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PREFACE.

work is constructed on the same plan as my
treatise on Plane Trigonometry, to which it is intended as a

sequel; it contains all the propositions usually included under

the head of Spherical Trigonometry, together with a large

collection of examples for exercise. In the course of the work

reference is made to preceding writers from whom assistance

has been obtained
;
besides these writers I have consulted the

treatises on Trigonometry by Lardner, Lefebure de Fourcy,
and Snowball, and the treatise on Geometry published in the

Library of Useful Knowledge. The examples have been

chiefly selected from the University and College Examination

Papers.

In the account of Napier's Rules of Circular Parts an

explanation has been given of a method of proof devised by

Napier, which seems to have been overlooked by most modern

writers on the subject. I have had the advantage of access to

an unprinted Memoir on this point by the late R. L. Ellis of

Trinity College ;
Mr Ellis had in fact rediscovered for himself

Napier's own method. For the use of this Memoir and for

some valuable references on the subject I am indebted to the

Dean of Ely.

Considerable labour has been bestowed on the text in

order to render it comprehensive and accurate, and the exam-

ples have all been carefully verified
;
and thus I venture to

hope that the work will be found useful by Students and

Teachers.

L TODHUNTER.
ST JOHN'S COLLEGE,

August 15, 1859.



IN the third edition I have made some additions which I

hope will be found valuable. I have considerably enlarged

the discussion on the connexion of Formula in Plane and

Spherical Trigonometry ;
so as to include an account of the

properties in Spherical Trigonometry which are analogous to

those of the Nine Points Circle in Plane Geometry. The

mode of investigation is more elementary than those hitherto

employed; and perhaps some of the results are new. The

fourteenth Chapter is almost entirely original, and may de-

serve attention from the nature of the propositions them-

selves and of the demonstrations which are given.

CAMBRIDGE,

July, 1871.
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I. GREAT AND SMALL CIRCLES.

1. A SPHERE is a solid bounded by a surface every point of

which is equally distant from a fixed point which is called the

centre of the sphere. The straight line which joins any point of

the surface with the centre is called a radius. A straight line

drawn through the centre and terminated both ways by the surface

is called a diameter.

2. The section of the surface of a sphere made by any plane

is a circle.

Let AB be the section of the surface of a sphere made by any

plane, the centre of the sphere. Draw 00 perpendicular to the

plane ;
take any point D in the section and join OD} CD. Since

00 is perpendicular to the plane, the angle 00D is a right angle ;

therefore OD=J(OD
2 - OC2

).
Now and are fixed points, so

that 00 is constant j
and OD is constant, being the radius of the

T. S. T. B



2 GREAT AND SMALL CIRCLES.

sphere ; hence CD is constant. Thus all points in the plane section

are equally distant from the fixed point C ; therefore the section

is a circle of which C is the centre.

3. The section of the surface of a sphere by a plane is called

a great circle if the plane passes through the centre of the sphere,

and a small circle if the plane does not pass through the centre of

the sphere. Thus the radius of a great circle is equal to the

radius of the sphere.

4. Through the centre of a sphere and any two points on the

surface a plane can be drawn
; and only one plane can be drawn,

except when the two points are the extremities of a diameter of

the sphere, and then an infinite number of suet planes can be

drawn. Hence only one great circle can be drawn through two

given points on the surface of a sphere, except when the points are

the extremities of a diameter of the sphere. When only one great

circle can be drawn through two given points, the great circle is

unequally divided at the two points ;
we shall for brevity speak of

the shorter of the two arcs as the arc of a great circle joining the

two points.

5. The axis of any circle of a sphere is that diameter- of the

sphere which is perpendicular to the plane of the circle
;
the ex-

tremities of the axis are called the poles of . the circle. The poles

of a great circle are equally distant from the plane of the circle.

The poles of a small circle are not equally distant from the plane

of the circle
; they may be called respectively the nearer and fur-

ther pole ; sometimes the nearer pole is for brevity called the pole.

6. A pole of a circle is equally distant from every point of the

circumference of the circle.

Let be the centre of the sphere, AB any circle of the sphere,

C the centre of the circle, P and P' the poles of the circle. Take

any point D in the circumference of the circle
; join CD, OD, PD.

Then PD = J(PC
2+CD2

) ;
and PC and CD are constant, therefore

PD is constant. Suppose a great circle to pass through the points

P and D
;
then the chord PD is constant, and therefore the arc of
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a great circle intercepted between P and D is constant for all

positions of D on the circle AB.

Thus the distance of a pole of a circle from every point of the

circumference of the circle is constant, whether that distance be

measured by the straight line joining the points, or by the arc of

a great circle intercepted between the points.

7. The arc of a great circle which is drawn from a pole of a

great circle to any point in its circumference is a quadrant.

Let P be a pole of the great circle ABC
; then the arc PA is a

quadrant.

For let be the centre of the sphere, and draw PO. Then
PO is at right angles to the plane ABC, because P is the pole of

ABC, therefore POA is a right angle, and the arc PA is a quad-
rant.

B2
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8. The angle subtended at the centre of a sphere by the arc of
a great circle which joins the poles of two great circles is equal to the

inclination of the planes of the great circles.

B

Let be the centre of the sphere, CD, CE the great circles in-

tersecting at (7, A and B the poles of CD and CE respectively.

Draw a great circle through A and B, meeting CD and CE at

M andN respectively. Then AO is perpendicular to OC, which is

a straight line in the plane OCD ;
and BO is perpendicular to OC,

which is a straight line in the plane OCE ; therefore OC is perpen-
dicular to the plane AOB (Euclid, xi. 4); and therefore OC is

perpendicular to the straight lines OM and ON, which are in the

plane AOB. Hence MON is the angle of inclination of the planes
OCD and OCE. And the angle

AOB =AOM-BOM=BON-BOM= MON.

9. By the angle between two great circles is meant the angle

of inclination of the planes of the circles. Thus, in the figure of

the preceding Article, the angle between the great circles CD and

CE is the angle MON.

In the figure to Art. 6, since PO is perpendicular to the plane

ACB, every plane which contains PO is at right angles to the

plane ACB. Hence the angle between the plane of any circle

and the plane of a great circle which passes through its poles is

a right angle.
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10. Two great circles bisect each other.

For since the plane of each great circle passes through the

centre of the sphere, the line of intersection of these planes is a

diameter of the sphere, and therefore also a diameter of each great

circle ;
therefore the great circles are bisected at the points where

they meet.

11. If the arcs of great circles joining a point P on the surface

of a sphere with two other points A and C on the surface of the

sphere, which are not at opposite extremities of a diameter, be each of
them equal to a quadrant, P is a pole of the great circle through

A and C. (See the figure of Art. 7.)

For suppose PA and PC to be quadrants, and the centre of

the sphere ;
then since PA and PC are quadrants, the angles POC

and POA are right angles. Hence PO is at right angles to the

plane AGO, and P is a pole of the great circle AC.

12. Great circles which pass through the poles of a great

circle are called secondaries to that circle. Thus, in the figure of

Art. 8 the point C is a pole of ABMN, and therefore CM and ON
are parts of secondaries to ABMN. And the angle between CM
and CN is measured by MN ;

that is, the angle between any two

great circles is measured by the arc they intercept on the great circle

to which they are secondaries.

13. Iffrom a point on the surface of a sphere there can be

drawn two arcs of great circles, not parts of the same great circle,

the planes of which are at right angles to the plane of a given circle,

that point is a pole of the given circle.

For, since the planes of these arcs are at right angles to the

plane of the given circle, the line in which they intersect is per-

pendicular to the plane of the given circle, and is therefore the

axis of the given circle
; hence the point from which the arcs are

drawn is a pole of the circle.
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14. To compare the arc of a small circle subtending any angle

at the centre of the circle with the arc of a great circle subtending

the same angle at its centre.

Let db be the arc of a small circle, G the centre of the circle,

P the pole of the circle, the centre of the sphere. Through P
draw the great circles PaA and PbB, meeting the great circle

of which P is a pole, at A and B respectively ; draw Ca, Cb, OA,
OB. Then Ca, Cb, OA, OB are all perpendicular to OP, because

the planes aCb and AOB are perpendicular to OP ; therefore Ca
is parallel to OA, and Cb is parallel to OB. Therefore the angle

aCb = the angle AOB (Euclid, xi. 10). Hence,

nox
, Art. 18);

therefore,
arcab Ca Ca . D-

j-^ = -r = -^ = sin POa.
arc AB OA Oa

II. SPHEEICAL TRIANGLES.

15. Spherical Trigonometry investigates the relations which

subsist between the angles of the plane faces which form a solid

angle and the angles at which the plane faces are inclined to each

other.
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16. Suppose that the angular point of a solid angle is made

the centre of a sphere ;
then the planes which form the solid angle

will cut the sphere in arcs of great circles. Thus a figure will be

formed on the surface of the sphere which is called a spherical

triangle if it is bounded by three arcs of great circles
;
this will be

the case when the solid angle is formed by the meeting of three

plane angles. If the solid angle be formed by the meeting of

more than three plane angles, the corresponding figure on the

surface of the sphere is bounded by more than three arcs of great

circles, and is called a spherical polygon.

17. The three arcs of great circles which form a spherical

triangle are called the sides of the spherical triangle ; the angles
formed by the arcs at the points where they meet are called the

angles of the spherical triangle. (See Art. 9.)

18. Thus, let be the centre of a sphere, and suppose a solid

angle formed at by the meeting of three plane angles. Let

A By J3C, CA be the arcs of great circles in which the planes cut

the sphere; then ABC is a spherical triangle, and the arcs AJ3,

JBC, CA are its sides. Suppose Ab the tangent at A to the arc

AB, and Ac the tangent at A to the arc AC, the tangents being
drawn from A towards B and C respectively ;

then the angle bAc
is one of the angles of the spherical triangle. Similarly angles
formed in like manner at B and C are the other angles of the

spherical triangle.
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19. The principal part of a treatise on Spherical Trigonometry
consists of theorems relating to spherical triangles ; it is therefore

necessary to obtain an accurate conception of a spherical triangle

and its parts.

It will be seen that what are called sides of a spherical

triangle are really arcs of great circles, and these arcs are pro-

portional to the three plane angles which form the solid angle

corresponding to the spherical triangle. Thus, in the figure of

the preceding Article, the arc AB forms one side of the spherical

triangle ABC, and the plane angle AOB is measured by the frac-

tion r. 77-7 : and thus the arc AB is proportional to the ano;le
radius OA

AOB so long as we keep to the same sphere.

The angles of a spherical triangle are the inclinations of the.

plane faces which form the solid angle ;
for since Ab and Ac are

both perpendicular to OA, the angle bA c is the angle of inclination

of the planes OAB and OAG.

20. The letters A, B, C are generally used to denote the

angles of a spherical triangle, and the letters a, b, c are used to

denote the sides. As in the case of plane triangles, A, B, and C

may be used to denote the numerical values of the angles expressed

in terms of any unit, provided we understand distinctly what the

unit is. Thus, if the angle C be a right angle, we may say that

C = 90, or that C = ^ , according as we adopt for the unit a de-
Z

gree or the angle subtended at the centre by an arc equal to the

radius. So also, as the sides of a spherical triangle are propor-

tional to the angles subtended at the centre of the sphere, we

may use a, b, c to denote the numerical values of those angles

in terms of any unit. We shall usually suppose both the angles

and sides of a spherical triangle expressed in circular measure.

(Plane Trigonometry, Art. 20.)
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21. In future, unless the contrary be distinctly stated, any
arc drawn on the surface of a sphere will be supposed to be an arc

of a great circle.

22. In spherical triangles each side is restricted to be less

than a semicircle
;
this is of course a convention, and it is adopted

because it is found convenient.

Thus, in the figure, the arc ADEB is greater than a semicir-

cumference, and we might, if we pleased, consider ADEB, AC,
and EG as forming a triangle, having its angular points at A, B,

and C. But we agree to exclude such triangles from our con-

sideration ;
and the triangle having its angular points at A, B,

and C, will be understood to be that formed by AFB, BC, and CA.

23. From the restriction of the preceding Article it will

follow that any angle of a spherical triangle is less than two right

angles.

For suppose a triangle formed by BO, CA, and BEDA 9 having
the angle BCA greater than two right angles. Then suppose D
to denote the point at which the arc BC, if produced, will meet

AE; then BED is a semicircle by Art. 10, and therefore BEA
is greater than a semicircle

\
thus the proposedjjriangle is not one

of those which we consider.



III. SPHERICAL GEOMETRY.

24. The relations between the sides and angles of a Spherical

Triangle, which are investigated in treatises on Spherical Trigono-

metry, are chiefly such as involve the Trigonometrical Functions

of the sides and angles. Before proceeding to these, 'however, we
shall collect, under the head of Spherical Geometry, some theorems

which involve the sides and angles themselves, and not their trigo-

nometrical ratios.

25. Polar triangle. Let ABC be any spherical triangle, and

let the points A', B\ C' be those poles of the arcs BC, CA, AB

respectively which lie on the same sides of them as the opposite

angles A, B, C ;
then the triangle A'B'C' is said to be the polar

triangle of the triangle ABC.

Since there are two poles for each side of a spherical triangle,

eight triangles can be formed having for their angular points poles

of the sides of the given triangle ;
but there is only one triangle in

which these poles A', B', C' lie towards the same parts with the

corresponding angles A, B, C ;
and this is the triangle which is

known under the name of the polar triangle.

The triangle ABC is called the primitive triangle with respect

to the triangle A'B'C'.
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26. If one triangle be the polar triangle of another, the latter

will be the polar triangle of theformer.

~LziABC be any triangle, A'B'C' the polar triangle : then ABC
will be the polar triangle of AB'C'.

For since B' is a pole of AC, the arc AB' is a quadrant, and

since C' is a pole of BA, the arc AC' is a quadrant (Art. 7) ;
there-

fore A is a pole of B'C' (Art. 11). Also A and A' are on the same

side of B'C'
;
for A and A' are by hypothesis on the same side of

BC, therefore A'A is less than a quadrant ;
and since A is a pole of

B'C', and AA' is less than a quadrant, J. and J.' are on the same

side of B'C'.

Similarly it may be shewn that B is a pole of C'A', and that B
and B' are on the same side of C'A

;
also that C is a pole of J/2?',

and that C and (7' are on the same side of A'B'. Thus ABC is the

polar triangle of AB'C'.

27. The sides and angles of the polar triangle are respectively

the supplements of the angles and sides of the primitive triangle.

For let the arc B'C', produced if necessary, meet the arcs AB,

AC, produced if necessary, at the points D and E respectively ;

then since A is a pole of B'C', the spherical angle A is measured by
the arc DE (Art. 12). But B'E arid C'D are each quadrants;

therefore DE and B'C' are together equal to a semicircle
;
that is,

the angle subtended by B'C' at the centre of the sphere is the
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supplement of the angle A. This we may express for shortness

thus
;
B'C' is the supplement of A. Similarly it may be shewn

that C'A is the supplement of B, and A'E' the supplement of C.

And since ABC is the polar triangle ofAB'C', it follows that

BC, CA, AB are respectively the supplements of A', B'
, C

r

; that is,

A', B', G' are respectively the supplements of BC, CA, AB.

From these properties a primitive triangle and its polar tri-

angle are sometimes called supplemental triangles.

Thus, if A, B, C, a, b, c denote respectively the angles and

the sides of a spherical triangle, all expressed in circular measure,

and A', B', C', a', b', c' those of the polar triangle, we have

A' = TT a, Bf = TT b, C' TT c,

a' = TT A
,

b' = TT B, c' TT C.

28. The preceding result is of great importance; for if any

general theorem be demonstrated with respect to the sides and the

angles of any spherical triangle it holds of course for the polar

triangle also. Thus any such theorem will remain true when the

angles are changed into the supplements of the corresponding sides

and the sides into the supplements of the corresponding angles. "We

shall see several examples of this principle in the next Chapter.

29. Any two sides of a spherical triangle are together greater

than the third side. (See the figure of Art. 18.)

For any two of the three plane angles which form the solid

angle at are together greater than the third (Euclid, xi. 20).

Therefore any two of the arcs AB, BC, CA, are together greater

than the third.

From this proposition it is obvious that any side of a spherical

triangle is greater than the difference of the other two.

30. The sum of the three sides ofa spherical triangle is less than

the circumference of a great circle. (See the figure of Art. 18.)
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For the sum of the three plane angles which form the solid

angle at is less than four right angles (Euclid, xi. 21) ;
therefore

AB EG CA .

therefore, AB + EC + CA is less than 2?r x OA ;

that is, the sum of the arcs is less than the circumference of a

great circle.

31. The propositions contained in the preceding two Articles

may be extended. Thus, if there be any polygon which has each

of its angles less than two right angles, any one side is less than the

sum of all the others. This may be proved by repeated use of

Art. 29. Suppose, for example, that the figure has four sides, and

let the angular points be denoted by A, B, C, D. Then

AB + EG is greater than AC ;

therefore, AB + EG + CD is greater than AC + CD,

and a fortiori greater than AD.

Again, if there be any polygon which has each of its angles

less than two right angles, the sum of its sides will be less than the

circumference of a great circle. This follows from Euclid, xi. 21,

in the manner shewn in Art. 30.

32. The three angles of a spherical triangle are together greater

than two right angles and less than six right angles.

Let A, B, C be the angles of a spherical triangle j
let a', b

r

,
c'

be the sides of the polar triangle. Then by Art. 30,

a + b
f + c' is less than 2?r,

that is, TT- A + TT- B + TT (7 is less than 2?r ;

therefore, A + B + C is greater than TT.

And since each of the angles A, B, C is less than
TT,

the sum

A 4- B + C is less than 3?r.
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33. The angles at the base of an isosceles spherical triangle are

equal.

O

Let ABC be a spherical triangle having AC = BC
',

let be the

centre of the sphere. Draw tangents at the points A and B to the

arcs AC and BC respectively; these will meet OC produced at the

same point S, and AS will be equal to BS.

Draw tangents AT, BT at the points A, B to the arc AB
j
then

AT = TB-, join TS. In the two triangles SAT, SBT the sides

SA, AT, TS are equal to SB, BT, TS respectively; therefore the

angle SAT is equal to the angle SBT ;
and these are the angles at

the base of the spherical triangle.

The figure supposes AC and BC to be less than quadrants ;
if

they are greater than quadrants the tangents to AC and BC will

meet on CO produced through instead of through C, and the

demonstration may be completed as before. If AC and BC are

quadrants, the angles at the base are right angles by Arts. 11

and 9.

34. If two angles of a spherical triangle are equal, the opposite

sides are equal.

Since the primitive triangle has two equal angles, the polar

triangle has two equal sides
;
therefore in the polar triangle the

angles opposite the equal sides are equal by Art. 33. Hence in

the primitive triangle the sides opposite the equal angles are

equal.
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35. If one angle of a spherical triangle be greater than ano-

ther, the side opposite the greater angle is greater than the side

opposite the less angle.

Let ABC be a spherical triangle, and let the angle ABC be

greater than the angle BAC : then the side AC will be greater

than the side BC. At B make the angle ABD equal to the angle

BAD
;
then BD is equal to AD (Art. 34), and BD + DC is greater

than BC (Art. 29) ;
therefore AD + DC is greater than BC

;
that

is, AC is greater than BC.

36. If one side ofa spherical triangle be greater than another,

the angle opposite the greater side is greater than the angle opposite

the less side.

This follows from the preceding Article by means of the polar

triangle.

Or thus; suppose the side AC greater than the side BC, then

the angle ABC will be greater than the angle BAC. For the

angle ABC cannot be less than the angle BAC by Art. 35, and

the angle ABC cannot be equal to the angle BAC by Art. 34
;

therefore the angle ABC must be greater than the angle BAC.

This Chapter might be extended
; but it is unnecessary to do

so because the Trigonometrical formulae of the next Chapter sup-

ply an easy method of investigating the theorems of Spherical

Geometry. See Arts. 56, 57, and 58.
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IY. RELATIONS BETWEEN THE TRIGONOMETRICAL
FUNCTIONS OF THE SIDES AND THE ANGLES
OF A SPHERICAL TRIANGLE.

37. To express the cosine of an angle of a triangle in terms of
sines and cosines of the sides.

C \
E

Let ABC be a spherical triangle, the centre of the sphere.

Let the tangent at A to the arc AC meet OC produced at E, and

let the tangent at A to the arc AB meet OB produced at D join

ED. Thus the angle EAD is the angle A of the spherical triangle,

and the angle EOD measures the side a,

From the triangles ALE and ODE we have

DE* = AD2 + AE 2 - 2AD .AficosA,

DE 2 = OD2 + OE 2 -WD. OE cos a
;

also the angles OAD and OAE are right angles, so that

OD 2 = OA 2 + AD2 and OE2 = OA 2 + AE2
. Hence by subtraction

we have

= 20A 2 + 2AD .AEcQsA-WD. OE cos a
;

OA OA AE AD
therefore cos a = .^ +^ . QD

cos A
',

that is cos a = cos b cos c + sin b sin c cos A t

cos a cos b cos c
Therefore cos A = -

sin b sin c
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38. We have supposed, in the construction of the preceding

Article, that the sides which contain the angle A are less than

quadrants, for we have assumed that the tangents at A meet OB
and OC respectively produced. We must now shew that the

formula obtained is true when these sides are not less than quad-
rants. This we shall do by special examination of the cases in

which one side or each side is greater than a quadrant or equal to

a quadrant.

(1) Suppose only one of the sides which contain the angle A
to be greater than a quadrant, for example, AB. Produce BA
and BC to meet at B

;
and put AB

r

c
f

,
CBr = a.

Then we have from the triangle AB'C, by what has been

already proved,

cos a' = cos 1} cos c' + sin b sin c' cos B'AC ;

buta' = 7r a, C' = TT-C, B'AC-Tr A-, thus

cos a = cos b cos c + sin b sin c cos A.

(2) Suppose both the sides which contain the angle A to bo

greater than quadrants. Produce AB and AC to meet at A r

put
A'B c') AC =

b'; then from the triangle ABO, as before,

cos a = cos b' cos c + sin b' sin c cos A'
;

but l'= TT - b, c' = TT - c, A' = A; thus

cos a = cos b cos c + sin b sin c cos A.

T. S. T.
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(3) Suppose that one of the sides which contain the angle A
is a quadrant, for example, AB on AC, produced if necessary,

take AD equal to a quadrant and draw BD. If BD is a quadrant

B is a pole of AC (Art. 11) ;
in this case a = and A =-^ as well

2t 2

as c = ~ Thus the formula to be verified reduces to the identity
2

= 0. If BD be not a quadrant, the triangle BDC gives

cos a = cos (7.Z) cos BD + sin CD sin BD cos C7)j?,

and cos CDB =
0, cos (71) = cos

(^
~ 6

J
= sin 6, cos .## = cos J. ;

thus cos a = sin 6 cos -4
;

and this is what the formula in Art. 37 becomes when c - -
.

Zi

(4) Suppose that both the sides which contain the angle A
are quadrants. The formula then becomes cos a = cos A

;
and this

is obviously true, for A is now the pole of 0, and thus A = a.

Thus the formula in Art. 37 is proved to be universally true.

39. The formula in Art. 37 may be applied to express the

cosine of any angle of a triangle in terms of sines and cosines of

the sides
;
thus we have the three formulae,

cos a = cos b cos c + sin b sin c cos A,

cos 6 = cos c cos a + sin c sin a cos B,

cos c - cos a cos b + sin a sin b cos C.
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These may be considered as the fundamental equations of Spheri-

cal Trigonometry; we shall proceed to deduce various formulae

from them.

40. To express the sine of an angle of a spherical triangle in

terms of trigonometricalfunctions of the sides.

cos a cos b cos c
We have

sin b sin c

. /cos a -cos 6 cos c\ 2

therefore sin
JA = 11 = 7 )

\ sin 6 sin c J

__ (1 cos
8

b) (1 cos
2

c)
-

(cos a cos b cos c)
2

sin
2
b sin

2
c

__
1 cos

2a cos
2
& cos

2
c + 2 cos a cos 6 cos c

^

sin
2
6 sure

A . - A */(! COS
2& COS

2
5 COS

2
C+ 2 COS COS5 COSc)

therefore sin .4 = 5" : =: .

sin b sin c

The radical on the right-hand side must be taken with the posi-

tive sign, because sin 6, sin c, and sin A are all positive.

41. From the value of sin A in the preceding Article it fol-

lows that

sin A sin B sin C
sin a sin 6 sine

'

for each of these is equal to the same expression, namely,

fj(l
- cos

2
cos

2
6 cos

2
c -f 2 cos a cos b cos c)

sin a sin b sin c

Thus the sines of the angles of a spJierical triangle are proportional
to the sines of the opposite sides. We will give an independent

proof of this proposition in the following Article.

42. The sines of tJie angles of a spherical triangle are propor-
tional to the sines of the opposite sides.

c2
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Let ABC be a spherical triangle, the centre of the sphere.

Take any point P in OA, draw PD perpendicular to the plane

j
and from D draw DE, DF perpendicular to OB, OC respec-

tively ; join PE, PF, OD.

Since PD is perpendicular to the plane HOC, it makes right

angles with every straight line meeting it in that plane ;
hence

PE* = PD* +DE 2 = PO2 - OD* + DE 2 - PO2 - OE2
;

thus PEO is a right angle. ThereforePE = OP sin POE=OP sin c
;

and PD = PE$m PED =PE$mB=OP sin c sin B.

Similarly, PD = OP sin b sin C
;
therefore

OP sin c sin 7? = OP sin 5 sin C
;

sin 7? sin b
therefore . ~ = .

sin C sin c

The figure supposes 5, c, j5, and (7 each less than a right angle;

it will be found on examination that the proof will hold when the

figure is modified to meet any case which can occur. If, for

instance, B alone is greater than a right angle, the point D will

fall beyond OB instead of between OB and OC ;
then PED will

be the supplement of B, and thus sin PED is still equal to sin B.

43. To shew that cot a sin 6 = cot A sin (7 + cos 6 cos (7.

We have cos a = cos b cos c + sin b sin c cos A,

cos c = cos a cos 6 -f sin a sin 6 cos (7,

sin O
sin c = sin a

sin ^4
"
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Substitute the values of cos c and sin c in the first equation ;

thus

^ T sin a sin b cos A sin (7
cos a = (cos a cos o + sin a sin 6 cos G) cos 6 + . .

;

by transposition

cos a sin
2
b = sin a sin b cos 5 cos G + sin a sin b cot J. sin (7 ;

divide by sin a sin b ; thus

cot a sin 5 = cos b cos (7 -f cot A sin (7.

