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Foreword 

During the past 8 years of chairing the Rochester Forth Conference, I have 
had a chance to focus on a variety of computer applications and implemen¬ 
tations. Although the 1985 Conference covered Software Productivity, the 
greater interest was in real-time AI and the Novix Forth chip. The following 
conference was on Real Time Artificial Intelligence, which seemed to offer 
up almost intractable computing problems in everything from speech 
recognition to Strategic Defense. My invited speakers covered this ground 
well, though I noted again that an underlying theme of the Conference was 
Forth Machines. In particular, I listened to papers by Glen Haydon and Phil 
Koopman on their WISC CPU/16 (then called the MVP CPU/16 processor). 

These Forth Machines offered performance gains of an order of magni¬ 
tude or more over conventional computers, as well as important tradeoffs in 
reduced resource usage; resources including the commonly observed, but 
rarely conserved, transistor counts. But the CPU/16 processor also offered 
{another gain: an integrated learning environment from computer architec¬ 
ture through programming languages, and operating systems through real 
applications. In two or three semesters, a student could reasonably expect to 
build a computer, use microcode, develop a high level language, add an 
operating system, and do something with it. Immediately, I saw answer to 
the continuing fragmentation of computer science and electrical engineering 
curricula, and a practical way of rejoining hardware and software. 

The following year I asked Phil to be an invited speaker at my Confer¬ 
ence on Comparative Computer Architectures. By then his ideas on wri¬ 
table instruction set, stack computers were full-fledged, not just in theory, 
but in fact. During successive nights of the Conference, his 32-bit MSI-based 
processor amazed a growing group of followers as it cranked out fractal 
landscapes and performed Conway’s Game of Life via an expert system. 

After the Conference I knew Phil was beginning intensive studies at 
Carnegie Mellon University, and starting what would become this book. 
What I didn’t know was that he was also reducing his processor to a chip set. 
He began hinting at great things to come during the Spring of 1988, and he 
presented the operational Harris RTX 32P that June. The speed with which 
the WISC CPU/32 was reduced to the RTX 32P speaks well of Phil’s 
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capabilities, the soundness of his architecture, and the support Harris 
Semiconductor has put behind this technology. Now I can’t wait to hear in 
detail what he’s been hinting at doing with the processor, and getting my 

hands on one too! 
As for this book, it presents another view of the RISC versus CISC 

controversy, and if only for its commentary on that debate it would be 
worthwhile. Yet, it does considerably more. It provides key insights into 
how stack machines work, and what their strengths and weaknesses are. It 
presents a taxonomy of existing serial processors and shows that for over 25 
years the stack architecture has been subtly influencing both hardware and 
software, but that major computational gains have begun in only the past 
few years. Although stack processors are unlikely to dominate the much- 
publicized enginering workstation market, they may very well fill enor¬ 
mously larger niches in everything from consumer electronics to high- 
performance military avionics. 

After you read this book, find yourself a stack machine and take it for a 
spin. 

Lawrence P. Forsley 
Publisher, The Journal of Forth Application and Research 

Rochester, New York 



Preface 

This book is about the new breed of stack computers sparked by the 
introduction of the Novix NC4016 microprocessor. Some readers may 
incorrectly associate any reference to stack computers with the Burroughs or 
HP stack machine families. The focus of this book is quite different. These 
new stack computers encompass an entirely different set of technology and 
application area tradeoffs, resulting in machines that are quite unlike the 
older generations of stack computers. 

This book covers a wide variety of topics so that these new stack 
machines may be understood not only for their technical merits, but also 
within the context of how they can be used to solve problems, and where 
they fit in the overall computer architecture picture. 

Chapter 1 is a review of stacks and their usage, as well as an introduction 
to the rest of the book. 

Chapter 2 presents a taxonomy of hardware support for stacks, categor¬ 
ized in terms of the number of stacks, size of stack buffers, and the number 
of operands in the instruction format. This taxonomy points out the 
tradeoffs that are made by different classes of machines, and shows where 
the stack machines discussed in the remainder of the book fit in. 

Chapter 3 focuses on the part of the stack computer design space that 
employs multiple stacks with 0-operand addressing. This set of design 
tradeoffs characterizes the new generation of stack machines described in 
the following chapters. This chapter also presents a detailed description of a 
generic stack machine as a point of departure for discussing the designs in 
subsequent chapters. 

Chapter 4 describes four 16-bit stack machines in detail. The WISC 
CPU/16, MISC M17, Novix NC4016, and Harris RTX 2000 cover a wide 
spectrum of design decisions, exploring many of the options possible in stack 
machine design. Each of the four designs is described in terms of its 
block diagram, instruction set, architectural features, implementation tech¬ 
nology, and intended application areas. 

Chapter 5 continues the format of Chapter 4 with a discussion of three 
32-bit stack machines. The machines included are the JHU/APL FRISC 3 
(also known as the Silicon Composers SC32), Harris RTX 32P, and the 
Wright State University SF1. 

Chapter 6 is a detailed discussion of the issues of stack machine design 
from a computer architect’s point of view. Stack machines differ from other 
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machines in many important respects, including program size, processor 
complexity, system complexity, and processor performance on different 
kinds of programs. They can require different ways of thinking about 
program execution characteristics and resource management. Much of the 
‘conventional wisdom' about stack machines is incorrect. This chapter 
presents detailed discussions as well as experimental data to reveal how 
stack machines really work. 

Chapter 7 discusses the software issues that arise when using stack 
computers. The concept of a fast subroutine call is central to using a stack 
machine effectively, as is the concept of uniformity of interface between all 
levels of hardware and software. This chapter also discusses the issue of 
choosing a programming language, and how stack machines can efficiently 
support many different languages. 

Chapter 8 shows how stack machines can be used in a variety of 
application areas, especially real-time embedded control. Important 
decisions must be made when selecting a stack computer to use in a 
commercial product. The alternatives include whether to use a 16-bit or 32- 
bit processor, and selecting an appropriate balance between system cost and 
performance. 

Chapter 9 is filled with predictions and speculation on the future of stack 
machines and their place in the world of computers. Stack machine 
designers are beginning to address issues such as dedicated hardware 
support for conventional languages, memory management, and dealing with 
the limits of memory bandwidth. 

Appendix A is a survey of the stack machines included in the taxonomy of 
Chapter 2. With entries for 70 machines, it is a single reference summary of 
most published designs having special support for stacks. 

Appendix B provides a glossary of Forth primitives. 
Appendix C gives an unabridged listing of some experimental results 

from Chapter 6. 
Appendix D gives addresses for more information about the stack 

machines discussed in Chapters 4 and 5. 
The chapters are intended to be read more or less in order, but readers 

with varying interests may find that they want to concentrate only on certain 
sections of the book. In general the book progresses from a theoretical basis 
for understanding stack machines at the beginning to practical applications 
at the end. 

Chapters 2, 3, 6, and 9 concentrate on understanding the mechanisms of 
stack machine operation and the engineering tradeoffs associated with the 
stack model of computation. Chapters 4 and 5 describe stack machines at 
two levels: one for the potential user of a stack machine, and one for those 
who wish to see how design decisions affect the computer architecture and 
performance. Chapters 7 and 8 are geared more for potential users of stack 
machines who need answers to practical questions of software selection and 
application areas. Appendix A will be especially interesting for those 
readers who wish to gain a perspective on the history of stack machines. 
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Introduction and review 

1.1 OVERVIEW 

Hardware supported Last In First Out (LIFO) stacks have been used on 
computers since the late 1950’s. Originally, these stacks were added to 
increase the execution efficiency of high level languages such as ALGOL. 
Since then they have fallen in and out of favor with hardware designers, 
eventually becoming incorporated as a secondary data handling structure in 
most computers. To many a stack advocate’s dismay, computers that use 
hardware stacks as their primary data handling mechanism never really 
found the wide acceptance enjoyed by register-based machines. 

With the introduction of Very Large Scale Integration (VLSI) pro¬ 
cessors, conventional methods of computer design are being questioned 
once again. Complex Instruction Set Computers (CISCs) have evolved into 
complicated processors with comprehensive instruction sets. Reduced 
Instruction Set Computers (RISCs) have challenged this approach by using 
simplified processing cores to achieve higher raw processing speeds for some 

applications. 
Once more the time has come to consider stack machines as an alterna¬ 

tive to other design styles. New stack machine designs based on VLSI design 
technology provide additional benefits not found on previous stack 
machines. These new stack computers use the synergy of their features to 
attain an impressive combination of speed, flexibility, and simplicity. 

Stack machines offer processor complexity that is much lower than that 
of CISC machines, and overall system complexity that is lower than that of 
either RISC or CISC machines. They do this without requiring complicated 
compilers or cache control hardware for good performance. They also attain 
competitive raw performance, and superior performance for a given price in 
most programming environments. Their first successful application area has 
been in real-time embedded control environments, where they outperform 
other system design approaches by a wide margin. Stack machines also show 
great promise in executing logic programming languages such as Prolog, 
functional programming languages such as Miranda and Scheme, and 
artificial intelligence research languages such as OPS-5 and Lisp. 

The major difference between this new breed of stack machine and the 
older stack machines is that large, high speed dedicated stack memories are 
now cost effective. Where previously the stacks were kept mostly in program 
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memory, newer stack machines maintain separate memory chips or even an 
area of on-chip memory for the stacks. These stack machines provide 
extremely fast subroutine calling capability and superior performance for 
interrupt handling and task switching. When put together, these traits create 
computer systems that are fast, nimble, and compact. 

We shall start out in this chapter with a discussion of the role of stacks in 
computing. This will be followed in subsequent chapters by a taxonomy of 
hardware stack support in computer design, a discussion of an abstract stack 
machine and several commercially implemented stack machines, results of 
research into stack machine performance characteristics, hardware and 
software considerations, and some predictions about future directions that 
may be taken in stack machine design. 

1.2 WHAT IS A STACK? 

LIFO stacks, also known as ‘push down’ stacks, are the conceptually 
simplest way of saving information in a temporary storage location for such 
common computer operations as mathematical expression evaluation and 
recursive subroutine calling. 

1.2.1 Cafeteria tray example 

As an example of how a stack works, consider a spring-loaded tray dispenser 
of the type often found in cafeterias. Let us say that each tray has a number 
engraved upon it. One tray at a time is loaded in from the top, each resting 
on the already loaded trays with the spring compressing to make room for 
more trays as necessary. For example, in Fig. 1.1, the trays numbered 42,23, 
2. and 9 are loaded onto the stack of trays with 42 loaded first and 9 loaded 
last. 

The ‘Last In’ tray is number 9. Thus, the ‘First Out’ tray is also number 9. 
As customers remove trays from the top of the stack, the first tray removed is 
tray number 9, and the second is tray number 2. Let us say that at this point 
more trays were added. These trays would then have to come off the stack 
before the very first tray we loaded. After any sequence of pushes and pops 
of the stack of trays, tray 42 would still be on the bottom. The stack would be 
empty once again only after tray 42 had been popped from the top of the 
stack. 

1.2.2 Example software implementations 
LIFO stacks may be programmed into conventional computers in a number 
of ways. The most straightforward way is to allocate an array in memory, 
and keep a variable with the array index number of the topmost active 
element. Those programmers who value execution efficiency will refine this 
technique by allocating a block of memory locations and maintaining a 
pointer with the actual address of the top stack element. In either case, 
‘pushing’ a stack element refers to the act of allocating a new word on the 
stack and placing data into it. ‘Popping’ the stack refers to the action of 
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EMPTY PUSH PUSH PUSH 
STACK 42 23 2 

Fig. 1.1 — An example of stack operation. 

removing the top element from the stack and then returning the data value 
removed to the routine requesting the pop. 

Stacks often are placed in the uppermost address regions of the machine. 
They usually grow from the highest memory location towards lower memory 
locations, allowing the maximum flexibility in the use of the memory 
between the end of program memory and the ‘top’ of the stack. In our 
discussions, whether the stack grows ‘up' in memory or ‘down’ in memory is 
largely irrelevant. The ‘top' element of the stack is the element that was last 
pushed and will be the first to be popped. The ‘bottom’ element of the stack 
is the one that, when removed, will leave the stack empty. 
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A very important property of stacks is that, in their purest form, they 
only allow access to the top element in the data structure. We shall see later 
that this property has profound implications in the areas of program 
compactness, hardware simplicity and execution speed. 

Stacks make excellent mechanisms for temporary storage of information 
within procedures. A primary reason for this is that they allow recursive 
invocations of procedures without risk of destroying data from previous 
invocations of the routine. They also support reentrant code. As an added 
advantage, stacks may be used to pass the parameters between these same 
procedures. Finally, they can conserve memory space by allowing different 
procedures to use the same memory space over and over again for tempor¬ 
ary variable allocation, instead of reserving room within each procedure's 
memory for temporary variables. 

There are other ways of creating stacks in software besides the array 
approach. Linked lists of elements may be used to allocate stack words, with 
elements of the stack not necessarily in any order with respect to actual 
memory addresses. Also, a software heap may be used to allocate stack 
space, although this is really begging the question since heap management is 
really a superset of stack management. 

1.2.3 Example hardware implementations 
Hardware implementation of stacks has the obvious advantage that it can be 
much faster than software management. In machines that refer to the stack 
with a large percentage of instructions, this increased efficiency is vital to 
maintaining high system performance. 

While any software method of handling stacks can be implemented in 
hardware, the generally practiced hardware implementation is to reserve 
contiguous locations of memory with a stack pointer into that memory. 
Usually the pointer is a dedicated hardware register that can be incremented 
or decremented as required to push and pop elements. Sometimes a 
capability is provided to add an offset to the stack pointer to nondestructi¬ 
ve^ access the first few elements of the stack without requiring successive 
pop operations. Often times the stack is resident in the same memory 
devices as the program. Sometimes, in the interest of increased efficiency, 
the stacks reside in their own memory devices. 

Another approach that may be taken to building stacks in hardware is to 
use large shift registers. Each shift register is a long chain of registers with 
one end of the chain being visible as a single bit at the top of the stack. 
Thirty-two such shift registers of N bits each may be placed side-by-side to 
form a 32-bit-wide by N element stack. While this approach has not been 
practical in the past, VLSI stack machines may find this a viable alternative 
to the conventional register pointing into memory implementation. 

1.3 WHY ARE STACK MACHINES IMPORTANT? 

From a theoretical viewpoint, stacks themselves are important, since stacks 
are the most basic and natural tool that can be used in processing well 
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structured code (Wirth 1968). Machines with LIFO stacks are also required 
to compile computer languages, and may be a requirement for the transla¬ 
tion of natural languages (Evey 1963). Any computer with hardware support 
for stack structures will probably execute applications requiring stacks more 
efficiently than other machines. 

Some say that programming stack machines is easier than programming 
conventional machines, and that stack machine programs run more reliably 
than other programs (McKeeman 1975). Stack machines are easier to write 
compilers for, since they have fewer exceptional cases to complicate a 
compiler (Lipovski 1975). Since running compilers can take up a significant 
percentage of machine resources in some installations, building a machine 
that can have an efficient compiler is important (Earnest 1980). 

As we shall see in this book, stack machines are also much more efficient 
at running certain types of programs than register-based machines, particu¬ 
larly programs which are well modularized. Stack machines also are simpler 
than other machines, and provide very good computational power using 
little hardware. A particularly favorable application area for stack machines 
is in real-time embedded control applications, which require a combination 
of small size, high processing speed, and excellent support for interrupt 
handling that only stack machines can provide. 

1.4 WHY ARE STACKS USED IN COMPUTERS? 

Both hardware and software stacks have been used to support four major 
computing requirements: expression evaluation, subroutine return address 
storage, dynamically allocated local variable storage, and subroutine para¬ 
meter passing. 

1.4.1 Expression evaluation stack 
Expression evaluation stacks were the first kind of stacks to be widely 
supported by special hardware. As a compiler interprets an arithmetic 
expression, it must keep track of intermediate stages and precedence of 
operations using an evaluation stack. In the case of an interpreted language, 
two stacks are kept. One stack contains the pending operations that await 
completion of higher precedence operations. The other stack contains the 
intermediate inputs that are associated with the pending operations. In a 
compiled language, the compiler keeps track of the pending operations 
during its instruction generation, and the hardware uses a single expression 
evaluation stack to hold intermediate results. 

To see why stacks are well suited'to expression evaluation, consider how 
the following arithmetic expression would be computed: 

X = (A + B) * (C + D) 

First, A and B would be added together. Then, this intermediate result 
must be saved somewhere. Let us say that it is pushed onto the expression 
evaluation stack. Next, C and D are added and the result is also pushed onto 
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the expression evaluation stack. Finally, the top two stack elements (A + B 

and C+D) are multiplied and the result is stored in X. The expression 
evaluation stack provides automatic management of intermediate results of 
expressions, and allows as many levels of precedence in the expression as 
there are available stack elements. Those readers who have used Hewlett 
Packard calculators, which use Reverse Polish Notation, have direct exper¬ 
ience with an expression evaluation stack. 

The use of an expression evaluation stack is so basic to the evaluation of 
expressions that even register-based machine compilers often allocate 
registers as if they formed an expression evaluation stack. 

1.4.2 The return address stack 

With the introduction of recursion as a desirable language feature in the late 
1950s, a means of storing the return address of a subroutine in dynamically 
allocated storage was required. The problem was that a common method for 
storing subroutine return addresses in nonrecursive languages like FOR¬ 
TRAN was to allocate a space within the body of the subroutine for saving 
the return address. This, of course, prevented a subroutine from directly or 
indirectly calling itself, since the previously saved return address would be 
lost. 

The solution to the recursion problem is to use a stack for storing the 
subroutine return address. As each subroutine is called, the machine saves 
the return address of the calling program on a stack. This ensures that 
subroutine returns are processed in the reverse order of subroutine calls, 
which is the desired operation. Since new elements are allocated on the stack 
automatically at each subroutine call, recursive routines may call themselves 
without any problems. 

Modern machines usually have some sort of hardware support for a 
return address stack. In conventional machines, this support is often a stack 
pointer register and instructions for performing subroutine calls and subrou¬ 
tine returns. This return address stack is usually kept in an otherwise unused 
portion of program memory. 

1.4.3 The local variable stack 

Another problem that arises when using recursion, and especially when also 
allowing reentrancy (the possibility of multiple uses of the same code by 
different threads of control), is the management of local variables. Once 
again, in older languages like FORTRAN, management of information for a 
subroutine was handled simply by allocating storage assigned permanently 
to the subroutine code. This kind of statically allocated storage is fine for 
programs which are neither reentrant nor recursive. 

However, as soon as it is possible for a subroutine to be used by multiple 
threads of control simultaneously or to be recursively called, statically 
defined local variables within the procedure become almost impossible to 
maintain properly. The values of the variables for one thread of execution 
can be easily corrupted by another competing thread. The solution that is 
most frequently used is to allocate the space on a local variable stack. New 
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blocks of memory are allocated on the local variable stack with each 
subroutine call, creating working storage for the subroutine. Even if only 
registers are used to hold temporary values within the subroutine, a local 
variable stack of some sort is required to save register values of the calling 
routine before they are destroyed. 

The local variable stack not only allows reentrancy and recursion — it 
can also save memory. In subroutines with statically allocated local vari¬ 
ables, the variables take up space whether the subroutine is active or not. 
With a local variable stack, space on the stack is reused as subroutines are 
called and the stack depth increases and decreases. 

1.4.4 The parameter stack 

The final common use for a stack in computing is as a subroutine parameter 
stack. Whenever a subroutine is called it must usually be given a set of 
parameters upon which to act. Those parameters may be passed by placing 
values in registers, which has the disadvantage of limiting the possible 
number of parameters. The parameters may also be passed by copying them 
or pointers to them into a list in the calling routine’s memory. In this case, 
reentrancy and recursion may not be possible. The most flexible method is to 
simply copy the elements onto a parameter stack before performing a 
procedure call. The parameter stack allows both recursion and reentrancy in 
programs. 

1.4.5 Combination stacks 

Real machines combine the various stack types. It is common in register- 
based machines to see the local variable stack, parameter stack, and return 
address stack combined into a single stack of activation records, or 'frames'. 
In these machines, expression evaluation stacks are eliminated by the 
compiler, and instead registers are allocated to perform expression 
evaluation. 

The approach taken by the stack machines described later in this book is 
to have separate hardware expression evaluation and return stacks. The 
expression evaluation stacks are also used for parameter passing and local 
variable storage. Sometimes, especially when conventional languages such 
as C or Pascal are being executed, a frame pointer register is used to store 
local variables in an area of program memory. 

1.5 THE NEW GENERATION OF STACK COMPUTERS 

The new breed of stack computer that forms the focus of this book draws 
upon the rich history of stack machine design and the new opportunities 
offered by VLSI fabrication technology. This combination produces a 
unique blend of simplicity and efficiency that has in the past been lacking in 
computers of all kinds. The reasons for the advantages of stack machines for 
many applications will be explored in great detail in the following chapters. 
The features that produce these results and distinguish these machines from 
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conventional designs are: multiple stacks with hardware stack buffers, zero- 
operand stack-oriented instruction sets, and the capability for fast pro¬ 
cedure calls. 

These design characteristics lead to a number of features in the resulting 
machines. Among these features are high performance without pipelining, 
very simple processor logic, very low system complexity, small program size, 
fast program execution, low interrupt response overhead, consistent pro¬ 
gram execution speeds across all time scales, and a low cost for context 
switching. Some of these results are obvious, some are only clear when 
thought about, and some results are completely contrary to the conventional 
wisdom of the computer architecture community. 

Many of the designs for these stack computers have their roots in the 
Forth programming language. This is because Forth forms both a high level 
language and an assembly language for a stack machine that has two 
hardware stacks: one for expression evaluation/parameter passing, and one 
for return addresses. In a sense, the Forth language actually defines a stack- 
based computer architecture which is emulated by the host processor while 
executing Forth programs. The similarities between this language and the 
hardware designs are not an accident. Members of the current generation of 
stack machines have without exception been designed and promoted by 
people with Forth programming backgrounds. 

An interesting point to note is that, although some of these machines are 
designed primarily to run Forth, they are also good at running conventional 
languages. Thus, while they may not take over as the processors of choice 
inside personal computers and workstations anytime soon, they are quite 
practical to use in many applications programmed in conventional lan¬ 
guages. Of special interest are those applications that require stack 
machines’ special advantages: small system size, good response to external 
events, and efficient use of limited hardware resources. 

1.6 HIGHLIGHTS FROM THE REST OF THE BOOK 

Many different facets of stack machines are explored in the following 
chapters. For the curious, here is a preview of some of the important points 
which will be discussed: 

• Stack machines of all kinds may be classified by a taxonomy based upon 
the number of stacks, the size of the dedicated stack buffer memory, and 
the number of operands in the instruction format. The stack machines 
featured in this book are those with multiple stacks and 0-operand 
addressing. The size of the stack buffer memory is a design tradeoff 
between system cost and operating speed. For the bulk of this volume, 
‘stack machines’ refers to these particular machines. 

• Stack machines have small program size, low system complexity, high 
system performance, and good performance consistency under varying 
conditions. 

• Stack machines run conventional languages reasonably well, and do so 
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using less hardware for a given level of performance than register-based 
machines. 

• Stack machines are very good at running the Forth language, which is 
known for rapid program development because of its interactivity and 
flexibility. Forth is also known for producing compact code that is very 
well suited to real-time control problems. 

• Four 16-bit stack machine designs span the range of design tradeoffs with 
respect to level of integration and speed. The designs presented in detail 
are the WISC CPU/16, the MISC M17, the Novix NC4016, and the Harris 
RTX 2000. 

• Three 32-bit stack machine designs span a wide range of design tradeoffs. 
The designs presented in detail are: the Johns Hopkins/APL FRISC 3 
(also known as the Silicon Composers SC32), the Harris RTX 32P, and 
Wright State University’s SF1. 

• Understanding stack machines requires the gathering and analysis of 
extensive metrics and comparison with the operation of register-based 
machines. Some of the measurements presented are: dynamic and static 
Forth instruction frequencies for approximately 10 million executed 
instructions, the effects of combining opcodes with subroutine calls in the 
same instruction on the RTX 32P, stack buffer size requirements, stack 
buffer overflow management strategies, and performance degradations 
in the face of frequent interrupts and context switching. 

• Software selection for stack machines must encompass a large number of 
factors. Applications written largely in conventional languages can be 
quite efficient on stack machines, especially if a small effort is made to 
optimize frequently used sections of the code. 

• A very good application area for stack machines is embedded real-time 
control. This application area encompasses a large portion of possible 
uses for computers. Other interesting applications are also discussed. 

• The future hardware and software trends for stack machines will probably 
include increasingly efficient support for conventional programming 
languages as well as hardware that does not suffer from the ill effects of 
limits to memory bandwidth as much as other processors. 



A taxonomy of hardware stack 
support 

Historically, computer designs that promise a great deal of support for high 
level language processing have offered the most hardware stack support. 
This support ranges from a stack pointer register to multiple hardware stack 
memories within the central processing unit. Two recent classes of pro¬ 
cessors have provided renewed interest in hardware stack support: RISC 
processors, which frequently feature a large register file arranged as a stack, 
and stack oriented real-time control processors, which use stack instructions 
to reduce program size and processor complexity. 

A taxonomy is an important step in understanding the nature of stack 
oriented computers. A good taxonomy allows making observations about 
global design tradeoff issues without delving into the implementation details 
of a particular machine. A taxonomy also helps in understanding where a 
proposed architecture stands with respect to existing designs. The purpose 
of beginning our discussion of stack machines with a taxonomy is to 
geta glimpse of the bigger picture before we focus in on multiple-stack, 
0-operand machines in the following chapters. 

In section 2.1 we shall describe a taxonomy for stack machines based on 
three attributes: the number of stacks, the size of stack buffer memories, and 
the number of operands in the instruction format. We shall also discuss the 
strengths and weaknesses inherent in the design tradeoffs that result in a 
particular machine belonging to one of the taxonomy categories. 

In section 2.2 we shall categorize most published stack machine designs 
according to the taxonomy; then in section 2.3 we shall be looking for 
similarities and differences within the taxonomy groupings. The similarities 
within each grouping and differences between groupings show that the 
taxonomy helps us to think about the tradeoffs made in designing stack 
machines. 

2.1 THE THREE-AXIS STACK DESIGN SPACE 

The stack computer design space may be categorized by coordinates along a 
three-axis system as shown in Fig. 2.1. The three dimensions of the design 
space are: number of stacks supported by the hardware, the size of any 
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Fig. 2.1 —The three-axis stack machine design space. 

dedicated buffer for stack elements, and how many operands are permitted 
by the instruction format. 

In some respects these three dimensions can present a continuum, but 
for the purposes of this taxonomy we shall break the design space into 12 
categories, with the three dimensions having the possible values of: 

Number of stacks = Single or Multiple 
Size of stack buffers = Small or Large 
Number of operands = 0 or 1 or 2 

2.1.1 Single vs. multiple stacks 
The most obvious example of a stack supported function is a single stack 
used to support subroutine return addresses. Often times this stack also is 
used to pass parameters to subroutines. Sometimes one or more additional 
stacks are added to allow processing subroutine calls without affecting 
parameter lists, or to allow processing values on an expression stack 
separately from subroutine information. 

Single-stack computers are those computers with exactly one stack 
supported by the instruction set. This stack is often intended for state saving 
for subroutine calls and interrupts. It may also be used for expression 
evaluation. In either case, it is probably used for subroutine parameter 
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passing by compilers for some languages. In general, a single stack leads to 
simple hardware, but at the expense of intermingling data parameters with 
return address information. 

An advantage of having a single stack is that it is easier for an operating 
system to manage only one block of variable-sized memory per process. 
Machines built for structured programming languages often employ a single 
stack that combines subroutine parameters and the subroutine return 
address, often using some sort of frame pointer mechanism. 

A disadvantage of a single stack is that parameter and return address 
information are forced to become mutually well nested. This imposes an 
overhead if modular software design techniques force elements of a para¬ 
meter list to be propagated through multiple layers of software interfaces, 
repeatedly being copied into new activation records. 

Multiple-stack computers have two or more stacks supported by the 
instruction set. One stack is usually intended to store return addresses; the 
other stack is for expression evaluation and subroutine parameter passing. 
Multiple stacks allow separating control flow information from data 
operands. 

In the case where the parameter stack is separate from the return address 
stack, software may pass a set of parameters through several layers of 
subroutines with no overhead for recopying the data into new parameter 
lists. 

An important advantage of having multiple stacks is one of speed. 
Multiple stacks allow access to multiple values within a clock cycle. As an 
example, a machine that has simultaneous access to both a data stack and a 
return address stack can perform subroutine calls and returns in parallel with 
data operations. 

2.1.2 Size of stack buffers 
The amount of dedicated memory used to buffer stack elements is a crucial 
performance issue. Implementation strategies range from using only pro¬ 
gram memory to store stack elements, to having a few top-of-stack registers 
in the processor, to having a completely separate stack memory unit. The 
taxonomy divides the design space into those designs that have stacks 
residing mostly in program memory (with perhaps a few buffering elements 
in the CPU) and those designs that provide significant stack buffering. 

An architecture with a Small Stack Buffer typically views the stack as a 
reserved portion of the general-purpose program memory address space. 
Stacks use the same memory subsystem as instructions and variables, 
allowing the regular memory reference instructions to access stack operands 
if desired. Stack elements may also be addressed by an offset from a stack 
pointer or frame pointer into memory. 

To be competitive in speed, a stack machine must have at least one or 
two stack elements buffered inside the processor. To see the reason for this, 
consider an addition operation on a machine with unbuffered stacks. A 
single instruction fetch for the addition would generate three more memory 
cycles to fetch both operands and store the result. With two elements in a 
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stack buffer, only one additional memory cycle is generated by an addition. 
This memory cycle is used to fetch the new second-from-top stack element, 
filling the hole created by the addition’s consumption of a stack argument. 

A small stack buffer with primary stacks residing in program memory 
allows quick switching between stacks for different tasks since the stack 
elements are predominately memory resident at all times. 

The fact that a small dedicated stack buffer is simple to implement and 
easy to manage makes it very popular. In particular, the fact that most stack 
elements reside in main memory makes managing pointers, strings, and 
other data structures quite easy. The disadvantage of this approach is that 
significant main memory bandwidth is consumed to read and write stack 

elements. 
If an architecture has a large enough stack buffer that main memory 

bandwidth is usually not consumed to access stack elements, then the 
architecture has a Large Stack Buffer. This large buffer may take one of 
several forms. It may be a large set of registers accessed using a register 
window scheme such as that used by the RISC I processor (Sequin & 
Patterson 1982), a separate memory unit that is isolated from program 
memory, or a dedicated stack memory cache in the processor (Ditzel & 
McLellan 1982). In any event, the stack buffer is considered ‘large’ if several 
levels of subroutines (say, 5 or more) may be processed without exhausting 
the capacity of the stack memory. In the case of a stack that is only used as an 
expression evaluation stack, ‘large’ may only be approximately 16 elements, 
since single expressions seldom nest very deeply (Haley 1962). In Chapter 6, 
we shall examine some program execution statistics that will give more 
insight into how large is large enough. 

An advantage of a large stack buffer is that program memory cycles are 
not consumed while accessing data elements and subroutine return 
addresses. This can lead to significant speedups, particularly in subroutine¬ 
intensive environments. 

A disadvantage of a separate stack memory unit is that it may not be 
large enough for all applications. In this case a spilling of data into program 
memory to make room for new stack entries may be required. Also, saving 
the entire stack buffer when switching between tasks in a multitasking 
environment may impose an unacceptably large context switching over¬ 
head, although it should be noted that this can be solved by dividing the 
stack memory into separate areas for separate tasks. At a lower level, 
separate data buses for off-chip stack memories and program memory will 
add pins and expense to a microprocessor. 

Clearly, the delineation between ‘large’ and ‘small’ stack buffers can get 
hazy, but in practice it is usually clear which of these two alternatives the 
designer had in mind. 

2.1.3 0-, 1-, and 2-operand addressing 
The number of operands in the machine instruction format might at first not 
seem to have much to do with hardware support for stacks. In practice. 
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however, the number of addressing modes has a tremendous effect on how 
the stacks are constructed and how the stacks can be used by programs. 

0-operand instructions do not allow any operands to be associated with 
the opcode. All operations are implicitly specified to be performed on the 
top stack element(s). This kind of addressing is often called ‘pure’ stack 
addressing. A 0-operand stack architecture must, of course, use one of its 
stacks for expression evaluation. 

Even in a pure stack machine, there must be a few instructions that 
specify addresses for loading and storing variables in program memory, 
loading literal (constant) values, subroutine calls, and conditional branching 
instructions. These instructions tend to have extremely simple formats, 
often just using the memory word after the opcode to hold the operand. 

There are several advantages to the simplicity of 0-operand instructions. 
One is that only the top one or two stack locations can be referenced by an 
instruction. This can simplify construction of the stack memory by allowing 
the use of a single ported memory with one or two top-of-stack registers. A 
speed advantage may also be gained by loading the operand registers in 
parallel with instruction decoding, since the operands for each instruction 
are known in advance to be the top stack elements. This can completely 
eliminate the need for pipelining to fetch and store operands. 

Another advantage is that individual instructions can be extremely 
compact, with an 8-bit instruction format sufficing for 256 different 
opcodes. Furthermore, instruction decoding is simplified, since no operand 
addressing modes need be interpreted by the decoding hardware. 

A disadvantage to the 0-operand addressing mode is that complex 
addressing modes for data structure accessing may take several instructions 
to synthesize. Also, data elements that are deeply buried on the stack can be 
difficult to access if provisions are not made for copying the Mh-deep data 
stack element to the top of the stack. 

A machine with a 1-operand instruction format usually performs ope¬ 
rations on the specified operand and uses the top stack element as the 
implicit second operand. 1-operand addressing, also called stack/accumula¬ 
tor addressing, offers more flexibility than 0-operand addressing, since it 
combines the fetching of an operand with the operation on the stack. 

Keedy (1978a,b) has argued that a stack/accumulator architecture uses 
fewer instructions than a pure stack architecture for expression evaluation. 
His argument suggests that overall program size for 1-operand designs may 
be smaller than for 0-operand design. Of course, there is a tradeoff involved. 
Since the operand is specified by the instruction, an efficient implementation 
must either incorporate an operand-fetching pipeline or have a longer clock 
cycle to allow for operand access time. In the case when an operand is 
resident on a subroutine parameter stack or evaluation stack, the stack 
memory must be addressed with the offset of the operand to fetch the 
element. This requires more execution time or more pipelining hardware 
than having the top elements prefetched and waiting for an operation. 

A 1-operand stack architecture almost always has an evaluation stack. 
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Most 1-operand architectures also support a 0-operand addressing mode to 
save instruction bits when the operand field would be unused. 

2-operand instruction formats, which for the purposes of this taxonomy 
include 3-operand instruction formats as a special case, allow each instruc¬ 
tion to specify both a source and a destination. In the case where stacks are 
only used to store return addresses, a 2-operand machine is simply a general- 
purpose register machine. If subroutine parameters are passed on the stack, 
then the 2 operands either specify an offset from a stack or frame pointer, or 
specify a pair of registers in the current register window for the operation. 2- 
operand machines do not need an expression evaluation stack, but place the 
burden of tracking intermediate results for evaluated expressions on the 

compiler. 
2-operand machines offer a maximum of flexibility, but require more 

complicated hardware to perform efficiently. Since no operands are known 
before an instruction is decoded, a data pipeline and dual ported register file 
must be used to supply operands to the execution unit. 

2.2 TAXONOMY NOTATION AND CATEGORIES 

2.2.1 Notation 
In order to convey the category for a particular architecture, we shall use a 
three-character shorthand notation based on the three axes of classification. 
The first letter of the abbreviation specifies the number of stacks (Single or 
Multiple). The second letter of the abbreviation specifies the size of 
dedicated stack memory (Small or Large). The third letter of the abbrevia¬ 
tion specifies the number of operands in the instruction format (0,1, or 2). 
Thus, the abbreviation SSO would signify an architecture with a single stack, 
small dedicated stack memory, and 0-operand addressing, and the abbrevia¬ 
tion ML2 would signify an architecture with multiple stacks, large dedicated 
stack memory, and 2-operand addressing. 

2.2.2 List of the categories in the design space 
Table 2.1 shows the categorization of existing and historical stack oriented 
architectures by taxonomy category. Appendix A briefly discusses each of 
these architectures and how they implement features related to the 
taxonomy. 

2.3 INTERESTING POINTS IN THE TAXONOMY 

Perhaps the most surprising feature of the taxonomy space is that all twelve 
categories are populated by designs. This indicates that a significant amount 
of research on diverse stack architectures has been performed. Another 
observation is that different machine types tend to group along the operand 
axis as the major design parameter, with the number and size of stack buffers 
creating distinctions within each grouping. 
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Table 2.1 — Population of the stack machine taxonomy 

Category Machines 

SSO Aerospace Computer, Burroughs family, Caltech Chip, 
EULER, GLOSS, HITAC-10, ITS, LAX2, Mesa, 
Microdata 32/S, Transputer, WD9000 

SSI A AMP, Buffalo Stack Machine, EM-1, HP300/HP3000, 
ICL2900, IPL-VI, MCODE, MU5, POMP Pascal 

SS2 Intel 80x86 

SLO G Machine, NORMA 

SL1 AADC, /i3L 

SL2 AM29000, CRISP, Dragon, Pyramid 90x, RISC I, SOAR 

MSO Action Processor, APL Language Machine, FORTRAN 
Machine, HUT, Internal Machine, MISC M17, Rockwell 
Microcontrollers, Symbol, Tree Machine 

MSI PDP-11 

MS2 Motorola 680x0 

MLO ALCOR, An ALGOL Machine, FRISC 3, KDF-9, Kobe 
University Machine, MF1600, NC4016, OPA, PASCAL 
Machine, QFORTH, Reduction Language Machine, Rekur- 
sive, RTX 2000, RTX 32P, RUFOR, The Forth Engine, TM, 
Vaughan & Smith’s Machine, WISC CPU/16, WISC CPU/32 

ML1 Lilith, LISP machines, SF1, Soviet Machine 

ML2 PSP, SF1, Socrates 

The taxonomy categories with 0-operand addressing are ‘pure’ stack 
machines. Unsurprisingly, these categories have the most academic and 
conceptual design entries, since they include the canonical stack machine 
forms. Because of its inherent simplicity, the SSO machine category is 
populated by designs constrained by scarce hardware resources, limited 
design budget, or both. Designs in the SSO category may have efficiency 
problems if return addresses and data elements are intermingled on the 
stack and an efficient deep stack element copy operation is not provided. 

The SLO category seems to only be applicable to special-purpose 
machines used for combinator graph reduction (a technique used to execute 
functional programming languages (Jones 1987)). Graph reduction requires 
performing a tree traversal to evaluate the program, using a stack to store 
node addresses while doing the traversal. No expression evaluation stack is 
required, since the results are stored in the tree memory itself. 

The MSO and MLO categories have similarly designed machines, dis¬ 
tinguished mainly by the amount of chip or board area spent for buffering 
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stack elements. All the Forth language machines and many of the other high 
level language machines fall into these categories. Machines in these 
categories are finding increasing use as real-time embedded control pro¬ 
cessors because of their simplicity, high processing speed, and small pro¬ 
gram sizes (Danile & Malinowski 1987, Fraeman et al. 1986). Many MSO 
and MLO designs allow for very fast or even zero-cycle subroutine calls and 
returns. 

The entries with 1-operand addressing are designs that attempt to break 
bottlenecks that may arise in 0-operand designs by altering the pure stack 
model into a stack/accumulator design. The SSI designs can use an address 
to access local variables and frame pointers more easily than SSO designs. In 
general, the perceived advantage of a 1-operand design is that a push 
operation can be combined with an arithmetic operation, saving instructions 
in some circumstances. Additionally, the Pascal and Modula-2 machines use 
1-operand addressing because of the nature of P-code and M-code. 

The entries with 2-operand addressing tend to be more mainstream 
designs. Conventional microprocessors fall into the SS2 category. The RISC 
designs fall into the SL2 category because of their register windows, and no 
other designs fall into this category. The MS2 categorization for the 680x0 
family reflects the flexibility of that machine, which can use any one of its 
eight address registers as a stack pointer. The ML2 entry for the PSP 
machine reflects an attempt in a conceptual design to carry the register 
window to an extreme for speeding up subroutine calls. The SF1 machine 
also uses multiple stacks, but dedicates a hardware stack to each active 
process in a real-time control environment. 

From the preceding discussion, we see that designs can be found that fall 
into all twelve categories of the taxonomy. Designs within each group of the 
taxonomy display strong similarities, while designs in different groups can 
be shown to have differences that affect implementation and system ope¬ 
ration. Thus, the taxonomy is a useful tool for gaining insight into the nature 
of stack oriented computers. 

In the next chapter, we shall focus on a certain sector of the stack 
machine design space: MSO and MLO machines. In all future references, we 
shall mean either an MSO or an MLO machine when we use the term ‘stack 
machine’. 



Multiple stack, O-operand machines 

This chapter focuses attention on multiple-stack, 0-operand machines 
comprising the MSO and MLO categories of the taxonomy described in 
Chapter 2. In section 3.1, we shall compare stack machines to conventional 
complex instruction set computer (CISC) and reduced instruction set 
computer (RISC) architectures. 

In section 3.2, we shall describe a generic stack machine architecture 
called the Canonical Stack Machine. We shall cover the hardware at a block 
diagram level, as well as implementation of the instruction set. This two- 
stack machine will serve as a point of departure for discussions of real stack 
machines in subsequent chapters. 

In section 3.3, we shall briefly discuss the Forth programming language. 
Forth is an unconventional programming language which uses a two-stack 
model of computation and strongly encourages frequent calls to many small 
procedures. Many MLO and MSO designs have their roots in the Forth 
language, and are well suited to execution of Forth programs. 

3.1 WHY THESE MACHINES ARE INTERESTING 

Multiple-stack, 0-operand machines have two inherent advantages over 
other machines: 0-operand addressing leads to a small instruction size, and 
multiple stacks allow concurrent subroutine calls and data manipulations. 
These features and others lead to small programs, low system complexity, 
and high system performance. The main difference between MSO and MLO 
machines is that MSO machines give up some performance in order to reduce 
the CPU cost by minimizing the resources used for the stack buffers. 

We shall examine the details behind how stack machines achieve their 
advantages in Chapter 6. For now, let us just summarize their benefits. 

Stack machines support small program sizes by encouraging frequent use 
of subroutines to reduce code size, and by the fact that stack machines can 
have short instructions. Small program sizes reduce memory costs, compo¬ 
nent count, and power requirements, and can improve system speed by 
allowing the cost effective use of smaller, higher speed memory chips. 
Additional benefits include better performance in a virtual memory environ¬ 
ment, and a requirement for less cache memory to achieve a given hit ratio. 
0-operand stack machines tend to have smaller code size than other 
machines. 
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Decreased system complexity decreases system development time and 
chip size. This decreased chip size leaves more room on-chip for semicustom 
features and program memory. 

System performance includes not only raw execution speed, but also 
total system cost and system adaptability when used in real-world appli¬ 
cations. The execution speed component of system performance includes 
not only how many instructions can be performed per second on straight line 
code, but also speed in handling interrupts, context switches, and perfor¬ 
mance degradation due to factors such as conditional branches and pro¬ 
cedure calls. In stack machines, the very same 0-operand addressing mode 
and frequent subroutine calls that reduce code size and system complexity 
actually result in improved system performance for application programs. 

An additional benefit of the fact that stack processors support efficient 
procedure calls is that well structured code with many small procedures is 
encouraged by the architecture. This increases maintainability by encourag¬ 
ing better coding practices, and increases code reuse by allowing the use of 
small subroutines as building blocks. 

3.2 A GENERIC STACK MACHINE 

Before embarking on a detailed review of real MSO and MLO designs, a 
baseline for comparison needs to be established. Therefore, we shall explore 
the design for a canonical MLO machine. The design presented is as simple as 
possible to present a common point of departure for comparing other 
designs. 

3.2.1 Block diagram 
Fig. 3.1 is a block diagram of the Canonical Stack Machine. Each box on the 
diagram represents a logical resource for the machine corresponding to the 
essential minimum components for an MLO design. These components are: 
the data bus, the data stack (DS), the return stack (RS), the arithmetic/logic 
unit (ALU) with its top-of-stack (TOS) register, the program counter (PC), 
program memory with a memory address register (MAR), control logic with 
an instruction register (IR), and an input/output section (I/O). 

3.2.1.1 Data bus 
For simplicity, the Canonical Stack Machine has a single bus connecting the 
system resources. Real processors may have more than one data path to 
allow for parallel operation of instruction fetching and calculations. In the 
Canonical Stack Machine, the data bus allows a single transmitting func¬ 
tional block and a single receiving functional block during any single 
operation cycle. 

3.2.1.2 Data stack 
The data stack is a memory with an internal mechanism to implement a 
LIFO stack. A common implementation for this might be a conventional 
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Fig. 3.1 —The Canonical Stack Machine. 

memory with an up/down counter used for address generation. The data 
stack allows two operations: push and pop. The push operation allocates a 
new cell on the top of the stack and writes the value on the data bus into that 
cell. The pop operation places the value on the top cell of the stack onto the 
data bus, then deletes the cell, exposing the next cell on the stack for the next 
processor operation. 

3.2.1.3 Return stack 
The return stack is a LIFO stack implemented in an identical manner to the 
data stack. The only difference is that the return stack is used to store 
subroutine return addresses instead of instruction operands. 

3.2.1.4 ALU and top-of-stack register 
The ALU functional block performs arithmetic and logical computations on 
pairs of data elements. One of the data element pairs is the top-of-stack 
(TOS) register, which holds the topmost element of the data stack as used by 
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the programmer. Thus, the top element of the data stack block is actually the 
second item on the data stack as perceived by the programmer, while the top 
perceived data stack element is kept in the one-register TOS buffer at the 
ALU. This scheme allows using a single ported data stack memory while 
allowing operations, such as addition, on the top two stack elements. 

The ALU supports the standard primitive operations needed by any 
computer. For the purposes of our illustration, this includes addition, 
subtraction, logical functions (AND, OR, XOR), and test for zero. For the 
purposes of this conceptual design, all arithmetic will be integer. There is no 
reason why floating point arithmetic could not be added to the ALU as a 
generalization of the concept. 

3.2A.5 Program counter 
The program counter holds the address of the next instruction to be 
executed. The PC may be loaded from the bus to implement branches, or 
may be incremented to fetch the next sequential instruction from program 
memory. 

3.2.1.6 Program memory 
The program memory block has both a Memory Address Register (MAR) 
and a reasonable amount of random access memory. To access the memory, 
first the MAR is written with the address to be read or written. Then, on the 
next system cycle, the program memory is either read onto or written from 
the system data bus. 

3.2.1.7 I/O 
As with most conceptual designs, the issue of input/output from and to the 
outside world will be swept under the rug. Suffice it to say that there is some 
system resource, the I/O box, that handles this task. 

3.2.2 Data operation 
Table 3.1 shows the minimum set of operators for the Canonical Stack 
Machine. This set of operators was chosen in order to illustrate the use of the 
machine — it is obviously not adequate for efficient program execution. In 
particular, multiply, divide and shift operations have been omitted in the 
interest of simplicity. Notation derived from the Forth language (see section 
3.3) has been used to maintain consistency with discussions of instruction 
sets in later chapters. An important point to note is that Forth notation often 
makes extensive use of special characters, such as ! (which is pronounced 
‘store’ in Forth) and @ (which is pronounced ‘fetch’ in Forth). 

3.2.2.1 Reverse Polish Notation 
Stack machines execute data manipulation operations using postfix ope¬ 
rations. These operations are usually called ‘Reverse Polish’ after the 
Reverse Polish Notation (RPN) that is often used to describe postfix 
operations. Postfix operations are distinguished by the fact that the oper- 
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Table 3.1 — Canonical Stack Machine instruction set 

Instruction input 
Data Stack 

—> output Function 

1 N1 
ADDR Store N1 at location ADDR in program 

memory 
+ N1 N2 -> N3 Add Nl and N2. giving sum N3 
— N1 N2 — N3 Subtract N2 from Nl. giving difference N3 
>R N1 —> Push Nl onto the return stack 

@ ADDR — N1 Fetch the value at location ADDR in program 
memory, returning Nl 

AND N1 N2 — N3 Perform a bitwise AND on Nl and N2, giving 
result N3 

DROP N1 _» Drop Nl from the stack 
DUP N1 -* N1 N1 Duplicate Nl. returning a second copy of it on 

the stack 
OR N1 N2 -» N3 Perform a bitwise OR on Nl and N2, giving 

result N3 
OVER N1 N2 — N1 N2N1 Push a copy of the second element on the 

stack. Nl, onto the top of the stack 
R> — N1 Pop the top element of the return stack, and 

push it onto the data stack as Nl 
SWAP N1 N2 N2N1 Swap the order of the top two stack elements 
XOR N1 N2 - N3 Perform a bitwise exclusive OR on Nl and 

N2. giving result N3 
[IF] N1 If Nl is false (value is 0) perform a branch to 

the address in the next program cell, other¬ 
wise continue 

[CALL] Perform a subroutine call to the address in the 
next program cell 

[EXIT] —» Perform a subroutine return 
[LIT] - N1 Treat the value in the next program cell as an 

integer constant, and push it onte stack as Nl 

ands come before the operation. For example, an expression in conven¬ 
tional (infix) notation might be represented as: 

(12+45) * 98 

In this expression, parentheses are used to force the addition to occur before 
the multiplication. Even in expressions without parentheses, an implied 
operator precedence is in force. For example, without parentheses the 
multiplication would be done before the addition. The equivalent to the 
above parenthesized expression would be written in postfix notation as: 

98 12 45 + * 

In postfix notation, the operator acts upon the most recently seen 
operands, and uses an implied stack for evaluation. In this postfix example, 
the numbers 98, 12, and 45 would be pushed onto a stack as shown in Fig. 
3.2. Then the + operator would act upon the top two stack elements (namely 
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EMPTY PUSH 
STACK 98 

PUSH 
12 

Fig. 3.2 — An example stack computation. 

45 and 12) leaving the result 57. Then the * operator would work upon the 
new two top stack elements 57 and 98 leaving 5586. 

Postfix notation has an economy of expression when compared to infix 
notation in that neither operator precedence nor parentheses are necessary. 
It is much better suited to the needs of computers. In fact, compilers as a 
matter of course translate infix expressions in languages such as C and 
FORTRAN into postfix machine code, sometimes using explicit register 
allocation instead of an expression stack. 

