that the objective

functions are the same when a = 0). But since the utility difference is

increasing in a, there exists some positive a*(v) where the difference

changes sign from negative to positive.

The choice between CM and H that has been the subject of the

preceding analysis can be illustrated diagrammatically by drawing the

utility frontiers for the economy under the two policies. These curves

show the maximal value of U as a function of v under CM and H (they are

graphs of UCM and UH ). Examples of such curves are illustrated in Figure 1

(u denotes the type-a utility level). 11 The policy whose curve is higher

at given v is, of course, preferred. Referring back to the respective

optimization problems, the slopes of the H and CM frontiers equal 6Uk
H -

9U 3C
H/(1-0)VXM and [af(8) + 6]U*CM - 6Ux

CM
/( 1-9)VXCM respectively. While

these expressions are negative when U* is zero, the slopes can be positive

in the presence of altruism, implying that redistribution can raise both

utility levels simultaneously over some range of v. This is seen in Figure

1, where the CM frontier has an upward sloping range (for later

convenience, the H frontier is shown as downward sloping).
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The H and CM club configurations discussed so far are in fact special

cases in a more general choice problem. The analysis now focuses on this

general problem with the goal of identifying the optimal club structure

from among all those that are feasible. As will become clear, the previous

results comparing H and CM are useful in this more comprehensive analysis.

In the most complex possible club configuration, mixed clubs coexist with

homogeneous clubs of each type. Clubs of a given type as before are

identical, and horizontal equity requires that members of each group enjoy

the same utility level regardless of whether they live in a mixed or

homogeneous club. Letting Q denote the number of mixed clubs, o denote the

type-b proportion in their populations, x"H and xbh denote x consumption in

homogeneous clubs, and I = (1-9)1" + 9I b
, the general Pareto-optimality

i

problem can be written

max U(x", z ,
[af (o) + 6]v)

s.t. V(x b ,z) = v

U(x-,z, [af (o) + 6]v) = U(x- h ,z-,6v) (11)

V(xb ,z) = V(xbh ,z b ) (12)

Q[(l-o)nx" + onxb + C(z,n)]

+ [(1-0)N - Q(l-o)n][n-x"H + C(z" , n») J/n tt

+ [9N - Qon][nbxbb + C(z b ,n b )]/n b = NI

.

(13)

Note that (11) and (12) are the horizontal equity constraints and that

[(1-9)N - Q(l-o)n]/n™ and [9N - Qon]/nb are the numbers of homogenous type-

a and type-b clubs (total group size minus the population in mixed clubs

divided by n 1
, i=a,b). 12 Implicit constraints in the problem are < o < 1

and < Q < min{ (l-9)N/( l-o)n, 9N/on}, with the last inequality saying that

mixed clubs cannot contain more than the total population of either group.
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As before, the first-order conditions for choice of the x, z, and n

variables reduce to the mixed- and homogeneous-club Samuelson and per

capita cost-minimization conditions. The interesting questions in the

general problem, however, concern the variables Q and o. The following

result is immediate:

Proposition 4. In an optimal configuration, mixed clubs can coexist

with at most one type of homogeneous club (either a or b).

This result follows directly from the fact that the Lagrangean expression L

for the problem is linear in Q. This means that a corner solution is

optimal, with Q either equal to zero or min{ ( 1-6 )N/ ( l-o)n, 0N/on}. Since

at least one of the equalities (l-o)nS = (1-9)N, onS = 0N must therefore

hold when Q is positive, it follows that the entire population of one. or

both groups fits into mixed clubs, as claimed. When o = 0, both equalities

hold together and everyone lives in mixed clubs (this is the CM

configuration)

.

A club structure containing both mixed and homogeneous type-a or

type-b clubs will be referred to as a PM configuration (for "partially

mixed"). A key question is whether some PM configuration is superior to

the CM configuration analysed above. To answer this question, consider the

gains and losses from allowing o to deviate from 0. First, some change in

o will typically make each mixed club's population makeup more advantageous

from an altruistic point of view. Recalling that local altruism depends on

the type-b proportion through the function f, the a's will gain from

increasing (decreasing) the type-b proportion relative to as f
'