44. By interchanging the letters five other formula may be

obtained like that in the preceding Article
; the whole six formula

will be as follows :

cot a sin b = cot A sin G + cos b cos G,

cot b sin a = cot B sin G + cos a cos C,

cot 6 sin c = cot5 sin A + cos c cos A,

cot c sin b = cot (7 sin A + cos 6 cos A,

cot c sin a = cot G sin j5 4- cos a cos ^,

cot a sin c = cot A sin J5 + cos c cos .Z?.

45. To express the sine, cosine, and tangent, of half an angle

of a triangle asfunctions of the sides.

. cos a- cos b cos c
We have, by Art. 37, cos A =

. , .
-

:

sin b sin c

cos a - cos b cos c cos (b - c)
- cos a

therefore 1 - cos A = 1 : r. =
: = -. ;

sin 6 sin c sin b sin c

. A sin i (a + b - c) sin A (a - b + c)
therefore Bin- -^

= ** -I -

'

2 sin 6 sin c

Let 2s = a + b + c, so that s is half the sum of the sides of

the triangle ;
then

. J. sin (s 5) sin (s c)
thus sin

2 - =
- * >

2 sm 6 sin c
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A / (sin (s - b) sin (s - c)}
and

.
.,

cos a cos b cos c cos a cos (b + c)
Also, 1 -f cos A - 1 + : = ;

- =
; = 7-^

-
;sm 6 sm c sin 6 sin c

therefore

P J. sin i (& + 5 -f c) sin i (5 -t- c a) sin s sin (5 a)
COS

2 = ^ x
L z-1 . = . :

2 sin 6 sin c sin 6 sin c

^t /(sin 5 sin (5 -a)*)and cos -^
=

A / < : r4 -x > .

2 \ ( sin b sm c J

From the expressions for sin and cos -~ we deduce

2 V 1 sin 5 sin (s
-

a) /

The positive sign must be given to the radicals which occur in

A
this Article, because

-^
is less than a right angle, and therefore its

sine, cosine, and tangent are all positive.

46. Since sin A = 2 sin
-^

cos -~
,
we obtain

2 i

sinA = ^. {sin s sin (s
-

a) sin (s b) sin (s - c)}
a

.

sm b sin c
l

It may be shewn that the expression for sin.4 in Art. 40

agrees with the present expression by putting the numerator of

that expression in factors, as in Plane Trigonometry, Art. 115.

We shall find it convenient to use a symbol for the radical in the

value of sin A ;
we shall denote it by n, so that

n2 = sin s sin (s a) sin (s
-

b) sin (s c),

and 4?i
2 = 1 - cos

2a - cos
2
6 - eos

z
c + 2 cos a cos b cos e.
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47. To express the cosine of a side of a triangle in terms of

sines and cosines of the angles.

In the formula of Art. 37 we may, by Art. 28, change the

sides into the supplements of the corresponding angles and the

angle into the supplement of the corresponding side ; thus

cos (TT-^)=COS (TT--B)cos (TT
-
C) + sin

(TT
-
B) sin (?r-(7)cos (7r-a),

that is, cos A = cos B cos C + sin B sin C cos a.

Similarly cos B - cos C cos A + sin C sin A cos b,

and cos C = cos A cos .Z? -f sin A sin J5 cos c.

48. The formulae in Art. 44 will of course remain true when

the angles and sides are changed into the supplements of the cor-

responding sides and angles respectively ;
it will be found, how-

ever, that no new formulae are thus obtained, but only the same

formulae over again. This consideration will furnish some assist-

ance in retaining those formulas accurately in the memory.

49. To express the sine, cosine, and tangent, of half a side of a

triangle asfunctions of the angles.

cos A + cosB cos CWe have, by Art. 47, cos a=-: r-. --
:

sin B sin 6

therefore

cos A + cos B cos C cos A + cos (B + C)
1 - cos a -: 1--: ^. ~ =--

: T, . /T
-

;

sinB sin G sin B sin 6

,
a cos i (A + B + 0) cos

therefore sin
2 - =--^- '- ---

: .

--
.

2 sin B sin 6

Let 2S= A+B + C; then B + C- A - 2 (S-A), therefore

a_ cos S cos (S A]
sin B sin G *

cos 8 cos (S -4) )

sinlsinC /'
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- cos A + cos B cos G cos A + cos (B C)
Also 1 + cos a = I +--. =, . ^-- = --

; _ .

v
'-

;
sinB sin G sin Z? sin (7

therefore

2
a _ cos i

(A
- Jg + (7)cos (A + B-C) _cos (S-E) cos (S-Q

>S

2
"

sin sin (7 sin sin (7

a /(cos (S- B} cos (--

The positive sign must be given to the radicals which occur in

this Article, because ^ is less than a right angle.

50. The expressions in the preceding Article may also be

obtained immediately from those given in Art. 45 by means of

Art. 28.

It may be remarked that the values of sin ? cos ^ ,
and tan ^

2t 2t 2i

are real. For S is greater than one right angle and less than three

light angles by Art. 32
; therefore cos S is negative. And in the

polar triangle any side is less than the sum of the other two
; thus

7T-A is less than Tr-B + ir-G', therefore B + G - A is less than

TT; therefore S-A is less than^, and B + G -A is algebraically2

greater than
TT, so that S A is algebraically greater than ^ ;

2

therefore cos (S
-
A) is positive. Similarly also cos (S

-
B) and

cos (S- G) are positive. Hence the values of sin ^ ,
cos -

,
and tan ^

2i JL 2*

are real.

51. Since sin a = 2 sin ^ cos ^ ,
we obtain

2t Ij

2
sin a =

gin ^ g {- cos S cos
(tf

-
^) cos (S

-
5) cos (S

-

We shall use ^for -
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52. To demonstrate Napier's Analogies.

sin A sin B
We have .

=
; ,

= m suppose :

sin a sin b

then, by a theorem of Algebra,

sin A + sin B
ra= . , (1),

sin a + sin b

sin A - sin B
and also m . 7 ( 2 ).

sin a sin b

Now cos A + cos B cos C = sin 5 sin G cos a =m sin (7 sin 6 cos a,

and cos B -f cos A cos (7 = sin A sin (7 cos b =m sin (7 sin a cos 6,

therefore, by addition,

(cos J. +cos^)(l + cos
(7)

=m sin (7 sin (# + 6) (3);

therefore by (1) we have

sin A + sin B _ sin a + sin b 1 + cos

cos J. + cos J5
~

sin (a + b) sin (7

thatis, tan|(^ + ^) =
C08

f /̂ "^ooty . ...(4).cos J (a + &) 2

Similarly from (3) and (2) we have

sin A sin ^
__

sin a - sin 5 1 + cos C
cos A + cos ^

~~

sin (a + b) sin (7
*

that is, tan 1(4 -) =
-

cot /6 \
' sin ^ (a + 6) 2

By writing ?r-4 for a, and so on in (4) and (5) we obtain

T . cos i (^ B) J
c

(7).v x

The formulae (4), (5), (6), (7) may be put in the form of pro-

portions or analogies, and are called from their discoverer Napier's
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Analogies : the last two may be demonstrated without recurring

to the polar triangle by starting with the formulae in Art. 39.

53. In equation (4) of the preceding Article, cos J (a b) and

G
cot - are necessarily positive quantities ;

hence the equation
2t

shews that tanJ(J[ +B] and cos J (a + b) are of the same sign;

thus ^ (
A + B) and J (a + b) are either both less than a right angle

or both greater than a right angle. This is expressed by saying

that ^ (
A + B} and J (a + b) are of the same affection.

54:. To demonstrate Delambre's Analogies.

We have cos c = cos a cos b + sin a sin b cos C
;
therefore

1 + cos c = 1 + cos a cos b + sin a sin b (cos
8

\G sin
2

J C)

=
(1 + cos (a

-
b)} cos

2

J (7 + {1 + cos (a + 6)} sin
2

J (7
;

therefore cos
2

1 c = cos
2

J (a
-

6) cos
2

JC 4- cos
2

J (a -f b) sin
2

J C.

Similarly, sin
2

J c = sin
2

| (a
-

6) cos
2

J (7 + sin
2

J (a -f 6) sin
2

J (7.

Now add unity to the square of each member of Napier's first

two analogies ;
hence by the formulae just proved

' 1 / A 7?\ - COs8 ^ C^ "
2

"
'

sn <* +
)
sn

Extract the square roots
; thus, since J (A + B} and ^ (a 4- &)

are of the game affection, we obtain

cos J (A +J3) cos |c = cos ^(a + b) sin J (7 ....... (1),

cos%(A -j5)sin Jc = sin J (a + 5) sin 1 (7 ....... (2).

Multiply the first two of Napier's analogies respectively by
these results ;

thus

sini(^t-f B) cos|c = cos| (a -b) cos \C ....... (3),

sin \(A -
B) sin ^ c = sin J (a

~
^) cos 2 ^ .......W-
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The last four formulae are commonly, but improperly, called

Gauss's TJieorems; they were first given by Delambre in the

Connaissance des Terns for 1809, page 445. See the Philosophical

Magazine for February, 1873.

55. The properties of supplemental triangles were proved

geometrically in Art. 27, and by means of these properties the

formulse in Art. 47 were obtained; but these formulae may be

deduced analytically from those in Art. 39, and thus the whole

subject may be made to depend on the formulae of Art. 39.

For from Art. 39 we obtain expressions for cos A, cos ,
cos G\

and from these we find

cos A + cos B cos G

(cos a cos b cos c)
sin* a + (cos b cos a cos

c) (cos c cos a cos b)

sin
2 a sin b sin c

In the numerator of this fraction write 1 cos
2a for sin

2

a; thus

the numerator will be found to reduce to

cos a (1 cos*a cos
2
b cos

2
c + 2 cos a cos b cos c),

and this is equal to cos a sinB sin C sin
2 a sin b sin c, (Art. 41) ;

therefore cos A + cosB cos C = cos a sin .Z? sin C.

Similarly the other two corresponding formulae may be proved.

Thus the formulae in Art. 47 are established
;
and therefore,

without assuming the existence and properties of the Polar Tri-

angle, we deduce the following theorem : If the sides and angles

of a spherical triangle be changed respectively into the supplements

of the corresponding angles and sides, the fundamental formulae of
Art. 39 hold good, and therefore also all results deduciblefrom them.

56. The formulae in the present Chapter may be applied to

establish analytically various propositions respecting spherical tri-

angles which either have been proved geometrically in the pre-

ceding Chapter, or may be so proved. Thus, for example, the

second of Napier's analogies is

1
. . sin A (a b) C

tan \ (A -B) =.
. f ;

J cot -
6 ;7 sin A (a + b} 2

'
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this shews that J (
J. - J3) is positive, negative, or zero, according as

J (a b) is positive, negative, or zero
;
thus we obtain all the re-

sults included in Arts. 33... 36.

57. If two triangles have two sides of the one equal to two

sides of the other, each to each, and likewise the included angles

equal, then their other angles will be equal, each to each, and like-

wise their loses will be equal.

We may shew that the bases are equal by applying the first

formula in Art. 39 to each triangle, supposing b, c, and A the

same in the two triangles; then the remaining two formulae of

Art. 39 will shew that B and G are the same in the two triangles.

It should be observed that the two triangles in this case are

not necessarily such that one may be made to coincide with the

other by superposition. The sides of one may be equal to those of

the other, each to each, but in a reverse order, as in the following

figures.

Two triangles which are equal in this manner are said to be

symmetrically equal ; when they are equal so as to admit of super-

position they are said to be absolutely equal.

58. If two spherical triangles have two sides of the one equal to

two sides of the other
,
each to each, but the angle which is contained

by the two sides of the one greater than the angle which is contained

by the two sides which are equal to them of the other, the base of that
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which has the greater angle will be greater than the base of the

other ; and conversely.

Let b and c denote the sides which are equal in the two tri-

angles ;
let a be the base and A the opposite angle of one triangle,

and a and A' similar quantities for the other. Then

cos a = cos b cos c + sin b sin c cos A,

cos a' = cos b cos c + sin b sin c cos A'
;

therefore cos a cos a = sin b sin c (cos A cos A'
) ;

that is,

sin \ (a -f a') sin J (a
-

a')
= sin b sin c sin | (A + .4')

sin ^ (A ^t') ;

this shews that J (a a') and J (J. A') are of the same sign.

59. If on a sphere any point be taken within a circle which

is not its pole, of all the arcs which can be drawn from that point

to the circumference, the greatest is that in which the pole is, and the

other part of that produced is the least ; and of any others, that which

is nearer to the greatest is always greater than one more remote; and

from the same point to the circumference there can be drawn only

two arcs which are equal to each other, and these make equal angles

with the shortest arc on opposite sides of it.

This follows readily from the preceding three Articles.

60. We will give another proof of the fundamental formulee

in Art. 39, which is very simple, requiring only a knowledge of

the elements of Co-ordinate Geometry.

Suppose ABC any spherical triangle, the centre of the

sphere, take as the origin of co-ordinates, and let the axis of z

pass through C. Let x^ y^ z
t
be the co-ordinates of A, and x

a ,

y2 ,
z
y
those of B let r be the radius of the sphere. Then the

square on the straight line AB is equal to

(a, -*.)'+ fa- ?.)*+(*, -O'.

and also to r
5 + r* - 2r5

cos AOB ;
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and x* + y* + z* - r
2

,
x* + y? -f z2

z = r
2

,
thus

Now make the usual substitutions in passing from rectangular

to polar co-ordinates, namely,

z
l

= r cos 00 oij
= r sin

}
cos c^, y l

= r sin O
l
sin c^,

2
2
= r cos

2,
#a
= r sin

2
cos <

2 , 2/2
= r sin

2
sin

<^>2 ;

thus we obtain

cos 2 cos }

+ sin ^
2
sin

}
cos

(^> l <^>2)
= cos AOJ3,

that is, in the ordinary notation of Spherical Trigonometry,

cos a cos b + sin a sin b cos (7 = cos c.

This method has the advantage of giving a perfectly general

proof, as all the equations used are universally true.

EXAMPLES.

1. If A =a, shew that B and b are equal or supplemental, as

also C and c.

2. If one angle of a triangle be equal to the sum of the other

two, the greatest side is double of the distance of its middle point

from the opposite angle.

3. When does the polar triangle coincide with the primitive

triangle 1

4. If D be the middle point of AB, shew that

cos AC + cos = 2 cos \ AB cos CD.

5. If two angles of a spherical triangle be respectively equal
to the sides opposite to them, shew that the remaining side is the

supplement of the remaining angle ; or else that the triangle has

two quadrants and two right angles, and then the remaining side

is equal to the remaining angle.
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6. In an equilateral triangle, shew that 2 cos sin = 1.

I. In an equilateral triangle, shew that tan2-= 1 2 cos A;
A

hence deduce the limits between which the sides and the angles of

an equilateral triangle are restricted.

8. In an equilateral triangle, shew that sec A = 1 + sec a.

9. If the three sides of a spherical triangle be halved and

b c
a new triangle formed, the angle between the new sides

-^
and ^

>j l/

is given by cos = cos A + J tan ^ tan ^ sin
2
0.

2t 2i

10. AB, CD are quadrants on the surface of a sphere inter-

secting at E, the extremities being joined by great circles : shew

that

cos AEG = cos AC cos BD - cos BG cos AD.

II. If b + c = TT, shew that sin 2B + sin 20 = 0.

12. If DE be an arc of a great circle bisecting the sides AB9

AC of a spherical triangle at D and ^, P a pole of D^, and P.Z?,

.PZ), PJ&, P(7 be joined by arcs of great circles, shew that the angle

BPG = twice the angle DPE.

13. In a spherical triangle shew that

sin b sin c + cos b cos c cos ^ = sin B sin (7 cos B cos (7 cos a.

14. If D be any point in the side BC of a triangle, shew that

cosAD sin 5(7 = cos AB sin _D(7 + cos AC sin -Z?Z>.

15. In a spherical triangle shew that if 0, <, i/r
be the lengths

of arcs of great circles drawn from A, B, C perpendicular to the

opposite sides,

sin a sin = sin b sin
<f>
- sin c sin

\f/

= V (1 cos
2 a - cos

2
b - cos

2
c + 2 cos a cos# cos

c).



32 SOLUTION OF RIGHT-ANGLED TRIANGLES.

16. In a spherical triangle, if 0, <, if/
be the arcs bisecting the

angles A, B, C respectively and terminated by the opposite sides,

shew thatABC
cot cos ^ + cot < cos 4- cot

if/
cos = cot a + cot b + cot c.

Jj Z 2t

17. Two ports are in the same parallel of latitude, their com-

mon latitude being I and their difference of longitude 2X : shew

that the saving of distance in sailing from one to the other on the

great circle, instead of sailing due East or West, is

2r {X cos I sin"
1

(sin X cos
Z)},

X being expressed in circular measure, and r being the radius of

the Earth.

18. If a ship be proceeding uniformly along a great circle and

the observed latitudes be Z
1?

la l
z,

at equal intervals of time, in

each of which the distance traversed is 8, shew that

_ x
sin i (/ + 7

)
cos \ (I

- 1)-S-iJ-- 2LU-a/

r denoting the Earth's radius : and shew that the change of longi-

tude may also be found in terms of the three latitudes.

V. SOLUTION OF EIGHT-ANGLED TRIANGLES.

61. In every spherical triangle there are six elements, namely,
the three sides and the three angles, besides the radius of the

sphere, which is supposed constant. The solution of spherical tri-

angles is the process by which, when the values of a sufficient

number of the six elements are given, we calculate the values of

the remaining elements. It will appear, as we proceed, that when
the values of three of the elements are given, those of the remain-

ing three can generally be found. We begin with the right-angled

triangle : here two elements, in addition to the right angle, will be

supposed known.
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62. The formulae requisite for the solution of right-angled

triangles may be obtained from the preceding Chapter by sup-

posing one of the angles a right angle, as for example. They

may also be obtained veiy easily in an independent manner, as

we will now shew.

Let AEG be a spherical triangle having a right angle at G ;

let be the centre of the sphere. From any point P in OA draw

PM perpendicular to 0(7, and from M draw MN perpendicular to

OB, and join PN. Then PM is perpendicular to MN, because the

plane AOC is perpendicular to the plane BOG ; hence

PN2 = PM 2 +MN 2 = OP 2 - OM 2 + OM 2 - ON2 = OP 2 - ON2

-,

therefore PNO is a right angle. And

ON ON OM

PM_PM PN

Similarly sin a = sin A sin c I

MN MN PN
..,,., )-

,
that is, tana = cosB tan c f

........ (3),

Similarly tan b = cosA tan c '

PM PM MN
,

- A

-^' tliatlS?tan^tan^Sina
l ........W-

Similarly tan a = tan^ sin 6
)

T. S. T,
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Multiply together the two formulae (4) ; .thus,

D tan a tan b 1 1
tan A tan B =

. ,
- = = by (1) ;sm a sin b cos a cos b cos c

'

therefore cos c = cot A cotB
(5).

Multiply crosswise the second formula in (2) and the first

in (3) ;
thus sin a cos B tan c = tan a sin A sin c ;

therefore cos B = = sin A cos b by (1).
cos a

Thus cos B = sin A cos
6|

Similarly cos A = sin ^ cos a)

"

These six formulae comprise ten equations; and thus we can

solve every case of right-angled triangles. For every one of these

ten equations is a distinct combination involving three out of the

five quantities a, 6, c, A y B\ and out of five quantities only ten

combinations of three can be formed. Thus any two of the five

quantities being given and a third required, some one of the pre-

ceding ten equations will serve to determine that third quantity.

63. As we have stated, the above six formulae may be ob-

tained from those given in the preceding Chapter by supposing C a

right angle. Thus (1) follows from Art. 39, (2) from Art. 41,

(3) from the fourth and fifth equations of Art. 44, (4) from the

first and second equations of Art. (44), (5) from the third equation

of Art. 47, (6) from the first and second equations of Art. 47.

Since the six formulae may be obtained from those given in

the preceding Chapter which have been proved to be universally

true, we do not stop to shew that the demonstration of Art. 62

may be applied to every case which can occur
;
the student may

for exercise investigate the modifications which will be necessary
when we suppose one or more of the quantities a, b, c, A, B equal
to a right angle or greater than a right angle.
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64. Certain properties of right-angled triangles are deducible

from the formulae of Art. 62.

From (1) it follows that cos c has the same sign as the product

cos a cos b ; hence either all the cosines are positive, or else only
one is positive. Therefore in a right-angled triangle either all the

three sides are less than quadrants, or else one side is less than a

quadrant and the other two sides are greater than quadrants.

From (4) it follows that tana has the same sign as tanA
Therefore A and a are either both greater than -

,
or both less

than
-^ ;

this is expressed by saying that A and a are of the same
2i

affection. Similarly B and b are of the same affection.

65. The formulae of Art. 62 are comprised in the following

enunciations, which the student will find it useful to remember
;

the results are distinguished by the same numbers as have been

already applied to them in Art. 62
;
the side opposite the right

angle is called the hypotenuse :

Cos hyp = product of cosines of sides
(1),

Cos hyp = product of cotangents of angles ...., (5),

Sine side= sine of opposite angle x sine hyp .(2),

Tan side = tan hyp x cos included angle (3),

Tan side = tan opposite angle x sine of other side
(4),

Cos angle= cos opposite side x sine of other angle (6).

66. Napier's Rules. The formulae of Art. 62 are comprised

in two rules, which are called, from their inventor, Napier's Rules

of Circular Parts. Napier was also the inventor of Logarithms,

and the Rules of Circular Parts were first published by him in a

work entitled Mirifici Logarithmorum Canonis Descriptio

Edinburgh, 1614. These rules we will now explain.

D2
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The right angle is left "out of consideration
;
the two sides

which include the right angle, the complement of the hypotenuse,
and the complements of the other angles are called the circular

parts of the triangle. Thus there are Jive circular parts, namely,

a, b, TT A, ^ c, #; and these are supposed to be ranged
2t 21 2S

round a circle in the order in which they naturally occur with

respect to the triangle.

Any one of the five parts may be selected and called the

middle part, then the two parts next to it are called adjacent

parts, and the remaining two parts are called opposite parts. For

example, if ^ B is selected as the middle part, then the adjacentA

parts are a and
c, and the opposite parts are b and ^ A.

Then Napier's Rules are the following :

sine of the middle part = product of tangents of adjacent parts,

sine of the middle part = product of cosines of opposite parts.

67. Napier's Rules may be demonstrated by shewing that

they agree with the results already established. The following

table shews the required agreement : in the first column are given

the middle parts, in the second column the results of Napier's

Rules, and in the third column the same results expressed as in

Art. 62, with the number for reference used in that Article.
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?- o sin
(?

-
c)

= tan fc - A\ tan
(|

- JB\ cos c = cot A cot ..(5),

sin(^-cj
= cosa cos 6 cos c = cos a cos &..(!),

in
( H~^) - tana tan (?-c) cos J5 = tan a cote ..(3),

in-^J = cos b cos
(J^-A\

cos .5 = cos 5 sin J..(6),

sin a = tan b tan (
- B

)
sin a = tan 6 cot ^..(4),

sin a = cos \^-A\ cos (H- C
)

sin a = sinA sine. .(2),

-- sn H

b = tan ( A
j
tan a sin 6 = cot A tan a.. (4),

sin b = cos f--^ cos f-f-
cj

sin b = sin B sine.. (2),

- A sin ( A } = tan b tan (
- c

J
cos A = tan 6 cot c .. (3),

sinf ^
-4

j
= cos a cos

(-^
B\ cos ^1 = cos a sin .#..(6),

The last four cases need not have been given, since it is obvious

that they are only repetitions of what had previously been given ;

the seventh and eighth are repetitions of the fifth and sixth, and

the ninth and tenth are repetitions of the third and fourth.

68. It has been sometimes stated that the method of the

preceding Article is the only one by which Napier's Rules can be

demonstrated
;
this statement, however, is inaccurate, since besides

this method Napier himself indicated another method of proof in

his Mirifici Logarithmorum Canonis Descriptio, pp. 32, 35. This

we will now briefly explain,



38 SOLUTION OF EIGHT-ANGLED TRIANGLES.

Let ABC be a spherical triangle right-angled at (7; with B
as pole describe a great circle DEFG, and with A as pole describe

a great circle HFKL, and produce the sides of the original triangle

ABC to meet these great circles. Then since B is a pole of DEFG
the angles at D and G are right angles, and since A is a pole of

HFKL the angles at H and L are right angles. Hence the five

triangles BAG, AED, EFH, FKG, KBL are all right-angled; and

moreover it will be found on examination that, although the ele-

ments of these triangles are different, yet their circular parts are

the same. We will consider, for example, the triangle AED ;
the

angle EAD is equal to the angle BAC ; the side AD is the com-

plement of AB
;
as the angles at C and G are right angles E is a

pole of GC (Art. 13), therefore EA is the complement of AC
\
as

B is a pole of DE the angle BED is a right angle, therefore the

angle AED is the complement of the angle BEC, that is, the

angle AED is the complement of the side BC (Art. 12); and simi-

larly the side DE is equal to the angle DBE, and is therefore the

complement of the angle ABC. Hence, if we denote the elements

of the triangle ABC as usual by a, &, c, A, B, we have in the

triangle AED the hypotenuse equal to
^-6,

the angles equal to

A and ^-a, and the sides respectively opposite these angles equal
2i

to*-fi and ^-c. The circular parts of AED are therefore the
2 2
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same as those of ABC. Similarly the remaining three of the five

right-angled triangles may be shewn to have the same circular

parts as the triangle ABC has.

Now take two of the theorems in Art. 60, for example (1) and

(3); then the truth of the ten cases comprised in Napier's Rules

will be found to follow from applying the two theorems in succes-

sion to the five triangles formed in the preceding figure. Thus

this method of considering Napier's Rules regards each Rule, not

as the statement of dissimilar properties of one triangle, but as the

statement of similar properties of five allied triangles.

69. In Napier's work a figure is given of which that in the

preceding Article is a copy, except that different letters are used
;

Napier briefly intimates that the truth of the Rules can be easily

seen by means of this figure, as well as by the method of induction

from consideration of all the cases which can occur. The late

T. S. Davies, in his edition of Dr Hutton's Course of Mathematics,

drew attention to Napier's own views and expanded the demon-

stration by a systematic examination of the figure of the preceding

Article.

It is however easy to evade the necessity of examining the

whole figure ;
all that is wanted is to observe the connexion

between the triangle AED and the triangle BAG. For let a
l9
a

2,

a
3 j a^ a

5 represent the elements of the triangle BAC taken in

order, beginning with the hypotenuse and omitting the right

angle; then the elements of the triangle AED taken in order,

beginning with the hypotenuse and omitting the right angle, are

o
~~ a& ~c>

~" a
4> <>

~~ a& o
~~ a

i>
and a

a
9 -^? therefore, to characterise

L 2i
'

2i 2t

the former we introduce a new set of quantities p l9 ps, pa, p4 , p59

such that a
l
+ p^

= a
2
+pa

= a
5 +p. = ,

and that p3
= a

a
and p4

=
4,

then the original triangle being characterised by p l9 ps , p^ p^ pS9

the second triangle will be similarly characterised by pa9 p^ p.,

p l9 p2
. As the second triangle can give rise to a third in like

manner, and so on, we see that every right-angled triangle is one
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of a system of five such triangles which, are all characterised by
the quantities pl9 p^ p3 , p4 , ps, always taken in order, each

quantity in its turn standing first.

