

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

http://www.archive.org/details/sphericaltrig00robirich

ROBINSON'S MATHEMATICAL SERIES.

ELEMENTS

OF

GEOMETRY,

PLANE AND SPHERICAL TRIGONOMETRY;

AND

HTIW

NUMEROUS PRACTICAL PROBLEMS.

BY

HORATIO N. ROBINSON, LL. D.,

AUTHOR OF A FULL COURSE OF MATHEMATICS.

NEW YORK:

IVISON, PHINNEY & CO., 48 AND 50 WALKER ST. CHICAGO: S. C. GRIGGS & CO., 39 AND 41 LAKE ST.

BOSTON: BROWN & TAGGARD. PHILADELPHIA: SOWER, BARNES & CO., AND J. B. LIPPINCOTT & CO. CINCINNATI: MOORE, WILSTACH, KEYS & CO. SAVANNAH: J. M. COOPER & CO. ST. LOUIS: KEITH & WOODS. NEW ORLEANS: E. R. STEVENS & CO. DETROIT: RAYMOND & LAPHAM, BALTIMORE: CUSHING & BAILEY. Robinson's Complete Mathematical Course.

ROBINSON'S SYSTEM OF MATHEMATICS,

Recently revised and enlarged, is now the most extensive, complete, practical and scientific Mathematical Series published in this country.

1.	Robinson's Progressive Primary Arithmetic. Illustrated.	\$0	15
2.	Robinson's Progressive Intellectual Arithmetic, for ad-		
•	vanced Classes, with an Original and Comprehensive System		
	of Analysis.	0	25
3.	Robinson's Progressive Practical Arithmetic; a complete		
	work for Common Schools and Academies.	0	56
4.	Key to Robinson's Progressive Practical Arithmetic.	0	50
5.	Robinson's Progressive Higher Arithmetic.	0	75
6.	Key to Robinson's Progressive Higher Arithmetic.	0	75
7.	Robinson's New Elementary Algebra: a clear and simple		
	Treatise for Beginners.	0	75
8.	Key to Kobinson's New Elementary Algebra.	0	75
9.	Robinson's University Algebra: a full and complete Trea-	T	05
10	Kow to Pohingon's University Algobras seconds	1	20
11.	Rey to Robinson's Oniversity Algebra, separate.	T	00
***	to practical examples.	T	50
12	Rohinson's Surveying and Nevigetian : combining theory	-	
***·	with practice.	1	50
13.	Robinson's Analytical Geometry and Conic Sections ; made		
	clear and comprehensive to common minds.	1	50
14.	Robinson's Differential and Integral Calculus; a full and		
	complete Treatise	1	50
15.	Robinson's Elementary Astronomy; designed to teach the		
	first principles of this Science	0	75
16.	Robinson's University Astronomy; for advanced classes in		
	Academies and Colleges	1	75
17.	Robinson's Concise Mathematical Operations: a book of re-		
	ference for the Teacher, embracing the gems of Mathematical		
		2	25
18.	Key to Kobinson's University Algebra, Geometry, Survey-		
	ing, and valculus; in I vol	1	50

Entered, according to Act of Congress, in the year 1860, by H. N. ROBINSON, LLD.,

in the Cierk's Office of the District Court of the United States for the Northern District of New York.

JOHN FAGAN, STEREOTYPER, PHILADELPHIA.

PREFACE.

and all exclusions of parts and the second bullet

here which the second

states to adverse of the burgety site

Carling Street street incoming of the

No 2 mail provide the part of the

In the preparation of this work, the Author's previous treatise, "Elements of Geometry, Plane and Spherical Trigonometry, and Conic Sections," has formed the ground-work of construction. But in adapting the work to the present advanced state of Mathematical education in our best Institutions, it was found necessary to so alter the plan, and the arrangement of subjects, as to make this essentially a new work. The demonstrations of propositions have undergone radical changes, many new propositions have been introduced, and the number of Practical Problems greatly increased, so that the work is now believed to be as full and complete as could be desired in an elementary treatise.

In view of the fact that the Seventh Book is so much larger than the others, it may be asked why it is not divided into two? We answer, that classifications and divisions are based upon differences, and that the differences seized upon for this purpose must be determined by the nature of the properties and relations we wish to investigate. There is such a close resemblance between the geometrical properties of the polyedrons and the round bodies, and the demonstrations relating to the former require such slight modifications to become applicable to the latter, that there seems no sufficient reason for separating into two Books that part of Geometry which treats of them.

The subject of Spherical Geometry, which has been much extended in the present edition, is placed as before, as an introduction to Spherical Trigonometry. The propriety of this arrangement may be questioned by some; but it is believed that much of the difficulty which the student meets in mastering the propositions of Spherical Trigonometry, arises from the fact that he is not sufficiently familiar with the geometry of the surface of the sphere; and that, by having the propositions of Spherical Geometry fresh in his mind when he begins the study of Spherical Trigonometry, he will be as little embarrassed with it as with Plane Trigonometry.

(iii)

102071

PREFACE.

Both author and teacher must yield to the demands of the age, and by a judicious combination of the abstract and the concrete, the theoretical and the practical, make the student feel that what he learns with perhaps painful effort at first, may be made available in important applications.

In teaching Geometry and Trigonometry, questions should be asked, extra problems given, and original demonstrations required when the proper occasions arise; but care should be taken that the pupil's powers are not over-tasked. By helping him through his difficulties in such a way that he shall be scarcely conscious of having received assistance, he will be encouraged to make new and greater efforts, and will finally acquire a fondness for a study that may have been highly repugnant to him in the beginning.

A demonstration that is easily followed and comprehended by one, may be obscure and difficult to another; hence the advantage that will sometimes be gained by giving two or more demonstrations of the same proposition. When the student perceives that the same results may frequently be reached by processes entirely different, he will be stimulated to independent exertion, and in no respect can the teacher better exhibit his tact than in directing and encouraging such efforts.

Instances will be found throughout the work in which the more important propositions are twice and three times demonstrated; and as the methods of demonstration are in each case quite different, it is believed that extra space has not been thus occupied unprofitably.

Practical rules with applications will be found throughout the work, and in addition to these, there are in both the Geometry and the Trigonometry, full collections of carefully selected Practical Problems. These are given to exercise the powers and test the proficiency of the pupil, and when he has mastered the most or all of them, it is not likely that he will rest satisfied with present acquisition, but conscious of augmented strength and certain of reward, he will enter new fields of investigation.

The Author has been aided, in the preparation of the present work, by J. F. Quinby, A. M., of the University of Rochester, N. Y., late Professor of Mathematics in the United States Military Academy at West Point, and J. H. French, LL. D., of Syracuse, New York. The thorough Scholarship, and long and successful experience of these gentlemen in the class-room, rendered them eminently qualified for the task; and to them the public are indebted for much that is valuable, both in the matter and arrangement of this treatise.

October, 1860.

100

PLANE GEOMETRY.

DEFINITIONS.

Geometrical MagnitudesPAG	e 9
Plane Angles	10
Plane Figures of Three Sides	12
Plane Figures of Four Sides	13
The Circle	14
Units of Measure	15
Explanation of Terms	16
Postulates	16
Axioms	17
Abbreviations	17

BOOK I.

Of	Straight	Lines,	Angles,	and	Polygons	••••••	 19
				0			

BOOK II.

Proportion, and its Application to Geometrical Investigations.... 59

BOOK III.

Of the Circle, and the Investigation of Theorems dependent on it	s
Properties	. 88
1* (v)	

BOOK IV.

Problems in the Construction of Figures in Plane Geometry..... 111

BOOK V.

On the Proportionalities and Measurement of Polygons and Circles.	130
Practical Problems	142

BOOK VI.

On	the	Intersections	of Planes,	the	Relative	Positions of	Planes,	
	and	l of Planes an	nd Lines					152

BOOK VII.

Solid Geo	metry	172
Practical	Problems	229

BOOK VIII.

Practical Geometry Application of Algebra to Geometry, and	
also Propositions for Original Investigation	231
Miscellaneous Propositions in Plane Geometry	238

TRIGONOMETRY.

PART I.

PLANE TRIGONOMETRY.

SECTION I.

Elementary Principles	244
Definitions	245
Propositions	248
Equations for the Sines of the Angles	260
Natural Sines, Cosines, etc	265
Trigonometrical Lines for Arcs exceeding 90°	270

SECTION II.

Plane Trigonometry, Practically Applied	272
Logarithms	278

GENERAL APPLICATIONS WITH THE USE OF LOGARITHMS.

I.	Right-Angled Trigonometry	288
II.	Oblique-Angled Trigonometry	291
Pra	actical Problems	295

SECTION III.

Application of Trigonometry to Measuring Heights and Distances.	298
Practical Problems	305

PART II.

SPHERICAL GEOMETRY AND TRIGONOMETRY.

SECTION I.

Spherical	Geometry		310
-----------	----------	--	-----

SECTION II.

Right-Angled Spherical Trigonometry	330
Napier's Circular Parts	335

SECTION III.

Oblique-Angled Spherical Trigonometry	337
Napier's Analogies	348

SECTION IV.

Spherical	Trigonometry	Applied	Solution	of	Right-Angled	
Spher	ical Triangles.				••••••	353
Practical]	Problems	•••••		••••		356
Solution of	f Quadrantal T	riangles		•••		358
Practical 2	Problems	,				361
Solution of	f Oblique-Angle	ed Spherical	Triangles	8	• • • • • • • • • • • • • • • •	362
Practical]	Problems					367

SECTION V.

Spherical Trigonometry applied to Astronomy	370
Application of Oblique-Angled Spherical Triangles	373
Spherical Trigonometry applied to Geography	377
Table of Mean Time at Greenwich	379

SECTION VI.

negular rolyeurous	egular Po	lyedrons				3	380
--------------------	-----------	----------	--	--	--	---	-----

GEOMETRY.

DEFINITIONS.

1. Geometry is the science which treats of position, and of the forms, measurements, mutual relations, and properties of limited portions of *space*.

SPACE extends without limit in all directions, and contains all bodies.

2. A Point is mere position, and has no magnitude.

3. Extension is a term employed to denote that property of bodies by virtue of which they occupy definite portions of space. The dimensions of extension are *length*, *breadth*, and *thickness*.

4. A Line is that which has extension in length only. The extremities of a line are points.

5. A Right or Straight Line is one all of whose parts lie in the same direction.

6. A Curved Line is one whose consecutive parts, however small, do not lie in the same direction.

7. A Broken or Crooked Line is composed of several straight lines, joined one to another successively, and extending in different directions.

When the word *line* is used, a straight line is to be understood, unless otherwise expressed.

8. A Surface or Superficies is that which has extension in length and breadth only.

9. A Plane Surface, or a Plane, is a surface such that
(9)

if any two of its points be joined by a straight line, every point of this line will lie in the surface.

10. A Curved Surface is one which is neither a plane, nor composed of plane surfaces.

11. A **Plane Angle**, or simply an **Angle**, is the difference in the direction of two lines proceeding from the same point.

The other angles treated of in geometry will be named and defined in their proper connections.

12. A Volume, Solid, or Body, is that which has extension in length, breadth, and thickness.

These terms are used in a sense purely abstract, to denote mere space — whether occupied by matter or not, being a question with which geometry is not concerned.

Lines, Surfaces, Angles, and Volumes constitute the different kinds of quantity called *geometrical magnitudes*.

Hence parallel lines can never meet, however far they may be produced; for two lines taking the same direction cannot approach or recede from each other.

Two parallel lines cannot be drawn from the same point; for if parallel, they must coincide and form one line.

PLANE ANGLES.

To make an angle apparent, the two lines must meet in a point, as AB and AC, which meet in the point A.

Angles are measured by degrees.

14. A Degree is one of the three hundred and sixty equal parts of the space about a point in a plane.

If, in the above figure, we suppose AC to coincide with AB, there will be but one line, and no angle; but if AB retain its position, and AC begin to revolve about the point A, an angle will be formed, and its magnitude will be expressed by that number of the

10

360 equal spaces about the point A, which is contained between AB and AC.

Angles are distinguished in respect to magnitude by the terms Right, Acute, and Obtuse Angles.

15. A Right Angle is that formed by one line meeting another, so as to make equal angles with that other.

The lines forming a right angle are *perpendicular* to each other.

16. An Acute Angle is less than a right angle.

17. An Obtuse Angle is greater than `a right angle.

Obtuse and acute angles are also called oblique angles; and lines which are neither parallel nor perpendicular to each other are called oblique lines.

18. The Vertex or Apex of an angle is the point in which the including lines meet.

19. An angle is commonly designated by a letter at its vertex; but when two or more angles have their vertices at the same point, they cannot be thus distinguished.

For example, when the three lines AB, AC, and AD meet in the common point A, we designate either of the angles formed, by three letters, placing that at the vertex between those at the opposite extremities of the including lines. Thus, we say, the angle BAC, etc.

20. Complements. — Two angles are said to be complements of each other, when their sum is equal to one right angle.

21. Supplements. — Two angles are said to be supplements of each other, when their sum is equal to two right angles.

GEOMETRY.

PLANE FIGURES.

22. A Plane Figure, in geometry, is a portion of a plane bounded by straight or curved lines, or by both combined.

23. A Polygon is a plane figure bounded by straight lines, called the sides of the polygon.

The least number of sides that can bound a polygon is three, and by the figure thus bounded all other polygons are analyzed.

FIGURES OF THREE SIDES.

24. A Triangle is a polygon having three sides and three angles.

Tri is a Latin prefix signifying three; hence a Triangle is literally a figure containing three angles. Triangles are denominated from the relations both of their sides and angles.

25. A Scalene Triangle is one in which no two sides are equal.

26. An **Isosceles Triangle** is one in which two of the sides are equal.

27. An Equilateral Triangle is one in which the three sides are equal.

28. A Right-Angled Triangle is one which has one of the angles a right angle.

29. An Obtuse-Angled Triangle is one having an obtuse angle.

30. An Acute-Angled Triangle is one in which each angle is acute.

31. An Equiangular Triangle is one having its three angles equal.

Equiangular triangles are also equilateral, and vice versa.

FIGURES OF FOUR SIDES.

32. A Quadrilateral is a polygon having four sides and four angles.

33. A Parallelogram is a quadrilateral which has its opposite sides parallel.

Parallelograms are denominated from the relations both of their sides and angles.

34. A Rectangle is a parallelogram having its angles right angles.

35. A Square is an equilateral rectangle.

36. A Rhomboid is an oblique-angled parallelogram.

37. A Rhombus is an equilateral rhomboid.

38. A **Trapezium** is a quadrilateral having no two sides parallel.

39. A Trapezoid is a quadrilateral in which two opposite sides are parallel, and the other two oblique.

40. Polygons bounded by a greater number of sides 2

than four are denominated only by the number of sides. A polygon of five sides is called a *Pentagon*, of six a *Hexagon*, of seven a *Heptagon*, of eight an *Octagon*, of nine a *Nonagon*, etc.

41. Diagonals of a polygon are lines joining the vertices of angles not adjacent.

42. The Perimeter of a polygon is its boundary considered as a whole.

43. The Base of a polygon is the side upon which the polygon is supposed to stand.

44. The Altitude of a polygon is the perpendicular distance between the base and a side or angle opposite the base.

45. Equal Magnitudes are those which are not only equal in all their parts, but which also, when applied the one to the other, will coincide throughout their whole extent.

46. Equivalent Magnitudes are those which, though they do not admit of coincidence when applied the one to the other, still have common measures, and are therefore numerically equal.

47. Similar Figures have equal angles, and the same number of sides.

Polygons may be similar without being equal; that is, the angles and the number of sides may be equal, and the *length* of the sides and the *size* of the figures unequal.

THE CIRCLE.

48. A Circle is a plane figure bounded by one uniformly curved line, all of the points in which are at the same c distance from a certain point within, called the *Center*.

49. The Circumference of a circle is the curved line that bounds it.

14

50. The Diameter of a circle is a line passing through its center, and terminating at both ends in the circumference.

51. The Radius of a circle is a line extending from its center to any point in the circumference. It is one half of the diameter. All the diameters of a circle are equal, as are also all the radii.

52. An Arc of a circle is any portion of the circumference.

53. An angle having its vertex at the center of a circle is measured by the arc intercepted by its sides. Thus, the arc AB measures the angle AOB; and in general, to compare different angles, we have but to compare the arcs, included by their sides, of the equal circles having their centers at the vertices of the angles.

UNITS OF MEASURE.

54. The Numerical Expression of a Magnitude is a number expressing how many times it contains a magnitude of the same kind, and of known value, assumed as a unit. For lines, the measuring unit is any straight line of fixed value, as an inch, a foot, a rod, etc.; and for surfaces, the measuring unit is a square whose side may be any linear unit, as an inch, a foot, a mile, etc. The linear unit being arbitrary, the surface unit is equally so; and its selection is determined by considerations of convenience and propriety.

For example, the parallelogram ABDC is measured by the number of *linear units* in CD, multiplied by the number of *linear units* in AC or BD; the product is the square units in ABDC. For, conceive CD to be composed of any number

of equal parts—say five—and each part some unit of linear measure, and AC composed of three such units; from each point of division on CD draw lines parallel to AC, and from each point of division on AC draw lines parallel to CD or AB; then it is as obvious as an axiom that the parallelogram will contain $5 \times 3 = 15$ square units. Hence, to find the areas of right-angled parallelograms, *multiply the base by the altitude*.

EXPLANATION OF TERMS.

55. An Axiom is a self-evident truth, not only too simple to require, but too simple to admit of, demonstration.

56. A Proposition is something which is either proposed to be done, or to be demonstrated, and is either a problem or a theorem.

57. A Problem is something proposed to be done.

58. A Theorem is something proposed to be demonstrated.

59. A Hypothesis is a supposition made with a view to draw from it some consequence which establishes the truth or falsehood of a proposition, or solves a problem.

60. A Lemma is something which is premised, or demonstrated, in order to render what follows more easy.

61. A Corollary is a consequent truth derived immediately from some preceding truth or demonstration.

62. A Scholium is a remark or observation made upon something going before it.

63. A Postulate is a problem, the solution of which is self-evident.

POSTULATES.

Let it be granted -

I. That a straight line can be drawn from any one point to any other point;

II. That a straight line can be produced to any distance, or terminated at any point;

III. That the circumference of a circle can be described about any center, at any distance from that center.

17

AXIOMS.

1. Things which are equal to the same thing are equal to each other.

2. When equals are added to equals the wholes are equal.

3. When equals are taken from equals the remainders are equal.

4. When equals are added to unequals the wholes are unequal.

5. When equals are taken from unequals the remainders are unequal.

6. Things which are double of the same thing, or equal things, are equal to each other.

7. Things which are halves of the same thing, or of equal things, are equal to each other.

8. The whole is greater than any of its parts.

9. Every whole is equal to all its parts taken together.

10. Things which coincide, or fill the same space, are identical, or mutually equal in all their parts.

11. All right angles are equal to one another.

12. A straight line is the shortest distance between two points.

13. Two straight lines cannot inclose a space.

ABBREVIATIONS.

The common algebraic signs are used in this work, and demonstrations are sometimes made through the medium of equations; and it is so necessary that the student in geometry should understand some of the more simple operations of algebra, that we assume that he is acquainted with the use of the signs. As the terms circle, angle, triangle, hypothesis, axiom, theorem, corollary, and definition, are constantly occurring in a course of geometry, we shall abbreviate them as shown in the following list:

2*

Addit	ion is expressed by		. +
Subtra	action " "		
Multi	plication " "		. ×
Equal	ity and Equivalency are expressed 1	by ,	-
Great	er than, is expressed by		>
Less t	han, " "		. <
Thu	is: B is greater than A, is written		B > A
	B is less than A, ""		B < A
A circ	le is expressed by		. 0
An an	gle " "		1.
A rigl	nt angle is expressed by		R.
Degre	es, minutes, and seconds, are expre	ssed	100
by			0/11
A tria	ngle is expressed by		. Δ
The te	erm Hypothesis is expressed by .		(Hy.)
66	Axiom " ".		(Ax.)
	Theorem " "		(Th.)
"	Corollary " " .		(Cor.)
66	Definition " " .		(def.)
66	Perpendicular is expressed by	1.11	L.
The d	ifference of two quantities, when i	it is	4.25
not	known which is the greater, is	ex-	
pres	sed by the symbol		\sim
Thus	; the difference between A and	B is	s written

 $A \sim B.$

BOOK I.

OF STRAIGHT LINES, ANGLES, AND POLYGONS.

THEOREM I.

When one straight line meets another, not at its extremity, the two angles thus formed are two right angles, or they are together equal to two right angles.

Let AB meet CD, and if AB is perpendicular to CD, it does not incline to either extremity of CD. In that case, the angle ABD is equal to the angle ABC, and is \overline{C} B D a right angle, by Definition 15.

But if these angles are unequal, we are to show that their sum is equal to two right angles. Conceive the dotted line BE to be drawn from the point B, so as not to incline to either side of CD; then, by Def. 15, the angles CBE and EBD are right angles; but the angles CBAand ABD make the same sum, or fill the same angular space, as the two angles CBE and EBD, and are, consequently, equal to two right angles. Hence the theorem; when one straight line meets another, not at its extremity, the sum of the two angles is equal to two right angles.

Cor. Hence, the two angles ABC and ABD are supplementary to each other, (Def. 21).

THEOREM II.

From any point in a straight line, not at its extremity, the sum of all the angles that can be formed on the same side of the line is equal to two right angles.

Let CD be any line, and B any point H in it.

We are to show that the sum of all the angles which can be formed at B, on one \overline{c} side of CD, will be equal to two right angles.

Ю

By Th. 1, any two supplementary angles, as *ABD*, *ABC*, are together equal to two right angles. And since the angular space about the point *B* is neither increased nor diminished by the number of lines drawn from that point, the sum of all the angles *DBA*, *ABE*, *EBH*, *HBC*, fills the same spaces as any two angles *HBD*, *HBC*. Hence the theorem; from any point in a line, the sum of all the angles that can be formed on the same side of the line is equal to two right angles.

Cor. 1. And, as the sum of all the angles that can be formed on the other side of the line, CD, is also equal to two right angles; therefore, all the angles that can be formed quite round a point, B, by any number of lines, are together equal to four right angles.

Cor. 2. Hence, also, the whole circumference of a circle, being the sum of the measures of all the angles that can be made about the center F, (Def. 53), is the measure of four right angles; consequently, a semicircle, or 180° , is the mea-

sure of two right angles; and a quadrant, or 90°, is the measure of one right angle.

THEOREM III.

If one straight line meets two other straight lines at a common point, forming two angles, which together are equal to two right angles, the two straight lines are one and the same line.

Let the line AB meet the lines BD and BE at the common point B, making the sum of the two angles ABD, ABE, equal to two right angles; we are to prove that DB and BEare one straight line.

If DB and BE are not in the same line, produce DB to C, thus forming one line, DBC.

Now by Th. 1, ABD + ABC must be equal to two right angles. But by hypothesis, ABD + ABE is equal to two right angles.

Therefore, ABD + ABC is equal to ABD + ABE, (Ax. 1). From each of these equals take away the common angle ABD, and the angle ABC will be equal to ABE, (Ax. 5). That is, the line BE must coincide with BC, and they will be in fact one and the same line, and they cannot be separated as is represented in the figure.

Hence the theorem; if one line meets two other lines at a common point, forming two angles which together are equal to two right angles, the two lines are one and the same line.

THEOREM IV.

If two straight lines intersect each other, the opposite or vertical angles must be equal.

If AB and CD intersect each other at E, we are to demonstrate that the angle AEC is equal to the vertical angle DEB; and the angle AED, to the vertical angle CEB.

the man of teams of

As AB is one line met by DE, another line, the two angles AED and DEB, on the same side of AB, are equal to two right angles, (Th. 1). Also, because CD is a right line, and AE meets it, the two angles AEC and AEDare together equal to two right angles.

Therefore, AED + DEB = AEC + AED. (Ax. 1.)

If from these equals we take away the common angle AED, the remaining angle DEB must be equal to the remaining angle AEC, (Ax. 3). In like manner, we can prove that AED is equal to CEB. Hence the theorem; if the two lines intersect each other, the vertical angles must be equal.

GEOMETRY.

Second Demonstration.

By Def. 11, the angle DEB is the difference in the direction of the lines ED and EB; and the angle AEC is the difference in the direction of the lines EC and EA.

But ED is opposite in direction to EC; and EB is opposite in direction to EA.

Hence, the difference in the direction of ED and EB is the same as that of EC and EA, as is obvious by inspection.

Therefore, the angle DEB is equal to its opposite AEC. In like manner, we may prove AED = CEB.

Hence the theorem; if two lines intersect each other, the vertical angles must be equal.

THEOREM V.

If a straight line intersects two parallel lines, the sum of the two interior angles on the same side of the intersecting line is equal to two right angles.

[Note. — By interior angles, we mean angles which lie between the parallels; the *exterior* angles are those not between the parallels.]

Let the parallel lines ABand CD intersect EF; then we are to demonstrate that the angles BGH + GHD =2 R.

Because GB and HD are parallel, they are equally inclined to the line EF, or have

the same difference of direction from that line. Therefore, $\[FGB = \] GHD$. To each of these equals add the $\[BGH \]$, and we have FGB + BGH = GHD + BGH.

But by Th. 1, the first member of this equation is equal to two right angles; and the second member is the sum of the two angles between the parallels. Hence the theorem; if a line intersects two parallel lines, the sum of the two interior angles on the same side of the intersecting line must be equal to two right angles.

BOOK I.

SCHOLIUM. — As AB and CD are parallel lines, and EF is a line intersecting them, AB and EF must make equal angles to those made by CD and EF. That is, the angles about the point G must be equal to the corresponding angles about the point H.

THEOREM VI.

If a line intersects two parallel lines, the alternate interior angles are equal.

Let AB and CD be parallels, intersected by EF at Hand G. Then we are to prove that the angle AGH is equal to the alternate angle GHD, and CHG = HGB.

By Th. 5, $\[B G H + \]$ GHD = two right angles. Al-

so, by Th. 1, [AGH + BGH = two right angles.From these equals take away the common angle BGH, and [GHD will be left, equal to [AGH, (Ax. 3)]. In like manner, we can prove that the angle CHG is equal to the angle HGB. Hence the theorem; if a line intersects two parallel lines, the alternate interior angles are equal.

Cor. 1. Since $\[\] AGH = \[\] FGB, \]$ $\lfloor AGH = \lfloor GHD;$ and Therefore, | FGB = | GHD (Ax. 1). | AGF + | AGH = 2 R. |, (Th. 1), Also, and $\Box CHG + \Box AGH = 2 \text{ R.} \Box$, (Th. 5); Therefore, $| AGF + \lfloor AGH = | CHG + \lfloor AGH, (Ax. 1);$ | AGF = | CHG, (Ax. 3).and That is, the exterior angle is equal to the interior opposite angle on the same side of the intersecting line. Cor. 2. Since | AGH = | FGB, | AGH = | CHE;and Therefore, | FGB = | CHE.In the same manner it may be shown that Hence, the alternate exterior angles are equal.

GEOMETRY.

THEOREM VII.

If a line intersects two other lines, making the sum of the two interior angles on the same side of the intersecting line equal to two right angles, the two straight lines are parallel.

Let the line EF intersect the lines AB and CD, making the two angles BGH + GHD= to two right angles; then we are to demonstrate that AB and CD are parallel.

As EF is a right line and BG meets it, the two angles

FGB and BGH are together equal to two right angles, (Th. 1). But by hypothesis, the angles, BGH and GHD, are together equal to two right angles. From these two equals take away the common angle BGH, and the remaining angles FGB and GHD must be equal, (Ax. 3). Now, because \bar{GB} and HD make equal angles with the same line EF, they must extend in the same direction; and lines having the same direction are parallel, (Def. 13). Hence the theorem; if a line intersects two other lines, making the sum of the two interior angles on the same side of the intersecting line equal to two right angles, the two lines must be parallel.

Cor. 1. If a line intersects two other lines, making the alternate interior angles equal, the two lines intersected must be parallel.

Suppose the $\[AGH = \] GHD$. Adding $\[HGB \]$ to each, we have

Cor. 2. If a line intersects two other lines, making the

opposite exterior and interior angles equal, the two lines intersected must be parallel.

Suppose the $\[\] FGB = \[\] GHD$. Adding the $\[\] HGB$ to each, we have

 $\[\] FGB + \[\] HGB = \[\] GHD + HGB.\]$ But the first member of this equation is equal to two right angles; hence the second member is also equal to two right angles; and by the theorem, the lines AB and CD are parallel.

Cor. 3. If a line intersects two other lines, making the alternate exterior angles equal, the lines must be parallel.

Suppose $\[BGF = \] CHE$, and $\[AGF = \] DHE$. By Th. 4, $\[BGF = \] AGH$, and $\[CHE = \] DHG$. And since $\[BGF = \] CHE$, $\[AGH = \] DHG$.

That is, the alternate interior angles are equal; and hence (by Cor. 1) the two lines are parallel.

THEOREM VIII.

If two angles have their sides parallel, the two angles will be either equal or supplementary.

Let AC be parallel to BD, and AHparallel to BF or to BG. Then we are to prove that the angle DBF is equal to the angle CAH, and that the angle DBG is supplementary to the angle A. The angle CAH is formed by the difference in the direction of AC and AH; and the angle DBF is formed by the difference in the direction of BD and BF. But AC and AH have the same direc-

tions as BD and BF, because they are respectively parallel. Therefore, by Def. 11, $\ CAH = \ DBF$. But the line BG has the same direction as BF, and the angle DBG is supplementary to DBF. Hence the theorem; angles whose sides are parallel, form either equal or supplementary angles.

3

GEOMETRY.

THEOREM IX.

The opposite angles of any parallelogram are equal.

Let AEBG be a parallelogram. Then we are to prove that the angle GBEis equal to its opposite angle A.

Produce EB to D, and GBto F; then, since BD is par-

allel to AG, and BF to AE, the angle DBF is equal to the angle A, (Th. 8).

But the angles GBE and DBF, being vertical, are equal, (Th. 4). Therefore, the opposite angles GBE and A, of the parallelogram AEBG, are equal.

In like manner, we can prove the angle E equal to the angle G. Hence the theorem; the opposite angles of any parallelogram are equal.

THEOREM X.

The sum of the angles of any parallelogram is equal to four right angles.

Let ABCD be a parallelogram. We are to prove that the sum of the angles A, B, Cand D, is equal to four right angles, or to 360°.

Because AD and BC are parallel lines, and AB intersects them, the two interior angles A and B are together equal to two right angles, (Th. 5). And because CD intersects the same parallels, the two interior angles C and D are also together equal to two right angles. By addition, we have the sum of the four interior angles of the parallelogram ABCD, equal to four right angles. Hence the theorem; the sum of the angles of any parallelogram is equal to four right angles.

THEOREM XI.

The sum of the three angles of any triangle is equal to two right angles.

Let ABC be a triangle, and through its vertex Cdraw a line parallel to the base AB, and produce the sides AC and BC. Then the angles A and a, being exterior and interior opposite angles on

the same side of two parallels, are equal, (Th. 6, Cor. 1). For like reasons, $\[B = \] b$. And the angles C and c, being vertical angles, are also equal, (Th. 4). Therefore, the angles A, B, C are equal to the angles a, b, c respectively. But the angles around the point C, on the upper side of the parallel CD, are equal to two right angles, (by Th. 1). Hence the theorem; the sum of the three angles, etc.

Second Demonstration.

Let AEBG be a parallelogram. Draw the diagonal GE; then the parallelogram is divided into two triangles, and the opposite angles

G and E are mutually divided by the diagonal GE.

Because GB and AE are parallel, the alternate interior angles BGE and GEA are equal, (Th. 6). Designate each of these by b.

In like manner, because EB and AG are parallel, the alternate interior angles, BEG and EGA, are equal. Designate each of these by a.

Now we are to prove that the three angles B, b, and a, and also that the three angles A, a, and b, are equal to two right angles.

Because A and B are opposite angles of a parallelogram, they are equal, (Th. 9), and [A + B = 2 A. And all the interior angles of the parallelogram are equal to four right angles, (Th. 10).

Therefore, 2A + 2a + 2b = 4 right angles. Dividing by 2, and A + a + b = 2 "

That is, all the angles of the triangle AGE are together equal to two right angles.

Hence the theorem; the sum of the three angles, etc.

SCHOLIUM.—Any triangle, as AGE, may be conceived to be part of a parallelogram. For, let AGE be drawn independently of the parallelogram; then draw EB from the point E parallel to AG, and through the point G draw GB parallel to AE, and a parallelogram will be formed embracing the triangle; and thus the sum of the three angles of any triangle is proved equal to two right angles.

This truth is so fundamental, important, and practical, as to require special attention; we therefore give a

Third Demonstration.

Let ABC be a triangle. Then we are to show that the angles A, C, and ABC, are together equal to two right angles.

Let AB be produced to D, and from B draw BE parallel to AC.

Then, EBD and CAB being exterior and interior opposite angles on the same side of the line AD, are equal, (Th. 6, Cor. 1). Also, CBE and ACB, being alternate angles, are equal, (Th. 6).

By addition, observing that $\ CBE$, added to $\ EBD$, must make $\ CBD$, we have

To each of these equals add the angle CBA, and we shall have

BOOK I.

right angles; therefore, the three angles, A, C, and CBA, are together equal to two right angles.

Hence the theorem; the sum of the three angles, etc.

THEOREM XII.

If any side of a triangle is produced, the exterior angle is equal to the sum of the two interior opposite angles.

Let ABC be a triangle. Produce AB to D; and we are to prove that the angle CBD is equal to the sum of the two angles Aand C.

We establish this theorem by a course of reasoning in all respects the same as that by which we obtained Eq. (1.), third demonstration, (Th. 11).

Cor. 1. Since the exterior angle of any triangle is equal to the sum of the two interior opposite angles, therefore it is greater than either one of them.

Cor. 2. If two angles in one triangle be equal to two angles in another triangle, the third angles will also be equal, each to each, (Ax. 3); that is, the two triangles will be mutually equiangular.

Cor. 3. If one angle in a triangle be equal to one angle in another, the sum of the remaining angles in the one will also be equal to the sum of the remaining angles in the other, (Ax. 3).

Cor. 4. If one angle of a triangle be a right angle, the sum of the other two will be equal to a right angle, and each of them singly will be acute, or less than a right angle.

Cor. 5. The two smaller angles of every triangle are acute, or each is less than a right angle.

Cor. 6. All the angles of a triangle may be acute, but no triangle can have more than one right or one obtuse angle.

3*

THEOREM XIII.

In any quadrilateral, the sum of the four interior angles is equal to four right angles.

Let ABCD be a quadrilateral; then we are to prove that the sum of the four interior angles, that is A + B + C + D, is equal to four right angles.

Draw the diagonal AC, dividing the quadrilateral into two triangles, ABC,

 \overrightarrow{ADC} . Now, since the sum of the three angles of each of these triangles is equal to two right angles, (Th. 11), it follows that the sum of all the angles of both triangles which make up the four angles of the quadrilateral, must be equal to four right angles, (Ax. 2).

Hence the theorem; in any quadrilateral, etc.

Cor. 1. Hence, if three of the angles of a quadrilateral are right angles, the fourth will also be a right angle.

Cor. 2. If the sum of two of the four angles be equal to two right angles, the sum of the remaining two will also be equal to two right angles. And, if the sum of either two of the angles be less than two right angles, the sum of the other two angles will be greater than two right angles.

THEOREM XIV.

In any polygon, the sum of all the interior angles is equal to twice as many right angles, less four, as the figure has sides.

Let ABCDE be any polygon; we are to prove that the sum of all its interior angles, A + B + C+ D + E, is equal to twice as many right angles, less four, as the figure has sides.

From any point, p, within the figure, draw lines pA, pB, pC, etc., to all the angles,

thus dividing the polygon into as many triangles as it has sides. Now, the sum of the three angles of each of these triangles is equal to two right angles, (Th. 11); and the sum of the angles of all the triangles must be equal to twice as many right angles as the figure has sides. But the sum of these angles contains the sum of four right angles about the point p; taking these away, and the remainder is the sum of the interior angles of the figure. Therefore, the sum must be equal to twice as many right angles, less four, as the figure has sides.

Hence the theorem; in any polygon, etc.

From this Theorem is derived the rule for finding the sum of the interior angles of any right-lined figure:

Subtract 2 from the number of sides, and multiply the remainder by 2; the product will be the number of right angles.

Thus, if the number of sides be represented by S, the number of right angles will be represented by (2S-4).

The Theorem is not varied in case of a re-entrant angle, as represented at d, in the figure ABC-DEF.

Draw lines from the angle dto the several opposite angles, making as many triangles as the figure has sides, *less two*, and the

sum of the three angles of each triangle equals two right angles.

THEOREM XV.

From any point without a straight line, but one perpendicular can be drawn to that line.

From the point A let us suppose it possible that two perpendiculars, AB and AC, can be drawn. Now, because AB is a supposed perpendicular, the angle ABC is a right angle; and because AC is a supposed per-

pendicular, the angle ACB is also a right angle; and if two angles of the triangle ABC are together equal to two right angles, the third angle, BAC, must be infinitely small, or zero; but this is impossible, for it requires the sum of the three angles of a triangle to make two right angles, (Th. 11). Therefore, the lines AB and AC must be identical, or but one perpendicular.

Hence the theorem; from any point without a straight line, etc.

Cor. At a given point in a straight line but one perpendicular can be erected to that line; for, if there could be two perpendiculars, we should have unequal right angles, which is impossible.

THEOREM XVI.

Two triangles which have two sides and the included angle in the one, equal to two sides and the included angle in the other, each to each, are equal in all respects.

In the two \triangle 's, ABC and DEF, on the supposition that AB = DE, AC = DF, and $\ A = \ D$, we are to prove that BC must = EF, the $\ B = \ E$, and the $\ C = \ A = \ B = \ D$

Conceive the $\triangle ABC$ cut out of the paper, taken up, and placed on the $\triangle DEF$ in such a manner that the point A shall fall on the point D, and the line AB on the line DE; then the point B will fall on the point E, because the lines are equal. Now, as the $\[A = \] D$, the line AC must take the same direction as DF, and fall on DF; and as AC = DF, the point C will fall on F. B being on E and C on F, BC must be exactly on EF, (otherwise, two straight lines would enclose a space, Ax. 13), and BC = EF, and the two magnitudes exactly fill the same space. Therefore, BC = EF, $\[B = \] E$, $\[C = \] F$, and the two \triangle 's are equal, (Ax. 9).

Hence the theorem; two triangles which have two sides, etc.

BOOK I.

THEOREM XVII.

When two triangles have a side and two adjacent angles in the one, equal to a side and two adjacent angles in the other, each to each, the two triangles are equal in all respects.

In two \triangle 's, as ABC and DEF, on the supposition that BC = EF, $\bigsqcup B = \bigsqcup E$, and $\bigsqcup C = \bigsqcup F$, we are to prove that AB = DE, AC = DF, and $\bigsqcup A = \bigsqcup D$.

Conceive the $\triangle ABC$ taken up and placed on the $\triangle DEF$, so that the side BC shall exactly coincide with its equal side EF; now, because the angle B is equal to the angle E, the line BA will take the direction of ED, and will fall exactly upon it; and because the angle C is equal to the angle F, the line CA will take the direction of FD, and fall exactly upon it; and the two lines BA and CA, exactly coinciding with the two lines ED and FD, the point A will fall on D, and the two magnitudes will exactly fill the same space; therefore, by Ax. 10, they are equal, and AB = DE, AC = DF, and the $\lfloor A = \lfloor D \rfloor$.

Hence the theorem; when two triangles have a side and two adjacent angles in the one, equal to, etc.

THEOREM XVIII.

If two sides of a triangle are equal, the angles opposite to these sides are also equal.

Let ABC be a triangle; and on the supposition that AC = BC, we are to prove that the $_A =$ the $_B$.

Conceive the angle C divided into two equal angles by the line CD; then we have two \triangle 's, ADC and BDC, which have the two sides, ACand CD of the one, equal to the two sides, CB and CD of the other; and

C

the included angle ACD, of the one, equal to the included angle BCD of the other: therefore, (Th. 16), AD = BD, and the angle A, opposite to CD of the one triangle, is equal to the angle B, opposite to CD of the other triangle; that is, $\[A = \] B$.

Hence the theorem; if two sides of a triangle are equal, the angles, etc.

Cor. 1. Conversely: if two angles of a triangle are equal, the sides opposite to them are equal, and the triangle is isosceles.

For, if AC is not equal to BC, suppose BC to be the greater, and make BE = AE; then will $\triangle AEB$ be isosceles, and $_EAB = _EBA$; hence $_EAB = _CAB$, or a part is equal to the whole, which is absurd; therefore, CB cannot be greater than AC, that is, neither of the sides AC, BC, can be greater than the other, and consequently they are equal.

Cor. 2. As the two triangles, ACD and BCD, are in all respects equal, the line which bisects the angle included between the equal sides of an isosceles \triangle also bisects the base, and is perpendicular to the base.

SCHOLIUM 1. — If in the perpendicular DC, any other point than C be taken, and lines be drawn to the extremities A and B, such lines will be equal, as is evident from Th. 16; hence, we may announce this truth: Any point in a perpendicular drawn from the middle of a line, is at equal distances from the two extremities of the line.

SCHOLIUM 2. — Since two points determine the position of a line, it follows, that the line which connects two points equally distant from the extremities of a given line, is perpendicular to this line at its middle point.

THEOREM XIX.

The greater side of every triangle has the greater angle opposite to it.

Let ABC be a \triangle ; and on the supposition that AC is greater than AB, we are to prove that the angle ABC is

.34

greater than the $\[C. From AC,$ the greater of the two sides, take AD, equal to the less side AB, and draw BD, thus making two triangles of the original triangle. As AB = AD, the $\[ADB =$ the $\[ABD, (Th. 18). \]$

But the $\[ADB \]$ is the exterior angle of the $\triangle BDC$, and is therefore greater than C, (Th. 12); that is, the $\[ABD \]$

is greater than the angle C. Much more, then, is the angle ABC greater than the angle C.

Hence the theorem; the greater side of every triangle, etc. Cor. Conversely: the greater angle of any triangle has the greater side opposite to it.

In the triangle ABC, let the angle B be greater than the angle A; then is the side AC greater than the side BC.

For, if BC = AC, the angle A must be equal to the angle B, (Th. 18), which is contrary to the hypothesis; and if BC > AC, the angle A must be greater than the angle B, by what is above proved, which is also contrary to the hypothesis; hence BC can be neither equal to, nor greater, than AC; it is therefore less than AC.

THEOREM XX.

The difference between any two sides of a triangle is less than the third side.

(1)

Let ABC be a \triangle , in which AC is greater than AB; then we are to prove that AC-AB is less than BC.

On AC, the greater of the two sides, lay off AD equal to AB.

Now, as a straight line is the shortest distance between two points, we have

AB + BC > AC.

35

From these unequals subtract the equals AB = AD, and we have BC > AC - AB. (Ax. 5).

Hence the theorem; the difference between any two sides of a triangle, etc.

THEOREM XXI.

If two triangles have the three sides of the one equal to the three sides of the other, each to each, the two triangles are equal, and the equal angles are opposite the equal sides.

In two triangles, as ABC and ABD, on the supposition that the side AB of the one = the side AB of the other, AC=AD, and BC=BD, we are to demonstrate that

Conceive the two triangles to be joined together by their longest equal sides, and draw the line *CD*.

Then, in the triangle ACD, because AC is equal to AD,

the angle ACD is equal to the angle ADC, (Th. 18). In like manner, in the triangle BCD, because BC is equal to BD, the angle BCD is equal to the angle BDC. Now, the angle ACD being equal to the angle ADC, and the angle BCD to the angle BDC, $_ACD + _BCD = _$ $ADC + _BDC$, (Ax. 2); that is, the whole angle ACB is equal to the whole angle ADB.

Since the two sides AC and CB are equal to the two sides AD and DB, each to each, and their included angles ACB, ADB, are also equal, the two triangles ABC, ABD, are equal, (Th. 16), and have their other angles equal; that is, $_BAC = _BAD$, and $_ABC = _ABD$.

Hence the theorem; if two triangles have the three sides of the one, etc.

THEOREM XXII.

If two triangles have two sides of the one equal to two sides of the other, each to each, and the included angles unequal, the third sides will be unequal, and the greater third side will belong to the triangle which has the greater included angle.

In the two \triangle 's, ABC and ACD, let AB and AC of the one \triangle be equal to AD and AC of the other \triangle , and the angle BAC greater than the angle DAC; we are to prove that the side BC is greater than the side CD.

Conceive the two \triangle 's joined together by their shorter equal sides, and draw the line BD. Now, as AB = AD, ABD is an isosceles \triangle . From the vertex A, draw a line bisecting the angle BAD. This line must be perpendicular to the base BD, (Th. 18, Cor. 1). Since the $_BAC$ is greater than the $_DAC$, this line must meet BC, and will not meet CD. From the point E, where the perpendicular meets BC, draw ED.

NowBE = DE, (Th. 18, Scholium 1).Add EC to each; then BC = DE + EC.But DE + EC is greater than DC.ThereforeBC > DC.

Hence the theorem; if two triangles have two sides of one equal to two sides of the other, etc.

Cor. Any point out of the perpendicular drawn from the middle point of a line, is unequally distant from the extremities of the line.

THEOREM XXIII.

A perpendicular is the shortest line that can be drawn from any point to a straight line; and if other lines be drawn from the same point to the same straight line, the longer line will be at a greater distance from the perpendicular; and lines at equal distances from the perpendicular, on opposite sides, are equal.

Let A be any point without the line DE; let AB be the perpendicular; and AC, AD, and AE oblique lines: then, if BC is less than BD, and BC = BE, we are to show,

1st. That AB is less than AC. 2d. That AC is less than AD. 3d. That AC = AE.

1st. In the triangle ABC, as AB is perpendicular to BC, the angle ABC is a right angle; $\Box C + \bigsqcup BAC =$ another right angle, (Th. 11); and the angle BCA is less than a right angle; and, as the greater side is always opposite the greater angle, AB is less than AC; and AC may be any line not identical with AB; therefore a perpendicular is the shortest line that can be drawn from A to the line DE.

2d. As the two angles, ACB and ACD, are together equal to two right angles, (Th. 1), and ACB is less than a right angle, ACD must be greater than a right angle; consequently, the $\ D$ is less than a right angle; and, in the $\triangle ACD$, AD is greater than AC, or AC is less than AD, (Th. 19).

3d. In the \triangle 's *ABC* and *ABE*, *AB* is common, *CB* = *BE*, and the angles at *B* are right angles; therefore, AC = AE, (Th. 16).

Hence the theorem; a perpendicular is the shortest line, etc.

Cor. Conversely: if two equal oblique lines be drawn

BOOK I.

from the same point to a given straight line, they will meet the line at equal distances from the foot of the perpendicular drawn from that point to the given line.

THEOREM XXIV.

The opposite sides, and also the opposite angles of any parallellogram, are equal.

Let ABCD be a parallelogram. Then we are to show that AB = DC, AD = BC, $_A = _C$, and $_ADC$ = | ABC.

Draw a diagonal, as BD; now, because AB and DC are parallel, the al-

ternate angles ABD and BDC are equal, (Th. 6). For the same reason, as AD and BC are parallel, the angles ADB and DBC are equal. Now, in the two triangles ABD and BCD, the side BD is common,

the	ADB	$= _DBC$	(1)
and	BDC	= ABD	(2)

Therefore, the angle A = the angle C, (Th. 11), and the two \triangle 's are equal in all respects, (Th. 18); that is, the sides opposite the equal angles are equal; or, AB = DC, and AD = BC. By adding equations (1) and (2), we have the angle ADC = the angle ABC, (Ax. 2).

Hence the theorem; the opposite sides, and the opposite angles, etc.

Cor. 1. As the sum of all the angles of the quadrilateral is equal to four right angles, and the angle A is always equal to the opposite angle C; therefore, if A is a right angle, C is also a right angle, and the figure is a rectangle.

Cor. 2. As the angle ABC, added to the angle A, gives the same sum as the angles of the $\triangle ADB$; therefore, the two adjacent angles of a parallelogram are together equal to two right angles. This corresponds to Th. 13, Cor. 2.

THEOREM XXV.

If the opposite sides of a quadrilateral are equal, they are also parallel, and the figure is a parallelogram.

Let ABDC be any quadrilateral; on the supposition that AD = BC, and AB = DC, we are to prove that AD is parallel to BC, and AB parallel to DC.

Draw the diagonal BD; we now A have two triangles, ABD and BCD,

which have the side BD common, AD of the one = BCof the other, and AB of the one = CD of the other; therefore the two \triangle 's are equal, (Th. 21), and the angles opposite the equal sides are equal; that is, the angle ADB = the angle CBD; but these are alternate angles; and, therefore, AD is parallel to BC, (Th. 7); and because the angle ABD = the angle BDC, AB is parallel to CD, and the figure is a parallelogram.

Hence the theorem; if the opposite sides of a quadrilateral, etc.

Cor. This theorem, and also Th. 24, proves that the two \triangle 's which make up the parallelogram are equal; and the same would be true if we drew the diagonal from A to C; therefore, the diagonal of any parallelogram bisects the parallelogram.

THEOREM XXVI.

The lines which join the corresponding extremities of two equal and parallel strait lines, are themselves equal and parallel; and the figure thus formed is a parallelogram.

On the supposition that AB is equal and parallel to DC, we are to prove that AD is equal and parallel to BC; and that the figure is a parallelogram.

Draw the diagonal BD; now, since

BOOK I.

AB and DC are parallel, and BD joins them, the alternate angles ABD and BDC are equal; and since the side AB = the side DC, and the side BD is common to the two \triangle 's ABD and CDB, therefore the two triangles are equal, (Th. 16); that is, AD = BC, the angle A = C, and the $[_ADB =$ the $[_DBC$; also AD is parallel to BC; and the figure is a parallelogram.

Hence the theorem; the lines which join the corresponding extremities, etc.

THEOREM XXVII.

Parallelograms on the same base, and between the same parallels, are equivalent, or equal in respect to area or surface.

Let ABEC and ABDF be two parallelograms on the same base AB, and between the same parallels AB and CD; we are to prove that these two parallelograms are equal.

Now, CE and FD are equal, because they are each equal to AB, (Th. 24); and, if from the whole line CD we take, in succession, CE and FD, there will remain ED = CF, (Ax. 3); but BE = AC, and AF = BD, (Th. 24); hence we have two \triangle 's, CAF and EBD, which have the three sides of the one equal to the three sides of the other, each to each; therefore, the two \triangle 's are equal, (Th. 21). If, from the whole figure ABDC, we take away the $\triangle CAF$, the parallelogram ABDF will remain; and if from the whole figure we take away the other $\triangle EBD$, the parallelogram ABDF =the parallelogram ABDF =

Hence the theorem ; Parallelograms on the same base, etc. 4*

world have 13,2, on table

THEOREM XXVIII.

Triangles on the same base and between the same parallels are equivalent.

Let the two \triangle 's *ABE* and *ABF* have the same base *AB*, and be between the same parallels *AB* and *CD*; then we are to prove that they are equal in surface.

From B draw the line BD, parallel to AF; and from A draw the line AC, parallel to

BE; and produce EF, if necessary, to C and D; now the parallelogram ABDF = the parallelogram ABEC, (Th. 27). But the $\triangle ABE$ is one half the parallelogram ABEC, and the $\triangle ABF$ is one half the parallelogram ABDF; and halves of equals are equal, (Ax. 7); therefore the $\triangle ABE =$ the $\triangle ABF$.

Hence the theorem; triangles on the same base, etc.

THEOREM XXIX.

Parallelograms on equal bases, and between the same parallels, are equal in area.

Let ABCD and EFGH, be two D C H parallelograms on equal bases, ABand EF, and between the same parallels, AF and DG; then we are A B E to prove that they are equal in area.

AB = EF = HG; but lines which join equal and parallel lines, are themselves equal and parallel, (Th. 26); therefore, if AH and BG be drawn, the figure ABGH is a parallelogram = to the parallelogram ABCD, (Th. 27); and if we turn the whole figure over, the two parallelograms, GHEF and GHAB, will stand on the same base, GH, and between the same parallels; therefore, GHEF= GHAB, and consequently ABCD = EFGH, (Ax. 1).

Hence the theorem; Parallelograms on equal bases, etc.

Cor. Triangles on equal bases, and between the same parallels, are equal in area. For, draw BD and EG; the $\triangle ABD$ is one half of the parallelogram AC, and the $\triangle EFG$ is one half of the equivalent parallelogram FH; therefore, the $\triangle ABD =$ the $\triangle EFG$, (Ax. 7).

THEOREM XXX.

If a triangle and a parallelogram are upon the same or equal bases, and between the same parallels, the triangle is equivalent to one half the parallelogram.

Let ABC be a \triangle , and ABDE a parallelogram, on the same base AB, and between the same parallels; then we are to prove that the $\triangle ABC$ is equivalent to one half of the parallelogram ABDE.

Draw the diagonal EB to the parallelogram; now, because the two \triangle 's ABC and ABE are on the same base, and between the same parallels, they are equivalent, (Th. 28); but the $\triangle ABE$ is one half the parallelogram ABDE, (Th. 25, Cor.); therefore the $\triangle ABC$ is equivalent to one half of the same parallelogram, (Ax. 7).

Hence the theorem; if a triangle and a parallelogram, etc.

THEOREM XXXI.

The complementary parallelograms described about any point in the diagonal of any parallelogram, are equivalent to each other.

Let AC be a parallelogram, and BD its diagonal; take any point, as E, in the diagonal, and through this point draw lines parallel to the sides of the parallelogram, thus forming four parallelograms.

We are now to prove that the complementary parallelograms, AE and EC, are equivalent.

DIELIAN

By (Th. 25, Cor.) we learn that the $\triangle ABD = \triangle DBC$. Also by the same Cor., $\triangle a = \triangle b$, and $\triangle c = \triangle d$; therefore by addition

 $\triangle a + \triangle c = \triangle b + \triangle d.$

Now, from the whole $\triangle ABD$ take $\triangle a + \triangle c$, and from the whole $\triangle DBC$ take the equal sum, $\triangle b + \triangle d$, and the remaining parallelograms AE and EC are equivalent, (Ax. 3).

Hence the theorem; the complementary parallelograms, etc.

THEOREM XXXII.

The perimeter of a rectangle is less than that of any rhomboid standing on the same base, and included between the same parallels.

Let *ABCD* be a rectangle, and *ABEF* a rhomboid having the same base, and their opposite sides in the same line parallel to the base.

We are now to prove that the perimeter ABCDA is less than ABEFA.

Because AD is a perpendicular from A to the line DE, and AF an oblique line, AD is less than AF, (Th. 23). For the same reason BC is less than BE; hence AD + BC < AF + BE. Adding the sum, AB + DC, to the first member of this inequality, and its equal AB + FE to the second member, we have AB + BC + CD + DA, or the perimeter of the rectangle, less than AB + BE + EF + FA, or the perimeter of the rhomboid. Hence the theorem; the perimeter of a rectangle, etc.

SCHOLIUM.—In Theorem 30 it is shown that the triangles ABC, ABE, and DBE, are equal in area, and that each is equal to one half the parallelogram ABDE. This parallelogram also has the same area as the rectangle having an equal base and altitude.

BOOK I.

Thus far, areas have been considered only relatively and in the abstract. We will now explain how we may pass to the absolute measures, or, more properly, to the numerical expressions for areas.

THEOREM XXXIII.

The area of any plane triangle is measured by the product of its base by one half its altitude; or one half its base by its altitude, or one half the product of its base by its altitude.

Let ABC represent any triangle, ABits base, and AD, at right angles to AB, its altitude; now we are to show that the area of ABC is equal to the product of AB by one half of AD; or one half of

AB by AD; or one half of the product of AB by AD. On AB construct the rectangle ABED; and the area of this rectangle is measured by AB into AD (Def. 54); but the area of the $\triangle ABC$ is equivalent to one half this rectangle, (Th. 30). Therefore, the area of the \triangle is measured by $\frac{1}{2}AB \times AD$, or one half the product of its base by its altitude. Hence the theorem; the area of any plane triangle, etc.

THEOREM XXXIV.

The area of a trapezoid is measured by one half the sum of its parallel sides multiplied by the perpendicular distance between them.

Let ABDC represent any trapezoid; draw the diagonal BC, dividing it into two triangles, ABC and BCD: CD is the base of one triangle, and AB may be considered

as the base of the other; and EF is the common altitude of the two triangles.

Now, by Th. 33, the area of the triangle $BCD = \frac{1}{2}CD \times EF$; and the area of the $\triangle ABC = \frac{1}{2}AB \times EF$; but

B

by addition, the area of the two \triangle 's, or of the trapezoid, is equal to $\frac{1}{2}(AB+CD)\times EF$. Hence the theorem; the area of a trapezoid, etc.

THEOREM XXXV.

If one of two lines is divided into any number of parts, the rectangle contained by the two lines is equal to the sum of the several rectangles contained by the undivided line and the several parts of the divided line.

Let AB and AD be two lines, and suppose AB divided into any number of parts at the points E, F, G, etc.; then the whole rectangle contained by the two lines is AH, which is measured by AB

into AD. But the rectangle AL is measured by AEinto AD; the rectangle EK is measured by EF into EL, which is equal to EF into AD; and so of all the other partial rectangles; and the truth of the proposition is as obvious as that a whole is equal to the sum of all its parts. Hence the theorem; if one of two lines is divided, etc.

THEOREM XXXVI.

If a straight line is divided into any two parts, the square described on the whole line is equivalent to the sum of the squares described on the two parts plus twice the rectangle con tained by the parts.

Let AB be any line divided into any two parts at the point C; now we are to prove that the square on ABis equivalent to the sum of the squares on AC and CB plus twice the rectangle contained by AC and CB.

On AB describe the square AD. Through the point C draw CM, par-

allel to BD; take BH = BC, and through H draw HKN, parallel to AB. We now have CH, the square on CB, by direct construction.

As AB = BD, and CB = BH, by subtraction, AB - CB = BD - BH; or AC = HD. But NK = AC, being opposite sides of a parallelogram; and for the same reason, KM = HD. Therefore, (Ax. 1), NK = KM, and the figure NM is a square on NK, equal to a square on AC. But the whole square on AB is composed of the two squares CH, NM, and the two complements or rectangles AK and KD; and each of these latter is AC in length, and BC in width; and each has for its measure AC into CB; therefore the whole square on AB is equivalent to $AC^2 + BC^2 + 2AC \times CB$.

Hence the theorem; if a straight line is divided into any two parts, etc.

This theorem may be proved algebraically, thus:

Let w represent any whole right line divided into any two parts a and b; then we shall have the equation

w = a + b

By squaring, $w^2 = a^2 + b^2 + 2ab$.

Cor. If a = b, then $w^2 = 4a^2$; that is, the square described on any line is four times the square described on one half of it.

THEOREM XXXVII.

The square described on the difference of two lines is equivalent to the sum of the squares described on the two lines diminished by twice the rectangle contained by the lines.

Let AB represent the greater of two lines, CB the less line, and AC their difference.

We are now to prove that the square described on ACis equivalent to the sum of the squares on AB and BCdiminished by twice the rectangle contained by ABand BC.

Conceive the square AF to be described on AB, and

the square BL on CB; on AC describe the square ACGM, and produce MGto K.

As GC = AC, and CL = CB, by addition, (GO + CL), or GL, is equal to AC + CB, or AB. Therefore, the rectangle GE is AB in length, and CB in width, and is measured by AB $\times BC$.

Also AH = AB, and AM = AC; by subtraction, MH = CB; and as MK = AB, the rectangle HK is AB in length, and CB in width, and is measured by $AB \times BC$; and the two rectangles GE and HK are together equivalent to $2AB \times BC$.

Now, the squares on AB and BC make the whole figure AHFELC; and from this whole figure, or these two squares, take away the two rectangles HK and GE, and the square on AC only will remain; that is,

 $AC^2 = AB^2 + BC^2 - 2AB \times BC.$

Hence the theorem; the square described on the difference of two lines, etc.

This theorem may be proved algebraically, thus:

Let a represent the greater of two lines, b the less, and d their difference; then we must have this equation:

$$\mathbf{d} = a - b$$

By squaring, $d^2 = a^2 + b^2 - 2ab$.

Cor. If d = b, then $d = \frac{a}{2}$, and $d^2 = \frac{a^2}{4}$; that is, the square described on one half of any line is equivalent to one fourth of the square described on the whole line.

THEOREM XXXVIII.

The difference of the squares described on any two lines is equivalent to the rectangle contained by the sum and difference of the lines.

Let AB be the greater of two lines, and AC the less, and on these lines describe the squares AD, AM; then, the difference of the squares on AB and AC is the two rect-

angles EF and FC. We are now to show that the measure of these rectangles may be expressed by (AB + AC) $\times (AB - AC)$.

The length of the rectangle EF is ED, or its equal AB; and the length of the rectangle FC is MC, or its equal AC;

therefore, the length of the two together (if we conceive them put between the same parallel lines) will be AB + AC; and the common width is CB, which is equal to AB - AC; therefore, $\overline{AB}^2 - \overline{AC}^2 = (AB + AC) \times (AB - AC)$.

Hence the theorem; the difference of the squares described on any two lines, etc.

This theorem may be proved algebraically: thus,

Let a represent one line, and b another;

Then a + b is their sum, and a - b their difference; and $(a + b) \times (a - b) = a^2 - b^2$.

THEOREM XXXIX.

The square described on the hypotenuse of any right-angled triangle is equivalent to the sum of the squares described on the other two sides.

Let ABC represent any right-angled triangle, the right angle at B; we are to prove that the square on AC is equivalent to the sum of two squares; one on AB, the other on BC.

On the three sides of the triangle describe the three squares, AD, AI, and BM. Through the point B, draw BNE perpendicular to AC, and produce it to meet the line GI in K; also produce AF to meet GI in H, and ML to meet the point in K.

REMARK.— That the lines, GI and ML, produced, meet at the point. K, may be readily shown. As the proof of this fact is not necessary for the demonstration, it is left as an exercise for the learner.

5

The angle BAG is a right angle, and the angle NAH

is also a right angle; if from these equals we subtract the common angle BAH, the remaining angle, BAC, must be equal to the remaining angle GAH. The angle G is a right angle, equal to the angle ABC; and AB= AG; therefore, the two \triangle 's ABC and AGH are equal, and AH = AC. But AC =AF; therefore, AH =AF. Now, the two

parallelograms, AE and AHKB are equivalent, because they are upon equal bases, and between the same parallels, FH and EK, (Th. 27).

But the square AI, and the parallelogram AHKB, are equivalent, because they are on the same base, AB, and between the same parallels, AB and GK; therefore, the square AI, and the parallelogram AE, being each equivalent to the same parallelogram AHKB, are equivalent to each other, (Ax. 1). In the same manner we may prove that the square BD is equivalent to the rectangle ND; therefore, by addition, the two squares, AI and BM, are equivalent to the two parallelograms, AE and ND, or to the square AD.

Hence the theorem; the square described on the hypotenuse of a right-angled triangle, etc.

Cor. If two right-angled triangles have the hypotenuse, and a side of the one equal to the hypotenuse and a side of the other, each to each, the two triangles are equal.

BOOK I.

Let ABC and AGH be the two \triangle 's, in which we suppose AC = AH, and BC = GH; then will AG = AB.

For, we have $\overline{AC^2} = \overline{AB^2} + \overline{BC^2}$, or, by transposing, $\overline{AC^2} - \overline{BC^2} = \overline{AB^2}$, and $\overline{AH^2} = \overline{AG^2} + \overline{GH^2}$, or, by transposing, $\overline{AH^2} - \overline{GH^2} = \overline{AG^2}$. But by the hypothesis $\overline{AC^2} - \overline{BC^2} = \overline{AH^2} - \overline{GH^2}$; hence, $\overline{AB^2} = \overline{AG^2}$, or, AB = AG.

SCHOLIUM.—The two sides, AB and BC, may vary, while AC remains constant. AB may be equal to BC; then the point N will be in the middle of AC. When AB is very near the length of AC, and BC very small, then the point N falls very near to C. Now as AE and AD are right-angled parallelograms, their areas are measured by the product of their bases by their altitudes; and it is evident that, as they have the same altitude, these areas will vary directly as their bases AN and NC; hence the squares on AB and BC, which are equivalent to those rectangles, vary as the lines AN and NC.

The following outline of the demonstration of this proposition is presented as a useful disciplinary exercise for the student.

We employ the same figure, in which no change is made except to draw through C the line CP, parallel to BK.

The first step is to prove the equality of the triangles AGH and ABC, whence AH = AC. But AC = AF; therefore AH = AF.

The parallelograms AFEN and AHKB are equivalent. Also, the parallelogram AHKB = the square ABIG, (Th. 27), and the parallelogram KBCP=NEDC=square BCML. Now, by adding the equals

AFEN = ABIGNEDC = BCMLAFDC = ABIG + BCML.

we obtain $\overline{AFDC} = A$

That is, the square on AC is equivalent to the sum of the squares on AB and BC.

The great practical importance of this theorem, in the extent and variety of its applications, and the frequency of its use in establishing subsequent propositions, render it necessary that the student should master it completely. To secure this end, we present a

Second Demonstration.

Let ABC be a triangle right-angled at B. On the hypotenuse AC, describe the square ACED. From D and E let fall the perpendiculars Db and Ed, on AB and ABproduced. Draw Dn and Ca, making right angles with Ed.

We give an outline only b A d B of the demonstration, requiring the pupil to make it complete.

First Part.—Prove the four triangles ABC, AbD, DnE, and EaC, equal to each other.

The proof is as follows: The \triangle 's ABC and DnE are equal, because the angles of the one are equal to the angles of the other, each to each, and the hypotenuse AC of the one, is equal to the hypotenuse DE of the other. In like manner, it may be shown that the \triangle 's AbD and EaC are equal.

Now, the sum of the three angles about A, is equal to the sum of the three angles of the $\triangle ABC$; and if, from the first sum, we take $\ DAC + \ CAB$, and from the second we take $\ B + \ CAB = \ DAC + \ CAB$, the remaining angles are equal; that is, $\ DbA$ is equal to $\ ACB$; hence the \triangle 's ABC and DbA have their angles equal, each to each; and since AC = DA, the \triangle 's are themselves equal, and the four triangles ABC, AbD, DnE, and EaC, are equal to each other.

Second. — Prove that the square bDnd is equal to a square on AB. The square BdaC is obviously on BC.

Third.—The area of the whole figure is equal to the square on AC, and the area of two of the four equal right-angled triangles.

Also, the area of the whole figure is equal to two other

squares, *bDnd* and *daCB*, and two of the four equal triangles, *DnE* and *EaC*.

Omitting or subtracting the areas of two of the four right-angled triangles, in each of the two expressions for the area of the whole figure, there will remain the square on AC, equal to the sum of the two squares, *Dndb* and daCB.

That is, $\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$.

Hence the theorem; the square described on the hypotenuse of a right-angled triangle, etc.

SCHOLIUM.—Hence, to find the hypotenuse of a right-angled triangle, extract the square root of the sum of the squares of the two sides about the right angle.

THEOREM XL.

In any obtuse-angled triangle, the square on the side opposite the obtuse angle is greater than the sum of the squares on the other two sides, by twice the rectangle contained by either side about the obtuse angle, and the part of this side produced to meet the perpendicular drawn to it from the vertex of the opposite angle.

Let ABC be any triangle in which the angle at B is obtuse. Produce either side about the obtuse angle, as CB, and from A draw AD perpendicular to CB, meeting it produced at D.

It is obvious that CD = CB + BD. By squaring, $\overline{CD}^2 = \overline{CB}^2 + 2CB \times BD + \overline{BD}^2$, (Th. 36). Adding \overline{AD}^2 to each member of this equation, we have

 $\overline{AD}^2 + \overline{CD}^2 = \overline{CB}^2 + \overline{BD}^2 + \overline{AD}^2 + 2CB \times BD.$

But, (Th. 39), the first member of the last equation is equal to \overline{AC}^2 , and

 $\overline{BD}^2 + \overline{AD}^2 = \overline{AB}^2.$

5*

Therefore, this equation becomes

 $\overline{AC}^2 = \overline{CB}^2 + \overline{AB}^2 + 2CB \times BD.$

That is, the square on AC is equivalent to the sum of the squares on CB and AB, increased by twice the rectangle contained by CB and BD.

Hence the theorem; in any obtuse-angled triangle, the square on the side opposite the obtuse angle, etc.

SCHOLIUM.—Conceive AB to turn about the point A, its intersection with CD gradually approaching D. The last equation above will be true, however near this intersection is to D, and when it falls upon Dthe triangle becomes right-angled.

In this case the line BD reduces to zero, and the equation becomes $\overline{AC^2} = \overline{CB^2} + \overline{AB^2}$, in which CB and AB are now the base and perpendicular of a right-angled triangle. This agrees with Theorem 39, as it should, since we used the property of the right-angled triangle established in Theorem 39 to demonstrate this proposition; and in the equation which expresses a property of the obtuse-angled triangle, we have introduced a supposition which changes it into one which is right-angled.

THEOREM XLI.

In any triangle, the square on a side opposite an acute angle is less than the sum of the squares on the other two sides, by twice the rectangle contained by either of these sides, and the distance from the vertex of the acute angle to the foot of the perpendicular let fall on this side, or side produced, from the vertex of its opposite angle.

Let ABC, either figure, represent any triangle; C an acute angle, CBthe base, and ADthe perpendicular, which falls either

without or on the base. Now we are to prove that

 $AB^{2} = \overline{CB}^{2} + \overline{AC}^{2} - 2CB \times CD.$

From the first figure we get BD = CD - CB (1) and from the second BD = CB - CD (2)

Either one of these equations will give, (Th. 37),

$$\overline{BD}^{s} = \overline{CD}^{s} + \overline{CB}^{s} - 2CD \times CB.$$

Adding \overline{AD}^{2} to each member and reducing, we obtain, (Th. 39), $\overline{AB}^{2} = \overline{AC}^{2} + \overline{CB}^{2} - 2CB \times CD$, which proves the proposition. Hence the theorem.

THEOREM XLII.

If in any triangle a line be drawn from any angle to the middle of the opposite side, twice the square of this line, together with twice the square of one half the side bisected, will be equivalent to the sum of the squares of the other two sides.

Let ABC be a triangle, and M the middle point of its base.

Then we are to prove that $2\overline{AM}^2 + 2\overline{CM}^2 = \overline{AC}^2 + \overline{AB}^2$.

Draw AD perpendicular to the base, and make AD = p, AC = b, AB = c, CB = 2a,

 $AM \doteq m$, and MD = x; then CM = a, CD = a + x, DB = a - x.

Now by, (Th. 39), we have the two following equations:

$$p^{2} + (a - x)^{2} = c^{2}$$
(1)

$$p^{2} + (a + x)^{2} = b^{2}$$
(2)

By addition, $2p^2 + 2x^2 + 2a^2 = b^2 + c^2$. But $p^2 + x^2 = m^2$. Therefore, $2m^2 + 2a^2 = b^2 + c^2$.

This equation is the algebraic enunciation of the theorem.

THEOREM XLIII.

The two diagonals of any parallelogram bisect each other; and the sum of their squares is equivalent to the sum of the squares of the four sides of the parallelogram.

Let ABCD be any parallelogram, and AC and BD its diagonals.

We are now to prove,

1st. That AE = EC, and DE = EB.

2d. That $\overline{AC}^2 + \overline{BD}^2 = \overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2$.

1. The two triangles ABE and CDE are equal, because AB = CD, the angle ABE = the alternate angle CDE, and the vertical angles at E are equal; therefore, AE, the side opposite the angle ABE, is equal to CE, the side opposite the equal angle CDE; also EB, the remaining side of the one \triangle , is equal to ED, the remaining side of the other triangle.

2. As ACD is a triangle whose base, AC, is bisected in E, we have, by (Th. 42),

 $2\overline{AE}^2 + 2\overline{ED}^2 = \overline{AD}^2 + \overline{DC}^2 \quad (1)$

And as ACB is a triangle whose base, AC, is bisected in E, we have

 $2\overline{A}\overline{E}^2 + 2\overline{E}\overline{B}^2 = \overline{A}\overline{B}^2 + \overline{B}\overline{C}^2 \quad (2)$

By adding equations (1) and (2), and observing that

 $\overline{EB}^2 = \overline{ED}^2$, we have

$$4\overline{A}\overline{E}^{2} + 4\overline{E}\overline{D}^{2} = \overline{A}\overline{D}^{2} + \overline{D}\overline{C}^{2} + \overline{A}\overline{B}^{2} + \overline{B}\overline{C}^{2}$$

But, four times the square of the half of a line is equivalent to the square of the whole line, (Th. 36, Corollary); therefore $4\overline{A}\overline{E}^2 = \overline{A}\overline{C}^2$, and $4\overline{E}\overline{D}^2 = \overline{D}\overline{B}^2$; and by substituting these values, we have

 $\overline{AC}^2 + \overline{BD}^2 = \overline{AB}^2 + \overline{BC}^2 + \overline{DC}^2 + \overline{AD}^2,$

which equation conforms to the enunciation of the theorem.

56

BOOK I.

THEOREM XLIV.

If a line be bisected and produced, the rectangle contained by the whole line and the part produced, together with the square of one half the bisected line, will be equivalent to the square on a line made up of the line produced and one half the bisected line.

Let AB be any line, bisected in C and produced to D. On CD describe the square CF, and on BD describe the square BE.

The sides of the square BE being produced, the G G M E square GL will be form-

ed. Also, complete the construction of the rectangle ADEK.

Then we are to prove that the rectangle, A.E, and the square, GL, are together equivalent to the square, CDFG.

The two complementary rectangles, CL and LF, are equal, (Th. 31). But CL=AH, the line AB being bisected at C; therefore AL is equal to the sum of the two complementary rectangles of the square CF. To AL add the square BE, and the whole rectangle, AE, will be equal to the two rectangles CE and EM. To each of these equals add HM, or the square on HL or its equal CB, and we have rectangle AE + square $HM = \overline{CD}^2$; but rectangle $AE = AD \times BD$, and square $HM = \overline{CB}^2$. Hence the theorem, etc.

SCHOLIUM. — If we represent AB by 2a, and BD by x, then AD = 2a + x, and $AD \times BD = 2ax + x^2$. But $\overline{CB}^2 = a^2$; adding this equation to the preceding, member to member, we get $AD \times BD + \overline{CB}^2 = a^2 + 2ax + x^2 = \overline{a + x^2}$. But CD = a + x; hence this equation is equivalent to the equation $AD \times DB + \overline{CB}^2 = \overline{CD}^2$, which is the algebraic proof of the theorem.

2 0.1 + 50

THEOREM XLV.

If a straight line be divided into two equal parts, and also into two unequal parts, the rectangle contained by the two unequal parts together with the square of the line between the points of division, will be equivalent to the square on one half the line.

Let AB be a line bisected in C, and divided into two unequal parts in D.

We are to prove that $AD \times DB + \frac{D}{CD^2 = \overline{AC}^2}$, or \overline{CB}^2 .

We see by inspection that AD = AC + CD, and BD = AC - CD; therefore by multiplication we have

 $AD \times BD = \overline{AC}^2 - \overline{CD}^2$, (Th. 38).

By adding \overline{CD}^2 to each of these equals, we obtain $AD \times BD + \overline{CD}^2 = \overline{AC}^2$

OL and explaine synfinite to

Longer with the W.A. and stranger with the MARE Line advector would be defined with the stranger of Mark assessment and all with the stranger with the WRA stranger large MRA in 1975, we do not all the stranger

A all the set of the factor of all the demonstrative entrance data problem there in the number of the set of the set of the 4 GD X Share the reserver of the set o

the property of the second with the second state of the second sta

I don't empty of the un-

or a salad at a sol of the part of the

The second sit is advantage grain and

Hence the theorem.

and the local distance

STRATES.

BOOK II.

BOOK II.

of here and a second second

PROPORTION.

DEFINITIONS AND EXPLANATIONS.

THE word Proportion, in its common meaning, denotes that *general relation* or symmetry existing between the different parts of an object which renders it agreeable to our taste, and conformable to our ideas of beauty or utility; but in a mathematical sense,

1. Proportion is the numerical relation which one quantity bears to another of the same kind.

As the magnitudes compared must be of the same kind, proportion in geometry can be only that of a line to a line, a surface to a surface, an angle to an angle, or a volume to a volume.

2. Ratio is a term by which the number which measures the proportion between two magnitudes is designated, and is the quotient obtained by dividing the one by the other. Thus, the ratio of A to B is $\frac{B}{A}$, or A: B, in which A is called the *antecedent*, and B the *consequent*.

If, therefore, the magnitude A be assumed as the unit or standard, this quotient is the numerical value of B expressed in terms of this unit.

It is to be remarked that this principle lies at the foundation of the method of representing quantities by numbers. For example, when we say that a body weighs twenty-five pounds, it is implied that the weight of this body has been compared, directly or indirectly, with that of the standard, one pound. And so of geometrical

and the printing of

magnitudes; when a line, a surface, or a volume is said to be fifteen linear, superficial, or cubical feet, it is understood that it has been referred to its particular unit, and found to contain it fifteen times; that is, fifteen is the ratio of the unit to the magnitude.

When two magnitudes are referred to the same unit, the ratio of the numbers expressing them will be the ratio of the magnitudes themselves.

Thus, if A and B have a common unit, a, which is contained in A, m times, and in B, n times, then A = ma

and B = na, and $\frac{B}{A} = \frac{na}{ma} = \frac{n}{m}$.

To illustrate, let the line A contain the line a six times, and let the line B contain the same line a five times: then A=6a and B=5a, which give $\frac{B}{A} = \frac{5a}{6a} = \frac{5}{6}$.

3. A Proportion is a formal statement of the equality of two ratios.

Thus, if we have the four magnitudes A, B, C and D, such that $\frac{B}{A} = \frac{D}{C}$, this relation is expressed by the proportion A: B:: C: D, or A: B = C: D, the first of which is read, A is to B as C is to D; and the second, the ratio of A to B is equal to that of C to D.

4. The Terms of a proportion are the magnitudes, or more properly the representatives of the magnitudes compared.

5. The Extremes of a proportion are its first and fourth terms.

6. The Means of a proportion are its second and third terms.

7. A Couplet consists of the two terms of a ratio. The

first and second terms of a proportion are called the *first couplet*, and the third and fourth terms are called the *second couplet*.

8. The Antecedents of a proportion are its first and third terms.

9. The Consequents of a proportion are its second and fourth terms.

In expressing the equality of ratios in the form of a proportion, we may make the denominators the antecedents, and the numerators the consequents, or the reverse, without affecting the relation between the magnitudes. It is, however, a matter of some little importance to the beginner to adopt a uniform rule for writing the terms of the ratios in the proportion; and we shall always, unless otherwise stated, make the denominators of the ratios the antecedents, and the numerators the consequents.*

10. Equimultiples of magnitudes are the products arising from multiplying the magnitudes by the same number. Thus, the products, Am and Bm, are equimultiples of A and B.

11. A Mean Proportional between two magnitudes is a magnitude which will form with the two a proportion, when it is made a consequent to the first ratio, and an antecedent to the second. Thus, if we have three magnitudes A, B, and C, such that A : B :: B : C, B is a mean proportional between A and C.

12. Two magnitudes are reciprocally, or inversely proportional when, in undergoing changes in value, one is multiplied and the other is divided by the same number. Thus, if A and B be two magnitudes, so related that when A becomes mA, B becomes $\frac{B}{m}$, A and B are said to be inversely proportional.

* For discussion of the two methods of expressing Ratio, see University Algebra.

13. A Proportion is taken inversely when the antecedents are made the consequents and the consequents the antecedents. Thus

14. A Proportion is taken alternately, or by alternation, when the antecedents are made one couplet and the consequents the other.

15. Mutually Equiangular Polygons have the same number of angles, those of the one equal to those of the others, each to each, and the angles like placed.

16. Similar Polygons are such as are mutually equiangular, and have the sides about the equal angles, taken in the same order, proportional.

17. Homologous Angles in similar polygons are those which are equal and like placed; and

18. The Homologous Sides are those which are like disposed about the homologous angles.

THEOREM I.

If the first and second of four magnitudes are equal, and also the third and fourth, the four magnitudes may form a proportion.

Let A, B, C, and D represent four magnitudes, such that A = B and C = D; we are to prove that A : B :: C : D.

Now, by hypothesis, A is equal to B, and their ratio is therefore 1; and since, by hypothesis, C is equal to D, their ratio is also 1.

Hence, the ratio of A to B is equal to that of C to D; and, (by Def. 3),

A:B::C:D.

Therefore, four magnitudes which are equal, two and two, constitute a proportion.

The equilities shire they

THEOREM II.

If four magnitudes constitute a proportion, the product of the extremes is equal to the product of the means.

Let the four magnitudes A, B, C, and D form the proportion A : B :: C : D; we are to prove that $A \times D = B \times C$.

The ratio of A to B is expressed by $\frac{B}{A} = r$.

The ratio of C to D is expressed by $\frac{D}{C} = r$.

Hence, (Ax. 1), $\frac{B}{A} = \frac{D}{C}$.

ANTIN'S ALL AND TO THE AVER

Multiplying these equals each by $A \times C$, and we have $B \times C = A \times D$.

Hence the theorem; if four magnitudes are in proportion, etc.

Cor. 1. Conversely: If we have the product of two magnitudes equal to the product of two other magnitudes, they will constitute a proportion of which either of the two may be made the extremes and the other two the means.

Let the magnitudes $B \times C = A \times D$. Dividing both members of the equation by $A \times C$, and we have $\frac{B}{A} = \frac{D}{C}$.

Hence the proportion A : B :: C : D.

Cor. 2. If we divide both members of the equation

 $A \times D = B \times C$ by A,

Ann an Sa a A. M.

we have
$$D = \frac{B \times C}{A}$$
.

That is, to find the fourth term of a proportion, multiply the second and third terms together and divide the product by the first term. This is the Rule of Three of Arithmetic.

This equation shows that any one of the four terms can be found by a like process, *provided* the other three are given.

THEOREM III.

If three magnitudes are continued proportionals, the product of the extremes is equal to the square of the mean.

Let A, B, and C represent the three magnitudes: Then A: B:: B: C, (by Def. 11). But, (by Th. 2), the product of the extremes is equal to the product of the means; that is, $A \times C = B^2$. Hence the theorem; if three magnitudes, etc.

THEOREM IV.

77 A 77.

Equimultiples of any two magnitudes have the same ratio as the magnitudes themselves; and the magnitudes and their equimultiples may therefore form a proportion.

Let A and B represent two magnitudes, and mA and mB their equimultiples.

Then we are to prove that A : B :: mA : mB.

The ratio of A to B is $\frac{B}{A}$, and of mA to mB is $\frac{mB}{mA} = \frac{B}{A}$, the same ratio.

Hence the theorem; equimultiples of any two magnitudes, etc.

THEOREM V.

If four magnitudes are proportional, they will be proportional when taken inversely.

If A : B :: mA : mB, then B : A :: mB : mA;

For in either case, the product of the extremes and means are manifestly equal; or the ratio of the couplets is the same.

Hence the theorem; if four quantities are proportional, etc.

THEOREM VI.

Magnitudes which are proportional to the same proportionals, are proportional to each other.

If A: B = P: Q Then we are to prove that and a: b = P : QA: B = a: b.From the 1st proportion, $\frac{B}{A} = \frac{Q}{P}$; , C 2. 610.

From the 2d

From the 2d " $\frac{b}{a} = \frac{Q}{P}$; Therefore, by (Ax. 1), $\frac{B}{A} = \frac{b}{a}$, or A : B = a : b.

Hence the theorem; magnitudes which are proportional to the same proportionals, etc.

. Cor. 1. This principle may be extended through any number of proportionals.

Cor. 2. If the ratio of an antecedent and consequent of one proportion is equal to the ratio of an antecedent and consequent of another proportion, the remaining terms of the two proportions are proportional.

For, if	A:B::C:D
and	M:N::P:Q
in which	$\frac{B}{\overline{A}} = \frac{N}{\overline{M}}$, then $\frac{D}{\overline{C}} = \frac{Q}{\overline{P}}$;
hence	C: D:: P: Q.

of mining THEOREM VII.

If any number of magnitudes are proportional, any one of the antecedents will be to its consequent as the sum of all the antecedents is to the sum of all the consequents.

Let A, B, C, D, E, etc., represent the several magnitudes which give the proportions A:B::C:D and the second complete the second complete second

A:B::E:FA: B:: G: H, etc., etc.

merel a the

To which we may annex the identical proportion,

A:B::A:B.

Now, (by Th. 2), these proportions give the following equations,

 $A \times D = B \times C$ $A \times F = B \times E$ $A \times H = B \times G$ $A \times B = B \times A$, etc. etc.

From which, by addition, there results the equation,

A(B + D + F + H, etc.) = B(A + C + E + G, etc.)

But the sums B + D + F, etc., and A + C + E, etc., may be separately regarded as single magnitudes; therefore, (Th. 2),

A: B:: A + C + E + G, etc. : B + D + F + H, etc.

Hence the theorem; if any number of magnitudes are proportional, etc.

THEOREM VIII.

If four magnitudes constitute a proportion, the first will be to the sum of the first and second as the third is to the sum of the third and fourth.

By hypothesis, A:B:: C:D; then we are to prove that A : A + B :: C : C + D.

By the given proportion, $\frac{B}{A} = \frac{D}{C}$.

Adding unity to both members, and reducing them to the form of a fraction, we have $\frac{B+A}{A} = \frac{D+C}{C}$. Changing this equation into its equivalent proportional form, we have

A:A+B::C:C+D.

Hence the theorem ; if four magnitudes constitute a proportion, etc.

Cor. If we subtract each member of the equation $\frac{B}{A} =$

. :
BOOK II.

 $\frac{D}{C}$ from unity, and reduce as before, we shall have

A:A-B::C:C-D.

Hence also; if four magnitudes constitute a proportion, the first is to the difference between the first and second, as the third is to the difference between the third and fourth.

THEOREM IX.

If four magnitudes are proportional, the sum of the first and second is to their difference as the sum of the third and fourth is to their difference.

Let A, B, C, and D be the four magnitudes which give the proportion

A:B::C:D;

we are then to prove that they will also give the proportion

A + B : A - B :: C + D : C - D.By Th. 8 we have A : A + B = C : C + D.Also by Scholium, same Th., A : A - B = C : C - D.

Now, if we change the order of the means in these proportions, which may be done, since the products of extremes and means remain the same, we shall have

$$A: C = A + B: C + D.$$

 $A: C = A - B: C - D.$

Hence, (Th. 6), we have

Line modulated (

$$A + B : C + D = A - B : C - D.$$

Or, $A + B : A - B = C + D : C - D.$

Hence the theorem; if four magnitudes are proportional, etc.

THEOREM X.

If four magnitudes are proportional, like powers or like roots of the same magnitudes are also proportional.

If the four magnitudes, A, B, C, and D, give the proportion

A:B::C:D, we are to prove that

$A^n: B^n:: C^n: D^n$

The hypothesis gives the equation $\frac{B}{4} = \frac{D}{C}$. Raising both members of this equation to the nth power, we have $\frac{B^n}{A^n} = \frac{D^n}{C^n}$, which, expressed in its equivalent proportional form, gives THE TOTAL PLANT

An · Bn · · On · Dn

If n is a whole number, the terms of the given proportion are each raised to a power; but if n is a fraction having unity for its numerator, and a whole number for its denominator, like roots of each are taken.

As the terms of the proportion may be first raised to like powers, and then like roots of the resulting proportion be taken, n may be any number whatever.

Hence the theorem; if four magnitudes, etc.

THEOREM XI.

If four magnitudes are proportional, and also four others, the products which arise from multiplying the first four by the second four, term by term, are also proportional.

Admitting that A:	B :: C : D,
and X:	Y :: M : N,
We are to show that $\overline{AX:B}$	Y :: CM : DN.
From the first proportion, $\frac{B}{A}$	$=\frac{D}{C};$
From the second, $\frac{Y}{\overline{X}}$	$=\frac{N}{M}$.
Multiply these equations, me	mber by member, and

$$\frac{BY}{AX} = \frac{DN}{CM};$$

AX: BY:: CM: DN.Or.

-- 0 --

- The same would be true in any number of proportions. Hence the theorem; if four magnitudes are, etc.

BOOK II.

THEOREM XII.

If four magnitudes are proportional, and also four others, the quotients which arise from dividing the first four by the second four, term by term, are proportional.

By hypothesis, A : B :: C : D, and X : Y :: M : N. Multiply extremes and means, AD = CB, (1) and XN = MY. (2)

Divide (1) by (2), and $\frac{A}{X} \times \frac{D}{N} = \frac{C}{M} \times \frac{B}{Y}$.

Convert these four factors, which make two equal products, into a proportion, and we have

$$\frac{A}{\overline{X}}:\frac{B}{\overline{Y}}::\frac{C}{\overline{M}}:\frac{D}{\overline{N}}.$$

By comparing this with the given proportions, we find it is composed of the quotients of the several terms of the first proportion, divided by the corresponding terms of the second.

Hence the theorem; if four magnitudes are proportional, etc.

THEOREM XIII.

If four magnitudes are proportional, we may multiply the first couplet, the second couplet, the antecedents or the consequents, or divide them by the same quantity, and the results will be proportional in every case.

Let the four magnitudes A, B, C, and D give the proportion A:B::C:D. By multiplying the extremes and means we have

$$A.D = B.C \quad (1)$$

Multiply both members of this equation by any number, as a, and we have

$$aA.D = aB.C$$

By converting this equation into a proportion in four different ways, as follows:

aA : aB :: C : D A : B :: aC : aD aA : B :: aC : DA : aB :: C : aD

resuming the original equation, (1), and dividing both members by a, we have

$$\frac{A.D}{a} = \frac{B.C}{a}$$

This equation may also be converted into a proportion in four different ways, with the following results:

$\frac{A}{a}:\frac{B}{a}::$	C:D
A:B:	$\frac{C}{a}:\frac{D}{a}$
$\frac{A}{-}:B::$	$\frac{a}{2} = \frac{a}{2}$
a $A: \frac{B}{a}$.	a $\cdot c \cdot D$

Hence the theorem; if four magnitudes are in proportion, etc.

THEOREM XIV.

If three magnitudes are in proportion, the first is to the third as the square of the first is to the square of the second.

Let A, B, and C, be three proportionals.

Then we are to prove that $A: C = A^2: B^2$

By (Th. 3) $AC = B^2$

Multiply this equation by the numeral value of A, and we have $A^2C = AB^2$

This equation gives the following proportion :

$$A: C = A^2: B^2.$$

Hence the theorem.

REMARK. — It is now proposed to make an application of the preceding abstract principles of proportion, in geometrical investigations

BOOK II.

THEOREM XV.

If two parallelograms are equal in area, the base and perpendicular of either may be made the extremes of a proportion, of which the base and perpendicular of the other are the means.

by hypothesis; then we are to prove that

AB: LN:: MK: BF, in which MK and BF are the altitudes or perpendiculars of the parallelograms.

This proportion is true, if $\begin{bmatrix} \\ G \end{bmatrix}$ the product of the extremes $\begin{bmatrix} G \end{bmatrix}$ is equal to the product of the means; that is, if the equation

$\overline{AB.BF} = LN.MK$ is true.

But AB.BF is the measure of the rectangle ABFE, (B. I., Th. 32, Scholium), and this rectangle is equal in area to the parallelegram ABCD, (B. I., Th. 27).

In the same manner, we may prove that $^{\mathcal{G}}LN.MK$ is the measure of the parallelogram *NLHM*. But these two parallelograms have equal areas by hypothesis.

Therefore, AB.BF = LN.MK is a true equation, and (Th. 2, Cor. 1), gives the proportion

AB:LN::MK:BF.

Hence the theorem; if two parallelograms are equal in area, etc.

THEOREM XVI.

Parallelograms having equal altitudes are to each other as their bases.

Since parallelograms having equal bases and equal altitudes are equal in area, however much their angles

may differ, we can suppose the two parallelograms under consideration to be mutually equiangular, without in the least impairing the generality of this theorem. There-

fore, let ABCD and AEFD be two parallelograms having equal altitudes.andletthem be placed with

their bases on the same line AE, and let the side, AD, be common. First suppose their bases commensurable. and that AE being divided into nine equal parts, ABcontains four of those parts.

If, through the points of division, lines be drawn parallel to AD, it is obvious that the whole figure, or the parallelogram, AEFD, will be divided into nine equal parts, and that the parallelogram, ABCD, will be composed of four of those parts.

Therefore, ABCD : AEFD :: AB : AE :: 4 : 9.

Whatever be the whole numbers having to each other the ratio of the lines AB and AE, the reasoning would remain the same, and the proportion is established when the bases are commensurable. But if the bases are not to each other in the ratio of any two whole numbers, it remains still to be shown that

AEFD : ABCD :: AE : AB (1)

AE will have the

same ratio that AEFD has to ABCD.

Suppose the fourth proportional greater than AB, as AK, then,

AEFD : ABCD :: AE : AK (2).some their meter

If we now divide the line AE into equal parts, each less than the line BK, one point of division, at least, will fall between B and K. Let L be such point, and draw LM parallel to BC.

This construction makes AE and AL commensurable; and by what has been already demonstrated, we have

AEFD : ALMD :: AE : AL. (3)

Inverting the means in proportions (2) and (3), they become

AEFD : AE :: ABCD : AK;

and

AEFD : AE :: ALMD : AL.

Hence, (Th. 6),

ABCD : AK :: ALMD : AL.

By inverting the means in this last proportion, we have

ABCD: ALMD:: AK: AL.

But AK is, by hypothesis, greater than AL; hence, if this proportion is true, ABCD must be greater than ALMD; but on the contrary it is less. We therefore conclude that the supposition, that the fourth proportional, AK, is greater than AB, from which alone this absurd proportion results, is itself absurd.

In a similar manner it can be proved absurd to suppose the fourth proportional less than AB.

Therefore the fourth term of the proportion (1) can be neither less nor greater than AB; it is then AB itself, and parallelograms having equal altitudes are to each other as their bases, whether these bases are commensurable or not.

Hence the theorem; Parallelograms having equal bases, etc.

Cor. 1. Since a triangle is one half of a parallelogram having the same base as the triangle and an equal altitude, and as the halves of magnitudes have the same ratio as their wholes; therefore,

7

Triangles having the same or equal altitudes are to each other as their bases.

Cor. 2. Any triangle has the same area as a rightangled triangle having the same base and an equal altitude; and as either side about the right angle of a rightangled triangle may be taken as the base, it follows that

Two triangles having the same or equal bases are to each other as their altitudes.

Cor. 3. Since either side of a parallelogram may be taken as its base, it follows from this theorem that

Parallelograms having equal bases are to each other as their altitudes.

THEOREM XVII.

If lines are drawn cutting the sides, or the sides produced, of a triangle proportionally, such secant lines are parallel to the base of the triangle; and conversely, lines drawn parallel to the base of a triangle cut the sides, or the sides produced, proportionally.

Let ABC be any triangle, and draw the line DE dividing the sides AB and AC into parts which give the proportion

AD : DB :: AE : EC. We are to prove that DE is parallel to BC.

If DE is not a parallel through the point D to the line BC, suppose Dm to be that parallel; and draw the lines DC and Bm.

Now, the two triangles ADm and mDC, have the same altitude, since

they have a common vertex, D, and their bases in the same line, AC; hence, they are to each other as their bases, Am and mC, (Th. 16, Cor. 1).

BOOK II.

That is, $\triangle ADm : \triangle mDC :: Am : mC$, Also, $\triangle AmD : \triangle DmB :: AD : DB$.

But, since Dm is supposed parallel to BC, the triangles DBm and DCm have equal areas, because they are on the same base and between the same parallels, (Th. 28, B. I).

Therefore the terms of the first couplets in the two preceding proportions are equal each to each, and consequently the terms of the second couplets are also proportional, (Th. 6).

That is, AD : DB :: Am : mC

But AD: DB:: AE: EC by hypothesis. Hence we again have two proportions having the first couplets, the same in both, and we therefore have

AE: EC:: Am: mC

By alternation this becomes

AE: Am:: EC: mC

The the second of the

That is, AE is to Am, a greater magnitude is to a less, as EC is to mC, a less to a greater, which is absurd. Had we supposed the point m to fall between E and C, our conclusion would have been equally absurd; hence the suppositions which have led to these absurd results are themselves absurd, and the line drawn through the point D parallel to BC must intersect AC in the point E. Therefore the parallel and the line DE are one and the same line.

Conversely: If DE be drawn parallel to the base of the triangle, then will

AD: DB:: AE: EC

For as before,

and

 $\triangle ADE : \triangle EDC :: AE : EC \\ \triangle DEB : \triangle AED :: DB : AD$

Multiplying the corresponding terms of these propor-

baviesmo en

tions, and omitting the common factor, $\triangle ADE$, in the first couplet, we have

 $\triangle DEB : \triangle EDC :: AE \times DB : EC \times AD.$

But the \triangle 's *DEB* and *EDC* have equal areas, (Th. 28, B. I); hence $AE \times DB = EC \times AD$, which in the form of a proportion is -THE

AE: EC:: AD: DB

AD: DB:: AE: ECand therefore the line parallel to the base of the triangle, divides the sides proportionally.

It is evident that the reasoning would remain the same, had we conceived ADE to be the triangle and the sides to be produced to the points B and C.

Hence the theorem; if lines are drawn cutting the sides, etc. and brach was been about the same all service or

Cor. 1. Because DE is parallel to BC, and intersects the sides AB and AC, the angles ADE and ABC are equal. For the same reason the angles AED and ACB are equal, and the \triangle 's ADE and ABC are equiangular.

Let us now take up the triangle ADE, and place it on ABC; the angle ADE falling on | B, the side AD on the side AB, and the side DE on the side BC.

Now, since the angle A is common, and the angles AED and ACB are equal, the side AE of the \triangle ADE, in its new position, will be parallel to the side AC of the But we have the proportion $\triangle ABC.$

AD: AE:: AB: AC

Placing the angle ADE on the angle ABC, and reasoning as before, we shall have the proportion

AD: DE:: AB: BC

And in like manner it may be shown that

AE:ED::AC:CB

That is, the sides about the equal angles of equiangular. triangles, taken in the same order, are proportional, and the triangles are similar, (Def. 16).

cost out of the

or,

Cor. 2. Two triangles having an angle in one equal to an angle in the other, and the sides about these equal angles proportional, are equiangular and similar.

For, if the smaller triangle be placed on the larger, the equal angles of the triangles coinciding, then will the sides opposite these angles be parallel, and the triangles will therefore be equiangular and similar.

THEOREM XVIII.

If any triangle have its sides respectively proportional to the like or homologous sides of another triangle, each to each. then the two triangles will be equiangular and similar.

Let the triangle abc have its sides proportional to the triangle ABC; that is, ac to AC as cb to CB, and ac to AC as ab to AB; then we are to prove that the \triangle 's, abc and ABC, are equiangular and similar.

On the other side of the base. AB, and from A, conceive the $A \leq$ angle BAD to be drawn = to the | a; and from the point B, conceive the angle ABD to be

drawn = to the | b. Then the third | D must be == to the third $\lfloor c$, (B. I, Th. 12, Cor. 2); and the $\triangle ABD$ will be equiangular to the \triangle abc by construction.

ac: ab = AD: ABTherefore. By hypothesis, ac: ab = AC: ABAD: AB = AC: AB, (Th. 6). Hence.

In this last proportion the consequents are equal; therefore, the antecedents are equal: that is,

$$AD = AC$$

In the same manner we may prove that

BD = CB

77

But AB is common to the two triangles; therefore, the three sides of the $\triangle ABD$ are respectively equal to the three sides of the $\triangle ABC$, and the two \triangle 's are equal, (B. I, Th. 21).

But the \triangle 's *ABD*, and *abc*, are equiangular by construction; therefore, the \triangle 's, *ABC*, and *abc*, are also equiangular and similar.

Hence the theorem; if any triangle have its sides, etc.

Second Demonstration.

Let *abc* and *ABC* be two triangles whose sides are respectively proportional, then will the triangles be equiangular and similar.

That is, $_a = [A, _b = _B, and]$ $c = _C$.

If the $\[c] c$ be in fact equal to the $\[c] C$, the triangle *abc* can be placed on the triangle *ABC*, *ca* taking the direction of *CA* and *cb* of *CB*. The line *ab* will then divide

the sides CA and CB proportionally, and will therefore be parallel to AB, and the triangles will be equiangular and similar, (Th. 17).

But if the $\lfloor c$ be not equal to the $\lfloor C$, then place *ac* on AC as before, the point *c* falling on *C*. Under the present supposition *cb* will not fall on *CB*, but will take another direction, *CV*, on one side or the other of *CB*. Make *CV* equal to *cb* and draw *aV*.

Now, the $\triangle abc$ is represented in magnitude and position by the $\triangle a VC$; and if, through the point *a*, the line *ab* be drawn parallel to *AB*, we shall have

 $\begin{array}{c} Ca:\ CA::\ ab\ :\ AB;\\ \text{but by (Hy.)} \quad Ca:\ CA::\ aV:\ AB. \end{array}$

Hence, (Th. 6),

ab:AB::aV:AB;

which requires that ab = aV, but (Th. 22, B. I) ab can not be equal to aV; hence the last proportion is absurd, and the supposition that the $\lfloor c$ is not equal to the $\lfloor C$, which leads to this result, is also absurd. Therefore, the $\lfloor c$ is equal to the $\lfloor C$, and the triangles are equiangular and similar.

Hence the theorem; if any triangle have its sides, etc.

THEOREM XIX.

If four straight lines are in proportion, the rectangle contained by the lines which constitute the extremes, is equivalent to that contained by those which constitute the means of the proportion.

Let A, B, C, D, represent the four lines; then we are to show, geometrically, that $A \times D = B \times C$.

Place A and B at right angles to each other, and draw the hypotenuse. Also place C and D at right angles to each other, and draw the hypotenuse. Then bring the two triangles together, so that C shall be at right angles to B, as represented in the figure.

Now, these two \triangle 's have each a R. \lfloor , and the sides about the equal angles are proportional; that is, A : B :: C : D; there-

fore, (Th. 18), the two \triangle 's are equiangular, and the acute angles which meet at the extremities of B and C, are together equal to one right angle, and the lines B and C are so placed as to make another right angle; therefore, also, the extremities of A, B, C, and D, are in one right line, (Th. 3, B. I), and that line is the diag-

A-

R.

CI-

D-

onal of the parallelogram bc. By Th. 31, B. I, the complementary parallelograms about this diagonal are equal; but, one of these parallelograms is B in length, and C in width, and the other is D in length and A in width; therefore,

$$B \times C = A \times D.$$

Hence the theorem; if four straight lines are in proportion, etc.

Cor. When B = C, then $A \times D = B^2$, and B is the mean proportional between A and D. That is, if three straight lines are in proportion, the rectangle contained by the first and third lines is equivalent to the square described on the second line.

THEOREM XX.

Similar triangles are to one another as the squares of their homologous sides.

Let *ABC* and *DEF* be two similar triangles, and *LC* and *MF* perpendiculars to the sides *AB* and *DE* respectively. Then we are to prove that $\triangle ABC : \triangle DEF = AB^2 : DE^2$.

By the similarity of the triangles, we have,

AB : DE = LC : MFBut, AB : DE = AB : DE

Hence, \overline{AB}^2 : $\overline{DE}^2 = AB \times LC$: $DE \times MF$.

But, (by Th. 30, B. I), $AB \times LC$ is double the area of the $\triangle ABC$, and $DE \times MF$ is double the area of the $\triangle DEF$.

Therefore, $\triangle ABC: \triangle DEF::AB \times LC: DE \times MF$ And, (Th. 6), $\triangle ABC: \triangle DEF = \overline{AB^2}: \overline{DE^2}$.

Hence the theorem; similar triangles are to one another, etc.

The following illustration will enable the learner fully to comprehend this important theorem, and it will also serve to impress it upon his memory.

Let abc and ABC represent two equiangular triangles. Suppose the length of

the side ac to be two units, and the length of the corresponding side AC to be three units.

Now, drawing lines a through the points of

division of the sides ac and AC, parallel to the other sides of the triangles, we see that the smaller triangle is composed of four equal triangles, while the larger contains nine such triangles. That is,

the sides of the triangles are as 2:3, and their areas are as $4:9=2^2:3^2$.

THEOREM XXI.

Similar polygons may be divided into the same number of triangles; and to each triangle in one of the polygons there will be a corresponding triangle in the other polygon, these triangles being similar and similarly situated.

Let ABCDE and abcdebe two similar polygons. Now it is obvious that we can divide each polygon E^{A} into as many triangles as the figure has sides, *less*

two; and as the polygons have the same number of sides, the diagonals drawn from the vertices of the homologous angles will divide them into the same number of triangles.

Since the polygons are similar, the angles *EAB* and *eab*, are equal, and *each* are equal, and *each* are equal.

EA:AB:: ea : ab.

Hence the two triangles, EAB and eab, having an angle in the one equal to an angle in the other, and the sides about these angles proportional, are equiangular and similar, and the angles ABE and abe are equal.

But the angles ABC and abc are equal, because the polygons are similar.

Hence, [ABC-]ABE = [abc-]abe;that is, [EBC = [ebc.]

The triangles, EAB and eab, being similar, their homologous sides give the proportion,

AB: BE:: ab: be; (1) and since the polygons are similar, the sides about the equal angles B and b are proportional, and we have

AB:BC::ab:bc;

BO: AB:: bc: ab. (2)

Multiplying proportions (1) and (2), term by term, and omitting in the result the factor AB common to the terms of the first couplet, and the factor ab common to the terms of the second, we have

BC: BE:: be:

Hence the \triangle 's *EBC* and *ebc* are equiangular and similar; and thus we may compare all of the triangles of one polygon with those like placed in the other.

Hence the theorem; similar polygons may be divided, etc.

r mi i paris

THEOREM XXII.

The perimeters of similar polygons are to one another as their homologous sides; and their areas are to one another as the squares of their homologous sides.

Let ABCDE and *abcde* be two similar polygons; then we are to prove that AB is to the sum of all the sides

or.

of the polygon ABCD, as ab is to the sum of all the sides of the polygon abcd.

We have the identical proportion

AB:ab::AB:ab;

and since the polygons are similar, we may write the following:

AB: ab:: BC: bc AB: ab:: CD: cdAB: ab:: DE: de, etc. etc.

Hence, (Th. 7),

AB: ab: AB+BC+CD+DE, etc.; ab+bc+cd+de, etc. Therefore, the perimeters of similar polygons are to one another as their homologous sides. This is the first part of the theorem.

Since the polygons are similar, the triangles EAB, eab, are similar, and if the triangle EAB is a part expressed by the fraction $\frac{1}{n}$, of the polygon to which it belongs, the triangle eab is a like part of the other polygon. Therefore, EAB: eab :: ABCDEA : abcdea. But, (Th. 20), EAB : eab :: $\overline{AB^2}$: $\overline{ab^2}$.

Therefore, (Th. 6),

ABCDEA : abcdea :: \overline{AB}^2 : \overline{ab}^2 .

Therefore, the similar polygons are to one another as the squares on their homologous sides. This is the second part of the theorem.

Hence the theorem; the perimeters of similar polygons are to one another, etc.

THEOREM XXIII.

Two triangles which have an angle in the one equal to an angle in the other, are to each other as the rectangle of the sides about the equal angles. Let ABC and def be two triangles having the angles

It is to A and d equal. be proved that the areas ABC and def are to each other as AB.AC is to de.df.

Conceive the triangle def placed on the triangle ABC, so that dshall fall on A, and de on AB; then df will fall on AC, because the | 's A

and d are equal. On AB, lay off Ae, equal to de; and on AC, lay off Af, equal to df, and draw ef. The triangle Aef will then be equal to the triangle def. Join B and f.

Now, as triangles having the same altitude are to each other as their bases, (Th. 16, Cor. 1), we have

Aef : ABf :: Ae : AB $ABf: ABC:: Af^{\circ}: AC$ also,

Multiplying these proportions together, term by term, omitting from the result ABf, a factor common to the terms of the first couplet, we have

Aef : ABC :: Ae . Af : AB . AC

But Aef is equal to def, Ae to de, and Af to df; therefore,

def : ABC :: de . df : AB . AC

Hence the theorem; two triangles which have an angle, etc.

SCHOLIUM. - If we suppose that

or.

AB: AC:: de: df,

the two triangles will be similar; and if we multiply the terms of the first couplet of this proportion by AC, and the terms of the second couplet by df, we shall have

 $AB \cdot AC : \overline{AC}^2 :: de \cdot df : \overline{df}^2$ $AB \cdot AC : de \cdot df :: \overline{AC}^2 : \overline{df}^2$

BOOK II.

Comparing this with the last proportion in this theorem, and we have, (Th. 6);

$def: ABC:: \overline{df}^2: \overline{AC}^2$

REMARK. — This scholium is therefore another demonstration of Theorem 20, and hence that theorem need not necessarily have been made a distinct proposition. We require no stronger proof of the certainty of geometrical truth, than the fact that, however different the processes by which we arrive at these truths, we are never led into inconsistencies; but whenever our conclusions can be compared, they are found to harmonize with each completely, provided our premises are true and our reasoning logical.