( 8 ) is

positive (negative). This altruistic gain has a cost, however, in that the

individuals displaced from the mixed club must be guaranteed the same

utility as those that remain. If the amount of extra resources required to
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achieve this equality is less than the (appropriately measured) altruistic

gain, then some deviation of o away from 8 is desirable. The following

result formalizes these considerations:

Proposition 5. CM cannot be optimal if one or both of the following
inequalities holds at the CM solution:

aUK f
'
(8)v/Ux > [(x~ h t C*/n") - (x~ + C/n)]/9(l-0) (14)

-aU,«f ' (8)v/U x > [(x bh + C b /n b )
- (x b + C/n)]/(l-6) 2 (15)

This result 13 is established by substituting Q = min{ ( 1-0 )N/( l-o)n , 6N/on}

into the Lagrangean L and differentiating with respect to o in the separate

cases where o > 8 and o < 8. It is easily seen that L
|
ose is positive at

o=8 when (14) holds and that L CT
|
ose is negative at o = 8 when (15) holds.

In either case, there exist PM configurations close to CM that yield higher

values of the objective function than CM itself, establishing the

Proposition. To relate the above inequalities to the previous intuitive

discussion, note that the altruistic gain (loss) in terms of x from

increasing o above 8 is captured by the first term in (14) while the loss

(gain) from decreasing o below 8 is measured by the first term in (15).

The resource costs discussed above appear on the RHS of these inequalities.

The cost of displacing an a-type into a homogeneous club (the cost of a

higher o) equals the difference between per capita consumption of the a's

in homogenous and mixed clubs, while the cost of displacing a b-type (of

reducing o) is the analogous difference in per capita type-b consumption.

The factors 1/8(1-8) and l/(l-8) 2 are needed to apportion these costs among

the a-types remaining in the mixed club. 1 * It is easy to see that the

type-b displacement cost is negative while the type-a cost is ambiguous in

sign. The first claim (xbH + C b /nb < x b + C/n) follows because public

consumption inefficiency in a mixed club means that the b's must consume
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more resources than in a homogenous club to achieve a given utility level.

While this effect is also present for the a's, the countervailing

altruistic advantage of mixed clubs means that resource requirements could

be greater or smaller in a mixed club. The upshot is that the RHS of (14)

is ambiguous in sign while the RHS of (15) is negative.

To check for satisfaction of (14) or (15), consider first the case

where a > and f'(0) > 0. Since the LHS ' s of the inequalities are

respectively positive and negative in this case while the RHS ' s are

ambiguous and negative, neither (14) nor (15) is guaranteed to hold. It is

important to realize that if neither inequality is satisfied, then CM is

possibly though not necessarily preferred to PM. Although CM is sure to be

preferred if the maximized objective function for the problem is concave in

o on either side of 0, nonconcavity means that PM could be preferred even

though small movements away from CM are undesirable. If (14) or (15)

happens to hold, on the other hand, then there exist PM configurations that

dominate CM. Note that (14) and (15) may hold simultaneously.

A stronger statement can be made when f'(0) - 0. as follows:

Proposition 6. Suppose that a > and that f'(o) ^ holds for o >

0. Then, if the optimal configuration contains mixed clubs, it must
be a PM configuration with o < 0.

To prove this result, note first that (15) is guaranteed to hold when f'(0)

< 0, so that there exist PM configurations with o < that are superior to

CM. To show further that no PM configuration with o > can be optimal

under the given assumptions, suppose to the. contrary that such a

configuration is in fact optimal. Then note that for mixed clubs to exist

at the optimum, the derivative of the Lagrangean with respect to Q must be
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positive at the given o (otherwise the positive corner solution cannot be

optimal). This derivative has the same sign as

(lo)[(xah + C»/n») - (x- + C/n)J

+ o[(xbh + C b /n b )
- (x b + C/n)]. (16)

Intuitively. (16) must be positive for mixed clubs to be optimal because

moving people into homogeneous clubs must then increase per capita

consumption. 10 Since x toH + C b /n b < x b + C/n holds from above, resources

can always be saved by relocating b-types in this manner. Therefore, if

mixed clubs are to be optimal, relocating the a's must consume extra

resources, making the first term in (16) positive. The final step is use

this fact to show that the o-derivative of the Lagrangean at the supposedly

optimal o > 9 is negative, which is a contradiction. This derivative is

negative whenever the LHS of (14) (with o replacing 8 throughout) is less

than the RHS . Since the LHS and RHS are respectively nonpositive and

positive given the previous result and f < 0, the contradiction follows,

implying that an optimal configuration with o > 9 is impossible under the

given assumptions.

