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PREFACE

The following paragraph is an adaptation from the preface of the first

edition of this work, published ten years ago; it applies to the present edition.

This book might be described fairly as a theoretical mechanics for students

of engineering. It is not comparable to books commonly called Theoretical

Mechanics, generally intended for students of mathematics or physics; nor

to books commonly titled Applied Mechanics which generally include a treat-

ment of strength of materials, hydraulics, etc., for students of engineering.

The title Technical Mechanics seems fairly appropriate for this book; and

inasmuch as it is not otherwise used in this country, it was so adopted. On
the theoretical side, practically each subject discussed herein has a direct

bearing on some engineering problem. The applications were selected and

presented for the purpose of illustrating a principle of mechanics and for

training students in the use of such principles,
— not to furnish information,

except incidentally, about the structure, machine, or what not to which the

application was made.

Ten years use of the book as a text in the author's classes has suggested

many changes; and in recent years the need of a new collection of problems
has become urgent. Accordingly, a revision was undertaken, and the effort has

resulted in a practically rewritten book. Indeed the only portion of the former

edition used again with little or no change is the present Appendix A. Though

containing fewer pages than the old book, the new one— because of its (nearly

one-third) larger printed page
— contains more material than the old.

Inasmuch as Mechanics deals mainly with subjects permanent in character,

the revision consists principally of changes in arrangement and presentation.

Both were determined upon to a large degree by a desire to furnish an ade-

quate course of instruction for students in engineering in one semester, "five

tunes per week." To this end, it was necessary to sacrifice logical order of

arrangement more or less. As in former editions, Statics is presented first

because relatively simpler than Dynamics. Kinematics, as such, is not given
a place. The chapter on Attraction and Stress has not been retained. Dis-

cussion of Friction and Efficiency has been amplified, and Dynamics has been

extended to provide a quantitative explanation of simple gyroscopic action.

Many solved numerical examples have been added to elucidate principles.

The collection of problems to be solved by students has been completely

changed.
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All of Statics except Arts. 23, 25, 26, and 27 may be mastered with no knowl-

edge of mathematics beyond trigonometry. Calculus methods are used

in Dynamics, but a good knowledge of the elements only of that branch of

mathematics is presupposed. Graphical methods are used freely, as much
as the algebraic in Statics.

The author i§ pleased to acknowledge with thanks the helpful suggestions

and criticisms of the teaching staff in Mechanics at the University of Illinois;

of his colleague. Professor M. O. Withey; and of Professor C. H. Burnside

of Columbia University. He thanks also American Machinist, Engineering

Record, and Engineering News for permission to copy and for gifts of cuts;

and individuals and other journals named in the text for similar favors.

Madison, Wisconsin.

December, 1913.
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TECHNICAL MECHANICS

I. Introduction

Mechanics had its origin in the experience of ancient peoples with de-

vices for lifting and moving heavy things. The devices included the

so-called simple machines or mechanical powers; namely, the lever, the

pulley, the wheel and axle, the inclined plane, the wedge and the screw.

That experience probably afforded fairly definite and full knowledge of the

practical advantages of these various devices, but the simple and precise

mechanical principles involved in them were long unrecognized. The first

recognition of such a principle marked the real beginning of the science of

Mechanics.

History records that the principle of the lever is the mechanical principle

first discovered, and that Archimedes (287-212 B.C.), famous Greek mathe-

matician, was the discoverer. He perceived the application of this prin-

ciple to the wheel and axle (continuous lever), to the pulley (movable

lever), and to certain combinations or systems of pulleys and cords, one of

which still bears his name. The discovery of the principle of buoyant effort

on a body floating on or immersed in a fluid is due to him. Apparently no

additions to these achievements of Archimedes were made during the sixteen

centuries following his time.

The principle of the lever as understood by Archimedes covered only the

special case of two heavy weights suspended from a horizontal bar sup-

ported at a point (fulcrimi) between them. For such case he stated that

the weights are inversely as the distances from the fulcrum to the points of

suspension. The principle was extended to include the case of forces ap-

plied obliquely, by Leonardo da Vinci (1452-1519), famous Italian artist and

engineer. He perceived that the efficacy of such a force depends on the

distance from the fulcrum, not to the point of application of the force, but

to its line of action.

The principle next discovered was that of the inclined plane, first defi-

nitely stated by Simon Stevin (i 548-1 620), Dutch mathematician and en-

gineer. His statement of the principle was somewhat as follows: The force

(acting along the plane) required to support a (frictionless) body resting

upon it is to the weight of the body as the height of the plane is to its

length (measured along the slope). This principle afforded the explana-
tion of the wedge (double inclined plane) and the screw (continuous inclined

plane). Stevin deduced the parallelogram law for two forces at right
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angles jffpm-.Vfte'pnndjilft-,
o^ inclined plane; and from his study of

pulleys he noted that what is gained in power is lost in speed. Thus he

caught the first glimpse of two important principles,
— that of the parallelo-

gram of forces, and that of virtual velocity or work.

