EXPERIMENTAL FISHING

TO DETERMINE DISTRIBUTION OF SALMON

 IN NORTH PACIFIC OCEAN AND BERING SEA, 1956

SPECIAL SCIENTIFIC REPORT-FISHERIES №. 302

SPECIAL NOTE

The International North Pacific Fisheries Commission, established in 1953 by the International Convention for the High Seas Fisheries of the North Pacific Ocean, coordinates the research of the member nations: Japan, Canada, and the United States. The resulting investigations provide data to the Commission for use in carrying out its duties in connection with rishery conservation problems in the North Pacific Ocean. Publication of this scientific report has been approved by the United States Section of the Commission.

United States Department of the Interior, Fred A. Seaton, Secretary Fish and Wildife Service, Arnie J. Suomela, Commissioner

EXPERIMENTAL FISHING TO DETERMINE DISTRIBUTION OF SALMON IN THE NORTH PACIFIC OCEAN AND BERING SEA, 1956
by
Mitchell G. Hanavan and George K. Tanonaka Fishery Research Biologists Bureau of Commercial Fisheries

Contribution No. 10 to research conducted with the approval of the United States Section of the International North Pacific Fisheries Commission.

United States Fish and Wildife Service Special Scientific Report--Fisheries No. 302

The Library of Congress has cataloged this publication as follows:
U. S. Bureau of Commercial Fisheries.

Experimental fishing to determine distribution of salmon in the North Pacific Ocean and Bering Sea. 1956Washington, C. S. Dept. of the Interior, Fish and Wildlife Service.
v. illus., fold. maps, diagrs., tables. 27 cm. (U. S. Fish and Wildlife Service. Special scientific report-fisheries)

Vols for 1956- issued as Contribution of the United States. Section, International North Pacific Fisheries Commission.

1. Salmon. 2. Salmon-fishing-Pacific Ocean. 3. Salmon-fishingBering Sea. I. Title. (Series. Series: International North Pacific Fisherles Commission. United States Section. Contribution)

Int 59-104
U. S. Dept. of the Interior. Library
for Library of Congress

The Fish and Wildlife Service series, Special Scientific Report--Fisheries, is cataloged as follows:

U. S. Fish and Wildlife Service.
 Special scientific report: fisheries. no. 1[Washington, 1949-
 no. Illus., maps, dlagrs. 27 cm .

Supersedes in part the Service's Speclal sclentific report.

1. Fisherles-Research.

SH11.A335
639.2072

59-60217

Library of Congress
[2]

TABLE OF CONTENTS

Page
Introduction 1
Description of vessels 2
Gill net construction 3
Operations
Setting 3
Hauling 5
Sampling and preservation of salmon 5
Catch data 5
Length frequencies
Catch by mesh size 15
Catch by species 16
Red salmon 16
Chum salmon 17
Pink salmon 18
Silver and king salmon 18
Vertical distribution of salmon catch 18
Surface water temperatures and salmon catch 18
Species other than salmon 19
Literature cited 19
Appendix 21

EXPERIMENTAL FISHING TO DETERMINE DISTRIBUTION OF SALMON IN THE NORTH PACIFIC OCEAN AND BERING SEA, 1956

by
Mitchell G. Hanavan and George K. Tanonaka
U. S. Fish and Wildlife Service
Seattle, Washington

Abstract

Five vessels were employed from May to October 1956 to study the distribution of Pacific salmons in the North Pacific Ocean and Bering Sea. The operation was designed to (1) provide samples of fish for racial identification, (2) provide evidence of seasonal movements and changes in the distribution of salmon and (3) study the ocean habitat and conditions that control the distribution, movement and survival of salmon.

The area of operation was approximately $2,000,000$ square miles extending from the coast of Washington and Oregon to longitude 175° E. and from latitude $43^{\circ} \mathrm{N}$. to $60^{\circ} \mathrm{N}$. Within this area 195 gill net sets resulted in the capture of $7,963 \mathrm{salmon}$.

Salmon were measured aboard the vessels before freezing. Length frequencies are shown graphically by species and area and in relation to the mesh size in which the fish were capture.

INTRODUCTION

The United States Fish and Wildlife Service as a research agency of the International North Pacific Fisheries Commission, is engaged in a study to determine the extent of intermingling in the North Pacific Ocean and Bering Sea of Asian and North American salmons. In part this program requires (1) the collection of large samples of salmon from an extensive oceanic area and the preservation of these samples for racial analysis, (2) detection and measurement of seasonal movements and changes in the distribution of salmon and (3) the study of the ocean habitat and the conditions that control the distribution, movement and survival of salmon.

