


UNIVERSITY OF

ILLINOIS LIBRARY

AT URBANA-CHAMPAiGN
BOOKSTACKS



Faculty Working Paper 93-0112

Specification Test for a Linear

Regression Model with Arch Process

&̂

S

£
#

&—
<o

^
s ^

f

.

Anil K. Bera
Department of Economics

University of Illinois

Xiao-Lei Zuo
Department of Economics and Statistics

National University of Singapore

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign





BEBR
FACULTY WORKING PAPER NO. 93-01 12

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

February 1993

Specification Test for a Linear

Regression Model with Arch Process

Anil K. Bera

Department of Economics

Xiao- Lei Zuo
Department of Economics and Statistics



Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/specificationtes93112bera



This version: January 1993

SPECIFICATION TEST FOR A LINEAR REGRESSION MODEL
WITH ARCH PROCESS*

Anil K. Bera
Department of Economics

University of Illinois at Urbana-Champaign

and

Xiao- Lei Zuo
Department of Economics and Statistics

National University of Singapore

ABSTRACT

ARCH models are used widely in analyzing economic and financial tme series data. Many
tests are available to detect the presence of ARCH; however, there is no acceptable proce-

dure available for testing an estimated ARCH model. In this paper we develop a test for

a linear regression model with ARCH disturbances using the framework of the informa-

tion matrix (IM) test. For the ARCH specification, the covariance matrix of the indicator

vector is not block diagonal, and the IM test is turned out to be a test for variation in

the fourth moment, i.e, a test for heterokurtosis. An illustrative example is provided to

demonstrate the usefulness of the proposed test.
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l.INTRODUCTION

In a seminal paper, Engle (19S2) introduced the autoregressive conditional hetero-

scedastic (ARCH) models. These models are now very popular in analyzing financial and

economic time series data [for a recent review, see Bera and Higgins (1993)]. There are

many procedures available to detect the presence of ARCH. However, estimated ARCH

models are not, in general, tested thoroughly, possibly because there is no acceptable

procedure for doing that. In this paper we derive a simple specification test for an estimeted

ARCH model in the linear regression framework using White's (1982) information matrix

(IM) test principle.

The plan of the paper is as follows. In section 2, we specify the model and derive an

algebraic structure of the IM test. Comparing with Hall (19S7) and Bera and Lee (1992)

who applied the IM test to linear regression model without and with serial correlation

respectively, in the ARCH framework, the covariance matrix of the indicator vector no

longer has a block diagonal structure due to the inclusion of the ARCH coefficients in the

parameter vector. The algebraic structure of the test is much more complicated. First we

derive a joint test and then concentrate on the components corresponding to the ARCH

coefficients. The test turns out to be a test for time varying fourth moment, i.e a test

for heterokurtosis. The test statistic can be computed by running a simple regression,

and it can be given Chesher (19S4)'s interpretation of Lagrange multiplier (LM) test for

parameter heterogeneity. Local power of the test is also considered here. In section 3, the

results are interpreted. An alternative form of the IM test is also computed by using the

double-length regression proposed by Davidson and MacKinnon (1992) and is presented in



section 4. Section 5 discusses an empirical example to illustrate the usefulness of our test.

A concluding summary is given in section 5.

2. MODEL AND TEST

We consider the linear regression model

yt
= x'

t
(3 + ef (1)

where y t is the t-th observation on endogenous variable, x
(

is a. k x 1 vector of exogenous

variables, and e$'s are assumed to follow an ARCH process. As specified in Engle (1982),

an ARCH(p) process conditional on the information set <&t-\ is described as

€
t |

$,_! ~ N{0,h t )

where

h t = V(e t
|
$,-i ) = o-u + <x\£

2
t -\ + a '-^?-2 + • • • + ap£

2

t-,>, (2)

and a > 0. a
t > 0, J^-i a

* < 1 -
Let

lL
=

(
€?-n €?-2 e?-/))'' and a =

(
a i 5 -,-- ,

ap)'-

Assuming that e
t

is given, the loglikelihood function is the sum of the conditional normal

loglikelihoods function corresponding to (1) and (2). For our ARCH case, all assumptions

mentioned in White (1987) are satisfied and the IM test can be applied to this model.

Let L{6) be the average loglikelihood function and // be the log density function of

the t-th observation and T be the sample size. Then

i i

i t[ 0) = __ Iog7r _._iog /lt
_ _£<_



where 9 = (/?', cio. ci' )' is a
(
k + p + 1 ) x 1 vector of parameters.

Suppose 9 be the maximum likelihood estimator (MLE) of 9. Then, the IM test is

based on the distinct elements of the matrix

C(e)-
i^-hm me) oue) ,,

c«" ~ f ^Hedf + (~W )(~W >
l

t= \

= A(9) + B(0).

where

«»-&%&)t ^ y

dOOO'

dl t (9) dl t (9),n

T^ 09 09
J

Since C{9) is symmetric. IM test just depends on

d(6) = vechC{9) = vech(A{9) + B{9)),

which is a m x 1 vector where /?? = — j^ — . Subject to certain regularity conditions,

it can be shown that the asymptotic covariance of d(9) can be consistently estimated by

[see White (19S2. p. 11)]

i
T

Cov(d) = v(9) = -Y,<>t(d)«dd)'
t=\

where

a,(9) = d
(
[9)- \7cl(0)A(§r

1

y/,(0)

The IM test can be written as

TIM = Td'(0)V(0)- l

d(9)



