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PREFACE.

In the preparation of this work, the Author's previous treatise,

"Elements of Geometry, Plane and Spherical Trigonometry, and Conic

Sections," has formed the ground-work of construction. But in

adapting the work to the present advanced state of Mathematical edu-

cation in our best Institutions, it was found necessary to so alter the

plan, and the arrangement of subjects, as to make this essentially a

new work. The demonstrations of propositions have undergone radical

changes, many new propositions have been introduced, and the number

of Practical Problems greatly increased, so that the work is now be-

lieved to be as full and complete as could be desired in an elementary

treatise.

In view of the fact that the Seventh Book is so much larger than the

others, it may be asked why it is not divided into two ? We answer,

that classifications and divisions are based upon differences, and that

the differences seized upon for this purpose must be determined by the

nature of the properties and relations we wish to investigate. There

is such a close resemblance between the geometrical properties of the

polyedrons and the round bodies, and the demonstrations relating to

the former require such slight modifications to become applicable to the

latter, that there seems no sufficient reason for separating into two

Books that part of Geometry which treats of them.

The subject of Spherical Geometry, which has been much extended

in the present edition, is placed as before, as an introduction to Spheri-

cal Trigonometry. The propriety of this arrangement may be ques-

tioned by some
;
but it is believed that much of the difficulty which the

student meets in mastering the propositions of Spherical Trigonometry,
arises from the fact that he is not sufficiently familiar witl^the geome-

try of the surface of the sphere ;
and that, by having the propositions

of Spherical Geometry fresh in his mind when he begins the study of

Spherical Trigonometry, he will be as little embarrassed with it as

with Plane Trigonometry.

(Hi)
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iv PREFACE.

Both author and teacher must yield to the demands of the age, and

by a judicious combination of the abstract and the concrete, the theo-

retical and the practical, make the student feel that what he learns

with perhaps painful effort at first, may be made available in import-

ant applications.

In teaching Geometry and Trigonometry, questions should be asked,

extra problems given, and original demonstrations required when the

proper occasions arise ; but care should be taken that the pupil's powers

are not over-tasked. By helping him through his difficulties in such

a way that he shall be scarcely conscious of having received assistance,

he will be encouraged to make new and greater efforts, and will finally

acquire a fondness for a study that may have been highly repugnant

to him in the beginning.

A demonstration that is easily followed and comprehended by one,

may be obscure and difficult to another
;
hence the advantage that will

sometimes be gained by giving two or more demonstrations of the same

proposition. When the student perceives that the same results may
frequently be reached by processes entirely different, he will be stimu-

lated to independent exertion, and in no respect can the teacher better

exhibit his tact than in directing and encouraging such efforts.

Instances will be found throughout the work in which the more im-

portant propositions are twice and three times demonstrated
;
and as

the methods of demonstration are in each case quite different, it is

believed that extra space has not been thus occupied unprofitably.

Practical rules with applications will be found throughout the work,

and in addition to these, there are in both the Geometry and the Trigo-

nometry, full collections of carefully selected Practical Problems.

These are given to exercise the powers and test the proficiency of the

pupil, and when he has mastered the most or all of them, it is not

likely that he will rest satisfied with present acquisition, but conscious

of augmented strength and certain of reward, he will enter new fields of

investigation.
The Author has been aided, in the preparation of the present work,

by J. F. Quinby, A. M., of the University of Rochester, N. Y., late

Professor of Mathematics in the United States Military Academy at

West Point, and J. H. French, LL. D., of Syracuse, New York. The

thorough Scholarship, and long and successful experience of these gen-

tlemen in $ie class-room, rendered them eminently qualified for the

task
;
and to them the public are indebted for much that is valuable,

both in the matter and arrangement of this treatise.

October, 1860.
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GEOMETEY.

DEFINITIONS.

1. Geometry is the science which treats of position, and

of the forms, measurements, mutual relations, and pro-

perties of limited portions of space.

Space extends without limit in all directions, and contains all

bodies.

2. A Point is mere position, and has no magnitude.

3. Extension is a term employed to denote that pro-

perty of bodies by virtue of which they occupy definite

portions of space. The dimensions of extension are

length, breadth, and thickness.

4. A Line is that which has extension in length only.

The extremities of a line are points.

5. A Eight or Straight Line is one all of whose parts

lie in the same direction.

6. A Curved Line is one whose consecutive parts, how-

ever small, do not lie in the same direction.

7. A Broken or Crooked Line is

composed of several straight lines,

joined one to another successively,

and extending in different directions.

When the word line is used, a straight line is to be understood,

unless
otherwise^ expressed.

8. A Surface or Superficies is that which has extension

in length and breadth only.

9. A Plane Surface, or a Plane, is a surface such that

m



10 GEOMETRY.

if any two of its points be joined by a straight line, every

point of this line will lie in the surface.

10. A Curved Surface is one which is neither a plane,
nor composed of plane surfaces.

U. A Plane Angle, or simply an Angle,

is the difference in the direction of two
lines proceeding from the same point.

The other angles treated of in geometry will be named and defined

in their proper connections.

12. A Volume, Solid, or Body, is that which has exten-

sion in length, breadth, and thickness.

These terms are used in a sense purely abstract, to denote mere

space
— whether occupied by matter or not, being a question with

which geometry is not concerned.

Lines, Surfaces, Angles, and Volumes constitute the

different kinds of quantity called geometrical magnitudes.

13. Parallel Lines are lines which have

the same direction.

Hence parallel lines can never meet, however far they may be

produced; for two lines taking the same direction cannot approach
or recede from each other.

Two parallel lines cannot be drawn from the same point; for if

parallel, they must coincide and form one line.

PLANE ANGLES.

To make an angle apparent, the two

lines must meet in a point, as AB and

-4(7, which meet in the point A.

Angles are measured by degrees.

14. A Degree is one of the three hundred and sixty

equal parts of the space about a point in a plane.

If, in the above figure, we suppose A C to coincide with AB,
there will be but one line, and no angle; but if AB retain its posi-

tion, arid A C begin to revolve about the point A, an angle will be

formed, an<J its magnitude will be expressed by that number of the
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360 equal spaces about the point A, which is contained between

AB and AC.

Angles are distinguished in respect to magnitude by
the terms Eight, Acute, and Obtuse Angles.

15. A Right Angle is that formed by one

line meeting another, so as to make equal

angles with that other.

The lines forming a right angle are perpendicular
to each other.

16. An Acute Angle is less than a right

angle.

17. An Obtuse Angle is greater than

a right angle. N.

Obtuse and acute angles are also called

oblique angles; and lines which are neither parallel nor perpen-
dicular to each other are called oblique lines.

18. The Vertex or Apex of an angle is the point in which

the including lines meet.

19. An angle is commonly designated by a letter at its

vertex; but when two or more angles have their vertices

at the same point, they cannot be

thus distinguished.

For example, when the three lines

AB, A C, and AD meet in the common

point A, we designate either of the an-

gles formed, by three letters, placing

that at the vertex between those at the

opposite extremities of the including
lines. Thus, we say, the angle BAG,
etc. B

20. Complements.— Two angles are said to be comple-
ments of each other, when their sum is equal to one right

angle.

21. Supplements.— Two angles are said to be supple-
ments of each other, when their sum is equal to two right

angles.
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PLANE FIGURES.

22. A Plane Figure, in geometry, is a portion of a

plane bounded by straight or curved lines, or by both

combined.

23. A Polygon is a plane figure bounded by straight

lines, called the sides of the polygon.

The least number of sides that can bound a polygon is

three, and by the figure thus bounded all other polygons
are analyzed.

FIGURES OF THREE SIDES.

24. A Triangle is a polygon having three sides and

three angles.

Tri is a Latin prefix signifying three; hence a Triangle is lite-

rally a figure containing three angles. Triangles are denominated

from the relations both of their sides and angles.

25. A Scalene Triangle is one in

which no two sides are equal.

26. An Isosceles Triangle is one in

which two of the sides are equal.

27. An Equilateral Triangle is one in

which the three sides are equal.

28. A Right -Angled Triangle is one

which has one of the angles a right

angle,

29. An Obtuse-Angled Triangle is one

having an obtuse angle.
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30. An Acute-Angled Triangle is one

in which each angle is acute.

31. An Equiangular Triangle is one

having its three angles equal.

Equiangular triangles are also equilateral, and vice versa.

FIGURES OF FOUR SIDES. •

32. A Quadrilateral is a polygon having four sides and

four angles.

33. A Parallelogram is a quadrilateral -,

which has its opposite sides parallel. / /

Parallelograms are denominated from the rela-
'

tions both of their sides and angles.

34. A Rectangle is a parallelogram hav-

ing its angles right angles.

35. A Square is an equilateral rectangle.

36. A Rhomboid is an oblique-angled parallelogram.

37. A Rhombus is an equilateral rhom-

boid.

38. A trapezium is a quadrilateral having
no two sides parallel.

39. A Trapezoid is a quadrilateral in

which two opposite sides are parallel, and
the other two oblique.

40. Polygons bounded by a greater number of sides

2



14 GEOMETRY,

than four are denominated only by the number of sides.

A polygon of ^ve sides is called a Pentagon, of six a

Hexagon, of seven a Heptagon, of eight an Octagon, of

nine a Nonagon, etc.

41. Diagonals of a polygon are lines

joining the vertices of angles not ad-

jacent.

42. The Perimeter of a polygon is its boundary consid

ered as a whole.

43. The Base of a polygon is the side upon which the

polygon is supposed to stand.

44. The Altitude of a polygon, is the perpendicular
distance between the base and a side or angle opposite

the base.

45. Equal Magnitudes are those which are not only

equal in all their parts, but which also, when applied the

one to the other, will coincide throughout their whole

extent.

46. Equivalent Magnitudes are those which, though they
do not admit of coincidence when applied the one to the

other, still have common measures, and are therefore

numerically equal.

47. Similar Figures have equal angles, and the same

number of sides.

Polygons may be similar without being equal ;
that is, the angles

and the number of sides may be equal, and the length of the sides

and the size of the figures unequal.

THE CIRCLE.

48. A Circle is a plane figure bound-

ed by one uniformly curved line, all of

the points in which are at the same

distance from a certain point within,

called the Center.

49. The Circumference of a circle is

the curved line that bounds it.
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50. The Diameter of a circle is a line passing through
its center, and terminating at both ends in the circum-

ference.

51. The Radius of a circle is a line extending from

its center to any point in the circumference. It is one

half of the diameter. All the diameters of a circle are

equal, as are also all the radii.

52. An Arc of a circle is any portion of the circum-

ference.

53. An angle having its vertex at the center of a

circle is measured by the arc intercepted by its sides.

Thus, the arc AB measures the angle AOB; and in gen-

eral, to compare different angles, we have but to compare
the arcs, included by their sides, of the equal circles

having their centers at the vertices of the angles.

UNITS OF MEASURE.

54. The Numerical Expression of a Magnitude is a number

expressing how many times it contains a magnitude of the

same kind, and of known value, assumed as a unit.

For lines, the measuring unit is any straight line of fixed

value, as an inch, a foot, a rod, etc.
;
and for surfaces, the

measuring unit is a square whose side may be any linear

unit, as an inch, a foot, a mile, etc. The linear unit

being arbitrary, the surface unit is equally so
; and its

selection is determined by considerations of convenience

and propriety.

For example, the parallelogram ABB C is mea- c D
sured by the number of linear units in CB, mul-

tiplied by the number of linear units in A C or

BB
j
the product is the square units in ABB C.

For, conceive CB to be composed of any number
of equal parts

—
say five—and each part some unit of linear measure,

and AC composed of three such units; from each point of divi-

sion on CD draw lines parallel *o A C, and from each point of divi-

sion on AC draw lines parallel to CB or AB} then it is as obvious
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as an axiom that the parallelogram will contain 5 x 3 = 15 square
units. Hence, to find the areas of right-angled parallelograms, mul-

tiply the base by the altitude.

EXPLANATION OF TERMS.

55. An Axiom is a self-evident truth, not only too sim-

ple to require, but too simple to admit of, demonstration.

56. A Proposition is something which is either pro-

posed to be done, or to be demonstrated, and is either a

problem or a theorem.

57. A Problem is something proposed to be done.

58. A Theorem is something proposed to be demon-
strated.

59. A Hypothesis is a supposition made with a view to

draw from it some consequence which establishes the

truth or falsehood of a proposition, or solves a problem.

60. A Lemma is something which is premised, or demon-

strated, in order to render what follows more easy.

61. A Corollary is a consequent truth derived imme-

diately from some preceding truth or demonstration.

62. A Scholium is a remark or observation made upon
something going before it.

63. A Postulate is a problem, the solution of which is

self-evident.

POSTULATES.

Let it be granted—
I. That a straight line can be drawn from any one point

to any other point ;

II. That a straight line can be produced to any distance,

or terminated at any point ;

III. That the circumference of a circle can be de-

scribed about any center, at any distance from that center.
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AXIOMS.

1. Tilings which are equal to the same thing are equal to

each other.

2. When equals are added to equals the wholes are equal.

3. When equals are taken from equals the remainders are

equal.

4. When equals are added to unequals the wholes are

unequal.
5. When equals are taken from unequals the remainders

are unequal.

6. Things which are double of the same thing, or equal

things, are equal to each other.

7. Things which are halves of the same thing, or of equal

things, are equal to each other.

8. The whole is greater than any of its parts.

9. Every whole is equal to all its parts taken together.

10. Things which coincide, or fill the same space, are

identical, or mutually equal in all their parts.

11. All right angles are equal to one another.

12. A straight line is the shortest distance between two

points.

13. Two straight lines cannot inclose a space.

ABBREVIATIONS.

The common algebraic signs are used in this work,
and demonstrations are sometimes made through the

medium of equations; and it is so necessary that the

student in geometry should understand some of the more

simple operations of algebra, that we assume that he is

acquainted with the use of the signs. As the terms

circle, angle, triangle, hypothesis, axiom, theorem, cor-

ollary, and definition, are constantly occurring in a course

of geometry, we shall abbreviate them as shown in the

following list :

2* B
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Addition is expressed by 4-

Subtraction " "
. . . . —

Multiplication
" " .... X

Equality and Equivalency are expressed by . =
Greater than, is expressed by . . . . >
Less than,

" " <
Thus : B is greater than J., is written . B^>A

B is less than 4,
" "

. B<A
A circle is expressed by O
An angle

" "
[__

A right angle is expressed by . . . E. [_

Degrees, minutes, and seconds, are expressed

by
'

. . .
° ' "

A triangle is expressed by .... A
The term Hypothesis is expressed by . . (Hy.)

" Axiom " "
. (Ax.)

" Theorem " "•
(Th.)

"
Corollary

« «
. (Cor.)

" Definition " «
(def.)

"
Perpendicular is expressed by . J-

The difference of two quantities, when it is

not known which is the greater, is ex-

pressed by the symbol ru

Thus
;
the difference between A and B is written

A r^B.
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BOOK I.

OF STRAIGHT LINES, ANGLES, AND POLYGONS.

THEOREM I.

When one straight line meets another, not at its extremity,

the two angles thus formed are two right angles, or they are

together equal to two right angles.

Let AB meet CD, and ifAB is perpen- ¥
,

A

dicular to CD, it does not incline to either

extremity of CD. In that case, the angle
ABD is equal to the angle ABC, and is c"

a right angle, by Definition 15.

But if these angles are unequal, we are to show that

their sum is equal to two right angles. Conceive the

dotted line BE to be drawn from the point B, so as not to

incline to either side of CD ; then, by Def. 15, the angles
< CBE and JEJBD are right angles ; but the angles CBA
and ABD make the same sum, or fill the same angular

space, as the two angles CBE and EBD, and are, con-

sequently, equal to two right angles. Hence the theorem
;

when one straight line meets another, not at its extremity, the

sum of the two angles is equal to two right angles.

Cor. Hence, the two angles ABC and ABD are supple-

mentary to each other, (Def. 21).

THEOREM II.

From any point in a straight line, not at its extremity, the

sum of all the angles that can be formed on the same side of

the line is equal to two right angles.

Let CD be any line, and B any point w f
in it.

We are to show that the sum of all the

angles which can be formed at B, on one c

side of CD, will be equal to two right angles.
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By Th. 1, any two supplementary angles, as ABB,
ABO, are together equal to two right angles. And since

the angular space about the point B is neither increased

nor diminished by the number of lines drawn from that

point, the sum of all the angles DBA, ABU, EBH,
HBO, fills the same spaces as any two angles HBB,
HBO. Hence the theorem

; from any point in a line, the

sum of all the angles that can be formed on the same side of

the line is equal to two right angles.

Oor. 1. And, as the sum of all the angles that can be

formed on the other side of the line, OB, is also equal to

two right angles ; therefore, all the angles that can be

formed quite round a point, B, by any number of lines, are

together equal to four right angles.

Oor. 2. Hence, also, the whole circum-

ference of a circle, being the sum of the

measures of all the angles that can be

made about the center F, (Def. 53), is the

measure of four right angles; conse-

quently, a semicircle, or 180°, is the mea-

sure of two right angles ; and a quadrant, or 90°, is the

measure of one right angle.

THEOREM III.

If one straight line meets two other straight lines at a

common point, forming two angles, which together are equal
to two right angles, the two straight lines are one and the

same line.

Let the line AB meet the

lines BD and BE at the com-

mon point B, making the sum
of the two angles ABB, ABE,
equal to two right angles ; we
are to prove that DB and BE
are one straight line.
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If BB and BE are not in the same line, produce BB
to 0, thus forming one line, BBO.
Now by Th. 1, ABB + ABO must be equal to two

right angles. But by hypothesis, ABB + ABE is equal

to two right angles.

Therefore, ABB + ABO is equal to ABB + ABE,
(Ax. 1). From each of these equals take away the com-

mon angle ABB, and the angle ABO will be equal to

ABE, (Ax. 5). That is, the line BE must coincide with

BO, and they will be in fact one and the same line, and

they cannot be separated as is represented in the figure.

Hence the theorem
; if one line meets two other lines at a

common point, forming two angles which together are equal

to two right angles, the two lines are one and the same line.

THEOKEM IV.

If two straight lines intersect each other, the opposite or

vertical angles must be equal.

If AB and OB intersect each

other at E, we are to demonstrate

that the angle AEO is equal to

the vertical angle DEB ; and the

angle AEB, to the vertical angle
OEB.
As AB is one line met by BE, another line, the two

angles AEB and BEB, on the same side of AB, are equal
to two right angles, (Th. 1). Also, because OB is a right

line, and AE meets it, the two angles AEO and AEB
are together equal to two right angles.

Therefore, AEB + BEB ft- AEO + AEB. (Ax. 1.)

If from these equals we take away the common angle

AEB, the remaining angle BEB must be equal to the

remaining angle AEO, (Ax. 3). In like manner, we can

prove that AEB is equal to OEB. Hence the theorem ;

if the two lines intersect each other, the vertical angles must

be equal.
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Second Demonstration,

By Def. 11, the angle DEB is the difference in the

direction of the lines ED and EB; and the angle AEQ
is the difference in the direction of the lines EC and EA.
But ED is opposite in direction to EQ; and EB is

opposite in direction to EA.

Hence, the difference in the direction of ED and EB
is the same as that of EQ and EA, as is ohvious by in-

spection.

Therefore, the angleDEB is equal to its opposite AEC.
In like manner, we may prove AED = CEB.
Hence the theorem

; if two lines intersect each other, the

vertical angles must be equal.

THEOREM V.

If a straight line intersects two parallel lines, the sum of

the two interior angles on the same side of the intersecting

line is equal to two right angles.

[Note.
—By interior angles, we mean angles which lie between the

parallels ;
the exterior angles are those not between the parallels.]

Let the parallel lines AB
and CD intersect EF; then

we are to demonstrate that

the angles BGH + GHD =
2 R, L
Because GB and ED are c /H d

parallel, they are equally in- jf

clined to the line EF, or have

the same difference of direction from that line. There-

fore, [_FGB = L &HD. To each of these equals add

the [_BGH, and we have FGB +BGH=GHD+BGH.
But by Th. 1, the first member of this equation is equal

to two right angles ;
and the second member is the sum

of the two angles between the parallels. Hence the theo-

rem ; if a line intersects two parallel lines, the sum of the two

interior angles on the same side of the intersecting line must

be equal to two right angles.
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Scholium.— As AB and CD are parallel lines, and EF is a lino

intersecting them, AB and EF must make equal angles to those made

by CD and EF. That is, the angles about the point G must be equal
to the corresponding angles about the point H.

THEOREM VI.

If a line intersects two parallel lines, the alternate interior

angles are equal.

Let AB and CD be paral-

lels, intersected by EF at R
and G. Then we are to prove
that the angle AGH is equal ^~y

—
to the alternate angle GHD, /
and CHG - HGB. c /H f>

By Th. 5, [_BGH + ]_ /
GrHD — two right angles. Al-

so, by Th. 1, [_AGH + [_BGH = two right angles.

From these equals take away the common angle BGH,
and L CHD will be left, equal to \_AGH, (Ax. 3).

In

like manner, we can prove that the angle CHG is equal
to the angle HGB. Hence the theorem

; if a line intersects

two parallel lines, the alternate interior angles are equal.

Cor. 1. Since |__AGH= [__ FGB,
and [__AGH=l_GHD;
Therefore, [_FGB =

\__ GHD (Ax. 1).

Also, [__AGF + l_AGH=2H. |___, (Th. 1),

and L CHG + [_AGH = 2 K. [_, (Th. 5);

Therefore,

[_AGF+]_AGH = ]_CHG + [__AGH, (Ax.l);
and L.AGF = [_ CHG, (Ax. 3).

That is, the exterior angle is equal to the interior opposite

angle on the same side of the intersecting line.

Cor. 2. Since [__AGH = [__FGB,
and \_AGH=[_CHE;
Therefore, l__FGB = L CHE.
In the same manner it may be shown that

[__AGF = [_EHD.
Hence, the alternate exterior angles are equal.
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THEOREM VII.

If a line intersects two other lines, making the sum of the

two interior angles on the same side of the intersecting line

equal to two right angles, the two straight lines are parallel.

Let the line FF intersect

the lines AB and CB, making
the two angles BaR + GHD A= to two right angles ;

then

we are to demonstrate that

AB and OB are parallel. C /H ~~b

As EF is a right line and B
'

BCr meets it, the two angles
FGrB and BGrlT are together equal to two right angles,

(Th. 1). But by hypothesis, the angles, j?##and aHB,
are together equal to two right angles. From these two

equals take away the common angle BGrH, and the re-

maining angles FGrB and CrffB must be equal, (Ax. 3).

'Now, because GfB and SB make equal angles with the

same line EF, they must extend in the same direction
;
and

lines having the same direction are parallel, (Def. 13).

Hence the theorem
; if a line intersects two other lines, making

the sum of the two interior angles on the same side of the in-

tersecting line equal to two right angles, the two lines must be

parallel.

Cor. 1, Ifa line intersects two other lines, making the

alternate interior angles equal, the two lines intersected

must be parallel.

Suppose the L -4## = L ff^Z>- Adding \__HGB
to each, we have

[__AGH + L HGLB = L aEI) + L.B&B-
but the first member of this equation, that is, [_AGR-\-

|__ HGrB, is equal to two right angles ;
hence the second

member is also equal to the same ;
and by the theorem,

the lines AB and CD are parallel.

Cor. 2. If a line intersects two other lines, making the
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opposite exterior and interior angles equal, the two lines

intersected must be parallel.

Suppose the
[__FGB = |_ &#B. Adding the [__EaB

to each, we have

L fgb + \_hgb =
i ®HI> + EaB -

But the first member of this equation is equal to two

right angles ;
hence the second member is also equal to

two right angles ;
and by the theorem, the lines AB and,

CD are parallel.

Cor. 3. If a line intersects two other lines, making the

alternate exterior angles equal, the lines must be parallel,

Suppose [_BGF=\_CHE, and [_AGF= [_DHE,
ByTh.4, \_BGF=[_AGH,^di[_OHE^l_DHG.
And since [_BGF= [_OHE, [_AGH=\_DHG.
That is, the alternate interior angles are equal; and

hence (by Cor. 1) the two lines are parallel.

THEOREM VIII.

If two angles have their sides parallel, the two angles will

be either equal or supplementary.

Let A be parallel to BD, and AH
parallel to BF or to BG. Then we are

to prove that the angle DBF is equal

to the angle CAH, and that the angle
DBG is supplementary to the angle A.

The angle OAH is formed by the differ-

ence in the direction ofAC andAH; and

the angle DBF is formed by the differ-

ence in the direction of BD and BF.
But AC and AH have the same direc-

tions as BD and BF, because they are respectively paral-

lel. Therefore, by Def. 11, L CAH= [_DBF. But the

line BG has the same direction as BF, and the angle
DBG is supplementary to DBF. Hence the theorem;

angles whose sides are parallel, form either equal or supple-

mentary angles.

3
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THEOREM IX.

The opposite angles of any parallelogram are equal.

Let AEBGi be a parallel-

ogram. Then we are to \

prove that the angle GBE G _\B_

is equal to its opposite angle

A.
*

ProduceEB to D, and GB
to F; then, since BJ) is par-

allel to A G, and BF to AE, the angle DBF is equal to

the angle A, (Th. 8).

But the angles GBE and DBF, being vertical, are

equal, (Th. 4). Therefore, the opposite angles QBE and

A, of the parallelogram AEBG, are equal.

In like manner, we can prove the angle E equal to

the angle G. Hence the theorem
;

the opposite angles of

any parallelogram are equal,

THEOREM X.

The sum of the angles of any parallelogram is equal to

four right angles.

Let ABCB be a parallelo-

gram. We are to prove that

the sum of the angles A, B,
and B, is equal to four right

angles, or to 360°.

Because AB and BC are parallel lines, and AB inter-

sects them, the two interior angles A and B are together

equal to two right angles, (Th. 5). And because CD in-

tersects the same parallels, the two interior angles C and
D are also together equal to two right angles. By addi-

tion, we have the sum of the four interior angles of the

parallelogram ABCB, equal to four right angles. Hence
the theorem ;

the sum of the angles of any parallelogram is

equal to four right angles.
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THEOREM XI,

The sum of the three angles of any triangle is equal to two

right angles.

LetAB be a triangle,

and through its vertex

draw a line parallel to the

base AB, and produce
the sides AC and BO.
Then the angles A and

a, being exterior and in-

terior opposite angles on

the same side of two parallels, are equal, (Th. 6, Cor. 1).

For like reasons, \__B = [__£. And the angles and c,

being vertical angles, are also equal, (Th. 4). Therefore,

the angles A, B, C are equal to the angles a, b, c respect-

ively. But the angles around the point (7, on the upper
side of the parallel CD, are equal to two right angles,

(by Th.
1). Hence the theorem; the sum of the three

angles, etc.

Second Demonstration.

hetAEBG be a parallelogram.
Draw the diagonal GE; then the

parallelogram is divided into two

triangles, and the opposite angles
E R

€r and E are mutually divided by the diagonal GrE.

Because GrB and AE are parallel, the alternate interior

angles BGrE and GrEA are equal, (Th. 6). Designate
each of these by b.

In like manner, because EB and A G- are parallel, the

alternate interior angles, BEG- and EGA, are equal.

Designate each of these by a.

Now we are to prove that the three angles B> b, and a,

and also that the three angles A, a, and b, are equal to

two right angles.
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Because A and B are opposite angles of a parallelo-

gram, they are equal, (Th. 9), and [_A + [_B = 2 \__A.

And all the interior angles of the parallelogram are

equal to four right angles, (Th. 10).

Therefore, 2A + 2a -f 26 = 4 right angles.

Dividing by 2, and A 4- a + b = 2 "

That is, all the angles of the triangle AGE are together

equal to two right angles.

Hence the theorem
;
the sum of the three angles, etc.

Scholium.—Any triangle, as AGE, may be conceived to be part of

a parallelogram. For, let AGE be drawn independently of the paral-

lelogram ;
then draw EB from the point E parallel to A G, and through

the point G draw GB parallel to AE, and a parallelogram will be

formed embracing the triangle ; and thus the sum of the three angles

of any triangle is proved equal to two right angles.

This truth is so fundamental, important, and practical,

as to require special attention ; we therefore give a

Third Demonstration.

Let ABO be a triangle. Then
we are to show that the angles A,

0, and ABC, are together equal
to two right angles.
Let AB be produced to D, and

from B draw BE parallel to AC.

Then, EBB and OAB being exterior and interior op-

posite angles on the same side of the line AB, are equal,

(Th. 6, Cor. 1). Also, QBE and ACB, being alternate

angles, are equal, (Th. 6).

By addition, observing that [__ QBE, added to [_EBB,
must make [_ CBD, we have

[_CBB = l_A + l_a (1.)

To each of these equals add the angle CBA, and we
shall have

[_CBA + [_CBD= L_^ + l_C+l_CBA.
But (by Th. 1), the sum of the first two is equal to two
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right angles; therefore, the three angles, A, 0, and OBA,
\re together equal to two right angles.
Hence the theorem

; the sum of the three angles, etc.

THEOREM XII.

If any side of a triangle is 'produced, the exterior angle is

equal to the sum of the two interior opposite angles.

Let ABO be a triangle. Pro-

duce AB to D; and we are to

prove that the angle OBI) is equal
to the sum of the two angles A
and O.

We establish this theorem by a

course of reasoning in all respects the same as that by
which we obtained Eq. (1.), third demonstration, (Th. 11).

Oor. 1. Since the exterior angle of any triangle is equal
to the sum of the two interior opposite angles, therefore

it is greater than either one of them.

Oor. 2. If two angles in one triangle be equal to two

angles in another triangle, the third angles will also be

equal, each to each, (Ax. 3) ;
that is, the two triangles

will be mutually equiangular.

Oor. 3. If one angle in a triangle be equal to one angle
in another, the sum of the remaining angles in the one

will also be equal to the sum of the remaining angles in

the other, (Ax. 3).

Oor. 4. If one angle of a triangle be a right angle, the

sum of the other two will be equal to a right angle,

and each of them singly will be acute, or less than a right

angle.

Oor. 5. The two smaller angles of every triangle are

acute, or each is less than a right angle.

Oor. 6. All the angles of a triangle may be acute, but

no triangle can have more than one right or one obtuse

angle.
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THEOREM XIII.

In any quadrilateral, the sum of the four interior angles is

equal to four right angles.

Let ABCD be a quadrilateral; then we
are to prove that the sum of the four in-

terior angles, that is A -f B + + D, is

equal to four right angles.

Draw the diagonal AC, dividing the

quadrilateral into two triangles, ABO,
ABO. Now, since the sum of the three angles of each

of these triangles is equal to two right angles, (Th. 11),

it follows that the sum of all the angles of both triangles

which make up the four angles of the quadrilateral, must
be equal to four right angles, (Ax. 2).

Hence the theorem
;
in any quadrilateral, etc.

Cor. 1. Hence, if three of the angles of a quadrilateral

are right angles, the fourth will also be a right angle.

Oor. 2. If the sum of two of the four angles be equal
to two right angles, the sum of the remaining two will

also be equal to two right angles. And, if the sum of

either two of the angles be less than two right angles,

the sum of the other two angles will be greater than two

right angles.

THEOREM XIV.

In any polygon, the sum of all the interior angles is equal
to twice as many right angles, less four, as the figure has sides.

Let ABODE be any polygon ;

we are to prove that the sum of

all its interior angles, A + B -f

-f- D + E, is equal to twice as

many right angles, less four, as

the figure has sides.

From any point, p, within the

figure, draw lines pA, pB, pO, etc., to all the angles,
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thus dividing the polygon into as many triangles as it

has sides. Now, the sum of the three angles of each of

these triangles is equal to two right angles, (Th. 11) ;
and

the sum of the angles of all the triangles must be equal

to twice as many right angles as the figure has sides.

But the sum of these angles contains the sum of four

right angles about the point p ; taking these away, and

the remainder is the sum of the interior angles of the

figure. Therefore, the sum must be equal to twice as

many right angles, less four, as the figure has sides.

Hence the theorem
;
in any polygon, etc.

From this Theorem is derived the rule for finding the

sum of the interior angles of any right-lined figure :

Subtract 2 from the number of sides, and multiply the re-

mainder by 2 ; the product will be the number of right angles.

Thus, if the number of sides be represented by S, the

number of right angles will be represented by (2S
—

4).

The Theorem is not varied in

case of a re-entrant angle, as rep- ^1
resented at d, in the figure ABC- ^^
DEF.

^-------JA
Draw lines from the angle d \ /' \ /

to the several opposite angles, \ / \ /
making as many triangles as the

figure has sides, less two, and the

sum of the three angles of each triangle equals two right

angles.

THEOREM XV.

From any point without a straight line, but one perpendic-

ular can be drawn to that line.

From the point A let us suppose A
it possible that two perpendiculars,
AB andA C, can be drawn. Now, be-

cause AB is a supposed perpendicu-

lar, the angle ABC is a right angle ;
.

and because AC is a supposed per-
B c
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pendicular, the angle ACB is also a right angle; and if

two angles of the triangle ABC are together equal to two

right angles, the third angle, BAG, must be infinitely

small, or zero
;
but this is impossible, for it requires the

sum of the three angles of a triangle to make two right

angles, (Th. 11). Therefore, the lines AB and A must
be identical, or but one perpendicular.
Hence the theorem

; from any point without a straight

line, etc.

Cor. At a given point in a straight line but one per-

pendicular can be erected to that line
; for, if there could

be two perpendiculars, we should- have unequal right

angles, which is impossible.

THEOREM XYI.
Two triangles which have two sides and the included angle

in the one, equal to two sides and the included angle in the

other, each to each, are equal in all respects.

In the two A's, ABCand BEF,
on the supposition thatAB= BE,
AC=BF, and [_A = [_B, we
are to prove that BC must = EF,
the [__B = L.2J, and the [_C=
l_F.

Conceive the a ABC cut out of the paper, taken up,
and placed on the A BEF in such a manner that the

point A shall fall on the point B, and the line AB on

the line BE; then the point B will fall on the point E,
because the lines are equal. Now, as the [__A = [__B,

the line ACmust take the same direction as BF, and fall

on BF; and as AC = BF, the point C will fall on F. B
being on E and C on F, BC must be exactly on EF.

(otherwise, two straight lines would enclose a space, Ax.

13), and BC'= EF, and the two magnitudes exactly fill

the same space. Therefore, BC = EF, [__B = [_E,
L (7= [_F, and the two A's are equal, (Ax. 9).

Hence the theorem ; two triangles which have two sides, etc.
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THEOREM XVII.

When two triangles have a side and two adjacent angles in

the one, equal to a side and two adjacent angles in the other,

each to each, the two triangles are equal in all respects.

In two a's, as ABO and

DEF, on the supposition
that BO= EF,[_B=[_E,
and [v

—
[__ F, we are to

prove that AB m BE, AG
= DF, andL^- - L-^-

Conceive the A ABO taken np and placed on the A
BEF, so that the side BO shall exactly coincide with its

equal side EF; now, because the angle B is equal to the

angle E, the line BA will take the direction of ED, and

will fall exactly upon it
;
and because the angle is equal

to the angle F, the line OA will take the direction of

FD, and fall exactly upon it
;
and the two lines BA and

OA, exactly coinciding with the two lines ED and FD,
the point A will fall on D, and the two magnitudes will

exactly fill the same space ; therefore, by Ax. 10, they are

equal, and AB = DE, AO=DF, and the \_A = [_D.
Hence the theorem ; when two triangles have a side and

two adjacent angles in the one, equal to, etc.

THEOREM XVIII.

If two sides of a triangle are equal, the angles opposite

these sides are also equal.

Let ABO be a triangle; and on

the supposition that AO = BO, we
are to prove that the [__-4=the [_B.

Conceive the angle divided into

two equal angles by the line OD;
then we have two A's, ADO and

BDO, which have the two sides, AO
and OD of the one, equal to the two

sides, OB and OD of the other
; and

to
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the included angle ACD, of the one, equal to the in-

cluded angle BCD of the other: therefore, (Th. 16), AD
m BD, and the angle A, opposite to CD of the one tri-

angle, is equal to the angle B, opposite to CD of the

other triangle ;
that is, [_A= [_B.

Hence the theorem
; if two sides of a triangle are equal,

the angles, etc.

Cor. 1. Conversely : if two angles of a triangle are equal,

the sides opposite to them are equal, and the triangle is

isosceles.

For, if AC is not equal to BC, suppose BC to be the

greater, and make BE= AE; then will A AEB be isos-

celes, and [_EAB = \_EBA ;
hence [__EAB = [_ CAB,

or a part is equal to the whole, which is absurd
; therefore,

CB cannot be greater than AC, that is, neither of the

sides AC, BC, can be greater than the other, and conse-

quently they are equal.

Cor. 2. As the two triangles, ACD and BCD, are in all

respects equal, the line which bisects the angle included

between the equal sides of an isosceles A also bisects the

base, and is perpendicular to the base.

Scholium 1.— If in the perpendicular DC, any other point than C
be taken, and lines be drawn to the extremities A and B, such lines

will be equal, as is evident from Th. 16
; hence, we may announce

this truth : Any point in a perpendicular drawn from the middle of a

line, is at equal distancesfrom the two extremities of the line.

Scholium 2.— Since two points determine the position of a line, it

follows, that the line which connects two points equally distant from the

extremities of a given line, is perpendicular to this line at its middle

point.

THEOREM XIX.

The greater side of every triangle has the greater angle

opposite to it.

Let ABC be a A ;
and on the supposition that AC is

greater than AB, we are to prove that the angle ABCia
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greater than the [_ 0. From AO, the

greater of the two sides, take AB, equal ^
to the less side AB, and draw BB, thus /\

making two triangles of the original tri- / \

angle. As AB = AID, the [_ABB = / \
the [_ABB, (Th.18).

B \T \
But the LABB is the exterior angle \\

of the A BBC, and is therefore greater C

than O, (Th. 12); that is, the [__ABB
is greater than the angle 0. Much more, then, is the

angle AB greater than the angle 0.

Hence the theorem
;
the greater side of every triangle, etc.

Cor. Conversely: the greater angle of any triangle has

the greater side opposite to it.

In the triangle ABO, let the angle B be greater than

the angle A ;
then is the side A greater than the side

BO.

Tor, if BO — AO, the angle A must be equal to the

angle B, (Th. 18), which is contrary to the hypothesis ;

and if BC^>AC, the angle A must be greater than the

angle B, by what is above proved, which is also contrary
to the hypothesis ;

hence BO can be neither equal to, nor

greater, than AO; it is therefore less than AO.

THEOREM XX.

The difference between any two sides of a triangle is less

than the third side.

A
Let JLJ? (7be a A, in which JL<7is greater \

than AB; then we are to prove that AO I \
—AB is less than BO. I \
On AO, the greater of the two sides, / ,M)

lay off AB equal to AB. ^>sJ \
Now, as a straight line is the shortest ^^^

distance between two points, we have c

AB + BO>AO. (1)
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From these unequals subtract the equals AB — AD,
and we have BO > AC— AB. (Ax. 5).

Hence the theorem
; the difference between any two sides

of a triangle, etc.

THEOREM XXI.

If two triangles have the three sides of the one equal to

the three sides of the other, each to each, the two triangles are

equil, and the equal angles are opposite the equal sides.

In two triangles, as ABC and ABB, on the supposition

that the side AB of the one = the side AB of the other,

AC— AD, and BC=BD, we are to demonstrate that

\_ACB=l_ADB, \_BAC=
[_BAD, and \__ABC= \__ABD.

Conceive the two triangles to

be joined together by their long-
est equal sides, and draw the

line CD.

Then, in the triangle A CD,
because AC is equal to AD,
the angle ACD is equal to the angle ADC, (Th. 18). In

like, manner, in the triangle BCD, because BC is equal
to BD, the angle BCD is equal to the angle BDC. Now,
the angle ACD being equal to the angle ADC, and the

angle BCD to the angle BDC, [_ACD + [__BCD= [_
ADC +[_BDC, (Ax. 2) ;

that is, the whole angleACB is

equal to the whole angle ADB.
Since the two sides AC and CB are equal to the two sides

AD and DB, each to each, and their included anglesA CB,

ADB, are also equal, the two triangles ABC, ABD, are

equal, (Th. 16), and have their other angles equal ; that

is, \_BAC= \_BAD, and [_ABC= [_ABD.
Hence the theorem

; if two triangles have the three side$

of the one, etc.
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THEOREM XXII.

If two triangles have two sides of the one equal to two

sides of the other, each to each, and the included angles un-

equal, the third sides will be unequal, and the greater third

side will belong to the triangle which has the greater included

angle.

In the two A's, ABC and
ACD, let AB and AC of the

one A he equal to AD and AC
of the other A, and the angle
BAC greater than the angle

DAC; we are to prove that

the side BCia greater than the

side CD.

Conceive the two A's joined together hy their shorter

equal sides, and draw the line BD. Now, as AB = AD,
ABD is an isosceles A. From the vertex A, draw a line

bisecting the angle BAD. This line must be perpendic-
ular to the base BD, (Th. 18, Cor. 1). Since the [_BAC
is greater than the [_DAC, this line must meet BC, and

will not meet CD. From the point E, where the per-

pendicular meets BC, draw BD.

Now BE= DE, (Th. 18, Scholium 1).

Add EC to each ; then BC=DE + EC.

But DE + EC is greater than DC.

Therefore BC>DC.

Hence the theorem
; if two triangles have two sides of

one equal to two sides of the other, etc.

Cor. Any point out of the perpendicular drawn from

the middle point of a line, is unequally distant from the

extremities of the line.
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THEOREM XXIII.

A perpendicular is the shortest line that can be drawn from

any point to a straight line ; and if other lines be drawn from
the same point to the same straight line, the longer line will

be at a greater distance from the perpendicular; and lines at

equal distances from the perpendicular, on opposite sides, are

equal.

Let A be any point without the

line DE ; let AB be the perpen-

dicular; and AC, AD, and AE
oblique lines : then, if BC is less

than BB, and BC= BE, we are to

show,
1st. That AB is less than AC.

2d. That AC is less than AB. 3d. That AC= AE.
1st. In the triangle ABC, as AB is perpendicular to

BC, the angle ABC is a right angle; \__ C + [_BAC=
another right angle, (Th. 11); and the angle BCA is less

than a right angle; and, as the greater side is always

opposite the greater angle, AB is less than AC; and AC
may be any line not identical with AB

; therefore a per-

pendicular is the shortest line that can be drawn from A
to the line BE.

2d. As the two angles, ACB and ACT), are together

equal to two right angles, (Th. 1), and ACB is less than

a right angle, ACB must be greater than a right angle ;

consequently, the
[__
B is less than a right angle ; and, in

the A ACB, AB is greater than AC, or AC is less than

AD, (Th. 19).

3d. In the A's J.£Cand ABE, AB is common, CB=*

BE, and the angles atB are right angles ; therefore, AC=
AE, (Th. 16).

Hence the theorem
;
a perpendicular is the shortest line,

etc.

Cor. Conversely : if two equal oblique lines be drawn
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from the same point to a given straight line, they will

meet the line at equal distances from the foot of the per-

pendicular drawn from that point to the given line.

THEOREM XXIV.

The opposite sides, and also the opposite angles of any par-

allellogram, are equal.

Let ABOB be a parallelogram.

Then we are to show that AB — BO,
AB - BO, [_A = [_0, and \_ABQ
= \_ABO.
Draw a diagonal, as BB

; now, be-

cause AB and BO are parallel, the al-

ternate angles ABB and BBO are equal, (Th. 6).
For

the same reason, as AB and BO are parallel, the angles
ABB and BBO are equal. Now, in the two triangles

ABB and BOB, the side BB is common,
the [_ABB = [__BBO (1)

and \__BBO = \_ABB (2)

Therefore, the angle A — the angle O, (Th. 11), and the

two A's are equal in all respects, (Th. 18) ;
that is, the

sides opposite the equal angles are equal ; or, AB = BO,
andAB= BO. By adding equations (

1
) and (

2
), we have

the angle ABO= the angle ABO, (Ax. 2).

Hence the theorem
; the opposite sides, and the opposite

angles, etc.

Oor. 1. As the sum of all the angles of the quadrilateral

is equal to four right angles, and the angle A is always

equal to the opposite angle 0; therefore, ifA is a right

angle, is also a right angle, and the figure is a rect-

angle.

Oor. 2. As the angle ABO, added to the angle A, gives
the same sum as the angles of the A ABB; therefore,

the two adjacent angles of a parallelogram are together

equal to two right angles. This corresponds to Th. 13,

Cor. 2.
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THEOREM XXV.

If the opposite sides of a quadrilateral are equal, they are

also parallel, and the figure is a parallelogram.

Let ABDO be any quadrilateral;

on the supposition thatAD= BO, and

AB = DO, we are to prove that AD is

parallel to BO, and AB parallel to DO.

Draw the diagonal BD; we now
have two triangles, ABD and BOD,
which have the side BD common, AD of the one = BO
of the other, and AB of the one = OD of the other ;

therefore the two A's are equal, (Th. 21), and the

angles opposite the equal sides are equal ;
that is, the

angle ADB = the angle OBD ; but these are alternate

angles; and, therefore, AD is parallel to BO, (Th. 7);

and because the angle ABD = the angle BDO, AB is

parallel to OD, and the figure is a parallelogram.
Hence the theorem; if the opposite sides of a quadri-

lateral, etc.

Oor. This theorem, and also Th. 24, proves that the

two A's which make up the parallelogram are equal;
and thesame would be true if we drew the diagonal
from A to 0; therefore, the diagonal of any parallelogram

bisects the parallelogram.

THEOREM XXVI.

The lines which join the corresponding extremities of two

equal and parallel strait lines, are themselves equal and

parallel ; and the figure thus formed is a parallelogram.

On the supposition that AB is

equal and parallel to DO, we are to

prove that AD is equal and parallel

to BO; and that the figure is a par-

allelogram.
Draw the diagonalBD ; now, since
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AB and DC are parallel, and BB joins them, the alter-

nate angles ABB and BBC are equal ;
and since the

side AB = the side BO, and the side BB is common to

the two A's ABB and OBB, therefore the two triangles

are equal, (Th. 16) ;
that is, AB = BO, the angle A = 0,

and the |_ ABB = the \_BBO; also AB is parallel to

BO; and the figure is a parallelogram.

Hence the theorem ;
the lines which join the corresponding

extremities, etc.

THEOREM XXVII.

Parallelograms on the same base, and between the same

parallels, are equivalent, or equal in respect to area or sur-

face.

Let ABEO and ABBF be two

parallelograms on the same base

AB, and between the same paral-

lels AB and OB ; we are to prove
that these two parallelograms are

equal. —
!Nbw, OB and FB are equal, be-

cause they are each equal to AB, (Th. 24) ; and, if from

the whole line OB we take, in succession, OB and FB,
there will remain EB = OF, (Ax. 3) ; but BE = AO, and
AF= BB, (Th. 24); hence we have two A's, OAF and

EBB, which have the three sides of the one equal to the

three sides of the other, each to each
; therefore, the two

A's are equal, (Th. 21). If, from the whole figure

ABBO, we take away the A OAF, the parallelogram
ABBF will remain

;
and if from the whole figure we take

away the other A EBB, the parallelogram ABEO will

remain. Therefore, (Ax. 3), the parallelogram ABBF=
the parallelogram ABEO.
Hence the theorem

; Parallelograms on the same base, etc.

4*
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THEOREM XXVIII.

Triangles on the same base and between the same parallels

are equivalent.

Let the two a's ABE and ABF
,

have the same base AB, and be be- <T

tween the same parallels AB and \
CD ;

then we are to prove that they
are equal in surface.

From B draw the line BD, par-

allel to AF; and from A draw the line AC, parallel to

BE
;
and produce EF, if necessary, to C and D

;
now the

parallelogram ABDF == the parallelogram ABEC, (Th.

27). But the A ABE is one half the parallelogram

ABEC, and the A ABF is one half the parallelogram

ABDF; and halves of equals are equal, (Ax. 7) ;
there-

fore the A ABE = the A ABF.
Hence the theorem

; triangles on the same base, etc.

THEOREM XXIX.

Parallelograms on equal bases, and between the same par-

allels, are equal in area.

Let ABCD and EFaH, be two d

parallelograms on equal bases, AB
j

and EF, and between the same / j>

parallels, AF and DCr ; then we are A

to prove that they are equal in area.

AB — EF=EGr\ but lines which join equal and

parallel lines, are themselves equal and parallel, (Th. 26) ;

therefore, ifAS and BGr be drawn, the figure ABGffis
•a parallelogram = to the parallelogram ABCD, (Th. 27);
and if we turn the whole figure over, the two parallelo-

grams, GrHEF and GrEAB, will stand on the same base,

CrH, and between the same parallels ; therefore, GrHEF
= aHAB, and consequently ABCD = EFGH, (Ax. 1).

Hence the theorem
; Parallelograms on equal bases, etc.



BOOK X. 43

Oor. Triangles on equal bases, and between the same

parallels, are equal in area. For,drawBB and EG; the

A ABB is one half of the parallelogram AO, and the

A EFGr is one half of the equivalent parallelogram FE;
therefore, the A ABB = the A EFG, (Ax. 7).

THEOREM XXX.

If a triangle and a parallelogram are upon the same or equal

bases, and between the same parallels, the triangle is equiva-

lent to one half the parallelogram.

Let ABO be a A, and ABBE a

parallelogram, on the same base AB,
and between the same parallels ;

then

we are to prove that the A ABO is

equivalent to one half of the parallel-

ogram ABBE.
Draw the diagonal EB to the parallelogram ; now,

because the two A's ABO and ABE are on the same

base, and between the same parallels, they are equiva-

lent, (Th. 28); but the A ABE is one half the parallel-

ogram ABBE, (Th. 25, Cor.) ;
therefore the A ABO is

equivalent to one half of the same parallelogram, (Ax. 7).

Hence the theorem ; if a triangle and a parallelogram,

etc*

THEOREM XXXI.

The complementary parallelograms described about any

point in the diagonal of any parallelogram, are equivalent to

each other.

Let A be a parallelogram, and
BB its diagonal ;

take any point,

as E, in the diagonal, and through
this point draw lines parallel to the

sides of the parallelogram, thus

forming four parallelograms.
"We are now to prove that the complementary paral-

lelograms, AE and EO, are equivalent.

.
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By (Th. 25, Cor.) we learn that the A ABD = A DBC.
Also by the same Cor., A a = A b, and A c= A d; there-

fore by addition

Now, from the whole A ABD take A a + A c, and

from the whole A DBC take the equal sum, A b -f- A d,

and the remaining parallelogramsAE and EC are equiv-

alent, (Ax. 3).

Hence the theorem ;
the complementary parallelograms,

etc.

THEOREM XXXII.

The perimeter of a rectangle is less than that of any rhom-

boid standing on the same base, and included between the same

parallels.

Let ABCD be a rect-

angle, and ABEF& rhom-

boid having the same base,

and their opposite sides

in the same line parallel

to the base.

"We are now to prove that the perimeterABODA is less

than ABEFA.
Because AD is a perpendicular from A to the line DE,

and AF an oblique line, AD is less than AF, (Th. 23).

For the same reason BO is less than BE; hence AD +
BC<AF+ BE. Adding the sum, AB + DO, to the first

member of this inequality, and its equal AB -f FE to

the second member, we have AB + BC + CD + DA, or

the perimeter of the rectangle, less than AB -f BE +
EF + FA, or the perimeter of the rhomboid. Hence
the theorem ;

the perimeter of a rectangle, etc.

Scholium.—In Theorem 30 it is shown that the triangles ABC, ABE,
and DBE, are equal in area, and that each is equal to one half the

parallelogram ABBE. This parallelogram also has the same area as

the rectangle having an equal base and altitude.
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Thus far, areas have been considered only relatively

and in the abstract. We will now explain how we may
pass to the absolute measures, or, more properly, to the

numerical expressions for areas.

THEOREM XXXIII.

The area of any plane triangle is measured by the product

of its base by one half its altitude; or one half its base by

its altitude, or one half the product of its base by its altitude.

Let ABO represent any triangle, AB
its base, and AD, at right angles to AB,
its altitude

;
now we are to show that the

area of ABC is equal to the product of

AB by one half of AD
;
or one half of

* *

AB by AD ; or one half of the product of AB by AD.
On AB construct the rectangle ABED', and the area

of this rectangle is measured by AB into AD (Def.

54) ;
but the area of the A ABO is equivalent to one

half this rectangle, (Th. 30). Therefore, the area of the

A is measured by J AB x AD, or one half the product
of its base by its altitude. Hence the theorem

;
the area

of any plane triangle, etc.

THEOREM XXXIV.

The area of a trapezoid is measured by one half the sum

of its parallel sides multiplied by the perpendicular distance

between them.

JjetABDO represent any trape-

zoid; draw the diagonal BO, divid-

ing it into two triangles, ABO and

BOD: OD is the base of one tri-

angle, and AB may be considered

as the base of the other
;
and EF is the common altitude

of the two triangles.

Now, by Th. 33, the area of the triangle BOD = \ OD
x EF; and the area of the A ABC= \AB x EF; but
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L K I

by addition, the area of the two A's, or of the trape-

zoid, is equal to J (AB+ CD) x EF. Hence the theorem
;

the area of a trapezoid, etc.

THEOREM XXXV.

If one of two lines is divided into any number of parts, the

rectangle contained by the two lines is equal to the sum of the

several rectangles contained by the undivided line and the seve-

ral parts of the divided line.

Let AB and AD be two lines,

and suppose AB divided into any
number of parts at the points E,

F, Gr, etc.
;
then the whole rect-

angle contained by the two lines

is AH, which is measured by AB
A * * u u

into AB. But the rectangle AL is measured by
f

AE
into AD

;
the rectangle EK is measured by EF into EL,

which is equal to EF into AD
;
and so of all the other

partial rectangles ;
and the truth of the proposition is as

obvious as that a whole is equal to the sum of all its

parts. Hence the theorem
; if one of two lines is divided,

etc.

THEOREM XXXVI.

If a straight line is divided into any two parts, the square

described on the whole line is equivalent to the sum of the

squares described on the two parts plus twice the rectangle con

tained by the parts.

Let AB be any Hue divided into

any two parts at the point C; now we
are to prove that the square on AB
is equivalent to the sum of the

squares on AC and CB plus twice the

rectangle contained by AC and CB.

On AB describe the square AD.

Through the point C draw CM, par-
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allel to BB
;
take BE m BO, and through E draw EKN,

parallel to AB. We now have OE, the square on CB, by
direct construction.

As AB mm BB, and OB = BE, by subtraction, AB—
CB = BB— BE; or AC= EB. But NK= AC, being

opposite sides of a parallelogram ;
and for the same rea-

son, KM= EB. Therefore, (Ax. 1), NK= KM, and the

figure NM is a square on NK, equal to a square on A 0.

But the whole square on AB is composed of the two

squares CE, NM, and the two complements or rectangles
u4.iT and KB-, and each of these latter is ACm length,
and BO in width

;
and each has for its measure AO into

OB
;
therefore the whole square on AB is equivalent to

AC 2 + BC2 + 2AC x OB.

Hence the theorem
; if a straight line is divided into any

two parts, etc.

This theorem may be proved algebraically, thus :

Let w represent any whole right line divided into any
two parts a and b ; then we shall have the equation

ic = a -f b

By squaring, w2 = a2

-f b
2
-f 2ab.

Oor. If a = b, then w2 — 4a2

;
that is, the square de-

scribed on any line is four times the square described on
one half of it.

THEOREM XXXVII.

The square described on the difference of two lines is equiv-
alent to the sum of the squares described on the two lines di-

minished by twice the rectangle contained by the lines.

Let AB represent the greater of two lines, OB the

less line, and A their difference.

We are now to prove that the square described ow AC
is equivalent to the sum of the squares on AB and BC
diminished by twice the rectangle contained by AB
and BO.

Conceive the square AF to be described on AB, and
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the square BL on CB ;
on AC describe

the square ACGM, and produce MG
to K.

As GC=AC, and CL = CB, by
addition, (GC+ CL), or GL, is equal

to AO+ CB, or 4.B. Therefore, the

rectangle GE is J.1? in length, and

CB in width, and is measured by AB
XBC.
Also AE= AB, and AM= AC; hy subtraction, MH

= CB; and as MK= AB, the rectangle IZjKT is AB in

length, and Ci? in width, and is measured by AB X BC;
and the two rectangles GE and HK are together equiva-

lent to 2AB x BC.

]$ow, the squares on .Ai? andBCmake the whole figure

AHFELC; and from this whole figure, or these two

squares, take away the two rectangles iTiT and GE, and

the square on AC only will remain
;
that is,

AC2=AB2 + BC— 2AB x BC
Hence the theorem

; the square described on the differ-

ence of two lines, etc.

This theorem may be proved algebraically, thus :

Let a represent the greater of two lines, b the less, and

d their difference
;
then we must have this equation :

d = a — b

By squaring, d2 = a2
-f b2— 2ab.

a a2

Cor. If d= b, then d = «", and d2 = -r
;

that is, the

square described on one half of any line is equivalent

to one fourth of the square described on the whole line.

THEOREM XXXVIII.

The difference of the squares described on any two lines is

equivalent to the rectangle contained by the sum and difference

of the lines.

Let AB be the greater of two lines, and AC the less,

and on these lines describe the squares AD, AM; then, the
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difference of the squares on AB and AC is the two rect-

angles EF and FC. We are now to

show that the measure of these rect-

angles may be expressed by (AB + AC)
x(AB— AC).
The length of the rectangle EF is ED,

or its equal AB; and the length of the

rectangle FC is MC, or its equal AC;
therefore, the length of the two together (if we con-

ceive them put between the same parallel lines) will be

AB + AC; and the common width is CB, which is equal

to AB—AC; therefore, AB
2—-AC 2= (AB+AC) x (AB

--AC).
Hence the theorem; the difference of the squares de-

scribed on any two lines, etc.

This theorem may be proved algebraically: thus,

Let a represent one line, and b another
;

Then a -f b is their sum, and a— b their difference ;

and (a + b) X (a
—

b)
= a2— b\

THEOREM XXXIX.

The square described on the hypotenuse of any right-angled

triangle is equivalent to the sum of the squares described on

the other two sides.

Let ABC represent any right-angled triangle, the right

angle at B; we are to prove that the square on AC is

equivalent to the sum of two squares; one on AB, the

other on BC.

On the three sides of the triangle describe the three

squares, AB, AL and BM. Through the point B, draw
BNE perpendicular to AC, and produce it to meet the

line QI in K; also produce AF to meet Gfl in H, and
ML to meet the point in K.

Remark.— That the lines, GI and ML, produced, meet at the point

K, may be readily shown. As the proof of this fact is not necessary for

the demonstration, it is left afl an exercise for the learner.

5 D



50 GEOMETRY.

The angle BAG is a right angle, and the angle NAE
is also a right angle ;

if

from these equals we

subtract the common

angle BAR, the re-

maining angle, BAG,
must be equal to the re- .

maining angle GAH.
The angle G is a right

angle, equal to the

angle ABO; and AB
= AG ; therefore, the

two A's ABC and

AGH are equal, and

AH=AC. ButA(7=
AF; therefore, AH=
AF. Now, the two

parallelograms, AF and ARKB are equivalent, because

they are upon equal bases, and between the same paral-

lels, FH and FK, (Th. 27).

But the square AI, and the parallelogram AHKB, are

equivalent, because they, are on the same base, AB, and

between the same parallels, AB and GK; therefore, the

square Al, and the parallelogram AF, being each equiv-

alent to the same parallelogram AHKB, are equivalent

to each other, (Ax. 1). ,In the same manner we may
prove that the square BD is equivalent to the rectangle
ND

; therefore, by addition, the two squares, AI and

BM, are equivalent to the two parallelograms, AF and

ND, or to the square AD.
Hence the theorem

;
the square described on the hypote-

nuse of a right-angled triangle, etc.

Cor. If two right-angled triangles have the hypotenuse, and

a side of the one equal to the hypotenuse and a side of the

other, each to each, the two triangles are equal.
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Let ABC and AGHbe the two A's, in which we sup-

pose ACfam AH, and BC= GH; then will AG = AB.

For, we have AC 2 = AB2

+ BO2

,

or, by transposing, AC
2— BC* = J.J5

2

,

and AH2 = ~AG
2

+ GH 2

,

or, by transposing, AH
2— GH2= AG2

.

But by the hypothesis AC
2 —~BC2 = AH2— (T^

2

;

hence, AB2 = J. G\ or, JlJ5 = A G.
Scholium.—The two sides, AB&nd BC, may vary, while AC remains

constant. AB may be equal to BC; then the point iVwill be in the

middle of A C. When AB is very near the length of A C, and BC very
small, then the point N falls very near to C. Now as AE and AD are

right-angled parallelograms, their areas are measured by the product
of their bases by their altitudes ; and it is evident that, as they have the

same altitude, these areas will vary directly as their bases AN and

NC; hence the squares on AB and BC, which are equivalent to those

rectangles, vary as the lines AN and NC.

The following outline of the demonstration of this pro-

position is presented as a useful disciplinary exercise for

the student.

We employ the same figure, in which no change is

made except to draw through the line CP, parallel toBK.
The first step is to prove the equality of the triangles

AGE and ABO, whence AH = AC. But AC = AF;
therefore AH= AF.
The parallelograms AFEN and AHKB are equiva-

lent. Also, the parallelogramAHKB= the squareABIG,
(Th. 27), and the parallelogram KBCP=NEDC=square
BCML. . Now, by adding the equals

AFEN= ABIG
NEBC = BCML

we obtain AFDC = ABIG -f BCML.
That is, the square on AC is equivalent to the sum of

the squares on AB and BC.
The great practical importance of this theorem, in the

extent and variety of its applications, and the frequency
of its use in establishing subsequent propositions, ren-

der it necessary that the student should master it com-

pletely. To secure this end, we present a
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Second Demonstration,

Let ABO be a triangle

right-angled at B. On the

hypotenuse A 0, describe the

squareACUB. From B and

E let fall the perpendiculars

Bb and Ed, on AB and AB
produced. Draw Bn and Oa,

making right angles with

Ed.

"We give an outline only
of the demonstration, requiring the pupil to make it

complete.
First Part.—Prove the four triangles ABO, AbB, BnE,

and EaO, equal to each other.

The proof is as follows: The A's ABO and BnE are

equal, because the angles of the one are equal to the

angles of the other, each to each, and the hypotenuse
AO of the one, is equal to the hypotenuse BE of the

other. In like manner, it may be shown that the a's

AbB and EaO are equal.

Now, the sum of the three angles about A, is equal to

the sum of the three angles of the A ABO) and if, from

the first sum, we take [_BAO -f L_ CAB, and from the

second we take L^ + L CAB = [_BAO+ [__ OAB, the

remaining angles are equal ;
that is, [_ BbA is equal to

[_AOB ;
hence the A's ABO and BbA have their angles

equal, each to each; and since AO — BA, the A's are

themselves equal, and the four triangles ABO, AbB,

BnE, and EaO, are equal to each other.

Second.— Prove that the square bBnd is equal to a

square on AB. The square BdaCis obviously on BO.

Third.—The area of the whole figure is equal to the

square on AO, and the area of two of the four equal

right-angled triangles.

Also, the area of the whole figure is equal to two other
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squares, bDnd and daOB, and two of the four equal tri-

angles, DnE and EaO.

Omitting or subtracting the areas of two of the four

right-angled triangles, in each of the two expressions for

the area of the whole figure, there will remain the square

on A 0, equal to the sum of the two squares, Dndb and

daOB.
"2

. TT7v2 -T-F*1That is, AB' + BO = AG
Hence the theorem; the square described on the hypote-

nuse of a right-angled triangle, etc.

Scholium.—Hence, to find the hypotenuse of a right-angled triangle,

extract the square root of the sum of the squares of the two sides about

the right angle.

THEOREM XL.

In any obtuse-angled triangle, the square on the side oppo-

site the obtuse angle is greater than the sum of the squares
on the other two sides, by twice the rectangle contained by
.either side about the obtuse angle, and the part of this side

produced to meet the perpendicular drawn to it from the

vertex of the opposite angle.

Let ABO be any triangle in which
the angle at B is obtuse. Produce

either side about the obtuse angle,
as OB, and from A draw AD perpen-
dicular to OB, meeting it produced
atD.

It is obvious that OD = OB + BD.

By squaring, ~OD
2 = OB 2

+ 20B x BD + BD 2

, (Th. 36).

Adding AD
2

to each member of this equation, we have

AD 2 +OD 2 = OB
2

+ BD 2

-f AD 2

+ 20B x BD.

But, (Th. 39), the first member of the last equation is

equal to AO2

,
and

BD 2

+ AD 2 = AB\
5*
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Therefore, this equation becomes

~AC
2 - CB

2

+ AB* + 2CB x BD.

That is, the square on A is equivalent to the sum of

the squares on CB and AB, increased by twice the rect-

angle contained by CB and BD.
Hence the theorem; in any obtuse -angled triangle, the

square on the side opposite the obtuse angle, etc.

Scholium.—Conceive AB to turn about the point A, its intersection

with CD gradually approaching D. The last equation above will be

true, however near this intersection is to D, and when it falls upon D
the triangle becomes right-angled.

In this case the line BD reduces to zero, and the equation becomes

AC7= CB* + AB*, in which CB and AB are now the base and per-

pendicular of a right-angled triangle. This agrees with Theorem 39,

as it should, since we used the property of the right-angled triangle

established in Theorem 39 to demonstrate this proposition ; and in the

equation which expresses a property of the obtuse-angled triangle, we
have introduced a supposition which changes it into one which is

right-angled.

THEOREM XLI.

In any triangle, the square on a side opposite an acute angle

is less than the sum of the squares on the other two sides, by

twice the rectangle contained by either of these sides, and the

distance from the vertex of the acute angle to the foot of the

perpendicular let fall on this side, or side produced, from the

vertex of its opposite angle.

Let ABC, either

figure, represent

any triangle ;
C an

acute angle, CB
the base, and AB
the perpendicular,

which falls either

without or on the base. !Now we are to prove that

AB>= CB 2 + AC 2— 2CB x CD.
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From the first figure we get BB=-CB—OB ( 1 )

and from the second BB - OB—OB ( 2 )

Either ono of these equations will give, (Th. 87),

BB2 - OB2 + OB2—20B x OB.

Adding AD* to each member and reducing, we obtain,

(Th. 89), AB
2~Jd2 +OB2— 20Bx OB, which proves

the proposition. Hence the theorem.

THEOREM XLII.

If in any triangle a line be drawn from any angle to the

middle of the opposite Me, twice the square of this line,

together with twice the square of one half the side bisected, will

be equivalent to the sum of the squares of the other two sides.

LetAB be a triangle, andM the middle point of its

base.

Then we are to prove that

2AM2

+ 20Ma - A0 2+AJB*.
DrawAB perpendicular to

the base, and make AB « p}

AO=b, AB=*c, OB**2a
}

AM = m, and MB = x; then OM— a, OB =» a + z, BB
e» a— X.

Now by, (Th. 39), wo have the two following equations :

p' + (a
—

zy = c* (1)

f + {a + xy » y (2)

By addition, 2tf + 2x% + 2a%m 6" -f c\ Butf -f x7— m\

Therefore, 2m9 + 2a* - b
2 + c\

This equation is tho algebraic enunciation of the

theorem.
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THEOREM XLIII.

The two diagonals of any parallelogram bisect each other ;

and the sum of their squares is equivalent to the sum of the

squares of the four sides of the parallelogram.

I^etABCD be any parallelogram,

and A and BD its diagonals.

We are now to prove,

1st. That AE mm EC, and DE =m
2d. That AC 2

+ 'BD
2 = AB* + ~BC

2

+ CD2

+~AD\
1. The two triangles ABU and CDE are equal, be-

cause AB = CD, the angle ABE= the alternate angle

ODE, and the vertical angles at E are equal ; therefore,

AE, the side opposite the angle ABE, is equal to CE,
the side opposite the equal angle CDE; also EB, the

remaining side of the one A, is equal to EB, the remain-

ing side of the other triangle.

2. As AOB is a triangle whose base, AC, is bisected

in E, we have, by (Th. 42), .

2AK + 2ED' = AD* + DO 2
(
1

)

And as AOB is a triangle whose base, AG, is bisected

in E, we have

2AE' + 2EB = AB' + BQ* (
2

)

By adding equations (1) and (2), and observing that

EB2 = ED2

,
we have

±AE2 + 4ED 2 = ~AD2

+~DC
2 + AB2

+~BC
2

But, four times the square of the half of a line is equiv-
alent to the square of the whole line, (Th. 36, Corollary) ;

therefore 4AE2 = AC2

,
and 4ED2 = DW; and by sub-

stituting these values, we have

AC + BD' - AB' + £<T + DC + .42r,

which equation conforms to the enunciation of the

theorem.
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THEOREM XLV.

If a straight line be divided into two equal parts, and also

into two unequal parts, the rectangle contained by the two un-

equal parts together with the square of the line between the

points of division, will be equivalent to the square on one half

the line.

Let AB be a line bisected in C, and divided into two

unequal parts in D.

We are to prove
that AB x BB + - g c

C5
2= AC\ orm\ :

A

We see by inspection that AB — AC+ CB, and BB
m AC— CB; therefore by multiplication we have

ABxBB = AC2 —~CB2

, (Th. 38).

By adding CB
2

to each of these equals, we obtain

AB x BB +~CB
2 =~AC2

Kence the theorem.
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BOOK II.

PROPORTION.

DEFINITIONS AND EXPLANATIONS.

The word Proportion, in its common meaning, de-

notes that general relation or symmetry existing between

the different parts of an object which renders it agree-

able to our taste, and conformable to our ideas of beauty
or utility ; but in a mathematical sense,

1. Proportion is the numerical relation which one quan-

tity bears to another of the same kind.

As the magnitudes compared must be of the same kind,

proportion in geometry can be only that of a line to a

line, a surface to a surface, an angle to an angle, or a volume

to a volume,

2. Ratio is a term by which the number which meas-

ures the proportion between two magnitudes is desig-

nated, and is the quotient obtained by dividing the one

by the other. Thus, the ratio of A to B is -
,
or A : B,

in which A is called the antecedent, and B the consequent.

If, therefore, the magnitude A be assumed as the unit or

standard, this quotient is the numerical value of B ex-

pressed in terms of this unit.

It is to be remarked that this principle lies at the found-

ation of the method of representing quantities by num-
bers. For example, when we say that a body weighs

twenty-five pounds, it is implied that the weight of this

body has been compared, directly or indirectly, with that

of the standard, one pound. And so of geometrical
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magnitudes ;
when a line, a surface, or a volume is said

to be fifteen linear, superficial, or cubical feet, it is un-

derstood that it has been referred to its particular unit,

and found to contain it fifteen times ; that is, fifteen is

the ratio of the unit to the magnitude.
"When two magnitudes are referred to the same unit,

the ratio of the numbers expressing them will be the

ratio of the magnitudes themselves.

Thus, if J. and B have a common unit, a, which is

contained in A, m times, and in B, n times, then A = ma

* i> A B na n
and B = na, and — = — = -.

A ma m
To illustrate, let the

line A contain the line A

a six times, and let the
t t

line B contain the same a

line a five times : then
I

j
i

j
i I

A=6a and B—5a, which B

. B 5a- 5
glYe A=6a

=
6-

3. A Proportion is a formal statement of the equality

of two ratios.

Thus, if we have the four magnitudes A, B, and i>,

such that — = —
,
this relation is expressed by the pro-

portion A : B : : : D, or A : B = : 2>, the first of

which is read, A is to B as is to B ; and the second,

the ratio of A to B is equal to that of to D.

4. The Terms of a proportion are the magnitudes, or

more properly the representatives of the magnitudes

compared.
5. The Extremes of a proportion are its first and fourth

terms.

6. The Means of a proportion are its second and third

terms.

7. A Couplet consists of the two terms of a ratio* The
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first and second terms of a proportion are called the

first couplet, and the third and fourth terms are called

the second couplet.

8. The Antecedents of a proportion are its first and

third terms.

9. The Consequents of a proportion are its second and

fourth terms.

In expressing the equality of ratios in the form of a

proportion, we may make the denominators the ante-

cedents, and the numerators the consequents, or the

reverse, without affecting the relation between the magni-
tudes. It is, however, a matter of some little importance
to the beginner to adopt a uniform rule for writing the

terms of the ratios in the proportion ;
and we shall always,

unless otherwise stated, make the denominators of the

ratios the antecedents, and the numerators the conse-

quents.*

10. Equimultiples ofmagnitudes are the products arising

from multiplying the magnitudes by the same number.

Thus, the products, Am and Bm, are equimultiples of

A and B.

U. A Mean Proportional between two magnitudes is a

magnitude which will form with the two a proportion,

when it is made a consequent to the first ratio, and an

antecedent to the second. Thus, if we have three mag-
nitudes A, B, and (7, such that A : B : : B : (7, B is a

mean proportional between A and O.

12. Two magnitudes are reciprocally, or inversely pro-

portional when, in undergoing changes in value, one is

multiplied and the other is divided by the same number.

Thus, ifA andB be two magnitudes, so related that when
BA becomes mA, B becomes —

,
A and B are said to be

m
inversely proportional.

* For discussion of the two methods of expressing Katio, see Uni-

versity Algebra.

6
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13. A Proportion is taken inversely when the ante-

cedents are made the consequents and the consequents
the antecedents. Thus

14. A Proportion is taken alternately, or by alternation,

when the antecedents are made one couplet and the con-

sequents the other.

15. Mutually Equiangular Polygons have the same num-

ber of angles, those of the one equal to those of the

others, each to each, and the angles like placed.

16. Similar Polygons are such as are mutually equi-

angular, and have the sides about the equal angles, taken

in the same order, proportional.

17. Homologous Angles in similar polygons are those

which are equal and like placed ;
and

18. The Homologous Sides are those which are like dis-

posed about the homologous angles.

THEOREM I.

If the first and second of four magnitudes are equal, and

also the third and fourth, the four magnitudes may form a

proportion.

Let A, B, C, and D represent four magnitudes, such

that A = B and = D
; we are to prove that A : B : :

: D.

Now, by hypothesis, A is equal to B, and their ratio is

therefore 1
;
and since, by hypothesis, C is equal to D,

their ratio is also 1.

Hence, the ratio of A to B is equal to that of C to D ;

and, (by Def. 3),

A : B : : 0:1).

Therefore, four magnitudes which are equal, two and

two, constitute a proportion.
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THEOREM II.

If four magnitudes constitute a 'proportions the product of

the extremes is equal to the product of the means.

Let the four magnitudes A, B, C, and D form the pro-

portion A : B : : : B
; we are to prove that Ax B

= Bx C.

The ratio of A to B is expressed by -j
= r.

The ratio of C to B is expressed by -^
= r.

Hence, (Ax. 1),
-j
= -.

Multiplying these equals each byA x C, and we have

Bx C=AxB.
Hence the theorem ; if four magnitudes are in propor-

tion, etc.

Cor. 1. Conversely : If we have the product of two mag-
nitudes equal to the product of two other magnitudes, they will

constitute a proportion of which either of the two may be made

the extremes and the other two the means.

Let the magnitudes B x 0= A x B. Dividing both

members of the equation by A x C, and we have

B_BA~C
Hence the proportion A : B : : : B.

Cor. 2. If we divide both members of the equation

Ax B = Bx C by .A,

we have B =—-.
— .A

That is, to find the fourth term of a proportion, mul-

tiply the second and third terms together and divide the pro-

duct by the first term. This is the Rule of Three of

Arithmetic.
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This equation shows that any one of the four terms

can be found by a like process, provided the other three

are given.

THEOREM III.

If three magnitudes are continued 'proportionals, the 'product

of the extremes is equal to the square of the mean.

Let A, B, and represent the three magnitudes :

Then A : B : : B : O, (by Def. 11).

But, (by Th. 2), the product of the extremes is equal
to the product of the means

; that is, A x 0= B\
Hence the theorem

; if three magnitudes, etc.

THEOREM IV.

Equimultiples of any two magnitudes have the same ratio

as the magnitudes themselves ; and the magnitudes and their

equimultiples may therefore form a proportion.

Let A and B represent two magnitudes, and mA and

mB their equimultiples.

Then we are to prove that A : B : : mA : mB.

The ratio of A to B is —, and of mA to mB isA
mB B ., ,.—r = -r, the same ratio.
mA A*

Hence the theorem; equimultiples of any two magni-

tudes, etc.

THEOREM V.

If four magnitudes are proportional, they will he propor-
tional when taken inversely.

If A : B : : mA : mB, then B : A : : mB : mA
;

For in either case, the product of the extremes and
means are manifestly equal ; or the ratio of the couplets
is the same.

Hence the theorem ; if four quantities are proportional,

etc.
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THEOREM VI.

Magnitudes which are proportional to the same propor-

tionals, are proportional to each other.

If A : B = P : Q \ Then we are to prove that

and a : b = P : Q) A : B = a : b.

13 Q
From the 1st proportion, — = ^ ;

From the 2d " - = ^5a P

Therefore, by (Ax. 1), -j
=

-, or A : B = a : b.
jA. a

Hence the theorem
; magnitudes which are proportional

to the same 'proportionals, etc.

Cor. 1. This principle may be extended through any
number of proportionals.

Cor. 2. If the ratio of an antecedent and consequent of one

proportion is equal to the ratio of an antecedent and conse-

quent of another proportion, the remaining terms of the two

proportions are proportional.

For, if A : B : : C : D
and M : N :: P: Q

in Which A=M then
C
=
P>

hence C : D : : P : Q.

THEOREM VII.

If any number of magnitudes are proportional, any one of
the antecedents will be to its consequent as the sum of all the

antecedents is to the sum of all the consequents.

Let A, B, C, D, U, etc., represent the several magni-
tudes which give the proportions

A : B
A : B
A : B

6*

C: D
E : F
Or : R, etc., etc.
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To which we may annex the identical proportion,

A : B : : A : B.

Now, (by Th. 2), these proportions give the following

equations,
A x D = B x Q
A x F = B x F
A x H= B x a
A x B = B x A, etc. etc.

From which, by addition, there results the equation,

A(B + D + F+H, etc.)
= B(A + 0+ F + #, etc.)

But the sums B -f J) -f F, etc., and A + C + F, etc.,

may be separately regarded as single magnitudes ; there-

fore, (Th. 2),

A : B :: A+C+F+ G, etc. : B -f D + F+ JT, etc.

Hence the theorem ; if any number ofmagnitudes are pro-

portional, etc.

THEOREM VIII.

If four magnitudes constitute a proportion, the first will be

to the sum of the first and second as the third is to the sum of

the third andfourth.

By hypothesis, A : B : : C: D ; then we are to prove
that A : A + B :: C : C+ D.

By the given proportion, —- = -—.

A C

Adding unity to both members, and reducing them to

the form of a fraction, we have—-— = —^— . Chang-

ing this equation into its equivalent proportional form,

we have
A : A + B :: O : C+ D.

Hence the theorem ; iffour magnitudes constitute a pro-

portion, etc.

Cor. If we subtract each member of the equation -j
=
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-» from unity, and reduce as before, we shall have

A : A — B :: C : C—D.
Hence also

; if four magnitudes constitute a proportion,

the first is to the difference between the first and second, as the

third is to the difference between the third andfourth.

THEOREM IX.

Iffour magnitudes are proportional, the sum of the first and

second is to their difference as the sum of the third andfourth
is to their difference.

Let A, B, C, and D be the four magnitudes which give
the proportion

A : B :: 0:1);
we are then to prove that they will also give the propor-
tion

A + B : A — B :: C+D : C— D.

By Th. 8 we have A : A + B = : C+D.
Also by Scholium, same Th., A : A—B = : C— D.

Now, if we change the order of the means in these pro-

portions, which may be done, since the products of ex-

tremes and means remain the same, we shall have

A i C = A + B : C+D.
A : = A— B : C—D.

Hence, (Th. 6), we have

A + B : C+ D = A— B : O—B.
Or, A + B : A— B = C + I) : C—D.
Hence the theorem ; iffour magnitudes are proportional,

etc.

