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PREFACE 

THE  intention  of  this  work  is  to  treat  in  a  consistent  and  con- 

nected manner,  for  the  use  of  students,  the  theory  of  resistance  and 

propulsion  of  vessels  and  to  give  methods,,  rules  and  formulae  which 

may  be  applied  in  practice  by  those  who  have  to  deal  with  such 

matters.  The  contents  are  based  largely  upon  model  experiments, 

such  as  were  initiated  in  England  nearly  half  a  century  ago  by  Mr. 

William  Froude  and  are  now  generally  recognized  as  our  most  effec- 
tive means  of  investigation  in  the  field  of  resistance  and  propulsion. 

At  the  same  time  care  has  been  taken  to  point  out  the  limitations 

of  the  model  experiment  method  and  the  regions  where  it  ceases 

to  be  a  reliable  guide. 

During  the  years  that  the  author  has  directed  the  work  of  the 

U.  S.  Experimental  Model  Basin  many  results  obtained  there  have 

been  published  in  the  Transactions  of  the  Society  of  Naval  Archi- 
tects and  Marine  Engineers  and  elsewhere,  so,  naturally,  the 

experiments  at  the  U.  S.  Model  Basin  have  been  made  large  use  of 

wherever  applicable.  It  will  be  found,  however,  that  they  are  in 

substantial  agreement  with  the  many  published  results  of  the 

work  of  other  experimental  establishments  of  this  kind. 

Although  the  coefficients  and  constants  for  practical  application 

are  mainly  derived  from  the  author's  experience  at  the  Model 
Basin  and  elsewhere,  and  are  necessarily  general  in  their  nature, 

endeavor  has  been  made  wherever  possible  to  develop  formulae 
and  methods  in  such  a  manner  that  naval  architects  and  engineers 

using  the  book  may,  if  they  wish,  adopt  their  own  constants  derived 

from  their  special  experience. 

For  instance,  by  the  methods  given  it  will  be  found  possible  to 

estimate  closely  the  effective  horse-power  of  a  vessel  having  the 
form  of  what  I  have  called  the  Standard  Series,  but  it  will  also  be 

found  possible,  by  the  same  methods,  to  determine  with  fair  accu- 

iii 
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racy  the  variation  of  resistance  with  changes  of  dimensions,  etc., 

of  vessels  upon  almost  any  lines  for  which  a  naval  architect  may 

have  reliable  data,  and  which,  on  account  of  satisfactory  past 

results,  or  for  other  reasons,  he  may  wish  to  use. 

The  science  of  Naval  Architecture  is  not  yet  developed  to  a  point 

where  our  knowledge  of  resistance  and  propulsion  is  complete. 

While  the  author  naturally  hopes  that  this  volume  will  at  least 

partially  bridge  some  of  the  gaps  hitherto  existing,  much  work 

remains  to  be  done,  and  in  a  number  of  places  attention  is  called 

to  the  need  of  further  investigation  of  various  questions.  While 

we  know  something,  for  instance,  in  a  qualitative  way  of  the  effect 

of  shallow  water  upon  resistance,  information  which  would  enable 

us  to  solve  satisfactorily  many  problems  arising  in  this  connection 

is  lacking,  and  apparently  can  be  obtained  only  by  much  experi- 
mental investigation.  When  dealing  with  questions  of  wake  and 

thrust  deduction  we  are  not  yet  upon  firm  ground,  and  it  is  to  be 

hoped  that  the  excellent  work  recently  done  by  Luke  in  this  con- 

nection will  soon  be  supplemented  by  even  more  extensive  investi- 
gations. 

D.  W.   TAYLOR 
WASHINGTON,  D.C.,  July,  1910. 
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CHAPTER   I 

PRELIMINARY  AND  GENERAL 

i.   Stream  Lines 

1.  Assumptions  Made.  —  The  consideration  of  stream  lines  or 
lines  of  flow  will  be  restricted  mainly  to  the  case  of  the  motion  of 

liquid  past  a  solid.     It  is  sufficient  for  present  purposes  to  define 

a  liquid  as  a  fluid  which  is  incompressible,  or  virtually  so,  such  as 
water. 

The  difficulties  in  the  way  of  adequate  mathematical  determi- 
nation of  the  motion  of  liquids  past  solids  such  as  ships  have 

hitherto  been  found  insuperable.  The  mathematics  of  the  motion 

of  liquids  is  complicated;  even  the  simple  cases  which  can  be  dealt 

with  mathematically  require  assumptions  which  are  far  from  actual 

conditions  in  practice.  Thus,  when  considering  the  motion  of 

solids  through  a  liquid,  or  what  is  the  same  thing  mathematically, 

the  motion  of  a  liquid  past  solids,  it  is  assumed  that  the  liquid 

is  "  perfect "  or  has  no  viscosity  and  that  the  solid  is  frictionless, 
that  is  to  say,  that  the  liquid  can  act  upon  the  solid  only  by  pres- 

sure which  must  at  each  point  be  normal  to  the  surface.  In  most 

cases  that  are  dealt  with  mathematically,  it  is  further  assumed 

that  the  fluid  or  liquid  extends  to  an  infinite  distance  from  the 
solid. 

2.  Steady  Motion  Formula.  —  We  cannot  deal  satisfactorily  with 
problems  of  resistance  by  mathematical  analysis,  but  in  spite  of 

the  somewhat  artificial  assumptions  involved,  the  results  of  mathe- 
matical analysis  applied  to  a  perfect  liquid  are  of  interest  and  value 

as  they  indicate  tendencies  and  have  large  qualitative  bearing  upon 

the  phenomena  of  the  motion  of  water  past  ships. 
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One  mathematical  conclusion  in  this  connection  is  particularly 
valuable.  It  is  known  as  the  steady  motion  formula  and  is  as 
follows: 

t+*+z  =  h. W         2g 

In  the  above  formula,  p  denotes  pressure  of  the  liquid  per  unit 

area,  w  denotes  weight  per  unit  volume,  v  denotes  velocity  of 

flow  in  units  of  length  per  second,  g  acceleration  due  to  gravity 

in  units  of  length  per  second,  z  denotes  height  above  a  fixed  level 

and  h  is  a  constant  for  each  stream  line,  being  called  the  head. 

It  is  usually  convenient  to  express  p  in  pounds  per  square  foot,  W 

in  pounds  per  cubic  foot,  v  and  g  in  feet  per  second,  z  and  h  in  feet. 

The  above  formula  applies  to  the  steady  motion  of  an  infinite 

mass  of  perfect  liquid.  For  such  liquid  the  value  of  h  is  constant 

for  all  particles  passing  a  point  fixed  in  the  liquid.  These  particles 

form  a  continuous  line  called  a  stream  line,  and  in  steady  motion,  no 

matter  how  many  twists  and  turns  the  stream  line  takes,  the  above 

formula  applies  to  its  pressure,  velocity  and  elevation  at  every  point. 

It  will  be  observed  that  contrary  to  what  might  at  first  be  thought, 

the  greater  the  velocity  at  a  point  of  the  stream  line  the  less  the 

pressure,  and  vice  versa.  That  is  to  say,  if  a  stream  of  perfect 

liquid  flows  in  a  frictionless  pipe  of  gently  varying  section,  the 

pressure  increases  as  the  size  of  the  pipe  increases  and  decreases 

as  the  size  of  the  pipe  decreases.  This  is  demonstrable  in  the  case 

of  flow  through  pipes,  although  it  is  necessary  to  have  the  changes 

of  section  very  gradual  in  order  to  obtain  the  smooth  continuous 

motion  to  which  alone  the  steady  motion  formula  is  applicable. 

3.  Application  of  Steady  Motion  Formula  to  Ships.  —  The 
steady  motion  formula  applies  to  the  motion  of  a  liquid,  including 

motion  past  a  solid  at  rest.  In  the  case  of  ships,  we  are  interested 

in  the  motion  of  a  solid  through  a  liquid  at  rest.  The  two  cases 

are,  however,  as  already  stated,  mathematically  interchangeable. 

Suppose  we  have  a  ship  moving  uniformly  through  still  water 

which  extends  indefinitely  ahead  and  astern.  If  we  suppose  both 

ship  and  water  given  the  same  velocity,  equal  and  opposite  to-  the 
velocity  of  the  ship  in  the  still  water  we  have  the  ship  at  rest  and 

the  water  flowing  past  it.  The  mutual  reactions  between  ship 
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and  water  are  identical  whether  we  have  the  ship  moving  through 

still  water  or  the  water  flowing  past  the  fixed  ship.  To  the  latter 

case,  however,  the  steady  motion  formula  applies  if  we  neglect 
friction  and  the  mathematical  treatment  is  much  easier. 

If  the  ship  is  in  a  restricted  channel  so  shallow  and  narrow  that 

the  area  of  the  midship  section  of  the  ship  is  an  appreciable  fraction 

of  the  area  of  the  channel  section,  the  steady  motion  formula 

teaches  us  that  with  the  water  flowing  past  the  fixed  ship  there 

will  be  abreast  the  central  portion  of  the  ship  where  the  channel 

area  is  diminished  an  appreciable  increase  in  velocity  of  flow  and 

reduction  of  pressure. 

The  surface  being  free,  reduction  of  pressure  would  result  in 

depression  of  surface.  Passing  to  the  case  of  the  ship  moving 

through  the  channel  we  would  infer  that  the  water  is  flowing  aft 

abreast  the  central  portion  of  the  ship  and  that  there  is  a  depression 

in  this  vicinity. 

This,  as  a  matter  of  fact,  occurs  in  all  cases,  but  in  open  water  the 

motions  are  not  so  pronounced,  and  it  is  seldom  possible  to  detect 

them  by  the  eye.  In  a  constricted  channel,  however,  it  is  generally 

easy  to  detect  the  depression  abreast  the  ship  since  it  extends  to 
the  banks.  If  these  are  sloping  the  depression  shows  more  plainly 

than  it  does  against  vertical  or  steep  banks. 

There  might  be  quoted  many  other  illustrations  of  the  validity 

of  the  steady  motion  formula  taken  from  phenomena  of  experience. 

There  is  no  doubt  of  its  general  validity  within  certain  limits  as 

regards  motion  of  water  around  solids,  but  in  considering  any  par- 
ticular case  it  should  not  be  applied  regardless  of  its  limitations. 

4.  Failure  of  Steady  Motion  Formula.  —  The  steady  motion 
formula  assumes  frictionless  motion.  Water  is  not  frictionless, 

but  its  friction  is  not  sufficiently  great  in  the  majority  of  cases  to 

seriously  affect  steady  motion  directly. 

The  main  failure  of  the  steady  motion  formula  as  regards  prac- 
tical cases  is  in  connection  with  the  transformation  of  pressure  into 

velocity  and  vice  versa.  Neglecting  variations  of  level  the  steady 

motion  formula  is  *-  -\   =  a   constant.     By   the   formula   the W         2g 

greater  the  velocity  the  less  the  pressure,  and  if  the  velocity  be 
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made  sufficiently  great  the  pressure  must  become  negative.  Now, 

negative  pressure  would  be  a  tension,  and  liquids  are  physically  in- 
capable of  standing  a  tension.  Hence,  when  the  case  is  such  that  the 

steady  motion  formula  would  give  a  tension  the  motion  that  would 

be  given  by  the  steady  motion  formula  becomes  impossible  and 

the  formula  fails.  In  practice,  in  such  a  case,  instead  of  steady  mo- 
tion we  have  eddying,  disturbed  motion.  In  fact,  in  actual  liquids, 

when  the  motion  is  such  as  to  cause  a  reduction  of  pressure,  eddy- 
ing generally  makes  its  appearance  some  time  before  the  pressure 

becomes  zero.  But  for  moderate  variations  of  pressure  we  find  for 

actual  liquids  pressure  transformed  into  velocity  according  to  the 

steady  motion  formula  with  great  accuracy.  The  transformation 

of  velocity  into  pressure,  however,  according  to  the  steady  motion 

formula,  without  loss  of  energy,  is  not  common  in  practice.  For 

instance,  experiments  at  the  United  States  Model  Basin  have 

shown  that  air  will  pass  through  converging  conical  pipes  with 

practically  no  loss  of  head  except  that  due  to  friction  of  the  pipe 

surface.  But  when  passing  through  diverging  cones,  even  when  the 

taper  is  but  one-half  inch  of  diameter  per  foot  of  length,  there  is 
material  loss  of  head  beyond  that  due  to  friction.  It  appears 

reasonable  to  suppose  that  the  difficulties  found  in  converting 

velocity  of  actual  fluids  into  pressure  without  loss  of  energy  are 
connected  with  the  friction  of  the  actual  fluids,  both  their  internal 

friction  or  viscosity  and  their  friction  against  the  pipes  or  vessels 

containing  them. 

To  sum  up,  we  appear  warranted  in  concluding  that  in  flowing 

water  pressure  will  be  transformed  into  velocity  according  to  the 

steady  motion  formula  with  little  or  no  loss  of  energy  in  most 

cases,  provided  the  pressure  is  not  reduced  to  the  neighborhood 

of  zero,  and  that  velocity  will  be  transformed  into  pressure  but  with 

a  loss  of  energy  dependent  upon  the  conditions. 

It  is  evident  that  if  the  total  head  or  average  pressure  is  great, 

given  variations  of  pressure  and  velocity  can  take  place  with  closer 

approximation  to  the  steady  motion  formula  than  if  the  total  head 
be  small. 

5.  Sink  and  Source  Motion.  —  The  mathematics  of  fluid  motion 

or  hydrodynamics  being  somewhat  complicated  will  not  be  gone 
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into  here,  but  results  will  be  given  in  a  few  of  the  simplest  cases 

which  are  of  interest  and  have  practical  bearing.  Suppose  we 

have  liquid  filling  the  space  between  two  frictionless  planes  which 

are  very  close  together.  The  motion  will  be  everywhere  parallel 

to  the  planes,  and  hence  will  be  uniplanar  or  in  two  dimensions 

only.  Suppose  now  that  liquid  is  being  continually  introduced 

between  the  planes  at  some  point.  It  will  spread  radially  at  an 

equal  rate  in  every  direction.  The  point  of  introduction  of  the 

liquid  is  called  a  "source."  Fig.  i  indicates  the  motion,  S  being 
the  source.  If  liquid  were  being  abstracted  at  S  the  motion  at 

every  point  would  be  directly  opposite  that  shown  in  Fig.  i  and  5 

would  be  what  is  called  a  "sink."  The  sink  and  source  motion  is 
not  physically  possible  because  the  steady  motion  formula  applies, 

and  for  velocity  and  pressure  finite  at  a  distance  from  5  the  velocity 

at  5  would  be  infinite.  But  it  will  be  seen  presently  that  the  mathe- 
matical concept  of  sinks  and  sources  has  a  bearing  upon  possible 

motions.  Suppose  that  instead  of  a  single  source  or  sink  we  have 

in  Fig.  2  a  source  at  A  and  a  sink  of  equal  strength  at  B.  Liquid 

is  being  withdrawn  at  B  at  the  same  rate  at  which  it  is  being  intro- 
duced at  A  and  in  time  every  particle  introduced  at  A  must  find 

its  way  out  at  B.  The  motion  being  steady  the  paths  followed  are 
stream  lines.  These  paths  are  arcs  of  circles.  A  number  of  these 

circular  arcs  are  indicated  in  Fig.  2.  They  are  so  chosen  that  the 

"  flow  "  or  quantity  of  fluid  passing  between  each  pair  of  circles 
is  the  same.  Adjacent  to  the  line  connecting  the  sink  and  source  the 

path  is  direct,  the  velocity  great  and  the  circles  close  together.  As  we 

leave  this  line  the  path  followed  from  source  to  sink  is  circuitous, 

the  velocity  low  and  the  spacing  of  the  circles  greater  and  greater. 

6.  Sink  and  Source  Motion  Combined  with  Uniform  Stream.  - 

Suppose,  now,  that  the  liquid  in  which  the  source  is  found  is  not  at 

rest  but  is  flowing  with  constant  speed  from  right  to  left.  Fig.  3 

shows  the  result  of  the  injection  of  a  source  into  such  a  uniform 

stream.  In  this  case  we  have  a  curve  of  demarcation  DDD  sepa- 
rating the  liquid  which  comes  rom  the  source  and  the  other  liquid. 

No  liquid  crosses  this  curve.  Now,  the  motion  being  frictionless 
it  makes  no  difference  whether  DDD  is  an  imaginary  line  in  the 

moving  liquid  or  the  boundary  of  a  frictionless  solid.  Hence  if  in 
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a  uniform  stream  we  put  a  frictionless  solid  of  the  shape  DDD  the 

motion  outside  of  it  will  be  the  same  as  in  Fig.  3.  This  motion 

will  be  completely  possible  if  we  could  have  a  frictionless  solid  like 

DDD,  since  we  no  longer  have  the  source  with  its  impossible  con- 
ditions as  regards  velocity  and  pressure. 

In  Fig.  3  DDD  extends  to  infinity.  Suppose,  now,  in  a  uniform 

stream  we  put  a  sink  and  a  source  of  equal  strength  as  at  A  and  B 

in  Fig.  4.  The  direction  of  flow  of  the  uniform  stream  is  supposed 

parallel  to  AB.  In  this  case  the  closed  oval  curve  CCC  separates 

the  liquid  which  appears  at  the  source  and  disappears  at  the  sink 

from  the  liquid  of  the  uniform  stream.  Hence,  if  a  frictionless 

solid  of  the  shape  of  CCC  took  the  place  of  the  liquid  inside  the 

oval  the  motion  of  the  stream  outside  would  be  unchanged. 

Of  course  the  shape  and  dimensions  of  CCC  would  vary  with 

the  relative  strengths  of  source  and  sink  and  velocity  of  stream. 

Instead  of  one  source  and  one  sink  we  may  distribute  a  number 

along  the  line  A  B  enabling  us  to  modify  the  shape  and  proportions 
of  the  line  of  demarcation  CCC.  The  author  (see  Transactions  of 

the  Institution  of  Naval  Architects  for  1894  and  1895)  nas  extended 

this  method  to  cover  the  case  of  an  infinite  number  of  infinitely 

small  sources  and  sinks,  thus  enabling  us  to  determine  lines  of 

demarcation  or  stream  forms  both  in  plane  and  solid  motions, 

closely  resembling  actual  ships'  lines.  Not  only  the  stream  forms 
but  also  the  velocities  and  pressures  along  them  can  be  determined, 

but  the  process  is  laborious  and  has  not  so  far  been  given  sufficient 

practical  application  to  warrant  following  further  here. 
The  closed  ovals  due  to  a  source  and  a  sink  in  a  uniform  stream 

somewhat  resemble  ellipses  as  appears  from  Fig.  4. 

7.  Flow  in  Two  Dimensions  in  Practice.  —  While  to  reduce  the 
motion  to  one  plane  or  two  dimensions,  the  assumption  was  made 

that  it  took  place  between  two  frictionless  parallel  planes  so  close 

together  that  the  space  between  them  practically  constituted  a 

single  plane,  it  should  be  pointed  out  that  motion  practically  iden- 
tical with  plane  motion  occurs  in  practice.  Suppose  we  have  a 

body  of  cylindrical  type  of  infinite  length  moving  in  some  direction 

perpendicular  to  its  axis.  The  motion  past  will  be  identical  in  all 

planes  perpendicular  to  the  axis. 
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The  motion  past  an  actual  body  of  cylindrical  type  whose  length 

though  not  infinite  is  great  compared  with  its  transverse  dimensions 

will,  over  a  great  portion  of  the  length,  be  practically  the  same  as 

if  the  length  were  infinite.  A  propeller  strut  is  a  case  in  point. 

Ideal  plane  flow  has  direct  practical  bearing  upon  the  motion  past 
such  fittings. 

8.  Stream  Lines  past  Elliptic  Cylinders.  —  One  general  case  of 
uniplanar  motion  that  has  been  solved  mathematically  is  that  of  an 

elliptic  cylinder  moving  parallel  to  either  axis  in  an  infinite  mass  of 

liquid.     The  circle  is  a  special  case  and  a  plane  lamina  is  another 

special  case  where  one  axis  of  the  ellipse  is  zero.     The  general 

mathematical  formulae  expressing  the  motion  of  an  elliptic  cylinder 

through  liquid  may  be  referred  to  in  Lamb's  "  Hydrodynamics," 
edition  of  1906,  Article  71.     They  do  not  give  directly  the  stream 

lines  past  an  elliptic  cylinder  but  the  latter  can  be  deduced  from 

them.     Figs.  5  to  15  show  plane  stream  lines  or  lines  of  flow  past 

various  types  of  elliptic  cylinders.     The  lines  in  the  first  quadrant 

only  are  shown  as  they  are  symmetrical  in  the  other  three.     The 

proportions  of  the  ellipses  are  given,  the  semi-major  axis  being 
always  taken  as  unity.     Fig.   10  shows  flow  around  a  circular 

cylinder  and  Fig.  15  flow  past  a  plane  lamina  of  indefinite  length 

and  unit  half  breadth.     The  flow  around  a  lamina  is,  however, 

impossible  since   the  formula  would  require  an  infinite  velocity 

around  the  edges,  or,  as  indicated  in  Fig.  15,  the  stream  line  spac- 
ing in  the  immediate  vicinity  of  the  edge  would  become  infinitely 

narrow. 

9.  Pressure  Variations  around  Elliptic  Cylinders.  —  Figs.  16  and 
17  give  some  idea  of  variation  of  pressure  along  the  central  stream 

line  and  around  the  surface  of  the  cylinders.    A  particle  approach- 
ing a  cylinder  along  the  axis  steadily  loses  velocity  and  gains  pressure 

until  it  comes  to  rest  against  the  cylinder  when  its  pressure  is  in- 
creased by  the  total  velocity  head  of  the  undisturbed  stream.     The 

particle  then  starts  around  the  cylinder,  rapidly  gaining  velocity 
and  losing  pressure  until  at  a  point  where  it  has  moved  but  a  short 

distance  around  the  cylinder  it  has  regained  the  velocity  and  re- 
turned to  the  pressure  it  had  in  the  undisturbed  stream.     The 

velocity  then  continues  to  increase  and  the  pressure  falls  as  shown 
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until  the  particle  is  abreast  the  center  of  the  cylinder  when  the 

velocity  is  at  a  maximum  and  the  pressure  at  a  minimum. 

Figs.  1 6  and  17  show  negative  pressures  but  these  are  only 

relatively  negative.  For  convenience  the  diagrams  are  drawn  as 

if  the  pressure  in  the  undisturbed  stream  were  zero.  The  actual 

pressure  in  any  case  is  the  pressure  of  the  figure  with  the  pressure 

in  the  undisturbed  stream  added.  Bearing  in  mind  also  that  in 

each  figure  the  unit  of  pressure  is  the  pressure  head  due  to  the 

velocity  of  the  undisturbed  stream,  or  the  velocity  head  of  the 

stream,  Figs.  16  and  17  shed  a  good  deal  of  light  upon  the  effect  of 

variation  of  proportions.  Thus,  for  an  ellipse  one-tenth  as  wide 
as  long,  the  maximum  reduction  of  pressure  abreast  the  center  is 

about  one-fifth  the  velocity  head.  For  the  ellipse  four-tenths  as 
wide  as  long,  the  maximum  reduction  is  nearly  the  velocity  head. 

For  the  ellipse  as  wide  as  long  (the  circle),  the  reduction  is  three 

times  the  velocity  head.  For  the  ellipse  two  and  one-half  times  as 
wide  as  long,  the  reduction  is  over  eleven  times  the  velocity  head, 

and  for  the  ellipse  five  times  as  wide  as  long,  the  reduction  is  thirty- 

five  times  the  velocity  head  and  about  one  hundred  and  seventy- 

five  times  the  reduction  for  the  ellipse  one-tenth  as  wide  as  long. 
The  velocity  head  being  proportional  to  the  square  of  the  speed, 

the  reduction  in  or  increase  of  pressure  at  every  point  is  propor- 
tional to  the  square  of  the  speed,  and  hence  if  any  of  the  cylinders 

were  pushed  to  a  high  enough  speed  the  reduction  of  pressure 

abreast  the  center  would  equal  the  original  pressure  in  the  undis- 
turbed stream,  and  hence  the  pressure  abreast  its  center  would 

reduce  to  zero  resulting  in  eddying.  But  eddying  would  appear 

in  the  case  of  an  actual  cylinder  long  before  the  pressure  abreast 

the  center  became  zero.  For  the  excess  velocity  amidships  would 

not  be  fully  converted  into  excess  pressure  on  the  rear  of  the  cylinder 

as  required  for  perfect  stream  motion,  and  eddying  would  show 
itself  aft. 

10.  Disturbance  Abreast  Cylinder  Centers.  —  It  is  evident  from 
Figs.  1 6  and  17  that  in  the  case  of  a  cylinder  moving  through  still 

water  the  maximum  sternward  velocity  of  the  water  at  any  point 

of  the  cylindrical  surface  is  abreast  the  center  of  the  cylinder.  It 

is  also  true  that  for  motion  parallel  to  the  axis  of  x  the  greatest 
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sternward  velocity  for  any  value  of  y  is  on  the  axis  of  y.  It  is  of 
interest  to  trace  the  variation  of  velocity  as  we  pass  along  the  axis 

of  y.  Fig.  18  shows  sections  of  seven  types  of  cylinders  ranging 

from  the  flat  plate,  No.  i,  which  is  all  breadth,  to  the  circle, 

No.  4,  and  the  ellipse  five  times  as  long  as  wide,  No.  7.  They  all 

have  unit  half  breadth  on  the  axis  of  y  and  are  supposed  to  move 

with  velocity  V  parallel  to  the  axis  of  x. 

Fig.  1 8  shows  also  curves  of  sternward  velocity  u  of  the  water 

as  we  pass  out  from  the  cylinder  along  the  axis  of  y  expressed  as 

a  fraction  of  the  speed  of  advance  of  the  cylinder.  It  is  seen  that 

the  long  cylinder  causes  the  minimum  disturbance  at  the  surface 

of  the  cylinder  where  y  =  i,  but  the  maximum  beyond  y  =  4. 
Fig.  1 8  shows  markedly  the  very  great  variations  of  disturbance 

in  the  vicinity  of  the  cylinder  with  variation  of  ratio  of  breadth  to 

length.  The  areas  of  all  the  curves  of  Fig.  18  are  the  same,  being 

equal  to  V  X  (half  breadth).  The  dotted  square  in  the  figure 
shows  this  area. 

u.  Tracks  of  Particles.  —  While  Figs.  5  to  15  show  stream  lines 
or  flow  past  the  cylinders,  they  give  little  idea  of  the  paths  followed 

by  particles  of  water  when  a  cylinder  is  moved  through  water 

initially  at  rest. 

Rankine  gave,  many  years  ago,  the  differential  equation  to  these 

paths  for  the  motion  of  a  circular  cylinder,  and  while  this  equation 

cannot  be  integrated  it  is  possible  by  graphic  methods  to  determine 

the  resulting  paths  with  ample  accuracy. 

Fig.  19  shows  the  paths  followed  by  a  few  particles  at  various 

distances  from  the  axis  as  a  cylinder  of  the  size  indicated  by  the 

dotted  semicircles  in  the  figure  passes  along  the  axis  from  an  infinite 

distance  to  the  right  to  an  infinite  distance  to  the  left. 

A  on  each  path  shows  the  original  position  of  the  particle  when 

the  cylinder  is  at  an  infinite  distance  to  the  right.  B,  C,  D,  E 

and  F  on  the  paths  of  the  particles  show  positions  when  the  cylinder 
is  at  B,  C,  D,  E,  and  F,  on  the  axis  as  indicated. 

The  paths  are  symmetrical,  and  G  denotes  the  position  of  each  par- 
ticle when  the  cylinder  has  passed  to  an  infinite  distance  to  the  left. 

Fig.  19  shows  the  curious  result  that  each  particle  is  shifted 

ultimately  a  certain  distance  parallel  to  the  direction  of  motion  of 
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the  cylinder.  This  could  not  occur  if  the  cylinder  started  from 
rest  at  a  finite  distance  from  the  particle,  and  came  to  rest  within 
a  finite  distance  of  the  particle.  For  such  motion  the  particles  must 
on  the  average  be  slightly  displaced  in  a  direction  opposite  to  the 
direction  of  motion  of  the  cylinder. 

12.  Stream  Lines  around  Sphere.  —  While  there  are  very  few 
mathematical  determinations  of  stream  lines  in  three  dimensions 

those  for  the  sphere  are  known  and  it  is  of  interest  to  compare  them 
with  those  for  a  circular  cylinder  shown  in  Fig.  10.  The  stream 
lines  past  a  sphere  are  identical  in  all  planes  through  the  axis  parallel 
to  the  direction  of  undisturbed  flow. 

They  are  shown  in  Fig.  20,  and  in  Fig.  21  are  shown  curves  of 
pressure  variation  along  the  horizontal  axis  and  around  the  sphere, 
also  along  the  horizontal  axis  and  around  a  circular  cylinder.  The 

curves  show  as  might  be  expected  that  the  sphere  creates  less  dis- 
turbance. This  is  evidently  because  the  water  is  free  to  move  in 

three  dimensions  around  the  sphere,  while  it  is  restricted  to  plane 
motion  around  the  cylinder. 

The  increase  of  pressure  in  front  of  the  sphere  is  less.  There  is 
a  sudden  rise  close  to  the  intersection  of  axis  and  sphere.  At  this 
point  the  increase  of  pressure  is  the  same  as  in  the  case  of  the 
cylinder,  being  the  pressure  head  due  to  the  undisturbed  velocity. 

Abreast  the  center  the  loss  of  pressure  is  one  and  one-half  times  that 
due  to  the  velocity  as  contrasted  with  three  times  the  velocity  head 
in  the  case  of  the  cylinder.  In  other  words,  if  a  sphere  is  advancing 
with  perfect  stream  line  action  through  water  otherwise  undisturbed 

the  water  abreast  the  center  is  flowing  aft  with  one-half  the  velocity 
of  advance  of  the  sphere.  In  the  case  of  the  circular  cylinder  the 
water  abreast  its  center  flows  aft  with  velocity  equal  to  the  velocity 
of  advance. 

2.  Trochoidal  Water  Waves 

i.  Mathematical  Waves.  —  Ocean  waves  during  a  storm  are 
generally  confused  rather  than  regular.  They  are  not  of  uniform 
height  or  length  from  crest  to  crest,  and  the  crests  and  hollows 

extend  but  comparatively  short  distances.  After  a  storm,  how- 
ever, the  confused  motion  settles  down  into  rather  uniform  and 
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regular  swells  and  the  motion  approaches  that  of  mathematical 
waves.  For  mathematical  treatment  it  is  necessary  to  assume 
regularity  of  motion.  We  may  define  a  series  of  mathematical 
waves  as  an  infinite  series  of  parallel  infinitely  long  identically 
similar  undulations  advancing  at  uniform  speed  in  a  direction 
perpendicular  to  that  of  their  crests  and  hollows.  The  constant 
distance  between  successive  crests  is  called  the  length  of  the  waves 
or  the  wave  length,  the  distance  between  the  level  of  the  crest  and 
the  level  of  the  hollow  is  called  the  height  of  the  wave,  and  the  time 
interval  between  the  passage  of  successive  crests  by  a  fixed  point 
is  called  the  period  of  the  wave. 

Mathematical  waves  are  cases  of  motion  in  two  dimensions, 
since  the  motion  is  identical  in  all  planes  perpendicular  to  the 
wave  crests. 

2.  Trochoidal  Wave  Theory.  —  The  most  commonly  accepted 

theory  of  regular  wave  motion  is  that  called  the  "  trochoidal 
theory."  Its  mathematics  is  too  long  and  difficult  to  be  gone 
into  here,  and  I  shall  undertake  only  to  give  some  of  the  formulae 

and  conclusions  that  have  been  evolved  by  the  eminent  mathe- 
maticians who  have  worked  in  this  field. 

Of  the  British  mathematicians  who  have  contributed  to  the 

trochoidal  theory,  Airy  and  Rankine  were  especially  prominent 
shortly  after  the  middle  of  the  last  century. 
By  the  trochoidal  theory,  in  water  of  unlimited  depth  each 

particle  describes  at  a  uniform  rate  a  circular  orbit,  making  one 
complete  revolution  per  wave  period,  the  radii  of  the  orbits  being 
a  maximum  for  surface  particles  and  decreasing  indefinitely  with 
depth. 

Referring  to  Fig.  22  let  the  wave  length  be  denoted  by  L  and 
let  R  be  the  radius  of  a  circle  whose  circumference  is  L.  Then 

R  =  -—  •     Suppose  we  locate  this  circle  with  its  center  midway 2  7T 

between  the  levels  of  crest  and  hollow  and  take  a  point  P  on  the 
TT 

radius  at  a  distance  r  or  —  from  the  center,  H  being  the  wave 

height.  Then,  if  the  circle  rolls  on  the  line  AB  the  point  P  will 
describe  a  trochoid  giving  the  outline  of  the  wave  surface.  This 
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trochoid  shows  the  contour  assumed  by  particles  originally  at  the 

surface  level.  Similarly,  particles  originally  at  any  level  below  the 

surface  are  found  along  a  trochoidal  surface  having  the  same 

diameter  of  rolling  circle  but  less  orbit  radius,  the  radius  diminish- 
ing indefinitely  with  depth. 

Fig.  23  shows  the  trochoids  at  various  levels,  orbit  diameters 

and  contours  of  lines  of  particles  which  in  undisturbed  water  were 

equally  spaced  verticals.  The  cycloid  —  the  limiting  trochoid  — 
is  shown,  but  it  is  not  possible  for  sharp  crested  waves  to  appear 

in  practice.  They  break  long  before  they  approach  closely  the 

limiting  cycloid. 

Fig.  23  is  for  water  of  unlimited  depth.  In  water  of  finite  depth, 

by  the  trochoidal  theory  each  particle  describes  an  elliptical  orbit 

instead  of  the  circular  orbit  of  deep  water.  Referring  to  Fig.  24 

let  A  BCD  be  the  "  rolling  circle"  whose  perimeter,  as  before,  is 
equal  to  the  wave  length  from  crest  to  crest.  Let  the  ellipse 

EFGH  of  center  the  same  as  the  center  of  the  rolling  circle  be  the 

orbit  of  the  surface  particles.  Let  OP'  be  the  radius  of  a  concentric 
circle  of  diameter  the  same  as  the  major  (horizontal)  axis  of  the 

ellipse.  Then,  as  the  rolling  circle  moves,  let  the  radius  OP' 
revolve  with  it  and  the  ellipse  move  horizontally  with  it  without 

revolving.  Draw  vertical  lines  as  P'N  from  the  successive  posi- 

tions of  P'  to  meet  the  ellipse  in  points  such  as  P.  The  modified 
trochoid  obtained  by  joining  all  points  such  as  P  is  the  surface  profile 
of  the  wave. 

The  horizontal  and  vertical  axes  of  the  elliptical  orbits  are  not 

independent  but  vary  with  the  depth  of  water,  the  depth  below 

the  surface,  etc. 

Thus  let  a  and  b  denote  the  horizontal  and  vertical  semi-axes, 
respectively,  of  an  elliptical  orbit  whose  center  is  a  distance  h 

below  the  orbit  centers  of  the  surface  particles.  Let  oo&o  denote 

the  semi-axes  of  the  surface  orbit.  Let  d  denote  the  depth  from 
center  of  surface  orbits  to  the  bottom.  Let  R  denote  the  radius 

of  the  rolling  circle  and  w  the  angular  velocity  with  which  it  must 
roll  to  have  its  center  travel  at  the  speed  of  the  wave. 

Let  L  denote  the  wave  length  in  feet,  v  the  wave  speed  in  feet 

per  second,  g  the  acceleration  of  gravity  and  e  the  base  of  hyper- 
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bolic  logarithms.     Then  the  formulae  connecting  the  above  quan- 
tities are  as  follows: 

e  L  —  i 
-2x(d-h) 

b  = 

e    L     —  e 
-2?rrf 

g  L  —  e  L 
1x(d-h)  -2*( L     +  e 

e  L  —  e   L 

and     w  =  m/ 
a0  R 

Whence 

and  if  T  denote  the  period  in  seconds 

bo      g 

To  pass  to  the  case  of  indefinitely  deep  water,  we  put  d  =  oo . 

Then  aQ  =  b0  =  r0,  say,  and  if  r  denote  the  radius  of  the  circular 
orbit  at  a  distance  h  below  the  surface  orbits,  we  have 

-2nh 

a  =  b  =  r  =  r0e  L   . 

As  before,  v  =  &R,  but 

R  2  TT 

Substituting  for  g  the  value  32.16  and  for  TT  its  value,  we  have  the 

following  formulas  for  deep-water  trochoidal  waves: 

Velocity  in  feet  per  second  =  v  =  2.26 

Velocity  in  knots  =  V  =  1.34 

Period  in  seconds  =  T=  0.442 

Length  in  feet  =  .557  V2  =  5.118  r2. 

The   above  rather   complicated-looking  formulae  express  com- 
pletely the  motion  under  the  trochoidal  theory. 
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3.  Mechanical  Possibility  of  Trochoidal  Waves.  —  For  the 
motion  to  be  possible  it  must  satisfy, 

1.  The  condition  of  continuity. 

2.  The  condition  of  dynamical  equilibrium. 

3.  The  boundary  conditions. 
4.  The  conditions  of  formation. 

The  mathematical  investigation  of  the  above  conditions  is  too 

long  and  complicated  to  be  given  here.  The  results  only  can  be 

given.  .  As  regards  continuity,  it  is  found  that  the  motion  is  possible 

in  water  of  infinite  depth,  but  that  in  water  of  finite  depth  the 

equation  of  continuity  is  not  quite  satisfied. 

As  regards  dynamical  equilibrium,  again  we  find  that  the  motion 

is  not  quite  possible  in  finite  depth,  the  pressure  at  the  surface  being 

not  quite  constant,  which  it  must  be  from  boundary  conditions* 

In  infinite  depth,  however,  the  pressure  as  deduced  from  the  tro- 
choidal  formulae  is  constant  along  the  wave  profile  and  hence  the 

motion  is  possible. 

The  only  other  boundary  conditions  to  be  satisfied  are  those  at 

the  bottom,  and  these  are  satisfied  by  the  trochoidal  formulae, 

since  they  give  at  the  bottom  horizontal  motion  only  (b  =  o)  when 

the  water  is  of  finite  depth  and  no  motion  at  all  (r  =  o)  when  the 
water  is  of  infinite  depth. 

Finally,  as  regards  the  condition  of  formation,  it  is  a  theorem 

of  hydrodynamics  that  a  perfect  liquid,  originally  at  rest,  that  has 

been  acted  upon  by  natural  forces  only,  cannot  show  molecular 

rotation.  The  trochoidal  wave  motion  involves  a  slight  molecular 

rotation,  and  hence  falls  slightly  short  of  being  a  possible  motion 

in  both  finite  and  infinite  depths. 

We  conclude,  then,  that  trochoidal  wave  motion  falls  slightly 

short  of  being  mathematically  possible;  but  it  would  require  a  very 

small  change  in  the  motion  to  render  it  possible.  This  and  other 

considerations  which  will  be  pointed  out  later  warrant  the  adoption 

of  the  trochoidal  theory  as  a  working  approximation. 

4.  Trochoidal  Wave  Profiles.  —  The  formulae  already  given  may 
be  supplemented  by  those  representing  the  trochoidal  contours  at 

various  depths.  They  are  x  =  Rd  —  a  sin  6,  y  =  h  —  b  cos  6,  where 
x  is  measured  horizontally,  y  is  measured  vertically  down  from  the 
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surface  orbit  centers  R,  a  and  b  have  the  values  already  given  and 

6  is  angle  rolled  through  by  the  rolling  circle,  being  =  o  for  an 
initial  condition  where  the  radius  of  the  rolling  circle  is  vertical  and 

its  center  ;under  the  crest  of  the  trochoid.  Of  course,  in  deep  water 
a  =  b  =  r. 

Fig.  25  shows  the  wave  surface  profiles  for  three  waves,  each  300 

feet  long  and  20  feet  high,  but  in  three  depths  of  water,  namely  oo , 
25  feet  and  15  feet.  These  three  profiles  have  the  same  line  of 
undisturbed  water  level.  It  is  seen  that  in  each  case  the  orbit 

center,  or  mid  height  of  wave,  is  above  the  level  of  the  undisturbed 

water.  For  deep-water  waves  the  amount  of  this  elevation  is 

r  2 — -  >  r0  being  the  surface  orbit  radius.  For  shallow- water  waves  it 2  R 

is  —j^-     The  pressure  on  any  trochoidal  subsurface  for  deep-water 

waves  is  uniform  and  the  same  as  the  pressure  in  undisturbed  water 

on  the  corresponding  layer. 

For  subsurface  trochoids  the  elevation  of  orbit  centers  is  given 

f(?    — by — —e  R  ,  where  h  is  the  distance  of  the  orbit  centers  from  the 

level  of  surface  orbit  centers. 

5.  Energy  of  Trochoidal  Waves.  —  Consider  now  the  energy  of 
waves  in  deep  water.  This  is  partly  potential,  due  to  the  fact  that 

in  wave  motion  the  particles  are  elevated  on  the  average  above  their 

still-water  positions,  and  partly  kinetic,  due  to  the  velocity  with 
which  the  particles  of  water  are  revolving  in  their  circular  orbits. 

Let  w  denote  the  weight  of  one  cubic  foot  of  water.  Then  the 

potential  energy  of  a  mass  of  water  one  foot  wide  and  one  wave 

length  long,  i.e.,  extending  from  one  crest  to  the  next,  is 

2 

where  r0  is  surface  orbit  radius  or  one-half  the  wave  height. 

Now  R  =  -—  -     Substituting  this  value  we  may  write 2  7T 

(i-^ 

\  L~ 



1 6  SPEED  AND  POWER  OF  SHIPS 

In   practice,   for    actual   waves  is  a  small  fraction  and  for 
L* 

most  purposes  can  be  ignored.  The  kinetic  energy  of  the  mass  of 

water  as  above  is  exactly  the  same  as  the  potential  energy,  or  if 
we  denote  it  by  Ek, 

v ( 

V1 

While  the  potential  and  kinetic  energies  of  a  mass  of  water  in 
wave  motion  remain  constant,  there  is  constant  transmission  of 

energy  going  on. 
Fig.  26  shows  a  number  of  positions  of  a  distorted  vertical  or 

line  of  particles  originally  vertical  in  still  water.  During  part  of 

the  motion,  energy  is  being  transmitted  across  this  vertical  in  the 

direction  in  which  the  wave  is  traveling  and  during  the  rest  of  the 

motion  it  is  being  transmitted  backward.  One  wave  length  away 

is  a  similar  distorted  vertical  moving  in  the  same  way,  so  there  is 

at  no  time  net  gain  or  loss  of  energy  to  a  mass  of  water  one  wave 

length  long.  But  the  energy  transmitted  forward  across  a  surface 

originally  a  vertical  plane  is  during  one  wave  passage  greater  than 

the  energy  transmitted  backward  by  the  quantity  —    —  (  i  -  °  J  - 4     \  J-i     / 
This  is  identical  with  the  kinetic  or  potential  energy  of  the  wave, 

so  that  a  mass  of  water  extending  over  one  wave  length  receives 
from  the  water  behind  it  and  communicates  to  the  water  in  front 

of  it  during  the  passage  of  one  wave  a  net  amount  of  energy  equal 
to  its  kinetic  or  potential  energy. 

While  this  is  the  net  energy  transmitted  the  rate  of  transmission 

is  much  higher  during  a  portion  of  the  wave  passage  than  the  aver- 
age. Thus,  if  6  is  the  angle  in  its  orbit  from  the  vertical  of  the 

radius  r0  of  a  surface  particle,  the  rate  of  transmission  of  energy 

through  the  distorted  vertical  terminating  in  the  surface  particle 

(see  Fig.  26)  is  given  by 

By  integrating  this  between  the  limits  6  =  o  and  2  IT,  we  get  the 
expression  given  above  for  the  net  energy  transmitted.     Fig.  27 
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shows  a  curve  of  rate  of  transmission  of  energy  for  a  deep-water 

wave  300  feet  long  and  20  feet  high.  Between  o°  and  90°  and 

270°  and  360°  there  is  positive  transmission.  Between  90°  and 

270°  there  is  negative  transmission.  The  average  rate  of  trans- 
mission is  indicated  on  the  figure. 

6.  Superposition  of  Trochoidal  Waves.  —  If  we  superpose  two 
trochoidal  wave  series  of  the  same  length  L,  and  hence  the  same 

speed  of  advance,  which  are  traveling  in  the  same  direction  with 

parallel  crests  a  distance  a  apart,  the  result  is  a  single  series  of 

length  L. 

If  we  denote  by  HI,  HZ  the  wave  heights  of  the  two  components 

and  by  H  the  height  of  the  resultant  series,  we  have 

R  L 

Evidently  if  a  =  o,  or  the  crests  of  the  component  series  are  im- 

mediately over   one  another,  cos  —  =i  and  H2=(Hi+  H^)2.     In R 

this  case  the  wave  height  of  the  resultant  series  is  the  sum  of 

the   component   heights.     If  a  =  irR   we   have   cos  —  =  —  i   and R 

Hz  =  (Hi—  Hz)2.  In  this  case  the  crest  of  one  component  is 
immediately  over  the  hollow  of  the  other,  and  the  height  of  the 

resultant  series  is  the  difference  of  the  heights  of  the  components. 

If  in  this  case  Hi=Hz,  the  components  extinguish  each  other  and 
the  resultant  is  still  water. 

7.  Wave  Groups.  —  A  very  important  deduction  from  the  tro- 
choidal theory  is  the  theory  of  wave  groups.  If  we  superpose 

two  trochoidal  systems  of  equal  heights,  but  slightly  different 

lengths,  we  have  at  one  point  of  the  resultant  series  waves  of 

double  the  height  of  either  component  and  at  another  point  waves 

of  zero  height,  since  at  one  point  of  the  series  we  would  have  crest 

superposed  on  crest  and  at  another  point  crest  superposed  on 
hollow.  The  resultant  series  in  this  case  would  consist  of  a  number 

of  groups  of  waves,  each  with  a  wave  of  maximum  height  in  the 

middle  and  of  heights  steadily  decreasing  ahead  and  astern  of  the 

middle  until  waves  of  infinitesimal  height  or  bands  of  practically 

still  water  separate  the  groups.  It  can  be  easily  proved  from  the 
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trochoidal  theory  that  each  group  will  travel  as  a  whole  at  just  half 

the  speed  appropriate  to  the  wave  length  of  the  original  compo- 
nents. The  individual  waves,  however,  travel  at  their  natural 

speed,  which  is  double  the  group  speed.  A  wave  will  advance 
from  the  rear  of  a  group  where  its  height  is  infinitesimal  and  pass 
through  the  group,  growing  until  it  reaches  a  maximum  at  the 
center  of  the  group  and  then  dwindling  as  it  goes  forward  until 
its  height  again  becomes  infinitesimal  at  the  front  of  the  group. 
One  can  readily  start  a  group  of  circular  waves  by  dropping  a 
pebble  from  a  bridge  into  a  placid  stream.  This  shows  general 
features  somewhat  similar  to  the  theoretical  trochoidal  group. 
If  the  reflection  in  the  water  of  the  side  of  the  bridge  is  distinct  a 
wave  can  be  watched  as,  first  becoming  noticeable  at  the  rear,  it 
passes  through  the  group,  reaching  a  maximum  height  and  dying 
down  again. as  it  gets  further  and  further  ahead  of  the  center  of 
the  group.  It  will  be  found,  however,  that  unlike  the  theoretical 
trochoidal  group,  which  has  similar  groups  some  distance  ahead 
and  astern  of  it,  the  circular  group  gets  wider  and  wider  from  front 

to  rear.  If,  for  instance,  at  a  given  time  it  shows  five  appreci- 
able waves,  it  will  be  seen  a  little  later  to  show  six,  then  seven,  and 

so  on. 

8.  Applicability  of  Trochoidal  Theory.  —  Having  considered  the 
nature  of  the  motions  and  the  conclusions  that  can  be  drawn  from 

the  trochoidal  wave  theory,  it  is  time  to  consider  its  applicability 
to  actual  water  waves.  We  know  that  actual  waves  cannot  be 

exactly  trochoidal,  and  we  are  not  warranted  in  assuming  without 
some  confirmatory  evidence  that  the  trochoidal  theory  gives  us 
waves  substantially  the  same  as  actual  waves.  Now,  as  already 
pointed  out,  actual  waves  are  almost  never  regular,  so  that  a  rather 
rough  approximation,  mathematically,  to  the  ideal  regular  waves 
would,  as  a  rule,  resemble  them  more  closely  than  do  the  actual 
waves.  Hence,  if  we  find  that  the  trochoidal  theory  adequately 
represents  the  most  important  feature  or  features  of  wave  motion 
we  need  not  be  concerned  as  to  minor  features. 

Stokes  has  developed  a  mechanically  possible  theory  of  wave 
motion  where  the  wave  profiles  are  sines  and  the  speed  of  the  wave 
is  not  independent  of  the  height,  but  increases  slightly  with  it. 
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For  waves  of  ordinary  proportions,  however,  the  speed  is  practi- 
cally the  same  as  by  the  less  complex  trochoidal  theory. 

It  appears,  then,  that  for  the  proportions  occurring  in  practice 
trochoidal  waves  are  in  substantial  agreement  with  mathematical 

waves  free  from  their  minor  mechanical  imperfections. 

Now,  what  is  the  basic  feature  of  trochoidal  waves?  It  seems 

that  it  may  fairly  be  said  to  be  the  fact  that  the  velocity  of  advance 

depends  only  upon  the  length  from  crest  to  crest  and  the  depth  of 

the  water.  We  have  seen  that  the  formula  for  this  velocity  is 

2nd  -2xd 

«0    2  7T  ̂   H^d    2  7T 
e  L  +  e   L 

Small-scale  experiments  in  tanks,  such  as  those  of  the  Weber 
Brothers,  who  published  their  results  in  1825,  have  given  results 

consistent  with  the  trochoidal  theory;  but  it  is  obviously  desirable 

to  compare  the  theory  with  actual  full-sized  waves,  which  it  is 
very  difficult  to  do  with  accuracy. 

9.  Gaillard's  Experimental  Investigations  of  Trochoidal  Theory. 
—  Major  D.  D.  Gaillard,  U.  S.  A.,  in  a  monograph  on  Wave 
Action  in  Relation  to  Engineering  Structures  (Professional  Papers, 

No.  31,  Corps  of  Engineers,  U.  S.  Army),  has  compared  reported 

speeds  of  advance  and  speeds  computed  by  the  trochoidal  theory 

in  eighty-five  cases  of  ocean  waves  observed  by  various  people  at 

various  places.  Of  these  eighty-five  reported  velocities,  twenty- 
three  were  higher  than  the  computed  velocities  corresponding  to 

the  observed  length  and  sixty-two  were  lower,  the  average  of  the 
whole  number  being  nearly  9  per  cent  below  the  average  computed 

velocity.  While  giving  due  consideration  to  the  difficulties  in  the 

way  of  accurate  observation,  the  agreement  between  these  observa- 
tions and  the  trochoidal  theory  is  certainly  not  wholly  satisfactory. 

Fortunately,  Major  Gaillard  gives  a  further  comparison  of  the 

trochoidal  theory  with  a  large  number  of  observations,  taken  by 
himself  or  under  his  direction,  under  conditions  favorable  to 

accuracy.  These  observations  were  made  in  1901  and  1902  in  the 

Duluth,  Minn.,  ship  canal  and  in  Lake  Superior  near  the  canal. 

The  canal  in  question  is  about  300  feet  wide,  26  feet  deep, 
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where  the  observations  were  taken,  and  about  1000  feet  long.  It 

connects  the  harbor  of  Duluth  with  Lake  Superior,  and  natural 

conditions  are  such  that  during  and  after  storms,  waves  often 

pass  squarely  into  its  mouth  and  on  through  it.  By  means  of 

instantaneous  photography  accurate  profiles  of  waves  against  the 

walls,  either  in  the  canal  or  outside,  in  gently  shoaling  water, 

could  be  determined.  The  velocity  of  the  waves  could  also  be 

determined  quite  accurately,  velocity  observations  being  usually 

taken  between  stations  300  feet  apart.  The  observations  during 

two  years  numbered  631  in  all.  The  wave  heights  varied  from  2 

to  23  feet,  the  wave  lengths  from  45  to  425  feet,  and  the  wave 

velocities  from  9.1  to  33.3  feet  per  second.  The  depth  of  the 

water  varied  from  3.3  to  27  feet,  though  533  of  the  observations 

were  taken  in  the  canal  26  feet  deep.  For  these  533  observations 

the  mean  observed  velocity  and  the  mean  velocity  as  computed 

from  the  shallow-water  trochoidal  formula  agreed  within  less  than 

one-half  of  one  per  cent.  This  is  practically  exact  agreement. 

For  the  ninety-eight  observations  made  outside  the  canal  in  varying 
depths  the  computed  velocities  averaged  nearly  5  per  cent  more 

than  the  observed  velocities.  Major  Gaillard  states  that  conditions 
and  facilities  were  such  that  the  last  series  of  observations  could 

not  be  taken  with  the  same  degree  of  accuracy  as  those  on  waves 

inside  the  canal.  Major  Gaillard's  observations  appear  to  furnish 
conclusive  evidence  of  the  reliability  of  the  trochoidal  theory  as 

regards  its  most  important  feature,  the  relation  between  length 
and  speed  of  advance. 

It  is  true  that  Major  Gaillard  dealt  only  with  shallow-water 

waves,  but  it  is  evident  from  what  has  gone  before  that  shallow- 
water  trochoidal  waves  are  more  likely  to  misrepresent  the  actual 

waves  than  the  deep-water  trochoidal  waves. 
The  actual  wave  profiles  in  the  Duluth  canal  as  obtained  by 

photography  agreed  reasonably  well  with  the  profiles  from  the 

trochoidal  formula.  The  differences,  generally  speaking,  were 

greatest  at  about  mid-height  of  the  wave,  where  the  failure  of  the 
trochoidal  theory  to  satisfy  the  conditions  of  continuity  and 

dynamical  stability  is  most  marked.  Major  Gaillard  states  that 

the  elevated  portion  of  an  actual  wave  "  is  always  narrower  and 
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the  depressed  portion  broader  and  flatter  than  is  indicated  by 
theory,  and  this  difference  becomes  more  marked  as  the  wave 

approaches  the  point  of  breaking."  The  actual  wave  profiles, 
however,  were  by  no  means  uniform,  differing  from  each  other 

quite  as  much  as  from  the  trochoidal  form. 

To  sum  up  it  seems  fair  to  say  that  the  trochoidal  formulae 

represent  actual  waves  very  closely  as  regards  speed,  with  a  suffi- 
cient approximation  as  regards  profile,  and  for  practical  purposes 

are  much  better  than  more  complicated  and  difficult  formulas  that 

have  been  devised.  They  are  themselves  quite  complicated  and 

difficult  enough. 

10.  Shallow  Water  and  Solitary  Waves.  —  The  trochoidal  for- 
mula for  wave  speed  in  shallow  water  of  depth  d  may  be  written 

L  - i  gL 
' 

For  a  constant  length  of  wave  v  decreases  as  the  water  shoals,  the 

ratio  between  the  velocity  of  a  wave  of  given  length  L  in  water 

of  depth  d  below  orbit  centers  and  a  wave  of  the  'same  length  in 
indefinitely  deep  water  being 

Fig.  28  shows  a  curve  of  the  value  of  this  ratio  plotted  on  —  •    It 1^4 

is  seen  that  for  depths  of  water  greater  than  half  the  wave  length 

there  is  practically  no  change  of  speed. 

Figs.  29  and  30  show  graphically  the  relations  between  depth  of 

water,  length  of  wave  and  speed  of  wave,  the  speeds  being  ex- 
pressed in  knots  per  hour.  Fig.  30  simply  reproduces  on  a  large 

scale  for  clearness  the  lower  part  of  Fig.  29.  It  is  seen  that  as  the 

depth  of  water  becomes  very  small  the  speed  tends  to  become 

independent  of  the  length.  So  let  us  investigate  the  results  of 

assuming  that  the  wave  length  is  very  much  greater  than  the  depth 
of  water. 
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The  formula  for  wave  speed  in  shallow  water  is,  as  we  have  seen, 

do    2  7T  i^  2  7T 
£   L    +   I 

Now  expanding  we  have 

Then 

f  + 

2  7T 

Now  when  —  >  or  the  ratio  between  depth  and  length,  becomes  very l^t 

small  all  terms  of  the  long  fraction  above  except  two  can  be  neg- 
lected, and  the  fraction  reduces  to 

d 
47rZ        d —  =  ̂ L 

Then  
1?=  2  w-  •*—  =  gd. L    2  7T 

In  the  above  6?  is  not  the  original  depth  of  water  but  the  depth 

to  surface  orbit  centers,  or  to  mid-height  of  the  waves.  This 
depth  is  somewhat  greater  than  undisturbed  still  water  depth,  but 
not  very  much  greater. 

The  above  result  is  interesting  as  indicating  that  in  shallow  water, 
on  the  trochoidal  theory,  there  is  a  limit  to  the  speed  of  waves  no 

matter  what  their  length.  This  conclusion  is  confirmed  by  ex- 
perience, and  the  value  of  the  limit  obtained  above  is  in  reasonable 

agreement  with  experiments.  It  is  interesting  to  note  in  this 
connection  that,  as  indicated  in  Fig.  25,  the  shoaler  the  water  the 
more  a  trochoidal  wave  system  tends  to  approach  a  series  of  sharp 
crests  separated  by  long  hollows  that  are  nearly  flat.  That  is  to 
say,  it  tends  to  become  a  series  of  solitary  waves,  or  waves  of 
translation,  consisting  of  humps  or  crests  without  hollows.  Scott 
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Russell,  as  a  result  of  numerous  experiments  on  the  so-called  solitary 
wave,  or  wave  of  translation,  made  in  a  trough,  concluded  that  the 

velocity  of  this  wave  was  equal  to  that  of  a  body  falling  freely 

through  a  height  equal  to  half  the  depth  from  the  top  of  the  wave. 

The  formula  above  gives  the  velocity  of  the  trochoidal  wave  ap- 
proaching the  wave  of  translation  type  as  that  of  a  body  falling 

through  a  height  equal  to  half  the  depth  measured  from  mid-height 
of  the  wave.  The  difference  is  not  great  for  possible  waves  whose 

height  is  generally  but  a  fraction  of  the  depth.  There  is,  however, 

testimony  to  indicate  that  Scott  Russell's  formula  gives  too  great  a 
velocity.  Rankine  gives  a  formula  practically  equivalent  to  Scott 

Russell's.  Major  Gaillard  states  that  he  has  applied  Rankine's  for- 
mula to  several  hundred  observations  upon  shallow-water  waves, 

taken  at  North  Beach,  Fla.,  and  on  Lake  Superior,  and  has  found 

that  it  almost  invariably  gives  results  considerably  in  excess  of  the 

observed  velocities.  The  trochoidal  formula,  then,  with  its  velocity 

somewhat  smaller  than  Scott  Russell's  or  Rankine's,  would  agree 
more  closely  with  Gaillard's  observations. 

ii.  Dimensions  of  Sea  Waves.  —  It  may  be  well  to  supplement 
the  mathematical  theory  of  waves  with  some  information  regard- 

ing waves  found  in  practice.  The  heights  of  sea  waves  are  their 

most  striking  feature  and  the  most  important  for  seagoing  people. 

From  the  nature  of  the  case  it  is  very  difficult  to  observe  with 

accuracy  the  heights  of  deep-sea  waves.  From  observations  made 
by  a  number  of  observers  of  various  nationalities  in  various  seas 

it  seems  reasonable  to  consider  that  waves  40  feet  high  from 

trough  to  crest  can  be  generated  in  deep  water  by  unusually  severe 

and  long  continued  storms.  This  exceptional  height  is  liable  to 

be  materially  surpassed  by  abnormal  waves,  the  result  of  super- 
position. Thus  Major  Gaillard  quotes  a  case  where  a  photograph 

taken  on  the  United  States  Fish  Commission  steamer  Albatross, 

and  furnished  him  by  Commander  Tanner,  U.  S.  N.,  showed  the 

fore  yard  of  the  ship  parallel  to  the  crest  of  a  huge  wave  and  a 

little  below  it,  the  photograph  being  taken  from  aft.  From  the 

known  dimensions  of  the  vessel  and  position  of  the  camera  it  seems 

that  this  crest  must  have  been  from  55  to  60  feet  above  its  trough. 

This  wave  was  photographed  in  the  North  Pacific  off  the  United 
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States  coast.  Estimated  heights  as  great  as  this  are  not  infre- 
quently reported  by  captains  of  steamers  crossing  the  Atlantic, 

but  accurate  estimates  of  wave  heights  are  difficult  to  make. 

Probably  it  would  be  a  fair  statement  of  the  case  to  say  that  very 

heavy  seas  with  maximum  wave  heights  of  30  feet  are  not  unusual. 

Exceptionally  heavy  seas  with  maximum  wave  heights  of  40  feet 

are  encountered  at  times,  and  there  is  good  evidence  that  abnormal 

crests  60  feet  in  height  have  been  encountered.  The  maximum 

wave  height  would  not  be  found  for  every  wave  of  a  heavy  sea. 

The  30  and  40  foot  waves  would  appear  at  intervals.  Intervening 
waves  would  be  lower. 

For  the  purpose  of  estimating  the  maximum  stress  of  a  ship 

it  is  customary  to  assume  a  wave  height  one-twentieth  the  length, 
the  length  of  wave  being  taken  the  same  as  the  length  of  the  ship. 

This  seems  a  reasonable  average,  but  steeper  waves  have  been 

often  observed.  Short  waves  are  more  apt  to  be  steep  than  long 

waves.  As  to  actual  lengths  it  may  be  confidently  stated  that 

waves  over  500  feet  long  are  unusual,  though  a  4O-foot  sea  would 
probably  be  between  600  and  800  feet  long,  and  lengths  of  1000 
feet  and  more  have  been  measured. 

For  the  development  of  maximum  waves  a  great  space  of  open 

water  is  essential.  Major  Gaillard  concluded  after  investigation 

that  "during  unusually  severe  storms  upon  Lake  Superior,  which 
occur  only  at  intervals  of  several  years,  waves  may  be  encountered 

in  deep  water  of  a  height  of  from  20  to  25  feet  and  a  length  of 

275  to  325  feet."  It  appears,  then,  that  the  5oo-foot  vessels  navi- 
gating Lake  Superior  will  probably  never  encounter  waves  their 

own  length.  This  condition  indeed  is  rapidly  being  reached  by 

the  enormously  long  Atlantic  liners  of  the  present  day. 

12.  Relations  between  Wind  and  Waves.  —  The  length  of  waves 
(or  their  speed  of  advance)  is  governed  by  the  velocity  of  the  wind 

creating  the  wave.  The  relation  is  not  known.  Waves  have 
often  been  observed  in  advance  of  a  storm  and  also  waves  in  a 

storm  that  were  traveling  faster  than  the  wind  was  blowing.  It 
does  not  follow  that  a  wave  can  travel  faster  than  the  wind  that 

forms  it.  Severe  storms  are  revolving  or  cyclonic,  and  the  storm 
center  does  not  move  as  fast  as  the  wind  blows.  Hence  a  wave,. 
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though  traveling  more  slowly  than  the  wind  that  formed  it,  may 
run  entirely  ahead  of  the  storm  or  into  a  region  where  the  wind  is 
blowing  less  violently. 

Published  observations  upon  the  ratio  of  wave  and  wind  velocity 
are  not  very  concordant.  Lieutenant  Paris,  of  the  French  Navy, 
maker  of  very  extensive  and  careful  wave  observations,  gives  the 
wave  velocity  as  .6  that  of  the  wind  in  a  very  heavy  sea,  and 
relatively  greater  as  the  sea  becomes  less  heavy.  Major  Gaillard 
found  at  Duluth  for  waves  in  shallow  water,  which  probably  did 
not  travel  so  fast  as  in  the  open  lake,  that  the  wave  velocity  as 
averaged  from  observations  taken  during  fourteen  storms  was  but 
.5  that  of  the  wind.  It  appears  probable  that  in  a  strong  gale 
making  a  heavy  sea  the  wave  velocity  is  from  .5  to  .6  that  of  the 
wind,  but  that  waves  formed  under  these  conditions  often  travel 
to  regions  where  the  wind  is  not  blowing  so  fast  as  the  waves  are 
traveling. 

If  we  take  the  wave  formed  as  moving  with  .5  the  speed  of 
the  wind  we  have  from  the  trochoidal  formula  for  deep  water  the 
following  relations: 

Speed  of  wind,  statute  miles    

20 

40 

60    ' 

80 

IOO Speed  of  wave,  statute  miles    10 

20 

3O 

4O 

^o 

Speed  of  wave   fs                 14? 2Q\ d± 

e8* 

rU 
Length  of  wave,  crest  to  crest,  feet    

42 

1  68 

378 

6-j-i 

IDs  I 

It  would  seem,  then,  if  the  above  ratio  between  speed  of  wind 
and  speed  of  wave  is  approximately  correct,  that  waves  more  than 
1000  feet  in  length  should  be  very  rare.  As  a  matter  of  fact,  they 
are  very  rare. 

The  height  of  storm  waves  will  evidently  depend  upon  the 

violence  of  the  wind  and  the  " fetch"  or  length  of  open  water 
over  which  the  wind  blows.  Mr.  Thomas  Stevenson,  the  noted 
British  lighthouse  engineer,  established  from  many  observations 
the  following  empirical  formula: h-cVf, 

where  h  is  the  wave  height  in  feet,  c  is  a  coefficient  depending  upon 

the  force  of  the  wind,  and  /  is  the  "fetch"  in  nautical  miles.  For 
strong  gales  the  value  of  c  is  1.5. 
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From  this  formula  we  have  the  following : 

h  =   10       15       20      25      30      35      40 
/  =  44     zoo     178     278     400     544     711 

At  first  sight  these  results  might  appear  inconsistent  with  the 

fact  that  waves  more  than  40  feet  high  are  very  rare,  even  where 

there  are  several  thousand  miles  of  open  water.  As  a  matter  of 

fact,  however,  violent  gales  are  revolving  storms,  and  the  violent 

part  of  such  storms  is  seldom  more  than  five  or  six  hundred  miles 

in  diameter,  so  that  Stevenson's  formula  is  consistent  with  the 
general  facts. 

3.   The  Law  of  Comparison 

1.  Principle  of  Similitude.  —  Modern  ideas  of  the  resistance  of 

ships  are  based  largely  upon  the  Law  of  Comparison,  or  Froude's 
Law,  as  it  is  generally  called,  connecting  the  resistance  of  similar 

vessels.     By  judicious  application  of  this  law  we  are  enabled  to 

determine,  with  fair  accuracy,  the  resistance  of  a  full-sized  ship 
from  the  experimentally  determined  resistance  of  a  small  model  of 
the  same. 

Froude's  Law  is  a  particular  case  of  the  general  law  of  mechan- 
ical similitude,  defining  the  necessary  and  sufficient  conditions  that 

two  systems  or  aggregations  of  particles  that  are  initially  geometri- 
cally similar  should  continue  to  be  at  corresponding  times  not  only 

geometrically  but  mechanically  similar.  The  principle  of  simili- 
tude was  first  enunciated  by  Newton,  but  the  demonstration  now 

generally  accepted  we  owe  to  French  mathematicians  of  the  last 

century.  Mr.  William  Froude  appears,  however,  to  have  developed 

independently  the  particular  form  used  to  compare  ships  and 
models  and  to  have  been  the  first  to  use  the  Law  of  Comparison 

to  obtain  useful  practical  results. 

2.  Deduction   of   Law   of   Comparison.  —  Suppose   we   have   a 
particle  of  a  system    whose  coordinates  referred   to  rectangular 

axes  are  x,  y  and  z.     Let  m  denote  the  mass  of  the  particle.     If  the d?x 

particle  is  moving,  it  will  have  at  time  t  an  acceleration  —  parallel 
d?y 

to  the  axis  of  x,  an  acceleration  -r*  parallel  to  the  axis  of  y  and at 
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d?z 
similarly  —  parallel  to  the  axis  of  z.     Let  the  components  parallel ar 

to  x,  y  and  z  of  the  external  moving  force  upon  the  particle  be 

denoted  by  X,  Y  and  Z.  Denote  by  8x,  dy  and  dz  the  resolved 

motions  parallel  to  the  axes  due  to  a  small  motion  of  the  particle 

along  its  path. 

Then  using  the  well-known  principle  of  Virtual  Velocities,  the 
differential  equation  giving  the  motion  of  the  particle  is 

Suppose,  now,  we  have  in  a  second  system,  mechanically  similar, 

a  corresponding  particle  of  mass  m'  whose  coordinates  at  time  /', 

corresponding  to  time  /  in  the  first  system,  are  #',  y',  z'  and  whose 

impressed  force  components  are  X',  Y',  Z',  Its  equation  of  motion 
will  be 

dt'z 
If  the  motions  of  these  two  particles  are  geometrically  and 

mechanically  similar,  the  equations  of  motion  must  be  the  same, 

differing  only  by  a  constant  factor.  Now,  for  similar  geometrical 

motions  we  have  a  constant  ratio  between  x  and  x',  etc. 

Suppose        x'  =  \x,        y'  =  \y,        z'  =  Xz. 
Then  d2x'  =  \d2x  and  so  on. 

Let  m'  =  /j.m,  p  being  the  constant  ratio  of  masses  of  the  two 
particles. 

Let  the  corresponding  times  be  in  the  ratio  T  or  t'  =  Tt  and 

Substituting  for  xf,  etc.,  their  values  we  have 

•«*•/  A    (/  *V 

This  may  be  rewritten 
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Evidently,  in  order  that  this  may  become  identical  with  the  equa- 
tion for  the  first  system,  we  must  -have 

x  - 
*  X  ~  T* and  similarly 

r  =  M  =  z^ 
Y  ~~    T2     Z' 

It  follows,  then,  that  the  external  forces  on  corresponding  par- 
ticles must  bear  a  constant  ratio  to  each  other.  Let  F  denote  this 

ratio.  Then  the  necessary  and  sufficient  relation  for  geometrical 

and  mechanical  similitude  of  motion  of  the  two  particles  is  F  =  ̂ - 

The  same  relation  connects  every  corresponding  particle  of  the 

two  systems,  and  hence  the  systems  as  a  whole.  Now  T,  the 

relation  ratio  between  corresponding  times,  is  not  very  convenient 

for  use  in  practical  application.  It  is  readily  eliminated.  Let 

v  and  vf  be  corresponding  velocities.  Then 

_  dx        f  _  dx'      X  dx 
~  dt'        ~  dt'  ~  T  dt  ' 

vf      X  X2 
Whence  —  =  —  =  c  say.     Then   Tz=  —  • 1)          JL  C 

Whence  F  =  ̂   =  ̂- \  A 

We  may  further  simplify  the  case  by  assuming  a  relation  between 

c  and  X.  Suppose  we  make  the  ratio  of  corresponding  speeds  such 

that  cz  =  X  or  that  the  speed  ratio  is  equal  to  the  square  root  of 
the  dimension  ratio.  Then  F  =  /*.  Now  we  know  that  whatever 
the  speed  ratio  and  dimension  ratio,  the  external  forces  due  to 

gravity  must  be  in  the  ratio  /*  or  the  ratio  of  masses.  We  see  from 

the  above  that  for  motions  mechanically  and  geometrically  similar, 

if  the  speed  ratio  is  made  equal  to  the  square  root  of  the  dimension 

ratio,  all  external  forces  must  be  in  the  ratio  of  mass  or  weight. 

The  application  to  the  case  of  a  ship  and  its  model  is  obvious. 

If  a  certain  portion  of  the  resistance  of  a  ship  is  due  to  a  certain 

disturbance  of  the  water  and  if,  at  a  corresponding  speed  of  the 
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model,  bearing  to  the  speed  of  the  ship  a  ratio  equal  to  the  square 
root  of  the  dimension  ratio  between  model  and  ship,  there  is  a 

similar  disturbance  set  up  by  the  model,  the  resistances  due  to  the 

similar  disturbances  will  be  proportional  to  the  weights  of  ship  and 
model. 

For  the  resistance  of  the  ship  or  model,  as  the  case  may  be,  is  in 

each  case  the  external  force,  other  than  gravity,  acting  upon  the 

system  of  particles  involved  in  the  disturbance,  and  the  mass  of 

disturbed  water,  if  the  disturbances  are  similar,  is  proportional  to 

the  displacement  of  the  ship. 

It  is  apparent  from  the  above  that  the  applicability  of  Froude's 
Law  to  resistances  of  model  and  ship  depends  upon  whether  the 

disturbances  at  corresponding  speeds  are  similar.  This  is  a  matter 

capable  of  reasonably  close  experimental  determination  as  regards 

the  wave  disturbances  of  model  and  ship.  It  is  found  that  these 

are  similar  at  corresponding  speeds,  the  wave  disturbance  set  up 

by  the  ship  being  an  enlargement  to  scale  as  closely  as  can  be 

measured  of  that  of  the  model  at  corresponding  speed. 

Mr.  William  Froude  estimated  the  actual  resistance  of  the  Grey- 
hound, a  ship  of  over  1,000  tons  displacement,  by  applying  the 

Law  of  Comparison  to  carefully  measured  resistances  of  a  small 

model  in  a  manner  to  be  explained  later,  and  found  the  results  thus 

obtained  in  very  close  agreement  with  the  actual  resistance  as 

measured  by  towing  experiments.  But,  perhaps,  the  strongest 

experimental  confirmation  of  the  Law  of  Comparison,  and  one  fully 

warranting  its  practical  application,  is  an  indirect  one.  There  are 

now  a  number  of  experimental  model  basins  in  existence  engaged 

in  estimating  the  resistances  of  ships  by  proper  application  of  the 

Law  of  Comparison  to  results  of  model  experiments.  These  are 

not  able  to  verify  their  results  directly,  because,  for  the  full-sized 
ship  when  tried,  we  ascertain  not  resistance  but  the  indicated  power. 

The  efficiency  of  propulsion  connects  the  indicated  power  with 

the  resistance.  But,  using  the  actual  indicated  powers  and  the 

estimated  resistances  determined  from  model  results  by  the  Law 

of  Comparison,  there  are  obtained  efficiencies  of  propulsion  which 

are  consistent  and  reliable  as  a  basis  for  new  designs  of  vessels. 

We   are   fully   warranted,    then,   by   numerous   considerations, 
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both  theoretical  and  practical,  in  reposing  especial  trust  and  con- 

fidence in  Froude's  Law.  The  modern  theory  of  ships'  resistance 
is  founded  upon  it,  and  since  it  has  been  understood  and  utilized 
the  numerous  crude  and  treacherous  theories  which  preceded 
Froude  have  practically  disappeared. 

It  is  possible  to  make  a  less  general  demonstration  than  the  above 

of  Froude's  Law  from  the  steady  motion  formula  for  stream  lines. 
This,  too,  depends  upon  the  similarity  of  stream  lines  around  model 
and  ship,  a  fact  requiring  experimental  determination. 

3.  Applications  of  Law  of  Comparison.  —  Let  us  now  determine 
the  formulae,  etc.,  needed  in  the  application  of  the  Law  of  Compari- 

son to  ships'  resistance. 
Put  into  symbols,  let  L,  B,  H  denote  the  length,  breadth  and 

mean  draft  of  a  ship  in  feet,  D  its  displacement  in  tons  and  V  its 
speed  in  knots.  Let  /,  b,  h,  d,  v  denote  similar  quantities  for  a 
model  of  the  ship.  Suppose  R  and  r  denote  resistances  following 

Froude's  Law.  If  X  denote  the  ratio  between  linear  dimensions 
so  that  L  =  \l,  B  =  \b  and  so  on  and  if  V  and  v  are  connected  by 
the  relation  V  =  v  V\, 

R      r 

Since  T=   T    =  x° a       \// 

/L\3 

we  may  write  R  =  ( y  J  r  =  XV.     It  is  to  be  noted,
  too,  that \  V  I 

\=(-\     so     V  =  v(^ 

The  Law  of  Comparison  is  useful  and  applicable  in  connection 
with  many  problems  besides  that  of  the  resistance  of  ships.  Thus, 

it  is  directly  applicable  in  comparing  full-sized  machines  and  their 
models  of  the  same  material.  Here,  too,  since  gravity  is  one 
external  force  always  present,  the  speeds  of  corresponding  parts 
must  be  in  the  ratio  of  the  square  roots  of  the  linear  dimensions. 
Thus  consider  a  small  and  a  large  steam  engine,  similar  and  working 
at  corresponding  speeds.  Let  us  find  from  the  Law  of  Comparison 
the  relations  connecting  pressures,  revolutions,  etc.  Let  R,  T, 
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/,  S  and  P  denote,  respectively,  revolutions  per  minute,  torque, 
indicated  power,  piston  speed,  and  steam  pressure  for  the  large 
engine,  and  r,  t,  i,  s,  p  the  same  quantities  for  the  similar  small 
engine  or  model.  Let  X  denote  the  ratio  of  linear  dimensions. 

Then  since  the  speeds  must  correspond,  we  have  S  =  s  V\. 

Now  S  =  stroke  of  large  engine  X  2  R, 

s  =  stroke  of  small  engine  X  2  r. 

Also  stroke  of  large  engine  =  X  stroke  of  small  engine.     Whence 
S*          7?  9  r 

dividing  —  =  X  —  •     But  —also  =  VA.     Whence  R  =  —=• s          r  s  VX 

The  total  steam  pressures  on  the  pistons  being  the  external  forces 

must  be  in  proportion  to  X3  and  the  piston  areas  are  proportional 
to  X2.  Hence  P  =  \p.  The  indicated  horse-power  is  proportional 
to  the  piston  area,  varying  as  X2,  the  steam  pressure  varying  as  X 
and  the  piston  speed  varying  as  VA.  Hence  on  combining  these 

three  factors  we  have  I  =  *X3'5.  Now  7  is  proportional  to  TR. 
Hence  the  torque  is  directly  proportional  to  the  indicated  power 

varying  as  X3'5  and  inversely  proportional  to  the  revolutions  varying 

Hence  T= 

The  above  relations  apply  directly  to  centrifugal  fans.  For 

steam  pressure  we  substitute  the  pressure  at  which  the  air  is  de- 
livered. Also  the  quantity  of  air  delivered  will  vary  directly  as 

the  area  of  outlet  pipe  or  as  X2  and  directly  as  the  speed  or  velocity 
or  as  X*,  whence  at  corresponding  speeds  the  quantities  of  air 

delivered  will  vary  as  X2'5. 
The  above  relations  for  revolutions,  torque,  power  and  pressure 

apply  too  to  the  operation  of  propellers.  It  should  be  noted  since 

P  =  \p  that  the  pressure  per  square  inch  of  the  water  in  which  a 
propeller  works  should  be  X  times  that  of  the  water  in  which  its 
model  works.  Model  propellers  are  usually  tested  under  a  total 

head  of  35  feet  or  so  of  water  (equivalent  to  atmospheric  pressure  -+- 
one  foot  or  so  submersion  below  surface,  say,  35  feet  in  all).  For 

the  pressure  to  vary  linearly  would  require  a  full-sized  propeller 
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ten  times  as  large  as  the  model  to  work  under  a  total  head  of  350 
feet,  or,  say,  316  feet  submersion,  if  the  34  feet  head  due  to  air 
pressure  were  equivalent  in  all  respects  to  34  feet  of  water.  While 
this  is  only  approximately  the  case,  it  is  evident  that  the  pressure 
conditions  for  model  and  propeller  are  not  those  required  by  the 
Law  of  Comparison.  But  it  does  not  necessarily  follow  that  the 
Law  of  Comparison  would  not  apply  to  the  conditions  of  practical 
operation.  If  the  action  of  propellers  is  such  that  the  power, 
torque  and  efficiency  are  unaffected  by  depth  of  submersion,  the 
Law  of  Comparison  would  apply  fully. 
We  shall  see  later  that,  under  some  conditions  of  operation, 

propeller  action  is  but  little  affected  by  depth  of  submersion, 
while  under  others  it  is  materially  affected.  Hence  under  some 
conditions  the  Law  of  Comparison  applied  to  model  propeller 
experiments  may  be  expected  to  be  a  reliable  guide,  while  under 
other  conditions  of  operation  it  would  certainly  be  fallacious. 

Valuable  and  even  indispensable  as  the  Law  of  Comparison  is 
in  dealing  with  resistance  and  propulsion  of  ships,  it  must  be 
applied  with  discretion  and  an  understanding  of  its  limitations. 
Some  of  these  limitations  will  be  developed  later. 

4.  Simple  Resistances  Following  Law  of  Comparison.  —  In 
reducing  any  kind  of  resistance  to  rule  the  endeavor  is  usu- 

ally made  to  express  it  by  a  formula  involving  some  power  of  the 

speed  as  V2  or  F"3.  Unfortunately  actual  resistances  of  ships  do 
not  lend  themselves  to  such  simple  formulae,  but  it  seems  worth 

while  to  determine  how  resistances  which  satisfy  the  Law  of  Com- 
parison and  vary  as  definite  powers  of  speed  vary  with  displace- 

ment or  dimensions. 

Suppose  R  =  </>(Z))  Vn  expresses  the  law  of  variation  of  a  ship 
resistance  which  satisfies  the  Law  of  Comparison,  R  being  resistance 

in  pounds,  <f>(D}  some  function  of  displacement,  V  the  speed  in 
knots  and  n  an  index  according  to  which  resistance  varies. 

For  the  similar  models'  resistance  we  have 

r  =  <}>(<£)  vn. 

,   V      /Z>Y  R      D 
For  corresponding  speeds—  =  I  — )      and    —  =  —• v      \d/  r      d 
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Then  R 

Lfi  d6 
Whence  </>(</)  ~^r  =  $W  T  =  a  constant  regardless  of  displacement D  d 

=  C  say. 

Then  <j>(D)=CDl~^ 

or  R  =  CVnDl~\ 

For  integral  values  of  n  we  have  the  following  results 

n  =  i  resistance  varies  as  (displacement)1  or  (linear  dimensions)2*. 

n  =  2  resistance  varies  as  (displacement)*  or  (linear  dimensions)2. 

n  =  3  resistance  varies  as  (displacement)*  or  (linear  dimensions)1*. 

n  =  4  resistance  varies  as  (displacement)*  or  (linear  dimensions)1. 
n  =  5  resistance  varies  as  (displacement)*  or  (linear  dimensions)*. 
n  =  6  resistance  is  independent  of  displacement  or  dimensions. 

The  above  results  are  not  of  much  practical  value  since  actual 

resistances  even  when  following  the  Law  of  Comparison  do  not  vary 

as  simple  powers  of  the  speed,  but  they  are  of  some  use  in  connec- 
tion with  approximate  formulae. 

5.  Dimensional  Formulae.  —  In  connection  with  the  Law  of 

Comparison  it  is  of  interest  to  note  the  so-called  dimensional  for- 
mulae which  are  the  functions  of  certain  primary  variables  or 

units  to  which  are  proportional  a  number  of  things  which  we  shall 

have  occasion  to  use.  Thus  taking  length  or  a  linear  dimension 

as  a  primary  variable  we  have  area  varying  for  similar  surfaces 

as  (linear  dimensions)2  and  similarly  volume  varies  as  (linear 

dimensions)3.  Then  if  we  denote  length  or  linear  dimension  by  / 
we  have  /2  and  /3  as  the  dimensional  formulae  for  area  and  volume 
respectively. 

Similarly,  if  /  denote  time,  since  velocity  varies  directly  as  the 

length  traversed  in  a  given  time  and  inversely  as  the  time  required 

to  traverse  a  given  length  and  is  dependent  upon  no  other  variables, 



34  SPEED  AND  POWER  OF  SHIPS 

we  have  -  as  the  dimensional  formula  for  velocity.     Further,  since I 

acceleration  varies  inversely  as  the  time  required  to  gain  velocity  we 

have  -  as  the  dimensional  formula  for  acceleration. t 

The  practical  application  of  dimensional  formulse  is  mostly 
in  connection  with  conversion  factors  for  the  determination  of 

the  numerical  magnitude  or  numbers  representing  definite  things 

when  the  fundamental  units  are  changed.  Thus,  suppose  we  have 

a  length  of  24  feet.  If  the  yard  were  the  unit  of  length  this  length 

would  be  expressed  numerically  by  8  instead  of  24.  Similarly, 

suppose  we  have  a  surface  of  108  square  feet.  If  the  yard  were  the 

primary  unit  the  number  of  units  of  surface  would  be  -r-r-.  =  12. 

(3)2
 

Since  the  dimensional  factor  for  area  is  I?  the  conversion  factor 

is  the  square  of  the  ratio  of  the  linear  units.  Similarly  the  con- 
version factor  for  volume  is  the  cube  of  the  ratio  of  linear  units  and 

135  cubic  feet  would  be  -r3  =  5  cubic  yards.     These  transforma- 

tions are  puzzling  in  some  cases  and  it  will  be  well  to  give  the 

general  rule  applicable. 
We  will  have  in  any  given  case  the  old  number,  or  the  number 

expressing  something  quantitatively  in  the  old  units,  the  ratios 
between  the  units  or  the  numbers  expressing  the  new  units  in 

the  old  units  and  vice  versa,  and  the  dimensional  formula  for  the 

thing  under  consideration  —  area,  volume,  velocity  or  what  not. 
Then  express  the  old  unit  of  each  kind  in  terms  of  the  new  and 

substitute  in  the  dimensional  formula  for  each  primary  variable 

the  corresponding  numerical  ratio  -  '•—  •    The  result  is  the  con- new  unit 

version  factor,  and  we  have 

New  number  =  Old  number  X  Conversion  factor. 

Thus  when   converting   square   feet   to   square    yards    the    ratio 

—  -  en^    -  r  =  -  •     The  dimensional  formula  is  /2.     Then new  length  unit      3 
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Conversion  factor  =  (-]  =  -  • 9 

Old  number  =  108. 

New  number  =  108  X  -  =  12. 
9 

Similarly,  suppose  we  have  a  velocity  of  69.3  feet  per  second  and 

wish  to  convert  it  into  statute  miles  per  hour. 

For  velocity  the  dimensional  formula  is  -• v 

Old  length  unit          i  Old  time  unit          i 

New  length  unit      5280       New  time  unit      3600 

, 
Conversion  factor  = 

i i         3600      is 
-.  ---  =  -  --  =  —  • 

5280      3600      5280      22 

New  number  =  69.3  X  —  =  47.25  statute  miles  per  hour. 22 

By  following  the  above  method  strictly  and  systematically  there 

is  no  difficulty  in  obtaining  correct  conversion  factors  no  matter 

how  complicated  the  dimensional  formulae. 

It  is  usual  to  use  as  primary  variables  in  dimensional  formulae 

for  things  with  which  we  are  concerned  length  denoted  by  /,  time 

denoted  by  t,  and  mass  denoted  by  m. 

Since,  however,  velocity,  denoted  by  v,  is  proportional  to  -  or  t t 

is  proportional  to  -  ,  we  may  use  m,  I  and  v  as  primary  variables. v 

Further,  if,  as  in  the  Law  of  Comparison,  we  assume  certain 

relations  to  exist  between  /  and  m  and  /  and  v,  we  can  express  di- 

mensional formulae  in  terms  of  /  alone.  For  the  Law  of  Compari- 

son we  assume  m  to  vary  as  lz  and  v  to  vary  as  /*.  The  table 
below  gives  the  dimensional  formulae  of  importance  for  our 

purposes. 
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Length 

Area  or  surface 

Volume 

Angular  velocity  and  revolutions  per i 
minute 

Angular  acceleration    — 

Linear  velocity   

Linear  acceleration 

Density 

Moment  of  inertia    ml2 

Momentum 
t 

Moment   of   momentum   or   angular)  mp 
momentum  j 

•ml 

Force  or  resistance    _ 
ft 

Work,  energy  and  torque   
ft 

Power. 
fl 

Pressure  or  stress  per  unit  area. 

Dimensional  Formulae. 

In   m.   /,    /. In  m,  I,  v. 

/ 
ft 

V 

J 

p 

V 

7 
m 

mft 

mv 

mvl 

In  I  alone  when 

Law  of  Com- 

parison rela- tions between 

m,  I  and  v 
hold 

I V7 

It  will  be  observed  that  the  relations  in  the  third  column  agree 
with  those  deduced  in  various  specific  cases  when  considering  the 
Law  of  Comparison. 

4.  Wetted  Surface 

i.  Importance  of  Surface  Resistance.  —  For  all  but  a  minute 
proportion  of  actual  steam  vessels  the  skin  friction  resistance,  or 
the  resistance  due  to  friction  of  the  water  upon  the  immersed  hull 
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surface,  is  greater  than  the  resistance  due  to  all  other  sources  of 
resistance  combined.  For  some  of  the  fastest  Atlantic  liners,  for 

instance,  the  skin  resistance  at  top  speed,  under  ordinary  smooth- 
water  conditions,  is  about  64  per  cent  of  the  total  resistance.  For 
only  the  comparatively  few  vessels  that  are  pushed  to  a  speed  very 
high  in  proportion  to  their  length  does  the  residuary  resistance 
due  to  all  causes  surpass  the  skin  resistance. 

Such  extremely  fast  vessels  are  nearly  all  for  naval  purposes. 
They  are  seldom  warranted  by  commercial  conditions. 

In  view  of  the  great  importance  of  the  Skin  Resistance  it  is 
advisable  to  make  a  careful  investigation  into  the  question  of  the 
wetted  surface  of  ships.  We  need  to  know  how  to  calculate  it 
accurately,  and  how  to  estimate  it  with  close  approximation.  We 
need,  too,  if  the  question  of  wetted  surface  is  to  be  given  its  proper 
influence  in  design  work,  to  understand  the  relations  between 
wetted  surface  and  size,  proportions  and  shape  of  ships. 

2.  Appendage  Surface.  —  The  wetted  surface  of  hull  append- 
ages can  be  calculated  as  a  rule  without  difficulty.     Appendages  of 

importance  have  nearly  always  plane  or  nearly  plane  surfaces,  and 
their  areas  are  readily  determined  by  straightforward  processes. 
Appendage  surface,  then,  can  be  calculated  by  simple  methods, 
the  exact  procedure  varying  with  circumstances.     In  dealing  with 
such  appendages  as  bilge  keels  and  docking  keels,  which  cover  or 
mask  some  of  the  surface  of  the  hull  proper,  it  is  best  to  deduct 
from  the  gross  area  of  the  appendage  the  area  masked  by  it,  the 
net  area  resulting  being  the  addition  to  the  wetted  surface  of  the 
hull  proper  due  to  the  presence  of  the  appendage. 

3.  Surface  of  Hull  Proper.  —  When  we  undertake  the  accurate 
•calculation  of  the  wetted  surface  of  the  hull  proper  of  a  ship,  we 
encounter  at  once  a  serious  difficulty.     It  is  not  possible  to  develop 

or  unroll  into  a  single  plane  the  curved  surface  of  a  ship's  bottom. 
We  can  draw  a  section  at  any  point  and  measure  its  girth,  and  if 
the  ribbon  of  surface  included  between  two  sections  a  foot  apart 
were  equal  in  area  to  the  girth  in  feet  of  the  section  in  the  middle 
of  the  ribbon,  it  would  be  very  simple  to  determine  accurately  the 

wetted  surface  of  the  hull  proper  by  applying  Simpson's  Rules  or 
other  integrating  rules  of  mensuration  to  a  series  of  girths  at  equi- 
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distant  stations,  covering  the  whole  length  of  the  ship.  Unfortu- 
nately, however,  on  account  of  its  obliquity,  the  area  of  this  ribbon 

of  surface  is  in  general  appreciably  greater  than  its  mid  girth,  and 
for  the  best  results  we  must  devise  a  more  accurate  method.  The 

simplest  plan  is  to  correct  the  mean  girth  in  question,  multiplying 
it  by  a  suitable  factor,  so  that  the  area  of  the  ribbon  will  be  equal 
to  the  corrected  mid  girth.  Then  we  can  apply  the  ordinary  rules 
to  the  corrected  mid  girth  and  obtain  accurate  results.  Let  us  see 

now  how  to  determine  the  correction  factor  —  first  for  one  point  of  a 
section  and  then  for  a  whole  section. 

4.  Obliquity  Factors.  —  In  Fig.  31  suppose  AB,  drawn  straight 

for  convenience,  to  represent  a  short  portion  of  a  section  of  a  ship's 
surface  by  a  normal  diagonal  plane.  CD  is  parallel  to  the  fore  and 
aft  line.  Let  AB  cut  the  section  FE  in  E  and  adjacent  parallel 

sections  each  six  inches  from  FE  at  L  and  K.  Fig.  32  shows  dia- 
grammatically  the  three  sections  and  the  diagonal  plane  on  the 
body  plan.  The  oblique  line  KL  is  an  element  of  surface,  and  we 
want  to  connect  its  length  with  ML,  the  distance  between  stations. 

Now,  KL  =  ML  sec  KLM.  Hence  sec  KLM  is  the  factor  we 
r^TT,,     KM      mk  in  Fig.  12       T 

need.     Now  tan  KLM =  -—  =  -         ,,         •      In  practice,  then, LM  LM 

if  we  take  a  point  on  a  section  midway  between  two  other  or  end 
sections,  draw  a  line  on  the  body  plan  at  the  point  perpendicular  to 
the  section  and  measure  the  intercept  (mk  in  Fig.  32)  between  the 
two  end  sections,  we  have 

tYlk 
Tangent   of    angle   of    obliquity  =  — distance  between  end  sections 

and  correction  factor  for  obliquity  at  the  point  =  secant  of  angle 
of  obliquity. 

We  do  not  want  to  calculate  tangents  and  secants,  and  we  wish 
to  work  directly  from  the  body  plan.  So  we  divide  the  sections 
on  the  body  plan  at  six  points  into  five  equal  parts.  The  most 
satisfactory  method  is  to  lay  off  small  chords  with  a  pair  of  dividers 
and  thus  determine  the  points  of  division  by  trial  and  error.  Then 
we  prepare  a  paper  scale  so  divided  that  when  set  perpendicular 
to  a  section  at  a  division  point  we  read  at  once  the  correction  factor 
for  obliquity  from  the  intercept  between  the  two  sections  adjacent 
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to  the  one  for  which  we  are  determining  obliquity  factors.  The 
paper  scale  can  be  laid  off  graphically,  but  can  also  be  readily 

calculated.  Let  us  suppose  that  the  actual  distance  apart  of  suc- 
cessive sections  in  the  sheer  or  half-breadth  plan  is  i  inch.  Then 

the  distance  between  two  sections  on  either  side  of  a  middle  section 

will  be  2  inches.  Suppose  at  a  certain  point  the  intercept  of  the 
perpendicular  in  the  body  plan  between  the  two  stations  adjacent 
to  the  one  we  are  considering  is  0.25  inch.  Then  the  tangent  of 

O2^ 

the  angle  of  obliquity  is  -—  =  .125.     Hence  at   this  point   the 2 

angle  of  obliquity  is  7°  y'i  since  tan"1  .125  =  7°  7'  \.  The 
correction  factor  at  the  point  is  sec  7°7/i  or  1.00778.  Then 
for  our  scale  \  inch  corresponds  to  a  correction  factor  of  1.00778. 
But  to  lay  off  our  scale  we  want  to  determine  the  varying  lengths 
corresponding  to  equal  intervals  of  correction  factor. 