The report which follows describes the cruises and operations of five vessels engaged in this program during the 1956 season. They include four schooner-type vessels, the Tordenskjold, Mitkof, Paragon, and Celtic, chartered by the Branch of Fishery

Biology ${ }^{1 /}$, Fish and Wildife Service, and the John N. Cobb, operated by the Exploratory Fishing and Gear Development Section 2/ of the Service.

Figure 1 shows the pattern of this extensive fishing and oceanographic operation, the stations fished by the five vessels, and the distribution of salmon, steelhead and albacore during the period of the study, which extended from mid-May until the first week in October.

During this $41 / 2$-month period there was 195 gill net sets in a sampling area of approximately $2,000,000$ square miles. The total salmon catch was 7,963 or an average

1/ Now Division of Biological Research, Bureau of Commercial Fisheries.

2/ Now Branch of Exploratory Fishing and Gear Research.
of 59 salmon per set for the 135 sets which captured salmon. Albacore were taken on 15 sets and 45 sets produced neither salmon nor albacore.

Oceanographic data were collected at each set and at intervals between fishing stations. A summary of these data was reported by Love (1957) and the data will appear in detail elsewhere.

Individual cruise reports describing these operations in detail were prepared by Richard Hajny, George Tanonaka, Douglas Weber, Richard Johnsen, Eugene Hill and Robert Ting, all of whom served as biologists aboard the vessel. The present report summarizes data presented to the Commission in these more detailed cruise reports.

DESCRIPTION OF VESSELS

Specifications for the four chartered schooner-type vessels were as follows:

Vessel	TORDENSRJOLD	MITKOF	PARAGON	CELTIC
Total length	30 feet	72 feet	90 feet	70 feet
Gross tonnage	57 tons	0. tons	88 tons	57 tons
Breadth	19 feet	$18^{\prime} 4^{\prime \prime}$	19* ${ }^{\prime \prime}$	$17^{\prime \prime} 1^{\prime \prime}$
Draft	9 ${ }^{1 /}$	- feet	9 feet	8' ${ }^{\prime \prime}$
Cruising speed.	8.7 krots	- knots	8.5 knots	8.5 knots
Maximum speed	9.0 knots	9.58 kots	9.0 knots	9.0 knots
Horse power	150	200	105	135
Number of buaks	8	12	13	12
Freezer capacity	92S cu. ft.	$440 \mathrm{cu} . \mathrm{ft}$	$500 \mathrm{cu} . \mathrm{ft}$	$450 \mathrm{cu} . \mathrm{ft}$.

Figure 2.-- Salmon charter vessel M/V Mitkof.

The U. S. Fish and Wildlife Service Exploratory Vessel John N. Cobb is described by Powell and Peterson (1957).

Navigational equipment of the four charter vessels included the following: loran, radio direction finder, fathometer, radio telephone, automatic pilot, and radar (except for the M / V Celtic).

Each charter vessel had a complement of seven men: a master, four crewnan, an oceanographer from the University of Washington, and a Fish and Wildiffe Service biologist.

Figure 2 shows the charter vessel M/V Mitkof, which is similar in appearance to the other schooners described above.

GILL NET CONSTRUCTION

The standard gill net set consisted of 18 shackles (fig. 3). Each shackle of net was approximately 50 fathoms in length (300 feet) and 20 feet deep. Four mesh sizes were used in each set including 6 shackles of $51 / 4$ inch, 6 shackles of $41 / 2$ inch, 3 shackles of $31 / 4$ inch, and 3 shackles of $21 / 2$ inch stretched measure. Gill nets were of nylon constructed in the manner described by Powe 11 and Peterson (1957) with the exception that "Spongex" floats were used in place of cedar in nets constructed for the 1956 season. Two to six fabricated seine floats ($18^{\prime \prime}$ diameter) were placed along the string to supplement the wood and "Spongex" floats.

The 18 shackles were generally arranged in the following order: $51 / 4$ inch, $41 / 2$ inch, $31 / 4$ inch, $51 / 4$ inch, $41 / 2$ inch, and $21 / 2$ inch; the same sequence repeated three times for a total length of approximately 1.05 statute miles.

A 1/2-inch nylon drift cable was attached along the corkline at every 10 feet on the "shock" net and on the first six shackles to help reduce the strain on the corkline. This cable was attached to 200 fathoms of $3 / 4$-inch nylon line, which in turn was secured to the bow of the vessel by a heavy sisal rope which served as a mooring line. The sisal rope and nylon drift line were submerged, acting as a spring line to take up the surge of the vessel.