THEOREM X.

If four magnitudes are proportional, like powers or like

roots of the same magnitudes are also proportional.

If the four magnitudes, A, B, C, and D, give the pro-

portion
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A : B : : C : D,
we are to prove that

An
: B n

:: (7" : D w
.

7? 7)
The hypothesis gives the equation — = — . EaisingA

both members of this equation to the nth. power, we have

B n D n

-j^
=—

, which, expressed in its equivalent proportional

form, gives
An

: B n
:: Cn

: D n
.

If n is a wAete number, the terms of the given propor-

tion are each raised to a power ;
but if n is a fraction

having unity for its numerator, and a whole number for its

denominator, like roots of each are taken.

As the terms of the proportion may be first raised to

like powers, and then like roots of the resulting propor-

tion be taken, n may be any number whatever.

Hence the theorem ; if four magnitudes, etc.

THEOREM XI.

If four magnitudes are proportional, and also four others,

the products which arise from multiplying the first four by the

second four, term by term, are also proportional.

Admitting that A : B : : 0:1),
and X : Y : : M : N,

We are to show that AX :BY:: CM: DN.
B J)

From the first proportion,
—. == —

;

X M'
Multiply these equations, member by member, and

BY^DN.AX CM'
Or, AX : BY :: CM: DN.
The same would be true in any number of proportions.

Hence the theorem ; if four magnitudes are, etc.

From the second,
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THEOREM XII.

Iffour magnitudes are proportional, and also four others,

the quotients which arise from dividing the first four by the

secondfour, term by term, are proportional.

By hypothesis, A : B : : O : D,
and X : Y :: M : 1ST.

Multiply extremes and means, AD = OB, (
1

)

and XN=MY. (2)

Divide (1) by (2), and ^ x ^=^ x
|.

Convert these four factors, which make two equal pro-

ducts, into a proportion, and we have

A
.
B _ C

9
D

X 1 Y i: M :

N'

By comparing this with the given proportions, we find

it is composed of the quotients of the several terms of

the first proportion, divided by the corresponding terms

of the second.

Hence the theorem
; iffour magnitudes are proportional,

etc.

THEOREM XIII.

If four magnitudes are proportional, we may multiply the

first couplet, the second couplet, the antecedents or the conse-

quents, or divide them by the same quantity, and the results

will be proportional in every case.

Let the four magnitudes A, B, 0, and I) give the pro-

portion A : B : : : D. By multiplying the extremes

and means we have

A.D = B.O (1)

Multiply both members of this equation by any num-

ber, as a, and we have

aA.D = aB.O

By converting this equation into a proportion in four

different ways, as follows :
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aA : aB
A : B : :

aA : B :

J. : a.B :

: : B
aC : aD

: aO : B
; C : aB

resuming the original equation, (1), and dividing both

members by a, we have

A.B _ B.O
a a

This equation may also be converted into a proportion
in four different ways, with the following results :

J
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THEOREM XV.

If two parallelograms are equal in area, the base and per-

pendicular of either may be made the extremes of a propor-

tion, of which the base and perpendicular of the other are the

means.

Let ABCD, E D F c
and NLHM,
be two paral-

lelograms hav-

ing equal areas,

by hypothesis ; then we are to prove that

AB : LN : : MK : BF,
in which MK and BF are the

altitudes or perpendiculars of

the parallelograms.
This proportion is true, if

the product of the extremes

is equal to the product of the means
;

that is, if the equation
AB.BF = LN.MKiz true.

But AB.BF is the measure of the rectangle ABFE,
(B.I., Th. 32, Scholium), and this rectangle is equal in

area to the parallelegram ABCD, (B. L, Th. 27).

In the same manner, we may prove that~%N.MK is

the measure of the parallelogram NLHM. But these

two parallelograms have equal areas by" hypothesis.

Therefore, AB.BF= LN.MK is a true equation, and

(Th. 2, Cor. 1), gives the proportion
AB : LN : : MK : BF.

Hence the theorem
; if two parallelograms are equal in

area, etc.

THEOREM XVI.

Parallelograms having equal altitudes are to each other as

their bases.

Since parallelograms having equal bases and equal
altitudes are equal in area, however much their angles
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may differ, we can suppose the two parallelograms under
consideration to be mutually equiangular, without in the

least impairing the generality of this theorem. There-

fore, let ABOB
andAEFB be two l

—
7
—

7
—

;

parallelograms / / / /

having equal alti- / / / / /

tudes,and letthem / / / / / / / /

be placed with A B

their bases on the same line AE, and let the side, AB,
be common. First suppose their bases commensurable,
and that AE being divided into nine equal parts, AB
contains four of those parts.

If, through the points of division, lines be drawn paral-
lel to AB, it is obvious that the whole figure, or the

parallelogram, AEFB, will be divided into nine equal

parts, and that the parallelogram, ABOB, will be com-

posed of four of those parts.

Therefore, ABOB : AEFB : : AB : AE : : 4 : 9.

Whatever be the whole numbers having to each other

the ratio of the lines AB and AE, the reasoning would
remain the same, and the proportion is established when
the bases are commensurable. But if the bases are not

to each other in the ratio of any two whole numbers, it

remains still to be shown that

AEFB : ABOB 11 AE 1 AB (1)

If this propor-
tion is not true,

there must be a

line greater or less

than AB, towhich
AE will have the A

~
~~b~l

same ratio that AEFB has to ABOB.
Suppose the fourth proportional greater than AB, as

AK, then,

AEFB : ABOB :: AE : AK (2).

C M
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If we now divide the line AE into equal parts, each

less than the line BK, one point of division, at least, will

fall between B and K Let L be such point, and draw

LM parallel to B 0.

This construction makes AE and AL commensura-

ble; and by what has been already demonstrated, we
have

AEFD : ALMD :: AE : AL. (3)

Inverting the means in proportions (
2

) and (
3

), they

become
AEFD : AE : : ABCD : AK;

and AEFD : AE : : ALMD : AL.

Hence, (Th. 6),

ABCD : AK : : ALMD : AL.

By inverting the means in this last proportion, we have

ABCD : ALMD : : AK : AL.

But AK is, by hypothesis, greater than AL; hence, if

this proportion is true, ABCD must be greater than

ALMD ; but on the contrary it is less. We therefore

conclude that the supposition, that the fourth propor-

tional, AK, is greater than AB, from which alone this

absurd proportion results, is itself absurd.

In a similar manner it can be proved absurd to sup-

pose the fourth proportional less than AB.
Therefore the fourth term of the proportion (

1
) can be

neither less nor greater than AB
;

it is then AB itself,

and parallelograms having equal altitudes are to each

other as their bases, whether these bases are commensur-

able or not.

Hence the theorem
; Parallelograms having equal bases,

etc.

Cor. 1. Since a triangle is one half of a parallelogram

having the same base as the triangle and an equal alti-

tude, and as the halves of magnitudes have the same

ratio as their wholes
; therefore,

7
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Triangles having the same or equal altitudes are to each

other as their bases.

Cor. 2. Any triangle has the same area as a right-

angled triangle having the same base and an equal alti-

tude; and- as either side about the right angle of aright-

angled triangle may be taken as the base, it follows that

Two triangles having the same or equal bases are to each

other as their altitudes.

Cor. 3. Since either side of a parallelogram may be

taken as its base, it follows from this theorem that

Parallelograms having equal bases are to each other as their

altitudes.

THEOREM XVII.

If lines are drawn cutting the sides, or the sides produced, of

a triangle proportionally, such secant lines are parallel to the

base of the triangle ; and conversely, lines drawn parallel

to the base of a triangle cut the sides, or the sides produced,

proportionally.

Let ABC be any triangle, and

draw the line BE dividing the sides

AB and AC into parts which give
the proportion

AD : DB : : AE : EC.

"We are to prove that BE is parallel

\,oBC.

IfBE is not a parallel through
the point B to the line BC, suppose
Bm to be that parallel ;

and draw the

lines BC and Bm.

Now, the two triangles ABm and

mBC, have the same altitude, since

they have a common vertex, B, and their bases in the
same line, A C; hence, they are to each other as their

bases,Am and mC, (Th. 16, Cor. 1).
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That is, A ADm : A mDC : : Am : mC,
Also, A Ami) : A DmB : : AD : D#.

But, since Dm is supposed parallel to BC, the triangles

DBm and D(7m have equal areas, because they are on

the same base and between the same parallels, (Th. 28,

B.I).
Therefore the terms of the first couplets in the two

preceding proportions are equal each to each, and conse-

quently the terms of the second couplets are also propor-

tional,(Th. 6).

That is, AT) : DB : : Am : mC
But AD : DB : : AE : EC by hypothesis.

Hence we again have two proportions having the first

couplets, the same in both, and we therefore have

AE : EG :: Am : mO

By alternation this becomes

AE : Am :: EC : mO
That is, AE is to Am, a greater magnitude is to a less,

as EC is to mO, a less to a greater, which is absurd.

Had we supposed the point m to fall between E and 0,

our conclusion would have been equally absurd
;
hence

the suppositions which have led to these absurd results

are themselves absurd, and the line drawn through the

point D parallel to BO must intersect A in the point
E. Therefore the parallel and the line BE are one and

the same line.

Conversely : IfBE be drawn parallel to the base of the

triangle, then will

AD : DB : : AE : EC
For as before,

A ADE : a EDO :: AE : EC
and A DEB : A AED w DB \ AD

Multiplying the corresponding terms of these propor-
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tions, and omitting the common factor, a ADE, in the

first couplet, we have

A DEB : A EDO :: AE x DB : EO x AD.
But the a's DEB and EDO have equal areas, (Th. 28,

B. I) ;
hence AE x DB = EC x AD, which in the form

of a proportion is

J.^ : EG : : AD : DB
or, AD : DB :: AE : EC

and therefore the line parallel to the base of the triangle,
divides the sides proportionally.

It is evident that the reasoning would remain the same,
had we conceived ADE to be the triangle and the sides

to be produced to the points B and 0.

Hence the theorem; if lines are drawn cutting the

sides, etc.

Cor. 1. Because DE is parallel to BO, and intersects

the sides AB and AC, the angles ADE and ABO are

equal. For the same reason the angles AED and AOB
are equal, and the A's ADE and ABO are equiangular.

Let us now take up the triangle ADE, and place it on

ABO; the angle ADE falling on [__ B, the side AD on

the side AB, and the side DE on the side BO.

Now, since the angle A is common, and the angles

AED and AOB are equal, the side AE of the A ADE,
in its new position, will be parallel to the side A of the

A ABO.
But we have the proportion

AD : AE :: AB : AO
Placing the angle ADE on the angle ABO, and rea-

soning as before, we shall have the proportion

AD : DE : : AB : BO
And in like manner it may be shown that

AE : ED :: AC : OB
That is, the sides about the equal angles of equiangular

triangles, taken in the same order
y
are proportional, and the

triangles are similar, (Def. 16).
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Cor. 2. Two triangles having an angle in one equal to an

angle in the other, and the sides about these equal angles pro-

portional, are equiangular and similar.

For, if the smaller triangle be placed on the larger,

the equal angles of the triangles coinciding, then will

the sides opposite these angles be parallel, and the trian-

gles will therefore be equiangular and similar.

THEOREM XVIII.

If any triangle have its sides respectively proportional to

the like or homologous sides of another triangle, each to each,

then the two triangles will be equiangular and similar.

Let the triangle abc have its sides pro-

portional to the triangle ABO; that is, ac

to A as cb to OB, and ac to A as ah to

AB
;
then we are to prove that

the a's, abc and ABO, are equi-

angular and similar.

On the other side of the base,

AB, and from A, conceive

angle BAB to be drawn = to the

L *r
conceive

and from the point B,
the angle ABB to be

drawn = to the [_ b. Then the third [__ B must be =
to the third [_ c, (B. I, Th. 12, Cor. 2) ; and the A ABB
will be equiangular to the A abc by construction.

Therefore, ac : ab = AB : AB
By hypothesis, ac : ab = AO : AB
Hence, AB : AB = A : AB, (Th. 6).

In this last proportion the consequents are equal;

therefore, the antecedents are equal : that is,

AB = AO
In the same manner we may prove that

BB = OB
7*
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But AB is common to the two triangles"; therefore,

the three sides of the A ABB are respectively equal to

the three sides of the A ABC, and the two a's are equal,

(B. I, Th. 21).

But the A's ABB, and abc, are equiangular by con-

struction ; therefore, the A's, ABO, and abc, are also

equiangular and similar.

Hence the theorem ; if any triangle have its sides, etc,

Second Demonstration,

Let abc and ABC be two triangles

whose sides are respectively propor-

tional, then will the triangles be equi-

angular and similar.

That is, [__a = l_A, [_b = [_B, and

l_e=l_C.
If the [__ c be in fact

equal to the [_ C, the tri-

angle abc can be placed
on the triangle ABC, ca

taking the direction of

CA and cb of CB. The

line ab will then divide

the sides CA and CB proportionally, and will therefore

be parallel to AB, and the triangles will be equiangular
and similar, (Th. 17).

But if the L c be not equal to the [__ C, then place ac

on AC as before, the point c falling on C. Under the

present supposition cb will not fall on CB, but will take

another direction, CV, on one side or the other of CB.

Make CV equal to cb and draw aV.

Now, the A abc is represented in magnitude and posi-

tion by the A a VC; and if, through the point a, the line

ab be drawn parallel to AB, we shall have

Ca : CA :: ab : AB;
but by (Hy.) Ca : CA : : aV : AB.



BOOK II 79

Hence, (Th. 6),

ab : AB :: aV : AB;
which requires that ab = a V, but (Th. 22, B. I) ab can

not be equal to a V; hence the last proportion is absurd,

and the supposition that the [_ c is not equal to the [_ (7,

which leads to this result, is also absurd. Therefore,

the [_ e is equal to the
[__ (7, and the triangles are equi-

angular and similar.

Hence the theorem ; if any triangle ham its sides, etc.

THEOREM XIX.

If four straight lines are in proportion, the rectangle con-

tained by the lines which constitute the 'extremes, is equivalent

to that contained by those which constitute the means of the

proportion.

Let A, B, O, D, represent the four A '

j

lines; then we are to show, geo-
j

.

j

metrically, that A x D = B x 0. D i i

Place A and B at right angles to each

other, and draw the hypotenuse. Also place

and D at right angles to each other, and

draw the hypotenuse. Then bring the two

triangles together, so that shall be at right

angles to B, as represented in the figure.

Now, these two A's have each a E. [_,

and the sides about the equal angles are pro-

portional ; that is, A : B : : 0:1); there-

fore, (Th. 18), the two A's are equiangular, and the

acute angles which meet at the extremities of B and C,

are together equal to one right angle, and the lines B
and are so placed as to make another right angle ;

therefore, also, the extremities of A, B, 0, and Z>, are in

one right line, (Th. 3, B. I), and that line is the diag-

\ B

\
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onal of the parallelogram be. By Th. 31, B. I, the

complementary parallelograms about this diagonal are

equal ; but, one of these parallelograms is B in length,
and Q in width, and the other is D in length and A in

width; therefore,

B x = A x D.

Hence the theorem; if four straight lines are in propor-

tion, etc.

Cor. "When B =
Q, then A x D = B\ and B is the

mean proportional between A and B. That is, if three

straight lines are in proportion, the rectangle contained

by the first and third lines is equivalent to the square
described on the second line.

THEOREM XX.

Similar triangles are to one another as the squares of their

homologous sides.

Let ABC and DBF be two

similar triangles, and LQ and

MF perpendiculars to the sides

AB andDE respectively. Then
we are to prove that

&ABQ:&BEF = AB*:BE\
By the similarity of the tri-

angles, we have,

AB : BE = LQ : MF
But, AB : DE = AB : BE
Hence, AB 2

:TW^~AB x LQ : BE x MF.

But, (by Th. 30, B. I), AB x LQ is double the area

of the A ABC, and BE x MF is double the area of the

A BEF.

Therefore, aABC:ABEF::AB x LQ :BExMF
And, (Th. 6), A ABQ: A DEF= AW : BE 2

.

Hence the theorem
; similar triangles are to one another,

etc.
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The following illustration will enable the learner fully

to comprehend this important theorem, and it will also

serve to impress it upon his memory.

Let abc and ABO represent two equiangular triangles.

Suppose the length of

the side ac to be two

units, and the length
of the corresponding
side A to be three

units.

Eow, drawing lines

through the points of

division of the sides ac and A (7, parallel to the other sides

of the triangles, we see that the smaller triangle is com-

posed of four equal triangles, while the larger contains

nine such triangles. That is,

the sides of the triangles are as 2 : 3,

and their areas are as 4 : 9 = 2 2
: 32

.

THEOREM XXI.

Similar polygons may be divided into the same number of

triangles; and to each triangle in one of the polygons there

will be a corresponding triangle in the other polygon, these

triangles being similar and similarly situated.

LetABCDUsLnd abcde

be two similar polygons.
Now it is obvious thatwe
can divide each polygon

E

into as many triangles as

the figure has sides, less

two; and as the polygons have the same number of sides,

the diagonals drawn from the vertices of the homologous
angles will divide them into the same number of tri-

angles.



82 GEOMETRY.

Since the polygons are similar, the angles EAB and eab,

are equal, and

EA : AB :: ea : ab.

Hence the two triangles, EAB and eab, having an angle
in the one equal to an angle in the other, and the sides

about these angles proportional, are equiangular and

similar, and the angles ABE and abe are equal.

But the angles ABO and abc are equal, because the

polygons are similar.

Hence, [_ABO— [_ABE= [_abc
—

\_abe;
that is, [_EBO<=[_ebc.
The triangles, EAB and eab, being similar, their ho-

mologous sides give the proportion,

AB : BE :: ab : be; (1)

and since the polygons are similar, the sides about the

equal angles B and b are proportional, and we have

AB : BO : : ab : be
;

or, BO : AB :: be : ab. (2)

Multiplying proportions (1) and (2), term by term, and

omitting in the result the factorAB common to the terms

of the first couplet, and the factor ab common to the

terms of the second, we have

BO : BE : : be : be.

Hence the A's EBO and ebe are equiangular and similar;

and thus we may compare all of the triangles of one

polygon with those like placed in the other.

Hence the theorem
;
similar polygons may be divided, etc.

THEOREM XXII.

The perimeters of similar polygons are to one another as

their homologous sides ; and their areas are to one another as

the squares of their homologous sides.

Let ABODE and abode be two similar polygons ; then

we are to prove that AB is to the sum of all the sides
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Let ABC and def be two triangles having the angles

A and d equal. It is to

be proved that the areas

ABO and def are to each

other as AB.AO is to

de.df.

Conceive the triangle

def placed on the tri-

angle ABO, so that d

shall fall on A, and de on

AB
;
then df will fall on

AC, because the [_'s i
and d are equal. On AB, lay off Ae, equal to de

;
and

on AC, lay off Af, equal to df, and draw ef The tri-

angle Aef will then be equal to the triangle def. Join

B and/.

Now, as triangles having the same altitude are to each

other as their bases, (Th. 16, Cor. 1), we have

Aef : ABf : : Ae : AB
also, ABf : ABC : : Af: AC

Multiplying these proportions together, term by term,

omitting from the result ABf a factor common to the

terms of the first couplet, we have

Aef : ABC :: Ae . Af : AB . AC
But Aef is equal to def, Ae to de, and Af to df; therefore,

def : ABC : : de . df : AB . AC
Hence the theorem

;
two triangles which have an angle, etc.

Scholium.— If we suppose that

AB : AC :: de : df

the two triangles will be similar
;
and if we multiply the terms of the

first couplet of this proportion by AC, and the terms of the second

couplet by df we shall have

AB .AC : AC* : : de ^df : ^
or, AB . AC : de . df : : AC 2

: df
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Comparing this with the last proportion in this theorem, and we have,

(Th.6); _ _
def: ABC :: df : AC2

Remark.— This scholium is therefore another demonstration of

Theorem 20, and hence that theorem need not necessarily have been

made a distinct proposition. We require no stronger proof of the cer-

tainty of geometrical truth, than the fact that, however different the

processes by which we arrive at these truths, we are never led into

inconsistencies ; but whenever our conclusions can be compared, they

are found to harmonize with each completely, provided our premises

are true and our reasoning logical.

It is hoped that the student will lose no opportunity to exercise

his powers, and test his skill and knowledge, in seeking original

demonstrations of theorems, and in deducing consequences and

conclusions from those already established.

THEOREM XXIV.

If the vertical angle of a triangle be bisected, the bisecting

line will cut the base into segments proportional to the adja-

cent sides of the triangle.

Let ABO be any triangle,

and the vertical angle, 0, be bi-

sected by the straight line OD.

Then we are to prove that

AD : DB = AC : OB.

Produce AO to E, making
A

OB = OB, and draw EB. The exterior angle A OB, of

the A OEB, is equal to the two angles E, and OBB;
but the angle E = OBE, because OB = OE, and the tri-

angle is isosceles; therefore the angle AOD, the half of

the angle A OB, is equal to the angle E, and BO and BE
are parallel, (Cor., Th. 7, B. R
Now, as ABE is a triangle, and OB is parallel to BO,

~

we have AD : DB = A : OE or OB, (Th. 17).

Hence the theorem
; if the vertical angle of a triangle

be bisected, etc.

8
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THEOREM XXV.

If from the right angle of a right-angled triangle, a 'per-

pendicular is drawn to the hypotenuse ;
'

ft. The perpendicular divides the triangle into two similar

triangles, each of which is similar to the whole triangle.

2. The perpendicular is a mean proportional between the

segments of the hypotenuse.

3. The segments of the hypotenuse are in proportion to the

squares on the adjacent sides of the triangle.

4. The sum of the squares on the two sides is equivalent to

the square on the hypotenuse.

Let BAO be a triangle, right an-

gled at A
;
and draw AD perpendicu-

lar to BO.
1. The two A's, ABO and ABB, B

have the common angle, B, and the right angle BAO =
the right angle BDA; therefore, the third |__ 0= [__

BAB, and the two A's are equiangular, and similar.

In the same manner we prove the A AB similar to

the A ABO; and the two triangles, ABB, ABO, being
similar to the same A ABO, are similar to each other.

2. As similar triangles have the sides about the equal

angles proportional, (Th. 17), we have

BB : AB :: AB : OB;

or, the perpendicular is a mean proportional between the seg-

ments of the hypotenuse.

3. Again, BO : BA :: BA : BB
hence, BA2 = BO.BB (1)

also, BOj_ OA :: OA : OD

hence, OA
2 = BO.OB (2)

Dividing Eq. (1) by Eq. (2), member by member, we
obtain

~BA
2 BB

~OA
2
"

OB
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which, in the form of a proportion, is

~QJl :~BA
2

:: CD : BD;
that is, the segments of the hypotenuse are proportional to the

squares on the adjacent sides.

4. By the addition of (1) and (2), we have

SI2

+ CA* m BC(BD + CD) = BO
2

;

that is, the sum of the squares on the sides about the right

angle is equivalent to the square on the hypotenuse. This is

another demonstration of Theorem 39, B. I.

Hence the theorem
; if from the right angle of a right-

angled triangle, etc.
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BOOK III

OF THE CIRCLE, AND THE INVESTIGATION OF THEO-
REMS DEPENDENT ON ITS PROPERTIES.

V, DEFINITIONS.

1.
* A Curved Line is one whose consecutive parts, how-

ever small, do not lie in the same direction.

2. A Circle is a plane figure bounded by one uniformly-
curved line, all of the points of which are at the same

distance from a certain point within, called the center.

3. The Circumference of a cir-

cle is the curved line that

bounds it.

4. The Diameter of a circle

is a line passing through the

center, and terminating at both

extremities in the circumfer-

ence. Thus, in the figure, is

the center of the circle, the

curved line AGrBD is the cir-

cumference, and AB is a diameter.

5. The Radius of a circle is a line extending from the

center to any point in the circumference. Thus, CD is

a radius of the circle.

6. An Arc of a circle is any portion of the circum-

ference.

* The first six of the above definitions have been before given among
the general definitions of Geometry, but it was deemed advisable to

reinsert them here.
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7. A Chord of a circle is the line connecting the ex-

tremities of an arc.

8. A Segment of a circle is the portion of the circle on

either side of a chord.

Thus, in the last figure, ECrF is an arc, and EF is a

chord of the circle, and the spaces bounded by the chord

EF, and the two arcs EGrF and EDF, into which it

divides the circumference, are segments.
9. A Tangent to a circle is a line which, meeting the

circumference at any point, will not cut it on being

produced. The point in which the tangent meets the

circumference is called the point of tangency.

10. A Secant to a circle is a line which meets the cir-

cumference in two points, and lies a part within and a

part without the circumference.

11. A Sector of a circle is a portion of the circle included

between any two radii and their intercepted arc.

Thus, in the last figure, the line HL, which meets the

circumference at the point D, but does not cut it, is a

tangent, D being the point of tangency; and the line

MN, which meets the circumference at the points P and

Q, and lies a portion within and a portion without the

circle, is a secant. The area bounded by the arc BJD, and

the two radii OB, CD, is a sector of the circle.

12. A Circumscribed Polygon is

one all of whose sides are tangent
to the circumference of the circle ;

and conversely, the circle is then

said to be inscribed in the polygon.
13. An Inscribed Polygon is one

the vertices of whose angles are

all formed in the circumference

of the circle
; and conversely, the circle is then said to be

circumscribed about the polygon.
14. A Regular Polygon is one which is both equiangu-

lar and equilateral.

8*
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The last three definitions are illustrated by the last

figure.

THEOREM I.

Any radius perpendicular to a chord, bisects the chord, and

also the arc of the chord.

Let AB be a chord, the center of

the circle, and OE a radius perpen-
dicular to AB

;
then we are to prove

that AB t=4 BB, and AE = EB.
Since is the center of the circle,

AO= BO, OB is common to the two

A's AOB and BOB, and the angles
at B are right angles; therefore the two A's ABO and

BBO are equal, and AB = BB, which proves the first

part of the theorem.

!N"ow, as AB = BB, and BB is common to the two

spaces, ABB and BBE, and the angles at B are right

angles, if we conceive the sector OBE turned over and

placed on OAE, OE retaining its position, the point B
will fall on the point A, because AB = BB and A —
BO; then the arc BE will fall on the arc AE\ otherwise

there would be points in one or the other arc unequally
distant from the center, which is impossible ; therefore,

the arc AE = the arc EB, which proves the second part
of the theorem.

Hence the theorem.

Oor. The center of the circle, the middle point of

the chord AB, and of the subtended arc AEB, are

three points in the same straight line perpendicular to

the chord at its middle point. ISTow as but one perpen-
dicular can be drawn to a line from a given point in that

line, it follows:

1st. That the radius drawn to the middle point of

any arc bisects, and is perpendicular to, the chord of

the arc.
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2d. That the perpendicular to the chord at its middle

point passes through the center of the circle and the

middle of the subtended arc.

THEOREM II.

Equal angles at the center of a circle are subtended by

equal chords.

Let the angle AOE = the angle

BEO; then the two isosceles triangles,

AOE, and EOB, are equal in all re-

spects, and AE — EB.
Hence the theorem.

THEOREM III.

In the same circle, or in equal circles, equal chords are

equally distantfrom the center.

Let AB and EF be equal chords,
and the center of the circle. From
0, draw OG and OH, perpendicular
to the respective chords. These

perpendiculars will bisect the chords,

(Th. 1), and we shall have AG= EH.
We are now to prove that OG = OH.

Since the A's EOH and AOG are right-angled, we
have, (Th. 39, B. I),

and,

EH2

+ HO=~ECi

~AO\AG' + GO'

By subtracting these equations, member from mem-
ber, we find that

EH 1 — AG1

-f HO2 — GO2 = ~E0
2 — AO2

(1)

But the chords are equal by hypothesis, hence their

halves, EH and AG, are equal; also EO= AO, being
radii of the circle. "Wherefore,
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EE* — AG* =

and, JSO — AOL = 0.

These values in Equation (
1

) reduce it to

EX? -GO_
2 =0

or, E0 2 =G0 2

and, EO = GO.

Hence the theorem.

Oor. Under all circumstances we have

MS 2 + EQ 2 = AG2 + GO 2

,

because the sum of the squares in either member of the

equation is equivalent to the square of the radius of the

circle.

ISTow, if we suppose HQ greater than GO, then will

HO 2 be greater than GO2
. Let the difference of these

squares be represented by d.

Subtracting GO 2
from both members of the above

equation, we have

EE 2 +d = AG2

whence, AG2> JEM 2

,
and AG> HE.

Therefore, AB, the double of AG, is greater than EF,
the double of UE; that is, of two chords in the same or

equal circles, the one nearer the center is the greater.

The equation, ME2 + EO 2 = AG 2 + ~G0
2

, being true,

whatever be the position of the chords, we may suppose
GO to have any value between and A 0, the radius of

the circle.

When GO becomes zero, the equation reduces to

EE2 +~E0 2 = AG2 = B*;

that is, under this supposition, AG coincides with AO,
and AB becomes the diameter of the circle, the greatest

chord that can be drawn in it.



BOOK III. 93

THEOREM IV.

A line tangent to the circumference of a circle is at right

angles with the radius drawn to the point of contact.

Let A be a line tangent to the circle

at the point B, and draw the radius, EB,
and the lines, AE and CE.

Now, we are to prove that EB is per-

pendicular to AC. Because B is the

only point in the line AC which meets

the circle, (Def. 9, B. II), any other line,

asAE or CE, must be greater than EB;
therefore, EB is the shortest line that can be drawn from

the point E to the line AG; and EB is the perpendicu-
lar to AC, (Th. 23, B.I).
Hence the theorem.

THEOREM V.

In the same circle, or in equal circles, equal chords subtend

or stand on equal portions of the circumference.

Conceive two equal circles, and two equal chords drawn

within them. Then, conceive one circle taken up and

placed upon the other, center upon center, in such a po-

sition that the two equal chords will fall on, and exactly
coincide with, each other; the circles must also coin-

cide, because they are equal ;
and the two arcs of the two

circles on either side of the equal chords must also coin-

cide, or the circles could not coincide
;
and magnitudes

which coincide, or exactly fill the same space, are in all

respects equal, (Ax. 10).

Hence the theorem.
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THEOREM VI,

Through three given points, not in the same straight line,

one circumference can be made to pass, and but one.

Let A, B, and be three given

points, not in the same straight

line, and draw the lines AB and

BO. If a circumference is made

to pass through the two points A
and B, the lineAB will be a chord

to such a circle
;
and if a chord is

bisected by a line at right angles,

the bisecting line will pass through
the center of the circle, (Cor., Th. 1) ; therefore, if we
bisect the line AB, and draw DF, perpendicular to N,
at the point of bisection, any circumference that can

pass through the points, A and B, must have its center

somewhere in the line DF. And if we draw EGr at

right angles to BO at its middle point, any circumference

that can pass through the points B and must have its

center somewhere in the line EG. JS"ow, if the two lines,

DF and ECr, meet in a common point, that point will be

a center, about which a circumference can be drawn to

pass through the three points, A, B, and 0, and DF and

EG will meet in every case, unless they are parallel ;
but

they are not parallel, for if they were, it would follow

(Th. 5, B. I) that, since DF is intersected at right angles

by the line AB, it must also be intersected at right angles

by the line BO, having a direction different from that of

AB
;
which is impossible, (Th. 7, B. I).

Therefore the two lines will meet
; and, with the point

H, at which they meet, as a center, and HB— HA = SO
as a radius, one circumference, and but one, can be made
to pass through the three given points.

Hence the theorem.
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THEOREM VII.

If two circles touch each other, either internally or exter-

nally, the two centers and the point of contact will he in one

right line.

Let two circles touch each

other internally, as represented
at A, and conceive AB to be a

tangent at the common point A.

Now, if a line, perpendicular to

AB, be drawn from the point

A, it must pass through the

center of each circle, (Th. 4) ;

and as but one perpendicular can be drawn to a line at a

given point in it, A, C, and B, the point of contact and
the two centers must be in one and the same line.

Next, let two circles touch each other externally, and

from the point of contact conceive the common tangent,

AB, to be drawn.

Then a line, AG, perpendicular to AB, will pass

through the center of one circle, (Th. 4), and a per-

pendicular, AB, from the same point, A, will pass

through the center of the other circle
; hence, BAO and

BAB are together equal to two right angles ;
therefore

CAB is one continued straight line, (Th. 3, B. I).

Cor. "When two circles touch each other internally, the

distance between their centers is equal to the difference

of their radii
;
and when they touch each other extern-

ally, the distance between their centers is equal to the

sum of their radii.

THEOREM VIII.

An angle at the circumference of any circle is measured by
one half the arc on which it stands.

In this work it is taken as an axiom that any angle
whose vertex is at the center of a circle, is measured by
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the arc on which it stands
;
and we now proceed to prove

thatwhen the arcs are equal, the angle at the circumference

is equal to one half the angle at the center.

LetAOB be an angle at the center,

and D an angle at the circumference,

and at first suppose D in a line with

A 0. We are now to prove that the

angle AOB is double the angle D.

The A DCB is an isosceles triangle,

because OB = OB
;
and its exterior

angle, A OB, is equal to the two interior angles, B, and

OBB, (Th. 12, B. I), and since these two angles are equal

to each other, the angle AOB is double the angle at

B. But AOB is measured by the arc AB ; therefore the

angle B is measured by one half the arc AB.

Next, suppose B not in a line with

A 0, but at any point in the circum-

ference, except on AB ; produce BO
toE.

Now, by the first part of this

theorem,
the angle EOB = 2EBB,
also, BOA = 2EBA,
by subtraction, AOB = 2ABB.
But AOB is measured by the arc AB; therefore ABB

or the angle D, is measured by one half of the same arc.

Hence the theorem.

THEOREM IX.

An angle in a semicircle is a right angle ; an angle in a

segment greater than a semicircle is less than a right angle ;

and an angle in a segment less than a semicircle is greater

than a right angle.

If the angle AOB is in a semicircle, the opposite seg-

ment, ABB, on which it stands, is also a semicircle
;
and

the angle AOB is measured by one half the arc ABB.
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(Th. 8) ;
that is, one half of 180°, or 90°, which is the

measure of a right angle.

If the angle ACB is in a segment

greater than a semicircle, then the

opposite segment is less than a semi-

circle, and the measure of the angle
is less than one half of 180°, or less

than a right angle. If the angle
ACB is in a segment less than a

semicircle, then the opposite segment, ABB, on which

the angle stands, is greater than a semicircle, and its half

is greater than 90°
; and, consequently, the angle is

greater than a right angle.

Hence the theorem.

Cor. Angles at the circumference,

and standing on the same arc of a

circle, are equal to one another
;
for

all angles, as BAC, BBC, BBC, are

equal, because each is measured by
one half of the arc BC. Also, if the

angle BBC is equal to CEG-, then

the arcs BC and CG- are equal, be-

cause their halves are the measures of equal angles.

THEOREM X.

The sum of two opposite angles of any quadrilateral in-

scribed in a circle, is equal to two right angles.

Let ACBD represent any quadri-
lateral inscribed in a circle. The

angle ACB has for its measure, one
half of the arc ABB, and the angle
ABB has for its measure, one half of

the arc ACB; therefore, by addition,
the sum of the two opposite angles at

C and B, are together measured by
one half of the whole circumference, or by 180 degrees,= two right angles. Hence the theorem.

9
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THEOREM XI.

An angle formed by a tangent and a chord is measured by

one half of the intercepted arc.

Let AB be a tangent, and AD a

chord, and A the point of contact ;

then we are to prove that the angle
BAD is measured by one half of the

arc AED.
From A draw the radius A C; and

from the center, 0, draw CE per-

pendicular to AD.
The l_BAD + [_DAO= 90°, (Th. 4).

Also, ]^C+l_DAC= 90°, (Cor. 4, Th. 12, B. I).

Therefore, by subtraction, BAD— (7=0;
by transposition, the angle BAD = 0.

But the angle 0, at the center of the circle, is measured

by the arc AE, the half of AED
; therefore, the equal

angle, BAD, is also measured by the arc AE, the half

of AED.
Hence the theorem.

See Th. 13, for another proof.

THEOREM XII.

An angle formed by a tangent and a chord, is equal to an

angle in the opposite segment of the circle.

Let AB be a tangent, and AD a

chord, and from the point of contact,

A, draw any angles, as AOD, and

AED, in the segments. Then we are

to prove that
[__ BAD =[__ACD, and

[_ aAD = L AED.
By Th. 11, the angle BAD is meas-

ured by one half the arc AED
;
and

as the angle ACD is measured by one half of the same

arc, (Th. 8),
we have [_ BAD = [_ACD.
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Again, as AEBO is a quadrilateral, inscribed in a

circle, the sum of the opposite angles,

AOB + AEB = 2 right angles. (Th. 10).

Also, the sum of the angles

BAB + BAG = 2 right angles. (Th. 1, B. I).

By subtraction (and observing that BAB has just been

proved equal to AOB), we have,

AEB — BAG = 0.

Or, by transposition, AEB = BAG.

Hence the theorem.

THEOREM XIII.

Arcs of the circumference of a circle intercepted by paral-

lel chords, or by a tangent and a parallel chord, are equal.

Let AB and OB be parallel chords,

and draw the diagonal, AB ; now, be-

cause AB and OB are parallel, the

angle BAB = the angle ABO (Th. 6, B.

I) ;
but the angle BAB has for its meas-

ure, one half of the arc BB; and the

angle ABO has for its measure, one half of the arc A 0,

(Th. 8) ;
and because the angles are equal, the arcs are

equal ;
that is, the arc BB = the arc AO.

Next, let EF be a tangent, parallel to a chord, OB, and

from the point of contact, G, draw GB.
Since EF and OB are parallel, the angle OBG = the

angle BGF. But the angle OBG has for its measure,
one-half of the arc OG, (Th. 8) ;

and the angle BGF
has for its measure, one half of the arc GB, (Th. 11) ;

therefore, these equal measures of equals must be equal ;

that is, the arc OG = the arc GB.
Hence the theorem.
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THEOREM XIV.

When two chords intersect each other within a circle, the

angle thus formed is measured by one half the sum of the two

intercepted arcs.

Let AB and CD intersect each

other within the circle, forming the

two angles, E and E', with their

equal vertical angles.

Then, we are to prove that the

angle E is measured by one half the

sum of the arcs A and BD; and

the angle E 1
is measured by one half the sum of the

arcs AB and OB.

First, draw AF parallel to CD, and FD will be equal
to AC, (Th. 13); then, by reason of the parallels, |__ BAF
= |_ E. But the angle BAF is measured by one half

of the arc BDF; that is, one half of the arc BD plus one

half of the arc AC
Now, as the sum of the angles B and E' is equal to

two right angles, that sum is measured by one half the

whole circumference.

But the angle E, alone, as we have just proved, is

measured by one half the sum of the arcs BD and AC;
therefore, the other angle, E 1

,
is measured by one half

the sum of the other parts of the circumference,

AD + OB.

Hence the theorem.

THEOREM XV,

When two secants intersect, or meet each other without a

circle, the angle thus formed is measured by one half the dif-

ference of the intercepted arcs.
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Let BE and BE be two secants

meeting atE ;
and drawAF parallel to

OB. Then, by reason of the parallels,

the angle E, made by the intersection

of the two secants, is equal to the

angle BAF. But the angle BAF is

measured by one half the arc BF;
that is, by one half the difference be-

tween the arcs BB and AC.

Hence the theorem.

THEOREM XVI.

The angle formed by a secant and a tangent is measured

by one half the difference of the intercepted arc.

Let BQ be sl secant, and OB a tan-

gent, meeting at 0. We are to prove
that the angle formed at 0, is meas-

ured by one half the difference of the

arcs BB and BA.
From A, draw AE parallel to OB ;

then the arc AB = the arc BE;
BB—BE = BE; and the [_BAE =
L 0. But the angle BAE is measured

by one half the arc BE, (Th. 8,) that is, by one half

the difference between the arcs BB and AB; there-

fore, the equal angle, 0, is measured by one half the

arc BE.

Hence the theorem.

THEOREM XVII.

When two chords intersect each other in a circle, the rect-

angle contained by the segments of the one, will be equivalent

to the rectangle contained by the segments of the other.

9*
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Let AB and CD be two chords inter-

secting each other in E. Then we are

to prove that the rectangle AE x EB=
the rectangle OE x ED.
Draw the lines AD and CB, forming

the two triangles AED and CEB. The

angles B and D are equal, because they
are each measured by one half the arc, AC. Also the

angles A and are equal, because each is measured by
one half the arc, DB ;

and LAED = [_ CEB, because

they are vertical angles ; hence, the triangles, AED and

CEB, are equiangular and similar. But equiangular tri-

angles have their sides about the equal angles propor-

tional, (Cor. 1, Th. 17, B. II); therefore, AE and ED,
about the angle E, are proportional to CE and EB, about

the same or equal angle.

That is, AE : ED : : CE : EB;
Or, (Th. 19, B. n), AExEB= CEx ED.

Hence the theorem.

Cor. When one chord is a diameter, and the other at right

angles to it, the rectangle contained by the segments of the

diameter is equal to the square of one half the other chord;

or one half of the bisected chord is a mean proportional be-

tween the segments of the diameter.

For, ADxDB*=FD x DE. But, if

AB passes through the center, C, at

right angles to FE, then FD = DE
(Th. 1) ;

and in the place of FD, write

its equal, DE, in the last equation, and

we have

ADxDB = DE 2

,

or, (Th. 3, B. IT), AD : DE : : DE : DB.

Put, DE =x, CD = y, and CE = R, the radius of the

circle.
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ThenAD = B—y, and DB = B + y. With this nota-

tion,
AD x DB = DE 2

becomes, (B— y) (B + y)
— x 2

or, B 2— y
2 = x 2

or, B 2 = x 2 +y 2

That is, the square of the hypotenuse of the right-angled

triangle, DOE, is equal to the sum of the squares of the other

two sides.

THEOREM XVIII.

Iffrom a point without a circle, a tangent line be drawn to

the circumference, and also any secant line terminating in the

concave arc, the square of the tangent will be equivalent to the

rectangle contained by the whole secant and its external seg-

ment.

Let A be a point without the

circle DEGr, and let AD be a

tangent and AE any secant line.

Then we are to prove that

AOxAE^AD 2
.

In the two triangles, ADE and

ADC, the anglesADO andAED
are equal, since each is meas-

ured by one half of the same

arc, DO; the angle A is com-,

mon to the two triangles ;
their

third angles are therefore equal, and the triaugles are

equiangular and similar.

Their homologous sides give the proportion

AE : AD : : AD : AO
whence, AE x AO= AD 2

Hence the theorem.

Oor. If AE and AF are two secant lines drawn from

the same point without the circumference, we shall have
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ACx AE=AD2

and, ABxAF=AD2

hence, AC x AE = AB X AF,
which, in the form of a proportion, gives

AC : AF ::AB : AE.

That is, ^6 secants are reciprocally proportional to their ex-

ternal segments.

Scholium.— By means of this theorem we can determine the diam-

eter of a circle, when we know the length of a tangent drawn from a

point without, and the external segment of the secant, which, drawn

from the same point, passes through the center of the circle.

Let Am be a secant passing through the center, and

suppose the tangent AD to be 20, and the external seg-

ment, An, of the secant to be 2. Then, if D denote the

diameter, we shall have

whence, Am x An - 2 (2 + D) = 4 + 2D = (20)
2 = 400,

22) =396, and 2) = 198.

If An, the height of a mountain on the earth, and AD,
the distance of the visible sea horizon, be given, we may
determine the diameter of the earth.

For example ;
the perpendicular height of a mountain

on the island of Teneriffe is about 3 miles, and its summit

can be seen from ships when they are known to be 154

or 155 miles distant ;
what then is the diameter of the

earth ?

Designate, as before, the diameter by 2>. Then Am =
3 + 2), and Am x An = 9 + 32). AD = 154, 5

; hence,

9 + 32) = (154, 5)
2 = 23870. 25, from which we find D =

7953.T3, which differs but little from the true diameter

of the earth.

One source of error, in this mode of computing the

diameter of the earth, is atmospheric refraction, the ex-

planation of which does not belong here.
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THEOREM XIX.

If a circle he described about a triangle, the rectangle con-

tained by two sides of the triangle is equivalent to the rectangle

contained by the perpendicular let fall on the third side, and

the diameter of the circumscribing circle.

Let ABO be a triangle, AO and

OB, the sides, OB the perpendicular
let fall on the base AB, and OB the

diameter of the circumscribing circle.

Then we are to prove that

AOx OB= OEx OB.

The two A's, AOB and OEB, are

equiangular, because [_A—[__B, both

being measured by the half of the arc OB; also, ABO is

a right angle, and is equal to OBB, an angle in a semi-

circle, and therefore a right angle ; hence, the third angle,

AOB = \_BOE, (Th. 12, Cor. 2, B. I). Therefore, (Cor.,

Th. 17, B. II),

AO : OB :: OB : OB

and, AOx BO= OB x OB.

Hence the theorem
; if a circle, etc.

Oor. The continued product of three sides of a triangle is

equal to twice the area of the triangle into the diameter of its

circumscribing circle.

Multiplying both members of the last equation by AB,
and we have,

AO x BO x AB = OB x {AB x OB).

But OB is the diameter of the circle, and (AB x OB)
= twice the area of the triangle ;

Therefore, AO X OB x AB = diameter multiplied

by twice the area of the triangle.
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THEOREM XX.

The square of a line bisecting any angle of a triangle, to*

gether with the rectangle of the segments into which it cuts the

opposite side, is equivalent to the rectangle of the two sides

including the bisected angle.

Let ABO he a triangle, and CD a

line bisecting the angle C. Then

we are to prove that

CD' + (AD x DB) = ACx OB.

The two A's, AOE and CDB, are

equiangular, because the angles E
and B are equal, both being in the

same segment, and the [_ ACE = BCD, by hypothesis.

Therefore, (Th. 17, Cor. 1, B. H),

AC : CE n CD : CB.

But it is obvious that CE = CD -f DE, and by substi-

tuting this value of CE, in the proportion, we have,
AC : CD + DE :: CD : CB.

By multiplying extremes and means,
UD2 + (DE x CD) = ACx CB.

But by (Th. 17),

DE x CD = AD x DB,
and substituting, we have,

CD 2 + (AD x DB) = ACx CB.

Hence the theorem.

THEOREM XXI.

The rectangle contained by the two diagonals of any quad-
rilateral inscribed in a circle, is equivalent to the sum of the

tivo rectangles contained by the opposite sides of the quadri-

lateral.

Let ABCD be a quadrilateral inscribed in a circle;

then we are to prove that

AC x BD = (AB x DC) -f (AD x BC).
From Cy draw CE, making the angle DCE equal to
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the angle A OB; and as the angle BAOis equal to the

angle ODE, both being in the same seg-

ment, therefore, the two triangles, DEC
and ABC, are equiangular, and we have

(Th. 17, Cor. 1, B. II),

AB : AC :: BE : DC (1)

The two A's, ABC and BEC, are

equiangular; for the \__DAC= [__EBC,
both being in the same segment; and the |_ BCA =
[_ECB, for BCE= BCA; to each of these add the angle

ECA, and BCA = ECB; therefore, (Th. 17, Cor. 1,

B. II),
AB : AC -.: BE : BO (2).

By multiplying the extremes and means in proportions

(1) and (2), and adding the resulting equations, we have,

(AB x DC) + (AB x BO) = (BE + BE) x AC.

But, DE + BE = BB
; therefore,

(AB x DO) + (AD x BO) = AC x #Z).

, Cor. When two adjacent sides of the quadrilateral aio

equal, as AB and BO, then the resulting equation is,

(AB x DC) + (AS x AD) = AC x BB;
or, AB x (BO + 4i>) = AC x BB;
or, AB : AC :: BB : DC+ AB.

That is, owe of the two equal sides of the quadrilateral

is to the adjoining diagonal, as the transverse diagonal is to

the sum of the two unequal sides.

THEOREM XXII.

If two chords intersect each other at right angles in a cir-

cle, the sum of the squares of the four segments thus formed
is equivalent to the square of the diameter of the circle.

Let AB and CD be two chords, intersecting each

other at right angles. Draw BE parallel to EB, and

draw DF and AF. Now, we are to prove that

~AE
2

+~EB
2

+~EC
2

+ ED* =TAF\
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As BF is parallel to ED, ABF is a

riglit angle, and therefore AFis a diam-

eter, (Th. 9). Also, because BF is

parallel to CD, CB = DF, (Th. 13).

Because QEB is a right angle,

OF 2

+ FB
2 = OB

2 = DF2

.

Because AFD is a right angle,

~AF
2

+~ED
2 = AD2

.

Adding these two equations, we have,

OF
2

+~FB
2

+ AF 2

+~ED
2 = DF2

+ ~AD
2

.

But, as AF is a diameter, and ADF a right angle,

(Th.9), ___
DT+AD 2 = AF2

;

therefore, OF 2

+ i£#
2

+ AF 2

+ ED 2 - 27P
2

.

Hence the theorem.

Scholium.— If two chords intersect each other at right angles, in a

circle, and their opposite extremities be joined, the two chords thus

formed may make two sides of a right-angled triangle, of which the

diameter of the circle is the hypotenuse.

For, AD is one of these chords, and CB is the other
;
and we have

shown that CB = DF; and AD and DF are two sides of a right-

angled triangle, of which AF is the hypotenuse ; therefore, AD and

CB may be considered the two sides of a right-angled triangle, and

AF its hypotenuse.

THEOREM XXIII.

If two secants intersect each other at right angles, the sum

of their squares, increased by the sum of the squares of the

two segments without the circle, will be equivalent to the square

of the diameter of the circle.

Let AF and ED be two secants in-

tersecting at right angles at the point

E. From B, draw BF parallel to CD,
and draw AF and AD. !Now we are to

prove that

FA2 + ED2 + EB2

+~E(f = AF2

.
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Because BF is parallel to CB, ABF is a right angle,

and consequently AF is a diameter, and BC— BF; and

because AF is a diameter, ABF is a right angle. As
ABB is a right angle,

~AE
2+W52=AD 2

Also, FB 2

+JEC
2=BC2=BF2

By addition,A^ 2+WD2+^2+W2=A^ 2

+BF
2=AFi

Hence the theorem.

THEOREM XXIV.

If perpendiculars be drawn to each of the sides of a plane

triangle, they will, when sufficiently produced, meet in a com-

mon point.

The three angular points of a triangle are not in the

same straight line; consequently one circumference,

and but one, may be made to pass through them.

Conceive a triangle to be thus circumscribed. The
sides of the triangle then become chords of the circum-

scribing circle, and they are bisected by the perpendicu-
lar radii, (Th. 6).

Conversely: The perpendiculars bisecting the three

sides of a triangle will meet in a common point, and

that point will be the center of the circumscribing circle.

Hence the theorem.

THEOREM XXV.

The sums of the opposite sides of a quadrilateral circum-

scribing a circle are equal.

Let ABCB be a quadrilateral circumscribed about a

circle, whose center is 0. Then we are to prove that

AB + BC=AB + BC.

From the center of the circle draw OF and OF to

the points of contact of the sides AB and BC. Then,
10
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the two right-angled triangles, OEB and OFB, are equal,
because they have the hypotenuse
OB common, and the side OF=
OE; therefore, BE = BF, (Cor.,

Th. 23, B. I).

In like manner we can prove
that

AE=AH, CF= CG, sindDG^DK

Now, takingthe equation BE=
BF, and adding to its first mem-
ber CG, and to its second the

equal line OF. we have,

BE + CG = BF + OF (1)

The equation AE=AE, by adding to its first member
DG}

and to the second the equal line, BE, gives

AE+BG=AE+BE (2)

By the addition of (1) and (2), we find that

BE + AE+ CG + BG = BF + CF+AH+BH.
That is, AB + CD +BC+ AD.
Hence the theorem.
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BOOK IV.

PROBLEMS.

In this section, we have, in most instances, merely
shown the construction of the problem, and referred to

the theorem or theorems that the student may use, to

prove that the object is attained by the construction.

In obscure and difficult problems, however, we have

gone through the demonstration as though it were a

theorem.

PROBLEM I.

To bisect a given finite straight line.

Let AB be the given line, and from

its extremities, A and B, with any
radius greater than one half of AB,
(Postulate 3), describe arcs, cutting

A—
each other in n and m. Draw the line

nm
;
and (7, where it cuts AB, will be

the middle of the given line.

Proof, (B. I, Th. 18, Sch. 2).

PROBLEM II.

To bisect a given angle.

Let ABO be the given angle. With any
radius, and B as a center, describe the arc

AC. From A and <7, as centers, with a
radius greater than one half of AG, de-

scribe arcs, intersecting in n
; join B and n

;

the joining line will bisect the given angle.

Proof, (Th. 21, B.
I).

•k

x
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A n m B

Proof,

PROBLEM III.

From a given point in a given line, to draw a perpendicular

to that line.

Let AB be the given line, and

O the given point. Take n and m,

equal distances on opposite sides

of 0; and with the points m and

n, as centers, and any radius

greater than nO or mO, describe

arcs cutting each other in S, Draw

SO, and it will be the perpendicular required.

(B. I, Th. 18, Sch. 2).

The following is another method,
which is preferable, when the given

point, 0, is at or near the end of the

line.

Take any point, 0, which is mani-

festly one side of the perpendicular,
as a center, and with 00 as a radius, describe a circum-

ference, cutting AB in m and 0. Draw mn through the

points m and 0, and meeting the arc again in n
; mn is

then a diameter to the circle. Draw On, and it will be

the perpendicular required. Proof, (Th. 9, B. III).

A m

PROBLEM IV.

From a given point without a line, to draw a 'perpendicular

to that line.

Let AB be the given line, and O
the given point. From draw any
oblique line, as On, Find the mid-

dle point of On by Problem 1, and
with that point, as a center, describe

a semicircle, having On as a diam-

eter. From m, where this semi-cir-

cumference cuts AB, draw Om, and it will be the perpen-
dicular required. Proof, (Th. 9, B. III).

m B



BOOK IV. 113

PROBLEM V.

At a given point in a line, to construct an angle equal to

a given angle.

Let A be the point given in the line

AB, and DOE the given angle.

With C as a center, and any radius,

OF, draw the arc FD.
With A as a center, and the radius

AF= OF, describe an indefinite arc
;
and

with J7
as a center, and FG- as a radius,

equal to FD, describe an arc, cutting the

other arc in Gr, and draw A G-; GrAF will be the angle

required. Proof, (Th. 5, B. III).

PROBLEM VI.

From a given point, to draw a line parallel to a given line.

Let A be the given point, and BO the

given line. Draw A C, making an angle,

AOB; and from the given point, A, in

the line AC, draw the angle CAD =
ACB, by Problem 5.

Since AJD and BO make the same angle with AC, they

are, therefore, parallel, (B. I, Th. 7, Cor. 1).

PROBLEM VII.

To divide a given line into any number of equal parts.

Let AB represent the given
line, and let it be required to di-

vide it into any number of equal

parts, say live. From one end of

the line A, draw AJD, indefinite

in both length and position. Take

any convenient distance in the di-

10* h
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viders, as Aa, and set it off on the line AD, thus making
the parts Aa, ab, be, etc., equal. Through the last point,

e, draw EB, and through the points a, b, c, and d, draw

parallels to eB, by Problem 6 ; these parallels will divide

the line as required. Proof, (Th. 17, Book IT).

PROBLEM VIII,

To find a third proportional to two given lines.

LetAB andA be any two lines.

Place them at any angle, and draw

CB. On the greater line, AB, take

AD — AO, and through D, draw

DE parallel to BO', AE is the third

proportional required.

Proof, (Th. 17, B. n).

PROBLEM IX.

To find a fourth proportional to three given lines.

Let AB, AC, AD, represent the A"~

three given lines. Place the first

two at any angle, as BAO, and draw

BO. On AB place AD, and from

the point D, draw DE parallel to

BO, by Problem 6
;
AE will be the

fourth proportional required.

Proof, (Th. 17, B. II).

PROBLEM X.

To find the middle, or mean proportional, between two given

lines.
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Place AB and BC in one right

line, and on A C, as a diameter, de-

scribe a semicircle, (Postulate 3),

and from the point B, draw BD at

right angles to AC, (Problem 3);

BD is the mean proportional re-

quired.

Proof, (B. m, Th. 17, Cor.).

PROBLEM XI.

To find the center of a given circle.

Draw any two chords in the given cir-

cle, as AB and CD, and from the middle

points, m and n, draw perpendiculars to

AB and CD
;
the point at which these

two perpendiculars intersect will be the

center of the circle.

Proof, (B. m, Th. 1, Cor.).

PROBLEM XII.

To draw a tangent to a given circle, from a given

either in or without the circumference of the circle.

When the given point is in the cir-

cumference, as A, draw the radiusA C,

and from the point A, draw AB per-

pendicular to AC; AB is the tangent

required.

Proof, (Th. 4, B. HI).
"When the given point is without

the circle, as A, draw AC to the

center of the circle ; on i(J, as a

diameter, describe a semicircle
;
and

from B, where the semi-circumfer-

ence cuts the given circumference,

draw AB, and it will be tangent to the circle.

Proof, (Th. 9, B. Ill), and, (Th. 4, B. III).

point,
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PROBLEM XIII.

On a given line, to describe a segment of a circle, that shall

contain an angle equal to a given angle.

Let AB be the given

line, and O the given

angle. At the ends of

the given line, form angles

DAB, DBA, each equal
to the given angle, O.

Then draw AE and BE
perpendiculars to AD and BD ;

and with E as a center,

and EA, or EB, as a radius, describe a circle
;
then AFB

will be the segment required, as any angle F, made in

it, will be equal to the given angle, O.

Proof, (Th. 11, B. HI), and (Th. 8, B. LEI).

PROBLEM XIV.

From any given circle to cut a segment, that shall contain

a given angle.

Let be the given angle. Take

any point, as A, in the circumfer-

ence, and from that point draw the

tangent AB ;
and from the point

A, in the line AB, construct the

angle BAD =
0, (Problem 5), and

AED is the segment required.

Proof, (Th. 11, B. IH), and (Th. 8, B. III).

PROBLEM XV.

To construct an equilateral triangle on a given straight line.

Let AB be the given line; from

the extremities A and B, as centers,

with a radius equal to AB, describe arcs

cutting each other at 0. From 0, the

point of intersection, draw OA and CB;
ABO will be the triangle required.

The construction is a sufficient demonstration. Or, (Ax. 1).
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PROBLEM XVI.

To construct a triangle, having its three sides equal

given lines, any two of which shall be greater than the

Let AB, OB, and EF, represent the E
three lines. Take any one of them, as c

AB, to be one side of the triangle. From

A, as a center, with a radius equal to CD,
describe an arc

;
and from B, as a center,

with a radius equal to EF, describe an-

other arc, cutting the former in n. Draw
An and Bn, and AnB will be the A re-

quired. Proof, (Ax. 1).

to three

third.

F

D

PROBLEM XVII.

To describe a square on a given line.

Let AB be the given line
;
and from the

extremities, A and B, drawA and BB per-
c

pendicular to AB. (Problem 3.)

From A, as a center, with AB as radius,

strike an arc across the perpendicular at C; t

and from O draw OB parallel to AB
;
AOBB

is the square required. Proof, (Th. 26, B. I).

PROBLEM XVIII.

To construct a rectangle, or a parallelogram, whose adja-

cent sides are equal to two given lines.

Let AB and A be the two given A c
lines. From the extremities of one A #
line, draw perpendiculars to that line, as in the last prob-
lem

;
and from these perpendiculars, cut off portions

equal to the other line
; and, by a parallel, complete the

figure.
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When the figure is to be a parallelogram, with oblique

angles, describe the angles by Problem 5. Proof, (Th.

26, B. I).

PROBLEM XIX.

To describe a rectangle that shall be equivalent to a given

square, and have a side equal to a given line.

LetAB be a side of the given square, c D
and CD one side of the required rect- A B

angle. E p

Find the third proportional, FF, to CD and AB, (Prob-
lem 8). Then we shall have

CD : AB :: AB : FF.

Construct a rectangle with the two given lines, CD
and FF, (Problem 18), and it will be equal to the given

square, (Th. 3, B. II).

PROBLEM XX.

To construct a square that shall be equivalent to the differ-

ence of two given squares.

Let A represent a side of the greater of two given

squares, and B a side of the less square.

On A, as a diameter, describe a

semicircle, and from one extremity,

p, as a center, with a radius equal to

B, describe an arc, n, and, from the

point where it cuts the circumference,
—-—

draw mn and np ; np is the side of

a square, which, when constructed,

will be equal to the difference of the two given squares,

(Problem 17). Proof, (Th. 9, B. Ill, and Th. S6, B. I.)

To construct a square equivalent to the sum of two

given squares, we have only to draw through any point
two lines at right angles, and lay off on one a distance

equal to the side of one of the squares, and on the other
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a distance equal to the side of the other. The straight

line connecting the extremities of these lines will be the

side of the required square, (Th. 36, B. I).

PROBLEM XXI.

To divide a given line into two parts, which shall be in the

ratio of two other given lines.

M^

Ni-

Let AB be the line A ~HB

to be divided, and M
and N the lines hav-

ing the ratio of the

required parts ofAB.
From the extremity
A draw AZ), making
any angle with AB,
and take AC = M,
and CD = N. Join

the points D and B
by a straight line,

and through C draw

Ca parallel to BD.
Then will the point Gf divide the line AB into parts

having the required ratio. (Proof, Th. 17, B. II).

Or, having drawn AD, lay off AC = M, and through
B draw B V parallel to AD, making it equal to N, and

join C and V by a line cutting AB in the point (7.

Then the two triangles ACGr and GrBV are equiangu-
lar and similar, and their homologous sides give the

proportion,

Aa : GB : AC :: BV :: Mi N
The line AB is therefore divided, at the point Q-, into

parts which are in the ratio of the lines M and N",
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PROBLEM XXII.

To divide a given line into any number of parts, having to

each other the ratios of other given lines.

Let AB be the given M
line to be divided, and Nl

M, JST, P, etc., the lines p >

to which the parts of

AB are to be propor-
tional.

Through the point A
draw an indefinite line, making, with AB, any conve-

nient angle, and on this line lay off from A the lines M,
JV, P, etc., successively. Join the extremity of the last

line to the point B by a straight line, parallel to which

draw other lines through the points of division of the

indefinite line, and they will divide the line AB at the

points 0, D, etc., into the required parts. (Proof, Th. 17,

B. II).

PROBLEM XXIII.

To construct a square that shall be to a given square, as a

line, M, to a line, N.

Place M and N in a line, and

on the sum describe a semicir-

cle. From the point where the

two lines meet, draw a perpen-
dicular to meet the circumfer-

ence in A. Draw Am and An,
and produce them indefinitely. On Am orAm produced,
take AB = to the side of the given square ;

and from

B, draw BO parallel to mn; A is a side of the required

square.

For, Am :A^
2

:: AB2

: ~AC\ (Th. 17, B. II).

Also, Am :An ::M : JV, (Th. 25, B.II. Sch.).

Therefore, A& : AC2

: : M : 1ST, (Th. 6, B. II).
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PROBLEM XXIV.

To cut a line into extreme and mean ratio ; that is, so that

the whole line shall be to the greater part, as that greater part
is to the less.

Remark.— The geometrical solution of this problem is not imme-

diately apparent, but it is at once suggested by the form of the equa-

tion, which a simple algebraic analysis of its conditions leads to.

Bepresent the line to be divided by 2a, the greater

part by x, and consequently the other, or less part, by
2a — x.

Now, the given line and its two parts are required, to

satisfy the following proportion :

2a : x : : x : 2a — x

whence, x2 = 4a2 — 2ax

By transposition, x2
-f 2ax = 4a2 =

(2a)
2

If we add a2 to both members of this equation, we
shall have,

x2
-f 2ax + a2 =

(2af + a2

,or, (x +df = (2af + a2

This last equation indicates that the lines represented

by (x + a), 2a, and a, are the three sides of a right-

angled triangle, of which (x + a) is the hypotenuse, the

given line, 2a, one of the sides, and its half, a, the other.

Therefore, let AB represent the

given line, and from the extremity, B,
draw BO at right angles to AB, and

make it equal to one half of AB.
With 0, as a center, and radius CB,

describe a circle. Draw A and pro-

duce it to F. With A as a center

and AB as a radius, describe the arc

BE) this arc will divide the line AB,
as required.

We are now to prove that

AB : AB : : AB : EB
11
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By Scholium to Th. 18, B. m, we have,

AF x AD = AB?

or, AF : AB : : AB : AD
Then, (by Cor., Th. 8, Book II), we may have,

(AF— AB) : AB :: (AB—AD) : AD
Since CB = \AB = JD.F; therefore, AB = DJ7

.

Hence, AF—AB = AF—DF= AD = AF.

Therefore, AF : AB :: FB : AF
By taking the extremes for the means, we have,

AB : AF : : AF : FB.

PROBLEM XXV.

To describe an isosceles triangle, having its two equal angles

each double the third angle, and the equal sides of any given

length.

Let AB be one of the equal sides of

the required triangle; and from the

point A, with the radius AB, describe

an arc, BD.
Divide the line AB into extreme and

mean ratio by the last problem, and sup-

pose C the point of division, and A the

greater segment.
From the point B, with AC, the greater segment, as a

radius, describe another arc, cutting the arc BD in D.

Draw BD, DC, and DA. The triangle ABD is the tri-

angle required.

As AC — BD, by construction
;
and as AB is to AC

as AC is to B C, by the division of AB; therefore

AB : BD : : BD : BC
Now, as the terms of this proportion are the sides of

the two triangles about the common angle, B, it follows,

(Cor. 2, Th. 17, B. II), that the two triangles, ABD and
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BBC, are equiangular; but the triangle ABB is isos-

celes; therefore, BBC is isosceles also, and BB = BO;
but BB m AC: hence, BC = AC, (Ax. 1), and the tri-

angle ACB is isosceles, and the [_ CBA = [_ J.. But
the exterior angle, BCB m CBA + A, (Th. 12, B. I).

Therefore, [_BCB, or its equal \__B= L CBA +[__A; or

the angle B = 2[__A. Hence, the triangle ABB has each

of its angles, at the base, double of the third angle.

Scholium.—As the two angles, at the base of the triangle ABD, are

equal, and each is double the angle A, it follows that the sum of the

three angles isJive times the angle A. But, as the three angles of every

triangle are always equal to two right angles, or 180°, the angle A
must be one fifth of two right angles, or 36°

; therefore, BD is a chord

of 36°, when AB is a radius to the circle ; and ten such chords would

extend exactly round the circle, or would form a decagon.

PROBLEM XXVI.

Within a given circle to inscribe a triangle, equiangular to

a given triangle.

Let ABC be the circle, and

ale the given triangle. From

any point, as A, draw BB tan-

gent to the given circle at A,

(Problem 12).

From the point A, in the line

AB, lay off the angle BAC=
the angle b, (Problem 5), and the angle BAB = the angle
c, and draw BC
The triangle ABC is inscribed in the circle; it is equi-

angular to the triangle abc, and hence it is the triangle

required.

Proof, (Th. 12, B. III).
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PROBLEM XXVII.

To describe a regular pentagon in a given circle.

1st. Describe an isosceles tri-

angle, abc, having each of the

equal angles, b and c, double the

third angle, a, by Problem 25.

2d. Inscribe the triangle,

ABO, in the given circle, equi-

angular to the triangle abc, by
Problem 26

;
then each of the angles, B and 0, is double

the angle A.

3d. Bisect the angles B and 0, by the lines BB and

OE, (Problem 2), and draw AE, EB, CB, BA; and the

figure AEBCB is the pentagon required.

By construction, the angles BAG, ABB, BBC, BOE,
EGA, are all equal ; therefore, (B. HI, Th. 9, Scho.), the

arcs, BO, AB, BO, AE, and EB, are all equal; and if

the arcs are equal, the chords AE, EB, etc., are equal.

Scholium.—The arc subtended by one of the sides of a regular pen-

360°
tagon, being one fifth of the whole circumference, is equal to ——=72°*

PROBLEM XXVIII.

To describe a regular hexagon in a circle.

Draw any diameter of the circle, as

AB, and from one extremity, B, draw

BB equal to BO, the radius of the

circle. The arc, BB, will be one sixth

part of the whole circumference, and

the chordBB will be a side of the regu-

lar polygon of six sides.

In the A OBB, as OB = OB, and BB = OB by con-

struction, the A is equilateral, and of course equiangular.

Since the sum of the three angles of every A is equal

to two right angles, or to 180 degrees, when the

E^-
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three angles are equal to one another, each one of them

must be 60 degrees ;
but 60 degrees is a sixth part of

360 degrees, the whole number of degrees in a circle ;

therefore, the arc whose chord is equal to the radius, is a

sixth part of the circumference ; and, if a polygon of six

equal sides be inscribed in a circle, each side will be

equal to the radius.

Scholium.— Hence, as BD is the chord of 60°, and equal to BC qt

CD, we say generally, that the chord of 60° is equal to radius.

PROBLEM XXIX.

To find the side of a regular polygon offifteen sides, which

may be inscribed in any given circle.

Let CB be the radius of the given

circle; divide it into extreme and
mean ratio, (Problem 24), and make
BD equal to CB, the greater part;
then BD will be a side of a regular

polygon of ten sides, (Scholium to

Problem 25). Draw BA = to CB, and
it will be a side of a polygon of six sides. Draw DA,
and that line must be the side of a polygon which cor-

responds to the arc of the circle expressed by \ less ^,
of the whole circumference

;
or J

—
-^ = g% = T̂ ; that

is, one-fifteenth of the whole circumference ; or, DA is

a side of a regular polygon of 15 sides. But the 15th

part of 360° is 24°
;
hence the side of a regular inscribed

polygon of fifteen sides is the chord of an arc of 24°.

PROBLEM XXX

In a given circle to inscribe a regular polygon of any num-

ber of sides, and then to circumscribe the circle by a similar

polygon.
11*
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Let the circumference of the circle, whose center is 0,

be divided into any number of equal arcs, as AmB, Bw(7,

OoD, etc.
;
then will the polygon abode, etc., bounded by

the chords ofthese arcs, be regu-
lar and inscribed

;
and the poly-

gon ABODE, etc., bounded by
the tangents to these arcs at their

middle points m, n, o, etc, be a

similar circumscribed polygon.
First— The polygon abode,

etc., is equilateral, because its

sides are the chords of equal
arcs of the same circle, (Th. 5, B. Ill) ;

and it is equi-

angular, because its angles are inscribed in equal segments
of the same circle, (Th. 8, B. III). Therefore the poly-

gon is regular, (Def. 14, B. Ill), and it is inscribed, since

the vertices of all its angles are in the circumference of

the circle, (Def. 13, B. HI).
Second.—Ifwe draw the radius to the point oftangency

of the side AB of the circumscribed polygon, this radius

is perpendicular to AB, (Th. 4, B. Ill), and also to the

chord ah, (B. Ill, Th. 1, Cor.) ;
henceAB is parallel to ah,

and for the same reason BO is parallel to bo ; therefore

the angle ABO is equal to the angle abo, (Th. 8, B. I).

In like manner we may prove the other angles of the

circumscribed polygon, each equal to the corresponding

angle of the inscribed polygon. These polygons are

therefore mutually equiangular.

Again, ifwe draw the radii Om and On, and the line OB,
the two A's thus formed are right-angled, the one at m
and the other at n, the side OB is common and Om is

equal to On
; hence the difference of the squares described

on OB and Om is equivalent to the difference of the

squares described on OB and On. But the first difference

is equivalent to the square described on Bm, and the

second difference is equivalent to the square described
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on Bn
;
hence Bm is equal to Bn, and the two right-

angled triangles are equal, (Th. 20, B. I), the angle BOm
opposite the side Bm being equal to the angle BOn, op-

posite the equal side Bn. The line OB therefore passes

through the middle point of the arc mbn
;
but because m

and n are the middle points of the equal arcs amb and

bne, the vertex of the angle abe is also at the middle

point of the arc mbn. Hence the line OB, drawn from

the center of the circle to the vertex of the angle ABO,
also passes through the vertex of the angle abc. By pre-

cisely the same process of reasoning, we may prove that

00 passes through the point c, OD through the point d,

etc.
;
hence the lines joining the center with the vertices

of the angles of the circumscribed polygon, pass through
the vertices of the corresponding angles of the inscribed

polygon ;
and conversely, the radii drawn to the vertices

of the angles of the inscribed polygon, when produced,

pass through the vertices of the corresponding angles
of the circumscribed polygon.

Now, since ab is parallel to AB, the similar A's abO
and ABO, give the proportion

Ob : OB :: ab : AB,
and the A's, bcO and BOO, give the proportion

Ob : OB : : be : BO.

As these two proportions have an antecedent and con-

sequent, the same in both, we have, (Th. 6, B. II),

ab : AB : : be : BO.

In like manner we may prove that

be : BO : : cd : OB, etc., eta

The two polygons are therefore not omy equiangular,
but the sides about the equal angles, taken in the same

order, are proportional ; they are therefore similar, (Def.

16, B. n).
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Cor. 1. To inscribe any regular polygon in a circle, we
have only to divide the circumference into as many equal

parts as the polygon is to have sides, and to draw the

chords of the arcs ; hence, in a given circle, it is possible

to inscribe regular polygons of any number of sides

whatever. Having constructed any such polygon in a

given circle, it is evident, that by changing the radius of

the circle without changing the number of sides of the

polygon, it may be made to represent any regular poly-

gon of the same name, and it will still be inscribed in a

circle. As this reasoning is applicable to regular poly-

gons of whatever number of sides, it follows, that any

regular polygon may be circumscribed by the circumference

of a circle.

Cor. 2. Since ab, be, cd, etc., are equal chords of the

same circle, they are at the same distance from the

center, (Th. 3, B. Ill) ; hence, if with as a center, and

Ot, the distance of one of these chords from that point,

as a radius, a circumference be described, it will touch

all of these chords at their middle points. It follows,

therefore, that a circle may be inscribed within any regular

polygon.

Scholium.—The center, 0, of the circle, may be taken as the center

of both the inscribed and circumscribed polygons; and the angle

A OB, included between lines drawn from the center to the extremities

of one of the sides AB, is called the angle at the center. The perpen-
dicular drawn from the center to one of the sides is called the Apothem
of the polygon.

Cor. 3. The angle at the center of any regular polygon
is equal to four right angles divided by the number of

sides of the polygon. Thus, if n be the number of sides

of the polygon, the angle at the center will be expressed
. 360°
by .

n

Cor. 4. If the arcs subtended by the sides of any

regular inscribed polygon be bisected, and the chords

of these semi-arcs be drawn, we shall have a regular
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inscribed polygon of double the number of sides. Thus,
from the square we may pass successively to regular
inscribed polygons of 8, 16, 32, etc., sides. To get the

corresponding circumscribed polygons, we have merely
to draw tangents at the middle points of the arcs sub-

tended by the sides of the inscribed polygons.
Cor. 5. It is plain that each inscribed polygon is but

a part of one having twice the number of sides, while

each circumscribed polygon is but a part of one having
one half the number of sides.
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BOOK V

ON THE PROPORTIONALITIES AND MEASUREMENT
OF POLYGONS AND CIRCLES.

PROPOSITION I.—THEOREM.

The area of any circle is equal to the product of its radius

by one half of its circumference.

Let OA be the radius of a circle,

and AB a very small portion of its

circumference; then AOB will be a

sector. "We may conceive the whole

circle made up of a great number of

such sectors; and when each sector

is very small, the arcs AB, BD, etc.,

each one taken separately, may be considered a right

line
;
and the sectors CAB, CBD, etc., will be triangles.

The triangle, AOB, is measured by the product of the

base, AC, multiplied into one half the altitude, AB, (Th.

33, Book I) ;
and the triangle BOD is measured by the pro-

duct of BO, or its equal, AO, into one half BD; then the

area, or measure of the two triangles, or sectors, is the

product of AO, multiplied by one half of AB plus one

half of BD, and so on for all the sectors that compose
the circle ; therefore, the area of the circle is measured

by the product of the radius into one half the circumference.
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PROPOSITION II.—THEOREM.

Circumferences of circles are to one another as their radii,

and their areas are to one another as the squares of their

radii.

Let CA be the radius of a circle,

and Oa the radius of another circle.

Conceive the two circles to be so

placed upon each other so as to have

a common center.

Let AB be such a certain definite

portion of the circumference of the

larger circle, that m times AB will represent that cir-

cumference.

But whatever part AB is of the greater circumference,
the same part ah' is of the smaller; for the two circles

have the same number of degrees, and are of course sus-

ceptible of division into the same number of sectors.

But by proportional triangles we have,

CA : Ca : : AB : ab

Multiply the last couplet by m, (Th. 4, B. II), and we
have

CA : Ca :: mAB : mab.

That is, the radius of one circle is to the radius of another,

as the circumference of the one is to the circumference of the

other.

To prove the second part of the theorem, let C repre-

sent the area of the larger circle, and c that of the

smaller
; now, whatever part the sector CAB is of the

circle C, the sector Cab is the corresponding part of the

circle c.

That is, Cic : : CAB : Cab,

but, CAB : Cab : : (CAf : (Ca)
2
, (Th. 20, B. II).

Therefore, C : c : : (CAf : (Ca)
2
, (Th. 6, B. H).

That is, the area of one circle is to the area of another, a%
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the square of the radius of the one is to the square of the

radius of the other.

Hence the theorem.

Cor. If : e :: (OAf : (Co)
2
,

then, : c :: 4 (Oaf : 4 (Ob)
2
.

But 4 (OAf is the square of the diameter of the larger

circle, and 4 (Oaf is the square of the diameter of the

smaller. Denoting these diameters respectively by D
and d, we have,

O : c : : D2
: d\

That is, the areas of any two circles are to each other, as

the squares of their diameters.

Scholium.— As the circumference of every circle, great or small, is

assumed to be the measure of 360 degrees, if we conceive the circum-

ference to be divided into 360 equal parts, and one such part repre-

sented bjAB on one circle, or ab on the other, AB and ab will be very-

near straight lines, and the length of such a line as AB will be greater

or less, according to the radius of the circle ; but its absolute length
cannot be determined until we know the absolute relation between the

diameter of a circle and its circumference.

PROPOSITION III.—THEOREM.

When the radius of a circle is unity, its area and semi-

circumference are numerically equal.

LetR represent the radius of any circle, and the Greek

letter, *, the half circumference of a circle whose radius

is unity. Since circumferences are to each other as their

radii, when the radius is R, the semi-circumference will

be expressed by «R.

Let m denote the area of the circle of which R is the

radius
; then, by Theorem 1, we shall have, for the area

of this circle, *R? = m, which, when R =
1, reduces to

ic = m.

This equation is to be interpreted as meaning that the

semi-circumference contains its unit, the radius, as many
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times as the area of the circle contains its unit, the

square of the radius.

Remark.— The celebrated problem of squaring the circle has for its

object to find a line, the square on which will be equivalent to the area

of a circle of a given diameter ; or, in other words, it proposes to find

the ratio between the area of a circle and the square of its radius.

An approximate solution only of this problem has been as yet dis-

covered, but the approximation is so close that the exact solution is

no longer a question of any practical importance.

PROPOSITION IV.—PROBLEM.

Given, the radius of a circle unity, to find the areas of

regular inscribed and circumscribed hexagons.

Conceive a circle described with the radius QA, and in

this circle inscribe a regular polygon of six sides (Prob.

28, B. IV), and each side will be

equal to the radius QA
; hence,

the whole perimeter of this poly-

gon must be six times the ra-

dius of the circle, or three times

the diameter. The chord bd is

bisected by QA. Produce Ob and Qd, and through the

point A y
draw BD parallel to bd

;
BD will then be a side

of a regular polygon of six sides, circumscribed about

the circle, and we can compute the length of this line,

BD, as follows : The two triangles, Cbd and QBD, are

equiangular, by construction
; therefore,

Oa : bd :: QA : BD.

Now, let us assume QA = QD = the radius of the

circle, equal unity ;
then bd = 1, and the preceding pro-

portion becomes -

Qa : 1 :: 1 : BD (1)

In the right-angled triangle Qad, we have,

Qa2 + ad 2 = Qd 2

, (Th. 39, B. I).