Therefore, under null hypothesis that the model (l)-(2) is a correct specification, the IM

test statistic is asymptotically distributed as \
2 with m degrees of freedom. We define d(B)

explicitly as follows:

d(d) = [di ,d2,d3 ,c/4 , c/5 ,d6 )

where d\ is a -^j—- x 1 vector; dz is a scalar; e/3 is a ^^—- x 1 vector; c/4 is a k x 1 vector;

a?5 is a pk x 1 vector; d<$ is a p x 1 vector. The typical elements of <it,j=i,...,6 are given below

[ for derivation, see Appendices A and B]:
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-* ^t ~* €l— i * %ij * ^'t — ij
e

t — rz-"> e t-i ~ 75=? x
tj — 7F=i X t-ij

where

h t Vht \/h
t y/hf

The variance matrix of d{0) is not block diagonal. [For detailed derivation of Var(d{9)),

see Appendix B]. Therefore, the derived IM test statistics can not be written as the sum

of quadratic forms as in Hall (1987) and Bera and Lee (1992).

As is well known, the IM formulaton tests for the full specification of the model (l)-(2).

If we are interested only in the specification of ARCH part, we may concentrate in those

particular components corresponding to the ARCH parameters. These components are

based on the indicator vectors (h(6),dz{0) and d^{9). One of these three indicator vectors,

d^{9) is related solely to the ARCH parameter vector a, and now we formulate a test based

on this component. The other two components will be discussed in the next section.

To find the asymptotic variance of r/
:J ,

we use a result from Pierce (1981). Let

j/i, t/2, •••
5 ?/n be a sequence of random variables whose joint distribution depends on a pa-

rameter 9 . Let 9„ = 9„ { iji , y2 , ..., yn ) be an asymptotically normal and efficient sequence of

estimators. It is desired to find the limiting distribution of a statistic Tn = Tn {y\ , ij2, ..., yn \

9n ), where at the true 9 the corresponding sequence T„ = Tn (y\.ij2 Un',6) has a known

limiting normal distribution. We assume that for every 9 there is joint convergence in law

to normalitv:

V 1 1 Vi 2^T
" ) „ v

V V' 2 1 V'22

and that there is a matrix B, possibly depending continuously on 9. such that

s/Kfn = sfTiT,, + Byfii{9-d) + o
p {l)

where B = MmE($§£). Under the above assumptions,

iifn ~ -V(0,I n - BV2 ,B').
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Using this result, an estimate of the variance of c/3 has the following form:

y 6 y~\ -*2 -*2 \/ 2*2 ~*2 \

V3 = —}_^(^-^(-j)(^- l
e t-j) t <J^,J=l

t=l

[The derivation is in Appendix C: Part I]. Therefore, the test statistic can be written as

r3 = <r3V3 <k

which asymptotically follows a chi-square distribution with ^^—- degrees of freedom.

The test T3 can be perfomed as TR- of the ordinary least squares regression of v on

5, i.e.,

r3 - Ir'SiS'sr's'v

where v = (t)i,U2, ..., tV)' is a T x 1 vector with Vt = {^e* 4 — 3e* 2 + |) and

P*2 p*2
/«T!

5 =

i
c i-i

\^2
e%*

2
r-i c r-i

~*2 ~*2
6 [-l 6 1-/)

eT-l eT-p

1*2*\i 7-*l

-p+l^l-p \

^T-p+l^T-p'

is a T x p /J

9
matrix. [The detailed derivation is given in Appendix C: Part II],



3. INTERPRETATION OF THE INFORMATION MATRIX TEST

From the last section, each of the six components of the indicator vector contains the

common element v
t
= ^(^e* 4 — 3£* 2

-f |). Under normality and correct specification of

ARCH model, Ev t = 0. . So the sample moment rpYlt^i Vt would De expected to be close

to zero. Hence a test for model being correct can be based on ^Yl(=\ v^ a measure of

sample kurtosis.

Here we are interested in the special components related to the ARCH parameter a.

As we mentioned in the last section, there are three such components, dz,d^,dQ which are

related to the ARCH parameter a and have a special form Xw=i( u*#<) where g t is some

function. Therefore, these can be considered different tests for heterokurtosis and each

emphasize the effects of different aspects of heterokurtosis.

The component r/3 is related to the parameter vector of a. It is clear from the ex-

pression C{6) that c/3 is based on the two estimates of variance of a. Taking E(v
t ) as a

measure of kurtosis. d;i measures the change in the kurtosis. more precisely it tests whether

the kurtosis depends on the cross product of the lagged residual squares. Following Chesher

(1984), we can also give a test for heterogeneity interpretation to c/3. Suppose the ARCH

parameters a are varying around a mean with finite variance. This can be formulated as

a t
~ (cv,Q). Then X3 is the LM test for testing Hq : £1 = 0, i.e. it tests the randomness of

the ARCH parameters.

Next, c/5 is based on the relationship between l3 and d. The assumption of a symmetric

distribution implies Ee* 1 = 0, Ee* = and that allows us to omit the second part of j5 . The

third part can also be omitted because it deals with heteroskedasticity arising from the cross



products between e* and x*_ - and is not very important from a practical point of view.

Then, d5 reduces to d5 = ± Y,T=i Kl^*
4 -3^*2 "! ) Sf=i &l^*-lx t-liit-j)i=i,2,...,k,j=i,2,...,p

and this describes a relationship between u
t
and ]T)jLj a(e*_/^*_^^*ij and allows us to test

heterokurtosis caused by cross products between lagged error terms and lagged exogenous

variables. d§ is an expression arising from the two estimators of the covariance between

<7
2 and d, and can be used to test the heterokurtosis due to the square lagged errors.

Since the covariance matrix V is not block diagonal, these three test statistics are

definitely correlated with each other and also with the other three components. To get

overall test of the model, it is necessary to have a joint specification test. This can be

obtained by using the results in Appendix B.

