LETHAL DOSES OF SEVERAL COMMERCIAL CHEMICALS FOR FINGERLING CHANNEL CATFISH

UNITED STATES DEPARTMENT OF T. FISH AND WILDLIF:

EXPLANATORY NOTE

The series embodies results of investigations, usually of restricted scope, intended to aid or direct management or utilization practices and as guides for administrative or legislative action. It is issued in limited quantities for official use of Federal, State or cooperating agencies and in processed form for economy and to avoid delay in publication. United States Department of the Interior, Fred A. Seaton, Secretary Fish and Wildlife Service, Arnie J. Suomela, Commissioner

> LETHAL DOSES OF SEVERAL COMMERCIAL CHEMICALS FOR FINGERLING CHANNEL CATFISH

> > by

Howard P. Clemens University of Oklahoma

and

Kermit E. Sneed University of Oklahoma Research Institute Norman, Oklahoma

United States Fish and Wildlife Service Special Scientific Report--Fisheries No. 316

> Washington, D. C. September 1959

LETHAL DOSES OF SEVERAL COMMERCIAL CHEMICALS FOR FINGERLING CHANNEL CATFISH

by

Howard P. Clemens and Kermit E. Sneed

The data in the following table were collected during the screening of several chemicals to determine the toxicity of some of those in use or that might be useful in various phases of channel catfish culture. The information reported should be useful to fishery workers interested in control of diseases, parasites, aquatic vegetation, and pollution of our streams and lakes. We have not yet tested the effectiveness of these chemicals for these control purposes.

Experiments were conducted in a manner identical with those previously reported $\frac{1}{2}$, with the exception of chemicals marked with an asterisk in table 1. In these tests, 4-gallon aquariums were used instead of quart jars, and 10 channel catfish fingerlings, 2 to 3 inches long, were placed in each aquarium. The diluent in all cases was tap water of the University of Oklahoma, and its chemical analysis was reported in the paper referred to above. One hundred or two hundred fish were used in each experiment, 10 fish at each concentration. All concentrations are reported as parts per million (p.p.m.) by weight of material as it came from the bottle except that chlordane, acetic acid, Chem-Fish Special, sodium arsenite, toxaphene, sodium pentachlorophenolate, and formalin were expressed as p.p.m. by volume.

We are grateful to the following companies who supplied the various chemicals in addition to others which have not yet been tested: American Cyanamid Company; Barada & Page, Inc.; California Spray Chemical Corporation; Carbide and Carbon Chemicals Company; Chemical Insecticide Corporation; Dow Chemical Company; E. I. du Pont de Nemours & Company; Mallinckrodt Chemical Works; Merck & Company, Inc.; Monsanto Chemical Company; and Thompson-Hayward Chemical Company.

1/ Clemens, Howard P., and Kermit E. Sneed. The chemical control of some diseases and parasites of channel catfish. U. S. Department of the Interior, Fish and Wildlife Service, Progressive Fish-Culturist, vol. 20, No. 1, 1958, pp. 8-15.