It is hoped that the student will lose no opportunity to exercise his powers, and test his skill and knowledge, in seeking original demonstrations of theorems, and in deducing consequences and conclusions from those already established.

THEOREM XXIV.

If the vertical angle of a triangle be bisected, the bisecting line will cut the base into segments proportional to the adjacent sides of the triangle.

Let ABC be any triangle, and the vertical angle, C, be bisected by the straight line CD. Then we are to prove that

AD: DB = AC: CB.

Produce AC to E, making A. D B CE = CB, and draw EB. The exterior angle ACB, of the $\triangle CEB$, is equal to the two angles E, and CBE; but the angle E = CBE, because CB = CE, and the triangle is isosceles; therefore the angle ACD, the half of the angle ACB, is equal to the angle E, and DC and BEare parallel, (Cor., Th. 7, B. I).

Now, as ABE is a triangle, and CD is parallel to BC, Fwe have AD : DB = AC : CE or CB, (Th. 17).

Hence the theorem; if the vertical angle of a triangle be bisected, etc.

8

THEOREM XXV.

If from the right angle of a right-angled triangle, a perpendicular is drawn to the hypotenuse;

1. The perpendicular divides the triangle into two similar triangles, each of which is similar to the whole triangle.

2. The perpendicular is a mean proportional between the segments of the hypotenuse.

3. The segments of the hypotenuse are in proportion to the squares on the adjacent sides of the triangle.

4. The sum of the squares on the two sides is equivalent to the square on the hypotenuse.

Let BAC be a triangle, right angled at A; and draw AD perpendicular to BC.

1. The two \triangle 's, ABC and ABD, B D Chave the common angle, B, and the right angle BAC = the right angle BDA; therefore, the third $\lfloor C = \lfloor BAD$, and the two \triangle 's are equiangular, and similar. In the same manner we prove the $\triangle ADC$ similar to the $\triangle ABC$; and the two triangles, ABD, ADC, being similar to the same $\triangle ABC$, are similar to each other.

2. As similar triangles have the sides about the equal angles proportional, (Th. 17), we have

BD:AD::AD::CD;

or, the perpendicular is a mean proportional between the segments of the hypotenuse.

3. Again,	BC : BA :: BA : BD
hence,	$\overline{BA}^2 = BC.BD \qquad (1)$
also, or	BC: CA:: CA: CD
hence,	$\overline{CA^2} = BC, CD \qquad (2)$
Dividing	Eq. (1) by Eq. (2), member by member, we
obtain me	WE DAVE ID : DB - IC : CL of CM. (The
of a triangle	BA BA BA BD TOTON OIL UNROLL .

 $\overline{CA}^2 - \overline{CD}$

E 1, Civ.

BOOK II.

which, in the form of a proportion, is $\overline{CA}^2 : \overline{BA}^2 :: CD : BD;$

that is, the segments of the hypotenuse are proportional to the squares on the adjacent sides.

4. By the addition of (1) and (2), we have

 $\overline{BA}^2 + \overline{CA}^2 = BC(BD + CD) = \overline{BC}^2;$

that is, the sum of the squares on the sides about the right angle is equivalent to the square on the hypotenuse. This is another demonstration of Theorem 39, B. I.

Hence the theorem; if from the right angle of a rightangled triangle, etc.

2. A common of the second of the second of the second of the second

in The Roman of a circle in a line expension of F and

G. An are of a circle is any particle of the circum-

contract vice or a manager destribution have been been and a state of the second se

many of Siller, within more party within, within the

policy is una of a set of all per of the second

aloris & To These of

contracto any paint in the encountry often.

and a lo operationand on L, R toris on L, B

Parton out of all a

motor all of an 17 monto

alathe of the latter of

arrest angle branches

energies alles alles alle in the olie-

BOOK III.

OF THE CIRCLE, AND THE INVESTIGATION OF THEO-REMS DEPENDENT ON ITS PROPERTIES.

DEFINITIONS.

1. * A Curved Line is one whose consecutive parts, however small, do not lie in the same direction.

2. A Circle is a plane figure bounded by one uniformly curved line, all of the points of which are at the same distance from a certain point within, called the *center*.

3. The Circumference of a circle is the curved line that bounds it.

4. The Diameter of a circle is a line passing through the center, and terminating at both extremities in the circumference. Thus, in the figure, C is the center of the circle, the curved line AGBD is the cir-

cumference, and AB is a diameter.

5. The Radius of a circle is a line extending from the center to any point in the circumference. Thus, *CD* is a radius of the circle.

6. An Arc of a circle is any portion of the circumference.

* The first six of the above definitions have been before given among the general definitions of Geometry, but it was deemed advisable to reinsert them here.

BOOK III.

7. A Chord of a circle is the line connecting the extremities of an arc.

8. A Segment of a circle is the portion of the circle on either side of a chord.

Thus, in the last figure, EGF is an arc, and EF is a chord of the circle, and the spaces bounded by the chord EF, and the two arcs EGF and EDF, into which it divides the circumference, are segments.

9. A Tangent to a circle is a line which, meeting the circumference at any point, will not cut it on being produced. The point in which the tangent meets the circumference is called the *point of tangency*.

10. A Secant to a circle is a line which meets the circumference in two points, and lies a part within and a part without the circumference.

11. A Sector of a circle is a portion of the circle included between any two radii and their intercepted arc.

Thus, in the last figure, the line HL, which meets the circumference at the point D, but does not cut it, is a tangent, D being the point of tangency; and the line MN, which meets the circumference at the points P and Q, and lies a portion within and a portion without the circle, is a secant. The area bounded by the arc BD, and the two radii CB, CD, is a sector of the circle.

12. A Circumscribed Polygon is one all of whose sides are tangent to the circumference of the circle; and conversely, the circle is then said to be *inscribed* in the polygon.

13. An Inscribed Polygon is one the vertices of whose angles are all formed in the circumference

of the circle; and conversely, the circle is then said to be *circumscribed* about the polygon.

14. A Regular Polygon is one which is both equiangular and equilateral.

8*

The last three definitions are illustrated by the last figure.

THEOREM I.

Any radius perpendicular to a chord, bisects the chord, and also the arc of the chord.

Let AB be a chord, C the center of the circle, and CE a radius perpendicular to AB; then we are to prove that AD = BD, and AE = EB.

Since C is the center of the circle, AC = BC, CD is common to the two \triangle 's ACD and BCD, and the angles

at D are right angles; therefore the two \triangle 's ADC and BDC are equal, and AD = DB, which proves the first part of the theorem.

Now, as AD = DB, and DE is common to the two spaces, ADE and BDE, and the angles at D are right angles, if we conceive the sector CBE turned over and placed on CAE, CE retaining its position, the point Bwill fall on the point A, because AD = BD and AC =BC; then the arc BE will fall on the arc AE; otherwise there would be points in one or the other arc unequally distant from the center, which is impossible; therefore, the arc AE = the arc EB, which proves the second part of the theorem.

Hence the theorem.

Cor. The center of the circle, the middle point of the chord AB, and of the subtended arc AEB, are three points in the same straight line perpendicular to the chord at its middle point. Now as but one perpendicular can be drawn to a line from a given point in that line, it follows:

1st. That the radius drawn to the middle point of any arc bisects, and is perpendicular to, the chord of the arc.

BOOK III.

2d. That the perpendicular to the chord at its middle point passes through the center of the circle and the middle of the subtended arc.

THEOREM II.

Equal angles at the center of a circle are subtended by equal chords.

Let the angle ACE = the angle BEC; then the two isosceles triangles, ACE, and ECB, are equal in all respects, and AE = EB. Hence the theorem.

THEOREM III.

In the same circle, or in equal circles, equal chords are equally distant from the center.

Let AB and EF be equal chords, and C the center of the circle. From C, draw CG and CH, perpendicular to the respective chords. These perpendiculars will bisect the chords, (Th. 1), and we shall have AG = EH. We are now to prove that CG = CH.

The applier out to St.

and,

$$\overline{EH^2} + \overline{HC^2} = \overline{EC^2}$$
$$\overline{AG^2} + \overline{GC^2} = \overline{AC^2}$$

By subtracting these equations, member from member, we find that

 $\overline{EH}^2 - \overline{AG}^2 + \overline{HC}^2 - \overline{GC}^2 = \overline{EC}^2 - \overline{AC}^2$ (1) But the chords are equal by hypothesis, hence their halves, EH and AG, are equal; also EC = AC, being radii of the circle. Wherefore,

C.O. In Marrie and a

also prost

In Mith Broat	\overline{EH}^2 —	$\overline{AG}^2 =$	0
d, un abrain ad	\overline{EC}^2 —	$\overline{AC}^2 =$	0

These values in Equation (1) reduce it to

$$\overline{HC}^{2} - \overline{GC}^{2} = 0$$
$$\overline{HC}^{2} = \overline{GC}^{2}$$
$$HC = CC$$

or, and.

an

Hence the theorem.

Cor. Under all circumstances we have

$$\overline{EH}^2 + \overline{HC}^2 = \overline{AG}^2 + \overline{GC}^2,$$

because the sum of the squares in either member of the equation is equivalent to the square of the radius of the circle.

Now, if we suppose HC greater than GC, then will \overline{HC}^2 be greater than \overline{GC}^2 . Let the difference of these squares be represented by d.

Subtracting \overline{GC}^2 from both members of the above equation, we have

 $\overline{EH}^2 + d = \overline{AG}^2$

whence, $\overline{AG}^2 > \overline{EH}^2$, and AG > EH.

Therefore, AB, the double of AG, is greater than EF, the double of EH; that is, of two chords in the same or equal circles, the one nearer the center is the greater.

The equation, $\overline{EH}^2 + \overline{HC}^2 = \overline{AG}^2 + \overline{GC}^2$, being true, whatever be the position of the chords, we may suppose GC to have any value between 0 and AC, the radius of the circle.

When GC becomes zero, the equation reduces to

$\overline{EH^2} + \overline{HC^2} = \overline{AG^2} = R^2;$

that is, under this supposition, AG coincides with AC, and AB becomes the diameter of the circle, the greatest chord that can be drawn in it.

92

BOOK III.

THEOREM IV.

A line tangent to the circumference of a circle is at right angles with the radius drawn to the point of contact.

Let AC be a line tangent to the circle at the point B, and draw the radius, EB, and the lines, AE and CE.

Now, we are to prove that EB is perpendicular to AC. Because B is the only point in the line AC which meets the circle, (Def. 9, B. II), any other line, as AE or CE, must be greater than EB;

therefore, EB is the shortest line that can be drawn from the point E to the line AC; and EB is the perpendicular to AC, (Th. 23, B. I).

Hence the theorem.

N. 1. A. 74 12

THEOREM V.

somewhere is the time BE, And if we

trong of all sheets

In the same circle, or in equal circles, equal chords subtend or stand on equal portions of the circumference.

Conceive two equal circles, and two equal chords drawn within them. Then, conceive one circle taken up and placed upon the other, center upon center, in such a position that the two equal chords will fall on, and exactly coincide with, each other; the circles must also coincide, because they are equal; and the two arcs of the two circles on either side of the equal chords must also coincide, or the circles could not coincide; and magnitudes which coincide, or exactly fill the same space, are in all respects equal, (Ax. 10).

Hence the theorem.

THEOREM VI.

Through three given points, not in the same straight line, one circumference can be made to pass, and but one.

Let A, B, and C be three given points, not in the same straight line, and draw the lines AB and BC. If a circumference is made $\int dt dt dt$ to pass through the two points A and B, the line AB will be a chord to such a circle; and if a chord is bisected by a line at right angles, the bisecting line will pass through

the center of the circle, (Cor., Th. 1); therefore, if we bisect the line AB, and draw DF, perpendicular to N, at the point of bisection, any circumference that can pass through the points, A and B, must have its center somewhere in the line DF. And if we draw EG at right angles to BC at its middle point, any circumference that can pass through the points B and C must have its center somewhere in the line EG. Now, if the two lines, DF and EG, meet in a common point, that point will be a center, about which a circumference can be drawn to pass through the three points, A, B, and C, and DF and EG will meet in every case, unless they are parallel; but they are not parallel, for if they were, it would follow (Th. 5, B. I) that, since DF is intersected at right angles by the line AB, it must also be intersected at right angles by the line BC, having a direction different from that of AB; which is impossible, (Th. 7, B. I).

Therefore the two lines will meet; and, with the point H, at which they meet, as a center, and HB = HA = HCas a radius, one circumference, and but one, can be made to pass through the three given points.

Hence the theorem.

BOOK III.

THEOREM VII. i foid w ap ma wis

If two circles touch each other, either internally or externally, the two centers and the point of contact will be in one right line.

Let two circles touch each other internally, as represented at A, and conceive AB to be a tangent at the common point A. Now, if a line, perpendicular to AB, be drawn from the point A, it must pass through the center of each circle, (Th. 4);

a m pie altoine alter

Synal Inco

a: T an

and as but one perpendicular can be drawn to a line at a given point in it, A, C, and D, the point of contact and the two centers must be in one and the same line.

Next, let two circles touch each other externally, and from the point of contact conceive the common tangent, AB, to be drawn.

Then a line, AC, perpendicular to AB, will pass through the center of one circle, (Th. 4), and a perpendicular, AD, from the same point, A, will pass through the center of the other circle; hence, BAC and BAD are together equal to two right angles; therefore CAD is one continued straight line, (Th. 3, B. I).

Cor. When two circles touch each other internally, the distance between their centers is equal to the difference of their radii; and when they touch each other externally, the distance between their centers is equal to the sum of their radii.

THEOREM VIII.

An angle at the circumference of any circle is measured by, one half the arc on which it stands.

In this work it is taken as an axiom that any angle whose vertex is at the center of a circle, is measured by

the arc on which it stands; and we now proceed to prove that when the arcs are equal, the angle at the circumference is equal to one half the angle at the center.

Let ACB be an angle at the center, and D an angle at the circumference, and at first suppose D in a line with AC. We are now to prove that the angle ACB is double the angle D.

The $\triangle DCB$ is an isosceles triangle, because CD = CB; and its exterior A^B angle, ACB, is equal to the two interior angles, D, and CBD, (Th. 12, B. I), and since these two angles are equal to each other, the angle ACB is double the angle at D. But ACB is measured by the arc AB; therefore the angle D is measured by one half the arc AB.

Next, suppose D not in a line with AC, but at any point in the circumference, except on AB; produce DC to E.

Now, by the first part of this theorem,

the angle ECB = 2EDB, also, ECA = 2EDA,

by subtraction, ACB = 2ADB.

But ACB is measured by the arc AB; therefore ADB or the angle D, is measured by one half of the same arc. Hence the theorem.

THEOREM IX.

An angle in a semicircle is a right angle; an angle in a segment greater than a semicircle is less than a right angle; and an angle in a segment less than a semicircle is greater than a right angle.

If the angle ACB is in a semicircle, the opposite segment, ADB, on which it stands, is also a semicircle; and the angle ACB is measured by one half the arc ADB.

BOOK III.

(Th. 8); that is, one half of 180°, or 90°, which is the measure of a right angle.

If the angle ACB is in a segment greater than a semicircle, then the opposite segment is less than a semicircle, and the measure of the angle is less than one half of 180°, or less than a right angle. If the angle ACB is in a segment less than a

semicircle, then the opposite segment, ADB, on which the angle stands, is greater than a semicircle, and its half is greater than 90°; and, consequently, the angle is greater than a right angle.

Hence the theorem.

Cor. Angles at the circumference, and standing on the same arc of a circle, are equal to one another; for all angles, as BAC, BDC, BEC, are equal, because each is measured by one half of the arc BC. Also, if the angle BEC is equal to CEG, then the arcs BC and CG are equal, be-

cause their halves are the measures of equal angles.

THEOREM X.

The sum of two opposite angles of any quadrilateral inscribed in a circle, is equal to two right angles.

Let ACBD represent any quadrilateral inscribed in a circle. The angle ACB has for its measure, one half of the arc ADB, and the angle ADB has for its measure, one half of the arc ACB; therefore, by addition. the sum of the two opposite angles at C and D, are together measured by

one half of the whole circumference, or by 180 degrees, = two right angles. Hence the theorem.

THEOREM XI.

An angle formed by a tangent and a chord is measured by one half of the intercepted arc.

Let AB be a tangent, and AD a chord, and A the point of contact; then we are to prove that the angle BAD is measured by one half of the arc AED.

From A draw the radius AC; and from the center, C, draw CE perpendicular to AD.

The $\mid BAD + \mid DAC = 90^{\circ}$, (Th. 4).

Also, $\Box C + \Box DAC = 90^{\circ}$, (Cor. 4, Th. 12, B. I). Therefore, by subtraction, BAD - C = 0;

by transposition, the angle BAD = C.

But the angle C, at the center of the circle, is measured by the arc AE, the half of AED; therefore, the equal angle, BAD, is also measured by the arc AE, the half of AED.

Hence the theorem.

See Th. 13, for another proof.

THEOREM XII.

An angle formed by a tangent and a chord, is equal to an angle in the opposite segment of the circle.

Let AB be a tangent, and AD a chord, and from the point of contact, A, draw any angles, as ACD, and AED, in the segments. Then we are to prove that $_ BAD = _ ACD$, and $_ GAD = _ AED$.

By Th. 11, the angle BAD is measured by one half the arc AED; and c as the angle ACD is measured by one half of the same arc, (Th. 8), we have $\ BAD = \ ACD$.

BOOK III.

Again, as AEDC is a quadrilateral, inscribed in a circle, the sum of the opposite angles,

ACD + AED = 2 right angles. (Th. 10).

Also, the sum of the angles

BAD + DAG = 2 right angles. (Th. 1, B, I).

By subtraction (and observing that BAD has just been proved equal to ACD), we have,

AED - DAG = 0.

Or, by transposition, AED = DAG. E and you have about it The aligns Hence the theorem. R. Los Die ton oil to one

THEOREM XIII.

Arcs of the circumference of a circle intercepted by parallel chords, or by a tangent and a parallel chord, are equal.

Let AB and CD be parallel chords, and draw the diagonal, AD; now, be- E cause AB and CD are parallel, the C_{2} angle DAB = the angle ADC (Th. 6, B. I); but the angle DAB has for its measure, one half of the arc BD; and the

angle ADC has for its measure, one half of the arc AC. (Th. 8); and because the angles are equal, the arcs are equal; that is, the arc BD = the arc AC.

Next, let EF be a tangent, parallel to a chord, CD, and from the point of contact, G, draw GD.

Since EF and CD are parallel, the angle CDG = the angle DGF. But the angle CDG has for its measure, one-half of the arc CG, (Th. 8); and the angle DGFhas for its measure, one half of the arc GD, (Th. 11); therefore, these equal measures of equals must be equal; that is, the arc CG = the arc GD.

trance of the intercenter aner.

Hence the theorem.

E - Wat . 's

THEOREM XIV.

When two chords intersect each other within a circle, the angle thus formed is measured by one half the sum of the two intercepted arcs.

Let AB and CD intersect each other within the circle, forming the two angles, E and E', with their equal vertical angles.

Then, we are to prove that the angle E is measured by one half the sum of the arcs AC and BD; and

the angle E' is measured by one half the sum of the arcs AD and CB.

First, draw AF parallel to CD, and FD will be equal to AC, (Th. 13); then, by reason of the parallels, $\ BAF$ = $\ E$. But the angle BAF is measured by one half of the arc BDF; that is, one half of the arc BD plus one half of the arc AC.

Now, as the sum of the angles E and E' is equal to two right angles, that sum is measured by one half the whole circumference.

But the angle E, alone, as we have just proved, is measured by one half the sum of the arcs BD and AC; therefore, the other angle, E', is measured by one half the sum of the other parts of the circumference,

AD + CB.

Hence the theorem.

THEOREM XV.

When two secants intersect, or meet each other without a circle, the angle thus formed is measured by one half the difference of the intercepted arcs.

Let DE and BE be two secants meeting at E; and draw AF parallel to CD. Then, by reason of the parallels, the angle E, made by the intersection of the two secants, is equal to the angle BAF. But the angle BAF is measured by one half the arc BF; that is, by one half the difference between the arcs BD and AC.

They are tradient in

Hence the theorem.

THEOREM XVI.

The angle formed by a secant and a tangent is measured by one half the difference of the intercepted arc.

Let BC be a secant, and CD a tangent, meeting at C. We are to prove that the angle formed at C, is measured by one half the difference of the arcs BD and DA.

From A, draw AE parallel to CD; then the arc AD = the arc DE; BD - DE = BE; and the $_ BAE =$ $_ C$. But the angle BAE is measured

by one half the arc BE, (Th. 8,) that is, by one half the difference between the arcs BD and AD; therefore, the equal angle, C, is measured by one half the arc BE.

Hence the theorem.

THEOREM XVII.

When two chords intersect each other in a circle, the rectangle contained by the segments of the one, will be equivalent to the rectangle contained by the segments of the other.

Let AB and CD be two chords intersecting each other in E. Then we are • to prove that the rectangle $AE \times EB =$ the rectangle $CE \times ED$.

Draw the lines AD and CB, forming the two triangles AED and CEB. The angles B and D are equal, because they

are each measured by one half the arc, AC. Also the angles A and C are equal, because each is measured by one half the arc, DB; and | AED = | CEB, because they are vertical angles; hence, the triangles, AED and CEB, are equiangular and similar. But equiangular triangles have their sides about the equal angles proportional, (Cor. 1, Th. 17, B. II); therefore, AE and ED, about the angle E, are proportional to CE and EB, about the same or equal angle.

AE:ED::CE:EB;That is, Or, (Th. 19, B. II), $AE \times EB = CE \times ED$.

Hence the theorem.

Cor. When one chord is a diameter, and the other at right angles to it, the rectangle contained by the segments of the diameter is equal to the square of one half the other chord; or one half of the bisected chord is a mean proportional between the segments of the diameter.

For, $AD \times DB = FD \times DE$. But, if AB passes through the center, C, at right angles to FE, then FD = DE(Th. 1); and in the place of FD, write its equal, DE, in the last equation, and we have

D

$AD \times DB = \overline{DE}^2$,

or, (Th. 3, B. II), AD: DE:: DE: DB. Put, DE = x, CD = y, and CE = R, the radius of the circle.

and the second second

BOOK III.

Then AD = R - y, and DB = R + y. With this notation,

	$AD \times DB = DE^{2}$
becomes,	$(R-y) (R + y) = x^2$
or,	$R^2 - y^2 = x^2$
or,	$R^2 = x^2 + y$

That is, the square of the hypotenuse of the right-angled triangle, DCE, is equal to the sum of the squares of the other two sides.

THEOREM XVIII.

If from a point without a circle, a tangent line be drawn to the circumference, and also any secant line terminating in the concave arc, the square of the tangent will be equivalent to the rectangle contained by the whole secant and its external segment.

Let A be a point without the circle DEG, and let AD be a tangent and AE any secant line.

Then we are to prove that

 $AC \times AE = \overline{AD}^2$.

In the two triangles, ADE and ADC, the angles ADC and AED are equal, since each is measured by one half of the same arc, DC; the angle A is common to the two triangles; their

third angles are therefore equal, and the triangles are equiangular and similar.

Their homologous sides give the proportion

AE:AD::AD:AC

whence, $AE \times AC = \overline{AD}^2$

Hence the theorem.

Cor. If AE and AF are two secant lines drawn from the same point without the circumference, we shall have $AC \times AE = \overline{AD}^{2}$ and, $AB \times AF = \overline{AD}^{2}$ hence, $AC \times AE = AB \times AF$, which, in the form of a proportion, gives AC : AF :: AB : AE.

That is, the secants are reciprocally proportional to their external segments.

SCHOLIUM. — By means of this theorem we can determine the diameter of a circle, when we know the length of a tangent drawn from a point without, and the external segment of the secant, which, drawn from the same point, passes through the center of the circle.

Let Am be a secant passing through the center, and suppose the tangent AD to be 20, and the external segment, An, of the secant to be 2. Then, if D denote the diameter, we shall have

$$Am=2+D,$$

whence, $Am \times An = 2 (2 + D) = 4 + 2D = (20)^2 = 400$, 2D = 396, and D = 198.

If An, the height of a mountain on the earth, and AD, the distance of the visible sea horizon, be given, we may determine the diameter of the earth.

For example; the perpendicular height of a mountain on the island of Teneriffe is about 3 miles, and its summit can be seen from ships when they are known to be 154 or 155 miles distant; what then is the diameter of the earth?

Designate, as before, the diameter by *D*. Then Am = 3 + D, and $Am \times An = 9 + 3D$. AD = 154, 5; hence, $9 + 3D = (154, 5)^2 = 23870.$ 25, from which we find D = 7953.73, which differs but little from the true diameter of the earth.

One source of error, in this mode of computing the diameter of the earth, is atmospheric refraction, the explanation of which does not belong here.

104

THEOREM XIX.

If a circle be described about a triangle, the rectangle contained by two sides of the triangle is equivalent to the rectangle contained by the perpendicular let fall on the third side, and the diameter of the circumscribing circle.

Let ABC be a triangle, AC and CB, the sides, CD the perpendicular let fall on the base AB, and CE the diameter of the circumscribing circle. Then we are to prove that

 $AC \times CB = CE \times CD.$

The two \triangle 's, ACD and CEB, are equiangular, because [A=[E, both]

being measured by the half of the arc CB; also, ADC is a right angle, and is equal to CBE, an angle in a semicircle, and therefore a right angle; hence, the third angle, $ACD = \bigsqcup BCE$, (Th. 12, Cor. 2, B. I). Therefore, (Cor., Th. 17, B. II),

AC: CD::CE:CB $AC \times BC = CE \times CD.$

and,

Hence the theorem; if a circle, etc.

Cor. The continued product of three sides of a triangle is equal to twice the area of the triangle into the diameter of its circumscribing circle.

Multiplying both members of the last equation by AB, and we have,

$AC \times BC \times AB = CE \times (AB \times CD).$

But CE is the diameter of the circle, and $(AB \times CD)$ = twice the area of the triangle;

Therefore, $AC \times CB \times AB =$ diameter multiplied by twice the area of the triangle.

BEDRE C. CONTRACT A. MORE

THEOREM XX.

The square of a line bisecting any angle of a triangle, together with the rectangle of the segments into which it cuts the opposite side, is equivalent to the rectangle of the two sides including the bisected angle.

Let ABC be a triangle, and CD a line bisecting the angle C. Then we are to prove that

 $CD^2 + (AD \times DB) = AC \times CB.$ The two \triangle 's, ACE and CDB, are equiangular, because the angles Eand B are equal, both being in the same segment, and the $\[ACE = BCD, \]$ by hypothesis. Therefore, (Th. 17, Cor. 1, B. II),

AC: CE: CD: CB.

But it is obvious that CE = CD + DE, and by substituting this value of CE, in the proportion, we have, AC : CD + DE :: CD : CB.

By multiplying extremes and means, $\overline{CD}^2 + (DE \times CD) = AC \times CB.$ But by (Th. 17), $DE \times CD = AD \times DB,$

and substituting, we have, $\overline{CD}^{2} + (AD \times DB) = AC \times CB.$

Hence the theorem.

THEOREM XXI.

The rectangle contained by the two diagonals of any quadrilateral inscribed in a circle, is equivalent to the sum of the two rectangles contained by the opposite sides of the quadrilateral.

Let ABCD be a quadrilateral inscribed in a circle; then we are to prove that

 $AC \times BD = (AB \times DC) + (AD \times BC).$ From C, draw CE, making the angle DCE equal to the angle ACB; and as the angle BAC is equal to the

angle CDE, both being in the same segment, therefore, the two triangles, DEC and ABC, are equiangular, and we have (Th. 17, Cor. 1, B. II),

AB: AC:: DE: DC (1) The two \triangle 's, ADC and BEC, are equiangular; for the $\bigsqcup DAC = \bigsqcup EBC$,

both being in the same segment; and the $\ DCA = \ ECB$, for DCE = BCA; to each of these add the angle ECA, and DCA = ECB; therefore, (Th. 17, Cor. 1, B. II),

AD: AC:: BE: BC (2).

By multiplying the extremes and means in proportions (1) and (2), and adding the resulting equations, we have,

 $(AB \times DC) + (AD \times BC) = (DE + BE) \times AC.$ But, DE + BE = BD; therefore,

 $(AB \times DC) + (AD \times BC) = AC \times BD.$

, Cor. When two adjacent sides of the quadrilateral are equal, as AB and BC, then the resulting equation is,

 $(AB \times DC) + (AB \times AD) = AC \times BD;$ or, $AB \times (DC + AD) = AC \times BD;$ or, AB : AC :: BD : DC + AD.

That is, one of the two equal sides of the quadrilateral is to the adjoining diagonal, as the transverse diagonal is to the sum of the two unequal sides.

THEOREM XXII.

If two chords intersect each other at right angles in a circle, the sum of the squares of the four segments thus formed is equivalent to the square of the diameter of the circle.

Let AB and CD be two chords, intersecting each other at right angles. Draw BF parallel to ED, and draw DF and AF. Now, we are to prove that

 $\overline{AE^2} + \overline{EB^2} + \overline{EO^2} + \overline{ED^2} = \overline{AF^2}.$

E

As BF is parallel to ED, ABF is a right angle, and therefore AF is a diameter, (Th. 9). Also, because BF is parallel to CD, CB = DF, (Th. 13).

Because CEB is a right angle,

$$CE^{2} + EB^{2} = CB^{2} = DF^{2}.$$

Because AED is a right angle,

$$\overline{AE}^2 + \overline{ED}^2 = \overline{AD}^2.$$

Adding these two equations, we have,

$$\overline{CE}^2 + \overline{EB}^2 + \overline{AE}^2 + \overline{ED}^2 = \overline{DF}^2 + \overline{AD}^2.$$

But, as AF is a diameter, and ADF a right angle, (Th. 9),

$$\overline{DF}^2 + \overline{AD}^2 = \overline{AF}^2;$$

therefore, $\overline{CE}^2 + \overline{EB}^2 + \overline{AE}^2 + \overline{ED}^2 = \overline{AF}^2$.

Hence the theorem.

SCHOLIUM. — If two chords intersect each other at right angles, in a circle, and their opposite extremities be joined, the two chords thus formed may make two sides of a right-angled triangle, of which the diameter of the circle is the hypotenuse.

For, AD is one of these chords, and CB is the other; and we have shown that CB = DF; and AD and DF are two sides of a rightangled triangle, of which AF is the hypotenuse; therefore, AD and CB may be considered the two sides of a right-angled triangle, and AF its hypotenuse.

THEOREM XXIII.

If two secants intersect each other at right angles, the sum of their squares, increased by the sum of the squares of the two segments without the circle, will be equivalent to the square of the diameter of the circle.

Let AE and ED be two secants intersecting at right angles at the point E. From B, draw BF parallel to CD, and draw AF and AD. Now we are to prove that

 $\overline{EA}^2 + \overline{ED}^2 + \overline{EB}^2 + \overline{EO}^2 = \overline{AF}^2.$

BOOK III.

Because BF is parallel to CD, ABF is a right angle. and consequently AF is a diameter, and BC = DF; and because AF is a diameter, ADF is a right angle. As AED is a right angle,

 $\overline{AE}^2 + \overline{ED}^2 = \overline{AD}^2$ $\overline{EB}^{2} + \overline{EC}^{2} = \overline{BC}^{2} = \overline{DF}^{2}$ Also. By addition, $\overline{AE}^2 + \overline{ED}^2 + \overline{EB}^2 + \overline{EC}^2 = \overline{AD}^2 + \overline{DF}^2 = \overline{AF^2}$ Hence the theorem.

THEOREM XXIV.

If perpendiculars be drawn to each of the sides of a plane triangle, they will, when sufficiently produced, meet in a common point.

The three angular points of a triangle are not in the same straight line; consequently one circumference, and but one, may be made to pass through them.

Conceive a triangle to be thus circumscribed. The sides of the triangle then become chords of the circumscribing circle, and they are bisected by the perpendicular radii, (Th. 6).

Conversely: The perpendiculars bisecting the three sides of a triangle will meet in a common point, and that point will be the center of the circumscribing circle.

Hence the theorem.

THEOREM XXV.

The sums of the opposite sides of a quadrilateral circumscribing a circle are equal.

Let ABCD be a quadrilateral circumscribed about a circle, whose center is O. Then we are to prove that

AB + DC = AD + BC.

From the center of the circle draw OE and OF to the points of contact of the sides AB and BC. Then, 10

the two right-angled triangles, OEB and OFB, are equal,

because they have the hypotenuse OB common, and the side OF = OE; therefore, BE = BF, (Cor., Th. 23, B. I).

In like manner we can prove that

AE=AH, CF=CG, and DG=DH.

Now, taking the equation BE = BF, and adding to its first member CG, and to its second the equal line CF. we have,

· C · · · · · · · · · ·

I The West of the Control

ingle Burgers Surgad + 1

 $BE + CG = BF + CF \quad (1)$

The equation AE=AH, by adding to its first member DG, and to the second the equal line, DH, gives AE + DG - AH + DH (2)

$$AE + DG = AH + DH \quad (2)$$

By the addition of (1) and (2), we find that

BE + AE + CG + DG = BF + CF + AH + DH.That is, AB + CD + BC + AD.

. Brits while a sworth out to an owned on fliw win to the

Hence the theorem.

- manage the state of the state

a provin Indiana si

There we are be and e the

such such and a such

have being construct a manufactor of

110

- prove a series

BOOK IV.

2.01 1/0/07000

111

BOOK IV.

PROBLEMS.

In this section, we have, in most instances, merely shown the construction of the problem, and referred to the theorem or theorems that the student may use, to prove that the object is attained by the construction.

In obscure and difficult problems, however, we have gone through the demonstration as though it were a theorem.

PROBLEM I.

To bisect a given finité straight line.

Let AB be the given line, and from its extremities, A and B, with any radius greater than one half of AB, (Postulate 3), describe arcs, cutting each other in n and m. Draw the line nm; and C, where it cuts AB, will be the middle of the given line.

Proof, (B. I, Th. 18, Sch. 2).

PROBLEM II.

To bisect a given angle.

Let ABC be the given angle. With any radius, and B as a center, describe the arc AC. From A and C, as centers, with a radius greater than one half of AC, describe arcs, intersecting in n; join B and n; the joining line will bisect the given angle.

Proof, (Th. 21, B. I).

PROBLEM III.

From a given point in a given line, to draw a perpendicular to that line.

Let AB be the given line, and C the given point. Take n and m, equal distances on opposite sides of C; and with the points m and n, as centers, and any radius greater than nC or mC, describe A^{-n} arcs cutting each other in S. Draw

SC, and it will be the perpendicular required. Proof, (B. I, Th. 18, Sch. 2).

The following is another method, which is preferable, when the given point, C, is at or near the end of the line.

Take any point, O, which is manifestly one side of the perpendicular,

as a center, and with OC as a radius, describe a circumference, cutting AB in m and C. Draw mn through the points m and O, and meeting the arc again in n; mn is then a diameter to the circle. Draw Cn, and it will be the perpendicular required. Proof, (Th. 9, B. III).

PROBLEM IV.

From a given point without a line, to draw a perpendicular to that line.

Let AB be the given line, and Cthe given point. From C draw any oblique line, as Cn. Find the middle point of Cn by Problem 1, and with that point, as a center, describe a semicircle, having Cn as a diameter. From m, where this semi-cirdraw a perpendicular

cumference cuts AB, draw Cm, and it will be the perpendicular required. Proof, (Th. 9, B. III).

Am

BOOK IV.

PROBLEM V.

At a given point in a line, to construct an angle equal to a given angle.

Let A be the point given in the line AB, and DCE the given angle.

With C as a center, and any radius, CE, draw the arc ED.

With A as a center, and the radius AF=CE, describe an indefinite arc; and with F as a center, and FG as a radius, equal to ED, describe an arc, cutting the

other arc in G, and draw AG; GAF will be the angle required. Proof, (Th. 5, B. III).

PROBLEM VI.

From a given point, to draw a line parallel to a given line.

Let A be the given point, and BC the given line. Draw AC, making an angle, ACB; and from the given point, A, in the line AC, draw the angle CAD = ACB, by Problem 5.

Since AD and BC make the same angle with AC, they are, therefore, parallel, (B. I, Th. 7, Cor. 1).

PROBLEM VII.

To divide a given line into any number of equal parts.

Let AB represent the given line, and let it be required to divide it into any number of equal parts, say five. From one end of the line A, draw AD, indefinite in both length and position. Take Aany convenient distance in the di-

10*

B

viders, as Aa, and set it off on the line AD, thus making the parts Aa, ab, bc, etc., equal. Through the last point, e, draw EB, and through the points a, b, c, and d, draw parallels to eB, by Problem 6; these parallels will divide the line as required. Proof, (Th. 17, Book II).

PROBLEM VIII.

To find a third proportional to two given lines.

Let AB and AC be any two lines. Place them at any angle, and draw CB. On the greater line, AB, take AD = AC, and through D, draw DE parallel to BC; AE is the third proportional required.

Proof, (Th. 17, B. II).

PROBLEM IX.

To find a fourth proportional to three given lines.

Let AB, AC, AD, represent the three given lines. Place the first two at any angle, as BAC, and draw BC. On AB place AD, and from the point D, draw DE parallel to BC, by Problem 6; AE will be the fourth proportional required.

Proof, (Th. 17, B. II).

PROBLEM X.

To find the middle, or mean proportional, between two given lines.

A -

B

-C

Place AB and BC in one right line, and on AC, as a diameter, describe a semicircle, (Postulate 3), and from the point B, draw BD at right angles to AC, (Problem 3); BD is the mean proportional required.

PROBLEM XI.

To find the center of a given circle.

Draw any two chords in the given circle, as AB and CD, and from the middle points, m and n, draw perpendiculars to AB and CD; the point at which these two perpendiculars intersect will be the center of the circle.

Proof, (B. III, Th. 1, Cor.).

PROBLEM XII.

To draw a tangent to a given circle, from a given point, either in or without the circumference of the circle.

When the given point is in the circumference, as A, draw the radius AC, and from the point A, draw AB perpendicular to AC; AB is the tangent required.

Proof, (Th. 4, B. III).

When the given point is without the circle, as A, draw AC to the center of the circle; on AC, as a diameter, describe a semicircle; and from B, where the semi-circumference cuts the given circumference, draw AB, and it will be tangent to the circle. Proof, (Th. 9, B. III), and, (Th. 4, B. III).

PROBLEM XIII.

On a given line, to describe a segment of a circle, that shall contain an angle equal to a given angle.

Let AB be the given line, and C the given angle. At the ends of the given line, form angles DAB, DBA, each equal to the given angle, C. Then draw AE and BE

perpendiculars to AD and BD; and with E as a center, and EA, or EB, as a radius, describe a circle; then AFBwill be the segment required, as any angle F, made in it, will be equal to the given angle, C.

Proof, (Th. 11, B. III), and (Th. 8, B. III).

PROBLEM XIV. .

From any given circle to cut a segment, that shall contain a given angle.

Let C be the given angle. Take any point, as A, in the circumference, and from that point draw the tangent AB; and from the point A, in the line AB, construct the angle BAD = C, (Problem 5), and C AED is the segment required.

Proof, (Th. 11, B. III), and (Th. 8, B. III).

PROBLEM XV.

To construct an equilateral triangle on a given straight line. Let AB be the given line; from the extremities A and B, as centers, with a radius equal to AB, describe arcs cutting each other at C. From C, the point of intersection, draw CA and CB; ABC will be the triangle required.

The construction is a sufficient demonstration. Or, (Ax. 1).

BOOK IV.

PROBLEM XVI.

To construct a triangle, having its three sides equal to three given lines, any two of which shall be greater than the third.

Let AB, CD, and EF, represent the three lines. Take any one of them, as AB, to be one side of the triangle. From A, as a center, with a radius equal to CD, describe an arc; and from B, as a center, with a radius equal to EF, describe another arc, cutting the former in n. Draw An and Bn, and AnB will be the \triangle required. Proof, (Ax. 1).

PROBLEM XVII.

To describe a square on a given line.

Let AB be the given line; and from the extremities, A and B, draw AC and BD per- C pendicular to AB. (Problem 3.)

From A, as a center, with AB as radius, strike an arc across the perpendicular at C; and from C draw CD parallel to AB; ACDBis the square required. Proof, (Th. 26, B. I).

PROBLEM XVIII.

To construct a rectangle, or a parallelogram, whose adjacent sides are equal to two given lines.

Let AB and AC be the two given lines. From the extremities of one line, draw perpendiculars to that line, as in the last problem; and from these perpendiculars, cut off portions equal to the other line; and, by a parallel, complete the figure.

D

When the figure is to be a parallelogram, with oblique angles, describe the angles by Problem 5. Proof. (Th. 26, B. I).

PROBLEM XIX.

To describe a rectangle that shall be equivalent to a given square, and have a side equal to a given line.

Let AB be a side of the given square, Cand CD one side of the required rect-E BE BE angle.

Find the third proportional, EF, to CD and AB, (Problem 8). Then we shall have

CD:AB::AB:EF.

Construct a rectangle with the two given lines, CD and EF, (Problem 18), and it will be equal to the given square, (Th. 3, B. II).

PROBLEM XX.

The shirt of the mount

To construct a square that shall be equivalent to the difference of two given squares.

Let A represent a side of the greater of two given squares, and B a side of the less square.

On A, as a diameter, describe a semicircle, and from one extremity, p, as a center, with a radius equal to B, describe an arc. n, and, from the point where it cuts the circumference, draw mn and np; np is the side of a square, which, when constructed,

B

will be equal to the difference of the two given squares, (Problem 17). Proof, (Th. 9, B. III, and Th. 36, B. I.)

To construct a square equivalent to the sum of two given squares, we have only to draw through any point two lines at right angles, and lay off on one a distance equal to the side of one of the squares, and on the other

BOOK IV.

a distance equal to the side of the other. The straight line connecting the extremities of these lines will be the side of the required square, (Th. 36, B. I).

PROBLEM XXI.

To divide a given line into two parts, which shall be in the ratio of two other given lines.

Let AB be the line. to be divided, and Mand N the lines having the ratio of the required parts of AB. From the extremity A draw AD, making any angle with AB, and take AC = M, and CD = N. Join the points D and Bby a straight line, and through C draw CG parallel to BD.

Then will the point G divide the line AB into parts having the required ratio. (Proof, Th. 17, B. II).

Or, having drawn AD, lay off AC = M, and through *B* draw *BV* parallel to *AD*, making it equal to *N*, and join *C* and *V* by a line cutting *AB* in the point *G*.

Then the two triangles ACG and GBV are equiangular and similar, and their homologous sides give the proportion,

AG: GB: AC:: BV:: M: N

The line AB is therefore divided, at the point G, into parts which are in the ratio of the lines M and N.

. L 1.

PROBLEM XXII.

To divide a given line into any number of parts, having to each other the ratios of other given lines.

Let AB be the given Mline to be divided, and N-M, N, P, etc., the lines Pto which the parts of AB are to be proportional.

Through the point A $A \xrightarrow{C \ D} C \ D$ draw an indefinite line, making, with AB, any convenient angle, and on this line lay off from A the lines M, N, P, etc., successively. Join the extremity of the last line to the point B by a straight line, parallel to which draw other lines through the points of division of the indefinite line, and they will divide the line AB at the points C, D, etc., into the required parts. (Proof, Th. 17, B. II).

PROBLEM XXIII.

To construct a square that shall be to a given square, as a line, M, to a line, N.

Place M and N in a line, and on the sum describe a semicircle. From the point where the two lines meet, draw a perpendicular to meet the circumference in A. Draw Am and An,

and produce them indefinitely. On Am or Am produced, take AB = to the side of the given square; and from B, draw BC parallel to mn; AC is a side of the required square.

For, $\overline{Am^2}: \overline{An^2}: \overline{AB^2}: \overline{AB^2}: \overline{AC^2}$, (Th. 17, B. II). Also, $\overline{Am^2}: \overline{An^2}: M : N$, (Th. 25, B.II. Sch.). Therefore, $\overline{AB^2}: \overline{AC^2}: M : N$, (Th. 6, B. II).

BOOK IV.

PROBLEM XXIV.

To cut a line into extreme and mean ratio; that is, so that the whole line shall be to the greater part, as that greater part is to the less.

REMARK. — The geometrical solution of this problem is not immediately apparent, but it is at once suggested by the form of the equation, which a simple algebraic analysis of its conditions leads to.

Represent the line to be divided by 2a, the greater part by x, and consequently the other, or less part, by 2a - x.

Now, the given line and its two parts are required, to satisfy the following proportion :

$$2a:x::x:2a-x$$

whence, $x^2 = 4a^2 - 2ax$

By transposition, $x^2 + 2ax = 4a^2 = (2a)^2$

If we add a^2 to both members of this equation, we shall have,

 $\begin{aligned} x^2 + 2ax + a^2 &= (2a)^2 + a^2 \\ (x + a)^2 &= (2a)^2 + a^2 \end{aligned}$

This last equation indicates that the lines represented by (x + a), 2a, and a, are the three sides of a rightangled triangle, of which (x + a) is the hypotenuse, the given line, 2a, one of the sides, and its half, a, the other.

Therefore, let AB represent the given line, and from the extremity, B, draw BC at right angles to AB, and make it equal to one half of AB.

With C, as a center, and radius CB, describe a circle. Draw AC and produce it to F. With A as a center and AD as a radius, describe the arc DE; this arc will divide the line AB, as required.

We are now to prove that

AB: AE:: AE: EB

11

or,

GEOMETRY. -

By Schohum to Th. 18, B. III, we have, $AF \times AD = \overline{AB}^2$ or, AF : AB :: AB : ADThen, (by Cor., Th. 8, Book II), we may have, (AF - AB) : AB :: (AB - AD) : ADSince $CB = \frac{1}{2}AB = \frac{1}{2}DF$; therefore, AB = DF. Hence, AF - AB = AF - DF = AD = AE. Therefore, AE : AB :: EB : AEBy taking the extremes for the means, we have,

AB: AE:: AE: EB.

PROBLEM XXV.

To describe an isosceles triangle, having its two equal angles each double the third angle, and the equal sides of any given length.

Let AB be one of the equal sides of the required triangle; and from the point A, with the radius AB, describe an arc, BD.

Divide the line AB into extreme and mean ratio by the last problem, and suppose C the point of division, and AC the greater segment.

From the point B, with AC, the greater segment, as a radius, describe another arc, cutting the arc BD in D. Draw BD, DC, and DA. The triangle ABD is the triangle required.

As AC = BD, by construction; and as AB is to AC as AC is to BC, by the division of AB; therefore

AB:BD::BD:BC

Now, as the terms of this proportion are the sides of the two triangles about the common angle, B, it follows, (Cor. 2, Th. 17, B. II), that the two triangles, ABD and

BOOK IV.

BDC, are equiangular; but the triangle *ABD* is isosceles; therefore, *BDC* is isosceles also, and *BD* = *DC*; but BD = AC: hence, DC = AC, (Ax. 1), and the triangle *ACD* is isosceles, and the $\cap{DA} = \cap{A}$. But the exterior angle, BCD = CDA + A, (Th. 12, B. I). Therefore, \cap{BCD} , or its equal $\cap{B} = \cap{CD} + \cap{A}$; or the angle $B = 2\cap{A}$. Hence, the triangle *ABD* has each of its angles, at the base, double of the third angle.

SCHOLIUM.—As the two angles, at the base of the triangle ABD, are equal, and each is double the angle A, it follows that the sum of the three angles is *five times* the angle A. But, as the three angles of every triangle are always equal to two right angles, or 180°, the angle A must be one fifth of two right angles, or 36°; therefore, BD is a chord of 36°, when AB is a radius to the circle; and ten such chords would extend exactly round the circle, or would form a decagon.

PROBLEM XXVI.

The ist of a loose of moissorth in

Within a given circle to inscribe a triangle, equiangular to a given triangle.

Let ABC be the circle, and *abc* the given triangle. From any point, as A, draw ED tangent to the given circle at A, (Problem 12).

12 . 4 9

All the standard and the

From the point A, in the line AD, lay off the angle DAC =

the angle b, (Problem 5), and the angle EAB = the angle c, and draw BC.

The triangle ABC is inscribed in the circle; it is equiangular to the triangle *abc*, and hence it is the triangle required.

barrothe stan of the three media of the rest

Proof, (Th. 12, B. III).

PROBLEM XXVII.

To describe a regular pentagon in a given circle.

1st. Describe an isosceles triangle, abc, having each of the equal angles, b and c, double the third angle, a, by Problem 25.

2d. Inscribe the triangle, ABC, in the given circle, equiangular to the triangle *abc*, by

Problem 26; then each of the angles, B and C, is double the angle A.

3d. Bisect the angles B and C, by the lines BD and CE, (Problem 2), and draw AE, EB, CD, DA; and the figure AEBCD is the pentagon required.

By construction, the angles *BAC*, *ABD*, *DBC*, *BCE*, *ECA*, are all equal; therefore, (B. III, Th. 9, Scho.), the arcs, *BC*, *AD*, *DC*, *AE*, and *EB*, are all equal; and if the arcs are equal, the chords *AE*, *EB*, etc., are equal.

SCHOLIUM.—The arc subtended by one of the sides of a regular pentagon, being one fifth of the whole circumference, is equal to $\frac{360^{\circ}}{5} = 72^{\circ}$.

PROBLEM XXVIII.

To describe a regular hexagon in a circle.

Draw any diameter of the circle, as AB, and from one extremity, B, draw BD equal to BC, the radius of the circle. The arc, BD, will be one sixth part of the whole circumference, and the chord BD will be a side of the regular polygon of six sides.

E

In the $\triangle CBD$, as CB = CD, and BD = CB by construction, the \triangle is equilateral, and of course equiangular.

Since the sum of the three angles of every \triangle is equal to two right angles, or to 180 degrees, when the

three angles are equal to one another, each one of them must be 60 degrees; but 60 degrees is a sixth part of 360 degrees, the whole number of degrees in a circle; therefore, the arc whose chord is equal to the radius, is a sixth part of the circumference; and, if a polygon of six equal sides be inscribed in a circle, each side will be equal to the radius.

SCHOLIUM. — Hence, as BD is the chord of 60°, and equal to BC or CD, we say generally, that the chord of 60° is equal to radius.

PROBLEM XXIX.

To find the side of a regular polygon of fifteen sides, which may be inscribed in any given circle.

Let CB be the radius of the given circle; divide it into extreme and mean ratio, (Problem 24), and make BD equal to CE, the greater part; then BD will be a side of a regular polygon of ten sides, (Scholium to Problem 25). Draw BA = to CB, and

it will be a side of a polygon of six sides. Draw DA, and that line must be the side of a polygon which corresponds to the arc of the circle expressed by $\frac{1}{6}$ less $\frac{1}{10}$, of the whole circumference; or $\frac{1}{6} - \frac{1}{10} = \frac{4}{60} = \frac{1}{15}$; that is, one-fifteenth of the whole circumference; or, DA is a side of a regular polygon of 15 sides. But the 15th part of 360° is 24°; hence the side of a regular inscribed polygon of fifteen sides is the chord of an arc of 24°.

PROBLEM XXX.

In a given circle to inscribe a regular polygon of any number of sides, and then to circumscribe the circle by a similar polygon.

11 * The product the sectors at sources

E B D D

Let the circumference of the circle, whose center is O, be divided into any number of equal arcs, as AmB, BnC, CoD, etc.; then will the polygon *abede*, etc., bounded by the chords of these arcs, be regu-

lar and inscribed; and the polygon ABCDE, etc., bounded by the tangents to these arcs at their middle points m, n, o, etc, be a similar circumscribed polygon.

First. — The polygon abcde, etc., is equilateral, because its sides are the chords of equal

arcs of the same circle, (Th. 5, B. III); and it is equiangular, because its angles are inscribed in equal segments of the same circle, (Th. 8, B. III). Therefore the polygon is regular, (Def. 14, B. III), and it is inscribed, since the vertices of all its angles are in the circumference of the circle, (Def. 13, B. III).

Second.—If we draw the radius to the point of tangency of the side AB of the circumscribed polygon, this radius is perpendicular to AB, (Th. 4, B. III), and also to the chord ab, (B. III, Th. 1, Cor.); hence AB is parallel to ab, and for the same reason BC is parallel to bc; therefore the angle ABC is equal to the angle abc, (Th. 8, B. I). In like manner we may prove the other angles of the circumscribed polygon, each equal to the corresponding angle of the inscribed polygon. These polygons are therefore mutually equiangular.

Again, if we draw the radii Om and On, and the line OB, the two \triangle 's thus formed are right-angled, the one at mand the other at n, the side OB is common and Om is equal to On; hence the difference of the squares described on OB and Om is equivalent to the difference of the squares described on OB and On. But the first difference is equivalent to the square described on Bm, and the second difference is equivalent to the square described

126

on Bn; hence Bm is equal to Bn, and the two rightangled triangles are equal, (Th. 20, B. I), the angle BOm opposite the side Bm being equal to the angle BOn, opposite the equal side Bn. The line OB therefore passes through the middle point of the arc mbn; but because m and n are the middle points of the equal arcs amb and bnc, the vertex of the angle abc is also at the middle point of the arc mbn. Hence the line OB, drawn from the center of the circle to the vertex of the angle ABC, also passes through the vertex of the angle abc. By precisely the same process of reasoning, we may prove that OC passes through the point c, OD through the point d, etc.; hence the lines joining the center with the vertices of the angles of the circumscribed polygon, pass through the vertices of the corresponding angles of the inscribed polygon; and conversely, the radii drawn to the vertices of the angles of the inscribed polygon, when produced, pass through the vertices of the corresponding angles of the circumscribed polygon.

Now, since ab is parallel to AB, the similar \triangle 's abO and ABO, give the proportion

Ob: OB::ab:AB,

and the \triangle 's, be O and BCO, give the proportion

Ob: OB:: bc: BC.

As these two proportions have an antecedent and consequent, the same in both, we have, (Th. 6, B. II),

ab: AB:: bc: BC.

In like manner we may prove that

bc: BC:: cd: CD, etc., etc.

The two polygons are therefore not only equiangular, but the sides about the equal angles, taken in the same order, are proportional; they are therefore similar, (Def. 16, B. II). Cor. 1. To inscribe any regular polygon in a circle, we have only to divide the circumference into as many equal parts as the polygon is to have sides, and to draw the chords of the arcs; hence, in a given circle, it is possible to inscribe regular polygons of any number of sides whatever. Having constructed any such polygon in a given circle, it is evident, that by changing the radius of the circle without changing the number of sides of the polygon, it may be made to represent any regular polygon of the same name, and it will still be inscribed in a circle. As this reasoning is applicable to regular polygons of whatever number of sides, it follows, that any regular polygon may be circumscribed by the circumference of a circle.

Cor. 2. Since ab, bc, cd, etc., are equal chords of the same circle, they are at the same distance from the center, (Th. 3, B. III); hence, if with O as a center, and Ot, the distance of one of these chords from that point, as a radius, a circumference be described, it will touch all of these chords at their middle points. It follows, therefore, that a circle may be inscribed within any regular polygon.

SCHOLIUM.—The center, O, of the circle, may be taken as the *center* of both the inscribed and circumscribed polygons; and the angle AOB, included between lines drawn from the center to the extremities of one of the sides AB, is called *the angle at the center*. The perpendicular drawn from the center to one of the sides is called the *Apothem* of the polygon.

Cor. 3. The angle at the center of any regular polygon is equal to four right angles divided by the number of sides of the polygon. Thus, if n be the number of sides of the polygon, the angle at the center will be expressed by $\frac{360^{\circ}}{200}$.

Cor. 4. If the arcs subtended by the sides of any regular inscribed polygon be bisected, and the chords of these semi-arcs be drawn, we shall have a regular inscribed polygon of double the number of sides. Thus, from the square we may pass successively to regular inscribed polygons of 8, 16, 32, etc., sides. To get the corresponding circumscribed polygons, we have merely to draw tangents at the middle points of the arcs subtended by the sides of the inscribed polygons.

Cor. 5. It is plain that each inscribed polygon is but a part of one having twice the number of sides, while each circumscribed polygon is but a part of one having one half the number of sides.

ON THE PREPERTON ALTERNATION AND ADDRESS

REACHER, I TOITTEOUGH

and a state of the state, which will also be state of and and state of the state of the state of the protion of the state of the bold of the state of the state of the state of the bold of the state of the state of the state of the bold of the state o

and a strength of the strength of the

all to be deep the as give a life hoor

Antife of pressions are specify a press to realize a barrer of to operatorial of the real states are described as a second of the pression of the second of the second of the press of ໂດຍເປັນ ເຊິ່ງກໍໄຊ ລາຍ ເປັນເຫດໄປ ໃນປະເທດ ເປັນເຕດເຂົ້າມີການ 20 ການ ແລະ ເປັນ ຄາວເດັ່ງ ແລະ ແລະ ຊາຍ ແລະ ແລະເຮົາເຊິ່ງ ກ່າວ ກາງການ ແລະ ການປະການ ແລະ ບໍ່ໃຫ້ ເປັນ ເຊິ່ງ ການ, ເປັນການ ໃນການ ແລະ ການ ການ ການປະການ ແລະ ການເປັນ ເປັນການແຮງ ການໃຫ້ການ ເປັນ ການປະການ ແລະ ການປະການໃຫ້ປະຊຸມການ ຫ້າງການ

BOOK V.

tracked by the solice of the sweetles mark we

some bar diversion and and

ON THE PROPORTIONALITIES AND MEASUREMENT OF POLYGONS AND CIRCLES.

PROPOSITION I.-THEOREM.

The area of any circle is equal to the product of its radius by one half of its circumference.

Let CA be the radius of a circle, and AB a very small portion of its circumference; then ACB will be a sector. We may conceive the whole circle made up of a great number of such sectors; and when each sector is very small, the arcs AB, BD, etc.,

each one taken separately, may be considered a right line; and the sectors CAB, CBD, etc., will be triangles. The triangle, ACB, is measured by the product of the base, AC, multiplied into one half the altitude, AB, (Th. 33, Book I); and the triangle BCD is measured by the product of BC, or its equal, AC, into one half BD; then the area, or measure of the two triangles, or sectors, is the product of AC, multiplied by one half of AB plus one half of BD, and so on for all the sectors that compose the circle; therefore, the area of the circle is measured by the product of the radius into one half the circumference.

BOOK V.

PROPOSITION II.-THEOREM.

Circumferences of circles are to one another as their radii, and their areas are to one another as the squares of their radii.

Let CA be the radius of a circle, and Ca the radius of another circle. Conceive the two circles to be so placed upon each other so as to have a common center.

Let AB be such a certain definite portion of the circumference of the

larger circle, that m times AB will represent that circumference.

But whatever part AB is of the greater circumference, the same part ab is of the smaller; for the two circles have the same number of degrees, and are of course susceptible of division into the same number of sectors. But by proportional triangles we have,

CA : Ca :: AB : ab

Multiply the last couplet by m, (Th. 4, B. II), and we have

CA : Ca :: mAB : mab.

That is, the radius of one circle is to the radius of another, as the circumference of the one is to the circumference of the other.

To prove the second part of the theorem, let C represent the area of the larger circle, and c that of the smaller; now, whatever part the sector CAB is of the circle C, the sector Cab is the corresponding part of the circle c.

That is, C: c :: CAB: Cab, but $CAB: Cab \leftarrow (CA)^2 \leftarrow (Ca)^2$ (Th

but, $CAB : Cab :: (CA)^2 : (Ca)^2$, (Th. 20, B. II). Therefore, C : c $:: (CA)^2 : (Ca)^2$, (Th. 6, B. II). That is, the area of one circle is to the area of another, as the square of the radius of the one is to the square of the radius of the other.

Hence the theorem.

Cor. If	C:	C	::	$(CA)^2$	*	$(Ca)^{2}$,	
then,	C:	C	::	$4(Ca)^{2}$:	4(Ca)	2.

But $4(CA)^2$ is the square of the diameter of the larger circle, and $4(Ca)^2$ is the square of the diameter of the smaller. Denoting these diameters respectively by D and d, we have,

 $C:c::D^2:d^2.$

That is, the areas of any two circles are to each other, as the squares of their diameters.

SCHOLIUM. — As the circumference of every circle, great or small, is assumed to be the measure of 360 degrees, if we conceive the circumference to be divided into 360 equal parts, and one such part represented by AB on one circle, or ab on the other, AB and ab will be very near straight lines, and the length of such a line as AB will be greater or less, according to the radius of the circle; but its *absolute* length *cannot* be determined until we know the *absolute relation* between the diameter of a circle and its circumference.

PROPOSITION III. - THEOREM.

When the radius of a circle is unity, its area and semicircumference are numerically equal.

Let R represent the radius of any circle, and the Greek letter, π , the half circumference of a circle whose radius is unity. Since circumferences are to each other as their radii, when the radius is R, the semi-circumference will be expressed by πR .

Let *m* denote the area of the circle of which *R* is the radius; then, by Theorem 1, we shall have, for the area of this circle, $\pi R^2 = m$, which, when R = 1, reduces to $\pi = m$.

This equation is to be interpreted as meaning that the semi-circumference contains its unit, the radius, as many times as the area of the circle contains its unit, the square of the radius.

REMARK. — The celebrated problem of squaring the circle has for its object to find a line, the square on which will be equivalent to the area of a circle of a given diameter; or, in other words, it proposes to find the ratio between the area of a circle and the square of its radius.

An approximate solution only of this problem has been as yet discovered, but the approximation is so close that the exact solution is no longer a question of any practical importance.

PROPOSITION IV.-PROBLEM.

Given, the radius of a circle unity, to find the areas of regular inscribed and circumscribed hexagons.

Conceive a circle described with the radius CA, and in this circle inscribe a regular polygon of six sides (Prob.

28, B. IV), and each side will be equal to the radius CA; hence, the whole *perimeter* of this polygon must be six times the radius of the circle, or three times the diameter. The chord *bd* is

bisected by CA. Produce Cb and Cd, and through the point A, draw BD parallel to bd; BD will then be a side of a regular polygon of six sides, circumscribed about the circle, and we can compute the length of this line, BD, as follows: The two triangles, Cbd and CBD, are equiangular, by construction; therefore,

Ca : bd :: CA : BD.

Now, let us assume CA = CD = the radius of the circle, equal unity; then bd = 1, and the preceding proportion becomes

Ca:1::1:BD (1)

In the right-angled triangle Cad, we have,

 $Ca^2 + ad^2 = Cd^2$, (Th. 39, B. I).

That is, $Ca^2 + \frac{1}{4} = 1$, because Cd = 1, and $ad = \frac{1}{2}$. 12

Whence, $Ca = \frac{1}{2}\sqrt{3}$. This value of Ca, substituted in proportion (1), gives

 $\frac{1}{2}\sqrt{3}$: 1:: 1: BD; hence, $BD = \frac{2}{\sqrt{3}}$.

But the area of the triangle *Cbd* is equal to bd (= 1,)multiplied by $\frac{1}{2}Ca = \frac{1}{4}\sqrt{3}$; and the area of the triangle *CBD* is equal to *BD* multiplied by $\frac{1}{2}CA$.

Whence, area, $Cbd = \frac{1}{4}\sqrt{3}$, and, area, $CBD = \sqrt{\frac{1}{3}}$.

But the area of the inscribed polygon is six times that of the triangle Cbd, and the area of the circumscribed polygon is six times that of the triangle CBD.

Let the area of the inscribed polygon be represented by p, and that of the circumscribed polygon by P.

Then
$$p = \frac{3}{2}\sqrt{3}$$
, and $P = \frac{6}{\sqrt{3}} = \frac{2 \times 3}{\sqrt{3}} = 2\sqrt{3}$.

Whence $p: P:: \frac{3}{2}\sqrt{3}: 2\sqrt{3}:: \frac{3}{2}: 2:: 3: 4:: 9: 12$

 $p = \frac{3}{2}\sqrt{3} = 2.59807621$. $P = 2\sqrt{3} = 3.46410161$.

Now, it is obvious that the *area* of the circle must be included between the areas of these two polygons, and not far from, but somewhat greater than, their half sum, which is 3.03 + ; and this may be regarded as the first approximate value of the area of the circle to the radius unity.

PROPOSITION V.-PROBLEM.

Given, the areas of two regular polygons of the same number of sides, the one inscribed in and the other circumscribed about, the same circle, to find the areas of regular inscribed and circumscribed polygons of double the number of sides.

Let p represent the area of the given inscribed polygon, and P that of the circumscribed polygon of the same

134.

number of sides. Also denote by p' the area of the inscribed polygon of double the number of sides; and by P' that of the corresponding circumscribed polygon. Now, if the arc KAL be some exact part, as one-fourth, one fifth, etc., of the circumference of the circle, of which C is the center and CA the radius, then will KL be the side of a regular inscribed polygon, and the triangle KCL will be the same part of the whole polygon that the arc KAL is of the whole circumference, and the triangle CDB will be a like part of the circumscribed polygon. Draw CA to the point of tangency, and bisect the angles ACB and ACD, by the lines CG and CE, and draw KA.

It is plain that the triangle ACK is an exact part of the inscribed polygon of double the number of sides, and that the $\triangle ECG$ is a like part of the circumscribed polygon of double the number of sides. Represent the area of the $\triangle LCK$ by a, and the area of the $\triangle BCD$ by b, that of the $\triangle ACK$ by x,

and that of the $\triangle ECG$ by y, and suppose the \triangle 's, KCL and DBC, to be each the *n*th part of their respective polygons.

Then, na = p; nb = P; 2nx = p', and, 2ny = P';

But, by (Th. 33, B. I), we have

 $CM \cdot MK = a \quad (1)$ $CA \cdot AD = b \quad (2)$ $CA \cdot MK = 2x \quad (3)$

Multiplying equations (1) and (2), member by member, we have

 $(CM \cdot AD) \times (CA \cdot MK) = ab$ (4)

From the similar \triangle 's CMK and CAD, we have

whence $CM \cdot AD = CA \cdot MK$

But from equation (3) we see that each member of this last equation is equal to 2x; hence equation (4) becomes

$$2x \cdot 2x = ab$$

If we multiply both members of this by $n^2 = n \cdot n$, we shall have

$$4n^2x^2 = na.nb = p.P$$

or, taking the square root of both members,

$$2nx = \sqrt{p.P}$$

That is, the area of the inscribed polygon of double the number of sides is a mean proportional between the areas of the given inscribed and circumscribed polygons p and P.

Again, since CE bisects the angle ACD, we have, by, (Th. 24, B. II),

AE: ED:: CA: CD:: CM: CK:: CM: CA

hence, AE : AE + ED :: CM : CM + CA.

Multiplying the first couplet of this proportion by CA, and the second by MK, observing that AE + ED = AD, we shall have

AE.CA : AD.CA :: CM.MK : (CM + CA) MK.

But A.E.CA measures the area of the \triangle CEG, which we have called y, $AD.CA = \triangle$ CBD = b, CM.MK = \triangle CKL = a, and (CM + CA)MK = \triangle CMK, and CAK = a + 2x, as is seen from equations (1) and (3). Therefore the above proportion becomes

y:b::a:a+2x.

Multiplying the first couplet by 2n, and the second by n, we shall have

136

BOOK V.

				0-1	2	P	p
	P'	:	2P	::	p	:	p + p'
arr.	2ny	:	2nb	::	na	:	na + 2nx

whence,

That is,

and as the value of p' has been previously found equal to \sqrt{Pp} , the value of P' is known from this last equation, and the problem is completely solved.

 $\overline{p+p'}$

PROPOSITION VI.-PROBLEM.

To determine the approximate numerical value of the area of a circle, when the radius is unity.

We have now found, (Prob. 4), the areas of regular inscribed and circumscribed hexagons, when the radius of the circle is taken as the unit; and Prob. 5 gives us formulæ for computing from these the areas of regular inscribed and circumscribed polygons of twelve sides, and from these we may again pass to polygons of twenty-four sides, and so on, without limit. Now, it is evident that, as the number of sides of the inscribed polygon is increased, the polygon itself will increase, gradually approaching the circle, which it can never surpass. And it is equally evident that, as the number of sides of the circumscribed polygon is increased, the polygon itself will decrease, gradually approaching the circle, less than which it can never become.

The circle being included between any two corresponding inscribed and circumscribed polygons, it will differ from either less than they differ from each other; and the area of either polygon may then be taken as the area of the circle, from which it will differ by an amount less than the difference between the polygons.

It is also plain that, as the areas of the polygons approach equality, their perimeters will approach coincidence with each other, and with the circumference of the circle.

12*

Assuming the areas already found for the inscribed and circumscribed hexagons, and applying the formulæ of Prob. 5 to them and to the successive results obtained, we may construct the following table:

NUMBER OF SIDES. INSCRIBED POLYGONS. CIRCUMSCRIBED POLYGONS.							
di i 6, s	$\frac{3}{2}\sqrt{3} = 2.53$	807621	$2\sqrt{3}=$	3.46410161			
12	3 = 3.00	000000	$\frac{12}{2+\sqrt{3}} =$	3.2153904			
24	$\frac{0}{\sqrt{2+\sqrt{3}}} = 3.1$	058286	op site and	3.1596602			
48	3.13	826287	ire takin armity	3.1460863			
96. 9	3.1	393554	mone form	3.1427106			
192	3.1	410328		3.1418712			
- 384	3.14	414519	and the second	3.1416616			
768	3.1	415568	2 nomen :	3.1416092			
1536	3.14	415829	suamis In	3.1415963			
3072	3.1	415895	our point	3.1415929			
6144	.imi 1.1.	415912	an pular	3.1415927			

Thus we have found, that when the radius of a circle is 1, the semi-circumference must be more than 3.1415912, and less than 3.1415927; and this is as accurate as can be determined with the small number of decimals here used. To be more accurate we must have more decimal places, and go through a very tedious mechanical operation; but this is not necessary, for the result is well known, and is 3.1415926535897, *plus* other decimal places to the 100th, without termination. This result was discovered through the aid of an infinite series in the Differential and Integral Calculus.

The number, 3.1416, is the one generally used in practice, as it is much more convenient than a greater number of decimals, and it is sufficiently accurate for all ordinary purposes.

In analytical expressions it has become a general custom with mathematicians to represent this number by
BOOK V.

the Greek letter π , and, therefore, when any diameter of a circle is represented by D, the circumference of the same circle must be πD . If the radius of a circle is represented by R, the circumference must be represented by $2\pi R$.

SCHOLIUM. — The side of a regular inscribed hexagon subtends an arc of 60°, and the side of a regular polygon of twelve sides subtends an arc of 30°; and so on, the length of the arc subtended by the sides of the polygons, varying inversely with the number of sides.

Angles are measured by the arcs of circles included between their sides; they may also be measured by the chords of these arcs, or rather by the half chords called *sines* in Trigonometry. For this purpose, it becomes necessary to know the length of the chord of every possible arc of a circle.

PROPOSITION VII.-PROBLEM.

Given, the chord of any arc, to find the chord of one half that arc, the radius of the circle being unity.

Let FE be the given chord, and draw the radii CA and CE, the first perpendicular to FE, and the second to its extremity, E.

Denote FE by 2c, and the chord of the half arc AE by x.

Then, in the right-angled triangle, DCE, we have $\overline{DC^2} = \overline{CE^2} - \overline{DE^2}$. Whence, since $CE = 1, DC = \sqrt{1 - c^2}$.

If from CA = 1 we subtract DC, we shall have AD. That is, $AD = 1 - \sqrt{1 - c^2}$; but $\overline{AD^2} + \overline{DE^2} = \overline{AE^2}$, and $\overline{AD^2} = 2 - 2\sqrt{1 - c^2} - c^2$. Adding to the first member of this last equation $\overline{DE^2}$, and to the second its value c^2 , we have

 $\overline{AD}^2 + \overline{DB}^2 = 2\sqrt{1-c^2}.$

Whence, $AE = \sqrt{2 - 2\sqrt{1 - c^2}}$, the value sought. By applying this formula successively to any known chord, we can find the chord of one half the arc, that of half of the half, and so on, to the chords of the most minute arcs.

Application.

The greatest chord in a circle is its diameter, which is 2 when the radius is 1; therefore, we may commence by making 2c = 2, and c = 1.

by making 2c = 2, and c = 1. Then, $AE = \sqrt{2} - \sqrt{1 - c^2} = \sqrt{2 - 2\sqrt{1 - 1}} = \sqrt{2} = 1.41421356$, which is the chord of 90°.

Now make 2c = 1.41421356, and $c = .70710678 = \frac{1}{2}\sqrt{2}$. We shall then have,

chord of $45^{\circ} = \sqrt{2 - 2\sqrt{5}} = \sqrt{2 - 1.41421356} = \sqrt{.58578644} = .7653 + .$

Again, placing 2c=.7653+, and applying the formula, we would obtain the chord of $22^{\circ} 30'$, and from this the chord of $11^{\circ} 15'$, and so on, as far as we please.

We may take, for another starting point, the chord of 60°, which is known to be equal to the radius of the circle, (Prob. 26, B. IV). If, as above, we make successive applications of the formula, putting first 2c = 1, we shall arrive at the results in the following

TABLE.

Chord	of	60°,	=	$\frac{1}{6}$ of a	circumference,	1.0000000000
"	"	30°,	=	1 "	"	.5176380902
66	"	15°,	=	1 66	"	.2610523842
"	"	7° 30′,	=	1 66	"	.1308062583
66	"	3° 45',	=	1 "	"	.0654381655
66	"	1° 52′ 30″,	-	192 "	"	.0327234632
"	66	56' 15",	= 7	1		.0163622792
"	"	28' 7" 30"",	= -	1 66	"	.0081812080
"	"	14' 3" 45"",	=	1 (6	"	.0040906112
46	"	7' 1" 521",	= 3	1 "	"	.0020453068
		etc.		etc.		

It is obvious that an arc so small as seven minutes of a degree can differ but very little from its chord; therefore, if we take .002045307 to be the true value of the $\frac{1}{3072}$ of the circumference, the whole circumference must be the

product of .002045307 by 3072, which is 6.283183104 = circumference whose radius is unity. The half of this, 3.141592552, is the semi-circumference, the more exact value of which, as stated, (Prop. 6), is 3.141592653.

The value of the half circumference being now determined, if that of any arc whatever be required, we have merely to divide 3.141592, etc., by 10800, the number of minutes in a semi-circumference, and multiply the quotient by the number of minutes in the arc whose length is required.

But this investigation has been carried far enough for our present purposes. It will be resumed under the subject of Trigonometry.

We insert the following beautiful theorem for the trisection of an arc, although not necessary for practical application. Those not acquainted with cubic equations may omit it.

PROPOSITION VIII.-THEOREM.

Given, the chord of any arc, to determine the chord of one third of such arc.

Let AE be the given chord, and conceive its arc divided into three equal parts, as represented by AB, BD, and DE.

Through the center draw BCG, and draw AB. The two \triangle 's, CAB and ABF, are equiangular; for, the angle FAB, being at the circumference, is

measured by one half the arc BE, which is equal to AB, and the angle BCA, being at the center, is measured by the arc AB; therefore, the angle FAB = the angle BCA; but the angle CBA or FBA, is common to both triangles; therefore, the third angle, CAB, of the one triangle, is equal to the third angle, AFB, of the other,

(Th. 12, B. I, Cor. 2), and the two triangles are equiangular and similar.

But the $\triangle ACB$ is isosceles; therefore, the $\triangle AFB$ is also isosceles, and AB = AF, and we have the following proportions:

STREET DURING

Now, let AE = c, AB = x, AC = 1. Then AF = x, and EF = c - x, and the proportion becomes,

1: x :: x : BF. Hence, $BF = x^2$.

Also, $FG = 2 - x^2$.

As AE and BG are two chords intersecting each other at the point F, we have,

 $GF \times FB = AF \times FE$, (Th. 17, B. III). That is, $(2 - x^2) x^2 = x (c - x)$; or, $x^3 - 3x = -c$.

If we suppose the arc AE to be 60 dégrees, then c = 1, and the equation becomes $x^3 - 3x = -1$; a cubic equation, easily resolved by Horner's method, (Robinson's Algebra, University Ed., Art. 193), giving x = .347296 +, the chord of 20°. This again may be taken for the value of c, and a second solution will give the chord of 6° 40', and so on, trisecting successively as many times as we please.

PRACTICAL PROBLEMS."

The theorems and problems with which we have been thus far occupied, relate to plane figures; that is, to figures all of whose parts are situated in the same plane. It yet remains for us to investigate the intersections and relative positions of planes; the relations and positions of lines with reference to planes in which they are not contained; and the measurements, relations, and properties of solids, or volumes. But before we proceed to this, it is deemed advisable to give some practical problems for the purpose of exercising the powers of the student,

and of fixing in his mind those general geometrical principles with which we must now suppose him to be acquainted.

1. The base of an isosceles triangle is 6, and the opposite angle is 60°; required the length of each of the other two equal sides, and the number of degrees in each of the other angles.

2. One angle of a right-angled triangle is 30°; what is the other angle? Also, the least side is 12, what is

Ans. { The hypotenuse is 24, the double of the least side. Why?

3. The perpendicular distance between two parallel lines is 10; what angles must a line of 20 make with these parallels to extend exactly from the one to the other? Ans. The angles must be 60° and 120°.

4. The perpendicular distance between two parallels is 20 feet, and a line is drawn across them at an angle of 45°; what is its length between the parallels?

Ans. $20\sqrt{2}$.

5. Two parallels are 8 feet asunder, and from a point. in one of the parallels two lines are drawn to meet the other; the length of one of these lines is 10 feet, and that of the other 15 feet; what is the distance between the points at which they meet the other parallel?

Ans. 6.69 ft., or 18.69 ft. (See Th. 39, B. T). 6. Two parallels are 12 feet asunder, and from a point on one of them two lines, the one 20 feet and the other 18 feet in length, are drawn to the other parallel; what is the distance between the two lines on the other parallel, and what is the area of the triangle so formed?

Ans. { The distance on the other parallel is 29.416 feet, or 2.584 feet; and the area of the triangle is 176.496, or 15.504 square feet.

de venniere part oppre pride Par

7. The diameter of a circle is 12, and a chord of the

circle is 4; what is the length of the perpendicular drawn from the center to this chord? (See Th. 3, B. III). Ans. $4\sqrt{2}$.

8. Two parallel chords in a circle were measured and found to be 8 feet each, and their distance asunder was 6 feet; what was the radius of the circle?

Ans. 5 feet.

9. Two chords on opposite sides of the center of a circle are parallel, and one of them has a length of 16 and the other of 12 feet, the distance between them being 14 feet. What is the diameter of the circle?

Ans. 20 feet.

10. An isosceles triangle has its two equal sides, 15 each, and its base 10. What must be the altitude of a right-angled triangle on the same base, and having an equal area?

11. From the extremities of the base of any triangle, draw lines bisecting the other sides; these two lines intersecting within the triangle, will form another triangle on the same base. How will the area of this new triangle compare with that of the whole triangle?

Ans. Their areas will be as 3 to 1.

12. Two parallel chords on the same side of the center of a circle, whose diameter is 32, are measured and found to be, the one 20, and the other 8. How far are they asunder? $Ans. \sqrt{240} - \sqrt{156} = 3 + .$

If we suppose the two chords to be on opposite sides of the center, their distance apart will then be $\sqrt{240} + \sqrt{156} = 15.49 + 12.49 = 27.98$.

13. The longer of the two parallel sides of a trapezoid is 12, the shorter 8, and their distance asunder 5. What is the area of the trapezoid? and if we produce the two inclined sides until they meet, what will be the area of the triangle so formed?

Ans. Area of trapezoid, 50; area of triangle, 40; area of triangle and trapezoid, 90.

BOOK V.

14. The base of a triangle is 697, one of the sides is 534, and the other 813. If a line be drawn bisecting the angle opposite the base, into what two parts will the bisecting line divide the base? (See Th. 25, B. II).

Ans. { The greater part will be 420.634; The less " " 276.316.

15. Draw three horizontal parallels, making the distance between the two upper parallels 7, and that between the middle and lower parallels 9; then place between the upper parallels a line equal to 10, and from the point in which it meets the middle parallel draw to the lower a line equal to 11, and join the point in which this last line meets the lower parallel, with the point in the upper parallel, from which the line 10 was drawn. Required the length of this line, and the area of the triangle formed by it and the two lines 10 and 11.

 $\overline{AC}^2 = (\sqrt{51} + \sqrt{40})^2 + (16)^2; AC = 20.89, Ans.$

The area of the triangle, ABC, can be determined by first finding the area of the trapezoid, ABHD, then the area of the triangle, BHC, and from their sum subtracting the area of the triangle, ADC.

16. Construct a triangle on a base of 400, one of the angles at the base being 80° , and the other 70° ; and

13

determine the third angle, and the area of the triangle thus constructed.

(The third angle is 30°, and as nearly as our Ans. $\begin{cases} scale of equal parts can determine for us, the side opposite the angle 80° is 787, and that opposite 70° is 740. \end{cases}$

The exact solution of problems like the last, except in a few particular cases, requires a knowledge of certain lines depending on the angles of the triangle. The properties and values of these lines are investigated in trigonometry; and as we are not yet supposed to be acquainted with them, we must be content with the approximate solutions obtained by the constructions and measurements made with the plane scale.

17. If we call the mean radius of the earth 1, the mean distance of the moon will be 60; and as the mean distance of the sun is 400 times the distance of the moon, its distance will be 400 times 60. The sun and moon appear to have the same diameter; supposing, then, the real diameter of the moon to be 2160 miles, what must be that of the sun?

Let E be the center of the earth, M that of the moon, and Sthat of the sun, and suppose ENP to be a line from the center of the earth, touching the moon and the sun.

EM:MN::ES:SP;Then, but MN is the radius of the moon, and SP that of the sun. Multiplying the consequents by 2, the above proportion becomes

EM: 2MN:: ES : 2SP;or in numbers, $60:2160::400 \times 60:2SP;$

whence, 2SP = sun's diameter = 864000 miles, Ans.

18. In Problem 15, suppose BC to be drawn on the other side of BH, what, then, will be the value of AC, and what the area of the triangle ACB?

Ans. $\begin{cases} AC = 16,021; \\ \text{Area of triangle, } 8\sqrt{51}, \text{ very nearly.} \end{cases}$

19. A man standing 40 feet from a building which was 24 feet wide, observed that when he closed one eye, the width of the building just eclipsed or hid from view 90 rods of fence which was parallel to the width of the building; what was the distance from the eye of the observer to the fence? Ans. 2475 feet.

20. Taking the same data as in the last problem, except that we will now suppose the direction of the fence to be inclined at an angle of 45° to the side of the building which we see; what, in this case, must be the distance between the eye of the observer and the remoter point of the fence?

Let HF be the width of the house, E the position of the eye, and AB that of the fence. Draw BD perpendicular to EA produced; then, since the triangle ABD is right-angled and isosceles, we have AD = DB, and $2\overline{AD^2} = \overline{AB^2} = (90)^2$; BD = 63.64 rods, and the similar triangles EFH and EDB give the proportion

HF: EF:: BD: ED = 1750.1 feet; and from this we find

 $\overline{EB}^2 = \overline{ED}^2 + \overline{BD}^2 = (63.64 \times \frac{3.3}{2})^2 + (1750.1)^2$ Whence EB = 2040.94 + Ans.

21. In a right-angled triangle, ABC, we have AB =493, AC = 1425, and BC = 1338; it is required to divide this triangle into parts by a line parallel to AB, whose areas are to each other as 1 is to 3. How will the sides AC and BC be divided by this line? (See Th. 20, B. II). Ans. Into equal parts.

22. In a right-angled triangle, ABC, right-angled at B, the base AB is 320, and the angle A is 60°; required the remaining angle and the other sides.

Ans. { The angle $C = 30^{\circ}$; AC = 640; BC = 554.24.

23. A hunter, wishing to determine his distance from a village in sight, took a point and from it laid off two lines in the direction of two steeples, which he supposed equally distant from him, and which he knew to be 100 rods asunder. At the distance of 50 feet on each line from the common point, he measured the distance between the lines, and found it to be 5 feet 8 inches. How far was he from the steeples?

5 ft. 8 in.: 100 rods:: 50 ft.: distance. or, $68:100 \times \frac{33}{2} \times 12::50$: distance. 3 miles. $Ans. \begin{cases} 14,559 \text{ feet,} \\ \text{or nearly} \\ 3 \text{ miles.} \end{cases}$

24. A person is in front of a building which he knows to be 160 feet long, and he finds that it covers 10 minutes of a degree; that is, he finds that the two lines drawn from his eve to the extremities of the building include an angle of 10 minutes. What is his distance from the Ans. $\begin{cases} 50,672 \text{ feet, or} \\ \text{nearly 10 miles.} \end{cases}$ building?

1. 15 m - 1

REMARK .- The questions of distance, with which we are at present occupied, depend for their solution on the properties of similar triangles. In the preceding example we apparently have but one triangle, but we have in fact two; the second being formed by the distances unity on the lines drawn from the eye of the observer, and the line which connects the extremities of these units of distance. This last line may be regarded as the chord of the arc 10 minutes to the radius unity. We have seen that the length of the arc 180° to the radius 1, is 3.1415926; hence the chord of 1° or 60' is 0.017455, and of 10' it must be 0.0029088. Therefore, by similar triangles, we have

 $0.0029088 : 160 :: 1 : Ans. = \frac{160000}{2.9088}$

25. In the triangle, ABC, we have given the angles $A = 32^{\circ}$, and $B = 84^{\circ}$. The side AB is produced, and the exterior angle CBD thus formed, is bisected by the line BE, and the angle A is also bisected by the line AE, BE and AE meeting in the point E. What is the angle C, and what is the relation between the angles C and E?

Ans. $C = 64^{\circ}; E = \frac{1}{2}C.$

26. Suppose a line to be drawn in any direction between two parallels. Bisect the two interior angles thus formed on either side of the connecting line, and prove that the bisecting lines meet each other at right angles, and that they are the sides of a right-angled triangle of which the line connecting the parallels is the hypotenuse.

27. If the two diagonals of a trapezoid be drawn, show that two similar triangles will be formed, the parallel sides of the trapezoid being homologous sides of the triangles. What will be the relative areas of these triangles?

Ans. The triangles will be to each other as the squares on the parallel sides of the trapezoid.

- 28. If from the extremities of the base of any triangle, lines be drawn to any point within the triangle, forming with the base another triangle; how will the vertical angle in this last triangle compare with that in the original triangle?

Ans. $\begin{cases}
It will be as much greater than the angle in the original triangle as the sum of angles at the base of the new triangle is less than the sum of those at the base of the first.
 <math display="block">$

29. The two parallel sides of a trapezoid are 12 and 20, respectively, and their perpendicular distance is 8. If a line whose length is 14.5 be drawn between the inclined sides and parallel to the parallel sides, what is the area of the trapezoid, and what the area of each part, respectively, into which the trapezoid is divided?

(Area of the whole, 128 square units;

Ans. $\begin{cases} \text{``smaller part, } 33\frac{1}{8} & \text{``}\\ \text{``larger} & 94\frac{7}{8} & \text{``}\\ \text{Dividing line at the distance of } 2\frac{1}{2} \text{ from} \end{cases}$

Dividing line at the distance of $2\frac{1}{2}$ from shorter parallel side.

30. If we assume the diameter of the earth to be 13*

7956 miles, and the eye of an observer be 40 feet above the level of the sea, how far distant will an object be, that is just visible on the earth's surface. (Employ Th. 18, B. III, after reducing miles to feet.)

Ans. 40992 feet = 7 miles 4032 feet. 31. The diameter of a circle is 4; what is the area of the inscribed equilateral triangle? Ans. $3\sqrt{3}$.

32. Three brothers, whose residences are at the vertices of a triangular area, the sides of which are severally 10, 11, and 12 chains, wish to dig a well which shall be at the same distance from the residence of each. Determine the point for the well, and its distance from their residences.

REMARK. — Construct a triangle, the sides of which are, respectively, 10, 11, and 12. The sides of this triangle will be the chords of a circle whose radius is the required distance. To find the center of this circle, bisect either two of the sides of the triangle by perpendiculars, and their intersection will be the center of the circle, and the location of the well.

Ans. The well is distant 6.25 chains, nearly, from each residence.

33. The base of an isosceles triangle is 12, and the equal sides are 20 each. What is the length of the perpendicular from the vertex to the base; and what the area of the triangle?

Ans. Perpendicular, 19.07; area, (19.07) × 6.

34. The hypotenuse of a right-angled triangle is 45 inches, and the difference between the two sides is 8.45 inches. Construct the triangle.

Suppose the triangle drawn and represented by ABC, DC being the difference between the two sides.

Now, by inspection, we discover the steps to be taken for the construction of the triangle As AD = AB,

the angle ADB, must be equal to the angle DBA, and each equal to 45° .

Therefore, draw any line, AC, and from an assumed point in it as D, draw BD, making the angle $ADB = 45^{\circ}$. Take from a scale of equal parts, 8.45 inches, and lay them off from D to C, and with C as a center, and CB = 45 inches as a radius, describe an arc cutting BD in B. Draw CB, and from B, draw BA at right angles to AC; then is ABC the triangle sought.

Ans. AB = 27.3; AC = 35.76, when carefully constructed.

35. Taking the same triangle as in the last problem, if *heo* 2 we draw a line bisecting the right angle, where will it *Book* meet the hypotenuse?

Ans. 19.5 from B; and 25.5 from C.

36. The diameters of the hind and fore wheels of a carriage, are 5 and 4 feet, respectively; and their centers are 6 feet as under. At what distance from the fore wheels will the line, passing through their centers, meet the ground, which is supposed level? Ans. 24 feet.

37. If the hypotenuse of a right-angled triangle is 35, and the side of its inscribed square 12, what are its sides? Ans. 28 and 21.

38. What are the sides of a right-angled triangle having the least hypotenuse, in which if a square be inscribed, its side will be 12?

Ans. $\begin{cases} The sides are equal to 24 each, and the least hypotenuse is double the diagonal of the square. \end{cases}$

39. The radius of a circle is 25; what is the area of a sector of 50° ?

REMARK. — First find the length of an arc of 50° in a circle whose radius is unity. Then 25 times that will be the length of an arc of the same number of degrees in a circle of which the radius is 25.

Length of are 1° radius unity $=\frac{3.14159269}{180}$. " " 50° " " $=\frac{1.04719763}{6} \times 5$. Area of sector $=\frac{1.04719763}{6} \times 125 \times \frac{25}{2} = 54.541$, Ans.

BOOK VI.

Direct Mr. D.

ON THE INTERSECTIONS OF PLANES, AND THE REL-ATIVE POSITIONS OF PLANES AND OF PLANES AND LINES.

DEFINITIONS.

A Plane has been already defined to be a surface, such that the straight line which joins any two of its points will lie entirely in that surface. (Def. 9, page 9.)

1. The Intersection or Common Section of two planes is the line in which they meet.

2. A Perpendicular to a Plane is a line which makes right angles with every line drawn in the plane through the point in which the perpendicular meets it; and, conversely, the plane is perpendicular to the line. The point in which the perpendicular meets the plane is called the *foot* of the perpendicular.

3. A Diedral Angle is the separation or divergence of two planes proceeding from a common line, and is measured by the angle included between two lines drawn one in each plane, perpendicular to their common section at the same point.

The common section of the two planes is called the *edge* of the angle, and the planes are its *faces*.

4. Two Planes are perpendicular to each other, when their diedral angle is a right angle.

5. A Straight Line is parallel to a plane, when it will not meet the plane, however far produced.

6. Two Planes are parallel, when they will not intersect, however far produced in all directions.

7. A Solid or Polyedral Angle is the separation or divergence of three or more plane angles, proceeding from a common point, the two sides of each of the plane angles being the edges of diedral angles formed by these plane angles.

The common point from which the plane angles proceed is called the *vertex* of the solid angle, and the intersection of its bounding planes are called its *edges*.

8. A Triedral Angle is a solid angle formed by three plane angles.

THEOREM I. DO MUCH NOT THEOREM I. DO MUCH NOT THE STATE

tillo me ming a lora and strainets a way in

Two straight lines which intersect each other, two parallel straight lines, and three points not in the same straight line, will severally determine the position of a plane.

Let AB and AC be two lines intersecting each other at the point A; then will these lines determine a plane. For, conceive $\Lambda <$ a plane to be passed through AB, and turned about AB as an axis D-

until it contains the point C in the line AC. The plane, in this position, contains the lines AB and AC, and will contain them in no other. Again, let AB and DE be two parallel straight lines, and take at pleasure two points, A and B, in the one, and two points, D and E, in the other, and draw AE and BD. These last lines, from what precedes, determine the position of a plane which contains the points A, B, D, and E. And again, if A, B, and C be three points not in the same straight line, and we draw the lines AB and AC, it follows, from the first part of this proposition, that these points fix the plane.

Cor. A straight line and a point out of it determine the position of a plane.

THEOREM II.

If two planes meet each other, their common points will be found in, and form one straight line.

Let B and D be any two of the points common to the two planes, and join these points by the straight line BD; then will BD contain all the points common to the two planes,

and be their intersection. For, suppose the planes have a common point out of the line BD; then, (Cor. Th. 1), since a straight line and a point out of it determine a plane, there would be two planes determined by this one line and single point out of it, which is absurd. Hence the common section of two planes is a straight line.

REMARK.—The truth of this proposition is implicitly assumed in the definitions of this Book.

THEOREM III.

If a straight line stand at right angles to each of two other straight lines at their point of intersection, it will be at right angles to the plane of those lines.

Let AB stand at right angles to EF and CD, at their point of intersection A. Then AB will be at right angles to any other line drawn through A in the plane, passing through EF, CD, and, of course, at right angles to the plane itself. (Def. 2.) Through A, draw any line, AG, in the

plane EF, CD, and from any point G, draw GH parallel to AD. Take HF = AH, and join F and G and produce FG to D. Because HG is parallel to AD, we have

FH: HA:: FG: GD.

But, in this proportion, the first couplet is a ratio of equality; therefore the last couplet is also a ratio of equality,

That is, FG = GD, or the line FD is bisected in G.

Draw BD, BG, and BF.

Now, in the triangle AFD, as the base FD is bisected in G, we have,

 $\overline{AF}^2 + \overline{AD}^2 = 2\overline{AG}^2 + 2\overline{GF}^2$ (1) (Th. 42, B. I).

Also, as DF is the base of the $\triangle BDF$, we have by the same theorem,

$$\overline{BF}^2 + \overline{BD}^2 = 2\overline{BG}^2 + 2\overline{GF}^2 \qquad (2)$$

By subtracting (1) from (2), and observing that $\overline{BF}^2 - \overline{AF}^2 = \overline{AB}^2$, because BAF is a right angle; and $\overline{BD}^2 - \overline{AD}^2 = \overline{AB}^2$, because BAD is a right angle, we shall have,

$$\overline{AB}^2 + \overline{AB}^2 = 2\overline{BG}^2 - 2\overline{AG}^2.$$

Dividing by 2, and transposing \overline{AG}^2 , and we have,

$$\overline{AB}^2 + \overline{AG}^2 = \overline{BG}^2.$$

This last equation shows that BAG is a right angle. But AG is any line drawn through A, in the plane EF, CD; therefore AB is at right angles to any line in the plane, and, of course, at right angles to the plane itself.

Cor. 1. The perpendicular BA is shorter than any of the oblique lines BF, BG, or BD, drawn from the point B to the plane; hence it is the shortest distance from a point to a plane.

Cor. 2. But one perpendicular can be erected to a plane from a given point in the plane; for, if there could be two, the plane of these perpendiculars would intersect the given plane in some line, as AG, and both the perpendiculars would be at right angles to this intersection at the same point, which is impossible.

Cor. 3. But one perpendicular can be let fall from a given point out of a plane on the plane; for, if there can

be two, let BG and BA be such perpendiculars, then would the triangle BAG be right angled at both A and G, which is impossible.

THEOREM IV.

If from any point of a perpendicular to a plane, oblique lines be drawn to different points in the plane, those oblique lines which meet the plane at equal distances from the foot of the perpendicular are equal; and those which meet the plane at unequal distances from the foot of the perpendicular are unequal, the greater distances corresponding to the longer oblique lines.

Take any point B in the perpendicular BA to the plane ST, and draw the oblique lines BC, BD, and BE, the points C, D, and E, being equally distant from A, the foot of the perpendicular. Produce AE to F, and draw BF: then will BC.

draw BF; then will BC = BD = BE, and BF > BE. For, the triangles BAC, BAD, and BAE are all rightangled at A, the side BA is common, and AC = AD = AEby construction, hence, (Th. 23, B. I), BC = BD = BE. Moreover, since AF > AE, the oblique line BF > BE.

Cor. If any number of equal oblique lines be drawn from the point B to the plane, they will all meet the plane in the circumference of a circle having the foot of the perpendicular for its center. It follows from this, that, if three points be taken in a plane equally distant from a point out of it, the center of the circumference passing through these three points will be the foot of the perpendicular drawn from the point to the plane.

BOOK VI.

THEOREM V.

The line which joins any point of a perpendicular to a plane, with the point in which a line in the plane is intersected, at right angles, by a line through the foot of the perpendicular, will be at right angles to the line in the plane.

Let AB be perpendicular to the plane ST, and AD a line through its foot at right angles to EF, a line in the plane. Connect Dwith any point, as B, of the perpendicular; and BD will be perpendicular to EF.

Make DF = DE, and join B to the points E, D, and F. Since DE = DF, and the angles at D are right angles, the oblique lines, AE and AF, are equal; and, since AE = AF, we have, (Th. 4), BE = BF; therefore the line BD has its two points, B and D, equally distant from the extremities E and F of the line EF, and hence BD is perpendicular to EF at its middle point D.

Cor. Since FD is perpendicular to the two lines AD and BD at their intersection, it is perpendicular to their plane ADB, (Th. 3).

SCHOLIUM. — The inclination of a line to a plane is measured by the angle included between the given line and the line which joins the point in which it meets the plane and the foot of the perpendicular drawn from any point of the line to the plane; thus, the angle BFA is the inclination of the line BF to the plane ST.

THEOREM VI.

If either of two parallels is perpendicular to a plane, the other is also perpendicular to the plane.

Let BA and ED be two parallels, of which one, BA, is perpendicular to the plane ST; then will the other also be perpendicular to the same plane. The two parallels determine a plane which intersects the given plane in AD; through D draw MN perpendicular to AD; then, (Cor., Th. 5,) will MN be perpendicular to the plane BAD, and the angle MDE is

therefore a right angle; but EDA is also a right angle, since BA and ED are parallel, and BAD is a right angle by hypothesis; hence, ED is perpendicular to the two lines MD and AD in the plane ST; it is therefore perpendicular to the plane, (Th. 3).

Cor. 1. The converse of this proposition is also true, that is, if two straight lines are both perpendicular to the same plane, the lines are parallel.

For, suppose BA and ED to be two perpendiculars; if not parallel, draw through D a parallel to BA, and this last line will be perpendicular to the plane; but ED is a perpendicular by hypothesis, and we should have two perpendiculars erected to the plane at the same point, which is impossible, (Cor. 2, Th. 3).

Cor. 2. If two lines lying in the same plane are each parallel to a third line not in the same plane, the two lines are parallel. For, pass a plane perpendicular to the third line, and it will be perpendicular to each of the others; hence they are parallel.

THEOREM VII.

A straight line is parallel to a plane, when it is parallel to a line in the plane.

Suppose the line MN to be parallel to the line CD, in the plane ST; then will MN be parallel to the plane ST

For, CD being in the plane ST, and at the same time parallel to MN, it must be the intersection of the plane of these parallels with the plane ST; hence, if MN meet the plane ST, it must do so in the

line CD, or CD produced; but MN and CD are parallel, and cannot meet; therefore MN, however far produced, can have no point in the plane ST, and hence, (Def. 5), it is parallel to this plane.

THEOREM VIII.

If two lines are parallel, they will be equally inclined to any given plane.

Let AB and CD be two parallels, and STany plane met by them in the points A and C; then will the lines AB and CD be equally inclined to the plane ST.

For, take any distance, AB, on one of these parallels, and make CD = AB, and draw AC and BD. From the points B and D let fall the perpendiculars, BE and DF, on the plane; join their feet by the line EF, and draw AE and CF.

Now, since AB is equal and parallel to CD, ABDC is a parallelogram, and BD is equal and parallel to AC, and BD is parallel to the plane ST, (Th. 7); and, since BE and DF are both perpendicular to this plane, they are parallel; but BD and EF are in the plane of these parallels; and as EF is in the plane ST, and BD is parallel to this plane, these two lines must be parallel and equal, and BDFE is also a parallelogram. Now,

we have shown that BD is equal and parallel to AC, and EF equal and parallel to BD; hence, (Cor. 2, Th. 6), EF is equal and parallel to AC, and ACFE is a parallel ogram, and AE = CF. The triangles ABE and CDF have, then, the sides of the one equal to the sides of the other, each to each, and their angles are consequently equal; that is, the angle BAE is equal to the angle DCF; but these angles measure the inclination of the lines AB and CD to the plane ST, (Scholium, Th. 5).

SCHOLIUM. — The converse of this proposition is not generally true; that is, straight lines equally inclined to the same plane are not necessarily parallel.

THEOREM IX.

The intersections of two parallel planes by a third plane, are parallel.

Let the planes QR and ST be intersected by the third plane, AD: then will the intersections, AB and CD, be parallel.

Since the lines AB and CD are in the same plane, if they are not parallel, they will Q

they are not parallel, they will meet if sufficiently produced; but they cannot meet out of the planes QR and ST, in which they are respectively found; therefore, any point common to the lines, must be at the same time common to the planes; and since the planes are parallel,

they have no common point, and the lines, therefore, do not intersect; hence they are parallel.

THEOREM X.

If two planes are perpendicular to the same straight line, they are parallel to each other.

Let QR and ST be two planes, perpendicular to the line AB; then will these planes be parallel.

BOOK VI.

161

For, if not parallel, suppose M to be a point in their line of intersection, and from this point draw lines to the extremities of the perpendicular MAB, thus forming a triangle, MAB. Now, since the line AB is perpendicular to both

planes, it is perpendicular to each of the lines MA and MB, drawn through its feet in the planes, (Def. 2); hence, the triangle has two right angles, which is impossible; the planes cannot therefore meet in any point as M, and are consequently parallel.

Cor. Conversely: The straight line which is perpendicular to one of the parallel planes, is also perpendicular to the other. For, if AB be perpendicular to the plane QR, draw in the other plane, through the point in which the perpendicular meets it, any line, as AC. The plane of the lines AB and AC will intersect the plane QR in the line BD; and since the planes are parallel by hypothesis, the lines AC and BD must be parallel, (Th. 9); but the angle DBA is a right angle; hence, BAC must be a right angle, and the line BA is perpendicular to any line whatever drawn in the plane through the point A; BA is therefore perpendicular to the plane ST.

THEOREM XI.

deline and the second states

If two straight lines be drawn in any direction through parallel planes, the planes will cut the lines proportionally.

Conceive three planes to be parallel, as represented in the figure, and take any points, A and B, in the first and third planes, and draw AB, the line passing through the second plane at E.

14*

Also, take any other two points, as C and D, in the first and third planes, and draw CD, the line passing through the second plane at F.

Join the two lines by the diagonal AD, which passes through the second plane at G. Draw BD, EG, GF, and AC. We are now to prove that,

AE:EB::CF:FD.

For the sake of perspicuity, put AG = X, and GD = Y.

As the planes are parallel, BD is parallel EG; then, in the two triangles ABD and AEG, we have, (Th. 17, B. II);

Also, as the planes are parallel, GF is parallel to AC, and we have,

CF: FD:: X: Y.

By comparing the proportions, and applying Th. 6, B. II, we have

AE:EB::CF:FD.

THEOREM XII.

If a straight line is perpendicular to a plane, all planes passing through that line will be perpendicular to the plane.

Let MN be a plane, and AB a perpendicular to it. Let BC be any other plane, passing through AB; this plane will be perpendicular to MN.

Let BD be the common intersection of the two planes, and from the point B, draw BE at right angles to DB.

Then, as AB is perpendicular to the plane MN, it is perpendicular to every line in that plane, passing through B; (Def. 2,); therefore, ABE is a right angle. But the angle ABE, (Def. 3), measures the inclination of the two planes; therefore, the plane CB is perpendicular to the plane MN; and thus we can show that any other plane, passing through AB, will be perpendicular to MN. Hence the theorem.

THEOREM XIII.

If two planes are perpendicular to each other, and a line be drawn in one of them perpendicular to their common intersection, it will be perpendicular to the other plane.

Let the two planes, QR and ST, be perpendicular to each other, and draw in QR the line CD at right angles to their common intersection, RV; then will this line be perpendicular to the plane ST.

In the plane ST draw ED, perpendicular to VR at the point D. Then, since the planes QR and STare perpendicular to each other, the angle CDE is a right angle, and CD is perpendicular to the two lines, ED and VR, passing through

its foot in the plane ST. CD is therefore perpendicular to the plane ST, (Th. 3).

Cor. Conversely: if we erect a perpendicular to the plane ST, at any point, D, of its intersection with the plane QR, this perpendicular will lie in the plane QR. For, if it be not in this plane, we can draw in the plane the line CD, at right angles to VR; and, from what has been shown above, CD is perpendicular to the plane ST, and we should thus have two perpendiculars erected to the plane, ST, at the same point, which is impossible, (Cor. 2, Th. 3).

THEOREM XIV.

The common intersection of two planes, both of which are perpendicular to a third plane, will also be perpendicular to the third plane.

Let MN be the common intersection of the two planes, QR and VX, both of which are perpendicular to the plane ST; then will MN be perpendicular to the plane ST. For, if we erect a perpendicular to the plane ST, at the point M, it will lie in both planes at the

same time, (Cor. Th. 13); and this perpendicular must therefore be their intersection. Hence the theorem.

THEOREM XV.

Parallel straight lines included between purallel planes, are equal.

Let AB and DC be two parallel lines, included by the two parallel planes, QR and ST; then will AB = DC.

For, the plane AC, of the parallel lines, intersects the planes, QR and ST, in the parallel lines, AD and BC,

(Th. 9); hence ABDC is a parallelogram, and its opposite sides, AB and DC, are equal.

Cor. It follows from this proposition, that parallel planes are everywhere equally distant; for, two perpendiculars drawn at pleasure between the two planes are parallel lines, (Cor. 1, Th. 6), and hence are equal; but these perpendiculars measure the distance between the planes.

BOOK VI.

THEOREM XVI.

Two planes are parallel when two lines not parallel, lying in the one, are respectively parallel to two lines lying in the other.

Let QR and ST be two planes, the first containing the two lines AB and CDwhich intersect each other at E, and the second the two lines LM and NO, respectively parallel to ABand CD; then will these planes be parallel. For, if the two planes

are not parallel, they must intersect when sufficiently produced; and their common section lying in both planes at the same time, would be a line of the plane QR. Now, the lines AB and CD intersect each other by hypothesis; hence one or both of them must meet the common section of the two planes. Suppose AB to meet this common section; then, since AB and LM are parallel, they determine a plane, and AB cannot meet the plane ST in a point out of the line LM; but AB and LM being parallel, have no common point. Hence, neither AB nor CD can meet the common section of the two planes; that is, they have no common section, and are therefore parallel.

Cor. Since two lines which intersect each other, determine a plane, it follows from this proposition, that the plane of two intersecting lines is parallel to the plane of two other intersecting lines respectively parallel to the first lines.

THEOREM XVII.

When two intersecting lines are respectively parallel to two other intersecting lines lying in a different plane, the angles formed by the last two lines will be equal to those formed by the first two, each to each, and the planes of the angles will be parallel.

Let QR be the plane of the two lines ABand CD, which intersect each other at the point E, and ST the plane of the two lines LM and NO, respectively parallel to ABand CD; then will the $\begin{bmatrix} BED = \begin{bmatrix} MPO,\\ and \begin{bmatrix} BEC = \begin{bmatrix} MPO,\\ and \begin{bmatrix} BEC = \begin{bmatrix} MPN,\\ etc., and the\\ planes QR and ST\\ will be parallel.\\ \end{bmatrix}$

That the plane of one set of angles is parallel to that of the other, follows from the Corollary to Theorem 16; we have then only to show that the angles are equal, each to each.

Take any points, B and D, on the lines AB and CD, and draw BD. Lay off PM, equal to and in the same direction with EB, and PO, equal to and in the same direction with ED, and draw MO. Now, since the planes QR and ST are parallel, and ED is equal and parallel to PO, EDOP is a parallelogram, and DO is equal and parallel to EP. For the same reason, BM is equal and parallel to EP; therefore, BDOM is a parallelogram, and MO is equal and parallel to BD. Hence the \triangle 's, EBDand PMO, have the sides of the one equal to the sides of the other, each to each; they are therefore equal, and the $\[MP0]$ = the $\[BED.\]$ In the same manner it can be proved that $\[BEC] = \[MPN]$, etc.

Cor. 1. The plane of the parallels AB and LM is intersected by the plane of the parallels CD and NO, in the line EP. Now, EB and ED are the intersections of these two planes with the plane QR, and PM and PO are the intersections of the same planes with the parallel plane ST. It has just been proved that the $_BED = _MPO$. Hence, if the diedral angle formed by two planes, be cut by two parallel planes, the intersections of the faces of the diedral angle with one of these planes will include an angle equal to that included by the intersections of the faces with the other plane.