The Canonical Stack Machine described in the preceding section is 
designed to execute postfix operations directly without burdening the 
compiler with register allocation bookkeeping. 

3.2.2.2 Arithmetic and logical operators 
In order to accomplish basic arithmetic, the Canonical Stack Machine needs 
both arithmetic and logical operators. In this and the following sections each 
instruction will be discussed and described in terms of a register transfer 
level pseudocode, which should be self explanatory. For example, the first 
operation is addition. 
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Operation: + 
Stack: Nl N2—» N3 

Description: . Add Nl and N2, giving sum N 

Pseudocode: TOSREG <= TOSREG + POP(DS) 

For the + operation, the top two elements of the user’s perceived data stack 
N1 and N2 are popped and added, with the result N3 pushed back onto the 
stack. From an implementation point of view, this would mean popping the 
DS (which gives Nl) and adding it to the TOSREG value which contains N2. 
The result is placed back into TOSREG, leaving N3 in at the top of the user’s 
perceived data stack. The DS element which is accessed by POP(DS) is 
actually the second-to-top element of the stack as seen by the programmer, 
but is the top element on the actual hardware stack. This operation of 
POP(DS) is consistent with the notion of TOSREG as a top-of-stack register 
as seen by the user. Note that by keeping the TOSREG as a 1-element stack 
buffer, a POP of element N2 and a subsequent PUSH of element N3 were 

eliminated. 

Operation: — 

Stack: Nl N2-* N3 
Description: Subtract N2 from Nl, giving difference N3 
Pseudocode: TOSREG <= POP(DS) - TOSREG 

Operation: 
Stack: 

Description: 
Pseudocode: 

AND 
Nl N2—> N3 
Perform a logical AND on Nl and N2, giving result N3 
TOSREG <= TOSREG and POP(DS) 

Operation: 
Stack: 

Description: 
Pseudocode: 

OR 
Nl N2 —* N3 
Perform a logical OR on Nl and N2, giving result N3 
TOSREG <= TOSREG or POP(DS) 

Operation: XOR 
Stack: Nl N2 —» N3 

Description: Perform a logical exclusive OR on Nl and N2, giving result 
N3 

Pseudocode: TOSREG <= TOSREG xor POP(DS) 

It is obvious that the top-of-stack buffer register saves a considerable 
amount of work when performing these operations. 
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3.2.2.3 Stack manipulation operators 
One of the problems associated with pure stack machines is that they are 
able to access only the top two stack elements for arithmetic operations. 
Therefore, some overhead instructions must be spent on preparing oper¬ 
ands to be consumed by other operations. Of course, it should be said that 
some register-based machines also spend a large number of instructions 
doing register-to-register moves to prepare for operations, so the question 
of which approach is better becomes complicated. 

The following instructions all deal with manipulating stack elements. 

Operation: DROP 
Stack: 

Description: Drop N1 from the stack 
Pseudocode: TOSREG <= POP(DS) 

In this and many subsequent instruction definitions, notation similar to 
TOSREG <= POP(DS) is used. In order to accomplish this operation, the 
data stack information is placed onto the data bus, then brought through the 
ALU by performing a dummy operation (such as adding 0) to be placed in 
the top-of-stack register. 

Operation: DUP 
Stack: Nl—» Nl N1 

Description: Duplicate Nl, returning a second copy of it on the stack 
Pseudocode: PUSH(DS) <= TOSREG 

Operation: OVER 
Stack: Nl N2 —» Nl N2 Nl 

Description: Push a copy of the second element on the stack, Nl, onto 
the top of the stack 

Pseudocode: PUSH(RS) <= TOSREG (Place N2 on RS) 
TOSREG <= POP(DS) (Place Nl into TOSREG) 
PUSH(DS) <= TOSREG (Push Nl onto DS) 
PUSH(DS) <= POP(RS) (Push N2 onto DS) 

OVER seems conceptually simple when looking at the description. 
However, the operation is complicated by the need to store N2 temporarily 
to get it out of the way. In actual machines, one or more temporary storage 
registers are added to the system to reduce this thrashing for OVER, SWAP, 
and other stack manipulation instructions. 
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Operation: SWAP 
Stack: N1 N2 —* N2 N1 

Description: Swap the order of the top two stack elements 
Pseudocode: PUSH(RS) <= TOSREG (Save N2 on the RS) 

TOSREG <= POP(DS) (Place N1 into TOSREG) 
PUSH(DS) <= POP(RS) (Push N2 onto DS) 

Operation: >R (Pronounced ‘to R’) 
Stack: N1 —*■ 

Description: Push N1 onto the return stack 
Pseudocode: PUSH(RS) <= TOSREG 

TOSREG <= POP(DS) 

The instruction >R and its complement R> allow shuffling data ele¬ 
ments between the data and return stacks. This technique is used to access 
stack elements buried more than two elements deep on the stacks by 
temporarily placing the topmost data stack elements on the return stack. 

Operation: R> (Pronounced ‘R from’) 

Stack: -» N1 
Description: Pop the top element of the return stack, and push it onto 

the data stack as N1 
Pseudocode: PUSH(DS) <= TOSREG 

TOSREG <= POP(RS) 

3.2.2.4 Memory fetching and storing 
Even though all arithmetic and logical operations are performed on data 
elements on the stack, there must be some way of loading information onto 
the stack before operations are performed, and storing information from the 
stack into memory. The Canonical Stack Machine uses a simple load/store 
architecture, so has only a single load instruction and a single store 
instruction ‘!\ 

Since instructions do not have an operand field, the memory address is^ 
taken from the stack. This eases access to data structures, since the stack 
may be used to hold a pointer that indexes through array elements. Since 
memory must be accessed once for the instruction and once for the data, 
these instructions take two memory cycles to execute. 
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Operation: ! (Pronounced ‘store’) 
Stack: N1 ADDR -» 

Description: Store N1 at location ADDR in program memory 
Pseudocode: MAR <= TO SR EG 

MEMORY <= POP(DS) 
TOSREG <= POP(DS) 

Operation: @ (Pronounced ‘fetch’) 
Stack: ADDR—> N1 

Description: Fetch the value at location ADDR in program memory, 
returning N1 

Pseudocode: MAR <= TOSREG 
TOSREG <= MEMORY 

3.2.2.S Literals 
Somehow there must be a way to get a constant value onto the stack. The 
instruction to do this is called the literal instruction, which is often called a 
load-immediate instruction in register-based architectures. The literal 
instruction uses two consecutive instruction words: one for the actual 
instruction, and one to hold a literal value to be pushed onto the stack. 
Literal requires two memory cycles, one for the instruction, one for the data 
element. 

Operation: [LIT] 
Stack: -> N1 

Description: Treat the value in the next program cell as an integer 
constant, and push it onto the stack as N1 

Pseudocode: MAR <= PC (Address of literal) 
PC <= PC + 1 
PUSH(DS) <= TOSREG 
TOSREG <= MEMORY 

This implementation assumes that the PC is pointing to the location of the 
next instruction word after the current opcode. 

3.2.3 Instruction execution 

Thus far we have ignored the mechanics of how an instruction actually gets 
fetched from program memory and is executed. This execution sequence 
involves a typical sequence of instruction fetch, instruction decode, and 
instruction execute. 

3.2.3.1 Program Counter 
The Program Counter is the register that holds a pointer to the next 
instruction to be executed. After fetching an instruction, the program 
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counter is automatically incremented to point to the next word in memory. 
In the case of a branch or subroutine call instruction, the program counter is 
loaded with a new value to accomplish the branch. 

An implied instruction fetching sequence which is performed before 
every instruction is: 

Operation: 

Pseudocode: 
Fetch next instruction 
MAR <= PC 
INSTRUCTION REGISTER <= MEMORY 
PC <= PC + 1 

3.2.3.2 Conditional branching 
In order to be able to make decisions, the machine must have available some 
method for conditional branching. The Canonical Stack Machine uses the 
simplest method possible. A conditional branch may be performed based on 
whether the top stack element is equal to 0. This approach eliminates the 
need for condition codes, yet allows implementation of all control flow 
structures. 

Operation: [IF] 
Stack: N1 —» 

Description: If N1 is false (value is 0) perform a branch to the address 
contained in the next program cell, otherwise continue 

Pseudocode: ifTOSREG is 0 
MAR <= PC 
PC <= MEMORY 

else 
PC <= PC + 1 

endif 
TOSREG <= POP(DS) 

3.2.3.3 Subroutine calls 

Finally, the Canonical Stack Machine must have a method of efficiently 
implementing subroutine calls. Since there is a dedicated return address 
stack, subroutine calls simply require pushing the current program counter 
value onto the stack, then loading the program counter with a new value. We 
will assume that the instruction format for subroutine calls allows specifying 
a full address for the subroutine call within a single instruction word, and will 
ignore the mechanics of actually extracting the address field from the 
instruction. Real machines in later chapters will offer a variety of methods 
for accomplishing this with extremely low hardware overhead. 

Subroutine returns are accomplished by simply popping the return 
address from the top of the return address stack and placing the address in 
the program counter. Since data parameters are maintained on the data 
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stack, no pointers or memory locations need be manipulated by the 
subroutine call instruction. 

Operation: [CALL] 
Stack: —> 

Description: Perform a subroutine call 
Pseudocode: PUSH(RS) <= PC (Save return address) 

PC <= INSTRUCTION REGISTER ADDRESS FIELD 

Operation: [EXIT] 
Stack: —> 

Description: Perform a subroutine return 
Pseudocode: PC <= POP(RS) 

3.2.3.4 Hardwired vs. microcoded instructions 
While the Canonical Stack Machine description has been kept free from 
implementation considerations for conceptual simplicity, a discussion of one 
major design tradeoff that is seen in real implementations is in order. The 
tradeoff is one between hardwired control and microcoded control. An 
introduction to the concepts of hardwired versus microcoded implemen¬ 
tation techniques may be found in Koopman (1987a). 

Hardwired designs traditionally allow faster and more space efficient 
implementations to be made. The cost for this performance increase is 
usually increased complexity in designing decoding circuitry, and a major 
risk of requiring a complete control logic redesign if the instruction set 
specification is changed near the end of the product design cycle. 

With a stack machine, the instruction format is extremely simple (just an 
opcode) and the usual combinatorial explosion of operand/type combi¬ 
nations is completely absent. For this reason hardwired design of a stack 
machine is relatively straightforward. 

As an additional benefit, if a stack machine has a 16-bit or larger word 
length, the word size is very large compared to the few bits needed to specify 
the possible operations. Hardwired stack machines usually exploit this 
situation by using pre-decoded instruction formats to further simplify 
control hardware and increase flexibility. Pre-decoded (also called unen¬ 
coded) instructions have a microcode-like format in that specific bit fields of 
the instruction perform specific tasks. This allows for the possibility of 
combining several independent operations (such as DUP and [EXIT]) in the 
same instruction. 

While 16-bit instructions may seem wastefully large, the selection of a 
fixed length instruction simplifies hardware for decoding, and allows a 
subroutine call to be encoded in the same length word as other instructions. 
A simple strategy for encoding a subroutine call is to simply set the highest 
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bit to 0 for a subroutine call (giving a 15-bit address field) or 1 for an opcode 
(giving a 15-bit unencoded instruction field). In general, the speed advan¬ 
tage of a fixed length instruction when combined with the possibility of 
compressing multiple operations into the same instruction makes the selec¬ 
tion of a fixed length instruction justifiable. The technique of unencoded 
hardwired design on stack machines was pioneered by the Novix NC4016 
and has since been used by other machines. 

With all the benefits of hardwired instruction decoding for stack 
machines, it might seem at first glance that microcoded instruction execution 
would never be used. However, there are several advantages to using a 
microcoded implementation scheme. 

The major advantage to a microcoded approach is flexibility. Since most 
combinations of bits in an unencoded hardwired instruction format are not 
useful, a microcoded machine can use fewer bits to specify the same possible 
instructions, including optimized instructions that perform a sequence of 
stack functions. This leaves room for user-specified opcodes in the architec¬ 
ture. A microcoded machine can have several complex, multicycle user- 
specific instructions that would be unfeasible to implement using hardwired 
design techniques. If some or all of the microcode memory is constructed of 
RAM instead ROM, then the instruction set can be customized for each user 
or even each application program. 

One potential drawback is that using a microcoded design often estab¬ 
lishes a microinstruction fetching pipeline to avoid a speed penalty for 
accessing microcode program memory. This can result in a requirement that 
instructions take more than one clock cycle, whereas hardwired designs are 
optimized for single-clock-cycle execution. 

As it turns out, this is not really a penalty. Using a realistic match of 
processor speed and affordable memory speed, most processors can per¬ 
form two internal stack operations in the time it takes for a single memory 
access. Thus, both a hardwired design and a microcoded design can execute 
instructions in a single memory cycle. Furthermore, since a microcoded 
design can slip in twice as many operations per memory cycle period, 
opportunities for code optimization and user-specified instructions are that 
much greater. 

As a practical matter, microcoded implementations are more convenient 
to implement in discrete component designs, so they predominate in board- 
level implementations. Most single-chip implementations are hardwired. 

3.2.4 State changing 

An important consideration in real-time control applications is how the 
processor can handle interrupts and task switches. The specified instruction 
set for the Canonical Stack Machine sidesteps these issues to a certain 
extent, so we will talk about the standard ways of handling these events to 
build a base upon which to contrast designs in the next sections. 

A potential liability for stack machines with independent stack memories 
is the large state that must be saved if the stacks are swapped into program 
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memory to change tasks. We will see how this state change can be avoided 
much of the time. Chapter 6 speaks about advanced design techniques that 
can further reduce the penalties of a task switch. 

3.2.4.1 Stack over flow/underflow interrupts 
Interrupts are caused either by exceptional events, such as stack overflow, or 
by requests for I/O service. Both events require quick resolution without 
disturbing the flow of the current task. 

Stack Overflow/Underflow is by far the most frequent exceptional 
condition on a stack machine, so it will be used as an example for how ‘large 
grain’ interrupts are handled. 

Stack Overflow/Underflow occurs when the hardware stack memory 
capacity is exceeded by the application program. Several possible responses 
to this situation include: ignore the overflow and let the software crash (an 
easy to implement but rather messy solution), halt the program with a fatal 
execution error, or copy a portion of the stack memory to program memory 
to allow continued program execution. Clearly, the last alternative gives the 
most flexibility, but a fatal execution error may be acceptable and simpler to 
implement in some environments. Other exceptional conditions such as a 
memory parity may be handled by the system as well. 

Exceptional conditions can take a long time to resolve, but all have the 
property of requiring the state of the current task to remain intact during 
resolution so that the task may be restarted if possible. Thus, these 
conditions require no action from the processor except to force a hardware 
generated subroutine call to a condition handling code. 

3.2.4.2 I/O service interrupts 

I/O servicing is a potentially frequent event that must be handled quickly for 
real-time control tasks. Fortunately, interrupts usually require very little 
processing and almost no temporary storage. For this reason, stack 
machines treat interrupts as hardware generated subroutine calls. 

These subroutine calls push parameters onto the stack, perform their 
calculations, then perform a subroutine exit to restart the program that was 
interrupted. The only constraint is that the interrupt service routine must 
leave no ‘garbage’ behind on the stack. 

Interrupts are much less expensive on stack machines than on conven¬ 
tional machines for several reasons: registers need not be saved since the 
stack allocates working storage automatically, there are no condition code 
flags to be saved since the only branch conditions are kept as flags on the data 
stack, and most stack processors have a short or nonexistent data pipeline, 
so there is no penalty for saving the pipeline state when an interrupt is 
received. 

3.2.4.3 Task switching 

Task switching occurs when a processor switches between programs to give 
the appearance of multiple simultaneously executing programs. The state of 
the program which is stopped at a task switch must be preserved so that it 
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may be resumed at a later time. The state of the program which is started 
must be properly placed into the machine before execution is resumed. 

The traditional way of accomplishing this is to use a timer and swap tasks 
on every timer tick, sometimes subject to prioritization and scheduling 
algorithms. In a simple processor, this can lead to a large overhead for saving 
both stacks to memory and reloading them on every context swap. A 
technique that can be used to combat this problem is programming ‘light 
weight’ tasks which use little stack space. These tasks can push their own 
parameters on top of existing stack elements, then remove their stack 
elements when terminating, thus eliminating the potentially more expensive 
saving and restoring of stacks for a ‘heavy weight’ process. 

Another solution is to use multiple sets of stack pointers for multiple 
tasks within the same stack memory hardware. 

3.3 OVERVIEW OF THE FORTH PROGRAMMING LANGUAGE 

3.3.1 Forth as a common thread 
Since the majority of modern stack machines have their roots in the Forth 
programming language, an introduction to the terms of this language is in 
order. 

The Forth programming language was invented by Charles Moore for 
control of telescopes in observatories using small computers (Moore 1980). 
Because of its roots, Forth stresses efficiency, compactness, flexible and 
efficient hardware/software interaction. At the same time. Forth is suffi¬ 
ciently powerful that it can and has been used for a large variety of general- 
purpose programming tasks including: database management, accounting 
software, word processors, graphics, expert systems, and scientific compu¬ 
tations. Appendix B contains a glossary of the primitive operations in the 
Forth language. 

Some of the advantages of programming in the Forth language include 
ease of program modification and debugging, extreme flexibility, a very 
quick compile/edit/test cycle, high portability across a wide variety of 
machines, and compact source and object code (Jonak 1986). Kogge (1982) 
describes threaded code software environments, with an emphasis on the 
underlying mechanisms of the Forth language. 

3.3.2 The Forth virtual machine 
In order to solve the original telescope control problem, Forth needed 
several important qualities. It had to be suitable for real-time control, highly 
interactive for easy use by nonprogrammers, and had to fit within severe 
memory space constraints. 

From these origins, the language took on two major features: the use of 
threaded code, and 0-operand stack instructions. In order to conceptualize 
the operation of the language, the Forth virtual machine is used as a model 
for computation. The Forth virtual machine has two stacks: a data stack and 
a return stack. Forth programs are actually an emulation of MSO machine 
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code running on the host hardware. Forth programs consist of very small 
subroutines that execute only calls to other subroutines and primitive stack 
operation instructions. Programs are built in a tree-like fashion, with each 
subroutine calling upon a small collection of underlying subroutines. 

It is easy to see that Forth is a natural machine language for 0-operand 
stack hardware as exemplified by the Canonical Stack Machine. 

It should be noted that even if a processor is designed as a Forth 
processor, it is still capable of executing any other high level language. This 
is because the primitives of the Forth language are defined at a very low 
level, and correspond to the machine code operations that would have to be 
present in any stack machine. Thus, a machine that is advertised as a ‘Forth 
machine’ is usually suitable for running other languages as well. 

3.3.2.1 Stack architecture/RPN 
The primitives of the Forth language include all the operations of the 
Canonical Stack Machine listed in Table 3.1. All the operations’ names not 
enclosed by l[...]’ correspond exactly to Forth function names. 

The bracketed names [IF], [CALL], [EXIT] and [LIT] correspond to 
internal Forth functions that are automatically compiled to support pro¬ 
grams. For example, [IF] would be compiled to perform a conditional 
branch when the Forth construct IF... THEN is encountered. [CALL] would 
be compiled any time a reference to a Forth word that is not a machine 
primitive operation is encountered. [EXIT] is compiled by the ; at the end of 
a Forth definition and by the word EXIT. Finally, [LIT] would be compiled 
every time a literal value such as 1234 is encountered in a program. 

Several Forth constructions such as LOOP, variables, and constants are 
not directly supported by the Canonical Stack Machine, but can be synthe¬ 
sized from simpler operations. Obviously, an efficient Forth language 
computer will have direct support for all frequently used Forth structures. 

3.3.2.Z Short, frequent procedure calls 
The main characteristic of Forth programs that separates Forth from most 
other languages is the high frequency of subroutine calls. Good Forth 
programming style encourages incremental program development and test¬ 
ing with small subroutines. Subroutines often only consist of 5 or 10 
instructions. A static frequency of approximately 50% of the instructions 
being subroutine calls is considered normal. 

This kind of software environment allows extraordinarily rapid and 
accurate program construction, and is especially effective in environments 
with limited memory capacity. It also encourages the use of machines with 
fast subroutine calls. 

3.3.3 Emphasis on interactivity, flexibility 
A major advantage of the Forth programming language is that it provides an 
unprecedented level of interactivity in its development environment. The 
development tools include an integrated incremental compiler and editor 
which allow interactive testing and modification of individual procedures. 
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The encouragement for writing small procedures and modular code allows 
easy and fast testing during development, with a greatly reduced need for 
fixing words after they are first written. The consensus among Forth 
programmers is that use of the Forth language reduces development time by 
a factor of 10 compared to other languages over a wide range of applications. 

Forth programs tend to emphasize flexibility for problem solving. Since 
Forth is an extensible language, new data and control structures may be 
added to the language to support specific application areas. This flexibility 
allows one or two programmers to solve a problem that might require a 
larger team effort in other languages, reducing project management over¬ 
head and thus magnifying the productivity increase. Forth has not been used 
extensively in extremely large programming efforts, so its effectiveness in 
very large applications is as yet unknown. 



Architecture of 16-bit systems 

In this chapter we shall discuss a representative selection of 16-bit stack 
computer designs. The designs have been chosen to span a wide range of 
implementation philosophies and tradeoffs. Section 4.1 discusses the char¬ 
acteristics of 16-bit systems. An important consideration is that 16-bit 
hardware is compact enough to allow for complete systems on a single chip 
for embedded control applications. 

The remaining sections discuss four different 16-bit stack computers. 
The sections are arranged in order of increasing integration level, from a 
system made with off-the-shelf discrete components to a highly integrated 
processor-on-a-chip. 

In section 4.2 we discuss the WISC CPU/16, a discrete component 
implementation of a generalized stack processor with a writable control 
store. The CPU/16 is a technology development platform designed for 
simplicity and flexibility. 

In section 4.3 we discuss the MISC M17 processor. The M17 is targeted 
at ‘low end’, price-sensitive applications. Consequently, it keeps its stacks in 
program memory to eliminate the cost of separate stack memory hardware. 

In section 4.4 we discuss the Novix NC4016, which was the first Forth 
chip to enter the marketplace. The NC4016 provides an intermediate range 
of price and performance, with dedicated off-chip stack memories. 

In section 4.5, we discuss the Harris RTX 2000, which is a high 
performance microcontroller based on the Novix NC4016 design. The RTX 
2000 uses a standard cell design approach, which enables it to include on- 
chip stack memory for speed and compactness. The standard cell approach 
also allows the addition of a hardware multiplier and counter/timers to the 
processor chip. 

The CPU/16, NC4016, and RTX 2000 are ML0 stack machines. The 
M17, in keeping with its emphasis on low cost, is an MS0 stack machine. 

4.1 CHARACTERISTICS OF 16-BIT DESIGNS 

The systems discussed here are 16 bits wide because that is the smallest 
configuration that makes sense for most commercial stack processor 
applications. 
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4.1.1 Good fit with the traditional Forth model 
The primary motivating factor for making Forth machines 16 bits wide is that 
the Forth programming model has traditionally been 16 bits. This is 
consistent with average Forth program sizes of less than 32K bytes and the 
implementation of most of the first Forth compilers on microprocessors with 
64K byte address ranges. 

4.1.2 Smallest interesting width 
A major reason that Forth has historically been a 16-bit language is that 8 
bits is too small for general-purpose computations and addressing data 
structures. While 12 bits was tried in some of the earliest minicomputers, 16 
bits seems to be the smallest integer size that is truly useful. Forth traditio¬ 
nally has not used more than a 16-bit computing model because it was 
developed before 32-bit microprocessors were available. 

16-bit machines are capable of addressing 64K of memory, which for a 
stack machine is a rather large program memory. 16-Bit machines have 
single precision integers in the range of —32 768 to +32 767 which is large 
enough for most computations. Using double precision (32-bit integers), a 
16-bit machine can represent integers in the range of —2 147 483 648 to 
+2 147 483 647, which is large enough for all but the most demanding 
applications. 

Of course, a machine with a 4-bit or 8-bit data path can be made to 
emulate a 16-bit machine. The result is generally unsatisfactory perfor¬ 
mance, because an 8-bit machine can be expected to be about half as fast as a 
16-bit machine when manipulating 16-bit data. Since the machines discussed 
in this chapter are all designed for high speed processing, all have 16-bit 
internal data paths. 

4.1.3 Small size allows integrated embedded system 

The three Forth chips discussed in this chapter (the M17, NC4016, and RTX 
2000) are all targeted at the embedded applications market. Embedded 
applications require a small processor with a small amount of program 
memory to satisfy demanding power, weight, size, and cost considerations. 
A 16-bit processor is often a good compromise that provides higher levels of 
performance than an 8-bit processor, which probably would need to spend a 
lot of time synthesizing 16-bit arithmetic operations, and a 32-bit processor, 
which is overkill for many applications. 

4.2 ARCHITECTURE OF THE WISC CPU/16 

4.2.1 Introduction 
The WISC Technologies CPU/16 was designed by this author as a very 
simple (in terms of TTL component count) stack machine with a good 
mixture of flexibility and speed. The WISC CPU/16 uses discrete MSI 
components throughout. It is a 16-bit machine that features a completely 
RAM-based microcode memory (writable control store) to allow full user 
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programmability. The CPU/16 is implemented as a pair of printed circuit 
boards that plug into an IBM PC compatible computer as a coprocessor. 

The name WISC comes from ‘Writable Instruction Set Computer’, 
although a more complete term for the technology used would be ‘WISC/ 
Stack’, since hardware stacks are an integral part of the design. 

The primary purpose for developing the CPU/16 was to investigate 
technology and design alternatives before designing the RTX 32P described 
in Chapter 5. The resulting product is a reasonably fast processor in its own 
right, and has a very simple and uncluttered design. The original wire- 
wrapped prototype for the CPU/16 fitted onto a single IBM PC expansion 
card (13 inches by 4 inches) with 16K bytes of program memory. The use of 
RAM for microcode memory and the simple microinstruction format makes 
the processor useful as a teaching tool for computer design courses. 

4.2.2 Block diagram 

Fig. 4.1 is an architectural block diagram of the CPU/16. 
The Data Stack and Return Stack are implemented as identical hardware 

stacks consisting of an 8-bit up/down counter (the Stack Pointer) feeding an 
address to a 256 by 16-bit memory. The stack pointers are readable and 
writable by the system to provide an efficient capability to access deeply 
buried stack elements. 

The ALU section includes a standard multifunction ALU built from 
74LS181 chips with a DHI register for holding intermediate results. By 
convention, the DHI register acts as a buffer for the top stack element. This 
means that the Data Stack Pointer actually addresses the element perceived 
by the programmer to be the second-to-top stack element. The result is that 
an operation on the top two stack elements, such as addition, can be 
performed in a single cycle, with the A side of the ALU reading the second 
stack element from the Data Stack and the B side of the ALU reading the 
top stack element from the Data Hi register. 

There are no condition codes visible to machine language programs. 
Add-with-carry and other multiple precision operations are supported by 
microcoded instructions that push the carry flag onto the data stack as a 
logical value (0 for carry clear, -1 for carry set). 

The DLO register acts as a temporary holding register for intermediate 
results within a single instruction. Both the DHI and the DLO registers are 
shift registers, connected to allow 32-bit shifting for multiplication and 
division. 

The Program Counter is connected directly to the memory address bus. 
This allows fetching the next instruction in parallel with data operations in 
the rest of the system. Thus, the system can overlap data operations 
involving the ALU and the Data Stack with instruction-fetching operations. 
In order to save the program counter for subroutine call operations, the 
Program Counter Save register captures the program counter value before it 
is loaded with the subroutine starting address. The Program Counter Save 
register is then pushed onto the Return Stack during the subroutine calling 
process. During subroutine returns, the saved Program Counter value is 
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Fig. 4.1 — CPU/16 block diagram. 
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routed from the Return Stack through the ALU to add 1 before storing as 
the new Program Counter value. This saves a Program Counter increment 
that would otherwise cost a clock cycle. 

Program memory is organized as 64K words of 16 bits. It is accessed on 
word boundaries only, but a microcoded byte-swapping operation is sup¬ 
ported to allow for manipulation of single-byte quantities. 

Microprogram Memory is a read/write memory containing 2K elements 
by 32 bits. The memory is addressed as 256 pages of 8 words each. The 
Microprogram Counter supplies an 8-bit page address, and microprograms 
execute within the 8-word page. This scheme allows supplying only 3 bits of 
the next microprogram instruction from the microinstruction, one bit of 
which is the result of a l-in-8 conditional microbranch selection. This allows 
conditional branching and looping during the execution of a single opcode. 

Instruction decoding is accomplished simply by loading an 8-bit opcode 
into the Microprogram Counter and using that as the page address to 
Microprogram Memory. Since the Microprogram Counter is built with 
counter hardware, operations can span more than one 8-microinstruction 
page if required. 

The Microinstruction Register holds the output of the Microprogram 
Memory, forming a 1-stage pipeline. This pipeline allows the next microin¬ 
struction to be accessed from Microprogram Memory in parallel with 
execution of the current microinstruction. This completely removes the 
delay of Microprogram Memory access time from the system's critical path. 
It also enforces a lower limit of two clock cycles on instructions. If an 
instruction only requires a single clock cycle, a second no-op microinstruc¬ 
tion must be added to allow the next instruction to flow through the pipeline 
properly. 

The Host interface block allows the CPU/16 to operate in two possible 
modes: Master Mode and Slave Mode. In Slave Mode, the CPU/16 is 
controlled by the personal computer host to allow program loading, micro¬ 
program loading, and alteration of any register or memory location on the 
system for initialization or debugging. In Master Mode, the CPU/16 runs its 
program freely, while the host computer monitors a status register for a 
request for service. While the CPU/16 is in master mode, the host computer 
may enter a dedicated service loop. Alternatively, the host computer may 
perform other tasks, such as prefetching the next block of a disk input stream 
or displaying an image, and only periodically poll the status register. The 
CPU/16 will wait for service from the host for as long as is necessary. 

4.2.3 Instruction set summary 

The CPU/16 has two instruction formats: one for invoking microcoded 
opcodes and one for subroutine calls. 

Fig. 4.2(a) shows the operation instruction format used to invoke 
microcoded instructions. Since 256 possible opcodes are supported by the 
256 pages of Microcode Memory, only 8 bits of each instruction are needed 
to specify the opcode. This results in an instruction format for a microcoded 
opcode which has the highest 8 bits set to ones. This allows the subroutine 
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(a) 

111111 
54321098 76543210 

11111111 opcode 

Bits Function 

8-15 All 1, specifying an operation instruction 

0-7 Opcode 

111111 
5432109876543210 

address 

Bits Function 

0-15 Subroutine address 
Note that bits 8-15 of the address must not all be 1 

Fig. 4.2 — CPU/16 instruction formats, (a) Operation, (b) Subroutine call. 

call format, shown in Fig. 4.2(b), to be any address that does not have all 8 
highest bits set to 1. The strategy eliminates the constraint of 15-bit 
subroutine addresses found on the other designs in this chapter. A disadvan¬ 
tage of this strategy is that parameters for instructions cannot be contained 
in the instruction word. As a consequence, targets for conditional branches 
are stored in the memory word after the instruction, as opposed to a small 
offset within the instruction. This design tradeoff was made in the interest of 
minimizing the amount of instruction decoding logic used. 

Since the CPU/16 uses RAM chips for the microcode memory, the 
microcode may be completely changed by the user if desired. The standard 
software environment for the CPU/16 is MVP-FORTH, a FORTH-79 
dialect (Haydon 1983). Some of the Forth instructions included in the 
standard microcoded instruction set are shown in Table 4.1. Of course, 
other software environments are possible, but none except Forth has been 
implemented. 

One thing that is noticeable in this instruction set is the diversity of 
instructions supported. The instructions in Table 4.1(a) are a very large set 
of Forth primitive operations. Table 4.1(b) shows some common Forth word 
combinations that are available as single instructions. Table 4.1(c) shows 
some words that are used to support underlying Forth operations such as 
subroutine call and exit. Table 4.1(d) lists some high level Forth words that 
use specialized microcode to speed up their execution. Table 4.1(e) shows 
words which were added to support extended precision integer operations 
and 32-bit floating point calculations. 

Execution time of instructions varies according to the considerable range 
in complexity of the instructions. Simple instructions that manipulate data 



Sec. 4.2] ARCHITECTURE OF THE WISC CPU/16 55 

on the stack such as + and SWAP take 2 or 3 microcycles each. Complex 
instructions take more clock cycles (e.g. Q+, which is 64-bit addition, takes 
18 cycles) but are still much faster than comparable high level code. If 
desired, microcoded loops can be written that can potentially last thousands 
of clock cycles for block memory moves and other repetitive operations. 

As mentioned earlier, each instruction invokes a sequence of microin¬ 
structions on a Microprogram Memory page corresponding to the 8-bit 
opcode for the instruction. Fig. 4.3 shows the microcode format for a 
microinstruction. The microcode used is horizontal, which means that there 
is only one format for microcode which is broken into separate fields to 
control different portions of the machine. 

Because of the simplicity of the stack machine approach and the CPU/16 
hardware, only 32 bits are needed in each microinstruction. This 32-bit 
format can be contrasted with the microinstruction formats of 48 bits and 
wider found in other horizontally microcoded machines, such as any 
machine using the AMD 2900 series bit-slice components. This simplicity 
makes microprogramming not much harder than assembly language pro¬ 
gramming on a conventional machine. 

As an example, the pseudocode description for the addition operation 
on the Canonical Stack Machine was: 

TOSREG <= TOSREG + POP(DS) 

The same operation in CPU/16 microcode would be written as the 
microinstruction: 

SOURCE=DS ALU=A + B DEST=DHI INCfDPj 

Where the microoperation SOURCE=DS routes the current top element of 
the hardware Data Stack onto the Data Bus, ALU=A + B directs to ALU to 
add the A input (from the Data Bus) and the B input (the top-of-stack 
element buffered in DHI), and DEST= DHI deposits the result back into 
the Data Hi register. Meanwhile, the INC[DPJ microoperation increments 
the Data Stack Pointer after the Data Stack has been read, thus popping the 
stack. 

4.2.4 Architectural features 

The CPU/16 is very similar to the Canonical Stack Machine. This probably 
has a lot to do with the fact that both were designed by this author, and the 
major goal for both the Canonical Stack Machine and the CPU/16 is 
simplicity. 

The major efficiency improvement of the CPU/16 over the Canonical 
Stack Machine is the replacement of the Memory Address Register with the 
Program Counter. This has the advantage of allowing the next instruction to 
be fetched without tying up the data bus, so that stack computations can be 
overlapped with instruction fetches. A disadvantage of this technique is that 
the @ and ! operations require overwriting the Program Counter with the 
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Table 4.1 —CPU/16 instruction set summary 

4.1(a) Forth primitives:(see Appendix B for descriptions) 

1 DDROP 
+ DDUP 
+ ! DNEGATE 
— DROP 
0 DSWAP 
0> DUP 
0= I 
OBRANCH I’ 
1 + J 
1- LEAVE 
2* LIT 
2/ NEGATE 
> NOP 
PICK NOT 
ROLL OR 
— OVER 
>R R> 
?DUP R@ 
@ ROT 
ABS S->D 
AND SWAP 
BRANCH U* 
D! U/MOD 
D + XOR 
D@ 

4.1(b) Compound Forth primitives 

@+ 
@- 
DROP ; 
DROP DUP 
I + 

I + @ 
OVER + 
OVER - 
R> DROP 
R>SWAP >R 
SWAP - 
SWAP DROP 
DUP @ SWAP 1 + (fetch & increment address) 
DUP ROT ROT ! 1- (store & decrement address) 
@ @ (indirect fetch) 
@ ! (indirect store) 
DUP @ @ 1 ROT +! (auto-postincrement indirect fetch for software 

stack) 
-1 OVER +! @ ! (auto-predecrement indirect store for software stack) 
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Table 4.1 - Continued. 
4.1(c) Special words 

Opcode Data stack Return stack 

DOCOL _> —>ADDR 
Performs a subroutine call 

SEMIS -> ADDR—► 
Performs a subroutine return 

HALT —► -> 

Returns control to host processor 
SYSCALL N—> —► 

Requests I/O service number N from host 
DOVAR —»ADDR —> 

Used to implement Forth variables 
DOCON —>N 

Used to implement Forth constants 

4.1(d) Support words for high level operations 

The following Forth operations have microcoded support words for inner loops or 
the run-time action: 

SP@ (fetch contents of data stack pointer) 
SP! (initialize data stack pointer) 
RP@ (fetch contents of return stack pointer) 
RP! (initialize return stack pointer) 
MATCH (string compare primitive) 
ABORT" (error checking & reporting word) 
4-LOOP (variable increment loop) 
/LOOP (variable unsigned increment loop) 
CMOVE (string move) 
<CMOVE (reverse order string move) 
DO (loop initialization) 
ENCLOSE (text parsing primitive) 
LOOP (increment by 1 loop) 
FILL (block memory initialization word) 
TOGGLE (bit mask/set primitive) 

4.1(e) Extended math & floating point support words 

Opcode Data stack Return stack 

<UDNORM> EXP1 UD2 EXP2 UD4 
Floating point normalize of unsigned 32-bit mantissa 

ADC N1 N2 CIN -» N3 COUT 
Add with carry. CIN and COUT are logical flags on the stack. 

ASR N1—» N2 
Arithmetic shift right. 
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Table 4.1 - Continued. 

Opcode Data stack Return stack 

BYTESWAP Nl—»N2 -» 
Swap high and low bytes within Nl. 

D+! DADDR—» -» 
Sum D into 32-bit number at ADDR. 

D>R D-* —*D 
Move D to return stack. 

DLSLN D1N2—»D3 — 
Logical shift left of D1 by N2 bits. 

DLSR Dl—>2 D2 -» 
Logical shift right of Dl by 1 bit. 

DLSRN Dl N2—* D3 -* 
Logical shift right of Dl by N2 bits. 

DR> —»D D—► 
Move D from return stack to data stack. 

DROT Dl D2 D3—D2 D3 Dl — 
Perform double precision ROT. 

LSLN Nl N2—> N3 -» 
Logical shift left of Nl by N2 bits. 

LSR " Nl —»N2 -» 
Logical shift right of Nl by 1 bit. 

LSRN Nl N2—♦ N3 -» 
Logical shift right of Nl by N2 bits. 

Q + Q1Q2-* Q3 
64-bit addition. 

QLSL Ql—»Q2 -*■ 
Logical shift left of Ql by 1 bit. 

RLC Nl CIN —»N2 COUT -» 
Rotate left through carry Nl by 1 bit. CIN is carry-in; COUT is 

carry-out. 
RRC N1 CIN —»N2 COUT -+ 

Rotate right through carry Nl by 1 bit. CIN is carry-in; COUT is 
carry-out. 

TDUP Dl N2—* Dl N2 Dl N2 -> 
Duplicate a temporary floating point number (32-bit mantissa, 16-bit 

integer). 

Note: The CPU/16 uses RAM microcode memory, so the user may add or modify 
any instructions desired. The above list merely indicates the instructions supplied 
with the standard development software package. 

memory address, then restoring the Program Counter with the contents of 
the Program Counter Save register. Obviously the program counter and a 
memory address register (or the DHI register) could be multiplexed onto 
the RAM Address bus, but this would introduce added complexity and 
components. 

The DLO register was added to the design primarily to provide for 
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efficient 32-bit shifting to support multiplication and division. However, the 
presence of an intermediate storage register measurably improves perfor¬ 
mance, because four intermediate results are available at any one time 
(DHI, DLO, Data Stack, and a temporary result pushed onto the Return 
Stack). For example, the DLO register is used as the intermediate storage 
location for the SWAP operation, which is conceptually cleaner than using 
the Return Stack for this purpose. 

An important implementation feature of the CPU/16 is that all resources 
on the machine can be directly controlled by the host computer. This can be 
done because the host interface supports Microinstruction Register load and 
single-step clock features. With these features, any microinstruction desired 
can be executed by first loading values into any or all registers in the system, 
loading a microinstruction, cycling the clock, then reading data values back 
to examine the results. This design technique makes writing microcode 
extremely straightforward and avoids the need for expensive microcode 
development support hardware. It also makes diagnostic programs very 
simple to write. 

The CPU/16 is not designed to handle interrupts. 

4.2.5 Implementation and featured application areas 
The CPU/16 is constructed using conservative (some might even say obsol¬ 
ete) 74LS00 series chips and relatively slow 150 ns static RAMs for stack and 
program memories. The design priorities for the CPU/16 are, in decreasing 
order of importance: simplicity, minimum design & development costs, 
compactness, flexibility, and speed. The CPU/16 clock cycle time is 280 ns, 
with an average of three clock cycles per instruction. 

Discrete components were chosen because they are inexpensive and 
require little initial development investment when compared to a single-chip 
gate array. Discrete component designs are also much easier and cheaper to 
change for bug extermination and design upgrades. This is in keeping with 
the philosophy of a design exploration project. It also results in a much 
slower processor than could be produced using a single-chip design. Even 
so, at the time of its introduction, the CPU/16 was speed competitive with 
the slower versions of the Novix NC4016 (the leading stack machine of the 
time) when running many application programs. 

In order to allow increased flexibility and to limit the required microin¬ 
struction width, the CPU/16 uses discrete ALU chips (74LS181) instead of 
bit-sliced components. The primary application area is general-purpose 
stack processing as a coprocessor for IBM PC family of personal computers. 
While the redefinable instruction set makes the machine suitable for most 
languages, the primary application language is Forth. 

An additional application area that is attractive is that of a teaching aid in 
computer architecture courses. Since the machine is constructed using less 
Uian 100 simple TTL chips including memory, a student can readily 
understand the design. An additional result of using discrete component 
technology is that all signals in the system are accessible with external 
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3 3 
1 !o 

2 
9 

2 2 2 
8 7 6 

2 2 
5 4 

2 
3 

2 
2 

2 
1 

2 1 
0 9 

1 1 
8 7 

1 1 
6 5 

1 1 
4 3 

1 1 1 
2 10 9 8 7 6 5 4 3 2 10 

e c S cond nxt d p dhi dlo rp dp alu dest source 

Bits Function 

31 Execute next macroinstruction when 0 

30 ALU carry in 

29 Shift input for ALU/DLO shifters 

26-28 Condition code select for bit 0 of next microaddress 
OCX) Always 0 011 DLO lowest bit 110 ALU equal to 0 bit 
001 ALU carry out 100 DHI lowest bit 111 Always 1 
010 DHI highest bit 101 ALU sign bit 

24-25 Bits 1 and 2 of next microaddress 

23 Increment MPC when 0 

22 Fetch and start decode of next macroinstruction when 0 

21 Increment the PC when 0 

19-20 DHI shift control 
00 Load DHI from ALU 
01 DHI shift left 

10 DHI shift right 11 nop 

17-18 DLO shift control 
00 Load DLO from bus 
01 DLO shift left 

10 DLO shift right 11 nop 

15-16 RP increment/decrement 
00 Decrement RP 01 Increment RP 11 nop 

13-14 DP increment/decrement 
00 Decrement DP 01 Increment DP 11 nop 

8-12 ALU function select (not all functions are useful) 
00000 A + CIN 10001 A nor B 11010 B 
00110 A - B - not(CIN) 10011 0 11011 A and B 
01001 A + B + CIN 10100 A nand B 11100 -1 
01100 A + A + CIN 10101 not B 11110 A or B 
01111 A - not(CIN) 10110 Axor B 11111 A 
10000 not A 11001 Axnor B 

4-7 Bus destination select 
0000 none 0101 PC 1010 MPC 
0001 DP 0110 RAM 1011 MRAM low 16 bits 
0010 DS 0111 DLO 1100 MRAM high 16 bits 
0011 RP 1000 DHI 
0100 RS 1001 Status register 

0-3 Bus source select 
0000 none 0100 RS 1011 MRAM low 16 bits 
0001 DP 0101 PCSAVE 1100 MRAM high 16 bits 
0010 DS 0110 RAM 1111 ALU output 
0011 RP 0111 DLO 

Fig. 4.3 — CPU/16 microinstruction format. 
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probes, making the system suitable for experimentation by students learning 
how hardware, software, and microcode interact. 

The information in this section is derived from the CPU/16 Technical 
Reference Manual (Koopman 1986). Additional information about the 
CPU/16 may be found in Haydon & Koopman (1986) and Koopman & 
Haydon (1986). Also, Koopman (1987b) describes a conceptual WISC 
architecture that is extremely similar to the CPU/16. 

4.3 ARCHITECTURE OF THE MISC M17 

4.3.1 Introduction 

The MISC M17 microprocessor was designed by Minimum Instruction Set 
Computer, Inc., as a low cost, embedded microprocessor. In order to 
achieve low system cost, the M17 keeps its two stacks in program memory 
with a few top-of-stack buffer registers on the chip. Other design tradeoffs 
have been made to keep both chip production costs and total system costs 
low, while maintaining reasonably high system performance. 

The MISC M17 is aimed at high volume embedded control applications 
where a low cost processor chip with reasonably high performance (com¬ 
pared to other stack machines — very high performance when compared to 
standard microcontrollers) is required. 

4.3.2 Block diagram 

Fig. 4.4 shows the block diagram of the M17. 
Both the Data Stack and the Return Stack reside in program memory, 

with the top elements of each held in on-chip registers for speed. The X, Y, 
and Z registers hold the top three elements of the data stack, with X being 
the top element. These registers are connected with multiplexers so that 
values can be transferred between registers in a single clock cycle. Simulta¬ 
neously, the Z register can be read from or written to the portion of the stack 
resident in program memory. Thus, a Data Stack popping operation (Forth 
DROP operation) is accomplished by simultaneously reading Z from 
memory, copying Z to Y, and copying Y to X. Similarly, a Data Stack 
pushing operation (such as the Forth DUP operation) is accomplished by 
copying X to Y while retaining the old value of X, copying Y to Z. and 
writing Z to program memory. 

The LASTX register can be updated with the contents of the X register 
on each instruction cycle. It therefore contains the top-of-stack value that 
was overwritten by the previous instruction, which is useful for many 
instruction sequences. 

The ALU on the M17 is designed to generate all possible ALU functions 
simultaneously, only at the last moment selecting the correct function 
output for writing back to the X and/or Y registers. This technique allows the 
ALU delay to overlap the instruction decoding time, since once the 
instruction is decoded its only task is to select the correct ALU output from 
the functions already computed. 
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CONTEXT OUTPUT 

REGISTER n LATCH 
I/O BUS 
(8 BITS) 

LASTX 

A ^ B 

ALU 

CONTROL 

LOGIC 

SHIFTER 

INSTRUCTION 
CACHE 

(6 REGISTERS) 

DATA 1 16 BITS 

Fig. 4.4 — M17 block diagram. 
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The M17 has an 8-bit I/O bus that allows concurrent operations in the 
ALU while performing data transfers. This feature, found on all the 16-bit 
single-chip Forth machines discussed here, allows high speed I/O without 
tying up the memory data bus. 

The Return Stack is kept in program memory, just as the Data Stack is. 
The top element of the Return Stack is buffered in the INDEX register. The 
INDEX register doubles as a count-down counter for use in program loops 
and the instruction repeat feature. 

The Instruction Pointer is a conventional program counter that can be 
loaded from the Instruction Register for subroutine calls, from the memory 
data bus for branches, or from the INDEX register for subroutine returns. 
The INDEX register can also be loaded from the Instruction Pointer to save 
the return address for subroutine calls. 

The Return Stack Pointer is an up/down counter that contains the 
memory address of the top element of the return stack resident in program 
memory (which is actually the second-from-top element visible to the 
programmer, since the INDEX register contains the top element). Simi¬ 
larly, the Data Stack Pointer points to the top data stack element resident in 
program memory, which is actually the fourth element on the stack since the 
top three elements are buffered in X, Y, and Z. The data stack grows from 
high memory locations to low memory locations. The return stack grows up 
from low memory locations to high memory. With this arrangement, the 
free space between the top of the data stack and top of return stack can be 
shared for more efficient use of memory space. 

The M17 directly addresses five segments of up to 64K words of 16-bit¬ 
wide memory. Byte swapping, byte packing, and byte unpacking instruc¬ 
tions are available to allow access to 8-bit quantities. The M17 provides five 
signal pins to indicate which memory space is active: data stack, return 
stack, code space, A buffer, and B buffer. The activated pin indicates which 
address space is being used by the address bus. In simple systems, these pins 
can be ignored. For somewhat larger systems, each pin can control its own 
memory chips, providing five independent banks of 64K words of memory. 
Using a companion memory controller chip, up to 16M words of memory 
can be addressed. 

The M17 takes two clock cycles for each instruction: one clock cycle to 
load the instruction from program memory, and another clock cycle to 
perform the operation while doing a read from or write to one of the stacks in 
program memory. By performing two-cycle instruction execution, the 
memory bus is kept continuously busy, and simple systems can operate with 
only two 8-bit memory packages. 

The M17 also has six instruction cache registers. These registers form a 
short history buffer that retains sequences of consecutive instructions as they 
are executed. If a repeat sequence is triggered with a special instruction, 
from one to six of these retained instructions are formed into a loop and 
repeated until an exit condition is true. The loop executes at one clock cycle 
per instruction instead of two on the second and subsequent iterations, since 
instructions do not need to be fetched from memory. In order to simplify the 
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interrupt and control logic, these loops are required to be properly aligned 
within an address range evenly divisible by 8. The sequence is interruptible, 
but the interrupt service routine is responsible for saving a special flag if it 
intends to use a repeat sequence itself. 

A final feature of the M17 is that it can support variable length clock 
cycles by using an asynchronous memory interface. In the asynchronous 
mode of operation, the M17 provides a memory request signal for each 
memory cycle. The responding memory device is responsible for asserting a 
device-ready signal when its data is valid. This handshaking process actually 
eliminates the need for an oscillator, and results in asynchronous operation 
of the system. One advantage of this scheme is that different speed memory 
devices may be used with different device-ready delays to avoid wasting 
memory bandwidth. Another advantage is that a very short delay can be 
provided for clock cycles that do not address memory, allowing internal 
operation cycles to proceed faster than memory reference cycles. In extre¬ 
mely cost sensitive applications, an ordinary clock oscillator can be used to 
run the entire system. 

4.3.3 Instruction set summary 
Fig. 4.5 shows the instruction formats for the M17. Instructions are accom¬ 
plished in two clock cycles: one for the instruction fetch, and one for the 
operation and stack memory access. All of the Canonical Stack Machine’s 
primitive operations listed in Table 3.1 can be executed in a single instruc¬ 
tion cycle (two clock cycles). The details of operation of some instructions 
are slightly different on the M17 to accomplish single-instruction-cycle 
execution. For example, a memory store operation does not pop the data 
and address from the stack because this would require two additional 
memory transactions. 