The ultimate goal of the analysis is to identify the club

configuration that is optimal under given circumstances. While none of the

propositions by itself yields this information, the results can be merged

to help identify the optimum. Generally, whenever circumstances are such

that CM is preferred to H at a given v, then the optimal configuration

contains mixed clubs. These clubs coexist with homogeneous clubs if there

are PM configurations preferred to CM at the given v. Otherwise, the

optimal configuration contains only mixed clubs. Suppose, for example,

that utility is transferable and that preferences are "similar" in the
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sense of Proposition 2, and suppose further that f'(o) < for o > 0. Then

it follows from Propositions 2 and 6 that a PM configuration with a < 9 is

optimal at the given v. if, however, f'(6) > holds under these

circumstances, then CM could replace PM as the mixed-club optimum.

Similarly, when the mixing constraints hold at a given v or when a exceeds

the critical value a*(v), then by Propositions 1 and 3, the optimal

configuration contains mixed clubs, with either CM or PM optimal.

When H is preferred to CM, on the other hand, the identity of the

optimal configuration is not clear. While H is optimal in this case if CM

dominates PM, H could be better or worse than PM otherwise. Since

Proposition 5 does not offer a sufficient condition for CM to be preferred

to PM, the Propositions as a whole do not yield a sufficient conditions for

the optimality of H. By focusing on the general choice' problem, however,

it is easy to establish the obvious result that H must be optimal in the

absence of local altruism (a = 0). This is done by referring to the LQ

expression (16). If (16) is zero or positive for some o between zero and

one when Q = 0, aa then per capita consumption of resources can be reduced

by moving people out of homogeneous clubs into a mixed club with the given

o. Therefore, a necessary and sufficient condition for the optimality of H

is that (16) be negative for all o between zero and one. Recalling the

above discussion, it is clear that negativity will hold when a = 0. Since

there is then no gain to the a-types to offset the public consumption

inefficiency of mixed clubs, more resources must be consumed than in a

homogeneous club to reach a given utility level. With the same conclusion

holding for the b-types, the negativity of (16) (and the optimality of H)

follows. It may also be shown that H is optimal in the transferable

utility case whenever the type-a preference parameter Q from Proposition 2
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is sufficiently large (indicating a substantial difference in

preferences ) .

1T

The preceding analysis of the general choice problem can be

incorporated into Figure 1 by replacing the H and CM frontiers with a

general utility frontier showing for each v the value of u at the problem's

solution. If H or CM is optimal at a given v, then the general frontier-

coincides with either the H or CM frontier at that point. Otherwise, the

general frontier is higher than either of the other frontiers.

While it was seen above that local governments can handle income

redistribution under the CM configuration, a national redistribution

program must exist to carry out the interclub transfers that will typically

be required in a PM configuration. Since local governments, however, can

handle part of the redistributive duties under PM, such a configuration can

be supported by a dual system involving both local and national transfers.

3. Positivei Analysis

The key feature of standard models of altruism is that through the

voluntary action of individuals in the economy, the utility of the poor

group is raised above the level corresponding to the original distribution

of income. The purpose of the positive analysis in this section of the

paper is to see whether this outcome obtains in the present model. The

goal is to determine the level of v that actually emerges as a result of

decentralized behavior (v, of course, was parametric in the planning

problem). The analysis is carried out under the assumption that clubs are

organized by competitive developers, as in Berglas and Pines (1980. 1981).

A key feature of the competitive model is that developers, being small

operators, are not able to make interclub transfers. This means that PM

configurations and all H configurations except one are not attainable in
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the model. The only feasible configurations are the CM configuration and

the H configuration based on the original distribution of income, neither

of which involves interclub transfers. The unattainability of some club

configurations means that equilibrium in the model may not be efficient.

To reduce the likelihood of this outcome, one possible source of

inefficiency is removed by the assumption that generalized altruism is

absent (6 = 0), which means that the H frontier in Figure 1 is always

downward sloping. This rules out a situation in which the one attainable H

configuration, denoted NR for "no redistribution", is automatically Pareto-

inefficient as a result of being dominated by one of the unattainable

configurations on the H frontier.