Cor. 2. The opposite triangles formed by joining the corresponding extremities of three equal and parallel straight lines lying in different planes, will be equal and the planes of the triangles will be parallel.

Let EP, BM, and DO, be three equal and parallel straight lines lying in different planes. By joining their corresponding extremities, we have the triangles EBDand PMO. Now, since EP and BM are equal and parallel, EBMP is a parallelogram, and EB is equal and parallel to PM; in the same manner, we show that EDis equal and parallel to PO, and BD to MO; hence the triangles are equal, having the three sides of the one, respectively, equal to the three sides of the other. That their planes are parallel, follows from Cor., Theorem 16.

THEOREM XVIII.

Any one of the three plane angles bounding a triedral angle, is less than the sum of the other two.

Let A be the vertex of a solid angle, bounded by the three plane angles, BAC, BAD, and DAC; then will any one of these three angles be less than the sum of the

other two. To establish this proposition, we have only to compare the greatest of the three angles with the sum of the other two.

Suppose, then, BAC to be the greatest angle, and draw in its plane B the line AE, making the angle CAE equal to the angle CAD. On D AE, take any point, E, and through it draw the line CEB. Take AD, equal to AE, and draw BD and DC.

Now, the two triangles, CAD and CAE, having two sides and the included angle of the one equal to the two sides and included angle of the other, each to each, are equal, and CE = CD; but in the triangle, BDC, BC < BD + DC. Taking EC from the first member of this inequality, and its equal, DC, from the second, we have, BE < BD. In the triangles, BAE and BAD, BA is common, and AE = AD by construction; but the third side, BD, in the one, is greater than the third side, BE, in the other; hence, the angle BAD is greater than the angle BAE, (Th. 22, B. I); that is, $_BAE < _BAD$; adding the $_EAC$ to the first member of this inequality, and its equal, the $_DAC$, to the other, we have

And, as the [BAC] is made up of the angles BAE and EAC, we have, as enunciated,

 $_BAC < _BAD + _DAC.$

THEOREM XIX.

The sum of the plane angles forming any solid angle, is always less than four right angles.

Let the planes which form the solid angle at A, be cut by another plane, which we may call the plane of the base, *BCDE*. Take any point, a, in this plane, and draw aB, aC, aD, aE, etc., thus making as many triangles on

the plane of the base as there are triangular planes forming the solid angle A. Now, since the sum of the angles of every \triangle is two right angles, the sum of all the angles of the \triangle 's which have their vertex in A, is equal to the sum of all angles of the \triangle 's which have their vertex in a. But, the angles BCA+ ACD, are, together, greater than

the angles BCa + aCD, or BCD, by the last proposition. That is, the sum of all the angles at the bases of the \triangle 's which have their vertex in A, is greater than the sum of all the angles at the bases of the \triangle 's which have their vertex in a. Therefore, the sum of all the angles at a is greater than the sum of all the angles at a is equal to four right angles; therefore, the sum of all the angles at A is less than four right angles.

THEOREM XX.

If two solid angles are formed by three plane angles respectively equal to each other, the planes which contain the equal angles will be equally inclined to each other.

Let the $_ASC=$ the $_DTF$, the $_ASB=$ the $_DTE$, and the $_BSC=$ the $_ETF$; then will the inclination of the planes, ASC, ASB, be equal to that of the planes, DTF, DTE.

Having taken SB at pleasure, draw BO perpendicular

to the plane ASC; from the point O, at which that perpendicular meets the plane, draw OA and OC, perpendicular to SA and SC; draw AB and BC; next take TE = SB, and draw EP perpendicular to the plane DTF; from the 15

point P, draw PD and PF, perpendicular to TD and TF; lastly, draw DE and EF.

The triangle SAB, is right-angled at A, and the triangle TDE, at D, (Th. 5); and since the | ASB = the DTE, we have SBA = TED; likewise, SB = TE; therefore, the triangle SAB is equal to the triangle TDE; hence, SA = TD, and AB = DE. In like manner it may be shown that SC = TF, and BC = EF. That granted, the quadrilateral SAOC is equal to the quadrilateral TDPF; for, place the angle ASC upon its equal, DTF, and because SA = TD, and SC = TF, the point A will fall on D, and the point C on F; and, at the same time, AO, which is perpendicular to SA, will fall on PD, which is perpendicular to TD, and, in like manner, OC on PF; wherefore, the point O will fall on the point P, and AOwill be equal to DP. But the triangles, AOB, DPE, are right angled at O and P; the hypotenuse AB = DE, and the side AO = DP; hence, those triangles are equal, (Cor, Th. 39, B. I), and | AOB=| PDE. The angle OAB is the inclination of the two planes, ASB, ASC; the angle PDE is that of the two planes, DTE, DTF; consequently, those two inclinations are equal to each other.

Hence the theorem.

SCHOLIUM 1. — The angles which form the solid angles at S and T, may be of such relative magnitudes, that the perpendiculars, BO and EP, may not fall within the bases, ASC and DTF; but they will always either fall on the bases, or on the planes of the bases produced, and O will have the same relative situation to A, S, and C, as P has to D, T, and F. In case that O and P fall on the planes of the bases produced, the angles BCO and EFP, would be obtuse angles; but the demonstration of the problem would not be varied in the least.

SCHOLIUM 2. — If the plane angles bounding one of the triedral angles be equal to those of the other, each to each, and also be similarly arranged about the triedral angles, these solid angles will be absolutely equal. For it was shown, in the course of the above demonstration, that the quadrilaterals, SAOC and TDPF, were equal; and on being applied, the point O falls on the point P; and since the triangles AOB and DPE are equal, the perpendiculars OB and PE are also equal. Now, because the plane angles are like arranged about the triedral angles, these perpendiculars lie in the same direction; hence the point B will fall on the point E, and the solid angles will exactly coincide.

SCHOLIUM 3. — When the planes of the equal angles are not like disposed about the triedral angles, it would not be possible to make these triedral angles coincide; and still it would be true that the planes of the equal angles are equally inclined to each other. Hence, these triedral angles have the plane and diedral angles of the one, equal to the plane and diedral angles of the other, each to each, without having of themselves that absolute equality which admits of superposition. Magnitudes which are thus equal in all their component parts, but will not coincide, when applied the one to the other, are said to be symmetrically equal. Thus, two triedral angles, bounded by plane angles equal each to each, but not like placed, are symmetrical triedral angles.

GEOMETRY. and by a real soll of a subject of real stands of the second of and

a political course and all analysis integros outs and and and the showed for it story the sector the to the out

and the second of the form carbon and call and press of the must share a segret a low of satisfier that and the barry

and any set of an of a mark to be and shifting and as here as BOOK VII.

the stage of the second s SOLID GEOMETRY. Perilli the low of a set and a second second

and the service of the state of the service and the service of the

DEFINITIONS.

1. A Polyedron is a solid, or volume, bounded on all sides by planes. The bounding planes are called the faces of the polyedron, and their intersections are its edges.

2. A Prism is a polyedron, having two of its faces, called bases, equal polygons, whose planes and homologous sides are parallel. The other, or lateral faces, are parallelograms, and constitute the convex surface of the prism.

The bases of a prism are distinguished by the terms. upper and lower; and the altitude of the prism is the perpendicular distance between its bases.

Prisms are denominated triangular, quadrangular, pentangular, etc., according as their bases are triangles, guadrilaterals, pentagons, etc.

3. A Right Prism is one in which the planes of the lateral faces are perpendicular to the planes of the bases.

4. A Parallelopipedon is a prism whose bases are parallelograms.

5. A Rectangular Parallelopipedon is a right parallelopipedon, with rectangular bases.

BOOK VII.

6. A Cube or Hexaedron is a rectangular parallelopipedon, whose faces are all equal squares. 1 - 1 - 1 - 1

7. A Diagonal of a Polyedron is a straight line joining the vertices of two solid angles not adjacent.

8. Similar Polyedrons are those which

are bounded by the same number of similar polygons like placed, and whose solid angles are equal each to toins their cont each.

Similar parts, whether faces, edges, diagonals, or angles, similarly placed in similar polyedrons, are termed homologous. Stand in a state

9. A Pyramid is a polyedron, having for one of its faces, called the base, any polygon whatever, and for its other faces triangles having a common vertex, the sides opposite which, in the several triangles, being the sides of the base of the pyramid. on the second character and

10. The Vertex of a pyramid is the common vertex of the triangular faces.

11. The Altitude of a pyramid is the perpendicular distance from its vertex to the plane of its base.

12. A Right Pyramid is one whose base is a regular polygon, and whose vertex is in the perpendicular to the base at its center. This perpendicular is called the axis of the pyramid. relation to similar animality which an it.

13. The Slant Height of a right pyramid is the perpendicular distance from the vertex to one of the sides of the base.

14. The Frustum of a Pyramid is a portion of the pyramid included between its base and a section made by a plane parallel to the base.

Pyramids, like prisms, are named from the forms of their bases. had gride at of fine ; miley bouldes

15 *

15. A Cylinder is a body, having for its ends, or bases, two equal circles, the planes of which are perpendicular to the line joining their centers; the remainder of its surface may be conceived as formed by the motion of a line, which constantly touches the circumferences of the bases, while it remains parallel to the line which joins their centers.

We may otherwise define the cylinder as a body generated by the revolution of a rectangle about one of its sides as an immovable axis.

The sides of the rectangle perpendicular to the axis generate the *bases* of the cylinder; and the side opposite the axis generates its *convex surface*. The line joining the centers of the bases of the cylinder is its *axis*, and is also its *altitude*.

If, within the base of a cylinder, any polygon be inscribed, and on it, as a base, a right prism be constructed, having for its altitude that of the cylinder, such prism is said to be *inscribed in the cylinder*, and the cylinder is said to *circumscribe the prism*.

Thus, in the last figure, *ABCDEc* is an inscribed prism, and it is plain that all its lateral edges are contained in the convex surface of the cylinder.

If, about the base of a cylinder, any polygon be circumscribed, and on it, mas a base, a right prism be constructed, having for its altitude that of the cylinder, such prism is said to be circumscribed about the cylinder, and the cylinder is said to be inscribed in the prism.

Thus, ABCDEFe is a circum- F^{V} scribed prism; and it is plain that

the line, mn, which joins the points of tangency of the sides, *EF* and *ef*, with the circumferences of the bases of the cylinder, is common to the convex surfaces of the cylinder and prism.

16. A Cone is a body bounded by a circle and the surface generated by the motion of a straight line, which constantly passes through a point in the perpendicular to the plane of the circle at its center, and the different points in its circumference.

The cone may be otherwise defined as a body generated by the revolution of a right-angled triangle about one of its sides as an immovable axis. The other side of the triangle will generate the *base* of the cone, while the hypotenuse generates the *convex surface*.

The side about which the generating triangle revolves is the *axis* of the cone, and is at the same time its *altitude*.

If, within the base of the cone, any polygon be inscribed, and on it, as a base, a pyramid be constructed, having for its vertex that of the cone, such pyramid is said to be *inscribed in the cone*, and the cone is said to *circumscribe the pyramid*.

Thus, in the accompanying figure, V - ABCDE, is an inscribed pyramid, and it is plain that all its lateral edges are contained in the convex surface of the cone.

If, about the base of a cone, any polygon be circumscribed, and on it, as a base, a pyramid be constructed, having

for its vertex that of the cone, such pyramid is said to be circumscribed about the cone, and the cone is said to be inscribed in the pyramid.

175

17. The Frustum of a Cone is the portion of the cone that is included between its base and a section made by a plane parallel to the base.

18. Similar Cylinders, and also Similar Cones, are such as have their axes proportional to the radii of their bases.

19. A Sphere is a body bounded by one uniformly-curved surface, all the points of which are at the same distance from a certain point within, called the *center*.

We may otherwise define the sphere as a body generated by the revolution of a semicircle about its diameter as an immovable axis.

20. A Spherical Sector is that portion of a sphere which is included between the surfaces of two cones having their vertices at the center of the sphere. Or, it is that portion of the sphere which is generated by a sector of the generating semicircle.

21. The Radius of a Sphere is a straight line drawn from the

center to any point in the surface; and the *diameter* is a straight line drawn through the center, and limited on both sides by the surface.

All the diameters of a sphere are equal, each being twice the radius.

22. A Tangent Plane to a sphere is one which has a single point in the surface of the sphere, all the others being without it.

23. A Secant Plane to a sphere is one which has more than one point in the surface of the sphere, and lies partly within and partly without it.

Assuming, what will presently be proved, that the intersection of a sphere by a plane is a circle,

24. A Small Circle of a sphere is one whose plane does not pass through its center; and

25. A Great Circle of a sphere is one whose plane passes through the center of the sphere.

26. A Zone of a sphere is the portion of its surface included between the circumferences of any two of its parallel circles, called the *bases* of the zone. When the plane of one of these circles becomes tangent to the sphere, the zone has a single base.

27. A Spherical Segment is a portion of the volume of a sphere included between any two of its parallel circles, called the *bases* of the segment.

The altitude of a zone, or of a segment, of a sphere, is the perpendicular distance between the planes of its bases.

28. The area of a surface is measured by the product of its *length* and *breadth*, and these dimensions are always conceived to be exactly at right angles to each other.

29. In a similar manner, solids are measured by the product of their *length*, *breadth*, and *height*, when all their dimensions are at right angles to each other.

The product of the length and breadth of a solid, is the measure of the *surface* of its base.

Let P, in the annexed figure, represent the measuring unit, and AF the rectangular solid to be measured.

A side of P is one unit in length, one in breadth, and one in height; one inch, one

foot, one yard, or any other unit that may be taken.

Then, $1 \times 1 \times 1 = 1$, the unit cube.

Now, if the base of the solid, AC, is, as here represented, 5 units in length and 2 in breadth, it is obvious that $(5 \times 2 = 10)$, 10 units, each equal to P, can be placed on the base of AC, and no more; and as each of these units will occupy a unit of altitude, therefore, 2 units of

altitude will contain 20 solid units, 3 units of altitude, 30 solid units, and so on; or, in general terms, the number of square units in the base multiplied by the linear units in perpendicular altitude, will give the solid units in any rectangular solid.

THEOREM I.

If the three plane faces bounding a solid angle of one prism be equal to the three plane faces bounding a solid angle of another, each to each, and similarly disposed, the prisms will be equal.

Suppose A and a to be the vertices of two solid angles, bounded by equal and similarly placed faces; then will the prisms, ABCDE-N and abcde-n, be equal.

For, if we place the base, abcde, upon its equal, the base ABCDE, they will coincide; and since the solid angles, whose vertices are A and a, are E equal, the lines ab, ae, and ap, respectively coincide with AB,

AE, and AP; but the faces, *al* and *ao*, of the one prism, are equal, each to each, to the faces, AL and AO, of the other; therefore *pl* and *po* coincide with *PL* and *PO*, and the upper bases of the prisms also coincide: hence, not only the bases, but all the lateral faces of the two prisms coincide, and the prisms are equal.

Cor. If the two prisms are right, and have equal bases and altitudes, they are equal. For, in this case, the rectangular faces, al and ao, of the one, are respectively equal to the rectangular faces, AL and AO, of the other; and hence the three faces bounding a triedral angle in the one, are equal and like placed, to the faces bounding a triedral angle in the other.

THEOREM II.

The opposite faces of any parallelopipedon are equal, and their planes are parallel.

Let ABCD - E be any parallelopipedon; then will its opposite faces be equal, and their planes will be parallel.

The bases ABCD and FEGH are equal, and their planes are parallel, by definitions 2 and 4 of this Book; it remains for us, therefore, only to show that any two of the opposite lateral faces are equal and parallel.

Since all the faces of the parallelopipedon are parallelograms, AB is equal and parallel to DC, and AH is also equal and parallel to DF; hence the angles HAB and FDC are equal, and their planes are parallel, (Th. 17, B. VI), and the two parallelograms, HABG and FDCE, having two adjacent sides and the included angle of the one equal to the two adjacent sides and included angle of the other, are equal.

Cor. 1. Hence, of the six faces of the parallelopipedon, any two lying opposite may be taken as the bases.

Cor. 2. The four diagonals of a parallelopipedon mutually bisect each other. For, if we draw AC and HE, we shall form the parallelogram ACEH, of which the diagonals are AE and HC, and these diagonals are at the same time diagonals of the parallelopipedon; but the diagonals of a parallelogram mutually bisect each other. Now, if the diagonal FB be drawn, it and HC will bisect each other, since they are diagonals of the parallelogram FHBC. In like manner we can show that if DG be drawn, it will be bisected by AE. Hence, the four diagonals have a common point within the parallelopipedon.

SCHOLIUM. — It is seen at once that the six faces of a parallelopipedon intersect each other in twelve edges, four of which are equal to HA, four to AB, and four to AD. Now, we may conceive the parallelopipedon to be bounded by the planes determined by the three lines

AH, AB, and AD, and the three planes passed through the extremities, H, B, and D, of these lines, parallel to the first three planes.

THEOREM III.

The convex surface of a right prism is measured by the perimeter of its base multiplied by its altitude.

Let ABCDE - N be a right prism, of which AP is the altitude; then will its convex surface be measured by

 $(AB + BC + CD + DE + EA) \times AP.$ For, its convex surface is made up of the rectangles AL, BM, CN, etc., and each rectangle is measured by the product of its base by its altitude; but the altitude of each rectangle is equal to AP, the altitude of the prism; hence the convex surface of the prism is measured by the pro-

duct of the sum of the bases of the rectangles, or the perimeter of the base of the prism, by the common altitude, AP.

Cor. Right prisms will have equivalent convex surfaces, when the products of the perimeters of their bases by their altitudes are respectively equal; and, generally, their convex surfaces will be to each other as the products of the perimeters of their bases by their altitudes. Hence, when their altitudes are equal, their surfaces will be as the perimeters of their bases; and when the perimeters of their bases are equal, their convex surfaces will be as their altitudes.

THEOREM IV.

The two sections of a prism made by parallel planes between its bases are equal polygons.

Let the prism ABCDE - N be cut between its bases by two parallel planes, making the sections QRS, etc., and TVX, etc.; then will these sections be equal polygons.

For, since the secant planes are parallel, their intersections, QR and TV, by the plane of the face EAPO are parallel, (Th. 10, B. VI); and being included between the parallel lines, AP and EO, they are also equal. In the same manner we may prove that RS is equal and parallel to VX, and so on for the intersections of the secant planes by the other faces of

ent: in the

the prism. Hence, these polygonal sections have the sides of the one equal to the sides of the other, each to each. The angles QRS and TVX are equal, because their sides are parallel and lie in the same direction; and in like manner we prove $\ RSY = \ VXZ$, and so on for the other corresponding angles of the polygons. Therefore, these polygons are both mutually equilateral and mutually equiangular, and consequently are equal.

Cor. A section of a prism made by a plane parallel to the base of the prism, is a polygon equal to the base.

THEOREM V.

Two parallelopipedons, the one rectangular and the other oblique, will be equal in volume when, having the same base and altitude, two opposite lateral faces of the one are in the planes of the corresponding lateral faces of the other.

Designating the parallelopipedons by their opposite diagonal letters, let AG be the rectangular, and AL the oblique, parallelopipedon, having the same base, AC, and of the same altitude, namely, the perpendicular distance be-

tween the parallel planes, AC and EL. Also let the face, AK, be in the plane of the face, AF, and the face, DL, in the plane of the face, DG. We are now to prove that the oblique parallelopipedon is equivalent to the rectangular parallelopipedon.

As the faces, AF and AK, are in the same plane, and the parallelopipedons have the same altitude, EFK is a straight line, and EF = IK, because each is equal to AB. If from the whole line, EK, we take EF, and then from the same line we take IK = EF, we shall have the remainders, EI and FK, equal; and since AE and BF are parallel, $\[AEI = \] BFK$; hence the \triangle 's, AEI and BFK, are equal. Since HE and MI are both parallel to DA, they are parallel to each other, and EIMH is a parallelogram; for like reasons, FKLG is a parallelogram, and these parallelograms are equal, because two adjacent sides and the included angle of the one are equal to two adjacent sides and the included angle of the other. The parallelograms, DE and CF, being the opposite faces of the parallelopipedon, AG, are equal. Hence, the three plane faces bounding the triedral angle, E, of the triangular prism, EAI - H, are equal, each to each, and like placed, to the three plane faces bounding the triedral, F, of the triangular prism, FBK - G, and these prisms are therefore equal, (Th. 1). Now, if from the whole solid, EABK-H, we take the prism, EAI-H, there will remain the parallelopipedon, AL; and, if from the same solid, we take the prism, FBK-G, there will remain the rectangular parallelopipedon, AG. Therefore, the oblique and the rectangular parallelopidon are equivalent.

Cor. The volume of the rectangular parallelopipedon, AG, is measured by the base, ABCD, multiplied by the altitude, AE, (Def. 29); consequently, the oblique parallelopipedon is measured by the product of the same base by the same altitude.

SCHOLIUM.—If neither of the parallelopipedons is rectangular, but they still have the same base and the same altitude, and two opposite lateral faces of the one are in the planes of the corresponding lateral faces of the other, by precisely the same reasoning we could prove the parallelopipedons equivalent. Hence, in general, any two parallelopipedons will be equal in volume when, having the same base and altitude, two opposite lateral faces of the one are in the planes of the corresponding lateral faces of the other.

THEOREM VI.

Two parallelopipedons having equal bases and equal altitudes, are equivalent.

Let AG and AL be two parallelopipedons, having a common lower base, and their upper bases in the same plane, HF. Then will these parallelopipedons be equivalent.

Since their upper bases are in

the same plane, the lines IM, KL, EF, and HG, will intersect, when produced, and form the quadrilateral, NOPQ, and this quadrilateral will be a parallelogram, (Cor. 2, Th. 6, B. VI), equal to the common lower base of the two parallelopipedons. Now, if a third parallelopipedon be constructed, having BD for its lower base, and OQ for its upper base, it will be equivalent to the parallelopipedon AG, and also to the parallelopipedon AL, (Th. 5, Scholium); hence, the two given parallelopipedons, being each equivalent to the third parallelopipedon, are equivalent to each other.

Hence, two parallelopipedons having equal bases, etc.

THEOREM VII.

The volume of any parallelopipedon is measured by the product of its base and altitude, or the product of its three dimensions. Let ABCD-G be any parallelopipedon; then will its volume be expressed by the product h H g G of the area of its base and altitude.

If the parallelopipedon is oblique, we may construct on its base a right $^{\rm E}$ parallelopipedon, by erecting perpendiculars at the points A, B, C, and D, and making them each equal to the altitude of the given parallelopipedon; and the right parallelopipedon, thus A

constructed, will be equivalent to the given parallelopipedon, (Th. 6). Now, if the base, ABCD, is a rectangle, the new parallelopipedon will be rectangular, and measured by the product of its base and altitude, (Def. 16). But if the base is not rectangular, let fall the perpendiculars, Bc and Ad, on CD and CD produced, and take the rectangle ABcd for the base of a rectangular parallelopipedon, having for its altitude that of the given parallelopipedon. We may now regard the rectangular face, ABFE, as the common base of the two parallelopipedons, Ag and AG; and, as they have a common base, and equal altitude, they are equivalent. Thus we have reduced the oblique parallelopipedon, first to an equivalent right parallelopipedon on the same base, and then the right to an equivalent rectangular parallelopipedon on an equivalent base, all having the same altitude. But the rectangular parallelopipedon, Ag, is measured by product of its base, ABcd, and its altitude; hence, the given and equivalent oblique parallelopipedon is measured by the product of its equivalent base and equal altitude.

Hence, the volume of any parallelopipedon, etc.

Cor. Since a parallelopipedon is measured by the product of its base by its altitude, it follows that parallelopipedons of equivalent bases, and equal altitudes, are equivalent, or equal in volume.

THEOREM VIII.

Parallelopipedons on the same, or equivalent bases, are to each other as their altitudes; and parallelopipedons having equal altitudes, are to each other as their bases.

Let P and p represent two parallelopipedons, whose bases are denoted by B and b, and altitudes by A and a, respectively.

Now, $P = B \times A$, and $p = b \times a$, (Th. 7).

But magnitudes are proportional to their numerical measures; that is,

$P:p::B\times A:b\times a.$

If the bases of the parallelopipedons are equivalent, we have B = b; and if the altitudes are equal, we have A = a. Introducing these suppositions, in succession, in the above proportion, we get

and $\begin{array}{c} P:p::A:a,\\ P:p::B:b. \end{array}$

Hence the theorem; Parallelopipedons on the same, etc.

THEOREM IX.

Similar parallelopipedons are to each other as the cubes of their like dimensions.

Let P and p represent any two similar parallelopipedons, the altitude of the first being denoted by h, and the length and breadth of its base by l and n, respectively; and let h', l', and n', in order, denote the corresponding dimensions of the second.

Then we are to prove that

 $P: p:: n^3: n'^3:: l^3: l'^3:: h^3: h'^3.$

We have

P = lnh, and p = l'n'h' (Th. 7);

and by dividing the first of these equations by the second, member by member, we get

 $\frac{P}{p} = \frac{lnh}{l'n'h'};$ which, reduced to a proportion, gives P: p:: lnh: l'n'h'.But, by reason of the similarity of the parallelopipedons, we have the proportions l : l' :: n : n'h: h':::n:n';we have also the identical proportion, n:n'::n:n'.By the multiplication of these proportions, term by term, we get, (Th. 11, B. II), $lnh : l'n'h' ::: n^3 : n'^3.$ That is, $P: p::: n^3: n'^3.$ By treating in the same manner the three proportions, l: l':: h: h'n: n':: h: h'h: h':: h: h',we should obtain the proportion $P: p:: h^{3}: h^{\prime 3};$ and, by a like process, the three proportions, h:h'::l:l'n : n' :: l : l'l: l':: l: l',will give us the proportion $P: p:: l^3: l'^3.$ Hence the theorem; similar parallelopipedons are to each other, etc.

THEOREM X.

The two triangular prisms into which any parallelopipedon is divided, by a plane passing through its opposite diagonal edges, are equivalent.

Let ABCD - F be a parallelopipedon, and through the diagonal edges, BF and DH, pass the plane BH, dividing the parallelopipedon into the two triangular prisms,

186

ABD - E and BCD - G; then we are to prove that these

prisms are equivalent. Let us divide the diagonal, BD, in which the secant plane intersects the base of the parallelopipedon, into three equal parts, a and c being the points of division. In the base, ABCD, construct the complementary parallelograms, aC and aA, and in the parallelogram, badD, construct the complementary parallelograms, cd and cb, and conceive these, together with the parallelograms, Ba, ac, cD, to be the bases of smaller parallelopipedons, having their lateral faces parallel to the

lateral faces of, and their altitude equal to the altitude of, the given parallelopipedon, AG.

Now it is evident that the triangular prism, BCD-G, is composed of the parallelopipedons on the bases, aCand cd, and the triangular prisms, on the side of the secant plane with this prism, into which this plane divides the parallelopipedons on the bases, Ba, ac, and cD. The triangular prism, ABD-E, is also composed of the parallelopipedons on the bases, Aa and bc, together with the triangular prisms on the side of the secant plane with this prism, into which this plane divides the parallelopipedons on the bases, Ba, ac, and cD.

But the parallelograms, aC and aA, being complementary, are equivalent, (Th. 31, B. I); and for the same reason the parallelograms, cd and cb, are equivalent; and since parallelopipedons on equivalent bases and of equal altitudes, are equivalent, (Cor., Th. 7), we have the sum of parallelopipedons on bases aC and cd, equivalent to the sum of parallelopipedons on the bases, aA and cb. Hence, the triangular prisms, ABD - E and BCD - G,

differ in volume only by the difference which may exist between the sums of the triangular prisms on the two sides of the secant plane into which this plane divides the parallelopipedons on the bases, *Ba*, *ac*, and *cd*.

Now, if the number of equal parts into which the diagonal is divided, be indefinitely multiplied, it still holds true that the triangular prisms, ABD-E and BCD-G, differ in volume only by the difference between the sums of the triangular prisms on the two sides of the secant plane into which this plane divides the parallelopipedons constructed on the bases whose diagonals are the equal portions of the diagonal, BD. But in this case the sum of these parallelopipedons themselves becomes an indefinitely small part of the whole parallelopipedon, AG, and the difference between the parts of an indefinitely small quantity must itself be indefinitely small, or less than any assignable quantity. Therefore, the triangular prisms, ABD-E and BCD-G, differ in volume by less than any assignable volume, and are consequently equivalent.

Hence the theorem ; the two triangular prisms into which, etc.

Cor. 1. Any triangular prism, as ABD - E, is one half the parallelopipedon having the same triedral angle, A, and the same edges, AB, AD, and AE.

Cor. 2. Since the volume of a parallelopipedon is measured by the product of its base and altitude, and the triangular prisms into which it is divided by the diagonal plane, have bases equivalent to one half the base of the parallelopipedon, and the same altitude, it follows that, the volume of a triangular prism is measured by the product of its base and altitude.

The above demonstration is less direct, but is thought to be more simple, than that generally found in authors, and which is here given as a

Second Demonstration.

Let ABCD - F be a parallelopipedon, divided by the diagonal plane, BH, passing through the edges, BF and DH; then we are to prove that the triangular prisms, ABD - E and BCD - G, thus formed, are equivalent.

Through the points B and F, pass planes perpendicular to the edge, BF, and produce the lateral faces of the parallelopipedon to intersect the plane through B; then the sections Bcda and Fghe

are equal parallelograms. For, since the cutting planes are both perpendicular to BF, they are parallel, (Th. 10, B. VI); and because the opposite faces of a parallelopipedon are in parallel planes, (Th. 2), and the intersections of two parallel planes by a third plane are parallel, (Th. 9, B. VI), the sections, *Bcda* and *Fghe*, are equal parallelograms, and may be taken as the bases of the right parallelopipedon, *Bcda*—h. But the diagonal plane divides the right parallelopipedon into the two equal triangular prisms, aBd—e and Bcd—g, (Th. 1). We will now compare the right prism with the oblique triangular prism on the same side of the diagonal plane.

The volume ABD - e is common to the two prisms, ABD - E and aBd - e; and the volume eFh - E, which, added to this common part, forms the oblique triangular prism, is equal to the volume aBd - A, which, added to the common part, forms the right triangular prism. For, since ABFE and aBFe are parallelograms, AE = ae, and taking away the common part Ae, we have aA = eE; and since BFHD and BFhd are parallelograms, we have DH = dh; and from these equals taking away the common part Dh, we have dD = hH. Now, if the volume eFh - H be applied to the volume aBd - D, the base eFh falling on the equal base aBd, the edges eE and hH will fall upon aA and dD respectively, because they are perpendicular to the base aBd, (Cor. 2, Th. 3, B. VI), and the point E will fall upon the point A, and the point H upon the point D; hence the volume eFh - H exactly coincides with the volume aBd - D, and the oblique triangular prism ABD - E is equivalent to the right triangular prism aBd--e.

In the same manner, it may be proved that the oblique triangular prism, *BCDG*, is equivalent to the right triangular prism, *Bcdg*. The oblique triangular prism on either side of the diagonal plane is, therefore, equivalent to the corresponding right triangular prism; and, as the two right triangular prisms are equal, the oblique triangular prisms are equivalent.

Hence the theorem; the two triangular prisms, etc.

THEOREM XI.

The volume of any prism whatever is measured by the product of the area of its base and altitude.

For, by passing planes through the homologous diagonals of the upper and lower bases of the prism, it will be divided into a number of triangular prisms, each of which is measured by the product of the area of its base and altitude. Now, as these triangular prisms all have, for their common altitude, the altitude of the given prism, when we add the measures of the triangular prism, to get that of the whole prism, we shall have, for this measure, the common altitude multiplied by the sum of the areas of the bases of the triangular prisms: that is, the product of the area of the polygonal base and the altitude of the prism.

Hence the theorem; the volume of any prism, etc.

Cor. If A denote the area of the base, and H the alti-

tude of a prism, its volume will be expressed by $A \times H$. Calling this volume V, we have

$$7 = A \times H.$$

Denoting by A', H', and V', in order, the area of the base, altitude, and volume of another prism, we have

$$V' = A' \times H'.$$

Dividing the first of these equations by the second, member by member, we have

$$\frac{V}{V'} = \frac{A \times H}{A' \times H''}$$

which gives the proportion,

 $V: V':: A \times H : A' \times H'.$

If the bases are equivalent, this proportion becomes V: V':: H: H';

and if the altitudes are equal, it reduces to

V: V':: A: A'.

Hence, prisms of equivalent bases are to each other as their altitudes; and prisms of equal altitudes are to each other as their bases.

THEOREM XII.

A plane passed through a pyramid parallel to its base, divides its edges and altitude proportionally, and makes a section, which is a polygon similar to the base.

Let ABCDE - V be any pyramid, whose base is in the plane, MN, and vertex in the parallel plane, mn; and let a plane be passed through the pyramid, parallel to its base, cutting its edges at the points, a, b, c, d, e, and the altitude, EF, at the point l. By joining the points, a, b,c, etc., we have the polygon formed by the intersection of the plane and the sides of the pyramid. Now, we are to prove that the edges, VA, VB, etc., and the altitude, FE, are divided proportionally at the points, a, b, etc., and l; and that the polygon, a, b, c, d, e, is similar to the base of the pyramid.

Since the cutting plane is parallel to the base of the pyramid, ab is parallel to AB, (Th. 9, B. VI); for the same reason, bc is parallel to BC, cd to CD, etc. Now, in the triangle VAB, because ab is parallel to the base AB, we have, (Th. 17, B. II), the proportion,

VA : Va :: VB : Vb.

In like manner, it may be shown that

VB : Vb :: VC : Vc,

and so on for the other lateral edges of the pyramid. F being the point in which the perpendicular from E pierces the plane mn, and l the point in which the parallel secant plane cuts the perpendicular, if we join the points F and V, and also the points l and e by straight lines, we have in the triangle EFV, the line le parallel to the base FV; hence the proportion

VE : Ve :: FE : Fl.

Therefore, the plane passed through the pyramid parallel to its base, divides the altitude into parts which have to each other the same ratio as the parts into which it divides the edges.

Again, since ab is parallel to AB, and bc to BC, the angle abc is equal to the angle ABC, (Th. 8, B. I); in the same manner we may show that each angle in the polygon, abcde, is equal to the corresponding angle in the polygon, ABCDE; therefore these polygons are mutually equiangular. But, because the triangles VBA and Vbaare similar, their homologous sides give the proportion

Vb: VB:: ab: AB;

and because the triangles Vbc and VBC are similar, we also have the proportion

Vb: VB:: bc: BC.

Since the first couplet in these two proportions is the same, the second couplets are proportional, and give

ab: AB:: bc: BC.

By a like process, we can prove that

bc: BC:: cd: CD,

and that cd : CD :: de : DE, and so on, for the other homologous sides of the two polygons.

Hence, the two polygons are not only mutually equiangular, but the sides about the equal angles taken in the same order are proportional, and the polygons are therefore similar, (Def. 16, B. II).

Hence the theorem; a plane passed through a pyramid, etc.

Cor. 1. Since the areas of similar polygons are to each other as the squares of their homologous sides, (Th. 22, B. II), we have

area *abcde* : area ABCDE : \overline{ab}^2 : \overline{AB}^2 . But, *ab* : AB :: Va : VA :: Fl : FE; hence, \overline{ab}^2 : \overline{AB}^2 :: \overline{Fl}^2 : \overline{FE}^2 : therefore, area *abcde* : area ABCDE : \overline{Fl}^2 : \overline{FE}^2 . 17 N

That is, the area of the section made by a plane passing through a pyramid parallel to its base, is to the area of the base, as the perpendicular distance from the vertex of the pyramid to the section, is to the altitude of the pyramid.

Cor. 2. Let V-ABCDE and X-RST be two pyramids, having their bases in the plane MN, and their vertices in the parallel plane mn; and suppose a plane to be passed through the two pyramids parallel to the common plane of their bases, making in the one the section *abcde*, and in the other the section *rst*.

Now, area ABCDE: area abcde :: \overline{AB}^2 : \overline{ab}^2 , (Th.22, B.II), and " RST: " rst :: \overline{RS}^2 : \overline{rs}^2 .

but,	AD	÷	ao	 VD	•	v 0,
nd	RS		10	 XR		Xr

Because the plane which makes the sections is parallel to the planes MN and mn, we have, (Th. 11, B. VI),

VB: Vb:: XR: Xr;

therefore, (Cor. 2, Th. 6, B. II), AB: ab:: RS: rs.

By squaring, \overline{AB}^2 : \overline{ab}^2 : \overline{RS}^2 : \overline{rs}^2 ;

hence, area ABCDE : area abcde :: area RST : area rst.

That is, if two pyramids having equal altitudes, and their bases in the same plane, be cut by a plane parallel to the common plane of their bases, the areas of the sections will be proportional to the areas of the bases; and if the bases are equivalent, the sections will also be equivalent.

THEOREM XIII.

If two triangular pyramids have equivalent bases and equal altitudes, they are equal in volume.

Let V - ABC and v - abc be two triangular pyramids, having the equivalent bases, ABC and abc, and let the altitude of each be equal to CX; then will these two pyramids be equivalent.

. 1

Place the bases of the pyramids on the same plane, with their vertices in the same direction, and divide the altitude into any number of equal parts. Through the points of division pass planes parallel to the plane of the bases; the corresponding sections made in the pyramids by these planes are equivalent, (Th. 12, Cor. 2); that is, the triangle DEF is equivalent to the triangle def, the triangle GHI to the triangle ghi, etc.

Now, let triangular prisms be constructed on the triangles ABC, DEF, etc., of the pyramid V-ABC, these prisms having their lateral edges parallel to the edge, VC, of the pyramid, and the equal parts of the altitude, CX, for their altitudes. Portions of these prisms will be exterior to the pyramid V-ABC, and the sum of their volumes will exceed the volume of the pyramid.

On the bases *def*, *ghi*, etc., in the other pyramid, construct interior prisms, as represented in the figure, their lateral edges being parallel to vc, and their altitudes also the equal parts of the altitude, CX. Portions of the pyramid, v—*abc*, will be exterior to these prisms, and the volume of the pyramid will exceed the sum of the volumes of the prisms.

Since the sum of the exterior prisms, constructed in connection with the pyramid V-ABC, is greater than the pyramid, and the sum of the interior prisms, constructed in connection with the pyramid v—abc, is less than this pyramid, it follows that the difference of these sums is greater than the difference of the pyramids themselves. But the second exterior prism, or that on the base DEF, is equivalent to the first interior prism, or that on the base def, and the third exterior prism is equivalent to the second interior prism, (Th. 10, Cor. 2), and so on. That is, beginning with the second prism from the base of the pyramid, V-ABC, and taking these prisms in order towards the vertex of the pyramid, and comparing them with the prisms in the pyramid, v - abc, beginning with the lowest, and taking them in order toward the vertex of this pyramid, we find that to each exterior prism of the pyramid, V-ABC, exclusive of the first or lowest, there is a corresponding equivalent interior prism in the pyramid, v—abc.

Hence the prism, ABCDEF, is the difference between the sum of the prisms constructed in connection with the pyramid, V_ABC , and the sum of the interior prisms constructed in the pyramid, v_abc . But the first sum being a volume greater than the pyramid, V_ABC , and the second sum a volume less than the pyramid, v_abc , it follows that the volumes of the pyramids differ by less than the prism, ABCDEF.

Now, however great the number of equal parts into which the altitude, CX, be divided, and the corresponding number of prisms constructed in connection with each pyramid, it would still be true that the difference between the volumes of the pyramids would be less than the volume of the lowest prism of the pyramid V-ABC; but when we make the number of equal parts into which

the altitude is divided indefinitely great, the volume of this prism becomes indefinitely small: that is, the difference between the volumes of the pyramids is less than an indefinitely small volume; or, in other words, there is no assignable difference between the two pyramids, and they are, therefore, equivalent.

Hence the theorem; if two triangular pyramids, etc.

THEOREM XIV.

Any triangular pyramid is one third of the triangular prism having the same base and equal altitude.

Let F - ABC be a triangular pyramid, and through F pass a plane parallel to the plane of the base, ABC. In

this plane, through F, construct the triangle, FDE, having its sides, FD, DE, and EF, parallel and equal to BC, CA, and AB, respectively. The triangle, FDE, may be taken as the upper base of a triangular prism of which the lower base is ABC.

Now, this triangular prism is composed of the given triangular pyramid,

F-ABC, and of the quadrangular pyramid, F-ACDE. This last pyramid may be divided by a plane through the three points, C, E, and F, into the two triangular pyramids, F-DEC and F-ACE. But the pyramid, F-DEC, may be regarded as having the triangle, EFD, equal to the triangle, ABC, for its base, and the point, C, for its vertex. The two pyramids, F-ABC and C-DEF, have equal bases and equal altitudes; they are therefore equivalent, (Th. 13). Again, the two pyramids, F-DECand F-ACE, have a common vertex, and equivalent bases in the same plane, and they are also equivalent. Therefore, the triangular prism, ABCDEF, is composed of

17*

three equivalent triangular pyramids, one of which is the given triangular pyramid, F - ABC.

Hence the theorem; any triangular pyramid is one third of the triangular prism, etc.

Cor. The volume of the triangular prism being measured by the product of its base and altitude, the volume of a triangular pyramid is measured by one third of the product of its base and altitude.

THEOREM XV.

The volume of any pyramid whatever is measured by one third of the product of its base and altitude.

Let V - ABCDE be any pyramid; then will its volume be measured by one third of the product of its base and altitude.

In the base of the pyramid, draw the diagonals, AD and AC, and through its vertex and these diagonals, pass planes, thus dividing the pyramid into a number of triangular pyramids having the common vertex V, and the altitude of the given pyramid for their common altitude.

Now, each of these triangular pyramids is measured by one third of the product of its base and altitude, (Cor., Th. 14), and their sum, which constitutes the polygonal pyramid, is therefore measured by one third of the product of the sum of the trian-

gular bases and the common altitude; but the sum of the triangular bases constitutes the polygonal base, ABCDE. Hence the theorem; the volume of any pyramid whatever, etc.

Cor. 1. Denote, by B, H, and V, respectively, the base, altitude, and volume of one pyramid, and by B', H', and

198

V', the base, altitude, and volume of another; then we shall have

$$V = \frac{1}{3}B \times H,$$

$$V' = \frac{1}{3}B' \times H'.$$

and

Dividing the first of these equations by the second, member by member, we have

$$\frac{V}{V'} = \frac{B \times H}{B' \times H'},$$

which, in the form of a proportion, gives

 $V: V': B \times H: B' \times H'.$

From this proportion we deduce the following consequences:

1st. Pyramids are to each other as the products of their bases and altitudes.

2d. Pyramids having equivalent bases are to each other as their altitudes.

3d. Pyramids having equal altitudes are to each other as their bases.

Cor. 2. Since a prism is measured by the product of its base and altitude, and a pyramid by one third of the product of its base and altitude, we conclude that any pyramid is one third of a prism having an equivalent base and equal altitude.

THEOREM XVI.

The volume of the frustum of a pyramid is equivalent to the sum of the volumes of three pyramids, each of which has an altitude equal to that of the frustum, and whose bases are, respectively, the lower base of the frustum, the upper base of the frustum, and a mean proportional between these bases.

Let V - ABCDE and X - RST be two pyramids, the one polygonal and the other triangular, having equivalent bases and equal altitudes; and let their bases be placed on the plane MN, their vertices falling on the parallel plane mn. Pass through the pyramids a plane

parallel to the common plane of their bases, cutting out the sections *abcde* and *rst*; these sections are equivalent, (Th. 12, Cor. 2), and the pyramids, V—*abcde* and X—*rst*, are equivalent, (Th. 13). Now, since the pyramids, V—*ABCDE* and X—*RST*, are equivalent, if from the first we take the pyramid, V—*abcde*, and from the second, the pyramid, X—*rst*, the remainders, or the frusta, *ABCDE*—*a* and *RST*—*r*, will be equivalent.

If, then, we prove the theorem in the case of the frustum of a triangular pyramid, it will be proved for the frustum of any pyramid whatever.

Let ABC-D be the frustum of a triangular pyramid. Through the points D, B, and C, pass a plane, and through the points D, C, and E, pass another, thus dividing the frustum into three triangular pyramids, viz., D-ABC, C-DEF, and D-BEC.

Now, the first of these has, for its

base, the lower base of the frustum, and for its altitude the altitude of the frustum, since its vertex is in the upper base; the second has, for its base, the upper base of the frustum, and for its altitude the altitude of the frustum, since its vertex is in the lower base. Hence, these are two of the three pyramids required by the enunciation of the theorem; and we have now only to prove that the third is equivalent to one having, for its base, a mean proportional between the bases of the frustum, and an altitude equal to that of the frustum.

In the face ABED, draw HD parallel to BE, and draw HE and HC. The two pyramids, D_BEC and H_BEC , are equivalent, since they have a common base and equal altitudes, their vertices being in the line DH, which is parallel to the plane of their common base, (Th. 7, B. VI). We may, therefore, substitute the pyramid, H_BEC , for the pyramid, D_BEC . But the triangle, BCH, may be taken as the base, and E as the vertex of this new pyramid; hence, it has the required altitude, and we must now prove that it has the required base.

The triangles, *ABC* and *HBC*, have a common vertex, and their bases in the same line; hence, (Th. 16, B. II),

 $\triangle ABC : \triangle HBC :: AB : HB :: AB : DE. (1)$

In the triangles, DEF and HBC, $_E = _B$, and DE = HB; hence, if DEF be applied to HBC, $_E$ falling on $_B$, and the side DE on HB, the point D will fall on H, and the triangles, in this position, will have a common vertex, H, and their bases in the same line; hence,

 $\triangle HBC : \triangle DEF :: BC : EF. (2)$

But, because the triangles, *ABC* and *DEF*, are similar, we have

AB: DE:: BC: EF. (3)

From proportions (1), (2), and (3), we have, (Th. 6, B. II),

$\triangle ABC : \triangle HBC :: \triangle HBC : \triangle DEF;$

that is, the base, HBC, is a mean proportional between the lower and upper bases of the frustum.

Hence the theorem; the volume of the frustum of a pyramid, etc.

'HEOREM XVII.

The convex surface of any right pyramid is measured by the perimeter of its base, multiplied by one half its slant height.

Let S—ABCDEF be a right pyramid, of which SH is the slant height; then will its convex surface have, for its measure,

$\frac{1}{2}SH(AB+BC+CD+DE+EF+FA).$

Since the base is a regular polygon, and the perpendicular, drawn to its plane from S, passes through its center, the edges, SA, SB, SC, etc., are equal, (Cor. Th. 4,

B. VI), and the triangles *SAB*, *SBC*, etc., are equal, and isosceles, each having an altitude equal to *SH*.

AHB

Now, $AB \times \frac{1}{2}SH$ measures the area of the triangle, SAB; and $BC \times \frac{1}{2}SH$ measures the area of the triangle, SBC; and so on, for the other triangular faces of the pyramid. By the addition of these different measures, we get

$\frac{1}{2}SH(AB + BC + CD + DE + EF + FA),$

as the measure of the total convex surface of the pyramid.

Hence the theorem; the convex surface of any right pyramid, etc.

THEOREM XVIII.

The convex surface of the frustum of any right pyramid is measured by the sum of the perimeters of the two bases, multiplied by one half the slant height of the frustum.

Let ABCDEF—d be the frustum of a right pyramid; then will its convex surface be measured by

 $\frac{1}{2}Hh(AB+BC+CD+DE+EF+FA+ab+bc+cd+de+ef+fa).$

For, the upper base, *abcdef*, of the frustum is a section of a pyramid by a plane parallel to the lower base, (Def. 14), and is, therefore, similar to the lower base, (Th. 12). But the lower base is a regular polygon, (Def. 12); hence, the upper base is also a regular polygon, of the same name; and as *ab* and AB are intersections of a face of the pyramid by two parallel planes,

they are parallel. For the same reason, bc is parallel to BC, cd to CD, etc., and the lateral faces of the frustum are all equal trapezoids, each having an altitude equal to Hh, the slant height of the frustum.

The trapezoid ABba has, for its measure, $\frac{1}{2}Hh(AB+ab)$, (Th. 34, Book I); the trapezoid BCcb has, for its measure, $\frac{1}{2}Hh(BC+bc)$, and so on, for the other lateral faces of the frustum.

Adding all these measures, we find, for their sum, which is the whole convex surface of the frustum,

 $\frac{1}{2}Hh(AB+BC+CD+DE+EF+FA+ab+bc+cd+de+ef+fa).$

Hence the theorem; the convex surface of the frustum, etc.

THEOREM XIX.

The volumes of similar triangular prisms are to each other as the cubes constructed on their homologous edges.

Let ABC - F and abc - f be two similar triangular prisms; then will their volumes be to each other as the cubes, whose edges are the homologous edges

AB and ab, or as the cubes, whose edges are the homologous edges BE and be, etc. Since the prisms are similar, the solid angles, whose vertices are B and b, are equal; and the smaller prism, when so applied to the larger that these solid angles coincide, will take, within the larger, the position represented by the dotted lines. In this position of the prisms, draw EH perpendicular to the plane of the base ABC, and join the foot of the perpendicular to the point B, and in the triangle BEH draw, through e, the line eh, parallel to EH; then will EHrepresent the altitude of the larger prism, and eh that of the smaller.

Now, as the bases ABC and aBc, are homologous faces, they are similar, and we have, (Th. 20, Book II),

$$\triangle ABC : \triangle aBc :: AB^2 : \overline{aB^2} \qquad (1)$$

But the \triangle 's *BEH* and *Beh* are equiangular, and therefore similar, and their homologous sides give the proportion

$$BE: Be:: EH: eh \qquad (2)$$

and from the homologous sides of the similar faces, ABED and aBed, we also have

$BE: Be:: AB: aB \qquad (3)$

Proportions (2) and (3), having an antecedent and consequent the same in both, we have, (Th. 6, B. II),

$$EH:eh::AB:aB$$
 (4)

By the multiplication of proportions (1) and (4), term by term, we get

$\triangle ABC \times EH : \triangle aBc \times eh :: \overline{AB}^3 : \overline{aB}^3$

But $\triangle ABC \times EH$ measures the volume of the larger prism, and $\triangle aBc \times eh$ measures the volume of the smaller.

Hence the theorem; the volumes of similar triangular prisms, etc.

204

. 113/

Cor. 1. The volumes of two similar prisms having any bases whatever, are to each other as the cubes constructed on their homologous edges.

For, if planes be passed through any one of the lateral edges, and the several diagonal edges, of one of these prisms, this prism will be divided into a number of smaller triangular prisms. Taking the homologous edge of the other prism, and passing planes through it and the several diagonal edges, this prism will also be divided into the same number of smaller triangular prisms, similar to those of the first, each to each, and similarly placed.

Now, the similar smaller prisms, being triangular, are to each other as the cubes of their homologous edges; and being like parts of the larger prisms, it follows that the larger prisms are to each other as the cubes of the homologous edges of any two similar smaller prisms. But the homologous edges of the similar smaller prisms are to each other as the homologous edges of the given prisms; hence we conclude that the given prisms are to each other as the cubes of their homologous edges.

Cor. 2. The volumes of two similar pyramids having any bases whatever, are to each other as the cubes constructed on their homologous edges.

For, since the pyramids are similar, their bases are similar polygons; and upon them, as bases, two similar prisms may be constructed, having for their altitudes, the altitudes of their respective pyramids, and their lateral edges parallel to any two homologous lateral edges of the pyramids.

Now, these similar prisms are to each other as the cubes of their homologous edges, which may be taken as the homologous sides of their bases, or as their lateral edges, which were taken equal and parallel to any two arbitrarily assumed homologous lateral edges of the two pyramids; hence the pyramids are to each other as the cubes constructed on any two homologous edges. Cor. 3. The volumes of any two similar polyedrons are to each other as the cubes constructed on their homologous edges.

For, by passing planes through the vertices of the homologous solid angles of such polyedrons, they may both be divided into the same number of triangular pyramids, those of the one similar to those of the other, each to each, and similarly placed.

Now, any two of these similar triangular pyramids are to each other as the cubes of their homologous edges; and being like parts of their respective polyedrons, it follows that the polyedrons are to each other as the cubes of the homologous edges of any two of the similar triangular pyramids into which they may be divided. But the homologous edges of the similar triangular pyramids are to each other as the homologous edges of the polyedrons; hence the polyedrons are to each other as the cubes of their homologous edges.

$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{1$

mar instants i

The convex surface of the frustum of a cone is measured by the product of the slant height and one half the sum of the circumferences of the bases of the frustum.

Let ABCD—abcd be the frustum of a cone; then will its convex surface be measured by $Aa \times \frac{(\operatorname{circ.} OC + \operatorname{circ.} oc)}{2}$, in which the expression, circ. OC, denotes the circumference of the circle of which OC is the radius. Inscribe in the lower base of the frustum, a regular polygon having any number of sides, and in the upper base a similar polygon, having its sides parallel to those of the polygon in the lower base. Th

These polygons

may be taken as the bases of the frustum of a right pyramid inscribed in the frustum of the cone.

Now, however great the number of sides of the inscribed polygons, the convex surface of the frustum of the pyramid is measured by its slant height multiplied by one half the sum of the perimeters of its two bases, (Th. 18); but when we reach the limit, by making the number of sides of the polygon indefinitely great, the slant height, perimeters of the bases, and convex surface of the frustum of the pyramid become, severally, the slant height, circumferences of the bases, and convex surface of the frustum of the cone.

Hence the theorem; the convex surface of the frustum, etc.

Cor. 1. If we make oc = OC, and, consequently, circ. oc = circ. OC, the frustum of the cone becomes a cylinder, and the half sum of the circumferences of the bases becomes the circumference of either base of the cylinder, and the slant height of the frustum, the altitude of the cylinder. Hence, the convex surface of a cylinder is measured by the circumference of the base multiplied by the altitude of the cylinder.

Cor. 2. If we make oc = 0, the frustum of the cone becomes a cone. Hence, the convex surface of a cone is measured by the circumference of the base multiplied by one half the slant height of the cone.

Cor. 3. If through E, the middle point of Cc, the line Ff be drawn parallel to Oo, and Em perpendicular to Oo, the line cc being produced, to meet Ff at f, we have, because the \triangle 's EFC and Efc are equal,

$$Em = \frac{OC + oc}{2}.$$

If we multiply both members of this equation by 2π , we have

 $2\pi.Em = \frac{2\pi.OC + 2\pi.oc}{2};$

that is, circ. Em is equal to one half the sum of the circumferences of the two bases of the frustum. Hence, the convex surface of the frustum of a cone is measured by the circumference of the section made by a plane half way between the two bases, and parallel to them, multiplied by the slant height of the frustum.

Cor. 4. If the trapezoid, OCco, be revolved about Oo as an axis, the inclined side, Cc, will generate the convex surface of the frustum of a cone, of which the slant height is Cc, and the circumferences of the bases are circ. OC and circ. oc. Hence, if a trapezoid, one of whose sides is perpendicular to the two parallel sides, be revolved about the perpendicular side as an axis, it will generate the frustum of a cone, the inclined side opposite the axis generating the convex surface, and the parallel sides the bases of the frustum.

THEOREM XXI.

The volume of a cone is measured by the area of its base multiplied by one third of its altitude.

Let V - ABC, etc., be a cone; then will its volume be measured by area ABC, etc., multiplied by $\frac{1}{3}VO$.

Inscribe, in the base of the cone, any regular polygon, as *ABCDEF*, which may be taken as the base of a right pyramid, of which V is the vertex. The volume of this inscribed pyramid will A have, for its measure, (Th. 15),

polygon $ABCDEF \times \frac{1}{3}VO$.

Now, however great the number of sides of the polygon inscribed in the base of the cone, it will still hold true that the pyramid of which it is the base, and whose vertex is V, will be measured by the area of the polygon, multiplied by one third of VO; but when we reach the limit, by making the number of sides indefi-

208

nitely great, the polygon becomes the circle in which it is inscribed, and the pyramid becomes the cone.

Hence the theorem; the volume of a cone, etc.

Cor. 1. If R denote the radius of the base of a cone, and H its altitude, or axis, its volume will be expressed by

$$\frac{1}{3}H \times \pi R^2;$$

hence, if V and V' designate the volumes of two cones, of which R and R' are the radii of the bases, and H and H' the altitudes, we have

 $V: V':: \frac{1}{3}H \times \pi R^2: \frac{1}{3}H' \times \pi R'^2:: H \times \pi R^2: H' \times \pi R'^2.$

From this proportion we conclude,

First. That cones having equal altitudes are to each other as their bases.

Second. That cones having equal bases are to each other as their altitudes.

Cor. 2. Retaining the notation above, we have

 $\frac{V'}{V} = \frac{H'}{H} \times \frac{R'^2}{R^2}; \quad (1)$

and, if the two cones are similar,

H: H':: R: R';or, $\frac{H'}{H} = \frac{R'}{R};$ hence, $\frac{H^{2'}}{H^{2'}} = \frac{R'^2}{R^2}.$

By substituting for the factors, in the second member of eq. (1), their values successively, and resolving into a proportion, we get

and $V : V' :: R^3 : R^{3'};$ $V : V' :: H^{3'}: H'^3.$

Hence, similar cones are to each other as the cubes of the radii of their bases, and also as the cubes of their altitudes.

Cor. 3. A cone is equivalent to a pyramid having an equivalent base and an equal altitude.

18*

209

THEOREM XXII.

The volume of the frustum of a cone is equivalent to the sum of the volumes of three cones, having for their common altitude the altitude of the frustum, and for their several bases, the bases of the frustum and a mean proportional between them.

Let ABCD—abcd be the frustum of a cone; then will its volume be equivalent to the sum of the volumes, having Oo for their common altitude, and for their bases, the circles of which, OC, oc, and a mean proportional between OC and oc, are the respective radii.

Inscribe in the lower base of the frustum any regular polygon, and in the upper base a similar polygon, having

its sides parallel to those of the first. These polygons may be taken as the bases of the frustum of a right pyramid inscribed in the frustum of the cone.

The volume of the frustum of the pyramid is equivalent to the sum of the volumes of three pyramids, having for their common altitude the altitude of the frustum, and for their several bases the bases of the frustum, and a mean proportional between them, (Th. 16).

Now, however great the number of sides of the polygons inscribed in the bases of the frustum of the cone, this measure for the volume of the frustum of the pyramid, of which they are the bases, still holds true; but when we reach the limit, by making the number of the sides of the polygon indefinitely great, the polygons become the circles, the frustum of the pyramid becomes the frustum of the cone, and the three partial pyramids, whose sum is equivalent to the frustum of the pyramid, become three partial cones, whose sum is equivalent to the frustum of the cone.
BOOK VII.

Hence the theorem; the volume of the frustum of a cone, etc.

Cor. 1. Let R denote the radius of the lower base, R' that of the upper base, and H the altitude of the frustum of a cone; then will its volume be measured, (Th. 21), by

 $\frac{1}{3}H \times \pi R^2 + \frac{1}{3}H \times \pi R'^2 + \frac{1}{3}H \times \pi R \times R'$, since $\pi R \times R'$ expresses the area of a circle which is a mean proportional between the two circles, whose radii are R and R'.

Now, if the bases of the frustum become equal, or R = R', the frustum becomes a cylinder, and each of the last two terms in the above expression for the volume of the frustum of a cone will be equal to the first; hence, the volume of a cylinder, of which H is the altitude, and R the radius of the base, is measured by $H \times \pi R^2$.

Therefore, the volume of a cylinder is measured by the area of its base multiplied by its altitude.

Cor. 2. By a process in all respects similar to that pursued in the case of cones, it may be shown that similar cylinders are to each other as the cubes of the radii of their bases, and also as the cubes of their altitudes.

Cor. 3. A cylinder is equivalent to a prism having an equivalent base and an equal altitude.

THEOREM XXIII.

If a plane be passed through a sphere, the section will be a circle.

Let O be the center of a sphere through which a plane is passed, making the section AmBn; then will this section be a circle.

- - - - Evere jege

From O let fall the perpendicular Oo upon the secant plane, and draw the radii OA, OB, and Om, to the different points in the intersection of the plane with the surface of the sphere. Now.

the oblique lines OA, OB, Om, are all equal, being radii of the sphere; they therefore meet the plane at equal distances from the foot of the perpendicular Oo, (Cor., Th. 4, B. VI); hence oA, oB, om, etc., are equal: that is, all the points in the intersection of the plane with the surface of the sphere are equally distant from the point O. This intersection is therefore the circumference of a circle of which o is the center.

Hence the theorem; if a plane be passed through a sphere, etc.

Cor. 1. Since AB, the diameter of the section, is a chord of the sphere, it is less than the diameter of the sphere; except when the plane of the section passes through the center of the sphere, and then its diameter becomes the diameter of the sphere. Hence,

1. All great circles of a sphere are equal.

- 2. Of two small circles of a sphere, that is the greater whose plane is the less distant from the center of the sphere.

3. All the small circles of a sphere whose planes are at the same distance from the center, are equal.

Cor. 2. Since the planes of all great circles of a sphere pass through its center, the intersection of two great circles will be both a diameter of the sphere and a common diameter of the two circles. Hence, two great circles of a sphere bisect each other.

Cor. 3. A great circle divides the volume of a sphere, and also its surface, equally.

For, the two parts into which a sphere is divided by any of its great circles, on being applied the one to the other, will exactly coincide; otherwise all the points in their convex surfaces would not be equally distant from the center.

Cor. 4. The radius of the sphere which is perpendicular to the plane of a small circle, passes through the center of the circle.

212

Cor. 5. A plane passing through the extremity of a radius of a sphere, and perpendicular to it, is tangent to the sphere.

For, if the plane intersect the sphere, the section is a circle, and all the lines drawn from the center of the sphere to points in the circumference are radii of the sphere, and are therefore equal to the radius which is perpendicular to the plane, which is impossible, (Cor. 1, Th. 3, B. VI). Hence the plane does not intersect the sphere, and has no point in its surface except the extremity of the perpendicular radius. The plane is therefore tangent to the sphere by Def 22.

THEOREM XXIV.

If the line drawn through the center and vertices of two opposite angles of a regular polygon of an even number of sides, be taken as an axis of revolution, the perimeter of either semi-polygon thus formed will generate a surface whose measure is the axis multiplied by the circumference of the inscribed circle.

Let ABCDEF be a semi-polygon cut off from a regular polygon of an even number of sides by drawing the line AFthrough the center O, and the vertices Aand F, of two opposite angles of the polygon; then will the surface generated by the perimeter of this semi-polygon revolving about AF as an axis, be measured by $AF \times$ circumference of the inscribed circle.

From *m*, the middle point, and the extremities *B* and *C* of the side *BC*, draw *mn*, *BK*, and *CL*, perpendicular to *AF*; join also *m* and *O*, and draw *BH* perpendicular to *CL*. The surface of the frustum of the cone generated by the trapezoid *BKLC*, has for its measure circ. $mn \times BC$, (Cor. 3, Th. 20). Since *mO* is perpendicular to *BC*, and *mn* to *BH*, the two \triangle 's, *BCH* and *mnO*, are similar, and their homologous sides give the proportion

mn : mO :: BH (= KL) : BC

and as circumferences are to each other as their radii, we have

circ. mn : circ. mO ::: KL : BC

Hence, circ. $mn \times BC = \text{circ. } mO \times KL$.

But mO is the radius of the circle inscribed in the polygon. Hence, the surface generated by BC during the revolution of the semi-polygon, is measured by the circumference of the inscribed circle multiplied by KL, the part of the axis included between the two perpendiculars let fall upon it from the extremities B and C. The surface generated by any other side of the semi-polygon will be measured, in like manner, by the circumference of the inscribed circle multiplied by the corresponding part of the axis.

By adding the measures of the surfaces generated by the several sides of the semi-polygon, we get

Circ. $mO \times (AK + KL + LN + NM + MF)$

for the measure of the whole surface.

Hence the theorem; if the line drawn through the conter, etc.

Cor. It is evident that the surface generated by any portion, as CD and DE, of the perimeter, is measured by circ. $mO \times LM$.

THEOREM XXV.

The surface of a sphere is measured by the circumference of one of its great circles multiplied by its diameter.

Let a sphere be generated by the revolution of the semi-circle, AHF, about its diameter, AF; then will the surface of the sphere be measured by

Circ. $AO \times AF$.

Inscribe in the semi-circle any regular semi-polygon, and let it be revolved, with the semi-circle, about the axis

BOOK VII.

AF; the surface generated by its perimeter will be measured by

Circ. $mO \times AF$, (Th. 24), and this measure will hold true, however great the number of sides of the in- ^H scribed semi-polygon. But as the number of these sides is increased, the radius mO, of the inscribed semi-circle, increases and approaches equality with

the radius, AO; and when we reach the limit, by making the number of sides indefinitely great, the radii and semi-circles become equal, and the surface generated by the perimeter of the inscribed semi-polygon becomes the surface of the sphere. Therefore, the surface of the sphere has, for its measure,

Circ. $AO \times AF$.

Hence the theorem; the surface of a sphere is measured, etc.

Cor. 1. A zone of a sphere is measured by the circumference of a great circle of the sphere multiplied by the altitude of the zone.

For, the surface generated by any portion, as CD and DE, of the perimeter of the inscribed semi-polygon has, for its measure, circ. $mO \times LM$, (Cor. Th. 24); and as the number of the sides of the semi-polygon increases, LM remains the same, the radius mO alone changing, and becoming, when we reach the limit, equal to AO; hence, the surface of the zone is expressed by

Circ. $A0 \times LM$,

whether the zone have two bases, or but one.

Cor. 2. Let H and H' denote the altitudes of two zones of spheres, whose radii are R and R'; then these zones will be expressed by $2\pi R \times H$ and $2\pi R' \times H'$; and if the surfaces of the zones be denoted by Z and Z', we have $Z: Z':: 2\pi R \times H: 2\pi R' \times H':: R \times H: R' \times H'.$

Hence, 1. Zones in different spheres are to each other as their altitudes multiplied by the radii of the spheres.

2. Zones of equal altitudes are to each other as the radii of the spheres.

3. Zones in the same, or equal spheres, are to each other as their altitudes.

Cor. 3. Let R denote the radius of a sphere; then will its diameter be expressed by 2R, and the circumference of a great circle by $2\pi R$; hence its surface will be expressed by

 $2\pi R \times 2R = 4\pi R^2.$

That is, the surface of a sphere is equivalent to the area of four of its great circles.

Cor. 4. The surfaces of spheres are to each other as the squares of their radii.

THEOREM XXVI.

If a triangle be revolved about either of its sides as an axis, the volume generated will be measured by one third of the product of the axis and the area of a circle, having for its radius the perpendicular let fall from the vertex of the opposite angle on the axis, or on the axis produced.

First. Let the triangle ABC, in which the perpendicular from C falls on the opposite side, AB, be revolved about AB as an axis; then will * Vol. $\triangle ABC$ have, for its measure, $\frac{1}{3}AB \times \pi \overline{CD}^2$.

The two \triangle 's into which $\triangle ABC$ is divided by the perpendicular *DC*, are right-angled, and during the revolution they will generate two cones, having for their

216

^{*} Vol. $\triangle ABC$, cone $\triangle ADC$, are abbreviations for volume generated by $\triangle ABC$, cone generated by $\triangle ADC$; and surfaces of revolution generated by lines will hereafter be denoted by like abbreviations.

BOOK VII.

common base the circle, of which DC is the radius, and for their axes the parts DA and DB, into which AB is divided.

Now, *Cone $\triangle ADC$ is measured by $\frac{1}{3}AD \times \pi \overline{DC}^2$, (Th. 21), and cone $\triangle BDC$, by $\frac{1}{3}BD \times \pi \overline{DC}^2$; but these two cones compose Vol. $\triangle ABC$; and by adding their measures, we have, for that of Vol. $\triangle ABC$,

 $\frac{1}{2}AD \times \pi \overline{DC}^2 + \frac{1}{2}BD \times \pi \overline{DC}^2 = \frac{1}{2}AB \times \pi \overline{DC}^2.$

Second. Let the triangle EFG, in which the perpendicular from Gfalls on the opposite side EF produced, be revolved about EF as an axis; then will Vol. $\triangle EFG$

have, for its measure, $\frac{1}{3}EF \times \pi \overline{GH}^2$, GH being the perpendicular on EF produced. For, in this case it is apparent, that Vol. $\triangle EFG$ is the difference between the cone $\triangle EHG$ and the cone $\triangle FHG$. The first cone has, for its measure, $\frac{1}{3}EH \times \pi \overline{GH}^2$, and the second, for its measure, $\frac{1}{3}FH \times \pi \overline{GH}^2$; hence, by subtraction, we have

Vol. $\triangle EFG = \frac{1}{3}EH \times \pi \overline{GH}^2 - \frac{1}{3}FH \times \pi \overline{GH}^2 = \frac{1}{3}EF \times \pi \overline{GH}^2$.

Hence the theorem; if a triangle be revolved about either of its sides, etc.

SCHOLIUM.—If we take either of the above expressions for the measure of the volume generated by the revolution of a triangle about one of its sides, for example the last, and factor it otherwise, we have

 $\frac{1}{3}EF \times \pi \overline{GH}^2 = EF \times \frac{1}{2}GH \times \frac{1}{3}\pi \times 2GH = EF \times \frac{1}{2}GH \times \frac{2\pi \times GH}{3}.$

Now, $EF \times \frac{1}{2}GH$ expresses the area of the triangle EFG; and $\frac{2\pi \times GH}{3}$, one third of the circumference described by the point G during the revolution.

The expression, $\frac{1}{2}AB \times \pi \overline{DC}^2$, may be factored and interpreted in the

* See note on the preceding page.

same manner. Hence, we conclude that the volume generated by the revolution of a triangle about either of its sides, is measured by the area of the triangle multiplied by one third of the circumference described in the revolution by the vertex of the angle opposite the axis.

THEOREM XXVII.

The volume generated by the revolution of a triangle about any line lying in its plane, and passing through the vertex of one of its angles, is measured by the area of the triangle multiplied by two thirds of the circumference described, in the revolution, by the middle point of the side opposite the vertex through which the axis passes.

Let the triangle ABC be revolved about the line AG, drawn through the vertex A, and lying in the plane of the triangle, and let HE be the perpendicular let fall from H, the middle point of BC, upon

the axis AG; then will Vol. $\triangle ABC$ have, for its measure, $\triangle ABC \times \frac{2}{3}$ circ. *HE*.

From the extremities of BC, let fall the perpendiculars BF and CD, on the axis; and from A draw AK perpendicular to BC, or BC produced, and produce CB, until it meets the axis in G.

Now, it is evident that Vol. $\triangle ABC$ is the difference between Vol. $\triangle AGC$ and Vol. $\triangle AGB$. But Vol. $\triangle AGC$ is expressed by $\triangle AGC \times \frac{1}{3}$ circ. CD; and Vol. $\triangle AGB$, by $\triangle AGB \times \frac{1}{3}$ circ. BF, (Scholium, Th. 26). Hence,

Vol. $\triangle ABC = \triangle AGC \times \frac{1}{3}$ circ. $CD - \triangle AGB \times \frac{1}{3}$ circ. BF.

Substituting for areas of \triangle 's, and for circumferences, their measures, we have

BOOK VII.

$$\begin{aligned} & \text{Vol.} \bigtriangleup ABC = GC \times \frac{1}{2}AK \times \frac{2\pi.CD}{3} - GB \times \frac{1}{2}AK \times \frac{2\pi.BF}{3} \\ &= GC \times \frac{1}{2}AK \times \frac{2\pi.CD}{3} - (GC - BC) \times \frac{1}{2}AK \times \frac{2\pi.BF}{3} \\ &= GC \times \frac{1}{2}AK \times \frac{2\pi.CD}{3} - GC \times \frac{1}{2}AK \times \frac{2\pi.BF}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi.BF}{3} \\ &= GC \times \frac{1}{2}AK \times \frac{2\pi}{3}(CD - BF) + BC \times \frac{1}{2}AK \times \frac{2\pi.BF}{3} \\ &= But BN \text{ being drawn parallel to } AG, \text{ we have} \end{aligned}$$

$$CN = CD - BF;$$

hence, substituting this value for CD - BF, in the first term of the second member of the last equation, we have

$$\begin{aligned} \text{Vol.} & \triangle ABC = GC \times \frac{1}{2}AK \times \frac{2\pi \cdot CN}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3} \\ &= GC \times CN \times \frac{1}{2}AK \times \frac{2\pi}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}, \end{aligned}$$

by changing the order of factors in the first term of the second member. The homologous sides of the similar triangles, GCD and BCN, give the proportion

GC: CD:: BC: CN $GC \times CN = CD \times BC$

whence,

Substituting this value for $GC \times CN$, in the last equation above, and arranging the factors as before, it becomes

$$Vol. \triangle ABC = BC \times \frac{1}{2}AK \times \frac{2\pi \cdot CD}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$$
$$= BC \times \frac{1}{2}AK \times \frac{2\pi \cdot (CD + BF)}{3}.$$

But CD + BF = 2HE; hence

Vol. $\triangle ABC = BC \times \frac{1}{2}AK \times \frac{4\pi \cdot HE}{3} = BC \times \frac{1}{2}AK \times \frac{2}{3} \cdot 2\pi \cdot HE;$ and since

 $BC \times \frac{1}{2}AK = \triangle ABC$, and $\frac{2}{3} \times 2\pi . HE = \frac{2}{3}$ circ. HE, this measure conforms to the enunciation.

It only remains for us to consider the case in which the axis is parallel to the base BC of the triangle. The

preceding demonstration will not now apply, because it supposes BC, or BC produced, to intersect the axis.

Let the axis AE, be parallel to the base BC, of the $\triangle ABC$. From B and C let fall on the axis the perpendiculars BE and CD.

Now it is plain that

Vol. $\triangle ABC =$ cylinder rectangle BCDE +cone $\triangle ADC -$ cone $\triangle AEB$.

Substituting in second member, for cylinder and cones, their measures, we have

Vol. $\triangle ABC = DE \times \pi \overline{CD}^2 + \frac{1}{3}AD \times \pi \overline{CD}^2 - \frac{1}{3}AE \times \pi \overline{BE}^2$ = $\frac{2}{3}DE \times \pi \overline{CD}^2 + \frac{1}{3}DE \times \pi \overline{CD}^2 + \frac{1}{3}AD \times \pi \overline{CD}^2 - \frac{1}{3}AE \times \pi \overline{BE}^2$.

But BE = CD, and $\frac{1}{3}DE + \frac{1}{3}AD = \frac{1}{3}AD$. Reducing by these relations, we have

Vol. $\triangle ABC = \frac{2}{3}DE \times \pi \overline{CD}^2 = \frac{1}{3}DE \times \frac{1}{2}CD \times 4\pi.CD$ = $DE \times \frac{1}{2}CD \times \frac{2}{3}.2\pi.CD = BC \times \frac{1}{2}CD \times \frac{2}{3}.2\pi.CD$.

And, since $BC \times \frac{1}{2}CD$ expresses the area of the triangle *ABC*, and $\frac{2}{3}.2\pi.CD$, two thirds of the circumference described by any point of the base, this expression also conforms to the enunciation.

Hence the theorem; the volume generated by the revolution, etc.

Cor. If the generating triangle becomes isosceles, the perpendicular from A meets the base at its middle point. In this case, if we resume the expression

t. In this case, if we me the expression $BC \times \frac{1}{2}AK \times \frac{4\pi.HE}{3}$, A D E F

it becomes

 $BC \times \frac{1}{2}AK \times KE \times \frac{4}{3}\pi$.

220

BOOK VII.

But, since AK is perpendicular to BC, and KE to BN, the \triangle 's AKE and CBN are similar, and their homologous sides give the proportion

BC: BN:: AK: KE

$BC \times KE = BN \times AK$ whence, ...

Changing the order of factors in the last expression on the preceding page, and replacing $BC \times KE$ by its value, it becomes

 $\frac{1}{2}AK \times AK \times BN \times \frac{4}{2}\pi = \overline{AK}^2 \times BN \times \frac{2}{2}\pi$

president solaritation and and solar problems

นกับ ถึงน้ำมาวนในปีกันประเทศ ใจ

The Render

White out and and and gover give

Hence,

Vol. $\triangle ABC = \frac{2}{3}\pi \times \overline{AK}^2 \times BN = \frac{2}{3}\pi \times \overline{AK}^2 \times DF$

That is, the volume generated by the revolution of an isosceles about any line drawn through its vertex and lying in the plane of the triangle, is measured by $\frac{2}{3}\pi$ times the square of the perpendicular of the triangle multiplied by the part of the axis included between the two perpendiculars let fall upon it from the extremities of the base of the triangle.

SCHOLIUM. — If we resume the equation Vol. $\triangle ABC = BC \times \frac{1}{2}AK \times \frac{4\pi . HE}{3}$

and change the order of the factors in the second member, it may be put under the form , the guild same 2 and harden all

Vol. $\triangle ABC = BC \times 2\pi.HE \times \frac{1}{3}AK.$

But during the revolution of the triangle, the side BC generates the surface of the frustum of a cone, which surface has for its measure

 $BC \times 2\pi.HE$ (Th. 20, Cor. 3).

Hence, the above equation may be thus interpreted: The volume generated by the revolution of a triangle about any line lying in its plane and passing through the vertex of one of its angles, is measured by the surface generated, during the revolution, by the side opposite the vertex through which the axis passes multiplied by one third of the perpendicular drawn from the vertex to that side.

THEOREM XXVIII.

If the line drawn through the center and vertices of two opposite angles of a regular polygon, of an even number of sides, be taken as an axis of revolution, either semi-polygon thus formed will, during this revolution, generate a volume which has, for its measure, the surface generated by the perimeter of the semi-polygon multiplied by one third of its apothem.

Let ABCDE be a regular semi-polygon, cut off from a regular polygon of an even number of sides, by drawing a line through the center, O, and the vertices, A and E, of two opposite angles of the polygon; then will the covolume generated by the revolution of this semi-polygon about AE, as an axis, be measured by (Sur. AB + sur. BC + sur. CD + sur. DE) $\times \frac{1}{3}Om$, Ombeing the apothem of the polygon.

For, if from the center of O, the lines OB, OC, OD, be drawn to the vertices of the several angles of the semipolygon, it will be divided into equal isosceles triangles, the perpendicular of each being the apothem of the polygon.

Now, the volume generated by $\triangle AOB$ has, for its measure,

			Sur.	AB	×	₫ <i>Om</i> ,	
that by	\bigtriangleup	BOC,	Sur.	BC	×	$\frac{1}{3}Om$,	
66	Δ	COD,	Sur.	ĊD	×	$\frac{1}{3}Om$,	
66	\triangle	DOE,	Sur.	DE	×	10m, (Scholium, Th. 27).	

By the addition of the measures of these partial volumes, we find, for that of the whole volume,

Vol. semi-polygon ABCDE = sur. perimeter $ABCDE \times \frac{1}{3}Om$, and were the number of the sides of the semi-polygon

BOOK VII.

increased or diminished, the reasoning would be in no wise changed.

Hence the theorem; if the line drawn through the center, etc.

SCHOLIUM.—The volume generated by any portion of the semi-polygon, as that composed of the two isosceles \triangle 's *BOC*, *COD*, is measured by

Sur. perimeter $BCD \times \frac{1}{3}Om$.

THEOREM XXIX.

The volume of a sphere is measured by its surface multiplied by one third of its radius.

Let a sphere be generated by the revolution of the semicircle ACE, about its diameter, AE, as an axis; then will the volume of the sphere be measured by

sur. semi-circ. $OA \times \frac{1}{3}OA$.

For, inscribe in the semi-circle any regular semi-polygon, as *ABCDE*, and let it, together with the semi-circle, revolve about the axis *AE*. The

semi-polygon will generate a volume which has, for its measure,

Sur. perimeter $ABCDE \times \frac{1}{3}Om$, (Th. 28),

in which Om is the apothem of the polygon.

Now, however great the number of sides of the inscribed regular semi-polygon, this measure for the volume generated by it, will hold true; but when we reach the limit, by making the number of sides indefinitely great, the perimeter and apothem become, respectively, the semi-circumference and its radius, and the volume generated by the semi-polygon becomes that generated by the semi-circle, that is, the sphere. Therefore,

Vol. sphere = sur. semi-circ. $OA \times \frac{1}{3}OA$.

SCHOLIUM 1.—If we take any portion of the inscribed semi-polygon, as BOC, the volume generated by it is measured by sur. $BC \times \frac{1}{3}Om$, (Scholium, Th. 27); and when we pass to the limit, this volume becomes a sector, and sur. BC a zone of the sphere, which zone is the base of the sector. Hence, the volume of a spherical sector is measured by the zone which forms its base multiplied by one third of the radius of the sphere.

SCHOLIUM 2. — Let R denote the radius of a sphere; then will its diameter be represented by 2R. Now, since the surface of a sphere is equivalent to the area of four of its great circles, and the area of a great circle is expressed by πR^2 , we have

Vol. sphere = $4\pi R^2 \times \frac{1}{3}R = \frac{4}{3}\pi R^3$.

And since $R^3 = \frac{1}{8}(2R)^3$, we also have

Vol. sphere = $\frac{4}{3}\pi R^3 = \frac{1}{6}\pi (2R)^3$.

That is, the volume of a sphere is measured four thirds of π times the cube of the radius, or by one sixth of π times the cube of the diameter.

THEOREM XXX.

The surface of a sphere is equivalent to two thirds of the surface, bases included, and the volume of a sphere to two thirds of the volume, of the circumscribing cylinder.

Let AMD be a semi-circle, and ABCD a rectangle formed by ^B drawing tangents through the middle point and extremities of the semi-circumference, and let M the semi-circle and rectangle be revolved together about AD as an axis. The rectangle will thus c generate a cylinder circumscribed about the sphere generated by the sphere genera

about the sphere generated by the semi-circle.

First. The diameter of the base, and the altitude of the cylinder, are each equal to the diameter of the sphere; hence the convex surface of the cylinder, being measured by the circumference of its base multiplied by its altitude, (Cor. 1, Th. 20), has the same measure as the surface of the sphere, (Th. 25). But the surface of the sphere is equivalent to four great circles, (Cor. 3, Th. 25). Hence, the convex surface of the cylinder is equivalent to four great circles; and adding to these the bases of the cylinder, also great circles, we have the whole surface of the cylinder equivalent to six great circles. Therefore, the surface of the sphere is four sixths = two thirds of the surface of the cylinder, including its bases.

Second. The volume of the cylinder, being measured by the area of the base multiplied by the altitude, (Cor. 1, Th. 22), is, in this case, measured by the area of a great circle multiplied by its diameter = four great circles multiplied by one half the radius of the sphere.

But the volume of the sphere is measured by four great circles multiplied by one third of the radius, (Scholium 2, Th. 29). Therefore,

Vol. sphere : Vol. cylinder :: $\frac{1}{3}$: $\frac{1}{2}$:: 2 : 3; whence, Vol. sphere = $\frac{2}{3}$ Vol. cylinder.

Hence the theorem; the surface of a sphere is equivalent, etc.

Cor. The volume of a sphere is to the volume of the circumscribed cylinder, as the surface of the sphere is to the surface of the cylinder.

SCHOLIUM.—Any polyedron circumscribing a sphere, may be regarded as composed of as many cones as the polyedron has faces, the center of the sphere being the common vertex of these cones, and the several faces of the polyedron their bases. The altitude of each cone will be a radius of the sphere; hence the volume of any one cone will be measured by the area of the face of the polyedron which forms its base, multiplied by one third of the radius of the sphere. Therefore, the aggregate of these cones, or the whole polyedron, will be measured by the surface of the sphere multiplied by one third of the radius of the sphere.

But the volume of the sphere is also measured by the surface of the sphere multiplied by one third of its radius. Hence,

Sur. polyedron : Sur. sphere :: Vol. polyedron : Vol. sphere.

That is, the surface of any circumscribed polyedron is to the surface of the sphere, as the volume of the polyedron is to the volume of the sphere.

THEOREM XXXI.

The volume generated by the revolution of the segment of a circle about a diameter of the circle exterior to the segment, is measured by one sixth of π times the square of the chord of the segment, multiplied by the part of the axis included between the perpendiculars let fall upon it from the extremities of the chord.

Let BCD be a segment of the circle, whose center is O, and AH a part of a diameter exterior to the segment. Draw the chord BD, and from its extremities let fall the perpendiculars, BF, DE on D^{I} AH; also draw Om perpendicular to BD. The spherical sector generated by the revolution of the circular sector

BCDO about *AH*, is measured by zone $BD \times \frac{1}{3}BO$, (Scholium 1, Th. 29), $= 2\pi . BO \times EF \times \frac{1}{3}BO = \frac{2}{3}\pi \overline{BO}^3 \times EF$; and the volume generated by the isosceles triangle *BOD* is measured by

 $\frac{2}{3\pi Om^2} \times EF$, (Cor. 1, Th. 27).

The difference between these two volumes is that generated by the circular segment BCD, which has, therefore, for its measure,

 $\frac{2}{3}\pi EF(\overline{BO}^2 - \overline{Om}^2) = \frac{2}{3}\pi EF \times \overline{Bm}^2$, (Th. 39, B. I).

But since $Bm = \frac{1}{2}BD$, $\overline{Bm}^2 = \frac{1}{4}\overline{BD}^2$; hence, by substituting, we have

Vol. segment $BCD = \frac{2}{3}\pi EF \times \frac{1}{4}\overline{BD}^2 = \frac{1}{6}\pi \overline{BD}^2 \times EF$. Hence the theorem.

THEOREM XXXII.

The volume of a segment of a sphere has, for its measure, the half sum of the bases of the segment multiplied by its altitude, plus the volume of a sphere which has this altitude for its diameter. Let BCD be the arc of a circle, and BF and DE perpendiculars let fall from its extremities upon a diameter, of which AH is a part; then, if the area BCDEF be revolved about AH ^{D4} as an axis, a spherical segment will be generated, for the volume of which it is proposed to find a measure.

The circular segment will generate a volume measured by $\frac{1}{6}\pi \overline{BD}^2 \times EF$, (Th. 31); and the frustum of the cone generated by the trapezoid *BDEF* will have, for its measure,

$$\frac{1}{3}\pi \overline{BF}^2 \times EF + \frac{1}{3}\pi \overline{DE}^2 \times EF + \frac{1}{3}\pi BF \times DE \times EF, \text{(Th. 22)},$$
$$= \frac{1}{3}\pi EF(\overline{BF}^2 + \overline{DE}^2 + BF \times DE).$$

But the sum of these two volumes is the volume of the spherical segment, which has, therefore, for its measure,

 $\frac{1}{6}\pi EF (\overline{BD}^2 + 2\overline{BF}^2 + 2\overline{DE}^2 + 2BF \times DE)$ From B let fall the perpendicular Bn on DE; then will

Dn = DE - nE = DE - BF;

hence, $\overline{Dn}^2 = \overline{DE}^2 - 2DE \times BF + \overline{BF}^2$; and since $\overline{BD}^2 = \overline{Bn}^2 + \overline{Dn}^2 = \overline{EF}^2 + \overline{Dn}^2$, we have $\overline{BD}^2 = \overline{EF}^2 + \overline{DE}^2 + \overline{BF}^2 - 2DE \times BF$.

By substituting this value for \overline{BD}^2 , in the above measure for the volume of the segment, we find

 $\frac{4\pi EF(\overline{EF}^2 + \overline{DE}^2 + \overline{BF}^2 - 2DE \times BF + 2\overline{BF}^2 + 2\overline{DE}^2 + 2BF \times DE)}{= 4\pi EF(\overline{EF}^2 + \overline{3DE}^2 + 3\overline{BF}^2) = 4\pi \overline{EF}^3 + EF\left(\frac{\pi \overline{DE}^2 + \pi \overline{BF}^2}{2}\right).$

• Which last expression conforms to the enunciation.

Hence the theorem; the volume of a segment of a sphere, etc.

Cor. When the segment has but one base, BF becomes zero, and EF becomes EA; and the final expression

which we found for the volume of the segment reduces to

$$\frac{1}{6}\pi \overline{EA}^3 + EA \times \frac{\pi DE^2}{2}.$$

Hence, A spherical segment having but one base, is equivalent to a sphere whose diameter is the altitude of the segment, plus one half of a cylinder having for base and altitude the base and altitude of the segment.

SCHOLIUM.—When the spherical segment has a single base, we may put the expression, $\frac{1}{6}\pi \overline{EA}^3 + EA \times \frac{\pi \overline{DE}^2}{2}$, under a form to indicate a convenient practical rule for computing the volume of the segment.

Thus, since the triangle DEO is right-angled, and OE = OA - EA, we have

$$\overline{DE^2} = \overline{DO^2} - \overline{OE^2} = \overline{OA^2} - \overline{OA^2} + 2OA \times EA - \overline{EA^2}$$
$$= 2OA \times EA - \overline{EA^2}.$$

By substituting this value for \overline{DE}^{z} in the expression for the volume of the segment, we find

$$\frac{1}{6}\pi \overline{EA}^{3} + EA \times \frac{\pi}{2} \times (2OA \times EA - \overline{EA}^{2})$$

$$= \frac{1}{6}\pi \overline{EA}^{3} + \overline{EA}^{2} \times \frac{\pi}{2} (2OA - EA)$$

$$= \frac{1}{6}\pi \overline{EA}^{3} + \frac{1}{6}\pi \cdot 3\overline{EA}^{2} (2OA - EA)$$

$$= \frac{1}{6}\pi \overline{EA}^{2} (EA + 6.OA - 3EA)$$

$$= \frac{1}{6}\pi \overline{EA}^{2} (6.OA - 2EA)$$

$$= \frac{1}{6}\pi \overline{EA}^{2} (3OA - EA)$$

Hence, the volume of a spherical segment, having a single base, is measured by one third of π times the square of the altitude of the segment, multiplied by the difference between three times the radius of the sphere and this altitude.

RECAPITULATION

Of some of the principles demonstrated in this and the preceding Books.

Let R denote the radius, and D the diameter of any circle or sphere, and H the altitude of a cone, or of a segment of a sphere; then,

228

Circumference of a circle $= 2\pi R$. Surface of a sphere $= 4\pi R^2$. Zone forming the base of a segment of a sphere, $\} = 2\pi R \times H$. Volume or solidity of a sphere $= \frac{4}{3}\pi R^3$, or $\frac{1}{6}\pi D^3$. Volume of a spherical sector $= \frac{2}{3}\pi R^2 \times H$. Volume of a cone, of which

R is the radius of the $= \frac{1}{3}\pi R^2 \times H$. base

Volume of a spherical segment, of which R' is the radius of one base, and R'' the radius of the other, and whose altitude is H,

If the segment has but one base, R'' = zero, and thevolume of the segment, $= \frac{1}{6}\pi H^3 + H.\frac{\pi R'^2}{2}$; or, $= \frac{1}{3}\pi H^2(3R - H).$

PRACTICAL PROBLEMS.

The diameter of a sphere is 12 inches; how many cubic inches does it contain? Ans. 904.78 cu. in.
 What is the solidity of the segment of a single base that is cut from a sphere 12 inches in diameter, the altitude of the segment being 3 inches? Ans. 141.371 cu. in.

3. The surface of a square is 68 square feet; what is its diameter? Ans. D = 4.625 feet.

4. If from a sphere, whose surface is 68 square feet, a segment be cut, having a depth of two feet and a single base, what is the convex surface of the segment?

Ans. 29.229+ sq. ft.

 $= \frac{1}{6}\pi H^3 + H \frac{(\pi R'^2 + \pi R''^2)}{2}$

The distance million

5. What is the solidity of the sphere mentioned in the two preceding examples, and what is the solidity of the segment, having a depth of two feet, and but one base?

Ans. { Solidity of sphere, 52.71 cu. in. " segment, 20.85 "

6. In a sphere whose diameter is 20 feet, what is the solidity of a segment, the bases of which are on the same side of the center, the first at the distance of 3 feet from it, and the second of 5 feet; and what is the solidity of a second segment of the same sphere, whose bases are also on the same side of the center, and at distances from it, the first of 5 and the second of 7 feet?

Ans. { Solidity of first segment, 525.7 cu. ft. " second " 400.03 " 7. If the diameter of the single base of a spherical segment be 16 inches, and the altitude of the segment 4 inches, what is its solidity?*

Ans. 435.6352 cubic inches.

8. The diameter of one base of a spherical segment is 18 inches, and that of the other base 14 inches, these bases being on opposite sides of the center of the sphere, and the distance between them 9 inches; what is the volume of the segment, and the radius of the sphere?

Ans. { Vol. seg., 2600.3 cubic inches. Rad. of sphere, 9.4027 inches.

9. The radius of a sphere is 20, the distance from the center to the greater base of a segment is 10, and the distance from the same point to the lesser base is 16; what is the volume of the segment, the bases being on the same side of the center? Ans. 4297.7088.

10. If the diameter of one base of a spherical segment be 20 miles, and the diameter of the other base 12 miles, and the altitude of the segment 2 miles, what is its solidity, and what is the diameter of the sphere?

* First find the radius of the sphere.

ALL MARK SHOULD BE AND

230

BOOK VIII.

PRACTICAL GEOMETRY.

APPLICATION OF ALGEBRA TO GEOMETRY, AND ALSO PROPOSITIONS FOR ORIGINAL INVESTIGATION.

No definite rules can be given for the algebraic solution of geometrical problems. The student must, in a a great measure, depend on his own natural tact, and his power of making a skillful application of the geometrical and analytical knowledge he has thus far obtained.

The known quantities of the problem should be represented by the first letters of the alphabet, and the unknown by the final letters; and the relations between these quantities must be expressed by as many independent equations as there are unknown quantities. To obtain the equations of the problem, we draw a figure, the parts of which represent the known and unknown magnitudes, and very frequently it will be found necessary to draw auxiliary lines, by means of which we can deduce, from the conditions enunciated, others that can be more conveniently expressed by equations. In many cases the principal difficulty consists in finding, from the relations directly given in the statement, those which are ultimately expressed by the equations of the problem. Having found these equations, they are treated by the known rules of algebra, and the values of the required magnitudes determined in terms of those given.

PROBLEM I.

Given, the hypotenuse, and the sum of the other two sides of a right-angled triangle, to determine the triangle.

Let ABC be the \triangle . Put CB = y, AB = x, AC = h, and CB + AB = s. Then, by a given condition, we have

and, x + y = s; $x^2 + y^2 = h^2$, (Th. 39, B. I).

Reducing these two equations, and we have

$$x = \frac{1}{2}s \pm \frac{1}{2}\sqrt{2h^2 - s^2}; \qquad y = \frac{1}{2}s \pm \frac{1}{2}\sqrt{2h^2 - s^2}.$$

If
$$h = 5$$
 and $s = 7$, $x = 4$ or 3, and $y = 3$ or 4.

REMARK. — In place of putting x to represent one side, and y the other, we might put (x + y) to represent the greater side, and (x - y). the less side; then,

 $x^2 + y^2 = \frac{h^2}{2}$, and 2x = s, etc.

PROBLEM II.

Given, the base and perpendicular of a triangle, to find the side of its inscribed square.

Let ABC be the \triangle . Put AB = b, the base, CD = p, the perpendicular.

. profile

Draw *EF* parallel to *AB*, and suppose it equal to *EG*, a side of the required square; and put EF = x.

Then, by similar \triangle 's, we have

CI: EF:: CD: AB.

That is, p-x:x::p:b.

Hence, bp - bx = px; or, $x = \frac{bp}{b+p}$

That is, the side of the inscribed square is equal to the product of the base and altitude, divided by their sum.

BOOK VIII.

PROBLEM HI.

In a triangle, having given the sides about the vertical angle, and the line bisecting that angle and terminating in the base, to find the base.

Let ABC be the \triangle , and let a circle be circumscribed about it. Divide the arc AEB into two equal parts at the point E, and draw EC. This line bisects the vertical angle, (Cor., Th. 9, B. III). Draw BE. Put AD = x, DB = y, AC = a,

CB = b, CD = c, and DE = w. The two \triangle 's, ADC and EBC, are equiangular; from which we have

$$w + c : b :: a : c; or, cw + c^2 = ab;$$
 (1)

But, as EC and AB are two chords that intersect each other in a circle, we have

cw = xy, (Th. 17, B. III). Therefore, $xy + c^2 = ab$. (2)

But, as CD bisects the vertical angle, we have

a:b::x:y, (Th. 24, B. II).

Or,

And,

$$x = \frac{ay}{b}$$
. (3)

Hence,

1 0.

 $\overline{b}y^2 + c$

$$x^{2} = ab$$
; or, $y = \sqrt{b^{2} - \frac{c^{2}b^{2}}{a}}$
 $x = \frac{a}{a} \sqrt{b^{2} - \frac{c^{2}b}{a^{2}}}$

Now, as x and y are determined, the base is determined.

REMARK. — Observe that equation (2) is Theorem 20, Book III. 20*

PROBLEM IV.

To determine a triangle, from the base, the line bisecting the vertical angle, and the diameter of the circumscribing circle.

Describe the circle on the given diameter, AB, and divide it into two parts, in the point D, so that $AD \times DB$ shall be equal to the square of one half the given base, (Th. 17, B. III).

Through D draw EDG, at right

angles to AB, and EG will be the given base of the triangle.

Put
$$AD = n$$
, $DB = m$, $AB = d$, $DG = b$.

Then,
$$n+m=d$$
, and $nm=b^2$;

and these two equations will determine n and m; therefore, we shall consider n and m as known.

Now, suppose EHG to be the required \triangle ; and draw HIB and HA. The two \triangle 's, ABH, DBI, are equiangular; and, therefore, we have

AB: HB:: IB: DB.

But HI is a given line, that we will represent by c; and if we put IB = w, we shall have HB = c + w; then the above proportion becomes,

d: c+w::w:m.

Now, w can be determined by a quadratic equation; and, therefore, IB is a known line.

In the right-angled $\triangle DBI$, the hypotenuse *IB*, and the base *DB*, are known; therefore, *DI* is known, (Th. 39, B. I); and if *DI* is known, *EI* and *IG* are known.

Lastly, let EH = x, HG = y, and put EI = p, and IG = q.

Then, by Theorem 20, Book III, $pq + c^2 = xy$ (1) But, x : y :: p : q (Th. 24, B. II).

 $x = \frac{py}{q}$

Or.

Now, from equations (1) and (2) we can determine xand y, the sides of the \triangle ; and thus the determination has been attained, carefully and easily, step by step.

PROBLEM V.

Three equal circles touch each other ex ernally, and thus inclose one acre of ground; what is the diameter in rods of each of these circles?

Draw three equal circles to touch each other externally, and join the three centers, thus forming a triangle. The lines joining the centers will pass

through the points of contact, (Th. 7, B. III).

Let R represent the radius of these equal circles; then it is obvious that each side of this \triangle is equal to 2R. The triangle is therefore equilateral,

and it incloses the given area, and three equal sectors.

As the angle of each sector is one third of two right angles, the three sectors are, together, equal to a semicircle; but the area of a semi-circle, whose radius is R, is expressed by $\frac{\pi R^2}{2}$; and the area of the whole triangle must be $\frac{\pi R^2}{2}$ + 160; but the area of the \triangle is also equal to R multiplied by the perpendicular altitude, which is $R\sqrt{3}$.

Therefore, $R^2\sqrt{3} = \frac{\pi R^2}{2} + 160.$ Or, $R^2 (2\sqrt{3} - \pi) = 320.$ $R^2 = \frac{320}{2\sqrt{3} - 3.1415926} = \frac{3.20}{0.3225} = 992.248.$

Hence, R = 31.48 + rods, for the required result.

(2)

PROBLEM VI. — In a right-angled triangle, having given the base and the sum of the perpendicular and hypotenuse, to find these two sides.

PROB. $\nabla \Pi$.—Given, the base and altitude of a triangle, to divide it into three equal parts, by lines parallel to the base.

PROB. VIII.—In any equilateral \triangle , given the length of the three perpendiculars drawn from any point within, to the three sides, to determine the sides.

PROB. IX.—In a right-angled triangle, having given the base, (3), and the difference between the hypotenuse and perpendicular, (1), to find both these two sides.

PROB. X. — In a right-angled triangle, having given the hypotenuse, (5), and the difference between the base and perpendicular, (1), to determine both these two sides.

PROB. XI.—Having given the area of a rectangle inscribed in a given triangle, to determine the sides of the rectangle.

PROB. XII.—In a triangle, having given the ratio of the two sides, together with both the segments of the base, made by a perpendicular from the vertical angle, to determine the sides of the triangle.

PROB. XIII.—In a triangle, having given the base, the sum of the other two sides, and the length of a line drawn from the vertical angle to the middle of the base, to find the sides of the triangle.

PROB. XIV.—To determine a right-angled triangle, having given the lengths of two lines drawn from the acute angles to the middle of the opposite sides.

PROB. XV.—To determine a right-angled triangle, having given the perimeter, and the radius of the inscribed circle.

PROB. XVI.—To determine a triangle, having given the base, the perpendicular, and the ratio of the two sides.

PROB. XVII.— To determine a right-angled triangle, having given the hypotenuse, and the side of the inscribed square.

BOOK VIII.

PROB. XVIII. — To determine the radii of three equal circles inscribed in a given circle, and tangent to each other, and also to the circumference of the given circle.

PROB. XIX.—In a right-angled triangle, having given the perimeter, or sum of all the sides, and the perpendicular let fall from the right angle on the hypotenuse, to determine the triangle; that is, its sides.

PROB. XX.—To determine a right-angled triangle, having given the hypotenuse, and the difference of two lines drawn from the two acute angles to the center of the inscribed circle.

PROB. XXI. — To determine a triangle, having given the base, the perpendicular, and the difference of the two other sides.

PROB. XXII. — To determine a triangle, having given the base, the perpendicular, and the rectangle, or product of the two sides.

PROB. XXIII.—To determine a triangle, having given the lengths of three lines drawn from the three angles to the middle of the opposite sides.

PROB. XXIV. — In a triangle, having given all the three sides, to find the radius of the inscribed circle.

PROB. XXV.—To determine a right-angled triangle, having given the side of the inscribed square, and the radius of the inscribed circle.

PROB. XXVI. — To determine a triangle, and the radius of the inscribed circle, having given the lengths of three lines drawn from the three angles to the center of that circle.

PROB. XXVII. — To determine a right-angled triangle, having given the hypotenuse, and the radius of the inscribed circle.

PROB. XXVIII.—The lengths of two parallel chords on the same side of the center being given, and their distance apart, to determine the radius of the circle.

PROB. XXIX. - The lengths of two chords in the same

circle being given, and also the difference of their distances from the center, to find the radius of the circle.

PROB. XXX.—The radius of a circle being given, and also the rectangle of the segments of a chord, to determine the distance of the point at which the chord is divided, from the center.

PROB. XXXI.—If each of the two equal sides of an isosceles triangle be represented by a, and the base by 2b, what will be the value of the radius of the inscribed circle?

Ans. $R = \frac{b\sqrt{a^2 - b^2}}{a + b}.$

PROB. XXXII. — From a point without a circle whose diameter is d, a line equal to d is drawn, terminating in the concave arc, and this line is bisected at the first point in which it meets the circumference. What is the distance of the point without from the center of the circle?

It is not deemed necessary to multiply problems in the application of algebra to geometry. The preceding will be a sufficient exercise to give the student a clear conception of the nature of such problems, and will serve as a guide for the solution of others that may be proposed to him, or that may be invented by his own ingenuity.

MISCELLANEOUS PROPOSITIONS.

We shall conclude this book, and the subject of Geometry, by offering the following propositions, — some theorems, others problems, and some a combination of both, —not only for the purpose of impressing, by application, the geometrical principles which have now been established, but for the not less important purpose of cultivating the power of independent investigation.

After one or two propositions in which the beginner will be assisted in the analysis and construction, we shall leave him to his own resources, with the caution that a

238

patient consideration of all the conditions in each case, and not mere trial operation, is the only process by which he can hope to reach the desired result.

1. From two given points, to draw two equal straight lines, which shall meet in the same point in a given straight line.

Let A and B be the given points, and CD the given straight line. Produce the perpendicular to the straight line AB at its middle point, until it meets CD in G. It is then easily proved that G is the point in CD in which the equal lines from A and B must meet. That is, that AG= BG.

If the points A and B were on opposite sides of CD, the directions Cfor the construction would be the same, and we should have this figure; but the reasoning by which we prove AG = BG would be unchanged.

2. From two given points on the same side of a given straight line, to draw two straight lines which shall meet in the given line, and make equal angles with it.

Let CD be the given line, and A and B the given points.

From B draw BE perpendicular to CD, and produce the perpendicular to F, making EF equal to BE; then draw AF, and from the point G, in which it intersects CD, draw GB. Now, $_BGE =$ $_EGF = _AGC$. Hence, the angles BGD and AGC are equal, and the lines AG and BG meet

in a common point in the line CD, and made equal angles with that line.

3. If, from a point without a circle, two straight lines be drawn to the concave part of the circumference, making equal angles with the line joining the same point and the center, the parts of these lines which are intercepted within the circle, are equal.

4. If a circle be described on the radius of another circle, any straight line drawn from the point where they meet, to the outer circumference, is bisected by the interior one.

5. From two given points on the same side of a line given in position, to draw two straight lines which shall contain a given angle, and be terminated in that line.

6. If, from any point without a circle, lines be drawn touching the circle, the angle contained by the tangents is double the angle contained by the line joining the points of contact and the diameter drawn through one of them.

7. If, from any two points in the circumference of a circle, there be drawn two straight lines to a point in a tangent to that circle, they will make the greatest angle when drawn to the point of contact.

8. From a given point within a given circle, to draw a straight line which shall make, with the circumference, an angle, less than any angle made by any other line drawn from that point.

9. If two circles cut each other, the greatest line that can be drawn through either point of intersection, is that which is parallel to the line joining their centers.

10. If, from any point within an equilateral triangle, perpendiculars be drawn to the sides, their sum is equal to a perpendicular drawn from any of the angles to the opposite side.

11. If the points of bisection of the sides of a given triangle be joined, the triangle so formed will be one fourth of the given triangle.

12. The difference of the angles at the base of any triangle, is double the angle contained by a line drawn from the vertex perpendicular to the base, and another bisecting the angle at the vertex.

BOOK VIII.

13. If, from the three angles of a triangle, lines be drawn to the points of bisection of the opposite sides, these lines intersect each other in the same point.

14. The three straight lines which bisect the three angles of a triangle, meet in the same point.

15. The two triangles, formed by drawing straight lines from any point within a parallelogram to the extremities of two opposite sides, are, together, one half the parallelogram.

16. The figure formed by joining the points of bisection of the sides of a trapezium, is a parallelogram.

17. If squares be described on three sides of a rightangled triangle, and the extremities of the adjacent sides be joined, the triangles so formed are equal to the given triangle, and to each other.

18. If squares be described on the hypotenuse and sides of a right-angled triangle, and the extremities of the sides of the former, and the adjacent sides of the others, be joined, the sum of the squares of the lines joining them will be equal to five times the square of the hypotenuse.

19. The vertical angle of an oblique-angled triangle inscribed in a circle, is greater or less than a right angle, by the angle contained between the base and the diameter drawn from the extremity of the base.

20. If the base of any triangle be bisected by the diameter of its circumscribing circle, and, from the extremity of that diameter, a perpendicular be let fall upon the longer side, it will divide that side into segments, one of which will be equal to one half the sum, and the other to one half the difference, of the sides.

21. A straight line drawn from the vertex of an equilateral triangle inscribed in a circle, to any point in the opposite circumference, is equal to the sum of the two lines which are drawn from the extremities of the base to the same point.

22. The straight line bisecting any angle of a triangle

0

21

inscribed in a given circle, cuts the circumference in a point which is equi-distant from the extremities of the side opposite to the bisected angle, and from the center of a circle inscribed in the triangle.

23. If, from the center of a circle, a line be drawn to any point in the chord of an arc, the square of that line, together with the rectangle contained by the segments of the chord, will be equal to the square described on the radius.

24. If two points be taken in the diameter of a circle, equidistant from the center, the sum of the squares of the two lines drawn from these points to any point in the circumference, will be always the same.

25. If, on the diameter of a semicircle, two equal circles be described, and in the space included by the three circumferences, a circle be inscribed, its diameter will be $\frac{2}{3}$ the diameter of either of the equal circles.

26. If a perpendicular be drawn from the vertical angle of any triangle to the base, the difference of the squares of the sides is equal to the difference of the squares of the segments of the base.

27. The square described on the side of an equilateral triangle, is equal to three times the square of the radius of the circumscribing circle.

28. The sum of the sides of an isosceles triangle is less than the sum of any other triangle on the same base and between the same parallels.

29. In any triangle, given one angle, a side adjacent to the given angle, and the difference of the other two sides, to construct the triangle.

30. In any triangle, given the base, the sum of the other two sides, and the angle opposite the base, to construct the triangle.

31. In any triangle, given the base, the angle opposite to the base, and the difference of the other two sides, to construct the triangle.

TRIGONOMETRY

111145

ILAND THUS

PLANE TRIGONOMETRY

SPHERICAL GEOMETRY AND TRIGONOMETRY.