The late R. L. Ellis pointed out this connexion between the

five triangles, and thus gave the true significance of Napier's

Rules. The memoir containing Mr Ellis's investigations, which

was unpublished when the first edition of the present work ap-

peared, will be found in pages 32 8...335 of The Mathematical and

other writings of Robert Leslie Ellis... Cambridge, 1863.

Napier's own method of considering his Rules was neglected

by writers on the subject until the late T. S. Davies drew atten-

tion to it. Hence, as we have already remarked in Art. 68, an

erroneous statement was made respecting the Rules. For in-

stance, Woodhouse says, in his Trigonometry : "There is no sepa-

rate and independent proof of these rules;..." Airy says, in the

treatise on Trigonometry in the Encyclopaedia, Metropolitana :

" These rules are proved to be true only by showing that they com-

prehend all the equations which we have just found."

70. Opinions have diftered with respect to the utility of

Napier's Rules in practice. Thus Woodhouse says, "In the whole

compass of mathematical science there cannot be found, perhaps,

rules which more completely attain that which is the proper

object of rules, namely, facility and brevity of computation."

(Trigonometry, chap, x.) On the other hand may be set the fol-

lowing sentence from Airy's Trigonometry (Encyclopcedia Metro-

politana)'. "In the opinion of Delambre (and no one was better

qualified by experience to give an opinion) these theorems are best

recollected by the practical calculator in their unconnected form."

See Delambre's Astronomic, vol. I. p. 205. Professor De Morgan

strongly objects to Napier's Rules, and says (Spherical Trigono-

metry, Art. 17): "There are certain mnemonical formulae called

Napier's Rules of Circular Parts, which are generally explained.

We do not give them, because we are convinced that they only

create confusion instead of assisting the memory."
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71. We shall now proceed to apply the formulae of Art. 62

to the solution of right-angled triangles. We shall assume that

the given quantities are subject to the limitations which are stated

in Arts. 22 and 23, that is, a given side must be less than the

semicircumference of a great circle, and a given angle less than

two right angles. There will be six cases to consider.

72. Having given the hypotenuse c and an angle A.

Here we have from (3), (5) and (2) of Art. 62,

tan b = tan c cos A, cotB = cose tan A, sin a sine sin A.

Thus b and B are determined immediately without ambiguity ;

and as a must be of the same affection as A (Art. 64), a also is

determined without ambiguity.

It is obvious from the formulae of solution, that in this case

the triangle is always possible.

If c and A are both right angles, a is a right angle, and b and

B are indeterminate.

73. Having given a side b and the adjacent angle A,

Here we have from (3), (4) and (6) of Art. 62,

tan c = 7 , tan a = tan A sin b. cos B = cos b sin A.
cosA

Here c, a, B are determined without ambiguity, and the tri-

angle is always possible.

74. Having given the two sides a and b.

Here we have from (1) and (4) of Art. 62,

cos c = cos a cos 6, cot A = cot a sin b, cot B = cot b sin a.

Here c, A, B are determined without ambiguity, and the tri-

angle is always possible.

75. Having given the hypotenuse c and a side a.

Here we have from (1), (3) and (2) of Art. 62,

. cos c tan a . sin a
cos b = , cos B = . sin A = -

,

cosa tan c sin c
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Here b, B, A are determined without ambiguity, since A must

be of the same affection as a. It will be seen from these formulae

that there are limitations of the data in order" to insure a possible

triangle ;
in fact, c must lie between a and tr a in order that the

values found for cos 6, cos -5, and sin A may be numerically not

greater than unity.

If c and a "are right angles, A is a right angle, and b and B are

indeterminate.

76. Having given the two angles A and B.

Here we have from (5) and (6) of Art. 62,

, n cos A t cosfi
cos c = cot A cot B. cos a = ^ , cos b = -. .

sin B sin A

Here c, a, b are determined without ambiguity. There are

limitations of the data in order to insure a possible triangle. First

suppose A less than ^ ,
then B must He between - -A and ^ + A;

2t Jj A

next suppose A greater than -
,
then B must lie between

2

-^ (TT A) and -f
(TT ^4), that is, between A ^ and A.

2t 2i 2i 2t

77. Having given a side a and the opposite angle A.

Here we have from (2), (4) and (6) of Art. 62,

sin a cos A
sin c = -r r ,

sin b = tan a cot A, sin B = .

sin J. cos a

Here there is an ambiguity, as the parts are determined from

their sines. If sin a be less than sin .4, there are two values

admissible for c; corresponding to each of these there will be

in general only one admissible value of b, since we must have

cos c = cos a cos 6, and only one admissible value of B, since we
must have cos c = cot A cot B. Thus if one triangle exists with the

given parts, there will be in general two, and only two, triangles

with the given parts. We say in general in the preceding sen-

tences, because if a = A there will be only one triangle, unless a
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and A are each right angles, and then b and B become inde-

terminate.

It is easy to see from a figure that the ambiguity must occur

in general.

For, suppose BAG to be a triangle which satisfies the given

conditions ; produce AB and AC to meet again at A' then the

triangle A'BC also satisfies the given conditions, for it has a right

angle at C, BC the given side, and A' = A the given angle.

If a = A, then the formulae of solution shew that c, 5, and B
are right angles ;

in this case A is the pole of BC, and the triangle

ABC is symmetrically equal to the triangle ABC (Art. 57).

If a and A are both right angles, B is the pole of AC j
B and b

are then equal, but may have any value whatever.

There are limitations of the data in order to insure a possible

triangle. A and a must have the same affection by Art. 64; hence

the formulae of solution shew that a must be less than A if both

are acute, and greater than A if both are obtuse.

EXAMPLES.

If ABC be a triangle in which the angle C is a right . angle,

prove the following relations contained in Examples 1 to 5.

~. O c . O a 9 b Q cb . b
1. Sin2

-= = sin
2 - cos

2

^ + cos
2

^ sin
2 -

.

..' 2i 2i 2i A

2. T^n |(c + a) tan l(c
-

a)
= tan2 -

.

;

"J_
3. Sin (c

-
b)
= tan2

sin (c + b).
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4. Sin a tan \A -sin 6 tan^J5 = sin (a-b).

5. Sin (c a) sin b cos a tan J B,

Sin
(c a)

= tan b cos c tan J Z?.

6. If ABC be a spherical triangle, right-angled at 0, and

cosA= cos
2
a, shew that if A be not a right angle & + C = |TT or

3 7T
-

TT, according as b and c are both less or both greater than -
,

2 A

7. If a, /? be the arcs drawn from the right angle respectively

perpendicular to and bisecting the hypotenuse c, shew that

M

sin
2 -

(1 + sin
2

a)
= sin

2

ft.
t

8. In a triangle, if be a right angle and D the middle point

of AB, shew that

4 cos
2

sin
2 CD = sin

2 a + sin* b.
2i

9. In a right-angled triangle, if 8 be the length of the arc

drawn from C perpendicular to the hypotenuse AB, shew that

cot 8=

10. OAA
l
is a spherical triangle right-angled at A

I
and acute-

angled at A y
the arc A^ z

of a great circle is drawn perpendicular

to OA, then A
2
A

3
is drawn perpendicular to OA

l9
and so on : shew

that A
n
An+l vanishes when n becomes infinite; and find the value

j
cos A^A<i cos A^A 3

......to infinity.

11. ABC is a right-angled spherical triangle, A not being the

right angle : shew that if A =
a, then c and b are quadrants.

12. If 8 be the length of the arc drawn from perpendicular

to AB in any triangle, shew that

cos 8 = cosec c (cos
2 a + cos

2
b - 2 cos a cos b cos c)\

13. ABC is a great circle of a sphere ) AA', BB
r

, (7(7', are arcs

of great circles drawn at right angles to ABC and reckoned posi-
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tive when they lie on the same side of it : shew that the condition

of A', B', C' lying in a great circle is

tan AA' sinBG + tan BE' sin CA + tan CC' sin AB = 0.

14. Perpendiculars are drawn from the angles A, B, C of any

triangle meeting the opposite sides at D, E, F respectively ; shew

that

tanBD tan CE tanAF= tanDC tanEA tan FB.

15. Ox, Oy are two great circles of a sphere at right angles to

each other, P is any point in AB another great circle. OC =p is

the arc perpendicular to AB from 0, making the angle C0x = a

with Ox. PM, PN are arcs perpendicular to Ox, Oy respectively :

Shew that if OM= x and

cos a tan x + sin a tan y = tanp.

1 6. The position of a point on a sphere, with reference to two

great circles at right angles to each other as axes, is determined

by the portions 0, </>
of these circles cut off by great circles through

the point, and through two points on the axes, each - from their
2

point of intersection : shew that if the three points (0, <), (0', <'),

(0", <") lie on the same great circle

tan < (tan ff - tan 0") + tan <' (tan 0" - tan 0)

+ tan <" (tan
- tan

0')
= 0.

17. If a point on a sphere be referred to two great circles at

right angles to each other as axes, by means of the portions of

these axes cut off by great circles drawn through the point and
two points on the axes each 90 from their intersection, shew that

the equation to a great circle is

tan cot a + tan < cot ft
= 1.

18. In a spherical triangle, if A = -
,
B = -

9
and C = ^ , shew

o 6 2

that a + b + c = ^ .

J
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78; The solution of oblique-angled triangles may be made in

some cases to depend immediately on the solution of right-angled

triangles }
we will indicate these cases before considering the sub-

ject generally.

(1) Suppose a triangle to have one of its given sides equal to

a quadrant. In this case the polar triangle has its corresponding

"angle a right angle ;
the polar triangle can therefore be solved by

the rules of the preceding Chapter, and thus the elements of the

primitive triangle become known.

(2) Suppose among the given elements of a triangle there are

two equal sides or two equal angles. By drawing an arc from the

vertex to the middle point of the base, the triangle is divided into

two equal right-angled triangles ; by the solution of one of these

right-angled triangles the required elements can be found.

(3) Suppose among the given elements of a triangle there

are two sides, one of which is the supplement of the other, or two

angles, one of which is the supplement of the other. Suppose, for

example, that b + C = TT, or else that B + C = TT
; produce BA and

EC to meet at B' (see the first figure to Art. 38); then the triangle

B'AC has two equal sides given, or else two equal angles given;

and by the preceding case the solution of it can be made to depend

on the solution of a right-angled triangle.

79. We now proceed to the solution of oblique-angled tri-

angles in general. There will be six cases to consider.

80. Having given the three sides.

cos a cos i

Here we have cos A =
: JT-

sin o sn

for cos B and cos (7. Or if we wish to use formulae suited to loga-

cos a cos b cos c , . .,

Here we have cos A =
. 7 -. ,

and similar formulae
sin b sin c



SOLUTION OF OBLIQUE-ANGLED TEIANGLES. 47

rithms, we may take the formula for the sine, cosine, or tangent of

half an angle given in Art. 45. In selecting a formula, attention

should be paid to the remarks in Plane Trigonometry, Chap. XII.

towards the end.

81. Having given the three angles.

cos A + cos B cos C , . .,

Here we have cosa =--. .~~
,
and similar formulae

sinB sin 6

for cos b and cos c. Or if we wish to use formulae suited to loga-

rithms, we may take the formula for the sine, cosine, or tangent of

half a side given in Art. 49.

There is no ambiguity in the two preceding cases; the triangles

however may be impossible with the given elements.

82. Having given two sides and the included angle (a, C, b).

By Napier's analogies

- . . . cos i (a
-

b)
tan i (A + B) = -

f-}
-^-cot i C,' cos \ (a + 6)

2

sin i (a b) n-
.

sin (a +

these determine ^ (A + B] and \ (A ^), and thence -4 and B.

Then c may be found from the formula sin c =-:
-

: in
sin .4

this case, since c is found from its sine, it may be uncertain which

of two values is to be given to it
;
the point may be sometimes

settled by observing that the greater side of a triangle is opposite

to the greater angle. Or we may determine c from equation (1) of

Art. 54, which is free from ambiguity.

Or we may determine c, without previously determining A and

B, from the formula cos c = cos a cos b -r sin a sin b cos C
\

this is

free from ambiguity. This formula may be adapted to logarithms

thus :

cos c = cos b (cos a + sin a tan b cos C) ;
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assume tan = tan b cos C ;
then

, , . m cos b cos (a - 0)
cos c = cos o (cos a + sin a tan U) = ^

'
:

COS0

this is adapted to logarithms.

Or we may treat this case conveniently by resolving the tri-

angle into the sum or difference of two right-angled triangles.

From A draw the arc AD perpendicular to GB or GB produced ;

then, by Art. 62, tan CD = tan b cos (7, and this determines CD,
and then DB is known. Again, by Art. 62,

cos c = cosAD cosDB = cos DB cos b

this finds c. It is obvious that CD is what was denoted by in

the former part of the Article,

By Art. 62,

tan AD = tan C sin CD, and tanAD= tanABD sin DB ;

thus tan ^.#Z) sin DB = tan (7 sin 0,

where DB = a 6 or a, according as D is on GB or (7Z? pro-

duced, and ABD is either B or the supplement of B; this for-

mula enables us to find B independently of A.

Thus, in the present case, there is 110 real ambiguity, and the

triangle is always possible.
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83. Having given two angles and the included side (A, c, B).

By Napier's analogies,

i / T\ cosi(^-J9) x 1
tan i (a + b)

=-
f-f-j
-^ tan I c,7

cos^(^l + .#)
J 3

7 x sin & (A B) ,
..

these determine (a + b) and |(a b),
and thence a and 6.

sin J. sin c
Then (7 may be found from the formula sm G =-;

-
: in

sin a

this case, since C is found from its sine, it may be uncertain which

of two values is to be given to it; the point may be sometimes

settled by observing that the greater angle of a triangle is opposite

to the greater side. Or we may determine C from equation (3) of

Art. 54, which is free from ambiguity.

Or we may determine C without previously determining a and

b from the formula cos C = cos A cos B + sin A sinB cos c. This

formula may be adapted to logarithms, thus :

cos C = cosB
(

cos A + sin A tanB cos c) ;

assume cot < = tan B cos c ; then

n T> / , t \ cos -B sin (A <!>)

cos G= cos B ( cos A + cot < sin A) =
sin</>

this is adapted to logarithms.

Or. we may treat this case conveniently by resolving the tri-

angle into the sum or difference of two right-angled triangles.

From A draw the arc AD perpendicular to CB (see the right-

hand figure of Art. 82) ; then, by Art. 62, cos c = cot B cot DAB,
and this determines DAB, and then CAD is known. Again,

by Art. 62,

cos AD sin CAD = cos C, and cosAD sinBAD = cos B
;

cos C cos B ,. . _ _ _.

therefore -: =
-5 . ^ : this finds C.

srnCAD sin. BAD'

It is obvious that DAB is what was denoted by in the former

part of the Article.

T. S. T. E
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By Art. 62,

tanAD = tan AC cos CAD, and tan AD = tan AB cos BAD
;

thus tan b cos (LIZ) = tan c cos <,

where CAD = A -
<

; this formula enables us to find b indepen-

dently of a.

Similarly we may proceed when the perpendicular AD falls on

CB produced ; (see the left-hand figure of Art. 82).

Thus, in the present case, there is no real ambiguity; more-

over the triangle is always possible.

84. Having given two sides and the angle opposite one of them

(a, b, A).

The angle B may be found from the formula

. _ sin 6 . .

sinB - - sin A :

sin a

and then C and c may be found from Napier's analogies,

cos ^ (a + b)

In this case, since B is found from its sine, there will sometimes

be two solutions ;
and sometimes there will be no solution at all,

namely, when the value found for sin B is greater than unity. We
will presently return to this point. (See Art. 86.)

We may also determine C and c independently of B by for-

mulae adapted to logarithms. For, by Art. 44,

cot a sin b = cos b cos C + sin C cot A = cos b (cos C + --
j-

sin C) ;

cot A
assume tan 9 =-

j-
;
tnus

^ x
cos b cos (C 6)

cot a sin b = cos b (cos C + tan < sin C) =- -jr
- -

;
COS <p

therefore cos '(C
-
<)

= cos < cot a tan b ;
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from this equation C <f>
is to be found, and then C. The ambi-

guity still exists ;
for if the last equation leads to C <> = a, it

will be satisfied also by <
- C = a

;
so that we have two admissible

values for C, if < + a is less than TT, and < a is positive.

And

cos a = cos b cos c + sin b sin c cos A cos b (cos c + sin c tan b cos A) ;

assume tan = tan 5 cos A ; thus

cos 6 cos (c 0)
cos a = cos 6 (cos c + sin c tan 0)

= -

COS0

therefore

from this equation c is to be found, and then c ;
and there may

be an ambiguity as before.

Or we may treat this case conveniently by resolving the tri-

angle into the sum or difference of two right-angled triangles.

Let CA =
b, and let CAE = the given angle A ; from C draw

CD perpendicular to AE, and let CB and CB 1 = a; thus the figure

shews that there may be two triangles which have the given ele-

ments. Then, by Art. 62, cos b = cot A cot ACD j this finds ACD.

Again, by Art. 62,

tan CD = tan AC cos ACD9

and tan CD = tan CB cos BCD, or tan CB' cos BCD,
therefore tanAC cosACD = tan CB cos ^(7Z>, or tan CB cos .g'(7Z) ;

this finds BCD or J5
r

(7Z>.

It is obvious that ACD is what was denoted by < in the former

part of the Article.

E2
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Also, by Art. 62, tanAD = tan AC cos A
;
this finds AD. Then

cosAC = cos CD cos AD,

cos CB = cos CD cos J5Z>,

or cosCB' = co$CDcosB'D;

cos .4 (7 cos CB cos (7JS'

therefore A tl
= --

57-, or --^-yr
cosAD cos .#/> cos -D D

this finds J5Z> or B'D.

It is obvious that AD is what was denoted by $ in the former

part of the Article.

85. Having given two angles and the side opposite one of them

(A, B, a).

This case is analogous to that immediately preceding, and

gives rise to the same ambiguities. The side b may be found from

the formula

. 7 sinB sin a
sm 6 =-:

-j
:

sin A

and then C and c may be found from Napier's analogies,

ton coB^(a-5) co
cos \ (a + b)

cos
,

tan J c = -=( tan J (a + b).* -

We may also determine C and c independently of b by formulae

adapted to logarithms. For

cos A = cos -5 cos C + sin -5 sin C cos a

= cos B
(

cos 6' + tan J5 sin (7 cos a),

assume cot < = tan B cos a ; thus

cos A = cos B (- cos (7 + sin C cot <)= -
^i ""^J;

therefore sin (C - <) = -- _ -
;

cos .5
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from, this equation C < is to be found and then C. Since C <

is found from its sine there may be an ambiguity. Again, by
Art. 44,

L A - T> 7i T> / cot a sin c\
cot A sin/? = cot a sin c - cos c cos J5 = cos B

{

- cos c + ) ,

\ cos B J

X /)
C0t a

XT.assume cot B ^ : then
cos B

L A r r> /
. , COS J? sin (c

-
0)

cot J. siri B = cos jo ( cos c 4- sin c cot 6) = ; :

sin 6

therefore sin
(<j 0)

= cotA tanB sin ;

from this equation c is to be found, and then c. Since c is

found from its sine there may be an ambiguity. As before, it may
be shewn that these results agree with those obtained by resolving

the triangle into two right-angled triangles ;
for if in the triangle

ACE' the arc CD be drawn perpendicular to AB', then B'CD
will = <, and B'D = 0.

86. "We now return to the consideration of the ambiguity
which may occur in the case of Art. 84, when two sides are given

and the angle opposite one of them. The discussion is somewhat

tedious from its length, but presents no difficulty.

Before considering the problem generally, we will take the

particular case in which a = b
;
then A must = B. The first and

third of Napier's analogies give

cot |C = tan A cos a, tan Jc = tan a cos A

now cot \G and tan | c must both be positive, so that A and a must

be of the same affection. Hence, when a = b, there will be no

solution at all, unless A and a are of the same affection, and then

there will be only one solution
; except when A and a are both

right angles, and then cot \C and tan^c are indeterminate, and

there is an infinite number of solutions.

"We now proceed to the general discussion.

If sin b sin A be greater than sin a, there is no triangle which

satisfies the given conditions
;

if sin b sin A is not greater than
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. -n sin b sin A _

sin a, the equation sin /? = ;
- furnishes two values of B,

sin a

which we will denote by ft and /3', so that
/?'
= TT - /?; we will sup-

pose that /3 is the one which is not greater than the other.

Now, in order that these values of JB may be admissible, it is

necessary and sufficient that the values of cot \G and of tan^c
should both be positive, that is, AB and a b must have the

same sign by the second and fourth of Napier's analogies. We
have therefore to compare the sign of A ft and the sign of A ft'

with that of a -b.

We will suppose that A is less than a right angle, and separate

the corresponding discussion into three cases.

I. Let b be less than -
.

la

( 1 ) Let a be less than b : 'the formula sin B =
.

- sin A makes
sin a

ft greater than A, and & fortiori /B' greater than A. Hence there

are two solutions.

(2) Let a be equal to b
;
then there is one solution, as pre-

viously shewn.

(3) Let a be greater than 6; we may have then a + b less than

TT or equal to IT or greater than TT. If a + b is less than
TT, then

sin a is greater than sin b ; thus ft is less than A and therefore

admissible, and ft' is greater than A and inadmissible. Hence there

is one solution. If a + b is equal to ?r, then ft is equal to A, and

/3' greater than A, and both are inadmissible. Hence there is no

solution. If a + b is greater than ?r, then sin a is less than sin
>,

and ft and ft' are both greater than A, and both inadmissible. Hence

there is no solution.

II. Let b be equal to ^ .

2

(1) Let a be less than b; then ft and ft' are both greater than

Ay and both admissible. Hence there are two solutions.

(2) Let a be equal to b ; then there is no solution, as pre-

viously shewn.
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(3) Let a be greater than b ;
then sin a is less than sin 5, and

ft and ft' are both greater than A
9
and inadmissible. Hence there

is no solution.

III. Let b be greater than ^ ,

(1) Let a be less than 5; we may have then a + b less than

TT or equal to TT or greater than TT. If a + b is less than TT, then

sin a is less than sin 6, and ft and ft' are both greater than A and

both admissible. Hence there are two solutions. If a + b is equal

to
-TT,

then ft is equal to A and inadmissible, and ft

f

is greater

than -4 and admissible. Hence there is one solution. If a + b

is greater than TT, then sin a is greater than sin b
; ft is less

than .4 and inadmissible, and ft' is greater than A and admissible.

Hence there is one solution.

(2) Let a be equal to b
;
then there is no solution, as pre-

viously shewn.

(3) Let a be greater than 5; then sin a is less than sin 6,

and ft and ft? are both greater than A and both inadmissible.

Hence there is no solution.

"We have then the following results when A is less than a

right angle.

Ia<b

.............................................two solutions,

a b .............................................one solution,

_ a> b and a + b < TT ........................... one solution,

I a > b and a + b = TT or > TT ..................no solution.

TT ( a < b ..................... .........................two solutions,_ .'

2 (a = 6ora>6 ....... , .........................no solution.

I

a < b and a + 6<7r ...........................two solutions,

a <b and a-f6=7ror>7r .................. one solution,

a = bor>b . ..............no solution.
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It must be remembered, however, that in the cases in which
two solutions are indicated, there will be no solution at all if

sin a be less than sin b sin A.

In the same manner the cases in which A is equal to a right

angle or greater than a right angle may be discussed, and the

following results obtained.

When A is equal to a right angle,

(a

< b or a = b 110 solution,

a>b and a + b<ir one solution,

a > b and a + & = 7ror>7r no solution.

,_T (a<bora>b no solution,

2 \a = b infinite number of solutions.

!a

< b and a + b>7r one solution,

a < b and a + b = TT or < TT no solution,

a~ b or a>6 no solution.

When A is greater tfian a right angle,

^ (a<b or a = b no solution,

& < < a > 6 and a + 6 = TT or < TT. one solution,

(a > 6 and a -f 5 > TT two solutions.

, _TT Ca<b or a = b no solution,

2 (a > b v . two solutions.

a < b and a+b>7r one solution,

a < b and a + 6 = TT or < TT no solution,

6 one solution,

a> b two solutions.

As before in the cases in which two solutions are indicated,

there will be no solution at all if sin a be less than sin b sin A.

It will be seen from the above investigations that if a lies

between b and TT b, there will be one solution
;

if a does not lie

between b and ?r b either there are two solutions or there is

no solution
;
this enunciation is not meant to include the cases in

which a = b or = TT b.
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87. The results of the preceding Article may be illustrated by

figure.

Let ADA'E be a great circle; suppose PA and PA' the

projections on the plane of this circle of arcs which are each

equal to b and inclined at an angle A to ADA'; let PD and

PE be the projections of the- least and greatest distances of P
from the great circle (see Art. 59). Thus the figure supposes

A and b each less than -
.

2

If a be less than the arc which is represented by PD there is

no triangle ;
if a be between PD and PA in magnitude, there are

two triangles, since B will fall on ADA', and we have two triangles

BPA and BPA
;

if a be between PA and PH there will be only

one triangle, as B will fall onAH or AH', and the triangle will be

either APB with B between A' and H, or else A'PB with B be-

tween A and H'
; but these two triangles are symmetrically equal

(Art. 57) ;
if a be greater than PH there will be no triangle.

The figure will easily serve for all the cases ; thus if A is greater

than ^ ,
we can suppose PAE and PAE to be equal to A

;
if

A

b is greater than ^ ,
we can take PH and PH to represent 6.
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88. The ambiguities which, occur in the last case in the solu-

tion of oblique-angled triangles (Art. 85) may be discussed in the

same manner as those in Art. 86
; or, by means of the polar

triangle, the last case may be deduced from that of Art. 86.

EXAMPLES.

1. The sides of a triangle are 105, 90, and 75 respectively :

find the sines of all the angles.

2. Shew that tan J -4 tan J 2? = '. Solve a triangle

when a side, an adjacent angle, and the sum of the other two

sides are given.

3. Solve a triangle having given a side, an adjacent angle,

and the sum of the other two angles.

4. A triangle has the sum of two sides equal to a semicir-

cumference : find the arc joining the vertex with the middle of

the base.