A critical additional assumption is that in forming mixed clubs,

developers are required (by law, perhaps) to mix the a's and the b's in

accordance with the overall composition of the population, forming clubs

with type-b proportions o equal to 8. This requirement will be referred to

as the "club composition constraint." As will be seen below, equilibrium

may not exist when developers are allowed to choose o.

The analysis first derives the features of the homogenous and mixed

clubs organized by developers. The discussion then identifies the club

structure (homogeneous or mixed) that actually emerges in equilibrium.

Consider the problem faced by a developer organizing a homogeneous type-a

club. ls His choice variables are the public good level in the club and the

size of its population. Being competitive, the developer is a "utility-

taker," which means that the club entry fee P" that he charges must allow

the a's to achieve at least the prevailing utility u for their type.

Recalling that 6=0 and that homogeneous clubs must reflect the original

distribution of income, P~ therefore satisfies U( I"-P",z",0) > u. In
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equilibrium, this relationship will hold as an equality, implicitly

determining the entry fee as a function of z" and u. Differentiation shows

that Pa is an increasing function of the the public good level (Px" =

U»/U x ) and a decreasing function of u. The developer's problem is then to

maximize the following profit expression by choice of z" and n":

K m _ n-p-( z - >u )
- C(z a ,n"). (17)

The first-order conditions are the Samuelson condition (3) and P" - Cn° =

0. In a zero-profit equilibrium, the latter condition reduces to the per

capita cost-minimization condition (5) and (substituting the budget

constraint) rc
a = reduces to the resource constraint of the club (note

that u becomes endogenous when the zero-profit condition is added). The

equilibrium and planning conditions are therefore identical, implying that

developer-organized clubs are efficient. Since exactly the same argument

applies to the creation of type-b clubs, it follows that the utilities in

competitively-organized homogeneous clubs lie on the H frontier of Figure 1

at point NR.

Now consider the problem of the mixed-club developer, who provides a

common level of the public good to both the a's and the b's. While the a's

may voluntarily enter a mixed club to benefit from the presence of the b's,

the b's themselves have no such incentive and will require compensation in

the form of a transfer payment to join a mixed club. The transfer T is

provided by the developer, who collects the necessary funds from the a's.

While the two groups pay a common club entry fee P, the presence of the

transfer makes their net costs of joining the club different.

For a mixed club to attract residents, the formal requirement is that

P and T assume values that allow each individual to achieve at least the
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prevailing utility level for his type. P and T are then jointly determined

by the following conditions:

U(I»-P-0T/(l-0),z,af(0)v) =u (18)

V(I b-P+T,z) = v. (19)

(note in (18) that the per capita tax on the a's depends on the type-b

proportion, -which is set at to satisfy the club composition

constraint)

.

as Total differentiation of (18) and (19) shows that P z = (1-

QJU^/U^ + ev^/V^ and that P is decreasing in u. zo As before, the developer

chooses z and n to maximize

it = nP(z.u.v) - C(z,n) , (20)

with first-order conditions being the Samuelson condition (8) and P -• C„ =

0. As before, the latter condition reduces to the per capita cost-

minimization condition (9) in a zero-profit equilibrium. Also, after

multiplying the type-a and type-b budget constraints by (1-0) and

respectively, adding, and substituting the implied P into (20), the zero-

profit condition gives back the mixed-club resource constraint. As a

result, the equilibrium and planning conditions are once again equivalent,

implying that competitively-organized mixed clubs are efficient.

While utility levels for both the a's and the b's were determined

endogenously in the creation of homogeneous clubs, there are only three

conditions to determine four unknowns (z.n.u.v) in the mixed-club case. As

a result, one of the parametric utilities (say v) remains undetermined in

this case. The efficiency result therefore means that clubs are efficient

conditional on v, implying that the economy reaches some point on the CM

frontier as a result of the activities of developers.
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Having looked separately at homogeneous and mixed clubs, it is now

possible to analyse the club structure that emerges in equilibrium. For a

club configuration to be an equilbrium, it must accomodate the economy's

population and there must exist no alternative clubs that are both

profitable (yielding positive profit for the developer) and viable

(offering potential residents higher utility than they enjoy in the given

configuration). With this in mind, the following result can be

established:

Proposition 7. Assume that generalized altruism is absent and that
clubs are organized by competitive developers who are subject to the
club composition constraint, as described above. If there are no

points on the CM frontier satisfying u > uNR and v > vNR . where uNR
and vNR are the utility levels at point NR on the H frontier, then
the equilibrium club configuration is the homogeneous configuration
corresponding to NR . If the CM frontier contains points satisfying u

> uNR and v > vNR , then multiple equilibria are possible. Each
equilibrium configuration is mixed, with any point on the CM frontier
satisfying u > uNR and v > vNR and not Pareto-dominated by some other
point corresponding to a possible equilibrium.