זה אלשלה לביר כבול מישל אייר לא מיכלים למעני או לכלל אייר אלי לא מלחי מתולמים אלי ביול ביולי שלא למי בעילים אייר בעילי לא אייר אלי לא על מיש אור לא לא כל ללי שלא אלי אלי הלאמיל אלי המוצא מייר ביו אורי לא לא

Le de la land i de l'Arter avec i i

section with the state of the tax (243) is the

that of the solit and ind an and in

The mostly of an arely calls and area of the replet between the tray line, much form and essays of the areathery being at the plant of the forthing much.

3. A set of the second of the construction of the second of the secon

a structure of the state of the

TRIGONOMETRY.

PART I.

PLANE TRIGONOMETRY.

SECTION I.

ELEMENTARY PRINCIPLES.

TRIGONOMETRY, in its literal and restricted sense, has for its object the measurement of triangles. When it treats of plane triangles it is called *Plane Trigonometry*. In a more enlarged sense, trigonometry is the science which investigates the relations of all possible arcs of the circumference of a circle to certain straight lines, termed trigonometrical lines or circular functions, connected with and dependent on such arcs, and the relations of these trigonometrical lines to each other.

The measure of an angle is the arc of a circle intercepted between the two lines which form the angle—the center of the arc always being at the point where the. two lines meet.

The arc is measured by *degrees*, *minutes*, and *seconds*; there being 360 degrees to the whole circle, 60 minutes in one degree, and 60 seconds in one minute. Degrees, minutes, and seconds, are designated by $^{\circ}$, ', "; thus, 27° 14' 21", is read 27 degrees 14 minutes 21 seconds.

The circumferences of all circles contain the same number of degrees, but the greater the radius the greater

(244)

is the absolute length of a degree. The circumference of a carriage wheel, the circumference of the earth, or the still greater and indefinite circumference of the heavens, has the same number of degrees; yet the same number of degrees in each and every circumference is the measure of precisely the same angle.

DEFINITIONS.

1. The Complement of an arc is 90° minus the arc.

2. The Supplement of an arc is 180° minus the arc.

3. The Sine of an angle, or of an arc, is a line drawn from one end of an arc, perpendicular to a diameter drawn through the other end. Thus, BF is the sine of the arc AB, and also of the arc BDE. BK is the sine of the arc BD.

4. The Cosine of an arc is the perpendicular distance from the center of the circle to the sine of the arc; or, it is the same in magnitude as the sine of the complement of the arc. Thus, CFis the cosine of the arc AB; but CF = KB, is the sine of BD.

5. The Tangent of an arc is a line touching the circle in one extremity of the arc, and continued from thence, to meet a line drawn through the center and the other extremity. Thus, AH is the tangent to the arc AB, and DL is the tangent of the arc DB.

6. The Cotangent of an arc is the tangent of the complement of the arc. Thus, DL, which is the tangent of the arc DB, is the cotangent of the arc AB.

REMARK.-The co is but a contraction of the word complement.

7. The Secant of an arc is a line drawn from the center of the circle to the extremity of the tangent. Thus, CH is the secant of the arc AB, or of its supplement BDE.

8. The Cosecant of an arc is the secant of the complement. Thus, CL, the secant of BD, is the cosecant of AB.

21*

9. The Versed Sine of an arc is the distance from the extremity of the arc to the foot of the sine. Thus, AFis the versed sine of the arc AB, and DK is the versed sine of the arc DB.

For the sake of brevity, these technical terms are contracted thus: for sine AB, we write sin. AB; for cosine AB, we write cos. AB; for tangent AB, we write tan. AB. etc.

From the preceding definitions we deduce the following obvious consequences:

1st. That when the arc AB becomes insensibly small, or zero, its sine, tangent, and versed sine are also nothing, and its secant and cosine are each equal to radius: 1 The second of Table .

2d. The sine and versed sine of a quadrant are each equal to the radius; its cosine is zero, and its secant and tangent are infinite.

3d. The chord of an arc is twice the sine of one half the arc. Thus, the chord, BG, is double the sine, BF.

4th. The versed sine is equal to the difference between the radius and the cosine.

5th. The sine and cosine of any arc form the two sides of a right-angled triangle, which has a radius for its hypotenuse. Thus, CF and FB are the two sides of the right-angled triangle, CFB.

Also, the radius and tangent always form the two sides of a right-angled triangle, which has the secant of the arc for its hypotenuse. This we observe from the right-angled triangle, CAH.

To express these relations analytically, we write

 $\sin^2 + \cos^2 = R^2$ (1) (2)

 $R^2 + \tan^2 = \sec^2$

From the two equiangular triangles CFB, CAH, we have

CF: FB = CA: AH.
That is,

cos. : sin. = R : tan. ; whence, tan. = $\frac{R.sin.}{cos.}$ (3) Also, CF : CB = CA : CH.

That is,

¹ cos. : R = R : sec. ; whence, cos. sec. = R^2 . (4) The two equiangular triangles, *CAH* and *CDL*, give

$$CA:AH=DL:DC.$$

That is,

R: tan. = cot. : R; whence, tan. cot. = R^2 . (5) Also, CF : FB = DL : DC.

That is,

cos. : sin. = cot. : R; whence, cos. R = sin. cot. (6) From equations (4) and (5), we have

$$\cos$$
. sec. = tan. cot. (7)

Or, $\cos : \tan = \cot : \sec$.

ver. sin. = $1 - \cos$. (8)

The ratios between the various trigonometrical lines are always the same for arcs of the same number of degrees, whatever be the length of the radius; and we may, therefore, assume radius of any length to suit our convenience. The preceding equations will be more concise, and more readily applied, by making the radius equal unity. This supposition being made, we have, for equations 1 to 6, inclusive,

$$\sin^2 + \cos^2 = 1.$$
 (1)

$$1 + \tan^2 = \sec^2$$
 (2)

 $\tan = \frac{\sin}{\cos} (3) \qquad \cos = \frac{1}{\sec} (4)$ $\tan = \frac{1}{\cot} (5) \qquad \cos = \sin \cot (6)$

Let the circumference, AEDH, be divided into four equal parts by the diameters, AD and EH, the one hori-

PLANE TRIGONOMETRY.

zontal and the other vertical. These equal parts are called *quadrants*, and they may be distinguished as the *first*, *second*, *third*, and *fourth* quadrants.

The center of the circle is taken as the origin of distances, or the zero point, and the different directions in which distances are esti-

mated from this point are indicated by the signs + and -. If those from C to the right be marked +, those from C to the left must be marked -; and if distances from C upwards be considered plus, those from C downwards must be considered minus.

If one extremity of a varying arc be constantly at A, and the other extremity fall successively in each of the several quadrants, we may readily determine, by the above rule, the algebraic signs of the sines and cosines of all arcs from 0° to 360°. Now, since all other trigonometrical lines can be expressed in terms of the sine and cosine, it follows that the algebraic signs of all the circular functions result from those of the sine and cosine.

We shall thus find for arcs terminating in the

1st	quadrant,	sin. +	cos. +	tan. +	cot. +	sec. +	cosec. +	vers.
2d		+				-	+	+
3d	66			+	+			+
4th	66		+	-		+		+

PROPOSITION I.

The chord of 60° and the tangent of 45° are each equal to radius; the sine of 30° , the versed sine of 60° , and the cosine of 60° are each equal to one half the radius.

With C as a center, and CA as a radius, describe the arc ABF, and from A lay off the arcs $AD = 45^{\circ}$, $AB = 60^{\circ}$, and $AE = 90^{\circ}$; then is $EB = 30^{\circ}$.

1st. The side of a regular inscribed hexagon is the radius of

the circle, (Prob. 28, B. IV), and as the arc subtended by each side of the hexagon contains 60° , we have the chord of 60° equal to the radius.

2d. The triangle CAH is right-angled at A, and the angle C is equal to 45°, being measured by the arc AD; hence the angle at H is also equal to 45°, and the triangle is isosceles. Therefore AH = CA = radius of the circle.

3d. The triangle ABC is isosceles, and Bn is a perpendicular from the vertex upon the base; hence An = nC = Bm. But Bm is the sine of the arc BE, Cn is the cosine of the arc AB, and An is the versed sine of the same arc, and each is equal to one half the radius.

. Hence the proposition; the chord of 60°, etc.

PROPOSITION II.

Given, the sine and the cosine of two arcs, to find the sine and the cosine of the sum and of the difference of the samarcs expressed by the sines and cosines of the separate arcs.

Let G be the center of the circle, CD the greater arc, and DF the less, and denote these arcs by a and b respectively.

Draw the radius GD; make the arc DE equal to the arc DF, and draw the chord EF. From F and E, the extremities, and I, the middle point

of the chord, let fall the perpendiculars FM, EP, and IN, on the radius GC. Also draw DO, the sine of the arc CD, and let fall the perpendiculars IH on FM, and EK on IN.

Now, by the definition of sines and cosines, $DO = \sin a$; $GO = \cos a$; $FI = \sin b$; $GI = \cos b$. We are to find

 $FM = \sin(a + b); GM = \cos(a + b);$ $EP = \sin(a - b); GP = \cos(a - b).$

Because IN is parallel to D0, the two \triangle 's, GD0, GIN, are equiangular and similar. Also, the \triangle FHI is similar to the \triangle GIN; for the angles, FIG and HIN, are right angles; from these two equals, taking away the common angle HIL, we have the angle FIH = the angle GIN. The angles at H and N are right angles; therefore, the \triangle 's FHI, GIN, and GD0, are equiangular and similar; and the side HI is homologous to IN and D0.

Again, as FI = IE, and IK is parallel to FM,

FH = IK, and HI = KE.

By similar triangles we have

GD: DO = GI: IN.

That is, $R: \sin a = \cos b : IN; \text{ or, } IN = \frac{\sin a \cos b}{D}$ (1)GD: GO = FI: FH.Also, That is, $R : \cos a = \sin b : HF$; or, $FH = \frac{\cos a \sin b}{2}$ (2)GD: GO = GI: GN.Also, That is, $R: \cos a = \cos b: GN;$ or, $GN = \frac{\cos a \cos b}{D}$ (3)R GD: DO = FI: IH.Also, That is, $R: \sin a = \sin b : IH$; or, $IH = \frac{\sin a \sin b}{R}$ (4)By adding the first and second of these equations, we

by adding the first and second of these equations, we have

 $IN + FH = FM = \sin(a + b).$

That is, $\sin(a +) = \frac{\sin a \cos b + \cos a \sin b}{R}$

By subtracting the second from the first, since IN - FH = IN - IK = EP, we have $\sin(a - b) = \frac{\sin a \cos b - \cos a \sin b}{R}$.

By subtracting the fourth from the third, we have $GN - IH = GM = \cos(a + b)$ for the first member. Hence, $\cos(a + b) = \frac{\cos a \cos b - \sin a \sin b}{R}$. (5)

By adding the third and fourth, we have

H

$$GN + IH = GN + NP = GP = \cos(a-b).$$

ence, $\cos(a-b) = \frac{\cos a \cos b + \sin a \sin b}{R}.$ (6)

Collecting these four expressions, and considering the radius unity, we have

	$c\sin(a+b) = \sin a \cos b + \cos a \sin b$	(7)
1)	$\sin(a-b) = \sin a \cos b - \cos a \sin b$	(8)
а).	$\cos(a+b) = \cos a \cos b - \sin a \sin b$	(9)
	$(\cos.(a-b) = \cos.a \cos.b + \sin.a \sin.b)$	(10)

Formulæ (A) accomplish the objects of the proposition, and from these equations many useful and important deductions can be made. The following are the most essential:

By adding (7) to (8), we have (11); subtracting (8) from (7) gives (12). Also, (9) added to (10) gives (13); (9) taken from (10) gives (14).

	$\gamma \sin(a+b)$	$) + \sin(a-b)$	$=2\sin.a$	cos.b	(11)
(\mathbf{P})	$\sin(a+b)$	$-\sin(a-b)$	$=2\cos.a$	sin.b	(12)
(D)-	$\cos(a+b)$	$+\cos(a-b)$	$= 2\cos.a$	cos.b	(13)
	$\cos(a-b)$	$-\cos(a+b)$	$= 2 \sin a$	sin.b	(14)

If we put a + b = A, and a - b = B, then (11) becomes (15), (12) becomes (16), (13) becomes (17), and (14) becomes (18).

$$\int \sin A + \sin B = 2\sin \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right) \quad (15)$$

$$\int \sin A - \sin B = 2\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \quad (16)$$

$$\cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right) \quad (17)$$

$$\cos .B - \cos .A = 2\sin . \left(\frac{A+B}{2}\right)\sin . \left(\frac{A-B}{2}\right) \quad (18)$$

If we divide (15) by (16), (observing that $\frac{\sin}{\cos} = \tan$., and $\frac{\cos}{\sin} = \cot = \frac{1}{\tan}$ as we learn by equations (6) and (5), we shall have

$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\sin \left(\frac{A+B}{2}\right)}{\cos \left(\frac{A+B}{2}\right)} \times \frac{\cos \left(\frac{A-B}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} = \frac{-1}{\tan \left(\frac{A-B}{2}\right)} (19)$$

Whence,

 $\sin A + \sin B : \sin A - \sin B = \tan \left(\frac{A+B}{2}\right) : \tan \left(\frac{A-B}{2}\right)$

That is: The sum of the sines of any two arcs is to the difference of the same sines, as the tangent of one half the sum of the same arcs is to the tangent of one half their difference.

By operating in the same way with the different equations in formulæ (C), we find,

$\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \left(\frac{A+B}{2}\right)$	(20)
$\frac{\sin A + \sin B}{\cos B - \cos A} = \cot \left(\frac{A - B}{2}\right)$	(21)
$\frac{\sin A - \sin B}{\cos A + \cos B} = \tan \left(\frac{A - B}{2}\right)$	(22)
$\frac{\sin A - \sin B}{\cos B - \cos A} = \cot \left(\frac{A + B}{2}\right)$	(23)
$\frac{\cos A + \cos B}{\cos B - \cos A} = \frac{\cot \left(\frac{A+B}{2}\right)}{(A-B)}$	(24)
$\tan\left(\frac{A-B}{2}\right)$	

(D)

(0

These equations are all true, whatever be the value of the arcs designated by A and B; we may, therefore, assign any possible value to either of them, and if in equations (20), (21), and (24), we make B = 0, we shall have,

$$\frac{\sin A}{1 + \cos A} = \tan \frac{A}{2} = \frac{1}{\cot \frac{1}{2}A}$$
(25)
$$\frac{\sin A}{1 - \cos A} = \cot \frac{A}{2} = \frac{1}{\tan \frac{1}{2}A}$$
(26)
$$\frac{1 + \cos A}{1 - \cos A} = \frac{\cot \frac{1}{2}A}{\tan \frac{1}{2}A} = \frac{1}{\tan^2 \frac{1}{2}A}$$
(27)

If we now turn back to formulæ (A), and divide equation (7) by (9), and (8) by (10), observing at the same time that $\frac{\sin \cdot}{\cos \cdot} = \tan \cdot$, we shall have,

$$\tan(a+b) = \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}$$
$$\tan(a-b) = \frac{\sin a \cos b - \cos a \sin b}{\cos a \cos b + \sin a \sin b}$$

By dividing the numerators and denominators of the second members of these equations by $(\cos a \cos b)$, we find,

$$\tan (a+b) = \frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} = \frac{\tan a + \tan b}{1 - \tan a \tan b} \quad (28)$$
$$\tan (a-b) = \frac{\frac{\sin a \cos b}{\cos a \cos b} - \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} + \frac{\sin a \sin b}{\cos a \cos b}} = \frac{\tan a - \tan b}{1 + \tan a \tan b} \quad (29)$$

If in equation (11), formulæ (B), we make a = b, we shall have,

 $\sin 2a = 2\sin a \cos a \quad (30)$

Making the same hypothesis in equation (13), gives,

 $\cos 2a + 1 = 2\cos^2 a$ (31)

(a)

PLANE TRIGONOMETRY.

The same hypothesis reduces equation (14) to $1 - \cos 2a = 2\sin^2 a$ (32)

The same hypothesis reduces equation (28) to

 $\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$ (33)

If we substitute a for 2a in (31) and (32), we shall have

 $1 + \cos a = 2\cos \frac{21}{2}a.$ (34)

and $1 - \cos a = 2\sin \frac{21}{2}a$. (35)

PROPOSITION III.

In any right-angled plane triangle, we may have the following proportions:

1st. The hypotenuse is to either side, as the radius is to the sine of the angle opposite to that side.

2d. One side is to the other side, as the radius is to the tangent of the angle adjacent to the first side.

3d. One side is to the hypotenuse, as the radius is to the secant of the angle adjacent to that side.

Let CAB represent any rightangled triangle, right-angled at A.

(Here, and in all cases hereafter, we shall represent the angles of a triangle by the large letters A, B, C, and the sides opposite to them, by the small letters a, b, c.)

From either acute angle, as C, take any distance, as CD, greater or less than CB, and describe the arc DE. This arc measures the angle C. From D, draw DF parallel to BA; and from E, draw EG, also parallel to BA or DF.

By the definitions of sines, tangents, secants, etc, DF' is the sine of the angle C; EG is the tangent, CG the secant, and CF the cosine.

254

Now, by proportional triangles we have,

CB: BA = CD: DF or, $a: c = R: \sin C$ CA: AB = CE: EG or, $b: c = R: \tan C$ CA: CB = CE: CG or, $b: a = R: \sec C$

Hence the proposition.

SCHOLIUM.—If the hypotenuse of a triangle is made radius, one side is the sine of the angle opposite to it, and the other side is the cosine of the same angle. This is obvious from the triangle *CDF*.

PROPOSITION IV.

In any triangle, the sines of the angles are to one another as the sides opposite to them.

Let ABC be any triangle. From the points A and B, as centers, with any radius, describe the arcs measuring these angles, and draw pa, CD, and mn, perpendicular to AB.

Then, $pa = \sin A$, and $mn = \sin B$. By the similar \triangle 's, Apa and ACD, we have,

 $R: \sin A = b: CD; \text{ or, } R(CD) = b \sin A$ (1)

By the similar \triangle 's, *Bmn* and *BCD*, we have,

 $R: \sin B = a: CD; \text{ or, } R(CD) = a \sin B$ (2)

By equating the second members of equations (1) and (2)

	$b \sin A = a \sin B.$
Hence,	$\sin A : \sin B = a : b$
Or,	$a:b=\sin A:\sin B.$

SCHOLIUM 1.-When either angle is 90°, its sine is radius.

SCHOLIUM 2.—When CB is less than AC, and the angle B, acute, the triangle is represented by ACB. When the angle B becomes B', it is obtuse, and the triangle is ACB'; but the proportion is equally true with either triangle; for the angle CB'D = CBA, and the sine of CB'D is the same as the sine of AB'C. In practice we can determine which of these triangles is proposed, by the side AB being greater or less than AC; or, by the angle at the vertex C being large, as ACB, or small, as ACB'.

In the solitary case in which AC, CB, and the angle A, are given, and CB less than AC; we can determine both of the \triangle 's ACB and ACB'; and then we surely have the right one.

PROPOSITION V.

If from any angle of a triangle, a perpendicular be let fall on the opposite side, or base, the tangents of the segments of the angle are to each other as the segments of the base.

E

Let ABC be the triangle. Let fall the perpendicular CD, on the side AB.

Take any radius, as Cn, and describe the arc which measures the $A \xrightarrow{g \mid F} B$ angle C. From n, draw qnp parallel to AB. Then it is obvious that np is the tangent of the angle DCB, and nqis the tangent of the angle ACD.

Now, by reason of the parallels AB and qp, we have,

qn: np = AD: DBThat is, tan.ACD: tan.DCB = AD: DB.

PROPOSITION VI.

If a perpendicular be let fall from any angle of a triangle to its opposite side or base, this base is to the sum of the other two sides, as the difference of the sides is to the difference of the segments of the base.

(See figure to Proposition 5.)

Let AB be the base, and from C, as a center, with the shorter side as radius, describe the circle, cutting AB in G, and AC in F; produce AC to E.

It is obvious that AE is the sum of the sides AC and CB, and AF is their difference.

Also, AD is one segment of the base made by the perpendicular, and BD = DG is the other; therefore, the difference of the segments is AG.

As A is a point without a circle, by Cor. Th. 18, B. III, we have

 $AE \times AF = AB \times AG$ Hence, AB : AE = AF : AG.

PROPOSITION VII.

The sum of any two sides of a triangle is to their difference, as the tangent of one half the sum of the angles opposite to these sides, is to the tangent of one half their difference.

Let ABC be any plane triangle. Then, by Proposition 4, we have,

 $BC: AC = \sin A : \sin B.$

Hence,

 $BC + AC: BC - AC = \sin A + \sin B: \sin A - \sin B$ (Th.9, B. II). But,

 $\tan \left(\frac{A+B}{2}\right) : \tan \left(\frac{A-B}{2}\right) = \sin A + \sin B : \sin A$ $-\sin B, (eq. (19), Trig.)$

Comparing the two latter proportions, (Th. 6, B. II), we have,

 $BC + AC: BC - AC = \tan\left(\frac{A+B}{2}\right): \tan\left(\frac{A-B}{2}\right)$ Hence the proposition.

PROPOSITION VIII.

Given, the three sides of any plane triangle, to find some relation which they must bear to the sines and cosines of the respective angles.

22*

Let ABC be the triangle, and let the perpendicular fall either upon, or without the base, as shown in the figures.

By recurring to Th. 40, B. I, we shall find

CD

$$CD = \frac{a^2 + b^2}{2a} - c^2.$$
(1)

 $b \cos . C$

R

(2)

Now, by Proposition 3, we have

$$R:\cos C = b:CD.$$

Therefore,

Alao. + et

Equating these two values of
$$CD$$
, and reducing, we

cos.
$$C = \frac{R(a^2 + b^2 - c^2)}{2ab}$$
. (m)

In this expression we observe, that the part c, whose square is found in the numerator with the minus sign, is the side opposite to the angle; and that the denominator is twice the rectangle of the sides adjacent to the angle. From these observations we at once draw the following expressions for the cosine A, and cosine B:

$$\cos A = \frac{R(b^2 + c^2 - a^2)}{2bc}.$$
 (n)
$$\cos B = \frac{R(a^2 + c^2 - b^2)}{2ac}.$$
 (p)

As these expressions are not convenient for logarithmic computation, we modify them as follows:

If we put 2a = A, in equation (31), we have

 $\cos A + 1 = 2\cos^2 \frac{1}{2}A.$

In the preceding expression, (n), if we consider radius unity, and add 1 to both members, we shall have

$$\cos A + 1 = 1 + \frac{b^2 + c^2 - a^2}{2bc}$$

 $2bc + b^2 + c^2 - a^2$ Therefore, $2\cos^2 \frac{1}{2}A =$ 2bc the state of the second state

F AT A STREET FOR THE

$$=\frac{(b+c)^2-a^2}{2bc}.$$

Arra Add Stor Considering b + c as one quantity, and observing that $(b + c)^2 - a^2$ is the difference of two squares, we have $(b+c)^2 - a^2 = (b+c+a)(b+c-a);$ but (b+c-a) = b+c+a-2a. Hence, $2\cos^{\frac{21}{2}}A = \frac{(b+c+a)(b+c+a-2a)}{2bc}$. Or, $\cos^{2}\frac{1}{2}A = \frac{\binom{b+c+a}{2}}{\binom{b+c+a}{2}-a}$.

By putting $\frac{a+b+c}{2} = s$, and extracting square root, the final result for radius unity is

$$\cos \cdot \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}.$$

For any other radius we must write

By in

$$\cos \cdot \frac{1}{2}A = \sqrt{\frac{R^2 s (s-a)}{bc}}.$$

By inference,
$$\cos \cdot \frac{1}{2}B = \sqrt{\frac{R^2 s (s-b)}{ac}}.$$

Also,
$$\cos \cdot \frac{1}{2}C = \sqrt{\frac{R^2 s (s-c)}{ac}}.$$

ab

In every triangle, the sum of the three angles is equal to 180°; and if one of the angles is small, the other two must be comparatively large; if two of them are small, the third one must be large. The greater angle is always opposite the greater side; hence, by merely inspecting the given sides, any person can decide at once which is the greater angle; and of the three pre-

PLANE TRIGONOMETRY.

ceding equations, *that one* should be taken which applies to the greater angle, whether that be the particular angle required or not; because the equations bring out the *cosines* to the angles; and the cosines to very small arcs vary so slowly, that it may be impossible to decide, with sufficient numerical accuracy, to what particular arc the cosine belongs. For instance, the cosine 9.999999, carried to the table, applies to several arcs; and, of course, we should not know which one to take; but this difficulty does not exist when the angle is large; therefore, compute the largest angle first, and then compute the other angles by Proposition 4.

But we can deduce an expression for the sine of any of the angles, as well as the cosine. It is done as follows:

EQUATIONS FOR THE SINES OF THE ANGLES.

Resuming equation (m), and considering radius unity, we have

$$\cos. C = \frac{a^2 + b^2 - c^2}{2ab}.$$

Subtracting each member of this equation from unity, gives

$$1 - \cos C = 1 - \left(\frac{a^2 + b^2 - c^2}{2ab}\right).$$
(1)

Make 2a = C, in equation (32); then $a = \frac{1}{2}C$, and $1 - \cos C = 2\sin \frac{1}{2}C$. (2) Equating the second members of (1) and (2),

$$2\sin^2 \frac{1}{2}C = \frac{2ab - a^2 - b^2 + c^2}{2ab}$$
$$= \frac{c^2 - (a - b)^2}{2ab}$$
$$= \frac{(c + b - a)(c + a - b)}{2ab}$$

Or,
$$\sin^2 \frac{1}{2}C = \frac{\left(\frac{c+b-a}{2}\right)\left(\frac{c+a-b}{2}\right)}{\frac{ab}{2}}$$

But,
$$\frac{c+b-a}{2} = \frac{c+b+a}{2} - a$$
, and $\frac{c+a-b}{2} = \frac{c+a+b}{2} - b$.

Put $\frac{a+b+c}{2} = s$, as before; then,

$$\sin_{\frac{1}{2}}C = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

By taking equation (p), and proceeding in the same manner, we have

$$\sin_{\frac{1}{2}}B = \sqrt{\frac{(s-a)(s-c)}{ac}}.$$

From (n), sin. $\frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{cb}}$.

The preceding results are for radius unity; for any other radius, we must multiply by the number of units in such radius. For the radius of the tables we write R; and if we put it under the radical sign, we must write R^2 ; hence, for the sines corresponding with our logarithmic table, we must write the equations thus,

$$\sin \cdot \frac{1}{2}A = \sqrt{\frac{R^2(s-b)(s-c)}{bc}}.$$

$$\sin \cdot \frac{1}{2}B = \sqrt{\frac{R^2(s-a)(s-c)}{ac}}.$$

$$\sin \cdot \frac{1}{2}C = \sqrt{\frac{R^2(s-a)(s-b)}{ab}}.$$

A large angle should not be determined by these equations, for the same reason that a small angle should not be determined from an equation expressing the cosine.

In practice, the equations for cosine are more generally used, because more easily applied.

The formulæ which we have thus analytically developed, express nearly all the important relations between the sines, cosines, and tangents of arcs or angles; and we have also demonstrated all the theorems required for the determination of the unknown parts of any plane triangle, three of the parts of which are given, one at least being a side.

Such relations might be indefinitely multiplied, but those already established are sufficient for most practical purposes, and when others are required, no difficulty will be found in deducing them from these.

The following geometrical demonstrations of many of the preceding relations, are offered, in the belief that they will prove useful disciplinary exercises to the student.

1st. Let the arc AD = A; then $DG = \sin A$; $CG = \cos A$; $DI = \sin \frac{1}{2}A$; $AD = 2\sin \frac{1}{2}A$; $CI = \cos \frac{1}{2}A$;

CI=D0; and $DB=2D0=2\cos \frac{1}{2}A$.

The angle, DBA, is measured by one half the arc AD; that is, by $\frac{1}{2}A$. Also, $ADG = DBA = \frac{1}{2}A$. Now, in the triangle, BDG, we have $\sin .DBG : DG = \sin .90^\circ : BD$. That is, $\sin .\frac{1}{2}A : \sin .A = 1 : 2\cos .\frac{1}{2}A$. Or, $\sin .A = 2\sin .\frac{1}{2}A \cos .\frac{1}{2}A$; which corresponds to equation (30). In the same triangle, $\sin .90^\circ : BD = \sin .BDG : BG$; and $\sin .BDG = \cos .DBG$.

That is, $1: 2\cos_{\frac{1}{2}}A = \cos_{\frac{1}{2}}A: 1 + \cos_{\frac{1}{2}}A.$

Or, $2\cos^2 \frac{1}{2}A = 1 + \cos A$, same as equation (34). In the triangle, DGA, we have,

 $\sin.90^\circ: AD = \sin.GDA: GA.$

That is, $1: 2\sin_{\frac{1}{2}}A = \sin_{\frac{1}{2}}A: 1 - \cos_{\frac{1}{2}}A.$

Or, $2\sin^2 \frac{1}{2}A = 1 - \cos A$, same as equation (35).

By similar triangles, we have,

$$BA: AD = AD: AG.$$
That is, $2: 2\sin \frac{1}{2}A = 2\sin \frac{1}{2}A: \text{versed sin.}A.$
Or, versed sin. $A = 2\sin \frac{1}{2}A.$
2d. From C as the center, with CA as the radius,
describe a circle. Take any arc,
 AB , and call it A ; and AD a less
arc, and call it B ; then BD is the
difference of the two arcs, and must
be designated by $(A-B)$; arc AG
 $= \text{arc } AB$; therefore,
 $\text{arc } DG = A + B; EG = \sin A;$
 $En = \sin B; Gn = \sin A + \sin B;$
 $Bn = \sin A - \sin B.$
 $Fm = mD = CH = \cos B; mn = \cos A;$
therefore, $Fm + mn = \cos A + \cos B = Fn;$
 $mD - mn = \cos B - \cos A = nD;$
and $DG = 2\sin(\frac{A+B}{2}).$
Because, $NF = AD; AB + NF = A + B;$
therefore, $I80^\circ - (A + B) = \operatorname{arc } FB;$
or, $90^\circ - (\frac{A+B}{2}) = \frac{1}{2}\operatorname{arc } FB.$
But the chord, FB , is twice the sine of $\frac{1}{2}$ are FB ;
that is, $FB = 2\sin (90^\circ - \frac{A+B}{2}) = 2\cos (\frac{A+B}{2}).$
The $\lfloor nGD = \lfloor BFD$, because both are measured
by one half of the arc BD ; that is, by $(\frac{A-B}{2})$, and the
two triangles, GnD and FnB , are similar.
The angle, GFn , is measured by $(\frac{A+B}{2}).$

In the triangle, FBG, Fn is drawn from an angle per-

DIE LIBRAR

pendicular to the opposite side; therefore, by Proposition 5, we have,

$$Gn: nB = \tan . GFn : \tan . BFn.$$

That is, $\sin A + \sin B : \sin A - \sin B = \tan \left(\frac{A+B}{2}\right) : \tan A$

 $\left(\frac{A-B}{2}\right)$. This is equation (19).

In the triangle, GnD, we have, $\sin.90^\circ: DG = \sin.nDG: Gn; \sin.nDG = \cos.nGD$. That is, $1: 2\sin.\left(\frac{A+B}{2}\right) = \cos.\left(\frac{A-B}{2}\right): \sin.A + \sin.B$. Or, $\sin.A + \sin.B = 2\sin.\left(\frac{A+B}{2}\right)\cos.\left(\frac{A-B}{2}\right)$,

the same as equation (15).

3d. In the triangle, FnB, we have,

 $\sin.90: FB = \sin.BFn: Bn.$

That is, $1: 2\cos\left(\frac{A+B}{2}\right) = \sin\left(\frac{A-B}{2}\right): \sin A - \sin B.$

Or, $\sin A - \sin B = 2\cos \left(\frac{A+B}{2}\right)\sin \left(\frac{A-B}{2}\right)$, the same as equation (16).

4th. In the triangle, FBn, we have,

 $\sin.90: FB = \cos.BFn: Fn.$

That is, 1: 2cos. $\left(\frac{A+B}{2}\right) = \cos\left(\frac{A-B}{2}\right)$: cos. A+cos. B.

Or, $\cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right)$, the same as equation (17).

5th. In the triangle, GnD, we have,

 $\sin .90^\circ: GD = \sin .nGD: nD.$

That is, $1: 2\sin\left(\frac{A+B}{2}\right) = \sin\left(\frac{A-B}{2}\right): \cos B - \cos A$, the same as equation (18).

6th. In the triangle, FGn, we have,

 $\sin. GFn: Gn = \cos. GFn: Fn.$

965

That is, $\sin \frac{A+B}{2}$: $\sin A + \sin B = \cos \frac{A+B}{2}$: $\cos A + \cos B$.

Or, $(\sin A + \sin B) \cos \left(\frac{A+B}{2}\right) = (\cos A + \cos B) \sin \left(\frac{A+B}{2}\right)$.

Or,
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin \frac{A+B}{2}}{\cos \frac{A+B}{2}} = \tan \left(\frac{A+B}{2}\right)$$
, the

same as equation (20).

7th. In the triangle, FnB, we have,

Fn: nB:: 1: tan. BFn.

That is, $\cos .B + \cos .A : \sin .A - \sin .B :: 1 : \tan .\frac{1}{2}(A - B)$.

Or, $\frac{\sin A - \sin B}{\cos A + \cos B} = \tan \left(\frac{A - B}{2}\right)$, the same

as equation (22).

8th. In the triangle, GnD, we have,

Gn: nD:: 1: tan.nGD.

That is,

sin. $A + \sin B : \cos B - \cos A :: 1 : \tan(\frac{A - B}{2}),$

or,
$$\frac{\cos B - \cos A}{\sin A + \sin B} = \tan \left(\frac{A - B}{2}\right)$$
.

NATURAL SINES, COSINES, ETC.

When the radius of the circle is taken as the unit of measure, the numerical values of the trigonometrical lines belonging to the different arcs of the quadrant, become *natural* sines, cosines, etc. They are then, in fact, but numbers expressing the number of times that these lines contain the radius of the circle in which they are taken. The tables usually contain only the sines and cosines, because these are generally sufficient for practical purposes, and the others, when required, are readily expressed in terms of them.

We proceed to explain a method for computing a table of natural sines and cosines.

It was shown, in Book V, that the linear value of the arc 180°, in a circle whose radius is unity, is

3.141592653.

This divided by 180×60 , the number of minutes in 180° , will give the length of one minute of arc, which is

.00029088820867.

But there can be no sensible difference between the length of the arc 1' and its sine; and, within narrow limits, that sine will increase directly with the arc.

Hence,	sin.	1'	=	.0002908882.
na sen (sin.	2'	=	.0005817764.
	sin.	3'	=	.0008726646.
	sin.	4'	=	.0011635528.
	sin.	5'	=	.0014544410.
	sin.	6'	=	.0017453292.
	sin.	7'	=	.0020362175.
1-1-1-	sin.	8'	=	.0023271057.
	sin.	9'	-	.0026179938.
	ain	10/	-	0020088811

Beyond this, the error which would arise from taking the arc for its sine, upon which the above proceeds, would affect the final decimal figures; and we must, therefore, continue the computation of the series by other processes. To find the values of the cosines of arcs, from 1' to 10', we have

 $\cos = \sqrt{1 - \sin^2} = 1 - \frac{1}{2} \sin^2$, nearly.

That is, when the sines are very small fractions, as is the case for all arcs below 10', we can find the cosine by subtracting one half of the square of the sine from unity.

cos.	1'	=	.9999999577.
cos.	2'	=	.9999998308.
cos.	3'	-	.9999993204.
cos.	4'	=	.99999932304.
cos.	5'	=	.99999894290.
cos.	6'	-	.99999847753.
cos.	7'	=	.99999792735.
cos.	8'	=	.9999973035.
cos.	9'	=	.9999965730.
cos.	10'	=	.9999957703.

The natural sines of arcs, differing by 1', from 10' up to 1°, may be computed from those of arcs less than 10', by means of equation (11), group *B*, which is

 $\sin (a + b) = 2\sin a \cos b - \sin (a + b);$ And when a = b, this equation becomes

 $\sin 2a = 2\sin a \cos b$. Eq. (30).

To find the sine of 11', we make a = 6', and b = 5';

then $\sin .11' = 2\sin .6' \cos .5' - \sin .1' = .00319976913.$ $a = b = 6', \quad \sin .12' = 2\sin .6' \cos .6'.$ $a = 7', b = 6', \sin .13' = 2\sin .7' \cos .6' - \sin .1'.$ $a = b = 7, \quad \sin .14' = 2\sin .7' \cos .7'.$ $a = 8, b = 7, \quad \sin .15' = 2\sin .8' \cos .7' - \sin .1'$

And so on to the

 $\begin{aligned} \sin . 30' &= 2\sin . 15' \cos . 15'.\\ \sin . 1^\circ &= \sin . 60' = 2\sin . 30' \cos . 30'.\\ \sin . 2^\circ &= 2\sin . 1^\circ \cos . 1^\circ.\\ \sin . 3^\circ &= 2\sin . 2^\circ \cos . 1^\circ - \sin . 1^\circ, \text{ etc., etc., etc., etc.} \end{aligned}$

This process may be continued until we have found the sines and cosines of all arcs differing by 1', from 0 to 90°, the values of the cosines being deduced successively from those of the sines by means of the formula,

 $\cos = \sqrt{1 - \sin^2}.$

In this calculation, we began by assuming that, for small arcs, the sines and the arcs were sensibly equal.

real Sum 15

and a set of a set of

PLANE TRIGONOMETRY.

It must be remembered that this is but an approximation; and although the error in the early stages of the process is not sufficient to affect any of the decimal figures which enter the tables, it will finally become so, since it is constantly increased in the operations by which the sines and cosines of the larger arcs are deduced from those of the smaller. When the error has been thus increased until it reaches the order of the last decimal unit of the table, which assigns our limit of error, we must have the means of detecting and correcting it.

• This consists in calculating the sines and cosines of certain arcs by independent processes, and comparing them with those found by the above method.

We have seen, for example, (Prop. 7, B. V), that the chord of

	30°	=	.51	763	8090	; wh	ience,	sin.	15°			_	.258819	045.	
1	15°	-	.26	105	23842	2;	66	- 66	70	15'		_	.130526	3192.	
7°	15'	-	.13	080	62583	3; -	66		30	7'	30″	-	.065403	31291	
	And	so	on	to	.T.16		100	cin	1.1	211 1	5/11		004000	0604	

etc. etc.

The following elegant method of deducing, from the sine of an arc, the sine and cosine of one half the arc, is given, assuming that the student is familiar with the simple algebraic principles upon which it depends.

Let us take the natural sine of 18°, which is .3090170,

and make x = sine, and y the cosine of $9^\circ = \frac{18^\circ}{2}$.

etc.

en,	$x^2 + y^2 = 1;$, (1)
-----	------------------	-------

and

Th

1

2xy = .3090170 (2); Eq. (30).

Adding, we have

 $x^{2} + 2xy + y^{2} = 1.3090170;$

Taking the square root, we have x + y = 1.144123. (3) Subtracting (2) from (1),

$$x^2 - 2xy + y^2 = .690983;$$

TELL LASSET GROOM BERY

taking the square root,

and

 $x - y = -.831254^*$ (4) Adding (3) and (4), 2x = .312869, hence, $x = \sin.9^\circ = .1564345$ Subtracting (4) from (3), 2y = 1.975377hence, $y = \cos.9^\circ = .9876885$ Now, by making x = the sine of 4° 30′, and $y = \cos$ ine

Now, by making x = the sine of 4° 30', and $y = \cos \theta$ of 4° 30', and as before

$$\begin{array}{rcl}
x^2 + y^2 &= 1 \\
2xy &= .1564345,
\end{array}$$

we obtain the sine and cosine of 4° 30'; and another operation will give the sine and cosine 2° 15', etc., etc.

We may in this manner compute the sines and cosines of all arcs resulting from the division of 18° by 2, and we may make their values accurate to any assigned decimal figure.

This has been carried far enough to show how a table of natural sines, etc., could be computed; but in consequence of the tedious numerical operations which the process requires, other methods are resorted to in the actual construction of the table.

The Calculus furnishes formulæ giving the values of the sines and cosines of arcs developed into rapidly converging series, and from these the sines and cosines of all arcs from 0° to 90°, can be determined with great

^{*} When an arc is less than 45° , the cosine exceeds the sine; and when the arc is between 45° and 90° , the sine exceeds the cosine. Hence, when the arc is 9° , y, its cosine, exceeds x, its sine; and we therefore placed the minus sign before the second member of Eq. (4).

PLANE TRIGONOMETRY.

accuracy and with comparatively little labor. In the last two columns on each page of Table II, will be found the values thus computed of the sines and cosines of every degree and minute of a quadrant.

TRIGONOMETRICAL LINES FOR ARCS EXCEEDING 90°.

From the annexed figure, the construction of which needs no explanation, are deduced by simple inspection the results given in the following

TABLE.

$90^{\circ} + a^{\circ}$	270° — a°
$\sin = \cos a, \cos = -\sin a$	$\sin = -\cos a$, $\cos = -\sin a$
$\tan = -\cot a, \cot = -\tan a$	$\tan = \cot a, \cot = \tan a$
$\sec = -\csc a$, $\csc = \sec a$	$\sec = -\csc a$, $\csc = -\sec a$
180° — a°	$270^{\circ} + a^{\circ}$.
$\sin = \sin a$, $\cos = -\cos a$	$\sin = -\cos a$, $\cos = \sin a$
$\tan = -\tan a$, $\cot = -\cot a$	$\tan = -\cot a$, $\cot = -\tan a$
$\sec = -\sec a$, $\csc = \csc a$	sec. = cosec. a, cosec. = -sec. a
$180^\circ + a^\circ$	360° — a°
$\sin = -\sin a$, $\cos = -\cos a$	$\sin = -\sin a$, $\cos = \cos a$
$\tan = \tan a, \cot = \cot a$	$\tan = -\tan a$, $\cot = -\cot a$
$\sec = -\sec a$, $\csc = -\csc a$	sec. = sec. a, cosec. = -cosec. a

By means of this table, the values of the trigonometrical lines of any arc between 90° and 360°, can be expressed by those of arcs less than 90°.

If, for example, the arc is 118°, we have

 $sin. 118^{\circ} = sin. (90^{\circ} + 28^{\circ}) = cos.28^{\circ};$ $tan.118^{\circ} = tan.(90^{\circ} + 28^{\circ}) = -cot.28^{\circ};$ etc., etc., etc.

For the arc 230°, we have

 $\sin .230^\circ = \sin .(270^\circ - 40^\circ) = -\cos .40^\circ;$ $\sec .230^\circ = \sec .(270^\circ - 40^\circ) = -\csc .40^\circ;$ etc., etc., etc.

In many investigations, it becomes necessary to consider the functions of arcs greater than 360° ; but since the addition of 360° any number of times to the arc a, will give an arc terminating in the extremity of a, it is obvious that the arc resulting from such addition will have the same functions as the arc a. And hence it follows that the functions of arcs, however great, may be expressed in terms of the functions of arcs less than 90° .

PLANE TRIGONOMETRY, PRACTICALLY APPLIED.

In the preceding section, the theory of Trigonometry has been quite fully developed, and the student should now be prepared for its various applications, were he acquainted with logarithms. But logarithms are no part of Trigonometry, and serve only to facilitate the numerical operations. Trigonometrical computations can be made without logarithms, and were so made long before the theory of logarithms was understood.

For this reason, we proceed at once to the solution of the following triangles.

1. The hypotenuse of a right-angled triangle is 21, and the base is 17; required the perpendicular and the acute angles.

Let CAB be the triangle, in which CB = 21, and CA =17. With C as a center, and CD = 1 as a radius, describe the arc DE, of which the sine is DF, the tangent is EG, and the cosine is CF.

By similar triangles we have

CB : CA :: CD : CF;21 : 17 :: 1 : cos. C. cos. C = $\frac{17}{21}$ = .80952+.

that is, Hence, We must now turn to Table II, and find in the last two columns the cosine nearest to .80952, and the corresponding degrees and minutes will be the value of the angle C.

On page 56, of Tables, near the bottom of the page, and in the column with cosine at the top, we find .80953, which corresponds to 35° 56' for the angle C. The angle B is, therefore, 54° 4'.

This Table is so arranged, that the sum of the degrees at the top and bottom of the page, added to the sum of the minutes which are found on the same horizontal line in the two side columns of the page, make 90°.

Thus, in finding the angle C, the number .80953 was found in the column with cosine at its foot. We therefore took the degrees from the bottom of the page, and the minutes were taken from the right hand column, counting upwards.

For the side AB, we have the proportion

A stration 30.	CF: FD:: CA: AB;
or,	$\cos C : \sin C :: 17 : AB;$
that is,	.80953 : .58708 :: 17 : AB.
From which w	re find $AB = .58708 \times 17 \div .80953$;
whence,	AB = 12.328.

If we had formed a table of natural tangents, as well as of natural sines, AB could have been found by the following proportion \cdot

90	CE: EG:: CA: AB
or,	$1: \tan C :: 17 : AB;$
whence,	$AB = 17 ext{ tan. } C.$
The perper	ndicular AB may also be found by the proportion
	CD: DF:: CB: AB;
or,	$1: \sin C :: 21 : AB;$

whence, $AB = 21 \sin C = 21 \times .58708 = 12.32868$.

2. The two sides of a right-angled triangle are 150 and 125; required the hypotenuse and the acute angles.

Let CAB be the triangle, which is the same as in the preceding problem.

Then, from the similar triangles, CFD and CAB, we get

CF: FD:: CA: AB;

B

DG

PLANE TRIGONOMETRY.

that is, cos. C : sin. C :: 150 : 125 :: 6 : 5, which gives 6 sin. $C = 5 \cos C$; hence, 36 sin. $C = 25 \cos^2 C$. Adding member to member, 36 cos.² $C = 36 \cos^2 C$. we have $36 (\sin^2 C + \cos^2 C) = 61 \cos^2 C$. But sin.²C + cos.²C = 1, (Eq. (1) Trigonometry); whence, 61 cos.²C = 36; $\cos^2 C = \frac{36}{61} = .5901639344$;

and

cos. C = .76816, nearly.

To find the angle of which this is the cosine, we turn to page 60 of tables, and looking in the column having cosine at the head, we see that .76816 falls between .76868, which has 48' opposite to it in the left hand column, and .76810, which has 49' opposite to it in the same column. Now, the cosines of arcs less than 90° decrease when the arcs increase, and the converse; and while the increase of the arc is confined within the limits of 1', the increase of the arc will be sensibly proportional to the decrease of the cosine.

Print Print Street St	0.76828	.76828			
Hence,	0.76810	.76810 .76816			
	18	: 12 :	: 60" : x"		
which gives	$x^{\prime\prime} =$	40".			

The angle C is, therefore, equal to $39^{\circ} 48' 40''$, and the angle $B = 90^{\circ} - 39^{\circ} 48' 40'' = 50^{\circ} 11' 20''$.

To find CB, we have

	CF: CD:: CA: CB;
or,	$\cos C : 1 :: 150 : CB;$
that is,	.78816 : 1 :: 150 : CB;
whence,	$CB = \frac{150}{.76816} = 195.27 +.$

3. The base of a right-angled triangle is 150, and the angle opposite the base is 50° 11′ 20″; required the hypotenuse and the perpendicular.

Let CAB be the triangle.

Then, (Prop. 4, Sec. I),

sin. 50° 11' 20" : sin. 90° :: 150 : CB.

Whence,

or,

$$CB = \frac{150}{.76816} = 195.27,$$

the same as in the preceding example.

To find AB, we have

CD: DF:: CB: AB;

that is, $1 : \sin C$ or $\cos B :: 195.27 : AB$; from which we find

> $AB = 195.27 \sin .39^{\circ} 48' 40'';$ AB = 125.01077.

4. Two sides, the one 30 and the other 35, and the included angle 20°, of a triangle, are given, to find the other two angles and the third side.

Let BAC be the triangle, in which BC= 35, BA = 30, and the angle B = 20°. From A, the extremity of the shorter side, let fall on BC the perpendicular AD, thus dividing the triangle Binto the two right-angled triangles BAD and CAD.

Then, from the triangle BAD, we have

1st,	$\sin D$	•	sin. B	::	BA	: AD;
or,	1	:	sin. 20°	::	30	: $AD = 30 \sin 20^{\circ}$.
2d,	1	:	$\cos B$::	BA	: <i>BD</i> ;
or,	1	:	cos. 20°	::	30	$: BD = 30 \cos B.$

In the table of natural sines, we find sin. $20^{\circ} = .34202$, and the cos. $20^{\circ} = .93969$; hence, $AD = 30 \times .34202 = 10.26060$, and $BD = 30 \times .93969 = 28.19070$, and therefore DC = BC = BD = 6.8093.

From the triangle CAD, we have

1st, $AC = \sqrt{\overline{AD}^2 + \overline{DC}^2} = \sqrt{(10.26)^2 + (6.9+)^2} = 12.367.$ 2d, $AC: AD:: \sin. 90^\circ: \sin. C;$

PLANE TRIGONOMETRY.

or, $12.367: 10.26 + :: 1: \sin C;$ whence, $\sin C = \frac{10.26}{12.367} = .82968.$ and the angle $C = 56^{\circ} 3'.$

If, now, we add angles B and C, and take the sum from 180°, the remainder will be the angle BAC.

Hence, $\[BAC = 180^{\circ} - (56^{\circ} 3' + 20^{\circ}) = 103^{\circ} 57'. \]$

5. Two sides, the one 18 and the other 24, and the angle opposite the side 24 equal to 76°, are given, to find the remaining side and the other two angles.

Let x denote the angle opposite the side 18. Then,

24 : 18 :: sin. 76° : sin. x,. (Prop. 4, Trig.).

or, $4: 3:: \sin .76^\circ : \sin . x$.

$$\sin x = \frac{3}{4} \sin .76^{\circ} = \frac{3}{4} \times .97030 = .72772;$$

whence the angle opposite the side 18 is 46° 41' 45".

Adding this to the given angle, and taking the sum from 180°, we get 57° 17' 15" for the third angle.

To find the remaining side, denoted by y, we have

sin. 76°: sin. 57° 18′ 15″:: 24: y; or, 97030: .84154:: 24: y. $y = \frac{24 \times .84154}{.97030} = 20.815 = 3d$ side.

6. The three sides of a triangle are 18, 24, and 20.815; required the angles.

This problem may be solved by Prop. 6, or by Prop. 8, Trigonometry.

First. By Prop. 6. In the triangle ABC, make CB =24, AC = 20.815, and AB = 18. Then, 24 : 38.815 :: 2.815 : CD - BD. $CD - BD = \frac{109.264225}{24} = 4.5527$.

277

But CD + BD = CB = 24. By addition, we get 2CD = 28.5527; dividing by 2, and CD = 14.2763 +. And hence, BD = CB - CD = 24 - 14.2763 = 9.7237. In the triangle ADB, we have $BA : BD :: 1 : \cos B$ or, $18 : 9.7237 :: 1 : \cos B = .54020$ Table II, Page 53, $\begin{cases} \cos 57^{\circ} 18' = .54024 \\ \cos .57^{\circ} 19' = .54000 \end{cases}$

diff. hence, = 24:60''::4:10'' $| B = 57^{\circ} 18' 10''.$

It will be observed that Examples 5 and 6 refer to the same triangle, and that in Example 5 the angle B was 57° 18' 15". This slight discrepancy in the results should be expected, on account of the small number of decimal places used in the computations.

Second. By Prop. 8.

Sum of the sides, = 62.815, half sum denoted by S, = 31.4075a = 24S-a = 7.4075Formula, $\cos \frac{1}{2} A = \sqrt{\frac{\overline{S}(\overline{S}-a)}{bc}}$, radius being unity. $S(S-a) = 31.4075 \times 7.4075 = 232.65105625$ $bc = 20.815 \times 18 = 374.67$ $\frac{\overline{S}(S-a)}{bc} = .62095$ very nearly. $\sqrt{.62095} = .78800.$

Hence, cos. $\frac{1}{2}A = .78800$, and $\frac{1}{2}A$ (Table II, page 59) = 38° very nearly; the angle A is therefore equal to 76°, which agrees with Example 5.

7. Given, the three sides, 1425, 1338, and 493, of a triangle; required, the angle opposite the greater side, using the formula for the sine of one half an angle.

 $\mathbf{24}$

Make a = 1425, b = 1338, and c = 493; then the $\lfloor A$ is opposite the side a, and the formula is

$$\sin^2 \frac{1}{2}A = \frac{(s-b)(s-c)}{bc}$$

in which s denotes the half sum of the three sides.

Then we have s = 1628, s - b = 290, s - c = 1135, (s - b)(s - c) = 329150, bc = 659634, $\frac{(s - b)(s - c)}{bc} = .498988$.

Hence, $\sin \frac{1}{2}A = \sqrt{.498988} = .70632.$

In the table we find $\sin .44^{\circ} 56' 12'' = .70632.$

Therefore, $\frac{1}{2}A = 44^{\circ} 56' 12''$, and $A = 89^{\circ} 52' 24''$;—but little less than a right angle.

In these seven examples we have shown that it is possible to solve any plane triangle, in which three parts, one at least being a side, are given, without the aid of logarithms. But, when great accuracy is required, and the number of decimal places employed is large, the necessary multiplications and divisions, the raising to powers, and the extraction of roots, *become very tedious*. All of these operations may be performed without impairing the correctness of results, and with a great saving of labor, by means of logarithms; but, before using them, the student should be made acquainted with their nature and properties.

LOGARITHMS.

Logarithms are the exponents of the powers to which a fixed number, called the *base*, must be raised, to produce other numbers.

The exponent of a number is also a number expressing how many times the first number is taken as a factor.

Thus, let a denote any number; then a^{3} indicates that a has been used three times as a factor, a^{4} that it has been used four times as a factor, and a^{n} that it has been thus used n times.

Now, instead of calling these numbers 3, 4, - n, exponents, we call them the logarithms of the powers a^3 , a^4 , $- a^n$.

To multiply a^2 by a^5 , we have simply to write a, giving it an exponent equal to 2 + 5; thus, $a^2 \times a^5 = a^7$.

Hence, the sum of the logarithms of any number of factors is equal to the logarithm of the product.

To divide a^{12} by a^9 , we have only to write a, giving it an exponent equal to 12 - 9; thus, $a^{12} \div a^9 = a^3$; and, generally, the quotient arising from the division of a^m by a^n , is equal to a^{m-n} .

Hence, the logarithm of a quotient is the logarithm of the dividend diminished by the logarithm of the divisor.

If it is required to raise a number denoted by a^3 , to the fifth power, we write a, giving it an exponent equal to 3×5 ; thus, $(a^3)^5 = a^{15}$, and, generally, $(a^n)^m = a^{nm}$.

Hence, the logarithm of the power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

To extract the 5th root of the number a^3 , we write a, giving it an exponent equal to $\frac{3}{5}$; thus, $\sqrt[5]{a^3} = a^{\frac{3}{2}}$, and, generally, to extract any root of a number, we divide the exponent of the number by the index of the root, and the quotient will be the exponent of the required root.

Hence, the logarithm of a root of a number is equal to the quotient obtained by dividing the logarithm of the number by the index of the root.

Now, understanding that by means of a table of logarithms we may find the numbers answering to given logarithms, with as much facility as we can find the logarithms of given numbers, we see from what precedes that multiplications, divisions, raising to powers, and the extraction of roots, may be performed by logarithms; and the utility of logarithms, in trigonometrical computations, mainly consists in the simplicity and abridgment of these operations as executed by them. The common logarithms are those of which 10 is the base; that is, they are the exponents of 10.

Thus,	$10^{1} =$	10	Hence	the	logarithm	10	= 1.
HILD !	$10^{2} =$	100	66	66	66	100	= 2.
	$10^{3} =$	1000		6.	66	1000	= 3.
•	10*=	10000	66	66	66	10000	=4.
	etc.	etc.	ine era	etc	T do to Tal	etc.	etć.

Since $\frac{10}{10} = 1 = 10^{1-1} = 10^{\circ}$, and generally $\frac{a^m}{a^m} = a^{\circ} = 1$, it follows that in this, as in all other systems, the logarithm of 1 = 0.

From what precedes, it is evident that the logarithm of any number between 10 and 100 must be found between 1 and 2; that is, its logarithm is 1 plus a number less than 1; and any number between 100 and 1000, will have for its logarithm 2 plus some number less than 1, and so on. The fractional part of the logarithms of numbers are expressed decimally.

The entire number belonging to a logarithm is called its *index*. The index is never put in the tables, (except from 1 to 100), and need not be put there, because we always know what it is. It is always one less than the number of digits in the whole number. Thus, the number 3754 has 3 for the index to its logarithm, because the number consists of 4 digits; that is, *the logarithm is 3 and some decimal*.

The number 347.921 has 2 for the index of its logarithm, because the number is between 347 and 348, and 2 is the index for the logarithms of all numbers over 100, and less than 1000.

All numbers consisting of the same figures, whether integral, fractional, or mixed, have logarithms consisting of the same *decimal* part. The logarithms would differ only in their indices.

quistinues a universe by them.

24 *

Thus,	the numb	er 7956.	has	3.900695	for its log.
11/22	the numb	er 795.6	has	2.900695	La d'Gradienna
1.00	the numb	er 79.56	has	1.900695	in " all to
	the numb	er 7.956	has	0.900695	"
	the numb	er .7956	has	-1.900695	66
	the numb	er .07956	has	-2.900695	66

From this we perceive that we must take the logarithm out of the table for a mixed number or a decimal, the same as if the figures expressed an entire number; and then, to *prefix* the index, we must consider the *value* of the number.

The decimal part of a logarithm is always positive; but the index becomes negative when the number is a decimal; and the smaller the decimal, the greater the negative index. Hence,

To prefix the index to a decimal, count the decimal point as 1, and every cipher as 1, up to the first significantfigure, and this is the negative index.

For example, find the logarithm of the decimal .0000831.

Num. .0000831; log. -5.919601.

The point is counted one, and each of the ciphers is counted one; therefore the index is *minus five*.

•The smaller the decimal, the greater the negative index; and when the number becomes 0, the logarithm is negatively infinite.

Hence, the logarithmic sine of 0° is negatively infinite, however great the radius.

A number being given, to find its corresponding logarithm.

The logarithm of any number consisting of four figures, or less, is taken out of the table directly, and without the least difficulty.

Thus, to find the logarithm of the number 3725, we 24 *

find 372 at the side of the table, and in the column marked 5 at the top, and opposite 372, we find .571126, for the decimal part of the logarithm.

Hence, the logarithm of 3725 is 3.571126. the logarithm of 37250 is 4.571126. the logarithm of 37.25 is 1.571126, etc.

Find the logarithm of the number 834785.

This number is so large that we cannot find it in the table, but we can find the numbers 8347 and 8348. The logarithms of these numbers are the same as the logarithms of the numbers 834700 and 834800, except the indices.

	834700	log.	5.921530
	834800	log.	5.921582
) ifference,	100		52

Now, our proposed number, 834785, is between the two assumed numbers; and, of course, its logarithm lies between the logarithms of the two assumed numbers; and, without further comment, we may proportion it thus,

Or,

T

100	:	85 =	52	:	44.2
1.	:	.85 =	52	:	44.2

Hence, for finding from the table the logarithm of a number consisting of more than four places of figures, we have the following

RULE.

Take from the table the log. of the number expressed by the the four superior figures; this, with the proper index, is the approximate logarithm. Multiply the number expressed by the remaining figures of the number, regarded as a decimal, by the tabular difference, and the product will be the correction to be added to the approximate log. to obtain the true log.
SECTION II.

EXAMPLES.

 1. What is the log. of 357.32514?

 The log. of 357.3 is
 2.553033

 No. not included, .2514

 Tabular diff.,
 122

Prod., 30.6708; correction, 31

A such	log. sought,	2.553064
The log.	of 35732.514 is	4.553064
"	.035732514 " —	2.553064.

2. What is the log. of 7912532?

Approximate log., 6.898286 $.532 \times 55 = \text{correction}, 29$ True log. = 6.898315.

A logarithm being given, to find its corresponding number.

For example, what number corresponds to the log. 6.898315?

The index 6 shows that the entire part of the number must contain seven places of figures. With the decimal part, .898315, of the log., we turn to the table, and find the next less decimal part to be .898286, which corresponds to the superior places, 7912.

The difference between the given log. and the one next less is 29. This we divide by the tabular difference, 55, because we are working the converse of the preceding problem. Thus,

$$29 \div 55 = 52727 + .$$

Place the quotient to the right of the four figures before found, and we shall have 7912527.27 for the number sought.

This example was taken from the preceding case, and the number found should have been 7912532; and so it would have been, had we used the true difference, 29.26, in place of 29.

When the numbers are large, as in this example, the

result is liable to a small error, to avoid which the logarithms should contain a great number of decimal places; but the logarithms in our table contain a sufficient number of decimal places for most practical purposes.

Hence, for finding the number corresponding to any given logarithm, we have the following

RULE.

Look in the table for the decimal part of the given logarithm, and if not found, take the decimal next less, and take out the four corresponding figures.

Take the difference between the given log. and the next less in the table; divide that difference by the tabular difference, and write the quotient on the right of the four superior figures, and the result is the number sought.

Point off the whole number required by the given index.

EXAMPLES.

1. Given, the logarithm 3.743210, to find its corresponding number true to three places of decimals.

Ans. 5536.182.

2. Given, the logarithm 2.633356, to find its corresponding number true to two places of decimals.

Ans. 429.89.

3. Given, the logarithm — 3.291746, to find its corresponding number. Ans. .0019577.

4. What number corresponds to the log. 3.233568? Ans. 1712.25.

5. What is the number of which 1.532708 is the log.? Ans. 34.0963.

6. Find the number whose log. is 1.067889.

Ans. 11.692.

EXPLANATION OF TABLE II.

Table I is merely a table of numbers and their corresponding logarithms, and requires no explanation other

than that which has been given in connection with the subject of logarithms.

Table II, with the exception of the last two columns, which contain natural sines and cosines, is a table in which are arranged the logarithms of the numerical values of the several trigonometrical lines corresponding to the different angles in a quadrant. The values of these lines are computed to the radius 10,000,000,000, and their logarithms are nothing more than the logarithms, each increased by 10, of the natural sines, cosines, and tangents, of the same angles; because the values of these lines, for arcs of the same number of degrees taken in different circles, are directly proportional to the radii of the circles.

The natural sines are made to the radius of unity; and, of course, any particular sine is a decimal fraction, expressed by natural numbers. The logarithm of any natural sine, with its index increased by 10, will give the logarithmic sine. Thus, the natural sine of 3° is .052336.

The logarithm of this decimal is	- 2.718800
To which add	·* 10.

The logarithmic sine of 3° is, therefore, 8.718800

In this manner we may find the logarithmic sine of any other arc, when we have the natural sine of the same arc.

If the natural sines and logarithmic sines were on the same radius, the logarithm of the natural sine would be the logarithmic sine, at once, without any increase of the index.

The radius for the logarithmic sines is arbitrarily taken so large that the index of its logarithm is 10. It might have been more or less; but, by common consent, it is settled at this value; so that the sines of the smallest arcs ever used shall not have a negative index. In our preceding equations, sin. a, cos. a, etc., refer to *natural sines*; and by such equations we determine their values in natural numbers; and these numbers are put in Table II, under the heads of *nat. sine* and *nat. cosine*, as before observed.

When we have the sines and cosines of an arc, the tangent and cotangent are found by Eq. (3); that is,

$$\tan = \frac{R \sin}{\cos} \quad (6) \ \cot = \frac{R \cos}{\sin};$$

and the secant is found by equation (4); that is,

sec.
$$=\frac{R^2}{\cos}$$
.

For example, the logarithmic sine of 6° is 9.019235, and its cosine 9.997614. From these it is required to find the logarithmic tangent, cotangent, and secant.

$R \sin$.		19.019235
Cos.	subtract	9.997614
Tan. is		9.021621
R cos.		19.997614
Sin.	subtract	9.019235
Cotan. is		10.978379
R^2 is		20.000000
Cos.	subtract	9.997674
Secant is		10.002326

The secants and cosecants of arcs are not given in our table, because they are very little used in practice; and if any particular secant is required, it can be determined by subtracting the cosine from 20; and the cosecant can be found by subtracting the sine from 20.

The sine of every degree and minute of the quadrant is given, directly, in the table, commencing at 0°, and extending to 45°, at the head of the table; and from 45° to 90°, at the bottom of the table, increasing backward.

SECTION II.

The same column that is marked sine, at the top, is marked cosine at the bottom; and the reason for this is apparent to any one who has examined the definitions of sines.

The difference of two consecutive logarithms is given, corresponding to *ten* seconds. Removing the decimal point one figure, will give the difference for *one* second; and if we multiply this difference by any proposed number of seconds, we shall have a difference corresponding to that number of seconds, above the logarithm corresponding to the preceding degree and minute.

For example, find the sine of 19° 17' 22".

The sine of 19° 17', taken directly from the table, is 9.518829The difference for 10" is 60.2; for 1", is 6.02; and

 $6.02 \times 22 =$

133

9.518962

Hence, 19° 17' 22" sine is

From this it will be perceived that there is no difficulty in obtaining the sine or tangent, cosine or cotangent, of any angle greater than 30'.

Conversely: Given, the logarithmic sine 9.982412, to find its corresponding arc. The sine next less in the table is 9.982404, which gives the arc $73^{\circ} 48'$. The difference between this and the given sine is 8, and the difference for 1" is .61; therefore, the number of seconds corresponding to 8, must be discovered by dividing 8 by the decimal .61, which gives 13. Hence, the arc sought is $73^{\circ} 48' 13''$.

These operations are too obvious to require a rule. When the arc is very small,—and such arcs as are sometimes required in Astronomy,—it is necessary to be very accurate; for this reason we omitted the difference for seconds for all arcs under 30'. Assuming that the sines and tangents of arcs under 30' vary in the same proportion as the arcs themselves, we can find the sine or tangent of any very small arc, with great exactness, as follows:

The sine of 1', as expressed in the table, is	6.463726
Divide this by 60; that is, subtract logarithm	1.778151
The logarithmic sine of 1", therefore, is	4.685575
Now, for the sine of 17", add the logarithm of 17	1.230449
Logarithmic sine of 17", is	5.916024
In the same manner we may find the sine of mall arc.	of any other
For example, find the sine of 14' 21 ^{±''} ; that	t is, 861"5.
The logarithmic sine of 1" is	4.685576
Add logarithm of 861.5,	2.935254
Logarithmic sine of 14' 21 ¹ / ₂ ",	7.620830
Two lines drawn the one from the surface	and the

Two lines drawn, the one from the surface and the other from the center of the earth, to the center of the sun, make with each other an angle of 8.61". What is the logarithmic sine of this angle?

The log. of the sine 1" is	4.685575
Log. of 861,	0.935003
Log. sine of sun's horizontal parallax	$= \overline{5.620578}$

GENERAL APPLICATIONS WITH THE USE OF LOGARITHMS.

I. RIGHT-ANGLED TRIGONOMETRY.

One figure will be sufficient to represent the triangle in all of the following examples; the right angle being at B.

PRACTICAL PROBLEMS.

1. In a right-angled triangle, ABC, given the base AB, 1214, and the angle A, 51° 40′ 30″, to find the other parts.

SECTION II.

To find BC.	
Radius,	10.000000
: tan. A, 51° 40' 30",	10.102119
:: AB, 1214,	3.084219
: BC, 1535.8,	3.186338

REMARK.—When the first term of a logarithmic proportion is radius, the required logarithm is found by adding the second and third logarithms, rejecting 10 in the index, which is dividing by the first term.

In all cases we add the second and third logarithms together; which, in logarithms, is multiplying these terms together; and from that sum we subtract the first logarithm, whatever it may be, which is dividing by the first term.

To find AC.

Sin. C, or	cos. A, 51° 40' 30",	9.792477
	: AB, 1214,	3.084219
	:: Radius,	10.000000

: AC, 1957.7,

To find this resulting logarithm, we subtracted the first logarithm from the second, conceiving its index to be 13.

3.291742

Let ABC represent any plane triangle, right-angled at B.

2. Given, AC 73.26, and the angle A, 49° 12′ 20″; required the other parts.

Ans. The angle C, 40° 47' 40"; BC, 55.46; and AB, 47.87. 3. Given, AB 469.34, and the angle A, 51° 26' 17", to find the other parts.

Ans. The angle C, 38° 33' 43"; BC, 588.7; and AC, 752.9.

4. Given, AB 493, and the angle C, 20° 14'; required, the remaining parts.

Ans. The angle A, 69° 46'; BC, 1338; and AC, 1425.5.

5. Let AB = 331, and the angle $A = 49^{\circ} 14'$; what are the other parts?

Ans. AC, 506.9; BC, 383.9; and the angle C, 40° 46'. 6. If AC=45, and the angle C=37° 22', what are the remaining parts?

Ans. AB, 27.31; BC, 35.76; and the angle A, 52° 38'. 25 T 7. Given, AC = 4264.3, and the angle $A = 56^{\circ} 29' 13''$, to find the remaining parts.

Ans. AB, 2354.4; BC, 3555.4; and the angle C, 33° 30' 47".

8. If AB = 44.2, and the angle $A = 31^{\circ} 12' 49''$, what are the other parts?

Ans. AC, 49.35; BC, 25.57; and the angle C, 58° 47'.11".

9. If AB = 8372.1, and BC = 694.73, what are the other parts?

Ans. $\begin{cases} AC, 8400.9; \text{ the angle } C, 85^{\circ} 15'; \text{ and the angle } A, 4^{\circ} 45'. \end{cases}$

10. If AB be 63.4, and AC be 85.72, what are the other parts?

Ans. $\begin{cases} BC, 57.7; \text{ the angle } C, 47^{\circ} 42'; \text{ and the angle } A, \\ 42^{\circ} 18'. \end{cases}$

11. Given, AC = 7269, and AB = 3162, to find the other parts.

Ans. $\begin{cases} BC, 7546; \text{ the angle } C, 25^{\circ} 47', 7''; \text{ and the angle } A, 64^{\circ} 12' 53''. \end{cases}$

12. Given, AC = 4824, and BC = 2412, to find the other parts.

Ans. { The angle $A = 30^{\circ} 00'$, the angle $C = 60^{\circ} 00'$, and AB = 4178.

13. The distance between the earth and sun is 94,770,000 miles, and at that distance the semi-diameter of the sun subtends an angle of 16' 6''. What is the diameter of the sun in miles? Ans. 887,700 miles.

In this example, let E be the center of the earth, S that of the sun, and EB a tangent to the sun's surface. Then the $\triangle EBS$ is right-angled at B, and BS is the semi-diameter of the sun. The value of 2BS is required.

14. The semi-diameter of the earth is 3956 miles, and the distance of the sun 94.770000 miles. What angle will the semi-diameter of the earth subtend, as seen from the sun? Ans. 8.60''.

This angle is called, in astronomy, the sun's horizontal parallax. The preceding figure applies to this example, by supposing E to be the center of the sun, S that of the earth, and BS equal to 3956 miles.

15. The mean distance of the moon from the earth is 60.3 times 3960 miles, and at this distance the semidiameter of the moon subtends an angle of 15' 32''. What is the diameter of the moon in miles?

Ans. 2159 miles.

II. OBLIQUE-ANGLED TRIGONOMETRY.

ners in 1003

PROBLEM I.

In a plane triangle, given a side and the two adjacent angles, to find the other parts.

In the triangle ABC, let AB = 376, the angle $A = 48^{\circ}$ 3', and the angle $B = 40^{\circ}$ 14', to find the other parts.

As the sum of the three angles of every A B triangle is always 180°, the third angle, C, must be 180° — 88° 17' = 91° 43'.

To find AC.

Sin. 91° 43',	9.999805
: AB, 376,	2.575188
:: sin. B 40° 14',	9.810167
A 10 10 10 10 - 90	12.385355
: AC. 243.	2.385550

Observe, that the sine of $91^{\circ} 43'$ is the same as the cosine of $1^{\circ} 43'$.

To find 1	BC.
Sin. 91° 43',	9.999805
: AB, 376,	2.575188
:: sin. A, 48° 3',	9.871414
and short on room	12.446602
: sin. BC, 279.8,	2.446797

PROBLEM II.

In a plane triangle, given two sides and an angle opposite one of them, to determine the other parts.

Let AD = 1751 feet, one of the given sides; the angle $D = 31^{\circ} 17' 19''$; and the side opposite, 1257.5. From these data, we are required to find the other side and the other two angles.

In this case we do not know whether AC or AE represents 1257.5, because AC = AE. If we take AC for the other given side, then DC is the other required side, and DAC is the vertical angle. If we take AE for the other given side, then DE is the required side, and DAE is the vertical angle. In such cases we determine both triangles.

To find the angle E = C.

(Prop. 4.)	AC = AE = 1257.5,	log.	3.099508
	: D, 31° 17' 19",	sin.	9.715460
	:: AD, 1751,	log.	3.243286
			12.958746
	$E = C, 46^{\circ} 18',$	sin.	9.859238

From 180° take 46° 18′, and the remainder is the angle $DCA = 133^{\circ} 42'$.

The angle DAC = ACE - D, (Th. 11, B. I); that is, $DAC = 46^{\circ} 18' - 31^{\circ} 17' 19'' = 15^{\circ} 0' 41''$. The angles D and E, taken from 180°, give $DAE = 102^{\circ} 24' 41''$.

292

ŕ

SECTION II.

To find DC.		
Sin. D, 31° 17' 19",	log.	9.715460
: AC, 1257.5,	log.	3.099508
:: sin. DAC 15° 0' 41",	log.	0.413317
		12.512825
: DC, 626.86,		2.797165
To find DE.		
Sin. D, 31° 17' 17",		9.715460
: AE, 1257.5,		3.099508
:: sin. DAE, 102° 24' 41"	,	9.989730
		13.089238
: DE. 2364.7.		3.373778

REMARK.—To make the triangle possible, AC must not be less than AB, the sine of the angle D, when DA is made radius.

PROBLEM III.

In any plane triangle, given two sides and the included angle, to find the other parts.

Let AD = 1751, (see last figure), DE = 2364.5, and the included angle $D = 31^{\circ} 17' 19''$. We are required to find AE, the angle DAE, and the angle E.

Observe that the angle E must be less than the angle DAE, because it is opposite a less side.

From	180°
Take D,	31° 17′ 19″,
Sum of the other two angles, $=$ $\frac{1}{2}$ sum $=$	148° 42' 41", (Th. 11, B. I) 74° 21' 20".
By Proposition 7,	to View Waynes
$E + DA : DE - DA = \tan .7$	$4^{\circ} 21' 20'' : \tan \frac{1}{2}(DAE - E)$
That is,	And the second shares have
$4115.5:618.5 = \tan 74^{\circ}$	$21' 20'' : \tan (DAE - E).$

D

25 *

Tan. 74° 21′ 20″, 613.5,	10.552778 2.787815
4115.5 log. (subtracted),	$\frac{13.340593}{3.614423}$
"tan. 1 (DAEE -) tan. 28° 1' 36",	9.726170

But the half sum plus the half difference of any two quantities is equal to the greater of the two; and the half sum minus the half difference is equal the less.

Therefore, to	74° 21′ 20″,
Add	28° 1′ 36″,
DAE =	102° 22′ 56″,
E =	46° 19' 45",

To find AE.

Sin. E, 46° 19' 45",	9.859323
: DA, 1751,	3.243286
:: sin. D, 31° 17' 19",	9.715460
a sa shi sa shi sa sa	12.958746
: AE, 1257.2,	3.099423

PROBLEM IV.

Given, the three sides of a plane triangle, to find the angles.

Let AC = 1751, CB = 1257.5, AB = 2364.5, to find the angles A, B, and C.

C

If we take the formula for cosines, we will compute the greatest angle, which is C. To correspond with the formula,

$$\cos \frac{1}{2}C = \sqrt{\frac{R^2s(s-c)}{ab}},$$

we must take a = 1257.5, b = 1751, and c = 2364.5. The half sum of these is,

s = 2686.5; and s - c = 322.

SECTION II.

166 1211	R^2		20.000000
	s = :	2686.5	3.429187
1. 1. N.	s - c =	322	2.507856
	Numerat	or, log.	25.937043
a 12	257.5 3	.099508	
6 17	751. 3	,243286	
enominator	r, log. 6	5.342794	6.342794
= 2.13.2	h. 500	2	2)19.594249
$\frac{1}{2}C =$	51° 11′	10″ co	os. 9.797124
C =	102 22	20	

The remaining angles may now be found by Problem 4.

PRACTICAL PROBLEMS.

Let ABC represent any oblique-angled triangle.

1. Given, AB 697, the angle A 81° 30′ 10″, and the angle B 40° 30′ 44″, to find the other parts.

Ans. AC, 534; BC, 813; and $\ C$, 57° 59' 6". 2. If AC = 720.8, $\ A = 70^{\circ}$ 5' 22", $\ B = 59^{\circ}$ 35' 36", required the other parts.

Ans. AB, 643.2; BC, 785.8; and C, 50° 19' 2".

3. Given, BC 980.1, the angle A 7° 6' 26", and the angle B 106° 2' 23", to find the other parts.

Ans. AB, 7284; AC, 7613.3; and C, 66° 51' 11".

4. Given, AB 896.2, BC 328.4, and the angle C 113° 45' 20", to find the other parts.

Ans. $\{ \begin{array}{c} AC, 712; \ \ A, 19^{\circ} \ 35' \ 48''; \\ and \ \ B, 46^{\circ} \ 38' \ 52''. \end{array}$

5. Given, AC = 4627, BC = 5169, and the angle $A = 70^{\circ} 25' 12''$, to find the other parts.

Ans. $\{ \begin{array}{c} AB, 4328; \ \ B, 57^{\circ} 29' 56''; \\ and \ \ C, 52^{\circ} 4' 52''. \end{array}$

6. Given, AB 793.8, BC 481.6, and AC 500.0, to find the angles.

Ans. $\left\{ \begin{array}{c} _A, 35^{\circ} \ 15' \ 32''; \ _B, 36^{\circ} \ 49' \ 18''; \ \text{and} \ _C, \\ 107^{\circ} \ 55' \ 10''. \end{array} \right\}$

7. Given, AB 100.3, BC 100.3, and AC 100.3, to find the angles.

Ans. { The angle A, 60°; the angle B, 60°; and the angle C, 60°.

8. Given, AB 92.6, BC 46.3, and AC 71.2, to find the angles.

9. Given, AB 4693, BC 5124, and AC 5621, to find the angles.

10. Given, AB 728.1, BC 614.7, and AC 583.8, to find the angles.

Ans. $\left\{ \begin{array}{c} _A = 54^{\circ} \ 32' \ 52'', _B = 50^{\circ} \ 40' \ 58'', \text{ and } _C' \\ = 74^{\circ} \ 46' \ 10''. \end{array} \right\}$

11. Given, AB 96.74, BC 83.29, and AC 111.42, to find the angles.

12. Given, AB 363.4, BC 148.4, and the angle B 102° 18' 27", to find the other parts.

13. Given, AB 632, BC 494, and the angle A 20° 16', to find the other parts, the angle C being acute.

Ans. $\left\{ \begin{array}{c} \Box C = 26^{\circ} \ 18' \ 19'', \ \Box B = 133^{\circ} \ 25' \ 41'', \ and \ AC = 1035.86. \end{array} \right.$

14. Given, AB 53.9, AC 46.21, and the angle B 58° 16', to find the other parts.

Ans. $[A = 38^{\circ} 58', [C = 82^{\circ} 46', and BC = 34.16.]$

15. Given, AB 2163, BC 1672, and the angle C 112° 18' 22", to find the other parts.

Ans. AC, 877.2; [B, 22° 2' 16"; and [A, 45° 39' 22". 16. Given, AB 496, BC 496, and the angle B 38° 16', to find the other parts.

Ans. AC, 325.1; A, 70° 52'; and C, 70° 52'.

17. Given, AB 428, the angle C 49° 16', and (AC + BC) 918, to find the other parts, the angle B being obtuse.

Ans. { The angle $A = 38^{\circ} 44' 48''$, the angle $B = 91^{\circ} 59' 12''$, AC = 564.49, and BC = 353.5.

18. Given, AC 126, the angle B 29° 46', and (AB - BC) 43, to find the other parts.

Ans. { The angle $A = 55^{\circ} 51' 32''$, the angle $C = 94^{\circ} 22' 28''$, AB = 253.05, and BC = 210.054.

19. Given, AB 1269, AC 1837, and the angle A 53° 16' 20", to find the other parts.

Ans. $\left\{ \begin{array}{c} B = 83^{\circ} \ 23' \ 47'', \ C = 43^{\circ} \ 19' \ 53'', \text{ and } BC = 1482.16. \end{array} \right.$

and provide and a second secon

a labor of the second second second second second

ALMALY LINE

dense of parts of the Lorenza of the state of the state

the treat of the contract

and the start the start with the same the

SECTION-III:

APPLICATION OF TRIGONOMETRY TO MEASURING HEIGHTS AND DISTANCES.

a-11.

In this useful application of Trigonometry, a base line is always supposed to be measured, or given in length; and by means of a quadrant, sextant, circle, theodolite, or some other instrument for measuring angles, such angles are measured as, connected with the base line and the objects whose heights or distances it is proposed to determine, enable us to compute, from the principles of Trigonometry, what those heights or distances are.

Sometimes, particularly in marine surveying, horizontal angles are determined by the compass; but the varying effect of surrounding bodies on the needle, even in situations little removed from each other, and the general construction of the instrument itself, render it unfit to be employed in the determination of angles where anything like precision is required.

The following problems present sufficient variety, to guide the student in determining what will be the most eligible mode of proceeding, in any case that is likely to occur in practice.

PROBLEM I.

Being desirous of finding the distance between two distant objects, C and D, I measured a base, AB, of 384 yards, on the same horizontal plane with the objects C

SECTION III.

and D. At A, I found the angles $DAB = 48^{\circ} 12'$, and $CAB = 89^{\circ} 18'$; at B, the angles $ABC 46^{\circ} 14'$, and $ABD 87^{\circ} 4'$. It is required, from these data, to compute the distance between C and D.

From the angle CAB, take the angle DAB; the remainder, 41° 6', is the angle CAD. To the angle DBA, add the angle DAB, and 44° 44', the supplement of the sum, is the angle ADB. In the same way the angle ACB, which is the supplement of the sum of CAB and CBA, is found to be 44° 28'. Hence, in the triangles ABC and ABD, we have

Sin. ACB, 44° 28', 9.845405 : AB, 384 yards, 2.584331:: sin. ABC, 46° 14', 9.858635 12.442966 : AC, 395.9 yards, 2.597561 Sin. ADB, 44° 44', 9.847454 : AB, 384 yards, 2.584331:: sin. ABD, 87° 4', 9.999431 12.583762 : AD, 544.9 yards, 2.736308

Then, in the triangle CAD, we have given the sides CA and AD, and the included angle CAD, to find CD; to compute which we proceed thus:

The supplement of the angle CAD, is the sum of the angles ACD and ADC;

Hence, $\frac{ACD + ADC}{2} = 69^{\circ} 27'$; and, by proportion we have, AD + AC (= 940.8) 2.937497 : AD - AC (= 149) 2.173186 :: $\tan \frac{ACD + ADC}{2}$ (= 69° 27') 10.426108 12.599294

$\tan \frac{ACD - ADC}{2} \ (= \ 22 \ 54)$	9.551797
the angle ACD, sum, 92 21	
the angle ADC, diff., 46 33	
Sin. ADC, 46° 33',	9.860922
: AC, 395.9 yards,	2.597585
:: sin. CAD, 41° 6',	9.817813
An example of a fille	12.415398
: CD, 358.5 yards,	2.554476

PROBLEM II.

To determine the altitude of a lighthouse, I observed the elevation of its top above the level sand on the seashore, to be 15° 32′ 18″; and measuring directly from it, 638 yards along the sand, I then found its elevation to be 9° 56′ 26″. Required the height of the lighthouse.

Let CD represent the height of the lighthouse above the level of the sand, and let Bbe the first station, and A the second; then the angle CBD is 15° 32′ 18, and the angle CAB is 9° 56′ 26″; therefore, the angle ACB, which is the difference of the angles CBD and CAB, is 5° 35′ 52″.

C	
Al	
	//
D	B A

Hence,	Sin. A CB, 5° 35' 52",	8.989201
	: AB, 638,	2.804821
	:: sin. angle A, 9° 56' 26",	9.237107
		12.041928
	: BC, 1129.06 yards,	3.052727
	Radius,	10.000000
	• BC, 1129.06,	3.052727
	:: sin. CBD, 15° 32' 18",	9.427945
	through the state is	12.480672
	: DC, 302.46 yards,	2.480672

PROBLEM III.

Coming from sea, at the point D I observed two headlands, A and B, and inland, at C, a steeple, which appeared between the headlands. I found, from a map, that the headlands were 5.35 from each other; that the distance from A to the steeple was 2.8 miles, and from B to the steeple 3.47 miles; and I found, with a sextant, that the angle ADC was 12° 15, and the angle BDC, 15° 30'. Required my distance from each of the headlands, and from the steeple.

CONSTRUCTION.

The angle between the two headlands is the sum of $15^{\circ} 30'$ and $12^{\circ} 15'$, or $27^{\circ} 45'$. Take double this sum, $55^{\circ} 30'$. Conceive *AB* to be the chord of a circle, and the arc on one side of it to be $55^{\circ} 30'$; and, of course, the other will be $304^{\circ} 30'$. The point *D* will be somewhere in the circumference of

this circle. Consider that point as determined, and draw CD. In the triangle ABC, we have all the sides, and, of course, we can find all the angles; and if the angle ACB is less than 180° —

 $27^{\circ} 45' = 152^{\circ} 15'$, then the circle cuts the line *CD* in a point *E*, and *C* is without the circle.

Draw AE, BE, AD, and BD. AEBD is a quadrilateral in a circle, and $\[AEB + \[ADB = 180^{\circ}. \]$

The $\[ADE = the \[ABE, because both are measured by one half the arc AE. Also, \] EDB = \] EAB, for a similar reason.$

Now, in the triangle AEB, its side AB, and all its angles, are known; and from thence AE can be computed. Then, having the two sides, AC and AE, of the triangle AEC, and the included angle CAE, we can find the angle AEC, and, of course, its supplement, AED. Then, in the triangle AED, we have the side AE, and the two angles AED and ADE, from which we can find AD.

The computation, at length, is as follows :

 $\mathbf{26}$

To find AE.

Angle $EAB =$ Angle $EBA =$	15° 30' 12° 15'	Sin. AEB, 152° 15 : AB, 5.35,	, 9.668027 .728354
and a start for	27° 45′ :	: sin. ABE 12° 15'	9.326700
and the state	180°	Theils even 5.25	10.055054
Angle $AEB =$	152° 15′	: AE, 2.438,	.387027
TINE LOS		21 mm 20.1 via	And Los Be
	To find th	e angle BAC.	· ·
	BC, 3.47		
	AB, 5.35	log728354	
	AC, 2.80	log447158	") - r
717 Du	2)11.62	1.175512	1 4
	5.81	log764176	· · · · · · ·
	BC, 2.34	log369216	of he sale on
	10. MM	20	the matrix de
P.O. march in	J	21.133392	sheet in
and a second s		2) 19.957880	D Dy Dett on
PERSONAL COLOR	17° 41′ 58″	cos. 9.978940	1 - VI. 1
a sui iempiniment	Z	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	De- 45.
Angle $BAC =$	35° 23′ 56″ -	BAL J+ BUL	
• Angle $EAB =$	15° 30'	e	and the
Angle $EAC =$	19° 53' 56"	and then	
-alimation 1	.80°,	(mill), similar	i ; === or
2)1	60° 6′ 4″	and the second second	Part Part
the second second	80° 3′ 2″	AEC + ACE	dist.
Mark how send str-			1291 202 /0

SECTION III.

To find the angles AEC and ACE. AC + AE5.238 .719165 : AC - AE.362 -1.558709:: tan. $\frac{AEC + ACE}{2}$ 3' 2" 80° 10.755928 10.314637 : tan. $\frac{AEC - ACE}{2}$ 21° 30′ 12″ 9.595472 101° 33′ 14′′, sum. angle AEC,

angle ACE or ACD, 58° 32' 50", diff. angle CDA, 12° 15'

> 70° 47′ 50′′, supplement 109° 12′ 10′′, angle CAD 35° 23′ 56′′, angle CAB

> > 73° 48' 14", angle BAD

To find AD.

-	Sin. ADC, 12° 15',	0	9.326700
:	AC, 2.8,		.447158
::	sin. ACD 58° 32' 50",	1	9.930985
	- main	- 11	10.378143
:	AD 11.26 miles.	Ę	1.051443

PROBLEM IV.

The elevation of a spire at one station was $23^{\circ} 50' 17''$, and the horizontal angle at this station, between the spire and another station, was $93^{\circ} 4' 20''$. The horizontal angle at the latter station, between the spire and the first station, was $54^{\circ} 28' 36''$, and the distance between the two stations was 416 feet. Required the height of the spire.

Let CD be the spire, A the first station, and B the second; then the vertical angle CAD is 23° 50′ 17″; and as the horizontal angles, CAB and CBA, are 93° 4′ 20″ and 54° 28′ 36″, respectively, the angle ACB, the supplement of their sum, is 32° 27′ 4″.

To find DC.

Radius,	10.000000
: side AC, 631,	2.800019
:: tan. DAC, 23° 50' 17"	, 9.645270
: DC. 278.8.	2.445289

By the application of Problem 4, we can compute the distance between two horizontal planes, if the same object is visible from both.

For example, let M be a prominent tree or rock near

the top of a mountain, and by observations taken at A, we can determine the perpendicular Mn. By like observations taken at B, we can determine the perpendicular Mm. The difference between these two perpendiculars is nm, or the difference in the elevation between the two points A and B. If the distances between A and n, or Band m, are considerable, or more than two or three miles, corrections must be made for the convexity of the earth; but for less distances such corrections are not necessary.

PRACTICAL PROBLEMS.

1. Required the height of a wall whose angle of elevation, at the distance of 463 feet, is observed to be 16° 21'. Ans. 135.8 feet.

2. The angle of elevation of a hill is, near its bottom, 31° 18′, and 214 yards further off, 26° 18′. Required the perpendicular height of the hill, and the distance of the perpendicular from the first station.

Ans. $\begin{cases}
 The height of the hill is 565.2 yards, and the distance of the perpendicular from the first station is 929.6 yards.
 \end{cases}$

3. The wall of a tower which is 149.5 feet in height, makes, with a line drawn from the top of it to a distant object on the horizontal plane, an angle of 57° 21'. What is the distance of the object from the bottom of the tower? Ans. 233.3 feet.

4. From the top of a tower, which is 138 feet in height, I took the angle of depression of two objects standing in a direct line from the bottom of the tower, and upon the same horizontal plane with it. The depression of the nearer object was found to be 48° 10', and that of the further, 18° 52'. What was the distance of each from the bottom of the tower?

Ans. { Distance of the nearer, 123.5 feet; and of the further, 403.8 feet.

5. Being on the side of a river, and wishing to know the distance of a house on the opposite side, I measured 312 yards in a right line by the side of the river, and then found that the two angles, one at each end of this line, subtended by the other end and the house, were 31° 15' and 86° 27'. What was the distance between each end of the line and the house? Ans. 351.7, and 182.8 yards.

6. Having measured a base of 260 yards in a straight line, on one bank of a river, I found that the two angles, one at each end of the line, subtended by the

26*

other end and a tree on the opposite bank, were 40° and 80°. What was the width of the river?

Ans. 190.1 yards.

7. From an eminence of 268 feet in perpendicular height, the angle of depression of the top of a steeple which stood on the same horizontal plane, was found to be 40° 3', and of the bottom, 56° 18'. What was the height of the steeple? Ans. 117.8 feet.

8. Wanting to know the distance between two objects which were separated by a morass, I measured the distance from each to a point from whence both could be seen; the distances were 1840 and 1428 yards, and the angle which, at that point, the objects subtended, was 36° 18' 24''. Required their distance. Ans. 1090.85 yards.

9. From the top of a mountain, three miles in height, the visible horizon appeared depressed 2° 13' 27". Required the diameter of the earth, and the distance of the boundary of the visible horizon.

Ans. { Diameter of the earth, 7958 miles; distance of the horizon, 154.54 miles.

10. From a ship a headland was seen, bearing north 39° 23' east. After sailing 20 miles north, 47° 49' west, the same headland was observed to bear north, 87° 11' east. Required the distance of the headland from the ship at each station.

Ans. { At first station, 19.09 miles; at the second, 26.96 miles.

11. The top of a tower, 100 feet above the level of the sea, was seen as on the surface of the sea, from the masthead of a ship, 90 feet above the water. The diameter of the earth being 7960 miles, what was the distance between the observer and the object?

Ans. 23.9 plus $\frac{1}{13}$ for refraction = 25.7 miles. 12. From the top of a tower, by the seaside, 143 feet high, it was observed that the angle of depression of a

SECTION III.

ship's bottom, then at anchor, measured 35°; what, then, was the ship's distance from the foot of the tower?

Ans. 204.22 feet.

13. Wanting to know the breadth of a river, I measured a base of 500 yards in a straight line on one bank; and at each end of this line I found the angles subtended by the other end and a tree on the opposite bank of the river, to be 53° and 79° 12'. What, then, was the perpendicular breadth of the river? Ans. 529.48 yards.

14. What is the perpendicular height of a hill, its angle of elevation, taken at the bottom of it, being 46°, and 200 yards further off, on a level with the bottom, 31° ? Ans. 286.28 yards.

15. Wanting to know the height of an inaccessible tower, at the least accessible distance from it, on the same horizontal plane, I found its angle of elevation to be 58°; then going 300 feet directly from it, I found the angle there to be only 32°; required the height of the tower, and my distance from it at the first station.

Ans. { Height, 307.53 feet. Distance, 192.15 "

16. Two ships of war, intending to cannonade a fort, are, by the shallowness of the water, kept so far from it, that they suspect their guns cannot reach it with effect. In order, therefore, to measure the distance, they separate from each other a quarter of a mile, or 440 yards, and then each ship observes and measures the angle which the other ship and fort subtends; these angles are 83° 45', and 85° 15'. What, then, is the distance between each ship and the fort? Ans. $\begin{cases} 2292.26 \text{ yards.} \\ 2298.05 \end{cases}$

17. A point of land was observed by a ship, at sea, to bear east-by-south;* and after sailing north-east 12 miles,

^{*} That is, one point south of east. A point of the compass is 11° 15'.

it was found to bear south-east-by-east. It is required to determine the place of that headland, and the ship's distance from it at the last observation.

Ans. Distance, 26.0728 miles.

18. Wishing to know my distance from an inaccessible object, O, on the opposite side of a river, and having a chain or chord for measuring distances, but no instrument for taking angles; from each of two stations, A and B, which were taken at 500 yards asunder, I measured in a direct line from the object, O, 100 yards, viz., AC and BD, each equal to 100 yards; and I found that the diagonal AD measured 550 yards, and the diagonal BC 560. What, then, was the distance of the object 0 from each station A and B? Ans. $\begin{cases} AO, 536.25 \text{ yards.} \\ BO, 500.09 \end{cases}$

19. A navigator found, by observation, that the summit of a certain mountain, which he supposed to be 45 minutes of a degree distant, had an altitude above the sea horizon of 31' 20''. Now, on the supposition that the earth's radius is 3956 miles, and the observer's *dip* was 4' 15'', what was the height of the mountain?

Ans. 3960 feet.

REMARK. — This should be diminished by about one eleventh part of itself, for the influence of horizontal refraction.

20. From two ships, A and B, which are anchored in a bay, two objects, C and D, on the shore, can be seen. These objects are known to be 500 yards apart. At the ship A, the angle subtended by the objects was measured, and found to be 41° 25'; and that by the object D and the other ship was found to be 52° 12'. At the other ship, the angle subtended by the objects on shore was found to be 48° 10'; and that by the object C, and the ship A, to be 47° 40'. Required the distance between

SECTION III.

the ships, and the distance from each ship to the objects on shore.

Ans.

(Distar	ice b	etwe	en ships	s,	395.6	yards.
From	ship	A to	o object	D,	743.5	66
From	ship	A to	o object	С,	467.7	66
From	ship	B to	o object	D,	590.5	66

To solve this problem, suppose the distance between the ships to be 100 yards, and determine the several distances, including the distance between the objects, C and D, under this supposition; then multiply the values thus found for the required distances by the quotient obtained by dividing the given value of CD by the computed value.

PART II.

SPHERICAL GEOMETRY

11 1

AND TRIGONOMETRY.

SECTION I.

SPHERICAL GEOMETRY.

DEFINITIONS.

1. Spherical Geometry has for its object the investigation of the properties, and of the relations to each other, of the portions of the surface of a sphere which are bounded by the arcs of its great circles.

2. A Spherical Polygon is a portion of the surface of a sphere bounded by three or more arcs of great circles, called the *sides* of the polygon.

3. The Angles of a spherical polygon are the angles formed by the bounding arcs, and are the same as the angles formed by the planes of these arcs.

4. A Spherical Triangle is a spherical polygon having but three sides, each of which is less than a semi-circumference.

5. A Lune is a portion of the surface of a sphere included between two great semi-circumferences having a common diameter.

6. A Spherical Wedge, or Ungula, is a portion of the surface of a sphere included between two great semi-circles having a common diameter.

(310)

7. A Spherical Pyramid is a portion of a sphere bounded by the faces of a solid angle having its vertex at the center, and the spherical polygon which these faces intercept on the surface. This spherical polygon is called the *base* of the pyramid.

8. The Axis of a great circle of a sphere is that diameter of the sphere which is perpendicular to the plane of the circle. This diameter is also the axis of all small circles parallel to the great circle.

9. A Pole of a circle of a sphere is a point on the surface of the sphere equally distant from every point in the circumference of the circle.

10. Supplemental, or Polar Triangles, are two triangles on a sphere, so related that the vertices of the angles of either triangle are the poles of the sides of the other.

PROPOSITION I.

Any two sides of a spherical triangle are together greater than the third side.

Let AB, AC, and BC, be the three sides of the triangle, and D the center of the sphere.

The arcs AB, AC, and BC, are measured by the angles of the planes that form the solid angle at D. But any Dtwo of these angles are together greater

than the third angle, (Th. 18, B. VI). Therefore, any two sides of the triangle are, together, greater than the third side.

Hence the proposition.

PROPOSITION II.

The sum of the three sides of any spherical triangle is less than the circumference of a great circle.

Let ABC be a spherical triangle; the two sides, ABand AC, produced, will meet at the point which is diametrically opposite to A, and the arcs, ABD and ACD are

A

1 20 1 8.

together equal to a great circle. But, by the last proposition, BC is less than the two arcs, BD and DC. Therefore, AB + BC + AC, is less than ABD + ACD; that is, less than a great circle.

Hence the proposition.

PROPOSITION III.

The poles of a great circle of a sphere are the extremities of its axis, and these points are also the poles of all small circles parallel to the great circle.

Let O be the center of the sphere, and BD the axis of the great circle, $Cm \ Am''$; then will B and D, the extremities of the axis, be the poles of the circle, and also the poles of any parallel small circle, as FnE.

For, since BD is perpendicular to the plane of the circle, Cm Am'', it

is perpendicular to the lines OA, Om', Om'', etc., passing through its foot in the plane, (Th. 3, B. VI); hence, all the arcs, Bm, Bm', etc., are quadrants, as are also the arcs Dm, Dm', etc. The points B and D are, therefore, each equally distant from all the points in the circumference, $Cm \ Am''$; hence, (Def. 9), they are its poles.

Again, since the radius, OB, is perpendicular to the plane of the circle, $Cm \ Am''$, it is also perpendicular to the plane of the parallel small circle, FnE, and passes through its center, O'. Now, the chords of the arcs, BF, Bn, BE, etc., being oblique lines, meeting the plane of the small circle at equal distances from the foot of the

perpendicular, BO', are all equal, (Th. 4, B. VI); hence, the arcs themselves are equal, and B is one pole of the circle, FnE. In like manner we prove the arcs, DF, Dn, DE, etc., equal, and therefore D is the other pole of the same circle.

Hence the proposition, etc.

Cor. 1. A point on the surface of a sphere at the distance of a quadrant from two points in the arc of a great circle, not at the extremities of a diameter, is a pole of that arc.

For, if the arcs, Bm, Bm', are each quadrants, the angles, BOm and BOm', are each right angles; and hence, BOis perpendicular to the plane of the lines, Om and Om', which is the plane of the arc, m m'; B is therefore the pole of this arc.

Cor. 2. The angle included between the arc of a great circle and the arc of another great circle, connecting any of its points with the pole, is a right angle.

For, since the radius, BO, is perpendicular to the plane of the circle, Cm Am'', every plane passed, through this radius is perpendicular to the plane of the circle; hence, the plane of the arc Bm is perpendicular to that of the arc Cm; and the angle of the arcs is that of their planes.

PROPOSITION IV.

The angle formed by two arcs of great circles which intersect each other, is equal to the angle included between the tangents to these arcs at their point of intersection, and is measured by that arc of a great circle whose pole is the vertex of the angle, which is limited by the sides of the angle or the sides produced.

Let AM and AN be two arcs intersecting at the point A, and let AE and AF be the tangents to these arcs at this point. Take AC and AD, each quadrants, and draw the arc CD, of which A is the pole, and OC and OD are the radii.

Now, since the planes of the arcs intersect in the radius OA, and AE is a tangent to one arc, and AF a tangent

to the other, at the common point A, these tangents form with each other an angle which is the measure of the angle of the planes of the arcs; but the angle of the planes of the arcs is taken as the angle included by the arcs, (Def. 4).

Again, because the arcs, AC and AD, are each quadrants, the angles, AOC, AOD, are right angles; hence the radii, OC and OD, lie, the one in one face, and the other in the other face, of the

diedral angle formed by the planes of the arcs, and are perpendicular to the common intersection of these faces at the same point. The angle, COD, is therefore the angle of the planes, and consequently the angle of the arcs; but the angle COD is measured by the arc CD.

Hence the proposition.

Cor. 1. Since the angles included between the arcs of great circles on a sphere, are measured by other arcs of great circles of the same sphere, we may compare such angles with each other, and construct angles equal to other angles, by processes which do not differ in principle from those by which plane angles are compared and constructed.

Cor. 2. Two arcs of great circles will form, by their intersection, four angles, the opposite or vertical ones of which will be equal, as in the case of the angles formed by the intersection of straight lines, (Th. 4, B. I).

PROPOSITION V.

The surface of a hemisphere may be divided into three rightangled and four quadrantal triangles, and one of these rightangled triangles will be so related to the other two, that two of its sides and one of its angles will be complemental to the sides of one of them, and two of its sides supplemental to two of the sides of the other.

Let ABC be a right-angled spherical triangle, right angled at B.

Produce the sides, AB and AC, and they will meet at A', the opposite point on the sphere. Produce BC, both ways, 90° from the point B, to P and P', which are, therefore, poles to the arc AB, (Prop. 3). Through A, P, and the center of the sphere, pass a plane, cutting the sphere into

two equal parts, forming a great circle on the sphere, which great circle will be represented by the circle PAP'A' in the figure. At right angles to this plane, pass another plane, cutting the sphere into two equal parts; this great circle is represented in the figure by the straight line, POP'. A and A' are the poles to the great circle, POP'; and P and P' are the poles to the great circle, ABA'.

Now, CPD is a spherical triangle, right-angled at D, and its sides CP and CD are complemental respectively to the sides BC and AC of the $\triangle ABC$, and its side PDis complemental to the arc DO, which measures the $_BAC$ of the same triangle. Again, the $\triangle A'BC$ is rightangled at B, and its sides A'C, A'B, are supplemental respectively to the sides AC, AB, of the $\triangle ABC$. Therefore, the three right-angled \triangle 's, ABC, CPD, and A'BC, have the required relations. In the $\triangle ACP$, the side APis a quadrant, and for this reason the \triangle is called a quadrantal triangle. So also, are the \triangle 's A'CP, ACP', and P'CA', quadrantal triangles. Hence the proposition.

SCHOLIUM.—In every triangle there are *six* elements, three sides and three angles, called the parts of the triangle.

Now, if all the parts of the triangle ABC are known, the parts of each of the \triangle 's, PCD and A'BC, are as completely known. And when the parts of the $\triangle PCD$ are known, the parts of the $\triangle's ACP$

and A'CP are also known; for, the side PD measures each of the $_$'s PAC and PA'C, and the angle CPD, added to the right angle A'PD, gives the $_A'PC$, and the $_CPA$ is supplemental to this. Hence, the solution of the $\triangle ABC$ is a solution of the two right-angled and four quadrantal \triangle 's, which together with it make up the surface of the hemisphere.

PROPOSITION VI.

If there be three arcs of great circles whose poles are the angular points of a spherical triangle, such arcs, if produced, will form another triangle, whose sides will be supplemental to the angles of the first triangle, and the sides of the first triangle will be supplemental to the angles of the second.

Let the arcs of the three great circles be GH, PQ, KL, whose poles are respectively A, B, and C. Produce the three arcs until they meet in D, E, and F. We are now to prove that E is the pole of the arc AC; D the pole of the arc BC; F the pole to the arc AB. Also, that the side EF, is supplemental to the angle A; ED to the angle C; and DF to the angle B: and also, that

and DF to the angle B; and also, that the side AC is supplemental to the angle E, etc.

A pole is 90° from any point on the circumference of its great circle; and, therefore, as A is the pole of the arc GH, the point A is 90° from the point E. As C is the pole of the arc LK, C is 90° from any point in that arc; therefore, C is 90° from the point E; and E being 90° from both A and C, it is the pole of the arc AC. In the same manner, we may prove that D is the pole of BC, and F the pole of AB.

Because A is the pole of the arc GH, the arc GHmeasures the angle A, (Prop. 4); for a similar reason, PQ measures the angle B, and LK measures the angle C.

Because E is the pole of the arc AC, $EH = 90^{\circ}$ Or, $EG + GH = 90^{\circ}$

For a like reason,

 $FH + GH = 90^{\circ}$

Adding these two equations, and observing that GH = A, and afterward transposing one A, we have,

 $EG + GH + FH = 180^\circ - A.$

Or,	$EF = 180^\circ - A$	
In like manner,	$FD = 180^{\circ} - B $	(a)
And,	$DE = 180^{\circ} - C$	

But the arc $(180^{\circ} - A)$, is a supplemental arc to A, by the definition of arcs; therefore, the three sides of the triangle *DEF*, are supplements of the angles A, B, C, of the triangle ABC.

Again, as E is the pole of the arc AC, the whole angle E is measured by the whole arc LH.

But,	a sea di an f	$AC + CH = 90^{\circ}$
Also,		$AC + AL = 90^{\circ}$

By addition, $AC + AC + CH + AL = 180^{\circ}$ By transposition, $AC + CH + AL = 180^{\circ} - AC$ That is, LH, or $E = 180^{\circ} - AC$ In the same manner, $F = 180^{\circ} - AB$ And, $D = 180^{\circ} - BC$ (b)

That is, the sides of the first triangle are supplemental to the angles of the second triangle.

PROPOSITION VII.

The sum of the three angles of any spherical triangle, is greater than two right angles, and less than six right angles.

Add equations (a), of the last proposition. The first member of the equation so formed will be the sum of the three sides of a spherical triangle, which sum we may designate by S. The second member will be 6 right angles (there being 2 right angles in each 180°) less the three angles A, B, and C.

That is, S = 6 right angles -(A + B + C)

By Prop. 2, the sum S is less than 4 right angles; 27*

therefore, to it add s, a sufficient quantity to make 4 right angles. Then,

4 right angles = 6 right angles -(A + B + C) + s

Drop or cancel 4 right angles from both members, and transpose (A + B + C).

Then, A + B + C = 2 right angles + s.

That is, the three angles of a spherical triangle make a greater sum than two right angles by the indefinite quantity s, which quantity is called the *spherical excess*, and is greater or less according to the size of the triangle.

Again, the sum of the angles is less than 6 right angles. There are but *three* angles in any triangle, and each one of them must be less than 180°, or 2 right angles. For, an angle is the inclination of two lines or two planes; and when two planes incline by 180°, the planes are parallel, or are in one and the same plane; therefore, as neither angle can be equal to 2 right angles, the three can never be equal to 6 right angles.

PROPOSITION VIII.

On the same sphere, or on equal spheres, triangles which are mutually equilateral are also mutually equiangular; and, conversely, triangles which are mutually equiangular are also mutually equilateral, equal sides lying opposite equal angles.

First.—Let ABC and DEF, in which AB = DE, AC = DF, and BC = EF, be two triangles on the sphere whose center is O; then will the $\ A$, opposite the side BC, in the first triangle, be equal the $\ D$, opposite the equal side EF, in the second; also $\ B = \ E$, and $\ C = \ F$.

For, drawing the radii to the vertices of the angles of these triangles, we may conceive O to be the common vertex of two triedral angles, one of which is bounded by the plane angles AOB, BOC, and AOC, and the other by the plane angles DOE, EOF, and DOF. But the plane angles bounding the one of these triedral angles, are equal to the plane angles bounding the other, each to each, since they are measured by the equal sides of the two triangles. The planes of the equal arcs in the two triangles are therefore equally inclined to each other, (Th. 20, B. VI); but the angles included between the planes of the arcs are equal to the angles formed by the arcs, (Def. 3).