The  necessary  calculations  are  shown  in  Table  II  which  applies 

directly  to  i-inch  section  spacing. 
Of  course,  an  actual  set  of  lines  would  nearly  always  have  sec- 

tions spaced  more  than  i  inch  on  the  plans.  For  instance,  a  ship 
416  feet  long  between  extreme  stations,  with  21  stations  or  20 
spaces,  would,  if  the  plans  were  on  the  scale  of  \  inch  to  the  foot, 

have  the  sections  on  the  plans  spaced—  -  X  -  =  5.2  inches.      For 20       4 

such  a  ship  the  data  for  laying  off  the  proper  obliquity  scale  would 
be  obtained  by  multiplying  the  figures  in  Column  4  of  Table  II 

by  5.2. 
5.  Sample  Calculations.  —  Fig.  33  shows  an  actual  body  plan 

with  each  section  divided  into  five  equal  spaces  for  the  purpose 
of  measuring  obliquity  and  an  obliquity  scale  in  place  measuring 
a  correction  factor  of  1.015  for  a  point  on  section  No.  15.  Table  I 
shows  the  calculations  in  standard  form.  It  is  seen  that  for  each 

section  the  average  correction  factor  for  obliquity  is  calculated 
from  the  measurements  at  six  points.  The  actual  measured  mean 

girths  having  been  corrected,  the  wetted  surface  is  readily  calcu- 
lated. The  trapezoidal  rule  is  used  for  the  work,  being  really  as 

accurate  as  Simpson's  for  curves  of  the  type  to  be  handled,  and 
much  shorter. 
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6.  Average  Correction  Factors.  —  It  is  seen  that  the  correction 
factors  for  obliquity  are  always  very  close  to  unity.     Advantage 

may  be  taken  of  this  fact  when  dealing  with  ships  of  ordinary  form 

to  utilize  average  correction  factors  which,  when  multiplied  into 

the  product  of  the  mean  girth  by  the  length,  will  give  the  wetted 

surface  with  great  accuracy,  i.e.,  within  a  small  fraction  of  one  per 
cent. 

Fig.  34  gives  contour  curves  of  correction  factors  for  obliquity 

plotted  upon  values  of  -  >  or  ratio  between  length  and  beam,  and 
x> 

—  >  or  ratio  between  length  and  draught. H 

For  vessels  of  ordinary  form  it  will  be  found  that  by  determin- 
ing the  mean  girth  and  applying  the  correction  factor  from  Fig.  34 

the  wetted  surface  is  determined  with  substantially  the  same 

accuracy  as  if  complete  calculations  had  been  made.  Fig.  34  must 

be  used  with  caution  for  vessels  not  of  ordinary  form,  if  very 
accurate  results  are  wanted. 

7.  Girths  of  Sections.  —  Having  seen  how  to  determine  with 
accuracy  the  wetted  surface  of  a  ship  of  which  complete  plans  are 

available,  I  will  now  take  up  the  determination  of  the  approximate 

wetted  surface  of  a  vessel  whose  dimensions  and  displacement 

are  known,  but  for  which  complete  plans  are  not  yet  available. 
This    is    a    calculation    which    must    often    be    made.     Consider 

first  the   question  of  the  girth  of  a  ship  section  below  water. 

This  varies  with  dimensions,  proportions,  and  shape  or  fullness  of 

section.     The  variation  with  dimensions  is  a  very  simple  matter. 

For  similar  sections  the  girth  varies  as  any  linear  dimension, 

such  as  beam,  or  draught  or  Varea.     It  is  convenient  to  use 

Varea  as  governing  quantity  and  express  the  girth  G  of  a  section  of 

area  in  square  feet  =  A  by  G  =  g  V 'A .     For  all  similar  sections  of 
varying  dimensions  the  quantity  g  in  the  formula  preceding  is 

constant.     It  is  in  fact  the  girth  of  a  section  of  one  square  foot  area 

and  similar  in  all  respects  to  the  section  whose  area  is  A.     Being  a 

measure  as  it  were  of  the  girth,  let  it  be  called  the  girth  parameter. 

We  want  now  to  ascertain  how  the  girth  parameter  of  a  section 

varies  with  proportions  and  shape.     The  girth  parameters  of  a 
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few  simple  sections  are  obvious.  Thus,  if  we  have  a  square  sec- 
tion of  one  square  foot  area,  the  beam  is  equal  to  the  draught  and 

the  girth  is  3  feet,  or  the  girth  parameter  is  3.  If  the  section  is 
rectangular  of  \  foot  draught  and  2  feet  beam,  the  girth  parameter 
is  again  3.  We  can  in  fact  express  by  a  formula  the  girth  parameter 
of  a  rectangular  section  of  any  proportions.  Let  B  denote  its 

beam,  xB  its  draught.  Then  xB2  is  its  area  A  ,  and  B  +  2  xB  the 
•  *v  r>       AT        *u       •  *u  G  B  +  2  XB         I  +  2  X 

girth  G.    Now  the  girth  parameter  g  =  —-=  =  --  —=  —  = 

Fig.  35  shows  a  curve  of  girth  parameter  for  rectangular  sections 
plotted  on  x.  The  minimum  value  is  2.8284  for  x  =  %,  for  which, 
if  the  section  is  one  square  foot  in  area,  the  beam  is  1.4142  and  the 

~2 

draught  is  .7071.     For  a  semicircle  of  radius  r  the  area  =  -  -  and 2 

the  girth  irr.     Whence  g  =  --  =\/Tr  =  2.5066.     This   value V/? 

2.5066  for  a  semicircle  appears  to  be  the  minimum  girth  parameter 
possible.  The  sectional  coefficient  for  a  circle  is  .7854,  and,  as 
will  be  seen,  this  coefficient  is  close  to  that  for  a  minimum  girth  for 
any  proportion  of  beam  and  draught. 

8.  Actual  Girth  Parameters.  —  The  best  way  to  investigate  the 
variation  of  girth  parameter  with  proportions  and  fullness  of 
section  is  to  draw  a  number  of  sections  of  varying  proportions 
and  fullness  and  determine  and  plot  their  girth  parameters.  This 
has  been  done  for  a  large  number  of  sections  covering  a  wide  range 
of  fullness  and  proportions.  These  sections  were  all  calculated 
from  the  same  basic  formula,  the  variations  of  fullness,  etc.,  being 
obtained  by  variation  of  coefficients.  The  details  of  the  work  are 
somewhat  voluminous  and  need  not  be  given.  The  results  are 
fully  summarized  in  Fig.  36,  which  gives  contour  curves  of  girth 

7? 

parameter  plotted  upon  values  of  — and  sectional  coefficient. H 

Fig.  36  is  not,  of  course,  applicable  to  freak  or  abnormal  sections, 
but  throughout  its  range  is  believed  to  be  practically  exact  for 
sections  of  usual  type. 
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For  instance,  Fig.  37  shows  a  series  of  sections  of  which  No.  i 

is  a  parabola  and  No.  6  is  made  up  of  two  straight  lines  and  the 

quadrant  of  a  circle.  The  other  four  sections  divide  into  five  equal 

parts  the  intercepts  between  i  and  6  of  diagonal  lines  through  O. 

Four  other  figures  similar  to  Fig.  37,  except  that  they  had  different 

proportions,  were  drawn,  and  the  areas  and  girth  parameters  of 
the  30  sections  thus  obtained  were  carefully  determined.  Table  III 

shows  these  actual  girth  parameters  and  girth  parameters  for  the 

same  proportions  and  fullness  as  taken  from  Fig.  36.  The  actual 

girth  parameters  were  calculated  to  the  nearest  figure  in  the  third 

place  only. 
It  is  seen  that  Fig.  36  applies  to  the  curves  of  Fig.  37  and  the 

other  derived  figures  with  great  accuracy. 

As  instancing  its  application  to  actual  ships'  sections  attention  is 
invited  to  Table  IV.  This  gives  for  20  actual  midship  sections  of 

vessels  whose  dimensions  and  proportions  are  stated,  the  actual 

girth  parameters  as  measured  and  the  girth  parameters  from 

Fig.  36  for  sections  of  the  same  proportions  and  coefficients.  The 

agreement  is  very  close  indeed. 

It  is  evident  from  Tables  III  and  IV  that  Fig.  36  represents 

with  great  accuracy  the  variation  of  girth  parameters  of  usual 

sections  of  ships  as  dependent  upon  ratio  of  beam  to  draught  and 

coefficient  of  fullness.  It  follows  that,  substantially,  these  are  the 

only  variables.  That  is  to  say,  if  we  settle  the  beam,  draught  and 

area  of  a  section  of  usual  type,  we  substantially  settle  the  girth, 

which  varies  but  little  with  possible  changes  of  shape.  Of  course, 

this  does  not  apply  to  sections  that  are  very  hollow,  having  coeffi- 
cients well  below  .5.  Fig.  36  does  not  cover  such  sections,  nor 

sections  of  extreme  proportions  of  draught  to  beam,  such  as  for- 
ward and  after  deadwoods.  For  such  sections  the  girth  parameters 

vary  with  great  rapidity  for  small  changes  of  beam.  Fig.  36, 

however,  covers  nearly  all  the  sections  of  actual  ships  of  usual 

form  and  is  worthy  of  careful  study.  We  see  from  it  that  there 

is  an  actual  minimum  girth  parameter  a  little  greater  than  2.5 T> 

occurring  for  —  =  2  and  coefficient  of  fullness  a  little  below  .8. H. 

Probably  we  may  safely  call  the  coefficient  for  minimum  girth 
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parameter  .7854,  the  coefficient  for  a  circle.     Roughly  speaking, 
75 

as  we  vary  —  the  minimum  girth  parameter  is  always  found  for H 

sectional  coefficient  in  the  neighborhood  of  .8  until  we  get  to  low 
Tt 

values  of  —  ,   below    1.5,   where    the   minimum   girth   parameters H 

correspond  to  larger  coefficients.  Similarly,  as  we  vary  sectional 

coefficient  only  the  minimum  girth  parameter  corresponds  very TJ 

closely  to  —  =  2  until  we  reach  coefficients  greater  than  .9,  when  it H 

75 

corresponds  to  smaller  values  of  —  •     The  most  striking  feature  of H 

Fig.  36,  however,  is  the  comparatively  small  variation  of  girth 
T> 

parameter  over  a  range  of  values  of  —  and   sectional  coefficient H 

which  covers  the  bulk  of  the  sections  of  actual  ships.  This  fact 

is  of  great  importance  in  connection  with  the  determination  of  a 

reliable  approximate  formula  for  wetted  surface  and  the  considera- 

tion of  the  influence  of  dimensions,  proportions  and  shape  upon 
wetted  surface. 

9.  Approximate  Formula  for  Wetted  Surface.  —  Suppose  we  take 
n  +  i  sections  of  a  given  ship,  equally  spaced  at  n  +  i  stations 

o,  i,  2,  3  ...  n.  For  each  section,  with  subscript  denoting  the 

station,  denote  the  girth  by  G,  the  girth  parameter  by  g  and  the 

area  by  A  .  Let  L  denote  the  length  and  G  the  mean  girth.  Then 

Q  =  go\/A0,    GI=  gi  VAi  and  so  on. 

Using  the  trapezoidal  rule  we  have 

n 

Let  S  denote  the  wetted  surface.  Then  neglecting  obliquity,  which 
will  take  care  of  itself  later,  when  we  determine  coefficients  from 

actual  ships,  we  have 

n 
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If  we  keep  the  same  sections  and  space  them  twice  as  far  apart, 
we  double  length  and  displacement.  We  also,  neglecting  obliquity, 
double  the  wetted  surface.  If  we  keep  length  the  same  and  double 

the  area  of  each  section,  we  double  displacement.  The  girth  param- 
eters of  the  individual  sections  are  unchanged,  so  that  the  result 

is  to  multiply  S  by  va.  Now,  what  convenient  expression  in- 
volving only  length  and  displacement  will  give  us  the  same  varia- 

tion? Evidently,  if  we  write  S  =  C  \/DZ,  where  D  is  displacement 
in  tons,  L  is  mean  immersed  length  in  feet  and  C  is  a  coefficient 
depending  upon  proportions,  shape,  etc.,  but  not  upon  dimensions, 
we  have  an  expression  for  S  which  will  vary  for  similar  vessels  just 
as  the  almost  rigorous  expression  deduced  above.  For,  if  we  double 
length  and  displacement,  we  double  5;  if  we  keep  L  constant  and 
double  D,  we  multiply  5  by  W 

As  regards  primary  variation,  then,  this  expression  is  as  accurate 
as  the  rigorous  one.  It  should  be  carefully  noted  that  L  in  this 
formula  is  the  mean  immersed  length,  or  the  average  water  line 

length.  In  many  types  of  vessels  the  water  line  lengths  are  suffi- 
ciently close  to  the  mean  immersed  lengths  to  be  used  without 

error,  but  in  others,  the  stem  and  stern  profiles  are  such  that  for 
accurate  work  the  mean  immersed  lengths  must  be  determined. 
For  rough  work  and  first  approximations  before  we  are  in  a  position 
to  determine  from  plans  the  mean  immersed  length,  load  water 
line  length  is  used.  Secondary  variation  in  the  rigorous  expression 
given  above  can  come  only  with  variations  of  the  girth  parameters, 
go,  gi,  etc.  The  principal  factors  affecting  the  girth  parameters 
are,  as  we  have  seen,  variations  of  ratio  of  beam  and  draught  and 
variations  of  sectional  coefficient.  Our  formula  S  =  C  \/DL  so 
far  takes  no  direct  account  of  these.  They  will  show  themselves 
in  variations  of  the  coefficient  C  from  ship  to  ship. 

10.  Variation  of  Wetted  Surface  Coefficient.  —  Consider,  first, 
the  effect  upon  wetted  surface  coefficient  of  the  ratio  between 
beam  and  draught.  This  variation  is  most  conveniently  referred 

T> 

to  the  value  of  —  for  the  midship  section.     Fig.  38  shows  the  varia- H 

•n 

tion  of  wetted  surface  with  the  variation  of  —  for  the  lines  of  the 
a. 
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United  States  Practice  Vessel  Bancroft.     Keeping  length  and  dis- 
placement constant,  a  number  of  body  plans  were  drawn  from  her 

J3
 

lines  with  —  varying  from  i  to  6.     The  wetted  surface  for  each H 

ratio  was  calculated  and  the  resulting  curve  is  shown  plotted  on 
o 

—  in  Fig.  38.     It  is  seen  that  the  minimum  wetted  surface  is  found H 
D  D 

at  —  =  2.8;  but  as  —  is  changed  the  variation  is  slow  until  we H  H 
•D 

reach  small  values  of  — ,  when  the  wetted  surface  begins  to  increase 
H. 

jy
 

rather  rapidly.     Such  small  values  of  — ,  by  the  way,  are  below H 

values  found  in  practice.     The  general  features  of  Fig.  38  could  be 

inferred  from  Fig.  36.     We  see  from  the  latter  figure  that  for  a 
7? 

single  section  the  minimum  value  of  g  is  found  for  —  =  2.      Now, H 
n 

if  for  the  midship  section  we  had  —  =  2,  the  girth  parameter  ot H 

this  one  section  would  be  a  minimum,  but  for  every  other  section 

the  girth  parameter  would  be  above  the  minimum,  since  for  every 
T> 

other  section  —  would  be  less  than  2.    Also  for  the  smaller  values H. 

jy
 of  —  the  girth  parameters  increase  more  rapidly  than  for  the  larger H. 

values.     Henct,  for  actual  ship  lines  of  given  length  and  displace- 

jy
 

ment,  but  varying  —  ,  the  minimum  wetted  surface  must  correspond H 

jy
 

to  a  value  of  —  greater  than  2,  and  the  wetted  surface  would  in- t?      H 

crease,  of  course,  on  each  side  of  the  minimum.     This  minimum 

jy
 

is  found  at  —  =  2.8  in  Fig.  38. H 

It  is  not  so  easy  to  connect  the  variations  of  girth  parameter  of 

an  actual  ship  with  variations  of  sectional  coefficient.  Further- 
more, Fig.  36  shows  such  small  variation  of  girth  parameter  for 

sectional  coefficients  ranging  from  .7  to  .9  that  we  may  expect  to 
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find  in  practice  the  variation  due  to  sectional  coefficient  masked 

by  other  arbitrary  causes  impossible  to  reduce  to  rule,  such,  for 

instance,  as  unusual  amount  of  deadwood  or  extreme  reduction 
of  deadwood. 

However,  broadly  speaking,  the  fuller  the  midship  section,  the 

fuller  all  the  sections  are  likely  to  be,  and,  if  the  midship  section  is 

very  fine,  all  sections  are  likely  to  be  fine.  These  principles  con- 
sidered with  Fig.  36  would  lead  us  to  expect  in  practice,  when  using 

the  formula  S  =  C  \/DL,  to  find  rather  high  values  of  C  associated 
with  very  fine  midship  sections,  and  possibly  a  minimum  value  of  C 

for  a  fairly  high  midship  section  coefficient. 

In  this  connection  attention  is  invited  to  Figs.  39  and  40,  which 

show  variation  of  wetted  surface  coefficient  with  midship  section 

coefficient,  Fig.  39  for  fine  ended  models  and  Fig.  40  for  full  ended 

models.  The  four  curves  in  each  figure  refer  to  different  values 

/  L  \3 
of  the  coefficient  Z> -h  —  -las  indicated.     The  higher  values  of Vioo/ 

wetted  surface  coefficient  are  found  with  the  higher  values  of  the 

/  L  \3 coefficient  D  -f-  [  -  -  I  •     This  is  to  be  expected,  since  the  greater \ioo/ 

the  displacement  on  a  given  length  the  greater  the  obliquity. 

Figs.  39  and  40  refer  to  a  single  ratio  of  beam  to  draught,  namely 

2.923,  but  they  show  distinct  minimum  values  of  wetted  surface 

coefficient  in  the  neighborhood  of  midship  section  coefficients  of 

.90.  As  regards  absolute  values  of  the  coefficients  it  is  to  be  noted 

that  at  midship  section  coefficient  .84  they  are  practically  coincident. 

For  higher  values  of  the  midship  section  coefficient  the  fine  ended 
models  have  the  smaller  wetted  surface.  For  smaller  values  of 

midship  section  coefficient  the  fine  ended  models  have  the  greater 

wetted  surface.  The  extreme  variations  of  coefficients  in  Figs.  39 

and  40  are  but  about  3  per  cent  above  and  below  the  average,  a 

fact  which  shows  that  the  coefficient  C  in  the  approximate  formula 

is  nearly  constant  in  practice. 

ii.  Average  Wetted  Surface  Coefficients.  —  Figs.  39  and  40 
refer  to  models  of  only  two  types  of  lines. 

A  large  number  of  actual  wetted  surfaces  for  many  types  of  lines 
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have  been  calculated  at  the  model  basin  from  which  Fig.  41,  show- 
Tt 

ing  contour  curves  of  the  wetted  surface  coefficient  C  plotted  on  — H 

and  midship  section  coefficient,  has  been  deduced. 

The  wetted  surface  coefficients  of  Fig.  41  were  obtained  from 

average  results  of  vessels  of  ordinary  form.  For  such  vessels,  if 

the  mean  immersed  length  is  accurately  known,  they  are  correct 

within  a  small  percentage.  They  apply  to  the  hull  proper  only, 

exclusive  of  appendages,  and  should  be  used  with  caution  for  vessels 

of  abnormal  form,  such  as  very  shallow  draught  vessels,  vessels 

with  very  broad,  flat  sterns,  vessels  with  deadwood  cut  away  to  an 
unusual  extent,  etc. 

In  practice  Fig.  41  can  be  utilized  to  ascertain  with  a  good  deal 

of  accuracy  the  wetted  surface  of  a  vessel  of  abnormal  type,  provided 

we  have  the  correct  value  of  C  for  one  vessel  of  the  type  which  does 

not  differ  too  much  in  proportions  and  coefficients  from  the  vessel 
whose  wetted  surface  is  needed. 

For,  suppose  that  Fig.  41  is  4  per  cent  in  error  for  the  abnormal 
vessel  whose  wetted  surface  coefficient  is  known.  It  will  continue 

to  be  very  approximately  4  per  cent  in  error  for  the  type  of  lines 

under  consideration  as  proportions  and  coefficients  are  changed, 

and  its  results  corrected  by  4  per  cent  may  be  relied  upon  for  the 

abnormal  type.  In  other  words,  Fig.  41  may  be  utilized  in  two 

ways: 

a.  To  ascertain  the  approximate  wetted  surface  of  any  vessel 

of  ordinary  type  whose  dimensions,  displacement  and  midship 
section  area  only  are  known. 

b.  To  ascertain  the  approximate  wetted  surface  of  a  vessel  of 

extraordinary  type  of  known  dimensions,  etc.,  provided  we  know  the 

actual  wetted  surface  of  another  vessel  of  the  same  extraordinary 

type. 
From  a  consideration  of  what  has  gone  before,  and  especially 

of  Figs.  36  to  41,  we  appear  to  be  warranted  in  drawing  a  few  broad 

conclusions  as  to  the  wetted  surface  of  vessels  of  usual  types. 

1.  For  a  given  displacement  the  wetted  surface  varies  mainly 

with  length,  being  nearly  as  the  square  root  of  the  length. 

2.  For  a  given  displacement  and  length  the  wetted  surface  varies 
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but  little  within  limits  of  beam  and  draught  possible  in  practice. 
As  regards  wetted  surface  the  most  favorable  ratio  of  beam  to 
draught  is  a  little  below  3. 

3.  For  given  displacement  and  dimensions  the  wetted  surface  is 
affected  very  little  by  minor  variations  of  shape,  etc.     Extremely 
full  sections  are  somewhat,  and  extremely  fine  sections  are  quite 
prejudicial  to  small  surface. 

4.  After  length,  the  most  powerful  controllable  factor  affecting 
wetted  surface  is  probably  that  of  deadwood.     By  cutting  away 
deadwood  boldly,  we  can  often  save  more  wetted  surface  on  a  ship 
of  given  displacement  and  length  than  by  any  practicable  variation 
in  ratio  of  beam  to  draught,  or  in  the  fullness  of  sections. 

5.  Focal  Diagrams 

1.  Field  for  Focal  Diagrams.  —  In  attempting  to  analyze  experi- 
mental data  it  frequently  happens  that  we  know  the  general  law 

which  we  think  should  govern,  and  we  wish  to  examine  whether 
the  law  does  apply  and,  if  it  does,  to  determine  suitable  coefficients 
from  the  experiments  for  use  in  the  formula  expressing  the  law. 
Experimental  data  being  at  best  an  approximation,  it  is  desirable 

to  use  a  method  which  will  not  only  give  us  an  adequate  approxi- 
mation to  the  coefficients  or  constants  desired,  but  give  us  some 

idea  as  to  how  closely  our  results  are  going  to  represent  the  ob- 
served data. 

Mathematically,  the  problem  is  in  general  one  of  Least  Squares. 
In  practice,  for  many  problems  there  is  one  coefficient  or  constant 
to  be  determined,  the  actual  determination,  of  course,  being  made 
by  taking  average  results.  In  a  great  many  cases  not  so  simple 
there  are  two  coefficients  or  constants  involved.  For  such  cases, 
instead  of  applying  the  complicated  and  laborious  methods  of 
Least  Squares,  very  satisfactory  results  can  always  be  obtained 
from  data  not  too  much  in  error  by  the  use  of  what  I  may  call  a 
Focal  Diagram. 

2.  Illustration    of    Focal    Diagrams.  —  This    method    may   be 
readily  comprehended  from  a  concrete  illustration.     Fig.  42  shows 

y? a  parabola  whose  equation  is  y  =  3  x   ,  the  general  equation 4 
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being  of  the  form  y  =  ax  —  bx~.  At  the  point  P,  say,  where 
x  =  4,  y  =  8.  Substituting  these  values  of  x  and  y  in  the  general 

equation,  we  have  8=40  —  i6&.  This  is  a  linear  relation  between 
a  and  b,  and  laying  off  axes  of  a  and  b  as  in  Fig.  43,  we  can  draw 

a  line  representing  this  relation.  If  we  take  the  simultaneous 

values  of  a  and  b  for  any  point  on  this  line  and  substitute  them  in 

the  general  formula  y  =  ax  —  bx2,  the  resulting  parabola  in  x  and 
y  would  pass  through  y  =  8,  x  =  4. 

Fig.  43  shows  ten  lines  in  a  and  b  corresponding  to  ten  points 
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x,=  i          23          45  67  89         10 

3^  =  2.75     5     6.75     8    8.75     9    8.75     8    6.75     5 

These  ten  lines  all  pass  through  the  point  a  =  3,  b  =  .25,  forming 
a  focus  at  this  point.  Evidently,  if  we  know  the  x  and  y  values  of 

the  ten  points  and  the  fact  that  they  are  on  a  curve  whose  formula 

is  of  the  form  y  =  ax  —  bx2,  we  could  determine  a  and  b  by  drawing 
the  ten  lines  as  in  Fig.  43  and  taking  the  focal  values  a  =  3,  b  =  .25. 
If  we  knew  the  exact  ordinates  of  but  two  spots,  we  could  draw  the 

two  corresponding  lines  in  Fig.  43  and  determine  the  values  of 
a  and  b. 

In  practice,  if  we  determined  the  spots  on  the  curve  by  experi- 
ment or  observation,  we  would  have  more  spots  than  theoretically 

needed  to  determine  the  focus;  but  the  line  for  each  spot  instead 

of  passing  through  the  focus  would  pass  somewhat  near  it,  its 

distance  from  the  focus  depending  upon  the  nearness  of  our 
observations  to  exact  truth. 

In  Fig.  42,  circles  on  the  curve  indicate  ten  exact  spots,  and 

adjacent  crosses  indicate  spots  of  varying  errors  in  location.  The 

errors,  both  vertical  and  horizontal,  vary  by  .05  from  +  .25  to 

—  .25,  and  the  actual  errors  at  any  spot  were  assigned  by  lot. 
We  have,  then,  for  the  approximate  spots 

x  =  i         1.75    2.85   4.10  4.80   5.90   7.20   8.05   9.25    9.95 

y  =  2.$5  4.85   6.65   8.15   8.75   9.20  8.85   7.75   7.00    5.05 

A  focal  diagram  similar  to  Fig.  43  can  be  drawn  with  a  line 

for  each  approximate  spot,  and  this  is  done  in  Fig.  44.     It  is 
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evidently  possible  in  Fig.  44  to  spot  the  focus  with  an  accuracy 
ample  for  most  practical  purposes. 

3.  Considerations  Affecting  Focal  Diagrams.  —  If  the  assumed 
law  or  general  equation  is  materially  in  error,  a  good  focus  will  not 
be  formed,  no  matter  how  close  the  observations  may  be.  Even 
with  an  exact  law  it  may  be  difficult  to  locate  the  focus  if  the 
observations  are  poor,  but  when  we  do  get  a  good  focus  we  know 

at  once  that  the  corresponding  values  of  the  coefficients  in  our  for- 
mula will  cause  the  formula  to  represent  the  experimental  results 

with  great  accuracy,  indicating  that  the  assumed  formula  is  close 
to  the  truth  and  that  the  observations  are  good. 

In  Fig.  44  the  lines  are  straight.  This  need  not  necessarily  be 
the  case.  The  relation  between  a  and  b  may  not  be  linear,  but  can 
always  be  represented  by  a  curve.  Linear  focal  diagrams  are, 
however,  much  the  simplest  and  best  and  should  always  be  sought 
for.  Frequently,  when  the  relation  between  the  coefficients  is  not 
linear,  it  may  be  made  so  by  adopting  new  coefficients  of  definite 
relation  to  the  original  ones. 

In  a  linear  focal  diagram  we  usually  determine  two  points  on 
each  line.  The  exact  methods  best  to  use  vary  somewhat  with  the 
nature  of  the  case.  It  is  always  desirable  to  determine  the  two 
points,  one  on  either  side  of  the  focus.  Below  are  given  the 
detailed  calculations  for  the  case  we  have  been  considering  from 
the  results  of  which  Fig.  44  was  plotted. 

Formula :  — 

y  =  ax  —  by?,    a  =  - X bx,    b  =  o,    a  =  z  ,    b  =  .5,    a  =  z  +  .5  x. XX 

X 

y 
i 

2-5S 
i-75 

4-85 

2-85 
6.65 

4.10 

8.15 

4.80 

8-75 

5-90 

9.20 
7.20 

8.85 
8.05 

7-75 
9-25 

7.00 

9-95 

5-^5 
2  =  a  for  b  =  o 
X 

2-55° 2.771 

2-333 

1.988 

1.823 

1-559 
1.229 0.963 

o-757 

0.508 

•5* 
a  for  b  —  .  5 .500 

3-05° 

-875 

3.646 

1-425 

3.758 

2.050 

4.038 

2.400 
4.223 

2.950 

4-5°9 

3.600 

4.829 

4.025 

4.988 

4.625 

5-382 

4-975 

5-483 

6.   The  Disturbance  of  the  Water  by  a  Ship 

The  disturbance  of  deep  water  by  a  ship  passing  through  it  is 
a  very  complicated  matter  and  the  disturbance  of  shallow  water 

even  more  complicated.     Broadly  speaking,  all  resistance  is  due  to- 
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disturbance  of  the  water  and  before  considering  in  detail  the  ele- 
ments of  resistance  it  will  be  well  to  form  some  idea  of  the  nature  of 

the  disturbances  to  which  resistance  is  due. 

i.  Comparison  between  Ideal  Stream  Motion  and  Actual  Motion. 

—  Suppose  we  could  apply  on  the  surface  of  the  water  a  rigid 
frictionless  sheet  as  of  ice  surrounding  to  a  great  distance  a  moving 
ship  and  advancing  with  it.  If  the  ship  had  a  smooth  and  friction- 
less  bottom  and  the  water  were  a  perfect  liquid  there  would  be 

perfect  stream  line  motion,  and  we  know  from  stream  line  considera- 
tions the  salient  characteristics  of  what  may  be  called  the  stream 

line  disturbance  in  the  vicinity  of  the  ship's  hull.  In  the  vicinity 
of  and  forward  of  the  bow  the  water  would  be  given  a  forward  and 
outward  motion,  with  pressure  in  excess  of  that  of  the  undisturbed 
water.  Passing  aft,  the  water  would  continue  to  flow  outward, 
but  at  a  short  distance  abaft  the  bow  would  lose  its  forward  motion 

and  begin  to  move  aft  as  well  as  outward.  Its  pressure,  a  maximum 
near  the  bow,  would  steadily  fall  off,  soon  becoming  less  than  that 
of  undisturbed  water. 

Abreast  the  midship  section,  the  sternward  velocity  would  reach 
a  maximum  and  the  pressure  a  minimum.  Passing  sternward,  as 
the  water  closed  in  it  would  lose  its  sternward  velocity,  and  pressure 
would  increase  again  until  in  the  vicinity  of  the  stern  we  would  have 
excess  pressure  and  the  water  would  have  motion  forward  as  at  the 
bow.  Since  there  would  be  a  deficiency  of  pressure  over  the  greater 
portion  of  the  hull,  we  must,  in  order  to  realize  the  ideal  motion, 
assume  that  the  rigid  sheet  surrounding  the  ship  is  strong  enough 
to  hold  it  firmly  at  the  level  at  which  it  naturally  floats  when  at 
rest.  We  must  also  assume  that  the  pressure  of  the  undisturbed 
water  is  such  that  the  defect  of  pressure  caused  by  the  motion  of 
the  ship  will  not  cause  the  water  to  fall  away  from  the  rigid  sheet. 
Now  the  motion  of  the  actual  ship  through  actual  water  differs 

from  the  ideal  conditions  assumed  above. 

1.  The  water  is  not  frictionless,  but  is  affected  by  the  frictional 
drag  of  the  surface  of  the  ship. 

2.  The  ship  is  not  constrained  to  remain  at  a  fixed  level,  but  may 
rise  and  fall  bodily  and  change  trim  in  response  to  the  reactions  of 
the  water. 
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3.  The  water  surface  is  not  constrained  to  remain  at  one  level, 
but  is  free  to  rise  and  fall  in  response  to  the  action  of  the  ship. 

2.  Changes  of  Level  of  Vessel  and  Water.  —  Notwithstanding 
the  differences  between  the  actual  circumstances  of  the  motion  and 

the  ideal  conditions  assumed  above,  there  is  no  doubt  that  the 

stream  line  action  around  an  actual  ship  presents  in  a  qualitative 
way  nearly  all  the  features  of  the  ideal  case  considered.  But  in 
the  actual  ship  the  excess  pressures  at  bow  and  stern  result  in 
surface  disturbances,  causing  waves  which  spread  away  and  absorb 
energy,  and  the  defect  of  pressure  amidships  results  in  a  lowering  of 
the  water  level  and  a  lowering  of  the  ship  bodily,  accompanied  by 
a  change  of  trim. 

Figs.  45  to  49  show  for  two  speeds  of  one  model  and  three  speeds 
of  another  changes  of  level  and  trim  of  model  and  of  level  of  water 
against  the  side.  The  dimensions  and  displacements  of  the  models 
are  given  in  the  legend  just  above  Fig.  45. 

These  figures  are  typical.  They  show  elevations  of  the  water 

at  bow  and  stern,  and  show  further  two  phenomena  already  de- 
scribed as  to  be  expected  from  stream  line  action  but  not  conspicu- 

ous or  easy  to  determine  for  an  actual  ship.  It  is  seen  that  there 
is  a  bodily  settlement  of  the  vessel  and  that  in  the  vicinity  of  the 
mid  length  there  is  a  bodily  lowering  of  the  water  surface  adjacent 
to  the  ship  independent  of  the  disturbance  due  to  the  wave  created 
at  the  bow. 

3.  Lines  of  Flow  over  Surface  of  Vessel.  —  There  have  been  a 
number  of  experiments  made  at  the  United  States  Model  Basin 
upon  the  direction  of  relative  flow  of  the  water  in  the  vicinity  of 
models.  The  model  surface  being  coated  with  sesquichloride  of 
iron  mixed  with  glue,  pyrogallic  acid  is  ejected  at  a  point  of  the 
bottom  through  a  small  hole,  which  as  it  passes  aft  mingled  with  the 
water  causes  a  gradually  widening  smear  of  ink  upon  the  prepared 
model  surface.  The  center  line  of  this  smear  can  be  located  with 

reasonable  accuracy  for  some  distance,  and  when  it  becomes  uncer- 
tain a  fresh  hole  is  bored  and  the  line  traced  on.  When  experiment- 
ing with  flow  not  in  the  immediate  vicinity  of  the  model  surface, 

meshes  of  fine  string  or  wire  coated  with  sesquichloride  of  iron  are 
used  and  pyrogallic  acid  ejected  at  known  points. 
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The  relative  flow  indicated  in  the  immediate  vicinity  of  the  model 

is  found  to  extend  as  regards  type  quite  a  distance  from  the  skin, 

so  as  regards  motion  near  the  hull  we  need  consider  only  the  dis- 
turbance close  to  the  bottom,  or  the  lines  of  flow  as  they  may  be 

called. 

Figs.  50  to  59  show  lines  of  flow  past  the  bottom  for  five  pairs  of 

twenty-foot  models  of  five  widely  varying  types  of  midship  section. 
The  proportions,  displacements  and  speeds  of  the  models  are  given. 

The  large  and  small  models  of  each  type  of  midship  section  are 

similar  except  as  regards  ratios  of  beam  and  draught  to  length. 

These  figures  are  typical  and  confirmed  by  investigations  of  the 
lines  of  flow  over  a  number  of  other  models.  Perhaps  their  most 

notable  feature  is  the  remarkably  strong  tendency  of  the  water  to 

dive  under  the  fore  body  as  it  were.  In  fact,  it  seems  as  if  the  water 

near  the  surface  forward  dives  down  and  crowds  away  from  the 

hull  the  water  through  which  the  fore  part  has  passed,  while  aft 

the  water  rising  up  crowds  away  from  the  hull  the  water  which 

was  in  contact  with  it  near  the  surface  amidships. 

4.   Kelvin's  Wave  Patterns  and  Actual  Ship  Wave  Patterns.  - 
It  remains  to  consider  the  most  striking  of  the  disturbances  caused 

by  a  moving  ship.     This  is  the  surface  or  wave  disturbance. 

The  wave  disturbance  caused  by  a  ship  differs  obviously  from 
trochoidal  waves,  which  we  have  considered. 

These  latter  were  considered  as  an  infinite  series  of  parallel 

crests,  each  crest  line  extending  to  infinity. 

We  owe  to  the  genius  of  Lord  Kelvin  the  solution  of  an  ideal 

problem  which  applies  reasonably  well  to  ship  waves.  His  work 

in  this  connection,  which  may  be  found  in  the  Transactions  of  the 

Royal  Society  of  Edinburgh  (Vols.  XXV  (1904-5)  and  XXVI 
(1906)),  bristles  with  difficult  mathematics,  but  his  results  are 

comparatively  simple. 

Suppose  we  have  advancing  in  a  straight  line  over  the  surface  of 

a  perfect  liquid  a  point  of  disturbance.  What  will  be  the  resulting 

waves?  Lord  Kelvin's  conclusion  is  that  there  will  be  a  number  of 
crests,  each  crest  line  being  represented  by 

_  20  ̂ .      _ 
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where  the  origin  is  supposed  to  travel  in  the  direction  of  the  axis 
of  x  with  and  at  the  point  initiating  the  disturbance. 

The  equation  above  is  somewhat  simpler  in  polar  coordinates. 
Transformed  it  becomes 

r4-  aV2  (i  +  18  sin2  6-27  sin4  6)  +  16  a4  sin2  6  =  0. 

Fig.  60  shows  a  single  crest  line  from  the  above  equation.  It 
starts  always  from  o,  where  it  is  tangent  to  the  axis  of  x.  It  spreads 
outward  and  backward  to  cusps  CC,  which  are  on  a  line  making 

with  the  axis  of  x  the  angle  of  19°  28'  whose  tangent  is  Vf  or  sine 
is  ̂ .  The  tangent  at  the  cusp  is  inclined  54°  44'  to  the  axis  of  x, 
and  the  branch  CAC  of  the  crest  line  is  perpendicular  to  the  axis 
of  x  where  it  crosses  it.  The  relative  heights  of  various  points  on 
the  crest  as  given  by  Lord  Kelvin  are  indicated  in  Fig.  60.  The 
fact  that  the  heights  at  0  and  CC  are  infinite  shows  simply  that 
the  formula  cannot  represent  the  physical  conditions  with  exactness. 
It  may,  however,  be  an  amply  close  approximation,  for  by  the  theory 
these  infinite  crest  heights  extend  for  but  infinitely  short  distances. 

The  physical  interpretation  of  the  formula  is  that  at  OC  and  C 
the  heights  are  greatest  and  the  crests  the  sharpest,  so  that  at  these 
points,  if  anywhere,  breaking  water  will  be  found.  This  conclusion 
is  fully  borne  out  in  practice. 

The  whole  wave  disturbance  due  to  the  initiating  point  is  made 
up  by  the  super  position  of  a  series  of  crests  such  as  are  outlined  in 
Fig.  60,  with  corresponding  intervening  hollows.  Fig.  61  shows  a 

series  of  such  crest  lines.  The  diverging  crest  lines  cross  the  trans- 
verse crest  lines,  resulting  in  an  involved  surface  disturbance. 

The  distance  between  successive  transverse  crests  along  the  axis 

of  x  is  the  same  as  the  length  of  an  ordinary  trochoidal  wave  travel- 
ing in  deep  water  at  the  speed  of  the  point  of  initial  disturbance. 

The  heights  of  successive  crests  are  inversely  as  the  square  roots 
of  distances  from  the  origin. 

That  Lord  Kelvin's  solution  agrees  reasonably  well  with  practical 
results  is  readily  shown  by  careful  scrutiny  of  the  wave  disturbances 
caused  by  ships  and  models,  which  makes  it  clear  that  the  bow  wave 
system  and  the  stern  wave  system  closely  resemble  Kelvin  wave 

groups. 
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The  differences  are  only  such  as  might  be  expected  from  the  fact 

that  a  Kelvin  group  is  an  ideal  system  initiated  by  forces  at  a  single 

moving  point,  while  an  actual  wave  group  is  due  to  forces  spread 

over  the  ship's  hull. 
The  heights  of  the  later  diverging  waves  close  to  the  ship  appear 

to  be  much  less  in  practice  than  by  the  Kelvin  formula,  these  crests 

frequently  appearing  as  mere  wrinkles  of  the  surface,  and  the  ship 

wave  patterns  vary  with  proportions  of  the  vessel.  Thus  narrow 

deep  ships  have  wave  patterns  whose  transverse  features  are  much 

more  strongly  accentuated  than  those  of  broad  shallow  ships. 

The  wave  patterns  of  ships  appear  to  change  somewhat  with 

change  of  speed  and  the  transverse  features  appear  to  be  less  promi- 
nent and  important  at  high  speed.  According  to  observations 

made  by  Commander  Hovgaard,  formerly  of  the  Danish  Navy,  and 

given  by  him  in  a  paper  before  the  Institution  of  Naval  Architects 

at  its  spring  meeting  in  1909,  the  cusp  line  is  usually  at  an  angle 

less  than  19°  28',  most  observations  of  full-sized  ships  showing  it 

between  16°  and  19°,  though  in  one  case,  that  of  a  Danish  torpedo 
boat,  Commander  Hovgaard  observed  a  cusp  line  angle  as  low 

as  11°. 
Observations  made  on  models  by  Commander  Hovgaard  in  the 

United  States  Model  Basin  showed  even  smaller  values  of  cusp  line 

angles,  particularly  at  relatively  high  speeds. 
But  at  such  speeds  the  breadth  of  the  basin  is  not  sufficient  to 

allow  the  cusp  line  to.be  determined  with  accuracy. 

For  purposes  of  analysis  the  most  important  feature  of  the 

Kelvin  wave  group  is  the  close  agreement  between  its  curved  trans- 
verse crests  and  a  series  of  transverse  trochoidal  crests  extending 

from  the  cusp  line  on  one  side  to  the  cusp  line  on  the  other. 

5.  Havelock's  Wave  Formulae.  —  Lord  Kelvin's  wave  formulae 
given  above  are  for  deep  water.  Dr.  T.  H.  Havelock  has  developed 

formulae  for  the  wave  patterns  produced  by  a  traveling  disturbance 

in  water  of  any  depth.  These  will  be  found  in  a  paper  on  waves, 

etc.,  in  the  Proceedings  of  the  Royal  Society,  Vol.  81,  1908. 

In  a  paper  on  Wave-making  Resistance  of  Ships,  Vol.  82,  1909, 
Dr.  Havelock  has  applied  his  formulae  to  produce  practical  results. 

For  waves  generated  by  a  traveling  disturbance  in  deep  water 



56  SPEED  AND  POWER  OF  SHIPS 

Havelock's  results  agree  with  Kelvin's  except  that  Havelock's 
formulae  do  not  require  infinite  wave  heights. 

But  in  shallow  water  Havelock  finds  that  there  is  a  critical  speed, 
which  is,  in  feet  per  second,  VgA,  where  h  is  the  depth  in  feet.  This 
is,  by  the  way,  the  speed  of  the  solitary  wave  or  wave  of  translation 
by  the  trochoidal  formulas. 

As  the  speed  increases  up  to  the  critical  speed  the  cusp  line  angle, 

which  was  19°  28'  in  deep  water,  becomes  greater  and  greater  until 
at  the  critical  speed  it  is  90°.  At  this  speed  the  wave  disturbance 
reduces  to  a  single  transverse  wave. 

Above  the  critical  speed  transverse  waves  cannot  exist.  Diverg- 
ing waves  continue  however,  but  instead  of  being  concave  the  first 

one  is  straight  at  an  angle  which  decreases  from  90°  with  the  axis 
as  speed  increases  beyond  the  critical  speed. 

The  succeeding  diverging  waves  are  convex  instead  of  concave. 
We  shall  see  later  that  observed  phenomena  accompanying  the 
motion  of  models  in  shallow  water  are  in  accordance  with  Have- 

lock's theoretical  conclusions. 



CHAPTER  II 

RESISTANCE 

7.   Kinds  of  Resistance 

THERE  are  several  kinds  of  resistance  and  usually  all  are  present 
in  the  case  of  every  ship.  They  will  be  enumerated  here  and  then 
taken  up  separately  in  detail. 

1.  Skin  Resistance.  —  In  the  first  place,  water  is  not  frictionless. 
Its  motion  past  the  surface  of  the  ship  involves  a  certain  amount 
of  frictional  drag,  the  resistance  of  the  surface  involving  an  equal 
and  opposite  pull  upon  the  water. 

This  kind  of  resistance  is  conveniently  denoted  by  the  term 
Skin  Resistance.  It  is  nearly  always  the  most  important  factor 
of  the  total  resistance. 

2.  Eddy  Resistance.  —  While  Skin  Resistance  is  accompanied 

by  eddies  or  whirls  in  the  water  near  the  ship's  surface,  the  expres- 
sion Eddy  Resistance  is  used  for  a  different  kind  of  resistance. 

The  motion  through  the  water  of  a  blunt  or  square  stern  post  or 

of  a  short  and  thick  strut  arm,  etc.,  is  accompanied  by  much  resist- 
ance and  the  tailing  aft  of  a  mass  of  eddying  confused  water.     Such 

resistance  is  designated  Eddy  Resistance.     With  proper  design  it 
is  in  most  cases  but  a  minor  factor  of  the  total  resistance. 

3.  Wave   Resistance.  —  A  far  more  important  factor,   which 
though  usually  second  to  the  Skin  Resistance  is  in  some  cases  the 
largest  single  factor  in  the  total  resistance,  is  the  resistance  due  to 
the  waves  created  by  the  motion  of  the  ship.     It  is  called  for  brevity 
the  Wave  Resistance. 

We  have  seen  that  the  motion  of  a  ship  through  the  water  is 
accompanied  by  the  production  of  surface  waves.  These  absorb 
energy  in  their  production  and  propagation,  and  this  energy  is 
communicated  to  them  from  the  ship,  being  derived  from  the  Wave 
Resistance. 

57 
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4.  Air  Resistance.  —  Finally,  we  have  the  Air  Resistance,  which 
is,  as  its  name  implies,  the  resistance  which  the  air  offers  to  the 
motion  of  the  ship  through  it.     The  Air  Resistance  is  seldom  large. 
It  is,  however,  by  no  means  always  negligible. 

5.  Comparative  Importance  of  Skin  and  Wave  Resistance.  — 
Considering   the   two   main   factors  of  resistance,   namely,   Skin 
Resistance  and  Wave  Resistance,  experience  shows  that  for  large 
vessels  of  very  low  speed  the  Skin  Resistance  may  approach  90  per 
cent  of  the  total.     For  ordinary  vessels  of  moderate  speed,  it  is 
usually  between  70  and  80  per  cent  of  the  total.     As  speed  increases, 
the  Wave  Resistance  becomes  a  more  and  more  important  factor, 
until,  in  some  cases  of  vessels  pushed  to  speeds  very  high  for  their 
lengths,  the  Skin  Resistance  may  be  only  some  40  per  cent  of  the 
total,  the  Wave  Resistance  being  in  the  neighborhood  of  60  per 

cent.     For  such  vessels  as  high-speed  steam  launches  the  Wave 
Resistance  may  be  even  more  than  60  per  cent  of  the  total,  but  for 
vessels  of  any  size  it  is  seldom  advisable  to  adopt  a  design  where 
the  Wave  Resistance  is  as  great  as  50  per  cent  of  the  total. 

Features  which  tend  to  decrease  Wave  Resistance  tend  to  in- 
crease Skin  Resistance,  and  here,  as  in  so  many  other  matters,  the 

naval  architect  must  adopt  a  compromise  dictated  by  the  special 
considerations  affecting  the  particular  case. 

8.   Skin  Resistance 

i.  William  Froude's  Experiments.  —  The  determination  of  the 
Skin  Resistance  of  ships  is  based  entirely  upon  the  experimental 
determination  of  the  frictional  resistance  of  thin  comparatively 
small  planes  moving  endwise  through  the  water.  The  classical 
experiments  in  this  connection  were  made  by  Mr.  William  Froude 
many  years  ago  and  are  recorded  in  the  Proceedings  for  1874  of  the 
British  Association  for  the  Advancement  of  Science. 

Mr.  Froude  used  boards  i\  X  19  inches,  of  various  lengths  up  to 
50  feet  and  coated  with  various  substances,  which  were  towed  at 
various  speeds  not  exceeding  eight  knots  in  a  tank  of  fresh  water 
300  feet  long,  their  resistance  being  carefully  measured.  Mr. 
Proude  summarized  his  experimental  results  in  the  following  table: 
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RESULTS    OF  WILLIAM   FROUDE'S   EXPERIMENTS    UPON   SKIN 
FRICTION 

FOR  SPEED  OF  600  FEET  PER  MINUTE 

Nature 

of 
Surface. 

Length  of  Surface  or  Distance  from  Cutwater. 

2  feet. 8  feet. 20  feet. 

50  feet. 

A B C A B C A B C A B C 

Varnish    2.00 

i-95 

2.  l6 

i-93 

2.OO 

2.OO 
2.00 

.41 

.38 •3° 

.87 

.81 

.90 I.  IO 

•39° 
•37° 

•295 

•725 

.690 

•73° 
.880 

1.85 
1.94 1.99 

i  .92 

2.OO 

2.OO 

2.OO 

•325 

•3i4 
.278 

.626 
•583 
.625 

.714 

.264 

.260 

.263 

•S°4 

•45° 

.488 

.520 

1.85 i-93 

1.90 

1.89 

2.OO 

2.OO 

2.OO 

.278 

.271 

.262 
•53i 

.480 

•534 

•588 

.  240 

•237 

.244 
•447 

•384 

•465 

.490 

1.83 

i'83 

1.87 

2.06 
2.OO 

.250 

.246 

•474 
•405 

.488 

.226 

.232 
•  423 

•337 

•456 

Paraffin    
Tinfoil    
Calico    
Fine  sand    
Medium  sand    
Coarse  sand    

In  the  above,  for  each  length  stated  in  the  heading  — 
Column  A  gives  the  power  of  the  speed  according  to  which  the 

resistance  varies. 

Column  B  gives  the  mean  resistance  in  pounds  per  square  foot 
of  the  whole  surface  for  a  speed  of  600  feet  per  minute. 

Column  C  gives  the  resistance  in  pounds,  at  the  same  speed,  of 
a  square  foot  at  the  distance  abaft  the  cutwater  stated  in  the 
heading. 

It  appears,  then,  that  the  Frictional  Resistance  of  a  plane  surface 

can  be  represented  by  the  formula  Rf=  JSVn,  where  5  is  the  total 
surface  of  the  plane,  /  is  its  coefficient  of  friction,  V  is  its  speed, 
and  n  an  index  giving  the  power  of  V  according  to  which  Rj  is 

increasing.  The  table  below  repeats  the  values  of  n  in  Froude's 
table  above  and  gives  the  values  of  /  from  columns  B  and  C  when 
we  express  speed  in  knots,  5  being  expressed  in  square  feet. 
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RESULTS  OF  WILLIAM  FROUDE'S  EXPERIMENTS  UPON  SKIN 
FRICTION 

REDUCED  FOR  SPEEDS  IN  KNOTS 

Nature 

of 
Surface. 

Length  of  Surface. 

2  feet. 8  feet. 20  feet. 

50  feet. 

n 
/ 

n 
/ 

n 
/ 

n 
/ 

B C B C B C B C 

Varnish     .... 2.OO 

i-95 

2.16 
i-93 

2.0O 

2.00 

2.OO 

.0117 

.0119 

.0064 

.0281 

.0231 .0257 

.0314 

.OIII 
.0115 
.0063 .0234 .0197 

.0208 .0251 

1.85 1.94 1.99 

1.92 
2.00 

2.OO 

2.OO 

.0121 

.0100 

.0081 

.0106 

.0166 

.0178 

.0204 

.0098 .0083 

.0076 

.0166 

.0128 

.0139 

.0148 

1.85 i-93 

1.90 

1.89 

2.OO 

2.00 

2.OO 

.0104 

.0088 

.0089 

.0184 
•°i37 

.0152 

.0168 

.0089 
.0077 

.0083 
•0155 

•  OIIO 

.0133 

.0140 

1.83 
i.  '83 

1.87 

2.06 
2.00 

.0097 
.0095 

.0170 .0104 

.0139 

.0087 

.0090 

.0152 

.0086 .0130 

Paraffin    
Tinfoil    
Calico    
Fine  sand    
Medium  sand. 
Coarse  sand 

2.  Variation  in  Coefficient  and  Index  of  Friction. — The  coefficient 
of  friction  /  is  affected  by  a  number  of  circumstances.  The  tables 
preceding  show  a  variation  with  nature  and  length  of  surface. 
It  also  varies  slightly  with  temperature,  falling  off  as  temperature 
increases,  and  it  varies,  of  course,  with  the  nature  of  the  fluid. 
For  the  small  variations  of  density  from  fresh  to  salt  water  /  is 
taken  to  vary  directly  as  the  density. 

As  to  the  index  n,  it  is  seen  that  for  rough  surfaces  it  remains  at 
the  value  2.00,  while  for  smooth  hard  surfaces  it  falls  off  with 

increase  of  length,  reaching  the  value  1.83  for  planes  50  feet  long. 
The  diminution  in  /  and  that  in  n  as  length  is  increased  are  both 
due  to  the  same  cause,  namely,  the  fact  that  the  rear  portion  of  a 
plane  moves  through  water  which  has  a  forward  motion  caused  by 

the  friction  of  the  front  portion  of  the  plane.  Froude's  conclusion 
that  for  a  plane  with  smooth  hard  surface  the  index  n  has  a  value 

of  1.83  or  thereabouts  has  been  fully  confirmed  by  other  experi- 
ments. Prior  to  Froude  it  was  always  considered  that  the  frictional 

resistance  of  a  plane  surface  would  vary  as  the  square  of  the  speed. 
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This  seems  natural,  and  most  experiments  on  the  loss  of  head  of 

water  flowing  through  pipes  show  that  the  resistance  to  flow  varies 

as  the  square  of  the  speed.  The  conditions  are,  however,  very 

different.  In  the  case  of  the  pipe  we  consider  the  average  velocity 

of  flow  over  the  cross  section  of  the  pipe,  which  is  necessarily  the 

same  from  end  to  end,  and  its  ratio  to  the  rubbing  velocity  of  the 

water  close  to  the  walls  of  the  pipe  is  practically  constant.  In 

the  case  of  the  plane,  the  rubbing  velocity  steadily  falls  off  along 
the  plane. 

While  the  frictional  index  1.83  for  long  smooth  surfaces  does  not 

differ  greatly  from  2,  the  corresponding  curve  is  far  below  the  par- 

abola corresponding  to  the  index  2.  Thus  the  ratio  F1'83  -4-  F2, 
which  is  unity  for  V  =  i,  is  .761  for  V  =  5,  is  .676  for  V  =  10  and 

.609  for  V  =  20.  This  ratio  falls  off  more  and  more  slowly  as 

speed  is  increased.  Thus,  in  passing  from  V  =  i  to  V  =  20  it 
falls  off  from  i.ooo  to  .609,  while  to  reduce  it  to  .500  the  speed  must 

increase  to  V  =  59. 

3.  Frictional  Resistance  of  Ships  Deduced  from  Plane  Re- 

sults. —  In  order  to  apply  the  results  for  friction  of  planes  to  the 
frictional  resistance  of  ships,  it  is  necessary  first  to  extend  the 

experimental  results  for  short  planes  to  long  surfaces,  the  lengths 

of  actual  ships.  This  has  been  done  by  Froude  and  Tideman,  by 

extending  the  curves  of  index,  coefficient,  etc.,  for  the  short  planes 

experimented  with.  While  this  extension  is  speculative  to  some 

extent,  it  does  not  appear  that  it  is  likely  to  be  seriously  in  error. 
Then  it  is  assumed  that  the  frictional  resistance  of  the  wetted 

surface  of  a  ship  is  the  same  as  the  frictional  resistance  of  a  plane 

of  the  same  length  and  total  surface  moving  endwise  through  the 

water  with  the  speed  of  the  ship.  This  assumption  is  necessarily 

an  approximation.  The  water  level  changes  around  a  ship  under 

way,  changing  the  area  of  wetted  surface;  and,  owing  to  stream 
line  action,  the  velocity  of  flow  over  the  surface  is  at  some  places 

less,  at  others  greater,  than  it  would  be  over  the  plane  surface. 

The  assumption  made,  however,  is  practically  necessary,  and  is  a 

reasonably  close  approximation  to  actual  facts. 

Finally,  it  is  necessary  to  assume  that  the  frictional  quality  of 

the  ship's  surface  is  the  same  as  that  of  our  experimental  planes. 
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From  experiments  made  in  the  Italian  model  basin  and  else- 
where it  may  be  concluded  that  the  frictional  resistance  of  a 

smooth  hard  surface  is  not  materially  affected  by  the  variety  of 

paint  with  which  it  is  covered.  But  Froude's  experiments  show 
that  friction  is  powerfully  affected  by  roughness  of  surface.  For 

a  5o-foot  plane  covered  with  calico  or  medium  sand  and  towed  at 
600  feet  per  minute,  or  about  6  knots,  Froude  found  a  frictional 
resistance  nearly  double  that  of  a  varnished  plane  of  the  same 
size.  The  calico  surface  had  an  index  but  little  greater  than  the 
varnished  surface,  so  its  friction  would  remain  in  nearly  constant 

ratio  to  that  of  the  varnished  surface.  The  medium  sand,  how- 
ever, had  a  greater  index.  This  results  in  a  much  greater  rela- 

tive increase  at  high  speeds.  Thus,  using  Froude's  coefficients, 
the  ratio  between  medium  sand  and  varnish,  which  is  1.43  at  one 
knot,  becomes  2.12  at  10  knots,  2.38  at  20  knots,  and  2.56  at  30 
knots. 

The  relatively  enormous  increase  of.  frictional  resistance  with 

fouling  is  well  known,  but  we  have  very  little  quantitative  infor- 
mation as  to  the  difference  as  regards  frictional  quality  even  be- 

tween the  smoothest  possible  steel  ship  and  one  whose  bottom, 
while  acceptably  fair,  is  not  ideally  smooth. 

It  would  be  very  desirable  to  narrow  the  gaps  which  we  must 

now  bridge  by  assumptions  in  connection  with  frictional  resist- 
ance from  the  results  of  experiments  on  large  and  long  planes  of 

various  surfaces  made  in  open  water  at  high  speeds.  Such  ex- 
periments would,  however,  be  very  difficult.  It  would  be  very 

hard  to  tow  such  planes  straight. 
Pending  such  experiments,  we  must  rely  upon  coefficients 

deduced  from  the  small  scale  experiments. 

4.  R.  E.  Froude's  Frictional  Constants.  —  Mr.  R.  E.  Froude,  in 
a  paper  in  1888,  before  the  Institution  of  Naval  Architects,  has 
supplemented  the  British  Association  paper  of  his  father,  Mr. 
William  Froude,  by  data  of  coefficients  and  constants  used  by  him, 

from  which  Table  V  of  Froude's  Frictional  Constants  has  been 
computed. 

It  will  be  noted  that  as  regards  paraffin  surfaces  the  table 

differs  slightly  from  Mr.  William  Froude's  results,  obtained  in  1872. 
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Mr.  R.  E.  Froude  states  that  as  regards  the  paraffin  in  use  in 

1888  it  appeared  identical  in  frictional  quality  with  a  smooth 

painted  or  varnished  surface. 

5.  Tideman's  Frictional  Constants.  —  Closely  following  the  elder 

Froude's  classical  experiments  of  1872,  Herr  B.  Tideman,  Chief 
Constructor    of    the   Dutch   Navy,    made  a   number   of   similar 

experiments,   from  which  he  deduced  a  complete  set  of  frictional 

constants.     These  are  given  in  Table  VI.     The  most  important 

are  those  for  "  Iron  Bottom  —  Clean  and  Well  Painted."     These 

are  comparable  with  Froude'c  constants,  and  it  will  be  noted  that 
they  are  slightly  greater. 

For  varnished  planes  20  feet  long,  Froude's  constants  agree 
very  closely  with  results  of  careful  experiments  at  the  United 

States  Model  Basin;  but  for  full-sized  ships  it  is  considered  pref- 

erable to  use  Tideman's  coefficients,  simply  because  they  are  slightly 
larger,  and  hence  make  some  allowance  for  the  imperfections  of 

workmanship  found  in  practice.  At  the  United  States  Model 

Basin,  it  is  the  practice,  when  dealing  with  vessels  more  than  100 

feet  long,  to  use  the  Tideman  values  of  /,  but  the  index  1.83 

instead  of  1.829,  as  given  by  Tideman.  This  increases  Tideman's 
results  by  negligible  amounts. 

6.  Law  of  Comparison  not  Applicable  to  Frictional  Resistance. 

—  Having  concluded,   then,   that  we  should  represent  the   fric- 

tional resistance  of  a  ship  by  Rf=  fSV1'83,  where  Rf  is  frictional 
resistance  in  pounds,  /  is  a  coefficient  varying  slightly  with  length, 

S  is  wetted  surface  in  square  feet  and  V  is  speed  in  knots,  let  us 

see  whether  we  can  apply  the  Law  of  Comparison  to  resistance 
following  the  formula. 

Let  Rif,f\,  Si,  Vi  refer  to  one  ship,  R2/,  fz,  S2,  V2  to  a  similar  ship. 

Then  R\/=  /iSiFV'83.  RZ/=  fzSzVz1'83.  Let  the  ratio  of  linear 
dimensions  of  the  two  ships  be  X  and  let  F2  and  V\  be  in  the 

ratio  Vx,  as  required  by  the  Law  of  Comparison. 

Then 

Now  =  X2 

01 
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y 

Then  at  corresponding  speeds 

and  we  have  made  ~  =  V\  =  X*. 

y\ 

1.83         f 

k   2     =  J*        X2-915. 

But  to  satisfy  the  Law  of  Comparison  we  should  have  at  corre- 
D 

spending  speeds  -^  =  X3.     We  see,  then,  that  frictional  resistance 

-Ki/ 

does  not  follow  the  Law  of  Comparison,  and  hence  we  cannot 

deduce  the  frictional  resistance  of  a  full-sized  ship  from  that  of 
a  model.  Thus  suppose  we  had  a  vessel  500  feet  long  of  12,500 
tons  displacement  and  39,000  square  feet  wetted  surface.  A 

similar  2o-foot  model  would  have  62.4  square  feet  of  wetted 
surface.  If  the  speed  of  the  ship  were  20  knots,  the  correspond- 

/  20 ing  model  speed  would  be  4  knots  =  20  y   V  500 

Using  Froude's  coefficient  and  1.83  index,  the  frictional  resist- 
ance of  the  2o-foot  model  would  be  .01055  X  62.4  X  41-83  = 

8.3218  pounds.  If  the  Law  of  Comparison  held,  this  would  make 

Rf  for  the  full-sized  ship  at  20  knots  8.3218  (25)3=  130,028  pounds. 

But  using  Froude's  coefficient  of  friction  we  have  for  the  full- 
sized  ship  Rf=  39,000  X  .00880  X  2O1'83=  82,495  pounds,  and  using 
Tideman's  coefficient  Rf  =  84,745  pounds. 

It  is  seen,  then,  that  the  Skin  Friction,  as  we  calculate  it,  falls 

far  short  in  practice  of  what  it  would  be  if  the  Law  of  Compari- 
son were  applicable  to  it. 

7.  Air  Disengaged  around  Moving  Ships.  —  There  is  one  phe- 
nomenon generally  accompanying  the  motion  of  a  full-sized  ship 

which  seldom  manifests  itself  in  model  experiments.  As  a  fast 
ship  moves  through  the  water,  it  is  seen  that  the  water  in  the 
immediate  vicinity  of  the  skin  plating,  particularly  aft  of  the 
center  of  length,  has  a  great  many  air  bubbles.  The  air  is  either 
disengaged  from  water  in  which  it  is  entrained  by  the  reduction  of 
pressure  in  frictional  eddies,  or  it  is  carried  down  and  along  the 
ship  as  a  result  of  breaking  water  toward  the  bow.  However 
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produced,  its  presence  must  reduce  the  density  of  a  layer  of  water 
covering  a  large  portion,  if  not  all,  of  the  surface  of  the  bottom, 

and  it  would  seem,  at  first,  that  there  should  be  a  corresponding 
reduction  of  friction.  It  is  in  fact  a  favorite  dream  of  inventors 

to  deliver  air  around  the  outside  of  a  ship  so  that  the  immersed 

surface  will  be  surrounded  by  a  film  of  air  instead  of  water.  Could 

this  result  be  accomplished,  it  would  undoubtedly  result  in  a  great 

reduction  of  skin  friction.  But  air  released  under  water  persists 

in  forming  into  globules,  not  films.  Experiments  have  been  made 

at  the  United  States  Model  Basin  by  pumping  air  around  a  model 

through  a  number  of  holes  near  the  bow  and  out  through  narrow 

vertical  slots  in  the  forward  portion  of  a  2o-foot  friction  plane. 
The  results  of  these  experiments  were  that  for  the  model  the 

resistance  was  always  materially  increased  when  the  air  was 

pumped  out.  In  this  case  the  air  came  out  through  holes  and 

promptly  formed  globules.  In  the  case  of  the  friction  plane  the 

air  came  out  in  a  thin  film  which  spread  aft.  At  speeds  of  12  to 

1 6  knots,  when  the  films  of  air  on  each  side  visibly  extended  over 

perhaps  a  third  of  the  plane,  the  resistance  was  almost  exactly  the 

same  as  when  no  air  was  pumped.  At  speeds  below  12  knots  the 

resistance  was  greater  when  the  air  was  pumped. 

It  is  possible  that  for  vessels  of  the  skimming-dish  or  other 
abnormal  type  the  efforts  of  inventors  to  reduce  resistance  by 
means  of  air  cushions  may  be  successful,  but  there  is  little  doubt 

that  no  matter  how  much  air  may  be  forced  into  the  water  around  a 

ship  of  ordinary  type,  practically  none  of  it  remains  in  contact  with 

the  ship's  surface.  That  is  covered  always  by  a  film  of  solid  water. 
The  air  forms  globular  masses  or  bubbles  and  never  touches  the 

surface  of  the  hull.  While  in  an  actual  ship  the  air  bubbles 

naturally  appearing  must  somewhat  reduce  the  density  of  some  of 

the  liquid  around  the  bottom,  it  appears  likely  that,  to  reduce 

skin  friction  materially,  this  reduction  of  density  would  have  to 

extend  to  a  much  greater  distance  from  the  hull  than  is  usually  the 

case  and  that  in  practice  the  evolution  of  air  found  probably  in- 
creases the  resistance  by  an  uncertain  amount.  This  uncertainty 

could  be  removed  by  friction  al  experiments  upon  planes  of  such  size 

and  nature  of  surface  as  to  be  closely  comparable  to  actual  ships. 
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8.  Effect  of  Foulness  upon  Skin  Resistance.  —  In  design  work 
we  usually  deal  primarily  with  clean  bottoms.  When  vessels 

become  foul  by  the  accumulation  of  marine  growths  such  as  grass 

and  shellfish  the  Skin  Resistance  is  much  increased.  Fig.  62 

illustrates  the  effect  of  change  of  surface  upon  Skin  Resistance. 

Froude's  experimental  results  for  five  surfaces  are  extended  by 
his  formula  to  high  speeds.  The  two  smooth  hard  surfaces  — 

varnish  and  tinfoil  —  are  nearly  the  same.  But  a  surface  covered 
with  calico  shows  about  double  as  much  resistance,  and  surfaces 
covered  with  fine  or  medium  sand  show  more  than  double  the 

resistance  of  the  varnished  surface  at  speeds  above  20  knots. 

When  we  reflect  that  in  the  most  extreme  cases  of  fouling  a  ves- 

sel's bottom  may  have  a  complete  incrustation  of  shellfish  it  is 
easy  to  realize  that  fouling  may  result  in  Skin  Resistance  four  or 

five  times  that  of  the  clean  ship. 

Of  course  in  practice  such  fouling  is  permitted  only  under  ex- 

ceptional circumstances,  vessels  in  service  being  docked  at  inter- 
vals. But  even  in  cool  waters  where  fouling  usually  goes  on 

rather  slowly  a  vessel  three  or  four  months  out  of  dock  is  liable  to 

have  an  increase  of  20  per  cent  or  more  in  Skin  Resistance,  and  in 

tropical  waters  the  increase  of  resistance  is  greater. 

Foulness  is  usually  gauged  by  the  loss  of  speed,  which  tends  to 

mask  the  great  increase  of  Skin  Resistance.  Thus  a  loss  of  two 

knots  of  speed  for  the  same  power  means  in  the  case  of  a  vessel 

originally  of  moderate  speed  an  increase  of  about  100  per  cent  in 
Skin  Resistance. 

When  in  design  work  it  is  necessary  to  allow  for  the  effect  of 

fouling  it  is  usually  done  indirectly  by  providing  a  margin  of 

speed  with  a  clean  bottom  equal  to  the  loss  to  be  expected  from 

fouling.  This  loss  must  be  estimated  from  previous  experience 
with  vessels  in  the  service  under  consideration. 

9.   Eddy  Resistance 

As  already  stated,  Eddy  Resistance  is  a  minor  factor  in  the 

case  of  most  ships  and  cannot  be  determined  separately  by  ex- 
periment. It  is  possible,  however,  to  get  a  reasonably  good  idea 
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of  the  laws  of  Eddy  Resistance  by  experiments  with  planes,  sec- 
tions of  strut  arms,  and  similar  appendages. 

1.  Flow  Past  a  Thin  Plane  Producing  Eddy  Resistance.  —  Fig. 
63  shows  a  section  through  a  plane  AB  and  a  stream  of  water 

flowing  past  it,  and  indicates,  diagrammatically,  what  happens. 

The  plane  is  inclined  at  an  angle  a  to  the  direction  of  undisturbed 

flow;  K  is  the  dividing  point  of  the  stream.     On  one  side  of  K 
the  water  flows  around  the  corner  at  A.     On  the  other  side  it 

flows  by  B.     The  position  of  K  depends  upon  the  angle  a.     In 

front  of  the  plane  there  is  practically  perfect  stream  motion,  as 

indicated.     The  velocity  of  the  water   is   checked,   with   corre- 
sponding increase  of  pressure,  but  there  is  no  discontinuity.     In 

the  rear  of  the  plane,  however,  the  conditions  are  different.     The 

water  breaks  away  at  A  and  B,  and  there  is  found  behind  the 

plane  a  mass  of  confused  eddying  water,  whose  pressure  must  be 

reduced  below  the  normal  pressure  due  to  depth  below  the  sur- 
face, but  in  a  more  or  less  erratic  manner. 

2.  Rayleigh's  Formulae  for  Eddy  Resistance.  —  The  total  Eddy 
Resistance  of  the  plane  would  then  be  due  to  a  front  pressure  and 

a  rear  suction.     These  are  evidently  but  little  dependent  upon 

each  other.     The  front  pressure  has  been  investigated  theoreti- 
cally by  assuming  a  smooth  solid  inserted  behind  the  plane,  so  that 

the  water  has  perfect  stream  motion  throughout.     The  resulting 

formulae  as  deduced  by  Lord  Rayleigh  are  as  follows  : 

2  TT  sin  a.     w 
n  . 

4  +  TT  sin  a  2  g 

AK  _  2+4  cos  a  —  2  cos3  a  +  (if  —  a)  sin  a 
AB  4  +  TT  sin  a 

In  these  formulae  Pn'  is  normal  pressure  or  total  pressure  per- 
pendicular to  the  front  face  of  the  plane,  a  is  the  angle  the  plane 

makes  with  the  direction  of  motion,  w  is  the  weight  per  cubic 

foot  of  the  water,  g  is  the  acceleration  due  to  gravity,  A  is  area  of 

plane  in  square  feet  and  v  is  its  velocity  in  feet  per  second. 

It  may  be  noted  that  at  K,  where  the  water  is  brought  com- 
1JO 

pletely  to  rest,  the  excess  pressure  is  —  vz.     If  this  pressure  were 



68      .  SPEED  AND  POWER  OF  SHIPS 

over  the  whole  plane,  the  total  normal  front  pressure  would  be 
W      A    2 —  Av2. 

The  fraction  -  — is,  then,  the  ratio  between  the  front  pres- 
4  +  TT  sin  a 

sure  and  the  pressure  due  to  velocity  multiplied  by  the  area  of  the 
plane.     This  fraction  is,  as  might  be  expected,  a  maximum  for 

a  =  go0.    Its  value,  then,  is  —     —  or  .88.     This  is  materially  less 

4  +  7T than  unity,  and  as  a  decreases  the  fraction  soon  begins  to  fall  off 

rapidly.    Fig.  64  shows  curves  of  the  ratio     -  and  the 
4  +  TT  sin  a 

ratio  -—  plotted  on  a. 

The  front  pressure  by  Rayleigh's  formula  follows  the  Law  of 
Comparison.  For  suppose  we  have  two  similar  planes  at  the 
same  angle.  If  P\  denote  the  front  pressure  on  No.  i  and  P2  the 
front  pressure  on  No.  2, 

2  TT  sin  a     w          9  n          2  TT  sin  a      w 

Pi= 4  4-  TT  sin  a  2  g  4  +  ?r  sin  a  2  g 

Whence  -  '-*—•     Now  if  X  denote  ratio  of  linear  dimensions, 

AI=  \2A%  and  for  corresponding  speeds  Viz=  \vz2.     Then  at  corre- 

p, 
spending  speeds  -=^  =  X3,  or  Froude's  Law  is  satisfied. 

f\ 

IV 

For  salt  water  --  =  i  practically.     Furthermore  it  is  desirable 

2g 

to  reduce  ail  speeds  to  knots,  denoted  by  V.    When  this  is  done 

Rayleigh's  formula  for  front  face  pressure  may  be  written 

/y_    5-705  sin  «    Ar 1.273  +  sm  a 

3.   Joessel's  Experiments  and  Formulae  for  Eddy  Resistance.— 
When  we  come  to  consider  the  total  normal  resistance  of  an  in- 

clined plane  moving  through  water  we  are  compelled  to  rely  upon 

semi-empirical  formulae  derived  by  experiments. 
It  is  impossible  to  reduce  the  resistance  due  to  confused  eddy- 
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ing  behind  the  plane  to  mathematical  law.  The  ground  has  never 
been  adequately  covered  experimentally,  and  it  is  as  a  matter  of 

fact  a  question  whose  accurate  experimental  investigation  pre- 
sents many  difficulties. 

M.  Joessel  made  experiments  with  small  planes  12  inches  by 
16  inches  in  the  river  Loire  at  Indret,  near  Nantes,  about  1873. 

The  maximum  current  velocity  was  only  about  2?  knots.  Joes- 

sel's  results  may  be  expressed  as  follows: 
If  I  denote  the  breadth  of  a  plane  in  the  direction  of  motion 

making  the  angle  a  with  the  direction  of  flow  and  x  the  distance 
of  the  center  of  pressure  from  the  leading  edge, 

x  =  (.195  +  .305  sin  a)  I. 

If  Pn  denote  total  normal  force  due  to  pressure  in  front  and 
suction  in  rear,  we  have  for  area  A  in  square  feet  and  velocity  V 
in  knots 

_     7.584  sin  a    .  ,n 
*  n  —     ,•  .  AY    , 

.639  +  sin  a. 

4.   John's  Analysis  of  Beaufoy's  Eddy  Resistance  Experiments. 

-  Mr.  A.  W.  John  in  an  interesting  paper  on  "  Normal  Pressures 
•on  Thin  Moving  Plates,"  before  the  Institution  of  Naval  Archi- 

tects in  1904,  has  analyzed  Colonel  Beaufoy's  experiments  of 
1795  with  square  plates  of  about  three  square  feet  area  (double 
plates  abreast  one  another  about  8  feet  apart  and  3  feet  below  the 
surface)  and  shown  that  the  results  present  the  following  peculiar 
features.  Up  to  about  30  degrees  inclination  the  normal  pressure 
increases  linearly,  and  from  30  degrees  to  90  degrees  it  remains 
almost  constant.  The  same  result  has  been  found  by  various 

recent  experiments  with  planes  in  air.  It  appears  to  be  charac- 
teristic of  squares,  circles  and  rectangles  approaching  the  square, 

and  is  not  so  pronounced  in  the  case  of  long  narrow  rectangles 
moving  perpendicular  to  the  long  side. 

Beaufoy's  results  as  plotted  by  John  may  be  approximately 
expressed  by  a  semi-empirical  formula  of  the  same  form  as  Ray- 

leigh's  formula, 
r>  _     A  sin  a     ,  T/2 
n~    D      I         '  •"•  V     ' B  +  sin  a 
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This  may  be  made  to  coincide  at  two  points  with  the  experimen- 
tal results.     We  have 

For  coincidence  at  a  =  90°  and  a  =  10°  A  =  5.20,  B  =  .557 

For  coincidence  at  a  =  90°  and  a  =  15°  A  =  4.63,  B  =  .389 

For  coincidence  at  a  =  90°  and  a  =  20°  A  =  4.08,  B  =  .223 

It  is  reasonable  to  take  the  values  for  a  =  15°.     We  then  have 
formula  derived  from  Beaufoy, 

P  _      4-63  sin  a     .  ,„ n  —        0         .        •  •"•  '     • 
.389  +  sm  a 

5.  Stanton's  Eddy  Resistance  Experiment.  —  Dr.  T.  E.  Stan- 
ton  has  recently   made  experiments  with  very  small    plates  of 

2  square  inches  area  in  an  artificial  current  of  water  of  4  knots 

velocity.     His  results  are  published  and  discussed  in  a  paper  of 

April  2,   1909,  before  the  Institution  of  Naval  Architects.     He 

found   the   same  phenomenon   developed  by  John's  analysis  of 

Beaufoy's  experiments,  namely  that  the  normal  pressure  on  a 

square  plate  rises  almost  linearly  to  an  angle  of  35°  or  so  and 
then  does  not  change  much  from  35°  to  90°.     For  a  plate  whose 
length  in  the  direction  of  motion  was  twice  its  width  there  was 

a  pronounced  hump  at  about  45°,   the  normal  pressure  at  this 

inclination  being  13  or  14%  greater  than  at  90°.      For  a  plate  of 
length  in  the  direction  of  motion  but  one-half  its  width  the  hump 
feature  was  not  so  pronounced  and  was  strongest  at  an  inclina- 

tion below  30°. 
6.  Formulae  for  Eddy  Resistance  of  Normal  Plates  Compared. 

—  When  a  =  90°,  or  the  plane  moves  normally  to  itself,  we  have 

By  Rayleigh's  formula:  —  Pressure  on  front  face  =  Pn'  =  2.51  A F2 
By  JoessePs  formula:  —  Total  normal  force  =  Pn  =  4.63  A  V2 

By  formula  from  Beaufoy's  results,  Pn  =  3.33  AV2 
From  Stanton's  results,                                                Pn  =  3.42  AV2 

It  is  probable  that  Rayleigh's  formula  expresses  quite  closely 

the  resistance  of  a  square  stem  for  instance.  If  we  adopt  Joessel's 
formula,  which  gives  the  largest  resistance,  and  deduct  the  front 

face  pressure,  we  would  have  for  rear  suction  Pr=  2.12  A  V2. 
This  formula  will  probably  give  an  outside  value  for  resistance 

such  as  that  of  a  square  stern  post. 
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7.   Formulae  for  Eddy  Resistance  of  Inclined  Plates  Compared. 
—  For  small  values  of  a  it  is  convenient  to  use  a  formula  of  the 

form  Pn  =  C  sin  a  A  V2.  If  we  choose  C  to  correspond  to  Pn 
from  the  complete  formula  for  an  angle  of  15  degrees  we  can 

simplify  Rayleigh's  formula,  etc.,  for  use  up  to  angles  of  30°  or  so. 
Stanton's  results  are  already  expressed  in  this  simple  form,  and 
William  Froude  has  a  formula  of  this  type  expressing  normal 
force  for  small  angles  of  inclination. 

Rayleigh's  formula  becomes  Pn' '  =  3.73  sin  a  AV2 
JoessePs  formula  becomes  Pn  =  8.45  sin  a  A  V2 
Formula  from  Beaufoy  becomes  Pn  =  7.15  sin  a  AV2 

Froude's  formula  becomes  Pn  =  4.85  sin  a  AV2 
Stanton's  formula  for  a  square      )  r 

[Pn  =  5.13  sin  aAV2 plate  becomes  ) 

Stanton's  formula  for  a  plate         )  r 
,      ,  [Pn  =  7-70  sin  aAV2 twice  as  broad  as  long  becomes   ) 

The  above  formulae  are  not  very  consistent  with  each  other. 
The  question  of  planes  advancing  at  various  angles  through  water 
is  in  need  of  a  complete  and  accurate  experimental  investigation. 

It  may  be  noted  that  Stanton's  plane  twice  as  broad  as  long 
approaches  somewhat  the  proportions  of  an  ordinary  rudder  of 

barn-door  type,  and  his  coefficient  for  such  a  plate  agrees  well 

with  Joessel's  results,  which  have  been  used  a  good  deal  for  rudder 
work  in  France.  In  England,  the  so-called  Beaufoy's  formula  has 
been  much  used  for  rudders.  This  gives  Pn=  3.2  sin  a  AV2,  a 

value  much  below  that  from  Joessel's  formula.  But  in  using  this 
formula,  the  center  of  pressure  is  assumed  to  be  at  the  center  of 

figure  instead  of  forward  of  it  as  by  Joessel's  formula  for  center 
of  pressure.  The  net  result  is  that  the  English  formula  gives  a 
twisting  moment  on  the  rudder  stock  at  usual  helm  angles  only 

about  30  per  cent  less  than  that  derived  from  Joessel's  complete 
formulae.  This  is  for  ordinary  rudders.  For  partially  balanced 
rudders  the  difference  is  somewhat  less. 

Experiments  with  rudders  have  indicated  normal  pressures  on 
them  materially  less  than  and  sometimes  but  a  fraction  of  what 

would  be  given  by  Joessel's  formula  when  V  was  taken  as  the 



72  SPEED  AND  POWER  OF  SHIPS 

speed  of  the  ship.  But  the  true  speed  of  a  rudder  through  the 
water  in  its  vicinity  is  nearly  always  less  and  often  much  less  than 

the  speed  of  the  ship,  and  there  are  other  conditions  wherein  a 

rudder  differs  very  much  from  a  detached  plate. 

8.  Eddy  Resistance  Formulae  Applicable  to  Ships.  — All  things 
considered,  it  seems  well,  pending  more  complete  experimental 

investigation,  to  use  for  a  plane  Rayleigh's  formula  for  front  face 

resistance  and  Joessel's  for  total  resistance. 
Then  we  would  have  for  a  square  stem,  the  end  of  a  bow  tor- 

pedo tube,  and  similar  fittings  having  head  resistance  only, 

Pn'=2.5AV\ 

For  square  stern  posts  and  similar  objects  Pr=  2.1  AV2,  and  for 
scoops,  square  or  nearly  square  to  the  surface  of  the  ship,  and 

similar  fittings,  Pn  =  4.6  A  V2.  In  these  formulae  A  is  area  in 
square  feet,  V  is  speed  of  the  ship  in  knots  and  Pn,  etc.,  are  in 

pounds. 
It  is  probable  that  these  formulas  would  nearly  always  over- 

estimate the  resistance  concerned,  but  as  the  resistances  to  which 

they  apply  constitute  a  very  small  portion  of  the  total  in  most 

cases,  it  is  not  necessary  to  estimate  them  with  great  accuracy 
and  it  is  advisable  to  overestimate  rather  than  underestimate 

them. 

The  resistance  of  struts  is  largely  eddy  resistance,  but  methods 

for  dealing  with  them  will  be  considered  in  connection  with  ap- 

pendages. 

9.  Formula  for  Eddy  Resistance  behind  Plate  has  Limitations.— 
In  connection  with  the  formula  suggested  for  rear  suction,  namely 

Pr=  2.1  AV2,  it  should  be  pointed  out  that  this  cannot  apply  as 
speed  is  increased  indefinitely. 

Consider  a  plane  of  one  square  foot  area  immersed  10  feet  say. 

The  pressure  on  its  rear  face,  allowing  34  feet  of  water  as  the 

equivalent  of  the  atmospheric  pressure  and  taking  water  as  sea 

water  weighing  64  pounds  per  square  foot,  would  be  44  X  64  = 
2816  pounds.  Evidently  there  is  maximum  rear  suction  when 
there  is  a  vacuum  behind  and  no  pressure  on  the  rear  face.  Hence 

2816  pounds  is  the  maximum  possible  rear  suction.  By  the  for- 



RESISTANCE  73 

mula,if  Pr=  2816  =  2.1  F2,    F2=  — 6  =  1341,  V  =  36.62.     Then 

the  formula  obviously  cannot  apply  beyond  V  =  36.62.  Even  if 
the  constant  2.1  is  too  great  we  will  still  in  time  reach  a  speed 
where  any  formula  of  this  type  will  give  a  rear  suction  equal  to 
the  original  forward  pressure.  Any  formula  which  assumes  that 
suction  increases  indefinitely  as  the  square  of  the  speed  must  then 
be  regarded  as  expressing  not  a  scientific  fact  but  a  convenient 

semi-empirical  approximation  to  the  actual  facts  over  the  range  of 
speeds  found  in  practice. 

10.   Wave  Resistance 

In  discussing  the  disturbances  of  the  water  by  a  ship  we  have 
given  some  consideration  to  the  waves  produced.  To  maintain 
these  waves,  energy  must  be  expended  which  can  come  only  from 

the  ship.  That  portion  of  the  ship's  resistance  which  is  absorbed 
in  raising  and  maintaining  trains  of  waves  is  conveniently  called 
Wave  Resistance. 

i.  Bow  and  Stern  System.  —  The  tendency  is  toward  the  for- 
mation of  two  distinct  series  of  waves  —  one  initiated  at  the  bow 

and  conveniently  called  the  Bow  Wave  System  and  the  other  in- 
itiated at  the  stern  and  called  the  Stern  Wave  System.  The  Stern 

Wave  System,  however,  makes  its  appearance  in  water  already 
more  or  less  disturbed  by  the  Bow  Wave  System  and  hence  the 
ultimate  wave  disturbance  is  compounded  of  the  two  systems. 

When  considering  Kelvin's  wave  system  as  illustrated  diagram- 
ma  tically  in  Figs.  60  and  61,  we  saw  that  it  was  made  up  of  trans- 

verse crests  and  diverging  crests,  the  transverse  crests  being  but 
little  curved  and  extending  to  the  cusp  line  on  each  side.  For 
a  given  speed  the  length  between  successive  transverse  crests  is 
the  same  as  the  trochoidal  wave  length  for  the  same  speed. 

It  is  evidently  a  reasonable  approximation  under  the  circum- 
stances to  substitute  for  the  actual  wave  systems  ideal  systems 

composed  of  traverse  trochoidal  waves  extending  out  to  the  cusp 

lines  of  Kelvin's  waves  and  each  wave  of  uniform  height  such 
that  energy  of  the  ideal  systems  is  the  same  as  that  of  the  actual 
systems. 
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Consider  first  the  bow  system.  To  maintain  this  system  there 

must  be  communicated  to  it  while  the  ship  advances  the  length 

of  one  wave  energy  proportional  to  the  energy  of  one  wave 

length. 

If  we  denote  by  /  the  length  from  crest  to  crest  of  the  tro- 
choidal  wave,  by  b  its  mean  breath  and  by  H  its  height,  w  being 

the  weight  of  water  per  cubic  foot,  we  know  from  the  trochoidal 

wave  formulae  that  the  energy  per  wave  length  is  proportional  to 

•wblH2.  Now  the  external  energy  communicated  to  the  system  by 
the  wave  resistance  Rw  while  the  ship  traverses  a  wave  length  / 

is  proportional  to  RJ.  Hence  RJ,  is  proportional  to  wblH2 

or  Rw  oc  wbH2.  A  similar  formula  applies  to  the  stern  wave 
resistance. 

2.  Resultant  Wave  System.  —  The  actual  wave  resistance  is 
due  to  the  wave  system  formed  by  compounding  the  bow  and 

stern  wave  systems.  To  determine  the  resultant  system  we  com- 

pound the  bow  and  stern  wave  systems  by  the  formulae  for  com- 
pounding trochoidal  waves. 

In  order  to  determine  the  resultant  of  the  two  separate  wave 

systems  of  the  same  length  advancing  in  the  same  direction,  we 
need  to  know  the  distance  between  crests,  and  it  is  advisable  to 

consider  the  first  crest  of  each  system.  The  first  crest  of  the 

bow  wave  system  will  be  somewhat  abaft  the  bow  and  the  first 

crest  of  the  stern  wave  system  somewhat  abaft  the  stern.  Their 

positions  and  the  distance  between  them  will  vary  with  speed. 

Call  the  distance  between  them  the  wave-making  length  of  the 
ship  and  denote  it  by  mL,  where  m  is  a  coefficient  varying  slightly 

with  speed  and,  as  we  shall  see,  somewhat  greater  than  unity. 

Now,  if  V  is  the  speed  of  the  ship  in  knots,  the  bow  wave  length  I 

in  feet  is  .5573  F2.  The  distance  between  the  first  stern  system  crest 
and  the  bow  system  crest  next  ahead  of  it  is  evidently  the  remainder 

after  subtracting  from  mL  the  lengths  of  the  complete  waves,  if 

any,  between  the  first  bow  crest  and  the  first  stern  crest.  Let  there 

be  n  such  waves  and  let  the  distance  between  the  first  stern  sys- 
tem crest  and  the  bow  system  crest  next  forward  of  it  be  ql,  where 

/  is  the  wave  length.  Then  mL  =  (n  +  q)  I  =  (n  +  q)  .5573  F2, 
where  w  is  a  whole  number  and  q  is  a  fraction.  In  the  compound 
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wave  formula  we  need  to  know  cos  -  or  cos  -  —  •     Now,  a  in  the J\.  I 

u  •          »j      j.i      At  7       T-L.  2  ira  2  irql 
above  is  evidently  the  same  as  ql.     ihen  cos  —  —  =  cos  —  r3-  = I  L 

cos  2  irq.     Now  w  being  a  whole  number,  cos  2  irq  =  cos  2  TT  (<7  +  n) 

mL  2  ira          2  irmL  360°  m Hence  cos—  —  =  cos 
•5573  V2  I     -5573  V2     -5573  Z_ 

L 

^2  U  2          T-U  2   ̂   m  *     <0 Denote  —  by  c2.     Then  cos  —  -  =  cos  —  646  . 
L  I  c2 

The  whole  bow  system  is  not  superposed  upon  the  stern  system, 

but  only  the  inner  portion,  since  the  natural  bow  system  extends 

transversely  to  a  greater  distance  than  the  natural  stern  system. 

Let  HI  denote  the  height  of  the  natural  bow  system  when  it  has 
spread  to  a  given  breath  b,  H2  the  height  of  the  natural  stern 

system  when  it  has  spread  to  the  same  breath.  Let  kHi  denote 

the  height  of  the  natural  bow  system  where  the  stern  system  has 

spread  to  the  breath  b.  Suppose  its  breath  then  is  b'.  Since  it 

has  lost  no  energy  bH*  =  b'k^H^. 
Then  the  energy  per  wave  length  of  the  compound  system  re- 

sulting from  the  superposition  of  a  portion  of  the  bow  system  of 

breath  b  upon  the  whole  stern  system  of  breath  b  is  measured  by 

Ib  \&Hi*+  #22+  2  £#!#2  cos  ™  646°  I. 

The  energy  of  the  portion  of  the  bow  system  beyond  the  stern 

system  and  not  compounded  is  measured  by 

/  (b'-  b)  &H?  =  l  (b'&Hf-  bVHfi  =  Ib  (Hf-  PHfi, 

since  b'k2Hi2=  bHi2.     Adding   the   above  expressions   for   partial 
energies  the  total  energy  per  wave  length  is  measured  by 

Ib  (  H  !2+  #22+  2  kHtHt  cos  ™  646°). \  c2         I 

Whence  the  wave-making  resistance  is  proportional  to 

b  (H?+  H2Z+  2  kHtHt  cos  ̂   646°). 
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Now,  b  being  an  arbitrary  convenient  constant  width,  we  can  say 
that  the  wave-making  resistance  Rw  is  proportional  to 

#i2+#22+  2  kHA  cos™  646°. C 

3.   General  Formula  Connecting  Wave  Resistance  and  Speed. 

-  The  above  expression  for  wave  resistance  is  of  little  quanti- 
tative value  without  knowledge  of  coefficients  appropriate  to  all 

cases,  and  for  practical  use  in  estimating  wave  resistance  there  are 

methods  more  desirable  than  the  use  of  a  formula,  but  the  expres- 
sion is  of  value  in  enabling  us  to  realize  the  general  nature  of  the 

variation  of  wave  resistance  with  speed. 
As  a  step  in  this  direction  we  need  to  know  the  connection 

between  HI  and  HI  and  the  speed. 
We  know  that  in  perfect  stream  motion  the  excess  of  pressure 

near  the  bow  is  proportional  to  the  square  of  the  speed.  If,  then, 
the  wave  height  were  proportional  to  the  excess  pressure,  which 
it  must  be  approximately,  since  the  surface  pressure  does  not 

change,  we  would  have  HI  proportional  to  F2.  Similarly  H2 
would  be  proportional  to  F2,  and  we  would  have  as  the  general 
expression  for  Rw  the  wave  resistance, 

RW=  W^t+^BH-  2  kAB  cos™  646°). 
The  coefficients  A  and  B  are  not  constant.  There  are  two 

main  sources  of  variation.  If  the  bow  wave  height  were  always 
proportional  to  the  excess  bow  pressure  as  speed  increases,  A 

would  not  vary  on  this  account.  It  seems  probable  that  at  mod- 
erate speeds  when  wave  resistance  first  becomes  of  importance  the 

bow  wave  height  does  vary  as  the  excess  pressure,  but  as  speed 
increases  a  greater  proportion  of  the  stream  line  pressure  is  absorbed 

in  accelerating  the  water  aft  in  stream  line  flow  and  a  less  pro- 
portion in  raising  the  water  level.  The  same  reasoning  applies  to 

the  stern  wave,  so,  from  this  point  of  view,  we  would  expect  A 
and  B  to  be  approximately  constant  at  low  and  moderate  speeds 
and  to  fall  off  steadily  at  high  speeds. 

There  is  another  important  source  of  variation  in  A  and  B. 
Suppose  we  have  a  vessel  400  feet  long.  Then  the  length  of  the 
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fore  body  is  200  feet.  At  13  ̂  knots  the  length  of  the  bow  wave 

from  crest  to  crest  is  very  nearly  100  feet;  at  27  knots  it  is  400 

feet.  Then  at  13^  knots  the  bow  wave  is  formed  by  the  forward 

quarter  of  the  ship,  as  it  were,  while  at  27  knots  the  whole  for- 
ward half  of  the  ship  must  come  into  play.  The  result  is,  of 

course,  a  modification  of  A  and  B  with  speed.  There  appears  to 

be  a  critical  speed  at  which  the  wave  length  and  the  wave  motion 

and  pressures  are  in  step,  as  it  were,  with  the  ship,  and  the  wave  is 

exaggerated.  This  may  be  called  the  speed  of  wave  synchronism. 