That is, Qa2
-f J = 1, because Qd = 1, and ad = J.

12
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Whence, Ca = J </3. This value of Ca, substituted in

proportion (1), gives

tf/S : 1 : : 1 : BD; hence, BD = JL
But the area of the triangle Cbd is equal to bd (= 1,)

multiplied by \Ca = \ ^3 ;
and the area of the triangle

CBD is equal to BD multiplied by |(M.

Whence, area, Cbd = J ^3,

and, area, CJ2D = ,-=.V 3

But the area of the inscribed polygon is six times that

of the triangle Cbd, and the area of the circumscribed

polygon is six times that of the triangle CBD.
Let the area of the inscribed polygon be represented

by p, and that of the circumscribed polygon by P.

Thenp = | V3, andP = —=
2 \/S

Whence p : P : : gv^ : 2^3 ::^:2::3:4::9 : 12

p=^V3 = 2.59807621. I

Now, it is obvious that the area of the circle must be

included between the areas of these two polygons, and

not far from, but somewhat greater than, their half sum,
which is 3.03 -f ;

and this may be regarded as the first

approximate value of the area of the circle to the radius

unity.

PROPOSITION V.—PROBLEM.

Given, the areas of two regular polygons of the same num-

ber of sides, the one inscribed in and the other circumscribed

about, the same circle, to find the areas of regular inscribed and

circumscribed polygons of double the number of sides.

Letp represent the area of the given inscribed polygon,
and P that of the circumscribed polygon of the same

>
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number of sides. Also denote by p
f the area of the

inscribed polygon of double the number of sides, and by
Pf that of the corresponding circumscribed polygon.

Now, if the arc KAL be some exact part, as one-fourth,

one fifth, etc., of the circumference of the circle, of which

Q is the center and QA the radius, then will KL be the

side of a regular inscribed polygon, and the triangle

KQL will be the same part of the whole polygon that

the arc KAL is of the whole circumference, and the

triangle QBB will be a like part of the circumscribed

polygon. Draw QA to the point of tangency, and bisect

the angles ACB and AQB, by the lines QGr and QB, and

draw KA.
It is plain that the triangle

AOK is an exact part of the

inscribed polygon of double the

number of sides, and that the

A EQG- is a like part of the cir-

cumscribed polygon of double

the number of sides. Repre-
sent the area of the A LQK by
a, and the area of the A BOB
by b, that of the A ACK by x,

and that of the A BQGr by y, and suppose the A's, KCL
and BBC, to be each the nth part of their respective

polygons.

Then, na = p, nb = P, 2nx = p
f

,

and, Zny = P f
;

But, by (Th. 33, B. I), we have

CM.MK=*a (1)

QA . AB = b (2)

QA . MK=2x (3)

Multiplying equations (
1

) and (
2

) ?
member by member,

we have

(CM . AB) x (QA . MK) =ab (4)
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From the similar A's CMK and CAD, we have

CM : MK : : CA : AD
whence CM . AD = (Li . ME"

But from equation (
3

) we see that each member of

this last equation is equal to 2x; hence equation (4)

becomes
2# . 2# = ab

If we multiply both members of this by n* = n . n,

we shall have
4n2

x* = na.nb = p.P

or, taking the square root of both members,

2nx = s/pl?

That is, the area of the inscribed polygon of double the

number of sides is a mean proportional between the areas of

the given inscribed and circumscribed polygons p and P.

Again, since CE bisects the angle ACD, we have, by,

(Th. 24, B. II),

AE : ED

hence, AE : AE +ED

CA : CD
CM: CK
CM: CA
CM: CM+ CA.

Multiplying the first couplet of this proportion by CA,
and the second by MK, observing that AE -f ED = AD,
we shall have

AE.CA : AD.CA :: CM.MK : (CM + CA) MK.

But AE. CA measures the area of the A CEG-, which

we have called y, AD.CA = A CBD = 5, CM.MK =
A CKL =

a, and (CM + CA)MK = A CMK, and

CAK = a 4- 2a:, as is seen from equations (
1

) and (
3 ).

Therefore the above proportion becomes

y : b : : a : a + 2x.

Multiplying the first couplet by 2n, and the second by

n, we shall have
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Assuming the areas already found for the inscribed

and circumscribed hexagons, and applying the formulae

of Prob. 5 to them and to the successive results ob-

tained, we may construct the following table :

NUMBER OF SIDES. INSCRIBED POLYGONS. CIRCUMSCRIBED POLYGONS.

6 ^v^ 2.59807621 2^3=3.46410161

19
12 3 = 3.0000000 7r=—^= 3.2153904

2+v/3
6

24
v^l+^f

= 3 -1058286 3.1596602

48 3.132628T 3.1460863

96 3.1393554 3.1427106

192 3.1410328 3.1418712

384 3.1414519 3.1416616

768 3.1415568 3.1416092

1536 3.1415829 3.1415963

3072 3.1415895 3.1415929

6144 3.1415912 3.1415927

Thus we have found, that when the radius of a circle is

1, the semi-circumference must be more than 3.1415912,
and less than 3.1415927 ;

and this is as accurate as can

be determined with the small number of decimals here

used. To be more accurate we must have more decimal

places, and go through a very tedious mechanical opera-

tion; but this is not necessary, for the result is well

known, and is 3.1415926535897, plus other decimal places

to the 100th, without termination. This result was dis-

covered through the aid of an infinite series in the Dif-

ferential and Integral Calculus.

The number, 3.1416, is the one generally used in prac-

tice, as it is much more convenient than a greater num-

ber of decimals, and it is sufficiently accurate for all

ordinary purposes.

In analytical expressions it has become a general cus-

tom with mathematicians to represent this number by
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the Greek letter *, and, therefore, when any diameter of

a circle is represented by D, the circumference of the

same circle must be *D. If the radius of a circle is re-

presented by M, the circumference must be represented

by 2*B.

Scholium.— The side of a regular inscribed hexagon subtends an

arc of 60°, and the side of a regular polygon of twelve sides subtends

an arc of 30° ; and so on, the length of the arc subtended by the sides

of the polygons, varying inversely with the number of sides.

Angles are measured by the arcs of circles included between their

sides ; they may also be measured by the chords of these arcs, or rather

by the half chords called sines in Trigonometry. For this purpose, it

becomes necessary to know the length of the chord of every possible

arc of a circle.

PROPOSITION VII.—PROBLEM.

Given, the chord of any arc, to find the chord of one half

that arc, the radius of the circle being unity.

Let FE be the given chord, and draw
the radii OA and OE, the first perpen-
dicular to FE, and the second to its ex-

tremity, E.

Denote FE by 2c, and the chord of

the half arc AE by x.

Then, in the right-angled triangle,

DOE, we have
~

DC2 = OE 2 — BE\ Whence, since

OE = 1, _Z><7= ^1— c\

If from CA = 1 we subtract DO, we shall have AD.
That is, AD = 1 — s/\— c

%

\ butAD
2

-f DE 2 = AE\
and AD' = 2 — 2Vl — c

2 — c\ Adding to the first

member of this last equation DE
2

,
and to the second its

value c
a

,
we have

AD2

-f DB2 = 2^T^7.

Whence, AE— ^2— 2^1— c\ the value sought.

By applying this formula successively to any known

chord, we can find the chord of one half the arc, that of

half of the half, and so on, to the chords of the most

minute arcs.
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Application.

The greatest chord in a circle is its diameter, which is

2 when the radius is 1
; therefore, we may commence

by making 2c = 2, and c = 1.

Then, AE = ^2— s/T^c* = ^2—2^1^1 = ^2 =
1.41421356, which is the chord of 90°.

Now make 2c = 1.41421356, and c =.70710678 = 1^2.
We shall then have,

chord of 45° = V2 — 2^t = V2 — 1.41421356 =
</.58578644 = .7653+.

Again, placing 2<?=.7653+, and applying the formula,
we would obtain the chord of 22° 30', and from this the

chord of 11° 15', and so on, as far as we please.

We may take, for another starting point, the chord of

60°, which is known to be equal to the radius of the

circle,(Prob. 26, B. IV). If, as above, we make successive

applications of the formula, putting first 2c = 1, we shall

arrive at the results in the following



BOOK V. 141

product of .002045307 by 3072, which is 6.283183104 =
circumference whose radius is unity. The half of this,

3.141592552, is the semi-circumference, the more exact

value of which, as stated, (Prop. 6), is 3.141592653.

The value of the half circumference being now deter-

mined, if that of any arc whatever be required, we have

merely to divide 3.141592, etc., by 10800, the number of

minutes in a semi-circumference, and multiply the quo-
tient by the number of minutes in the arc whose length
is required.

But this investigation has been carried far enough for

our present purposes. It will be resumed under the

subject of Trigonometry.

We insert the following beautiful theorem for the tri-

section of an arc, although not necessary for practical

application. Those not acquainted with cubic equations

may omit it.

PROPOSITION VIII.—THEOREM.

Given, the chord of any arc, to determine the chord of one

third of such arc.

Let AE be the given chord, and

conceive its arc divided into three

equal parts, as represented by AB,
BD, and BE.

Through the center draw BOG, and

draw AB. The two A's, CAB and

ABE, are equiangular ; for, the angle

FAB, being at the circumference, is

measured by one half the arc BE, which is equal to AB,
and the angle BOA, being at the center, is measured by
the arc AB

; therefore, the angle FAB = the angle BOA ;

but the angle OBA or EBA, is common to both tri-

angles ; therefore, the third angle, OAB, of the one tri-

angle, is equal to the third angle, AFB, of the other,
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(Th. 12, B. I, Cor. 2), and the two triangles are equi-

angular and similar.

But the A AOB is isosceles
; therefore, the A AFB is

also isosceles, and AB — AF, and we have the following

proportions :

CA : AB n AB : BF.

Now, let AF= c, AB = x,AC= 1. Then AF= x, and

EF= e— x, and the proportion becomes,

1 : x : : x : BF. Hence, BF= x\

Also, Fa = 2— x\

As AF and BG are two chords intersecting each other

at the point F, we have,

GFx FB = AFx FF, (Th. 17, B. III).

That is, (2
— x2

)
x2 = x(c

—
x);

or, x3— Sx = — e.

If we suppose the arcAF to be 60 degrees, then c = 1,

and the equation becomes ar
5— Sx =— 1; a cubic equa-

tion, easily resolved by Horner's method, (Robinson's

Algebra, University Ed., Art. 193), giving x = .347296 +,
the chord of 20°. This again may be taken for the value

of c, and a second solution will give the chord of 6° 40',

and so on, trisecting successively as many times as we

please.

PRACTICAL PROBLEMS.

The theorems and problems with which we have been

thus far occupied, relate to plane figures; that is, to

figures all of whose parts are situated in the same plane.

It yet remains for us to investigate the intersections and

relative positions of planes ;
the relations and positions

of lines with reference to planes in which they are not

contained ;
and the measurements, relations, and proper-

ties of solids, or volumes. But before we proceed to this,

it is deemed advisable to give some practical problems
for the purpose of exercising the powers of the student,
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and of fixing in his mind those general geometrical prin-

ciples with which we must now suppose him to be

acquainted.

1. The base of an isosceles triangle is 6, and the oppo-

site angle is 60°
; required the length of each of the other

two equal sides, and the number of degrees in each of

the other angles.

2. One angle of a right-angled triangle is 30°
;
what

is the other angle ? Also, the least side is 12, what is

the hypotenuse ?

A j The hypotenuse is 24, the double of the least
JLm '

I side. Why?
3. The perpendicular distance between two parallel

lines is 10
;
what angles must a line of 20 make with

these parallels to extend exactly from the one to the

other? Arts. The angles must be 60° and 120°.

4. The perpendicular distance between two parallels

is 20 feet, and a line is drawn across them at an angle of

45°
; what is its length between the parallels ?

Arts. 20^2.

5. -Two parallels are 8 feet asunder, and from a point
in one of the parallels two lines are drawn to meet the

other ;
the length of one of these lines is 10 feet, and

that of the other 15 feet
;
what is the distance between

the points at which they meet the other parallel ?

Arts. 6.69 ft, or 18.69 ft. (See Th. 39, B. I).

6. Two parallels are 12 feet asunder, and from a point
on one of them two lines, the one 20 feet and the other

18 feet in length, are drawn to the other parallel ; what
is the distance between the two lines on the other parallel,

and what is the area of the triangle so formed ?

r The distance on the other parallel is 29.416

Arts. I feet, or 2.584 feet; and the area of the tri-

( angle is 176.496, or 15.504 square feet.

7. The diameter of a circle is 12, and a chord of the
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circle is 4; what is the length of the perpendicular
drawn from the center to this chord ? (See Th. 3, B. III).

Arts. W2.
8. Two parallel chords in a circle were measured and

found to be 8 feet each, and their distance asunder was
6 feet

;
what was the radius of the circle ?

Ans. 5 feet.

9. Two chords on opposite sides of the center of a

circle are parallel, and one of them has a length of 16

and the other of 12 feet, the distance between them

being 14 feet. "What is the diameter of the circle ?

Am. 20 feet.

10. An isosceles triangle has its two equal sides, 15

each, and its base 10. "What must be the altitude of a

right-angled triangle on the same base, and having an

equal areaV

11. From the extremities of the base of any triangle,

draw lines bisecting the other sides
;
these two lines in-

tersecting within the triangle, will form another triangle

on the same base. How will the area of this new tri-

angle compare with that of the whole triangle ?

Ans. Their areas will be as 3 to 1.

12. Two parallel chords on the same side of the center

of a circle, whose diameter is 32, are measured and found

to be, the one 20, and the other 8. How far are they
asunder? Ans. ^240— ^156"= 3 +.

If we suppose the two chords to be on opposite sides of the

center, their distance apart will then be \^240 -f \/l56 == 15.49 +
12.49 = 27.98.

13. The longer of the two parallel sides of a trapezoid
is 12, the shorter 8, and their distance asunder 5. What
is the area of the trapezoid ? and if we produce the two

inclined sides until they meet, what will be the area of

the triangle so formed ?

Ans. Area of trapezoid, 50
;
area of triangle, 40; area

of triangle and trapezoid, 90.
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14. The base of a triangle is 697, one of the sides is

534, and the other 813. If a line he drawn bisecting the

angle opposite the base, into what two parts will the

bisecting line divide the base ? (See Th. 25, B. II).

A ( The greater part will be 420.634
;

I The less " " 276.316.

15. Draw three horizontal parallels, making the dis-

tance between the two upper parallels 7, and that be-

tween the middle and lower parallels 9
;
then place be-

tween the upper parallels a line equal to 10, and from

the point in which it meets the middle parallel draw to

the lower a^line equal to 11, and join the point in which

this last line meets the lower parallel, with the point in

the upper parallel, from which the line 10 was drawn.

Required the length of this line, and the area of the

triangle formed by it and the two lines 10 and 11.

The adjoining figure

will illustrate. Let A be

the point on the upper

parallel from which the

line 10 is drawn. Then,
AF = 7, AB = 10,

'

FBj= VlOO — 49 ==

•51. :

BR = FD = 9, BG
= 11, RC= >/l2lZ78l
= \/40.

Whence, DC = «/51

-f v/40.

AC 2 = (v/5l + \/40)
2

+ (16)
2

;
AC= 20.89, Ans.

The area of the triangle, AB C, can be determined by first find-

ing the area of the trapezoid, ABHD, then the area of the trian-

gle, BHCj and from their sum subtracting the area of the triangle,

ADC

16. Construct a triangle on a base of 400, one of the

angles at the base being 80°, and the other 70° ;
and

13 k



Ans.

146 GEOMETRY.

determine the third angle, and the area of the triangle
thus constructed.

The third angle is 30°, and as nearly as our

scale of equal parts can determine for us, the

side opposite the angle 80° is 787, and that

opposite 70° is 740.

The exact solution of problems like the last, except in a few par-

ticular cases, requires a knowledge of certain lines depending on

the angles of the triangle. The properties and values of these lines

are investigated in trigonometry
• and as we are not yet supposed

to be acquainted with them, we must be content with the approxi-

mate solutions obtained by the constructions and measurements

made with the plane scale.

17. If we call the mean radius of the earth 1, the

mean distance of the moon will be 60
;
and as the mean

distance of the sun is 400 times the distance of the

moon, its distance will be 400 times 60. The sun and

moon appear to have the same diameter; supposing,

then, the real diameter of the moon to be 2160 miles,

what must be that of the sun ?

Let E be the center of the earth, M that of the moon, and S
that of the sun, and suppose ENP to be a line from the center of

the earth, touching the moon and the sun.

Then, EM : MIST : : ES : SP;
but 3/iVis the radius of the moon, and SP that of the sun. Mul-

tiplying the consequents by 2, the above proportion becomes

EM: 2MJST:: ES : 2SP-,
or in numbers, 60 : 2160 : : 400 X 60 : 2SP;
whence, 2SP = sun's diameter = 864000 miles, Ans.

18. In Problem 15, suppose BO to be drawn on the

other side of BIT, what, then, will be the value ofA O,

and what the area of the triangle ACB1

Ans. l
A0 = 16

>
021

; _
I Area of triangle, 8^51, very nearly.
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19. A man standing 40 feet from a building which was
24 feet wide, observed that when he closed one eye, the

width of the building just eclipsed or hid from view 90

rods of fence which was parallel to the width of the

building; what was the distance from the eye of the

observer to the fence ? Ans. 2475 feet.

20. Taking the same data as in the last problem, ex-

cept that we will now suppose the direction of the fence

to be inclined at an angle of 45° to the side of the

building which we see
; what, in this case, must be the

distance between the eye of the observer and the remoter

point of the fence ?

Let HF be the width of the house, E the position of the eye, and

AB that of the fence. Draw BD perpendicular to EA produced ;

then, since the triangle ABB is right-angled and isosceles, we have

AD = DB, and 2AD2 = AB2 = (90)
2

;
BD = 63.64 rods, and the

similar triangles EFH and EDB give the proportion

HF : EF : : BD : ED = 1750.1 feet;

and from this we find
"

EB2 =ED2 + BD2 = (63.64 x 3
5
3
)

2 + (1750.1)*

Whence EB = 2040.94 -f Ans.

21. In a right-angled triangle, ABO, we have AB =
493, AC= 1425, and BC= 1338

;
it is required to divide

this triangle into parts by a line parallel to AB, whose

areas are to each other as 1 is to 3. How will the sides

AC and BO be divided by this line ? (See Th. 20, B. II).

Ans, Into equal parts.

22. In a right-angled triangle, ABO, right-angled at

B, the base AB is 320, and the angle A is 60°
; required

the remaining angle and the other sides.

. ( The angle 0- 30°;

I AC= 640; BC= 554.24.
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23. A hunter, wishing to determine his distance from

a village in sight, took a point and from it laid off two

lines in the direction of two steeples, which he supposed

equally distant from him, and which he knew to he 100

rods asunder. At the distance of 50 feet on each line

from the common point, he measured the distance be-

tween the lines, and found it to be 5 feet 8 inches. How
far was he from the steeples ?

5 ft. 8 in. : 100 rods : : 50 ft. : distance. r 14,559 feet,

or, 68: lOOxfx 12:: 50: distance.
Ans

'\
?
r n*arl?

2 I 3 miles.

24. A person is in front of a building which he knows
to be 160 feet long, and he finds that it covers 10 minutes

of a degree ; that is, he finds that the two lines drawn

from his eye to the extremities of the building include

an angle of 10 minutes. What is his distance from the

building? Ans
( 50,672 feet, or

•\ nearly 10 miles.

Remark.—The questions of distance, with which we are at present

occupied, depend for their solution on the properties of similar tri-

angles. In the preceding example we apparently have but one tri-

angle, but we have in fact two ; the second being formed by the dis-

tances unity on the lines drawn from the eye of the observer, and the

line which connects the extremities of these units of distance. This

last line may be regarded as the chord of the arc 10 minutes to the

radius unity. We have seen that the length of the arc 180° to the

radius 1, is 3.1415926 ; hence the chord of 1° or 60/ is 0.017455, and

of 10/ it must be 0.0029088. Therefore, by similar triangles, we have

0.0029088 : 160 : : 1 : Ans. = ^^.
25. In the triangle, ABO, we have given the angles

A = 32°, and B = 84°. The side AB is produced, and

the exterior angle* CBD thus formed, is bisected by the

line BU, and the angle A is also bisected by the line AE,
BE and AE meeting in the point E. "What is the angle

(7, and what is the relation between the angles C and El
Am. (7=64°; E= J O.
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26. Suppose a line to be drawn in any direction be-

tween two parallels. Bisect the two interior angles thus

formed on either side of the connecting line, and prove

that the bisecting lines meet each other at right angles,

and that they are the sides of a right-angled triangle of

which the line connecting the parallels is the hypotenuse.

27. If the two diagonals of a trapezoid be drawn,
show that two similar triangles will be formed, the

parallel sides of the trapezoid being homologous sides

of the triangles. What will be the relative areas of

these triangles ?

f The triangles will be to each other

Ans. < as the squares on the parallel sides

( of the trapezoid.

28. If from the extremities of the base of any triangle,

lines be drawn to any point within the triangle, forming
with the base another triangle ;

how will the vertical

angle in this last triangle compare with that in the

original triangle ?

[

It will be as much greater than the angle
in the original triangle as the sum of

Ans. angles at the base of the new triangle is

less than the sum of those at the base

of the first.

29. The two parallel sides of a trapezoid are 12 and

20, respectively, and their perpendicular distance is 8.

If a line whose length is 14.5 be drawn between the in-

clined sides and parallel to the parallel sides, what is the

area of the trapezoid, and what the area of each part,

respectively, into which the trapezoid is divided ?

Area of the whole, 128 square units
;

" smaller part, 33J
"

"
larger

"
94|

"

Dividing line at the distance of 2J from

shorter parallel side.

30. If we assume the diameter of the earth to be

13*
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7956 miles, and the eye of an observer be 40 feet above

the level of the sea, how far distant will an object be,

that is just visible on the earth's surface. (Employ Th.

18, B. Ill, after reducing miles to feet.)

Ans. 40992 feet = 7 miles 4032 feet.

31. The diameter of a circle is 4
;
what is the area of

the inscribed equilateral triangle? Ans. 3^3.

32. Three brothers, whose residences are at the ver-

tices of a triangular area, the sides of which are severally

10, 11, and 12 chains, wish to dig a well which shall be

at the same distance from the residence of each. Deter-

mine the point for the well, and its distance from their

residences.

Remark.— Construct a triangle, the sides of which are, respectively,

10, 11, and 12. The sides of this triangle will be the chords of a cir-

cle whose radius is the required distance. To find the center of this

circle, bisect either two of the sides of the triangle by perpendiculars,

and their intersection will be the center of the circle, and the location

of the well.

Ans, The well is distant 6.25 chains, nearly, from each

residence.

33. The base of an isosceles triangle is 12, and the

equal sides are 20 each. What is the length of the per-

pendicular from the vertex to the base ;
and what the

area of the triangle ?

Ans. Perpendicular, 19.07; area, (19.07) x 6.

34. The hypotenuse of a c

right-angled triangle is 45

inches, and the difference be-

tween the two sides is 8.45

inches. Construct the triangle.

Suppose the triangle drawn and

represented by ABC, DC being the

difference between the two sides.

Now, by inspection, we discover the

steps to be taken for the construc-

tion of the triangle As AD= AB,
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the angle ABB, must be equal to the angle DBA, and each equal

to 45°.

Therefore, draw any line, AC, and from an assumed point in it

as D, draw BD, making the angle ABB = 45°. Take from a •

scale of equal parts, 8.45 inches, and lay them off from D to C, and

with C as a center, and CB = 45 inches as a radius, describe an

arc cutting BD in B. Draw CB, and from B, draw BA at right

angles to AC', then is ABC the triangle sought.

Ans. AB =27.3; AC— 35.76, when carefully constructed.

35. Taking the same triangle as in the last problem, ifJ%£* **\

we draw a line bisecting the right angle, where will it flo*K
meet the hypotenuse ?

Ans. 19.5 from B; and 25.5 from C.

36. The diameters of the hind and fore wheels of a

carriage, are 5 and 4 feet, respectively ;
and their centers

are 6 feet asunder. At what distance from the fore wheels

will the line, passing through their centers, meet the

ground, which is supposed level? Ans. 24 feet.

37. If the hypotenuse of a right-angled triangle is 35,

and the side of its inscribed square 12, what are its sides ?

Ans. 28 and 21.

38. "What are the sides of a right-angled triangle

having the least hypotenuse, in which if a square be in-

scribed, its side will be 12 ?

c The sides are equal to 24 each, and the

Ans. < least hypotenuse is double the diagonal
I of the square.

39. The radius of a circle is 25
;
what is the area of a

sector of 50° ?

Remark. — First find the length of an arc of 50° in a circle whose

radius is unity. Then 25 times that will be the length of an arc of

the same number of degrees in a circle of which the radius is 25.

t ^^ io a- ..
3.14159269

Length of arc 1° radius unity = ^r—.

u 50o u u = 1-04719763
x 5>

Area of sector «iM^i x 125 X f = 54.541, A?is.
o A
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BOOK VI

ON THE INTERSECTIONS OF PLANES, AND THE REL-

ATIVE POSITIONS OF PLANES AND OF PLANES
AND LINES.

DEFINITIONS.

A Plane has been already defined to be a surface, such

that the straight line which joins any two of its points

will lie entirely in that surface. (Def. 9, page 9.)

1. The Intersection or Common Section of two planes is

the line in which they meet.

2. A Perpendicular to a Plane is a line which makes

right angles with every line drawn in the plane through
the point in which the perpendicular meets it; and, con-

versely, the plane is perpendicular to the line. The

point in which the perpendicular meets the plane is

called the foot of the perpendicular.

3. A Diedral Angle is the separation or divergence of

two planes proceeding from a common line, and is meas-

ured by the angle included between two lines drawn

one in each plane, perpendicular to their common sec-

tion at the same point.

The common section of the two planes is called the

edge of the angle, and the planes are its faces,

4. Two Planes are perpendicular to each other, when their

diedral angle is a right angle.

5. A Straight Line is parallel to a plane, when it will

not meet the plane, however far produced.
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6. Two Planes are parallel, when they will not intersect,

however far produced in all directions.

7. A Solid or Polyedral Angle is the separation or diver-

gence of three or more plane angles, proceeding from a

common point, the two sides of each of the plane angles

being the edges of diedral angles formed by these plane

angles.

The common point from which the plane angles pro-

ceed is called the vertex of the solid angle, and the inter-

section "of its bounding planes are called its edges.

8. A Triedral Angle is a solid angle formed by three

plane angles.

THEOREM I.

Two straight lines which intersect each other, two parallel

straight lines, and three points not in the same straight line,

will severally determine the position of a plane.

Let AB and AC be two lines

intersecting each other at the

point A*, then will these lines

determine a plane. For, conceive A<^

a plane to be passed through AB,
and turned about AB as an axis

until it contains the point in the line AC. The plane,
in this position, contains the lines AB and AC, and will

contain them in no other. Again, let AB and BE be

two parallel straight lines, and take at pleasure two

points, A and B, in the one, and two points, D and E,
in the other, and draw AE and BD. These last lines,

from what precedes, determine the position of a plane
which contains the points A, B, JD, and E. And again,
if A, B, and be three points not in the same straight

line, and we draw the lines AB and AG, it follows,

from the first part of this proposition, that these points
fix the plane.
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Cor. A straight line and a point out of it determine

the position of a plane.

THEOREM II.

If two planes meet each other, their common points will be

found in, and form one straight line.

Let B and D be any two of the

points common to the two planes,

and join these points by the straight

line BB
;
then will BB contain all

the points common to the two planes,

and be their intersection. For, suppose the planes have

a common point out of the line BB
; then, (Cor. Th. 1),

since a straight line and a point out of it determine a

plane, there would be two planes determined by this one

line and single point out of it, which is absurd. Hence

the common section of two planes is a straight line.

Remark.—The truth of this proposition is implicitly assumed in the

definitions of this Book.

THEOREM III.

If a straight line stand at right angles to each of two other

straight lines at their point of intersection, it will be at right

angles to the plane of those lines.

LetAB stand at right angles to EF&ndi

CB, at their point of intersection A. Then
AB will be at right angles to any other

line drawn through A in the plane, pass-

ing through EF, OB, and, of course, at

right angles to the plane itself. (Def. 2.)

Through A, draw any line, A G, in the

plane EF, CB, and from any point G, draw GH parallel

to AB. Take HF= AH, and join F and G and produce
FG to B. Because HG is parallel to AB, we have

FH : HA :: FG : GB.
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But, in this proportion, the first couplet is a ratio of

equality; therefore the last couplet is also a ratio of

equality,

That is, FG= GB, or the line FB is bisected in ff.

Draw BB, BG, and BF.

Now, in the triangle AFB, as the base FB is bisected

in G, we have,

JJF
2

+~AB
2 = 2AG

2

+ 2GF 2

(l) (Th. 42, B. I).

Also, as BF is the base of the A BBF, we have by the

same theorem,

~BF2

+~~BB
2 = 2BG 2 + 2GF2

(2)

By subtracting (
1

)
from (2 ),

and observing that BF —
AF = AB ? because BAF is a right angle ;

and BB —
AB2— AB2

,
because BAB is a right angle, we shall have,

~AB* +~AB
2 = 2BG 2— 2AG 2

.

Dividing by 2, and transposing AG-
2

,
and we have,

AB2 + AG 2 = BG\
This last equation shows that BAG is a right angle.

But AG is any line drawn through A, in the plane FF,
OB ;

therefore AB is at right angles to any line in the

plane, and, of course, at right angles to the plane itself.

Cor. 1. The perpendicular BA is shorter than any of

the oblique lines BF, BG, or BB, drawn from the point
B to the plane ;

hence it is the shortest distance from a

point to a plane.

Cor. 2. But one perpendicular can be erected to a plane
from a given point in the plane; for, if there could be

two, the plane of these perpendiculars would intersect

the given plane in some line, as AG, and both the per-

pendiculars would be at right angles to this intersection

at the same point, which is impossible.
Cor. 8. But one perpendicular can be let fall from a

given point out of a plane on the plane ; for, if there can
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be two, let BGr and BA be such perpendiculars, then

would the triangle BAGr be right angled at both A and

6r, which is impossible.

THEOREM IV.

If from any point of a perpendicular to a plane, oblique

lines be drawn to different points in the plane, those oblique

lines which meet the plane at equal distances from the foot of

the perpendicular are equal; and those which meet the plane

at unequal distances from the foot of the perpendicular are

unequal, the greater distances corresponding to the longer

oblique lines.

Take any point B in

the perpendicular BA to

the plane ST, and draw
the oblique lines BO,
BD, and BE, the points

0, B, and E, being equally
distant from A, the foot

of the perpendicular.
Produce AE to F, and

draw BF; then will BC= BD = BE, and BF> BE.

For, the triangles BAG, BAD, and BAE are all right-

angled at A, the side BA is common, and AC=AD=AE
by construction, hence, (Th. 23, B.I), BC=BB = BE.

Moreover, since AF^> AE, the oblique line BF^> BE.

Cor. If any number of equal oblique lines be drawn

from the point B to the plane, they will all meet the

plane in the circumference of a circle having the foot of

the perpendicular for its center. It follows from this,

that, if three points be taken in a plane equally distant

from a point out of it, the center of the circumference

passing through these three points will be the foot of the

perpendicular drawn from the point to the plane.



BOOK VI. 157

THEOREM V.

The line which joins any point of a perpendicular to a

plane, with the point in which a line in the plane is inter-

sected, at right angles, by a line through the foot of the per-

pendicular, will be at right angles to the line in the plane.

Let AB be perpendic-
ular to the plane ST, and

AB a line through its foot

at right angles to EF, a line

in the plane. Connect B
with any point, as B, of the

perpendicular; and BD will

be perpendicular to EF.
Make BF= DE, and join B to the points E, D, and

F. Since BE = BF, and the angles at B are right

angles, the oblique lines, AE and AF, are equal ; and,

since AE = AF, we have, (Th. 4), BE = BF; therefore

the line BB has its two points, B and B, equally distant

from the extremities E and F of the line EF, and hence

BB is perpendicular to EF at its middle point B.

Cor. Since FB is perpendicular to the two lines AB
and BB at their intersection, it is perpendicular to their

plane ABB, (Th. 3).

Scholium.— The inclination of a line to a plane is measured by the

angle included between the given line and the line which joins the

point in which it meets the plane and the foot of the perpendicular
drawn from any point of the line to the plane ; thus, the angle BFA is

the inclination of the line BF to the plane ST.

THEOREM VI.

If either of two parallels is perpendicular to a plane, the

other is also perpendicular to the plane.

Let BA and ED be two parallels, of which one, BA,
is perpendicular to the plane ST; then will the other also

be perpendicular to the same plane.
14
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The two parallels de-

termine a plane which

intersects the given plane
in AB

; through B draw

MJV perpendicular to

AB; then, (Cor., Th. 5,)

will MJSf be perpendicu-
lar to the plane BAB,
and the angle MBE is

therefore a right angle ;
but EBA is also a right angle,

since BA and ED are parallel, and BAB is a right angle

by hypothesis; hence, EB is perpendicular to the two

lines MB and AB in the plane ST; it is therefore perpen-
dicular to the plane, (Th. 3).

Cor. 1. The converse of this proposition is also true
,

that is, if two straight lines are both perpendicular to the same

plane, the lines are parallel.

For, suppose BA and EB to be two perpendiculars ;
if

not parallel, draw through B a parallel to BA, and this

last line will be perpendicular to the plane ;
but EB is

a perpendicular by hypothesis, and we should have two

perpendiculars erected to the plane at the same point,

which is impossible, (Cor. 2, Th. 3).

Cor. 2. If two lines lying in the same plane are each

parallel to a third line not in the same plane, the two

lines are parallel. For, pass a plane perpendicular to

the third line, and it will be perpendicular to each of the

others; hence they are parallel,

THEOREM VII.

A straight line is parallel to a plane, when it is parallel

to a line in the plane.

Suppose the line MN to be parallel to the line CB, in

the plane ST; then will ifefJVbe parallel to the plane ST
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For, CB being in the plane

ST, and at the same time
g

parallel to MN, it must be the

intersection of the plane of

these parallels with the plane

ST; hence, if MN meet the

plane ST, it must do so in the T

line CB, or OB produced ;
but MN and CB are parallel,

and cannot meet; therefore MN, however far produced,
can have no point in the plane ST, and hence, (Def. 5), it

is parallel to this plane.

THEOREM VIII.

If two lines are parallel, they will be equally inclined to

any given plane.

Let AB and CB be
•n tv

two parallels, and ST
any plane met by them
in the points A and V

'C; then will the lines \

AB and CB be equally \ ^ "~c V
inclined to the plane \ \

ST. T

For, take any distance, AB, on one of these parallels,

and make CB = AB, and draw AC and BB. From the

points B and B let fall the perpendiculars, BB and BF,
on the plane ; join their feet by the line EF, and draw
AE and OF.

Now, since AB is equal and parallel to CB, ABBCm
a parallelogram, and BB is equal and parallel to A 0,

and BB is parallel to the plane ST, (Th. 7) ; and, since

BE and BF are both perpendicular to this plane, they
are parallel ;

but BB and EF are in the plane of these

parallels; and as EF is in the plane ST, and BB is

parallel to this plane, these two lines must be parallel

and equal, and BBFE is also a parallelogram. Now,
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we have shown that BD is equal and parallel to AC, and

EF equal and parallel to BD; hence, (Cor. 2, Th. 6),

EFw equal and parallel to AC, and ACFE is a parallel-

ogram, and AE = CF. The triangles ABE and CDF
have, then, the sides of the one equal to the sides of the

other, each to each, and their angles are consequently

equal; that is, the angle BAE is equal to the angle

DCF; but these angles measure the inclination of the

lines AB and CD to the plane ST, (Scholium, Th. 5).

Scholium.— The converse of this proposition is not generally true ;

that is, straight lines equally inclined to the same plane are not neces-

sarily parallel.

THEOREM IX.

The intersections of two parallel planes by a third plane,
are parallel.

Let the planes QR and ST be intersected by the third

plane, AD : then will the intersections, AB and CD, be

parallel.

Since the lines AB and CD are in the same plane, if

they are not parallel, they will

meet if sufficiently produced;
but they cannot meet out of the

planes QR and ST, in which

they are respectively found;

therefore, any point common to

the lines, must be at the same
time common to the planes ;

and

since the planes are parallel,

they have no common point, and the lines, therefore, do

not intersect
;
hence they are parallel.

THEOREM X.

If two planes are perpendicular to the same straight line,

they are parallel to each other.

Let QR and ST be two planes, perpendicular to the

line AB m

,
then will these planes be parallel*
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For, if not parallel, suppose M to be a point in their

line of intersection, and n
from this point draw
lines to the extremities

of the perpendicular m
AB, thus forming a tri- "^oii.

angle, MAB. .Now,
since the line AB is \ \

T
perpendicular to both

planes, it is perpendicular to each of the lines MA and

MB, drawn through its feet in the planes, (Def. 2) ;

hence, the triangle has two right angles, which is impos-

sible; the planes cannot therefore meet in any point as

My and are consequently parallel.

Cor. Conversely : The straight line which is perpendicu-

lar to one of the parallel planes, is also perpendicular to the

other. For, if AB be perpendicular to the plane QB,
draw in the other plane, through the point in which the

perpendicular meets it, any line, as AC. The plane of

tjie lines AB and A will intersect the plane QR in the

line BD
;
and since the planes are parallel by hypothesis,

the lines AO and BD must be parallel, (Th. 9) ;
but the

angle DBA is a right angle ; hence, BAG must be a right

angle, and the line BA is perpendicular to any line what-

ever drawn in the plane through the point A ;
BA is

therefore perpendicular to the plane ST.

THEOREM XI.

If two straight lines be drawn in any direction through

parallel planes, the planes will cut the lines proportionally.

Conceive three planes to be parallel, as represented

in the figure, and take any points, A and B, in the first

and third planes, and draw AB, the line passing through

the second plane at E.

14* L
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G\

Also, take any other two points, as

O and D, in the first and third planes,
and draw OB, the line passing through
the second plane at F.

Join the two lines by the diagonal

AB, which passes through the second

plane at #. Draw BB, EQ, 'OJFi and
A 0. We are now to prove that,

AE : EB :: OF : FB.

For the sake of perspicuity, put AGr= X, and GB=Y.
As the planes are parallel, BB is parallel EGr ; then, in

the two triangles ABB and AEGr, we have, (Th. 17,

B.H);
AE : EB : : X : Y.

Also, as the planes are parallel, GrF is parallel to AC
y

and we have,
OF : FB : : X : Y.

By comparing the proportions, and applying Th. 6,

B. II, we have

AE : EB n OF i FB.

THEOREM XII,

If a straight line is perpendicular to a plane, all planes

passing through that line will be perpendicular to the plane.

Let MNhe a plane, andAB a per-

pendicular to it. Let BO be any
other plane, passing through AB ;

this plane will be perpendicular to

mjst.

Let BB be the common intersec-

tion of the two planes, and from

the point B, draw BE at right angles to BB.

Then, as AB is perpendicular to the plane MJSf, it is

perpendicular to every line in that plane, passing through
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B; (Def. 2,) ; therefore, ABE is a right angle. But the

angle ABU, (Def. 3), measures the inclination of the two

planes ; therefore, the plane OB is perpendicular to the

plane MN\ and thus we can show that any other plane,

passing through AB, will be perpendicular to JOT.

Hence the theorem.

THEOREM XIII.

If two planes are perpendicular to each other, and a line

be drawn in one of them perpendicular to their common in-

tersection, it will be perpendicular to the other plane.

Let the two planes, QB and ST, be perpendicular to

each other, and draw in QB the line CD at right angles
to their common intersection, B V; then will this line be

perpendicular to the plane ST.

In the plane iSTdraw ED, perpen-
dicular to VB at the point D.

Then, since the planes QB and ST
are perpendicular to each other, the

angle ODE is a right angle, and

CD is perpendicular to the two

lines, ED and VB, passing through
its foot in the plane ST. CD is therefore perpendicular
to the plane ST, (Th. 3).

Cor. Conversely: if we erect a perpendicular to the

plane ST, at any point, D, of its intersection with the

plane QB, this perpendicular will lie in the plane QB.

For, if it be not in this plane, we can draw in the plane
the line CD, at right angles to VB ; and, from what has

been shown above, CD is perpendicular to the plane ST,
and we should thus have two perpendiculars erected to

the plane, ST, at the same point, which is impossible,

(Cor. 2, Th. 2>\
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THEOREM XIV.

The common intersection of two planes, loth of which are

perpendicular to a third plane, will also be perpendicular to

the third plane.

Let MN be the common
intersection of the two

planes, QR and VX, both

of which are perpendicular
to the plane ST; then will

MJSfbe perpendicular to the

plane ST. For, if we erect

a perpendicular to the plane

ST, at the point M, it will

lie in both planes at the

same time, (Cor. Th. 13); and this perpendicular must

therefore be their intersection. Hence the theorem.

THEOREM XV.

Parallel straight lines included between parallel planes,

are equal.

Let J.B andD be two parallel lines,

included by the two parallel planes,

QR and ST; then will AB = BO.

For, the plane A 0, of the parallel

lines, intersects the planes, QR and ST,
in the parallel lines, AB and BO,

(Th. 9) ;
hence ABBO is a parallelogram, and its oppo-

site sides, AB and BO, are equal.

Oor. It follows from this proposition, that parallel planes

are everywhere equally distant
; for, two perpendiculars

drawn at pleasure between the two planes are parallel

lines, (Cor. 1, Th. 6), and hence are equal ; but these per-

pendiculars measure the distance between the planes.

V
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THEOREM XVI.

Two planes are parallel when two lines not parallel, lying

in the one, are respectively parallel to two lines lying in the

other.

Let QR and ST be

two planes, the first

containing the two

lines AB and CD
which intersect each

other at U, and the

second the two lines

LM and NO, respect-

ively parallel to AB
and OB; then will

these planes be par-
allel.

For, ifthe two planes
are not parallel, they must intersect when sufficiently

produced; and their common section lying in both planes
at the same time, would be a line of the plane QR. Now,
the lines AB and OB intersect each other by hypothesis ;

hence one or both of them must meet the common sec-

tion of the two planes. Suppose AB to meet this com-

mon section
; then, since AB and LM are parallel, they

determine a plane, and AB cannot meet the plane ST in

a point out of the line LM
;
but AB and LM being par-

allel, have no common point. Hence, neither AB nor

OB can meet the common section of the two planes ;
that

is, they have no common section, and are therefore par-

allel.

Oor. Since two lines which intersect each other, deter-

mine a plane, it follows from this proposition, that the

plane of two intersecting lines is parallel to the plane of two

other intersecting lines respectively parallel to the first lines.
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THEOREM XVII.

W7ien two intersecting lines are respectively parallel to two

other intersecting lines lying in a different plane, the angles

formed by the last two lines will be equal to those formed by

the first two, each to each, and the planes of the angles will be

parallel.

Let QR be the plane
of the two lines AB
and CD, which inter-

sect each other at the

point E, and ST the

plane of the two lines

LM and NO, respect-

ively parallel to AB
and CD

;
then will the

[_BED - \__MPO,
and L BEQ = L
MPN, etc., and the

planes QR and ST
will be parallel.

That the plane of one set of angles is parallel to that

of the other, follows from the Corollary to Theorem 16
;

we have then only to show that the angles are equal,

each to each.

Take any points, B and D, on the lines AB and CD,
and draw BD. Lay off PM, equal to and in the same

direction with EB, and PO, equal to and in the same

direction with ED, and draw MO. Kow, since the planes

QR and ST are parallel, and ED is equal and parallel to

PO, EDOP is a parallelogram, and DO is equal and par-

allel to EP. For the same reason, BM is equal and

parallel to EP; therefore, BDOM is a parallelogram, and

MO is equal and parallel to BD. Hence the A's, EBD
and PMO, have the sides of the one equal to the sides

of the other, each to each
; they are therefore equal, and
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the [_MPO = the \_BED. In the same manner it can

be proved that [_BEC= [_MPJST, etc.

Cor. 1. The plane of the parallels AB and LM is in-

tersected by the plane of the parallels CD and NO, in the

line EP. Now, EB and ED are the intersections of these

two planes with the plane QB, and PM and PO are the

intersections of the same planes with the parallel plane

ST. It has just been proved that the \_BED = [_MPO.
Hence, if the diedral angle formed by two planes, be cut by

two parallel planes, the intersections of the faces of the diedral

angle with one of these planes will include an angle equal

to that included by the intersections of the faces with the other

plane.

Cor. 2. The opposite triangles formed by joining the cor-

responding extremities of three equal and parallel straight

lines lying in different planes, will be equal and the planes of

the triangles will be parallel.

Let EP, BM, and DO, be three equal and parallel

straight lines lying in different planes. By joining their

corresponding extremities, we have the triangles EBD
and PMO. Now, since EP and BM are equal and

parallel, EBMP is a parallelogram, and EB is equal and

parallel to PM; in the same manner, we show that ED
is equal and parallel to PO, and BD to MO', hence the

triangles are equal, having the three sides of the one,

respectively, equal to the three sides of the other.

That their planes are parallel, follows from Cor., Theo-

rem 16.

THEOREM XVIII.

Any one of the three plane angles bounding a triedral

angle, is less than the sum of the other two.

Let A be the vertex of a solid angle, bounded by the

three plane angles, BAC, BAD, and DAC; then will any
one of these three angles be less than the sum of the
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other two. To establish this proposition, we have only
to compare the greatest of the three

angles with the sum of the other

two.

Suppose, then, BAC to be the

greatest angle, and draw in its plane B 4

the line AE, making the angle
CAB equal to the angle CAD, On 1)

AH, take any point, E, and through it draw the line CUB.
Take AD, equal to AE, and draw BD and DC.

Now, the two triangles, CAD and CAE, having two

sides and the included angle of the one equal to the two

sides and included angle of the other, each to each, are

equal, and CE = CD', but in the triangle, BDC, BC<i
BD + DC. Taking EC from the first member of this

inequality, and its equal, DC, from the second, we have,

BE < BD. In the triangles, BAE and BAD, BA is

common, and AE = AD by construction
;
but the third

side, BD, in the one, is greater than the third side, BE,
in the other

; hence, the angle BAD is greater than the

angle BAE, (Th. 22, B. I) ;
that is, [_BAE < [_BAD;

adding the \_EAC to the first member of this inequality,

and its equal, the [_DAC, to the other, we have

l_BAE+ [_EAC< \_BAD + \_DAC.

And, as the l_BAC is made up of the angles BAE and

EAC, we have, as enunciated,

[_BAC<: [_BAD + [_DAC.

THEOREM XIX.

The sum of the plane angles forming any solid angle, is

always less than four right angles.

Let the planes which form the solid angle at A, be cut

by another plane, which we may call the plane of the

base, BCDE. Take any point, a, in this plane, and draw

aB, aC, aD, aE, etc., thus making as many triangles on
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the plane of the base as there are tri-

angular planes forming the solid angle
A. Now, since the sum of the angles
of every A is two right angles, the sum
of all the angles of the A's which
have their vertex in A, is equal to the

sum of all angles of the A's which have
their vertex in a. But, the angles BOA
+ AOB, are, together, greater than

the angles BOa + aOD, or BCD, by the last proposition.
That is, the sum of all the angles at the bases of the A's

which have their vertex in A, is greater than the sum of

all the angles at the bases of the A's which have their

vertex in a. Therefore, the sum of all the angles at a is

greater than the sum of all the angles at A
;
but the sum

of all the angles at a is equal to four right angles ;
there-

fore, the sum of all the angles at A is less than four right

angles.

THEOREM XX."

If two solid angles are formed by three plane angles respect-

ivety equal to each other, the planes which contain the equal

angles will be equally inclined to each other.

Let the [__ASO=t\iQ[_DTF,
the [_ASB= the [_BTE, and

the [_BSO= the [_FTF; then

will the inclination of the

planes, ASO, ASB, be equal
to that of the planes, DTF,
DTF.

Having taken SB at pleas-

ure, draw BO perpendicular
to the plane ASO; from the point 0, at which that perpen-
dicular meets the plane, draw OA and 00, perpendicular
to SA and SO; draw AB and BO; next take TF= SB,
and draw FP perpendicular to the plane DTF; from the

15
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point P, draw PB and PF, perpendicular to TB and

TF; lastly, draw BE and FF.

The triangle SAB, is right-angled at A, and the tri-

angle TBE, at B, (Th. 5) ;
and since the

[__ ^£5 = the

LB TF, we have |_ SBA- L ^-#0
; likewise, SB=TE;

therefore, the triangle $Ai? is equal to the triangle TBF;
hence, SA = TB, and AB = Z>i?. In like manner it

may be shown that SO = TF, and BO = FF. That

granted, the quadrilateral SAOO is equal to the quadri-
lateral TBPF; for, place the angle ASQ upon its equal,

BTF, and because SA = 2r

D, and £#= TF, the point J.

will fall on B, and the point on jP; and, at the same time,

A 0, which is perpendicular to SA, will fall on PB, which

is perpendicular to TB, and, in like manner, 00 on PF;
wherefore, the point will fall on the point P, and A
will be equal to DP. But the triangles, AOB, DPE, are

right angled at and P
;
the hypotenuse AB == BE, and

the side AO = BP; hence, those triangles are equal,

(Cor, Th. 39, B. I), and [_A0B=[_PBE. The angle OAB
is the inclination of the two planes, ASB, ASO; the angle
PBE is that of the two planes, BTE, BTF; conse-

quently, those two inclinations are equal to each other.

Hence the theorem.

Scholium 1.— The angles which form the solid angles at S and T,

may be of such relative magnitudes, that the perpendiculars, BO and

EP, may not fall within the bases, ASC and BTF; but they will

always either fall on the bases, or on the planes of the bases produced,

and will have the same relative situation to A
y S, and C, as P has

to D, T, and jF. In case that and P fall on the planes of the bases

produced, the angles BCO and EFP, would be obtuse angles ; but the

demonstration of the problem would not be varied in the least.

Scholium 2.— If the plane angles bounding one of the triedral

angles be equal to those of the other, each to each, and also be simi-

larly arranged about the triedral angles, these solid angles will be ab-

solutely equal. For it was shown, in the course of the above demon-

stration, that the quadrilaterals, SAOC and TDPF, were equal; and

on being applied, the point falls on the point P; and since the trian-

gles A OB and DPE are equal, the perpendiculars OB and PE are
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also equal. Now, because the plane angles are like arranged about

the triedral angles, these perpendiculars lie in the same direction
;

hence the point B will fall on the point E, and the solid angles

will exactly coincide.

Scholium 3.—When the planes of the equal angles are not like dis-

posed about the triedral angles, it would not be possible to make these

triedral angles coincide ;
and still it would be true that-the planes of

the equal angles are equally inclined to each other. Hence, these

triedral angles have the plane and diedral angles of the one, equal to

the plane and diedral angles of the other, each to each, without having

of themselves that absolute equality which admits of superposition.

Magnitudes which are thus equal in all their component parts, but

will not coincide, when applied the one to the other, are said to be

symmetrically equal. Thus, two triedral angles, bounded by plane

angles equal each to each, but not like placed, are symmetrical triedral

angles.
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BOOK VII

SOLID GEOMETRY.

DEFINITIONS.

1. A Polyedron is a solid, or volume, bounded on all

sides by planes. The bounding planes are called the

faces of the polyedron, and their intersections are its

edges.

2. A Prism is a polyedron, having two of its faces,

called bases, equal polygons, whose planes and homolo-

gous sides are parallel. The other, or lateral faces, are

parallelograms, and constitute the convex surface of the

prism.
The bases of a prism are distinguished by the terms,

upper and lower ; and the altitude of the prism is the per-

pendicular distance between its bases.

Prisms are denominated triangular, quadrangular, pent-

angular, etc., according as their bases are triangles, quad-

rilaterals, pentagons, etc.

3. A Right Prism is one in which the planes of the

lateral faces are perpendicular to the planes of the bases.

4. A Parallelopipedon is a prism
whose bases are parallelograms.

5. A Rectangular Parallelopipedon

is a right parallelopipedon, with

rectangular bases.
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6. A Cube or Hexaedron is a rectangu-

lar parallelopipedon, whose faces are all

equal squares.

7. A Diagonal of a Polyedron is a straight

line joining the vertices of two solid

angles not adjacent.

8. Similar Polyedrons are those which

are bounded by the same number of similar polygons

like placed, and whose solid angles are equal each to

each.

Similar parts, whether faces, edges, diagonals, or

angles, similarly placed in similar polyedrons, are termed

homologous.

9. A Pyramid is a polyedron, having
for one of its faces, called the base, any

polygon whatever, and for its other faces

triangles having a common vertex, the

sides opposite which, in the several trian-

gles, being the sides of the base of the

pyramid.

10. The Vertex of a pyramid is the

common vertex of the triangular faces.

11. The Altitude of a pyramid is the perpendicular
distance from its vertex to the plane of its base.

12. A Right Pyramid is one whose base is a regular

polygon, and whose vertex is in the perpendicular to the

base at its center. This perpendicular is called the axis

of the pyramid.
13. The Slant Height of a right pyramid is the perpen-

dicular distance from the vertex to one of the sides of

the base.

14. The Frustum of a Pyramid is a portion of the pyr-
amid included between its base and a section made by a

plane parallel to the base.

Pyramids, like prisms, are named from the forms of

their bases.

15*
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15. A Cylinder is a body, having for

its ends, or bases, two equal circles,

the planes of which are perpendicular
to the line joining their centers

; the

remainder of its surface may be con-

ceived as formed by the motion of a

line, which constantly touches the cir-

cumferences of the bases, while it

remains parallel to the line which

joins their centers.

"We may otherwise define the cylinder as a body gen-
erated by the revolution of a rectangle about one of its

sides as an immovable axis.

The sides of the rectangle perpendicular to the axis

generate the bases of the cylinder ;
and the side opposite

the axis generates its convex surface. The line joining
the centers of the bases of the cylinder is its axis, and is

also its altitude.

If, within the base of a cylinder, any polygon be in-

scribed, and on it, as a base, a right prism be con-

structed, having for its altitude that of the cylinder, such

prism is said to be inscribed in the cylinder, and the cylin-

der is said to circumscribe the prism.

Thus, in the last figure, ABOBEc is an inscribed

prism, and it is plain that all its lateral edges are con-

tained in the convex surface of the cylinder

If, about the base of a cylinder, any

polygon be circumscribed, and on it,

as a base, a right prism be con-

structed, having for its altitude that

of the cylinder, such prism is said to

be circumscribed about the cylinder, and
the cylinder is said to be inscribed in

the prism.

Thus, ABCBEFc is a circum-

scribed prism; and it is plain that
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the line, w, which joins the points of

tangency of the sides, EF and ef, with

the circumferences of the bases of the

cylinder, is common to the convex sur-

faces of the cylinder and prism.

16. A Cone is a body bounded by a

circle and the surface generated by the

motion of a straight line, which con-

stantly passes through a point in the

perpendicular to the plane of the circle

at its center, and the different points in

its circumference.

The cone may be otherwise defined as a body gene-
rated by the revolution of a right-angled triangle about

one of its sides as an immovable axis. The other side

of the triangle will generate the base of the cone, while

the hypotenuse generates the convex surface.

The side about which the generating triangle revolves

is the axis of the cone, and is at the same time its altitude.

If, within the base of the cone, any

polygon be inscribed, and on it, as a

base, a pyramid be constructed, having
for its vertex that of the cone, such

pyramid is said to be inscribed in the

cone, and the cone is said to circumscribe

the pyramid.

Thus, in the accompanying figure,

V—ABODE, is an inscribed pyramid,
and it is plain that all its lateral edges
are contained in the convex surface of

the cone.

If, about the base of a cone, any poly-

gon be circumscribed, and on it, as a

base, a pyramid be constructed, having
for its vertex that of the cone, such pyramid is said to be

circumscribed about the cone, and the cone is said to be

inscribed in the pyramid.
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17. The Frustum of a Cone is the portion of the cone that

is included between its base and a section made by a plane

parallel to the base.

18. Similar Cylinders, and also Similar Cones, are such as

have their axes proportional to the radii of their bases.

19. A Sphere is a body bounded by one uniformly-curved

surface, all the points of which are at the same distance

from a certain point within, called the center.

We may otherwise define the sphere as a body gene-

rated by the revolution of a semicircle about its diameter

as an immovable axis.

20. A Spherical Sector is that

portion of a sphere which is in-

cluded between the surfaces of

two cones having their verti-

ces at the center of the sphere.

Or, it is that portion of the

sphere which is generated by a

sector of the generating semi-

circle.

21. The Radius of a Sphere is

a straight line drawn from the

center to any point in the surface
;
and the diameter is

a straight line drawn through the center, and limited on

both sides by the surface.

All the diameters of a sphere are equal, each being
twice the radius.

22. A Tangent Plane to a sphere is one which has a

single point in the surface of the sphere, all the others

being without it.

23. A Secant Plane to a sphere is one which has more
than one point in the surface of the sphere, and lies

partly within and partly without it.

Assuming, what will presently be proved, that the in-

tersection of a sphere by a plane is a circle,

24. A Small Circle of a sphere is one whose plane does

not pass through its center; and
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25. A Great Circle of a sphere is one whose plane passes

through the center of the sphere.

26. A Zone of a sphere is the portion of its surface in-

cluded between the circumferences of any two of its paral-

lel circles, called the bases of the zone. When the plane
of one of these circles becomes tangent to the sphere, the

zone has a single base.

27. A Spherical Segment is a portion of the volume of a

sphere included between any two of its parallel circles,

called the bases of the segment.
The altitude of a zone, or of a segment, of a sphere,

is the perpendicular distance between the planes of its

bases.

28. The area of a surface is measured by the product
of its length and breadth, and these dimensions are always
conceived to be exactly at right angles to each other.

29. In a similar manner, solids are measured by the

product of their length, breadth, and height, when all their

dimensions are at right angles to each other.

The product of the length and breadth of a solid, is

the measure of the surface of its base.

Let P, in the annexed fig-

ure, represent the measuring
unit, and AF the rectangular
solid' to be measured.

A side of P is one unit in

length, one in breadth, and
one in height ; one inch, one

foot, one yard, or any other unit that may be taken.

Then, lxlxl==l, the unit cube.

Now, if the base of the solid, AC, is, as here repre-

sented, 5 units in length and 2 in breadth, it is obvious
that (5x2 = 10), 10 units, each equal to P, can be placed
on the base of AC, and no more; and as each of these

units will occupy a unit of altitude, therefore, 2 units of

M
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altitude will contain 20 solid units, 3 units of altitude,
30 solid units, and so on

; or, in general terms, the num-
ber of square units in the base multiplied by the linear units

in perpendicular altitude, will give the solid units in any rect-

angular solid.

THEOREM I.

If the three plane faces bounding a solid angle of one prism
be equal to the three plane faces bounding a solid angle of

another, each to each, and similarly disposed, the prisms will

be equal.

Suppose A and a to be the vertices of two solid angles,
bounded by equal and similarly placed faces; then will

the prisms, ABODE—iV'and abcde—n, be equal.

For, if we place the base,

abcde, upon its equal, the base

ABODE, they will coincide;

and since the solid angles,
whose vertices are A and a, are

equal, the lines ab, ae, and ap,

respectively coincide with AB,
AE, and AP

;
but the faces, al and ao, of the one prism,

are equal, each to each, to the faces, AL and A 0, of the

other; therefore pi and po coincide with PL and PO,
and the upper bases of the prisms also coincide : hence,
not only the bases, but all the lateral faces of the two

prisms coincide, and the prisms are equal.

Oor. If the two prisms are right, and have equal bases

and altitudes, they are equal. For, in this case, the rect-

angular faces, al and ao, of the one, are respectively

equal to the rectangular faces, AL and AO, of the other
;

and hence the three faces bounding a triedral angle in

the one, are equal and like placed, to the faces bounding
a triedral angle in the other.
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THEOREM II.

The opposite faces of any parallelopipedon are equal, and

their planes are parallel.

Let ABOJ)—E be any parallelopipedon ;
then will its

opposite faces be equal, and their planes will be parallel.

The bases ABCB and FEGR are

equal, and their planes are parallel,

by definitions 2 and 4 of this Book;
it remains for us, therefore, only to

show that any two of the opposite
lateral faces are equal and parallel.

Since all the faces of the parallelopipedon are parallel-

ograms, AB is equal and parallel to BO, and AH is also

equal and parallel to BF; hence the angles HAB and

FBO are equal, and their planes are parallel, (Th. 17, B.

YI), and the two parallelograms, HABGr and FBCE,
having two adjacent sides and the included angle of the

one equal to the two adjacent sides and included angle
of the other, are equal.

Cor. 1. Hence, of the six faces of the parallelopipedon,

any two lying opposite may be taken as the bases.

Cor. 2. The four diagonals of a parallelopipedon mutu-

ally bisect each other. For, if we draw AC and SB, we
shall form the parallelogram A CEBl, of which the diago-

nals are AE and HC, and these diagonals are at the same

time diagonals of the parallelopipedon ;
but the diagonals

of a parallelogram mutually bisect each other. Now, if

the diagonal FB be drawn, it and HC will bisect each

other, since they are diagonals of the parallelogram
FRBC. In like manner we can show that if BG- be

drawn, it will be bisected by AE. Hence, the four diag-

onals have a common point within the parallelopipedon.

Scholium.— It is seen at once that the six faces of a parallelopipe-

don intersect each other in twelve edges, four of which are equal to

ifA, four to AB, and four to AD. Now, we may conceive the parallel-

opipedon to be bounded by the planes determined by the three linea
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AH, AB, and AD, and the three planes passed through the extremi-

ties, H, B, and D, of these lines, parallel to the first three planes.

THEOREM III.

The convex surface of a right prism is measured by the

perimeter of its base multiplied by its altitude.

Let ABODE— iVbe a right prism, of

which AP is the altitude ;
then will its

convex surface be measured by

{AB +BO+CD + DE + JEA) x AP.

For, its convex surface is made up of the

rectangles AL, BM, ON, etc., and each

rectangle is measured by the product of

its base by its altitude ;
but the altitude

of each rectangle is equal to AP, the alti-

tude of the prism ;
hence the convex sur-

face of the prism is measured by the pro-

duct of the sum of the bases of the rectangles, or the

perimeter of the base of the prism, by the common alti-

tude, AP.
Cor. Eight prisms will have equivalent convex surfaces,

when the products of the perimeters of their bases by
their altitudes are respectively equal ; and, generally, their

convex surfaces will be to each other as the products of

the perimeters of their bases by their altitudes. Hence,
when their altitudes are equal, their surfaces will be as

the perimeters of their bases
;
and when the perimeters

of their bases are equal, their convex surfaces will be as

their altitudes.

THEOREM IV.

The two sections of a prism made by parallel planes between

its bases are equal polygons.

Let the prism ABODE—N be cut between its bases

by two parallel planes, making the sections QBS, etc.,
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and TVX, etc. ; then will these sections

be equal polygons.

For, since the secant planes are paral-

lel, their intersections, QR and TV, by
the plane of the face UAPO are parallel,

(Th. 10, B. VI) ;
and being included be-

tween the parallel lines, AP and HO, they

are also equal. In the same manner we

may prove that US is equal and parallel

to VX, and so on for the intersections of

the secant planes by the other faces of

the prism. Hence, these polygonal sections have the

sides of the one equal to the sides of the other, each to

each. The angles QEjS and TVX are equal, because

their sides are parallel and lie in the same direction ;
and

in like manner we prove |_ RSY = [_ VXZ, and so on

for the other corresponding angles of the polygons.

Therefore, these polygons are both mutually equilateral

and mutually equiangular, and consequently are equal.
- Cor. A section of a prism made by a plane parallel to

the base of the prism, is a polygon equal to the base.

THEOREM V.

Two parallelopipedons, the one rectangular and the other

oblique, will be equal in volume when, having the same base

and altitude, two opposite lateral faces of the one are in the

planes of the corresponding lateral faces of the other.

Designating the parallelo-

pipedons by their opposite

diagonal letters, let AGr be

the rectangular, and AL the

oblique, parallelopipedon, hav-

ing the same base, AC, and
of the same altitude, namely,
the perpendicular distance be-

16
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tween the parallel planes, A and EL. Also let the face,

AK, be in the plane of the face, AF, and the face, BL, in

the plane of the face, DGr. We are now to prove that the

oblique parallelopipedon is equivalent to the rectangular

parallelopipedon.
As the faces, AF and AK, are in the same plane, and

the parallelopipedons have the same altitude, FFK is a

straight line, andEF— IK, because each is equal to AB.
If from the whole line, EK, we take EF, and then from

the same line we take IK= EF, we shall have the re-

mainders, Eland FK, equal ;
and since AE and BF are

parallel, [_AEI = [_BFK; hence the A's, AEI and

BFK, are equal. Since HE and MI are both parallel to

DA, they are parallel to each other, and EIMH is a par-

allelogram; for like reasons, FKLGr is a parallelogram,

and these parallelograms are equal, because two adjacent

sides and the included angle of the one are equal to two

adjacent sides and the included angle of the other. The

parallelograms, BE and OF, being the opposite faces of

the parallelopipedon, AGr, are equal. Hence, the three

plane faces bounding the triedral angle, E, of the trian-

gular prism, EAI— H, are equal, each to each, and like

placed, to the three plane faces bounding the triedral,

F, of the triangular prism, FBK— Cr, and these prisms
are therefore equal, (Th. 1). Now, if from the whole

solid, EABK—H, we take the prism, EAI—H, there

will remain the parallelopipedon, AL; and, if from the

same solid, we take the prism, FBK—Gr, there will remain

the rectangular parallelopipedon, AG. Therefore, the

oblique and the rectangular parallelopidon are equiva-

lent.

Cor. The volume of the rectangular parallelopipedon,

AGr, is measured by the base, ABCB, multiplied by the

altitude, AE, (Def. 29) ; consequently, the oblique paral-

lelopipedon is measured by the product of the same base

by the same altitude.
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Scholium.—If neither of the parallelopipedons is rectangular, but

they still have the same base and the same altitude, and two opposite

lateral faces of the one are in the planes of the corresponding lateral

faces of the other, by precisely the same reasoning we could prove the

parallelopipedons equivalent. Hence, in general, any two parallelo-

pipedons will be equal in volume when, having the same base and altitude,

two opposite lateral faces of the one are in the planes of the correspond-

ing lateral faces of the other.

THEOREM VI.

Two parallelopipedons having equal bases and equal alti-

tudes, are equivalent

Let AG and AL be two paral-

lelopipedons, having a common
lower base, and their npper bases

in the same plane, HF. Then

will these parallelopipedons be

equivalent.

Since their upper bases are in

the same plane, the lines IM, KL, UF, and HG, will

intersect, when produced, and form the quadrilateral,

NOPQ, and this quadrilateral will be a parallelogram,

(Cor. 2, Th. 6, B. YI), equal to the common lower base

of the two parallelopipedons. Now, if a third parallelo-

pipedon be constructed, having BD for its lower base,

and OQ for its upper base, it will be equivalent to the par-

allelopipedon AG-', and also to the parallelopipedon AL,
(Th. 5, Scholium) ; hence, the two given parallelopipe-

dons, being each equivalent to the third parallelopipe-

don, are equivalent to each other.

Hence, two parallelopipedons having equal bases, etc.

THEOREM VII.

The volume of any parallelopipedon is measured by the

product of its base and altitude, or the product of its three

dimensions.
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Let ABCD—Q be any parallelopipedon ;
then will its

volume be expressed by the product
of the area of its base and altitude.

If the parallelopipedon is oblique,

we may construct on its base a right

parallelopipedon, by erecting perpen-
diculars at the points A, B, C, and D,
and making them each equal to the

altitude of the given parallelopipedon ;

and the right parallelopipedon, thus

constructed, will be equivalent to the given parallelopip-

edon, (Th. 6). Now, if the base, ABCD, is a rectangle,
the new parallelopipedon will be rectangular, and meas-

ured by the product of its base and altitude, (Def. 16).

But if the base is not rectangular, let fall the perpen-

diculars, Be and Ad, on CD and CD produced, and take

the rectangle ABcd for the base of a rectangular paral-

lelopipedon, having for its altitude that of the given

parallelopipedon. We may now regard the rectangular

face, ABFU, as the common base of the two parallelo-

pipedons, Ag and AG-', and, as they have a common
base, and equal altitude, they are equivalent. Thus we
have reduced the oblique parallelopipedon, first to an

equivalent right parallelopipedon on the same base, and
then the right to an equivalent rectangular parallelopip-
edon on an equivalent base, all having the same alti-

tude. But the rectangular parallelopipedon, Ag, is

measured by product of its base, ABcd, and its altitude
;

hence, the given and equivalent oblique parallelopipedon
is measured by the product of its equivalent base and

equal altitude.

Hence, the volume of any parallelopipedon, etc.

Cor. Since a parallelopipedon is measured by the pro-
duct of its base by its altitude, it follows that parallelo-

pipedons of equivalent bases, and equal altitudes, are equiva-

lent, or equal in volume.
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THEOREM VIII.

Parallelopipedons on the same, or equivalent bases, are to

each other as their altitudes ; and parallelopipedons having

equal altitudes, are to each other as their bases.

Let P and p represent two parallelopipedons, whose

bases are denoted by B and b, and altitudes by A and a,

respectively.

Now, P = B x A, and p = b x a, (Th. 7).

But magnitudes are proportional to their numerical

measures ;
that is,

P : p : : B x A : b X a.

If the bases of the parallelopipedons are equivalent,

we have B = b; and if the altitudes are equal, we have

A — a. Introducing these suppositions, in succession,

in the above proportion, we get

P : p : : A : a,

and P : p : : B : b.

Hence the theorem
; Parallelopipedons on the same, etc.

THEOREM IX.

Similar parallelopipedons are to each other as the cubes of

their like dimensions.

Let P and p represent any two similar parallelopipe-

dons, the altitude of the first being denoted by h, and
the length and breadth of its base by I and n, respect-

ively ; and let h', V, and nr

,
in order, denote the corres-

ponding dimensions of the second.

Then we are to prove that

P : p :: n* : nn :: P : J'
3

:: h* : h'\

We have

P ==
Inh, and p = Vn'h' (Th. 7) ;

and by dividing the first of these equations by the

second, member by member, we get
16*
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P Ink

p Vn'h'
'

which, reduced to a proportion, gives
P : p :: Inh : Vn'V.

But, by reason of the similarity of the parallelopipe-

dons, we have the proportions
I : V : : n : n'

h : y : : n : n';

we have also the identical proportion,

n : n' : : n : n'.

By the multiplication of these proportions, term by
term, we get, (Th. 11, B. II),

Inh : Vn'h' : : n* : n'3
.

That is, P : p :: n3
: n'3

.

By treating in the same manner the three proportions,

I : V : : h : h'

n : n f
: : h : hf

h : h! : : h : h',

we should obtain the proportion
P : p :: h3

: h'
3

',

and, by a like process, the three proportions,

h : h!
: : I : V

n : nf
: : I : V

X V V : : I :%
will give us the proportion

P : p : : P : V3
.

Hence the theorem; similar parallehpipedons are to each

other, etc,

THEOREM X.

The two triangular prisms into which any parallelopipedon

is divided, by a plane passing through its opposite diagonal

edges, are equivalent.

Let ABCD—F be a parallelopipedon, and through
the diagonal edges, BF and DH, pass the plane BH, divi-

ding the parallelopipedon into the two triangular prisms,
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ABD—E and BOD— G- ;
then we are to prove that these

prisms are equivalent. Letus divide

the diagonal, BD, in which the se-

cant plane intersects the base ofthe

parallelopipedon, into three equal

parts, a and c being the points of

division. In the base,ABCD, con-

struct the complementary paral-

lelograms, a and aA, and in the

parallelogram, badD, construct the

complementary parallelograms,

cd and cb, and conceive these, to-

gether with the parallelograms,

Ba, ac, cD, to be the bases of

smaller parallelopipedons, having
their lateral faces parallel to the

lateral faces of, and their altitude equal to the altitude oi\

the given parallelopipedon, AGr.

Now it is evident that the triangular prism, BOD— Or,

is composed of the parallelopipedons on the bases, aO
and cd, and the triangular prisms, on the side of the

secant plane with this prism, into which this plane divides

the parallelopipedons on the bases, Ba, ac, and cD. The

triangular prism, ABD—E, is also composed of the par-

allelopipedons on the bases, Aa and be, together with the

triangular prisms on the side of the secant plane with

this prism, into which this plane divides the parallelopip-

edons on the bases, Ba, ac, and cD.

But the parallelograms, a and aA, being complement-

ary, are equivalent, (Th. 31, B. I) ;
and for the same

reason the parallelograms, cd and cb, are equivalent ;
and

since parallelopipedons on equivalent bases and of equal

altitudes, are equivalent, (Cor., Th. 7), we have the sum
of parallelopipedons on bases a and cd, equivalent to

the sum of parallelopipedons on the bases, aA and cb.

Hence, the triangular prisms, ABD—E and BOD—#,
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differ in volume only by the difference which may exist

between the snms of the triangular prisms on the two

sides of the secant plane into which this plane divides

the parallelopipedons on the bases, Ba, ac, and cd.

Now, if the number of equal parts into which the diag-

onal is divided, be indefinitely multiplied, it still holds

true that the triangular prisms, ABB—E and BOB— 6r,

differ in volume only by the difference between the sums

of the triangular prisms on the two sides of the. secant

plane into which this plane divides the parallelopipedons

constructed on the bases whose diagonals are the equal

portions of the diagonal, BB. But in this case the sum
of these parallelopipedons themselves becomes an indefi-

nitely small part of the whole parallelopipedon, A 6r, and

the difference between the parts of an indefinitely small

quantity must itself be indefinitely small, or less than

any assignable quantity. Therefore, the triangular

prisms, ABB—E and BOB— 6r, differ in volume by less

than any assignable volume, and are consequently equiv-

alent.

Hence the theorem
;
the two triangular prisms into which,

etc.

Cor. 1. Any triangular prism, as ABB—E, is one half

the parallelopipedon having the same triedral angle, A,
and the same edges, AB, AB, and AE.

Cor. 2. Since the volume of a parallelopipedon is meas-

ured by the product of its base and altitude, and the tri-

angular prisms into which it is divided by the diagonal

plane, have bases equivalent to one half the base of the

parallelopipedon, and the same altitude, it follows that,

the volume of a triangular prism is measured by the product

of its base and altitude.

The above demonstration is less direct, but is thought
to be more simple, than that generally found in authors,

and which is here given as a
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Second Demonstration.

Let ABQD—F be a parallelo-

pipedon, divided by the diagonal

plane, BH, passing through the

edges, BF and Dff; then we are

to prove that the triangular

prisms, ABD—E and BCD— a,
thus formed, are equivalent.

Through the points B and F,

pass planes perpendicular to the

edge, BF, and produce the late-

ral faces of the parallelopipedon
to intersect the plane throughB ;

then the sections Bcda and Fghe
are equal parallelograms. For, since the cutting planes
are both perpendicular to BF, they are parallel, (Th. 10,

B. VI) ;
and because the opposite faces of a parallelo-

pipedon are in parallel planes, (Th. 2), and the intersec-

tions of two parallel planes by a third plane are parallel,

(Th. 9, B. YI), the sections, Bcda and Fghe, are equal

parallelograms, and may be taken as the bases of the

right parallelopipedon, Bcda—h. But the diagonal plane
divides the right parallelopipedon into the two equal tri-

angular prisms, aBd—e and Bed—g, (Th. 1). "We will

now compare the right prism with the oblique triangular

prism on the same side of the diagonal plane.

The volume ABB— e is common to the two prisms,

ABB—E and aBd—e ; and the volume eFh—E, which,
added to this common part, forms the oblique triangular

prism, is equal to the volume aBd—A, which, added to

the common part, forms the right triangular prism. For,

since ABFE and aBFe are parallelograms, AE— ae, and

taking away the common part Ae, we have aA=eE; and

since BFHD and BFhd are parallelograms, we have BH
= dh

;
and from these equals taking away the common

part Dh, we have dD = hH. Now, if the volume eFh—B
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be applied to the volume aBd— D, the base eFh falling

on the equal base aBd, the edges eE and hH will fall

upon aA and dD respectively, because they are perpen-

dicular to the base aBd, (Cor. 2, Th. 3, B. VI), and the

pointE will fall upon the point A, and the pointH upon
the point D ;

hence the volume eFh—H exactly coincides

with the volume aBd—D, and the oblique triangular

prism ABB—E is equivalent to the right triangular

prism aBd—e.

In the same manner, it may be proved that the oblique

triangular prism, BCBG,i8 equivalent to the right tri-

angular prism, Bcdg. The oblique triangular prism on

either side of the diagonal plane is, therefore, equivalent
to the corresponding right triangular prism ; and, as the

two right triangular prisms are equal, the oblique trian-

gular prisms are equivalent.

Hence the theorem ; the two triangular prisms, etc.

THEOREM XI.

The volume of any prism whatever is measured by the prod-

uct of the area of its base and altitude.

For, by passing planes through the homologous diag-

onals of the upper and lower bases of the prism, it will

be divided into a number of triangular prisms, each of

which is measured by the product of the area of its base

and altitude. Now, as these triangular prisms all have,

for their common altitude, the altitude of the given

prism, when we add the measures of the triangular

prism, to get that of the whole prism, we shall have,

for this measure, the common altitude multiplied by the

sum of the areas of the bases of the triangular prisms :

that is, the product of the area of the polygonal base

and the altitude of the prism.

Hence the theorem
;
the volume of any prism, etc.

Cor. If A denote the area of the base, and H the alti-
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tude of a prism, its volume will be expressed by A x 11.

Calling this volume F, we have

V 4 A x H.

Denoting by A', W, and V, in order, the area of the

base, altitude, and volume of another prism, we have

V = A' x H'.

Dividing the first of these equations by the second,

member by member, we have

V_ AxH
V '

A 1 x R 1
'

which gives the proportion,

V : V : : A x E : A f x Hf
.

If the bases are equivalent, this proportion becomes

V : V : : H : H r

;

and if the altitudes are equal, it reduces to

V : V : : A : A'.

Hence, prisms of equivalent bases are to each other as

their altitudes ; and prisms of equal altitudes are to each other

as their bases.

THEOREM XII.

A plane passed through a pyramid parallel to its base,

divides its edges and altitude proportionally, and makes a

section, which is a polygon similar to the base.

Let ABODE—V be any pyramid, whose base is in the

plane, MN, and vertex in the parallel plane, mn ;
and let

a plane be passed through the pyramid, parallel to its

base, cutting its edges at the points, a, 5, c, d, e, and the

altitude, JEF, at the point I. By joining the points, a, b,

c, etc., we have the polygon formed by the intersection

of the plane and the sides of the pyramid. Now, we are

to prove that the edges, VA, VB, etc., and the altitude,

FE, are divided proportionally at the points, a, b, etc.,

and Z; and that the polygon, a, b, c, d, e, is similar to the

base of the pyramid.
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Since the cutting plane is parallel to the base of the

pyramid, ab is parallel to AB, (Th. 9, B. VI) ;
for the

same reason, be is parallel to BO, cd to OB, etc. Now,
in the triangle VAB, because ab is parallel to the base

AB, we have, (Th. 17, B. II), the proportion,

VA : Va : : VB : Vb.

In like manner, it may be shown that

VB : Vb : : VO : Vc,

and so on for the other lateral edges of the pyramid. F
being the point in which the perpendicular from E pierces

the plane mn, and I the point in which the parallel secant

plane cuts the perpendicular, if we join the points F and

V, and also the points I and e by straight lines, we have

in the triangle FFV, the line le parallel to the base FV;
hence the proportion

VF : Ve : : FE : Fl.

Therefore, the plane passed through the pyramid par-

allel to its base, divides the altitude into parts \diich have
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to each other the same ratio as the parts into which it

divides the edges.