4.DOUBLE LENGTH REGRESSION FORM OF THE TEST

Davidson and MacKinnon (1992) proposed a double-length regression (DLR) to per-

form the IM tests on models which can be expressed as

ft(yt,0) = e t , ,= i r, e t ~JV(0,D-

For this class of models, the contribution to the loglikelihood function from observation t

is

It = --Io(j{2tt) - -ff + k t ,

where k t
= log

|

|^- |= log
| /] |

is the Jacobian contribution to l
t . The DLR uses 2T

"observations." The regressand is ft
for "observation" t and one for "observation" T + n,

n = 1,2,...,X, and the corresponding regressors are respectively —Fti and Ktii where

Ft i
= -A: and K t i

=
jnfr- The test statistic is then the explained sum of squares from this

artificial regression. In order to obtain the DLR form of the IM test, an explicit alternative



hypothesis of the model ft{yt,Q) = £t i-s needed. Chesher's (1984) result suggests the use

of the following model:

/*(V*,0 + Ct) = c<,€i ~ iV(0, 1), (3)

where # = (,^',Q'o,a')' is a k + 1 + p dimensional vector , and Q = (0',0,a/{)' and ??*

are k + 1 + p and p dimensional random vectors respectively, with i]t being distributed

independently of e t and of rj3 , s / t. //< ~ iV(0, 2S7). By taking a second order Taylor series

expansion of (3) in Q, we have

ft{y,.0) = e, - F,Ci - 7}CF*0 = e
'
~ Filt - ^ItFtlt = (Jt {say),

where Ft is a 1 x (
A" + 1 + p) row vector with typical element -^ and F

t
is a (k + 1 +

p) X (k + 1 +p) matrix with typical element de [^ F
t

is a 1 x p row vector with typical

element ^- and F* is a p x p matrix with typical element da Q̂ .
Note that

and

VW^ |y < )
= l + 2tr(ft-Fl

7,
F,),

where UT" denotes transpose of a matrix. Thus locally in the neighborhood of Q = 0. the

model is equivalent to

ftiyuO) - E((j,
1
tjt) = i) t , t

~ N{0, 1). (4)

i.e,

/) (y,i) + />ii)f;) ,

qtiyt.tiAl) = r = U
t

.

(l+2tr(QFt
TF

t
))i

The loglikelihood function of this model can be written as

1
, , 1 2

/, = --Io(j(2tt) - -qj + r t ,

10



where r
t
= log

|

|^l
|. Now a LM test for Q

from the following regression

//i\ /Quj\

in the above model can be computed

1

Qtn
{Q tJ ) +LO<

(Clij)+wt

w

V 1 / \RTijJ

here i = l,...,p,j < /', and £
t
= (e'/_j , ..., €j_ p+1 e^_

p ) is a 1 x /;(/;^" vector. [Detailed

derivation is given in Appendix D: Part I ].

Since the loglikelihood functions of the Davidson and MacKinnon's and Chesher's

models are the same under Hq : Q. = although they differ under H\ : Q. =£ 0, the

constrained MLE obtained from those loglikelhood functions are the same. And the score

vectors of those loglikelihood functions at the constrained MLE are also equal. Using the

terminology of Godfrey (1988, p. 72) we can then say that the models (3) and (4) are

locally equivalent alternative (LEA) to the ARCH model given in (l)-(2). Hence the LM

test statistic for Ho should be the same for both the loglikelihood functions.

Given the above results, the theoretical local power of T3 test is equivalent to that

of the LM test with the Davidson and MacKinnon's model. To derive the noncentrality

parameter of the LM test we consider the simple case of p = 1. Note that now we have

= {j3',a 0l ai)' is a {k + 1 + 1) x 1 vector, ;" = c*i + r) and rj ~ JY(0,2<7 2
). For the LM

test, the null and alternative hypotheses are

H :V(,))=2a 2 =0

11



and

6Ha :V(n) = 2cr
2 =

v/T

and similarly for the IM test

Ho : h, = a + (-\ i e
2
_ l

and

Ha : h t
= Qu + (ai + ij)e

2

t
_ l , (5)

where rj ~ iV(0,2<72 ). Thus, locally in the neighborhood of a 2 — 0, the model is eqivalent

to

, fl (y.0)+y 2F
t :y,

<lt{yt.0*<r~) =
, „ „—r = /''

(1+2^F«F«)»

with log-density function

/, = --log(2w) - -q 2 + rt .

The variance of the test can be obtained using E[—
.-^J2

'

2 ]. Therefore, the test statistic

under the local alternative follows a noncentral \
2 with 1 degree of freedom and noncentral

parameter 8
2 ^E^2 t=[

— -^-Ai [Detail derivation is in the Appendix D: Part II.] The

variance we got here is the same as we obtained for T$ in Appendix C.

Following the procedure of Engle (19S2). it is easy to find the second and fourth mo-

ments of a first-order random coefficient ARCH process i.e. of model (5). These moments

will give some idea about the nature of the implicit alternatives for the IM test. Letting

A, = (e?,e2 )',

The condition for finite unconditional variance is same as in the non-random coefficient

case, that is, 0:1 < 1. while to have a finite fourth moment it is now required that 3(a 2
-f-

2<t
2

) < 1. For the standard ARCH(l) model, this condition is 3oj < 1. If these conditions

are met, the moments can be computed as [For derivation, see Appendix D: Part III].