Broadly  speaking,  we  may  say  that  for  fine  models  of  cylindrical 

coefficient  below  .55  the  speed  of  wave  synchronism  in  knots  is 

above  \/Z,  while  for  full-ended  models  of  cylindrical  coefficient 
above  .6  the  speed  of  wave  synchronism  is  below  Vz.  We  may 
expect  to  find  a  rapid  rise  of  A  and  B  as  we  approach  the  speed  of 

wave  synchronism  and  a  less  rapid  falling  off  as  we  pass  beyond  it. 
Consider  now  the  coefficient  k  in  the  formula 

Rw  =  F4  f^2+  B2+  2  kAB  cos ^ 
\  c£ 

At  low  speeds  k  is  evidently  zero,  since  observation  shows  that  at 

low  speeds  the  bow  disturbance  has  spread  out  abreast  the  stern 

to  a  distance  where  it  is  not  affected  one  way  or  the  other  by  the 

stern  disturbance.  As  the  speed  increases,  however,  more  and 

more  of  the  bow  wave  energy  is  found  in  the  vicinity  of  the  stern 

and  k  may  be  expected  to  become  greater  and  greater.  It  is  also 

a  matter  of  observation  that  for  narrow  deep  models  the  trans- 
verse features  of  the  bow  wave  are  accentuated,  and  hence  for 

such  models  k  will,  other  things  being  equal,  be  greater  than  for 

broad  shallow  models,  since  it  is  the  transverse  portion  of  the  bow 

system  which  is  available  for  combination  with  the  stern  system. 
fff 

Consider,  now,  finally,  the  term  cos  —  646°.     This  expression  is c 

equal  to  +i  when  —  646°=  360°  or  any  multiple  of  360°.     It  is 
Ml 

equal  to  —  i  when  —  646°=  180°  or  180°+  any  multiple  of  360°. 

The  quantity  m  is  approximately  constant  for  a  given  ship,  though 
it  increases  somewhat  with  the  speed.  It  also  appears  to  increase 
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somewhat  with  fullness  from  ship  to  ship.  A  fair  average  value  of 

m  would  seem  to  be  about  1.15  for  speeds  where  humps  and  hol- 
lows are  of  importance.  For  lower  speeds  m  approaches  i.  Fig. 

fM 

65  shows  for  m  =  1.15  a  curve  of  cos  —  646°  plotted  upon  c  or c 

y 
  It  is  seen  that  at  low  speeds  maxima  and  minima  succeed  one VL 

another  very  rapidly.  Each  maximum  corresponds  to  a  "  hump  " 
in  the  curve  of  residuary  resistance  and  each  minimum  to  a 

"  hollow." 
Humps  and  hollows  on  actual  resistance  curves  do  not  manifest 

themselves,  however,  in  accordance  with  Fig.  65.     The  varying 
YYt 

term  is  kA  B  cos  —  646°,  and  since  in  most  cases  at  low  speeds  k 

C* 

is  so  small  as  to  be  practically  negligible,  we  find  in  practice  that 

the  first  important  hump  usually  appears  for  full  models  at  about 

=  =  i ,  while  for  fine  models  this  hump  is  imperceptible  or  shows VL 
itself  only  as  an  unfair  portion  of  the  curve  and  the  first  important 

V 
hump  is  at  about  — —  =  1.4  to  1.5. 

For   quite   full   models,   especially   those  with   parallel   middle 
V 

body,  the  hump  for  — —  =  .8  is  often  important,  and  for  such  models 

VL 

y 
the  hump  for— -  =  .67  to  .7  is  frequently  

detected  though  not  of 
VL 

importance. 
Y 

The  values  of  —=  above  refer  to  the  centers  of  the  humps  or  the 
VL 

points  where  the  percentage  increase  of  resistance  above  an  aver- 
age curve  is  a  maximum.  Of  course,  the  departures  from  the 

average  begin  and  end  some  distance  before  and  beyond  the  hump 
centers. 

Fig.  66  shows  graphically  the  relations  between  speed  of  ship, 
Y 

length  in  feet  and  values  of— =•    By  using  a  varying  scale  for 

VL 
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length,  the  abscissae  being  proportional  to  \/length,  the  contours 

of  —  =r  are  straight  lines.     By  shading  the  regions  corresponding  to 

humps  and  leaving  clear  those  corresponding  to  hollows  the  rela- 
tive locations  of  humps  and  hollows  are  indicated.  It  will  be 

observed  that  the  two  lower  humps  of  Fig.  66  are  indicated  at 
V 

slightly  lower  values  of  —  =  than  in  Fig.  65.     This  is  because  Fig.  65 

is  for  a  constant  value  of  m,  namely  1.15,  while  in  practice  we  find 

for  the  lowest  hump  m  =  i.oo  very  nearly,  and  for  the  next 
V  V 

m  =  i.  08  or  so.     For  the  region  from  —-=  =  .9  to—  =  =  1.2,  embrac- VL        VL 
ing  a  hump  and  a  hollow,  m  =  1.15  very  nearly  while  beyond  this 
speed  m  is  somewhat  greater  on  the  average. 

It  might  seem  at  first  sight  very  important  to  adopt  such  length 

for  a  desired  speed  as  to  be  sure  of  landing  in  a  hollow  rather  than 

on  a  hump,  but,  though  this  point  should  always  be  considered,  in 

comparatively  few  cases  is  it  a  matter  of  serious  practical  impor- 
tance. In  most  cases  it  is  desirable  to  adopt  proportions  and  form 

such  that  the  humps  and  hollows  up  to  the  speed  attained  are  not 

prominent,  so  there  is  no  material  saving  to  be  had  by  landing  in 

a  hollow  rather  than  on  a  hump. 

4.  Curves  of  Residuary  Resistance  and  of  Coefficients.  —  Hav- 

ing discussed  generally  the  characteristics  of  wave-making  re- 
sistance as  indicated  by  the  formula 

Rw=  F4^2+52+  2  kAB  cos  ™  646°), 
it  is  well  to  consider  some  concrete  examples. 

Fig.  67  shows  curves  of  residuary  resistance  determined  from 

model  experiments  for  ten  4oo-foot  ships  without  appendages. 

The  residuary  resistance  is  practically  all  wave-making.  The 
proportions,  etc.,  are  tabulated  on  the  figure. 

It  is  seen  that  there  are  five  displacements  in  all,  there  being 

two  vessels  of  each  displacement  differing  in  midship  area  or  lon- 
gitudinal coefficient.  All  vessels  were  derived  originally  from  the 

same  parent  lines,  so  the  variations  of  resistance  are  essentially 

due  to  variations  of  dimensions  and  of  longitudinal  coefficient. 
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The  curves  of  Fig.  67  are  not  very  encouraging  to  the  develop- 
ment of  an  approximate  formula  for  wave  resistance. 

For  instance  the  variation  with  longitudinal  coefficient  is  a 

very  difficult  feature.  The  models  of  .64  longitudinal  coefficient 
all  show  pronounced  humps  at  about  21  knots,  while  their  mates 

of  .56  longitudinal  coefficient  show  no  hump  there.  But  at  25 
knots  or  so  the  wave  resistances  for  the  two  coefficients  come 

together  again,  and  for  higher  speeds  the  models  of  .64  coefficient 

have  the  smaller  resistances.  At  30  knots  or  so  there  is  a  second 

hump  which  shows  for  both  the  full  and  the  fine  coefficients. 

Resistance  curves  are  frequently  analyzed  by  assuming  them  of 

the  form  R  =  AVn  and  determining  suitable  values  of  n,  the 
power  of  the  speed  according  to  which  the  resistance  is  varying, 

and  of  a,  the  corresponding  coefficient.  The  curves  of  Fig.  67  are 

analyzed  in  this  way  without  much  trouble  by  plotting  them  upon 

logarithmic  section  paper.  For  a  curve  so  plotted  the  exponent  n 

at  a  point  is  proportional  to  the  inclination  of  the  curve. 

Fig.  68  shows  curves  of  the  exponent  n  for  the  10  curves  of 

wave  resistance  of  Fig.  67.  It  is  seen  that  the  variations  of  n 

are  enormous.  As  to  a  in  the  formula  R  =  aVn  the  values  cor- 

responding to  the  curves  of  n  in  Fig.  68  vary  too  rapidly  and  radi- 
cally to  be  adequately  represented  graphically. 

Suppose  now  we  attempt  a  slightly  different  analysis.  We  have 
deduced  a  qualitative  formula  for  wave  resistance  as  follows: 

m  ,   ,0\ 

•?646j. 

Then  curves  of  -     will  also  be  curves  of 

2  kAB  cos™  646° C/ 

and  might  be  expected  not  to  vary  very  much.     Fig.  69  shows 
D 

curves  of  —  ̂   for  the  10  curves  of  Fig.  67,  the  residuary  resistance 

Rr  being  taken  as  identical  with  Rw.  It  is  seen  that  up  to  18 
knots  or  so  these  curves  are  reasonably  constant.  Here  they 

begin  to  rise.  For  the  full  coefficients  there  is  a  maximum  at  21 
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knots  or  so,  a  minimum  at  23  to  24  knots  and  a  second  maximum 

at  29  to  30  knots.  For  the  fine  coefficients  there  is  only  one  pro- 
nounced maximum  at  29  to  30  knots. 

n 

It  is  evident  from  Fig.  69  that  the  curves  of  ~  are  somewhat 

systematic  in  their  variations  and  that  it  might  be  possible  to  for- 
mulate values  of  A,  B,  k  and  m  such  that  in  a  given  case  we  could 

determine  Rw  with  reasonable  approximation  from  the  basic  for- 
mula 

Rw=  F4(,42+JB2+  2  kAB  cos™  646°). \  C  I 

It  is  equally  evident  that  the  formulae  for  A,  B  and  c  involved 
would  be  difficult  and  complicated.  It  will  be  shown  later  that  by 

graphic  methods  the  residuary  resistance  in  a  given  case  can  be 

readily  approximated  and  hence  the  task  of  devising  approximate 
formulae  need  not  be  undertaken. 

It  is  interesting  to  note  for  ships  i  to  4  the  relative  reduction  in 

wave  resistance  beyond  30  knots. 

The  reason  will  be  made  clear  upon  reference  to  Fig.  66.  It  is 

seen  that  for  a  4oo-foot  ship  the  last  hump  occurs  at  about  30 
knots.  In  this  condition  the  wave  length  corresponding  to  the 

speed  is  somewhat  greater  than  the  length  of  the  ship,  so  that  the 

second  crest  of  the  bow  wave  is  superposed  upon  the  first  crest  of 

the  stern  wave.  Hence  the  hump.  At  a  speed  of  about  40  knots 

there  would  be  a  final  hollow  corresponding  to  the  conditions 

when  the  first  hollow  of  the  bow  wave  is  superposed  upon  the 

first  crest  of  the  stern  wave.  This  is  the  main  cause  of  the  ap- 
parent relative  falling  off  of  wave  resistance  in  Figs.  68  and  69 

between  30  and  40  knots. 

Fig.  66  would  indicate  that  some  distance  beyond  40  knots  the 

wave  resistance  of  these  4OO-foot  ships  would  again  begin  to  in- 
crease relatively,  but  there  is  some  reason  to  believe  that  at  excessive 

speeds  —  say  120  knots  for  the  400-foot  ships  —  the  wave  resist- 
ance would  be  decreased  by  the  bodily  rise  of  the  ship,  which 

would  begin  to  approach  the  condition  of  a  skipping  stone  and 

tend  to  glide  along  the  surface.  Of  course,  the  speed  of  120  knots 
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is  unattainable  by  any  4oo-foot  ship  at  present,  but  it  corresponds 

to  36  knots  for  a  36-foot  boat,  which  is  not  very  far  beyond  the 

speed-launch  results  now  attainable.  Consideration  of  such  ex- 
treme cases  is,  however,  beyond  the  scope  of  this  work. 

ii.  Air  Resistance 

The  above  water  portions  of  a  ship  may  be  regarded  as  im- 
mersed in  the  air,  and  air,  like  water,  offers  resistance  to  the  motion 

of  a  body  surrounded  by  it.  Air  is,  roughly,  only  from  one-ninth 

to  one-eighth  of  one  per  cent  of  the  weight  of  water,  the  actual 

weight  depending  on  the  pressure  and  temperature,  and  air  re- 

sistances compared  with  those  of  water  are,  roughly,  as  the  rela- 

tive densities.  But  air  resistance  is  by  no  means  always  negli- 
gible. Sailing  vessels  are  driven  by  the  resistance  of  sails  to  the 

motion  of  air  past  them,  and  any  one  who  has  attempted  to  stand 

on  the  deck  of  a  vessel  exposed  to  a  gale  of  wind  will  admit  that  a 

strong  head  wind  opposes  a  good  deal  of  resistance  to  a  vessel  with 

even  a  moderate  amount  of  top-hamper. 

i.  Zahm's  Experiments  upon  Air  Friction.  — Air  resistance  can 

be  separated  into  two  classes  —  frictional  and  eddy  resistance. 
Careful  investigations  of  the  friction  of  air  upon  plane  surfaces 

have  been  made  by  Prof.  A.  F.  Zahm,  of  Washington,  who  in  a 

paper  of  February  27,  1904,  before  the  Philosophical  Society  of 

Washington  (Bulletin,  Vol.  XIV,  pp.  247-276)  has  given  experi- 
mental results  for  air  friction  upon  thin  planes  somewhat  similar 

to  those  tried  in  water  by  Froude. 

Prof.  Zahm's  air  planes  were  25?  inches  wide,  one  inch  thick,  and 
of  varying  lengths  up  to  16  feet.  While  rather  smaller  than 

Froude's  planes,  they  were  tried  up  to  a  high  air  velocity  of  25 
statute  miles  per  hour,  or  2if  knots. 

Prof.  Zahm  summarizes  his  most  important  conclusions  upon 

the  subject  of  air  resistance  as  follows: 

1.  The  total  resistance  of  all  bodies  of  fixed  size,  shape  and 

aspect  is  expressed  by  an  equation  of  the  form  R  =  avn,  R  being 
the  resistance,  v  the  wind  speed,  a  and  n  numerical  constants. 

2.  For  smooth  planes  of  constant  length  and  variable  speed,, 

the  tangential  resistance  may  be  written  R  =  fa;1'85. 
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3.  For  smooth  planes  of  variable  length  /  and  constant  width 

and  speed  the  friction  is  R  =  c/°'93. 
4.  All  even  surfaces  have  approximately  the  same  coefficient  of 

skin  friction. 

5.  Uneven  surfaces  have  a  greater  coefficient  of  skin  friction, 
and  the  resistance  increases  approximately  as  the  square  of  the 
velocity. 

These  conclusions  as  to  air  friction  are  in  striking  agreement 
with  those  deduced  by  Froude  for  surface  friction  in  water. 

The  coefficients  given  by  Zahm  are  readily  reduced  for  speeds 
in  knots  instead  of  feet  per  second  or  statute  miles  per  hour. 

Upon  doing  this,  if  R  denote  frictional  air  resistance  in  pounds, 
A  denote  whole  area  of  surface  in  square  feet,  /  denote  length  of 
surface  in  feet  and  V  denote  speed  through  the  air  in  knots,  we 

have  R  =  .0000122  I'93 A  F1'85. 

It  should  be  remembered  that  this  formula  is  based  upon  ex- 
periments with  planes  no  longer  than  16  feet  tested  up  to  speeds 

of  25  statute  miles  per  hour.  So,  while  it  may  be  used  with  con- 
fidence for  short  planes  up  to  any  velocity  reached  by  ships,  it 

must  be  regarded  as  only  a  fair  approximation  for  long  surfaces. 

Fortunately  for  the  purpose  of  the  naval  architect  a  fair  approxi- 
mation to  frictional  air  resistance  is  all  that  he  ever  need  know  in 

practice.  It  is  very  seldom  indeed  that  he  will  need  to  take  any 
account  of  it  at  all. 

For  convenience  in  calculation  Table  VIII  gives  values  of  F1'85 

and  of  r^-     We  have  /'93  =  y^'  and  hence  can  readily  obtain  /-93  if I  I 

we  know  —  •     A  table  of  l'g3  would  not  admit  of  easy  interpolation, t 

while  — '  which  varies  comparatively  slowly,  lends  itself  to  inter- l 

polation. 
Comparing  the  results  of  his  experiments  on  air  friction  with 

those  of  Froude  on  water  friction,  Zahm  states: 

"  With  a  varnished  board  2  feet  long,  moving  10  feet  a  second, 
the  ratio  of  our  coefficients  of  friction  for  air  and  water  is  1.08 
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times  the  ratio  of  the  densities  of  those  media  under  the  con- 

ditions of  the  experiments." 
Froude,  however,  found  that  the  coefficient  of  friction  fell  off 

more  rapidly  with  length  than  as  /~°'07,  so  that  for  longer  planes  the 
above  ratio  is  greater  than  i  .08  times  the  ratio  of  densities.  Thus, 

for  2o-foot  planes  the  ratio  of  coefficients  would  be  some  ii  times 
the  density  ratio,  that  is,  the  friction  in  air  would  be  i?  times  that 

deduced  from  water  friction  by  dividing  it  by  the  density  ratio. 

Zahm  states  that  in  his  experiments  "  no  effort  was  made  to 
determine  the  relation  between  the  density  and  skin  friction  of 

the  air,  partly  for  want  of  time,  partly  because,  with  the  apparatus 
in  hand,  too  great  changes  of  density  would  be  needed  to  reveal 

such  relation  accurately.  Doubtless  the  friction  increases  with 

the  density." 
It  appears  probable  that  we  may  assume  Zahm's  formula  for 

frictional  resistance  of  air  to  apply  to  air  at  60°  F.  and  a  barome- 
ter pressure  of  30  inches. 

2.  Eddy  Resistance  in  Air.  Results  of  Experiments  with 

Planes.  —  While  the  frictional  resistance  of  air  is  of  importance  in 
connection  with  flying  machines,  for  ships  the  most  important  air 

resistance  is  the  eddy  resistance. 

The  eddy  resistance  of  air  seems  to  follow  the  same  general  laws 

as  the  eddy  resistance  of  water.  Within  the  limits  of  the  speed 

attained  by  the  wind,  say  up  to  100  miles  per  hour,  it  varies  for  a 

given  plane  as  the  square  of  the  speed.  Observations  made  under 

the  direction  of  Sir  Benjamin  Baker  during  the  construction  of 

the  Forth  Bridge  indicated  that  small  planes  exposed  to  the 

wind  offered  greater  resistance  per  square  foot  than  larger  planes 

exposed  to  the  same  wind.  M.  Eiffel  found  for  planes  not  over 

i  meter  square  falling  through  still  air  that  the  larger  planes  showed 

slightly  greater  resistance  per  square  foot. 
For  rectangular  planes  the  resistance  varies  somewhat  with  the 

ratio  of  the  sides,  a  long  narrow  plane  offering  greater  resistance 

than  a  square  of  the  same  area. 

For  our  purposes  it  is  not  necessary  to  consider  closely  these 

minutiae,  and  it  will  suffice  to  use  an  average  coefficient  and  ex- 
press the  resistance  in  pounds  of  a  plane  of  area  A  in  square  feet 
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moving  normally  through  the  air  with  velocity  V  knots  by  a  single 
formula  7?  =  CAV\ 

The  values  of  the  coefficient  C  which  have  been  obtained  by 

various  experimenters  vary  a  good  deal.  The  more  recent  experi- 
menters seem  to  obtain  the  lower  values,  but  coefficients  obtained 

by  experimenters  within  the  last  30  to  40  years  range  from  .0035 

to  .005  about. 

In  England,  Stanton,  with  very  small  planes  exposed  to  a  cur- 
rent of  air  through  a  large  pipe  or  box,  has  obtained  a  coefficient 

of  .0036.  Dines  with  rather  small  planes  on  a  whirling  arm  has 

obtained  .00384.  Mr.  William  Froude  with  good-sized  planes  mov- 
ing through  still  air  at  rather  low  velocities  obtained  .0048.  In 

America,  Langley,  by  whirling-arm  methods,  obtained  somewhat 
variable  coefficients  averaging  about  .0047.  In  France,  quite 
recently,  M.  Eiffel,  with  planes  up  to  10  square  feet  or  more  in 

area,  falling  through  still  air,  conducted  very  careful  and  elab- 

orate experiments  and  obtained  a  coefficient  of  .004.  (See  "  Re- 
cherches  Experimental  sur  la  Resistance  de  PAir  Executees  a  la 

Tour  Eiffel  par  G.  Eiffel."  This  was  published  in  1907.) 
All  things  considered,  in  the  light  of  our  present  experimental 

knowledge  on  the  subject  it  appears  reasonable  to  adopt  the 

coefficient  .0043  as  suitable  for  practical  use.  Then  our  formula 

for  the  resistance  in  pounds  of  a  plane  moving  normally  to  itself  is 

R  =  .0043  A  V2,  where  A  is  area  in  square  feet  and  V  is  speed  in 
knots.  For  speed  in  statute  miles  the  coefficient  above  should  be 

divided  by  1.326;  for  speed  in  feet  per  second  by  2.853. 

When  it  comes  to  the  normal  pressure  on  an  inclined  plane 
moving  through  the  air  the  results  obtained  by  experimenters  are 

somewhat  peculiar.  For  square  planes  and  rectangular  planes 

whose  sides  are  not  too  dissimilar  the  normal  pressure  increases 

rapidly  from  zero  at  zero  inclination  up  to  an  inclination  of  30 

degrees  or  so.  At  this  inclination  the  normal  pressure  is  nearly 

the  same  as  at  90°  inclination,  and  from  30°  to  90°  inclination  the 
normal  pressure,  while  varying  somewhat  irregularly,  does  not 
change  much. 

The  simplest  formula  is  that  of  M.  Eiffel.  For  inclined  planes 

he  proposes  to  take  the  normal  pressure  as  constant  from  30° 
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to  90°,  and  from  o°  to  30°  to  take  it  as  varying  linearly.  The 
Eiffel  formula  is  a  sufficiently  close  approximation  for  practical  use. 

The  formula,  then,  for  practical  use  expressing  the  normal  pres- 
sure in  pounds  Pn  on  an  inclined  plane  moving  through  the  air  at 

an  angle  of  0  degrees  will  be 

a 

From  o  to  30°,  Pn  =  .0043  —  A  V2 ; O 

above  30°,  Pn  =  .0043  A  V2,  where  A  is  area  in  square  feet 
and  V  is  speed  in  knots. 

The  normal  pressure  is,  of  course,  different  from  the  resistance 

in  the  direction  of  motion,  which  is  Pn  sin  6,  or  the  component  of 

Pn  parallel  to  the  direction  of  motion. 

3.  Determination  of  Air  Resistance  of  Ships.  —  There  is  no  prac- 
tical method  recognized  at  present  for  determining  the  air  resist- 
ance of  a  ship.  Mr.  William  Froude  made  some  experimental 

investigations  of  the  matter  about  1874,  in  connection  with  the 

Greyhound,  a  vessel  172.5  feet  X  32.2  feet  X  13  feet  draught,  of 
about  1000  tons  displacement.  The  vessel  was  tried  without  masts 

or  rigging.  He  concluded  that  in  this  condition  at  10  knots,  the 

air  resistance  of  the  Greyhound  was  nearly  150  pounds,  or  about 

i£  per  cent  of  the  water  resistance. 

For  steamers  without  large  upper  works,  the  air  resistance, 

when  the  air  is  still,  is,  without  doubt,  too  small  as  a  rule  to  re- 
quire much  consideration.  With  a  strong  head  wind  the  air 

resistance  is,  of  course,  very  much  increased,  but  under  such  con- 
ditions the  increase  of  water  resistance  due  to  the  head  sea  is 

probably  in  most  cases  far  greater  than  the  air  resistance.  In 

cases  where  air  resistance  is  important,  it  can  be  investigated  by 

exposing  a  model  with  the  upper  works  complete  to  a  current  of 

air  of  known  speed.  The  law  of  the  square  applies,  and  it  will  be 

possible  to  determine  the  air  resistance  of  the  model  at  the  actual 

speed,  not  the  corresponding  speed  of  the  ship.  Then  the  air 

resistance  of  the  full-sized  ship,  being  practically  all  eddy  re- 
sistance, may  be  estimated  by  multiplying  the  resistance  of  the 

model  at  the  speed  of  the  ship  by  the  square  of  the  ratio  between 

the  linear  dimensions  of  the  ship  and  the  model. 
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For  a  rough  approximation,  we  may  take  the  area  of  the  por- 
tion of  the  ship  above  water  projected  on  a  thwartship  plane  and 

assume  that  the  air  resistance  is  that  due  to  a  plane  of  this  area  — • 

denoted  by  A  —  advancing  normally  through  the  air,  using  the 
formula  already  given  for  the  resistance  of  a  plane.  This  would 

give  us  — 
Air  Resistance  in  pounds  =  .0043  A  V2,  where  V  is  speed  through 

the  air  in  knots  and  A  is  area  of  upper  works  projected  on  a  thwart- 
ship  plane. 

12.   Model  Experiment  Methods 

In  view  of  the  very  large  use  now  made  of  model-basin  experi- 
ments there  will  be  given  a  brief  description  of  the  methods  used 

in  deducing  from  the  model  experimental  results  the  resistance  or 

effective  horse-power  of  the  full-sized  ship. 
At  a  model  tank  or  basin  there  are  facilities  for  making  to  scale 

models  of  ships  representing  accurately  the  under-water  hulls  and 
a  sufficient  amount  of  the  above-water  hulls.  Most  model  basins 

work  with  models  from  10  to  12  feet  long.  Some  use  models  as 

long  as  20  feet.  A  complete  model  can  be  towed  through  the  still 

water  of  the  basin,  the  speed  and  corresponding  resistance  being 

measured  for  a  number  of  speeds  covering  the  range  desired. 

i.  Treatment  of  Model  Results.  —  By  plotting  each  resistance 
as  an  ordinate  above  its  speed  as  an  abscissa  we  obtain  a  number 

of  spots  through  which  a  fair  average  curve  is  drawn,  giving  the 
total  resistance  of  the  model.  Fig.  70  shows  for  an  actual  model 

a  number  of  experimental  spots  and  the  resistance  curve  drawn 

through  them.  When  reducing  the  results  the  first  step  in  practi- 
cally all  cases  is  to  determine  the  estimated  frictional  resistance 

of  the  model. 

The  wetted  surface  of  the  model  has  been  calculated  and  we 

have  recorded  from  experiments  with  planes  the  length  of  the 

model,  the  resistance  of  a  square  foot  of  surface  for  each  tenth  of  a 

knot  extending  up  to  any  speed  to  which  a  model  is  likely  to  be 

tested.  Fig.  70  shows  a  curve  of  rf  or  frictional  resistance  of 

model,  its  ordinates  having  been  determined  for  various  speeds  by 

multiplying  the  model  surface  by  the  resistance  of  one  square  foot. 
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2.   Deduction  of  Ship  Resistance,  Using  Model  Results.  —  For 

the  most  common  case  the  model  represents  some  full-sized  ship 

-  actual  or  designed  —  and  we  wish  by  the  aid  of  the  model 
results  to  determine  a  curve  of  estimated  effective  horse-power 

for  the  full-sized  ship. 
Table  IX  herewith  gives  the  calculations  for  the  Yorktown,  for 

whose  model  the  resistance  curve  is  given  in  Fig.  70.  The  object 

of  much  of  the  form  is  obvious.  The  "  Mean  Immersed  Length," 
L,  of  the  ship  is  usually  the  length  on  the  load  water  line.  For 

models  of  peculiar  profiles  there  is  a  correction  applied  by  judg- 
ment, the  object  being  to  obtain  the  average  immersed  length. 

The  mean  immersed  length  of  the  model  is  usually  made  20  feet 

at  the  United  States  Model  Basin,  though  moderate  departures 

from  this  length  are  made  when  desirable  for  any  reason.  Also, 

as  it  is  difficult  to  get  satisfactory  observations  above  a  speed  of 

17  knots  of  model,  it  is  necessary  to  make  models  shorter  than  20 

feet  if  the  maximum  corresponding  speed  would  be  over  17  knots 
for  a  20-foot  model. 

The  model  is  so  weighted  that  if  it  is  exact  it  will  float  in  the 

fresh  water  of  the  basin  at  exactly  the  corresponding  water  line  of 

the  ship  in  salt  water.  Hence  the  ratio  at  corresponding  speeds 

/ZA3         ̂ 6  (L\  3 
of  resistances  which  follow  Froude's  La.w  is  not   :    j  but  a-  (—  )i  the 

^ 
factor  *7  being  introduced  on  account  of  the  passage  from  fresh 35 
water  to  salt  water. 

Coming  now  to  the  tabular  form,  there  are  entered  in  the  first 

column  values  of  v  or  the  speed  of  the  model  in  knots,  and  in  the 

second  column  corresponding  values  of  r  or  the  total  resistance  of 

the  model  in  pounds  as  taken  from  the  curve  in  Fig.  70.  In  the 

third  column  is  entered  rf  or  the  frictional  resistance  of  the  model 

—  calculated  as  already  described.  In  the  fourth  column  we 

enter  the  residuary  resistance,  rr,  which  is  equal  to  r  —  r{.  It  is 

this  resistance  to  which  Froude's  Law  applies,  and  we  wish  to  de- 
duce from  it  in  the  shortest  and  simplest  manner  the  correspond- 

ing residuary  effective  horse-power.  While  rr  is  mostly  Wave 
Resistance,  it  includes  the  Eddy  Resistance  and  Air  Resistance 
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of  the  model.  Both  are  taken  as  following  the  Law  of  Com- 

parison. 
Now  for  the  full-sized  ship  the  residuary  resistance  in  pounds  at 

^6  /ZA3 
correspondi

ng  
speed  is  rrX      (y)  =  -^r  say.     The  speed  of  ship, 

V,  corresponding  to  a  speed  of  model,  v,  is  v  l/y,  and  the  effective 

horse-power  absorbed  by  Rr  is  Rr  X  .0030707  V.  Then,  if  the 

residuary  effective  horse-power  for  the  full-sized  ship  is  denoted 
by  EHPr  we  have 

36  /ZA3  I~L EHPr  =  RrX .0030707  V  =  rr >—  ( y J  X .0030707  v t/  — 
35 \t /  v  I 

z 

36  /ZA3  /Z 
We  denote  by  a  the  quantity       (y)  .0030707  Uy  and  calculate  it 

35  \  /  /  »   » 
once  for  all,  as  indicated  in  the  heading.  Then  in  the  fifth  column 

of  the  table  we  enter  av  and  in  the  sixth  column  EHPr,  which  is 

simply  rr  multiplied  in  each  case  by  av.  In  the  ninth  column  we 

enter  V,  the  corresponding  speed  for  the  ship,  obtained  by  multi- 

plying each  value  of  v  by  V/y  We  have  now  for  a  number  of 

values  of  V  the  values  of  EHPr  or  residuary  effective  horse-power. 
We  need  to  determine  the  frictional  portion  of  the  effective 

horse-power.  This  is  denoted  by  Ef  or  EHPf.  To  determine 

frictional  resistance  we  take  from  Table  VI  of  Tideman's  Con- 
stants the  coefficient  of  friction  appropriate  to  the  length  of  the 

vessel  and  the  nature  of  bottom.  The  area  of  wetted  surface 
has  been  calculated. 

We   have   seen    that   frictional    resistance   in   pounds  =  Rf  = 

wetted  surface  X  frictional  coefficient  X  V1'83 

and  E/=  .0030707  RfX  V 

=  .0030707  X  wetted  surface  X  frictional  coefficient  X  F2'83. 

Taking  from  Table  VII  the  values  of  F2'83  we  readily  determine 
and  enter  in  column  n  the  values  of  EHPf.  These  values  are 

plotted  as  in  Fig.  71  and  a  fair  curve  run  through.  Then  from 
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this  curve  for  the  values  of  Vcor  in  column  9  we  take  off  the 
values  of  EHPf  and  enter  them  in  column  7.  Column  8,  which 
is  the  sum  of  columns  6  and  7,  gives  the  values  of  the  total  EHP, 
which,  spotted  in  Fig.  71  over  the  values  of  Fcor,  enables  us  to 
draw  the  final  curve  of  E.H.P.  for  the  condition  of  the  ship  defined 
in  the  heading  of  the  table. 

From  this  curve  it  is  possible  to  fill  in  column  12,  which  gives 
the  values  of  E.H.P.  corresponding  to  the  even  values  of  V  in 
column  10.  Column  12  is,  however,  seldom  needed. 

3.  Residuary  Resistance  Plotted  for  Analysis.  —  When  we  are 
dealing  with  an  actual  ship  or  design  it  is  generally  desirable  to 
deduce  from  the  model  results  the  final  E.H.P.  curve  as  soon  as 

possible.  When,  however,  it  is  a  question  of  analysis  of  residu- 
ary resistance  it  is  desirable  to  express  it  in  a  slightly  different 

form.  A  very  convenient  and  instructive  method  is  to  use  the 
y 

values  of  — =  as  abscissae  and  of  Resistance  -H  Displacement  as VL 
ordinates. 

For  convenience  the  value  of  Resistance  H-  Displacement  is 
expressed  as  Resistance  in  Pounds  per  Ton  of  Displacement. 
Fig.  72  shows  the  curve  of  Residuary  Resistance  in  Pounds  per 
Ton  plotted  on  V  +vL  for  the  model  to  which  Figs.  70  and  71 
refer.  Fig.  72  is  applicable  to  any  size,  and  it  is  this  elimination  of 
the  size  feature  which  renders  this  method  of  plotting  of  value 

for  purposes  of  analysis. 

13.   Factors  Affecting  Resistance 

The  problem  of  resistance  in  its  most  general  form  involves  too 
many  variables  to  be  capable  of  experimental  solution.  For  a 
vessel  of  given  displacement  and  speed  the  resistance  varies  with 
variations  of  (i)  The  dimensions,  (2)  The  shapes  of  water  lines 
and  sections.  For  a  vessel  of  given  displacement  we  may  have 
an  infinite  number  of  variations  of  dimensions  and  shape,  so  even 
if  we  could  deduce  the  resistance  of  a  vessel  with  mathematical 

accuracy  from  model  experiments,  it  would  be  a  formidable  under- 
taking to  investigate  all  admissible  or  likely  variations  of  dimen- 

sions and  shape  for  but  a  single  vessel  of  a  fixed  displacement. 
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I.  Derivation  of  Models  from  Parent  Lines.  —  If,  however,  we 
adopt  a  single  definite  shape  or  set  of  parent  lines,  deducing  all 

models  from  these  lines  by  variations  of  dimensions  and  coeffi- 

cients of  fineness,  the  problem  is  enormously  simplified.  By  test- 
ing a  practicable  number  of  models  we  can  determine,  not  for 

one  displacement  only,  but  for  any  displacement  within  a  certain 

range  and  for  any  dimensions  and  fineness  likely  in  practice,  the 

approximate  resistance  at  any  practicable  speed. 

In  connection  with  fineness  the  expression  "  longitudinal  coeffi- 
cient" will  be  used  to  denote  the  ratio  between  the  volume  of  dis- 

placement of  a  vessel  and  the  volume  of  a  cylinder  of  section  the 

same  as  the  submerged  midship  section  and  of  length  the  same  as 

the  length  of  the  vessel  —  preferably  the  mean  immersed  length. 

This  coefficient  is  sometimes  called  the  "cylindrical  coefficient"  and 

very  commonly  the  "prismatic  coefficient."  While  cylindrical  coef- 
ficient is  descriptive  and  correct,  it  is  thought  that  the  designation 

''longitudinal  coefficient"  is  preferable  as  emphasizing  the  fact  that 
this  coefficient  measures  and  expresses  the  fineness  of  the  vessel  in 

a  longitudinal  direction.  The  expression  "prismatic  coefficient"  is 
slightly  in  error,  since  strictly  speaking  the  section  of  any  prism 

is  bounded  by  a  straight-sided  polygon  and  not  by  a  curve. 
Given  a  set  of  parent  lines,  the  deduction  from  them  of  lines  of  the 

same  coefficients  but  of  different  proportions  or  relative  values  of 

length,  beam  and  draught,  is  a  simple  matter.  If  length  alone  is 

changed,  we  need  only  change  the  spacing  of  stations  in  propor- 
tion to  the  change  of  length.  If  draught  alone  is  changed,  we 

need  change  only  in  a  corresponding  way  the  spacing  of  water 

lines.  If  beam  alone  is  changed,  we  need  change  only  the  ordi- 
nates  of  water  lines. 

Since  the  changes  caused  by  change  of  length,  beam  and  draught 

are  independent  we  may  simultaneously  change  all  three,  if  we 

wish,  without  difficulty. 

Suppose,  however,  we  wish  to  keep  dimensions  unchanged  and 
make  changes  in  shape  and  fullness.  We  cannot  change  the 

midship  section  without  departing  from  the  parent  lines,  but  we 

can  change  in  a  comparatively  simple  manner  the  longitudinal 

coefficient  or  curve  of  sectional  areas.  Thus  in  Fig.  73,  suppose 
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the  curve  numbered  i  is  the  curve  of  sectional  areas  for  the  parent 
model  and  the  curve  numbered  2  the  desired  curve  of  sectional 

areas.  Through  £,  the  point  on  curve  2  corresponding  to  the 

station  AB,  draw  EF  horizontally  to  meet  curve  i  at  F.  Through 

F  draw  CD,  then  the  proper  section  at  AB  of  the  derived  form  is 

the  section  at  CD  of  the  parent  form.  Having  the  two  curves  of  sec- 

tional area  and  the  half -breadth  plan  of  the  parent  form,  any  desired 
section  of  the  derived  form  can  be  determined  without  difficulty. 

From  a  single  parent  form  then,  we  can  derive  forms  covering 

all  needed  variations  of  displacement,  of  proportions  and  of  fine- 

ness as  expressed  by  "longitudinal  coefficient."  By  contour  curves 
from  the  results  of  a  number  of  models  derived  from  one  parent 

form  we  can  deduce  diagrams  enabling  us  to  ascertain  the  resist- 
ance at  any  speed  of  any  vessel  upon  the  lines  of  the  parent  form. 

This  applies,  of  course,  to  residuary  resistance  only,  since  the  fric- 
tional  resistance  can  always  be  estimated  without  model  results. 

or  experiments  in  the  manner  already  indicated. 

2.  Classification  of  Factors  Affecting  Resistance.  —  It  would 

require  experiments  with  models  derived  from  an  infinite  num- 
ber of  parent  forms  to  trace  the  effect  of  all  possible  variations  of 

shape,  but  if  we  can  determine  the  major  factors  affecting  resist- 
ance and  their  approximate  effect  we  need  seldom  concern  ourselves 

with  the  minor  factors. 

While  it  is  necessary  to  be  cautious  in  laying  down  from  past 

experience  a  hard  and  fast  line  of  demarcation  between  the  major 

and  minor  factors  of  resistance,  since  novel  developments  in  the 

future  may  convert  one  into  the  other,  yet  so  far  as  can  be  judged 
from  trials  at  the  United  States  Model  Basin  of  over  a  thousand 

models  we  appear  warranted  in  drawing  some  conclusions  as  ta 

the  principal  factors  affecting  the  resistance  of  ships  not  of  abnor- 
mal form  and  the  relative  importance  of  these  factors.  We  need 

consider  only  frictional  and  wave-making  or  residuary  resistance. 
Given  the  displacement,  speed  and  frictional  quality  of  the 

surface,  the  only  other  factor  of  importance  as  regards  frictional 

resistance  is  the  length.  The  greater  the  length  for  a  given  dis- 
placement the  greater  the  frictional  resistance.  This  because 

frictional  resistance  is  proportional  to  surface  or  \^DL. 
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As  regards  residuary  resistance  for  a  given  displacement,  the 

principal  factors  arranged  in  their  usual  order  of  importance  are 
as  follows : 

1.  The  length. 

2.  The  area  of  midship  section  or,  conversely,  the  longitudinal 
coefficient. 

3.  The  ratio  between  beam  and  draught. 

4.  The  shape  of  midship  section  or  midship  section  coefficient. 

5.  The  details  of  shape  toward  the  extremities. 
It  is  seen  that  factors  i,  2  and  3  can  be  investigated  from  a 

single  parent  form.  The  complete  investigation  of  factors  4  and  5 

would  require  investigations  involving  a  very  large  number  of 

parent  forms.  Fortunately,  however,  these  factors  are  those  of 

least  importance. 

3.  Details  of  Shape  Forward  and  Aft.  —  In  placing  factor  5  as 
of  small  importance,  it  should  be  understood  that  this  is  the  case 

only  as  regards  the  variations  found  in  good  practice.  If  abnormal 

shapes  for  the  extremities  are  adopted,  abnormal  resistance  is 

liable  to  follow.  The  dictum  of  William  Froude  many  years  ago 

appears  to  be  still  our  best  guide.  He  stated  that,  broadly  speak- 
ing, it  was  desirable  to  make  the  bow  sections  of  U  shape  and  the 

stern  sections  of  V  shape.  This  amounts  to  saying  that  at  the 

bow  it  is^  advisable  to  put  the  displacement  well  below  water  and 
make  the  water  line  narrow,  and  at  the  stern  it  is  advisable  to 

bring  the  displacement  up  towards  the  surface  and  make  the 

water  line  broad.  Carried  to  an  extreme,  this  would  give  us 
hollow  water  lines  at  the  bow  and  the  broad  flat  stern  of  the 

torpedo  boat  type.  As  a  matter  of  fact,  model  basin  experi- 
ments appear  to  indicate  that  for  smooth  water,  up  to  quite  a 

high  speed,  this  type  of  model  is  about  the  fastest.  For  extreme 

speeds,  even  in  smooth  water,  hollow  bowlines  are  seldom 

adopted,  but  there  is  not  sufficient  experience  in  this  connection 

to  say  positively  that  they  are  or  are  not  desirable  from  the  point 
of  view  of  speed  alone. 

In  this  connection  it  may  be  pointed  out  that  experiments  show 

a  ram  bow  of  bulbous  type  to  be  favorable  to  speed,  even  apart 

from  the  fact  that  the  ram  bow  usually  involves  a  slight  increase 
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in  effective  length.  This  is  simply  because  the  ram  bow,  which  is 
the  extreme  case  of  the  U  bow,  is  much  fuller  below  water  than  at 
the  water  line. 

The  excess  pressures  set  up  around  the  ram  being  well  below 

the  surface  are  more  absorbed  in  pumping  the  water  aft,  where  it 

is  needed,  and  less  absorbed  in  raising  the  surface  and  producing 

waves  than  if  the  same  displacement  were  brought  close  to  the 
surface. 

There  appears  to  be  a  reasonable  explanation  of  the  advantages 

as  regards  resistance  of  the  broad  flat  stern.  In  wake  of  the 

center  of  length,  the  water  is  flowing  aft  to  fill  up  the  space  being 

left  by  the  stern,  the  greatest  velocity  of  the  water  being  under 

the  bottom.  As  the  vessel  passes,  the  water  flows  aft  and  up, 

losing  velocity  all  the  while  and  increasing  in  pressure. 

With  a  U  stern  there  is  little  to  check  the  upward  component  of 

the  velocity  which  is  absorbed  in  raising  a  wave  aft.  With  the 

broad  flat  stern  against  which  the  water  impinges,  as  it  were,  more 

or  less  of  the  upward  velocity  is  absorbed  by  pressure  against  the 

stern,  which  will  have  a  forward  component,  the  result  being  a 

closer  approach  to  perfect  stream  motion  and  less  wave  dis- 
turbance. 

While  the  broad  flat  stern  is  slightly  superior  as  regards  resid- 
uary resistance  in  smooth  water,  it  is  apt  to  have  unnecessary 

wetted  surface  and  is  objectionable  from  a  structural  and  sea- 
going point  of  view.  With  model  basin  facilities  it  is  generally 

possible  to  determine  upon  a  stern  of  V  type  which  is  almost  as 

good  as  the  broad  flat  type  as  regards  resistance,  and  distinctly 

preferable  to  it  from  a  structural  and  sea-going  point  of  view. 
In  connection  with  the  details  of  shape  forward  and  aft  the 

effect  of  change  of  trim  upon  resistance  may  be  considered,  since 

the  principal  effect  of  change  of  trim  is  to  modify  the  shape 
towards  the  extremities. 

Any  change  of  trim,  no  matter  how  small,  necessarily  pro- 

duces some  effect  upon  resistance,  and  there  are  many  sea-going 
people  who  ascribe  great  virtue  to  some  particular  trim  and  great 

influence  upon  resistance  to  change  of  trim,  generally  considering 

trim  by  the  stern  as  advantageous  for  speed. 
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Trim  by  the  stern  has  some  advantages  in  that  it  generally 
improves  the  steering  of  the  ship  or  its  steadiness  on  a  course,  and 

in  rough  weather  it  is  generally  advantageous  to  secure  greater 
immersion  of  the  screws  and  more  freeboard  forward;  but  as 

regards  resistance  in  smooth  water  changes  of  trim  occurring  in 

practice  generally  produce  changes  of  resistance  of  little  or  no 

importance. 

In  1871  Mr.  William  Froude  investigated  the  effect  of  trim  upon 

the  resistance  of  the  Greyhound,  a  vessel  172  feet  long  and  towed 

at  displacements  from  938  to  1161  tons  and  at  trims  varying 

from  1.5  feet  by  the  head  to  4.5  feet  by  the  stern.  The  maxi- 
mum speed  at  which  the  vessel  was  towed  was  about  12  knots. 

These  experiments  showed  that  for  the  Greyhound  trim  by  the 

head  was  beneficial  at  low  speeds,  below  8  knots,  and  trim  by  the 

stern  was  beneficial  at  the  upper  speeds,  above  9  knots.  The 

differences,  however,  were  comparatively  small  for  quite  large 

changes  of  trim.  Mr.  Froude's  conclusion  from  these  full-sized 

towing  experiments  was,  "  As  dependent  on  differences  of  trim,  the 
resistance  does  not  change  largely;  indeed,  at  speeds  between  8 

and  10  knots  it  scarcely  changes  appreciably,  even  under  the  maxi- 

mum differences  of  trim."  The  results  from  the  Greyhound 
were  corroborated  by  model  experiments  which  agreed  quite 

well  with  the  full-sized  results,  and  since  these  classical  experi- 

ments of  Mr.  Froude,  model  experiments  investigating  this  ques- 
tion have  been  repeatedly  made. 

Many  experiments  made  at  the  United  States  Model  Basin 

appear  to  indicate  that,  broadly  speaking,  for  the  majority  of 

actual  vessels  at  full  speed  a  slight  trim  by  the  stern  is  beneficial, 

but  that  in  the  vast  majority  of  cases  the  benefit  is  too  small  to 

be  of  practical  importance.  With  a  well-balanced  design,  the 
fineness  forward  and  aft  being  properly  distributed,  the  effect 

upon  resistance  of  change  of  trim  is  practically  nil. 

4.  Shape  of  Midship  Section.  —  Let  us  now  consider  the  in- 
fluence upon  resistance  of  midship  section  fullness  or  the  midship 

section  coefficient.  Figs.  50  to  54  show  body  plans  of  five  models, 

all  having  the  same  length,  the  same  displacement  —  3000  pounds 

—  the  same  curve  of  sectional  areas,  the  same  area  of  midship 
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section  and  practically  the  same  load  water  line.  Figs.  55  to  59 

show  similarly  body  plans  of  five  1000  pound  models. 

Each  group  of  five  models  has  midship  section  coefficients  vary- 
ing from  .7  to  i.i,  the  models  with  fine  midship  section  coefficients 

having  greater  values  of  B  and  H  since  the  actual  midship  sec- 
tion areas  are  the  same  for  all  models  of  a  group.  The  ratio 

B  -f-  H  for  all  ten  models  is  2.92.  The  models  are  of  moder- 
ately fine  type,  the  longitudinal  coefficient  being  .56  for  all  ten. 

Fig.  74  shows  curves  of  residuary  resistance  in  pounds  per  ton 

for  the  five  3000  pound  models  and  Fig.  75  shows  similarly  the 
resistances  of  the  five  1000  pound  models. 

It  is  seen  that  while  the  models  with  full  midship  section 

coefficients  drive  a  little  easier  up  to  F-S-vZ  =  i.i  to  1.2  and 
the  models  with  fine  coefficients  have  a  shade  the  best  of  it  at 

higher  speeds,  the  differences  for  such  variations  of  fullness  as 

are  found  in  practice  are  remarkably  small.  The  results  given 

above  are  taken  from  a  paper  by  the  author  before  the  Society  of 

Naval  Architects  and  Marine  Engineers  in  November,  1908,  on 

"  The  Influence  of  Midship  Section  Shape  upon  the  Resistance  of 

Ships."  This  paper  contained  many  other  results  similar  to  those 

given,  and  its  conclusion  was  that  "  for  vessels  of  usual  types  and 
of  speeds  in  knots  no  greater  than  twice  the  square  root  of  the 

length  in  feet,  the  naval  architect  may  vary  widely  midship  section 

fullness  without  material  beneficial  or  prejudicial  effect  upon  speed." 
Of  course,  it  follows  that  the  minor  variations  in  shape  of  midship 

section  that  can  be  made  in  practice  without  changing  fullness  have 

practically  no  effect  upon  resistance. 
It  should  be  most  carefully  borne  in  mind  that  the  above 

applies  to  the  shape  and  coefficient  of  a  midship  section  of  a  given 
area,  not  to  the  area  of  the  section. 

5.  Ratio  between  Beam  and  Draught.  —  Consider  now  the 
effect  of  the  ratio  between  beam  and  draught.  Figure  76  shows 

curves  of  E.H.P.  as  determined  by  model  experiment  for  6  vessels, 

all  derived  from  the  lines  of  the  U.  S.  S.  Yorktown  but  varying  in 

proportions  of  beam  and  draught  from  a  very  broad  shallow  model 

to  a  very  narrow  deep  one. 

It  is  seen  that  the  broader  and  shallower  the  model  the  greater 
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the  resistance.  This  result  is  typical  and  confirmed  by  many 

other  experiments  at  the  United  States  Model  Basin.  It  may  at 

first  sight  seem  opposed  to  many  cases  of  experience  where  beamy 

models  proved  easy  to  drive.  But  in  these  cases  it  will  be  found 
that  the  increase  of  beam  carried  with  it  increase  of  area  of  mid- 

ship section.  Had  beam  been  increased  and  draught  decreased 

in  proportion,  the  area  of  midship  section  remaining  unchanged, 
the  results  would  have  been  different. 

However,  the  variations  of  resistance  with  variations  of  the  ratio 

of  beam  to  draught  are  not  very  great  as  a  rule. 

6.  Longitudinal  Coefficient  or  Midship  Section  Area.  —  Take 
up  now  the  effect  upon  resistance  of  the  variation  of  midsnip  sec- 

tion area  or  longitudinal  coefficient.  This  is  a  factor  of  prime 

importance  in  some  cases  and  quite  secondary  in  others.  Thus, 

Fig.  67  shows  curves  of  residuary  resistance  for  five  pairs  of  400- 
foot  ships,  each  pair  having  the  same  displacement  and  derived 

from  the  same  parent  lines  but  differing  in  midship  section  area  or 

longitudinal  coefficient.  It  is  seen  that  at  21  knots  No.  10  with 

.64  longitudinal  coefficient  has  2.3  times  the  residuary  resistance 

of  its  mate  No.  9  with  .56  longitudinal  coefficient.  But  at  24^ 

knots  they  have  the  same  residuary  resistance. 

Again,  No.  4  of  .64  coefficient  at  21  knots  has  nearly  twice  the 

residuary  resistance  of  No.  3  of  .56  coefficient.  At  255  knots  they 

have  the  same  residuary  resistance  and  at  higher  speeds  No.  4 

has  the  best  of  it,  having  but  .9  of  the  residuary  resistance  of  No.  3 

at  35  knots.  These  results,  which  are  thoroughly  typical,  are  sus- 

ceptible of  a  very  simple  qualitative  explanation.  A  small  longi- 
tudinal coefficient  means  large  area  of  midship  section  and  fine 

ends.  A  large  longitudinal  coefficient  means  small  area  of  mid- 
ship section  and  full  ends.  At  moderate  speed  the  ends  do  the 

bulk  of  the  wave  making  and  the  fine  ends  make  much  less  wave 

disturbance  than  the  full  ends.  Hence  the  enormous  advantage  of 

the  fine  ends  at  21  knots  in  Fig.  67.  But  at  high  speeds  the  whole 

body  of  the  ship  takes  part  in  the  wave  making  and  the  smaller 

the  midship  section  the  less  the  wave  making.  It  follows  that  for 

a  ship  of  given  dimensions,  displacement,  type  of  form  and  speed 

there  is  an  optimum  longitudinal  coefficient  or  area  of  midship 
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section.     Data  will  be  given  later  by  which  this  can  be  deter- 
mined with  close  approximation. 

7.  Effect  of  Length.  —  There  remains  finally  to  .consider  the 
factor  which,  broadly  speaking,  has  more  influence  upon  residuary 

resistance  than  any  other.  This  is  the  length.  We  have  seen 

that  for  a  given  displacement  the  greater  the  length  the  greater 

the  frictional  resistance  —  it  varying  as  V ' L.  Residuary  resist- 
ance, on  the  contrary,  always  falls  off  as  length  increases,  though 

not  according  to  any  simple  law.  Fig.  77  shows  curves  or  residu- 
ary resistance  of  five  vessels,  all  of  5120  tons,  derived  from  the 

same  parent  lines  and  having  the  lengths  given.  Of  course  the 

longer  Vessels  have  beam  and  draught  decreased  in  the  same  ratio 

sufficiently  to  keep  the  displacement  constant.  Fig.  77  illustrates 

very  clearly  the  enormous  influence  of  length  upon  residuary 

resistance.  Since  frictional  resistance  increases  and  residuary 

resistance  decreases  with  length,  it  is  reasonable  to  suppose  that 

for  a  given  displacement  and  speed  there  will  be  a  length  for  which 

the  total  resistance  will  be  a  minimum.  There  is  such  a  length, 

but  in  the  vicinity  of  the  minimum  the  increase  of  resistance  with 

decrease  of  length  is  slow,  and  since  length  in  a  ship  is  usually 

undesirable  from  every  point  of  view  except  that  of  speed,  ships 

should  be  made  of  less  length  than  the  length  for  minimum  resist- 

ance. For  men-of-war  particularly  it  is  good  policy  to  shorten  the 
ship,  put  in  slightly  heavier  machinery  and  accept  the  increased 

coal  consumption  upon  the  rare  occasions  when  steaming  at  full 

speed,  rather  than  to  lengthen  the  ship,  carry  greater  weight  of 

hull  and  armor  necessitated  thereby,  and  consume  more  coal  at 

ordinary  cruising  speeds. 

14.   Practical  Coefficients  and  Constants  for  Ship  Resistance 

i.  Primary  Variables  Used.  —  The  first  thing  to  do  when  we 
wish  to  establish  methods  for  the  determination  of  ship  resist- 

ance is  to  fix  the  primary  variables  to  be  used.  In  a  given  case 

we  may  have  dimensions,  displacement,  etc.,  all  fixed,  and  need  to 

determine  the  resistance  at  a  given  speed,  or  we  may  wish  to  de- 
termine dimensions  to  bring  resistance  below  a  certain  amount,  or 

the  problem  may  present  other  aspects.  The  primary  variables 
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adopted  should  enable  the  data  available  to  be  applied  simply 
and  directly  to  the  problems  arising. 

It  is  convenient  to  express  resistance  as  a  fraction  of  displace- 
ment, and  a  suitable  measure  is  the  resistance  in  pounds  per  ton 

of  displacement.  Then  a  resistance  of  one  pound  per  ton  of  dis- 

placement means  a  resistance  which  is  uu1^  of  the  displacement. 
At  corresponding  speeds  for  similar  models,  resistances  which 

follow  Froude's  Law  are  proportional  to  displacement,  and  hence 
the  pounds  per  ton  are  constant. 

V 
Speed  is  conveniently  expressed  not  directly  but  in  terms  of  —  —> 

the  speed  length  ratio  or  speed  length  coefficient.     For  similar 
V 

models  at  corresponding  speeds  -  —  is  constant. 

When  it  comes  to  size  we  need  a  variable  which  does  not  change 

for  similar  models  whatever  the  displacement.  Since  the  dis- 

placement varies  as  the  cube  of  linear  dimensions,  such  a  quan- 

tity would  be  Displacement  -j-  (any  quantity  proportional  to  the 
cube  of  linear  dimensions).  As  length  is  much  more  important 

in  connection  with  resistance  than  beam  or  draught,  a  suitable 

quantity  would  be  —  •     This  would  usually  be  a  very  small  frac- LI 

tion,  however,  and  it  is  desirable  to  use  a  function  which  in  prac- 
tical cases  assumes  numerical  values  convenient  for  consideration 

and  comparison.     Such  a  function  is  >  called  the  displace- 

ioo 

ment  length  ratio  or  displacement  length  coefficient.  It  is  the 

displacement  in  tons  of  a  vessel  similar  to  the  one  under  con- 
sideration and  i  GO  feet  long. 

2.  Skin  Resistance  Determination.  —  It  is  necessary  to  con- 
sider separately  the  two  elements  of  resistance,  Skin  Resistance 

and  Residuary  Resistance. 

The  former  is  the  greater  in  most  practical  cases  and  its  inde- 

pendent calculation  is  very  simple.  We  have  seen  that  the  for- 

mula for  Skin  Resistance  is  Rf  =  fSV1'83,  where  /  is  coefficient  of 
friction  from  Tideman  or  Froude,  S  is  wetted  surface  and  V  is 
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speed  in  knots.  For  a  complete  design  5  may  be  accurately  cal- 
culated. For  a  preliminary  design  it  may  be  closely  estimated 

from  the  formula  S  =  c  \/DL,  where  c  is  the  wetted  surface 
coefficient  and  may  be  taken  from  Fig.  41. 

If  we  were  concerned  with  Skin  Resistance  only,  it  would  prob- 
ably be  the  best  plan  always  to  determine  E.H.P./  by  formula  as 

was  done  when  calculating  the  E.H.P./  of  a  full-sized  ship  from  the 
results  of  model  experiments.  But  it  is  necessary  to  use  a  more 

complicated  system  of  variables  in  order  to  handle  Residuary 

Resistance,  so  it  is  desirable  to  express  Rf  in  the  same  variables. 

Wejiave  seen  that  Rf=  /SF1'83  and  S1  =  c  \/T)L. 

fc  \/DLF183. 
TTT  •<.  D          o-u  1000000  D  „  L3 
Write  y  =    .  ,      •      Then  y  =  -  —  -     or     D  = 

Hence  Rf= .  , 

/  L i  oooooo 
ioo/ 

Also  write  x  =  -^=-    Then  V  =  x  \/Z      F1'83  = 

Then 
-/« 
D  D 

Whence  finally 

or 

3.1. 83  £0-915 

In  the  above  /  varies  slightly  with  length,  L'085  varies  slowly 
with  length,  and  c  is  an  almost  constant  coefficient. 

Evidently  then  for  a  given  length  and  value  of  c  we  can  plot 

contours  of  —on — —  and    .  r  .,  as  primary  variables.      Fig.    78 
D     VL      fJL] 

Vioo/ 
shows  such   contours   for   a  length  of   500  feet,  the  value  of  / 

being  taken  from  Table  VI  of  Tideman's  constants.     But  y^r  does 

not  vary  very  rapidly  with  length  and  it  varies  with  length  only. 



RESISTANCE  IOI 

So  Fig.  78  can  be  applied  to  all  lengths  and  values  of  c  by  the 
use  of  simple  correction  factors.  The  correction  factors  for  length 
are  given  on  the  scale  beside  the  figure  to  the  right.  In  Fig.  78 
the  standard  value  assumed  for  c  is  15.4.  If  we  are  dealing  with 
a  vessel  for  which  we  know  that  c  is  16.0  for  instance,  it  is  obvious 

that  we  should  multiply  the  values  of  —*  from  Fig.  78  by- D  15.4 

3.  Residuary  Resistance  from  Standard  Series.  —  Take  up  now 
the  question  of  Residuary  Resistance.  Here  we  are  driven  to  the 
use  of  model  results. 

Fig.  79  shows  the  lines  used  for  a  series  of  models  which  may  be 
called  the  Standard  Series. 

Fig.  79  shows  a  model  having  a  longitudinal  coefficient  of  .5554, 
a  midship  section  coefficient  of  .926  and  a  displacement  length 
ratio  of  106.95.  The  stem  was  plumb  and  the  forefoot  carried 

right  forward  in  a  bulbous  form.  From  these  parent  lines  a  num- 
ber of  models  were  constructed  with  various  values  of  beam 

draught  ratio,  etc. 
There  were  two  values  of  beam  draught  ratio  used,  namely 

2.25  and  3.75. 
There  were  five  values  of  displacement  length  ratio  used,  namely 

26.60,  53.20,  79.81,  133.02  and  199.52. 
There  were  eight  values  of  longitudinal  coefficient  used,  namely 

.48,  .52,  .56,  .60,  .64,  .68,  .74  and  .80. 
Fig.  80  shows  relative  curves  of  sectional  area  used  for  the 

«ight  values  of  the  longitudinal  coefficient. 
Each  of  the  80  models  was  run,  its  curve  of  residuary  resistance 

in  pounds  per  ton  determined  and  from  the  results  of  the  two 
groups  of  different  beam  ratios  after  cross  fairing,  Figs.  81  to  120 
were  plotted. 

B  V 
Each  figure  refers  to  a  fixed  value  of  —  and  of  —=.  •    It  shows "  v  L 

contours  of  residuary  resistance  in  pounds  per  ton  over  the  range  of 

values  of  longitudinal  coefficient  and  — j — -  most  likely  to  be  found 
(       ) 
\ioo/ 

in  practice.     In  applying  the  results  of  Figs.  81  to  120  for  approxi- 
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mate  estimates  of  E.H.P.  for  beam  draught  ratios  other  than 

2.25  and  3.75,  interpolation  of  resistance  is  linear.  This  is  war- 
ranted by  results  of  experiments  with  models  from  the  same 

parent  model  and  of  intermediate  beam  draught  ratio.  While 

not  quite  exact,  it  seems  sufficiently  close  to  the  truth  for  practi- 
cal purposes. 

4.  Estimates  of  E.H.P.  from  Standard  Series.  —  We  are  now 
prepared  to  calculate  curves  of  E.H.P.  for  a  vessel  of  any  size 
beam  ratio  and  length  within  the  range  covered  by  Figs.  81  to 
1 20  and  from  the  parent  lines  of  the  Standard  Series.  Table  X 
shows  the  complete  calculations  for  a  vessel  of  the  size,  beam 

y 
ratio  and  length  of  the  U.  S.  S.  Yorktown.     For  each  value  of— = 

vZ 

the  corresponding  figures  for  -the  two  beam  ratios  are  consulted 

r> 

and  columns  2  and  3  filled  with  the  values  of  —^  for  longitudinal 

coefficient  =.592  and  =  138.1.     Then  in  succession  columns 

(— ) Vioo/ 

5,  4  and  8  are  filled  as  indicated  in  the  headings.  Column  6  is 
filled  from  Fig.  78. 

70 The  correction  factor  (&)  for  -=*  is  obtained  as  clearly  indicated 

in  the  heading  and  column  7  is  column  6X6. 
The  total  residuary  resistance  in  pounds  per  ton  is  entered  in 

column  9,  and  column  10  contains  the  E.H.P.  factor  by  which  this 
must  be  multiplied  to  determine  at  once  the  E.H.P. 

This  E.H.P.  factor  is  .00307  DV,  but  it  is  convenient  to  call  it 

.00307  D  VL  X  -  =  •     Then  (a)  or  .00307  D  Vl,  is  calculated  and 

V 
entered  in  the  heading  and  the  values  of  -—=.  are  found  in  the 

VL 

first  column.  Column  n  contains  the  E.H.P.  and  column  12  the 

corresponding  values  of  V.  Column  10  could  be  obtained  by 
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multiplying  column  12  by  .00307  D,  but  the  methods  indicated  in 

the  table  will  usually  be  found  more  convenient  in  practice. 

5.  Comparison  of  Standard  Series  Estimates  with   Yorktown 

Model  Results.  —  As  illustrating  the  application  of  the  Standard 
Series  results  to  estimates  of  E.H.P.  attention  is  invited  to  Fig.  121. 

This  shows  the  E.H.P.  curve  of  the  Yorktown  as  determined  by 

experiment  with  a  model  of  the  vessel  and  the  curve  of  E.H.P.  from 
the  Standard  Series  as  calculated  in  Table  X.     It  is  seen  that  the 

Standard  Series  E.H.P.  is  less  than  the  actual  model  E.H.P.  up  to 

the  speed  of  18  knots,  which  is  higher  than  the  trial  speed  of  the 

Yorktown.     This  simply  shows  that  the  Standard  Series  lines  are 

better  than  those  of  the  Yorktown.     As  a  matter  of  fact,  hardly 

any  models  of  actual  ships  tried  in  the  Model  Basin  have  shown 

themselves  appreciably  superior  as  regards  resistance  to  the  Stand- 
ard Series  and  very  few  have  been  equal  to  it.     Figs.  76  and  122 

show  further  comparison  between  actual  models  and   Standard 

Series  results.     Fig.  76  shows  six  E.H.P.  curves  calculated  from 
six  actual  models  for  the  Yorktown  and  five  variants  having  the 

same   length  and  displacement  and  derived   from   the   Yorktown 

lines  but  having  varying  proportions  of  beam  and  draught  as  indi- 
cated in  the  table  with  Fig.  76. 

Fig.  122  shows  E.H.P.  curves  for  the  same  six  vessels  estimated 

from  the  Standard  Series  results.  It  is  seen  that  the  agreement  is 

reasonably  close.  The  Standard  Series  generally  shows  less  power 
than  the  vessels  on  Yorktown  lines,  and  the  curves  from  it  are 

more  closely  bunched,  but  the  general  features  of  the  two  figures 

are  markedly  similar. 

6.  Effect  of  Longitudinal  Coefficient.  —  Figures  81  to  120,  show- 
ing the  residuary  resistance  for  vessels  on  the  lines  of  the  Standard 

Series,  are  worthy  of  the  most  careful  and  attentive  study.    Atten- 
tion may  be  called  to  one  or  two  of  the  most  obvious  features. 

It  is  seen  that  for  nearly  every  speed  there  is  for  a  given  displace- 

ment length  ratio  a  distinct   minimum  of  resistance  correspond- 
ing to  a  definite  longitudinal  coefficient.     For  low  and  moderate 

y 
speeds  up  to— —  =  i.i  the  best  longitudinal  coefficient  is  between 

.5  and  .55.     Above  this  point,  however,  the  optimum  longitudi- 
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nal  coefficient  rapidly  increases,  reaching  about  .65  when  —  -  =  1.5 

VL 

y 
and  being  a  little  greater  still  when  —  =  =  2.00. 

VL 

The  influence  of  variation  of  longitudinal  coefficient  is  greatest 

below  extreme  speeds,  and  it  is  very  great  indeed  at  some  speeds. 

Thus,  in  Fig.  91,  for  —  =  2.25,  —  —  =  i.i,  =  100,  the  resid- tl  VL 

uoo/ 
uary  resistance  in  pounds  per  ton  for  a  longitudinal  coefficient  of  .55 

is  about  6j.  But  for  a  longitudinal  coefficient  of  .65  the  residuary 

resistance  in  pounds  per  ton  is  more  than  doubled  —  being  over  14. 

7.  Effect  of  Displacement  Length  Ratio.  —  The  change  in  type 
of  the  figures  with  increasing  speed  length  ratio  is  notable.     Thus, 

for  speed  length  ratio  of  .75  the  contours  are  nearly  vertical  in 

wake  of  the  rather  full  coefficients  which  such  slow  ships  would 

usually  have.     This  means  that  if  we  keep  length  and  speed  con- 
stant and  increase  displacement,  the  residuary  resistance  per  ton 

remains  practically  constant  or  the  residuary  resistance  varies  as 

the  displacement.     Consider  now  Fig.  100,  where  the  speed  length 

ratio  is  2.0.    For  displacement  length  ratio  =  30  the  optimum  lon- 
gitudinal coefficient  is  about    63  and  the  residuary  resistance  in 

pounds  per  ton  about  51.     For  the  same  longitudinal  coefficient 

and  a  displacement  length  ratio  of  50  the  residuary  resistance  in 

pounds  per  ton  is  about  77.     This  77  applies  not  only  to  the  20 

increase  above  30  but  to  the  original  30  as  well  as  that.     Though 

the  relative  displacements  are  as  50  to  30,  the  relative  residuary 

resistances  are  as  50  X  77  to  30  X  51  or  as  3850  to  1530.     So  an 

increase  of  displacement  of  66§  per  cent  means  an  increase  in 

residuary  resistance  of  about  165  per  cent. 

8.  Optimum  Midship  Section  Area.  —  The  displacement,  length 
and  longitudinal  coefficient  being  fixed,  the  area  of  midship  sec- 

tion can  be  calculated  without  difficulty.     For  convenient  refer- 
ence,  however,   Fig.    123,  derived   from   a   series   of   2.92   beam 

draught  ratio  on  the  lines  of  the  Standard  Series,  gives  contours  of 

/  L  \z 
(midship  section  area)  -5-  (  -  '-)  for  minimum  residuary  resistance Vioo/ 
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plotted  on  speed  length  ratio  and  displacement  length  ratio.  From 

this  diagram  there  may  be  readily  determined  in  a  given  case 

the  optimum  midship  section  area  as  regards  residuary  resistance. 

Of  course,  in  practice  there  are  many  considerations  affecting 

midship  section  area  besides  that  of  minimum  residuary  resist- 
ance, and  the  midship  section  cannot  be  fixed  from  considerations 

of  resistance  only. 

9.  Effect  of  Length.  —  Figs.  81  to  120  do  not  show  directly  the 
effect  of  variation  of  length  but  may  be  readily  utilized  to  do  this. 

Thus,  suppose  it  is  required  to  design  a  vessel  of  30,000  tons 

displacement  to  be  driven  at  29  knots.  For  preliminary  work 
B 

assume  —  =  3.75. 

Assuming  various  lengths  we  use  Fig.  78  to  determine  the 

corresponding  values  of  the  frictional  E.H.P.  and  the  Standard 
D 

Series  figures  for  —  =  3.75    to   determine  the  residuary  E.H.P. H. 

It  is  assumed  in  this  preliminary  work  that  it  is  possible  to  adopt 

the  optimum  cylindrical  coefficients. 

Fig.  124  shows  for  the  case  under  consideration  separate  curves 

of  frictional  and  residuary  E.H.P.  and  a  curve  of  their  sum,  or  the 

total  E.H.P.  all  plotted  on  L.  The  slow  growth  of  frictional 

E.H.P.  and  the  rapid  falling  off  of  residuary  E.H.P.  with  length 
are  evident.  It  is  seen  that  the  minimum  total  E.H.P.  corre- 

sponds to  a  length  of  950  feet.  It  has  already  been  pointed  out 

that  in  practice  the  length  should  be  made  less  than  that  for  mini- 
mum resistance. 

Thus,  if  the  vessel  were  made  850  feet  long  the  increase  of  E.H.P. 

would  be  infinitesimal,  and  if  made  750  feet  the  increase  would  be 

only  from  36,500  to  40,200.  As  the  length  is  made  shorter,  however, 

the  E.H.P.  begins  to  rise  very  rapidly.  This  figure  illustrates 

clearly  the  enormous  effect  of  length  upon  residuary  resistance. 
Thus  the  residuary  E.H.P.  is  a  little  over  5000  for  a  length  of 

950  feet  and  is  50,000  for  a  length  a  little  below  600  feet. 

It  may  be  noted  here  that  for  a  case  such  as  that  shown  in  Fig. 

124  it  would  usually  be  advisable  to  adopt  a  longitudinal  coeffi- 
cient above  that  for  minimum  resistance.  This  for  several  reasons, 
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among  which  may  be  mentioned  the  better  behavior  in  a  sea  way 
associated  with  the  fuller  ends,  and  the  better  maintenance  of 

speed  in  rough  water  associated  with  the  smaller  midship  section. 
V 

For  a  vessel  where — -  is  large,  however,  it  is  usually  advisable  to 

v£ 

make  the  longitudinal  coefficient  less  than  that  for  minimum  re- 
sistance. Such  vessels  are  nearly  all  torpedo  boats  or  destroyers, 

which  cruise  usually  at  speeds  below  their  maximum,  and  it  is 

advisable  to  save  power  at  cruising  speeds  by  using  a  longitudi- 
nal coefficient  a  little  below  that  best  for  maximum  speed. 

10.  Parallel  Middle  Body  Results.  —  The  Standard  Series  re- 
sults of  Figs.  8 1  to  1 20  do  not  apply  to  one  important  type  of 

vessel,  namely,  the  slow  vessel  of  speed  length  coefficient  from  .5 

to  .8  with  a  parallel  middle  body.  Two  questions  arise  in  this 

connection.  First,  whether  as  regards  resistance  it  is  advisable  to 

use  a  parallel  middle  body,  and  second,  what  is  the  most  desirable 

length  for  the  parallel  middle  body  in  a  given  case  ? 

Experiments  were  made  with  models  having  a  midship  section 

coefficient  of  .96,  a  ratio  of  beam  to  draught  of  2.5,  various  values 

of  displacement  length  coefficient  and  three  values  of  longitudinal 

coefficient,  namely,  .68,  .74  and  .80.  For  each  longitudinal  coeffi- 
cient and  displacement  length  coefficient  one  model  was  made 

without  parallel  middle  body  and  four  with  parallel  middle  body. 

The  lengths  of  parallel  middle  body  expressed  as  fractions  of  whole 

length  were  as  follows: 

For  .68  longitudinal  coefficient,  .09,  .18,  .27,  .36. 

For  .74  longitudinal  coefficient,  .12,  .24,  .36,  .48. 

For  .80  longitudinal  coefficient,  .15,  .30,  .45,  .60. 

Curves  of  residuary  resistance  were  deduced  somewhat  as  in  Figs. 
81  to  120. 

It  was  found  that  at  low  speeds  there  is  a  distinct  advantage  in 

using  parallel  middle  body.  This  means,  of  course,  that  at  these 

speeds  for  a  given  longitudinal  coefficient  it  is  advisable  to  place 

as  much  displacement  as  possible  amidships  and  to  fine  the  ends. 

It  was  found  too  that  when  contours  of  residuary  resistance 

were  plotted  for  a  given  longitudinal  coefficient  and  speed  length 
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coefficient,  the  abscissae  being  percentages  of  parallel  middle  body 

and  the  ordinates  displacement  length  coefficients,  the  contours  were 

practically  vertical  in  the  vicinity  of  the  optimum  length  of  paral- 
lel middle  body  or  that  for  minimum  residuary  resistance.  In  other 

words,  under  these  conditions  the  residuary  resistance  in  pounds 

per  ton  does  not  vary  much  with  displacement  length  coefficient 

and  the  latter  can  be  practically  eliminated  as  a  variable.  Hence, 

for  the  purpose  in  hand  the  results  of  the  experiments  with  the 

models  of  parallel  middle  body  may  be  summarized  in  Figs.  125, 

126  and  127  which  apply  to  the  three  cylindrical  coefficients  used, 

namely,  .68,  .74  and  .80.     Thus,  consider  Fig.  126.     The  abscissae 
y 

are  values  of  —  —  •    One  curve  shows  percentage  length  of  parallel 

middle  body  for  minimum  residuary  resistance.  The  correspond- 
ing residuary  resistance  is  given.  For  convenience,  two  other 

curves  are  given,  which  show  approximately  the  percentages  of 

parallel  middle  body  greater  and  less  than  the  optimum,  which 

correspond  to  residuary  resistance  ten  per  cent  greater  than  the 

minimum.  These  give  an  idea  of  the  variations  of  length  of  par- 
allel middle  body  permissible  without  great  increase  of  residuary 

resistance. 

That  the  saving  by  the  use  of  parallel  middle  body  is  real  is 

evident  from  Fig.  128.  This  gives  the  three  curves  of  residuary 

resistance  in  pounds  per  ton  for  the  optimum  length  of  parallel 

middle  body  from  Figs.  125,  126  and  127  and  average  curves  for 

the  same  longitudinal  coefficients  for  the  Standard  Series  with  no 

parallel  middle  body.  The  lines  of  the  Standard  Series  appear  to 

be  slightly  superior  to  those  used  for  the  models  with  middle  body, 

but  even  so  the  saving  by  the  use  of  the  optimum  length  of  par- 
allel middle  body  is  appreciable. 

While  three  coefficients  are  not  enough  to  fair  in  exact  cross 

curves  on  longitudinal  coefficient,  an  approximation  can  be  made 

from  them  of  ample  accuracy  for  practical  purposes,  and  Fig.  129 

shows  plotted  on  speed  length  coefficient  and  longitudinal  coeffi- 
cient by  full  lines  contours  of  optimum  length  of  parallel  middle 

body  and  by  dotted  lines  corresponding  residuary  resistance  in 

pounds  per  ton.  It  should  be  understood  that  the  optimum 
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length  of  parallel  middle  body  shown  in  Fig.  129  can  be  materially 
departed  from,  as  indicated  in  Figs.  125,  126  and  127,  without 
much  increase  of  residuary  resistance. 

Particular  attention  is  invited  to  Fig.  129  which  shows  how 
rapidly  residuary  resistance  increases  with  speed  for  full  models 
and  also  how  rapidly  at  speeds  above  the  very  lowest  it  increases 
with  increase  of  longitudinal  coefficient.  A  judicious  selection  of 

a  longitudinal  coefficient  suitable  for  the  speed  is  just  as  impor- 
tant for  slow  vessels  as  for  fast.  While  hard  and  fast  rules  cannot 

be  laid  down,  experience  appears  to  indicate  that  few  good  de- 
signers adopt  coefficients  and  proportions  for  slow  ships  such  that 

the  residuary  resistance  is  much  over  30  per  cent  of  the  total;  and 
though  it  is  as  low  as  20  per  cent  of  the  total  in  but  few  cases, 

this  figure,  if  it  can  be  attained  for  low-speed  ships,  results  in 
vessels  which  are  very  economical  in  service. 

15.   Squat  and  Change  of  Trim 

In  discussing  the  disturbance  caused  in  the  water  by  a  ship, 
this  question  has  been  touched  on,  Figs.  45  to  49  showing  changes 
of  trim  and  level  for  two  models  at  several  speeds. 

i.  Changes  of  Level  of  Bow  and  Stern.  —  It  is  the  practice  at 
the  United  States  Model  Basin  when  towing  models  for  resistance 
to  measure  the  rise  or  fall  of  bow  and  stern  and  then  plot  curves 
showing  the  relation  between  speed  and  change  of  level  of  bow  and 

of  stern.  These  results  apply  linearly  to  model  and  ship  at  corre- 
sponding speeds;  that  is  to  say,  if  the  ship  dimensions  are  /  times 

those  of  the  model,  the  rise  of  bow  of  the  ship  at  a  given  speed  will 
be  I  times  the  rise  of  the  model  at  corresponding  speeds. 

This  fact  is  taken  advantage  of  in  plotting  the  curves  of  Figs.  130 
to  139,  which  show  for  10  models  curves  of  change  of  level  of  bow 
and  stern,  the  departures  of  bow  and  stern  from  original  level  being 
expressed  as  fractions  of  length  L  and  plotted  not  on  actual  speeds 

y 
but  on  values  of  —-=.  •     These  curves  are  then  applicable  to  any  size 

of  ship  upon  the  lines  of  the  model  from  which  they  were  deduced. 
Actual  values  of  rise  and  fall  can  be  determined  promptly  for  any 
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speed  and  length  of  ship  by  multiplying  by  L  the  values  of  the 
V 

curve  ordinates  for  the  -  —  values  of  the  ship.     Change  of  trim  in 
VL 

degrees  can  be  determined  with  sufficient  approximation  by  multi- 
plying the  difference  between  the  scale  values  of  bow  and  stern 

levels  by  the  constant  57.3,  the  value  in  degrees  of  a  radian  or 

unity  in  circular  measure.  There  are  given  on  the  face  of  each 

figure  the  values  of  the  displacement  length  coefficient,  the  longi- 
tudinal coefficient  and  the  midship  section  coefficient  of  the  corre- 

sponding model,  thus  enabling  adequate  ideas  of  its  general  type 
to  be  formed. 

The  curves  of  Figs.  130  to  139  show  what  would  happen  to  vessels 

that  are  towed.  The  propeller  suction  in  the  case  of  screw  steamers 

would  cause  such  vessels  when  self-propelled  to  sink  more  by  the 
stern  than  indicated,  but  the  difference  would  not  be  great. 

2.    General  Conclusion  as  to  Level  and  Trim  Changes  with  Speed. 

-  The  results  of  Figs.  130  to  139  are  typical  of  results  shown  by 
hundreds  of  other  models  which  warrant  the  general  conclusions 

below  upon  the  subject  of  the  change  of  level  and  trim  of  vessels 
under  way  in  deep  smooth  water. 

V 
i  .   At  low  and  moderate  speeds  below  -  —  =  i  .o  both  bow  and 

stern  settle.     For  short  full  vessels  this  bodily  settlement  is  much 

greater  than  for  long  fine  vessels. 
V 

2.  Below—  —  =  i.o  about,  there  is  little  or  no  change  of  trim. VL 

In  the  majority  of  cases  the  bow  settles  a  little  faster  than  the  stern, 

particularly  for  rather  full  vessels. 
V 

3.  As  speed  is  increased  beyond  —  =  =  i.o  the  bow  settles  more 

*^  Li 

y 
slowly,  reaches  an  extreme  settlement  at  about  —  -  =  1.15,  and 

»     ±-4 

y 
soon  begins  to  rise  rapidly,  reaching  its  original  level  when  -   =  = 

VL 

1.3  to  1.4,  and  continuing  to  rise.     The  stern  settles  more  and  more 
Y 

rapidly  beyond  about  —  =  =1.2,  and  settles  much  more  rapidly 
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than  the  bow  rises,  so  that  the  ship  as  a  whole  continues  to  settle 

while  rapidly  changing  trim. 
V 

4.   At  about  —-=.  =  1.7  to  1.8  the  stern  is  settling  less  rapidly  than 

the  bow  is  rising,  so  that  bodily  settlement  reaches  its  maximum. 
y 

The  stern  does  not  change  its  level  much  beyond  —  =  =  2.0,  while  the 

VL 

bow  rises  always  with  increase  of  speed,  the  result  being  that  the 
y 

vessel  is  rising  again  at  speeds  beyond  —  -  —  =  2.0  about.      The 

VL 

center  of  ordinary  vessels  will  never  rise  to  its  original  level  at  any 

practicable  speed;  but,  since  the  effect  of  the  passage  of  the  vessel 

is  to  depress  the  immediately  surrounding  water,  it  may  seem  at 

very  high  speeds  as  if  the  vessel  had  risen  above  its  original  level. 

Vessels  of  special  forms  and  skimming  vessels  if  driven  to  extreme 

speeds  may  rise  bodny. 

3.   Critical  or  Squatting  Speed.  —  The  most  striking  feature  of 

change  of  level  curves  is  the  abrupt  change  at  about  -  =  =  1.2, 

the  critical  speed  at  which  the  bow  begins  to  rise  and  the  stern  to 

settle  abruptly,  causing  rapid  change  of  trim. 

This  "squatting"  is  often  thought  to  be  a  cause  of  excessive  resist- 
ance. As  a  matter  of  fact,  it  is  simply  a  result  of  large  bow  wave 

Y 
resistance.     At-   -  =  i.i  to  1.2  the  first  hollow  of  the  bow  wave VL 

is  somewhere  near  amidships  and  the  second  crest  somewhere  for- 
ward of  the  stern  holding  it  up,  as  it  were.  With  increase  of  speed 

the  crest  moves  aft  clear  of  the  stern  and  the  hollow  moves  aft 

toward  the  stern.  The  stern,  of  course,  drops  into  this  bow  wave 

hollow,  causing  the  "squatting"  or  rapid  change  of  trim  noticed. 
As  speed  is  increased  the  hollow  in  turn  moves  beyond  the  stern 
and  the  vessel  advances  on  the  back  of  its  own  bow  wave,  as  it  were. 

The  higher  the  speed,  the  longer  the  bow  wave  and  the  closer  the 
vessel  is  to  the  crest. 

It  is  perfectly  true  that  marked  squatting  generally  means  great 
resistance,  because  it  is  the  result  of  an  excessive  bow  wave  with  a 

deep  first  hollow.  With  no  bow  wave  there  would  be  no  squatting, 
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and  with  slender  models  having  small  bow  waves  squatting  is  much 

less  marked  than  for  short  full  models.  In  every  case,  however, 

it  is  a  symptom  rather  than  a  cause  of  resistance. 

4.   Perturbation  below  Critical  Speed.  —  Figs.  131,  132,  133  and 
139  show  perturbation  in  the  change  of  level  curves  below  the 
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have  such  strong  bow  waves  that  as  the  hollow  corresponding  to 
V 
—  =  1.0  passes  the  stern  it  drops  into  it  and  the  bow  rises. 

V      J^j 

Reverse  operations  take  place  as  the  next  bow  wave  crest  passes, 

and  then  we  reach  the  critical  speed,  when  the  stern  drops  into  the 
V 

bow  wave  hollow  corresponding  to  -—=.  =  1.2  and  over. 

vZ 

Instead  of  the  pronounced  perturbations  of  quite  full  models 

we  find  for  moderately  full  models  the  wave  hollows  and  crests 

passing  the  stern  at  speeds  below  the  critical  speed  cause  the  curves 

of  change  of  level  to  have  flat  or  unfair  places.  Fig.  135  is  a  case 

in  point. 

For  fine  models  the  bow  wave  is  generally  so  small  and  the  change 
of  level  also  so  small  that  no  effect  of  the  bow  wave  can  be  traced 

V 
in  the  curves  until  we  reach  the  critical  speed  —  =  =  1.2. 

In  considering  Figs.  130  to  139  we  should  bear  in  mind  that  the 

large  variations  of  level  and  trim  shown  are  for  speeds  reached  by 

very  few  vessels. 

The  curves  of  Figs.  130  to  139  show  changes  of  level  with  reference 
to  the  natural  undisturbed  water  level,  and  not  with  reference  to  the 

level  of  the  water  in  the  immediate  vicinity  of  the  ship.  We  have 

already  seen  in  discussing  the  disturbance  of  the  water  by  a  ship 

that,  as  illustrated  in  Figs.  45  to  49,  the  passage  of  the  ship  causes 

disturbances  of  water  level  in  its  vicinity  the  net  result  being  that 

on  the  average  there  is  depression  of  the  water  immediately  sur- 
rounding the  vessel. 

The  changes  of  level,  trim,  etc.,  shown  by  vessels  under  way  in 

shallow  water  differ  somewhat  from  those  found  in  deep  water,  and 

will  be  taken  up  when  considering  other  shallow-water  phenomena. 
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16.   Shallow-Water  Effects 

1.  Changes  in  Nature  of  Motion  from  that  in  Deep  Water.  - 
It  is  to  be  expected  that  as  the  water  shoals  the  resistance  of  a 
ship  moving  through  it  will  become  greater.     When  the  water  can 

move  freely  past  the  ship  in  three  dimensions  the  pressures  set  up 

by  the  ship's  motion  would  naturally  be  less  than  when  shallowness 
compels  the  water  to  motions  approaching  the   two-dimensional 
character.     Referring  to  Fig.  21,  the  greater  stream  pressures  for 

plane  or  two-dimensional  motion  are  evident.     In  shallow  water 
these  extra  pressures  cause  waves  larger  than  those  in  deep  water, 
and  in  shallow  water  the  lengths  of  waves  accompanying  a  ship 
at  a  given  speed  are  greater  than  for  the  same  speed  in  deep  water. 

These  are  the  principal  factors  differentiating  shallow-water  resist- 

ance from  deep-water  resistance.     There  is  a  third  factor,  namely, 
the  change  in  stream  velocities  past  the  surface  of  the  ship  when  in 
shallow  water.     This  factor  would  increase  resistance  somewhat, 
but  its  effect  would  seem  to  be  so  small  that  it  is  not  necessary  to 
consider  it  since  we  cannot  at  present  determine  with  much  accuracy 
the  effect  of  the  dominant  factor,  namely,  the  change  in  wave 
production.     We  can,  however,  as  a  result  of  experiments  with 

models  and  full-sized  boats  get  an  excellent  qualitative  idea  of  the 
phenomena. 

2.  Results  of  Experiments  in  Varying  Depths.  —  Figs.   140  to 
144  show  a  series  of  curves  of  resistance  or  indicated  horse-power. 
The  data  from  which  these  curves  were  constructed  came  from 

widely  separated  sources.     The  information  regarding  the  German 
torpedo  boat  destroyer  came  originally  from  a  paper  by  Naval 
Constructor    Paulus    in    the    Zeitschrift    der    Vereines    Deutsche 
Ingenieure  of  December  10,  1904.     Data  for  the  Danish  torpedo 

boats  was  given  by  Captain  A.  Rasmussen,  one  of  the  first  experi- 

mental investigators  in  this  field.     The  "  Makrelen  "  data  was 
given  in  Engineering  of  September  7,  1894,  and  the  "Sobjornen" 
data  in  a  paper  read  before  the  Institution  of  Naval  Architects  in 
1899.     Data  for  the  torpedo  boat  model  was  given  by  Major 

Giuseppe  Rota,  R.  I.  N.,  in  a  paper  read  in  1900  before  the  Insti- 
tution of  Naval  Architects,  the  experiments  with  the  model  having 
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been  made  in  the  Experimental  Model  Basin  at  Spezia,  Italy. 

Information  from  which  the  curves  for  the  Yarrow  destroyer  were 

deduced  was  given  in  a  paper  before  the  Institution  of  Naval 

Architects  in  1905  by  Harold  Yarrow,  Esq.  In  Mr.  Yarrow's 
paper  curves  of  E.H.P.  were  given  as  deduced  from  model 

experiments  in  the  North  German  Lloyd  experimental  basin  at 
Bremerhaven. 

Each  curve  refers  to  a  definite  depth  of  water,  which  has  been 

expressed  as  a  fraction  of  the  length  of  the  vessel.  Furthermore, 
y 

speed  has  been  denoted  not  absolutely  but  by  values  of — 

VL 

3.  Deductions  from  Experimental  Results.  —  Examining  the 
curves,  which  range  from  those  for  a  145-pound  model  to  those  for 

a  6oo-ton  destroyer,  and  bearing  in  mind  the  varying  depths  ex- 
pressed as  fractions  of  the  length,  we  seem  warranted  in  concluding 

that  in  a  depth  which  is  a  given  fraction  of  the  length  the  perturba- 
V 

tions  occur  at  substantially  the  same  values  of  -  —  regardless  of 

the  absolute  size.  The  reason  for  this  must  be  sought  in  the  rela- 
tion between  the  length  of  a  wave  traveling  at  a  given  speed  in  a 

given  depth  of  water  and  length  of  vessel. 

By  the  trochoidal  theory  the  formula  giving  wave  speed  in  shallow 
water  is 

4*f  _ 

4*^  27T 
6        *+I 

where  /  is  length  of  wave  in  feet,  d0  is  depth  of  water  in  feet  and  v 

is  speed  of  wave  in  feet  per  second. 

Now  let  L  denote  length  of  ship  in  feet  and  put  I  =  cL. 
Also  let  V  denote  common  speed  of  ship  and  wave  in  knots. 

Then    V  =  v  ~;   —•     Substituting,  reducing  and  putting g  =  32.1 6 OOoO 

we  have 
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Fig.  145  shows  contour  curves  of  equal  values  of  c  plotted  on  axes  of 

7  and  —-='  Fig.  145  also  shows  in  dotted  lines  curves  deduced L  VL 

somewhat  arbitrarily  from  Figs.  140  to  144  and  other  data  showing 
the  loci  of  the  points  at  which  increase  of  resistance  due  to  shoal 

water  becomes  noticeable,  attains  its  maximum  and  dies  away. 

The  data  is  not  thoroughly  concordant,  and  the  dotted  curves  of 

Fig.  145  should  be  regarded  as  a  tentative  attempt  to  locate  regions, 
rather  than  points.  The  broad  phenomena,  however,  are  clear. 

A  high-speed  vessel  in  water  of  depth  less  than  her  length  will  at  a 

given  speed  in  a  given  depth  begin  to  experience  appreciably  in- 
creased resistance  as  compared  with  its  resistance  in  deep  water. 

The  increase  of  resistance  above  the  normal  becomes  greater  and 

greater  as  speed  increases  until  it  reaches  a  maximum.  This  maxi- 
mum appears  to  be  at  about  a  speed  such  that  a  trochoidal  wave 

traveling  at  this  speed  in  water  of  the  same  depth  is  about  ii  times 

as  long  as  the  vessel.  As  the  vessel  is  pushed  to  a  higher  speed  the 

resistance  begins  to  approach  the  normal  again,  reaches  and  crosses 

the  normal  at  about  the  speed  indicated  in  Fig.  145,  and  for 

higher  speeds  the  resistance  in  shallow  water  is  less  than  in  deep 
water. 

It  was  at  one  time  supposed  that  the  speed  for  maximum  increase 

in  resistance  was  that  of  the  wave  of  translation.  This,  however, 

as  illustrated  in  Fig.  145,  holds  only  for  water  whose  depth  is  less 

than  .2  L.  For  greater  depths  the  speed  of  the  wave  of  translation 

rapidly  becomes  greater  than  the  speed  of  maximum  increase  of 
resistance. 

There  are  obvious  advantages  in  the  model-basin  method  of 
investigating  this  subject.  Consider,  for  instance,  Fig.  144  showing 
actual  falling  off  of  resistance  beyond  the  critical  speed  in  the 

curves  for  the  Yarrow  destroyer  which  were  obtained  by  model- 
basin  experiment.  This  remarkable  feature  would  never  be  detected 

on  a  full-scale  trial  of  an  actual  destroyer,  because  if  such  a  vessel 
were  forced  to  surmount  the  hump  it  would  leap  the  gap,  as  it 

were,  and  show  a  sudden  jump  in  speed.  Theoretically  if  the  depth 

of  water  were  absolutely  uniform  it  would  be  possible  after  the 

jump  in  speed  to  gradually  throttle  down  until  the  boat  would  be 
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working  in  the  hollow,  but  the  chance  of  this  ever  being  done,  unless 
it  were  known  that  the  hollow  should  be  there,  is  infinitesimal. 

4.   Shallow- Water  Experiments  at  United  States  Model  Basin.  — 
That  the  hollow  really  exists,  as  shown  in  the  curves  for  the  Yarrow 

destroyer,  is  confirmed  by  published  results  of  other  model-basin 

shallow-water  experiments  and  by  a  number  of  carefully  made  ex- 
periments in  the  United  States  Model  Basin. 