Fig. 4.5(a) shows the subroutine call instruction. A subroutine call is 
made by using the address of the subroutine (which must be an even address) 
as the instruction. The zero in bit 0 of the instruction designates a subroutine 
call. This forces subroutines to start on even memory locations, but allows 
code to span the entire 64K words of address space. 

The M17 has three conditional instructions: SET, RETURN, and 
JUMP. Fig. 4.5(b) shows the format of a generic conditional instruction. 
Bits 6-15 indicate which conditions are selected as inputs into a logical OR 
condition evaluation function. For example, if bits 15 and 13 are set, a ‘less 
than or equal to zero’ condition is selected. When bit 5 is set, it causes a 
logical inversion of the condition value. For example, if bits 15,13, and 5 are 
set, a ‘greater than zero’ condition is selected. Bit 4 controls the INDEX 
register and its function. For RETURN, it allows programmer control of the 
return stack drop. For SET and JUMP it selects a test for zero and 
decrement INDEX step. In this way many useful conditions based on the 
data in X, Y, Z, or INDEX can be created in one instruction step. 

It is important to note that conditional instructions in the M17 do not 
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(a) 
5432109876543210 

address 0 

Bits Function 

1 -15 Subroutine address, aligned on an even byte 

0 Constant vafue of 0 

(b) 

1 i 1 1 1 1 
5 £ 3_ _2 1 0 9 8 7 6 5 4 3 2 1 0 

E n 
1 

e u o £l b s f n t □ 
Bits 

15 
14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

2-3 

0-1 

(c) 

Function 

Condition select: X = 0 

Condition select: X = -1 

Condition select: sign bit of X 

Condition select: X = Y 

Condition select: X - Y underflows 

Condition select: X + Y overflows 

Condition select: carry out of X + Y 

Condition select: borrow in of X - Y 
Condition select: sign bit of Z 

Condition select: user flag value 

Invert value of ORed condition result 

Test INDEX for 0 with decrement 

Conditional instruction select 
00 Set instruction 11 Conditional jump 
01 Conditional return 

Constant 01 specifies conditional instruction 

i 
5 

i 
4 

1 
3 

1 
2 

1 
1 

1 
0 9 8 7 6 5 4 3 2 1 0 

E nls e ulo c b s f n t d0 0 1 

Bits Function 

5-15 Condition selection as shown in Figure 4.5b 
4 Test INDEX for 0 with decrement 
3 Pop data stack 

0-2 Constant 001 specifies set user flag instruction 

Fig. 4.5 — M17 instruction formats, (a) Subroutine call, (b) Conditional instruction 
template, (c) Set user flag. 
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(d) 

1 
5 

1 

11 

1 
3 

1 
2_ 

1 
1 

i 
0 9 8 7 6 5! 4 3 2 10 

0 Ini Is e; y lo| c 5 f Jn s 0 10 1 

Bits Function 

5-15 Condition selection as shown in Figure 4.5b 
4 Special loop select 

0-3 Constant 0101 specifies conditional return 

1 
5 

1 
4 

1 
3 

1 
2 

1 
11 

|1 
0 9 8 7 6 5 4 3 2 10 

0 1 
nis e u ole b 1 s |f n t 110 1 

Bits Function 

5-15 Condition selection as shown in Figure 4.5b 

4 Test INDEX for 0 with decrement 
0-3 Constant 1101 specifies conditional jump 

(f) 
1 
5 

1 
£ 

1 3_ 1 [21 
11 
10 9 8 7 6 5 4 3 2 1 0 

0 :x q 
3 

alu ys lz| zs 011I 

Bits Function 

15 Data stack pointer latch enable 

14 X latch enable (from ALU output) 
13 LASTX latch enable 

12 Shift/rotate direction 
0 Shift left 1 Shift right 

8-11 ALU function select 
0000 NOT 1000 + 
0001 OR 1001 - 
0010 AND 1010 multiply step 
0011 XOR 1011 divide step 
0100 Y 1100 byte pack/unpack 
0101 increment 1101 byte swap 
0110 decrement 1110 bit shift 
0111 negate 1111 bit rotate 

6-7 Y Register source 
00 z 10X 
01 ALU output 11 Y 

5 Z Register latch enable 
3-4 Z Register source 

00 Shift z 10 Y 
01 RAM data bus 11 X 

0-2 Constant 011 specifies process instruction 

Fig. 4.5 — M17 instruction formats, (d) Conditional return, (e) Conditional 
(f) Process. 
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(g) 
1 i 1 1 1 1 
5 4_ 3 2 10 9 8 76 5 43 2 1 0 

El s e d route ys z zs 1 1 l| 

Bits Function 

15 Data stack address 

14 Source latch enable 

13 LASTX latch enable 

12 Destination latch control 
0 Read 1 Write 

8-11 Routing function select 
0000 Read = 0/Write = intr enable 1000 Bias [ (RSP) <-> X] 
0001 I/O data (lower byte) 1001 INDEX <-> X 
0010 Return Stack Pointer 1010 Literal 
0011 Read = remndr/Write = intr disable 1011 Reserved 
0100Z 1100 X addr, Y data, RS seg 
0101 Data stack pointer 1101 X addr, Y data, DS seg 
0110 Context register 1110 X addr, Y data, A seg 
0111 LASTX 1111 X addr, Y data, B seg 

6-7 Y Register source 
00 z 10X 
01 ALU output 11 Y 

5 Z Register latch enable 
3-4 Z Register source 

00 Shift Z 10 Y 
01 RAM data bus 11 X 

0-2 Constant 111 specifies access instruction 

Fig. 4.5 — M17 instruction formats, (g) Access. 

change the data on the stack. They simply extract a condition code value 
from the data in the system and perform a conditional operation. For 
example, selecting the carry out condition (bit 9) will give a carry bit as if X 
and Y were added, but does not actually modify the contents of either X or 
Y. The results of the conditional evaluation are not retained unless the SET 
instruction is used. 

Fig. 4.5(c) shows the format of the SET conditional instruction. This 
instruction sets the User Flag, which may be thought of as a conventional 
condition code register, with the value of the condition code selected by bits 
4—15. The User Flag can be tested by other instructions in the program for 
later branching. Bit 3 specifies whether the top stack element is to be popped 
(equivalent to a Forth DROP operation) after the evaluation is performed. 

Fig. 4.5(d) shows the format of the conditional subroutine RETURN 
instruction. When bit 4 is 0, the instruction performs as a conditional 
subroutine return, performing the return and popping the return address 
from the Return Stack (resident in the INDEX register) only if the condition 
evaluates as true. When bit 4 is set to 1, the branch to the address at the top 
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of the Return Stack is still made, but the return stack is only popped if the 
condition is false. This is a convenient way of implementing a BEGIN... 
UNTIL_FALSE conditional control structure that stores the start address of 
the loop in INDEX and uses data stack conditions for determining when to 
terminate. 

A conditional JUMP instruction is shown in Fig. 4.5(e). This instruction 
evaluates the specified condition and jumps if it is true. The destination 
address is stored at the memory location after the JUMP instruction. If the 
jump condition is false, the M17 skips the jump destination value and 
executes the instruction in the next memory location (the second word after 
the JUMP instruction). The JUMP instruction can be used to implement a 
countdown loop using the INDEX register by setting bit 4 to 1. 

Fig. 4.5(f) shows the PROCESS instruction format. This instruction has 
several independent control fields, reminiscent of the horizontal microcode 
format seen in the CPU/16. Bits 3-5 specify control for the Z register, bits 
6-7 for the Y register, bit 13 for the LASTX register, and bit 14 for the X 
register. Additionally, bits 8—12 select the ALU/shifter function to be 
performed, with the results loaded into the X or Y register. Finally, bit 15 
can cause the Data Stack Pointer to be updated by the instruction. 

Fig. 4.5(g) shows the ACCESS instruction format. This instruction has a 
very similar format to the PROCESS instruction. The major difference is 
that bits 8-11 specify a source or a source/destination pair for routing data 
around the processor. Bits 12 and 14 control the updating of the source and 
destination registers, allowing exchanges between internal registers. 

The M17 handles interrupts as a hardware-forced subroutine call to 
memory address 0. Another address can be supplied by the interrupting 
device. It also has a context register which allows saving the state of the 
processor when receiving an interrupt. 

4.3.4 Architectural features 
The biggest difference between the M17 and the Canonical Stack Machine 
described in Chapter 3 is that the M17’s stack memory and program memory 
accesses use the same bus, and may reside in the same memory chips. In 
order to maintain a reasonably high level of performance, the M17 buffers 
the top three Data Stack elements and the top Return Stack element in 
internal registers. 

In contrast to the single internal bus used by the Canonical Stack 
Machine, the M17 provides a rich interconnect structure between registers. 
These interconnects not only allow moving data along the LASTX/X/Y/Z 
register chain to perform pushes and pops, but also allow routing to perform 
fairly complex stack manipulations within a single decode/execute clock 
cycle pair. 

Since stacks are kept in program memory, a multiplexer is used to select 
the address to be fed to program memory. An advantage of placing stacks in 
program memory is that the amount of information that must be saved from 
the chip on a context swap is quite low. Instead of copying the elements of an 
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on-chip stack into a holding area of main memory, the top-of-stack registers 
can be flushed to memory and the stack pointers redirected to point to a 
different memory block to activate a new task. 

4.3.5 Implementation and featured application areas 
The M17 is implemented using 6600 gates on 2.0 micron HCMOS gate array 
technology, packaged in a 68-pin Plastic Leadless Chip Carrier (PLCC). 
This technology choice is meant to keep development and production costs 
low while providing reasonably high performance. The main off-chip 
components required for operation are a 16-bit-wide bank of memory to 
hold the program and stacks. 

The maximum clock speed on the M17 is approximately 15 MHz using 30 
ns static RAMs, and 6 MHz using 120 ns static RAMs. Each instruction 
takes two clock cycles. Sequences stored in the six-element instruction cache 
execute at the rate of one clock cycle per instruction. 

Several features of the MISC M17 are directed to the designer of small 
volume, high performance products. Example applications include remote 
sensing for smoke stacks, mines, hazardous areas, and remote equipment 
installations. The decision to place stacks in program memory results in 
lower system cost and complexity. The asynchronous memory bus protocol 
allows coupling high speed processing and data transmission operations 
without complicating the interface to low speed data acquisition devices. 

The information in this section is derived from the MISC M17 Technical 
Reference Manual (MISC 1988). 

4.4 ARCHITECTURE OF THE NOVIX NC4016 

4.4.1 Introduction 
The Novix NC4016, formerly called the NC4000, is a 16-bit stack-based 
microprocessor designed to execute primitives of the Forth programming 
language. It was the first single-chip Forth computer to be built, and 
originated many of the features found on subsequent designs. Intended 
applications are real-time control and high speed execution of the Forth 
language for general-purpose programming. 

The NC4016 uses dedicated off-chip stack memories for the Data Stack 
and the Return Stack. Since three separate groups of pins connect the two 
stacks and the RAM data bus to the NC4016, it can execute most instruc¬ 
tions in a single clock cycle. 

4.4.2 Block diagram 
Fig. 4.6 shows the block diagram of the NC4016. 

The ALU section contains a 2-element buffer for the top elements of the 
data stack (T for Top data stack element, and N (Next) for the second-from- 
top data stack element). It also contains a special MD register for support of 
multiplication and division as well as an SR register for fast integer square 
roots. The ALU may perform operations on the T register and any one of 
the N, MD, or SR registers. 
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The Data Stack is an off-chip memory holding 256 elements. The data 
stack pointer is on-chip and provides a stack address to the off-chip memory. 
A separate 16-bit stack data bus allows the Data Stack to be read or written 
in parallel with other operations. As noted previously, the top two Data 
Stack elements are buffered by the T and N registers in the ALU. 

The Return Stack is a separate memory that is very similar to the Data 
Stack, with the exception that only the top return stack element is buffered 
on-chip, in the Index register. Since Forth keeps loop counters as well as 
subroutine return addresses on the return stack, the Index register can be 
decremented to implement countdown loops efficiently. 

The stacks do not have on-chip underflow or overflow protection. In a 
multitasking environment, an off-chip stack page register can be controlled 
using the I/O ports to give each task a separate piece of a larger than 256- 
word stack memory. This gives hardware protection to avoid one task 
overwriting another task’s stack, and reduces context swapping overhead to 
a minimum. 

The Program Counter points to the location of the next instruction to be 
fetched from external program memory. It is automatically altered by the 
jump, loop, and subroutine call instructions. Program memory is arranged 
in 16-bit words. Byte addressing is not directly supported. 

The NC4016 also has two I/O busses leading off-chip on dedicated pins. 
The B-port is a 16-bit I/O bus, and the X-port is a 5-bit I/O bus. The I/O ports 
allow direct access to I/O devices for control applications without stealing 
bandwidth from the memory bus. Some bits of the I/O ports can also be used 
to extend the program memory address space by providing high order 
memory address bits. 

The NC4016 can use four separate 16-bit busses for data transfers on 
every clock cycle for high performance (program memory, Data Stack, 
Return Stack, and I/O busses). 

4.4.3 Instruction set summary 

The NC4016 pioneered the use of unencoded instruction formats for stack 
machines. In the NC4016 the ALU instruction is formatted in independent 
fields of bits that simultaneously control different parts of the machines, 
much like horizontal microcode. The NC4016, and many of its Forth 
processor successors, are the only 16-bit computers that use this technique. 
Using an unencoded instruction format allows simple hardware decoding of 
instructions. Fig. 4.7 shows the instruction formats for the NC4016. 

Fig. 4.7(a) shows the instruction format for subroutine calls. In this 
format, the highest bit of the instruction is set to 0, and the remainder of the 
instruction is used to hold a 15-bit subroutine address. This limits programs 
to 32K words of memory. 

Fig. 4.7(b) shows the conditional branch instruction format. Bits 12 and 
13 select either a branch if T is zero, an unconditional branch, or a 
decrement and branch-if-zero using the index register for implementing 
loops. Bits 0-11 specify the lowest 12 bits of the target address, restricting 
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(a) 

1 11111 

5 432109876543210 

E address 

Bits Function 

15 Constant value of 0 
0-14 Subroutine address 

1 1 
5 4 

1 1 
3 2 

11 1 
109876543210 

1 0 cs address 

Bits Function 
14-15 Constant 10 specifies conditional instruction 

12-13 Condition select 
01 Branch if T = 0 11 Loop on INDEX register 
10 Unconditional branch 

0-11 Low 12 bits of branch address 

1111 
543 2 

1 1 1 
1 09 87 6 5 4 3 2 1 0 

100 0 alu Ll ii }r Is li d 
_ 

sc 

Bits Function 

12-15 Constant 1000 specifies ALU operation 

9-11 ALU function select 
000 T 
001T and Y 
010 T - Y 
Oil TorY 

100 T + Y 
101 T xor Y 
110Y-T 
111 Y 

7-8 Y input control for ALU 
00 N 
01 N with carry bit 

6 Copy T to N 

5 Subroutine return 
4 Stack active 
3 32 Bit shift enable 
2 Divide step enable 

0-1 Shift control 
00 No shift 
01 logical shift right 

10 MD reg 
11 SR reg 

10 shift left 
11 arithmetic shift right 

Fig. 4.7 —NC4016 instruction formats, (a) Subroutine call, (b) Conditional branch. 
(c) ALU operation. 
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(d) 

1 1 1 
5 4 3 

1 
2 

1 1 
1 0 9 8 7 6 5 4 3 2 1 0 

1 1 1 w alu y C r const 

Bits Function 

13-15 Constant 111 specifies memory reference 

12 Read/write control 
0 Read 1 Write 

9-11 ALU function select 
000 T 
001T and Y 
010 T - Y 
Oil TorY 

7-8 Y input control for ALU 
oo N 
01 N with carry bit 

6 Copy T to N 

5 Subroutine return 

100 T + Y 
101 Txor Y 
110 Y-T 
111 Y 

10 MD reg 
11 SR reg 

0-4 Auto-increment/decrement constant 

(e) 

1 1 1 
5 4 3 

1 
2 

11 
1 0 9 8 7 6 5i 4 3 2 1 0 

11 1 0 a alu y c rj offset 

Bits 

13-15 
12 

9-11 

7-8 

6 

5 
0-4 

Function 

Constant 110 specifies instruction format 

Read/write control 
0 Read 1 Write 

ALU function select 
000 T 
001 Tand Y 
010 T - Y 
011 Tor Y 

Y input control for ALU 
00 N 
01 N with carry bit 

Copy T to N 

Subroutine return 

100 T + Y 
101 Txor Y 
110 Y - T 
111 Y 

10 MD reg 
11 SR reg 

Offset within user space/short literal 

Fig. 4.7 — NC4016 instruction formats, (d) Memory reference, (e) User space/ 
register tranfer/literal. 

the branch target to be in the same 4K byte block of memory as the branch 
instruction. 

Fig. 4.7(c) shows the format of the ALU instruction. This instruction has 
several bit fields that control various resources on the chip. Bits 0 and 1 
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control the operation of the shifter at the ALU output. Bit 2 specifies a 
nonrestoring division cycle. Bit 3 enables shifting of the T and N registers 
connected as a 32-bit shift register. 

Bit 5 of the ALU instruction indicates a subroutine return operation. 
This allows subroutine returns to be combined with preceding arithmetic 
operations to obtain ‘free’ subroutine returns in many cases. 

Bit 6 specifies whether a stack push is to be accomplished. It, combined 
with bit 4, controls pushing and popping stack elements. 

Bits 7 and 8 control the input select for the ALU as well as allow specify a 
step for iterative multiply or square root functions. Bits 9-11 specify the 
ALU function to be performed. 

Fig. 4.7(d) shows the format of a memory reference instruction. These 
instructions take two clock cycles: one cycle for the instruction fetch, and 
one cycle for the actual reading or writing of the operand. The address for 
the memory access is always taken from the T register. Bit 12 indicates 
whether the operation is a memory read or write. Bits 0-4 specify a small 
constant that can be added or subtracted to the T value to perform 
autoincrement or autodecrement addressing functions. Bits 5-11 of this 
instruction specify ALU and control functions almost identical to those used 
in the ALU instruction format. 

Fig. 4.7(e) shows the miscellaneous instruction format. This instruction 
can be used to read or write a 32-word ‘user space’ residing in the first 32 
words of program memory, saving the time taken to push a memory address 
on the stack before performing the fetch or store. It can also be used to 
transfer values between registers within the chip, or push either a 5-bit literal 
(in a single clock cycle) or a 16-bit literal (in two clock cycles) onto the stack. 
Bits 5-11 of this instruction specify ALU and control functions very similar 
to those in the ALU instruction format. 

The NC4016 is specifically designed to execute the Forth language. 
Because of the unencoded format of many of the instructions, machine 
operations that correspond to a sequence of Forth operations can be 
encoded in a single instruction. Table 4.2 shows the Forth primitives and 
instruction sequences supported by the NC4016. 

4.4.4 Architectural features 
The internal structure of the NC4016 is designed for single-clock-cycle 
instruction execution. All primitive operations except memory fetch, 
memory store, and long literal fetch execute in a single clock cycle. This 
requires many more on-chip interconnection paths than are present on the 
Canonical Stack Machine, but provides much better performance. 

The NC4016 allows combining nonconflicting sequential operations into 
the same instruction. For example, a value can be fetched from memory and 
added to the top stack element using the sequence @+ in a Forth program. 
These operations can be combined into a single instruction on the NC4016. 

The NC4016 subroutine return bit allows combining a subroutine return 
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with other instructions in a similar manner. This results in most subroutine 
exit instructions executing ‘for free’ in combination with other instructions. 
An optimization that is performed by NC4016 compilers is tail-end recursion 
elimination. Tail-end recursion elimination involves replacing a subroutine 
call/subroutine exit instruction pair by an unconditional branch to the 
subroutine that would have been called. 

Another innovation of the NC4016 is the mechanism to access the first 32 
locations of program memory as global ‘user’ variables. This mechanism can 
ease problems associated with implementing high level languages by allow¬ 
ing key information for a task, such as the pointer to an auxiliary stack in 
main memory, to be kept in a rapidly accessible variable. It also allows 
reasonable performance using high level language compilers, which may 
have originally been developed for register machines, by allowing the 32 
fast-access variables to be used to simulate a register set. 

4.4.5 Implementation and featured application areas 
The NC4016 is implemented using fewer than 4000 gates on a 3.0 micron 
HCMOS gate array technology, packaged in a 121-pin Pin Grid Array 
(PGA). The NC4016 runs at up to 8 MHz. 

When the NC4016 was designed, gate array technology did not permit 
placing the stack memories on-chip. Therefore a minimum NC4016 system 
consists of three 16-bit memories: one for programs and data, one for the 
data stack, and one for the return stack. 

Because the NC4016 executes most instructions, including conditional 
branches and subroutine calls, in a single cycle, there is a significant amount 
of time between the beginning of the clock cycle and the time that the 
memory address is valid for fetching the next instruction. This time is 
approximately half the clock cycle, meaning that program memory access 
time must be approximately twice as fast as the clock rate. 

The NC4016 was originally designed as a proof-of-concept and prototype 
machine. It therefore has some inconveniences that can be largely overcome 
by software and external hardware. For example, the NC4016 was intended 
to handle interrupts, but a bug in the gate array design causes improper 
interrupt response. Novix has since published an application note showing 
how to use a 20-pin PAL to overcome this problem. A successor product will 
eliminate these implementation difficulties and add additional capabilities. 

The NC4016 is aimed at the embedded control market. It delivers very 
high performance with a reasonably small system. Among the appropriate 
applications for the NC4016 are: laser printer control, graphics CRT display 
control, telecommunications control (T1 switches, facsimile controllers, 
etc.), local area network controllers, and optical character recognition. 

The information in this section is derived from Golden et al. (1985), 
Miller (1987), Stephens & Watson (1985), and Novix’s Programmers’ 
Introduction to the NC4016 Microprocessor (Novix 1985). 
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Table 4.2 — NC4016 instruction set summary 

4.2(a) Forth primitives (see Appendix B for descriptions) 

: (subroutine call) AND 
; (subtroutine exit) BRANCH 
! DROP 
+ DUP 
— I 
0 LIT 
0< NOP 
OBRANCH OR 
1 + OVER 
1- R> 
2* R@ 
>R SWAP 

@ XOR 

4.2(b) Compound Forth primitives 

nn @ + 
nn ! @ +c 
nn + @ - 
nn +c @ -c 
nn - @ SWAP - 
nn -c @ SWAP -c 
nn @ @ OR 
nn @ + @ XOR 
nn @ +c @ AND 
nn @ - DROP DUP 
nn @ -c DUP nn ! 
nn @ AND DUP nn ! + 
nn @ SWAP - DUP nn ! - 
nn @ SWAP -c DUP nn ! AND 
nn @ OR DUP nn ! OR 
nn @ XOR DUP nn ! SWAP - 
nn AND DUP nn ! XOR 
nn I@ DUP nn I! 
nn I@ + DUP nn I! + 
nn I@ - DUP nn I! - 
nn I@ AND DUP nnl! AND 
nn I@ OR DUP nn I! OR 
nn I@ SWAP - DUP nn I! SWAP - 
nn I@ XOR DUP nn I! XOR 
nn I@! DUP @ SWAP nn + 
nn I! DUP @ SWAP nn - 
nn OR OVER + 
nn SWAP - OVER +c 
nn SWAP -c OVER - 
nn XOR OVER -c 
lit + OVER SWAP- 
lit +c OVER SWAP -c 
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Table 4.2 - Continued. 

R> DROP 
R>SWAP >R 
SWAP - 
SWAP -c 
SWAP DROP 
SWAP OVER! 
SWAP OVER ! nn + 
SWAP OVER ! nn- 

Notes: ‘nn’ represents a 5-bit literal or user offset value, ‘lit’ represents a 16-bit literal 
stored in the memory location after the instruction. 

4.2(c) Special-purpose word 

Instruction Data stack Return stack 

lit - 
lit -c 
lit AND 
lit OR 
lit SWAP - 
lit SWAP -c 
lit XOR 

nn I@ N —> 
Fetch the value from internal register nn (stored as a 5-bit literal in the 

instruction). 
nn I! N—* —» 

Store N into the internal register nn (stored as a 5-bit literal in the 
instruction) 

+c N1 N2— N3 -> 
Add with carry (using internal carry bit) 

-c Ni N2-* N3 -» 
Subtract with borrow (using internal carry bit) 

*' Dl—* D2 -> 
Unsigned Multiply step (takes two 16-bit numbers and produces a 32 bit 

product). 
•- Dl—* D2 

Signed Multiply step (takes two 16-bit numbers and produces a 32-bit 
product). 

*F Dl—> D2 -> 
Fractional Multiply step (takes two 16-bit fractions and produces a 

32-bit product). 
*/' Dl—> D2 -> 

Divide step (takes a 16-bit dividend and divisor and produces 16-bit 
remainder and quotients). 

*/" Dl—» D2 -> 
Last Divide step (to perform nonrestoring division fixup). 

2/ Nl—» N2 
Arithmetic shift right (same as division by two tor nonnegative integers. 

D2/ Dl—» D2 — 
32-bit arithmetic shift right (same as division by two for nonnegative 

integers. 
S' Dl—> D2 -» 

Square Root step. 
TIMES — Nl —* N2 

Count-down loop using top of return stack as a counter. 
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4.5 ARCHITECTURE OF THE HARRIS RTX 2000 

4.5.1 Introduction 
The Harris Semiconductor RTX 2000 is a 16-bit stack processor that is a 
descendent of the Novix NC4016. The RTX 2000 has a very high level of 
integration. It includes not only the core processor, but also stack memories, 
a hardware multiplier, and counter/timers on a single chip. 

4.5.2 Block diagram 
Fig. 4.8 shows the block diagram of the RTX 2000. The major difference 
between the RTX 2000 and the NC4016 are the on-chip resources in addition 
to the CPU core. These resources include: a 256-element return stack, 256- 
element data stack, 16x 16-bit single-cycle hardware multiplier, three 
counter/timers, and a prioritized vectored interrupt controller. Apart from 
the on-chip stacks, all the RTX 2000’s extra features are accessed via the I/O 
bus (called the G bus in the NC4016 and the ASIC Bus in the RTX 2000). 

Other enhancements to the original Novix design available in the RTX 
2000 include: a byte swapping capability for manipulation of 8-bit data, the 
ability to jump between adjacent memory blocks when performing con¬ 
ditional branches, and interrupt on stack overflow/underflow. 

Another feature of the RTX 2000 is the on-chip memory page controller 
logic. This allows extending the 32K word program memory limit by 
specifying separate page registers for the code segment, the data segment 
(for fetches and stores), the user memory base address and page registers 
(for relocating the user variable area), and the index page register (for 
extending the value of the Return Stack address). Since the Return Stack 
holds a full 21 bits, subroutine calls can be made anywhere in memory with a 
special far call instruction sequence that saves the full return address in a 
single Return Stack location. 

4.5.3 Instruction set summary 
The instructions of the RTX 2000 are quite similar in function to those of the 
NC4016, but are sufficiently different in format to merit a separate descrip¬ 
tion. Fig. 4.9 shows the instruction formats for the RTX 2000. 

Fig. 4.9(a) shows the instruction format for subroutine calls. In this 
format, the highest bit of the instruction is set to 0, and the remainder of the 
instruction is used to hold a 15-bit subroutine address. This limits programs 
to 32K words of memory. 

Fig. 4.9(b) shows the conditional branch instruction format. Bits 11 and 
12 select either a branch if T is zero (with either a conditional or an 
unconditional popping of the data stack), an unconditional branch, or a 
decrement and branch-if-zero using the index register for implementing 
loops. Bits 0-8 specify the lowest 9 bits of the target address, while bits 9 and 
10 control an incrementer/decrementer for the upper 6 bits of the branch 
address to allow branching within the same 512-byte-memory page, to 
adjacent pages, or to page 0. 
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Fig. 4.8 — RTX 2000 block diagram. 
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(a) 

1|1 1 1 1 1 
514 3 2 1 0 9 87 6543210 

0 address 

Bits Function 
15 Constant value of 0 

0-14 Subroutine address 

1 1 1 
5 4 3 

1 1 
2 1 

1 | 
09876543210 

1 0 0 CS pg address 

Bits 

13-15 
11-12 

9-10 

0-8 

Function 
Constant 100 specifies conditional instruction 

Condition select 
00 Branch / DROP T if T = 0 
01 Branch if T = 0 / DROP T 

10 Unconditional branch 
11 Decrement INDEX & branch if not 0 

Paqe control for high address bits 
00 Same page 10 Pa9e 0 
01 Next page 11 Previous page 

Low 9 bits of branch address 

(c) 

11111 
5 4 3 2! 

1 1 
10 9 8 7 6 15 J 32 10 

1010 alu E E 0 sc 

Bits 

12-15,4 

8-11 

7 

5 

Function 
Constant 1010,0 specifies normal ALU operation 

ALU function select 
oooo T 
0001 
0010T and Y 
0011T nor Y 
0100 Y-T 
0101 Y - T - borrow 
0110T orY 
0111 T nand Y 

Logical inverse bit (1' 
Subroutine return 

1000 T + Y 
1001 T + Y + carry 
lOIOTxorY 
1011T xnor Y 
1100T-Y 
1101 T-Y-borrow 
1110 
1111 Y 

complement) 

0-3 Shift control 
0000 none 
0001 0 
0010 Shift left 
0011 Shift left with carry 
0100 Logical shift right/carry 
0101 Arithmetic shift right/carry 
0110 Logical shift right 
0111 Arithmetic shift right 

1000 Shift N left 
1001 Shift N left/carry 
1010 32 bit shift left 
1011 32 bit shift left/carry 
1100 32 bit logical shift right/cy 
1101 32 bit arithmetic shift right/cy 
1110 32 bit logical shift right 
1111 32 bit arithmetic shift right 

Fig. 4.9 — RTX 2000 instruction formats, (a) Subroutine call, (b) Conditional 
branch, (c) ALU operation. 
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(d) 

1111 
5 43 2 

1 1 
1 0 9 8 76 5 _4 32 10 

10 10 alu a ctl r 1 sc 

Bits Function 
12-15,4 Constant 1010,1 specifies muiti-step ALU operation 

9-11 ALU function select 
OOO T 
001T and Y 
010 T - Y 
011 Tor Y 

100 T + Y 
101 Txor Y 
110 Y - T 
111 Y 

8 Register access 
0MD 

6-7 Multi-step special control field 

5 Subroutine return 

0-3 Shift control 
0000 none 
0001 0 
0010 Shift left 
0011 Shift left with carry 
0100 Logical shift right/carry 
0101 Arithmetic shift right/carry 
0110 Logical shift right 
0111 Arithmetic shift right 

1 MD*2 or SR 

1000 Shift N left 
1001 Shift N left/carry 
1010 32 bit shift left 
1011 32 bit shift left/carry 
1100 32 bit logical shift right/cy 
1101 32 bit arithmetic shift right/cy 
1110 32 bit logical shift right 
1111 32 bit arithmetic shift right 

1 1 1 
543 

1 
2 

1 1 
10 9 8 7 6 5 4 3 2 1 0 

11 1 1 |b alu r/w r const 

Bits Function 

13-15 Constant 111 specifies memory 
12 Byte access control 

0 Word access 

8-11 ALU function select 
0000 T 
0001 
0010Tand Y 
0011 T nor Y 
0100 Y-T 
0101 Y - T - borrow 
0110 T or Y 
0111T nand Y 

6-7 Read/write and routing control 
5 Subroutine return 

0-4 Auto-increment/decrement constant 

reference 

1 Byte access 

1000 T + Y 
1001 T + Y + carry 
1010 T xor Y 
1011 T xnor Y 
1100T-Y 
1101 T - Y - borrow 
1110 
1111 Y 

Fig. 4.9 — RTX 2000 instruction formats, (d) ALU operation (multistep mode), (e) 
Memory reference. 



82 ARCHITECTURE OF 16-BIT SYSTEMS [Ch.4 

1111 1 1 
5 4 3 2 10 9 8 7 6 5 4 3 2 1 0 

func alu r/w r const 

Bits Function 

12-15 Function selection 
1011 I/O, Register, Short literal 
1100 User memory access 
1101 Long literal access 

8-11 ALU function select 
0000 T 
0001 
0010T and Y 
0011 T norY 
0100 Y-T 
0101 Y - T - borrow 
0110 T orY 
0111T nand Y 

6-7 Read/write and routing control 

5 Subroutine return 
0-4 Literal/ASIC address/user memory offset 

1000 T + Y 
1001 T + Y + carry 
lOIOTxor Y 
1011 T xnor Y 
1100 T-Y 
1101 T - Y - borrow 
1110 
1111 Y 

Fig. 4.9 — RTX 2000 instruction formats, (f) Miscellaneous instructions. 

Fig. 4.9(c) shows the format of the ALU instruction. Bits 0-3 control the 
operation of the shifter that shifts the output of the ALU. 

Bit 5 of the ALU instruction indicates a subroutine return operation. 
This allows subroutine returns to be combined with preceding arithmetic 
operations to obtain ‘free’ subroutine returns in many cases. 

Bits 8-11 select an ALU function, with bit 7 controlling whether the 

output of the ALU is inverted. 
Fig. 4.9(d) shows the format of the ALU instruction in multi-step mode. 

This format is quite similar to the ALU instruction format. Bits 0-3 select a 
shift control function, bit 5 controls the subroutine return function, and bits 

9-11 selects the ALU operation. 
In multi-step mode, bit 8 selects either the Multiply/Divide register or 

the Square Root register for special operations, while bits 6-7 select special 
multi-step control functions. A primary use of the multi-step mode is for 
repeated multiplication and division step operations. 

Fig. 4.9(e) shows the format of a memory reference instruction. These 
instructions take two clock cycles: one for the instruction fetch, and one for 
the actual reading or writing of the operand. The address for the memory 
access is always taken from the T register. Bit 12 selects either a byte or a 
word memory access. Since the RTX 2000 uses word memory addresses, this 
bit selects a ‘low half/high half or ‘full word’ operation at the selected 

memory word. 
Bits 6 and 7 indicate whether the operation is a memory read or write as 
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well as other control information. Bits 0-4 specify a small constant that can 
be added or subtracted to the T value to perform an autoincrement or 
autodecrement addressing function. Bits 8-11 of this instruction specify the 
same ALU functions as the ALU instruction format. 

Fig. 4.9(f) shows the miscellaneous instruction format. This instruction 
can be used to read or write a word in the 32-word relocatable user space, 
saving the time taken to push a memory address on the stack before 
performing the fetch or store. It can also be used to transfer registers within 
the chip, or push either a 5-bit literal (in a single clock cycle) or a 16-bit literal 
(in two clock cycles) onto the stack. Bits 8-11 of this instruction specify the 
same ALU functions as the ALU instruction format. 

The RTX 2000 is specifically designed to execute the Forth language. 
Because of the unencoded format of many of the instructions, machine 
operations that correspond to a sequence of Forth operations can be 
encoded in a single instruction. Table 4.3 shows the Forth primitives and 
instruction sequences that can be executed by the RTX 2000. 

4.5.4 Architectural features 
Like the NC4016, the internal structure of the RTX 2000 is optimized to 
provide single-clock-cycle instruction execution. All primitive operations 
except memory fetch, memory store, and long literal execute in a single 
clock cycle. 

The RTX 2000 also allows some sequences of Forth instructions to be 
combined into a single instruction. A key capability is provided by the return 
bit in some formats that allows combining subroutine returns with ALU 
operations. 

4.5.5 Implementation and featured application areas 
The RTX 2000 is implemented on 2.0 micron CMOS standard cell techno¬ 
logy, packaged in an 84-pin Pin Grid Array (PGA). The RTX 2000 runs at 
up to 10 MHz. A large advantage of standard cell technology is that RAM 
and logic may be mixed on the same chip, allowing both the return stacks 
and the data stacks to be placed on-chip. 

Because the RTX 2000 executes most instructions, including conditional 
branches and subroutine calls, in a single cycle, there is a significant amount 
of time between the beginning of the clock cycle and the time that the 
memory address is valid for fetching the next instruction. This time is 
approximately half the clock cycle, meaning that program memory must be 
approximately twice as fast as the clock rate. 

While the RTX 2000 was originally based on the NC4016 design, it has 
been substantially improved and does not have the hardware anomalies 
found on the NC4016. 

The RTX 2000 is aimed at the high end 16-bit microcontroller market. 
Because it is implemented with semicustom technology, specialized versions 
of the processor can be made for specific design applications. Some possible 
applications include laser printer control, Graphics CRT display control. 
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Table 4.3— RTX 2000 instruction set summary 

4.3(a) Forth primitives (see Appendix B) 

: (subroutine call) 

; (subroutine exit) 
i 

+ 

0 

0< 

OBRANCH 

1 + 

1- 

2* 

>R 

@ 

4.3(b) Compound Forth primitives 

AND 

BRANCH 

DROP 

DUP 

I 

LIT 

NOP 

OR 

OVER 

R> 

R@ 

SWAP 

XOR 

inv shift DUP @ SWAP 

lit inv DUP nn G! inv 

lit SWAP inv DUP U! inv 

lit SWAP op DUP U@ op 

nn inv (short literal) nn G! inv 

nn OVER op nn G@ inv 

nn SWAP op nn G@ DROP inv 

op shift nn G@ OVER op 

! inv nn G@ SWAP op 

! nn OVER inv shift 

@ inv OVER SWAP op shift 

@ nn OVER SWAP ! inv 

@ SWAP inv OVER SWAP ! nn 

@ SWAP op OVER SWAP @ op 

?DUP 7BRANCH SWAP inv shift 

DDUP inv shift SWAP DROP inv shift 

DDUP nn SWAP op SWAP DROP @ nn 

DDUP ! SWAP DROP DUP inv shift 

DROP inv shift SWAP DROP DUP @ nn ROT op 

DROP lit inv SWAP DROP DUP @ SWAP 

DROP nn inv SWAP OVER op shift 

DROP DUP inv shift SWAP OVER ! 

DUP inv shift U! inv 

DUP lit op U@ op 
DUP @ nn ROT op U@ SWAP inv 

Notation: inv— l’s complement or no-op 

lit — long literal value 
nn — short literal value 

op — ALU operation 

shift — shift select or no-op 
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Table 4.3 — Continued. 

4.3(c) Special purpose word 

Instruction Data stack Return stack 

nn G@ —> N —► 
Fetch the value from internal register or ASIC bus device nn (stored as 

a 5-bit literal in the instruction). 

nn G! N—» —> 

Store N into the internal register or ASIC bus device nn (stored as a 
5-bit literal in the instruction) 

* Nl N2—> D3 
Single-clock-cycle hardware multiply. 

*' * Dl—> D2 _» 

Unsigned Multiply step (takes two 16-bit numbers and produces a 

32-bit product). 

*- Dl—» D2 -* 

Signed Multiply step (takes two 16-bit numbers and produces a 32-bit 
product). 

*F Dl—> D2 -> 

Fractional Multiply step (takes two 16-bit fractions and produces a 

32-bit product). 

D1—> D2 -» 

Divide step (takes a 16-bit dividend and divisor and produces 16-bit 

remainder and quotients). 

Dl—* D2 - 

Last Divide step (to perform nonrestoring division fixup step). 

Nl— N2 — 

Arithmetic shift right (same as division by two for nonnegative integers. 

D2/ Dl— D2 — 

32-bit arithmetic shift right (same as division by two for nonnegative 

integers. 

S' Dl— D2 — 

Square Root step. 

NEXT — Nl — N2 

Count-down loop using top of return stack as a counter. 

*/' 

7" 

2J 

telecommunications control, optical character recognition, signal process¬ 
ing, and military control applications. 

The information in this section is derived from the RTX2000 Data Sheet 

(Harris semiconductor 1988a) and the RTX 2000 Instruction Set Manual 
(Harris semiconductor 1988b). 

4.5.6 Standard cell designs 

The Harris RTX 2000 derives many of its benefits from the fact that it is built 
using standard cell technology instead of a gate array. The difference is that 
in a gate array, the designer is customizing a regular pattern of preplaced 
logic gates on the silicon. In standard cell design, the designer is working 
with a library of logic functions that can be arbitrarily arranged on the 
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silicon, as no predetermined gate arrangement scheme is used. While gate 
arrays with predefined memory areas are coming into use, the flexibility 
afforded by standard cell design techniques is not equalled by a gate array 
approach. 

Thus, the major differences between the NC4016 and the RTX 2000 
become apparent: the RTX 2000 is able to take advantage of the flexibility of 
standard cells to include stack RAM cells on-chip. Because of this flexibility, 
a family of RTX 2000 processors with differing capabilities is planned using 
the same core processor as a large standard cell in the design process. 

In addition to standard product versions of the RTX family, users can 
benefit from application-specific hardware. Examples of special-purpose 
hardware include serial communication ports, FFT address generators, data 
compression circuitry, or any other hardware that might otherwise have to 
be built off-chip. With standard cell technology, users can have tailored 
versions of the chip made for their own use. This tailoring can include, as the 
process technology gets denser than 2.0 microns, a significant amount of 
program RAM and ROM on-chip. 



Architecture of 32-bit systems 

32-bit stack computers are only beginning to come into production in 1989, 
but will soon play a central role in the future of stack machines. In section 5.1 
we shall discuss some of the strengths and problems associated with 32-bit 

stack processors. 
In section 5.2, we shall discuss the Johns Hopkins University/Applied 

Physics Laboratory FRISC 3 design, which is also known as the Silicon 
Composers SC32. The FRISC 3 is a hardwired stack processor designed in 
the spirit of the NC4016 and its successors, but with more flexibility. It uses 
fairly small on-chip stack buffers that are managed by automatic buffer 

control circuitry. 
In section 5.3, we shall discuss the Harris RTX 32P design. The RTX 32P 

is a microcoded processor that is a descendent of the WISC CPU/16. It is a 
two-chip implementation of the WISC CPU/32 processor. The RTX 32P 
uses RAM-based microprogram memory to achieve flexibility. It also has 
rather large on-chip stack buffers. The RTX 32P is a prototype processor for 
a commercial 32-bit stack processor under development. 

In section 5.4. we shall discuss the Wright State University SF1 design. 
The SF1 is actually an ML1 stack machine which uses stack frames in 
multiple hardware stacks for support of C and other conventional languages. 
However, the SF1 has strong MLO roots, so it forms an interesting example 
of how an ML1 design ‘stacks up’ against MLO designs. 

While the implementation strategies of these three processors are quite 
different, all accomplish the goal of very high speed execution of stack 

programs. 

5.1 WHY 32-BIT SYSTEMS? 

The 16-bit processors described in Chapter 4 are sufficiently powerful for a 
wide variety of applications, especially in an embedded control environ¬ 
ment. But, there are some applications that require the added power of a 32- 
bit processor. These applications involve extensive use of 32-bit integer 
arithmetic, large memory address spaces, or floating point arithmetic. 

One of the difficult technical challenges that arises when designing a 32- 
bit stack processor is the management of the stacks. A brute force approach 
is to have separate off-chip stack memories in the manner of the NC4016. 
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Unfortunately, on a 32-bit design this requires having 64 extra pins for just 
the data bits, making the approach unpractical for cost-sensitive appli¬ 
cations. The FRISC 3 solves this problem by maintaining two automatically 
managed top-of-stack buffers on-chip, and using the normal RAM data pins 
to spill individual stack elements to and from program memory. The RTX 
32P simply allocates a large amount of chip space to on-chip stacks and 
performs block moves of stack elements to and from memory for stack 
spilling. Chapter 6 goes into more detail about the tradeoffs involved with 

these approaches. 

5.2 ARCHITECTURE OF THE FRISC 3 (SC32) 

5.2.1 Introduction 
The Johns Hopkins University/Applied Physics Laboratory (JHU/APL) 
FRISC 3 is a hardwired 32-bit processor optimized for executing the Forth 
programming language. The name ‘FRISC’ stands for Forth Reduced 
Instruction Set Computer’. The ‘3‘ acknowledges two previous prototype 
stack processors. The focus of the FRISC 3 is on single-cycle execution of 
Forth primitives in a real-time control environment. 

JHU/APL developed the FRISC 3 in response to their need for a fast 
Forth language processor for spaceborne control processing applications in 
satellites and Space Shuttle experiments. The roots of the FRISC 3 project 
may be traced back to the JHU/APL HUT project (see Appendix A), which 
was a bit-slice processor optimized for the Forth language. 

After the completion of the HUT processor, the design team at Johns 
Hopkins designed a prototype 4.0 micron silicon-on-sapphire 32-bit Forth 
processor (FRISC 1) and a 3 micron bulk CMOS version (FRISC 2), both of 
which were full-custom designs. The latest version, FRISC 3, is the commer¬ 
cial quality processor that is an outgrowth of their earlier work. 

Silicon Composers has purchased commercial production rights to the 
FRISC 3, and has renamed the design the SC32. The description in this 
section applies to both the FRISC 3 and the SC32, although we shall call the 
design the FRISC 3 throughout the remainder of the book. 

The primary use of the FRISC 3 is for embedded real-time control, 
especially in spacecraft (which is the focus of the JHU/APL group), but also 
for other industrial and commercial applications. 

5.2.2 Block diagram 
Fig. 5.1 is an architectural block diagram of the FRISC 3. 

The Data Stack and Return Stack are implemented as identical hardware 
stacks. They each consist of a stack pointer with special control logic feeding 
an address to a 16-element by 32-bit stack memory arranged as a circular 
buffer. The top four elements of both stacks are directly readable onto the 
Bbus. In addition, the topmost element of the Data Stack may be read onto 
the Tbus (Top-of-stack bus) and the topmost element of the Return Stack 
may be read onto the Abus (return Address bus). Both stack buffers are 
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Fig. 5.1 — FRISC 3 block diagram. 
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dual-ported, which allows two potentially different elements of the stacks to 
be read simultaneously. Only one stack element may be written at a time. 

One of the innovative features of the FRISC 3 is the use of stack 
management logic associated with the stack pointers. This logic automati¬ 
cally moves stack items between the 16-word on-chip stacks and a program 
memory stack spilling area to guarantee that the on-chip stack buffers never 
experience an overflow or underflow. This logic steals program memory 
cycles from the processor to accomplish this, avoiding the extra stack data 
pins on the chip in exchange for a small performance degradation spread 
throughout program execution. The designers of the FRISC 3 call this 
feature a stack cache, because it caches the top few stack elements for quick 
access on-chip. This cache is not like normal data or instruction caches in 
that it does not employ an associative memory lookup structure to allow 
access to data residing in scattered areas of memory. 

The ALU section of the FRISC 3 includes a standard ALU that is fed by 
latches on the Bbus and the Tbus. These two ALU sources on separate 
busses allow the topmost Data Stack element (via the Tbus) and any of the 
top four Data Stack elements (via the Bbus) to be operated on by an 
instruction since the Data Stack is dual-ported. The Bbus can feed any 
nonstack bus source through the B side of the ALU as well. 

The latches from the Bbus and Tbus that feed the ALU inputs are used to 
capture data during the first half of a clock cycle. This allows the Bbus to be 
used to write data from the ALU to other registers within the chip on the 
second half of the clock cycle. The shift block on the B input of the ALU is 
used to shift the B input left one bit for division, but can also pass data 
through unshifted. Similarly, the shift unit on the ALU output can shift data 
right one bit for multiplication, if d.esired, while feeding the Bbus. 

The latch on the ALU output allows pointer-plus-offset addressing to 
access memory. On the first clock cycle of a memory fetch or store, the ALU 
adds the literal field value via the Tbus to the selected data stack word from 
the Bbus. On the second cycle, the Bbus is used to transfer the selected ‘bus 
destination’ to or from memory. 

The flag register (FL) is used to store one of 16 selectable condition codes 
generated by the ALU for use in conditional branches and multiple 
precision arithmetic. The ZERO register is used to supply the constant value 
0 to the Bbus. 

Four User Registers are provided to store pointers into memory or other 
values. Two of these registers are reserved for use by the stack control logic 
to store the location of the top element of the program memory resident 
portions of the Data Stack and Return Stack. 

A Program Counter (PC) is used to supply the Abus with program 
memory addresses for fetching instructions. The PC may also be routed via 
the ALU to the Return Stack for subroutine calls. The Return Stack may be 
used to drive the Abus instead of the PC for subroutine returns. The 
Instruction Register may be used to drive the Abus for instruction fetching, 
subroutine calls, and for branching. 
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5.2.3 Instruction set summary 
Fig. 5.2 shows FRISC 3’s four instruction formats: one for control flow, one 
for memory loads and stores, one for ALU operations, and one for shift 
operations. The FRISC 3 uses unencoded instruction formats similar in 
spirit to those found on the NC4016, RTX 2000, and M17. All instruction 
formats use the highest 3 bits of the instruction to specify the instruction 

type. 
Fig. 5.2(a) shows the control flow instruction format. The three control 

flow instructions are subroutine call, unconditional branch, and conditional 
branch. The conditional branch instruction is taken if the FL register was set 
to zero by the most recent instruction to set the FL register. The address field 
contains a 29-bit absolute address. Unconditional branches may be used by 
the compiler to accomplish tail-end recursion elimination. 

Fig. 5.2(b) shows the memory access instruction format. Bits 0-15 
contain an unsigned offset to be added to the address supplied by the bus 
source operand. This is accomplished by latching the bus source and the 
offset field from the instruction at the ALU inputs, performing an addition, 
and routing the resultant ALU output to the Abus for memory addressing. 

Bits 16-19 specify control information for incrementing and decrement¬ 
ing the Return Stack Pointer and/or Data Stack Pointer. Bits 20-23 specify 
the Bbus Destination. In this notation, ‘TOS’ means Top of Data Stack, 
‘SOS’ means Second on Data Stack, ‘30S’ means 3rd element of Data Stack, 
‘TOR’ means Top of Return Stack, etc. Bits 24-27 specify the Bus Source 
for the Bbus in a similar manner. 

Bit 28 specifies whether the next instruction fetched will be addressed by 
the top element of the Return Stack or the Program Counter. Using bit 28 to 
specify the Return Stack as the instruction address is combined with a 
Return Stack pop operation to accomplish a subroutine return in parallel 
with other operations. 

Bits 29-31 specify the instruction type. For the memory access format 
instructions, the four possible instructions are: load from memory, store to 
memory, load address (low), and load address (high). The load and store 
from/to memory instructions use the bus source to supply an address, and 
the bus destination field to specify the data register destination or source. 
The load and store instructions are the only instructions that take two clock 
cycles, since they must access memory twice to accomplish both data 
movement and the next instruction fetch. 