The Tordenskjold used a 40-foot triangular section of 4-inch cotton trawl net attached at the head of the first shackle to take up the shock of wave action on the gill nets while the Mitkof, Paragon and Celtic used a 180-foot "shark" net for this purpose. Two flagpoles with lights were placed near each end of the string to mark the position of the net during hours of darkness. Figure 3 shows a typical gill net set.

OPERATIONS

Setting

The gill nets were set from the stern while the vessel traveled downwind at a speed of about 4 knots. As the last shackle

Figure 3.--Typical station set.

Figure 4.--Initial phase of hauling operations on the Mitkof. The nylon drift cable is brought in over the roller, around the gurdy and coiled on the deck.

Figure 5.--Gill net with salmon coming around the gurdy on the Mitkof.

Figure 6.--Two crewmen in background repiling the gill nets beside the pilot house on the Mitkof.
passed over the stern, the boat executed a 180-degree turn, and the mooring line was attached to a cleat on the bow. The setting operation required 15 to 20 minutes.

With few exceptions the nets were fished at night from about five in the evening to six in the morning, a total period of approximately 13 hours.

Hauling

Nets were hauled in over a roller on the starboard side of the well deck. As the nets cleared the powered gurdy, or netpuller (figs. 4 and 5), two crewnen picked the salmon out of the net and cleared the web. The net was then passed to the stern and re-piled in readiness for the next set (fig. 6). Hauling required two to three hours, depending on the size of the catch and sea conditions.

Sampling and Preservation of Salmon

Salmon taken out of the nets during hauling were placed in deck bins in accordance with the mesh size from which they were
removed. They were recorded as to species apparent direction of movement, and depth in the net. Upon completion of hauling, the salmon were tagged with a numbered, colored strap tag which was attached to the left gill cover to provide future identification. Fork length measurements were recorded from a measuring board and the fish were then placed in the freezer for shipment to the Seattle 1 aboratory for detailed morphometric examination.

When possible, blood from live fish was frozen for serological studies. Blood samples were obtained by cutting through the caudal penduncle and allowing the blood to drop into a sterile jar.

CATCH DATA

Salmon catches by set, date, position of set, species, and mesh size for the five vessels are shown in tables 1 - 5. lncluded are numbers of hours nets were fished, sea conditions, surface temperatures, incidental fish catches, and observations of sea mammals.

Table 6．－－Summary of catch statistics． （Numbers of fish）

		V	E S	S E	L S			Percent of
		TORDENSKJOLD	MITKOF	PARAGON	CELTIC	COBB	Totals	total catch
Species of salmon	Red	1822	738	387	570	5	3522	44.2
	Chum	610	963	837	1357	0	3767	47.3
	Pink	35	15	133	303	0	486	6.2
	Silver	14	4	31	64	2	115	1.4
	King	23	33	6	11	0	73	0.9
	Total	2504	1753	1394	2305	7	7963	100.0
Catch by mesh size	$51 / 4$ inches	1481	410	334	379	5	2609	32.7
	$41 / 2 \quad "$	911	727	822	1248	2	3710	46.6
	$31 / 4 \quad$＂	96	399	206	634	0	1335	16.8
	$21 / 2 \quad "$	16	217	32	44	0	309	3.9
	Total	2504	1753	1394	2305	7	7963	100.0
Types of set	Night	36	41	41	45	27	190	
	Day	1	0	4	0	0	5	
	Total	37	41	45	45	27	195	
Sets with fish catch	Salmon	32	32	31	36	4	135	
	Albacore	0	4	2	2	7	15	
	None	5	5	12	7	16	45	
	Total	37	41	45	45	27	195	
Fishing time	Average number hours net fished	12 $\frac{1}{2}$	15 $\frac{1}{2}$	132	14 $\frac{1}{2}$	10\％$\frac{1}{2}$	13⿺𠃊⿳亠丷厂犬	
Catch of salmon per salmon set		78.4	54.8	45.0	64.2	1.7	59.0	

[Including only the 32 sets which captured salmon]

Table 8. --Catch per shackle of salmon by species and mesh size.
M/V MITKOF
[Including only the 30 sets which captured salmon]