Fig.  147  shows  curves  of  resistance  and  change  of  trim  of  the 

model  of  a  fast  scout  in  various  depths  of  water.  The  model  was 

20  feet  long  on  L.W.L.,  with  2'.  268  beam  and  o/.842  mean  draught. 
It  displaced  in  fresh  water  996  pounds.  The  corresponding  speed 

of  the  model  for  30  knots  speed  of  the  full-sized  ship  would  be 
only  6. 6 1  knots,  but  the  experiments  were  carried  to  a  much  higher 

speed  as  a  matter  of  interest. 

The  sudden  and  peculiar  drops  in  the  shallow-water  curves  are 
very  marked.  It  is  seen  that  they  are  accompanied  by  peculiar 

corresponding  perturbations  in  the  curves  showing  change  of  trim 

or  change  of  level  of  bow  and  stern.  We  have  from  Fig.  147 : 

Depth  of  water    

1  8" 
24" ?  6" 

Speed  of  maximum  %  increase  of  resistance,  knots  .  .  . 
Trochoidal  wave  lengths  —  above  speed  and  depth.  .  . 
Speed  of  hollow  in  resistance  curve,  knots         

4.02 

25-5' 
4.  60 

4-54 23-5 

C  .Os 

5-21 
21.4' 

c  o? 

Speed  of  wave  of  translation  or  trochoidal  wave  of 
infinite  length  in  the  depth  of  water,  knots     

4.11 

J     7C 

;  &-> 

The  general  features  of  Fig.  147  agree  closely  with  results  of 
trials  of  other  models  in  shallow  water  at  the  United  States  Model 

Basin.  Some  peculiar  wave  phenomena  appear  in  such  trials. 

In  running  such  models  in  deep  water  or  in  shallow  water  at  speeds 

well  below  that  of  the  hump  the  disturbance  set  up  in  the  water 

is  inappreciable  a  short  distance  ahead  of  it.  But  at  about  the 

speed  of  the  hump  the  wave  at  the  bow  tends  to  manifest  itself  as 

a  crest  extending  straight  across  the  basin  and  well  ahead  of  the 

bow  —  as  much  as  8  or  10  feet.  As  the  speed  is  increased  this 
singular  manifestation  disappears,  and  again  there  is  no  appre- 

ciable disturbance  ahead  of  the  model.  These  phenomena  have 

not  been  given  careful  investigation.  A  reasonable  explanation  of 

the  sudden  drop  of  the  resistance  curve  would  be  that  it  corre- 
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spends  to  the  wave  of  translation,  which  advances  with  less  de- 
mand upon  the  model  for  energy  to  maintain  it  than  was  the  case 

at  a  slightly  lower  speed  when  the  wave  system  was  being  built 
up  even  ahead  of  the  model. 

At  the  higher  speeds  the  waves  are  forced  waves,  necessarily 
departing  widely  from  trochoidal  waves.  It  should  be  remarked 

that  the  high  "deep  water"  resistance  of  the  model  at  speeds  in 
the  vicinity  of  8  knots  may  be  in  part  due  to  the  limited  depth 
(14  feet)  of  the  basin,  but  is  probably  mostly  due  to  the  appear- 

ance of  the  last  normal  deep-water  hump  of  resistance  curves. 
The  hump  which  appears  below  6  knots  in  46  inches  depth  is 
found  at  about  8  knots  in  14  feet  depth. 

5.  Shallow-Water  Resistance  for  Moderate  and  Slow  Speed 
Vessels.  —  The  case  of  greatest  practical  interest  is  that  of  the 
vessel  of  moderate  speed  —  say  capable  of  a  deep-water  speed  in 
knots  of  .9  \/L  or  less.  Such  a  vessel  in  shallow  water  cannot 
be  pushed  beyond  the  last  hump  of  her  resistance  curve,  and  hence 
always  loses  speed  in  shallow  water.  For  such  vessels  we  would 
like  to  know  the  least  depth  of  water  in  which  resistance  is  not 
appreciably  increased  or  speed  appreciably  retarded  and  the 
amount  of  increase  of  resistance  in  water  that  is  shallower. 

Results  of  experiments  bearing  directly  on  the  first  question 
were  published  in  1900  in  a  paper  before  the  Institution  of  Naval 
Architects  by  Major  Giuseppe  Rota.  Major  Rota  experimented 
with  models  of  five  vessels,  one  being  the  torpedo  boat  model, 

whose  results  are  given  in  Fig.  143.  Each  model  was  run  in  vari- 
ous depths  of  water  and  the  results  carefully  analyzed  for  the  pur- 

pose of  determining  the  depth  at  which  increased  resistance  began. 
For  the  purpose  of  analysis  and  deducing  results  applicable  to 

other  vessels  it  is  important  to  determine  in  connection  with  such 
experimental  results  the  fundamental  variables,  as  it  were.  For 
instance,  in  this  case  shall  we  connect  the  depth  of  water  with  the 
length,  the  beam  or  the  draught  of  the  ship?  We  have  seen  that  for 

high-powered  vessels  we  were  led  to  the  use  of  the  ratio  between 
depth  of  water  and  length  of  vessel,  which  gives  satisfactory  re- 

sults as  regards  determination  of  critical  points,  etc.  Considera- 
tion, however,  appears  to  indicate  that  for  the  vessel  of  moderate 
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speed  it  would  probably  be  better  to  use  the  ratio  between  depth 
of  water  and  mean  draught  of  ship,  allowing  the  length  factor  to 

come  in  through  the  speed-length  coefficient. 

While  Rota's  models  could,  of  course,  each  be  expanded  to  rep- 
resent any  number  of  ships,  he  gives  one  size  of  ship  for  each  as 

shown  in  the  table  below. 

Model  No    .               i 2 

-2 

4 c 

Displacement  of  ship  in  tons.  . 
Length  of  ship  in  feet    

12,000 

408 

8OOO 

IS? 

60OO 

l6l 

3000 

?8o 
IOOO 

267 

Beam  of  ship  in  feet    7c  .  e 67 ce 

40.  3 

28 
Mean  draught  of  ship  in  feet  . 
Block  coefficient    

26.5 .  =u 

21.4 

.  so 
2O.  2 

•  ̂ o 

13-8 

•  40 

9.6 

.47 

Taking  Rota's  curves  giving  the  depths  for  no  increase  of  re- 
sistance for  various  speeds  of  the  above  ships  and  replotting  them 

V 
to  express  in  each  case  a  relation  between  —  —  and  the  depth  of 

VL 

water  expressed  in  draughts  of  the  ship,  we  have  the  results  shown 
in  Fig.  146.  It  is  seen  that  for  each  model  the  locus  thus  plotted 
is  reasonably  close  to  a  straight  line  and  that  the  dotted  line  is 
reasonably  close  to  the  average  of  the  five  up  to  the  speeds  not 

V 
greater  than  —-=.  =  .9.     Curiously  enough,  the  two  finer  models  fall 

above  the  dotted  line.  This,  however,  is  probably  due  to  the 

fact  that  they  are  vessels  of  distinctly  shallow-draught  type,  and 
because  of  that,  in  spite  of  their  fineness,  need  a  depth  of  more 

draughts  than  vessels  of  deeper-draught  type.  A  scrutiny  of  Rota's 
results,  however,  indicates  that  for  models  4  and  5  the  decrease  of 
depth  from  that  of  lines  4  and  5  in  Fig.  146  to  that  of  the  dotted 

line  will  involve  in  practice  an  increase  of  resistance  barely  percep- 

tible. Then  Rota's  experiments  may  be  fairly  summarized  by  the 
straight  line  of  Fig.  146.  If  H  denotes  the  draught,  it  is  seen  from 
the  diagram  that  this  line  gives  us  the  relative  minimum  depth  for 

V 
no  increase  of  resistance  = This  formula  giving  mini- 

mum depth  for  no  increase  of  resistance  applies,  strictly  speaking, 

only  to  Rota's  five  models,  but  it  is  seen  that  they  cover  the  range 
of  usual  proportions  for  models  of  a  fine  block  coefficient. 
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The  formula,  however,  has  been  found  to  apply  satisfactorily  to 

models  of  block  coefficient  higher  than  .5  tested  in  the  United 

States  Model  Basin.  One  model  of  block  coefficient  slightly  above 

.65  was  tried  in  various  depths  and  the  formula  found  to  apply 

satisfactorily. 

To  sum  up,  I  think  that  the  above  formula  from  Rota's  experi- 
ments may  be  confidently  applied : 

1.  To  vessels  not  of  abnormal  form  or  proportions  up  to  a 
block  coefficient  of  .65. 

V 
2.  For  speeds  for  which  ~=is  not  greater  than  .9. 

The  formula  may  be  of  use  beyond  the  limits  indicated  above, 

but  in  such  cases  needs  to  be  applied  with  caution  and  discretion. 

6.  Trial  Course  Depths.  —  As  illustrative  of  the  little  impor- 
tance attached  to  this  question  until  a  comparatively  recent  date, 

Major  Rota  in  his  1900  paper  states:  "Stokes  Bay,  where  British 
ships  used  to  undergo  their  speed  trials,  is  only  59  feet  deep;  the 

official  measured  mile  at  the  Gulf  of  Spezia,  Italy,  is  about  62  feet 

deep;  the  measured  miles  at  Cherbourg  and  Brest  are  49  and  59 

feet  respectively."     Such  depths  are  now  regarded   as  entirely 
inadequate  and  no  speed   trials  of  large  ships  are  regarded  as 

accurate  unless  made  in  deep  water.     Curiously  enough,  however, 

as  indicated  in  Fig.  145,  the  shallow  course  exaggerates  the  speed 

of  the  very  fast  vessel,  and  there  are  many  torpedo  craft  in  exist- 

ence whose  full-speed  trials  were  held  on  shallow  courses  with 
resulting  speeds  greater  than  would  have  been  attained  in  deep 
water. 

7.  Percentage  Variations  of  Resistance  in  Shallow  Water.  - 
Coming  now  to  the  question  of  the  actual  increase  of  resistance 

of  a  given  vessel  in  water  of  a  given  depth,  it  is  necessary  again 

to  make  a  distinction  between  the  vessel  of  very  high  power  and 

speed  and  the  vessel  of  moderate  speed.     For  the  former  it  is 

probably  best,  as  before,  to  use  as  the  governing  variable  the  ratio 

between  depth  and  length,  y-     For  the  latter  it  still  seems  best 

to  use  the  ratio  between  depth  and  draught,^-     For  either  type, H 
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v 
expressing  the  speed  by  — —  >  we  are  able  for  each  vessel  or  model 

for  which  there  is  adequate  experimental  information  to  draw  con- 
y 

tours  on  — =  and  ratio  between  depth  and  length  or  depth  and VL 
draught  as  the  case  may  be,  which  show  percentages  of  increase 

over  deep-water  results.  For  the  very  high-speed  vessels  percent- 
ages of  decrease  will  also  appear.  This  work  at  best  can  be  only 

a  tolerably  good  approximation,  and  hence  we  assume  in  it  that 

the  law  of  comparison  applies  fully  to  the  total  model  resistance. 

Figs.  148  to  153  are  percentage  increase  diagrams,  the  type  of 

vessel  being  indicated  in  each  case. 

The  diagrams  for  the  high-speed  vessels  show  percentages  of 

decrease.  For  the  moderate-speed  vessels  the  percentage  increase 
of  resistance  goes  up  rapidly  with  increase  of  displacement  length 

coefficient.  While  Figs.  151,  152  and  153  cannot  be  said  to  cover 

the  ground  as  would  be  desirable,  they  will  be  better  than  nothing 
and  of  help  in  many  cases. 

Inland  navigation  is  mostly  smooth-water,  shallow-water  navi- 
gation, and  there  is  great  need  of  a  complete  investigation  into 

the  features  of  form  affecting  shallow-water  resistance.  While  we 
know  quite  well  the  general  features  of  the  form  best  adapted  to 

speed  in  deep  water  in  a  given  case  we  do  not  know  the  same  thing 

for  shallow  water.  It  appears  probable,  however,  that  if  we 

wish  to  make  12  knots  in  shallow  water  and  are  considering  vari- 
ous models,  that  one  which  will  drive  easiest  in  deep  water  at  a 

higher  speed  —  say  1 5  knots  or  so  —  will  drive  easiest  in  shallow 
water  at  the  i2-knot  speed.  If  high  speed  is  to  be  attempted  in 
inland  navigation  there  are  practical  advantages  in  length  which 

would  be  excessive  for  deep-water  work.  Wave  making,  with  the 
resulting  wash  at  banks  and  piers,  should  be  kept  as  low  as  possi- 

ble for  boats  in  river  service. 

8.  Shallow- Water  Influence  upon  Trim  and  Settlement.  —  Fig. 
147  shows  the  curves  of  the  settlement  of  bow  and  stern  of  a  scout 
model  in  shallow  water.  It  is  seen  that  the  shallower  the  water 

the  lower  the  speed  at  which  marked  change  of  trim  begins,  and 

within  the  limits  of  practicable  speed  the  greater  the  change  of  trim. 
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For  speeds  above  those  at  all  possible  the  trim  changes  would  not 

very  greatly  depart  from  those  for  deep  water.  We  are  more  con- 
cerned in  practice,  however,  with  settlement  and  change  of  trim 

at  low  speeds,  corresponding  to  those  at  which  shallow  channels 

would  be  traversed.  Fig.  147  shows  that  at  such  speeds  the  effect 

of  shoal  water  is  simply  to  increase  the  settlement  of  both  bow 

and  stern.  In  its  broad  features,  Fig.  147  is  fairly  typical  of 

change  of  trim  results  in  shoal  water  for  a  number  of  other  models. 

We  may  say  that  the  effect  of  shoal  water  upon  a  vessel  under 

way  is  to  increase  the  natural  settlement  of  both  bow  and  stern 

at  low  speed.  The  shallower  the  water  the  lower  the  critical  speed 

at  which  squatting  or  excessive  change  of  trim  begins  and  the 

greater  the  change  of  trim.  At  high  speeds  the  shallower  the 
water  the  more  the  stern  settles  and  the  more  the  bow  rises.  At 

extreme  speeds,  however,  the  stern  does  not  appear  to  settle  or 

the  bow  to  rise  so  far  as  in  deep  water.  It  is  interesting  to  note 

in  Fig.  147  the  peculiar  perturbations  in  the  change  of  level  curves 
and  the  evident  close  connection  between  them  and  the  remark- 

able drops  in  the  resistance  curves. 

9.  Increase  of  Draught  in  Shallow  Channels.  —  In  practice 
there  are  very  few  vessels  of  sufficient  power  to  attain  high  speed 

in  shallow  water,  and  those  that  have  the  power  would  very  sel- 
dom use  it  in  shallow  water,  so  that  the  behavior  of  vessels  as 

regards  settlement  under  way  at  moderate  speed  in  shallow  chan- 
nels is  of  more  practical  importance  than  their  possible  behavior 

at  excessive  speeds. 

A  very  interesting  investigation  of  this  question  was  made  in 

connection  with  the  channel  of  New  York  Harbor,  and  was  de- 
scribed in  detail  by  Mr.  Henry  N.  Babcock  in  Engineering  News 

for  August  4,  1904.  This  channel  was  constantly  used  by  large 

steamers  passing  in  and  out  with  very  little  to  spare  between  their 

keels  and  the  bottom  of  the  channel.  There  were  repeated  com- 
plaints from  such  vessels  that  they  had  touched  bottom  in  places 

where  the  officers  in  charge  of  the  channels  were  unable  to  dis- 

cover spots  shoaler  than  the  still-water  draught  of  the  steamers. 
The  observations  were  confined  to  large  transatlantic  steamships 

passing  out  of  New  York,  averaging  over  550  feet  in  length.  They 
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were  made  at  three  points,  one  where  the  channel  was  80  to  100 

feet  deep,  one  where  the  low- water  channel  depth  was  from  31.1  to 

32.5  feet,  and  a  third  where  the  low- water  depth  was  from  31  to 

34.5  feet. 

The  general  scheme  of  most  of  the  observations  was  to  deter- 
mine the  height  above  water  of  marks  on  the  bow  and  stern  before 

the  steamer  left  her  pier.  Then  as  the  steamer  passed  the  observ- 
ing station  the  level  of  these  marks  was  determined  with  reference 

to  the  station,  and  as  soon  as  possible  after  the  passage  of  the 

vessel  the  water  level  was  determined  with  reference  to  the  observ- 

ing station.  Considering  all  the  circumstances,  exact  observations 

are  obviously  not  possible,  but  after  making  ample  allowance  for 

possible  errors  of  observation  Mr.  Babcock's  report  demonstrates 
conclusively  that  vessels  of  the  type  considered  when  under  way 
in  channels  settle  both  at  bow  and  stern,  and  the  shoaler  the  water 

and  higher  the  speed  the  more  they  settle.  It  was  not  practicable 

from  the  results  to  formulate  fully  conclusions  connecting  amount 

of  settlement  with  size  and  type  of  vessel,  speed  and  depth  of 

water,  but  Mr.  Babcock,  upon  analyzing  the  results,  concluded  that 

for  vessels  of  the  large  transatlantic  steamship  type  the  increase 

of  draught  in  feet,  when  still  water  clearance  under  their  keels  was 

less  than  about  10  per  cent  of  the  draught,  would  be  i  the  speed 

of  the  ship  in  miles  per  hour.  For  a  natural  clearance  of  some  30 

per  cent  of  the  draught  the  increase  in  feet  would  be  about  iV  the 

speed  of  the  ship  in  miles  per  hour,  and  for  intermediate  clearances 
intermediate  fractions  should  be  used. 

Further  observations  of  the  character  reported  by  Mr.  Babcock 

on  the  settlement  of  vessels  under  way,  not  only  in  shallow  channels 

but  in  canals,  would  be  of  much  interest  and  practical  value. 

17.  Rough- Water  Effects 

i.  Causes  of  Speed  Reduction. — The  effect  of  rough  water  upon 

speed  is  like  the  effect  of  foulness  of  bottom  —  almost  impossible  to 
reduce  to  quantitative  rules.  The  very  real  and  material  reduc- 

tion of  speed  of  vessels  in  rough  weather  is  of  universal  experience. 

This,  however,  is  not  always  due  to  increased  resistance  alone. 

The  motion  of  the  ship  may  render  it  impossible  to  develop  full 
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power.  The  danger  of  racing  may  render  it  inadvisable  to  use 

full  power.  The  disturbance  of  the  water  reduces  the  efficiency  of 

the  propellers.  The  conditions  may  render  it  impossible  to  use 

full  speed  without  risk  of  dangerous  seas  coming  on  board. 

2.  Features  Minimizing  Speed  Reduction.  —  The  increase  of 
resistance  in  rough  water  is  under  practical  conditions  largely  a 

question  of  absolute  size.  Waves  150  feet  long  and  10  feet  high 

would  not  seriously  slow  a  4o,ooo-ton  vessel  800  feet  long. 
A  vessel  of  a  few  hundred  tons  120  feet  long  would  find  them  a 

very  serious  obstacle  to  speed.  Pitching  enters  into  the  question 

of  rough-water  speed  as  a  very  important  factor. 
When  conditions  are  such  as  to  produce  severe  pitching,  speed  goes 

down  very  rapidly.  Pitching  exaggerates  nearly  all  causes  of  speed 

loss.  Not  only  is  actual  resistance  rapidly  increased  but  racing  is 

caused,  the  propeller  loses  efficiency  and  more  water  comes  on  board. 

If  it  were  possible  to  devise  a  vessel  which  would  not  pitch  it 

would  lose  much  less  speed  in  rough  water  than  one  that  does 

pitch;  but  though  many  naval  architects  have  strong  opinions  on 

the  subject  there  is  no  agreement  among  them  as  to  the  features 

of  model  which  minimize  pitching.  The  preponderance  of  opinion 

is  probably  in  favor  of  the  U-bow  type  and  rather  full  bow  water 
lines.  But  pitching  is  unfortunately  largely  a  question  of  condi- 

tions. Under  certain  conditions  of  sea,  course,  and  speed  one  type 

may  be  superior  and  under  slightly  changed  conditions  distinctly 
inferior. 

Apart  from  absolute  size  there  appears,  however,  to  be  one 

broad  consideration  which  is  of  some  value  as  a  guide.  Suppose 

we  have  two  2o-knot  vessels,  A  and  B,  of  about  the  same  power 
and  such  that  at  22  knots  A  offers  distinctly  less  resistance  than  B. 

There  is  little  doubt  that  on  the  average  A  would  lose  less  speed 

in  rough  water  than  B. 
When  for  a  vessel  intended  for  a  certain  service  it  is  necessary  to 

allow  in  the  design  for  the  effect  of  rough  water  upon  speed  there 

is  only  one  safe  method  to  follow  —  namely,  to  allow  a  reduction 
from  smooth-water  trial  conditions  to  rough-water  service  condi- 

tions based  upon  actual  experience  with  previous  vessels  in  the 
service. 
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1 8.  Appendage  Resistance 

1.  Appendages  Fitted.  —  Substantially  all  that  has  been  said 
about  resistance  hitherto  refers  to  the  resistance  of  the  main  body 

or  hull  proper.     There  are  found  on  actual  ships  appendages  of 

various  kinds,  such  as  rudders,  bar  keels,  bilge  keels,  docking  keels, 

shaft  swells,  shafts,   shaft   struts,  propeller  hubs  and   spectacle 

frames,  or  shaft  brackets  or  bosses.     Shaft  tubes,  or  removable 

tubes  around  the  outboard  shafts,  are  seldom  fitted  nowadays. 

The  appendages  fitted  vary.  Thus,  a  single-screw  merchant 
ship  with  flat  keel  will  have  practically  no  appendage  except 

the  rudder,  the  slight  swell  around  the  shaft  having  hardly  any 

effect.  For  such  a  vessel  the  appendage  resistance  would  seldom 

be  as  much  as  4  or  5  per  cent  of  the  bare  hull  resistance. 

A  twin  screw  vessel  with  large  bilge  and  docking  keels  and 

perhaps  two  pairs  of  struts  on  each  side  may  have  an  appendage 

resistance  as  much  as  20  per  cent  of  the  bare  hull  resistance. 

Appendage  resistance  is  largely  eddy  resistance  and  can  be  kept 

down  to  the  minimum  only  by  very  careful  attention  to  details  and 

the  application  of  adequate  fair  waters  wherever  needed. 

2.  Resistance  of  Bilge  and  Docking  Keels.  —  Bilge  keels  and 
docking  keels  should  follow  lines  of  flow  and  be  sharpened  at 

each  end.     When  this  is  done  it  is  generally  found  in  experiments 

upon  models  that  the  additional  resistance  due  to  them  is  not 

greater  than  that  due  to  the  additional  surface  alone.     In  fact 
the  additional  resistance  is  sometimes  found  to  be  less  than  that 

due  to  the  additional  wetted  surface.     Mr.  Froude  found  a  similar 

result  in   his  full-sized  Greyhound  experiments.      While   if   bilge 
keels  and  docking  keels  are  properly  located  and  fashioned  the 

additional  resistance  may  be  taken  as  that  due  to  their  wetted  sur- 
face only,  the  wetted  surface  they  add  is  often  very  considerable. 

In  models  bilge  keels  may  be  located  at  appreciable  angles 

with  the  natural  lines  of  flow  without  greatly  augmenting  resist- 
ance beyond  that  due  to  their  surface,  but  it  does  not  follow  that 

the  same  result  would  be  found  in  the  full-sized  ships.  It  is 
necessary  to  be  cautious  in  applying  the  Law  of  Comparison  to 

•eddy  resistance.  There  is  little  doubt  that  the  law  applies  to  the 
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Eddy  Resistance  behind  a  square  stern  post,  for  instance.  Here 

the  eddying  for  model  and  ship  is  found  in  each  case  over  cor- 
responding areas. 

But  in  the  case  of  a  bilge  keel  located  across  the  lines  of  flow 
we  may  readily  conceive  that  there  may  be  but  little  eddying 

around  the  model  bilge  keel  and  a  great  deal  around  the  full- 
sized  bilge  keel.  This  because  the  pressure  of  the  atmosphere  re- 

maining constant  the  total  pressure  around  the  full-sized  bilge 
keel  is  not  increased  in  the  proportion  required  to  insure  com- 

pliance with  the  Law  of  Comparison. 

3.  Resistance  of  Struts. — Probably  struts  and  spectacle  frames 
are  the  appendages  to  which  the  most  careful  attention  must  be 
paid  from  the  point  of  view  of  resistance.  Experiments  with  a 
number  of  strut  arms  of  elliptical  section  appear  to  indicate  that 
the  resistance  in  pounds  per  foot  length  may  be  expressed  with 
fair  approximation  for  areas  from  40  square  inches  to  175  square 

inches  by  the  following  semi-empirical  formula: 

R=^-(A  - 1000 

Where  R  is  resistance  in  pounds  per  foot  length,  V  is  speed 
through  the  water  in  knots  and  A  is  area  of  cross  section  of  strut 

in  square  inches.  The  coefficient  C  depends  upon  the  ratio  be- 
tween B,  the  thickness  of  the  strut  section,  and  L,  its  width  in 

direction  of  motion.  The  table  below  gives  values  of  C  for  vari- 
£ 

ous  values  of  —  • B 

L 

B 3 4 5 6 7 8 9 

10 ii 12 

C i.  880 1.318 

i-°73 

.940 
.858 .801 

.762 

.736 .  720 

.714 

From  the  point  of  view  of  resistance  only,  the  best  ratio  of 
breadth  to  thickness  would  be  10  or  over,  but  as  the  wide,  thin 
strut  requires  more  area  for  a  given  strength,  it  follows  that 

the  best  all-round  ratio  would  be  somewhat  smaller,  say  from 
7  tog. 
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Even  this  ratio  is  not  very  often  reached  in  practice,  the  tend- 
ency apparently  being  to  make  strut  arms  much  narrower  and 

thicker  than  they  should  be. 
As  regards  shape  of  section,  model  experiments  indicate  that  a 

pear-shaped  section,  or  a  section  of  rounding  forward  part  and 
sharp  after  part,  offers  the  least  resistance.  Such  a  section  may 
show  model  resistance  as  much  as  10  per  cent  below  the  elliptical 
section. 

There  is  doubt,  however,  whether  this  holds  for  full-sized  struts 
for  high-speed  vessels.  Study  of  Fig.  16  would  seem  to  indicate 
that  at  sufficiently  high  speeds  there  must  be  eddying  over  all  the 
rear  half  of  any  strut,  in  which  case  the  thickness  of  the  strut 
should  be  reduced  to  a  minimum.  From  this  point  of  view,  if  a 
strut  of  given  width  and  area  is  to  have  the  minimum  thickness 

for  a  given  type  of  head  the  rear  portion  should  be  made  of  paral- 
lel thickness  and  cut  off  square.  Furthermore,  from  this  point 

of  view,  if  air  were  piped  to  the  rear  of  a  strut  the  resistance 
would  be  decreased.  This  question  of  strut  resistance  is  worthy 
of  further  careful  experimental  investigation.  Pending  this,  the 
approximate  formula  and  coefficients  above  for  elliptical  struts 
may  be  used,  and  it  may  be  assumed  that  the  elliptical  form  is 
about  as  good  as  any.  For  moderate  speeds  the  rear  portion  of 
the  strut  may  be  brought  to  a  sharp  edge,  but  for  high  speeds 
this  refinement  will  probably  be  of  little  use. 

4.  Resistances  of  Propeller  Hubs.  —  Behind  the  strut  hub  the 
propeller  hub  is  fitted,  and  for  propellers  with  detachable  blades 
is  usually  larger  than  the  strut  hub.  About  all  that  can  be  done 

for  the  propeller  hub  is  to  fit  a  conical  fair-water  behind  it.  Model 
experiments  show  that  a  long  fair-water,  say  of  length  about  twice 
the  diameter  of  the  propeller  hub,  offers  materially  less  resist- 

ance than  a  short  fair-water  of  length  say  about  one-half  the 
diameter  of  the  propeller  hub. 

While  there  is  some  doubt  whether  the  long  fair-water  would 
show  up  so  well  in  comparison  on  the  full-sized  ship,  the  length  of 
fair-water  should  not  be  skimped. 

With  quick  running  propellers  the  objections  to  large  hubs  have 

become  more  evident  and  there  is  a  tendency  to  use  solid  pro- 
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pellers  with  small  hubs.     From  the  point  of  view  of  appendage 
resistance,  these  are  distinctly  preferable  to  large  hubs. 

5.  Resistance  of  Spectacle  Frames  or  Propeller  Bossing. — In 
merchant  practice,   struts  are  not  much  used   for  side   screws, 
being  replaced  by  spectacle  frames  or  propeller  bossing. 

These  appendages,  if  well  formed,  offer  less  resistance  than  thick 
struts  with  the  bare  shafts,  etc.,  but  in  many  cases  wide,  reason- 

ably thin  struts  would  offer  less  resistance  than  shaft  bosses. 
Shaft  bosses  are,  however,  usually  regarded  as  giving  better  secu- 

rity to  the  shaft,  and  certainly  give  access  to  a  greater  portion  of 
its  length.  They  absorb  much  more  weight  than  struts.  The 
angle  of  the  web  of  a  shaft  boss  may  vary  a  good  deal  from  what 

may  be  called  the  neutral  position,  or  position  where  it  is  edge- 
wise to  the  flow  over  the  hull  without  very  great  effect  upon  the 

model  resistance,  but  there  is  a  little  doubt  that  the  full-sized 
ship  will  be  prejudicially  affected  if  the  shaft  boss  webs  depart  too 
far  from  the  neutral  position.  Eddying  is  liable  to  appear  in  the 

case  of  the  full-sized  ship  which  does  not  occur  in  the  case  of  the 
model. 

The  angle  of  such  webs  has  a  powerful  influence  upon  the  stream 
line  motion  in  the  vicinity  of  the  stern.  A  vertical  web  or  a 
horizontal  web  tends  seriously  to  obstruct  the  natural  water  flow 
and  drag  more  or  less  dead  water  behind  the  ship.  It  seems  to 
be  usually  the  tendency  from  structural  considerations  to  work 
the  shaft  boss  webs  somewhere  near  the  horizontal.  From  the 

point  of  view  of  resistance  alone  a  45°  angle  for  the  rear  edge  may 
not  be  too  great.  This  is  another  case  where  conflicting  consider- 

ations necessitate  a  compromise.  The  determination  of  after  lines 
of  flow  over  the  hull  will  greatly  facilitate  the  determination  of 
the  most  suitable  shaft  boss  arrangements. 

6.  Allowance  for  Appendages  in  Powering   Ships.  —  In   esti- 
mating from  model  experiments  the  effective  horse-power  of  a 

ship  with  appendages  the  methods  are  the  same  as  for  the  bare 
hull.     From  the  total  model  resistance  the  frictional  resistance  for 

the  total  wetted  surface  including  appendages  is  deducted  and  the 

remaining  or  residuary  resistance  treated  by  the  Laws  of  Compari- 
son.    From  what  has  been  said  in  discussing  appendage  resist- 
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ance,  it  is  evident  that  estimates  of  E.H.P.  with  appendages  are 

apt  to  be  less  accurate  than  estimates  of  the  net  or  bare  hull 

E.H.P.  unless  care  has  been  taken  so  to  shape  appendages  that 

they  do  not  develop  in  the  full-sized  ship  eddies  which  have  no 
corresponding  eddies  in  the  case  of  the  model. 

In  practice,  it  is  customary  and  almost  necessary  to  power  a 

new  design  from  model  experiments  with  bare  hull  only.  This  is 

readily  done  by  using  for  the  ratio  between  the  bare  hull  E.H.P. 

and  the  I.H.P.  of  the  ship  with  appendages  a  conservative  coeffi- 
cient of  propulsion  based  upon  coefficients  of  propulsion  actually 

obtained  from  past  experience  with  vessels  reasonably  similar  as 

regards  appendages  to  the  case  under  consideration. 



CHAPTER  III 

PROPULSION 

19.  Nomenclature  Geometry  and  Delineation  of  Propellers 

i.  Definitions  and  Nomenclature.  —  A  screw  propeller  has  two 
or  more  blades  attached  at  their  inner  portions  or  roots  to  a  hub 

or  boss,  which  in  turn  is  secured  upon  a  shaft  driven  by  the  pro- 
pelling machinery  of  the  ship.  Figs.  154  to  157  show  plans  of  a 

three-bladed  propeller  for  a  naval  vessel.  This  is  a  true  screw  - 
that  is,  the  face  or  driving  face  is  a  portion  of  a  helicoidal  surface 
of  uniform  pitch.  A  helicoidal  surface  of  uniform  pitch  is  the 

surface  generated  by  a  line  —  the  generatrix  —  at  an  angle  with 
an  axis  which  revolves  about  the  axis  at  a  uniform  angular  rate 
and  also  advances  parallel  to  the  axis  at  a  uniform  rate.  A 

cylindrical  surface  concentric  with  the  axis  will  cut  such  a  heli- 
coidal surface  in  a  helix.  The  pitch  of  the  helicoidal  surface  is 

the  distance  which  the  generatrix  moves  parallel  to  the  axis  dur- 
ing one  complete  revolution.  Figs.  154  to  157  show  a  three- 

bladed  right-handed  propeller  —  that  is,  a  propeller  which,  viewed 
from  aft,  revolves  with  the  hands  of  a  watch  when  driving  the 
ship  ahead.  The  various  portions  of  a  propeller  are  indicated  in 
the  figures,  such  as  the  face  and  back  of  the  blades,  the  leading 

edge  and  the  following  edge,  the  tip  and  the  root.  Since  in  prac- 
tice the  back  of  each  blade  is  its  forward  surface,  care  must  be 

taken  to  avoid  confusion. 

This  result  will  be  obtained  by  avoiding  such  expressions  as 

"  forward  face,"  "  after  face,"  etc.,  and  adhering  to  the  terms 
"face"  and  "back."  The  word  "face"  will  always  denote  the 
driving  face  or  the  face  which  pushes  the  water  astern  when  the 

propeller  is  in  action,  while  the  word  "  back  "  naturally  denotes 
the  surface  opposite  the  face. 

While  a  true  screw  as  already  indicated  is  a  screw  propeller 
128 
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whose  blade  faces  are  all  portions  of  helicoidal  surfaces  of  the 

same  pitch,  there  are  many  variants  from  the  true  screw. 

Each  point  of  the  face  may  have  its  own  pitch,  which  may  be 

denned  as  the  distance  parallel  to  the  shaft  axis  which  an  ele- 

mentary area  around  the  point  would  move  during  one  revolu- 
tion around  the  shaft  if  it  were  connected  to  the  shaft  by  a  rigid 

radius  and  working  in  a  solid  fixed  nut.  Fig.  158  shows  two  views 

of  a  small  elementary  area  LL  connected  to  the  shaft  axis  O  by  a 

radius  r.  This  area  makes  an  angle  with  the  perpendicular  to  the 

axis  called  the  pitch  angle  and  denoted  by  6  in  Fig.  158.  If  p 

denote  the  pitch  of  LL,  during  one  revolution  in  a  solid  nut  its 

center  would  advance  along  the  helix  OCCD,  to  the  point  D  at 

a  distance  p  along  the  axis  from  0.  If  then  we  unroll  the  cylinder 

of  radius  r,  upon  which  has  been  traced  the  helix  OCCD,  this 

helix  will  become  the  straight  line  OP  of  Fig.  158,  while  PM  =  p, 
the  pitch. 

1> 

OM  =  2  wr  and  tan  6  =   2  irr 

There  are  several  typical  variations  of  pitch  which  are  used 

more  or  less  for  actual  propellers.  Thus  if  the  pitch  increases  as 

we  pass  from  the  leading  to  the  following  edge,  the  blade  is  said  to 

have  axially  increasing  pitch.  If  the  pitch  increases  as  we  go  out- 
ward, the  blade  is  said  to  have  radially  increasing  pitch.  If  the 

pitch  decreases  as  we  go  outward,  the  blade  has  radially  decreasing 

pitch.  A  blade  may  have  pitch  varying  both  axially  and  radially. 

Pitch  of  the  blade  face  only  has  been  considered  in  the  above, 
and  in  an  ideal  blade  of  no  thickness  that  is  all  that  need  be  con- 

sidered; but  for  actual  blades  we  need  to  consider  the  pitch  of  the 

back  of  the  blade  as  well.  Evidently  each  point  of  the  back  of 

an  actual  blade  has  a  distinctive  pitch.  For  blades  such  as  shown 

in  Figs.  154  to  157,  where  the  face  has  uniform  pitch  and  the  blade 

sections  are  of  the  usual  ogival  type,  the  pitch  of  the  center  of 

the  blade  back  is  the  same  as  the  pitch  of  the  face.  The  pitch  of 

the  leading  portion  of  the  back  is  less;  and  of  the  following  por- 
tion greater  than  the  face  pitch.  These  pitch  variations  over  the 

blade  back  have  important  effects  upon  propeller  action. 

The  ratio  between  pitch  and  diameter  is  called  pitch  ratio,  and 



130  SPEED  AND  POWER  OF  SHIPS 

the  ratio  between  diameter  and  pitch  is  called  diameter  ratio. 

Each  point  of  a  blade  has,  of  course,  its  own  pitch  ratio  and 

diameter  ratio,  but  these  expressions  are  also  used  in  reference  to 

the  propeller  as  a  whole.  When  so  used  the  diameter  referred  to 

is  the  diameter  of  the  screw  or  of  the  tip  circle,  and  the  pitch  is 

the  uniform  pitch  of  the  face  for  a  true  screw  and  an  assumed 

average  face  pitch  for  a  screw  of  varying  pitch. 
There  are  two  other  ratios  which  it  is  convenient  to  define  here. 

Fig.  159  shows  a  radial  section  through  the  center  of  a  blade  of 

very  common  type  by  a  plane  through  the  axis.  This  plane  in- 
tersects back  and  face  of  the  blade  in  two  straight  lines,  which, 

prolonged  through  the  hub  to  the  axis,  cut  it  at  C  and  A  respec- 
tively. 

CA 
The  ratio  -  -  is  called  the  blade  thickness  ratio  and  is Diameter 

evidently  constant  for  similar  propellers,  whatever  their  size. 

The  blade  section  in  Fig.  159  is  shown  raking  aft,  the  total  rake 

reckoned  along  the  mid-thickness  of  blade  sections  being  in  the 

figure  BO.    Then  —        -  is  called  the  rake  ratio.     It  is  reckoned Diameter 

positive  for  after  rake  and  negative  for  forward  rake. 

Propellers  do  not  in  practice  move  through  the  water  as  through 

a  solid  nut.  They  advance  a  distance  less  than  their  pitch  for 

each  revolution.  Under  given  conditions  of  operation  the  distance 

advanced  is  the  same  for  each  revolution,  hence  the  path  of  each 

element  is  a  helix  and  can  be  developed  into  a  straight  line.  Recur- 

ring to  Fig.  158,  =  OC\C\D\  is  the  helical  path  of  LL  with  slip  and 
OS  the  development  of  this  helix.  As  before,  POM  is  the  pitch 

angle  6.  The  angle  POS  is  called  the  slip  angle  and  will  be  denoted 

by  <f>.  Fig.  158  may  also  be  regarded  as  a  diagram  of  velocities, 

OM  being  the  transverse  or  rotary  velocity  of  the  element  and  MS 

its  velocity  parallel  to  the  axis.  MS  is  often  called  the  speed  of 

advance,  and  MP,  or  the  speed  for  no  slip,  is  called  the  speed  of 

the  propeller,  being  the  pitch  multiplied  by  the  revolutions.  Then 

PS  is  the  speed  of  slip  or  the  slip  velocity.  Slip  is  usually  char- PS 

acterized,  however,  by  the  ratio  --L  ,  or  the  ratio  between  the  speed 
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of  slip  and  the  speed  of  the  propeller.  This  is  properly  called  the 

slip  ratio,  or  slip  fraction.  It  is  also  commonly  and  conveniently 
called  simply  the  slip  and  expressed  as  a  percentage  instead  of  a 

decimal  fraction.  Thus  when  we  say,  for  example,  that  a  propeller 

works  with  a  slip  of  15  per  cent  we  mean  that 

Speed  of  Propeller  —  Speed  of  Advance  _ 
Speed  of  Propeller 

Sometimes  we  need  the  ratio 

Speed  of  Advance 

Speed  of  Propeller  ' 
and  this  may  conveniently  be  designated  the  speed  ratio. 

2.  Delineation.  —  In  practice  a  propeller  is  usually  delineated 
as  in  Figs.  154  to  157,  by  projections  of  the  blades  in  at  least  two 

directions,  —  an  expansion  of  a  blade  and  sections  of  a  blade. 
Views  and  sections  are  also  shown  as  necessary  to  determine  the 

hub  of  propeller  with  solid  hubs  and  the  hub  and  blade  flanges 

and  bolting  of  propellers  with  detachable  blades. 

It  will  be  observed  that  the  faces  of  the  sections  in  Fig.  155  all 

radiate  from  a  fixed  point  on  the  axis,  called  the  pitch  point.  This 

is  a  more  or  less  convenient  arrangement.  Referring  to  Fig.  160, 

suppose  p  is  the  pitch  of  a  blade  at  the  radius  OA  =  r.  Lay  off 

OP  =  -—     Then  tan  OAP  =     ~  +  r  =  --•     But  from  Fig.  158 2  TT  2  TT  2  irr 

=  tan  6  where  6  is  the  pitch  angle  or  the  angle  which  the 2  irr 

element  makes  with  a  transverse  plane.  Hence  in  Fig.  160  OAP 

and  the  corresponding  angles  at  the  other  radii  are  the  pitch  angles 
at  the  radii  in  question. 

Figs.  154  to  157  refer  to  an  ordinary  true  screw  of  oval  blade 

contour  with  a  rake  so  small  that  it  is  practically  negligible. 

Much  more  complicated  forms  are  used  sometimes,  the  complica- 
tions involving  varying  pitch,  curved  radial  sections,  extreme  rake 

forward  or  aft,  lopsided  or  unsymmetrical  blade  contours,  and 

various  types  of  blade  sections.  Some  forms  of  propellers  are 

difficult  problems  in  descriptive  geometry.  There  does  not  seem 

to  be  any  benefit  in  practice  from  complicated  forms  of  propellers 
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and  no  attempt  will  be  made  to  take  up  the  problems  of  their 
delineation. 

3.  Area  and  its  Determination.  —  The  question  of  propeller  area 
is  a  very  important  one.  There  are  various  areas  considered  in 
connection  with  a  propeller.  When  we  speak  of  the  blade  area  of 
a  propeller  we  generally  mean  what  is  called  the  helicoidal  area,  or 
the  actual  area  of  the  helicoidal  faces  of  the  blades.  As  it  happens, 
however,  a  helicoidal  surface  cannot  be  developed  into  a  plane  so 
the  helicoidal  area  of  a  propeller  cannot  be  determined  exactly. 
The  area  we  determine  is  what  is  called  the  developed  area,  the 

blade  face  being  developed  into  a  plane  by  a  more  or  Jess  approxi- 
mate method. 

The  disc  area  of  a  propeller  is  the  area  of  the  circular  section  of 
its  disc  or  the  area  of  the  circle  touching  the  blade  tips. 

The  projected  area  is  the  area  of  the  projections  of  the  blade 
faces  upon  a  transverse  plane  perpendicular  to  the  axis. 

The  ratio  between  the  developed  and  disc  areas  of  a  propeller 
is  sometimes  called  the  disc  area  ratio. 

The  ratio  Projected  Area  -j-  Disc  Area  is  also  frequently  used 
and  is  of  more  practical  value  than  the  ratio  Developed  Area  -4- 
Disc  Area. 

While  the  helicoidal  face  of  a  propeller  blade  cannot  be  developed 
exactly  into  one  plane  it  can  be  so  developed  with  such  slight 
distortion  that  the  resulting  surface  is  an  approximation  amply 
close  for  practical  purposes. 

Suppose  we  cut  the  helicoidal  surface  of  a  blade  face  by  a  cylin- 
der concentric  with  the  axis.  It  will  cut  a  helix  from  the  helicoidal 

surface.  If  now  we  pass  a  plane  tangent  to  the  helicoidal  surface 
at  its  center,  it  will  cut  the  cylinder  in  an  elliptical  arc.  If  then 

we  take  that  portion  of  this  elliptical  arc  whose  rearward  projec- 
tion is  the  same  as  that  of  the  actual  helix  of  the  blade  face  we  will 

have  an  arc  of  very  nearly  the  same  length  as  the  helix.  Then  if 
we  take  a  series  of  such  arcs,  swing  them  into  a  common  plane  and 

join  their  extremities  by  a  bounding  curve,  we  shall  have  a  devel- 
oped surface  which  is  very  close  to  the  actual  helicoidal  surface 

in  area. 

Fig.  1 60  shows  the  construction,  0  is  the  center,  P  the  pitch 
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point,  OA  the  radius  of  a  cylinder.  Let  BBB  be  the  projected 
blade.  Then  the  cylinder  of  radius  OA  cuts  BB  at  C.  The  plane 
at  A  tangent  to  the  helicoidal  surface  makes  with  the  axis  the  angle 

OP  A  —  the  complement  of  the  pitch  angle.  The  minor  semiaxis 
of  the  ellipse  which  it  cuts  from  the  cylinder  is  OA.  The  major 

OA 
semiaxis  is  =  ~r~         7  =  AP.     Draw  the  elliptical  arc  AD  with sin  OP  A 

major  axis  of  length  AP  and  minor  axis  OA  in  length  and 

position.  Then  draw  the  horizontal  line  CD  meeting  the  ellipti- 
cal arc  at  D.  D  is  a  point  on  the  developed  blade,  and  by  deter- 

mining a  series  of  such  points  and  drawing  a  line  through  them 
we  obtain  the  developed  contour  EDBEE.  Suppose  now  we  draw 
AF  horizontal  through  A  and  make  AF  equal  in  length  to  the 
elliptical  arc  AD.  A  line  through  a  series  of  points  such  as  F  will 
give  what  may  be  called  the  expanded  contour.  It  is  denoted  in 
the  figure  by  HFBHH.  The  developed  area  is  usually  taken  as 
BEEKEDB.  The  expanded  area,  BHHKHFB,  is  very  close  to 
the  developed  area. 

The  developed  area  obtained  by  the  above  method  is  slightly 
smaller  than  the  true  area.  The  elliptical  arcs  are  not  very  easy 
to  draw  in  practice  and  a  simple  method  is  to  use  arcs  of  circles 
with  radii  which  are  the  radii  of  curvature  of  the  ellipses.  Thus 
draw  PM  at  right  angles  to  AP  and  cutting  AO  produced  at  M. 
Then  M  is  the  center  of  curvature  of  the  ellipse  at  A ,  and  instead 
of  drawing  the  ellipse  we  may  draw  a  circular  arc  of  radius  MA. 
The  developed  area  thus  determined  is  slightly  greater  than  the 
exact  helicoidal  area,  the  area  using  the  exact  ellipses  being 
slightly  less.  But  the  area  determined  using  the  circular  arcs  is 
a  closer  approximation  to  the  true  area,  particularly  for  broad 
blades. 

In  practice  we  generally  assume  the  developed  contour,  making 
it  any  desired  shape,  deduce  the  projected  contour  by  reversing 

the  method  of  development  described  above,  and  from  the  pro- 
jected contour  deduce  by  the  methods  of  descriptive  geometry  the 

other  projections  desired.  A  very  common  and  very  good  con- 
tour for  the  developed  blade  is  an  ellipse  touching  the  axis,  having 

the  radius  as  major  axis  and  the  expanded  breath  of  blade  at 
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mid-radius  as  minor  axis.  In  the  vicinity  of  the  hub  the  ellipse  is 
departed  from  as  necessary  to  make  a  good  connection. 

4.  Coefficients  of  Area  for  Elliptical  Blade.  —  Fig.  161  shows  an 
elliptical  developed  blade  contour  with  major  axis  equal  to  the 

propeller  radius.  The  radius  of  hub  is  tV  that  of  the  blade. 

There  is  shown  dotted  a  rectangular  area  touching  the  hub  and 

tip  circle  and  of  width  such  that  its  area  is  the  same  as  that  of  the 

elliptical  blade  outside  the  hub.  Then  the  width  of  this  rectangle 
is  called  the  mean  width  of  the  blade. 

It  is  convenient  usually  to  use  the  diameter  as  the  primary 

variable  when  dealing  with  propellers,  so  we  naturally  express  the 
mean  width  as  a  fraction  of  the  diameter. 

The  ratio  (mean  width  of  blade)  -r-  (diameter  of  propeller)  is 
called  the  mean  width  ratio  and  is  denoted  by  h. 

This  mean  width  ratio  characterizes  a  blade  very  definitely  and 

it  is  convenient  to  express  many  other  features  by  its  use.  For  the 

elliptical  blade  with  hub  diameter  &  of  the  propeller  diameter  let 

I  denote  the  maximum  width  or  minor  axis  of  the  ellipse.  Then 

we  have  mean  width  ratio  =  h  =.842  -  ,  or  /  =  1.188  hd. a 

If  n  denote  the  number  of  blades  we  have  the  total  blade  area 

or  Developed  Area  =  .4  n<Ph. 
The  projected  area  for  a  given  developed  area  depends  upon  the 

pitch  ratio,  which  denote  by  a.  For  values  of  a  found  in  practice, 

say  from  a  =  .6  to  a  =  2.0,  the  projected  area  for  the  elliptical- 
bladed  propeller  of  hub  diameter  .2  of  the  propeller  diameter  is 

given  with  close  approximation  by  the  formula, 

Projected  Area  =  (0.4267  —  0.09160)  nd?h. 
From  the  above  we  have  the  following  addit  onal  ratios  for 

values  of  a  between  .6  and  2.0: 

Projected  Area    -j-  Developed  Area  =  1.067  ~~  .2290. 

Developed  Area  -f-  Disc  Area  =  .509  nh. 

Projected  Area    -j-  Disc  Area  =  (.543  —  .11660)  nh. 

Fig.  162  shows  contours  of  the  ratio  (Projected  Area)  -5-  (Disc 
Area)  for  elliptical  three-bladed  propellers. 

While  the  above  formulae  and  Fig.  162  apply  strictly  only  to 

propellers  with  elliptical  blades  and  hub  diameter  tV  of  propeller 
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diameter,  they  are  accurate  enough  for  practical  purposes  for  any 

other  hub  diameter  likely  to  be  found  in  practice  and  are  rea- 
sonably good  approximations  for  any  blades  of  oval  type. 

5.  Twisted  Blades.  —  Propellers  with  detachable  blades  nearly 
always  have  them  fitted  so  that  they  can  be  twisted  slightly  in  the 

boss,  thus  increasing  or  decreasing  the  pitch.  The  blade  flange 

holes  are  made  oval,  as  shown  in  Fig.  156.  The  twist  or  rotation 

of  the  blade  is  about  a  line  or  axis  through  the  center  of  the  flange 

perpendicular  to  the  shaft. 

All  pitch  angles  on  the  axis  are  changed  a  uniform  amount. 

For  points  of  the  blade  away  from  the  axis  of  twist  the  change 

is  less,  and  for  points  of  the  helical  surface  a  quarter  of  a  revolu- 
tion from  the  axis,  if  the  surface  were  so  great,  there  would  be  no 

change  of  pitch  due  to  twist.  For  usual  width  of  blade,  however, 

the  change  in  pitch  angle  is  practically  uniform  over  the  blade 

and  equal  to  the  angle  of  twist.  Hence  the  change  of  pitch  due 

to  twist  will  be  investigated  on  this  assumption. 

Let  y  denote  the  diameter  ratio,  6  the  pitch  angle  at  a  given 

point  of  radius  r  and  pitch  p.  Let  7  denote  the  angle  of  twist 

and  y  the  new  diameter  ratio  after  twisting. 

Then  tan  6  =  -*-  =  -  y  =  -  cot  0, 
2  irr       iry  TT 

tan  (e  +  7)  =  -^7, 

iry 

I 

y  =-cot(8+y)=-  cotgcotT-  i  =  I  rryc
oty-  I  =  ycot7-7r 

TT  TT    COt  6  +  COt  7        TT    Try  +  Cot  7        iry  -\-  COt  7 

From  the  above  formula,  given  y  and  7,  we  can  readily  calculate  y'. 
For  a  positive  twist  or  value  of  7  the  new  diameter  ratio  is  less 

than  the  old,  the  new  pitch  and  pitch  ratio  being  greater.  For  a 

negative  twist  the  opposite  holds. 

The  results  are  shown  graphically  in  Figs.  163  and  164.  In 

Fig.  163  the  results  are  plotted  upon  diameter  ratio.  For  each 

value  of  7  a  curve  is  drawn  showing  the  new  values  of  diameter 

ratio  plotted  as  ordinates  over  the  old  values  as  abscissae.  Con- 
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tours  are  shown  for  each  degree  of  positive  and  negative  twist  up 

to  6°. 
Fig.  164  gives  the  same  information  as  Fig.  163,  but  the  results 

are  plotted  upon  pitch  ratio. 

Figs.  163  and  164  illustrate  the  relative  advantages  and  disad- 
vantages of  pitch  ratio  and  diameter  ratio  when  used  as  primary 

variables.  Fig.  163  using  diameter  ratio,  once  the  conception 

of  diameter  ratio  is  firmly  grasped  mentally,  is  simpler  and 
more  readily  understood.  This  is  largely  because  the  diameter 

ratio  at  the  tip  of  the  blade  is  the  natural  starting  point,  and  for 

any  point  of  less  radius  the  diameter  ratio  decreases  directly  as  the 

radius.  The  conception  of  pitch  ratio  is  more  readily  formed,  but 

starting  with  the  pitch  ratio  of  the  tips  the  pitch  ratio  increases 

inversely  as  the  radius  and  becomes  infinite  for  zero  radius.  In 

either  case  the  tip  value  is  a  simple  quantity  of  numerical  value 

ranging  in  practice  from  .5  to  2.  When  using  diameter  ratio  for 

any  one  blade  the  field  covered,  neglecting  the  hub,  is  that  between 

zero  and  the  tip  value.  When  using  pitch  ratio  the  field  is  that 

between  infinity  and  the  tip  value. 

20.  Theories  of  Propeller  Action 

i.  Principles  of  Action  Common  to  all  Theories.  —  There  have 
been  a  great  many  different  theories  of  propeller  action  propounded, 

but  none  which  has  been  generally  accepted  as  agreeing  fully  with 

the  facts  of  practical  experience. 

The  principles  underlying  the  chief  English  theories  of  propeller 

action  are  comparatively  simple.  The  resulting  formulae  are  more  or 

less  complicated,  but  not  difficult  to  apply.  In  any  theory  in  con- 
nection with  which  mathematical  methods  are  to  be  used  it  is  almost 

necessary  to  regard  the  blade  as  having  no  thickness.  Fig.  165, 

which  partially  reproduces  Fig.  158,  indicates  the  motion  of  a  small 

elementary  plane  blade  area  of  radius  r,  breadth  dr,  in  a  radial 

direction  and  circumferential  length  dl.  Looking  down  we  see 

this  element  with  its  center  at  0.  If  w  is  the  angular  velocity  of 

rotation  of  the  shaft,  the  transverse  velocity  of  the  element  is 

cor.  AOB  is  the  pitch  angle  0,  BC  the  slip  and  BOC  the  slip  angle 
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p 
<£.     We   know   that   tan    8  =   Considering   Fig.    165    as   a 

2   TTf  ' 
diagram  of  instantaneous  velocities,  the  line  OA  or  cor  represents 

the  transverse  velocity  of  the  element.  If  there  were  no  slip,  the 

actual  velocity  would  be  parallel  to  OB  since  BOA  =  6.  Then 
AB  would  denote  the  axial  velocity. 

AB  =  OA  tan  6  =  cor  tan  0  =  cor 
2   TTT  2   7T 

When  there  is  slip  the  transverse  velocity  of  the  element  is  un- 
changed, but  the  axial  velocity  is  the  speed  of  advance  AC,  which 

is  denoted  by  VA.  BC  is  the  slip  and  AB,  the  speed  of  the  screw, 

is  the  same  as  the  speed  of  advance  when  the  slip  is  zero. 

Denote  the  slip  ratio  by  s. 

Then   s  =  BC  =  AB  ~  AC  _2^  _  '__<»P-  2vVA_i_y   **. BA          AB  «£  cop  up 
2  7T 

Whence  the  speed  of  advance  VA*=        (i  —  s)     BC  =  s  ̂*-— 2   7T  2  7T 

If  we  take  w  as  angular  velocity  per  second  and  r  in  feet,  then  OA 

or  the  transverse  velocity  is  in  feet  per  second,  and  hence  all  other 
velocities  are  in  the  same  units. 

Then  we  have 

Velocity  of  blade  element  in  the  direction  of  the  perpendicular  to 

its  plane  =  CD  =  BC  cos  0  =  s  ̂-  cos  6. 2  7T 

Axial  or  rearward  component  of  above  velocity  =  CE  =  CD 

cos  6  =  s  ̂-  cos2  0. 2  7T 

Transverse  component  of  above  velocity  =  DE  =  CD  sin  6  = 
(j)p    , 

s  -11-  sin  0  cos  6. 
2  7T 

2.  Three  English  Theories  of  Propeller  Action.  —  There  are 
three  theories  of  propeller  action  whose  detailed  consideration 

will  be  of  value.  They  are  all  contained  in  papers  before  the 

Institution  of  Naval  Architects.  The  first  was  by  Professor  Ran- 
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kine  in  1865,  the  second  by  Mr.  Wm.  Froude  in  1878  and  the 

third  by  Professor  Greenhill  in  1888. 

Rankine's  fundamental  assumption  was  that,  as  the  propeller 
advanced  with  slip  BC,  all  the  water  in  an  annular  ring  of  radius 

r  was  given  the  velocity  CD  in  a  direction  perpendicular  to  the 

face  of  the  blade  at  that  radius.  Then,  from  the  principle  of 

momentum,  the  thrust  from  the  elementary  annular  ring  is  pro- 
portional to  the  quantity  of  water  acted  upon  in  one  second  and 

to  the  sternward  velocity  EC  communicated  to  it. 

Froude  considers  the  element  as  a  small  plane  moving  through 

the  water  along  a  line  OC  which  makes  a  small  angle  <£  with  OB, 

the  direction  of  the  plane.  Then  Froude  takes  the  normal  pressure 

upon  the  elementary  area  which  gives  propulsive  effect  to  vary  as 

the  area,  as  the  square  of  its  speed  OC,  and  as  the  sine  of  <j>  the  slip 

angle. 
Greenhill  makes  a  somewhat  artificial  assumption.  He  assumes 

that  the  propeller  is  working  in  a  fixed  closed  end  tube.  The 

result  is  that  the  motion  communicated  to  the  water  is  wholly 

transverse  and  would  be  represented  by  CF  in  Fig.  165.  The 

blade  is  first  assumed  smooth,  so  that  the  pressure  produced  by 
the  reaction  of  the  water  is  normal  to  the  blade  and  has  of  course 

a  fore  and  aft  component  which  gives  thrust.  In  all  three  theories 

the  loss  by  friction  is  taken  as  that  due  to  the  friction  of  the 

propelling  surface  moving  edgewise  or  nearly  so  through  the 
water. 

3.  Relation  between  Direction  of  Pressure  and  Efficiency.  - 
Neglecting  friction  for  the  present  it  is  evident  that  all  three 
theories  start  with  a  certain  normal  pressure.     It  follows  that  if 

this  normal  pressure  be  resolved  into  its  axial  and  transverse  com- 
ponents, say  dT  and  dQ,  we  have 

41  =         n  =  OA  =2L  =  2jrr 

dQ  ~  ~  AB  ~  co£  =     p 2  TT 

Hence  pdT  =  2  -n-rdQ. 
Now  2  TrrdQ  =  total  work  done  during  one  revolution  and  hence, 

neglecting  friction,  pdT  =  total  work  done  during  one  revolu- 
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tion.     Now  the  useful  work  =  dTp  (i  —  s),  hence  the  efficiency 

_dTp(i-s)_ 

dTp 

It  follows  that,  neglecting  friction,  if  the  reaction  pressure  from  the 
water  is  normal  to  the  face  at  all  points  of  a  screw  of  uniform  pitch 
working  with  a  slip  s,  the  efficiency  of  each  element  and  of  the 

whole  screw  will  be  i  —  s.  Since  the  friction  must  reduce  efficiency 
in  all  cases,  it  follows  that  upon  the  above  supposition  the  efficiency 

of  a  screw  cannot  ever  exceed  i  —  s.  It  is  often  thought  that  it 
is  mechanically  impossible  for  the  efficiency  of  a  screw  to  exceed 

i  —  s.  This,  however,  is  not  necessarily  so.  This  limitation  is 
associated  with  and  dependent  upon  the  assumption  that  the 
resultant  pressure  at  each  point  of  a  screw  surface  is  perpendicular 
to  the  surface.  If  the  water  can  be  made  to  move  in  such  a  man- 

ner that  the  resultant  reaction  is  at  an  angle  with  the  normal  to 
the  blade  surface,  we  may  have  an  efficiency,  neglecting  friction, 

greater  than  i  —  s.  This  is  an  important  point  and  worthy  of 
careful  investigation. 

Referring  to  Fig.  166,  suppose  we  have  acting  on  a  point  0  two 
forces  OA  and  OB  whose  resultant  OC  makes  an  angle  a  with  the 
axis  of  x,  as  indicated.  Let  the  point  O  be  moving  with  the 
velocity  OE  at  the  angle  P  with  the  axis  of  x  as  indicated.  Then 

the  work  done  by  the  reaction  against  the  force  OA  =  OA  X  OD. 
The  work  done  by  the  force  OB  =  OB  X  ED  =  AC  X  ED. 

Draw  OF  perpendicular  to  OC  and  denote  EOF  by  7.  The 
ratio  between  the  work  done  by  the  force  OB  and  the  work  done 
by  the  reaction  against  OA  is 

AC  XED  OZ>      ED      ED 

Now  j3  =  90°—  a  —  j. 
The  above  is  readily  applied  to  the  propeller  problem.  Refer- 

ring to  Fig.  167,  which  partially  reproduces  Fig.  166,  consider  an 
element  at  O  whose  pitch  angle  DOP  is  denoted  by  6.  Suppose 

OC  is  the  resultant  reaction  upon  the  element  O.  Draw  OF  per- 
pendicular to  OC.  Then  AO  is  the  transverse  force  upon  the 

element  denoted  by  q,  say,  while  AC  is  the  thrust  denoted  by  /. 
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OD  is  transverse  velocity  Vt  and  DE  is  velocity  of  advance  V&. 

POD  being  the  pitch  angle  6,  POE  is  the  slip  angle  $.  Then  the 

efficiency  is  the  ratio  between  the  useful  work  done  by  t  and  the 

T)  7? 
gross  input  or  work  done  by  q  and  as  before  is  -  -  •     Now  if  DE DC 

PE 

is  speed  of  advance  DP  is  speed  of  screw  and  -=—  =  slip  ratio  =  s. 

The  efficiency  of  the  element  depends  upon  the  directions  of  the 

resultant  OC,  and  OF  the  perpendicular  to  it.  Suppose  the  re- 

sultant OC  is  perpendicular  to  OP,  then  7  =  <£,  F  goes  to  P  and 

the  efficiency  is  —  —  =  i  —  s.     It  appears,   then,   to  be  rigidly 

demonstrable  that  if  the  resultant  reaction  at  every  point  of  a 

true  screw  is  perpendicular  to  the  face  the  efficiency  of  every  ele- 

ment, and  hence  of  the  screw  as  a  whole,  is  i  —  s.  As  the  direc- 
tion of  the  resultant  OC  approaches  the  fore  and  aft  line,  or  the 

perpendicular  to  AD,  the  efficiency  of  the  element  increases  and 

would  become  unity  if  the  resultant  could  become  perpendicular 

to  AD.  As  the  direction  of  the  resultant  OC  swings  out  from  the 

fore  and  aft  line  beyond  the  perpendicular  to  the  element,  the  effi- 

ciency becomes  less  than  1  —  5.  Friction  and  head  resistance 
always  tend  to  swing  the  resultant  in  this  direction,  and  the  smaller 

the  slip  the  smaller  the  values  of  AO  and  OC  and  the  greater  the 
relative  effect  of  the  force  due  to  friction  and  head  resistance. 

I  will  now,  neglecting  friction  at  first,  develop  the  formulae  for 

thrust  and  torque  of  a  screw,  following  the  three  theories  already 

referred  to.  For  convenient  comparison  a  uniform  notation  will 

be  used,  so  far  as  practicable,  differing  slightly  from  the  several 
notations  of  the  original  authors. 

4.  Rankine's  Theory  of  Propeller  Action.  —  Referring  to  Fig. 

165  by  Rankine's  theory,  considering  the  annular  ring  of  mean 
radius  r, 

Annular  area  =  2  irrdr. 

Volume  of  water  acted  on  per  second  = 

2  irrdr  X  AE  =  2  irrdr  X  ̂—  (i  -  5  sin2  6). 60 
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Stern  ward  velocity  communicated  =  EC  =  s  -*-  cos2  6  =  s^—  cos2  6. 2  IT  DO 

Hence    elementary    thrust  =  mass  of  water  per  second  X  stern- 

ward  velocity  imparted  =  dT  =-2  -n-rdr^—  (i—s  sin2  6}  s  *-—  cos2  0 60  60 

w 
=  —  *—  —  s  (i  —  s  sin2  0)  cos2  0  2 

g  36o° 

,  2 

Let    q  =  cot  0  =  —  •      Then     2  Trrdr  =  "  dq.     sin2  0  =  - p  2  TT  i  +  q 

cos2  6  =  - 

Whence 

w  p2R2    ( dT  =  ~    A     5 600    \i 

Q2__\ 

~ 
A  2  M 

g  3600    \i  +  q2          (i  +  q2)2/  2ir 

^L  qdq 

At  the  axis  q  =  o.  Then,  neglecting  the  hub,  which  a  very  slight 

investigation  shows  to  have  very  little  effect;  if  q  denote  now  cotan- 
gent of  the  pitch  angle  of  the  blade  tips,  we  have  on  integrating 

the  expression  for  dT: 

_  _      loge(i  +  <72)  _  £ 
g  3600  2  7T     _2  2  \  2  21 

W  />2/?2  ̂   r     iog.(i  +  ̂2)    j  /iogc(i  +  92)       i 
g  3600  47rL  ^  \^2  i+  q 

7T 
Now       pq  =  2  irr      p2q2  =  4  7i2r2     *-*-  =  irr2  =   if  d  is  extreme 47r  4 

diameter.     Whence 

w 

.  j  /log,  i 
\ 

g  3600    4      L  q2  \         q2  i  +  q2 

Whence  finally 

T  =  _jrw_p2d2R2JI  _  loge(i  +  q2)  _  s  /loge(i  +  q2}   i_Yl 
14400  g  L  q2  \         q2  i  +  q2/] 

*T 

And  the  torque  Q  = 
2  7T 
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h 
5.   W.  Froude's  Theory  of  Propeller  Action.  —  Consider  now 

Fronde's  theory. 
If  /  is  the  total  blade  length  of  all  blades  at  radius  r,  then  the 

total  elementary  plane  area  at  this  radius  is  Idr.  This  area  ad- 
vances at  the  angle  (j>  (Fig.  165),  with  velocity  OC,  and  from 

Froude's  experiments  if  a  is  a  thrust  coefficient,  we  have  a  result- 
ing pressure  normal  to  the  blade  =  Idr  aOC  sin  <£.  The  ele- 

mentary thrust  is  equal  to  this  pressure  X  cos  6. 

Then  dT  =  Idr  aOC'2  sin  <£  cos  6. 

Now 

. 
cos  6. 

Also  cos2  6  = 

Whence 

-afcx)'     *:  ddi  +  f' 
Whence,  neglecting  the  hub  as  before, 

3600  «/oOI+^  27T 

The  quantity  under  the  integral  sign  is  evidently  dependent  only 
on  shape  and  proportions  of  the  propeller  and  independent  of  its 

dimensions.  It  can  be  determined  in  any  case  by  graphic  integra- 
tion. For  the  present,  let  us  denote  it  by  the  symbol  X.  Then 

from  Froude's  theory  T=  -    -p*R*dsX,  and  as  before  O  =  -  — 3000  2  TT 
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6.  Greenhill's  Theory  of  Propeller  Action.  —  Coming  finally  to 
Greenhill's  theory,  we  have  (Fig.  165) 

Elementary  area  =  2  irrdr. 

Velocity  of  feed  of  the  water  =  AC  =  —*-  (i  —  s)  =  *-—  (i  —  s). 2  7T  6O 

Transverse  velocity  =  s  —*-  cot  6  =  su>r  =  s    *  •  r. 2  7T  60 

Transverse  momentum  per  second  =  -  2  irrdr  ̂ —  (i  —  s)  s  ̂—  r 
g  60  60 

W  R2  ,  x  ,    2 
=  —  p  — —  s(i  —  s)  4  irrdr. 

g     3600 Torque  =  transverse  momentum  X  r. 
7£j  TV 

Whence  dO  =  -  p  — —  s  (i  —  s)  4  ir^dr. 

g     3600 
_,_,        2  irdO       W     R2        ,  \ofij dT  =   *-  =  -      —  s  (i  —  s)  8  Tr3rdr. 

p          g  3600 

Integrating  from  r  =  o  to  r  =  -  we  have 2 

IV      R  /  \  TT  iV  /  \ 

g  3600  28800 g 

And  as  before  Q  =  ̂—  • 2  7T 

In  connection  with  Greenhill's  theory,  it  should  be  pointed  out 
that  the  excess  pressure  at  any  radius  is  very  simply  expressed. 

w    R2 
We  have  above  dT  =  -       —s(i  —  s)  S-n^rdr. 

g  3600 But  if  AP  be  the  excess  pressure  per  unit  area,  dT  =  2  wrdrAP. 

w    R2 

Whence  dividing  through  AP  =  -        —  s  (i  —  s)  4  w2r2. 

g  3600 
In  other  words,  the  excess  of  pressure  varies  as  the  square  of  the 
radial  distance  from  the  axis. 

7.  Comparison   of   Theories   with   Each   Other.  —  Now,   com- 
paring the  three  formulas  for  thrust  and  torque,  it  is  seen  that 

each  one  is  composed  of  a  coefficient,  of  a  term  involving  the 
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dimensions  and  revolutions  or  speed,  and  of  a  term  varying  with 
shape,  proportions  and  slip  but  independent  of  the  dimensions. 

Assuming,  as  is  evidently  possible,  that  we  can  expand  X  in  the 

formula  from  Froude's  theory  in  the  form  a  —  fts  +  negligible 
terms,  we  can  write  for  each  formula  T  =  <j>  (pdR)  (as  —  13s-). 

For  Froude's  theory  <£  (pdR)  =  pzdR-  and  for  Rankine's  theory 
<£  (pdR)  is  p~(PRz.  For  Greenhill's  theory  <f>  (pdR)  is  d4R2,  of  the 
same  dimensions  as  before  but  independent  of  the  pitch.  Now, 

considering  a  and  /3,  it  is  evident  that  by  the  formula  for  Froude's 
theory  /3  will  be  very  small  indeed  compared  with  a.  In  the 

Rankine  theory  formula  /3  will  be  smaller  than  a,  but  relatively 

larger  than  in  the  Froude  theory  formula.  In  the  Greenhill  theory 

formula  /3  =  a  always. 
Still  neglecting  friction,  we  would  have  on  the  theory  of  all 

motion  communicated  to  the  water  perpendicular  to  the  blade 

Q  =  PI  =  ±-  <f>(pdR)  (as  -  /3s2). 2  IT          2  7T 

As  a  matter  of  fact,  a  very  brief  examination  of  experimental 

results  shows  that  this  cannot  hold.  If  it  were  true,  we  could 

never  have  an  efficiency  greater  than  i  —  s,  and  even  when  fric- 
tion is  considered  we  get  experimental  efficiencies  greater  than 

i  —  s.  So  it  appears  well  to  adopt  tentatively  as  the  general 
P 

expression  for  the  torque  Q  =  -t—  $  (pdR)   (ys  —  8s2). 2  7T 

8.  Friction  and  Head  Resistance.  —  Now  consider  friction  and 

head  resistance.  Referring  to  Fig.  165,  if  /  denote  the'  coefficient 
of  friction  and  dA  an  elementary  area,  we  have  with  close  approxi- 

mation frictional  resistance  =  fdAOB?.  In  practice  <£  is  a  much 
smaller  angle  than  indicated  in  Fig.  165.  where  it  is  exaggerated 

for  clearness.  Suppose  /  is  large  enough  to  cover  all  edgewise 

resistance  —  skin  friction  and  head  resistance  together. 

Then    dA  =  Idr,    OB*  =  p*R*  cosec2  P  =  p2R2  (i+q2),    q  =  —  > 

2  IT 

Then  F  =  f%  -*-  dqfR2(i  +  q>)  =  ffdR*  -*-  \l-  (i  +  ?2)  dq  I a  2  IT  2  IT  (a  } 
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Fore  and  aft  component  =  Deduction  from  thrust 

=  F  sin  6  =  fp2dR2  --  -  Vi+q*dq=dTf. 2  TT  a 

Transverse  component  =  F  cos  6  =  fpzdR2  -'—-q\/i-}-q2dq. 2  TT  d 

Difference  of  torque  =  F  cos  6  X  r  =  F  cos  6  " 2  7T 

X=^2/. 

4 

Integrating, 

Deduction  from  thrust  for  friction 

2  ird 

Addition  to  torque  for  friction  =  Q,= 

=  -£-fp*dR2Z,  where  Z  =   f—  -  ̂ 2  V:T+~fdq. 2  T  J   2  ird 

2  7T  «/  2  TTtt 

Since  for  the  working  portions  of  actual  propellers  <?  is  greater 
than  i,  we  will  have  in  practice  Z  much  greater  than  Y,  and  it  is 

reasonable  to  ascribe  the  total  friction  loss  to  increase  of  torque. 

If  we  assume  -  constant  =  mean  width  ratio  X  number  of  blades, a 

we  can  readily  determine  a  curve  of  Z  on  q  by  plotting  a  curve  of 

^2^/j      i     02 

—  *-  and  integrating  graphically. 
2  7T 

For  actual  propellers  Y  and  Z  can  be  determined  without  diffi- 
7  __  .  7 

culty  by  plotting  on  q  curves  of  -  —  Vi  +  o2  and  —  -q2  Vi  +  o2 2  Tra  2  Trtt 

and  integrating  graphically. 
7 

Fig.  1  68  shows  curves  of  Y  and  Z  and  of  —  for  elliptical  blades £A 

with  hub  diameter  .2  the  extreme  diameter,  plotted  upon  pitch 

ratio,  and  Fig.  169  shows  curves  of  X  for  various  values  of  s, 

namely,  s  =  o,  .20,  and  .40. 
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9.  Final  Formulae  on  Theories  of  Rankine,  Froude  and  Green- 

hill.  —  Then  the  final  formulae  for  thrust  and  torque  including  the 
friction  term  can  be  expressed  in  the  forms  below: 

Rankine's  Theory:       T  =  pWR2  (as  -  /3s2)  -  fdj?R2Y, 

Q  =  £-  [pWR2  (ys  -  5s2)  +  fdp*R2Z], 2  7T 

Froude's  Theory :         T  =  p3dR2  (as  -  /3s2)  -  fdf&Y, 

Q  =  -£-  [p3dR2  (ys  -  5s2)  +fdp3R2Z]. 2  7T 

Greenhill's  Theory:     T  =  d*R2  (as  -  /3s2)  -fdp3R2Y, 

Q  =  ̂~  [d*R2  (ys  -  3s2)  +fdp3R2Z]. 2  7T 

The  above  equations  are  simply  to  show  the  form  of  the  ex- 
pressions. They  do  not  imply  that  a  and  /3  in  the  Rankine  Theory 

equation  will  be  the  same  as  in  the  Froude  or  Greenhill  Theory 

equation,  but  simply  that  in  each  case  a  and  /3  will  be  constant  for 

a  given  propeller.  The  actual  values  of  the  constants  will  vary 
with  the  theory  used. 

The  formulae  on  Froude's  theory  are  expressed  in  the  above 
form,  as  previously  noted,  by  assuming  that  X  can  be  expanded 

with  sufficient  approximation  in  the  form  C  —  sD,  where  C  and 
D  are  independent  of  s.  It  is  evident  from  Fig.  169  that  this  can 
be  done  and  that  D  is  much  smaller  than  C. 

In  all  the  theories,  as  has  already  been  pointed  out,  it  is  assumed 

that  the  net  reaction  at  each  point  is  perpendicular  to  the  blade 

surface.  If  this  were  true,  we  would  always  have  a  =  y,  /3  =  <5, 

and  the  efficiency  could  never  exceed  i  —  s  even  if  there  were  no- 
friction.  Since  experience  shows  this  is  not  the  case,  and  as  from 

considering  the  probable  motion  of  a  particle  of  water  it  is  evi- 
dently not  necessary  that  the  net  momentum  impressed  upon  it 

shall  be  perpendicular  to  the  blade  surface,  I  have,  while  follow- 
ing the  same  form,  used  different  coefficients  for  the  torque 

expression,  expecting  that  these  coefficients  y  and  5  need  not 

necessarily  be  the  same  as  a  and  /3  used  for  thrust. 
It  seems  difficult  at  first  sight  to  conceive  of  any  fluid  action 
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upon  a  frictionless  surface  that  is  not  at  right  angles  to  it,  but  if 

we  consider  the  matter  from  the  point  of  view  of  the  velocity  im- 
pressed upon  the  water  the  difficulty  disappears.  The  suction  of 

the  propeller  upon  the  water  ahead  of  it  causes  a  velocity  which  is 

practically  all  axial,  or  in  the  direction  perpendicular  to  the  plane 

of  the  propeller  disc.  Hence,  the  reaction  upon  the  water  is  partly 

axial  before  the  water  reaches  the  propeller  disc  and  partly  normal 

or  nearly  so  as  the  water  passes  through  the  disc,  the  final  result- 
ant being  at  an  angle  with  the  normal  in  the  direction  which  we 

have  seen  tends  to  make  the  efficiency  greater  than  i  —  s. 
10.  Comparison  of  Theories  with  Facts  of  Experience.  —  It 

does  not  require  much  reflection  to  render  it  evident  that  none  of 

the  three  theories  considered  correctly  represents  the  physical 

phenomena.  This  conclusion  is  very  strongly  confirmed  by  the 

results  of  model  experiment  and  general  experience. 

On  Rankine's  theory  the  water  while  passing  through  the  screw 
disc  is  given  the  stern  ward  velocity  EC  (Fig.  165).  This  can 

occur  only  if  the  stream  contracts  materially  while  passing  through 

the  propeller  or  if  a  material  quantity  of  water  from  abreast  the 

disc  is  always  flowing  into  it.  Neither  motion  seems  reasonable. 

Furthermore,  on  Rankine's  theory,  the  thrust  and  torque  are 

independent  of  the  blade  surface,  one  assumption  of  Rankine's 

theory  being  that  "the  length  of  the  screw  and  number  of  its 
blades  are  supposed  to  be  adjusted  by  the  rules  deduced  from 

practical  experience,  so  that  the  whole  cylinder  of  water  in  which 

the  screw  revolves  shall  form  a  stream  flowing  aft." 
Practical  experience  with  model  propellers  shows  clearly  that  the 

result  assumed  by  Rankine  is  unattainable.  Rankine's  theory 
further  ignores  variations  of  pressure  which  must  occur  in  pro- 

peller action. 

Froude's  theory  goes  to  the  opposite  extreme  of  Rankine's.  It 
assumes  that  the  thrust  increases  always  in  direct  ratio  to  the 

area.  Model  experiments  show  conclusively  that,  while  within 

practicable  limits  thrust  does  increase  as  long  as  area  increases, 

the  increase  in  thrust  is  by  no  means  proportional  to  the  area 

increase,  the  rate  of  increase  with  area  diminishing  steadily  as 
area  increases. 
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Greenhill's  theory  has  the  same  obvious  defect  as  Rankine's,  in 
that  it  neglects  the  effect  of  area  of  blade.  The  portion  I  have 

used  ignores  the  sternward  velocity,  deducing  thrust  entirely  from 

the  pressure  set  up  by  rotating  the  water  in  the  disc,  but  it  should 

be  pointed  out  that  his  1888  paper  gives  some  consideration  to 

other  possible  motions  involving  axial  velocity  of  slip  in  the 
water. 

As,  then,  it  seems  that  no  theory  we  have  considered  can  exactly 

represent  the  action  of  propellers,  it  would  be  necessary,  in  case  we 

wished  to  adhere  to  formulae,  to  compare  each  formula  with  experi- 
mental results  and  select  that  one  which  seemed  to  agree  most 

closely.  Then  using  this  as  a  semi-empirical  formula,  with  coeffi- 
cients and  constants  deduced  from  experiments  or  experience, 

problems  could  be  satisfactorily  dealt  with.  But  it  will  be  ob- 
served that  each  formula  is  of  the  proper  dimensions  to  satisfy 

the  Law  of  Comparison.  Hence  if  either  formula  holds,  the  Law 

of  Comparison  will  hold,  and  experimental  results,  instead  of 

being  utilized  to  supply  coefficients  and  constants  for  use  with  a 

formula,  can  be  reduced  to  a  form  to  be  utilized  directly  by  graphic 
methods.  Per  contra,  if  the  Law  of  Comparison  does  not  hold,  the 
formulae  on  all  of  the  three  theories  will  fail.  In  either  case  there 

is  obviously  no  advantage  from  a  practical  point  of  view  in  attempt- 
ing to  reduce  the  formulae  to  forms  for  use  in  practice.  A  serious 

practical  disadvantage  is  the  fact  that  the  formulas  use  a  true  slip, 
based  upon  true  pitch,  or  a  blade  of  no  thickness.  The  face  pitch 

of  a  blade  with  thickness,  or  its  nominal  pitch  as  it  may  con- 

veniently be  called,  is  very  different  from  the  virtual  or  effec- 
tive pitch,  and  this  fact  causes  material  complications  in  using 

formulae. 

ii.  Slip  Angle  Values.  —  In  connection  with  theories  of  pro- 
peller action  it  is  desired  to  invite  particular  attention  to  the  fact 

that  propellers  in  practice  operate  with  slip  angles  that  are  very 

small  indeed.  A  slip  of  20  per  cent  somehow  seems  to  imply  a 

large  angle,  but  as  a  matter  of  fact  it  usually  means  in  practice  an 

angle  of  from  i\  to  5  degrees  only,  and  most  propellers  show  their 
maximum  efficiency  at  slips  below  20  per  cent. 
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Referring  to  Fig.  165,  where  <p  denotes  the  slip  angle,  we  have 

CD         BCcose 
sin  <>  = CO          \/ r\  /(2   i     A/^~ 

up 

—^ cos  6 
2  7T 

2       , 

2r2+ 

47T
2 

Let  y  denote  diameter  ratio  =  -  =  —     Then  r  =  "-• 
p       p  2 

Substituting,  clearing  and  reducing,  we  have  finally 

sin  0  =5 
+  7T2/   VVy2  +   (l    -  S)2 

Hence  given  s  and  y  the  value  of  </>  is  fixed. 

Fig.  170  shows  graphically  the  relation  between  slip  angle  (j>, 
slip  5  and  diameter  ratio.  Also  at  the  top  of  the  figure  is  a  scale 

for  pitch  ratio,  but  reference  to  diameter  ratio  is  more  illuminating. 

Considering  a  screw  of  uniform  face  pitch  it  is  seen  that  for  a  given 

slip  per  cent  the  slip  angle  is  a  minimum  where  the  diameter  ratio 

is  greatest  —  at  the  blade  tip.  As  we  go  in  from  the  tip  the  slip 
angle  increases,  reaching  a  maximum  when  diameter  ratio  =  .3 
about,  and  then  rapidly  decreasing  to  zero  at  the  axis.  But  on 

account  of  the  hub  the  falling  off  of  slip  angle  below  diameter  ratio 

of  .3  is  immaterial,  and  to  all  intents  and  purposes  slip  angle  in- 
creases from  tip  to  hub.  The  actual  values  for  the  diameter 

ratios  and  slips  found  in  practice  say  below  diameter  ratio  of  i.i 

and  slip  ratio  of  .30  are  quite  small. 

The  maximum  efficiency  of  most  propellers  corresponds  to  a 

nominal  slip  in  the  neighborhood  of  15  per  cent,  and  for  this  the 

maximum  slip  angle  at  the  hub  is  less  than  5°  and  for  the  most 

important  part  of  the  blade  it  is  in  the  vicinity  of  3°.  These  are 
small  angles,  and  the  fact  that  slip  angles  are  so  small  should  never 

be  lost  sight  of  in  considering  operation  of  propellers. 
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21.  Law  of  Comparison  Applied  to  Propellers 

i.  Formulae  for  Applying  Law  of  Comparison  to  Propellers.  - 
In  connection  with  the  Law  of  Comparison  the  formulae  for  the 
application  of  the  law  to  propellers  have  been  already  indicated, 
but  they  are  recapitulated  below. 

Suppose  we  have  a  propeller  and  a  smaller  similar  propeller  or 
model.     Let  us  use  symbols  as  in  the  table  following : 

For  Large 

Propeller. 

For  small 

Propeller 
or  Model. 

Diameter  in  feet     -    D d 

Revolutions  per  minute          R 

Speed  of  advance  in  knots    v 
Thrust  in  pounds            T f 

Torque  in  pound-feet    o 
Pressure  on  propeller,  pounds'  per  square  inch    

j>, 

•hi 

Power  absorbed       p 

Y\ 

* 

Then  if  X  denote  the  ratio  of  linear  dimensions  of  model  and  full- 
sized  screw  we  have  the  following  relation: 

D  =  \d, 

V  = 

T  =  \3t, 

2.   Conditions  Governing  Application  of  Law  of  Comparison.  - 
Note  that  for  the  complete  applicability  of  the  Law  of  Comparison 

pl=  x^i,  or  all  pressures  should  be  in  the  ratio  of  the  linear  dimen- 
sions. Now  the  pressure  under  which  a  model  propeller  works  is 

made  up  of  two  components  —  the  water  pressure  due  to  its  sub- 
mersion and  the  constant  pressure  of  the  atmosphere  exerted  upon 

the  surface  and  transmitted  through  the  water. 

When  we  consider  the  full-sized  propeller  we  find  the  pressure 
due  to  submersion  is  or  readily  can  be  increased  to  scale;  but  the 

atmospheric  pressure  is  not  increased,  and  hence  this  component 

of  the  total  pressure  upon  the  full-sized  propeller  is  only  i  -T-  X  of 
the  value  needed  to  have  the  Law  of  Comparison  exactly  appli- 

cable. Hence  it  might  be  inferred  that,  as  the  conditions  required 

by  the  Law  of  Comparison  are  not  present,  model  experiments  are 
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of  little  value  in  the  investigation  of  propellers.  But  upon  con- 
sideration it  is  evident  that  in  each  case  the  atmospheric  pressure 

is  transmitted  through  the  water,  appearing  both  in  front  of  and 

behind  model  and  propeller;  and,  since  the  forces  upon  model 

and  propeller  are  due  to  reactions  caused  by  the  motions  impressed 

upon  the  water,  the  Law  of  Comparison  will  apply  provided  the 
motions  of  the  water  around  model  and  propeller  are  similar. 

The  pressure  relation  fails  in  precisely  the  same  way  in  passing  from 

models  to  ships,  but  in  this  case  the  motions  produced  are  not 

affected  by  the  surface  pressure  and  the  Law  of  Comparison  holds. 

Hence  we  may  rely  upon  the  Law  of  Comparison  and  design  pro- 
pellers upon  the  basis  of  model  results  if  we  can  but  be  sure  that 

the  motions  of  the  water  around  model  and  propeller  will  be 
similar. 

Now,  we  are  reasonably  certain  that  until  we  reach  speeds  and 

thrusts  at  which  the  phenomenon  known  as  cavitation  makes  its 

appearance  the  motions  of  the  water  around  model  and  propeller 

are  so  nearly  similar  that  the  Law  of  Comparison  is  applicable. 

When  cavitation  is  present  the  Law  of  Comparison  fails,  because, 

as  will  be  seen  when  discussing  cavitation,  the  model  does  not  cavi- 
tate  as  a  rule,  and  hence  results  from  it  are  an  unsafe  guide  when 

dealing  with  the  full-sized  screw.  But  the  majority  of  propellers 
as  fitted  are  not  very  seriously,  if  at  all,  interfered  with  by  cavi- 

tation, and  for  such  propellers  model  experiments  are  of  great 

value,  since  the  Law  of  Comparison  may  be  somewhat  confidently 

relied  upon  in  connection  with  them.  Exact  comparison  of  experi- 

mental data  from  a  model  and  a  full-sized  propeller  of  large  dimen- 
sions has  never  been  made,  but  experiments  at  the  United  States 

Model  Basin  showed  that  for  small  or  model  propellers  ranging 

from  8  inches  to  24  inches  in  diameter  the  Law  of  Comparison 

applies  reasonably  well.  (See  paper  entitled  "Model  Basin  Glean- 

ings," Transactions  Society  of  Naval  Architects  and  Marine  Engi- 
neers for  1906.) 

We  have  seen  that  theoretical  formulas  for  propeller  action  all 

give  the  result  that  for  a  given  propeller  form  advancing  with  a 

given  slip  the  thrust  and  torque  vary  as  the  square  of  the  speed  of 

advance  and  also,  that  the  thrust  varies  as  the  square  and  the 
torque  as  the  cube  of  the  linear  dimensions. 
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If  this  is  the  case,  the  Law  of  Comparison  necessarily  holds. 

There  are  a  number  of  reasons  for  thinking  that  thrust  and  torque 

for  a  given  propeller  advancing  with  given  slip  vary  as  the  square 

of  the  speed  of  advance.  If  the  lines  of  flow  or  paths  followed  by 

the  particles  of  water  are  the  same,  whatever  the  speed,  then 

thrust  and  torque  must  vary  as  the  square  of  the  speed.  For  then 

the  quantity  of  water  acted  upon  must  vary  directly  as  the  speed, 
and  the  velocity  communicated  to  each  particle  acted  on  must 

vary  directly  as  the  speed.  Hence  the  momentum  generated  per 

second,  to  which  thrust  and  torque  are  proportional,  must  vary  as 

the  square  of  the  speed. 

Experiments  made  at  the  United  States  Model  Basin  in  1904 

with  1 6-inch  model  propellers  between  speeds  of  three  and  seven 
knots  showed  that  within  the  limits  of  experimental  error  thrust 

and  torque  varied  very  approximately  as  the  square  of  the  speed. 

The  propellers  whose  thrust  varied  as  a  greater  power  of  the  speed 

than  the  square  were  usually  those  with  very  narrow  blades. 

Those  whose  thrust  varied  as  a  lesser  power  of  the  speed  than  the 

square  were  usually  those  with  very  broad  blades. 

Finally,  experience  in  analyzing  accurate  trial  results  shows  that, 

broadly  speaking,  when  cavitation  is  not  present,  at  speeds  where 

the  resistance  of  the  ship  is  varying  as  the  square  of  the  speed  the 

slip  is  practically  constant,  which  of  course  means  that  the  thrust 

of  the  propeller  advancing  with  this  constant  slip  varies  as  the 

square  of  the  speed. 

At  speeds  for  which  the  resistance  of  the  ship  is  varying  as  a 

less  power  of  the  speed  than  the  square  the  slip  is  falling  off,  and 

at  speeds  for  which  the  resistance  is  varying  as  a  greater  power 

of  the  speed  than  the  square  the  slip  is  increasing.  This  is 

fairly  strong  evidence  from  accumulated  experience  that  the 

thrust  of  full-sized  propellers  varies  as  the  square  of  the  speed  of 
advance. 

In  the  light  of  present  knowledge  we  appear  to  be  warranted  in 

concluding  that  the  Law  of  Comparison  applies  to  propeller  action 

sufficiently  well  for  practical  purposes  until  cavitation  appears. 
There  is  reason  to  believe,  however,  that  cases  have  occurred 

where  cavitation  has  been  present  without  being  suspected. 
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22.   Ideal  Propeller  Efficiency 

i.   Thrust,  Power  and  Efficiency  of  Ideal  Propelling  Apparatus. 

—  In  a  paper  before  the  Society  of  Naval  Architects  and  Marine 

Engineers,  in  1906,  entitled  "The  Limit  of  Propeller  Efficiency," 
Assistant  Naval  Constructor  W.  McEntee,  without  setting  up 

any  special  theory  of  propeller  action,  has  pointed  out  the  limit  of 

propeller  efficiency  beyond  which  we  cannot  go. 

Suppose  we  have  a  frictionless  propelling  apparatus  discharg- 
ing a  column  of  water  of  A  square  feet  area  directly  aft  with  an 

absolute  velocity  u,  while  the  speed  of  the  ship  is  v,  both  v  and  u 

being  measured  in  feet  per  second.  Then  if  w  denote  the  weight 

per  cubic  foot  of  the  water,  the  weight  acted  on  per  second  is 
IV 

wA  (v  +  u}  and  the  mass  is  -  A  (»  +  «). g 
IV 

The  reaction  or  thrust  T  =  —  A  (v  +  u)  u  being  equal  to  the 
o 

sternward  momentum  generated  per  second. 
1$) 

Useful  work  =  -  A  (v  +  u}  vu. 

There  being  no  friction,  the  lost  work  is  simply  the  kinetic  energy 

in  the  water  discharged.  Hence  we  have 

Lost  work    =  -  A  (v  +  u)  —  • 
g  2 
fiat  not  JJj/, 

Gross  work  =  -  A  (v  +  u)  vu  -\ —  A  (v  +  u)  —  • 
g  g  2 
Useful  work          v 

Efficiency  e  =  -77—        — r-  =   Gross  work  .   u 

v  H   

2 

Also  solving  for  u  in  the  equation  for  thrust  T,  we  get 

/v2  .    sT      v 

u  =  V/-+- 
V  4       wA       2 

Substituting  in  the  expression  for  efficiency,  we  have 

«-   «- 

This  expression  for  maximum  efficiency  must  involve  the  assump- 
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tion  that  the  water  is  discharged  without  increase  of  pressure. 
The  effect  of  an  increase  of  pressure  would  be  to  decrease  the 
efficiency,  since  work  done  against  pressure  would  be  done  with 

v 
efficiency  -     —     Hence  we  conclude  that  the  value  of  e  above v  +  u 

is  the  maximum  that   could  be  attained  by  a  perfect  propeller. 

•jrd? 

Suppose,  
applying  

this  to  a  screw  propeller,  
we  write  —  for  A , 4 

where  d  is  the  diameter  of  the  propeller  in  feet.  Now  if  U  denote 

useful  horse-power  delivered  by  the  propeller  and  P  denote  gross 
horse-power,  or  horse-power  delivered  to  the  propeller,  we  have 

rr       TV                    ~       <55°  eP  6080  T,      , 
eP  =  U  =  — ,  whence   T  =  M   Also  v  =  -    -  V,  where  V 

55°  v  36o° 
is  speed  of  advance  in  knots.  And  g  =  32.16,  w  =  64  for  sea 
water.  Substituting  and  reducing,  we  have  finally 

X 16  —  24  e  +  8  e2  _  2  —  3  e  +  e2 
d?Vs      292.2  e3  36.52 

2.  Discussion  of  Ideal  Efficiency  Results.  —  From  the  above, 
Figs.  171  and  172  were  drawn,  Fig.  171  showing  contours  of 

p 
efficiency  on  values  of  V  as  abscissae  and  of  —  as  ordinates  and 

d2 

Fig.  172  showing  contours  of  efficiency  on  values  of  d  as  abscissae 

and  of  7-  as  ordinates. 