The two load address instructions simply load the computed memory 
address into the destination register without accessing memory at all. This 
may also be thought of as an add-immediate instruction. The load address 
high instruction shifts the offset left 16 bits before performing the addition. 
The load address instructions are also the means for loading literal values, 
since the address register can be selected to the ZERO register. In this 
manner a load address high followed by a load address low instruction can be 
used to synthesize a full 32-bit literal. 

Fig. 5.2(c) shows the ALU instruction format. Bits 0-6 of this instruction 
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3322222222221111111111 
10987654321 09876543210987654321 0 

tvDe I address 

Bits Function 

29-31 Instruction type 
000 Call 
001 Branch 

0-28 Branch target address 

010 Conditional branch 

3 3 2 
1 0 9 

2 2 2 2 2 
8765 4 

2 2 2 2 
3 2 10 

1111 
9 8 7 6 

111111 
5432109876543210 

type r source dest stacks offset 

Bits Function 

29-31 Instruction type 
100 Load 110 Load address low 

101 Store 111 Load address high 

28 Subroutine return 

24-27 Bus source 
0000 TOS 1000 UDR0 
0001 SOS 1001 UDR1 
0010 30S 1010 UDR2 

0011 40S 1011 UDR3 
0100 TOR 1100 PC 
0101 SOR 1101 PSW 
0110 3OR 1110 ZERO 
0111 40R 1111 none 

20-23 Bus destination 
0000 TOS 1000 UDR0 
0001 SOS 1001 UDR1 
0010 30S 1010 UDR2 
0011 40S 1011 UDR3 
0100 TOR 1100 PC 
0101 SOR 1101 PSW 
0110 3OR 1110 ZERO 

0111 40R 1111 none 

16-19 Stack pointer control 
0000 Push DS 1000 nop 
0001 Pop DS 1001 nop 
0010 Push RS 1010 nop 
0011 Pop RS 1011 nop 
0100 Pop DS and RS 1100 nop 
0101 Push DS and RS 1101 nop 
0110 Push DS, Pop RS 1110 nop 
0111 Pop DS, Push RS 1111 nop 

0-15 Offset value added to address 

Fig. 5.2 — FRISC 3 instruction formats, (a) Control flow, (b) Memory access. 
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332 
1 09 

2 
8 

222 2 
765 4 

2 2 2 2 
3 2 10 

1111 
9 8 7 6 

1 
5 

1 
4 

1111 
3 2 10 9 8 _7 6 5 4 3 2 1 0 

type r source dest stacks 0 b cond cin e alu 

Bits Function 

29-31,15 Constant value of 01 1,0 specifies ALU instruction 

28 Subroutine return 

24-27 Bus source 
0000 TOS 0110 3OR 1100 PC 

0001 SOS 0111 40R 1101 PSW 

0010 30S 1000 UDRO 1110 ZERO 

0011 40S 1001 UDR1 1111 none 

0100 TOR 1010 UDR2 
0101 SOR 1011 UDR3 

20-23 Bus destination 
0000 TOS 0110 3OR 1100 PC 

0001 SOS 0111 40R 1101 PSW 

0010 30S 1000 UDRO 1110 ZERO 

0011 40S 1001 UDR1 1111 none 

0100 TOR 1010 UDR2 
0101 SOR 1011 UDR3 

16-19 Stack pointer control 
0110 Push DS, Pop 1 0000 Push DS 0011 Pop RS 

0001 Pop DS 0100 Pop DS & RS 0111 Pop DS, Push 

0010 Push RS 0101 Push DS & RS 1000 nop 

14 ALU result/FL register driven to Bbus 

10-13 Condition select for loading FL register 
1100 < 0000 0 01100< 

0001 1 0111 0> = 1101 > = 
0010V 1000 Z 1110 c 
0011 not(V) 1001 not(Z) 1111 not(C) 

0100 > 1010 unsigned > 
0101 < = 1011 unsigned < 

8-9 Carry in select 
000 10 FL register 11 not(FL register) 

oi i 

7 Enable FL loading 

0-6 ALU function 
15 A nand B 
17 A or not(B) 
ID not (A) or B 
IF Aor B 
200 
21 not (A) 
22-1 
23 A 
24 not(B) 
2C B 

(hexadecimal numbers) 
2F A xor B 
41 not(A) + CIN 
43 A + CIN 
44 not(B) + CIN 
45 not (A) + not(B) + CIN 
46 not(B) - not(CIN) 
47 A - B - not(CIN) 
49 not(A) - not(CIN) 
4B A - not(CIN) 
4C B + CIN 

4D B - A - not(CIN) 
4E B - not(CIN) 
4F A + B + CIN 
55 A and B 
57 not (A) and B 
5D A and not(B) 
5FA nor B 
6F A xnor B 

Fig. 5.2 — FRISC 3 instruction formats, (c) ALU operations. 
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3 3 2 2 2 2 2 2 2 2 2 2 1111 1 1 1111 

(d) 1 0 9 8 7 6 5 4 3 2 10 9 8 7 6 5 £ 3 2 10 9 8 _7 6 5 4_ 3 2 1 0 

type r source dest stacks 1 b cond cin f _ sh r St f 3 
Bits 

29-31,15 

28 
24-27 

20-23 

16-19 

14 

10-13 

8-9 

7 
5-6 

4 

2-3 

1 

Function 
Constant value of 011,1 specifies shift instruction 

Subroutine return 

Bus source 
0000 TOS 0110 
0001 SOS 0111 
0010 30S 1000 
0011 40S 1001 
0100 TOR 1010 
0101 SOR 1011 

30R 1100 PC 
40R 1101 PSW 
UDR0 1110 ZERO 
UDR1 1111 none 
UDR2 
UDR3 

Bus destination 
0000 TOS 0110 
0001 SOS 0111 
0010 30S 1000 
0011 40S 1001 
0100 TOR 1010 
0101 SOR 1011 

30R 1100 PC 
40R 1101 PSW 
UDRO 1110 ZERO 
UDR1 1111 none 
UDR2 
UDR3 

Stack pointer control 
0000 Push DS 0011 Pop RS 0110 Push DS, Pop RS 
0001 Pop DS 0100 Pop DS&RS 0111 Pop DS, Push RS 
0010 Push RS 0101 Push DS & RS 1000 nop 

ALU result driven to Bbus 
0 ALU output 1 FL register 

Condition select for loading FL register 
01100< 
0111 o> = 

0000 0 
0001 1 
0010 V 
0011 not(V) 
0100 > 
0101 < = 

Carry in select 
000 
01 1 

Enable FL loading 
Shift operation 
00 Shift left 

Right shift source 
0 FL register 

1000Z 
1001 not(Z) 
1010 unsigned > 
1011 unsigned < 

10 FL register 

01 Shift right 

1 ALU condition code 

1100 < 

1101 > = 

1110 c 
1111 not(C) 

11 not(FL register) 

11 nop 

Step operation 
00 B + CIN 10 ?(A + B + CIN(FL)) 
01 B - A - CIN 11 ?(A + B + CIN(not(FL))) 

Source of FL input 
0 ALU condition code 1 Shift out bit 

Fig. 5.2 — FRISC 3 instruction formats, (d) Shift operations. 
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format specify the ALU operation to be performed. The A side of the ALU 
is connected to the Thus, while the B side is connected to the Bbus. Bit 7 
enables loading the FL Register with the condition code selected by bits 
10-13 of the instruction. These condition codes provide various combi¬ 
nations of a Zero bit, Negative bit. Carry out bit, and overflow bit, as well as 
constant 0 and 1. Bits 8-9 select the carry in to the ALU operation. Bit 14 
selects whether the actual ALU result or the contents of the FL register is 
driven onto the Bbus. Bit 15 is a 0, indicating that the instruction is an ALU 
operation. 

Bits 16-28 are identical to the memory access instruction format shown 
in Fig. 5.2(b). Bits 29-31 specify the ALU/shift operation instruction type. 

Fig. 5.2(d) shows the shift instruction format. Bit 0 of this instruction 
format is unused. Bit 1 specifies whether the FL register Input is taken from 
the condition codes selected by bits 10-13 or the shift-out bit of the selected 
shift register. Bits 2-3 select special step operations for performing multipli¬ 
cation and restoring division. Bit 4 selects whether the shift-right input bit 
comes from the FL register or the ALU condition code. Bits 5-6 specify 
either a left or a right shift operation. Bit 7 specifies whether the FL Register 
is to be loaded with the shift output bit or the condition code generated by 
bits 10-13 and bit 1. Bits 8-9 select the carry-in for the ALU operation, while 
bit 14 determines whether the ALU output or the FL register is driven to the 
Bbus. Bit 15 is a 1, indicating that the instruction is a shift operation. 

Bits 16-28 are identical to the memory access instruction format shown 
in Fig. 5.2(b). Bits 29-31 specify the ALU/shift operation instruction type. 

All instructions execute in one clock cycle, with the exception of the 
memory load and memory store instructions, which take two clock cycles. 
Each clock cycle is broken during execution into a source phase and a 
destination phase. During the source phase, the selected Bbus source and 
the Tbus value are read into the ALU input latches. During the destination 
phase, the Bbus destination is written. Each instruction is fetched in parallel 
with the execution of the previous instruction. 

Subroutine calls are accomplished in a single clock cycle. Subroutine 
returns take no extra time to the extent that they can be combined with other 
instructions. 

Most of the usual Forth primitives as well as manipulations of the top 
four stack elements on both the Data Stack and the Return Stack are 
supported by the FRISC 3 instruction set. Table 5.1 shows a representative 
sample of FRISC 3 instructions. 

5.2.4 Architectural features 
Like all the other machines designs discussed so far, the FRISC 3 has a 
separate memory address bus (the Abus) for fetching instructions in parallel 
with other operations. In addition, the FRISC 3 does not have a dedicated 
top-of-stack register for the Data Stack, but instead uses a dual-ported stack 
memory to allow arbitrary access to any of the top four stack elements. This 
provides a more general capability than a pure stack machine and can speed 
up some code sequences. 
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Table 5.1 — FRISC 3 instruction set summary 

5.1(a) Forth primitives (see Appendix B for descriptions) 

0 >R 

0< @ 

0= AND 

0> BRANCH 

OBRANCH CALL 

1 DROP 

1 + DUP 

1- EXIT 

2* LITERAL 

2+ NEGATE 

21 NOT 

4+ OR 

+ OVER 

-1 R> 

R@ 

< S->D 

<> U< 
— u> 
> XOR 

5.1(b) Compound Forth primitives 

The FRISC 3 is capable of a very large number of compound Forth primitives. Space precludes 

listing all of them, so we shall give some illustrative examples. 

LIT + @ (address plus offset fetch) 

LIT + ! (address plus offset store) 

<variable> @ (fetch a variable) 

<variable> ! (store a variable) 

2 PICK (copy the third element on the stack) 

3 PICK (copy the fourth element on the stack) 

R> DROP R@ < 

SWAP DROP OVER OVER + 

LIT + DROP LIT 

OVER + DUP LIT + 

OVER- DROP DUP 

DUP + DROP OVER 

DUP AND OVER @ 

DUP XOR 2 PICK @ 

DUP 1 + 3 PICK @ 

OVER + OVER ! 

2 PICK + 2 PICK ! 

3 PICK + 3 PICK ! 

R@ + + >R 

R> + DUP >R 

DUP < DUP R> DROP 

DUP > R> DROP DUP 

The flexibility of the FRISC 3 also supports many operations not encompassed in the Forth 
language, such as stack manipulation words on the Return Stack (e.g. Return Stack SWAP). 
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The stack control logic is a means to prevent catastrophic stack overflow 
and underflow during program execution by ‘dribbling’ elements onto and 
off of the stack to keep at least 4 elements on the stack at all times without 
overflowing. This demand-fed approach to stack buffer management is 
discussed in greater detail in section 6.4.2.2. Each stack has 16 words used as 
a circular buffer. The stack controllers perform stack data movement to and 
from memory whenever there would be less than four or more than 12 
elements in an on-chip stack. The movement is performed one element at a 
time, since the stack pointers can only be incremented or decremented once 
per instruction. Each stack element transfer to or from memory consumes 
two clock cycles. Chapter 6 discusses the cost of these extra cycles, which the 
FRISC 3 designers claim is typically below 2% of overall program execution 
time for their machine. 

5.2.5 Implementation and featured application areas 
The FRISC 3 is implemented on 2.0 micron CMOS technology with a silicon 
compiler using 35000 transistors. It is packaged in an 85-pin Pin Grid Array 
(PGA). The FRISC 3 runs at up to 10 MHz. 

The FRISC 3 is designed for real-time control applications, especially in 
the area of spaceborne systems. It is designed to execute Forth efficiently, 
although it should be reasonably efficient at running C or other conventional 
languages. C support is enhanced by the capability of using one of the User 
Registers as a frame pointer and using the offset of the memory load and 
store instructions to do frame pointer plus offset addressing. 

The information in this section is based on the description of the FRISC 3 
in Hayes & Lee (1988). Information on previous versions of the FRISC 
architecture may be found in Fraeman et al. (1986), Hayes (1986), and 
Hayes etal. (1987). 

5.3 ARCHITECTURE OF THE RTX 32P 

5.3.1 Introduction 
The Harris Semiconductor RTX 32P is a 32-bit member of the Real Time 
Express (RTX) processor family. The RTX 32P is a prototype machine that 
is the basis of Harris’ commercial 32-bit stack machine design. 

The RTX 32P is a CMOS chip implementation of the WISC Technolo¬ 
gies CPU/32 (Koopman 1987c) which was originally built using discrete TTL 
components. The CPU/32 was in turn developed from the WISC CPU/16 
described in Chapter 4. Because of this history, the RTX 32P is a micro- 
coded machine, with on-chip microcode RAM and on-chip stacks. 

The RTX 32P is a 2-chip stack processor designed primarily for maxi¬ 
mum flexibility as an architectural evaluation platform. It contains very 
large data and return stacks on-chip, as well as a large amount of on-chip 
microcode memory. This large amount of high speed RAM forced the 
design to use two chips, but this was consistent with the goal of producing a 
research and development vehicle. Real-time control is the primary appli¬ 
cation area for the RTX 32P. 
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The primary language for programming the RTX 32P is Forth. However, 
the RTX 32P’s commercial successor will be enhanced for excellent support 
of more conventional languages such as C, Ada, Pascal; special purpose 
languages such as LISP and Prolog; and functional programming languages. 

An important design philosophy of the RTX 32P is that as processor 
speeds increase, an ALU can be cycled twice for every off-chip memory 
access. Therefore the RTX 32P executes two microinstructions for each 
main memory access, including instruction fetches. Every instruction is two 
or more clock cycles in length, with a different microinstruction executed on 
each clock cycle. The reasons for adopting this strategy are discussed at 
greater length in section 9.4. 

5.3.2 Block diagram 
Fig. 5.3 is an architectural block diagram of the RTX 32P. 

The Data Stack and Return Stack are implemented as identical hardware 
stacks consisting of a 9-bit up/down counter (the Stack Pointer) feeding an 
address to a 512-element by 32-bit-wide memory. The stack pointers are 
readable and writable by the system to provide an efficient way of accessing 
deeply buried stack elements. 

The ALU section includes a standard multifunction ALU with a DHI 
register for holding intermediate results. By convention, the DHI register 
acts as a buffer for the top stack element. This means that the Data Stack 
Pointer actually addresses the element perceived by the programmer to be 
the second-from-top stack element. The result is that an operation on the 
top two stack elements, such as addition, can be performed in a single cycle, 
with the B side of the ALU reading the second stack element from the Data 
Stack and the A side of the ALU reading the top stack element from the 
Data Hi register. 

The Data Latch on the B side of the ALU input is a normally transparent 
latch that can be used to retain data for one clock cycle. This speeds up swap 
operations between the DHI register and the Data Stack. 

There are no condition codes visible to machine language programs. 
Add with carry and other multiple precision operations are supported by 
microcoded instructions that push the carry flag onto the data stack as a 
logical value (0 for carry clear, -1 for carry set). 

The DLO register acts as a temporary holding register for intermediate 
results within a single instruction. Both the DHI and the DLO registers are 
shift registers, connected to allow 64-bit shifting for multiplication and 
division. 

An off-chip Host Interface is used to connect to the personal computer 
host. Since all on-chip storage is RAM-based, an external host is required 
for initializing the CPU. 

The RTX 32P has no program counter. Every instruction contains the 
address of the next instruction or refers to the address on the top of the 
return address stack. This design decision is in keeping with the observation 
that Forth programs contain a very high proportion of subroutine calls. 
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Fig. 5.3 — RTX 32P block diagram. 
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Section 6.3.3 discusses the affects of the RTX 32P’s instruction format in 
greater detail. 

Instead of a program counter, the block described as the Memory 
Address Logic contains a Next Address Register (NAR), which holds the 
pointer for fetching the next instruction. The Memory Address Logic uses 
the top element of the Return Stack to address memory for subroutine 
returns, while it uses the RAM address register (ADDR REG) for doing 
memory fetches and stores efficiently. The Memory Address Logic also 
contains an increment-by-4 circuit for generating return addresses for 
subroutine call operations. Since the Return Stack and Memory Address 
Logic can be isolated from the system Data Bus, subroutine calls, subroutine 
returns, and unconditional jumps can be performed in parallel with other 
operations. This results in these control transfer operations costing zero 
clock cycles in many cases. 

Program memory is organized as up to 4G bytes of memory, addressable 
on byte boundaries. Instructions and 32-bit data items are required to be 
aligned on 32-bit memory boundaries, since data is accessed in 32-bit words 
from memory. The actual RTX 32P chips can address only 8M bytes because 
of a limited number of pins on the package. 

Microprogram Memory is an on-chip read/write memory containing 2K 
elements by 30 bits. The memory is addressed as 256 pages of 8 words each. 
Each opcode in the machine is allocated its own page of 8 words. The 
Microprogram Counter supplies a 9-bit page address of which only the 
lowest 8 bits are used in this implementation. This scheme allows supplying 3 
bits from the current microinstruction, the lowest bit of which is the result of 
a l-in-8 conditional microbranch selection, as the address for the next 
microinstruction within the same microcode page. This allows conditional 
branching and looping during the execution of a single opcode. 

Instruction decoding is accomplished simply by loading the 9-bit opcode 
into the Microprogram Counter and using that as the page address to 
Microprogram Memory. Since the Microprogram Counter is built with a 
counter circuit, operations can span more than one 8-microinstruction page 
if required. 

TTie Microinstruction Register (MIR) holds the output of the Micropro¬ 
gram Memory. This allows the next microinstruction to be accessed from 
Microprogram Memory in parallel with execution of the current microin¬ 
struction. The MIR completely removes the Microprogram Memory access 
delay from the system’s critical path. Its use also enforces a lower limit of two 
clock cycles on instructions. If an instruction could be accomplished in a 
single clock cycle, a second no-op microinstruction must be added to allow 
the next instruction to flow through the MIR fetching sequence properly. 

The Host Interface allows the RTX 32P to operate in two possible 
modes: Master Mode and Slave Mode. In Slave Mode, the RTX 32P is 
controlled by the personal computer host to allow program loading, micro¬ 
program loading, and alteration of any register or memory location on the 
system for initialization or debugging. In Master Mode, the RTX 32P runs 
its program freely, while the host computer monitors a status register for a 
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request for service. While the RTX 32P is in master mode the host computer 
may enter a dedicated service loop, or may perform other tasks such as 
prefetching the next block of a disk input stream or displaying an image, and 
only periodically poll the status register. The RTX 32P will wait for service 
from the host for as long as is necessary. 

5.3.3 Instruction set summary 
The RTX 32P has only one instruction format, shown in Fig. 5.4. Every 
instruction contains a 9-bit opcode which is used as the page number for 
addressing microcode. It also contains a 2-bit program flow control field that 
invokes either an unconditional branch, a subroutine call, or a subroutine 
exit. In the case of either a subroutine call or an unconditional branch, bits 
2-22 are used to specify the high 21 bits of a 23-bit word-aligned target 
address. This design limits program sizes to 8M bytes unless the page register 
in the Memory Address Logic is used with special far jump and call 
instructions. Data fetches and stores see the memory as a contiguous 4G 
byte address space. 

332222222 
109876543 

2221111111111 
210987654321098765432 1 0 

opcode address ctl 

Bits Function 

23-31 
2-22 

0-1 

Opcode 

Address for jump or call (word aligned) 
Program flow control 
00 Jump 10 subroutine call 
01 subroutine exit 11 unused 

Fig. 5.4 — RTX 32P instruction format. 

Wherever possible, the RTX 32P’s compiler compacts an opcode 
followed by a subroutine call, return, or jump into a single instruction. In 
those cases where such compaction is not possible, a NOP opcode is 
compiled with a call, jump, or return, or a jump to next in-line instruction is 
compiled with an opcode. Tail-end recursion elimination is performed by 
compressing a subroutine call followed by a subroutine return into a simple 
jump to the beginning of the subroutine that was to be called, saving the cost 
of the return that would otherwise be executed in the calling routine. 

Since the RTX 32P uses RAM for the microcode memory, the microcode 
may be completely changed by the user if desired. The standard software 
environment for the CPU/32 is a version of MVP-FORTH, a FORTH-79 
dialect (Haydon 1983). Some of the Forth instructions included in the 
standard microcoded instruction set are shown in Table 5.2. One thing that 
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Table 5.2 — RTX 32P instruction set summary 

5.2(a) Forth primitives (see Appendix B for descriptions) 

DDROP 
+ DDUP 
+ ! DNEGATE 
— DROP 
0 DSWAP 
0< DUP 
0= I 
OBRANCH I' 
1 + J 
1- LEAVE 
2* LIT 
2/ NEGATE 
< NOP 
PICK NOT 
ROLL OR 
= OVER 
>R R> 
?DUP R@ 
@ ROT 
ABS S -> D 
AND SWAP 
BRANCH U* 
D! U/MOD 
D+ XOR 
D@ 

5.2(b) Compound Forth primitives 

<variable > @ (fetch a variable) 
<variable> @ + (fetch and add a variable) 
<variable> ! (store a variable) 

@+ DUP @ 
Lrr + 
OVER + 
OVER - 
R>DROP 
R>SWAP>R 
SWAP ! 
SWAP - 
SWAP DROP 

The RTX 32P instruction set may be extended by the user to incorporate any other 
stack manipulation primitives required for a particular application. 
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Table 5.2 — Continued. 
5.2(c) Special words 

Opcode Data stack Return stack 

HALT —» —* 

Returns control to host processor 
SYSCALL N—> — 

Requests I/O service number N from host 

DOVAR —>ADDR 

Used to implement Forth variables 
DOCON -»N -» 

Used to implement Forth constants 

5.2(d) Support words for high level operations 

The following Forth operations have microcoded support words that do most of their 

work: 
SP@ (fetch contents of data stack pointer) 

SP! (initialize data stack pointer) 

RP@ (fetch contents of return stack pointer) 

RP! (initialize return stack pointer) 

MATCH (string compare primitive) 

ABORT' (error checking & reporting word) 

+LOOP (variable increment loop) 

/LOOP (variable unsigned increment loop) 

CMOVE (string move) 

<CMOVE (reverse order string move) 

DO (loop initialization) 

ENCLOSE (text parsing primitive) 

LOOP (increment by 1 loop) 

FILL (block memory initialization word) 

TOGGLE (bit mask/set primitive) 

5.2(e) Extended math and floating point support words 

Opcode Data stack Return stack 

<UNORM> EXP1 U2—> EXP3 U4 -» 
Floating point normalize of unsigned 32-bit mantissa 

ADC N1N2 CIN—► N3 COUT 
Add with carry. CIN and COUT are logical flags on the stack. 

ASR Nl—» N2 
Arithmetic shift right. 

BYTE-ROLL Nl-> N2 
Rotate right by 8 bits. 

D+! D ADDR—» -+ 
Sum D into 32-bit number at ADDR. 

D>R D—» —» D 
Move D to return stack. 

DLSLN D1N2—» D3 -*■ 
Logical shift left of D1 by N2 bits. 
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Table 5.2 — Continued. 

Opcode Data stack Return stack 

DLSR Dl— D2 
Logical shift right of D1 by 1 bit. 

DLSRN D1 N2— D3 
Logical shift right of D1 by N2 bits. 

DR> — D 
Move D from return stack to data stack. 

DROT D1 D2 D3— D2 D3 D1 
Perform double-precision ROT. 

LSLN N1 N2— N3 
Logical shift left of N1 by N2 bits. 

LSR Nl— N2 
Logical shift right of N1 by 1 bit. 

LSRN Nl N2— N3 
Logical shift right of N1 by N2 bits. 

Q+ 01 Q2- 03 
128-bit addition. 

QLSL Ql- Q2 
Logical shift left of Q1 by 1 bit. 

RLC N1CIN— N2 COUT -> 
Rotate left through carry N1 by 1 bit. CIN is carry-in, COUT is 

carry-out. 
RRC N1 CIN— N2 COUT — 

Rotate right through carry N1 by 1 bit. CIN is carry-in, COUT is 
carry-out. 

Note: The RTX 32P uses RAM microcode memory, so the user may add or modify 
any instructions desired. The above list merely indicates the instructions supplied 
with the standard development software package. 

is noticeable in this instruction set is the number and complexity of 
instructions supported. 

Table 5.2(b) shows some common Forth word combinations that are 
available as single instructions. Table 5.2(c) shows some words that are used 
to support underlying Forth operations such as subroutine call and exit. 
Table 5.2(d) lists some high level Forth words that are directly supported by 
specialized microcode. Table 5.2(e) shows words that were added in 
microcode to support extended precision integer operations and 32-bit 
floating point calculations. 

Since the instructions vary considerably in complexity, execution time of 
instructions ranges accordingly. Simple instructions that manipulate data on 
the stack such as + and SWAP take 2 microcycles (one memory cycle) each. 
Complex microinstructions such as Q+ (128-bit addition) may take 10 or 
more microinstructions, but are still much faster than comparable high level 
code. If desired, microcoded loops can be written that can potentially last 
thousands of clock cycles to do things such as block memory moves. 
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As mentioned earlier, each instruction invokes a sequence of microin¬ 
structions on a Microprogram Memory page corresponding to the 9-bit 
opcode for the instruction. Fig. 5.5 shows the microinstruction format. The 
microcode used is horizontal, which means that there is only one format for 
microcode, and that the format is broken into separate fields to control 
different portions of the machine. 

As with the WISC CPU/16, the simplicity of the stack machine approach 
and the RTX 32P hardware results in a simple microcode format, in this case 
only using 30 bits per microinstruction. The microcode format of the RTX 
32P is similar to that of the CPU/16 discussed in the previous chapter. 

Bits 0-3 of the microinstruction specify the source of the system Data 
Bus. Two of the bus sources are used as special control signals to configure 
the RTX 32P for one-clock-cycle-per-bit multiplication and nonrestoring 
division of 32/64-bit numbers. 

Bits 8-9 specify the Data Bus destination. Two special cases for destina¬ 
tions exist: DLO may be independently specified as a bus destination using 
bits 22-23, and the DHI register is always loaded with the ALU output. Bits 
8-9 and 10-11 specify Data Stack Pointer and Return Stack Pointer control, 
respectively. Bits 12-13 control a shifter on the output of the ALU. This 
shifter allows shifting left or right, as well as an 8-bit rotation function. 

Bits 14-15 of the microinstruction are unused, and therefore not 
included in the Microcode RAM. Bits 16-20 control the function of the 
ALU. Bit 21 specifies a carry-in of 0 or 1. To synthesize multiple precision 
arithmetic, the microcode does a conditional microbranch based on the 
carry-out of the low half of the result, and then forces the next carry-in to 0 or 
1 as appropriate. Bits 22-23 control the loading and shifting of the DLO 
register. 

Bits 24-29 of the microinstruction are used to compute a 3-bit offset into 
the microprogram page for fetching the next microinstruction. Bits 24-26 
select one of eight condition codes to form the lowest address bit, while bits 
27-28 are used as constants to generate the two high order address bits. This 
allows jumping and 2-way conditional branching anywhere within the 
microprogram page on every clock cycle. Bit 29 can be used to increment the 
contents of the 9-bit Micro Program Counter to allow opcodes to use more 
than 8 Microcode Memory locations. Bit 30 initiates the instruction decod¬ 
ing sequence for the next instruction. This is required since instructions are a 
variable number of clock cycles long. Bit 31 controls the return address 
incrementer for use as a counter into memory for block data accesses. 

One microinstruction is executed on every clock cycle, with two or more 
microinstructions executed for every machine macroinstruction. 

5.3.4 Architectural features 
The heritage of the WISC CPU/16 in the RTX 32P architecture is unmistak¬ 
able . The most obvious area of improvement is the addition of more efficient 
Memory Address Logic and the isolation of the Return Address Stack from 
the Data Bus during subroutine call and return operations. These changes, 
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3 3 2 22 2 2 2 2 2 2 2 1111 1 1 1 1 1 1 
1 0 9 8 7 6 5 4l3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 65 4 3 2 10 

E 
,i 

nxt cond dlo c alu id s LIE. dp dest src 

Bits Function 

31 Increment return address register 

30 Begin decoding next instruction 
29 Increment MPC control 

27-28 Next microaddress constant bits 

24-26 Condition code select bits 
000 0 011 Sign 110 Unused 
001 Not(Carry-out) 100 DLO lowest bit 1111 
010 Not(Zero) 101 Unused 

22-23 DLO shift/destination control 
00 Nop 
01 Shift right 

10 Shift left 11 Load from bus 

21 ALU carry-in/shift-in bit 
16-20 ALU mode & function select 

00000 A + not(CIN) 10001 A nor B 11010 B 
00010 A-B-CIN 10011 0 11011 A and B 
00110 A-B 10100 Anand B 11100-1 
01001 A + B + CIN 10101 Not(B) 11110 A or B 
01100 A + A + CIN 10110 Axor B 11111 A 
10000 Not (A) 11001 Axnor B 

14-15 Unused 

12-13 ALU shifter control 
00 Nop 
01 Shift right 1 bit 

10 Shift left 1 bit 11 Rotate right 8 bits 

10-11 RP count control 
00 Nop 
01 Nop 

10 Increment RP 11 Decrement RP 

8-9 DP count control 
00 Decrement DP 
01 Increment DP 

10 Nop 11 Nop 

4-7 Bus destination select 
0000 None 0101 Addr Latch 1010 Return Addr Incr 
0001 DP 0110 Status Reg 1011 RAM 
0010 DS 0111 Rag Reg 1100 RAM-BYTE 
0011 Unused 1000 RP 1101 Instruction Reg 
0100 RAM Page Reg 1001 RS 1110 Microcode RAM 

0-3 Bus source select 
0000 Host 0101 Multiply-select 1010 Return Addr Incr 
0001 DP 0110 Divide-select 1011 RAM 
0010 DS 0111 FLAGS 1100 RAM-BYTE 
0011 DLO 1000 RP 1101 Micro-PC 
0100 DHI 1001 RS 1110 Microcode FtAM 

Fig. 5.5 — RTX 32P microinstruction format. 



Sec. 5.3! ARCHITECTURE OF THE RTX 32P 107 

along with the RTX 32P’s unique instruction format, allow subroutine calls, 
returns, and jumps to be processed ‘for free’ to the extent that they can be 
combined with opcodes. 

The RTX 32P’s clock runs at twice the speed that main memory can be 
accessed, thus giving two clock cycles per memory cycle, and a minimum of 
two clock cycles per instruction. 

There are a number of uses for the RTX 32P’s instruction format, many 
of which are not immediately obvious. One of them is for executing 
conditional branches. The RTX 32P does not have direct hardware support 
for conditional branches, since this would slow down the rest of the 
hardware too much on other instructions or require excessively fast program 
memory. Conditional branches are accomplished by using a special 
OBRANCH opcode combined with a subroutine call to the branch target. 
The subroutine call is processed by the hardware in parallel with the 
opcode’s evaluation of whether the top stack element is zero (in which case 
the branch is taken). If the branch is to be taken, the Return Stack is popped, 
converting the subroutine call to just a jump, and execution continues. If the 
branch is not to be taken, the microcode pops the Return Stack and uses the 
value to fetch the branch fall-through instruction, in effect performing an 
immediate subroutine return. The cost for this conditional branch is 3 clock 
cycles to take a branch, 4 clock cycles to not take a branch. Remember that 
on this processor each memory cycle is 2 clock cycles. 

Another interesting capability of the RTX 32P is quick access of any 
memory location as a variable. Even though the 0-operand instruction 
format would seem to require a second memory location to specify the 
variable address, the following operation can be used. A special opcode is 
compiled with a subroutine call, where the address of the ‘subroutine’ is 
actually the address of the variable desired to be fetched. The microcode 
then ‘steals’ the variable value as the instruction fetching logic reads it in, 
then forces a subroutine return before the value can be executed as an 
instruction. 

The point of discussing these two methods is to illustrate that there are 
several significant capabilities of the hardware that are not immediately 
obvious to programmers who are used to more conventional machines. 
These capabilities are especially useful in programming data structure 
accesses (for example, expert system decision trees), and actually allow 
direct execution of data structures. This direct execution is accomplished by 
storing the data in a tagged format having a 9-bit tag (corresponding to 
special user-defined opcodes) and a 23-bit address that is a subroutine call or 
jump to the next data element in the structure, or a subroutine return for a 
nil pointer. 

An important implementation feature of the RTX 32P is that all 
resources on the machine can be directly controlled by the host computer. 
This can be done because the host interface supports Microinstruction 
Register load and single-step clock features. With these features, any 
microinstruction desired can be executed by first loading values into any or 
all registers in the system, loading a microinstruction, cycling the clock, then 
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reading data values back to examine the results. This design technique 
makes writing microcode extremely straightforward, eliminating the need 
for expensive external analysis hardware. It also makes testing and diagnos¬ 
tic programs very simple to write. 

The RTX 32P supports interrupt handling, including interrupt on stack 
underflow and overflow for both the Data Stack and the Return Stack. The 
usual technique for handling these overflows and underflows is to page in or 
out half the on-chip stack contents to a holding area in program memory. 
This allows programs to use arbitrarily deep stacks. With a 512-element 
hardware stack buffer size, typical Forth programs never experience a stack 
overflow. 

5.3.5 Implementation and featured application areas 
The RTX 32P is implemented on 2.5 micron CMOS standard cell technology 
in a 2-chip set. The data path chip, which contains the ALU, data stack, and 
ALU bits of the microcode memory, is an 84-pin Leadless Chip Carrier 
(LCC). The control chip, which contains the rest of the system, is packaged 
in a 145-pin Pin Grid Array (PGA). The RTX 32P runs at 8 MHz. 

The RTX 32P is designed for real-time control applications, especially in 
the area of embedded systems with low power and small size requirements. 
As was mentioned previously, the RTX 32P is a prototyping vehicle for a 
commercial processor which, as of this writing, is planned to be called the 
RTX 4000. This new processor will have several features that make it 
suitable for use in real-time control applications and personal computer 
coprocessor acceleration tasks including: a mixture of ROM and RAM 
microcode to shrink the system onto a single chip, stand-alone operation, 
on-chip hardware support for floating point math, a significantly faster clock 
speed, and on-chip support for dynamic program memory chips. Some 
versions of the chip may not have all these features. In addition, architec¬ 
tural enhancements will be made to support languages such as C, Ada, and 
LISP by allowing use of the address field in the instruction to specify fast- 
access 21-bit literals. This will allow crucial operations such as frame- 
pointer-plus-offset addressing to run at high speed. 

The information in this section is based on the descriptions of the WISC 
CPU/32 in Koopman (1987c), and Koopman (1987d), and the introduction 
of the RTX 32P in Koopman (1989). 

5.4 ARCHITECTURE OF THE SF1 

5.4.1 Introduction 
The Wright State University’s SF1 (which stands for Stack Frame computer 
number 1) is an experimental multi-stack processor designed to efficiently 
execute high level languages, including both Forth and C. It is designed to 
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have a large number of stacks, using five stacks in the implementation 
described here. While the SF1 has its roots in the Forth language, it crosses 
the boundary between MLO and ML2 machines by allowing each instruction 
to address any of the elements of two stacks directly from the stack memory. 
It has an interesting mix of the features found on the FRISC 3 and the RTX 
32P, as well as some unique innovations. 

Wright State University has developed a series of stack-based computers 
starting with RUFOR (Grewe & Dixon 1984), which was purely a Forth- 
based processor built with bit-slice components. In 1985-1986, a computer 
architecture class built a discrete component prototype of a more genera¬ 
lized stack processor called the SF1. In 1986-1987, a VLSI class extended 
that architecture and made a multi-chip custom silicon implementation 
which was the VLSI version of the SF1. The following description is of this 
VLSI SF1 implementation. 

The intended application area for the SF1 is real-time control using 
Forth, C, and other high level languages. 

5.4.2 Block diagram 
Fig. 5.6 is an architectural block diagram of the SF1. 

The SF1 has two busses. The MBUS is multiplexed to transfer addresses 
to program memory and then instructions and data to or from program 
memory. The SBUS is used to transfer data between system resources. The 
two-bus design allows instructions to be fetched on the MBUS while data 
operations are taking place on the SBUS. 

The ALU has an associated top-of-stack register (TOS) which receives 
the results of all ALU operations. The ALU input (ALUI) register acts as a 
holding buffer to contain the second operand for the ALU. ALUI may be 
loaded from either the SBUS for most operations, or the MBUS for memory 
fetches. Both the ALUI and the TOS may be routed to the MBUS or the 
SBUS. The TOS register by convention contains the top stack element of 
whatever stack is being used for a particular instruction, although it is up to 
the programmer to ensure it is managed properly. 

There are eight different sources and destinations connected to the stack 
bus: S, F, R, L, G, C, I, and P: 

S — general-purpose stack for parameters 
L — loop counter stack 
G — global stack 
F — frame stack 
R — return address stack 
C — in-line constant value 
I — I/O address space 
P — Program counter 

All eight are referred to as stacks in the machine’s reference material, but in 
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Fig. 5.6 — SF1 block diagram. 

reality the C, I, and P resources are special nonstack structures. The stacks 
L, G, F, and R are for the most part interchangeable in practice, and may be 
used for any purpose. The S stack is somewhat specialized in that all 
subroutine return addresses are automatically pushed onto the S stack. 

Any one of the top 8192 elements of these stacks may be specified as a 
bus source or destination. Whenever a stack is read, the top element may be 
either retained or popped. When a stack is popped, the top element is always 
shifted out of the stack memory, regardless of which element was actually 
read. 

Similarly, when a stack is used as a bus destination, any one of the top 
8192 elements of the stack may be written to, or the top stack element may 
be pushed with a value from the SBUS. 

The C bus source is used to return a 13-bit signed constant from the 
address field of the instruction. P is used to load and store the program 
counter. I is used to address an I/O address space of 8K words. 

The Program Counter (PC) is a counter that can be asserted on the 



Sec. 5.4] ARCHITECTURE OF THE SF1 111 

MB US to provide addresses for instructions as well as loaded from the 
MBUS for jumps and subroutine calls. The PC can also be read and written 
on the SBUS to save and restore subroutine return addresses. 

5.4.3 Instruction set summary 
The SF1 has two instruction formats as shown in Fig. 5.7. The first 
instruction format is used for jumps and subroutine calls, the second for all 
other instructions. 

Fig. 5.7(a) shows the jump/subroutine call instruction format. This 
instruction format is selected by a 0 in bit 0 of the instruction. Bit 1 of the 
instruction selects a jump if set to 1, or a subroutine call if set to 0. Bits 2-31 
of the instruction select a word-aligned address as the jump/call target. This 
instruction format is quite similar to that of the RTX 32P shown in Fig. 5.4, 
but without the opcode in the highest order bits. Both jump and subroutine 
call instructions take one clock cycle. 

Fig. 5.7(b) shows the operation instruction format, which is more like the 
FRISC 3 ALU instruction format shown in Fig. 5.2(c). Bit 0 is a constant 1 
which selects this instruction format. 

Bit 1 selects between a no-branch and a skip operation. If a skip 
operation is selected and the zero status flag is set, the next instruction in the 
instruction stream is fetched. This can be used to implement a conditional 
branch-on-zero instruction sequence. 

Bits 2-7 select the ALU operations. A special ALU operation returns 
the status flags from the previous ALU instruction. These flags can be used 
as an offset into a multi-way jump table for branching on multiple condition 
codes. This conditional branching is slower than using a skip instruction, but 
is more flexible. 

Before covering the operation of bits 8-28, we should describe the way 
the SBUS works during a clock cycle. The SBUS is used twice during each 
clock cycle. During the first half of the clock cycle, the SBUS is used to read 
one of 8 bus sources. The data read is always placed into the ALUI register. 
During the second half of the clock cycle, the ALU performs its operation on 
the new ALUI value and the old TOS value. Simultaneously, the old TOS 
value is written to one of 8 bus destinations. Bit 29 in the instruction format 
can override the selection of TOS as the value to be written by forcing ALUI 
(which was just loaded on the first half of the clock cycle) to be asserted on 
the SBUS during the second half of the clock cycle. 

Bits 8-11 select the SBUS destination. This destination is written with 
the TOS value set by the previous instruction during the second half of the 
clock cycle. Bit 8 selects whether the destination stack is pushed or just 
written. Similarly, bits 12-15 select the SBUS source, which is read during 
the first half of the clock cycle. Bit 12 selects whether the source stack is 
popped. 

Bits 16-28 provide an address that is used when reading and writing the 
stacks. This address allows reading or writing any one of the top 8K stack 
elements directly. Note that there is only one address in the instruction, so 
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3322222222221111111111 
1098765432109876 54 321098765432 J 0 

address 3 
Bits Function 

2-31 Target address 
1 Branching mode select 

0 Subroutine call 1 Jump 

0 Constant 0 specifies jump/call format 

3|3 2 2 2 2 2 2 2 2 2 2 1 1 1 1|1 1 1 1 1 1 

(b) 1 10 9l8 7 6 5 4 3 2 1 0 9 8 7 615 4 3 2 1 0 9 8 7 6 5 4 3 2 0 

e|r a address src |P dest P alu b a 
Bits Function 

31 Extended instruction select when 1 
30 R/W for extended instructions (1 = read) 

29 ALUI used instead of TOS when 1 

16-28 Stack address (0 to 8191) 

13-15 SBUS source select 
000 S stack 100 G stack 
001 F stack 101 Constant 
010 R stack 110I/O address space 
011 L stack 111 Program counter 

12 SBUS selected source stack is popped when 1 

9-11 SBUS destination select 
000 S stack 100 G stack 
001 F stack 101 none 
010 R stack 110 I/O ad d ress space 
011 L stack 111 Program counter 

8 SBUS selected destination stack is pushed when 1 

2-7 ALU operation 
000000 TOS + ALUI 
000010 TOS-ALUI 
000100 ALUI-TOS 
010010 TOS and ALUI 
011110 TOS or ALUI 
011100 TOS xor ALUI 
101000 TOS 
100100 TOS shifted right 

1 Branching mode select 
0 No branch 

0 Constant 1 specifies operation 

100010 TOS shifted left 
100000 TOS arithmetically shifted right 
111000 ALUI 
110100 ALUI shifted right 
110010 ALUI shifted left 
110000 ALUI arithmetical shifted right 

000001 Read status flags 

1 Skip next word 

format 

Fig. 5.7 — SF1 instruction formats, (a) Jump/Call, (b) Operation. 
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both the source and the destination stacks must use the same address on a 
given cycle. 

Bit 29 is used to override the selection of TOS as the value to be written 
to the SBUS destination. When set, this bit uses the ALUI register instead of 
the TOS register. This allows direct data movement between any two SBUS 
resources by loading the value into the ALUI during the first half clock 
cycle, then storing that same value during the second half clock cycle. 

Bits 30-31 are used to control memory accesses. Bit 31 selects an 
extended instruction cycle, which uses a second clock cycle to access RAM 
via the MBUS (the first clock cycle is used to fetch the next instruction). Bit 
30 specifies a RAM read or write operation. The TOS register is read during 
the first clock cycle to provide an address, then read or written again during 
the second clock cycle to provide or receive the RAM data. Note that RAM 
reads and writes are performed on the second of two clock cycles, so bits 
2-29 may be used to perform a normal instruction on the first of the two 
cycles. This first clock cycle is often used to reload the TOS register (which 
contained an address) with the value to be written into the RAM during the 
second clock cycle. 

5-4.4 Architectural features 
Once again, we see the importance of providing a dedicated path for 
instruction fetching in the form of the MBUS, with a second path for data 
manipulations in the form of the SBUS. As with the other stack machines, 
the SF1 is designed to support fast instruction execution and, in particular, 
quick subroutine calls. 

The use of operands in the SF1 operation instruction format is novel. The 
use of a single top-of-stack register as one input for all ALU operations and 
the fact that only a single address field is provided makes the architecture 
feel like a 1-operand stack machine. However, the fact that both a source 
and a destination may be specified for each instruction makes the machine 
feel more like a 2-operand machine. Perhaps this instruction format is more 
properly called a 1-operand instruction, since only a single address is 
available while both a source and a destination may be selected. 

The reason for having the top 8K elements of each stack directly 
addressable is to provide support for languages such as C which have the 
notion of a stack frame. In addition, one of the stacks can be used as a very 
large (8K word) register file by simply never pushing or popping that 
particular stack. 

The reason for having several hardware stacks is to support fast context 
switching in real-time control applications. Although the implementation 
described only contains five hardware stacks, this number can be increased 
in other versions of the design. A simple way to allocate the stacks would be 
to dedicate one hardware stack to each of four high priority tasks, with the 
fifth stack saved and restored to and from program memory as required to 
process low priority tasks. 

Subroutine returns are accomplished under program control by popping 
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a stack and writing the top stack element into the PC. Because of a prefetch 
pipeline, the instruction following the subroutine return is also executed 
before the return takes effect. 

32-bit literal values are obtained by using PC-relative addressing with a 
13-bit offset to access a constant stored in the program space. This constant 
is typically placed after an unconditional branch, or after the subroutine 
return at the end of the procedure in which it is used. 

5.4.5 Implementation and featured application areas 
The SF1 is implemented on 3.0 micron CMOS MOSIS technology using a 
full-custom approach. Two custom chip designs are used. One chip contains 
the ALU and PC, while the other chip implements a 32-bit-wide stack. 
Control and instruction decoding is accomplished using programmable 
logic, but will eventually be incorporated onto custom VLSI as well. 

The implementation of the stack chips is quite different than what has 
been seen on other stack machines. Since the stack must be designed for 
random access of elements, an obvious design method would be to incorpor¬ 
ate an adder with a stack pointer into a standard memory. This method has 
the disadvantage that it is slow and difficult to expand to multi-chip stacks. 

The approach taken in the SF1 is completely different. Each stack 
memory is actually a giant shift register that actually moves the stack 
elements between adjacent memory words when the stack is pushed or 
popped. Addressing the Nth word in the stack is done simply by addressing 
the Mh word in memory, since the top element on the stack is always kept 
shifted into the 0th memory address. One disadvantage of this approach is 
that shift register cells are larger than regular memory cells, so the largest 
stack chip made for the SF1 contains only 128 words by 32 bits of memory. 

The SF1 is primarily a research platform, with an emphasis on real-time 
control with fast context switching (by dedicating a stack chip to each task) 
and support for high level languages. 

The information in this section is based on the description of the SF1 
given by Dixon (1987) and Longway (1988). 



Understanding stack machines 

In the preceding chapters, we have covered both an abstract description of a 
stack machine, and several examples of real stack machines that have been 
built. What we shall examine now is why they are designed the way they are, 
and why stack machines have certain inherent advantages over more 
conventional designs. 

Three different approaches to computer design are used as reference 
points for this chapter. The first reference point is that of the Complex 
Instruction Set Computer (CISC), which is typified by Digital Equipment 
Corporation’s VAX series and any of the microprocessors used in personal 
computers (e.g. 680x0, 80x86). The second reference point is the Reduced 
Instruction Set Computer (RISC) (Patterson 1985) as typified by the 
Berkeley RISC project (Sequin & Patterson 1982) and the Stanford MIPS 
project (Hennesy 1984). The third reference point is that of stack machines 
as described in the preceding chapters. 

Section 6.1 discusses some of the history of the debates that have taken 
place over the years among advocates of register-based machines, stack- 
based machines, and storage-to-storage-based machines. A related topic is 
the more recent debates between proponents of high level language CISC 
architectures and RISC architectures. 

Section 6.2 discusses the advantages of stack machines. Stack machines 
have smaller program sizes, lower hardware complexity, higher system 
performance, and better execution consistency than other processors in 
many application areas. 

Section 6.3 presents the results of a study of instruction frequencies in 
Forth programs. Not surprisingly, subroutine calls and returns constitute a 
significant percentage of the instruction mix for Forth programs. 

Section 6.4 examines the issue of stack management by using the results 
of a stack access simulation. The results indicate that fewer than 32 stack 
elements are needed for many application programs. This section also 
discusses four different methods of handling stack overflows: very large 
stacks, a demand-fed stack manager, a paging stack manager, and an 
associative cache memory. 

Section 6.5 examines the cost of interrupts and multi-tasking on a stack- 
based machine. A simulation shows that context switching of the stack 
buffers is a minor cost in most environments. Furthermore, the cost of 
context switching with stack buffers may be further reduced by appropria- 
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tely programmed interrupts, using lightweight tasks, and by partitioning the 

stack buffer into multiple small buffer areas. 

6.1 AN HISTORICAL PERSPECTIVE 

The debate between designers of machines with hardware supported stacks 
and other designers has a long history. This debate can be split into two 
major areas: the debate between register-based and non-register-based 
machine designers, and the debate between high level language machine 
designers and RISC designers. While we cannot hope to put forth definitive 
answers to the questions raised in these debates, the ideas presented in the 
references given are worthy of consideration by the interested reader. 