E( 4\_r 3a n 1-a'f
e

t 1
~

1 -Q l )

2U l-3(a2+2<72
)

12



£(€7) =
1-or,

Therefore, the kurtosis of the random coefficient ARCH(l) model is 3(1 — a\)/[\ — 3(a 2 +

2a 2
)] which is higher than 3(1 — of ) / [ 1 — 3oj], the kurtosis for the standard ARCH(l)

model, for a 2 / 0. Since the unconditional variance remains the same, our alternative

hypothesis can take acount of higher degree of nonnormality.

5. AN EMPIRICAL ILLUSTRATION

Engle(19S3) estimated the following reduced form equation for inflation using quar-

terly data from 1947-IV-1979-IV

Pt = fa + MPt-i ) + MPt-2 + MPMt-i )

e,
| $(_i,~ -V(0,/?.,

)

i=i

where P,PM,W, M and t are respectively the rates of change of the GNP deflator, the

rate of change of the import deflator, the rate of change of wages, the rate of change of

money supply and a time trend. This inflation equation includes two lagged dependent

variables and the conditional variance h
(

is assumed to exhibit a two-parameter ARCH

process of eight-order with linearly declining weights.

As reported in Engle (19S3), the above model satisfies the standard diagnostic checks.

Also Bera, Higgins and Lee (1990) found that above model passes the Pagan and Sabau

(1987) test for correctly specified conditional variance. The T3 test examines this model

at p = 1.2.3.4.5. For p = 1 and 2. the values of T
:i

are respectively 0.445 and 6.569.

13



These are not significant at both 1% and 5% significant levels for which the asymptotic

critical values are 6.635 and 3.S41 with 1 degree of freedom, and 11.345 and 7.815 with 3

degrees of freedom respectively. However, for p = 3,4,5, the test statistics, 61.98, 139.60,

and 199.34 respectively, are highly significant at both 1% and 5% levels. This may imply

that T3 can reveal model misspecification. while the standard diagnostic checks may fail

to do so.

5. CONCLUSION

In this paper, we have provided an application of IM test to the linear model with

ARCH process. We give the computation and interpretation of the resulting test. Because

ARCH error are involved, the framework of the information matrix test is much more

complicated than those derived by Hall ( 1987) and Bera and Lee (1992) for simpler models.

In our case the variance of the indicator vector is no longer a block diagonal matrix, and

therefore, the components of the indicate vector are not asymptotically independent. We

applied one component of IM test to the Engle (19S3) model. The test we use above may

have higher power than the tests which Engle (19S3) had used for his model in the sense

that the proposed test rejects the model specification while other diagnostic checks can

not.

14
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APPENDIX A

The Derivatives of the Log-likelihood Function

For our model, the parameter vector is 9 = {[3' , cto, a')' and the log-likelihood function

for the t-th observation conditional on the information set $t-i is given by

1(0) = ^0</27r - -logh
t
- T^j-t]-

The first derivatives are

da 2h, h,

and second order derivatives are

dU e] 1 dh % 1 dh t e
t

dj§
~ ^h~t2h t d(3

~
2h

t ~d3
+
T*'

dh 1 c?—- = —(— - 1)
ctao 2/?t /?/

91, 1 ,«? .,

<9
2

/, e< <9/?, e< <9//, , 1 , 1 t
2
t
dh

t dh t

Olid?
''

~~k\
Xt
W' ~

Tti~oiF'
1

'
"

h~t
XtXt " T^WtWW

1 e? 0/?,d/?, e? ,
%

1 <9
2
/i,

2/Y2% '<9/i dp It, ''2h
t dSdf3

d2
h I A „ 1 c?

da <9rvo 2/7? /*, 2/??/?./

1 ej ,1-—(—-1)6,^ ~ r—;—€tei
2hj h

t
2hj h,

d2
h 1 , e? _ , 1 67 ,

dad

d2
l

t 1 e? dh
t

I e^dlh 1_

djdao ~
~2hi

{ Y
t

~ l)
!hJ '2iiih~t !)J 'l^

et 'Vt

d2
U 1 ,e? ..a^t

f
1 e?3/*<

,

d£da' 2/if
v

ht 'dp- 2/Y2 h t dj3~

1 1 ,e2 d2
/i,

/if - 2/i,/i, 'oWo'

0ao 0a' 2hyh
t

- 2hjh,

1G



where

and

The outer products are

- = - ^latet-iXt-i
03

i=i

d'
2 h t

A
7 = 2^ 2a « x<-«x*-«

d/Jd/i
i=i

a/ t a/,

'

2 1 C)/?/ 5/2 <'

a/? d/J fcl 4/?? #d a/?
+

2/i?
v

/i

f--D^:
<

'«/ a/r*

2/i

cM, dl
t

' 1

dp
1 da 4/i

1dhdh'
d/3 do~ 4fc

d/« dZ, '
1

<9a 5oo 4/?

1dlt_dl^
_

dcio 5a 4//

0U_dW \_

da da 4/t

q _ 2 0/i, 1

h 2/?7 A #

V— - l)
2—

t-"
2

P--DV

' i \2 '

7 1) e«c< •

+
t̂
4

t

' i)etx^
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APPENDIX B

Covariance Matrix for the Information Matrix Test

A consistent covariance estimator for the IM test proposed by White (1982) is stated

as

V{0)= ^22a t {9)at(0)' (B.l)

where a t {9) = d(9) - \/d\9)A{9)~ 1 y U{9). Let us begin with the indicator vector d{9)

which is defined as

d{9) = vech[C{9)] = vech[A(9) + B(9)]

where

i,«,-lf[?Mi -ifA^>- ]-LI d0Q0,
!»=«- r Z.