V3 

These  figures  should  not  be  mistaken  as  representing  actual 
efficiencies  that  are  attainable.  They  are  purely  ideal  diagrams, 
and  their  indication  that  efficiency  always  increases  with  increase 

of  diameter  is  misleading  if  followed  too  far  as  regards  actual  pro- 
pellers. They  are  interesting  and  instructive,  however,  as  giving 

us  in  any  particular  case  a  limiting  efficiency  beyond  which  we 
could  not  possibly  go  and  which  we  must  fall  short  of  in  practice. 

p 
In  Fig.  171  there  is  shown  a  supplementary  scale  of  — ,  or  power A 

per  square  foot  of  disc  area.     This  of  course  bears  a  constant 
P 

ratio  to  —  • 
a? 
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A  striking  result  of  the  formula  for  ideal  propeller  efficiency  is 
the  high  efficiency  attained  with  large  slips.     The  expression  for 

4/ 

slip  ratio  s\.  in  terms  of  v  and  u,  is  Si=  —  —  •    The  formula  for v  +  u 
V 

efficiency  is  e  =  -  ,  whence  expressing  e  in  terms  of  s\,  we  have 

2 

Fig.  173  shows  a  curve  of  e  plotted  on  Si,  as  deduced  from  the 

above  formula.  This  efficiency  is  everywhere  above  the  line  i  —Si. 
In  this  connection  it  is  interesting  to  recall  that  numerous  ex- 

periments with  model  propellers  at  high  slips  show  an  efficiency 

greater  than  i  —  s.  It  should  be  remembered,  however,  that  in 
the  case  of  these  actual  small  propellers  s  is  derived  from  the  pitch 
of  the  driving  face,  while  in  the  ideal  formula  $1  is  based  upon  the 
assumed  sternward  velocity  u  of  the  water,  and  the  water  is  not 
supposed  to  have  any  transverse  velocity.  The  actual  sternward 
velocity  of  the  water  in  the  operation  of  actual  propellers  is  not  easy 
to  determine  or  estimate,  and  transverse  velocity  is  always  present. 

On  Rankine's  theory  we  can  readily  establish  the  relation  be- 
tween s  and  sternward  velocity.  In  Fig.  165  the  sternward  velocity 

is  EC  =  s  cos2  6.  This  is  much  less  than  BC,  the  slip  velocity. 
While  we  cannot  say  that  in  actual  cases  the  sternward  velocity  is 
EC,  there  is  no  question  that  it  is  very  much  less  than  BC,  the  slip 

velocity.  It  could  be  equal  to  BC  only  if  there  were  no  trans- 
verse velocity  communicated  to  the  water,  and  there  is  no  ques- 

tion that  in  practice  transverse  velocity  is  always  communicated. 
A  very  common  mistake  is  to  consider  the  sternward  velocity 
communicated  to  the  water  the  same  as  the  slip  velocity,  or  BC  in 
Fig.  165. 

23.   Model  Experiments  —  Methods  and  Plotting  Results 

i.   Experimental   Propeller   Models   and   Testing   Methods.  - 
Having  concluded  that  the  Law  of  Comparison  is  applicable  to 
many  cases  of  propeller  action  so  that  experiments  with  model 
propellers  may  be  expected  to  be  of  value,  I  will  now  go  into  this 
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question.  Numerous  experiments  with  model  propellers  have 
been  made  at  the  United  States  Model  Basin.  The  details  of  the 

apparatus  and  methods  used  will  be  found  in  the  author's  paper 
of  1904  before  the  Society  of  Naval  Architects  and  Marine  Engi- 

neers entitled  "Some  Recent  Experiments  at  the  United  States 

Model  Basin."  The  experimental  gear  described  in  that  paper 
has  been  changed  subsequently  only  in  minor  details  as  improve- 

ments suggested  themselves. 

The  model  propellers  are  usually  made  of  composition,  accu- 
rately finished  to  scale.  Most  of  them  have  been  16  inches  in 

diameter.  When  being  tested  the  model  propeller  is  attached  to 

a  horizontal  shaft  projecting  ahead  of  a  small  boat  which  is  rigidly 

secured  to  the  carriage  traversing  the  basin.  The  shaft  projects 

so  far  that  the  propeller  is  practically  unaffected  by  the  presence 

of  the  following  boat.  The  propeller  shaft  center  is  16  inches 

below  the  surface  of  the  water,  so  that  the  blade  tips  of  a  1 6-inch 

model  are  immersed  8  inches,  or  one-half  of  a  diameter.  The  hub 

is  fitted  with  fair- waters  in  front  and  behind.  Fig.  174  shows  the 

arrangement  for  a  hub  3!  inches  in  diameter,  which  was  a  stand- 
ard hub  diameter  adopted  for  all  models  which  did  not  represent 

actual  propellers.  For  models  of  actual  propellers,  the  hubs  rep- 

resent to  scale  the  actual  hubs,  appropriate  fair-waters  being  fitted. 
Dynamometric  apparatus,  described  in  detail  in  the  paper 

above  referred  to,  enabled  the  torque  and  thrust  of  the  model 

propeller  to  be  accurately  determined. 

By  making  runs  with  dummy  hubs  having  no  blades  attached 
the  hub  effect  was  eliminated  as  far  as  possible,  the  endeavor 

being  to  determine  experimentally  the  torque  and  thrust  of  the 
blades  alone. 

The  greater  number  of  experiments  were  made  at  a  5-knot  speed 
of  carriage,  this  speed  of  advance  being  kept  constant  as  nearly 

as  possible,  and  slip  being  varied  by  varying  the  revolutions  of  the 

propeller.  In  the  early  stages  of  the  experiments,  however,  a 

number  of  propellers  were  tested  at  speeds  of  advance  ranging 

from  3  knots  to  7  knots,  and  between  these  speeds  it  was  found  that 

within  the  limits  of  error  the  thrust  and  torque  at  constant  slip 

varied  practically  as  the  square  of  the  speed.  As  has  been  already 
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pointed  out,  this  agrees  with  the  formula  of  Rankine,  Froude  and 

Greenhill,  which  agree  in  making  thrust  and  torque  vary  as  R2, 
and  when  slip  is  constant  the  speed  of  advance  varies  as  R. 

In  making  the  5-knot  experiments  speeds  of  individual  runs  of  a 
series  would  differ  slightly  from  5  knots,  and  the  thrust  and  torque 

were  reduced  to  the  5-knot  speed  by  taking  them  to  vary  as  the 
square  of  the  speed. 

2.  Methods  of  Recording  Experimental  Results.  —  As  will  be 
seen  upon  consulting  the  original  paper,  during  a  run  the  thrust 

and  torque  are  recorded  continuously,  and  after  uniform  condi- 
tions have  been  reached  the  time  and  revolutions  are  recorded 

every  32  feet.  For  convenience  the  thrust  and  torque  at  5  knots 

speed  are  plotted  initially  upon  the  revolutions  made  by  the  pro- 

peller upon  a  64-foot  interval  —  denoted  by  pi,  which  is  one  of 
the  quantities  observed. 

Fig.  176  shows  curves  of  thrust  and  torque  plotted  thus  for  the 

model  propeller  whose  developed  blade  outline  and  blade  sections 

are  shown  in  Fig.  175.  This  is  a  1 6-inch  three-bladed  model 
propeller  of  the  true  screw,  ordinary  type,  the  pitch  being  16 

inches  —  pitch  ratio  i.oo  —  the  blades  being  elliptical,  of  .25 
mean  width  ratio,  and  the  sections  ogival.  The  hub  diameter  is 

.2  the  propeller  diameter.  The  curves  of  Fig.  176  are  plotted  upon 

Pi,  or  revolutions  per  64-foot  interval.  Lines  showing  the  values 
of  pi  for  various  values  of  the  slip  are  shown  on  the  figure,  the 

slip  being  based  upon  the  nominal  pitch  of  16.0  inches.  These 

lines  are  not  equally  spaced,  for,  p  denoting  pitch  in  feet  and  s 

the  slip  ratio,  we  have  ppi  (i  —  s)  =  64,  or  pi= — - —     —  •    For 

P  (i  ~  s) equal  increments  of  s  the  interval  between  successive  correspond- 
ing values  of  pi  constantly  increases. 

It  will  be  observed  that  p\  is  dependent  upon  the  pitch  and 

slip  only  and  for  a  given  slip  is  quite  independent  of  the  speed. 
Furthermore,  the  experimental  apparatus  was  such  that  pi  was 

determined  with  great  accuracy.  Thus  it  was  a  very  suitable 

quantity  to  use  as  a  primary  variable  upon  which  to  plot  the 

experimental  values  of  thrust  and  torque  for  the  purpose  of  de- 
ducing curves  of  the  same. 
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24.   Model  Propeller  Experiments  —  Analysis  of  Results 

1.  Methods  of  Plotting  Information  Derived  from  Experiment. 

-  The  results  of  model  experiments  having  been  plotted  as  curves 
of  thrust  and  torque  upon  the  revolutions  made  upon  a  64-foot 
length  as  shown  in  Fig.  176,  the  lines  for  various  definite  nominal 
slips  being  indicated  upon  the  same  diagram,  the  subsequent 
treatment  depends  upon  the  purpose  in  view. 

For  purposes  of  analysis,  comparison  of  efficiency,  etc.,  the 
methods  would  naturally  differ  from  those  most  convenient  for 
use  in  design. 
When  we  consider  the  best  method  of  plotting  for  purposes  of 

analysis,  etc.,  curves  deduced  from  model  propeller  experiments,  it 
soon  becomes  evident  that  we  may  with  advantage  record  the 

data  as  curves  of  coefficients  —  quantities  that  do  not  vary  with 
dimensions.  As  abscissae  for  such  curves  the  slip  ratio  is  a  de- 

sirable quantity  to  use.  It  is  not  dependent  upon  size  or  speed, 
and  is  one  of  the  primary  variables  involved  in  screw  action. 

2.  Virtual  and  Nominal  Pitch  and  Slip.  —  The  question  at  once 
arises,  however,  whether  we  should  use  nominal  slip,  namely,  slip 
based  upon  the  pitch  of  the  screw  face,  or  real  slip,  i.e.,  slip  based 
upon  the  virtual  pitch,  or  pitch  of  the  ideal  blade  of  no  thickness 
which  would  act  as  the  actual  blade. 

This  virtual  pitch  is  a  thing  very  different  from  the  nominal 
pitch.  The  ignoring  of  this  fact  has  had  a  great  deal  to  do  with 
the  prevention  of  correct  conclusions  as  to  propeller  performance. 
In  the  case  of  a  true  screw  the  pitch  of  the  driving  face  is  known, 
but  every  point  of  the  back  has  a  pitch,  and  the  back  has  much  to 
do  with  screw  performance.  One  might  think  without  looking 
into  it  that  for  ordinary  cases  the  pitch  of  the  back  is  nearly  the 
same  as  that  of  the  face.  The  truth  is  that  the  pitch  of  the  back 
varies  prodigiously  from  the  pitch  of  the  face.  Fig.  175  shows 
blade  sections  of  a  screw  of  not  unusual  blade  thickness  and  of 

face  pitch  equal  to  diameter,  the  sections  being  of  the  usual  ogival 
type.  Taking  face  pitch  and  diameter  as  16  feet,  Fig.  177  shows 
plotted  on  radius  the  pitch  of  the  back  at  the  leading  edge  and  at 

the  following  edge.  It  is  seen  that  the  pitch  of  the  leading  por- 
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tion  of  the  back  will  average  somewhere  about  50  per  cent  less 
than  the  uniform  pitch  of  the  face  or  the  nominal  pitch.  On  the 
other  hand,  the  pitch  of  the  following  edge  of  the  back  is  on  the 

average  somewhat  more  than  50  per  cent  greater  than  the  nomi- 
nal pitch.  It  is  quite  obvious  that  such  a  screw  cannot  act  as  a 

theoretical  screw,  having  blades  of  no  thickness  and  of  the  uniform 
pitch  of  the  face.  It  is  evidently  desirable  to  find  some  method 
of  determining  for  a  known  screw  its  virtual  pitch,  or  equivalent 

uniform  pitch.  Now,  for  all  formulae  we  have,  neglecting  fric- 
tion, no  thrust  or  torque  at  zero  slip.  Experimental  results  with 

screws  of  uniform  nominal  pitch  and  ogival  type  of  blade  section 
always  show  as  in  Fig.  176  both  thrust  and  torque  when  the  slip 
calculated  on  the  nominal  pitch  is  zero.  It  follows  that  for  such 
screws  the  virtual  pitch  is  greater  than  the  nominal  pitch.  This 
might  be  inferred,  too,  from  the  fact  that  at  the  rear  of  the  blade 
the  pitch  of  the  back  is  always  greater  than  the  nominal,  and,  if 
the  back  has  any  influence  at  all,  it  must  increase  the  virtual 
pitch  over  the  nominal  pitch.  Suppose,  now,  we  consider  some 
experimental  results.  Fig.  178  shows  upon  an  enlarged  scale  the 

lower  part  of  Fig.  176,  being  curves  of  thrust  and  torque  as  deter- 
mined experimentally  for  a  1 6-inch  model  of  the  propeller  of 

Fig.  175  plotted  upon  p\,  or  revolutions  required  to  traverse  a 
distance  of  64  feet,  the  speed  of  advance  of  the  propeller  being 
kept  constant  at  5  knots.  Now  on  any  theory  we  have  at  true 
zero  slip  a  negative  thrust  Tf  and  a  positive  torque  Qf,  both  being 
due  to  the  friction  and  head  resistance  only.  From  the  formulae 
given  when  considering  the  theories  of  Rankine,  Froude  and 
Greenhill, 

T,  =  -fdp3R*Y,          Qf=-£-  fdp*R2Z. 2  7T 

Whence  fdj?R*=  ~^  =  ̂ ' 

pTf          Y       pT      , 
Whence     ^    '  =  —  —  =  -*— ^  when  s  =  o. 

2  irQf         Z       2  -nQ 
Y 

Now  —  is  a  fixed  quantity  for  the  propeller.     For  the  propeller  in 
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question  it  is  equal  to  .236,  from  Fig.  168.     Fig.  178  shows  the 

method  to  be  followed.     If  s  =  o,  we  have  p  =  —  -      So   we  can 

Pi plot  a  curve  of  p  on  pi  as  abscissa.     Also  we  can  plot  the  curve  of 
i)T  Y 
-^— ;,  as  shown.  This  has  the  value  —.236  =  —  —  at  PI=  42.11, 
2  irQ  Z 

for  which  p  =  1.520  feet.  Then  from  the  diagram  the  virtual 
pitch  of  the  screw  is  1.520  feet,  or  18.24  inches,  or  1.140  times  the 

nominal  pitch  of  16  inches.  Very  frequently  the  virtual  pitch  is 

taken  such  that  zero  slip  will  give  zero  thrust.  This  is  not  quite 

correct,  however,  because  at  zero  thrust  there  is  a  small  negative 

thrust  due  to  friction  and  an  equal  and  opposite  positive  thrust 

due  to  slip.  The  error,  however,  is  not  great.  In  Fig.  178,  at  zero 

thrust  PI  =  42.70,  p  =  1.499  feet  =  17.99  inches.  The  difference  in 

virtual  pitch  is  only  about  1-3  per  cent,  and  as  it  is  very  difficult 
to  make  model  propeller  experiments  with  minute  accuracy,  it  is 

hardly  worth  while  in  practice  to  use  the  exact  method.  More- 
over, while  we  should  always  bear  in  mind  that  the  nominal  pitch 

is  not  the  real  pitch  or  virtual  pitch,  it  is  very  desirable  to  use 

always  the  nominal  pitch  in  practical  cases.  We  shall  see  that 

this  can  be  done,  so  that  the  question  of  virtual  pitch,  though  of 

great  scientific  interest,  is  academic  rather  than  practical.  So, 

except  for  special  applications,  results  for  true  screws  of  uniform 

face  pitch  will  be  plotted  upon  nominal  slip  corresponding  to  the 

face  or  nominal  pitch. 

3.  Determination  of  Efficiency.  —  The  ordinates  for  the  curve  of 
efficiency  plotted  upon  nominal  slip  are  readily  and  simply  de- 

termined from  the  curves  of  thrust  T  in  pounds  and  torque  Q  in 

pound-feet.  For  if  p  denote  pitch  in  feet,  R  revolutions  per  min- 

ute and  s  the  slip,  speed  of  advance  is  p  (i  —  s)  R,  and  useful  work 
done  in  a  minute  =  TpR  (i  —  s).  The  gross  work,  or  work  de- 

livered to  the  model,  is  Q  X  2  irR. 

Now  efficiency  =  (Useful  Work)  H-  (Gross  Work)  =  TPR^  ~  s"> 2  (JirK 

Tp(i  -s} 

,    Q      ** 
Note  that  the  quantity  p  (i  —  s)  is  the  advance  of  the  screw 
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for  one  revolution,  and  its  value  is  the  same  whether  nominal  or 

virtual  pitch  is  used,  the  slip  in  each  case  being  that  appropriate 

to  the  pitch.  Since  at  the  Model  Basin  the  curves  of  T  and  Q  are 

plotted  upon  pi,  the  revolutions  per  64-foot  interval,  it  is  conven- 
ient to  use  this  in  the  efficiency  formula. 

We  have  pi  =  —  -.  —  '•  —  r  •    Substituting  and  reducing,  we  have  finally 
p  (i  -  s) 

_  10.186  T PI     Q 

The  values  of  T,  Q  and  p  being  taken  off  for  the  values  of  pi  for 

the  various  slips,  as  indicated  in  Fig.  176,  the  efficiencies  are 

readily  calculated  and  plotted  on  slip. 

4.  Characteristic  Coefficients.  —  The  next  question  is  as  to  the 
curves  of  coefficients  which  will  completely  characterize  the  pro- 

peller. Various  coefficients  may  be  used.  Papers  by  the  author 
and  Messrs.  Curtis  and  Hewins  of  the  Model  Basin  staff  before 

the  Society  of  Naval  Architects  and  Marine  Engineers  give  vari- 
ous forms  of  coefficients,  but  it  is  believed  that  those  given  below 

are  simple  and  convenient. 

We  have  to  deal  with  the  power  absorbed  or  propeller  power  P, 

the  useful  or  net  power  E,  the  speed  of  advance  in  knots  V,  the 

revolutions  per  minute  R,  the  slip  and  the  size. 

Whatever  formula  we  use  we  are  led  to  the  same  type  of  ex- 

pression connecting  power  absorbed,  speed  of  advance  and  diame- 

ter. Thus  using  Rankine's  formula, 

2  7T 

Q  = Gross  power    P  =  =  -1—  (pzRW(ys  -  6s2)  +  fp*R3pdZ). 
33000       33000 

Now  pR^1^^-.         Letf-4.         pd=£- i  —  s  m  m 

The  P  - J-  I1CI1  f       — ,  \7v./  /  \^vx 

(i-s)3X330oo        m  (i  -s)3X  33000  J 

Using  either  Froude's  or  Greenhill's  formula  we  are  led  to  the 
same  expression  except  that  the  Froude  theory  formula  will  have 

the  first  term  in  the  parentheses  divided  by  m  and  the  Greenhill 
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theory  formula  will  have  it  multiplied  by  m2.     In  either  case  we 
d2VsA 

may  write  P  =  .  where  A  is  a  coefficient  independent  of  the 1000 

size  and  speed  of  the  screw  but  varying  with  the  slip  and  depend- 
ent upon  shape,  proportions,  etc.  The  divisor  1000  is  introduced 

simply  in  order  to  give  A  a  greater  value  than  unity  in  practical 
cases.  Otherwise  A  would  be  inconveniently  small.  Evidently 
then  a  curve  of  A  plotted  on  slip  will  completely  characterize  a 
screw  as  regards  the  important  question  of  its  capacity  to  absorb 

power. 
If  E  denote  the  useful  or  effective  horse-power  delivered  by  the 

eA 
screw,  we  have  E  =  eP  =  (PV3  -- 1000 

Let  us  denote  eA  by  B.  Then  curves  of  e,  A  and  B  plotted 
upon  slip  will  completely  characterize  the  action  of  a  propeller  of 
given  features  independently  of  size  and  speed. 
We  have  already  seen  how  to  determine  e  from  the  curves  of 

Q  and  T.  These  curves  are  for  a  fixed  diameter  and  speed  of 

advance  and  at  any  given  point  P  —  -  *« 

33000 
Now 

p(i-s) 
Then 

33OOO         p  (l    —  S)  IOOO 

Whence  A  =  2^X101.33 

33000  p(i  -s) 
From  the  experimental  results  for  a  model  propeller  for  a  given 

value  of  s  we  know  everything  on  the  right-hand  side  of  the  equa- 
tion and  hence  can  determine  A  without  difficulty.  Similarly,  it 

will  be  found  that  we  may  derive  B  from  the  thrust  7\ 

,,      TV  X  101.33      <PV3B n,  =  —  > 
33000  1000 

„      looo  T  X  101.33 
whence  B  =  -  ^in      ' 

33000  tP  V Then  curves  of  A,  B  and  e  completely  characterize  a  propeller. 
As  a  matter  of  fact  any  one  of  them  can  be  derived  from  the 
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other  two.  They  are  all  functions  of  slip  and  proportions  and 
characteristics  of  the  propeller  and  independent  of  size  and  speed. 
Table  XI  shows  the  calculations  necessary  to  determine  curves  of 
A,  B  and  e  from  the  experimental  data  recorded  as  in  Fig.  176. 

Fig.  179  shows  four  curves  of  A,  B  and  e  as  deduced  from  the 

results  of  model  experiments  for  four  propellers  of  the  same  nomi- 
nal pitch  ratio  1.2  and  mean  width  ratio  .2  and  of  the  different 

blade  thickness  fractions  indicated.  The  curves  are  plotted  upon 
nominal  slip  and  show  that  for  this  blade  width  and  pitch  ratio 
efficiency  increases  as  the  blade  thickness  is  reduced,  but  the  power 
absorption  coefficient  A  and  the  thrust  coefficient  B  decrease  as 
thickness  decreases. 

5.  Application  of  Curves  of  Coefficients  from  Model  Propellers. 

-  Curves  of  B  are  particularly  valuable  in  estimating  from  model 
results  the  probable  performance  of  propellers  of  ships.  If  there 
were  no  reactions  between  ship  and  propeller,  that  is,  if  the  ship 

were  a  "phantom  ship"  as  Froude  calls  it,  which  offers  resistance 
the  same  as  the  actual  resistance  without  disturbing  the  water  or 
modifying  the  action  of  the  propeller,  the  case  would  be  very 
simple. 

For  the  ship  we  would  know  from  model  experiments  the  E.H.P. 

at  any  speed  V  and  would  also  know  the  diameter  d  of  the  pro- 

peller.    Then  B  =          3    is  known  for  any  speed  from  consid- 

eration of  the  ship.  But  from  the  propeller  model  experiments 
we  have  a  curve  of  B  plotted  on  slip.  So  having  determined  B 

IOI   "^  ̂   if 

for  a  speed  V  we  know  what  the  slip  must  be.     But  R  =  —    'oc>     ; 

p  (i  -  s) hence  we  know  what  the  revolutions  must  be.  Finally  from  the 

slip  determined  by  B  we  may  determine  e  and  A  corresponding. 
We  can  then  determine  the  power  P  absorbed  by  the  screw  by 

either  one  of  the  two  formulae.  We  have 

1000 

We  shall  see  later  that  the  case  of  the  actual  ship  is  not  so  simple 

as  that  of  the  phantom  ship,  but  curves  of  revolutions  and  horse- 
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power  deduced  entirely  from  model  experiments  for  phantom  ships 

agree  surprisingly  well  in  many  instances  with  the  actual  curves 

determined  by  trial  of  the  full-sized  ships. 
The  author  has  encountered  cases  where  curves  of  revolutions 

and  speed  obtained  from  trials  of  full-sized  ships  presented  fea- 
tures which  appeared  at  first  sight  abnormal  but  were  found  to  be 

duplicated  almost  exactly  by  the  estimated  curves  of  revolutions 

and  speed  deduced  entirely  from  experiments  made  independently 

with  models  of  ship  and  propeller.  On  the  other  hand,  when  the 

full-sized  propeller  shows  cavitation,  the  curves  deduced  from 
model  results  differ  materially  from  the  actual  curves,  a  fact 

which  in  some  cases  permits  of  the  determination  with  a  good 

deal  of  accuracy  of  the  point  where  cavitation  becomes  serious. 

6.  Methods  of  Plotting  Information  for  Design  Work.  —  The 

preceding  analysis  and  method  of  plotting  results  of  model  experi- 
ments is  not  very  convenient  when  we  come  to  design  work.  The 

designer  of  a  propeller  knows  in  advance  or  can  estimate  with 

reasonable  accuracy  the  power  P  which  the  propeller  is  to  absorb 

and  the  speed  of  advance  of  the  propeller  through  the  water  VA. 

He  either  knows  the  revolutions  R  which  are  to  be  used,  or,  sup- 
posing the  revolutions  may  be  varied  through  a  certain  range, 

wishes  to  ascertain  the  effect  of  such  variation  upon  his  design. 

He  then  has  to  determine  diameter,  pitch,  blade  area,  blade  thick- 
ness and  blade  shape. 

It  is  evident,  then,  that  in  plotting  model  experiments  for  use  in 

design  it  would  not  be  advisable  to  plot  them  upon  slip,  because 

this  is  not  a  quantity  that  is  known  or  can  be  closely  approximated 

in  advance.  It  is  desirable  to  use  variables  independent  of  size 

but  involving  power,  speed  and  revolutions,  etc.  There  are  many 

such  expressions.  For  practical  applications  the  following  will  be 
found  convenient: 

p  = 
where  d  is  diameter  in  feet.  The  quantity  p  is  practically  the 

same  as  an  expression  suggested  by  Mr.  R.  E.  Froude  in  discussing 

a  paper  by  Barnaby  before  the  Institution  of  Civil  Engineers, 
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May  6,  1890  (Vol.  CII,  p.  101).     In  discussing  the  same  paper 
RZP 

Mr.  C.  Humphrey  Wingfield  suggested  the  use  of  — r^r  • 
The  quantities   p  and   8  may  be  readily  connected  with   the 

coefficients  already  used  in  analysis  of  propeller  experiments  or 
can  be  deduced  directly  from  the  model  propeller  results. 

^4 
Thus    we    have   seen   that    P  =   d?V3  and  we  know  that 1000 

-s)2=  (ioii)2F2. 
Multiplying  the  two  together, 

IOOO 

Whence     ̂ -  =  (-  )  -^-  ^^  =  io.268[-  '        A 
\pl  (i  -5)2     looo  \pl  (i  -5)2 

d 

Whence          p  =  R  y/—  =3.204 

p  i  —  s The  right-hand  expression  for  p  is  independent  of  size  of  propeller, 
and  values  of  p  are  correctly  calculated  from  a  curve  of  A  plotted 
on  s.  Usually,  however,  it  is  just  as  convenient  to  calculate  them 
from  the  curves  of  torque,  etc.,  of  the  model  propeller.  It  will  be 
found  that  we  may  write 

14.07 

Similarly,  we  may  write 

(PVA) 

41.96 

*       (4)*  V^(i  - 

Table  XII  shows  calculations  of  values  of  p  and  8  for  one  of  the 

model  propellers  whose  results  are  plotted  in  Fig.  179. 
Figure  180  shows  for  the  four  propellers  of  Fig.  179  curves  of 

efficiency  and  of  8  plotted  on  p.  The  calculations  it  is  seen  are 
made  for  various  values  of  s,  and  on  the  curves  of  8  the  spots 
corresponding  to  various  values  of  s  are  indicated.  The  scale 
used  for  p  is  a  variable  one,  the  abscissa  values  being  proportional 

to  Vp  instead  of  p  directly.  This  is  a  convenient  device  for  spac- 
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ing  widely  the  values  of  p  which  are  the  most  important  without 
extending  the  p  scale  unduly. 

The  application  of  curves  such  as  those  in  Fig.  180  to  design 
work  is  very  simple. 

Thus,  suppose  a  propeller  is  to  be  designed  to  absorb  10,000 

horse-power  with  a  speed  of  advance  of  20  knots  and  to  have  200 
revolutions. 

P  IOOOO  I 
Then 

VA°      3200000      320 
'i/'VV 

3200000     320       V  Vjf      17.888 
200 

From  Fig.  1  80  for  p  =  11.18  the  value  of  5  for  the  various  blade 
thickness  ratios  varies  from  54.8  to  57.6,  the  corresponding  values 
of  diameter  varying  from  12.25  to  12.88. 

It  is  seen,  however,  that  the  efficiency  is  low,  only  about  .66,  and 
the  slip  high.  Evidently  the  pitch  ratio  of  1.2  is  not  adapted  to 
the  case  and  should  not  be  used.  But  suppose  the  revolutions 
desired  had  been  100.  Then  we  would  have 

p  =  5.59,     d  =  .3551  8. 

For  this  value  of  p  we  have  good  efficiency,  and  if  the  law  of 
comparison  holds  we  would  get  good  results  from  a  propeller  of 

pitch  ratio  1.2.  For  p  =  5.59  the  values  of  8  range  from  54.2  to 
58.2  and  of  d  from  19.25  to  20.66.  In  practice  we  would  choose 
a  value  of  d  corresponding  to  a  blade  thickness  fraction,  then 

determine  the  actual  blade  thickness  necessary,  and  if  the  result- 
ing blade  thickness  fraction  differed  much  from  that  first  esti- 

mated, a  second  approximation  would  be  made  using  the  correct 
blade  thickness  fractions. 

25.   Propeller  Features  Influencing  Action  and  Efficiency 

A  number  of  experiments  have  been  made  with  1  6-inch  model 
propellers  at  the  United  States  Model  Basin.  Many  of  the  results 
obtained  were  published  in  the  Transactions  of  the  Society  of 
Naval  Architects  and  Marine  Engineers  for  1904,  1905  and  1906. 

These  results  and  others  not  published  enable  some  conclusions 

to  be  drawn  positively  as  regards  1  6-inch  propellers  and  with  con- 
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fidence  as  regards  propellers  of  ordinary  sizes  within  the  limits 
where  the  Law  of  Comparison  is  applicable. 

i  .  Number  of  Blades.  —  There  were  tried  a  number  of  pro- 
pellers with  blades  identical  but  differing  in  number  —  from  two 

to  six.  It  was  found  that  efficiency  was  inversely  as  the  number 
of  blades;  that  is,  a  propeller  with  two  blades  was  more  efficient 
than  a  propeller  with  three  identical  blades,  that  one  with  three 
blades  was  more  efficient  than  one  with  four  identical  blades  and 
that  one  with  four  blades  was  more  efficient  than  one  with  six 
identical  blades. 

Also  while  total  thrust  and  torque  increase  as  number  of  blades 

is  increased,  the  thrust  and  torque  per  blade  fall  off.  A  three- 
bladed  propeller  at  a  given  slip  does  not  show  50  per  cent  more 

thrust  and  torque  than  a  two-bladed  propeller  with  identical 
blades.  Fig.  181  shows  approximately  for  working  slips  the  rela- 

tive efficiencies  and  coefficients  for  2-,  3-  and  4-bladed  propellers 
identical  except  as  to  the  number  of  blades.  The  curves  are 
curves  of  ratios  of  the  quantities  concerned,  those  for  3  blades 
being  taken  as  unity  in  each  case.  As  we  have  seen  : 

.    _  loco  P          R  _  i  OOP  E 
'' 

where  d  is  diameter  in  feet,  V  is  speed  of  advance  in  knots  and  P 
and  E  power  absorbed  and  effective  power.  The  subscripts  refer 
to  the  number  of  blades,  A^,  for  instance,  denoting  the  value  of 

A  for  4-bladed  propellers.  It  is  seen  that  the  power  absorbed, 
depending  upon  the  coefficient  A  varies  more  nearly  as  the  number 

of  blades  than  the  useful  horse-power  depending  upon  the  coeffi- 
cient B.  The  2-bladed  propeller  shows  slightly  greater  efficiency 

than  the  3-bladed,  and  the  4-bladed  distinctly  less.  It  should  be 
remembered  that  Fig.  181  refers  to  propellers  working  under 
identical  conditions  of  slip,  speed  of  advance,  etc.  This  means 

that  a  4-bladed  propeller  will  absorb  about  30  per  cent  more  power 
than  a  3-bladed  and  a  2-bladed  propeller  about  15  per  cent  less. 

In  practice  the  question  to  be  decided  is  whether  to  use  a 

4-bladed  or  a  3-bladed  propeller  when  the  same  power  is  to  be 
absorbed.  In  this  case  the  4-bladed  propeller  would  be  smaller 
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than  the  3-bladed  and  hence  might  have  a  pitch  ratio  more  favor- 

able to  efficiency  than  the  pitch  ratio  of  the  corresponding  3-bladed 

propeller.  So  the  question  of  3-  or  4-bladed  propellers  would  re- 
quire investigation  in  each  case.  The  methods  to  be  used  will  be 

considered  later. 

2.  Outline  or  Shape  of  Blades.  —  The  question  of  shape  or 
outline  of  blade  faces  has  been  given  much  attention  in  connection 

with  propeller  designs  and  in  some  cases  extravagant  claims  have 

been  made  for  special  shapes. 

Fig,  182  shows  five  blade  shapes  which  were  experimented  with 
at  the  United  States  Model  Basin.  Blade  thickness  fraction  was 

constant  in  each  case,  being  .0575.  Three  pitch  ratios  were  used, 

.8,  i.o  and  1.2. 

The  results  were  quite  consistent  and  showed  that  the  blades 

with  broad  tips  absorbed  more  power  and  gave  more  thrust  but 

with  slightly  less  efficiency.  While  the  very  pointed  blades  showed 

up  slightly  the  best,  there  is  some  reason  to  doubt  whether  they 

would  retain  their  superiority  —  which  was  not  very  marked  —  in 
full-sized  propellers.  The  experiments  justify  us  in  looking  with 
doubt  upon  claims  for  great  gain  of  efficiency  by  reason  of  some 

special  shape  of  blade,  and  appear  to  indicate  that  for  all-round 

work  the  old  well-known  elliptical  shape  is  probably  as  good  as 
any,  though  it  may  be  that  some  other  oval  shape  may  be  found 

slightly  better.  On  the  other  hand  the  conclusion  seems  warranted 

that  if  circumstances  render  some  special  shape  desirable,  it  can 

be  used  without  serious  loss  of  efficiency  provided  it  is  not  alto- 
gether abnormal. 

3.  Rake  of  Blades.  —  It  is  "a  very  common  practice  to  rake  or 
incline  the  blades  of  a  propeller  aft.     Sometimes  they  are  inclined 

forward.     At  the  United  States  Model  Basin,  six  propellers,  all 

of  .2  mean  width  ratio  and  .0425  blade  thickness  ratio,  were  tested. 

Three  were  of  .6  pitch  ratio  and  three  of  1.2  pitch  ratio.     Of  each 

trio,  one  had  the  blades  inclined  10°  aft,  one  had  the  blades  set 
normal  to  the  shaft  and  one  had  the  blades  inclined  10°  forward. 
The  diameter  was  16  inches  in  each  case.     Fig.  183  shows  radial 

sections  of  the  blades.      The  experiments   gave  almost  identical 

results,    the    difference    of  torque,  thrust,    and    efficiency   being 
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slight.  So  far  as  efficiency  goes,  then,  there  seems  no  reason  to 

rake  the  blades  of  propellers.  The  advantage  sometimes  claimed 

for  blades  raking  aft  is  that  they  prevent  a  supposed  centrifugal 

motion  of  the  water.  Careful  investigation  of  1 6-inch  propellers 
on  test  failed  to  show  any  evidences  of  centrifugal  action  except 

for  some  models  of  very  thick  blades  and  coarse  pitch  tested  at 

3  knots  speed  of  advance  with  a  slip  of  75  or  80  per  cent.  These 

models  were  practically  standing  still  and  seemed  to  throw  the 

water  out  under  the  conditions  described.  Numerous  experiments 

with  1 6-inch  propellers  under  normal  conditions  showed  the  propeller 
race  to  be  practically  cylindrical  and  that  so  far  from  there  being 

centrifugal  motion,  there  is  a  slight  convergence  abaft  the  propeller. 

There  is  little  doubt  that  the  advantages  of  rake  as  regards  pre- 
vention of  centrifugal  motion  are  imaginary. 

A  real  advantage  of  rake  in  practice  is  that  the  blade  tips  of 

side  screws  are  thereby  given  greater  clearance  from  hulls  of  usual 
form  than  if  the  blades  were  radial  or  with  the  same  blade  clear- 

ance strut  arms  are  shorter.  A  very  real  disadvantage  is  the 

increase  of  stresses  in  the  blades  because  of  centrifugal  action. 

This  will  be  discussed  later.  It  is  a  serious  matter  for  quick  run- 
ning screws,  and  for  such  screws  at  least  blades  should  never  rake. 

4.  Size  of  Hub.  —  One  of  the  features  of  the  Griffith  screw 

introduced  some  fifty  years  ago  was  a  large  hub  —  sometimes 
with  diameter  a  third  that  of  the  propeller.  These  screws  were 

often  very  successful,  and  as  a  result  of  practical  experience  there 

have  for  many  years  been  advocates  of  large  hubs.  Experiments 

with  model  propellers  at  the  United  States  Model  Basin  have 

shown  that  large  hubs  are  distinctly  prejudicial  to  efficiency. 

Full-scale  experiments  with  turbine  vessels  seem  to  have  shown 
the  same  thing,  material  gains  in  speed  having  been  reported 

after  substituting  solid  propellers  with  small  hubs  for  propellers 

with  large  hubs  and  detachable  blades.  The  argument  against 

the  large  hub  is  very  simple.  When  a  large  spherical  hub  is  mov- 
ing through  the  water  there  must  be  a  strong  stream  line  action 

abreast  its  center,  the  water  flowing  aft.  Hence  the  inner  por- 
tion of  the  blades  must  be  working  in  a  negative  wake  produced 

by  the  hub  —  a  condition  prejudicial  to  efficiency. 
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It  is  sometimes  argued  that  with  a  small  hub  the  inner  portion 
of  the  blades  offer  more  resistance  than  if  they  were  suppressed 
and  a  large  hub  fitted. 

This  is  probably  not  true,  especially  when  we  consider  that  the 

large  hub  appreciably  increases  the  vessel's  resistance.  But  even 
if  it  were  true,  the  prejudicial  effect  of  the  large  hub  upon  the 
blade  outside  of  it  would  be  enough  to  turn  the  scale  against  it. 

With  slow-running  screws  of  coarse  pitch  the  large  hub,  while 
prejudicial  to  efficiency,  will  not  affect  it  seriously;  but  for  screws 
of  such  fine  pitch  as  usually  fitted  in  turbine  work  the  inner  parts 
of  the  blades  do  relatively  more  work  and  are  relatively  more 
efficient  than  in  the  coarse  screws.  Hence,  reduction  of  the  work 

done  by  them  and  of  their  efficiency  through  a  negative  wake  set 
up  by  a  large  hub  is  likely  seriously  to  reduce  the  efficiency  of  the 
screw  as  a  whole. 

5.  Standard  Series  of  Model  Propellers.  —  We  have  now  con- 
sidered the  minor  factors  affecting  propeller  operation  and  effi- 

ciency and  will  pass  to  major  factors.  These  are  pitch  ratio,  blade 
area,  blade  thickness  and  slip.  In  considering  resistance  of  ships 
the  major  factors  of  residuary  resistance  were  investigated  by 
means  of  a  standard  series  of  models  whose  variations  covered 

the  useful  range  of  the  major  factors  concerned.  Similarly,  the 
field  has  been  covered  for  propellers  by  a  standard  series  of  models 

of  varying  pitch  ratio,  mean  width  ratio,  and  blade  thickness  frac- 
tion. They  were  all  3-bladed  propellers  16  inches  in  diameter, 

with  blades  that  were  elliptical  in  developed  outline.  The  hubs 

were  cylindrical  and  35  inches  in  diameter,  being  practically  .2  of 

the  propeller  diameter.  Six  pitch  ratios  were  used  —  namely,  .6, 
.8,  i.o,  1.2,  1.5  and  2.0.  For  each  pitch  ratio  five  blade  areas  were 
used.  Fig.  184  shows  the  developed  areas  of  the  five  blade  faces. 
Their  mean  width  ratios,  as  shown,  were  .15,  .20,  .25,  .30  and  .35. 
Six  pitch  ratios  and  five  mean  width  ratios  resulted  in  30  propellers. 
These  were  made  true  screws  with  ogival  blade  sections,  the  backs 

being  circular  arcs,  and  with  extra  thick  blades. 
After  being  tested,  the  thickness  was  reduced  by  taking  metal 

off  the  back  to  form  new  ogival  sections,  the  face  being  untouched, 
and  thus  new  propellers  with  the  same  faces  as  before,  but  thinner 
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blades,  were  made.  These  were  tested  as  before.  This  process 

was  repeated  twice,  so  that  each  blade  was  tested  in  four  thick- 
nesses, being  finally  unusually  thin.  This  made  120  propellers 

tested  in  all.  Table  XIII  gives  their  data.  The  original  pro- 
pellers are  numbered  i  to  30  and  the  successive  cuts  denoted  by 

the  letters  A,  B  and  C.  Great  care  was  taken  when  reducing 

thickness  not  to  change  the  face,  and  toward  the  edges  the  recut 

blades  were  probably  a  shade  thicker  than  true  ogival  sections. 

It  is  difficult  to  make  model  propeller  experiments  with  minute 

accuracy,  but  in  this  case,  owing  to  the  number  of  propellers  tried 

and  the  number  of  independent  variables  involved,  irregular  ex- 
perimental errors  could  be  practically  eliminated  by  cross  fairing 

on  pitch  ratio,  mean  width  ratio  and  blade  thickness  fraction. 

Figures  185  to  208  show  the  experimental  results  after  this  was 

done  in  the  form  of  curves  of  thrust  in  pounds,  torque  in  pound 

feet  and  efficiency.  All  refer  to  a  5-knot  speed  of  advance.  The 
results  are  plotted  upon  nominal  slip  as  being  most  convenient  for 

practical  applications. 

The  results  of  trials  of  these  120  propellers  are  worthy  of  the 

most  careful  study.  We  will  now  consider  them  briefly  in  con- 

nection with  the  influence  of  pitch  ratio,  blade  area,  blade  thick- 
ness and  slip  upon  thrust,  torque  and  efficiency. 

6.  Pitch  Ratio.  —  The  effect  of  variation  of  pitch  ratio  is  illus- 
trated in  Fig.  209,  which  shows  for  propellers  of  .25  mean  width 

ratio  and  .04  blade  thickness  fraction  curves  of  maximum  effi- 
ciency and  of  thrust  and  torque  for  20  per  cent  slip.  This 

figure  is  typical.  It  is  seen  that  for  constant  slip  and  speed  of 

advance,  torque  and  thrust  increase  as  pitch  ratio  decreases,  the 

increase  becoming  more  and  more  rapid  as  pitch  ratio  becomes 
less. 

The  efficiency  remains  nearly  constant  over  a  fairly  wide  range 
of  pitch  ratio  having  its  greatest  value  at  a  pitch  ratio  of  about 

1.5.  As  pitch  ratio  decreases,  however,  efficiency  begins  to  fall 

off,  and  below  the  value  of  unity  the  falling  off  is  rapid.  In  prac- 

tice screws  of  fine  pitch  have  frequently  shown  very  low  efficiency 

as  a  result  of  cavitation,  but  apart  from  this,  screws  of  fine  pitch, 
say  below  a  pitch  ratio  of  unity,  are  essentially  less  efficient  than 
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screws  of  pitch  ratio  1.5  or  so,  and  the  smaller  the  pitch  ratio  the 
less  the  efficiency. 

7.  Blade  Thickness.  —  When  we  study  the  influence  of  blade 
thickness  we  find  that  the  thicker  the  blade  the  greater  the  thrust 
and  torque  for  a  given  slip.  This  is  perfectly  natural  when  we 
reflect  that  the  results  are  plotted  upon  nominal  slip  and  that  the 
thicker  the  blade  the  greater  the  virtual  pitch.  The  effect  of  blade 
thickness  upon  efficiency  is  summarized  in  Fig.  210.  It  was  found 
that  for  a  given  blade  area  the  relative  variations  of  efficiency  with 
blade  thickness  were  nearly  the  same  for  slips  used  in  practice 
regardless  of  pitch  ratio.  Hence  Fig.  210  shows  for  each  blade 
width  an  average  curve  of  relative  efficiency  plotted  on  thickness 

only;  for  each  curve,  unity  corresponds  to  a  different  blade  thick- 
ness fraction,  the  broad  blades  being  thinner  than  the  narrow 

blades.  This  is  generally  in  accordance  with  what  considerations 
of  strength  necessitate  in  practice. 

Figure  210  indicates  that  the  efficiency  of  narrow  blades  increases 
rapidly  as  they  are  thinned,  while  for  the  broad  blades  thickness 
has  little  effect  upon  efficiency,  and  in  fact  the  thicker  blades 

seem  slightly  more  efficient.  When  we  remember  that  on  ac- 
count of  strength  a  narrow  blade  must  be  thicker  than  a  broad 

blade  the  deduction  from  Fig.  210  is  that  practicable  variations 
of  blade  thickness  will  have  comparatively  little  effect  upon 

efficiency.  This  conclusion,  however,  is  from  results  of  experi- 
ments where  cavitation  was  not  present,  and  it  is  generally  agreed 

that  to  avoid  cavitation  propeller  blades  should  be  as  thin  as 

possible. 
It  is  probable  that  in  many  cases  if  the  blades  are  made  too 

thick  cavitation  would  reduce  efficiency  without  the  propeller 
actually  breaking  down,  while  it  will  be  avoided  altogether  with 
thin  blades.  Hence  we  should  make  propeller  blades  reasonably 
thin  in  practice,  in  spite  of  Fig.  210.  Where  cavitation  is  likely 
they  must  be  made  thin.  It  may  be  remarked,  however,  that 

Fig.  210  appears  to  be  in  general  accordance  with  facts  of  ex- 
perience with  slow-running  propellers.  Coarse,  heavy  propellers  of 

this  type  often  give  very  good  results  in  service  in  spite  of  thick 
blades. 
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8.  Blade  Areas.  —  In  the  experiments  with  the  standard  series 
of  propellers  it  was  not  practicable  to  investigate  the  question  of 
blade  area  entirely  apart  from  that  of  blade  thickness.  The  broad 
blades  were  made  thinner  than  the  narrow  ones,  as  would  be  the 

case  with  actual  propellers  in  practice  when  it  is  a  question  be- 

tween a  narrow-bladed  propeller  and  a  broad-bladed  propeller  to 
absorb  the  same  power  at  the  same  revolutions  and  speed. 

It  is  owing  to  the  greater  thickness  of  the  narrow  blades,  and 

hence  their  greater  virtual  pitch  for  a  given  nominal  pitch,  that  in 

the  fine  pitches  the  narrow  blades  actually  absorb  more  power  and 

deliver  more  thrust  for  a  given  nominal  slip  than  the  broad  blades. 

In  the  coarse  pitches  this  is  not  the  case  for  slips  such  as  occur  in 

practice,  but  the  broad  blades  do  very  little  more  than  the  narrow 
ones. 

Even  after  making  allowances  for  the  thickness  effect  it  is  evi- 
dent that  the  broad  blades  by  no  means  absorb  torque  and  deliver 

thrust  in  proportion  to  their  areas.  In  fact  the  influence  of  blade 

area  upon  thrust  and  torque  is  surprisingly  small. 

Considering  efficiency  it  is  seen  that  for  propellers  of  pitch  ratio 

usually  found  in  practice  the  broad  blades  and  the  narrow  blades 

are  both  less  efficient  than  blades  of  medium  width,  say  with  a 

mean  width  ratio  of  .25  to  .30.  The  differences  are  not  great, 

however.  It  is  interesting  to  note  the  superior  efficiency  of  the 

narrow  blades  for  the  propellers  of  abnormally  fine  pitch.  This, 
however,  is  not  due  to  the  fact  that  the  blades  are  narrow,  but  to 

the  fact  that  the  narrow  blades  have  greater  virtual  pitch  ratio, 

and  for  the  propellers  of  very  fine  pitch  gain  in  virtual  pitch  ratio 

means  gain  in  efficiency. 

The  experiments  with  the  standard  series  of  model  propellers 

warrant  fully  the  broad  conclusion  that,  when  cavitation  is  absent, 

propellers  may  vary  quite  widely  in  pitch  ratio  (above  1.2  or  so) 
and  in  area  with  little  change  in  efficiency,  provided  diameter  is 

such  that  they  work  at  slips  at  or  near  that  of  maximum  efficiency. 

This  conclusion  is  fully  borne  out  by  experience,  which  has  led 

many  people  to  conclude  that  there  was  so  little  difference  be- 
tween propellers  that  any  propeller  which  allowed  the  engine  to 

develop  its  power  at  the  desired  revolutions  and  showed  a  good 
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slip  was  a  good  enough  propeller.  For  low-speed  work  this  is 

reasonably  correct;  for  high-speed  work,  even  leaving  out  of  ques- 
tion cavitation,  propellers  which  absorb  the  power  at  the  desired 

revolutions  are  liable  to  vary  seriously  in  efficiency,  particularly  if, 

as  is  usually  the  case,  they  must  be  of  the  fine  pitch  type. 

9.  Slip.  —  Figures  185  to  208  show  that  all  curves  of  efficiency 
plotted  upon  slip  present  the  same  general  appearance.  Con- 

sidering nominal  slip  the  efficiency  is  zero  at  a  certain  negative 

slip.  The  thicker  and  narrower  the  blade  the  greater  in  general 

the  increase  of  virtual  over  nominal  pitch,  and  the  greater  the 

numerical  value  of  the  negative  slip  corresponding  to  zero  effi- 
ciency. It  will  be  noted,  however,  that  for  the  narrow  blades  of 

pitch  above  unity  there  seems  to  be  a  slight  falling  of!  of  virtual 

pitch  with  thickness  beyond  the  A  cut.  This  is  probably  due  to 
the  fact  that  as  the  thickness  of  these  narrow  blades  is  increased 

a  point  is  reached  where  the  water  breaks  away  from  the  back,  the 

latter  losing  its  grip,  as  it  were.  The  process  is  analogous  to  cavi- 
tation, though  cavities  are  not  formed.  As  the  slip  increases  from 

that  corresponding  to  zero  efficiency,  the  efficiency  rises  very 

rapidly  at  first,  then  reaches  a  maximum  and  thereafter  falls  off. 

The  nominal  slip  corresponding  to  maximum  efficiency  is  nearly 

always  between  15  and  20  per  cent  for  blade  thickness  that 

would  be  used  in  practice,  but  slip  can  be  increased  to  25  per  cent, 

and  in  some  cases  to  30  per  cent,  without  serious  loss  of  efficiency. 
But  such  an  increase  means  an  eno  mous  increase  in  thrust  and 

torque.  Hence  a  given  propeller  will  vary  widely  its  power  and 

thrust  without  material  change  of  efficiency.  So  it  is  not  neces- 
sary in  practice  with  propellers  of  coarse  pitch,  to  aim  very  closely 

at  some  exact  slip  provided  the  propeller  is  so  designed  that  under 

conditions  of  service  its  slip  is  not  too  small.  A  propeller  which 

is  too  large,  showing  slip  much  below  that  for  maximum  efficiency, 

will  be  very  inefficient.  On  the  other  hand,  a  propeller  may  be 

too  small  and  work  with  slip  a  good  deal  greater  than  for  maximum 

efficiency  without  much  loss  of  efficiency.  It  should  be  remem- 
bered that  the  slips  of  Figs.  185  to  208  refer  to  propellers  operating 

in  undisturbed  water,  and  the  apparent  slip  of  propellers  attached 

to  ships  is  usually  less  than  the  true  slip. 
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When  dealing  with  propellers  of  fine  pitch  ratio,  say  in  the 

neighborhood  of  unity,  the  question  of  efficiency  as  affected  by 

slip  is  complicated  by  the  question  of  efficiency  as  affected  by 

pitch  ratio.  Thus  in  Fig.  190  we  see  that  propeller  No.  8,  A  cut, 
of  .25  mean  width  ratio  and  .8  pitch  ratio  has  a  maximum  efficiency 

of  .632  at  15  per  cent  slip.  From  Fig.  194,  propeller  No.  13,  A 

cut,  of  .25  mean  width  ratio  and  i.o  pitch  ratio  has  a  maximum 

efficiency  of  .684  at  14  per  cent  slip  and  an  efficiency  of  .632  at 

about  31  per  cent  slip.  In  a  given  case,  then,  where  we  could  fit  a 

propeller  of  the  proportions  of  No.  8  working  at  maximum  effi- 
ciency, we  could  make  an  improvement  if  we  could  fit  a  propeller 

of  the  proportions  of  No.  13  working  below  its  maximum  efficiency 

provided  its  slip  did  not  exceed  30  per  cent.  This  is  a  question  of 

very  considerable  practical  importance.  In  the  next  section  will 

be  given  methods  for  determining  the  best  combinations  of  pitch 

ratio  and  slip  for  given  conditions. 

26.   Practical  Coefficients  and  Constants  for  Full-sized  Pro- 

pellers Derived  from  Model  Experiments. 

i.  General  Line  to  be  Followed  in  Reducing  Model  Results.  - 
The  results  of  the  model  experiments  for  the  standard  elliptical 

3-bladed  series  will  of  course  be  of  value  in  the  case  of  any  pro- 
peller design.  It  should  be  carefully  remembered,  however,  that 

they  cannot  be  applied  blindly.  We  have  determined  experi- 
mentally the  thrust  and  torque  and  deduced  the  efficiency  of  a 

number  of  small  propellers  at  a  5-knot  speed  of  advance  through- 
out the  range  of  slip  likely  to  be  found  in  practice.  These  small 

propellers  covered  for  3-bladed  elliptical  propellers  the  range  of 
pitch  ratio,  mean  width  ratio,  and  blade  thickness  fraction  likely 
to  be  found  in  practice.  We  know  that  so  long  as  cavitation  does 

not  appear  the  Law  of  Comparison  will  apply  satisfactorily  and 

that  the  results  of  the  model  experiments  will  apply  to  full-sized 
propellers  working  under  the  same  conditions  as  the  models.  But 

in  applying  the  results  we  must  remember  that  they  do  not 

hold  for  cavitating  conditions,  which  will  presently  be  considered 

separately. 
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The  models  were  tested  in  such  a  manner  as  to  be  practically 

free  from  hull  influence,  and  we  know  that  for  full-sized  propellers 
driving  ships  there  are  material  mutual  reactions  between  pro- 

peller and  ship.  The  question  arises  whether  we  shall  attempt  to 
take  account  of  these  reactions  in  reducing  the  model  results  or 
consider  them  separately. 

It  is  much  better,  and  even  simpler  in  the  end,  to  attack  the 
problem  in  detail. 

2.  Reduction  of  Model  Results.  —  We  have  seen  that  by  means 
of  a  p8  diagram,  as  in  Fig.  180,  the  experimental  model  results  may 
be  reduced  to  a  form  convenient  for  practical  applications.  But 
if  we  simply  construct  a  p8  diagram  for  each  model  tested  it  will 
be  a  very  laborious  process  to  locate  and  utilize  the  particular 

diagram  adapted  to  a  particular  case.  So  it  is  necessary  to  de- 
velop diagrams,  by  interpolation  if  necessary,  such  that  the  pri- 
mary factors  involved  are  readily  determined.  We  have  to  deal 

with  efficiency,  diameter,  pitch  ratio,  mean  width  ratio  and  blade 
thickness  fraction. 

These  are  too  many  variables  to  be  covered  directly  on  a  single 
diagram.  The  first  three  are  the  most  important.  Width  and 
blade  thickness  are  not  independent  in  practice.  To  do  a  given 
work  at  given  revolutions  the  narrow  blade  must  be  thicker  than 
the  wide  blade.  So  four  p5  diagrams,  Figs.  211  to  214,  have  been 
constructed  from  the  model  results  of  Figs.  185  to  208.  Figure  211 
refers  to  blades  having  a  mean  width  ratio  of  .20  and  a  blade 
thickness  fraction  of  .06.  Similarly  Figs.  212,  213  and  214  refer 

respectively  to  mean  width  ratios  of  .25,  .30  and  .35  and  blade 
thickness  fractions  of  .05,  .04  and  .03.  We  shall  see  later  how  to 
make  slight  changes  involved  by  other  blade  thickness  fractions. 

The  application  of  the  p8  diagrams  is  very  simple  : 
* 

'        = 
where  P  is  the  power  absorbed  by  the  propeller  of  diameter  d 
feet  at  R  revolutions  per  minute  when  advancing  at  a  speed  of  VA 
knots. 

Then  p  is  the  primary  variable  fixed  by  the  conditions  of  the 
problem.     Contours  of  5  are  plotted  above  p  for  equal  intervals 
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of  pitch  ratio  and  curves  of  efficiency  for  the  same  intervals. 

When  p  is  known  we  can  determine  very  promptly  for  any 

value  of  8  the  pitch  ratio  and  efficiency.  In  addition  to  the  con- 
tours of  d  above  p  contours  of  slip  are  plotted  in  dotted  lines. 

3.  Maximum  Efficiency. — The  efficiency  curves  show  many  in- 
teresting and  significant  features.  For  a  short  interval  each  pitch 

ratio  shows  an  efficiency  greater  than  any  other,  and  evidently  if 

our  choice  is  free  we  should  for  a  given  value  of  p  use  the  pitch 

ratio  corresponding  to  optimum  efficiency.  Hence,  there  is  drawn 

an  enveloping  curve  of  maximum  efficiency  touching  the  suc- 
cessive efficiency  lines  for  the  various  pitch  ratios  which  has  upon 

it  a  scale  of  the  pitch  ratios  for  maximum  efficiency. 

In  this  connection  attention  may  be  called  to  the  fact  that  the 

portion  of  each  efficiency  curve  which  gives  the  best  efficiency  for 

a  given  p  is  in  general  of  an  efficiency  below  the  maximum  efficiency 

attainable  with  the  pitch  ratio.  This  is  particularly  noticeable  for 

the  largest  values  of  p.  For  all  values  of  p  above  very  small  ones 

it  is  better  to  use  a  propeller  of  relatively  coarse  pitch  and  work 

it  at  a  fairly  high  slip  —  greater  than  that  corresponding  to  its 

maximum  efficiency  —  than  to  use  a  propeller  of  finer  pitch  and 
work  it  at  its  maximum  efficiency.  This  for  the  reason  that  for 

propellers  of  pitch  usual  in  practice  decrease  of  pitch  means  fall- 
ing off  in  efficiency. 

The  p8  diagrams  bring  out  clearly  some  of  the  basic  conditions 

affecting  propeller  design. 

Once  we  fix  for  a  propeller  the  power,  P,  it  is  to  absorb,  its  revo- 
lutions per  minute,  R,  and  its  speed  of  advance,  VA,  the  value  of  p 

is  fixed.  Now  it  is  apparent  from  the  diagrams  that  for  a  given 
value  of  p  there  is  a  maximum  efficiency  beyond  which  we  cannot 

go.  We  may  very  easily  fall  short  of  it,  but  even  if  we  adopt  the 

very  best  combination  of  diameter,  pitch  and  blade  area  possible, 

we  cannot  get  beyond  a  limiting  efficiency.  The  p8  diagrams  of 

Figs.  211  to  214  were  deduced  from  experiments  with  models  of 

3-bladed  propellers  with  elliptical  blades  having  ogival  sections. 
Hence  the  limiting  efficiencies  shown  in  them  are  not  exactly  the 

same  as  for  all  types  of  propellers,  though  they  are  about  as  high 

as  for  any  known  type.  But  there  is  no  doubt  that  they  indi- 
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cate  well  the  general  variation  of  efficiency  with  p  for  all  types  of 

propellers  in  present  use.  While  there  is  a  maximum  efficiency, 

about  p  =  3,  and  the  efficiency  falls  off  on  either  side,  the  values  of 
p  that  are  found  in  practice  are  almost  never  materially  below  3,  so 

that  in  practice  the  larger  the  p  the  smaller  the  limiting  efficiency. 

It  is  the  high  value  of  p  produced,  if  we  give  low-speed  vessels  high 
revolutions,  that  has  hitherto  prevented  the  application  to  cargo 

vessels  of  turbines  directly  connected  to  the  propeller.  Thus,  sup- 

pose we  had  a  destroyer  propeller  absorbing  5000  shaft  horse- 
power at  800  revolutions  with  a  speed  of  advance  of  30  knots. 

For  this  case 

The  limiting  efficiency  for  this  value  of  p  is  about  .65  which  though 

low  is  not  impossible.  If  now  we  had  a  large  single-screw  cargo 

and  passenger  vessel  which  required  5000  shaft  horse-power  to 
make  15  knots  speed  of  advance  and  adhered  to  800  revolutions 

per  minute  the  value  of  p  would  be 

800  V  cooo --  -  64.9. 

For  this  value  of  p  the  limiting  efficiency  would  be  inadmissibly 

low.  To  hold  p  at  11.5  the  revolutions  would  have  to  be  reduced 

to  142  which  would  make  an  inefficient  turbine.  An  alternative  is 

to  hold  revolutions  at  800  and  use  multiple  shafts.  But  in  order  to 

make  the  p  value  for  each  propeller  11.5  only,  it  would  be  neces- 

sary to  divide  the  5000  shaft  horse-power  between  32  shafts,  which 
is  of  course  impossible. 

Another  fact  of  serious  practical  importance  which  the  p8  dia- 
grams bring  out  is  that  there  is  practically  a  lower  limit  to  the 

pitch  ratio  which  can  be  used  to  advantage.  At  first  the  best 

pitch  ratio  falls  off  rapidly  with  increase  of  p,  but  for  large  values 

of  p  the  pitch  ratio  falls  off  more  and  more  slowly,  and  for  no  value 

of  p  which  it  would  be  advisable  to  use  in  practice  is  it  desirable  to 

go  below  a  pitch  ratio  of  .9  or  a  little  less. 

The  slip  for  the  best  all-round  efficiency  which  is  below  .15  for 
small  values  of  p  increases  steadily,  until  it  is  seen  that  propellers 
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of  a  pitch  ratio  of  .9  should  be  worked  at  over  .30  slip.  This  is 
real  slip,  not  apparent  slip. 

It  is  interesting  to  note  in  this  connection  that  the  model  ex- 
periments indicate  that  the  broader  the  blades  the  greater  the 

slip  for  the  best  results.  Thus  for  a  pitch  ratio  of  i.o  and  the  four 

blade  width  ratios  of  .20,  .25,  .30  and  .35  the  best  slips  are  respec- 
tively .255,  .265,  .280  and  .320.  This  is  in  accord  with  theoretical 

considerations. 

4.  Methods  of  Calculations.  —  In  order  to  facilitate  the  calcula- 
tion of  p  in  a  given  case  there  are  given  in  Table  XIV  values  of 

VA™. 
It  should  be  carefully  borne  in  mind  that  VA  is  not  the  speed  of 

the  ship  through  the  water  but  the  speed  of  advance  of  the  pro- 
peller through  the  disturbed  water  in  which  it  works.  The  differ- 

ence between  VA  and  V,  the  speed  of  the  ship,  will  be  considered 
in  connection  with  the  wake  factor. 

The  formula  for  5  is 

or,  when  8  has  been  determined, 

With  a  table  of  squares  and  cubes  we  can  readily  determine  (PVA)k 

by  taking  the  square  root  of  the  cube  root  of  PV  'A',  R*  is  simply 
the  square  of  the  cube  root  of  R.  Hence  the  calculations  re- 

quired in  connection  with  the  use  of  the  p8  diagrams  are  readily 
made. 

5.  Blade  Thickness  Correction.  —  The  four  p5  diagrams  for  the 
standard  series  refer  to  a  definite  blade  thickness  fraction  for  each 

mean  width  ratio.  We  have  seen  in  Fig.  210  the  effect  upon  the 
efficiency  of  the  standard  series  of  variations  of  the  blade  thick- 

ness. This  effect  is  not  large  enough  to  be  of  practical  importance 
in  most  cases.  But  variation  of  blade  thickness  will  also  neces- 

sarily affect  pitch  ratio  and  diameter.  Investigation  shows,  how- 
ever, that  the  effect  is  not  large,  and  for  blade  width  ratios  from 

.25  to  .35,  and  for  propellers  of  about  the  proportions  for  maxi- 
mum efficiency,  the  average  corrections  required  are  shown  in 
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Fig.  215.  The  curves  of  this  figure  give  for  various  values  of  p  the 

percentages  by  which  diameters  and  pitches  determined  from  the 

p8  diagrams  must  be  modified  when  the  standard  blade  thickness 

fractions  to  which  the  pd  diagrams  correspond  are  departed  from. 

The  corrections  are  small  and  in  practice  may  often  be  ignored. 

The  standard  p8  diagrams  already  take  some  account  of  thickness, 

the  widest  blades  being  only  half  as  thick  as  the  narrowest,  but  of 

course  the  actual  blade  thickness  fraction  in  a  given  case  is  fixed 

mainly  by  considerations  of  strength. 

6.  Four-bladed  Propellers.  —  The  standard  pd  diagrams,  Figs.  211 
to  214,  refer  to  three-bladed  propellers.  It  would  be  desirable  to 

have  similar  diagrams  from  full  experiments  with  four-bladed  pro- 
pellers, but  lacking  such  they  can  be  used  with  fair  approximation 

for  four-bladed  propellers.  We  have  in  Fig.  181  the  relation  be- 

tween power  absorbed,  thrust  and  efficiency  of  three  and  four- 
bladed  propellers  as  deduced  by  analysis  of  experiments  at  the 

model  basin  with  propellers  having  quite  thin  blades  of  rather 

broad  tips.  These  may  be  taken  as  applying  with  reasonable 

approximation  to  the  elliptical  blades. 

Then  the  steps  in  a  given  case  will  be  as  follows: 

1.  Determine  p  in  the  ordinary  way  and  then  divide  it  by  the 

square  root  of  the  ratio  between  the  coefficient  A  for  a  four-bladed 

screw  and  for  a  three-bladed  screw  —  these  ratios  are  given  in 
Fig.  181.     Call  the  quotient  P4. 

2.  Using  p4,  determine  by  the  use  of  the  proper  p8  diagram  the 

proper  diameter,  pitch,  etc.,  for  a  three-bladed  propeller. 

Then  upon  adding  a  fourth  identical  blade  to  the  three-bladed 

propeller  we  shall  have  a  four-bladed  propeller  which  will  meet 
the  conditions. 

For  let  P,  R,  and  VA  denote  power  to  be  absorbed,  revolutions 

to  be  made  and  speed  of  advance. 
We  have 

P= 

then  P4  = 
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where  r.  is  the  ratio  of  the  A  coefficients  from  Fig.  181.  Then 

a  three-bladed  propeller  based  upon  p4  will,  at  revolutions  R  and 
p 

speed  of  advance  VA,  absorb  a  power  —  -     But  from  Fig.  181  again r 

a  four-bladed  propeller  identical  as  to  diameter,  pitch  and  blades 
p 

will  absorb  r  times  the  power  of  the  three-bladed  one,  or  —  X  r  =  P. r 

Hence  the  four-bladed  propeller  will  absorb  the  power  P  at  revo- 
lutions R  and  speed  of  advance  VA-  The  relative  efficiencies 

may  be  obtained  from  Fig.  181. 

Since  once  we  know  p,  we  can  determine  the  relative  diameters 

of  the  three  and  four-bladed  propellers;  we  can  from  each  p8  dia- 

gram for  three-bladed  propellers  determine,  by  using  Fig.  181  as 
explained  above,  a  figure  giving  ratios  of  diameter,  pitch  and 

efficiency  for  three  and  four-bladed  propellers.  It  is  found,  how- 
ever, that  as  regards  diameter  and  pitch  the  ratios  are  so  nearly 

the  same  for  all  widths  that  the  results  may  be  averaged  in  a  simple 

diagram  (Fig.  216). 

This  gives  curves  of  coefficients  by  which  the  diameter  and 

pitch  of  -a  three-bladed  propeller  must  be  multiplied  to  determine 

the  diameter  and  pitch  of  a  four-bladed  propeller  of  the  same  type 
of  blades  and  mean  width  ratio  that  at  the  same  revolutions  and 

speed  of  advance  will  absorb  the  same  power. 

Efficiency  coefficients  are  also  given.  These  are  seen  to  be  all 

less  than  unity,  indicating  a  loss  of  efficiency  by  adopting  four- 
bladed  instead  of  three-bladed  screws. 

The  pitch  coefficient  is  less  than  unity  throughout,  so  the 

pitch  of  the  four-bladed  screw  will  be  slightly  less  than  that  of 
the  three-bladed  screw,  but  the  diameter  is  reduced  more  than  the 

pitch,  so  that  the  pitch  ratio  of  the  four-bladed  screw  will  be  the 
greater.  The  diameter  coefficient  in  Fig.  216  should  be  regarded 

as  an  upper  limit.  It  will  be  feasible  in  practice  to  reduce  the 

diameter  of  the  four-bladed  screw  four  or  five  per  cent  more  with- 
out material  loss  of  efficiency. 

7.  Two-bladed  Propellers.  —  It  is  evident  that  the  methods  above 

may  be  utilized  in  order  to  apply  the  p8  diagrams  for  the  three- 

bladed  propellers  to  two-bladed  propellers. 
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In  this  case,  however,  the  artificial  value  of  p  will  be  greater  than 
the  original  value. 

Fig.  217  gives  curves  of  coefficients,  etc.  It  is  seen  that  diame- 
ter, pitch  and  efficiency  are  all  increased.  The  gain  in  efficiency  is 

small,  however,  and  there  are  practical  objections  to  two-bladed 
propellers,  so  that  their  use  is  seldom  expedient.  This  point  will 

be  discussed  further  in  considering  design  of  propellers. 

27.   Cavitation 

i.  Nature  of  Cavitation.  —  The  phenomenon  known  as  cavita- 
tion  has  been  given  much  attention  of  late  years  in  connection  with 

quick-running  turbine-driven  propellers.  It  appears  to  have  been 
first  identified  upon  the  trials  in  1894  of  the  torpedo  boat  destroyer 

Daring  which  had  reciprocating  engines.  When  driven  at  full 

power  with  the  original  screws  this  vessel  showed  very  serious 

vibration  evidently  due  to  some  irregular  screw  action.  The  pro- 
pulsive efficiency  was  poor,  the  maximum  speed  obtained  being 

24  knots  for  3700  I.H.P.  and  384  revolutions  per  minute. 

Mr.  Sidney  W.  Barnaby,  the  engineer  of  the  Thorneycrofts,  who 

built  the  Daring,  came  to  the  conclusion  that  at  the  high  thrust 

per  square  inch  at  which  the  screws  were  working  the  water  was 

unable  to  follow  up  the  screw  blades  and  that  "  the  bad  perform- 
ance of  the  screws  was  due  to  the  formation  of  cavities  in  the 

water  forward  of  the  screw,  which  cavities  would  probably  be 

filled  with  air  and  water  vapor."  So  Mr.  Barnaby  gave  the 
phenomenon  the  name  of  cavitation.  The  screws  which  gave  the 

poor  results  had  6  feet  2  inches  diameter.  8  feet  7!  inches  pitch  and 

8.9  square  feet  blade  area.  Various  alternative  screws  were  tried, 
and  the  trouble  was  cured  by  the  use  of  screws  of  6  feet  2  inches 

diameter,  8  feet  n  inches  pitch  and  12.9  square  feet  blade  area. 

With  these  screws  24  knots  was  attained  with  3050  I.H.P.  and  the 

maximum  speed  rose  from  24  knots  to  over  29  knots. 

For  the  Daring  cavitation  appeared  to  begin  when  the  screw 

area  was  such  that  the  thrust  per  square  inch  of  projected  area  was 

a  little  over  u  pounds  per  square  inch.  For  a  time  it  was  thought 

that  the  thrust  per  square  inch  of  projected  area  was  a  satisfactory 

criterion  in  connection  with  cavitation  and  that  the  limiting 
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thrust  per  square  inch  of  projected  area  found  on  the  Daring  was 
generally  applicable. 

This,  however,  is  not  the  case.  Greater  thrusts  have  been  suc- 
cessfully used  and  cavitation  is  liable  to  appear  at  much  lower 

thrusts.  In  one  case  within  the  author's  experience  cavitation 
appeared  when  the  thrust  was  about  5  pounds  per  square  inch  of 
projected  area,  the  tip  speed  being  about  5000  feet  per  minute, 
and  in  another  when  it  was  about  7.5  pounds,  the  tip  speed  being 
about  650x3  feet  per  minute.  There  is  little  doubt  that  the  prime 
factors  involved  in  cavitation  are:  (i)  the  speed  of  the  blade 
through  the  water,  which  is  conveniently  measured  by  the  tip 
speed,  and  (2)  the  shape  of  the  blade  section. 

2.  Accepted  Theory  of  Cavitation  Inadequate.  —  When  we  at- 
tempt to  explain  just  how  or  why  vacuous  cavities  at  the  backs  of 

screw  blades  cause  the  serious  loss  of  efficiency  associated  with  cavi- 
tation we  encounter  insuperable  difficulties.  Suppose,  for  instance, 

the  cavity  is  a  vacuum  and  covers  the  whole  blade  back.  Then  the 
thrust  per  square  inch  of  projected  area  due  to  the  vacuum  on  the 
blade  back  would  be  between  14  and  15  pounds  and  the  thrust  due 
to  the  face  would  be  added  to  that.  As  cavitation  will  appear  in 
some  cases  at  thrusts  per  square  inch  of  projected  area  as  low  as  4 
pounds,  it  is  evident  that  in  such  cases  there  cannot  be  a  vacuum 
over  the  whole  blade  back  and  thrust  in  addition  on  the  face. 

But  suppose  the  blade  had  a  vacuum  over  a  portion  of  the  back 
only.  There  would  be  no  increase  of  thrust  from  additional  suction 
of  that  portion  of  the  blade  back,  but  neither  would  there  be  any 
increase  of  torque  due  to  that  portion  of  the  blade  back.  The  only 
loss  of  efficiency  would  be  a  small  amount  due  to  the  propeller 
working  with  a  slightly  higher  slip,  while  the  loss  of  efficiency 
accompanying  cavitation  is  very  much  greater  than  this. 

Fig.  218  shows  a  propeller  blade  section  advancing  through  the 

water  at  an  angle  of  slip  of  3  degrees  —  not  an  unusual  angle. 
There  are  three  regions  indicated: 

1.  The  leading  portion  of  the  back,  denoted  by  A. 
2.  The  following  portion  of  the  back,  denoted  by  B. 
3.  The  face,  denoted  by  C. 
It  does  not  appear  possible  that  cavities  can  form  at  A.    This 
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portion  of  the  section  contributes  negative  thrust,  and  although  the 
point  of  demarcation  between  the  portion  of  the  back  contributing 

negative  thrust  and  the  portion  contributing  positive  thrust  (suc- 
tion) probably  varies  in  position  with  speed  through  the  water  and 

slip  angle,  it  appears  reasonably  certain  that  A  always  contributes 

negative  thrust  and  quite  probable  that  this  negative  thrust  in- 
creases indefinitely  with  the  speed. 

Qver  B  a  cavity  will  form  when  the  speed  is  high  enough.  It 
will  probably  be  small  at  first,  and  as  the  speed  is  increased,  cover 
a  greater  and  greater  portion  of  the  section  back.  It  cannot  cover 
the  whole  back,  however,  because  it  cannot  extend  over  A  to  the 
leading  edge. 

As  regards  C  it  has  been  generally  assumed  that  the  thrust  from 
the  face  always  increases  with  increase  of  speed  of  the  section 
through  the  water. 

3.  Possible  Theories  of  Cavitation.  —  Now  how  is  it  conceivable 
that  cavitation  can  cause  a  rather  sudden  loss  of  efficiency  when 
the  section  is  pushed  to  a  sufficiently  high  speed  ? 

A.  It  is  possible  that  when  a  vacuum  is  formed  at  B  this  portion 

of  the  blade  contributes  no  more  suction  or  thrust  while  the  nega- 
tive thrust  at  A  continues  to  increase  with  resulting  loss  of  efficiency. 

This  explanation  would  seem  to  involve  the  further  assumption  that 
by  far  the  major  portion  of  the  thrust  of  a  propeller  is  due  to  the 
suction  of  the  blade  back. 

B.  It  is  possible  that  when  a  vacuum  is  formed  at  B  it  is  spoiled 
by  air  obtained  from  the  surrounding  water  and  the  suction  of  the 
blade  back  is  decreased.    This  explanation  is  possible  only  if,  when 
the  water  still  hugs  the  blade  back,  it  sweeps  away  any  air  which 
is  sucked  out  of  the  water,  so  that  while  the  water  is  in  contact  with 
the  back  it  is  possible  for  the  latter  to  exert  a  suction  approaching 
that  of  a  perfect  vacuum.     But  when  the  water  breaks  away  from 
the  back,  air  leaking  into  the  space  is  carried  away  by  entrainment 
only  from  the  rear  of  the  cavity,  where  the  water  comes  together 

again;  and  when  the  rate  of  entrainment  is  equal  to  the  rate  of  leak- 
ing into  the  cavity  there  is  a  balance  of  pressure,  and  though  there 

is  a  partial  vacuum  in  the  cavity  the  pressure  is  much  greater  than 
a  complete  vacuum. 
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C.  It  is  possible  that  when  cavitation  sets  in  the  thrust  from  the 

blade  face  falls  off  absolutely  or  relatively. 

A,  B  and  C  above  appear  to  cover  the  possible  theories  of  the 

phenomena  associated  with  cavitation.  Whether  cavitation  is  due 
to  one  or  more  of  these  explanations  or  to  something  different  still, 

can  be  satisfactorily  determined  by  experiment  only,  either  on 

models  or  on  full-sized  propellers. 

4.  Experimental  Investigation  of  Cavitation.  —  Experiments 
with  cavitation  using  full-sized  propellers  have  not  hitherto  been 
made,  except  inadvertently.  While  no  theory  of  cavitation  should 

be  fully  accepted  until  confirmed  by  full-sized  experiments  the  ex- 
pense of  a  general  investigation  with  large  propellers  has  been 

hitherto  prohibitive,  to  say  nothing  of  the  time  required  and  the 

practical  difficulties  in  the  way.  Small  scale  or  model  experiments 

on  cavitation  present  special  difficulties.  For  the  law  of  com- 
parison to  apply  in  spite  of  cavitation  it  would  be  necessary  to  have 

the  pressure  around  the  model  in  the  ratio  of  the  size  to  the  pressure 

around  the  full-sized  propeller. 
This  requires  the  model  to  work  in  water  whose  surface  is  covered 

by  a  partial  vacuum,  or  in  hot  water  which  has  a  vapor  pressure 

partially  neutralizing  that  of  the  air. 

The  Hon.  C.  A.  Parsons  has  done  some  work  using  the  latter 

method,  but  little  has  been  published  of  the  results.  There  are 

great  practical  difficulties  in  making  experiments  along  this  line, 

except  with  very  small  models. 

A  second  possible  method  of  investigating  cavitation  experimen- 

tally by  means  of  models  is  to  test  the  model,  not  at  the  corre- 

sponding speed,  but  at  the  actual  speed  of  advance  of  the  full-sized 

propeller.  When  this  is  done,  the  pressures  per  square  inch  at  cor- 
responding points  of  propeller  and  model  are  the  same,  and  if  one 

shows  cavitation  so  will  the  other.  This  method  is  hardly  prac- 

ticable for  the  model  of  the  propeller  of  a  33-knot  destroyer,  but 

for  propellers  of  slow  and  moderate-speed  vessels  experiments 
could  be  made  without  serious  difficulty  or  great  expense,  either 

in  a  model  basin  or  from  a  special  testing  platform  in  front 

of  a  vessel.  This  method,  however,  has  not  been  used  in  practice. 

For  model  propellers  of  any  size,  say  15  inches  to  18  inches  in 
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diameter,  it  would  require  very  powerful  driving  and  measuring 

gear. 
A  third  method  is  to  use  the  propeller  testing  gear  already  in- 

stalled in  a  model  basin  with  small  propellers  of  such  abnormal 
proportions  and  shape  that  they  will  show  cavitation  within  the 
limits  of  speed  and  revolutions  available. 

Some  experiments  along  this  line  have  been  made  at  the  United 
States  Model  Basin. 

To  obtain  pronounced  cavitation  from  small  propellers  12  inches 
to  1 6  inches  in  diameter,  tested  at  speeds  of  advance  not  over  7 
knots  or  so,  it  is  necessary  to  make  the  pitch  ratio  much  smaller 
and  the  ratio  of  thickness  to  width  of  blade  much  larger  than  for 

the  propellers  used  in  practice.  Sixteen-inch  models  representing 
propellers  of  ordinary  proportions  will  not  cavitate  satisfactorily 
at  low  speeds  of  advance,  and  the  experimental  gear  available  was 
not  powerful  enough  to  drive  them  at  high  speeds. 

The  results  obtained  with  the  fine  pitch  propellers  appear,  how- 
ever, to  throw  some  light  upon  the  subject  under  consideration. 

Figure  219  shows  expanded  blade  outline  and  blade  sections  for  a 

1 6-inch  model  propeller  of  6.4-inch  pitch.  Figure  220  shows  curves 
of  thrust  and  torque  for  this  propeller  plotted  upon  slip  for  speeds 
of  advance  of  5,  6  and  7  knots.  The  major  portion  of  Fig.  220  is 
from  Fig.  10  of  a  paper  by  the  author  before  the  Society  of  Naval 
Architects  and  Marine  Engineers  in  1904,  but  the  curves  for  the 

5-knot  speed  have  been  extended,  and  the  curves  for  the  propeller 
reversed  have  been  added  from  the  results  of  subsequent  experi- 

ments. For  the  propeller  reversed  the  nominal  slip  is  figured  from 
the  nominal  pitch  of  the  back  as  tested  (the  face  before  reversal). 

Figure  220  shows  conclusively  that,  so  far  as  this  propeller  is  con- 
cerned, the  thrust  per  square  inch  of  projected  area  has  little  to  do 

with  the  cavitating  point.  At  a  nominal  slip  of  —15  per  cent  there 
is  evidently  cavitation  at  the  7-knot  speed.  At  this  point  the  thrust 
is  80  pounds,  or  almost  4.3  pounds  per  square  inch  of  projected  area. 
At  5  knots,  however,  the  thrust  per  square  inch  of  projected  area 
at  which  cavitation  begins  is  about  9  pounds. 

Other  conclusions  might  be  drawn  from  Fig.  220,  but  more  illu- 
mination can  be  obtained  from  the  results  of  trials  of  a  small  pro- 
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peller  especially  designed  to  show  cavitation.  This  propeller  was 
14  inches  in  diameter  and  of  4.2  inches  pitch.  Its  developed  blade 
outline  and  blade  sections  are  shown  in  Fig.  221.  At  the  points 
A,  B,  C,  D  and  E  small  holes  were  made  on  each  blade  connecting 
to  the  shaft,  which  was  hollow.  The  hole  in  the  shaft  communicated 
in  turn  with  a  pipe  forward  of  the  hub,  which  led  finally  to  a  tank 
under  air  pressure,  there  being  a  pressure  gauge  on  the  line  and 
valves  for  turning  on  or  cutting  off  the  air  pressure  as  desired. 
When  making  trials  one  hole  only  was  left  open  in  each  blade. 
This  apparatus  measured  suction  or  partial  vacua  with  great  facility 

but  had  to  be  handled  carefully  to  measure  pressure.  When  mea- 
suring suction,  the  air  pressure  was  cut  off,  when  the  propeller  itself 

would  quickly  exhaust  the  air  and  the  amount  of  vacuum  was  read 
on  the  gauge.  When  measuring  pressure,  the  air  valve  was  barely 
cracked,  so  that  a  small  quantity  of  air  was  dribbling  out  all  the 
time  through  the  hole  where  pressure  was  to  be  measured. 

In  this  way  the  passages  in  the  propeller  were  kept  clear  of  water, 
whose  presence  would  have  prevented  obtaining  the  pressure  at  the 
hole. 

A  gauge  pressure  of  a  pound  and  a  half  or  so  was  sufficient  to  keep 
the  air  passing  out  when  the  propeller  was  at  rest  or  turning  over 
very  slowly,  and  the  difference  between  this  initial  pressure  and  the 
gauge  pressure  shown  while  running  was  taken  as  pressure  at  the 
hole. 

In  the  early  part  of  a  run  for  pressure  the  air  would  stop  coming 
out  of  the  propeller;  it  would  accumulate  in  the  pipe  and  the  gauge 
pressure  rise  until  air  again  began  to  come  out  and  the  gauge  became 
steady.  At  the  end  of  a  run  the  instant  the  propeller  began  to  slow 
down  the  air  would  burst  forth. 

While  the  apparatus  and  methods  described  above  for  measuring 
pressure  and  suction  are  certainly  not  of  minute  accuracy,  they  gave 
consistent  results  which  are  believed  to  be  reasonably  accurate. 

For  looking  at  the  propeller  under  the  test  there  was  fitted  a 
fixed  disc  with  a  small  slot,  and  immediately  behind  it  a  revolving 
disc  with  a  similar  slot,  which  was  driven  at  the  same  speed  as  the 
propeller.  The  propeller  was  illuminated  by  a  searchlight  and  when 
looking  through  the  slot  in  the  fixed  disc  the  propeller  was  seen  once 
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during  each  revolution  always  in  the  same  position.  The  discs  and 

searchlight  could  be  shifted  so  that  either  back  or  face  of  the  pro- 
peller could  be  observed. 

Figure  222  shows  for  the  propeller  of  Fig.  221  and  three  knots 

speed  of  advance  curves  of  thrust,  torque  and  of  pressure  or  suc- 
tion at  the  points  indicated.  The  curves  are  plotted  upon  nominal 

slip  and  pressure  and  suction  are  measured  in  pounds  per  square 

inch.  A  scale  showing  tip  speed  is  also  given. 

Figure  223  gives  the  same  data  as  Fig.  222  for  five  knots  speed 
of  advance. 

When  watching  the  operation  through  the  slotted  discs  any 

cavities  present  were  plainly  visible  and  it  was  easy  to  trace  the 

development  of  cavitation. 

At  about  3000  feet  tip  speed  cavities  appeared  at  the  following 

portions  of  the  back  and  the  leading  portions  of  the  face.  The 

cavities  appeared  first  on  the  face,  as  might  be  expected  from  Figs. 

222  and  223,  which  show  that  the  suction  at  A  is  always  more 
intense  than  at  D. 

The  cavities  first  show  themselves  near  the  blade  tips  and  creep 
in  toward  the  center  as  speed  is  increased. 

In  Figs.  222  and  223  the  thrust  has  returned  to  zero,  when  the 

tip  speed  is  between  5000  and  6000  feet  per  minute.  When  this 
is  the  case  the  cavities  at  the  back  of  the  blade  extend  in  from  the 

tip  about  two-thirds  of  the  blade  length  and  near  the  tip  cover 

nearly  two-thirds  of  the  blade  back. 
On  the  face  under  the  same  conditions  the  cavities  extend  along 

the  leading  edge  practically  in  to  the  hub  and  near  the  tip  from  the 

leading  edge  to  the  following  edge. 

5.  Theory  and  Cause  of  Cavitation.  —  From  the  experimental 
curves  of  Figs.  222  and  223  and  observation  of  the  cavities  it  is 
obvious  that  the  cavities  at  the  rear  of  the  blade  do  no  harm.  It 

is  the  cavities  on  the  driving  face  which  grow  rapidly  as  tip  speed 

is  increased,  combined  with  the  negative  thrust  of  the  leading  por- 
tions of  the  blade  back  that  stop  the  increase  of  thrust  and  then 

actually  cause  it  to  decrease  to  zero  and  below. 

These  conclusions  apply  strictly  to  the  14-inch  model  propeller 
of  somewhat  abnormal  type  shown  in  Fig.  221,  but  it  seems  reason- . 
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ably  certain  that  they  apply  more  generally,  and  that  harmful  cavi- 
tation  is  due  not  to  cavities  at  the  backs  of  propeller  blades,  but  to 

cavities  at  their  driving  faces. 

When  we  seek  a  cause  for  these  cavities,  it  seems  fairly  obvious. 

Fig.  218  shows  the  section  of  a  propeller  blade  advancing  with  a 

slip  angle  of  3  degrees,  which  is  not  an  exceptionally  small  angle, 

as  is  evident  from  Fig.  170.  But  the  face  C,  advancing  through 

the  water  at  an  angle  of  3  degrees,  is  associated  with  the  leading 

portions  of  the  back,  whose  direction  is  such  that  it  is  advancing 

through  the  water  at  an  angle  of  over  20  degrees.  Fig.  63  shows 

diagrammatically  the  nature  of  the  motion  of  water  past  a  plane 

with  a  sharp  edge.  In  the  case  of  the  propeller  we  have  virtually 

two  planes  in  association ;  namely,  the  face  and  the  leading  portions 

of  the  back.  Considering  the  face  alone,  the  water  tends  to  cascade 

around  the  leading  edge  from  front  to  back.  Considering  the  back 

alone,  the  water  tends  to  cascade  around  the  leading  edge  from 
back  to  front.  Actin?  In  association,  the  back  of  the  blade  with 

an  inclination  of  ;^er  20  degrees  overpowers  the  face  with  an  incli- 

nation of  3'  degrees,  and  as  a  result  the  water  cascades  from  the  back 
of  the  blade  to  the  face  around  the  leading  edge,  causing  first  eddies 
and  then  cavities  on  the  face  of  the  blade. 

In  regarding  the  leading  portion  of  the  propeller  blade  as  made 

up  of  two  planes,  we  should  remember  that  the  motion  at  each  point 

is  circular,  not  linear.  A  plane  in  linear  motion  can  drag  a  good 

deal  of  dead  water  behind  it,  and  water  brought  to  rest  relatively 

to  the  plane  passes  aft  again  without  any  motion  across  the  plane. 

The  propeller  blade  is  moving  in  a  circle  and  cannot  carry  water 

with  it  in  the  shape  of  "  dead  "  water  for  any  distance.  Centrifu- 
gal action  would  rapidly  throw  it  out,  and  no  doubt  strong  centrif- 

ugal force  acts  upon  the  water  which  is  brought  nearly  or  entirely 

to  rest  relatively  to  the  blade  by  impinging  upon  the  leading  edge. 

It  is  possible  that  this  strongly  localized  centrifugal  force  plays 

a  part  in  causing  cavitation. 

It  is  evidently  necessary  to  consider  separately  the  cavitation 

which  appears  over  the  backs  of  propeller  blades  and  the  cavitation 

which  appears  over  the  faces. 
The  former  is  not  seriously  objectionable.     If  the  cavities  at  the 
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blade  backs  were  perfect  vacua  they  would  be  helpful  rather  than 

harmful.  It  is  seen  from  Figs.  222  and  223  that  for  model  propel- 
lers in  the  fresh  water  of  the  model  basin  these  cavities  do  approach 

perfect  vacua.  Sea  water  contains  a  good  deal  of  occluded  air,  and 

it  may  be  that  for  full-sized  propellers  in  sea  water  the  cavities  are 
more  or  less  filled  with  air.  But,  even  so,  the  air  could  be  pumped 
out  without  serious  difficulty.  Hence  we  may  conclude  that  cavities 
at  the  rear  of  a  blade  are  not  an  insuperable  bar  to  efficiency.  This 
is  fortunate,  for  there  is  no  question  that  when  a  curved  surface, 
such  as  the  back  of  a  propeller  blade,  is  driven  through  the  water 
at  a  sufficiently  high  speed,  cavities  are  necessarily  formed  over  its 
rear  portions. 

The  case  of  the  cavities  over  the  blade  faces  is  different.  These 

have  no  redeeming  feature.  In  the  first  place,  they  are  due  to  an 
edge  angle  so  large  as  to  produce  large  negative  thrust  from  the 
leading  portion  of  the  back  of  the  blade.  In  the  second  place,  they 

nullify  the  thrust  which  the  blade"  face  would  otherwise  contribute, 
and,  all  things  considered,  are  obviously  fatal  to  efficiency. 

Hence,  it  is  essential  to  efficiency  to  minimize  or  avoid  entirely 
face  cavitation.  The  method  which  has  been  most  used  with  satis- 

faction in  practice  consists  in  fitting  very  broad  blades  so  that  the 
thrust  per  square  inch  of  projected  area  is  kept  below  a  limit  found 

to  be  safe  by  experience.  But  the  thrust  per  square  inch  of  pro- 
jected area  is  not  the  primary  feature  causing  cavitation.  Tip 

speed  and  blade  section  are  without  doubt  the  main  factors.  Still, 
for  a  given  type  of  propeller  the  thrust  is  a  function  of  tip  speed 
and  blade  section,  and  hence  might  be  used  as  a  gauge  of  cavitating 
conditions.  Thus  Barnaby,  for  the  type  of  propeller  used  on  the 
Daring,  found  that  with  a  tip  immersion  of  one  foot,  cavitation 
showed  up  when  the  thrust  per  square  inch  of  projected  area  was 

above  1 1 £  pounds.  The  trouble  with  this  method  is  that  the  limit- 
ing thrust  permissible  would  have  to  be  determined  for  each  type 

of  propeller. 

6.  Reduction  of  Cavitation  by  Broad  Blades.  —  From  the  theory 
of  cavitation  set  forth  above  the  advantages  of  a  wide,  thin  blade 
are  obvious.  It  has  a  smaller  edge  angle,  so  that  it  can  be  driven 
to  a  much  higher  tip  speed  than  a  narrow  blade  without  causing 



PROPULSION  191 

face  cavitation.  Also  after  face  cavitation  begins  it  spreads  slowly 

with  increase  of  tip  speed  so  that  the  wider  the  blade  the  greater 

the  area  of  the  face  whose  thrust  is  not  nullified  by  cavitation. 

In  fact,  if  the  blade  is  so  wide  that  the  manner  of  the  water  leav- 
ing it  is  not  materially  modified  by  cavitation,  the  thrust  will  not 

be  materially  modified  even  if  there  is  a  cavity  over  the  leading 

portion  of  the  face.  This  result  is  readily  explicable.  Thus,  sup- 
pose we  have  a  cavity  at  the  leading  portion  of  a  blade  face.  The 

vacuum  results  in  the  water  being  impelled  toward  the  face,  forward 

momentum  being  communicated  to  it.  If  the  face  is  sufficiently 

wide,  the  water  will  impinge  upon  it  again.  Through  the  loss  of 

its  momentum  it  will  communicate  a  corresponding  thrust  to  the 

blade,  and  then  will  pass  from  the  blade,  if  it  is  wide  enough,  in 

nearly  the  same  manner  as  if  there  were  no  cavitation  over  the 

forward  portion  of  the  face.  Hence,  the  net  change  of  velocity  and 

resulting  thrust  will  not  be  much  affected  by  the  cavitation.  But 

if  the  blade  is  so  narrow  that  the  face  cavity  extends  nearly  to  the 

following  edge  there  will  not  be  enough  blade  beyond  the  cavity  to 

absorb  the  forward  momentum  of  the  water  and  direct  it  again  in 

the  way  it  should  go.  With  the  wide  blade  the  loss  of  pressure 

on  the  leading  portion  of  the  face  due  to  cavitation  is  nearly  made 

up  by  additional  pressure  on  the  following  portion  of  the  face. 