6.1.1 Register vs. nonregister machines 
The debate on whether to design a machine that makes registers explicitly 
available to the assembly language programmer dates back to design 
decisions made in the late 1950s. The existence of the stack-based KDF.9 
computer (Haley 1962) is evidence that computer architects had begun 
thinking of alternatives to the standard register-based way of designing 

computers many years ago. 
The debate on whether or not to use register-based machines involves a 

number of alternatives. These alternatives include: pure stack-based 
machines, single-operand stack-based machines (also called stack/accumu¬ 

lator machines), and storage-to-storage machines. 
The pure stack machines, which fall into the SSO, MSO, SLO, and MLO 

taxonomy categories, are exceedingly simple. An obvious argument in favor 
of stack-based machines is that expression evaluation requires the use of a 
stack-like structure. Register-based machines spend some of their time 
emulating a stack-based machine while evaluating expressions. However, 
pure stack machines may require more instructions than a stack/accumula- 
tor machine (SSI, MSI, SL1, ML1 taxonomy categories) since they cannot 
fetch a value and perform an arithmetic operation upon that value at the 
same time. The astute reader will notice that the 32-bit stack machines 
discussed in Chapter 5 use multiple-operation instructions such as "<vari- 

able> @ +" to compensate for this problem to a large degree. 
Storage-to-storage machines, in which all instruction operands are in 

memory, are seen as being valuable in running high level languages such as C 
and Pascal. The reason given for this is that most assignment statements in 
these languages have only one or two variables on the right-hand side of the 
assignment operator. This means that most expressions can be handled with 
a single instruction. This eliminates instructions which otherwise would be 
required to shuffle data into and out of registers. The CRISP architecture 
(Ditzel et al 1987a, 1987b) is an example of a sophisticated storage-to- 

storage processor. 
Some of the most frequently cited references in this debate are a 

sequence of articles that appeared in Computer Architecture News: Keedy 
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(1978a), Keedy (1978b), Keedy (1979), Myers (1977), Schulthess & Mum- 
precht (1977), and Sites (1978). These articles do not address all the issues 
and are dated in some respects. Nonetheless, they form a good starting point 
for those who are interested in the historical roots of this ongoing debate. 

6.1.2 High level language vs. RISC machines 
A related debate is that between proponents of high level language 
machines and the RISC philosophy of machine design. 

High level language machines may be thought of as one of the advanced 
evolutionary paths of the CISC philosophy. These machines have poten¬ 
tially very complex instructions that map directly onto the functions of one 
or more high level languages. In some cases, the output of the front end of a 
compiler is used to generate an intermediate level code that is executed 
directly by the machine, such as P-code for Pascal or M-code for Modula-2. 
The ultimate extension of this philosophy is probably the SYMBOL project 
(Ditzel & Kwinn 1980) which implemented all system functions in hardware, 
including program editing and compilation. 

The RISC philosophy of high level language support is one of providing 
the simplest possible building blocks for the compiler to use in synthesizing 
high level language operations. This usually involves code sequences of 
loads, stores, and arithmetic operations to implement each high level 
language statement. RISC proponents claim that these collections of code 
sequences can be made to run faster on a RISC machine than equivalent 
complex instructions on a CISC machine. 

The stack machine design philosophy falls somewhere in between the 
philosophies of high level language machine design and RISC design. Stack 
machines provide very simple primitives which may be executed in a single 
memory cycle, in the spirit of the RISC philosophy. However, efficient 
programs on stack machines make extensive use of application specific code 
that is accessed via cheap subroutine calls. This collection of subroutines 
may be thought of as a virtual instruction set that is tailored to the needs of 
high level language compilers, without requiring complicated hardware 
support. 

A good sampling of references on the topic of high level language 
machines versus RISC machines is: Cragon (1980), Ditzel & Patterson 
(1980), Kavipurapu & Cragon (1980), Kavi et al. (1982), Patterson & 
Piepho (1982), and Wirth (1987). 

6.2 ARCHITECTURAL DIFFERENCES FROM CONVENTIONAL 
MACHINES 

The obvious difference between stack machines and conventional machines 
is the use of 0-operand stack addressing instead of register- or memory- 
based addressing schemes. This difference, when combined with support of 
quick subroutine calls, makes stack machines superior to conventional 
machines in the areas of program size, processor complexity, system 
complexity, processor performance, and consistency of program execution. 
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6.2.1 Program size 
A popular saying is that ‘memory is cheap’. Anyone who has watched the 
historically rapid growth in memory chip sizes knows the amount of memory 
available on a processor can be expected to increase dramatically with time. 

The problem is that even as memory chip capacity increases, the size of 
problems that people are calling on computers to solve is growing at an even 
faster rate. This means that the size of programs and their data sets is 
growing even faster than available memory size. Further aggravating the 
situation is the widespread use of high level languages for all phases of 
programming. This results in bulkier programs, but of course improves 
programmer productivity. 

Not surprisingly, this explosion in program complexity leads to a seem¬ 
ing contradiction, the saying that ‘programs expand to fill all available 
memory, and then some’. The amount of program memory available for an 
application is fixed by the economics of the actual cost of the memory chips 
and printed circuit board space. It is also affected by mechanical limits such 
as power, cooling, or the number of expansion slots in the system (limits 
which also figure in the economic picture). Even with an unlimited budget, 
electrical loading considerations and the speed-of-light wiring delay limit 
bring an ultimate limit to the number of fast memory chips that may be used 
by a processor. Small program sizes reduce memory costs, component 
count, and power requirements, and can improve system speed by allowing 
the cost effective use of smaller, higher speed memory chips. Additional 
benefits include better performance in a virtual memory environment 
(Sweet & Sandman 1982, Moon 1985), and a requirement for less cache 
memory to achieve a given hit ratio. Some applications, notably embedded 
microprocessor applications, are very sensitive to the costs of printed circuit 
board space and memory chips, since these resources form a substantial 
proportion of all system costs (Ditzel et al. 1987b). 

The traditional solution for a growing program size is to employ a 
hierarchy of memory devices with a series of capacity/cost/access-time 
tradeoffs. A hierarchy might consist of (from cheapest/biggest/slowest to 
most expensive/smallest/fastest): magnetic tape, optical disk, hard disk, 
dynamic memory, off-chip cache memory, and on-chip instruction buffer 
memory. So a more correct version of the saying that ‘memory is cheap’ 
might be that ‘slow memory is cheap, but fast memory is very dear indeed’. 

The memory problem comes down to one of supplying a sufficient 
quantity of memory fast enough to support the processor at a price that can 
be afforded. This is accomplished by fitting the most program possible into 
the fastest level of the memory hierarchy. 

The usual way to manage the fastest level of the memory hierarchy is by 
using cache memories. Cache memories work on the principle that a small 
section of a program is likely to be used more than once within a short period 
of time. Thus, the first time a small group of instructions is referenced, it is 
copied from slow memory into the fast cache memory and saved for later 

use. This decreases the access delay on the second and subsequent accesses 
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to program fragments. Since cache memory has a limited capacity, any 
instruction fetched into cache is eventually discarded when its slot must be 
used to hold a more recently fetched instruction. The problem with cache 
memory is that it must be big enough to hold enough program fragments 
long enough for the eventual reuse to occur. 

A cache memory that is big enough to hold a certain number of 
instructions, called the ‘working set’, can significantly improve system 
performance. How does the size of a program affect this performance 
increase? If we assume a given number of high level language operations in 
the working set, consider the effect of increasing the compactness of the 
encoding of instructions. Intuitively, if a sequence of instructions to accom¬ 
plish a high level language statement are more compact on machine A than 
machine B, then machine A needs a smaller number of bytes of cache to hold 
the instructions generated for the same source code as machine B. This 
means that machine A needs a smaller cache to achieve the same average 
memory response time performance. 

By way of example, Davidson and Vaughan (1987) suggest that RISC 
computer programs can be up to 2.5 times bigger than CISC versions of the 
same programs (although other sources, especially RISC vendors, would 
place this number at perhaps 1.5 times bigger). They also suggest that the 
RISC computers need a cache size that is twice as large as a CISC cache to 
achieve the same performance. Furthermore, a RISC machine with twice 
the cache of a CISC machine will still generate twice the number of cache 
misses (since a constant miss ratio generates twice as many misses for twice 
as many cache accesses), resulting in a need for higher speed main memory 
devices as well for equal performance. This is corroborated by the rule of 
thumb that a RISC processor in the 10 MIPS (Million RISC Instructions Per 
Second) performance range needs 128K bytes of cache memory for satisfac¬ 
tory performance, while high end CISC processors typically need no more 
than 64K bytes. 

Stack machines have much smaller programs than either RISC or CISC 
machines. Stack machine programs can be 2.5 to 8 times smaller than CISC 
code (Harris 1980, Ohran 1984, Schoellkopf 1980), although there are some 
limitations to this observation discussed later. This means that a RISC 
processor’s cache memory may need to be bigger than a stack processor’s 
entire program memory to achieve comparable memory response times! As 
anecdotal evidence of this effect, consider the following situation: while 
Unix/C programmers on RISC processors are unhappy with less than 8M to 
16M bytes of memory, and want 128K bytes of cache, Forth programmers 
are still engaged in heated debate as to whether more than 64K bytes of 
program space is really needed on stack machines. 

Small program size on stack machines not only decreases system costs by 
eliminating memory chips, but can actually improve system performance. 
This happens by increasing the chance that an instruction will be resident in 
high speed memory when needed, possibly by using the small program size 
as a justification for placing an entire program in fast memory. 
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How can it be that stack processors have such small memory require¬ 
ments? There are two factors that account for the extremely small program 
sizes possible on stack machines. The more obvious factor, and the one 
usually cited in the literature, is that stack machines have small instruction 
formats. Conventional architectures must specify not only an operation on 
each instruction, but also operands and addressing modes. For example, a 
typical register-based machine instruction to add two numbers together 
might be: ADD R1,R2. This instruction must not only specify the ADD 
opcode, but also the fact that the addition is being done on two registers, and 

that the registers are R1 and R2. 
On the other hand, a stack-based instruction set need only specify an 

ADD opcode, since the operands have an implicit address of the current top 
of stack. The only time that an operand is present is when performing a load 
or store instruction, or pushing an immediate data value onto the stack. The 
WISC CPU/16 and Harris RTX 32P use 8- and 9-bit opcodes, respectively, 
yet have many more opcodes than are actually needed to run programs 
efficiently. Loosely encoded instructions found on the other processors 
discussed in this book, exemplified by the Novix NC4016, allow packing 2 or 
more operations into the same instruction to achieve little sacrifice in code 
density over a byte-oriented machine. 

A less obvious, but actually more important, reason for stack machines 
having more compact code is that they efficiently support code with many 
frequently reused subroutines, often called threaded code (Bell 1973, 
Dewar 1975). While such code is possible on conventional machines, the 
execution speed penalty is severe. In fact, one of the most elementary 
compiler optimizations for both RISC and CISC machines is to compile 
procedure calls as in-line macros. This, added to most programmers’ 
experience that too many procedure calls on a conventional machine will 
destroy program performance, leads to significantly larger programs on 

conventional machines. 
On the other hand, stack-oriented machines are built to support pro¬ 

cedure calls efficiently. Since all working parameters are always present on a 
stack, procedure call overhead is minimal, requiring no memory cycles for 
parameter passing. On most stack processors, procedure calls take one clock 
cycle, and procedure returns take zero clock cycles in the frequent case 
where they are combined with other operations. 

There are several qualifications associated with the claim that stack 
machines have more compact code than other machines, especially since we 
are not presenting the results of a comprehensive study here. Program size 
measures depend largely on the language being used, the compiler, and 
programming style, as well as the instruction set of the processor being used. 
Also, the studies by Harris, Ohran, and Schoellkopf were mostly for stack 
machines that used variable length instructions, while machines described in 
this book use 16- or 32-bit fixed length instructions. Counterbalancing the 
fixed instruction length is the fact that processors running Forth can have 
smaller programs than other stack machines. The programs are smaller 
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because they use frequent subroutine calls, allowing a high degree of code 
reuse within a single application program. And, as we shall see in a later 
section, the fixed instruction length for even 32-bit processors such as the 
RTX 32P does not cost as much program memory space as one might think. 

6.2.2 Processor and system complexity 
When speaking of the complexity of a computer, two levels are important: 
processor complexity, and system complexity. Processor complexity is the 
amount of logic (measured in chip area, number of transistors, etc.) in the 
actual core of the processor that does the computations. System complexity 
considers the processor embedded in a fully functional system which 
contains support circuitry, the memory hierarchy, and software. 

CISC computers have become substantially more complex over the 
years. This complexity arises from the need to be very good at all their many 
functions simultaneously. A large degree of their complexity stems from an 
attempt to tightly encode a wide variety of instructions using a large number 
of instruction formats. Added complexity comes from their support of 
multiple programming and data models. Any machine that is reasonably 
efficient at processing COBOL packed decimal data types on a time sliced 
basis with running double precision floating point FORTRAN matrix 
operations and LISP expert systems is bound to be complex! 

The complexity of CISC machines is partially the result of encoding 
instructions to keep programs relatively small. The goal is to reduce the 
semantic gap between high level languages and the machine to produce 
more efficient code. Unfortunately, this may lead a situation where almost 
all available chip area is used for the control and data paths (for instance the 
Motorola 680x0 and Intel 80x86 products). Additionally, an argument 
made by RISC proponents is that CISC designs may be paying a perfor¬ 
mance penalty as well as a size penalty. 

The extremes to which some CISC processors take the complexity of the 
core processor may seem excessive, but they are driven by a common and 
well founded goal: establishment of a consistent and simple interface 
between hardware and software. The success that this approach can have is 
demonstrated by the IBM System/370 line of computers. This computer 
family encompasses a vast range of price and performance, from personal 
computer plug-in cards to supercomputers, all with the same assembly 
language instruction set. 

The clean and consistent interface between hardware and software at the 
assembly language level means that compilers need not be excessively 
complex to produce reasonable code, and that they may be reused among 
many different machines of the same family. Another advantage of CISC 
processors is that, since instructions are very compact, they do not require a 
large cache memory for acceptable system performance. So, CISC machines 
have traded off increased processor complexity for reduced system 
complexity. 
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The concept behind RISC machines is to make the processor faster by 
reducing its complexity. To this end, RISC processors have fewer transistors 
in the actual processor control circuitry than CISC machines. This is 
accomplished by having simple instruction formats and instructions with low 
semantic content; they don’t do much work, but don’t take much time to do 
it. The instruction formats are usually chosen to correspond with require¬ 
ments for running a particular programming language and task, typically 
integer arithmetic in the C programming language. 

This reduced processor complexity is not without a substantial cost. Most 
RISC processors have a large bank of registers to allow quick reuse of 
frequently accessed data. These register banks must be dual-ported memory 
(allowing two simultaneous accesses at different addresses) to allow fetching 
both source operands on every cycle. Furthermore, because of the low 
semantic content of their instructions, RISC processors need much higher 
memory bandwidth to keep instructions flowing into the CPU. This means 
that substantial on-chip and system-wide resources must be devoted to cache 
memory to attain acceptable performance. Also, RISC processors charac¬ 
teristically have an internal instruction pipeline. This means that extra 
hardware or compiler techniques must be provided to manage the pipeline. 
Special attention and extra hardware resources must be used to ensure that 
the pipeline state is correctly saved and restored when interrupts are 
received. 

Finally, different RISC implementation strategies make significant 
demands on compilers such as: scheduling pipeline usage to avoid hazards, 
filling branch delay slots, and managing allocation and spilling of the register 
banks. While the decreased complexity of the processor makes it easier to 
get bug-free hardware, even more complexity shows up in the compiler. This 
is bound to make compilers complex as well as expensive to develop and 
debug. 

The reduced complexity of RISC processors comes, then, with an 
offsetting (perhaps even more severe) increase in system complexity. 

Stack machines strive to achieve a balance between processor com¬ 
plexity and system complexity. Stack machine designs realize processor 
simplicity not by restricting the number of instructions, but rather by 
limiting the data upon which instructions may operate: all operations are on 
the top stack elements. In this sense, stack machines are ‘reduced operand 
set computers’ as opposed to ‘reduced instruction set computers’. 

Limiting the operand selection instead of how much work the instruction 
may do has several advantages. Instructions may be very compact, since 
they need specify only the actual operation, not where the sources are to be 
obtained. The on-chip stack memory can be single ported, since only a single 
element needs to be pushed or popped from the stack per clock cycle 
(assuming the top two stack elements are held in registers). More impor¬ 
tantly, since all operands are known in advance to be the top stack elements, 
no pipelining is needed to fetch operands. The operands are always 
immediately available in the top-of-stack registers. As an example of this, 
consider the T and N registers in the NC4016 design, and contrast these with 



Sec. 6.2] ARCHITECTURAL DIFFERENCES FROM CONVENTIONAL MACHINES 123 

the dozens or hundreds of randomly accessible registers found on a RISC 
machine. 

Having implicit operand selection also simplifies instruction formats. 
Even RISC machines must have multiple instruction formats. Consider, 
though, that stack machines have few instruction formats, even to the 
extreme of having only one instruction format for the RTX 32P. Limiting the 
number of instruction formats simplifies instruction decoding logic, and 
speeds up system operation. 

Stack machines are extraordinarily simple: 16-bit stack machines typi¬ 
cally use only 20 to 35 thousand transistors for the processor core. In 
contrast, the Intel 80386 chip has 275 thousand transistors and the Motorola 
68020 has 200 thousand transistors. Even taking into account that the 80386 
and 68020 are 32-bit machines, the difference is significant. 

Stack machine compilers are also simple, because instructions are very 
consistent in format and operand selection. In fact, most compilers for 
register machines go through a stack-like view of the source program for 
expression evaluation, then map that information onto a register set. Stack 
machine compilers have that much less work to do in mapping the stack-like 
version of the source code into assembly language. Forth compilers, in 
particular, are well known to be exceedingly simple and flexible. 

Stack computer systems are also simple as a whole. Because stack 
programs are so small, exotic cache control schemes are not required for 
good performance. Typically the entire program can fit into cache-speed 
memory chips without the complexity of cache control circuitry. 

In those cases where the program and/or data is too large to fit in 
affordable memory, a software-managed memory hierarchy can be used: 
frequently used subroutines and program segments can be placed in high 
speed memory, while infrequently used program segments are placed in 
slow memory. Inexpensive single-cycle calls to the frequent sections in the 
high speed memory make this technique very effective. 

The Data Stack acts as a data cache for most purposes, such as in 
procedure parameter passing, and data elements can be moved in and out of 
high speed memory under software control as desired. While a traditional 
data cache, and to a lesser extent an instruction cache, might give some 
speed improvements, they are certainly not required, nor even desirable, for 
most small- to medium-sized applications. 

Stack machines, therefore, achieve reduced processor complexity by 
limiting the operands available to the instruction. This does not force a 
reduction of the number of potential instructions available, nor does it cause 
an explosion in the amount of support hardware and software required to 
operate the processor. The result of this reduced complexity is that stack 
computers have more room left for program memory or other special- 
purpose hardware on-chip. An interesting implication is that, since stack 
programs are so small, program memory for many applications can be 
entirely on-chip. This on-chip memory is faster than off-chip cache memory 
would be, eliminating the need for complex cache control circuitry while 
sacrificing none of the speed. 
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6.2.3 Processor performance 
Processor performance is a very tricky area to talk about. Untold energy has 
been spent debating which processor is better than another, often based on 
sketchy evidence of questionable benchmarks, heated by the flames of self 
interest and product loyalty (or purchase rationalization). 

Some of the reasons that comparisons are so difficult stem from the 
question of application area. Benchmarks that measure performance at 
integer arithmetic are not adequate for floating point performance, business 
applications, or symbolic processing. About the best that one can hope for 
when using a benchmark is to claim that processor A is better than processor 
B when installed in the given hardware (with associated caches, memories, 
disks, clock speeds, etc.), using the given operating systems, using the given 
compilers, using the given source programming language, but only when 
running the benchmark that was measured. Clearly, measuring the perfor¬ 
mance of different machines is a difficult matter. 

Measuring the performance of radically different architectures is even 
harder. At the core of this difficulty is quantifying how much work is done by 
a single instruction. Since the amount of work done by a polynomial 
evaluation instruction in a VAX is different than a register-to-register move 
in a RISC machine, the whole concept of ‘Instructions Per Second’ is 
tenuous at best (even when normalized to a standardized instruction 
measure, using those same benchmarks that we don’t really trust). Adding 
to the problem is that different processors are built using different techno¬ 
logy (bipolar, ECL, SOS, NMOS, and CMOS, with varying feature sizes) 
and different levels of design sophistication (expensive full-custom layout, 
standard cell automatic layout, and gate array layout). Yet, the very concept 
of comparing architectures requires deducting the effects of differences in 
implementation technologies. Furthermore, performance varies greatly 
with the characteristics of the software being executed. The problem is that 
in real life, the effectiveness of a particular computer is measured not only by 
processor speed, but also by the quality and performance of the system 
hardware, operating system, programming language, and compiler. 

All these difficulties should lead the reader to the conclusion that the 
problem of finding exact performance measures is not going to be resolved 
here. Instead, we shall concentrate on a discussion of some reasons why 
stack machines can be made to go faster than other types of machines on an 
instruction-by-instruction basis, why stack machines have good system 
speed characteristics, and what kinds of programs stack machines are well 

suited to. 

6.2.3.1 Instruction execution rate 
The most sophisticated RISC processors boast that they have the highest 
possible instruction execution rate — one instruction per processor clock 
cycle. This is accomplished by pipelining instructions into some sequence of 
instruction address generation, instruction fetch, instruction decode, data 
fetch, instruction execute, and data store cycles as shown in Fig. 6.1(a). This 
breakdown of instruction execution accelerates overall instruction flow, but 
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Fig. 6.1 — Instruction phase overlapping (a) Raw instruction phases. 

introduces a number of problems. The most significant of these problems is 
management of data to avoid hazards caused by data dependencies. This 
problem comes about when one instruction depends upon the result of the 
previous instruction. This can create a problem, because the second instruc¬ 
tion must wait for the first instruction to store its results before it can fetch its 
own operands. There are several hardware and software strategies to 
alleviate the impact of data dependencies, but none of them completely 
solves it. 

Stack machines can execute programs as quickly as RISC machines, 
perhaps even faster, without the data dependency problem. It has been said 
that register machines are more efficient than stack machines because 
register machines can be pipelined for speed while stack machines cannot. 
This problem is caused by the fact that each instruction depends on the effect 
of the previous instruction on the stack. The whole point is, however, that 
stack machines do not need to be pipelined to get the same speed as RISC 
machines. 

Consider how the RISC machine instruction pipeline can be modified 
when it is redesigned for a stack machine. Both machines need to fetch the 
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Fig. 6.1 — Instruction phase overlapping (b) Typical RISC machine. 

instruction, and on both machines this can be done in parallel with process¬ 
ing previous instructions. For convenience, we shall lump this stage in with 
instruction decoding. RISC and some stack machines need to decode the 
instruction, although stack machines such as the RTX 32P do not need to 
perform conditional operations to extract parameter fields from the instruc¬ 
tion or chose which format to use, and are therefore simpler than RISC 
machines. 

In the next step of the pipeline, the major difference becomes apparent. 
RISC machines must spend a pipeline stage accessing operands for the 
instruction after (at least some of) the decoding is completed. A RISC 
instruction specifies two or more registers as inputs to the ALU for the 
operation. A stack machine does not need to fetch the data; this will be 
waiting on top of the stack when needed. This means that as a minimum, the 
stack machine can dispense with the operand fetch portion of the pipeline. 
Actually, the stack access can also be made faster than the register access. 
This is because a single-ported stack can be made smaller, and therefore 
faster than a dual-ported register memory. 

The instruction execute portion of both the RISC and the stack machine 

DATA 

STORE 
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Fig. 6.1 — Instruction phase overlapping (c) Typical stack machine. 

are judged to be about the same since the same sort of ALU can be used by 
both systems. But, even in this area, some stack machines can gain an 
advantage over RISC machines by precomputing ALU functions based on 
the top-of-stack elements before the instruction is even decoded, as is done 
on the M17 stack machine. 

The operand storage phase takes another pipeline stage in some RISC 
designs, since the result must be written back into the register file. This write 
conflicts with reads that need to take place for new instructions beginning 
execution, causing delays or the need for a triple-ported register file. This 
can require holding the ALU output in a register, then using that register in 
the next clock cycle as a source for the register file write operation. 
Conversely, the stack machine simply deposits the ALU output result in the 
top-of-stack register and is done. An additional problem is that extra data 
forwarding logic must be provided in a RISC machine to prevent waiting for 
the result to be written back into the register file if the ALU output is needed 
as an input for the next instruction. A stack machine always has the ALU 
output available as one of the implied inputs to the ALU. 

Fig. 6.1(b) shows that RISC machines need at least three pipeline stages 
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and perhaps four to maintain the same throughput: instruction fetch, 
operand fetch, and instruction execute/operand store. Also, we have noted 
that there are several problems inherent with the RISC approach, such as 
data dependencies and resource contention, that are simply not present in 
the stack machine. Fig. 6.1(c) shows that stack machines need only a two- 
stage pipeline: instruction fetch and instruction execute. 

What this all means is that there is no reason that stack machines should 
be any slower than RISC machines in executing instructions, and there is a 
good chance that stack machines can be made faster and simpler using the 

same fabrication technology. 

6.2.3.1 System Performance 
System performance is even more difficult to measure than raw processor 
performance. System performance includes not only how many instructions 
can be performed per second on straight-line code, but also speed in 
handling interrupts, context switches, and system performance degradation 
because of factors such as conditional branches and procedure calls. 
Approaches such as the Three-Dimensional Computer Performance tech¬ 
nique (Rabbat et al. 1988) are better measures of system performance than 

the raw instruction execution rate. 
RISC and CISC machines are usually constructed to execute straight- 

line code as the general case. Frequent procedure calls can seriously degrade 
the performance of these machines. The cost for procedure calls not only 
includes the cost of saving the program counter and fetching a different 
stream of instructions, but also the cost of saving and restoring registers, 
arranging parameters, and any pipeline breaking that may occur. The very 
existence of a structure called the Return Address Stack should imply how 
much importance stack machines place upon flow-of-control structures such 
as procedure calls. Since stack machines keep all working variables on a 
hardware stack, the setup time required for preparing parameters to pass to 
subroutines is very low, usually a single DUP or OVER instruction. 

Conditional branches are a difficult thing for any processor to handle. 
The reason is that instruction prefetching schemes and pipelines depend 
upon uninterrupted program execution to keep busy, and conditional 
branches force a wait while the branch outcome is being resolved. The only 
other option is to forge ahead on one of the possible paths in the hope that 
there is nondestructive work to be done while waiting for the branch to take 
effect. RISC machines handle the conditional branch problem by using a 
‘branch delay slot’ (McFarling & Hennesy 1986) and placing a nondestruc¬ 
tive instruction or no-op, which is always executed, after the branch. 

Stack machines handle branches in different manners, all of which result 
in a single-cycle branch without the need for a delay slot and the compiler 
complexity that it entails. The NC4016 and RTX 2000 handle the problem by 
specifying memory faster than the processor cycle. This means that there is 
time in the processor cycle to generate an address based on a conditional 
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branch and still have the next instruction fetched by the end of the clock 
cycle. This approach works well, but runs into trouble as processor speed 
increases beyond affordable program memory speed. 

The FRISC 3 generates the condition for a branch on one instruction, 
then accomplishes the branch with the next instruction. This is really a rather 
clever approach, since a comparison or other operation is needed before 
most branches on any machine. Instead of just doing the comparison 
operation (usually a subtraction), the FRISC 3 also specifies which condition 
code is of interest for the next branch. This moves much of the branching 
decision into the comparison instruction, and only requires the testing of a 
single bit when executing the succeeding conditional branch. 

The RTX 32P uses its microcode to combine comparisons and branches 
into a two-instruction-cycle combination that takes the equivalent time as a 
comparison instruction followed by a condition branch. For example, the 
combination = OBRANCH can be combined into a single four-microcycle 

(two-instruction cycle) operation. 
Interrupt handling is much simpler on stack machines than on either 

RISC or CISC machines. On CISC machines, complex instructions that take 
many cycles may be so long that they need to be interruptible. This can force 
a great amount of processing overhead and control logic to save and restore 
the state of the machine within the middle of an instruction. RISC machines 
are not too much better off, since they have a pipeline that needs to be saved 
and restored for each interrupt. They also have registers that need to be 
saved and restored in order to give the interrupt service routine resources 
with which to work. It is common to spend several microseconds responding 
to an interrupt on a RISC or CISC machine. 

Stack machines, on the other hand, can typically handle interrupts within 
a few clock cycles. Interrupts are treated as hardware invoked subroutine 
calls. There is no pipeline to flush or save, so the only thing a stack processor 
needs to do to process an interrupt is to insert the interrupt response address 
as a subroutine call into the instruction stream, and push the interrupt mask 
register onto the stack while masking interrupts (to prevent an infinite 
recursion of interrupt service calls). Once the interrupt service routine is 
entered, no registers need be saved, since the new routine can simply push 
its data onto the top of the stack. As an example of how fast interrupt 
servicing can be on a stack processor, the RTX 2000 spends only 4 clock 
cycles (400 ns) between the time an interrupt request is asserted and the time 
the first instruction of the interrupt service routine is being executed. 

Context switching is perceived as being slower for a stack machine than 
other machines. However, as experimental results presented later will show, 

this is not the case. 
A final advantage of stack machines is that their simplicity leaves room 

for algorithm specific hardware on customized microcontroller implemen¬ 
tations. For example, the Harris RTX 2000 has an on-chip hardware 
multiplier. Other examples of application specific hardware for semicustom 
components might be an FFT address generator, A/D or D/A converters, or 
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communication ports. Features such as these can significantly reduce the 
parts count in a finished system and dramatically decrease program execu¬ 
tion time. 

6.2.3.3 Which programs are most suitable? 
The type of programs which stack machines process very efficiently include: 
subroutine intensive programs, programs with a large number of control 
flow structures, programs that perform symbolic computation (which often 
involves intensive use of stack structures and recursion), programs that are 
designed to handle frequent interrupts, and programs designed for limited 

memory space. 

6.2.4 Program execution consistency 
Advanced RISC and CISC machines rely on many special techniques that 
give them statistically higher performance over long time periods without 
guaranteeing high performance during short time periods. System design 
techniques that have these characteristics include: instruction prefetch 
queues, complex pipelines, scoreboarding, cache memories, branch target 
buffers, and branch prediction buffers. The problem is that these techniques 
cannot guarantee increased instantaneous performance at any particular 
time. An unfortunate sequence of external events or internal data values 
may cause bursts of cache misses, queue flushes, and other delays. While 
high average performance is acceptable for some programs, predictably high 
instantaneous performance is important for many real-time applications. 

Stack machines use none of these statistical speedup techniques to 
achieve good system performance. As a result of the simplicities of stack 
machine program execution, stack machines have a very consistent perfor¬ 
mance at every time scale. As we shall see in Chapter 8, this has a significant 
impact on real-time control applications programming. 

6.3 A STUDY OF FORTH INSTRUCTION FREQUENCIES 

Now that we have a conceptual understanding of how stack machines differ 
from other computers, let us look at some quantitative results that show how 
stack machines perform. Measurements of instruction frequencies and code 
sizes for stack-based and register-based machines abound (references 
include: Blake (1977), Cook & Donde (1982), Cook & Lee (1980), Cragon 
(1979), Haikala (1982), McDaniel (1982), Sweet & Sandman (1982), and 
Tanenbaum (1978)). Unfortunately, most of these measurements are for 
programs written in conventional languages, not in an inherently stack- 
based language such as Forth. Hayes et ol. (1987) have previously published 
execution statistics for Forth programs, but we shall expand upon their 
findings. 

The results in this chapter are all based on programs written in Forth, 
since these programs take the most advantage of the capabilities of a stack 
machine. The cautions about benchmarks are still applicable, so these 
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results should be used as only rough approximations to ‘truth’ (whatever 

that is). 
Six different benchmark programs are referred to in the following 

sections. Except as noted, all programs are written for a 16-bit Forth system. 

They are as follows: 

Frac: a fractal landscape generation program that uses a random number 
generator. It is always seeded with the same initial value for consistency to 
generate a graphics image. (Koopman 1987e, Koopman 1987f) 

Life: a simple implementation of Conway’s game of Life on an 80- 
column by 25-row character display. Each program run computes ten 

generations of a screen full of gliders. 
Math: a 32-bit floating point package written in high level Forth code 

with no machine-specific primitives for normalization, etc. Each program 
run generates a table of sine, cosine, and tangent values for integer degrees 
between 1 and 10. (Koopman 1985) 

Compile-, a script used to compile several Forth programs, measuring the 
execution of the Forth compiler itself. 

Fib: computation of the 24th Fibonacci number using a recursive 
procedure (commonly called ‘dumb’ Fibonacci). 

Hanoi: the Towers of Hanoi problem, written as a recursive procedure. 
Each program run computes the result for 12 disks. 

Queens: the N Queens problem (derived from the 8 queens on a chess 
board puzzle) written as a recursive procedure. The program finds the first 
acceptable placement for N queens on an NxJV board. Each program run 

computes the result for iV=12 queens. 

The three programs which represent the best mix of different application 
areas are Math, which uses intensive stack manipulation to manage 32-bit 
quantities (and a 48-bit temporary floating point format) on a 16-bit stack; 
Life, which does intensive management of an array of memory cells with 
much conditional branching; and Frac, which does graphics line drawing and 
rudimentary graphics projections. 

The compilation benchmark is also useful in that it reflects the activities 
of a compiler which must do tokenizing of the input streams and identifier 

searches. 

6.3.1 Dynamic instruction frequencies 
Table 6.1 shows dynamic instruction execution frequencies for the most 
frequently executed primitives for Frac, Life, Math, and Compile. The 
dynamic frequency of an instruction is the number of times it is executed 
during a program run. Appendix C contains the unabridged version of the 
instruction frequencies given in Table 6.1. The AVE column shows the 
equally weighted average of the four benchmarks, which is a rough approxi¬ 
mation of execution frequency for most Forth programs. The Forth words 
selected for inclusion in this table were either in the top ten of the Ave 
column, or in one of the top ten words for a particular program. For 
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Table 6.1 — Dynamic instruction execution frequencies for important Forth 
primitives 

Names Frac Life Math Compile Ave 

CALL 
(%) 
11.16 

(%) 
12.73 

(%) 
12.59 

(%) 
12.36 

(%) 
12.21 

EXIT 11.07 12.72 12.55 10.60 11,74 

VARIABLE 7.63 10.30 2.26 1.65 5.46 

@ 7.49 2.05 0.96 11.09 5.40 

OBRANCH 3.39 6.38 3.23 6.11 4.78 

LIT 3.94 5.22 4.92 4.09 4.54 

+ 3.41 10.45 0.60 2.26 4.18 

SWAP 4.43 2.99 7.00 1.17 3.90 

R> 2.05 0.00 11.28 2.23 3.89 
>R 2.05 0.00 11.28 2.16 3.87 

CONSTANT 3.92 3.50 2.78 4.50 3.68 

DUP 4.08 0.45 1.88 5.78 3.05 

ROT 4.05 0.00 4.61 0.48 2.29 

USER 0.07 0.00 0.06 8.59 2.18 

c@ 0.00 7.52 0.01 0.36 1.97 

I 0.58 6.66 0.01 0.23 1.87 
= 0.33 4.48 0.01 1.87 1.67 

AND 0.17 3.12 3.14 0.04 1.61 

BRANCH 1.61 1.57 0.72 2.26 1.54 

EXECUTE 0.14 0.00 0.02 2.45 0.65 

Instructions: 2051600 1296143 6133519 447050 

example, EXECUTE has only a 0.65% AVE value, but has a 2.45% 
Compile value, which was tenth largest for the Compile measurements. 

The first thing that is obvious about these numbers is that subroutine calls 
and exits dominate all other operations. This well known fact is why the 
Forth-derived stack processors place such a heavy emphasis on efficient 
subroutine calls and subroutine exits in combination with other instructions. 
The subroutine exit numbers are less than the subroutine call numbers 
because some Forth operations pop the return stack to climb up through two 
levels of subroutine calls. This performs a conditional premature exit of the 
calling routine. 

The amount of time spent on stack manipulation primitives is also 
interesting. Of all the instructions in the sample, approximately 25% were 
spent manipulating the stacks. At first this seems rather high. However, 
since stack processors all have some capability for combining stack manipu¬ 
lations with other useful work (such as the combinations OVER —) this 
number is much higher than that seen in practice. Also, this 25% was skewed 
by up to 5% by the very high usage of >R and R> in the floating point math 
package to manipulate 32-bit quantities. This cost would not be present on a 



Sec. 6.3] A STUDY OF FORTH INSTRUCTION FREQUENCIES 133 

32-bit processor or a 16-bit processor that used a fast access user memory 
space (such as the NC4016 and RTX 2000) to store intermediate results. 

Also of interest is that the process of getting data onto the stack to be 
manipulated is very important (this process involves VARIABLE, LIT, 
CONSTANT, and USER). Fortunately, stack machines are able to combine 
these instructions with other operations as well. 

As a final observation, many of the instructions shown in Appendix C 
have dynamic execution frequencies of less than 1%. However, these 
instructions should not immediately be dismissed as unimportant, because 
many of them can have long execution times if not supported by the 
hardware. It is not enough to just look at the execution frequency to 
determine the importance of an instruction. 

6.3.2 Static instruction frequencies 
Table 6.2 shows static instruction compilation frequencies for the most often 
compiled primitives for Frac, Life, and Math, and the most often compiled 
primitives used by the programs being compiled in the Compile benchmark 
(which includes Frac, Queens, Hanoi, and Fib.). The static frequency of an 

Table 6.2 — Static instruction execution frequencies for important Forth 
primitives 

Names Frac Life Math Compile Ave 

CALL 
(%) 
16.82 

(%) 
31.44 

(%) 
37.61 

(%) 
17.62 

(%) 
25.87 

LIT 11.35 7.22 11.02 8.03 9.41 
EXIT 5.75 7.22 9.90 7.00 7.47 
@ 10.81 1.27 1.40 8.88 5.59 
DUP 4.38 1.70 2.84 4.18 3.28 
OB RANCH 3.01 2.55 3.67 3.16 3.10 
PICK 6.29 0.00 1.04 4.53 2.97 
+ 3.28 2.97 0.76 4.61 2.90 
SWAP 1.78 5.10 1.19 3.16 2.81 
OVER 2.05 5.10 0.76 2.05 2.49 
! 3.28 2.12 0.90 2.99 2.32 
I 1.37 5.10 0.11 1.62 2.05 
DROP 2.60 0.85 1.69 2.31 1.86 
BRANCH 1.92 0.85 2.09 2.05 1.73 
>R 0.55 0.00 4.11 0.77 1.36 
R> 0.55 0.00 4.68 0.77 1.50 
C@ 0.00 3.40 0.61 0.34 1.09 
= 0.14 2.76 0.29 0.26 0.86 

Instructions: 731 471 2777 1171 
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instruction is the number of times it appears in the source program. The 
AVE column shows the equally weighted average of the four benchmarks, 
which is a rough approximation of compilation frequency for most Forth 
programs. The Forth words selected for inclusion in this table were either in 
the top ten of the Ave column, or in one of the top ten words for a particular 

program. 
In the static measurements, subroutine calls are very frequent, account¬ 

ing for about one in four instructions compiled. Note that Frac is counted 
twice since it is included in Compile, so actually the subroutine call number 
is somewhat lower than it would otherwise be. 

6.3.3 Instruction compression on the RTX 32P 
With subroutine exits so common, it is no wonder that most of the stack 
machines have a mechanism for combining subroutine exits with other 
instructions. An important additional observation is that subroutine calls 
are more common than subroutine returns in the source code, and are even 
more attractive to combine with other operations. 

The RTX 32P discussed in Chapter 5 is unique in that it has only a single 
instruction format that combines both an opcode and a subroutine call/ 
subroutine return/unconditional branch. While at first this may seem to be 
wasteful of memory, there are significant performance gains to be made, and 
the memory cost is relatively low. Unfortunately, this single instruction 
format is only useful for 32-bit processors, since 16-bit processors do not 
have enough bits in an instruction to combine both an opcode and a large 

address field. 
Tables 6.3 and 6.4 are execution and compilation statistics gathered from 

versions of Frac, Life, and Math that were rewritten to take advantage of the 

capabilities of the 32-bit processor. 

6.3.3.1 Execution speed gains 
Table 6.3 has four profiles of dynamic program execution with different 
optimizations for the RTX 32P. Part (a) of the table shows the results of 
executing programs with no compression of opcodes and subroutines, and 
no peephole optimization of adjacent opcodes (opcode combination). 

Part (b) of the table shows the effects of combining common opcode 
sequences (such as SWAP DROP, OVER +, <variable> @ and 
<variable> @+) into single instructions. The column marked OP-OP is the 
number of combinations of two opcodes treated as a single opcode in the 
OP, OP-CALL, OP-EXIT, and OP-CALL-EXIT measurements. The spe¬ 
cial cases of LITERAL +, LITERAL AND, etc. are all designated as 
LITERAL-OP. The special cases of <variable> @ and <variable>! are 
designated VARIABLE-OP. The special cases of <variable> @+ and 
<variable> are designated VARIABLE-OP-OP. All the literal and 
variable special cases require a full instruction to hold an opcode and 
address, so are not combinable with other instructions. For the example 
programs, peephole optimization of opcodes was able to achieve a 10% 
reduction in the number of instructions executed. 
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Table 6.3 — Dynamic instruction execution frequencies for RTX 32P 
instruction types 

(a) Instruction compression OFF, Opcode combination OFF 

Frac Life Math Ave 

(%) (%) (%) (%) 
OP 57.54 46.07 49.66 51 
CALL 19.01 26.44 19.96 22 
EXIT 10.80 12.53 16.25 13 
OP+CALL 0.00 0.00 0.00 0 
OP+EXIT 0.00 0.00 0.00 0 
CALL+EXIT 0.00 0.00 0.00 0 
OP+CALL+EXIT 0.00 0.00 0.00 0 
COND 5.89 9.95 6.56 7 
LIT 6.76 5.01 7.57 6 
LIT-OP 0.00 0.00 0.00 0 
VARIABLE-OP 0.00 0.00 0.00 0 
VARIABLE-OP-OP 0.00 0.00 0.00 0 

Instructions: 8381513 1262079 940448 

OP-OP 0.00 0.00 0.00 0 

(b) Instruction compression OFF, Opcode combination ON 

Frac Life Math Ave 

(%) (%) (%) (%) 
OP 50.92 42.22 45.94 46 
CALL 17.81 28.31 21.42 23 
EXIT 12.48 13.42 17.45 14 
OP+CALL 0.00 0.00 0.00 0 
OP+CALL 0.00 0.00 0.00 0 
CALL+EXIT 0.00 0.00 0.00 0 
OP+CALL+EXIT 0.00 0.00 0.00 0 
COND 6.82 10.66 7.05 8 
LIT 2.60 1.94 2.53 2 
LIT-OP 5.21 3.43 5.59 5 
VARIABLE-OP 2.67 0.00 0.01 1 
VARIABLE-OP-OP 1.49 0.00 0.01 1 

Instructions: 7250149 1178235 875882 . 

OP-OP 4.72 3.68 1.76 3 

(c) Instruction compression ON, Opcode combination OFF 

Frac Life Math Ave 

(%) (%) (%) (%) 
OP 48.84 31.26 40.81 40 
CALL 8.46 22.20 15.53 15 
EXIT 4.57 0.00 4.80 3 
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Table 6.3 — Continued. 
Frac Life Math Ave 

(%) (%) (%) (%) 

OP+CALL 13.93 11.47 6.68 11 
op+exit 7.71 15.96 12.90 12 
CALL+EXTT 0.80 0.00 2.04 12 
OP+CALL+EXIT 0.15 0.00 0.03 0 
COND 7.23 12.69 7.99 9 
LIT 8.31 6.39 9.22 8 
LIT-OP 0.00 0.00 0.00 0 
VARIABLE-OP 0.00 0.00 0.00 0 
VARIABLE-OP-OP 0.00 0.00 0.00 0 

Instructions: 6827482 990313 772865 

OP-OP 0.00 0.00 0.00 0 

(d) Instruction compression ON, OPcode combination ON 

Frac Life Math Ave 

(%) (%) (%) (%) 
OP 39.05 24.91 39.19 34 
CALL 6.75 24.27 15.94 16 
EXIT 6.54 0.01 10.78 6 
OP+CALL 12.71 12.53 6.87 11 
OP+EXIT 6.78 17.44 7.40 11 
CALL+EXIT 0.95 0.01 2.10 1 
OP+CALL+EXIT 0.09 0.00 0.03 0 
COND 7.84 13.86 8.21 10 
LIT 3.00 2.52 2.95 3 
LIT-OP 6.00 4.45 6.51 6 
VARIABLE-OP 3.08 0.00 0.01 1 
VARIABLE-OP-OP 1.72 0.00 0.01 1 

Instructions: 6294109 906469 752257 

OP-OP 5.44 4.79 2.05 4 

Part (c) of the table shows the effects of using instruction compression 
instead of opcode combination. This means that wherever possible, opcodes 
are combined with following subroutine calls and exits. Subroutine calls 
followed by exits are also combined into unconditional jumps to accomplish 
tail-end recursion elimination. The result is a total of 24% of all instructions 
can combine opcodes and subroutine calls/returns. This translates into 
about 40% of all subroutine calls in the original program being executed ‘for 
free’. Almost all of the subroutine exits are executed ‘for free’, the 
exceptions being special instructions such as literals and return stack 
manipulations that cannot be combined with subroutine exits. 

Part (d) of the table shows the effects of turning on both opcode 



Sec. 6.3] A STUDY OF FORTH INSTRUCTION FREQUENCIES 137 

combination and instruction compression. The resulting code takes 25% 
fewer instructions than the original programs. This performance speedup is 
possible at almost no software or processing hardware expense because of 
the inherent parallelism between subroutine calls and opcodes. 

An interesting point is that the execution time for the Math benchmark 
reduced from 6.1 million instructions on the 16-bit system to only 940 
thousand instructions on the RTX 32P, testimony to the need for a 32-bit 
processor when doing floating point calculations. The Life benchmark 
(which is mostly 8-bit data manipulation) remained almost the same 
between systems. The Frac benchmark apparently increased by a factor of 
four, but this was because of the fact that the 32-bit version used a higher 
graphics resolution, requiring 4 times the number of points to be computed, 
which takes approximately 4 times as many instructions. 

6.3.3.2 Memory size cost 
The performance speedup of combining opcodes with subroutine calls is 
worthwhile, especially since it takes essentially no extra hardware inside the 
processor. In fact, it actually simplifies the hardware by requiring only one 
instruction format. The question that must still be resolved is, what is the 
cost in memory space? 

Fortunately, Forth programs have a static subroutine call frequency that 
is even higher than the dynamic frequency. This provides a ripe opportunity 
for opcode/subroutine call combinations. Table 6.4 shows the difference in 
static program size between raw programs with no compression and pro¬ 
grams on which both instruction compression and opcode compression have 
been performed. 

The RTX 32P uses 9-bit opcodes, 21-bit addresses, and 2-bit control 
fields. If we were to assume an optimally packed instruction format, we 
might design an instruction format that used 11 bits to specify an opcode with 
a single subroutine exit bit, and a 23-bit subroutine call/jump format. Also, 
let us be generous and assume that this instruction format would get all 
subroutine exits for free by combining them with opcodes or using a jump 
instead of call format. This supposes a machine with variable word width (11 
or 23 bits), but let us not worry about that, since we are computing a 
theoretical minimum. 

In the optimized form, the three programs together would consist of 1953 
opcodes (at 11 bits each), 1389 subroutine calls (at 23 bits each), and 565 
combination opcodes/address fields (at 34 bits each). This adds up to a total 
of 72 640 bits. 

Now consider the actual program compiled using the optimizations on 
the RTX 32P. Considering that each instruction category uses a fixed 32-bit 
encoding with some potentially unused fields, the total is 3300 instructions at 
32 bits, or 105 600 bits. The memory cost is then 32 960 bits, or 31% of 
memory ‘wasted’ over the theoretical minimum. 

Of course, designing a machine to use 11-bit opcodes and 23-bit subrou¬ 
tine calls would be a neat trick. In a more practical vein, we should consider 
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Table 6.4 — Static instruction compilation frequencies for RTX 32P instruc¬ 
tion types. 

(a) Instruction compression OFF, Opcode combination OFF 

Frac Life Math Ave 

(%) (%) (%) (%) 
OP 48.40 51.46 44.72 48 
CALL 28.48 33.01 35.64 32 
EXIT 5.12 6.41 7.55 6 
OP+CALL 0.00 0.00 0.00 0 
OP+EXIT 0.00 0.00 0.00 0 
CALL+EXIT 0.00 0.00 0.00 0 
OP+CALL+EXIT 0.00 0.00 0.00 0 
COND 3.52 4.46 4.04 4 
LIT 14.48 4.66 8.05 9 
LIT-OP 0.00 0.00 0.00 0 
VARIABLE-OP 0.00 0.00 0.00 0 
VARIABLE-OP-OP 0.00 0.00 0.00 0 

Instructions: 1250 515 2422 

OP-OP 0.00 0.00 0.00 0 

(b) Instruction compression ON, Opcode combination ON 

Frac Life Math Ave 

(%) (%) (%) (%) 
OP 33.71 35.78 37.05 36 
CALL 17.33 21.94 27.03 22 
EXIT 1.47 2.87 2.39 2 
OP+CALL 11.65 21.15 10.54 14 
OP+EXIT 3.78 4.70 1.73 3 
CALL+EXIT 1.05 1.04 4.02 2 
OP+CALL+EXIT 0.42 0.00 1.17 1 
COND 4.62 6.00 4.98 5 
LIT 16.17 4.18 8.61 10 
LIT-OP 2.83 2.08 1.32 2 
VARIABLE-OP 5.46 0.26 1.01 2 
VARIABLE-OP-OP 1.47 0.00 0.15 1 

Instructions: 952 383 1965 

OP-OP 2.73 5.22 1.98 3 
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that the number of ‘empty’ opcodes in the compressed version of the 
programs is 766 (at 9 bits each), and the number of ‘empty’ subroutine call 
fields is 917 (at 23 bits each). This is a total of 27 985 bits, only 27%, ‘wasted’ 
in exchange for 25% fewer instructions executed. So, we are getting a 
significant speedup at a relatively low cost over even a variable-length 
instruction format. 

There is a slight problem with the measurements presented in this section 
in that they are for several relatively small programs. The programs do 
perform some fairly complex operations, so this observation is in part 
supportive evidence that stack machine programs are compact. The 
problem is that very large Forth programs are difficult to find. Nevertheless, 
the programs were chosen to represent a reasonable cross-section of 
commonly used Forth code and, in the author’s considered opinion, the 
results are reasonably close to those that would be obtained by measuring a 
larger sample of programs. 

Of course, one way to get much larger programs would be to use the 
output of a conventional language compiler, but that kind of code would 
probably have different characteristics, because programmers solve 
problems much differently in C or FORTRAN than they do in Forth. We 
shall revisit that thought in Chapter 7. 

6.4 STACK MANAGEMENT ISSUES 

Since stack machines depend on accessing a high speed stack memory on 
every instruction, the characteristics of use of the stack memory are of vital 
importance. In particular, as processors get faster, the question is: how 
much stack memory needs to be placed on-chip to obtain good perfor¬ 
mance? The answer to this question is crucial, since it affects the cost and 
performance of high-end stack processors that place stack memory on-chip. 