5. If a, b, c are known, c being a quadrant, determine the

angles : shew also that if 8 be the perpendicular on c from the

opposite angle, cos
8
8 = cos

2
a 4- cos

2
b.

6. If one side of a spherical triangle be divided into four

equal parts, and O
l9 2, 3, 4

be the angles subtended at the oppo-

site angle by the parts taken in order, shew that

sin (6 l
-f

2)
sin

2
sin

4
= sin (03 + 4)

sin O
l
sin

3
.

7. In a spherical triangle if A = B =
2(7, shew that

/ c\ . s c c . 8
8 sin ( a +

Q
\ sin

2- cos
-^
= sin a.
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8. In a spherical triangle if A = B = 2(7, shew that

C* f C*\ ^
8 sin

2

(
cos s + sin -^ )

-=!.
2\ 2/cosa

9. If the equal sides of an isosceles triangle ABC be bisected

by an arc DE, and BC be the base, shew that

sin^=1 sin sec-
1?

2
~~

2 2
fc '

'2

"

10. If c
1?

c
a
be the two values of the third side when A, a, b

are given and the triangle is ambiguous, shew that

c c
tan -1 tan - = tan \ (b

-
a) tan J (b + a).

VII. CIRCUMSCRIBED AND INSCRIBED CIRCLES.

89. To find the angular radius of tlw small circle inscribed

in a given triangle.

Let ABC be the triangle ; bisect the angles A and B by arcs

meeting at P
;
from P draw PJ), PE, PF perpendicular to the

sides. Then it may be shewn that PD, PJE, PF are all equal ;

also that AE = AF, BF=BD, CD = CE. Hence BC + AF= half

the sum of the sides = 5; therefore AF = s a. Let PF= r.

Now tanPF= tan PAFsinAF (Art. 62) ;

thus tan r - tan sin
(s
-

a) (1).
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The value of tan r may be expressed in various forms
; thus

from Art. 45, we obtain

tan 4. - //sin(g-5)sin(*--c)) ;

2 V 1 sin s sin (s
-
a) y

substitute this value in (1), thus

tanr= /(^(
8 -a)sin(.-6)sin(g -c)) = _

VI sins J sins v

Again

sin (*
-

a)
= sin {| (b + c)

-
J a}

= sin J (6 + c) cos J a
- cos J (b + c) sin J a

sin
,

(
cosH5 - c^)

~ cos

sin a sin ^ ^ sin | C

,, /. /1X , .

therefore from (1) tan r = ^TA sma
COS A.

hence, by Art. 51,

2 cos ^ -4 cos ^ j5 cos ^ (7

"~2cos^cosJ.ecos<7"

It may be shewn by common trigonometrical formulae that

4 cos I A cos JjtfcosJC^ cos S + cos(S-A) + cos^-JBJ+cos^-C');

hence we have from (4)

cot r =
[costf

+ cos (S-A) + cos (S-S) + cos (S- C)\ (5).
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90. To find the angular radius of the small circle described

so as to touch one side of a given triangle, and the other sides

produced.

Let ABC be the triangle; and suppose we require the radius

of the small circle which touches BC, and AB and AC produced.

Produce AB and AC to meet at A'; then we require the radius of

the small circle inscribed in A'BC, and the sides of A fBC are a,

TT b, TT c respectively. Hence if r
l
be the required radius, and

* denote as usual ^ (a -4- b + c),
we have from Art. 89,

tan r tan sin 5 .............................. (1).2

From this result we may derive other equivalent forms as in

the preceding Article
; or we may make use of those forms im-

mediately, observing that the angles of the triangle A!EG are A,

ir-B, TT C respectively. Hence 5 being (a + b -f c) and 8
being J (A + B + C) we shall obtain

sin s sin (s
-

b) sin (s
---

s^>
cos ^ B cos i C .= -

(3),x ; '

tanr = N/{~ cos ^ cos (^"^) cos (^--g)
cos (#-

^ cos J ^ sin ^ B sin 6'

^ cos

cot r
t

= J- cos /?- cos (5
- ^) + cos (S-B) + cos (tf- C)],

.

.(5).
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These results may also be- found independently by bisecting

two of the angles of the triangle A'BC, so as to determine the

pole of the small circle, and proceeding as in Art. 89.

91. A circle which touches one side of a triangle and the

other sides produced is called an escribed circle; thus there are

three escribed circles belonging to a given triangle. We may
denote the radii of the escribed circles which touch CA and AB
respectively by r

f
and r

a ,
and values of tanr

a
and tanr

3 may
be found from what has been already given with respect to

tan^ by appropriate changes in the letters which denote the

sides and angles.

In the preceding Article a triangle A'EC was formed by pro-

ducing AB and AC to meet again at A'; similarly another triangle

may be formed by producing BC and BA to meet again, and

another by producing CA and CB to meet again. The original

triangle ABC and the three formed from it have been called

associated triangles, ABC being the fundamental triangle. Thus

the inscribed and escribed circles of a given triangle are the same

as the circles inscribed in the system of associated triangles of

which the given triangle is the fundamental triangle.

92. To find the angular radius of the small circle described

about a given triangle.

Let ABC be the given triangle ;
bisect the sides CB, CA at

D and E respectively, and draw from D and E arcs at right angles

to CB and CA respectively, and let P be the intersection of these
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arcs. Then P will be the pole of the small circle described about

ABC. For draw PA, PB, PC ; then from the right-angled

triangles PCD and PBD it follows that PB = PC'y and from

the right-angled triangles PCE and P^^ it follows that PA = P6' ;

hence PA=PB = PC. Also the angle P^^ = the angle P#J:,

the angle PBC = the angle PCB, and the angle PCA = the angle

;
therefore PCB + A = J (4 + ^ +

<7),
and

Now tan CD = tan C7P cos P<7Z>, (Art. 62),

thus tan ^ a = tan -S cos (S -4),

therefore tanR = **?$".. ... ...(I).
cos(S A)

The value of tan R may be expressed in various forms
j thus

if we substitute for tan - from Art. 49, we obtain
A

_ _- _ ___
Vlcos(AS

r

-^)cos(AS
v

-^)cos(AS
f

-(7)J

' N '

Again cos (S
-
A) = cos {| (B + C)

-
\ A}

= cos %(B + C) cos J ^1 + sin ^(B + C) sin
-J

^1

sin A- ^t cos A
, ,, x

- ,. x , /.
J (ft

+ c) + cos I (6
-

c)}, (Art. 54
5 )

sin .4 , , .-T-cospcosi C
;

therefore from
(
1
)

_
6 cos c

Substitute in the last expression the value of sin .4 from

Art. 46
;
thus

f r> 2 sin
|-
a sin J & sin ^ c

^/{sin s sin (s a) sin (s b) sin (s c)}

2 sin J a sin J b sin
.(4).
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It may be shewn, by common trigonometrical formula?, that

4 sin J a sin b sin
-|

c = sin
(s
-
a) + sin

(5
-

ft)
+ sin

(s
-

c) sin 5 ;

hence WQ have from (4)

........... (5).

93. To find the angular radii of the small circles described

round the triangles associated with a givenfundamental triangle.

Let H
l
denote the radius of the circle described round the

triangle formed by producing AB and AG to meet again at A';

similarly let JR
2
and R

3
denote the radii of the circles described

round the other two triangles which are similarly formed. Then

we may deduce expressions for tanJ?^ tan7?
2 ,

and tan R
a
from

those found in Art. 92 for tan R. The sides of the triangle A'BC

are a, TT b, TT c, and its angles are A, TT B, irC ]
hence if

s = (a + b + c) and S =
^ (A + B + C} wo shall obtain from

Art 92

_ tan ^ a
tan E -*-a ....
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To prove that

(cot r + tan JR)*
=

i (sin a + sin6 + sin c)
2 - 1.

We have

4n* = 1 cos
2 a cos

2
b cos* c -f 2 cos a cos 6 cos c ;

therefore

(sin a + sin 6 4- sin c)
2 M

= 2 ( 1 4- sin a sin 5 -f- sin b sin c -f sin c sin a cos a cos 5 cos c
j

.

Also cot r 4- tan .72 =
^-

! sin s + sin (s a) + sin (s 6) + sin (s c) >
;

and by squaring both members of this equation the required

result will be obtained. For it may be shewn by reduction that

sin
2
s + sin

2

(s a) + sin
2

(s b) -f sin
2

(s c)
= 2 2 cos a cos 6 cos c,

and
sin s sin (s a) + sin s sin (5 &) 4- sin s sin (5 c)

-f sin (5 a) sin (s b) + sin (s b) sin (5
-

c) + sin (s c) sin (s
-

a)

= sin a sin 6 + sin 6 sin c + sin c sin a.

Similarly we may prove that

(cot rl
tan

jff)

2 = -r
z (sin b + sin c sin a)

2 - 1.

95. In the figure to Art. 89, suppose DP produced through
P to a point A' such that DA' is a quadrant, then J/ is a pole of

J5(7, and PA! =-rj similarly, suppose EP produced through P

to a point B
r
such that -fi'.Z?' is a quadrant, and ^P produced

through P to a point C" such that FCr
is a quadrant. Then

A'ffC' is the polar triangle of ABC, and PA' = PB' = PCf = ^-r.A

Thus P is the pole of the small circle described round the polar

triangle, and the angular radius of the small circle described round

the polar triangle is the complement of the angular radius of the

T. S. T. F
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small circle inscribed in the primitive triangle. And in like man-

ner the point which is the pole of the small circle inscribed in

the polar triangle is also the pole of the small circle described

round the primitive triangle, and the angular radii of the two

circles are complementary.

EXAMPLES,

In the following examples the notation of the Chapter is

retained.

Shew that in any triangle the following relations hold con-

tained in Examples 1 to 7 :

1 . Tan r
l
tan r

a
tan r

a
= tan r sin

2
8.

2. Tan R + cot r = tanR
l
+ cot r

l

= tanR
a
+ cot r

a

= tan 7?
3
+ cot r

3
=

(cot r + cot r
l
+ cot r

a
+ cot rj.

3. Tan2R + tan2E
l
+ tan2R

a
+ tan2R

3

= cot
2
r + cot

2 r
l
+ cot

2
r
a
+ cot

2
r
3
.

Tan r, + tan r. + tan r. - tan r - ._
x

4. l =i(l + cosa-f coso + CGSC).
cot r

l
+ cot r

2
+ cot r

3
cot r

5. CosecV= cot (s-a) cot (s-b) + cot (s-b) cot (s-c) 4- cot (s-c)(s-a).

6. Cosec
2r

x
= cot (s b) cot (s

-
c) cots cot (5 b) cot scot (s

-
c).

7 . TanR
1
tan #

a
tan J?

3
= tan # sec

2
S.

8. Shew that in an equilateral triangle tan R = 2 tan r.

9. If ABC be an equilateral spherical triangle, P the pole of

the circle circumscribing it, Q any point on the sphere, shew that

cos QA + cos QB + cos QG = 3 cos 7\4 cos P().

10. If three small circles be inscribed in a spherical triangle

having each of its angles 120, so that each touches the other two

as well as two sides of the triangle, shew that the radius of each

of the small circles = 30, and that the centres of the three small

circles coincide with the angular points of the polar triangle.



VIII. AREA OF A SPHERICAL TRIANGLE.

SPHERICAL EXCESS.

96. To find the area, of a Lune.

A Lune is that portion of the surface of a sphere which is com-

prised between two great semicircles.

Let ACBDA, ADBEA be two lunes having equal angles at A
;

then one of these lunes may be supposed placed on the other so as

to coincide exactly with it; thus lunes having equal angles are

equal. Then by a process similar to that used in the first propo-

sition of the Sixth Book of Euclid it may be shewn that lunes

are proportional to their angles. Hence since the whole surface of

a sphere may be considered as a lune with an angle equal to four

right angles, we have for a lune with an angle of which the

circular measure is A,

area of lune A
surface of sphere 2ir

*

Suppose r the radius of the sphere, then the surface is 4?rr
2

(Integral Calculus, Chap, vn.) ; thus

area of lune = ^ 4?rr
2 = 2Ar3

.

JTT
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97. To find the area of a SpJierical Triangle.

Let AEG be a spherical triangle ; produce the arcs which form

its sides until they meet again two and two, which will happen
when each has become equal to the semi-circumference. The

triangle ABC now forms a part of three lunes, namely, ABDCA,
BCEAB, and CAFBC. Now the triangles CDE and AFB are

subtended by vertically opposite solid angles at 0, and we will

assume that their areas are equal ;
therefore the lune CAFBC is

equal to the sum of the two triangles ABC and CDE. Hence if

A
9 B, C denote the circular measures of the angles of the triangle,

we have

triangle ABC + BGDC = lune ABDCA = 2Ar*,

triangle ABO + AHEC = luneBCEAB = 2Br*,

triangle ABC + triangle CDE = lune CAFBC= 2Cr* ;

hence, by addition,

twice triangle ABC + surface of hemisphere = 2 (A + B 4- C) r
3

;

therefore triangle ABC = (A + B + C - 7r)r
2
.

The expression A+B + C - TT is called the spherical excess of

the triangle; and since

Q
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the result obtained may be thus enunciated : the area ofa spherical

triangle is the same fraction of half the surface of the sphere as the

spherical excess is offour right angles.

98. We have assumed, as is usually done, that the areas of

the triangles CDE and AFE in the preceding Article are equal.

The triangles are, however, not absolutely equal, but symmetri-

cally equal (Art. 57), so that one cannot be made to coincide

with the other by superposition. It is, however, easy to decom-

pose two such triangles into pieces which admit of superposition,

and thus to prove that their areas are equal. For describe a

small circle round each, then the angular radii of these circles

will be equal by Art. 92. If the pole of th circumscribing circle

falls inside each triangle, then each triangle is the sum of three

isosceles triangles, and if the pole falls outside each triangle, then

each triangle is the excess of two isosceles triangles over a third
;

and in each case the isosceles triangles of one set are respectively

absolutely equal to the corresponding isosceles triangles of the

other set.

99. Tofind the area ofa spherical polygon.

Let n be the number of sides of the polygon, 2 the sum of all

its angles. Take any point within the polygon and join it with

all the angular points ; thus the figure is divided into n triangles.

Hence, by Art. 97,

area of polygon = (sum of the angles of the triangles
- mr) r

a
,

and the sum of the angles of the triangles is equal to S together

with the four right angles which are formed round the common

vertex; therefore

area of polygon = < 2 (n 2) TT > r*.

This expression is true even when the polygon has some of its

angles greater than two right angles, provided it can be decom-

posed into triangles, of which each of the angles is less than two

right angles.
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100. We shall now give some expressions for certain trigono-

metrical functions of the spherical excess of a triangle. We denote

the spherical excess by H, so that E =A+B + C-ir.

101. CagnoWs Theorem. To shew that

. r ^/{sin s sin (5 a) sin (s b) sin (s c)}
*

Sin -R JLJ =--
*
- -*=-=

---
.

2 cos J a cos J 6 cos J c

i
(
a _ 5)

_ cos i
(
a +

ft)}, (Art. 54),-
COS

"2"
C

sin (7 sin J a sin J 6

cos Jc

sin i a sin A- 6 2 ,, . . , \ / T\ / \>-s - 2-
.
_--

:
_

. J{sm8 sm (5- a) sin (5-6) sin (5- c)
cos ^ c sin a sm 6

^/{sin s sin (s a) sin (5
-

b) sin (5 c)}

2 cos J a cos \ b cos J c

102. Lhuilier's Theorem. To shew that

tan J j =
^/{tan 1 5 tan

|- (5
-
a) tan | (5

-
&) tan J (s

-
c)}.

sin i (ir C) /Tt7 m . \, Q4 \- n 2V^F, Art. 84),- - -
,

cos %(A + B) + cos J (?r
-
C)

7

_cosj-(a-5)-coslc cos_JC (Art. 54).
cos J (a + b) + cos | c

'

sin J C
'

Hence, by Art. 45, we obtain

sin^(c + a-6)sin^(c-f b-a) /( sin s sin (g
-

c) )
=r

cosi(a+6 + c)cosi(a-l-6-c)\/ |sin(s-a)sin(5-6)/

=
,/{tan ^5 tan J (*

-
a) tan J (*-&) tan J (s -c}}.
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103. "We may obtain many other formula involving trigo-

nometrical functions of the spherical excess. Thus, for example,

cos = cos

= cos J (A + B) sin J G + sin %(A + B) cos J C

cos ^(a + b) sin
2

|(7 4- cos|(a
-

&) cos
2

|-(7 i sec Jc, (Art. 54),=
-j

= \ cos J a cos J 5 (cos
2

J (7 + sin
2

J C)

+ sin J a sin J 6 (cos
2

J (7 - sin
2

J (7)
I sec J c

=
{cos Ja cos J5 -f sin J a sin J6 cos C} sec Jc, ........ (1).

Again, it was shewn in Art. 101, that

sin JE = sin C sin J a sin J b sec J c
;

. sin |a sin 16 sin (7
therefore tan*^=-= =^-r~ -. n-77 ..... (2).

cos Jet cos Jo + sin Ja sin Jo cos 6

Again, we have from above

= -I cos J a cos
|-
5 + sin J a sin J 6 cos C > sec J ccos

_ (1 + cos a) (1 + cos b) + sin a sin b cos (7

4 cos J a cos J 6 cos J c

_ 1 + cos a + cos o 4- cos c _ cos
2

\a + cos
2

J6 + cos* \c I

4 cos J a cos J b cos J c
~~

.2 cos J a cos J 6 cos J c

In (3) put 1-2 sin
2

|^ for cos J E ;
thus

' 21 W ^ + ^ COS i a COS 2 b COS
I"

C "~ COs2 \ a
~' COs2 i

~ COs2
2"
C

4 cos J a cos J 6 cos J c

By ordinary development we can shew that the numerator of

the above fraction is equal to

4 sin J s sin J (s
-

a) sin |(s
-

b) sin J (s
-

c) ;
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therefore

_ sinjs sin J (s
-

a) sin|(g -o) sin J (g-c) mbill -rMf T~i 1 . l:rl

cos J a cos J o cos J c

Similarly

.m j E,_ COS J S COS J(g
-

g) COS J (g
-

5) COS J(g
-

C)
^Uo ^r JLV

.j
_ ,*.('.//

cos Jacos Jo cos Jc

Hence by division we obtain Lhuilier's Theorem.

Again,

rfnft7-UF)-\ 1 g,
7 = sin C cot i^- cos (7

sin J.#

~ cos i a cos i 6 4- sin 4 a sin i 5 cos C ~ , /Ck .

= sin - r-4-.
i

2
, . ^

2--- cos (7, by (2),sm ^ a sin J 6 sin (7

= cot J a cot Jo;

therefore, by Art. 101,

N/(sin g sin
(
g ~ a

)
sin

(
g - ty sin

(
g " c)}sin (C- -^^ 2 sin Ja sin Jo cos J c

Again, cos (C ^E) = cos (7 cos J^+ sin C sin

~- r^-1 +sin C/sinJasiniosecic
4 cos J a cos J b cos J c

(1 + cos a) (1 4- cos b) cos C + sin a sin o

4 cos J a cos J 6 cos J c

= ! cos J a cos J 6 cos C + sin Ja sin J 6 > sec J c

sin a sin 5 cos (7 + 4 sin
2

Ja sin
2

J 6

4 sin J a sin J 6 cos J c

_ cos c cos a cos 6 + (1 cos a) (1 cos 6)

4 sin J a sin J 6 cos J c

_ 1 + cos c cos a cos 6 _ cos
2

Jc cos
2

Ja - cos
2

J o + 1 ^
4 sin Jasin Jo cos Jc

"
2 sin Jasin Jo cos J c
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From this result we can deduce two other results, in the

same manner as (4) and (5) were deduced from (3) ;
or we may

observe that the right-hand member of (6) can be obtained from

the right-hand member of (3) by writing TT a and TT b for

a and b respectively, and thus we may deduce the results more

easily. We shall have then

sin \ a sin J b cos J c

cos'Q-C in^4 '
sin ^ a sin ^ 6 cos ^ c

EXAMPLES.

1. Find the angles and sides of an equilateral triangle whose

area is one-fourth of that of the sphere on which it is described.

2. Find the surface of an equilateral and equiangular sphe-
rical polygon of n sides, and determine the value of each of the

angles when the surface equals half the surface of the sphere.

3. If a = 6 = -
,
and c = ^ ,

shew that E = cos"
1

^ .

o 2t y

4. If the angle C of a spherical triangle be a right angle,
shew that

sin |E= sin J a sin | b sec J c, cos J E- cos | a cos J 6 sec | c.

5. If the angle (7 be a right angle, shew that

sin
2
c _, sin2 a sin

2
6

cos E = + r .

cos c cos a cos 6

6. If a = b and O =
,
shew that tan .#=J!H^ .

2 2 cos a

7. The sum of the angles in a right-angled triangle is less

than four right angles.

8. Draw through a given point in the side of a spherical

triangle an arc of a great circle cutting off a given part of the

triangle.
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9. In a spherical triangle if cos C= -tan ^ tan-, then

10. If the angles of a spherical triangle be together equal to

four right angles

cos
8

\ a 4- cos
2

1-
b + cos

2

\ c 1.

11. If
r,,

r
2 ,

r
3
be the radii of three small circles of a

sphere of radius r which touch one another at P, Q, J?, and

A, B, C be the angles of the spherical triangle formed by joining
their centres,

area PQR = (A cos r
l
+ B cos r

a
+ C cos r

3
-

TT)
r*.

12. Shew that

jsin I
#sin (4

- J^) sin (5- 1^) sin ((7-

sins =
2 sin J J. sin J B sin (7

13. Given two sides of a spherical triangle, determine when

the area is a maximum.

14. Find the area of a regular polygon of a given number of

sides formed by arcs of great circles on the surface of a sphere ;

and hence deduce that, if a be the angular radius of a small

circle, its area is to that of the whole surface of the sphere as

versin a is to 2.

15. A
9 B, C are the angular points of a spherical triangle;

A', B', C' are the middle points of the respectively opposite sides.

If E be the spherical excess of the triangle, shew that

coaA'ff cos-S'tf' cos CM'
COS J j& =--

i

- = --
-,

=-5-7-
cos J c cos a cos J 6

16. If one of the arcs of great circles which join the middle

points of the sides of a spherical triangle be a quadrant, shew

that the other two are also quadrants.



IX. ON CERTAIN APPEOXIMATE FORMULAE.

104. We shall now investigate certain approximate formulae

which are often useful in calculating spherical triangles when the

radius of the sphere is large compared with the lengths of the

sides of the triangles.

105. Given two sides and the included angle of a spherical

triangle, tafind the angle between the chords of these sides.

Let AE, AC be the two sides of the triangle AEG', let be

the centre of the sphere. Describe a sphere round A as a centre,

and suppose it to meet AO, AB, AC at D, E, F respectively.

Then the angle ELF is the inclination of the planes OAJB, OAC,
and is therefore equal to A. From the spherical triangle DEF

cos EF= cosDE cosDF+ sinDE sinDF cos A ;

and

therefore cosEF ** sin \ b sin
|-

c + cos J b cos \ c cos A.

If the sides of
'

the triangle are small compared with the

radius of the sphere, EF will not differ much from A- suppose
EF=A 0, then approximately

cos EF= cos A + 6 sin A ;
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and sin J b sin J c = sin
2

J (6 + c)
- sin

8

\ (b
-

c),

cos 6 cos J c = cos
2

J (6 + c) sin
2

(6
-

c) ;

therefore

cos A -f 6 sin J. = sin
2

J (6 + c)
- sin

2

(6
-

c)

4- 1 1 - sin
2

\ (b -f c)
- sin* J (6

-
c)j

cos4 ;

therefore

therefore = tan 4 sin
2

(6 + c)-cot J. sin
2

J(6-c).

This gives the circular measure of
;
the number of seconds in

the angle is found by dividing the circular measure by the circular

measure of one second, or approximately by the sine of one second

(Plane Trigonometry, Art. 123). If the lengths of the arcs corre-

sponding to a and b respectively be a and
/?, and r the radius of the

sphere, we have - and - as the circular measures of a and b
r r

respectively ; and the lengths of the sides of the chorda! triangle

are
2rsin^-

and
2rsin^- respectively. Thus when the sides of

the spherical triangle and the radius of the sphere are known, we
can calculate the angles and sides of the chordal triangle.

106. Legendre's Theorem. If the sides of a spherical triangle

be small compared with the radius of the sphere, then each angle

of the spherical triangle exceeds by one third of the sp/ierical ex-

cess the corresponding angle of the plane triangle, the sides of
which are of the same length as the arcs of the spherical triangle.

Let A, B, be the angles of the spherical triangle ; a, b, c

the sides
;
r the radius of the sphere ; a, (3, y the lengths of the

arcs which form the sides, so that -, -, - are the circular
r r r

measures of a, b, c respectively. Then
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cos a cos b cos c
cos A = -

sin b sin c

- a2

now cos a = 1 7^-5

3
6r

Similar expressions hold for cos b and sin 6, and for cos c

and sin c respectively. Hence, if we neglect powers of the cir-

cular measure above thefourth, we have

Kow let -4', B', C' be the angles of the plane triangle whose
sides are a, /?, y respectively ; then

thus

Suppose A = A' + 0; then

cos -4 = cos A' - sin A' approximately ;

therefore
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where S denotes the area of the plane triangle whose sides are

a, /?, y. Similarly

B=B' + ~, and (7 = C' + p;

hence approximately

A+B + C = A'+ B' + C' + - = * + -,;
r
2 r }

nr

therefore t
is approximately equal to the spherical excess of the

spherical triangle, and thus the theorem is established.

It will be seen that in the above approximation the area of

the spherical triangle is considered equal to the area of the plane

triangle which can be formed with sides of the same length.

107. Legendre's Theorem may be used for the approximate

solution of spherical triangles in the following manner.

(1) Suppose the three sides of a spherical triangle known;
then the values of a, /?, y are known, and by the formulae of

Plane Trigonometry we can calculate S and A', B', C' ;
then

A
9
B

9
C arecknown from the formulae

' ' '

(2) Suppose two sides and the included angle of a spherical

triangle known, for example A, b, c. Then

S= \ (3y sin A
' =

|- fly sin A approximately.

cr

Then A' is known from the formula A'= A ^ . Thus in the

plane triangle two sides and the included angle are known :

therefore its remaining parts can be calculated, and then those

of the spherical triangle become known.
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(3) Suppose two sides and the angle opposite to one of them

in a spherical triangle known, for example A, a, b. Then

/? /?

sin Bf - - sin A f - - sin A approximately ;
a a

and C'-ir A' B'=TT A B r

approximately; then S= \ a/3sin C'.

Hence A' is known and the plane triangle can be solved, since two

sides and the angle opposite to one of them are known.