Again, since ab is parallel to AB, and be to BO, the

angle abc is equal to the angle ABO, (Th. 8, B. I); in

the same manner we may show that each angle in the

polygon, abode, is equal to the corresponding angle in the

polygon, ABODE; therefore these polygons are mutually

equiangular. But, because the triangles VBA and Vba

are similar, their homologous sides give the proportion

Vb : VB :: ab : AB;
and because the triangles Vbc and VBO are similar, we
also have the proportion

Vb : VB : : be : BO.

Since the first couplet in these two proportions is the

same, the second couplets are proportional, and give

ab : AB : : be : BO.

By a like process, we can prove that

be : BO : : cd : OB,

and that cd : OD :: de : BE,
and so on, for the other homologous sides of the two

polygons.

Hence, the two polygons are not only mutually equi-

angular, but the sides about the equal angles taken in the

same order are proportional, and the polygons are there-

fore similar, (Def. 16, B. II).

Hence the theorem; a plane passed through a pyramid,
etc.

Oor. 1. Since the areas of similar polygons are to each

other as the squares of their homologous sides, (Th. 22,

B. II), we have

area abode : area ABODE : ab
2

: AB*.

But, ab : AB :: Va : VA :: Fl : FE;

hence, ab
2

: AB 2

i:~Ff : FE 2

:

therefore, area abode : area ABODE : Fl
2

: FE .

17 N
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That is, the area of the section made by a plane passing

through a pyramid parallel to its base, is to the area of the

base, as the perpendicular distance from the vertex of the

pyramid to the section, is to the altitude of the pyramid.

Cor. 2. Let V—ABODE and X—RST be two pyra-

mids, having their bases in the plane MN, and their ver-

tices in the parallel plane mn ;
and suppose a plane to be

passed through the two pyramids parallel to the common

plane of their bases, making in the one the section abcde,

and in the other the section rst.

Now, arenABCDE: area abcde ::AB : ab
, (Th.22,B.II),

and " RST: " rst ::RS
2

:rs\

But, AB : ab : : VB : Vb,

and RS : rs : : XR : Xr.

Because the plane which makes the sections is parallel

to the planes MN and mn, we have, (Th. 11, B. VI),

VB : Vb :: XR : Xr;

therefore, (Cor. 2, Th. 6, B.II), AB i ab : : RS : rs.

:2 ~T2
~~
777*2

By squaring, AB : ab : RS : rs ;

hence, area ABCDE : area abcde : : area RST : area rst.

That is, if two pyramids having equal altitudes, and their

bases in the same plane, be cut by a plane parallel to the com-

mon plane of their bases, the areas of the sections will be

proportional to the areas of the bases ; and if the bases are

equivalent, the sections will also be equivalent.

THEOREM XIII.

If two triangular pyramids have equivalent bases and

equal altitudes, they are equal in volume.

Let V—ABC and v—abc be two triangular pyramids,

having the equivalent bases, ABC and abc, and let the

altitude of each be equal to CX; then will these two

pyramids be equivalent.
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and the volume of the pyramid will exceed the sum of

the volumes of the prisms.

Since the sum of the exterior prisms, constructed in

connection with the pyramid V—ABO, is greater than

the pyramid, and the sum of the interior prisms, con-

structed in connection with the pyramid v—abc, is less

than this pyramid, it follows that the difference of these

sums is greater than the difference of the pyramids them-

selves. But the second exterior prism, or that on the

base DEF, is equivalent to the first interior prism, or

that on the base def, and the third exterior prism is

equivalent to the second interior prism, (Th. 10, Cor. 2),

and so on. That is, beginning with the second prism from

the base of the pyramid, V—ABO, and taking these

prisms in order towards the vertex of the pyramid, and

comparing them with the prisms in the pyramid, v—abc,

beginning with the lowest, and taking them in order

toward the vertex of this pyramid, we find that to each

exterior prism of the pyramid, V—ABO, exclusive of

the first or lowest, there is a corresponding equivalent

interior prism in the pyramid, v—abc.

Hence the prism, ABODEF, is the difference between

the sum of the prisms constructed in connection with

the pyramid, V—ABO, and the sum of the interior

prisms constructed in the pyramid, v—abc. But the first

sum being a volume greater than the pyramid, V—ABO,
and the second sum a volume less than the pyramid,
v—abc, it follows that the volumes of the pyramids differ

by less than the prism, ABODEF.
Now, however great the number of equal parts into

which the altitude, OX, be divided, and the correspond-

ing number of prisms constructed in connection with

each pyramid, it would still be true that the difference

between the volumes of the pyramids would be less than

the volume of the lowest prism of the pyramid V—ABO',
but when we make the number of equal parts into which
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the altitude is divided indefinitely great, the volume of

this prism becomes indefinitely small : that is, the differ-

ence between the volumes of the pyramids is less than

an indefinitely small volume ; or, in other words, there

is no assignable difference between the two pyramids,
and they are, therefore, equivalent.

Hence the theorem ; if two triangular pyramids, etc.

THEOREM XIV.

Any triangular pyramid is one third of the triangular

prism having the same base and equal altitude.

Let F—ABC be a triangular pyramid, and through F
pass a plane parallel to the plane of the base, ABC. In

this plane, through F, construct the

triangle, FDE, having its sides, FD, E

DF, and FF, parallel and equal to B C, 7vnT ~y
7
\

CA, and AB, respectively. The tri- / \/*\ /

angle, FDF, may be taken as the / /\ \ \

upper base of a triangular prism of \/ / \\/

which the lower base is ABC. ^\ ~\/
IsTow, this triangular prism is com- 13

posed of the given triangular pyramid,
F—ABC, and of the quadrangular pyramid, F—ACDF.
This last pyramid may be divided by a plane through the

three points, C, F, and F, into the two triangular pyra-

mids, F—DFC and F—ACF. But the pyramid, jP—

BFC, may be regarded as having the triangle, FFB,
equal to the triangle, ABC, for its base, and the point, C,

for its vertex. The two pyramids, F—ABC and C—JDFF,
have equal bases and equal altitudes

; they are therefore

equivalent, (Th. 13). Again, the two pyramids, F—DFC
andF—ACE, have a common vertex, and equivalent bases

in the same plane, and they are also equivalent. There-

fore, the triangular prism, ABCDEF, is composed of

17*
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three equivalent triangular pyramids, one of which is the

given triangular pyramid, F—ABC.
Hence the theorem; any triangular pyramid is one third

of the triangular prism, etc.

Cor. The volume of the triangular prism being meas-

ured by the product of its base and altitude, the volume of

a triangular pyramid is measured by one third of the product

of its base and altitude.

THEOREM XV,

The volume of any pyramid whatever is measured by one

third of the product of its base and altitude.

Let V—ABCDU be any pyramid ; then will its volume

be measured by one third of the product of its base and

altitude.

In the base of the pyramid, draw the

diagonals, AB and AC, and through
its vertex and these diagonals, pass

planes, thus dividing the pyramid into

a number of triangular pyramids

having the common vertex V, and the

altitude of the given pyramid for their

common altitude.

Now, each of these triangular pyra-
mids is measured by one third of

the product of its base and altitude,

(Cor., Th. 14), and their sum, which

constitutes the polygonal pyramid, is

therefore measured by one third "of

the product of the sum of the trian-

gular bases and the common altitude
;
but the sum of the

triangular bases constitutes the polygonal base, ABCDE.
Hence the theorem

;
the volume of any pyramid what-

ever, etc.

Cor. 1. Denote, by B, H, and V, respectively, the base,

altitude, and volume of one pyramid, and by B', W, and
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,
the base, altitude, and volume of another ;

then we
shall have

V = $B x IT,

and V = \B' x W.

Dividing the first of these equations by the second,

member by member, we have

V - B x H
Vf B' x W'

which, in the form of a proportion, gives

V : V : : B X H : B' X W.

From this proportion we deduce the following conse-

quences :

1st. Pyramids are to each other as the products of their

bases and altitudes.

2d. Pyramids having equivalent bases are to each other as

their altitudes.

3d. Pyramids having equal altitudes are to each other as

their bases.

Cor. 2. Since a prism is measured by the product of

it's base and altitude, and a pyramid by one third of the

product of its base and altitude, we conclude that any

pyramid is one third of a prism having an equivalent base and

equal altitude.

THEOREM XVI.

The volume of the frustum of a pyramid is equivalent to

the sum of the volumes of three pyramids, each of which has

an altitude equal to that of the frustum, and whose bases are,

respectively, the lower base of the frustum, the upper base of

the frustum, and a mean proportional between these bases.

Let V—ABODE and X—RST be two pyramids, the

one polygonal and the other triangular, having equiva-
lent bases and equal altitudes

;
and let their bases be

placed on the plane MN, their vertices falling on the

parallel plane mn. Pass through the pyramids a plane
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parallel to the common plane of their bases, cutting out

the sections abode and rst
;
these sections are equivalent,

(Th. 12, Cor. 2), and the pyramids, V—abode and X—rst,

are equivalent, (Th. 13). Now, since the pyramids,
V—ABODE and X—EST, are equivalent, if from the

first we take the pyramid, V—abode, and from the second,

the pyramid, X—rst, the remainders, or the frusta,

ABODE—a and BST—r, will be equivalent.

If, then, we prove the theorem in the case of the frus-

tum of a triangular pyramid, it will be proved for the

frustum of any pyramid whatever.

Let ABO—D be the frustum of a

triangular pyramid. Through the

points D, B, and 0, pass a plane,
and through the points D, C, and

E, pass another, thus dividing the

frustum into three triangular pyra-

mids, viz., D—ABO, O—DEF, and
D—BEO.
Now, the first of these has, for its
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base, the lower base of the frustum, and for its altitude

the altitude of the frustum, since its vertex is in the

upper base
; the second has, for its base, the upper base

of the frustum, and for its altitude the altitude of the

frustum, since its vertex is in the lower base. Hence,
these are two of the three pyramids required by the

enunciation of the theorem
;
and we have now only to

prove that the third is equivalent to one having, for its

base, a mean proportional between the bases of the frus-

tum, and an altitude equal to that of the frustum.

In the face ABED, draw HB parallel to BE, and

draw HE and HO. The two pyramids, B—BEO and

H—BEO, are equivalent, since they have a common
base and equal altitudes, their vertices being in the line

BH, which is parallel to the plane of their common

base, (Th. 7, B. VI). We may, therefore, substitute the

pyramid, H—BEO, for the pyramid, D—BEC. But the

triangle, BOH, may be taken as the base, and E as the

vertex of this new pyramid ; hence, it has the required

altitude, and we must now prove that it has the required

base.

The triangles, ABO and HBO, have a common vertex,

and their bases in the same line
; hence, (Th. 16, B. II),

A ABO : A HBO : : AB : HB :: AB : BE. (1)

In the triangles, BEE and HBO, [__ E = L -#, and

BE=HB', hence, if BEE be applied to HBO, [__ E fil-

ing on [_ B, and the side BE on HB, the point B will

fall on H, and the triangles, in this position, will have a

common vertex, H, and their bases in the same line ;

hence
A HBO : A BEE : : BO : EF. (2)

But, because the triangles, ABO and BEE, are similar,

we have
AB : BE :: BO : EF. (3)

From proportions (1), (2) ?
and (3), we have, (Th. 6,

B. II),
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A ABO : A HBO : : A HBO : A DBF;
that is, the base, HBO, is a mean proportional between

the lower and upper bases of the frustum.

Hence the theorem
;
the volume of the frustum of a pyra-

mid, etc.

THEOREM XVII.

The convex surface of any right pyramid is measured by

the perimeter of its base, multiplied by one half its slant height.

Let S—ABODEF be a right pyramid,
of which SH is the slant height ;

then will

its convex surface have, for its measure,

±SH{AB + BO+ OD +DB+EF+ FA).

Since the base is a regular polygon, and

the perpendicular, drawn to its plane from

S, passes through its center, the edges,

SA, SB, SO, etc., are equal, (Cor. Th. 4, ah~b
B. VI), and the triangles SAB, SBO, etc., are equal, and

isosceles, each having an altitude equal to SH.

Now, AB x %SH measures the area of the triangle,

SAB ;
and BO x %SH measures the area of the triangle,

SBO; and so on, for the other triangular faces of the

pyramid. By the addition of these different measures,

we get

iSH(AB + BO+OD + DH+UF+ FA),

as the measure of the total convex surface of the pyramid.
Hence the theorem; the convex surface of any right

pyramid, etc.

THEOREM XVIII.

The convex surface of the frustum of any right pyramid is

measured by the sum of the perimeters of the two bases, mul-

tiplied by one half the slant height of the frustum.

Let ABODEF—d be the frustum of a right pyramid ;

then will its convex surface be measured by

iHh{AB+BC+CD+DI!+EF+FA+ab+b<>±cd+de+tf+fa).
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AB and ab, or as the cubes, whose edges are the homol-

ogous edges BE and be, etc. Since the prisms are similar,

the solid angles, whose vertices are B and b, are equal;
and the smaller prism, when so applied to the larger that

these solid angles coincide, will take, within the larger,
the position represented by the dotted lines, In this

position of the prisms, draw EH perpendicular to the

plane of the base ABO, and join the foot of the perpen-
dicular to the point B, and in the triangle BEH draw,

through e, the line eh, parallel to EH; then will EH
represent the altitude of the larger prism, and eh that of

the smaller.

J^ow, as the bases ABC and aBc, are homologous faces,

they are similar, and we have, (Th. 20, Book II),

A ABC : A aBc :: AB* :~a~B
2

(1)

But the A's BEH and Beh are equiangular, and there-

fore similar, and their homologous sides give the propor-
tion

BE : Be :: EH : eh (2)

and from the homologous sides of the similar faces,

ABED and aBed, we also have

BE : Be :: AB : aB (3)

Proportions (2) and (3 ), having an antecedent and con-

sequent the same in both, we have, (Th. 6, B. II),

EH : eh :: AB : aB (4)

By the multiplication of proportions (1) and (4) ?
term

by term, we get

A ABC X EH: A aBc X eh:: AB 3

: aB
3

But A ABC x EH measures the volume of the larger

prism, and A aBc x eh measures the volume of the

smaller.

Hence the theorem; the volumes of similar triangular

prisms, etc.
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Cor. 1. The volumes of two similar prisms having any

bases whatever, are to each other as the cubes constructed on

their homologous edges.

For, if planes be passed through any one of the lateral

edges, and the several diagonal edges, of ,one of these

prisms, this prism will be divided into a number of smaller

triangular prisms. Taking the homologous edge of the

other prism, and passing planes through it and the seve-

ral diagonal edges, this prism will also be divided into

the same number of smaller triangular prisms, similar to

those of the first, each to each, and similarly placed.

Kow, the similar smaller prisms, being triangular, are

to each other as the cubes of their homologous edges ;

and being like parts of the larger prisms, it follows that

the larger prisms are to each other as the cubes of the

homologous edges of any two similar smaller prisms. But
the homologous edges of the similar smaller prisms are

to each other as the homologous edges of tlie given

prisms ;
hence we conclude that the given prisms are to

each other as the cubes of their homologous edges.

Cor. 2. The volumes of two similar pyramids having any
bases whatever, are to each other as the cubes constructed on

their homologous edges.

For, since the pyramids are similar, their bases are

similar polygons ;
and upon them, as bases, two similar

prisms may be constructed, having for their altitudes, the

altitudes of their respective pyramids, and their lateral

edges parallel to any two homologous lateral edges of the

pyramids.

Now, these similar prisms are to each other as the cubes

of their homologous edges, which may be taken as the

homologous sides of their bases, or as their lateral edges,
which were taken equal and parallel to any two arbi-

trarily assumed homologous lateral edges of the two

pyramids ;
hence the pyramids are to each other as the

cubes constructed on any two homologous edges.
18
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Cor. 3. The volumes of any two similar polyedrons are to

each other as the cubes constructed on their homologous edges.

For, by passing planes through the vertices of the

homologous solid angles of such polyedrons, they may
both be divided into the same number of triangular

pyramids, those of the one similar to those of the other,
each to each, and similarly placed.

Now, any two of these similar triangular pyramids are

to each other as the cubes of their homologous edges ;

and being like parts of their respective polyedrons, it

follows that the polyedrons are to each other as the cubes

of the homologous edges of any two of the similar tri-

angular pyramids into which they may be divided. But
the homologous edges of the similar triangular pyramids
are to each other as the homologous edges of the poly-
edrons

;
hence the polyedrons are to each other as the

cubes of their homologous edges.

THEOREM XX.

!!J~£X

The convex surface of the frustum of a cone is measured

by the product of the slant height and one half the sum of
the circumferences of the bases of the frustum.

Let ABOB—abed be the frustum of

a cone
;
then will its convex surface be

t , A (circ. 00 4- circ. oc)measured by Aa x ~
'-,

in which the expression, circ. 00, de-

notes the circumference of the circle

of which 00 is the radius. Inscribe in

the lower base of the frustum, a regu-
lar polygon haviug any number of

sides, and in the upper base a similar

polygon, having its sides parallel to

those of the polygon in the lower base. These polygons
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may be taken as the bases of the frustum of a right

pyramid inscribed in the frustum of the cone.

]STow, however great the number of sides of the in-

scribed polygons, the convex surface of the frustum of

the pyramid is measured by its slant height multiplied by
one half the sum of the perimeters of its two bases,

(Th. 18) ;
but when we reach the limit, by making the

number of sides of the polygon indefinitely great, the

slant height, perimeters of the bases, and convex surface

of the frustum of the pyramid become, severally, the

slant height, circumferences of the bases, and convex sur-

face of the frustum of the cone.

Hence the theorem ; the convex surface of the frustum,

etc.

Cor. 1. If we make oc — 00, and, consequently, circ.

oc = circ. 0(7, the frustum of the cone becomes a cylin-

der, and the half sum of the circumferences of the bases

becomes the circumference of either base of the cylinder,

and the slant height of the frustum, the altitude of the

cylinder. Hence, the convex surface of a cylinder is meas-

ured by the circumference of the base multiplied by the alti-

tude of the cylinder.

Cor. 2. Kwe make oc = 0, the frustum of the cone

becomes a cone. Hence, the convex surface of a cone is

measured by the circumference of the base multiplied by one

half the slant height of the cone.

Cor. 3. If through E, the middle point of Co, the line

Ff be drawn parallel to Oo, and Em perpendicular to

Go, the line oc being produced, to meet Ff at/, we have,
because the A's EFC and Efc are equal,

w OC + ooEm = _^-_ .

If we multiply both members of this equation by 2*,

we have

2«.Em = 2*-0Q+2™.
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that is, circ. Em is equal to one half the sum of the cir-

cumferences of the two bases of the frustum. Hence, the

convex surface of the frustum of a cone is measured by the

circumference of the section made by a plane half way between

the two bases, and parallel to them, multiplied by the slant

height of the frustum.

Cor. 4. If the trapezoid, OCco, be revolved about Oo

as an axis, the inclined side, Cc, will generate the con-

vex surface of the frustum of a cone, of which the slant

height is Cc, and the circumferences of the bases are circ.

OC and circ. oc. Hence, if a trapezoid, one of whose sides

is perpendicular to the two parallel sides, be revolved about

the perpendicular side as an axis, it will generate the frustum

of a cone, the inclined side opposite the axis generating the

convex surface, and the parallel sides the bases of the frustum.

THEOREM XXI.

The volume of a cone is measured by the area of its base

multiplied by one third of its altitude.

Let V—ABC, etc., be a cone; then

will its volume be measured by area

ABC, etc., multiplied by \VO.
Inscribe, in the base of the cone, any

regular polygon, as ABCDEF, which

may be taken as the base of a right pyra-

mid, of which V is the vertex. The
volume of this inscribed pyramid will AJ

have, for its measure, (Th. 15),

polygon ABCDEF x \VO.
Now, however great the number of sides of the poly-

gon inscribed in the base of the cone, it will still hold
true that the pyramid of which it is the base, and whose
vertex is V, will be measured by the area of the poly-
gon, multiplied by one third of VO; but when we
reach the limit, by making the number of sides indefi-
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nitely great, the polygon becomes the circle in which it

is inscribed, and the pyramid becomes the cone.

Hence the theorem
;
the volume of a cone, etc.

Cor. 1. IfR denote the radius of the base of a cone,

and H its altitude, or axis, its volume will be expressed

by

hence, if Fand V designate the volumes of two cones,

of which R and R ' are the radii of the bases, and H and

Hr the altitudes, we have

V: V :: iKx«R 2
: ±Hf x «Rn :: Hx«R2

: Hf X <kR'\

From this proportion we conclude,
First. That cones having equal altitudes are to each other

as their bases.

Second. That cones having equal bases are to each other

as their altitudes.

Cor. 2. Retaining the notation above, we have

IL *L R ' 2 m
V

~ H x W
and, if the two cones are similar,

Hi H> :: R : i2';

J27 R r
, E2f R f *

s =
r ; hence

> M*'^'
By substituting for the factors, in the second member

of eq. (
1

), their values successively, and resolving into a

proportion, we get

V : V :: R* : R*';
and V : V :: jEP': E'\

Hence, similar cones are to each other as the cubes of the

radii of their bases, and also as the cubes of their altitudes.

Cor. 3. A cone is equivalent to a pyramid having an equiv-
alent base and an equal altitude.

18* o



210 GEOMETRY.

THEOREM XXII.

The volume of the frustum of a cone is equivalent to the

sum of the volumes of three cones, having for their common

altitude the altitude of the frustum, and for their several

bases, the bases of the frustum and a mean proportional be-

tween them.

Let ABQD—abed be the frustum of a

cone
;
then will its volume be equiva-

lent to the sum of the volumes, having
Oo for their common altitude, and for

their bases, the circles of which, OG, oc,

and a mean proportional between 00
and oc, are the respective radii.

Inscribe in the lower base of the frus-

tum any regular polygon, and in the

upper base a similar polygon, having
its sides parallel to those of the first. These polygons

may be taken as the bases of the frustum of a right pyra-

mid inscribed in the frustum of the cone.

The volume of the frustum of the pyramid is equiva-

lent to the sum of the volumes of three pyramids, having
for their common altitude the altitude of the frustum,

and for their several bases the bases of the frustum, and

a mean proportional between them, (Th. 16).

!Now, however great the number of sides of the poly-

gons inscribed in the bases of the frustum of the cone,

this measure for the volume of the frustum of the pyra-

mid, of which they are the bases, still holds true
;
but

when we reach the limit, by making the number of the

sides of the polygon indefinitely great, the polygons be-

come the circles, the frustum of the pyramid becomes

the frustum of the cone, and the three partial pyramids,
whose sum is equivalent to the frustum of the pyramid,
become three partial cones, whose sum is equivalent to

the frustum of the cone.
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Hence the theorem
;
the volume ofthefrustum ofa cone, etc.

Cor. 1. Let R denote the radius of the lower base, R '

that of the upper base, and ^Tthe altitude of the frustum

of a cone
;
then will its volume be measured, (Th. 21), by

±H x *R2 + ±R x «R n + i&x *Rx R r

,

since *R x Rr

expresses the area of a circle which is a

mean proportional between the two circles, whose radii

are R and R f
.

E"ow, if the bases of the frustum become equal, or

R = R', the frustum becomes a cylinder, and each of the

last two terms in the above expression for the volume of

the frustum of a cone will be equal to the first
; hence,

the volume of a cylinder, of which H is the altitude, and
R the radius of the base, is measured by H x «R 2

.

Therefore, the volume of a cylinder is measured by the

area of its base multiplied by its altitude.

Cor. 2. By a process in all respects similar to that pur-
sued in the case of cones, it may be shown that similar

cylinders are to each other as the cubes of the radii of their

bases, and also as the cubes of their altitudes.

Cor. 3. A cylinder is equivalent to a prism having an

equivalent base and an equal altitude.

THEOREM XXIII.

If a plane be passed through a sphere, the section will be a

circle.

Let be the center of a sphere

through which a plane is passed,

making the section AmBn
; then

will this section be a circle.

From let fall the perpendic-
ular Oo upon the secant plane,

and draw the radii OA, OB, and

Om, to the different points in the

intersection of the plane with

the surface of the sphere. Now.
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the oblique lines OA, OB, Om, are all equal, being radii

of the sphere; they therefore meet the plane at equal dis-

tances from the foot of the perpendicular Oo, (Cor., Th. 4,

B.VI); hence oA, oB, om, etc., are equal: that is, all the

points in the intersection of the plane with the surface of

the sphere are equally distant from the point 0. This

intersection is therefore the circumference of a circle of

which o is the center.

Hence the theorem; if a plane be passed through a

sphere, etc.

Cor. 1. Since AB, the diameter of the section, is a chord

of the sphere, it is less than the diameter of the sphere ;

except when the plane of the section passes through the

center of the sphere, and then its diameter becomes the

diameter of the sphere. Hence,

1. All great circles of a sphere are equal.

2. Of two small circles of a sphere, that is the greater

whose plane is the less distantfrom the center of the sphere.

3. All the small circles of a sphere whose planes are at the

same distance from the center, are equal.

Cor. 2. Since the planes of all great circles of a sphere

pass through its center, the intersection of two great
circles will be both a diameter of. the sphere and a com-

mon diameter of the two circles. Hence, two great circles

of a sphere bisect each other.

Cor. 3. A great circle divides the volume of a sphere, and

also its surface, equally.

For, the two parts into which a sphere is divided by

any of its great circles, on being applied the one to the

other, will exactly coincide
;
otherwise all the points in

their convex surfaces would not be equally distant from

the center.

Cor. 4. The radius of the sphere which is perpendicular

to the plane of a small circle, passes through the center of the

circle.
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Cor. 5. A plane passing through the extremity of a radius

of a sphere, and perpendicular to it,
is tangent to the sphere.

For, if the plane intersect the sphere, the section is a

circle, and all the lines drawn from the center of the

sphere to points in the circumference are radii of the

sphere, and are therefore equal to the radius which is per-

pendicular to the plane, which is impossible, (Cor. 1, Th.

3, B. VI). Hence the plane does not intersect the sphere,

and has no point in its surface except the extremity of

the perpendicular radius. The plane is therefore tangent
to the sphere by Def 22.

THEOREM XXIY.

If the line drawn through the center and vertices of two

opposite angles of a regular polygon of an even number of

sides, be taken as an axis of revolution, the perimeter of either

semi-polygon thusformed will generate a surface whose measure

is the axis multiplied by the circumference of the inscribed circle.

Let ABCDEF be a semi-polygon cut

off from a regular polygon of an even

number of sides by drawing the line AF
through the center 0, and the vertices A
and F, of two opposite angles of the poly-

gon ;
then will the surface generated by

the perimeter of this semi-polygon re-

volving about AF as an axis, be meas-

ured by AF X circumference of the in-

scribed circle.

From m, the middle point, and the extremities B and

of the side 2? (7, draw mn, BK, and OL, perpendicular to

AF; join also m and 0, and draw BH perpendicular to

CL. The surface of the frustum of the cone generated

by the trapezoid BKLO, has for its measure circ. mn X

BO, (Cor. 3, Th. 20). Since mO is perpendicular to BO,
and mn to BH, the two A's, BOH and mnO, are similar,

and their homologous sides give the proportion
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mn : mO :: BH (= jK£) : BO
and as circumferences are to each other as their radii, we
have

circ. mn : circ. mO :: KL : BO
Hence, circ. mn X BO = circ. mO X KL.

But mO is the radius of the circle inscribed in tne

polygon. Hence, the surface generated by BO during the

revolution of the semi-polygon, is measured by the cir-

cumference of the inscribed circle multiplied by KL, the

part of the axis included between the two perpendicu-
lars let fall upon it from the extremities B and 0. The
surface generated by any other side of the semi-polygon
will be measured, in like manner, -by the circumference of

the inscribed circle multiplied by the corresponding part
of the axis.

By adding the measures of the surfaces generated by
the several sides of the semi-polygon, we get

Circ. mO x {AK + KL + LN + NM+ MF)
for the measure of the whole surface.

Hence the theorem
; if the line drawn through the cen-

ter, etc.

Oor. It is evident that the surface generated by any

portion, as OB and BF, of the perimeter, is measured by
circ. mO x LM.

THEOREM XXV.

The surface of a sphere is measured by the circumference

of one of its great circles multiplied by its diameter.

Let a sphere be generated by the revolution of the

semi-circle, ARF, about its diameter, AF; then will the

surface of the sphere be measured by

Circ. AO x AF.

Inscribe in the semi-circle any regular semi-polygon,
and let it be revolved, with the semi-circle, about the axis
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AF; the surface generated by its perim-
eter will be measured by

Circ. mOx AF, (Th. 24),

and this measure will hold true, how-

ever great the number of sides of the in-
H|

scribed semi-polygon. But as the num-

ber of these sides is increased, the

radius mO, of the inscribed semi-circle,

increases and approaches equality with

the radius, AO; and when we reach the limit, by

making the number of sides indefinitely great, the radii

and semi-circles become equal, and the surface generated

by the perimeter of the inscribed semi-polygon becomes

the surface of the sphere. Therefore, the surface of the

sphere has, for its measure,

Girc. AO x AF.

Hence the theorem
;
the surface of a sphere is meas-

ured, etc.

Cor. 1. A zone of a sphere is measured by the circumfer-

ence of a great circle of the sphere multiplied by the altitude

of the zone.

For, the surface generated by any portion, as CD and

DF, of the perimeter of the inscribed semi-polygon has,

for its measure, circ. mO X LM, (Cor. Th. 24) ;
and as

the number of the sides of the semi-polygon increases,

LM remains the same, the radius mO alone changing,
and becoming, when we reach the limit, equal to AO)
hence, the surface of the zone is expressed by

Circ. AO x LM,
whether the zone have two bases, or but one.

Cor. 2. Let H and H' denote the altitudes of two

zones of spheres, whose radii are R and R '

;
then these

zones will be expressed by 2*R x H and 2*R ' x Hf

;

and if the surfaces of the zones be denoted by Z and Z r

,

we have
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Z : Z' : : 2«R x E : 2«R f x E' : : R x E : R f x E'.

Hence, 1. Zones in different spheres are to each other as

their altitudes multiplied by the radii of the spheres.

2. Zones of equal altitudes are to each other as the radii

of the spheres.

3. Zones in the same, or equal spheres, are to each other as

their altitudes.

Cor. 3. Let R denote the radius of a sphere; then will

its diameter be expressed by 2R, and the circumference

of a great circle by 2*R
;
hence its surface will be ex-

pressed by
2«R x2E = ±«R\

That is, the surface of a sphere is equivalent to the area of

four of its great circles.

Cor. 4. The surfaces of spheres are to each other as the

squares of their radii.

THEOREM XXVI.

If a triangle be revolved about either of its sides as an axis,

the volume generated will be measured by one third of the prod-
uct of the axis and the area of a circle, having for its radius

the perpendicular let fall from the vertex of the opposite

angle on the axis, or on the axis produced.

First. Let the triangle ABC,
in which the perpendicular from

C falls on the opposite side, AB,
be revolved about AB as an axis;

then will *Yol. A ABC have, for

its measure, %AB x *CD .

The two A's into which A ABC is divided by the

perpendicular DC, are right-angled, and during the rev-

olution 'they will generate two cones, having for their

* Vol. A ABC, cone A ABC, are abbreviations for volume gener-

ated by A ABC, cone generated by A ABC', and surfaces of revolu-

tion generated by lines will hereafter be denoted by like abbreviations.
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common base the circle, of which DO is the radius, and

for their axes the parts DA and DB, into which AB is

divided.

Now, *Cone A ADO is measured by \AD x mj>(jy

(Th. 21), and cone A BDO, by ±BD x iDQ*
;
but these

two cones compose Yol. A ABO; and by adding their

measures, we have, for that of Yol. A ABO,

iAD x *D0 2

+ iBD x r~D0
2 = \AB x <HJC\

Second. Let the trian-

gle EFGr, in which the

perpendicular from Gr

falls on the opposite side

EFproduced, be revolved

about EF as an axis ;

then will Yol. A FFa E F G

have, for its measure, ^EF x <kGtH\ CrH being the per-

pendicular on EF produced. For, in this case it is appa-

rent, that Yol. A EFGr is the difference between the

cone A ERG- and the cone A FHGr. The first cone has,

for its measure, \EH x «GrE\ and the second, for its

measure, ^FH x irGfH
2

; hence, by subtraction, we have

Vol. A EFG = %EH X *GH2 — \FH X nGH2 = %EF X 7i~GH
2
.

Hence the theorem
; if a triangle be revolved about either

of its sides, etc.

Scholium.—If we take either of the above expressions for the meas-

ure of the volume generated by the revolution of a triangle about one

of its sides, for example the last, and factor it otherwise, we have

iEFX 7tGH
2 = FFx^GHxi7tx2GS=FFxiGHx^

j

Now, EF X %GH expresses the area of the triangle EFG; and

2rt X GH . .

,
one third of the circumference described by the. point Q

o

during the revolution.

The expression, IAB X TtDC
2

, maybe factored and interpreted in the

* See note on the preceding page.

19
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same manner. Hence, we conclude that the volume generated by the

revolution of a triangle about either of its sides, is measured by the area

of the triangle multiplied by one third of the circumference described in

the revolution by the vertex of the angle opposite the axis.

THEOREM XXVII.

The volume generated by the revolution of a triangle about

any line lying in its plane, and passing through the vertex of
one of its angles, is measured by the area of the triangle mul-

tiplied by two thirds of the circumference described, in the

revolution, by the middle 'point of the side opposite the vertex

through which the axis passes.

Let the triangleABObe

revolved about the line

AG, drawn through the

vertex A, and lying in the

plane of the triangle, and

let HE be the perpendicu-
lar let fall from H, the

middle point of BO, upon
the axis AG ;

then will Vol. a ABO have, for its meas-

ure, A ABO X § circ. HE.
From the extremities of BO, let fall the perpendicu-

lars BE and OB, on the axis; and from A draw AK per-

pendicular to BO, or BO produced, and produce OB,
until it meets the axis in G.

]STow, it is evident that Yol. A ABO is the difference

between Yol. A AGO and Yol. A AGB. But Yol.

A AGO is expressed by a AGO X J circ. OB; and Yol.

A AGB, by A AGB x J circ. BE, (Scholium, Th. 26).

Hence,

Vol. A ABC == A AGC X \ circ. CD— A AGB X £ circ. BF.

Substituting for areas of A's, and for circumferences,

their measures, we have
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Vol. A ABC= GC X \AK X ^hfR— GB X \AK X ^M
o o

= GCx UKX 2
^£R--{GC--BC) X IAKX &%H

^GCXUKX 2
-^^-— GCxUKX—~+BCxUKX^^-o o o

= GCX \AK X ~{CJ) — 5Z) + 5C X M^ X =~i
3 o

But jSiV' being drawn parallel to AG, we have

CJSF = CD — BF;
hence, substituting this value for CD — BF, in the first

term of the second member of the last equation, we have

Yol.AABO=aOxiAKx^4^+BOxiAKx
2

= GCx OJSTx lAKx
**
+ BCx \AKx-

3

~ + BCx \AKx —
g-

by changing the order of factors in the first term of the

second member. The homologous sides of the similar

triangles, GOD and BON, give the proportion

GO : OB : : BO : ON

whence, GCx ON = CD xBC

Substituting this value for GO x ON, in the last equa-
tion above, and arranging the factors as before, it becomes

Zx.CD
, ™. , ,_. 2«.BF

3
Vol. A ABC= BC x iAKx =I£±: + BC x \AK x

= BCxiAKx 2^A±-B-^.
ButCD + BF = 2HF; hence

Vol. A ABC=BCx lAKx —~=BCx \AKx §.2«.HF;
o

and since

BC x \AK= A ABC, and $ x 2«.HF = } circ. BF,
this measure conforms to the enunciation.

It only remains for us to consider the case in which

the axis is parallel to the base BC of the triangle. The
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preceding demonstration will not now apply, because it

supposes BO, or BO produced, to intersect the axis.

Let the axis AE, be parallel to the

base BO, of the A ABO. From B
and let fall on the axis the perpen-
diculars BE and CD.

Now it is plain that

Vol. A ABO= cylinder rectangle BODE +
cone a ADO— cone A AEB.

Substituting in second member, for cylinder and cones,

their measures, we have

Vol. AABC=DE x *OD2 + %AD x «~OD
2—\AE x «BE 2

=§DEx *CD
2

+\DEx «OD
2

+§ADx«CD
2

--iAEx *BE\

ButBE= CD, and \DE + \AD = \AD. Reducing by
these relations, we have

Yol. a ABC= %DE x «CD 2= \DE x \OD x 4*.OZ>

_ DE x \ODx %.<L«.OD = BO x \OD x %.2«.OD.

And, since BO x %CD expresses the area of the tri-

angle ABO, and %.2<x.CD, two thirds of the circumfer-

ence described by any point of the base, this expression

also conforms to the enunciation.

Hence the theorem ;
the volume generated by the revolu-

tion, etc.

Oor. If the generating

triangle becomes isosceles,

the perpendicular from A
meets the base at its middle

point. In this case, if we

resume the expression

BOx lAKx —x
o

it becomes
BO x \AK x KE x J«

/ 9
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But, since AKis perpendicular to BO, andKB to BJSF,

the a's AKB and CBN are similar, and their homolo-

gous sides give the proportion

BO : BJST :: AK : KB
whence, BCxKB = .Bi^x JLJ5T

Changing the order of factors in the last expression on

the preceding page, and replacing BOxKE by its value,

it becomes

\AKx AKxBJSTx ]i
= AK2

x BN x |*

Hence,

Vol. A^LB(7=f*' x 33? x J9iV. = f* xAK
2

xJDF

That is, £A<? volume generated by the revolution of an isos-

celes about any line drawn through its vertex and lying in the

plane of the triangle, is measured by %« times the square of

the perpendicular of the triangle multiplied by the part of the

axis included between the two perpendiculars let fall upon it

from the extremities of the base of the triangle.

' Scholium.— If we resume the equation

Vol. A ABC = BC X \AK X ^™
o

and change the order of the factors in the second member, it may be

put under the form

Vol. A ABC = BC X 2h.HE X \AK.

But during the revolution of the triangle, the side BC generates the

surface of the frustum of a cone, which surface has for its measure

BC X 2rt.HE (Th. 20, Cor. 3).

Hence, the above equation may be thus interpreted : The volume

generated by the revolution ofa triangle about any line lying in its plane
and passing through the vertex of one of its angles, is measured by the

surface generated, during the revolution, by the side opposite the vertex

through which the axis passes multiplied by one third of the perpen-
dicular drawn from the vertex to that side.

19*
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THEOREM XXVIII.

If the line drawn through the center and vertices of two op-

posite angles of a regular polygon, of an even number of

sides, be taken as an axis of revolution, either semi-polygon

thus formed will, during this revolution, generate a volume

which has, for its measure, the surface generated by the

perimeter of the semi-polygon multiplied by one third of its

apothem.

Let ABODE be a regular semi-poly-

gon, cut off from a regular polygon
of an even number of sides, by draw-

ing a line through the center, 0, and

the vertices, A and E, of two opposite

angles of the polygon ; then will the

volume generated by the revolution

of this semi-polygon about AE, as an

axis, be measured by (Sur. AB -f sur.

BO+ sur. CD -f sur. DE) x JOm, Om
being the apothem of the polygon.

For, if from the center of 0, the lines OB, 00, OB, be

drawn to the vertices of the several angles of the semi-

polygon, it will be divided into equal isosceles triangles,

the perpendicular of each being the apothem of the

polygon.

Now, the volume generated by A AOB has, for its

measure,
Sur. AB x \0m,

that by A BOO, Sur. BO x \0m,
" A OOB, Sur. OB x \0m,
" A DOE, Sur. DE x %0m, (Scholium, Th. 27).

By the addition of the measures of these partial vol-

umes, we find, for that of the whole volume,

Vol. semi-polygon ABODE = sur. perimeter ABODE X \Om,

and were the number of the sides of the semi-polygon
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increased or diminished, the reasoning would be in no

wise changed.
Hence the theorem ; if the line drawn through the cen-

ter, etc.

Scholium.—The volume generated by any portion of the semi-poly-

gon, as that composed of the two isosceles a's DOC, COD, is meas-

ured by
Sur. perimeter BCD X 10m.

THEOREM XXIX.

The volume of a sphere is measured by its surface multi-

plied by one third of its radius.

Let a sphere be generated by the

revolution of the semicircle AOE,
about its diameter, AE, as an axis;

then will the volume of the sphere be

measured by

sur. semi-circ. OA x %OA.

For, inscribe in the semi-circle any

regular semi - polygon, as ABODE,
and let it, together with the semi-cir-

cle, revolve about the axis AE. The

semi-polygon will generate a volume which has, for its

measure,

Sur. perimeter ABODE x \Om, (Th. 28),

in which Om is the apothem of the polygon.

Now, however great the number of sides of the in-

scribed regular semi-polygon, this measure for thevolume

generated by it, will hold true
;
but when we reach the

limit, by making the number of sides indefinitely great,

the perimeter and apothem become, respectively, the

semi-circumference and its radius, and the volume gen-
erated by the semi-polygon becomes that generated by
the semi-circle, that is, the sphere. Therefore,

Vol. sphere = sur. semi-circ. OA x \OA.
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Scholium 1.—If we take any portion of the inscribed semi-polygon,
as BOC, the volume generated by it is measured by sur. BC X $Om,

(Scholium, Th. 27) ;
and when we pass to the limit, this volume be-

comes a sector, and sur. BC & zone of the sphere, which zone is the

base of the sector. Hence, the volume of a spherical sector is measured

by the zone which forms its base multiplied by one third of the radius

of the sphere.

Scholium 2.— Let R denote the radius of a sphere; then will its

diameter be represented by 2R. Now, since the surface of a sphere is

equivalent to the area of four of its great circles, and the area of a

great circle is expressed by 7tR 2
,
we have

Vol. sphere = 4hR 2 X^ = {jtR
3
.

And since R3 —
|( 2R )

3
, we also have

Vol. sphere = &R 3 = %rt{2R)
s
.

That is, the volume of a sphere is measuredfour thirds of* times the

cube of the radius, or by one sixth of 7t times the cube of the diameter.

THEOREM XXX.

The surface of a sphere is equivalent to two thirds of the

surface, bases included, and the volume of a sphere to two

thirds of the volume, of the circumscribing cylinder.

Let AMD be a semi-circle, and
ABQD a rectangle formed by
drawing tangents through the

middle point and extremities of

the semi-circumference, and let M
the semi-circle and rectangle be
revolved together about AD as

an axis. The rectangle will thus
(

generate a cylinder circumscribed

about the sphere generated by the semi-circle.

First. The diameter of the base, and the altitude of
the cylinder, are each equal to the diameter of the

sphere ; hence the convex surface of the cylinder, being
measured by the circumference of its base multiplied by
its altitude, (Cor. 1, Th. 20), has the same measure as
the surface of the sphere, (Th. 25). But the surface of
the sphere is equivalent to four great circles, (Cor. 3,
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Th. 25). Hence, the convex surface of the cylinder is

equivalent to four great circles ;
and adding to these the

bases of the cylinder, also great circles, we have the

whole surface of the cylinder equivalent to six great
circles. Therefore, the surface of the sphere is four

sixths = two thirds of the surface of the cylinder, in-

cluding its bases.

Second. The volume of the cylinder, being measured

by the area of the base multiplied by the altitude, (Cor.

1, Th. 22), is, in this case, measured by the area of a

great circle multiplied by its diameter = four great cir-

cles multiplied by one half the radius of the sphere.

But the volume of the sphere is measured by four

great circles multiplied by one third of the radius, (Scho-
lium 2, Th. 29). Therefore,

Vol. sphere : Vol. cylinder : : J : J : : 2 : 3
;

whence, Vol. sphere = § Vol. cylinder.

Hence the theorem
;

the surface of a sphere is equiva-

lent, etc,

, Cor. The volume of a sphere is to the volume of the cir-

cumscribed cylinder, as the surface of the sphere is to the sur-

face of the cylinder.

Scholium.—Any polyedron circumscribing a sphere, may be regarded
as composed of as many cones as the polyedron has faces, the center of

the sphere being the common vertex of these cones, and the several

faces of the polyedron their bases. The altitude of each cone will be

a radius of the sphere ;
hence the volume of any one cone will be

measured by the area of the face of the polyedron which forms its

base, multiplied by one third of the radius of the sphere. There-

fore, the aggregate of these cones, or the whole polyedron, will be

measured by the surface of the sphere multiplied by one third of the

radius of the sphere.

But the volume of the sphere is also measured by the surface of the

sphere multiplied by one third of its radius. Hence,

Sur. polyedron : Sur. sphere : : Vol. polyedron : Vol. sphere.

That is, the surface of any circumscribed polyedron is to the surface

of the sphere, as the volume of the polyedron is to the volume of the

sphere.
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THEOREM XXXI.

The volume generated by the revolution of the segment of a

circle about a diameter of the circle exterior to the segment, is

measured by one sixth of «r times the square of the chord of
the segment, multiplied by the part of the axis included be-

tween the perpendiculars let fall upon it from the extremities

of the chord.

Let BOB be a segment of the circle,

whose center is 0, and AH a part of a

diameter exterior to the segment. Draw
the chord BB, and from its extremities

let fall the perpendiculars, BF, BF on

AH; also draw Om perpendicular to

BD. The spherical sector generated

by the revolution of the circular sector

BCJDO about AH, is measured by zone BB x iBO,
(Scholium 1, Th. 29),

= 2«.BO x FF x %B0 = §<^BO
l

x

FF; and the volume generated by the isosceles triangle

BOB is measured by

&0m x FF, (Cor. 1, Th. 27).

The difference between these two volumes is that gen-

erated by the circular segment BOB, which has, there-

fore, for its measure,

%«FF{BO — Om) = l«FF x Bm, (Th. 39, B. I).

But since Bm = IBB, 'Bm
2 = \BB* ; hence, by sub-

stituting, we have

Yol. segment BOB = f*FF x %BB
2 m \v~BD

2

x FF.

Hence the theorem.

THEOREM XXXII.

The volume of a segment of a sphere has, for its measure,

the half sum of the bases of the segment multiplied by its alti-

tude, plus the volume of a sphere which has this altitude for

its diameter.



BOOK VII. 227

Let BOB be the arc of a circle, and

BF and BE perpendiculars let fall

from its extremities upon a diameter, q^
of which AH is a part ; then, if the

area BCBEF be revolved about AH r

as an axis, a spherical segment will

be generated, for the volume of which

it is proposed to find a measure.

The circular segment will generate a volume meas-

ured by \*BB* x EF, (Th. 31) ;
and the frustum of the

cone generated by the trapezoid BBEF will have, for

its measure,

\^BF
2 xEF+ \«~BE

2 xEF+ ^BFxBEx EF, (Th. 22),

= i«EF(BF
2

+ ~BE
2

+ BF x BE).
But the sum of these two volumes is the volume of

the spherical segment, which has, therefore, for its

measure,

i*EF (BB* + 2BF 2

+ 2BE 2

+ 2BF x BE)
, From B let fall the perpendicular Bn on BE; then will

Bn = BE—nE = BE— BF;

hence, Bn = BE*— 2BE x BF + BF 2

;

and since BB 2 = Bn 2

+ ~Bn = EF 2

+ ~Bn,

we have BB 2 = EF 2 + BE 2

+ BF
2— 2BE x BF.

By substituting this value for J5D 2

,
in the above meas-

ure for the volume of the segment, we find

btEF(EF'+DE'+BF —2DExBF+2BF'+2DE +2BFXDE)
2

. o-F^»2
\ 1 .^^3 , ^^(itDE +7tBF\*EF {EF'+ZDE'+ZBF') = faEF* + EF ).2

"Which last expression conforms to the enunciation.

Hence the theorem
; the volume of a segment of a sphere,

etc.

Cor. When the segment has but one base, BF becomes

zero, and EF becomes EA; and the final expression
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which we found for the volume of the segment reduces

to

«DE 2

%*JEA
3 + EA x

2

Hence, A spherical segment having but one base, is equiva-

lent to a sphere whose diameter is the altitude of the segment,

'plus one half of a cylinder having for base and altitude the

base and altitude of the segment.

Scholium.—"When the spherical segment has a single base, we may

put the expression, \rtEA + EA X —— ,
under a form to indicate a

convenient practical rule for computing the volume of the segment.

Thus, since the triangle DEO is right-angled, and OE= OA— EA,
we have

DE' =DO —OE= OA — OA' + 20A X EA— EA
= 20A X EA—~EA

2
.

By substituting this value for BE 2
in the expression for the volume

of the segment, we find

UEA6

+ EA X % X {20A X EA—~EJl)
A

= \^EA* -f EA
2 X % {20A— EA)

^=\*EA* \-\1tZEA\20A— EA)
= IxEA\EA + 6.0^— SEA)
= %7tEA

2

{6.0A— 2EA)
= $7tEA

2

{Z0A— EA)

Hence, the volume of a spherical segment, having a single base, is

measured by one third of rt times the square of the altitude of the seg-

ment, multiplied by the difference between three times the radius of the

sphere and this altitude.

RECAPITULATION

Of some of the principles demonstrated in this and the pre-

ceding Books.

Let J? denote the radius, and D the diameter of any
circle or sphere, and H the altitude of a cone, or of a

segment of a sphere ; then,
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|
= 2*R x S.

or,

Circumference of a circle = 2nR.

Surface of a sphere = 4*i22
.

Zone forming the base of a

segment of a sphere,

Volume or solidity ofa sphere = i*R
3
,
or J*!)

3
.

Volume of a spherical sector = f*jR
2 x H.

Volume of a cone, of which
^

R is the radius of the I = ^R2 x E.

base J

Volume of a spherical seg-^

ment, of which R' is the

radius of one base, and

R" the radius of the

other, and whose altitude

is JET,

If the segment has but one
^ _ t

,~
3 jj-rtR'

2

base, i2" = zero, and the I
~~ ¥* + ,

~2~ '

volume of the segment, J = J*iP(372
—

jff).

PRACTICAL PROBLEMS.

1. The diameter of a sphere is 12 inches
;
how many

cubic inches does it contain ? Ans. 904.78 cu. in.

2. What is the solidity of the segment of a single base

that is cut from a sphere 12 inches in diameter, the altitude

of the segment being 3 inches? Ans. 141.371 cu. in.

3. The surface of a square is 68 square feet
; what is

its diameter ? Ans. D = 4.625 feet.

4. If from a sphere, whose surface is 68 square feet, a

segment be cut, having a depth of two feet and a single

base, what is the convex surface of the segment ?

Ans. 29.229+ sq. ft.

5. What is the solidity of the sphere mentioned in the

two preceding examples, and what is the solidity of the

segment, having a depth of two feet, and but one base ?

a ( Solidity of sphere, 52.71 cu. in.

\ "
%

"
segment, 20.85 "

20
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6. In a sphere whose diameter is 20 feet, what is the

solidity of a segment, the bases of which are on the same

side of the center, the first at the distance of 3 feet from

it, and the second of 5 feet
;
and what is the solidity of

a second segment of the same sphere, whose bases are

also on the same side of the center, and at distances

from it, the first of 5 and the second of 7 feet ?

a ( Solidity of first segment, 525.7 cu. ft.

I
" " second " 400.03 "

7. If the diameter of the single base of a spherical

segment be 16 inches, and the altitude of the segment 4

inches, what is its solidity ?
*

Ans. 435.6352 cubic inches.

8. The diameter of one base of a spherical segment is

18 inches, and that of the other base 14 inches, these

bases being on opposite sides of the center of the sphere,
and the distance between them 9 inches

;
what is the

volume of the segment, and the radius of the sphere ?

a f Vol. seg., 2600.3 cubic inches.

\ Rad. of sphere, 9.4027 inches.

9. The radius of a sphere is 20, the distance from the

center to the greater base of a segment is 10, and the

distance from the same point to the lesser base is 16
;

what is the volume of the segment, the bases being on
the same side of the center ? Ans. 4297.7088.

10. If the diameter of one base of a spherical segment
be 20 miles, and the diameter of the other base 12 miles,

and the altitude of the segment 2 miles, what is its

solidity, and what is the diameter of the sphere ?

* First find the radius of the sphere.
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BOOK VIII

PRACTICAL GEOMETRY.

APPLICATION OF ALGEBRA TO GEOMETRY, AND ALSO
PROPOSITIONS FOR ORIGINAL INVESTIGATION.

No definite rules can be given for the algebraic solu-

tion of geometrical problems. The student must, in a

a great measure, depend on his own natural tact, and
his power of making a skillful application of the geomet-
rical and analytical knowledge he has thus far obtained.

The known quantities of the problem should be repre-
sented by the first letters of the alphabet, and the un-

known by the final letters
;
and the relations between

these quantities must be expressed by as many inde-

pendent equations as there are unknown quantities. To
obtain the equations of the problem, we draw a figure,

the parts of which represent the known and unknown

magnitudes, and very frequently it will be found neces-

sary to draw auxiliary lines, by means of which we can

deduce, from the conditions enunciated, others that can

be more conveniently expressed by equations. In many
cases the principal difficulty consists in finding, from the

relations directly given in the statement, those which
are ultimately expressed by the equations of the problem.

Having found these equations, they are treated by the

known rules of algebra, and the values of the required

magnitudes determined in terms of those given.
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PROBLEM I.

Given, the hypotenuse, and the sum of the other two sides

of a right-angled triangle, to determine the triangle.

Let ABO be the A. Put OB = y, AB
= x,AO = h, and CB + AB = s. Then,

by a given condition, we have \y

x + y = s;

and, z2+ tf= h\ (Th. 39, B. I). A
'—

fr

Reducing these two equations, and we have

x = \s db Jn/2F=7"; y- J» db Jv/2A
2— s

2
.

If A = 5 and s = 7, # = 4 or 3, and y = 3 or 4.

Remark.— In place of putting a; to represent one side, and y the

other, we might put [x-\- y) to represent the greater side, and (x
—

y)

the less side
; then,

A2

z2 + y
2 = o j

and 2x = s, etc.

PROBLEM II.

G-iven, the base and perpendicular of a triangle, to find the

side of its inscribed square.

Let ABO be the A. Put
AB =

b, the base, OB = p,

the perpendicular.

Draw FF parallel to AB,
and suppose it equal to FGr,

A

a side of the required square ; and put FF'= x.

Then, by similar A's, we have

01: FF : : OB : AB.

That is, p— x : x : : p : b.

Hence, bp— bx = px: or, x = _
,

.^6 + p
That is, tfAe side of the inscribed square is equal to the

product of the base and altitude, divided by their sum.
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PROBLEM I'll

In a triangle, having given the sides about the vertical

angle, and the line bisecting that angle and terminating in

the base, to find the base.

Let ABO be the a, and let a cir-

cle be circumscribed about it. Di-

vide the arc AEB into two equal

parts at the point E, and draw EO.
This line bisects the vertical angle,

(Cor., Th. 9, B. III). Draw BE.
Put AD = x, DB =

y, AC= a,

OB = b, CD = c, and BE = w. The two A's, ABO and

EBO, are equiangular; from which we have

w + c : b : : a : c; or, cw + c2 = ab
; (

1
)

But, as EO and AB are two chords that intersect each

other in a circle, we have

cw = xy, (Th. IT, B. HI).

Therefore, xy + c
2 = ab. (2)

But, as OB bisects the vertical angle, we have

a : b : : x : y, (Th. 24, B. II).

Or,

Hence,

And,

ay
y (3)

P* + C
2 = a$; Qr? y = S^/ b2__W= v/i

x aA*-?.
Now, as a; and y are determined, the base is deter-

mined.

Remark.— Observe that equation (2) is Theorem 20, Book III.

20*
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PROBLEM IV.

To determine a triangle, from the base, the line bisecting

the vertical angle, and the diameter of the circumscribing circle.

Describe the circle on the given

diameter, AB, and divide it into two

parts, in the point D, so that AD x
DB shall be equal to the square of

one halfthe given base, (Th. 17, B. III).

Through D draw JEDG, at right *-J-

angles to AB, and EG will be the given base of the

triangle.

Put AD = n, DB = m, AB = d, DG = b.

Then, n + m = d, and nm = b
2

;

and these two equations will determine n and m ; there-

fore, we shall consider n and m as known.

Now, suppose HUG to be the required A; and draw

HIB and HA. The two A's, ABH, DBI, are equian-

gular ; and, therefore, we have

AB : HB :: IB : DB.

But SI is a given line, that we will represent by c
;

and if we put IB — w, we shall have HB = c + w; then

the above proportion becomes,

d : c + w : : w : m.

!Now, w can be determined by a quadratic equation ;

and, therefore, IB is a known line.

In the right-angled A DBI, the hypotenuse IB, and

the base DB, are known ; therefore, DI is known, (Th.

39, B. I) ;
and if i)J is known, i?J and IGr are known.

Lastly, let UH= x, EG = y, and put EI=p, and IG

Then, by Theorem 20, Book HE, pq + c
2 = xy (

1
)

But, x : y :: p : q (Th. 24, B. II).
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Or. x=*l (2)

Now, from equations (
1

) and (
2

) we can determine x

and y, the sides of the A ;
and thus the determination has

been attained, carefully and easily, step by step.

PROBLEM V.

Three equal circles touch each other ex ernally, and thus

inclose one acre of ground; what is the diameter in rods of

each of these circles f

Draw three equal circles to touch each other exter-

nally, and join the three centers, thus forming a triangle.

The lines joining the centers will pass

through the points of contact, (Th. 7,

b. ni). 7
Let R represent the radius of these N*

equal circles
;
then it is obvious that /

each side of this A is equal to 2R. / I A
The triangle is therefore equilateral,

and it incloses the given area, and three equal sectors.

As the angle of each sector is one third of two right

angles, the three sectors are, together, equal to a semi-

circle ; but the area of a semi-circle, whose radius is R, is

irR2

expressed by -j— ;
and the area of the whole triangleA

must be -f 160 ; but the area of the A is also equal to
A

R multiplied by the perpendicular altitude, which is

R^l.

Therefore, R2^S =^ + 160.
A

Or, JR
2

(2v/3
—

*)
= 320.

g- ,_
820

2^3— 3.1415926

Hence, R = 31.48 4- rods, for the required result.

JP = .
32° = ?^2-_ 992.248.

2^3— 3.1415926 0.3225
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Problem VI.— In a right-angled triangle, having given

the base and the sum of the perpendicular and hypotenuse,

to find these two sides.

Prob. VII.— Given, the base and altitude of a triangle, to

divide it into three equal parts, by lines parallel to the base.

Prob. VIII.—In any equilateral A, given the length of

the three perpendiculars drawn from any point within, to the

three sides, to determine the sides.

Prob. IX.—In a right-angled triangle, having given the

base, (
3

),
and the difference between the hypotenuse and per-

pendicular, (1), to find both these two sides.

Prob. X.— In a right-angled triangle, having given the

hypotenuse, (5), and the difference between the base and

perpendicular, (
1

),
to determine both these two sides.

Prob. XI.—Having given the area of a rectangle inscribed

in a given triangle, to determine the sides of the rectangle.

Prob. XII.—In a triangle, having given the ratio of the

two sides, together with both the segments of the base, made

by a 'perpendicular from the vertical angle, to determine the

sides of the triangle.

Prob. XHL—In a triangle, having given the base, the

sum of the other two sides, and the length of a line drawn

from the vertical angle to the middle of the base, to find the

sides of the triangle.

Prob. XIV.—To determine a right-angled triangle, having

given the lengths of two lines drawn from the acute angles to

the middle of the opposite sides.

Prob. XV.—To determine a right-angled triangle, having

given the perimeter, and the radius of the inscribed circle.

Prob. XVI.— To determine a triangle, having given the

base, the perpendicular, and the ratio of the two sides.

Prob. XV JUL.— To determine a right-angled triangle, having

given the hypotenuse, and the side of the inscribed square.
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Prob. XVIII.— To determine the radii of three equal cir-

cles inscribed in a given circle, and tangent to each other, and

also to the circumference of the given circle,

Prob. XIX.—In a right-angled triangle, having given the

perimeter, or sum of all the sides, and the perpendicular let

fall from the right angle on the hypotenuse, to determine the

triangle ; that is, its sides,

Prob. XX.— To determine a right-angled triangle, having

given the hypotenuse, and the difference of two lines drawn

from the two acute angles to the center of the inscribed circle,

Prob. XXE.— To determine a triangle, having given the

base, the perpendicular, and the difference of the two other

sides,

Prob. XXII.— To determine a triangle, having given the

base, the perpendicular, and the rectangle, or product of the

two sides,

Prob. XXIII.—To determine a triangle, having given the

lengths of three lines drawn from the three angles to the mid-

dle of the opposite sides,

Prob. XXIV.— In a triangle, having given all the three

sides, to find the radius of the inscribed circle.

Prob. XXV.—To determine a right-angled triangle, having

given the side of the inscribed square, and the radius of the

inscribed circle.

Prob. XXVI.— To determine a triangle, and the radius

of the inscribed circle, having given the lengths of three lines

drawn from the three angles to the center of that circle,

Prob. XXVTI. — To determine a right
-
angled triangle,

having given the hypotenuse, and the radius of the inscribed

circle.

Prob. XXVUI.— The lengths of tivo parallel chords on the

same side of the center being given, and their distance apart,

to determine the radius of the circle.

Prob. XXIX. — The lengths of two chords in the same
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circle being given, and also the difference of their distances

from the center, to find the radius of the circle.

Prob.XXX.— The radius of a circle being given, and also

the rectangle of the segments of a chord, to determine the dis-

tance of the point at which the chord is divided, from the

center.

Prob. XXXI.—If each of the two equal sides of an isos-

celes triangle be represented by a, and the base by 2b, what

will be the value of the radius of the inscribed circle f

. t> b^a*— b*
Ans. R =

5
— .

a + b

Prob. XXXII.— From a point without a circle whose

diameter is d, a line equal to d is drawn, terminating in the

concave arc, and this line is bisected at the first point in which

it meets the circumference. What is the distance of the point

without from the center of the circle?

It is not deemed necessary to multiply problems in the

application of algebra to geometry. The preceding will

be a sufficient exercise to give the student a clear con-

ception of the nature of such problems, and will serve as

a guide for the solution of others that may be proposed
to him, or that may be invented by his own ingenuity.

MISCELLANEOUS PROPOSITIONS.

We shall conclude this book, and the subject of Geom-

etry, by offering the following propositions,
— some the-

orems, others problems, and some a combination of both,
—not only for the purpose of impressing, by application,

the geometrical principles which have now been estab-

lished, but for the not less important purpose of culti-

vating the power of independent investigation.

After one or two propositions in which the beginner
will be assisted in the analysis and construction, we shall

leave him to his own resources, with the caution that a
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— D

patient consideration of all the conditions in each case,

and not mere trial operation, is the only process by which

he can hope to reach the desired result.

1. From two given points, to draw two equal straight

lines, which shall meet in the same point in a given

straight line.

Let A and B be the given points,

and CD the given straight line. Pro-

duce the perpendicular to the straight

line AB at its middle point, until it

meets CD in G. It is then easily

proved that G is the point in CD in

which the equal lines from A and

B must meet. That is, that AG
= BG.

If the points A and B were on

opposite sides of CD, the directions

for the construction would be the

same, and we should have this fig-

ure; but the reasoning by which

we prove AG = BG would be un-

changed.

2. From two given points on the same side of a given

straight line, to draw two straight lines which shall meet
in the given line, and make equal angles with it.

Let CD be the given line, and

A and B the given points.

From B drawBE perpendicular

to CD, and produce the perpen-
dicular to F, making EF equal to

BE) then draw AF, and from the

point G, in which it intersects

CD, draw GB. Now, [__BGE=
l_EGF=[_AGC Hence, the

angles BGD and A GC are equal,
and the lines AG and BG meet

in a common point in the line CD, and made equal angles with

that line.
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3. If, from a point without a circle, two straight lines

be drawn to the concave part ofthe circumference, making

equal angles with the line joining the same point and the

center, the parts of these lines which are intercepted within

the circle, are equal.

4. Ka circle be described on the radius of another circle,

any straight line drawn from the point where they meet,

to the outer circumference, is bisected by the interior one.

5. From two given points on the same side of a line

given in position, to draw two straight lines which shall

contain a given angle, and be terminated in that line.

6. If, from any point without a circle, lines be drawn

touching the circle, the angle contained by the tangents is

double the angle contained by the line joining the points

of contact and the diameter drawn through one of them.

7. If, from any two points in the circumference of a

circle, there be drawn two straight lines to a point in a

tangent to that circle, they will make the greatest angle

when drawn to the point of contact.

8. From a given point within a given circle, to draw a

straight line which shall make, with the circumference,

an angle, less than any angle made by any other line

drawn from that point.

9. If two circles cut each other, the greatest line that

can be drawn through either point of intersection, is that

which is parallel to the line joining their centers.

10. If, from any point within an equilateral triangle,

perpendiculars be drawn to the sides, their sum is equal

to a perpendicular drawn from any of the angles to the

opposite side.

11. If the points of bisection of the sides of a given tri-

angle be joined, the triangle so formed will be one fourth

of the given triangle.

12. The difference of the angles at the base of any tri-

angle, is double the angle contained by a line drawn from

the vertex perpendicular to the base, and another bisect-

ing the angle at the vertex.



BOOK VIII. 241

13. If, from the three angles of a triangle, lines be

drawn to the points of bisection of the opposite sides,

these lines intersect each other in the same point.

14. The three straight lines which bisect the three

angles of a triangle, meet in the same point.

15. The two triangles, formed by drawing straight

lines from any point within a parallelogram to the ex-

tremities of two opposite sides, are, together, one half the

parallelogram.
16. The figure formed by joining the points of bisection

of the sides of a trapezium, is a parallelogram.
17. If squares be described on three sides of a right-

angled triangle, and the extremities of the adjacent sides

be joined, the triangles so formed are equal to the given

triangle, and to each other.

18. If squares be described on the hypotenuse and sides

of a right-angled triangle, and the extremities of the sides

of the former, and the adjacent sides of the others, be

joined, the sum of the squares of the lines joining them
will be equal to five times the square of the hypotenuse.

19. The vertical angle of an oblique-angled triangle
inscribed in a circle, is greater or less than a right angle,

by the angle contained between the base and the diam-

eter drawn from the extremity of the base.

20. If the base of any triangle be bisected by the diam-

eter of its circumscribing circle, and, from the extremity
of that diameter, a perpendicular be let fall upon the

longer side, it will divide that side into segments, one of

which will be equal to one half the sum, and the other to

one half the difference, of the sides.

21. A straight line drawn from the vertex of an equi-
lateral triangle inscribed in a circle, to any point in the

opposite circumference, is equal to the sum of the two lines

which are drawn from the extremities of the base to the

same point.

22. The straight line bisecting any angle of a triangle
21 Q
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inscribed in a given circle, cuts the circumference in a

point which is equi-distant from the extremities of the

side opposite to the bisected angle, and from the center

of a circle inscribed in the triangle.

23. If, from the center of a circle, a line be drawn to

any point in the chord of an arc, the square of that line,

together with the rectangle contained by the segments
of the chord, will be equal to the square described on the

radius.

24. If two points be taken in the diameter of a circle,

equidistant from the center, the sum of the squares of the

two lines drawn from these points to any point in the cir-

cumference, will be always the same.

25. If, on the diameter of a semicircle, two equal circles

be described, and in the space included by the three cir-

cumferences, a circle be inscribed, its diameter will be §
the diameter of either of the equal circles.

26. If a perpendicular be drawn from the vertical angle

of any triangle to the base, the difference of the squares

of the sides is equal to the difference of the squares of

the segments of the base.

27. The square described on the side of an equilateral

triangle, is equal to three times the square of the radius

of the circumscribing circle.

28. The sum of the sides of an isosceles triangle is less

than the sum of any other triangle on the same base and

between the same parallels.

29. In any triangle, given one angle, a side adjacent to

the given angle, and the difference of the other two sides,

to construct the triangle.

30. In any triangle, given the base, the sum of the

other two sides
;
and the angle opposite the base, to con-

struct the triangle.

31. In any triangle, given the base, the angle opposite

to the base, and the difference of the other two sides, to

construct the triangle.
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TKIGONOMETKY.

PAET I.

PLANE TRIGONOMETRY.

SECTION I.

ELEMENTARY PRINCIPLES.

Trigonometry, in its literal and restricted sense, has

for its object the measurement of triangles. When it

treats of plane triangles it is called Plane Trigonometry.
In a more enlarged sense, trigonometry is the science

which investigates the relations of all possible arcs of the

circumference of a circle to certain sti%ight lines, termed

trigonometrical lines or circular functions, connected with

and dependent on such arcs, and the relations of these

trigonometrical lines to each other.

The measure of an angle is the arc of a circle inter-

cepted between the two lines which form the angle
—the

center of the arc always being at the point where the .

two lines meet.

The arc is measured by degrees, minutes, and seconds;

there being 360 degrees to the whole circle, 60 minutes

in one degree, and 60 seconds in one minute. Degrees,

minutes, and seconds, are designated by °, ',
"

; thus,

27° 14' 21", is read 27 degrees 14 minutes 21 seconds.

The circumferences of all circles contain the same

number of degrees, but the greater the radius the greater

(244)
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is the absolute length of a degree. The circumference of

a carriage wheel, the circumference of the earth, or the

still greater and indefinite circumference of the heavens,
has the same number of degrees ; yet the same number
of degrees in each and every circumference is the meas-

ure of precisely the same angle.

DEFINITIONS.

1. The Complement of an arc is 90° minus the arc.

2. The Supplement of an arc is 180° minus the arc.

3. The Sine of an angle, or of an arc, is a line drawn
from one end of an arc, perpendicular to a diameter

drawn through the other end. Thus, BF is the sine of

the arc AB, and also of the arc BBE. BK is the sine

of the arc BB.

4. The Cosine of an arc is the per-

pendicular distance from the center of

the circle to the sine of the arc
; or, it is

the same in magnitude as the sine of

the complement of the arc. Thus, OF
is the cosine of the arc AB; but CF=
KB, is the sine ojLBB.

5. The Tangent of an arc is a line touching the circle

in one extremity of the arc, and continued from thence, to

meet a line drawn through the center and the other ex-

tremity. Thus, AH is the tangent to the arc AB, and

BL is the tangent of the arc BB.

6. The Cotangent of an arc is the tangent of the com-

plement of the, arc. Thus, BL, which is the tangent of

the arc BB, is the cotangent of the arc AB.
Remark.—The co is but a contraction of the word complement.

7. The Secant of an arc is a line drawn from the center

of the circle to the extremity of the tangent. Thus, CH
is the secant of the arc AB, or of its supplement BBE.

8. The Cosecant of an arc is the secant of the comple-

ment. Thus, CL y the secant ofBB, is the cosecant ofAB.
21*
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9. The Versed Sine of an arc is the distance from the

extremity of the arc to the foot of the sine. Thus, AF
is the versed sine of the arc AB, and DK is the versed

sine of the arc DB.
For the sake of brevity, these technical terms are con-

tracted thus : for sine AB, we write sin. AB ; for cosine

AB, we write cos. AB; for tangent AB, we write tan.

AB, etc.

From the preceding definitions we deduce the follow-

ing obvious consequences :

1st. That when the arc AB becomes insensibly small,

or zero, its sine, tangent, and versed sine are also

nothing, and its secant and cosine are each equal to

radius.

2d. The sine and versed sine of a quadrant are each

equal to the radius
;
its cosine is zero, and its secant and

tangent are infinite.

3d. The chord of an arc is twice the sine of one half

the arc. Thus, the chord, BCr, is double the sine, BF.

4th. The versed sine is equal to the difference between

the radius and the cosine.

5th. The sine and cosine of any arc form the two sides

of a right-angled triangle, which has a radius for its

hypotenuse. Thus, OF and FB are the two sides of the

right-angled triangle, CFB.

Also, the radius and tangent always form the two

sides of a right-angled triangle, which has the secant of

the arc for its hypotenuse. This we observe from the

right-angled triangle, CAR.
To express these relations analytically, we write

sin.
2 + cos.

2 = B2
(1)

El + tan.
2 = sec.2

(2)

From the two equiangular triangles CFB, CAR, we

have
OF : FB = CA : AH.
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With C as a center, and CA as a

radius, describe the arc ABF, and F

from A lay off the arcs AD = 45°,

AB = 60°, and AE = 90° ; then

is EB = 30°.

1st. The side of a regular in-

scribed hexagon is the radius of

the circle, (Prob. 28, B. IV), and as the arc subtended

by each side of the hexagon contains 60°, we have the

chord of 60° equal to the radius.

2d. The triangle OAH is right-angled at A, and the

angle O is equal to 45°, being measured by the arc AD ;

hence the angle at H is also equal to 45°, and the trian-

gle is isosceles. Therefore AH = CA = radius of the

circle.

3d. The triangle ABC is isosceles, and Bn is a per-

pendicular from the vertex upon the base
;
hence An =

nC — Bm, But Bm is the sine of the arc BE, Cn is the

cosine of the arc AB, and An is the versed sine of the

same arc, and each is equal to one half the radius.

- Hence the proposition ;
the chord of 60°, etc.

PROPOSITION II.

Given, the sine and the cosine of two arcs, to find the sine

and '

the cosine of the sum and of the difference of the sanv

arcs expressed by the sines and cosines of the separate arcs.

Let Gr be the center of the

circle, CD the greater arc,

and DF the less, and denote

these arcs by a and b re-

spectively.

Draw the radius GrD ;
make

the arc DE equal to the arc

DF, and draw the chord EF,

From F and E, the extremi-

ties, and J, the middle point
G M NO
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of the chord, let fall the perpendiculars FM, FP, and

IN, on the radius GO. Also draw DO, the sine of the

arc CD, and let fall the perpendiculars Iff on FM, and
FK on IK
Now, by the definition of sines and cosines, DO =

sin.a; GrO = coa.a; FI = sin.6; GI= cos.5. "We are

to find

M" = sin. (a + b); GM = cos. {a -f 5);

^P = sin. (a
—

6) ; GP = cos. (a
—

b).

Because IN is parallel to DO, the two a's, GDO,
GIN, are equiangular and similar. Also, the A FHI is

similar to the A GIN; for the angles, FIG and HIN,
are right angles ; from these two equals, taking away the

common angle HIL, we have the angle FIB.= the angle
GIN The angles at H and N are right angles ;

there-

fore, the A's FHI, GIN, and GDO, are equiangular
and similar; and the side HI is homologous to IN
and DO.

Again, as FI= IF, and IK is parallel to FM7

FH= IK, and HI = KF.

By similar triangles we have

GD : DO = #7 : 7ZV".

That is, R : sin.a = cos.5 : IN; or, 7^=
sin

-yggj.
( l )

Also, GD : GO = FI : Fff

That is, i£ : cos.a = sin.6 : HF; or, FH-

Also, GD : GO = GI : GN
That is, R : cos.a = cos.5 : GN; or, GN=

Also, GD : DO = FI : IH.

That is, R : sin.a = sin.5 : 7#; or, 75*=
8m 'a sin 'h

. (4)

By adding the first and second of these equations, we
have

IN+ FH= FM= sin. (a + b).

That is, R : cos.a = sin.6 : HF; or, FH= 2£^HL_
5

. (2)

That is, R : coa.a = cos.6 : #iV; or, GN=
C08,^C—5

. (
3

)
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mi ,. • / , \ sin.a cos.5 + cos.a sin. b
That is, sin. (a + )

= ^

By subtracting the second from the first, since

IN—FH= IN—1K= UP, we have

. r TN sin.fl cos.5— cos.tf sin.5
bib. (a— I)

=
^

By subtracting the fourth from the third, we have

G-N— IH = GrM= cos. (a + b) for the first member.

rr / , tn cos.tf cos. b — sin.a sin.b , KX
Hence, cos. (a + o)

= s . (5)

By adding the third and fourth, we have

GN+ I&= GN+NP=GP = cos.(a— b).

t-t / tn cos.a cos.5 + sin.a sin.6 ;a4
Hence, cos. (a

—
b)
= s . (

6 )

Collecting these four expressions, and considering the

radius unity, we have

{sin.

(a + b)=- sin.a eos.b + cos.a sin.5 ( 7 )

sin.(a
—
b)— sin.a cos.6— cos.a sin.5 (8)

cos.(a+ b)
— cos.a cos.6— sin.a sin. b (

9
)

cos.(a
—

b)
= cos.a cos.5 -f sin.a sin.b (

10
)

Formulae (A) accomplish the objects of the proposi-

tion, and from these equations many useful and import-
ant deductions can be made. The following are the

most essential :

By adding (
7

) to (
8

), we have (
11

) ; subtracting ( 8 )

from (
7

) gives (
12

). Also, (
9

) added to (
10

) gives (
13

) ;

(
9

) taken from (
10

) gives (
14

).

r sin.(a + b) + sin. (a
—

b)
— 2sin.a cos.5 ( 11 )

(*)
sin.(a + 5)

— sin. (a
—

b)
= 2cos.a sin. b (12)

cos.(a + b) + cos.(a
—

b)
— 2cos.a cos.5 (

13
)

cos. (a
—

b)
—

cos.(a + 5)
= 2sin.a sin.5 (14)

If we put a + b = A, and a— b = B, then (
H

) become*

(15), (12) becomes (16), (13) becomes (17), and (14) be-

comes (
18 ).



3
sin.^ + sm.5=2sin.(^i-?)cos.(^—

—
)

(15)

(0)
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A + B\ /A-
) COS. (

2 }
> 2

J.- sin.£= 2cos. (^t^) sin. (^—?) (
16

)

.A + cos.^= 2cos. (^—^ cos. (^—?) ( 17 )

cos.^— cos.J.= 2sin.
(^-^) sin. (^—?) (

18 )

If we divide (
15

) by (I6 ), (observing tbat 55l = tan.,
cos.

cos
and -7—1 = cot. = as we learn by equations (6) and

tan. -
u

sm

cos

sin.

(
5

) 7
we sball bave

sin.^1 + sin.i?
sm,

rA+B fA—B^ A+B>fJL+lf\ (A—B\ . /A+B\
(__)cos.(.-r-)tan.(-T-)

sin.^1— sin.i? /A+B\ . /A—B\~ ,A—B (19)

COS.
/A+B\~. (A—B\ . /A—Bx

Whence,

sin.A-f sin.i? : sin.J.— sin.i?= tan. L
)

: tan. (—
—

-)

That is : The sum of the sines of any two arcs is to the dif-

ference of the same sines, as the tangent of one half the sum

of the same arcs is to the tangent of one half their difference.

By operating in the same way with the different equa-
tions in formulae (<7), we find,

fsin.J. + sin.i? /A -f B\
-^tan^-^—)

A-B^
COS.B—C08.A

™ cot'

V
-

2

(*>)

COS. J. + COS.

sin.A + sin.i? /A — B\

sin.vl— sin.i? /A — B\
cos.A + cosT5

" tan * V 2~ /.

sin.JL— sin.i? ,A + B\
co^B^co^A " cot

\ 2/
cos.J. -f cos.ff

__

cot*

\ 2/
cos.i?— cos.A "~

/A-^B
tan.

*.—$ )

(20)

(21)

(22)

(23)

(24)
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These equations are all true, whatever be the value

of the arcs designated by A and B
;
we may, therefore,

assign any possible value to either of them, and if in

equations (20) ? (21), and (24), we make B = 0, we shall

have,
8in^

tan.^ =—L, (25)
1 + cos.^. 2 cot.\A

sin.A , A 1 , OA *

cot. -^ = —r (
26

)

@ 1— cos.A 2 tan.JJ.

1 + cos.A __ cot.\A
(27)

1— cos.A tan.JJ. tan2
.\A

If we now turn back to formulae (A), and divide equa-
tion ( 7 ) by (

9
), and (

8
) by (

10
), observing at the same

sin
time that —- = tan., we shall have,

cos. '

tan.(a + 5)
= Sin^ cos ' 5 + cos^ sin *5

tan.(#— 5)
=

cos.a cos. b— sin.a sin. b

sin.# cos.5— cos.a sin.5

cos.a cos.5 -fsin.a sin. b

By dividing the numerators and denominators of the

second members of these equations by (cos.a cos.5), we

find,

sin.a cos.5 cos.a sin.5

, .
, x cos.a cos.5 cos.a cos.5 tan.a-ftan.5

tan.(a+5)= ,
—

i *ri""i
—r + i (

28
)v J cos.a cos.5 sin.a sin.5 1—tan.atan.5

cos.a cos.5 cos.a cos.5

sin.a cos.5 cos.a sin.5

, , N cos.a cos.5 cos.a cos.5 tan.a—tan.5
tan.(a—5)= 1 , .