An equally important question is how should the stacks be managed, 
especially in the realm of multi-tasking environments? 

6.4.1 Estimating stack size: an experiment 
The first question, the one of the size of the on-chip stack buffer, is best 
resolved by a simulation of various programs with different size stack 
buffers. This simulation measures the amount of traffic to and from memory 
generated by stack overflows and underflows. Overflows need to copy 
elements from the hardware stack buffer to a save area in memory. 
Underflows cause a copying of the elements back from memory to the stack 
buffer. 

Table 6.5 and Fig. 6.2 show the results of a simulator that monitored the 
number of memory cycles spent on data stack buffer spilling and restoring 
for Life, Hanoi, Frac, Fib, Math, and Queens. While the ‘toy’ benchmarks 
Fib, Hanoi, and Queens are not representative of typical programs, all are 
deeply recursive and are representative of the worst one might expect of 
stack programs. 



T
ab

le
 6

.5
 —

 M
em

o
ry

 c
yc

le
s 

ex
p

en
d

ed
 f

o
r 

D
at

a 
S

ta
ck

 s
pi

ll
s 

140 UNDERSTANDING STACK MACHINES [Ch. 6 

C/3 g Os o 3 3 
D 
<U 

(N CM CM CM CM 
(N CO CO rT O t-~ — 

O 
M0 mo rr t-H CM CM 

03 

X 

JD 
E 

J3 
■4—* 

03 

S 

o 
03 
u, 
tu 

mo 
so 
sO 
mo co 
CM 

os 
3-H 
mo 
CO co 
3 

Ml 
C 
.o 
o 
2 

<-« 
(A 
a 

o 
2 

CM 
mo 

co 
CM 

5 

Q. 
<D 

■a 

o 
OS 

s 
s 

CM 
rT 

S 
Tf rt 

3 
Jo oo 

M3 
mo 
co o 
c~ 
SO 
CO 

mi 
~o 
a 
at 
u. <u 
a. 
o 
u 
03 

cm mo 
os 

os s 
CM 
CM 

3CM333333 

(N C X (M t X 
rr mo 
s© sD 
so mo on cm oo rr 
rr MO sO CO or — 

. . . _ O so 
MO 00 00 rr —i 
r- — o o o 

CM ' 

rr 00 3 so rr 
O 't CM M0 CM 
M0 CM 

00 o 

r~ M0 3 3 3 CM 3 3 rr oo 
O' CM sO 3 TT CO CM c~ 00 co 
2 r- C- Os r- M0 O' CM 
3 CO CO 3 CM CO ■—1 
00 oo 00 C~ Os 
00 Tf Tf CO 

o o o o o o o 

3 
Jo 
oo 
r- 

CMSC333333333333 
CM SO CM 3 3 OO 
so MO O CO 00 CM 
OS CO OO 00 
— — CO CM 
Os CO CM 
CO 1—1 

CO so oo 00 
CO co 

t-H so SO 
t-H 

0\ O' O' 
(N r- c~ 

tH rH 

rr 
rr 00 rT 

Os 
O rr 

oooooooooooo 

so Q -<r O 
^ o rH ^ 
CO os CM 3 

00 CM Os 
CO O CO 

SO 00 CM 
CO 

o r~ 

SO O CM so O CM SO 
CO 00 CO CO CM O' CO 
cm in mi so N 
O CO H 

o o o o 

O* a> Ml <a 

o 

*3 Ml 
M-l 
o 
O 
2 

Ul 
— JO mi 5t3 
« a o xi 
o 
2 £ O N t OO CM SO O 'T 

i—• iH CM (s| 
OO CM O O St 
CM CO CO ^ rh 

OO CM 
Tt MO 



STACK MANAGEMENT ISSUES 141 

Fig. 6.2 — Data stack spilling. 

The spilling algorithm that was used spilled exactly one element from the 
stack buffer each time a push operation was performed on a full stack, and 
read exactly one element into the stack buffer each time a read/pop 
operation was performed on an empty stack buffer. The simulation assumed 
that hardware automatically handled the spilling with a cost of one memory 
cycle per element read or written. The RTX 32P instruction set was used for 
this simulation, so each instruction was approximately twice as complex as 
would be seen in a hardwired processor such as the RTX 2000. The number 
of cycles measured were memory cycles, not microcycles. The purpose of 
the simulation was to show the best behavior that could be expected, which 
is certainly within a factor of three or four of the costs for most 
implementations. 

Surprisingly, Frac behaves almost as badly as Hanoi when using the 
stack. This is because Frac pushes 6 elements onto the data stack at each step 
of a recursive subdivision algorithm for dividing a mesh of points. As is 
obvious, any recursive program has the potential to generate a large number 
of elements on the stack. 

The good news about stack size is that stack overflow and underflow 
memory traffic tapers off at a steep exponential rate for all programs. At a 
stack buffer size of 24, even Hanoi generates a stack spill on fewer than 1% 
of instructions. As a practical matter, a stack size of 32 will eliminate stack 
buffer overflows for almost all programs. 

Table 6.6 and Fig. 6.3 show simulator results for Return Stack spills and 
restores for the same programs. The results are similar, except that Math 
emerges as an unexpectedly heavy user of the Return Stack. This is because 
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Fig. 6.3 — Return stack spilling. 

the math package was written to be extremely modular and easy to port 
between systems, so it uses a large number of deeply nested subroutines. 
Also, Math uses the Return Stack for storing a large number of temporary 
variables to manipulate 48-bit data on a 16-bit processor. 

6.4.2 Overflow handling 
Now that we have examined how stack overflows and underflows occur in 
program execution, how should they be handled? Four possible ways of 
handling spills are: to ensure that they never happen, and treat them as 
catastrophic system failures; to use a demand-driven stack controller; to use 
a paging stack control mechanism; or to use a data cache memory. Each 
approach has its strengths and weaknesses. 

6.4.2.1 A very large stack memory 
The simplest way to solve the stack problem is simply to assume that stack 
overflows will never happen. While this may seem like a foolish strategy at 
first, it has some merit. The nicest result from using this strategy is that 
system performance is totally predictable (no stack spilling traffic to slow 
down the system) and that no stack management hardware is required. 

This approach of using a very large stack memory to avoid overflows is 
the one taken by the MISC M17, which has a stack overflow only when 
program memory capacity is exceeded. The approach taken by the NC4016 
is to use high speed off-chip stack memories that may be expanded to be 
several thousand elements deep. Both these processors have solved the 
stack overflow problem by simply designing it away. The price paid when 
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using this approach is a tradeoff between off-chip memory size/speed and 

processor speed. 
In the case where small on-chip stacks are used, the approach of treating 

overflows as a catastrophic system event when programs are being debugged 
can still be taken by simply declaring that the programmer has only X 

elements on the stacks to work with and is responsible for never overflowing 
this limit. This approach is very practical if only small, simple programs are 
being written and the value of X is greater than 16 or 32. The WISC CPU/16 
uses this approach with a stack size of 256 elements to keep the hardware 

simple. 

6.4.2.2 Demand-fed single-element stack manager 
Given that stack overflows are allowed to occur on a regular basis, the most 
conceptually appealing way to deal with the problem is to use a demand-fed 
stack manager that moves single elements on and off the stack as required. 

To implement this strategy, the stack buffer is set up as a circular buffer 
with a head and tail pointer. A pointer to memory is also needed to keep 
track of the top element of the memory-resident portion of the stack. 
Whenever a stack overflow is encountered, the bottom-most buffer-resident 
element is copied to memory, freeing a buffer location. Whenever an 
underflow is encountered, one element from memory is copied into the 
buffer. This technique has the appeal that the processor never moves a stack 
element to or from memory unless absolutely necessary, guaranteeing the 

minimum amount of stack traffic. 
A possible embellishment of this scheme would be to have the stack 

manager always keep a few elements empty and at least several elements full 
on the stack. This management could be done using otherwise unused 
memory cycles, and would reduce the number of overflow and underflow 
pauses. Unfortunately, this embellishment is of little value on real stack 
machines, since they all strive to use program memory 100% of the time for 
fetching instructions and data, leaving no memory bandwidth left over for 
the stack manager to use. 

The benefit to demand-fed stack management is that very good use is 
made of available stack buffer elements. Therefore, it is suitable for use in 
systems where chip space for stack buffers is at a premium. As an additional 
benefit, the stack underflows and overflows are spread throughout program 
execution at a maximum of two per instruction for the case of a data stack 
spill combined with a subroutine return underflow. The cost of this good 
performance is that reasonably complex control hardware and three 
counters for each stack are needed to implement the scheme. 

The FRISC 3 stack management scheme is similar to the demand-fed 
strategy. The architects of this system have done considerable research in 
this area. A generalization of this algorithm, called the cutback-K algor¬ 
ithm, was proposed by Hasegawa & Shigei (1985). Stanley & Wedig (1987) 
have also discussed top-of-stack buffer management for RISC machines. 
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6.4.2.3 Paging stack manager 

An alternative to the demand-fed strategy is to generate an interrupt on 
stack overflow and underflow, then use software to manage the stack spill. 
This approach uses less control hardware than the demand-fed method, but 
requires a stack buffer that is somewhat bigger to reduce the frequency of 
the interrupts. 

The general strategy used in this scheme is to have limit registers pointing 
to locations near the top and bottom of the stack buffer space. When an 
instruction causes the stack pointer to be less than the underflow pointer, a 
half-buffer full of elements is copied from program memory. When an 
instruction exceeds the overflow pointer, a half-buffer full of elements is 
copied into program memory. 

The paging scheme allows arbitrarily sized sections of a large stack 
memory to be used by different procedures on a time-sliced basis. Because 
of this, the stack buffer appears as a section of special memory, not as a 
circular buffer. Therefore, in practice, a stack overflow actually involves 
copying a half-buffer of elements to memory, then relocating the other half¬ 
buffer to place it at the start of the stack buffer area. 

The cost of the paging management method is about twice that of the 
demand-fed method in terms of memory cycles spent shuffling elements. 
Also, the buffer size must be twice that of the demand-fed buffers to 
guarantee the same number of consecutive pushes and pops between 
overflows and underflows, although in practice that increase in size is seldom 
needed. 

An interesting approach to using this method is to declare as a matter of 
programming style that stack overflows and underflows are unlikely and 
undesirable, since a buffer size of 32 essentially eliminates them anyway. 
Then the paging method provides an inexpensive hardware means for 
affording graceful degradation of a program that exceeds its buffer size. This 
way an ill behaved program will still function properly (although more 
slowly), while the operating system can generate a warning message identi¬ 
fying the culprit. 

The RTX 2000 and the RTX 32P both use this paging method for stack 
management. 

6.4.2.4 An associative cache 

The method used by many conventional processors for managing the 
program stack is to use a conventional data cache memory, Usually mapped 
into the program memory space. This method involves significant hardware 
complexity but does not provide any advantage over the previously men¬ 
tioned methods for stack machines, since stack machines do not skip about 
much in accessing their stack elements. It does provide an advantage when 
variable length data structures such as strings and records are pushed onto a 
‘stack’ as defined in a C or Ada programming environment. 

Other publications of interest that discuss the stack management issue 
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are: Blake (1977), Hennesy (1984), Prabhala & Sethi (1977), and Sites 

(1979). 

6.5 INTERRUPTS AND MULTI-TASKING 

There are three components to the performance of processing interrupts. 
The first component is the amount of time that elapses between the time that 
an interrupt request is received by the processor and the time that the 
processor takes action to begin processing the interrupt service routine. This 
delay is called interrupt latency. 

The second component of interrupt service performance is interrupt 
processing time. This is the amount of time that the processor spends 
actually saving the machine state of the interrupted job and diverting 
execution to the interrupt service routine. Usually the amount of machine 
state saved is minimal, on the presumption that the interrupt service routine 
can minimize costs by saving only those additional registers that it plans to 
use. Sometimes, one sees the term ‘interrupt latency’ used to describe the 
sum of these first two components. 

The third component of interrupt service performance is what we shall 
call state saving overhead. This is the amount of time taken to save machine 
registers that are not automatically saved by the interrupt processing logic, 
but which must be saved in order for the interrupt service routine to do its 
job. The state saving overhead can vary considerably, depending upon the 
complexity of the interrupt service routine. In the extreme case, state saving 
overhead can involve a complete context switch between multi-tasking jobs. 

Of course, the costs of restoring all the machine state and returning to the 
interrupted routine are a consideration in determining overall system 
performance. We shall not consider them explicitly here, since they tend to 
be roughly equal to the state saving time (since everything that is saved must 
be restored), and are not as important in meeting a time-critical deadline for 
responding to an interrupt. 

6.5.1 Interrupt response latency 
CISC machines may have instructions which take a very long time to 
execute, degrading interrupt response latency performance. Stack 
machines, like RISC machines, can have a very quick interrupt response 
latency. This is because most stack machine instructions are only a single 
cycle long, so at worst only a few clock cycles elapse before an interrupt 
request is acknowledged and the interrupt is processed. 

Once the interrupt is processed, however, the difference between RISC 
and stack machines becomes apparent. RISC machines must go through a 
tricky pipeline saving procedure upon recognizing an interrupt, as well as a 
pipeline restoring procedure when returning from the interrupt, in order to 
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avoid losing information about partially processed instructions. Stack 
machines, on the other hand, have no instruction execution pipeline, so only 
the address of the next instruction to be executed needs to be saved. This 
means that stack machines can treat an interrupt as a hardware generated 
procedure call. Of course, since procedure calls are very fast, interrupt 
processing time is very low. 

6.5.1.1 Instruction restartability 

There is one possible problem with stack machine interrupt response 
latency. That is the issue of streamed instructions and microcoded loops. 

Streamed instructions are used to repetitively execute an operation such 
as writing the top data stack element to memory. These instructions are 
implemented using an instruction repeat feature on the NC4016 and RTX 
2000, an instruction buffer on the M17, and microcoded loops on the CPU/ 
16 and RTX 32P. These primitives are very useful since they can be used to 
build efficient string manipulation primitives and stack underflow/overflow 
service routines. The problem is that, in most cases, these instructions are 
also noninterruptible. 

One solution is to make these instructions interruptible with extra 
control hardware, which may increase processor complexity quite a bit. A 
potentially hard problem that nonstack processors have with this solution is 
the issue of saving intermediate results. With a stack processor this is not a 
problem, since intermediate results are already resident on a stack, which is 
the ideal mechanism for saving state during an interrupt. 

Another approach that is used by stack processors is to use a software 
restriction on the size of the repeat count allowed to be used with streaming 
instructions. This means that if a block of 100 characters is to be moved in 
memory, the action may be accomplished by moving several groups of 8 
characters at a time. This keeps interrupt latency reasonable without 
sacrificing much performance. As expected, there is a tradeoff between 
absolute machine efficiency (with long streamed instructions) and interrupt 
response latency. 

In microcoded machines, the tradeoffs are much the same. However, 
there is a very simple microcode strategy to provide the best of both worlds 
which is designed into the RTX 32P commercial version. This strategy is 
having a condition code bit visible to the microcode indicating whether an 
interrupt is pending. At each iteration of a microcoded loop, the interrupt 
pending bit is tested, with no cost in execution time. If no interrupt is 
pending, another iteration is made through the loop. If an interrupt is 
pending, the address of the streamed instruction is pushed onto the return 
stack as the address to be executed upon return from the interrupt, and the 
interrupt is allowed to be processed. As long as the streamed instruction 
keeps all its state on the stack (which is simple with an operation such as a 
character block move), there is very little overhead associated with this 
method when processing an interrupt, and no overhead during normal 
program execution. 
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6.5.2 Lightweight interrupts 
Let us examine three different degrees of state saving required by different 
interrupt categories: fast interrupts, lightweight threads for multi-tasking, 
and full context switching. 

Fast interrupts are the kind most frequently seen at run time. These 
interrupts do things such as add a few milliseconds to the time-of-day 
counter, or copy a byte from an input port to a memory buffer. When 
conventional machines handle this kind of interrupt, they must usually save 
two or three registers in program memory to create working room in the 
register file. In stack machines, absolutely no state saving is required. The 
interrupt service routine can simply push its information on top of the stack 
without disturbing information from the program that was interrupted. So, 
for fast service interrupts, stack machines have zero state saving overhead. 

Lightweight threads are tasks in a multi-tasking system which have a 
similar execution strategy as the interrupts just described. They can reap the 
benefits of multi-tasking without the cost of starting and stopping full- 
fledged processes. A stack machine can implement lightweight threads 
simply by requiring that each task run a short sequence of instructions when 
invoked, then relinquish control to the central task manager. This can be 
called nonpreemptive, or cooperative task management. If each task starts 
and stops its operation with no parameters on the stack, there is no overhead 
for context switches between tasks. The cost for this method of multi-tasking 
is essentially zero, since a task only relinquishes its control to the task 
manager at a logical breaking point in the program, where the stack 
probably would have been empty anyway. 

From these two examples, we can see that interrupt processing and 
lightweight thread multi-tasking are very inexpensive on stack processors. 
The only issue that remains open is that of full-fledged, preemptive multi¬ 
tasking accomplished with context switching. 

6.5.3 Context switches 
Context switching overhead is usually said to be the reason why ‘stack 
machines are no good at multi-tasking’. The argument behind such reason¬ 
ing is usually based on having to save a tremendous amount of stack buffer 
space into program memory. This idea that stack machines are any worse at 
multi-tasking than other machines is patently false. 

Context switching is a potentially expensive operation on any system. In 
RISC and CISC computers with cache memories, context switching can be 
more expensive than the manufacturers would have one believe, as a result 
of hidden performance degradations caused by increased cache misses after 
the context switch. To the extent that RISC machines use large register files, 
they face exactly the same problems that are faced by stack machines. An 
added disadvantage of RISC machines is that their random access to 
registers dictates saving all registers (or adding complicated hardware to 
detect which registers are in use), whereas a stack machine can readily save 
only the active area of the stack buffer. 
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6.5.3.1 A context switching experiment 

Table 6.7 shows data gathered from a trace-driven simulation of the number 
of memory cycles spent saving and restoring data stack elements for Forth 
programs in a context switching environment. The programs simulated were 
Queen, Hanoi, and a Quick-sort program. Small values of N were used for 
Queen and Hanoi in order to keep the running time of the simulator 
reasonable. Both the effects of stack overflow and underflow as well as 
context switching were measured, since they interact heavily in such an 
environment. 

Table 6.7(a) and Fig. 6.4 show the results for a page-managed stack. The 
notation ‘xxx CLOCKS/SWITCH’ indicates the number of clock cycles 
between context switches. At 100 clock cycles between context switches, the 
number of memory cycles expended on managing the stack decreases as the 
buffer size increases. This is because of the effects of a reduced spilling rate 
while the program accesses the stack. As the buffer size increases beyond 8 
elements, however, the memory traffic increases since the increasingly large 
buffers are constantly copied in and out of memory on context switches. 

Notice how the program behaves at 500 cycles between context switches. 
Even at this relatively high rate (which corresponds to 20 000 context 
switches per second for a 10 MHz processor — an excessively high rate in 
practice), the cost of context switching is only about 0.08 clocks per 
instruction for a stack buffer size greater than 12. Since in this experiment 
each instruction averaged 1.688 clocks without context switching overhead, 
this only amounts to a 4.7% overhead. At 10 000 cycles between context 
switch (1 millisecond between context switches), the overhead is less than 
1%. 

How is it possible to have such a low overhead? One reason is that the 
average stack depth is only 12.1 elements during the execution of these three 
heavily recursive programs. That means that, since there is never very much 
information on the stack, very little information needs to be saved on a 
context switch. In fact, compared to a 16-register CISC machine, the stack 
machine simulated in this experiment actually has less state to save on a 
context switch. 

Table 6.7(b) and Fig. 6.5 show the results of the same simulation run 
using a demand-fed stack management algorithm. In these results, the rise 
on the 100-cycle-interval curve when more than 12 elements are in the stack 
buffer is almost nonexistent. This is because the stack was not refilled when 
restoring the machine state, but rather was allowed to refill during program 
execution in a demand-driven fashion. For reasonable context switching 
frequencies (less than 1000 per second), the demand-fed strategy is some¬ 
what better than the paged strategy, but not by an overwhelming margin. 

6.5.3.2 Multiple stack spaces for multi-tasking 

There is an approach that can be used with stack machines which can 
eliminate even the modest costs associated with context switching that we 
have seen. Instead of using a single large stack for all programs, high- 
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Fig. 6.4 — Overhead for a page managed stack. 

priority/time-critical portions of a program can be assigned their own stack 
space. This means that each process uses a stack pointer and stack limit 
registers to carve out a piece of the stack for its use. Upon encountering a 
context switch, the process manager simply saves the current stack pointer 
for the process, since it already knows what the stack limits are. When the 
new stack pointer value and stack limit registers are loaded, the new process 
is ready to execute. No time at all is spent copying stack elements to and 
from memory. 

The amount of stack memory needed by most programs is typically 
rather small. Furthermore, it can be guaranteed by design to be small in 
short, time-critical processes. So, even a modest stack buffer of 128 elements 
can be divided up among four processes with 32 elements each. If more than 
four processes are needed by the multi-tasking system, one of the buffers can 
be designated the low priority scratch buffer, which is to be shared using 
copy-in and copy-out among all the low priority tasks. 

From this discussion we can see that the notion that stack processors 
have too large a state to save for effective multi-tasking is a myth. In fact, in 
many cases stack processors can be better at multi-tasking and interrupt 
processing than any other kind of computer. 

Hayes and Fraeman (1988) have independently obtained results for 



152 UNDERSTANDING STACK MACHINES [Ch. 6 

Fig. 6.5 — Overhead for a demand fed managed stack. 

stack spilling and context switching costs on the FRISC 3 similar to the 
results reported in this chapter. 



7 
Software issues 

Any computer system is worthless without software. Having hardware that 
effectively supports software requirements is of the utmost importance. 
Stack machines offer new tradeoffs and choices when considering software 
issues. Section 7.1 discusses the importance of fast subroutine calls, and how 
they can directly and indirectly affect not only program execution speed, but 
also software quality and programmer productivity. 

Section 7.2 explains the choices and tradeoffs involved in choosing an 
appropriate language for programming stack machines, and how stack 
machines can support conventional languages efficiently. 

Section 7.3 discusses the interfaces among all levels of a program written 
for a stack machine. The uniformity of software interface present in stack 
machines is not possible in register-based machines, and gives significant 
advantages. 

7.1 THE IMPORTANCE OF FAST SUBROUTINE CALLS 

‘Programmers have learnt to avoid procedure calls and parameter 
passing for reasons of efficiency. These are, however, an important 
tool in the design of well organized programs and stack architec¬ 
tures carry the potential for very efficient invoking of procedures.’ 
(Schulthess & Mumprecht 1977, p. 25) 

The sentiment that expensive procedure calls lead to poorly structured 
programs by inhibiting programmers with efficiency considerations is 
echoed by software stylists as well as both RISC and CISC advocates 
(Atkinson & McCreight 1987, Ditzel & McLellan 1982, Parnas 1972, Sequin 
& Patterson 1982, Wilkes 1982). In fact, Lampson (1982) goes so far as to say 
that procedure calls should be made to run as fast as unconditional jumps. 

7.1.1 The importance of small procedures 
The use of a large number of small procedures when writing a program 
reduces the complexity of each piece that must be written, tested, debugged, 
and understood by the programmer. Lower software complexity implies 
lower development and maintenance costs, as well as better reliability. Why 
then, would programmers not make extensive use of small procedures? 

Most application programs are written in general-purpose languages 
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such as FORTRAN, COBOL, PL/1, Pascal, and C. The early high level 
programming languages such as FORTRAN were direct extensions of the 
philosophy of the machines they were run on: sequential von Neumann 
machines with registers. Consequently, these languages and their general 
usage have developed to emphasize long sequences of assignment state¬ 
ments with only occasional conditional branches and procedure calls. 

In recent years, however, the complexion of software has begun to 
change. The currently accepted best practice in software design involves 
structured programming using modular designs. On a large scale, the use of 
modules is essential for partitioning tasks among members of programming 
teams. On a smaller scale, modules control complexity by limiting the 
amount of information that a programmer must deal with at any given time. 

More advanced languages such as Modula-2 and Ada are designed 
specifically to promote modular design. The one hardware innovation that 
has resulted from the increasing popularity of modular, structured lan¬ 
guages has been a register used as a stack pointer into main memory. With 
the exception of this stack pointer and a few complex instructions (which are 
not always usable by compilers), CISC hardware has not added much 
support for subroutine calls over the years. Because of this, the machine 
code output of optimizing compilers for modern languages still tends to look 
a lot like output from earlier, nonstructured languages. 

Herein lies the problem. Conventional computers are still optimized for 
executing programs made up of streams of serial instructions. Execution 
traces for most programs show that procedure calls make up a rather small 
proportion of all instructions, which, of course, is partially attributable to 
the fact that programmers avoid using them. Conversely, modern program¬ 
ing practices stress the importance of nonsequential control flow and small 
procedures. The clash between these two realities leads to a suboptimal, and 
therefore costly, hardware/software environment on today’s general- 
purpose computers. 

This does not mean that programs have failed to become more organized 
and maintainable using structured languages, but rather that efficiency 
considerations and the use of hardware that encourages writing sequential 
programs has prevented modular languages from achieving all that they 
might. Although the current philosophy is to break programs up into very 
small procedures, most programs still contain fewer, larger, and more 
complicated procedures than they should. 

7.1.2 The proper size for a procedure 
How many functions should a typical procedure have? Miller gives evidence 
that the number seven, plus or minus two, applies to many aspects of 
thinking (Miller 1967). The way the human mind copes with complicated 
information is by chunking groups of similar objects into fewer, more 
abstract objects. In a computer program, this means that each procedure 
should contain approximately seven fundamental operations, such as assign¬ 
ment statements or other procedure calls, in order to be easily grasped. If a 
procedure contains more than seven distinct operations, it should be broken 
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apart by chunking related portions into subordinate procedures to reduce 
the complexity of each portion of the program. In another part of his book, 
Miller shows that the human mind can only grasp two or three levels of 
nesting of ideas within a single context. This strongly suggests that deeply 
nested loops and conditional structures should be arranged as nested 
procedure calls, not as convoluted, indented structures within a procedure. 

7.1.3 Why programmers don’t use small procedures 
The only question now is, why don’t most programmers follow these 
guidelines? 

The most obvious reason that programmers avoid small, deeply nested 
procedures is the cost in speed of execution. Subroutine parameter setup 
and the actual procedure calling instructions can swamp the execution time 
of a program if used too frequently. All but the most sophisticated optimiz¬ 
ing compiler cannot help if procedures are deeply nested, and even those 
optimizations are limited. As a result, efficient programs tend to have a 
relatively shallow depth of procedure nesting. 

Another reason that procedures are not used more is that they are 
difficult to program. Often times the effort to write the pro-forma code 
required to define a procedure makes the definition of a small procedure too 
burdensome. When this awkwardness is added to the considerable docu¬ 
mentation and project management obstacles associated with creating a new 
procedure in a big project (engendered by rules such as: each procedure 
must have a separate management control document), it is no wonder that 
average procedure sizes of one or two pages instead of one or two lines are 
considered appropriate. 

There is an even deeper cause why procedures are difficult to create in 
modern programming languages, and why they are used less frequently than 
the reader of a book on structured programming might expect: conventional 
programming languages and the people who use them are steeped in the 
traditions of batch processing. Batch processing gives little reward in 
testability or convenience for working with small procedures. Truly interac¬ 
tive processing (which does not mean doing batch-oriented edit-compile 
-link-execute-crash-debug cycles from a terminal) is only available in a few 
environments, and is not taught in most undergraduate computer courses. 

As a result of all these factors, today’s programming languages provide 
only moderately useful capabilities for efficient modular programming. 
Today’s hardware and programming environments unnecessarily restrict 
the usage of modularity, and therefore unnecessarily increase the cost of 
providing computer-based solutions to problems. 

7.1.4 Architectural support for procedures 
The problems that arise from poor performance on subroutine calls have 
been dealt with by computer architects in a variety of ways. RISC designers 
have taken two different approaches. The Stanford MIPS team uses com¬ 
piler technology to expand procedures as in-line code wherever possible. 
The MIPS compiler then does very clever register allocation to avoid saving 
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and restoring registers for procedure calls. The statistics that support the 
choice for this strategy were taken from programs that follow the traditional 
software design methods, with fairly large and not deeply nested pro¬ 
cedures. While the MIPS approach appears to work well on existing 
software, it may create the same stifling effect on better software develop¬ 
ment strategies that we saw in the CISC machines. 

The second RISC approach, one originally advocated by the Berkeley 
RISC I team, uses register windows to form a register frame stack. A pointer 
into the register stack can be moved to push or pop a group of registers 
quickly, supporting quick subroutine calls. This approach has many of the 
same advantages as the stack machine approach. The detailed implemen¬ 
tation questions, which in real life may determine the success or failure of a 
product, become ones of single vs. multiple stacks, fixed- vs. variable-sized 
register frames, spill management strategies, and overall machine 
complexity. 

7.2 LANGUAGE CHOICE 

The choice of which programming language to use to solve a particular 
problem should not be taken lightly. Sometimes the choice is dictated by 
external forces, such as when using Ada for a US Department of Defense 
contract. In other cases the language choice is constrained by the existence 
of a limited number of compilers. In general, though, there is considerable 
choice available in selecting the language for a new system design. 

Software selection should not be considered as an isolated issue. The 
language used should reflect the entire system being developed, including 
the system operating environment, the suitability of the language to solve 
the problem at hand, development time and costs, the maintainability of the 
finished product, the strengths of the underlying processor at running 
various languages, and the previous programming experience of the pro¬ 
grammers assigned to the project. Note that the experience of the program¬ 
mers was not placed first on the list. A poor choice based on programmer 
bias for a familiar language can result in problems that more than offset any 
perceived gain in productivity. 

7.2.1 Forth: strengths and weaknesses 
Forth is the most obvious language to consider using on a stack machine. 
That is because the Forth language is based upon a set of primitives that 
execute on a virtual stack machine architecture. All the stack machines 
presented in this book support highly efficient implementations of Forth. All 
of these machines can use a Forth compiler to generate efficient machine 
code. The biggest advantage of using Forth then, is that the highest 
processing rate possible can be squeezed from the machine. 

One of the characteristics of Forth is its very high use of subroutine calls. 
This promotes an unprecedented level of modularity, with approximately 10 
instructions per procedure being the norm. Tied in with this high degree of 
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modularity is the interactive development environment used by Forth 
compilers. In this environment, programs are designed from the top down, 
using stubs as appropriate. Then they are built from the bottom up, testing 
each and every short procedure interactively as it is written. On large 
projects, the top-down and bottom-up phases are repeated in cycles. 

Since Forth is a stack-based, interactive language, no testing programs or 
‘scaffolding’ need be written. Instead, the values to be passed to the 
procedure are pushed onto the stack from the keyboard, the procedure to be 
tested is executed, and the results are returned on the top of the stack. This 
interactive development of modular programs is widely claimed by exper¬ 
ienced Forth programmers to result in a factor of 10 improvement in 
programmer productivity, with improved software quality and reduced 
maintenance costs. Part of this gain may come from the fact that Forth 
programs are usually quite small compared to equivalent programs in other 
languages, requiring less code to be written and debugged. A 32K byte Forth 
program, exclusive of symbol table information, is considered a monster, 
and may take several hundred thousand bytes of source code to generate. 

One of the advantages of the Forth programming language is that it 
covers the full spectrum of language levels. Some languages, such as 
assembly language, allow dealing only at the hardware level. Other lan¬ 
guages, such as FORTRAN, deal at an abstract level that has little to do with 
the underlying machine. Forth programs can span the full range of program¬ 
ming abstraction. At the lowest level, Forth allows direct access to hardware 
ports in the system for real-time I/O handling and interrupt servicing. At the 
highest level, the same Forth program can manage a sophisticated know¬ 
ledge base. 

The one facet of Forth that is most interesting (and baffling to many 
casual observers) is that it is an extensible language. As every procedure is 
added to the language, the apparent language available to the programmer 
grows. In this manner, Forth is much like LISP. There is no distinction made 
between core procedures in the language and extensions added by the 
programmer. This enables the language to be flexible to an extent beyond 
comprehension to people who have not extensively used the capability. 

The extensibility of Forth does have mixed blessings. Forth tends to act 
as a programmer amplifier. Good programmers become exceptional when 
programming in Forth. Excellent programmers can become phenomenal. 
Mediocre programmers generate code that works, and bad programmers go 
back to programming in other languages. Forth also has a moderately 
difficult learning curve, since it is different enough from other programming 
languages that bad habits must be unlearned. New ways of conceptualizing 
solutions to problems must be acquired through practice. Once these new 
skills are acquired, though, it is a common experience to have Forth-based 
problem solving skills involving modularization and partitioning of pro¬ 
grams actually improve a programmer’s effectiveness in other languages as 
well. 

Another problem with some Forth systems is that they do not include a 
rich enough set of programming tools to suit many programmers. Also, 
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older Forth systems cooperate poorly with resident operating systems. 
These traits stem from Forth’s history of use on very small machines with few 
hardware resources. In real-time control applications, these limitations are 
generally not much of a problem. Other applications need better support 
tools. Fortunately, the trend is for newer Forth systems to provide much 
better development environments and library support than in the past. 

The result of all these effects is that Forth is best used on medium-sized 
programming projects involving no more than two or three programmers 
who have compatible programming styles. In any very large programming 
project, clashing styles and abilities tend to prevent the production of 
extremely high quality software. However, within these constraints, Forth 
programs are consistently delivered in a very short time with excellent 
results, often solving problems that could not be solved in any other 
language, or at least, not solved within budget and development time 
constraints. 

7.2.2 C and other conventional languages 
Of course, there will always be applications that are better done in conven¬ 
tional languages. Probably the most common reason for using a conven¬ 
tional language will be the existence of a large body of existing source code 
that must be ported onto a better processor. 

To illustrate the tradeoffs involved, let us look at the problem of porting 
an application written in C onto a stack processor using a C compiler written 
for the stack machine. We shall skip over the problem of translating the 
program from the source C code into an intermediate form, since this is 
independent of the machine upon which the program is to run. The portion 
of the C compiler that is of interest is the so-called ‘back end’. The back end 
is the portion of the compiler that takes a predigested intermediate form of a 
program and produces code for the target machine. 

Actually, generation of stack-based code for expression evaluation is 
relatively straightforward. The topic of converting infix arithmetic expres¬ 
sions to stack-based (postfix/RPN) expressions is well researched (Bruno & 
Lassagne 1975, Couch & Hamm 1977, Randell & Russell 1964). 

The problem in generating code for stack machines from C is that there 
are several assumptions about the operating environment deeply 
entrenched in the language. The most profound of these is that there must be 
a single program-memory-resident stack that contains both data and subrou¬ 
tine return information. This assumption cannot be violated without ‘break¬ 
ing’ many C programs. As an example, consider the case of a pointer that 
references a local variable. That local variable must reside in the program 
memory space, or it cannot be properly referenced by the program. 

To make matters worse, C programs typically push large volumes of 
data, including strings and data structures, onto the C stack. Then, C 
programs make arbitrary accesses within the area of the current stack frame 
(the portion of the stack containing variables belonging to the current 
procedure). These restrictions make it unfeasible to attempt to keep the C 
stack on a stack machine’s Data Stack. 
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How then can a stack machine be made efficient at running C programs? 
The answer is that the stack machine must efficiently support frame-pointer- 
plus-offset addressing into program memory. The RTX 2000 can use its User 
Pointer to accomplish this efficiently. The FRISC 3 can use one of its user- 
defined registers and the load/store with offset instructions. The RTX 32P’s 
commercial successor will have a frame pointer register and dedicated adder 
for computing memory addresses. In all cases, the access to local variables 
can be made in the same time as required for any other memory operation: 
two memory cycles — one for the instruction and one for the data. This is the 
best that can be hoped for in any processor that does not resort to expensive 
techniques such as separated data and instruction caches. 

The other notion often found in C, and other high level languages, that 
does not map well onto stack machines is that of a ‘register variable’. Since 
stack machines do not have a set of registers, this implies that compiler 
optimization opportunities may be missed by stack machines. This is only 
partially true. While it is true that stack machines are not well suited for 
juggling a large number of temporary values on the stacks, a small number of 
frequently accessed values can be kept on the stack for quick reference. For 
example, these values might include a loop counter kept on the return stack 
and two addresses for a string compare kept on the data stack. In this 
manner, most of the efficiency of the hardware can be captured for the 
majority of C programs. 

There is one additional concept that can make most C programs as fast as 
Forth programs on stack machines. That is the concept of supporting Forth 
as the ‘assembly language’ of the processor. This approach is being vigor¬ 
ously pursued on by several stack machine vendors. Using this approach, 
existing C programs are transferred to the stack machine. Their execution 
characteristics are then profiled. This profiling information is used to 
identify the few critical loops within the program. These loops are then 
rewritten in Forth for better speed, perhaps augmented with application 
specific microcode in the case of the RTX 32P. Using this technique, C 
programs can attain virtually the same performance as all-Forth programs 
with very little effort. 

When this good performance is added to the other stack machine 
qualities of low system complexity with high processing speed, C becomes a 
viable language in which to program stack machines. 

7.2.3 Rule-based systems and functional programming 
There is evidence that programming languages used to implement rule- 
based systems, such as those written in Prolog, LISP, and OPS-5 are very 
well suited to stack machines. One very exciting possibility is the marriage of 
real-time control applications with rule-based system knowledge bases. 
Preliminary research into this area has been encouraging. Much work has 
been done using Forth as an implementation vehicle. Areas explored 
include: LISP implementations (Hand 1987, Carr & Kessler 1987), an OPS- 
5 implementation (Dress 1986), a Prolog implementation (Odette 1987), 
neural network simulations (Dress 1987), and development environments 
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for real-time expert systems (Matheus 1986, Park 1986). Most of these Forth 
implementations have subsequently been ported to stack machine hardware 
with excellent results. For example, the rule-based Expert-5 system des¬ 
cribed by Park (1986) runs 15 times faster on the WISC CPU/16 than on a 
standard IBM PC. A similar rule-based system (actually closer to Park’s 
Expert-4, which is slower than Expert-5) runs approximately 740 times 
faster on the RTX 32P than on a standard 4.77 MHz 8088 PC. This speedup 
of nearly three orders of magnitude is astonishing to some, but merely 
reflects the suitability of using a stack machine, which is good at tree 
traversal, for solving problems that use decision trees. 

The speedup observed for the rule-based system is actually based on a 
principle that applies to a wide variety of problem areas. Stack machines can 
treat a data structure as an executable program. Consider for a moment an 
example of a tree data structure, with pointers at the internal nodes and 
program action tokens at the leaves. The nodes of the trees that are pointers 
can just be the addresses of the children, which equates to subroutine calls in 
many stack processors. The leaves of the trees can be executable instruc¬ 
tions, or subroutine calls to procedures that accomplish some task. A 
conventional processor would have to use an interpreter to traverse through 
the tree in search of the leaves. A stack processor can just directly execute 
the tree instead. Since stack machines execute subroutine calls very quickly, 
the results can be extremely efficient. The technique of directly executing 
tree-formatted data structures is responsible for the tremendous speed of 
the RTX 32P example cited in the previous paragraph. 

Stack machines are well suited to LISP programming as well as to expert 
systems. This is because LISP and Forth are very similar languages in many 
respects. Both treat programs as lists of function calls to other lists. Both are 
extensible languages. Both use Polish notation for arithmetic operations. 
The major difference is that LISP involves dynamic storage allocation for its 
cells, while Forth uses a static storage allocation. Since there is no reason 
that a stack machine should be any worse at garbage collection than other 
machines, LISP should run efficiently on a stack machine. 

Many of the same arguments about stack machines’ suitability for LISP 
apply to Prolog. In a Prolog implementation for the RTX 32P, this author 
made an additional discovery about how to efficiently map Prolog onto stack 
machines. Prolog uses typed data that can be either an actual data element 
or a pointer to other data. A possible encoding for Prolog data elements is 
one that uses the highest 9 bits of a 32-bit word for a data type tag. The lowest 
23 bits are then used as either a pointer to another node, a pointer to a 32-bit 
literal value, or a short literal value. Using this data format, data items are 
actually executable as instructions. Instructions for the RTX 32P can be 
constructed that allow traversing an arbitrarily long series of pointer 
dereferences at the rate of one dereference per memory cycle, simply by 
executing the data structure as a program. Nil pointer checking can be 
accomplished by defining the nil pointer value to be a subroutine call to an 
error trapping routine. These kinds of data handling efficiencies are simply 
not possible with other types of processors. 
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Functional programming languages offer the promise of a new way of 
solving problems using a different model of computation than that used by 
conventional computers (Backus 1978). A particular method of executing 
functional programs is the use of graph reduction. The same techniques of 
direct execution of the program graphs that were discussed for rule-based 
systems above are equally applicable to graph reduction. Thus, stack 
machines should be good at executing functional programming languages. 
Belinfante (1987) has published a Forth-based implementation of graph 
reduction. Koopman & Lee (1989) describe a threaded interpretive graph 
reduction engine. 

From a theoretical point of view, efficient graph reduction machines such 
as the G-machine and Norma fall into the SLO category of the taxonomy in 
Chapter 2. MLO machines have a superset of the capabilities of SLO 
machines, and should therefore be efficient at graph reduction as well. 
Initial investigations into this area by this author show that the RTX 32P, 
which is a very simple stack machine, can compete quite effectively with 
even very complex graph reduction machines such as Norma. 

One of the side effects of using a functional programming language is 
that a high degree of parallelism is available during program execution. This 
raises the idea of a massively parallel computer made of stack processors 
that is programmed with a functional programming language. 

7.3 UNIFORMITY OF SOFTWARE INTERFACES 

A key conceptual feature of stack machines is their uniformity of interface 
between high level code and machine instructions. Both procedure calls and 
opcodes use the stack as a means of passing data. This consistent interface 
has several positive impacts on software development. 

The source code for a program does not have to reflect in any manner 
which instructions are directly supported by the machine and which func¬ 
tions are implemented as procedures at the Forth language level. This 
capability suggests the use of a low level stack language, similar to Forth, 
that is the target of compilation for all languages. Given an assembler from 
this target language to the actual machine, the user is freed from worry about 
how particular functions are implemented. This means that various imple¬ 
mentations of the same architecture can be made very compatible at the 
stack-based source code level without actually having to provide all instruc¬ 
tions on low-cost implementations. If the same interface is used for conven¬ 
tional languages as well as Forth, then combinations of C code, Forth code, 
and code from other languages can be intermingled without problems. 

In microcoded machines, such as the RTX 32P, this interface can be 
exploited one step further. Application specific microcode can be used to 
replace critical sequences of instructions in the application program, and 
common compiler generated code sequences transparently to the user. In 
fact, a common method of application code development on a microcoded 
stack machine is to first write the entire application in high level code, then 
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go back to microcode the critical loops. The rewriting of subroutines from 
high level language to microcode is invisible to the rest of the program, 
except for the speed increase. This speed increase is a speedup factor of 
approximately two for many applications. 



Applications 

Stack machines, like most computers, are suitable for a wide variety of 
applications. Any system in which a high speed processor with low system 
complexity is needed is a good candidate for using a stack processor. Section 
8.1 discusses one application area that has these requirements, and which is 
an ideal match for stack processors. That application area is real-time 
embedded control. Real-time control applications require small size, low 
weight, low cost, low power, and high reliability. 

Section 8.2 examines the different capabilities and tradeoffs inherent in 
the choice between 16-bit and 32-bit hardware. The selection of the correctly 
sized processor is vital to the success of a design. 

Section 8.3 discusses system implementation considerations. The choice 
between hardwired and microcoded systems involves tradeoffs among 
complexity, speed, and flexibility. The choice of integration level similarly 
affects system characteristics. 

Section 8.4 lists eleven broad areas suitable for stack processors, with 
detailed lists of possible applications. 

8.1 REAL-TIME EMBEDDED CONTROL 

Real-time embedded control processors are computers that are built into 
pieces of (usually) complicated equipment such as cars, airplanes, computer 
peripherals, audio electronics, and military vehicles/weapons. The pro¬ 
cessor is embedded because it is built into a piece of equipment that is not 
itself considered a computer. 

8.1.1 Requirements of real-time control 
Often the fact that a computer is present in an embedded system is 
completely invisible to the user, such as in an automobile anti-skid braking 
system. Often times, a processor is used to replace expensive and bulky 
components of a system while providing increased functions and a lower 
cost. At other times, the fact a computer is present may be obvious, such as 
in an aircraft autopilot. In all cases, however, the computer is just a 
component of a larger system. 

Most embedded systems place severe constraints on the processor in 
terms of requirements for size, weight, cost, power, reliability and operating 
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environment. This is because the processor is just a component of a larger 
system, which has its own operating requirements and manufacturing 
constraints. 

At the same time, however, the processor must deliver the maximum 
possible performance to respond to real-time events. Real-time events are 
typically external stimulae to the system which require a response within a 
matter of microseconds or milliseconds. For example, some high perfor¬ 
mance jet aircraft are inherently unstable, and depend on computer control 
systems to keep them flying. An airborne computer must be very light and 
small, and yet not make unreasonable demands for power and cooling. At 
the same time, it must not fall behind in its task of keeping the plane flying 
properly. When supersonic, the plane is moving at perhaps 1000 feet per 
second. At these speeds, a few milliseconds can make the difference 
between crashing or flying! 

8.1.2 How stack machines meet these needs 
The manufacturers of the stack machines described in Chapters 4 and 5 all 
have real-time control applications in mind as possible uses for their 
technology. What is it that makes stack machines so suitable for these 
applications? 

Size and weight 

We have seen that stack computers are very simple in terms of processor 
complexity. However, it is not the number of gates in the processor itself 
that determines overall system size and weight, but rather the overall system 
complexity. A processor that has a large number of pins takes up precious 
printed circuit board area. One that needs cache memory controller chips 
and large amounts of memory takes even more printed circuit board area. 
And systems that require a hard disk for virtual memory management 
because their software environment is huge are usually out of the question. 
The key to winning the size and weight issue is to keep component count 
small. Stack machines, with their low hardware system complexity and small 
program memory requirements, do that very well. Since stack machines are 
less complex than other machines, they are more reliable as well. 

Power and cooling 

The processor complexity can affect the power consumption of the system. 
The amount of power used by the processor is related to the number of 
transistors, and especially to the number of pins on the processor chip. 
Processors that rely on exotic process technology for speed are usually 
‘power hogs’. Processors that need huge numbers of power-consuming high 
speed memory devices likewise can break a power budget. 

Stack computers tend to have low power requirements. The fabrication 
technology used can greatly affect power consumption, with newer CMOS 
chips often having minuscule power requirements compared to bipolar and 
NMOS designs. Of course, power consumption directly affects cooling 
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requirements, since all power used by a computer is eventually given off as 
heat. The cooler operation of CMOS components can reduce the number of 
component failures, enhancing system reliability. 

Operating environment 
Embedded processing applications are notorious for extreme operating 
conditions, especially in automotive and military equipment. The process¬ 
ing system must deal with vibration, shock, extreme heat and cold, and 
perhaps radiation. In remotely installed applications, such as spacecraft and 
undersea applications, the system must be able to survive without field 
service technicians to make repairs. The general rule to avoiding problems 
caused by operating environments is to keep the component count and 
number of pins as low as possible. Stack machines, with their low system 
complexity and high levels of integration, do well at standing up to extreme 
operating environments. 

Cost 
The cost of the processor itself may be very important to low and medium 
performance systems. Since the cost of a chip is related to the number of 
transistors and to the number of pins on the chip, low complexity stack 
processors have an inherent cost advantage. 

In high performance systems, the cost of the processor may be over¬ 
whelmed by the cost of the multi-layered printed circuit boards, support 
chips, and high speed memory chips. In these cases, the low system 
complexity of stack machines provides additional advantages. 

Computing performance 
Computing performance in a real-time embedded control environment is 
not simply an instructions-per-second rating. While raw computational 
performance is important, other factors which can make or break the system 
include interrupt response characteristics and context swapping overhead. 
An additional desirable characteristic is good performance in programs that 
are riddled with procedure calls as a means for reducing program memory 
size. Even if the cost of fast memory chips is no object, a lack of cubic inches 
and printed circuit board real estate may force the program into a small 
memory space. Previous discussions on the characteristics of stack machines 
show that they excel in these areas. 

8.2 16-BIT VERSUS 32-BIT HARDWARE 

A fundamental decision about which stack processor to select for a particu¬ 
lar application is the size of the processor’s data elements: 16 bits or 32 bits. 
The decision between 16- and 32-bit processors is driven by the factors of 
cost, size and performance. 
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8.2.1 16-bit hardware often best 
16-bit stack processors in general have lower costs than 32-bit processors. 
Their internal data paths are narrower, so they use fewer transistors and cost 
less to manufacture. They only need 16-bit paths to external memory, so 
they have half as many memory bus data pins as 32-bit processors. System 
costs are also lower, since a minimum configuration 16-bit processor only 
needs to have half the number of memory chips as a 32-bit processor for a 

single bank of memory. 
16-bit chips also have a reasonable amount of silicon area available for 

special features, such as hardware multipliers, on-chip program memory, 
and peripheral interfaces. The trend is for semicustom 16-bit stack pro¬ 
cessors such as the RTX 2000 to be complete systems-on-a-chip, including 
I/O peripherals and program memory for embedded applications. 

16-bit processors should always be evaluated for an application, then 
rejected in favor of 32-bit processors only if there is a clear benefit for the 

change. 

8.2.2 32-bit hardware sometimes required 
Most traditional real-time control applications are well served by 16-bit 
processors. They offer high processing speed in a small system at minimum 
cost. Of course, part of the reason that traditional applications are well 
served by 16-bit processors is that capable 32-bit processors have not been 
widely available for very long. As the more capable 32-bit processors come 
into greater usage, new application areas will be discovered to put them to 

good use. 
32-bit stack processors should be used instead of 16-bit processors only in 

cases where the application requires high efficiency at one or more of the 
following: 32-bit integer calculations, access to large amounts of memory, or 
floating point arithmetic. 

32-bit integer calculations are obviously well suited to a 32-bit processor. 
Occasions where 32-bit integers are required include graphics and manipula¬ 
tion of large data structures. While a 16-bit processor can simulate 32-bit 
arithmetic using double-precision operands, 32-bit processors are much 
more efficient. 