	Tempera-	Lethal	Let	hal dose	s in p.p	.m. at v	arious e	xposure	time in	hours
Chemical	ture (C°)	dose	1	2	4	8	24	48	72	96
Acetic acid	25°	LD	1256	629	629	629	629	629	629	
(by volume)			889	446	446	446	446	388	270	
			629	315	315	315	315	15.8	15.8	
Ammate	1 9°	LD 100	>500	>500	>500	500	500	316	250	250
		LD 50	>500	381	277	268	259	206	203	203
		LD	>500	199	158	158	158	158	158	158
Aramite 15%	20°	LD ₁₀₀	>100	>100	>100	>100	▶100			
		LD ₅₀	>1 00	>100	>100	71 00	▶100			
		LD ₀	>1 00	> 100	7 100	> 100	>100			
Atabrine	25°	LD ₁₀₀	>2.0	▶2.0	>2.0	>2.0	1.3	1.3	1.3	$\frac{2}{1.3}$
		LD ₅₀	>2.0	>2.0	>2.0	^{1/} ≑2.0	0.93	0.89	0.89	^{2/} 0.8
		LD ₀	>2.0	>2.0	>2.0	1.3	0.63	0.63	0.63	<u>2</u> /0.5
Baron	1 9°		31.5	17.7	13.3	13.3	13.3	9.9	7.5	7.5
			17.7	12.6	9.4	8.1	7.2	6.9	5. L	4.5
		LD ₀	13.3	7.5	5.6	5.6	4.2	4.2	1.3	1.3
Ceresan M *	1 9°	LD ₁₀₀	>20.0		<u>3</u> /7.9	7.9	2.0	2.0	2.0	2.0
		LD ₅₀	>20.0		<u>3</u> /6.4	5.0	1.8	1.8	1.6	1.6
		LD ₀	720.0		<u>3</u> /5.0	1.3	1.3	1.3	1.3	1.3
Chem Ban	19°	LD ₁₀₀	>225	7225	>225	>225	95.0	71.2	71,2	22.5
		LD ₅₀	>225	> ²²⁵	>225	>225	26.0	24.8	14.3	14.1
		LD ₀	>225	7225	72 25	7225	5.35	2.25	<1. 69	<1.69
Chem-Fish Special	25°	LD ₁₀₀	>1.0	▶1.0		<u>4</u> /1.0	1.0	1.0	1.0	1.0
(by volume)		LD ₅₀	0.70	0.70		$\frac{4}{0.56}$	0.56	0.56	0.56	0.56
		LD	0.42	0.42		^{4/} 0.42	0,42	0.42	0.42	0.42
Chem Mite	20°	LD ₁₀₀	4.24	4.24	3.18	3.18	3.18	2.39	1.79	1.79
		LD ₅₀	2.58	2.02	1.69	1.44	1.29	1.29	1.22	1,22
		LD ₀	1.34	1.01	0.75	0.75	0.75	0.75	0.75	0.75
Chem Sen 56	20°	LD ₁₀₀	≯4000	2248	1266	400	^{5/} 127	127	95.0	71.0
		LD ₅₀	>4000	1193	834	327	97 . 7	73.7	51.6	41.6
		LD ₀	3007	712	400	2 25	^{5/} 71.2	40.0	∠ 30.0	∠ 30.0
Chlorax	20°	LD ₁₀₀	>5000	5000	5000	5000	3759	<u>3</u> 759	2110	1582
		LD ₅₀	4452	4203	3968	3542	3157	2367	1410	1257
	_	LD ₀	2809	2809	2809	2809	2110	1582	890	890
Chlordane	25°	LD ₁₀₀	>2.0	72.0	>2.0	▶2.0	7 2.0 ·	▶2.0	72.0	>2.0
(by volume)		LD 50	>2.0	≑ 2.0	≑ 2.0	1.33	0.74	0,50	0.50	0.50
		LD	72.0	0.8	0.8	0.32	0.32	0.32	0.32	0.32

Table 1.--Limits of tolerance of fingerling channel catfish exposed to some chemicals used in fish management and in agriculture.

"Nearly equal to".
 At 120 hours.
 At 5 1/2 hours.
 At 76 hours.
 At 76 hours.
 At 30 hours.