To prove the first statement in the proposition, the first step is to

recall that in the homogeneous case, club entry fees (and hence the profit

levels of developers) are decreasing functions of the group utility levels.

Next, note that under the assumption that no points on the CM frontier

satisfy u > uNR and v > vNR , a developer-organized mixed club must yield a

utility level lower than the NR level for at least one group. Suppose

without loss of generality that such a club has u = u' < uNR . This club

cannot be part of an equilibrium configuration because a homogeneous type-a

club offering a utility u" between u' and uNR would attract away the a's

and earn its developer a positive profit (this follows because K^ n < and

rc~ = when u = uNR ). With a mixed-club equilibrium ruled out by this

argument, consider the homogeneous configuration corresponding to NR

.
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First, since any viable alternative homogeneous club must offer a utility

higher than the NR level to one group, it. will lose money. Similarly,

since a viable mixed club must also improve on the NR utilities, it must

lie above the CM frontier. But since mixed-club profit is zero on the

frontier and rcu < 0, such a club also loses money. This establishes that

the homogeneous NR configuration is the equilibrium under the given

assumptions

.

21

Now suppose that the CM frontier passes to the northeast of NR, so

that some of its points satisfy u > uNR and v > vNR . In this case, the

argument used above to rule out mixed-clubs shows that all CM points with

at least one utility less than the NR level are not equilibria (viable and

profitable homogeneous clubs exist). Furthermore, the homogeneous NR

configuration cannot be an equilibrium in this case since a mixed club

offering a utility pair below the CM frontier but still to the northeast of

NR will offer higher utilities than NR and be profitable. This leaves

points on the CM frontier to satisfying u > uNR and v > vNN as candidates

for equilibria. Suppose one of these points with coordinates (u'.v 1

) is

Pareto-dominated by another such point with coordinates (u",v"), a

possiblity given that the CM frontier may contain upward-sloping segments.

In this case, (u'.v 1

) cannot be an equilibrium because a mixed club

offering a utility pair slightly below (u",v") would be viable and

profitable. The remaining undominated points, however, satisfy the

requirements of equilibrium. First, since any profitable homogeneous club

must offer its group a utility below the NR level, such a club will not be

viable relative to any point to the northeast of NR . Second, any mixed

club (profitable or otherwise) offering a utility pair not to the northeast

of NR will not be viable relative to a point northeast of NR since one of
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its utilities will be lower. Finally, consider profitable mixed

alternative clubs to the northeast of NR . Relative to an undominated

point, at least one of the utilities for any such club must be lower since

profitable clubs lie below the CM frontier and the undominated point is by

definition not dominated by any point on the frontier. This means that

such clubs are not viable relative to an undominated point, establishing

that any such point is an equilibrium.

Note that, for simplicity, Proposition 7 does not cover the case

where the CM frontier intersects the H frontier at NR. In this case, it is

easy to see that the CM and H configurations corresponding to NR are both

equilibria. The second part of Proposition 7 is illustrated in Figure 1,

where the CM frontier is shown passing to the northeast of NR. The Pareto-

undominated CM points in this range, which comprise the set of equilibria,

are contained in the segment JM of the frontier.

This analysis shows that when CM configurations exist that are

Pareto-superior to the status-quo point NR, decentralized behavior drives

the economy to one of these configurations. Since it is easily seen that

the transfer T received by the b's is positive in any such equilibrium, the

outcome is identical to that in a standard altruism model, where one group

voluntarily relinquishes income to help the other. 2Z

If CM is always preferred to PM, then equilibrium in the model is

efficient in that no alternative club configuration is Pareto-superior to

any equilibrium configuration (this is clear from Figure 1). However, if

PM is sometimes superior to CM, then the general utility frontier will

sometimes lie above the CM frontier. In this case, both the mixed- and

homogeneous-club equilibria of the model may be inefficient (the general

frontier could pass above either type of equilibrium point). This
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potential inefficiency is a consequence of the inability of competitive

developers to make interclub transfers.