—,=r-— -—.
, (29 )x ' cos.a cos.5 sm.fl sm.5 1-ftan.a tan.5

cos.a cos.5 cos.a cos.5

If in equation (
11

), formulae
(
B

),
we make a = 5, we

shall have,

sin.2a = 2sin.a cos.a (30)

Making the same hypothesis in equation ( 13 ), gives,

cos.2a + 1= 2c<3s
2
.a (31)

22
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The same hypothesis reduces equation (14) to

1— cos.2a = 2sin2
.a (32)

The same hypothesis reduces equation (
28

) to

, 2tan.# ,oo\tan.2a = -—-—-— (
33

)

1— tan\a

If we substitute a for 2a in ( 31 ) and ( 32 ) y
we shall have

1 + cos.a = 2cos.
2

Ja. (34)

and 1— cos.a = 2sin.
2

Ja. ( 35 )

PROPOSITION III.

In any right-angled plane triangle, we may have the fol-

lowing proportions :

1st. The hypotenuse is to either side, as the radius is to the

sine of the angle opposite to that side.

2d. One side is to the other side, as the radius is to the tan-

gent of the angle adjacent to the first side.

3d. One side is to the hypotenuse, as the radius is to the

secant of the angle adjacent to that side.

Let CAB represent any right-

angled triangle, right-angled at

A.

(Here, and in all cases hereafter, we shall represent the angles of a

triangle by the large letters A, B, C, and the sides opposite to them,

by the small letters a, b, c.)

From either acute angle, as 0, take any distance, as

CD, greater or less than CB, and describe the arc BF.
This arc measures the angle C. From B, draw BF par-

allel to BA
;
and from JE, draw EG, also parallel to BA

oyBF.

By the definitions of' sines, tangents, secants, etc, BF
is the sine of the angle C; EG is the tangent, CG the

secant, and OF the cosine.
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Now, by proportional triangles we have,

OB:BA= OD:DF or, a : c = R : sin.C

OA:AB=OF:FG or, b : c = i2 : tan.

OA: OB = OB: OG or, b : a = R : sec.<7

Hence the proposition.

Scholium.—If the hypotenuse of a triangle is made radius, one side

is the sine of the angle opposite to it, and the other side is the cosine

of the same angle. This is obvious from the triangle CDF,

PROPOSITION IV.

In any triangle, the sines of the angles are to one another

as the sides opposite to them.

Let ABO be any tri-

angle. From the points
A and B, as centers,

with any radius, de-

scribe the arcs meas-

uring these angles, and j*

draw pa, OD, and mn,

perpendicular to AB.

Then, pa = sin.JL, and mn = sin.i?.

By the similar A's, Apa and A OB, we have,

R : sin.J. = b : OD ; or, R{OD) = b sin.J. (1)

By the similar a's, Bmn and BOD, we have,

R : sin.B = a: OD; or, R(OD) = a sin.B (2)

By equating the second members of equations ( 1 )

and (2)

b sin.A = a sin.i?.

Hence, sin.A : sin.i? — a :b

Or, a : b = biii.A : sin.i?.

Scholium 1.—When either angle is 90°, its sine is radius.

Scholium 2.—When CB is less than AC, and the angle B, acute,

the triangle is represented by A CB. When the angle B becomes B',

it is obtuse, and the triangle is ACB/
; but the proportion is equally



256 PLANE TRIGONOMETRY.

true with either triangle ;
for the angle CB'D = CBA, and the sine

of CB'D is the same as the sine of AB/ C. In practice we can deter-

mine which of these triangles is proposed, by the side AB being

greater or less than AC; or, by the angle at the vertex C being large,

as A CB, or small, as A CB'.

In the solitary case in which AC, CB, and the angle A, are given,

and CB less than AC, we can determine both of the A's ACB and

ACB/
;
and then we surely have the right one.

PROPOSITION V.

If from any angle of a triangle, a perpendicular he let fall

on the opposite side, or base, the tangents of the segments of

the angle are to each other as the segments of the base.

Let ABC be the triangle. Let fall

the perpendicular CD, on the side

AB.
Take any radius, as Cn, and de-

scribe the arc which measures the A QX

angle C. From n, draw qnp parallel to AB. Then it is

obvious that np is the tangent of the angle DCB, and nq
is the tangent of the angle ACB.

Now, by reason of the parallels AB and qp, we have,

qn : np = AB : BB
That is, tan.^OZ) : tsm.BCB = AB : BB.

PROPOSITION VI.

If a perpendicular be let fall from any angle of a triangle

to its opposite side or base, this base is to the sum of the other

two sides, as the difference of the sides is to the difference of

the segments of the base.

(See figure to Proposition 5.)

Let AB be the base, and from C, as a center, with the

shorter side as radius, describe the circle, cutting AB in

(x, and AC in F; produce AC to E.
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It is obvious that AE is the sum of the sides AG and

OB, and AF is their difference.

Also, AD is one segment of the base made by the per-

pendicular, and BB = BGr is the other; therefore, the

difference of the segments is AG.
As A is a point without a circle, by Cor. Th. 18, B.

Ill, we have
AE x AF = AB x AG

Hence, ^LB : AE - AF : J.#.

PROPOSITION VII.

2%£ mm 0/ awy free szefes 0/ a triangle is to their difference,

as the tangent of one half the sum of the angles opposite to

these sides, is to the tangent of one half their difference.

Let ABO be any plane triangle. ^
Then, by Proposition 4, we have,

BO: A = sin.J. : sin.^.

Hence, A~ ~~B

BC+A C:BC—A0= sin.A+sm.B : sin.^—-sin.^ (Th. 9,B. II).

But,

tan. (—^— j
: tan. (—-—

)
== sin.A + sin.i? : sin.J.

— sin.B, (eq. (19), Trig.)

Comparing the two latter proportions, (Th. 6, B. H),
we have,

BO+AO:BO— AO=t&n.
(f-j^)

: tan. (^-^)
Hence the proposition.

PROPOSITION VIII.

Given, the three sides of any plane triangle, to find some

relation which they must bear to the sines and cosines of the

respective angles.

22* r
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Let ABO be

the triangle, and

let the perpen-
dicular fall either

upon, or without

thebase, asshown c

in the figures.
C « b x

By recurring to Th. 40, B. I, we shall find

a2
-f b

2— c*OB =
2a

(1)

£fow, by Proposition 3, we have

R : cos. C = b : CD.

Therefore, OB = b cos.

~~R
(2)

Equating these two values of OB, and reducing, we
have

2ab
(m)

In this expression we observe, that the part c, whose

square is found in the numerator with the minus sign, is

the side opposite to the angle ;
and that the denominator

is twice the rectangle of the sides adjacent to the angle.

From these observations we at once draw the following

expressions for the cosine A, and cosine B :

A R(b2 + c
2—

a?)
cos. J. = - v

cos. B

2bc

R(a
2 + c* b

2

)

2ac

(n)

(P)

As these expressions are not convenient for logarith-

mic computation, we modify them as follows :

If we put 2a = JL, in equation (
31

), we have

cos. A + 1 = 2cos. 2

%A.

In the preceding expression, (»), if we consider radius

unity, and add 1 to both members, we shall have
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COS. ^+1 = 1+ _JT_

Therefore, 2cos.' \A = S^fcHl^
26<?

'

U

(b + c)
2— a2

2bc

Considering b -f c as one quantity, and observing that

(6 + c)
2— a2

is the difference of two squares, we have

(6+c)
2—a2

=(&+c+a) (&+c—a) ; but (&+*—«)=&+c+a—2a.

Hence, 2cos.^ - <
5 + c + «><*L+

° + "~H2 2fo

Or, cos.
2

1j. - : ? Li I r

By putting —- m
s, and extracting square root,

A

the final result for radius unity is

cos. \A = \1WE&v bo

For any other radius we must write

cos. |,i= y/ifo»-«),

By inference, cos.JJ? = \j?L^Z^1.

Also, cos. J(7 i v/^^^l).

In every triangle, the sum of the three angles is equal
to 180° ; and if one of the angles is small, the other

two must be comparatively large ;
if two of them are

small, the third one must be large. The greater angle
is always opposite the greater side

; hence, by merely

inspecting the given sides, any person can decide at

once which is the greater angle ;
and of the three pre-
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ceding equations, that one should be taken which applies

to the greater angle, whether that be the particular

angle required or not ; because the equations bring out

the cosines to the angles ;
and the cosines to very small

arcs vary so slowly, that it may be impossible to decide,

with sufficient numerical accuracy, to what particular

arc the cosine belongs. For instance, the cosine 9.999999,

carried to the table, applies to several arcs ; and, of

course, we should not know which one to take
;
but this

difficulty does not exist when the angle is large ;
there-

fore, compute the largest angle first, and then compute
the other angles by Proposition 4.

But we can deduce an expression for the sine of any
of the angles, as well as the cosine. It is done as fol-

lows:

EQUATIONS FOR THE SINES OF THE ANGLES.

Resuming equation (
m

), and considering radius unity,

we have

cos. = __
Subtracting each member of this equation from unity,

gives

Make 2a = O, in equation (32) ;
then a = \Qy

and 1 — cos. = 2sin. 2

|<7. (2)

Equating the second members of (1) and (2),

2ab — a? — b
2 + e*

2sin.
2
i<7 =

2ab

<?
2 —

(a
—

bf
2ab

(c -f b— a) (c + a— b)

2ab I'
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/c -\- b — a\ /c + cl — b\

Or, sin, 10 =
{£7Y-){—S—) m

ab

t>„+ e+l>— a c+b+a iC+a— b c+a+b ,But.__=_
o.and—g—

= —
^

h.

Put =
s, as before; then,

sin.i<7= JBSv ab

By taking equation (p ), and proceeding in the same

manner, we have

sin.ji?= \J¥E^VEh.v ao

From t4 sin. JJ. = \JEEM3,v c6

The preceding results are for radius unity ;
for any

other radius, we must multiply by the number of units

in such radius. For the radius of the tables we write

H; and if we put it under the radical sign, we must

write B2

; hence, for the sines corresponding with our

logarithmic table, we must write the equations thus,

v be

v ac

sm. 10 = J'#<»=ME3.v ab

A large angle should not be determined by these

equations, for the same reason that a small angle should

not be determined from an equation expressing the

cosine.

In practice, the equations for cosine are more gener-

ally used, because more easily applied.
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The formulae which we have thus analytically devel-

oped, express nearly all the important relations between

the sines, cosines, and tangents of arcs or angles ;
and

we have also demonstrated all the theorems required for

the determination of the unknown parts of any plane

triangle, three of the parts of which are given, one at

least being a side.

Such relations might be indefinitely multiplied, but

those already established are sufficient for most practical

purposes, and when others are required, no difficulty

will be found in deducing them from these.

The following geometrical demonstrations of many of

the preceding relations, are offered, in the belief that

they will prove useful disciplinary exercises to the stu-

dent.

1st. Let the arcAD=A; then 2)#= sin.J.; CG-=cos.A;

J9J=sin.}J.;^2)=2sin.JJL; OZ=cos.|J.;

CI=DO; and Z>£=2DO=2cos.}A
The angle, DBA, is measured by

one half the arc AD
; that is, by \A.

Also, ADa=DBA = JA.

Now, in the triangle,BD Gr, we have
sm.DBG : 2>#=sin.90° : BD.

That is, sin.JA : sin.J.=l : 2cos.\A.

Or, sin.J=2sin.JJ. cos.JJ.;
which corresponds to equation (

30 ).

In the same triangle,

sin.90° : BD=sin.BDG : BG; and sin.BDG=co8.DBG.
That is, 1 : 2cos.|J=eos.|J. : 1+cos.JL

Or, 2cos.2

%A=l+co8.A y
same as equation (34).

In the triangle, DGrA, we have,

sin.90° : AD= sin.GDA : aA.
That is, 1 : 2sin.JJ. = sin.JJ. : 1— cos.J..

Or, 2sin.
2

\A = 1— cos.^4, same as equation (
35 ).
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2 : 2sin.\A = 2sin.JJ. : versed sin.A.

versed sin.A = 2sin.
2

\A.

By similar triangles, we have,

BA : AD = AD: AG.

That is,

Or,

2d. From O as the center, with OA as the radius,

describe a circle. Take any arc,

AB, and call it A
;
and AD a less

arc, and call it B
;
then BD is the

difference ofthe two arcs, and must

be designated by (A
—
B) ;

arc AG
= arc AB ; therefore,

arcD# = A + B; FG= sm.A;

En ss= sin.B
; Gn= sin.J. -f sin.B

;

Bn = sin.J.— sin.i?.

Fm= mD = OJI= cos.B
; mn = cos.J.

;

therefore, Fm + mn= cos.J. -f cos.i? = Fn ;

mD— mn = eos.B— cos.A = nD
;

A + B>
and

Because,

therefore,

-or,

I># = 2sin.pm
JVF=AD; AB +NF=A + B;

180°— (J. + i?) = arc ZE;

90°-(£±*)~larcJ®.
But the chord, FB, is twice the sine of J arc _Fi?

;

that is, FB = 2sin.
(90°

— A ± ffi
)

= 2cos. (^-^).
The L_7i6rD = LjSZZ), because both are measured

by one half of the arc BD; that is, by (
~

\ and the

two triangles, 6rftD and .Fwi?, are similar.

The angle, GFn, is measured by f—-—\

In the triangle, FBG, Fn m drawn from an angle per-

OF THE ^A
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pendicular to the opposite side
; therefore, by Proposition

5, we have,

Gn : nB= tan. GFn : t&n.BFn.

That is, sin.-4.-f sin.i? : sin.A—
sin.JB=tan.(

—i—
)

: tan.

I—-—
).

This is equation (19 ).

In the triangle, GnB, we have,

sin.90° : BG = am.nBG : Gn; &m.nDG=cos.nGD.

That is, 1 : 2sin. (^~) = cos.
(

A~B
)

: sin.^l-f sin.J?.

Or, sin.J. -f sin.2?= 2sin. (—-—
)
cos. (—-—

),

the same as equation (15).

3d. In the triangle, FnB, we have,

sin.90 : FB = sin.^Frc : Bn.

That is, 1 :

2cos.(^±^)
=

sin.(4ip?)
- sin .A— sin.#.

Or, sin.JL-sin.£= 2cos. (^~~) sin.
(

A~B
),

the same as equation (16).

4th. In the triangle, FBn, we have,

sin.90 : FB — cos.BFn : Fn.

That is, 1 : 2cos.
(^jp )

=
cos.(^2?)

: cos.^L+cos.5.

Or, cos.J. + cos.5 = 2cos. (—-—\ cos. (
~

V the

same as equation ( 17 ).

5th. In the triangle, GnB, we have,

sin.90° : GD = mi.nGB : nB.

That is, 1 : 2sin. (_—)
= sin. (—~^— \ : cos.B—cos.A,

the same as equation (18).

6th. In the triangle, FGn, we have,

sin.GFn : Gn = cos. GFn : Fn.
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That is, sin.—^— : sin.A+sin.B— cos.—— : cos.A+
2 2i

COS.B.

Or, (sin.J. -f ain.B) cos. (—J—)
=

(cos.A -f cos.i?) sift.

. A + B

Or,
sin

'f ±
si

^| =_* - tan. (*±*\ the
cos.^ + cos..B J. + .S V 2 /'

cos.—o
—

same as equation (20).

7th. In the triangle, FnB, we have,

Fn : nB :: 1 : tan.BFn.

That is, cos.J5+cos.JL : sin.A—sin.i? :: 1 : tan.|(A
—

B),

r. sin.A— sin.i? , /A—B\ .*

Or, =
- = tan.

(
—-—

), the same
cos.A + cos._# V 2 /'

as equation (22).

8th. In the triangle, GrnD, we have,

Gn : nB : : 1 : tan.w6rD.

That is,

sin. J. -f sin. B : cos. B — cos. J. :: 1 : tanY—-— V

cos. B — cos.A , /A — B\
sin. A + sin . B

= ^
(~J~ ).'

NATURAL SINES, COSINES, ETC.

When the radius of the circle is taken as the unit of

measure, the numerical values of the trigonometrical
lines belonging to the different arcs of the quadrant, be-

come natural sines, cosines, etc. They are then, in fact,

but numbers expressing the number of times that these

lines contain the radius of the circle in which they are

taken. The tables usually contain only the sines and

cosines, because these are generally sufficient for practi-

23



266 PLANE TRIGONOMETRY.

cal purposes, and the others, when required, are readily

expressed in terms of them.

We proceed to explain a method for computing a table

of natural sines and cosines.

It was shown, in Book V, that the linear value of the

arc 180°, in a circle whose radius is unity, is

3.141592653.

This divided by 180 x 60, the number of minutes in

180°, will give the length of one minute of arc, which is

.00029088820867.

But there can be no sensible difference between the

length of the arc V and its sine ; and, within narrow

limits, that sine will increase directly with the arc.

Hence, sin.
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Whence, cos. 1' = .9999999577.

cos. 2' = .9999998308.

cos. 3' - .9999993204.

cos. 4' = .99999932304.

cos. 5' = .99999894290.

cos. 6' = .99999847753.

cos. V = .99999792735.

cos. 8' - .9999973035.

cos. 9' = .9999965730.

cos. 10' = .9999957703.

The natural sines of arcs, differing by 1', from 10' up
to 1°, may be computed from those of arcs less than

10', by means of equation (
11

), group B, which is

sin. (a -f b)
= 2sin. a cos. b — sin. (a -f b) ;

And when a = 5, this equation becomes

sin. 2a = 2sin. a cos. b. Eq. (
30

).

To find the sine of 11', we make a = 6', and 5 = 5';

then sin. 11' = 2sin. 6' cos. 5'— sin. 1'= .00319976913.

0=6= 6', sin. 12' = 2sin. 6' cos. 6'.

a= 7', b= 6', sin. 13' = 2sin. T cos. 6' — sin. 1'.

a= b = 7, sin. 14' = 2sin. 7' cos. 7'.

a= 8, b= 7, sin. 15' = 2sin. 8
;
cos. 7' — sin. V

And so on to the

sin. 30' = 2sin.l5'cos.l5'.

sin.l° = sin. 60' = 2sin.30'cos.30'.

sin. 2° = 2sin. 1° cos. 1°.

sin. 3° = 2sin. 2° cos. 1°— sin. 1°, etc., etc., etc.

This process may be continued until we have found

the sines and cosines of all arcs differing by V, from

to 90°, the values of the cosines being deduced success-

ively from those of the sines by means of the formula,

cos. = */l — sin. 2
.

In this calculation, we began by assuming that, for

small arcs, the sines and the arcs were sensibly equal.
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It must be remembered that this is but an approxima-
tion

;
and although the error in the early stages of the

process is not sufficient to affect any of the decimal fig-

ures which enter the tables, it will finally become so,

since it is constantly increased in the operations by
which the sines and cosines of the larger arcs are de-

duced from those of the smaller. "When the error has

been thus increased until it reaches the order of the last

decimal unit of the table, which assigns our limit of

error, we must have the means of detecting and correct-

ing it.

• This consists in calculating the sines and cosines of

certain arcs by independent processes, and comparing
them with those found by the above method.

"We have seen, for example, (Prop. 7, B. V), that the

chord of

30° = .517638090; whence, sin. 15° = .258819045.

15° = .2610523842;
" " 7° 15' =.130526192.

7° 15' = .1308062583;
" " 3° 7' 30"= .0654031291.

And so on to

sin. 14' 3" 45'" = .004090604.

etc. etc. etc.

The following elegant method of deducing, from the

sine of an arc, the sine and cosine of one half the arc, is

given, assuming that the student is familiar with the

simple algebraic principles upon which it depends.
Let us take the natural sine of 18°, which is .3090170,

18°
and make x = sine, and y the cosine of 9° = — .

A

Then, x2 + y
2 = 1; (1)

and 2xy = .3090170 (2); Eq. (30).

Adding, we have

z2
-f 2xy + f = 1.3090170;
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Taking tlie square root, we have

x + y = 1.144123. (3)

Subtracting (
2

) from (
1

),

x 2 — 2xy + y
2 = .690983;

taking the square root,

x — y - —.831254* (4)

Adding (3) and (4), 2z = .312869,

hence, a; = sin.9° = .1564345

Subtracting (4) from (3), 2y = 1.97537T

hence, y = cos.9° = .9876885

Now, by making # = the sine of 4° 30', and y = cosine

of 4° 30', and as before

x 2 + y
2 = 1

and 2xy = .1564345,

we obtain the sine and cosine of 4° 30'
;
and another ope-

ration will give the sine and cosine 2° 15', etc., etc.

We may in this manner compute the sines and cosines

of all arcs resulting from the division of 18° by 2, and

we may make their values accurate to any assigned deci-

mal figure.

This has been carried far enough to show how a table

of natural sines, etc., could be computed ; but in conse-

quence of the tedious numerical operations which the

process requires, other methods are resorted to in the

actual construction of the table.

The Calculus furnishes formulae giving the values of

the sines and cosines of arcs developed into rapidly con-

verging series, and from these the sines and cosines of

all arcs from 0° to 90°, can be determined with great

* When an arc is less than 45°, the cosine exceeds the sine ; and

when the arc is between 45° and 90°, the sine exceeds the cosine.

Hence, when the arc is 9°, y, its cosine, exceeds x, its sine ;
and we

therefore placed the minus sign before the second member of Eq. (4).

23*



270 PLANE TRIGONOMETRY.

accuracy and with comparatively little labor. In the last

two columns on each page of Table II, will be found the

values thus computed of the sines and cosines of every

degree and minute of a quadrant.

TRIGONOMETRICAL LINES FOR ARCS EXCEEDING 90°.

X//

From the annexed figure,

the construction of which

needs no explanation, are

deduced by simple inspec-
tion the results given in the

following

TABLE

90° -f a°
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sin. 118° = sin. (90° + 28°) = cos.28°
;

tan.H8° = tan.(90° + 28°)
= — cot.28° ;

etc., etc., etc.

For the arc 230°, we have

sin. 230° = sin. (270°
—

40°)
= — cos. 40°

;

sec.230° = sec.(270°
—

40°)
= — cosec.40°;

etc., etc., etc.

In many investigations, it becomes necessary to con-

sider the functions of arcs greater than 360°
;
but since

the addition of 360° any number of times to the arc a,

will give an arc terminating in the extremity of a, it is

obvious that the arc resulting from such addition will

have the same functions as the arc a. And hence it fol-

lows that the functions of arcs, however great, may be

expressed in terms of the functions of arcs less than 90°.
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SECTION II.

PLANE TRIGONOMETRY, PRACTICALLY APPLIED.

In the preceding section, the theory of Trigonometry
has been quite fully developed, and the student should

now be prepared for its various applications, were he

acquainted with logarithms. But logarithms are no part
of Trigonometry, and serve only to facilitate the numeri-

cal operations. Trigonometrical computations can be

made without logarithms, and were so made long before

the theory of logarithms was understood.

For this reason, we proceed at once to the solution of

the following triangles.

1. The hypotenuse of a right-angled triangle is 21,

and the base is 17 ; required the perpendicular and the

acute angles.

Let CAB be the triangle, in

which CB - 21, and CA =
17. With C as a center, and

CD = 1 as a radius, describe

the arc DE, of which the sine

is DFj the tangent is EG, and

the cosine is OF,

By similar triangles we have

CB : CA

that is, 21 : 17

CD

1

CF;

cos. C.

Hence,
17

cos. C = -- = .80952+.
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We must now turn to Table II, and find in the last two columns

the cosine nearest to .80952, and the corresponding degrees and

minutes will be the value of the angle C.

On page 56, of Tables, near the bottom of the page, and in the

column with cosine at the top, we find .80953, which corresponds

to 35° 56' for the angle C. The angle B is, therefore, 54° 4'.

This Table is so arranged, that the sum of the degrees at the top

and bottom of the page, added to the sum of the minutes which are

found on the same horizontal line in the two side columns of the

page, make 90°.

Thus, in finding the angle (7, the number .80953 was found in

the column with cosine at its foot. We therefore took the degrees

from the bottom of the page, and the minutes were taken from the

right hand column, counting upwards.

For the side AB
}
we have the proportion

CF : FD :: CA : AB;
or, cos. C : sin. C : : 17 : AB;
that is, .80953 : .58708 : : 17 : AB.

From which we find AB = .58708 X 17 -J- .80953;

whence, AB = 12.328.

If we had formed a table of natural tangents, as well as of natu-

ral sines, AB could have been found by the following proportion
•

CE : EG : : CA : AB
or, 1 : tan. C : : 17 : AB)
whence, AB = 17 tan. C.

The perpendicular AB may also be found by the proportion

CD : DF n CB : AB)
or, 1 : sin. C : : 21 : AB;
whence, AB = 21 sin. C = 21 x .58708 = 12.32868.

2. The two sides of a right-angled triangle are 150 pnd
125

; required the hypotenuse and the acute angles.

Let CAB be the triangle,

which is the same as in the pre- .

ceding problem.

Then, from the similar trian-

gles, CFD and CAB
}
we get

CF : FD :: CA i AB)
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that is,
cos. G : sin. G : : 150 : 125 : : 6 : 5,

which gives 6 sin. (7=5 cos. C;

hence, 36 sin.
2
(7 = 25 cos.*<7.

Adding member to member, 86 cos.
2 6r = 36 cos.

2
C.

we have 36 (sin.
2 C + cos.

2

C) == 61 cos.* G.

But sin.
2 C-f cos.

2
<? = 1, (Eq. (1) Trigonometry) 5

whence, 61 cos.
2 C = 36;

cos.
2
C7 =

|r
= .5901639344;

and cos. C = .76816, nearly.

Tor find the angle of which this is the cosine, we turn to page 60

of tables, and looking in the column having cosine at the head, we

see that .76816 falls between .76868, which has 48' opposite to it

in the left hand column, and .76810, which has 49' opposite to it

in the same column. Now, the cosines of arcs less than 90° de-

crease when the arcs increase, and the converse
;
and while the

increase of the arc is confined within the limits of 1', the increase

of the arc will be sensibly proportional to the decrease of the cosine.

0.76828 .76828

Hence, 0.76810 .76816

~18 : ~~12 : : 60" : x"

which gives x" = 40".

The angle G is, therefore, equal to 39° 48' 40", and the angle

B = 90° — 39° 48' 40" - 50° 11' 20".

To find GB, we have

GF : GD : : GA : GB

or, cos. G : 1 : : 150 : GB

that is, .78816 : 1 : : 150 : GB

150
whence, GB = -^^ = 195.27 +.

3. The base of a right-angled triangle is 150, and the

angle opposite the base is 50° 11' 20"
; required the

hypotenuse and the perpendicular.
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Let CAB be the triangle.

Then, (Prop. 4, Sec. I),

Bin. 50° 11' 20" : sin. 90° :: 150 : CB.

Whence,

CB "
76816

= 195 -27'

the same as in the preceding example.

To find AB, we have

CD : DF :: CB : ^LB;
that is, 1 : sin. C or cos. B :: 195.27 : .4.5;

from which we find

AB = 195.27 sin. 39° 48' 40";

or, AB = 125.01077.

4. Two sides, the one 30 and the other 35, and the in-

eluded angle 20°, of a triangle, are given, to find the

other two angles and the third side.

Let BA C be the triangle, in which BC
= 35, BA = 30, and the angle B =
'20°. From A, the extremity of the

shorter side, let fall on BC the perpen-
dicular AD, thus dividing the triangle

into the two right-angled triangles BAD and CAD.

Then, from the triangle BAD, we have

1st, sin.D : sin. B :: BA : AD;
or, 1 : sin. 20° : : 30 : AD = 30 sin. 20°.

2d, 1 : cos. B : : BA : BD;
or, 1 : cos. 20° : : 30 : BD = 30 cos. B.

In the table of natural sines, we find sin. 20° = .34202, and the

cos. 20° = .93969; hence, AD = 30 X .34202 = 10.26060, and

BD = 30 x .93969 = 28.19070, and therefore DC = BC—
BD = 6.8093.

From the triangle CAD, we have

1st, AC= ^Alf +^F= \/(10.26)
2 + (6.94-)

2 = 12.367.

2d, AC : AD :: sin. 90° : sin. (7;
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But CD + BD = CB = 24.

By addition, we get 2 CD = 28.5527;

dividing by 2, and <7Z> = 14.2763+.

And hence, .£D = CB— CD = 24 — 14.2763 = 9.7237.

In the triangle ADB, we have

BA : £Z> :: 1 : cos. 5

or, 18 : 9.7237 : : 1 : cos. B = .54020

rr u tt x> kq f cos. 57° 18' = .54024)
Table H, Page 53,

{ cos< 5?o 1Q, = .54000 }

diff. ^ 24 : 60" : : 4 : 10"

hence, \__B = 57° 18' 10".

It will be observed that Examples 5 and 6 refer to the same tri-

angle, and that in Example 5 the angle B was 57° 18' 15". This

slight discrepancy in the results should be expected, on account of

the small number of decimal places used in the computations.

Second. By Prop. 8.

Sum of the sides, , =62.815,
half sum denoted by S, = 31.4075

a = 24

S—a = 7.4075

Formula, cos. £ A = \ /——-
-, radius being unity.

S(S—a) = 31.4075 x 7.4075 = 232.65105625

be = 20.815 X 18 = 374.67

£(ff— a) ^ 620Q5 very near]^

V 152095 = .78800.

Hence, cos. \A = .78800, and \A (Table II, page 59) = 38°

very nearly ;
the angle A is therefore equal to 76°, which agrees

with Example 5.

7. Given, the three sides, 1425, 1338, and 493, of a tri-

angle ; required, the angle opposite the greater side, using
the formula for the sine of one half an angle.

24
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Make a = 1425, b = 1338, and c = 493
;
then the [__ A is

opposite the side a, and the formula is

oc

in which s denotes the half sum of the three sides.

Then we have s == 1628, s— b = 290, s— c = 1135, (s
—

6)

0_. c)
= 329150, 6c = 659634,

(g
—

ft) (*
— c) = .498988.

Hence, sin. JJ. = v/,498988 = .70632.

In the table we find sin. 44° 56' 12" = .70632.

Therefore, \A = 44° 56' 12", and A = 89° 52' 24";—but little

less than a right angle.

In these seven examples we have shown that it is possi-

ble to solve any plane triangle, in which three parts, one

at least being a side, are given, without the aid of loga-

rithms. But, when great accuracy is required, and the

number of decimal places employed is large, the necessary

multiplications and divisions, the raising to powers, and

the extraction of roots, become very tedious. All of these

operations may be performed without impairing the cor-

rectness of results, and with a great saving of labor, by
means of logarithms ; but, before using them, the student

should be made acquainted with their nature and pro-

perties.

LOGARITHMS.

Logarithms are the exponents of the powers to which

a fixed number, called the base, must be raised, to pro-
duce other numbers.

The exponent of a number is also a number express-

ing how many times the first number is taken as a factor.

Thus, let a denote any number ;
then a 3 indicates that a

has been used three times as a factor, a 4 that it has been

used four times as a factor, and a n that it has been thus

used n times.
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Now, instead of calling these numbers 3, 4, w,

exponents, we call them the logarithms of the powers a%

a\ a n
.

To multiply a 2

by a 5

,
we have simply to write a, giving

it an exponent equal to 2 + 5
; thus, a 2 X a 5 = a\

Hence, the sum of the logarithms of any number offactors

is equal to the logarithm of the product.
To divide a 12

by a 9
,
we have only to write a, giving it

an exponent equal to 12— 9
; thus, a 12

-*- a 9 = a 3

; and,

generally, the quotient arising from the division of a m by
a% is equal to a m

~n
.

Hence, the logarithm of a quotient is the logarithm of the

dividend diminished by the logarithm of the divisor.

If it is required to raise a number denoted by a 3

,
to the

fifth power, we write a, giving it an exponent equal to

3x5; thus, (a
3

)

5=a 15
, and, generally, (a

n
)
m=anm

.

Hence, the logarithm of the power of a number is equal to

the logarithm of the number multiplied by the exponent of the

power.
v

To extract the 5th root of the number a s

,
we write «,

giving it an exponent equal to f ; thus, ^/a~s=a^ and,

generally, to extract any root of a number, we divide the

exponent of the number by the index of the root, and the

quotient will be the exponent of the required root.

Hence, the logarithm of a root of a number is equal to the

quotient obtained by dividing the logarithm of the number by
the index of the root

Now, understanding that by means of a table of loga-
rithms we may find. the numbers answering to given

logarithms, with as much facility as we can find the loga-
rithms of given numbers, we see from what precedes that

multiplications, divisions, raising to powers, and the ex-

traction of roots, may be performed by logarithms ;
and

the utility of logarithms, in trigonometrical computations,

mainly consists in the simplicity and abridgment of these

operations as executed by them.
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The common logarithms are those of which 10 is the

base
;
that is, they are the exponents of 10.

Thus, lO 1 ^ 10
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Thus, the number 7956. has 3.900695 for its log.

the number 795.6 has 2.900695

the number 79.56 has 1.900695

the number 7.956 has 0.900695

the number .7956 has —1.900695

the number .07956 has —2.900695

From this we perceive that we must take the logarithm
out of the table for a mixed number or a decimal, the

same as if the figures expressed an entire number; and

then, to prefix the index, we must consider the value of

the number.

The decimal part of a logarithm is always positive;

but the index becomes negative when the number is a

decimal; and the smaller the decimal, the greater the

negative index. Hence,
To prefix the index to a decimal, count the decimal

point as 1, and every cipher as 1, up to the first significant

figure, and this is the negative index.

For example, find the logarithm of the decimal

.0000831.

Num. .0000831; log. —5.919601.

The point is counted one, and each of the ciphers is

counted one
;
therefore the index is minus five.

•The smaller the decimal, the greater the negative
index ; and when the number becomes 0, the logarithm is

negatively infinite.

Hence, the logarithmic sine of 0° is negatively infinite,

however great the radius.

A number being given, to find its corresponding logarithm.

The logarithm of any number consisting of four figures,

or less, is taken out of the table directly, and without the

least difficulty.

Thus, to find the logarithm of the number 3725, we
24*
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find 372 at the side of the table, and in the column
marked 5 at the top, and opposite 372, we find .571126,
for the decimal part of the logarithm.

Hence, the logarithm of 3725 is 3.571126.

the logarithm of 37250 is 4.571126.

the logarithm of 37.25 is 1.571126, etc.

Find the logarithm of the number 834785.

This number is so large that we cannot find it in the

table, but we can find the numbers 8347 and 8348. The

logarithms of these numbers are the same as the loga-
rithms of the numbers 834700 and 834800, except the

indices.

834700 log. 5.921530

834800 log. 5.921582

Difference, 100 52

Now, our proposed number, 834785, is between the

two assumed numbers
; and, of course, its logarithm lies

between the logarithms of the two assumed numbers;

and, without further comment, we may proportion it

thus,

100 : 85 = 52 : 44.2

Or, 1. : .85 = 52 : 44.2

Hence, for finding from the table the logarithm of a

number consisting of more than four places of figures,

we have the following

RULE.

Take from the table the log. of the number expressed by the

the four superior figures ; this, with the proper index, is the

approximate logarithm. Multiply the number expressed by the

remaining figures of the number, regarded as a decimal, by
the tabular difference, and the product will be the correction

to be added to the approximate log. to obtain the true log.
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EXAMPLES.

1. What is the log. of 35T.32514?

The log. of 357.3 is 2.553033

No. not included, .2514

Tabular diff., 122

Prod., 30.6708; correction, 31

log. sought, 2.553064

The log. of 35732.514 is 4.553064
" .035732514" —2.553064.

2. What is the log. of 7912532 ?

Approximate log., 6.898286

.532 x 55 = correction, 29

True log. = 6.898315.

A logarithm being given, to find its corresponding number.

For example, what number corresponds to the log.

6.898315 ?

The index 6 shows that the entire part of the number must con-

tain seven places of figures. With the decimal part, .898315, of

the log., we turn to the table, and find the next less decimal part

to be .898286, which corresponds to the superior places, 7912.

The difference between the given log. and the one next less is

29. This we divide by the tabular difference, 55, because we are

working the converse of the preceding problem. Thus,

29 -f- 55 = 52727+.

Place the quotient to the right of the four figures before found,

and we shall have 7912527.27 for the number sought.

This example was taken from the preceding case, and

the number found should have been 7912532 ;
and so it

would have been, had we used the true difference, 29.26,

in place of 29.

When the numbers are large, as in this example, the
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result is liable to a small error, to avoid which the loga-
rithms should contain a great number of decimal places ;

but the logarithms in our table contain a sufficient num-
ber of decimal places for most practical purposes.

Hence, for finding the number corresponding to any

given logarithm, we have the following

RULE.

Look in the table for the decimal part of the given loga-

rithm, and if not found, take the decimal next less, and take

out the four corresponding figures.

Take the difference between the given log. and the next less

in the table ; divide that difference by the tabular difference,

and write the quotient on the right of the four superior fig-

ures, and the result is the number sought.

Point off the whole number required by the given index.

EXAMPLES.

1. Given, the logarithm 3.743210, to find its corres-

ponding number true to three places of decimals.

Ans. 5536.182.

2. Given, the logarithm 2.633356, to find its corres-

ponding number true to two places of decimals.

Ans. 429.89.

3. Given, the logarithm — 3.291746, to find its corres-

ponding number. Ans. .0019577.

4. What number corresponds to the log. 3.233568 ?

Ans. 1712.25.

5. What is the number of which 1.532708 is the log. ?

Ans. 34.0963.

6. Find the number whose log. is 1.067889.

Ans. 11.692.

EXPLANATION OP TABLE II.

Table I is merely a table of numbers and their corres-

ponding logarithms, and requires no explanation other
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than that which has been given in connection with the

subject of logarithms.
Table II, with the exception of the last two columns,

which contain natural sines and cosines, is a table in

which are arranged the logarithms of the numerical

values of the several trigonometrical lines corresponding
to the different angles in a quadrant. The values of

these lines are computed to the radius 10,000,000,000,

and their logarithms are nothing more than the loga-

rithms, each increased by 10, of the natural sines, co-

sines, and tangents, of the same angles; because the

values of these lines, for arcs of the same number of de-

grees taken in different circles, are directly proportional
to the radii of the circles.

The natural sines are made to the radius of unity;

and, of course, any particular sine is a decimal fraction,

expressed by natural numbers. The logarithm of any
natural sine, with its index increased by 10, will give
the logarithmic sine. Thus, the natural sine of 8° is

.052336.

The logarithm of this decimal is — 2.718800

To which add 10.

The logarithmic sine of 3° is, therefore, 8.718800

In this manner we may find the logarithmic sine of

any other arc, when we have the natural sine of the

same arc.

If the natural sines and logarithmic sines were on the

same radius, the logarithm of the natural sine would be

the logarithmic sine, at once, without any increase of

the index.

The radius for the logarithmic sines is arbitrarily

taken so large that the index of its logarithm is 10. It

might have been more or less
; but, by common consent,

it is settled at this value
;
so that the sines of the smallest

arcs ever used shall not have a negative index.



286 PLANE TRIGONOMETRY.

In our preceding equations, sin. a, cos. a, etc., refei

to natural sines; and by such equations we determine

their values in natural numbers
;
and these numbers are

put in Table II, under the heads of nat. sine and nat. co-

sine, as before observed.

When we have the sines and cosines of an arc, the

tangent and cotangent are found by Eq. (
3

) ; that is,

, R sin. /A ; R cos.
tan. = (6) cot. = —: :

cos. sm.

and the secant is found by equation (4); that is,

R2

sec. =
cos.

For. example, the logarithmic sine of 6° is 9.019235,
and its cosine 9.997614. From these it is required to

find the logarithmic tangent, cotangent, and secant.

R sin. 19.019235

Cos. subtract 9.997614

Tan. is 9.021621

R cos. 19.997614

Sin. subtract 9.019235

Cotan. is 10.978379

R* is 20.000000

Cos. subtract 9.997674

Secant is 10.002326

The secants and cosecants of arcs are not given in

our table, because they are very little used in practice ;

and if any particular secant is required, it can be deter-

mined by subtracting the cosine from 20
;
and the cose-

cant can be found by subtracting the sine from 20.

The sine of every degree and minute of the quadrant
is given, directly, in the table, commencing at 0°, and

extending to 45°, at the head of the table
;
and from 45°

to 90°, at the bottom of the table, increasing backward.
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The same column that is marked sine, at the top, is

marked cosine at the bottom
;
and the reason for this is

apparent to any one who has examined the definitions

of sines.

The difference of two consecutive logarithms is given,

corresponding to ten seconds. Removing the decimal

point one figure, will give the difference for one second ;

and if we multiply this difference by any proposed num-
ber of seconds, we shall have a difference corresponding
to that number of seconds, above the logarithm corres-

ponding to the preceding degree and minute.

For example, find the sine of 19° 17' 22".

The sine of 19° 17', taken directly from the table, is 9.518829

The difference for 10" is 60.2
;

for 1", is 6.02
;
and •

6.02 X 22 = 133

Hence, 19° 17' 22" sine is 9.518962

From this it will be perceived that there is no difficulty

in obtaining the sine or tangent, cosine or cotangent, of

any angle greater than 30'.

Conversely : Given, the logarithmic sine 9.982412, to

find its corresponding arc. The sine next less in the

table is 9.982404, which gives the arc 73° 48'. The differ-

ence between this and the given sine is 8, and the dif-

ference for 1" is .61
; therefore, the number of seconds

corresponding to 8, must be discovered by dividing 8 by
the decimal .61, which gives 13. Hence, the arc sought
is 73° 48' 13".

These operations are too obvious to require a rule.

When the arc is very small,
—and such arcs as are sometimes

required in Astronomy,— it is necessary to be very accu-

rate
;
for this reason we omitted the difference for seconds

for all arcs under 30'. Assuming that the sines and tan-

gents of arcs under 30' vary in the same proportion as

the arcs themselves, we can find the sine or tangent of

any very small arc, with great exactness, as follows :
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The sine of V, as expressed in the table, is 6.463726

Divide this by 60; that is, subtract logarithm 1.778151

The logarithmic sine of 1", therefore, is 4.685575

Now, for the sine of 17", add the logarithm of 17 1.230449

Logarithmic sine of 17", is 5.916024

In the same manner we may find the sine of any other

small arc.

For example, find the sine of 14' 21J"; that is, 861"5.

The logarithmic sine of 1" is 4.685576

Add logarithm of 861.5, 2.935254

Logarithmic sine of 14' 21£", 7.620830

Two lines drawn, the one from the surface and the

other from the center of the earth, to the center of the

sun, make with each other an angle of 8.61". What is

the logarithmic sine of this angle ?

The log. of the sine 1" is 4.685575

Log. of 861, 0.935003

Log. sine of sun's horizontal parallax = 5.620578

GENERAL APPLICATIONS WITH THE USE OF
LOGARITHMS.

I. RIGHT-ANGLED TRIGONOMETRY.

One figure will be sufficient to represent the triangle
in all of the following examples ; the right angle being
at£.

PRACTICAL PROBLEMS.

1. In a right-angled triangle, ABC,
given the base AB, 1214, and the angle

A, 51° 40' 30", to find the other parts.
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To find BC.

Kadius, 10.000000

: tan. .4, 51° 40' 30", 10.102119

:: AB,12U, 3.084219

: BC, 1535.8, 3.186338

Remark.—When the first term of a logarithmic proportion is radius,

the required logarithm is found by adding the second and third loga-

rithms, rejecting 10 in the index, which is dividing by the first term.

In all cases we add the second and third logarithms together ; which,

in logarithms, is multiplying these terms together ;
and from that sum

we subtract the first logarithm, whatever it may be, which is dividing

by the first term.

To find AC.

Sin. C, or cos. A, 51° 40' 30", 9.792477

: AB, 1214, 3.084219

:: Radius, 10.000000

: AC, 1957.7, 3.291742

To find this resulting logarithm, we subtracted the first logarithm

from the second, conceiving its index to be 13.

Let ABO represent any plane triangle, right-angled
at B.

2. Given, AO 73.26, and the angle A, 49° 12' 20";

required the other parts.

Ans. The angle 0, 40° 47' 40" ; BO, 55.46
;
and AB, 47.87.

8. Given, AB 469.34, and the angle A, 51° 26' 17", to

find the other parts.

Ans. Theangletf, 38° 33' 43"; B(7,588.7; and^LC, 752.9.

4. Given, AB 493, and the angle C, 20° 14'
; required,

the remaining parts.

Ans. The angle A, 69° 46'; BO, 1338
;
and AC, 1425.5.

5. Let AB = 331, and the angle A = 49° 14'
;
what are

the other parts ?

Ans. AC, 506.9; BC, 383.9; and the angle O, 40° 46'.

6. If AC=4:5, and the angle (7=37° 22', what are the

remaining parts ?

Ans. AB, 27.31
; BC, 35.76

;
and the angle A, 52° 38'.

25 t
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7. Given, AC= 4264.3, and the angle A= 56° 29' 13",
to find the remaining parts.

Ans.AB, 2354.4; BO, 3555.4; and the angle 0, 33° 30'47".

8. If AB = 44.2, and the angle A = 31° 12' 49", what
are the other parts ?

Ans. AC, 49.35
; BO, 25.57 ;

and the angle 0, 58° 47' 11".

9. If ^LB - 8372.1, and BO = 694.73, what are the

other parts ?

An8 (AC, 8400.9; the angle 0, 85° 15'; and the
'

\ angle A, 4° 45'.

10. If AB be 63.4, and AC be 85.72, what are the

other parts?

A f BO, 57.7 ;
the angle C, 47° 42'; and the angled,

'

I 42° 18'.

11. Given, AC = 7269, and AB = 3162, to find the

other parts.

A (BO, 7546; the angle C, 25° 47' 7"; and them '

\ angle A, 64° 12' 53".

12. Given, AC = 4824, and BO = 2412, to find the

other parts.

A ( The angle A = 30° 00', the angle C = 60° 00',m '

I and AB - 4178.

13. The distance between the earth and sun is 94,770,000

miles, and at that distance the semi-diameter of the sun

subtends an angle of 16' 6". "What is the diameter of

the sun in miles ? Ans. 887,700 miles.

In this example, let E be the center of the earth, S that of the

sun, and EB a tangent to the sun's surface. Then the A EBS
is right-angled at B, and BJS is the semi-diameter of the sun. The

value of 2BS is required.
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14. The semi-diameter of the earth is 3956 miles, and
the distance of the sun 94.770000 miles. What angle
will the semi-diameter of the earth subtend, as seen from

the sun? Ans. 8.60".

This angle is called, in astronomy, the sun's horizontal parallax.

The preceding figure applies to this example, by supposing E to

be the center of the sun, S that of the earth,' and BS equal to

3956 miles.

15. The mean distance of the moon from the earth is

60.3 times 3960 miles, and at. this distance the semi-

diameter of the moon subtends an angle of 15' 32".

What is the diameter of the moon in miles ?

Ans. 2159 miles.

H. OBLIQUE-ANGLED TRIGONOMETRY.

PROBLEM I.

In a plane triangle, given a side and the two adjacent

angles, to find the other parts.
'

In the triangle ABC, let AB = c

376, the angle A = 48° 3', and the

angle B - 40° 14', to find the other

parts.

As the sum of the three angles of every
B

triangle is always 180°, the third angle, C, must be 180° — 88°

17' = 91° 43'.

To find Aa
Sin. 91° 43',

: AB, 376,

: : sin. B 40° 14',
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To find BC.

Sin. 91° 43', 9.999805

: A5, 376, 2.575188

: : sin. A, 48° 3', 9.871414

12.446602

: sin. 5 0,279.8, 2.446797

PROBLEM II.

In a plane triangle, given two sides and an angle opposite

one of them, to determine the other parts.

Let AD = 1751 feet, one

of the given sides
;
the angle

D = 31° 17' 19"
;
and the side

opposite, 1257.5. From these

data, we are required to find

the other side and the other

two angles.

In this case we do not know whether A G or AE represents

1257.5, because AG = AE. If we take AG for the other given

side, then D G is the other required side, and DA G is the vertical

angle. If we take AE for the other given side, then DE is the

required side, and DAE is the vertical angle. In such cases we

determine both triangles.

To find the angle U = G.

(Prop. 4.) AG = AE= 1257.5, log. 3.099508

: D, 31° 17' 19", sin. 9.715460

: : AD, 1751, log. 3.243286

12.958746

< E = G, 46° 18', sin. 9.859238

From 180° take 46° 18', and the remainder is the angle DGA
= 133° 42'.

The angle DAG = AGE— D, (Th. 11, B. I) y

that is, DAG = 46° 18' — 31° 17' 19" = 15° 0'41".

The angles D and E, taken from 180°, give

DAE = 102° 24' 41".
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To find DO.

Sin. D, 31° 17' 19", log. 9.715460

: ^1(7, 1257.5, log. 3.099508

: : sin. DAG 15° 0' 41", log. 0.413317

12.512825

: DC, 626.86, 2.797165

To find DE.

Sin. D, 31° 17' 17", 9.715460

: AE, 1257.5, 3.099508

: : sin. DAE, 102° 24' 41", 9.989730

13.089238

: DE, 2364.7, 3.373778

Remark.—To make the triangle possible, AC must not be less than

AB, the sine of the angle D, when DA is made radius.

PROBLEM III.

In any plane triangle, given two sides and the included

angle, to find the other parts.

Let AD = 1751, (see last figure), DE = 2364.5, and

the included angle D = 31° 17' 19". "We are required
to find AE, the angle DAE, and the angle E.

Observe that the angle E must be less than the angle DAE, be-

cause it is opposite a less side.

From 180°

Take D, 31° 17' 19",

Sum of the other two angles, = 148° 42' 41", (Th. 11, B. I),

* sum = 74° 21' 20".

By Proposition 7,

DE+DA : DE— DA = tan. 74° 21' 20" : tan. \{DAE—E).
That is,

4115.5 : 613.5 = tan. 74° 21' 20" : *a*k(DAE— JP>

25*
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Tan. 74° 21' 20",

613.5,

4115.5 log. (subtracted),

10.552778

2.787815

13.340593

3.614423

tMi.i(DAEE-) tan.28° 1' 36", 9.726170

But the half sum plus the half difference of any two quantities

is equal to the greater of the two; and the half sum minus the

half difference is equal the less.

Therefore, to 74° 21' 20",

Add 28° V 36",

DAE =
E =
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6. Given, AB 793.8, BO 481.6, and AO 500.0, to find

the angles.

AnjLA, 35° 15' 32"; IB, 36° 49' 18"; and [__0,

•\ 107° 55' 10".

7. Given, .45 100.3, 5(7 100.3, and AC 100.3, to find

the angles.

A i The angle A, 60°; the angle 5, 60°; and them '

\ angle (7, 60°.

8. Given, AB 92.6, 5(7 46.3, and AC 71.2, to find the

angles.

, f LA 29° IT' 22"; L*> 48° 47' 31"; and [_0,

^'1 101° 55' 8".

9. Given, AB 4693, BO 5124, and AO 5621, to find

the angles.

A j [_A, 57° 30' 28"; \_B, 67° 42' 36"; and [__0,^nS
'\ 54° 46' 56".

10. Given, AB 728.1, BO 614.7, and JL(7 583.8, to find

the angles.

A ] \jkm 54° 32' 52", \_B= 50° 40' 58", and \__0#H =74° 46' 10".

11. Given, AB 96.74, BO 83.29, and AO 111.42, to

find the angles.

A j L^= 46° 30' 45", [_B = 76° 3' 45", and [_0
^'\ =57° 25' 30".

12. Given, AB 363.4, BO 148.4, and the angle B 102°

18' 27", to find the other parts.

A
( [_A = 20° 9' 17", the sideA = 420.8, and [__0

13. Given, .45 632, 5(7 494, and the angle A 20° 16',

to find the other parts, the angle being acute.

([_(7= 26° 18' 19", [__B
= 133° 25' 41", and

ns
'\ ^4(7=1035.86.

14. Given, AB 53.9, .4(7 46.21, and the angle B 58°

16', to find the other parts.

Arts. \__A = 38° 58', [__0= 82° 46', and 5(7= 34.16.
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15. Given, AB 2163, BC 1672, and the angle 112°

18' 22", to find the other parts.

Ana. AC, 877.2; [_B, 22° 2' 16"; and [_A, 45° 39' 22".

16. Given, AB 496, BC 496, and the angle B S8° 16',

to find the other parts.

Ans. AC, 325.1; [_A, 70° 52'; and [__<?, 70° 52'.

17. Given, AB 428, the angle C 49° 16', and (AC+
BC) 918, to find the other parts, the angle B being
obtuse.

A ( The angle A = 38° 44' 48", the angle B = 91°
f *

\ 59' iSP^jitiL 564.49, and BC= 353.5.

18. Given, AC 126, the angle B 29° 46', and (AB—
BC) 43, to find the other parts.

A /The angled= 55° 51' 32", the angle (7=94°
**

I 22' 28", AB = 253.05, and BC= 210.054.

19. Given, AB 1269, .4(7 1837, and the angle A 53°

16' 20", to find the other parts.
( [_B = 83° 23' 47", L^= 4^° I9 '

53", and BCAnS
'\ =1482.16.
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SECTION III

APPLICATION OF TRIGONOMETRY TO MEASURING
HEIGHTS AND DISTANCES.

In this useful application of Trigonometry, a base line

is always supposed to be measured, or given in length ;

and by means of a quadrant, sextant, circle, theodolite,

or some other instrument for measuring angles, such

angles are measured as, connected with the base line and

the objects whose heights or distances it is proposed to

determine, enable us to compute, from the principles of

Trigonometry, what those heights or distances are.

Sometimes, particularly in marine surveying, horizontal

angles are determined by the compass ;
but the varying

effect of surrounding bodies on the needle, even in situa-

tions little removed from each other, and the general

construction of the instrument itself, render it unfit to be

employed in the determination of angles where anything
like precision is required.

The following problems present sufficient variety, to

guide the student in determining what will be the most

eligible mode of proceeding, in any case that is likely to

occur in practice.

PROBLEM I.

Being desirous of finding the distance between two

distant objects, O and D, I measured a base, AB, of 384

yards, on the same horizontal plane with the objects
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and D. At A, I found the angles DAB = 48° 12', and

CAB =89° 18'; at B, the angles ABO 46° 14', and

ABB 87° 4'. It is required, from these data, to com-

pute the distance between C and B.

From the angle GAB, take the angle DAB ;
the

remainder, 41° 6', is the angle CAD. To the angle

DBA, add the angle DAB, and 44° 44', the supple-

ment of the sum, is the angle ADB. In the same

way the angle ACB, which is the supplement of

the sum of CAB and CBA, is found to be 44° 28'. A~~

Hence, in the triangles ABC and ABD, we have

Sin. ACB, 44° 28', 9.845405

: AB, 384 yards, 2.584331

:: sin. ABC, 46° 14', 9.858635
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tan.
ACD—ADC

(= 22 54) 9.551797

the angle A CD, sum, 92 21

the angle ADC, diff., 46 33

Sin. ADC, 46° 33',

: AC, 395.9 yards,

: : sin. CAD, 41° 6',

CD, 358.5 yards,

9.860922

2.597585

9.817813

12.415398

2.554476

PROBLEM II.

To determine the altitude of a lighthouse, I observed

the elevation of its top above the level sand on the sea-

shore, to be 15° 32' 18"
;
and measuring directly from

it, 638 yards along the sand, I then found its elevation

to be 9° 56' 26". Required the height of the lighthouse.

Let CD represent the height of the light-

house above the level of the sand, and let B
be the first station, and A the second

;
then

the angle CBD is 15° 32' 18, and the angle

CAB is 9° 56' 26"; therefore, the angle

A CB, which is the difference of the angles

CBD and CAB, is 5° 35' 52".

Hence, Sin. A CB, 5° 35' 52",

: AB, 638,

: : sin. angle A, 9° 56' 26",

8.989201

2.804821

9.237107

BC, 1129.06 yards,

Radius,

BC, 1129.06,

sin. CBD, 15° 32' 18",

DC, 302.46 yards,

12.041928

3.052727

10.000000

3.052727

9.427945

12.480672

2.480672
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PROBLEM III.

Coming from sea, at the point B I observed two

headlands, A and B, and inland, at 0, a steeple, which

appeared between the headlands. I found, from a map,
that the headlands were 5.35 from each other; that the

distance from A to the steeple was 2.8 miles, and from

B to the steeple 3.47 miles
;
and I found, with a sextant,

that the angle ABO was 12° 15, and the angle BBC, 15°

30'. Kequired my distance from each of the headlands,

and from the steeple.

CONSTRUCTION.

The angle between the two headlands is

the sum of 15° 30' and 12° 15', or 27° 45'.

Take double this sum, 55° 30'. Conceive AB
to be the chord of a circle, and the arc on

one side of it to be 55° 30'
; and, of course,

the other will be 304° 30'. The point B
will be somewhere in the circumference of

this circle. Consider that point as determined, and draw CB.

In the triangle ABO, we have all the sides, and, of course, we

can find all the angles; and if the angle A OB is less than 180°—
27° 45' = 152° 15', then the circle cuts the line CB in a point

E, and C is without the circle.

Draw AE, BE, AB, and BB. AEBB is a quadrilateral in a

circle, and \__
AEB + [_ ABB = 180°.

The [__
ABE= the

| ABE, because both are measured by one

half the arc AE. Also, |

EBB =
[__ EAB, for a similar reason.

Now, in the triangle AEB, its side AB, and all its angles, are

known
;
and from thence AE can be computed. Then, having the

two sides, AC and AE, of the triangle AEC, and the included

angle CAE, we can find the angle AEC, and, of course, its supple-

ment, AEB. Then, in the triangle AEB, we have the side AE,
and the two angles AEB and ABE, from which we can find AB.
The computation, at length, is as follows :

26
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To find AJE.

Angle EAB = 15° 30' Sin. AEB, 152° 15', 9.668027

Angle EBA = 12° 15' : AB
} 5.35, .728354

27° 45' : : sin. ABE 12° 15' 9.326700

180°

Angle AEB = 152° 15' : AE
9 2.438,

To find the angle BAG.

10.055054

.387027

BG, 3.47

AB, 5.35

AC, 2.80
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To find the angles AEC and ACE.

AC + AE
: AC— AE

AEC + ACE
::tan.

|
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Let CD be the spire, A the first station, and

B the second
;
then the vertical angle CAD is

23° 50' 17"; and as the horizontal angles, CAB
and CBA, are 93° 4' 20" and 54° 28' 36", re-

B

spectively, the angle ACB, the supplement of

their sum, is 32° 27' 4".

To find AC.

Sin.BCA, 32° 27' 3",

: side AB, 416,

:: tan. ABC, 54° 28' 36",

: side AC, 631,

9.729634

2.619093

9.910560

12.529653

2.800019

To find DC.

Radius, 10.000000

side^Ltf, 631, 2.800019

tan. DA C, 23° 50' 17", 9.645270

DC, 278.8, 2.445289

By the application of Pro-

blem 4, we can compute the

distance between two horizon-

tal planes, if the same object

is visible from both. a^

For example, let M be a

prominent tree or rock near

the top of a mountain, and by observations taken at A,
we can determine the perpendicular Mn. By like obser-

vations taken at B, we can determine the perpendicular
Mm. The difference between these two perpendiculars is

nm, or the difference in the elevation between the two

points A and B. If the distances between A and n, orB
and m, are considerable, or more than two or three miles,
corrections must be made for the convexity of the earth ;

but for less distances such corrections are not necessary.
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PRACTICAL PROBLEMS.

1. Eequired the height of a wall whose angle of eleva-

tion, at the distance of 463 feet, is observed to be 16°

21'. Ans. 135.8 feet.

2. The angle of elevation of a hill is, near its bottom,
31° 18', and 214 yards further off, 26° 18'. Eequired the

perpendicular height of the hill, and the distance of the

perpendicular from the first station.

( The height of the hill is 565.2 yards, and the

Ans. < distance of the perpendicular from the first

I station is 929.6 yards.

3. The wall of a tower which is 149.5 feet in height,

makes, with a line drawn from the top of it to a distant

object on the horizontal plane, an angle of 57° 21'.

"What is the distance of the object from the bottom of

the tower? Ans. 233.3 feet.

4. From the top of a tower, which is 138 feet in height,
I took the angle of depression of two objects standing
in a direct line from the bottom of the tower, and upon
the same horizontal plane with it. The depression of the

nearer object was found to be 48° 10', and that of the

further, 18° 52'. What was the distance of each from

the bottom of the tower ?
*

. ( Distance of the nearer, 123.5 feet
;
and of the

\ further, 403.8 feet.

5. Being on the side of a river, and wishing to know
the distance of a house on the opposite side, I measured

312 yards in a right line by the side of the river, and then

found that the two angles, one at each end of this line,

subtended by the other end and the house, were 31° 15'

and 86° 27'. What was the distance between each end

of the line and the house ? Ans. 351.7, and 182.8 yards.

6. Having measured a base of 260 yards in a straight

line, on one bank of a river, I found that the two

angles, one at each end of the line, subtended by the

26* u
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other end and a tree on the opposite bank, were 40° and

80°. What was the width of the river ?

Ans. 190.1 yards.

7. From an eminence of 268 feet in perpendicular

height, the angle of depression of the top of a steeple

which stood on the same horizontal plane, was found to

be 40° 3', and of the bottom, 56° 18'. "What was the

height of the steeple ? Ans. 117.8 feet.

8. Wanting to know the distance between two objects

which were separated by a morass, I measured the dis-

tance from each to a point from whence both could be

seen
; the distances were 1840 and 1428 yards, and the

angle which, at that point, the objects subtended, was 36°

18' 24". Required their distance. Ans. 1090.85 yards.

9. From the top of a mountain, three miles in height,
the visible horizon appeared depressed 2° 13' 27". Re-

quired the diameter of the earth, and the distance of the

boundary of the visible horizon.

a f Diameter of the earth, 7958 miles
; distance of

\ the horizon, 154.54 miles.

10. From a ship a headland was seen, bearing north

39° 23' east. After sailing 20 miles north, 47° 49' west,

.the same headland was observed to bear north, 87° 11'

east. Required the distance of the headland from the

ship at each station.

A /At first station, 19.09 miles
;

at the second,JLn8 '

\ 26.96 miles.

11. The top of a tower, 100 feet above the level of the

sea, was seen as on the surface of the sea, from the mast-

head of a ship, 90 feet above the water. The diameter

of the earth being 7960 miles, what was the distance

between the observer and the object?
Ans. 23.9 plus >fc

for refraction = 25.7 miles.

12. From the top of a tower, by the seaside, 143 feet

high, it was observed that the angle of depression of a
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ship's bottom, then at anchor, measured 35°
; what, then,

was the ship's distance from the foot of the tower ?

Arts. 204.22 feet.

13. Wanting to know the "breadth of a river, I meas-

ured a base of 500 yards in a straight line on one bank;
and at each end of this line I found the angles subtended

by the other end and a tree on the opposite bank of the

river, to be 53° and 79° 12'. What, then, was the per-

pendicular breadth of the river? Ans. 529.48 yards.

14. What is the perpendicular height of a hill, its

angle of elevation, taken at the bottom of it, being 46°,

and 200 yards further off, on a level with the bottom,
31° ? Am. 286.28 yards.

15. Wanting to know the height of an inaccessible

tower, at the least accessible distance from it, on the

same horizontal plane, I found its angle of elevation to

be 58°
;
then going 300 feet directly from it, I found the

angle there to be only 32° ; required the height of the

tower, and my distance from it at the first station.

A /Height,
307.53 feet.

\ Distance, 192.15 "

16. Two ships of war, intending to cannonade a fort,

are, by the shallowness of the water, kept so far from it,

that they suspect their guns cannot reach it with effect.

In order, therefore, to measure the distance, they separate
from each other a quarter of a mile, or 440 yards, and then

each ship observes and measures the angle which the

other ship and fort subtends
;
these angles are 83° 45',

and 85° 15'. What, then, is the distance between each

ship and the fort ? , / 2292.26 yards.Jin8 '

\ 2298.05 "

17. A point of land was observed by a ship, at sea, to

bear east-by-south ;* and after sailing north-east 12 miles,

* That is, one point south of east. A point of the compass is

11° 15'.
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it was found to bear south-east-by-east. It is required to

determine the place of that headland, and the ship's dis-

tance from it at the last observation.

Ans. Distance, 26.0728 miles.

18. "Wishing to know my distance from an inaccessible

object, 0, on the opposite side of a river, and having
a chain or chord for measuring distances, but no instru-

ment for taking angles ;
from each of two stations, A

and B, which were taken at 500 yards asunder, I meas-

ured in a direct line from the object, 0, 100 yards, viz.,

AO and BD, each equal to 100 yards; and I found that

the diagonal AD measured 550 yards, and the diagonal

BO 560. What, then, was the distance of the object

from each station A and B1 A ( AO, 536.25 yards.
Ji.ns.

1^500.09
"

19. A navigator found, by observation, that the summit

of a certain mountain, which he supposed to be 45 min-

utes of a degree distant, had an altitude above the sea

horizon of 31' 20". Now, on the supposition that the

earth's radius is 3956 miles, and the observer's dip was

4' 15", what was the height of the mountain ?

Ans. 3960 feet.

Remark.— This should be diminished by about one eleventh

part of itself, for the influence of horizontal refraction.

20. From two ships, A and B, which are anchored in

a bay, two objects, O and i>, on the shore, can be seen.

These objects are known to be 500 yards apart. At the

ship A, the angle subtended by the objects was measured,

and found to be 41° 25'
;
and that by the object D and

the other ship was found to be 52° 12'. At the other

ship, the angle subtended by the objects on shore was

found to be 48° 10'; and that by the object O, and the

ship A, to be 47° 40'. Eequired the distance between
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the ships, and the distance from each ship to the objects

on shore.

Distance between ships, 395.6 yards.
From ship A to object D, 743.5 "

From ship A to object 0, 467.7 "

.From ship B to object D, 590.5 "

To solve this problem, suppose the distance between the ships to

be 100 yards, and determine the several distances, including the

distance between the objects, C and D, under this supposition; then

multiply the values thus found for the required distances by the

quotient obtained by dividing the given value of CD by the com-

puted value.



PART II.

SPHERICAL GEOMETRY
AND

TRIGONOMETRY.

SECTION I.

SPHERICAL GEOMETRY.

DEFINITIONS.

1. Spherical Geometry has for its object the investiga-
tion of the properties, and of the relations to each other,

of the portions of the surface of a sphere which are

bounded by the arcs of its great circles.

2. A Spherical Polygon is a portion of the surface of a

sphere bounded by three or more arcs ofgreat circles, called

the sides of the polygon.
3. The Angles of a spherical polygon are the angles

formed by the bounding arcs, and are the same as the

angles formed by the planes of these arcs.

4. A Spherical Triangle is'a spherical polygon having
but three sides, each of which is less than a semi-circum-

ference.

5. A Lime is a portion of the surface of a sphere in-

cluded between two great semi-circumferences having a

common diameter.

6. A Spherical Wedge, or TJngula, is a portion of the

surface of a sphere included between two great semi-cir-

cles having a common diameter.

(310)
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7. A Spherical Pyramid is a portion of a sphere bounded

by the faces of a solid angle having its vertex at the

center, and the spherical polygon which these faces inter-

cept on the surface. This spherical polygon is called the

base of the pyramid.

8. The Axis of a great circle of a sphere is that diameter

of the sphere which is perpendicular to the plane of the

circle. This diameter is also the axis of all small circles

parallel to the great circle.

9. A Pole of a circle of a sphere is a point on the sur-

face of the sphere equally distant from every point in the

circumference of the circle.

10. Supplemental, or Polar Triangles, are two triangles on

a sphere, so related that the vertices of the angles of

either triangle are the poles of the sides of the other.

PROPOSITION I.

Any two sides of a spherical triangle are together greater

than the third side.

Let AB, AC, and BO, be the three

sides of the triangle, and D the center

of the sphere.
The arcs AB, AC, and BO, are meas-

ured by the angles of the planes that

form the solid angle at D. But any
two of these angles are together greater
than the third angle, (Th. 18, B. VI). Therefore, any two
sides ofthe triangle are, together, greater than the third side.

Hence the proposition.

PROPOSITION II.

The sum of the three sides of any spherical triangle is less

than the circumference of a great circle.

Let ABO be a spherical triangle ;.
the two sides, AB

and A 0, produced, will meet at the point which is diame-

trically opposite to A, and the arcs, ABB and AOB are
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together equal to a great circle. But,

by the last proposition, BO is less

than the two arcs,BD andD 0. There-

fore, AB + BC + AC, is less than

ABB + ACD ; that is, less than a

great circle.

Hence the proposition.

PROPOSITION III.

The poles of a great circle of a sphere are the extremities

of its axis, and these points are also the poles of all small

circles parallel to the great circle.

Let be the center of

the sphere, and BD the

axis of the great circle,

Cm Am" ; then willB and

D, the extremities of the

axis, be the poles of the

circle, and also the poles

of any parallel small cir-

cle, as FnJEJ.

For, since BD is per-

pendicular to the plane
of the circle, Cm Am", it

is perpendicular to the lines OA, Om', Om", etc., passing

through its foot in the plane, (Th. 3, B. VI); hence, all

the arcs, Bm, Bm', etc., are quadrants, as are also the

arcs Dm, Dm1

,
etc. The points B and D are, therefore,

each equally distant from all the points in the circumfer-

ence, Cm Am"
; hence, (Def. 9), they are its poles.

Again, since the radius, OB, is perpendicular to the

plane of the circle, Cm Am", it is also perpendicular to

the plane of the parallel small circle, FnE, and passes

through its center,
f
. Now, the chords of the arcs, BF,

Bn, BF, etc., being oblique lines, meeting the plane of

the small circle at equal distances from the foot of the

p y^-—
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perpendicular, BO f

,
are all equal, (Tli. 4, B. VI); hence,

the arcs themselves are equal, and B is one pole of the

circle, FnF. In like manner we prove the arcs, BF, Bn,

BF, etc., equal, and therefore B is the other pole of the

same circle.

Hence the proposition, etc.

Cor. 1. A point on the surface of a sphere at the distance

of a quadrant from tivo points in the arc of a great circle, not

at the extremities of a diameter, is a pole of that arc.

For, if the arcs, Bm, Bm!

,
are each quadrants, the angles,

BOm and BOmf

,
are each right angles; and hence, BO

is perpendicular to the plane of the lines, Om and 0m\
which is the plane of the arc, m m>

f

;
B is therefore the

pole of this arc.

Cor. 2. The angle included between the arc of a great circle

and the arc of another great circle, connecting any of its points

with the pole, is a right angle.

For, since the radius, BO, is perpendicular to the plane
of the circle, Cm Am", every plane passed, through this

radius is perpendicular to the plane of the circle
; hence,

the plane of the arc Bm is perpendicular to that of the

arc Cm', and the angle of the arcs is that of their planes.

PROPOSITION IV.

The angle formed by two arcs of great circles ivhich inter-

sect each other, is equal to the angle included between the tan-

gents to these arcs at their point of intersection, and is meas-

ured by that arc of a great circle whose pole is the vertex of

the angle, which is limited by the sides of the angle or the

sides produced.

Let AM and AJSf be two arcs intersecting at the

point A, and let AE and AF be the tangents to these

arcs at this point. Take A C and AB, each quadrants,

and draw the arc CD, of which A is the pole, and 00
and OB are the radii.

27
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!Now, since the planes of the arcs intersect in the radius

OA, and AE is a tangent to one arc, and AF a tangent
to the other, at the common point A,
these tangents form with each other an

angle which is the measure of the angle
of the planes of the arcs

;
but the angle

of the planes of the arcs is taken as the

angle included by the arcs, (Def. 4).

Again, because the arcs, AC and AD,
are each quadrants, the angles, A 00,
A OD, are right angles ;

hence the radii,

00 and OD, lie, the one in one face,

and the other in the other face, of the

diedral angle formed by the planes of the arcs, and are

perpendicular to the common intersection of these faces

at the same point. The angle, OOD, is therefore the

angle of the planes, and consequently the angle of the

arcs
;
but the angle OOD is measured by the arc OD,

Hence the proposition.

Oor. 1. Since the angles included between the arcs of

great circles on a sphere, are measured by other arcs of

great circles of the same sphere, we may compare such

angles with each other, and construct angles equal to

other angles, by processes which do not differ in principle

from those by which plane angles are compared and con-

structed.

Oor. 2. Two arcs of great circles will form, by their in-

tersection, four angles, the opposite or vertical ones of

which will be equal, as in the case of the angles formed

by the intersection of straight lines, (Th. 4, B.
I).

PROPOSITION V.

The surface of a hemisphere may be divided into three right-

angled andfour quadrantal triangles, and one of these right-

angled triangles will be so related to the other two, that two

of its sides and one of its angles will be complemental to the
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Bides of one of them, and two of its sides supplemental to two

of the sides of the other.

Let ABO be a right-angled spherical triangle, right

angled at B.

Produce the sides, AB andA 0, and

they will meet at A', the opposite

point on the sphere. Produce BO,
both ways, 90° from the point B, to

P and P', which are, therefore, poles

to the arc AB, (Prop. 3). Through

A, P, and the center of the sphere,

pass a plane, cutting the sphere into

two equal parts, forming a great circle on the sphere,

which great circle will be represented by the circle

PAP'A 1 in the figure. At right angles to this plane,

pass another plane, cutting the sphere into two equal

parts ;
this great circle is represented in the figure by the

straight line, POP'. A and A' are the poles to the great

circle, POP' \
and P and P' are the poles to the great

circle, ABA'.

Now, OPB is a spherical triangle, right-angled at D,
and its sides OP and OB are complemental respectively

to the sides £67 and AO of the A ABO, and its side PB
is .complemental to the arc BO, which measures the

[_BA of the same triangle. Again, the A A'B is right-

angled at B, and its sides A'O, A'B, are supplemental

respectively to the sides AO, AB, of the aABO. There-

fore, the three right-angled A's, ABO, OPB, and A'BO,
have the required relations. In the A AOP, the side AP
is a quadrant, and for this reason the A is called a quad-
rantal triangle. So also, are the A's A'OP, AOP', and

P'OA', quadrantal triangles. Hence the proposition.

Scholium.—In every triangle there are six elements, three sides and

three angles, called the parts of the triangle.

Now, if all the parts of the triangle ABC are known, the parts of

each of the A's
>
PCD and A'BC, are as completely known. And

when the parts of the ^ PCD are known, the parts of the A's A CP
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and A'CP are also known ; for, the side PD measures each of the
|

'a

PAC and PA'C, and the angle CPD, added to the right angle A'PD,
gives the [_A

/PC, and the
|
CPA is supplemental to this. Hence,

the solution of the A ABC is a solution of the two right-angled and
four quadrantal A's, which together with it make up tne surface of

the hemisphere.

PROPOSITION VI.

If there be three ares of great circles whose poles are the

angular points of a spherical triangle, such arcs, ifproduced,
will form another triangle, whose sides will be supplemental
to the angles of the first triangle, and the sides of the first

triangle will be supplemental to the angles of the second.

Let the arcs of the three great cir-

cles be GH, PQ, KL, whose poles are

respectively A, B, and Q. Produce the

three arcs until they meet in D, E, and
F. We are now to prove thatE is the

pole of the arc AO; D the pole of the

arc BO; F the pole to the arc AB.

Also, that the side EF, is supplemental
to the angle A; ED to the angle 0;
and DF to the angle B; and also, that the side A is

supplemental to the angle E, etc.

A pole is 90° from any point on the circumference of

its great circle
; and, therefore, as A is the pole of the

arc GH, the point A is 90° from the point E. As is

the pole of the arc LK, is 90° from any point in

that arc; therefore, is 90° from the point E; and

E being 90° from both A and O, it is the pole of the arc

AQ. In the same manner, we may prove that D is the

pole of BO, and F the pole of AB.
Because A is the pole of the arc GH, the arc GH

measures the angle A, (Prop. 4) ;
for a similar reason,

PQ measures the angle B, and LK measures the angle O.

Because E is the pole of the arc AO, EH= 90°

Or, EG+GH= 90°

For a like reason, FH -f GH = 90°
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Adding these two equations, and observing that GH
= A, and afterward transposing one A, we have,

EG + GH+FH=1SQ° — A.

Or, EF= 180°—A
j)

In like manner, JF!Z> = 180° — B
\

(«)

And, BE = 180° — J

But the arc (180°— A), is a supplemental arc to A, by
the definition of arcs ; therefore, the three sides of the

triangle BEF, are supplements of the angles A, B, 0, of

the triangle ABO.

Again, as E is the pole of the arc A
(7, the whole angle

E is measured by the whole arc LE.

But, AC + CH = 90°

Also, AC + AL = 90°

By addition, AC+AC+CE + AL = 180°

By transposition, 1(T+CE+AL=180°—AO
That is, LIT, or .#= 180°—AO ^
In the same manner, .F = 180°—^LB M 6

)

And, E=1S0°—BO J

That is, the sides of the first triangle are supplemental
to the angles of the second triangle.

PKOPOSITION VII.

The sum of the three angles of any spherical triangle, is

greater than two right angles, and less than six right angles.

Add equations (a), of the last proposition. The first

member of the equation so formed will be the sum of

the three sides of a spherical triangle, which sum we

may designate by S. The second member will be 6 right

angles (there being 2 right angles in each 180°) less the

three angles A, B, and O.

That is, S = 6 right angles
— (A+B+C)

By Prop. 2, the sum S is less than 4 right angles;
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therefore, to it add s, a sufficient quantity to make 4

right angles. Then,

4 right angles
= 6 right angles

— (A-hB+0)-\-s

Drop or cancel 4 right angles from both members, and

transpose (A + B + 0).

Then, A + B + = 2 right angles + s.

That is, the three angles of a spherical triangle make

a greater sum than two right angles by the indefinite

quantity s, which quantity is called the spherical excess,

and is greater or less according to the size of the triangle.

Again, the sum of the angles is less than 6 right angles.

There are but three angles in any triangle, and each one of

them must be less than 180°, or 2 right angles. For, an

angle is the inclination of two lines or two planes ;
and

when two planes incline by 180°, the planes are parallel,

or are in one and the same plane ; therefore, as neither

angle can be equal to 2 right angles, the three can never

be equal to 6 right angles.

. PROPOSITION VIII.

On the same sphere, or on equal spheres, triangles which

are mutually equilateral are also mutually equiangular ; and,

conversely, triangles which are mutually equiangular are also

mutually equilateral, equal sides lying opposite equal angles.

First—"LetABO and DBF, in

which AB = BE, AO= DF, and

BO = EF, be two triangles on

the sphere whose center is 0;
then will the [_ A, opposite the

side BO, in the first triangle, be

equal the [_JD, opposite the equal
side EF, in the second; also

l_B=[__E, and \__0=[_F.
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For, drawing the radii to the vertices of the angles of

these triangles, we may conceive to be the common
vertex of two triedral angles, one of which is hounded

by the plane angles A OB, BOO, and A 00, and the other

by the plane angles DOE, EOF, and DOE. But the

plane angles bounding the one of these triedral angles,
are equal to the plane angles bounding the other, each

to each, since they are measured by the equal sides of the

two triangles. The planes of the equal arcs in the two

triangles are therefore equally inclined to each other,

(Th. 20, B. VI) ;
but the angles included between the

planes of the arcs are equal to the angles formed by the

arcs, (Def. 3).

Hence the [_A, opposite the side J?0, in the A ABO,
is equal to the [__ B, opposite the equal side EF, in the

other triangle ;
and for a similar reason, the [__B= \__E,

and the [_0=[_F.
Second.—If, in the triangles ABO and BEE, being on

the same sphere whose center is 0, the |__A =
[__ B, the

[_B = [_E, and the [_0= [_E; then will the side AB,
opposite the [__ 0> in *ne first? be equal to the side BE,
opposite the equal L_ E, in the second

;
and also the side

AO equal to the side BE, and the side BO equal to the

side EF.