- $5 \frac{1}{4}$-inch mesh $4 \frac{1}{2}$-inch mesh $\quad 3 \frac{1}{4}$-inch mesh \quad-inch mesh mesh

of No. Catch per No. Catch per No. Catch per No. Catch per Catch per

$$
\begin{gathered}
\infty \\
0 \\
m \\
m \\
i \\
i
\end{gathered}
$$

m

$$
\begin{array}{lr}
\text { Species } & \text { Catch } \\
\text { Red } & 738 \\
\text { Chum } & 963 \\
\text { Pink } & 15 \\
\text { Silver } & 4 \\
\text { King } & 33 \\
\hline
\end{array}
$$

$$
42.1
$$

$$
0.9
$$

$$
1.8
$$

$$
17
$$

$$
17
$$

$$
410
$$

$$
1.54 \quad 335
$$

$$
1.54
$$

$$
.01
$$

$$
.11
$$

$$
2.70
$$

$$
2.42
$$ fish shackle fish shackle shackle

. 07

$$
4.88 \quad 399 \quad 5.25 \quad 217 \quad 2.86 \quad 3.84
$$

2.30
.07
. 02

11
727

$$
1.03
$$

$$
167
$$

$$
\begin{array}{lll}
67 & 2.20 & 46
\end{array}
$$

$$
227
$$

$$
4
$$

$$
0
$$

$$
0
$$

$$
.05
$$

-

N

$$
\begin{aligned}
& \pm \\
& N \\
& N
\end{aligned}
$$

$$
\rightarrow
$$

$$
\begin{gathered}
\text { [e qu } \\
\text { yo }
\end{gathered}
$$

$$
\begin{aligned}
& 0 \\
& i
\end{aligned}
$$

$$
\stackrel{N}{0}
$$

$$
\begin{aligned}
& N \\
& 0
\end{aligned}
$$

$$
0^{\circ} 00
$$

Total 1753

Species	Catch	$\begin{gathered} \text { Percent } \\ \text { of } \\ \text { total } \\ \hline \end{gathered}$	5直－inch mesh 118 shackles		4 $\frac{1}{2}$－inch mesh 201 shackles		34－inch mesh 103 shackles		2 $\frac{1}{2}$－inch mesh 87 shackles		A11 mesh 509 shackles
			No． fish	Catch per shack1e	No． fish	Catch per shack1e	No． fish	Catch per shackle	$\begin{aligned} & \text { No. } \\ & \text { fish } \end{aligned}$	Catch per shack1e	Catch per shackle
Red	387	27.0	76	． 64	195	． 97	86	． 84	30	． 35	． 76
Chum	837	60.0	212	1.80	525	2.61	98	． 95	2	． 02	1.64
Pink	133	9.5	18	． 15	94	． 47	21	． 20	0	0	． 26
Silver	31	2.2	24	． 20	6	． 03	1	． 01	0	0	． 06
King	6	0.3	4	． 03	2	． 02	0	0	0	0	． 01
Total	1394	100.0	334	2.82	822	4.10	206	2.00	32	． 37	2.74

Table 10．－－Catch per shackle of salmon by species and mesh size．
［Including only the 36 sets which captured salmon］

Species	Catch	$\begin{aligned} & \text { Percent } \\ & \text { of } \\ & \text { total } \\ & \hline \end{aligned}$	5交－inch mesh 215 shackles		4夜－inch mesh 216 shackles		3d－inch mesh 108 shack1es		2交－inch mesh 104 shackles		A11 mesh 643 shackles
			No． fish	Catch per shackle	No． fish	Catch per shackle	No． fish	Catch per shack1e	No． fish	Catch per shackle	Catch per shackle
Red	570	24.7	116	． 53	304	1.40	129	1.19	21	． 21	． 88
Chum	1357	58.9	140	． 65	705	3.26	493	4.56	19	． 18	2.11
Pink	303	13.1	81	． 37	215	． 99	7	． 06	0	0	． 47
Silver	64	2.8	39	． 18	17	． 07	5	． 04	3	． 02	． 10
King	11	0.5	3	． 01	7	． 03	0	0	1	． 01	． 02
Total	2305	100.0	379	1.76	1248	5.75	634	5.85	44	． 42	3.58

Figure 7.--Catch by Tordenskjold of all species of salmon. Length frequency of 2,013 salmon in relation to mesh size.

Figure 9.--Catch by Paragon of all species of salmon. Length frequency of 1,383 salmon in relation to mesh size.

Figure 8.--Catch by Mitkof of all species of salmon. Length frequency of 1,665 salmon in relation to mesh size.

Figure 10.--Catch by Celtic of all species of salmon. Length frequency of 2,102 salmon in relation to mesh size.

Table 6 (page 11) is a summary by vessels of the total salmon catch by species and mesh size, total number and types of gill net sets, the average number of hours nets were fished, and the catch of salmon per set.