	Tempera-	Lethal	Let	hal dose	s in p.p	.m. at v	arious e	xposure	time in	hours
Chemical	ture (C°)	dose	1	2	4	8	25	48	72	96
CMU	20°	LD	>100	>100	>100	>100	>100	100	100	100
			>1 00	>100	≑1 00	±1 00	75.9	66.1	66.1	63.1
		LD ₀	>100	>63.3	>63.3	>63.3	39.8	39.8	39.8	39.8
Copper disodium	19°	LD 100	4000 ر	4000	3007	3007	2247	2247	2247	2247
versenate		LD ₅₀	>4000	2753	2599	2006	1881	1592	1373	838
		LD ₀	> 4000	2247	2247	1688	948	301	301	301
DDD *	20°	LD	>40.0	>40.0	×40.0	>40.0	15.8	6.4	<2.6	(2.6
		LD ₅₀	>40.0	740.0	>40.0	>40.0	<2.6	<2.6	<2.6	<2.6
		LD ₀	>40.0	>40.0	>40.0	24.4	<2.6	<2.6	<2.6	<2.6
DDT 50% dust	19°	LD 100	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0
		LD ₅₀	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0
		LD ₀	>2.0	>2.0	>2.0	>2.0	1.42	1.0	0.36	0.36
Delrad 70	25°	LD 100	>2.0	>2.0	1.6	1.3	1.0	1.0	1.0	1.0
		LD ₅₀	>2.0	≑2.0	1.3	0.93	0.74	0.67	0.67	0.67
		LDO	>2.0	1.6	1.0	0.79	0,50	0.32	0.32	0.32
Dieldrin 50 *	19°	LD 100	>100	>100	>100	6.3	<2.5	<2.5	<2.5	<2.5
wettable		LD $_{50}$	>100	>100	39.6	2.5	<2.5	<2.5	<2.5	<2.5
		LDO	7100	>1 00	4.0	∠2. 5	<2.5	<2.5	<2.5	<2.5
Dilan *	19°	ld ₁₀₀	>20.0	≽20.0	>20.0	2.0	0.8	\$0.5	0.5	0.5
		LD_{50}	>20.0	>20.0	1.08	ζ0.5	ر0.5	ر0.5	40.5	∠0.5
		LD ₀	>20.0	>20.0	<0.5	< 0.5	40.5	<0.5	40.5	<0.5
2-ethy1-1,	19°	LD ₁₀₀	871<	871	871	871	871	871	871	871
3-hexaned io 1		LD 50	>655	753	624	624	624	624	624	624
		LDO	489	489	489	489	489	489	489	489
Fermate *	19°	LD 100	>20.0	>20.0	>20.0	>20.0	<u>6</u> /20.0	8.0	3.2	3.2
		LD 50	>20.0	>20.0	>20.0	>20.0	[▶] / 12.6	3.6	2.2	2.2
		LDO	>20.0	>20.0	>20.0	>20.0	<u>⊳∕</u> 8.0	1.3	0.80	0.80
Ferrous disodium	26°	ld ₁₀₀	>500	>500	>500	,>500	>500	_ 500	> 500	> 500
versenate		LD $_{50}$	>500	>500	>500	>500	<u>,</u> >500	>500	>500	>500
		LDO	>500	>500	>500	>500	>500	>500	>500	> 500
Formalin	25°	LD ₁₀₀	>500	500	316	199	126	126	126	126
(by volume)		LD_{50}	500	263	165	138	87.0	69.0	69.0	69.0
		LD ₀	316	126	126	79.0	50.0	50.0	50.0	50.0
Hept	19°	LD ₁₀₀	222	124	70.0	53.0	30.0	12.0	12.0	12.0
		LD 50	149	86.5	53.4	33.9	12.4	≑9.0	≑9.0	≑9 . 0
		LDO	124	70.0	40.0	22.0	٧٩.0	<9.0	.9.0	<9.0

Table 1. --Limits of tolerance of fingerling channel catfish exposed to some chemicals used in fish management and in agriculture. Continued.

6/ At 27 hours.

chemicals used in fish management and in agriculture. Continued	 Limits of tolerance of fingerling channel catfish expose chemicals used in fish management and in agriculture. 	d to some Continued.
---	--	-------------------------