A difficulty with the conclusions of this analysis is that they

depend critically on the presence of the club composition constraint, which

might be viewed as an unrealistic requirement in a decentralized economy.

Without this constraint, o becomes a choice variable of the developer and

equilibrium may fail to exist. To see this, note that the entry fee P now

explicitly includes o as a argument, with profit maximization requiring nP CT

= 0. This condition reduces to

(l-o) a UKaf ' (o)v/U„ - T = 0. • (21)

Unless (21) holds at o = 9, the previous mixed-club equilibria lose their

equilibrium status since developers can find profitable and viable clubs

with o's different from 0. Since such clubs do not accommodate the

population, no equilibrium exists under the circumstances that previously

led to mixed-club equilibria. In the alternate situation where the CM

frontier passes below NR, equilibrium may or may not exist depending on

whether the u value in a mixed club satisfying (21) and offering v = vNR

exceeds uNR . If this is not the case, then the H configuration

corresponding to NR is the equilibrium. Otherwise, no equilibrium exists.

It is interesting to note that in the absence of the club composition

constraint, equilibrium (when it exists) involves no income redistribution.

This brings to mind the frequently-enunciated concern that local income

redistribution (which is the only kind possible in the model) cannot be

implemented because of the phenomenon of poor chasing rich. While

implementation fails in the present model, the reason is somewhat

different. The problem is not a result of consumer mobility compromising
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the redistribution process but is rather a consequence of developers'

attempts to mix the groups in a manner that is not feasible in order to

best exploit consumer altruism. 23

As a final point, it is interesting to ask how the economy would be

organized if the a-types could specify the club configuration. Under such

an arrangement, the goal of the a's would be to maximize their own utility

subject to the constraint that the b's are willing to participate in the

chosen configuration. Formally, this problem amounts to finding the point

on the general utility frontier that maximizes u subject to the requirement

that v exceeds or equals vNR . Unless this latter constraint is satisfied,

the b's will decline to participate in the chosen configuration, retreating

instead to homogeneous clubs based on the original distribution of income.

A difficulty with this choice process, however, is that cannot be viewed as

decentralized

.

4. Conclusion

Local redistribution is practiced in the U.S. on a variety of

different levels. For example, unequal sharing of the costs of running

school districts and providing other public services leads to extensive

implicit redistribution among households at the community level. Moreover,

the fact that state contributions to federal welfare programs are

substantial and not at all uniform shows that the welfare system involves

an important element of local redistribution. What can be said about such

policies on the basis of the discussion in this paper? The main practical

lesson of the paper is that while local redistribution may be consistent

with efficiency in the presence of spatially-limited altruism, the pursuit

of such policies could involve a substantial welfare cost. Since there is

no reason to think that real world economy mimics the developer model in
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avoiding undesirable equilibria, the economy could conceivably benefit from

homogenization of communities and reassignment of the redistributive

function to higher levels of government. While such a conclusion follows

from the model, it cannot be taken too seriously as a policy prescription.

The main reason is that complementarities in production (as in Berglas

(1976a)) are probably important enough in the real world to invalidate any

call for community homogenization based on public-sector considerations.

In spite of this, awareness of the potential welfare loss from pursuit of

local redistribution can only be beneficial in the analysis of policy

questions related to fiscal federalism.



CM

FIGURE 1
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Footnotes

Professor of Economics and Ph.D. candidate in Economics respectively.
We are indebted to Lanny Arvan for extremely helpful comments on an

earlier version of this paper.

*Brown and Oates (1987) provide a different type of equilibrium analysis
in a model essentially the same as Pauly's.

2Brueckner (1988) used a similar approach to analyse local redistribution
in the absence of .altruism.

3See Berglas and Pines (1981) and Berglas (1984).

^Recall that a previous assumption on C guarantees an interior solution
to (5).