The Tordenskjold operated in the eastern Bering Sea and Bristol Bay (fig. 1) from May 24 to September 21 with two periods (June 26 to July 23 and August 15 to September 10) spent in king crab studies in the eastern Bering Sea. A total of 36 night and 1 day set was made by the Tordenskjold with salmon catches ranging from 1 to 987 fish.

The Mitkof operated in central Bering Sea and in the North Pacific Ocean, south of the western Aleutians (fig. 1). Fishing extended from May 16 to September 16. A total of 41 night sets were made with salmon catches ranging from 2 to 323 fish.

The Paragon operated in the area south of the Alaska Peninsula and the eastern Aleutians (fig. 1) and fished from July 11 to September 24; a total of 41 night sets and 4 day sets were made within this period. Salmon catches ranged from 3 to 175 fish per set.

The Celtic's area of operation was in and south of the Gulf of Alaska on longitude $140^{\circ}, 145^{\circ}, 150^{\circ}$, and $155^{\circ} \mathrm{W}$. (fig. 1). Fishing extended from July 12 to September 19 and catches ranged from 4 to 150 salmon per set.

The Fish and Wildife Service's John N. Cobb operated in the area off Washington and Vancouver Island between latitude 45° and $50^{\circ} \mathrm{N}$. westward to longitude $145^{\circ} \mathrm{W}$. (fig. 1). The primary purpose of this cruise was to locate areas of albacore abundance. Of the 27 gill net sets made during the period July 17 to August 29 , four caught saimon. Catches ranged from 1 to 3 fish.

Catch per-unit-effort data for the four charter vessels are shown in tables 7-10 (pages 12 and 13). Effort data for the John N. Cobb are not included because of the small number (7) of salmon taken.

In eastern Bering Sea, where the Tordenskjo1d encountered mature reds migrating to Bristol Bay, the $51 / 4$-inch mesh proved most efficient, accounting for more than half the total catch. The area occupied by
the Mitkof, central Bering Sea and south of the Aleutians, produced smaller fish and a greater proportion of juvenile reds and chums. Significant numbers of juveniles were taken in the $21 / 2$-inch mesh, most of them in central Bering Sea. The $31 / 4$-inch mesh proved most efficient for the Mitkof. The paragon, fishing south of the Aleutians and the Alaska Peninsula, took few juveniles. The $41 / 2$-inch mesh proved most efficient in this area. Further to the east, south of Kodiak and the Gulf of Alaska, the Celtic's catch was largely immature-adult chums. Adjusting catch to number of shackles fished shows that $41 / 2$-inch and $31 / 4$-inch meshes were equally effective in this area.

Combined catches from all areas show that the $41 / 2$-inch mesh was most effective, with a catch of 4.87 fish per shackle; $51 / 4$-inch mesh was second with 3.85 fish per shackle; followed by $31 / 4$-inch mesh with 3.49 fish per shackle; and $21 / 2$-inch mesh with 0.85 fish per shackle.

LENGTH FREQUENCIES

Catch by Mesh Size

Figures 7-10 and Appendix table 1 show the fork lengths of salmon caught in the $51 / 4-, 41 / 2-, 31 / 4-$, and $21 / 2$-inch mesh nets. These are listed by vessel or area since the vessels fished separate areas. 3 The mean fork length of salmon taken in the $51 / 4$-inch mesh nets by the Tordenskjo1d (fig. 7) was 57.4 centimeters, in the $41 / 2$-inch mesh the mean length was 54.2 centimeters, in the $31 / 4$-inch mesh 55.2 centimeters, and in the $31 / 4$-inch mesh - 55.8 centimeters. The $51 / 4$-inch and $41 / 2$-inch meshes, which took over 95 percent of the total catch, showed selectivity for size of fish. Apparently very few small fish were available for capture in eastern Bering Sea as few were taken in the smaller mesh nets. Predominantly the fish taken in this area were mature red salmon.

The fork lengths of salmon caught by the Mitkof (fig. 8) show a more pronounced mesh-size selectivity, indicating that the stocks fished in the Mitkof's area of

3/ John N. Cobb's length frequency data omitted infigures.
operation were composed of individuals with a wide range in size. The mean fork length of salmon caught in the $51 / 4$-inch mesh was 55.6 centimeters; $41 / 2$-inch mesh - 50.1 centimeters; $31 / 4$-inch mesh -40.1 centimeters; and $21 / 2$-inch mesh - 31.8 centimeters. The bulk of the catch in the $21 / 2-$ inch mesh were juvenile chum salmon taken in the central Bering Sea.