(4) Suppose two angles and the included side of a spheri-

cal triangle known, for example, A, B, c.

'

sin B r

y
2
sin A sinB

Hence in the plane triangle two angles and the included side are

known.

(5) Suppose two angles and the side opposite to one of them

in a spherical triangle known, for example A, B, a. Then

(7 = TT A' B' = TT A B, approximately, and

~ a2
sin B* sin C'

which can be calculated, since B' and C' are approximately
known.

108. The importance of Legendre's Theorem in the applica-
tion of Spherical Trigonometry to the measurement of the Earth's

surface has given rise to various developments of it which enable

us to test the degree of exactness of the approximation. We shall

finish the present Chapter with some of these developments, which
will serve as exercises for the student. We have seen that ap-

o

proximately the spherical excess is equal to 2 , and we shall

begin with investigating a closer approximate formula for the

spherical excess.
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109. To find an approximate value of the spherical excess.

Lot E denote the spherical excess
;
then

sin i a sin A 6 sin C
=-?--r -;

cos c

therefore approximately

therefore

and sin C = sin (7 + 1 = sin C'

From (1) and (2)

Hence to this order of approximation the area of the spheri-

cal triangle exceeds that of the plane triangle by the fraction

a
**j***

y
*

of the latter.2

110. To find an approximate value of -- .

Sin A sin a

, . , , sin A x
hence approximately ^

= '
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120r4 6r
2 36r4

120r* 36r
4
/

0r~
r~6^ +TOr

- a'-fl
4

F(fP-a?))
* 4 36r4

j

111, T7
^ express cot 5 cot ^1 approximately.

Cot J5 cot ^1 = -: =r (cos B . . cos A) :

sm j5
x sin J.

hence, approximately, by Art. 110,

1 /? fia
2 -p

2

cot 2r- cot ^1 =-^ _ (cos 5 - - cos A - ---- '

cos A ).sm-5 x a a 6r
2

Now we have shewn in Art. 106, that approximately

ff + y - a' a' +F + / -
2a*/3*

- 2j8y - 2yV-~
O ~2 _ O2

therefore cos 2? - - cos A = -
approximately,

a ay

- - --
and cot B - cot ^1 =- -^ ---^- D ^ .

ay sin B ay sin /) 1 2r

ay sin ^

112. The approximations in Arts. 109 and 110 are true so

far as terms involving r
4

;
that in Art. Ill is true so far as

terms involving r2
,
and it will be seen that we are thus able

to carry the approximations in the following Article so far as

terms involving ?
>4

.

T. S. T. G
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113. To find an approximate value of the error in the length

of a side of a spherical triangle when calculated by Legendrds
Theorem.

Suppose the side /? known and the side a required ;
let 3/x de-

note the spherical excess which is adopted. Then the approximate

valued T^-^-is taken for the side of which a is the real
sin (B p.)

value. Let x=a- ~-r* we nave then to find x ap-sm (B
-
p)

proxirnately. Now approximately

M
2

. , . N sin A -
p. cos A -

^- sin A
sm (A

-
p)

r 2

sin(j8-/x)~ ft
8

.^' sm B p.
cos B - sin E

2

^ jl
-f p. (cot B - cot ^l) + ^ cot B (cot B - cot A)\

sin A asm A
-= - n -

sm B sm B

Also the following formulae are true so far as terms involv-

ing r2 :

sin A _ a / ft
2 - a2

" ~"sin A _ a / ft
2 - a2

\

sin"^
~
^ \ ~6^"/ '

Hence, approximately,
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/3smA ft (a
2

-/3
s

)
-. -.--- D

sin B y sin B

If we calculate p.
from the formula p.

= ^
!, 2 we obtain

g(/?*-a
2

)(3a*~7/3
2

)

3607-*

If we calculate p. from an equation corresponding to (1) of

Art. 109, we have

1-f
or i

~ /*_*
therefore

720^

MISCELLANEOUS EXAMPLES.

1. If the sides of a spherical triangle AB, AC be produced to

B', (7', so that BBr

,
CC' are the semi-supplements of AB, AC

respectively, shew that the arc B'C' will subtend an angle at the

centre of the sphere equal to the angle between the chords of AB
and AC.

2. Deduce Legendre's Theorem from the formula

A sin A (a + b c) sin i (c + a b)
tan = =-2 - -*

.

2 sin | (6 + c - a) sin J (a + b + c)

3. Four points A, B, C, D on the surface of a sphere are

joined by arcs of great circles, and U, F are the middle points

of the arcs AC, BD : shew that

cos AB + cos BC + cos CD + cos DA = 4 cos AE cos HFcos FE.

4. If a quadrilateral ABCD be inscribed in a small circle on

a sphere so that two opposite angles A and C may be at opposite

extremities of a diameter, the sum of the cosines of the sides is

constant.
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5. In a spherical triangle if A = B = 20, shew that

a / a\
cos a cos

y
- cos f c +

^ J
.

6. ABC is a spherical triangle each of whose sides is a quad-
rant ;

P is any point within the triangle : shew that

cos PA cos PB cos PG + cot BPC cot CPA cot APE = 0,

and tan ABP tan (7P tan CXP = 1.

7. If be the middle point of an equilateral triangle ABC,
and P any point on the surface of the sphere, then

J (tan PO tan OA
)

2

(cos P4 + cos P -f cos PC)
2 =

cos
2PA+cos2PB+cos2PC-cosPAcoaPB-cosPBcosPC-cosPCcosPA.

8. If ABC be a triangle having each side a quadrant, the

pole of the inscribed circle, P any point on the sphere, then

(cos PA + cos PB + cos PC)
2= 3 cos

2PO.

9. From each of three points on the surface of a sphere arcs

are drawn on the surface to three other points situated on a great

circle of the sphere, and their cosines are a,b,c; a', b
f

,
c'

; a", b", c".

Shew that ab"c + a'bc" + a"b'c = ab'c" + a'b"c + a"bc.

10. From Arts. 110 and 111, shew that approximately

iQf

log ft
= log a -f log sin B - log sin A +

-^-7 (cot A - cot B).

11. By continuing the approximation in Art. 106 so as to

include the terms involving r4

,
shew that approximately

py (a
2 -

3/3
2 -

- -

12. From the preceding result shew that if A = A' + then

approximately

pysinA'~



X. GEODETICAL OPERATIONS.

114. One of the most important applications of Trigono-

metry, both Plane and Spherical, is to the determination of the

figure and dimensions of the Earth itself, and of any portion of its

surface. We shall give a brief outline of the subject, and for

further information refer to Woodhouse's Trigonometry, to the

article Geodesy in the English Cyclopcedia, and to Airy's treatise

on the Figure of the Earth in the Encyclopedia Metropolitans

For practical knowledge of the details of the operations it will

be necessary to study some of the published accounts of the great

surveys which have been effected in different parts of the world,

as for example, the Account of the measurement of two sections of
the Meridional arc of India, by Lieut.-Colonel Everest, 1847

;
or

the Account of the Observations and Calculations of the Prin-

cipal Triangulation in the Ordnance Survey of Great Britain

and Ireland, 1858.

115. An important part of any survey consists in the mea-

surement of a horizontal line, which is called a base. A level plain

of a few miles in length is selected and a line is measured on it with

every precaution to ensure accuracy. Hods of deal, and of metal,

hollow tubes of glass, and steel chains, have been used in different

surveys ;
the temperature is carefully observed during the opera-

tions, and allowance is made for the varying lengths of the rods

or chains, which arise from variations in the temperature.

116. At various points of the country suitable stations are

selected and signals erected
;
then by supposing lines to be drawn

connecting the signals, the country is divided into a series of

triangles. The angles of these triangles are observed, that is, the

angles which any two signals subtend at a third. For example,

suppose A and B to denote the extremities of the base, and C a
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signal at a third point visible from A and B
;
then in the triangle

AEG the angles ABC and BAG are observed, and then AC and BC
can be calculated. Again, let D be a signal at a fourth point,

such that it is visible from C and A
;
then the angles ACD and

(2MZ) are observed, and as AC is known, CD and -4Z) can be

calculated.

117. Besides the original base other lines are measured in

convenient parts of the country surveyed, and their measured lengths

are compared with their lengths obtained by calculation through a

series of triangles from the original base. The degree of close-

ness with which the measured length agrees with the calculated

length is a test of the accuracy of the survey. During the pro-

gress of the Ordnance Survey of Great Britain and Ireland, seve-

ral lines have been measured
;
the last two are, one near Lough

Foyle in Ireland, which was measured in 1827 and 1828, and one

on Salisbury Plain, which was measured in 1849. The line near

Lough Foyle is nearly 8 miles long, and the line on Salisbury

Plain is nearly 7 miles long ;
and the difference between the length

of the line on Salisbury Plain as measured and as calculated from

the Lough Foyle base is less than 5 inches (An Account of the

Observations. . .page 419).

118. There are different methods of effecting the calculations

for determining the lengths of the sides of all the triangles in the

survey. One method is to use the exact formulae of Spherical

Trigonometry. The radius of the Earth may be considered known

very approximately ;
let this radius be denoted by r, then if a be

the length of any arc the circular measure of the angle which the

arc subtends at the centre of the earth is -
. The formulse of

f

Spherical Trigonometry give expressions for the trigonometrical

functions of -
. so that - may be found and then a. Since in

r
>

r J

practice
- is always very small, it becomes necessary to pay
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attention to the methods of securing accuracy in calculations

which involve the logarithmic trigonometrical functions of small

angles (Plane Trigonometry, Art. 205).

Instead of the exact calculation of the triangles by Spherical

Trigonometry, various methods of approximation have been pro-

posed ; only two of these methods however have been much used.

One method of approximation consists in deducing from the angles

of the spherical triangles the angles of the chordal triangles, and

then computing the latter triangles by Plane Trigonometry (see

Art. 105). The other method of approximation consists in the

use of Legendre's Theorem (see Art. 106).

119. The three methods which we have indicated were all

used by Delambre in calculating the triangles in the French

survey (Base du Systeme Metrique, Tome in. page 7). In the

earlier operations of the Trigonometrical survey of Great Britain

and Ireland, the triangles were calculated by the chord method
;

but this has been for many years discontinued, and in place of it

Legendre's Theorem has been universally adopted (An Account of
the Observations ... page 244). The triangles in the Indian

Survey are stated by Lieut.-Colonel Everest to be computed on

Legendre's Theorem. (An Account of the Measurement ... page

CLVIII.)

120. If the three angles of a plane triangle be observed, the

fact that their sum ought to be equal to two right angles affords a

test of the accuracy with which the observations are made. We
shall proceed to shew how a test of the accuracy of observations of

the angles of a spherical triangle formed on the Earth's surface

may be obtained by means of the spherical excess.

121. The area of a spherical triangle formed on the Earths

surface being known in square feet, it is required to establish a rule

for computing the spherical excess in seconds.

Let n be the number of seconds in the spherical excess, s the

number of square feet in the area of the triangle, r the number of
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feet in the radius of the Earth. Then if E be the circular mea-

sure of the spherical excess,

and

therefore

180.60.60 206265

nr*
5
"206265

'

Now by actual measurement the mean length of a degree on

the Earth's surface is found to be 365155 feet; thus

^=365155.

With the value of r obtained from this equation it is found by

logarithmic calculation, that

log n =
log s -9-326774.

Hence n is known when s is known.

This formula is called General Roy's rule, as it was used by
him in the Trigonometrical survey of Great Britain and Ireland.

Mr Davies, however, claims it for Mr Dalby. (See Hutton's

Course of Mathematics} by Davies, Vol. n. p. 47.)

122. In order to apply General Hoy's rule, we must know
the area of the spherical triangle. Now the area is not known

exactly unless the elements of the spherical triangle are known

exactly ; but it is found that in such cases as occur in practice an

approximate value of the area is sufficient. Suppose, for example,

that we use the area of the plane triangle considered in Legendre's

Theorem, instead of the area of the Spherical Triangle itself;

then it appears from Art. 109, that the error is approximately

denoted by the fraction-o*"" of the former area, and this

fraction is less than *0001, if the sides do not exceed 100 miles

in length. Or again, suppose we want to estimate the influence

of errors in the angles on the calculation of the area; let the
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a/3 sin C
circular measure of an error be h, so that instead of

A

asn i ,, ,, , ,,

we ought to use - '

;
the error then bears to the area

A

approximately the ratio expressed by hcotC. Now in modern

observations k will not exceed the circular measure of a few

seconds, so that, if C be not very small, h cot C is practically in-

sensible.

123. The following example was selected by Woodhouse from

the triangles of the English survey, and has been adopted by other

writers. The observed angles of a triangle being respectively

42. 2'. 32", 67. 55'. 39", 70. 1'. 48", the sum of the errors made
in the observations is required, supposing the side opposite to the

angle A to be 27404-2 feet. The area is calculated from the ex-

a2
sin B sin C , , ~

pression ^. --
,
and by General Roys rule it is found

Zi sin jA.

that n=-23. Now the sum of the observed angles is 180-1",
and as it ought to have been 180+ *23", it follows that the sum
of the errors of the observations is 1"'23. This total error may
be distributed among the observed angles in such proportion as

the opinion of the observer may suggest ; one way is to increase

each of the observed angles by one-third of 1"*23, and take the

angles thus corrected for the true angles.

124. An investigation has been made with respect to the

form of a triangle, in which errors in the observations of the

angles will exercise the least influence on the lengths of the sides,

and although the reasoning is allowed to be vague it may be

deserving of the attention of the student. Suppose the three

angles of a triangle observed, and one side, as a, known, it is

required to find the form of the triangle in order that the other

sides may be least affected by errors in the observations. The

spherical excess of the triangle may be supposed known with

sufficient accuracy for practice, and if the sum of the observed

angles does not exceed two right angles by the proper spherical

excess, let these angles be altered by adding the same quantity to
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each, so as to make their sum -correct. Let A, 5, (7 be the angles

thus furnished by observation and altered if necessary ;
and let

8.4, 85 and 8(7 denote the respective errors of A, B and (7. Then

A + 85 + 8(7 = 0, because by supposition the sum of A, B and C
is correct. Considering the triangle as approximately plane, the

. a sin (C + 8(7) ., a sin (G + 8(7)true value of the side c is -
-^ ^~- ,

that is, -; rr^-zrs </
sin (A + oA) sin (-485- 8(7)

Now approximately

sin (C + 8(7)
= sin (7 + 8(7 cos (7, (Plane Trig. Chap, xn.),

sin (4
- 85 - 8(7)

- sin A -
(85 + 8(7) cosA

Hence approximately

c = i?~
[l

+ 8(7 cot (7
j |l

-
(85 + 8(7) cot 4

j~

'

+ cQ o cQ .

sin -d.
(^ J

sin (^4 + 0) sin 5
and cot G + cot .d = . \ : 77

=
j 7 7^ approximately.

sin .4 sui 6 sin A sin 6

Hence the error of c is approximately

a sin 5 sin C cos A ~

; 5~T~ " --
;^ -;--- .

sin A sinvl

Similarly the error of b is approximately

a sin C ~ a sin J5 cos ^4 ^ ,
. 2 . O-D +-r-^-j

- OL .

sin A sinvl

Now it is impossible to assign exactly the signs and magnitudes

of the errors 8.6 and 8(7, so that the reasoning must be vague. It

is obvious that to make the error small sin .4 must not be small.

And as the sum of 8A, 8^ and 8(7 is zero, two of them must have

the same sign, and the third the opposite sign ;
we may therefore

consider that it is more probable than any two as 8-6 and 8(7 have

different signs, than that they have the same sign.
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If S.Z? and 8(7 have different signs the errors of b and c will

be less when cos A is positive than when cos A is negative ;

A therefore ought to be less than a right angle. And if 85 and

SO are probably not very different, B and C should be nearly

equal. These conditions will be satisfied by a triangle differing

not much from an equilateral triangle.

If two angles only, A and 5, be observed, we obtain the same

expressions as before for the errors in b and c ; but we have

no reason for considering that 85 and 8(7 are of different signs

rather than of the same sign. In this case then the supposition

that A is a right angle will probably make the errors smallest.

125. The preceding article is taken from the Treatise on

Trigonometry in the Encyclopaedia Metropolitana. The least

satisfactory part is that in which it is considered that 85 and 8(7

may be supposed nearly equal ;
for since $A + 85 + 8(7 = 0, if we

suppose 85 and 8(7 nearly equal and of opposite signs, we do in

effect suppose 8J. = nearly ;
thus in observing three angles, we

suppose that in one observation a certain error is made, in a

second observation the same numerical error is made but with

an opposite sign, and in the remaining observation no error is

made.

126. We have hitherto proceeded on the supposition that the

Earth is a sphere ;
it is however approximately a spheroid of small

eccentricity. For the small corrections which must in consequence

be introduced into the calculations we must refer to the works

named in Art. 114. One of the results obtained is that the error

caused by regarding the Earth as a sphere instead of a spheroid in-

creases with the departure of the triangle from the well-conditioned

or equilateral form (An Account of the Observations .. .page 243).

Under certain circumstances the spherical excess is the same on a

spheroid as on a sphere (Figure of the Earth in the Encyclopaedia

Metropolitana, pages 198 and 215).

127. In geodetical operations it is sometimes required to de-

termine the horizontal angle between two points, which are at a
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small angular distance from the horizon, the angle which the

objects subtend being known, and also the angles of elevation

or depression.

Suppose OA and OB the directions in which the two points

are seen from
;
and let the angle AOB be observed. Let OZ be

the direction at right angles to the observer's horizon; describe

a sphere round as a centre, and let vertical planes through OA
and OB meet the horizon at 00 and OD respectively : then the

angle COD is required.

Let

triangle AZB
AOC = from the

cos cos ZA cos ZB cos $ sin h sin k

sin ZA sin ZB cos h cos k

and cos AZB = cos COD = cos (0 + x) ;
thus

N cos sin h sin k
cos (6 + x) = 1 j .

cos h cos k

This formula is exact ; by approximation we obtain

cos lik
cos 6 - x sin & = -r ,, .

, ax :



ON SMALL VARIATIONS. 93

therefore x sin = hk - J (h
2 + k2

}
cos 0, nearly,

2M-(A
2

4-F)(cos
2

|0-sin
2

|0)
2 sin 0~

This process, by which we find the angle COD from the angle

j
is called reducing an angle to the horizon.

XL ON SMALL VARIATIONS IN THE PARTS OF A
SPHERICAL TRIANGLE.

128. It is sometimes important to know what amount of

error will be introduced into one of the calculated parts of a

triangle by reason of any small error which may exist in the

given parts. We will here consider an example.

129. A side and the opposite angle of a spherical triangle

remain constant : determine the connexion between tlie small varia-

tions of any other pair of elements.

Suppose C and c to remain constant.

(1) Required the connexion between the small variations of

the other sides. We suppose a and b to denote the sides of one

triangle which can be formed with C and c as fixed elements, and

a + Sa and 6 4- 86 to denote the sides of another such triangle ;

then we require the ratio of 8a to 86 when both are extremely

small. We have

cos c = cos a cos 6 -f sin a sin 6 cos (7,

and cos c = cos (a 4- Sa) cos (6 4- 86) 4- sin (a 4- Sa) sin (6 -f 86) cos C ;

also cos (a 4- Sa)
= cos a sin a Sa, nearly,

and sin (a 4- Sa)
= sin a 4- cos a Sa, nearly,
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with similar formulae for cos (6 + 86) and sin (b + 86). (See Plane

Trigonometry, Chap, xn.) Thus

cos c = (cos a sin a Sa) (cos b sin b 86)

+ (sin a + cos a Sa) (sin 6 + cos 6 86) cos C.

Hence by subtraction, if we neglect the product Sa 86,

= Sa (sin a cos 6 - cos a sin 6 cos C)

+ 86 (sin 6 cos a cos 6 sin a cos (7) ;

this gives the ratio of Sa to 86 in terms of a, 6, (7. We may
express the ratio more simply in terms of A and B

; for, dividing

by sin a sin 6, we get from Art. 44,

\ CNT

- cot B sin (7 + -7 7 cot -4 sin (7 = :

sin a sin 6

therefore Sa cos 2? + 86 cos A 0.

(2) Required the connexion between the small variations of

the other angles. In this case we may by means of the polar

triangle deduce from the result just found, that

this may also be found independently as before.

(3) Required the connexion between the small variations of

a side and the opposite angle (A, a).

Here sin A sin c = sin C sin a,

and sin (^4 + 8^4) sin c = sin C sin (a + Sa) ;

hence by subtraction

cos A sin c SA = sin C cos a Sa,

and therefore 8^4 cot A Sa cot a.

(4) Required the connexion between the small variations of

a side and the adjacent angle (a, B).
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We have cot C sin B = cot c sin a cos B cos a ;

proceeding as before we obtain

cot C cos B SB cot c cos a Sa + cos B sin a Sa + cos a sin .Z? SB
;

therefore

(cot (7 cosB - cos a sin B) SB = (cot c cos a + cos i? sin a) Sa
;

, , _ cos A . cos 6 .

therefore = ~ 0-5 = - Sa ;

sin 6 sin c

therefore SB cos -4 = Sa cot 6 sin B.

130. Some more examples are proposed for solution at the

end of this Chapter ;
as they involve no difficulty they are left for

the exercise of the student.

EXAMPLES.

1. In a spherical triangle, if C and c remain constant while

a and b receive the small increments Sa and Sb respectively, shew

that

Sa Sb A . sin C
- = where n = -

n2
sin

2

a) -N/(1
- n2

sin
2

b) sin c

2. If C and c remain constant, and a small change be made

in a, find the consequent changes in the other parts of the tri-

angle. Find also the change in the area.

3. Supposing A and c to remain constant, prove the following

equations, connecting the small variations of pairs of the other

elements :

sin C Sb = sin a SB, Sb sin = SC tan a, Sa tan G= SB sin a,

Sa tan C = - SC tan a, Sb cos C = Sa, SB cos a = - SC.

4. Supposing b and c to remain constant, prove the following

equations connecting the small variations of pairs of the other

elements :

SB tan C = SC tan B, Sa cot C = - SB sin a,

Sa = SA sin c sin B, SA sin B cos C = SB sin A.



96 EXAMPLES.

5. Supposing B and C to remain constant, prove the follow-

ing equations connecting the small variations of pairs of the

other elements :

86 tan c = 8c tan 6, 8J. cot c = 86 sin A,

&A = 8a sin b sin (7, Sa sin j5 cos c = 86 sin A .

6. If A and (7 are constant, and 6 be increased by a small

quantity, shew that a will be increased or diminished according as

c is less or greater than a quadrant.

XII. ON THE CONNEXION OF FORMULA IN
PLANE AND SPHERICAL TRIGONOMETRY.

131. The student must have perceived that many of the

results obtained in Spherical Trigonometry resemble others with

which he is familiar in Plane Trigonometry. We shall now pay
some attention to this resemblance. We shall first shew how we

may deduce formulae in Plane Trigonometry from formulae in

Spherical Trigonometry; and we shall then investigate some

theorems in Spherical Trigonometry which are interesting princi-

pally on account of their connexion with known results in Plane

Geometry and Trigonometry.

132. From any formula in Spherical Trigonometry involving

tJie elements of a triangle, one of them being a side, it is required

to deduce tJie correspondingformula in Plane Trigonometry.

Let a, /?, y be the lengths of the sides of the triangle, r the

radius of the sphere, so that -
,

-
,

- are the circular measures

of the sides of the triangle; expand the functions of -
, -, -

which occur in any proposed formula in powers of -, -,
?

respectively ;
then if we suppose r to become indefinitely great,
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the limiting form of the proposed formula will be a relation in

Plane Trigonometry.

For example, in Art. 106, from the formula

. cos a cos b cos c
COS A =-

;
-

7 ;
-

sin o sin c

we deduce

-a2 a4 + /3
4 + y

4 - 2a2

ff
2 -

2ff
g

y
2 - 2yV

COS ul =-^77
--

1-
-

^77
2/rty

now suppose r to become infinite
;
then ultimately

/

and this is the expression for the cosine of the angle of a plane

triangle in terms of the sides.

Again, in Art. 110, from the formula

sin A _ sin a

sin B
~~

sin b

sin^i a a(/3
2 -a2

)we deduce -= ^ = -5 + ^o^ + ...... ;
sinB /3 6/fr

2

now suppose r to become infinite
;
then ultimately

sin'J. a

that is, in a plane triangle the sides are as the sines of the oppo-

site angles.

133. To find the equation to a small circle of the sphere.

The student can easily draw the reqiiired diagram.

Let be the pole of a small circle, S a fixed point on the

sphere, SX a fixed great circle of the sphere. Let 08 a,

OSX= /2 ;
then the position of is determined by means of these

angular co-ordinates a and
/3.

Let P be any point on the circum-

ference of the small circle, PS=0, PSX=^}
so that 9 and < are

T. S. T. H
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the angular co-ordinates of P. Let OP = r. Then from the

triangle OSP
cos r = cos a cos + sin a sin cos

(< ft) (1);

this gives a relation between the angular co-ordinates of any point
on the circumference of the circle.

If the circle be a great circle then r = -=; thus the equation
2t

becomes
= cosacos0 + sin a sin cos

(</>
-

ft) (2).

It will be observed that the angular co-ordinates here used are

analogous to the latitude and longitude which serve to determine

the positions of places on the Earth's surface
; is the complement

of the latitude and
<f>

is the longitude.

134. Equation (1) of the preceding Article may be written

/ 2 2 0\
thus : cos r

{
cos = + sin

2 -

)

\ A AJ

/ ft f)\

i
( cos

2

7: sin
2 -

)
+ 2 sir

\ J J/
= cos a

(
cos -5 sin -

I + z sin a sin - cos ^ cos f < p ).A ZJ J J

a

Divide by cos
2

^
and rearrange ;

hence

f\ /i

tan2

^ (cos r + cos a)
- 2 tan - sin a cos

(<f> ft) + cos r cos a = 0.GO
Let tan -l and tan - denote the values of tan - found from

2S -

this quadratic equation ;
then by Algebra, Chapter xxn.

0. . cos r cos a a + r a r
tan -^ tan -^ = = tan 75 tan .

2 2 cosr-fcosa 2 2

Thus the value of the product tan
-^

tan
-^

is independent of <;

this result corresponds to the well-known property of a circle in

Plane Geometry which is demonstrated in Euclid in. 36 Corollary.

135. Let three arcs OA, OB, 00 meet at a point. From any

point P in OB draw PM perpendicular to OA, and PN perpen-

dicular to 00. The student can easily draw the required diagram.
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Then, by Art. 65,

sinPJ/"=sin0Psin^OP, sinPN= sin OP sin COB ;

sinPJf sin AOB
therefore

sin COB'

Thus the ratio of sin PJ/ to sinP^ is independent of the posi-

tion of P on the arc OB.