For, conceive two triangles, denoted by A'B'O' and

B'E'F', supplemental to ABO and BEE, to be formed;
then wT

ill these supplemental triangles be mutually equi-

lateral, for their sides are measured by 180° less the

opposite and equal angles of the triangles ABO and

BEF, (Prop. 6) ;
and being mutually equilateral, they

are, as proved above, mutually equiangular. But the

triangles ABO and BEE are supplemental to the tri-

angles A'B'O' and B'E'F''; and their sides are therefore

measured severally by^l80° less the opposite and equal

angles of the triangles A'B'O' and B'E'E', (Prop. 6).
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Hence the triangles ABO and BEF, which are mutually

equiangular, are also mutually equilateral.

Scholium.—With the three arcs of great circles, AB, AC, and BC,

either of the two triangles, ABC, BEF, may be formed
; hut it is evi-

dent that these two triangles cannot be made to coincide, though they

are both mutually equilateral and mutually equiangular. Spherical

triangles on the same sphere, or on equal spheres, in which the sides

and angles of the one are equal to the sides and angles of the other,

each to each, but are not themselves capable of superposition, are

called symmetrical triangles.

PROPOSITION IX.

On the same sphere, or on equal spheres, triangles having

two sides of the one* equal to two sides of the other, each to

each, and the included angles equal, have their remaining

sides and angles equal.

Let ABO and DEF be two

triangles, in which AB — BE,
AO = BF, and the angle A —
the angle B ;

then will the side

BO be equal to the side FE,
the [_B = theL^andLtf
= L^.

For, if BE lies on the same

side of BF that AB does of AO, the two triangles, ABO
and BEF, may be applied the one to the other, and they

may be proved to coincide, as in the case of plane tri-

angles. But, if BE does not lie on the same side of BF
that AB does of AO, we may construct the triangle which

is symmetrical with BEF; and this symmetrical triangle,

when applied to the triangle ABO, will exactly coincide

with it. But the triangle BEF, and the triangle sym-
metrical with it, are not only mutually equilateral, but

also are mutually equiangular, the equal angles lying

opposite the equal sides, (Prop. 8) ;
and as the one or the

other will coincide with the triangle ABO, it follows that
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the triangles, ABC and BJEF, are either absolutely or

symmetrically equal.

Cor. On the same sphere, or on equal spheres, triangles

having two angles of the one equal to two angles of the other,

each to each, and the included sides equal, have their remain-

ing sides and angles equal.

For, if [__A = L Pi L.B = [_U, and side AB = side

BE, the triangle BEF, or the triangle symmetrical with

it, will exactly coincide with A ABO, when applied to it

as in the case of plane triangles ; hence, the sides and

angles of the one will be equal to the sides and angles
of the other, each to each.

PROPOSITION X.

In an isosceles spherical triangle, the angles opposite the

equal sides are equal.
A

Let ABO be an isosceles spherical tri-

angle, in which AB and A are the equal

sides
;
then will [__B = Q 0.

For, connect the vertex A with B, the i

middle point of the base, by the arc of a /
great circle, thus forming the two mutu- ^4—.

ally equilateral triangles, ABB and ABO.

They are mutually equilateral, because AB is common,
BB =DC by construction, and AB=AObj supposition;
hence they are mutually equiangular, the equal angles

being opposite the equal sides, (Prop. 8). The angles B
and 0, being opposite the common side AB, are there-

fore equal.

Cor. The arc of a great circle which joins the vertex

of an isosceles spherical triangle with the middle point of

the base, is perpendicular to the base, and bisects the ver-

tical angle of the triangle ; and, conversely, the arc of a

v
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great circle which bisects the vertical angle of an isosceles

spherical triangle, is perpendicular to, and bisects the

base.

PROPOSITION XI.

If two angles of a spherical triangle are equal, the opposite

sides are also equal, and the triangle is isosceles.

In the spherical triangle, ABC, let the \__B = [__C; then

will the sides, AB and AC, opposite these equal angles,

be equal.

For, let P be the pole of the base, BO,
and draw the arcs of great circles, PB,
PC; these arcs will be quadrants, and at

right angles to BC, (Cor. 1, Prop. 3).

Also, produce CA and BA to meet PB
and PC, in the points E and F. Now,
the angles, PBF and PCE, are equal,

because the first is equal to 90° less the

[_ABC, and the second is equal to 90°

less the equal [_ACB; hence, the A's,
PBFand PCE, are equal in all their parts,

since they have the [_P common, the \_PBF = [_PCE,
and the side PB equal to the side PC, (Cor., Prop. 9).

PE is therefore equal to PF, and [_PEC= [__PFB.

Taking the equals PF and PE, from the equals PC
and PB, we have the remainders, FC and EB, equal ;

and, from 180°, taking the [_'s PFB and PEC, we have

the remaining L_'s, AFC and AEB, equal. Hence, the

A's, AFC and AEB, have two angles of the one equal to

two angles of the other, each to each, and the included

sides equal; the remaining sides and angles are therefore

equal, (Cor., Prop. 9). Therefore, AC is equal to BA>
and the A ABC is isosceles.

Cor. An equiangular spherical triangle is also equilat-

eral, and the converse.
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Remark.— In this demonstration, the pole of the base, BC, is sup-

posed to fall without the triangle, ABC. The same figure may be used

for the case in which the pole falls within the triangle ;
the modifi-

cation the demonstration then requires is so slight and obvious, that

it would be superfluous to suggest it.

PROPOSITION XII.

The greater of two sides of a spherical triangle is opposite

the greater angle ; and, conversely, the greater of two angles

of a spherical triangle is opposite the greater side.

Let ABO be a spherical triangle, in which the angle A
is greater than the angle B; then is the side BO greater
than the side A 0.

Through A draw the arc of a

great circle, AD, making, withAB,
the angle BAB equal to the angle
ABB. The triangle, BAB, is isos-

celes, and DA = BB, (Prop. 11).

In the A AOD, AO< OD + AD,
(Prop. 1) ; or, substituting for AD its equal DB, we have,

AO < OB + DB.

Inverting the members of the inequality, and writing
OB for OB + DB, it becomes OB > OA.

Conversely ;
if the side OB be greater than the side OA,

then is the [_A > the [_B. For, if the [_A is not greater
than the [__B, it is either equal to it, or less than it. The

\_A is not equal to the [_B ;
for if it were, the triangle

would be isosceles, and OB would be equal to OA, which

is contrary to the hypothesis. The [_A is not less than

the [___B; for if it were, the side OB would be less than the

side OA, by the first part of the proposition, which is also

contrary to the hypothesis ; hence, the [_A must be greater

than the L^.
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PROPOSITION XIII.

Two symmetrical spherical triangles are equal in area.

Let ABO and DEF be two A's on the same sphere,

having the sides and angles of the one equal to the sides

and angles of the other, each to

each, the triangles themselves

not admitting of superposition.

It is to be proved that these

A's have equal areas.

Let P be the pole of a small

circle passing through the three

points, ABO, and connect P
with each of the points, A, B,
and O, by arcs of great circles. Next, through E draw

the arc of a great circle, UP', making the angle DEP1

equal to the angle ABP. Take EP' = BP, and draw

the arcs of great circles, P'D, P'F.

The A's, ABP and DEP', are equal in all their parts,

because AB=DE, BP=EP f

,
and the [_ABP=[_DEPf

,

(Prop. 9). Taking from the [_ABO the [_ABP, and

from the [_DEF the [_DEPf

,
we have the remaining

angles, PBO and P'EF, equal; and therefore the A's,

BOP and EFP'
,
are also equal in all their parts.

Now, since the a's, ABP and DEP', are isosceles, they
will coincide when applied, as will also the A's, BOP
and EFP'

,
for the same reason. The polygonal areas,

ABOP and DEEP', are therefore equivalent. If from

the first we take the isosceles triangle, PAO, and from the

second the equal isosceles triangle, P'DF, the remainders,

or the triangles ABO and DEF, will be equivalent.

Remark.— It is assumed in this demonstration that the pole P falls

without the triangle. Were it to fall within, instead of without, no

other change in the above process would be required than to add the

isosceles triangles, PAO, P'DF, to the polygonal areas, to get the

areas of the triangles, ABC, DEF.
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Cor. Two spherical triangles on the same sphere, or on

equal spheres, will be equivalent
—

1st, when they are

mutually equilateral;
—

2d, when they are mutually equi-

angular ;
—

3d, when two sides of the one are equal to

two sides of the other, each to each, and the included

angles are equal ;
—

4th, when two angles of the one are

equal to two angles of the other, each to each, and the

included sides are equal.

PROPOSITION XIV.

If two arcs of great circles intersect each other on the sur-

face of a hemisphere, the sum of either two of the opposite tri-

angles thus formed will be equivalent to a lune whose angle is

the corresponding angle formed by the arcs.

Let the great circle, AEBC, be the base of a hemi-

sphere, on the surface of which the semi-great circumfer-

ences, BBA and CBE, inter-

sect each other at B
; then will

the sum of the opposite tri-

angles, BBC and BAB, be

equivalent to the lune whose

angle is BBC; and the sum
of the opposite triangles,

CBA and BBE, will be equiv-
alent to the lune whose angle
is CBA.

Produce the arcs,BBA and

CBE, until they intersect on the opposite hemisphere at H;
then, since CBB and BEH are both semi-circumferences

of a great circle, they are equal. Taking from each the

common part BE, we have CB =HE. In the same way
we prove BB = HA, and AE= BC. The two triangles,

BBC and HAE, are therefore mutually equilateral, and

hence they are equivalent, (Prop. 13). But the two tri-

angles, HAE and ABE, together, make up the lune

28
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DEHAD-, hence the sum of the a's, BDO and ADE, is

equivalent to the same lune.

By the same course of reasoning, we prove that the

sum of the opposite A's, DAO and DBJE, is equivalent

to the lune BOHAD, whose angle is ABC.

PROPOSITION XV.

The surface of a lune is to the whole surface of the sphere,

as the angle of the lune is to four right arigles ; or, as the arc

which measures that angle is to the circumference of a great

circle.

LetABFOA be a lune on the

surface of a sphere, and BOB
an arc of a great circle, whose

poles are A and F, the vertices

of the angles of the lune. The

arc, BO, will then measure the

angles of the lune. Take any

arc, as BD, that will be con-

tained an exact number of times

in BO, and in the whole circum-

ference, BOJEB, and, beginning at B, divide the arc and

the circumference into parts equal to BB, and join the

points of division and the poles, by arcs of great circles.

We shall thus divide the whole surface of the sphere

into a number of equal lunes. Now, if the arc BO con-

tains the arc BB m times, and the whole circumference

contains this arc n times, the surface of the lune will

contain m of these partial lunes, and the surface of the

sphere will contain n of the same
;
and we shall have,

Surf, lune : surf, sphere : : m : n.

But, m : n : : BO : circumference great circle
;

•

hence, surf, lune : surf, sphere : : BO : cir. great circle;

or, surf, lune : surf, sphere :: [__BOO : 4 right angles.
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This demonstration assumes that BD is a common
measure of the arc, BC, and the whole circumference. It

may happen that no finite common measure can be

found
;
but our reasoning would remain the same, even

though this common measure were to become indefinitely

small.

Hence the proposition.

Cor. 1. Any two lunes on the same sphere, or on equal

spheres, are to each as their respective angles.

Scholium.— Spherical triangles, formed by joining the pole of an

arc of a great circle with the extremities of this arc by the arcs of

great circles, are isosceles, and contain two right angles. For this

reason they are called bi-redangular. If the base is also a quadrant,
the vertex of either angle becomes the pole of the opposite side, and

each angle is measured by its opposite side. The three angles are then

right angles, and the triangle is for this reason called tri-rectangular.

It is evident that the surface of a sphere contains eight of its tri-

rectangular triangles.

Car. 2. Taking the right angle as the unit of angles,
and denoting the angle of a lune by A, and the surface

of a tri-rectangular triangle by T, we have,

surf, of lune : ST :: A : 4;

whence, surf, of lune = 2A x T.

Cor. 3. A spherical ungula bears the same relation to

the entire sphere, that the lune, which is the base of the

ungula, bears to the surface of the sphere ; and hence,

any two spherical ungulas in the same sphere, or in

equal spheres, are to each other as the angles of their re-

spective lunes.

PROPOSITION XVI.

The area of a spherical triangle is measured by the excess

of the sum of its angles over two right angles, multiplied by

the tri-rectangular triangle.

Let ABC be a spherical triangle, and DEFLK the cir-

cumference of the base of the hemisphere on which this

triangle is situated.
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Produce the sides of tlie tri-

angle until they meet this cir-

cumference in the points, D, U,

F, L, K, and P, thus forming
the sets of opposite triangles,

FAF,AKL ; BFF, BFK; OFF,
OFF.

Now, the triangles of each of

these sets are together equal to

a lune, whose angle is the cor-

responding angle of the triangle, (Prop. 14) ;
hence we

have,

AFAF + AAKL = 2A x T, (Prop. 15, Cor. 2).

ABFF + ABFK=2B x T
A OFF + A CDF = 2(7 x T

If the first members of these equations be added, it is

evident that their sum will exceed the surface of the

hemisphere by twice the triangle ABO; hence, adding
these equations member to member, and substituting for

the first member of the result its value, 4T -f 2AABO,
we have

4T + 2aAB0 = 2A.T -f 2B.T + 20.T

or, 2T + AABO= A.T + B.T + O.T

whence, AABO = A.T + B.T + O.T—2T.

That is, AABO = (A -f B + 0— 2) T.

But A -f B + (7— 2 is the excess of the sum of the

angles of the triangle over two right angles, and T de-

notes the area of a tri-rectangular triangle.

Hence the proposition ; the area, etc.
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PROPOSITION XVII.

The area of any spherical polygon is measured by the excess

of the sum of all its angles over two right angles, taken as

many times, less two, as the polygon has sides, multiplied by

the tri-rectangular triangle.

LetABCJDE be a spherical poly- £

gon; then will its area be meas- j\^^*^ I

ured by the excess of the sum of /\ /

the angles, A, B, 0, D, and E, over /
two right angles taken a number / N.x
of times which is two less than

c /
""""

""^>E

the number of sides, multiplied by \ z'

T, the tri -
rectangular triangle. \. /

Through the vertex of any of the ^

angles, as E, and the vertices of

the opposite angles, pass arcs of great circles, thus divi-

ding the polygon into as many triangles, less two, as the

polygon has sides. The sum of the angles of the several

triangles will be equal to the sum of the angles of the

polygon.

Now, the area of each triangle is measured by the

excess of the sum of its angles over two right angles,

multiplied by the tri-rectangular triangle. Hence the

sum of the areas of all the triangles, or the area of the

polygon, is measured by the excess of the sum of all the

angles of the triangles over two right angles, taken as

many times as there are triangles, multiplied by the tri-

rectangular triangle. But there are as many triangles as

the polygon has sides, less two.

Hence the proposition ; the area of any spherical poly-

gon, etc.

Cor. If S denote the sum of the angles of any spherical

polygon, n the number of sides, and T the tri-rectan-

gular triangle, the right angle being the unit of angles ;

the area of the polygon will be expressed by

IS— 2 (w-2)]x T= (S— 2n + 4) T.

28*
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SECTION II.

SPHERICAL TRIGONOMETRY.

A Spherical Triangle contains six parts
—three sides and

three angles
—any three of which being given, the other

three may be determined.

Spherical Trigonometry has for its object to explain the

different methods of computing three of the six parts of

a spherical triangle, when the other three are given. It

may be divided into Right-angled Spherical Trigonome-

try, and Oblique-angled Spherical Trigonometry ;
the first

treating of the solution of right-angled, and the second

of oblique-angled spherical triangles.

RIGHT-ANGLED SPHERICAL TRIGONOMETRY.

PROPOSITION I.

With the sines of the sides, and the tangent of ONE SIDE

of any right-angled spherical triangle, two plane triangles can

be formed that will be similar, and similarly situated.

Let ABO be a spherical triangle,

right-angled at B
;
and let D be the

center of the sphere. Because the

angle OBA is a right angle, the plane
OBD is perpendicular to the plane
DBA. From let fall OR, perpen-
dicular to the plane DBA ;

and as the
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plane CBD is perpendicular to the plane DBA, CE will

lie in the plane OBI), and be perpendicular to the line

DB, and perpendicular to all lines that can be drawn in

the plane DBA, from the point E (Def. 2, B. VI).

Draw EG perpendicular to DA, and draw GrC; GC
will lie wholly in the plane CDA, and CEG is a right-

angled triangle, right-angled at E.

We will now demonstrate that the angle DGfC is a

right angle.

The right-angled ACEG, gives CE
2 +EG 2= CG 2

fel)

The right-angled ADGE, gives DG 2+EG2=DE2
(2)

By subtraction, CH 2— DG 2 = CG 2—DE2
(
3

)

By transposition, OH2 + DH2 = CG 2 + DG 2
(4)

But the first member of equation (4) ?
is equal to

CD 2

,
because ODE is a right-angled triangle;

Therefore, CD 2 = CG 2 + DG 2

Hence, CD is the hypotenuse of the right-angled tri-

angle DGC, (Th. 39, B. I).

, From the point B, draw BE at right angles to DA,
and BF at right angles to DB, in the plane CDB ex-

tended ;
the point F will be in the line DC. Draw EF,

and as F is in the plane CDA, and i? is in the same

plane, the line EF is in the plane CDA. Now we are to

prove that the triangle CEG is similar to the triangle

BEF, and similarly situated.

As EG and BE are both at right angles to DA, they
are parallel ;

and as EC and BF are both at right angles
to DB, they are parallel ;

and by reason of the parallels,

the angles GEC and EBF are equal ;
but GEC is a right

angle ; therefore, EBF is also a right angle.

Now, as GE and BE are parallel, and CE and BF
are also parallel, we have,

DE i DB = EG: BE
And, DE : DB =EC : BF
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Therefore, HO : BE = HO : BF (Th. 6, B. II),

Or, Ha : HO = BE : BF.

Here, then, are two triangles, having an angle in the

one equal to an angle in the other, and the sides about

the equal angles proportional; the two triangles are

therefore equiangular, (Cor. 2, Th. 17, B. II); and they
are similarly situated, for their sides make equal angles
at H and B with the same line, DB.
Hence the proposition.

Scholium.— By the definition of sines, cosines, and tangents, we

perceive that CH is the sine of the arc BC, DH is its cosine, and BF
its tangent; CG is the sine of the arc AC, and DG its cosine. Also,

BE is the sine of the arc AB, and BE is the cosine of the same arc.

With this figure we are prepared to demonstrate the following propo-
sitions.

PROPOSITION II.

In any right-angled spherical triangle, the sine of one side

is to the tangent of the other side, as radius is to the tangent

of the angle adjacent to the first-mentioned side.

Or, the sine of one side is to the tangent of the other side,

as the cotangent of the angle adjacent to the first-mentioned

side is to the radius.

For the sake of brevity, we will represent the angles
of the triangle by A, B, 0, and the sides or arcs opposite

to these angles, by a, b, c, that is, a opposite A, etc.

In the right-angled plane triangle EBF, we have,

EB : BF = B : tzn.BEF

That is, sin.c : tan.a = R : tan.J.,

which agrees with the first part of the enunciation. By
reference to equation (5), Section I, Plane Trigonometry,
we shall find that,

tan.JL cot.A = B 2

;

B 2

therefore, tan.J. = -.

cot.A
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Substituting this value for tangent A, in the preceding

proportion, and dividing the last couplet by R, we shall

have,

sin.c : tan.a = 1 : -.

cot.JL

Or, sin.c : tan.a = cot.J. : R.

Or, R sin.c = tan.a cot.JL, (1)

which answers to the second part of the enunciation.

Cor. By changing the construction, drawing the tan-

gent to AB, in place of the tangent to BC, and proceed-

ing in a similar manner, we have,

R sin. a = tan.c cot. C. (
2

)

PROPOSITION III.

In any right-angled spherical triangle, the sine of the right

angle is to the sine of the hypotenuse, as the sine of either of

the other angles is to the sine of the side opposite to that angle.

, The sine of 90°, or radius, is designated by R.

In the plane triangle, CMGr, we have,

Bm.CMG- : Ca = sin.CG-H : CM
That is, R : sin.6 = sin.J. : sin.a

Or, R sin.a = sin. b sin.A (
3

)

Cor. By a change in the construction of the figure,

drawing a tangent to AB, etc., we shall have,

R : sin.6 = sin.<7 : sin.c

Or, R sin.c = sin.5 sin. C. (
4

)

Scholium.— Collecting the four equations taken from this and the

preceding proposition, we have,

(
1

)
iJTsin.c = tan.a cot. J.

(
2

)
R sin.a= tan.c cot. C

( 3 )
B sin.a = sin.6 sin.A

( 4 ) E sin.c = sin.b sin.C
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These equations refer to the right-angled

triangle, ABC; but the principles are true

for any right-angled spherical triangle. Let

us apply them to the right-angled triangle,

PDC, the compiemental triangle to ABC.

Making this application, equation

(
1

)
becomes R sin. CD = tan.PD cot. C

(
2

)
becomes R a'm.PD = tan. CD cot.P

(
3

)
becomes R sin.PD = sin.PC sin. C

(
4

)
becomes R sin. CD= ain.PC sin.P

By observing that sin. CD = cos.J.C = cos.6.

And that tan.PD = cot.DO = cot. J., etc.; and by running equa-

tions
(
n

), (m ), (
o

), and (p ), back into the triangle, ABC, we shall

have,

(
5

)
R cos.6 = cot.J. cot.C

(
6

)
R cos.A = cot.6 tan.c

(7) R cos.A = cos.a sin. C
(
8

)
R cos.b —-- cos.a cos.c

By observing equation (
6

),
we find that the second member refers

to sides adjacent to the angle A. The same relation holds in respect

to the angle C, and gives,

(9) Rco9.C= cot.6 tan.a.

Making the same observations on
( 7 ),

we infer,

(10) R cos. C = cos.c sin.X

Observation 1. Several of these equations can be de-

duced geometrically without the least difficulty. For

example, take the figure to Proposition 1. The parallels

in the plane, DBA, give,

DB : VH= DU : Da.

That is, R : cos.a = cos.c : cos.5.

A result identical with equation (
8

) ?
and in words it is

expressed thus : Radius is to cosine of one side, as the cosine

of the other side is to the cosine of tiie hypotenuse.

Observation 2. The equations numbered from (1) to

(10) cover every possible case that can occur in right-

angled spherical trigonometry ;
but the combinations are
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too various to be remembered, and readily applied to prac-

tical use.

"We can remedy this inconvenience, by taking the com-

plement of the hypotenuse, and the complements of the two

oblique angles, in place of the arcs themselves.

Thus, b is the hypotenuse, and let V be its complement.

Then, 5 + ^=90°; or, b= 90°— 6'; and, sin.6 = cos.6',

cos.6 = sin.V
;
tan.5 = cot.5 r

. In the same manner, ifA 1

is the complement to A,

Then, sin.A = cos.J/; cos.A = sin.J/; and, tan.J. =
cot.J/; and similarly, sin.C— cos. C; cos.Q— sin.C; and

tan. (7= cot. C.

Substituting these values for b, A, and 0, in the fore-

going ten equations (a and c remaining the same), we

have,

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

NAPIE

Rsin.c =

Rsm.a =

Rsin.a =

R sin.<? =

R sin.6' =

_Ksin.^'=

Rsm.A f =

Rsm.b' =

Rsin.Cf=

R8in.Cf=

r's circular

= tan.a tan.J/
= tan.<? tan. (7

cos.5' cos. J.'

= cos.5' cos.C
= tan.J/ tan. C"

= tan.5' tan.c

= cos.a cos.C"

= cos.a cos.c

= tan.V tan.a

-- cos.c? cos.A'

PARTS.

Omitting the consid-

eration of the right an-

gle, there are five parts.

Each part taken as a

middle part, is connect-

ed to its adjacent parts

by one equation, and

to its extreme parts by
another equation ;

there-

fore, ten equations are

required for the combi-

nations of all the parts.

These equations are very remarkable, because the first

members are all composed of radius into some sine, and

the second members are all composed of the product of

two tangents, or two cosines.

To condense these equations into words, for the pur-

pose of assisting the memory, we will refer any one of

them directly to the right-angled triangle, ABC, in the

last figure.
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When the right angle is left out of the question, a

right-angled triangle consists of five parts
— three sides,

and two angles. Let any one of these parts be called a

middle part; then two other parts will lie adjacent to this

part, and two opposite to it, that is, separated from it by
two other parts.

Tor instance, take equation (
11

), and call c the middle

part; then A 1 and a will be adjacent parts, and O and V
opposite parts. Again, take a as a middle part; then c

and Q' will be adjacent parts, and A 1 and V will be oppo-
site parts ;

and thus we may go round the triangle.

Take any equation from (
11

) to (20 ) ?
and consider the

middle part in the first member of the equation, and we
shall find that they correspond to the two following inva-

riable and comprehensive rules :

1. The radius into the sine of the middle part is equal to

the product of the tangents of the adjacent parts.

2. The radius into the sine of the middle part is equal to

the product of the cosines of the opposite parts.

These rules are known as .Napier's Rules, because they
were first given by that distinguished mathematician,
who was also the inventor of logarithms.
In the application of these equations, the accent may be

omitted if tan. be changed to cotan., sin. to cosin., etc.

Thus, if equation (
13

) were to be employed, it would be

written, in the first instance, Msm.a = cos.6' cos.J/, to

insure conformity to the rule
; then, we would change it

into B sin.a = sin.5 sin.A.

Remark.—"We caution the pupil to be very particular to take the

complements of the hypotenuse, and the complements of the oblique

angles.
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SECTION III

OBLIQUE-ANGLED SPHERICAL TRIGONOMETRY.

The preceding investigations have had reference to

right-angled spherical trigonometry only, but the appli-

cation of these principles cover oblique-angled trigonom-

etry also; for, every oblique-angled spherical triangle

may be considered as made up of the sum or difference

of two right-angled spherical triangles. With this ex-

planatory remark, we give

PROPOSITION I.

In all spherical triangles, the sines of the sides are to each

other, as the sines of the angles opposite to them.

This was proved in relation to right-angled^ triangles in

Prop. 3, Sec. II, and we now apply the principle to ob-

lique-angled triangles.

Let ABO be the triangle, and let

CD be perpendicular to AB, or to

AB produced.

Then, by Prop. 3, Sec. II, we have,

B : sin. A = sin.A : sin. OB.

Also,

sin.OB : R = sin.CZ) : sin. B.

29 w
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By multiplying these two proportions together, term

by term, and omitting the common factor B, in the first

couplet, and the common factor, sm.CD, in the second,

we have

sin. CB : sin.AC= sin.J. : sin.B.

PROPOSITION II.

In any spherical triangle, if an arc of a great circle be let

fall from any angle perpendicular to the opposite side as a

base, or to the base produced, the cosines of the other two

sides will be to each other as the cosines of the segments of

the base.

By the application of equation 8, (Sec. II), to the last

figure, we have,

R cos.AC mm cos.AD eos.DC

Similarly, B cos.BC == eos.DC cos.BD

Dividing one of these equations by the other, omitting
common factors in numerators and denominators, we

have,

cos.AC _
cos.AD

cos.BC cos.BD

Or, cos.AC : cos.BC = cos.AD : coa.BD.

PROPOSITION III.

If from any angle of a spherical triangle, a perpendicular

be let fall on the base, or on the base produced, the tangents

of the segments of the base will be reciprocally proportional

to the cotangents of the segments of the angle.

By the application of Equation 2, (Sec. II), to the last

figure, we have,

B sin.CD = tan.AD cot.ACD.
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Similarly, R Bin.CD = t&n.BD cot.BOD

Therefore, by equality,

t&n.AD cot.ACD = tan.BD cot.BOD

Or, tan.AD : t&n.BD = cot.BOD : cot.AOD.

PROPOSITION IV.

The same construction remaining, the cosines of the angles

at the extremities of the segments of the base are to each

other as the sines of the segments of the opposite angle.

Equation 7, (Sec. II), applied to the triangle AOD, gives

R cob.A = cos. OD Bin.AOD (s)

Also, R cob.B » cob.OD Bin.BOD (t)

Dividing equation (*) by (0, gives

cos.A _ sin.AOD
cob.B Bin.BOD

Or, cos.i? : cos.A = Bin.BOD : sin.AOD.

PROPOSITION V.

The same construction remaining, the sines of the segments

of the base are to each other as the cotangents of the adjacent

angles.

Equation 1, (Sec. II), applied to the triangle AOD, gives

R Bin.AD - tan. OD cot.A (
*

)

Similarly, R Bm.BD = t&n.OD cot.B (J)

Dividing («) by (0, gives

Bin.AD _ cot.A

Bin.BD cot.B

Or, Bin.BD : sin.AD = eot.i? : cot.A.
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PROPOSITION VI.

The same construction remaining, the cotangents of the two

sides are to each other as the cosines of the segments of the

angle.

Equation 9, (Sec. II), applied to the triangleA CD, gives

B cos.ACD = eot.AC tun. CD (*)

Similarly, E cos.BCD = cot.BC tan.CD (0

Dividing (*) by (0, gives

cos.ACD cot.AC

Or,

cos.BCD cot.BC

cotAC: cot.BC = cos.ACD : cos.BCD.

PROPOSITION VII.

The cosine of any side of a spherical triangle, is equal to

the product of the cosines of the other two sides, plus the

product of the sines of those sides multiplied by the cosine

of the included angle.

Let ABC be a spherical triangle,

and CD a perpendicular from the

angle C on to the side AB, or on to

the side AB produced. Then, by

Prop. 2,

cos.AC:cos.CB=cos.AD: cos.BD{l)

When CD falls within the tri-

angle,
BD = (AB— AD);

and when CD falls without the triangle,

BD = (AD— AB).

Hence, cos.BD — cos.(AZ)
— AB)

Now, cos.(AB— AD) = cos.(AD
—

AB),
because each of them is equal to

cos.AB cos.AD + sin.AB sin.AD, (Eq. 10, Prop. 2,

Sec. I, Plane Trig.).
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This value of cos. BD, put in proportion (
1

), gives

cos.AC: cos. CB = cos.AD : cos.AB cos.AD+sinAB sin.AD (2)

Dividing the last couplet of proportion (
2

) by cos.AD,
observing that

sin.AD , . -~— = tan.J.D,
COS.AD

'

and we have

cos.A : cos. OB == 1 : cos.AB + sin.AB tan.AD (3)

By applying equation 6, (Sec. II), to the triangle ACD,
taking the radius as unity, we have

cos.J. = cot.AO t&n.AD (&)

But, tan.^4(7cot.^(7=-l,(Eq. 5, Seal, Plane Trig.) (0

Multiply equation (&) by tan. A O, observing equation

(I), and we have

tan.A cos.A = tan.AD

Substituting this value of tan. AD, in proportion (3),

we have

cos.AC: cos. OB = 1 : cos.AB + sin.AB tan.AO cos.A (4)

Multiplying extremes and means, gives

cos.OB— cos.A 0' cos.AB+ sin.AB (cos.J. tan.A 0) cos.J..

But, tan.JL<7= '--r^, or, cos.A tan.A0= sin.AO.
cos.AO

Therefore, cos.OB = cos.AO cos.AZ?+ sin.JJ? sin.A
cos.J..

If the sides opposite the angles, A, B, and 0, be re-

spectively represented by a, b, and e, this equation

becomes,

cos.a = cos.6 cos.c-l- sin.& sin.e cos.J..

This formula conforms to the enunciation in respect to

the side a. Now, by simply writing b for a, and B for A,
in the last equation, we get the formula for cos. b, which is,

cos.6 = cos.a cos.c + sin.a sin.c cos.B.

29*
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By writing c for a, and for A, we get the formula for

cos.c, which is,

cos.c = cos.a cos.b + sin.a sin.5 cos.C.

Hence, we have the three symmetrical formulae :

cos.a = cos.6 cos.c -f sin. b sin.c cos.A^
cos.6 = cos.a cos.c + sin.a sin.c cos.i? > \S)
cos.c = cos. a cos.5 + sin.a sin.5 cos.CJ

From these, by simple transposition and division, we
deduce the following formulas for the cosines of the

angles of any spherical triangle, viz :

cos.a— cos.5 cos.c^
cos.A =

cos.i? =

cos. =

sin.&' sin.c

cos. b— cos.a cos.c

sin.a sin.c

cos.c— cos.a cos. b

sin.a sin. b

(S>)

By means of these equations we can find the cosine of

any of the three angles of a spherical triangle in terms

of the functions of the sides
;
but in their present form

they are not suited for the employment of logarithms,

and we should be compelled to use a table of natural

sines and cosines, and to perform tedious numerical ope-

rations, to obtain the value of the angle.

They are, however, by the following process, trans-

formed into others well adapted to the use of logarithms.

In Eq. 34, Sec. I, Plane Trig., we have

1 + cos.A = 2cos. 2

J^4.

m, p a ,-, a -t ,
cos.a— COS.6 cos.c

Therefore, 2cos. 2\A = 1 + :
—

;
—

: •.

sm.6 sin.c

(sin.b sin.c— cos. b cos.c) + cos.a , »

sm.o sin.c

But, cos.(6 + c)
= cos.5 cos.c = sin.c sin. b, (Equation

9, Section I, Plane Trig.). By comparing this equation
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with the second member of equation (
»*

), we perceive
that equation (

m
) is readily reduced to

sin.b sin.c

Considering (b+c) as one are, and then making appli-

cation of equation ( 18 ),
Plane Trigonometry, we have,

But,

2cos.2

|J.=

b -\- c— a b -f c + a

2 2

W (—,—)
».n. (—- ')

sin. 6 sin. c

— a; and if we put S to

A -J- /»
_j_ /y

represent
—

,
we shall have,

A __ sin.# sin.(#
—

a)COS.' -— =

Or, COS.

2 sin.6 sin.c

A _ * /sm.S sm.(S
—

a)
2 Y sin.6 sin.c

' The second member of this equation gives the value

of the cosine when the radius is unify. To a greater

radius, the cosine would be greater; and in just the same

proportion as the radius increases, all the trigonometrical
lines increase

; therefore, to adapt the above equation to

our tables where the radius is M, we must write R in the

second member, as a factor; and if we put it under the

radical sign, we must write TC\

For the other angles we shall have precisely similar

equations :

That is, cos. - = \ / -fl
2
sin.ff sin.

(
-#— a)

2 v
sin.b sin.<?

cos. - = v/fl'sin-A sin7(ff=^)
2t V oinsin. a sin. c

cosS-\/s
sin.AS' sin.(#

—
c)

sin.a sin.b

(f)
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To deduce from formulae (S), formulae for the sines of

the half of each of the angles of a spherical triangle, we

proceed as follows :.

From Eq. 35, Sec. I, Plane Trig., we have

2sin.
2

JJ. = 1— cos.J..

Substituting the value of cos.A, taken from formulae

(S), and we have,

.
, . A .,

eos.a— cos.b C08.c
2sm. 2 IA = 1—

:
—.—

j .

sin. 6 sin.c

_ (sin.5 sin.e-f cos.b cos.c)
— cos.a , .

sin.6 sin.c

But, cos.(5 co
c)
— sin.5 sin.e. -f cos.5 cos.e, (Eq. 10,

Sec. I, Plane Trig.).

This equation reduces equation (
o ) to

. ., A cos.(bcoc)— cos.a

sm.o sm.c

Considering (b c* c) as a single arc, and applying equa-

tion 18, Sec. I, Plane Trig., we have

~. /a 4- b— C\ . /a + o— b\
2sin. ( )

sin.
(

-
)

Mn.'M-'
^ 2

- : •

2
• ^

sm.6 sin.c

-r» , « + &— e a + b + c a .» , a
But, — =— -- c = aS"

—
<?,

if we put S =
A A

a + b + e

2~~*

A1 a + c—b a+b-hc , ~ ,

Also, = - b = S—b.

Dividing equation (
o' ) by 2, and making these substi-

tutions, we have

sin 2M • - ^'^ ~ c
)
sin'^ ~~ J

)Bin. 2^- : 7 ? >
sm.6 sin.c

when radius is unity.
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When radius is B, we have

v
sin.b sin.c

Similarly, sin.J* =^H^EfeLtl)v
sin.fl sin.c

.
; „ v /S 2

sin.(iS'
—

«)sin.(^— 6

sin.J(7
= y —

345

And,
sin. a sin.6

IV)

To apply to our tables, B 2 must be put under the radi-

cal sign. We shall show the application of these form-

ulae, and those in group (T), hereafter.

PROPOSITION VIII.

The cosine of any of the angles of a spherical triangle, is

equal to the product of the sines of the other two angles mul-

tiplied by the cosine of the included side, minus the product

of the cosines of these other two angles.

• Let ABO be a spherical triangle, and

A rBrQ r
its supplemental or polar tri-

angle, the angles of the first being de-

noted by A, B, and 0, and the sides

opposite these angles by a, 5, c, respect-

ively ; A', B f

,
Q r

, a', V ,
c
f

, denoting the

angles and corresponding sides of the

second.

By Prop. 5, Sec. I, we have the following relations be-

tween the sides and angles of these two triangles.

A' m 180° — a,B f = 180° — b, C = 180° — c;

a' - 180° —A,V= 180° — B, c
1 = 180° — C.

The first of formulae (#), Prop. 7, when applied to the

polar triangle, gives

cos. a' = cos.5' cos.c' + sin.5; sin.c' cos.Ar
(1)



346 SPHERICAL TRIGONOMETRY.

which, by substituting the values of a', b
f

, c', and A\
becomes

cos.(180°
—A)= cos.(180°

—
B) cos.(180°

—
C) + sin.(180°

— B) sin.(180°
—

0) cos.(180°
—

a), (
2

)

But,

cos.(180°—A) =— cos.^4, etc., sin.(180°—B) = sin.B, etc. ;

and placing these values for their equals in eq. (
2

),
and

changing the sines of both members of the resulting

equation, we get

cos.J. = sin.i? sm.O cos.a— cos.i? cos. O,

which agrees with the enunciation.

By treating the other two of.formulae (£), Prop. 7, in

the same manner, we would obtain similar values for the

cosines of the other two angles of the triangle ABC;
or we may get them more easily by a simple permuta-
tion of the letters A, B, C, a, etc.

Hence, we have the three equations

cos.A = sin.i? sin. (7 cos.a — cos.B cos. C^
C08.B mm sin.A sm.O cos.b — cos.A cos. V CO
cos.Q = sin.-d sin.i? cos.c? — cos.A cos.B )

By transposition and division, these equations become

cos.A -f cos.B cos. ,o\
cos.a = {o)

sm.B sin.C
, cos.B 4- cos.A cos.

sin.A sm.C7

cos. + cos.A cos.B
cos.c = r——,

—i_

S111..A sinJ

From these we can find formulae to express the sine or

the cosine of one half of the side of a spherical triangle,

in terms of the functions of its angles ;
thus :

Add 1 to each member of eq. (3), and we have

cos.J. + cos.i? cos. O -f sin.B sin.
1 + cos.a =

sin.i? sin.6Y
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cos.A + cos.(J5
—

0)

sin.2? sin.G7

But, 1 + cos.a = 2cos. 2

\a ; hence,

, , cos.^L + cos.fi?
— C)

2cos.2 i« - 4 tf }>„ i

sin.J? sin. (7

and since cos.J. 4- cos.(2?
—

C) = 2cos.J(J. + i?— (7)cos.J

(4+a—JB) (Eq.17, Sec. I, Plane Trig.), we have

2cos. 2
la = 2cos-*(^ + B-C)coB.i(A + (7-i?)
2

sin.J5 sin.67

Make A + B + 0=2S; then A + B—C=2S—2C,
A+C—B = 2S—2B, i(A + B—C) = jS—C,an& ±{A
+C—B) = S—B\ whence

sm.jo sm.(7

4 /cos.^—<7)cos.(/SCTg5
or, cos.fa = \/ ^—

=
—

£? . >^ c
1 v sm.2?sin.<7

,
Similarly, cos.|5 = V ^/^ -

;

/

and, cos.Jc
-V^S^E!v

sin.J. sinJ

.To find the sin.Ja in terms of the functions of the

angles, we must subtract each member of eq. ( 3 ) from 1,

by which we get

H _,
cos.J. + cos.i? cos. (7

1— cos.a= l r . .

sui.jd sm.G

But, 1— cos.a= 2sin.
2

Ja ;
hence we have,

o- 2i _(sin.J5 sin. (7— cos.5 cos. (7)
— cos.JL

smJ sin.CT

Operating upon this in a manner analogous to that by
which cos.Ja was found, we get,
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t smJ sm. J

. l4 f— cos.# cos.(S-B) l $
sin.lb = \ .

——A-jy—J- V
2

) (W)
\ sin.J. sin. (7 J

. i f
— cos.#cos.(#— O)} i

Sin.Jc = { :
—

r-L_-
' I 2

t sin.J. sin.j? j

If the first equation in
( W) be divided by the first in

(V ),
we shall have,

tan ia = / -cos.ff cos.(S-A) Y J
* 2

\cos.(^~B)cos.(S— C))

And corresponding expressions may be obtained for

tan.JS and tan.Jc.

NAPIER'S ANALOGIES.

If the value of cos.c, expressed in the third equation
of group (#), Prop. 7, be substituted for cos.c, in the

second member of the first equation of the same group,
we have,

cos.a= cos.a cos.
2b -f sin.a sin. b cos.6 cos.(7-f- sin.6 sin.c cos.J.;

which, by writing for cos.
?
5 its equal, 1— sin.

2

£, becomes,

cos.a=cos.a—cos.asin.
2
6-J-sin.cz sin.6 cos. 6 cos. C+sin.b sin.c cos.-4.

Or, =— cos.a sin.
2
5-|-sin.a sin.6 cos.b cos. C+ sin.b sin.c cos.J..

Dividing through by sin. b, and transposing, we find,

cos.JL sin.c= cos.a sin.6— sin.a cos.5 cos. C;

, A cos.a sin.6— sin.a cos.5 cos. (7 , ...

hence, cos.A =
:
—. . (

1
)

sin.c

By substituting the value of cos.c, in the second of the

equations of group (S), Prop. 7; or, more simply, by
writing B for J., and b for a, in the above value, for

cos.^., we obtain,

-r>
eos.b sin.a— sin.5 cos.a cos. (7 , ON

COS.i*=
; . (2)

sin.c
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Adding equations (1) and (2), member to member,
we have,

.
. ^ sin.fa+6)— sin. (a 4- b) cos.

C0S..A + C0S.2?= a 1 . 1 L-
; ,

sin,(?

by remembering that sin.a cos.5 + cos.a sin.5= sin.(a+5).

(See Eq. (7 ), Sec. I, Plane Trig.).

Whence, cos.J. + cos.£= (1
— cos. C) E^L±3 m (

3 )

In any spherical triangle we have, (Prop. I),

sin.A : sin.i? : : sin.a : sin.5
;

And therefore, sin.J. + sin.i? : sin.jS :: sin.a + sin.6 :

sin.5.

-,-r - a ,
- t> (sin.a + sin. b) sin.i?

Hence, sm.A + smJ= i
:
—~-l .

sin. 6

t, , sin.i? sin. i .
-. i n sin.i? . ,, ,

But, — = ——
,
which value of —; ,

in the above
sm.6 sm.c sm.6

equation, gives

A . . r> (sin.a-f sin.5) sin. (7 , A ,

sm.A + sinJ= i '-
. (

4
)

sm.c

Dividing equation (4) by equation (3) ?
member by

member, we obtain,

sin.J. + sin.i? sin. sin.a + sin. b , - v
== x . (

5
)

cos.A + cos.i? 1— cos. sin.(a+ 5)

Comparing this equation with Equations (20) and (26),

Sec. I, Plane Trigonometry, we see that it can be re-

duced to

, i / a i t>\ j. i n sin.a-f sin.5 , nx
tan.}(J. + j£)

= cot.i(7x -
. /" - (6)

sin.(a -f b)

Again, from the proportion,

sin.A : sin.i? : : sin.a : sin.5,

we likewise have,

sin.A— sin.J5 : sin.I? :: sin.a— sin.5 : sin.5;

30 .
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hence, sin.J.— sin.i? = (sin.a— sin. b) -.-— = (sin.a—
sin.b

. , N sin.
sin. b)

— .

sm.<?

Dividing this equation hy equation (3), member by
member, we obtain,

sin.J.— sin.i? _ sin.C sin.a— sin. b

qoq.A + gos.B 1— cos. s'm.(a + b)

Comparing this with Equations (22) and (26), Sec. I,

Plane Trigonometry, we see that it will reduce to

t™.i(A-£) = cotiCx sin .(a + 6)

. (?)

N"ow,sin.a + sin.5=
2sin.(-^—)cos.(—^—); Eq. (15),

Sec. I, Plane Trig.).

and, sin. (a + b)
=

2sin.(-+-) cos.(^-
5

) ; Eq. (30),

Sec. I, Plane Trig.).

Dividing the first of these bj the second, we have

,a— b\
.

•
7 cos.( —s— ]sm.a H- sin. b -

. V 2 /

sin.(a + b)

'

7a + b\

"Writing the second member of this equation for its

first member in Eq (6), that equation becomes

tan. l(A + B) = cot. |g§glMj!^g. (
8

)
V

COS. J(tf+&)

By a similar operation, Eq. (7) may be reduced to

tan. UA - JK = cot. j(7
8m^(a

~"^ . ( 9 )2V ; 2

sin.J(a+6)

Equations (8) and (9) maybe resolved into the pro-

portions

cos. J(a + b) : cos. J(#
—

b) : : cot. \Q : tan. \(A -f i?) ;

sin. \(a -f 5) : sin. \{a
—

b) : : cot. J(7 : tan. J(J.
—

B).

These proportions are known as Napier's 1st and 2d
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Analogies, and may be advantageously used in the solu-

tion of spherical triangles, when two sides and the in-

cluded angle are given.

When expressed in language, these proportions fur-

nish the following rules :

1. The cosine of the half sum of any two sides of a spheri-

cal triangle is to the cosine of the half difference of the same

sides, as the cotangent of half the included angle is to the

tangent of the half sum of the other two angles.

2. The sine of the half sum of any two sides of a spheri-

cal triangle is to the sine of the half difference of the same

sides, as the cotangent of half the included angle is to the

tangent of the half difference of the other two angles.

The half sum, and the half difference of two angles
of a spherical triangle, may be found by these rules, when
two sides and the included angle are given ;

and by add-

ing the half sum to the half difference, we get the

greater of these two angles, and by subtracting the half

difference from the half sum, we get the smaller. The
third side may then be found by proportion.

We have analogous proportions applicable to the case

in which two angles and the included side of a spherical

triangle are given.

; To deduce these, let us represent the angles of the tri-

angle by A, B, and C, and the opposite sides by a, b, and

c
; A', Bf

, (7, a', b
f

, c', denoting the corresponding angles

and sides of the polar triangle.

Now, Eq. ( 9 ) is applicable to any spherical triangle,

and when applied to the polar triangle, it becomes

tan. UA' -B') - cot. l^l^S^. (»)* v ' 2
sin. \{a! + V)

But by Prop. 6, Sec. I, Spherical Geometry, we have

A f = 180°— a, .£' = 180°— b,C' = 180°—.

c,

a' = 180°—A, V = 180°— B, c'= 180°— C.

Whence, l(A
f

-B>)=l(b-a\ \(a>:
+ V)= 180°-^±^

9

j(a'
-

b')
= i(B- A\ \C = 90° - \c.
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By the substitution of these values in Eq. (™), that

equation becomes

or, tan. J(a_ b)
=
gj^fj

tan. \c, (p)

since tan. J(5
—

a)
= — tan. J(a

—
b\ and sin. J(i?

— A =
—

sin.|(J.— £).

By applying Eq. (8) to the polar triangle, and treating

the resulting equation in a manner similar to the above,

we find

Equations {p) and (q) maybe resolved into the fol-

lowing proportions.

sin. l(A + B) : sin. %{A— B) : : tan. \c : tan. J(a
—

6);

cos. }(JL + J5) : cos. J(J.
—

i?) : : tan. \c : tan. J(a -f b).

These proportions are called Napier's 3d and 4th

Analogies, and when expressed in words become the fol-

lowing rules :

1. The cosine of the half sum of any two angles of a

spherical triangle is to the cosine of the half difference of the

same angles, as the tangent of half the included side is to the

tangent of the half sum of the other two sides,

2. The sine of the half sum of any two angles of a spheri-

cal triangle is to the sine of the half difference of the same

angles, as the tangent of half the included side is to the tan-

gent of the half difference of the other two sides.

The half sum, and the half difference of two sides of

a spherical triangle, may be found by these rules, when
two angles and the included side are given ;

and by add-

ing the half sum to the half difference, we get the greater

of these sides, and by subtracting the half difference

from the half sum, we get the smaller.
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SECTION IV.

SPHERICAL TRIGONOMETRY APPLIED.

SOLUTION OF RIGHT-ANGLED SPHERICAL TRIANGLES.

A good general conception of the sphere is essential

to a practical knowledge of spherical trigonometry, and

this conception is best obtained by the examination of

an artificial globe. By tracing out upon its surface the

various forms of right-angled and oblique-angled tri-

angles, and viewing them from different points, we may
soon acquire the power of making a natural representa-

tion of them on paper, which will be found of much as-

sistance in the solution and interpretation of problems.
For instance, suppose one side of a right-angled

spherical triangle to be 56°, and the angle between this

side and the hypotenuse to be 24°. What is the hypote-

nuse, and what the other side and angle ?

A person might solve this problem by the application

of the proper equations or proportions, without really

comprehending it
;
that is, without being able to form a

distinct notion of the shape of the triangle, and of its

relation to the surface of the sphere on which it is

situated.

If we refer this triangle to the common geographical

globe, the side 56° may be laid off on the equator, or on

a meridian. In the first case, the hypotenuse will be the

arc of a great circle drawn through one extremity of the

side 56°, above or below the equator, and making with

30* x
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it an angle of 24° ;
the other side will be an arc of a

meridian. In the second case, the side 56° falling on a

meridian, the hypotenuse will be the arc of a great circle

drawn through one extremity of this side, on the right
or left of the meridian, and making with it an angle of

24°
;
the other side will be the arc of a great circle, at

right angles to the meridian in which the given side lies.

Generally speaking, the apparent form of a spherical

triangle, and consequently the manner of representing
it on paper, will differ with the position assumed for the

eye in viewing it. From whatever point we look at a

sphere, its outline is a perfect circle in the axis of which

the eye is situated; and when the eye is, as will be here-

after supposed, at an infinite distance, this circle will be

a great circle of the sphere. All great circles of the

sphere whose planes pass through the eye, will seem to

be diameters of the circle which represents the outline

of the sphere.

"We will now suppose the eye to be in the plane of the

equator, and proceed to construct our triangle on paper.
Let the great circle,

PASA', represent the out-

line of the sphere, the di-

ameter AA' the equator,

and the diameter PS the

central meridian, or the

meridian in whose plane
the eye is situated. Let

AB = 56°, represent the

given side, andA (7,making
withAB the angle BA (7=

24°, the hypotenuse, then will BO, the arc of a meridian,

be the other side at right angles to AB, and the triangle,

ABO, corresponds in all respects to the given triangle.

Again, measure off 5Q° from P to Q, draw the radius

DQ, make the arc A'G- equal to 24°, and draw the quad-

rant PRGr. The triangle PQR will also represent the

given triangle in every particular.
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We know from the construction, that D V, = 24°, is

greater than BO, and that A is greater than AB, that

is, greater than 56°.

In like manner, we know that A', = 24°, is greater
than QB, and that PB is greater than PQ, because PB
is more nearly equal toPG, =90°, thanP# is to PA, =90°.

For illustration and explanation, we also give the fol-

lowing example :

In a right-angled spherical triangle, there are given,

the hypotenuse equal to 150° 33' 20", the angle at the

base, 23° 27' 29", to find the base and the perpendicular.
Let A 1BO in the last figure, represent the triangle in

which A'0= 150° 33' 20", the L BA fO= 23° 27' 29",

and the sides A'B and BO are required.

This problem presents a right-angled spherical tri-

angle, whose base and hypotenuse are each greater than

90°
;
and in cases of this kind, let the pupil observe,

that the b^ase is greater than the hypotenuse, and the oblique

angle opposite the base, is greater than a right angle. In

all cases, a spherical triangle andits supplemental triangle

make a lune. It is 180° from one pole to its opposite,

whatever great circle be traversed. It is 180° along the

equator ABA', and also 180° along the ecliptic AOA'.
The lune always gives two triangles; and when the

sides of one of them are greater than 90°, we take the

triangle having supplemental sides
;
hence in this case

we operate on the triangle ABO.
AO is greater than AB, therefore A'B is greater than

the hypotenuse A'C.

The [_AOB is less than 90°; therefore, the adjacent

angle A'OB is greater than 90°, the two together being

equal to two right angles.

These facts are technically expressed, by saying, that

the sides and opposite angles are of the same affection.*

* Same affection : that is, both greater or both less than 90°. Dif-

ferent affection : the one greater, the other less than 90°.
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!Now, if the two sides of a right-angled spherical triangle

are of the same affection, the hypotenuse will be less than

90°
;
and if of different affection, the hypotenuse will be

greater than 90°.

If, in every instance, we make a riatural construction

of the figure, and use common judgment, it will be im-

possible to doubt whether an arc must be taken greater

or less than 90°.

We will now solve the triangle A OB. AO= 180°—
150° 33' 20" = 29° 26' 40".

To find BO, we use Eq. (3) or (13), Prop. 3, Sec. II.,

thus:

b, sin. 29° 26' 40" . 9.691594

A, sin. 23°_2T_29^ .- 9.599984

a,sin. 11° 17' 7" . 9.291578

To find AB, we use equation (
1

) or (
11

), thus :

a, tan. 11° 17' 7" . 9.300016

A, cot. 23° 27' 29" . 10.362674

c,sin. 27° 22' 32" . 9.662690

180 •

A'B=lte° 37' 28"

PRACTICAL PROBLEMS IN RIGHT-ANGLED SPHERICAL
TRIGONOMETRY.

1. In the right-angled spherical

triangle ABO, given AB = 118° 21' a-

4", and the angle A = 23° 40' 12", to

find the other parts. "~B

A (AG, 116° 17' 45"; the angle O, 100° 59' 26";

I and BO, 21° 5' 42".

2. In the right-angled spherical triangle ABO, given

AB 53° 14' 20", and the angle A 91° 25' 53", to find

the other parts.

A (AO, 91° 4' 9"; the angle O, 53° 15' 8";^n
*'\ and BO, 91° 47' 11".
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3. In the right-angled spherical triangle ABC, given
AB 102° 50' 25", and the angle A 113° 14' 87", to

find the other parts.

A (AC, 84° 51' 36"; the angle C, 101° 46" 57";
\ and BC, 113° 46' 27".

4. In the right-angled spherical triangle ABC, given
AB 48° 24' 16", and BC 59° 38' 27", to find the

other parts.

A (AC, 70° 23' 42"; the angled, 66° 20' 40";
s I and the angle (7, 52° 32' 55".

5. In the right-angled spherical triangle ABC, given
AB 151° 23' 9", and ^(7 16° 35' 14", to find the

other parts.

An§ (AC, 147° 16' 51"; the angle C, 117° 37' 21";
*

I and the angle A, 31° 52' 50".

6. In the right-angled spherical triangle ABC, given
AB 73° 4' 31", and AC 86° 12' 15," to find the other

parts.

Am (BC, 76° 51' 20"; the angled, 77° 24' 23";m '

\ and the angle C, 73° 29' 40".
'

7. 'In the right-angled spherical triangle ABC, given
AC 118° 32' 12", and AB 47° 26' 35", to find the

other parts.

A (BC, 134° 56 f

20"; the angle A, 126° 19' 2";m '

\ and the angle C, 56° 58' 44".

8. In the right-angled spherical triangle ABC, given
AB 40° 18' 23", and AC 100'° 3' 7", to find the

other parts.

A ( The angle A, 98° 38' 53"
;

the angle^'
t C, 40° 4' 6"

;
and BC, 103° 13' 52".

9. In the right-angled spherical triangle ABC, given
AC 61° 3' 22", and the angle A 49° 28' 12", to find

the other parts.

Ang ( AB, 49° 36' 6"
;
the angle C, 60° 29' 19"

;U '

I and BC, 41° 41' 32".

10. In the right-angled spherical triangle ABC, given
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AB 29° 12' 50", and the angle 37° 26' 21", to find

the other parts.

r Ambiguous ;
the angle A, 65° 27' 58", or its

Ans. < supplement; J. (7, 53° 24/ 13", or its sup-
( plement; BO, 46° 55' 2", or its supplement.

11. In the right-angled spherical triangle ABC, given
AB 100° 10' 3", and the angle 90° 14' 20", to find

the other parts.

cAO, 100° 9' 5b ff
,
or its supplement; BO,

Ans.-l 1° 19' 53", or its supplement; and the

L angle A, 1° 21' 8", or its supplement.
12. In the right-angled spherical triangle ABO, given

AB 54° 21' 35", and the angle (7 61° 2' 15", to find

the other parts.

cBO, 129° 28' 28", or its supplement; AO,
Ans.l 111° 44' 34", or its supplement; and the

I angle A, 123° 47' 44", or its supplement.
13. In the right-angled spherical triangle ABO, given

AB 121° 26' 25", and the angle O 111 14' 37", to

find the other parts.

rThe angle A, 136° 0' 3", or its supplement;
Ans. i AO, 66° 15' 38", or its supplement; and

L BO, 140° 30' 56", or its supplement.

QUADRANTAL TRIANGLES

The solution of right-angled spheri-

cal triangles includes, also, the solu-

tion of quadranted triangles, as may be
seen by inspecting the adjoining fig-

ure. When we have one quadrantal

triangle, we have four, which with one

right-angled triangle,fill up the whole hemisphere.
To effect the solution of either of the four quadrantal

triangles, APO, AP'O, A !

PO, oxA'P'O, it is sufficient

to solve the small right-angled spherical triangle ABO.
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To the half lune AP'B, we add the triangle ABO,
and we have the quadrantal triangle AP'Q', and hy sub-

tracting the same from the equal half lune APB, we
have the quadrantal triangle PAC.
When we have the side, AC, of the same triangle, we

have its supplement, A'C, which is a side of the triangles

A'PC, and A'P'C. "When we have the side, CB, of

the small triangle, by adding it to 9.0°, we have P'C, a

side of the triangle A'P'C; and subtracting it from 90°,

we have PC, & side of the triangles APC, and AP'C.

PROBLEM I.

In a quadrantal triangle, there are given the quadrantal

side, 90°, a side adjacent, 42° 21', and the angle opposite

this last side, equal to 36° 31'. Required the other parts.

By this enumeration we cannot decide whether the triangle APC
or AP'C, is the one required, for AC — 42° 21' belongs equally

to both triangles. The angle APC = AP'C = 36° 31' = AB.
We operate wholly on the triangle ABC.

To find the angle A, call it the middle part.

Then, R cos. CAB = R sin.iM C = cot. J. C tan.^5.

cot.AC = 42° 21'

tzn.AB = 36° 31'
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To find the side BO, call it the middle part.

Rs'm.BC = tan.XB cot.ACB.

tsm.AB = 36° 31' 0"

cotACB = 62° 2' 45"
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To find AB, we call it the middle part.

Rsm.AB = t&n.BC cot.BAC.

t^ixi.BC = 23° 18' 19" . 9.634251

cot.BAC = 25° 55' . 9.313423

sin.AB = 62° 26' 8" . 8.947674

180°

A'B = 117° 33' 52" = the angle AIP'C.

To find the angle 0, we call it the middle part.

E cos. G = cot.J. C tan.^a

cot.AQ = 64° 51' . 9.671634

tan.^BC = 23° 18' 19" . 9.634251

cos. C = 78° . 9.305885

180° 19' 53" .

FCA! = 101° 40' 7"

Thus we have found the side FC = 113° 18' 19" -\

The angle A'F O = 117° 33' 52" I An*.
" FCA' = 101° 40' 7")

PRACTICAL PROBLEMS.

1. In a quadrantal triangle, given the quadrantal side,

90°, a side adjacent, 67° 3', and the included angle, 49°

18', to find the other parts.

c The remaining side is 53° & 46"
;
the angle

Ans. < opposite the quadrantal side, 108° 32' 27"
;

I and the remaining angle, 60° 48' 54".

2. In a quadrantal triangle, given the quadrantal side,

90°, one angle adjacent, 118° 40' 36", and the side op-

posite this last-mentioned angle, 113° 2
;

28", to find the

other parts.

c The remaining side is 54° 38' 57" ;
the angle

Ans. < opposite, 51° 2' 35"; and the angle opposite

I the quadrantal side 72° 26' 21".

3. In a quadrantal triangle, given the quadrantal side,

31
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90°, and the two adjacent angles, one 69° 13' 46", the

other 72° 12' 4", to find the other parts.

r One of the remaining sides is 70° 8' 39", the

Arts. < other is 73° 17' 29", and the angle opposite
I the quadrantal side is 96° 13' 23".

4. In a quadrantal triangle, given the quadrantal side,

90°, one adjacent side, 86° 14' 40", and the angle oppo-
site to that side, 37° 12' 20", to find the other parts.

( The remaining side is 4° 43' 2"
;
the angle op-

Ans. < posite, 2° 51' 23"
;
and the angle opposite

I the quadrantal side, 142° 42' 2".

5. In a quadrantal triangle, given the quadrantal side,

90°, and the other two sides, one 118° 32' 16", the other

67° 48' 40", to find the other parts
— the three angles.

rThe angles are 64° 32' 21", 121° 3' 40", and

Arts. < 77° 11' 6"
;
the greater angle opposite the

I greater side, of course.

6. In a quadrantal triangle, given the quadrantal side,

90°, the angle opposite, 104° 41' 17", and one adjacent

side, 73° 21' 6", to find the other parts.

m ( Eemaining side, 49° 42' 18"
; remainingU8 '

1 angles, 47° 32' 39", and 67° 5V 13".

SOLUTION OF OBLIQUE-ANGLED SPHERICAL TRIANGLES.

All cases of oblique-angled spherical trigonometry

may be solved by right-angled Trigonometry, except
two ;

because every oblique-angled spherical triangle is

composed of the sum, or the difference, of two right-

angled spherical triangles.

When a side and two of the angles, or an angle and two

of the sides are given, to find the other parts, conform to

the following directions :

Let a perpendicular be drawn from an extremity of a

given side, and opposite a given angle or its supplement;
this will form two right-angled spherical triangles ; and
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one of them will have its hypotenuse and one of its ad-

jacent angles given, from which all its other parts can

be computed ;
and some of these parts will become as

known parts to the other triangle, from which all its

parts can be computed.
To facilitate these computations, we here give a sum-

mary of the practical truths demonstrated in the fore-

going propositions.

1. The sines of the sides of spherical triangles are propor-
tional to the sines of their opposite angles.

2. The sines of the segments of the base, made by a per-

pendicular from the opposite angle, are proportional to the

cotangents of their adjacent angles.

3. The cosines of the segments of the base are proportional

to the cosines of the adjacent sides of the triangle.

4. The tangents of the segments of the base are reciprocally

proportional to the cotangents of the segments of the vertical

angle.

5. The cosines of the angles at the base are proportional

to the sines of the corresponding segments of the vertical

angle.

6. The cosines of the segments of the vertical angle are

proportional to the cotangents of the adjoining sides of the

triangle.

The two cases in which right-angled spherical triangles
are not used, are,

1st. When the three sides are given to find the angles ;

and,

2d. "When the three angles are given to find the sides.

The first of these cases is the most important of all,

and for that reason great attention has been given to it,

and two series of equations, (2* and Z7, Prop. 7, Sec. Ill),

have been deduced to facilitate its solution.

As heretofore, let AB represent any triangle whose

angles are denoted by A, B, and
(7,

and sides by a, b,
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and c
;
the side a being opposite |__ A, the side b oppo-

site [__ B> etc *

EXAMPLES.

1. In the triangle ^LS (7, a = 70° 4' 18"; b = 63° 21' 27";
and e, 59° 16' 23" ; required the angle A.

The formula for this is the first equation in group (T,

Prop. 7, Sec. Ill), which is

cos.
A _ ,R 2 sm.Ssm.(S—a\%

'

2 \ sin.6 sin.<? /

We write the second member of this equation thus

j (-^l) (-^~) (
sin'^ ™-(#-«),

\sin.6/ Vsm.c/ v n

showing four distinct factors under the radical.

The logarithm corresponding to -—
-, is that of sin. b

r>

subtracted from 10; and of -— is that of sin.<? sub-
sin. <?

tracted from 10, which we call sin.complement.

BC=a= 70° 4' 18"

AB = c= 59° 16' 23" sin. com. .065697

AC= b = 63° 21' 27" sin. com. .048749

2)192° 42' 8"

S - 96° 21' 4" sin.

S — a = 26° 16' 46" sin.



SECTION IV. 365

To find the ande B.*&

cos.$b —sy -

sin.a sin.c

-V IS-) (^~) (-
sia -S^ sm.(S-b)V Vsin.a/ Vsin.c/

v y y

b = 63° 21' 27"
c = 59° 16' 23" sin.com. . .065697

a= 70° 4 ' 18" sin.com. . .026875

2)192° 42' 8"

S= 96° 21' 4" sin. . . 9.997326

£—.6 = 32° 59' 37" sin.. . 9.736034

2 )19.825872

}£*- 35° 4' 49" cos. . 9.912936

2

jg= 70° 9' 38"

By the other equation in formulae (T, Prop. 7, Sec.

Ill), we can find the angle O; but, for the sake of variety,

we will find the angle O by the application of the third

equation in formulae
(
U

9 Prop. 7, Sec. III).

dn,iC-\ /^^•(^-&) sin.(£-a)
v sin.6 sin.a

c = 59° 16' 23"

am 70° 4' 18" sin.com. .026817

b = 63° 21' 27" sin.com. .048479

2)192° 42' 8"

£=96° 21' 4"

S— a = 26° 16' 46" sin. . 9.646158

S— 6 = 32° 59' 37" sin. . 9.736034

2 ) 19.4574~88

J a =32° 23' 17" sin. . 9.778744

2

C=64° 46' 34"

35* .
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To show the harmony and practical utility of these two

sets of equations, we will find the angle A, from the

equationM =s/ {£i) §§ siu - (^- 6) sia -iS- c) -

a = 70° 4' 18"

b m 63° 21' 27" sin.com. .048749

c = 59° 16' 23" sin.com. .065697

2 ) 192° 42' 8"
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60° 47' 37*"

2^

angle = 121° 35' 15"

supp. = 58° 24' 45" = a of the original triangle.

In the same manner we find b = 60° 14' 25"; c = 89° V 14".

It is perhaps better to avoid this indirect process of

computing the sides of a spherical triangle when the

angles are given, by the application of the equations in

group V or W, Prop. 8, Sec. III. "We will illustrate

their use by applying the second equation in group ( W),
for computing the side b. This equation is

— cos.tf cos.(£— B)\i
sin.^6 = (-

sin.J. sin. C J

A = 38° 19' 18"

B = 48° 0' 10"

(7=121° 8' 6"

2) 207° 27' 34"

£=103° 43' 47"— cos.£= + sin.l3° 43' 47"= 9.375376

B= 48° O'lO" cos.(£— B)= 55° 43' 37"= 9.750612

(£—.#)= 55° 43' 37" 2)19.125988

square root = 9.562994

sin.J[= 38° 19' 18" =9.792445
sin.C= 121° 8' 6" = 9.932443

2) 19.724888

square root = 9.862444 = 9.862444

diff.— 1.700550

Add 10, for radius of the table, 10

Tabular sm.\b = 30° 7' 14" =1)J00550
2

I = 60° 14' 28", nearly.

PRACTICAL PROBLEMS.

1. In any triangle, ABC, whose sides are a, 5, c, given
5= 118° 2' 14", em 120° 18' 33", and the included angle
A - 27° 22' 34", to find the other parts.
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A ( a = 23° 57' 13", angle B= 91° 26' 44, and =
T^rl 102° 5' 54".

2. Given, .4 - 81° 38' 17", J5 = 70° 9' 38", and (7=
64° 46' 32", to find the sides a, b, e.

A
( a m 70° 4' 18", b = 63° 21' 27", and c = 59° 16'

AnS
'\ 23".

3. Given, the three sides, a = 93° 27' 34", b = 100° 4'

26", and e= 96° 14' 50", to find the angles A, B, and O.

A (A = 94° 39' 4", £ = 100° 32' 19", and (7= 96°
n&

t 58' 36".

4. Given, two sides, 6 = 84° 16', c = 81° 12', and the

angle C= 80° 28', to find the other parts.
r
The result is ambiguous, for we may consider

the angle B as acute or obtuse. If the angle
B is acute, then A - 97° 13' 45'', B = 83° 11'

24", and a- 96° 13' 33". IfB is obtuse, then

A = 21° 16' 44", B = 96° 48' 36", and a m
21° 19' 29".

5. Given, one side, c=64°'26', and the angles adjacent,

A = 49°, and B= 52°, to find the other parts.

(b = 45° 56' 46", a = 43° 29' 49", and (7= 98°

*'l 28' 5".

6. Given, the three sides, a= 90°, 5= 90°, c = 90°, to

find the angles A, B, and O.

Am. A = 90°, B = 90°, and (7= 90°.

7. Given, the two sides, a = 77° 25' 11", c = 128° 13'

47", and the angle C = 131° 11' 12", to find the other

parts.

An^ ( b = 84° 29' 24", A = 69° 14', and B m 72° 28'

Ans.

n 46".

8. Given, the three sides, a = 68° 34' 13", b = 59°

21' 18", and c = 112° 16' 32", to find the angles A, B,
and C.

Ans. {
A = 45 ° 26 ' 12"> B = 41 ° n/ 6 "> ° = 134 ° 54 '
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9. Given, a*= 89° 21' 87", 6== 97° 18' 39", <? = 86° 53'

46", to find A, B, and 0,

An
( A = 88° 57' 20", £ = 97° 21' 26", (7 = 86° 47'

10. Given, a m 31° 26' 41", c = 43° 22' 13", and the

angle JL=12° 16', to find the other parts.

c Ambiguous; b = 73° 7' 35", or 12° 17' 39";
AnaJ angle £=115° 0' 31", or 47° 1' 36"; (7= 16°

I 14' 27", or 163° 45' 33".

11. In a triangle, ABO, we have the angle A=56° 18'

40", .£ - 39° 10' 38"; AD, one of the segments of the

base, is 32° 54' 16". The point D falls upon the base

AB, and the angle C is obtuse. Eequired the sides of

the triangle and the angle (7.

( (7=135° 47' 56", <?=123° 4' 56 f/
,
«=90° 8' 17",

***\ b = 49° 23' 41".

12. Given, J. = 80° 10' 10", B = 58° 48' 36", (7= 91°

52' 42", to find a, b, and c.

Arts, a = 79° 38' 21", 5 = 58° 39' 16", <? = 86° 12' 52".
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SECTION V.

APPLICATIONS OF SPHERICAL TRIGONOMETRY TO
ASTRONOMY AND GEOGRAPHY.

SPHERICAL TRIGONOMETRY APPLIED TO ASTRONOMY.

Spherical Trigonometry becomes a science of incalcu-

lable importance in its connection with geography, navi-

gation, and astronomy; for neither of these subjects can

be understood without it
;
and to stimulate the student

to a study of the science, we here attempt to give him a

glimpse at some of its points of application.

Let the lines in the

annexed figure represent

circles in the heavens

above and around us.

Let Z be the zenith, or

the point just overhead,

Hch the horizon, PZR
the meridian in the hea-

vens, and P the pole of

the earth's equator; then

Ph is the latitude of the

observer, and PZ is the

co.latitude. Qcq is a portion of the equator, and the

dotted, curved line, mSf

S, parallel to the equator, is the

parallel of the sun's declination at some particular time ;

and in this figure the sun's declination is supposed to be

north. By the revolution of the earth on its axis, the
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sun is apparently brought from the horizon, at S, to the

meridian, at m; and from thence it is carried down on

the same curve, on the other side of the meridian
; and

this apparent motion of the sun (or of any other celestial

body,) makes angles at the pole P, which are in direct

proportion to their times of description.

The apparent straight line, Zc, is what is denominated,
in astronomy, the prime vertical; that is, the east and west

line through the zenith, passing through the east and west

points in the horizon.

When the latitude of the place is north, and the decli-

nation is also north, as is represented in this figure, the

sun rises and sets on the horizon to the north of the east

and west points, and the distance is measured by the arc,

cS, on the horizon.

This arc can be found by means of the right-angled

spherical triangle cqS, right-angled at q. Sq is the sun's

declination, and the angle Scq is equal to the co. latitude

of the place ;
for the angle Pch is the latitude, and the

angle Scq is its complement.
The side cq, a portion of the equator, measures the

angle cPq, the time of the sun's rising or setting before

or after six o'clock, apparent time. Thus we perceive that

this little triangle, cSq, is a very important one.

"When the sun is exactly east or west, it can be deter-

mined by the triangle ZPS''; the side PZ is known,

being the co.latitude
;
the angle PZS f

is a right angle,

and the side PS r
is the sun's polar distance. Here, then,

are the hypotenuse and side of a right-angled spherical

triangle given, from which the other parts can be com-

puted. The angle ZPS' is the time from noon, and the

side ZS f
is the sun's zenith distance at that time.

The following problems are given, to illustrate the

important applications that can be made of the right-

angled triangle cqS.
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PRACTICAL PROBLEMS.

1. At what time will the sun rise and set in Lat. 48°

"N,, when its declination is 21° N". ?

In this problem, we must make qS=21°, PA=48°=the angle

Pch. Then the angle Scq = 42°. It is required to find the arc

cq, and convert it into time at the rate of four minutes to a degree.

This will give the apparent time after six o'clock that the sun sets,

and the apparent time before six o'clock that the sun rises, (no

allowance being made for refraction).

Making cq the middle part, we have

R sin.cq = tan.21° tan.48°

tan.21° = 9.584177

tan.48° = 10.045563

sin.c2=25°14' 5" =
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when the latitude and declination are both north or both

south ; but when one is north, and the other south, the addi-

tion gives the time of sunrise, and the subtraction the time of

sunset.

2. At what time will the sun set when its declination

is 23° 12' K, and the latitude of the place is 42° 40'K ?

Ans. lh 33M 8s
, apparent time.

3. What will be the time of sunset for places whose

latitude is 42° 40' K., when the sun's declination is 15°

21' south ? • Ans. 5h lm 20s

, apparent time.

4. What will be the time of sunrise and sunset for

places whose latitude is 52° 30' !N\, when the sun's decli-

nation is 18° 42' south ?

A f Rises 7h 44m 42s
,
) ...

An8 '

(Sets 4ft 15m 18/ |
apparent time.

5. What will be the time of sunset and of sunrise at

St. Petersburgh, in lat. 59° 56', north, when the sun's

declination is 23° 24', north? What will be its ampli-
tude at these instants ? Also, at what hours will it be

#ue east and west, and what will be its altitude at such

times ?

Sun sets at 9* 13m 30* p.m. \ apparent
Sun rises at 2* 46m 30* a.m. J time.

Sun rises N. of east 1 ro 9c/ on//

Ans. i Sun sets ST. of west J

Sun is east at 6* 58OT
a.m.

Sun is west at 5h 2m p.m.

I
Alt. when east and west is 27° 19'.

ON THE APPLICATION OF OBLIQUE-ANGLED SPHERICAL
TRIANGLES.

One of the most important problems in navigation
and astronomy, is the determination of the formula for

32
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time. This problem will

be understood by the tri-

angle PZS. When the

sun is on the meridian, it

is then apparent noon.

When not on the meri-

dian, we can determine

the interval from noon,

by means of the triangle

PZS; for we can know
all its sides; and the

angle at P, changed into

time at the rate of 15° to one hour, will give the time

from apparent noon, when any particular altitude, as

TS, may have been observed. PS is known, by the sun's

declination at about the time
;
and PZ is known, if the

observer knows his latitude.

Having these three sides, we can always find the sought

angle at the pole, by the equations already given in

formulae (T, or U, Prop. 7, Sec. Ill); but these formulae

require the use of the co. latitude and the co.altitude, and

the practical navigator is very averse to taking the trou-

ble of finding the complements of arcs, when he is quite

certain that formulae can be made, comprising but the

arcs themselves.

The practical man, also, very properly demands the

most concise practical results. No matter how much
labor is spent in theorizing, provided we arrive at prac-

tical brevity ;
and for the especial accommodation of

seamen, the following formula for finding time has been

deduced.

From the symmetrical formulae
(*'), Prop. 7, Sec. HE,

we have,
cos.ZS— eos.PZ cos.PS

cos.P =
sm.PZ sm.PS

Now, in place of cos.ZS, we take siii.aST, which is, in
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fact, the same thing ;
and in place of cos.PZ, we take

sin.lat., which is also the same.

In short, let A = the altitude of the sun, L = the la-

titude of the observer, and D = the sun's polar distance.

Then, cos.P=!iBl4=
s

_in^4?^C08.L sm.D

But, 2sin.2 |P = 1—-cos.P. (See Eq. 32, Prop. 2,

Sec. I, Plane Trig.)

Therefore,

n . 51D w sin.J.—sin.L cos.D
2sm.2 JP= 1— —

cos.L sin.x>

_ (cos.L sin._D + sin.Z cos.D)
— sin.A

coa.L sin.2)

_ sin.(2y 4- D)— sin.A
cos.L sin.i)

Considering (L + D) as a single arc, and (applying

Equation 16, Sec. I, Plane Trig.), we have, after dividing

bj 2,

(L + D + A\ .
(L + 2>— A\

cos,

sin.JP =
cos.xe sm.x>

and if we assume S= g ,

A

, ,, , • o ir»
cos.aS' sin.(/S

r— A)we shall have, sin.* IP = =*A—H—J-

cos.L sm.D

Or, sin.JP
. /cos.S sin.(ff

—A)
V cos.X sin.i)

This is the final result, when the radius is unity ;
and

when the radius is greater by B, then the sin.JP will be

greater by R ; and, therefore, the value of this sine, cor-

responding to our tables, is,

sin.JP = \J(J*\ (-JL>j cos.tfsin.^— A).v Vcos.iy/ Vsin.i)/
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PRACTICAL PROBLEMS.

1. In lat. 39° 6' 20" North, when the sun's declination

was 12° 3' 10" North, the true altitude* of the sun's cen-

ter was observed to be 30° 10' 40", rising. What was

the apparent time ?
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tion of the sun was 3° 20' South. "What was the appa-
rent time ? Ans. 9

A 43m 44* a. m.

3. In latitude 21° 2' South, when the sun's declination

was 18° 32' North, the true altitude, in the afternoon,

was found to be 40° 8'. What was the apparent time

of day? Ans. 2 A 2m p. m.

SPHERICAL TRIGONOMETRY APPLIED TO GEOGRAPHY.

If we wish to find the shortest distance between two

places over the surface of the earth, when the dis-

tance is considerable, we must employ Spherical Trigo-

nometry.

Suppose the least distance between Rome and New
Orleans is required ;

we would first find the distance in

degrees and parts of a degree, and then multiply that

distance by the number of miles in one degree.

In the solution of this problem, it is supposed that we
have the latitude and longitude of both places. Then
the distances, in degrees, from the north pole of the

earth to Rome and to New Orleans are the two sides of

a spherical triangle, the difference of longitude of the

two places is the angle at the pole included between

these sides, and the problem is, to determine the third

side of a spherical triangle, when wre have two sides and

the included angle given.

Let P be the north pole, B the position of Rome, and

N that of New Orleans.

Lat. Long.

New Orleans, 29° 57' 30" N. 90° "W.

Rome, 41° 53' 54" N. 12° 28' 40" E.

Whence, PR m 48° 6' 6",

pjjf = 60° 2' 30".

Angle NPR = 102° 28' 40".