°In a mixed-club problem without altruism, Brueckner (1988) shows that x"
= must hold in the upper range of possible v values, with x b =

holding in the lower range of v values. The present problem exhibits a

similar outcome, with nonnegativity constraints on x" binding for large
values of v. It is also possible that xb may be zero at the CM
solution, although the presence of altruism precludes any definite
statement. While the Samuelson condition (8) is altered when
nonnegativity constraints are binding, this has no effect on any of the
results derived below.

s It should be noted that in contrast to Pauly's characterization of

Pareto-ef f iciency , the welfare of both the rich and the poor is taken
into account in the above discussion (Pauly's Pareto-optimum was defined
relative to the nonpoor members of the club).

T This can be seen by comparing the resource constraint resulting from
complete expropriation of the a's ((2) with x" = z n = 0) to the mixed-
club constraint with xa = (the maximum value of v is found by

maximizing type-b utility subject to this constraint). The latter
constraint is more restrictive, implying that the maximal v is higher
under H than under CM.

B It should be noted that when (10) holds at the H solution, the

nonnegativity constraints on the x 1 cannot be binding at the same v in

the CM problem (this follows because the solutions are identical and the

H solution is interior).

°The derivative is equal to nS
'

( 1-0)C„„/D. where D = -C„„[ (0( 1-9) + 8)nS"
- C«] - (C^ - C x /n)

2
. C„n /D must be positive for the second-order

condition to be satisfied.

1QNote that the utility differential could be positive for all < n < 1,

in which case Ui(v) = 1.
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"Note that the curves in Figure 1 reflect the difference discussed above

in the set of feasible v's under H and CM.

i2The integer problem is again ignored.

13 It should be noted that since homogeneous clubs disappear from the choice

problem when 0=6, the n ±
, z 1

, and x ±h variables in Proposition 5 are

in fact undetermined. This problem is handled by defining shadow values
of these variables equal to their limits as o approaches 9. it is easy

to see that the limiting values are those that minimize the per capita
cost of providing the CM utilities in homogeneous clubs (were they to

exist). It is interesting to note that the disappearance of the

homogeneous-club variables from the resource constraint (13) results in

zero values for the multipliers of (11) and (12) when o = 9.

14To see this, consider the case where o > 9. Letting D denote the cost of

displacing one a-type, total displacement cost equals D times the number
of a's outside mixed clubs, which is (1-9)N - 9N(l-o)/o. To find the
displacement cost per a-type remaining in mixed clubs, this must be

divided by 9N(l-o)/o, which yields D(o-9)/9( l-o) . The derivative of

this expression with respect to o (with D held fixed) evaluated at o = 9

is the LHS of (14). A similar argument applies to (15).

ls If the residents of a mixed club were relocated to homogeneous clubs,
they would consume resources equal to (l-o)n(x ,ah + C"Vn~) + on(x faH +

Cb/nb ) . For this to be greater than mixed club consumption (l-o)nx™ +

onxb + C on a per capita basis, (16) must be positive.

ieNote that the problem encountered earlier appears here as well in that
the x 1

, z, and n variables are undetermined when Q = 0. Once again,
these variables at Q = are set equal to their limiting values as Q
approaches zero. These limiting values minimize the cost of providing
the H utilities in a mixed club (were one to exist).

iVThis follows because, for any o, the derivative expression (16) is a

decreasing function of when Q > 1 , which means that the expression can
be made negative for any o by choosing fl to be sufficiently large.

18Note that It is assumed that developers can identify people by type.

lsNote that T is in fact unrestricted in sign.

aoT« is proportional to U./U,, - V x /Vx .

2

1

It should be noted that this discussion (as well as that below) relies on
the absence of generalized altruism in that the type-a utility level in

an alternative club does not depend on the prevailing type-b utility in
the original club configuration. With generalized altruism, by
contrast, the k value in a alternative mixed club would depend on the
club's own v value as well as the v level in the original configuration.
With type-b utilities nonuniform, the profitability of such a club could
not be evaluated by referring to the CM frontier, which presumes
uniformity. It is easy to see, however, that since the vaweiy part of
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the k argument disappears, the CM and H frontiers are appropriate for

evaluating alternative clubs in the absence of generalized altruism.

!i2 T is positive because the b's reach a higher utility than in a homogenous
club in spite of the efficiency loss of joint public consumption. As a

result, x b + C/n must exceed consumption in a homogeneous club, which
equals I

b
. But since x b = I

b - P + T, it follows that T > 0.
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