Hence the [A,opposite the side *BC*, in the $\triangle ABC$, is equal to the [D,opposite the equal side *EF*, in the other triangle; and for a similar reason, the [B = [E,and the [C = [F.]

Second.—If, in the triangles ABC and DEF, being on the same sphere whose center is O, the $_A = _D$, the $_B = _E$, and the $_C = _F$; then will the side AB, opposite the $_C$, in the first, be equal to the side DE, opposite the equal $_F$, in the second; and also the side AC equal to the side DF, and the side BC equal to the side EF.

For, conceive two triangles, denoted by A'B'C' and D'E'F', supplemental to ABC and DEF, to be formed; then will these supplemental triangles be mutually equilateral, for their sides are measured by 180° less the opposite and equal angles of the triangles ABC and DEF, (Prop. 6); and being mutually equilateral, they are, as proved above, mutually equiangular. But the triangles ABC and DEF are supplemental to the triangles A'B'C' and D'E'F'; and their sides are therefore measured severally by 180° less the opposite and equal angles of the triangles A'B'C' and D'E'F', (Prop. 6). Hence the triangles ABC and DEF, which are mutually equiangular, are also mutually equilateral.

SCHOLIUM.—With the three arcs of great circles, AB, AC, and BC, either of the two triangles, ABC, DEF, may be formed; but it is evident that these two triangles cannot be made to coincide, though they are both mutually equilateral and mutually equiangular. Spherical triangles on the same sphere, or on equal spheres, in which the sides and angles of the one are equal to the sides and angles of the other, each to each, but are not themselves capable of superposition, are called symmetrical triangles.

PROPOSITION IX.

On the same sphere, or on equal spheres, triangles having two sides of the one equal to two sides of the other, each to each, and the included angles equal, have their remaining sides and angles equal.

Let ABC and DEF be two triangles, in which AB = DE, AC = DF, and the angle A =the angle D; then will the side BC be equal to the side FE, the $\ B =$ the $\ E$, and $\ C$ $= \ F$.

For, if DE lies on the same side of DF that AB does of AC, the two triangles, ABCand DEF, may be applied the one to the other, and they may be proved to coincide, as in the case of plane triangles. But, if DE does not lie on the same side of DFthat AB does of AC, we may construct the triangle which is symmetrical with DEF; and this symmetrical triangle, when applied to the triangle ABC, will exactly coincide with it. But the triangle DEF, and the triangle symmetrical with it, are not only mutually equilateral, but also are mutually equiangular, the equal angles lying opposite the equal sides, (Prop. 8); and as the one or the other will coincide with the triangle ABC, it follows that

SECTION I.

the triangles, ABC and DEF, are either absolutely or symmetrically equal.

Cor. On the same sphere, or on equal spheres, triangles having two angles of the one equal to two angles of the other, each to each, and the included sides equal, have their remaining sides and angles equal.

For, if [A = [D, B = E], and side AB = side DE, the triangle DEF, or the triangle symmetrical with it, will exactly coincide with $\triangle ABC$, when applied to it as in the case of plane triangles; hence, the sides and angles of the one will be equal to the sides and angles of the other, each to each.

PROPOSITION X.

The set of the set of the set

In an isosceles spherical triangle, the angles opposite the equal sides are equal.

Let ABC be an isosceles spherical triangle, in which AB and AC are the equal sides; then will $\Box B = \Box C$.

For, connect the vertex A with D, the middle point of the base, by the arc of a great circle, thus forming the two mutually equilateral triangles, ADB and ADC.

They are mutually equilateral, because AD is common, BD = DC by construction, and AB = AC by supposition; hence they are mutually equiangular, the equal angles being opposite the equal sides, (Prop. 8). The angles Band C, being opposite the common side AD, are therefore equal.

Cor. The arc of a great circle which joins the vertex of an isosceles spherical triangle with the middle point of the base, is perpendicular to the base, and bisects the vertical angle of the triangle; and, conversely, the arc of a

SPHERICAL GEOMETRY.

great circle which bisects the vertical angle of an isosceles spherical triangle, is perpendicular to, and bisects the base.

PROPOSITION XI.

If two angles of a spherical triangle are equal, the opposite sides are also equal, and the triangle is isosceles.

In the spherical triangle, ABC, let the $_B = _C$; then will the sides, AB and AC, opposite these equal angles, be equal.

For, let P be the pole of the base, BC, and draw the arcs of great circles, PB, PC; these arcs will be quadrants, and at right angles to BC, (Cor. 1, Prop. 3). Also, produce CA and BA to meet PB and PC, in the points E and F. Now, the angles, PBF and PCE, are equal, because the first is equal to 90° less the $_ABC$, and the second is equal to 90° less the equal $_ACB$; hence, the \triangle 's, PBF and PCE, are equal in all their parts,

since they have the $_P$ common, the $_PBF = _PCE$, and the side PB equal to the side PC, (Cor., Prop. 9). PE is therefore equal to PF, and $_PEC = _PFB$.

Taking the equals PF and PE, from the equals PCand PB, we have the remainders, FC and EB, equal; and, from 180°, taking the $_$'s PFB and PEC, we have the remaining $_$'s, AFC and AEB, equal. Hence, the \triangle 's, AFC and AEB, have two angles of the one equal to two angles of the other, each to each, and the included sides equal; the remaining sides and angles are therefore equal, (Cor., Prop. 9). Therefore, AC is equal to BA, and the $\triangle ABC$ is isosceles.

Cor. An equiangular spherical triangle is also equilateral, and the converse.

REMARK.—In this demonstration, the pole of the base, BC, is supposed to fall without the triangle, ABC. The same figure may be used for the case in which the pole falls within the triangle; the modification the demonstration then requires is so slight and obvious, that it would be superfluous to suggest it.

PROPOSITION XII.

The greater of two sides of a spherical triangle is opposite the greater angle; and, conversely, the greater of two angles of a spherical triangle is opposite the greater side.

Let ABC be a spherical triangle, in which the angle A is greater than the angle B; then is the side BC greater than the side AC.

Through A draw the arc of a great circle, AD, making, with AB, the angle BAD equal to the angle ABD. The triangle, DAB, is isosceles, and DA = DB, (Prop. 11).

In the $\triangle ACD$, AC < CD + AD, (Prop. 1); or, substituting for AD its equal DB, we have,

$$AC < CD + DB.$$

Inverting the members of the inequality, and writing CB for CD + DB, it becomes CB > CA.

Conversely; if the side CB be greater than the side CA, then is the $_A >$ the $_B$. For, if the $_A$ is not greater than the $_B$, it is either equal to it, or less than it. The $_A$ is not equal to the $_B$; for if it were, the triangle would be isosceles, and CB would be equal to CA, which is contrary to the hypothesis. The $_A$ is not less than the $_B$; for if it were, the side CB would be less than the side CA, by the first part of the proposition, which is also contrary to the hypothesis; hence, the $_A$ must be greater than the $_B$.

PROPOSITION XIII.

Two symmetrical spherical triangles are equal in area.

Let ABC and DEF be two \triangle 's on the same sphere, having the sides and angles of the one equal to the sides

and angles of the other, each to each, the triangles themselves not admitting of superposition. It is to be proved that these \triangle 's have equal areas.

Let P be the pole of a small circle passing through the three points, ABC, and connect Pwith each of the points, A, B,

and C, by arcs of great circles. Next, through E draw the arc of a great circle, EP', making the angle DEP'equal to the angle ABP. Take EP' = BP, and draw the arcs of great circles, P'D, P'F.

The \triangle 's, ABP and DEP', are equal in all their parts, because $AB \doteq DE$, BP = EP', and the $_ABP = _DEP'$, (Prop. 9). Taking from the $_ABC$ the $_ABP$, and from the $_DEF'$ the $_DEP'$, we have the remaining angles, PBC and P'EF, equal; and therefore the \triangle 's, BCP and EFP', are also equal in all their parts.

Now, since the \triangle 's, ABP and DEP', are isosceles, they will coincide when applied, as will also the \triangle 's, BCPand EFP', for the same reason. The polygonal areas, ABCP and DEFP', are therefore equivalent. If from the first we take the isosceles triangle, PAC, and from the second the equal isosceles triangle, P'DF, the remainders, or the triangles ABC and DEF, will be equivalent.

REMARK.—It is assumed in this demonstration that the pole P falls without the triangle. Were it to fall within, instead of without, no other change in the above process would be required than to add the isosceles triangles, PAC, P'DF, to the polygonal areas, to get the areas of the triangles, ABC, DEF.

Cor. Two spherical triangles on the same sphere, or on equal spheres, will be equivalent — 1st, when they are mutually equilateral; — 2d, when they are mutually equiangular; — 3d, when two sides of the one are equal to two sides of the other, each to each, and the included angles are equal; — 4th, when two angles of the one are equal to two angles of the other, each to each, and the included sides are equal.

PROPOSITION XIV.

If two arcs of great circles intersect each other on the surface of a hemisphere, the sum of either two of the opposite triangles thus formed will be equivalent to a lune whose angle is the corresponding angle formed by the arcs.

Let the great circle, AEBC, be the base of a hemisphere, on the surface of which the semi-great circumfer-

ences, BDA and CDE, intersect each other at D; then will the sum of the opposite triangles, BDC and DAE, be equivalent to the lune whose angle is BDC; and the sum of the opposite triangles, CDA and BDE, will be equivalent to the lune whose angle is CDA.

7 2 3

Produce the arcs, BDA and CDE, until they intersect on the opposite hemisphere at H; then, since CDE and DEH are both semi-circumferences of a great circle, they are equal. Taking from each the common part DE, we have CD = HE. In the same way we prove BD = HA, and AE = BC. The two triangles, BDC and HAE, are therefore mutually equilateral, and hence they are equivalent, (Prop. 13). But the two triangles, HAE and ADE, together, make up the lune 28 DEHAD; hence the sum of the \triangle 's, BDC and ADE, is equivalent to the same lune.

By the same course of reasoning, we prove that the sum of the opposite \triangle 's, DAC and DBE, is equivalent to the lune DCHAD, whose angle is ADC.

PROPOSITION XV.

The surface of a lune is to the whole surface of the sphere, as the angle of the lune is to four right angles; or, as the arc which measures that angle is to the circumference of a great circle.

Let ABFCA be a lune on the surface of a sphere, and BCEan arc of a great circle, whose poles are A and F, the vertices of the angles of the lune. The arc, BC, will then measure the angles of the lune. Take any arc, as BD, that will be contained an exact number of times in BC, and in the whole circum-

ference, BCEB, and, beginning at B, divide the arc and the circumference into parts equal to BD, and join the points of division and the poles, by arcs of great circles. We shall thus divide the whole surface of the sphere into a number of equal lunes. Now, if the arc BC contains the arc BD m times, and the whole circumference contains this arc n times, the surface of the lune will contain m of these partial lunes, and the surface of the sphere will contain n of the same; and we shall have,

Surf. lune : surf. sphere :: m : n.

But, m: n:: BC: circumference great circle; hence, surf. lune: surf. sphere:: BC: cir. great circle; or, surf. lune: surf. sphere:: $_BOC$: 4 right angles.

This demonstration assumes that BD is a common measure of the arc, BC, and the whole circumference. It may happen that no finite common measure can be found; but our reasoning would remain the same, even though this common measure were to become indefinitely small.

Hence the proposition.

Cor. 1. Any two lunes on the same sphere, or on equal spheres, are to each as their respective angles.

SCHOLIUM. — Spherical triangles, formed by joining the pole of an arc of a great circle with the extremities of this arc by the arcs of great circles, are isosceles, and contain two right angles. For this reason they are called *bi-rectangular*. If the base is also a quadrant, the vertex of either angle becomes the pole of the opposite side, and each angle is measured by its opposite side. The three angles are then right angles, and the triangle is for this reason called *tri-rectangular*. It is evident that the surface of a sphere contains eight of its tri-rectangular triangles.

Car. 2. Taking the right angle as the unit of angles, and denoting the angle of a lune by A, and the surface of a tri-rectangular triangle by T, we have,

surf. of lune : 8T :: A : 4; whence, surf. of lune = $2A \times T$.

Cor. 3. A spherical ungula bears the same relation to the entire sphere, that the lune, which is the base of the ungula, bears to the surface of the sphere; and hence, any two spherical ungulas in the same sphere, or in equal spheres, are to each other as the angles of their respective lunes.

PROPOSITION XVI.

The area of a spherical triangle is measured by the excess of the sum of its angles over two right angles, multiplied by the tri-rectangular triangle.

Let ABC be a spherical triangle, and DEFLK the circumference of the base of the hemisphere on which this triangle is situated.

Produce the sides of the triangle until they meet this circumference in the points, D, E, F, L, K, and P, thus forming the sets of opposite triangles, DAE, AKL; BEF, BPK; CFL, CDP.

Now, the triangles of each of these sets are together equal to a lune, whose angle is the cor-

- True Drucht B.

responding angle of the triangle, (Prop. 14); hence we have,

 $\Delta DAE + \Delta AKL = 2A \times T, (Prop. 15, Cor. 2).$ $\Delta BEF + \Delta BPK = 2B \times T.$ $\Delta CFL + \Delta CDP = 2C \times T.$

If the first members of these equations be added, it is evident that their sum will exceed the surface of the hemisphere by twice the triangle ABC; hence, adding these equations member to member, and substituting for the first member of the result its value, $4T + 2 \triangle ABC$, we have

 $4T + 2 \triangle ABC = 2A.T + 2B.T + 2C.T.$

or, $2T + \triangle ABC = A.T + B.T + C.T$ whence, $\triangle ABC = A.T + B.T + C.T - 2T.$ That is, $\triangle ABC = (A + B + C - 2) T.$

But A + B + C - 2 is the excess of the sum of the angles of the triangle over two right angles, and T denotes the area of a tri-rectangular triangle.

Antaberrow the barrel be bridge - - -

Last 1 and a to in a detta to a

Hence the proposition ; the area, etc.

SECTION I.

PROPOSITION XVII.

The area of any spherical polygon is measured by the excess of the sum of all its angles over two right angles, taken as many times, less two, as the polygon has sides, multiplied by the tri-rectangular triangle.

Let ABCDE be a spherical polygon; then will its area be measured by the excess of the sum of the angles, A, B, C, D, and E, over two right angles taken a number of times which is two less than the number of sides, multiplied by T, the tri-rectangular triangle. Through the vertex of any of the angles, as E, and the vertices of

the opposite angles, pass arcs of great circles, thus dividing the polygon into as many triangles, less two, as the polygon has sides. The sum of the angles of the several triangles will be equal to the sum of the angles of the polygon.

Now, the area of each triangle is measured by the excess of the sum of its angles over two right angles, multiplied by the tri-rectangular triangle. Hence the sum of the areas of all the triangles, or the area of the polygon, is measured by the excess of the sum of all the angles of the triangles over two right angles, taken as many times as there are triangles, multiplied by the trirectangular triangle. But there are as many triangles as the polygon has sides, less two.

Hence the proposition; the area of any spherical polygon, etc.

Cor. If S denote the sum of the angles of any spherical polygon, n the number of sides, and T the tri-rectangular triangle, the right angle being the unit of angles; the area of the polygon will be expressed by

 $[S_{28*} 2 (n-2)] \times T = (S_{28} - 2n + 4) T.$

SECTION II.

SPHERICAL TRIGONOMETRY.

A Spherical Triangle contains six parts—three sides and three angles—any three of which being given, the other three may be determined.

spherical Trigonometry has for its object to explain the different methods of computing three of the six parts of a spherical triangle, when the other three are given. It may be divided into *Right-angled* Spherical Trigonometry, and *Oblique-angled* Spherical Trigonometry; the first treating of the solution of right-angled, and the second of oblique-angled spherical triangles.

RIGHT-ANGLED SPHERICAL TRIGONOMETRY.

PROPOSITION I.

With the sines of the sides, and the tangent of ONE SIDE of any right-angled spherical triangle, two plane triangles can be formed that will be similar, and similarly situated.

Let ABC be a spherical triangle, right-angled at B; and let D be the center of the sphere. Because the angle CBA is a right angle, the plane CBD is perpendicular to the plane DBA. From C let fall CH, perpendicular to the plane DBA; and as the

SECTION II.

plane CBD is perpendicular to the plane DBA, CH will lie in the plane CBD, and be perpendicular to the line DB, and perpendicular to all lines that can be drawn in the plane DBA, from the point H (Def. 2, B. VI).

Draw HG perpendicular to DA, and draw GC; GO will lie wholly in the plane CDA, and CHG is a right-angled triangle, right-angled at H.

We will now demonstrate that the angle DGC is a right angle.

The right-angled $\triangle CHG$, gives $CH^2 + HG^2 = CG^2$ (1) The right-angled $\triangle DGH$, gives $DG^2 + HG^2 = DH^2$ (2) By subtraction, $CH^2 - DG^2 = CG^2 - DH^2$ (3)

By transposition, $CH^2 + DH^2 = CG^2 + DG^2$ (4)

But the first member of equation (4), is equal to CD^2 , because CDH is a right-angled triangle;

Therefore, $CD^2 = CG^2 + DG^2$

Hence, CD is the hypotenuse of the right-angled triangle DGC, (Th. 39, B. I).

From the point B, draw BE at right angles to DA, and BF at right angles to DB, in the plane CDB extended; the point F will be in the line DC. Draw EF, and as F is in the plane CDA, and E is in the same plane, the line EF is in the plane CDA. Now we are to prove that the triangle CHG is similar to the triangle BEF, and similarly situated.

As HG and BE are both at right angles to DA, they are parallel; and as HC and BF are both at right angles to DB, they are parallel; and by reason of the parallels, the angles GHC and EBF are equal; but GHC is a right angle; therefore, EBF is also a right angle.

Now, as GH and BE are parallel, and CH and BF are also parallel, we have,

DH: DB = HG: BEAnd, DH: DB = HC: BF Therefore, HG: BE = HC: BF (Th. 6, B. II), Or, HG: HC = BE: BF.

Here, then, are two triangles, having an angle in the one equal to an angle in the other, and the sides about the equal angles proportional; the two triangles are therefore equiangular, (Cor. 2, Th. 17, B. II); and they are similarly situated, for their sides make equal angles at H and B with the same line, DB.

Hence the proposition.

SCHOLIUM. — By the definition of sines, cosines, and tangents, we perceive that CH is the sine of the arc BC, DH is its cosine, and BF its tangent; CG is the sine of the arc AC, and DG its cosine. Also, BE is the sine of the arc AB, and DE is the cosine of the same arc. With this figure we are prepared to demonstrate the following propositions.

PROPOSITION II.

In any right-angled spherical triangle, the sine of one side is to the tangent of the other side, as radius is to the tangent of the angle adjacent to the first-mentioned side.

Or, the sine of one side is to the tangent of the other side, as the cotangent of the angle adjacent to the first-mentioned side is to the radius.

For the sake of brevity, we will represent the angles of the triangle by A, B, C, and the sides or arcs opposite to these angles, by a, b, c, that is, a opposite A, etc.

In the right-angled plane triangle EBF, we have,

$$EB: BF = R: an.BEF$$

That is, $\sin c$: $\tan a = R$: $\tan A$,

which agrees with the first part of the enunciation. By reference to equation (5), Section I, Plane Trigonometry, we shall find that,

$$\tan A \cot A = R^{2};$$
$$\tan A = \frac{R^{2}}{\cot A}$$

therefore,

SECTION II.

Substituting this value for tangent A, in the preceding proportion, and dividing the last couplet by R, we shall have,

$$sin.e : tan.a = 1 : \frac{R}{cot.A}.$$
Or,
$$sin.e : tan.a = cot.A : R.$$
Or,
$$R sin.e = tan.a cot.A, \quad (1)$$

which answers to the second part of the enunciation.

Cor. By changing the construction, drawing the tangent to AB, in place of the tangent to BC, and proceeding in a similar manner, we have,

 $R\sin a = \tan c \cot C. \qquad (2)^*$

PROPOSITION III.

In any right-angled spherical triangle, the sine of the right angle is to the sine of the hypotenuse, as the sine of either of the other angles is to the sine of the side opposite to that angle.

The sine of 90°, or radius, is designated by R.

In the plane triangle, CHG, we have,

sin.CHG : CG = sin.CGH : CH

That is,	$R: \sin b = \sin A : \sin a$	- 1 - 10 A
Ör,	$R\sin.a = \sin.b\sin.A$	(3)

Cor. By a change in the construction of the figure, drawing a tangent to AB, etc., we shall have,

$$R : \sin b = \sin C : \sin c$$
$$R \sin c = \sin b \sin C.$$
(4)

Or,

SCHOLIUM. — Collecting the four equations taken from this and the preceding proposition, we have,

(1) $R \sin c \equiv \tan a \cot A$ (2) $R \sin a \equiv \tan c \cot C$ (3) $R \sin a = \sin b \sin A$ (4) $R \sin c = \sin b \sin C$

SPHERICAL TRIGONOMETRY.

These equations refer to the right-angled triangle, ABC; but the principles are true for any right-angled spherical triangle. Let us apply them to the right-angled triangle, PDC, the complemental triangle to ABC.

Making this application, equation

- (1) becomes $R \sin . CD = \tan . PD \cot . C$
- (2) becomes $R \sin PD = \tan CD \cot P$
- (3) becomes $R \sin PD = \sin PC \sin C$
- (4) becomes $R \sin . CD = \sin . PC \sin . P$ (p)

By observing that $\sin . CD = \cos . AC = \cos . b$.

And that $\tan .PD = \cot .DO = \cot .A$, etc.; and by running equations (n), (m), (o), and (p), back into the triangle, ABC, we shall have,

(5) $R \cos.b = \cot.A \cot.C$ (6) $R \cos.A = \cot.b \tan.c$ (7) $R \cos.A = \cos.a \sin.C$ (8) $R \cos.b = \cos.a \cos.c$

By observing equation (6), we find that the second member refers to sides adjacent to the angle A. The same relation holds in respect to the angle C, and gives,

(9) $R \cos C = \cot b \tan a$.

Making the same observations on (7), we infer,

(10) $R \cos C = \cos c \sin A$.

OBSERVATION 1. Several of these equations can be deduced geometrically without the least difficulty. For example, take the figure to Proposition 1. The parallels in the plane, DBA, give,

DB: DH = DE: DG.

That is, $R: \cos a = \cos c : \cos b$.

A result identical with equation (8), and in words it is expressed thus: Radius is to cosine of one side, as the cosine of the other side is to the cosine of the hypotenuse.

OBSERVATION 2. The equations numbered from (1) to (10) cover every possible case that can occur in rightangled spherical trigonometry; but the combinations are

334

(m)

(o)

too various to be remembered, and readily applied to practical use.

We can remedy this inconvenience, by taking the *complement* of the hypotenuse, and the *complements* of the two oblique angles, in place of the arcs themselves.

Thus, b is the hypotenuse, and let b' be its complement. Then, $b + b'=90^{\circ}$; or, $b = 90^{\circ} - b'$; and, $\sin b = \cos b'$, $\cos b = \sin b'$; $\tan b = \cot b'$. In the same manner, if A' is the complement to A,

Then, $\sin A = \cos A'$; $\cos A = \sin A'$; and, $\tan A = \cot A'$; and similarly, $\sin C = \cos C'$; $\cos C = \sin C'$; and $\tan C = \cot C'$.

Substituting these values for b, A, and C, in the foregoing *ten* equations (a and c remaining the same), we have,

NAPIER'S CIRCULAR PARTS.

(11)	$R\sin.c = \tan.a \tan.A'$
(12)	$R\sin.a = \tan.c \tan.C'$
(13)	$R\sin.a = \cos.b'\cos.A'$
(14)	$R\sin.c = \cos.b'\cos.C'$
(15)	$R\sin b' = \tan A' \tan C'$
(16)	$R\sin.A' = \tan.b' \tan.c$
(17)	$R\sin.A' = \cos.a \cos.C'$
(18)	$R\sin b' = \cos a \cos c$
(19)	$R\sin . C' = \tan . b' \tan . a$
(20)	$R\sin.C'=\cos.c\cos.A'$

Omitting the consideration of the right angle, there are five parts. Each part taken as a middle part, is connected to its adjacent parts by one equation, and to its extreme parts by another equation; therefore, ten equations are required for the combinations of all the parts.

These equations are very remarkable, because the first members are all composed of radius into *some sine*, and the second members are all composed of the product of *two tangents*, or *two cosines*.

To condense these equations into words, for the purpose of assisting the memory, we will refer any one of them directly to the right-angled triangle, ABC, in the last figure.

When the right angle is left out of the question, a right-angled triangle consists of *five* parts — *three* sides, and *two* angles. Let any one of these parts be called a *middle part*; then two other parts will lie adjacent to this part, and two *opposite to it*, that is, separated from it by two other parts.

For instance, take equation (11), and call c the *middle* part; then A' and a will be adjacent parts, and C' and b' opposite parts. Again, take a as a *middle part*; then c and C' will be adjacent parts, and A' and b' will be opposite parts; and thus we may go round the triangle.

Take any equation from (11) to (20), and consider the middle part in the first member of the equation, and we shall find that they correspond to the two following *invariable and comprehensive rules*:

1. The radius into the sine of the middle part is equal to the product of the tangents of the adjacent parts.

2. The radius into the sine of the middle part is equal to the product of the cosines of the opposite parts.

These rules are known as Napier's Rules, because they were first given by that distinguished mathematician, who was also the inventor of logarithms.

In the application of these equations, the *accent* may be omitted if tan. be changed to cotan., sin. to cosin., etc. Thus, if equation (13) were to be employed, it would be written, in the first instance, $R \sin a = \cos b' \cos A'$, to insure conformity to the rule; then, we would change it into $R \sin a = \sin b \sin A$.

REMARK. — We caution the pupil to be very particular to take the *complements* of the hypotenuse, and the complements of the oblique angles.

SECTION III.

OBLIQUE-ANGLED SPHERICAL TRIGONOMETRY.

THE preceding investigations have had reference to right-angled spherical trigonometry only, but the application of these principles cover oblique-angled trigonometry also; for, every oblique-angled spherical triangle may be considered as made up of the sum or difference of two right-angled spherical triangles. With this explanatory remark, we give

PROPOSITION I.

In all spherical triangles, the sines of the sides are to each other, as the sines of the angles opposite to them.

This was proved in relation to right-angled triangles in Prop. 3, Sec. II, and we now apply the principle to oblique-angled triangles.

Let ABC be the triangle, and let CD be perpendicular to AB, or to AB produced.

Then, by Prop. 3, Sec. II, we have,

 $R: \sin AC = \sin A: \sin CD.$

Also,

 $\sin.CB: R = \sin.CD: \sin.B.$

29

A D B C A A B D

SPHERICAL TRIGONOMETRY.

By multiplying these two proportions together, term by term, and omitting the common factor R, in the first couplet, and the common factor, sin. CD, in the second, we have

 $\sin.CB$: $\sin.AC = .sin.A$: sin.B.

PROPOSITION II.

In any spherical triangle, if an arc of a great circle be let fall from any angle perpendicular to the opposite side as a base, or to the base produced, the cosines of the other two sides will be to each other as the cosines of the segments of the base.

By the application of equation 8, (Sec. II), to the last figure, we have,

 $R \cos AC = \cos AD \cos DC$

Similarly, $R \cos BC = \cos DC \cos BD$

Dividing one of these equations by the other, omitting common factors in numerators and denominators, we have,

		cos.AC	cos.AD	
	1	$\cos BC$	$\cos.BD$	
Or,	$\cos AC$:	$\cos BC =$	$\cos.AD:\cos.BD.$	

PROPOSITION III.

If from any angle of a spherical triangle, a perpendicular be let fall on the base, or on the base produced, the tangents of the segments of the base will be reciprocally proportional to the cotangents of the segments of the angle.

By the application of Equation 2, (Sec. II), to the last figure, we have,

 $R \sin.CD = \tan.AD \cot.ACD.$

SECTION III.

Similarly, $R \sin .CD = \tan .BD \cot .BCD$ Therefore, by equality,

 $\tan AD \cot ACD = \tan BD \cot BCD$ Or, $\tan AD : \tan BD = \cot BCD : \cot ACD$.

PROPOSITION IV.

The same construction remaining, the cosines of the angles at the extremities of the segments of the base are to each other as the sines of the segments of the opposite angle.

Equation 7, (Sec. II), applied to the triangle ACD, gives

 $R \cos A = \cos CD \sin ACD$ (s)

Also, $R \cos B = \cos CD \sin BCD$ (t)

Dividing equation (s) by (t), gives

 $\frac{\cos A}{\cos B} = \frac{\sin A CD}{\sin B CD}$

Or, $\cos B : \cos A = \sin BCD : \sin ACD$.

PROPOSITION V.

The same construction remaining, the sines of the segments of the base are to each other as the cotangents of the adjacent angles.

Equation 1, (Sec. II), applied to the triangle ACD, gives

 $R \sin AD = \tan CD \cot A$ (s)

Similarly, $R \sin BD = \tan CD \cot B$ (t)

Dividing (s) by (t), gives

$$\frac{\sin AD}{\sin BD} = \frac{\cot A}{\cot B}$$

Or, $\sin BD : \sin AD = \cot B : \cot A$.

SPHERICAL TRIGONOMETRY.

PROPOSITION VI.

The same construction remaining, the cotangents of the two sides are to each other as the cosines of the segments of the angle.

Equation 9, (Sec. II), applied to the triangle ACD, gives

 $R \cos ACD = \cot AC \tan CD$ (s)

Similarly, $R \cos BCD = \cot BC \tan CD$ (t)

Dividing (s) by (t), gives

 $\frac{\cos.ACD}{\cos.BCD} = \frac{\cot.AC}{\cot.BC}$

Or,

 $\cot AC$: $\cot BC = \cos ACD$: $\cos BCD$.

PROPOSITION VII.

The cosine of any side of a spherical triangle, is equal to the product of the cosines of the other two sides, plus the product of the sines of those sides multiplied by the cosine of the included angle.

Let ABC be a spherical triangle, and CD a perpendicular from the angle C on to the side AB, or on to the side AB produced. Then, by Prop. 2,

 $\cos.AC:\cos.CB=\cos.AD:\cos.BD(1)$

When *CD* falls within the triangle,

BD = (AB - AD);

and when CD falls without the triangle,

BD = (AD - AB).

Hence, $\cos BD = \cos (AD - AB)$

Now, $\cos(AB - AD) = \cos(AD - AB)$,

because each of them is equal to

 $\cos.AB \cos.AD + \sin.AB \sin.AD$, (Eq. 10, Prop. 2, Sec. I, Plane Trig.).

SECTION III.

This value of cos. BD, put in proportion (1), gives $\cos AC$: $\cos .CB = \cos .AD$: $\cos .AB \cos .AD + \sin .AB \sin .AD$ (2)

Dividing the last couplet of proportion (2) by cos.AD, observing that

$$\frac{\sin AD}{\cos AD} = \tan AD,$$

and we have

 $\cos AC : \cos CB = 1 : \cos AB + \sin AB \tan AD \quad (3)$

By applying equation 6, (Sec. II), to the triangle ACD, taking the radius as unity, we have

 $\cos A = \cot A C \tan A D$ (k)

But, $tan.AC \cot.AC = 1$, (Eq. 5, Sec. I, Plane Trig.) (1)

Multiply equation (k) by tan. AC, observing equation (l), and we have

 $\tan AC \cos A = \tan AD$

Substituting this value of tan. AD, in proportion (3), we have

 $\cos AC : \cos CB = 1 : \cos AB + \sin AB \tan AC \cos A$ (4)

Multiplying extremes and means, gives $\cos.CB = \cos.AC\cos.AB + \sin.AB(\cos.AC\tan.AC)\cos.A.$

But, $\tan AC = \frac{\sin AC}{\cos AC}$, or, $\cos AC \tan AC = \sin AC$.

Therefore, $\cos.CB = \cos.AC \cos.AB + \sin.AB \sin.AC \cos.A$.

If the sides opposite the angles, A, B, and C, be respectively represented by a, b, and c, this equation becomes,

$\cos a = \cos b \cos c + \sin b \sin c \cos A.$

This formula conforms to the enunciation in respect to the side a. Now, by simply writing b for a, and B for A, in the last equation, we get the formula for $\cos b$, which is,

 $\cos b = \cos a \ \cos c + \sin a \ \sin c \ \cos B.$

29*

By writing c for a, and C for A, we get the formula for $\cos c$, which is,

 $\cos c = \cos a \ \cos b + \sin a \ \sin b \ \cos C.$ Hence, we have the three symmetrical formulæ: $\cos a = \cos b \ \cos c + \sin b \ \sin c \ \cos A$ $\cos b = \cos a \ \cos c + \sin a \ \sin c \ \cos B$ $\cos c = \cos a \ \cos b + \sin a \ \sin b \ \cos C$

From these, by simple transposition and division, we deduce the following formulæ for the cosines of the angles of any spherical triangle, viz:

$$\begin{array}{l}
\cos A = \frac{\cos a - \cos b \ \cos c}{\sin b \ \sin c} \\
\cos B = \frac{\cos b - \cos a \ \cos c}{\sin a \ \sin c} \\
\cos C = \frac{\cos c - \cos a \ \cos b}{\sin a \ \sin b}
\end{array} \left\{ \begin{array}{l}
\left(S' \right) \\
\left($$

By means of these equations we can find the cosine of any of the three angles of a spherical triangle in terms of the functions of the sides; but in their present form they are not suited for the employment of logarithms, and we should be compelled to use a table of natural sines and cosines, and to perform tedious numerical operations, to obtain the value of the angle.

They are, however, by the following process, transformed into others well adapted to the use of logarithms.

In Eq. 34, Sec. I, Plane Trig., we have

 $1 + \cos A = 2\cos^{2}A.$

Therefore, $2\cos^{\frac{2}{2}}A = 1 + \frac{\cos a - \cos b}{\sin b} \frac{\cos c}{\sin c}$. = $\frac{(\sin b \sin c - \cos b \cos c) + \cos a}{\sin b \sin c}$ (m).

But, $\cos(b + c) = \cos b \cos c = \sin c \sin b$, (Equation 9, Section I, Plane Trig.). By comparing this equation

SECTION III.

with the second member of equation (m), we perceive that equation (m) is readily reduced to

$$2\cos^{2}\frac{1}{2}A = \frac{\cos a - \cos(b+c)}{\sin b \sin c}.$$

Considering (b+c) as one are, and then making application of equation (18), Plane Trigonometry, we have,

$$2\cos^{2} \frac{1}{2}A = \frac{2\sin\left(\frac{a+b+c}{2}\right)\sin\left(\frac{b+c-a}{2}\right)}{\sin b \sin c}.$$

But, $\frac{b+c-a}{2} = \frac{b+c+a}{2} - a$; and if we put S to represent $\frac{b+c}{2} + \frac{a}{2}$, we shall have,

$$\cos^2 \frac{A}{2} = \frac{\sin S \sin(S-a)}{\sin b \sin c}.$$

 $\cos \frac{A}{2} = \sqrt{\frac{\sin S \sin (S-a)}{\sin b \sin c}}.$

Or,

The second member of this equation gives the value
of the cosine when the radius is unity. To a greater
radius, the cosine would be greater; and in just the same
proportion as the radius increases, all the trigonometrical
lines increase; therefore, to adapt the above equation to
our tables where the radius is
$$R$$
, we must write R in the
second member, as a factor; and if we put it under the
radical sign, we must write R^2 .

For the other angles we shall have precisely similar equations:

That is,
$$\cos \frac{A}{2} = \sqrt{\frac{R^2 \sin S \sin (S-a)}{\sin b \sin c}}$$

 $\cos \frac{B}{2} = \sqrt{\frac{R^2 \sin S \sin (S-b)}{\sin a \sin c}}$
(T)
 $\cos \frac{C}{2} = \sqrt{\frac{R^2 \sin S \sin (S-c)}{\sin a \sin b}}$

SPHERICAL TRIGONOMETRY.

To deduce from formulæ (S), formulæ for the sines of the half of each of the angles of a spherical triangle, we proceed as follows:

From Eq. 35, Sec. I, Plane Trig., we have

$$2\sin^2 \frac{1}{2}A = 1 - \cos A.$$

Substituting the value of $\cos A$, taken from formulæ (S), and we have,

$$2\sin^2 \frac{1}{2}A = 1 - \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$
$$= \frac{(\sin b \sin c + \cos b \cos c) - \cos a}{\sin b \sin c}. \quad (o)$$

But, $\cos(b \circ c) = \sin b \sin c + \cos b \cos c$, (Eq. 10, Sec. I, Plane Trig.).

This equation reduces equation (°) to

$$2\mathrm{sin.}^{2} \frac{1}{2}A = \frac{\mathrm{cos.}(b \, \varpi \, c) - \mathrm{cos.}a}{\mathrm{sin.}b \, \mathrm{sin.}c}.$$

Considering $(b \ \infty c)$ as a single arc, and applying equation 18, Sec. I, Plane Trig., we have

$$2\sin^{\frac{2}{2}}A = \frac{2\sin\left(\frac{a+b-c}{2}\right)\sin\left(\frac{a+c-b}{2}\right)}{\sin b \sin c}. (o')$$

But,
$$\frac{a+b-c}{2} = \frac{a+b+c}{2} - c = S - c$$
, if we put $S =$

 $\frac{a+b+c}{2}$.

Also,
$$\frac{a+c-b}{2} = \frac{a+b+c}{2} - b = S - b.$$

Dividing equation (°) by 2, and making these substitutions, we have

$$\sin^{2} \frac{1}{2}A = \frac{\sin(S-c)\sin(S-b)}{\sin b\sin c},$$

when radius is unity.

When radius is R, we have

$$\sin \cdot \frac{1}{2}A = \sqrt{\frac{R^2 \sin \cdot (S-c) \sin \cdot (S-b)}{\sin \cdot b \sin \cdot c}}$$

Similarly,
$$\sin \cdot \frac{1}{2}B = \sqrt{\frac{R^2 \sin \cdot (S-a) \sin \cdot (S-c)}{\sin \cdot a \sin \cdot c}}$$

And,
$$\sin \cdot \frac{1}{2}C = \sqrt{\frac{R^2 \sin \cdot (S-a) \sin \cdot (S-b)}{\sin \cdot a \sin \cdot b}}$$

$$(U)$$

To apply to our tables, R^2 must be put under the radical sign. We shall show the application of these formulæ, and those in group (T), hereafter.

PROPOSITION VIII.

The cosine of any of the angles of a spherical triangle, is equal to the product of the sines of the other two angles multiplied by the cosine of the included side, minus the product of the cosines of these other two angles.

Let ABC be a spherical triangle, and A'B'C' its supplemental or polar triangle, the angles of the first being denoted by A, B, and C, and the sides opposite these angles by a, b, c, respectively; A', B', C', a', b', c', denoting the angles and corresponding sides of the second.

By Prop. 5, Sec. I, we have the following relations between the sides and angles of these two triangles.

 $A' = 180^{\circ} - a, B' = 180^{\circ} - b, C' = 180^{\circ} - c;$

 $a' = 180^{\circ} - A, b' = 180^{\circ} - B, c' = 180^{\circ} - C.$

The first of formulæ (S), Prop. 7, when applied to the polar triangle, gives

 $\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos A' \quad (1)$

SPHERICAL TRIGONOMETRY.

which, by substituting the values of a', b', c', and A', becomes

 $\cos.(180^\circ - A) = \cos.(180^\circ - B) \cos.(180^\circ - C) + \sin.(180^\circ - B) \sin.(180^\circ - C) \cos.(180^\circ - a),$ (2)

But,

346

 $\cos(180^{\circ}-A) = -\cos A$, etc., $\sin(180^{\circ}-B) = \sin B$, etc.; and placing these values for their equals in eq. (2), and changing the sines of both members of the resulting equation, we get

 $\cos A = \sin B \sin C \cos a - \cos B \cos C$,

which agrees with the enunciation.

By treating the other two of formulæ (S), Prop. 7, in the same manner, we would obtain similar values for the cosines of the other two angles of the triangle ABC; or we may get them more easily by a simple permutation of the letters A, B, C, a, etc.

Hence, we have the three equations

$$\begin{array}{l} \cos A = \sin B \sin C \cos a - \cos B \cos C \\ \cos B = \sin A \sin C \cos b - \cos A \cos C \\ \cos C = \sin A \sin B \cos c - \cos A \cos B \end{array} \right\} \quad (V)$$

By transposition and division, these equations become

$$\cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C} \quad (3)$$
$$\cos b = \frac{\cos B + \cos A \cos C}{\sin A \sin C}$$
$$\cos c = \frac{\cos C + \cos A \cos B}{\sin A \sin B}$$

From these we can find formulæ to express the sine or the cosine of one half of the side of a spherical triangle, in terms of the functions of its angles; thus:

Add 1 to each member of eq. (3), and we have

$$1 + \cos a = \frac{\cos A + \cos B \cos C + \sin B \sin C}{\sin B \sin C}$$

SECTION III.

$$\frac{\cos A + \cos (B - C)}{\sin B \sin C}$$

 $1 + \cos a = 2\cos^{2} \frac{1}{2}a$; hence, But,

$$2\cos^2 \frac{1}{2}a = \frac{\cos A + \cos (B - C)}{\sin B \sin C}$$

and since $\cos A + \cos (B - C) = 2\cos \frac{1}{2}(A + B - C)\cos \frac{1}{2}$ (A+C-B) (Eq. 17, Sec. I, Plane Trig.), we have

$$2\cos^{2} \frac{1}{2}a = \frac{2\cos \frac{1}{2}(A + B - C)\cos \frac{1}{2}(A + C - B)}{\sin B \sin C}$$

Make A + B + C = 2S; then A + B - C = 2S - 2C, $A + C - B = 2S - 2B, \frac{1}{2}(A + B - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) = S - C, \text{ and } \frac{1}{2}(A - C) =$ +C-B = S-B; whence

$$2\cos^{2} \frac{1}{2}a = \frac{2\cos(S-C)\cos(S-B)}{\sin B \sin C}$$

or,
$$\cos \cdot \frac{1}{2}a = \sqrt{\frac{\cos \cdot (S - C)\cos \cdot (S - B)}{\sin \cdot B \sin \cdot C}}$$

Similarly,
$$\cos \cdot \frac{1}{2}b = \sqrt{\frac{\cos \cdot (S - A)\cos \cdot (S - C)}{\sin \cdot A \sin \cdot C}}$$
 (V')
and,
$$\cos \cdot \frac{1}{2}c = \sqrt{\frac{\cos \cdot (S - A)\cos \cdot (S - A)}{\sin \cdot A \sin \cdot B}}$$

. To find the $\sin \frac{1}{2}a$ in terms of the functions of the angles, we must subtract each member of eq. (3) from 1, by which we get

$$1 - \cos a = 1 - \frac{\cos A + \cos B \cos C}{\sin B \sin C}.$$

But, $1 - \cos a = 2\sin^2 \frac{1}{2}a$; hence we have,

$$2\sin^2 a = \frac{(\sin B \sin C - \cos B \cos C) - \cos A}{\sin B \sin C}$$

Operating upon this in a manner analogous to that by which $\cos \frac{1}{2}a$ was found, we get,

$$\sin \cdot \frac{1}{2}a = \left\{ \frac{-\cos \cdot S \cos \cdot (S - A)}{\sin \cdot B \sin \cdot C} \right\}^{\frac{1}{2}}$$
$$\sin \cdot \frac{1}{2}b = \left\{ \frac{-\cos \cdot S \cos \cdot (S - B)}{\sin \cdot A \sin \cdot C} \right\}^{\frac{1}{2}}$$
$$\sin \cdot \frac{1}{2}c = \left\{ \frac{-\cos \cdot S \cos \cdot (S - C)}{\sin \cdot A \sin \cdot B} \right\}^{\frac{1}{2}}$$
(W)

If the first equation in (W) be divided by the first in (V'), we shall have,

$$\tan_{\frac{1}{2}a} = \left\{ \frac{-\cos_{\frac{S}{2}}S \cos_{\frac{S}{2}}(S-A)}{\cos_{\frac{S}{2}}(S-B) \cos_{\frac{S}{2}}(S-C)} \right\}^{\frac{1}{2}}$$

And corresponding expressions may be obtained for $\tan \frac{1}{2}b$ and $\tan \frac{1}{2}c$.

NAPIER'S ANALOGIES.

If the value of $\cos c$, expressed in the third equation of group (S), Prop. 7, be substituted for $\cos c$, in the second member of the first equation of the same group, we have,

 $\cos a = \cos a \cos^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A;$ which, by writing for $\cos^2 b$ its equal, $1 - \sin^2 b$, becomes, $\cos a = \cos a - \cos a \sin^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A.$ Or, $0 = -\cos a \sin^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A.$

Dividing through by sin.b, and transposing, we find,

 $\cos A \sin c = \cos a \sin b - \sin a \cos b \cos C;$

hence,
$$\cos A = \frac{\cos a \sin b - \sin a \cos b \cos C}{\sin c}$$
 (1)

By substituting the value of $\cos c$, in the second of the equations of group (S), Prop. 7; or, more simply, by writing B for A, and b for a, in the above value, for $\cos A$, we obtain,

 $\cos B = \frac{\cos b \sin a - \sin b \cos a \cos C}{\sin c}.$ (2)

SECTION III.

Adding equations (1) and (2), member to member, we have,

$$\cos A + \cos B = \frac{\sin (a+b) - \sin (a+b) \cos C}{\sin c};$$

by remembering that $\sin a \cos b + \cos a \sin b = \sin (a+b)$. (See Eq. (7), Sec. I, Plane Trig.).

Whence,
$$\cos A + \cos B = (1 - \cos C) \frac{\sin (a+b)}{\sin c}$$
. (3)

In any spherical triangle we have, (Prop. I),

$$\sin A : \sin B :: \sin a : \sin b;$$

And therefore, $\sin A + \sin B : \sin B : \sin a + \sin b : \sin b$.

Hence, $\sin A + \sin B = \frac{(\sin a + \sin b) \sin B}{\sin b}$.

But, $\frac{\sin .B}{\sin .b} = \frac{\sin .C}{\sin .c}$, which value of $\frac{\sin .B}{\sin .b}$, in the above equation, gives

$$\sin A + \sin B = \frac{(\sin a + \sin b) \sin C}{\sin c}.$$
 (4)

Dividing equation (4) by equation (3), member by member, we obtain,

$$\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin C}{1 - \cos C} \times \frac{\sin a + \sin b}{\sin (a + b)}.$$
 (5)

Comparing this equation with Equations (20) and (26), Sec. I, Plane Trigonometry, we see that it can be reduced to

$$\tan \frac{1}{2}(A+B) = \cot \frac{1}{2}C \times \frac{\sin a + \sin b}{\sin (a+b)}$$
(6)

Again, from the proportion,

 $\sin A : \sin B :: \sin a : \sin b$,

we likewise have,

 $\sin A - \sin B$: $\sin B$:: $\sin a - \sin b$: $\sin b$; 30 hence, $\sin A - \sin B = (\sin a - \sin b) \frac{\sin B}{\sin b} = (\sin a - \sin b) \frac{\sin C}{\sin b}$

Dividing this equation by equation (3), member by member, we obtain,

$$\frac{\sin A - \sin B}{\cos A + \cos B} = \frac{\sin C}{1 - \cos C} \times \frac{\sin a - \sin b}{\sin (a + b)}.$$

Comparing this with Equations (22) and (26), Sec. I, Plane Trigonometry, we see that it will reduce to

$$\tan \frac{1}{2}(A - B) = \cot \frac{1}{2}C \times \frac{\sin a - \sin b}{\sin (a + b)}.$$
(7)

Now, $\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$; Eq. (15), Sec. I, Plane Trig.).

and, sin. $(a + b) = 2 \sin\left(\frac{a + b}{2}\right) \cos\left(\frac{a + b}{2}\right)$; Eq. (30), Sec. I, Plane Trig.).

Dividing the first of these by the second, we have

$$\frac{\sin (a + \sin b)}{\sin (a + b)} = \frac{\cos\left(\frac{a - b}{2}\right)}{\cos\left(\frac{a + b}{2}\right)}$$

Writing the second member of this equation for its first member in Eq. (6), that equation becomes

$$\tan \frac{1}{2}(A+B) = \cot \frac{1}{2}C\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)}.$$
 (8)

By a similar operation, Eq. (7) may be reduced to

$$\tan \frac{1}{2}(A - B) = \cot \frac{1}{2}C\frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)}.$$
 (9)

Equations (8) and (9) may be resolved into the proportions

 $\begin{array}{l} \cos \underbrace{\frac{1}{2}(a+b) : \cos \underbrace{\frac{1}{2}(a-b) :: \cot \underbrace{\frac{1}{2}C} : \tan \underbrace{\frac{1}{2}(A+B)}; \\ \sin \underbrace{\frac{1}{2}(a+b) : \sin \underbrace{\frac{1}{2}(a-b) :: \cot \underbrace{\frac{1}{2}C} : \tan \underbrace{\frac{1}{2}(A-B)}. \end{array}$ These proportions are known as Napier's 1st and 2d

Analogies, and may be advantageously used in the solution of spherical triangles, when two sides and the included angle are given.

When expressed in language, these proportions furnish the following rules:

1. The cosine of the half sum of any two sides of a spherical triangle is to the cosine of the half difference of the same sides, as the cotangent of half the included angle is to the tangent of the half sum of the other two angles.

2. The sine of the half sum of any two sides of a spherical triangle is to the sine of the half difference of the same sides, as the cotangent of half the included angle is to the tangent of the half difference of the other two angles.

The half sum, and the half difference of two angles of a spherical triangle, may be found by these rules, when two sides and the included angle are given; and by adding the half sum to the half difference, we get the greater of these two angles, and by subtracting the half difference from the half sum, we get the smaller. The third side may then be found by proportion.

We have analogous proportions applicable to the case in which two angles and the included side of a spherical triangle are given.

To deduce these, let us represent the angles of the triangle by A, B, and C, and the opposite sides by a, b, and c; A', B', C', a', b', c', denoting the corresponding angles and sides of the polar triangle.

Now, Eq. (9) is applicable to any spherical triangle, and when applied to the polar triangle, it becomes

$$\tan \cdot \frac{1}{2}(A' - B') = \cot \cdot \frac{1}{2}C' \frac{\sin \cdot \frac{1}{2}(a' - b')}{\sin \cdot \frac{1}{2}(a' + b')}.$$
 (n)

But by Prop. 6, Sec. I, Spherical Geometry, we have $A' = 180^{\circ} - a, B' = 180^{\circ} - b, C' = 180^{\circ} - c,$ $a' = 180^{\circ} - A, b' = 180^{\circ} - B, c' = 180^{\circ} - C.$ Whence, $\frac{1}{2}(A' - B') = \frac{1}{2}(b - a), \frac{1}{2}(a' + b') = 180^{\circ} - \frac{A + B}{2},$ $\frac{1}{2}(a' - b') = \frac{1}{2}(B - A), \frac{1}{2}C'' = 90^{\circ} - \frac{1}{2}c.$

SPHERICAL TRIGONOMETRY.

By the substitution of these values in Eq. (n), that equation becomes

$$\tan \cdot \frac{1}{2}(b-a) = \frac{\sin \cdot \frac{1}{2}(B-A)}{\sin \cdot \frac{1}{2}(A+B)} \tan \cdot \frac{1}{2}c,$$

or,
$$\tan \frac{1}{2}(a-b) = \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} \tan \frac{1}{2}c,$$
 (p)

since $\tan \frac{1}{2}(b-a) = -\tan \frac{1}{2}(a-b)$, and $\sin \frac{1}{2}(B-A) = -\sin \frac{1}{2}(A-B)$.

By applying Eq. (8) to the polar triangle, and treating the resulting equation in a manner similar to the above, we find

$$\tan. \frac{1}{2}(a+b) = \frac{\cos. \frac{1}{2}(A-B)}{\cos. \frac{1}{2}(A+B)} \tan. \frac{1}{2}c, \qquad (q)$$

Equations (p) and (q) may be resolved into the following proportions.

 $\begin{array}{l} \sin. \frac{1}{2}(A+B) : \sin. \frac{1}{2}(A-B) :: \tan. \frac{1}{2}c : \tan. \frac{1}{2}(a-b); \\ \cos. \frac{1}{2}(A+B) : \cos. \frac{1}{2}(A-B) :: \tan. \frac{1}{2}c : \tan. \frac{1}{2}(a+b). \end{array}$

These proportions are called Napier's 3d and 4th Analogies, and when expressed in words become the following rules:

1. The cosine of the half sum of any two angles of a spherical triangle is to the cosine of the half difference of the same angles, as the tangent of half the included side is to the tangent of the half sum of the other two sides.

2. The sine of the half sum of any two angles of a spherical triangle is to the sine of the half difference of the same angles, as the tangent of half the included side is to the tangent of the half difference of the other two sides.

The half sum, and the half difference of two sides of a spherical triangle, may be found by these rules, when two angles and the included side are given; and by adding the half sum to the half difference, we get the greater of these sides, and by subtracting the half difference from the half sum, we get the smaller.

SECTION IV.

SPHERICAL TRIGONOMETRY APPLIED.

SOLUTION OF RIGHT-ANGLED SPHERICAL TRIANGLES.

A GOOD general conception of the sphere is essential to a practical knowledge of spherical trigonometry, and this conception is best obtained by the examination of an artificial globe. By tracing out upon its surface the various forms of right-angled and oblique-angled triangles, and viewing them from different points, we may soon acquire the power of making a natural representation of them on paper, which will be found of much assistance in the solution and interpretation of problems.

For instance, suppose one side of a right-angled spherical triangle to be 56°, and the angle between this side and the hypotenuse to be 24°. What is the hypotenuse, and what the other side and angle?

A person might solve this problem by the application of the proper equations or proportions, without really comprehending it; that is, without being able to form a distinct notion of the shape of the triangle, and of its relation to the surface of the sphere on which it is situated.

If we refer this triangle to the common geographical globe, the side 56° may be laid off on the equator, or on a meridian. In the first case, the hypotenuse will be the arc of a great circle drawn through one extremity of the side 56°, above or below the equator, and making with

30 *

it an angle of 24° ; the other side will be an arc of a meridian. In the second case, the side 56° falling on a meridian, the hypotenuse will be the arc of a great circle drawn through one extremity of this side, on the right or left of the meridian, and making with it an angle of 24° ; the other side will be the arc of a great circle, at right angles to the meridian in which the given side lies.

Generally speaking, the apparent form of a spherical triangle, and consequently the manner of representing it on paper, will differ with the position assumed for the eye in viewing it. From whatever point we look at a sphere, its outline is a perfect circle in the axis of which the eye is situated; and when the eye is, as will be hereafter supposed, at an infinite distance, this circle will be a great circle of the sphere. All great circles of the sphere whose planes pass through the eye, will seem to be diameters of the circle which represents the outline of the sphere.

We will now suppose the eye to be in the plane of the equator, and proceed to construct our triangle on paper.

Let the great circle, PASA', represent the outline of the sphere, the diameter AA' the equator, and the diameter PS the central meridian, or the meridian in whose plane the eye is situated. Let $AB = 56^{\circ}$, represent the given side, and AC, making with AB the angle BAC =

24°, the hypotenuse, then will BC, the arc of a meridian, be the other side at right angles to AB, and the triangle, ABC, corresponds in all respects to the given triangle.

Again, measure off 56° from P to Q, draw the radius DQ, make the arc A'G equal to 24°, and draw the quadrant PRG. The triangle PQR will also represent the given triangle in every particular.
We know from the construction, that $DV_{,} = 24^{\circ}$, is greater than $BC_{,}$ and that AC is greater than $AB_{,}$ that is, greater than 56° .

In like manner, we know that $A'_{,} = 24^{\circ}$, is greater than QR, and that PR is greater than PQ, because PR is more nearly equal to $PG_{,} = 90^{\circ}$, than PQ is to $PA_{,} = 90^{\circ}$.

For illustration and explanation, we also give the following example:

In a right-angled spherical triangle, there are given, the hypotenuse equal to $150^{\circ} 33' 20''$, the angle at the base, $23^{\circ} 27' 29''$, to find the base and the perpendicular. Let A'BC in the last figure, represent the triangle in which $A'C = 150^{\circ} 33' 20''$, the $\ BA'C = 23^{\circ} 27' 29''$, and the sides A'B and BC are required.

This problem presents a right-angled spherical triangle, whose base and hypotenuse are each greater than 90°; and in cases of this kind, let the pupil observe, that the base is greater than the hypotenuse, and the oblique angle opposite the base, is greater than a right angle. In all cases, a spherical triangle and its supplemental triangle make a *lune*. It is 180° from one pole to its opposite, whatever great circle be traversed. It is 180° along the equator ABA', and also 180° along the ecliptic ACA'. The lune always gives two triangles; and when the sides of one of them are greater than 90°, we take the triangle having supplemental sides; hence in this case we operate on the triangle ABC.

AC is greater than AB, therefore A'B is greater than the hypotenuse A'C.

The $\[ACB \]$ is less than 90°; therefore, the adjacent angle A'CB is greater than 90°, the two together being equal to two right angles.

These facts are technically expressed, by saying, that the sides and opposite angles are of the same affection.*

^{*} Same affection: that is, both greater or both less than 90°. Different affection: the one greater, the other less than 90°.

Now, if the two sides of a right-angled spherical triangle are of the same affection, the hypotenuse will be less than 90° ; and if of *different affection*, the hypotenuse will be greater than 90° .

If, in every instance, we make a natural construction of the figure, and use common judgment, it will be impossible to doubt whether an arc must be taken greater or less than 90°.

We will now solve the triangle *ACB*. $AC = 180^{\circ} - 150^{\circ} 33' 20'' = 29^{\circ} 26' 40''$.

To find BC, we use Eq. (3) or (13), Prop. 3, Sec. II., thus:

b, \sin .	29°	26'	40''	9.691594
A, \sin .	23°	27'	$29^{\prime\prime}$	9.599984
a, \sin .	11°	17'	7''	9.291578

To find AB, we use equation (1) or (11), thus:

a, tan.	11°	17'	7''	9.300016
A, cot.	23°	27'	$29^{\prime\prime}$	10.362674
c, \sin .	27°	22'	32''	9.662690
	180			
41 70	1500	971	0011	

PRACTICAL PROBLEMS IN RIGHT-ANGLED SPHERICAL TRIGONOMETRY.

1. In the right-angled spherical triangle ABC, given $AB = 118^{\circ} 21'$ A 4", and the angle $A = 23^{\circ} 40' 12"$, to find the other parts.

Ans. $\begin{cases} AC, 116^{\circ} 17' 45''; \text{ the angle } C, 100^{\circ} 59' 26''; \\ \text{and } BC, 21^{\circ} 5' 42''. \end{cases}$

2. In the right-angled spherical triangle ABC, given $AB 53^{\circ} 14' 20''$, and the angle $A 91^{\circ} 25' 53''$, to find the other parts.

Ans. { AC, 91° 4' 9"; the angle C, 53° 15' 8"; and BC, 91° 47' 11".

SECTION IV.

3. In the right-angled spherical triangle ABC, given $AB 102^{\circ} 50' 25''$, and the angle $A 113^{\circ} 14' 37''$, to find the other parts.

Ans. { AC, 84° 51' 36"; the angle C, 101° 46" 57"; and BC, 113° 46' 27".

4. In the right-angled spherical triangle ABC, given AB 48° 24′ 16″, and BC 59° 38′ 27″, to find the other parts.

Ans. $\begin{cases} AC, 70^{\circ} 23' 42''; \text{ the angle } A, 66^{\circ} 20' 40''; \\ \text{and the angle } C, 52^{\circ} 32' 55''. \end{cases}$

5. In the right-angled spherical triangle ABC, given AB 151° 23′ 9″, and BC 16° 35′ 14″, to find the other parts.

Ans. { AC, 147° 16' 51"; the angle C, 117° 37' 21"; and the angle A, 31° 52' 50".

6. In the right-angled spherical triangle ABC, given AB 73° 4′ 31″, and AC 86° 12′ 15,″ to find the other parts.

Ans. { BC, 76° 51' 20"; the angle A, 77° 24' 23"; and the angle C, 73° 29' 40".

7. In the right-angled spherical triangle ABC, given AC 118° 32′ 12″, and AB 47° 26′ 35″, to find the other parts.

Ans. $\begin{cases} BC, 134^{\circ} 56' 20''; \text{ the angle } A, 126^{\circ} 19' 2''; \\ \text{and the angle } C, 56^{\circ} 58' 44''. \end{cases}$

8. In the right-angled spherical triangle ABC, given $AB 40^{\circ}$ 18' 23", and $AC 100^{\circ}$ 3' 7", to find the other parts.

Ans. { The angle A, 98° 38' 53"; the angle C, 40° 4' 6"; and BC, 103° 13' 52".

9. In the right-angled spherical triangle ABC, given AC 61° 3' 22", and the angle A 49° 28' 12", to find the other parts.

Ans. $\begin{cases} AB, 49^{\circ} \ 36' \ 6''; \text{ the angle } C, \ 60^{\circ} \ 29' \ 19''; \\ \text{and } BC, \ 41^{\circ} \ 41' \ 32''. \end{cases}$

10. In the right-angled spherical triangle ABC, given

358

AB 29° 12′ 50″, and the angle C 37° 26′ 21″, to find the other parts.

Ambiguous; the angle A, 65° 27' 58", or its supplement; AC, 53° 24' 13", or its supplement; BC, 46° 55' 2", or its supplement. 11. In the right-angled spherical triangle ABC, given

11. In the right-angled spherical triangle ABC, given $AB \ 100^{\circ} \ 10' \ 3''$, and the angle $C \ 90^{\circ} \ 14' \ 20''$, to find the other parts.

Ans. $\begin{cases} AC, 100^{\circ} 9' 55'', \text{ or its supplement; } BC, \\ 1^{\circ} 19' 53'', \text{ or its supplement; and the} \\ \text{angle } A, 1^{\circ} 21' 8'', \text{ or its supplement.} \end{cases}$

12. In the right-angled spherical triangle \overrightarrow{ABC} , given \overrightarrow{AB} 54° 21′ 35″, and the angle \overrightarrow{C} 61° 2′ 15″, to find the other parts.

Ans. $\begin{cases} BC, \ 129^{\circ} \ 28' \ 28'', \ \text{or its supplement;} \ AC, \\ 111^{\circ} \ 44' \ 34'', \ \text{or its supplement;} \ \text{and the} \\ \text{angle } A, \ 123^{\circ} \ 47' \ 44'', \ \text{or its supplement.} \end{cases}$

13. In the right-angled spherical triangle ABC, given AB 121° 26′ 25″, and the angle C 111° 14′ 37″, to find the other parts.

Ans. $\begin{cases}
\text{The angle } A, 136^{\circ} \ 0' \ 3'', \text{ or its supplement;} \\
AC, 66^{\circ} \ 15' \ 38'', \text{ or its supplement; and} \\
BC, 140^{\circ} \ 30' \ 56'', \text{ or its supplement.}
\end{cases}$

QUADRANTAL TRIANGLES.

The solution of right-angled spherical triangles includes, also, the solution of quadrantal triangles, as may be seen by inspecting the adjoining figure. When we have one quadrantal triangle, we have four, which with one right-angled triangle, fill up the whole hemisphere.

To effect the solution of either of the four quadrantal triangles, APC, AP'C, A'PC, or A'P'C, it is sufficient to solve the small right-angled spherical triangle ABC.

SECTION IV.

To the half lune AP'B, we add the triangle ABC, and we have the quadrantal triangle AP'C; and by subtracting the same from the equal half lune APB, we have the quadrantal triangle PAC.

When we have the side, AC, of the same triangle, we have its supplement, A'C, which is a side of the triangles A'PC, and A'P'C. When we have the side, CB, of the small triangle, by adding it to 90°, we have P'C, a side of the triangle A'P'C; and subtracting it from 90°, we have PC, a side of the triangles APC, and AP'C.

PROBLEM I.

In a quadrantal triangle, there are given the quadrantal side, 90°, a side adjacent, 42° 21', and the angle opposite this last side, equal to 36° 31'. Required the other parts.

By this enumeration we cannot decide whether the triangle APCor AP'C, is the one required, for $AC = 42^{\circ} 21'$ belongs equally to both triangles. The angle $APC = AP'C = 36^{\circ} 31' = AB$. We operate wholly on the triangle ABC.

To find the angle A, call it the middle part.

Then,	
-------	--

	$R\cos$.	CAI	B =	$R \operatorname{si}$	n.PAC	$C = \cot A C ta$	n.AB.
eot	AC	_	42°	21'		10.040231	-
tar	AB	=	36°	31'		9.869473	
cos	.CAB	-	35°	40'	51″	9.909704	
			90°	-0			
_	PAC	=	54°	19'	9"		
	P'AC	/ =	125°	40'	51″	and the second second	

To find the angle C, call it the middle part.

 $R \cos. ACB = \sin. CAB \cos. AB.$ $\sin. CAB = 35^{\circ} 40' 51'' \qquad 9.765869$ $\cos. AB = 36^{\circ} 31' \qquad 9.905085$ $\cos. ACB = 62^{\circ} 2' 45'' \qquad 9.670954$ 180°

 $ACP = A'CP' = 117^{\circ} 57' 15''$

SPHERICAL TRIGONOMETRY.

360

To find the side BC, call it the middle part.

Rs	in. B	C =	tan	.AB	$\cot.ACB.$
tan.AB	-	36°	31′	0"	9.869473
cot.ACB	=	62°	2'	45"	9.724835
sin. <i>BC</i>	-	23° 90°	8′	11″	9.594308
PC	_	66°	51'	49"	ad adjurable 1
P'C	! =	113°	8'	11″	VI against -

We now have all the sides, and all the angles of the *four* triangles in question.

PROBLEM II.

In a quadrantal spherical triangle, having given the quadrantal side, 90°, an adjacent side, 115° 09', and the included angle, 115° 55', to find the other parts.

This enunciation clearly points out the particular triangle A'P'C. A'P'= 90°; and conceive $A'C = 115^{\circ} 09'$. Then the angle $P'A'C = 115^{\circ} 55' =$ P'D.

From the angle P'A'C take 90°, or P'A'B, and the remainder is the angle $OA'D = BAC = 25^{\circ} 55'$.

We here again operate on the triangle ABC. A'C, taken from 180°, gives

$$64^{\circ} 51' = AC.$$

To find BC, we call it the middle part.

Ra	sin.B	C =	= sin.	ACE	sin	BAC.
sin.AC		64°	51'			9.956744
sin.BAC	=	25°	55'		•	9.640544
sin.BC	-	23° 90°	18' 1	.9″		9.597288

 $P'C = 113^{\circ} 18' 19''$

SECTION IV.

To find AB, we call it the middle part.

 $R \sin AB = \tan BC \cot BAC.$ $\tan BC = 23^{\circ} 18' 19'' \cdot 9.634251$ $\cot BAC = 25^{\circ} 55' \cdot 9.313423$ $\sin AB = 62^{\circ} 26' 8'' \cdot 8.947674$ 180° $A'B = 117^{\circ} 33' 52'' = \text{the angle } A'P'C.$

To find the angle C, we call it the middle part.

$R \cos . C = \cot . A C \tan . B C.$

$\cot AC =$	64° 51′ .	9.671634
$\tan BC =$	23° 18′ 19″ .	9.634251
$\cos C =$.78° .	9.305885
DIQU	1010 404 57	T. O.L.M.

$$P'CA' = 101^{\circ} 40' . 7''$$

Thus we have found the side $P'C = 113^{\circ} 18' 19''$ The angle $A'P'C = 117^{\circ} 33' 52''$ " $P'CA' = 101^{\circ} 40' 7''$

PRACTICAL PROBLEMS.

1. In a quadrantal triangle, given the quadrantal side, 90°, a side adjacent, 67° 3′, and the included angle, 49° 18′, to find the other parts.

Ans. $\begin{cases}
The remaining side is <math>53^{\circ} 5' 46''; \text{ the angle} \\
\text{opposite the quadrantal side, } 108^{\circ} 32' 27''; \\
\text{and the remaining angle, } 60^{\circ} 48' 54''.
\end{cases}$

2. In a quadrantal triangle, given the quadrantal side, 90°, one angle adjacent, 118° 40′ 36″, and the side opposite this last-mentioned angle, 113° 2′ 28″, to find the other parts.

Ans. $\begin{cases}
The remaining side is 54° 38' 57''; the angle opposite, 51° 2' 35''; and the angle opposite the quadrantal side 72° 26' 21''.
\end{cases}$

3. In a quadrantal triangle, given the quadrantal side, 31 90°, and the two adjacent angles, one 69° 13' 46", the other 72° 12' 4", to find the other parts.

Ans. $\begin{cases}
One of the remaining sides is 70° 8' 39'', the other is 73° 17' 29'', and the angle opposite the quadrantal side is 96° 13' 23''.
\end{cases}$

4. In a quadrantal triangle, given the quadrantal side, 90°, one adjacent side, 86° 14′ 40″, and the angle opposite to that side, 37° 12′ 20″, to find the other parts.

Ans. $\begin{cases}
The remaining side is <math>4^{\circ} 43' 2''; \text{ the angle opposite, } 2^{\circ} 51' 23''; \text{ and the angle opposite the quadrantal side, } 142^{\circ} 42' 2''.
\end{cases}$

5. In a quadrantal triangle, given the quadrantal side, 90°, and the other two sides, one $118^{\circ} 32' 16''$, the other 67° 48' 40'', to find the other parts — the three angles.

Ans. $\begin{cases}
The angles are 64° 32' 21'', 121° 3' 40'', and 77° 11' 6''; the greater angle opposite the greater side, of course.
\end{cases}$

6. In a quadrantal triangle, given the quadrantal side, 90°, the angle opposite, $104^{\circ} 41' 17''$, and one adjacent side, $73^{\circ} 21' 6''$, to find the other parts.

side, 73° 21' 6", to find the other parts. Ans. $\begin{cases} \text{Remaining side, 49° 42' 18"; remaining} \\ \text{angles, 47° 32' 39", and 67° 56' 13".} \end{cases}$

SOLUTION OF OBLIQUE-ANGLED SPHERICAL TRIANGLES.

All cases of oblique-angled spherical trigonometry may be solved by right-angled Trigonometry, except two; because every oblique-angled spherical triangle is composed of the sum, or the difference, of two rightangled spherical triangles.

When a side and two of the angles, or an angle and two of the sides are given, to find the other parts, conform to the following directions:

Let a perpendicular be drawn from an extremity of a given side, and opposite a given angle or its supplement; this will form two right-angled spherical triangles; and

one of them will have its hypotenuse and one of its adjacent angles given, from which all its other parts can be computed; and some of these parts will become as known parts to the other triangle, from which all its parts can be computed.

To facilitate these computations, we here give a summary of the practical truths demonstrated in the foregoing propositions.

1. The sines of the sides of spherical triangles are proportional to the sines of their opposite angles.

2. The sines of the segments of the base, made by a perpendicular from the opposite angle, are proportional to the cotangents of their adjacent angles.

3. The cosines of the segments of the base are proportional to the cosines of the adjacent sides of the triangle.

4. The tangents of the segments of the base are reciprocally proportional to the cotangents of the segments of the vertical angle.

5. The cosines of the angles at the base are proportional to the sines of the corresponding segments of the vertical angle.

6. The cosines of the segments of the vertical angle are proportional to the cotangents of the adjoining sides of the triangle.

The two cases in which right-angled spherical triangles are not used, are,

1st. When the three sides are given to find the angles; and,

2d. When the three angles are given to find the sides.

The first of these cases is the most important of all, and for that reason great attention has been given to it, and two series of equations, (T and U, Prop. 7, Sec. III), have been deduced to facilitate its solution.

As heretofore, let ABC represent any triangle whose angles are denoted by A, B, and C, and sides by a, b,

364 SPHERICAL TRIGONOMETRY.

and c; the side a being opposite [A, the side b opposite]B, etc.

EXAMPLES.

1. In the triangle ABC, $a = 70^{\circ}4' 18''$; $b = 63^{\circ}21' 27''$; and c, 59° 16' 23''; required the angle A.

The formula for this is the first equation in group (T, Prop. 7, Sec. III), which is

$$\cos \frac{A}{2} = \left(\frac{R^2 \sin S \sin (S-a)}{\sin b \sin c}\right)^{\frac{1}{2}}$$

We write the second member of this equation thus:

$$\sqrt{\left(\frac{R}{\sin.b}\right)\left(\frac{R}{\sin.c}\right)(\sin.S)\sin.(S-a)},$$

showing four distinct factors under the radical.

The logarithm corresponding to $\frac{R}{\sin . b}$ is that of $\sin . b$ subtracted from 10; and of $\frac{R}{\sin . c}$ is that of $\sin . c$ subtracted from 10, which we call *sin.complement*.

BC	= a =	70°	4'	18"		· · · ,	
AB	= c =	59°	16'	23"	sin.	com.	.065697
4 C :	= b =	63°	21'	27"	sin.	com.	.048749
	2))192°	42'	8"	21		150
	S =	96°	21'	4"	sin.		9.997326
S	-a =	26°	16'	46"	sin.		9.646158
						2)	19.757930
	$\frac{1}{2}A =$	40°	49'	10"	cos.	7.9.1	9.878965
				2		1 9 10	an fit sold
	A =	81°	38'	20"	1	12	amond India

When we apply the equation to find the angle A, we write a first, at the top of the column; when we apply the equation to find the angle B, we write b at the top of the column. Thus,

SECTION IV.

	To find the angle <i>B</i> .							
cos	$\cos \frac{1}{2}B = \sqrt{\frac{R^2 \sin S \sin (S-b)}{1 - b}}$							
	22-	V	$\frac{1}{\left(\frac{R}{\sin}\right)}$	-) (;	$\frac{R}{\frac{R}{\sin a}}$ (sin.	S) si	n.(<i>Š</i>	. b)
	<i>b</i> =	63°	21'	27!		1	11 :	
•	<i>c</i> =	59°	16'	23''	sin.com.		.06569	97
	<i>a</i> =	= 70°	4'	18"	sin.com.		.0268	75
	2)192°	42'	811		•	100.0	
	S =	96°	21'	4''	sin	1	9.9973	26
S.	-b =	: 32°	59'	37"	sin	10	9.7360	34
			104		18 1	2)1	9.8258	72
	$\frac{1}{2}B =$: 35°	4'	49"	COS	•	9.9129	36
				2				
	R	700	0/	28/1				

By the other equation in formulæ (T, Prop. 7, Sec. III), we can find the angle C; but, for the sake of variety, we will find the angle C by the application of the third equation in formulæ (U, Prop. 7, Sec. III).

 $R^2 \sin(S-b) \sin(S-a)$ $\sin \frac{1}{2}C =$ $\sin b \sin a$ $\left(\frac{R}{\sin a}\right)\sin\left(S-b\right)\sin\left(S-a\right)$ $c = 59^{\circ} 16' 23''$ sin.com. $a = 70^{\circ} 4' 18''$.026817 $b = 63^{\circ} 21' 27''$ sin.com. .048479 2)192° 42' 8" $S = 96^{\circ} 21'$ 4" $S - a = 26^{\circ} 16' 46''$ sin. 9.646158 $S - b = 32^{\circ} 59' 37''$ sin. 9.736034 2) 19.457488 $\frac{1}{2}C = 32^{\circ} 23' 17''$ sin. 9.778744 2 $C = 64^{\circ} 46' 34''$ 35*

365

- 6. r

To show the harmony and practical utility of these two sets of equations, we will find the angle A, from the equation

$\sin^{\frac{1}{2}}A = \sqrt{\left(\frac{R}{\sin . b}\right)}$	$\left(\frac{R}{\sin c}\right)\sin(S-b)\sin(S-c).$
$a = 70^{\circ} 4' 18'$	W Constant of the second se
$b = 63^{\circ} 21' 27$	" sin.com048749
$c = 59^{\circ} 16' \cdot 23$	" sin.com065697
2) 192° 42′ 8′	restants the first state of
$S = 96^{\circ} 21' 4'$	"
$S - b = 32^{\circ} 59' 37'$	" sin. 9.736034
$S-c = 37^{\circ} 4' 41$	" sin. 9.780247
	2) 19.630727
$\frac{1}{2}A = 40^{\circ} 49' 10'$	' sin. 9.815363
2	
$A = 81^{\circ} 38' 20''$	Test of the bar

2. In a spherical triangle ABC, given the angle A, 38° 19' 18"; the angle B, 48° 0' 10"; and the angle C, 121° 8' 6"; to find the sides a, b, c.

By passing to the triangle polar to this, we have, (Prop. 6, Sec. I, Spherical Geometry),

 $\begin{array}{rcl} A = & 38^{\circ} & 19' & 18'' \text{ supplement } 141^{\circ} & 40' & 42'' \\ B = & 48^{\circ} & 0' & 10'' \text{ supplement } 131^{\circ} & 59' & 50'' \\ C = & 121^{\circ} & 8' & 6'' \text{ supplement } 58^{\circ} & 51' & 54'' \end{array}$

We now find the angles to the spherical triangle, the sides of which are these supplements.

hus, .	141°	40'	42"	sin anna	
•	131°	59'	50"	sin.com	128909
	58°	51'	54''	sin.com.	067551
	2)332°	32'	26"		
	166°	16'	13"	sin.	9.375375
	24°	35'	31″	sin.	9.619253
					2) 19.191088
	66°	47'	$37\frac{1}{2}''$	COS.	9.595544

 $angle = 121^{\circ} 35' 15''$

supp. = $58^{\circ} 24' 45'' = a$ of the original triangle. In the same manner we find $b = 60^{\circ} 14' 25''$; $c = 89^{\circ} 1' 14''$.

It is perhaps better to avoid this indirect process of computing the sides of a spherical triangle when the angles are given, by the application of the equations in group V' or W, Prop. 8, Sec. III. We will illustrate their use by applying the second equation in group (W), for computing the side b. This equation is

 $\sin_{\frac{1}{2}b} = \left(\frac{-\cos S \cos (S-B)}{\sin A \sin C}\right)^{\frac{1}{2}}$ $A = 38^{\circ} 19' 18''$ $B = 48^{\circ} 0' 10''$ $C = 121^{\circ} 8' 6''$ 2) 207° 27' 34" $S = 103^{\circ} 43' 47''$ - $-\cos S = +\sin .13^{\circ} 43' 47'' = 9.375376$ $B = 48^{\circ} 0' 10''$ $\cos(S - B) = 55^{\circ} 43' 37'' = 9.750612$ $(S - B) = 55^{\circ} 43' 37''$ 2) 19.125988 square root = 9.562994 $\sin A = 38^{\circ} 19' 18'' = 9.792445$ $\sin C = 121^{\circ} 8' 6'' = 9.932443$ 2) 19.724888 square root = 9.862444 = 9.862444diff. --- 1.700550 . Add 10, for radius of the table, 10 Tabular $\sin \frac{1}{2}b = 30^{\circ} 7' 14'' = 9.700550$ 2 $b = 60^{\circ} 14' 28''$, nearly.

PRACTICAL PROBLEMS.

1. In any triangle, *ABC*, whose sides are *a*, *b*, *c*, given $b = 118^{\circ} 2' 14''$, $c = 120^{\circ} 18' 33''$, and the included angle $A = 27^{\circ} 22' 34''$, to find the other parts.

Ans. $\begin{cases} a = 23^{\circ} 57' 13'', \text{ angle } B = 91^{\circ} 26' 44, \text{ and } C = 102^{\circ} 5' 54''. \end{cases}$

2. Given, $A = 81^{\circ} 38' 17''$, $B = 70^{\circ} 9' 38''$, and C =64° 46' 32'', to find the sides a, b, c.

Ans. $\begin{cases} a = 70^{\circ} 4' \ 18'', b = 63^{\circ} \ 21' \ 27'', and c = 59^{\circ} \ 16' \\ 23''. \end{cases}$ 8. Given, the three sides, $a = 93^{\circ} \ 27' \ 34'', b = 100^{\circ} \ 4' \end{cases}$

26", and $c = 96^{\circ}$ 14' 50", to find the angles A, B, and C. Ans. $\begin{cases} A = 94^{\circ} 39' 4", B = 100^{\circ} 32' 19", and C = 96^{\circ} \\ 58' 36". \end{cases}$

4. Given, two sides, $b = 84^{\circ} 16'$, $c = 81^{\circ} 12'$, and the angle $C = 80^{\circ} 28'$, to find the other parts.

The result is ambiguous, for we may consider Ans. $\begin{cases} \text{the angle } B \text{ as acute or obtuse. If the angle} \\ B \text{ is acute, then } A = 97^{\circ} 13' 45'', B = 83^{\circ} 11' \\ 24'', \text{ and } a = 96^{\circ} 13' 33''. \text{ If } B \text{ is obtuse, then} \\ A = 21^{\circ} 16' 44'', B = 96^{\circ} 48' 36'', \text{ and } a = 96^{\circ} 13' 33''. \end{cases}$ 21° 19' 29".

5. Given, one side, $c=64^{\circ}26'$, and the angles adjacent,

 $A = 49^{\circ}$, and $B = 52^{\circ}$, to find the other parts. Ans. $\begin{cases} b = 45^{\circ} 56' 46'', a = 43^{\circ} 29' 49'', and C = 98^{\circ} \\ 28' 5''. \end{cases}$

6. Given, the three sides, $a = 90^{\circ}$, $b = 90^{\circ}$, $c = 90^{\circ}$, to find the angles A, B, and C.

Ans. $A = 90^{\circ}$, $B = 90^{\circ}$, and $C = 90^{\circ}$.

'7. Given, the two sides, $a = 77^{\circ} 25' 11''$, $c = 128^{\circ} 13'$ 47", and the angle $C = 131^{\circ} 11' 12$ ", to find the other parts. IL at the man and the

Ans. $\begin{cases} b = 84^{\circ} 29' 24'', A = 69^{\circ} 14', and B = 72^{\circ} 28' \\ 46'' \end{cases}$

8. Given, the three sides, $a = 68^{\circ} 34' 13''$, $b = 59^{\circ}$ 21' 18", and $c = 112^{\circ}$ 16' 32", to find the angles A, B, and C.

Ans. $\begin{cases} A = 45^{\circ} \ 26' \ 12'', B = 41^{\circ} \ 11' \ 6'', C = 134^{\circ} \ 54' \\ 27''. \end{cases}$ and the set with a first the other parts.

9. Given, $a = 89^{\circ} 21' 37''$, $b = 97^{\circ} 18' 39''$, $c = 86^{\circ} 53' 46''$, to find A, B, and C.

7

Ans. $\begin{cases} A = 88^{\circ} 57' 20'', B = 97^{\circ} 21' 26'', C = 86^{\circ} 47' \\ 17''. \end{cases}$

10. Given, $a = 31^{\circ} 26' 41''$, $c = 43^{\circ} 22' 13''$, and the angle $A=12^{\circ} 16'$, to find the other parts.

Ans. $\begin{cases}
\text{Ambiguous; } b = 73^{\circ} 7' 35'', \text{ or } 12^{\circ} 17' 39''; \\
\text{angle } B = 115^{\circ} 0' 31'', \text{ or } 47^{\circ} 1' 36''; C = 16^{\circ} \\
14' 27'', \text{ or } 163^{\circ} 45' 33''.
\end{cases}$

11. In a triangle, ABC, we have the angle $A=56^{\circ}$ 18' 40", $B=39^{\circ}$ 10' 38"; AD, one of the segments of the base, is 32° 54' 16". The point D falls upon the base AB, and the angle C is obtuse. Required the sides of the triangle and the angle C.

Ans. $\begin{cases} C = 135^{\circ} 47' 56'', c = 123^{\circ} 4' 56'', a = 90^{\circ} 8' 17'', \\ b = 49^{\circ} 23' 41''. \end{cases}$

12. Given, $A = 80^{\circ} 10' 10''$, $B = 58^{\circ} 48' 36''$, $C = 91^{\circ} 52' 42''$, to find a, b, and c.

Ans. $a = 79^{\circ} 38' 21'', b = 58^{\circ} 39' 16'', c = 86^{\circ} 12' 52''.$

Los des lives in the second spectroscent indent in the hervon second screation second screation for a solution of the point of the fort of the homes, FTTL the homes in the fort

To all of the T. Long prove it with the strips with some the end of the strips of the T. and T. L. Long conversion of the T. L. Long conversion.

Y

••• Initials. (v) is a portion of the opticity induces dote it, encod their adv's possible to the opticity induces period of the car's doction dot and a period of the first p and in this figure the main doction in responsed to be north. By the revolution of the early on its aris, the

SECTION V.

APPLICATIONS OF SPHERICAL TRIGONOMETRY TO ASTRONOMY AND GEOGRAPHY.

SPHERICAL TRIGONOMETRY APPLIED TO ASTRONOMY.

SPHERICAL TRIGONOMETRY becomes a science of incalculable importance in its connection with geography, navigation, and astronomy; for neither of these subjects can be understood without it; and to stimulate the student to a study of the science, we here attempt to give him a glimpse at some of its points of application.

Let the lines in the annexed figure represent circles in the heavens above and around us.

Let Z be the zenith, or the point just overhead, *Hch* the horizon, PZHthe meridian in the heavens, and P the pole of the earth's equator; then Ph is the latitude of the observer, and PZ is the

co.latitude. Qcq is a portion of the equator, and the dotted, curved line, mS'S, parallel to the equator, is the parallel of the sun's declination at some particular time; and in this figure the sun's declination is supposed to be north. By the revolution of the earth on its axis, the

sun is apparently brought from the horizon, at S, to the meridian, at m; and from thence it is carried down on the same curve, on the other side of the meridian; and this apparent motion of the sun (or of any other celestial body,) makes angles at the pole P, which are in direct proportion to their times of description.

The apparent straight line, Zc, is what is denominated, in astronomy, the *prime vertical*; that is, the east and west line through the zenith, passing through the *east* and *west* points in the horizon.

When the latitude of the place is north, and the declination is also north, as is represented in this figure, the sun rises and sets on the horizon to the north of the east and west points, and the distance is measured by the arc, eS, on the horizon.

This arc can be found by means of the right-angled spherical triangle cqS, right-angled at q. Sq is the sun's declination, and the angle Scq is equal to the *co.latitude* of the place; for the angle Pch is the latitude, and the angle Scq is its complement.

The side cq, a portion of the equator, measures the angle cPq, the time of the sun's rising or setting before or after *six o'clock*, apparent time. Thus we perceive that this little triangle, cSq, is a very important one.

When the sun is exactly east or west, it can be determined by the triangle ZPS'; the side PZ is known, being the co.latitude; the angle PZS' is a right angle, and the side PS' is the sun's polar distance. Here, then, are the hypotenuse and side of a right-angled spherical triangle given, from which the other parts can be computed. The angle ZPS' is the time from noon, and the side ZS' is the sun's zenith distance at that time.

The following problems are given, to illustrate the important applications that can be made of the right-angled triangle cqS.

PRACTICAL PROBLEMS.

1. At what time will the sun rise and set in Lat. 48° N., when its declination is 21° N.?

In this problem, we must make $qS=21^\circ$, $Ph=48^\circ$ = the angle *Pch*. Then the angle $Scq=42^\circ$. It is required to find the arc cq, and convert it into time at the rate of four minutes to a degree. This will give the apparent time after six o'clock that the sun sets, and the apparent time before six o'clock that the sun rises, (no allowance being made for refraction).

Making cq the middle part, we have

R	sin.cq = tar tan.21° = tan.48° =	$n.21^{\circ} \tan.48^{\circ}$ = 9.584177 = 10.045563	مع که وارده او هارا و معطوم
$\sin cq = 25^{\circ} 14' 5'' =$	= 25.2346° 4	9.629740,	rejecting 10.
Adding to	1 ^h 40 ^m 56 ^s 6 ^h		
Sun sets P. M.,	7 ^h 40 ^m 56 ^s ,	apparent time	,
From Taking	6 ^h 1 ^h 40 ^m 56 ^s		and An

Sun rises A. M., 4^h 19^m 4', apparent time.

From this we derive the following rule for finding the apparent time of sunrise and sunset, assuming that the declination undergoes no change in the interval between these instants, which we may do without much error.

RULE.

To the logarithmic tangent of the sun's declination, add the logarithmic tangent of the latitude of the observer; and, after rejecting ten from the result, find from the tables the arc of which this is the logarithmic sine, and convert it into time at the rate of 4 minutes to a degree.

This time, added to 6 o'clock, will give the time of sunset, and, subtracted from 6 o'clock, will give the time of sunrise, when the latitude and declination are both north or both south; but when one is north, and the other south, the addition gives the time of sunrise, and the subtraction the time of sunset.

2. At what time will the sun set when its declination is 23° 12' N., and the latitude of the place is 42° 40' N.? Ans. 7^{h} 33^{m} 8^s, apparent time.

3. What will be the time of sunset for places whose latitude is $42^{\circ} 40'$ N., when the sun's declination is $15^{\circ} 21'$ south? Ans. $5^{h} 1^{m} 20^{s}$, apparent time.

4. What will be the time of sunrise and sunset for places whose latitude is 52° 30' N., when the sun's declination is 18° 42' south ?

Ans. $\begin{cases} \text{Rises } 7^h \ 44^m \ 42^s, \\ \text{Sets } 4^h \ 15^m \ 18^s, \end{cases}$ apparent time.

5. What will be the time of sunset and of sunrise at St. Petersburgh, in lat. 59° 56', north, when the sun's declination is 23° 24', north? What will be its amplitude at these instants? Also, at what hours will it be due east and west, and what will be its altitude at such times?

P.	(Sun sets at 9 ^h 13 ^m 30 ^s P.M.) apparent
10	Sun rises at 2 ^h 46 ^m 30 ⁱ A.M. f time.
-	Sun rises N. of east] 529 25/ 20/
. {	Sun sets N. of west $\int 32^{23} 25^{30}$
(D	Sun is east at 6^{h} 58^{m} A.M.
11	Sun is west at 5 ^h 2 ^m P.M.
-	A14 -1

Alt. when east and west is 27° 19'.

ON THE APPLICATION OF OBLIQUE-ANGLED SPHERICAL TRIANGLES.

One of the most important problems in navigation and astronomy, is the determination of the formula for

Ans

374 SPHERICAL TRIGONOMETRY.

time. This problem will be understood by the triangle PZS. When the sun is on the meridian, it is then apparent noon. When not on the meridian, we can determine the interval from noon, by means of the triangle PZS; for we can know all its sides;- and the angle at P, changed into

time at the rate of 15° to one hour, will give the time from apparent noon, when any particular altitude, as *TS*, may have been observed. *PS* is known, by the sun's declination at about the time; and *PZ* is known, if the observer knows his latitude.

Having these three sides, we can always find the sought angle at the pole, by the equations already given in formulæ (T, or U, Prop. 7, Sec. III); but these formulæ require the use of the *co.latitude* and the *co.altitude*, and the practical navigator is very averse to taking the trouble of finding the complements of arcs, when he is quite certain that formulæ can be made, comprising but the arcs themselves.

The practical man, also, very properly demands the most concise practical results. No matter how much labor is spent in theorizing, provided we arrive at practical brevity; and for the especial accommodation of seamen, the following formula for finding time has been deduced.

From the symmetrical formulæ (s'), Prop. 7, Sec. III, we have,

 $\cos P = \frac{\cos ZS - \cos PZ \cos PS}{\sin PZ \sin PS}$

Now, in place of cos. ZS. we take sin. ST, which is, in

SECTION V.

fact, the same thing; and in place of $\cos PZ$, we take sin.lat., which is also the same.

In short, let A = the altitude of the sun, L = the latitude of the observer, and D = the sun's polar distance.

Then,
$$\cos P = \frac{\sin .A - \sin .L \cos .D}{\cos .L \sin .D}$$

But, $2\sin^2 \frac{1}{2}P = 1 - \cos P$. (See Eq. 32, Prop. 2, Sec. I, Plane Trig.)

Therefore,

$$2\sin^2 \frac{1}{2}P = 1 - \frac{\sin A - \sin L \cos D}{\cos L \sin D}$$
$$= \frac{(\cos L \sin D + \sin L \cos D) - \sin A}{\cos L \sin D}$$
$$= \frac{\sin (L + D) - \sin A}{\cos L \sin D}.$$

Considering (L + D) as a single arc, and (applying Equation 16, Sec. I, Plane Trig.), we have, after dividing by 2,

$$\operatorname{in.}{}_{\frac{1}{2}}P = \frac{\operatorname{cos.}\left(\frac{L+D+A}{2}\right)\operatorname{sin.}\left(\frac{L+D-A}{2}\right)}{\operatorname{cos} L\operatorname{sin} D}$$

But,

 $\frac{L+D-A}{2} = \frac{L+D+A}{2} - A,$

and if we assume $S = \frac{L + D + A}{2}$,

we shall have,
$$\sin^2 \frac{1}{2}P = \frac{\cos S \sin (S - A)}{\cos L \sin D}$$

Or,
$$\sin \frac{1}{2}P = \sqrt{\frac{\cos S \sin (S-A)}{\cos L \sin D}}$$

This is the final result, when the radius is unity; and when the radius is greater by R, then the $\sin \frac{1}{2}P$ will be greater by R; and, therefore, the value of this sine, corresponding to our tables, is,

$$\sin \frac{1}{2}P = \sqrt{\left(\frac{R}{\cos L}\right)\left(\frac{R}{\sin D}\right)\cos S\sin(S-A)}.$$

PRACTICAL PROBLEMS.

1. In lat. $39^{\circ} 6' 20''$ North, when the sun's declination was $12^{\circ} 3' 10''$ North, the true altitude* of the sun's center was observed to be $30^{\circ} 10' 40''$, rising. What was the apparent time?

Alt.	30° 10′ 30″.	and and a	- 91-1A
Lat.	39° 6' 20″	cos.com.	.110146
P.D.	77° 56' 50"	sin.com.	.009680
2)	147° 13′ 40″		
<i>S</i> =	73° 36′ 50″	. COS.	9.450416
(S-A) =	43° 26' 20"	sin.	9.837299
	1 min - (9	2)]	19.407541
	30° 22′ 5″	sin.	9.703770
ophicity while	2	a u 10 +	a) extra
P	600 11/ 101		e

This angle, converted into time at the rate of 15° to one hour, or 4 minutes to 1° , gives $4^{*} 2^{m} 56^{\circ}$ from apparent noon; and as the sun was rising, it was before noon or

7^h 57^m 4' A.M.

If to this the equation of time were applied, we should have the mean time; and if such time were compared with that of a clock or watch, we could determine its error. A good observer, with a good instrument, can, in this manner, determine the local time within 4 or 5 seconds.

2. In lat. 40° 21' North, the true altitude of the sun, in the forenoon, was found to be 36° 12', when the declina-

^{*} The instrument used, the manner of taking the altitude, its correction for refraction, semi-diameter, and other practical or circumstantial details, do not belong to a work of this kind, but to a work on Practical Astronomy or Navigation.

tion of the sun was $3^{\circ} 20'$ South. What was the apparent time? Ans. $9^{*} 43^{m} 44'$ A. M.

3. In latitude 21° 2' South, when the sun's declination was 18° 32' North, the true altitude, in the afternoon, was found to be 40° 8'. What was the apparent time of day? Ans. $2^* 2^m P. M.$

SPHERICAL TRIGONOMETRY APPLIED TO GEOGRAPHY.

If we wish to find the shortest distance between two places over the surface of the earth, when the distance is considerable, we must employ Spherical Trigonometry.

Suppose the least distance between Rome and New Orleans is required; we would first find the distance in degrees and parts of a degree, and then multiply that distance by the number of miles in one degree.

In the solution of this problem, it is supposed that we have the latitude and longitude of both places. Then the distances, in degrees, from the north pole of the earth to Rome and to New Orleans are the two sides of a spherical triangle, the difference of longitude of the two places is the angle at the pole included between these sides, and the problem is, to determine the third side of a spherical triangle, when we have two sides and the included angle given.

Let P be the north pole, R the position of Rome, and N that of New Orleans.

37 0 1	Lat.	a <u>bi</u> la noin 'a	/ Long.	TTT .
New Orleans,	29° 57' 30″	· N. :	900	W .
Rome,	41° 53′ 54″	N.	12° 28'	40" E.
TITE	777 4			le min les
Whence,	PR = 4	8° 6′ 6′′,		
mult e 2 Tay and	PN = 6	0° 2′ 30″.	14,13 (F)	
An	cle NPR -	- 100 08/	10//	a all els
1144	S10 111 10 -	- 104 40	IU .	states like

We now employ Napier's 1st and 2d Analogies, and find the distance, in degrees, to be 101° 31' 30". This reduced to miles, at the rate of 69.16 miles to the degree, will make the distance 7021.469 miles.

The angle at N is $47^{\circ} 49'$, and at R, $59^{\circ} 35' 40''$.

N

The third side of a spherical triangle can be found by a single formula, as we shall see by inspecting formulæ (S') Prop. 7, Sec. III.

Let C be the included angle, and c the unknown side opposite; then,

$$\cos C = \frac{\cos c - \cos a \cos b}{\sin a \sin b}.$$

Adding 1 to each member, and reducing, observing at the same time that $1 + \cos C = 2\cos^2 \frac{1}{2}C$, we have,

$$2\cos^{2} \frac{1}{2}C = \frac{\sin a \sin b - \cos a \cos b + \cos c}{\sin a \sin b}$$

Whence, $2\cos^{\frac{1}{2}C} \sin a \sin b = \cos c - \cos(a+b);$ or, $\cos c = \cos(a+b) + 2\cos^{\frac{1}{2}C} \sin a \sin b.$

The second member of this equation is the algebraic sum of two decimal fractions, and expresses the value of the natural cosine of the side sought.

This case of Spherical Trigonometry, namely, that in which two sides and the included angle are given, to find the third side, is very extensively used in practical astronomy, in finding the angular distance of the moon from the sun, stars, and planets. For this purpose, the right ascension and declination of each body must be

SECTION V.

found for the same moment of absolute time. Their

difference in right ascension gives the included angle, P, at the celestial pole. The declination subtracted from 90°, if it be north, and added to 90°, if it be south, will give the sides, PZ and PS.

In the following examples, we give the right ascension and declination of the bodies, and from

these the student is required to compute the distance between them.

The right ascensions are given in time. Their difference must be changed to degrees for the included angle.

June 24, 1860.

MEAN TIME GREENWICH.

MOO	N'S	JUPITER'S	
<i>R. A.</i>	Dec.	R. A. Dec.	Distance.
h. m. s.	0 / //	h. m. s. 0 / //	0 / //
At'noon, 10 51 36.5	3 33 24 N.	8 4 27.6 20 51 36.8 N.	44 8 12
"3 h., 10 58 1	2 47 43	8 4 34.2 20 51 17.8	45 53 47
"6 h., 11 4 24.6	1 59 56.2	8 4 40.8 20 50 58.7	47 39 18
"9h., 11 10 47.6	1 12 6	8 4 47.2 20 50 39.6	49 24 43

October 6, 1860.

)	R.	A .		1		De	ec.	11	0) R	. A.	1	D	ec.	1	Disto	ance	
			h.	m.	8.		0	1	11		h.	m.	8.	0	,	"		0	1	"
A	nc	on,	5	41	21.8	-	26	8	0 N.		12	49	27.4	5	18	31 S.	.	107	37	2
66	3	h.,	5	48	30.1		26	3	20	5	12	49	54.8	5	20	13.7		106	8	19
66	6	h.,	5	55	40		25	57	19		12	50	22.2	5	21	56.4		104	39	19
**	9	h.,	6	2	50.5	1	25	49	58		12	50	49.6	5	23	38.1		103	10	0
"	12	h.,	6	10	1.2	1:	25	41	15.8		12	51	11.9	5	25	20.8		101	40	23

SECTION VI.

REGULAR POLYEDRONS.

A Regular Polyedron is a polyedron having all its faces equal and regular polygons, and all its polyedral angles equal.

The sum of all the plane angles bounding any polyedral angle is less than four right angles; and as the angle of the equilateral triangle is $\frac{2}{3}$ of a right angle, we have $\frac{2}{3} \times 3 < 4$, $\frac{2}{3} \times 4 < 4$, and $\frac{2}{3} \times 5 < 4$; but $\frac{2}{3} \times 6 = 4$, $\frac{2}{3} \times 7 > 4$, and so on. Hence, it follows that three, and only three, polyedral angles may be formed, having the equilateral triangle for faces; namely, a triedral angle and polyedral angles of four and of five faces.

There are, therefore, three distinct regular polyedrons bounded by the equilateral triangle.

1. The Tetraedron, having four faces and four solid angles.

2. The Octaedron, having eight faces and six solid angles.

3. The Icosaedron, having twenty faces and twenty solid angles.

With right plane angles we can form only a triedral angle; hence, with equal squares we may bound a solid having six faces and eight equal triedral angles. This solid is called the **Hexaedron**.

The angle of the regular pentagon being $\frac{6}{5}$ of a right angle, we have $\frac{6}{5} \times 3 < 4$; but $\frac{6}{5} \times 4 > 4$; hence, with plane angles equal to those of the regular pentagon, we can form only a triedral angle. The solid bounded by twelve regular pentagons, and having twenty solid angles, is called the **Dodecaedron**.

There are, then, but five regular polyedrons, viz.: The tetraedron, the octaedron, and the icosaedron, each of which has the equilateral triangle for faces; the hexaedron, whose faces are equal squares, and the dodecaedron, whose faces are equal regular pentagons.

It is obvious that a sphere may be circumscribed about, or inscribed within, any of these regular solids, and conversely: and

that these spheres will have a common center, which may also be taken as the *center* of the polyedron.

Any regular polyedron may be regarded as made up of a number of regular pyramids, whose bases are severally the faces of the polyedron, and whose common vertex is its center. Each of these pyramids will have, for its altitude, the radius of the inscribed sphere; and since the volume of the pyramid is measured by one third of the product of its base and altitude, it follows that the volume of any regular polyedron is measured by its surface multiplied by one third of the radius of the inscribed sphere.

PROBLEM.

Given, the name of a regular polyedron, and the side of the bounding polygon, to find the inclination of its faces; the radii of the inscribed and circumscribed spheres; the area of its surface; and its volume.

Let AB be the intersection of two adjacent faces of the polyedron, and C and D the centers of these faces, O being the center

of the polyedron. Draw the radii, OC and OD, of the inscribed, and the radii OA and OB, of the circumscribed sphere; also from C and Dlot fall the perpendiculars CE and DE, on the edge AB, and draw OE; then will the angle DEC measure the inclination of the faces of the polyedron, and the angle DEO is one half of this inclination.

Let I denote the inclination of the faces, m the number of faces which meet to form a polyedral angle, n the number of sides in each face, and suppose the edge of the polyedron to be unity.

The surface of the sphere of which O is the center, and radius unity, will form, by its intersections with the planes, AOE, AOD, DOE, the right-angled spherical triangle *dae*, right-angled at *e*. In the right-angled triangle DEO, the angle DOE is equal to

ALLIDIE LIBRAR

et. ____

 $90^{\circ} - DEO = 90^{\circ} - \frac{1}{2}I$

and is measured by the arc *de*. The angle *dae*, of the spherical triangle, is equal to $\frac{360^{\circ}}{2m}$, and the angle $ade = \frac{360^{\circ}}{2n}$.

Now, by Napier's Rules we have

 $\cos.dae = \sin.ade \cos.de.$

or,

$$\cos.de = \frac{\cos.dae}{\sin.ade};$$
 (1)

(2)

and.

Substituting in eq. (1), for the angles *dae* and *ade*, their values, we find

 $\cos ad = \cot dae \cot ade$

$$\sin \frac{1}{2}I = \frac{\frac{\cos 360^{\circ}}{2m}}{\frac{\sin 360^{\circ}}{2n}}$$
(3)

Equation (3) gives the value of the sine of one half of the inclination of the planes; and by means of this equation we may readily find the radii of the inscribed and circumscribed spheres.

In the triangle *BED*, we have

$$DE = BE ext{ cot.} BDE = \frac{1}{2} ext{cot.} \frac{360^\circ}{2n},$$

since AB = 1, and $BE = \frac{1}{2}AB$.

In the triangle DOE, we have

$$OD = DE \tan \frac{1}{2}I = \frac{1}{2}\cot \frac{360^{\circ}}{2n} \tan \frac{1}{2}I$$
 (

From the triangle AOD, we find

$$\cos DOA : 1 :: OD : OA$$

whence

$$OA = \frac{OD}{\cos . DOA}$$

0 D

But the angle DOA is measured by the arc ad; hence, substituting in this last equation the values of $\cos DOA$ and OD, taken from eqs. (2) and (4), we have

$$OA = \frac{1}{2} \tan \frac{1}{2} I \cot \frac{360^{\circ}}{2n} \times \frac{1}{\frac{\cot 360^{\circ}}{2m}} \times \frac{1}{\frac{\cot 360^{\circ}}{2n}}$$
$$= \frac{1}{2} \tan \frac{1}{2} I \tan \frac{360^{\circ}}{2m}, \qquad (5)$$

by writing tan. for $\frac{1}{\cot}$, and reducing.

Equation (4) gives the value of OD, the radius of the inscribed sphere, and equation (5) gives that of OA, the radius of the circumscribed sphere. The area of one of the faces of the polyedron is equal to one half of the apothegm multiplied by the perimeter. The apothegm, as found above, is equal to $\frac{1}{2}$ cot. $\frac{360^{\circ}}{2n}$; hence, we

have $\frac{1}{2n} \times \frac{1}{2} \cot \frac{360^{\circ}}{2n}$, for the area of one of the faces; and multiplying this by the number of faces of the polyedron, we will have the expression for its entire area. The expression for the surface multiplied by one third of the radius of the inscribed sphere, gives the measure of the volume of the polyedron.

In what precedes, we have supposed the edge of the polyedron to be unity. Having found the radii of the inscribed and circumscribed spheres, the surfaces, and the volumes of such polyedrons, to determine the radii, surfaces, and volumes of regular polyedrons having any edge whatever, we have merely to remember that the homologous dimensions of similar bodies are proportional; their surfaces are as the squares of these dimensions; and their volumes as the cubes of the same.

Formula (3) gives, for the inclination of the adjacent faces of

The	Tetraedron,	70°	31′	42''
66	Hexaedron,	90°	00/	00''
66	Octaedron,	109°	28'	18''
	Dodecaedron,	116°	331	54''
66	Icosaedron,	138°	11/	23''

The subjoined table gives the surfaces and volumes of the regular polyedrons, when the edge is unity.

	Surfaces.	Volumes.
Tetraedron,	1.7320508	0.1178513
Hexaedron,	6.0000000	1.0000000
Octaedron,	3.4641016	0.4714045
Dodecaedron,	20.6457288	7.6631189
Icosaedron,	8.6602540	2.1816950

T. 1 1 51 C 12 P in the to make the Art to the said (A) when the said the period of the State and Department of the state of the second المحموطين محرجينا الطام فالإسام والاستحداد والمحا being had proved all for the deside over all the first part of the second with the man the second of the second second and the second - Designation of a prison of the second of all endering the second the and the shall be as a start was all a start of the the many and the wind mill be a more than a Salay in the second second on the share which it and the second second second second and the form and the short a merel of a sector of a branch of the a solution of the second size of the second bit of the second size of the second and a strength and a set of

LOGARITHMIC TABLES;

ALSO A TABLE OF

NATURAL AND LOGARITHMIC

SINES, COSINES, AND TANGENTS,

TO EVERY MINUTE OF THE QUADRANT.

LOGARITHMS OF NUMBERS

FROM

1 то 10000.

							the second se
N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0 000000	26	1 414973	51	1 707570	76	1 880814
2	0 301030	27	1 431364	52	1 716003	77	1 886491
3	0 477121	28	1 447158	53	1 724276	78	1 892095
4	0 602030	29	1 462398	54	1 732394	79	1 897627
5	0 698970	30	1 477121	55	1 740363	80	1 903090
C	0 779151	- 21	1 401969	56	1 7/0100	01	1 00940
0	0 945009	20	1 505150	57	1 755975	01	1 012914
0	0 002000	0.4	1 519514	50	1 769499	04	1 910014
0	0 903030	24	1 510014	50	1 770950	00	1 919078
9	1 000000	25	1 544069	60	1 772151	95	1 924219
10	1 000000	00	1 044000	00	1 110101	00	1 929419
11	1 041202	20	1 550000	61	1 105990	00	1 024400
10	1 070191	27	1 569000	60	1 700200	97	1 020510
12	1 112042	20	1 570784	62	1 700241	22	1 044499
10	1 146198	20	1 501065	64	1 803180	80	1 040200
14	1 176001	10	1 602050	65	1 819013	00	1 0549390
10	1 110051	-10	1 002000		1 012510	30	1 304240
16	1 204120	41	1 612784	66	1 819544	91	1 959041
17	1 230449	42	1 623249	67	1 826075	92	1 963788
18	1 255273	43	1 633468	68	1 832509	93	1 968483
19	1 278754	44	1 643453	69	1 838849	94	1 973128
20	1 301030	45	1 653213	70	1 845098	95	1 977724
21	1 322219	46	1 662578	71	1 851258	96	1 982271
22	1 342423	47	1 672098	72	1 857333	97	1 986772
23	1 361728	48	1 681241	73	1 863323	98	1 991226
24	1 380211	49	1 690196	74	1 869232	99	1 995635
25	1 397940	50	1 698970	75	1 875061	100	2 000000
			and the second se				

NOTE. In the following table, in the last nine columns of each page, where the first or leading figures change from 9's to 0's, points or dots are now introduced instead of the 0's through the rest of the line, to catch the eye, and to indicate that from thence the corresponding natural number in the first column stands in the *next lower line*, and its annexed first two figures of the Logarithms in the second column.