Mesh-size selectivity is also evident in catches of the Paragon and Celtic (figs. 9 and 10). This again indicates that the stocks fished by these two vessels in their respective areas of operation were composed of individuals with a wide range in size. The mean fork length of salmon caught in the $51 / 4$-inch mesh by the Paragon was 57.2 centimeters; $41 / 2$-inch mesh - 51.5 centimeters; $31 / 4$-inch mesh - 43.2 centimeters; and $21 / 2$-inch mesh - 33.8 centimeters. For the Celtic, the mean fork length for the $51 / 4-$ inch mesh was 56.1 centimeters; $41 / 2$-inch mesh - 49.7 centimeters; $31 / 4$-inch mesh 40.9 centimeters; and $21 / 2$-inch mesh - 38.3 centimeters.

Figure 11 shows the two extreme sizes of red salmon taken in one set by the Mitkof.

Catch by Species

Figures 12-14 and Appendix table 2

[^0]show the fork length frequencies of red, chum, pink, silver and king salmon captured by the four vessels.

Red salmon. -- The red salmon length distributions (fig. 12) show two or more modes indicating the presence of different age groups within the areas fished by the Celtic, Paragon and Mitkof. In the Celtic's catch the mode falling between 29 and 42 centimeters is composed of 1 -year-in-ocean reds and the mode in the 43- to $60-c e n t i m e t e r ~ i n t e r-~$ val of 2-year-in-ocean reds. Red salmon of 61 centimeters and above are largely 3 -year-in-ocean fish with an increasing degree of overlapping lengths in the older age groups.

The Paragon's catch shows a similar pattern; the $27-$ to $_{0} 43$-centimeter interval is composed of 1 -year-in-ocean reds and the 44to 60 -centimeter interval mode of 2 -year-inocean reds. Fish 61 centimeters and above are largely 3 -year-in-ocean reds.

The Mitkof's 1-year-in-ocean reds fall in the 26- to 40-centimeter interval and the

Figure 12.--Length frequency distributions of red salmon taken by five vessels.

2 -year-in-ocean reds in the 41 - to 62 -centimeter interval. The bulk of the Mitkof's reds were taken in the North Pacific, south of the western Aleutians.

The Tordenskjold's red salmon catch exhibits a definite unimodal curve. Of the 1,390 red salmon measurements, approximately 76 percent were those caught on the two stations south of the Pribilof Islands on June 20 and 21 . These were in the majority 2-year-in-ocean reds. The absence of small reds during the period from May to September and the capture of large numbers of migrating adult fish at two stations suggest that the eastern Bering Sea and the Bristol Bay area are a migratory path rather than a major feeding ground for red salmon.

The John N. Cobb's red salmon catch included $\overline{\text { five }} \overline{\mathrm{f}}$ ish ranging from 60 to 65 centimeters in fork length.

Chum salmon.--There are several modes in the length frequencies of chum salmon captured by the Celtic, Paragon and Mitkof,

Figure 13.--Length frequency distributions of chum salmon taken by four vessels.
indicating the presence of different age groups within their areas of operation.

Age analysis indicates that the Celtic's pronounced bimodal curve is made up of 2 nd-year chums in the 33 - to 45 -centimeter interval and 3rd-year chums in the 46- to 61-centimeter interval, with a very small number of 4 th-year fish overlapping the latter in length.
. Chums caught by the Paragon operating south of the Alaska Peninsula and eastern Aleutians, during the same period as the Celtic (mid-July to mid-Stptember), exhibit a pronounced mode in the 43- to 70 -centimeter length interval. This mode includes 63 percent 3 rd-year chums and 37 percent 4 th-year chums. The 2nd-year chums fall in the 31 - to 42 -centimeter interval.

A distinct group of 2nd-year chums is found in the 28- to 35 -centimeter interval of the Mitkof's catch. These fish, with the exception of one, were caught in the central Bering Sea from July 6 to 15 . The remaining group, in the 36 - to 71 -centimeter interval, is composed of 2 nd-, 3 rd- and 4 th-year chums with a great degree of overlap in length.

The unimodal curve of the Tordenskjold's catch is composed 1 argely of mature 4 th-year chums. The absence of small chums from May

PINK SALMON

Figure 14.--Length frequency distributions of pink salmon taken by four vessels.
to September in the eastern Bering Sea and Bristal Bay is as marked as the absence of small reds, lending further evidence that eastern Bering Sea is not a feeding area for immature salmon.