l=\ t=l

2e t cl I 2« f c -,./
*(*> 2 i 1 Jj /* 1 ,. c (t^t 1 .- C c I t

t
x t r I 1

f. ,,

-£f
x^< + *«**« -— ~

/TJ
K '\/ + 7^/0 jtM^i -

iTT- hj^tStei - -fy-et - j-<V7*

and

( t
'

! I

7' T

1=8

t <
*

t

where
9 >

/?., //

,

IS

1=6



9

ht

v

y otjEt-jXt-i = Zt

i=\

P

Y^otiXt-ix't-i =Q
1=1

p p p

i=i ,= i >=i

and //; is a k x p matrix with (i.j)th element €
t
-

t
.v

t -,j;,i=i,2 /> and 7=1,2 k- From A(B)

and 5(0), C(0) is derived as

1 I
C(0) = -4(0) + 5(0) = -^

<-i

1 \ P' l_ii >•' i \ i \ c i

where

2€« e/
,
e?

[.r,.r', + ^a,.r,_,.r
/

,_,] = /t,

Therefore. c/(0) is given by

r
/=i

where

(I, (6) = ( </', , . d'n . rfj3 . d'iA . r/', 5 . (/'„;
)'
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(



and

dt\ = {(£? - 1)[*J? + J2 *i*£ii] + 2( Je? " 3e? + 2

j=i

2^ «i Ct-i^i-il + 2 2^ 2^ <**<*? ^-i^-j^-il Xt-jl )

P P

i= i »=i

(^- 1)1*3 + £>*&*] + 2(Js
4
-3ef» + 5

1=]

(X * '^ ^* '^ *'^ »"\ x x rt ~ ^ * ^ :*: * * \

2^ Q
i
et-tx t-ik + 2LL a

'
a

J
e '-' e'-rr '-^- i''-^- )

i=l Kj 7=1

p p

+ 2(2eJ - e*(e
t

*2 - 1))(^ ajej.^ar^. +^ aje*_-a;
t
*_

tifc
x

t

*
fc ),

»'=] (=1

d'
2 - i)(.«-;,.«7

2 + £>*?_,-,*:_»] + 2 ( ^;' - 3ef +
|

i=l

(2^ a i
€t-ixt-a x t-i2 + 2 2L 2^ n

'
a ^'-' e '-vr '-'i-r '-j-2 )

/' /'

+ 2(2eJ - e*^2
- 1))(]T afi-ix *i

x t-i2 + ^Z^*-^*-*! 1")'-'
*=i i=i

(^'2 ~ lK(fc-i)^t + E^'-r '-'(A-i) J *-iA-] + 2(ir4 - 3^ 2
+ |)

/=i

p /'

{2_s
Q

i
et-iX t-i{k-l) X t-ik + 2 2^ l^ Qi0iJ e t-i €t-j X t-i(k-l) Xt-jk)

i=l i<j ;=1

P l>

+ 2(26? -€*
t
{t*

2 - l))(^0|Ct-,-.rJ(ib-i)a?r-,-fc + ]T Qr,-€7_
i arJ__ i(ib_ 1) a:J

Jfc
)]'

(=i /=!

is a -^-tt
—- x 1 vector.

dti
1 .1 *l o;*2

-e, -
2/,.?

v

2
'
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is a scalar,

5(5^-3^ +1^^

is a i^±^ X 1 vector.

is a fc x 1 vector.

11 q
p

1

<*t5 = ["(^e< -3e
t
+ -)2_^a

l
€

t
_ rv t

_
l
e

t
L

l

- ~(2e
t
-e

t
(e

t

- -l))x
t
e

t l l

1=]

1
, -.,2--(e, -l).r, _,€,_!

11 3 J- 1
/ ~*1 o 2*2 1 \ \ ^ ~* * ~*2 / •» ~* ~* / ~*2 1 \\ * ~*2--(-e

f
-36, + -)2^ai€

t
_ r r

t
_
p
e

t
_
p
- -(2e, - e

t
(e

t
-l))x

t
e

t
_

j

t=i

/ ~*2 1 \ * ~* V--(e
t
- l)aj|_,Cf_

p ]

is a kp x 1 vector,

11 ^ 11 3
o«6 = lrf(o €

« ~ 3e +
o

)6 '-i T7~ ( o
e

<

~ 3e
'
+ o) 6 '-/>!

2/?/ - - 2h
t

- -

is a p x 1 vector. Next we consider

Vd( e„) =
n
hm-^£;[-^-].

Using the normality assumption of the e ( and taking expectation conditional on the in-

formation set $/_i iteratively, after some algebra we can get the following simple form of

W(#o)
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Vd(0o )

where Xjdn — (m.x'n, ...,m.TjtJt,?Ti.Ti2.

/ V^i2 V^13\

V4n
V o o o /

n?.r(^._! )/,.)' is a -^—- x 1 vector with

T
1 A 1

mxi-i =

i<j.i,j=l,2 k

i

h
'i t=i

i :. „ *(*+!)
V^i3 = (wii,...,iyjtjk,it'i2 u'u— i)*)' is a —-,— x p matrix with

1 - 1 £

i=i

i</,t,j=l,2 A-

and V^5i = (~ii- -22 -/>/>)' i-s a M' x ^' matrix with

7'

•r^c T ^ 77[
f '-« J,'-'(Z a

J
c'-J*l-j )]T tl « 7=1

1=1.2 />

This implies that Sjd{0u) can be estimated consistently by the \jd{9) which is

Vd(*) =

(
° W12 Wn\

Wsi
V o o )

where for example, V^r~> = (rnxu mxkk*mzi2 '"^'u-i )k )' is a

with

k(k+i)
x 1 vector

/?? x i

1
T ''

1 "< f=l /=l

09



1

2h}
--*-e'

2/i
t

2 -<

1
€

2/»2-<
--±-e e'

i<i,i,j'=l,2 A;-

Similarly, we can simplify .4(0) as follows:

A{6) =
|

°

Finally, from Appendix A S/lt{0) = §# is given by

/-(«*! -i)ELi«i^;-,+^;

Given the above expressions for d{8), S7(l{9)< -4(0), and S/l({0), using the formula (B.l)

we can obtain an estimate of the covariance matrix for the IM test. Unlike the cases of

Hall (1987) and Bera and Lee (1992), here .4(0) is not block-diagonal, and this results in

V{6) to be non-block-diagonal. And the final expression of V{6) is very complicated and

is omitted.
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APPENDIX C

Part I.