	Тетрега-	Lethal	Let	hal dose	s in p.r	.m. at v	various	exposure	time in	hours
Chemical	ture (C°)	dose	1	2	4	8	24	48	72	96
Heptachlor *	19°	LD	>8.0	>8.0	>8.0	>8.0	5.1	Z/3.2	^{8/} 2.0	2.0
25%		LD	>8.0	>8.0	>8.0	6.9	1.8	Z/1.6	^{8/} 1.1	0.7
		LD ₀	>8.0	>8.0	>8.0	2.0	0.5	Z/0.5	^{8/} 0.5	0.5
IPC 50%	20°	LD	>100	>100	>100	>100	≥100	>100	>100	>100
110 50%	-0	LD	>100	>100	>100	> 100	>100	89.0	86.5	86.5
		LD ₀	>100	75.2	75.2	75.2	56.2	56.2	56.2	56.2
Isotox 25	1 9°	LD 100	1.58	1.58	1.58	^{9/} 0.89	0.89	0.89	0.89	0.66
wettable			0.89	0.74	0.61	^{9/} 0.57	0.54	0.52	0.49	0.45
		LD ₀	0.37	0.37	0.37	^{9/} 0.21	0.21	0.21	0.21	0.21
Lexone	20°	LD .co	>50.0	50.0	50.0	25.0	<u>10</u> /12.6	12.6	12.6	12.6
			≑ 50.0	22.3	22.0	13.3	10/ 5.6	5.0	3.8	3.4
		LD ₀	25.0	4.5	3.5	2.5	<u>10</u> /0.63	0.63	0.63	0.63
Lignasan	19°	LD.co	>100	42.2	17.8	5.6	^{11/} 3.2	2.4	2.4	2.4
Dignatian		LD = 00	89 1	25 3	10.4	3.6	<u>11/</u> 2.0	2.2	1.7	1.3
		LD_{0}	56.2	17.8	7.5	2.4	≝ 1.3	1.0	1.0	1.0
Lindana 37	100	LD.					4 0	4.0	4.0	$\frac{12}{2}$ 5
Methoxychlor 50%	19	LD 100					2.0	1.0	1.0	$\frac{12}{1}$
		LD ₅₀ LD ₀					1.0	1.9	1.0	<u>12</u> /0.4
	259	10	1.0	0.50	0.25	0.25	0.10	0 10	0.10	0.10
(oxalate salt)	25	LD 100	1.0	0.50	0.25	0.25	0.19	0.19	0.19	0.19
		LD 50	0.79	0.31	0.20	0.17	0.14	0.14	0.14	0.14
			0.40	0,25	0.16	0.10	0.10	0.10	0,10	0.10
Malathion *	20°	LD ₁₀₀	>100	>100	>100	>100	> 100	>100	>100	≻100
25%		LD 50	>100	>100	>100	>100	7 100	57.3	52.2	52.2
		LD ₀	>100	7100	61.0	39.5	39.5	16.0	16.0	16.0
Manganese disodium	26°	LD 100	>500	>500	>500	>500	>500	>500	>500	>500
versenate		LD $_{50}$	>500	>500	>500	>500	>500	>500	>500	>500
		LD ₀	>500	>500	> 500	> 500	>500	>500	ン ⁵⁰⁰	>500
Manzate *	19°	LD 100	60.0	23.9	15.1	<u>13</u> /9.5	6.0	2.4	٤1. 5	₹1. 5
		LD 50	41.5	17.3	12.3	<u>13</u> /5.8	2.7	≑1. 5	Հ 1.5	<1.5
			23.9	9.5	9.5	<u>13</u> /3.8	ζ1.5	<1.5	ζ1.5	<1.5
Neotran	1 9°	LD 100	>400	>400	>400	≯00	>400	169.0	53.0	53.0
		LD	>400	>400	400	264	146	34.4	27.1	21.8
		LD ₀	>400	>400	225	169	71.0	17.0	17.0	7.5
0-Cresol	21°	LD ₁₀₀							14/100	15.8
		LD ₅₀							14/66.8	11.2
		LD ₀							^{14/} 15.8	4.0

7/	At	57	hours
2			1
Ö/	At	11	hours.

 $\frac{11}{12}/ At 28 hours.$ $\frac{12}{12}/ At 269 hours.$ $\frac{13}{13}/ At 14 hours.$ $<u>14}/ At 69 hours.</u>$

At 77 hours.
 At 9 hours.
 At 30 hours.

Table 1, Limits of tolerance of fingerling channel catfish exposed	to some
chemicals used in fish management and in agriculture.	Continued.