Pink salmon.--The greater part of a small catch of pink salmon was taken in the Gulf of Alaska and the general vicinity of Kodiak Island in 1ate July and early August; more than half of the total by the Celtic (fig. 14). Small numbers were taken in midJune by the Mitkof in the central Aleutians and by the Tordenskjold in eastern Bering Sea.

Silver and king salmon.--As shown in tables $1-6$ (pages $6-11$), silver and $k i n g$ salmon were taken in small numbers and were widely distributed. Six juvenile silvers, 26 to 34 centimeters in 1 ength, were taken near Kodiak Island. Most of the silvers captured were in the 50 to 70 -centimeter length range.

King salmon ranged from 27 to 90 centimeters in length with no clearly dominant size evident in the small numbers captured. The Mitkof operating in the westernmost areas made the 1 argest catch, 33. A few small kings, 27 to 38 centimeters in length, were taken by the Mitkof and the Tordenskjold, all of them in Bering Sea.

VERTICAL DISTRI BUTION OF SALMON CATCH

It has been observed that most gillnetted salmon are taken near the surface. The Tordenskjold, with a predominance of maturing red salmon in the catch, captured 1,366 or 55 percent in the upper $1 / 3,699$ or 28 percent in the middle $1 / 3$, and 408 or 17 percent in the lower $1 / 3$ of nets which are approximately 20 feet in depth. This vertical distribution is in conformity with the observations of Barnaby in 1939 (Barnaby, 1952) who reported that with a net some 90 feet in depth at least 95 percent of the catch was taken within 30 feet of the surface and "many of the fish were caught in the top fathom". His catches were made at the entrance to Bristol Bay on a line from Cape Seniavin to Cape Newenham, and consisted of maturing red and chum salmon. Barnaby's sets were made during the day while the Tordenskjold's were made at night.

Total season's catch of the Mitkof in 1956 shows 47 percent (523) in the top, 40 percent (447) in the middle, and 13 percent (144) in the bottom third of the nets; the Paragon, 42 percent (586), 44 percent (614), and 14 percent (195); and the Celtic, 51 percent (1,045), 26 percent (523), and 23 percent (462). Cursory inspection of the record sheets indicates that catches tend to be greater near the surface in clam or moderate seas, increase in the lower portion of the nets during periods of rougher we at her.

An evaluation of vertical distribution of salmon on the basis of this evidence might, however, be misleading. While errors of observation and record should be minor and compensatory, there is little doubt that a bias does exist in the nets themselves resulting from the fact that fish can swim under but not over them. This tends to increase the efficiency of the upper portion of the net in relation to the deeper portion.

The evidence does suggest, however, a surface tendency on the part of the salmon which may be most pronounced in migrating mature fish and may be influenced in some degree by the condition of the sea. Fukuhara (1953) notes that it is the experience of the extensive Japanese high seas gillnet fishery that 85 to 90 percent of the salmon are taken in the upper 10 feet of net, and Powell and Peterson (1957) observe that 53 percent of the salmon taken by the John N. Cobb in 1955 were gilled in the upper third of the nets.

SURFACE WATER TEMPERATURES AND SALMON CATCH

Surface water temperatures in the region in which salmon were captured ranged from 32.9° to $58.2^{\circ} \mathrm{F}$. Variations relating to both area and season contribute to this temperature range of 25.3°. Lower temperatures were encountered in eastern Bering Sea and warmer temperatures near the southern boundary of salmon distribution in the North Pacific. No juvenile red or chum salmon were captured in temperatures below $40^{\circ} \mathrm{F}$. and, in Bering Sea, the 1 argest catches of mature red salmon were associat ed with water temperatures of 42° and $44^{\circ} \mathrm{F}$. In warmer waters south of the Aleutian

Islands the largest salmon catches were made in waters ranging from 49° to $55^{\circ} \mathrm{F}$. with the largest total catch associated with a $50^{\circ} \mathrm{F}$. surface temperature.

SPECIES OTHER THAN SALMON

Catches of species other than salmon, by vessels and by sets, are shown in tables 1-55 (pages 6-10). These data also are summarized in table 11, below.

The range of steelhead (Salmo gairdneri gairdneri) generally coincides with that of the salmon. However, most steelhead were taken in the Gulf of Alaska and none were taken in Bering Sea. In contrast, a small number of chars (Salvelinus malma) were caught in Bering Sea, but none were taken in other areas.

Albacore (Thunnus alalunga) were taken near the juncture of sub-Arctic and central Pacific waters. The Mitkof recorded the largest catch, 26 albacore on set number 27 at $47^{\circ} \mathrm{N} ., 175^{\circ} \mathrm{W}$.