While 16-bit processors can use segment registers to access more than 
64K elements of memory, this technique becomes awkward and slow if it 
must be used frequently. A program that must continually change the 
segment register to access data structures (especially single data structures 
that are bigger than 64K in size) can waste a considerable amount of time 
computing segment values. Even worse, since the addresses that must be 
manipulated when computing data record locations that are greater than 16 
bits wide, address computations are also slower because of all the double¬ 
precision math involved. A 32-bit processor can offer a linear 32-bit address 
space with accompanying quick address calculations on a 32-bit data path. 

Floating point calculations also require a 32-bit processor for good 
efficiency. 16-bit processors spend a significant amount of time manipulating 
stack elements when dealing with floating point numbers, whereas 32-bit 
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processors are naturally suited to the size of the data elements. There are 
many instances in which scaled integer arithmetic is more appropriate than 
floating point numbers to increase speed on some processors. In these cases 
a 16-bit processor may suffice. However, floating point math must often be 
used to reduce the cost of programming a project, and to support code 
written in high level languages. Also, with the advent of very fast floating 
point processing hardware, the traditional speed advantage of integer 
operations over floating point operations is decreasing. 

The disadvantages of 32-bit processors are cost and system complexity. 
32-bit processor chips tend to cost more because they have more transistors 
and pins than do 16-bit chips. They also require 32-bit-wide program 
memory and a generally larger printed circuit board than 16-bit processors. 
There is less room on-chip for extra features such as hardware multipliers, 
but these items will appear as chip fabrication technology gets denser. 

8.3 SYSTEM IMPLEMENTATION APPROACHES 

Once a decision has been made between a 16-bit and 32-bit processor, there 
still remains the choice of selecting a manufacturer. Each of the seven stack 
machines covered in detail in this book has a different set of tradeoffs in the 
areas of system complexity, flexibility, and performance. These tradeoffs 
reflect their suitability for different applications. One of the tradeoffs is the 
decision between hardwired and microcoded control. 

8.3.1 Hardwired systems vs. microcoded systems 
The question of whether the control circuitry should be hardwired or 
microcoded is an old debate within all computing circles. The advantages of 
the hardwired approach are that it can be faster for executing those 
instructions that are directly supported by the system. The disadvantage is 
that hardwired machines tend to only support simple instructions, and must 
often execute many instructions to synthesize a complex operation. 

Microcoded machines are more flexible than hardwired machines. This 
is because an arbitrarily long sequence of microcode may be executed to 
implement very complicated instructions. Each instruction may be thought 
of as a subroutine call to a microcoded procedure. In machines with 
microcode RAM, the instruction set may be enhanced with application 
specific instructions to provided significant speed increases for a particular 
program. 

The hardwired stack machines all support some rather complex stack 
operations that are combinations of data stack manipulations, arithmetic 
operations, and subroutine exits. This is accomplished by manipulating 
different fields in the instruction format. To the degree that this is possible, 
the hardwired machine instruction formats are rather like microcode. In 
fact, Novix has called the NC4016 instructions a form of ‘external 
microcode’. 

In the microcoded stack machines, simple operations such as additions 
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may often take longer than on a hardwired machine. Complicated opcodes, 
such as double-precision arithmetic operations, do not pack into a single 
instruction on the hardwired machines. For these complex instructions, the 
microcoded machines can run faster by providing special complex opcodes. 
In general, this increased flexibility can more than eliminate the raw speed 
gap between the two kinds of processors. The final conclusion as to which 
type of processor is faster for a particular application is in general not clear 
without evaluating both approaches. The important point is to perform a 
careful evaluation of the requirements of an application before selecting a 
stack processor. 

8.3.2 Integration level and system cost/performance 
In addition to exploring the implementation tradeoffs between hardwired 
control and microcoded control, the 16-bit stack processors discussed in 
Chapter 4 display the full range of integration level decisions. Integration 
level is the amount of system hardware that is placed onto the processor 
chip. The more system functions that are placed on the processor chip, the 
higher the integration level. Also at issue, however, are the cost/perfor¬ 
mance tradeoffs made in the design with respect to the minimum number 
and type of components necessary to run the system. 

The WISC CPU/16 displays the lowest integration level of those pro¬ 
cessors examined. It uses off-the-shelf building blocks to create a processor 
with dozens of components. Of course, this design approach eliminates the 
need to repay the large initial chip layout investment required when 
producing a single-chip version. 

The MISC M17 is a simple single-chip stack processor. Since it uses 
program memory for its stacks, only the processor chip and program 
memory are required for operation. The integration level is reasonably high, 
and the system complexity is low. The penalty paid for the simplicity of the 
design is that speed is somewhat slower than what is possible with separated 
stack memories. 

The Novix NC4016 also is a single-chip processor, and has an integration 
level comparable to that of the M17. Not surprisingly, both processors are 
fabricated using gate arrays of roughly comparable sizes. The major distinc¬ 
tion of the NC4016 is that it uses separate memory chips for both stacks. 
Separate stack memories provide faster potential processing rates for a 
given clock speed because of the increased memory bandwidth available, 
but at the cost of requiring more components at the system level. 

The Harris RTX 2000 increases the level of system integration beyond 
the NC4016 by including on-chip stack memories. This actually reduces 
system complexity while providing potential speed increases, since on-chip 
memory can be faster than off-chip memory. The cost is more transistors on 
the chip. However, these extra transistors do not necessarily increase chip 
size by much. This is because the RTX 2000 uses a different design 
methodology called standard cell design that is well suited to providing on- 
chip memories. In fact, RTX 2000 customized systems can be designed that 
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include program memory as well as stack memory on-chip, providing a 
single-chip stack computer system. 

It is likely that most stack computers designed in the future will have 
differing tradeoffs in the areas of data path widths (16-bit and 32-bit widths 
for most processing, and perhaps 24-bit widths for signal processing and 36- 
bit widths for tagged data architectures), level of system integration, 
required off-chip support, and raw performance. These characteristics must 
all be taken into consideration when matching a processor selection to cost, 
performance, and other requirements in a target application. 

8.4 EXAMPLE APPLICATION AREAS 

Application areas for stack computers, like those for computers in general, 
are only limited by the imagination. Some of the applications that seem well 
suited for stack machines include: 

Image processing 
Object recognition, including optical character recognition, thumb print 
recognition and handwriting recognition as well as image enhancement 
require extremely powerful processors, but have wide application. Many 
commercially interesting applications require that the processor be small, 
inexpensive and portable. 

Robotics controllers 
Robot arms have 5 or 6 joints (degrees of freedom). A typical strategy is to 
have a microcontroller for each joint plus a more powerful processor for 
centralized control. With powerful microcontrollers, each joint can perform 
complex positional calculations in real time. In a mobile system, small size 
and low power consumption are vital. 

Digital filters 
Filters require high speed multiplications to keep up with high data flow 
rates. Stack processors have the room on-chip for hardware multipliers and 
algorithm specific hardware to quickly perform digital filter calculations. 

Process control 
More powerful processors can go beyond simple process control techniques 
to apply expert system technology to real-time process monitoring and 
control. Stack machines are particularly well suited for rule-based systems. 

Computer graphics 
While there are several special-purpose graphics accelerator chips on the 
market, these tend to concentrate on the primitives of drawing lines and 
moving blocks of bits. The exciting opportunity here is in the area of 
interpreting high level graphics command languages for both laser printers 
and device independent screen display languages. One of the predominant 
languages, Postscript, is similar to Forth. 
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Other computer peripherals 
The low system cost of a stack machine makes it well suited for controlling 
computer peripherals such as disk drives and communication links. 

Telecommunications 
High speed controllers can provide the capability for data compression and 
therefore lower transmission costs for telefax and modem applications. 
They can also monitor the performance of transmission equipment. 

Automotive control 
The automotive market forces very severe restrictions on cost and environ¬ 
mental requirements. In this business a minute difference in cost per 
component can add up to large profits or losses. A high level of system 
integration is mandatory. Computers can improve car performance and 
safety even while reducing system cost in applications such as computerized 
ignition, braking, fuel distribution, anti-theft devices, collision alert 
systems, and dash display systems. 

Consumer electronics 
Consumer electronics are, if anything, more sensitive to pricing and system 
integration level than are automotive products. Anyone who has taken apart 
an inexpensive calculator or digital watch knows the miracles that can be 
accomplished with a few pieces of plastic and a single chip. Opportunities for 
the use of high speed, portable, inexpensive stack processors abound in 
music synthesis (such as MIDI compatible devices), compact laser disk 
sound and video playback devices, digital tape devices, slow scan television 
via telephone lines, interactive cable TV services, and video games. 

Military and spaceborne control applications 
While spaceborne applications may be used for commercial purposes, they 
have the same reliability and environmental requirements as many military 
applications. Stack processors are well suited to high speed control appli¬ 
cations involving missiles and aircraft. In addition, there are applications in 
acoustic and electronic signal processing, image enhancement, communica¬ 
tions, fire control, and battlefield management. 

Parallel processing 
Preliminary research shows that stack machines can execute functional 
programming languages very efficiently. Programs written in these lan¬ 
guages have a great deal of inherent parallelism, which may be exploited by 
a multiprocessor stack machine system. 



The future of stack computers 

The stack machines reviewed in the earlier chapters represent the first 
generation of commercially available stack processors. As these machines 
come into wide use, the designs will be refined to meet market requirements 
and improve efficiency. The questions addressed in this chapter are: what 
kinds of refinements are we likely to see, and how will they affect stack 
machine architectures and applications? 

It is too soon to answer all the questions about how stack machines will 
perform in many different circumstances. There are, however, a number of 
important topics upon which we can speculate. The opinions and reasoning 
presented herein may form the basis for further exploration of stack 
machine concepts. Ideas in this chapter should be taken as speculations, not 
as proven facts. 

Section 9.1 discusses some areas that need to be examined when 
providing support for conventional programming languages on stack 
machines. As it turns out, existing stack machine designs handle most of the 
problems well already. 

Section 9.2 discusses the issue of virtual memory and memory protec¬ 
tion. Virtual memory support is not found on current stack machines 
because it is not needed for most of their application areas. Memory 
protection is also not supported, but will be needed for some applications in 
the future. 

Section 9.3 examines the need for a third stack, and proposes that a 
memory-resident stack frame can meet the need for a third stack and 
conventional language support at the same time. 

Section 9.4 discusses the impending limits of memory bandwidth, and 
the history behind the use of memory hierarchies in computers. Stack 
machines offer a solution to the memory bandwidth problem which is well 
suited to their important application areas. 

Section 9.5 introduces two ideas for stack machine design that are 
intriguing, but not used in current designs. One idea involves the elimination 
of conditional branches by using conditional subroutine returns instead. The 
other idea involves using a stack to hold temporarily assembled programs. 

Section 9.6 offers some speculation on the impact of stack machines on 
computing. 
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9.1 SUPPORT FOR CONVENTIONAL LANGUAGES 

The initial market for stack machines is the real-time control area. The high 
level of system integration possible with stack machines may also lead to use 
as low cost, high performance coprocessor cards for personal computers and 
low-end workstations as well. These coprocessor cards may well be appli¬ 
cation specific for a certain class of problems, or even a single important 
software package. Both these environments will require running much 
application code in conventional programming languages. 

Conventional languages can be implemented very easily on stack 
machines. The only problem is that pure stack machines probably cannot 
perform quite as well as register machines when running conventional 
programs written in the normal programming style. This problem is mostly 
one of a mismatch between stack machine capabilities and the requirements 
of conventional languages. Conventional programs tend to use few pro¬ 
cedure calls and large numbers of local variables. Stack machines tend to be 
good at running programs with many small procedures and few local 
variables. In part, the difference is due to the programming styles encour¬ 
aged by common practice and the structure of conventional programming 
languages. To some extent, the difference is that register machines are well 
suited to general-purpose data processing, whereas stack machines perform 
best in a real-time control environment. At any rate, performance of 
conventional languages on stack machines can be brought close to even the 
highest performance register machines for all applications by providing a 
modest level of hardware support. The idea, of course, is to approximately 
match register-based machines where they are best while not sacrificing the 
features that make stack machines better for other areas. 

9.1.1 Stack frames 
The issue, then, is to identify high level language structures that require 
additional hardware support. Strangely, the high level language run-time 
stack is the only major area in which pure stack machines fail to support 
conventional high level languages. This is because high level languages have 
the notion of ‘activation records’, which are ‘frames’ of elements pushed 
onto a software-managed stack in program memory upon every subroutine 
call. In the usual implementation, each stack frame is allocated only once as 
a large chunk of memory in the preamble to the subroutine being called. 
This frame contains the input parameters (which were actually allocated by 
the calling routine), the user declared local variables, and any compiler 
generated intermediate variables that might be necessary. During the course 
of the subroutine, arbitrary accesses are made within the stack frame 
without actually performing any pushes or pops. 

The stack frame is used as a temporary memory allocation device for 
subroutine calling, not as a traditional pushdown stack for storing interme¬ 
diate results between successive calculations. This means that it is incompat¬ 
ible with hardware stacks built into stack machines such as those we have 
been studying. An obvious approach to modify stack machines to meet this 
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requirement is to build the primary stack so as to be allocated in large chunks 
with random access within a frame. This is precisely how the RISC machines 
with register windows (described as SL2 machines in Chapter 2) solve the 
problem. The reason why this does not make sense for stack machines is that 
all accesses to data pay the penalties associated with having operands in the 
instruction format. 

An alternative approach is to build a secondary hardware stack for 
accessing local variables at a ‘slow’ speed, with primary data manipulations 
done on a LIFO hardware data stack. This lets us have the best of both 
worlds, but is not without cost. That secondary register frame stack will in 
general have to be 5 to 10 times as big as the data stack for good operating 
characteristics. 

9.1.2 Aliasing of registers and memory 
If this were the end of the tradeoff discussion, we might still be tempted to 
build a chip with on-chip frames. But, there is a deciding factor which tilts 
the balance in favor of placing the stack frames in program memory. That 
additional factor is that the semantics of conventional languages allow access 
to these local variables by memory address. The C language is notorious for 
this problem, which affects register machines and stack machines alike. 

While the aliasing of registers to memory addresses can be handled with 
clever hardware or compilers, the costs in hardware and/or software com¬ 
plexity are not in keeping with the stack machine design philosophy of 
maximum performance with minimum complexity. Therefore, the best 
choice for a stack machine is to maintain the conventional language stack 
frames in program memory, with a Frame Pointer register available as a 
hardware pointer for stack frame accesses. If chip space is plentiful, a stack 
machine might provide on-chip RAM as part of the program memory space 
to speed up access to the stack frames. 

It is indeed tempting to write complex compilers in an attempt to keep 
most local variables on the hardware stack while executing conventional 
languages. An experiment by this author with some stack machines has 
shown, however, that the difference between a C compiler that keeps all 
local variables on the hardware data stack and one that uses program 
memory with a frame pointer is small. In fact, if the machine has a hardware 
frame pointer, keeping the frames in program memory is actually somewhat 
faster. 

Normally, one would think that keeping local variables on the hardware 
data stack would be faster than placing them in memory. The reason this is 
not so is because stack machines are relatively inefficient at accessing deeply 
buried elements, especially if they may have been spilled out of the stack 
buffer and into program memory. Much of the time in the all-on-hardware- 
stack approach is spent thrashing elements about on the stack. While access 
to memory-resident frame elements is somewhat slower than access to data 
on the hardware stack, in the end the savings on stack manipulations make 
up the difference. 
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9.1.3 A strategy for handling stack frames 
A good compromise approach for handling frames is a mixture of the 
program-memory-resident and hardware-data-stack-resident methods. The 
details of the approach are as follows. All procedure calls place the 
parameters to be passed on the hardware stack. Since these parameters must 
be computed or moved from one stack frame location to another using the 
hardware data stack anyway, no time is lost doing this. The procedure call is 
then made. The called procedure then copies all but one or two of the 
parameters from the hardware stack into its newly allocated frame as local 
variables. The compiler must be sure that the parameters left on the data 
stack are not referenced by address. This can be accomplished with register 
variable declarations by the programmer, compiler analysis, or just playing 
it safe and copying all parameters to memory. Having only one or two 
parameters on the data stack minimizes stack spills and still provides good 
efficiency gains. When the procedure terminates, the returned value is 
placed on the hardware stack. 

The compromise approach gives good efficiency by saving a large 
number of references to memory. It also provides an excellent interface 
between different languages, such as Forth and C. It is relatively easy to 
write compilers to handle this approach as well. Also, many stack machines 
now in existence have a hardware frame pointer, so can easily support this 
scheme. 

9.1.4 Conventional language execution efficiency 
From this discussion, we can see that stack machines can be reasonably 
efficient at supporting conventional programming languages with their stack 
frame approach. Of course, stack machines that use a hardware frame 
pointer into program memory cannot be expected to be as efficient as RISC 
machines, since they have massive on-chip register windows for direct frame 
support or exceedingly clever optimizing compilers that do sophisticated 
global register allocation. 

To the extent that programs in conventional languages conform to the 
models used by high performance register machines, stack machines will 
seem to perform poorly. Aspects of conventional programs that cause this 
effect include: large segments of straight-line code, near-100% cache hit 
ratios, large numbers of local variables used across long procedures, and 
shallowly nested procedures that can be compiled as in-line code. 

To the extent that programs use structures which run efficiently on stack 
machines, stack machines can approach or even exceed the performance of 
register-based machines. Code which is run well by stack machines contains: 
highly modular procedures with many levels of nesting and perhaps recur¬ 
sion; a relatively small number of frequently used subroutines and inner 
loops that may be placed in fast memory, and perhaps provided with 
microcode support; small numbers of local variables passed down through 
many layers of interface routines; and deeply nested subroutine calls. Also, 
programs that operate in environments with frequent interrupts and context 
switches can benefit from using stack machines. 
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A practical method for using conventional languages on stack machines 
is to adopt the traditional approach of implementing the bulk of a program in 
a moderately efficient high level language. Then, the inner loops of the 
program are recoded in the assembly language of the machine. This affords 
very high performance with a modest amount of effort. In the case of a 
project where stack machines are needed for their excellent real-time 
processing characteristics, this approach can yield maximum processing 
speed for the programmer time invested. 

One should also keep in mind that there are reasons to select a computer 
other than raw processing speed for single programs. The reasons that might 
tilt the balance in favor of stack machines include: interrupt processing 
speed, task switching speed, low overall system complexity, and the need for 
application specific microcode and/or hardware support. In the final analy¬ 
sis, stack machines will probably not run many conventional language 
programs quite as quickly as register-based machines. But, other consider¬ 
ations will largely cancel out the drawbacks, especially for real-time control 
applications, making stack machines an excellent alternative. 

9.2 VIRTUAL MEMORY AND MEMORY PROTECTION 

The use of virtual memory and memory protection are concepts that have 
not yet been widely incorporated into existing stack machines. This is 
because most stack machine applications to date have been relatively small 
programs with tight constraints on hardware and software that did not 
require or leave room for these techniques. 

9.2.1 Memory protection is sometimes important 
Memory management can mean many things, but in this case we will focus 
only on memory management as it pertains to protection features. Protec¬ 
tion is the one feature of memory management that is seen as most 
important by some real-time control users, especially the military. Protec¬ 
tion is the capability for the hardware to prevent a program from accessing 
another program’s memory except under very carefully controlled con¬ 
ditions. An unauthorized access to memory not owned by a particular 
program causes an interrupt. This interrupt causes the operating system to 
shut down or reset the offending task. This provides a security measure to 
prevent an ill-behaved program from demolishing other programs. The 
memory protection function is often performed by a separate chip that is 
managed by the operating system. There is nothing in stack machines that 
prevents this kind of chip from being used. An advantage of stack machines 
in this area is that they are small enough to allow the possibility of on-chip 
memory protection circuitry for increased system integration levels. 

9.2.2 Virtual memory is not used in controllers 
Likewise, there is no reason why stack machines cannot be provided with 
virtual memory capabilities. The one problem with virtual memory is the 



176 THE FUTURE OF STACK COMPUTERS [Ch.9 

effect of a virtual memory miss, which may require retrying an instruction. 
Since stack machines are in essence load/store machines, instruction restar- 
tability is no harder than on a RISC machine. In fact, since handling 
interrupts is quicker on a stack machine because of the lack of an instruction 
pipeline, stack machines should be better at handling virtual memory. 

The reason why stack machines have not been designed with virtual 
memory is very simple. Most stack machines are targeted for real-time 
control applications. The performance variations and large hard disk hard¬ 
ware requirements associated with virtual memory are simply inappropriate 
in a real-time embedded control environment. 

9.3 THE USE OF A THIRD STACK 

An often proposed design alternative for stack machines is the use of a third 
hardware stack. The purposes given for adding a third hardware stack are 
usually for storage of loop counters and local variables. 

Loop counters on the current stack machines are generally kept as the 
top element of the return address stack. This is because subroutines and 
loops are mutually well nested, and it is considered bad programming style 
for a subroutine to attempt to access the loop index of its parent procedure. 
So, while there is some conceptual merit to having loop indices in their own 
stack to avoid cluttering the return stack with nonaddress data, the perfor¬ 
mance and program effectiveness gains are not sufficient to justify the 
hardware expense. 

Local variable storage is another issue. Even when using the Forth 
language, programmers have found that the concept of compiler-managed 
local variables can make some programs easier to create and maintain. In 
order to do this efficiently, the hardware needs access to a stack that is 
allocated in frames, with random access to locations within the frame. This is 
a requirement that is very like that for supporting conventional languages. 
So, in fact, the best solution is probably not to have a third hardware stack at 
all. Rather, stack machines should support a frame pointer into a software- 
managed program memory stack that is used both for conventional language 
support and for support for local variables in Forth. 

9.4 THE LIMITS OF MEMORY BANDWIDTH 

Perhaps the greatest challenge that has faced computer architects over the 
years is the problem of memory bandwidth. Memory bandwidth is the 
amount of information that can be transferred to and from memory per unit 
time. Put another way, memory bandwidth determines how often values can 
be accessed from memory. 

The crux of the issue is that program memory usually is much bigger in 
terms of number of transistors or other devices than the processor. That 
means that the CPU can easily be made faster than the memory while 
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keeping within budget. This comes from the general observation that faster 
components tend to be more expensive, consume more power, etc. for any 
given fabrication technology and geometry. 

9.4.1 The history of memory bandwidth problems 
The specter of memory bandwidth limitations has come and gone through¬ 
out computer design history. In the beginning, people were grateful that 
computers ran at all, so the speed of program memory and that of the 
processor were not a real issue. When electronic computers came along, 
much of the memory capacity of the computer was in fact magnetic tape used 
for data files, but it was better than nothing. 

The magnetic core memories used in early large computers were very 
slow. This spawned very complex instruction sets that packed a lot of work 
into each instruction. It also made practical microcode, since a small amount 
of microcode memory could be made as fast as the CPU without breaking 
the budget, while the large amount of program memory could not. Once 
semiconductor memory was somewhat affordable, cache memories that 
captured small pieces of the program, especially loops, for reuse at execu¬ 
tion time became popular. Cache memories became bigger and bigger, so 
that more and more of the programs resided in cache memory, which was 
fast enough to match the speed of the processor. 

Then, microprocessors came into being. The early ones were slow 
enough that available program memory chips were sufficiently fast (and 
again, the issue was not how fast they ran as much as the wonder that they 
ran at all). The memory bandwidth problem was forestalled for a while. 
Microprocessor manufacturers followed in the footsteps of the big systems 
and used microcode with complex instruction sets. 

Mainstream microprocessors developed quite a bit, then started needing 
‘wait states’ when accessing memory. A wait state is a clock cycle wasted by a 
processor waiting for memory to respond when the processor is faster than 
its memory chips. One easy solution to this problem involves spending a lot 
of money to buy faster memory chips. The other easy solution is just to wait 
for the memory chip manufacturers to make faster memories at an afford¬ 
able cost. Finally, the CISC microprocessors introduced cache memory and 
other techniques borrowed from large systems in an attempt to move more 
and more of the programs into fast memory. 

RISC machines upset the applecart by claiming that processors with 
conventional microcode were bad. They, instead, use a very low level 
instruction set which can be best described as compiler-generated microcode 
that resides in program memory. This approach is claimed to give significant 
advantages, but at an admitted increase in memory bandwidth require¬ 
ments. RISC machines depend heavily on cache memory for performance. 

9.4.2 Current memory bandwidth concerns 
With the latest generations of computers; there is a new problem. Cache 
memory chips will not be fast enough to keep up with processors of the 
future. This is not really because processor transistor switching speeds are 
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increasing faster than memory chip speeds (they probably aren’t). The 
problem is that the pins in and out of the processor and memory chips are 
beginning to dominate the timing picture. 

The way that pins become the bottleneck is that transistors are getting 
smaller and faster as chips become denser. Unfortunately, pins that can be 
soldered and connected together haven’t become much smaller except in 
very exotic packaging technologies. The number of electrons that must be 
pushed out on a pin and the wire connected to the pin becomes significant 
compared to the ability of the transistors to push electrons, so the pins 
become a bottleneck. This in turn means that any off-chip memory is slower 
by up to an order of magnitude than on-chip memory solely because of the 
delays introduced by going between chips. 

Now we may have a situation where all off-chip memory is too slow to 
keep the processor busy. This creates a need for an additional layer of 
memory response speed: on-chip cache memory. Unfortunately, there is a 
fundamental problem with this approach compared to the previous memory 
approaches. Printed circuit boards may be made quite large without any 
problem. The yield of the circuit board varies linearly with the number of 
chips, and circuit boards are repairable if defects are discovered. Unfortuna¬ 
tely, the yield of chips grows worse exponentially with area, and chips are 
not easily repairable. 

Using separate cache memory chips, adding more chips to a printed 
circuit board can provide as much cache memory as was needed within 
reason. However, if a single-chip system does not have enough on-chip 
cache memory, increasing the chip size to provide more memory can make 
the processor unmanufacturable because of yield problems. The tremen¬ 
dous amounts of memory needed by high-speed processors, especially RISC 
machines, seem to indicate that the best we may hope for is a modest amount 
of high-speed cache memory on-chip, and a large amount of slow-speed off- 
chip cache memory. Now our program performance is at the mercy of the hit 
ratios for two different caches. Is this the best that we can hope for? 

9.4.3 The stack machine solution 
Stack machines provide a much different way to solve the problem. 
Conventional machines with their caches attempt to capture bits and pieces 
of programs as they are run. This is part of an attempt to reuse already 
fetched instructions as they are executed in loops or very frequently called 
procedures. Part of the problem that interferes with cache performance is 
that conventional programming languages and compilers produce rambling, 
sprawling code. Stack machines, on the other hand, encourage the writing of 
compact code with much reuse of procedures. 

The impact of the way stack machine programs behave is that stack 
machines should not use dynamically allocated cache memory. They instead 
should use small, statically allocated or operating system managed program 
memory for high speed execution of selected subroutines. Frequently used 
subroutines may be placed in these portions of program memory, which can 
be used more freely by the compiler and the user with the knowledge that 
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they will run quickly. Since stack machine code is very compact, a significant 
amount of a program can reside in high speed on-chip memory. This can 
further encourage the use of modular, reused procedures with the know¬ 
ledge that they will actually help performance, instead of hurting it as is too 
often the case in other machines. Of course, since the on-chip program 
memory does not need complex and bulky control circuitry for management 
of cache, all the more room is available for extra program memory. On the 
16-bit stack processors, it is quite reasonable for an entire real-time control 
program and the data memory for its local variables to reside entirely on- 
chip. With process technology at sub-micron levels, the same will begin to be 
true for 32-bit stack processors as well. 

To consider how this different approach to memory hierarchies might 
work, consider a microcoded machine such as the RTX 32P. Large dynamic 
RAMs may be used to contain the bulk of a program and its data. Actually, 
this is really an extreme case, because programs for the RTX 32P seldom 
need more than the capacity of its static memory chips for programs, but let 
us assume that this is true anyway. The dynamic RAM form a storage 
element for the very highest levels of the program that are executed 
infrequently, and for data that is accessed sparsely or infrequently. 

Next, static memory chips are added to the system. These are used for 
the medium-level layers of the program that are executed fairly frequently. 
Also, program data that will be manipulated frequently may be resident in 
this memory, or may be copied in from the dynamic memory for a period of 
time when it will be needed. In practice, there may be two levels of static 
memory chips: large, slow ones and small, fast ones, each with different 
power, cost, and printed circuit board space characteristics. 

On-chip program memory can come next in the hierarchy. The inner 
loops of important procedures in the program can reside here for quick 
access by the processor. Several hundred bytes of program RAM can easily 
fit onto the processor chip for data and program. In the case of chips which 
run dedicated programs (which is often the case in the real-time embedded 
system environment), several thousand bytes of program ROM may reside 
on-chip. In practice, any language can use many common subroutines in 
ROM to assist the programmer and the compiler. 

Finally, microcode memory resides on-chip for the actual control of the 
CPU. In the sense of the memory hierarchy, microcode memory may be 
thought of as just another level of program memory. It contains the most 
frequently executed actions for the processor, which correspond to sup¬ 
ported machine instructions. Once again, a mixture of ROM and RAM is 
appropriate. And of course, the data stack acts as a fast access device for 
holding intermediate computation results. 

What we have, then, is a layered hierarchy of memory sizes and speeds 
throughout the system. The concept of a hierarchy is not new. What is new is 
the thought that it need not be managed by hardware at run time. The 
compiler and programmer can easily manage it. The key is, since stack 
programs are very small, significant amounts of code can reside at each level 
of a statically allocate hierarchy. Since stack machines support very fast 
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procedure calls, only the inner loops or small segments of code that are 
frequently executed need be stored in high-speed memory, not the entire 
bulk of user-defined procedures. This means that dynamic memory alloca¬ 
tion is really not required. 

9.5 TWO IDEAS FOR STACK MACHINE DESIGN 

There are two interesting stack machine design details that are not in 
common usage, but which may prove useful in future designs. 

9.5.1 Conditional subroutine returns 
One of the design details is an observation by Doran (1972) that stack 
machines do not need conditional branches; they only need conditional 
subroutine return instructions. Consider an IF statement in a high level 
language. If we ignore the optional ELSE clause, an IF statement appears to 
be a piece of code with one entry point and two exit points. The entry point is 
the beginning of the statement, where the branch condition is evaluated. 
The first exit point is if the condition is false, in which case none of the rest of 
the statement is executed. The second exit point is the end of the statement, 
when all actions have been completed. 

The usual way of implementing an IF statement is by using a conditional 
branch that is taken if the condition tested by the IF is false. Instead, 
consider a subroutine that contains the code for the entire IF statement. The 
entry point to the IF statement is a subroutine call into this special 
subroutine. The first exit point can be a conditional subroutine return 
instruction, that only returns if the condition clause of the IF statement is 
false. The second exit point can be an unconditional return. 

What this scheme accomplishes is elimination of conditional branches 
with embedded addresses. All that is required is a conditional subroutine 
return statement. This technique is well suited to stack machines, because of 
the low cost of the initial subroutine call into the IF statement’s subroutine 
and the low cost of the subroutine exits. It may lead to more efficient 
machines than those currently in use. 

9.5.2 Use of the stack for holding code 
Another interesting proposal for stack machine program execution was put 
forth by Tsukamoto (1977). He examined the conflicting virtues and pitfalls 
of self-modifying code. While self-modifying code can be very efficient, it is 
almost universally shunned by software professionals as being too risky. 
Self-modifying code corrupts the contents of a program, so that the pro¬ 
grammer cannot count on an instruction generated by the compiler or 
assembler being correct during the full course of a program run. 

Tsukamoto’s idea allows the use of self-modifying code without the 
pitfalls. He simply suggests using the run-time stack to store modified 
program segments for execution. Code can be generated by the application 
program and executed at run-time, yet does not corrupt the program 



Sec. 9.6] THE IMPACT OF STACK MACHINES ON COMPUTING 181 

memory. When the code has been executed, it can be thrown away by simply 
popping the stack. 

Neither of these techniques is in common use today, but either one or 
both of them may eventually find an important application. 

9.6 THE IMPACT OF STACK MACHINES ON COMPUTING 

We have seen that stack machines can be at least as fast as register-based 
machines in terms of raw instructions executed per second. They also display 
superior characteristics in real-time control applications. Still, they can fall 
short of register-based machines in environments that use many local 
variables in programs with little use of nested procedure calls. The question 
of whether RISC, CISC, or stack machines are best is not an appropriate 
query. All of these design techniques have their place among different 
applications. Stack machines do not seem to be best suited as primary CPUs 
for the workstation and minicomputer markets. For this reason, they may 
receive less attention than they perhaps deserve. But, in those areas where 
they are well suited, they are here to stay. 

On second thought, we may speculate that the problem in supporting 
some sorts of computing tasks is not with the stack machines, but rather with 
current programming practices. Consider the kinds of programs that stack 
machines are well suited for: highly modular programs with many small, 
deeply nested procedures; programs that pass a small number of variables 
between procedures, hiding the details of their operation; programs that 
frequently reuse these small procedures to reduce program size and com¬ 
plexity; programs that are easily debugged because of small procedure size; 
and programs which present a uniform level of interface at all levels of 
module abstraction, from high level subroutines to instructions. All these 
characteristics seem desirable. Unfortunately, they are seldom practiced 
today. Perhaps the use of stack machines can help improve the situation. 

It may be that deep-seated knowledge of the strong points of register- 
based machines has formed the characteristic conventional programming 
languages and hardware we use. Procedure calls are not used frequently 
because they are time consuming. Because procedures are somewhat long, 
language syntax has not been forced to make them extremely simple to 
define and use, so they require various amounts of specification code, 
parameter lists, typing information, and the like. Even project management 
styles can require separate paperwork and formal procedures each time a 
new subroutine is created. And, because using many small procedures has 
been made more difficult by small degrees, fewer procedures are used, 
fueling the cycle. 

Stack machines present an opportunity to change this cycle. Procedures 
calls are extremely inexpensive. Languages such as Forth provide a mini¬ 
mum of overhead for defining new procedures, and actually provide an 
environment which encourages development and testing of modularized, 
easily tested code. What may be needed is a design of new programming 
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languages that are well suited to high level language machines (Chen et al. 

1980), and to stack machines in particular. What we may see happen are 
extensions and variations on traditional languages to incorporate control 
structures that better exploit stack machine hardware. 

Register-based machines can offer performance rewards for poorly 
structured programs, often at the cost of harder maintenance, more difficult 
debugging, and increased program size. By rewarding programmers for 
writing well structured code, stack machines may encourage better pro¬ 
gramming practices. This in turn, may influence the evolution paths of 
conventional languages toward providing better means for creating, main¬ 
taining, and executing programs. 



Appendix A 
A survey of computers with hardware 
stack support 

This appendix is a survey of the stack architectures included in Chapter 2. It 
includes most stack machines which have been presented in conferences and 
described in journals. Each machine has a summary of its taxonomy 
category, implementation technology, problem solving applications, and 
design history. Additionally, each entry has references and a summary 
description. 

AADC 

Taxonomy category: SL1 
Implementation: 16-bit minicomputer 
Applications: Direct APL execution, military environment 
Who and when: Raytheon for the US Navy, 1971 
References: Nissen, S. & Wallach, S. (1973) 

The AADC (All Applications Digital Computer) was designed for direct 
execution of the APL language. The target application area was Naval 
platforms (especially Naval aircraft), so small size and weight were import¬ 
ant. The APL language was chosen for efficient machine code and execu¬ 
tion. In particular, APL was chosen for its conciseness, which was predicted 
to give smaller programs and therefore fewer page faults in a virtual memory 
environment. The AADC converted expressions from infix to Polish 
notation on-the-fly at execution time. Programs were interpreted at run¬ 
time by the program management unit and executed by an arithmetic 
processor. The execution unit used 1-operand stack notation. 

AAMP 

Taxonomy category: SSI 
Implementation: 16-bit microcoded silicon-on-sapphire 
Applications: Radiation hard for military use, multi-tasking 
Who and when: Rockwell International, 1981 
References: Best etal. (1982) 
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The AAMP (Advanced Architecture Microprocessor) was designed for 
military and space use. A stack architecture was chosen for ease of 
compilation and good code density since it can use mostly 1-byte instruc¬ 
tions. AAMP uses a single stack with a frame pointer for activation records 
as well as expression evaluation with a separate stack pointer. The expres¬ 
sion evaluation area is just on top of the current frame. Many instructions 
are 1 byte long, with the possibility of using local variable addresses relative 
to the frame pointer for 1-operand addressing. Four top-of-stack registers 
are used for evaluation, with spillage into program memory. 

ACTION PROCESSOR 

Taxonomy category: MSO 
Implementation: 16-bit microcoded bit-sliced 
Applications: Direct execution of Forth 
Who and when: Computer Tools, 1979 
References: Rust (1981) 

The ACTION Processor FORTHRIGHT is a microcoded Forth-language 
processor. Typical of Forth hardware implementations, it has a data stack 
used for expression evaluation and parameter passing as well as a return 
address stack used for subroutine return address storage. The top elements 
of both stacks are kept in registers in the bit slices. Stacks reside in program 
memory to reduce hardware costs. 

AEROSPACE COMPUTER 

Taxonomy category: SSO 
Implementation: 64-bit processor 
Applications: High reliability, multiprocessor spacecraft computer 
Who and when: Intermetrics, 1973 
References: Miller & Vandever (1973) 

The Aerospace Computer used stack instructions to save program memory 
space, which has a major impact on reducing size, weight, power, and cost 
for spacecraft applications. Stack instructions were also chosen to direct 
support high order languages to enhance software reliability. The design 
draws heavily from the B6700 architecture. All computation was done in 
floating point in the ALU, with integers converted to floating point format as 
fetched from memory. When set, the highest bit of an operand on the stack 
indicated that the element was really a pointer to memory, which caused a 
transparent fetch. 

ALCOR: 

Taxonomy category: MLO 
Implementation: Emulator on various early European computers 
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Applications: Conceptual machine emulated for transportable ALGOL 
programming 

Who and when: ALCOR joint project, 1958-60 
References: Samelson & Bauer (1962) 

The ALCOR (ALgol COnverteR) joint project was a very early conceptual 
design for the interpretation of ALGOL 60. The European group devised a 
high level language machine architecture which was emulated on various 
machines. The conceptual machine had two stacks which were used for 
expression parsing and evaluation. One stack held pending operations, 
while the other stack held intermediate results. Variables and return 
addresses were statically allocated in program memory. 

AN ALGOL MACHINE 

Taxonomy categcry: MLO 
Implementation: Research prototype project 
Applications: Direct execution of ALGOL 
Who and when: Burroughs, 1961 
References: Anderson (1961) 

The exploration for a direct execution architecture was motivated by the 
observation that two-thirds of computer time was then spent doing compila¬ 
tion and debugging. The focus of the research was on making computers 
easier to use. The approach taken was to directly execute a high level 
language. The machine discussed used three hardware stacks to execute 
ALGOL constructs. Two stacks formed a value and operator stack pair for 
expression parsing and evaluation. The third stack held subroutine return 
address information. 

AM29000 

Taxonomy category: SL2 
Implementation: 32-Bit microprocessor 
Applications: General purpose RISC processor 
Who and when: Advanced Micro Devices (AMD) 1987 
References: Johnson (1987) 

The AM29000 is a RISC processor. While its instructions are not stack- 
oriented, it provides considerable hardware support for stacks for para¬ 
meter passing for high level languages. It has 192 registers, 64 of which are 
conventional registers, the other 128 of which are used as a stack cache. A 
stack frame pointer into the register file provides relative addressing of 
registers. If the stack cache overflows, it is spilled to program memory under 
software control. The chip has the capability of dividing the 256 register 
address space into 16 banks for multi-tasking. Each instruction may access 
registers either globally, or based on the register stack pointer. 
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APL LANGUAGE 

Taxonomy category: MSO 

Implementation: Microcoded emulation on IBM 360/25 with WCS 
Applications: Direct execution of APL 
Who and when: International Business Machines, 1973 
References: Hassitt et al. (1973) 

APL is an inherently interpreted language, so creating an APL direct 
execution machine is an attractive alternative to interpreters on conven¬ 
tional machines. This project used an IBM 360 Model 25 with writable 
control store to emulate an operational APL machine. The machine used 
two stacks resident in program memory: one for expression evaluation, the 
other for temporary allocation of variable space. 

BUFFALO STACK MACHINE 

Taxonomy category: SSI 
Implementation: 32-bit microcoded emulation on a B1700 
Applications: Block structured language execution 
Who and when: State University of New York at Buffalo, 1972 
References: Lutz (1973) 

The BSM (Buffalo Stack Machine) was a microcoded emulation of a stack 
architecture that ran on a Burroughs B1700 system. The architecture was 
designed to support ALGOL-60-type languages. Variables were stored as 
tagged data in memory with 32 data bits and 4 tag bits. Interrupts were 
treated as hardware invoked procedure calls, thus saving state automatically 
on the stack. A sticky point with doing this was that interrupts on stack 
overflow/underflow had to be made before the stack is completely full/empty 
to prevent a system crash. 

BURROUGHS MACHINES 

Taxonomy category: SSO 
Implementation: A family of minicomputers 
Applications: General-purpose multi-user computing 
Who and when: Burroughs Corporation: 1961-77 (and beyond) 
References: Carlson (1963), Doran (1979), Earnest (1980), Organick (1973) 

The Burroughs line of stack computers originated with the ALGOL- 
oriented B5000 machine in 1961. One of the motivations for this machine 
was the observation that conventional machines required compilers that 
were so complex that they were too expensive to run (in 1961). 

The B5000 was a 0-operand pure stack machine that kept the stack 
elements in program memory. The top two stack elements of the B5000 were 
kept in special registers in the CPU. A special feature of these registers is 
that there were hardware status bits that allowed 0,1, or 2 of the registers to 
contain valid data. This reduced the amount of memory bus traffic by 
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eliminating redundant reads and writes to memory (for example, a POP 
followed by a PUSH would not cause the same value to be read in from 
memory, then written back out). The B7700 elaborated on this scheme by 

using a 32-register stack buffer. 
The stacks on these machines were used both for expression evaluation 

and for stack frames for ALGOL procedure calls. Thus, return addresses 
were interleaved with parameters on the stack. One of the advantages to 
keeping the stacks resident in program memory was rapid response to 
interrupts and a low cost for task swapping. Stacks enabled the hardware to 
treat procedure calls, interrupts, and task calls in a uniform manner. 

CALTECH CHIP 

Taxonomy category: SSO 
Implementation: 8-Bit microcoded VLSI chip 
Applications: University VLSI design project 
Who and when: California Institute of Technology, 1979 
References: Efland & Mosteller (1979) 

This stack machine was implemented as a student project for a VLSI design 
course. The objective was to design and lay out the simplest possible 
computer in a two-and-one-half-week period. To keep the design simple, 
the students chose a 0-operand stack machine. The stack on this machine 
was maintained in program memory with 2 registers containing the top two 
stack elements on-chip. The instruction set was patterned after the primi¬ 
tives needed by a student-written Pascal compiler. 

CRISP 

Taxonomy category: SL2 
Implementation: 32-bit CMOS microprocessor 
Applications: C language RISC machine 
Who and when: AT&T Bell Laboratories, 1987 
References: Ditzel et al. (1987a), Ditzel et al. (1987b), Ditzel & McLellan 
(1982), Ditzel & McLellan (1987) 

The CRISP microprocessor is a RISC machine optimized for executing the 
C programming language. It is designed as a register-less machine, with all 
operands memory-resident. However, since the C language uses stacks to 
allocate storage for local parameters, most of the operand data references 
are to memory locations relative to a stack pointer register. To support these 
stack references, CRISP has a 32-element stack cache on-chip. Thus, when a 
memory-to-memory operation is performed on data near the top of the 
stack, the operands are fetched and stored using the on-chip cache. CRISP 
also supports branch folding, a technique where branches are executed in 

parallel with some instructions. 
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DRAGON 

Taxonomy category: SL2 
Implementation: 2-chip microprocessor 
Applications: Experimental multiprocessor design 
Who and when: Xerox Palo Alto Research Center, 1985 
References: Atkinson & McCreight (1987) 

The Dragon is an experimental design created with an emphasis on compact 
binary instruction encodings and fast procedure calls. Variable length 
instructions and the use of stack-register addressing keep instruction size 
small while allowing the use of 3-operand instructions. The Dragon has a 
128-element execution unit register stack with variable size frames imple¬ 
mented by a pointer pair that define the upper and lower frame bounds. 

EM-1 

Taxonomy category: SSI 
Implementation: Conceptual design 
Applications: Structured programming 
Who and when: Vrije University, The Netherlands, 1978 
References: Tanenbaum (1978) 

This often-cited paper gives a discussion of how structured programming 
techniques should impact machine design, then presents an example design, 
the Experimental Machine-1 (EM-1). The motivation behind the EM-1 is to 
provide an efficient environment for well-structured programs. To do this, it 
uses a single memory-resident stack in typical block-structured language 
style, and provides 1-operand addressing to access local variables on the 
stack frame for evaluation using the top of stack. The design skirts the issue 
of memory bus contention between stack items and instructions by presum¬ 
ing the existence of a stack cache independent of an instruction cache. 

EULER 

Taxonomy category: SSO 
Implementation: Microcoded interpreter on IBM 360/30 
Applications: Research into implementing direct high level interpreters in 

microcode 
Who and when: IBM Systems Development Division, 1967 
References: Weber (1967) 

EULER is an extension of the ALGOL programming language. The 
EULER project discussed by this paper was an early attempt to implement a 
direct interpretation machine by adding special-purpose microprogramming 
to a standard IBM Model 360 computer. In operation, an EULER program 
was compiled to an intermediate byte-code format. Each byte-code invoked 
a routine resident in microprogram memory. This system may well have 
been the first ‘p-coded’ machine. The use of microcoded interpretation was 
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justified for this project by the fact that EULER supports structures such as 
dynamic typing, dynamic storage allocation, and list processing that were 
poorly handled by available compilers. The EULER implementation used a 
single stack resident in program memory for dynamic data allocation and 
expression evaluation. Data operation instructions were 0-operand RPN 
byte codes. 

FORTH ENGINE 

Taxonomy category: MLO 
Implementation: Discrete LS-TTL 
Applications: Execution of Forth programming language 
References: Winkel (1981) 

The Forth Engine was a discrete TTL microcoded stack processor for the 
Forth language. In addition to a hardware stack for evaluation and subrou¬ 
tine parameter passing and the hardware stack for return address storage, 
this processor featured a 60-bit writable control store for microcode. 

FORTRAN MACHINE 

Taxonomy category: MSO 
Implementation: Conceptual Design 
Applications: Direct execution of the FORTRAN language 
Who and when: University of Science and Technology of China, PRC, 1980 
References: Chen et al. (1980) 

This paper presents a conceptual design paper for a direct execution 
FORTRAN machine. The proposed machine would have several hardware 
stacks for return address, loop limit and branch address, and expression 
evaluation storage. While the implementation method was not specified, 
isolated memory space stacks would certainly be appropriate to reduce 
memory traffic. As with most other direct execution machines, stacks were 
mandatory to support program parsing. 

FRISC 3 

Taxonomy category: MLO 
Implementation: 32-bit 2 micron silicon compiler CMOS microprocessor 
Applications: General-purpose space-borne computing and control. Opti¬ 
mized for the Forth language 
Who and when: Johns Hopkins University, 1986 
References: Fraeman et al. (1986), Hayes (1986), Hayes & Lee (1988), 
Hayes et al. (1987), Williams et al. (1986) 

The Johns Hopkins University/APL Forth processing chip is designed for 
spacecraft processing applications. The chip executes Forth primitives, and 
allows multiple operations to be compacted into microcode-like fields in the 
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instruction. Although Forth is a 0-operand language, the chip allows 
selecting any of the top 4 stack elements to be used with the top stack 
element for an operation, thus making it a T operand machine. The on-chip 
data and return stacks are rather small: 16 elements each, forced mostly by 
technology constraints. 

G-MACHINE 

Taxonomy category: SLO 
Implementation: 32-bit processor simulation 
Applications: Graph Reduction 
Who and when: Oregon Graduate Center, 1985 
References: Kieburtz (1985) 

The G-Machine was specially built to perform graph reduction in support of 
executing functional programming languages. It executed G-code, which 
was a zero-address machine language designed to manipulate its single 
stack. Program memory was highly structured to support the requirements 
of graph reduction. Each memory word included four fields used for 
reference counting and two 32-bit cells used for graph pointers. 

GLOSS 

Taxonomy category: SSO 
Implementation: Conceptual design 
Applications: Multiple communicating processors 
Who and when: University of Washington, 1973 
References: Herriot (1973) 

The GLOSS conceptual design was an attempt to define a generic high level 
language machine for a variety of languages, including ALGOL 68, LISP 
1.5, and SNOBOL 4. It was based on using a demand-driven data-flow 
system where sub-processes were invoked on multiple parallel processors in 
a manner similar to procedure calls. Each processor had a set of evaluation 
stacks resident in memory. 

HITAC-10 

Taxonomy category: SSO 
Implementation: Add-on hardware to a minicomputer 
Applications: Experimental minicomputer addition 
Who and when: Keio University, Japan, 1974 
References: Ohdate et al. (1975) 

The stack hardware discussed in this paper was back-fitted onto an existing 
HITAC-10 minicomputer. In order to simplify the design and construction, 
the stack hardware was added as an I/O device on the system bus. The stack 
controller had four top-of-stack registers. All extra elements were stored in 
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an area of memory using DMA. The controller had two stack limit pointers 
for memory bounds checking. The stack controller was used for subroutine 
parameter passing; no arithmetic could be performed on stack elements. 

HP300 AND HP3000 

Taxonomy category: SSI 
Implementation: 16-bit minicomputer family 
Applications: General-purpose multi-user computer 
Who and when: Hewlett Packard, 1976-1980s 
References: Bartlett (1973), Bergh & Mei (1979), Blake (1977) 

The HP3000 family is a commercial line of minicomputers based on a 1- 
operand stack architecture. The origins of the family may be found in the 
HP300 computer, which could be considered a 3-address machine that had 
two top-of-stack registers buffering a program memory resident stack. 
Later, the HP3000 series used a stack/accumulator addressing mode, and 
included four top-of-stack registers. The stacks were featured in the archi¬ 
tectures to ease implementation of reentrancy, recursion, code sharing, 
program protection, and dynamic storage allocation in a multi-user environ¬ 
ment. The stack is used not only for expression evaluation, but also for 
parameter passing and subroutine return address storage. 

HUT 

Taxonomy category: MSO 
Implementation: 16-bit AM2903 bit-sliced processor 
Applications: Spacecraft experiment control. Optimized for the Forth 

language 
Who and when: Johns Hopkins University, Applied Physics Laboratory, 

1982 
References: Ballard (1984) 

The HUT processor was designed to control the Hopkins Ultraviolet 
Telescope (HUT) Space Shuttle experiment. At the time it was designed, no 
space-qualified microprocessors were powerful enough for the task, so a bit- 
sliced processor was custom designed for the job. The designers chose to 
implement a Forth language processor for simplicity of implementation, 
extensibility, and flexibility. 