32*
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We now employ Na-

pier's 1st and 2d Analo-

gies, and find the dis-

tance, in degrees, to be

101° 31' 30". This re-

duced to miles, at the

rate of 69.16 miles to I
\

the degree, will make \ /

the distance 7021.469 \ j
miles. \ /

The angle at JV is

47° 49', and at B, 59° \^ ^"'
35' 40". ^ '"'

The third side of a spherical triangle can be found by
a single formula, as we shall see by inspecting formulae

(£') Prop. 7, Sec. III.

Let be the included angle, and c the unknown side

opposite ; then,
„ cos.c — cos.a cos.5

cos. C = ^ r—i
sin.a sin. 6

Adding 1 to each member, and reducing, observing at

the same time that 1 -j- cos. (7= 2cos. 2

J (7, we have,

«... ~ sin.a sin.5— cos.a cos.5 + cos.e
2COS.2

\C= : :

siu.a sm.6

Whence, 2cos. 2

J(7 sin.a sin.6 = cos.c— cos.(a-f b);

or, co8.c = cos. (a -f b) + 2cos. 2

\Q sin.a sin.6.

The second member of this equation is the algebraic
sum of two decimal fractions, and expresses the value of

the natural cosine of the side sought.
This case of Spherical Trigonometry, namely, that in

which two sides and the included angle are given, to

find the third side, is very extensively used in practical

astronomy, in finding the angular distance of the moon
from the sun, stars, and planets. For this purpose, the

right ascension and declination of each body must be
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found for the same moment of absolute time. Their

difference in right ascen-

sion gives the included

angle, P, at the celestial

pole. The declination

subtracted from 90°, if it

be north, and added to

90°, if it be south, will

give the sides, PZ and

PS.
In the following exam-

ples, we give the right

ascension and declination

of the bodies, and from

these the student is required to compute the distance

between them.

The right ascensions are given in time. Their differ-

ence must be changed to degrees for the included angle.

June 24, 1860.

MEAN TIME GREENWICH.

moon's

R. A. Dec.

h. m. e. •:* "

At noon, 10 51 36.5 3 33 24 N.

« 3 h., 10 58 1 2 47 43

" 6 h., 11 4 24.6 1 59 56.2

" 9 h., 11 10 47.6 1 12 6

JUPITER'S

R. A.

m. s.

4 27.6

4 34.2

4 40.8

4 47.2

Dec.

o t it

20 51 36.8 N.

20 51 17.8

20 50 58.7

20 50 39.6

Distance.

o t tf

44 8 12

45 53 47

47 39 18

49 24 43

October 6, 1860.

) R.A.

h. m. s.

At noon, 5 41 21.8

" 3 h., 5 48 30.1

" 6 h., 5 55 40

6 2 50.5

6 10 1.2

" 9 h.,

" 12 h.,

Dec.
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SECTION VI

REGULAR POLYEDRONS.

A Regular Polyedron is a polyedron having all its faces equal

and regular polygons, and all its polyedral angles equal.

The sum of all the plane angles bounding any polyedral angle is

less than four right angles ;
and as the angle of the equilateral tri-

angle is | of a right angle, we have f x 3<4, | x 4<[4, and | x 5<4 ;

but | x 6=4, | x 7]>4, and so on. Hence, it follows that three,

and only three, polyedral angles may be formed, having the equi-

lateral triangle for faces; namely, a triedral angle and polyedral

angles of four and of five faces.

There are, therefore, three distinct regular polyedrons bounded

by the equilateral triangle.

1. The Tetraedron, having four faces and four solid angles.

2. The Octaedron, having eight faces and six solid angles.

3. The Icosaedron, having twenty faces and twenty solid angles.

With right plane angles we can form only a triedral angle ; hence,

with equal squares we may bound a solid having six faces and eight

equal triedral angles. This solid is called the Hexaedron.

The angle of the regular pentagon being f of a right angle, we

have |x3<[4; but |x4>4; hence, with plane angles equal to

those of the regular pentagon, we can form only a triedral angle.

The solid bounded by twelve regular pentagons, and having twenty
solid angles, is called the Dodecaedron.

There are, then, but five regular polyedrons, viz. : The tetraedron,

the octaedron, and the icosaedron, each of which has the equilateral

triangle for faces
;
the hexaedron, whose faces are equal squares,

and the dodecaedron, whose faces are equal regular pentagons.

It is obvious that a sphere may be circumscribed about, or in-

scribed within, any of these regular solids, and conversely : and
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that these spheres will have a common center, which may also be

taken as the center of the polyedron.

Any regular polyedron may be regarded as made up of a number

of regular pyramids, whose bases are severally the faces of the

polyedron, and whose common vertex is its center. Each of these

pyramids will have, for its altitude, the radius of the inscribed

sphere; and since the volume of the pyramid is measured by one

third of the product of its base and altitude, it follows that the

volume of any regular polyedron is measured by its surface multi-

plied by one third of the radius of the inscribed sphere.

PROBLEM.

Given, the name of a regular 'polyedron, and the side of the hound-

ing polygon, to find the inclination of its faces; the radii of the in-

scribed and circumscribed spheres ; the area of its surface ; and its

volume.

Let AB be the intersection of two adjacent faces of the polye-

dron, and G and D the centers of these faces, being the center

of the polyedron. Draw the radii,

OG and OD, of the inscribed, and

]bhe radii OA and OB,of the circum-

scribed sphere ;
also from G and D

let fall the perpendiculars CE and

DE, on the edge AB, and draw OE;
then will the angle DEG measure

the inclination of the faces of the

polyedron, and the angle DEO is

one half of this inclination.

Let i" denote the inclination of the

faces, m the number of faces which

meet to form a polyedral angle, n the

number of sides in each face, and

suppose the edge of the polyedron to

be unity.

The surface of the sphere of which is the center, and radius

unity, will form, by its intersections with the planes, AOE, AOD,
DOE, the right-angled spherical triangle dae, right-angled at e.

In the right-angled triangle DEO, the angle DOE is equal to

^oil ua^jOF THF
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90°—-DEO = 90°— \I,

and is measured by the are de. The angle due, of the spherical

*
•

i
•

i * 360° v..V
,

, 360°
triangle, is equal to

,
and the angle ade = —— .

2m 2n

Now, by Napier's Rules we have

cos.c?ae = sin. ade cos.de.

-,
cos.dae , -. x

or, cos.de= _, ; (
1

)

sin.ade

and, cos.ae? = cot.dae cot.ade (2)

Substituting in eq. (
1
), for the angles dae and ade, their values,

we find

cos.360

2m /o\
Sin

-2
J=

;sof-
[ ]

2n .

Equation (3 ) gives the value of the sine of one half of the incli-

nation of the planes ;
and by means of this equation we may readily

find the radii of the inscribed and circumscribed spheres.

In the triangle BED, we have

DE= BE cot.BDE= Jcot. „,
2n

since AB = 1, and BE= \AB.
In the triangle DOE, we have

OD = DE tan. \1 = Jcot._ tan. J 7 (4)
2n

From the triangle A OD, we find

cos.DOA : 1 :: OD : OA

whence OA =
cos.DOA

But the angle DOA is measured by the arc ad) hence, substi-

tuting in this last equation the values of cos.DOA and OD, taken

from eqs. (2) and (4), we have

O4=itan.l/cot.???! X
l

X —i—2
2n cot360° cot. 360°

"ST 2w

== 4 tan. JJ tan. I!*!?!, (5)
2m

by writing tan. for—
,
and reducing,

cot.
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Equation (
4
) gives the value of OD, the radius of the inscribed

sphere, and equation (5) gives that of OA, the radius of the cir-

cumscribed sphere. The area of one of the faces of the polyedron

is equal to one half of the apothegm multiplied by the perimeter.

The apothegm, as found above, is equal to £ cot.
; hence, we

2n

360°
have JjixI cot

,
for the area of one of the faces; and multi-

2n

plying this by the number of faces of the polyedron, we will have

the expression for its entire area. The expression for the surface

multiplied by one third of the radius of the inscribed sphere, gives

the measure of the volume of the polyedron.

In what precedes, we have supposed the edge of the polyedron

to be unity. Having found the radii of the inscribed and circum-

scribed spheres, the surfaces, and the volumes of such polyedrons,

to determine the radii, surfaces, and volumes of regular polyedrons

having any edge whatever, we have merely to remember that the

homologous dimensions of similar bodies are proportional; their

surfaces are as the squares of these dimensions
;
and their volumes

as the cubes of the same.

Formula (3) gives, for the inclination of the adjacent faces of

The Tetraedron, 70°
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454893

'™

459301
! Lfrj

463665 i^n
$.467985 ifi
472263

! ^
476498 '$
480693 *£
484848 ££
488963 ^°q
493040 ^
497078 ^
501080 }*'
505045

w»
$.508974 ™?
512867 £**
516726

°~
520551

™7

524343 ^
528102 Jo?
531828 °f;
535523 °|°
539186

J?.

1 *

542819
UD

Cosine.

D.10'

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0-4
0-4

0-5
05
0-5
0.5
0.5
0-5
05
0.5
0.5
0-5
0.5
0.5
0.5
0-5
06
0-6
0.6
0-6
0-6
0.6
0.6
0.6
0-6
0-6
0-6
0-6
0-6
0.6
0.6
0-7
07

0.7
0.7
0.7

0.7
0.7
0.7

$.241921
249102
256165
263115
269956
276691
283323
289856
298292
302634
308884

$.315046
321122
327114
333025
333856
344610
35U289
355895
361430
366895

t. 372292
377622
382889
388092
393234
398315
403338
408304
413213
418088

;. 422869
427618
432315
436962
441560
446110
450613
455070
459481
463849
.468172
472454
476693
480892
485050
489170
493250
497293
501298
505267
.509200
513098
516981
520790

. 524586
528349
532089
535779
539447
543084

"Couing-.

D 10'

1197
1177
1158
1140
1122
1105
1089
1073
1057
1042
1027
1013
999
985
972
959
946
934
922
911
899
888
879
867
857
847
837
828
818
809
800
791
783
774
766
758
750
743
735
728
720
713
707
700
693
686
680
674
668
661
655
650
644
638
633
627
622
616
611
606

G 'N. sine. X. cos.l

11

11

11.758079
750898
743835
736885
730044
723309
716677
710144
703708
697366
691116
684954
678878
672886
666975
661144
655390
649711
644105
638570
633105
627708
622378
617111
611908
606766
601685
596662
591696
586787
581932

11.577131
572382
567685
563038
558440
553890
549387
544930
540519
536151

11-531828
527546
523307
519108
514950
510830
506750
502707
498702
494733

11.490800
486902
483039
479210
475414
471651
467920
464221
460553

;

456916
,

Tana:. I

0174
01774
0180;

01832
01862
01891
01920
0194!

01978
02007
02036
02065
02094
02123
02152
02181
02211
02240
02269
02298
0232
02356
02385
02414
02443
02472
02501
02530
02560
02589
02618
0264;
02676
02705
02734
02763
02792
02821
02850
02879
02908
02938
02967
02996
03025
03054
03083
03112
03141
03170
03199
03228
03257

! 03286
'< 03316
03345

: 03374
i 03403
: 03432
03461

,

03490

99385; 60
)9984 i 59

99934 58
99983! 57
99983 1 56
99982 55
99982 54
99^81 63
99980 52
99980 51

99979' 50

Jy979j 48

y9978| 48
99977 47
); 977 46

99976 45

99976 44
^9975 43

99974^ 42
99974! 41

99973 40
b972 39

99972 38
99971 37

99970 36

89969 35

99969 34

99968' 33

99967| 32

99966! 31

;9966

99985
99984
99963
99963
99962
99961
99960
99959
99959
99958
99957
99956
99955
99954
99953
99952
99952
99951
99950
99949
99948
99947
99946
99945
99944
99943
99942
99941
99940
999b9

X. cos. X.sine.
'
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TARLK II. Log. Sines and Tangents. (-2°) Natural Sines. 23

1

2
3

4

5

6
7
S

9

10
11

12

13

14

15

16

17

18

IS

20
•21

2^
23
21

25

26
27
28
29

30
31

32
33

34
35

36
37
38

39
40
41

42
43
44

45

46
47
48
49

50
51

52
53
54
55

56
57

58

59
GO

8.542819
546422
549995
553539
557054
560540
563999
567431
570836
574214
577566

8.580892
584193
587469
590721
593948
597152
600332
603489
606623
609734

8.612823
615891
618937
621962
624965
627948
630911
633854
636776
639680

8.642563
645428
648274
651102
653911
656702
659475
662230
664968
667689

8.670393
673080
675751
678405
681043
683665
686272
688863
691438
693998

8.696543
699073
701589
704090
706577
709049
711507
713952
716383
718800

Cosine.

D. 10

600
595
591
586
581
576
572
567
563
559
554
550
546
542
538
534
530
526
522
519
515
511
508
504
501
497
494
490
487
484
481
477
474
471
468
465
462
459
456
453
451
448
445
442
440
437
434
432
429
427
424
422
419
417
414
412
410
407
405
403

9.999735
999731
999726
999722
999717
999713
999708
999704
999899
999694
999689

9.999685
999680
999675
999670
999665
999660
999655
999650
999645
999640
999635
999629
999324
999619
999614
999608
999603
999597
999592
999586

^.999581
999575
999570
999564
999558
999553
999547
999541
999535
999529
999524
999518
999512
999506
999500
999493
999487
999481
999475
999469
999463
939456
999450
999443
999437
999431
999424
999418
999411
999404

D. 10 y

0.7
0.7
0-7
0-8
0-8
0-8
0.8
0.8
0-8
0-8
0.8
0-8
0-8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9

Tansr.

0.9
0.9
0-9
0-9
0-9
0-9
0-9
0-9
0.9
0-9
0.9
0.9
0.9
0.9

1

1

1

1-0
1.0
1-0
1-0
1.0
1.0
1.0
1.0
1.0
1.0
1.1

1

1

1

1

1

1

8.543084
546691
550268
653817
557336
560828
564291
567727
571137
574520
577877

8.581208
584514
587795
591051
594283
597492
600677
603839
608978
610094

8.613189
616262
619313
622343
625352
628340
631308
634256
637184
640093

8.642982
645853
648704
651537
654352
657149
659928
662689
665433
668160

8.670870
673563
676239
678900
681544
684172
6 6784
689381
691963
694529
.697081
699617
702139
704246
707140
709618
702083
714534
716972
719396

"Coiaiisr.

D. W
602
59;}

591
587
582
577
573
568
564
559
555
551
547
543
539
535
531
527
523
519
516
512
508
505
501
498
495
491
488
485
482
478
475
472
469
466
463
460
457
454
453
449
446
443
442
438
435
433
430
428
425
423
420
418
415
413
411
408
406
404

Cotang. |

IN. sine

11

11.456916
453309
449732
446183
442664
439172
435709
432273
428863
425480
422123
,418792
415486
412205
408949
405717
402508
399323
396161
393022
389906

11.386811
383738
380687

,

377657
I

374648
371660
368692
365744
362816
359907

11.357018
354147
351296
348463 !

345648
j

342851 i

340072
337311
334567
331840

11.329130
326437
323761
321100
318456
315828
313216
310819
308037
305471

11.302919
300383

j

297861
j

295354
|

292860
;

290382
i

287917 !

285465 !

283028
280604

03490
03519
03548
03577
03606
03635
,03664
03693
03723
03752
03781
03810
03839
03868
03897
03926
03955
03984
04013
04042
04071
04100
03129
04159
04188
04217
04246
04275
04304
04333

N. cos

99.939

99938
99937
99936
99935
99934
99933
99932
99931
99930
99929
99927
99926
99925
99924
99923
99922
99921
99919
99918
99917
99916
99915
99913
99912
99911

99910
99909
99907
99908

04362J99905
04391
04420
04449
04478
04507
04536
04565-99896
04594
04623
04653
04682
04711
04740
04769
04798
04827
04856
04885
04914
04943
04972
05001
05030
05059
05088
05117
05146
05175
05205
05234

N. cos. N.siire

99904
99902
99901
99900
99898
9989'

99894
99893
99892
99890
99889
99888
99886
99885
99883
99882
99881
99879
99878
99876
99875
99873
99872
99870
99869
99867
99866
99864
99863

60
59
58
57
56
55
54
58
52
51

5C
49
48
47
46
45
44
43
42
41

40
39
38
37
36
35
34
33
32
31

80
29
28
27
28
25
24
23
22
21

20
19

18

17

16

15

14
13

12

10

9

8
7

6
5
4

3

2
1

87 Degrees.



24 Log. Sines and Tangents. (3°; Natural Sines. TABLE II.

1

2
3

4
5

6

7

8
B

10
11

12

13

14

15

16

17

18

&
20
21

22
23
24
25

26
27

38
29
30
31

32

33
34
35
30
3?

38
39

40
41

42
43
44
45

46
4?
48
49
50
51

52

53
54
55
56

57

58
59
60

Shit-.

i. 718809
721204
723595
725972
728337
730888
733027
735354
737667
739969
742259

1.744536

746802
749055
751297
753528
755747
757955
760151
762337
764511

;. 766675
768828
770970
773101
775223
777333
779434
781524
783605
785675

1.787736
789787
791828
793859
795881
797894
799897
801892
803876
805852

i. 8078 19

809777
811726
813667
815599
817522
819436
821343
823240
825130

1.827011
828884
830749
832607
834456
836297
838130
839956
841774
843585

Cosine.

401
398
396
394
392
390
388
386
384
382
380
378
376
374
372
370
368
366
364
362
361
359
357
355
353
352
350
348
347
345
343
342
340
339
337
335
334
332
331
329
328
326
325
323
322
320
319
318
316
315
313
312
311
309
308
307
306
304
303
302

Cosine.

.999404
999398
999391
999384
999378
999371
999364
999357
999350
999343
999336
.999329
999322
999315
999308
999301
999294
999286
999279
999272
999265
.999257
999250
999242
999235
999227
999220
999212
999205
999197
999189
.999181
999174
999166
999158
999150
999142
999134
999126
999118
999110
.999102
999094
999086
999077
999069
999061
999053
999044
999036
999027
.999019
999010
999002
998993
998984
998976
998967
998958
998950
998941

Sin«\

D. 10' Cotang. |(N.sine

.719396
721806
724204
726588
728959
731317
733663
735996
738317
740S26
742922
.745207
747479
749740
751989
754227
756453
758668
760872
763065
765246
.767417
769578
771727
773866
775995
778114
780222
782320
784408
786486
.788554
790613
792662
794701
796731
798752
800763
802765
804858
806742
.808717
810683
812641
814589
816529
818461
820384
822298
824205
826103
.827992
829874
831748
833613
835471
837321
839163
840998
842825
844644

Cotang.

402
399
397
395
393
391
389
387
385
383
381
379
377
375
373
371
369
367
365
364
362
360
358
356
355
353
351
350
348
346
345
343
341
340
338
337
335
334
332
331
329
328
326
325
323
322
320
319
318
316
315
314
312
311
310
308
307
306
304
303

11.280604
278194
275796
273412
271041
268683
266337
264004
261683
259374
257078

11.254793
252521
250260
248011
245773
243547
241332
239128
236935
234754

11.232583
230422
228273
226134
224005
221886
219778
217680
215592
213514

11.211446
209387
207338
205299
203269
201248
199237
197235
195242
193258
191283
189317
187359
185411
183471
181539
179616
177702
175795
173897

11.172008
170126
168252
166387
164529
162679
160837
159002
157175
155356

05234
05263
05292
05321
05350
05379
05408
05437
05466
05495
05524
05553
05582
05611
05640
05669
05698
05727
05756
05785
05814
05844
05873
05902
05931
05960
05989
06018
06047
06076
06105
06134
06163
06192
08221
06250
06279
06308
06337
06366
06395
08424
06453
06482
06511
08540
08569
06598
0662'

,06656

06685
06714
06743
06773
06802

1
06831

1
06860

! 06889

1

06918

|

0694
!
06976

Tang. II N. cos. X.sine.

N. cos

99863
99861
99860
99858
99857
99855
99854
99852
99851
99849
99847
99846
99844
99842
99841
99839
99838
99836
99834
99833
99831
99829
99827
99826
99824
99822
99821
99819
99817
99815
99813
99812
99810
99808
99806
99804
99803
99801
99799
99797
99795
99793
99792
99790
99788
99786
99784
99782
99780
99778
99776
99774
99772
99770
99768
99766
99764
99762
99760
99758
99756
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TABLE H. Log. Sines and Tangents. (4°) Naiu.-al Sines.

Sino.

8.843585
845387
847183
848971
850751
852525
854291
856049
857801
859546
861283

8.863014
864738
866455
868165
869868
871565
873255
874938
876615
878285

8.879949
881607
883258
884903
886542
888174
889801
891421
893035
894643

8.896246
897842
899432
901017
902596
904169
905736
907297
908853
910404

8.911949
913488
915022
916550
918073
919591
921103
922610
924112
925609

8.927100
928587
930088
931544
933015
934481
935942
937398
938850
94u296

Cosine

1). 10"

287
286
285
284
283
282
281
279
279
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
257
256
255
254
253
252
251
250
249
249
248
247
248
245
244
243
243
242
241

Cosine.

1.998941

998932
998923
998914
998905
998896
998887
998878
998869
998860
993851

1.998841
998832
998823
998813
993804
998795
998785
998776
998766
998757

1.998747

998738
998728
998718
998708
998699
998689
998679
998669
998659

1.998649

998639
998629
998619
998609
998599
998589
998578
998568
998558
.998548
998537
998527
998516
998508
998495
998485
998474
998464
998453
.998442
998431
998421
998410
998399
f98388
998377
998366
998355
998344

Sine.

I). 10"

1.5
1.5
1.5
1.5
1-5
1-5
1.5
1.5

1-5
1-5
1.5
1.5
1-5

1.6
1

1

1

1

1

1

1

J

1

1

1.6
1-6
1.6
1.7
1.7

1.7
1.7

1.7
1.7
1.7
1.7
1.7
1.7
17
1.7
1.7
1.7
1.7
1.8
1.8
1.8
1.8
1.8
1.8
1

1

8
8

1.8

Tang.

>. 844644
846455
848260
850057
851846
853628
855403
857171
858932
860686
862433

5.864173
865906
867632
869351
871064
872770
874469
876162
877849
879529

i. 881202
882869
884530
886185
887833
889476
891112
892742
894366
895984

i. 897596
899203
900803
902398
903987
905570
907147
908719
910285
911846

i. 913401
914951
916495
918034
919568
921096
922619
924136
925649
927156

!. 928658
930155
931647
933134
934616
936093
937565
939032
940494
941952

Cotanjr.

D. 10/

302
301
299
298
29/
29 >

295
293
292
291
290
289
288
287
285
284
283
282
281
280
279
278
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
256
256
255
254
253
252
251
250
249
24y
248
247
246
245
244
244
243

Cotang. : N. sine. X. cos

11.155356
153545
151740
149943
148164
146372
144597
142829
141068
139314
137567

11.135827
134094
132368
130649
128936
127230
125531
123838
122151
120471

11.118798
117131
115470
113815
112167
110524
108888
1 07258
105634
104016

11.102404
100797
099197
097602
096013
094430
092853
091281
089715
088154

11.086599
085049
083505
081966
080432
078904
077381
075864
074351
072844

11.071342
089845
068353
066866
065384
063907
062435
060968
059506
058048

Tang-.

06976
07005
07034
07083
07092
07121
07150
07179
07208
07237
07266

99756
99754
99752
99750
99748
99746
99744
99742
99740
99738! 51

99736 50

07295 99734

i

1

08339 99652

•108368 99649
I 08397 99647
'i 08426 99644
; 08455 99642

|:
08484 99689

•0851399637
1 08542 99635

:' 0857199632
1 108600 99630
II 08629 9y627

1

108658 99625
08687 99622
108716 99619

49

07324 99731

07353 99729

07382 99727

0741199725
07440 99723

07469 99721

07498 99719

07527 99716

07556 99714

07585 99712

07614 99710

07643 99708

j 07672 99705

!
107701 99703

!

i 07730 99701J 34

!

;

07759 99699 33

1 107788 99696:82
!i 07817 99694 31

1

1

07846 99692 30
!! 07875 996891 29
i

1 07904 99387, 28

1 107933 99885 27

;

1
07962 99683

10799199680
! 108020 99878

,,08049 99676
i! 08078 99873

J 08107 4*9671

108136 99668

1108165 99666! 19

!

|

08194 99864' 18

;i 08223 99661 1 17

j J08252 99659 16

!; 08281 99657| 15

108310 99654 14

.\. cus. N.sine. '
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26 Log. Sines and Tangents. (5°) Natural Sines.

—1
1tabu: i?.

D. 10"

3.940290
941 738

943174
944693
946034
947453
948874
950287
951693
953100
954499

3.955894
957284
958370
960052
961429
962801
964170
965534
968893
968249

3.969800
970947
972289
973628
974932
976293
977619
978941
980259
981573

8.982S33
984189
985491
988789
938083
989374
990360
991943
993222
994497

3.995768
997036
998299
999580

3.009816
002039
003318
004563
005805
097044

9.003278
009510
010737
011982
013182
014400
015613
016824
018031
019235

Cosine.

240
239
239
238
237
236
235
235
234
233
232
232
231
230
229
229
228
227
227
226
225
224
224
223
222
222
221
220
220
219
218
218
217
216
216
215
214
214
213
212
212
211
211
210
209
209
203
208
207
203
203
205
205
204
203
203
2U2
202
201
201

9. 993344
993333
998322
993311
998300
998289
998277
998266
998255
998243
998232
.998220
998209
998197
998186
998174
998163
998151
998139
998128
998116
.998104
998092
998030
998088
998053
998044
998032
998020
998008
997998
.997984
997972
997959
997947
997935
997922
997910
997897
997885
997872
.997860
997847
997835
997822
997809
997 797

997784
997771
997758
997745
.997732
997719
997706
997693
997680
997667
997654
997641
997628
997614

Sine.

D. 10'

1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.2
2.2
2.2
2.2
2.2
2.2

.941952
943404
944852
948295
947734
949168
950597
952021
953441
954856
956267
.957674
959075
960473
981866
983255
984639
966019
967394
968766
970133
.971496
972855
974209
975560
976908
978248
979586
980921
982251
983577
.984899
986217
987532
988842
990149
991451
992750
994045
995337
996624
.997908
999188
.000465
001738
003007
004272
005534
008792
008047
009298
•010546
011790
013031
014268
015502
016732
017959
019183
020403
021620

Cotang.

0.
10"| Coiang. N. sine.

242
241
240
240
239
238
237
237
236
235
234
234
233
232
231
231
230
229
229
228
227
226
22S
225
224
224
223
222
222
221
220
220
219
218
218
217
216
216
215
215
214
213
213
212
211
211
210
210
209
208
208
207
207
206
206
205
204
204
203
203

ill. 058048
05i>596

055148
053705
052266
050832
049403
047979
046559
045144
043733

11.042326
040925
039527
038134
036745
035361
033981
032606
031234
029867

11.028504
027145
025791
024440
023094
021752
020414
019079
017749
016423

11.015101
013783
012468
011158
009851
008549
007250
005955
004663
003376

11.002092
000812

t0. 999535
998262
996998
995728
994466
993208
991953
990702

10.989454
988210
686969
985732
984498
983268
983041
980817
979597
978380

0871699619
08745 99617

i

087 74

108808
! 08831

108860

99614
99612
99609
99607

0888999604
: 108918

jl
08947

!

J

08976
09006

!

!

09034

1

1 09063

;

109092
'109121

99802
99599
99596
99594
99591
99588
99586
99583

I

09179
i

!

09208
i 109237
'09266

0915099580
99578
99575
99572
99570

i 09295199567
i 09324 89564
: 09353

j

09382|99559
10941 1199556

! 09440J99553
1

09469199551

09498J99548
09527:99545

59
5H
57

56
55

54
53
52
51

50
49
48
47
46
45
44
43
42
41

40
39
33

37
36
o5

34
33

32

Tana.

I:09556|99542l31

|

i 09585199540

09614)99537
! 109642199534
'0967199531
; |09700i99528
'09729 99626

!' 03758 99523

j

09787 99520
!

|

09816 99517
1

1
09846(99614

ji
09874

i
i 09903:99508

;
109932 9950';

l| 09961 (99503
03990 99500

10019J99497
| 10048 99494

ii 10077
! 110103 99488

|
10135 99485

I 10164 99482
I 10192)99479
'110221 99470
1025099473
10279 99470

I
10308 99467
110337 99464
10366 99401

1
10398 99458
110424 99455
10453 99452

N. cos. NVir>f.
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TABLE II. Log. Sines and Tangents. (6°) Natural Sines.

Cotang. j

N. sine. N. cos!Tang. iD. 10''

021620
022834
024044
025251
026455
027655
028852
030046
031237
032425
033609
,034791

035969
037144
038316
039485
040651
041813
.042973

044130
045284

, 046434
047582
048727
049869
051008
052144
053277
054407
055535
056659
,057781
058900
060016
061130
062240
083348
064453
065556
066655
067752
,068846
069038
071027
072113
073197
074278
075356
076432
077505
078576
.079644
080710
081773
082833
083891
084947
086000
087050
088098
089144

Cotang.

202
202
201
201
200
199
199
198
198
197
197
196
196
195
195
194
194
193
193
192
192
191

191

190
190
189
189
188
188
187
187
186
186
185
185
185
184
184
183
183
182
182
181
181

181

180
180
179
179
178
178
178
177

177
176
176
175
175
175
174

10.9783801,
977166

j

975956
97474911
973545

|

j

972345 1

1

971148 I;

969954;!
968763

!|

967575 1 1

966391
1

!

10.965209
'

964031
962856

961684'|
960515
959349
958187
957027
955870
954716

10-953566
952418
951273
950131

94.8992
947856
946723
945593
944465
943341

10.942219
941100
939984
938870
937760
936652
935547
934444
933345
932248

10-931154
930062
928973
927887
926803
925722
924644
923568
922495
921424

10-920356
919290
918227
917167
916109
915053
914000
912950
911902

!

910856

I Tang!

0453
0482
0511
0540
0569
059;

0626
0655
0684
0713
0742
0771

0800
0829
0858
0887
0916
0945
0973
1002
1031

1060
1089
1118
1147
1176

1205
1234
1263
1291

1320
1349
1378
1407
1436
1465
1494
1523
1552
1580

1638
1667

1696
1725
1754
1783
1812
1840
1869
1898
192'

1956
1985
2014
2043
2071
2100
2129
2158
218

99452
>9449

99446
99443
99440
99437
99434
99431
9y428
99424
99421
99418
99415
99412
99409
99406
99402
99399
99396
99393
99390
99386
99383
99380
99377
H9374
99370
99367
99364
99360
99357
99354
99351
99347
99344
99341
99337
99334
99331
99327

160999324
99320
99317
99314
99310
99307
99303
99300
99297
99293
99290
99286
99283
99279
99276
99272
99269
992o5
99262
99258
99266

N. ens. N.sine
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28 Log. Sines and Tangents. (7°) Natural Sines. TABLE II.

Sine.

9.035894
086922
087947
038970
089990
091008
092024
093037
094047
095056
096082

9.097065
098066
099065
100082
101056
102048
103037
104025
105010
105992

9.106973
107951
108927
109901
110873
111842
112809
113774
114737
115698

9.116656
117613
118567
119519
120469
121417
122362
123306
124248
125187

9.126125
127060
127993
128925
129854
130781
131706
132630
133551
134470

9.135387
136303
137216
138128
139037
139944
140850
141754
142655
143555

Cosine

D. 10'

171

171

170
170
170
169
169
168
168
168
167
167
166
166
166
165
165

164
164
164
163
163
163
162
162
162
161

161

160
160
160
109

159
159
158
158
158
157
157
157
156
156
156
155
155
154
154
154
153
153
153
152
152
152
152
151

151

151

150
150

Cosine. D. lu'

.996751

996735
996720
996704
996688
996673
996657
996641
996625
996610
996594
.996578
996562
996546
996530
996514

996482
996465
996449
996433
.996417
996400
996384
996368
906351
996335
996318
996302
996285
996269
.996252
996235
996219
996202
996185
996168
996151
996134
996117
996100
.996083
996066
996049
996032
996015
995998
995980
995963
995946
995928
.995911
995894
995878
995859
995841
995823
995808
995788
995771
995753

2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.9
2.9
2.9
2.9
2.9

2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9

Sine.

Taiiy;.

.089144
090187
091228
092266
093302
094336
095367
096395
097422
098446
099468

, 100487
101504
102519
103532
104542
105550
106556
107559
108560
109559
.110556
111551
112543
113533
114521
115507
116491
117472
118462
119429

. 120404
121377
122348
123317
124284
125249
126211
127172
128130
129087
.130041
130994
131944
132893
133839
134784
135726
136667
137605
138542

. 139476
140409
141340
142269
143196
144121
145044
145966
146885
147803

Cotang.

D. ju'

174
173
173

173
172
172
171

171

171

170
170
169
169
169
168
168
168
167
167
166
166
166
165

166
165
164
164
164
163
163
162
162
162
161

161

161

160
160
160
159
159
159
158
158
158
157
157
157
166
156
156
155
155
155
154
154
154
153
153
153

uiaag. kN. sine. N. cos

10.910356
909813
908772
907734
906698
905664
904633
903605
902578
901554
900532

10.899513
898496
897481
896468
895458
894450
893444
892441
891440
890441

10.889444
888449
887457
886467
885479
884493
883509
882528
881548
880571

10.879596
878623
877652
876683
875716
874761
873789
872828
871870
870913

10.869959
869006
868056
867107
866161
865216
864274
863333
862395
861458

10.860524
859591
858660
857731
856804
855879
854956
854034
853115
852197

12187
12216
12245
12274
12302
12331
12360
12389
12418
12447
12476
12504
12533
12562
12591

12620
12649
12678
12708
12735
12764
12793
12822
12851

12880
12908
12937
12966
12995
13024
13053
13081
13110
13139
13168
13197
13226
13254
13283
13312
13341
13370

99255
99251
99248
99244
99240
99237
99233
99230
9226

99222
99219
99215
99211
99208
99204
99200
99197
99193
99189
99180
99182
99178
99175
99171
99167
99163
99160
99156
99152
99148
99144
99141
99137
99133
99129
99125,

99122"
99118
99114
99110
99106
)9102

13899 f99098

13427
13456
13485
13514
13543
13572
13600
13629
13658
13687
13716
13744
13773
13802
13831
13860
13889
1S917

TllllL

99094
99091
99087
99083
99079
99076
99071
99067
99063
99059
99055
)9051

J9047

59043

99039
)9035

J9031
J9027

60
59

58
57

56
55

64
53

62
51

50
49
48
47
46
45

44
43
42

41

40

39
38
37
36
35
34

33
32
31

3D

29
28
27
26
25
24
•,'3

22
21

20
19

18

17

16

15

14

13

12

11

10

9

S

7

6
5

4

3

2
1
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30 Log. Sines and Tangents. (9?) Natural Sines. TABLE II.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

V
18

19

20
•2!

22
23
24
25
26
27

28
29

30
31

32
53

34

35

38
39

49
41

42

43
44
45
49
47
4o
48
50
51

52

53

54
55

56
57

58
59

60

Sine.

.194332
195129
195925
196/19
197511

198302
199091
199879
200366
201451
202234
.203017
203797
204577
205354
208131
203906
207679
203452
209222
209992
.210760
211526
212291
213055
213818
214579
215338
216097
216854
217009
.218363
219116
219868
220318
221307
222115
222861
223600
224349
225092
,225833
226573
227311
228048
228784
229518
230252
230984
231714
232444
.233172
233899
234625
235349
236073
236795
237515
238235
238953
239070

Cosine.

I). 10' Cosine. D. 10

133
133
132
132
132
132
131

131

131

131

130
130
130
130
129
129

129
129
128
128
128
128
127
127
127
127

127

126
126
126

126
125
125
125
125
125

124
124
124
124
123

123

123

123
123

122
122
122

122
122

121

121

121

121

120
120
120
120
120
119

'.994620

994600
994580
994560
994540
994519
994499
994479
994459
994438
991418

'.994397
99437/

994357
994336
994316
994295
994274
994254
994233
994212
.994191
994171
994150
994129
99410c
994087
994066
994045
994024
994003
.993981
993960
993939
993918
993896
9938/5
99385 i

993832
993811
993789
.993768
993746
993725
993703
993681
993660
993638
993616
993594
993572
.993550
994528
993506
993484
993462
993440
993418
-993396
993374
993351

Sine.

3.3
3.3
3.3
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7

Tung.

.199713
20J529
201345
202159
202971
203782
204592
205400
206207
207013
20/817
.208619
209420
210220
211018
211815
212611
213405
214198
214989
215780
.216568
217356
218142
218926
219710
220492
221272
222052
222830
223606

^.224382
225156
225929
226700
227471
228239
229007
229773
230539
231302
.232065
232826
233586
234345
235103
235859
236614
237368
238120
238872
.239622
240371
241118
241865
242610
243354
244097
244839
245579
246319

Cotang.

1). 10'

136
136
136

135
135

135
135
134
134
134
134
133
133
133
133

133
132
132
132
132
131

131

131

131

130
130
130
130
130
129
129
129
129
129

128
128
128
128
127
127
127
127
127

126
126

126
126
126
125
125
125
125
125
124
124
124
124
124
123
123

Cotang. i IN. sine. N. cos.l

10.800287
799471
798655
797841
797029
796218
795403
794600
793793
792987
792183

10.791381
790580
789780
788982
788185
787389
786595
785802
735011
784220

10.783432
782644
781858
781074
780290
779503
778728
777948
777170
776394

10.775618
774844
774071
773300
772529
771761
770993
770227
769461
768698

10.767935
767174
766414
765655
764897
764141
763386
762632
761880
761128

10.760378
759629
758882
758135
757390
756646
755903
755161
754421
753681

15643
15672
15701

15730
1575b
15787
15816
15845
15873
15902
15931
15959
159P8
16017
16046
16074
16103
16132
16160

j

16189
16218
16246

769
93764
98760
98755
93/51
98746
93741
98737
98732
98728
98723
98718
98714
98709
98704
98700
^8695
98690
98686
98681
98676
98671

16275 93667
16304193662

16333J98U57
163;il98C,52

1639098648
16419 98643
16447 198638

||
16476 98633

j!
16505 98629

i!
16533198624

!ll6562:98(il9

ij
16591 198614
1662098609

i! 16648:98604
1667 7 198600

Tani

j!
16708 98595

116734^8690
1
16763^8585

j|
16792 98580

ij 16820,98575
I

! 16849198570

16878J98566
1690698661
1693698686
16964 9:-; 551

I 16992 98646
li 17021 98541
17050 98536

ill7078|98531

I!
17107 98626
17136 98521
1716498516
17193 98511
17222 98506
17250 98501
17279 98496
17308 98491
17336198486

17365J98481
V cos.l N.sine,
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TABLE II. Log. Sines and Tangents. (10°) Natural Sines. 31

9
i

Sine.

239670
240385
241101
241814
342526
243037
243947
244656
245363
246069
246775

1.247478
248181
248883
249583
250282
250980
251677
252373
253037
253761
.254453
255144
255834
256523
257211
257898
258583
259268
259951
200633

'.261314
261994
262673
263351

264Q27
264703
265377
266051
266723
267395

L268065
268 734

269402
270039
270/35
271400
272064
272726
273388
274049
.274708
275367
276024
276681
277337
277991
278644
279297
279948
280599

Cosine.

D. lo"| Cosine,

1.993351

993329
993307
993285
993262
993240
993217
993195
993172
993149
993127

'.993104

993081
993059
993036
993013
992990
992967
992944
992921
992898
•992875
992852
993829
992806
992783
992759
992736
992713
992690
992666
.992643
992619
992596
992572
992549
992525
992501
992478
992454
992430
.992406
992382
992359
992335
992311
992287
992263
992239
992214
992190
.992166
992142
992117
992093
992069
992044
992020
991996
991971
991947

119
119
119
119
118
118
118
118
118
117
117
117
117
117
116
116
116
116
116
116
115
115
115
115

115
114
114
114
114
114
113
113
113
113
113
113
112
112
112
112
112
111

111

111

111

111
111

110
110
110
110
110
110
109
109
109
109
109
109
108

Sine.

D. W
3.7
3.7
3.7
3.7
3.7
3.7
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3

3

3

3

3

3

3,

3.8
3.8
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0

4.1
4.1

Tan'

,246319
247057
247794
248530
249264
249998
250730
251461
252191
252920
253648
.254374
255100
255824
256547
257269
257990
258710
259429
260146
260863
.261578
262292
263005
263717
264428
265138
265847
266555
267261
267967
.268671
269375
270077
270779
271479
272178
272876
273573
274269
274964
.275658
276351
277043
277734
278424
279113
279801
280488
281174
281858
.282542
283225
283907
284588
285268
285947
286624
287301
287977
288652

D. 10"| Cotang.

123
123
123
122
122
122
122
122
121

121

121

121

121

120
120
120
120
120
120
119
119
119

119
119
118
118
118
118
118
118
117
117
117
117
117
116
116
116
116
116
116
115
115
115
115
115
115
114
114
114
114
114
114
113
113
113
113
113
113
112

Cotang.

Degrees.

IN.sine.lN. cos,

10.753681
75v943
75^205
751470
750736
750002
749270
748539
747809
747080
746352

10.745626
744900
744176
743453
742731
742010
741290
740571
739854
739137

10.738422
737708
736995
736283
735572
734862
734153
733445
732739
732033

10.731329
730625
729923
729221
728521

jj

727822
727124
726427
725731
725036
724342
723649
722957
722266
721576
720887
720199
719512
718826
718142

10.717458
716775
716093
715412
714732
714053
713376
712699
712023
711348

.7365198481

10

Tang.

98476
98471
98466
98461
98455
98450
98445
98440
98435
98430
98425
98420
98414
98409
98404
98399
983y4
98389
98383
98378
98373
98368
98362
98357
98S52
98347
98341
98336
98331
98325

18252.98320
18281 '983 J 5

18309 !983l0
IS338:9ho04
18367198299
1S395I98294
1842498288
18452 98283

17393
17422
17451
17479
17508
17537
17565
17594
17623
17651
17680
17708
17737
17766
17794
17823
17852
17880
17909
17937
17966
17995
18023
18052
18081
18109
18138
18166
18195
18224

18481
18509
18538
18567
18595
18624
18652
18681

98277
98272
98267
98261
98256
98250
98245
98240

18710 98234

18738;98229
18 767 198223

18795J98218
1882498212
1885298207
1888198201
1891098196
18938 98190

18967;98185

18995i'98179
19024I98174
19052198168
19081 [98163

N. cos. N.s-ine.



> and Tangents. (11°) Natural Bines. TABLE II.

Sin. ID. 10

1

2

3

4

5

6
7

4

9

10

11

12

13

14

15

16

r
18
19

20
21

22
23
24
20
2G
2;

24
•J')

30
31

32

33

34
30

36
3^

38
39
40
41

42
43
41
45

46
4?

48
49

50
51

52
53
54

55
56
57

53
59
60

.280599
281248
281897
282544
283190
283836
284480
285124
285766
286408
287048
.287687
288326
288964
289600
290236
290870
291504
292137
292768
293399
.294029
294658
295286
295913
296539
29/164
297788
298412
299034
299655
.300276
300895
301514
302132
302748
303364
303979
304593
305207
305819
.306430
307041
307650
308259
308867
309474
310080
310685
311289
311893
.312495
313097
313698
314297
314897
315495
316092
316689
317284
317879

('(.•sine

103
103
108
108
108
107

107
107
107
107
107
106
106
106
106
106
106
105
105
105
105
105
105
104
104
104
104
104
104
104
103
103
103
103
103
103
102
102
102
102
102
102
102
101

101

101

101

101

101

100
100
100
100
100
100
100
100
99
99
99

ID. i,

.991947
991922
991897
991873
991848
991823
991799
991774
991749
991724
991699
.991674
991649
991824
991599
991574
991549
991524
991498
991473
991448
.991422
991397
991372
991346
991321
991295
991270
991244
991218
991193
.991167
991141
991115
991090
991064
991038
991012
990986
990960
990934
990908
990842
990855
990829
990803
990777
990750
990724
690697
990671
.990644
990618
990591
990565
990538
990511
990485
990458
990431
990404

Sine.

4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.5
4.5
4.5
4.5

,288652
24932
289999
290671
291342
292013
292682
293350
294017
294684
295349
.298013
298677
297339
298001
298662
299322
299980
300638
301295
301951
.302607
303261
303914'
304567
305218
305869
306519
307168
307815
308463
.309109
309754
310398
311042
311685
312327
312967
313608
314247
314885
.315523
316159
316795
317430
318064
318697
319329
319961
320592
321222
.321851
322479
323106
323733
324358
324983
325607
326231
326853
327475

D. IK)

112
112
112
112
112
111

111

111
111

111
111

111

110
110
110
110
110
110
109
109
109
109
109
109
109
108
108
108
108
108
108
107
107
107
107
107
107

107
106
106
106
106
106
106
108
105
105
105
105
105
105
105
104
104
104
104
104
104
104
104

Cotan<>;.

10

10.711344
71<J674

710001
709329
708658
707947
707318
706650
705983
705316
704651
702987
703323
702661
701999

,

701338
!

700678
700020
699362
698705
698049

10-697393
696739
696086
695433
694782
694131
693481
692832
692185
691537

10-690891
690246
689602
688958
688315
687673
687033
686392

'

685753
685115

10-684477
683841
683205
682570
681936
681303
680671
680039
679408
678778

10-678149 I

677521
676894 I

676267 ;

675642
676017
674393
673769
673147
672525 I

19138
19167

19195
19224
19252
19281
19309
19338
19366
19395
19423
19452
19481
19509
19538
19566
19595
19623
19652
19680
19709
19737
19766
19794
19823
19851
19880
19908
19937
19965
19994
20022
20051
20079
20108
20136
20165
20193
20222
20250
20279
20305
20336
20364
20393
120421
! 20450
1 20478
; 20507

120535
• 20563
20592

1

20620

J

20649
20677
20? 06

! 20734

j

20763
'20791

98152
94146
94140
98135
98129
98124
98118
98112
98107
98101
98096
98090
98084
98079
98073
98067
98061
98056
98050 40

Tan: i| X. cos. N-aine.

98044
98039
98033
98027
98021
98016
98010
98004
97998
97992
97987
97981
97975
97969
97963
97958
97952
97946
97940
97934
97928
97922
97916
97910
97905
97899
97893
97887
97881
97875
97869
9)863
97857
97851
7845

97839
97833
97827
97821
97815

39
38
37

36
35

34
33
32
31

30
29
28
27

26
25

24
28
22

21

20

19

18

17

16

15

14

13

12

11

10
9
4

7

6

6

4
3

2

1

78 Decrees.



TABLE II. Log. Sines and Tangents. (12°) Natural Sines. 33

11

12

13

14

15

16

17

18

19

20
21
2-2

23

24

26
27

28
29

30
31

82
33
34

I 35
36
37

38
39

40
41

42
43

44
45

46

47

46
49
50
61

52

53
64

55

56
5 7

68
59

60

Sine.

.317879
318473
319 )i.

319658
3-20249

329840
321430
322019
322607
323194
323780
.324366
324950
325534
326117
326709
327281
327862

3284.42
32;)J21

329599
.330176
330753
331329
331903
332478
333051
333624
334195
334766
335337
.335903
336475
337043
337610
338176
338742
339306
339871
340434
340996
,341558
342119
342679
343239
343797
344355
344912
345469
346024
346579
,347134
347687
348240
348792
349343
349893
3 j0443
350992
351540
352088

L). 10'

99.0
93.8
98.7
98.6
98.4
98.3
98.2
98.0
97.9
97.7
97.6
97.5
97.3
97.2
97.0
96.9
96.8
96.6
96.5
96.4
96.2
96.1
96.0
95.8
95.7
95.6
95.4
95.3
95.2
95.0
94.9
94.8
94.6
94.5
94.4
94.3
94.1
94.0

Cosine.

5

4
2

1

93.0
92.9
92.7
92.6
92.5
92.4
92.2
92.1
92.0
91.9
91.7
91.6
91.5
91.4
91.3

Oesine.

.990404
990378
999351
999324
990297
993270
990243
999215
990188
999161
999134
.999107
990079
990052
999925
989997
989970
989942
989915
989887
989860
.989832
939804
989777
989749
989721
989893
989665
989837
989609
989582
.989553
989525
989497
989469
989441
989413
989384
989356
989328
989300
.989271
989243
989214
989186
989157
989128
989100
989071
989042
989014
.988985
988956
988927

988869
988840
988811
988782
988753
988724

Sine.

L>. 10

4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4

4
4

4
4
4

4

4
4.6
4.6
4.6
4.6
4.6
4.6
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.9
4.9
4.9

9.327474
328095
328715
329334
329953
330570
331187
331803
332418
333033
333646
334259
334871
335482
336093
336702
337311
337919
338527
339133
339739
340344
340948
341552
342155
342757
343358
343958
344558
345157
345755

9.346353
346949
347545
348141
348735
349329
349922
350514
351106
351697
352287
352876
353465
354053
354640
355227
355813
356398
356982
357566

9.358149
358731
359313
359893
360474
361053
361632
362210
362787
363364

Cotang.

0. lu

103

103

103

103
103
103
103
102
102

102
102
102
102
102
102
101

101

101

101

101

101

101

101

100
100
100
100
100
100
100
100
99.

99.

99,

99,

99,

Cocang.

10.672526
671905
671285
670666
670047
689430
668813
668197
667582
666967
666354

10.665741
665129
664518
663907
663298
662689
662081
661473
660867
660261

10.659656
659052
658448
657845
657243
656642
656042
655442
654843
654245

10.653647
653051
652455
651859
651265
650671
650078
649486
648894
648303

10.647713
647124
646535
645947
645360
644773
644187
643602
643018
642434

10.641851
641269
640687
640107
639526
638947
638368
637790
637213
636636

N. sine. iN . cos.

20791 97815
20820 97809
20848 97803
20877 97797
20905 97791
20933 97784
20962 97778
20990 97772
21019 97766
21047 97760
21076 97754
21104 9774-
21132 97742
2116197735
21189 97729
21218 97723
21246 97717
21275 97711
21303 97705
21331 97698
21360 97692
21388 97686
21417 97689
21445 97673
21474 97667
21502 97661
2153097655
21559 97648

ii 21587 97642
21616 97636
21644 97630
21672 97623
21701 ;976l7
21729 97611

j|
21758 97604
21786 97598

II 21814 97592
i!21843:97585

1

21871 197579
!21899

!

97573
1
121928 197566
1121956 97560
! |2198597553
1 122013197547

,'22041:97541
122070:97534
122098 97528

|

! 22126 97521

i|
22155 97515

I' 22183 '97508

122212 97502
1 22240|97496
i 22268 97489
22297197483
22325197476

22353|97470
2238297463
22410197457
22438 97450
22467
22495

Tang. N. cos. N.sine.

97444
97437

77 Degrees.



Log. Sines and Tangents. (13°) Natural Sines. TABLE II.

Sine. D.
1U"|

Cosine.

1

2

3

4
5

6

7
8

9

10
11

1-2

13

14

15

lb

1?

IS

19

20
21

>:

23
24
25
26
27

28
29

30
31

32

33

34
35

3(3

37

38
39
40
41

42
43
44
45

46
47

48
49
50
61
62
53
54
55
56
67
58
59
GO

.352088
352635
353181
353726
354271
354815
355358
355901
356443
356984
357524
.358064
358603
359141
359578
360215
360752
361287
361822
362356
3W889
.363422
363954
364485
365016
365546
366075
366604
367131
367659
368185
.368711
369236
369761
370285
370808
371330
371852
372373
372894
373414

. 373933
374452
3749/0
375487
376003
376519
377035
377549
378063
378577

.379089
379601
380113
380624
381134
381643
382152
382661
383168
383675

Cosine.

91.1
91.0
90.9
90.8
90.7
90.5
90.4
90.3
90.2
90.1
89.9
89.8
89.7
89.6
89.5
89.3
89.2
89.1
89.0
88.9
88.8
88.7
88.5
88.4
88.3
88.2
88.1
88.0
87.9
87.7
87.6
87.5
87.4
87.3
87.2
87.1
87.0
86.9
86.7
86.6
86.5
86.4
86.3
86.2-

86.1
86.0
85.9
85.8
85.7
85.6
85.4
85.3
§5.2
85.1
85.0
84.9
84.8
84.7
84.6
84.5

.988724
938695
988666
988636
988607
988578
988548
988519
988489
988460
988430
.988401
988371
988342
988312
988282
988252
988223
988193
988163
988133
.988103
988073
988043
988013
987983
987953
987922
987892
987862
987832
.987801
987771
987740
987710
987679
987649
987618
987588
987557
987526
.987496
987465
987434
987403
987372
987341
987310
987279
987248
987217

'.987186
987155
987124
987092
987061
987030
986998
986967
986936
986904

Sine.

). 10'

4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
5.0
5.0
5.0
5.0
5.0
5.0
6.0
5.0
6.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.1
6.1
5.1
5.1
5.1

1

1

1

2

2
5.2
5.2
5.2
5.2
5.2
5.2
6.2
5.2
5.2
5.2
5.2
5.2
6.2
6.2

I'm;.

9.363364
363940
364515
365090
365664
366237
366810
367382
367953
368524
369094

9.369663
370232
370799
371367
371933
372499
373084
373629
374193
374756
375319
375881
376442
377003
377563
378122
378681
379239
379797
380354

9.380910
381466
382020
382575
383129
383682
384234
384786
385337
385888
386438
386987
387536
388084
388631
389178
389724
390270
390815
391360

9.391903
392447
392989
393531
394073
394614
395154
395694
396233
396771

Cotam

D. 10"| (Jotanj*. i N.sine -N. cos,

10

10

10

10

10

10

636636
636060
635485
634910
634336
633763
633190
632618
632047
631476
630906
630337
629768
629201
628633
628067
627501
626936
626371
625807
625244
624681
624119
623558
622997
622437
621878
621319
620761
620203
619646
,619090
618534
617980
617425
616871
616318
615766
615214
614663
614112
,613562
613013
612464
611916
611369
610822
610276
609730
60J185
603640
.608097
607553
607011
606469
605927
605386
604846
604306
603767
603229

TangT

i
22495

: 22523

|

22552
! 22580

|

22608
1
22637

!

22665

|

22693
! 22722
22750 97378
22778
22807
22835

22977
23005
23033
23062

97437
97430
97424
97417
97411
97404
97398
97391
97384

9737M
97365
97358

22863'97351
22892197345
22920 973L-8

22948 97331
97325
97318
97311
97304

23090 97298
23118
23146
23175
23203
23231
23260
23288
23316
23345
23373
23401
23429
23458
23486
23514
23542
23571
23599
23627
23656
23684
23712
23740 97141
23769
23797
23825

23938

97291
97*84
97278
97271
97264
9/257
97251
97244
97237
97230
97223
97217
97210
97203
97 96
97189
;>7182

97176
97169
97162
97155
97148

97134
97127
97120

23853 97113
23882 97103
23910 97100

•J7093

23966 9 70^6

23995 97079
24023 970/2
24051 97065
24079 97053
24108 97051
2413b 97044
24164 97037
2419-2 97030

n. cos. |n.

\Q Degrees.



TABLE II. Log. Sines and Tangents. (14°) Natural Sines. 35

9
10

11

12

13

14

15

16

17

18

19

20
21

22

23
24

25
26
27

28
29
SO
31

32
33

34
35

86
3?

3d
30
40
41

42

40

44
45

46
47
43
40

50
51

52'

53

54

55

50
57

58

50

60

9.

.333675
384182
384687
385102
385697
380201
386704
38720/
387709
388210
388711
.389211
389711
390210
390708
391206
391703
392199
392695
393191
393685
.394179
394673
395166
395658
396150
396641
397132
397621
398111
398000
.399088
399575
400062
400549
401035
401520
402005
402489
402972
403455
403938
404420
404901
405382
405862
406341
406820
407299
407777
408254
408731
409207
409682
410157
410632
411100
411579
412052
412524
412996

Cosine.

L>. lu'

84.4
84.3
84.2
81.1
81.0
83.9
83.8
83.7
S3. 6
83.5
33.4
83.3
83.2
83.1
83.0
82.8
82.7
82.6
82.5
82.4
82.3
82.2
82.1
82.0
81.9
81.8
81.7
81.7
81,6
81.5
81.4
81.3
81.2
81.1
81.0
80.9
80.8
80.7
80.6
80.5
80.4
80.3
80.2
80.1
80.0
79.9
79.8
79.7
7y.6
79.5
79.4
79.4
79.3
79.2
79.1
79.0
78.9
78.8
78.7
78.6

9.

.986904
986873
986841
986809
986778
936746
986714
986683
986651
980619
986587
.986555
986523
986491
986459
986427
986395
986363
986331
986299
986266
.986234
986202
986169
986137
986104
986072
986039
986007
985974
985942
985909
985876
985843
985811
985778
985745
985712
985679
985646
985613
985580
985547
985514
985480
985447
985414
985380
985347
985314
985280
985247
985213
985180
985146
985113
985079
985045
985011
984978
984944

D. lu ;

Sim

5.2
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.4
5.4
5.4
5.4
5.4
6.4
6.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.5
5.5
5.5
5.5
5.5
5.5
5.6
5.6
5.5
5.5
5.5
5.5
5.5
5.6
5.5
5.6
5.6
5.6
5.6

Taas

5.6
5.6
5.6
5.6

9.396771
397309
397846
398383
398919
399455
399990
400524
401058
401591
402124

9.402656
403187
403718
404249
404778
405308
405836
406364
406892
407419

9.407945
408471
408997
409521
410045
410569
411092
411615
412137
412658
413179
413699
414219
414738
415257
415775
416293
416810
417326
417842

9.418358
418873
419387
419901
420415
420927
421440
421952
422463
422974

9.423484
423993
424503
425011
425519
426027
426534
427041
427547
428052

Cotang.

D. 10'1

89.6
89.6
89.5
89.4
89.3
89.2
8.9.1

89.0
88.9
88.8
88.7
88.6
88.5
88.4
88.3
88.2
88". 1

88.0
87.9
87.8
87.7
87.6
87.5
87.4
87.4
87.3
87.2
87.1
87.0
86.9
86.8
86.7
86.6
86.5
86.4
86.4
86.3"

86.2
86.1
86.0
85.9
85.8
85.7
85.6
85.5
85.5
85.4
85.3
85.2
85.1
85.0
84.9
84.8
84.8
84.7
84.6
84.5
84.4
84.3
84.3

Cotang. X. sin-\ N. cos.

10.603229! 124192
602691

1

1

24220
602154

;

24249
601617

1

1 24277

601081!! 24305

030
97023
97015
97003
97001

600545
6000101
59J476

|

598942 i

598409 !

597876 !

10.597344!
596813 !

596282
!

595751 I

595222 :

594692 !

504164 i

5936361
• 593108

|

592581
10.592055

24333:90994
24302
24390
24418
24446

96987
96980
96973
96906

24474^6959

»£

591529
|

24813

24503
24531
24559
24587
24615
24644
24672
24700
24728
24756
24784

691003
590479

!

589955
j

589431 !

588908
588385
687863
587342

10.586821
586301
585781
585262
584743
584225
583707
583190
582674
582158

10.581642
581127
680613
680099
679585
579073 !

678560
!

578048 !

577537 I

577026 I

10.576516
576007
575497

24841
24869
24897 96851
24925

i 24954
' ll 24982

25010
25038
25006
25094
25122
25151
25179
25207
25235
25263
25291
25320
25348
25376
25404
25432
25460
25488
25516
25545
25573
25601
25629
25657

j

25685

574989! 25713
574481! 25741
573973! 25766
673466! 25798
572959

!
25826

572453
1

1 25854
571948

;

1 25882

"Tang. | IN

96952
96945
96937
96930
96923
96916
96909
96902
96894
96887
96880
96873
96866
96858

96844
96837
96829
96822
96815
96807
96800
96793
96786
96778
96771
96764
96756
96749
96742
96734
96727
96719
96712
96705
96697
96690
96682
96675
96667
96660
96653
96645
96638
96630
96623
96615
96608
96600
96593

N.nlne.

75 Degrees.
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26 Log. Sines and Tangents. (15°) Natural Sines. TABLE II.

bine.

9.412993
413467
413938
414408
414878
415347
415815
416283
416751-

417217
417684

9.418150
418615
419079
419544
420007
420470
420933
421395
421857.
422318

9.422778
423238
4236*7
424158
424615
425073
425530
425987
426443
426899

9.427354
427809
428263
428717
429170
429823
430075
430527
430978
431429

9.431879
432329
432778
433226
433675
434122
434569
435016
435462
435908
436353
436798
437242
437686
438129
438572
439014
439456
439897
440338

D.
1U"|

78.5
78.4
78.3
78.3
re.s
78-1
78.0
a .a

77.8
77.7
77.6
77.5
77.4
77.3
77.3
77.2
77.1
77.0
76.9
76.8
76.7
76.7
76.6
76.5
76.4
76.3
76.2
76.1
76.0
76.0
75.9
75.8
75.7
75.6
76

75

75

75

75

75

75
74.9
74.9
74.8
74
74
74
74

74
74
74
74.1
74.0
74.0
73.9
73.8
73.7
73.6
73.6
73.5

Cosine,
j

.984944
984910
984876
984842
984808
984774
984740
984706
984672
984637
984603
.984569
984535
984500
981466
984432
984397
984363
984328
984294
984259
.984224
984190
984155
984120
984085
984050
984015
983981
983946
983911
.983875
983840
983805
983770
983735
983700
983664
983629
983594
983558
.983523
983487
983452
983416
983381
983345
983309
983273
983238
983202
.983166
983130
983094
983058
983022
982986
982950
982914
982878
982842

D. 10'

5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0

9.428052
428557
429082
429566
430070
430573
431075
431577
432079
432580
433080
433580
434080
434579
435078
435576
436073
436570
437067
437563
438059

9.438554
439048;
439543
440036
440529
441022
441514
442008
442497
442988

9.443479
443968
444458
444947
445435
445923
446411
446898
447384
447870
.448356
448841
449326
449810
450294
450777
451260
451743
452225
452706
.453187
453668
454148
454628
455107
455586
456064
456542
457019
457496

Cotang.

D. 10" N. sin

10.571948
571443
570938
570434
569930
569427
538925
568423
567921
567420
566920

10.566420
565920
565421
584922
564424
563927
563430
562933
562437
561941

10.561446
580952
560457
559964
559471
558978
558486
557994
557503
557012

10.556521
556032
555542
555053
554565
554077
553589
553102
552616
552130

10.551644
551159
550674
550190
549706
549223
548740
548257
547775
547294

10.546813
546332
545852
545372
544893
544414
543936
543458
542981
542504

25882
25910
2593-
2596o
25994
26022
26050
26079
26107
26135
26163
26191
26219

|26247
i
26275

|

26303

|

26331

j

26359
! 26387
26415
26443
26471

26500
26528
26556
26584
26612
26640
26668
26696
26724

I 26752
26780

;

26808
26836

! 26864

|

26892
26920
26948
26976
27004
27032
27060
27088
27116
27144
27172
27200
27228
27256
27
27312
27340
27368
27396
27424
27452
274S0
27508
27536
27564

96593
96585
96578
96570
96562
96555
96547
96540
96532
96524
96517
96509
96502
96494
96486
98479
96471
96463
96456
96448
96440
96433
96425
96417
96410
9ti402

96394
96386
96379
96371
96363
96355
96347
96340
96332
96324
96316
96308
96301
96293
96285
96277
96269
96261
96253
96246
96238
96230
96222
96214

284 96206
96198
96190
96182
96174
96166
96158
96150
96142
96134
96126

Tang. |

N. coP.jN.gme,

74 Degrees.
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38 Log. Sines and Tangents. (17°) Natural Sines. TABLE II.

Sine. |D. 10"

9

10
1!

12

13

14

16

10

17

18

19

20
21

22

23
24
25

26
27

28
29
30
31

3-2

33

34
86

86
37

38
39
40
41

42
43
44
45
40

47
48
40

50
51

5-2

53
54
55

56
57

58
59

00

9.465935
406348
466761
467173
467585
467996
468407
468817
469227
469637
470046

9.470455
470863
471271
471679
472036
472492
472898
473304
473710
474115

9.474519
474923
475327
475730
476133
476536
476938
477340
477741
478142

9.478542
478942
479342
479741
480140
480539
480937
481334
481731
482128

9.482525
482921
483316
483712
484107
484501
484895
485289
485682
486075

9.486467
486860
487251
487643
488034
488424
488814
489204
489593
489982

Cosine.

68.8
68.8
68.7
68.6
68.5
68.5
68.4
68.3
68.3
68.2
68.1
68.0
68.0
67.9
67.8
67.8
67.7
67.6
67.6
67.5
67.4
67.4
67.3
67.2
67.2
67.1
67.0
66.9
66.9
66.8
66.7
66.7
66.6
66.5
66.5
66.4
66.3
66.3
66.2
66.1
66.1
66.0
65.9
65.9
65.8
65.7
65.7
65.6
65.5
65.5
65.4
66.3
65.3
65.2
65.1
65.1
65.0
65.0
64.9
64.8

Cosine.

9.980596
980558
980519
980480
980442
980403
980364
980325
980288
980247
980208

). 980169-
980130
980091
980052
980012
979973
979934
979895
979855
979816

>. 979776
979737
979697
979658
979618
979579
979539
979499
979459
979420

9.979380
979340
979300
979260
979220
979180
979140
979100
979059
979019

9.978979
978939
978898
978858
978817
978777
978736
978696
978655
978615

|

978574
978533
978493
978452
978411
978370
978329
978288
978247
978208

"sTneT

D. 10"

6.4
6.4
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7

Tain

6.7
6.7
6.7
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8
6.8

9.485339
485791
486242
486693
487143
487593
488043
488492
488941
489390
489838

9.490286
490733
491180
491627
492073
492519
492965
493410
493854
494299

9.494743
495186
495630
496073
496515
496957
497399
497841
468282
498722

9.499163
499603
500042
500481
500920
501359
501797
602235
502672
503109

9.503546
503982
504418
504854
505289
505724
508159
506593
507027
507460

'.507893

603326
508759
509191
609622
510054
510485
610916
511346
511776

Cotang.

D. 10'

75.3
75.2
75.1
75.1
75.0
74.9
74.9
74.8
74.7
74.7
74.6
74.6
74.5
74.4
74.4
74.3
74.3
74.2
74.1
74.0
74.0
74.0
73.9
73.8
73.7
73.7
73.6
73.6
73.5
73.4
73.4
73.3
73.3
73.2
73.1
73.1
73.0
73.0
72.9
72.8
72.8
72.7
72.7
72.6
72.5
72.5
72.4
72.4
72.3
72.2
72.2
72.1
72.1
72.0
71.9
71.9
71.8
71.8
71.7
71.6

Cotanu-

. i N. sine. IN. cos.

10.514661
J

I 29237
514209 129265
613758 I 29293
513307

jj
29321

512857! '29348
612407

|

29376
611957;; 29404
511508 129432
5110591! 29460
510610 |29487

95622
95613
95605
95596
95588
95579
95571
95562
95554

5101621129515195645
10.509714 129543

609267
608820
508373
507927
507481
507035
503590
508146
605701

10.505257
504814
504370
503927
503485
503043
502601
502159
601718
501278

10.500837
600397
499958
499519
499080
498641
498203
497765
497328
496891

10.496454
496018
495582
495146
494711
494276
493841
493407
492973

492540!!
10.492107

491674
491241
490809
490378
489946
489515
489084
488654
488224

! 29571
! 29599

|

29626
! 29654
i 29682
129710

|

29737
I 29765
1

29793
29821

95630 I 60

29849-95441

|

29876

j
29904

j

29932
! 29960
12998/
(30015

j

30043
1300/1
30098

I

30126
130154
130182
I 30209
30237
30265
30292
30320
30348
30376
30403
30431
30459
30486
30514
30542
30570
3059/
30625
30653
30680
30708
30736
3076 a

30791
30819
30846
30374
30902

95536
95528
95519
95511
95502
95493
95485
95476
95467
95459
95450

95433
95424
95415
95407
95398
95389
95380
95372
95363
95354
95345
95337
95328
95319
95310
95301
95293
95284
95275
95266
95257
95248
95240
95231
95222
95213
95204
95195
95186
95177
95168
95159
95150
95142
95133
95124
95115
95106

Tan<: N. cos. N.si

59
58
57
56
55
54
53
52

61

50
49
48
47
48
45
44
43
42

41

40
39
38

87
36
35
34
33
82
81

30
29
28
27
26
26
•24

23

22
21

20
19

18

17

16

16
14

13

12

11

10
9

8

7

6

5

4

8

2

1

79 Degrees.



TABLE IT. jog. Sines and Tangents. (18°) Natural Sines. 39

JSllK'.

9.489982
490371
490759
491147
491535
491922
492308
492695
493081
493466
493851

9.494236
494621
495005
495388
495772
496154
496537
496919
497301
497682

9.498064
498444
498825
499204
499584
499963
500342
500721
501099
501476

9.501854
502231
502607
502984
503360
503735
504110
504485
504860
505234

9.505608
505981
506354
506727
507099
507471
507843
508214
508585
508956

9.509326
509696
510065
610434
510803
511172
511540
511907
512275
512642

D. 10'

Cosine.

64.8
64.8
64.7
64.6
64.6
64.5
64.4
64.4
64.3
64.2
64.2
64.1
64.1
64.0
63.9
63.9
63.8
63.7
63.7
63.6
63.6
63.5
63.4
63.4
63.3
63.2
63.2
63.1
63.1
63.0
62.9
62.9
62.8
62.8
62.7
62.6
62.6
62.5
62.5
62.4
62.3
62.3
62.2
62.2
62.1
62.0
62.0
61.9
61.9
61.8
61.8
61.7
61.6
61.6
61.5
61.5
61.4
61.3
61.3
61.2

Cosine.

.978206
978165
978124
978083
978042
978001
977959
977918
977877
977835
977794
.977752
977711
977669
977628
977586
977544
977503
977461
977419
977377

9.977335
977293
977251
977209
977167
977125
977083
977041
976999
976957

9.976914
976872
976830
976787
976745
976702
976660
976617
976574
976532
976489
976446
976404
976361
976318
976275
976232
976189
976146
976103
976060
976017
975974
975930
975887
975844
975800
975757
975714
975670

D. 10"

Sine.

6.8
6.8
6.8
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1

7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1

7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2

Tang.

9.511776
512206
512635
513064
513493
513921
514349
514777
515204
515631
516057

9.516484
516910
517335
517761
518185
518610
519034
519458
519882 I

520305
520728
521151
621573
621995
522417
522838
523259
523680
624100
624520
524939
525359
525778
526197
626615
627033
527451
627868
528285
528702
629119
529535
529950
530366
530781
531196
531611
532025
532439
532853
533266
533679
534092
534504
534916
635328
535739
536150
536561
636972

D. 10"

Cotang.

Cotang. IN.sine.iN.

10

10-47927S

10

10

10

488224 !

487794 I

487365
j

486936 :

486507
!

486079 !

485651
|

485223
|

484796
484369

j

483943
I

483516
|

483090
j

482665 I

482239 I

481815
j

481390
|

480966
480542

J

480118
479695
479272
478849
478427
478005
47?583
477162
476741
476320
475900
475480
.476061
474641
474222
473803
473385
472967
472549
472132
471715
471298
.470881
470465
470050
469634
469219
468804
468389
467975
467561
467147
.466734
466321
465908
465496
465084
464672
464261
463850
463439
463028

Tang.

30929
30957
30985
31012
31040
31068
31095
31123
31151
31178
31206
31233
31261
31289
31316
31344

31399
31427
31454
31482
31510
31537
31565
31593
31620
31648
31675
31703

95097
95088
95079
95070
95061
95052
95043
95033
95024
95015
95006
94997
94988
94979
94970
94961

31372i94952
94943
94933
94924
94915
94906
94897
94888
94878
94869
94860
94851
94842

31730;94832
31758194823
31786194814

31813J94805
31841194795

31868|94786
31896194777
31923194768
3 1951 194758

31979|94749
32006194740

32034;94730
32061 194721

3208994712
32116194702
32144(94693
32171194684

32199J94674
32227 94665
32250 !94656

32282J94646
3230994637
32337
32364
32392
32419
32447
32474
32502
32529
32557

94627
94618
94609
94599
94590
94580
94571
94561
94552

N. cos.jN.sine,
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43 Log. Sines and Tangents. (19°) Natural Sines. TABLE II.



TABLE II. Log. Sines and Tangents. (2C°) Natural Sines. 11

534399
534745
53509-2

635438
535783
536129
536474
536818
537163
53750/

9.537851
538194
538538
538880
539223
539565
539907
540249
540590
540931

9.541272
541613
541953
542293
542632
542971
543310
543649
543987
544325

9.544663
545000
545338
545674
546011
546347
546683
547019
547354
547689

9.548024
548359
548693
549027
549360
549693
550026
550359
550692
551024

9.551356
551687
552018
552349
552680
553010
553341
553(570

554000
554329

Cosine.

D. 10" Cosine. D. lu

57.8
57.7
57.7
57-7
57
57
5 V

57

57
57.3
57.3
57.2
57.2
57.1
57.1
57.0
57.0
56.9
56.9
56.8
56.8
56.7
56.7
56.6
56.6
56.5
56.5
56.4
56.4
56.3
56.3
56.2
56.2
56.1
56.1
56.0
56.0
55.9
55.9
55.8
55.8
55.7
55.7
55.6
55.6
55.5
55.5
55.4
55.4
55.3
55.3
55.2
55.2
55.2
55.1
55.1
55.0
55.0
54.9
54.9

9.972986
972940
972894
972848
972802
972755
972 70 J

9J 2663
972617
972570
972524

9.972478
972431
9*2385
972338
972291
972245
972198
972151
972105
972058

9.972011
971964
971917
971870
971823
971776
971729
971682
971635
971588

9.971540
971493
971446
971398
971351
971303
971256
971208
971161
971113

9.971066
971018
970970
970922
970874
970827
970779
970731
970683
970635

9.970586
970538
970490
970442
970394
970345
970297
970249
970200
970152

Sine.

7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9

7.9
7.9
7.9
7.9
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.1
8.1
8.1
8.1

Tang.

9.561066
561459
561851
562244
562636
563028
563419
563811
564202
564592
564983

9.565373
565763
566153
566542
566932
667320
567709
568098
568486
568873

9.569261
569648
570035
570422
570809
571195
571581
571967
572352
572738

9.573123
573507
573892
574276
574660
575044
575427
575810
676193
576576

9.576958
577341
577723
578104
578486
578867
579248
579629
580009
580389

9.580769
581149
581528
581907
582286
582665
683043
583422
583800
684177

Cotam

D. 10

65.5
65.4
65.4
65 3

65.3
65.3
65.2
65.2
65.1
65.1
65.0
65.0
64.9
64.9
64.9
64 8
64.8
64.7
64.7
64.6
64.6
64.5
64.5
64.5
64.4
64.4
64.3
64.3
64.2
64.2
64.2
64.1
64.1
64.0
64.0
63.9
63.9
63.9
63.8
63.8
63.7
63.7
63.6
63.6
63.6
63.5
63.5
63.4
63.4
63.4
63.3
63.3
63.2
63.2
63.2
63.1
63.1
63.0
63.0
62.9

Cotang.

10.438934
438541
438149
437756
437364
436972
436581
436189
435798
435408
435017

10.434627
434237
433847
433458
433068
432680
432291
431902
431514
431127

10.430739
430352
429965
429578
42919*1

428805
428419
428033
427648
427262

10.426877
426493
426108
425724
425340
424956
424573
424190
423807
423424

10.423041
422659
422277
421896
421514
421133
420752
420371
419991
419611

10.419231
418851
418472
418093
417714
417335
416957
416578
416200
415823

Tang. I

N. sine.

1

34202
!
34229

!
34257

! 34284
3431

!

34339
i 34366
! 34393
i 34421
! 34448
34475
34503
34530
3455
34584
34612
34639
34666
34694
34721
34748
34775
34803
34830
34857
34884
34912
34939
34966
34993
35021
35048
35075
35102
35130
35157
35184
35211
35239
35266
35293
35320
35347
35375
35402
35429
35456
35484
35511
35538
35565
35592
35619
35647
35674
35701
35728
35755
35782
35810
35837

N.coa.

93969
93959
93949
93939
93929
93919
93909
93899
93889
93879
93869
93859
93849
93839
93829
93819
93809
93799
93789
93779
93769
93759
93748
93738
93728
93718
93708
93698
93688
93677
93667
93657
93647
93637
93626
93616
93606
93596
93585
93575
93565
93555
93544
93534
93524
93514
93503
93493
93483
93472
93462
93452
93441
93431
93420
93410
93400
93389
93379
93368
93358

N. cos. N.sine.

69 Degrees.



4:2 Log. Sines and Tangents. (21°) Natural Sines. TABLE II.

1

2

3

4

5

6

7
8

9

10
11

12

13

14

15

16

17

18

19

•20

21

22
23
24
25
26
27

28
29
30
31

32
33
34
35

36
37

38
39
40
41

42

43
44
45

46
47

48
49

50
51

52

53
54
55
56

57

58
59

60

Sine.

3.554329
554658
554987
555315
555643
555971
556299
556626
556953
557280
557608

9.557932
558258
558583
558909
559234
55y558
559883
560207
560531
560855

9.561178
561501
561824
562146
582468
562790
563112
563433
563755
564075

9.564396
564716
565036
565356
565676
565995
566314
566632
566951
567269

9.567587
567904
568222
568539
568856
569172
569488
569804
570120
570435

9.570751
571066
571380
571695
572009
572323
572636
572950
573263
573575

Cosine.

D. 10"[ Cosine.

54.8
54.8
54.7
54.7
54.6
54.6
54.5
54.5
54.4
54.4
54.3
54.3
54.3
54.2
54.2
54.1
54.1
54.0
54.0
53.9
53.9
53.8
53.8
53.7
53.7-

53.6
53.6
53.6
53.5
53.5
53.4
53.4
53
53

53

53
53

53.1
53.1
53.0
53.0
52.9
52.9
52.8
52.8
52.8
52.7
52.7
52.6
52.6
52.5
52.5
52.4
52.4
52.3
52.3
52.3
52.2
52.2
52.1

9.970152
970103
970055
970006
969957
969909
939860
969811
989762
969714
969665

3.969616
969567
969518
969469
969420
969370
969321
969272
969223
989173

3.969124
969075
969025
968976
968926
968877
968827
968777
968728
968678

>. 968628
968578
968528
968479
968429
968379
988329
968278
968228
968178

9.988128
9680 ?8

968027
967977
967927
967876
937826
967775
967725
967674

9.967624
987573
957522
967471
987421
967370
967319
987268
987217
96,166

D. 10"i Tang.

8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.2
8.2

8

S
8

8

8

8

8

8

8

8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8,4
8.4
8.4
8.4
8.4
8.5
8.5
8.5
8.5
8.5
8.5
8.5

9.584177
584555
584932
585309
585888
588062
586439
586815
587190
587566
587941

9.588316
588891
589066
589440
589814
590188
590562
590935
591308
591681

9.592054
592426
592798
693170
593542
593914
594286
594656
595027
595398

9.595768
596138
596508
596878
597247
597616
597985
598354
598722
599091
599459
599827
600194
600562
600929
601296
601662
602029
602395
602761

9.603127
603493
603858
604223
604588
604953
605317
605682
( 08046
608410

0. 10'

Sine. Cotang.

62.9
62.9
62.8
62.8
62.7
62.7
62.7
62.6
62.6
62.5
62.5
62.5
62.4
62.4
62.3
62.3
62.3
62.2
62.2
62.2
62.1
62.1
62.0
62.0
61.9
61.9
61.8
61.8
61.8
61.7
61.7
61.7
61.6
61.6
61.6
61.5
61.5
61.6
61.4
61.4
61.3
61.3
61.3
61.2
61.2
61.1
61.1
61.1
61.0
61.0
61.0
60.9
60.9
60.9
60.8
60.8
60.7
60.7
60.7
60.6

Cotam

10.415823
415445
415038
414691
414314
413938
413561
413185
412810
412434
412059

10.411684
411309
410934
410560
410186
409812
409438
409065
408692
408319

10.407946
407574
407202
406829
406458
406086
405715
405344
404973
404602

10.404232
403862
403492
403122
402753
402384
402015
401646
401278
400909

10.400541
400173
399806 !