Next to salmon, the pomfrets (Brama raii) were the most numerous species taken. They were caught in large numbers in both salmon and albacore waters of the North Pacific

Ocean with the apparent center of abundance near the southern limits of salmon distribution. None was taken in the Bering Sea.

Of the four species of sharks taken on the high seas, blue shark (Prionace glauca) were the most numerous, the greatest number occurring in the southern waters. The Mitkof caught 92 blue sharks on set number 28 at 47° N., 180°. \&.

The capture of five boarfish (Pseudopentaceros richardsoni) by the Paragon and Celtic is the first reported occurrence of this species in the North Pacific Ocean, and is an extension of its known range by 5,000 miles (Welander et al., 1957).

One of the John Dories (Allocyttus verrucosus) captured by the Celtic is the first of this species recorded from the northern hemisphere (Welander et al., 1957).

LITERATURE CITED

BARNABY, JOSEPH T.
1952. Offshore fishing in Bristol Bay and Bering Sea. U. S. Fish and Wildiife Service, Special Scientific Report--Fisheries No. 89, 30 pp . October.

Table 11.--1ncidental catch.

Common name	Scientific name	V	E S	S E	S		Total
		TORDENSKJOLD	MITKOF	PARAGON	CELTIC	COBB	
Steel head	Salmo gairdneri gairdneri		9	32	64	1	106
Albacore	Thunnus alalunga		38	-	5	25	77
Pomfret	Brama raī		426	644	542	667	2279
Jack mackerel	Trachurus symmetricus			40	85	497	622
Giant skilfish	Erilepis zonifer			19	20	2	41
Atka mackerel	Pleurogrammus monopterygius		s		8		11
Three-spined sticklebacks	Gastercsteus sp.				25		25
Handsaw fish	Alepidosaurus aesculapius				1		1
Boarfish	Pseudopentaceros richardsoni			4	1		5
John Dory	Allocyttus verrucosus				1		1
Snapper	$\overline{\text { Sebastodes }}$ Sp.			1			1
Squaretail	Tetragonurus cuvieri		5	36			41
Sablefish	Anoplopoma fimbria			1		2	3
Brown ragfish						1	1
---	Anotopterus pharao		4	2	1		7
---	Taractes princeps			1			1
Blue shark	Prionace glauca		181	33	47	225	486
Mackerel shark	Isurus nasus	2	13	19	9	2	45
Dogfish shark	Squalus acanthias		2	,	2		5
Mud shark	Hexanchus griseus			1			1
Herring.	Clupea pallasi	24		1			25
Yellowfin sole	Limanda aspera	12					12
Dolly Varden trout	Salvelinus malma	34	1				35
Juvenile wolf-eels	Anarrhichas orientalis	2					2
Sea poacher	Agonus acipenserinus	6					6

FUKUHARA, FRANCIS M.
1953. Japanese 1952 North Pacific salmon-fishing expedition. U. S. Fish and Wildiife Service, Commercial Fisheries Review, 15(2): 1-17. February.

LOVE, CUTHBERT M.
1957. Oceanographic observations in the North Pacific aboard vessels of the U. S. Fish and Wildife Service, summer and fall, 1956. University of Washington, Department of Oceanography, Special Report No. 27. 42 pp . January.

POWELL, DONALD E., AND ALVIN E. PETERSON
1957. Experimental fishing to determine distribution of salmon in the North Pacific Ocean, 1955. U. S. Fish and Wildiife Service, Special Scientific Report--Fisheries No. 205. 30 pp. July.

WELANDER, ARTHUR D., RICHARD C. JOHNSEN, AND RICHARD A. HAJNY
1957. Occurrence of the boarfish, Pseudopentaceros richardsoni, and the zeid, Allocyttus verrucosus, in the North Pacific. Copeia, 1957, no. 3: 244-246. August.

	ふ		$\begin{aligned} & E \\ & 2 \\ & 8 \\ & 4 \\ & 8 \\ & 8 \\ & 8 \\ & \underset{\sim}{3} \end{aligned}$
	$\begin{aligned} & \text { 3 } \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-1 \\ & \rightarrow \rightarrow-1 \end{aligned}$	E ผ ■
N1 Nin ¢ ¢			
		 © \square 	
		 	吕
			\＄

[^0]: Figure ll.--Maximum and minimum sizes of red salmon taken in one set by the Mitkof. The smaller is a one-winter-in-ocean fish while the larger may have spent either two or three winters at sea.