With  the  narrow  blade  there  is  virtually  no  following  portion. 

Figures  224  and  225  show  experimental  results  which  indicate  the 

advantages  of  breadth  of  blade  in  preventing  harmful  effects  from 

cavitation.  Two  1 6-inch  model  propellers  of  the  same  pitch  ratio 
—  0.4  —  and  blade  thickness  fraction,  but  of  mean  width  ratios  of 
.125  and  .275,  were  tested  with  smooth  backs  and  with  strips  secured 
to  the  backs,  as  indicated  in  the  figures.  The  sections  shown  were 

taken  in  each  case  at  two-thirds  the  radius.  The  curves  in  each 

case  refer  to  a  5-knot  speed  of  advance.  Neither  propeller  showed 
harmful  effects  of  cavitation  with  a  smooth  back.  With  the  strip 

attached  the  narrow-bladed  propeller  showed  pronounced  cavitation, 

while  the  broad-bladed  propeller  showed  none,  though  its  strip  was 

materially  larger  than  that  of  the  narrow-bladed  propeller.  As 
might  be  expected,  the  torque  is  much  increased  by  the  presence  of 

the  strip.  But  until  cavitation  appears  the  thrust  of  the  narrow- 
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bladed  propeller  is  but  little  reduced  by  the  strip,  and  for  the  broad- 
bladed  propeller  the  thrust  is  actually  increased  by  the  presence  of 

the  strip.  Upon  the  theory  of  cavitation  which  has  been  set  forth 

a  reasonable  explanation  of  the  peculiar  features  of  Figs.  224  and 

225  is  as  follows: 
The  strips  increase  the  negative  thrust  on  the  leading  portion 

of  the  blade  back  in  each  case,  increase  the  suction  or  cavitation 

of  the  following  portion  of  the  blade  back,  thus  increasing  thrust, 

and  cause  face  cavitation  over  the  leading  portion  of  the  blade  face. 
The  net  result  of  the  two  former  actions  is  small  or  even  results  in 

an  increased  thrust.  But  when  face  cavitation  is  set  up  strongly, 
the  narrow  blade  breaks  down,  while  the  broad  blade  holds  its  own, 

because  the  face  cavitation  over  the  leading  portion  of  the  face  is 

neutralized  by  the  action  of  the  following  portion  of  the  face. 

7.  Cure  for  Cavitation.  —  We  have  seen  that  the  wide  blade  of 
usual  type  has  two  advantages  from  the  point  of  view  of  cavitation. 

Its  smaller  edge  angle  will  allow  high  tip  speeds  to  be  reached  with- 
out cavitation,  and  when  cavities  do  appear  the  tip  speed  can  be 

still  further  increased  without  the  harmful  effects  due  to  the  face 

cavities,  which  are  usually  characterized  by  the  term  "cavitation.'* 
Now  we  do  not  mind  cavities  on  the  back  of  the  blade,  so  the  ques- 

tion whether  it  is  possible  fully  to  cure  harmful  cavitation  depends 

entirely  upon  whether  it  is  possible  to  avoid  entirely  face  cavitation. 

The  difficulties  in  the  way  of  this  are  practical  difficulties  of  con- 
struction. Thus,  if  we  could  make  propeller  blades  without  thickness, 

there  would  be  no  face  cavitation.  The  water  would  cascade  around 

the  leading  edge  from  front  to  back.  There  would  be  back  cavita- 

tion only,  and  solid  water  over  the  face.  But  we  cannot  make  pro- 
peller blades  of  no  thickness.  The  best  we  can  do  in  practice  is  to 

approximate  to  the  ideal  plane  along  the  leading  edge,  making  the 

face  straight,  or  very  slightly  convex,  and  the  leading  portions  of 

the  back  hollow,  as  indicated  in  Fig.  226,  and  keeping  the  edge 

angle  down  as  close  as  possible  to  the  slip  angle. 

It  might  seem  that  the  edge  angle  could  be  made  double  the  slip 

angle  without  danger  of  face  cavitation,  since  when  so  made  the  edge 

would  part  the  water  evenly.  But  the  slip  angle  is  an  average  angle, 

and  usually  at  some  part  of  its  revolution  the  blade  of  an  actual 
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propeller  will  have  a  slip  angle  but  little  if  any  greater  than  half 

the  average  value.  Another  reason  for  making  the  edge  angle  as 

small  as  practicable  is  the  fact  that  no  matter  how  sharp  the  edge 

is  made  it  is  not  a  mathematical  edge,  and  when  advancing  at  enor- 
mous speed  through  the  water  will  show  slight  cavitation  if  it  is 

attempted  to  split  the  water  evenly  on  each  side.  Hence,  the  en- 
deavor should  be  to  have  the  water  naturally  tend  to  cascade  around 

the  edge  from  face  to  back. 

It  might  seem  that  this  could  be  accomplished  without  extreme 

sharpening  of  the  leading  edge  by  making  the  leading  portion  of  the 

face  convex,  as  indicated  in  Fig.  227.  This  is  true,  and  a  propeller 

so  shaped  would  not  show  face  cavitation  near  the  leading  edge, 

but  with  even  a  moderate  convexity  of  the  face  it  would  show 

severe  cavitation  over  the  following  portion  of  the  face.  There 

was  a  case  of  a  United  States  battleship  whose  propeller  did  not 

differ  materially  in  dimensions,  etc.,  from  those  of  her  sister  vessels, 

but  had  sections  which  were  abnormally  curved  at  the  leading  por- 
tion of  the  face,  as  indicated  in  Fig.  228. 

This  vessel  showed  over  a  knot  less  speed  than  her  sister  vessels 

for  the  same  power,  and  although  her  tip  speed  was  only  about 

6000  feet  per  minute,  there  is  little  question  that  she  showed  very 

serious  face  cavitation.  It  is  not  possible  to  say  what  convexity  is 

permissible  in  a  given  case  without  cavitation,  but  it  is  certain  that 

the  higher  the  tip  speed  the  smaller  the  permissible  convexity,  and 

for  tip  speeds  of  10,000  feet  and  over  it  probably  should  be  very 

small  indeed.  Pending  careful  full-scale  experiments  on  this  point, 
the  safest  plan  is  to  avoid  convex  blade  faces  for  propellers  of  high 

tip  speed. 

It  need  hardly  be  said  that  it  is  not  easy  to  make  hollow-backed 
propellers  with  leading  edges  as  sharp  as  a  knife.  It  is  advisable 

to  use  cylindrical  ribs  on  the  back,  extending  from  the  leading  edge 

to  the  thicker  portion  of  the  blade.  If  the  leading  edge  is  serrated 

with  a  rib  extending  to  the  point  of  each  tooth,  the  blade  edge  need 

not  be  quite  so  sharp.  Such  a  form  of  edge  seems  to  get  through 

the  water  with  less  tendency  to  face  cavitaiion,  and  when  this  does 

set  in  it  seems  to  confine  itself  to  rather  narrow  rings,  starting  from 

the  angles  where  the  roots  of  the  serrations  join. 
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The  ribs  on  the  back  must  of  course  be  well  sharpened  where 
they  cut  the  water.  They  increase  back  cavitation,  but  that  is  not 
a  very  serious  matter. 

While  the  prevention  of  face  cavitation  is  essentially  a  question 
of  the  extreme  leading  portion  of  the  blade  back,  the  blade  should 
not  thicken  so  rapidly  as  we  pass  aft  from  the  hollow  portion  that 
owing  to  its  angle  of  action  there  is  large  negative  thrust. 

This  is  of  course  always  objectionable,  but  particularly  so  when 
there  is  pronounced  back  cavitation.  After  this  has  set  up,  the 
suction  of  the  back  does  not  grow  so  rapidly  as  before  with  increase 
of  speed,  and  hence  negative  thrust,  which  continues  to  increase 
indefinitely  with  speed,  should  be  avoided  with  peculiar  care. 

The  practical  conclusion  in  this  connection  is  that  blades  made 

hollow-backed  to  avoid  cavitation  should  not  be  of  narrow  type 
but  fairly  wide  —  say  from  .30  to  .35  mean  width  ratio  —  in 
order  that  they  may  be  made  fairly  thin  in  the  center. 

Such  blades  should  avoid  cavitation  without  the  excessive  widths 

which  are  necessary  with  blades  of  ogival  section  and  which  involve 
material  loss  of  efficiency  through  large  blade  friction. 

8.  Pressure  Due  to  Blade  Edge  Speed.  —  In  connection  with  the 
question  of  cavitation  it  is  interesting  to  note  that  at  the  tip  veloci- 

ties of  modern  high  speed  propellers  enormous  pressures  are  liable 
to  be  set  up  upon  the  leading  blade  edges.  Suppose  we  have  a 
small  plane  advancing  through  water  perpendicular  to  itself.  The 
maximum  pressure  upon  it  is  that  due  to  a  head  equivalent  to  the 
velocity,  the  formula  being 

wv2 

where  p  is  pressure  in  pounds  per  square  foot,  v  is  velocity  of  advance 
in  feet  per  second,  w  is  weight  of  a  cubic  foot  of  water  and  g  is  the 
acceleration  due  to  gravity.  If  we  assume  that  at  a  blade  edge 
there  is  always  a  small  portion  which  is  virtually  a  plane  surface, 
it  follows  that  the  motion  of  the  blade  through  the  water  will  cause 
at  its  edge  the  pressure  given  by  the  above  formula. 

Table  XV  shows  for  various  blade  edge  velocities  in  feet  per 
minute,  g  being  taken  as  32.16,  the  corresponding  pressures  in  salt 
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water  weighing  64  pounds  to  the  cubic  foot.     The  pressures  are 
expressed  in  pounds  per  square  inch. 

When  we  consider  in  Table  XV  the  very  rapid  growth  of  blade 
edge  pressures  with  velocity  and  the  very  high  pressures  reached 
when  the  velocity  is  10,000  feet  per  minute  and  over,  it  is  obvious 

that  for  high-speed  propellers  the  area  of  blade  edge  over  which 
such  pressures  are  set  up  must  be  reduced  to  a  minimum.  In  former 
days  propeller  blades  were  often  made  of  elliptical  section,  and  even 

now,  for  fairly  high-speed  propellers  ogival  blades  are  frequently 
finished  with  a  quarter  round.  Such  blades  will  certainly  break 

down  by  cavitation  at  high-speeds  and  quick  running  propellers 
should  by  all  .means  have  sharp  leading  edges.  It  is  difficult  to  make 
an  edge  which  is  mathematically  a  sharp  edge,  but  the  more  nearly 
this  is  approached  the  better. 

28.   Wake  Factor,  Thrust  Deduction,  and  Propeller  Suction 

Hitherto  the  ship  and  the  propeller  have  been  considered  apart. 
It  is  necessary  now  to  take  up  their  very  important  reactions  upon 

one  another  when  the  ship  is  being  driven  by  its  propeller  or  pro- 

pellers. 
i.  Components  of  Wake.  —  Owing  to  its  frictional  drag  upon  the 

surrounding  water  there  is  found  aft  in  the  vicinity  of  the  ship  a 
following  current  or  wake,  called  the  frictional  wake,  which  is  in  most 
cases  greatest  at  the  surface  and  in  the  central  longitudinal  plane 
of  the  ship  and  decreases  downward  and  outward  on  each  side. 
Superposed  upon  the  frictional  wake  there  is  a  stream  line  wake, 
caused  by  the  forward  velocity  of  the  water  closing  in  around  the 
stern.  This  also  will  be  greatest  at  the  surface  and  center  and 
decrease  downward  and  outward,  though  its  law  of  decrease  will  be 
different  from  that  of  the  frict  onal  wake. 

Superposed  upon  the  two  wakes  above  we  have  the  wave  wake. 
If  there  is  a  wave  crest  under  the  stern,  the  water  is  moving  forward 

with  velocity  which  decreases  downward  from  the  surface  and,  prob- 
ably in  practical  cases,  decreases  slightly  outward  from  the  center. 

Under  a  wave  hollow  the  velocity  is  sternward, —  the  wave  wake 

velocity  in  this  case  may  be  said  to  be  negative, —  the  wake  being 
regarded  as  positive  when  its  velocity  is  forward. 
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There  is  a  final  factor,  often  ignored,  which  will  be  considered  in 

more  detail  later  in  connection  with  shaft  obliquity.  The  water 

aft  is  not  flowing  exactly  parallel  to  the  shaft.  It  rises  up  behind 

the  stern  and  closes  in  horizontally,  thus  causing  the  slip  of  a  pro- 
peller blade  to  be  greater  than  the  average  over  one  portion  of  its 

revolution  and  less  than  the  average  over  another.  This  condition 

of  affairs  does  not  materially  affect  the  wake  action,  except  in  certain 

cases  that  will  be  considered  later.  For  the  present  we  will  consider 

the  wake  proper  —  made  up  of  the  three  components  enumerated 
above. 

2.  Effects  of  Wake.  —  The  propeller  of  an  actual  ship  does  not 
work  in  undisturbed  water,  but  in  water  which  has  a  very  confused 

motion.  The  wake  velocity  varies  over  the  propeller  disc  at  a  given 

speed,  and  at  a  given  point  of  the  disc  varies  with  the  speed.  It 

is  necessary  to  assume  a  uniform  velocity  of  wake  over  the  screw 

disc.  This  velocity  of  wake  may  conveniently  be  expressed  as  a  frac- 

tion of  the  velocity  of  the  ship,  the  ratio  being  called  the  "wake 

fraction  "  and  denoted  by  w.  The  wake  was  first  explored  by  R.  E. 
Froude,  who  published  some  methods  and  results  as  long  ago  as  1883 

in  a  paper  before  the  Institution  of  Naval  Architects.  Froude  used 

model  propellers  behind  ships'  models.  Suppose  the  speed  of  the 
ship  model  is  V.  If  the  model  screw  is  tested  at  given  revolutions 

separate  from  the  model  at  a  speed  of  advance  V  into  still  water, 

we  get  a  certain  thrust  and  torque. 

Suppose,  now,  keeping  the  revolutions  constant,  the  model  screw 

is  tested  behind  the  ship  model.  The  thrust  and  torque  are  changed 
and  are  the  same  as  would  be  found  at  the  constant  revolutions  at 

a  speed  of  advance  Vi,  say,  into  still  water.  V\  is  nearly  always 

less  than  V.  So  the  wake  behind  the  model  at  the  speed  V  is  equiv- 

alent, so  far  as  the  screw  is  concerned,  to  a  uniform  following  cur- 

rent of  velocity  V  —  V\  or  wV.  The  thrust  and  torque  of  the 
screw  are  then  those  appropriate  to  a  speed  of  advance  of  V\.  The 

power  absorbed  is  the  same  as  if  the  screw  were  working  in  undis- 
turbed water  with  speed  of  advance  V\.  But  if  T  denotes  the 

thrust,  the  useful  work  as  far  as  the  ship  is  concerned  is  not  TV\ 

but  T  V.  Hence  the  efficiency  or  ratio  between  the  useful  work  and 

power  absorbed  is,  if  V  is  greater  than  FI,  greater  than  in  undis- 
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v 
turbed  water,  the  ratio  being  —  -     The  fact  is  that  the  following 

V\ 

wake  assists  in  pushing  the  ship  ahead,  using  the  propeller  as  the 
intermediary. 

3.  Thrust  Deduction  and  Hull  Efficiency.  —  While  the  ship  acts 
upon  the  screw  through  its  wake,  the  screw  acts  upon  the  ship 

through  its  suction. 

Through  its  suction,  the  resistance  of  the  ship  is  virtually  in- 
creased beyond  what  it  is  without  the  screw.  This  is  a  cause  of 

increase  of  power  absorbed  in  propulsion.  If  R  is  the  resistance 

of  the  ship  at  speed  V,  and  T  the  screw  thrust  required  to  drive 

the  ship  at  speed  V,  we  have  T  greater  than  R.  The  quantity 

T  •-  R  is  called  the  thrust  deduction,  being  the  difference  be- 

tween the  actual  thrust  and  the  net  thrust  or  tow-rope  resistance. 

It  is  usually  denoted  by  tT,  so  that  R  =  T(i  —  t)  and  i  —  /  is  called 
the  thrust  deduction  factor,  t  being  called  the  thrust  deduction 
coefficient. 

Suppose,  now,  we  have  a  propeller  absorbing  a  certain  power,  P, 

at  certain  revolutions  per  minute  and  driving  a  ship  at  speed  V. 

In  undisturbed  water  the  propeller  when  absorbing  the  same  power 

at  the  same  revolutions  would  have  a  speed  of  advance  Vi,  and  its 

efficiency  would  be  a  definite  quantity,  e  say.  Its  thrust  is  T.  De- 

note the  effective  horse-power  necessary  to  propel  the  ship  by  E 
and  its  resistance  by  R.  Then  E  is  not  equal  to  eP,  as  it  would 

R      V 
be  if  there  were  no  wake  or  thrust  deduction,  but  to  eP  X  —  X  — T      V\ 

R      V 
The  expression  —  X  —  is  called  the  hull  efficiency,  and  its  two  factors T      V\ 

R          V 
—  and  —  are  called  respectively  the  thrust  deduction  factor  and T  V\ 

the  wake  factor.     Since  R  =  T  (i  —  /)  and  Fi=  V  (i  —  w)  we  have 

the  hull  efficiency  =  ~  X  rr  =  ~ 
T      Vi      i  —w 

Froude  expressed  the  wake  as  a  fraction  of  Vi,  the  speed  of  ad-' 
vance,  not  V,  the  speed  of  the  ship.     Calling  this  wp,  Froude  denoted 

y 

the  wake  factor—  by  i  -f-  wp  where  wp  is  the  "wake  percentage." 

V\ 
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There  are  some  advantages  in  using  the  "  wake  fraction  "  as  already 
denned,  but  care  must  be  exercised  not  to  confuse  it  with  Froude's 
"wake  percentage."  The  relation  connecting  them  is 

In  most  cases  the  hull  efficiency  does  not  depart  greatly  from 

unity,  the  thrust  deduction  factor  i  —  t  being  less  than  unity,  and 

the  wake  factor   greater  than  unity. i  —  w 

This  is  readily  understood  when  we  reflect  that  the  more  favorably 
a  screw  is  situated  to  catch  the  wake  the  more  direct  its  suction  as 

a  rule  upon  the  after  part  of  the  ship.  Single  screws,  for  example, 
may  be  expected  to  show  larger  thrust  deductions  and  wake  factors 
than  twin  screws.  Also  the  stream  line  wake  is  increased  by  full 
lines  aft,  but  the  fuller  the  after  part  the  stronger  the  propeller 
suction  upon  it  and  the  larger  the  thrust  deduction  factor. 

4.  Variations  of  Wake  Fraction  and  Thrust  Deduction.  —  The 
wake  fraction  and  thrust  deduction  are  affected  by  many  considera- 

tions, and  in  the  present  state  of  our  knowledge  the  actual  values 
in  a  given  case  can  seldom  be  estimated  accurately  without  special 
model  experiments. 

The  most  comprehensive  information  in  this  connection  available 
at  present  is  contained  in  a  paper  read  at  the  1910  Spring  Meeting 
of  the  Institution  of  Naval  Architects  by  W.  J.  Luke,  Esq.  This 
paper  contains  data  as  to  the  wakes  and  thrust  deductions  of  models 
of  various  vessels  that  had  been  previously  published,  mainly  by 

Mr.  R.  E.  Froude,  and  gives  a  great  deal  of  valuable  new  infor- 

mation obtained  at  the  John  Brown  and  Company's  experimental 
tank  at  Clydebank,  Scotland.  These  experiments  were  made  with 
a  single  model  204  inches  long,  30  inches  broad,  of  9  inches  mean 
draught,  displacement  1296  pounds  in  fresh  water  and  having  .65 
block  coefficient.  All  variations  of  propellers,  etc.,  were  tried  with 
the  bare  hull  and  many  with  propeller  bosses  or  brackets  inclined 

225  degrees  from  the  horizontal.  In  addition  some  special  experi- 
ments were  made  with  bosses  at  other  angles,  ranging  from  horizontal 

to  vertical. 
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In  what  may  be  termed  the  standard  conditions,  two  three-bladed 

model  propellers  6  inches  in  diameter,  of  7.2-inch  pitch  with  straight 
elliptical  blades  were  used  with  centers  i£  inches  forward  of  the 

after  perpendicular  and  5  inches  from  the  center  line. 

Experiments  were  made  varying  separately  speed  of  vessel,  pitch 

ratio  and  diameter  of  propellers,  fore  and  aft  and  transverse  position 

of  propellers,  number  and  area  of  blades,  etc. 

Briefly  summarizing  the  main  results  of  the  twin  screw  experi- 
ments, which  were  always  made  with  both  outward  and  inward 

turning  screws,  Luke  found  that  variation  of  number  and  area  of 

blades  had  no  appreciable  effect  upon  wake  factor  and  thrust 
deduction. 

Change  of  pitch  ratio  produced  changes  of  secondary  importance 

for  the  bare  hull,  both  wake  and  thrust  deduction  increasing  slightly. 

With  the  22\  degrees  bossing  the  changes  were  slight  and  much  as 

before  with  outward  turning  screws,  but  with  inward  turning  screws 

the  wake  fell  off  with  increase  of  pitch. 

Changes  of  diameter  caused  material  changes  in  wake  and  thrust 

deduction,  but  Luke  concluded  that  they  were  due  as  much  to 

changes  in  clearance  between  hull  and  propeller  as  to  the  changes 

in  diameter  per  se. 

Change  of  speed  of  vessel  resulted  in  practically  no  change  in 

thrust  deduction,  but  whether  with  bare'  hull  or  bossing  the  wake 
fell  off  steadily  with  increase  of  speed,  the  wake  fraction  decreasing 

with  the  bare  hull  and  propellers  in  standard  location  from  about 

.19  for  speed-length  ratio  of  .6  to  .1452  for  speed-length  ratio  of  i.o. 
In  the  paper  the  wake  is  characterized  by  the  wake  percentage 

values  following  Froude.  These  have  been  converted  to  wake  frac- 

tions as  already  defined.  For  a  speed-length  ratio  of  .8,  about  what 
such  a  vessel  would  usually  be  driven  at  in  service,  the  wake  fraction 

was  .167  for  inturning  screws  and  .173  for  outturning  screws,  the 

thrust  deduction  /  being  about  .155  in  each  case. 

With  the  bossing  the  thrust  deduction  was  still  practically  the 

same  with  out-  and  inturning  screws  and  varied  little  from  .16. 
The  wake  fraction  fell  off  with  the  speed  as  with  the  bare  hull,  but 

the  wake  was  materially  greater  for  outturning  than  for  inturn- 
ing screws.  For  the  .8  speed  length  ratio  it  was  .191  instead  of 
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.173  for  outturning  screws  and  .146  instead  of  .167  for  inturning 
screws. 

Luke's  experiments  show  clearly  that  for  the  model  tried  the  most 
important  factor  affecting  wake  and  thrust  deduction  is  the  location 

of  the  propeller  with  reference  to  the  hull.  Thus  with  the  bare  hull 

and  the  6-inch  propeller  the  results  were  as  follows : 

Center  of  propeller  from  center  of  model    

4"
 

.a 

6" 

Wake  fraction  —  outturning  screws    
.238 

•  I7i 
.  no 

Wake  fraction  —  inturning  screws    .108 

.167 

•  1^1 

Thrust  deduction,  t,  both  cases    .166 
.  I  ̂ O 

.116 

It  is  seen  that  in  this  case  a  transverse  change  of  \  the  diameter 

caused  wake  arid  thrust  deduction  to  vary  a  great  deal,  both  being 

larger  the  closer  the  propeller  was  to  the  hull.  When  the  distance 

of  the  propeller  from  the  hull  was  varied  by  shifting  it  fore  and  aft 

the  effect  was  not  so  great,  but  still  material. 

A  few  experiments  were  made  with  a  single  screw  behind  the 

model,  diameter  being  varied.  The  wake  was  found  markedly 

greater  for  this  propeller  location,  the  thrust  deduction  being  also 

increased,  but  not  nearly  so  much  as  the  wake.  Curiously  enough 

the  smaller  the  propeller  the  larger  the  wake.  Thus,  the  wake  frac- 

tion varied  from  about  .275  for  a  5-inch  screw  to  .226  for  an  8-inch 
screw.  The  corresponding  thrust  deduction  values  were  .155  and 

.185,  the  smaller  screw  thus  profiting  not  only  by  the  larger  wake 

but  by  the  smaller  thrust  deduction. 

Luke's  paper  makes  it  clear  that  location  with  respect  to  the  hull 
is  a  very  important  factor  in  connection  with  wake  and  thrust 

deduction.  Experiments  such  as  described  in  his  paper  made  with 

models  of  varying  fineness  are  much  needed. 

5.  Approximate  Wake  Fractions  and  Thrust  Deductions.  —  Since 
the  speed  of  advance  of  a  propeller,  a  vital  factor  in  design,  depends 

upon  the  wake  fraction,  it  is  important  to  be  able  to  approximate 

to  it  in  a  given  case.  In  Luke's  paper,  as  already  stated,  are  given 
a  number  of  wake  factors  for  single  and  twin  screw  ships  and  of 

thrust  deduction  coefficients,  t,  for  twin  screw  vessels.  For  twin 

screw  vessels,  Froude  laid  down  the  dictum  many  years  ago  that, 
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broadly  speaking,  wake  factor  -      -  and  thrust  deduction  factor i  —  w 

i  —  t  were  reciprocals  or  w  =  t.  The  data  given  by  Luke  confirms 
this,  and  shows  also  that  we  may,  so  far  as  present  knowledge 

goes,  reasonably  assume  wake  fraction  to  vary  linearly  with  block 
coefficient. 

Then  from  the  data  published  by  Luke  we  may  say  with  reason- 

able approximation  iv  =  —  .2  +  .55  b  =  I,  where  w  is  wake  frac- 
tion, /  is  thrust  deduction  coefficient  and  b  is  block  coefficient. 

This  formula  ignores  the  matter  of  screw  location,  but  may  be  taken 

as  applying  to  screws  about  abreast  the  after  perpendicular  and 
with  centers  about  1.2  the  radius  from  the  center  line. 

For  lesser  clearance  w  will  be  greater  and  t  will  also  increase 

somewhat,  but  the  formula  is  and  can  be,  from  the  available  data, 

only  a  rough  approximation. 
For  center  screws  in  the  usual  position  the  approximate  formula 

indicated  is"  w  =  —  .05  +  -5  b. 
Data  is  not  available  for  a  formula  for  t  for  center  screws,  but 

Luke's  experiments  would  appear  to  indicate  that  for  them  t  would 
be  increased  but  little  over  its  value  for  twin  screws.  It  follows 

that  if  the  hull  efficiency  is  unity  for  twin  screws  it  is  somewhat 

over  unity  for  single  screws,  particularly  for  full  vessels. 

The  formulae  above  apply  to  the  bare  hull  or  to  vessels  fitted  with 

struts  or  bossing  which  does  not  interfere  with  the  natural  water 
flow. 

It  should  be  remembered  that  they  are  deduced  from  model 

experiments  and  will  nearly  always  exaggerate  the  wake  of  the  full- 
sized  ship.  It  is  desirable,  however,  if  we  cannot  determine  the 

wake  accurately,  to  overestimate  it  rather  than  underestimate  it. 

If  it  is  overestimated,  the  engines  on  trial  will  turn  somewhat  faster 

than  estimated,  which  is  generally  allowable.  If  it  is  underesti- 
mated, it  may  be  impossible  to  run  the  engines  up  to  the  designed 

speed  without  decreasing  propeller  pitch  or  reducing  propeller 
diameter. 

6.  Approximate  Determination  of  Wake  Fraction.  —  Since  the 
wake  is  explored  by  trial  of  model  screws  working  behind  models  of 

ships  the  question  naturally  arises  whether  we  cannot  gain  some 
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light  upon  the  subject  from  trials  of  full-sized  ships.  Analysis  soon 
makes  it  evident  that  the  apparent  slip  of  propellers  on  trial  is  often 

very  much  below  what  must  have  been  the  real  slip.  We  know 

that  in  any  case  the  power  absorbed  by  a  given  propeller  advancing 

through  undisturbed  water  depends  only  upon  the  revolutions  and 

the  speed  of  advance.  For  an  actual  propeller  advancing  through 

the  water  disturbed  by  the  ship  we  can  reasonably  reduce  the  actual 

disturbance  to  an  equivalent  uniform  motion.  Throughout  the 

range  where  the  Law  of  Comparison  holds  we  can  determine  for 

any  propeller  for  which  we  have  model  experiments  the  relations 

between  power  absorbed,  revolutions  and  speed  of  advance.  Hence, 

if  we  know  any  two  of  these  quantities,  we  can  determine  the  third. 

Now  from  the  results  of  trial  of  a  vessel  we  know  corresponding 

values  of  indicated  or  shaft  horse-power,  revolutions  and  speed  of 

vessel.  The  shaft  horse-power  is  practically  the  power,  P,  absorbed 

by  the  propeller,  and  from  the  indicated  horse-power  P  can  be 
estimated  with  reasonable  accuracy.  Hence,  although  we  do  not 

measure  VA  directly,  we  can  estimate  it  from  the  power  and  revolu- 
tions if  we  have  reliable  model  experiments  with  the  propeller  and 

the  Law  of  Comparison  holds,  and  knowing  VA  and  V  we  can  deter- 
mine the  wake  fraction.  The  reduction  of  the  results  of  model 

experiment  to  a  form  convenient  for  this  application  is  simple.  We 
A 

have  seen  that  we  may  write  P  =  A  -  —  where  P  is  power  absorbed IOOO 

by  the  screw,  d  is  diameter  in  feet  and  VA  is  speed  of  advance  in 

knots.  A  is  a  coefficient  independent  of  size  and  speed  and  de- 
pending only  upon  the  slip  and  the  proportions  and  shape  of  the 

propeller. 

/  PR  \3  d? So  let  us  write  P  =  S{  —  —  )  —  where  p  is  pitch  in  feet  and  R Viooo/    p 

/IOOO\       't) 
denotes  revolutions  per  minute.     Then  S  =  I  —  —  )    jj  P  and  is  like 

\  pR  I    a6 
A,  a  coefficient  independent  of  size  and  speed  and  depending  only 

on  the  slip  and  the  proportions,  etc.,  of  the  propeller. 

From  experimental  results  with  models  we  can  readily  determine 

a  curve  of  5  plotted  on  the  slip.  Thus,  for  a  1  6-inch  model  with  a 

speed  of  advance  of  5  knots  we  have  5  =.3129^  (i—  s)2  where  Q 
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is  torque  in  pound-feet.      Or  we  may  determine  5  from  a  curve 

/ 
101.33  1000  (ioi.33)3        \ioooj   p 

Whence  S  =.9610%  A  (i  —  s)3. a 

Fig.  229  shows  curves  of  S  plotted  on  s  for  the  four  propellers  of 

Fig.  179.  Now  suppose  we  have  a  full-sized  propeller  similar  to 
the  model  of  .0448  blade  thickness  fraction  and  18  feet  in  diameter, 

making  120  revolutions  per  minute  and  absorbing  12000  horse- 
power. Its  pitch  will  be  21.6  feet.  Then  from  the  data  of  the 

/  1  OOO\       & 

full-sized  screw  S  =  (  —  —  )   ̂P  =  2.552.     From  Fig.  229,  for  the 

\  pR  I    a6 propeller  in  question,  when  S  —  2.552,  s  =  .2340.     So  the  true  slip 
of  this  propeller  would  be  .2340,  and  its  true  speed  of  advance, 

VA=  —   —  iQ-593-     Suppose  the  speed  of  the  ship   V  is 101^ 

21  so  that  the  apparent  slip,  5',  is  .1790. 

Then  V  =  ̂R  ̂  ~^  =  21  knots. 

IQlJ 

The  wake         =  V—  VA  =  -—  (s  -  s')  =  1.407  knots. 

101$ 

ITT-  i      r       4.-  V  —  VA        I0l£  S  —  s Wake  fraction  =  —  —  —  -  =  —  -7  -  =  -    —  -.  =  .0670. • 101$ 

It  is  very  easy  to  derive  curves  of  S  from  the  Standard  Series 
results  of  Figs.  185  to  208. 

Figures  230  to  233  show  contours  of  slip  plotted  on  S  and  pitch 
ratio  for  four  blade  widths  and  the  blade  thickness  fractions  indi- 

cated. For  propellers  closely  resembling  the  Standard  Series  these 
figures  may  be  used  in  connection  with  accurate  trial  data  to  obtain 
a  reasonable  approximation  to  the  wake  so  long  as  there  is  no  cavi- 
tation.  The  propeller  power,  P,  however,  must  for  reciprocating 
engines  be  estimated  from  the  I.H.P.  Methods  for  this  will  be  con- 

sidered under  analysis  of  trials. 
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These  figures  may  be  used,  however,  to  obtain  rough  approxima- 
tions to  the  wake  for  propellers  very  different  from  the  Standard 

Series. 

For  three-bladed  propellers  with  oval  blades  and  extra  wide  tips 
the  correct  values  of  5  will  be  somewhat  less  than  in  the  figures,  but 

the  difference  for  practical  propellers  will  not  be  great.  In  order 

to  use  Figs.  230  to  233  for  four-bladed  propellers  we  need  only 
divide  the  actual  propeller  power,  P,  by  the  proper  power  ratio  for 

four  blades,  obtained  from  Fig.  181.  We  thus  obtain  approximately 

the  power  absorbed  by  a  three-bladed  propeller  having  blades  iden- 
tical with  the  four-bladed  propeller  and  working  with  the  same 

revolutions  and  speed  of  advance. 

From  this  we  determine  5  and  use  Figs.  230  to  233  as  before. 

It  will  be  found  in  practice  that  the  methods  above  for  estimating 

the  wake  from  full-sized  trials  will  generally  give  values  that  seem 

too  low.  We  know  that  the  wake  values  for  a  full-sized  ship  should 
be  less  than  for  its  model,  but  another  factor  present  at  times  and 

tending  to  lower  the  wake  deduced  from  the  S  value  is  a  slight 

failure  of  the  Law  of  Comparison  connecting  model  and  full-sized 

propeller.  We  know  that  the  Law  of  Comparison  fails  when  a  pro- 
peller breaks  down  by  cavitation,  but  it  is  probable,  particularly 

with  blunt-edged  blades,  that  there  is  more  often  than  might  be 

supposed  a  certain  amount  of  eddying  in  the  operation  of  the  full- 
sized  propeller  not  found  in  the  operation  of  the  model.  This  might 

not  seriously  reduce  efficiency  and  would  manifest  itself  mainly  by 

a  slip  of  the  full-sized  propeller  somewhat  larger  than  would  be 
inferred  from  the  model  results.  The  wake  deduced  from  the  S 

values  would  be  correspondingly  reduced. 
The  5  value  method  should  not  be  used  when  the  wake  can  be 

investigated  by  model  experiments.  Lacking  model  experiments, 

we  can  roughly  approximate  to  the  wake  by  the  formulae  already 

given. 
There  is  great  need  for  a  systematic  and  thorough  experimental 

investigation  of  the  question  of  wake,  following  the  lines  of  Luke's 
experiment,  which  will  enable  it  to  be  closely  estimated  in  any  prac- 

tical case  likely  to  arise.  But  there  is  a  mass  of  accummulated 

trial  data  extant  for  vessels  whose  models  never  have  been,  and 
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probably  never  will  be,  tested,  and  it  is  worth  while  for  those  possess- 
ing it  to  investigate  the  wake  fraction  even  by  a  method  which  is 

only  roughly  approximate.  For  practical  purposes  the  wake  frac- 

tion of  a  vessel  seldom  requires  to  be  determined  with  minute  accu- 
racy. It  is  principally  of  use  for  settling  the  diameter  and  pitch 

of  the  screw,  and  neither  these  nor  the  efficiency  will  often  be  much 

affected  by  a  moderate  error  in  the  wake  fraction. 

If  by  use  of  Figs.  230  to  233  we  find  a  certain  wake  for  a  vessel 

of  a  given  type,  we  can  use  this  for  a  vessel  of  the  same  type  with 

similar  propeller  location,  and  for  the  purpose  of  determining  diam- 
eter and  pitch  of  screw  it  will  make  little  difference  whether  the 

nominal  wake  from  Figs.  230  to  233  is  the  real  wake  or  departs 

materially  from  it.  Whatever  the  departure,  it  will  be  practically 
the  same  in  the  two  cases. 

7.  Effect  of  Shaft  Brackets  upon  Wake.  —  Reference  has  already 
been  made  to  the  apparent  effect  upon  the  wake  of  the  direction 
of  flow  of  the  water  aft. 

This  has  a  marked  effect  when  large  shaft  brackets  are  fitted 

which  modify  the  natural  flow  of  the  water. 

Thus,  if  a  shaft  bracket  is  fitted  with  a  wide  horizontal  web,  it 

interferes  seriously  with  upward  flow  aft  and  the  water  closes  in 

with  a  much  stronger  horizontal  motion  or  current  inwards  than 

otherwise.  The  conditions  over  the  lower  half  of  the  propeller  disc 

are  somewhat,  but  not  very  seriously,  modified  from  bare  hull  con- 
ditions, much  greater  modifications  occurring  over  the  upper  half 

of  the  disc.  Considering  the  upper  blades,  the  effect  of  the  inward 

flow  of  the  water  is  materially  to  increase  the  slip  angle  for  outward 

turning  propellers  where  the  upper  blades  are  moving  against  the 

current,  while  for  inward  turning  screws  with  the  upper  blades  mov- 
ing in  the  same  direction  as  the  current  the  slip  angle  would  be 

decreased.  Hence,  we  may  expect  a  large  horizontal  shaft  bracket 

materially  to  increase  the  apparent  wake  for  outward  turning  screws 

and  to  decrease  it  for  inward  turning  screws. 

A  case  in  point  is  that  of  the  Niagara  II,  a  steam  yacht  247'  6" 

X  36' X  i6'4^"  draught  and  2000  tons  displacement. 
This  vessel  had  a  Lundborg  stern,  involving  wide  horizontal 

shaft  brackets,  and  her  deadwood  aft  was  not  cut  up. 
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She  had  two  six-hour  trials  under  similar  conditions,  except  that 
the  screws  were  interchanged,  being  inward  turning  on  the  first  trial 

and  outward  turning  on  the  second.  While  the  horse-power  was 
not  accurately  determined,  it  was  closely  estimated  at  2100  with 
inward  turning  screws  and  1950  with  outward  turning  screws. 

Nevertheless,  with  inward  turning  screws  the  average  speed  was 

12.8  knots  with  an  apparent  slip  of  26.4  per  cent,  while  with  out- 
ward turning  screws  the  average  speed  was  14.12  knots  with  an 

apparent  slip  of  but  13.3  per  cent. 
This  marked  difference  in  apparent  slip  can  be  due  only  to  the 

fact  that  the  horizontal  shaft  webs  force  a  strong  inward  motion 
of  the  water  above  them  along  horizontal  lines,  and  while  this  motion 
is  not  a  wake,  being  transverse  or  perpendicular  to  the  line  of 

advance  of  the  ship,  its  effect  upon  the  upper  blades  of  the  pro- 
peller is  equivalent  to  a  positive  wake  for  outturning  screws  and  a 

negative  wake  for  inturning  screws. 
It  would  seem  that  the  lower  blades  are  not  much  affected,  such 

action  as  there  may  be  upon  them  being  much  less  than  that  upon 
the  upper  blades. 

Luke's  paper  already  referred  to,  gives  most  interesting  and  in- 
structive results  of  a  model  investigation  of  shaft  bracket  angles 

and  direction  of  screw  rotation.  The  model  was  the  same  as  already 
described,  204  inches  long,  30  inches  broad,  9  inches  draught,  1296 
pounds  displacement  in  fresh  water,  having  a  block  coefficient  of  .65. 

The  model  screws  were  three-bladed,  6  inches  in  diameter,  7.2  inches 
pitch,  having  straight  elliptical  blades.  Their  centers  were  5  inches 
out  from  the  center  line  of  the  model  and  ij  inches  forward  of  the 
A.P.  Brackets  were  fitted  at  angles  ranging  from  horizontal  to 
vertical  and  the  model  tested  with  inturning  and  outturning  screws, 
the  screws  and  their  positions  remaining  unchanged  as  the  shaft 
bracket  angles  were  varied.  The  results  are  summarized  on  the 
following  page. 

These  results  show  relatively  enormous  variations  of  wake  with 
variation  of  bracket  angle  and  direction  of  turning  and  make  it 
clear  that  under  some  conditions  the  virtual  wake  due  to  obliquity 
of  water  motion  may  overshadow  the  real  wake  or  forward  motion. 
It  is  obvious  that  for  a  given  real  wake  outturning  and  inturning 
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screws  should  give  practically  the  same  derived  wake.  We  see,  how- 
ever, that  with  horizontal  brackets  the  wake  fraction  is  about  2\ 

times  as  great  with  outturning  screws  as  with  inturning  screws  while 
with  vertical  brackets  the  wake  fraction  with  inturning  screws  is 
nearly  four  times  as  great  as  with  outturning  screws. 

Hori- 
zontal. 

Verti- 

cal. 

Angle  of  bracket  with  horizontal    
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These  differences  can  be  due  only  to  the  fact  that  transverse 

motion  of  the  water  affects  inturning  and  outturning  screws  very 
differently.  Horizontal  motion  inward  is  equivalent  to  a  positive 
wake  for  outturning  screws  and  a  negative  wake  for  inturning 
screws.  Vertical  motion  upward  is  equivalent  to  a  negative  wake 
for  outturning  screws  and  a  positive  for  inturning  screws. 

In  the  light  of  Luke's  experiments  the  remarkable  trial  results  of 
the  Niagara  II  are  readily  explicable. 

While  horizontal  shaft  brackets  in  his  experiments  resulted  with 
outturning  screws  in  a  high  hull  efficiency  this  was  accompanied 
by  an  increased  hull  resistance,  so  there  was  no  appreciable  net  gain. 

It  would  seem  that  in  practice  from  the  point  of  view  of  resistance 

and  propulsion,  shaft  brackets  should  be  arranged  to  parallel  if  pos- 
sible the  lines  of  flow.  It  is  generally,  however,  more  convenient 

to  arrange  them  more  nearly  horizontal  and  when  this  is  done  the 
screws  should  obviously  be  outturning. 

8.  Propeller  Suction.  —  The  thrust  deduction  is  due  to  the  suc- 

tion of  the  propeller  upon  the  ship's  hull.  It  is  well  to  consider  in 
connection  with  it  the  question  of  propeller  suction  generally  and 
its  effect  upon  the  water.  An  experimental  investigation  in  this 
connection  has  been  made  at  the  United  States  Model  Basin,  and  is 

described  in  a  paper  entitled  "  Model  Basin  Gleanings  "  read  before 
the  Society  of  Naval  Architects  and  Marine  Engineers  in  1906.  The 
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suction  of  1 6-inch  model  propellers  was  measured  over  the  surface 
of  a  vertical  plane,  parallel  to  the  propeller  axis,  which  could  be  set 

at  various  distances  from  the  propellers.  Figure  234,  showing  the 

variation  of  pressure  along  various  horizontal  lines  of  the  plane  when 

set  f  inch  from  the  tips  of  a  propeller  of  1 6-inch  diameter  and  16- 
inch  pitch  which  was  working  at  a  nominal  slip  of  30  per  cent,  is 

typical  of  all  the  results. 
Now  a  necessary  result  of  this  suction  is  that  it  draws  the  water 

inward  toward  the  propeller  axis  and  aft  toward  the  disc.  An  impor- 
tant fact,  which  seems  to  have  been  generally  ignored,  should  be 

pointed  out.  When  a  propeller  works  with  sternward  slip  velocity 

of  the  water,  the  supply  of  water  necessary  to  allow  slip  velocity 

comes  ultimately  from  the  free  surface.  For  referring  to  Fig.  235, 

which  indicates  a  submerged  propeller,  consider  an  imaginary  plane 

X  Y  perpendicular  to  the  shaft  axis  and  just  forward  of  the  screw 

disc,  as  indicated  by  the  dotted  line.  But  for  the  screw  action  all 

the  water  in  that  plane  would  be  at  rest.  Owing  to  the  screw  action 

the  water  is  flowing  aft  through  the  screw  disc  and  forward  is 

flowing  from  all  directions  toward  the  disc.  Now  the  water  flowing 

through  the  plane  does  not  leave  a  vacuum  behind  it;  and  particles 

of  waler  flowing  toward  the  disc  from  points  forward  of  the  plane 

cannot  leave  vacua  behind  them.  Their  places  must  be  taken  by 

other  particles  of  water.  Where  can  these  particles  come  from  ? 

The  water  being  practically  incompressible,  there  are  only  two  pos- 
sible sources  of  supply.  It  is  possible  to  conceive  that  the  water 

flowing  aft  through  the  plane  just  forward  of  the  screw  disc  spreads 

out  astern,  and  finally  to  an  equal  amount  flows  forward  again 

through  the  plane.  In  other  words,  the  suction  draws  a  certain 

amount  of  water  through  the  plane  and  the  thrust  behind  the  pro- 

peller forces  an  equal  amount  across  the  plane  in  the  opposite  direc- 
tion at  points  some  distance  from  the  disc.  This  action  goes  on 

when  a  screw  is  operated  with  no  speed  of  advance  as  in  dock  trials. 

Careful  study  of  the  action  of  advancing  screws,  however,  indicates 

clearly  that  in  this  case  the  water  to  take  the  place  of  that  sucked 

to  the  piopeller  disc  simply  flows  downward  from  the  surface,  pro- 
ducing a  depression  of  the  surface,  which  advances  with  the  speed 

of  the  propeller.  Figures  235,  236  and  237  show  results  of  an  experi- 
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mental  investigation  of  this  question  made  at  the  United  States 
Model  Basin.  Two  1 6-inch  propellers  of  identical  blade  profiles,  as 
indicated,  one  with  12. 8-inch  nominal  pitch,  the  other  with  19.2- 
inch  nominal  pitch,  were  operated  as  indicated  with  their  tips 
8  inches  below  the  surface  and  the  resulting  surface  depressions  for 

5-knots  speed  of  advance  and  various  slips  observed.  It  is  seen 
that  contour  lines  in  the  depression  over  the  propeller  are  approxi- 

mately circular.  The  point  of  maximum  depression  is  in  each  case 
a  little  astern  of  the  propeller,  and  as  to  be  expected,  the  greater 
the  slip  the  greater  the  depression ;  also  the  finer  the  pitch  the  greater 
the  depression.  This  too  is  to  be  expected.  The  propeller  of  fine 
pitch  exerts  much  the  greater  thrust  for  a  given  slip  and  speed  of 
advance.  Hence  the  actual  sternward  velocity  communicated  to  the 
water  is  greater  for  the  propeller  of  fine  pitch  than  for  the  propeller 
of  coarse  pitch,  and  the  surface  depression  greater  accordingly. 

As  a  result  of  the  fact  that  sternward  velocity  of  water  entering 
the  screw  disc  is  obtained  ultimately  by  sucking  water  from  the 
surface,  it  follows  that  if  a  screw  is  so  arranged  that  it  cannot  draw 
water  from  the  surface,  the  sternward  velocity  of  the  water  entering 
the  screw  disc  is  reduced.  The  suction  in  such  cases,  not  being 
absorbed  by  giving  velocity  to  the  water,  is  likely  to  be  exerted 
upon  the  ship  and  cause  abnormal  thrust  deduction.  Once  the 
water  has  reached  the  screw  disc  it  is  difficult  to  conceive,  as  pointed 

out  in  discussing  Rankine's  theory,  how  it  can  be  given  much  addi- 
tional sternward  velocity.  We  must  conclude  that  while  in  the  disc 

the  change  of  velocity  is  nearly  all  rotary,  as  in  Greenhill's  theory. 
It  is  true  that  this  involves  changes  in  pressure,  and  Greenhill,  on 
account  of  the  increase  of  pressure  involved  in  his  theory,  considered 

it  necessary  to  confine  the  screw  disc  and  race  by  a  cylinder.  Green- 
hill  has  pointed  out,  however,  that  it  is  conceivable  to  have  a  defect 
of  pressure  behind  the  screw  at  the  center,  the  pressure  increasing 
as  the  circumference  is  approached  until  at  the  outside  of  the  screw 
race  it  is  normal.  It  should  be  pointed  out  that,  since  there  is 
quite  a  defect  of  pressure  in  all  the  water  passing  into  the  screw 
disc,  its  pressure  while  in  the  disc  can  be  materially  increased  by 
the  action  conceived  by  Greenhill  without  exceeding  the  normal 
pressure  of  the  surrounding  water. 
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To  sum  up,  it  appears  that  a  reasonable  theory  of  what  happens  to 

a  particle  of  water  which  is  acted  on  by  a  propeller  is  about  as  follows: 
When  some  distance  forward  of  the  screw,  it  is  sucked  aft  and  in 

toward  the  shaft  axis,  its  pressure  being  reduced  at  the  same  time. 

Hence,  it  enters  the  screw  disc  with  a  certain  sternward  velocity 

and  reduction  of  pressure.  As  it  passes  through  the  disc  its  stern- 
ward  velocity  is  changed  but  little.  It  has  impressed  upon  it  a 

rotary  velocity  and  an  increase  of  pressure,  so  that  its  pressure  on 

passing  out  of  the  screw  disc  is  probably  very  close  to  normal  pres- 
sure again  for  particles  near  the  circumference  of  the  screw  race  and 

still  below  normal  for  particles  in  the  interior  of  the  race. 

9.  Effect  of  Immersion  upon  Suction  and  Efficiency.  —  The  stern- 
ward  velocity  into  the  screw  disc  is  affected  by  the  situation  of  the 

screw.  Probably  immersion  alone  does  not  affect  it  much.  The 

more  deeply  immersed  screw  is,  it  is  true,  farther  from  the  surface 

from  which  its  water  supply  must  come,  but  it  is  in  a  position  to 

draw  upon  a  larger  surface  area.  Still  from  this  point  of  view  there 

is  nothing  favorable  to  efficiency  in  deep  immersion,  the  reasons 

rendering  it  desirable  in  most  cases  and  necessary  in  some  having 

to  do  not  with  efficiency  but  with  prevention  of  racing  in  a  seaway. 

If  vessels  worked  always  in  smooth  water,  there  is  little  doubt 

that  screws  could  be  located  with  their  tips  quite  close  to  the  sur- 
face, provided  they  did  not  suck  air  in  operation,  without  loss  of 

efficiency.  In  fact,  in  a  paper  by  W.  J.  Harding,  read  March  13, 

1905,  before  the  Institute  of  Marine  Engineers,  on  "  The  Develop- 

ment of  the  Torpedo  Boat  Destroyer,"  we  find  the  statement  when 
discussing  the  question  of  propellers  of  destroyers: 

"  The  least  immersion  of  the  propellers  gave  the  best  results,  both 

in  speed  and  coal  bill."  This  conclusion  was  deduced  from  con- 
sideration of  a  number  of  trial  results  of  destroyers  in  smooth  water. 

A  screw  propeller  placed  under  a  wide  flat  stern,  or  with  the  flow 

of  water  to  it  obstructed  in  any  way  by  the  hull  to  which  it  is 

attached,  must  evidently  work  more  after  the  Greenhill  theory  than 
a  screw  with  a  free  flow  of  water  to  it. 

Apart  from  the  increased  thrust  deduction  this  must  involve  a 

reduction  of  propeller  efficiency.  It  is,  of  course,  necessary  at  times 

to  fit  screws  in  tunnels,  or  so  that  they  are  hampered  by  the  hull,  but 
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when  this  must  be  done  allowance  should  be  made  for  the  loss  of 

efficiency  involved. 

29.   Obliquity  of  Shafts  and  of  Water  Flow 

x.  Shaft  Deviations,  Actual  and  Virtual.  —  Propeller  designs 
and  calculations  are  usually  based  explicitly  or  implicitly  upon  the 

assumption  that  the  propeller  advances  in  the  line  of  the  shaft  axis. 

As  a  matter  of  fact,  it  is  unusual  to  find  a  shaft  which  is  exactly 

horizontal  when  the  propeller  is  working.  Shafts  of  center  screws 

are  in  a  fore  and  aft  line,  but  side  screw  shafts  generally  depart  in 

plan  from  the  fore  and  aft  line. 

The  divergence  of  propeller  shafts  from  a  horizontal  fore  and  aft 

line  is  seldom  so  great  that  the  resolved  horizontal  fore  and  aft 

thrust  differs  materially  from  the  axial  thrust.  But  there  is  a  very 

serious  departure  from  ideal  conditions  as  regards  slip  of  blade  dur- 
ing revolution.  The  slip  angle  is  a  small  angle,  as  a  rule,  and  if  the 

shaft  axis  is  changed  from  the  line  of  advance  of  the  screw,  the  slip 

angle  at  one  part  of  the  revolution  is  increased  by  the  amount  of 

angular  change  and  at  another  part  is  decreased  by  an  equal  amount. 

The  slip  angle  is  a  function  of  the  slip  ratio  and  the  pitch  ratio  or 

diameter  ratio.  Fig.  170  shows  slip  angles  for  the  range  of  pitch 

ratio  and  slip  ratio  found  in  practice. 

The  small  size  of  these  slip  angles  renders  it  evident  that  shaft 

deviations  occurring  in  practice  must  cause  the  slip  of  a  blade  to 

vary  materially  during  a  revolution. 

2.  Wake  and  Obliquity  of  Water.  —  The  variation  of  wake  is 
another  perturbing  factor.     The  slip  of  the  blade  will  be  greatest 

where  the  wake  is  strongest.     Evidently  a  virtual  deviation  of  shaft 

axis  can  be  imagined  which  would  give  practically  the  same  effect 

as  the  variation  of  wake.     Finally,  the  water  itself  has  a  motion 
across  the  shaft  axis. 

3.  Variation  of  Slip.  —  The  net  result  is  that,  in  practice,  instead 
of  the  thrust,  torque  and  efficiency  of  a  blade  remaining  constant 

during  a  revolution,  they  vary  throughout  the  whole  revolution. 

To  fix  our  ideas,  suppose  we  consider  a  starboard  side  propeller  turn- 
ing outward.     In  considering  shaft  inclination  we  will  always  take 

it  as  we  proceed  forward  from  the  propeller. 
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If  the  shaft  inclines  upward  from  the  propeller,  the  slip  angle  will 
be  decreased  by  the  amount  of  shaft  inclination  for  a  blade  in  a 

horizontal  position  inboard  and  increased  by  the  same  amount  for 

the  blade  in  a  horizontal  position  outboard.  For  the  blade  at  the 

top  and  bottom  of  its  path  there  will  be  no  appreciable  change. 

Similarly,  for  a  shaft  inclined  inboard,  as  we  go  forward  there  will 

be  no  effect  for  the  horizontal  position  of  the  blades,  a  maximum 

increase  of  slip  for  the  top  position  of  the  blade  and  a  maximum 

decrease  for  the  lower  position  of  the  blade. 

If  the  wake  is  strongest  next  the  hull  on  a  horizontal  line,  the 

result  is  equivalent  to  a  downward  inclination  of  the  shaft,  hence 

we  may  say  that  such  a  wake  causes  a  virtual  downward  inclina- 
tion. Similarly,  a  wake  strongest  nearest  the  surface  gives  a  virtual 

inclination  inward.  Water  rising  up  gives  a  virtual  upward  inclina- 
tion, and  water  closing  in  gives  a  virtual  inward  inclination. 

The  table  below  gives  the  positions  for  maximum  and  minimum 

slip  of  blades  due  to  shaft  inclination.  Of  course,  when  the  shaft 

has  both  horizontal  and  vertical  inclination,  the  positions  of  maxi- 
mum and  minimum  slip  are  neither  horizontal  nor  vertical.  In  all 

cases,  the  plane  of  zero  effect  is  that  including  the  shaft  axis  and 

the  line  of  advance  of  the  center  of  the  propeller.  The  plane  of 

maximum  effect  is  that  through  the  shaft  axis  perpendicular  to  the 

preceding. 

BLADE  POSITIONS   OF  MAXIMUM  AND  MINIMUM  SLIP  DUE  TO  SHAFT 
INCLINATIONS   RECKONED    FROM   PROPELLER   FORWARD. 
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In  the  above,  "  in  "  means  that  the  blade  is  in  the  horizontal 

position  next  the  ship.  "  Out  "  means  that  the  blade  is  in  the  hori- 
zontal position  away  from  the  ship.  P  means  horizontal  position 

to  port  for  center  screw  and  6"  the  horizontal  position  to  starboard. 
"  Up  "  means  blade  vertical  upward, "  down  "  means  blade  vertical 
downward. 

The  following  table  gives  virtual  inclinations  of  shaft  correspond- 
ing to  wake  and  transverse  motions  of  the  water: 

TABLE  OF  VIRTUAL  SHAFT  INCLINATIONS  FOR  MOTION  OF  WATER 
INDICATED. 

Motion  of  Water. 

Right-handed  Screws. Left-handed  Screws. 

Port. Center Starboard 

.  Port. 

Center Starboard. 

Wake  increasing  inward    

up 

out 

up 

in 

down in 

up 

in 

down 

in 

up 

in 

up 

out 

up 

in 

Wake  increasing  upward    
Water  rising  vertically    

up 

up 

Water  closing  in  horizontally    

4.  Virtual  Inclinations  in  Practice.  —  In  practice,  in  most  cases 
of  twin  screws,  the  wake  increases  inward  and  upward  and  the  water 

rises  vertically  and  closes  in  horizontally,  the  latter  motion  being 

strongest  over  the  upper  half  of  the  disc.  Then  for  inturning  screws 

(port  right-handed  and  starboard  left-handed)  we  have  a  positive 
virtual  upward  inclination,  since  both  water  motions  give  a  virtual 

upward  inclination.  As  regards  horizontal  angle  the  wake  gives 
a  virtual  outward  inclination  and  the  horizontal  water  motion  a 

virtual  inward  inclination.  So  the  net  virtual  inclination  may  be 

either  in  or  out,  being  the  difference  of  the  two  components. 

For  outturning  screws  we  have  a  positive  virtual  inward  inclina- 
tion, and  vertically  the  inclination  is  the  difference  of  two  virtual 

inclinations. 

If  we  wish  to  secure  uniform  turning  force  on  each  blade,  we  must 

neutralize  the  virtual  shaft  inclination  due  to  water  motion  by  actual 

inclination  in  the  opposite  direction. 

While  we  have  not  data  for  exact  quantitative  results,  it  is  evi- 
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dent  from  what  has  been  said  that  with  inturning  screws  the  shafts 

should  incline  downward  from  the  screws  and  for  outturning  screws 
the  shafts  should  incline  outwards. 

Outturning  screws,  with  shafts  inclining  outward,  are  desirable 

for  maneuvering  purposes. 

5.  Effect  upon  Efficiency.  —  This  question  of  desirable  shaft 
angles  is  of  importance  in  practice,  and  it  is  to  be  hoped  that  some 

day  it  will  be  given  accurate  experimental  investigation.     At  present 

we  can  deal  with  it  in  quantitative  fashion  only.     As  regards  effi- 
ciency, a  moderate  variation  of  slip  during  the  revolution  of  a  blade 

will  not  seriously  reduce  efficiency  so  long  as  the  average  slip  is  that 

corresponding  to  good  efficiency  and  the  variation  of  slip  is  not 

extreme.     But  it  is  difficult  to  see  how  a  shaft  inclination  as  great 

as  ten  degrees,  which  has  been  often  fitted  on  motor  boats,  can  fail 

to  be  accompanied  by  a  loss  of  efficiency.    With  such  an  angle  of 

inclination  it  is  evident,  from  Fig.  170,  that  each  blade  will  work 

with  negative  nominal  slip  at  one  portion  of  its  revolution  and  with 

excessive  nominal  slip  at  another  portion  —  even  if  the  average 
slip  is  that  corresponding  to  good  efficiency. 

If  the  thrust  of  a  propeller  were  due  solely  to  the  action  of  the 

face  such  a  variation  of  slip  would  be  wholly  inadmissible.  Irregu- 
lar turning  forces  and  thrust  would  cause  serious  vibration  and  there 

would  be  great  loss  of  efficiency.  But  the  back  of  the  blade  through 

its  suction  is  always  an  important  and  often  a  dominant  factor  in 

the  production  of  thrust.  The  slip  angle  for  the  following  portion 

of  the  blade  is  greater  than  the  slip  angle  for  the  face  by  the  value 

of  the  edge  angle  at  the  following  edge.  This  edge  angle  is  seldom 

less  than  twelve  or  fifteen  degrees  and  is  often  twenty-five  or  thirty. 

Hence  a  shaft  inclination  of  two  or  three  degrees  will  affect  com- 
paratively slightly  the  action  of  the  blade  back,  and  even  the  large 

inclination  of  ten  degrees  will  seldom  cause  the  suction  of  the  back 

to  be  reversed  into  negative  thrust  at  any  portion  of  the  revolution. 

Such  a  large  deflection,  however,  is  liable  to  produce  very  irregular 
action. 

6.  Vibration.  —  An  important  consideration  in  this  connection 
is  that  of  vibration.     With  turbine  propelled  vessels,  practically 

all  vibration  —  which  is  quite  strong  in  some  turbine  steamers  — 
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is  due  to  pounding  of  the  water  against  the  hull  as  the  blades  pass 
or  to  unbalanced  propeller  action.  There  can  be  no  doubt  that  the 
latter  cause  of  vibration,  which  is  practically  the  only  cause  if  the 
propeller  tips  are  not  too  close  to  the  hull,  is  affected  by  the  shaft 
angles,  and  it  is  particularly  advisable  with  turbine  steamers  to 
choose  shaft  angle.5  which  will  tend  to  uniformity  of  propeller  action. 
Suppose,  for  instance,  we  have  a  propeller  shaft  carried  by  a  nearly 
horizontal  web.  We  have  seen  that  there  will  be  a  very  strong  wake 
above  the  web  and  vertical  motion  of  the  water  will  be  interfered 

with.  In  such  a  case,  for  inturning  screws,  the  shaft  should  incline 
down  and  out,  and  for  outturning  screws,  up  and  out. 

7.  Obliquity  of  Flow.  —  While  the  wake  through  its  variation 
of  strength  over  the  propeller  disc  produces  a  virtual  shaft  devia- 

tion, it  is  evident  from  consideration  of  Figs.  50  to  59,  showing  lines 

of  flow  over  models,  that  the  water  closing  in  and  rising  up  aft  fol- 
lows lines  which  will  in  many  cases  make  material  angles  with  the 

shafts.  The  effect  of  the  obliquity  of  the  water  flow  will  vary  a  good 

•deal  with  the  position  of  the  propeller. 
For  vessels  of  usual  type  it  would  seem  that  the  farther  aft  the 

propeller  the  less  the  obliquity  of  the  water  flow.  But  experiments 

with  the  model  of  a  four-screw  battleship  indicated  that  at  the  for- 

ward screws  the  water  was  rising  at  an  average  angle  of  about  10° 
and  closing  in  at  an  average  angle  of  about  5°.  For  the  after  screws 
these  angles  were  1 1  °  and  4°  respectively.  The  after  screws,  however, 
were  not  very  far  aft.  These  angles  seem  large  when  we  compare 

them  with  the  slip  angles  to  be  expected  in  practice.  The  obliq- 
uity of  horizontal  water  flow  will  usually  be  greater  over  the  upper 

portion  of  the  propeller  disc  than  over  the  lower,  so  that  the  virtual 
wake  to  which  the  obliquity  of  motion  is  equivalent  will  be  stronger 
over  the  upper  portions  of  the  screw  disc.  Now  this  virtual  wake 
will,  for  outturning  screws,  be  positive  over  the  upper  part  of  the 
disc  and  negative  over  the  lower.  Fcr  inturning  screws  the  virtual 
wake  will  be  negative  over  the  upper  portion  of  the  screw  disc  and 
positive  over  the  lower. 

The  strength  of  the  virtual  wake  being  in  the  upper  part  of  the 
disc,  where  it  is  positive  for  outturning  screws  and  negative  for  in- 
turning,  it  would  seem  that  side  screws  well  forward  of  the  stern 



210  SPEED  AND  POWER  OF  SHIPS 

post  should  be  outturning  in  order  to  make  the  most  of  the  virtual 

wake  due  to  the  obliquity  of  the  water  motion. 

30.   Strength  of  Propeller  Blades 

In  view  of  the  importance  of  blade  thickness  in  many  cases  it  is 

advisable  to  make  a  careful  inquiry  into  the  matter  and  endeavor 

to  reduce  to  rule  the  stresses  upon  propeller  blades.  This  can  be 

accomplished  only  by  certain  assumptions,  which  will  be  pointed 

out  and  justified  as  they  are  made.  In  order  to  apply  the  well- 
known  formula  for  beam  stress  to  a  propeller  blade,  it  will  be  assumed 

that  the  section  of  a  blade  by  a  cylinder  at  a  given  radius  is  devel- 
oped into  a  plane  tangent  to  the  cylinder.  This  section  will  then  be 

treated  as  a  beam  section.  This  assumption  probably  errs  on  the 

safe  side,  since  the  actual  strength  as  a  beam  of  the  curved  blade 

would  be  greater  than  that  of  a  developed  cylindrical  section  of  the 
same. 

i .  Fore  and  Aft  Forces  and  Moments.  —  In  considering  the 
forces  upon  a  blade  it  is  convenient  first  to  consider  separately  fore 

and  aft  forces,  or  thrust  and  transverse  forces,  producing  torque.  It 

is  convenient  to  use  the  disc  theory  or  Rankine's  theory,  by  which 
the  thrust  upon  a  blade  may  be  taken  to  vary  radially  directly  as 

the  distance  from  the  shaft  center.  For  a  ring  of  water  one  inch 

thick  at  ten  feet  radius,  say,  would  contain  twice  as  much  water 

as  a  ring  of  the  same  thickness  at  five  feet  radius.  If  each  ring  be 

given  the  same  sternward  velocity,  involving  the  same  thrust  per 

pound  of  water  acted  upon,  then  the  thrust  from  the  ring  of  ten 

feet  radius  would  be  double  that  from  the  ring  of  five  feet  radius. 

Put  into  symbols,  if  dT  denote  elementary  thrust  from  a  ring  of 

thickness  dr  at  radius  r,  we  have  dT=  krdr  where  k  is  a  constant 
coefficient  over  the  blade  depending  upon  the  total  thrust.  Then 

integrating  we  have  for  thrust, 
T  =  \  kr\ 

Applying  the  limits  — •  >  - ,  where  di  is  diameter  of  hub  and  d  is  diam- 2       2 

eter  of  propeller,  we  have,  if  T0  is  total  thrust  of  one  blade, 

T     k/d*     dA 
1  o  =   • 

2\4 
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This  enables  us  to  determine  k,  since  from  the  above 

fa    =  ""•  • 

Suppose,  now,  we  wish  to  determine  the  thrust  T\  from  the  tip  to 
a  radius  r\, 

We  have         Ti**-\--rA 
2|_4 

A_ 

4    '     4 

From  the  above,  if  fi  =  —  ,  then   J"i  =  TQ,  and  if   ri  =  -  ,    then 2  2 

TI  =  o  as  it  should.  Now  we  need  to  know  not  only  the  thrust 
on  the  blade  beyond  any  radius,  but  its  moment  at  the  radius. 

The  moment  at  radius  r\  of  the  elementary  thrust  dT  at  radius  r 

is  dT  (r  —  ri)  =  kr  (r  —  r\)  dr. 
Call  dMi  the  moment  of  this  elementary  thrust.     Then 

,  s         8  To    , 

2    r, 

Upon  reduction  
we  have 

At  the  root  section  r\—  —•     Substituting  and  reducing,  we  have 

at  the  root  section, 

A   /J      , 
6  (tf  + 

hrust  were 

Then  we  should  have 

Suppose,  now,  the  thrust  were  concentrated  at  a  point  ki  -  out. 2 
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Whence,  equating  these  two  values  of  MI,  we  have 

,  d      di      2  d2  —  ddi  —  dj2 i  ^  73   I    j  \ 2 

Upon  reduction  this  gives  us 

,  _  2 d(d  +  <f  0 

The  value  of  k\  in  the  above  formula  depends  only  upon  the  ratio 
between  di,  the  diameter  of  hub,  and  d,  the  diameter  of  propeller. 
Numerical  values  are  given  below: 

,       d          2  d         3  d         4  J 

d\  =  — 
10          10  10  10 

.689       .713        .743 

These  values  of  ki  agree  very  well  with  values  deduced  by  entirely 

different  methods  upon  the  blade  theory  or  Froude's  theory.  Upon 
the  blade  theory  ki  is  nearly  constant  at  .7. 

2.  Transverse  Forces  and  Moments.  —  Let  us  now  take  up  the 
transverse  moment,  which  denote  by  M2.  Let  dQ  denote  the  ele- 

mentary transverse  force  in  pounds  at  radius  r.  Let  p  denote  pitch 
in  feet,  s  the  slip  ratio  and  e  the  efficiency  of  the  elementary  portion 
of  the  blade  at  radius  r.  Then  the  gross  work  done  by  the  element 

of  the  blade  in  one  revolution  is  in  foot-pounds  dQ  X  2  irr. 
The  useful  work  is 

dQ  X  2wr  X  e  =  dT  X  p  (i  -  s)  =  krdrp  (i  -  s). 

dQ      kp  (i  -  s} 
Whence  -^  =  -^  -  -• dr  2  ire 

Now  over  a  blade  the  quantities  on  the  right  in  the  above  equation 
are  all  constant  except  e.  The  variation  in  e  over  the  part  of  the 
blade  that  does  the  most  work  is  probably  not  great,  so  let  us  assume 

it  constant  and  write  -p  =  g,  where  g  is  a  constant  coefficient  to  be df 

determined. 

We  have  seen  that  dQ  X  2  -n-r  =  element  of  work  done  in  one  revo- 

lution in  foot-pounds.     Then  /  d  Q  •  2  ?rr  =  work  per  blade  per  revo- 
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lution  =  33      —  ->  where  PI  is  the  power  absorbed  by  one  blade. R 
Then 

a 

-  =  /  dQ  •  2  irr  =  I  g  •  2  TIT  •  dr  =    Trgr2 

TT         ,  „  ,  ,>.  4    X    33000    Pi  I 

=  -e  (d?-  diz)     or    s.  =   ^   —  ~z   rr 
4 "         i 

=  42,017  —  a__^_ 

Then  for  Af2,  the  transverse  moment  at  any  radius,  r\,  due  to  the 
moments  of  the  elementary  transverse  forces  from  the  tip  in  to  the 
radius,  r\,  we  have 

d 

/ry2 

(r  —  rO  dr  =  g\   

Then,  upon  substituting  its  value  for  g  and  reducing,  we  obtain 

Now  as  to  the  radial  position  of  the  transverse  center  of  effort  we 
have  the  total  transverse  force  equal  to 

The  arm  of  this  force  beyond  r\  is  obtained  by  dividing  moment 
by  total  force  and  equals 

d -  - 

\2 

_x/rf      y 
2\2  / 

The  center  of  transverse  effort,  then,  is  by  this  method  halfway  be- 

tween the  tip  and  the  radius  considered.    So  if  kz  -  denote  the  dis- 2 
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tance  of  the  center  of  effort  of  the  whole  blade  from  the  center  of 

the  propeller  d\,  denoting  the  root  diameter,  we  have 

2         2  2  \2          2/ 

OF  kz=  ~ 

This  gives  us  the  values  below  of  k2  for  the  values  of  -    indicated, 

-=.i  .2  .3  4 

£2  =-55  -6  .65          .7 

These  compare  fairly  well  with  values  of  kz  deduced  by  entirely 
different  and  more  complicated  methods  upon  the  blade  theory. 
These  values  of  k%  varied  from  .710  for  a  coarse  pitch  ratio  of  2 
to  .600  for  a  pitch  ratio  of  i. 

Let  us  now  recapitulate  the  results  to  this  point. 
Let      d  denote  the  diameter  of  the  propeller  in  feet, 

di  the  diameter  of  the  hub  or  diameter  to  root  section, 

ri   the  radius  to  the  point  at  which  we  wish  to  determine  thick- ness, 

TO   whole  thrust  of  the  single  blade  in  pounds, 

PI    horse-power  absorbed  by  the  single  blade, 
R    revolutions  per  minute, 

M  i   fore  and  aft  bending  moment  at  radius  r\  in  Ib.-ft. 
Mz   transverse  bending  moment  at  radius  r\  in  Ib.-ft. 

Then  we  have  deduced  M1=  ̂   (d  +  r%(d  ~  2  Tl}\ 

3  (P-di* 

3.  Moments  Parallel  and  Perpendicular  to  the  Sections.  —  These 
moments  above  are  of  fixed  direction  independent  of  the  angle  of 
the  section.  This  angle  varies  with  the  radius  of  the  section.  The 
next  step  is  then  obviously,  to  resolve  the  above  moments  parallel 
and  perpendicular  to  the  section.  For  the  ordinary  screw  whose 
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driving  face  is  a  true  helicoid  this  face  develops  into  a  straight  line, 
and  we  will  resolve  the  moments  parallel  and  perpendicular  to  this 
line.  For  sections  of  varying  pitch  we  will  resolve  parallel  to  the 
tangent  at  the  center  of  the  face.  Figure  238  shows  an  ordinary 
ogival  type  of  section  expanded  from  its  cylindrical  shape.  Let 
6  denote  the  pitch  angle,  or  the  angle  which  the  face  line  makes 

with  a  plane  perpendicular  to  the  shaft.  Then  OB  =  Mi  =  fore 
and  aft  moment  .  and  OA  =  Af2  =  transverse  moment.  If  Mc  denote 
the  resultant  moment  perpendicular  to  the  face,  we  have  from 
Fig.  238, 

Mc  =  OC  +  OD  =  Mi  cos  0  +  Mz  sin  0. 

Similarly,  if  MI  denote  the  moment  parallel  to  the  face,  we  have 

MI=  BD  -  AC  =  Mi  sin  0  -  M  z  cos  0. 

Now  0,  the  pitch  angle,  depends  upon  the  pitch  and  the  radius. 
If  p  denote  the  pitch  and  r\  the  radius,  we  have 

2  irr\        d        2 

p 
Denote  the  pitch  ratio  proper,  or  ̂   by  a. a 

a 
Then  tan  0  = 

2 

TTT1  .  ad  2  irr\ 
Whence         sm  0  =  ;  cos  0  =  = 

4  Tr  a  4  TT 

We  have  seen  above  that  Mc  =  MI  cos  0  +  M%  sin  0. 
Substituting  their  values  obtained  above  for  MI,  M2,  cos  0  and 

sin  0  and  reducing  the  results,  we  obtain 

(d  —  2  ri)2  f2  TT 
3 

Let  us  next  express  r\  and  d\  as  fractions  of  the  diameter  d,  the  main 

dimension.     Write  r\=  —  and  d\=  cd.     Upon  reducing  we  have 2 

,,  (i  —  m)z          [IT  „      ,  (  v  .   5252  aPi~\ Mc  =  -  -  ̂-rr  —  ,  -  T0md  (2  +  m)  +        „  —  -  r 
(i  -  c2)  Va2+  Tr2^2  L6  R      J 
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Proceeding  in  practically  the  same  manner  we  obtain 

^ad  (2  +  m)  -  5252^ 
(i  -  c2)Va2+  A2     6  R 

In  any  particular  case  of  design  we  will  know  P\  and  R,  but 

generally  will  not  know  T0.     The  equation  connecting  TO  and  PI  is 

Since  p  =  ad,  this  gives 

p 
=  er\. 

33000 

=    33000  ePl adR(i  -s) 

Now  in  practical  cases  e  approximates  but  is  generally  somewhat 

less  than  i  —  j  for  practical  slips,  being  greater  than  i  —  s  only  for 

very  high  slips.  So  if  we  assume  e  =  i  —  s,  the  result  will  be  to 
make  the  value  of  T0  generally  greater  than  the  truth.  In  other 

words,  we  shall  generally  introduce  a  moderate  error  on  the  safe  side 

and  simplify  our  expressions  enormously.     So  write  T0  =  "4  —  —  —  ̂  . 
adR 

Also  introduce  the  factor  12  in  the  expressions  for  Mc  and  MI,  so 

that  these  moments,  heretofore  expressed  in  pound-feet,  will  be 

expressed  in  inch-pound  units.  This  is  desirable  because  it  is  con- 
venient to  measure  dimensions  of  the  propeller  sections  in  inches. o  ̂ ooo  P\ 

Then  substituting  in  the  expression  for  Mc  and  MI,  T0=  ̂ —   —  i, adR 

and  multiplying  by  1  2  we  have  after  reduction 

=  63'°24 

(i  -  m}2  f  ~\Pi MI=  132,0007  -  ̂"7  —  i  —  m  — 
(i  -c*)Va*  +  ir*m*\-          JR 

p 

In  the  above  expressions  —  x  is  the  factor  depending  upon  the  work R 

done.     The  complicated  fractions  involve  m  the  fraction  of  the 

radius;  a,  the  extreme  pitch  ratio;  and  c,  the  ratio  between  diameter 
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of  propeller  and  diameter  of  hub.     Hence  these  complicated  frac- 
tions can  be  calculated  and  plotted  once  for  all.     So  write 

(i  -  m)*  I"        m(2+m)  ,     "I 
c  =  63,024  7- — ;2.  /-rr-T-i  3'29  "  +  a  ' (I  —  c*-)  \/a?  _(-  ̂ 2^2  L  a  J 

(i  -  m2}  f 
L  =  132,000   \  =  (i  -  »). 

(i  -  c2)  Va2  +  7r2w2 

Then  finally,  MC=C^,          M^L^- K  K 

Figure  239  shows  curves  of  C  and  L  plotted  upon  m  for  various  values 
of  a.  For  these  curves  c  was  taken  uniformly  at  f .  Even  if  the 

hub  has  a  different  diameter,  this  is  generally  an  amply  close  approx- 
imation for  practical  purposes.  Since,  however,  for  very  large  hubs 

a  correction  may  be  needed,  there  is  given  in  Fig.  240  a  "  Curve  of 
Correction  Factors  "  for  hub  diameters.  It  is  seen  that  for  m  =  f 
the  factor  is  unity.  For  smaller  hubs  the  factor  is  less  than  unity, 
and  for  larger  hubs  greater  than  unity.  Unless,  however,  the  hub 

diameter  is  one-third  of  the  propeller  diameter  or  more,  it  is  not 
worth  while  to  undertake  to  correct  the  regular  values  of  C  and  L  in 
Fig. 239,  namely,  those  for  the  hub  diameter  y  the  propeller  diameter. 

4.  Resisting  Moments  of  Section.  —  The  above  expressions  en- 
able us,  by  the  use  of  Fig.  239,  to  obtain  very  readily  with  sufficient 

approximation  the  longitudinal  and  transverse  bending  moments  at 
any  section  of  a  given  propeller  of  known  power  and  revolutions.  It 
is  next  in  order  to  consider  the  resistance  of  the  section,  using,  as 
already  stated,  the  developed  section.  Referring  to  Fig.  241,  let  A  B, 

the  length  of  a  section  in  inches,  be  denoted  by  /,  and  CD,  its  thick- 
ness at  the  center  in  inches,  be  denoted  by  /.  The  center  of  gravity 

will  be  found  on  CD  at  a  point  G,  say.  Denote  DG  by  gt,  where  g 
is  a  coefficient.  Let  7C,  or  the  moment  of  inertia  about  a  horizontal 
axis  through  G,  be  denoted  by  kclP  and  //  or  the  moment  of  inertia 
about  CD,  by  kj?t.  Then  for  the  type  of  section  above  we  have 
due  to  Mc: 

Tension  at  A  and  B  =  f-Mc  =  f  -j£- Kclt  Kc     It 

Compression  at  C  =      L  ̂     Mc  =         °  -:-*• 
Kc  trl 



224  SPEED  AND  POWER  OF  SHIPS 

Due  to  MI  we  have,  if  B  is  leading  edge, 

Tension  at  A  =  compression  at  B=  — =— -  MI=   —• 
k/t  2ki  Pi 

These  are  general  expressions.  The  coefficients  g,  kc  and  kt  depend 
upon  the  type  of  section,  and  /  and  /  are  the  dimensions.  It  will 
be  well,  then,  to  consider  the  range  of  values  of  the  coefficients  g, 
kc  and  kL  for  various  possible  types  of  section.  The  most  usual  type 
of  section  is  the  ogival,  where  AB  is  a  straight  line  and  the  curve 
ABC  the  arc  of  a  circle.  This  type  of  section,  however,  is  difficult 
to  reduce  to  rule,  the  coefficients  varying  with  the  proportions.  The 
ogival  section,  however,  is  practically  the  same  as  a  section  with  a 
parabolic  back,  so  the  latter  may  be  considered. 

In  addition  to  the  parabolic  back  as  representing  the  ordinary 
type  of  blade  section  we  will  consider  two  other  types  of  blade  of 
the  same  maximum  thickness.  In  one  the  parabola  is  replaced  by 

a  curve  of  sines.  In  the  other,  thickness  is  equally  distributed  be- 
tween face  and  back,  each  being  a  curve  of  sines.  Figure  242  shows 

the  three  types  of  blade  section,  and  below  each  are  given  the  equa- 
tion characterizing  it,  the  expressions  giving  the  area  in  terms  of 

length  and  thickness,  and  the  value  of  the  coefficients  for  it. 
Then  for  the  three  types  of  blade  section  we  have  with  sufficient 

approximation: 

No  .   i  . No.   2. 
No.  3. 

Maximum  tension  at    A A D 

Expression  for  maximum  ten- 
sion..            _g   Mc           I     MI 

kc  it2       2  ki  fit 
g    Mc          I     Ml 

kc    It2           2  kl    Pt 

g   Me 

k,  nt 

Maximum  compression  at    

Expression  for  maximum  com- 

C 
i  -  g  Mc 

C 
I  -  g  Mc 

C 
I  -  g  Mc 

pression        
k       Ift 

t        HI 
b          ]ft 

5.  Compressive  Stresses.  —  It  is  not  obvious  whether  for  types 
i  and  2  the  maximum  tension  is  greater  or  less  than  the  maximum 
compression.  It  is  found,  however,  upon  investigation  of  blades  as 
they  are  found  in  practice,  that  the  compression  stress  is  the  greatest 
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and  the  only  one  that  need  be  considered  in  the  case  of  material 

that  is  as  strong  in  tension  as  in  compression. 

It  would  seem,  then,  to  be  the  best  plan  in  practice  to  design  the 

blade  thickness  from  considerations  of  compression  and  then  deter- 
mine tension  of  the  blade  thus  designed.  In  the  rare  cases  where 

the  tension  is  found  too  high  it  is  easy  to  make  the  necessary 

changes.  The  formula  for  compression  at  the  center  of  the  back  of 

the  blade  in  pounds  per  square  inch  is, 

Compression  =  — -~  — ^  • 
kc      It 

p 
Now  Mc  =  C  — - ,  and  it  is  seen  from  Fig.  242  that  for  all  these  types jfv 

of  blade  a  safe  value  for  —  — ^  is  14.     Then  our  final  formula  is, 

kc 

Maximum  Compression  at  Center  of  Back  in  Pounds  per  Square 
P        i 

Inch,  =  14  C  — •  X  —^ )  where  C  is  obtained  from  Fig.  239. /V  1 1 

We  are  now  in  a  position  to  investigate  the  stress,  not  only  at  a 

root  section,  but  at  any  point  along  the  radius,  by  the  aid  of  the 

above  formula  and  Fig.  239.  The  result  for  a  blade  of  rather  wide 

tips  and  a  mean  width  ratio  of  .2  is  shown  in  Fig.  243.  This  shows 

for  various  pitch  ratios,  and  plotted  on  fractions  of  radius,  curves  of 

thickness  in  center  for  constant  compressive  stress,  the  thickness 

being  expressed  always  as  a  fraction  of  the  thickness  at  .2  the  radius. 

Beyond  .2  of  the  radius  these  curves  are  so  close  together  for  the 

various  pitch  ratios  that  it  is  impossible  to  plot  them  separately. 
Below  .2  of  the  radius  the  curves  separate.  It  is  seen  that  the  outer 

portion  of  the  thickness  curve  in  Fig.  243  is  not  quite  straight,  being 

slightly  curved.  The  curvature  is  so  slight,  however,  that  if  we 

follow  the  nearly  universal  practice  of  making  the  back  of  the  blade 

straight  radially,  the  thickness  at  the  tip  being  not  zero  but  the 

minimum  that  can  be  conveniently  cast,  the  stress  per  square  inch 

will  be  practically  constant.  Unfortunately  it  is  clearly  unsafe  to 

make  the  line  of  the  blade  back  concave  as  we  go  out,  thus  decreas- 
ing thickness  and  gaining  efficiency  for  high  speed  propellers.  It  is 

true  that  sometimes  the  line  of  blade  back  is  made  concave  when  the 
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blade  has  a  small  hub  and  is  narrow  close  to  the  hub,  but  this  is  due 

to  a  thickening  of  the  inner  part  of  the  blade  —  not  a  thinning  of 
the  outer  part.  The  only  practicable  method,  then,  of  accom- 

plishing reduction  of  blade  thickness  is  to  use  material  capable  of 
standing  high  stress. 

Figure  243  indicates  that  for  propellers  with  small  hubs  —  less 
than  .2  the  diameter  —  the  thickness  should  be  determined,  not  at 
the  root,  but  at  .2  the  radius,  the  straight  line  of  back  being 
extended  inward  to  the  hub. 

For  convenience  in  design  work  Fig.  244  has  been  prepared.  This 
gives  values  of  C,  from  .2  the  radius  to  .4  the  radius  for  pitch  ratios, 
from  .8  to  2.0,  thus  covering  the  practical  field. 

6.  Tensile  Stresses.  —  Coming  back  now  to  the  question  of  ten- 
sion, it  seems  that  sections  of  Type  3  are  the  simplest.  The  maxi- 
mum tension  for  it  is  the  same  as  the  maximum  compression.  But 

sections  of  Type  3  are  not  desirable  for  use.  For  sections  of  Types 
i  and  2  the  case  is  not  so  simple.  Taking  the  maximum  tension  as 
that  at  A  and  the  maximum  compression  as  that  at  C,  and  denoting 

by  /i  the  tension  factor  or  value  of  maximum  tension  -i-  maximum 
compression,  we  have 

g  Mc        i    MJ 
k  if     2  k  n 

Now  —~  =  — ,  and  with  sufficient  approximation  we  have   from 
Mc       C 

Fig.  242 g  =.4  and  ̂   =  .7 1  kc. 

Whence,  after  simplifying,  /i  =  .666  +  1.17 -  -•    L  and  C  are  given c/  i> 

in  Fig.  239,  but  to  facilitate  computation  Fig.  245  gives  curves  of 

1.17  —  from  m  =  .1  to  m  =  .4,  and  for  final  pitch  ratios  from  .6  to  2. 
V_x 

This  covers  the  practical  ground.  For  narrow  cast-iron  blades  with 
solid  and  hence  small  hubs  it  will  generally  be  necessary  to  determine 
tensile  stress  with  care. 

7.   Stresses  Due  to   Centrifugal  Force.  —  In   addition   to   the 
stresses  upon  a  propeller  blade  due  to  thrust  and  torque,  there  are 
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stresses  due  to  centrifugal  force.  These  are  appreciable.  In  any 

given  case  they  can  be  calculated  with  sufficient  approximation  with- 
out serious  difficulty.  If  W  denote  the  weight  of  that  portion  of  a 

propeller  blade  outside  of  the  radius  r\  of  a  given  section,  r2  the 
radius  of  the  center  of  gravity  of  the  portion  of  blade  and  v  the 
circumferential  velocity  of  the  center  of  gravity,  while  g,  as  usual, 
denotes  the  acceleration  due  to  gravity,  then  the  centrifugal  force 
of  the  portion  of  blade  may  be  taken  as  equivalent  to  a  single 
force  perpendicular  to  the  shaft  through  the  center  of  gravity  of 
the  portion  of  blade.  The  amount  of  the  force  in  pounds  will  be 

W  V2 
equal  to   Knowing  the  force  and  its  line  of  application,  the 

g    rz 
stresses  upon  the  bounding  section  of  the  portion  of  blade  can  be 

determined  by  well-known  methods  of  applied  mechanics. 
It  appears  advisable,  however,  to  make  a  general  mathematical 

investigation  of  a  case  sufficiently  simple  to  admit  of  such  investi- 
gation and  sufficiently  resembling  the  cases  of  actual  propellers  to 

enable  us  to  apply  the  results  of  the  mathematical  investigation,  in 
a  qualitative  way  at  least,  to  actual  propellers.  It  will  be  seen  that 
we  can  thus  learn  a  good  deal  about  the  laws  governing  the  stresses 
of  propeller  blades  caused  by  centrifugal  action. 

Fig.  246  shows  an  elliptical  expanded  blade  touching  the  axis  at  O. 
Consider  the  weight  of  each  section  such  as  CD  concentrated  at 
the  blade  center  line  at  E.  Let  bd  denote  the  minor  axis  BN,  d 
being  the  propeller  diameter  and  b  a  fraction.  The  equation  of  the 
ellipse  referred  to  0  the  point  where  it  touches  the  axis,  is 

y  —  b  V2  dr  —  4  r2, 
where  r  denotes  radius  and  y  the  semibreadth  at  radius  r, 

Then  Breadth  =  2  y  =  2  b  v/2  dr  —  4  r2. 

Now  for  r  substitute  m  -  where  m  is  fraction  of  whole  radius  varying 2 
from  o  at  0  to  i  at  A . 

Then  Breadth  =  2  bd  Vm  -  mz. 

When  we  come  to  thickness,  the  axial  thickness  is  rd,  where  T  is 

blade  thickness  fraction.     The  tip  thickness  is  not  fixed  by  consid- 
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erations  of  strength,  being  from  considerations  of  castings,  etc.? 
usually  materially  thicker  than  it  need  be  for  strength.  We  wish  in 
considering  centrifugal  force  to  be  sure  we  take  the  tip  thick  enough, 
so  will  assume  it  as  .15  the  axial  thickness.  It  will  usually  be  less 
in  practice  for  large  propellers.  Then  the  back  of  the  blade  center 

being  a  straight  line,  the  thickness  at  m  is  rd  (  i  —  .85  m). 
Assuming  the  section  as  parabolic,  the  area  of  a  section  =  § 

width  X  thickness  =  §  X  2  bd  Vm  —  m?X  rd  (i  -.85  m} 

—  (i  —  .85  m)  v  '  m  —  m2. 

We  are  now  able  to  formulate  the  elements  of  curves  to  be  plotted 
upon  m  and  integrated  graphically  to  obtain  the  results  needed. 
The  element  of  blade  volume  =  Area  of  section  X  dr. 

-NT  md  j       d  j Now  r  =  —  ?  dr  =  -  dm. 2  2 
Hence 

Element  of  volume  =  -      —  (i  —  .85  w)  \/m  —  m2  dm. 
\3 

Let  8  denote  weight  per  cubic  foot  of  the  material  of  the  blade 

Element  of  weight  =  -       -  (i  —  .85)  m)  \/m  —  m2  dm. 
O 
n  o  T 

Element  of  centrifugal  force  =  —  X  weight  =  -     -  X  weight 
g  *g 

,          0        N  A  /—       —  ,  j 
m  (i  —  .85  ?w)  v  w  —  mr  dm. 

\J    O 

f*m  _ 

Let  /    m(i  —.85  m)  \/m  —  m2dm  —  ̂ >\(m). 
J  \ 

Then   total  centrifugal  force  from  the    tip  to  the  section  m  is 
u>28rbd4  ,   /    x -9i(»). 

3£ 

If  there  is  no  rake  the  effect  of  the  centrifugal  force  is  simply  to 

cause  a  tension  over  the  area.     This  tension  = area 

X 

3  g  4  rbd2  (i  —  .85  m)  "vm  —  m2 

in  pounds  per  square  foot. 
4  g  (i  —  .85  m)  Vm  —  m 
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Expressed  in  pounds  per  square  inch  it  is  T]¥  of  the  stress  in  pounds 

per  square  foot.  So  we  have  Tension  in  pounds  per  square  inch 
due  to  centrifugal  force  when  there  is  no  rake 

(m)  u28d?   ,   .    N —  — 
.  . 

576  g(i  -.S$m)Vm  -  mz      57°  £ 
It  appears,  then,  that  for  a  blade  without  rake  the  tensile  stress  due 
to  centrifugal  force  varies  as  the  weight  per  cubic  foot  of  the  blade 

material,  as  (cod)2,  or  as  the  square  of  the  tip  velocity,  and  as  </>2  (m) 
where  <£2(#0  is  a  quantity  depending  upon  radial  position,  blade 
shape,  proportions,  etc.,  but  independent  of  size  and  pitch. 

Since  it  is  usually  more  convenient  to  express  angular  velocity  by 

the  revolutions  per  minute,  denoted  by  R,  we  may  substitute  — 

oo 
for  co.  Also,  in  order  to  avoid  small  decimal  factors,  multiply  numer- 

ator and  denominator  by  1,000,000.  Then  Tension  in  pounds  per 

square  inch  due  to  centrifugal  force  when  there  is  no  rake 

22  „      8d2  .   ,  loooooo  .    f    v X  -     -  X  -         -  02  O), 
3600       57^  g      loooooo 

8d2R2   [4000000  TT 
ioooooo_  3600  X  576  g 

8d?R2  f  4000000?^      0i  (m)   
1000000  [3600  X  576  g   (x  _  .85  m)  Vm  -  m 

I 000000 

Figure  247  shows  curves  of  <£i(w)  and  (j>t.  It  is  seen  that  <£i(w), 
which  is  proportional  to  total  centrifugal  force,  increases  always  from 

tip  to  axis,  as  might  be  expected.  Since  the  assumed  blade  has  no 

area  at  the  axis,  (f>t,  which  is  proportional  to  the  stress  per  square  inch, 

is  infinity  at  the  axis  but  falls  off  very  rapidly  at  first  as  we  go  out. 

We  wish  mainly,  however,  to  investigate  the  effect  of  rake  or 

inclination  upon  the  stresses  on  propeller  blades  due  to  centrifugal 

action.  Let  id  denote  the  total  rake  of  the  blade  along  its  center 

line,  where  i  is  a  comparatively  small  fraction,  and  assume  the  weight 
of  the  section  concentrated  at  the  center  line.  Then  idm  denotes 

the  rake  from  the  axis  to  the  radius  corresponding  to  m. 
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Suppose  we  wish  to  determine  the  moment  due  to  centrifugal 
force  about  the  section  corresponding  to  mi. 

The  element  of  force  at  m  beyond  mi  is,  as  before, 

m  (i  —  .85  m)  vm  —  m2  dm. 
68 

Its  lever  to  radius  mi  is  id  (m  —  mi).    Hence  element  of  moment 

Abid5 O  o 
(  N      (        0       >.    /  —      —  o  , (m  —  mi)  m(i  —  .85  w)  v  w  —  m-  dm. 