136. Conversely suppose that from any other point p arcs pm
and pn are drawn perpendicular to OA and 00 respectively; then if

sinprn __
sinPM

it will follow that p is on the same great circle as and P.

137. From two points Pl
and P

2
arcs are drawn perpendi-

cular to a fixed arc
;
and from a point P on the same great circle

as P
l
and P

2
a perpendicular is drawn to the same fixed arc. Let

PPj = O
l
and PP

2
=

2 ;
and let the perpendiculars drawn from P,

P
1?
and P

2
be denoted by x, x

l9
and x

2
. Then will

sin sin 0.
sin x = - //a

'

x
sin a;. -f -rr^ 4n sin a,- .

sin O + sin # + 2

Let the arc PjP,, produced if necessary, cut the fixed arc at a

point ;
let a denote the angle between the arcs. We will sup-

pose that P
l
is between and P^ and that P is between 7J and P

2
.

Then, by Art. 65,

sin x
l
= sin a sin OP

l

= sin a sin (OP - 0^

= sin a (sin OP cos
X

- cos OP sin 0J ;

sin x
a
= sin a sin OP

2
= sin a sin (OP 4-

2)

= sin a (sin OP cos O
s
+ cos OP sin

2).

Multiply the former by sin 2) and the latter by sin O
l9

and add
;

thus

sin O
a
sin x

l
-f sin

t
sin x

a
= sin (0 X

+
2)

sin a sin OP
= sin (Ol

+ O
a)

sin x.

H2
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The student should convince himself by examination that the

result holds for all relative positions of P, Pl9
and P

2,
when due

regard is paid to algebraical signs.

138. The principal use of Art. 137 is to determine whether

three given points are on the same great circle; an illustration

will be given in Art. 146.

139. The arcs drawn from the angles of a spherical triangle

perpendicular to tlie opposite sides respectively meet at a point.

Let CF be perpendicular to AB. From F suppose arcs drawn

perpendicular to CB and CA respectively ; denote the former by
and the latter by 77. Then, by Art. 135,

_
sin

rj
sin FCA

'

Eut, by Art. 65,

cos B = cos CF sin FOB, cos A = cos CF sin FCA ;

sin f cos B cos B cos C
therefore - =-7 =--.

- ~ .

sin
17

cos A cos A cos C

And if from any point in CF arcs are drawn perpendicular to

CB and CA respectively, the ratio of the sine of the former perpen-

dicular to the sine of the latter perpendicular is equal to -

smr;

by Art. 135.
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In like manner suppose AD perpendicular to EC ;
then if from

any point in AD arcs are drawn perpendicular to AC and AE
respectively, the ratio of the sine of the former perpendicular to

the sine of the latter perpendicular is equal to - ^ .

cos A cos E

Let CF and AD meet at P, and from P let perpendiculars be

drawn on the sides a, b, c of the triangle ;
and denote these per-

pendiculars by x
9 y, z respectively : then we have shewn that

sin x cos B cos G
sin y cos A cos G '

,
,
. sin y cos A cos C

and that -r - = -: = :

sin z cosyicosj5

hence it follows that

sin x _ cos B cos C
sin z cos E cos A '

and this shews that the point P is on the arc drawn from E per-

pendicular to AC.

Thus the three perpendiculars meet at a point, and this point

is determined by the relations

sin x sin y sin z

cosB cos G cos G cos A cos A cos 2?
*

140. In the same manner it may be shewn that the arcs

drawn from the angles of a spherical triangle to the middle points

of the opposite sides meet at a point ;
and if from this point arcs

x, y, z are drawn perpendicular to the sides a, b, c respectively,

sin x sin y sin z

sinE sin G sin G sinA sin A sin E *

141. It is known in Plane Geometry that a certain circle

touches the inscribed and escribed circles of any triangle ;
this

circle is called the Nine points circle : see Appendix to Euclid,

pages 317, 318, and Plane Trigonometry, Chapter xxiv.
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We shall now shew that a small circle can always be deter-

mined on the sphere to touch the inscribed and escribed circles of

any spherical triangle.

142. Let a denote the distance from A of the pole of the

small circle inscribed within a spherical triangle ABC. Suppose
that a small circle of angular radius p touches this inscribed circle

internally ;
let /5 be the distance from A of the pole of this touch-

ing circle
;

let y be the angle between arcs drawn from A to the

pole of the inscribed circle and the pole of the touching circle

respectively. Then we must have

cos (p r)
= cos a cos /? + sin a sin f3 cos y (1).

Suppose that this touching circle also touches externally the

escribed circle of angular radius r^ ; then if
c^

denote the distance

from A of the pole of this escribed circle, we must have

cos (p -f r^ = cos
ttj

cosP + sin a
A
sin ft cos y (2 ).

Similarly, if a
s
and a

3
denote the distances from A of the poles

of the other escribed circles, in order that the touching circle may
touch these escribed circles externally, we must also have

cos(p-f r
2)
= cos a

2
cos /3 -f sina

s sin/?cosf--yj (3),

cos (p + r
s)
= cos a

3
cos (3 + sin a

3
sin /5 cosQ +

yj
(4).

We shall shew that real values of p, /?,
and y can be found to

satisfy these four equations.

Eliminate cos y from (1) and (2) ;
thus

cos p (cos r sin a
t

cos r
l
sin a) + sin p (sin r sin a

t
+ sin r

l
sin a)

= cos )3 (cos a sin dj cos a
x
sin a) (5).

Suppose that the inscribed circle touches AB at the distance m
from A, and that the escribed circle of angular radius r

l
touches

AB at the distance m
l
from A. Then, by Art. 65,
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cot a = cot m cos
,

cos a = cos r cos ra, sin r = sin a sin
-^

,, . cosr cot a 1 A
therefore = =

. cos .

sin a cos m sinm 2

Similarly we may connect a
A
and r

:
with m^ Thus we

obtain from (5)

' Sm
2

A/ I 1 \ _
.

COS p COS
( -; : 4- 2 Sin p !

2 \sin7?i sinm /

= cos fi cos (cotm cot raj ;

therefore cos p (sin m^
- sin m) -f 2 sin p sinm sin w

x
tan ^

= cos )3 sin (rn>l ni).

But by Arts. 89 and 90 we have m = s - a, and m
l
= 5 ; there-

fore by the aid of Art. 45 we obtain

2 cos p sin - cos + 2n sin p = cos ft sin a (6),

where n has the meaning assigned in Art. 46.

In like manner if we eliminate siny between (3) and (4),

putting m2
for s c, and m3

for s b, we obtain

cos p (sin ma
+ sinw

3)
- 2 sin p sin m

a
sinm

a
cot ^

=* cos /3 sin (m2
4- ra

3),

therefore 2 cos p sin cos
^

2wsin p = cos ft sin a (7).

From (6) and (7) we get

. a . b . c
sin ?rSin sm-22 21

tanp=
rc =^ tan^ kv Art. 92 (8),

b c
cos - cos ^ cos p

and cos ft
=

~*

(9).

cos-
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We may suppose that cos -= is not less than cos or cos ~
,
so

-j 2t 2t

that we are sure of a possible value of cos /3 from (9).

It remains to shew that when p and ft are thus determined, all

the four fundamental equations are satisfied.

It will be observed that, p and fi being considered known,

cosy can be found from (1) or (2), and 'siny can be found from

(3) or (4) : we must therefore shew that (1) and (2) give the

same value for cos y, and that (3) and (4) give the same value

for sin y ;
and we must also shew that these values satisfy the

condition cos
2

y + sin
2

y - 1.

From (1) we have

cos p sin r ( cos 6\ . _
-

(
cot r 4- tan p cosm cot r---

)
= sm p cos y,sma \ cosp/

that is,

. A ( ,
. . b c}

cos p sin I cos (s -a) sins cos
^
cos ~

isin s + sin i a sin i 6 sin i c
n a

I cos-

= sin /3 cos y ;

this reduces to

sin (6 + c) cos cos

and it will be found that (2) reduces to the same
;
so that (1) and

(2) give the same value for cos y.

In like manner it will be found that (3) and (4) agree in

reducing to

A ( . , ^ b c}
cos p cos - . sm (c

-
b) cos ^ cos ^

2 ) a . c o A-
n
-

)

COS
2
Sm ^---:

-
a

2 cos
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It only remains to shew that the condition cos
2

y 4- sin
a

y 1 is

satisfied.

COS/3

put X for cot r {1 Jc cos (s a)}, and Y for cot r
t {1 & cos

$}.

Then (1) and (2) may be written respectively thus :

^
(X cos p + sin p) sin - =

sin/? cosy .......... (10),

(F cos p sin p) sin = sin /3 cos y . . ....... (11).

From (10) and (11) by addition

A
(X + Y) sin cos p = 2 sin /3 cos y ;

therefore 4sin2
cos

2

y = (X
2 + F2 + 2XY) sin

2

^ cos
2

p... (12).
2s

But from (10) and (11) by subtraction

(X- Y) cos p = 2 sin p ;

therefore (X
2 + F2

)
cos

2

p - 4 sin
2

p + 2ZY cos
2

p.

Substitute in (12) and we obtain

sin
2

p cos
2

y = (sin
2

/a
+XY cos

2

p) sin
2

-^
....... (13).J

Again, put

JTj for cot r
a {l & cos

(5 c)},
and Y

l
for cot r

3 {l Jc cos
(*' 6)}.

Then (3) and (4) may be written respectively thus :

A
(Xl

cos p sin p) cos
-^
= sin fi sin y ......... (14),

(Fx
cos p

- sin p) cos = sin f$ sin y ...... (15).

From (14) and (15) by subtraction

AA
l

- F
x)
cos cos p = 2 sin /3 sin y,
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and from (14) and (15) by addition,

(Xl
+ Y^ cos p = 2 sin p,

whence

sin
8

^sin*y=(sin
2

p-jri
r

i cosV)cos
2 -

(16).

Hence from (13) and (16) it follows that we have to establish

the relation

sin
2

p = sin
2

p + (XT sin
2

^-XJl
cos

2

^\
cos

2

p.

But sin* /? = 1 - cos
2

/3
= sin

2

p + cos
2

p
- 1c* cos

2

p, so that the re-

lation reduces to

Now

YV . ^A cotrcotr {! & cos $}{! & cos(s a)} sin(s 5)sin(sr)a 2 sin" =
:

-
p

A sin b sin c

_ {1 &cos $}{!-& cos (s- a)}

sin b sin c

Similarly JT^cos
2

^ J2 sin 6 sin c

Subtract the latter from the former
;
then we obtain

(s-b) + cos (s-c)
- cos s -cos (-)}

sin 5 sine
COS 5 C S " "" C S "" C S ""

; cos -
,i,.
that is . .

sin 6 sin c

6-c 6+c)--- cos -^r- V
2 2 J

cos

&* ( 6 + c

JIE^ (
cos

rtf
+ c a

cos~~ - cos -- cos

, . 5 . c 6 c
4 sin - sin - cos - cos ^^f 2222 ^2

r. a c-5 . f c + 6lthat is . . + . . {sm
3
-^-- sin

2
-^r >,sm 6 sin c sin 6 sin c ( 2 2 J

that is 1 k*
;
which was to be shewn.



IN PLANE AND SPHERICAL TRIGONOMETRY. 107

143. Thus the existence of a circle which touches the in-

scribed and escribed circles of any spherical triangle has been

established.

The distance of the pole of this touching circle from the

angles B and G of the triangle will of course be determined by
formulae corresponding to (9) ; and thus it follows that

a c a b
cos - cos 5 cos p cos ^ cos - cos p

2t 2i A J
, and ,

o c
COS - COS

2

must both be less than unity.

144. Since the circle which has been determined touches

the inscribed circle internally and touches the escribed circles

externally, it is obvious that it must meet all the sides of the

spherical triangle. We will now determine the position of the

points of meeting.

Suppose the touching circle intersects the side AB at points

distant X and p respectively from A.

Then by Art. 134 we have

a be
. ^ cos n - cos s cos HX /* _ cos p cos p 2 22 .-.

2 2
~~

cos p + cos 3
~

a b c V ^
cos

y
-f cos

^ cos -

In the same way we must have by symmetry

b a c
. cos ^ - cos ^ cos Hc-X. c-u. 2 22

tan -5- tan -~-= 7 ....(2).2 2 o a c
cos

y
+ cos ^ cos -

From (2), when we substitute the value of tan ^ tan ^ given

by (1),
we obtain

cos
2

-^
cos

2

^
cos

2 - + cos
2 - sin

2 -

tan - + tan
|
=

b q 1
i

cos ^ sin s (cos K + cos ^ cos ^}
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a be b . c
cos

^
cos cos - cos ^ sin

^

6 c'
cos -sn- cos

^+
cos -cos -

From (1) and (3) we see that we may put

cos|-cos|cos|

2
=-

b . c
..................(4)'

Cos
2
sm

2

5 . c

cos^sin^
(5).2 a b c

cos + cos - cos
J 2.2

Similar formulae of course hold for the points of intersection of

the touching circle with the other sides.

145. Let z denote the perpendicular from the pole of the

touching circle on AB\ then

(A \
sin z = sin p sm (

- + y J

of- A A '= sm p [
sin -= cos y -f cos -

\ 2

A . \

J-g-siny).

But from (2) and (3) of Art. 142 we have

A
cospsin-^ , .

._ Zi / . Cb . C\sm p cos y = (
Z sm sin

-^
sin -

) ,
fi \ J ^a 2iJ

where Z sin (s a) cos 5 sin (s
-
a) cos ^ cos ^ sec ^ ,

^
cospcos- a 5 c\

and sin 8 sin y = ^(Z sin ^ sin - sin -
) ,n \

* A & ZJ

where Z^
- sin (s

-
b) cos

(s
-

c) sin (5
-

6) cos
^
cos - sec - .
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Therefore

. 2
A _

2
A . a . b . c

sin 3 = 2 -

sm (s a) sm (5 b) sm (s - c) ( - b c a)
:

'
. ; .

2 1
\ 1 - cos s cos ^ cos T. sec - } ,

sin b sine ( 222)
and cos

2
-

sm s sm (5
-

a) sin (s b) (.,
,

N
b c a)= v

. 7 ;
-

'

< 1 - cos (s - c) cos TT cos ~ sec K > .

sin b sine (,
2 2 2J

-4 A
Therefore Z sin

2

-^
+ Z^ cos

2

^

is equal to the product of

sin (5 a) sin (s 6)

sin 6 sine

into

b c a ( . , x / x 1
sin

v
s - c) -f.sins cos ^

cos
^
sec < sin (s c) cos s + cos (5 c) sin s >

sin (5 a) sin (s b) (~ . a + b c b c a . ^= -
. ( .

*
^2sin 5- cos --cos^r cos - sec^r sin (2s

-
c) V

sin 6 sm c ( 2 2 222 x

j

sin (s a) sin (5 b) C . a + b . . , v 5

2 sin 6 sin

sin (5 a) sin (s
-

b) sin
^

cos
^

cos - I

c a i

sin 6 sin cos

sin (5 a) sin (s 6) sin
2 -

sin^
sin

(5 a) sin (s b) sin
2

c a a 5 . c
sm b sin %- cos- 2 cos cos - sm -

A A a A A
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Therefore

sin

T 2 sin
2

sui (s - a) sm (s b)
cosp . a . b . c 2 v /v '

in ^ = - sin - - sin - sm - ^____-_-_-_. _ i
w 222 c .

sin - sm a sm o
L ^ J

cosp . a . b . c (

'

^4 -7? _) ...= sui
2
sm - sm - < 2 cos

2

;
1 v

; by (2) of Art. 54.

cosp . a . b . c . . _
v

Thus sinz = - sm - sm - sin - cos (A B)

= sin p cos (A B).

Similar expressions hold for the perpendiculars from the pole

of the touching circle on the other sides of the spherical triangle.

146. Let P denote the point determined in Art. 139
;
G the

point determined in Art. 140, and W the pole of the touching
circle. We shall now shew that JP, G, and N are on a great

circle.

Let x, y, z denote the perpendiculars from N on the sides

a, b, c respectively of the spherical triangle ; let x^ y^ z
l
denote

the perpendiculars from P'

;
and x

2 , y^ z
t
the perpendiculars from

G. Then by Arts. 145, 139, and 140 we have

sin x sin y sin z

cos (B
-
C) cos (G

-
-4) cos (A-B)'

sin x
l

sin yl
sin z

l

cosB cos G cos G cos A cos A cos B '

sin
x^

sin y9
sin z

2

sin B sin G
~

sin G sin A
~~

sin A sin B '

Hence it follows that

sin x = t
l
sin x

l
+ t

2
sin #

2 ,

sin # = ^ sin yx
-K

2
sin y2,

sin z = sin z + 1 sin z
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where t
l
and t

2
are certain quantities the values of which are not

required for our purpose.

Therefore by Art. 137 a certain point in the same great circle

as P and G is at the perpendicular distances x, y, z from the sides

a, 5, c respectively of the spherical triangle : and hence this point

must be the point W.

147. The resemblance of the results which have been obtained

to those which are known respecting the Nine points circle in

Plane Geometry will be easily seen.

The result tanp^tanJS corresponds to the fact that the
2i

radius of the Nine points circle is half the radius of the circum-

scribing circle of the triangle.

From equation (4) of Art. 144 by supposing the radius of the

sphere to become infinite we obtain X = : this corresponds
JLC

to the fact that the Nine points circle passes through the feet of

the perpendiculars from the angles of a triangle on the opposite

sides.

From equation (5) of Art. 144 by supposing the radius of the

sphere to become infinite we obtain
//,
= -

: this corresponds to the
. Li

fact that the Nine points circle passes through the middle points of

the sides of a triangle.

From Art. 145 by supposing the radius of the sphere to be-

come infinite we obtain z = ^ R cos
(
A B) : this is a known

property of the Nine points circle.

In Plane Geometry the points which correspond to the P, G,

and N of Art. 146 are on a straight line.

148. The results which have been demonstrated with respect

to the circle which touches the inscribed and escribed circles of a

spherical triangle are mainly due to Dr Hart and Dr Salmon.

See the Quarterly Journal of Mathematics, Vol. vi. page 67.
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EXAMPLES.

. a /( cosScos(S-A)) .

1. From the formula sin- = / -j

-
.

. n .

'
- > deduce

2 v I sin 2? sin (7 J .

the expression for the area of a plane triangle, namely
a2

sinB sin C , ,, ,. . ,. .

^
:

-j
,
when the radius of the sphere is indefinitely in-

creased.

2. Two triangles ABC, abc, spherical or plane, equal in all

respects, differ slightly in position : shew that

cos ABb cos BCc cos CAa + cos ACc cos GBb cos BAa = 0.

3. Deduce formulae in Plane Trigonometry from Napier's

Analogies.

4. Deduce formulae in Plane Trigonometry from Delambre's

Analogies.

K T A*- jf
c A+ B . C , ,

5. From the formula cos -cos = sin -cos ^- deduce
2i 2i A 2i

the area of a plane triangle in terms of the sides and one of the

angles.

6. What result is obtained from Example 7 to Chapter "VI.,

by supposing the radius of the sphere infinite 1

7. From the angle C of a spherical triangle a perpendicular is

drawn to the arc which joins the middle points of the sides a and

b: shew that this perpendicular makes an angle S B with the

side a, and an angle S A with the side b.

8. From each angle of a spherical triangle a perpendicular is

drawn to the arc which joins the middle points of the adjacent

sides. Shew that these perpendiculars meet at a point; and that



EXAMPLES. 113

if x, y, z are the perpendiculars from this point on the sides a, 6, c

respectively,

sin a; _ siny
'

sins

sin (S-) sin (S-C)
~~

sin (S-Cjam (S-A)
=

slrT(tf^l)~sin (S-)
'

9. Through each angle of a spherical triangle an arc is drawn

so as to make the same angle with one side which the perpen-

dicular on the base makes with the other side. Shew that these

arcs meet at a point; and that if x, y, z are the perpendiculars

from this point on the sides a, b, c respectively,

sin x sin y sin z

cos A cos B cos G
'

10. Shew that the points determined in Examples 8 and 9,

and the point N of Art. 146 are on a great circle.

State the corresponding theorem in Plane Geometry.

11. If one angle of a spherical triangle remains constant while

the adjacent sides are increased, shew that the area and the sum

of the angles are increased.

12. If the arcs bisecting two angles of a spherical triangle and

terminated at the opposite sides are equal, the bisected angles will

be equal provided their sum be less than 180.

[Let BOD and COE denote these two arcs which are given

equal. If the angles B and G are not equal suppose B the greater.

Then CD is greater than BE by Art. 58. And as the angle OBG
is greater than the angle 0GB, therefore 00 is greater than OB ;

therefore OD is greater than OE. Hence the angle ODG is

greater than the angle OEB, by Example 11. Then construct

a spherical triangle BGF on the other side of BC, equal to GBE.
Since the angle ODG is greater than the angle OEB, the angle

FD-G is greater than the angle DFCy therefore CD is less than

GF, so that GD is less than BE. See the corresponding problem
in Plane Geometry in the Appendix to Euclid, page 317.]

T. S. T. I



XIII. POLYHEDBONS.

149. A polyhedron is a solid bounded by any number of

plane rectilineal figures which are called its faces. A polyhedron
is said to be regular when its faces are similar and equal regular

polygons, and its solid angles equal to one another.

150. If $ be tJie number of solid angles in any polyhedron,
F the number of its faces, E the number of its edges, then

Take any point within the polyhedron as centre, and describe

a sphere of radius r, and draw straight lines from the centre

to each of the angular points of the polyhedron; let the points

at which these straight lines meet the surface of the sphere be

joined by arcs of great circles, so that the surface of the sphere is

divided into as many polygons as the polyhedron has faces.

Let s denote the sum of the angles of any one of these poly-

gons, m the number of its sides
;
then the area of the polygon is

^{s (m 2)?r} by Art. 99. The sum of the areas of all the

polygons is the surface of the sphere, that is, irr
2
. Hence since

the number of the polygons is F, we obtain

Now 2$ denotes the sum of all the angles of the polygons, and

is therefore equal to 2?r x the number of solid angles, that is, to

'2irSy and %m is equal to the number of all the sides of all the

polygons, that is, to 2E, since every edge gives rise to an arc

which is common to two polygons. Therefore

therefore S+F=E+2.
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151. Tliere can be onlyfive regular polyhedrons.

Let m be the number of sides in each face of a regular poly-

hedron, n the number of plane angles in each solid angle ; then

the entire number of plane angles is expressed by mF, or by nS,

or by 2E 3 thus

from these equations we obtain

~_ 4m 2mn ._ 4%

2 (m + n) mn 9
2 (m -f n) mn 9

2 (m + T&)
mn

"

These expressions must be positive integers, we must therefore

have 2 (m + n) greater than mn ; therefore

h - must be greater than ^ :m n 2

but T& cannot be less than 3, so that - cannot be greater than ~
,n o

and therefore must be greater than ; and as m must be anm 6

integer and cannot be less than 3, the only admissible values of m
are 3, 4, 5. It will be found on trial that the only values of m
and n which satisfy all the necessary conditions are the following :

each regular polyhedron derives its name from the number of its

plane faces.

7/Zr
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demonstrated that, there cannot be more than Jive solids each of
which has all its faces with the same number of sides, and all its

solid anglesformed with the same number ofplane angles.

152. The sum of all the plane angles which form the solid

angles ofany polyhedron is 2(S2)7r.

For if m denote the number of sides in any face of the poly-

hedron, the sum of the interior angles of that face is (m 2)?r

by Euclid I. 32, Cor. 1. Hence the sum of all the interior angles

of all the faces is 2 (m 2) TT, that is SWTT - 2^, that is

2 (E- F)v, that is 2 (S
-

2) v.

153. Tofind the inclination of two adjacent faces of a regular

polyhedron.

Let AB be the edge common to the two adjacent faces, C and

D the centres of the faces
;
bisect AB at E, and join CE and DE-,

CE and DE will be perpendicular to AB, and the angle CED is

the angle of inclination of the two adjacent faces
; we shall denote

it by 7. In the plane containing CE and DE draw CO and DO
at right angles to CE and DE respectively, and meeting at 0;

about as centre describe a sphere meeting OA 9 OC, OE at a, c, e

respectively, so that cae forms a spherical triangle. Since AB is

perpendicular to CE and DE, it is perpendicular to the plane

CED, therefore the plane AOB which contains AB is perpendicular

to the plane CED \
hence the angle cea of the spherical triangle is

a right angle. Let m be the number of sides in each face of the

polyhedron, n the number of the plane angles which form each solid
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alible. Then the angle ace =ACE=~ = : and the angle cae
2m m

is half one of the n equal angles formed on the sphere round a,

that is. cae = = -
. From the right-angled triangle cae

2n n

cos cae = cos cOe sin ace,

7T flT I\ . TT
that is cos - = cos

( ^ - -
)
sin :

n \'2 2/ //&'

7T

cos-

therefore sin - = .

sin

154. ^o y&ttd ^6 rac^ o/" the inscribed and circumscribed

spheres of a regular polyhedron.

Let the edge AB = a, let OC = r and OA = fi, so that r is

the radius of the inscribed sphere, and R is the radius of the

circumscribed sphere. Then

CE = AEwi AGE = ~ cot - ,

2 m

r = CE tan CEO = (7^ tan = cot - tan^;J J m ^

also r = It cos aOc = JR cot eca cot eac = ^ cot cot -
;

7tt 76

therefore 7t = r tan tan - = ^ tan - tan - .m n * 2 n

155. Tofind the surface and volume of a regular polyhedron.
2

The area of one face of the polyhedron is r- cot -
,
and

therefore the surface of the polyhedron is . cot .r J
4: m

Also the volume of the pyramid which has one face of the
2

polyhedron for base and for vertex is
^

. j- cot
,
and

therefore the volume of the polyhedron is =-^ cot .
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156. To find the volume of a parallelepiped in terms of its

edges and tlieir inclinations to one another.

C

Let the edges be OA = a, OB =
b, OC = c; let the inclinations

be BOO =
a, COA = (3,AOB = y. Draw CE perpendicular to the

plane AOB meeting it at E. Describe a sphere with as a

centre, meeting OA, OB, OC, OE at a, b, c, e respectively.

The volume of the parallelepiped is equal to the product of its

base and altitude = ab sin y . GE = abc sin y sin cOe. The spherical

triangle cae is right-angled at e ; thus

sin cOe = sin cOa sin cae = sin /? sin cab,

and from the spherical triangle cab

7 J(I - cos
2 a - cos

2 8 - cos
2
y + 2 cos a cos 6 cos 7)

sin cab = ^L>-d. __f-C-L'
;

sin p sin y

therefore the volume of the parallelepiped

= abc */(! cos
2 a cos

2

/J cos
3

y + 2 cos a cos /? cos y).