ICL2900: 

Taxonomy category: SSI 
Implementation: Family of miniccmDuters 
Applications: General-purpose computing 
Who and when: ICL, 1975 
References: Keedy (1977) 
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The designers of the ICL family were concerned with protection and code 
sharing in a multiprogrammed environment, as well as efficient compilation 
and execution with compact object code. While often compared with the 
contemporary Burroughs machines, the ICL machines had several distinct 
characteristics. One of these was the use of a stack/accumulator 1-operand 
addressing scheme and several specialized registers. With this capability, a 
register or memory location could be used with the top stack element for 
operations. 

INTEL 80x86 

Taxonomy category: SS2 (when used in stack mode) 
Implementation: Family of 16- and 32-bit microprocessors 
Applications: General-purpose computing 
Who and when: Intel Corporation, 1980s 
References: Intel (1981) 

The 80x86 processor family, which includes the 8088, 8086, 80186, 80286, 
and 80386, is a family of microprocessors with a general-purpose register 
architecture. Simple PUSH and POP instructions are supported to manipu¬ 
late the stack. Many high level language compilers produce code that uses 
the BP (base pointer) register as a frame pointer to a combined return 
address and parameter passing stack. When used in this mode, the 80x86 
family can be considered to be doing stack processing. In the context of stack 
computers, the 80x86 is simply included in this listing as a representative 
example of a conventional machine that can be used as an SS2 architecture. 

INTERNAL MACHINE 

Taxonomy category: MS0 
Implementation: Conceptual design 
Applications: Directly interpretable languages 
Who and when: North Electric Co., 1973 
References: Welin (1973) 

The Internal Machine was a conceptual design for a machine that could 
efficiently execute directly interpretable languages. A stack instruction 
model was picked for generality. The design specifies two stacks: one for 
expression evaluation and parameter passing, and a second stack for 
subroutine return addresses. 

IPL-VI 

Taxonomy category: SSI 
Implementation: Conceptual design for microcoded interpreter 
Applications: General-purpose computing 
Who and when: Rand Corporation, 1958 
References: Shaw etal. (1959) 
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The Information Processing Languages (IPLs) were a series of conceptual 
language designs for implementing high level programs. IPL-VI was a 
language designed to be implemented as an interpreted language with 
microcode support. IPL-VI emphasized advanced (for 1959) computing 
structures for nonnumerical computing, especially list manipulation. A 
stack was used to pass parameters between subroutines. Since all memory in 
the IPL-VI design was formatted as list elements, the subroutine parameter 
LIFO consisted of a list of elements that pointed to the next element further 
down in the list. IPL-VI instructions used 1-operand addressing. 

ITS (PASCAL) 

Taxonomy category: SSO 
Implementation: 16-bit microprocessor 
Applications: Direct execution of Pascal P-code 
Who and when: Nippon Electric Co., 1980 
References: Tanabe & Yamamoto (1980) 

The ITS processor was designed to execute UCSD Pascal P-code. The 
designers claimed a several-times speedup over fully compiled code on a 
contemporary microprocessor (presumably an 8086). The ITS had a 256- 
word stack on-chip, which was apparently only used for expression evalu¬ 
ation. The top two stack elements were kept in registers for speed. 

KDF-9 

Taxonomy category: MLO 
Implementation: 48-bit mainframe 
Applications: General-purpose computing using ALGOL 
Who and when: English Electric, 1960 
References: Allmark & Lucking (1962), Duncan (1977), Haley (1962) 

The KDF-9 was perhaps the first true stack computer. It was inspired by the 
advent of ALGOL-60, and introduced many of the features found on 
modern stack computers. The KDF-9 had an expression evaluation stack 
which could be used for parameter passing, as well as a separate return 
address stack. Unfortunately, these stacks were limited by technology 
considerations to only 16 elements apiece (constructed^ from magnetic 
cores!). A problem with the design was that while 16 elements is quite 
sufficient for expression evaluation, the ALGOL compiler was constrained 
by the 16-element stack depth, causing slow compilation. 

KOBE UNIVERSITY MACHINE 

Taxonomy category: MLO 
Implementation: 16-bit-wide AM2903 bit-slice with writable control store 
Applications: Academic Research 
Who and when: Kobe University, Kobe Japan, 1983 
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References: Kaneda et al. (1983), Wada et al. (1982a), Wada et al. (1982b) 

This machine was designed to execute both Forth and Pascal efficiently using 
a stack architecture. Forth was executed by directly implementing Forth 
primitives in microcode. Pascal was executed by supporting a UCSD P-code 
emulator. This machine had separate data memory in addition to program 
memory. 

LAX2 

Taxonomy category: SSO 
Implementation: Microcoded interpreter on Varian V73 
Applications: Experimental 
Who and when: Group for Datalogical Research & Royal Institute of 

Technology, Sweden, 1980 
References: Bage & Thorelli (1980) 

The LAX2 architecture was implemented as a partially microcoded inter¬ 
preter with the goals of cost effective software production along with good 
memory and execution time economy for string manipulation and interac¬ 
tive applications. The architecture used tagged data types. Each process in 
the machine had a private memory area shared between the evaluation stack 
and a garbage-collected heap for temporary string storage. 

LILITH 

Taxonomy category: ML1/MS1 
Implementation: 16-bit AM2901 bit-sliced processor 
Applications: Direct execution of Modula-2 M-code and interactive user 

interfaces 
Who and when: ETH (Swiss Federal Institute of Technology), 1979 
References: Ohran (1984), Wirth (1979) 

Lilith was a Modula-2 execution machine developed by Niklaus Wirth. The 
goals of the machine were to provide efficient support for the Modula-2 
language as well as an effective user interface. A stack architecture was 
chosen for compact code. The Lilith had two stacks: a program memory 
resident stack for parameter passing, and a hardware expression evaluation 
stack. The instruction set was stack-based, with the ability to read an 
element from any location in the parameter stack and operate upon it with 
the top element of the evaluation stack. 

LISP MACHINES 

Taxonomy category: ML1 
Implementation: Various machines. 1982 to present 
Applications: List processing, artificial intelligence research 
Who and when: Various companies (such as Symbolics) 
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References: Lim (1987), Moon (1985), Sansonnet et al. (1982) 

LISP machine architecture is a whole topic in its own right; this is simply a 
summary of some of the common characteristics of LISP-specific processors. 
LISP machines tend to have multiple stacks and 1-address (relative to top of 
stack) instruction formats. Some machines have substantial hardware stacks 
(over IK word) that can overflow into program memory. Procedure calls 
tend to be very important, because of the recursion commonly used in 
traversing lists. These machines typically store data elements in a garbage- 
collected program/data memory. 

MCODE 

Taxonomy category: SSI 
Implementation: Unspecified 
Applications: Execution of Modula-2 M-code (using StarMod language) 
Who and when: University of Wisconsin-Madison, 1980 
References: Cook, R. & Donde, N. (1982), Cook, R. & Lee, I. (1980) 

The MCODE machine was designed to execute Modula-2 M-code, which 
was compiled from a language called StarMod, a Modula-2 derivative. 
MCODE was based on Tanenbaum’s EM-1 design, but with several impro¬ 
vements to solve problems that arise in real computers. One improvement 
was the use of a set-mode instruction that changed the interpretation of the 
data types (integer, floating point, etc.) for all subsequent operations. 

MESA 

Taxonomy category: SSO 
Implementation: Architectural family for workstations 
Applications: Graphics-intensive workstations (Alto, Dorado machines) 
Who and when: Xerox Office Products Division, 1979 
References: Johnsson & Wick (1982), McDaniel (1982), Sweet & Sandman 

(1982) 

Mesa was actually a modular high level language expanded to include an 
architecture for a family of processors. The goals of the architecture were 
efficient implementation, compact encoding, and technology indepen¬ 
dence. In order to accomplish these goals, the Mesa architecture specified a 
single stack for use in expression evaluation and parameter passing to 
procedures for the purpose of producing compact 0-operand stack instruc¬ 
tions. While the stack implementation was not specified, Mesa follows the 
general pattern of machines with a small stack buffer and the bulk of the 
stack in program memory. An interesting instruction was the ‘recover’ 
operation, which captured a previously popped stack value that had not yet 
been overwritten by doing a stack push without writing a value. 
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MF1600 

Taxonomy category: MLO 
Implementation: TTL discrete components, 16-bit machine 
Applications: General-purpose processing 
Who and when: Xycom & Advance Processor Designs, 1987 
References: Burnley & Harkaway, 1987 

The Advanced Processor Design MF1600, which is the processor used on 
the Xycom XVME-616 product, is a high performance Forth machine 
design that makes use of fast TTL logic devices. It features a 16-bit data path 
and a microcode memory ROM that can be customized by the manufacturer 
for specific applications. 

MICRO-3L 

Taxonomy category: SL1 
Implementation: Simulated machine 
Applications: Functional Programs 
Who and when: University of Utah, 1982 
References: Castan & Organick (1982) 

The /x-3L processor project used the 3L-model (Lisp Like Language model) 
for specifying a processor that is well suited to list processing. The project 
proposed creating a multiprocessor system to execute functional languages. 
Each /a-3L processor was to use a 256-element register file. 128 of the 
registers were intended to be used as a return address stack, with overflow 
handled by swapping into main memory. Data manipulations were per¬ 
formed using an Accumulator and an operand from the bottom 128 elements 
of the register file. 

MICRODATA 32/S 

Taxonomy category: SSO 
Implementation: Microcode upgrade to a 16-bit register-oriented 

minicomputer. 
Applications: Running a version of PL/I 
Who and when: Microdata Corporation, 1973 
References: Burns & Savitt (1973) 

The Microdata 32/S was a version of the Microdata 3200 general-purpose 
minicomputer that had additional microcode to implement stack instruc¬ 
tions. The 3200 system was a 16-bit minicomputer implemented in discrete 
TTL technology. The reason for adding the stack-based capabilities was that 
compilers of the time could not produce efficient code. Stack architectures 
made code generation easier. The reason good code generation is important 
is to remove the impetus for programming in assembly language. The main 
memory stack was used for expression evaluation and parameter passing, 
with up to four stack elements buffered in registers. 



App. A] A SURVEY OF COMPUTERS WITH HARDWARE STACK SUPPORT 197 

MISC M17 

Taxonomy category: MSO 
Implementation: 16-bit 2.0 Micron HGMOS gate array 
Applications: Low cost real-time control 
Who and when: Minimum Instruction Set Computer, Inc., 1988 
References: MISC (1988) 

The MISC M17 microprocessor is a low cost, embedded microcontroller. 
The M17 instruction set is based on Forth primitives. In contrast with most 
other Forth machines, the M17 reduces hardware costs at some compromise 
in performance by keeping its two stacks in program memory with a few top- 
of-stack buffer registers on-chip. 

MOTOROLA 680x0 

Taxonomy category: MS2 (when used in stack mode) 
Implementation: Family of 32-bit microprocessors 
Applications: General-purpose computing 
Who and when: Motorola Corporation 1980s 
References: Kane etal. (1981) 

The 680x0 processor family, which includes the 68000, 68010, 68020, and 
68030, is a family of microprocessors with a general-purpose register 
architecture. Registers are divided into two groups: address registers and 
data registers. The address registers support postincremented and predecre¬ 
mented addressing modes. This allows a programmer to use up to eight 
stacks, one stack per address register. By convention, the A7 register is used 
as the stack frame pointer for most languages. Of course, the 680x0 family is 
usually not used as a multiple-stack machine, but nonetheless this capability 
exists. 

MU5 

Taxonomy category: SSI 
Implementation: Minicomputer 
Applications: Research 
Who and when: University of Manchester, 1971 
References: Morris & Ibbett (1979) 

The MU5 used a 1-operand instruction format with a single stack in program 
memory. Stack instructions were used because they led to easy code 
generation, compact programs, and easily pipelined hardware. An interest¬ 
ing twist is that there were five registers accessible to the programmer, all of 
which were simultaneously at the ‘top-of-stack’. Pushing a value into any 
register pushed the previous register value onto the single stack. This 
arrangement is subtly different from having the top five stack elements 
accessible as registers. 
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NC4016 

Taxonomy category: MLO 
Implementation: 16-bit Gate Array processor 
Applications: Real-time control, direct support for Forth programming 

language 
Who and when: Novix, 1985 
References: Golden et al. (1985), Jennings (1985), Miller (1987), Novix 

(1985) 

The NC4000, later renamed the NC4016, was the first chip designed to 
execute Forth. Since it is on a gate array, the two hardware stack memories 
reside off-chip, connected to the processor by dedicated stack busses. The 
top two data stack elements are buffered on-chip, as is the top return stack 
element. The processor executes most Forth primitives including subroutine 
call in a single clock cycle, and allows multiple primitive operations to be 
compressed into a single instruction in some circumstances. 

NORMA 

Taxonomy category: SLO 
Implementation: Experimental machine using MSI/LSI standard logic and 

gate arrays 
Applications: Functional programming/graph reduction 
Who and when: Burroughs Corporation Austin Research Center, 1986 
References: Scheevel (1986) 

The Normal Order Reduction MAchine (NORMA) is a research processor 
developed by Burroughs for high speed graph reduction operations in 
support of functional programming languages. Five specialized functional 
units that handle arithmetic, graph memory, garbage collection, graph 
processing, and external I/O are connected using a central bus. The graph 
processor maintains a single stack used during the depth-first traversal of the 
tree-structured program graphs. 

OPA (PASCAL) 

Taxonomy category: MLO 
Implementation: Emulator running on Lilith computer 
Applications: Support for Pascal and Modula-2 programs 
Who and when: Federal Institute of Technology, Zurich, 1984 
References: Schulthess (1984) 

The Object Pascal Architecture (OPA) is a design for a machine that 
efficiently executes compiled Pascal code. The OPA contains three stacks: 
one for descriptors and expression evaluation, one for storing subroutine 
parameters, and one for return addresses. The OPA instruction set is billed 
as a ‘reduced high level language’ instruction set, since it supports Pascal 
constructions with a small number of opcodes. 
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PASCAL MACHINE 

Taxonomy category: MLO 
Implementation: Experimental processor 
Applications: Direct execution of Tiny-Pascal source code 
Who and when: University of Maryland, 1981 
References: Lor & Chu (1981) 

The Pascal interactive computer is an experimental system for direct 
execution of Pascal source code. Since the system includes a hardware 
compiler as well as execution unit, hardware stacks in the system abound. 
Some of the stacks are used to store return addresses, operator precedence, 
expression evaluation values, and subprogram nesting levels. Since expres¬ 
sions are evaluated as they are interpreted, the actions taken by the 
execution unit are the same as would be taken by a 0-operand stack 
architecture. 

PDP-11 

Taxonomy category: MSI (when used in stack mode) 
Implementation: Family of mini and microcomputers (also, later the VAX 

family) 
Applications: General-purpose minicomputer 
Who and when: Digital Equipment, 1970 
References: Bell etal. (1970) 

The DEC PDP-11 was an early general-purpose computer to integrate stack 
usage into a general-purpose register machine. While the machine is clearly 
register-oriented, it includes as a subset of its capabilities those of a one- 
address stack machine. By using register-indirect addressing with auto¬ 
postincrement and auto-predecrement, a general-purpose register can be 
used as a stack pointer for an evaluation stack. The PDP-11 also has a stack 
pointer for use with interrupts, traps, and subroutine calls. Later, the VAX 
line of computers introduced hardware support for single-stack dynamic 
frame allocation for block-oriented languages. Of course the PDP-11 is 
really a general-purpose register machine, but Bell etal.’s article describes 
how it can be used in an MSI stack mode. 

POMP PASCAL 

Taxonomy category: SSI 
Implementation: Bit-sliced processor (AMD 290x) 
Applications: Research into emulating intermediate forms for block-struc¬ 

tured languages 
Who and when: Stanford University, 1980 
References: Harris (1980) 

The Pascal Oriented Microprocessor (POMP) project used a bit-sliced 
processor to execute stack code. Stack code was chosen to reduce program 
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size from 3 to 8 times smaller than traditional compiler outputs. In fact, the 
POMP code was claimed to be only 50% larger than Flynn’s ideal DEL 
encoding, but is much easier to decode since it was encoded in byte-wide 
blocks. The stack machine could access up to 8 local variables for ope¬ 
rations, making it a 1-operand machine. 

PSP 

Taxonomy category: ML2 
Implementation: Architectural proposal 
Applications: General-purpose computing 
Who and when: University of Illinois, 1985 
References: Eickemeyer & Patel (1985) 

The Parallel Stack Processor (PSP) architecture is an attempt to preserve the 
function of a normal general-purpose register machine yet reap the benefits 
of having hardware stacks for saving registers on a subroutine call. To 
accomplish this, the machine hides a stack behind every register in the 
machine. Whenever a subroutine call is encountered, each register is pushed 
onto its own stack simultaneously, performing a single-cycle multiple- 
register save. Strictly speaking, this is more of a register machine that has 
hardware to save registers than a stack processor architecture, but the idea is 
intriguing for other stack applications. 

PYRAMID 90X 

Taxonomy category: SL2 
Implementation: 32-bit minicomputer 
Applications: General-purpose RISC processor 
Who and when: Pyramid Technology, 1983 
References: Ragan-Kelley & Clark (1983) 

The Pyramid 90x was one of the first commercial processors to have many 
RISC attributes. The 90x uses a register stack that is organized as 16 
nonoverlapped windows of 32 registers plus 16 global registers for a total of 
528 registers. The registers are spilled to memory if subroutine nesting is 
more than 15 levels deep. 

QFORTH 

Taxonomy category: MLO 
Implementation: Architectural study 
Applications: Direct support for Forth programming language 
Who and when: Queens College of CUNY, 1984 
References: Vickery (1984) 

The QFORTH architecture was built for multi-tasking single-user execution 
of the Forth programming language. The internal architecture included two 
source busses (from which could be read the top two elements of the data 
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stack) and a single destination bus to write the top-of-stack back. The stack 
management unit internally buffered the top stack elements in high speed 
registers, and allowed for a single stack memory to be partitioned into 
several simultaneously used stacks. 

REDUCTION LANGUAGE MACHINE 

Taxonomy category: MLO 
Implementation: Laboratory model 
Applications: Execution of reduction language programs 
Who and when: GMD Bonn, 1979 
References: Kluge & Schlutter (1980) 

Reduction languages use structures of the form: apply <function> to 
<argument>. These structures are well represented by subtrees with a 
function node having children that are its operands. Since the execution of a 
program involves evaluating these tree structures, three major stacks are 
central to the operation of the machine. One stack acts as a program source, 
another as a program sink, and the third as a temporary evaluation stack 
area. An interesting feature of the machine is that there is no program 
memory, and the operation of the machine does not involve any addresses as 
such. All programs are shuffled between the source and sink stack 
memories. 

REKURSIV 

Taxonomy category: MLO 
Implementation: 1.5 Micron CMOS using 3 gate arrays 
Applications: Object-oriented programming 
Who and when: Linn Products, 1984-88 
References: Pountain (1988) 

Rekursiv is designed for fast execution of object-oriented programs. It 
supports a very high level instruction set that may be extended using a large 
amount of off-chip microcode, and has extensive support for memory 
management designed into the system. An evaluation stack is used for 
expression evaluation, while a control stack is used for microcode procedure 
return address storage. 

RISC I 

Taxonomy category: SL2 
Implementation: 32-bit microprocessor 
Applications: RISC processor for C and other high level languages 
Who and when: University of California, Berkeley, 1981 
References: Patterson & Piepho (1982), Patterson & Sequin (1982), Sequin 

& Patterson (1982), Tamir & Sequin (1983) 
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The RISC I was the first highly publicized RISC computer. It owes a 
substantial amount of its performance to the use of register windows. The 
‘gold’ RISC I chip uses an overlapped register window scheme with 78 
registers. At any given time, there are 32 addressable registers: 10 global 
registers, 6 registers shared with the calling subroutine, 10 private registers, 
and 6 registers used to pass parameters to subroutines at the next deeper 
nesting level. The registers are accessed using normal 2-operand register-to- 
register instructions. The RISC I allows accessing the contents of a register 
as a memory location by automatically mapping the memory access into the 
register space. This solves the up-level addressing problem that can occur in 
languages like Pascal. 

ROCKWELL MICROCONTROLLERS 

Taxonomy category: MSO 
Implementation: Forth-in-ROM on 6502 and 68000 microcontrollers 
Applications: Embedded controllers that run Forth programs 
Who and when: Rockwell International, 1983 
References: Dumse (1984) 

While not strictly speaking hardware-supported stack machines, microcon¬ 
trollers that have Forth burned into their ROM’s are an interesting member 
of the stack-based computer family. The R65F11, based on the 6502 
processor, and the F68K processor, based on the 68200 microcontroller of 
the 68000 processor family, are general-purpose microcontrollers that come 
with preprogrammed Forth primitives. These chips in effect emulate a two- 
stack Forth engine, using variables and program memory to provide the 
emulation. Other dedicated Forth microcontrollers have been made since 
(including the Zilog Super8 chip), but Rockwell was the first to do it. 

RTX2000 

Taxonomy category: ML0 
Implementation: 16-bit, 2 micron standard cell CMOS microprocessor 
Applications: Semicustom design for application-specific designs. Opti¬ 

mized for Forth programming language 
Who and when: Harris Semiconductor, 1987-89 
References: Danile & Malinowski (1987), Harris Semiconductor (1988a), 

Harris Semiconductor (1988b), Jones etal. (1987) 

The RTX (Real Time Express) is a macrocell in the Harris standard cell 
library. This allows the processor to be built as a stand-alone microproces¬ 
sor, or as an integrated microprocessor with I/O devices, hardware multip¬ 
lier and stack memory on-chip. The instruction set directly corresponds to 
FORTH programming language primitives. The design uses an unencoded 
instruction format that allows multiple operations to be compacted into each 
instruction. As with many Forth processors, the RTX 2000 supports single¬ 
cycle subroutine calls. 
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RTX 32P 

Taxonomy category: MLO 
Implementation: 32 bits, 2.5 micron CMOS 
Applications: Stack-based processing for real-time control and expert 

systems 
Who and when: Harris Semiconductor and WISC Technologies, 1987-89 
References: Koopman (1987c), Koopman (1987d), Koopman (1989) 

The Harris RTX 32P is a prototype 32-bit stack processor chip set. A unique 
feature of the RTX 32P is the combination of an opcode with a next-address 
field in every instruction. This allows zero-cost subroutine calls, returns, and 
unconditional branches by overlapping the next address computation with 
the opcode execution. The system can execute one opcode and a subroutine 
call each memory cycle. 

RUFOR 

Taxonomy category: MLO 
Implementation: 16-bit AM2901 bit-slice microcoded processor 
Applications: Research processor for Forth language 
Who and when: Wright State University, 1984 
References: Grewe & Dixon (1984) 

The RUFOR system is a conventional bit-sliced approach to building a 
machine optimized for the Forth programming language. There are two 
hardware stacks, one for data and one for return addresses. The top entry of 
each stack is held in one of the 2901 internal registers, so that only a single 
input bus to the ALU and a single output bus backto the stacks are required. 

SFI 

Taxonomy category: ML2 
Implementation: 3-Chip, 32-bit microprocessor using 3 micron CMOS 
Applications: High level language support for real-time control 
Who and when: Wright State University, 1987-88 
References: Dixon (1987), Longway (1988) 

The SFI (which stands for Stack Frame computer number 1) is an experi¬ 
mental multi-stack processor designed to efficiently execute high level 
languages, including both Forth and C. The current implementation has five 
stacks, any two of which may be selected as the source and destination for an 
instruction. The SFI allows arbitrary access to its stack elements by using a 
13-bit address relative to the top stack element in the instruction format. 

SOAR 

Taxonomy category: SL2 
Implementation: Microprocessor 
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Applications: Support for Smalltalk-80 language 
Who and when: University of California, Berkeley, 1984 
References: Bush etal. (1987) 

The Smalltalk On A RISC project (SOAR) modified the Berkeley RISC II 
architecture to adapt it to Smalltalk-80. Since Smalltalk-80 is a stack- 
oriented bytecode language, this is an exercise in mapping stack code onto a 
register-oriented RISC, which in turn has its registers arranged in an 
overlapped window register stack. The window size of the register stack was 
only 16 registers, half that of RISC II, since Smalltalk methods tend to be 
smaller than procedures in traditional programming languages. 

SOCRATES 

Taxonomy category: ML2 
Implementation: Conceptual design 
Applications: Use of bubble memories for main program storage 
Who and when: University of Massachusetts/Amherst, 1975 
References: Foster (1975) 

SOCRATES (Stack-Oriented Computer for Research and Teaching) was a 
design that proposed using magnetic bubble memories as its main storage. 
At the time of the design, bubble memories were projected to cost 100 times 
less per bit than other memories. The only problem was that they could only 
be accessed sequentially. SOCRATES took advantage of this situation by 
proposing 64 addressable registers of 32 bits, with each register being the top 
element of a 32K word bubble memory configured as a LIFO stack. 

SOVIET MACHINE 

Taxonomy category: ML1 
Implementation: Conceptual design 
Applications: Execution of block-structured languages 
Who and when: Academy of Sciences of the USSR, 1968 
References: Myamlin & Smirnov (1969) 

This paper presented a design for a stack computer for executing block- 
structured languages. The design had two stacks: one for holding arithmetic 
operations and one for holding operands. While not a directly interpreting 
machine, it was apparently intended to have source programs maintain an 
infix format with infix to postfix conversion done on-the-fly. Stacks could be 
addressed as part of program memory if desired, but were physically 
separate components. 

SYMBOL 

Taxonomy category:MS0 
Implementation: Discrete TTL prototype machine 
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Applications: Research 
Who and when: Iowa State University, 1971 
References: Ditzel & Kwinn (1980), Hutchison & Ethington (1973) 

The SYMBOL project constructed an operational computer using no 
software. The editor, debugger, and compiler were all implemented using 
random logic circuits. User programs were entered in source code, then 
compiled and executed using hardwired control circuits. The compilation 
unit transformed code into a stack-based intermediate form before execu¬ 
tion. Several other stacks were used elsewhere as required by the compiler. 

TRANSPUTER 

Taxonomy category: SSO 
Implementation: Family of 16- and 32-bit microprocessors 
Applications: Parallel processing 
Who and when: INMOS Limited, 1983 
References: Whitby-Strevens (1985) 

The Transputer is a single-chip microprocessor system designed for parallel 
processing. Since replicating a complete processor with memory and peri¬ 
pherals is very expensive, the Transputer attempts to squeeze an entire 
functional system onto a single chip to hold costs down for systems with large 
numbers of processors. This constraint places program memory space at a 
premium, so a stack-based instruction set was selected to reduce program 
size. The Transputer uses 3 registers to form an expression evaluation stack. 

TM 

Taxonomy category: MLO 
Implementation: Simulated design 
Applications: Research 
Who and when: Carnegie Mellon University, 1980 
References: Harbison (1982) 

The Tree Machine (TM) architecture was an attempt to make compilers 
simpler by performing common compiler optimizations using a value cache. 
This cache would do common subexpression elimination and invariant code 
motion in hardware by caching results to recently computed expressions. A 
stack-based architecture was chosen because this allowed better operation 
with the value caching hardware and eliminated the compiler complexity 
associated with register allocation. The TM used two stacks: a data stack for 
expression evaluation, and a control stack for dependency information and 
return address storage. 

TREE MACHINE 

Taxonomy category: MSO 
Implementation: Conceptual design 
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Applications: Executing block-structured languages 
Who and when: Massey University, New Zealand, 1971 
References: Doran (1972) 

Doran’s tree machine recognized that good programs have an inherent tree 
structure, and was tailored to execute these well-structured programs. The 
machine had three stacks resident in program memory: a control stack for 
return addresses, a value stack to store intermediate results for non-tree-leaf 
nodes, and a data stack for scratch storage allocation. An interesting feature 
of the machine was that conditional branches were not required. All 
conditional execution were accomplished with a conditional procedure 
return to the parent program node. 

VAUGHAN & SMITH’S MACHINE 

Taxonomy category: MLO 
Implementation: Conceptual design 
Applications: Support for Forth programming language 
References: Vaughan & Smith (1984) 

This paper discusses the design of a Forth-based computer. The architecture 
was chosen because Forth is good at representing the tree nature of 
structured programs. Forth’s small subroutine size allows good code com¬ 
paction through subroutine reuse. The proposed design featured two 
independent hardware stacks. The return stack had one top-of-stack regis¬ 
ter, while the data stack had two registers. 

WD9000 P-ENGINE 

Taxonomy category: SSO 
Implementation: 5-chip LSI set 
Applications: Direct execution of Pascal P-code 
Who and when: Western Digital, 1979 
References: O’Neill (1979) 

The Western Digital Pascal micro-engine (the WD9000 chip set) was built to 
execute Pascal P-code. Since P-code presumes the existence of a single data 
stack, the WD9000 supported a single program memory resident stack for 
expression evaluation and parameter passing. 

Wise CPU/16 

Taxonomy category: MLO 
Implementation: Discrete LS-TTL, 16-bit data paths 
Applications: Stack-based processing 
Who and when: WISC Technologies, 1986 
References: Haydon & Koopman (1986), Koopman (1986), Koopman 

(1987b), Koopman & Haydon (1986) 
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The WISC CPU/16 is a user-microcodable processor with a Forth-language 
machine heritage. It has both a data stack and a return address stack. 
Additionally, it has a 2K word by 30-bit writable control store for user- 
defined microcode. The architecture is general, and allows supporting other 
languages besides Forth. An interactive single-step capability is intended for 
use in teaching microcode techniques to students. 

WISC CPU/32 

Taxonomy category: MLO 
Implementation: 32 bits, discrete TTL 
Applications: Stack-based processing for real-time control and expert 
systems 
Who and when: WISC Technologies, 1986-87 
References: Koopman (1987c), Koopman (1987d) 

The WISC CPU/32 is the discrete TTL system upon which the Harris RTX 
32P is based. The RTX 32P and CPU/32 are microcode and instruction set 
compatible. 
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McKeeman, W. (1975) 
A comprehensive tutorial on the operation of stack-based computers and 
the role of stacks in general purpose computing. 
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of which are stack-oriented. 



Appendix B 
A glossary of Forth primitives 

The Forth language is based on an extensible, interactive compiler that 
creates code for a virtual stack machine. The virtual machine has two stacks. 
The Data Stack is used for expression evaluation and subroutine parameter 
passing. The Return Stack is used for subroutine return address saving and 
for loop control variable storage. The source code for Forth directly reflects 
the underlying stack machine, and so uses Reverse Polish Notation (RPN) 
to perform all operations using. 

Forth programs are built as a hierarchy of subroutines. Each subroutine 
is called a ‘word’ in Forth terminology. A program consists of a single Forth 
word which calls several other Forth words, and so on, forming a tree- 
structured program. At the lowest level, the leaves of the tree are invo¬ 
cations of Forth primitive words that manipulate the stacks and perform 
arithmetic. 

Below is a glossary of the Forth primitive words found on stack machines 
discussed in this book. Most of these primitives are actually applicable to any 
program written in any language on a stack machine (for example, addition 
of the top two stack elements or swapping the order of the top two stack 
elements). Forth nomenclature is used in discussions to maintain consist¬ 
ency with an existing standard vocabulary for stack machine operation. 

Each Forth word is followed by a ‘stack picture’ on the same line. This 
stack picture shows the input parameters and output parameters on the 
Forth Data Stack for the word being described. The values on the left of the 

indicate the input parameters while those to the right of the indicate 
output parameters. Each parameter list is ordered with the topmost stack 
element to the right. Notation in the stack lists is as follows: N1, N2, N3, etc. 
indicate single-precision integers. Dl, D2, etc. indicate double-precision 
integers, which take up two elements on the data stack. ADDR indicates an 
address, which may be thought of as a pointer value. FLAG is an integer 
which is false if zero, true if non-zero. A more detailed glossary of Forth is 
Haydon’s All About Forth (1983). 

0 
Push the integer 0 onto the stack. 

0 
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0< Nl FLAG 
Return a true FLAG if N1 is negative. 

0= N1 -> FLAG 
Return a true FLAG if N1 is zero. 

0> N1 FLAG 
Return a true FLAG if N1 is greater than zero. 

OBRANCH N1 -> 
If N1 is false (value is 0) perform a branch to the address in the next program 
cell, otherwise continue. 

1+ N1 -► N2 
Add one to Nl, returning N2. 

1- Nl -> N2 
Subtract one from Nl, returning N2. 

2+ Nl -» N2 
Add two to Nl, returning N2. 

2* Nl -► N2 
Multiply Nl by two, returning N2. 

2/ Nl N2 
Divide Nl by two, returning N2. 

4+ Nl -> N2 
Add four to Nl, returning N2. 

< Nl N2 -> FLAG 
Return a true FLAG if Nl is less than N2. 

<> Nl N2 -> FLAG 
Return a true FLAG if Nl is not equal to N2. 

= Nl N2 -» FLAG 
Return a true FLAG if Nl equals N2. 

>R Nl -> 
Push Nl onto the return stack. 

> Nl N2 -» FLAG 
Return a true FLAG if Nl is greater than N2. 

! Nl ADDR 
Store Nl at location ADDR in program memory. 

+ N1N2 
Add Nl and N2, giving sum N3. 

N3 
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+! NlADDR 
Add N1 to the value pointed to by ADDR. 

N1N2 -» N3 
Subtract N2 from Nl, giving difference N3. 

• ^ 

Define the start of a subroutine. The primitive [CALL] is compiled every 
time this subroutine is reference by other definitions. 

> ~> 

Perform a subroutine return and end the definition of a subroutine. The 
primitive [EXIT] is compiled. 

?DUP Nl -> N1N1 (if Nl non-zero) 
Nl -» Nl (if Nl is zero) 

Conditionally duplicate the input Nl if it is non-zero. 

@ ADDR Nl 
Fetch the value at location ADDR in program memory, returning Nl. 

ABS Nl N2 
Take the absolute value of Nl and return the result N2. 

AND Nl N2 — N3 
Perform a bitwise AND on Nl and N2, giving result N3. 

BRANCH 
Perform an unconditional branch to the compiled in-line address. 

D! D1 ADDR 
Store the double-precision value D1 at the two memory words starting at 
ADDR. 

D+ D1D2 D3 
Return the double-precision sum of D1 and D2 as D3. 

D@ ADDR -> D1 
Fetch the double precision value D1 from memory starting at address 
ADDR. 

DDROP D1 -> 
Drop the double-precision integer Dl. 

DDUP Dl -> Dl Dl 
Duplicate Dl on the stack. 

DNEGATE Dl -> D2 
Return D2, which is the two’s complement of Dl. 

DROP Nl 
Drop Nl from the stack. 
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DSWAP D1D2 D2D1 
Swap the top two double-precision numbers on the stack. 

DUP Nl -> NlN1 
Duplicate Nl, returning a second copy of it on the stack. 

I -► Nl 
Return the index of the currently active loop. 

I' Nl 
Return the limit of the currently active loop. 

J Nl 
Return the index of the outer loop in a nested loop structure. 

LEAVE 
Set the loop counter on the return stack equal to the loop limit to force an 
exit from the loop. 

LIT Nl 
Treat the compiled in-line value as an integer constant, and push it onto the 
stack as Nl. 

NEGATE Nl N2 
Return N2, which is the two’s complement of Nl 

NOP -* 
Do nothing. 

NOT FLAG1 FLAG2 
Synonym for 0=. Takes the inverse of a flag value. 

OR Nl N2 -> N3 
Perform a bitwise OR on Nl and N2, giving result N3. 

OVER Nl N2 -> Nl N2 Nl 
Push a copy of the second element on the stack, Nl, onto the top of the 
stack. 

PICK ...Nl ... N2 
Copy the Nlth element deep in the data stack to the top. In Forth-83, 0 
PICK is equivalent to DUP, and 1 PICK is equivalent to OVER. 

R> -> Nl 
Pop the top element of the return stack, and push it onto the data stack as 
Nl. 

R@ Nl 
Copy the top return stack word Nl onto the data stack. 

ROLL ...Nl -► ... N2 
Pull the Nlth element deep in the data stack to the top, closing the hole left 
in the stack. In Forth-83,1 ROLL is equivalent to SWAP, and 2 ROLL is 
equivalent to ROT. 
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ROT N1N2N3 -> N2N3N1 
Pull the third element down in the stack onto the top of the stack. 

S->D N1 -* D2 
Sign extend N1 to occupy two words, making it a double-precision integer 
D2. 

SWAP N1N2 -» N2N1 
Swap the order of the top two stack elements. 

U< U1U2 FLAG 
Return a true FLAG if U1 is less than U2 when compared as unsigned 

integers. 

U> U1U2 FLAG 
Return a true FLAG if U1 is greater than U2 when compared as unsigned 
integers. 

U* N1N2 ^ D3 
Perform unsigned integer multiplication on N1 and N2, yielding the 
unsigned double-precision result D3. 

U/MOD D1N2 -» N3N4 
Perform unsigned integer division on D1 and N2, yielding the quotient N4 
and the remainder N3. 

XOR N1N2 -> N3 
Perform a bitwise exclusive OR on N1 and N2, giving result N3. 



Appendix C 
Unabridged instruction frequencies 

The following is an unabridged version of the dynamic instruction frequen¬ 
cies discussed in Chapter 6. The ten highest entries in each column are 
underlined. 

Names Frac Life Math Compile Ave 

(%) (%) (%) (%) (%) 
! 1.89 0.00 0.71 0.98 0.90 
* 0.00 0.00 0.02 0.05 0.02 
+ 3.41 10.45 0.60 2.26 4.18 
+ ! 0.00 0.00 0.11 0.83 0.24 
+ - 0.34 0.00 0.00 0.02 0.09 
— 0.97 1.24 0.08 1.94 1.06 
/ 0.07 0.00 0.00 0.05 0.03 
0< 1.84 0.00 0.66 0.05 0.64 
0= 0.00 0.00 0.77 0.00 0.19 
0> 0.00 0.00 0.09 0.02 0.03 
OBRANCH 3.39 6.38 3.23 6.11 4.78 
1+ 1.72 0.08 0.01 1.36 0.79 
1- 0.41 0.00 0.54 0.01 0.24 
2* 2.11 2.05 0.02 0.64 1.21 
2+ 0.49 0.00 0.19 0.66 0.34 
2- 0.07 0.00 0.00 1.02 0.27 
21 0.92 0.00 0.00 0.01 0.23 
< 0.11 0.08 0.01 1.087 0.32 
<+LOOP> 0.00 0.00 0.00 0.00 0.00 
</LOOP> 0.20 0.00 0.01 0.18 0.10 
«CMOVE» 0.00 0.00 0.00 0.00 0.00 
<CMOVE> 0.00 0.00 0.00 0.56 0.14 
<DO> 0.23 0.00 0.09 0.02 0.09 
<FILL> 0.00 0.00 0.00 0.00 0.00 
<FIND> 0.00 0.00 0.00 0.84 0.21 
<LOOP> 1.44 3.32 1.08 0.01 1.46 
= 0.33 4.48 0.01 1.87 1.67 
> 0.62 0.08 0.06 1.19 0.49 
>R 2.05 0.00 11.28 2.16 3.87 
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0.00 0.00 0.00 1.11 0.28 
0.00 0.00 0.00 0.49 0.12 
7.49 21.05 0.96 11.09 5.40 
0.51 0.00 0.01 0.01 0.13 
0.00 0.00 2.53 0.00 0.63 
0.17 3.12 3.14 0.04 1.61 
0.00 0.00 0.88 0.00 0.22 
1.671 1.57 0.72 2.26 1.54 
0.07 0.36 0.03 0.87 0.33 
0.00 7.52 0.01 0.36 1.97 

11.16 12.73 12.59 12.36 12.21 
3.92 3.50 2.78 4.50 3.68 
0.00 0.00 0.00 0.04 0.01 
0.21 0.00 0.59 0.00 0.20 
1.15 0.00 0.54 0.00 0.42 
0.07 0.00 0.03 0.02 0.03 
0.00 0.00 0.00 0.00 0.00 
0.21 0.00 0.62 0.00 0.21 
2.08 0.52 0.11 0.35 0.77 
1.86 0.00 1.16 0.84 0.97 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.11 0.00 0.03 
0.00 0.00 0.91 0.00 0.23 
3.08 0.16 0.68 1.04 1.24 
0.00 0.00 0.17 0.00 0.04 
0.00 0.00 0.92 0.00 0.23 
4.08 0.45 1.88 5.78 3.05 
0.00 0.00 0.00 0.58 0.15 
0.14 0.00 0.02 2.45 0.65 

11.07 12.72 12.55 10.60 11.74 
0.58 6.66 0.01 0.23 1.87 
0.00 0.00 0.00 0.00 0.00 
0.16 0.08 0.00 0.00 0.06 
0.00 0.00 0.00 0.00 0.00 
3.94 5.22 4.92 4.09 4.54 
0.00 0.00 0.04 0.00 0.01 
0.00 0.00 0.96 0.00 0.24 
0.00 0.00 0.00 0.01 0.00 
0.00 0.00 0.05 0.00 0.01 
0.52 0.00 0.00 0.00 0.13 
0.00 0.00 0.69 0.25 0.24 
0.00 0.08 1.41 0.64 0.53 
1.23 1.75 1.24 0.89 1.28 
1.92 0.00 0.53 0.09 0.64 
2.05 -0.00 11.28 2.23 3.89 
0.14 0.00 0.02 0.71 0.22 
0.00 0.00 0.01 0.00 0.00 
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ROLL 0.21 0.00 0.81 0.00 0.26 
ROT 4.05 0.00 4.61 0.48 2.29 
RP! 0.00 0.00 0.00 0.00 0.00 
RP@ 0.00 0.00 0.00 0.00 0.00 
RRC 0.00 0.00 0.00 0.00 0.00 
S->D 0.07 0.00 0.00 0.01 0.02 
SP@ 0.00 0.00 0.00 0.05 0.01 
SWAP 4.43 2.99 7.00 1.17 3.90 
TOGGLE 0.00 0.06 0.00 0.08 0.04 
TRAVERSE 0.00 0.00 0.00 0.05 0.01 
U* 0.62 0.00 0.34 0.01 0.24 
U/MOD 0.60 0.00 0.01 0.05 0.17 
U< 0.00 0.00 0.00 0.00 0.00 
USER 0.07 0.00 0.06 8.59 2.18 
VARIABLE 7.63 10.30 2.26 1.65 5.46 
XOR 0.29 0.00 0.24 0.01 0.14 

Instructions: 2051600 1296143 6133519 447050 

The following is an unabridged verison of the static instruction frequencies 
discussed in Chapter 6. The ten highest entries in each column are 
underlined. 

Names Frac Life Math Bench Ave 

(%) (%) (%) (%) (%) 
i 3.28 2.12 0.90 2.99 2.32 
* 0.00 0.21 0.00 0.43 0.16 
+ 3.28 2.97 0.76 4.61 2.90 
+ ! 0.00 0.00 0.18 0.17 0.09 
+ - 0.14 0.00 0.00 0.09 0.06 
— 2.05 1.91 0.58 1.54 1.52 
/ 0.14 0.00 0.00 0.09 0.06 
0< 0.96 0.00 0.65 0.68 0.57 
0= 0.00 0.00 0.11 0.26 0.10 
0> 0.00 0.00 0.47 0.00 0.12 
0BRANCH 3.01 2.55 3.67 3.16 3.10 
1 + 0.41 0.64 0.72 0.51 0.57 
1- 1.09 0.42 0.54 1.28 0.83 
2* 1.92 2.12 0.14 1.79 1.49 
2+ 0.27 0.00 0.11 0.34 0.18 
2- 0.27 0.00 0.00 0.34 0.15 
21 0.96 0.00 0.00 0.77 0.43 
< 0.14 0.42 0.47 0.434 0.34 
<+LOOP> 0.27 0.21 0.04 0.26 0.20 
</LOOP> 0.27 0.00 0.00 0.17 0.11 
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<<CMOVE» 0.00 0.00 0.00 0.00 0.00 
<CMOVE> 0.00 0.00 0.00 0.00 0.00 
<DO> 1.92 2.34 0.61 1.96 1.71 
<FILL> 0.00 0.00 0.00 0.00 0.00 
<FIND> 0.00 0.00 0.00 0.00 0.00 
<LOOP> 1.37 2.12 0.58 1.54 1.40 
= 0.14 2.76 0.29 0.26 0.86 
> 1.23 0.21 0.32 1.11 0.72 
>R 0.55 0.00 4.11 0.77 1.36 
?DUP 0.00 0.00 0.04 0.00 0.01 
7STACK 0.00 0.00 0.07 0.09 0.04 
@ 10.81 1.27 1.40 8.88 5.59 
ABS 0.27 0.00 0.18 0.17 0.16 
ADC 0.00 0.00 0.07 0.00 0.02 
AND 0.27 1.06 0.54 0.43 0.58 
ASR 0.00 0.00 0.11 0.00 0.03 
BRANCH 1.92 0.85 2.09 2.05 1.73 
C! 0.00 1.49 0.04 0.68 0.55 
c@ 0.00 3.40 0.61 0.34 1.09 
CALL 16.82 31.44 ' 37.61 17.62 25.87 
CONSTANT 1.23 1.91 0.07 1.62 1.21 
CONVERT 0.00 0.00 0.00 0.00 0.00 
D! 0.41 0.00 0.18 0.17 0.19 
D + 0.55 0.21 0.25 0.51 0.38 
D+- 0.00 0.00 0.14 0.00 0.04 
D< 0.00 0.00 0.14 0.00 0.04 
D@ 0.27 0.00 0.32 0.17 0.19 
DDROP 2.60 0.42 0.79 1.88 1.42 
DDUP 1.23 0.21 0.61 1.71 0.94 
DIGIT 0.00 0.00 0.11 0.00 0.03 
DNEGATE 0.00 0.00 0.18 0.00 0.05 
DOVER 0.00 0.00 0.32 0.00 0.08 
DROP 2.60 0.85 1.69 2.31 1.86 
DROT 0.00 0.00 0.29 0.00 0.07 
DSWAP 0.00 0.00 1.22 0.00 0.31 
DUP 4.38 1.70 2.84 4.18 3.28 
ENCLOSE 0.00 0.00 0.00 0.00 0.00 
EXECUTE 0.00 0.00 0.07 0.00 0.02 
EXIT 5.75 7.22 9.90 7.00 7.47 
I 1.37 5.10 0.11 1.62 2.05 
r 0.00 0.00 0.07 0.00 0.02 
j 0.27 1.91 0.07 0.26 0.63 
LEAVE 0.00 0.00 0.00 0.09 0.02 
LIT 11.35 7.22 11.02 8.03 9.41 
LSL 0.00 0.00 0.04 0.00 0.01 
LSR 0.00 0.00 0.07 0.00 0.02 
MAX 0.00 0.00 0.11 0.09 0.05 
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MIN 0.00 0.00 0.04 0.17 0.05 
NEGATE 0.14 0.00 0.04 0.26 0.11 
NOT 0.00 0.00 0.47 0.26 0.18 
OR 0.00 0.21 0.61 0.00 0.21 
OVER 2.05 5.10 0.76 2.05 2.49 
PICK 6.29 0.00 1.04 4.53 2.97 
R> 0.55 0.00 4.68 0.77 1.50 
R@ 0.00 0.00 0.29 0.17 0.12 
RLC 0.00 0.00 0.07 0.00 0.02 
ROLL 0.14 0.00 0.32 0.09 0.14 
ROT 1.50 0.00 0.58 1.37 0.86 
RP! 0.00 0.00 0.00 0.00 0.00 
RP@ 0.00 0.00 0.00 0.00 0.00 
RRC 0.00 0.00 0.07 0.00 0.02 
S->D 0.00 0.00 0.25 0.00 0.06 
SP@ 0.00 0.00 0.00 0.00 0.00 
SWAP 1.78 5.10 1.19 3.16 2.18 
TOGGLE 0.00 0.42 0.00 0.00 0.11 
TRAVERSE 0.00 0.00 0.00 0.00 0.00 
U* 0.41 0.00 0.14 0.26 0.20 
U/MOD 0.14 0.00 0.00 0.09 0.06 
U< 0.00 0.00 0.04 0.00 0.01 
USER 0.00 0.00 0.00 0.00 0.00 
VARIABLE 1.09 1.91 0.29 1.37 1.17 
XOR 0.14 0.00 0.50 0.09 0.18 

Instructions: 731 471 2777 1171 



Appendix D 
Addresses for more information 

These are addresses for contacting the makers of stack machines featured in 
this book. The addresses and telephone numbers are, of course, subject to 
change. 

Harris RTX 2000 & RTX 32P 
Harris Corporation 
Semiconductor Products Division 
PO Box 883 
Melbourne, FL 32902-0883 
USA 
tel. (407) 729-4629 

JHU/APL FRISC 3 (SC32) 
The SC32 is now being developed and marketed by 

Silicon Composers 
210 California Avenue, Suite I 
Palo Alto, CA 94306 
USA 
tel. (415) 322-8763 

The FRISC 3 was originally developed by 

Johns Hopkins University/Applied Physics Laboratory 
Johns Hopkins Road 
Laurel MD 20707 
USA 

MISC M17 
Minimum Instruction Set Computer, Inc. 
19704 East Loyola Circle 
Aurora, CO 80013-3904 
USA 
tel. (303) 680-9749 
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Novix NC4016 
Novix, Inc. 
19925 Stevens Creek Blvd. 
Suite 280 
Cupertino, CA 95014 
USA 
tel. (408) 255-2750 

Wise CPU/16 
WISC Technologies, Inc. 
19500 Skyline Dr. 
Box 429, Star Rt. 2 
La Honda, CA 94020 
USA 
tel. (415) 747-0760 

For general information about the Forth language, contact 
Forth Interest Group 
PO Box 8231 
San Jose, CA 95155 
USA 
tel. (408) 277-0668 

The Forth Interest group sells books and software, publishes the magazine 
Forth Dimensions, and is a good source of information on Forth and stack 
machine manufacturers. 

Institute for Applied Forth Research, Inc. 
70 Elmwood Avenue 
Rochester, NY 14611 
USA 
tel. (716) 253-0168 

The Institute for Applied Forth Research hosts the Rochester Forth Confer¬ 
ences, publishes the referred Journal of Forth Application and Research, 
and publishes the Bibliography of Forth References. Many of the papers on 
stack machine implementation and their application appear in the Journal 
and the Proceedings of the Rochester Conferences. 
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