,,  a>23rta/5r  rm'  ,,  v  /  -  =  , 
Moment  to  mi  =  -  mz  (i  —  .S^m)\/m  —  m*  dm 

3£     LJi 
r\m\  _          ~| 

—  mil     m  (i  —  .85  m)Vm  —  m2  dm  • 

The  second  integral  is  <£i(w),  but  we  can  denote  the  whole  thing 
by  </>a  (mi)  and  after  obtaining  results  by  graphic  integration  use  m 
instead  of  m\.  Then  we  have 

Moment  from  tip  to  m  =  -        —  </>3  (m)  =  Mf,  say. 3  £ O  o 

Now  the  moment  MI  is  in  the  plane  through  the  axis  and  the 

center  line  of  the  blade.  Its  effect  upon  the  section  is  best  ascer- 
tained by  resolving  it  parallel  and  perpendicular  to  the  section. 

If  6  be  the  pitch  angle  at  radius  r,  tan  6  =  -*—  =  —*—.  =  —-  ,  if 2  irr      Trmd      irm 

we  use  a  to  denote  the  pitch  ratio  *•  • a 

Then  sin  6  =  —  cos  6  =  — 

If  Me'  and  ML   denote  the  moments  resolved  perpendicular  and 
parallel  to  the  blade  face  we  have 

nf   r        *f  a  ,    /    x 
Me  =  M  cos  6  =  -      —  7T03  (m) 

ML'  =  M '  sin  6  =  -      —  <£3  (m)      _. 

Finally,  by  applying  at  the  center  of  the  section  forces  equal  and 
opposite  to  the  forces  producing  the  moments,  we  have  the  section 
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affected  by  a  force  and  two  couples.  The  force  is  the  same  as  the 

outward  force  when  there  is  no  rake.  The  couples  are  perpendicu- 
lar and  parallel  to  the  section  and  their  moments  are  given  above. 

The  result  of  the  force  and  couples  is  as  follows,  reference  being 
had  to  Fig.  241,  where  B  is  the  leading  edge: 

1.  The  force  causes  a  certain  tension  over  the  whole  section. 

2.  The  perpendicular  couple  causes  compression  at  C  and  ten- 
sion at  A  and  B. 

3.  The  parallel  couple  causes  tension  at  A  and  compression  at  B. 
Now  from  consideration  of  thrust  and  torque  only  we  have  already 

found  that  the  maximum  compression  is  at  C  and  the  maximum 
tension  at  A .  Centrifugal  action  evidently  increases  the  tension  at 
A  more  than  at  B.  Hence,  as  regards  tension  we  need  consider  the 
action  at  A  only. 

As  regards  compression,  when  we  neglect  centrifugal  action  this 
is  a  maximum  at  C.  The  tension  due  to  the  force  decreases  com- 

pression at  B  and  C  equal  amounts.  Then  the  parallel  moment 
increases  compression  at  B  and  the  perpendicular  moment  increases 
compression  at  C.  We  need  to  find  which  increase  is  the  greater, 
and  if  C  has  greater  compression  from  centrifugal  action  we  need 
consider  C  only. 

The  necessary  coefficients  for  the  parabolic  sections  are  found  in 
Fig.  242.  Consider  the  tension  increases  at  A  first.  We  have  three 
increases: 

Due  to  force  alone  in  pounds  per  square  inch,  —    —  fa  (m). 

576  g 
Due  to  perpendicular  moment,  -^ — -r-^-  — ,  where  the  factor  12 vv 

has  been  introduced  because  we  wish  stresses  per  square  inch  and 

Me  was  calculated  in  pound-foot  units. 

Now  in  feet  /  =  2  bd  ̂ m  —  m?=  24  bd  \/m  —  mz  in  inches. 
Also  t  =  rd  (i  —  .85  m)  in  feet  =  12  rd  (i  —.85  m)  in  inches. 

So  the  tension  per  square  inch  at  A  due  to  the  perpendicular  mo- 
ment is 

  105  Mr'   
24  X  144  b^d?  Vm  —  m2  (i  —  .85  w)2 
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Substituting  the  value  of  Me' 
Tension  at  A  due  to  perpendicular  moment 

__  35  Tru?dTbid5<j>3(Tn)  X  m 

1152  X  3  gbrW  Vm-m2  X  (i  -.85  m)2Va2+ 
35    TT  i  _  uPdcPfa  (m)  X  m  __ 

3456  g  T  Vm-  m2  (i  -  .85  m)2  Va2+ 
Due  to  parallel  moment 

rr  15  X  12  ML' Tension  at  A  =  -*  —  -  --  • 1  1 

Reducing  this  similarly  we  have 

Tension  at  A  due  to  parallel  moment 

576  g       b     (m-  W2)  (z  _  g5 

Suppose  now  we  denote  by  N  the  tension  per  square  inch  due 
to  centrifugal  force  only  and  express  these  other  tensions  in  terms 
of  N: 
We  have 

o       w 
576  g  576  g  (J  -  -85  »)  («  - 

Then  Tension  at  A  due  to  perpendicular  moment 

6       r  ̂ (w)  (!  -. 

=  -^-^>4. 

3     * Tension  at  A  due  to  parallel  moment 

,,  i  03  (m)  _  a  __  j\j- 

~5     b  fa  (m)  (m  -  ~  ' 
In  the  above  ̂   and  0s  involve  a  as  well  as  m  and  should  be  expressed 
by  contour  diagrams. 

Consider  now  the  compression  at  C  due  to  the  perpendicular 
„,,•    .    13.121;  X  12  X  Me  ir       •    •     i moment.    This  is  -^  —  s2  —  —  --    As  before  in  inches 

vv 

I  =  24  bd  (m  —  w2)*, 
t  =  i2rd(i  —.85  m). 
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Hence  compression 

  13.125  X  12  Me   

24  X  144  X  br2d3(m  -  w2)4(i  -.85  m)'2 

13.125      jr   u?8rbid5<f)3  (m)  m   

288        3  g  br2d?  (m  -  w2)*  (i  -  .85  m)*Va*+v*ni< 

26.25  E2      i   03  (m)  m   

576  g  3  r  (m-  W2)i  (i  _  .85  w)2vV+  ir2™2 
And  in  terms  of  N 

Compression  at  C 
m 

(»)  (i  -.{ 
We  can  now  express  the  ratios  between  extra  compression  at  C 

and  compression  at  B  due  to  parallel  moment.  The  latter  is  the 
same  as  tension  at  A  due  to  parallel  moment 

M   

(m)  (m  - 
Extra  Compression  at  C 

Parallel  moment  Compression  at  B          15      T  a   i—.&$m 

Now  we  may  safely  say  that  in  practice  b  is  greater  than  47. 

If  we  put  b  =  4  T,  TT  =  V  >  we  nave  f °r  above  ratio, 

m  (m  —  w2)* 22—  * —      — -' a  i  —  .85  m 

The  hub  is  such  that  m  may  be  taken  as  .2  or  more.     Putting 
212 

w  =.2  we  have  ratio  above  =   So  for  propellers  in  practice 

Of the  extra  compression  at  C  due  to  centrifugal  action  will  always  be 
greater  than  that  at  B  due  to  the  parallel  moment.  When,  too,  we 

recollect  that  there  is  a  large  opposing  tension  at  B  due  to  the  per- 
pendicular moment,  it  is  obvious  that  the  maximum  compression  is 

at  C,  and  only  that  need  be  considered. 

Figures  248  and  249  show  contours  of  </>4  and  <£5  plotted  on  a  and 
m  and  curves  of  $i(w),  <&  and  4>z(m]  which  involve  m  only  are 
shown  in  Fig.  247. 

We  have  finally  for  stresses  due  to  centrifugal  forces 
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Tension  in  pounds  per  square  inch  neglecting  rake  =  N  — 1000000 

Extra  compression  at  center  of  blade  back  =  AM-  <£4  —  l] 
dd?R2    ̂   (i  ̂        \. =   <pt [- 94  —  i  ]  m  pounds  per  square  inch. 1000000        \T  I 

(2  i  i 
 \ 

  9^  +  7  95  +  I  ) 

3  T  *  I 

dd?Rz    ±  /2  i  ,   .  i,        \.  .     , 
=   9,  —  9<+  r  95+    1  m  pounds  per  square  inch. 1000000     \3  T         b  I 

In  the  above  i  is  ratio  between  rake  and  diameter,  T  is  ratio 

between  axial  thickness  and  diameter,  and  b  is  ratio  between  maxi- 
mum blade  width  and  diameter  and  may  be  taken  as  1.188  (mean 

width  ratio). 

The  above  formulae  and  the  accompanying  figures  apply  strictly 
only  to  blades  whose  expansion  is  an  ellipse  touching  the  axis  and 
whose  tip  thickness  is  .15  the  axial  thickness. 

The  methods  used  can  be  followed  to  determine  9i(w),  (f>t  ̂>z(m), 
4>4  and  <£5  for  blades  of  any  type,  but  the  results  of  Figs.  247,  248 
and  249  can  be  applied  in  practice  with  sufficient  approximation 
to  any  oval  blade  that  does  not  depart  widely  from  the  elliptical 
form. 

Since  centrifugal  stresses  increase  as  the  square  of  the  tip  speed, 
they  evidently  need  to  be  given  much  more  careful  consideration 
for  quick  running  propellers  than  for  those  of  moderate  speed.  Thus, 

suppose  we  had  a  manganese  bronze  propeller  for  which  dR  =  4000, 
or  the  tip  speed  is  over  12,000  feet  per  minute.  For  manganese 

bronze  5  =  525  about.  Then  N  =  525  X  169^  =  84009^.  For 
m  =  .3,  <f>i=  .135  about,  soN  =  1134.  If  the  pitch  ratio  is  about 

A 

unity,  94  =  2 \  about,  and  if  -  has  the  value  of  3  or  the  rake  is  three T 
* 

times  the  axial  thickness,  -94—1  =  6,  or  increase  in  compressive r 

stress  at  .3  the  radius  is  the  large  amount  of  6700  Ibs.  This  is  an 
extreme  but  not  impossible  case.  As  tip  speed  falls  off,  stresses  due 
to  centrifugal  force  decrease  rapidly,  but  it  would  seem  the  part  of 

wisdom  to  avoid  them  entirely  by  avoiding  backward  rake.  More- 
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aver,  it  seems  advisable  when  tip  speed  is  very  high  to  give  a  moderate 
forward  or  negative  rake,  thus  opposing  the  tensile  and  compressive 

stresses  due  to  the  work  done  by  opposite  stresses  due  to  the  cen- 
trifugal forces.  When  backing,  centrifugal  force  would  add  to  the 

natural  stresses,  but  propellers  are  not  worked  backward  at  maxi- 
mum speed. 

In  calculating  stresses  due  to  centrifugal  force  we  need  values  of 

5  or  weight  per  cubic  foot  of  the  various  materials  used  for  pro- 
peller blades.  For  manganese  bronze  or  composition  we  may  use 

525  for  5,  for  cast  iron  450  and  for  cast  steel  475. 

8.  Stresses  Allowable  in  Practice.  —  While  for  quick-running 
propellers  centrifugal  stresses  must  be  calculated  separately,  in  the 
majority  of  cases  they  are  not  very  serious  and  may  be  allowed  for 
by  using  a  low  stress  in  our  main  strength  formulae. 

P        i 

Compressive  stress  in  Ibs.  per  sq.  in.  =  Sc  =  14  C—1  X  —%' 1\          LI 

Tensile  stress  in  Ibs.  per  sq.  in.  =  ST  =  Sc  (.666  +  1.17)  -  -• \^  L 

In  applying  these  formulae  to  the  root  section  of  any  blade  we  will 
know  C,  PI,  R  and  /.  Then  we  fix  t  by  giving  Sc  a  suitable  value 
and  calculate  ST  to  see  if  that  has  a  suitable  value.  Now  what 

are  suitable  values  of  Sc  for  the  various  materials  of  which  we  make 

propeller  blades  ?  They  cannot  be  fixed  arbitrarily  from  considera- 
tion of  only  the  tensile  and  compressive  strengths  of  the  material. 

For  one  thing  our  formulae  are  approximations  only.  In  order  to 
apply  the  methods  of  Applied  Mechanics  we  start  by  developing  the 
cylindrical  section  of  the  blade  into  an  ideal  plane  section.  It  is 
probable  that  this  ideal  section  is  materially  weaker  than  the  actual 
section,  especially  in  the  case  of  propellers  of  varying  pitch.  Hence, 
if  this  were  the  only  perturbing  factor,  we  could  allow  high  stresses 
in  the  formulae,  because  the  stresses  per  formulae  would  be  greater 
than  the  true  stresses.  But  when  we  consider  the  conditions  of 

operation  of  propellers  we  find  other  very  serious  perturbing  factors 
which  we  cannot  reduce  to  rule.  In  the  formula,  PI  is  the  average 
power  absorbed  by  the  blade.  But  even  in  still  water  the  blade, 
owing  to  inequalities  of  wake,  will  absorb  more  power  than  the 
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average  at  one  portion  of  the  revolution  and  less  at  another.  And 
in  disturbed  water,  what  with  the  motion  of  the  water  and  the 
pitching  of  the  ship,  the  blade  is  liable  to  encounter  stresses  very 
much  in  excess  of  those  due  the  average  power  which  it  absorbs. 
This  is  especially  likely  to  be  true  of  turbine  driven  propellers. 
With  reciprocating  engines,  when  a  propeller  encounters  abnormal 
resistance  the  engine  will  soon  slow  down,  the  kinetic  energy  of  the 
moving  parts  being  rapidly  absorbed.  With  turbines,  however,  we 
are  likely  to  have  the  kinetic  energy  of  the  moving  parts  per  square 
foot  of  disc  area  much  greater  than  for  reciprocating  engines,  and 
the  flywheel  action,  so  to  speak,  of  the  moving  parts  is  then  capable 
of  causing  a  relatively  greater  extra  stress. 

To  determine  with  scientific  accuracy  allowable  stresses  for  use 

in  the  formula  we  would  probably  have  to  test  to  destruction  full- 
sized  propellers  —  which  is  impracticable.  The  next  best  thing  is 
to  find  from  the  formula  the  stresses  shown  by  actual  propellers 
which  have  been  successful  in  service,  and  also  those  of  propellers 
which  have  shown  weakness  in  service.  We  can  thus  establish,  with 
sufficient  accuracy  for  practical  purposes,  the  maximum  stresses  that 
can  be  tolerated.  The  advantage  in  this  connection  of  a  formula 
upon  a  sound  theoretical  basis  is  that  a  stress  found  satisfactory  for 

a  fine-pitched,  quick-running  propeller,  for  instance,  will  be  almost 
equally  satisfactory  for  a  coarse-pitched  propeller,  and  vice  versa,  so 
that  satisfactory  allowable  stresses  can  be  deduced  from  less  data 
than  would  be  necessary  for  a  formula  partaking  largely  of  the  rule 
of  thumb  nature. 

There  are  advantages  in  the  use  of  a  simple  semi-graphic  method 
which  will  enable  data  from  completed  vessels  to  be  recorded  for 
use  in  design  work. 
We  have  deduced  as  the  final  formula  for  Sc  the  compressive 

stress  in  pounds  per  square  inch  for  blades  of  the  usual  ogival  section 

where  C  is  a  coefficient  depending  on  radius  and  pitch  ratio,  PI  is 
the  power  absorbed  by  the  blade,  R  denotes  revolutions  per  minute 
of  the  propeller  and  I  and  t  are  width  and  thickness  respectively  of 
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the  blade  in  inches.  Also  we  should  generally  use  in  determining 
Sc  the  values  of  C,  I  and  t  at  about  .2  the  radius  of  the  propeller. 
Let  us  now  express  I  and  t  in  terms  of  coefficients  and  ratios  already 
used. 

Put  /  =  1  2  chd  where  d  is  diameter  in  feet,  h  is  mean  width  ratio 
and  c  is  a  coefficient  depending  upon  the  shape  of  the  blade. 

It  is  not  such  a  simple  matter  to  determine  a  rigorous  expression 
for  /,  because  the  tip  thickness  is  more  or  less  independent  of  the 
root  thickness. 

If  rd  denote  axial  thickness  as  usual,  and  krd  the  tip  thickness, 
we  have  for  .2  the  radius 

t  =  12  rd  [k  +.8  (i  -  k)]=  12  rd  (.8  +.2  k}. 

In  practice  k  is  seldom  much  less  than  .1  or  greater  than  .2 

Now  k  =  o,  t  =  9.6  rd,  k  =.i,  t  =  g.&4.rd,  k  =.2,  t  =  10.08  rd. 
So  it  is  a  sufficient  approximation  for  practical  purposes  to  put 

t  =  10  rd. 

So,  returning  to  the  stress  formula,  we  have 

C*  /"*       ̂   v/ 
Oc=  14  C—  X 

14  C  PI     i 

12  chd        IOOr2J2        I2OO 
x-t 

Let  Ci=  -   —  •     Figure  250  shows  plotted  upon  pitch  ratio  a  curve 1 2OO 

of  Ci  for  .2  the  radius. 

Then  Sc=  ̂ ~  X  ~^- 

CiPt 
Suppose,  now,  we  put  =  #,          chrz=  y: 

x 
then  we  have  5C  =  -  • y 

Figure  251  shows  contours  of  values  of  Sc  plotted  on  x  and  y.     In 

the  case  of  a  given  propeller  we  know  or  can  readily  calculate  chr2  and 

CD •     Hence,  we  can  locate  a  spot  on  Fig.  251  corresponding  to 
KJSf 

the  propeller  which  will  show  the  root  compression  or  value  of  Sc  in 
pounds  per  square  inch.  Figure  251  shows  by  crosses  a  number  of 
spots  each  of  which  corresponds  to  an  actual  propeller.  They  are 
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nearly  all  for  vessels  of  war,  and  all  for  manganese  bronze  or  other 
strong  alloy.  It  is  desirable,  when  using  the  method  for  design  work, 
to  reproduce  Fig.  251  on  a  large  scale.  It  is  evident  from  Fig.  251 
that  the  designers  of  the  propellers  referred  to  differed  widely  as  to 
the  allowable  stress.  No.  n  refers  to  a  destroyer  which  would 
very  seldom  develop  maximum  power,  and  then  only  in  smooth 
water.  But  even  for  such  vessels  it  is  not  advisable  to  go  to  such 
stresses.  No.  14  was  a  vessel  which  much  exceeded  her  designed 

power,  on  trial,  and  also  sprung  her  propeller  blades.  With  man- 
ganese bronze  and  similar  alloys  now  available  it  is  inadvisable  to 

exceed  15,000  Ibs.  even  for  destroyers.  For  other  fast  men-of-war 
which  seldom  develop  full  power,  suitable  stresses,  based  upon  full 
power,  are  10,000  to  12,000  pounds  per  square  inch.  For  merchant 
vessels,  always  at  nearly  full  speed,  particularly  passenger  steamers 
that  are  driven  hard  in  rough  weather,  it  is  not  advisable  to  exceed 
5000  to  6000  Ibs.  The  above  all  refer  to  blades  of  manganese  bronze 

and  similar  alloys.  Good  cast-steel  propellers  can  be  given  the 
same  stresses  as  those  of  manganese  bronze. 

For  cast  iron  it  is  advisable  not  to  exceed  5000  Ibs.  for  compression 
and  2000  Ibs.  for  tension. 

As  already  stated,  designers  differ  widely  as  to  the  proper  stresses 
to  allow  for  propeller  blades.  It  is  a  simple  matter  for  any  designer 
with  an  accumulation  of  data  for  actual  propellers  to  record  it  on 
a  large  diagram  similar  to  Fig.  251  and  form  his  own  conclusions 
as  to  the  stresses  which  he  will  allow  in  a  particular  case. 

While  it  is  desirable  for  a  designer  fully  to  understand  all  de- 
tails involved  in  determining  propeller  blade  thickness,  it  may  be 

pointed  out  that  when  centrifugal  forces  are  not  serious,  and  the 
blade  thickness  is  to  be  fixed  from  considerations  of  compressive 
stress  only,  Figs.  250  and  251  are  all  that  need  be  consulted. 

For  when  number  of  blades,  diameter  and  pitch  have  been  deter- 
mined we  can  determine  P\,  R  and  d.  C\  can  be  taken  from  Fig. 

C  P 
250,  so  we  will  know         ••     From  the  blade  outline  we  can  deter- 

mine  h  and  c,  the  latter  usually  falling  between  .6  and  .8  in  practice. 
Thus  in  a  practical  case,  after  having  calculated  ch  we  need  only 
to  determine  r. 
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C  P 

So  we  enter  Fig.  251  with  the  value  of     *    *  and  from  the  stress 

chosen   determine  c^r2,  and  c/s  being  known  r2  and  T  are  readily 
determined. 

9.  Connections  of  Detachable  Blades.  —  While  somewhat  apart 
from  the  question  of  strength  of  propeller  blades  it  seems  advisable 

to  consider  briefly  the  question  of  the  strength  of  the  connections 
of  detachable  blades.  We  have  seen  that  the  formulae  for  trans- 

verse and  fore  and  aft  moments  in  pound-feet  are: 

ff  n.       To  (d+Rl)(d-2rl}* Fore  and  aft  moment  M\=  —  ——.  -  —  • 

3  d?-d? 

Transverse  moment  M2—  5252—  -  ̂—=  —  "Tjj 

Also  with  a  margin  for  safety  we  may  write  TQ  =      —      —  • adK 

Making  this  substitution  and  multiplying  by  1  2  to  reduce  moments 

to  inch-pounds,  we  have: 
Pl  (d -- 

=  132,000 

(d  -  2 
- 

Now  with  sufficient  approximation  we  may  write  d\  —  §  d. 
Also  we  may  take  r\  or  the  radius  to  hub  flange  to  which  the  blade 

is  bolted,  as  \  the  propeller  radius  with  a  slight  error  on  the  safe 

side.     Substituting  and  reducing,  we  have  in  round  numbers 

,,       116000  PI  ,,  PI 
M!=-  —,         M2=  52,400  —  • d          K  J\. 

These  two  moments  may  be  compounded  into  a  single  moment 
whose    direction    makes    with    the   direction    of    the   shaft    axis 

tan  ~l  ̂-^  -  and  whose  amount  in  inch-pound  units  is 1  1  60 

pi .  It       NO  ,   /n6oV      „  P! 

— Y/ (524)  2+(^-yj  =H—  say. 
p 

The  amount  and  angle  of  the  moment  depend  upon  -£  and  a  only. R 
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Figure  252  shows  plotted  upon  a,  or  extreme  pitch  ratio,  curves 
of  values  of  the  angle  of  inclination  of  the  moment  and  of  the 
coefficient  H. 

The  moment  above  must  be  resisted  by  the  bolts  securing  the 

blade  flange  to  the  hub  and  the  flange  itself.  The  bolts  are,  of 

course,  disposed  on  each  side  of  the  direction  of  the  moment,  and 

it  is  good  practice  to  use  more  bolts  for  the  side  where  the  bolts 

are  in  tension  when  going  ahead.  Thus,  if  there  are  nine  bolts  in 

all,  five  will  be  in  tension  when  going  ahead  and  four  in  tension 
when  backing. 

Theoretically,  the  blade  flange  will  pivot  under  stress  about  some 

point  on  its  extreme  circumference  and  the  leverage  of  each  bolt 

will  be  the  length  of  a  perpendicular  from  its  center  to  a  line  drawn 

through  the  pivoting  point  tangent  to  the  circumference. 

For  a  conventional  assumption,  however,  which  is  an  adequate 

approximation,  v^e  may  take  the  effective  leverage  of  each  bolt  in 

tension  as  the  diameter  of  the  circle  through  the  center  of  the 
bolts. 

Investigation  of  actual  propellers  upon  this  basis  indicates  3000 

pounds  per  square  inch  as  a  fair  average  of  the  stresses  allowed  on 

steel  flange  bolts  by  designers,  the  actual  stresses  varying  from  less 
than  2000  pounds  to  some  4000  pounds. 

Even  after  making  all  allowances  for  the  conditions  of  service  it 

would  seem  that  3000  pounds  per  square  inch  is  a  low  stress  for 

such  bolts  and  that  4000  pounds  or  more  might  be  used  without 

apprehension. 
For  quick  running  propellers  the  stress  taken  account  of  should 

include  that  due  to  centrifugal  force  upon  the  blade.  The  expres- 
sion for  force  in  pounds  is 

38 

and  for  moment  in  pound-feet, 

The  moment  may  be  taken  as  parallel  to  the  shaft  axis.     It  is  seen 

from  Fig.  247  that  we  may,  with  fair  approximation,  use  .09  for 
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<£i(w)  and  .04  for  ̂ >a(w).     Substituting  these  values,  and  putting 
2  irR 

g  =  32.16  and  co  =  — —  ,  we  have: 60 

Force  in  pounds  = 97,755 

Moment  in  pound-feet  = 219,950 

31.   Design  of  Propellers 

i.  Number  and  Location.  —  Nearly  all  the  matters  of  detail 
involved  in  propeller  design  have  been  already  considered,  but  it  is 

proposed  briefly  to  review  the  general  considerations  involved,  and 

illustrate  the  methods  already  explained  by  working  out  a  few  ex- 
amples. The  question  of  the  number  and  location  of  propellers  is 

not  very  often  an  open  one  at  any  stage  of  the  design,  being  usually 

fixed  by  practical  or  other  considerations  which  have  little  to  do 

directly  with  propeller  efficiency.  From  the  point  of  view  of  pro- 
peller efficiency  only,  the  best  location  for  a  propeller  is  in  the  center 

line,  as  far  aft  as  possible.  In  the  center  line  it  gets  the  maximum 
benefit  from  the  wake  and  the  farther  aft  it  is  the  less  the  thrust 

deduction.  Practical  considerations  of  protection  from  damage  re- 
quire the  screw  to  be  forward  of  the  rudder,  but  a  suitable  arrange- 
ment by  which  the  screw  was  located  abaft  the  rudder,  so  that  its 

suction  would  not  produce  appreciable  thrust  deduction,  would  un- 

doubtedly increase  efficiency  of  propulsion.  Since,  however,  suc- 
tion will  have  no  retarding  effect  upon  a  fore  and  aft  plane,  about 

the  most  that  can  be  done  in  practice  to  reduce  thrust  deduction 

upon  a  single  screw  vessel  is  to  make  the  after  portion  as  fine  as 

possible.  In  many  cases  there  might  be  more  done  in  this  direction 
than  is  done.  Fineness  at  the  water  surface  is  what  is  needed. 

As  to  vertical  location,  it  is  the  usual  practice  to  locate  screws 

as  low  as  possible.  For  seagoing  ships  this  is  desirable  to  reduce 

racing,  and  even  for  ships  intended  for  smooth  water  service  only, 

it  is  generally  necessary,  because  such  vessels  are  usually  of  shallow 

draft,  and  to  get  the  propeller  sufficiently  beneath  the  water  sur- 
face it  must  be  placed  low.  But  propellers  are  not  placed  so  low 

that  their  tips  project  below  the  keel  if  this  can  be  avoided. 
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This  is  simply  to  reduce  risk  of  damage  in  case  of  grounding,  and 
in  some  cases  it  is  necessary  to  ignore  this  risk  and  allow  the 

propeller  tips  to  go  below  the  keel. 
There  is  little  doubt,  that  contrary  to  what  is  generally  supposed, 

a  propeller  for  smooth  water  work  is  more  efficient  the  closer  it  is 
to  the  surface,  provided  it  is  not  so  close  that  it  draws  air  from  the 
surface.  This,  for  the  reason  that  in  this  position  it  gets  the  greatest 
useful  reaction  from  the  wake.  Frictional,  wave,  and  stream  line 
wakes  are  all  strongest  near  the  surface. 

One  is  apt  to  conceive  of  the  frictional  wake  as  a  vertical  belt  of 
nearly  uniform  horizontal  thickness.  But  an  examination  of  Figs. 
50  to  59,  and  careful  observations  of  actual  ships,  would  seem  to 
indicate  that  the  frictional  wake  abreast  the  stern  widens  rapidly 
as  we  approach  the  surface,  and  in  fact  we  may  almost  regard  the 

wake  as  made  up  of  a  vertical  layer  close  to  the  ship  and  a  horizon- 
tal layer  extending  out  some  distance  from  the  ship,  but  not  extend- 
ing deeply  into  the  water.  The  higher  a  center  line  propeller  is  the 

more  it  gains  from  the  vertical  layer,  and  if  it  is  high  enough  to  reach 
the  horizontal  layer  it  gains  still  more.  But  as  already  pointed  out, 

it  is  necessary  to  give  a  good  submergence  to  the  screw  of  a  sea- 
going vessel  to  avoid  racing  in  a  seaway.  A  broken  shaft  is  too 

serious  a  matter  to  be  risked  in  order  to  secure  slightly  greater  pro- 
pulsive efficiency  in  smooth  water.  Furthermore,  in  rough  water  a 

deeply  submerged  screw  which  does  not  race  will  have  much  higher 

propulsive  efficiency  than  one  close  to  the  surface  that  is  racing  con- 
stantly. So  in  practice  we  usually  find  screws  of  seagoing  vessels 

immersed  as  deeply  as  practicable. 

The  best  location  for  a  side  propeller  is  probably  the  nearest  loca- 
tion practicable  to  the  best  location  for  a  center  line  propeller. 

Where  twin  screws  are  fitted  they  would,  under  this  rule,  be  placed 
as  far  aft  as  possible  and  as  close  to  the  center  line  as  possible. 

It  must  be  said,  however,  that  the  fore  and  aft  location  of  a  side 

screw  appears  to  have  surprisingly  little  effect  upon  its  efficiency. 
We  saw  in  considering  actual  and  virtual  shaft  deviations  that  for 

a  four-screw  vessel  the  after  pair  were  about  as  badly  off  in  this 
respect  as  the  forward  pair.  We  would  expect,  however,  a  priori, 
that  a  side  screw  well  forward  would  usually  have  greater  virtual 
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shaft  deviation  than  one  well  aft,  and  would  also  gain  less  from  the 

wake  and  have  a  greater  thrust  deduction. 

It  is  undesirable  to  place  screws  so  that  their  tips  are  too  close 

to  the  surface  of  the  hull.  When  a  screw  tip  strikes  the  belt  of 

eddying  water  adjacent  to  the  hull,  the  virtual  blows  resulting  are 

communicated  to  the  ship,  shaking  rivets  loose  and  causing  vibra- 
tion. The  irregular  forces  upon  the  propellers  also  cause  vibration 

of  the  ship. 

In  some  twin-screw  ships  this  trouble  has  been  partially  avoided 
by  leaving  an  opening  in  the  dead  wood  abreast  the  propellers. 

This  saves  the  ship,  and  with  large  propellers  of  moderate  speed  of 

revolution  the  tips  can  be  brought  quite  close  to  one  another  with- 

out giving  trouble.  For  small,  quick-turning  propellers,  such  as  those 
fitted  with  turbines,  vibrations  are  very  likely  to  be  set  up  unless  the 

blade  tips  are  kept  well  clear  of  the  hull,  say  30  inches  to  36  inches. 

It  seems  a  pity  to  lose  any  of  the  beneficial  action  of  the  wake,  and  it 

is  possible  that  if  the  hull  abreast  the  propeller  tip  were  made  of  cir- 
cular shape,  with  the  shaft  as  a  center,  specially  strengthened  to  stand 

the  pounding,  and  the  propeller  tips  fitted  close  to  the  hull  so  that 

they  caught  the  dead  water  through  a  large  arc,  the  beneficial  effect 

of  the  wake  might  be  had  without  very  objectionable  vibration, 

though  such  propellers  would  probably  be  noisy.  That  is  a  matter, 

however,  which  could  be  determined  only  by  a  full-sized  trial.  The 
only  solution  now  known  to  be  successful  is  to  keep  the  blade  tips 

well  clear  and  accept  the  slightly  reduced  efficiency. 

When  triple  screws  are  fitted,  it  is  obviously  desirable  that  the 

races  from  the  side  screws  should  almost  or  entirely  clear  the  disc 
of  the  center  screw.  This  result  is  best  attained  when  the  side 

screws  are  forward  of  and  above  the  center  screw. 

For  a  side  screw  located  well  forward  the  question  of  virtual 

deviation  due  to  the  water  rising  up  and  closing  in  aft  is  frequently 

given  less  attention  than  it  should  receive,  resulting  in  loss  of 

efficiency  and  vibration  from  the  screws. 

When  four  screws  are  fitted  the  after  pair  are  located  in  the 

natural  location  of  twin  screws,  and  the  forward  pair  are  placed 

forward  and  higher  so  as  to  avoid  interference  as  far  as  possible. 

These  forward  screws,  if  badly  placed,  are  liable  to  serious  virtual 
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shaft  deviations,  and  the  questions  of  their  location,  shaft  angles, 

etc.,  should  receive  most  careful  consideration.  They  may,  from 

their  high  location,  get  a  better  reaction  from  the  wake,  and  hence 

not  lose  in  propulsive  efficiency  as  compared  with  the  after  screws. 

The  number  of  screws  depends  upon  various  considerations.  If 

there  is  no  limit  to  diameter  and  revolutions,  there  is  no  question 

that  the  single  screw  should  be  the  most  efficient.  There  is  prob- 
ably not  much  to  choose  between  twin  and  triple  screws  as  regards 

propulsive  efficiency.  Quadruple  screws  are  likely  to  be  somewhat 

the  least  efficient  as  regards  location.  In  practice,  however,  in  a 

given  case,  diameter  and  revolutions  are  not  unrestricted,  and  the 
number  of  screws  is  apt  to  be  fixed  from  other  considerations  than 

those  of  slight  differences  of  efficiency  due  to  number  of  screws. 

Twin  screws  were  adopted  for  men-of-war  primarily  to  secure 
greater  immunity  from  complete  breakdown,  greater  protection  of 

screws  and  engines  on  account  of  smaller  size,  and  ability  to  do 

some  maneuvering  independent  of  the  rudder.  The  same  considera- 

tions influenced  the  adoption  of  twin  screws  for  high-class  passenger 
vessels,  but  another  consideration  came  in  here.  With  the  very 

great  powers  used  for  such  vessels  the  engines  or  shafts  became 

too  large  with  single  screws.  This  consideration  has  also  largely 
influenced  the  adoption  of  triple  and  quadruple  screws. 

With  the  advent  of  the  turbine  the  question  of  revolutions  — 

already  of  importance  in  fixing  the  number  of  screws  for  quick- 

running  engines  —  became  a  very  important  one. 
For  steam  economy  and  weight  saving  the  turbine  should  use 

high  revolutions.  But  a  propeller  which  absorbs  great  power  at 

high  revolutions  must  be  given  so  much  diameter  in  proportion  to  its 

pitch  that  its  efficiency  becomes  too  small.  Hence,  with  turbines 
we  usually  find  three  or  four  shafts.  In  the  early  days  of  turbines 

multiple  screws  were  often  fitted  —  two  or  three  on  each  shaft. 
This  practice  has  now  been  abandoned,  however,  as  a  result  of 

experience,  the  present  practice  being  to  fit  but  one  screw  on  each 
shaft. 

While  in  many  cases  with  turbines  it  is  desirable  for  the  best 

economy  to  use  three  screws,  it  is  rather  difficult  with  three  screws 

to  secure  satisfactory  arrangements  for  the  rudder  post  and  rudder. 
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Still  it  is  possible  to  do  this,  and  three  screws  are  used  until  ques- 
tions of  economy  or  size  of  units  drive  us  to  the  use  of  four  screws. 

2.  Direction  of  Rotation.  —  Obviously,  when  we  have  a  center 
line  screw  it  will  give  the  same  efficiency  whether  it  is  right-handed 

or  left-handed.     Hence  the  direction  of  rotation  of  single  screws  and 
of  the  center  screw  of  triple  screws  is  immaterial.     The  desirable 

direction  of  rotation  of  side  screws  depends  upon  considerations  of 

water  flow  and  shaft  obliquity  already  discussed  in  detail. 

For  ships  as  they  are,  in  the  vast  majority  of  cases,  it  seems 

probable  that  side  screws  would  be  slightly  more  efficient  if  outward 

turning.  For  side  screws  very  far  aft,  with  shafts  supported  by 

struts,  so  that  the  fittings  for  carrying  the  shafts  do  not  interfere 

with  the  natural  water  flow,  it  matters  little  as  regards  efficiency 

whether  the  screws  be  in  or  out  turning.  With  shaft  webs  approach- 

ing the  horizontal,  the  side  screws  should  be  outturning  for  effi- 
ciency. With  shaft  webs  approaching  the  vertical,  they  would  be 

more  efficient  if  inturning.  Such  shaft  webs  are,  however,  prac- 
tically unknown.  Side  screws  materially  forward  of  the  stern,  how- 

ever their  shafts  are  supported,  should  turn  outward  for  the  best 
efficiency. 

As  regards  efficiency,  then,  in  about  all  practical  cases  side  screws 

should  be  outturning.  For  maneuvering  by  means  of  the  screws 

alone,  when  a  vessel  has  not  steerage  way,  outturning  screws  are 

distinctly  preferable  for  practically  all  types  of  vessesl.  For  many 
vessels  this  consideration  alone  would  outweigh  minor  difference 

of  efficiency,  but  as  outturning  screws  have  the  advantage  as  re- 
gards efficiency  in  nearly  all  practical  cases,  they  should  be  adopted 

in  the  vast  majority  of  cases.  Cases  may  occur  where  it  is  a  matter 

of  indifference,  and  cases  are  conceivable  where,  as  with  vertical 

shaft  webs,  inturning  screws  are  more  efficient,  but  outturning 

screws  should  be  the  rule  and  inturning  screws  should  be  fitted 

only  for  good  and  sufficient  reasons,  which  in  practice  will  exist  very 
seldom  indeed. 

3.  Number  of  Blades.  —  When  the  number  and  location  of  pro- 
pellers are  settled  and  it  becomes  necessary  to  get  out  finally  the 

design  of  the  propeller,  we  will  know  the  power  which  it  is  expected 

to  absorb  and  the  revolutions  it  is  to  make.     The  speed  of  the  ship 
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will  be  known,  and  we  can  estimate  the  wake  factor  and  thus  deter- 
mine the  speed  of  advance.  About  the  first  thing  to  be  settled  is  the 

number  of  blades.  Two-bladed  propellers  are  hardly  worth  consid- 
ering for  jobs  of  any  size.  Figure  217  indicates  that  appreciable  gain 

in  efficiency  is  not  to  be  expected  from  them,  and  they  are  distinctly 

inferior  as  regards  uniformity  of  turning  moment  and  vibration. 

So,  in  practice,  the  choice  will  lie  between  three  blades  and 

four  blades.  Model  experiments  of  a  comparative  nature  appear  to 

indicate  that  three-bladed  propellers  are  essentially  more  efficient 
than  four-bladed. 

It  is  seen  from  Fig.  216,  however,  which  probably  exaggerates, 

if  anything,  the  inferiority  of  four-bladed  propellers  that  this  inferi- 

ority is  small,  and  it  may  well  happen  in  practice  that  a  four-bladed 
propeller  exactly  adapted  to  the  conditions  will  be  superior  to  a 

three-bladed  propeller  not  so  well  designed. 

Many  designers  are  firm  believers  in  the  superiority  of  the  four- 

bladed  screw  as  well  as  many  sea-going  engineers.  Probably  in 

rough  water  the  four-bladed  screw  will  show  a  slightly  more  uniform 
turning  moment  and  less  tendency  to  produce  vibration.  But  some 

of  the  fastest  Atlantic  liners  that  are  driven  at  top  speed  in  fair 

weather  and  foul  have  three-bladed  screws.  All  things  considered, 
there  are  probably  few  cases  in  practice  where  with  equally  good 

design  the  three-bladed  propeller  is  not  somewhat  to  be  preferred. 
It  should  always  be  lighter  and  cheaper,  and  this  is  a  matter  worthy 

of  consideration,  especially  when  the  propeller  is  to  be  made  of  an 

expensive  composition. 

In  some  large  four-screw  turbine  jobs,  two  of  the  screws  have  been 

made  four-bladed  and  two  three-bladed  with  satisfactory  results. 
With  this  combination  the  chance  of  objectionable  vibration  due 

to  synchronism  is  practically  eliminated.  Where  special  reasons  such 

as  this  exist,  or  where  strong  prejudices  exist,  it  may  be  advisable 

to  use  four-bladed  propellers,  but  in  the  vast  majority  of  cases  three 
blades  should  be  used. 

We  have  seen  in  Section  25  that  propellers  witn  solid  hubs  are 

slightly  more  efficient  than  those  with  detachable  blades.  The  dif- 

ference is  small,  however,  except  for  quick-running  propellers,  which 
are  usually  of  small  diameter.  There  are  great  difficulties  in  the 
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way  of  accurately  casting  and  finishing  large  propellers  with  solid 

hubs  —  say  propellers  over  12  feet  in  diameter.  Hence,  such  pro- 
pellers should  nearly  always  be  made  with  detachable  blades. 

4.  Material  cf  Blades.  —  For  the  material  of  propeller  blades 
we  have  a  choice  between  cast  iron,  cast  steel,  and  some  copper 
alloy,  such  as  composition,  manganese  bronze  or  other  special  alloy. 
Forged  steel  blades. have  been  used,  but  are  not  found  now. 

For  such  a  vessel  as  a  tugboat,  with  its  wheel  near  the  surface 
and  liable  to  strike  floating  objects,  cast  iron  is  regarded  as  desirable. 
Its  brittleness  and  weakness  here  become  virtues,  for  when  a  blade 
strikes  something  it  breaks  without  endangering  the  shaft  or  engine, 
and  it  is  cheaper  and  shorter  to  renew  the  propeller  than  the  shaft 
or  portions  of  the  engine.  Cast  steel  is  superior  to  cast  iron  in 
strength  and  is  largely  used  for  merchant  work. 

Manganese  bronze  and  other  special  alloys  can  now  be  had  with 
strength  equal  or  superior  to  that  of  cast  steel.  They  can  be  given 

a  better  surface,  and  from  the  point  of  view  of  efficiency  of  propul- 
sion are  decidedly  the  better  materials.  They  have  two  drawbacks. 

The  first  cost  is  higher,  and  through  galvanic  action  they  are  liable 

to  cause  excessive  corrosion  of  the  portion  of  the  ship's  structure 
adjacent  to  them.  This  damage  can,  however,  be  neutralized  in 
practice  by  the  use  of  zinc  plates  properly  secured  to  the  hull. 

A  very  serious  objection  to  iron  and  steel  blades  is  their  tendency 
to  corrode.  The  backs  of  the  blades  where  there  is  eddying  water 
probably  mixed  with  air  seem  peculiarly  subject  to  extensive  and 
rapid  corrosion. 

The  practical  conclusion  is  that  noncorrosive  blades  should  by 
all  means  be  used,  unless  their  first  cost  prohibits  them  for  the  job 
in  hand  or  unless  for  special  reasons  cast  iron  is  indicated. 

But  in  many  cases  cast  iron  or  steel  blades  as  a  gift  would  be  in 
the  end  more  expensive  than  noncorrosive  blades,  owing  to  the  loss 
of  efficiency  and  greater  coal  consumption  caused  by  their  extra 

friction  when  corroded.  This  extra  friction  is  the  more  objection- 
able the  finer  the  pitch  of  the  propeller. 

5.  Width  of  Blades.  —  The  blade  area  of  a  propeller  of  given 
diameter  and  pitch  varies  directly  as  the  mean  width  ratio.     While 
it  has  sometimes  been  thought  that  comparatively  small  changes  of 
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blade  area  had  large  effects  upon  propeller  action  and  efficiency,  this 

view  is  hardly  sustained  by  practical  experience.  When  cavitation 

is  not  present,  rather  large  changes  in  blade  area  produce  quite 

small  effects.  It  should  be  remembered,  too,  that  in  practice  change 

of  blade  area  involves  change  of  blade  section  with  attendant  change 
of  virtual  pitch. 

The  p8  diagrams  indicate  clearly  that  when  cavitation  is  absent 

the  best  mean  width  ratio  is  between  .25  and  .30.  For  mean  width 

ratio  of  .35  the  efficiency  is  appreciably  reduced,  and  for  wider 

blades  still  it  falls  off  quite  rapidly.  These  conclusions  are  for  very 

smooth  blades.  In  practice  blades  become  more  or  less  roughened 

and  foul,  and  when  this  is  the  case  the  wider  blades  will  have  the 

greater  loss  of  efficiency. 

The  conclusion  indicated  as  a  practical  rule  is  that  where  cavita- 
tion is  not  to  be  feared  the  best  all-round  mean  width  ratio  is  about 

.25  or  less.  To  avoid  cavitation  wider  blades  up  to  a  mean  width 

ratio  of  .35  or  so  should  be  used,  even  with  thin  blades  of  hollow- 
backed  type.  In  extreme  cases  even  wider  blades  may  be  required, 

in  spite  of  their  excessive  friction  loss. 

6.  Examples  of  Design.  —  The  principles  governing  propeller 
design  and  the  application  of  the  methods  that  have  been  given 

will  now  be  illustrated  by  some  typical  cases. 

First  Case.  —  Design  the  propeller  for  a  turbine  Atlantic  liner 
which  develops  80,000  shaft  horse-power  upon  four  screws  making 
200  revolutions  per  minute  each  and  has  a  speed  of  28  knots.  Here 

we  may  take  the  propeller  power  as  20,000.  The  first  thing  neces- 
sary is  to  estimate  the  wake  factor.  In  the  case  of  a  job  of  such 

importance  this  would  be  done  nowadays  from  model  experiments. 

Let  us  suppose  that  we  are  considering  the  after  screws  and  that 

the  wake  factor  is  10  per  cent. 

Then  ^  =  .9  X  28  =  25.2. 

2OO  V/20,OOO         0  _ 
So  p  =  —   r^~   =  8.87. 

(25. 2)2
'5 

Al  J  *  (20,000    X    25.2)* Also  d  =  d  - — —       ..  J    '    =.2608  5. 

(200)* We  are  now  prepared  to  enter  the  p8  diagrams  (Figs.  211  to  214). 
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Since,  however,  we  know  that  this  is  a  case  where  cavitation  is  to 
be  carefully  provided  against,  we  would  expect  to  use  a  blade  of  wide 
type,  so  we  will  use  only  Fig.  214  for  a  mean  width  ratio  of  .35. 

In  Fig.  214  for  p  =  8.87  the  best  pitch  ratio  is  1.140  and  the  best 

value  of  5  =  57.4.  Then  diameter  d  =  .2608  X  57.4  =  i4'-97  and 
pitch  =  14.97  X  1.140  =  if. 07,  the  real  slip  being  25.2  per  cent. 
These  for  a  blade  thickness  fraction  of  .03.  Now  the  power  PI 
absorbed  by  each  blade  is  6667.  From  Fig.  250  for  a  pitch  ratio 

of  1.14,  Ci=  910  and  (i4-97)3=  3355. 

(     v  CiPi      910  X  6667 
Hence  for  Fig.  251        x  =  —=-=  =  *-  *-  =  9.04. Rd*       200  X  3355 

Now  it  seems  advisable  in  such  a  job  to  keep  the  stress  down  to 
moderate  limits.  So  let  us  try  for  it  7500  Ibs.  per  square  inch. 

From  Fig.  251  where  x  =  9.04  and  compressive  stress  is  7500, 

y  =  ch-r2  =  .ooi2  about.  Now  we  know  h  =.35,  and  if  c  =  §,  which 

will  be  somewhere  near  the  truth,  we  have  r2=  -       *•  =  .00514; 

•35X2 
7  =.072,  axial  thickness  =  12". 9.  Now  Fig.  214  being  based  upon 
a  blade  thickness  fraction  of  .03,  it  is  necessary  to  correct  the 
results  obtained  by  using  Fig.  215.  From  this  figure  when 

p  =  8.87  for  each  .01  increase  of  T  the  diameter  should  be  de- 
creased i.i  per  cent  and  the  pitch  ratio  increased  0.9  per  cent. 

So  the  total  decrease  in  diameter  would  be  i.i  X  4.2  =  4.62  per 
cent  and  increase  of  pitch  0.9  X  4.2  =  3.78  per  cent.  This  would 

make  the  diameter  14.97  X  .9538  =  14'. 28,  pitch  17.07  X  1.0378  = 
i7'.72.  If  we  allowed  a  stress  of  10,000  Ibs.  per  sq.  in.  which  might 
be  admissible  in  such  a  high-class  job  as  this  we  would  have  from 

Fig.  251  y  =  chr*  =  .ooo().  Whence,  for  c  =  §  h  =  .35, 

2      .0009  X  3 
T  —  -          — J  =.00386. 

•35X2 

T  =.0621,  axial  thickness  =  n".2. 

The  reduction  of  thickness  is  not  very  much,  but  we  could  probably 
stand  an  axial  thickness  of  12  inches. 
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Now  the  tip  speed  will  be  over  9000  feet  per  minute  and  even 
with  the  best  possible  shape  of  blade  section  some  cavitation  is  to 

be  expected.  So  as  much  increase  of  slip  would  involve  rapid  fall- 
ing off  of  efficiency,  it  would  seem  advisable  to  make  the  propeller 

a  little  large  in  order  to  provide  against  this  and  adopt  as  the  final 
dimensions:  Diameter  15  feet,  pitch  17  feet  6  inches,  mean  width 

ratio  .35,  axial  blade  thickness  12  inches.  The  propeller  effi- 
ciency to  be  expected,  barring  cavitation,  is  about  67  per  cent. 

Second  Case.  —  Design  the  propeller  for  a  large  twin-screw  tur- 
bine destroyer  to  make  34  knots  with  25,000  shaft  horse-power  at 

800  revolutions  per  minute,  the  wake  fraction  being  .03. 

Then  VA=  34  X-97  =  32.98, 

_  800  Vi P  "      (32.98)^ 

(800)* This  too  is  a  case  where  cavitation  is  to  be  carefully  guarded 
against,  so  we  consider  only  Fig.  2 14. 

From  this  figure  for  p  =  14.3  the  best  pitch  ratio  is  1.004  and 
8  =  60.3,  the  propeller  efficiency  being  about  62  per  cent. 

Then  d  =  6'. 036,    p  =  6'.o6. 

Consider  now  blade  thickness,  PI  =  4167,  and  from  Fig.  250 

Ci=  1015,     alsod3  =  220. 

Then  from  Fig.  251 

Ci-Pi  _  1015  X  4167  _ 
=  Rd?  ~~ ''    800  X  220 

This  is  a  value  of  x  beyond  the  limits  of  Fig.  251,  but  to  use  this 
method  a  designer  should  prepare  an  enlarged  and  extended  copy 
of  Fig.  251.  In  this  case  we  wish  to  use  a  high  stress,  say  12,000 
Ibs.  It  will  be  found  that  using  this  stress  in  an  enlarged  copy  of 

Fig.  251  we  have  for  x  =  24,  c/zr2 
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In  this  case,  too,  we  may  put  c  =  §  and  we  have  h  =  .35.     Then 

2     .0020  X  3 
TZ=   -  —^=.00857,        T  =  .0026. 

2X.35 

Axial  thickness  =  6|  ". 
In  this  case,  too,  there  would  be  a  decrease  of  diameter  of  about 

7  per  cent  and  an  increase  of  pitch  of  nearly  6  per  cent  from  Fig. 

215.  But  with  a  tip  speed  of  about  15,000  feet  per  minute  there 

will  almost  certainly  be  cavitation,  and  it  is  not  safe  to  reduce  the 

diameter.  It  does  seem  advisable,  however,  to  increase  the  pitch 

slightly  to  provide  against  excessive  slip.  So  the  dimensions  indi- 
cated are:  Diameter  6  feet  £  inch,  pitch  6  feet  5  inches,  mean  width 

ratio  .35,  axial  blade  thickness  6f  inches.  The  propeller  efficiency 

to  be  expected  in  the  absence  of  cavitation  is  about  62  per  cent, 

but  this  is  a  case  where  the  actual  efficiency  depends  largely  upon 
the  amount  of  cavitation.  Some  cavitation  is  almost  unavoidable. 

The  propeller  in  this  case  would  be  cast  with  solid  hub.  We  thus 

lose  the  possibility  of  varying  the  pitch  and  hence  adjusting  the 

propeller  to  the  engines  after  trial.  In  cases  where  there  is  uncer- 
tainty it  is  possible  virtually  to  provide  for  this,  however,  by  making 

the  propeller  originally  a  little  large.  If  trials  show  it  too  large, 

blade  tip  can  be  cut  off  to  suit,  being  careful  not  to  throw  the  pro- 
peller out  of  balance. 

Third  Case  —  Design  the  propeller  for  a  twin-screw  gunboat  to 
make  17  knots  with  3700  I.H.P.  at  156  revolutions  per  minute,  the 

wake  fraction  being  .08. 

Then  VA=  17  X  .92  =  15.64.  We  are  dealing  now  with  I.H.P. 
and  must  estimate  the  propeller  power.  Assume  it  .9  of  the  I.H.P. 
Then 

P  =  _  =  I66s> 

_  165  Vi665      ,    ,          .       g  (1665  X  15-64)*  _.    -    . 

P  '      (I5-64)2'5  (165)' 

This  is  a  case  where  with  proper  blade  section  we  need  not  seriously 

apprehend  cavitation.  Hence  we  should  try  all  four  pd  diagrams. 
The  results  are  tabulated  below: 
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pd  diagrams,  Fig.  No    

211 

212 211 

Mean  width  ratio    
.  20 

25 IO 

Blade    thickness    fractions,    (Stan- 
dard)   .06 oc 

•  J5 

Maximum  standard  efficiency    .  7OO .  706 .  7O2 

687 

Best  pitch  ratio    
I  .  222 

1.208 

I    2OO 
I     21  1 

Best  8    
Cj..  6 

re  .  C 

c6  2 

rr    6 

Diameter  —  d    q'.88 

*S'J 

10    o; lo'    17 

Pitch  —  p    I2'.  O7 

»«  -W5 

12      IJ. 

,    i
/ 

12   
   
2O 

cP                    o6j. 
IOI  C 

IOC2 1018 
PI  (power  absorbed  by  each  blade) 
C,  from  Fig.  250    

555 

873 

555 
878 

555 880 555 
870 

C  P 
Value  of  x  =  —  —  -    

7.O? 

2.QI 

2    8l 

2.87 
R(f 

Assumed  nominal  stress  10,000  Ibs. 

Value  of  c&r2  from  Fig    251    
.  OOO3 

.OOO7 OOO1 ooo? 

Value  of  ch   assuming  c  =  $    .1111 

.1667 

2 

07?  3 

Value  of  T3       ..    .    -       
.00225 

00l8 
OOI  ? 

OOI286 

Value  of  r    
.0474 

.0424 
.0*87 

.oitn 
Departure  of  T  from  standard    

—  .0126 
—  .OO76 

—  .  OO  1  1 

•4-  .ooso 

Per  cent  change  of  diameter  from 
Fit?    21  c 

4-1.58 
+  O.QI; 

+0.16 —  O    74 

Per  cent  change  of  pitch  ratio  from 
Fie   2  i  c  .  . 

—  1  .40 —  0.04 —  O.  14 

+  0.6C 
New  pitch  ratio    

1  .  204 
I  .  IQ7 

I.IQ8 I  .  2J.I 

New  diameter    
IO'.O4 

i.iy/ 

IO   .  I  S 

IO'.  IQ o'.oS 

New  pitch    
I2.OQ 

12  .  1C 
12.21 

12  .  7O 

This  is  a  case  where  we  have  a  wide  range  of  choice  of  width  with 
little  change  of  efficiency.  It  is  evident,  too,  from  the  pd  diagrams 
that  we  may  change  diameter  and  pitch  through  a  range  of  10  per 
cent  each  without  much  effect  upon  efficiency. 

Where  cavitation  is  not  to  be  feared  the  best  all-round  mean  width 
ratio  is  about  .25,  and  using  this  we  would  finally  adopt:  Diameter 
10  feet  2  inches,  pitch  12  feet  2  inches,  M.W.R.  .25,  B.T.F.  .0424, 
axial  thickness  of  blade,  6  inches. 

Fourth  Case.  —  Design  the  propeller  for  a  large  single  screw  cargo 
vessel  to  make  12  knots  with  4000  I.H.P.  at  78  R.P.M.,  the  wake 
fraction  being  .26. 

For  this  case  VA  =  12  X-74  =  8.88,  and  if  we  assume  the  pro- 
peller power  to  be  .9  the  I.H.P.  we  have  P  =  3600. 

Then  _  . 

5(3600X8.88)* =  ~~  = 

_ 
78\/?6oo 

P=  ~     = 

This  being  a  case  of  moderate  tip  speed  we  will  consider  mean 
width  ratios  of  .2  and  .25  only.     Results  are  tabulated  below: 
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pS  diagram,  Fig   No                     

211 

212 

Mean  width  ratio             20 2C 

Blade  thickness  fraction,  (Standard)    06 OC 

Maximum  efficiency  for  value  of  p    602 
6OO 

Rest  pitch  ratio    
860 

HOI 

Best  d                  6'  8 67.  o Diameter                            
Pitch    

1  6'  .  70 

17'.  7C 

Real  slip   per  cent    ?o  o 

?•!    e 

Apparent  slip,  per  cent    

6  7 

IO    I if     '.    

7?  I  7 

7*8l 

p  —  power  absorbed  by  each  blade    I2OO 
I2OO 

C  —  from  Fig   250    I2OO 

Value  of  x(C[P'\ 

2    £2 

\cPR  ) 
From  Fig.  251  for  cast  steel,  —  chr2=  nominal  stress  5000 
If  c  =  §    ch  =    

.00050 

.  I  111 

.  00048 

1667 

OO27C 00288 

T    

06  1 

OCJ. 

The  departure  of  T  from  standard  values  is  too  small  to 
take  account  of.     If  we  wish  to  use  a  4-bladed  screw  we 
have  from  Fig.  2  1  6  —  Diameter  co-efficient  forp  =  19.9 

Pitch  coefficient  for  p  =  19.9    
.946 
O7I .946 071 

Diameter  of  4-bladed  screw    18  ?6 
18  42 

Pitch  of  4-bladed  screw    16.  21 i6.8c 
The  pitch  ratio  being  low.  suppose  we  assume  a  pitch 

ratio  of  i.i.     Then  for  a  3-bladed  screw  we  have  effi- 
ciency   

.  coo <?8c 

i    c8.o 

c8  i 

Diameter    17      O2 

5°-  * 

17     OS 
Pitch    IO      71 

10'  od. 

For  corresponding  4-bladed  screw  —  diameter    
i6'.9<: i6'.o8 

For  corresponding  4-bladed  screw  —  Pitch    
IO'.  14 IQ'.  1  7 

The  above  example  is  a  very  interesting  one  and  illustrates  several 

facts  apt  to  be  lost  sight  of. 

In  the  first  place,  the  large  vessel  of  low  speed  as  built  has  a  value 

of  p  entirely  too  large  for  good  propeller  efficiency.  The  p  value  is 

materially  larger  than  that  of  the  destroyer  case  and  the  maximum 

possible  propeller  efficiency  less.  It  is  true  that  the  large  cargo 

vessel  should  approach  the  maximum,  while  the  destroyer  is  apt  to 

lose  through  cavitation.  In  spite  of  the  low  propeller  efficiency  the 

efficiency  of  propulsion  of  the  cargo  vessel  may  be  good.  Such 

vessels  are  apt  to  have  a  hull  efficiency  greater  than  unity,  which 

brings  up  their  efficiency  of  propulsion,  but  the  fact  remains  that 

their  efficiency  of  propulsion  would  be  better  still  if  they  could  be 

given  more  efficient  propellers.  In  order  to  do  this  the  p  value 

must  be  less.  Now  p  can  be  reduced  by  reducing  the  revolutions, 
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but  this  will  result  in  increased  diameter,  which  is  already  by  no 
means  small.  Also  reduced  revolutions  are  almost  certain  to  be 

objectionable  as  regards  the  engine.  Another  practicable  method 

of  reducing  p  is  to  use  twin  screws,  but  this  has  obvious  objections. 

The  trouble  is  essentially  the  same  as  encountered  with  moderate 

speed  turbine  vessels,  namely,  that  the  desirable  engine  revolu- 
tions are  too  high  for  a  propeller  of  high  efficiency.  There  is  a 

further  trouble,  namely,  that  the  propeller  of  high  efficiency  may 

require  an  impossibly  large  diameter.  Still,  the  best  solution  of  the 
problem  is  the  same  as  for  the  turbine,  namely,  a  satisfactory  speed 

reduction  gear  of  high  efficiency,  so  that  both  engine  and  propeller 
can  be  given  the  revolutions  best  suited  to  their  needs. 

It  will  be  observed  that  the  propeller  of  best  efficiency  has  to 

work  at  a  very  high  real  slip.  This  essential  condition  is  masked 

in  practice  by  the  fact  that  the  wake  fraction  is  large,  so  that  the 

apparent  slip  is  very  much  below  the  real  slip.  In  fact,  for  such 

vessels  very  good  results  may  be  obtained  when  the  apparent  slip 
is  zero. 

The  fact  that  the  best  we  can  do  in  such  cases  is  to  work  a  pro- 
peller of  fine  pitch,  and  hence  low  maximum  efficiency,  at  a  high 

slip,  so  that  its  efficiency  is  well  below  its  maximum,  is  the  main 

reason  for  the  rapid  reduction  of  efficiency  with  large  values  of  p. 

For  small  values  of  p  propellers  can  usually  be  worked  much  closer 

to  their  point  of  maximum  efficiency. 

It  will  be  observed  that  while  for  the  .25  M.W.R.  the  best  pitch 

ratio  is  .891,  this  can  be  made  i.i  with  a  reduction  of  possible  effi- 
ciency from  .600  to  .585  only.  But  the  diameter  can  be  reduced 

thus  from  i9'-47  to  17'. 95  or  over  18",  the  pitch  rising  from  i7'-35 

to  19'. 74.  If  a  four-bladed  screw  is  used  the  diameter  can  be  re- 
duced still  more. 

32.  Paddle  Propulsion 

The  vast  majority  of  sea-going  vessels  are  propelled  by  screws, 
and  vessels  using  paddle  wheels  are  practically  all  engaged  in  chan- 

nel, bay,  lake  or  river  service. 

i.  General  Features.  —  It  is  obvious  that  a  paddle  wheel  through 
its  construction  and  method  of  operation  approaches  more  nearly 

than  the  screw  propeller  the  ideal  frictionless  propelling  apparatus 
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discussed  in  Section  22.  If,  for  instance,  we  regard  a  paddle  wheel 

as  discharging  directly  astern  a  column  of  water  of  area  equal  to  the 

area  of  a  paddle  float  and  with  velocity  equal  to  the  difference 
between  the  peripheral  velocity  of  the  center  of  the  float  and  the 

speed  of  advance  of  the  ship,  and  make  the  further  assumption  that 

the  action  is  frictionless  and  that  the  water  is  discharged  without 

change  of  pressure  we  have  an  ideal  propelling  instrument  to  which 

Fig.  171  applies. 

This  leads  us  to  the  'conclusion  that  if  A  denote  the  area  of  a 
paddle  float,   V  the  speed  of  advance  in  knots  and  P  the  shaft 

p 

horse-power  absorbed  by  the  paddle  wheel  —  —  =  <f)(e)  =  (f>(s)  =Kr  , 

where  the  coefficient  K'  is  a  function  of  the  slip.  For  paddle  wheels 
the  slip  is  generally  reckoned  with  reference  to  the  peripheral  speed 

of  the  paddle  centers.  If  Vp  denote  the  peripheral  speed  of  the 

paddle  centers  in  knots  and  V  the  speed  of  advance  of  the  vessel 

in  knots,  y  _y 

2.  Fixed  Blades.  --  The  earliest  paddle  wheels  had  the  blades 
on  radical  lines,  as  indicated  diagrammatically  in  Fig.  253,  and  many 
paddle  wheels  are  still  of  this  type. 

Figures  254  and  255  trace  out  the  successive  positions  of  a 

single  float  with  reference  to  still  water  for  30  per  cent  slip  and  10 

per  cent  slip  respectively.  The  direction  and  relative  amounts  of 

the  velocities  of  the  inner  and  outer  edges  of  the  floats  are  also 
indicated. 

The  line  marked  W.L.  indicates  a  water  line  such  that  the  blade 

has  its  upper  edge  immersed  in  its  deepest  position  about  one  half 

of  its  breadth.  There  is  of  course  minimum  obliquity  of  action 

when  the  blade  is  vertical,  in  its  deepest  position,  and  it  is  desira- 
ble that  the  blade  should  do  as  much  work  as  possible  when  deeply 

immersed.  That  would  require  it  to  enter  the  water  edgewise,  or 

nearly  so.  It  is  evident  from  Figs.  254  and  255  that  radial  blades 

will  not  be  moving  edgewise  with  respect  to  still  water  at  the  time 

they  reach  the  water  surface.  This  result  may,  of  course,  be  ac- 
complished by  setting  the  blades  at  suitable  fixed  angles.  But  fixed 
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blades  so  set  are  usually  regarded  as  undesirable,  perhaps  without 

good  reason. 

In  the  United  States  the  development  of  wheels  which  will  not 

suffer  from  excessive  obliquity  of  blades  at  entering  and  leaving 

has  been  toward  wheels  of  large  diameter  and  wide  narrow  floats 

of  small  immersion.  This  line  of  development  was  facilitated  by 

the  type  of  engine  usually  fitted  on  paddle  steamers. 

Furthermore,  broadly  speaking,  paddle  steamers  in  the  United 
States  have  been  for  service  in  smooth  waters,  and  hence  could  be 

designed  for  a  small  immersion  of  floats  which  would  be  inadvisable 

in  rough  water  service. 

3.  Feathering  Blades.  —  In  Great  Britain,  influenced  perhaps 
originally  by  the  fact  that  many  of  the  finest  and  fastest  paddle 

steamers  were  for  service  across  the  English  Channel  and  had  to  be 

prepared  to  encounter  rough  weather,  paddle  wheels  are  almost  uni- 
versally fitted  with  feathering  blades. 

As  indicated  diagrammatically  in  Fig.  256,  a  blade  is  pivoted  about 

its  center,  the  pivots  being  carried  by  the  framing  of  the  wheel 

proper,  which  revolves  about  A.  Each  blade  has  an  arm  perpen- 
dicular to  it  on  its  back,  to  which  is  attached  a  link,  and  the  other 

end  of  the  link  is  connected  to  a  center  K  eccentric  from  A.  The 

point  K  is  very  simply  determined.  The  positions  of  H,  G  and  F 

are  obviously  fixed  by  the  positions  desired  for  a  blade  entering  the 

water,  leaving  the  water  and  at  maximum  submergence.  Then  K 

is  the  center  of  the  circle  passing  through  H,  G  and  F. 

It  is  very  common  in  practice  to  fit  feathering  paddle  blades  as 

indicated  in  Fig.  256,  where  the  planes  of  the  entering  and  leaving 

blades  intersect  the  circle  of  blade  centers  vertically  above  the  shaft. 
Paddle  wheels  have  been  fitted  where  the  blades  remained  vertical 

throughout  the  revolution,  but  this  is  not  done  now. 

It  might  seem  very  simple  from  Figs.  254  to  255  to  determine 

the  proper  angles  for  blades  entering  and  leaving  the  water,  but  the 

actual  problem  is  one  of  extreme  complexity.  Figs.  254  and  255 
show  velocities  with  reference  to  water  at  rest,  and  this  is  far  from 

the  conditions  of  practical  operation. 

The  water  upon  which  a  paddle  wheel  acts  has  been  previously 

disturbed  by  the  ship,  the  amount  of  disturbance  varying  with  the 
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speed.  Moreover,  each  paddle  enters  water  which  has  been  dis- 
turbed by  the  preceding  paddles.  There  is  little  question  that  in 

practically  all  cases  of  side  paddle  wheels  the  paddles  enter  water 

which  has  already  a  sternward  motion.  Stream  line  action  and  the 

action  of  preceding  paddles  will  both  give  the  water  a  sternward 

motion,  and  even  if  the  wheel  is  located  at  a  wave  crest — as  is 
desirable  —  the  forward  motion  due  to  the  wave  motion  will  be  less 
than  the  other  two. 

For  stern  wheels  stream  line  and  wave  action  will  give  the  water 

a  forward  motion,  the  action  of  preceding  paddles  a  rearward  motion, 

and  it  is  not  possible  without  extensive  experiments  to  lay  down  any 

general  conclusions. 

4.  Comparison  of  Fixed  and  Feathering  Blades.  —  Paddle  wheels 
with  feathering  blades  are  heavier,  more  complicated  and  more 

expensive  than  wheels  of  the  same  size  with  fixed  blades.     But  in 

practice  they  can  be  made  materially  smaller  in  diameter  for  the 

same  efficiency,  and  also  can  be  given  greater  depth  of  immersion  — 
resulting  in  a  larger  virtual  area  of  paddle  for  a  given  actual  size. 

This  is  an  important  consideration  for  high-speed  paddle  vessels. 
The  smaller  the  wheel  the  higher  the  engine  revolutions,  and  it  is 

usually  desirable  as  regards  weight  and  space  to  increase  the  revo- 
lutions of  paddle  boat  engines  when  directly  connected.     In  practice 

fast  high-powered  paddle  boats  are  usually  fitted  with  feathering 
blades,  fixed  blades  being  used  when  the  revolutions  are  low  and 

the  diameter  of  wheel  great,  or  for  service  in  remote  rivers  where 

simplicity  is  essential. 

5.  Paddle  Wheel  Location.  —  While  it  is  not  proposed  to  con- 
sider structural  details,  some  considerations  affecting  paddle  wheel 

design  will  now  be  taken  up.     In  practice,  paddle  wheel  vessels  are 
side  wheelers  or  stern  wheelers.     In  side  wheelers  the  wheels  are 

located  somewhere  near  the  center  of  length.     It  is  advisable  to 

locate  them  so  that  they  work  in  a  crest  of  the  transverse  waves 

caused  by  the  ship,  or  at  any  rate  not  in  a  hollow.     When  working 

in  a  crest  there  is  a  virtual  wave  wake  favoring  efficiency,  while  in  a 

hollow  the  wave  wake  is  prejudicial  to  efficiency.     The  stream  line 

wake  in  which  side  wheels  work  is  prejudicial  to  efficiency,  so  that 

side  paddle  wheels  usually  have  a  virtual  negative  wake.     Also  the 
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wash  from  the  wheels  increases  the  frictional  resistance  of  the  rear 

of  the  ship  and  produces  a  virtual  thrust  deduction. 

Side  wheels  cannot  be  placed  very  far  forward  or  aft  of  the  center 

of  ships  of  ordinary  form  without  danger  of  under  or  over  immer- 
sion through  changes  of  trim,  incident  to  service. 

Stern  wheel  boats  are  of  the  wide  flat  type  and  the  draft  aft 
does  not  vary  much  in  service. 

Stern  wheels  are  so  located  that  the  wake  due  to  stream  line  and 

wave  action  is  in  their  favor,  and  they  will  cause  but  little  thrust 

deduction  as  a  rule,  so  that,  broadly  speaking,  the  stern  wheel  may 

be  expected  to  be  more  efficient  as  an  instrument  of  propulsion  than 
side  wheels. 

It  is  very  desirable  to  fix  the  heights  of  all  paddle  wheels  so  that 

the  desired  immersion  will  be  had  when  the  vessel  is  under  way. 

This  can  readily  be  done  by  model  basin  experiments  in  advance, 

and  for  the  best  results  with  feathering  wheels  the  question  of  blade 

angles  at  entrance  in  and  departure  from  the  water  should  also  be 

investigated  experimentally. 

The  immersion  of  paddles  is  varied  somewhat  with  the  service. 

For  seagoing  boats  the  immersion  of  the  upper  edge  of  the  paddle 

in  its  lowest  position  is  seldom  less  than  \  its  breadth  and  as  great 

as  .8  its  breadth.  For  smooth  water  service  the  immersion  is  usually 

less,  i  to  i  the  breadth.  The  desirable  immersion  depends  some- 
what upon  the  type  of  float.  A  very  long  narrow  float  on  a  large 

wheel  may  have  its  upper  edge  immersed  its  whole  breadth  without 

loss  of  efficiency. 

6.  Dimensions  and  Proportions  of  Paddle  Wheels.  —  One  of  the 
most  important  questions  arising  in  the  design  of  any  type  of  paddle 
wheel  is  the  determination  of  the  dimensions  of  the  blades,  buckets 

or  floats,  as  they  are  variously  designated. 

These  are  sometimes  curved,  but  seldom  curved  much,  and  may 

be  taken  as  rectangular.  The  length  or  horizontal  dimension  of 

the  float  is  always  greater  than  its  width  or  radial  dimension. 

There  is  found  in  practice  a  difference  in  proportions  between 

feathering  and  fixed  floats.  For  feathering  floats  the  length  is 

usually  about  3  times  the  width,  though  shorter  floats  have  often 
been  fitted.  For  fixed  floats  the  length  is  seldom  less  than  4  times, 
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and  may  be  in  extreme  cases  7  or  8  times  the  width.  This  difference 
of  practice  naturally  arises  from  the  fact  that  floats  are  usually 
made  as  long  as  possible  from  practical  considerations,  as  tending  to 
efficiency,  and  then  as  wide  as  necessary  to  absorb  the  power.  For 
side  wheels,  floats  are,  however,  seldom  longer  than  £  the  beam 
even  for  vessels  always  in  smooth  water,  and  for  seagoing  vessels 
it  is  not  regarded  as  good  practice  to  make  them  longer  than  about 
f  the  beam. 

The  float  area  is  dependent  primarily  upon  the  power  absorbed 
and  the  slip.  We  have  seen  that  the  theoretical  formula  involved 
P  I 

is  — —  =  K'.    This  may  be  rewritten  A  =  K  —  where  A  is  area  of AV3  V3 

two  floats  (one  on  each  side)  in  square  feet,  7  is  indicated  horse- 
power and  proportional  in  a  given  case  to  P,  V  is  speed  of  ship  in 

knots  and  K  is  a  coefficient  depending  primarily  upon  the  slip  and 
secondarily  upon  a  large  number  of  minor  factors,  such  as  wake, 
thrust  deduction,  float  proportions,  number  and  immersion,  etc. 

Hence  K  may  be  expected  to  vary  a  great  deal  from  ship  to 
ship,  but  fortunately  it  is  not  necessary  to  know  it  with  minute 
accuracy. 

Analysis  of  a  number  of  published  trial  results  for  paddle  steamers, 

nearly  all  with  feathering  floats,  appears  to  indicate  that  a  reason- 
able expression  for  the  average  value  of  K  will  be,  for  slips  used  in 

practice  ranging  say  from  .10  to  .30, 

K  =  212.5  ~  375  *• 

From  the  nature  of  the  case  individual  values  of  K  may  be 
expected  to  vary  materially  from  the  average.  A  long  narrow  blade 
deeply  immersed  may  be  expected  to  show  a  much  smaller  value 
of  K  than  a  short  wide  blade  with  its  upper  edge  barely  immersed. 

Then  a  suitable  paddle  area  may  be  determined  approximately 

by  the  formula  .4  =  (212. 5  —  3755)  —  •     It  must  be  remembered 

that  in  the  above  A  is  total  area  in  square  feet  of  two  paddles  when 
side  wheels  are  fitted,  and  5  is  slip  based  upon  the  peripheral  velocity 
of  the  centers  of  paddles. 

It  is  desirable  to  keep  the  slips  of  paddle  wheels  low.     For  feather- 
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ing  floats  .15  is  frequently  aimed  at,  and  for  fixed  floats  .20.  Know- 
ing the  speed  of  the  ship  and  the  desired  slip,  the  peripheral  velocity 

of  the  mean  diameter  of  the  paddle  wheel  upon  which  slip  is  based 

is  known,  and  this  in  conjunction  with  the  desired  engine  revolutions 
fixes  the  mean  diameter  of  the  wheel. 

The  desired  float  area  being  known,  the  float  dimensions  are 

determined,  enabling  all  dimensions  to  the  wheel  to  be  fixed.  If 

these  are  found  suitable  the  desired  blade  angles  at  entry  and  depar- 
ture will  govern  the  details  of  gear  for  feathering  blades  when  such 

are  fitted. 

As  regards  number  of  blades  it  is  a  very  common  practice  with 
fixed  blades  to  fit  one  for  each  foot  of  outside  diameter  of  wheel. 

This  number  should  not  be  exceeded  for  wheels  of  good  size  and  may 

be  reduced  by  20  per  cent  or  so  without  detriment.  The  spacing 

of  feathering  blades  is  greater  than  that  of  fixed  blades,  partly  be- 
cause such  blades  are  usually  relatively  deeper  than  fixed  blades 

and  partly  because  of  the  additional  complications  of  feathering 

gear  for  blades  close  together. 
With  feathering  blades  there  are  sometimes  fitted  one  for  each 

foot  of  radius  but  a  greater  number  are  usually  regarded  as  desirable, 

say  about  3  blades  to  each  2  feet  of  radius. 

33.   Jet  Propulsion 

i.  General  Considerations.  —  Jet  propulsion  has  never  been  used 
except  experimentally.  In  jet  propulsion  water  is  taken  into  a  ship, 

where  it  passes  through  some  form  of  pump  or  impelling  apparatus 

and  then  delivered  astern  through  suitable  pipes.  Many  schemes 

for  jet  propulsion  have  been  brought  forward  in  the  past,  usually 

including  methods  for  diverting  the  jets  sidewise  as  desired,  in  order 

to  gain  maneuvering  power. 

While  some  schemes  of  jet  propulsion  have  been  actually  tried, 

none  has  proved  so  efficient  as  the  screw  propeller  or  paddle  wheel. 

Hence,  jet  propulsion  is  of  academic  interest  only  and  will  not  be 

given  detailed  consideration. 

That  any  system  of  jet  propulsion  involving  any  form  of  impelling 

apparatus  known  at  present  must  be  inefficient  will  be  evident  from 

Fig.  171.  It  will  be  found  from  this  that,  even  with  frictionless 
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impelling  apparatus,  if  there  is  not  to  be  a  great  loss  through  slip 

the  pipes  to  get  the  water  into  and  out  of  the  ship  must  be  so  large 

that  they  will  involve  very  serious  increase  in  skin  friction  to  say 

nothing  of  eddy  losses.  If  pipes  are  made  small  there  is  unavoid- 
ably a  great  loss  by  slip,  and  still  larger  loss  by  friction  in  the  pipes. 

Furthermore,  any  pump  or  impelling  apparatus  now  known  is  not 

materially  more  efficient  in  communicating  velocity  to  a  given 

quantity  of  water  than  the  screw  propeller  or  the  paddle  wheel. 

Hence,  jet  propulsion,  involving  taking  water  in  large  amount  into 

the  ship  and  discharging  it  again,  is  with  any  known  form  of  impell- 
ing apparatus  necessarily  less  efficient  than  the  screw  and  the  paddle, 

which  operate  in  the  water  outside  the  ship. 

Since  the  essential  inefficiency  of  jet  propulsion  as  a  method  of 

utilizing  the  power  of  ordinary  engines  has  become  evident,  some 

inventors  have  attempted  to  devise  apparatus  specially  adapted  to 

jet  propulsion  in  which  power  is  developed  more  economically  than 

in  engines  driving  propellers  and  paddle  wheels.  Efforts  along  this 
line  have  not  hitherto  been  successful. 



CHAPTER  IV 

TRIALS  AND  THEIR  ANALYSIS 

34.   Measured  Courses 

i.  Features  Desirable  for  Measured  Miles.  —  Trials  for  the 
determination  of  speed  must  be  made  over  a  course  of  known  length, 
unless  by  trials  already  made  over  such  a  course  the  relation  between 
revolutions  of  the  propellers  and  speed  through  the  water  has  been 
established  so  that  a  speed  trial  may  be  conducted  in  free  route. 

The  measured  course  may  be  long  or  short.  The  difficulties  of  locat- 
ing, measuring  and  marking  a  satisfactory  long  course  are  evidently 

much  greater  than  for  a  short  course,  and  nearly  all  accurately 
measured  and  marked  courses  are  one  nautical  mile  long.  For  a 

number  of  years,  however,  four-hour  full-speed  trials  of  United 
States  naval  vessels  were  held  on  long  deep  water  courses  extending 
to  the  northward  of  Cape  Ann  on  the  Massachusetts  coast.  The 
length  used  was  carefully  determined  in  each  case  so  that  the  vessel 
would  run  about  two  hours  in  each  direction  and  four  or  five  vessels 

or  more  were  anchored  on  the  course  for  the  double  purpose  of 
defining  it  and  of  making  observations  of  the  tidal  current  during 

trials.  Of  late  years,  however,  four-hour  full-speed  trials  have  been 
made  in  free  route  by  the  standardized  screw  method.  For  stand- 

ardizing the  screw  or  determining  the  relation  between  speed  and 
revolutions,  trials  are  usually  held  on  a  course  one  measured  mile 
in  length  near  Rockland,  Me.  This  course  is  shown  in  Fig.  257. 

It  is  seen  that  the  course  is  defined  by  four  range  buoys,  one  at 
each  end  of  the  measured  mile  and  one  a  mile  from  each  end.  These 

buoys,  however,  are  for  steering  purposes  only.  The  ends  of  the 
course  are  fixed  by  ranges  established  on  shore,  each  with  a  front 
and  rear  signal  or  beacon.  When  these  signals  are  in  line  the 
observer  is  at  one  end  of  the  course,  which,  as  shown,  is  perpendicular 
to  the  range  lines. 

269. 



TRIALS  AND  THEIR  ANALYSIS  263 

The  desirable  features  for  a  measured  mile  course  in  tidal  waters 

are  enumerated  below. 

If  they  were  all  present  in  any  particular  case  the  course  would 

be  ideal.  In  practice  it  is  necessary  to  be  satisfied  with  a  reasonable 

approximation  to  the  ideal. 
1.  The  range  marks  on  shore  at  each  end  of  the  course  should 

be  well  separated  —  say  f  the  length  of  the  course  or  more  — 
and  should  by  the  transit  of  the  front  signal  past  the  back  signal 

mark  definitely  and  sharply  the  instant  of  crossing  the  range.     This 

is  best  attained  when  both  front  and  back  signals  show  against  the 
sky. 

2.  The  situation  should  be  such  that  the  course  is  not  far  from 

shore  and  fairly  well  protected,  insuring  smooth  water  when  the 
local  wind  conditions  are  favorable. 

3.  There  should  be  plenty  of  room  at  each  end  of  the  course  for 
turning. 

4.  The  course  should  be  so  situated  that  the  ship  making  runs 

over  it  need  never  cross  or  obstruct  a  channel  or  fairway  that  is 
much  used. 

5.  The  tidal  current  should  be  small  and  always  parallel  to  the 
course. 

6.  The  depth  of  water  should  be  sufficient,  so  that  the  resistance 

of  the  ship  using  the  course  is  practically  the  same  as  in  deep 
water. 

As  regards  most  of  the  features  enumerated  above,  the  Rockland 

course,  shown  in  Fig.  257,  approximates  fairly  closely  to  the  ideal. 

It  has  the  disadvantage  of  being  rather  remote  from  most  of  the 

building  yards  whose  vessels  must  use  it. 

It  would  be  better  if  the  front  and  back  signals  marking  the  ranges 

were  further  separated  and  showed  above  the  sky  line.  It  may  be 

noted  in  this  connection  that  if  the  range  marks  do  not  show  against 

the  sky  a  course  running  north  and  south  is  not  so  good  as  one 

running  east  and  west.  If  the  ranges  are  to  the  west  of  the  course 

the  marks  are  difficult  to  pick  up  in  the  afternoon,  and  if  they  are 

to  the  east  they  are  difficult  to  pick  up  in  the  forenoon. 
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35.   Conduct  of  Speed  and  Power  Trials 

i.  General  Considerations.  —  Vessels  may  be  given  many  kinds 
of  trials,  as  of  speed  and  power,  of  fuel  economy,  maneuvering  capa- 

city, etc.  We  need  consider  the  first  named  only. 

Speed  and  power  trials  may  be  considered  from  the  point  of  view 

of  (a)  the  owner,  (b)  the  designer,  or  (c)  the  builder.  In  some  cases, 

as  for  vessels  of  war  built  in  government  establishments,  the  owner, 

designer  and  builder  are  one;  frequently  for  vessels  of  war  the  owner 

and  designer  are  one;  and  usually  for  merchant  ships,  and  sometimes 

for  vessels  of  war,  the  designer  and  builder  are  one. 

From  whatever  point  of  view  we  consider  speed  trials,  however, 

they  are  primarily  of  importance  for  new  and  untried  vessels.  For 

such  vessels  the  owner  wishes  to  know  what  his  ship  will  do  in 

service  and  from  the  results  of  progressive  speed  and  power  trials 

he  can  generally  closely  estimate  the  results  to  be  expected  in  ser- 
vice. The  designer  wishes  to  know  what  the  ship  actually  does 

under  known  trial  conditions  in  order  that  he  may  utilize  the  infor- 
mation in  preparing  subsequent  designs.  The  builder  is  generally 

required  to  guarantee  certain  results  to  be  demonstrated  by  trial 

before  the  ship  leaves  his  hands  and  at  times  wishes  to  develop  on 

trial  certain  results  not  exacted  by  his  contract,  but  which  may  be 

of  use  to  him  in  a  business  way.  Apart  from  this  he  is  apt  to  con- 
sider that  trials  conducted  at  his  expense  should  be  reduced  to  the 

lowest  terms. 

As  a  result  of  various  conflicting  considerations  the  most  that 

can  usually  be  expected  for  speed  and  power  trials  of  a  new  ship  in 

the  builder's  hands  is  the  determination  of  corresponding  values  of 
speed,  revolutions,  and  power  over  a  reasonable  range  from  the 

maximum  down,  at  one  displacement  and  under  favorable  condi- 

tions of  wind  and  weather.  Such  a  trial  is  usually  called  a  pro- 
gressive speed  trial  and  appears  to  have  been  first  developed  in 

Great  Britain  by  Mr.  William  Denny.  Concerning  this  develop- 
ment Mr.  William  Froude  said  in  a  paper  before  the  Institution  of 

Naval  Architects,  April  7,  1876: 

"  Mr.  Denny  has  taken  the  bold  but  well-considered  step  of  dis- 
carding the  conventional  type  of  measured  mile  trials  which,  as 
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regards  the  speeds  tried,  have  long  been  limited  to  full  speed  and 

half  boiler  power.  Mr.  Denny  now  tries  each  of  his  ships  at  four 

or  even  at  five  speeds;  and  the  result  is  that  he  obtains  fair  data 

for  a  complete  curve  of  indicated  horse-power  from  the  lowest  to 
the  highest  speeds;  whereas  with  trials  on  the  ordinary  system  we 

obtain  merely  two  spots  in  the  curve,  and  these  at  comparatively 

high  speeds,  the  intermediate  or  lower  portion  of  the  curve  being 

left  uninvestigated." 
2.  Accuracy  Possible  in  Progressive  Trial  Results.  —  The  deter- 

mination of  accurate  results  on  a  progressive  trial  is  by  no  means 

the  simple  matter  it  might  seem  at  first.  Approximate  results  are, 

of  course,  readily  obtained,  but  for  the  results  of  progressive  trials 

to  be  of  real  value  for  the  designer  they  should  be  quite  accurate. 

What  we  need  are  simultaneous  values  of  speed  of  the  vessel,  power 

indicated  by  the  machinery  and  revolutions  per  minute  of  the  en- 
gines, determined  for  a  sufficient  number  of  speeds  covering  a  good 

range  to  enable  accurate  curves  of  power  and  revolutions  as  ordi- 
nates  to  be  drawn  on  speeds  as  abscissae  throughout  the  range 
covered  by  the  trials. 

If  we  had  available  a  measured  course  in  perfectly  still,  calm,  deep 

water,  and  wished  to  determine  the  most  reliable  curves  from  a  defi- 
nite number  of  runs,  it  would  evidently  be  desirable  to  run  back 

and  forth,  increasing  and  decreasing  the  speed  or  revolutions  by 

equal  amounts  between  successive  runs.  Observing  on  each  run 

the  time  and  revolutions  on  the  course  and  taking  indicator  cards 

for  the  power  determination,  we  could  plot  curves  through  points 

obtained  by  the  observations. 

Progressive  trials  are  not  made  on  ideal  courses,  as  above.  Even 

if  they  were,  it  would  seldom  happen  that  the  data  obtained  would 

be  absolutely  consistent  and  harmonious.  It  is  probable  that  on  a 
course  in  still  water  the  time  on  the  course  would  be  determined 

with  a  good  deal  of  accuracy.  But  even  with  a  long  straight  run 

at  each  end  before  coming  on  the  course  —  an  important  point  fre- 

quently neglected  —  the  speed  on  the  course  is  seldom  absolutely 
uniform.  Unless  steam  is  actually  blowing  off  all  the  time  the  boiler 

pressure  is  always  going  up  or  down — it  may  be  very  slowly  with 
skilled  firing,  it  may  be  with  sufficient  rapidity  to  cause  quite  an 
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appreciable  change  in  speed  while  on  the  course.  Moreover,  the 

rudder  is  constantly  being  used  more  or  less,  and  even  when  put 

over  to  a  small  angle  only  it  has  a  noticeable  effect  upon  the  speed. 
This  is  a  matter  of  practical  importance  in  the  conduct  of  trials 

which  does  not  always  receive  proper  attention. 

Then  the  indicator  —  even  the  best  —  is  not  an  instrument  of 

precision.  If  several  sets  of  cards  are  taken  during  a  run  the  powers 

worked  out  from  them  will  differ  materially.  Professor  Peabody, 

an  authority  on  indicators,  considers  that  even  "  under  favorable 
circumstances  the  unavoidable  error  of  a  steam  engine  indicator 

is  likely  to  be  from  two  to  five  per  cent." 
If  the  indicated  horse-power  is  determined  on  the  measured  course, 

not  less  than  three  sets  of  cards  should  be  obtained  and  the  average 

of  all  good  cards  used  in  determining  the  average  power.  At  times 

some  cards  are  obviously  defective,  and  these  should  be  thrown  out. 

For  single-screw  ships  the  revolutions  and  speed  vary  together, 
and  there  are  no  serious  complications  from  the  inevitable  slight 

variations  in  revolutions,  except  that  sometimes  there  is  doubt  as 

to  the  proper  revolutions  to  use  with  the  indicator  cards  for  the 

determination  of  power.  But  with  twin-screw  ships  the  revolutions 
and  power  of  the  two  engines  are  not  identical  on  any  run.  The 

only  thing  that  can  be  done  in  such  cases  is  to  try  to  have  the  port 

and  starboard  revolutions  during  each  run  as  nearly  the  same  as 

possible  and  use  the  average  of  the  two  results.  With  two  screws, 

unless  the  propellers  differ  more  than  they  should,  we  may  safely 

assume  that  at  a  given  speed  and  the  same  revolutions,  each  engine 

will  require  the  same  power.  In  practice,  owing  to  minor  differences 

in  propellers,  and  differences  in  engine  friction,  the  assumption  is 

not  exact.  But  it  is  near  enough,  and  is,  in  fact,  the  only  one  we 
can  make. 

With  three  screws,  however,  the  case  is  different.  At  full  speed, 

with  everything  wide  open,  the  central  engine  will  differ  from  the  side 

engines  as  regards  both  power  and  revolutions,  even  if  identical  in 

size  with  them.  When  it  comes  to  the  runs  at  reduced  speed,  we 

may  for  a  given  speed  have  enormous  variations  in  the  power  dis- 
tribution. It  would  seem  proper  in  such  cases,  where  the  engines 

are  identical,  to  be  careful  to  have  the  steam  pressure  in  the  H.P. 
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valve  chests  and  the  linking  up  the  same  for  all  three  engines  on 
each  run.  Otherwise  the  curves  of  slip  of  the  center  and  side 
screws  will  be  very  erratic.  With  four  screws  the  case  is  even  more 
complicated. 

For  such  vessels,  where  each  engine  is  independent,  it  may  be 

necessary  to  plot  results  upon  speed  —  plotting  separate  curves 
of  revolutions  for  each  engine.  But  even  here  equally  good  results 
can  be  obtained  by  plotting  results  upon  the  average  revolutions 

of  one  pair  of  engines  —  plotting,  upon  these  revolutions,  a  curve 
of  the  average  revolutions  of  the  other  engine  or  pair  of  engines. 
For  turbine  installations,  where  the  turbines  are  in  tandem,  the 

steam  passing  from  one  turbine  to  another,  this  method  is  distinctly 

preferable. 
When  we  come  to  turbines  we  meet  the  difficulty  of  determining 

the  actual  power  exerted  by  them.  Several  methods  are  used  — 
all  based  upon  the  fact  that  the  twist  of  the  shafting  is  proportional 
to  the  torque  of  the  turbine.  This  twist  is  a  small  quantity  in  any 
case,  and  its  accurate  determination  experimentally  is  difficult.  It 

is  probable,  however,  that  as  the  use  of  turbines  extends  the  accu- 
racy of  their  power  determination  will  be  improved.  With  an 

accurate  torsion  meter  the  determination  of  shaft  horse-power  will 
be  much  simpler  and  easier  than  the  determination  of  indicated 

horse-power  by  means  of  indicators. 
3.  Elimination  of  Tidal  Current  Effects.  —  It  is  evident  from 

what  has  been  said  that  even  on  an  imaginary  still-water  course  a 
progressive  trial  would  not  be  free  from  doubts  and  difficulties  in 
connection  with  obtaining  and  plotting  the  results. 

Actual  measured  courses,  however,  must  be  laid  off  in  a  tideway 

where  tidal  currents  varying  in  direction  and  magnitude  are  encoun- 
tered. No  course  is  suitable  for  a  progressive  trial  unless  the  tidal 

current  is  practically  parallel  to  the  course.  Slight  cross  currents 
are  nearly  always  present,  however.  When  they  are  present  the 
steering  on  the  course  should  always  be  by  compass  and  not  by 
buoys  or  other  fixed  fore  and  aft  ranges.  By  always  steering  a 
compass  course  parallel  to  the  true  range  the  effect  of  slight  cross 
currents  is  eliminated.  So  we  will  consider  from  now  on  only  the 
current  parallel  to  the  course.  Suppose,  first,  that  the  current  is 
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constant  and  that  we  make  two  runs  at  the  same  true  speed  —  one 
with  and  one  against  the  current. 

Suppose  V  is  the  true  constant  speed  of  the  two  runs,  C  the  con- 
stant but  unknown  speed  of  current  and  V\,  F2,  the  apparent  speeds 

of  the  successive  runs.  Then  Vi  =  V  +  C,  VZ=V  —  C  whence  V  = 
%  ( V\  +  Vz) ,  or  the  true  speed  through  the  water  is  the  average  of  the 

two  apparent  speeds  with  and  against  the  current.  Sometimes  the 

true  speed  is  taken  as  that  corresponding  to  the  average  time  of 

the  runs  with  and  against  the  current.  This  is  incorrect.  The  true 

speed  for  two  runs  with  and  against  a  constant  current  being  the 

average  of  the  two  apparent  speeds,  it  is  a  common  practice  to 

make  the  runs  of  a  progressive  trial  in  pairs  —  one  run  being  made 
in  each  direction  at  the  same  speed.  There  are  two  objections  to 

this.  One  is  that  the  tidal  current  changes  between  runs.  The 

other  —  often  more  serious  in  practice  —  arises  from  the  fact  that 
in  practice  the  successive  runs  are  made  not  at  the  same  speed  but 

at  different  speeds,  and  the  average  horse-power  is  not  the  proper 

horse-power  for  the  average  speed.  Figure  260  illustrates  this,  in 

an  exaggerated  form.  A  and  B  are  points  on  a  curve  of  horse- 
power plotted  on  speed  corresponding  to  two  runs.  C  is  the  point 

on  the  curve  corresponding  to  the  average  speed,  while  D,  midway 

of  the  straight  line  joining  A  and  B,  is  the  average  horse-power. 
The  first  source  of  error,  the  change  of  tidal  current,  can  be  largely, 

but  not  entirely,  eliminated  by  making  a  series  of  runs  over  the 

course  at  one  speed  and  obtaining  the  true  speed  from  the  apparent 

speeds  by  the  method  of  successive  means.  This  is  illustrated  below 

with  four  runs  —  the  apparent  speeds  being  Vi,  Vz,  V3,  F4. 