Here

Using

we obtain

Defining

We have

i<j,i,j=l,...p

V(a:) = £[r(j:|y)] + V[f7(a;|y)]
1

r

V(</.,) = vi, = ^[^^;: (
^)'(6;:

(
^)G].

1,1 =
r l^ (et '-' €,

'-J ) ^t-i^t-j)^

Also note that

+ (

2 ' '

+
2
,/ " 1 '~ J

df3 h
t

[ ' '^ *-*-J

Ir 1^ o*2 3 d/li *2 *2

^3 *
/ * 4

i
o *2 \ *2 *2 -

/
^ * I o *2

i

" \ *2 „*2

7J— = 7~(-^ +3e, )e,_,-e, -— (-e, -3e, + -)e
t
_

l
e

t
_

JOQq ll
t lit - 2

^"3 1 / *4 i o *2 \ *2 *2 -
/
^ *4 o *2 ,

" \ *2 *2

doT"/^"
6

'
+3e,-)£i€ <l 1

e
/ij
-— (-e< -3e< + - ^e^e^
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Op oa o da

Part II.

The test T3 which we got in section 2 can be written as nR 2 form by running a

regression on S.

1

ch = ^S't),

where

/.'\
O9

\ VT I

is a T x 1 vector, v
t
=

(
^e* 4 — 3e* 2 + |) and

5 =

~*2 ~*2
6 l-l e l-/>

e2-l e2-p

2*2 2*2 v
t l-p+l t l-p \
2*2 2*2
e2-p+l e2-/>

\ 2*2 2*2 2*2 2*2 2*2 2*2 /veT-l €t-l •" e T-\ e
t-i> ••• eT- },+ l

€T-p /

is a T x p(p
r
fl)

matrix. From the result above, we know that

V(d,) = E(V(d, \* t -iY.

1

AT

4T2

r
S'E(tw')S

S'S.

T3 =d'3V(d3r
1 d3

TR 2 = T

1

PSiS'S^S'v

v'SiS'sr's'v
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v'v
plimT—oo-=- = 6

T3 = TR2
,

where R 2
is uncentered coefficient of determination of regression v on S.
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APPENDIX D

Part I.

To derive the double length regression (DLR) form of the IM test, we first note that

IJt — X'fii = €
t , ft

|
$/-! ~ iV(0, /?f ).

and

ft(yt,0)=
V

' J^
j
= /*,. ^ |$/-i ~iV(0,l).

s/hi

Following Davidson and MacKinnon (1992), a locally equivalent model, under the alter-

native hypothesis that Var(a) = 2Q. can be written as

"

fl0 . f,(y,,e)+tr(nF
(
*)

q,{yt<V,U) = r— r =
f

.

(I + 2tr(nF?Ft ))?

Using the notation as defined in section 3, we can write

Ftl

Of, h .2
„ a

€ t-r
2/i?

Ft, j
= d2

ft

da,daj le=e

3e, „2 „2

„ 5
€ t-l € t-J

?, 0ft

h - On,
~

1

vC

Ku
dlogf't

Da,
lo=«~

1 .2

2/i?

Ktij = d2
locjf'

t

dcxida-j
lo=&
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€ t-l € l-j
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Qtij — Qtij \Q-O g-0

Oqi
|

= Ftij — ftFtiFtj

o~ ~3
Oct „2 -> c

t -2 ~2—
„ s

e t-i € t-j
~ e t-i €t-j

Hi? 4h?

4/i? Vh t hj

zn* '
,

'^ €
<

e
t m -4 -2 -2 -2 -2 \£* =

T7T ( ^^ " rr)(^-i et-i €t-2 e
t-p+i

et-P )

4/'F Vh t h]

1
, 3«« c? -

4/> 2 V% /if

where e< = (e|_!, ..., €?_ 1 eJ_ 2 ef_ +1 e,_ ) is a ^-^— x 1 vector.

dlogq',

= A'jjj + KuKfj - FnFtj - f t
{K,

t Ftj + Ftl K,j)

4/* 2 y/Ki ht s/Ji h t

3

13 1
'">

e
2

-

J?? = -^-(-7= + ^ -(1 + -^=)^-)^.
4/?f Vh, h

t yjht h
t

Given the above results, the DLR form of the test can be expressed in terms of the following

regression

i\K*> +w '

,/,r ^ e
'

« Q
(J

+cj,
1 / 3 + f -(1+ ' )|i-)e,.

1/(
r v/^7

/(
' >A7 ''«

2S



Part II.

To calculate the non-centrality parameter for local alternative, we consider the simple

case with p = 1. The model under H^\ a 1 = 0, is

r, m lit ~ Xtfi *t
jt{yt,v) = —-?==— = —7= = nt

s/ht v'n

and \i t
~ Ar (0, 1). The loglikelihood of this model is

i. .. i..2

and therefore,

l t = -log{2ir) - -ft + kt .