	Tempera-	Lethal	Let	hal dos	es in p.p	.m. at	various d	exposure	time in	hours
Chemical	ture (C°)	dose	1	2	4	8	24	48	72	96
Ortho-MH 30 Spray	1 9°	LD 100	>2.4	>2.4	>2.4	>2.4	>2.4	>2.4	2.4	
· · · · · ·		LD 509	>2.4	>2.4	>2.4	>2.4	>2.4	1.7	0.01	
		LD ₀	>2.4	>2.4	72.4	>2.4	0.61	.007	.007	
Parzate (liquid)	19°	LD 100	>2258	358	143	143	143	143	57.0	57.0
		LD 50	66.3	66.3	52.7	35.2	21,1	19.8	18.5	14.3
		LD ₀	23.0	23.0	14.0	14.0	9.0	9.0	9.0	0.9
Pheno1	20 °	LD 100						39.8	39.8	39.8
		LD						16.7	16.7	16.7
		LD ₀						10.0	10.0	10.0
Phenylmercuric	19°	LD	>25	>25	> 25	14.1	5.9	$\frac{16}{4}$, 4	4.4	4 4
acetate (local) ^{15/}			>25	>25	>25	9.1	4.1	$\frac{16}{3.4}$	3.3	3.3
		LD ₀	>25	>25	>25	5.9	3.3	1 <u>6</u> /2.5	2.5	2.5
Phygon-XI.	19°	LD	17/ >5 0	1 18	<u>18/0 50</u>	0.28	^{19/} 0.28	0.21	0.21	0.21
,	- /	100 DD תו	17/25.0	0.54	18/0.26	0.18	19/0.14	0.14	0.14	0.21
		LD_{0}	17/ >5.0	0.21	$\frac{18}{0.12}$	0.05	$\frac{19}{0.05}$	0.14	0.05	0.05
		Ū.	,							
Potassium Dermanganate	25-	LD 100	36.4	12.9	9.1		4.6			
F		LD 50	27.2	8.8	5.2		-3.2			
		LD ₀	9.1	6.5	3.2		<3.2			
Pyridy1mercuric	24°	LD 100	50.0	50.0	21.0	6.7	5.0	0.89	0.50	
acetate		LD 50		34.0	11.9	5.8	3.8		0.49	
		LD ₀	37.6	28.0	8.9	5.0	2.8	0.37	0.37	
Quinine sulphate	23°	LD ₁₀₀	>100	>100	75.2	75.2	56.2	56.2	42.2	42.2
		LD ₅₀	>100	89.0	63.0	50.0	42.0	38.6	35.0	34.0
*		LD_0	>100	75.2	42.2	31.6	31.6	31.6	23.7	23.7
Rivano1	20°	LD 100	13.3	10.0		5.6	4.2	4.2	4.2	4.2
		LD ₅₀	9.7	5.8		3.2	2.8	2.7	2.7	2.7
		LD ₀	5.6	4.2		1.8	1.8	1.8	1.8	1.8
Rotenone	25°	LD 100	>1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
5% cube'		LDro	0.91	0.60	0.58	0.54	0.51	0 47	0 47	0 47
		LD ₀	0.56	0.32	0.18	0.18	0.18	0.18	0.18	0.18
Schadran	200	ΙD	8012	>2012	\$ 901.2	× 9012	N 9012	N 9012	N 9012	N 901 2
o childri un	20	LD 100	20913	> 2012	> 9012	> 9012	> 8012	> 0913	70913	20913
		LD 50	>8913	>8913	>8913	>8913	7 0913	20913		3760
		0	/0/15	,0,10	70713	10713	10710	0713		5700
Sodium arsentie	25°	LD_{100}	>100	>100	>100	>100	75.0	31.6	31.6	31.6
(by for date)		LD_{50}	>100	>100	>100	‡1 00	47.9	25.9	25.9	25.9
		LDO	>100	>100	$>^{100}$	42.0	24.0	17.8	17.8	17.8

<u>15</u>/ Prepared by the Chemistry Department, University of Oklahoma.
 <u>16</u>/ At 45 hours.

 $\frac{17}{18} / \text{ At } 1 \frac{1}{2} \text{ hours.}$ $\frac{18}{19} / \text{ At } 29 \text{ hours.}$

Table 1 Limits of tolerance of	fingerling channel catfish exposed to some
chemicals used in fish	management and in agriculture. Continued.