157. To find the diagonal of a parallelepiped in terms of tlie

three edges which it meets and their inclinations to one another.

Let the edges be OA =
a, 0-5 = 6, 0(7= c; let the inclinations

be BOC = a, COA=/3, AOB =
y. Let OD be the diagonal re-

quired, and let OE be the diagonal of the face OAB. Then

= a* + b* + 2ab cos y + c
8 + ZcOE cos C'O.S'.
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Describe a sphere with as centre meeting OA, OJB, OC, OE
at #, 5, c, e respectively; then (see Example 14, Chap, iv.)

a

~ cos cOb sin aOe + cos cOa sin 50e
COS CUB = : 7-7

sin aOb

cos a sin aOe + cos /3 sin bOe

siny
therefore

OZ) 2 = a2 + 5
2 + c

2
4- 2a6 cos y +^ -

(cos a sin a0e -f cos ft sin i

and OE sin a6te = 5 sin y, 0^7 sin 6(9e = a sin y ;

therefore OD2 = ct
2 + 6

2 + c
2 + 2a6 cos y + 26c cos a + 2ca cos /?.

158. To find the volume of a tetrahedron.

A tetrahedron is one-sixth of a parallelepiped which has the

same altitude and its base double that of the tetrahedron ;
thus if

the edges and their inclinations are given we can take one-sixth

of the expression for the volume in Art. 156. The volume of a

tetrahedron may also be expressed in terms of its six edges ;
for

in the figure of Art. 156 let EG =
a', CA = b

f

,
AB =

c'-,
then

- - -
cos a =-try

-
, cos p =-7r

--
,

cos y =-^7
2bc 2ca '2ab

and if these values are substituted for cos a, cos /?, and cos y in

the expression obtained in Art. 156, the volume of the tetrahe-

dron will be expressed in terms of its six edges.

The following result will be obtained, in which F denotes the

volume of the tetrahedron,
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U4:V2
--=-a'

a
b'

2
c'

2

+ a2
a'

2

(V
2 + c'

2 - a'
2

)
+ b

2
b'

2

(c'

2 + a'
2 - b'

2

)
+ c

2
c'

2

(a'
2 + b'

2 - c'
2

)

- a'
2

(a
2- b

2

) (a
2 - c

2

)
- b'

2

(b
2 - c

2

) (b
2 - a2

)
- c'

2

(c
2 - a2

) (c
2 - b

2

).

Thus for a regular tetrahedron we have 144 V2 = 2a6
.

159. If the vertex of a tetrahedron be supposed to be situ-

ated at any point in the plane of its base, the volume vanishes
;

hence if we equate to zero the expression on the right-hand side

of the equation just given, we obtain a relation which must hold

among the six straight lines which join four points taken arbi-

trarily in a plane.

Or we may adopt Carnot's method, in which this relation is

established independently, and the expression for the volume of a

tetrahedron is deduced from it ; this we shall now shew, and we
shall add some other investigations which are also given by
Carnot.

It will be convenient to alter the notation hitherto used, by

interchanging the accented and unaccented letters.

160. To find the relation holding among the six straight lines

which joinfour points taken arbitrarily in a plane.

Let A, By C, D be the four points. Let AB =
c, C = a,

CA = b; also let DA =
a', DB = b', DC = c'.

If D falls within the triangle ABC, the sum of the angles

ADB, BDC, CDA is equal to four right angles ;
so that

cos ALB = cos (BDC + CDA).

Hence by ordinary transformations we deduce

1 = cos
2ADB + cos

2BDC+ cos
2CDA - 2 cosALB cosBDC cos CDA .

If D falls witJiout the triangle ABC, one of the three angles

at D is equal to the sum of the other two, and the result just

given still holds.

Now cosADB =
-fr-, ,

and the other cosines may be

expressed in a similar manner; substitute these values in the
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above result, and we obtain the required relation, which after

reduction may be exhibited thus,

0=-a'6V

+ a'
2 a2

(b
2 + c

2 - a2

)
+ b'

2
b
2

(c
2 + a2 - b

2

)
+ c'V (a

2 + b
2 - c

2

)

- a2

(a'
2 - b'

2

) (a'
2 - c'

2

)
- b

2

(b'
2 - c'

2

) (b'
2 - a'

2

)
- c

2

(c'

2 - a'
2

) (c'

2 - b'
2

).

161. To express the volume of a tetrahedron in terms of its six

edges.

Let a, b, c be the lengths of the sides of a triangle ABC
forming one face of the tetrahedron, which we may call its base ;

let a', b', c' be the lengths of the straight lines which join A, B^ C

respectively to the vertex of the tetrahedron. Let p be the length

of the perpendicular from the vertex on the base
;
then the lengths

of the straight lines drawn from the foot of the perpendicular to

A,JB,C respectively are J(a'
2

-p*) J(b'
2

-p
2

), J(c'
2

-p
2
). Hence

the relation given in Art. 160 will hold if we put kj(a'
2

p
2

)
in-

stead of a', ,J(b'
2

p
2

)
instead of b'

}
and fj(c

2

p
2

)
instead of c.

We shall thus obtain

p
2

(2a
2
b
2 + 2b

2
c
2 + 2c

2 a2 - a4 - b
4 - c

4

)
- -aW

+ a'
2a2

(b
2 + c

2 - a2

)
+ b'

2
b* (c

2 + a2 - b
2

)
+ cV (a

2 + b
2 - c

2

)

- a2

(a'
2 - b'

2

) (a'
2 - c'

2

)
- b

2

(b'
2 - c'

2

) (b'
2 - a'

2

)
- c

2

(c'

2 - a'
2

) (c'

2 - b'
2

).

The coefficient of p
2

in this equation is sixteen times the

square of the area of the triangle ABC ; so that the left-hand

member is 144 F2
,
where F denotes the volume of the tetrahe-

dron. Hence the required expression is obtained.

162. To find the relation holding among the six arcs of great

circles which join four points taken arbitrarily on the surface of a

sphere.

Let A
9 By (7, D be the four points. Let AJB = y, BG = a,

CA =/3', let DA =a', DB =
f$

f

, >C =
y'.

As in Art. 160 we have

1 = co$
2ADB + cos

2J3DC + cos
2 CDA - 2 cos ADB cosBDC cosCDA.
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XT A r> r> cosy cos a' cos
'

jNow cos ADB= --
'-; . -,-

1- and the other cosines
sin a sin /5

may be expressed in a similar manner
;
substitute these values in

the above result, and we obtain the required relation, which after

reduction may be exhibited thus,

1 = cos
2 a + cos

2

fi + cos
2

y 4- cos
2
a! + cos

2

ft + cos
2

y'

cos
2 a cos

2
a' - cos

2

ft cos* /3'
- cos

2

y cos
2

y'

2 (cos a cos ft cos y + cos a cos
/3'

cos
y'

4- cos /3 cos a' cos y' + cos y cos a! cos
/?')

+ 2 (cos a cos ^ cos a' cos /3' + cos ft cos y cos ft cos y'

4- cos y cos a cos y' cos
a').

163. To find the radius of the sphere circumscribing a tetra-

fadron.

Denote the edges of the tetrahedron as in Art. 161. Let the

sphere be supposed to be circumscribed about the tetrahedron,

and draw on the sphere the six arcs of great circles joining the

angular points of the tetrahedron. Then the relation given in

Art. 162 holds among the cosines of these six arcs.

Let r denote the radius of the sphere. Then

and the other cosines may be expressed in a similar manner.

Substitute these values in the result of Art. 162, and we obtain,

after reduction, with the aid of Art. 161,

4x144 FV =

2a*b*a'*b'* + 26WV2
-r 2cWV - a*a'

4 - b*b'* - cY4

.

The right-hand member may also be put into factors, as we see

by recollecting the mode in which the expression for the area of

a triangle is put into factors. Let oaf +W + cc' = 2<r
;
then

36 FV = cr (cr
- aa

f

) (<r
- bb

f

) (<r
-

cc').
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EXAMPLES.

1. If / denote the inclination of two adjacent faces of a

regular polyhedron, shew that cos /=^ in the tetrahedron, =0
in the cube, = ^ in the octahedron, = ^ ^/5 in the dodecahe-

dron, and =
-| ^5 in the icosahedron.

2. "With the notation of Art. 153, shew that the radius of

the sphere which touches one face of a regular polyhedron and all

the adjacent faces produced is J a cot cot J /.

3. A sphere touches one face of a regular tetrahedron and

the other three faces produced : find its radius.

4. If a and b are the radii of the spheres inscribed in and

described about a regular tetrahedron, shew that b = 3a.

5. If a is the radius of a sphere inscribed in a regular tetra-

hedron, and R the radius of the sphere which touches the edges,

shew that R2 = 3a2
.

6. If a is the radius of a sphere inscribed in a regular tetra-

hedron, and R f

the radius of the sphere which touches one face and

the others produced, shew that R' = 2a.

7. If a cube and an octahedron be described about a given

sphere, the sphere described about these polyhedrons will be the

same ; and conversely.

8. If a dodecahedron and an icosahedron be described about

a given sphere, the sphere described about these polyhedrons will

be the same ; and conversely.

9. A regular tetrahedron and a regular octahedron are in-

scribed in the same sphere : compare the radii of the spheres
which can be inscribed in the two solids.

10. The sum of the squares of the four diagonals of a paral-

lelepiped is equal to four times the sum of the squares of the

edges.



124? EXAMPLES.

11. If with all the angular points of any parallelepiped as

centres equal spheres be described, the sum of the intercepted

portions of the parallelepiped will be equal in volume to one of

the spheres.

12. A regular octahedron is inscribed in a cube so that the

corners of the octahedron are at the centres of the faces of the

cube : shew that the volume of the cube is six times that of the

octahedron.

13. It is not possible to fill any given space with a number
of regular polyhedrons of the same kind, except cubes; but this

may be done by means of tetrahedrons and octahedrons which

have equal faces, by using twice as many of the former as of

the latter.

14. A spherical triangle is formed on the surface of a sphere
of radius p its angular points are joined, forming thus a pyramid
with the straight lines joining them with the centre : shew that

the volume of the pyramid is

where r, r
} ,

r
a ,
r
a
are the radii of the inscribed and escribed cir-

cles of the triangle.

15. The angular points of a regular tetrahedron inscribed

in a sphere of radius r being taken as poles, four equal small

circles of the sphere are described, so that each circle touches

the other three. Shew that the area of the surface bounded by

each circle is 2irr* (l ^ j
.

16. If be any point within a spherical triangle ABC, the

product of the sines of any two sides and the sine of the in-

cluded angle

- sinAO sin BO sin CO
(cot

AO sinBOC

+ cot BO sin COA + cot CO sinAOB\ .
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XIV. ARCS DRAWN TO FIXED POINTS ON THE
SURFACE OF A SPHERE.

164. IN the present Chapter we shall demonstrate various

propositions relating to the arcs drawn from any point on the

surface of a sphere to certain fixed points on the surface.

165. ABC is a spherical triangle having all its sides quad-

rants, and therefore all its angles right angles; T is any point

on the surface of the sphere : to shew that

cos
2 TA + cos

2TE + cos*TO = 1 .

By Art. 37 we have

cos TA = cos AB cos TB + sin AB sin TB cos TBA

Similarly cos TG= sin TB cos TBC = sin TB sin TBA,

Square and add
;
thus

cos
2TA + cos

8TG = sin
2TB = l- cos

2TB
;

therefore cos*TA + cos
3TB + cos

2TG = 1 .
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166. ABC is a spherical triangle having all its sides quad-

rants, and therefore all its angles right angles; I7and 7 are any
points on the surface of the sphere : to shew that

cos TU= cos TA cos UA + cos TB cos UB + cos TG cos UC.

By Art. 37 we have

cos TU= cos TA cos UA + sin TA sin UA cos TA U,

and cos TA U= cos (#4U- BAT)
= cos .SJ. 7" cos .&12rT+ sin .SJ. ^7 sinBAT
= cos .&4 tf cos BAT+ cos (74 7cos CAT;

therefore cos TU = cos TA cos 74

+ sin TA sin 74 (cos BA 7cosBAT+ cos CA 7cos CAT) ;

and cos 2^ = sin TA cos JL4 T,

cos Z7Z? = sin UA cos .ZL4 ?7,

cos TO = sin^ cos CAT,

cos 7(7= sin 7.4 cos CA 7;

therefore

cos jP7= cos TA cos 74 + cos TB cos 75 + cos TG cos 7(7.

167. We leave to the student the exercise of shewing that

the formulae of the two preceding Articles are perfectly general for

all positions of T and 7, outside or inside the triangle ABC : the
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demonstrations will remain essentially the same for all modifica-

tions of the diagrams. The formula are of constant application

in Analytical Geometry of three dimensions, and are demonstrated

in works on that subject ;
we have given them here as they may

be of service in Spherical Trigonometry, and will in fact now be

used in obtaining some important results.

168. Let there be any number of fixed points on the surface

of a sphere ; denote them by H^ H2 ,
H

z ,
. . . Let T be any point

on the surface of the sphere. We shall now investigate an ex-

pression for the sum of the cosines of the arcs which join T with

the fixed points.

Denote the sum by 2 ;
so that

2 = cos TH
l
+ cos TH

2
+ cos TR

3
+ ...

Take on the surface of the sphere a fixed spherical triangle

ABC, having all its sides quadrants, and therefore all its angles

right angles.

Let A, p,9
v be the cosines of the arcs which join T with

A
9 B, C respectively; let I

l9
m

l9 n^ be the cosines of the arcs which

join Hl
with A, B, C respectively; and let a similar notation be

used with respect to H^ H^...

Then, by Art. 166,

2 = ^X +m^ + ny + 1
2
\ + mjL + na

v -f . . .

where P stands for ^ + ^ + ^
3 + ..., with corresponding meanings

for Q and R.

169. It will be seen that P is the value which 2 takes when
T coincides with A, that Q is the value which 2 takes when T
coincides with B, and that E is the value which 2 takes when T
coincides with C. Hence the result expresses the general value

of 2 in terms of the cosines of the arcs which join T to the fixed

points A, B, C, and the particular values of 2 which correspond
to these three points.



128 AECS DRAWN TO FIXED POINTS

170. "We shall now transform the result of Art. 168.

Let G=J(P
2
+Q* + 2

)',

and let a, /?, y be three arcs determined by the equations

P p Q

then 2 = # (A cos a -f //.cos /3 + vcosy).

Since cos
2a + cos

2

/3-f cos
2

y = 1, it is obvious that there will be

some point on the surface of the sphere, such that a, /:?, y are the

arcs which join it to A, H, C respectively; denote this point by

U: then, by Art. 166,

cos TU = X cos a 4- p.
cos /? + v cos y ;

and finally

Thus, whatever may be the position of T, the sum of the cosines

of the arcs which join T to the fixed points varies as the cosine

of the single arc which joins T to a certain fixed point U.

"We might take G either positive or negative; it will be

convenient to suppose it positive.

171. A sphere is described about a regular polyhedron;

from any point on the surface of the sphere arcs are drawn to the

solid angles of the polyhedron : to shew that the sum of the cosines

of these arcs is zero.

From the preceding Article we see that if G is not zero

there is one position of T which gives to S its greatest positive

value, namely, when T coincides with U. But by the symmetry

of a regular polyhedron there must always be more tlian one posi-

tion of T which gives the same value to 2. For instance, if we

take a regular tetrahedron, as there are four faces there will at

least be three other positions of T symmetrical with any assigned

position.

Hence G must be zero
;
and thus the sum of the cosines of the

arcs wliich join T to the solid angles oj the regular polyhedron is

zerofor all positions ofT.
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172. Since 6r = 0, it follows that P, Q, R must each be zero ;

these indeed are particular cases of the general result of Art. 171.

See Art. 169.

173. The result obtained in Art. 171 may be shewn to hold

also in some other cases. Suppose, for instance, that a rectangu-
lar parallelepiped is inscribed in a sphere; then the sum of the

cosines of the arcs drawn from any point on the surface of the

sphere to the solid angles of the parallelepiped is zero. For here

it is obvious that there must always be at least one other position

of T symmetrical with any assigned position. Hence by the

argument of Art. 171 we must have (7 = 0.

174. Let there be any number of fixed points on the surface

of a sphere ;
denote them by H^ H2,

H
3,

... Let T be any point on

the surface of the sphere. We shall now investigate a remarkable

expression for the sum of the squares of the cosines of the arcs

which join T with the fixed points.

Denote the sum by 2 ;
so that

2 = cos
2 TH

l
+ cos

2 TII
2
+ cos

2 TH
Z
+ ... .

Take on the surface of the sphere a fixed spherical triangle

ABC, having all its sides quadrants, and therefore all its angles

right angles.

Let X, p., v be the cosines of the arcs which join T with A, B,

respectively; let I
l9
m

l9 n^ be the cosines of the angles which join
H

l
with A, B, respectively ;

and let a similar notation be used

with respect to R
2 , H^ . . .

Then, by Art. 166,

Expand each square, and rearrange the terms
; thus

where P stands for I
2 + 1

2 + I* 4- . .. ,

and p stands for m
l
n

l
+ m

2
n

2
+ m

3
n

z -<-...,

with corresponding meanings for Q and q, and for R and r.

T. S. T.
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We shall now shew that there is some position of the triangle

ABC for which py q, and r will vanish; so that we shall then

have

Since 2 is always a finite positive quantity there must be some

position, or some positions, of T for which 5 has the largest value

which it can receive. Suppose that A has this position, or one

of these positions if there are more than one. When T is at A
we have p and v each zero, and X equal to unity, so that 2 is then

equal to P.

Hence, whatever be the position of T,

P is never less than P\2 + Qp
2 + Jtv* -f- 2ppv + 2qv\ + 2r\p,

that is, by Art. 165,

P (X
2 + /A

2
-f- v

2

)
is never less than

P\2 + Qp
2 + Rv* + 2pfjiV + 2q

therefore

(p
-
Q} p* + (P _ #) v

2
is never less than 2pp,v + 2qv\ + 2r

Now suppose v = ;
then T is situated on the great circle of

which AB is a quadrant, and whatever be the position of T we

have

(P _ Q) p* not less than 2rA/x,

and therefore P - Q not less than- .

/*

X . cos TA ... . . ..

But now - is equal to- ^ j
this is numerically equal to

yu
cos JL .ft

tan T, and so may be made numerically as great as we please,

positive or negative, by giving a suitable position to T. Thus

2r\P- must in some cases be less than if r have any value dif-

/*

ferent from zero.

Therefore r must = 0.

In like manner we can shew that q must = 0.
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Hence with the specified position for A we arrive at the result

that whatever may be the position of T

2 = PA2 + Qp* + Rv* + 2pnv.

Let us now suppose that the position of B is so taken that

when T coincides with E the value of 2 is as large as it can be

for any point in the great circle of which A is the pole. When T
is at B we have X and v each zero, and

p. equal to unity, so that

2 is then equal to Q. For any point in the great circle of which

A is the pole A is zero j
and therefore for any such point

Q is not less than Qp
2

-f Rv2 + 2pp<v,

that is, by Art. 165,

Q (p
2 + v

3

}
is not less than Qp

2 + Rv2 + 2ppv ;

therefore Q -R is not less than-^ 9

v

Hence by the same reasoning as before we must have p - 0.

Therefore we see that there must be some position of the

triangle ABC, such that for every position of T

175. The remarks of Art. 169 are applicable to the result

just obtained.

176. In the final result of Art. 174 we may shew that R is

the least value which 2 can receive. For, by Art. 165,

and by supposition neither P R nor Q R is negative, so that

2 cannot be less than R.

177. A sphere is described about a regular polyhedron : from

any point on the surface of the sphere arcs are drawn to the

solid angles of the polyhedron : it is required to find the sum of

the squares of the cosines of these arcs.

K2
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With the notation of Art. 174 we have

We shall shew that in the present case P, Q, and R must all

be equal. For if they are not, one of them must be greater than

each of the others, or one of them must be less than each of the

others.

If possible let the former be the case; suppose that P is

greater than Q, and greater than R.

ISTow 2 = P (
1 - V?

- v
2

)
+ Qp

2 + Rv*

this shews that 2 is always less than P except when
//<
= and

v = : that is 2 is always less than P except when T is at J, or

at the point of the surface which is diametrically opposite to A.

But by the symmetry of a regular polyhedron there must always

be more than two positions of T which give the same value to 2.

For instance if we take a regular tetrahedron, as there are four

faces there will be at least three other positions of T symmetrical

with any assigned position. Hence P cannot be greater than Q
and greater than R.

In the same way we can shew that one of the three P, Q,

and R, cannot be less than each of the others.

Therefore P=Q=R- and therefore by Art. 165 for every

position of T we have 2 = P.

Since P=Q = R each of them = - (P + Q + R)o

=
o {^

2 + >? + n* + 1? + m? + n.* + . . .
}

=
f, by Art. 165,
o

where S is the number of the solid angles of the regular poly-

hedron.
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Thus the sum of the squares of the cosines of tJie arcs which

join any point on the surface of the sphere to the solid angles of

the regular polyhedron is one third of the number of the solid

angles.

178. Since P=Q = R in the preceding Article, it will follow

that when the fixed points of Art. 174 are the solid angles of

a regular polyhedron, then for any position of the spherical tri-

angle ABC we shall have p = 0, q 0, and r = 0.

For taking any position for the spherical triangle ABC we

have

2 = PX2 + QJJ? + Rv* + 2

then at A we have
//,
= and v = 0, so that P is then the value

of 2 ; similarly Q and R are the values of 2 at B and C respec-

tively. But by Art. 177 we have the same'value for 2 whatever

be the position of T
',
thus

P =

therefore =
2pp.v + 2qvX + 2rX/z.

This holds then for every position of T. Suppose T is at any

point of the great circle of which A is the pole ;
then X = : thus

we get ppv = ;
and therefore p = 0. Similarly q = 0, and r = 0.

179. Let there be any number of fixed points on the surface

of a sphere ;
denote them by Hl9 H^ ZT

3 ,
. . .

;
from any two points

T and U on the surface of the sphere arcs are drawn to the fixed

points : it is required to find the sum of the products of the cor-

responding cosines, that is

cos TH
l
cos UH

l
+ cos TH

2
cos UH

2
+ cos TII

3
cos Vff

B
+ ...

Let the notation be the same as in Art. 174 ;
and let X', /*',

v

be the cosines of the arcs which join U with A, B, C respectively.

Then by Art. 166,

cos TH
l
cos UH

l

=
(
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Similar results hold for cos TH
Z
cos UH

2 ,
cos ?W

a
cos Uff

a ,
. . .

Hence, with the notation of Art. 174, the required sum is

XX'P + w'Q 4- w'R +
(fJiv

+ VIL)P + (v\' + \v) q + (\p! + /A') r.

Now by properly choosing the position of the triangle ABC
we have p, q, and r each zero as in Art. 174; and thus the

required sum becomes

XX'P + p.pfQ + w'R.

180. The result obtained in Art. 174 may be considered

as a particular case of that just given; namely the case in which

the points T and U coincide.

181. A sphere is described about a regular polyhedron ;
from

any two points on the surface of the sphere arcs are drawn to

the solid angles of the polyhedron : it is required to find the sum

of the products of the corresponding cosines.

With the notation of Art. 179 we see that the sum is

And here P =Q = R = -^, by Art. 177.

Thus the sum = f (XX' + //// + w
r

)
=^ cos TU.

O i)

Thus the sum of the products of the cosines is equal to the

product of the cosine of TU into a third of the number of the solid

angles of the regular polyhedron.

182. The result obtained in Art. 177 may be considered as

a particular case of that just given; namely, the case in which

the points T and U coincide.

183. If TU is a quadrant then cos TU is zero, and the

sum of the products of the cosines in Art. 181 is zero. The

results p -
0, q = 0, r = 0, are easily seen to be all special ex-

amples of this particular case.
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XV. MISCELLANEOUS PEOPOSITIONS.

184. To find the locus of the vertex of a spherical triangle of

given base and area.

Let AB be the given base, -c suppose, AC =
Q,

Since the area is given the spherical excess is known; denote

it by E'} then by Art. 103,

cot JE- cot \ cot \ c cosec
<j>

4- cot
<f> ;

therefore sin
(<j>
-
J E) = cot \ cot J c sin

|-
E

;

therefore 2 cot J c sin JE cos
2 - = sin sin

(<
-
1 E) ;

therefore

cos ^ cot J c sin ^ E + sin cos (
<f>

-
J j^ + ^ j

= cot
-|

c sin ^ jE'.

Comparing this with equation (1) of Art. 133, we see that the

required locus is a circle. If we call a, ft the angular co-ordinates

of its pole, we have

_
cot Jcsi

It may be presumed from symmetry that the pole of this

circle is in the great circle which bisects AJ3 at right angles ;

and this presumption is easily verified. For the equation to

that great circle is

cos < - T= cos cos (- -
j
+ sin sin (^

- -
J

and the values a, < =
ft satisfy this equation.
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185. To find the angular distance between the poles of the

inscribed and circumscribed circles of a triangle.

Let P denote the pole of the inscribed circle, and Q the pole

of the circumscribed circle of a triangle ABC ;
then

by Art, 89, and QAB = S-C, by Art. 92; hence

and cos PQ - cos PA cos QA + sin PA sin QA cos | (B C).

Now, by Art. 62 (see the figure of Art. 89),

cos PA = cos PE cosAE = cos r cos
(s
-

a),

sin PE sin r

sin PAE sin \A
'

thus

cos PQ = cos R cos r cos (s a) + sin 72 sin r cos J (7? 0) cosec J -4.

Therefore, by Art. 54

cos PQ = cos 72 cos r cos (s
-
a) + sin 72 sin r sin J (6 + c) cosec J a,

therefore ;
= cot r cos (s - a) + tan R sin A (b + c) cosec i a.

cos72smr v y 2V /

,T sin * _ 2siniasin A b sinicNow cotr= , tan/t= ,n n

therefore n .
= -! sin s cos (s-a) + 2 sin i (6+c) sin i& sin ic i

cos ^ sin r w t
*

J

=
^ (sin a -f sin 5 + sin c).

/ cosPQ \
2

1
Hence

( ^ . I 1 = -75- (sin a + sin o + sin c)
- 1

\cos Jt sin r/ 47i
z x

=
(cot r + tan R)* (

b7 Al'
t- 94

) ;

therefore cos
2 PQ = cos

2 R sin
2
r + cos

2

(R - r),

and sin
2 PQ = sin

2

(R-r)- cos
2
72 sin

2
r.
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186. To find the angular distance between tlie pole of the

circumscribed circle and the pole of one of the escribed circles of

a triangle.