Apparent 
Speeds. 

First  Means. Second  Means. Final  Means. 

Vi 
Vz 
v, 
V* 

Vl-r-   Vz 

Vi+  zVz  +  V3 

Vi+  3  Vz  +  3  V3  +  V4 Vz  +  V3 4 
Vs  +  2  V3+  F4 

V3+V4 
8 

4 
2 

The  first  means  are  simply  the  averages  of  the  successive  pairs  of 

runs.    The  second  means  are  the  averages  of  the  successive  pairs 
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of  first  means,  and  so  on.  There  appears  to  be  a  difference  of 

opinion  as  to  whether,  when  there  are  more  than  four  runs,  the  true 

speed  should  be  taken  as  the  final  mean,  or  the  average  of  the 

second  means.  As  appears  above,  for  four  runs  the  two  are  the 
same. 

Now  if  n  denote  the  number  of  a  run  of  a  series  we  can  always 

express  C,  the  strength  of  the  current,  in  the  form 

C  =  a  +  bn  +  cn*+  dns+  en4+  .  .  ., 

using  as  many  terms  as  there  are  runs  in  the  series.  Suppose,  for 
instance,  there  are  four  runs.  Then  we  have 

C  =  a  +  bn  +  cnz+  dn3. 

Denote  by  C\,  C2,  C3,  C4  the  actual  current  strength  of  the  four 
successive  runs. 

Then  d=  a  +     b  +       c  +  d, 

C2=  a  +  2  b  +    4  c  +  8  </, 

C3  =  a  +  36  +    gc  +  27  d, 
C4  =  a  +  4  b  +  16  c  +  64  d. 

These  are  four  equations  from  which  we  could  determine  the  four 

unknown  quantities  a,  b,  c,  d.  Hence,  no  matter  what  the  current 

strength  of  the  successive  runs,  we  could  always  find  values  of  the 

coefficients  a,  b,  c  and  d  such  that  we  can  represent  the  current  by 

C  =  a  +  bn  +  cnz+  dn3. 

On  solving  the  equations  above  for  a,  b,  c,  d  we  have 

a  =  H24  Ci-  36  C2  +  24  C3-  6  C4), 

b  =  $  (  -  26  Ci+  57  C2—  42  C3+  ii  C4), 

c  =  i(9  C"i-  24  C2  +  21  C3-  6  C4), 
<*  =  H-C"14-3C2-3C3  +  C4). 

Now  consider  further  the  final  mean  result.     We  have,  if   V 

denotes  the  true  constant  speed  of  the  four  runs, 

F1=  F  +  C1=  F  +  a+  b+  c+  d, 
V2=  V  -  C2=  V  -a  -  2b  -  40-  Sd, 
V3=  V  +  C3=  V  +  a  +  sb+  9c  +  27d, 
F4=  V  -  C4=  V  -  a  -  4b  -  i6c  -  64  d. 
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Final  mean  =  \  (V\+  3  F2+  3  F3+F4).  Upon  substituting  for 
Vi,  Vz,  etc.,  in  this  expression,  their  values  above  in  terms  of  V 
and  the  coefficients  a,  b,  c  and  d,  we  finally  have,  after  reduction, 

Final  mean  =  V  -ld=V  -\(-  Ci+  3  C2-  3  C3+  C4). 

In  case  only  three  runs  are  made  the  current  formula  is 

C  =  a  +  bn  +  cn~, 

and  the  currents  of  the  successive  runs  are  Ci,  C2  and  C3.     For  this 
case 

Final  mean  =i  (Vi+  2F2+  F3)=  F  +  Jc  =  V  +  i(Ci-  2  C2+C3). 

Then  the  final  mean  is  not  the  true  speed  unless  the  rate  of  change 
of  the  tidal  current  and  the  timing  of  the  runs  is  such  that  for  four 
runs 

-  (d-C4)  +  3(C2-C3)  =  o, 
and  for  three  runs 

Ci+  C3=  2  C2. 

This  will  happen  exactly  only  by  accident.  Another  way  of  express- 

ing the  condition  is  that  d,  the  coefficient  of  w4,  should  be  =  o,  the 
actual  error  being  1  d.  As  a  matter  of  fact,  in  most  practical  cases 
d  would  be  very  small  and  the  final  mean  but  little  in  error  if  the 

assumptions  upon  which  the  final  mean  method  is  based  were  cor- 
rect. 

These  underlying  assumptions  are  two,  namely,  that  the  tidal 
current  varies  according  to  a  fair  curve  and  that  all  runs  back  and 
forth  are  made  at  the  same  speed. 

Every  one  who  has  often  plotted  results  of  speed  trials  in  a  tide- 
way will  have  encountered  results  which  could  be  explained  only  on 

the  theory  that  the  tidal  current  varied  by  fits  and  starts  rather  than 
according  to  a  fair  curve. 

It  is  sometimes  assumed  that  the  tidal  current  varies  from  maxi- 
mum to  minimum  in  a  manner  such  that  a  curve  of  tidal  strength 

plotted  on  a  base  of  time  would  be  a  curve  of  sines.  This  is  per- 
haps a  reasonable  approximation  to  the  general  outline  of  the  curve, 

but  observations  of  actual  strengths  of  tidal  currents  appear  to  show 
that  they  vary  erratically  and  would  seldom  plot  as  a  fair  curve 
closely  approximating  a  mathematical  curve  of  sines. 
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A  more  serious  error  than  that  due  to  tidal  current  is  liable  to 

result  from  the  fact  that  successive  runs  of  a  group  are  not  made 

at  the  same  speed.  This  is  a  matter  of  practical  experience.  It  is  very 

unusual,  indeed,  for  four  successive  runs  to  be  made  over  a  measured 

course  where  the  revolutions  per  minute,  if  accurately  determined, 

do  not  vary  appreciably.  If  the  speed  were  constant,  the  revolu- 
tions should  not  change.  Suppose  now  four  successive  runs  were 

made  aiming  at  a  uniform  speed  of  ten  knots,  while  the  actual 

speeds  were  9.72,  10.24,  10.16,  9.88.  The  true  average  speed  would 
be  ten  knots,  but  the  final  mean  of  the  four  speeds  above  would  be 

10.1  knots.  This  is  quite  a  large  error.  In  the  above  I  have  not 
taken  account  of  the  tide.  The  error  is  not  affected  if  the  tide  is 

such  that  the  final  mean  would  eliminate  the  tidal  error  if  the  runs 

were  made  at  constant  speed.  For  instance,  suppose  the  tidal  cur- 
rents were  in  knots  .61,  .74,  .89,  1.06.  For  ten  knots  true  speed 

the  apparent  speeds  would  be  10.61,  9.26,  10.89,  8.94.  The  final 

mean  of  these  four  speeds  is  10  knots,  as  it  should  be.  But  if  the 

true  speeds  of  the  successive  runs  were  as  given  above,  the  apparent 

speeds  after  making  allowance  for  currents,  would  be  10.33,  9-5°> 

11.05,  8.82.  The  final  mean  of  these  is  10.1  knots,  as  before. 

Evidently,  then,  as  the  final  mean  method  is  equivalent  to  giving 

the  two  middle  runs  of  a  set  of  four  a  weight  of  three  as  compared 

with  a  weight  of  one  for  the  first  and  last  runs,  when  it  is  used  for 

speed  it  should  in  theory  be  also  used  for  revolutions  and  power. 

Thus,  if  a  middle  run  of  a  series  of  four  is  made  at  a  true  speed 

above  the  average  the  excess  speed  in  determining  the  average  speed 

is  given  a  weight  of  3.  This  run  will  show  excess  power  and  revolu- 
tions, and  if  the  average  power  and  revolutions  are  properly  to 

correspond  with  the  average  speed  by  the  final  mean  method  the 

power  and  revolutions  should  be  given  the  same  weight  as  the  speed 

in  determining  the  average.  Practice  in  this  respect  appears  to  be 

somewhat  variable.  We  often,  but  not  always,  find  the  final  mean 

method  used  for  revolutions.  It  appears  to  be  seldom  used  for 

power. 
4.  Methods  of  Conducting  Progressive  Trials.  —  We  seem  war- 

ranted in  concluding  that  when  we  attempt  to  get  a  spot  on  a  speed 

and  power  curve  by  applying  the  final  mean  method  to  the  data 
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observed  during  a  series  of  four  runs,  we  by  no  means  eliminate 

the  probabilities  of  error.  The  question  arises  whether  there  are 

not  better  methods,  or  simpler  methods  equally  good.  We  wish  to 

determine  curves  —  as  accurate  as  possible  —  expressing  the  simul- 
taneous values  of  speed,  revolutions  and  horse-power.  Now  in  any 

particular  case  we  can  usually  determine  the  revolutions  with  great 

accuracy.  We  can  determine  the  indicated  horse-power  with  reason- 
able approximation,  and  with  good  indicators  the  error  is  as  likely  to 

be  in  excess  as  in  defect.  For  twin-screw  vessels,  when  the  two  en- 
gines show  different  revolutions  during  a  run,  the  best  we  can  do  is  to 

take  the  total  indicated  horse-power  as  corresponding  to  the  average 
revolutions  of  the  two  engines.  For  any  run  we  can  determine  the 

speed  over  the  ground  with  ample  accuracy,  but  owing  to  tidal  cur- 
rent we  cannot  determine  accurately  the  speed  through  the  water. 

Now  in  plotting  our  results  shall  we  plot  power  and  speed  on  revolu- 

tions, or  power  and  revolutions  on  speed,  or  perhaps  speed  and  revo- 
lutions on  power?  A  little  consideration  will  show  that  there  are 

real  advantages  in  using  revolutions  as  the  independent  variable, 

so  to  speak,  and  from  the  trial  data  plotting  on  revolutions  separate 

curves  of  power  and  speed.  For  the  revolutions  of  a  run  can  and 

should  be  determined  exactly  to  all  intents  and  purposes. 

Then  by  plotting  our  approximate  data  upon  the  correct  revolu- 
tions we  get  rid  of  one  element  of  uncertainty.  We  do  not,  for 

instance,  plot  a  spot  for  power  where  the  error  is  in  excess  over  a 

spot  for  speed  where  the  error  is  in  defect.  We  will  ultimately 

arrive  at  a  more  reliable  relation  between  speed  and  power  by  deter- 

mining first  the  most  reliable  relation  between  each  and  the  accu- 
rately determined  revolutions.  Starting,  then,  with  the  basic  idea 

that  we  will  in  the  first  place  plot  speed  and  power  as  ordinates 

upon  revolutions  as  abscissae,  how  should  the  progressive  trial  be 
conducted  in  order  to  determine  most  reliably  the  relation  between 

power  and  revolutions  ? 

We  know  from  the  Theory  of  Probabilities  that  if  we  wish  to 

determine  a  single  quantity  —  as,  for  instance,  the  value  of  a  fixed 

angle  —  the  best  plan  is  to  take  as  many  observations  as  possible 
and  use  the  average  as  the  best  obtainable  approximation  to  the 

true  value.  Similarly,  if  we  wish  to  determine  a  curve  from  experi- 
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ment  the  best  plan  is  to  ascertain  as  many  approximate  spots  as 

possible,  plot  them  and  draw  the  final  curve  as  the  average  curve 

through  the  spots.  Then  to  establish  a  curve  of  power  on  revolu- 
tions we  should  make  numerous  simultaneous  determinations  of 

power  and  revolutions,  plot  the  results  and  draw  an  average  curve 

through.  To  locate  the  curve  of  power  as  accurately  as  possible 

from  a  given  number  of  runs,  it  would  be  better  to  have  each  run 
made  at  different  revolutions.  This  would  enable  us  to  cover  the 

curve  closely  with  experimental  spots.  Here  we  encounter  another 

weak  point  of  the  four-run  final  mean  method. 
Sixteen  runs  are  necessary  to  determine  four  spots  on  a  power 

curve,  and  four  spots  are  insufficient  for  the  accurate  determination 

of  a  curve  of  power  covering  a  wide  range  of  speed.  On  the  other 

hand,  sixteen  spots  distributed  at  approximately  equal  intervals 

over  the  whole  length  of  the  curve  will  locate  it  with  great  accuracy. 

Each  spot  may  be  in  error,  owing  to  limitations  on  accuracy  of  any 

determination  of  indicated  horse-power,  but  if  the  errors  are  as 
likely  to  be  positive  as  negative  a  fair  average  curve  through  sixteen 

spots  will  practically  eliminate  the  indicator  errors.  If  the  indi- 
cators have  a  constant  positive  or  negative  error  no  number  of 

experimental  spots  will  eliminate  it.  I  conclude,  then,  that  as  to 

the  relation  between  power  and  revolutions  about  sixteen  simulta- 

neous determinations  of  revolutions  and  indicated  horse-power, 
made  at  approximately  equal  intervals  of  revolutions,  will  enable  a 

satisfactory  power  revolution  curve  to  be  drawn.  These  observa- 
tions need  not  necessarily  be  taken  on  the  measured  course,  when  the 

speed  revolutions  observations  are  being  made.  It  is  usual,  how- 
ever, to  take  the  indicator  cards  while  on  the  course.  When  the 

observing  staff  is  adequate  it  is  more  convenient  to  make  one  job 

of  it,  and  if  the  water  on  the  measured  course  is  somewhat  shallow, 

so  as  to  affect  the  results,  it  is  desirable  to  determine  everything 
under  the  same  conditions.  By  doing  this,  too,  we  avoid  the  chance 

of  the  initial  friction  of  the  engines  altering  between  two  sets  of 

runs,  one  to  determine  the  power  revolution  relation,  and  the  other 

the  speed  revolution  relation.  Finally,  with  an  ample  observing 

staff  the  time  of  a  run  over  the  measured  course  is  generally  of  a 

length  convenient  for  taking  several  sets  of  cards.  There  is,  how- 
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ever,  something  to  be  said  in  favor  of  making  runs  off  the  course 

for  determining  power  revolutions  spots.  With  a  small  observing 

staff  indicator  cards  can  be  taken  more  at  leisure  and  given  revolu- 
tions can  be  maintained  until  a  sufficient  number  of  satisfactory 

cards  are  taken,  even  if  indicator  accidents  crop  up.  Again,  as 

soon  as  good  cards  for  a  given  number  of  revolutions  are  obtained 

the  revolutions  can  be  changed  at  once  —  up  or  down.  This  will 
not  save  much  time  at  high  speeds,  but  will  at  low  speeds,  so  that  the 

total  time  the  staff  must  be  kept  at  the  indicators  will  be  a  good 

deal  shorter.  The  preferable  method  really  seems  to  depend  in  the 

end  upon  the  observing  staff  available.  With  an  ample  staff  of 
skilled  observers,  so  that  in  addition  to  time  and  revolutions  on  the 

course  three  good  cards  can  (barring  accident)  be  obtained  during 

each  run  from  each  end  of  each  cylinder,  it  would  seem  advisable 
to  make  all  observations  on  the  measured  course.  With  a  small 

staff  of  observers,  however,  including  many  without  good  experience 

in  such  work,  it  would  often  be  advisable  to  run  separate  trials, 

making  the  progressive  power  revolution  trial  before  or  after  the 

speed  revolution  trial  on  the  measured  course. 

Fig.  258  shows  trial  spots  and  final  curve  of  power  on  revolu- 
tions as  drawn  from  the  trial  of  an  armored  cruiser. 

Let  us  consider  now  the  most  suitable  practical  method  of  deter- 

mining the  speed-revolution  relation  from  trials  on  the  course.  In 
the  first  place,  no  method  will  give  reliable  results  unless  we  have  a 

sufficient  number  of  runs.  Each  experimental  spot  is  necessarily 

and  unavoidably  somewhat  in  error.  Hence,  in  order  to  get  a 

reliable  curve  we  must  have  so  many  spots  and  have  them  so  close 

together  that  the  accidental  and  erratic  errors  are  practically  elimi- 
nated by  drawing  a  mean  fair  curve.  There  are  two  methods  which 

may  be  used  with  confidence.  The  first  is  probably  the  most  accu- 
rate and  reliable,  provided  the  trial  is  conducted  with  special  skill 

along  the  lines  described  below.  It  is  also  adapted  to  the  determina- 
tion of  the  power  revolution  relation  by  the  method  just  given.  The 

second  method  is  probably  preferable  -for  the  usual  run  of  trials. 
Under  the  first  method  make  a  series  of  runs  back  and  forth 

alternately  with  and  against  the  tide  and  increasing  or  decreasing 

the  revolutions  by  equal  increments  after  each  run.  The  curve  of 
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true  speed  then  will  fall  midway  between  the  two  curves  of  apparent 

speed,  one  with  and  one  against  the  tide.  The  advantages  of  this 
method  are  that  if  the  curve  of  tidal  variation  is  a  fair  curve  and  the 

trial  skillfully  run  so  that  the  interval  between  successive  runs  varies 

according  to  a  fair  curve,  all  spots  of  apparent  speed  will  fall  upon 

fair  curves.  Should,  however,  a  spot  be  erratic,  it  will  naturally 
fall  off  the  curve  and  be  given  little  weight  in  drawing  the  final 

curve  of  apparent  speed.  It  is  a  very  real  advantage  in  such  work 

to  have  a  method  of  reducing  the  data  such  that  bad  spots  show  for 

themselves  and  are  not  incorporated  in  the  final  results.  It  is  evi- 
dent, however,  that  to  get  reliable  curves  of  apparent  speed  we 

should  have  a  sufficient  number  of  spots  for  each  curve.  Not  less 

than  sixteen  runs  in  all  should  be  made.  Figure  259  shows  curves 

of  apparent  speed  with  and  against  the  tide  and  the  mean  curve 

from  the  trial  of  an  armored  cruiser.  All  experimental  spots  are 
indicated. 

There  are  some  objections  to  the  above  method.  One  is,  that  at 

top  speed,  the  most  important  part  of  the  curve,  we  would  have 

only  one  run,  and  the  high  speed  part  of  the  curve  would  not  be 

defined  so  well  as  the  lower  portion.  This  difficulty  should  be  over- 

come by  making  three  runs  at  top  speed —  two  in  one  direction,  and 

one  in  the  other, — and  determining  the  final  speed  of  the  three  by 
giving  the  middle  run  double  the  weight  of  the  others.  This  is 

equivalent  to  taking  the  second  mean  of  the  three  runs.  The  other 

objection  to  this  method  is  that  for  thoroughly  satisfactory  results 

a  trial  once  begun  should  be  completely  carried  through  without 

stopping.  This  sometimes  introduces  practical  difficulties.  A  run 

may  be  lost  through  breakdown  of  the  observing  apparatus  or  inter- 
ference of  some  other  vessel  while  on  the  course.  This  is  not  a 

very  serious  objection,  because  it  is  found  in  practice  that  even  if 
the  intervals  between  the  runs  are  somewhat  erratic  the  curves  of 

apparent  speed  can  be  drawn  tolerably  well.  Another  objection  of 

the  same  nature  is  that  if  a  trial  is  interrupted  after  five  or  six  runs 

the  results  of  these  runs  are  of  little  value,  as  they  are  not  suffi- 
ciently numerous  accurately  to  define  the  part  of  the  curve  to  which 

they  refer,  and  a  whole  new  trial  has  to  be  made. 

The  second  recommended  method  of  running  a  progressive  trial 
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is  to  make  runs  in  groups  of  three, —  18  in  all  for  a  fast  vessel,  15 
for  a  vessel  of  moderate  speed  and  12  for  a  slow  vessel.  Each  group 

should  be  made  at  a  constant  number  of  revolutions,  as  nearly  as 

possible,  the  revolutions  for  the  various  groups  covering  the  range 
desired.  Then,  taking  for  each  group  of  three  runs  the  second  mean 

of  speed  and  revolutions  we  have  for  a  fast  vessel  six  spots  through 

which  to  plot  a  curve  of  speed  and  revolutions.  This  method  in 

practice  gives  from  each  group  of  three  runs  a  spot  substantially  as 

reliable  as  if  four  runs  had  been  made.  While  it  has  the  advantage, 

as  compared  with  the  four-run  method,  of  giving  more  spots  on  the 
curve  for  a  given  total  number  of  runs,  it  also  has  the  advantage  of 

beginning  consecutive  groups  with  runs  in  opposite  directions. 

That  is  to  say,  if  one  group  began  with  a  run  to  the  north  the  next 

group  will  begin  with  a  run  to  the  south.  This  is  a  desirable  con- 
dition, as  tending  to  eliminate  some  of  the  errors  due  to  tidal  current. 

This  method  has  the  advantage  of  requiring  less  skill  and  care  in 

the  conduct  of  trials,  and  each  group  of  three  runs  stands  by  itself 

and  is  not  wasted  in  case  it  is  necessary  to  stop  the  trial.  It  is  not 

quite  so  accurate  as  the  method  previously  described,  but  the  dif- 
ference in  accuracy  would  not  be  appreciable  in  the  majority  of 

cases.  A  practical  advantage  is  that  it  does  not  require  readjust- 
ment of  throttles  and  links  after  each  run  in  order  to  change  the 

revolutions.  This  adjustment,  in  order  rapidly  to  change  revolu- 
tions by  a  definite  amount,  is  by  no  means  the  simple  matter  it 

might  appear  at  first  thought  and  requires  quick  and  accurate  work 

in  the  engine  room. 
If  there  were  no  variations  of  tidal  current  between  runs  both 

methods  above  described  would  be  theoretically  exact.  It  is  evi- 
dently desirable  to  time  the  progressive  trial  so  that  during  it  there 

shall  be  as  little  variation  of  tidal  current  between  runs  as  possible. 

Now,  when  the  tidal  current  is  at  a  maximum,  whether  ebb  or  flow, 

the  variation  of  current  is  at  a  minimum,  while  about  the  turn  of 

the  tide  the  rate  of  variation  is  about  at  a  maximum.  This  state- 

ment would  be  exactly  true  if  the  curve  of  tidal  current  plotted  on 

time  was  a  curve  of  sines,  as  often  assumed,  and  is  substantially 

correct  even  as  applied  to  actual  tidal  currents,  varying  by  leaps 

and  bounds  rather  than  with  definite  progression.  Then  a  pro- 
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gressive  trial  should  always  be  run  during  the  strength  of  one  tide. 

A  trial  can  generally  be  run  in  four  hours  or  less,  and  so  should,  if 

practicable,  be  begun  about  an  hour  and  a  half  after  the  turn  of  the 

tide.  Circumstances  often  render  this  inconvenient  or  impossible, 

and  weather  conditions  frequently  cause  the  turn  of  the  tide  to 

come  before  or  after  the  time  fixed  by  tide  tables,  but  the  best  time 

for  a  trial  should  be  used  unless  there  are  good  reasons  to  the  con- 
trary. 

So  far  as  accuracy  of  results  is  concerned  it  makes  no  difference 

whether  we  begin  with  the  low  speeds  and  work  up  or  with  the  high 

speeds  and  work  down.  It  seems  advisable,  however,  as  a  rule  to 

begin  with  the  top  speeds  and  work  down.  With  clean  fires  and 

fresh  men  the  top  speed  can  be  obtained  and  maintained  with  more 

ease  than  after  several  hours  of  running.  Also,  if  the  trial  is  spoilt 

by  a  breakdown  it  is  more  apt  to  come  during  the  high  speed  runs, 

and  if  a  breakdown  must  come  it  is  better  to  have  it  come  early 
than  late. 

There  may  be  mentioned  here  some  minor  points  in  connection 

with  the  conduct  of  trials  which  tend  to  produce  accurate  and  sat- 
isfactory results.  It  is  desirable  after  a  run  to  shift  revolutions 

promptly  to  the  revolutions  for  the  next  run,  if  they  are  to  be 

different.  If  there  is  a  pressure  gauge  giving  the  pressure  in  the 

H.P.  chest  (beyond  the  throttle)  it  is  easy  by  preliminary  runs  to 

establish  a  curve  (or  curves,  if  more  than  one  valve  gear  setting  is 

to  be  used)  giving  the  relation  between  H.P.  valve  chest  pressure 

and  revolutions.  Then  it  is  necessary  only  to  establish  the  proper 

pressure  to  insure  that  the  revolutions  are  sufficiently  near  what 

is  desired.  Such  a  pressure  gauge  as  above  is  apt  to  fluctuate  vio- 

lently unless  its  cock  is  nearly  closed.  Systematic  handling  of  the 

ship  when  off  the  course  is  desirable.  Each  time  when  coming  on 

the  measured  course  the  ship  should  have  made  a  long  straight  run 
with  the  minumum  operation  of  helm.  For  most  trials  about  a 

mile  is  a  convenient  and  desirable  length  for  the  straight  run,  and 

it  much  facilitates  trials  if  in  addition  to  buoys  at  the  ends  of  the 

measured  course,  moored  closely  on  the  ranges,  there  are  planted 

buoys  in  the  line  of  the  course  a  mile  from  each  end.  Suppose  we 

have  the  course  thus  buoyed  as  indicated  in  Fig.  257.  Before  begin- 
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ning  the  trial  proper  —  while  warming  up  —  steam  over  the  course 
as  indicated  in  Fig.  257  by  ABCDEFCBGHA. 

When  abreast  the  buoy  D  put  the  helm  over  to  a  moderate  and 

definite  angle,  say  10  degrees.  Steady  the  ship  on  the  course  EF 
which  will  cross  the  line  of  the  course  a  little  beyond  the  buoy  C. 

While  on  this  course  note  carefully  the  compass  reading  and  deter- 
mine the  reading  of  the  steering  compass  which  will  give  the  opposite 

course  FE.  Then  when  coming  of!  the  course  at  C  after  a  run,  put 

the  helm  over  at  once  and  steady  the  ship  on  the  course  FE.  If 

the  revolutions  are  to  be  changed  for  the  next  run  the  engine  room 

force  should  immediately  set  to  work  on  this.  With  skillful  han- 
dling the  new  desired  revolutions  should  be  attained  before  the  vessel 

is  at  E.  If  this  is  so,  on  reaching  E  abreast  the  buoy  D  put  the 

helm  over  to  10  degrees.  The  vessel  will,  by  the  time  she  swings 

to  the  correct  heading  for  the  next  run,  be  practically  on  the  line 

of  the  course,  requiring  very  little  use  of  the  helm  to  come  dead  on. 

If  the  revolutions  are  not  adjusted  by  the  time  the  vessel  reaches 

E,  she  should  at  this  point  be  steadied  on  the  course  EK,  shown 

dotted  in  Fig.  257,  and  kept  on  this  course  until  the  revolutions  are 

satisfactorily  adjusted  or  the  vessel  has  run  so  far  that  there  will 

be  ample  time  after  turning  finally  to  adjust  the  revolutions  before 

the  vessel  reaches  D.  The  methods  are  of  course  just  the  same  at 
each  end  of  the  course. 

To  conduct  a  trial  in  this  way  requires  quick  communication  and 

complete  understanding  between  the  deck  and  the  engine  room,  but 

results  will  be  distinctly  superior  to  those  obtained  by  more  hap- 
hazard methods. 

5.  Trial  Conditions.  —  It  is  customary  to  make  progressive  trials 
with  clean  bottoms  under  good  conditions  of  wind  and  sea.  For 

men-of-war  the  trial  is  generally  made  at  normal  load  displacement. 
For  merchant  vessels  the  displacement  is  ̂ sometimes  the  average 

displacement  to  be  expected  in  service,  but  generally  a  less  displace- 
ment and  at  times  a  very  light  displacement. 

The  usual  practice  is  at  times  criticised.  As  to  men-of-war,  for 
instance,  it  is  alleged  that  they  will  never  show  in  service  such  good 

results  as  upon  trial.  It  is  true  that  there  is  ever  present  the  temp- 
tation to  run  trials  at  too  light  a  displacement.  This  is  largely  due 
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to  the  natural  desire  of  those  concerned  to  make  the  best  showing 

possible.  But  the  loss  of  speed  in  service  due  to  increased  displac- 
ment  is  apt  to  be  exaggerated,  particularly  for  large  ships.  More 

potent  causes  are  rough  water  at  sea,  dirty  bottoms,  poor  coal,  or 

inability  of  the  engineering  personnel  to  get  good  power  results.  It 

is  evidently  desirable  to  have  trials  always  run  under  uniform  or 

standard  conditions.  The  most  easily  attained  standard  trial  con- 
ditions are  obviously  fair  weather,  smooth  water  and  a  clean  bottom. 

From  reliable  results  under  such  conditions  the  results  which  should 

be  attained  in  service  can  be  estimated  with  sufficient  approxima- 
tion until  they  can  be  ascertained  by  experience.  As  a  general 

thing,  however,  progressive  trials  cannot,  and  are  not  expected  to, 

show  exactly  what  a  ship  will  do  in  service.  This  requires  service 

experience.  They  furnish  data  to  enable  the  performance  of  the 

ship  under  standard  conditions  to  be  determined  and  compared  with 

other  vessels,  and  in  case  the  performance  is  poor  careful  progressive 

trials  will  not  only  determine  that  fact,  but  as  a  rule,  upon  analysis, 

indicate  the  line  that  should  be  followed  to  obtain  improvement. 

36.  Analysis  of  Trial  Results 

i.  Components  of  Indicated  Horse  Power.  —  Figure  260  shows  a 
curve  of  speed  and  power  for  the  U.  S.  S.  Yorktown,  the  powers  as 

ordinates  being  plotted  over  the  speeds  as  abscissae. 

The  power  is  the  indicated  horse-power  developed  in  the  cylinders 
of  the  engines.  We  know  that  only  a  fraction  of  this  power  is  finally 

utilized  to  propel  the  ship  and  it  is  important  to  gain  some  idea  of 
the  distribution  of  the  remainder. 

The  engine  itself  absorbs  a  certain  amount  of  power  through  its 

own  friction.  This  friction  is  usually  classed  under  two  heads, 

namely,  "  initial  "  or  "  dead  "  friction,  due  to  tightness  of  pistons, 

valves,  glands,  bearings,  etc.,  and  "  load  "  friction,  or  the  friction 
due  to  the  load  upon  the  bearings  and  thrust  block. 

The  power  required  to  work  feed,  air,  circulating  and  bilge  pumps, 
driven  from  the  main  engines,  is  usually  classed  with  the  initial 

friction.  For  reciprocating  engines,  the  power  P  delivered  to  the 

propeller  is  the  original  indicated  horse-power  less  the  power  as 
above  absorbed  by  friction.  For  turbine  engines  the  power  is 
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usually  determined  from  the  twist  of  the  shaft,  measurements  being 

taken  astern  of  the  thrust  block.  All  of  this  shaft  horse-power  is 

delivered  to  the  screw  except  what  is  wasted  in  friction  of  line  bear- 
ings, stern  tubes,  and  outward  bearings,  if  any.  This  is  usually  so 

small  that  the  shaft  horse-power  is  assumed  to  be  the  same  as  the 
propeller  power  P. 

Of  the  propeller  power  P  a  portion  is  wasted  in  friction  and  slip 

of  the  propeller.  The  remainder  is  used  in  developing  thrust  horse- 
power. Also  there  is  added  here  a  certain  amount  of  power  derived 

from  the  wake  which  also  appears  as  thrust  horse-power.  Of  the 

thrust  horse-power  a  certain  amount  is  used  to  overcome  the  aug- 

mentation of  resistance  of  the  ship  due  to  the  suction  of  the  pro- 

peller, and  the  remainder  is  the  effective  horse-power,  the  net 
power  required  to  drive  the  ship. 

The  above  components  of  the  I.H.P.  vary  widely.  The  initial 

friction  will  absorb  from  as  low  as  3  or  4  per  cent  of  the  power  in 

large  well-adjusted  engines  with  independent  air  and  circulating 
pumps  to  10  per  cent  or  more  in  the  case  of  machinery  badly 

adjusted  with  air  and  circulating  pumps  driven  off  the  main  engines. 

The  load  friction  is  usually  taken  as  about  7  per  cent  of  the 

remainder  obtained  by  deducting  the  inital  friction  power  from  the 

original  I.H.P.  With  well-lubricated  engines  it  is  generally  some- 

what less.  Investigations  of  the  shaft  horse-power  of  reciprocating 
engines  by  means  of  torsion  meters  have  shown  as  much  as  92  per 

cent  of  the  indicated  horse-power  delivered  to  the  shaft,  involving 
a  loss  of  but  8  per  cent  for  both  initial  and  load  friction.  Engines 

seldom  run  any  length  of  time  with  excessive  load  friction.  It 

promptly  causes  hot  bearings. 

The  ultimate  distribution  of  the  propeller  power  —  the  shaft 

horse-power  for  turbine  jobs  —  is  a  question  of  the  efficiency  of  the 
propeller,  the  wake  factor  and  the  thrust  deduction. 

It  is  evident  from  what  has  gone  before  that  as  a  reasonable  work- 
ing approximation  we  may  assume  that  for  a  reciprocating  engine 

of  high-class  workmanship  about  90  per  cent  of  the  indicated  horse- 

power is  delivered  to  the  propeller  when  independent  air  and  circu- 
lating pumps  are  fitted,  and  about  85  per  cent  of  the  indicated  power 

when  all  pumps  are  driven  off  the  main  engine. 
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Accurate  trial  results  can  be  analyzed  to  give  an  approximation 

to  the  resistance  of  the  ship,  and  hence  efficiency  of  propulsion,  etc., 

but  these  quantities  can  be  estimated  directly  with  sufficient  accu- 
racy and  with  much  less  labor  by  methods  already  given.  It  is 

very  desirable,  however,  to  determine  accurately  the  initial  friction 

of  an  engine,  as  then  we  know  with  close  approximation  the  pro- 
peller power,  P,  and  this  power  is  an  essential  factor  of  the  propeller 

design.  Hence  we  will  now  consider  in  detail  the  initial  friction  of 

an  engine  and  methods  for  determining  it  from  progressive  trial 
results. 

2.  Initial  Friction  Determined  by  Curves  Extended  to  Origin.  — 
Mr.  William  Froude,  the  pioneer  investigator  of  this  question,  defines 

initial  friction  as  "  the  friction  due  to  the  dead  weight  of  the  work- 
ing parts,  piston  packings,  and  the  like,  which  constitute  the  initial 

or  low  speed  friction  of  the  engine."  The  initial  friction,  or  internal 
resistance,  is  generally  regarded  as  constant  throughout  the  range  of 

speed  and  power  of  the  engine,  thus  differing  from  the  load  friction, 

which  is  generally  regarded  as  absorbing  a  uniform  fraction  of  the 

power  developed.  As  a  matter  of  fact,  it  seems  altogether  probable 

that  the  internal  resistance  varies  slightly  with  power  and  revolu- 
tions, but  the  variation  is  probably  so  small  as  long  as  bearings  run 

cool  that  we  are  justified  in  ignoring  it. 

There  is  no  doubt  that  the  internal  friction  will  alter  materially 

from  time  to  time,  due  to  changes  in  tightness  of  various  parts. 

The  problem  under  consideration,  however,  is  the  determination  of 

the  initial  friction  at  a  given  time.  If  the  frictional  resistance  is 

constant  the  power  absorbed  by  it  will  be  proportional  to  the  revo- 

lutions, so  that  if  we  denote  by  //  the  horse-power  absorbed  by 
initial  friction  and  R  denotes  revolutions,  we  have  //=  R  X  (a  coeffi- 

cient), where  the  coefficient  at  a  given  time  for  a  given  engine  is 

constant.  Suppose  we  denote  the  coefficient  by  C/,  then  //=  CfR. 

Now  analysis  and  consideration  of  the  various  absorbents  or  com- 

ponents of  the  indicated  horse-power,  such  as  the  power  utilized  to 
propel  the  ship,  the  power  wasted  by  the  propeller,  the  power 
absorbed  in  ̂ load  friction,  etc.,  show  that  they  all,  except  //,  must 

vary  as  some  power  of  the  revolutions  greater  than  unity.  This 

being  the  case,  it  follows  that  if  /  denote  the  indicated  horse-power 
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at  revolutions  R,  we  may  write  /  =  C/R  +  <£  (/?),  where  we  know 
that  (f>  (R)  is  some  function  of  the  revolutions  which  varies  always 
as  a  power  of  R  greater  than  unity.  If,  then,  we  plot  a  curve  of  7 

on  revolutions,  as  we  approach  the  origin  the  curve  of  7  will  ap- 
proach the  straight  line  If=  CfR,  and  at  the  origin  will  be  tangent 

to  this  line.  Hence  C/  can  be  determined  from  the  inclination  at 
the  origin  of  the  curve  of  7  plotted  on  R. 

Figure  261  shows  for  the  U.  S.  S.  Yorktown  a  curve  of  indicated 

horse-power  plotted  on  revolutions,  the  curve  being  extended  to  the 
origin  and  the  tangent  at  the  origin  being  drawn  in.  It  is  desirable 
in  plotting  this  curve  to  draw,  as  shown,  a  similar  symmetrical  curve 
in  the  third  quadrant  joining  the  real  curve  in  the  first  quadrant  to 
the  imaginary  curve  in  the  third  quadrant  at  the  origin  where  there 
is  a  point  of  inflection.  This  facilitates  drawing  a  curve  which  has 
the  proper  direction  at  the  origin.  Then  drawing  the  tangent  at 

the  origin  we  determine  the  line  for  7/=  CfR,  and  taking  at  any 

point  the  simultaneous  values  of  7/  and  R  we  have  C/=  •£• R 

Another  method  is  to  plot  a  curve  of  7  divided  by  R  in  the  first 
quadrant  and  a  symmetrical  curve  in  the  second  quadrant.  Such 

a  curve  will  not  pass  through  the  origin  but  cut  the  axis  of  R  =  zero 
at  a  point  above  the  origin.  Its  ordinate  here  is  evidently  C/.  The 

ordinates  of  the  curve  of  —  bear  a  constant  ratio  to  the  ordinates  of K 

the  curve  of  mean  effective  pressure. 
It  is  customary  to  reduce  the  initial  friction  or  internal  resistance 

of  an  engine  to  equivalent  mean  effective  pressure  in  the  low  pressure 
cylinder  or  cylinders.  This  is  the  most  convenient  and  probably 
the  most  reliable  way  of  comparing  engines  of  different  types  and 
sizes  as  regards  internal  resistance. 

Let  n  denote  the  number  of  L.P.  cylinders,  d  the  diameter  of 
each  in  inches,  5  the  stroke  in  inches,  pm  the  mean  effective  pressure 
in  pounds  per  square  inch  reduced  to  the  L.P.  cylinder  area  and  R 
the  revolutions  per  minute.  Then 

7T    „  2  S  „ 

,  _      4       m      12   

33000 
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At  the  limit  7  =  //  =  CfR.     If  pf  denote  mean  effective  pressure 
equivalent  to  internal  resistance  reduced  to  L.P.  area,  at  the  limit 

n       nd?spf  2521000 
pm=  pf  or  Cf=  -  or    pf  =  J — — -J- 252100  nsd? 

It  is  seen  from  the  above  that  when  we  have  once  determined  a 

reliable  value  of  C/  we  can  readily  obtain  the  corresponding  value 

of  the  mean  effective  pressure  in  the  low  pressure  cylinder  from  the 

known  data  of  the  engine.  If  we  could  determine  with  accuracy 

the  curve  of  indicated  horse-power  for  a  given  engine  to  a  very  low 
number  of  revolutions  the  above  method  of  determining  internal 

resistance  would  leave  little  to  be  desired.  However,  we  meet  here 

with  a  number  of  practical  difficulties.  If  we  determine  simulta- 
neous values  of  speed,  power  and  revolutions,  which  is  the  usual 

practice  in  progressive  trials,  it  is  found  that  the  low  speed  trials 

over  a  measured  mile  are  very  tedious.  If  we  avoid  this  trouble  by 

determining  in  free  route  at  the  lowest  speeds  the  horse-power  and 
revolutions  only,  we  still  encounter  difficulties.  No  reciprocating 

engine  will  run  at  all  below  a  certain  speed,  and  as  it  approaches 

the  limiting  speed  at  which  it  will  stick,  its  action  becomes  some- 
what erratic  and  uncertain.  It  is  true  that  the  less  the  friction  the 

lower  the  revolutions  at  which  the  engine  will  stick,  and  that  this 

is  a  rough  measure  of  the  initial  friction;  but  even  the  smoothest 

running  engines  will  seldom  run  steadily  down  to  a  speed  sufficiently 

low  to  enable  the  internal  resistance  to  be  determined  with  accuracy 

by  a  curve  extended  to  the  origin.  For  determining  very  low  speed 

powers  of  engines  which  use  high  pressure  it  is  necessary  to  use 

special  weak  indicator  springs,  otherwise  the  indicator  diagrams 

have  such  a  very  small  area  that  the  determination  of  the  power  is 

very  uncertain.  If,  instead  of  determining  a  curve  of  power  and 

revolutions  for  the  ship  under  way  we  determine  the  same  thing  for 

the  vessel  tied  up  at  the  dock,  we  will  get  larger  indicator  cards  and 

the  engine  will  turn  over  at  a  slightly  lower  number  of  revolutions, 

but  even  then  the  results  generally  leave  something  to  be  desired. 

Torsion  meter  apparatus  has  been  designed  of  late  years  to 

measure  the  power  being  transmitted  by  a  shaft  by  determining 

the  twist  of  the  shaft.  If  we  measure  shaft  horse-power  by  a  tor- 
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sion  meter  and  simultaneously  indicate  the  engine,  we  can  determine 

the  total  frictional  resistance  of  the  engine,  the  power  absorbed  by 

friction  being  of  course  the  difference  between  the  indicated  horse- 

power and  the  shaft  horse-power.  With  accurate  data  this  would 
probably  be  the  most  nearly  exact  method  of  determining  the  initial 
friction  of  the  engine  and  would  have  the  incidental  advantage  of 

enabling  the  load  friction  to  be  determined  as  well,  but  the  accuracy 

of  torsion  meters  at  low  speeds  and  powers  is  not  sufficient  to  enable 

this  method  to  be  made  use  of  except  perhaps  in  very  exceptional 

cases.  It  is  evident  that  we  need  some  method  of  obtaining  the 

desired  result  from  an  ordinary  curve  of  power  and  revolutions  which 

does  not  go  below  a  speed  and  power  for  which  the  data  may  be 

readily  obtained  and  regarded  as  fairly  reliable.  It  is  natural  to 

ask  whether  there  is  any  inherent  feature  or  property  of  curves  of 

horse-power  which  would  facilitate  the  determination  of  the  internal 
friction.  Mr.  William  Froude  worked  on  these  lines.  He  plotted 

a  curve  of  indicated  thrust  upon  the  speed  of  the  ship  in  knots, 

carrying  the  curve  down  as  low  as  possible.  Indicated  thrust  is  a 

thrust  which  at  the  speed  of  the  propeller  will  absorb  the  indicated 

horse-power.  At  zero  speed  and  zero  revolutions  the  curve  of  indi- 

cated thrust,  whose  ordinates  are  proportional  to  — ,  will  cut  the R 

axis  of  thrust  at  a  distance  above  the  origin  proportional  to  the 

initial  friction.  To  pass  from  the  lowest  point  of  his  curve  of  indi- 
cated thrust,  determined  by  observation,  Mr.  Froude  made  use  of 

an  essential  property  of  these  curves.  He  assumed  that  at  these 

low  speeds  the  resistance  of  the  ship  varied  as  the  1.87  power  of  the 

speed,  and  that  all  other  losses  except  the  initial  friction  loss  were 

constant  fractions  of  the  power  absorbed  by  resistance.  It  would 

follow  that  the  curve  of  indicated  thrust  in  the  vicinity  of  the  origin 

is  a  parabola  of  the  1.87  degreewhose  ordinate  at  zero  speed  is 
proportional  to  the  initial  friction. 

Now,  referring  to  Fig.  262,  if  the  curve  therein  indicated  is  a 

parabola  of  the  1.87  degree  it  follows  that  the  tangent  at  the  point 

P  will  cut  the  horizontal  tangent  through  the  lowest  point  A  at  a. 

0_ 

point  M,  so  that  AM  divided  by  A N  is  equal  to-   Mr.  Froude, 

1.87 
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then,  having  drawn  his  curve  of  indicated  thrust  to  as  low  a  speed 

as  he  could  from  the  data,  next  drew  the  tangent  at  its  extremity 
OTJ  87 

as  KB  in  Fig.  263,  and  dividing  OL  at  H  so  that  — 7  equals  — - OL  1.87 

he  set  up  HB  to  intersect  the  tangent  at  K  in  the  point  B.  A  hori- 

zontal line,  then,  through  B  cuts  the  axis  of  thrust  at  the  point  71, 
and  Or  is  the  indicated  thrust  corresponding  to  the  initial  friction. 

This  method  makes  use  of  a  property  of  the  curve,  but  as  a  matter 

of  fact,  it  is  hardly  so  reliable  in  practice  as  the  method  of  extending 

the  curve  of  indicated  horse-power  to  the  origin  and  setting  off  the 
tangent  to  it.  While  the  low  speed  resistance  of  the  ship  would  be 

reasonably  close  to  the  1.87  power  of  the  speed  this  is  still  an  approxi- 
mation, but  the  principal  objection  to  this  method  is  that  it  requires 

a  tangent  to  be  drawn  at  the  low  speed  extremity  of  the  curve  of 

indicated  thrust.  The  difficulty  of  obtaining  reliable  values  for  this 

curve  at  the  lowest  speed  have  been  pointed  out  and  it  follows, 

apart  from  the  difficulty  of  drawing  an  accurate  tangent  at  the 

extremity  of  any  curve,  that  an  error  in  the  low  speed  spot  would 

throw  out  the  low  speed  tangent  and  introduce  material  errors. 

3.  Initial  Friction  Deduced  from  Low  Speed  Portion  of  Power 

Curves.  —  The  question  arises,  then,  whether  we  cannot  make  use  of 
some  inherent  property  of  curves  of  horse-power  which  will  enable 
us  to  determine  the  initial  friction  with  reasonable  accuracy  without 

it  being  necessary  to  carry  any  curve  to  the  origin.  We  know  that 

the  frictional  resistance  of  a  ship  varies  about  as  the  1.83  power  of 

the  speed,  so  that  the  horse-power  absorbed  by  frictional  resistance 
varies  as  the  2.83  power  of  the  speed.  The  power  absorbed  by 

wave  making  varies  as  a  higher  power  than  the  cube  of  the  speed. 

The  practical  result  is  that  at  low  speeds,  when  there  is  almost 

no  wave  resistance,  the  total  effective  horse-power  will  vary  as  a 
somewhat  lower  power  of  the  speed  than  the  cube,  whereas  at  high 

speeds  it  will  vary  as  a  higher  power  of  the  speed  than  the  cube. 
There  is  then  some  point  at  moderate  speed  where  the  effective 

horse-power  is  varying  as  the  cube  of  the  speed. 
Consider  now  the  propeller.  For  a  given  slip  the  power  absorbed 

by  a  propeller  varies  as  the  cube  of  the  revolutions,  or  for  constant 

slip  as  the  cube  of  the  speed.  It  follows,  then,  that  starting  from  a 
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very  low  speed,  where  the  effective  horse-power  is  varying  at  a  lower 
power  than  the  cube,  the  slip  of  the  propeller  falls  off  until  we  reach 

the  speed  at  which  the  effective  horse-power  varies  as  the  cube  of 
the  speed.  At  this  point  the  slip  of  the  propeller  reaches  a  minimum 
beyond  which  it  increases.  The  efficiency  of  the  propeller  at  the 
point  where  the  slip  reaches  a  minimum  will  be  constant,  and  the 
power  delivered  will  vary  as  the  cube  of  the  speed  or  as  the  cube  of 
the  revolutions.  Also  all  losses  will  vary  as  the  power  delivered  to 
the  propeller  or  as  the  cube  of  the  revolutions,  except  the  initial 
friction  loss.  Hence,  at  the  point  of  minimum  slip  where  the  slip 
remains  constant  for  a  minute  interval  the  following  formula  will 

express  exactly  the  indicated  horse-power: 

For  some  little  distance  on  either  side  of  the  point  of  minimum 
slip  the  above  formula  will  give  a  reasonably  close  approximation 
to  the  facts,  especially  for  the  speeds  below  the  point  of  minimum 
slip.  Now  Cy  and  c  in  the  above  equation  are  both  unknown,  but 

from  the  curve  of  indicated  horse-power  plotted  on  revolutions  we 
can  determine  any  number  of  simultaneous  values  of  7  and  R,  and 
for  each  pair  of  such  values  we  can  draw  a  straight  line  on  axes  of  c 
and  Cf,  constituting  a  focal  diagram.  If  the  equation  above  applies 

throughout  to  the  curve  of  indicated  horse-power  and  C/  and  c  were 
constant,  it  would  follow  that  this  diagram  would  have  a  perfect 
focus.  Now  we  know  that  the  above  equation  does  not  apply  to  the 

upper  part  of  the  curve  of  horse-power  at  which  the  indicated  horse- 
power generally  varies  as  a  very  much  higher  power  than  the  cube. 

It  seems  reasonable  from  the  nature  of  the  case,  however,  that  this 

equation  should  be  fairly  approximate  over  a  tolerably  wide  range 
of  the  lower  speeds,  and  that  if  we  draw  for  this  range  a  series  of 
lines  Cf  and  c,  they  should  all  pass  reasonably  close  to  a  common 

point;  in  other  words,  should  form  a  reliable  focal  diagram.  Inves- 
tigation of  practical  cases  shows  that  we  do  have  such  a  focal 

diagram.  The  methods  of  calculation  are  very  simple.  The 
table  below  shows  the  calculations  for  the  Yorktown,  and  Fig.  264 
shows  the  diagram  for  the  Yorktown. 
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CALCULATIONS  TO   DETERMINE   INITIAL   FRICTION   COEFFICIENT 
OF    U.  S.  S.    YORKTOWN. 

V 5 6 7 8 9 
10 

ii 

12 
I 

96 

143 

205 

286 393 

536 

728 986 

R 

44-8 
53-7 

62.6 71  .5 80.6 

90.0 

99-7 110.  0 

R* 

2007 2884 

3919 

5112 

6496 8100 

9940 

I2IOO 

if  *-o>c,-i 
2.143 2.663 

3-275 

4.000 

4.877 
5-955 

7.302 

8.964 

IfC/=o,  c=-^-3 
.001068 

.000923 .  000836 .000782 
.000751 

.000735 
.000735 

.OOO74I 

It  is  seen  that  taking  the  four  lines  corresponding  to  speeds  of 

5,  6,  7  and  8  knots  we  get  an  excellent  focal  diagram.  The  Q-knot 
line  does  not  give  quite  such  a  good  intersection  and  the  zo-knot 
line  leaves  the  focus  entirely.  This  is  typical  of  such  diagrams,  and 
the  lines  themselves  show  very  clearly  which  should  be  used  and 
which  should  not  be  used  in  determining  the  focal  point.  C/  from 
Fig.  264  for  the  Yorktown  is  equal  to  0.96,  while  its  value  from 
Fig.  261,  taken  from  the  curves  extended  to  the  origin,  was  made 
.95  a  number  of  years  ago,  soon  after  the  trial  of  the  Yorktown 
in  1889.  The  practical  agreement  of  the  results  of  the  two  methods 
might  seem  in  favor  of  the  method  of  extension  to  the  origin,  which 

is  the  simpler.  But  special  care*  was  taken  on  the  Yorktown  trial 
to  obtain  reliable  power  data  at  very  low  speed,  and  the  results 
obtained  by  extending  her  power  curve  to  the  origin  can  be  regarded 
with  more  confidence  than  those  of  subsequent  trials  of  other  vessels 
where  it  was  found  practically  impossible  to  extend  the  power  curves 
to  the  origin  with  certainty.  It  was  this  fact  which  impelled  a 

search  for  a  better  method.  Figures  265  to  269  show  initial  fric- 
tion diagrams  for  the  United  States  ships  Alabama,  Kearsarge, 

Massachusetts  and  Maine  and  the  revenue  cutter  Manning.  The 
mean  effective  pressure  in  the  L.P.  cylinders  equivalent  to  initial 
friction  and  the  percentage  of  maximum  power  absorbed  by  initial 
friction  are  given  below  for  these  vessels  and  the  Yorktown. 

Name  of  Ship. 
York- town. 

Ala- 

bama. 
Kear- 
sarge. 

Massa- 
chusetts. Maine. 

Man- 

ning. 

Mean  effective  pressure  in  L.P.  equiv- 
alent to  initial  friction    1.61 

2.  O7 

1.6? 

1  .  77 

•?.  20 

2.  C2 

Per  cent  of  max.  power  absorbed  by 
initial  friction    

4.28 

4-04 

•1.67 

4-  33 7.44 

6.  co 
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The  above  vessels  were  all  given  careful  trials  and  the  results  are 

as  reliable  as  will  usually  be  obtained.  While  the  diagrams  show 

lines  for  successive  speeds,  successive  values  of  revolutions  could 

have  been  used  as  well,  and  in  fact  the  method  can  be  readily  applied 

to  a  curve  of  power  and  revolutions  where  the  speed  is  not  known. 

It  is  seen  that  in  every  case  there  is  an  excellent  focus  formed  by 
the  lines  for  the  lower  speeds,  except  in  the  case  of  the  Maine, 
where  the  focus  is  not  so  well  defined  as  would  be  desirable.  The 

generally  satisfactory  determination  of  the  focus  in  accordance  with 

theoretical  reasoning  may  be  regarded  as  fairly  strong  evidence  in 

favor  of  the  method  outlined  above.  To  produce  direct  evidence 

for  this  method  we  can  apply  it  to  a  case  where  the  internal  resis- 
tance is  accurately  known  by  some  other  method.  The  Yorktown 

was  one  such  case.  Fortunately,  however,  we  can  produce  stronger 

cases.  In  the  transactions  of  the  Society  of  Naval  Architects  and 

Marine  Engineers  we  find  two  cases  of  determinations  of  speed  and 

power  of  double-ended  ferry  boats  with  a  propeller  at  each  end. 
Three  curves  are  given  for  each  case,  one  curve  for  both  screws  in 

use,  one  for  only  the  stern  screw  in  use,  the  bow  screw  being  removed, 

and  one  for  only  the  bow  screw  in  use.  One  case  was  that  of  the 

Cincinnati,  the  data  for  which  can  be  found  in  a  paper  by  F.  L. 

DuBosque,  in  the  volume  for  1896,  and  the  other  case  was  that  of 

the  Edgewaier,  the  data  for  which  can  be  found  in  a  paper  by 

E.  A.  Stevens  in  the  volume  for  1902.  Fig.  270  reproduces  the 

curves  of  power  plotted  on  revolutions  for  the  Cincinnati  and 

Fig.  271  the  similar  curves  for  the  Edgewaier.  It  is  seen  that  the 

three  curves  for  each  boat  differ  radically  from  each  other,  owing 

to  differences  of  propeller  efficiencies,  etc.,  but  it  is  evident  that  for 

each  vessel  the  internal  friction  of  the  engine  should  not  vary  much 

for  the  three  conditions,  since  the  engines,  shafting,  etc.,  were  the 

same  and  the  only  factors  affecting  frictional  resistance  were  the 

presence  or  absence  of  one  screw  and  the  variations  of  initial  friction 

between  trials.  Figures  272  and  273  show  the  frictional  focal  dia- 
grams for  the  Cincinnati  and  Edgewaier  as  deduced  from  Figs.  270 

and  271  and  the  curves  of  speed  and  revolutions.  The  original  obser- 
vations for  the  Cincinnati  do  not  extend  to  quite  so  low  a  speed  as 

desirable  for  the  initial  friction  determination,  but  it  is  seen  that  the 
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several  cases,  in  spite  of  the  radical  differences  in  the  curves  of  power, 

give  fairly  satisfactory  foci  in  adequate  agreement.  The  average 

value  of  Cf  for  the  Edgewater  is  .738,  the  highest  value  being  5.0 

per  cent  above  and  the  lowest  value  7.2  per  cent  below  the  average. 

Similarly  for  the  Cincinnati  the  average  value  of  Cf  is  .897,  the 

highest  value  being  8.7  per  cent  above  and  the  lowest  value  13.0 

per  cent  below  the  average. 
I  think,  then,  it  may  be  safely  concluded  that  the  Focal  Diagram 

method  outlined  above  will  give  a  definite  determination  of  the 

initial  friction  which,  with  good  data,  may  be  expected  to  be  within 

10  per  cent  of  the  truth.  This  approximation  is  ample  for  practical 

purposes,  since  at  the  higher  speeds  the  whole  initial  friction  power 
is  but  a  small  percentage  of  the  total.  It  will  be  observed  that  the 

focal  points  are  simply  spotted  by  eye  on  the  focal  diagrams.  The 

theoretical  most  correct  focus  of  such  a  diagram  can  be  determined 

by  Least  Square  methods  at  the  expense  of  not  very  much  time  and 

trouble.  Since,  however,  the  results  obtained  are  approximate  in  any 

case,  we  gain  no  real  additional  accuracy  by  the  extra  calculations. 
4.  Determination  of  Efficiency  of  Propulsion  from  Trial  Results. 

-The  efficiency  of  propulsion  being  the  ratio  between  effective  and 

indicated  or  shaft  horse-power  we  need  to  know  the  effective  horse- 
power in  order  to  determine  it  for  any  speed. 

The  effective  horse-power  may  be  that  of  the  bare  hull  or  include 
the  appendages.  In  either  case,  given  the  curves  of  E.H.P.  and  of 

I.H.P.,  the  determination  of  a  curve  of  efficiency  of  propulsion  is 

simple  and  obvious. 

Since  initial  friction  absorbs  a  greater  proportion  of  the  power 

at  low  speeds  we  may  expect  to  find  for  vessels  with  reciprocating 

engines  the  efficiency  of  propulsion  falling  off  rapidly  at  low  speeds. 

If  propeller  efficiency,  wake  factor,  etc.,  were  constant,  the  maxi- 
mum efficiency  of  propulsion  would  always  be  found  at  top  speed, 

but  propeller  efficiency  varies  with  slip,  which  is  not  constant  as 

speed  changes,  and  the  wake  fraction  also  varies  with  speed.  Hence, 

we  frequently  find  the  maximum  efficiency  of  propulsion  below  the 

maximum  speed.  But  in  most  practical  cases  unless  cavitation  sets 

in  the  efficiency  of  propulsion  does  not  change  much  either  way  for 

several  knots  below  the  maximum  speed. 
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If  curves  of  E.H.P.  are  deduced  from  experiments  with  a  model 
of  the  ship  the  resulting  efficiencies  of  propulsion  are  of  course  more 
reliable  than  those  obtained  from  estimated  curves  of  E.H.P.  If, 
however,  model  experiments  are  not  available  for  a  vessel  for  which 
we  have  reliable  power  data  we  should  always  estimate  curves  of 
E.H.P.  from  the  Standard  Series  diagrams  (Figs.  81  to  120)  and 

deduce  curves  of  what  may  be  called  nominal  efficiencies  of  pro- 
pulsion. Such  nominal  efficiencies  for  vessels  of  a  definite  type  are, 

when  dealing  with  a  new  vessel  of  the  same  type,  almost  as  useful 
as  if  they  were  derived  from  model  tests. 

5.  Analysis  for  Wake  Fraction  and  Thrust  Deduction.  —  When 
considering  the  question  of  wake  in  Section  28  we  saw  how  from  the 
propeller  power  P  and  the  revolutions  and  speed  we  could  estimate 
the  wake  fractions  by  a  curve  of  5  from  experiments  with  a  model 
of  the  propeller  or  by  the  standard  curves  of  5  (Figs.  230  to  233). 

As  the  values  of  P  and  5"  used  are  at  best  experimental  and  ap- 
proximate, the  most  that  can  be  hoped  for  wake  fractions  thus 

determined  is  that  they  will  be  reasonably  good  approximations. 
If  there  is  cavitation  the  method  fails,  and  there  is  reason  to 

believe  that  propellers  with  blunt  or  rounding  leading  edges  cavitate 
without  it  being  discovered.  The  effect  of  slight  cavitation,  or  in 
fact  of  any  failure  of  the  Law  of  Comparison,  is  to  cause  the  wake 
deduced  from  Figs.  230  to  233  or  by  similar  methods  to  be  less  than 
the  real  wake.  This  possibility  should  always  be  borne  in  mind 

when  analyzing  trial  results  for  the  determination  of  wake.  Theo- 
retically we  can  determine  thrust  deduction  factors  from  analysis 

of  trial  results  in  connection  with  accurate  model  results  for  ship 
and  propeller  tested  separately. 

E.H.P.  (i  -  iv) 
For  i  —  /  =  —  —*-t 

eP 

where  E.H.P.  is  effective  horse-power  of  ship,  e  is  propeller  effi- 
ciency, P  is  propeller  power  and  w  is  wake  fraction.  In  practice, 

however,  since  every  quantity  on  the  right  of  the  above  equation 
is  estimated  or  only  approximated,  the  thrust  deduction  factors 
thus  determined  are  seldom  reliable. 
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THE  POWERING  OF  SHIPS 

37.  Powering  Methods  Based  upon  Surface 

i.  Rankine's  Augmented  Surface  Method.  —  The  methods  that 
have  been  proposed  and  used  to  estimate  the  power  required  to 
drive  a  given  ship  at  a  given  speed  are  many  and  various.  One 
of  the  earliest  English  methods  which  broke  away  from  the  rule  of 
thumb  and  attacked  the  problem  in  a  logical  and  scientific  way  was 

Rankine's  Augmented  Surface  method,  brought  out  some  fifty  years 
ago.  Rankine  assumed  that  in  a  well-formed  ship  the  resistance 
was  wholly  frictional,  the  water  flowing  past  the  ship  with  perfect 
stream  motion  and  the  frictional  resistance  varying  as  the  square 
of  the  speed. 

But  with  perfect  stream  motion  the  average  relative  velocity  of 
flow  over  the  surface  would  be  somewhat  greater  than  the  speed  of 

the  vessel  with  reference  to  undisturbed  water,  and  Rankine  devel- 

oped elaborate  mathematical  methods  for  determining  an  "  Aug- 
mented "  surface  such  that  its  frictional  resistance  at  the  speed  of 

the  vessel,  neglecting  stream  motion,  would  be  the  same  as  the 
actual  frictional  resistance  of  the  real  surface  of  the  ship  when 

there  was  perfect  stream  motion.  Rankine  assumed  .01  as  a  coef- 
ficient of  friction,  so  by  his  method  we  would  have  Resistance  = 

.01  V2  X  Augmented  Surface.  We  know  now  that  Rankine's  fun- 
damental assumptions  were  wrong  and  would  involve  results  vastly 

more  erroneous  in  practice  than  the  use  of  the  actual  surface  instead 
of  the  slightly  greater  augmented  surface.  In  his  time,  however, 
there  were  few  fast  ships,  and  the  assumption  that  resistance  was 
wholly  frictional  was  not  so  much  in  error  as  it  would  be  now. 
Furthermore,  little  was  known  of  the  actual  coefficients  and  laws 

of  frictional  resistance,  as  William  Froude's  epoch-making  experi- 
ments on  the  subject  were  subsequent  to  1870.  So  Rankine's 

neglect  of  all  resistances  but  friction  was  to  some  extent  made  up 
291 
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by  his  overestimate  of  the  friction.  The  calculation  of  the  Aug- 

mented Surface  was,  however,  not  easy,  and  for  many  years  Ran- 

kine's  method  has  been  obsolete. 

2.  Kirk's  Method.  —  A  method  of  estimating  power  was  brought 
out  by  Dr.  A.  C.  Kirk  of  Glasgow  nearly  thirty  years  ago,  which 

though  resembling  closely  Rankine's  method  in  basic  underlying 
principles,  is  much  simpler  and  easy  of  practical  application.     Dr. 

Kirk  devised  in  the  first  place  a  method  of  approximation  to  the 

wetted  surface  S.     He  then  assumed  that  the  resistance  would  vary 

directly  as  the  square  of  the  speed  and  the  indicated  horse-power 

kSV3 

as  the  cube  of  the  speed,  using  the  formula  7  = — -    -  where  7  is 100000 

indicated  horse-power,  V  is  speed  in  knots,  5  is  wetted  surface  in 
square  feet  and  k  is  a  coefficient  which  must  be  fixed  by  experience. 

Kirk  made  k  =  5  for  merchant  ships  of  ordinary  proportions  and 
efficiency,  while  for  fine  ships  with  smooth  clean  bottoms  and  high 

propulsive  efficiencies  it  was  as  low  as  4  and  for  short  broad  ships 
as  high  as  6. 

For  the  low  speed  cargo  vessel  for  which  Kirk  devised  and  recom- 
mended his  method  it  has  many  excellent  features. 

For  such  vessels  the  residuary  resistance  is  usually  not  a  large 

proportion  of  the  whole,  and  up  to  u  or  12  knots  the  I.H.P.  does 

vary  approximately  as  the  cube  of  the  speed. 

Then  the  coefficient  k  was  fixed,  not  by  preconceived  ideas  or 

reasoning  as  to  what  it  ought  to  be,  but  by  experience  of  what  it 

had  been  on  other  similar  ships.  Hence,  Kirk's  method  is  sound 
in  principle.  The  main  objection  to  it  is  that  it  is  of  little  value 

for  fast  vessels,  and  even  for  the  10  to  12  knot  cargo  boat  the  coeffi- 
cient k  is  apt  to  vary  erratically. 

3.  Coal  Endurance  Estimated  from  Surface.  —  The  principle  of 

Kirk's  method  may  be  utilized  to  advantage  for  estimating  the  low 
speed  endurance  of  vessels  of  war.     Such  vessels,  whatever  their 

full  speed,  usually  make  passages  at  a  moderate  speed  of  10  to  12 
knots  in  order  to  save  coal  or  gain  endurance.     At  such  speeds  the 

I.H.P.  varies  approximately  as  the  cube  of  the  speed  V  and  as 

the  wetted  surface  which  is  proportional  to  \/DL.    Hence,  I.H.P. 
varies  as  F3  VDL 
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Now  at  these  low  speeds  the  coal  burnt  for  all  purposes  per  I.H.P. 

varies  inversely  as  some  power  of  the  speed  and  may  be  assumed  to 

vary  approximately  as  —  • 

Hence,  coal  per  hour  varies  as  — — —  or  as  V  \/DL. 

VVDL 
Hence,  coal  per  mile  varies  as   — —  or  as  v  DL. 

Hence,  miles  steamed  per  ton  of  coal  vary  as  — 
VDL 

So  if  m  denote  the  miles  steamed  per  ton  of  coal  and  K0  a  coal 

jr
 

coefficient,  we  have  m=  -    ==•     If  the  approximate  assumptions v    L/  j^^ 

above  were  exact  K0  would  be  constant  for  all  ships  and  speeds. 

In  practice  K0  varies  from  ship  to  ship  and  with  the  speed  of  a 

given  ship.  It  increases  from  a  very  low  speed  up  to  a  maximum 

value  —  nearly  always  for  a  speed  below  10  knots  which  is  the  most 
economical  speed  for  the  ship. 

For  speeds  beyond  the  most  economical  speed  KQ  falls  off  steadily. 

Fig.  274  shows  curves  of  K0  for  some  United  States  battleships, 

the  average  of  the  sister  ships  Kearsarge  and  Kentucky,  the  Wisconsin 

and  the  Oregon. 

These  curves  are  averaged  from  consumption  at  various  displace- 
ments with  all  kinds  of  coal,  under  all  conditions  of  bottom  and  of 

weather  and  hence  are  from  average  service  results.  The  Wisconsin 

data  was  not  complete  enough  to  make  a  reliable  final  average.  On 

a  given  passage  a  vessel  may  well  show  values  of  K0  twenty  "per 
cent  above  or  below  the  average,  with  the  varying  conditions  as 

respects  quality  of  coal,  state  and  management  of  the  machinery, 
foulness  of  the  bottom  and  the  weather. 

On  the  voyage  of  the  United  States  Atlantic  fleet  around  the 

world  the  Kearsarge  and  the  Kentucky  showed  an  average  K0  for  10 

knots  of  6900  as  against  about  7130  in  Fig.  274.  The  Wisconsin, 

however,  which  has  a  lo-knot  K0  of  only  6910  in  Fig.  274,  showed 
an  average  value  of  7600  in  the  voyage  around  the  world,  the  values 

on  the  different  legs  varying  from  7300  to  790x3.  For  the  whole 
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fleet  the  average  value  of  K0  was  about  7200  at  10  knots.  This 

figure  may  be  regarded  as  fairly  typical  of  large  battleships  with 

reciprocating  engines,  though  it  will  be  found  that  it  will  give  such 

vessels  endurances  under  average  service  conditions  far  below  those 

usually  credited  to  them  in  naval  handbooks. 

A  flotilla  of  United  States  destroyers  on  its  way  from  the  United 

States  to  the  Philippines  via  the  Suez  Canal  some  years  ago  showed 

an  average  value  of  K0  at  10  knots  of  5000.  Merchant  vessels 

designed  for  only  10  knots  naturally  show  much  larger  values  of 

KQ.  Thus  a  large  lo-knot  naval  collier  on  a  voyage  from  Hampton 
Roads  to  Manila  showed  an  average  K0  of  nearly  13,000.  An 

i8,ooo-ton  ten-knot  freighter  in  the  Atlantic  trade  showed  about 
12,000  in  three  passages  under  moderate  weather  conditions,  while 

on  a  passage  made  in  exceptionally  heavy  weather  throughout,  its 

K0  dropped  to  less  than  9000. 

4.  Admiralty  Coefficients.  —  Perhaps  the  method  most  used  in 
the  past  for  powering  ships  has  been  the  Admiralty  Coefficient 

method.  Here  again  the  basic  assumptions  are  that  the  resistance 

is  all  frictional  and  the  I.H.P.  varies  as  the  cube  of  the  speed. 

The  wetted  surface  is  not  used  directly,  however.  For  similar  ships 

the  wetted  surface  varies  as  the  square  of  the  linear  dimensions,  or 

as  D*  where  D  is  displacement  in  tons,  or  as  M  where  M  is  area 
of  midship  section  in  square  feet.  Hence  we  write 

MVS 
where  I  is  indicated  horse-power,  V  is  speed  in  knots,  C\  is 

the  "  displacement  "  coefficient  and  C2  is  the  "  midship  section  " 
coefficient. 

Ci      D* 
It  is  evident  from  the  above  that  —  =  —  ,  so  that  for  a  given 

62      M 
£ 

ship  ~  is  constant  throughout  the  range  of  speed.     But  for  dis- 
C2 

similar  ships  the  ratio  between  C\  and  C2  is  different,  so  that  two 

ships  on  trial  may  show  the  same  values  of  the  displacement  coeffi- 
cient and  very  different  values  of  the  midship  section  coefficient, 

and  vice  versa.  t 
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In  England,  the  displacement  coefficient  has  been  regarded  as 
the  most  reliable,  that  is,  as  showing  less  change  with  variation  of 

type  of  vessel.  In  France,  on  the  contrary,  the  reciprocal  of  the 

midship  section  coefficient  is  largely  used.  It  is  evident,  however, 

that  any  formula  based  upon  the  assumption  that  resistance  varies 

as  the  square  of  the  speed  must  be  unreliable  for  high  speeds  unless 

there  is  available  a  large  accumulation  of  data  from  trials  of  fairly 

similar  high  speed  vessels.  In  such  case,  in  spite  of  the  faulty 

assumption,  it  may  be  possible  to  select  a  suitable  coefficient. 

It  is  apparent,  however,  that  the  Admiralty  coefficients  ignore  a 

number  of  factors  which  have  great  influence  upon  resistance.  For 

instance,  both  coefficients  ignore  the  length  and  the  longitudinal 

coefficient,  —  factors  which  are  sometimes  of  enormous  importance. 
So,  in  spite  of  the  long  use  that  has  been  made  of  the  Admiralty 

Coefficient  method,  it  must  be  regarded  as  reliable  only  when  on  the 
well-beaten  track.  Reliable  trial  results  from  a  number  of  vessels 

of  different  types  will  give  Admiralty  coefficients  which  vary  widely. 

When  it  is  necessary  to  fix  upon  the  coefficient  to  adopt  when 

powering  a  new  vessel,  much  experience  and  good  judgment  will  be 
needed. 

38.   The  Extended  Law  of  Comparison 

i.  Deduction  of  Extended  Law  of  Comparison.  —  The  most 
accurate  method  known  at  present  for  the  estimation  of  the  resist- 

ance of  a  full-sized  ship  is  to  determine  the  resistance  of  a  model  of 
it  and  by  using  the  Law  of  Comparison  deduce  the  resistance  of  the 

full-  sized  ship. 

Evidently,  then,  we  may  regard  a  full-sized  ship  whose  trial  results 
we  know  as  a  model  and  power  similar  ships  from  its  trial  results. 

Thus,  suppose  we  have  a  ship  of  displacement  D  whose  resistance 

is  R  at  speed  V,  whose  effective  horse-power  is  E,  indicated  horse- 
power 7  and  efficiency  of  propulsion  e. 

For  a  similar  ship  at  corresponding  speed  let  us  denote  the  quan- 
tities enumerated  above  by  D\,  RI,  V\,  I\  and  e\. 

We  know  by  the  Law  of  Comparison  that 

1L  =  H.  Z    i/TL     IT^\  =  (R\- 
RI      Di     Vi      \  Li      V  \ZV       \Dj 
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E        RV       ID  " WhenCG  El-Wi  =  fe 
and  if  e  =  e\,  which  should  be  the  case  with  sufficient  approximation, 

EI      e\I\      I\ 

This  is  the  Extended  Law  of  Comparison,  so  called.     We  may  ex- 
press it  by  the  statement  that  for  similar  models  at  corresponding 

speeds  —,  is  constant. 

2.  Application  of  Extended  Law  of  Comparison.  —  There  are 
various  methods  of  plotting  the  trial  data  of  a  ship  so  that  by  using 
the  Extended  Law  of  Comparison  it  can  be  applied  to  new  designs. 

7  V 
A  simple  method  is  to  plot  a  curve  of  ̂   over  values  of  — - =•    This D6  v  T »      J  > 

eliminates  the  size  factor.     Thus,  Fig.  275  shows  a  curve  of  — 
y 

for  the  U.  S.  S.  Yorktown  plotted  on  values  of  —=• 

The  Yorktown  is  of  230  feet  mean  immersed  length,  of  1680  tons' 
trial  displacement  and  made  about  17  knots  on  trial.  Suppose  we 
wish,  from  Fig.  275,  to  determine  the  necessary  I.H.P.  for  a  vessel 

similar  to  the  Yorktown,  289  feet  long,  of  3333  tons'  displacement, 
and  to  make  17  knots.  Then  for  the  289-foot  vessel 

V_         17 
VL    V2&9 

From  Fig.  275  when 
V  I 

VL  & 

Also  (3333)*=  12,881, 
whence  for  the  289-foot  vessel  to  make  17  knots 

7  =  .415  X  12,881  =  5345. 
This  is  very  simple,  but  for  practical  work  it  is  convenient  to 

plot  our  data  a  little  differently.    The  curve  of  — ,  in  Fig.  275  is 

quite  steep  and  varies  a  great  deal  as  we  pass  from  low  to  high 
speeds. 



THE  POWERING  OF  SHIPS 

297 

So  let  us  use  instead  a  curve  of 

/  '     /  V  \3      7 

Then  /  =  N . This  is  a  convenient  form.     We  may  call  N 

the  Extended  Law  of  Comparison  coefficient. 
Figure  276  shows  curves  of  N  as  deduced  from  trial  results  for  the 

Yorktown  and  several  other  vessels.  The  curves  are  numbered,  and 
the  dimension  and  proportion  of  the  corresponding  vessels  are  given 
below : 

Length 

Dis- 

place- 

Li 

Lon- 

D Beam Draught 

No. Name. 
Type. 

L, 

feet. 

ment 

D, 

tons. 

& 
dinal 

Coeff. 

(-)3 

\   !°°J 

B, 

feet. 

H, 

feet. 

i Yorktown    Gunboat 2  1O 
1680 

602  1 
sO< 

118  i 
?  6  oc 

i?  82 
2 Manning    Revenue 

•1 

Dahlgren    
Cutter  .  .  . 

Torpedo 1  88 

1000.7 

.8145 
.605 

157-7 

32-83 

12-33 

Boat    147 

x*8 

5  680 

.665 
4"?  .4 

16.^8 
4.    ̂ J. 

4 
5 
6 

Commonwealth 
Birmingham.  .  . 
Georgia    

Paddle  Str. 
Scout    
B    S 

437-9 

420 

4?c 

543° 

3992 

I4.O6? 

.4025 

•5411 1222 

.626 

•556 6oc 

64.7 

53-9 
181  8 

55-0° 47.08 76    2  I 

13.04 

17-32 
21    7? 

7 Connecticut..  .  . B.  S    

4^O 

l6^7C 

.1157 .682 1  70.  7 

76.8? 

2^  .OO 8 
9 

10 

North  Carolina 
St.  Louis    
Rodney    

Arm.  Cruiser 
Prot.  Cruiser 
B    S     

502 

424 

32C 

14570 
9665 
0600 

.1562 

•1957 

I  1OQ 

•585 

.610 

.669 

115.2 
126.8 
282.7 

72.88 

66.00 68.00 

25.07 22.50 

26.  7O 

ii Narkeeta    Tug         .... 
02  .  5 

TOO 

I    O^T 

.<;8? 24O.O 2O.  Q^ 
7.02 

12 Sheadle  .  .  . Lake  Fgt 

c?O 

I  33O7 

1884 
.SCQ 

80.-? 
56.00 

18.46 

IT. 
Tremont    Ocean  Fgt.   . 

4OO 

I  I4IO 

.  2004 

.782 
07.  0 

sS.oo 
IO.  21 

It  will  be  observed  that  in  any  particular  case  N  is  proportional 

to  — ,  and  hence  is  proportional  to  the  reciprocals  of  the  Admiralty 

V* 

coefficients,  which  are  both  proportional  to  —  • 

The  Extended  Law  of  Comparison  method  of  estimating  power, 
though  better  than  the  Admiralty  Coefficient  method,  is  essentially 
but  an  improved  form  of  the  latter. 

The  assumption  that  all  resistances  follow  the  Law  of  Comparison 
is  in  error  as  regards  the  Skin  Resistance.  This  tends  to  make  us 
overestimate  when  powering  a  large  ship  from  the  results  of  a  small 
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ship,  and  vice  versa.  The  efficiency  of  propulsion  is  not  constant, 
and  the  efficiency  of  the  new  ship  may  be  different  from  that  of  the 

old  ship.  This  source  of  error  is  common  to  all  methods  of  esti- 
mating power  from  trial  results. 

We  have  seen  that  resistance  is  materially  affected  by  variation 
of  the  displacement  length  coefficient  and  of  the  longitudinal 
coefficient.  The  method  of  the  Extended  Law  of  Comparison  takes 

no  account  directly  of  such  variations  and  is  subject  to  error  accord- 
ingly. In  fact,  curves  of  N,  as  in  Fig.  276,  are  of  very  little  value 

without  full  information  as  to  the  ships  to  which  they  refer.  Thus, 

V 
suppose  we  wish  to  power  a  ship  for  which  —  =  is  to  be  .8.     For  this 

speed  length  ratio  we  find  in  Fig.  276  values  of  N  which  vary  radi- 
cally. Thus  Nos.  6  and  7  would  give  N  =  .275.  There  are  a  num- 

ber of  other  values  between  .30  and  .35.  Nos.  4  and  5  would  give 

.475,  while  No.  3  would  give  .72.  These  values  are  thoroughly  dis- 
cordant. It  is  evidently  desirable,  when  powering  a  new  ship,  to 

use  curves  of  N  from  ships  of  the  same  type  having  approximately 
the  same  longitudinal  and  displacement  length  coefficients. 

3.  Powering  Sheet  using  Extended  Law.  —  If.  a  number  of  speed 
and  power  curves  of  various  types  of  ships  are  available,  their  prac- 

tical use  in  powering  is  materially  facilitated  by  reducing  them  to 
curves  of  N,  as  in  Fig.  276,  but  plotting  these  curves  as  in  Fig.  277. 
A  large  sheet  should  be  used,  section  ruled  vertically  with  lines 

representing  equal  intervals  of  longitudinal  coefficient  and  hori- 

/  L  \3 

zontally  with  lines  representing  equal  intervals  of  D  -J-  (  —  1  as .  \ioo/ 
indicated. 

Curves  of  N  are  placed  upon  this  sheet  so  that  the  termination 
corresponding  to  the  maximum  trial  speed  is  located  at  the  point 

/  r  \i corresponding  to  the  longitudinal  coefficient  and  the  D  -f-  (  —  )  for Vioo/ 
V 

the  ship.     All  curves  terminate  at  their  other  extremity  where  —=.  = 

.5,  and  a  vertical  line  is  drawn  down  from  this  extremity  to  the  point 

where  N  =  o  or  has  a  given  value.    For  greater  clearness  each  curve 
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V 
is  numbered,  and  the  corresponding  spot  where  N  =  o,  -— =  =  .5  is 

vL 

marked  O  with  a  subscript  number  the  same  as  the  curve  number. 
y 

When  for  the  datum  point— =  =.5  but  N  is  not  o,  the  value  of  N VL 
v 

is  indicated.     The  same   scales  of  — =and  of  N  are  used  for  all 
VL 

curves,  and  being  drawn  upon  a  separate  piece  of  tracing  cloth  can 
be  adjusted  over  or  under  the  main  sheet  so  as  to  apply  to  any  curve. 
Thus,  in  Fig.  277  the  dotted  lines  represent  the  scale  in  position  for 
No.  6  curve  of  N.  When  reliable  data  is  available  for  but  a  single 

spot  —  not  a  curve  —  it  may  be  located  on  the  powering  sheet  as 
the  spots  marked  10,  n,  12  in  Fig.  277.  Each  spot  must  have  its  o 
spot  also  located  as  shown. 

When  powering  a  new  design  we  will  know  the  values  we  expect 
/  jr  \s  y 

to  use  for  longitudinal  coefficient,  for  D -*•[-—]  and  f or  —  —  •     Lo- \ioo/  \/L 

eating  on  the  sheet  the  point  corresponding  to  the  longitudinal  coeffi- 

/  L  \3 
cient  and  the  value  of  D  -r-  ( — ) ,  it  is  obvious  that  the  best  curves \ioo/ 

of  N  to  use  are  those  terminating  nearest  to  the  located  spot. 
Having  selected  the  curves  of  N  to  be  used,  adjust  the  scale  to  the 
chosen  ones  in  succession  and  from  each  curve  take  the  value  of  N 

y 
corresponding  to  the  — =  for  the  new  design.     Sometimes  there  may VL 

be  reasons  for  giving  more  weight  to  some  of  those  values  of  AT 
than  to  others.  If  not,  the  average  of  the  values  of  N  is  the  proper 
value  to  use  for  the  new  design,  as  a  basis  for  an  estimate  of  the 
neat  power  and  the  variation  in  the  various  values  will  assist  in 
fixing  the  margin  of  power  which  should  always  be  allowed  over  and 
above  the  neat  estimated  power.  In  practice  several  values  of  N 
should  be  taken  from  each  available  curve  corresponding  to  definite 

y 
values  of  — -  and  an  estimated  curve  of  I.H.P.  determined  extending 

above  and  below  the  intended  speed  of  the  new  design. 
The  few  curves  of  N  in  Fig.  277  are  shown  simply  to  indicate 

how  a  working  sheet  should  be  prepared.     Such  a  sheet  should  have 
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a  large  number  of  curves  on  it,  the  more  the  better,  but  no  curves 
or  spots  should  be  used  which  are  not  derived  from  reliable  results 
of  careful  trials.  Published  trials  are  not  always  reliable. 

The  advantage  of  a  powering  sheet  laid  off  as  shown  in  Fig.  277 
is  that  when  a  designer  is  considering  a  question  of  powering  it 
enables  him  to  determine  immediately  whether  his  power  data  from 
previous  ships  is  applicable  to  the  case  or  whether  he  is  working 
in  a  region  not  covered  by  reliable  data  in  his  possession. 

The  error  arising  from  the  application  of  the  results  of  a  small 
ship  to  the  powering  of  a  large  ship  can  be  approximately  corrected 

if  estimates  of  the  frictional  effective  horse-power  at  corresponding 
speeds  of  the  two  are  made.  By  applying  the  Law  of  Comparison 

to  the  frictional  effective  horse-power  of  the  small  ship  and  deducting 
from  the  result  the  frictional  effective  horse-power  of  the  large  ship 
we  determine  the  error  in  the  effective  horse-power  incident  to  the 
use  of  the  Extended  Law  of  Comparison ,  and  the  error  in  the  indi- 

cated horse-power  will  usually  be  about  double  that  in  the  effective 
horse-power.  By  an  obvious  similar  method  we  can  correct  when 
passing  from  a  large  to  a  small  ship. 

The  error  due  to  variation  of  propulsive  efficiency  from  ship  to 
ship  is  not  great  when  we  use  results  of  similar  ships  with  somewhat 

similar  types  of  propelling  machinery.  But  caution  should  be  exer- 
cised and  liberal  margins  allowed  if,  for  instance,  we  wish  to  power 

a  turbine  vessel  and  have  available  only  data  from  vessels  with 
reciprocating  engines. 

The  main  difficulty  with  the  Extended  Law  of  Comparison  method 

as  a  practical  working  proposition  is  the  fact  that  few  or  no  design- 
ers will  have  available  reliable  trial  results  which  will  cover  the 

whole  field  of  speed,  longitudinal  fineness  and  displacement  length 
coefficient. 

39.  Standard  Series  Method 

i.  Use  of  Standard  Series  Results.  —  In  addition  to  the  com- 
paratively simple  methods  of  powering  ships  described  there  have 

been  many  others  proposed  which  are  as  a  rule  more  complicated. 
Many  involved  formulae  for  resistance  have  been  brought  forward 
from  time  to  time. 
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Skin  resistance  is  readily  estimated  by  a  formula  using  the  coeffi- 

cients of  Froude  and  Tideman,  but  no  general  formula  giving  resid- 
uary resistance  accurately  for  any  wide  range  of  speed,  proportions, 

and  fullness  of  model  has  yet  been  brought  forward.  We  have  seen 

that  the  best  approximate  methods  of  powering  hitherto  used  are 

all  weak  in  leaving  largely  to  the  skill  and  judgment  of  the  designer, 

to  his  guesswork,  the  effect  of  proportions  and  fullness  of  model,  and 

that  in  order  to  make  satisfactory  guesses  the  designer  must  have 

an  accumulation  of  data  possessed  by  few. 

Now  by  the  use  of  the  data  given  in  Figs.  78  to  120  it  is  possible 

to  estimate  with  great  accuracy  the  effective  horse-power  of  a  ship 
of  any  displacement,  dimensions,  and  longitudinal  coefficient  upon 
the  lines  of  the  Standard  Series.  Furthermore,  such  a  curve  of 

effective  horse-power  will  approximate  fairly  closely  the  E.H.P.  of 

models  upon  different  lines.  For  with  displacement,  length,  mid- 
ship section  area,  and  longitudinal  coefficient  fixed,  any  variations 

in  shape  that  would  be  made  in  good  practice  will  have  a  com- 
paratively minor  effect  upon  resistance.  Hence,  with  the  aid  of  the 

Standard  Series  the  problem  of  powering  a  ship  is  solved  in  two  steps. 
First:  From  the  Standard  Series  results  get  out  a  curve  of  E.H.P. 

for  a  ship  of  the  same  displacement,  length,  beam  draught  ratio  and 

longitudinal  coefficient. 

Second :  From  the  E.H.P.  estimate  the  I.H.P.  by  applying  a  suit- 
able coefficient  of  propulsion. 

When  following  this  method  there  are  two  principal  sources  of 
error. 

First,  there  is  the  possibility  that  the  lines  used  may  differ  so 
much  from  those  of  the  Standard  Series  that  the  estimated  E.H.P. 

may  be  materially  in  error.  This  source  of  error  may  be  avoided 

by  closely  following  the  lines  of  the  Standard  Series  unless  lines 

positively  known  to  be  superior  are  available. 

Second,  the  coefficient  of  propulsion  chosen  may  be  in  error.  This 

is  an  unavoidable  source  of  error,  and  it  is  on  this  point  only  that 

the  designer,  when  using  the  Standard  Series  method,  must  use  some 

guesswork. 

2.  Propulsive  Coefficients  to  Use.  —  When  an  accumulation  of 
power  data  is  not  available,  it  is  generally  safe,  when  using  lines 
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closely  resembling  those  of  the  Standard  Series,  to  assume  a  nominal 

efficiency  of  propulsion  in  the  vicinity  of  50  per  cent  based  upon 

indicated  horse-power  for  reciprocating  engines  and  somewhat  less, 
say  46  per  cent,  for  the  usual  run  of  turbine  jobs,  but  using  shaft 

horse-power  in  this  case.  These  average  efficiencies  are  based  upon 
the  E.H.P.  of  the  bare  hull  and  are  sufficiently  low  to  allow  for  the 

average  run  of  appendages. 

The  above  is  independent  of  accumulated  data  of  experience  and 

will  enable  fairly  good  results  to  be  obtained  without  such  data,  but 
when  such  is  available  it  should  be  made  use  of  to  the  fullest  extent. 

Thus,  if  we  have  a  reliable  speed  and  power  curve  of  a  vessel,  we 
can  estimate  from  the  Standard  Series  the  E.H.P.  for  a  vessel  on 

Standard  Series  lines  having  the  same  displacement,  length,  area  of 

midship  section  and  ratio  of  beam  to  draught.  Then  from  the 
I.H.P.  curve  of  the  actual  vessel  we  can  determine  the  nominal 

efficiency  of  propulsion.  The  same  nominal  efficiency  should  be 

found  for  another  vessel  of  the  same  general  type  as  the  vessel  whose 

trial  results  are  known,  including  type  of  engines  and  propellers. 

Or  it  may  be  that  there  is  some  change  made  in  the  new  vessel  which 

leads  us  to  anticipate  a  certain  reduction  in  nominal  efficiency  of 

propulsion.  Knowing  the  old  nominal  efficiency  and  the  probable 

reduction,  the  new  nominal  efficiency  to  be  expected  is  determined. 

Any  one  who  finds  from  reliable  data  of  a  given  type  of  vessel  a 

nominal  efficiency  of  propulsion  below  50  per  cent,  should  be  careful 

when  powering  a  new  vessel  of  the  type  to  use  the  nominal  efficiency 

based  upon  preceding  results.  Analysis  of  trial  results  by  the  aid 

of  the  Standard  Series  will  disclose  plenty  of  nominal  efficiencies 

below  50  per  cent.  They  may  be  due  to  lines  inferior  to  those  of 

the  Standard  Series,  to  inefficient  propelling  machinery,  or  to  inac- 
curate power  data.  All  trials  are  not  handled  so  that  the  resulting 

speed  and  power  data  will  be  accurate.  Still  nominal  efficiencies 

of  propulsion  of  50  per  cent  for  indicated  horse-power  of  recipro- 

cating engines  and  46  per  cent  for  shaft  horse-power  of  turbines  are 
often  materially  exceeded,  and  when  it  is  found  that  they  have  not 
been  reached  endeavor  should  be  made  to  locate  the  trouble. 

3.  Advantages  of  Standard  Series  Method.  —  The  Standard 
Series  method  of  estimating  power  has  the  great  advantage  that 
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even  if  the  resistance  of  a  given  ship  is  different  from  the  correspond- 
ing Standard  Series  ship  the  variations  of  resistance  with  varying 

dimensions  and  shape  of  ships  of  the  type  will  follow  closely  the 
variations  deduced  from  the  Standard  Series.  In  other  words,  the 
Standard  Series  may  be  used  as  a  reference  scale  to  determine  rela- 

tive resistances  of  ships  of  constant  type  of  any  dimensions  and  pro- 
portions. A  tape  measure  need  not  be  accurate  to  determine  the 

ratio  of  two  lengths,  and  even  if  from  the  Standard  Series  curves  we 
cannot  accurately  estimate  a  priori  the  resistance  of  a  ship  of  a  given 
type,  we  can  estimate  with  fair  accuracy  the  ratio  of  the  resistances 
of  two  ships  of  the  type;  and  if  we  have  accurate  power  data  for  one 
or  more  such  ships  we  can  use  it  to  establish  the  proper  nominal 
efficiency  of  propulsion  from  which,  using  the  Standard  Series,  we 
can  estimate  with  ample  accuracy  the  power  required  for  other  ves- 

sels of  the  type.  For  this  purpose  it  makes  no  difference  whether 
the  nominal  efficiency  is  or  is  not  the  real  efficiency  of  propulsion. 
If  it  is  really  typical  of  the  type  of  vessel  in  hand  it  is  adequate  for 
powering  purposes. 

The  fact  that  the  nominal  efficiency  of  propulsion,  which  does 
not  vary  much  without  good  reason,  is  the  only  quantity  which  must 
be  estimated  or  guessed  at  from  experience  is  much  in  favor  of  the 
Standard  Series  method.  Furthermore,  in  the  great  majority  of 
cases  the  efficiency  of  propulsion  does  not  vary  much  in  the  vicinity 
of  full  speed. 

Hence,  for  practical  purposes  for  use  in  future  designs,  we  can 
characterize  a  complete  trial  by  a  single  number,  namely,  the  effi- 

ciency of  propulsion  whether  actual  or  nominal.  This  is  a  great 

advantage  where  there  is  a  mass  of  data  to  deal  with.  In  the  Stand- 
ard Series  method  of  powering  all  other  factors  are  taken  care  of  by 

the  method,  automatically,  as  it  were. 
While  by  the  Standard  Series  method  estimates  of  power  are 

much  simplified  and  should  be  made  with  more  accuracy  than  by 

any  of  the  other  methods  of  approximation  described,  they  are  still 
estimated,  and  the  designer  should  be  careful  always  to  allow  a 
margin  of  power  adequate  to  the  necessities  of  the  case.  By  any 
conceivable  method  of  powering  two  sister  ships  would  be  given  the 
same  power  for  the  same  speed,  yet  sister  ships  do  not  always 
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develop  the  same  power  on  trial  and  do  not  always  make  the  same 
speed  for  the  same  power.  Changes  from  previous  vessels  made 
with  a  view  to  improvement  sometimes  turn  out  badly.  Propellers 
frequently  disappoint  the  designer,  and  the  quick  running  propellers 
required  by  turbines  are  especially  uncertain. 

The  designer  who  is  an  optimist  in  choosing  the  efficiency  of  pro- 
pulsion to  be  expected  may  be  very  pessimistic  after  the  trial.  The 

time  for  pessimism  is  when  the  powering  is  being  done,  not  when 
the  trial  is  being  run. 
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