	Tempera-	Lethal	Let	hal dos	es in p.	p.m. at v	arious e	exposure	time in	hours
Chemical	ture (C°)	dose	1	2	4	8	24	48	72	96
Sodium	25°	LD	>10.0		>10.0	>10.0	>10.0	>10.0	>10.0	>10.0
pent ach lo rophene	olate	LD FO	5.4		1.5	0.86	0.46	0.46	0,46	0.46
(by volume)			2.5		0.63	0.63	0.25	0.25	0.25	0.25
		_								
Sulfotepp *	19"	LD 100	0.0لا	>10.0	>10.0	4.0	1.8	1.8	₹1.0	1.0
		LD 50	>10.0	<1.0	<1.0	<1.0	∠1.0	<1.0	<1.0	<1.0
		LD ₀	7.6	<1.0	∠1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TAG 10% solution	20°	LD 100	>40.0	16.9	5.3	4.0	2.3	1.3	1.3	0.95
		LD ₅₀	≻40.0	8.3	2.7	2.3	1.5	0.78	0.60	0.58
		LD O	≯0.0	3.0	1.3	1.3	0.95	0.40	0.40	0.40
TCA 90%	20°	LD 100	>2000	>2000	>2000	>2000	>2000	52000	≥2000	72000
		LD FO	>2000	>2000	>2000	>2000	>2000	>2000	>2000	- 2000
		LD ₀	>2000	>2000	>2000	>2000	>2000	>2000	>2000	>2000
Tepp	109	I Dune	13 5	>3 5	N3 5	>3 5	35	2.6	2.6	2.6
терр	17	LD 100	• 3 5	>3.5	>3.5	>3.5	2.3	1 7	1.6	1.6
			~73.5	>3.5	>3.5	2.5	1 5	1.7	1.0	1.0
		LD 0	/3.5	10.5	13.5	2.0	1.5	1.1	1.1	1.1
Thiram	1 9°	LD 100	>1.0	>1.0	>1.0	>1.0	>1.0	>1.0	1.0	1.0
		LD ₅₀	>1.0	>1.0	>1.0	>1.0	71.0	>0.63	0.79	0.79
		LD ₀	>1.0	>1.0	>1.0	>1.0	0.63	0.63	0.63	0.63
Toxaphene	20 °	LD 100	>5.0	>5.0	>5.0	>5.0	>5.0	5.0	5.0	5.0
(by volume)		LD 50	>5.0	>5.0	>5.0	÷5.0	2.5	1.9	1.9	1.9
		LD ₀	>5.0	>5.0	>5.0	0.79	0.79	0.79	0.79	0.79
Trypaflavine	2.0°	LD	>100	56.2	$\frac{20}{42}$, 2		17.8	10.0	7.5	7.5
(acriflavine	_ •	100 L D =	87 5	42.4	$\frac{20}{27}$ 6		11 5	6.8	6.4	4 9
hydrochloride)		LD 50	56.2	22.7	20/17 8		7 5	4.2	4.2	4.2
			50.2	23.1	- 17.0		7.5	4.4	4.2	4.6
Versene acid	25°	LD 100	>500	>500	500		316	316	316	316
		LD 50	>500	>500	359		167	133	133	129
		LD ₀	>500	>500	99.8		99.8	99.8	99.8	99.8
Versenol iron	19 °	LD ₁₀₀	>2.2	>2.2	>2.2	>2.2	>2.2	<u>21</u> /2.2	2.2	2 .2
chelate		LD 50	>2.2	>2.2	>2.2	>2.2	1.9	$\frac{21}{1.3}$	1.3	1.3
		LD ₀	72.2	72.2	72.2	1.3	0.95	^{21/} 0.95	0.95	0.95
Zerlate *	19°	LD 100	>2.0	>2.0	>2.0	<u>22/</u> 2.0	2.0	1.26	0.79	0.79
		LD 50	>2.0	>2.0	>2.0	<u>22/</u> 1.1	1.0	0.73	0.58	0,50
		LDo	>2.0	>2.0	>2.0	^{22/} 0.50	0.50	0.32	0.32	0.2
			· · ·					-	-	
Zinc disodium	26°	LD 100	>500	>500	>500	>500	>500	> 500	>500	> 500
vez oczadłe		LD 50	>500	>500	>500	>500	>500	>500	>500	> 500
		LD ₀	>500	>500	>500	>500	> 500	>500	>500	7 500

20/ At 5 hours, 21/ At 57 hours, 22/ At 14 hours.