Fn =
Of,

dc\
i

€( 2

2hl
€t - 1

Fm =
d2
ft

daj

3e<
4

5
€ t-\ '

4ft?

/;
Of,

Oy,

1

^/i =
0Fn
Oy,

1 2

2/i/

n, .

=
dFiU
dy t

- 3
e<— 5
t t-\

df, et dh, x t

03 2hf
03 s/17

t

'

df[ 1 Oh,

03 ~
ojA d(3'

0Fn 3e, .y 0h
t x

t ., e
t

93 Ah] °P 2hf hf

OF;, 3
2

Oht 1

° j
4/?.,

2 ^ fc/

<9Fm 15f/
.,

Oh, 3.r,
4 36/ 3

D,i
Shf

di Ah] hf

29



dF;u 15
4

cM* 3 3

°P Sh-f °P hi

Oft ft dh.
t

da 9/,f da
-"

t

df[ 1 dh t

da_ 9l| <9a

<9Fn 3e< , cM,

0«
~ 5 W-l O •

da

3 ., %
4/i? ^

dFtu
da

15e<
j

5/i<

Shf da-

dFln

da

15 ^ cto,

S/i? ^
Here a = (qo,Qi )'. The model under H„ : a-2 = -4=, is

, a 2 ,
//(.'/ii)+^Fni

(l+2^FM Fn )i

and f/j
~ Ar

(0, 1). The loglikelihoocl function of this model is

1, , 1 ,

/, = --i 0(J {2n) - -q~ + r,

We denote the information matrix of the model as

"
U-2] v22

where

0(1dp' dpda
Vl1 : _A

c)
2

/, 0*1,

dadp dada 1

is a. (A: + 2) x (A- + 2) matrix,

V 12 = K ]
= -£l

.

)2ft
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is a (k + 2) x 1 vector, and

d2
l

t

Vio =

is a scalar. Now

dqt _(l + 2a 2Fn Fn )i(|^ + ^^)-(/f
+a 2 ^)(l + 2 <7

2Fn Fni )-i2(7 2F<1^
dp

~
(l+2a 2Ftl Ftl )

dgt (1 + 2<r
2 FtiFti^Fm - (ft + <T

2Ftn )(l + 2<T
2FtiFnr±Ftl Ft i

da 2 (l + 2a 2Ftl Fn )

dg t . _ dft

dp
'*2=0~ dlV

"7" |<7 2 =() — — TT^'ll + -TTTjt^tl^tl
dp da 2 x ° " u

dp
llx

dp

_ 3e2
., <9/?< 3ar t ei _4

Sir}
(
~

[

OP 4/ij
3 w-i

., ^-1-
S/zf

' _1 dp Irj

Ft
dqtdqt

1
1*1- 3

,«
a/" 3

,
4 ^

/?'-o
/ ^m w"<

a2
<;« ,

9f„, aF„ a/,

aw l"2=0~ ~aT ~ -/"F"
~alT

" F,lF"W
f;

'aw7 l-'-° = ~ /(~W + 2f>
F
" ~W + /"F" F" a"*

15e2
4

dh, 3e tx ( .,
3e2

3
H—r7T- e /-i + -rr 6/-i^t-i

3e'J 4
d/?.* cJar 1 4

e|_
3

*h* M dp 2/1J

'- 1 "
/?;

'- 1 '- 1

e* j a/?, ejar ( 4
' t y

shf'-
] dp 4/if

'- 11

IP/
d'

2

fr
I l« ,

3
-I

0h
<

E{ ~ qtdpd^ l<r2=ol ^- i) = ~^ e^W
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Then

dr
< r/i , o 2rp r .l,dft 2

dFtll \— = [(l + 2aFn Fn ),(— +0-^-)

OF
+ (ft + *2

Ftn){l + 2<T
2FtlFtl rh(T2Ftl -^j-

OF'
- (ft + <J

2Ftn ){l + 2a 2Ft[ Ft[ )-±2a
2—£-Fn
op

dF
-{ft+cT2Ftll )(l+2a

2FnFtl
)- L

>2*2F'n^±
Of, 2

OF, u 2 v-i« 2 t?i rp
-{^r- +cr- -——){! +2a-

F

n Fn ) ?2cr-Fn Fn03 Op

+ (fl
+(T'Fin )(l+2a'Fn Fn )-i2<T*F'n Fn 2<T"Ftx

03

(l + 2a*FtlFt i)

Q2
r,

030a 1
l<72= ° ~

1 OFJn fi' OF^ ^fV OFn

ft' dfi ~f,
n

dp ~f, " 03

~ft

,Jn n
d(3 f?

tn
d{3

Shf'-
1 03 '

h-
f '- l

'V '-
l +

4h!
€ '- [

0;J

e[
3

ej <9/>, e t art 4

3 .,
Oh, e

2

4
Oh, 3e 2

4
d/i<

+ S^
f

'-'a7 'Ih~i
e '-

[ ~03
+

Ih
:

i

€, -
1 ~03

e t x ( .,
e
2

3

£(0^ u * =ol *'- 1,
-4fc?

e '- 1 aJ

^-^fe + fe*'*'- '*'- 1]- -
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Since

2
l

t

2
q, dq t dq t

2
r

t

2 " Cb PiQ5\-1 ?\a Pl~1 '

0,30a 2 ll
Odder 2 0(3 da2 0/30a 2

2
l

t

OlWa 2
E(ttt^ |^«ol *«-i)=0,

Using the same procedure, we can obtain the E( jrrtt U 2 =ol $t-\ ) — 0. Then, we have

V\2 = V2'i = 0. Because the inverse variance of the non-central parameter is equal to

V22 = (V22 — J^iVn Vi2i)""
l

> depending on the above results, V 22 = (V^) -1
- Now we

calculate V22, using the following derivatives

dg t = (l + 2<7
2FM F/1 )iFm - (ft + v 2Ftn )(l +2<T 2Ftl Fti)-iFtl Ftl

da2 ' (l + 2a 2Ftl Fn )

r)2

777 U2=0= —'2Fti\FtiFti — Zft{Ft\Fti)~

.