Let Q denote the pole of the circumscribed circle, and Q l
the

pole of the escribed circle opposite to the angle A. Then it may
be shewn that QQ 1

= | TT + \ (C
-
A), and

cos QQ1
= cos E cos r

l
cos (s c) sin R sin r

l
sin J (C A) sec | B

= cosR cos r
1
cos

(s c)
sin R sin r

l
sin J (c a) cosec J b.

Therefore-^= cot r. cos (s c) tan R sin A (c
-

a) cosec A 6 :

by reducing as in the preceding Article, the right-hand member of

the last equation becomes

1
,

.

(sin b + sin c sin a) ;

hence

therefore cos
2

$(?!
= cos

2 R sin
2

r,
+ cos

2

(R + rj,

and sin
2 QQ l

= sin
2

(^ + rj
- cos

2
J? sin

2
rr

187. ^TAe arc which passes through the middle points of the

sides of any triangle upon a given base will meet the base produced
at a fixed point, the distance of whichfrom the middle point of tlie

base is a quadrant.

Let ABC be" any triangle, E the middle point of AC, and F
the middle point of AB

; let the arc which joins E and F when

produced meet BC produced at Q. Then

sin BQ _ sin BFQ smAQ _$mAFQ

., ,therefore



138 MISCELLANEOUS PROPOSITIONS.

sin CQ sinAQF
similarly -, T= -. ^ ;

sin ^40 smCQF*
therefore sin BQ = sin CQ ; therefore BQ -f CQ = IT.

Hence if D be the middle point of BG

188. If three arcs le drawn from the angles of a spherical

triangle through any point to meet the opposite sides, the products

of the sines of the alternate segments of the sides are equal.

Let P be any point, and let arcs be drawn from the angles

A, B, C passing through P and meeting the opposite sides at

D, E, F. Then

smBD smBPD sinCT) sinCTD
~sin.DP 9

sin(7P

csi-

therefore

. ., . sin (7^ ,

Similar expressions may be found for -r-^ andsmAE
and hence it follows obviously that

sinBD sin CE sinAF
__

sin CD smAE sin BF~ '

therefore sin BD sin CE sinAF = smCD sinAE sin BF.
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189. Conversely, when the points D, E, F in the sides of a

spherical triangle are such that the relation given in the preceding

Article holds, the arcs which join these points with the opposite

angles respectively pass through a common point. Hence the

following propositions may be established : the perpendiculars

from the angles of a spherical triangle on the opposite sides

meet at a point ;
the arcs which bisect the angles of a spherical

triangle meet at a point ;
the arcs which join the angles of a

spherical triangle with the middle points of the opposite sides

meet at a point ;
the arcs which join the angles of a spherical

triangle with the points where the inscribed circle touches the

opposite sides respectively meet at a point.

Another mode of establishing such propositions has been

exemplified in A_rts. 139 and 140.

190. If AB and A'B' be any two equal arcs, and the arcs

AA' and BB' be bisected at right angles by arcs meeting at P,

then AB and A'B' subtend equal angles at P.

For PA = PA' and PB = PB'
;
hence the sides of the triangle

PAB are respectively equal to those of PA'B'
;
therefore the angle

APB = the angle A'PB'.

This simple proposition has an important application to the

motion of a rigid body of which one point is fixed. For conceive

a sphere capable of motion round its centre which is fixed
; then it

appears from this proposition that any two fixed points on the
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sphere, as A and B, can be brought into any other positions, as

A' and B', by rotation round an axis passing through the centre of

the sphere and a certain point P. Hence it may be inferred that

any change of position in a rigid body, of which one point is fixed,

may be effected by rotation round some axis through the fixed

point.

(De Morgan's Differential and Integral Calculus, page 489.)

191. Let P denote any point within any plane angle AOB,
and from P draw perpendiculars on the straight lines OA and

OB ;
then it is evident that these perpendiculars include an angle

which is the supplement of the angle AOB. The corresponding
fact with respect to a solid angle is worthy of notice. Let there

be a solid angle formed by three plane angles, meeting at a point
0. From any point P within the solid angle, draw perpendicu-
lars PL, PM, PN on the three planes which form the solid angle ;

then the spherical triangle which corresponds to the three planes

LPMj MPN, NPL is the polar triangle of the spherical triangle

which corresponds to the solid angle at 0, This remark is due

to Professor De Morgan.

192. Suppose three straight lines to meet at a point and form

a solid angle ;
let a, /?, and y denote the angles contained by these

three straight lines taken in pairs : then it has been proposed to

call the expression ^/(l cos
2
a - cos*ft cos

2

y + 2 cos a cos fi cos y),

the sine of the solid angle. See Baltzer's Theorie...der Determi-

nanten, 2nd edition, page 177. Adopting this definition it is easy

to shew that the sine of a solid angle lies between zero and unity.

We know that the area of a plane triangle is half the product
of two sides into the sine of the included angle : by Art. 156 we
have the following analogous proposition ;

the volume of a tetra-

hedron is one sixth of the product of three edges into the sine of

the solid angle which they form.

Again, we know in mechanics that if three forces acting at a

point are in equilibrium, each force is as the sine of the angle

between the directions of the other two : the following proposition

is analogous ;
if four forces acting at a point are in equilibrium
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each force is as the sine of the solid angle formed by the directions

of the other three. See Statics, Chapter II.

193. Let a sphere be described about a regular polyhedron ;

let perpendiculars be drawn from the centre of the sphere on the

faces of the polyhedron, and produced to meet the surface of

the sphere : then it is obvious from symmetry that the points of

intersection must be the angular points of another regular poly-

hedron.

This may be verified. It will be found on examination that if

S be the number of solid angles, and F the number of faces of one

regular polyhedron, then another regular polyhedron exists which

has S faces and F solid angles. See Art. 151.

194. Polyhedrons. The result in Art. 150 was first obtained

by Euler; the demonstration which is there given is due to

Legendre. The demonstration shews that the result is true in

many cases in which the polyhedron has re-entrant solid angles ;

for all that is necessary for the demonstration is, that it shall be

possible to take a point within the polyhedron as the centre of a

sphere, so that the polygons, formed as in Art. 150, shall not have

any coincident portions. The result, however, is generally true,

even in cases in which the condition required by the demonstra-

tion of Art. 150 is not satisfied. We shall accordingly give

another demonstration, and shall then deduce some important

consequences from the result. We begin with a theorem which

is due to Cauchy.

195. Lei there "be any network of rectilinealfigures, not neces-

sarily in one plane, but not forming a closed surface ; let E be the

number of edges, F the number of figures, and S the number of
corner points : then F + S = E + 1.

This theorem is obviously true in the case of a single plane

figure; for then F=\, and S=E. It can be shewn to be gene-

rally true by induction. For assume the theorem to be true for

a network of F figures ;
and suppose that a rectilineal figure of

n sides is added to this network, so that the network and the

additional figure have m sides coincident, and therefore m + 1
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corner points coincident. And with respect to the new network

which is thus formed, let E r

, F', S' denote the same things as

E, F, S with respect to the old network. Then

E' = E + n-m, F' = F+l, S' = 8 + n-(m + 1);

therefore F' + S' - E' = F + S - E.

But F+ S=E + 1, by hypothesis ;
therefore I" + S f = E' + 1.

196. To demonstrate Euler's theorem we suppose one face of

a polyhedron removed, and we thus obtain a network of recti-

lineal figures to which Cauchy's theorem is applicable. Thus

therefore

197. In any polyhedron the number of faces with an odd

number of sides is even, and the number of solid angles formed
with an odd number ofplane angles is even.

Let a, by c, d, ...... denote respectively the numbers of faces

which are triangles, quadrilaterals, pentagons, hexagons, ......

Let a, (3, y, 8, ...... denote respectively the numbers of the solid

angles which are formed with three, four, five, six, ...... plane

angles.

Then, each edge belongs to two faces, and terminates at two

solid angles ;
therefore

From these relations it follows that a + c + e + ......
,
and

a + y + c + ...... are even numbers.

198. "With the notation of the preceding Article we have

From these combined with the former relations we obtain

2^-3^=6+ 2c+

Thus 2E cannot be less than 3F
}
or less than 3.
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199. From the expressions for E, F, and 8, given in the

two preceding Articles, combined with the result 2F + 2S = 4 -t- 212,

we obtain

2(a + b + c + d+ ...) + 2(a + j8

2(a + b + c + d+...) + 2(a + p

therefore 2(a + +y + S + ...)-( + 26 + 3c + 4d+ ...)
= 4 ... (1),

2(a + 6 + c + d +

Therefore, by addition

...... = 8.

the number of triangular faces together with the number

of solid angles formed with three plane angles cannot be kss

than eight.

Again, from (1) and (2), by eliminating a, we obtain

3a + 2b + c-e-2f-~ -
2/5

-
4y

- ...... = 12,

so that 3a + 2b + c cannot be less than 12. From this result

various inferences can be drawn
; thus for example, a solid cannot

be formed which shall have no triangular, quadrilateral, or pen-

tagonal faces.

In like manner, we can shew that 3a + 2/3 + y cannot be less

than 12.

200. Poinsot has shewn that in addition to the five well-

known regular polyhedrons, four other solids exist which are

perfectly symmetrical in shape, and which might therefore also be

called regular. We may give an idea of the nature of Poinsot's

results by referring to the case of a polygon. Suppose five points

A, B, C, D, E, placed in succession at equal distances round the

circumference of a circle. If we draw a straight line from each

point to the next point, we form an ordinary regular pentagon.

Suppose however we join the points by straight lines in the fol-

lowing order, A to C, C to E, E to B, B to D, D to A ; we thv.s

form a star-shaped symmetrical figure, which might be considered

a regular pentagon.
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It appears that, in a like manner, four, and only four, new

regular solids can be formed. To such solids, the faces of which

intersect and cross, Euler's theorem does not apply.

201. Let us return to Art. 195, and suppose e the number

of edges in the bounding contour, and e
f

the number of edges

within it
;
also suppose s the number of corners in the bounding

contour, and s the number within it. Then

E = e + e
r

; S = s + s'
;

therefore 1 + e + e = s + s' + F.

But e = s
;

therefore 1 -f e = s + F.

We can now demonstrate an extension of Euler's theorem,

which has been given by Cauchy.

202. Let a polyhedron be decomposed into any number of

polyhedrons at pleasure; let P be the number thus formed, S the

number of solid angles,
F the number offacesy

E the number of

edges: then S + F = E + P+1.

For suppose all the polyhedrons united, by starting with one

and adding one at a time. Let e,f, s be respectively the num-

bers of edges, faces, and solid angles in the first
;

let e', f', s' be

respectively the numbers of edges, faces, and solid angles in the

second which are not common to it and the first; let e",f", s"

be respectively the numbers of edges, faces, and solid angles in

the third which are not common to it and the first or second;

and so on. Then we have the following results, namely, the first

by Art. 196, and the others by Art. 201;

By addition, since s + s
r + s" 4- . . . = S, f+f +/' -f . . .

= F, and

e -f e' -f Q" + . .. = E, we obtain
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203. The following references will be useful to those who

study the theory of polyhedrons. Euler, Novi Commentarii

Academice....Petropolitance, Yol. iv. 1758; Legendre, Geometrie ;

Poinsot, Journal de VEcole Polytechnique, Cahier x
; Cauchy,

Journal de VEcole Polytechnique, Cahier xvi; Poinsot and Bertrand,

Comptes Rendus...de VAcademic des Sciences, Vol. XLVI
; Catalan,

Theoremes et Problemes de Geometrie Elementaire ; Kirkman, Phi-

losophical Transactions for 1856 and subsequent years; Listing,

Abhandlungen der Koniglichen Gesellschaft...zu Gottingen, Yol. x.

MISCELLANEOUS EXAMPLES.

1. Find the locus of the vertices of all right-angled spherical

triangles having the same hypotenuse; and from the equation

obtained, prove that the locus is a circle when the radius of the

sphere is infinite.

2. AB is an arc of a great circle on the surface of a sphere,

its middle point : shew that the locus of the point P, such that

the angle APG = the angle BPG, consists of two great circles at

right angles to one another. Explain this when the triangle

becomes plane.

3. On a given arc of a sphere, spherical triangles of equal
area are described : shew that the locus of the angular point

opposite to the given arc is defined by the equation
*

tan-
1 /*"*(* +

*)} + tan- f
( sintf J I sisine/

_, tan
+ tan

*

{ -.-,
\ ,( tan<9 }

yv }
+ tan *

{ -r.-TT > --=
/?,+ <) J (sin (a

-
<p) )

,
--
(a + <

where 2a is the length of the given arc, 6 the arc of the great

circle drawn from any point P in the locus perpendicular to the

given arc, < the inclination of the great circle on which is

T. S. T. L
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measured to the great circle bisecting the given arc at right

angles, and /3 a constant.

4. In any spherical triangle

cot A cot a + cotB cot b
tanc =

cot a cot b cos A cos B '

5. If 0, <, if/
denote the distances from the angles A, B, C

respectively of the point of intersection of arcs bisecting the

angles of the spherical triangle ABC, shew that

cos sin (b
-

c) + cos < sin (c
-

a) + cos
if/
sin (a

-
5)
= 0.

6. If A', B', C' be the poles of the sides BC, CA, AB of a

spherical triangle ABC, shew that the great circles AA ',
BBf

,
CC'

meet at a point P, such that

cos PA cos BC = cos PB cos CA = cos PC cos AB.

7. If be the point of intersection of arcs AD, BE, CF
drawn from the angles of a triangle perpendicular to the opposite

sides and meeting them at D, E, F respectively, shew that

tanAD tan BE tsmCF
tan OD '

tajiOJE' ism OF

are respectively equal to

cos A - cos B - cos C
cos B cos C' cos A cos C" cos J. cos B'

8. If
JP, q, r be the arcs of great circles drawn from the

angles of a triangle perpendicular to the opposite sides, (a, a'),

(/?, /?'), (y, y') the segments into which these arcs are divided,

shew that

and

tan a tan a = tan /3 tan /3'
= tan y tan y' ;

cos jo cos g cos r

cos a cos a cos # cos
/3' cosy cos y'
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9. In a spherical triangle if arcs be drawn from the angles to

the middle points of the opposite sides, and if a, a be the two

parts of the one which bisects the side a, shew that

= 25 COS

10. The arc of a great circle bisecting the sides AB, AC of a

spherical triangle cuts EG produced at Q : shew that

, . a . c-b . c + b
cos A (J sin = sin sin .

J _: J

11. If ABCD be a spherical quadrilateral, and the opposite

sides AB, CD when produced meet at E, and AD, BG meet at F
9

the ratio of the sines of the arcs drawn from E at right angles to

the diagonals of the quadrilateral is the same as the ratio of those

from F.

12. If ABGD be a spherical quadrilateral whose sides AB,
DC are produced to meet at P, and AD, BG at Q, and whose

diagonals AC, BD intersect at R, then

sin AB sin CD cosP ~ sin AD sin BG cos Q = sin AC sinBD cos R.

13. If A be the angle of the chordal triangle which corre-

sponds to the angle A of a spherical triangle, shew that

cosA= sin(S-A)cos- .

J

14. If the tangent of the radius of the circle described about a

spherical triangle is equal to twice the tangent of the radius of the

circle inscribed in the triangle, the triangle is equilateral.

15. The arc AP of a circle of the same radius as the sphere

is equal to the greater of two sides of a spherical triangle, and

the arc AQ taken in the same direction is equal to the less ; the
TTT

-j\r

sine PM of AP is divided at E, so that
-^-r^=the

natural cosine

L2
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of the angle included by the two sides, and EZ is drawn parallel

to the tangent to the circle at Q. Shew that the remaining side

of the spherical triangle is equal to the arc QPZ.

16. If through any point P within a spherical triangle ABC
great circles be drawn from the angular points A } B, C to meet

the opposite sides at a, b, c respectively, prove that

sin Pa cos PA sin Pb cos PB sin PC cos PC _
sin Bb sin(7c

17. A and B are two places on the Earth's surface on the

same side of the equator, A being further from the equator

than B. If the bearing of A from B be more nearly due East

than it is from any other place in the same latitude as B, find

the bearing of B from A.

18. From the result given in example 18 of Chapter v. infer

the possibility of a regular dodecahedron.

19. A and B are fixed points on the surface of a sphere, and

P is any point on the surface. If a and b are given constants,

shew that a fixed point 8 can always be found, in AB or AB pro-

duced, such that

a cos AP -f b cos BP = 8 cos SP,

where s is a constant.

20. A
9 B, (7,... are fixed points on the surface of a sphere;

,
b

y c,... are given constants. If P be a point on the surface of

the sphere, such that

a cosAP + b cosBP + c cos CP + . . .
- constant,

shew that the locus of P is a circle.



TJlflTBBSITT

XYI. NUMERICAL SOLUTIOlSr OF SPHERICAL
TRIANGLES.

204. We shall give in this Chapter examples of the nume-

rical solution of Spherical Triangles.

"We shall first take right-angled triangles, and then oblique-

angled triangles.

Right-Angled Triangles.

205. Given a = 37 48' 12", b = 59 44' 16", = 90.

To find c we have

cos c = cos a cos b,

L cos 37 48' 12" - 9-8976927

L cos 59 44' 16"= 9-7023945

L cos c + 10 = 19'6000872

c = 6632 /

6".

To find A we have

cot A = cot a sin 5,

Z cot 37 48' 12" =10-1102655

L sin 59 44' 16"= 9*9363770

L cot A + IQ = 20-0466425

JU 41 55' 45".
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To find B we have

cot B = cot 6 sin a,

Z cot 59 44' 16"= 9-7660175

Z sin 37 48' 12" = 97874272

L cot +10 = 19-5534447

Z = 7019'15".

206. Given A = 55 32' 45", C = 90, c = 98 14' 24".

To find a we have

sin a = sine sin A,

Z sin 98 14' 24" = 9*9954932

L sin 55 32' 45"= 9-9162323

Zsina-f 10 = 19-9117255

a = 54 41' 35".

To find B we have

cotB = cose tan A.

Here cose is negative; and therefore cot B will be negative,

and B greater than a right angle. The numerical value of cos c

is the same as that of cos 81 45' 36".

Z cos 81 45' 36" = 9-1563065

Z tan 55 32' 45"= 10-1636102

Zcot(180-Z) + 10 = 19-3199167

180-B= 78 12' 4"

B =101 47' 56".
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To find b we have

tan b = tan c cos A.

Here tanc is negative; and therefore tan b will be negative

and b greater than a quadrant.

L tan 81 45' 36" = 10-8391867

L cos 55 32' 45"= 9*7526221

L tan (180
-

b) + 10 = 20-5918088

180 -b= 75 38' 32"

6 = 104 21' 28".

207. Given ^4 = 46 15' 25", (7 = 90, a =42 18' 45".

To find c we have

sin a
sin c = - -

,
sin J.

L sin c = 10 + L sin a Z sin -4,

10 + L sin 42 18' 45" =19-8281272

Z sin 46 15' 25"= 9-8588065

Zsinc= 9-9693207

c=6842'59 /

'or 111 17' 1".

To find b we have

sin b = tan a cot -4,

Ztan4218/ 45"= 9-9591983

L cot 46 15' 25"= 9-9809389

= 19-9401372

b = 60 36' 10" or 11 9 23' 50".
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To find E we have

. n cos A
sin B~ ,

cos a,

L sin B = 1 + L cosAL cos a,

10 + L cos 46 15' 25" = 19-8397454

Z cos 42 18' 45" = 9-8689289

? = 9-9708165

^ = 69 13' 47" or 110 46' 13".

Oblique-Angled Triangles.

208. Given a= 70 14' 20", 5 = 49 24' 10", c - 38 46' 10"

We shall use the formula given in Art. 45,

tani^ = ,,"-!(-<1 A _ / f
s^n

(s

\/ \ sisin s sin
(s a)

Here 5 = 79 12' 20",

8-a= 8 58',

s-6= 29 48' 10",

s-c = 4026'10".

Zsin2948 / 10"= 9-6963704

Z sin 40 26' 10"= 9-8119768

19-5083472

L sin 79 12' 20"= 9-9922465

L sin 8 58'= 9-1927342

19-1849807

19-5083472

19-1849807

2J -3233665

ZtanJ^t-10= -1616832

A= 55 25' 38"
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Similarly to find J?,

L sin 8 58'- 9-1927342

Zsin40 26' 10"= 9-8119768

19-0047110

L sin 79 12' 20"= 9-9922465

sin 29 48' 10" = 9*6963704

19-6886169

19-0047110

19-6886169

2; 1-3160941

= 1-6580470

= 9-6580470

i. = 24 28'2"

.5 = 48 56' 4".

Similarly to find (7,

L sin 8 58'= 9-1927342

L sin 29 48' 10"= 9-6963704

18-8891046

L sin 79 12' 20"= 9-9922465

L sin 40 26' 10"= 9-8119768

19-8042233

18-8891046

19-8042233

2J 1-0848813

L tan 1(7 -10= 1-5424406

L tan 1(7 = 9-5424406

1(7=19 13' 24"

(7 = 38 26' 48".
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209. Given a = 68 20' 25", 6 = 52 18' 15", (7=117 12' 20".

By Art. 82,

' sin i (a + 6)

l'5", I (a + 5)
= 60 19' 20", J (7 = 58 36' 10".

Zcos8 1'5"= 9-9957335

Z cot 58 36' 10"= 9-7855690

19-7813025

Z cos 60 19' 20"= 9-6947120

Z tan %(A + B) = 10-0865905

Zsin8 1' 5"= 9-1445280

L cot 58 36' 10"= 9-7855690

18-9300970

L sin 60 19' 20"= 9-9389316

-^= 8-9911654

Therefore A = 56 16' 15", B = 45 4' 41".

If we proceed to find c from the formula

sin a sin
smc= ; ,sm A

since sin C is greater than sin A we shall obtain two values for c

both greater than a, and we shall not know which is the value to

be taken.
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We shall therefore determine c from formula (1) of Art. 54,

which is free from ambiguity,

cos ^ (a + b) sin A
cos % c = -

, / f ,

cos 1 (.4 + J5)

Z cos 60 19' 20"= 9-6947120

Z sin 58 36' 10"= 9-9312422

19-6259542

Z cos 50 40' 28" = 9-8019015

Zcosjc- 9-8240527

-i-c-48 10' 22"

c = 9620' 44".

Or we may adopt the second method of Art. 82. First, we

determine from the formula tan = tan b cos C.

Here cos C is negative, and therefore tan will be negative,

and greater than a right angle. The numerical value of cos C is

the same as that of cos 62 47' 40".

L tan 52 18' 15" = 10-1119488

. cos 62 47' 40" = 9-6600912

L tan (180
-

0) + 10 = 19*7720400

180- = 30 36' 33",

therefore 0=149 23' 27".

Next, we determine c from the formula

cos b cos (a 0)
cos c = .

cos 6

Here cos is negative, and therefore cos c will be negative, and

c will be greater than a right angle. The numerical value of

cos 6 is the same as that of cos (180
-

0), that is, of cos 30 36' 33" ;

and the value of cos (a 0) is the same as that of cos (9 a), that

is, of cos 81 3' 2".



156 NUMERICAL SOLUTION OF SPHERICAL TRIANGLES.

L cos 52 18' 15"= 9-7863748

Z cos 81 3' '2"= 9-1919060

18-9782808

L cos 30 36' 33"= 9-9348319

Zcos(180-c) = 9-0434489

180- e = 83 39' 17"

c = 96 20' 43".

Thus by taking only the nearest number of seconds in the

tables the two methods give values of c which differ by 1"; if,

however, we estimate fractions of a second both methods will

agree in giving about 43J as the number of seconds.

210. Given a = 50 45' 20", b = 69 12' 40", A = 44 22' 10".

By Art. 84, sin B = - sin A
,sma

L sin 69 12' 40"- 9-9707626

L sin 44 22' 10"= 9-8446525

19-8154151

L sin 50 45' 20" = 9-8889956

LsmB= 9-9264195

B = 57 34' 51"-4, or 122 25' 8"-6.

In this case there will be two solutions; see Art. 86. We
will calculate C and c by Napier's analogies,

First take the smaller value of B ;
thus

A)= 50 58' 30" -7, \ (B
- A) = 6 36' 20"-7,
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X cos 9 13' 40"= 9.9943430

L cot 50 58' 30"-7 = 9 -9087536

= 19-9030966

Zcos5959' = 9-6991887

L tan \ C -10-2039079

i<7 = 57 58'55"-3

<7=11557'50"-6.

Zcos5058'30"-7 = 9-7991039

L tan 59 59' = 10-2382689

20-0373728

Zcos636'20"-7 = 9-9971072

L tan -|c
= 10-0402656

ic = 4739' 8'
x
-2

c-95 18' 16
/r

-4.

Next take the larger value of B thus

^) = 8323'39
/

'-3, i(J?-^) = 39 V 29
7/

-3.

Lcos 9 13' 40" = 9-9943430

Zcot8323 /

39
//-3- 9-0637297

19-0580727

Zcos5959'= 9-6991887

= 9-3588840

<7=25 44'3r-6.

Zcos8323 /

39
//
-3- 9-0608369

L tan 59 59' =10-2382689

19-2991058

L cos 39 V 29"-3 = 9-8903494

Ztan|c= 9-4087564

|-c
= 1422 /

32'
/

-6

c = 2845 /

5'
/
-2



158 EXAMPLES.

The student can obtain more examples, which can be easily

verified, from those here worked out, by interchanging the given
and required quantities, or by making use of the polar triangle.

EXAMPLES.

1. Given b = 137 3' 48", A = 147 2' 54", (7= 90.

Results, c = 47 57' 15", a= 156 10' 34", B = 113 28'.

2. Given c = 61 4' 56", a = 40n
31' 20", C= 90.

jfferaZfe. 5 = 50 30' 29", = 61 50' 28", ^ = 47 54' 21".

3. Given ^ = 36, = 60, (7=90.

Results, a = 20 54' 18"-5, b = 31 43' 3", c - 37 21' 38"-5.

4. Given a = 59 28' 27", A = 66 7' 20", C= 90.

ifeswfo. c - 70 23' 42", b = 48 39' 16", B = 52 50' 20",

or, c= 109 36' 18", 6-131 20' 44", =127 9' 40".

5. Given c - 90, a= 138 4', b = 109 41'.

Results. C= 113 28' 2", A = 142 11' 38", J5 = 120 15' 57".

6. Given c = 90, A = 131 30',
- 120 32'.

Results. C= 109 4(X 20", a= 127 17' 51", 6 = 113 49' 31".

7. Given a= 76 35' 36", b = 50 10' 30", c = 40 0' 10".

l&wttZte. A = 121 36' 20", .= 42 15' 13", C= 34 15' 3".

8. Given^= 129 5' 28", = 142 12' 42", (7= 105 8' 10".

Results, a = 135 49' 20", 6 = 144 37' 15", c = 60 4' 54".
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