¢

LOGARITHMS OF NUMBERS. 3												
N.	0	ĩ	2	3	4	5	6	7	8	9		
100	000000	0434	0868	1301	1734	2166	2598	3029	3461	2891		
101	4321	4750	5181	5609	6038	6466	6894	7321	7748	8174		
102	8600	9026	9451	9876	.300	.724	1147	1570	1993	2415		
103	012837	3259	3680	4100	4521	4940	5360	5779	6197	6616		
104	7033	7451	7868	8284	8700	9116	9532	9947	.361	.775		
105	021189	1603	2016	$\begin{array}{c} 2428 \\ 6533 \\ .600 \\ 4628 \\ 8620 \end{array}$	2841	3252	3664	4075	4486	4896		
103	5305	5715	6125		6942	7350	7757	8164	8571	8978		
107	9384	9789	.195		1004	1408	1812	2216	2619	3021		
108	033424	3826	4227		5029	5430	5830	6230	6629	7028		
109	7426	7825	8223		9017	9414	9811	.207	.602	,998		
110	041393	1787	$\begin{array}{c} 2182 \\ 6105 \\ 9993 \\ 3846 \\ 7666 \end{array}$	2576	2969	3362	3755	4148	4540	4932		
111	5323	5714		6495	6885	7275	7664	8053	8442	8830		
112	9218	9606		.380	.766	1153	1538	1924	2309	2694		
113	053078	3463		4230	4613	4996	5378	5760	6142	6524		
114	6905	7286		8046	8426	8805	9185	9563	9942	.320		
115	050598	1075	1452	1829	2206	2582	2958	3333	3709	4083		
116	4458	4832	5205	5580	5953	6326	6699	7071	7443	7815		
117	8186	8557	8928	9298	9668	38	.407	.776	1145	1514		
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182		
119	5547	5912	6276	6640	7004	7368	7731	8094	8457	8819		
120	9181	9543	9904	.266	.626	.987	1347	1707	2067	2426		
121	082785	3144	3503	3861	4219	4576	4934	5291	5647	6004		
122	6360	6716	7071	7426	7781	8136	8490	8845	9198	9552		
123	9905	.258	.611	.963	1315	1667	2018	2370	2721	3071		
124	093422	3772	4122	4471	4820	5169	5518	5866	6215	6562		
, 125	6910	7257	7604	7951	8298	8644	8990	9335	9681	1026		
126	100371	0715	1059	1403	1747	2091	2434	2777	3119	3462		
127	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871		
128	7210	7549	7888	8227	8565	8903	9241	9579	9916	.253		
129	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609		
130	3943	4277	4611	4944	5278	5611	5943	6276	6608	6940		
131	7271	7603	7934	8265	8595	8926	9256	9586	9915	0245		
132	120574	0903	1231	1560	1888	2216	2544	2871	3198	3525		
133	3852	4178	4504	4830	5156	5481	5806	6131	6456	6781		
134	7105	7429	7753	8076	8399	8722	9045	9368	9690	12		
135	130334	0655	0977	1298	1619	$ \begin{array}{r} 1939 \\ 5133 \\ 8303 \\ 1450 \\ 4574 \end{array} $	2260	2580	2900	3219		
136	3539	3858	4177	4496	4814.		5451	5769	6086	6403		
137	6721	7037	7354	7671	7987		8618	8934	9249	9564		
138	9879	.194	.508	.822	1136		1763	2076	2389	2702		
139	143015	3327	3630	3951	4263		4885	5196	5507	5818		
140	6128	6438	6748	7058	7367	7676	7985	8294	8603	8911		
141	9219	9527	9835	.142	•449	.756	1063	1370	1676	1982		
142	152288	2594	2900	£205	3510	3815	4120	4424	4728	5032		
143	5336	5640	5943	6246	6549	6852	7154	7457	7759	8061		
144	8362	8664	8965	9266	9567	9868	.168	.469	.769	1068		
145 146 147 148 149	161368 4353 7317 170262 3186	1667 4650 7613 0555 3478	1967 4947 7908 0848 3769	$\begin{array}{c} 2266 \\ 5244 \\ 8203 \\ 1141 \\ 4060 \end{array}$	$2564 \\ 5541 \\ 8497 \\ 1434 \\ 4351$	2863 5838 8792 1726 4641	3161 6134 9086 2019 4932	3460 6430 9380 2311 5222	$3758 \\ 6726 \\ 9674 \\ 2603 \\ 5512$	4055 7022 9968 2895 5802		

4	4 LOGARITHMS											
N.	0	1	2	3	4	5	6	7	8	9		
$150 \\ 151 \\ 152 \\ 153 \\ 154$	176091 8977 181844 4691 7521	6381 9264 2129 4975 7803	$\begin{array}{r} 6670 \\ 9552 \\ 2415 \\ 5259 \\ 8084 \end{array}$	6959 9839 2700 5542 8366	7248 .126 2985 5825 8647	7536 .413 3270 6108 8928	7825 .699 3555 6391 9209	8113 .985 3839 6674 9490	8401 1272 4123 6956 9771	8689 1558 4407 7239 51		
155 156 157 158 159	$190332 \\ 3125 \\ 5899 \\ 8657 \\ 201397$	0612 3403 6176 8932 1670	0892 3681 6453 9206 1943	1171 3959 6729 9481 2216	281 1451 4237 7005 9755 2488 973	$1730 \\ 4514 \\ 7281 \\29 \\ 2761$	2010 4792 7556 .303 3033	2289 5069 7832 .577 3305	$2567 \\ 5346 \\ 8107 \\ .850 \\ 3577$	2846 5623 8382 1124 3848		
160 161 162 163 164	4120 6826 9515 212188 4844	4391 7096 9783 2454 5109	$\begin{array}{r} 4663 \\ 7365 \\51 \\ 2720 \\ 5373 \end{array}$	4934 7634 .319 2986 5638	5204 7904 .586 3252 5902 264	5475 8173 .853 3518 6166	5746 8441 1121 3783 6430	6016 8710 1388 4049 6694	6286 8979 1654 4314 6957	6556 9247 1921 4579 7221		
165 166 167 168 169	7484 220108 2716 5309 7887	7747 0370 2976 5568 8144	8010 0631 3236 5526 8400	8273 0892 3496 6084 8657	8536 1153 3755 6342 8913 257	8798 1414 4015 6600 9170	9060 1675 4274 6858 9426	9323 1936 4533 7115 9682	9585 2196 4792 7372 9938	9846 2456 5051 7630 .193		
170 171 172 173 174	230449 2996 5528 8046 240549	0704 3250 5781 8297 0799	0960 3504 6033 8548 1048	1215 3757 6285 8799 1297	$ \begin{array}{r} 1470 \\ 4011 \\ 6537 \\ 9049 \\ 1546 \\ 249 \end{array} $	1724 4264 6789 9299 1795	1979 4517 7041 9550 2044	2234 4770 7292 9800 2293	$2488 \\ 5023 \\ 7544 \\50 \\ 2541$	2742 5276 7795 .300 2790		
175 176 177 178 179	$\begin{array}{r} 3038 \\ 5513 \\ 7973 \\ 250420 \\ 2853 \end{array}$	3285 5759 8219 0664 3096	3534 6006 8464 0908 3338	3782 6252 8709 1151 3580	$\begin{array}{r} 4030 \\ 6499 \\ 8954 \\ 1395 \\ 3822 \\ 242 \end{array}$	$\begin{array}{r} 4277 \\ 6745 \\ 9198 \\ 1638 \\ 4064 \end{array}$	4525 6991 9443 1881 4306	$\begin{array}{r} 4772 \\ 7237 \\ 9687 \\ 2125 \\ 4548 \end{array}$	5019 7482 9932 2368 4790	5266 7728 .176 2610 5031		
180 181 182 183 184	$5273 \\ 7679 \\ 260071 \\ 2451 \\ 4818$	5514 7918 0310 2688 5054	$5755 \\ 8158 \\ 0548 \\ 2925 \\ 5290 \end{cases}$	5996 8398 0787 3162 5525	$\begin{array}{c} 6237\\ 8637\\ 1025\\ 3399\\ 5761\\ 235\end{array}$	6477 8877 1263 3636 5996	6718 9116 -1501 3873 6232	6958 9355 1739 4109 6467	7198 9594 1976 4346 6702	7439 9833 2214 4582 6937		
185 186 187 188 189	$7172 \\9513 \\271842 \\4158 \\6462$	7406 9746 2074 4389 6692	7641 9980 2306 4620 6921	7875 .213 2538 4850 7151	8110 .446 2770 5081 7380 229	8344 .679 3001 5311 7609	8578 .912 3233 5542 7838	8812 1144 3464 5772 8067	9046 1377 3696 6002 8296	9279 1609 3927 6232 8525		
190 191 192 193 194	8754 281033 3301 5557 7802	8982 1261 3527 5782 8026	9211 1488 3753 6007 8249	9439 1715 3979 6232 8473	9667 1942 4205 6456 8696 224	9895 2169 4431 6681 8920	$\begin{array}{r} .123\\ 2396\\ 4656\\ 6905\\ 9143\end{array}$	$\begin{array}{r} .351 \\ 2622 \\ 4882 \\ 7130 \\ 9366 \end{array}$.578 2849 5107 7354 9589	.805 3075 5332 7578 9812		
195 196 197 198 199	290035 2256 4466 6665 8853	$\begin{array}{c} 0257\\ 2478\\ 4687\\ 6884\\ 9071 \end{array}$	0480 2699 4907 7104 9289	0702 2920 5127 7323 9507	0925 3141 5347 7542 9725	1147 3363 5567 7761 9943	1369 3584 5787 7979 .161	1591 3804 6007 8198 .378	$1813 \\ 4025 \\ 6226 \\ 8416 \\ .595$	2034 4246 6446 8635 .813		

OF NUMBERS. 5												
N.	0	1	2	3	4	5	6	7	8	9		
200	301030	1247	1464	1681	1898	2114	2331	2547	2764	2980		
201	3190 5351	5566	5781	5006	6211	4210	6639	6854	7038	7282		
202	7496	7710	7924	8137	8351	8564	8778	8991	9204	9417		
204	9630	9843	56	.268	.481 212	.693	.906	1118	1330	1542		
205	311754	1966	2177	2389	2600	2812	3023	3234	.3445	3656		
200	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854		
208	8063	8272	8481	8689	8898	9106	9314	9522	9730	9938		
209	320146	0354	0562	0769	0977 207	1184	1391	1598	1805	2012		
210	2219	2426	2633	2839	3046	3252	3458	3665	3871	4077		
211	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131		
212	6336	6541	6745	6950	7155	7359	7563	1767	7972	8176		
213	330414	0303	0510	1022	9194	1497	1630	1832	2034	.211		
014	0400	0640	0013	2044	202	0147	2640	2002	4004	4050		
215	2430	2640	2842	3044	3240	5458	5658	3850	4051	4203		
217	6460	6660	6860	7060	7260	7459	7659	7858	8058	8257		
218	8456	8656	8855	9054	9253	9451	9650	9849	47	.246		
219	340444	0642	0841	1039	1237 198	1435	1632	1830	2028	2225		
220	2423	2620	2817	3014	3212	3409	3606	3802	3999	4196		
221	4392	4589	4785	4981	5178	5374	5570	5766	5932	6157		
222	6393	6549	8604	6939	7135	7330	7525	7720	7915	8110		
223 224	350248	0 442	0636	0829	1023	9278	1410	1603	9860 1796	1989		
225	2183	2375	2568	2761	2954	3147	3339	3532	3794	2016		
226	4108	4301	4493	4685	4876	5058	5260	5452	5643	5834		
227	6026	6217	6408	6599	6790	6981	7172	7363	7554	7744		
228	7935	8125	8316	8506	8696	8886	9076	926 6	9456	9646		
229	9835	25	.215	.404	.593 190	.783	.972	1161_	1350	1539		
230	361728	1917	2105	2294	2482	2671	2859	3048	3236	8424		
231	3612 5489	3800	3988	4176	4363	4551	4739	4926	5113	5301		
232	7356	7542	7729	7915	8101	6423	8473	6796	6.983	7109		
234	9216	9401	9587	9772	9958 185	.143	.328	.513	.698	.883		
235	371068	1253	1437	1622	1806	1991	2175	2330	2544	2728		
236	2912	3096	3280	3464	3647	3831	4015	4198	4382	4565		
237	4748	4932	5115	5298	5481	5664	5846	6029	6212	6294		
238	8398	8580	8761	8943	0124	7488	7670	7852	8034	8216		
010	220214	0000	0101	0.77	182	9900	5487	9008	9349	0		
240	2017	0392	03/3	0754	0934	1115	1296	1476	1656	1837		
242	3815	3995	4174	4353	4533	4712	4891	5070	5940	5428		
243	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212		
244	7390	7568	7745	7923	8101 178	8279	8456	8634	8811	8989		
245	9166	9343	9520	9698	9875	51	.228	.405	.582	.759		
246	390935	1112	1288	1464	1641	1817	1993	2169	2345	2521		
241	4452	2873	3048	3224	3400	3575	3751	3926	4101	4277		
249	6199	6374	6548	6722	6896	7071	7245	7410	7599	7766		
	1	0011	0010	1	0000	1011		1413	1002	1100		

6	6 LOGARITHMS											
N.	0	1	2	3	4	5	6	7	8	9		
250	397940	8114	8287	8461	8634	8808	8981	9154	9328	9501		
251	401401	1573	1745	.192	2089	.538	2433	2605	2777	2949		
253	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663		
254	4834	5005	5176	5346	5517 171	5688	5858	6029	6199	6370		
255	6540	6710	6881	7051	7221	7391	7561	7731	7901	8070		
256 257	8240 9933	$8410 \\ 102$	8579	8749	8918	9087	9257	9426	9595 1983	9764		
258	411620	1788	1953	2124	2293	2461	2629	2796	2964	3132		
259	3300	3467	3635	3803	3970	4137	4305	4472	4639	4806		
260	4973	5140	5307	5474	5641	5808	5974	6141	6308	6474		
$\frac{261}{262}$	$6641 \\ 8201$	6807	6973	7139	7303	7472 c190	0205	7804	7970	8135		
263	9956	.121	.286	.451	.616	.781	.945	1110	1275	1439		
264	421604	1788	1933	2097	2261	2426	2590	2754	2918	3082		
265	3246	3410	3574	3737	3901	4065	4228	4392	4555	4718		
266	4882	5045	5208	£371	6534	5697	5860	6023	6186	6349		
268	8135	8297	8459	8621	8783	8944	9105	9268	9429	9591		
269	9752	9914	75	.236	.398	.559	.720	.881	1042	1203		
270	431364	1525	1685	1846	2007	2167	2328	2488	2649	2809		
271	2969 4569	3130	3290	5048	3610	3770	3930 5526	4090	4249	4409		
273	6163	6322	6481	6640	6800	6957	7116	7275	7433	7592		
274	7751	7909	8057	8226	8384 158	8542	8701	8859	9017	9175		
275	9333	9491	9648	9806	9964	.122	.279	.437	.594	.752		
276	440909	1066	1224	1381	1538	1695	1852	2009	2166	2323		
278	4045	4201	4357	4513	4669	4825	4981	5137	5293	5449		
279	5604	5760	5915	6071	6226	6382	6537	6692	6848	7003		
280	7158	7313	7468	7623	7778	7933	8088	8242	8397	8552		
281	8703	8861	9015	9170	9324	9478	9633	9787	9941			
282	1786	1940	2093	2247	2400	2553	2706	2859	3012	3165		
284	3318	3471	3624	3777	3930	4082	4235	4387	4540	_4692		
275	4845	4997	5150	5302	5454	5606	5758	5910	6052	6214		
286	6366	6518	6670	6821	6973	7125	276	7428	7579	7731		
288	9392	9543	90.34	9845	9995	.146	.296	.417	.597	.748		
289	460898	1048	1198	1348	1499	1649	1799	1948	2098	2248		
290	2398	2548	2697	2847	2997	3146	3295	3445	3594	3744		
291	3893	4042	4191	4340	4490	4639	4788	4936	6571	6719		
293	6868	7016	7164	7312	7460	7608	7756	7904	8052	8200		
294	8347	8495	8643	8790	8938	9085	9233	9380	9527	9675		
295	9822	9959	.116	.263	.410	.557	.704	.851	.998	1145		
296	471292	1438	1585	1732	1878	2025	2171	2318	\$464	2610		
298	4216	4362	4508	4653	4799	4944	5090	5235	5381	5526		
299	5671	5516	5962	6107	6252	6397	6542	6687	6832	6976		
	OF NUMBERS. 7											
---	---	---	---	---	---	--------------------------------	------------------------------	------------------------------	---	------------------------------	--	
N.	0	1	2	3	4	5	6	7	8	9		
300 301 302	477121 8566 480007	7266 8711 0151	$7411 \\ 8855 \\ 0294$	7555 8999 0438	$7700 \\ 9143 \\ 0582$	7844 9287 0725	7989 9481 0869	8133 9575 1012	8278 9719 1156	8422 9863 1299		
303 304	1443 2874	1586 3016	1729 3159	1872 3302	2016 3445 142	2159 3587	2302 3730	2445 3872	2588 4015	2731 4157		
305 306 307	4300 5721 7138	4442 5863 7280	$\begin{array}{c} 4585 \\ 6005 \\ 7421 \end{array}$	4727 6147 7563	4869 6289 7704	5011 6430 7845	5153 6572 7986	5295 6714 8127	5437 6855 8269	5579 6997 8410		
308 309	8551 9959	8692 99	8833 ,239	8974 ,380	9114 .520	9255 ,661	9396 .801	9537 .941	9667 1081	9818 1222		
310 311 312	491362 2760 4155	$\frac{1502}{2900}\\4294$	1642 3040 4433	$ \begin{array}{r} 1782 \\ 3179 \\ 4572 \end{array} $	$ \begin{array}{r} 1922 \\ 3319 \\ 4711 \end{array} $	$2062 \\ 3458 \\ 4850 \\ 2000$	2201 3597 4989	2341 3737 5128	2481 3876 5267	2621 4015 5406		
313 314	5544 6930	5683 7068	5822 7206	5960 7344	6099 7483	6238 7621	6376 7759	6515 7897	6653 8035	6791 8173		
315 316 317	8311 9687 501059	8448 9824 1196	8586 9962 1333	8724 99 1470	8862 .236 1607	8999 .374 1744	9137 .511 1880	9275 .648 2017	9412 .785 2154	9550 .922 2291 •		
318 319	2427 3791	2564 3927	2700 4053	2837 4199	2973 4335	3109 4471	3246 4607	3382 4743	3518 1878	3655 5014		
320 321 322	5150 6505 7856	5283 6640 7991	5421 6776 8123	5557 6911 8260	5693 7046 8395	5828 7181 8530	5964 7316 8664	6093 7451 8799	6234 7585 8934	6370 7721 9008		
323 324	9203 510545	9337 0679	9471 0813	9606 0947	9740 1081 134	9874 1215	1349	.143 1482	.277 1616	.411 1750		
325 326 327	$ 1883 \\ 3218 \\ 4548 \\ 535 $	2017 3351 4681	$ \begin{array}{c} 2151 \\ 3484 \\ 4813 \\ 6120 \end{array} $	2284 3617 4946	2418 3750 5079	2551 3883 5211	2684 4015 5344	2818 4149 5476	$ \begin{array}{r} 2951 \\ 4282 \\ 5609 \\ 6000 \end{array} $	3084 4414 5741		
328 329	5874 7196	6006 7328	6139 7460	6271 7592	6403 7724	7855	7987	6800 8119	6932 8251	7054 8382		
330 331 .332	8514 9828 521138	8646 9959 1269	8777 90 1400	8909 .221 1530	9040 .353 1661	9171 .484 1792 2006	9303 .615 1922	9434 .745 2053	9566 .876 2183	9697 1007 2314 2616		
334	3746	2575	4006	4136	4266	4396	4526	4656	4785	4915		
336 337 338	6339 7630 8917	6469 7759	6598 7888 9174	6727 8016 0202	6856 8145 9430	6985 8274 9559	0022 7114 8402 9687	5951 7243 8531 9815	7372 8660 9942	7501 8788 72		
339	530200	0328	0456	0584	0712	0840	0968	1096	1223	1251		
$ \begin{array}{r} 340 \\ 341 \\ 342 \\ 343 \end{array} $	2754 4026 5294	$ \begin{array}{c} 1007 \\ 2882 \\ 4153 \\ 5491 \end{array} $	3009 4280 5547	$ \begin{array}{r} 1802 \\ 3136 \\ 4407 \\ 5674 \end{array} $	3264 4534 5800	3391 4661 5927	2245 3518 4787 6053	2372 3645 4914 6180	2000 3772 5041 6306	3899 5167 6432		
344	6558	6685	6311	6937	7060	7189	7315	7441	7567	7693		
340 346 347 348	9076 540329	9202 0455	9327 0580	8197 9452 0705	8322 9578 0830	0440 9703 0955 9903	8574 9829 1080	9954 1205	0020 79 1330 2576	.204 1454 2701		
348	2825	2950	3074	3199	3323	3447	3571	3696	3820	3944		

.

8	8 LOGARITHMS										
N.	0	1	2	3	4	5	6	7	8	9	
350 351	544068	4192	4316	4440	4564	4688	4812	4936	5060	5183	
352	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	
353	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	
354	9003	9126	9249	9371	9494 122	9616	9739	9861	9984	.196	
355	550228	0351	0473	0595	0717	0840	0962	1084	1206	1328	
356	1400	1572	1694	1816	1938	2060	2181	2303	2425	2547	
358	3883	2790	4196	4947	3100	3270	3393	3519	3640	3762	
359	5094	5215	5346	5457	5578	5699	5820	5940	6061	6182	
360	6303	6423	6544	6664	6785	6905	7026	7146	7267	7387	
361	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589	
362	0007	8829	8948	9008	9188	9308	9428	9548	9667	9787	
364	561101	1:21	1340	1459	1578	1698	1817	1936	2055	2173	
965	9903	9419	9591	9650	0700	0007	2000	9105	2044	0000	
366	3481	2600	3718	3837	3955	2001	4199	4311	4429	3302	
367	4666	4784	4903	5021	5139	5257	5376	5494	5612	5730	
368	5848	5966	6084	6202	6320	6437	6555	6673	6791	6909	
369	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	
370	8202	8319	8436	8554	8671	8788	8905	9023	9140	9257	
371	9374	9491	9608	9725	9882	9 9 59		.193	.309	.426	
372	1700	1995	10/10	0893	1010	1126	1243	1359	1476	1592	
373	2872	2988	3104	2008	2174	2291	3568	2022	3800	2755	
014	2012	2300	1000	0220	116	0.10.0	0000	0.04	0000	0910	
375	4031	4147	4263	4379	4494	4610	4726	4841	4957	5072	
376	6341	6457	0419 6572	0034 6687	0000	6017	7020	0990	7969	6226	
378	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	
379	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	
380	9784	9898	12	.126	.241	.355	.469	.583	.697	.811	
381	580925	1039	1153	1267	1381	1495	1608	1722	1836	1950	
382	2063	2177	2291	2404	2518	2631	2745	2858	2972	3085	
383	3199	3312	3426	3539	3652	3765	3879	3992	4105	4218	
384	4001	4444	4007	4070	4/83	4090	. 0009	0122	0230	5348	
385	5461	5574	5686	5799	5912	6024	6137	6250	6362	6475	
386	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599	
387	8839	8044	7935 9056	0047	8160	0272	0503	0615	0726	8720	
389	9950	61	.173	.284	306	.507	.619	.730	.842	953	
000	0000		1000		.030	1001		1040		.005	
390	591065	1176	1287	1399	1510	1621	1732	1843	1955	2066	
391	3286	2200	3508	3618	2021	3840	3950	4061	4171	4282	
393	4393	4503	4614	4724	4834	4945	5055	5165	5276	5386	
394	• 5496	5608	5717	5827	5937 110	6047	6157	6267	6377	6487	
395	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586	
396	7695	7805	7914	8024	8134	8243	8353	8462	8572	8681	
397	8791	8900	9009	9119	9228	\$337	9446	. 556	9666	\$774	
398	9883	9992	.101	.210	.319	.428	.537	.646	755	.864	
399	600973	1082	1191	1299	1408	1517	1625	1734	1843	1951	

			0	FN	UMB	ERS				9
N.	0	1	2	3	4	5	6	7	8	9
$ \begin{array}{r} 400 \\ 401 \\ 402 \\ 403 \\ 404 \end{array} $	602060 3144 4226 5305 6381	$2169 \\ 3253 \\ 4334 \\ 5413 \\ 6489$	$\begin{array}{r} 2277\\ 3361\\ 4442\\ 5521\\ 6596\end{array}$	2386 3469 4550 5628 6704	2494 3573 4658 5736 6811	2603 3686 4766 5844 6919	2711 3794 4874 5951 7026	⁻ 2819 3902 4982 6059 7133	2928 4010 5089 6166 7241	3036 4118 5197 6274 7348
405 406 407 408 409	7455 8526 9594 610560 1723	7562 8633 9701 0767 1829	7669 8740 9808 0873 1936	7777 8847 9914 0979 2042	108 7884 8954 21 1086 2148	7991 9061 .128 1192 2254	8098 9167 .234 1298 2360	$8205 \\9274 \\.341 \\1405 \\2466$	8312 9381 .447 1511 2572	8419 9488 .554 1617 2678
410 411 412 413 414	2784 3842 4897 5950 7000	2890 3947 5003 6055 7105	2996 4053 5108 6160 7210	31024159521362657315	3207 4264 5319 6370 7420	$3313 \\ 4370 \\ 5424 \\ 6476 \\ 7525$	3419 4475 5529 6581 7629	3525 4581 5634 6686 7734	3630 4686 5740 6790 7839	3736 4792 5845 6895 7943
415 416 417 418 419	8048 9293 620136 1176 2214	8153 9198 0140 1280 2318	8257 9302 0344 1384 2421	8362 9406 0448 1488 2525	8466 9511 0552 1592 2628	8571 9615 0656 1695 2732	8676 9719 0760 1799 -2835	8780 9824 0864 1903 2939	8884 9928 0968 2007 3042	8989 32 1072 2110 3146
420 421 422 423 423 424	3249 4282 5312 6340 7366	3353 4385 5415 6443 7468	3456 4488 5518 6546 7571	3559 4591 5621 6648 7673	3663 4695 5724 6751 7775	3766 4798 5827 6853 7878	3869 4901 5929 6956 7980	3973 5004 6032 7058 8082	4076 5107 6135 7161 8185	4179 5210 6238 7263 8287
$\begin{array}{c}, \ 425 \\ 426 \\ 427 \\ 428 \\ 429 \end{array}$	8389 9410 630428 1444 2457	8491 9512 0530 1545 2559	8593 9613 0631 1647 2660	8695 9715 0733 1748 2761	$ 103 \\ 8797 \\ 9817 \\ 0835 \\ 1849 \\ 2862 $	8900 9919 0936 1951 2963	$9002 \\21 \\ 1038 \\ 2052 \\ 3064$	9104 .123 1139 2153 3165	9206 .224 1241 2255 3266	9308 .326 1342 2356 3367
430 431 432 433 434	3468 4477 5484 6488 7490	3569 4578 5584 6588 7590	$3670 \\ 4679 \\ 5685 \\ 6688 \\ 7690$	3771 4779 5785 6789 7790	3872 4880 5886 6889 7890	3973 4981 5986 6989 7990	4074 5081 6087 7089 8090	4175 5182 6187 7189 8190	4276 5283 6287 7290 8290	4376 5383 6388 7390 8389
435 436 437 438 439	8489 9486 640481 1474 2465	8589 9586 0581 1573 2563	8689 9686 0680 1672 2662	8789 9785 0779 1771 2761	8888 9885 0879 1871 2860	8988 9984 0978 1970 2959	9088 84 1077 2069 3058	9188 .183 1177 2168 3156	9287 .283 1276 2267 3255	9387 .382 1375 2366 3354
440 441 442 443 443 444	3453 4439 5422 6404 7383	$\begin{array}{r} 3551 \\ 4537 \\ 5521 \\ 6502 \\ 7481 \end{array}$	3650 4636 5619 6600 7579	3749 4734 5717 6698 7676	3847 4832 5815 6796 7774 93	3946 4931 5913 6894 7872	4044 5029 6011 6992 7969	4143 5127 6110 7039 8067	4242 5226 6208 7187 8165	4340 5324 6306 •7285 8262
445 446 447 448 449	8360 9335 650308 1278 ~2246	8458 9432 0405 1375 2343	8555 9530 0502 1472 2440	8653 9627 0599 1569 2530	8750 9724 0696 1666 2633	8848 9821 0793 1762 2730	8945 9919 0890 1859 2826	9043 16 0987 1956 2923	9140 .113 1084 2053 3019	9237 .210 1181 2150 3116

10			L	0 G A	RIT	'H M	S	1		
N.	0	1	2	3	4	5	6	7	8	9
450 451	653213 4177	3309 4273	3405 4369	$\begin{array}{c} 3502\\ 4465 \end{array}$	$3598 \\ 4562$	$\begin{array}{c} 3695\\ 4658 \end{array}$	3791 4754	3888 4850	3984 4946	4080 5042
452 453 454	5138 6098 7056	$5235 \\ 6194 \\ 7152$	5331 6290 7247	5427 6386 7343	5526 6482 7438	$5619 \\ 6577 \\ 7534$	5715 6673 7629	5810 6769 7725	$5906 \\ 6864 \\ 7820$	6002 6960 7916
455	8011	8107	8202	8298	96 8393	8488	8584	8679	8774	8970
456 457	8965 9916	9060	9155 .106	9250	9346 .296	9441 .391	9536 .486	9631 .581	9726 .676	9821 .771
458 459	1813	1907	2002	2096	1245 2191	2286	1434 2380	1529 2475	2569	2663
460 461	2758 3701	2852 3795	2947 3889	3041 3983	3135 4078	3230 4172	3324 4266	3418 4360	3512 4454	3607 4548
$462 \\ 463 \\ 464$	4642 5581 6518	4736 5675 6612	4830 5769 6705	4924 5862 6799	5018 5956 6892	5112 6050 6986	5206 6143 7079	6299 6237 7173	$5393 \\ 6331 \\ 7266$	5487 6424 7360
465	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293
466 467	8386 9317 670241	8479 9410 0220	8572 9503	8665 9596	8759 9689 0617	8852 9782 9710	8945 9875	9038 9967 0895	9131 60 0988	9324 .153
408	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005
470 471	2098 3021	2190 3113	2283 3205	2375 3297	2467 3390	2560 3482	2652 3574	2744 3666	2836 3758	2929 3850
472 473 474	3942 4861 5778	4034 4953 5870	4126 5045 5962	4218 5137 6053	4310 5228 6145	4402 5320 6236	4494 5412 6328	4080 5503 6419	4077 5595 6511	4769 5687 6602
475	6694	6785	6876	6968	91 7059	7151	7242	7333	7424	7516
476 477 478	7607 8518 9428	7698 8609 9519	7789 8700 9610	7881 8791 9700	7972 8882 9791	8063 8972 9882	8154 9064 9973	8240 9155 63	8336 9246 .154	8427 9337 .245
479	680336	0426	0517	0607	0698	0789	0879	0970	1030	1151
480 481 482	1241 2145 2047	1332 2235 2137	1422 2326 2007	1513 2416 2217	1603 2506 2407	1693 2596 3407	1784 2686 2587	1874 2777 3677	1964 2867 3767	2055 2957 3857
483 484	3947 4854	4037 4935	4127 5025	4217 5114	4307 5204	4396 5294	4486 5383	4576 5473	4666 5563	4756 5652
485	5742	5831	5921	6010	6100	6189	6279	6368 7961	6458	6547
480 487 488	7529 8420	7618 8509	7707 8598	7796 8687	7886 8776	7975 8865	8064 8953	8153 9042	8242 9131	8331 9220
489	9309	9398	9486	9575	9664	9753	9841	9930	19	.107
490 491 492	690196 1081 1965	$ \begin{array}{c} 0285 \\ 1170 \\ 2053 \end{array} $	$0373 \\ 1258 \\ 2142$	0362 1347 2230	0550 1435 2318	$ \begin{array}{r} 0639 \\ 1524 \\ 2406 \end{array} $	$ \begin{array}{r} 0728 \\ 1612 \\ 2494 \end{array} $	1700 2583	0905 1789 2671	0993 1877 2759
493 494	2847 3727	2935 3815	3023 3903	3111 3991	3199 4078	3287 4166	$3375 \\ 4254$	$\begin{array}{c} 3463 \\ 4342 \end{array}$	3551 4430	3639 4517
-195 496	4605	4693	4781	4868	88 4956 5832	5044 5919	5131 6007	5210 6094	5307 6182	5394 6269
497 498	6356 7229	5444 7317	6531 7404	6618 7491	6706 7578	6793 7665	6880 7752	6968 7839	7055 7926	7142 8014
499	8101	8188	8275	8362	8449	8535	8622	8709	8796	8583

	OF NUMBERS. 11 N 0 1 2 3 4 5 6 7 8 9										
N.	0	1	2	3	4	б	6	7	8	9	
500 501 502 503 504	698970 9338 700704 1568 2431	9057 9924 0790 1654 2517	9144 11 0377 1741 2603	9231 98 0963 1527 2689	9317 .184 1050 1913 2775 86	9404 .271 1136 1999 2861	9491 .358 1222 2086 2947	9578 .444 1309 2172 3033	9664 .531 1395 2258 3119	$9751 \\ .617 \\ 1482 \\ 2344 \\ 3205$	
505 503 507 503 509	3291 4151 5003 5864 6718	3377 4236 5094 5949 6803	3463 4322 5179 6035 6888	3549 4408 5265 6120 6974	3635 4494 5350 6206 7059	3721 4579 5436 6291 7144	3807 4665 5522 6376 7229	$3895 \\ 4751 \\ 5607 \\ 6462 \\ 7315$	3979 4837 5693 6547 7400	4065 4922 5778 6632 7485	
510 511 512 513 514	7570 8421 9270 710117 0963	7655 8506 9355 0202 1048	7740 8591 9440 0287 1132	7826 8676 9524 0371 1217	7910 8761 9609 0456 1301	7996 8846 9694 0540 1385	8081 8931 9779 0625 1470	8166 9015 9863 0710 1554	8251 9100 9948 0794 1639	8336 9185 33 0879 1723	
515 516 517 518 519	1807 2650 3491 4330 5167	1892 2734 3575 4414 5251	1976 2818 3659 4497 5335	2050 2902 3742 4581 5418	2144 2986 3826 4665 5502	2229 3070 3910 4749 5586	2313 3154 3994 4833 5669	2397 3238 4078 4916 5753	2481 3326 4162 5000 5836	2566 3407 4246 5084 5920	
520 521 522 523 523 524	6003 6838 7671 8502 9331	6087 6921 7754 8585 9414	6170 7004 7837 8668 9497	6254 7088 7920 8751 9580	6337 7171 8003 8834 9663 82	6421 7254 8086 8917 9745	6504 7338 8169 9000 9828	6588 7421 8253 9083 9911	6671 7504 8336 9165 9994	6754 7587 8419 9248 77	
, 525 526 527 528 529	720159 0986 1811 2634 3456	0242 1068 1893 2716 3538	0325 1151 .975 2798 3620	0407 1233 2058 2881 3702	0490 1316 2140 2963 3784	0573 1398 2222 3045 3866	0655 1481 2305 3127 3948	0738 1563 2387 3209 4030	0821 1646 2469 3291 4112	0903 1728 2552 3374 4194	
530 531 532 533 533 534	4276 5095 5912 6727 7541	4358 5176 5993 6809 7623	4440 5258 6075 6890 7704	4522 5340 6156 6972 7785	4604 5422 6238 7053 7866	4685 5503 6320 7134 7948	4767 5585 6401 7216 8029	4849 5667 6483 7297 8110	4931 5748 6564 7379 8191	5013 5830 6646 7460 8273	
535 536 537 538 539	8354 9165 9974 730782 1589	$\begin{array}{r} 8435\\9246\\55\\0863\\1669\end{array}$	8516 9327 .136 0944 1750	8597 9403 .217 1024 1830	8678 9489 .298 1105 1911	8759 9570 .378 1186 1991	8841 9651 .459 1266 2072	8922 9732 .440 1347 2152	9003 9813 .621 1428 2233	9084 9893 .702 1508 2313	
540 541 542 543 543 544	2394 3197 3999 4800 5599	2474 3278 4079 4380 5679	2555 3358 4160 4960 5759	2635 3438 4240 5040 5838	2715 3518 4320 5120 5918 . 80	2796 3598 4400 5200 5998	2876 3679 4480 5279 6078	2956 3759 4560 5359 6157	3037 3839 4640 5439 6237	3117 3919 4720 5519 6317	
545 546 547 548 548 549	6397 7193 7987 8781 9572	6476 7272 8037 8860 9651	6556 7352 8146 8939 9731	6636 7431 8225 9018 9810	6715 7511 8305 9097 9889	6795 7590 8384 9177 9968	$\begin{array}{c} 6874 \\ 7670 \\ 8463 \\ 9256 \\ \dots 47 \end{array}$	6954 7749 8543 9335 .126	7034 7829 8622 9414 .205	7113 7908 8701 9493 .284	

12	12 LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
550 551 552 553 554	740363 1152 1939 2725 3510	0442 1230 2018 2804 3558	0521 1309 2096 2882 3667	0560 1388 2175 2961 3745	0678 1467 2254 3039 3823 79	0757 1546 2332 3118 3902	0836 1624 2411 3196 3980	0915 1703 2489 3275 4058	0994 1782 2568 3353 4136	1073 1860 2646 3431 4215
555 556 557 558 559	4293 5075 5855 6634 7412	4371 5153 5933 6712 7489	4449 5231 6011 6790 7567	4528 5309 6089 6868 7645	4606 5387 6167 6945 7722	4684 5465 6245 7023 7800	4762 5543 6323 7101 7878	4840 5621 6401 7179 7955	4919 5699 6479 7256 8033	4997 5777 6556 7334 8110
560 561 562 563 564	8188 8963 9736 750508 1279	8266 9040 9814 0586 1356	8343 9118 9891 0663 1433	8421 9195 9968 0740 1510	8498 9272 45 0817 1587	$\begin{array}{r} 8576 \\ 9350 \\ .123 \\ 0894 \\ 1664 \end{array}$	8653 9427 .200 0971 1741	8731 9504 .277 1048 1818	$\begin{array}{r} 8808\\9582\\.354\\1125\\1895\end{array}$	8885 9659 .431 1202 1972
565 566 567 568 569	2048 2816 3582 4348 5112	2125 2893 3660 4425 5189	2202 2970 3736 4501 5265	2279 3047 3813 4578 5341	2356 3123 3889 4654 5417	2433 3200 3966 4730 5494	2509 3277 4042 4807 5570	2586 3353 4119 4883 5646	2663 3430 4195 4960 5722	2740 3506 4272 5036 5799
570 571 572 573 573 574	5875 6636 7396 8155 - 8912	5951 6712 7472 8230 8988	6027 6788 7548 8306 9068	6103 6864 7624 8382 9139	6180 6940 7700 8458 9214 74	6256 7016 7775 8533 9290	6332 7092 7851 8609 9366	6408 7168 7927 8685 9441	6484 7244 8003 8761 9517	6560 7320 8079 8836 9592
575 576 577 578 579	9638 760422 1176 19 2 3 2679	9743 0498 1251 2003 2754	9819 0573 1326 2078 2829	9894 0649 1402 2153 2904	9970 0724 1477 2228 2978	45 0799 1552 2303 3053	$\begin{array}{r} .121\\ 0875\\ 1627\\ 2378\\ 3128\end{array}$	$\begin{array}{r} .196\\ 0950\\ 1702\\ 2453\\ 2203 \end{array}$.272 1025 1778 2529 3278	.347 1101 1853 2604 3353
580 581 582 583 584	3428 4176 4923 5669 6413	3503 4251 4998 5743 6487	3578 4326 5072 5818 6562	3653 4400 5147 5892 6636	3727 4475 5221 5966 6710	3802 4550 5296 6041 6785	3877 4624 5370 6115 6859	3952 4699 5445 6190 6933	4027 4774 5520 6264 7007	4101 4848 5594 6338 7082
585 586 587 588 589	7156 7898 8638 9377 770115	7250 7972 8712 9451 0189	7304 8046 8786 9525 0263	7379 8120 8860 9599 0336	7453 8194 8934 9673 0410	7527 8268 9008 9746 0484	7601 8342 9082 9820 0357	7675 8416 9156 9894 0631	7749 8490 9230 9968 0705	7823 8564 9303 42 0778
590 591 592 593 594	0852 1587 2322 3055 3786	0926 1661 2395 3128 3860	0999 1734 2468 3201 3933	$1073 \\1808 \\3542 \\3274 \\4006$	1146 1881 2615 3348 4079 73	1220 1955 2688 3421 4152	1293 2028 2762 3494 4225	1367 2102 2835 3567 4298	1440 2175 2908 3640 4371	1514 2248 2981 3713 4444
595 596 597 598 599	4517 5246 5974 6701 7427	4590 5319 6047 6774 7499	4663 5392 6120 6846 7572	4736 5465 6193 6919 7644	4809 5538 6265 6992 7717	4882 5610 6338 7064 7789	$\begin{array}{r} 4955 \\ 5683 \\ 6411 \\ 7137 \\ 7862 \end{array}$	5028 5756 6483 7209 7934	5100 5829 6556 7282 8006	5173 5902 6629 7354 8079

		-	0	FN	UMB	ERS				13
N.	0	1	2	3	4	5	6	7	8	9
600 601	778151 8874	8224 8947	8296 9019	8368 9091	8441 9163	8513 9236	8585 9308	8658 9380	8730 9452	8802 9524
602 603 604	9596 780317 1037	0389 1109	9741 0461 1181	9813 0533 1253	9885 0605 1324	9957 0677 1396	0749 1468	$ \begin{array}{r} .101 \\ 0821 \\ 1540 \end{array} $	0893 1612	.245 0965 1684
605 606	1755 2473	1827 2544	1899 2616	1971 2688	2042 2759	2114 2831	2186 2902	2258 2974	2329 3046	2401 3117
608 609	3189 3904 4617	3975 4689	4046 4760	4118 4831	4189 4902	3546 4261 4974	4332 5045	3689 4403 5116	4475 5187	3832 4546 5259
610 611 612	5330 6041	5401 6112	5472 6183	5543 6254	5615 6325 7025	5686 6396	5757 6467	5828 6538	5899 6609	5970 6680
613 614	7460 8168	7531 8239	7602 8310	7673 8381	7744 8451	7815 8522	7885 8593	7248 7956 8663	8027 8734	7390 8098 8804
615 616 617	8875 9581 790285	8946 9651 0356	9016 9722 0426	9087 9792	9157 9863 0567	9228 9933	9299	9369	9440 .144 0848	9510 .215
618 619	0988 1691	1059 1761	1129 1831	1199 1901	1269 1971	1340 2041	1410 2111	1480 2181	1550 2252	1620 2322
620 621 622	2392 3092	2462 3162	2532 3231	2602 3301	2672 3371	2742 3441	2812 3511	2882 3581	2952 3651	3022 3721
623 624	4488 5185	4558 5254	4627 5324	4697 5393	4767 5463 69	4836 5532	4906 5602	4976 5672	5045 5741	5115 5811
625 626 627	5880 6574 7268	5949 6644 7337	6019 6713 7406	6088 6782 7475	6158 6852 7545	6227 6921 7614	6297 6990 7683	6366 7060 7759	6436 7129	6505 7198
628 629	7960 8651	8029 8720	8098 8789	8167 8858	8236 8927	8305 8996	8374 9065	8443 6134	8513 9203	8582 9272
	9341 800026 0717	9409 0098 0786	9478 0167 0854	$9547 \\ 0236 \\ 0923$	9610 0305 0992	9685 0373 1061	9754 0442 1120	9823 0511 1198	9892 0580 1266	9961 0648
633 634	1404 2089	1472 2158	1541 2226	1609 2295	1678 2363	1747 2432	1815 2500	1884 2568	1952 2637	2021 2705
635 636 637	$2774 \\ 3457 \\ 4139$	$2842 \\ 3525 \\ 4208$	2910 3594 4276	2979 3662 4354	3047 3730 4412	3116 3798 4480	3184 3867 4548	3252 3935 4616	$3321 \\ 4003 \\ 4685$	3389. 4071 4753
638 639	4821 5501	4889 5669	4957 5637	5025 5705	5093 5773	5161 5841	5229 5908	5297 5976	5365 6044	5433 6112
640 641 642	6180 6858 7535	$\begin{array}{c} 6248 \\ 6926 \\ 7603 \end{array}$	6316 6994 7670	6384 7061 7738	6451 7129 7806	6519 7157 7873	6587 7264 7941	6655 7332 8008	6723 7400 8076	6790 7467 8143
643 644	8211 8886	8279 8953	8346 9021	8414 9088	8481 9156	8549 9223	8616 9290	8684 9358	8751 9425	8818 9492
645 646 647	9560 810233 0904	9627 0300 0971	9694 0367 1039	9762 0434 1106	9829 0501 1173	9896 0596 1240	9964 0636 1307	31 0703 1374	98 0770	.165 0837 1508
648 649	1575 2245	1642 2312	1709 2379	1776 2445	1843 2512	1910 2579	1977 2646	2044 2713	2111 2780	2178 2847

14	14 LOGARITHMS									
N.	0	1	2	3	4	- 5	6	7	8	9
$ \begin{array}{r} 650 \\ 651 \\ 652 \\ 653 \\ 654 \end{array} $	812913 3581 4248 4913 5578	2980 3648 4314 4980 5644	3047 3714 4381 5046 5711	3114 3781 4447 5113 5777	3181 3848 4514 5179 5843 67	3247 3914 4581 5246 5910	3314 3981 4647 5312 5976	3381 4048 4714 5378 6042	3448 4114 4780 5445 6109	3514 4181 4847 5511 6175
655	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838
656	6904	6970	7036	7102	7169	7233	7301	7367	7433	7499
657	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160
658	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820
659	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478
660	9544	9610	9676	9741	9807	9873	9939	4	$\begin{array}{r}70 \\ 0727 \\ 1382 \\ 2037 \\ 2691 \end{array}$.136
661	820201	0267	0333	0399	0464	0530	0595	0661		0792
662	0858	0924	0989	1055	1120	1186	1251	1317		1448
663	1514	1579	1645	1710	1775	1841	1906	1972		2103
664	2168	223 3	2299	2364	2430	2495	2560	2626		2756
665	2822	2887	2952	3018	3083	3148	3213	3279	3344	3409
666	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061
667	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711
668	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361
669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010
670 671 672 673 674	6075 6723 7369 8015 8660	6140 6787 7434 8080 8724	6204 6852 7499 8144 8789	6269 6917 7563 8209 8853	6334 6981 7628 8273 8918 65	6399 7046 7692 8338 8982	6464 7111 7757 8402 9046	6528 7175 7821 8467 9111	6593 7240 7886 8531 9175	6658 7305 7951 8595 9239
675	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882
676	9947	11	75	.139	.204	.268	.332	.396	.460	.525
677	830589	0653	0717	0781	0845	0909	0973	1037	1102	1166
678	1230	1294	1358	1422	1486	1550	1614	1678	1742	1806
679	1870	1934	1998	2062	2126	2189	2253	2317	2381	2445
680	2509	2573	2637	2700	2764	2828	$2892 \\ 3530 \\ 4166 \\ 4802 \\ 5437$	2956	3020	3083
681	3147	3211	3275	3338	3402	3466		3593	3657	3721
682	3784	3848	3912	3975	4039	4103		4230	4294	4357
683	4421	4484	4548	4611	4675	4739		4866	4929	4993
684	5056	5120	5183	5247	5310	5373		5500	5564	5627
685	5691	5754	5817	5881	5944	6007	6071	6134	6197	6261
686	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894
687	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525
688	7588	7652	7715	7778	7841	7904	7967	8030	8093	8156
689	8219	8282	8345	8408	8471	8534	8597	8660	8723	8786
690 691 692 693 694	8849 9478 840106 0733 1359	8912 9541 0169 0796 1422	8975 9604 0232 0859 1485	9038 9667 0294 0921 1547	9109 9729 0357 0984 1610 62	9164 9792 0420 1046 1672	9227 9855 0482 1109 1735	9289 9918 0545 1172 1797	9352 9981 0608 1234 1860	9415 43 0671 1297 1922
695	1985	2047	2110	2172	$\begin{array}{r} 2235 \\ 2859 \\ 3482 \\ 4104 \\ 4726 \end{array}$	2297	2360	2422	2484	2547
696	2609	2672	2734	2796		2921	2983	3046	3108	3170
697	3233	3295	3357	3420.		3544	3606	3669	3731	3793
698	3855	3918	3980	4042		4166	4229	4291	4353	4415
699	4477	4539	4601	4664		4788	4850	4912	4974	5036

			0	FN	UM	BER	s.			15
N.	0	1	2	3	4	5	6	7	8	9
700 701 702 703 704	845098 5718 6337 6955 7573	5160 5780 6399 7017 7634	5222 5842 6461 7079 7676	5284 5904 6523 7141 7758	5346 5966 6585 7202 7819 62	5408 6028 6646 7264 7831	5470 6090 6708 7326 7943	5532 6151 6770 7388 8004	5594 6213 6832 7449 8066	5656 6275 6894 7511 8128
705 706 707 708 709	8189 8805 9419 850033 0646	8251 8866 9481 0095 0707	8312 8928 9542 0156 0769	8374 8989 9604 0217 0330	8435 9051 9665 0279 0891	8497 9112 9726 0340 0952	8559 9174 9788 0401 1014	8620 9235 9849 0462 1075	8682 9297 9911 0524 1136	8743 9358 9972 0585 1197
710 711 712 713 713 714	1258 1870 2480 3090 3698	1320 1931 2541 3150 3759	1381 1992 2602 3211 3820	1442 2053 2663 3272 3881	1503 2114 2724 3333 3941	$1564 \\ 2175 \\ 2785 \\ 3394 \\ 4002$	1625 2236 2846 3455 4063	$1686 \\ 2297 \\ 2907 \\ 3516 \\ 4124$	1747 2358 2968 3577 4185	1809 2419 3029 3637 4245
715 716 717 718 719	4306 4913 5519 6124 6729	$\begin{array}{r} 4367 \\ 4974 \\ 5580 \\ 6185 \\ 6789 \end{array}$	$\begin{array}{r} 4428 \\ 5034 \\ 5640 \\ 6245 \\ 6850 \end{array}$	4488 5095 5701 6306 6910	4549 5156 5761 6366 6970	4610 5216 5822 6427 7031	4670 5277 5882 6487 7091	4731 5337 5943 6548 7152	4792 5398 6003 6608 7212	4852 5459 6064 6668 7272
720 721 722 723 723 724	7332 7935 8537 9138 9739	7393 7995 8597 9198 9799	7453 8056 8657 9258 9859	7513 8116 8718 9318 9918	7574 8176 8778 9379 9978	7634 8236 8838 9439 38	7694 8297 8898 9499 98	7755 8357 8958 9559 .158	7815 8417 9018 9619 .218	7875 8477 9078 9679 .278
725 726 727 728 729	860338 0937 1534 2131 2728	0398 0996 1594 2191 2787	0458 1056 1654 2251 2847	0518 1116 1714 2310 2906	0578 1176 1773 2370 2966	0637 1236 1833 2430 3025	0697 1295 1893 2489 3085	0757 1355 1952 2549 3144	0817 1415 2012 2608 3204	0877 1475 2072 2668 3263
730 731 732 733 733 734	3323 3917 4511 5104 5696	3382 3977 4570 5163 5755	3442 4036 4630 5222 5814	3501 4096 4689 5282 5874	3561 4155 4148 5341 5933	3620 4214 4808 5400 5992	3680 4274 4867 5459 6051	3739 4333 4926 5519 6110	$3799 \\ 4392 \\ 4985 \\ 5578 \\ 6169$	3858 4452 5045 5637 6228
735 736 737 738 738 739	6287 6878 7467 8056 8644	6346 6937 7526 8115 8703	6405 6996 7585 8174 8762	6465 7055 7644 8233 8821	6524 7114 7703 8292 8879	6583 7173 7762 8350 8938	6642 7232 7821 8409 8997	6701 7291 7880 8468 9056	6760 7350 7939 8527 9114	6819 7409 7998 8586 9173
740 741 742 743 744	9232 9818 870404 0989 1573	9290 9877 0462 1047 1631	9349 9935 0521 1106 1690	9408 9994 0579 1164 1748	9466 53 0638 1223 1806 59	$9525 \\ .111 \\ 0696 \\ 1281 \\ 1865$	9584 .170 0755 1339 1923	9642 .228 0813 1398 1981	9701 .287 0872 1456 2040	9760 .345 0930 1515 2098
745 746 747 748 749	2156 2739 3321 3902 4482	2215 2797 3379 3960 4540	$\begin{array}{r} 2273 \\ 2855 \\ 3437 \\ 4018 \\ 4598 \end{array}$	2331 2913 3495 4076 4656	2389 2972 3553 4134 4714	2448 3030 3611 4192 4772	2506 3088 3669 4250 4830	2564 3146 3727 4308 4888	2622 3204 3785 4360 4945	2681 3262 3844 4424 5003

16	16 LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
750 751 752 753 754	875031 5640 6218 6795 7371	5119 5698 6276 6853 7429	5177 5756 6333 6910 7487	5235 5813 6391 6968 7544	5293 5871 6449 7026 7602 57	5351 5929 6507 7083 7659	5409 5987 6564 7141 7717	5466 6045 6622 7199 7774	5524 6102 6680 7256 7832	5582 6160 6737 7314 7889
755	7947	8004	8062	8119	8177	8234	8292	8349	8407	8464
756	8522	8579	8637	8694	8752	8809	8866	8924	8981	9039
757	9096	9153	9211	9268	9325	9383	9440	9497	9555	9612
758	9669	9726	9784	9841	9898	9956	13	70	.127	.185
759	880242	0299	0356	0413	0471	0528	0580	0642	0699	0756
760	0814	0871	0928	0985	1042	1099	1156	1213	$1271 \\1841 \\2411 \\2980 \\3548$	1328
761	1385	1442	1499	1556	1613	1670	1727	1784		1898
762	1955	2012	2069	2126	2183	2240	2297	2354		2468
763	2525	2581	2638	2695	2752	2809	2866	2923		3037
764	3093	3150	3207	3264	3321	3377	3434	3491		3605
765	3661	3718	$3775 \\ 4342 \\ 4909 \\ 5474 \\ 6039$	3832	3888	3945	4002	4059	4115	4172
766	4229	4285		4399	4455	4512	4569	4625	4682	4739
767	4795	4852		4965	5022	5078	5135	5192	5248	5305
768	5361	5418		5531	5587	5644	5700	5757	5813	5870
769	5926	5983		6096	6152	6209	6265	6321	6378	6434
770 771 772 773 774	6491 7054 7617 8179 8741	6547 7111 7674 8236 8797	6604 7167 7730 8292 8853	6660 7233 7786 8348 8909	6716 7280 7842 8404 8965 56	6773 7336 7898 8460 9021	6829 7392 7955 8516 9077	6885 7449 8011 8573 9134	6942 7505 8067 8629 9190	6998 7561 8123 8655 9246
775 776 777 778 778 779	9302 9862 890421 0980 1537	9358 9918 0477 1035 1593	9414 0974 0533 1091 1649	9470 30 0589 1147 1705	9526 86 0645 1203 1760	9582 .141 0700 1259 1816	9638 .197 0756 1314 1872	9694 .253 0812 1370 1928	9750 .309 0868 1426 1983	9806 .365 0924 1482 2039
780 781 782 783 783 784	2095 2651 3207 3762 4316	2150 2707 3262 3817 4371	2205 2762 3318 3873 4427	2262 2818 3373 3928 4482	2317 2873 3429 3984 4538	2373 2929 3484 4039 4593	2429 2985 3540 4094 4648	2484 3040 3595 4150 4704	$\begin{array}{r} 2540\\ 3096\\ 3651\\ 4205\\ 4759 \end{array}$	2595 3151 3706 4261 4814
785	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367
786	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920
787	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471
788	6526	6581	6636	6692	6747	6802	6857	6912	6967	7022
789	7077	7132	7187	7242	7297	7352	7407	7462	7517	7572
790	7627	7683	7737	7792	$7847 \\8396 \\8944 \\9492 \\39 \\55$	7902	7957	8012	8067	8122
791	8176	8231	8286	8341		8451	8506	8561	8615	8670
792	8725	8780	8835	8890		8999	9054	9109	9164	9218
793	9273	9328	9383	9437		9547	9602	9656	9711	9766
794	9821	9875	9930	9985		94	.149	.203	.258	.312
795	900367	0422	$\begin{array}{c} 0476 \\ 1022 \\ 1567 \\ 2112 \\ 2655 \end{array}$	0531	0586	0640	0695	0749	0804	0859
796	0913	0968		1077	1131	1186	1240	1295	1349	1404
797	1458	1513		1622	1676	1736	1785	1840	1854	1948
798	2003	2057		2166	2221	2275	2329	2384	2438	2492
799	2547	2601		2710	2764	2818	2873	2927	2981	3036

	-		0	F N	UMB	ERS	5.			17
N.	0	1	2	3	4	5	6	7	8	9
800 801 802 803	903090 3633 4174 4716	3144 3687 4229 4770	3199 3741 4283 4824	3253 3795 4337 4878	3307 3849 4391 4932	$3361 \\ 3904 \\ 4445 \\ 4986$	$3416 \\ 3958 \\ 4499 \\ 5040$	$3470 \\ 4012 \\ 4553 \\ 5094$	$3524 \\ 4066 \\ 4607 \\ 5148$	$3578 \\ 4120 \\ 4661 \\ 5202$
804	5256	5310	5364	5418	5472 54	5526	5580	5634	5688	5742
805 803 807 808 809	5796 6335 6874 7411 7949	5850 6389 6927 7465 8002	5904 6443 6981 7519 8056	5958 6497 7035 7573 8110	6012 6551 7089 7626 8163	6066 6604 7143 7680 8217	6119 6658 7196 7734 8270	6173 6712 7250 7787 8324	6227 6766 7304 7841 8378	6281 6820 7358 7895 8431
810 811 812 813 813 814	8485 9021 9556 910091 0624	8539 9074 9610 0144 0678	8592 9128 9663 0197 0731	8646 9181 9716 0251 0784	8699 9235 9770 0304 0838	8753 9289 9823 0358 0891	8807 9342 9877 0411 0944	8860 9396 9930 0464 0998	8914 9449 9984 0518 1051	8967 9503 37 0571 1104
815 816 817 818 818 819	1158 1690 2222 2753 3284	1211 1743 2275 2806 3337	1264 1797 2323 2859 3390	1317 1850 2381 2913 3443	1371 1903 2435 2966 3496	1424 1956 2488 3019 3549	$1477 \\ 2009 \\ 2541 \\ 3072 \\ 3602$	1530 2063 2594 3125 3655	1584 2115 2645 3178 3708	1637 2169 2700 3231 3761
820 821 822 823 823 824	3 814 4343 4872 5 400 5927	3867 4396 4925 5453 5980	3920 4449 4977 5505 6033	3973 4502 5030 5558 6085	4026 4555 5083 5611 6138	4079 4608 5136 5664 6191	4132 4660 5189 5716 6243	4184 4713 5241 5769 6296	4237 4766 5594 5822 6349	4290 4819 5347 5875 6401
825 826 827 828 829	6454 6980 7506 8030 8555	6507 7033 7558 8083 8607	6559 7085 7611 8185 8659	6612 7138 7663 8188 8712	6664 7190 7716 8240 8764	6717 7243 7768 8293 8816	6770 7295 7820 8345 8869	6822 7348 7873 8397 8921	$\begin{array}{c} 6875 \\ 7400 \\ 7925 \\ 8450 \\ 8973 \end{array}$	6927 7453 7978 8502 9026
830 831 832 833 834	9078 9601 920123 0645 1166	9130 9653 0176 0697 1218	9183 9706 0228 0749 1270	9235 9758 0280 0801 1322	9287 9810 0332 0853 1374	9340 9862 0384 ·0903 1426	9392 9914 0436 0958 1478	9444 9967 0489 1010 1530	9496 19 0541 1062 1582	$9549 \\71 \\ 0593 \\ 1114 \\ 1634$
835 836 837 838 839	1686 2203 2725 3244 3762	1738 2258 2777 3296 3S14	1790 2310 2829 3348 3865	1842 2362 2881 3399 3917	1894 2414 2933 3451 3969	1946 2466 2985 3503 4021	1998 2518 3037 3555 4072	$\begin{array}{r} 2050 \\ 2570 \\ 3089 \\ 3607 \\ 4124 \end{array}$	$\begin{array}{c} 2102 \\ 2622 \\ 3140 \\ 3658 \\ 4147 \end{array}$	2154 2674 3192 3710 4228
840 841 842 843 843 844	4279 4796 5312 5828 6342	4331 4848 5364 5874 6394	4383 4899 5415 5931 6445	4434 4951 5467 5982 6497	4486 5003 5518 6034 6548 52	$\begin{array}{r} 4538 \\ 5054 \\ 5570 \\ 6085 \\ 6600 \end{array}$	4589 5106 5621 6137 6651	4641 5157 5673 6188 6702	4693 5209 5725 6240 6754	4744 5261 5776 6291 6805
845 846 847 848 849	6857 7370 7883 8396 8908	6908 7422 7935 8447 8959	6959 7473 7986 8498 9010	7011 7524 8037 8549 9051	7062 7576 8038 8601 9112	7114 7627 8140 8652 9163	7165 7678 8191 8703 9216	7216 7730 8242 8754 9266	7268 7783 8293 8805 9317	7319 7832 8345 8857 9368

18			L	0 G A	RIT	НМ	S		•	
N.	0	1	2	3	4	õ	6	7	8	9
850	929419	9473	9521	9572	9623	9674	9725	9776	9827	9879
851	9930	9981	32	83	.134	.185	.236	.287	.338	.389
853	0949	1000	1051	1102	1153	1204	1254	1305	1356	1407
854	1458	1509	1560	1610	1661 51	1712	1763	1814	1865	1915
855	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423
856	2474	2524	2075	2626	2077	2727	2778	2829	2879	2930
858	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943
859	3993	4044	4094	4145	4195	4246	4269	4347	4397	4448
860	4498	4549	4599	4650	4700	4751	4801	4852	4902	4953
861	5003	5054 5558	5104	5154	5205	5255	5306	5356	5406	5457
863	6011	6051	6111	6162	6212	6262	6313	6363	6413	6463
864	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966
865	7016	7066	7117	7167	7217	7267	7317	7367	7418	7468
866	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969
868	8019	8570	8620	8169	8219	8269	8320	8870	8919	8970
869	9020	9070	9120	9170	9220	9270	9320	9369	9419	9469
870	9519	9569	9616	9669	9719	9769	9819	9869	9918	9968
871	940018	0068	0118	0168	0218	0267	0317	0367	0417	0467
872	0516	0566	0616	0666	0716	0765	0815	0865	0915	0964
874	1511	1561	-1611	1660	1710	1203	1809	1859	1909	1958
875	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455
876	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950
877	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445
878	3989	4038	4088	4137	4186	3742 4236	4285	4335	4384	4433
880	4483	4532	4581	4631	4680	4729	4779	4828	4877	4927
881	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419
882	5961	6010	6059	5616	6157	6207	6256	6305	6354	5912 6403
884	6452	6501	6551	6600	6649	6698	6747	6796	68.45	6894
885	6943	6992	7041	7090	7140	7189	7238	7287	7336	7385
886	7434	7483	7532	7581	7630	7679	7728	7777	7826	7875
887	8413	9469	8022	8070	8119	8168	8217	8266	8315	8365
889	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341
890	9390	9439	9488	9536	9585	9634	9683	9731	9780	9829
891	9878	9926	9975	24	0560	.121	.170	.219	.267	.316
892	0851	0900	0949	0997	1046	1035	1143	1192	1240	1239
894	1338	1386	1435	1483	1532 48.	1580	1629	1677	1726	1775
895	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260
893	2308	2356	2405	2453	2502	2550	2599	2647	5696	2744
897	2792	2841	2889	2938	2986	3034	3053	3615	3663	3228
899	3760	3803	3856	3905	3953	4001	4019	40.38	.4146	4191
i			1	1			1			

	OF NUMBERS. 19											
N.		1	2	3	4	5	6	7	8	9		
000	05 10 10	4201	4220	4907	4495	4494	4599	4590	4000	1000		
900	954243 4725	4773	4821	4367	4435	4966	5014	4580 5062	5110	5158		
902	5207	5255	5303	5351	5399	5447	5495	5543	5592	5640		
903	5688	5736	5784	5832	5880	5928	5976	6024	6072	6120		
901	6168	6216	6265	6313	48	6409	6497	6905	0003	6601		
905	6649	6697	6745	6793	6840	6888	6936	6984	7032	7080		
906	7128	7176	7224	7272	7320	7368	7416	7464	7512	7559		
907	8085	8134	8181	8229	8277	8325	8373	8421	8468	8516		
909	8564	8612	8659	8707	8755	8803	8850	8898	8946	8994		
910	9041	9089	9137	9185	9232	9280	9328	9375	9423	9474		
911	9518	9566	9614	9661	9709	9757	9804	9852	9900	9947		
912	9995	42	90	.138	.185	.233	.280	.328	.376	.423		
913	960471	0304	1041	1089	1136	1184	1231	1279	1326	1374		
314	0.540	0554	1041	1005	1100	1101	1201	1210	10.00	1074		
915	1421	1469	1516	1563	-1611	1658	1706	1753	1801	1848		
916	1895	1943	1990	2038	2085	2132	2180	2227	2275	2322		
917	2309	2417	2404	2985	2009	2000	3126	3174	3221	2790		
919	3316	3363	3410	3457	3504	3552	3599	3646	3693	3741		
020	3788	2825	2880	2090	2077	4024	4071	4118	4165	4010		
921	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684		
922	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155		
923	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625		
924	5072	5719	5765	5813	5860	6907	. 5954	DUUT	0048	6095		
925	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564		
926	6611	6658	6705	6752	6799	6845	6892	6939	6986	7033		
927	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501		
928	8016	8052	8109	8156	8203	8249	8296	8343	8390	8436		
	0.400		0.000	0.000	0.000	0710	0700	0010	0050			
930	8950	8006	8576	8623	8670	0183	0703	8810	0302	8903		
, 932	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835		
933	9882	9928	9975	21	68	.114	.161	.207	.254	.300		
934	970347	0393	0440	0486	0533	0579	0626	0672	0719	0765		
935	0812	0858	0904	0951	0997	1044	1090	1137	1183	1229		
936	1276	1322	1369	1415	1461	1508	1554	1601	1647	1693		
937	2202	1786	1832	1879	1925	2434	2018	2064	2110	2157		
930	2666	2712	2758	2804	2851	2897	2943	2989	3035	3082		
	_						1					
940	3128	3174	3220	3266	3313	3359	3405	3451	3497	3543		
941	3090	3030	3082	4180	3774	4281	4327	4374	4420	4005		
943	4512	4558	4604	4650	4696	4742	4788	4834	4880	4926		
944	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386		
945	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845		
946	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304		
947	6350	6396	6442	6488	6533	6579	6925	6671	6717	6763		
948	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678		
	1	1012	1.000	}	1 10	1.00		1.500	1000	1010		

20			L	0 G A	RIT	чнм	S		0	
N.	0	1	2	3	4	5	6	7	8	9
950 951 952 953 953 954	977724 8181 8637 9093 9548	7769 8226 8683 9138 9594	7815 8272 8728 9184 9639	7861 8317 8774 9230 9685	7906 £363 8819 9275 9730 46	7952 8409 8865 9321 9776	7993 8454 8911 9366 9821	8043 8500 8953 9412 9867	8089 8546 9002 9457 9912	8135 8591 9047 9503 9958
955 956 957 958 959	980003 0458 0912 1366 1819	$\begin{array}{c} 0049 \\ 0503 \\ 0957 \\ 1411 \\ 1864 \end{array}$	0094 0549 1003 1456 1909	$\begin{array}{c} 0140 \\ 0594 \\ 1048 \\ 1501 \\ 1954 \end{array}$	0185 0640 1093 1547 2000	0231 0685 1139 1592 2045	0276 0730 1184 1637 2090	$\begin{array}{c} 0322\\ 0776\\ 1229\\ 1683\\ 2135 \end{array}$	0367 0821 1275 1728 2181	0412 0867 1320 1773 2226
960 961 962 963 964	2271 2723 3175 3626 4077	2316 2769 3220 3671 4122	$\begin{array}{r} 2362 \\ 2814 \\ 3265 \\ 3716 \\ 4167 \end{array}$	$\begin{array}{r} 2407 \\ 2859 \\ 3310 \\ 3762 \\ 4212 \end{array}$	2452 2904 3356 3807 4257	2497 2949 3401 3852 4352	2543 2994 3446 3897 4347	2588 3040 3491 3942 4392	2633 3085 3536 3987 4437	$2678 \\ 3130 \\ 3581 \\ 4032 \\ 4482$
965 966 967 968 969	4527 4977 5426 5875 6324	4572 5022 5471 5920 6369	$\begin{array}{r} 4617 \\ 5067 \\ 5516 \\ 5965 \\ 6413 \end{array}$	$\begin{array}{r} 4662 \\ 5112 \\ 5561 \\ 6010 \\ 6458 \end{array}$	4707 5157 5606 6055 6503	$\begin{array}{r} 4752 \\ 5202 \\ 5651 \\ 6100 \\ 6548 \end{array}$	$\begin{array}{r} 4797 \\ 5247 \\ 5699 \\ 6144 \\ 6593 \end{array}$	4842 5292 5741 6189 6637	$\begin{array}{r} 4887 \\ 5337 \\ 5786 \\ 6234 \\ 6682 \end{array}$	4932 5382 5830 6279 6727
970 971 972 973 974	6772 7219 7666 8113 8559	6817 7264 7711 8157 8604	6861 7309 7756 8202 8648	6906 7353 7800 8247 8693	6951 7398 7845 8291 8737	6996 7443 7890 8336 8782	7040 7488 7934 8381 8826	7085 7532 7979 8425 8871	7130 7577 8024 8470 8916	7175 7622 8068 8514 8960
975 976 977 978 979	9005 9450 9895 990339 0783	9049 9494 9939 0383 0827	9093 9539 9983 0428 0871	9138 9583 28 0472 0916	9183 9628 72 0516 0960	$9227 \\9672 \\.117 \\0561 \\1004$	$\begin{array}{c} 9272 \\ 9717 \\ .161 \\ 0605 \\ 1049 \end{array}$	9316 9761 .206 0650 1093	9361 9806 .250 0694 1137	9405 9850 .294 0738 1182
980 981 982 983 983	1226 1669 2111 2554 2995	1270 1713 2156 2598 3039	1315 1758 2200 2642 3083	$1359 \\ 1802 \\ 2244 \\ 2686 \\ 3127$	1403 1846 2288 2730 3172	1448 1890 2333 2774 3216	1492 1935 2377 2819 3260	1536 1979 2421 2863 3304	1580 2023 2465 2907 3348	1625 2067 2509 2951 3392
985 986 987 988 989	3436 3877 4317 4757 5196	3480 3921 4361 4801 5240	$3524 \\ 3965 \\ 4405 \\ 4845 \\ 5284$	3568 4009 4449 4886 5328	3613 4053 4493 4933 5372	3657 4097 4537 4977 5416	$\begin{array}{r} 3701 \\ 4141 \\ 4581 \\ 5021 \\ 5460 \end{array}$	$\begin{array}{r} 3745 \\ 4185 \\ 4625 \\ 5065 \\ 5504 \end{array}$	$\begin{array}{r} 3789 \\ 4229 \\ 4669 \\ 5108 \\ 5547 \end{array}$	3833 4273 4713 5152 5591
990 991 992 993 993 994	5635 6074 6512 6949 7386	5379 6117 6555 6993 7430	5723 6161 6599 7037 7474	5767 6205 6643 7080 7517	5811 6249 6687 7124 7561 44	5854 6293 6731 7168 7605	5898 6337 6774 7212 7648	5942 6380 6818 7255 7692	5986 6424 6862 7299 7736	6030 6468 6906 7343 7779
995 996 997 998 999	7823 8259 8695 9131 9565	7867 8303 8739 9174 9609	7910 8347 8792 9218 9652	7954 8390 8826 9261 9696	7998 8434 8869 9305 9739	8041 8477 8913 9348 9783	8085 8521 8956 9392 9826	8129 8564 9000 9435 9870	8172 8608 9043 9479 9913	8216 8652 9087 9522 9957

	TABLE II. Log. Sines and Tangents. (0°) Natural Sines 21 'Sine. D 10'' Cosine. D.10'' Tang. D.10'' Cotang. N.sine. N. cos.												
	' S.ne. D 10'' Cosme. D,10'' Tang. D,10'' Cotang. N.sine. N. cos. 0 0 000000 0 000000 000000 000000 000000 000000 000000 00000000 00000000 00000000												
U	0.000000		10.000000		0.000000		Infinite.	00000	100000	60			
1	3.463726		000000		6.463726		13.536274	00029	100000	59			
2	010817		000000		764756		235244	00058	100000	57			
3	7.065786		000000		7.065786		12.934214	00116	100000	56			
5	162696		000000		162696		837304	00145	100000	55			
6	241877		9.999999		241878		758122	00175	100000	54			
7	308824		999999		308825		691175	00204	100000	53			
8	300810 417068		999999		366817		633183	00233	100000	51			
10	463725		999998		463727		536273	00202	100000	50			
11	7.505118		9.999998		7.505120		12.494880	00320	99999	49			
12	542906		999997		542909		457091	00349	99999	48			
13	577668		999997		577672		422328	00378	99999	47			
14	639816		999996		630820		390143	00407	00000	40			
16	667845		999995		667849		332151	00450	99999	44			
17	694173		999995		694179		305821	00495	99999	43			
18	718997		999994		719003		280997	00524	99999	42			
19	742477		999993		742484		257516	00553	99998	41			
20	7 785042		999993		764761		235239	00582	00008	40			
21	806146		9999992		806155		103845	00640	999990	.38			
23	825451		9999990		825460		174540	00669	99998	37			
24	843934		999989		843944		156056	00698	99998	36			
25	861663		999988		861674		138326	00727	99997	35			
26	878695		999988		878708		121292	00756	99997	34			
21	910879		999986		090099		089106	00785	99997	32			
29	926119		999985		926134		073866	00844	99996	31			
30	940842		999983		940858		059142	00873	99996	30			
31	7.955082	2298	9.999982	0.2	7.955100	2298	12.044900	00902	99996	29			
32	968870	2227	999981	0.2	968889	2227	031111	00931	99996	28			
34	995198	2161	999960	0.2	982293	2161	004781	00960	99999	26			
35	8.007787	2098	999977	0.2	8.007809	2098	11.992191	01018	99995	25			
36	020021	2039	999976	0.2	020045	2039	979955	01047	99995	24			
37	031919	1983	999975	0.2	031945	1930	968055	01076	99994	23			
38	043501	1880	999973	0.2	043527	1880	956473	01105	99994	22			
39	065776	1832	999972	0.2	065806	1833	945191	01134	00003	21			
41	8.076500	1787	9.999969	0.5	8.076531	1787	11.923469	01193	99993	19			
42	086965	1744	999968	0.2	086997	1744	913003	01222	99993	18			
43	097183	1664	999966	0.2	097217	1664	902783	01251	99992	17			
44	107167	1626	999964	0.3	107202	1627	892797	01280	99992	16			
40	126471	1591	999963	03	126510	1591	873400	01309	99991	14			
47	135810	1557	999959	0.3	135851	1557	864149	01367	99991	13			
48	144953	1524	999958	0.3	144996	1524	855004	01396	99990	12			
49	153907	1462	999956	0.3	153952	1493	846048	01425	99990	11			
50	162681	1433	999954	0.3	162727	1434	837273	01454	99989	10			
52	179713	1405	9,999992	0.3	170762	1406	820227	01483	99989	8			
53	187985	1379	999948	0.3	188036	1379	811964	01542	99988	7			
54	196102	1353	999946	0.3	196156	1353	803844	01571	99988	6			
55	204070	1304	999944	0.3	204126	1304	795874	01600	99987	5			
57	211895	1281	999942	0.4	211953	1281	788047	01629	99987	4			
58	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
60	241855	1210	999934	0.4	241921	1217	758079	01745	99985	0			
	Cosine.		Sine.		Colang.		Tang.	N. cos.	N. sine	1			
				9	9 Degrees.								

2	2	Lo	og. Sines a	nd Ta	ngents. (P	°) Na	tural Sines	ТАВ	LE II	Ι.
	S.ne	D 10"	Cosine.	D.10"	Tang.	D 10''	Cotang.	"N. sine.]N	. cos.	
0	8.241855	1196	9.900934	0.4	8.241921	1197	11.758079	01742 9	9985	60
$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	249033	1177	999932	0.4	249102	1177	750898	01774)	9984	59
	263042	1158	999927	0.4	263115	1158	736885	01832 3	9954	57
4	269881	1140	999925	0.4	269956	1140	730044	01862 9	9983	56
5	276514	1105	999922	0.4	276691	1122	723309	01891 9	9982	55
6	283243	1088	999920	0.4	283323	1089	716677	01920 9	9982	54
1 0	206207	1072	999918	0.4	289856	1073	710144	019499	9281	53
	302546	1056	999913	0.4	302634	1057	697366	019789	9980	53
10	308794	1041	999910	0.4	308884	1042	691116	020369	3979	50
11	8.314954	1027	9.999907	0.4	8.315046	1027	11.684954	02065)	979	49
12	321027	998	999905	0.4	321122	999	678878	02094 9	9978	48
13	327016	985	999902	0.4	327114	985	672886	02123 9	9977	47
15	338753	971	999897	0.5	333856	972	661144	02102 9	9977	40
16	344504	959	999894	0.5	344610	959	655390	022119	9976	44
17	350181	940	999891	0.5	350289	940	649711	02240 9	9975	43
18	355783	922	999888	0.5	355895	922	644105	02269 9	3974	42
19	361315	910	999885	0.5	361430	911	638570	02298 9	9974	41
20	300777	899	999882	0.5	300895	899	633105	023219	9973	40
22.	377499	888	999876	0.5	- 377622	888	622378	02385 9	9972	38
23	382762	877	999873	0.5	382889	879	617111	02414 9	9971	37
24	387962	856	999870	0.5	388092	857	611908	02445 9	9970	36
25	393101	846	999867	0.5	393234	847	606766	02472 9	9969	35
26	398179	837	999854	0.5	398315	837	601685	02501 9	9969	34
21	403199	827	999801	0.5	403555	828	501606	025600	9968	33
29	413068	818	999854	0.5	413213	818	586787	02589 9	9966	31
30	417919	800	999851	0.0	418058	809	581932	02618 9	9966	30
31	8.422717	791	9.999848	0.6	8.422869	791	11.577131	0264. 9	9965	29
32	427462	782	999844	0.6	427618	783	572382	02676 9	9964	28
33	432100	774	000838	0.6	432315	774	562028	027059	9963	27
35	-441394	766	999834	0.6	441560	766	558440	02763 9	9962	25
36	445941	758	999831	0.0	446110	750	553890	02792 9	9961	24
37	450440	742	999827	0.6	450613	743	549387	02821 9	9960	23
38	454893	735	999823	0.6	455070	735	544930	02850 9	9959	22
39	409301	727	999820	0.6	409401	728	536151	0287999	9959	21
41	8.467985	720	9.999812	0.6	8.468172	720	11.531828	02938 99	9957	19
42	472263	712	999809	0.6	472454	713	527546	02967 99	9956	18
43	476498	699	999805	0.6	476693	700	523307	02996 99	9955	17
44	480693	692	999801	0.6	480892	693	519108	03025 99	9954	16
40	484848	686	999197	0.7	480170	686	514950	03054 99	9953	10
47	493040	679	999790	0.7	493250	680	506750	03112 9	9452	13
48	497078	667	999786	0.7	497293	669	502707	03141 99	9951	12
49	501080	661	999782	0.7	501298	661	498702	03170 99	9950	11
50	505045	655	999778	0.7	505267	655	494733	03199 99	9949	10
52	519867	649	9.99977	0.7	512008	650	486002	03228 99	9948	8
53	516726	643	999765	0.7	516931	644	483039	03286 99	9946	7
54	520551	637	999761	0.7	520790	633	479210	03316 99	9945	6
55	524343	626	999757	0.7	524586	627	475414	03345 99	9944	5
1 55	528102	621	999753	0.7	528349	622	471651	03374 99	3943	4
57	535522	616	999748	0.7	535770	616	46/920	03403 99	9942	3
59	539186	611	999740	0.7	539447	611	460553	03461 99	9940	ĩ
60	542819	605	999735	0.7	543084	606	456916	03490 99	1939	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.	sine.	1
		•		8	3 Degrees.					

1	TABLE II. Log. Sines and Tangents. (2°) Natural Sines. 23 ' Sine. D. 10" Cosine. D. 10" Cotang. N. sine. N. cos.											
1	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10"	Cotang.	N. sine. N.	cos.			
0	8.542819	600	9.999735	07	8.543084	600	11.456916	03490 99	939	60		
1	546422	595	999731	0.7	546691	596	453309	03519 99	938	59		
2	549995	591	999726	0.7	550268	591	449732	03548 99	937	58		
4	557054	586	999722	0.8	557336	587	440183	03577 99	930	56		
5	560540	581	999717	0.8	560828	582	439172	03635 99	934	55		
6	563999	576	999708	0.8	564291	577	435709	03664 99	933	54		
7	567431	567	999704	0.8	567727	573	432273	03693 99	932	53		
8	570836	563	999699	0.8	571137	564	428863	03723 99	931	52		
9	574214	559	999694	0.8	574520	559	425480	03752 999	930 ·	51		
11	8 580800	554	999689	0.8	577877	555	422123	03781 999	929	56		
12	584193	550	9,999680	0.8	584514	551	415486	03810 99	927	49		
13	587469	546	999675	0.8	587795	547	412205	03868 99	225	47		
14	590721	542	999670	0.8	591051	543	408949	03897 999	24	46		
15	593948	534	999665	0.8	594283	539	405717	03926 999	23	45		
16	597152	530	999660	0.8	597492	531	402508	03955 999	922	44		
17	600332	526	999655	0.8	600677	527	399323	03984 999	921	43		
10	606622	522	999650	0.8	606079	523	396161	04013 999	19	42		
20	609734	519	999040	0.8	6100978	519	380006	04042 998	10	41		
21	8.612823	515	9 999635	0.9	8.613189	516	11.386811	04100 999	16	39		
22	615891	511	999629	0.9	616262	512	383738	03129 999	915	38		
23	618937	504	999324	0.9	619313	505	380687	04159 999	913	37		
24	621962	501	999619	0.9	622343	501	377657	04188 999	12	36		
20	6224965	497	999614	0.9	625352	498	374648	04217 999	11	35		
27	630011	494	999608	0.9	628340	495	371660	04246 999		34		
28	633854	490	999603	0.9	634956	491	365744	04275 995	09	20		
29	636776	487	999592	0.9	637184	488	362816	04333 999	006	31		
30	639680	484	999586	0.9	640093	485	359907	04362 999	005 3	30		
31	8.642563	401	9.999581	0.9	8.642982	482	11.357018	04391 999	004	29		
32	645428	474	999575	0.9	645853	475	354147	04420 999	002 1	28		
33	651100	471	999570	0.9	648704	472	351296	04449 999	01 2	27		
35	653911	468	999004	0.9	654359	469	348403	04478 999		26		
36	656702	465	999553	1.0	657149	466	342851	04536 998	97 6	20		
37	659475	462	999547	1.0	659928	463	340072	04565-998	96	23		
38	662230	409	999541	1.0	662689	460	337311	04594 998	94	22		
39	664968	453	999535	1.0	665433	401	334567	04623 998	93 9	21		
40	667689	451	999529	1.0	668160	453	331840	04653 998	92 2	20		
41	673080	448	9.999524	1.0	8.670870	449	11.329130	04682 998	901	19		
43	675751	445	999518	1.0	676230	446	323761	04740 998	88 1	17		
44	678405	442	999506	1.0	678900	443	321100	04769 998	86 1	16		
45	681043	440	999500	1.0	681544	442	318456	04798 998	85 1	15		
46	683665	434	999493	1.0	684172	438	315828	04827 998	83 1	14		
41	686272	432	999487	1.0	6 6784	433	313216	04856 998	82 1	13		
40	691422	429	999481	1.0	689381	430	310619	04885 998	81 1	12		
50	693008	427	999475	1.0	604520	428	305037	04914 998	79 1			
51	8.696543	424	9.909463	1.0	8 697081	425	11.302919	04972 998	76	9		
52	699073	422	999456	1.1	699617	423	300383	05001 998	75	8		
53	701589	417	999450	1.1	702139	420	297861	05030 998	73	7		
54	704090	414	999443	11	704246	418	295354	05059 998	72	6		
50	706577	412	999437	11	707140	413	292860	05088 998	70	5		
57	711507	410	999431	1.1	709618	411	290382	05146 009	67	4		
58	713952	407	999118	1.1	714534	408	285465	05175 998	66	2		
59	716383	405	999411	1.1	716972	406	283028	05205 998	64	ĩ		
60	718800	403	999404	1.1	719396	404	280604	05234 998	63	0		
	Cosine.		Sine.		Colang		Tang.	N. cos. N.si	ne.	1		
				0	7 Degrade							
				0	Degrees.							

2	24 Log. Sines and Tangents. (3°) Natural Sines. TABLE II. ' Sine. D. 10' Cosme. D. 10' Tang. D. 10' Cotang. (N. sine. N. cos.)												
1	' Sine. D. 10' Cosme. D. 10' Tang. D. 10' Cotang. N. sine. N. cos. 0 3.718800												
0	8.718800	.101	9.999404	11	8.719396	402	11.280604	05234 99863	60				
1	721204	398	999398	1.1	721806	399	278194	05263 99861	59				
2	723595	396	999391	1.1	726588	397	210190	05292 99800	57				
4	728337	394	999378	1.1	728959	395	271041	05350 99857	56				
5	730688	392	999371	1.1	731317	393	268683	05379 99855	55				
6	733027	388	999364	1.2	733663	389	266337	05408 99854	54				
17	735354	386	999357	1.2	735996	387	264004	05437 99852	53				
0	730060	384	9993300	1.2	740526	385	201003	05405 99849	51				
10	742259	382	999336	1.2	742922	383	257078	05524 99847	50				
11	8.744536	380	9.999329	1.2	8.745207	381	11.254793	05553 99846	49				
12	746802	376	999322	1.2	747479	377	252521	05582 99844	48				
13	749055	374	999315	1.2	749740	375	250260	05611 99842	47				
15	753598	372	999308	1.2	754997	373	246011	05669 99839	40				
16	755747	370	999294	1.2	756453	371	243547	05698 99838	44				
17	757955	368	999286	1.2	758668	367	241332	05727 99836	43				
18	760151	364	999279	1.2	760872	365	239128	05756 99834	42				
19	762337	362	999272	1.2	763065	364	236935	05785 99833	41				
21	2 766675	361	999200	1.2	8 767417	362	11 232583	05844 99829	39				
22	768828	359	999250	1.2	769578	360	230422	05873 99827	38				
23	770970	357	999242	1.3	771727	350	228273	05902 99826	37				
24	773101	353	999235	1.3	773866	355	226134	05931 99824	36				
25	775223	352	999227	1.3	775995	353	224005	05960 99822	35				
27	779434	350	999220	1.3	780222	351	219778	06018 99819	33				
28	781524	348	999205	1.3	782320	350	217680	06047 99817	32				
29	783605	347	999197	1.3	784408	340	215592	06076 99815	31				
30	785675	343	999189	1.3	786486	345	213514	06105 99813	30				
31	8.787736	342	9.999181	1.3	0.788554	343	200387	06134 99012	29				
33	701828	340	999174	1.3	790013	341	207338	06192 99808	27				
34	793859	339	999158	1.3	794701	340	205299	06221 99806	26				
35	795881	337	999150	1.3	796731	337	203269	06250 99804	25				
36	797894	334	999142	1.3	798752	335	201248	06279 99803	24				
31	799897	332	999134	1.3	800765	334	199237	06337 99799	23				
39	803876	331	999120	1.3	804858	332	195242	06366 99797	21				
40	805852	329	999110	1.3	806742	331	193258	06395 99795	20				
41	8.807819	328	9.999102	1.3	8.808717	328	11.191283	06424 99793	19				
42	809777	325	999094	1.4	810683	326	189317	06453 99792	18				
43	811726	323	999086	1.4	814580	325	185411	06511 99788	16				
45	815599	322	999069	1.4	816529	323	183471	05540 99786	15				
46	817522	320	999061	1.4	818461	322	181539	06569 99784	14				
47	819436	319	999053	1.4	820384	319	179616	06598 99782	13				
48	821343	316	999044	1.4	822298	318	177702	06627 99780	12				
49	823240	315	999036	1.4	824205	316	175795	06685 99776	10				
51	8 827011	313	9.999019	1.4	8.827992	315	11.172008	06714 99774	9				
52	828884	312	999010	1.4	829874	314	170126	06743 99772	8				
53	830749	311	999002	1.4	831748	311	168252	06773 99770	7				
54	832607	308	998993	1.4	833613	310	166387	06802 99768	6				
56	834456	307	998984	1.4	837291	308	162679	06860 99764	4				
57	838130	306	998967	1.4	839163	307	160837	06889 99762	3				
58	839956	304	998958	1.5	840998	306	159002	06918 99760	2				
59	841774	303	998950	1.5	842825	303	157175	06947 99758	1				
60	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	Cosine.	-	Sine.	1	Cotang.		Tang.	N. cos. N.sine.	Ľ				
				8	56 Degrees								

r	TABLE II. Log. Sines and Tangents. (4°) Natural Sines. 25 Sine. [D. 10"] Cosine. [D. 10"] Tang. [D. 10"] Cotang. [N. sine.]N. cos.]												
1	* Sinc. D. 10" Cosine. D. 10" Tang. D. 10" Cotang. N. sine. N. cos. 0 8.242525 0.009044 8.244644 11.155256 0.009044 0.00												
0	8.843585	200	9.998941	15	8.844644	202	11.155356	06976 99756	60				
1	845387	299	998932	1.5	846455	301	153545	07005 99754	59				
2	847183	298	998923	1.5	848260	299	151740	07034 99752	58				
3	850751	297	998914	1.5	851846	298	149943	07063 99700	56				
4 5	852525	295	998896	1.5	853628	297	146372	07191 99746	55				
6	854291	294	993887	1.5	855403	293	144597	07150 99744	54				
7	856049	293	998878	1.5	857171	295	142829	07179 99742	53				
8	857801	292	998869	1.0	858932	293	141068	07208 99740	52				
9	859546	290	998860	1.5	860686	291	139314	07237 99738	51				
10	861283	288	993851	1.5	862433	290	137567	07266 99736	50				
11	0.803014	287	9.998841	1.5	8.864173	289	124004	07295 99734	49				
12	866455	286	990032	1.5	867639	288	134094	07324 99731	40				
10	868165	285	998813	1.6	869351	287	130649	07389 99727	46				
15	869868	284	998804	1.6	871064	285	128936	07411 99725	45				
16	871565	203	998795	1.0	872770	284	127230	07440 99723	44				
17	873255	981	998785	1.0	874469	200	125531	07469 99721	43				
18	874938	279	998776	1.6	876162	281	123838	07498 99719	42				
19	876615	279	998766	1.6	877849	280	122151	07527 99716	41				
20	- 8/8285 9 970040	277	998757	1.6	879529	279	11 110709	07556 99714	20				
21	881607	276	008738	1.6	889860	278	117121	07614 99710	38				
23	883258	275	998728	1.6	884530	277	115470	07643 99708	37				
24	884903	274	998718	1.6	886185	276	113815	07672 99705	36				
25	886542	213	998708	1.0	887833	275	112167	07701 99703	35				
26	888174	272	998699	1.6	889476	273	110524	07730 99701	34				
27	889801	270	998689	1.6	891112	272	108888	07759 99699	33				
28	891421	269	998679	1.6	892742	271	107258	07788 99696	32				
29	893035	268	998069	1.7	894500	270	100634	07817 99694	31				
31	8.896946	267	998649	1.7	8 807506	269	11 102404	07875 99689	29				
32	897842	266	998639	1.7	899203	268	100797	07904 99687	28				
33	899432	260	998629	1.7	909803	267	099197	07933 99685	27				
34	901017	204	998619	1.1	902398	200	097602	07962 99683	26				
35	902596	262	998609	1.7	903987	264	096013	07991 99680	25				
36	904169	261	998599	1.7	905570	263	094430	08020 99678	24				
37	905736	260	998589	1.7	907147	262	092853	08049 99676	23				
30	907297	259	990070	1.7	010285	261	091281	08078 99073	22				
40	910404	258	998558	1.7	911846	260	088154	08136 99668	20				
41	8.911949	257	9.998548	1.7	8.913401	259	11.086599	08165 99666	19				
42	913488	257	998537	1.7	914951	258	085049	08194 99664	18				
43	915022	255	998527	1.1	916495	256	083505	08223 99661	17				
44	916550	254	998516	1.8	918034	256	081966	08252 99659	16				
45	918073	253	998506	1.8	919568	255	080432	08281 99657	15				
46	919591	252	998495	1.8	921096	254	078904	08310 99654	14				
41	922610	251	998480	1.8	922019	253	075864	08368 99649	12				
49	924112	250	998464	1.8	925649	252	074351	08397 99647	11				
50	925609	249	998453	1.8	927156	251	072844	08426 99644	10				
51	8.927100	249	9.998442	1.8	8.928658	200	11.071342	08455 99642	9				
52	928587	240	998431	1.8	930155	249	069845	08484 99639	8				
53	930068	246	998421	1.8	931647	248	068353	08513 99637	7				
54	931544	245	998410	1.8	933134	247	056866	08542 99635	0				
50	933010	244	08586	1.8	934616	246	000004	08571 99032	4				
57	935949	243	998377	1.8	937565	245	069435	08629 94627	3				
58	937398	243	998366	1.8	939032	244	060968	08658 99625	2				
59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
60	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	1				
				8	5. Degrees.								

2	26 Log, Sines and Tangents. (5°) Natural Sines. TABLE II.												
1	Sine. D. 10" Cosine. D. 10" Tang. D. 10" Cotang. N. sine. [N. cos.] 0 3.940290 0.49 9.993344 5.8.941952 0.40 11.058048 03716 93015 60												
0	3.940296	0.10	9.998344	1.0	8.941952	040	11.058048	08716 93019	60				
1	941733	240	998333	1.9	943404	242	056596	08745 99617	59				
2	943174	239	998322	1.9	944852	240	055148	08774 99614	58				
3	944003	238	995311	1.9	940290	240	053705	0880399012	56				
4	947455	237	998289	1.9	949168	239	050832	08860 99607	55				
6	948874	236	998277	1.9	950597	238	049403	08889 99604	54				
7	950287	235	998266	1.9	952021	237	047979	08918 99602	53				
8	951693	234	998255	1.9	953441	236	046559	08947 99599	52				
9	953100	233	998243	1.9	934800	235	049144	08976999990	50				
11	8.955894	232	9,998220	1.9	8,957674	234	11.042326	09034 99591	49				
12	957284	232	998209	1.9	959075	234	040925	09063 99588	48				
13	958570	231	998197	1.9	960473	232	039527	03092 99586	47				
14	969052	229	998186	1.9	961866	231	038134	09121 99583	46				
15	961429	229	998174	1.9	903200	231	035740	09150 99550	40				
10	954170	228	998151	1.9	966019	230	033981	09208 99575	43				
18	965534	227	998139	1.9	967394	229	032606	09237 99572	42				
19	966893	221	998128	2.0	968766	229	031234	09266 99570	41				
20	968249	220	998116	2.0	970133	227	029867	09295 99567	40				
21	3.969600	224	9.998104	2.0	8.971496	226	11.028504	09324 99564	39				
22	970947	224	998092	2.0	972855	226	025791	093531995021	37				
20	973628	223	998058	2.0	975560	225	024440	09411 99556	36				
25	974952	222	998053	2.0	976905	224	025094	09440 99553	35				
26	976293	222	998044	2.0	978248	224	021752	09469!99551	34				
27	977619	220	998032	2.0	979586	222	020414	09498 99548	33				
28	978941	220	998020	2.0	980921	222	019079	095271999401	31				
29	081573	219	998008	2.0	983577	221	016423	09585 99540	30				
31	8.982533	218	9.997984	2.0	8.984899	220	11.015101	09614 99537	29				
32	984189	218	997972	2.0	986217	220	013783	09642 99534	28				
33	985491	216	997959	2.0	987532	218	012468	09671 99531	27				
34	985789	216	997947	2.0	988842	218	000851	09700 99920	20				
30	980000	215	991935	2.1	991451	217	008549	03758 99523	24				
37	990360	214	997910	2.1	992750	216	007250	09787 99520	23				
38	991943	214	997897	2.1	994045	210	005955	09816 99517	22				
39	993222	212	997885	21	995337	215	004663	09845 99514	21				
40	994497	212	997872	2.1	996624	214	003376	09874 99911	19				
41	3.995708	211	9.997800	2.1	990188	213	000812	09932 99503	18				
43	993299	211	997835	2.1	9.000465	213	10.999535	09961 99503	17				
44	999550	210	997822	2.1	001738	212	998262	0399099500	16				
45	9.000816	203	997809	2.1	003007	211	996993	10019 99497	10				
46	002039	208	997797	2.1	004272	210	995728	10048 99494	14				
41	003318	208	997784	2.1	005534	210	993208	10103 99485	12				
40	0.015805	207	997758	2.1	008047	209	991953	10135 99485	11				
50	037044	205	997745	2.1	009298	208	990702	10164 99482	10				
51	9.003278	203	9.997732	21	9.010546	207	10.989454	10192 99479	9				
52	009510	205	997719	2.1	011790	207	988210	10221 99476	07				
54	010737	204	997706	2.1	013031	206	985732	10279 99478	6				
55	013182	203	997680	2.2	015502	206	984498	10308'99467	5				
55	014400	203	997667	2.2	016732	205	983268	10337 99464	4				
57	015613	202	997654	2.2	017959	204	983041	10366 99461	3				
58	016824	201	997641	2.2	019183	203	980817	10395 99458	2				
59	018031	201	997628	2.2	020403	203	979597	10424 99455	0				
	019235		997014		021020		10000	N 200 N 20102					
	Cosine.	1	sine.		S4 Degrees		T T T T T T T T T T T T T T T T T T T	TA. CONTRATING					

r	TABLE II. Log. Sines and Tangents. (6°) Natural Sines. 27 (Sine. D. 10'' Cosine. D. 10'' Tang. D. 10'' Cotang. N. sine. N. ccs.												
1	⁷ Sine. D. 10" Cosine. D. 10" Tang. D. 10" Cotang. N. sine. N. ccs.												
0	9.019235	200	9.997614	2.2	9.021620	202	10.978380	10453 994	52 60				
1	020435	199	997601	2.2	022834	202	977166	10482 994	49 59				
2	021032	199	997574	2.2	025251	201	974749	10511 994	43 57				
4	024016	198	997561	2.2	026455	201	973545	10569 994	40 56				
5	025203	197	997547	2.2	027655	199	972345	10597 994	37 55				
6	025386	197	997534	2.3	028852	199	971140	10625 994	34 54				
8	028744	196	997507	2.3	031237	198	968763	10684 994	28 52				
9	029918	196	997493	2.3	032425	198	967575	10713 994	24 51				
10	031089	195	997480	2.3	033609	197	966391	10742 994	21 50				
11	9.032257	194	9.997400	2.3	035969	196	964031	10771 994	15 49				
13	034582	194	997439	2.3	037144	195	962856	10829 994	12 47				
14	035741	193	997425	2.3	038316	195	961684	10858 994	09 46				
15	036895	192	997411	2.3	039485	194	960515	10887 994	06 45				
10	038048	191	997397	2.3	041813	194	959349	10916 994	$02 44 \\ 00 43 $				
18	040342	191	997369	2.3	.042973	193	957027	10973 993	96 42				
19	041485	190	997355	2.3	044130	193	955870	11002 993	93 41				
20	042625	189	997341	2.3	045284	192	954716	11031 993	90 40				
21	9.043762	189	9,997327	2.4	9.046434	191	10.953566	11060 993	86 39				
22	044895	180	997313	2.4	047002	191	951273	11119 003	80 37				
24	047154	188	997285	2.4	049869	190	950131	11147 993	77 36				
25	048279	187	997271	2.4	051008	190	948992	11176 993	74 35				
26	049400	186	997257	2.4	052144	189	947856	11205 993	70 34				
27	050519	186	997242	2.4	053277	188	946723	11234 993	67 33				
28	051635	185	997228	2.4	055535	188	945593	11263 993	60 31				
30	053859	185	997199	2.4	056659	187	943341	11291 990	57 30				
31	9.054966	184	9.997185	2.4	9.057781	187	10.942219	11349 993	54 29				
32	056071	184	997170	2.4	058900	186	941100	11378 993	51 28				
33	057172	183	997156	2.4	060016	185	939984	11407 993	47 27				
34	059367	183	997141	2.4	062240	185	937760	11436 993	44 20				
36	060460	182	997112	2.4	063348	180	936652	11494 993	37 24				
37	061551	181	997098	2.4	064453	184	935547	11523 993	34 23				
38	052639	181	997083	2.5	065556	183	934444	11552 993	31 22				
39	063724	180	997068	2.5	067752	183	933345	11580 993	27 21				
40	9 065885	180	997039	2.5	9.068846	182	10.931154	11638 993	20 19				
42.	056962	179	997024	2.5	069038	182	930062	11667 993	17 18				
43	058036	179	997009	2.5	071027	181	928973	11696 993	14 17				
44	069107	178	996994	2.5	072113	181	927887	11725 993	10 16				
40	071949	178	996964	2.5	073197	180	925722	11754 993	03 14				
47	072306	177	996949	2.5	075356	180	924644	11812 993	00 13				
48	073366	176	996934	2.5	076432	179	923568	11840 992	97 12				
49	074424	176	996919	2.5	077505	178	922495	11869 992	93 11				
50	075480	175	996904	2.5	079644	178	921424	11898 992	90 10				
52	077583	175	996874	2.5	080710	178	919290	11927 992	83 8				
53	078631	175	996858	2.5	081773	177	918227	11985 992	79 7				
54	079676	174	996843	2.5	082833	176	917167	12014 992	76 6				
50	080719	173	996828	2.5	083891	176	916109	12043 992	72 5				
57	081759	173	996812	2.6	084947	175	915053	12071 992	09 4				
58	083832	172	996782	2.6	087050	175	912950	12100 992	62 2				
59	084864	172	996766	2.6	088098	175	911902	12158 992	58 1				
60	085894	112	996751	2.0	089144	1/4	910856	12187 992	55 0				
	Cosine.		Sine.	1	Cotang.		Tang.	N. cos. N.s.	ine. 7				
					83 Degrees.								

2	28 Log. Sines and Tangents. (7°) Natural Sines. TABLE II. 7 Sine. D. 10″] Cosine. D. 10″] Tang. D. 10″] cotang. N. sine. N. cos.												
1	' Sine. D. 10'' Cosine. D. 10'' Tang. D. 10'' cotang. N. sine. N. cos. 0 9.085894 9.996751 9.089144 10.910356 12187/99255 60												
0	9.035894	171	9.996751	26	9.089144	174	10.910356	12187 99255	60				
1	086922	171	996735	2.6	090187	173	909813	12216 99251	59				
2	088970	170	996704	2.6	091226	173	907734	12245 99246	57				
4	089990	170	996688	2.6	093302	173	906698	12302 99240	56				
5	091008	160	996673	2.0	094336	172	905664	12331 99237	55				
6	092024	169	996657	2.6	095367	171	904633	12360 99233	54				
7	093037	168	996641	2.6	096395	171	903605	12389 99230	53				
0	095056	168	996610	2.6	098446	171	901554	12413 59220	51				
10	096062	168	996594	2.6	039468	170	900532	12476 99219	50				
11	9.097.065	167	9.996578	2.0	9.100487	169	10.899513	12504 99215	49				
12	098066	166	996562	2.7	101504	169	898496	12533 99211	48				
13	100062	166	996546	2.7	102519	169	897481	12562 99208	47				
14	101056	166	996514	2.7	104542	168	895458	12620 99200	45				
16	102048	165	996498	2.7	105550	168	894450	12649 99197	44				
17	103037	100	996482	2.1	106556	167	893444	12678 99193	43				
18	104025	164	996465	2.7	107559	167	892441	12703 99189	42				
19	105010	164	996449	2.7	108560	166	891440	12735 99180	41				
20	9 106973	163	990433	2.7	9 110556	166	10 889444	12703 99178	39				
22	107951	163	996400	2.7	111551	166	888449	12822 99175	38				
23	108927	163	996384	2.1	112543	165	887457	12851 99171	37				
24	109901	162	996368	2.7	113533	165	886467	12880 99167	36				
25	110873	162	996351	2.7	114521	164	885479	12908 99163	35				
26	111842	161	996335	2.7	116491	164	883509	12937 99100	33				
28	112003	161	996302	2.7	117472	164	882528	12995 99152	32				
29	114737	160	996285	2.8	118452	163	881548	13024 99148	31				
30	115698	160	996269	2.8	119429	162	880571	13053 99144	30				
31	9.116656	159	9.996252	2.8	9.120404	162	10.879596	13081 99141	29				
32	117613	159	996235	2.8	122348	162	877652	13139 99133	20				
34	119519	159	996202	2.8	123317	161	876683	13168 99129	26				
35	120469	158	996185	2.8	124284	161	875716	13197 99125	25				
36	121417	158	996168	2.8	125249	160	874751	13226 99122	24				
37	122362	157	996151	2.8	126211	160	873789	13254 99118	23				
38	123306	157	996134	2.8	12/11/2	160	871870	13312 99110	21				
40	125187	157	996100	2.8	129087	159	870913	13341 99106	20				
41	9.126125	156	9.996083	2.8	9.130041	159	10.869959	13370 99102	19				
42	127060	156	996066	2.9	130994	158	869006	13399 99098	18				
43	127993	155	996049	2.9	131944	158	868056	13427 99094	17				
44	128925	155	996032	2.9	133839	158	866161	13485 99087	15				
46	130781	154	995998	2.9	134784	157	865216	13514 99083	14				
47	131706	154	995980	2.9	135726	157	864274	13543 99079	13				
48	132630	153	995963	2.9	136667	156	863333	13572 99075	12				
49	133551	153	995946	2.9	137605	156	862395	13600 99071	11				
50	134470	153	995928	2.9	9.139476	156	10.860524	13658 99063	9				
52	136303	152	995894	2.9	140409	155	859591	13687 99059	8				
53	137216	152	995876	2.9	141340	155	858660	13716 99055	7				
54	138128	152	995859	2.9	142269	154	857731	13744 99051	6				
55	139037	151	995841	2.9	143196	154	855870	13773 39047	0				
57	139944	151	995823	2.9	145044	154	854956	13831 99039	3				
58	141754	151	995788	2.9	145966	153	854034	13860 99035	2				
59	142655	150	995771	2.9	146885	153	853115	13889 99031	1				
60	143555	100	995753	2.0	147803		852197	1891, 39027	0				
	Cosine.		Sine.	L	Cotang.	1	- Tang.	N. cos. (N.sine.					
				8	32 Degrees.								