399438 !

399071
|

398704 '

398338 '

397971
397605
397239

J

10.396873
|

396507|j
396142!|
395777!

j

395412 ;

395047
394683
394318 !

i

393954 '

393590 :|

35837
35864

X. cos.

93358
93348

35891 93337
35918
35945
3597^
36000
36027
36054
36081
36108
36135
36162
36190
36217 93211
36244
36271
36298
36325

93327
93316
93308
93295
93285
93274
93264
93253
93243
93232
93222

93201
93190
93180
3169

36352 93159
36379
36406
36434
36461
36488
36515
36542
36569
3659t
36623
36650
3667
36704
36731
36758
36785
36812
36839
3686

! 36894
36921

1
36948

! 36975

|

37002

J37029
37056 92881

1 37083
37110

i 37137
37164
137191

37218
37245
37272
37299
37326
37353
37380
37407
37434
37461

93148
93137
93127
y3116
93108 I 36
93095

I
35

93084
93074
93063
93052
93042
93031
93020
93010
92999
92988
92978
92967
92956
92945
92935
92926
92913
92902
92892

92870
92859
92849
92838
32827
92816
92805
92794
92784
92773
92762
92751
2740

92729
92718

Tang. IN. cos. A. sine
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TABLE II. Log. Sines and Tangents. (22°) Natural Sines. 43

D. 10" Cosi

.573575
573888
5 74200:
574512
574824
575136
575447
575/58
576059
570379
570089
.576999
577309
577018
577927
578230
578545
578853
579102
579470
579777
.580035
580392
580699
581005
581312
581618
681924
582229

fc.,,

582535
~'

582840
.583145
583449
583754
584058
584301
584065
584968
585272
585574
585877
.586179
586482
586783
587085
587386
587688
587989
588289
588590
588890
.589190
589489
589789
590088
590387
590686
590984
591282
591580
591878

Cosine.

,967166

967115
967064
907013
966961
966910
906859
96880S
906756
966705
966653
.966602
966550
966499
966447
966395
966344
966292
966240
966188
966136

9.966085
966033
965981
965928
965876
965824
965772
965720
965668
965615

9.965563
965511
965458
965403
965353
965301
965248
965195
965143
965090
965037
964984
964931
964879
964826
964773
964719
964666
964613
964560
.964507
964454
964400
964347
964294
964240
964187
964133
964080
9J4026

Sme.

D. 10'

8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9

Tans

606410
006773
607137
607500
607863
608225
608588
008950
609312
609674
610030
010397
610759
611120
611480
611841
612201
612561
612921
613281
613641
614000
614359
614718
615077
615435
615793
616151
616509
616867
617224

9.617582
617939
618295
618652
619008
619364
619721
620076
620432
620787
621142
621497
621852
622207
622561
622915
623269
623623
623976
624330
624683
625036
625388
625741
626093
626445
626797
627149
627501
627852

Cotang.

D. 10"

60.6
60.6
60.5
60.5
60.4
60.4
00.4
60.3
60.3
60.3
60.2
60.2
60.2
60.1
60.1
60.1
60.0
60.0
60.0
59.9
59.9
59.8
59.8
59.8
59.7
59.7
59.7
59.6
59.6
59.6
59.5
59.5
59.5
59.4
59.4
59.4
59.3
59.3
59.3
59.2
59.2
59.2
59.1
59.1
59.0
59.0
59.0
58.9
58.9
58.9
58.8
58.8
58.8
58.7
58.7
58.7
58.6
58.6
58.6
58.5

Cotang. j

N . sine.l N. cos .

10.393590
S93227
392863
392500
392137
391775
391412
39105t)

390888
390326
389964

10.389603
389241
388880
388520
388159
387799
387439
387079
386719
386359

10-386000
385641
385282
384923
384565
384207
383849
383491
383133
382776

10-382418
382061
381705
381348
380992
380636
380279
379924
379568
379213

10-378858
378503
378148
377793
377439
377085
376731
376377
376024
375670

10-375317
374964
374612
374259
373907
373555
373203
372851
372499
372148

37461192718
!
37488

! 37515
:; 37542
! 37569

1137595
1

1
37622
37649
37676
37703
37730
37757
37784
37811

92707
92697
92686
92675
92664
92653
92642
92631
92620
92609
92598
92587
92576

37838 92565
37865
37892
37919
37946
37973
37999
38026
38053
38080
38107
38134
38161
38188
38215
38241
38268
38295
38322
38349
38376
38403

92554
92543
92532
92521
92510
92499
92488
92477
92466
92455
92444
92432
92421
92410
92399
92388
92377
92366
92355
92343
92332

3843092321
38456
38483
38510
38537
38564

3.8591

38617
38644
38671
38698
38725
38752
38778
38805
38832
38859

38886|92130
38912 92119
3893992107

J
92096

92310
92299
92287
92276
92265
92254
92243
92231
92220
92209
92198
92186
92175
92164
92152
92141

38966
38993
39020
39046

92085
92073
92062

39073|92050

Tang. |
N. cos.) N.sine,

67 Degrees.



44 Log. Sines and Tangents. (23°) Natural Sines. TABLE II.

1

2
3

4

5

6
7

8

9

10
11

12

13
14

15

16

1?

IS

1!)

20
21

22

23
24
25

25
27
28
29

30
31

32
33
34
35

36
37
38

39
40
41

42
43
44
45

46
47
48
40

50
51

52

53
54
55

56
57
58
50

60

9.591878
592176
592473
592770
593087
593363
593659
593955
594251
594547
594842

9.595137
595432
595727
595021
596315
598609
596903
597196
597490
597783
598075
598368
598660
598952
599244
599536
599827
600118
600409
600700
600990
601280
601570
601860
602150
602439
602728
603017
603305
603594

9.603882
604170
604457
604745
605032
605319
605606
605892
603179
603465
.608751
607036
607322
607607
607892
608177
608461
608745
609029
609313

Cosine,
i

D. 10'

49.8
49.5
49.5
49.5
49.4
49.4
49.3
49.3
49.3
49.2
49.2
49.1
49.1
49.1
49.0
49.0
48.9
48.9
48.9
48.8
48.8
'48.7

48.7
48.7
48.6
48.6
48.5
48.5
48.5
48.4
48.4
48.4
48.3
48.3
48.2
48.2
48.2
48.1
48.1
48.1
48.0
48.0
47.9
47.9
47.9
47 8

47.8
47.8
47.7
47.7
47-6
47-6
47-6
47-5
47-5
47-4
47.4
47.4
47.3
47.3

Cosine.

1.964026
963972
963919
963865
963811
963757
983704
963650
963596
963542
963488

'.963434
963379
963325
963271
963217
963163
963108
963054
962999
962945
.962890
962836
962781
962727
962672
962617
962562
962508
962453
962398
.962343
962288
962233
962178
962123
962067
962012
961957
961902
961846
.961791
961735
961680
961624
961569
961513
961458
961402
961346
961290
.961235
961179
961123
961087
961011
960955
960899
960843
960786
930730

Sine.

8.9



TABLE H. Log. Sines and Tangents. (24°) Natural Sines. 45

Sine.

9.609313
609597
609880
610164
610447
6107-29

611012
611294
611576
611858
612140

9.612421
612702
612983
613264
613545
613825
614105
614385
614665
614944

9.615223
615502
615781
6160S0
616338
616616
616894
617172
617450
617727

9.618004
618281
618558
618834
619110
619386
619662
619938
620213
620488

9.620763
621038
621313
621587
621861
622135
622409
622682
622956
623229

9.623512
623774
624047
624319
624591
624863
625135
625403
625677
625948

I). 10

I Cosh

47.3
47.2
47.2
47.2
47.1
47.1
47.0
47.0
47.0
46.9
46.9
46.9
46.8
46.8
46.7
46.7
46.7
46.6
46.6
46.6
46.5
46.5
46.5
46.4
46.4
46.4
46.3
46.3
46.2
46.2
46.2
46.1
46.1
46.1
46.0
46.0
46.0
45.9
45.9
45.9
45.8
45.8
45.7
45.7
45.7
45.6
45.6
45.6
45.5
45,

45

45,

45

46,

45.

45,

46.

Cosine.

45.2
45.2

960730
960674
960618
960561
960505
960448
960392
960335
960279
960222
960165
960109
960052
959995
959938
959882
959825
959768
959711
959654
959596

9.959539
959482
959425
959368
959310
959253
959195
959138
959081
959023
958965
958908
958850
958792
958734
958677
958619
958561
958503
958445

9.958387
958329
958271
958213
958154
958096
958038

957979,
957921
957863
957804
957746
957687
957628
957570
957511
957452
957393
957335
957276

Sine.

9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.7

D. It/ Tang. D. lu' Cotang.

648583 .R R 10.351417
648923 ?°'° 351077
649263 ?X° 350737
649602 gJj'U 350398
649942 gj r 350058
650281 j£ •? 349719
650620 JJ 349380
650959 gj'° 349041
651297 °X'7 348703
651636 2M 348364
651974 °2'q 348026
652312 £°"q 10.347688
652650 ™'t 347350
652988 ?"•* 347012
653326 2!*o 346674
653663 ?°'o 346337
654000

°°-*
346000

654337 2? i
345663

654174 25 'J 345326
655011 25-} 344989
655348 2M 344652

9.655684 ™*n 10.344316
656020 2J'n 343980
656356 25* n 343644
656692 2?'" 343308
657028 2?'q 342972
657364 2?q 342636
657699 2!'q 342301
658034 2?"e 341966
658369 ?r'« 341631
658704 °8'e 341296

9.659039 2J"e 10.340961
659373 2?'? 340627
659708 98

•'
340292

660042 ?;?•' 339958
660376 ?r 7 339624
660710 2?'« 339290
661043 2? « 338957
661377 2^£ 338623
661710 *??•£ 338290
662043 2?'£ 337957

9.662376 £?•? 10.337624
662709 2? a 337291
663042 2! 'I 336958
663375 J??*? 336625
663707 rS-7 336293
664039 2? 'J 335961
664371 2J'q 335629
664703 2J'q 335297
665035 °°', 334965
665366 r?"o 334634

). 665697 2?'o 10.334303
666029 £2 9 333971
666360 2? -7 333620
666691 2! 1

333309
667021 2^1 332979
667352 °°'\ 332648
667682 ?)?•* 332318
668013 J£n 331987
668343 rg'JJ 331657
668672

°°- U 331328

9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8

Cotang.

3?
40674191355
4070091343
40727 .91331

40753 91319
40780 91307
40800
40833
40860
40886
140913
40939

I

40966

I

40992
141019
41045
41072

!

41098
41125
41151
41178
41204
41231

41284
41310 91068
41337 91056
41363 91044
41390 91032
41416 91020
41443 91008
41469 90996
41496 90984
41522

91295
91283
91272
91260
91248
91236
91224
91212
91200
91188
91176
91164
91152
91140
91128
91116
91104

41257 91092
91080

41549
41575

90972
90960
90948

41602 90936
41628 J90924
41655 90911

4168190899

41707J90887
41734190875
41760 90863
41787
41813
41840
41866
41892

90851
90839
90826
90814
90802

4191990790
41945190778
41972 90766
41998
42024
42051
42077
42104
42130
42156
42183
42209
42235
42262

90753
90741
90729
90717
90704
90692
90680
90668
90655
90643
90631

Fang. j
N. eos. .\.sinc

60
59
68
57

56

55

64
53
52

61

50
49
48
47
if>

45
44
43
42
41

40

39

37
06
35
34
33

32
31

30
29

•28

27

20
25
24
23

22
21

m
19

18

17

16

15

14

13

12

11

10
9

8

7

6
5

4
3

2
1

65 Degrees.



46 Log. Sines and Tangents. (25°) Natural Fines. TABLE II.

Sine. ID. 10"



CAliLT? IT.

Sina.

Log. Sines and Tangents. (-2CP) Natural Sinea

D. 10"i Cosine

1

o

3
4
5

6

8

9
10
11

12

13

14
15

16

r,

18

19

20
21

23
24
25
26
27
u8

29
30
31

82

33

34
35

36
3T

38

39
40
41

42
43

44
45

46
47
48
49
53
51

62
53

51

55

66
57

68

59
30

). 04 1842
042101
642360
642618
642877
643135
643393
643650
643908
644165
644423

). 644680
644936
645193
645450
645703
645962
646218
646474
646729
648984

). 647240
647494
647749
648004
648258
648512
648766
649020
649274
649527

1.649781

650034
650287
650539
650/92
651044
651297
651549
651800
652052
.652304
652555
652806
653057
653308
653558
653808
654059
654309
654558
.654808
655058
65530 1

655556
655805
656054
655392

':-.- 5 jl

650793
05/017

L). lo"'

43.1



48 Log. Slues and Tangents. (27°) Natural Sines. TABLE II.

Sine. D. io



TABLE II. Log. Sines and Tangents. (2S°) Natural Sines. 49

N. sine. IN. cosSiue.

• .671639
671847
672084
67-2321

672558
672795
673032
673268
673505
673741
673977

'.674213

674448
674684
674919
675155
675390
675624
675859
676094
676328

'.676562

676796
677030
677264
677498
677731
677964
678197
678430
678663
.678895
679128
679360
679592
679824
680356
680288
680519
680750
680982
.681213
681443
681674
681905
682135
682365
682595
682825
683055
683284
.683514
683743
683972
684201
684430
684658
684887
685115
685348
685571

D. 10'

39.6
39.5
39.5
39
39

39
39
39

39
39
39

39
39

39.2
39.2
39.2
39.1
39.1
39.1
39.1
39.0
39.0
39.0
39.0
38.9
38.9
38.9
38.8
38.8
38.8
38.8
38.7
38
88

38
38
38
as
38

38.5
38.5
38.5
38.4
38.4
38.4
38.4
38.3
38.3
38.3
38.3
38.2
38.2
38.2
38.2
38.1
38.1
38.1
38.0
38.0
38.0

Cosine.

.945935
945868
945809
945733
945666
945598
945531
945464
945396

• 945328
945261
.945193
945125
945058
944990
944922
944854
944786
944718
944650
944582
.944514
944446
944377
944309
944241
944172
944104
944036
943967
943899
.943830
943761
943693
943624
943555
943486
943417
943348
943279
943210
.943141
943072
943003
942934
942864
942795
942726
942656
942587
942517
.942448
942378
942308
942239
942169
942099
942029
941959
941889
941819

Sine.

D. 10' Tang.

725674
725979
726284
726588
726892
727197
727501
727805
728109
728412
728716
72902C
729323
729626
729929
730233
730535
730838
731141
731444
731746

9.732048
732351
732653
732955
733257
733558
733860
734162
734463
734764

9.735066
735367
735668
735969
736269
736570
736871

737171
737471
737771
738071
738371
738671
738971
739271
739570
739870
740169
740468
740767

9.741066
741365
741664
741962
742261
742559
742858
743156
743454
743752

Cotang.

D. 10"

50.8
50.8
50 7

50.7
50.7
50.7
50.7
50.6
50.6
50.6
50.6
50.6
50-5
50.5
50.5
50.5
50.5
50
50
50
50

50
50
50
50
50
50
50
50-2
50-2
50-2
50.2
50.2
50.1
50.1
50.1
50.1
50.1
50.0
50.0
50.0
50.0
50.0
49.9
49.9
49.9
49.9
49.9
49.9
49.8
49.8
49.8
49.8
49.8
49.7
49.7
49.7
49.7
49.7
49.7

Cotan;

10.274326
274021
273716
273412
273108
272803
272499
272195
271891
271588
271284

10.270980
270677
270374
270071
269767
269465
269162
268859
268556
268254

10.267952
267649
267347
267045
266743
266442
266140
265838
265537
265236

10.264934
264633
264332
264031
263731
263430
263129
262829
262529
262229

10.261929
261629
261329
261029
260729
260430
260130
259831
259532
259233

10.258934
258635
258336
258038
257739
257441
257142
258844
256546
256248

;

! 46947 88295
46973 88281
4699988267
4702488254
4705088240
47076 88226
47101 88213
47127 88199

,.47153 88185
"47178 88172
4720488158
47229
47255
47281
47306
47332
47358
47383
47409
47434
4746088020
47486 88006
47511 87993
47537 87979
47562 87965
47588 87951
47614 87937

88144
88130
88117
88103
88089
88075
88062
88048
88034

47639
47665
47690

i 47716
:

!
47741
47767
47793
47818

87923
87909
87896
87882
87868
87854
87840
87826

47844J87812
47869 87798
47895 87784
47920 87770

|

47946

ij
47971
47997

.48022
;' 48048

I
48073

;! 48099

87756
87743
87729
87715
87701
87687
87673

148124 87659
I 48150 87645
(48175187631
48201 87617

! 48226 87603
: 48252

|

48277
! 48303
:
48328

I 48354
148379
! 48405
! 48430
1 48456
48481

Tans. ! N. cos. N.sine

87589
87575
87561
87546
87532
87518
87504
87490
87476
87462

61 Degrees.



50 Log. Sines and Tangents. (29°) Natural Sines. TABLE II.

Sine.



Log. Sines aril Tangents, (30°) Natural Sines. 51

s

4

5

6

7

8

9
10

11

12

13

14

16

16

1?

18

19
•Jo

21

J2

23
24

25
26

27

28
25

31

31
32

33
34
36

36

37

3^
30
•10

-41

4-2

43
44
45

46
4?

48

49
50
51

52
53
54

55

56
57

68

50

60

iD. 10'

9.698970 „,

699189 ™
699497

I^
699626 i

™
699844 : %*
700082

*
700280 \™
700498 \%°-
700716 1 5'
700933 S
701151 i^
.701388 ^
701585 il
701802 ^
702019

™'

702236 H
702452

™-

702669 %l
702885 ^
703101 tl
703317

*
9.703533 Jg"

703749 JJ'
703984 g?
704179 *?'

704395 Jg'
704810

|
r!?'

704825 |*?"
705040 I g
705254

|J
705469 I J

9.705683 *?
705898 j??

706112 £
706326 JJ'
705539 J5-
706753 J?

r

f 0596 7
r^S

707180 ;;?
707393

*>'

707603 £?
"07819 Jg

35

35
35

36
35,

35

35.

35.

35.

9.7
708032
708245
708458
703670
703882
709094
709305
709518
709730

9.709941
710153
710J64
710575
710785
71096 7

711208 g
711419

jj?
711629 t?
711839

do

Cosine.

35

35.
35
35

9.937531
937458
937385
937312
937238
937165
937092
937019
936946
936872
936799

9.936725
936652
936578
936505
938431
936357
936284
936210
936136
936062
.935988
935914
935840
935766
935692
935618
935543
935459
935395
935320

9.935246
935171
935097
935022
934948
934873
934798
934723
934649
934574

9.934499
934424
934349
934274
934199
934123
934048
933973
933898
933822
.933747
933671
933596
933520
933445
933369
933293
933217
933141
933056

D. 10'

12.1

12.2
12.2
12.2
12.2
12.2
12.2
12.2
12.2
12.2
12.2
12.2
12.3
12.3
12.3
12.3
12.3
12.3
12.3
12.3
12.3
12.3
12.3
12.3
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.4
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.6
12.6
12.6
12.6
12.6
12.6
12.6
12.6
12.6
12.6
12.6

Tan ^.

1.761439
761731
762023
762314
762603
762897
763188
763479
763770
784081
764352

'.764643

764933
765224
765514
765805
766095
766385
768675
766965
767255

. 767545
767834
768124
768413
768703
768992
769281
769570
769380
770148
.770437
770726
771015
771303
771592
771880
772168
772457
772745
773033
.773321
773608
773896
774184
774471
774759
775046
775333
775621
775908
.776195
776482
776769
777055
777342
777628
777915
778201
778487
778774

D. 10'

Cotanjr.

48.6
48.6
48.6
48.6
48.5
48.5
48.5
48.5
48.5
48.5
48.4
48.4
48.4
48.4
48.4
48.4
48.4
48.3
48.3
48.3
48.3
48.3
48.3
48.2
48.2
48.2
48,2
48.2
48.2
48.1
48.1
48.1
48.1
48.1
48.1
48.1
48.0
48.0
48.0
48.0
48.0
48.0
47.9
47.9
47.9
47.9
47.9
47.9
47.9
47.8
47.8
47.8
47.8
47.8
47.8
47.8
47.7
47.7
47.7
47.7

N. sin

10.235357 : 50277
235037

jj
50302

234776 |! 50327
234488! '50352

50377
50103
50428
50453
50478
50503
50528
50553
50578

234195
233905
233615
233325
233035
232745

10.232455
232166
231876
231587 II 50503
231297

!|
50628

231008 |50854
230719

ij
50679

230430; 50704
230140 150729
229852

j

50754

10-229563j!50779
229274

'I 50304
228985 '50820
228697 1150854

228408 50879
228120 50904
227832 50929
227543 50954
227255

j

50979
226967! 51004

10-226679 I

j

51029
226392:

1

51054

226104|; 51079
225816

| j

51104
225529 511589 85941
225241 !

1

51 154 35926
224954 151179 85911

X. cos

36603
86588
86573
36559
36544
36530
36515
86501
86486
36471
38457
38442
88427
86413
36398
86384
86369
33354
86340
86325
36310
38295
86281
85266
88251
86237
86222
86207
86192
86178
86163
83148
86133
86119
86104
86089
86074
86059
86045
86030
86015
88000
85985
35970
85955

224667
224379

|

224092
i

10-223805'
223518 i

223231 i

222945 I

222658
I

222372
|

222085
|

221799
|

221512
221226 I

Tang.

51204
51229
51254
51279
51304
51329
51354
51379
51404
51429
51454
51479
fl504

85898
85881
85868
85851
85836
85821
85808
85792
85777
85762
85747
85732
85717

N. cos. N.sine.

Degrees.

21



Log. Sines and Tangents. (31
c
) Natural Sines.

)

1

2

3

4
5

6

7

8
9

10

11

12

13
14

16

16

17

18
19

20
|

21 9
22
23
24
25
36
27

28
29
30

j

Sine.

.711839
712050
712260
712409
712679
712889
713098
713308
713517
713726
713935
.714144
714352
714561
714769
714978
715186
715394
715602
715809
716017
.716224
716432
716639
716846
717053
717259
717466
717673
717879
718085
.718291
718497
718703
718909
719114
719320
719525
719730
719935
720140
.720345
720549
720754
720958
721162
721366
721510
721774
721978
722181
.722385
722588
722791
722994
723197
723400
723603
723805
724007
724210

Cosine.

lD. 10"

35.0
35.0
35.0
34.9
34.9
34.9
34.9
34.9
34.8
34.8
34.8
34.8
34.7
34.7
34.7
34.7
34.7
34.6
34.6
34.6
34.6
34.5
34.5
34.5
34.5
34.5
34.4
34.4
34.4
34.4
34.3
34.3
34.3
34.3
34
34
34
34
34
34
34
34
34
34.0
34.0
34
34.0
34.0
33.9
33.9
33.9
33.9
33.9
33.8
33-8
33.8
33.8
33.7
33.7
33.7

Uosme.

.933036
932999
932914
932838
932762
932685
932609
932533
932457
932380
932304
.932228
932151
932075
931998
931921
931845
931768
931691
931614
931537
.931460
931383
931306
931229
931152
931075
930998
930921
930843
930766

1.930688
930611
930533
930456
930378
930300
930223
930145
930067
929989

).9299 11
929833
929755
929677
929599
929521
929442
929364
929286
929207

). 929129
929050
928972
928893
928815
928736
928657
928578
928499
928420

Sine.
-

D. 10'

12.6
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.8
12.8
12.8
12.8
12.8
12.8
12.8
12.8
12.8
12.8
12.8
12.9
12.9
12.9
12.9
12.9
12.9
12.9
12.9
12.9
12.9
12.9
12.9
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.1

13.1
13.1
13.1
13.1
13.1
13.1
13.1

13.1
13.1
13.1

13.1

Tang.

778774
779030
779346
779332
779918
780203
780489
780775
781060
781346
781631
781916
782201
782480
782771
783056
783341
783626
783910
784195
784479
784764
785048
785332
785616
785900
786184
786468
786752
787036
787319
787603
787886
788170
788453
788736
789019
789302
789585
789868
790151
790433
790716
790999
791281
791563
791846
792128
792410
792692
792974
,793256
793538
793819
794101
794383
794664
794945
795227
795508
795789

D. 10' (Jotam

47.7
47.7
47.6
47.6
47.6
47.6
47.6
47.6
47.6
47.5
47.5
47.5
47.5
47.5
47.5
47.5
47.5
47.4
47.4
47.4
47.4
47.4
47.4
47.3
47.3
47.3
47.3
47.3
47.3
47.3
47.2
47.2
47.2
47.2
47.2.

47.2
47.2
47.1
47.1
47.1
47.1
47.1
47.1

47.1
47.1
47.0
47.0
47.0
47.0
47.0
47.0
47.0
46.9
46.9
46.9
46.9
46.9
46.9
46.9
46.8

10

Cotang.

Degrees.

10.

10

10

10

10

221226
220940
220654
220368
220082
219797
219511
219225
218940
218654
218369
218084
217799
217514
217229
216944
216659
216374
216090
215805
215521
215236
214952
214668
214384
214100
213816
213532
213248
212964
212681
212397
212114
211830
211547
211264
210981
210698
210415
210132
209849
209567
209284
209001
208719
208437
208154
207872
207590
207308
207026
.206744
206462
206181
205899
205617
205336
205055
204773
204492
204211

N.sine.jN.
co.s.

51504185717

51529(85702
51554|85687
51579185672

51604)85657
51628185642

85627
j

51653
I 51678
'

51703
51728

I
51753
151778
51803

85612
85597
85582
85567
85551
85536

51828185521
51852
51877
51902
51927

85506
85491
85476
85461

51952185446
51977185431

52002185416
52026185401
52051 185385
52076
52101
52126
52151

85370
85355
85340
85325

52175185310
52200185294

52225J85279
5225085264
52275i85249

52299J85234
52324
52349
52374
52399
52423
52448
52473

85218
85203
85188
85173
85157
85142
65127

52498 85112
52522
52547
52572
52597
52621
52646
52671
52696
52720
52745
52770
152794
i 52819
i 52844
1 52869
1 52893

|
52918

1
52943

|52967
I 52992

85096
85081
85066
85051
85035
85020
85005
84989
84974
84959
84943
84928
84913
84897
84882
84866
84851
84836
84820
84805

Tang. '' N. cos.JN.aine,
'



TABLE II. Log. Sines and Tangents. (32°) Natural Sines. 53

l

2
S

4

6

6
7

8
9

10

11

12
13

14

16

16

17

18

19

20
•21

2-2

23
24
25

26
27

28
29
30
31

32
33

84
35

86
37

38

40
41

42

43
44
45

46
47
4S
40
50
51

52
53
54

55
50
57

68

69

60

Sine.

.724210
724412
724614
724816
725017
725219
725420
725S22
725823
726024
726225
.726426
726626
726827
727027
727228
727428
727628
727828
728027
728227
.728427
728626
728825
729024
729223
729422
729621
729820
730018
730216

. 730415
730613
730811
731009
731208
731404
731602
731799
731996
732193

. 732390
732587
732784
732980
733177
733373
733569
733765
733961
734157
,734353
734549
734744
734939
735135
735330
735525
735719
735914
736109

Cosine.

D. 10"

33.7
33.7
33.6
33.6
33.6
33.6
33.5
33.5
33.5
33.5
33.5
33.4
33.4
33.4
33.4
33.4
33.3
33.3
33.3
33.3
33.3
33.2
33
33
33
33

33
33

33

33.0
33.0
33.0
33.0
33.0
32.9
32.9
32.9
32.9
32.9
32.8
32.8
32.8
32.8
32.8
32.7
32.7
32.7
32.7
32.7
32.6
32.6
32.6
32.6
32.5
32.5
32.5
32.5
32.5
32.4
32.4

Cosine. |D. 10'

9.928420
928342
928263
928183
928104
928025
927946
927867
927787
927708
927629

9.927549
927470
927390
927310
927231
927151
927071
926991
92691 1

926831
9.926751

926671
926591
926511
926431
926351
926270
926190
926110
926029

9.925949
925868
925788
925707
925626
925545
925465
925384
925303
925222

9.925141
925060
924979
924897
924816
924735
924654
924572
924491
924409

9.924328
924246
924164
924083
924001
923919
923837
923755
923673
923591

"Sine.

-"

13.2
13.2
13.2
13.2
13.2
13.2
13.2
13

13

13

13

13

13

13.3
13.3
13.3
13.3
13.3
13.3
13.3
13.3
13.3
13.3
13.3
13.4
13.4
13.4
13.4
13.4
13.4
13.4
13.4
13.4
13.4
13.4
13.4
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.7
13.7

Tani?.

9.795789
796070
796351
796632
796913
797194
797475
797755
798036
798316
798596

9.798877
799157
799437
799717
799997
800277
800557
800836
801116
801396

9.801675
801955
802234
802513
802792
803072
803351
803630
803908
804187

9.804466
804745
805023
805302
805580
805859
806137
806415
806693
806971

9.807249
807527
807805
808083
808361
808638
808916
809193
809471
809748

9.810025
810302
810580
810857
811134
811410
811687
811964
812241
812517

"Cotang.

D. 10'

46.8
46.8
46.8
46.8
46.8
46.8
46.8
46.8
46.7
46.7
46.7
46.7
46.7
46.7
46.7
46.6
46.6
46.6
46.6
46.6
46.6
46.6
46.6
46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.5
46.4
46.4
46.4
46.4
46.4
46.4
46.4
46.3
46.3
46.3
46.3
46.3
46.3
46.3
46.3
46.2
46.2
46.2
46.2
46.2
46.2
46.2
46.2
46.2
46.1
46.1
46.1
46.1
46.1

Co tail'.

10.204211
203930
203649
203368
203087
202806
202525
202245
201964
201684
201404

10.201123
200843
200563
200283
200003
199723
199443
199164
198884
198604

10.198325
198045
197766
197487
197208
196928
196649
196370
196092
195813

10.195534
195255
194977
194698
194420
194141
193863
193585
193307
193029

10.192751
192473
192195
191917
191639
191362
191084
190807
190529
190252

10.189975

189420
189143
188866
188590
188313
188036
187759
187483

N. s;iH\[_\. COS.

84805
84789
84774
84759
84743
84728
84712
84697
84681
84666
84650
84635
84619

}

152992
53017
53041
53036
53091
53115
53140
53164
53189
53214
53238
53263
53288

Tang.

53312 84604
! 53337 84588

j

53361 84573

53386J84557

S53411J84542
j

53435 84526
5346084511

! 53484 84495
'

53509 84480
! 53534 84464

1

53558 84448
53583 [84433
53007:84417
5363284402
5365684386
53681 184370

;

53705 !84355

53730J84339
53754184324

I 53779184308

j

53804184292

|53828|84277
|
53853J84261

I
53877 [84245
153902 '84230
i 53926J84214
163951 '84198

J53975J84182
!

54000 84167

{

54024
!

84151
! 54049 !84135

I54073J84120
154097184104

1

54122^84088

| 54146J84072
5417184057
54195:84041

54220J84025
5424484009
54269 83994
54293 183978
54317183962
54342 '83946

54366J83930
54S91 83915
5441583899
54440 83883
54464 83867

N. cos. N.sine.

57 Degrees.



54 Log. Sines and Tangents. (33°) Natural Sines. TABLE II.

me. {P.
10

1

2
3
4
5
6
7

8
9

id
ii

12
13

14

16

16

17

18

1!)

w
21

22
23
24

25
26
21

28
2!)

30

31

32

33
34
35

36
37

38
89
40
41

42
4:1

44
45
46
47

48

49
50
51

52

53

64
55
54
57

58
54

60

K 736109
736303
736498
736692
736886
737080
737274
737467
737661
737855
738018

'.738241

738434
738027
738820
739013
739208
739398
7395J0
739783
739975
.740167
740359
740550
740742
740934
741125
741316
741508
741699
741889
.742080
742271
742462
742652
742342
743033
743223
743413
743602
743792

. 743982
744171
744361
744550
744739
744928
745117
745305
745494
745I;83

.745871
746059
746248
746436
746624
746812
746999
747187
747374
747562

Cosine.

32.4
32.4
32.4
32.3
32.3
32.3
32.3
32.3
32.2
32.2
32. 2

32.2
32.2
32.1
32.1
32.1
32.1
32.1
32.0
32.0
32.0
32.0
32.0
31.9
31.9
31.9
31.9
31.9
31.8
31.8
31.8
31.8
31.8
31.7
31.7
31.7
31.7
31.7
31.6
31.6
31.6
31.6
31.6
31.5
31.5
31.5
31.5
31.6
31.4
31.4
31.4
31.4
31.4
31.3
31.3
31.3
31.3
31.3
31.2
31.2

.923591
923509
923427
923345
923263
923181
923098
923016
922933
922851
922768
.922086
922603
922520
922438
922355
922272
922189
922105
922023
921940
.921857
921774
921691
921607
921524
921441
921357
921274
921190
921107
.921023
920939
920856
920772
920688
920304
920520
920436
920352
921)268

.920184
920J99
920015
919931
9lyS46
919762
919677
919593
919508
919424
.919339
919254
919169
919085
919000
918915
918830
918745
918659
9)8574

Sim-.

L>. lo'

13.7
13.7
13.7
13.7
13.7
13.7
13.7

13.7
13.7
13.7
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.9
13.9
13.9
13.9
13.9
13.9
13.9
13.9
13.9
13.9
13.9
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.2
14.2
14.2
14.2

Tang.

,812517

812794
813070
813347
813623
813899
814175
814452
814728
815004
815279
815555
815831
816107
816382
816658
816933
817209
817484
817759
818035
818310
818585
818860
819135
819410
819684
819959
820234
820508
820783

9.821057
821332
821606
821880
822154
822429
822703
822977
823250
823524
823798
824072
824345
824619
824893
825166
825439
825713
825986
826259

9.826532
826805
827078
827351
827624
827897
828170
828442
828715
828987

Cotang.

D. 10

46.1
46.1
46 1

46.0
46.0
46.0
46.0
46.0
46.0
46.0
46.0
45.9
45.9
45.9
45.9
45.9
45. 9H
45.9
45.9
45.9
45.8
45.8
45.8
45.8
45.8
45.8
45.8
45.8
45.8
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.6
45.6
45.6
45.6
45.6
45.6
45.6
45.6
45.6
45.5
45.5
45.5
45.5
45.6
45.5
45.5
45.5
45.5
45.4
45.4
45.4
45.4

Cotang

10

10

10

10

183893
|

1836181
183342
183067
182791
1825161
182241

!

181965
j

.181696!
181415!

181140;!
180865!;
180590

!

!

180316 i'

180041
j

179766 h

179492
j!

1792171;
,178943 ij

178668
i

!

178394
178120
177846

j

177571
177297

'

177023
176750
176476
176202
175928

i

1

175655H
175381

| j

175107!
174834 !

174561 II

174287
174014
173741
173458
173195
172922
172649
172376
172103
171830
171558
171285
171013

54805:83645
,54829 83629
!

! 54854 83613

|j54878!83597
'54902183581

! 54927183565
1 54951 ;83549
54975 83533

I54999J83517
! 55024:83501
55048:83485
55072 !83469
5509i !83453
55121183437
;55145

!83421
55169

!

83405
55194

i

83389

55218|83373
55242 83o56

j!
55266 83340

I 55291 !83324

j55315 !83308
55339 183292
55363 832 i 6

55388 83260
55412 83244

55436;83228
55460183212
55484'83195

55509;83179
55533:83163

55557!83147
55581 !83131
55605 ^831 15

55630 '83008
55654:83082
i.5678

!

830.,0

55702 83050
55726:83034
55750'83017
55775183001
55799I82L85
55823 82669

82953
82936
82920

55847
55871
55895

Tarn

55919182904

N. cos.JN.sine.

56 Degrees.



Lop;. Sines and Tangents. (34°) Natural Sines. 55

2
3

4
5
6

7
8
9
10
11

12
13

14
15

16
1?

is

19

20
21

22
23
24
25

36
2?

28
29

80
81
32
33

84
35

86
37

88
39

40
41
42

43
44
45

46
47

48
49

50
51

52

53

54
55

66
57

58

59
60

.747502
747749
747936
748123
748310
748497
748683
748870
749056
749243
749426
.749815
749801
749987
750172
750358
750543
750729
750914
751099
751284
.751469
751654
751839
752023
752208
752392
752576
752760
752944
753128
.753312
753495
753679
753862
754046
754229
754412
754595
754778
754960
755143
755326
755508
755690
755872
756054
756236
756418
756600
756782
.756963
757144
757326
757507
757688
757869
758050
758230
758411

J758591
Cosine.

D. 10"

9.7

31

31

31

31

31

31

31
31.1
31.0
31.0
31.0
31.0
31.0
30.9
30.9
30.9
30.9
30.9
30.8
30.8
30.8
30.8
30.8
30.8
30.7
30.7
30.7
30.7
30.7
30.6
30.6
30.6
30.6
30.6
30.5
30.5
30.5
30 5

30.5
30.4.

30.4
30.4
30.4
30.4

30.2

Cosine.

1.918574
918489
918404
918318
918233
918147
918032
917976
917891
917805
917719

1.917634
917548
917462
917376
917290
917204
917118
917032
916946
916859
.916773
916687
916600
916514
916427
916341
916254
916167
916081
915994
.915907
915820
915733
915646
915559
915472
915385
915297
915210

915123
.915035
914948
914860
914773
914685
914598
914510
914422
914334
914246
.914158
914070
913982
913894
913806
913718
913630
913541
913453
913365

~SimT~

D. 10"

14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.3
14.3
14.3
14.3
14.3
14.3
14.3
14.3
14.3
14.3
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.6
14.6
14.6
14.6
14.6
14.6
14.6
14.6
14.6
14.6
14.7
14.7
14.7
14.7
14.7
14.7
14.7
14.7
14.7
14.7

9.

Tang.

.828987
829260
829532
829805
830077
830349
830621
830893
831165
831437
831709
.831981
832253
832525
832796
833068
833339
833611
833882
834154
834425
834696
834967
835238
835509
835780
836051
836322
836593
836864
837134

.837405
837675
837946
838216
838487
838757
839027
839297
839568
839838

1.840108
840378
840647
840917
841187
841457
841726
841996
842266
842535

1.842805
843074
843343
843612
843882
844151
844420
844689
844958
845227

Cotang.

D. 10"

45.4
45.4
45.4
45.4

Cotang. jN.sine X. cos.

45.4
45.3
45.3
45.3
45.3
45.3
45.3
45.3
45.3
45
45
45
45
45

45
45

45
45
45
45
45
45.1
45.1
45.1
45.1
45.1
45.1
45.1
45.1
45.1
45.1
45.0
45.0
45.0
45.0
45.0
45.0
45.0
45.0
45.0

44.9
44.9
44.9
44.9
44.9
44.9
44.9
44.9
44.9
44.8
44.8
44.8
44.8
44.8

10

10

10

10

10

171013
170740
170468
170195
169923
169651
169379
169107
168835
168563
168291
168019
167747
167475
167204
166932
166661
166389
166118
165846
165575
165304
165033
164762
164491
164220
163949
163678
163407
163136
162866
162595
162325
162054
161784
161513
161243
160973
160703
160432
160162
159892
159622
159353
159083
158813
158543
158274
158004
157734
157465
157195
156926
156657
156388
156118
155849
155580
155311
155042
154773

Ting-

: 55919

|

55943
55968

!
55992

I

56016

!

56040

J

56064
56088
156112

|

56136

|

56160
56184

32904
8288'

82871
82855
82839
82822
82806
82790
82773
82757
82741
82724

56208 82708
56232
56256
56280
56305
56329
56353
56377
56401
56425
56449
56473
56497
56521
56545
56569
56593
56617
56641
56665
56689
56713
56736
56760
56784
56808
56832
56856
56880
56904
56928
56952
56976
57000
57024
57047
57071
57095
57119
57143
57167
57191
57215
57238
57262
57286
57310
57334
57358

82692
82675
82659
82643
82626
82610
82593
82577
82561
82544
82528
82511
82495
82478
82462
82446
82429
82413
82396
82380
82363
82347
82330
82314
82297
82281
82264
82248
82231
82214
82198
82181
82165
82148
82132
82115
82098
82082
82085
82048
82032
82015
81999
81982
81965
81949
81932
81915

X. cos. X sine,

55 Decrees.



5G
Log. Sines and Tangents. (35°) Natural Sines. TABLE II.

jsttne.

9.758591
758772
758952
759132
759312
759492
759672
759852
760031
760211
760390

9.760569
760748
760927
761106
761285
761464
761642
761821
761999
762177

9.762356
762534
762712
762889
763067
763245
763422
763600
763777
763954

9.764131
764308
764485
764662
764838
765015
765191
766367
765544
765720

9.765896
766072
766247
766423
766598
766774
766949
767124
767300
767475

9.767649
767824
767999
768173
768348
768522
768697
768871
769045
769219

Cosine.

D. 10'

30.1
30.0
30.0
30
30. o

30.0
29.9
29.9
29.9
29.9
29.9
29.8
29.8
29.8
29.8
29.8
29.8
29.7
29.*?

29.7
29.7
29.7
29.6
29.6
29.6
29.6
29.6
29.6
29.5
29.5
29.5
29.5
29.5
29.4
29.4
29.4
29.4
29.4
29.4
29.3
29.3
29.3
29.3
29.3
29.3
29.2
29.2
29.2
29
20
29
29
29
29
29
29.0
29.0
29.0
29.0
29.0

Cosine.

.913365
913276
913187
913099
913010
912922
912833
912744
912655
912566
912477
.912388
912299
912210
912121
912031
911942
911853
911763
911674
911584
.911495
911405
911315
911226
911136
911046
910956
910866
910776
910686
.91U596
910506
910415
910325
910235
910144
910054
909963
909873
909782
.909691
909601
909510
909419
909328
909237
909146
909055
908964
908873

1.908781
908690
9035-9
908507
908416
908324
908233
908141
903049
907958

Sine.

U. 10"

4

4
4
4
4

4

4.8
4.8
4.8
4.8
4.8
4

4

4.9
4.9
4.9
4.9
4.9
4.9
4.9
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.1

5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.2

5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.3
5.3
5 . 3

5.3
6 . 3

Tanir.

.845227
845496
845764
846033
846302
846570
846839
847107
847376
847644
847913

'.848181
848449
848717
848986
849254
849522
849790
850058
850325
850593
.850861
851129
851396
851664
851931
852199
852466
852733
853001
853268
.853535
853802
854069
854336
854603
854870
855137
855404
855671
855938

'.856204
856471
856737
857004
857270
857537
857803
858069
858336
858602

1.858868
859134
859400
859666
859932
860198
860464
860730
860995
861261

Cotang.

44.8
44.8
44.8
44.8
44.8
44.7
44.7
44.7
44.7
44.7
44.7
44.7
44.7
44.7
44.7
44.7
44.7
44.6
44.6
44.6
44.6
44.6
44.6
44.6
44.6
44.6
44.6
44.6
44.5
44.6
44.5
44.5
44.5
44.5
44.5
44.5
44.5
44.5
44.5
44.4
44.4
44.4
44.4
44.4
44.4
44.4
44.4
44.4
44.4
44.4
44.3
44.3
44.3
44.3
44.3
44.3
44.3
44.3
44.3
44.3

Cotang. I N. ?ine. N. cos.

10.154773
154504
154236
153987
153698
153430
153161
152893
152624
152356
152087

10.151819
151551
151283
151014
150746
150478
150210
149942
149675
149407

10-149139
148871
148604
148336
148089
147801
147534
147267
146999
146732

10-146465
146198
145931
145664
145397
145130
144863
144596
144329
144062

10-143796
143529
143263
142996
142730
142463
142197
141931
141664
141398

10-141132
140866
140600
140334
140068
139802
139536
139270
139005
138739

Tang.

I 57358

j;
57381

I;
57405

I 57429

[
57453

I

I 57477

i
57501

i 57524
57548
57572

< 67596

81915
81899
81882
81865
81848
81832
81815
81798
81782
81765
81743

|

57643 81714

|57667 81698
57691 181681

57715J81664
67738181647
57762 81631

,57786 81614
!57810 !81597
157833 81580
57857181563
5788181546
5790481530
5792881513
57952 l81496

57976J81479
|
57999,81462

58023;81445
I

58047181428

158070 81412
58094
58118
58141
58165
58189
58212
58236
58260

81395
81378
81361
81344
81327
81310
81293
HI 276

58283 81259
58307
58330
58354
58378
58401
58425
58449
58472
58496
58519
58543

I 58567
1 58590
I 58614

81242
81225
81208
81191
81174
81157
81140
81123
81106
81039
81072
81055
81038
81021

58637 \s 1004
! 58661
! 58684

j

58708
158731

! 58755

i
58 779

80987
80370
80953
30036
80019
809U2

N. C06. -'•..?
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TABLE II. Log. Sines and Tangents. (36°) Natural Sines. 57



58 Log. Sines and Tangents. (37°) Natural Sines. TABLE II.

1

2
3

4

5

6
7

8

9
10

11

12

13

14

15

16

17

18

Ifl

20
21
22

23
24
25
26
2 7

28

20

39
31

32
33

34
35

36
37

38
39
40
41

42
43
44
45

46

47

48

49
50
5L

52

53
54
55

56

57

58
50

00

Sine.

1.779463
779631
779798
779966
780133
780300
780467
780534
780801
780968
781134
.781301
781468
781634
781800
781966
782132
782298
782464
782630
782796
.782961
783127
783282
783458
783623
783788
783053
784118
784282
784447
.784612
784776
784941
785105
785269
785433
785597
785761
785925
786089

. 786252
786416
786579
786742
786905
787069
787232
787395
787557
787720
.787883
788045
788208
788370
788532
788694
788856
789018
789180
789342

Cosine.

D. 10'

27.9
27.9
27.9
27.9
27.9
27.8
27.8
27.8
27.8
27.8
27.8
27.7
27.7
27.7
27.7
27.7
27.7
27.6
27.6
27.6
27.6
27.6
27.6
27.5
27.5
27.5
27.5
27.5
27

27

27
27

27
27

27
27.3
27.3
27.3
27.3
27.3
27.3
27.2
27.2
27^2
27.2
27.2
27.2
27

27

27

27
27

27

27
27.0
27.0
27.0
27.0
27.0
27.0

Cosine. |D. 10'

1.902349
902253
902158
902063
901967
901872
901776
901681
901585
901490
901394

•.901298

901202
901106
901010
900914
900818
900722
900626
900529
900433

'.900337

900242
900144
900047
899951
899854
899757
899660
899584
899467

'.899370
899273
899176
899078
898981
898884
898787
898689
898592
898494

1.898397
898299
898202
898104
898006
897908
897810
897712
897614
897516

1.897418

897320
897222
897123
897025
896926
896828
896729
896631
895532

Sine.

Tans.

9.877114
877377
877640
877903
878165
878428
878691
878953
879216
879478
879741

9.880003
880265
880528
880790
881052
881314
881576
881839
882101
882363

9.882625
882887
883148
883410
883672
883934
884196
884457
884719
884980

9.885242
885503
885765
886026
885288
886549
886810
887072
887333
887594

9.887855
888116
888377
888639
888900
889160
889421
889682
889943
890204

1.890465
890725
890986
891247
891507
891768
892028
892289
892549
892810

Cotang.

D. 10" Cotang.

10.122886
122623
122360
122097
121835
121572
121309
121047
120784
120522
120259

10.119997
119735
119472
119210
118948
118686
118424
118161
117899
117637

10.117375
117113
116852
116590
116328
116056
115804
115543
115281
115020

10.114758
114497
114235
113974
113712
113451
113190
112928
112667
112405

10.112145
111884
111623
111361
111100
110840
110579
110318
110057
109796

10.109535
109275
109014
108753
108493
108232
10 i 9 72

107711
107451
107190

jN.sine

60182
60205
60228
60251
60274
60298
60321
60344
60367
60390
60414
60437
60460
60483
60506
60529
60553
60576
60599
60622
60645
60668
60691
60714
60738
60761
60784
6080
60830
60853
60876
60899
60922
60945
60968
60991
61015
61038
61061
61084
61107
61130
61153
61176
61199
61222
61245

i 61268
i 61291

161314
61337
161360
161383
! 61406
! 61429
161451

j

61474
161497

|

61520
61543

;
6156b

N. cos

79864
79846
79829
79811
79793
79776
79758
79741
79723
79706
79688
79671
79658
79635
79618
79600
79583
79565
79547
79530
79512
79494
79477
79459

79441
79424
79406
79388
79371

79353
79335
79318
79300
79282
79264
79247
79229
79211

79193
.9176

79158
79140
79122
79105

79087
79069
79051

,9033

79016
;8998
78980
78962
78944
78926
78908
78891
78873
78855
78837
78819
78801

Tang, h N. eo8.jy.8toe
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TABLE II. Log. Sines and Tangents. (08°) Natural Sines. 59

l

3

3

4
5

6
7

8

9
10
11

12

13

14

15

16
I?

lb

19

20
•21

22

33
24
25

26
27

28
29

30
31

\9

32
33
34
35

30
37

38
39
40
41

42
43

44
45

45
47

48
49

50
51

5-2

53

54
55
56
5 7

58
59

60

789342
789504
789665
789827
789988
790149
790310
790471
790832
799793
790954
791115
791275
791436
791596
791757
791917
792077
792237
792397
792557
,792716
792876
793035
793195
793354
793514
793673
793832
793991
794150
.794308
794467
794626
794784
794942'

795101
795259
795417
795575
795733
.795891
796049
790206
790364
796521
790679
796836
796993
797150
797307
.797464
797021
797777
797934
798091
798247
798403
79S560
798716
798872

D, 10'

26.9
26.9
26.9
26.9
26.9
26.9
26.8
26.8
26.8
26.8
28.8
28.8
26.7
26.7
26.7
26.7
26.7
26.7
26.6
26.6
28.6
26.6
26.6
26.6
28.5
26.5
28.5
26.5
26.5
26.5
26.4
26.4
26.4
26.4
26-4
26-4
26
20
20
20
20
20
20
25
20
20
20
20

26
26-1
26-1
26
20

26
20
20
26

26.0
20.0
20.0

Cosine.

Cosine.

.898532
898433
896335
896238
896137
896038
895939
895840
895741
895641
895542

1.895443
895343
895244
895145
895045
894945
894846
894746
894646
894546

'.894446
894346
894246
894146
894046
893946
893846
893745
893645
893544

1.893444
893343
893243
893142
893041
892940
892839
892739
892638
892536

1.892435
892334
892233
892132
892030
891929
891827
891726
891624
891523

>. 891421
891319
891217
891115
8910U
890911
890809
890707
890505
890503

I). io r;

10

10

10

10

10

16

16.5
16.5
16.5
16.5
16.5
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.7
16.7
16.7
16.7
16.7
16.7
16.7
16.7
16.7
16.7
16.8
16.8
16.8
16

10

10

16

16

16.8
16.8
16.9
16.9
16.9
16.9
16.9
16.9
16.9
16.9
16.9
17.0
17.0
17.0
17..

17.0
17.0
17.0
17.0
17.0
17.0

Tani

.£92310
893070
893331
893591
893851
894111
894371
894632
894892
895152
895412
.895672
895932
896192
896452
896712
896971
897231
897491
897751
898010
.898270
898530
898789
899049
899308
899563
899827
900086
900340
900605
.900864
901124
901383
901042
901901
902100
902419
902679
902938
903197

1.903455
903714
903973
904232
904491
904750
905008
905267
905526
905784

(.900043
900302
900500
906819
907077
907330
907594
907852
908111
908369

Cotang.

D. 10'-

43.4
43.4
43.4
43.4
43.4
43
43
43

43
43

43
43
43
43
43
43
43.3
43.3
43.3
43.3
43.3
43.3
43.3
43.3
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43
43
43
43
43
43
43

43
43
43
43
43

43
43

43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.1
43.0

Cotang.

10.107190
106930
106609
100409
106149
105889
105629
105368
105108
104848
104588

10.104328
104088
103808
103548
103288
103029
102769
102509
102249
101990

10.101730
101470
101211
100951
100692
100432
100173
099914
099654
099395

10.099136
098876
098617
098358
098039
097840
097581
097321
097062
096803

10.090545
090280
096027
095708
095509
095250
094992
094733
094474
094216

10.093957
093698
093440
093181
092923
092664
092406
092148
091889
091031

N. sine.iN. cos.

| 61560,78801
78783
78705
78747
78729
78711
78694
78670
78658
78640
78622

61589
! 61612

I

61635
J 61658
!

61081
! 61704
I 61726

II
61749
61772
61795
61818 78604
61841
61864
61887
61909
61932

78586
78568
78550
78532
78514

61355I78495
61978 78478

78460
78442
78424
78405
78387
78369
78351

78333
78315
78297

78279
78261
8243
8225
8200
8188
78170
78152
78134
78116
78098
78079
78001
78043
78025
8007
77988
77970
77952
77934
77916
77897

77879
77801
77843
77824
77808
77788
77769
77751

77733
77715

Tang. |!
N. coy. N.sine

62001
1

1 62024
!

1

62046

J
;

02069
62092
62115
62138
62160
62183
62208
62229
62251
62274
62297
62320
62342
62365
62388
62411
62433
62456
62479
625U2
62524
62547
62570
62592

ij
62615

I

i 62638

j
1

62660

; J62683
1

1

62706
!

1

62728
C2751

j 1

62774

j!

62796

'J62819

[62842
|

62864

|

62887

!
1
62909
62935
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60 Log. Sines and Tangents. (39°) Natural Sines. TABLE II.

10
1 i

12

13

14

15

16
1?

18

19

20
21

•2-2

23

21
26
26
•27

28

29
30

31

32

33

34
35

36
3?

38
39
40
41

42
43

44

15

46

47
48
49

50
51

52

53

54
65

56
57

58

59

60

9.798772
799028
799184
799339
799495
799651
799803
799962
800117
800272
800427

9.800582
800737
800892
801047
801201
801356
801511
801665
801819
801973

3.802128
802282
802436
802589
802743
802897
803050
803204
803357
803511

>. 803664
803817
803970
804123
804276
804428
804581
804734
804886
805039

'.805191

805343
805495
805547
805799
805951
805103
808254
805405
805557

9.808709
805860
807011
807163
807314
807465
807615
807766
807917'
803067

Cosine.

D. 10 I Cosine.

26.0
26.0
26.0
25.9
25.9
25.9
25.9
25.9
25.9
25.8
25.8
25.8
25.8
25.8
25.8
25.8
25.7
25.7
25.7
25.7
25.7
25.7
25.6
25.6
25.6
25.6
25.6
25.6
25.6
25.5
55.5

25.5
25.5
25.5
25-5
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.3
25.3
25.3
25.3
25.3
25.3
25.3
25.2
25.2
25.2
25.2
25.2
25.2
25.2
25.1
25.1
25.1
25.1

9.890503
890400
890298
890195
890093
889990
889888
889783
889682
889579
889477

9.889374
889271
889168
889054
888961
888858
888755
888651
888548
888444

9.888341
888237
888134
888030
887926
887822
887718
887614
887510
887406

9.887302
887198
887093
888989
83.885
886780
886676
836571
886466
886362

9.888257
888152
886047
885942
885837
885732
885627
885522
885416
885311

9.885205
885100
884994
884839
884783
884677
884572
881466
884360
884254

Bine.

D. 10

17.0
17.1
17.1
17.1
17

17

!7

17

IV

17

17

17.2

17.2
17.2
17.2
17.2
17.2
17.2
17.2
17.2
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.4
17.4
17.4
17.4
17.4
17.4
17.4
17.4
17.4
17.4
17.5
17.5
17.5
17.5
17.5
17.5

17.5
17.5
17.5
17.5
17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6

Tans.

9.903369
903828
903888
909144
909402
909880
909918
910177
910435
910593
910951

9.911209
911487
911724
911982
912240
912498
912756
913014
913271
913529

9.913787
914044
914302
914560
914817
915075
915332
915590
915847
916104
916362
916619
916877
917134
917391
917648
917905
918163
918420
918677

9.918934
919191
919448
919705
919962
920219
920476
920733
920990
921247

9.921503
921760
922017
922274
922530
922787
923044
923300
923557
923813

Cotang.

D. W
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
43.0
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.9
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.8
42.7

Cocam

10.091631
091372
091114
090856
090598
090340
090082
089823
089565
089307
089049

10.088791
088533
088276
088018

' 087760
087502
087244
086986
086729
086471

10-086213
085956
085698
085440
085183
034925
084668
084410
084153
083896

10- 083638
083381
083123
082866
082609
082352
082095
081837
081580
081323

10-081066
080809
080552
030295
080038
079781
079524
079267

079010!!

0787531;

10.078497||
07824011

077983!
077726

j!

077470J'
077213
076956
076700
076443
076187

62932
(.2955

6297?

63000J
63022
63045
63058
63090
63113
63135
63158
93180
63203
63225
63248
63271
63293
63316
63338
63361
63383
63405
63428
63451
63473
63496
63518
63540
63563
63535
63608
63630
63653
63675
63698
63720
63742
63765
63787
63810
63832
63854
6387 i

63899
63922
63944
63966

77715
77696
77678
77660
77641
77623
77605
77586
77568
77550
77531

77513
77494
77476
77458
77439
77421

77402
77384
77366
77347
77329
77310
77292
77273
255

77236
77218
77199
77181
77162
77144
77125
77107
77088
77070
77051

77033
77014
76996
76977
76959
76940
76921
76903
76884
7o868

63985176847
64011 76828

Tan!?.

64033
64056
64078
64100
64123
64145
64167
64190
64212
64234
64256
64279

N. coft

76810
76791

76772
76754
76735
76717
76698
76679
76661
76642

76623
76604

.N.Hinc.
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TABLE II. Log. Sines and Tangents. (40°) Natural Sines. Gl

1

2
3

4
5

6
7

8
9

10

11

is

13

14

15

16

17

18

19

£20

•21

22
23
•24

•25

86
2?

28
29

30
31

32
33

34

86
30

37

38
39
40
41

42

43
44
45

46
47

48
49

50
51

52

53
54
55
56
57

58
59

00

Sine.

9.803087
808218
808308
808519
808669
808819
808969
809119
809269
809419
809569

9.809718
809868
810017
810167
810316
810465
810614
810763
810912
811081

9.811210
811358
811507
811655
811804
811952
812100
812248
812396
812544
.812692
812840
812988
813135
813283
813430
813578
813725
813872
814019
.814166
814313
814460
814607
814753
814900
815046
815193
815339
815485
.815631
815778
815924
816069
816215
816361
816507
816652
816798
816943

Cosine. •

D. 10"

25.1
25.1
25.1
25.0
25.0
25.0
25.0
25.0
25.0
24.9
24.9
24.9
24.9
24.9
24.9
24.8
24.8
24.8
24.8
24.8
24.8
24.8
24.7
24.7
24.7
24.7
24.7
24.7
24.7
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.5
24.5
24
24
24
24
24
24
24
24.4
24.4
24
24
24
24
24

24
24.3
24.3
24.3
24.3
24.2
24.2
24.2

Cosine. |D. 10"

.884254
884148
884042
883936
883829
883723
883617
883510
883404
883297
883191
,883084
882977
882871
882764
882657
882550
882443
882336
882229
882121
.882014
881907
881799
881692
881584
881477
881369
881261
881153
881046
.880938
880830
880722
880613
880505
860397
880289
880180
880072
879963

.879855
879746
879637
879529
879420
879311
879202
879093
878984
878875
.878766
878656
878547
878438
878328
878219
878109
877999
877890
877780

"Stile.

7.7

7.7

7.7
7.7
7.7
7.7
7.7

7.9
7.9
7.9
7.9
7.9
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.2
9.

8

8

a
8.2
8.3
8.3
8.3
8.3

Tarn

.923813
924070
924327
924583
924840
925096
925352
925609
925865
926122
926378
.926634
926890
927147
927403
927659
927915
928171
928427
928683
928940
.929196
929452
929708
929964
930220
930475
930731
930987
931243
931499

'•931755

932010
932266
932522
932778
933033
933289
933545
933800
934056
.934311
934567
934823
935078
935333
935589
935844
936100
936355
936610

1.936866

937121
937376
937632
937887
938142
938398
938653
938908
939163

Cotang.

D. 10'

42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.7
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.6
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5

Cotang. hN.sine

10.076187
075930
075673
075417
076160
074904
074648
074391
074135
073878
073622

10.073366
073110
072853
072597
072341
072085
071829
071573
071317
071060

10.070804
070548
070292
070036
069780
069525
069269
069013
068767
068501

10.068245
067990
067734
067478
067222
066967
066711
066455
066200
065944

10.065689
065433
065177
064922
064667
064411
064156
063900
063645
063390

10.063134
062879
062624
062368
062113
061858
061602
061347
061092
060837

64279
64301
64323
64346
64368
64390
64412.

64435
64457
64479
64501
64524
64546
64568
64590
64612
64635
64657
64679
64701
64723
64746
64768
64790
64812
64834
64856
64878
64901
64923
64945
64967

. 64989
1165011

65033
65055
65077
65100
65122
65144
65166
65188
65210
65232
65254
65276
65298
65320
65342
65364
65386
65408
65430

i 1
65452
'65474
v 65496
i! 65518
65540

!

! 65562

|65§84
I
656 06

N, cos.

76604
76586
6567
76548
76530
76511

76492
76473
76455
76436
76417
76398
76380
76361
76342
76323
6304
76286
6267
76248
76229
76210
76192
76173
76154
76135
76116
76097
76078
76059
76041
76022
76003
75984
75965
75946
75927
75908
75889
75870
75851
75832
75813
75794
75775
75/56
75738

76719
75700
75680
75661
75642
75623
75604
75585
75566
75547
75528
75509
75490
75471

Tang. N. eos. N.sine,
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6:2 Log. Sines and Tangents. (41°) Natural Sines. TABLE IT.

1

2

3

4
5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20
21
•2-2

23
24
25

2o
27

28
29

30
31

32
33

31-

35

36
3?

38
39
40
41
42

43
44
45
46

47
48
4!)

50
51

52

53
54
55

50
57

58
59

60

9.816943
817088
817233
817379
817524
817668
817813
817958
818103
818247
818392

9.818536
818681
818825
818969
819113
819257
819401
819545
819689
819832

9.819976
820120
820263
820403
820550
820893
820836
820979
821122
821265

9.821407
821550
821693
821835
821977
822120
822262
822404
822546
822688

9.822830
822972
823114
823255
823397
823539
823680
823821
823963
824104

9.824245
824386
824527
824668
824808
824949
825090
825230
825371
825511

Cosine.

U. 10

24.2
24.2
24.2
24.2
24.1
24.1
24.1
24.1
24.1
24.1
24.1
24.0
24.0
24.0
24.0
24.0
24.0
24.0
23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.8
23.8
23.8
23.8
23.8
23.8
23.8
23.8
23.7
23.7
23.7
23.7
23.7
23.7
23.7
23.6
23.6
23.6
23.6
23.6
23.6
23.6
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.4
23.4
23.4
23.4
23.4
23.4

Cosine.

9.877780
877670
877560
877450
877340
877230
877120
877010
876899
876789
876678

9.876568
876457
876347
876236
876125
876014
875904
875793
875682
875571

9.875459
875348
875237
875126
875014
874903
874791
874680
874568
874456

9.874344
874232
874121
874009
873896
873784
873672
873560
873448
873335

9.873223
873110
872998
872885
872772
872659
872547
872434
872321
872208

9.872095
871981
871868
871755
871641
871528
871414
871301
871187
871073

D. 10"

Sine.

18.3

18.3
18.3
18.3
18
18

18

18

18

18

18

18.4
18.4
18.4
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.6
18.6
18.6
18.6
18-. 6
18.6
18.6
18.6
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.9

Tan?:.

939163
939418
939673
939928
940183
940438
940394
940949
941204
941458
941714

9.941968
942223
942478
942733
942988
943243
943498
943752
944007
944252
944517
944771
945026
945281
945535
945790
948045
946299
948554
946803

9.947053
947318
947572
947826
948081
948336
948590
948844
949099
949353

9.949607
949862
950116
950370
950625
950879
951133
951388
951642
951898

1.952150
952405
952659
952913
953167
953421
953675
953929
954183
951437

Cotang.

D. 10"

42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.5
42.4
42.4
42.4
42.4
42.4
42.4
42
42
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4
42.4

Cotang.
' N. sine.

10.0308371! 65606
060582

1
165628

080327 165650
060072 i 65672
059817

1

165694

0595621,65716
059306 |! 65738
059051 ! 65759 75337

X. cos.

754

75452
75433
75414
75395
75375
75356

058796'! 65781^
058542! 65803
058286

l|

65825
10.0580321 65847

057777: 65869
057522 i

65891
057267 ,65913
057012

j!
65935

056757 !' 65956

42

42

42
42
42
42
42
42
42.3
42.3
42.3
42.3

056502 165978
056248 66000
055993 66022
055738 ','66044

10.055483 66066

055229J 66088
054974 66109
054719 63131
054465 '66153
054210 66175
053955 6819
053701

|

66218
053446 '66240
053192 : 66262

10.052937! 66284
052682

!
68308

052428!
1

6632
052174 166349
051919i 166371

051664
|!
66393

051410! 66414
051156
050901
050647

10.050393
050138
049884
049630
049375
049121
048867
048612
048358
048104 !

10.047850'
047595

I

047341 i

047087 :

046833 :

046579
046325
046071
045817
045563 !

Tana.

! 66436
66458

! 66480
66501

;

66523
66545
66566

!
66588
66610
66832
6665
66675
66697
66718
66740
66762
66783
66805
66827
66848
66870
66891
66913

N. cos

75318
75299
75280
75261
75241

75222
75203
75184
75165

75146
75126
75107

75083
75069
75050
75030
75011

74992
74973
74353
74934
74915
74896
74876
74857
74838
74818
74799
74780
74760
74741

74722
74703
74683
74663
4644
4625
74605
74586
74567
74548
74522
74509
74489
74470
74451
74431
74412
74392
74373
74353
74334
74314

X.sine

60
59
58
57

56
55
54
53
52
51

50
49
48
47
46
45
44
43
42

41

40
39
38
37

36

36
84
38
82
31

30
29

28
27

26

25

24
23

22

21

20
19

18

17

16

15

14

13

12

11

10

9
8

7

6

5

4

3

2

1
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TABLE II. Log. Sines and Tangents. (42°) Natural Sines. 63

Sine. D. 10' Cosine. D.
10"| Tang.

23.4
23.3

23.3

825511
825651
825791
835931 \f%%
826971

-°- J

826211
826351
826491
826631
826/70
826910
.827049
827189
827328
827467
827606
827745
827834
828023
828162
828301
.828439
828578
828716
828855
828993
829131
829269
829407
829545
829683
.829821
829959
830097
830234
830372
830509
830846 I

830784 i

830921
|

831058 !

.831195,
831332
8314691
831606

J

831742
831879
832015
832152
832288
832425
832561 ;

832697 ;

832833
832969
833105
833241

li-l
833377 f-

b

833512 H -°

833648
833783

23.3
2;. 3

23.3
.3.3
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.2
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23.0
23.0
23.0
23.0
23.0
23.0
23.0
22.9
22.9
22.9

J22.9
|22.9
'22.9
22.9
22.9
22.8
22.8
22.8
22.8
22.8
22.8
22.8
22.8
22.7
22.7
22.7
22.7
22.7
22.7
22.7
22.6

22.6
22.6

Cosine

.871073
870960
870846
870732
870318
870504
'870390
870276
870161
870047
839933
.869818
859704
869589
869474
889360
869245
869130
869015
8J8900
868785
.868670
868555
868440
868324
868209
868093
857978
867862
867747
867631
.867515
867399
867283
867167
867051
866935
866819
866703
866586
866470
.866353
866237
866120
866004
865887
865770
865653
865536
865419
865302

1.865185
865068
864950
864833
864716
864598
864481
864363
864245
864127

Sine.

19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.1
19.1
19.1

19.1
19.1
19.1
19.1
19.1
19.1
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.4
19.4
19.4
19.4
19.4
19.4
19.4
19.4
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.6
19.6
19.6
19.6
19.6
19.6

.954437
954691
954945
955200
955454
955707
955961
956215
956469
956723
956977
.957231
957485
957739
957993
958246
-958500
958754

959262
959516
.959769
960023
960277
960531
960784
961038
961291
961545
961799
962052
.962306
962560
962813
963067
963320
963574
963827
964081
964335
964588
.964842
965095
965349
965602
965855
966109
966362
966616
966869
967123
.967376
967629
967883
968136
968389
968643
968896
969149
969403
969656

Cotan"

D. 10"

42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42
42
42
4-2

42
42

42
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.3
42.2
42.2
42.2
42
42
42

42
42
42.2
42.2
42.2
42.2
42.2
42.2
42.2
42.2
42.2
42.2
42.2
42.2

Cotang.
j

N. sine. IN. cos.

10.045563
045309
045055
044800
044546
044293
044039
043785
043531
043277
043023

10.042769
042515
042261
042007
041754
041500
041246
040992
040738
040484

10.040231
039977
039723
039469
039216
038962
038709
038455
038201
037948

10.037694
037440
037187
036933
036680
036426
036173
035919
035665
035412

10.035158
034905
034651
034398
034145
033891
033638
033384
033131
032877

10.032624
032371
032117
031864
031611
031357
031104
030851
030597
030344

j]

66913174314
i! 66935174295

j! 66956 174276
166978174256

i! 66999 74237
67021!

! 67043

!
67064

1

67086
67107
67129
67151
67172
67194

74217
74198
74178
74159
74139
74120
74100
74080

.74061
67215 !74041

67237 174022

67258
j

74002
67280173983
67301 73963
67323

!

67344
I 67366
! 67387
! 67409

I

! 67430

j

! 67452

|

'67473
I 67495
167516

!
67538

j

67559

,167580
!
167602

;

! 67623
167645

1

1 67666

1

1

67688
I S67709

|

i
67730

| |

67752
67773
67795
67816
67837
67859
67880
67901
67923
67944
67965
67987
68008
68029
68051
68072
68093
68115
68136
68157
68179
68200

Tang. ||
N. cos. N.sine

73944
73924
73904
73885
73865
73846
73826
73806
73787
73767
73747
73728
73708
73688
73669
73649
73629
73610
73590
73570
73551
73531
73511
73491
73472
73452
73432
73413
73393
73373
73E53
73333
73314
73294
73274
73254
73234
73215
73195
73175
73155
73135
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64 Log. Sines and Tangents. (43°) Natural Sines. TABLE II.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

30
•21

22
23
24
25

36
27

28

29
30
31

32
33
34
35

36
37

38
39
40
41

42

43
44
45

40

47
48
49

50
51

52

53
54
55

5G

57

58

59

00

Sine.

9.833783
833919
834054
834189
834325
834460
834595
834730
834865
834999
835134
835269
835403
835538
835672
835807
835941
836075
836209
836343
836477
836611
836745
836878
837012
837146
837279
837412
837546
837679
837812

9.837945
838078
838211
838344
838477
838610
838742
838875
839007
839140
.839272
839404
839536
839668
839800
839932
840084
840190
840328
840459
.840591
840722
840854
840985
841116
841247
841378
841509
841640
841771

O sine.

D. 10"

22.6
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22.4
22.4
22.4
22.4
22.4
22.4
22.4
22.4

Cosine.

22
22

22
22

22

22
22.3
22.2
22.2
22.2
22.2
22.2
22.2
22.2
22.2
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.0
22.0
22.0
22.0
22.0
22.0
22.0
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.8
21.8
21.8
21.8
21.8

>. 864127
864010
863892
863774
863656
863538
863419
863301
863183
863064
862946
.882827
862709
862590
862471
862353
862234
•862115

861998
861877
861758
.861638
851519
861400
861280
861161
861041
860922
860802
860682
860562
.860442
860322
860202
860082
859962
859842
859721
859601
859480
859360
859239
859119
858998
858877
858756
858635
858514
858393
858272
858151
,858029
857903
857786
857665
857543
857422
857300
857178
357056
855934

"line.

D. 10"

19

19

19

19

19

19

19

19

19

19

19

19

19

19

19.

19,

19,

19,

19,

19,

19,

19.

19,

19.

19.

19,

19.

19.

19.

20.

20.

20.

20.

20.

JO.

20
20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

2D.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

Tang. |D. 10"

9.969656
969909
970162
970416
970669
970922
971175
971429
971682
971935
972188

5.972441
972694
972948
973201
973454
973707
973960
974213
974466
974719

). 974973
975226
975479
975732
975985
976238
976491
976744
976997 i

977250
). 977503
977756
978009
978262
978515
978768
979021
979274
979527
979780

1.980033
980286
980538
980791
981044
981297
981550
981803
982056
982309

'.982562
982814
983067
933320
983573
983826
934079
984331
984584
984837

42
42
42
42
42
42
42
42

42
42
42
42
42
42
42

42
42
42
42
42
42
42
42

42

42
42

42

42,

42,

42,

42,

42.

12.

42.

42.

42.

42.

42
42

42
42

42

42

42
42
42.

42.

42.

42.

42.

42.

42.

42.

42.

42.

42.

42.

42.

42.

42.

Cotang. | |N .sine. N

68200
68221
68242
68264
68285
68306
68327
68349
68370
68391
68412
68434
68455
68476
68497
68518

10.030344
030091
029838
029584
029331
029078
028825
028571
028318
028065
027812

10.027559
027306
027052
026799
026546
026293
026040
025787
025534
025281

10.025027
024774
024521
02426a
024015
023762
023509
023256
023003
022750

|

10.022497
022244
021991
021738
021485
021232
020979
020726

73135
73116
73096
73076
73056
73036
73016
72996
72976
72957
72937
2917
72897
72877
72857
72837

68539172817
68561 J72797
68582
68603
68624
68645
68666
68688

72777
72757
72737
72717
72697

7

68709J72657
6873072637

Cotany

68772 72597
68793172577
6881472557
68835 72537
68857 72517
6887872497
6889972477
68920 72457
6894172437
68962 72417

68983,72397
6900472377

020473 69025 72357

020220! 6904672337
10.019967' 69087 72317

019714 69088 72297
019462

J

69109 72277
019209 !

1 69130 72257

018956^6915172236
018703 I 6917272216
018450 |69193 72196
018197: 69214 72176
017944! 69235 72156
017691 69256 72136

10.017438 i 69277 72116
017186 16929872095
016933 : 69319 72075
016680,1 69340 72055
016427 6936172035
016174 69382 72015
015921 169403 71995
015669 69424 71974
015416 69445 71954
015163 6946671934

Tan":. N. cos. |N.sine.

60
59
58
57
56

55
54
53
52

51

50
49
48
47

46
45
44
43

42
41

40
39
38
37

36
35
34
33
32

31

30
39

28
27
26
26
24
23

33
21

20
19

IS

17

16

15

14

13

12

11

10

9

8

7

6
5

4

3

2

1

46 Degrees.



TABLE II. Log. Sines and Tangents. (44°) Natural Sines. 05

Sim;.

). 841771
841902
842033
842163
842294
842424
842555
842685
842815
842946
843076

• .843206
843336
843466
843595
843725
843855
843984
844114
844243
844372

1.844502
844631
844760
844889
845018
845147
845276
845405
845533
845662
.845790
845919
846047
846175
846304
846432
846560
846688
846816
846944
.847071
847199
847327
847454
847582
847709
847836
847964
848091
848218
.848345
848472
848599
848726
848852
848979
849106
849232
849359
849485

Cosine.

D. 10" Cosine.

,856934
856812
856690
856568
856446
856323
856201
856078
855956
855833
855711
,855588
855465
855342,
855219
855096
854973
854850
854727
854603
854480
854356
854233
854109
853986
853862
853738
853614
853490
853366
853242
853118
852994
852869
852745
852620
852496
852371
852247
852122
851997
851872
851747
851622
851497
851372
851246
851121
850996
850870
850745

9.850619
850493
850368
850242
850116
849990
849864
849738
849611
849485

Sine. •

D. 10" Till!'.

984837
985090
985343
985596
985848
986101
986354
986607
986860
987112
987365

9.987618
987871
988123
988376
988629
988882
989134
989387
989640
989893
990145
990398
990651
990903
991156
991409
991662
991914
992167
992420
992672
992925
993178
993430
993683
993936
994189
994441
994694
994947
995199
995452
995705
995957
996210
996463
996715
996968
997221
997473

9.997726
997979
998231
998484
998737

999242
999495
999748

10.000000

Cotan»

D>10"

42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42.1
42

42
42

42
42

42.1
42.1

42.1

Cotang. N. sine. N.

10.015163
014910
014657
014404
014152
013899
013646
013393
013140
012888
012635 I

10.012382
012129
011877
011624
011371
011118
010866
010613
010360
010107

10.009855
009602
009349
009097
008844
008591
008338
008086
007833
007580

10-007328
007075
006822
006570
006317
006064
005811
005559
005306
005053

1

70298
10-004801

|

70319
004548

[

I

70339
004295 I 70360
004043

I
70381

003790! 70401
003537 I 70422

69466
6948
69503
69529
69549
69570
69591
69612
69633
69654
69675
69696
697
69737
69758
69779
69800
69821
69842
69862
69883
69904
69925
69946
69966
69987
70008
70029
70049
70070
70091
70112
70132
70153
70174
70195
70215
70236
70257
70277

003285
003032
002779
002527

10-002274
002021
001769
001516
001263
001011
000758
000505
000253
000000

|

70443
70463
70484
70505
70525
70546
70567
70587
70608
70628
70649
70670
70690
70711

Tarn

71934
71914
71894
71873
71853
71833
71813
71792
71772
71752
71732
71711
71691

71671

71650
71630
71610
71590
71569
71549
71529
71508
71488
71468
71447
71427
71407
71386
71366
71345
71325

71305
71284
71264
71243
71223
71203
71182
71162
71141

71121

71100
71080
7.1059

71039
71019
70998
0978

70957
0937
70916
70896
70875
70855
0834
70813
0793
0772
0752
0731
70711

N. cos. N.sine.

45 Decrees.
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OF NUMBERS

AUXILIARY LOGARITHMS,

1ST.

1.009
1.008
1.007
1.006
1 . 005
1.004
1.003
1.002
1.001

Log.



70 NUMBERS

Log. 46,

Log. 67,

Log. 3082

Log. 3083=3.4888326343-

1.6627578316
1.8260748027

3.4888326343

0.8685889638

6165

NUMBERS AND THEIR LOGARITHMS,
OFTEN USED IN COMPUTATIONS.

Log.
3.14159265 0.4971499

Circumference of a circle to dia. 1 )

Surface of a sphere to diameter 1

Area of a circle to radius 1

Area of a circle to diameter 1 =; .7853982 —1.8950899

Capacity of a sphere to diameter 1 = .5235988—1.7189986

Capacity of a sphere to radius 1 =4.1887902 0.6220886

I-

Arc of any circle equal to the radius =57°29578 1.7581226

Arc equal to radius expressed in sec. =206264"8 5.3144251

Length of a degree, (radius unity)= .01745329 —2.2418773

12 hours expressed in seconds, = 43200 4.6354837

Complement of the same, =0.00002315 —5.3645163
360 degrees expressed in seconds, = 1296000 6.1 126050

• A gallon of distilled water, when the temperature is 62

Fahrenheit, and Barometer 30 inches, is 277. r
2
-VV cubi<

inches.

10

7277.274=16.651542 nearly.

4

I

277.274

.775398
= 18.78925284 7231=15.198684.

7282=16.792855.

= 18.948708.
.785398

The French Metre=3.2808992, English feet linear mea-

sure, =39.3707904 inches, the length of a pendulum vi-

brating seconds.
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