List OF CHEMICAL PREPARATIONS USED AND THE ACTIVE INGREDIENTS OF EACH

	Chemical or Trade Names	Active Ingredients
1.	Acetic acid	Glacial acetic acid
2.	Ammate	Ammonium sulfamate
3.	Aramite 15% (88R, alkyl aryl sulfite)	Product containing 2-(p-tert-butylphenoxy) isopropyl 2-chloroethyl sulfite, 15%
4.	Atabrine (dihydrochloride) (SN390, Mepacrine hydro- chloride, Erion, Acriquine, Acrichine, Palacrin, Chin- acrin hydrochloride, Meta- quine, Italchin)	3-chloro-7-methoxy 9-(1-methyl-4-diethylaminobutyl- amino) acridine dihydrochloride
5.	Baron	2-(2, 4, 5-trichlorophenoxy)ethyl 2, 2-dichloro- proprionate, 30.5%, related compounds 10.8%
6.	Ceresan M	Ethyl mercury p-toluene sulfonanilide, 7.7% (total mercury as metallic 3.2%)
7.	Chem Ban	Not available
8.	Chem-Fish Special	Rotenone, other cube extractives, methylated naphthalene, and others, 64.7%
9.	Chem Mite	Xylene, p-chlorophenol, p-chlorobenzene sulphonate, rotenone, and other cube'resins, 79%
10.	Chem Sen 56	Active ingredients, 72.5%, incl. sodium arsenite (total arsenic, all in water soluble form, expressed as metallic, 42.0%)
11.	Chlorax "40"	Sodium chlorate, 40%; sodium metaborate, 58%
12.	Chlordane (Velsicol 1068, Octachlor, Octa-Klor)	1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methanoindene
13.	CMU (Karmex, Monuron)	3-(p-chlorophenyl)-1, 1-dimethylurea, 80%
14.	Copper disodium versenate	Copper disodium salt of ethylenediaminetetraacetic acid; 9% Cu ions
15.	DDD (Rhothane, TDE)	Dichloro-dipheny1-dichloroethane, 50%
16.	DDT, 50% dust (Chlorophenothane)	Dichloro-diphenyl-trichloroethane, 50%
17.	Delrad 70 (RADA)	Rosin amine D acetate or technical abietylamine acetates, 70%

Chemical or Trade Name

- 18. Dieldrin 50 (Compound 497)
- 19. Dilan (CS-708)
- 20. 2 ethy1-1, 3-hexanedio1 (Rutgers 612, ethohexadio1)
- 21. Fermate (Ferbam, Kerbam)
- 22. Ferrous disodium versenate (Ferro-Grene)
- 23. Formalin (Formol)
- 24. Hept
- 25. Heptachlor 25% (Velsicol 104, E-3314)
- 26. 1 PC-50% (INPC)
- 27. Isotox 25, wettable
- 28. Lexone
- 29. Lignasan
- 30. Lindane 3% methoxychlor, 50% (marlate, DMDT)

31. Malachite Green (oxalate salt) [Aniline Green, China Green, Victoria Green B or WB, New Victoria Green Extra 0, 1, or II, Diamond Green B, Bx or P Extra, Solid Green 0, Light Green N; Benzal Green, Benzadehyde Green, Fast Green]