0(a 2
)

2

d(l< d(l1
I I r rr r *2

TT~.T7T-7 <r 2 =0 — l-T/1 1
~~ Jtr t \t ,\ J

do- 2
C/<7

2

= F2
n -2fl

Ftn Fn Fn+ff(FnFn) 2
.

, dq t

(lt
=

(l+2g 2Fn F„)i(/; + <7
2 F/

11 )-(/ f
+a 2 Fm )(l+2 <7 2Fn F/1

)-i2(7 2 F;
i Fa

(l4-2^F„Fn )

?•, = /o</</|

-/o^/[(l + 2 <7
2F/1 Fn)"(/;4-a

2 F;
il )

-(/, +a 2Fm )(l+2a 2Fn Fn r^2a 2
F;

i
Fn

-/o^(l + 2a 2 FM FM )
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da 2
= {(1 + 2a 2Ft[ Fn rnf'l

+

a

2 F'tn )Ftl Ftl

-I« 9
+ {l + 2cr

lFtiFn )*F'tu - Flu (l +2a 2FnFtl )-^2a
2
F'n Ftl

+ {ft + cr
2Ftll )(l + 2(j

2FllFtl )-*FnFn2a
2 F'tlFtl

- (ft + a2Ftll )(l + 2a 2 Fn Fn r^^F,,]

/[(l + 2a2FtlFll )Hft+<7
2 F'tn )

- (ft + a2Ftu )(l + 2a 2Ft] Ftl )"ha 2
F'

tl
Ftl \

-2Ftl Fti/(l+2<r
2FtlFn ).

pp. -I

«, 9 V> l^ 2 =° =
, £ i\o Ui(-.t't(Ft\Fn )- + F'nlFtiFn

oyer-

)

[jt )-

+ FtlFtl F'tu -2Fin F'n Ft] + 2flFtlFtl Fl1
Fn

-2Ftn F'nFti +2flFtlFll F'nFtl )

- (f'tFnFtl + F'in - 2fl
F'n Ftl )

2}+MFn F,
l y

= jp[-ft
2
(Fn Fn )

2 + SflfdFn )

3
F'n

Jt

- +f't Ft n F'n Ft[
- F'in F;n - IfhF^Ftlf

+ 4ft F'lu F'n Fn]+4(FnFtl )

2
.

2
q,

d(« 2
)

7-7 Ua=o= —~}tFt\\Ft
\F

t \ +?>};{Ft\Fti

d2
l,

0(a 2
)

2 d(o 2
)

2 'da 2 ' 0(a 2
)

2
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and

d2
l

o,
2

,

2 Ia2=u = 4ftFtuFtiFti —4=ft (FtiFti)~ - Ffn

f ' / Z7 \3 77' 1 „,+ $^(Fti YF'tl -4-FtnFl1
Ftl
-—

7Fl11Fi

f ft ft
(ii

- ilL(F'n Fn f + 4-^F'lu F'n Fn +2(Fn Fn f
ft ft

^ t
t ,8

+

16fcf

Sej , 12e?

9e?

lO/?;
6'" 1

16/z?
6 '- 1

9e?
^f 8

16/?? 16/i? '" lG/r?
,e

c'-i 5
f '-l 1R^5

€<-1

HVf
/ ,8

9*4^e

16hf
e'-' r

16ft
3 e,~

' ,8

r'-
i
+

iG/^
e '- i

+
iG/.?

6

Finally.

Part III.

r=l
v

2 \2 ' I<t 2 = O,0=/

T T
1 v-^ o „g 1 ^~> ^g

/=i -" /=i

To compute the moments of e,. let us define

\ _ {e2m ->(,n-l) 2,
A( — [€

t
. e, e, j.

Following Engle(19S2). we have

E(e%"
|
$,_! ) = h

m
] \(2j - 1) = (« + C«?-i

)'"

f[(2j
- U-

j=i 3-1

Expanding this expression establishes that the moment is a linear combination of \t-i

E{\ ( |
$,_ 2 ) = 6 + .4(6 + AA t_2 ).

Only powers of e less than or equal to 2m are required, therefore A is a upper triangular

matrix and b is a /?? x 1 vector. In general.

E(X,
|
$,_ A.) = (/ + .4 + .4* + ... + A k ~ [

)b + Ak \ t- k
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Because the series starts indefinitely far in the past with 2r finite moments, the limit as

k goes to infinity exists if. and only if. all the eigenvalues of A lie within the unit circle.

Now,

lim E(X
t | $,_,) = £( A,),

k— oc

is an expression for the stationary moments of the unconditional distribution of e. We

have

E(\
( )
= EE(\, \$ t- 1 )

= (I-E(A))- 1
b.

Since

IT pun-' /l-3£-(C)- -Ca £(C-)V'^' EiA)) -{ o 1-£(C2W
1 — o

i
G q o a i

(l-o,)(l-:j(Q'f + 2a2)) (l- Ql )(l-:Maif+ 2<r 2
))

l-Ol
()

(l-Q,)(l-:}(Q?+ 2cr2))

and

/> = (3ao,cvo)',

the expression for the fourth and seconds moments are as given in section 3.
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