Г	TABLE II. Log. Sines and Tangents. (8°) Natural Sines. 29 ' Sine, D, 10' Cosine, D, 10' Tang, [D, 10' Cotang, N, sine,] N, cos.]											
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.			
0	9.143555	150	9.995753	2.0	9.147803	150	10.852197	13917	99027	60		
1	144453	100	995735	3.0	148718	152	851282	13946	99023	59		
2	145349	149	995717	3.0	149632	152	850368	13975	99019	58		
	140243	149	995681	3.0	151454	152	849400	14004	99015	56		
4 5	148026	148	995664	3.0	152363	151	847637	14050	99006	55		
6	148915	148	995646	3.0	153269	151	846731	14090	99002	54		
7	149802	140	995628	3.0	154174	151	845826	14119	98998	53		
8	150686	147	995610	3.0	155077	150	844923	14148	98994	52		
9	101009	147	995591	3.0	156877	150	843123	14177	98986	50		
11	9.153330	147	9:995555	3.0	9.157775	150	10.842225	14205	98982	49		
12	154208	146	995537	3.0	158671	149	841329	14263	98978	48		
13	155083	140	995519	3.0	159565	149	840435	14292	98973	47		
14	155957	145	995501	3.1	160457	148	839543	14320	98969	46		
15	157700	145	995462	3.1	162236	148	837764	14349	98961	40		
10	158569	145	995446	3.1	163123	148	836877	14370	98957	43		
18	159435	144	995427	3.1	164008	148	835992	14436	98953	42		
19	160301	144	995409	3.1	164892	147	835108	14464	98948	41		
20	161164	144	995390	3.1	165774	147	834226	14493	98944	40		
21	162885	143	9.995312	3.1	167532	146	832468	14522	98936	38		
22	163743	143	995334	3.1	168409	146	831591	14580	98931	37		
24	164600	143	995316	3.1	169284	140	830716	14608	98927	36		
25	165454	142	995297	3.1	170157	145	829843	14637	98923	35		
26	166307	142	995278	3.1	171029	145	828971	14666	98919	34		
27	168008	142	995200	3.1	172767	145	827233	14095	98914	20		
20	168856	141	995222	3.2	173634	144	826366	14752	98906	31		
30	169702	141	995203	3.2	174499	144	825501	14781	98902	30		
31	9.170547	141	9.995184	3.2	9.175362	144	10.824638	14810	98897	29		
32	171389	140	995165	3.2	176224	143	823776	14838	98893	28		
33	172230	140	995140	3.2	177942	143	822910	14807	98884	21		
35	173908	140	995108	3.2	178799	143	821201	14925	98880	25		
36	174744	139	995089	3.2	179655	142	820345	14954	98876	24		
37	175578	139	995070	3.2	180508	142	819492	14982	98871	23		
38	176411	139	995051	3.2	181360	142	818640	15011	98867	22		
39	177242	138	995052	3.2	182059	141	816941	15069	98858	$\frac{21}{20}$		
41	9.178900	138	9.994993	3.2	9.183907	141	10.816093	15003	98854	19		
42	179726	138	994974	3.2	184752	141	815248	15126	98849	18		
43	180551	137	994955	3.2	185597	140	- 814403	15155	98845	17		
44	181374	137	994935	3.2	186439	140	813561	15184	98841	16		
40	182196	137	994896	3.3	188120	140	811880	15212 15241	98839	14		
47	183834	136	994877	3.3	188958	140	811042	15270	98827	13		
48	184651	130	994857	3.3	189794	139	810206	15299	98823	12		
49	185466	136	994838	3.3	190629	139	809371	15327	98818	11		
50	186280	135	994818	3.3	191462	139	808538	15356	98800	10		
52	187903	135	994779	3.3	193124	138	806876	15414	98805	8		
53	188712	135	994759	3.3	193953	138	806047	15442	98800	7		
54	189519	130	994739	3.3	194780	138	805220	15471	98796	6		
55	190325	134	994719	3.3	195606	137	804394	15500	98791	5		
57	191130	134	994700	3.3	196430	137	803570	15529	98787	4		
53	192734	134	994660	3.3	198074	137	801926	15586	98778	2		
59	193534	133	994640	3.3	198894	137	801106	15615	98773	ĩ		
60	194332	155	994620	3.3	199713	130	800287	15643	98769	0		
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	1		
				8	B1 Degrees.							

3	30 Log. Sines and Tangents. (9°) Natural Sines. TABLE II. ' Sine. [D. 10'] Cosine. [D. 10'] Tang. [D. 10'] Cotang. [N. sine.]N. cos.]											
7	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10"	Cotang.	N. sine. N	cos.			
0	9.194332	100	9.994620	2 2	9.199713	126	10.800287	15643 98	3769	60		
1	195129	133	994600	3.3	20.)523	136	799471	15672 98	764	59		
$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	193925	132	994560	3.3	201345	133	798000	15730 08	755	58		
	197511	132	994540	3.4	202971	135	797029	15758 98	100	56		
5	198302	132	994519	3.4	203782	130	796218	15787 98	746	55		
6	199091	131	994499	3.4	204592	135	795408	15816 98	741	54		
7	199879	131	994479	3.4	205400	134	794600	15845 98	737	53		
8 0	20000	131	99,4439	3.4	203207	134	793793	11087398	732	52		
10	202234	131	991418	3.4	207817	134	792183	15931 98	723	50		
11	9.203017	130	9.994397	3.4	9.208519	134	10.791381	15959 98	718	49		
12	203797	130	994377	3.4	- 209420	133	790580	15988 98	714	48		
13	204577	130	994307	3.4	210220	133	789780	16017 98	709	47		
14	205354	129	994316	3.4	211815	133	788185	16074 98	703	40		
16	203906	129	994295	3.4	212611	133	787389	16103 58	695	44		
17	207679	129	994274	3.5	213405	132	786595	16132 98	690	43		
18	203452	128	994254	3.5	214198	132	785802	16160 98	686	42		
19	209222	128	994233	3.5	214989	132	735011	16189 98	1838	41		
20	209992	128	9 994191	3.5	9.216568	131	10.783432	16246 98	671	39		
22	211526	128	994171	3.5	217356	131	782644	16275 98	667	38		
23	212291	127	994150	3.5	218142	131	781858	16304 98	662	37		
24	213055	127	994129	3.5	218926	130	781074	16333 93	657	36		
25	213818	127	994108	3.5	219710	130	779508	16301 98	648	30		
27	215338	127	994066	3.5	221272	130	778728	16419.98	643	33		
28	216097	126	994045	3.0	222052	130	777948	16447 98	638	32		
29	216854	126	994024	3.5	222830	129	777170	16476 98	633	31		
30	217609	126	994003	3.5	223603	129	776394	16505 98	629	30		
31	9.218363	125	993950	3.5	9.224302	129	774844	16562 98	619	29		
33	219368	125	993939	3.0	225929	129	774071	16591 98	614	27		
34	220318	120	993918	3.5	226700	129	773300	16620 98	609	26		
35	221367	125	993896	3.6	227471	128	772529	16648 98	604	25		
36	222110	124	993870	3.6	228239	128	770993	16708.98	545	24		
38	222601	124	993832	3.6	229773	128	770227	16734.98	590	22		
39	224349	124	993811	3.0	230539	127	769461	16763 98	585	21		
40	225092	$124 \\ 123$	993789	3.6	231302	127	768698	16792 98	580	20		
41	9,225833	123	9,993768	3.6	9.232065	127	10,767935	16820.98	575	19		
42	220073	123	993725	3.6	232520	127	766414	16878 98	565	17		
44	228048	123	993703	3.6	234345	126	765655	16906 98	561	16		
45	228784	123	993681	3.6	235103	120	764897	16935 98	556	15		
46	229518	122	993660	3.6	235859	126	764141	16964 98	551	14		
41	230252	122	993038	3.6	230014	126	762632	17021 08	541	10		
40	230904	122	993594	3.6	238120	125	761880	17050 98	536	11		
50	232444	122	993572	3.7	238872	120	761128	17078 98	531	10		
51	9.233172	121	9.993550	3.7	9.239622	125	10.760378	17107 98	526	9		
52	233899	121	994528	3.7	240371	125	759629	17136 98	521	8		
54	234025	121	993484	3.7	241118	124	758135	17193 98	511	6		
55	236073	120	993462	3.7	242610	124	757390	17222 98	506	5		
56	236795	120	933440	3.7	243354	124	756646	17250 98	501	4		
57	237516	120	993418	3.7	244097	124	755903	17279 98	496	3		
50	238235	120	993396	3.7	244839	123	753101	17336 98	486	1		
60	239670	119	993351	3.7	246319	123	753681	17365 98	3481	0		
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.	sine.			
	- 1	-		- 8	0 Degrees.	1						

δ.

1	TABLE II. Log. Sines and Tangents. (10°) Natural Sines. 31										
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.			
0	9.239670	110	9.993351	27	9.246319	102	10.753681	17365 98481	60		
1	240386	119	993329	3.7	247057	123	752943	17393 98476	59		
	241101	119	993307	3.7	247794	123	752205	17422 98471 17451 98466	57		
4	242526	119	993262	3.7	249264	122	750736	17479 98461	56		
5	243237	110	993240	37	249998	$122 \\ 122$	750002	17508 98455	55		
6	243947	118	993217	3.8	250730	122	749270	17537 98450	54		
8	245363	118	993172	3.8	252191	122	747809	17594 98440	52		
9	246059	118	993149	3.8	252920	121	747080	17623 98435	51		
10	246775	117	993127	3.8	253648	121	746352	17651 98430	50		
11	9.247478	117	9.993104	3.8	9.254374	121	10,745626	17680 98425	$\frac{49}{48}$		
13	248883	117	·993059	3.8	255824	121	744176	17737 98414	47		
14	249583	117	993036	3.8	256547	120	743453	17766 98409	46		
15	250282	116	993013	3.8	257269	120	742731	17794 98404	45		
10	251677	116	992990	3.8	23/990	120	742010	17823 98399	44		
18	252373	116	992944	3.8	259429	120	740571	17880 98389	42		
19	253057	116	992921	3.8	260146	120	739854	17909 98583	41		
20	253761	115	992898	3.8	260863	119	739137	17937 98378	40		
21	9.254453	115	9.992875	3.8	9.261578	119	10.738422	17966 98373	39		
$\frac{22}{23}$	255834	115	992829	3.8	263005	119	735995	18023 98362	37		
24	256523	115	992806	3.9	263717	119	736283	18052 98357	36		
25	257211	115	992783	3.9	264428	118	735572	18081 98252	35		
26	257898	114	992759	3.9	265138	118	734862	18109 98347	34		
27	255583	114	992735	3.9	265847	118	734153	18138 98341	33		
29	259200	114	992690	3.9	267261	118	732730	18105 98331	31		
30	260633	114	992666	3.9	267967	118	732033	18224 98325	30		
31	9.261314	113	9.992543	3.9	9.268671	117	10.731329	18252 98320	29		
32	261994	113	992619	3.9	269375	117	730625	18281 98315	28		
31	202045	113	992090	3.9	270779	117	729923	18238 08204	26		
35	264027	113	992549	3.9	271479	117	728521	18367 98299	25		
36	264703	113	992525	3.9	272178	116	727822	18395 98294	24		
37	265377	112	992501	3.9	272876	116	727124	18424 98289	23		
20	205051	112	992478	4.0	273573	116	726427	18452 98283	22		
40	267395	112	992430	4.0	274964	116	725731	18509 98272	$\frac{21}{20}$		
41	9.268065	112	9.992406	4.0	9.275658	116	10.724342	18538 98267	19		
.42	268734	111	992382	4.0	276351	110	723649	18567 98261	18		
43	269402	111	992359	4.0	277043	115	722957	18595 98256	17		
44	270/35	111	992335	4.0	278494	115	722266	18652 98245	10		
46	271400	111	992287	4.0	279113	115	720887	18681 98240	14		
47	272064	110	992263	4.0	279801	115	720199	18710 98234	13		
48	272726	110	992239	4.0	280488	114	719512	18738 98229	12		
49	273388	110_	992214	4.0	281174	114	718826	18767 98223	10		
51	9.274708	110	9,992166	4.0	9.282542	114	10.717458	18824 98212	9		
52	275367	110	992142	4.0	283225	114	716775	18852 98207	8		
53	276024	109	992117	4.1	- 283907	114	716093	18881 98201	7		
04	276681	109	992093	4.1	284588	113	715412	18910 98196	5		
55	277991	109	992009	4.1	285947	113	714/32	18967 98185	4		
57	278644	109	992020	4.1	286624	113	713376	18995 98179	3		
58	279297	109	991996	4.1	287301	113	712699	19024 98174	2		
59	279948	108	991971	4.1	287977	112	712023	19052 98168			
00	200099		991947		288052		711348	19081 98163			
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.			
				7	9 Degrees.						

3	32 Log. Sines and Tangents. (119) Natural Sines. TABLE II.									
7	Sine.	D. 10	Cosane.	D. 10"	Tang.	D. 10	COMPANY.	A. Sille. [A. COS.		
0	J.28 0590	102	9.991947	4.1	9.288652	110	10.711348	19081 98163	60	
1	281248	103	991922	4.1	259325	112	710674	19109 98157	59	
2	281897	108	991897	4.1	2399999	112	710001	19138 98152	58	
3	282044	108	991873	4.1	290071	112	709329	19107 98140	56	
4	200190	108	991823	4.1	292013	112	707937	19195 98140	55	
6	284480	107	991799	4.1	292682	111	707318	19252 98129	54	
7	285124	107	991774	4.1	293350	111	706650	19281 98124	53	
8	285766	107	991749	4.2	294017	111	705983	19309 98118	52	
9	286408	107	991724	4.2	294684	111	705316.	19338 98112	51	
10	287048	107	991599	4.2	295349	111	704651	19366 98107	50	
11	9.287037	106	9.991074	4.2	9.295013	111	7033937	19395 98101	49	
12	288964	106	991624	4.2	297339	110	702661	19452 98090	40	
14	289600	106	991599	4.2	298001	110	701999	19481 98084	46	
15	290236	106	991574	4.2	298662	110	701338	19509 98079	45	
16	290870	106	991549	4.2	299322	110	700678	19538 98073	44	
17	291504	105	991524	4.2	299980	110	700020	19566 98067	43	
18	292137	105	991498	4.2	300638	109	699362	19595 98061	42	
19	292768	105	991473	4.2	301295	109	698705	19623 98056	41	
20	293399	105	991448	4.2	301951	109	10 607202	19652 98050	40	
21	9,294029	105	001307	4.2	303261	109	606739	19000 90044	39	
22	295286	105	991372	4.2	303914	109	696086	19737 98033	37	
24	295913	104	991346	4.3	304567	109	695433	19766 98027	36	
25	296539	104	991321	4.3	305218	109	694782	19794 98021	35	
26	297164	104	991295	4.0	305869	108	694131	19823 98016	34	
27	297788	104	991270	4.0	306519	108	693481	19851 98010	33	
28	298412	104	991244	4.3	307168	108	692832	19880 98004	32	
29	299034	104	991218	4.3	307815	108	692185	19908 97998	31	
30	299655	103	991193	4.3	0 200100	108	691537	19937 97992	30	
31	300240	103	9.991107	4.3	309754	107	690246	19905 57581	29	
33	301514	103	991115	4.3	310398	107	689602	20022 97975	27	
34	302132	103	991090	4.3	311042	107	688958	20051 97969	26	
35	302748	103	991064	4.0	311685	107	688315	20079 97963	25	
36	303364	102	991038	4.3	312327	107	687673	20108 97958	24	
37	303979	102	991012	4.3	312967	107	687033	20136 97952	23	
38	304593	102	990986	4.3	313608	106	080392	20165 97946	22	
39	305207	102	990900	4.3	314247	106	685115	20193 97940	21	
40	9 306430	102	0 000008	4.4	9 315523	106	10.684477	20222 97934	19	
41	307041	102	990382	4.4	316159	106	683841	20279 97922	18	
43	307650	102	990855	4.4	316795	106	683205	20307 97916	17	
44	308259	101	990829	4.4	317430	100	682570	20336 97910	16	
45	308867	101	990803	4.4	318064	105	681936	20364 97905	15	
46	309474	101	990777	4.4	318697	105	681303	20393 97899	14	
47	310080	+ 101	990750	4.4	319329	105	689671	20421 97893	13	
48	310085	101	990724	4.4	390500	105	670409	2040097887	12	
49	311802	100	990597	4.4	321220	105	678778	20507 97875	10	
51	9.312.495	100	9.990644	4.4	9.321851	105	10.678149	20535 97869	0	
52	313097	100	990518	4.4	322479	105	677521	20563 97863	8	
53	313698	100	990591	4.4	323106	104	676894	20592 97857	7	
54	314297	100	990565	4.4	323733	104	676267	20620 97851	6	
55	314897	100	990538	4.4	324358	104	675642	20649 97845	5	
56	315495	100	990511	4.5	324983	104	675017	20677 97839	4	
57	316092	99	990485	4.5	320007	104	674393	20700 97533	3	
50	310089	99	990408	4.5	326852	104	673147	20134 91821	1	
60	317870	99	990404	4.5	327475	104	672525	20791 97815	0	
	Corina		Sing		Cotance		Tang	N con Vision		
- 1	r Cosme.)	J Sine.		Cotang.		Lang.	•		
					18 Degrees	•				

TABLE II. Log. Sines and Tangents. (12°) Natural Sines. 33										
1	Sine.	D. 10"	Cosine.	D. 107	Tang.	D. 10'	Cotang.	N. sine. N. cos.		
0	9.317879	99 0	9.990404	4.5	9.327474	103	10.672526	20791 97815	60	
1	318473	93.8	990378	4.5	328005	103	671905	20820 97809	59	
2	31955	98.7	990351	4.5	328715	103	670666	20848 97803	57	
4	320249	98.6	990297	4.5	329953	103	670047	20905 97791	56	
5	320840	98.3	933270	4.5	330570	103	669430	20933 97784	55	
6	321430	98.2	990243	4.5	331187	103	668813	20962 97778	54	
8	322607	98.0	990215	4.5	332418	102	667582	21019 97766	52	
9	323194	97.9	990161	4.5	333033	102	666967	21047 97760	51	
10	323780	97.6	990134	4.5	333646	102	666354	21076 97754	50	
11	9.324366	97.5	9.990107	4.6	9.334259	102	10.665741	21104 97745	49	
13	325534	97.3	990052	4.6	335482	102	664518	21161 97735	40	
14	326117	97.2	990025	4.6	336093	102	663907	21189 97729	46	
15	326709	96.9	989997	4.6	336702	101	663298	21218 97723	45	
16	327281	96.8	989970	4.6	337311	101	662689	21246 97717	44	
18	328442	96.6	989915	4.6	338527	101	661473	21303 97705	42	
19	329021	96.5	989887	4.6	339133	101	660867	21331 97698	41	
20	329599	96.2	989860	4.6	339739	101	660261	21360 97692	40	
21	9.330176	96.1	9.989832	4.6	9.340344	101	10.659656	21388 97686	39	
22	331329	96.0	989777	.4.6	341552	101	658448	21417 97600	38	
24	331903	95.8	989749	4.6	342155	100	657845	21474 97667	36	
25	332478	95.6	989721	4.7	342757	100	657243	21502 97661	35	
26	333051	95.4	989693	4.7	343358	100	656642	21530 97655	34	
21	333624	95.3	989565	4.7	343958	100	655442	21559 97648	33	
29	334766	95.2	989609	4.7	345157	100	654843	21616 97636	31	
30	335337	95.0	989582	4.1	345755	100	654245	21644 97630	30	
31	9.335905	94.8	9.989553	4.7	9.346353	99.4	10.653647	21672 97623	29	
32	336475	94.6	989525	4.7	346949	99.3	653051	21701 97617	28	
34	337610	94.5	989469	4.7	348141	99.2	651859	21758 97604	26	
35	338176	94.4	989441	4.3	348735	99.1	651265	21786 97598	25	
36	338742	94.1	989413	4.7	349329	98.8	650671	21814 97592	24	
37	339306	94.0	989384	4.7	349922	98.7	650078	21843 97585	23	
30	340434	93.9	989328	4.7	351106	98.6	648894	21899 97573	21	
40	340996	93.7	989300	4.7	351697	98.5	648303	21928 97566	20	
41	9.341558	93.0	9.989271	4.7	9.352287	90.0	10.647713	21956 97560	19	
42	342119	93.4	989243	4.7	352876	98.1	647124	21985 97553	18	
43	343230	93.2	989186	4.7	354053	98.0	645947	22041 97541	16	
45	343797	93.1	989157	4.7	354640	97.9	645360	22070 97534	15	
46	344355	92.9	989128	4.8	355227	97 6	644773	22098 97528	14	
47	344912	92.7	989100	4.8	355813	97.5	644187	22126 97521	13	
40	345469	92.6	989071	4.8	356982	97.4	643018	22183 97508	12	
50	346579	92.5	989014	4.8	357566	97.3	642434	22212 97502	10	
51	9.347134	92.4	9.988985	4.8	9.358149	97.1	10.641851	22240 97496	9	
52	347687	92.1	988956	4.8	358731	96.9	641269	22268 97489	8	
54	348240	92.0	9888927	4.8	359893	96.8	640107	22291 97483	6	
55	349343	91.9	988869	4.8	360474	96.7	639526	22353 97470	5	
56	349893	91.7	988840	4.8	361053	96.6	638947	22382 97463	4	
57	350443	91.5	988811	4.9	361632	96.3	638368	22410 97457	3	
59	351540	91.4	988782	4.9	362210	96.2	637790	22438 97450	1	
60	352088	91.3	988724	4.9	363364	96.1	636636	22495 97437	0	
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.		
				73	7 Degrees.				-	

3	34 Log. Sines and Tangents. (13°) Natural Sines. TABLE II.										
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine N. cos.			
0	9,352088	91 1	9.988724	49	9.363364	06.0	10.636636	22495 97437	60		
1	352635	91.0	938695	4.9	363940	95.9	636060	22523 97430	59		
	353726	90.9	988636	4.9	365090	95.8	634910	22580 97417	57		
4	354271	90.8	988607	4.9	365664	95.7	634336	22608 97411	56		
5	354815	90.7	988578	4.9	366237	95.4	633763	22637 97404	55		
6	355001	90.4	988548	4.9	366810	95.8	633190	22005 97398	54		
8	356443	90.3	988489	4.9	367953	95.2	632047	22722 97384	52		
9	356984	90.2	988460	4.9	368524	95.1	631476	22750 97378	51		
10	357524	89.9	988430	4.9	369094	94.9	630906	22778 97371	50		
11	358603	89.8	9.988401	4.9	370232	94.8	629768	22807 97358	49		
13	359141	89.7	988342	4.9	370799	94.6	629201	22863 97351	47		
14	359678	89.0	988312	4.9	371367	94.0	628633	22892 97345	46		
15	360215	\$9.3	988282	5.0	371933	94.3	628067	22920 97358	45		
10	361287	89.2	988223	5.0	373064	94.2	626936	22948 97331	44		
18	361822	89.1	988193	5.0	373629	94.1	626371	23005 97318	42		
19	362356	89.0	988163	5.0	374193	94.0	625807	23033 97311	41		
20	362889	88.8	988133	5.0	374756	193.8	625244	23062 97304	40		
21	9,363422	88.7	9.988103	5.0	9.375319	93.7	694119	23090 97290	39		
23	364485	88.5	988043	5.0	376442	93.5	623558	28146 97284	37		
24	365016	88.3	988013	5.0	377003	93.4	622997	23175 97278	36		
25	365546	88.2	987983	5.0	377563	93.2	622437	23203 97271	35		
26	366604	88.1	987953	5.0	378122	93.1	621878	23231 97204	34		
28	367131	88.0	987892	5.0	379239	93.0	620761	23288 97251	32		
29	367659	87.9	987862	5.0	379797	92.9	620203	23316 97244	31		
30	368185	87.6	087832	5.1	380354	92.0	619646	23345 97237	30		
	9.368711	87.5	9.987801	5.1	9,380910	92.6	618524	23373 97230	29		
33	369761	87.4	987740	5.1	382020	92 5	617980	23429 97217	27		
34	370285	87.3	987710	5.1	382575	92 4	617425	23458 97210	20		
35	370808	87.1	987679	5.1	383129	92.0	616871	23486 97203	25		
36	371330	87.0	987649	5.1	383682	93.1	616318	23014 97 96	24		
37	372373	86.9	987588	5.1	384786	92.0	615214	23571 97182	20		
39	372894	86.7	987557	0.1	385337	91.9	614663	23599 97176	21		
40	373414	86.5	987526	5.1	385888	91.0	614112	23627 97169	20		
41	9.373933	86.4	9.987496	5.1	9.386438	91.5	10.613562	23656 97162	19		
42	374970	86.3	987434	5.1	387536	91.4	612464	23712 97148	17		
44	375487	86.2	987403	5.1	388084	91.3	611916	23740 97141	16		
45	376003	86.0	987372	5.2	388631	91.2	611369	23769 97134	15		
46	376519	85.9	987341	5.2	389178	91.0	610822	23797 97127	14		
47	377549	85.8	987310	5.2	390270	90.9	609730	23853 971120	12		
49	378063	85.7	987248	5.2	390815	90.8	60)185	23882 97105	11		
50	378577	85.4	987217	5.2	391360	90.7	603640	23910 97100	10		
51	9.379089	85.3	9.987186	5.2	9.391903	90.5	10.608097	23938 97093	9		
52	379001	85.2	987155	5.2	392447	90.4	607011	23995 97079	7		
54	380624	85.1	987092	5.2	393531	90.3	606469	24023 97072	6		
55	381134	84.0	987061	5.2	394073	90.2	605927	24051 97065	5		
56	381643	84.8	987030	5.2	394614	90.0	605386	24079 97053	4		
57	382152	84.7	986998	5.2	395154	89.9	601306	24108 97051	2		
59	383168	84.6	986936	5.2	396233	89.8	603767	24164 97037	Ĩ		
60	383675	84.0	986904	0.2	396771	89.7	603229	24192 97030	0		
	Cosine.		Sine.		Cotang.	1	Tang.	N. cos. N.sine	17		
				7	6 Degrees.						

1 3	TABLE II. Log. Sines and Tangents. (14°) Natural Sines. 35									
1	Sine.	D. 10'	Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N. sine. N. cos	•	
0	9.383675	81 1	9.986904	59	9.396771	80.6	10.603229	24192 97030	60	
1	384182	84.3	986873	5.3	397309	89.6	602691	24220 97023	59	
2	384087	84.2	980841	5.3	397846	89.5	602154	24249 97015	58	
1	385697	84.1	986778	5.3	398919	89.4	601081	24305 97003	56	
5	386201	81.0	986746	5.3	399455	89.3	600545	24333 96994	55	
6	386704	83.8	986714	5.3	399990	89.2	600010	24362 96987	54	
7	387207	83.7	986683	5.3	400524	89.0	593476	24390 96980	53	
8	387709	83.6	980001	5.3	401008	88.9	508400	24418 96973	51	
10	388711	83.5	986587	5.3	402124	88.8	597876	24474,96959	50	
11	9.389211	83.4	9.986555	5.3	9.402656	88.7	10.597344	24503 96952	49	
12	389711	83 2	986523	5.3	403187	88 5	596813	24531 96945	48	
13	390210	83.1	986491	5.3	403718	88.4	596282	24559 96937	47	
14	399708	83.0	985459	5.3	404249	88.3	505701	24587 96930	46	
16	391703	82.8	986395	5.3	405308	88.2	594692	24644 96916	40	
17	392199	82.7	986363	5.3	405836	88.1	594164	24672 96909	43	
18	392695	82.0	986331	5.4	406364	87.0	593636	24700 96902	42	
19	393191	82.4	986299	5.4	406892	87 8	• 593108	24728 96894	41	
20	393685	82.3	986266	5.4	407419	87.7	592581	24756 96887	40	
21	9,394179	82.2	9,980234	5.4	407945	87.6	592000	24/84 90880	39	
23	395166	82.1	986169	5.4	408997	87.5	591003	24841 96866	37	
24	395658	82.0	986137	5.4	409521	87.4	590479	24869 96858	36	
25	396150	81.8	986104	5.4	410045	87.4	589955	24897 96851	35	
26	395641	81.7	986072	5 4	410569	87 2	589431	24925 96844	34	
27	397132	81.7	986039	5.4	411092	87.1	588908	24954 96837	33	
28	397621	81.6	986007	5.4	411010	87.0	587869	24982 96829	32	
30	398600	81.5	985942	5.4	412658	86.9	587342	25038 96815	30	
31	9.399088	81.4	9,985909	5.4	9.413179	86.8	10.586821	25056 96807	29	
32	399575	81 9	985876	5.5	413699	86.7	586301	25094 96800	28	
33	400062	81.1	985843	5.5	414219	86 5	585781	25122 96793	27	
34	400549	81.0	985811	5.5	414738	86.4	585262	25151 96786	26	
36	401030	80.9	985745	5.5	415257	86.4	584995	25179 90770	20	
37	402005	80.8	985712	5.5	416293	86.3	583707	25235 96764	23	
38	402489	80.7	985679	5.5	416810	86.2	583190	25263 96756	22	
39	402972	80.5	985646	5.5	417326	86 0	582674	25291 96749	21	
40	403455	80.4	985613	5.5	417842	85.9	582158	25320 96742	20	
41	9.403938	80.3	9.985580	5.5	9.418358	85.8	10.581642	25348 96734	19	
43	404420	80.2	985514	5.5	419387	85.7	580613	25404 96719	17	
41	405382	80.1	985480	5.5	419901	85.6	580099	25432 96712	16	
45	405862	70 0	985447	5.5	420415	85.0 95 5	• 579585	25460 96705	15	
46	406341	79.8	985414	5.6	420927	85 4	579073	25488 96697	14	
47	406820	79.7	985380	5.6	421440	85.3	578560	25516 96690	13	
40	407299	79.6	985347	5.6	421902	85.2	577527	20040 96082	12	
50	403254	79.5	985280	5.6	422974	85.1	577026	25601 96667	10	
51	9,408731	79.4	9.985247	5.6	9.423484	85.0	10.576516	25629 96660	9	
52	409207	79.4	985213	5.6	423993	84.9	576007	25657 96653	8	
53	409682	79.2	985180	5.6	424503	84 8	575497	25685 96645	7	
04 55	410157	79.1	985146	5.6	425011	84.7	574989	25713 96638	6	
56	410532	79.0	985113	5.6	420019	84.6	573973	25766 96693	0	
57	411570	78.9	985045	5.6	426534	84.5	573466	25798 96615	3	
58	412052	78.8	985011	5.6	427041	84.4	572959	25826 96608	2	
59	412524	78 6	984978	5.6	427547	84.3	572453	25854 96600	1	
60	412996	10.0	984944	0.0	428052	04.0	571948	25882 96593	0	
	Cosine.		Sine.		Cotang.		Taug.	N. cos. N.sine.	1	
				. 7	5 Degrees.					

 $\overline{20}$

	36 Log. Sines and Tangents. (15°) Natural Sines. TABLE II.										
	1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine [N. cos	-	
	0	3.412993	78 5	9.984944	57	9.428052	81 9	10.571948	25882 96593	60	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	413467	78.4	984910	5.7	428557	84.1	571443	25910 96585	59	
$ \begin{array}{c} 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 7 \\ 4 \\ 5 \\ 7 \\ 5 \\ 5$	2	413935	78.3	984870	5.7	429002	84.0	570434	25965 90570	57	
5 418347 15 1 934740 5.7 430073 63.8 550925 9606906547 5.4 6 418515 78.0 934706 5.7 431075 83.6 567421 9610796532 522 9607906540 53 9 417217 77.7 984603 5.7 443050 83.4 566240 261396512 4561 561421 9647196540 453 56242 961996540 44355 456420 261996502 458 456420 261996502 458 456420 261996502 458 456420 261996502 458 456420 261996502 458 456420 261996502 458 456420 261996502 458 456420 261996434 458 45647 453078 83.8 563237 2633196463 438 456377 984325 5.8 436670 82.8 563437 26433 964494 458 4414 4563686444 45387 66442 456369644 458 44154 456369644 458 456456 456456 466439 456439 459448 44	4	414878	78.3	984808	5.7	430070	83.9	569930	25994 96565	56	
	5	415347	78.1	984774	5.7	430573	83.8	569427	26022 96555	55	
$ \begin{array}{c} 1 & 112 \\ $	6	415815	78.0	984740	5.7	431075	83.7	568925	26050 96547	54	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	416751	77.9	984672	5.7	432079	83.6	567921	26107 96532	52	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	417217	77.7	984637	57	432580	83.5	567420	26135 96524	51	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	417684	77.6	984603	5.7	433080	83.3	566920	26163 96517	50	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	418615	77.5	9.984509	5.7	9,433080	83.2	10.565420	26191 96508	49	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12^{12}	419079	77.4	984500	5.7	434579	83.2	565421	26247 96494	47	
	14	419544	77 3	984466	5.7	435078	83 0	564922	26275 96480	6 46	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	420007	77.2	984432	5.8	435576	82.9	564424	26303 96479	45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	420470	77.1	984397	5.8	436073	82.8	563430	20331 9047	44	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	421395	77.0	984328	5.8	437067	82.8	562933	26387 96450	5 42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	421857.	76.9	984294	5.0	437563	82.1	562437	26415 96448	3 41	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	422318	76.7	984259	5.8	438059	82.5	561941	26443 96440) 40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	9.422718	76.7	9.984224	5.8	9.438004	82.4	10.561446	26471 96433	39	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	423637	76.6	984155	5.8	439543	82.3	560457	26528 9641	37	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	424156	76.5	984120	5.8	440036	82.3	559964	26556 96410	36	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	424615	76.3	984085	5.8	440529	82.1	559471	26584 96402	35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	425073	76.2	984050	5.8	441022	82.0	558978	26612 96394	34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	425530	76.1	984010	5.8	441514	81.9	55700.1	26668 96379	33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	426443	76.0	983946	5.8	442497	81.9	557503	26696 96371	31	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	426899	76.0	983911	5.8	442988	81 7	557012	26724 96363	3 30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	9.427354	75.8	9.983875	5.8	9.443479	81.6	10.556521	26752 96353	29	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	427809	75.7	983840	5.9	443968	81.6	5550032	26780 9634	28	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	428717	75.6	983770	5.9	444947	81.5	555053	26836 96332	2 26	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	429170	75.0	983735	5.9	445435	81 3	554565	26864 96324	25	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	429623	75.3	983700	5.9	445923	81.2	554077	26892 96316	24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	430075	75.2	983604	5.9	446411	81.2	553102	26920 96300	23	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39	430978	75.2	983594	5.9	447384	81.1	552616	26976 96293	21	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40	431429	75.1	983558	5.9	447870	81.0	552130	27004 96285	5 20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	41	9.431879	74.9	9.983523	5.9	9.448356	80.9	10.551644	27032 96277	19	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42	432329	74.9	983487	5.9	448841	80.8	551159	27060 96269	18	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	433226	74.8	983416	5.9	449810	80.7	550190	27116 96253	16	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45	433675	74.7	983381	5.9	450294	80.6	549706	27144 96240	15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	434122	74.5	983345	5.9	450777	80.5	549223	27172 96238	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47	434569	74.4	983309	5.9	451260	80.4	548740	27200 96230	13	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	435462	74.4	983238	6.0	451745	80.3	547775	27256 96214	11	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	435908	74.3	983202	6.0	452706	80.2	547294	27284 96206	5. 10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	9.436353	74.2	9.983166	6.0	9.453187	80.1	10.546813	27312 96198	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	436798	74.0	983130	6.0	453668	80.0	546332	27340 96190	8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	437242	74.0	983094	6.0	454628	79.9	545379	27396 96174	6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	438129	73.9	983022	6.0	455107	79.9	544893	27424 96160	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	438572	73.8	982986	6.0	455586	79.7	544414	27452 96158	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	439014	73.6	982950	6.0	456064	79.6	543936	27480 96150	3	
60 440338 73.5 982842 6.0 457496 79.5 542504 27564 642504 27564 661 661 46126 0 Cosine. Sine. Cotang. Tang. N. cos. N.sine. 7 74 Degrees. 74 Degrees. 7 Degrees. 7	50	439400	73.6	982914	6.0	450042	79.6	543458 542981	27536 96134		
Cosine. Sine. Cotang. Tang. N. cos. N.sine. / 74 Degrees.	60	440338	73.5	982842	6.0	457496	79.5	542504	27564 06126	i o	
74 Degrees.		Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine	1	
					7.	4 Degrees.					

	TABLE II. Log. Sines and Tangents. (16°) Natural Sines. 37										
1	Sine.	D. 10/	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.			
0	9.410338	mo 1	9.982842	0.0	9.457496	70 A	10.542504	27564 96126	60		
1	440778	73.4	982805	6.0	457973	79.4	542027	27592 96118	59		
2	441218	73.2	982769	6.1	458449	79.3	541551	27620 96110	58		
3	441658	73.1	982733	6.1	450400	79 2	541075	27648 96102	56		
4	442535	73.1	982660	6.1	459875	79.1	540125	27704 96086	55		
6	442973	73.0	982624	6.1	460349	79.0	539651	27731 96078	54		
7	443410	12.9	982587	6.1	460823	78 9	539177	27759 96070	53		
8	443847	72.7	982551	6.1	461297	78.8	538703	27787 96062	52		
9	444284	72.7	982514	6.1	401770	78.9	538230	27815 96054	50		
10	9 445155	72.6	9 982441	6.1	9 462714	78.7	10.537286	27871 96037	49		
12	445590	72.5	982404	6.1	463186	78.6	536814	27899 96029	48		
13	446025	70 3	982367	6.1	463658	78.5	536342	27927 96021	47		
14	446459	72.3	982331	6.1	464129	78.4	535871	27955 96013	46		
15	446893	72.2	982294	6.1	464599	78.3	524021	27983 96005	40		
10	447320	72.1	982220	6.1	465539	78.3	534461	28039 95989	43		
18	448191	72.0	982183	6.2	466008	78.2	533992	28067 95981	42		
19	448623	72.0	982146	6.2	466476	78.1	533524	28095 95972	41		
20	449054	71.8	982109	6.2	466945	78.0	533055	28123 95964	40		
21	9.449485	71.7	9.982072	6.2	9.467880	77.9	10.532587	28150 95955	39		
22	449915	71.6	981998	6.2	468347	77.8	531653	28206 95940	37		
24	450775	71.6	981961	6.2	468814	77.8	531186	28234 95931	36		
25	451204	71.0	981924	6.2	469280	77.7	530720	28262 95923	35		
26	451632	71.3	981886	6.2	469746	77.5	530254	28290 95915	34		
27	452060	71.3	981849	6.2	470211	77.5	629789	28318 95907	33		
28	452915	71.2	981774	6.2	471141	77.4	528859	28374 95890	31		
30	453342	71.1	981737	6.2	471605	77.3	528395	28402 95882	30		
31	9.453768	71.0	9.981699	6.2	9.472068	77.3	10.527932	28429 95874	29		
32	454194	70.9	981662	6.3	472532	77.1	527468	28457 95865	28		
33	454619	70.8	981625	6.3	472990	77.1	527005	28485 95857	27		
34	455469	70.7	981549	6.3	473919	77:0	526081	28541 95841	25		
36	455893	70.7	981512	6.3	474381	76.9	525619	28569 95832	24		
37	456316	70.6	981474	6.3	474842	76.9	525158	28597 95824	23		
38	456739	70.4	981436	6.3	475303	76.7	524697	28625 95816	22		
39	457162	70.4	981399	6.3	410103	76.7	524237	28652 95807	21		
40	497904	70.3	9 981323	6.3	0 476683	76.6	10 523317	28708 95791	19		
41	458427	70.2	981285	6.3	477142	76.5	522858	28736 95782	18		
43	458848	70.1	981247	6.3	477601	76.5	522399	28764 95774	17		
44	459268	70.0	981209	6.3	478059	76.3	521941	28792 95766	16		
45	459688	69.9	981171	6.3	478017	76.3	521483	28820 95757	15		
40	460108	69.8	981095	6.4	479432	76.2	521025	28875 95749	14		
48	460946	69.8	981057	6.4	479889	76.1	520111	28903 95732	12		
49	461364	69.7	981019	6.4	480345	76.1	519655	28931 95724	11		
50	461782	69.5	980981	6.4	480801	75.9	519199	28959 95715	10		
51	9.462199	69.5	9.980942	6.4	9.481257	75.9	10.518743	28987 95707	9		
02	462016	69.4	980866	6.4	482167	75.8	517833	29015 95698	0		
54	463448	69.3	980827	6.4	482621	75.7	517379	29070 95681	6		
55	463864	69.3	980789	6.4	483075	75.7	516925	29098 95673	5		
56	464279	69.1	980750	6.4	483529	75 5	516471	29126 95664	4		
57	464694	69.0	980712	6.4	483982	75.5	516018	29154 95656	3		
50	405108	69.0	980625	6.4	484887	75.4	010000	29182 95647	1		
60	465935	68.9	980596	6.4	485339	75.3	514661	29247 95630	0		
	Cosine		Sine		Cotang.		Tang.	N. cos. N.sine.			
-					73 Degrees.						

	38 Log. Sines and Tangents. (17°) Natural Sines. TABLE II.										
17	Sine	D. 10'	Cosine.	D. 10	" Tang.	D. 10'	' Cotang.	N. sine.	N. cos.		
0	9.465935	0 83	9,980596	6.4	9.485339	75 3	10.514661	29237	95630	60	
	406348	68.8	980558	6.4	485791	75.2	514209	29265	95622	59	
	467173	68.7	980480	6.5	486693	75.1	513307	29293	90013	57	
4	467585	68.6	980442	6.5	487143	75.1	512857	29348	95596	56	
5	467996	68 5	980403	6.5	487593	75.0	512407	29376	95588	55	
6	468407	68.4	980364	6.5	488043	74.9	511957	29404	95579	54	
	468817	68.3	980325	6.5	488492	74.8	511508	29432	95571	53	
	469637	68.3	930247	6.5	489390	74.7	510610	29400	95554	51	
10	470046	68.2	980208	6.5	489838	74.7	510162	29515	95545	50	
11	9.470455	68 0	9.980169	6.5	9.490286	74.0	10.509714	29543	95536	49	
12	470863	68.0	980130	6.5	490733	74.5	509267	29571	95528	48	
13	471271	67.9	980091	6.5	491180	74.4	508820	29399	95519	47	
15	472036	67.8	980052	6.5	492073	74.4	507927	29654	95511	40	
16	472492	67.8	979973	6.5	492519	74.3	507481	29682	95493	44	
17	472893	67 6	979934	6.6	492965	74.3	507035	29710	95485	43	
18	473304	67 6	979895	6.6	493410	74.1	503590	29737	95476	42	
19	473710	67.5	979855	6.6	493854	74.0	505146	29765	15467	41	
21	9.474519	67.4	9,979776	6.6	9.494743	74.0	10 505257	29821	5450	30	
22	474923	67.4	979737	6.6	495186	74.0	504814	29849)5441	38	
23	475327	67 9	979697	6.6	495630	73.8	504370	29876)5433	37	
24	475730	67.2	979658	6.6	496073	73.7	503927	299049	5424	36	
25	476133	67.1	979618	6.6	490515	73.7	503042	29932 9	5415	35 -	
27	476938	67.0	979539	6.6	497399	73.6	502601	2998	5398	33	
28	477340	66.9	979499	6.6	497841	73.6	502159	30015 9	5389	32	
29	477741	66.9	979459	6.6	468282	73 4	501718	30043 9	5380	31	
30	478142	66.7	979420	6.6	498722	73.4	501278	30071 9		30	
31	9.478542	66.7	9.979380	6.6	499163	73.3	500837	30098 9	5354	29	
33	470342	66.6	979340	6.6	500042	73.3	499958	30154 9	5345	27	
34	479741	66.5	979260	6.7	500481	73.2	499519	30182 9	5337	26	
35	480140	66 A	979220	67	500920	73 1	499080	302099	5328	25	
36	480539	66 3	979180	6.7	501359	73.0	498641	302379	5319	24	
37	480937	66.3	979140	6.7	502235	73.0	498203	30205 9	5310	23	
30	481334	66.2	979100	6.7	502672	72.9	497328	303209	5293	$\frac{22}{21}$	
40	482128	66.1	979019	6.7	503109	72.8	496891	30348 9	5284	$\tilde{20}$	
41	9.482525	66 0	9.978979	67	9.503546	72.7	10.496454	303769	5275	19	
42	482921	65.9	978939	6.7	503982	72.7	496018	30403 9	5266	18	
43	483316	65.9	978898	6.7	504854	72.6	495082	30459 0	5248	16	
45	484107	65.8	978817	6.7	505289	72.5	494711	30486 9	5240	15	
46	484501	65.7	978777	6.7	505724	72.0	494276	30514 9	5231	14	
47	484895	65 6	978736	6.7	503159	72.4	493841	30542 9	5222	13	
48	485289	65.5	978696	6.8	506593	72.3	493407	30570 9	5213	12	
49	485682	65.5	978655	6.8	507460	72.2	492540	30625 0	5195	10	
51	9.486467	65.4	9.978574	6.8	9.507893	72.2	10,492107	30653 9	5186	9	
52	486860	66.3	978533	6.8	508326	72.1	491674	30680 9	5177	8	
53	487251	65 2	978493	6.8	508759	72.0	491241	30708 9	5168	7	
54	487643	65.1	978452	6.8	509191	71.9	490809	307369	5150	6	
56	488034	65.1	978411	6.8	510054	71.9	490378	30791 0	5149	4	
57	488814	65.0	978329	6.8	510485	71.8	489515	30819 9	5133	3	
58	489204	65.0	978288	6.8	510916	71.8	489084	30846 9	5124	2	
59	489593	64.9	978247	6.8	511346	71.6	488654	30874 9	5115	1	
60	489982	51.0	978206		511776		488224	30902 9	5106	0	
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N	sine.	/	
				7	9 Degrees.						

r	TABLE II. Log. Sines and Tangents. (18°) Natural Sines. 39									
7	Sine.	D. 10 ²	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	8.	
0	9.489982	64 8	9.978206	6.8	9.511776	71 6	10.488224	30902 95100	60 60	
1	490371	64.8	978165	6.8	512206	71.6	487794	30929 95091	7 59	
2	490759	64.7	978124	6.8	512030	71.5	487303	30957 95050	5 57	
4	491535	64.6	978042	6.9	513493	71.4	486507	31012 9507	0 56	
5	491922	64.6	978001	6.9	513921	71.4	486079	31040 95061	1 55	
6	492308	64 4	977959	6.9	514349	71 3	485651	31068 95059	2 54	
7	492695	64.4	977918	6.9	514777	71.2	485223	31095 95043	3 53	
8	493081	64.3	971811	6.9	515631	71.2	484790	31123 95033	3 02	
10	493851	64.2	977794	6.9	516057	71.1	483943	31178 9501	5 50	
11	9.494236	64.2	9.977752	6.9	9.516484	71.0	10.483516	31206 9500	6 49	
12	494621	64 1	977711	6.9	516910	70 9	483090	31233 9499	7 48	
13	495005	64.0	977669	6.9	517335	70.9	482665	31261 9498	8 47	
14	490300	63.9	977586	6.9	518185	70.8	481815	31316 9497	9 40	
16	496154	63.9	977544	6.9	518610	70.8	481390	31344 9496	1 44	
17	496537	63.8	977503	7.0	519034	70.7	480966	31372 94959	2 43	
18	496919	163 7	977461	7 0	519458	70 6	480542	31399 94943	3 42	
19	497301	63.6	977419	7.0	519882	70.5	480118	31427 9493	3 41	
20	497682	63.6	971317	7.0	0 520728	70.5	479695	31454 94924	4 40	
22	498444	63.5	977293	7.0	521151	70.4	478849	31510 9490	6 38	
23	498825	63.4	977251	7.0	521573	70.3	478427	31537 9489	7 37	
24	499204	63 3	977209	7 0	521995	70.3	478005	31565 94888	3 36	
25	499584	63.2	977167	7.0	522417	70.2	477583	31593 94878	3 35	
26	499963	63.2	977125	7.0	522838	70.2	477162	31620 9486	9 34	
28	500721	63.1	977041	7.0	523680	70.1	476320	31675 9485	1 32	
29	501099	63.1	976999	7.0	524100	70.1	475900	31703 94849	2 31	
30	501476	62 0	976957	7.0	524520	10.0 69 0	475480	31730 9483	2 30	
31	9.501854	62.9	9.976914	7.0	9.524939	69.9	10.475061	31758 94823	3 29	
32	502231	62.8	976872	7.1	525359	69.8	474041	31786 94814	1 28	
34	502984	62.8	976787	7.1	526197	69.8	473803	31841 9479	5 26	
35	503360	62.7	976745	7.1	526615	69.7	473385	31868 9478	5 25	
36	503735	62.6	976702	7 1	527033	69.7 69.6	472967	31896 9477	7 24	
37	504110	62.5	976660	7.1	527451	69.6	472549	31923 94768	3 23	
38	504860	62.5	976617	7.1	528285	69.5	472132	31951 94750	5 22	
40	505234	62.4	976532	7.1	528702	69.5	471298	32006 9474		
41	9,505608	62.3	9.976489	7.1	9.529119	69.4	10.470881	32034 94730	0 19	
42	505981	62.3	976446	7 1	529535	69.3	470465	32061 9472	1 18	
43	506354	62.2	976404	7.1	529950	69.3	470050	32089 94719	2 17	
44	507000	62.1	976361	7.1	530781	69.2	469034	32116 9470	3 15	
46	507471	62.0	976275	7.1	531196	69.1	468804	32171 9468	4 14	
47	507843	62.0	976232	7.1	531611	69.1	468389	32199 94674	4 13	
48	508214	61.9	976189	72	532025	69 0	467975	32227 9466	5 12	
49	508585	61.8	976146	7.2	532439	68.9	467561	32250 94656	5 11	
51	508990	61.8	976103	7.2	0 533966	68.9	407147	32282 9464		
52	509696	61.7	976017	7.2	533679	68.8	466321	32337 9462	7 8	
53	510065	61.6	975974	7.2	534092	68.8	465908	32364 94618	3 7	
54	510434	61.6	975930	72	534504	68 7	465496	32392 94609	9 6	
65	510803	61.5	975887	7.2	534916	68.6	465084	32419 94599	9 5	
57	511172	61.4	975844	7.2	535720	68.6	464672	32447 9459	4	
58	511907	61.3	975757	7.2	536150	68.5	463850	32502 9457	1 2	
59	512275	61.3	975714	7.2	536561	68.5	463439	32529 9456	1 1	
60	512642	61.2	975670	1.2	536972	00.4	463028	32557 94559	2 0	
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sin	e. /	
			1	7	1 Degrees.					

4	4) Log. Sines and Tangents. (19°) Natural Sines. TABLE II.										
-7-	Sme. D. 10 ⁿ Cosme. D. 10 ⁿ Tang. D. 10 ⁿ Cotang. N. sine. N. cos.										
0	9.512642	61.0	9.975670	7 9	9.536972	69 1	10.463028	32557 94559	2 60		
1	513909	61.1	975627	7.3	- 537382	68.3	462618	32584 94542	2 59		
2	513375	61.1	975583	7.3	537792	68.3	462208	32612 94533	3 58		
3	513741	61.0	975339	7.3	538611	68.2	401798	32639 94528	5 57		
4 5	514479	60.9	975452	7.3	539020	68.2	401303	32694 94514	1 55		
6	514837	60.9	975408	7.3	539429	68.1	460571	32722 94495	54		
7	515202	60.8	975365	7.3	539837	68.1	460163	32749 94485	5 53		
8	515556	60.7	975321	73	540245	68 0	459755	32777 94476	5 52		
9	515930	60.7	975277	7.3	540353	67.9	459347	32801 94466	5 51		
10	516294	60.6	975233	7.3	541051	67.9	458939	32832 94457	50		
11	9.510057	60.5	9,975145	7.3	541875	67.8	10,400032	32800 9444	49		
12	517382	60.5	975101	7.3	542281	67.8	457719	32914 94428	40		
14	517745	60.4	975057	7.3	542688	67.7	457312	32942 94418	46		
15	518107	60.2	975013	7 3	543094	67 6	456906	32969 94409	45		
16	518468	60.3	, 97 4969	74	543499	67 6	456501	32997 94399	44		
17	518829	60.2	974925	7.4	543905	67.5	456095	33024 94390	43		
18	519190	60.1	974880	7.4	544310	67.5	455690	3305194380	42		
19	519991	60.1	974830	7.4	545110	67.4	405200	33079 94370	41		
21	9 520271	60.0	9.974748	7.4	9 545524	67.4	10 454476	33134 94351	30		
22	520631	$[60.0]{60.0}$	974703	7.4	545928	67.3	454072	33161 94342	38		
23	520990	59.9	974659	7.4	546331	67.3	453669	33189 94332	37		
24	521349	59.9	974614	7 4	546735	67 2	453265	33216 94322	36		
25	521707	59.8	974570	7.4	547138	67.1	452862	33244 94313	35		
26	522066	59.7	974525	7.4	547540	67.1	452460	33271 94303	34		
21	522424	59.6	974481	7.4	548345	67.0	402007	33290 94293	33		
20	523138	59.6	974391	7.4	548747	67.0	451253	33353 94274	31		
30	523495	59.5	974347	7.4	549149	66.9	450851	33381 94264	30		
31	9.523852	59.5	9.974302	7.0	9.549550	66.9	10.450450	33408 94254	29		
32	524208	59.4	974257	7 5	549951	66.8	450049	33436 94245	28		
33	524564	59.3	974212	7.5	550352	66.7	449648	33463 94235	27		
34	524920	59.3	974167	7.5	551150	66.7	449248	33490 94225	26		
30	525630	59.2	974122	7.5	551552	66.6	440040	33545 94215	20		
37	525984	59.1	974032	7.5	551952	66.6	448048	33573 94196	23		
38	526339	59.1	973987	7.5	552351	66.5	447649	33600 94186	22		
39	526693	59.0	973942	7.5	552750	66.5	447250	33627 94176	21		
40	527046	58.9	973897	7 5	553149	66 4	446851	33655 94167	20		
41	9.527400	58.9	9.973852	7.5	9.553548	66.4	10.446452	33682 94157	19		
42	527753	58.8	973807	7.5	554244	66.3	440054	33710 94147	18		
40	528458	58.8	973716	7.5	554741	66.3	445250	33764 04197	16		
45	528810	58.7	973671	7.6	555139	66.2	444861	33792 94118	15		
46	529161	50 7	973625	7.6	555536	66.2	444464	33819 94108	14		
47	529513	58.6	973580	7.6	555933	66 1	444067	33846 94098	13		
48	529864	58.5	973535	7.6	556329	66.0	443671	33874 94088	12		
49	530215	58.5	973489	7.6	550125	66.0	443275	33901 94078	10		
51	0 520015	58.4	973444	7.6	0 557517	65.9	442879	33956 94068	0		
52	531265	58.4	973352	7.6	557913	65.9	442087	33983 94049	8		
53	531614	68.3	973307	7.6	558308	65.9	441692	34011 94039	7		
54	531963	58.2	973261	7.6	558702	65.8	441298	34038 94029	6		
55	532312	58.1	973215	7.6	559097	65 7	440903	34065 94019	5		
56	532661	58.1	973169	7.6	559491	65.7	440509	34093 94009	4		
57	533009	58.0	973124	7.6	559885	65.6	440115	34120 93999	3		
50	533701	58.0	973078	7.6	560673	65.6	439721	34175 93989	1		
60	534052	57.9	972986	7.7	561066	65.5	438934	34202 93969	Ô		
	Cosine		Sine		Cotang		Tang	N. COS. N. Sing			
!	oome.]		Cine.		Dograma 1	1	Turig.				
				10	Degrees.						

	TABLE II. Log. Sines and Tangents. (20°) Natural Sines. 41									
17	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10	Cotang.	N. sine.	N. cos.	
0	9.534052	27 0	9.972986	~ ~	9.561066	OF F	10.438934	34202	93969	60
1	534399	57 7	972940	77	- 561459	65 4	438541	34229	93959	59
2	534745	57.7	972894	7.7	561851	65.4	438149	34257	93949	58
3	525129	57.7	972848	7.7	562244	65 3	437756	34284	93939	56
4	535783	57.6	972002	7.7	563098	65.3	431304	34311	93929	55
6	536129	57.6	97270+	7.7	563419	65.3	436581	34366	93909	54
7	536474	57.5	972663	7.7	563811	65.2	436189	34393	93899	53
8	536818	57.4	972617	17.7	564202	65.2	435798	34421	93889	23
9	537163	57 3	972570	77	564592	65.1	435408	34448	93879	51
10	537507	57.3	972524	7.7	564983	65.0	435017	34475	93869	50
11	9.537851	57.2	9.972478	7.7	9.565373	65.0	10.434627	34503	93859	49
12	599599	57.2	972431	7.8	505/03	64.9	434237	34530	93849	40
13	538880	57.1	972338	7.8	566542	64.9	433458	34584	93829	46
15	539223	57.1	972291	7.8	566932	64.9	433068	34612	93819	45
16	539565	57.0	972245	7.8	567320	64.8	432680	34639	93809	44
17	539907	56 0	972198	7.0	567709	64 7	432291	34666	93799	43
18	540249	56 0	972151	7.8	568098	64 7	431902	34694	93789	42
19	540590	56.8	972105	7.8	568486	64.6	431514	34721	93779	41
20	540931	56.8	972058	7.8	568873	64.6	431127	34748	93769	40
21	541612	56.7	9.972011	7.8	9,509261	64.5	10.430739	34775	93759	39
22	541013	56.7	971904	7.8	570035	64.5	430302	24830	99740	37
20	549993	56.6	971870	7.8	570422	64.5	429900	34857	03728	36
25	542632	56.6	971823	7.8	570809	64.4	429191	34884	93718	35
26	542971	56.5	971776	7.8	571195	64.4	428805	34912	93708	34
27	543310	56.5	971729	17.8	571581	64.3	428419	34939	93698	33
28	543649	56 4	971682	7.0	571967	64.3	428033	34966	93688	32
29	543987	56 3	971635	7 9	572352	64 9	427648	34993	93677	31
30	544325	56.3	971588	7.9	572738	64.2	427262	35021	93667	30
31	9.544663	56.2	9.971540	7.9	9.573123	64.1	10.426877	35048	93657	29
32	545338	56.2	971493	7.9	573809	64.1	426493	35075	93047	28
34	545674	56.1	971398	7.9	574276	64.0	425724	35130	93626	26
35	546011	56.1	971351	7.9	574660	64.0	425340	35157	93616	25
36	546347	56.0	971303	7.9	575044	63.9	424956	35184	93606	24
37	546683	55 0	971256	7.9	575427	63.9	424573	35211	93596	23
38	547019	55 9	971208	7 9	575810	63.8	424190	35239	93585	22
39	547354	55.8	971161	7.9	576193	63.8	423807	35266	93575	21
40	547689	55.8	971113	7.9	576576	63.7	423424	35293	93565	20
41	9.548024	55.7	9.971006	8.0	9.576958	63.7	10.423041	35320	93555	19
42	548693	55.7	971018	8.0	577792	63.6	422009	35375	93534	10
40	549027	55.6	970922	8.0	578104	63.6	421896	35402	93524	16
45	549360	55.6	970874	8.0	578486	63.6	421514	35429	93514	15
46	549693	55.5	970827	8.0	578867	63.5	421133	35456	93503	14
47	550026	55 4	970779	8.0	579248	63 4	420752	35484	93493	13
48	550359	55.4	970731	8.0	579629	63 4	420371	35511	93483	12
49	550692	55.3	970683	8.0	580009	63 4	419991	35538	93472	11
50	0 551024	55.3	970635	8.0	580389	63.3	419611	35565	93462	10
50	551697	55.2	070529	8.0	581140	63.3	10.419231	35592	93402	9
53	552018	55.2	970.190	8.0	581528	63.2	418479	35647	93431	0
54	552349	55.2	970442	8.0	581907	63.2	418093	35674	93420	6
55	552680	55.1	970394	8.0	582286	63.2	417714	35701	93410	5
56	553010	55.0	970345	8.0	582665	63.1	417335	35728	93400	4
57	553341	55 0	970297	0.1	583043	63.1	416957	35755	93389	3
58	553670	54 9	970249	8 1	583422	63 0	416578	35782	93379	2
59	554000	54.9	970200	8.1	583800	62.9	416200	35810	93368	1
60	554329		970152		584177		415823	35837	93358	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	1
				- 6	9 Degrees.					

	42 Log. Sines and Tangents. (21°) Natural Sines. TABLE II.											
1	Sine.	D. 10	" Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N.sine. N. cos				
0	9.554329	54 8	9.970152	81	9.584177	62.9	10.415823	35837 93358	60			
	554658	54.8	970103	8.1	584555	62.9	415445	35864 93345	59			
	555315	54.7	970055	8.1	585309	62.8	4100.38	3501803337	57			
4	555643	54.7	969957	8.1	585686	62.8	414314	35945 93316	53			
5	555971	54.6	969909	8.1	586062	62.7	413938	35978 93306	55			
6	556299	54.5	939860	8.1	586439	62.7	413561	36000 93295	54			
8	556053	54.5	909811	8.1	587100	62.6	413185	36027 93285	53			
9	557280	54.4	969714	8.1	587566	62.6	412434	36081 93274	51			
10	557606	54.3	969665	8.1	587941	62.5	412059	36108 93253	50			
11	9.557932	54.3	9.969616	8.2	9.588316	62.5	10.411684	36135 93243	49			
12	558258	54.3	969567	8.2	588691	62.4	411309	36162 93232	48			
14	558909	54.2	969469	8.2	589440	62.4	410550	36217 93222	47			
15	559234	54.2	969420	8.2	589814	62.3	410186	36244 93201	45			
16	559558	54 1	969370	82	590188	62.3	409812	36271 93190	44			
17	559883	54.0	969321	8.2	590562	62.2	409438	36298 93180	43			
10	560531	54.0	969272	8.2	590935	62.2	409060	36325 93169	42			
20	560855	53.9	969173	8.2	591681	62.2	408319	36379 93148	40			
21	9.561178	53.9	9.969124	8.2	9.592054	62.1	10.407946	36406 93137	39			
22	561501	53.8	969075	8.2	592426	62.0	407574	36434 93127	38			
23	560146	53.7	969025	8.2	502120	62.0	407202	36461 93116	37			
25	562468	53.74	968926	8.2	593542	61.9	406458	36515 93095	35			
26	562790	53.6	968877	8.3	593914	61.9	406086	36542 93084	34			
27	563112	53 6	968827	8.3	594285	61.8	405715	36569 93074	33			
28	563433	53.5	958777	8.3	594656	61.8	405344	36596 93063	32			
30	564075	53.5	908720	8.3	595398	61.7	404973	36650 93052	30			
31	9.564396	53.4	9.968628	8.3	9.595768	61.7	10.404232	136677 93031	29			
32	564716	53 3	968578	8.3	596138	61.6	403862	36704 93020	28			
33	565036	53.3	968528	8.3	596508	61.6	403492	36731 93010	27			
35	565676	53.2	968429	8.3	597947	61.6	403122	36785 92999	20			
36	565995	53.2	968379	8.3	597616	61.5	402384	36812 92978	24			
37	566314	53 1	968329	8.3	597985	61 5	402015	36839 92967	23			
38	566632	53.1	968278	8.3	598354	61.4	401646	36867 92956	22			
39	567960	53.0	958228	8.4	598722	61.4	401278	36894 92945	21			
41	9.567587	53.0	9.958128	8.4	9.599459	61.3	10.400541	36948 92926	19			
42	567904	52.9	968078	8.4	599827	61.3	400173	36975 92913	18			
43	568222	52.8	958027	8.4	600194	61.2	_ 399806	37002 92902	17			
44	568539	52.8	957977	8.4	6000562	61.2	399438	37029 92892	16			
46	569172	52.8	967876	8.4	601296	61.1	398704	37083 92870	10			
47	569488	52.7	957826	8.4	601662	61.1	398338	37110 22859	13			
48	569804	52 6	967775	8.4	602029	61.0	397971	37137 92849	12			
49	570120	52.6	967725	8.4	602395	61.0	397605	37164 92838	11			
51	9 570751	52.5	9.967624	8.4	9.603127	61.0	10.396873	37218 22816	9			
52	571066	52.5	937573	8.4	603493	60.9	396507	37245 22805	8			
53	571380	52 4	937522	8.5	603858	60.9	396142	37272 92794	7			
54	571695	52.3	967471	8.5	604223	60.8	395777	37299 92784	6			
56	579292	52.3	967370	8.5	604953	60.8	3950412	37353 92773	4			
57	572636	52.3	967319	8.5	605317	60.7	394683	37380 92751	3			
58	572950	52.2	967268	0.5	605682	60 7	394318	37407 92740	2			
59	573263	52.1	907217	8.5	(05046	60.6	393954	37434 92729	1			
00	573575		96,166		606410		393590	37461 92718	0			
	Cosine.	1	Sine.		Cotang.		Tang. II	N. cos. N.sine.				
				6	8 Degrees.							
TABLE II. Log. Sines and Tangents. (22°) Natural Sines. 43 (1) Sine D 10"1 Cotang N sine IV Sine IV												
---	----------	--------	----------	--------	------------	--------	-----------	----------	---------	-----------------	--	--
,	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.			
0	9.573575	50 1	9.967166	85	9.603410	60.6	10.393590	37461	92718	60		
1	573888	52.0	967115	8.5	605773	60.6	593227	37488	92707	59		
23	574512	52.0	967034	8.5	607500	60.5	392500	37542	92697	57		
4	574824	51.9	966961	8.5	607863	60.5	392137	37569	92675	56		
5	575136	51.9	966910	8.5	608225	60.4	391775	37595	92664	55		
6	575447	51.8	966859	8.5	608588	60.4	391412	37622	92653	54		
8	576039	51.8	966756	8.5	609312	60.3	390688	37676	92631	$50 \\ 52$		
9	576379	51.7	966705	8.0	609674	60.3	390326	37703	92620	51		
10	576689	51.6	966653	8.6	610036	60.2	389964	37730	92609	50		
11	577309	51.6	9.966550	8.6	610759	60.2	389241	37757	92598	49		
13	577618	51.6	966499	8.6	611120	60.2	388880	37811	92576	47		
14	577927	51 5	966447	8.0	611480	60 1	388520	37838	92565	46		
15	578236	51.4	966395	8.6	611841	60.1	388159	37865	92554	45		
16	578853	51.4	966344	8.6	612201	60.0	387439	37892	92043	44		
18	579162	51.3	966240	8.6	612921	60.0	387079	37946	92521	42		
19	579470	51.3	966188	8.6	613281	50.0	386719	37973	92510	41		
20	579777	51.2	966136	8.6	613641	59.9	386359	37999	92499	40		
21	9.580085	51.2	9.966085	8.7	9.614000	59.8	285641	38020	92488	39		
23	580699	51.1	965981	8.7	614718	59.8	385282	38080	92466	$\frac{30}{37}$		
24	581005	51.1	965928	8.7	615077	59.8	384923	38107	92455	36		
25	581312	51.0	965876	8.7	615435	59 7	. 384565	38134	92444	35		
26	581618	51.0	965824	8.7	615793	59.7	384207	38161	92432	34		
98	582229	50.9	965720	8.7	616509	59.6	383491	38215	92421	33		
29	582535	50.9	965668	8.7	616867	59.6	383133	38241	92399	31		
30	582840	50.9	965615	8.7	617224	59.0	382776	38268	92388	30		
31	9,583145	50.8	9.965563	8.7	9.617582	59.5	10.382418	38295	92377	29		
32	583754	50.7	965011	8.7	618295	59.5	382001	38322	92366	28		
34	584058	50.7	965403	8.7	618652	59.4	381348	38376	92343	26		
35	584361	50.6	965353	8.7	619008	59.4	380992	38403	92332	25		
36	584665	50.6	965301	8.8	619364	59.3	380636	38430	92321	24		
37	584968	50.5	965248	8.8	619721	59.3	380279	38456	92310	23		
39	585574	50.5	965143	8.8	620432	59.3	379568	38510	92287	21		
40	585877	50.4	965090	8.8	620787	59.2	379213	38537	92276	20		
41	9.586179	50.4	9.965037	8.8	9.621142	59.2	10.378858	38564	92265	19		
42	586482	50.3	964984	8.8	621497	59.1	378503	38591	92254	18		
40	587085	50.3	964931	8.8	622207	59.1	377793	38644	922243	16		
45	587386	50.2	964826	8.8	622561	59.0	377439	38671	92220	15		
46	587688	50.2	964773	0.8	622915	59.0	377085	38698	92209	14		
47	587989	50.1	964719	8.8	623269	58.9	376731	38725	92198	13		
40	588590	50.1	964613	8.9	623023	58.9	376024	38752	92186	12		
50	588890	50.0	964560	8.9	624330	58.9	375670	38805	92164	10		
51	9.589190	40 0	9.964507	8.9	9.624683	58.8	10.375317	38832	92152	9		
52	589489	49.9	964454	8.9	625036	58.8	374964	38859	92141	8		
54	590088	49.9	964400	8.9	625388	58.7	374612	38886	92130	7		
55	£90387	49.8	964294	8.9	626093	58.7	373907	38939	92107	5		
56	590686	49.8	964240	8.9	626445	58.7	373555	38966	92096	4		
57	590984	49.7	964187	8.9	626797	58 6	373203	38993	92085	3		
50	591282	49.7	964133	8.9	627149	58.6	372851	39020	92073	2		
60	591530	49.6	904080	8.9	627852	58.5	372499	39046	92062			
	Cosine		Sine		Cotang		Tang	N. cos	Nising			
			i sauci		Docume.		I I Milg.	11. 008.	ronne.			
1				(n Degrees.							

4	14	Lo	g. Sines ar	nd Tar	igents. (23	°) Na	tural Sines.	TABLE I	I.
1	Sine.	D. 10"	Cosme.	D. 10'	Tang.	D. 10	Cotang.	A. sine. N. cos.	1
0	9.591878	10 6	9.964026	00	9.627852	20 E	10.372148	39073 92050	60
1	592176	49.5	963972	8.9	628203	58.5	371797	39100 92039	59
2	592473	49.5	963919	8.9	628554	58.5	371446	39127 92028	58
	593067	49.5	963811	9.0	629255	58.4	371095	39153 92016	57
5	593363	49.4	963757	9.0	629606	58.4	370394	39207 91994	55
6	593659	49.4	963704	9.0	629956	58 3	370044	39234 91982	54
7	593955	49.3	963650	9.0	630306	58.3	369694	39260 91971	53
8	594251	49.3	963596	9.0	630656	58.3	369344	39287 91959	52
10	594842	49.2	963488	9.0	631355	58.2	368645	39341 91940	50
11	9.595137	49.2	9.963434	9.0	9.631704	58.2	10.368296	39367 91925	49
12	595432	49.1	963379	9.0	632053	58 1	367947	39394 91914	48
13	595727	49.1	963325	9.0	632401	58.1	367599	39421 91902	47
14	596315	49.0	963271	9.0	632750	58.1	367250	39448 91891	46
16	596609	49.0	963163	9.0	633447	58.0	366553	39501 91868	40
17	596903	48.9	963108	9.0	633795	58.0	366205	39528 91856	43
18	597196	48.9	963054	91	634143	57.9	365857	39555 91845	42
19	597490	48.8	962999	9.1	634490	57.9	365510	39581 91833	41
20	9 598075	48.8	962945	9.1	0.635185	57.9	10 364815	39608 91822	40
22	598368	48.7	962836	9.1	635532	57.8	364468	39661 91799	38
23	598660	48.7	962781	9.1	635879	57 8	364121	39688 91787	37
24	598952	48.6	962727	9.1	636226	57.7	363774	39715 91775	36
25	500526	48.6	962672	9,1	626010	57.7	363428	39741 91764	35
20	599827	48.5	962562	9.1	637265	57.7	362735	39795 01741	34
28	600118	48.5	962502	9.1	637611	57.7	362389	39822 91729	32
29	600409	40.0	962453	9,1	637956	57 6	362044	39848 91718	31
30	600700	48.4	962398	92	638302	57.6	361698	39875 91706	30
31	9.600990	48.4	9.962343	9.2	9.638647	57.5	10,361353	39902 91694	29
32	601570	48.3	962233	9.2	639337	57.5	360663	39955 91671	20
34	601860	48.3	962178	9.2	639682	57.5	360318	39982 91660	26
35	602150	48.2	962123	92	640027	57 4	359973	40008 91648	25
36	602439	48.2	962067	9.2	640371	57.4	359629	40035 91636	24
37	603017	48.1	962012	9.2	641060	57.3	358940	40062 91620	23
39	603395	48.1	961902	9.2	641404	57.3	358596	40115 91601	21
40	603594	48.0	961846	9.2	641747	57 9	358253	40141 91590	20
41	9.603882	48.0	9.961791	9.2	9.642091	57.2	10.357909	40168 91578	19
42	604170	47.9	961735	9.2	642434	57.2	357223	40195 91505	18
43	604745	47.9	961624	9.2	643120	57.2	356880	40248 91543	16
45	605032	47.9	961569	9.3	643463	57 1	356537	40275 91531	15
46	605319	47.8	961513	9.3	643806	57.1	356194	40301 91519	14
47	605606	47.8	961458	9.3	644148	57.0	355852	40328 91508	13
48	606179	47.7	961346	9.3	644832	57.0	355168	40355 91496	11
50	605465	47.7	961290	9.3	645174	57.0	354826	40408 91472	10
51	9.606751	47.6	9.961235	9.3	9.645516	56.9	10.354484	40434 91461	9
52	607036	47.6	961179	9.3	645857	56.9	354143	40461 91449	8
53	607607	47.5	961123	9.3	646199	56.9	353460	40488 91437	6
55	607892	47.5	961011	9.3	646881	56.8	353119	40541 91414	5
56	608177	47.4	960955	9.3	647222	56.8	352778	40567 91402	4
57	608461	47.4	960899	9.3	647562	56 7	352438	40594 91390	3
58	608745	47.3	960843	9.4	647903	56.7	352097	40621 91378	2
60 60	609313	47.3	960786	9.4	648583	56.7	351417	40674 91355	0
	Cosina		Sipe		Cotang		Tang	N. COS. N. sine	-
	CONTROL 1			6	3 Degrees.				

	TABLE II.	1	Log. Sines	and Ta	angents. (2	24°) N	Natural Sines	5.	4	15
	Sine.	D. 10"	Cosine.	D. 10	Tang.	D. 10'	Cotang.	N. sine.	N. cos.	1
0	9.609313	47 3	9.960730	94	9.648583	56 6	10.351417	40674	91355	60
1	609597	47.2	960674	9.4	648923	56.6	351077	40700	91343	59
2	610164	47.2	960518	9.4	649263	56.6	350737	40727	91331	57
	610447	47.2	960505	9.4	649942	56 6	350058	40780	91307	56
5	610729	47.1	960448	9.4	650281	56.5	349719	40806	91295	55
6	611012	47 0	960392	9.4	650620	59 5	349380	40833	91283	54
7	611294	47.0	960335	9.4	650959	56.4	349041	40860	91272	53
8	611858	47.0	960279	9.4	651636	56.4	348703	40880	91200	51
10	612140	46.9	960165	9.4	651974	56.4	348026	40939	91236	50
11	9.612421	40.9	9.960109	9.4	9.652312	56 3	10.347688	40966	91224	49
12	612702	46.8	960052	9.5	652650	56.3	347350	40992	91212	48
13	612983	46.8	959995	9.5	652988	56.3	347012	41019	91200	47
14	613545	46.7	959950	9.5	653663	56.2	340074	41045	91176	45
16	613825	46.7	959825	9.5	654000	56.2	346000	41098	91164	44
17	614105	40.7	959768	9.5	654337	56.2	345663	41125	91152	43
18	614385	46.6	959711	9.5	654174	56.1	345326	41151	91140	42
19	614665	46.6	959654	9.5	655011	56.1	344989	41178	91128	41
20	9.615223	46.5	959590	9.5	0000340	56.1	10 344052	41204	91110	39
22	615502	46.5	959482	9.5	656020	56.0	343980	41257	91092	38
23	615781	40.0	959425	9.0	656356	56.0	343644	41284	91080	37
24	616050	46.4	959368	9.5	656692	55.9	343308	41310	91068	36
25	6166338	46.4	959310	9.6	657028	55.9	342972	41337	91056	35
20	616894	46.3	959255	9.6.	657699	55.9	342030	41303	01032	33
28	617172	46.3	959138	9.6	658034	55.9	341966	41416	91020	32
29	617450	46.2	959081	9.6	658369	00.0	341631	41443	91008	31
30	617727	46.2	959023	9.6	658704	55.8	- 341296	41469 9	90996	30
31	9,618004	46.1	9.958965	9.6	9.659039	55.8	10.340961	41496	90984	29
33	618558	46.1	958850	9.6	659708	55.7	340027	41522 3	90912	27
34	618834	46.1	958792	9.6	660042	55.7	339958	41575	00948	26
35	619110	40.0	958734	9.6	660376	55.7	339624	41602	90936	25
36	619386	46.0	958677	9.6	660710	55.6	339290	41628	90924	24
37	619662	45.9	958619	9.6	661043	55.6	338957	41655	90800	23
39	620213	45.9	958503	9.6	661710	55.6	338290	41707 9	0887	21
40	620488	45.9	958445	9.7	662043	55.5	337957	41734 9	0875	20
41	9.620763	40.8	9.958387	9.7	9.662376	00.0 55 5	10.337624	41760 9	00863	19
42	621038	45.7	958329	9.7	662709	55.4	337291	41787 9	00851	18
43	621313	45.7	958271	9.7	663042	55.4	336958	41813	0826	16
45	621861	45.7	958154	9.7	663707	55.4	336293	41866	0814	15
46	622135	45.6	958096	9.7	664039	55.4	335961	41892 9	00802	14
47	622409	45 6	958038	9.7	664371	55 3	335629	41919 9	00790	13
48	622682	45.5	957979	9.7	664703	55.3	335297	41945 9	00778	12
49	622956	45.5	957921	9.7	665035	55.3	334965	41972 9	0753	10
51	9.623519	45.5	9.957804	9.7	9 665697	55.2	10 334303	42024 9	0741	9
52	623774	45.4	957746	9.7	666029	55.2	333971	42051 9	0729	8
53	624047	45 4	957687	9.8	666360	55 1	333620	42077 9	0717	7
54	624319	45.3	957628	9.8	666691	55.1	333309	42104 9	0704	6
55	624591	45.3	957570	9.8	667021	55.1	332979	42130 9	0680	0
57	625135	46.3	957452	9.8	667682	55.1	332318	42183 9	0668	3
58	625405	45.2	957393	9.8	668013	55.0	331987	42209 9	0655	2
59	625677	40.2	957335	9.8	668343	55 0	331657	42235 9	0643	1
60	625948	10.2	957276	0.0	668672	00.0	331328	42262 9	0631	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N	sine.	1
_	-			6	5 Degrees.					

4	6	Lo	g. Sines an	d Tan	gents. (25°	') Nat	ural Sines.	TABLE I	I.
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
0	9.625948	45 1	9.957276	98	9.668673	55 0	10.331327	42262 90631	60
1	626219	45.1	957217	9.8	669002	54.9	330998	42288 90613	59
3	6267.0	45.1	957099	9.8	669661	54.9	330339	42341 90594	57
4	627030	45.0	957040	9.8	669991	54.9	330009	42367 90582	56
5	627300	45.0	956981	9.8	670320	54.8	329680	42394 90569	55
6	627570	44.9	956862	9.9	670649	54.8	329351	42420 90507	53
8	628109	44.9	956803	9.9	671306	54.8	328694	42473 90532	52
9	628378	44.9	956744	9.9	671634	54 7	328366	42499 90520	51
10	628647	44.8	956684	9.9	671953	54.7	328037	42525 90507	50
11	629185	44.7	9.956566	9.9	672619	54.7	327381	42578 90495	49
13	629453	44.7	956506	9.9	672947	54,6	327053	42604 90470	47
14	629721	44.6	956447	9.9	673274	54.6	326726	42631 90458	46
15	629989	44.6	955387	9.9	673602	54.6	326398	42657 90446	45
10	630297	44.6	956268	9,9	674257	54.5	325743	42709 90421	43
18	630792	44.6	956208	9.9	674584	54.5	325416	42736 90408	42
19	631059	44.5	956148	10.0	674910	54 4	325090	42762 90396	41
20	631326	44.5	956089	10.0	675237	54.4	324763	42788 90383	40
21	631859	44.4	9.950029	10.0	9.675800	54.4	324436	42815 90371 42841 90358	38
23	632125	44.4	955909	10.0	676216	54.4	323784	42867 90346	37
24	632392	44.4	955849	10.0	676543	54.3	323457	42894 90334	36
25	632658	44.3	955789	10.0	676859	54,3	323131	42920 90321	35
26	632923	44,3	955660	10.0	677194	54.3	322806	42940 90309	34
28	633454	44.2	955609	10.0	677846	54.2	322154	42999 90284	32
29	633719	44,2	955548	10.0	678171	51 9	321829	43020 90271	31
30	633984	44.1	955488	10.0	678496	54.2	321504	43051 90259	30
31	9.634249	44.1	9.955428	10.1	9.678821	54.1	10.321179	43077 90246	29
32	634778	44.0	955307	10.1	679471	54.1	320529	43130 90221	27
34	635042	44.0	955247	10.1 10.1	679795	54.1	320205	43156 90208	26
35.	635303	43.9	955186	10.1	680120	54.0	319880	43152 90196	25
36	635570	43.9	955126	10,1	680444	54.0	319556	43209 90183	24
38	636097	43.9	955005	10.1	681092	54.0	319232	43261 90171	22
39	636360	43.8	954944	10.1	681416	54.0	318584	43287 90146	21
40	636623	43.8	954883	10.1	681740	53.9	318260	43313 90133	20
41	9.636886	43.7	9.954823	10.1	9.682063	53.9	10.317937	43340 90120	19
42	637411	43.7	954702	10.1	682710	53.9	317290	43392 90095	17
44	637673	43.7	954640	10.1	683033	53.8	316967	43418 90082	16
45	637935	43.6	954579	10.1	683356	53.8	316644	43445 900:0	15
46	638197	43.6	954518	10.2	683679	53.8	316321	43471 90057	14
41	638720	43.6	954396	10.2	684324	53.7	315676	43523 90045	10
49	638981	43.5	954335	10.2	684646	53.7	315354	43549 90019	11
50	639242	40.0	954274	10.2	684968	53.7	315032	43575 90007	10
51	9.639503	43.4	9.954213	10.2	9.685290	53.6	10.314710	43602 89994	9
52	640024	43.4	954192	10.2	685934	53.6	314036	43654 89968	7
54	640284	43.4	954029	10.2	686255	53.6	313745	43680 89956	6
55	640544	43.3	953968	10.2	686577	53 5	313423	43706 89943	5
56	640304	43.3	953906	10.2	686898	53.5	313102	43735 89930	4
58	641324	43.2	953783	10.2	687540	53.5	312460	43785 89905	2
59	641584	43.2	953722	10.2 10.2	687861	53.5	312139	43811 89892	1
60	641842	40.2	953660	10.0	688182	00.4	311818	43837 89879	0
	Cosine.		Sine.		Cotang.		Tang.	N. COS. N.Sire.	1
				(54 Degrees.				

	TABLE II.	1	Log. Sines a	and Ta	ungents. (2	26°) N	atural Sines		4	17
-	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N. sine.	N. cos.	
0	9.641842	19 1	9.953650	10.9	9.688182	20 4	10.311818	43837	39879	60
1	642101	43.1	953599	10.3	688502	53.4	311498	43863	89867	59
2	642360	43.1	953537	10.3	688823	53.4	311177	43889	89854	58
0	642877	43.0	953413	10.3	689463	53.3	310537	43910	39341	56
1 5	643135	43.0	953352	10.3	689783	53.3	310217	43968	89816	55
6	643393	43.0	953290	10.3	690103	52 3	309897	43994	89803	54
7	643650	42.9	.953228	10.3	690423	53.3	309577	44020	89790	53
8	643908	42.9	953166	10.3	690742	53.2	309258	44046	89777	52
10	644423	42.9	953042	10.3	691381	53.2	308619	44072	89764	50
11	9.644680	42.8	9.952980	10.3	9.691700	53.2	10.308300	44124	89739	49
12	644936	42.8	952918	10.4	692019	52 1	307981	44151	89726	48
13	645193	42.7	952855	10.4	692338	53.1	307662	44177	89713	47
14	645450	42.7	952793	10.4	692656	53.1	307344	44203	89700	46
16	645962	42.7	952731	10.4	6932913	53.1	306707	44229	89674	40
17	646218	42.6	952606	10.4	693612	53.0	306388	44281	89662	43
18	646474	42.6	952544	10.4	693930	52.0	305070	44307	89649	42
19	646729	42.0	952481	10.4	694248	53 0	305752	44333	89636	41
20	645984	42.5	952419	10.4	694566	52.9	305434	44359	89623	40
00	9.047240	42.5	9.952350	10.4	9.094883	52.9	204700	44385	89610	39
23	647749	42.4	952231	10.4	695518	52.9	304482	44411	89584	37
24	648004	42.4	952168	10.4	695836	52.9	304164	44464	89571	36
25	648258	42.4	952106	10.5	696153	59 9	303847	44490	89558	35
26	643512	42.3	952043	10.5	696470	52 8	303550	44516	89545	34
27	648756	42.3	951980	10.5	696787	52.8	303213	44542	89532	33
20	649020	42.3	951917	10.5	697103	52.8	302897	44508	89519	32
30	649527	42.2	951791	10.5	697736	52.7	302264	44094	89493	30
31	9.649781	42.2	9.951728	10.5	9.698053	52.7	10.301947	44646	89480	29
32	650034	42.2	951665	10.5	698369	52.7	301631	44672	89467	28
33	650287	42.1	951602	10.5	698685	52.6	301315	44698	89454	27
35	650/02	42.1	951539	10.5	600316	52.6	300999	44724	89441	26
36	651044	42.1	951412	10.5	699632	52.6	300368	44776	89415	24
37	651297	42.0	951349	10.5	699947	52.6	300053	44802	89402	23
38	-651549	42.0	951286	10.0	700263	52.5	299737	44828	89389	22
39	651800	41.9	951222	10.6	700578	52.5	299422	44854	39376	21
40	0 652202	41.9	951159	10.6	700893	52.5	299107	44880	59363 20250	20
42	652555	41.9	951030	10.6	701523	52.4	298477	44900	20337	18
43	652806	41.8	950968	10.6	701837	52.4	298163	44958	39324	17
44	653057	41.0	950905	10.6	702152	04.4 52 4	297848	44984	89311	16
45	653303	41.8	950841	10.6	702466	52.4	297534	45010	39298	15
47	652802	41.7	950778	10.6	702780	52.3	297220	45036	59285	14
48	654059	41.7	950650	10.6	703409	52.3	290905	45088	39272	10
49	654309	41.7	950586	10.6	703723	52.3	296277	45114	39245	11
50	654558	41.0	950522	10.6	704036	52.3	295964	45140	39232	10
51	9.654808	41 6	9.950458	10.7	9.704350	52 2	10.295650	45166	59219	9
53	655207	41.6	950394	10.7	704663	52.2	295337	45192 8	9206	8
54	655556	41.5	950366	10.7	704977	52.2	296023	45242	80180	6
55	655805	41.5	950202	10.7	705603	52.2	294397	45269	39167	5
55	656054	41.5	950138	10.7	705916	52.1	294084	45295	9153	4
57	655302	41 4	950074	10.7	706228	52 1	293772	45321 8	39140	3
50	656551	41.4	950010	10.7	706541	52.1	293459	45347 8	39127	2
60	652017	41.3	949945	10.7	700804	52.1	293146	45373	30101	
	Cosina		Sino		101100		Pope	10000	Vaina	
	Costile. 1	1	Sille. 1		Coung.		Tang. 1	IV. COS.[1	(.sine.)	
				6	3 Degrees.					

4	8	L	og. Sines ar	ıd Tan	igents. (27	°) Na	tural Sines.	TABLE	II.
1	Sine.	D. 10'	Cosme.	D. 10'	Tang.	D. 10	Cotang.	N. sine. N. co	D:8.
0	9.657047	41 9	9.949881	10.7	9.707166	50 0	10.292834	45399 8910	01 60
1	657295	41.3	949816	10.7	707478	52.0	292522	45425 8908	37 59
2	657542	41.2	949752	10.7	707790	52.0	292210	45451 8907	4 58
3	658027	41.2	949088	10.8	708102	52.0	291893	454778900	18 56
5	658284	41.2	949558	10.8	708726	51.9	291274	45529 8908	
6	658531	41.2	949494	10.8	709037	51.9	290963	45554 8902	21 54
7	658778	41.1	949429	10.0	709349	51.9	290651	45580 8900)8 53
8	659025	41.1	949364	10.8	709660	51.9	290340	45606 8899	05 52
9	659271	41.0	949300	10.8	709971	51.8	290029	45632 8898	51 51
10	0 659763	41.0	949200	10.8	9 710593	51.8	10 289407	45684 889	5 49
12	660009	41.0	949105	10.8	710904	51.8	289096	45710 8894	12 48
13	660255	40.9	949040	10.8	711215	51.8	288785	45736 8895	28 47
14	660501	40.9	948975	10.8	711525	51.0	288475	45762 8891	15 46
15	660745	40.9	948910	10.8	711836	51.7	288164	45787 8890)2 45
16	660991	40.8	948840	10.8	712140	51.7	281894	45813 8888	58 44
18	661481	40.8	940700	10.9	712400	51.7	287234	45865 8886	32 42
19	661726	40.8	948650	10.9	713076	51.6	286924	45891 8884	18 41
20	661970	40.7	948584	10.9	713386	51.6	286614	45917 8883	35 40
21	9.662214	40.7	9.948519	10.9	9.713696	51.0	10.286304	45942 8885	22 39
22	662459	40.7	948454	10.9	714005	51.6	285995	45968 8880	08 38
23	662703	40.6	948388	10.9	714314	51.5	280080-	40994 8875	0 37
25	663190	40.6	940323	10.9	714024	51.5	285067	46046 8876	8 35
26	663433	40.6	948192	10.9	715242	51.5	284758	46072 8876	5 34
27	663677	40.5	948126	10.9	715551	51.5	284449	46097 8874	1 33
28	663920	40.5	948060	10.9	715860	51.4	284140	46123 8872	28 32
29	664163	40.5	947995	11.0	716168	51.4	283832	46149 8871	5 31
30	664406	40.4	947929	11.0	716477	51.4	283523	46175 8870	1 30
31	9.004048	40.4	9.947803	11.0	9.716700	51.4	289907	46226 8861	4 98
33	665133	40.4	947731	11.0	717401	51.3	282599	46252 8866	1 27
34	665375	40.3	947665	11.0	717709	51.3	282291	46278 8864	7 26
35	665617	40.3	947600	11.0	718017	51 3	281983	46304 8863	34 25
36	665859	40.2	947533	11.0	718325	51.3	281675	46330 8862	20 24
37	666100	40.2	947467	11.0	718633	51.2	281367	46300 8800	11 23
38	666583	40.2	947401	11.0	710940	51.2	280752	46407 8858	80 21
40	666824	40.2	947269	11.0	719555	51.2	280445	46433 8850	i6 20
41	9.667065	40.1	9.947203	11.0	9.719862	51.2	10.280138	46458 8850	53 19
42	667305	40.1	947\36	11.0	720169	51.2	279831	46484 8853	39 18
43	667546	40.1	947070	11.1	720476	51.1	279524	46510 885	26 17
44	669027	40.0	947004	11.1	720783	51.1	.279217	46561 8840	12 10
40	668267	40 0	940937	11.1	721396	51.1	278604	46587 8848	35 14
47	668506	40.0	946804	11.1	721702	51.1	278298	46613 884	72 13
48	668746	39.9	946738	11.1	722009	51.0	277991	46639 8848	58 12
49	668986	39 9	946671	11 1	722315	51 0	277685	46664 884	15 11
50	669225	39.9	946604	11.1	722621	51.0	277379	46690 8843	
51	9.669464	39.8	9.946538	11.1	9.722927	51.0	10.277073	46710 884	1 9
52	6699.19	39.8	940471	11.1	723538	50.9	276462	46767 8839	0 7
54	670181	39.8	946337	11.1	723844	50.9	276156	46793 883	77 6.
55	670419	39.7	946270	11.1	724149	50.9	· 275851	46819 8830	53 5
56	670658	39.7	946203	11.2	724454	50.9	275546	46844 883	49 4
57	670896	39.7	946136	11.2	724759	50.8	275241	46870 883	36 3
50	671134	39.6	946069	11.2	725005	150.8	274935	40090 883	
60	671600	39.6	940002	11.2	725674	50.8	274031	46947 882	
	Corina		Sino		Cotang		Tano	N. 005 2.5	
-	1 Costne:	1	Bille.	L (52 Degrees.	L	- Lange	11 00000	

1	TABLE II.	1	log. Sines a	and Ta	ingents. (2	8°) N	atural Sines		4	9
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.671609	39 6	9.945935	11.2	9.725674	50.8	10.274326	46947	88295	60
1	671847	39.5	945868	11.2	725979	50.8	274021	46973	88281	59 58
2	672321	39.5	945733	11.2	726588	50 7	273412	47024	88254	57
4	672558	39.5	945666	11.2	726892	50.7	273108	47050	88240	56
5	672795	39.4	945598	11.2	727197	50.7	272803	47076	88226	55
6	673268	39.4	945531	11.2	727805	50.7	272499	47101	88199	53
8	673505	39.4	945396	11.3	728109	50.6	271891	47153	88185	52
9	673741	39.4	·945328	11.3 11.3	728412	50.6	271588	47178	88172	51
10	673977	39.3	945261	11.3	728716	50.6	271284	47204	88158	50
11	674448	39.3	945125	11.3	729323	50.6	270677	47255	88130	49
13	674684	39.2	945058	11.3	729626	50.5	270374	47281	88117	47
14	674919	39.2	944990	11.3	729929	50.5	270071	47306	88103	46
15	675155	39.2	944922	11.3	730233	50.5	269767	47332	88039	45
17	675624	39.1	944786	11.3	730838	50.5	269162	47383	88062	43
18	675859	39.1	944718	11.3	731141	50.4	268859	47409	88048	42
19	676094	39.1	944650	11.3	731444	50.4	268556	47434	88034	41
20	676328	39.0	944582	11.4	731746	50.4	268254	47460	88020	40
$\tilde{22}$	676796	39.0	944446	11.4	732351	50.4	267649	47511	87993	38
23	677030	39.0	944377	11.4	732653	50.3	267347	47537	87979.	37
24	677264	38.9	944309	11.4	732955	50.3	267045	47562	87965	36
20	677731	38.9	944241	11.4	733257	50.3	266743	47588	87951	35
27	677964	38.9	944104	11.4	733860	50.3	266140	47639	87923	33
28	678197	38.8	944036	11.4	734162	50.2	265838	47665	87909	32
29	678430	38.8	943967	11.4	734463	50.2	265537	47690	87896	31
30	678663	38.8	943899	11.4	734764	50.2	265236	47716	87868	30
32	679128	38.7	943761	11.4	735367	50.2	264633	47767	87854	28
33	679360	38.7	943693	11.4	735668	50.2	264332	47793	87840	27
34	679592	38.7	943624	11.5	735969	50.1	264031	47818	87826	26
36	680056	38.6	943000	11.5	736209	50.1	263430	47844	87798	23
37	680288	38.6	943417	11.5	736871	50.1	263129	47895	87784	23
38	680519	38.5	943348	11.5	737171	50.0	262829	47920	87770	22
39	680750	38.5	943279	11.5	737471	50.0	262529	47946	87756	21
-41	9 681213	38.5	943210	11.5	9 738071	50.0	10 261929	47997	87729	19
42	681443	38.5	943072	11.5	738371	50.0	261629	48022	87715	18
43	681674	38.4	943003	11.5	738671	49.9	261329	48048	87701	17
41	681905	38.4	942934	11.5	738971	49.9	261029	48073	87672	16
46	682365	38.4	942795	11.5	739570	49.9	260430	48124	87659	14
47	682595	38 2	942726	11.6	739870	49.9	260130	48150	87645	13
48	682825	38.3	942656	11.6	740169	49.9	259831	48175	87631	12
49	683984	38.3	942587	11.6	740468	49.8	259532	48201	57617 87603	10
51	9.683514	38.2	9.942448	11.6	9.741066	49.8	10.258934	48252	37589	9
52	683743	38.2	942378	11.6	741365	49.8	258635	48277	87575	8
53	683972	38.2	942308	11.6	741664	49.8	258336	48303	87561	7
55	684430	38.1	942239	11.6	741962	49.7	257739	48354	37532	5
56	684658	38.1	942099	11.6	742559	49.7	257441	48379	87518	4
57	684887	38.0	942029	11.6	742858	49.7	257142	48405	37504	3
58	685115	38.0	941959	11.6	743156	49.7	256844	48430	37490	2
60	685571	38.0	941889	11.7	743454	49.7	256248	48481	37462	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	
				6	1 Degrees.					

5	50 Log. Sines and Tangents. (29°) Natural Sines. TABLE II.												
1	Image: Text of the second se												
0	9.685571	38.0	9.941819	11.7	9.743752	49.6	10.256248	48481 87462	60				
	685799	37.9	941749	11.7	744050	49.6	255950	48506 87448	59				
	686254	37.9	941609	11.7	744645	49.6	255355	48557 87420	57				
4	686482	37.9	941539	11.7	744943	49.6	255057	48583 87405	56				
5	686709	37.8	941469	11.7	745240	49.0	254760	48608 87391	55				
6	686936	37.8	941398	11.7	745538	49.5	254462	48634 87377	54				
0	687280	37.8	941328	11.7	740000	49.5	204100	48659 87363	53				
9	687616	37.8	941187	11.7	746429	49.5	253571	48710 87335	51				
10	687843	37.7	941117	11.7	746726	49.5	253274	48735 87321	50				
11	9.688059	37 7	9.941046	11.7	9.747023	49.0	10.252977	48761 87306	49				
12	688295	37.7	940975	11.8	747319	49.4	252681	48786 87292	48				
13	688747	37.6	940900	11.8	747010	49.4	252384	48811 87278	47				
15	688972	37.6	940763	11.8	748209	49.4	251791	48862 87250	40				
16	689198	37.6	940693	11.8	748505	49.4	251495	48888 87235	44				
17	689423	37 5	940622	11.0	748801	49.3	251199	48913 87221	43				
18	689648	37.5	940551	11.8	749097	49.3	250903	48938 87207	42				
19	689873	37.5	940480	11.8	749393	49.3	250607	48964 87193	41				
20	9 690323	37.5	9.940338	11.8	9.749985	49.3	10.250015	40909 07170	30				
22	690ن48	37.4	940267	11.8	750281	49.3	249719	49040 87150	38				
23.	690772	31.4	940196	11.8	750576	49.2	249424	49065 87136	37				
24	690996	37 4	940125	11.9	750872	49.2	249128	49090 87121	36				
25	691220	37.3	940054	11.9	751469	49.2	248833	49116 87107	35				
20	691668	37.3	939982	11.9	751757	49.2	· 240030 948943	49141 87093	34				
28	691892	37.3	939840	11.9	752052	49.2	247948	49192 87064	32				
29	692115	37.3	939768	11.9	752347	49.1	247653	49217 87050	31				
30	692339	37 2	939697	11.9	752642	49.1	247358	49242 87036	30				
31	9.692562	37.2	9.939625	11.9	9.752937	49.1	10.247063	49268 87021	29				
32	602008	37.1	939004	11.9	753526	49.1	246709	49293 87007	28				
34	693231	37.1	939410	11.9	753820	49.1	246180	49344 86978	26				
35	693453	37.1	,939339	11.9	754115	49.0	245885	49369 86964	25				
36	693676	37 0	939267	12.0	754409	49.0	245591	49394 86949	24				
37	693898	37.0	939195	12.0	754703	49.0	245297	49419 86935	23				
38	694120	37.0	939123	12.0	755291	49.0	245003	49449 86921	22				
39	694564	37.0	938980	12.0	755585	49.0	244415	49495 86892	20				
41	9.694786	36.9	9.938908	12.0	9.755878	48.9	10.244122	49521 86878	19				
42	695007	36.9	938836	12.0	756172	48.9	243828	49546 86863	18				
43	695229	36.9	938763	12.0	756465	48.9	243535	49571 86849	17				
44	695450	36.8	938619	12.0	757059	48.9	243241	49090 86834	16				
40	695892	36.8	938547	12.0	757345	48.9	242655	49647 86805	14				
47	696113	36.8	938475	12.0	757638	40.0	242362	49672 86791	13				
48	696334	30.0	938402	12.0	757931	48 8	242069	49697 86777	12				
49	696554	36.7	938330	12,1	758224	48.8	241776	49723 86762	11				
50	696775	36.7	938258	12.1	0 758810	48.8	241483	49748 86748	10				
50	697215	36.7	938113	12.1	759102	48.8	240898	49798 86719	8				
53	697435	36.6	938040	12.1	759395	48.7	240605	49824 86704	7				
54	697654	36.6	937967	12 1	759687	48 7	240313	49849 86690	6				
55	697874	36.6	937895	12.1	759979	48.7	240021	49874 86675	5				
56	608212	36.5	937822	12.1	760564	48.7	239128	49899 86661	4				
58	698532	36.5	937676	12.1	760856	48.7	239144	49950 86632	2				
59	698751	36.5	937604	12.1	761148	48.6	238852	49975 86617	1				
60	698970	30.0	937531	14.1	761439	10.0	238561	50000 86603	0				
	Cosine.		Sine.	1	Cotang.		Tang.	N. COS. N.Sine.	1				
		-	-	(30 Degrees.								

ſ	TABLE II. Log. Sines and Tangents. (30°) Natural Sines. 51 / 1. Sine. 1D. 10′/1. Cosine. 1D. 10′/1. Tang. 1D. 10′/1. Cosine. 1D. 10′/1.												
1	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N. sine.	N. cos.				
0	9.698970	36 4	9.937531	12 1	9.761439	48 6	10.238561	50000	86603	60			
1	699189	36.4	937458	12.2	761731	48.6	238269	50025	86588	59			
	699626	36.4	937312	12.2	762314	48.6	237686	50076	36559	57			
4	699844	36.4	937238	12.2	762605	48.6	237394	50191	36544	56			
5	700062	36.3	937165	$12.2 \\ 12.2$	762897	48.5	237103	50126	36530	55			
6	700280	36.3	937092	12.2	763188	48.5	236812	50151	36515	54			
8	700495	36.3	936946	12.2	763770	48.5	236230	50201	86486	52			
9	700933	36.3	936872	12.2	754061	48.5	235939	50227	36471	51			
10	701151	36.2	936799	12.2 12.2	764352	48.4	235648	50252	36457	50			
11	9.701368	36.2	9.936725	12.2	9.764543	48.4	10.235357	50277	36442	49			
12	701965	36.2	930002	12.3	765224	48.4	235057	50302	86413	48			
14	702019	36.1	936505	12.3	765514	48.4	234486	50352	86398	45			
15	702236	36.1	936431	12.3	765805	48.4	234195	50377	86384	45			
16	702452	36.1	936357	12.3	766095	48.4	233905	50403	36369	44			
17	702669	36.0	936284	12.3	766675	48.3	233015	50152	26340	43			
19	703101	36.0	936136	12.3	766965	48.3	233035	50478	86325	41			
20	703317	36.0	936062	12.3	767255	48.3	232745	50503	36310	40			
21	9.703533	35.9	9.935988	12.3	9.767545	48.3	10.232455	50528	36295	39			
22	703749	35.9	935914	12.3	767834	48.3	232166	50553	86281	38			
23	703904	35.9	935766	12.3	768413	48.2	231587	50603	86251	36			
25	704395	35.9	935692	12.4	768703	48.2	231297	50628	86237	35			
26	704610	35 8	935618	12.4	768992	48.2	231008	50654	36222	34			
27	704825	35.8	935543	12.4	769281	48.2	230719	50679	86207	33			
28	705040	35.8	935469	12.4	769370	48.2	230430	50704	86178	32			
20	705469	35.8	935320	12.4	770148	48.1	229852	50754	86163	30			
31	9.705683	35.7	9.935246	12.4	9.770437	48.1	10.229563	50779	85148	29			
32	705898	35.7	935171	12.4	770726	40.1	229274	50304	86133	28			
33	706112	35.7	935037	12.4	771015	48.1	228985	50829	36119	27			
35	703539	35.6	935022	12.4	771592	48.1	228408	50879	36089	20			
36	706753	35.6	934873	12.4	771880	48.1	228120	50904	36074	24			
37	703967	35.6	934798	12.4	772168	48.0	227832	50929	36059	23			
38	707180	35.5	934723	12.5	772457	48.0	227543	50954	86045	22			
40	707605	35.5	934049	12.5	773033	48.0	226967	51004	36015	21			
- 41	9.707819	35.5	9.934499	12.5	9.773321	48.0	10.226679	51029 8	36000	19			
42	708032	35.4	934424	12.5	773608	48.0	226392	51054 8	35985	18			
43	708245	35.4	934349	12.5	773896	47.9	226104	510798	55970	17			
44	703670	35.4	934274	12.5	774184	47.9	225520	511998	35941	10			
46	703882	35.4	934123	12.5	774759	47.9	225241	51154	35926	14			
47	700094	35.3	934048	12,0	775046	47.9	224954	51179 8	35911	13			
48	703305	35.3	933973	12.5	775333	47.9	224667	51204	35895	12			
49	709518	35.3	933898	12.6	775621	47.8	224379	51229 8	35866	10			
51	9.709941	35.3	9.933747	12.6	9.776195	47.8	10.223805	51279	35851	9			
52	710153	35.2	933671	12.6	776482	47.8	223518	513048	85836	8			
53	710364	35.2	933596	12.0	776769	47 8	223231	51329 8	5821	7			
04	710786	35.2	933520	12.6	777055	47.8	222945	513548	55805	6			
56	710967	35.1	933369	12.6	777698	47.8	222372	51404 8	35777	4			
57	711208	35.1	933293	12.6	777915	47.7	222085	514298	35762	3			
58	711419	35.1	933217	12.0	778201	41.1	221799	51454 8	85747	2			
59	711629	35.0	933141	12.6	778487	47.7	221512	514798	5732	1			
	(loging)		953030		118114		221220	10040		0			
	Cosme. 4		Sine.		Cotang.		Tang.	IN. COS.[1	N.Sine.				
				5	9 Degrees.								

	5	3	Lo	og. Sines an	d Tan	gents. (319	^c) Nat	tural Sines.	TABLE I	I.
	1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
	0	0.711839	25.0	9.933036	19 6	9.778774	17 7	10.221226	51504 85717	60
	1	712050	35.0	932990	12.7	779060	47.7	220940	51529 85702	59
	2	712260	35.0	932914	12.7	779340	47.6	220004	5157985672	57
	4	712679	34.9	932762	12.7	779918	47.6	220082	51604 85657	56
-	5	712889	34.9	932685	12.7	780203	47.6	219797	51628 85642	55
1	6	713098	34.9	932609	12.7	780489	47.6	219511	51653 85627	54
	8	713500	34.9	932457	12.7	781060	47.6	218940	51703 85597	52
DATO AC	9	713726	34.8	932380	12.7	781346	47.6	218654	51728 85582	51
	10	713935	34.8	932304	12.7	781631	47.5	218369	51753 85567	50
	11	9.714144	34.8	9.932228	12.7	9.781916	47.5	217700	51803 85536	49
	$\frac{12}{13}$	714561	34.7	932075	12.7	782486	47.5	217514	51828 85521	47
	14	714769	34.7	931998	12.8	782771	47.5	217229	51852 85506	46
	15	714978	34.7	931921	12.8	783056	47.5	216944	51877 85491	45
	16	715186	34.7	931845	12.8	783341	47.5	216009	51902 85470	44
	18	715602	34.6	931691	12.8	783910	47.4	216090	51952 85446	42
	19	715809	34.6	931614	12.8	784195	47.4	215805	51977 85431	41
	20	716017	34.6	931537	12.8	784479	47.4	215521	52002 85416	40
	21	9.716224	34.5	9.931460	12.8	9.784764	47.4	10.215236	5202685401	39
1	$\frac{22}{22}$	716432	34.5	931383	12.8	785332	47.4	214668	52076 85370	37
	24	716846	34.5	931229	12.8	785616	47.3	214384	52101 85355	36
	25	717053	34.5	931152	12.9	785900	47.3	214100	52126 85340	35
	26	717259	34.4	931075	12.9	786184	47.3	213816	52151 85325	34
	27	717466	34.4	930998	12.9	780468	47.3	213032	52200185294	33
	29	717879	34.4	930843	12.9	787036	47.3	212964	52225 85279	31
	30	718085	34.4	930766	12.9	787319	47.3	212681	52250 85264	30
H	31	9.718291	34.3	9.930688	12.9	9.787603	47.2	10.212397	52275 85249	29
II.	32	718497	34.3	930611	12.9	787886	47.2	212114	52324185218	28
	33 34	718909	34.3	930456	12.9	788453	47.2	211547	52349 85203	26
	35	719114	34.3	930378	12.9	788736	47.2.	211264	52374 85188	25
	36	719320	34.2	930300	12.9 13 0	789019	47.2	210981	52399 85173	24
	37	719525	34.2	930223	13.0	789302	47.1	210598	52423 85157	23
	38 30	719730	34.2	930145	13.0	789868	47.1	210415	52473 85127	21
	40	720140	34.1	929989	13.0	790151	47.1	209849	52498 85112	20
	41	9.720345	34.1 24.1	9.929911	13.0	9.790433	47.1	10.209567	52522 85096	19
	42	720549	34.1	929833	13.0	790716	47.1	209284	52547 85081	18
	43	720754	34.0	929755	13.0	790999	47.1	209001	52597 85051	16
	45	721162	34.0	929599.	13.0	791563	47.1	208437	52621 85035	15
	46	721366	34 0	929521	13.0	791846	47.0	208154	52646 85020	14
CALL A	47	721570	34.0	929442	13.0	792128	47.0	207872	52671 85005	13
	48	721774	33.9	929364	13.1	792410	47.0	207590	52720 84989	12
A MORE	49 50	722181	33.9	929280	13.1	792924	47.0	207026	52745 84959	10
S-Shield	51	9.722385	33.9	9.929129	13.1	9.793256	47.0	10.206744	52770 84943	9
A STATE	52	722588	33.9	929050	13.1	793538	46.9	206462	52794 84928	8
	53	722791	33.8	928972	13.1	793819	46.9	206181	52819 84913	7
	04 55	722994	33.8	928893	13.1	794101	46.9	205699	52869 84882	5
-	56	723400	33.8	928736	13.1	794664	46.9	205336	52893 84866	4
	57	723603	33.8	928657	13.1	794945	40.9	205055	52918 84851	3
	58	723805	33.7	928578	13.1	- 795227	46.9	204773	52943 84836	2
	60 60	724007	33.7	928499	13.1	795780	46.8	204492	52992 84805	
		Cosina		Sino		Cotang		Tang	N cos N sine	
-		, cosme.		j pille.		P Docarig.		, rang.	arr constantine,	1
1					é	o Degrees.				