32. Malathion 25%

33. Manganese disodium versenate

Active Ingredients

1, 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-1, 4, -4a, 5, 6, 7, 8, 8a-octahydro-1, 4, 5, 8-dimethanonaphthalene, 42.5% Mixture of 1 part 1, 1-bis (p-chloropheny1)-2nitropropane (CS-645A), and 2 parts 1, 1-bis (pchlorophenyl)-2-nitrobutane (CS-674A) -2-ethy1-3-propy1-1, 3-propanedio1, 100% Ferric dimethyldithiocarbamate, 76% Iron as metal, 8% A solution of about 37%, by weight, of formaldehyde gas in water; usually with 10-15% methanol added. Dichloro diphenyl dichloroethane, 50% 1 (or 3a), 4, 5, 6, 7, 8, 8-heptachloro-3a, 4, 7, 7a-tetrahydro-4, 7-methanoindene, 25%. Related ingredients, 9.72%. Inert, 65.28% o-isopropyl n-phenyl carbamate, 50% gamma isomer of benzene hexachloride (from lindane), 25% gamma isomer of benzene hexachloride, 10%; other isomers, 47% Ethyl mercury phosphate, 6.25% gamma isomer of benzene hexachloride of not less than 99% purity. 1, 1, 1-trichloro-2, 2-bis (p-methoxyphenol) ethane. Zinc oxalate of tetramethylpara-aminotriphenylcarbinol 0, 0-dimethyl S-(1, 2-dicarboethoxyethyl) dithiophosphate (XXII), or S-(1, 2-dicarbethoxyethy1) 0, 0-dimethyl phosphorodithioate.

Manganese disodium salt of ethylenediaminetetraacetic acid; 8% Mn ions

	Chemical or Trade Name	Active lngredients
34.	Manzate	Manganese ethylene bis-dithiocarbamate, 70% (manganese equivalent as metallic 14.5%)
35.	Neotran (K-1875)	Bis (b-chlorophenoxy)-methane; 40% of di(4-chloro- phenoxy)-methane
36.	0-Cresol	o-cresylic acid or o-hydroxytoluene
37.	Ortho-MH30 spray	Diethanolamine salt of 1, 2-dihydropyridazine-3, 6-dione, 58%; malic hydroxide equiv., 30%
38.	Parzate Nabam (liquid)	Disodium ethylenebisdithiocarbamate, 19%
39.	Pheno1	Same (carbolic acid)
40.	Phenylmercuric acetate (local)	Same
41.	Phygon-XL (Dichlone)	2, 3-dichloro-1, 4-naphthoquinone, 50%
42.	Potassium permanganate (Chameleon mineral)	S ame
43.	Pyridylmercuric acetate (PMA)	Same; active ingredient, 80%
44.	Quinine sulphate (Quinine)	Same
45.	Rivano1	6, 9-diamino-2-ethoxyacridine, or 2-5-diamino-7- ethoxyacridine
46.	Rotenone 5%, cube	Rotenone, 5%; -toxicarol, 50-60%; -deguelin, 12%; sumatrol, 5-15%; fats, waxes, and acids, 10%; unaccounted for, 8-11%
47.	Schadran (OMPA, Pestox 111)	Octamethyl pyrophosphoramide
48.	Sodium arsenite	Sodium meta-arsenite
49.	Sodium pentachlorophenolate	Same, 83%; other chlorophenols, 12%
50.	Sulfotepp (dithione)	Tetraethyl dithiopyrophosphate
51.	Tag 10% solution	Phenylmercuric acetate, 10%
52.	T.C.A. 90% (sodium TCA)	Sodium trichloracetate, 90% (trichloracetic acid equivalent, 79.3%)
53.	Терр (Тер)	Tetraethylpyrophosphate, 40%; other ethyl phos- phates, 60%
54.	Thiram (Arasan)	Tetramethylthiuram disulfide, 99%
55.	Toxaphene (Compound 3956)	Chlorinated camphene, having a chlorine content of 67-69%

Chemical or Trade Name

Active Ingredients

56.	Trypaflavine (acriflavine hydrochloride, acid try- paflavine, flavinc)	A mixture of hydrochlorides of 2, 8-diamino-10- methylacridinium chloride, and 2, 8-diaminoacri- dine, and containing from 23-24.5% chlorine and about 14.2% nitrogen
57.	Versene acid	Ethylenediaminetetraacetic acid
58.	Versenol iron chelate	Tri-sodium salt of N-hydroxyethylethylenediamine- triacetic acid; chelate compound 57%; iron, expressed as metal, 9% (equivalent to iron expressed as Fe_20_3 , 12.9%)
59.	Zerlate (Ziram) Zimate	Zinc dimethyldithiocarbamate, 76% (total zinc, as metallic, 16.2%)
60.	Zinc disodium versenate	Zinc disodium salt of ethylenediaminetetraacetic acid; 8.6% zinc ions

Î)]