	TABLE II. Log. Sines and Tangents. (32°) Natural Sines. 53 L t. Sines ID 10/1/1 Cosines 10											
T	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.				
0	9.724210	22 7	9,928420	12.9	9.795789	16 8	10.204211	52992 84805	60			
1	724412	33.7	928342	13.2	796070	46.8	203930	53017 84789	59			
2	724014	33.6	928263	13.2	796351	46.8	203649	53011 84774	57			
4	725017	33.6	928103	13.2	796913	46.8	203087	53091 84743	56			
5	725219	33.6	928025	13.2	797194	46.8	202806	53115 84728	55			
6	725420	33.5	927946	13.2	797475	40.0	202525	53140 84712	54			
7	725622	33.5	927867	13.2	797755	46.8	202245	53164 84697	53			
	720823	33.5	927787	13.2	798036	46.7	201964	52014 84681	92 51			
10	726225	33.5	927629	13.2	798596	46.7	201404	53238 84650	50			
11	9.726426	33.5	9.927549	$ 13.2 \\ 12.0 $	9.798877	46.7	10.201123	53263 84635	49			
12	726626	33.4	927470	13.2	799157	40.7	200843	53288 84619	48			
13	726827	33.4	927390	13.3	799437	46.7	200563	53312 84604	47			
14	727027	33.4	927310	13.3	799717	46.7	200283	53261 84588	40			
16	727428	33.4	927151	13.3	800277	46.6	199723	53386 84557	44			
17	727628	33.3	927071	13.3	800557	46.6	199443	53411 84542	43			
18	727828	32 3	926991	13.3	800836	40.0	199164	53435 84526	42			
19	728027	33.3	926911	13.3	801116	46.6	198884	53460 84511	41			
20	128221	33.3	926831	13.3	801396	46.6	198604	52500 94490	40			
22	728626	33.2	926671	13.3	801955	46.6	198045	53534 84464	38			
23	728825	33.2	926591	13.3	802234	46.6	197766	53558 84448	37			
24	729024	33.2	926511	13.3	802513	40.5	197487	53583 84433	36			
25	729223	33 1	926431	13.4	802792	40.0	197208	53607 84417	35			
26	729422	33.1	926351	13.4	803072	46.5	196928	53632 84402	34			
21	729021	33.1	926270	13.4	803351	46.5	196649	52691 94970	33			
20	730018	33.1	920190	13.4	803030	46.5	196092	53705 84355	31			
30	730216	33.0	926029	13.4	804187	46.5	195813	53730 84339	30			
31	9.730415	33.0	9.925949	13.4	9.804466	40.0	10.195534	53754 84324	29			
32	730613	33.0	925868	13.4	804745	40.4	195255	53779 84308	28			
33	730811	33.0	925788	13.4	805023	46.4	194977	53804 84292	27			
35	731206	32.9	920707	13.4	805580	46.4	194098	52853 84211	20			
36	731404	32.9	925545	13.4	805859	46.4	194141	53877 84245	24			
37	731602	32.9	925465	13.5	806137	46.4	193863	53902 84230	23			
38	731799	32.9	925384	13.5	806415	40.4	193585	53926 84214	22			
-89	731996	32.8	925303	13.5	806693	46.3	• 193307	53951 84198	21			
40	732193	32.8	925222	13.5	805971	46.3	193029	5397584182	20			
42	732587	32.8	925060	13.5	807527	46.3	192473	54024 84151	18			
43	732784	32.8	924979	13.5	807805	46.3	192195	54049 84135	17			
44	732980	32.0	924897	13.0	808083	40.3	191917	54073 84120	16			
45	733177	32.7	924816	13.5	808361	46.3	191639	54097 84104	15			
40	733373	32.7	924735	13.6	808638	46.2	191362	54122 84088	14			
48	733765	32.7	924004	13.6	800102	46.2	191084	54140 84072	13			
49	733961	32.7	924491	13.6	809471	46.2	190529	54195 84041	11			
50	734157	32.0	924409	13.6	809748	46.2	190252	54220 84025	10			
51	9.734353	32.6	9.924328	13.0	9.810025	40.2	10.189975	54244 84009	9			
52	734549	32.6	924246	13.6	810302	46.2	189698	54269 83994	8			
51	734744	32.5	924164	13.6	810580	46.2	189420	54293 83978	E			
55	735135	32.5	924003	13.6	811134	46.2	188866	54342 83946	5			
56	735330	32.5	923919	13.6	811410	46.1	188590	54366 83930	4			
57	735525	32.5	923837	13.6	811687	46.1	188313	54391 83915	3			
58	735719	32.4	923755	13.0	811964	40.1	188036	54415 83899	2			
60	735914	32.4	923673	13.7	812241	46.1	187759	54440 83883				
	Covina		923091		012017		107483	04404 83807	-			
	Cosnie,		Sine.		Cotang.		Tang.	N. cos. N.sine.				
L				5	7 Degrees.							

5	54 Log. Sines and Tangents. (33°) Natural Sines. TABLE II. ' Sine. [D. 10'] Cosine. [D. 10'] Tang. [D. 10'] Cotang. [N. sine.]N. cos.]											
· _	Sine.	D. 10'	Cosine.	0. 10"	Tang.	D. 10	Cotang.	N. sine. N. cos.				
0	9.736109	00 4	9.923591	19.17	9.812517	40 1	10.187482	54464 83867	60			
1	736303	32.4	923509	13 7	812794	40.1	187206	54488 83851	59			
2	736498	32.4	923427	13.7	813070	46 1	186930	54513 83835	58			
	736886	32.3	923345	13.7	813693	46.0	180003	54561 83819	57			
5	737080	32.3	923181	13.7	813899	46.0	186101	54586 83788	55			
6	737274	32.3	923098	13.7	814175	46.0	185825	54610 83772	54			
7	737467	32.3	923016	13.7	814452	46.0	185548	-54635 83756	53			
8	737661	32.2	922933	13.7	814728	46.0	185272	54659 83740	52			
10	738048	32.2	922651	13.7	815279	46.0	184721	54708 83708	50			
11	9.738241	32.2	9.922686	13.8	9.815555	46.0	10.184445	54732 83692	49			
12	738434	32.2	922603	13.8	815831	45.9	184169	54756 83676	48			
13	738627	32 1	922520	13.8	816107	45.9	183893	54781 83660	47			
14	738820	32.1	922438	13.8	816382	45.9	183618	54805 83645	46			
16	7302013	32.1	922300	13.8	816933	45.9	183067	54854 83613	40			
17	739398	32.1	922189	13.8	817209	45.9-	182791	54878 83597	43			
18	739500	32.1	922105	13.8	817484	45.9	182516	54902 83581	42			
19	739783	32.0	922023	13.8	817759	45.9	182241	54927 83565	41			
20	739975	32.0	921940	13.8	818035	45.8	181965	54951 83549	40			
21	740359	32.0	9,921507	13.9	818585	45.8	181415	54999 83517	38			
23	740550	32.0	921691	13.9	818860	45.8	181140	55024 83501	37			
24	740742	31.9	921607	13.9	819135	45.8	180865	55048 83485	36			
25	740934	31.9	921524	13.9	819410	45.8	180590	55072 83469	35			
26	741125	31.9	921441	13.9	819684	45.8	180316	55097 83453	34			
21	741315	31.9	921357	13.9	819909 820234	45.8	179766	55145 83421	32			
29	741699	31.8	921190	13.9	820508	45.8	179492	55169 83405	31			
30	741889	31.8	921107	13.9	820783	45.7	179217	55194 83389	30			
31	9.742080	31.8	9.921023	13.9	9.821057	45.7	10.178943	55218 83373	29			
32	742271	31.8	920939	14.0	821332	45.7	178668	55266 53340	28			
33	742462	31.7	920800	14.0	821000	45.7	178120	55291 83324	$\frac{21}{26}$			
35	742842	31.7	920688	14.0	822154	45.7	177846	55315 83308	25			
36	743033	31.7	920604	14.0	822429	45.7	177571	55339 83292	24			
37	743223	31.7	920520	14.0 14.0	822703	45.7	177297	55363 83276	23			
38	743413	31.6	920436	14.0	822977	45.6	177023	55419 83944	22			
39	743002	31.6	920352	14.0	823200	45.6	176476	55436 83228	20			
40	9.743982	31.6	9.920184	14.0	9.823798	45.6	10.176202	55460 83212	19			
42	744171	31.0	920099	14.0	824072	45.0	· 175928	55484 83195	18			
43	744361	31.5	920015	14.0	824345	45.6	175655	55509 83179	17			
44	744550	31.5	919931	14.1	824619	45.6	175381	55557 83147	10			
40	744928	31.5	919769	14.1	825166	45.6	174834	55581 83131	14			
47	745117	31.5	919677	14.1	825439	45.6	174561	55605 83115	13			
48	745306	31.0	919593	14.1	825713	40.0	174287	55630 83098	12			
49	745494	31.4	919508	14.1	825986	45.5	174014	5505483082	11			
50	745583	31.4	919424	14.1	826259	45.5	173741	55702 83050	10			
52	746059	31.4	919254	14.1	826805	45.5	173195	55726 83034	8			
53	746248	31.4	919169	14.1	827078	45.5	172922	55750 83017	7			
54	746436	31.3	919085	14.1	827351	40.0 45 5	172649	55775 83001	6			
55	746624	31.3	919000	14.1	827624	45.5	172376	55799 82585	5			
56	746812	51.3	918915	14.2	828170	45.4	172103	55847 82953	4 3			
58	747187	31.3	918745	14.2	828442	45.4	171558	55871 82936	2			
59	747374	31.2	918659	14.2	828715	45.4	171285	55895 82920	1			
60	747562	51.2	918574	14.2	828987	40.4	171013	55919 82904	0			
	Cosine.		Sine.		Cotang.	-	Tang.	N. cos. N.sine.	1			
-		-		5	6 Degrees.							

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} 1 \\ 4 \\ 7 \\ 7 \\ 4 \\ 7 \\ 7 \\ 4 \\ 7 \\ 7 \\ 4 \\ 7 \\ 7$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 1 \\ 8 \\ 749056 \\ 8 \\ 749056 \\ 31.0 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 749243 \\ 31.0 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 750128 \\ 30.9 \\ 9 \\ 9 \\ 17241 \\ 14.3 \\ 832253 \\ 45.3 \\ 167747 \\ 65208 \\ 82767 \\ 44.3 \\ 832796 \\ 45.3 \\ 167747 \\ 56208 \\ 82767 \\ 45.3 \\ 167747 \\ 56208 \\ 82767 \\ 45.3 \\ 167747 \\ 56208 \\ 82767 \\ 45.3 \\ 166747 \\ 56208 \\ 82767 \\ 45.3 \\ 166774 \\ 56208 \\ 82767 \\ 45.3 \\ 166747 \\ 56208 \\ 82767 \\ 45.3 \\ 166747 \\ 56208 \\ 82768 \\ 45.3 \\ 166774 \\ 56208 \\ 82768 \\ 45.3 \\ 166747 \\ 56208 \\ 82768 \\ 45.3 \\ 16632 \\ 56208 \\ 82669 \\ 44.4 \\ 833068 \\ 45.2 \\ 166661 \\ 56305 \\ 82643 \\ 44 \\ 4833882 \\ 45.2 \\ 166118 \\ 56337 \\ 82802 \\ 45.2 \\ 166118 \\ 56337 \\ 82802 \\ 45.2 \\ 166118 \\ 56338 \\ 82661 \\ 44. \\ 834425 \\ 45.2 \\ 16618 \\ 56338 \\ 82661 \\ 44. \\ 834425 \\ 45.2 \\ 16618 \\ 56338 \\ 82661 \\ 44. \\ 834425 \\ 45.2 \\ 16618 \\ 5637 \\ 8280 \\ 45.2 \\ 16618 \\ 5633 \\ 8246 \\ 45.2 \\ 16618 \\ 5637 \\ 8280 \\ 45.2 \\ 16618 \\ 5633 \\ 8246 \\ 45.2 \\ 16618 \\ 5637 \\ 8280 \\ 45.2 \\ 16618 \\ 5633 \\ 8246 \\ 45.2 \\ 16618 \\ 5637 \\ 8258 \\ 37 \\ 544 \\ 8258 \\ 37 \\ 544 \\ 8258 \\ 37 \\ 544 \\ 8258 \\ 37 \\ 544 \\ 8258 \\ 37 \\ 544 \\ 8248 \\ 45.2 \\ 166138 \\ 5657 \\ 56401 \\ 8248 \\ 34 \\ 45.2 \\ 16603 \\ 56449 \\ 8254 \\ 34 \\ 45.2 \\ 16603 \\ 56449 \\ 8254 \\ 34 \\ 45. \\ 16603 \\ 56449 \\ 8254 \\ 34 \\ 45. \\ 16603 \\ 56449 \\ 8258 \\ 37 \\ 367 \\ 8248 \\ 34 \\ 45. \\ 16633 \\ 8566 \\ 45. \\ 16633 \\ 8246 \\ 34 \\ 37 \\ 7547 \\ 8248 \\ 34 \\ 37 \\ 75276 \\ 30.7 \\ 9 \\ 16581 \\ 8266 \\ 45. \\ 16666 \\ 14.4 \\ 83659 \\ 45. \\ 16633 \\ 8566 \\ 45. \\ 16633 \\ 8566 \\ 45. \\ 16633 \\ 8566 \\ 45. \\ 16633 \\ 8566 \\ 45. \\ 16633 \\ 8566 \\ 45. \\ 16633 \\ 8566 \\ 8248 \\ 35 \\ 35 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
46 756054 20 2 914598 14 6 841457 44 0 158543 57024 82148 14
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50 756782 30.3 914246 14.6 842535 44.9 157465 57119 82082 10
51 9.756963 30.2 9.914158 14.7 9.842805 44.9 10.157195 57143 82065 9
$\begin{bmatrix} 52 \\ 757144 \\ 52 \\ 757296 \\ 30.2 \\ 914070 \\ 14.7 \\ 843074 \\ 44.9 \\ 156657 \\ 57101 \\ 90920 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
55 757688 30.2 913806 14.7 843882 44.9 156118 57238 81999 5
56 757869 $\frac{30.1}{30.1}$ 913718 $\frac{14.7}{14.7}$ 844151 $\frac{44.8}{44.8}$ 155849 57262 81982 4
57 758050 30.1 913630 14.7 844420 44.8 155511 57210 81040 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 60 & 758591 & 30.1 & 913365 & 14.7 & 845227 & 44.8 & 154773 & 57358 & 81915 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $
Cosine. Sine. Cotang. Tang. N. cos. N sine.
55 Degrees.

56 Log. Sines and Tangents. (35°) Natural Sines. TABLE II.											
<u>Sine.</u> [D. 10"] Cosine. [D. 10"] Tang. [D. 10"] Cotang. [N. sine. [N. cos.]									s.		
0	9.758591	30 1	9.913365	14 7	9.845227	44 8	10.154773	57358 8191	5 60		
1	758772	30.0	913276	14.7	845496	44.8	154504	57381 8189	9 59		
2	759132	30.0	913187	14.8	846033	44.8	153967	57429 8186	5 57		
4	759312	30 0	913010	14.8	846302	44.8	153698	57453 8184	8 56		
5	759492	30.0	912922	14.8	846570	44.8	153430	57477 8183	2 55		
6	759672	29.9	912833	14.8	846839	44.7	153161	57501 8181	5 54		
7	759852	29.9	912744	14.8	847107	44.7	152893	57524 8179	8 53		
8	760211	29.9	912055	14.8	847644	44.7	152356	57572 8176	5 51		
10	760390	29.9	912477	14.8	847913	44.7	152087	57596 8174	8 50		
11	9.760569	29.9	9.912388	14.0	9.848181	44.7	10.151819	57619 8173	1 49		
12	760748	29.8	912299	14.9	848449	44.7	151551	57643 8171	4 48		
13	761106	29.8	912210	14.9	848086	44.7	151283	57601 8169	8 47		
14	761285	29.8	912031	14.9	849254	44.7	150746	57715 8166	4 45		
16	761464	29.8	911942	14.9	849522	44.7	150478	57738 8164	7 44		
17	761642	29.0	911853	14.9	849790	44.6	150210	57762 8163	1 43		
18	761821	29.7	911763	14.9	850058	44.6	149942	57786 8161	4 42		
19	7691999	29.7	911074	14.9	850503	44.6	149675	57933 9159	41		
21	9 762356	29.7	9.911495	14.9	9.850861	44.6	10.149139	57857 8156	3 39		
22	762534	29.7	911405	14.9	851129	44.6	148871	57881 8154	6 38		
23	762712	29.0	911315	14.9	851396	44.0	148604	57904 8153	0 37		
24	762889	29.6	911226	15.0	851664	44.6	148336	57928 8151	3 36		
25	763067	29.6	911130	15.0	851931	44.6	148069	57952 8149	6 35		
27	763422	29.6	910956	15.0	852466	44.6	147534	57999 8146	2 33		
28	763600	29.6	910866	15.0	852733	44.6	147267	58023 8144	5 32		
29	763777	29.0	910776	15.0	853001	44.0	146999	58047 8142	8 31		
30	763954	29.5	910686	15.0	853268	44.5	146732	58070 8141	2 30		
31	9.764131	29.5	9,910596	15.0	9,853535	44.5	146108	581188139	5 29		
33	764485	29.5	910415	15.0	854069	44.5	145931	58141 8136	$ \begin{array}{c c} 0 & 20 \\ 1 & 27 \\ \end{array} $		
34	764662	29.4	910325	15.0	854336	44.5	145664	58165 8134	4 26		
35	764838	29.4	910235	15.1	854603	44.0	145397	58189 8132	7 25		
36	765015	29.4	910144	15.1	854870	44.5	145130	58212 8131	0 24		
37	765367	29.4	009963	15.1	855404	44.5	144803	58260 8129	3 23		
39	765544	29.4	909873	15.1	855671	44.5	144329	58283 8125	9 21		
40	765720	29.3	909782	15.1	855938	44.4	144062	58307 8124	2 20		
41	9.765896	29.0	9.909691	15.1	9.856204	44.4	10.143796	58330 8122	5 19		
42	766072	29.3	909601	15.1	856471	44.4	143529	58354 8120	8 18		
43	766.123	29.3	909510	15.1	857004	44.4	143203	58401 8117	4 16		
45	766598	29.3	909328	15.1	857270	44.4	142730	58425 8115	7 15		
46	766774	29.2	909237	15.2	857537	44.4	142463	58449 8114	0 14		
47	766949	29.2	909146	15.2	857803	44.4	142197	58472 8112	3 13		
48	767124	29.2	909055	15.2	858069	44.4	141931	58496 8110	0 12		
49	767475	29.2	908904	15.2	858602	44.4	141004	58543 8107	2 10		
51	9.767649	29.1	9,908781	15.2	9.858868	44.3	10.141132	58567 8105	5 9		
52	767824	29.1	908690	15.2	859134	44.3	140866	58590 8103	8 8		
53	767999	29.1	9035:9	15.2	859400	44.3	140600	58614 8102	1 7		
55	768173	29.1	908507	15.2	850020	44.3	140334	58637 8100	4 6		
56	768522	29.0	908324	15.3	860198	44.3	139802	58684 8007	0 4		
57	768697	29.0	908233	15.3	860464	44.3	139536	58708 8095	3 3		
58	768871	29.0	908141	15.3	860730	44.3	139270	58731 8033	6 2		
59	769045	29.0	903049	15.3	86, 1995	44.3	139005	58755 3091	9 1		
60	769219		907958		861261		138739	08/19/0090	0		
	Cosine.		Sine.		Cotang.	1	Tang.	N. COS. N.SII	ie.) '		
				5	4 Degrees.						

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TABLE II. Log. Sines and Tangents. (369) Natural Sines. 57											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	9.769219	29 0	9.907958	15.3	9.861261	44 3	10.138739	58779 80902	60		
$ \begin{array}{c} 1 & 100000 & 28.9 & 907620 & 15.3 & 661205 & 44.2 & 137471 & 68846 9085 & 05 & 68849 8085 & 05 & 68849 8085 & 05 & 68849 8085 & 05 & 770057 & 28.9 & 907498 & 15.3 & 862283 & 44.2 & 137411 & 58805 68816 & 55 & 670057 & 28.9 & 907498 & 15.3 & 862859 & 44.2 & 137416 & 58902 80789 & 54 & 770460 & 28.8 & 907222 & 15.4 & 863350 & 44.2 & 136651 & 58904 80782 & 53 & 977060 & 28.8 & 907222 & 15.4 & 863350 & 44.2 & 136651 & 58904 80738 & 51 & 10 & 77052 & 28.8 & 907222 & 15.4 & 863350 & 44.2 & 10.35650 & 58904 80738 & 51 & 10 & 77052 & 28.8 & 907037 & 15.4 & 863450 & 44.2 & 10.35650 & 59061 80064 & 48 & 13 & 771470 & 28.7 & 906520 & 15.4 & 864445 & 44.2 & 10.35650 & 59061 80064 & 48 & 13 & 771470 & 28.7 & 906576 & 15.4 & 864471 & 44.2 & 133520 & 59068 80662 & 46 & 15 & 771815 & 28.7 & 906677 & 15.4 & 865470 & 44.1 & 133625 & 59061 80064 & 48 & 1771815 & 28.7 & 906675 & 15.4 & 865507 & 44.1 & 134260 & 5013 80662 & 44 & 17 & 772503 & 28.6 & 906296 & 15.5 & 866036 & 44.1 & 134766 & 59131 80644 & 45 & 771815 & 28.7 & 906389 & 15.5 & 866030 & 44.1 & 134260 & 5013 80662 & 44 & 17 & 772503 & 28.6 & 906294 & 15.5 & 866030 & 44.1 & 133700 & 59225 80576 & 40 & 19 & 772503 & 28.6 & 906294 & 15.5 & 866030 & 44.1 & 133700 & 59225 80576 & 40 & 19 & 772503 & 28.6 & 906582 & 15.5 & 867094 & 44.1 & 10.31371 & 59272 80561 & 50 & 3728 & 50018 & 15.5 & 866129 & 44.1 & 133700 & 59225 80576 & 41 & 29 & 773767 & 28.5 & 905545 & 15.5 & 867335 & 44.1 & 132346 & 50534 & 29 & 773704 & 28.5 & 905545 & 15.5 & 867335 & 44.1 & 132346 & 59318 805047 & 37 & 773875 & 28.5 & 905545 & 15.5 & 867337 & 44.1 & 133436 & 59348 80567 & 43 & 37 & 773876 & 28.5 & 905582 & 15.5 & 867335 & 44.1 & 132346 & 59318 80507 & 37 & 37 & 39348 & 805677 & 44.1 & 132346 & 59348 & 805677 & 44 & 19 & 377 & 59348 & 805677 & 44 & 10 & 13277 & 59348 & 805677 & 44 & 10 & 132877 & 59348 & 805677 & 44 & 10 & 132877 & 59368 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50738 & 50$	1	769393	28.9	907866	15.3	861527	44.3	138473	58802 80885	59		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		769740	28.9	907774	15.3	862058	44 2	138208	58849 80850	57		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	769913	28.9	907590	15.3	862323	44.2	137677	58873 80833	56		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	770087	28.9	907498	15.3	862589	44.2	137411	58896 80816	55		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	770260	28.8	907406	15.3	862854	44.2	137146	58920 80799	54		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	770606	28.8	907314	15.4	863385	44.2	136615	58967 80765	52		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	770779	28.8	907129	15.4	863650	44.2	136350	58990 80748	51		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	770952	28.8	907037	15.4	863915	44.2	136085	59014 80730	50		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	9,771125	28.8	9.906945	15.4	9.864180	44.2	10.135820	59037 80713	49		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	771470	28.7	906760	15.4	864710	44.2	135290	59084 80679	40		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	771643	28.7	906667	15.4	864975	44.2	135025	59108 80662	46		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	771815	28 7	906575	15.4	865240	44.1	134760	59131 80644	45		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	771987	28.7	906482	15.4	865505	44.1	134495	59154 80627	44		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	772331	28.7	906389	15.5	866035	44.1	134230	59201 80593	43		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	772503	28.6	906204	15.5	866300	44.1	133700	59225 80576	41		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	772675	20.0	906111	15.0	866.564	44.1	133436	59248 80558	40		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	9.772847	28.6	9.906018	15.5	9.866829	44.1	10.133171	59272 80541	39		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	773018	28.6	905925	15.5	867358	44.1	132906	59295 80524	38		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	773361	28.6	905739	15.5	867623	44.1	132377	59342 80489	36		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	773533	28.5	905645	15.0	867887	44.1	132113	59365 80472	35		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	773704	28.5	905552	15.5	868152	44.1	131848	59389 80455	34		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	773875	28.5	905459	15.5	868416.	44.0	131584	59412 80438	33		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	774040	28.5	905366	15.6	868945	44.0	131320	59459 80403	31		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	774388	28.5	905179	15.6	869209	44.0	130791	59482 80386	30		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	9.774558	28.4	9.905085	15.0	9,869473	44.0	10.130527	59506 80368	29		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	774729	28.4	904992	15.6	869737	44.0	130263	59529 80351	28		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33	774899	28.4	904898	15.6	870001	44.0	129999	59556 80316	27		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	775240	28.4	904711	15.6	870529	44.0	129735	59599 80299	25		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	775410	28.4	904617	15.0	870793	44.0	129207	59622 80282	24		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	775580	28.3	904523	15.6	871057	44.0	128943	59646 80264	23		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	775750	28.3	904429	15.7	871321	44.0	128679	59669 80247	22		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39	776090	28.3	904335	15.7	871849	44.0	128410	59716 80212	20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	41	9,776259	28.3	9.904147	15.7	9.872112	43.9	10,127888	59739 80195	19		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42	776429	28.2	904053	15 7	872376	40.9	127624	59763 80178	18		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	776598	28.2	903959	15.7	872640	43.9	127360	59786 80160	17		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44	776937	28.2	903864	15.7	872903	43.9	127097	59832 80125	10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	777106	28.2	903676	15.7	873430	43.9	126570	59856 80108	14		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47	777275	28.1	903581	15.7	873694	43.9	126306	59879 80091	13		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	777444	28.1	903487	15.7	873957	43.9	126043	59902 80073	12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49	777613	28.1	903392	15.8	874220	43.9	125780	50040 50056	11		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	9.777950	28.1	9,903202	15.8	9.874747	43.9	10,125253	59972 80021	9		
53 778237 28.0 903014 15.8 875273 43.8 124727 60019 79986 7 54 778455 28.0 902919 15.8 875536 43.8 124424 6004279968 6 55 778524 28.0 902824 15.8 875500 43.8 124200 6006579951 5 56 778792 28.0 902634 15.8 876326 43.8 123937 6008979934 4 57 778960 28.0 902634 15.8 876326 43.8 123937 6004979916 3 58 779128 28.0 902539 15.8 876526 43.8 123947 601579899 2 59 779295 28.0 902549 15.9 876551 43.8 123141 601579899 2 59 779463 27.9 902349 877114 43.8 122886 60152 79864 0 60 779463 Sine. Cotang. Tang. N. cos. N.sine. / 53 Degrass	52	778119	28.1	903108	15.8	875010	43.9	124990	59995 80003	8		
04 778502 28.0 902919 15.8 875536 43.8 124464 6004279968 6 55 7785024 28.0 902824 15.8 875800 43.8 124200 6006579951 5 56 778792 28.0 902729 15.8 876032 43.8 123937 6008979934 4 57 778960 28.0 902539 15.8 876032 43.8 123937 6008979934 4 58 779128 28.0 902539 15.8 876526 43.8 123141 6013579899 2 59 779295 28.0 902349 877114 43.8 123149 6015279861 3 60 779463 902349 877114 43.8 122886 6015279864 0 70366. Sine. Cotang. Tang. N. cos. N.sine. /	53	778287	28.0	903014	15.8	875273	43.9	124727	60019 79980	7		
56 778792 28.0 902724 15.8 876003 43.8 124200 60059 79934 4 57 778960 28.0 902634 15.8 876023 43.8 123937 60059 79934 4 58 779128 28.0 902539 15.8 876326 43.8 123674 60112 79916 3 59 779295 28.0 902539 15.9 876559 43.8 123141 60135 79899 2 59 779295 27.9 902349 877114 43.8 123149 60158 79861 1 60 779463 902349 877114 43.8 122886 60152 79564 0 70sine. Sine. Cotang. Tang. N. cos. N.sine. /	54	778455	28.0	902919	15.8	875536	43.8	124464	60042 79968	6		
57 778960 28.0 902634 15.8 876326 43.8 122674 60112 / 9916 3 58 779128 28.0 902539 15.8 876326 43.8 123674 60112 / 9916 3 59 779295 28.0 902539 15.9 876326 43.8 123674 60112 / 9916 3 60 779463 27.9 902349 15.9 876184 43.8 123149 60152 / 9861 1 60 779463 902349 577114 577114 43.8 122886 60152 / 79864 0 Cosine. Sine. Cotang. Tang. N. cos. N.sine. /	56	778792	28.0	902824	15.8	876063	43.8	123937	60089 79934	4		
58 779128 28.0 902539 15.9 876589 43.8 123411 60135 79899 2 59 779295 28.0 902349 15.9 876589 43.8 123411 60135 79899 2 60 779463 27.9 902349 15.9 877114 43.8 123149 60152 79861 0 Cosine. Sine. Cotang. Tang. N. cos. N. sine. /	57	778960	28.0	902634	15.8	876326	43.8	123674	60112 79916	3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	779128	28.0	902539	15.0	876589	43.8	123411	60135 79899	2		
Object Sine. Sine. <t< td=""><td>59</td><td>779295</td><td>27.9</td><td>902444</td><td>15.9</td><td>876851</td><td>43.8</td><td>123149</td><td>60158 79881</td><td>1</td></t<>	59	779295	27.9	902444	15.9	876851	43.8	123149	60158 79881	1		
52 Degrees				902349		8//114		122886	00182 19804			
		Cosine.		Sine.		53 Degrees	1	Tang.	N. COS. N.SINC			

.

5	58 Log. Sines and Tangents. (37°) Natural Sines. TABLE II.										
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.			
0	9.779463	97 0	9.902349	15 0	9.877114	12 8	10.122886	60182 79864	60		
1	779631	27.9	902253	15.9	877377	43.8	122623	60205 79846	59		
20	779798	27.9	902158	15.9	877640	43.8	122360	60228 79829	58		
4	780133	27.9	901967	15.9	878165	43.8	121835	60274 79793	56		
5	780300	27.9	901872	15.9	878428	43.8	121572	60298 79776	55		
6	780467	27.8	901776	15.9	878691	43.0	121309	60321 79758	54		
7	780534	27.8	901681	15.9	878953	43.7	121047	60344 79741	53		
8 0	780801	27.8	901585	15.9	879216	43.7	120784	60390 79706	51		
10	781134	27.8	901394	15.9	879741	43.7	120259	60414 79688	50		
11	9.781301	27.8	9.901298	16.0	9.880003	43.7	10.119997	60437 79671	49		
12	781468	27 7	901202	16.0	880265	43 7	119735	60460 79658	48		
13	781634	27.7	901106	16.0	880528	43.7	119472	60483 79635	47		
15	781966	27.7	900914	16.0	881052	43.7	118948	60529 79600	45		
16	782132	27.7	900818	16.0	881314	43.7	118686	60553 79583	44		
17	782293	21.7	900722	16 0	881576	43 7	118424	60576 79565	43		
18	782464	27.6	. 906626	16 0	881839	43.7	118161	60599 79547	42		
19	782630	27.6	900529	16 0	889363	43.7	117637	60645 79512	40		
21	9 782961	27.6	9.900337	16 1	9.882625	43.6	10.117375	60668 79494	39		
22	783127	27.6	900242	I6 1	882887	43.6	117113	60691 79477	38		
23	783282	27.0	900144	16 1	883148	43.6	116852	60714 79459	37		
24	783458	27.5	900047	16.1	883410	43.6	116590	60761 79441	36.		
25	783788	27.5	899854	16.1	883934	43.6	116056	60784 79406	34		
27	783953	27.5	899757	16.1	884196	43.6	115804	60307 79388	33		
28	784118	27.5	899660	16.1	884457	43.6	115543	60830 79371	32		
20	784282	27.0	899564	16 1	884719	43.6	115281	60853 79353	31		
39	784447	27.4	899467	16.2	884980	43.6	115020	60876 79335	30		
31	9.704012	27.4	9.099310	16.2	885503	43.6	114497	60922 79300	28		
33	784941	27.4	899176	16.2	885765	43.6	114235	60945 79282	27		
34	785105	27.4	899078	16.2	886026	43.0	113974	60968 79264	26		
35	785269	27.4	898981	16 2	885288	43.6	113712	60991 79247	25		
36	785433	27.3	898884	16.2	886810	43.5	113451	61038 79211	23		
38	785761	27.3	898689	16.2	887072	43.5	112928	61061 79193	22		
39	785925	27.3	898592	16.2	887333	43.5	112667	61084 79176	21		
40	786089	27.3	898494	16.2	887594	43.5	112405	61107 79158	20		
41	9.786252	27 2	9,898397	16.3	9.887855	43.5	10.112145 111884	61130 79140	19		
42	786416	27.2	898299	16.3	888377	43.5	111623	61176 79105	17		
44	786742	27.2	898104	16.3	888639	43.5	111361	61199 79087	16		
45	786905	27.2	898006	16.3	888900	43.5	111100	61222 79039	15		
46	787059	27.2	897908	16.3	889160	43.5	110840	61245 79051	14		
47	787232	27.1	897810	16.3	889421	43.5	110318	61291 79016	12		
48	787557	27.1	897614	16.3	889943	43.5	110057	61314 ;8998	11		
50	787720	27.1	897516	16.3	890204	43.5	109796	61337 78980	10		
51	9.787883	27.1	9.897418	16.3	9.890465	43.4	10.109535	61360 78962	9		
52	788045	27.1	897320	16.4	890725	43.4	109275	61383 78944	7		
53	788208	27.1	897222	16.4	890986	43.4	108753	61429 78908	6		
04	788532	27.0	897025	16.4	891507	43.4	108493	61451 78891	õ		
56	788694	27.0	896926	16.4	891768	43 4	108232	61474 78873	4		
57	788856	27.0	896828	16.4	892028	43.4	107972	61497 78855	3		
58	789018	27.0	896729	16.4	892289	43.4	107451	61543 78819	ĩ		
60	789180	27.0	· 895532	16.4	892810	43.4	107190	61560 78801	Õ		
	Cosine		Sina		Cotang		Tang.	N. cos. N.sine.			
-	Cosme Sine Cound Lang Avecos Name 52 Degrees. 52 Degrees. 53 Degrees. 53 Degrees. 54 Degrees. 55 Degrees.<										

1	TABLE II. Log. Sines and Tangents. (38°) Natural Sines. 59											
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10'	Cotang.	N. sine.	N. cos.			
0	9.789342	96 9	9.896532	16.4	9.892310	12 1	10.107190	61566	78801	60		
1	789504	26.9	896433	16.5	893070	43.4	106930	61589	78783	59		
2	789665	26.9	896335	16.5	893331	43.4	106609	61625	18100	00 57		
1	789988	26.9	896137	16.5	893851	43.4	106149	61658	78729	56		
5	790149	26.9	896038	16.5	894111	43.4	105889	61681	78711	55		
6	790310	20.9	895939	16.5	894371	43.4	105629	61704	78694	54		
7	790471	26.8	895840	16.5	894632	43.3	105368	61726	78676	53		
8	790532	26.8	895741	16.5	894892	43.3	103108	61749	78640	5%		
10	790954	26.8	895542	16.5	895412	43.3	104588	61795	78622	50		
11	9.791115	26.8	9.895443	16.5	9.895672	43.3	10.104328	61818	78604	49		
12	791275	20.0	895343	16.6	. 895932	43.3	104068	61841	78586	48		
13	791436	26.7	895244	16.6	896192	43.3	103808	61864	78568	47		
14	791090	26.7	895045	16.6	896712	43.3	103288	61909	78532	40		
16	791917	26.7	894945	16.6	896971	43.3	103029	61932	78514	44		
17	792077	26.7	894846	16.0	897231	43.3	102769	61955	78496	43		
18	792237	26.6	894746	16 6	897491	43.3	102509	61978	78478	42		
19	792397	26.6	894646	16.6	897751	43.3	102249	62001	78460	41		
20	192007	26.6	894546	16.6	0 898010	43.3	101990	62024	18442	40		
22	792876	26.6	894346	16.7	898530	43.3	101470	62069	78405	38		
23	793035	26.6	894246	16.7	898789	43.3	101211	62092	18387	37		
24	793195	20.0	894146	16.7	899049	43.2	100951	62115	78369	36		
25	793354	26.5	894046	16.7	899308	43.2	100692	62138	78351	35		
20	793514	26.5	893940	16.7	800807	43.2	100432	62160	78215	34		
28	793832	26.5	893745	16.7	900086	43.2	099914	62206	78297	32		
29	793991	26.5	893645	16.7	900346	43.2	099654	62229	18279	31		
30	794150	20.5	893544	16.7	900605	43.2	099395	62251	78261.	30		
31	9.794308	26.4	9.893444	16.8	9.900864	43.2	10.099136	62274	78243	29		
32	794407	26.4	893343	16.8	901124	43.2	098876	62297	18225	28		
34	794784	26.4	893142	16.8	901642	43.2	098358	62342	78188	26		
35	794942	26.4	893041	16.8	901901	43.2	098099	62365	78170	25		
36	795101	26.4	892940	16.8	902160	43.2	097840	62388	78152	24		
37	795259	26.3	892839	16.8	902419	43.2	-097581	62411	78134	23		
30	795575	26.3	802638	16.8	902079	43.2	097321	62433	78098	22		
40	795733	26.3	892536	16.8	903197	43.2	096803	62479	78079	20		
41	9.795891	26.3	9.892435	16.8	9.903455	43.1	10.096545	62502	78061	19		
42	796049	26.3	892334	16.9	903714	43.1	096286	62524	78043	18		
43	796206	26.3	892233	16.9	903973	43.1	096027	62547	78025	17		
45	796521	26.2	892030	16.9	904292	43.1	095708	62502	77088	10		
46	796679	26.2	891929	16.9	904750	43.1	095250	62615	77970	14		
47	796836	20.2	891827	16.9	905008	43.1	094992	62638	77952	13		
48	796993	26.2	891726	16.9	905267	43.1	094733	62660	77934	12		
49	797150	26.1	891624	16.9	905526	43.1	094474	62683	77916	11		
50	9.797464	26.1	9.891421	17.0	9 906043	43.1	10.093957	62706	77870	10		
52	797621	26.1	891319	17.0	906302	43.1	093698	(2751	77861	8		
53	797777	20.1	891217	17.0	906560	43.1	093440	62774	77843	7		
64	797934	26.1	891115	17.0	906819	43.1	093181	62796	17824	6		
05	798091	26.1	891013	17.0	907077	43.1	092923	62819	77803	5		
57	798403	26.1	890809	17.0	907594	43.1	092004	62864	77769	4 3		
58	798560	26.0	890707	17.0	907852	43.1	092148	62887	17751	2		
59	798716	20.0	890505	17.0	908111	43.1	091889	62909	77723	1		
60	798372	20.0	890503	11.0	908369	10.0	091631	62932	77715	0		
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine-	1		
	51 Degrees.											

60 Log. Sines and Tangents. (39°) Natural Sines. TABLE II.											
1	Sine.	[D. 16"	Cosine.	D. 10	Tang.	D. 10'	Cotang.	N. sine. N. cos	•		
(9.798772	96 0	9.890503	17 0	9.903369	12 0	10.091631	62932 77715	60		
1	799028	26.0	890400	17.1	903528	43.0	091372	62955 77696	59		
2	799184	26.0	890298	17.1	903886	43.0	091114	62977 77678	58		
	799339	25.9	890003	17.1	909144	43.0	090500	63020 77641	56		
E	799651	25.9	889990	17.1	909660	43.0	090340	63045 77623	55		
6	799806	25.9	889838	17.1	909918	43.0	090082	63068 77605	54		
7	799962	25.9	889785	17.1	910177	43.0	089823	63090 77586	53		
8	800117	25.9	889632	17.1	910435	43.0	089565	63113 77568	52		
10	800372	25.8	889477	17.1	910393	43.0	089307	63158 77531	50		
11	9.800582	25.8	9.889374	17.1	9.911209	43.0	10.088791	93180 77513	49		
12	800737	20.8	889271	17 2	911467	43.0	088533	63203 77494	48		
13	800892	25.8	889168	17.2	911724	43.0	088276	63225 77476	47		
14	801047	25.8	889054	17.2	911982	43.0	088018	63248 77458	46		
10	801356	25.8	888858	17.2	912440	43.0	087502	63293 77491	40		
17	801511	25.7	888755	17.2	912756	43.0	087244	63316 77402	43		
18	801665	25.7	888651	17.2	913014	43.0	036986	63338 77384	42		
19	801819	25.7	888548	17 2	913271	42.9	086729	63361 77366	41		
20	801973	25.7	888444	17.3	913529	42.9	086471	63383 77347	40		
21	802228	25.7	888937	17.3	9.913787	42.9	085956	63400 77310	39		
23	802436	25.6	888134	17.3	914302	42.9	085698	63451 77292	37		
24	802589	25.6	888030	17.3	914560	42.9	085440	63473 77273	36		
25	802743	25.0	887926	17 2	914817	42.9	085183	63496 77255	35		
26	802897	25.6	887822	17 3	915075	42.9	034925	63518 77236	34		
27	803050	25.6	887718	17.3	915332	42.9	084668	63540 77218	33		
20	803204	25.6	887510	17.3	915590	42.9	084153	03003 77199	32		
30	803511	25.5	887406	17.3	916104	42.9	083896	63608 77162	30		
31	9.803664	25.5	9.887302	17.4	9.916362	42.9	10.083638	63630 77144	29		
32	803817	25.5	887198	17 4	916619	42.9	083381	63653 77125	28		
33	803970	25.5	887093	17.4	916877	42.9	083123	63675 77107	27		
34	804276	25.5	88.835	17.4	917391	42.9	082600	63720 77070	20		
36	804428	25.4	886780	17.4	917648	42.9	082352	63742 77051	24		
37	804581	25.4	886676	17.4	917905	42.9	082095	63765 77033	23		
38	804734	25.4	886571	17 4	918163	42.9	081837	63787 77014	22		
39	804886	25.4	886466	17.4	918420	42.8	081580	63810 76996	21		
40	805039	25.4	886362	17.5	918077	42.8	081323	63832 76977	20		
42	805343	25.4	886152	17.5	919191	42.8	080809	63877 76940	18		
43	805495	25.3	886047	17.5	919448	42.8	080552	63899 76921	17		
44	805547	20.0	885942	17.5	919705	42.0	030295	63922 76903	16		
45	805799	25.3	885837	17.5	919962	42.8	080038	63944 76884	15		
40	803102	25.3	885732	17.5	920219	42.8	079781	6308976847	14		
48	803254	25.3	885529	17.5	920733	42.8	079267	64011 76828	12		
49	803406	25.3	885416	17.5	920990	42.8	079010	64033 76810	11		
50	805557	20.2	885311	17.5	921247	42.8	078753	64056 76791	10		
51	9.806709	25.2	9.885205	17.6	9.921503	42.8	10.078497	64078 76772	9		
52	805860	25.2	885100	17.6	921760	42.8	078240	64100 76754	8		
54	807162	25.2	83:820	17.6	922017	42.8	077796	64145 76717	6		
55	807314	25.2	884783	17.6	922530	42.8	077470	64167 76698	5		
56	807465	25.2	884677	17.6	922787	42.8	077213	64190 76679	4		
57	807615	25.1	884572	17.6	923044	42.0	076956	64212 76661	3		
58	807766	25.1	884466	17.6	923300	42.8	076700	64234 76642	2		
59 60	807917	25.1	884360	17.6	923557	42.7	076187	64270 76604	1		
	000007		004204		020010		070107	N 001 N 0004	-		
	Cosine.)	Sine. 1	. 1	Cotang.		rang.	N. COS. N.FINE.	_		
				5(Degrees.						

TABLE II. Log. Sines and Tangents. (40°) Natural Sines. 61											
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine.	N. cos.		
0	9.803067	25 1	9.884254	17 7	9.923813	42.7	10.076187	64279	76604	60	
1	808218	25.1	884148	17.7	924070	42.7	075930	64301	76586	59	
2	808519	25.1	883936	17.7	924327	42.7	075013	64346	76548	57	
4	808669	25.0	883829	17.7	924840	42.7	075160	64368	76530	56	
5	808819	25.0	883723	17.7	925096	42.7	074904	64390	76511	55	
6	808969	25.0	883617	17 7	925352	42.7	074648	64412	76492	54	
7	809119	25.0	883510	17.7	925609	42.7	074391	64435	76473	53	
9	809209	25.0	883297	17.7	920800	42.7	073878	64479	76436	51	
10	809569	24.9	883191	17.8	926378	42.7	073622	64501	76417	50	
11	9.809718	24.9	9.883084	17.8	9.926634	42.1	10.073366	64524	76398	49	
12	809868	24.9	882977	17 8	926890	42.7	073110	64546	76380	48	
13	810017	24.9	882871	17.8	927147	42.7	072853	64500	76301	41	
14	810316	24.9	882657	17.8	927403	42.7	072341	64612	76323	45	
16	810465	24.8	882550	17.8	927915	42.7	072085	64635	76304	44	
17	810614	24.0	882443	17.8	928171	42.1	071829	64657	76286	43	
18	810763	24.0	882336	17 9	928427	42.7	071573	64679	76267	42	
19	810912	24.8	882229	17.9	928683	42.7	071317	64701	76248	41	
20	0 811210	24.8	0 882014	17.9	928940	42.7	10 070804	64720	76229	39	
22	811358	24.8	881907	17.9	929452	42.7	070548	64768	76192	38	
23	811507	24.7	881799	17.9	929708	42.7	070292	64790	76173	37	
24	811655	24.	881692	17.9	929964	42.1	070036	64812	76154	36	
25	811804	24.7	881584	17.9	930220	42.6	069780	64834	76135	35	
26	811952	24.7	881477	17.9	930475	42.6	069525	64856	76116	34	
28	812248	24.7	881261	17.9	930731	42.6	069209	64070	76078	30	
29	812396	24.7	881153	18.0	931243	42.6	068757	64923	76059	31	
30	812544	24.0	881046	18.0	931499	42.6	068501	64945	76041	30	
31	9.812692	24.0	9.880938	18.0	9.931755	42.0	10.068245	64967	76022	29	
32	812840	24.6	880830	18.0	932010	42.6	067990	64989	76003	28	
33	813135	24.6	880613	18.0	932260	42.6	067/34	65023	75965	26	
35	813283	24.6	880505	18.0	932778	42.6	067222	65055	75946	25	
36	813430	24.6	880397	18.0	933033	42.6	066967	65077	75927	24	
37	813578	24.0	880289	18.0	933289	42.0	066711	65100	75908	23	
38	813725	24.5	880180	18 1	933545	42.6	066455	65122	75889	22	
39	813872	24.5	880072	18.1	933800	42.6	066200	65144	75570	21	
40	9 814166	24.5	879955	18.1	934050	42.6	005944	65188	75832	19	
42	814313	24.5	879746	18.1	934567	42.6	065433	65210	75813	18	
43	814460	24.5	879637	18.1	934823	42.0	065177	65232	75794	17	
44	814607	24.4	879529	18.1	935078	42.0	064922	65254	75775	16	
40	814753	24.4	879420	18.1	935333	42.6	064667	65276	75756	15	
40	814900	24.4	879311	18.1	935589	42.6	064411	65298	75/38	14	
48	815193	24.4	879093	18.2	935844	42.6	064100	65342	75700	12	
49	815339	24.4	878984	18.2	936355	42.6	063645	65364	75680	11	
50	815485	24.4	878875	18.2	936610	42.0	063390	65386	75661	10	
51	9.815631	24.0	9.878766	18 2	9.936866	42.0	10.063134	65408	75642	9	
52	815778	24.3	878656	18.2	937121	42.5	• 062879	65430	75623	8	
54	816060	24.3	878547	18.2	937370	42.5	062624	60402	75004	6	
55	816215	24.3	878328	18.2	937832	42.5	062113	65496	75566	5	
56	816361	24.3	878219	18.2	938142	42.5	061858	65518	75547	4	
57	816507	24.3	878109	18.3	938398	42.5	061602	65540	75528	3	
58	816652	24 2	877999	18.3	938653	42.5	061347	65562	75509	2	
59	816798	24.2	877890	18.3	938908	42.5	061092	65584	75490		
00	810945		877780		939163		060837	00000	104/1	-	
	Cosine.	<u> </u>	Sine.	1	Cotang.	1	Tang.	N. cos.	N.sme.		
				4	9 Degrees.						

62 Log. Sines and Tangents. (41°) Natural Sines. TABLE II.																			
1	Sine.	D. 10	Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N. sine.	N. cos.	1									
0	9.816943	04.0	9.877780	18 2	9.939163	10 5	10.030837	65606	75471	60									
1	817088	24.2	877670	18.3	939418	42.5	060582	65628	75452	59									
2	817233	24.2	877560	18.3	939673	42.5	060327	65650	75433	58									
	817524	24.2	877340	18.3	939928	42.5	059817	65691	75305	56									
5	817668	24.1	877230	18.3	940438	42.5	059562	65716	75375	55									
6	817813	24.1	877120	18.4	940694	42.5	059306	65738	75356	54									
7	817958	24.1	877010	18.4	940349	42.5	059051	65759	75337	53									
8	818103	24.1	876899	18.4	941204	42.5	058796	65781	75318	52									
10	818392	24.1	876678	18.4	941714	42.5	058286	65825	75280	50									
11	9.818536	24.1	9.876568	18.4	9,941968	42.5	10.058032	65847	75261	49									
12	818681	24.0	876457	18.4	942223	42.0	057777	65869	75241	48									
13	818825	24.0	876347	18.4	942478	42.5	057522	65891	75222	47									
14	818909	24.0	876236	18.5	942733	42.5	057267	65913	75203	46									
16	819257	24.0	876014	18.5	942300	42.5	056757	65956	75165	40									
17	819401	24.0	875904	18.5	943498	42.5	056502	65978	75146	43									
18	819545	24.0	875793	18.5	943752	42.0	056248	66000	75126	42									
19	819689	23.9	875682	18.5	944007	42.5	055993	66022	75107	41									
20	819832	23.9	875571	18.5	944252	42.5	055738	66044	75083	40									
21	820120	23.9	9.070409	18.5	9.944017	42.5	10.055483	66099	15069	39									
23	820263	23.9	875237	18.5	945026	42.4	054974	66109	75030	37									
24	820403	23.9	875126	18.5	945281	42.4	054719	66131	75011	36									
25	820550	23.9	875014	18.0	945535	42.4	054465	66153	74992	35									
26	820693	23 8	874903	18.6	945790	42.4	054210	66175 7	74973	34									
27	820836	23.8	874791	18.6	945045	42.4	053955	66197 7	4953	33									
28	821122	23.8	874680	18.6	940299	42.4	052446	66940	4934	32									
30	821265	23.8	874456	18.6	946803	42.4	053192	66262 7	4896	30									
31	9.821407	23.8	9.874344	18.6	9.947053	42.4	10.052937	66284 7	4876	29									
32	821550	23.0	874232	18.7	947318	42.4	052682	66306 7	4857	28									
33	821693	23.7	874121	18.7	947572	42.4	052428	66327 7	4838	27									
34	821835	23.7	874009	18.7	94/826	42.4	052174	66271 2	4818	26									
36	822120	23.7	873784	18.7	948001	42.4	051664	66393 7	4780	20									
37	822262	23.7	873672	18.7	948590	42.4	051410	66414 7	4760	23									
38	822404	23.7	873560	18.7	948844	42.4	051156	66436 7	4741	22									
39	822546	23.7	873448	18.7	949099	42.4	050901	66458 7	4722	21									
40	822688	23.6	873335	18.7	949353	42.4	050647	66480 7	4703	20									
41	9.022030	23.6	9.873223	18.7	9,949007	42.4	050138	66523 7	4003	19									
43	823114	23.6	872998	18.8	950116	42.4	049884	66545 7	4644	17									
44	823255	23.6	872885	18.8	950370	42.4	049630	66566 7	4625	16									
45	823397	23.6	872772	18.8	950625	42.4	049375	66588 7	4605	15									
46	823539	23.6	872659	18.8	950879	42.4	049121	66610 7	4586	14									
47	823680	23.5	872047	18.8	95133	42.4	048867	66652 7	4007	13									
40	823963	23.5	872321	18.8	951642	42.4	048358	66675 7	4522	11									
50	824104	23.5	872208	18.8	951896	42.4	048104	66697 7	4509	10									
51	9.824245	23.0	9.872095	18.0	9.952150	42.4	10.047850	66718 7	4489	9									
52	824386	23.5	871981	18.9	952405	42.4	047595	66740 7	4470	8									
53	824527	23.5	871868	18.9	952659	42.4	047341	66762 7	4451	7									
04 55	824008	23.4	871641	18.9	952913	42.4	046833	66805 7	4431	0 5									
56	824949	23.4	871528	18.9	953421	42.3	046579	66827 7	4392	4									
57	825090	23.4	871414	18.9	953675	42.3	046325	65848 7	4373	3									
58	825230	23.4	871301	18.9	953929	42 3	046071	66870 7	4353	2									
59	825371	23.4	871187	18.9	954183	42.3	045817	66891 7	4334	1									
60	820011		871073		994437		040003	06913 7	4314	0									
!	Cosine.		Sine.		Cotang.		Tang.	N. cos N	.sine.	-									
	-			4	8 Degrees.				48 Degrees.										

TABLE II. Log. Sines and Tangents. (42°) Natural Sines. 63										
7	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.		
0	9.825511	23 4	9.871073	10.0	9.954437	42.3	10.045563	66913 74314	60	
1	825651	23.3	870960	19.0	954691	42.3	045309	66935 74295	59	
2	825791	23.3	870732	19.0	954940	42.3	045055	66978 74256	57	
4	826071	13.3	870618	19.0	955454	42.3	044546	66999 74237	56	
5	826211	23.3	870504	19.0	955707	42.3	044293	67021 74217	55	
6	826351	23.3	870390	19.0	955961	42.3	044039	67043 74198	54	
7	826491	23.3	870276	19.0	956215	42.3	043785	67064 74178	53	
0	826170	\$3.3	870047	19.0	956723	42.3	043031	67107 74139	51	
10	826910	23.2	839933	19.1	956977	42.3	043023	67129 74120	50	
11	9.827049	23.2	9.869818	19.1	9.957231	42.3	10.042769	67151 74100	49	
12	827189	23.2	869704	19.1	957485	42.3	042515	67172 74080	48	
13	827328	23.2	869589	19.1	957739	42.3	042261	67194 74001	47	
14	827606	23.2	869360	19.1	958246	42.3	041754	67237 74022	45	
16	827745	23.2	869245	19.1	-958500	42.3	041500	67258 74002	44	
17	827834	23.2	869130	19.1	958754	42.3	041246	67280 73983	43	
18	828023	23.1	869015	19.1	959008	42.3	040992	67301 73963	42	
19	828162	23.1	838900	19.2	959262	42.3	040738	67323 73944	41	
20	9 828439	23.1	9 868670	19.2	959510	42.3	10 040231	67366 73904	39	
22	828578	23.1	868555	19.2	960023	42.3	039977	67387 73885	38	
23	828716	23.1	868440	19.2	960277	42.3	039723	67409 73865	37	
24	828855	23.0	868324	19.2	960531	42.3	039469	67430 73846	36	
25	828993	23.0	868209	19.2	960784	42.3	039216	67452 73826	35	
20	829131	23.0	857978	19.2	901038	42.3	038709	67495 73787	33	
28	829407	23.0	867862	19.3	961545	42.3	038455	67516 73767	32	
29	829545	23.0	867747	19.3	961799	42.3	038201	67538 73747	31	
30	829683	23.0	867631	19.3	962052	42.3	037948	67559 73728	30	
	9.829821	22.9	9.867515	19.3	9.962306	42.3	10.037694	67580 73708	29	
32	829959	22.9	867283	19.3	962800	42.3	037440	67623 73669	20	
34	830234	22.9	867167	19.3	963067	42.3	036933	67645 73649	26	
35	830372	22.9	867051	19.3	963320	42.3	036680	67666 73629	25	
36	830509	22.9	866935	19.0	963574	42.3	036426	67688 73610	24	
37	830546	22.9	866819	19.4	963827	42.3	036173	67709 73590	23	
30	830921	22.9	866586	19.4	904081	42.3	035665	67759 73551	91	
40	831058	22.8	866470	19.4	964588	42.3	035412	67773 73531	20	
41	9.831195	22.0	9.866353	19.4	9.964842	42.2	10.035158	67795 73511	19	
42	831332	22.8	866237	19.4	965095	42.2	034905	67816 73491	18	
43	831469	22.8	866120	19.4	965349	42.2	034651	67837 73472	17	
45	831742	22.8	865887	19.5	965855	42.2	034145	67880 73432	10	
46	831879	22.8	865770	19.5	966109	42.2	033891	67901 73413	14	
47	832015	22.0	865653	19.5	966362	42.2	033638	67923 73393	13	
48	832152	22.7	865536	19.5	966616	42.2	033384	67944 73373	12	
49	832105	:22.7	865419	19.5	966869	42.2	033131	67965 73253	11	
51	9 832561	22.7	9.865185	19.5	9 967376	42.2	10.032624	68008 73314	01	
52	832697	22.7	- 865068	19.5	967629	42.2	032371	68029 73294	8	
53	832833	22.1	864950	19.5	967883	42.2	032117	68051 73274	7	
54	832969	22.6	864833	19.6	968136	42.2	031864	68072 73254	6	
56	833105	22.6	864716	19.6	968389	42.2	031611	68093 73234	5	
57	833377	.22.6	864481	19.6	908043	42.2	031357	68136 73195	4	
58	833512	22.6	864363	19.6	969149	42.2	030851	68157 73175	2	
59	833648	22.6	864245	19.6	969403	42.2	030597	68179 73155	1	
60	833783	22.0	864127	15.0	969656	14.2	030344	68200 73135	0	
	Cosine.		Sine.		Cotang.	1	Tang.	N. cos. N.sine.	11	
				- 4	7 Degrees.				-	

64 Log. Sines and Tangents. (43°) Natural Sines. TABLE II.											
T	Sine.	D. 10'	[Cosine.	D. 10'	Tang.	D. 10'	' Cotang.	N.sine. N. cos	·		
0	9.833783	199 6	9.864127	10 6	9.969656	10 0	10.030344	68200 73135	60		
	833919	22.5	864010	19.6	969909	42.2	030091	68221 73116	59		
	834054	22.5	863774	19.7	970162	42.2	029838	68242 73096	58		
4	834325	22.5	863656	19.7	970410	42.2	029384	68285 73056	56		
5	834460	22.5	863538	19.7	970922	42.2	029078	68306 73036	55		
6	834595	22.5	863419	19.7	971175	42.2	028825	68327 73016	54		
7	834730	22.5	863301	19.7	971429	42.2	028571	68349 72996	53		
8	834865	22.5	862064	19.7	971682	42.2	028318	68370 72976	52		
10	835134	22.4	862946	19.7	972188	42.2	027812	68412 72937	50		
11	9.835269	22.4	9.862827	19.8	9.972441	42.2	10.027559	68434 72917	49		
12	835403	22.4 99 A	862709	19.8	972694	42.2	027306	68455 72897	48		
13	835538	22.4	862590	19.8	972948	42.2	027052	68476 72877	47		
14	835672	22.4	862471	19.8	973201	42.2	026799	68497 72857	46		
15	835941	22.4	862234	19.8	973404	42.2	026540	68530 79817	40		
17	836075	22.4	862115	19.8	973960	42.2	026040	68561 72797	43		
18	836209	22.3	861996	19.8	974213	42.2	025787	68582 72777	42		
19	836343	22.3	861877	19.8	974466	42 2	025534	68603 72757	41		
20	836477	22.3	861758	19.9	974719	42.2	025281	68624 72737	40		
21	9.830011	22.3	861510	19.9	9.974973	42.2	10.025027	68666 79607	39		
23	836878	22.3	861400	19.9	975479	42.2	024521	68688 72677	30		
24	837012	22.3	861280	19.9	975732	42.2	024268.	68709 72657	36		
25	837146	22.2	861161	19.9	975985	42.2	024015	68730 72637	35		
26	837279	22.2	861041	19.9	976238	42.2	023762	68751 72617	34		
27	837412	22.2	860922	19.9	976491	42.2	023509	68772 72597	33		
28	837540	22.2	860682	19.9	976007	42.2	023250	6879372577	32		
30	837812	22.2	860562	20.0	977250	42.2	022750	68835 72537	30		
31	9.837945	22.2	9.860442	20.0	9.977503	42.2	10.022497	68857 72517	29		
32	838078	22.2	860322	20.0	977756	42.2	022244	68878 72497	28		
33	838211	22.1	860202	20.0	978009	42.2	021991	68899 72477	27		
34	838344	22.1	850082	20.0	978262	42.2	021738	68920 72457	26		
36	838610	22.1	859842	20.0	978768	42.2	021435	68962 72417	20		
37	838742	22.1	859721	20.0	979021	42.2	020979	68983 72397	23		
38	838875	22.1	859601	20.1	979274	42.2	020726	69004 72377	22		
39	839007	22.1	859480	20.1	979527	42.2	020473	69025 72357	21		
40	839140	22.0	859360	20.1	979780	42.2	020220	69046 72337	20		
41	9.839212	22.0	9.859239	20.1	9,980033	42.2	019714	69007 72317	19		
43	839536	22.0	858998	20.1	980538	42.2	019462	69109 72277	17		
44	839668	22.0	858877	20.1	980791	42.2	019209	69130 72257	16		
45	839800	22.0	858756	20.1	981044	42.1	018956	69151 72236	15		
46	839932	22.0	858635	20.2	981297	42.1	018703	69172 72216	14		
47	840064	21.9	858302	20.2	981550	42.1	018400	69193 72196	13		
48	840328	21.9	858272	20.2	982056	42.1	017944	69235 72156	11		
50	840459	21.9	858151	20.2	982309	42.1	017691	69256 72136	10		
51	9.840591	21.9	9.858029	20.2	9.982562	42.1	10.017438	69277 72116	9		
52	840722	21.9	857903	20.2	982814	42.1	017186	69298 72095	8		
53	840854	21.9	857786	20.2	983067	42.1	016933	69319 72075	7		
04 55	841116	21.9	857543	20.3	983573	42.1	016427	69361 72035	5		
56	841247	21.8	857422	20.3	983826	42.1	016174	69382 72015	4		
57	841378	21.8	857300	20.3	934079	42.1	015921	69403 71995	3		
58	841509	21.0	857178	20.3	984331	42.1	015669	69424 71974	2		
59	841640	21.8	857056	20.3	984584	42.1	015416	69445 71954	1		
60	841771		806934		984837		015163	09400 /1934	0		
	Cesine. Sine. Cotang. Tang. N. cos. N.sine.										
				4	6 Degrees.				!		

TABLE II. Log. Sines and Tangents. (44°) Natural Sines. 65											
1	-Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.			
0	9.841771	01 0	9.856934	20 3	9.984837	19 1	10.015163	69466 71934	60		
1	841902	21.8	856812	20.3	985090	42.1	014910	69487 71914	59		
23	842033	21.8	856568	20.4	985596	42.1	014657	69529 71894	57		
4	842294	21.7	856446	20.4	985848	42.1	014152	69549 71853	56		
5	842424	21.7	856323	20.4	986101	42.1	013899	69570 71833	55		
6	842555	21.7	856201	20.4	986354	42.1	013646	69591 71813	54		
8	842815	21.7	855956	20.4	986860	42.1	013393	69633 71772	52		
9	842946	21.7	855833	20.4	987112	42.1	012888	69654 71752	51		
10	843076	21.7	855711	20.4	987365	42.1	012635	69675 71732	50		
11	9.843200	21.6	9.8555588	20.5	9.987618	42.1	012120	69696 71711	49		
13	843466	21.6	855342	20.5	988123	42.1	012123	69737 71671	47		
14	843595	21.6	855219	20.5	988376	42.1	011624	69758 71650	46		
15	843725	21.6	855096	20.5	988629	42.1	011371	69779 71630	45		
16	843800	21.6	854973	20.5	988882	42.1	011118	69800 /1610	44		
18	844114	21.6	854727	20.5	989387	42.1	010613	69842 71569	42		
19	844243	21.5	854603	20.6	989640	42.1	010360	69862 71549	41		
20	844372	21.5	854480	20.6	989893	42.1	010107	69883 71529	40		
21	9.844502	21.5	9.854355	20.6	9.990145	42.1	10.009855	69904 71508	39		
23	844760	21.5	854109	20.6	990651	42.1	009349	69946 71468	37		
24	844889	21.5	853986	20.6	990903	42.1	009097	69966 71447	36		
25	845018	21.0	853862	20.0	991156	42.1	008844	69987 71427	35		
26	845147	21.5	853738	20.6	991409	42.1	008591	70008 71407	34		
28	845405	21.4	853490	20.7	991002	42.1	008086	70029 71386	33		
29	845533	21.4	853366	20.7	992167	42.1	007833	70070 71345	31		
30	845662	21.4	853242	20.7	992420	42.1	007580	70091 71325	30		
31	9.845790	21.4	9.853118	20.7	9.992672	42.1	10.007328	70112 71305	29		
32	845919 846047	21.4	852869	20.7	992920	42.1	006822	70132 71284	28		
34	846175	21.4	852745	20.7	993430	42.1	006570	70174 71243	26		
35	846304	21.4	852620	20.7	993683	42.1	006317	70195 71223	25		
36	846432	21.3	852496	20.8	993936	42.1	006064	70215 71203	24		
31	846588	21.3	852247	20.8	994189	42.1	005559	70236 71182	23		
39	846816	21.3	852122	20.8	994694	42.1	005306	70277 71141	$\tilde{21}$		
40	846944	21.3	851997	20.8	994947	42.1	005053	70298 71121	20		
41	9.847071	21.3	9.851872	20.8	9.995199	42,1	10.004801	70319 71100	19		
42	847327	21.3	851622	20.8	995452	42.1	004348	70360 71059	17		
44	847454	21.3	851497	20.8	995957	42.1	004043	70381 71039	16		
45	847582	21.2	851372	20.9	996210	42.1	003790	70401 71019	15		
46	847709	21.2	851246	20.9	996463	42.1	003537	70422 70998	14		
48	847964	21.2	850996	20.9	996968	42.1	003285	70443 70978	10		
49	848091	21.2	850870	20.9	997221	42.1	002779	70484 70937	11		
50	848218	21.2 21.9	850745	20.9	997473	42.1	002527	70505 70916	10		
51	9.848345	21.2	9.850619	20.9	9.997726	42.1	10.002274	70525 70896	9		
53	848599	21.1	850368	21.0	997979	42.1	002021	70567 70875	7		
54	848726	21.1	850242	21.0	998484	42.1	001516	70587 70834	6		
55	848852	21.1 21.1	850116	21.0 21.0	998737	42.1	001263	70608 70813	5		
57	848979	21.1	849990	21.0	998989	42.1	001011	70628 70793	4		
58	849232	21.1	849738	21.0	999242	42.1	000708	70670 70752	2		
59	849359	21.1	849611	21.0	999748	42.1	000253	70690 70731	ĩ		
60	849485	21.1	849485	21.0	10.000000	42.1	000000	70711 70711	0		
	Cosine.		Sine. •		Cotang.		Tang.	N. cos. N.sine.	'		
				4	5 Degrees.						

LOGARITHMS

TABLE III.

LOGARITHMS OF NUMBERS.

FROM 1 TO 200,

INCLUDING TWELVE DECIMAL PLACES.

N.	Log.	N.	Log.	N.	Log.
1	000000 000000	41	612783 856720	81	908485 018879
2	301029 995664	42	623249 290398	82	913813 852384
3	477121 254720	43	633468 455580	83	919078 092376
4	602059 991328	44	643452 676486	84	924279 286062
5	698970 004336	45	653212 513775	85	929418 925714
6	778151 250384	46	662757 831682	86	934498 451244
. 7	845093 040014	47	672097 857926	87	939519 252619
8	903089 986992	48	681241 237376	88	944482 672150
9	904242 509439	49	690195 080028	89	949390 006645
10	Same as to 1.	50	Same as to 5.	90	Same as to 9.
11	041392 685158	. 51	707570 176098	91	959041 392321
12	079181 246048	52	716003 343635	92	963787 827346
13	113943 352307	53	724275 869601	93	968482 948554
14	146128 035678	54	732393 759823	94	973127 853600
15	176091 259056	55	740362 689494	95	977723 605889
	004110 000050		# 10+00 00#000		000001 000040
16	204119 982656	56	748188 027005	95	982271 233040
17	230448 921378	57	700074 800072	91	986771 734266
18	200212 000103	58	703427 993003	98	005625 104509
19	218103 000903	59	770852 011042	100	990030 194098
20	Same as to 2.	60	Same as to o	100	Same as to 10,
21	322219 2947	61	785329 835011	101	004321 373783
22	342422 680822	62	792391 699498	102	008600 171762
23	361727 836018	63	799340 549453	103	012837 224705
24	380211 241712	64	806179 973984	104	017033 339299
25	397940 008672	65	812913 356643	105	021189 299070
96	414973 347971	66	810543 035549	103	025305 865265
20	431363 764159	67	826074 802701	107	029383 777685
28	447158 031342	68	832508 912706	108	033423 755487
29	462397 997899	69	838849 090737	109	037426 497941
30	Some as to 3.	70	Same as to 7.	110	Same as to 11.
31	491361 693834	71	851258 348719	111	045322 978787
32	505149 978320	72	857332 496431	112	049218 022670
33	518513 939878	73	863322 860120	113	003078 443483
34	531478 917042	74	869231 719731	114	000007 040054
35	544058 044350	76	870001 203392	115	000337 840394
36	556302 500767	76	880813 592281	116	064457 989227
37	568201 724067	77	886490 725172	117	068185 861746
38	579783 596617	78	892094 602690	118	071882 007306
39	591054 607026	79	897627 091290	119	075546 961393
40	Same as to 4.	80	Same as to 8.	120	Same as to 12.
-	Carlos and San				-

66

OF NUMBERS. 67					
N.	Log.	N.	Log.	N.	Log
121	082785 370316	148	170261 715395	175	243038 048686
122	086359 830675	149	173186 268412	176	245512 667814
123	089906 111439	150	176091 259056	177	247973 206362
124	095421 055162	151	178970 947293	178	252853 030980
120	000010 010000	102	101010 001010	115	
126	100370 545118	153	184691 430818	180	255272 505103
127	103803 720956	154	187520 720836	181	257678 574869
128	110589 710209	155	190331 698170	182	262451 089730
130	Same as to 13.	157	195899 652409	184	264817 823010
131	117271 295656	158	198657 086954	185	267171 728403
132	123851 640967	160	201397 124320	180	209512 944218
134	127104 798365	161	206825 876032	188	274157 849264
135	130333 768495	162	209515 014543	189	276461 804173
100	199599 000000	100	010107 004104	100	070752 000070
136	136720 567156	163	212187 604404	190	218153 000953
138	139879 086401	165	217483 944214	192	283301 228704
139	143014 800254	166	220108 088040	193	285557 309008
140	146128 035678	167	222716 471148	194	287801 729930
1/1	140210 119655	162	905200 981726	105	900054 611269
141	152288 344383	169	220309 281720	195	290034 011302
143	155336 037465	170	230448 921378	197	294466 226162
144	158362 492095	171	232996 110392	198	296665 190262
145	161368 002235	172	235528 446908	199	298853 076410
146	164359 855784	172	938046 103190		
140	167317 334748	174	240549 248283		
LOG	ARITHMS	OF	THE PRIM	IÉ 1	UMBERS
		Fnor	000 mg 1543		
		I'ROM	200 10 1043,		
IN	ICLUDING	TWE	LVE DECIM	AL I	PLACES.
N.	Log.	N.	Log.	N.	Log.
201	303196 057420	277	442479 769064	379	578639 209968
203	307496 037913	281	448706 319905	383	583198 773968
207	320146 286111	283	401780 400024	389	598790 506763
211	324282 455298	307	487138 375477	401	603144 372620
			1	-	
223	348304 863048	311	492760 389027	409	511723 308007 699914 peepee
227	350020 807193	313	490044 337046	419	622214 022966
229	367355 921026	331	519827 993776	431	634477 270161
239	378397 900948	337	527629 900871	433	636487 896353
0.15	000012 010555	0.45	-	400	C10101 E00040
241	3820 7 042575	347	540329 474791	439	646403 726223
251	409933 123331	353	147774 705388	449	652246 341003
263	419955 748490	359	555094 448578	457	659916 200070
269	429752 280002	367	564666 064252	461	663700 925390
271	422969 290874	373	571708 831809	463	665580 991018

N. Log. N. Log. N. Log. 467 6.935.6 950566 8521 914343 157119 1171 0pos266 95072 470 05035 61314 827 917505 500553 1137 074450 718955 499 6Jo100 645923 859 923761 960829 1201 0.9543 077385 503 7016717 782337 857 932980 8219331 1233 067426 485017 521 716537 72300 857 932980 8219331 1237 065200 678316 85200 67426 456017 523 716537 73307 32633 881 944975 908512 1237 097305 069069 557 743555 19517 883 949975 908315 1249 006502 48356 564 75112 266335 907 957607 1277 100457 922941	68	68 LOGARITHMS						
467 6.303.19 b50566 821 914343 157119 1171 00566 8960.2 479 650335 513144 822 91556 50553 1137 074450 718955 491 691061 492123 829 91554 530550 1137 074450 718955 499 63100 45523 859 923761 960629 1201 0.9543 007385 503 706717 782337 857 393996 821923 1217 65320 678310 523 718501 688667 863 93094 0311683 1223 67146 458017 523 718501 688667 863 93090 16331 1223 09535 05206 578310 547 73387 32633 881 944975 908412 1237 097350 690609 557 765635 105174 883 944995 070357 1249 00550 43836 568 75663 808243 911 95518 37697 1277 10109 89608 577 76175 81316 919 96315 511386 1283 108226 656329 577 76175 81316 919 963315 511386	N.	Log.	11 N.	i Log.	11 N.	Loo.		
479 650335 513414 823 917505 50353 1181 012240 807615 487 661081 429123 827 917505 503553 1187 074450 718555 503 701567 98554 505650 1133 076640 443670 503 701567 985378 857 992966 512123 1017 05320 07126 521 716537 733300 859 933903 163331 10233 06951810 052912 547 737987 326333 881 944975 905412 1237 092369 069052 547 737987 326333 881 944975 905412 1237 092369 060602 12900 06562 12900 06562 12900 06562 12910 00057 12920 065662 12921 10305 052917 103190 936505 1293 103057 12929 103057 12929 103057 129204 <th>467</th> <th>6 1931 1 880566</th> <th>821</th> <th>914343 157119</th> <th>1171</th> <th>Jacof 8950-2</th>	467	6 1931 1 880566	821	914343 157119	1171	Jacof 8950-2		
43768/25869/1215827 82991750560/35301137 113307664041867049960/101645023829918554506501133 113307664041867050370/16777823378579299808219231217 1123065290578210521716577823378579299808219231217 1123065290578210521716577823378579299808219231237 12390673264880175227185016838678639360107057151229 129069351582566541733197265107877 877942399593561231 10002509291954773087326338819449759073151249 1290096360943356563750508394851887 9479236193321259 10002510002572920456776663610782492906131394148810822610866857776175813166919 9763499717395908831291 110992110922921733759377305469364937 97173997173959088313931149444157126017783146915963971929900331303114944415712613787460474618907 9672924997 985464673791237122870 922876922876 <td< th=""><th>479</th><th>680335 513414</th><th>823</th><th>915399 835212</th><th>1181</th><th>072249 807613</th></td<>	479	680335 513414	823	915399 835212	1181	072249 807613		
491 691051 492123 522 915554 530559 11.33 0706410 443670 499 6.05100 545523 853 923761 960829 1201 0.9543 007385 503 706717 782337 857 932980 851923 1217 08530 800545 523 715501 683667 863 930901 0737515 1223 0673126 488017 523 715501 683667 863 940950 073575 1249 066622 488366 541 733197 265107 877 942399 593356 1331 090258 052912 547 737887 326333 881 944975 908412 1237 097369 699609 557 74355 195174 883 949923 61933 1279 1008570 5129201 566 755112 26639 907 957607 287060 1277 103190 896508 577 761175 813156 919 95351 511386 1983 109226 666362 587 768638 101248 923 956015 713994 1891 110252 917337 593 771246 822389 941 97539 62437 1271 110239 596066 601 7785138 6910.15 <	487	68/528 961215	827	917505 509553	1187	074450 718955		
499 6.05100 5.456233 859 923761 960829 1201 0.9543 007385 503 701567 985393 857 923980 821923 1217 065290 578310 521 716507 68330 93393 15331 1223 067426 488017 522 718501 683667 863 936010 795715 1229 069351 582866 541 733197 25517 748555 195174 883 944975 907315 1249 096362 48336 566 750508 394551 887 947923 619332 1279 108870 51226632 567 766036 101821 911 955615 376973 1279 108870 512371 567 761175 81316 919 963315 511386 10252 912373 593 773264 93364 937 91733 590858 12971 1109262 242517 <th>491</th> <th>691081 492123</th> <th>829</th> <th>918554 530550</th> <th>1193</th> <th>076640 443670</th>	491	691081 492123	829	918554 530550	1193	076640 443670		
503 701667 98505 853 930940 93168 1213 085330 800945 521 716337 723300 859 933993 16331 1223 067126 480017 521 716537 723300 859 933993 16331 1223 067126 468017 523 715501 685867 863 940900 05375 1249 096365 052919 547 737987 326333 881 944975 908412 1237 097369 699609 557 74355 19574 853 949900 05377 1279 106870 512450 566 755083 9453 1537 1279 106870 512450 577 761175 81356 919 96315 1338 110252 91733 593 773054 693364 937 971739 108870 512450 599 77426 82389 911 976539 <t< th=""><th>499</th><th>698100 545623</th><th>839</th><th>923761 960829</th><th>1201</th><th>0.9543 007385</th></t<>	499	698100 545623	839	923761 960829	1201	0.9543 007385		
503 701657 985056 853 930949 031168 1213 085306 500845 509 706717 782300 859 933933 163331 1223 087426 458017 521 715501 688667 863 936010 795715 1229 08351 8828666 541 733197 205107 877 942.99 593356 1231 090258 052912 547 733197 205107 877 942.99 593356 1231 090652 438366 563 75058 394551 857 947923 619832 1259 100025 729201 566 755112 26633 97 971739 590681 1271 10.180 896308 577 766636 108243 937 971739 590685 1291 110926 242517 593 773054 693364 937 971739 590685 1301 114277 256540 601 77854 472002 947 97634 979003 1301 114277 256540 613 761406 474518 967 955496 474083 1307 116255 687564 614 706285 164033 91 97052 900638								
500 706717 782337 857 923980 821923 1217 085200 578310 521 716501 668567 863 936993 50331 1223 0874246 458017 523 718501 668567 863 944975 908412 123 097256 659919 547 736855 19174 853 944975 908412 1237 097356 690609 557 746563 69451 857 9479023 61237 101008 96308 571 766663 101248 929 96315 511386 1283 103226 656362 587 766638 10148 929 96615 71394 1289 110252 917337 593 773046 693364 937 91739 50688 1291 110294 91939 956666 601 778574 472092 947 976349 970053 1301 114277 226540	503	701567 985056	853	930949 031168	1213	083830 800345		
521 716837 723309 859 933993 163331 1223 087426 48017 523 718501 65867 863 942399 593356 1231 090255 552919 547 737987 326333 851 944975 90851 1231 090562 43365 563 75518 12663 10075 1290 095662 43365 566 755112 26639 907 957607 287060 1277 10.190 896868 571 766636 108213 911 959518 370973 1279 103870 542450 577 761175 813156 919 96315 51386 1281 110926 242517 593 773464 693364 937 971739 59058 1301 114277 226540 601 778574 472002 947 976349 979003 1301 114277 226540 613 801075 953 97029 90033 1303 114944 415712 61	509	706717 782337	857	932980 821923	1217	085290 578210		
523 718501 68867 863 936010 795715 1229 089551 828266 541 733197 265107 877 942399 593356 1231 090258 052912 547 737987 326333 881 944975 908412 1237 092369 6993699 5567 745855 195174 883 944975 908531 1259 100055 729217 101100 890680 577 761175 813156 919 963315 511386 1283 108226 656362 587 708638 101248 929 968015 71394 1289 110052 217337 598 773046 49364 937 97639 97034 1301 114277 26540 601 77874 472002 947 976349 970038 1303 114944 415712 613 787406 47418 667 955464 474083 1307 114277 26540 613 791630 640920 977 987949	521	716837 723300	859	933993 163831	1223	037426 458017		
541 73197 205107 877 942999 593356 121 090258 632912 547 737987 326333 881 944975 908112 1237 097359 696099 557 745855 195174 883 944975 908132 1259 100455 729204 568 755112 266395 907 957607 287060 1277 101190 806308 577 766136 108214 929 9958015 713945 1289 100252 9173337 593 773054 693634 927 971739 590858 1291 110252 917337 599 771426 822389 941 97539 950613 101 114277 28540 607 783138 691075 953 979092 90038 13001 114244 415712 613 791600 6474188 967 958464 474083 1307 116275 587564 614 706285 164033 911 971634 9925908 13131 <th>523</th> <th>718501 688867</th> <th>863</th> <th>936010 795715</th> <th>1229</th> <th>089551 882866</th>	523	718501 688867	863	936010 795715	1229	089551 882866		
547 737987 326333 881 944975 908412 1237 092339 699609 557 748555 195174 883 949506 703578 1249 096652 328356 569 755112 26639 907 957607 287030 1277 103190 890608 571 756636 108213 911 959518 376973 1279 108570 542450 587 768638 101248 929 958015 713994 1289 110252 917337 593 773054 693364 937 977395 90858 1307 110252 917337 599 777426 822389 941 975539 979003 1301 114277 286540 601 778874 472002 947 976349 979003 1307 116275 587564 613 78460 474618 967 958496 474083 1307 116275 587564 617 79028 104033 911 987219 229068 1307 116275 587564 617 791690 649020 977 988945 653193 1321 120002 817604 618 80029 559244 983 99255 517832	541	733197 265107	877	942999 593356	1231	090258 052912		
647 763763 953635 944576 703578 1249 096562 438376 567 75683 26632 10025 729201 10025 729201 569 755112 26635 907 957607 1277 103190 89608 571 756638 108213 911 995518 376973 1279 106870 542450 577 761175 813186 919 963315 511386 1283 100252 917337 593 773054 693364 937 971739 590888 1291 110252 917337 599 777426 822389 941 93558 623427 1297 112939 986066 607 783138 691075 953 979092 90038 1301 114277 286540 617 790255 16403 91 93676 515312 1307 116276 587564 617 91690 64020 977 98894 563719 1321 120092 817604 618	517	#9*00# 900999	001	044025 000410	1007	002000 020000		
563 755038 29479 20300 1239 100025 729201 563 755138 296395 907 957607 287060 1277 103190 890808 571 756636 108213 911 959518 376973 1279 106870 542460 577 761175 813156 919 963315 51386 1283 109226 526362 587 766638 101249 929 980615 71391 12939 980666 601 778874 472002 947 973586 1301 114277 286540 613 781460 474518 967 9532646 474063 1307 116275 587564 613 80029 55944 9839253 517321 12079 122870 922849 641 806558 029519 991 996695 1831 133858 12518 643 805210 972924 997 998695 18312 </th <th>557</th> <th>745855 105171</th> <th>001</th> <th>045060 702579</th> <th>1201</th> <th>092009 099009</th>	557	745855 105171	001	045060 702579	1201	092009 099009		
569 755112 26635 907 957607 287030 1277 103190 890308 571 756636 108213 911 99518 376973 1277 10350 542450 577 761175 813156 919 963315 511386 1283 108226 656362 587 768638 101248 929 986015 71394 119297 112939 91393 593 773054 6932427 1297 112939 986066 601 778874 472002 947 976349 979003 1301 114277 296540 607 783138 6910.5 953 979092 90638 1301 114974 415712 613 781460 4741618 967 955426 474063 1301 114924 795658 619 791690 649020 977 989894 563719 1321 120092 817604 631 800210 972924	563	750508 204851	600	943300 103378	1050	10002 400000		
571 756336 108213 911 959518 876973 1279 103870 512450 577 761175 813156 919 963315 511386 1823 103226 656362 587 768638 101248 929 968015 71394 1289 110252 91737 593 773054 693364 937 971739 5908342 1291 110252 91277 112939 980666 601 778874 472002 947 976349 979003 1301 114277 296540 607 783138 6910.75 953 979092 900638 1303 114944 415712 613 787466 474518 967 956464 474083 1307 116275 567564 619 791690 640202 977 998695 15831 121 120902 817604 631 800029 559244 997 998695 15831 137670 5	569	755112 266395	007	957607 287060	1977	103190 896808		
61163633 16321361163633 163136113361113110323 665636587768638 101248929968015 713941289110252 917337593773054 693364937971739 5908881291110926 242517599777426 822389941976549 9790031301114277 296540601778874 472002947976349 9790031301114277 296540607783138 6910759539564 4740831307116275 557564613787406 474618967955464 4740831307116275 557564617790285 164033911987219 2299081319120244 795568619916096 649020977998984 5637191321120902 817604631800029 359244983992553 5173321327122870 922849641806858 029519911906073 6544851361133858 125188643805210 972924977998695 1583121361133858 125184644810904 2806691009003891 1662371373137670 537223653814913 1812751013005009 4453601381140193 678544659815885 4145941019009174 1840061399145817 714122661810201 459486102100925 7202871409145910 994096673829015 0642241032103258 665281423152204 896557677830586 668651033014100 3215201427154424 0123666	571	756636 108243	011	959518 376973	1979	105870 542450		
57776117581315691996331551138612831082266563625877686381012489299380157139441589110252917337593773054693364937971739590858130111025291733759977742682338941973589623427129711293993606660177837447200294797634997900313011142772565406077831386910759539790929006381303114944415712613787460474518967935426474083180711627558756461779028516403397193721922990813191202447955861979169064902097793893456371913211209028176046318002955924498399255351733213271228709228496418068580295199919960736544851361133858125188643808210972924997998695158312136713576851455464781090428066910090038911662371373137670537223653814913181275101300561945364138140193678544659818855414594101900925742087140914581090557<		100000	UII		1.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	577	761175 813156	919	963315 511386	1283	108226 656362		
593 773054 693364 937 971739 590888 1291 110926 242517 599 777426 822389 941 973559 623497 1297 112939 956066 601 778874 472002 947 976349 979003 1301 114277 256540 613 787460 474518 967 955264 674083 1307 116275 587564 619 791690 649020 977 989824 563719 1321 120902 817604 631 80029 359244 983 992553 517832 1327 122870 922849 641 806858 029519 991 996095 158312 1367 135768 514554 643 806210 972924 997 998695 158312 1367 135768 514554 643 806825 029519 991 996095 158312 1367 135768 514554 644 81094 280669 1009 003891 166237 1373 137610 537223 653 814913 181275 1013 005609 445360 1381 140193 678544 659 818885 414597 1019 003174 184006 1399 145817 714122 661 810201 459486 <t< th=""><th>587</th><th>768638 101248</th><th>929</th><th>968015 713994</th><th>1289</th><th>110252 917337</th></t<>	587	768638 101248	929	968015 713994	1289	110252 917337		
599 777426 822389 941 973589 623427 1297 112939 986066 601 778874 472002 947 976349 979003 1301 114277 226540 607 783138 6910.75 953 979092 900638 1303 114944 415712 613 787460 474518 967 985246 474083 1307 116275 587564 617 790285 164033 971 98219 229008 1319 120244 795568 619 791606 649020 977 98824 563719 1327 122870 922849 641 806858 929519 991 996073 654485 1361 133858 125188 643 808210 972924 997 998695 158312 1367 135768 514554 643 808210 972924 997 998695 158312 1367 135768 514554 643 808210 972924 997 998695 158312 1367 137676 578233 653 814913 181275 1013 00509 445360 1381 140193 678544 645 802016 564224 1021 013228 665284 1423 153204 896557 677 830586 686855 1033 014100 321520 1427 154424 012866 677 839478 <th>593</th> <th>773054 693364</th> <th>937</th> <th>971739 590888</th> <th>1291</th> <th>110926 242517</th>	593	773054 693364	937	971739 590888	1291	110926 242517		
601 $778874 472002$ 947 $976349 979003$ 1301 $114277 286540$ 607 $783138 691075$ 953 $979092 900638$ 1303 $114944 415712$ 613 $787460 474518$ 967 $935426 474083$ 1307 $116275 587564$ 617 $790285 164033$ 971 $987219 229908$ 1319 $120247 95568$ 619 $791690 649020$ 977 $99894 563719$ 1321 $120902 817604$ 631 $800029 359244$ 953 $992553 517832$ 1327 $122870 922849$ 641 $806858 029519$ 991 $996073 654485$ 1361 $133858 125188$ 643 $808210 972924$ 997 $998695 158312$ 1867 $135768 514554$ 647 $810904 280669$ 1009 $003891 166237$ 1373 $137670 537233$ 653 $814913 181275$ $1013 00509 445360$ $1381 140193 678544$ 659 $818885 414594^{*}$ $1019 008174 184006$ $1399 145817 714122$ 661 $810201 459436$ $1021 009025 742087$ $1409 148910 994096$ 673 $838015 064224$ $1031 013286 665284 1423$ $153204 896557$ 677 $830586 668635$ $1033 014100 321520 1427 154424 012366$ 683 $834420 703682 1039$ $016615 547557 1429 155032 228774$ 691 $839478 047374 1049 020775 458194 1433 156246 402184$ 701 $845718 017967 1051 021602 716028 1439 1550607 93919 198 50670 93919 198 50642 235183 1061 025715 38301 1447 160468 531109 179 198 56728 890383 1063 026532 244523 1451 161667 412427 1277 867234 410859 1069 028977 705209 1453 162265 6142$	599	777426 822389	941	973589 623427	1297	112939 986066		
	601	778874 472002	947	976349 979003	1301	114277 296540		
6077831386910.5953979092900328130311494441571261378746047451896793542647405313071162755875646197902851640339119872192299081319120244795568619791690649020977988894563719132112090281760463180029355924495399255351783213271228709228496418068580295199919960736544551361133558125188643808210972924997998695158312186713576851455464781090428066910090038911662371373137670572236538149131812751013005609445360138114019367854465981888541459410190081741840061399145817714122661810201459456102100902574208714091489109940966738280150642241031013258665284142315320489655767783058666868510330141002217514291550322287746918394780473741049027754881941433156246402184701845718047374104902775488194143315626664224 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
	607	783138 691075	953	979092 900638	1303	114944 415712		
617790228 164033911997219 2299081319120902 817604619791690 64902097795894 5637191321120902 817604631800029 359244953992553 5178321327122870 922849643808210 972924997998605 1583121867135768 514554643808210 972924997998605 1583121867135768 51455464481094 2806691009003891 1662371373137670 537223653814913 181275101300509 4453601381140193 678544659818885 4145941019008174 1840061399145817 714122661810201 4594361021009025 7420871409148910 994096673828015 0642241031013286 6652841423153204 896557677830558 6686551033014100 3215201427154424 012866683834420 7036821039016615 5475571429155032 228774691839478 0473741049020775 4881941433156246 402184701845718 0179671051021602 7160281439155060 793919709850446 2351831063025715 3830011447160468 531109719856728 8908331063025753 32645231451161667 412427727861534 4108591069028977 7052091453162265 614286733865103 9747421037036229 540361459164055 291883739	613	787460 474518	967	985426 474083	1307	116275 587564		
619 791680 63920 977 999253 503719 1321 1202870 922849 631 80029 559244 963 992563 517832 1327 122870 922849 641 806858 029519 991 996073 654435 1361 133558 125188 643 808210 972924 997 996895 158312 1867 135768 514554 647 810942 280669 1009 003891 166237 1373 137670 537223 653 814913 181275 1013 005609 445360 1381 140193 678544 659 818885 14597 1019 008174 184006 1399 145817 714122 661 810201 459486 1021 009025 742087 1409 148910 94096 673 828015 66685 1033 014100 21520 1427 154424 012366 683 834420 703682 1039 016615 547557 1429 155032 228774 691 839478 047374 1049 020775 488194 1433 156246 402184 701 845718 017967 1051 021602 716028 1439 158060 793919 719 856728 890833 1063 025715 383041 1447 160468 531109 719 856744 <	617	790285 164033	971	987219 229908	1319	120244 795568		
631 800029 3539244 953 992555 517852 1327 122570 922249 641 806858 029519 991 996073 654485 1361 1335788 14554 643 808210 972924 997 998695 158312 1867 135768 514554 647 810904 280669 1009 903891 166237 1373 137670 57223 653 814913 181275 1013 005609 445360 1381 140193 678544 659 818885 414594 1013 009025 742087 1409 148910 994096 673 828015 664224 1031 013258 665284 1423 153204 896557 677 80588 668685 1033 014100 221520 1427 154424 012866 683 834420 703652 1039 01615 547557 1429 155032 28774 691 839478 047374 1049 020775 488194 1433 156246 402184 701 845718 017967 1051 021602 716028 1439 158060 793919 709 85046 235183 1063 0225775 1433 162265 614286 733 865103 974742 1037 036229 544086 1459 164055 291883 739 868644 488395 1091 0	619	791690 649020	977	989894 953719	1321	120902 817004		
	031	800029 359244	983	992003 017032	1327	122010 922049		
643 808210 972924 997 998695 158312 1367 135768 514554 643 810904 280669 1009 003891 166237 1337 137670 537223 653 814913 181275 1013 005609 445360 1381 140193 678544 659 818885 414594* 1019 008174 184036 1399 145817 714122 661 810201 459436 1021 009025 742087 1409 148910 994096 673 828015 064224 1031 013286 66284 1423 153204 896557 677 830586 668635 1033 014100 321520 1427 154424 012366 683 834420 703682 1039 016615 547557 1429 155032 228774 691 839478 047374 1049 020775 488194 1433 156246 402184 701 845718 017967 1051 021602 716028 1439 155060 793919 719 856728 890383 1063 026533 264523 1451 161667 412427 727 86153	641	806858 020519	001	996073 654485	1361	133858 125188		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	643	808210 972924	907	998695 158312	1367	135768 514554		
653 814913 181275 1013 005090 445360 1381 140193 678544 659 818885 414594* 1019 008174 184006 1399 145817 714122 661 810201 459436 1021 009025 742087 1409 148910 994096 673 828015 064224 1031 013258 665284 1423 153204 896557 677 82058 668665 1033 014100 221520 1427 154424 012366 683 834420 703652 1039 01615 547557 1429 155032 228774 691 839478 047374 1049 020775 488194 1433 156246 402184 701 845718 017967 1051 021602 716028 1439 158060 793919 709 85044 823183 1063 026533 264523 1451 161667 412427	647	810904 280669	1009	003891 166237	1373	137670 537223		
659 $818885 414597$ 1019008174 1840361399145817 714122661 $810201 459486$ 1021009025 7420871409148910 994096673 $828015 064224$ 1031013258 6652841423153204 896557677 $83058 668685$ 1033014100 3215201427154424 012866683 $834420 703682$ 1039016615 5475571429155032 228774691 $839478 047374$ 1049020775 4881941433156246 402184701 $845718 017967$ 1051021602 7160281439158060 793919709 $856646 235183$ 1061025715 3839011447160468 531109719 $856728 890383$ 1063026533 2645231451161667 412427727 $861534 410859$ 1069028977 7052091453162265 614286733 $865103 974742$ 1087036229 5440861459164055 291883739 $868644 488395$ 1091037824 7505881471167612 672629743 $870988 813761$ 1093038620 161950148117055 058512751 $855639 937004$ 109704206 6275751483171141 151014757 $879958 639801$ 1117048053 1731161493174059 807703773 $888179 493918$ 1123050379 7562611499175801 632866787 $895974 732239$ 1129052633 9419251511179264 463229797901458 321396115105175 5326301523	653	814913 181275	1013	005609 445360	1381	140193 678544		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	659	818885 414594	1019	008174 184006	1399	145817 714122		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-		
673 828015 064224 1031 013288 665284 1423 153204 896557 677 830588 668685 1033 014100 321520 1427 154424 012366 683 834420 703682 1039 016615 547557 1429 155032 228774 691 839478 047374 1049 020775 458194 1433 156246 402184 701 845718 017967 1051 021602 716028 1439 155060 793919 709 850646 235183 1061 025715 383001 1447 160468 531109 719 856728 890383 1063 026533 264523 1451 161667 412427 727 861534 410859 1069 028977 705209 1453 162265 614286 733 865103 974742 1087 036229 544086 1459 164055 291883 739 868644 488395 1091 037824 750588 1451 166126 672629 743 870988 813761 1093 038620 161950 1481 170555 058512 751 855639 937004 1097 04206 627575 1483 17141 151014 757 879095 879500	661	810201 459486	1021	009025 742087	1409	148910 994096		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	673	828015 064224	1031	013258 665284	1423	153204 896557		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	677	830588 668685	1033	014100 321520	1427	154424 012366		
691 \$39478 047374 1049 020775 458194 1433 155045 402184 701 \$45718 017967 1051 021602 716028 1439 155060 793919 709 \$50646 235183 1061 025715 383001 1447 160486 531109 719 \$56728 890383 1063 026532 264523 1451 161667 412427 727 \$861534 440559 1069 028977 705209 1453 16265 614286 733 \$665103 974742 1087 036229 544086 1459 164055 291883 739 \$68644 488395 1091 037824 750588 1471 167612 672629 743 \$70958 813761 1093 038620 161950 1481 170555 058512 751 \$55569 937004 1097 040206 627575 1483 17210 968189 761 \$81384 656771 109 044931 546119 1489 172894 731332 769 \$85926 339801 1117 048053 173116 1493 174059 807708 773 \$88179 493918 1123 050379 756261 1499 175801 632866 78 805974 732359	683	834420 703682	1039	016615 547557	1429	155032 228774		
701 845718 017967 1051 021602 716028 1439 155060 793919 709 850646 235183 1061 025715 383901 1447 160468 531109 719 856728 890833 1063 026533 264523 1451 161667 412427 727 861534 410559 1069 028977 705209 1453 162665 614286 733 865103 974742 1087 036229 544086 1459 164065 291883 739 868644 48395 1091 037824 750589 1451 1667612 672629 743 870988 813761 1093 038620 161950 1451 170555 058512 751 855639 937004 1097 040206 627575 1433 171411 151014 757 879095 879500 1103 042595 512440 1487 172310 968489	691	839478 047374	1049	020775 488194	1433	190240 402184		
709 85044 235183 1061 02507 1302 1403 160468 531109 719 85044 235183 1061 025715 383001 1447 160468 531109 719 856728 890383 1063 026533 264523 1451 161667 412427 727 861534 410559 1069 028977 705209 1453 162265 614286 733 865103 974742 1037 036229 544086 1459 164055 291883 739 868644 488395 1091 037824 750588 1471 167612 672629 743 870988 813761 1093 038620 161950 1481 170555 05812 751 855639 937004 1097 04206 627575 14433 17141 151014 757 879958 875500 1103 042595 512440 1487 172310 968489 761 881384 656771 1109 044931 546149 172894 731332 769 885926 339801 1117 048053 173116 1493 174059 807708 773 888179 493918 1123 050379 756261 1499 175801 632866 787 895974 732339 1129 052633 11523 182699 903224 809 907948 821612 115	701	845718 017067	1051	021602 716028	1430	158060 793919		
719 856728 890383 1063 026133 263532 1451 161667 112427 727 861534 410859 1063 026532 264523 1451 161667 112427 727 861534 410859 1063 026322 544086 1459 164055 291883 733 865103 974742 1037 036229 544086 1459 164055 291883 739 868644 488395 1091 037824 750588 1471 167612 672629 743 870988 813761 1093 038620 161950 1481 170555 058512 751 855639 937004 1097 040266 627575 1483 171141 151014 757 879058 879500 1103 042595 512440 1487 172310 968489 761 881384 656771 1109 044931 546119 1489 172894 731332 769 885926 339801 1117 048053 173116 1493 174059 807703 773 888179 493918 1123 050379 756261 1499 175801 632866 787 895974 732359 1129 052633 041925 1511 179264 46329 797 901458 321396 1151 06152 307295 1531 184975 190807 811 0	700	850646 925182	1051	025715 383901	1447	160468 531109		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	719	856798 800383	1063	026533 264523	1451	161667 412427		
733 865103 77442 1037 036229 544036 1459 164055 291883 739 868644 488395 1091 037824 75088 1471 167612 672629 743 870988 813761 1093 038620 161950 1481 170555 058512 751 855639 937004 1097 040206 627575 1483 171141 151014 757 879095 879500 1103 042595 512440 1487 172310 968489 761 881384 656771 1109 044931 546149 1489 172894 731332 769 885926 339801 1117 048053 173116 1493 174059 807708 773 888179 493918 1123 050379 756261 1499 175801<632866 787 895974 732359 1129 052693 941925 1511 179264 464329	727	861534 410859	1069	028977 705209	1453	162265 614286		
739 868644 488395 1091 037824 75088 1471 167612 672629 743 870988 813761 1093 038620 161950 1481 170555 058512 751 855639 937004 1097 040206 627575 1483 171141 151014 757 879095 879500 1103 042595 512440 1487 172310 968489 761 881384 656771 1109 044931 546119 1489 172894 731332 769 885926 339801 1117 048053 173116 1493 174059 807703 773 888179 493918 1123 050379 756261 1499 175801 632866 787 895974 732359 1129 052693 941925 1511 179264 46329 797 901458 321396 1151 06175 323630 1523 182699 903244	733	865103 974742	1087	036229 544086	1459	164055 291883		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		000100 0111-4						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	739	868644 488395	1091	037824 750588	1471	167612 672629		
751 855639 937004 1097 040206 627575 1483 171141 151014 757 879095 879500 1103 042595 512440 1487 172310 968489 761 881384 656771 1109 044931 546119 1489 172894 731332 769 885926 339801 1117 018053 173116 1493 174059 807708 773 888179 493918 1123 050379 756261 1499 175801 632866 787 895974 732359 1129 052693 941925 1511 179264 464329 797 901458 321396 1151 061075 32630 1523 182099 90324 809 907948 521612 1153 061829 307295 1531 184975 190607 811 000909 854911 1162 065570 714792 1542 185365 96053 <	743	870988 813761	1093	038620 161950	1481	170555 058512		
757 879095 879500 1103 042595 512440 1487 172310 968489 761 881384 656771 1109 044931 546149 1489 172894 731332 769 885926 339801 1117 048053 173116 1493 174059 807708 773 888179 493918 1123 050379 756261 1499 175801 632866 787 895974 732359 1129 052693 941925 1511 179264 46329 797 901458 321396 1151 061075 323630 1523 182699 903224 809 907948 521612 1153 061829 307295 1531 184975 190807 811 000909 854911 1169 065570 714792 1542 185365 96053	751	855639 937004	1097	040206 627575	1483	171141 151014		
761 881384 656771 1109 044931 546119 1489 172894 731332 769 885926 339801 1117 048053 173116 1493 174059 807703 773 888179 493918 1123 050379 756261 1499 175801 632866 787 895974 732359 1129 052693 941925 1511 179264 46329 797 901458 321396 1151 01075 323630 1523 182699 903324 809 907948 521612 1153 061829 307295 1531 184975 190807 811 000500 85411 1162 065570 714792 1542 185365 076053	757	879095 879500	1103	042595 512440	1487	172310 968489		
769 885926 339801 1117 048053 173116 1493 174059 807703 773 888179 493918 1123 050379 756961 1499 175801 632866 787 895974 732359 1129 052693 941925 1511 179264 464329 797 901458 321396 1151 06175 323630 1523 182699 903324 809 907948 521612 1153 061829 307295 1531 184975 190807 811 000000 854011 1469 055570 714792 1542 188365 96053	761	881384 656771	1109	044931 546149	1489	172894 731332		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	760	00-000 000001	1110	018052 172116	1492	174059 807708		
787 895974 732359 1123 00079 705201 1333 110301 003000 787 895974 732359 1129 052693 941925 1511 179264 464329 797 901458 321396 1151 051075 32630 1523 182699 903324 809 907948 521612 1153 061829 307295 1531 184975 190807 811 000000 854011 1162 065570 714792 1542 185365 076053	709	000920 339801	1117	050370 756061	1490	175801 639866		
797 901458 321396 1151 001075 323630 1523 182609 903324 809 907948 521612 1153 061829 307295 1531 184075 190807 811 000000 854011 1162 065570 714702 1542 188365 076053	787	805074 520250	1123	052603 041025	1511	179264 464329		
809 907948 521612 1151 061829 307295 1531 184975 190607 811 000000 854011 1162 065570 714702 1542 188365 096053	797	000014 102009	1129	061075 323630	1523	182699 903324		
	809	907948 521619	1153	061829 307295	1531	184975 190807		
R11 000000 054011 1162 065570 714700 1542 188365 076053		001010 021012	1100					
011 909020 884211 1103 008079 714728 1848 186805 920056	811	909020 854211	1163	065579 714728	1543	188365 926053		

m = 0.4342944819 log. -1.637784298.

By the preceding tables — and the auxiliaries A, B, and C, we can find the logarithm of any number, true to at least ten decimal places.

But some may prefer to use the following direct formula, which may be found in any of the standard works on algebra:

Log. $(z+1) = \log z + 0.8685889638 \left(\frac{1}{2z+1}\right)$

The result will be true to twelve decimal places, if z be over 2000.

The log. of composite numbers can be determined by the combination of logarithms, already in the table, and the prime numbers from the formula.

Thus, the number 3083 is a prime number, find its logarithm.

We first find the log. of the number 3082. By factoring, we discover that this is the product of 46 into 67.

70	NUMBERS. ·	and an open statements
	Log. 46, 1.6627578316 Log. 67, 1.8260748027	COLONNOLOUR DE LE COLONNOLOUR
	Log. 3082 3.4868326343	
Log.	$3083 = 3.4888326343 + \frac{0.8685889638}{6165}$	NUCLEOR DISCOURSE OF STREET, ST
	NUMBERS AND THEIR LOGARITHMS,	APPROXIMATION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
	OFTEN USED IN COMPUTATIONS.	1
Circum Surface	ference of a circle to dia. 1) of a sphere to diameter 1 $=3.14159265$ 0.4971499	ACCESSION AND INCOME.
Area of	a circle to radius 1)	
Capacit	v of a sphere to diameter $1 = .5235988 - 1.7189986$	
Capacit	y of a sphere to radius $1 = 4.1887902 0.6220886$	I
	· 1 1. (1 1. F#000F#0 1#F01000	
Arcofa	iny circle equal to the radius $=57^{\circ}29578$ 1.7581226	
Length	of a degree. (radius unity)= $.01745329 - 2.2418773$	
10000		
12 hour	s expressed in seconds, $=$ 43200 4.6354837	I
Co 260 door	mplement of the same, $=0.00002315 - 5.3645163$	I
500 deg	$1250000 \qquad 0.1120000$	I
· A ga Fahren inches.	llon of distilled water, when the temperature is 62° heit, and Barometer 30 inches, is $277.\frac{274}{1000}$ cubic	No. of Concession, Name
, l'é	277.274=16.651542 nearly.	No. of Concession, Name
$\sqrt{-1}$	$\frac{277.274}{.775398} = 18.78925284 \qquad \sqrt{231} = 15.198684.$	STATE AND INCOME.
	$\sqrt{282} = 16.792855.$	
1	<u>282.</u> =18.948708.	
V	. 100000	and a second
The sure, =	French Metre=3.2808992, English Jeet linear mea- =39.3707904 inches, the length of a pendulum vi-	
brating	seconds.	
	I IDIE LIBR	

UNIVERSITY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS will be assessed for failure to return this book on the date due. The penalty will increase to 50 cents on the fourth day and to \$1.00 on the seventh day

SEP 10 1932

DEC 9 1932

MA1 23 19:

OCT 6 1938 JUL 171943