The first discoveries of laws of motion were made by Galileo (i 564-1642),
Italian astronjomer and physicist. For 2000 years it had been believed that

heavy bodies fall more rapidly than light ones. This Galileo disproved by
actual trial at the leaning tower of Pisa. Next he was led to inquire about

the manner in which a body falls, or how the speed changes. He made
several guesses at this law, and finally verified one of them by indirect

experiment and deduction. Up to Galileo's time, it was believed that rest

was the natural condition for a body; and that motion was unnatural,

requiring some outside cause (force) to maintain it, and ceasing only when
the force ceases. Galileo perceived that motion is just as natural as rest;

that motions cease not because they are unnatural, but because of some

influence (force) from the outside operating to reduce the motion and

eventually to destroy it. In short, he discovered the so-called first law of

motion, usually credited to Newton. He invented the telescope.

Huygens (1629-1695), Dutch physicist, made some important contribu-

tions to this science. He developed the theory of the pendulxmi, determined

the acceleration due to gravity from pendulum observations, and deduced

certain theorems regarding centrifugal force. He invented the clock pen-

dulum and escapement.

Newton (1642-1727), English mathematician and physicist, is generally

regarded as the foimder of Mechanics. At an early age he began an at-

tempt to explain the motions of the planets, whose orbits and speeds were

then well known, in terms of experience with more familiar motions. He
succeeded in thus explaining many features of the planetary motions, and

established that there are certain principles common to the motion of all

bodies, celestial and terrestial. These principles are generally known as

Newton's laws of motions (see index). His study of planetary motion led

to other great achievements, among which may be mentioned the discovery

of the law of universal gravitation, and the invention of the calculus (also

invented independently by Leibnitz, German mathematician).

Since Newton, "no essentially new principle [of Mechanics] has been

stated. All that has been accomplished since his day has been a deductive,

formal, and mathematical development on the basis of Newton's laws."*

Such development constitutes the body of knowledge which we call Me-

chanics, or sometimes Rational and Theoretical Mechanics, to distinguish it

from Applied Mechanics. It may be defined as the science of motion, but it

includes the science of rest as a relatively minor part.

* For a full and critical account of that development, see Mach's "Science of Me-

chanics," from which the quotation was taken, or Cox's
" Mechanics

"
for a good but less

critical account.
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Adaptations of rational mechanics have played an important part in

the development of the science 'of engineering, particularly in the depart-

ments of structures and machines. Such adaptations, together with our

knowledge of friction, strength of materials, and certain properties of fluids,

constitute Applied Mechanics. Among the pioneer workers in this field

should be mentioned the following: Coulomb (i 736-1806), Navier (1785-

1836), Poncdet (1788-1867), Morin (1795-1880), Saint-Venant (1797-1886),

Weisbach (1806-71), Rankine (1820-72), Grashof (1826-93) ^^^ Bamchinger

(1834-93).*

Under Technical Mechanics, the present author includes those prin-

ciples of rational mechanics which are especially applicable in various

fields of engineering, and some of our knowledge of friction. The book is

divided into two parts called Statics and Dynamics. The first deals with

certain of the circumstances of bodies at rest, and the second with those of

bodies in motion. The certain circumstances dealt with will become ap-

parent to the student as he progresses in the subject.

• See Keek's
" Mechanik "

for an acx:ount of their work and fuller list.



STATICS

CHAPTER I

COMPOSITION AND RESOLUTION OF FORCES

2. Force; Definitions

Bodies act upon each other in various ways, producing different kinds

of results. Any action of one body upon another which, when exerted

alone, would result in motion of the body acted upon, or in change of motion

if the body is already moving, is called force; the word is a general term for

push and pull. Our earliest notions about forces are based on our experience

with forces exerted by or upon ourselves. Through this experience we have

learned that a force has magnitude, place of application, and direction,

sometimes called the characteristics of a force.

To express the magnitude of a force, we must of course compare it to

some other force regarded as a unit. Many units of force are in use; the

most convenient are the so-called gravitation units. They are the earth-

pulls on our standards for measuring quantity of material (as iron, coal,

grain, sugar, etc.), commonly called standards of weight.* The earth-pull

on any of these standards is called by the name of the standard; thus the

earth-pull on the pound standard (also any equal force) is called a pound;
the earth-pull on the kilogram standard (also any equal force) is called a

kilogram, etc. Since the earth-pull on any given thing varies in amount

as the thing is transported from place to place, gravitation units of force

are not constant with regard to place. But this variation need not be

regarded in most engineering calculations because any error due to such

disregard is generally smaller than errors due to other approximations in

the calculations. The extreme variation in any gravitation unit is that

between its magnitudes at the highest elevation on the equator and at the

poles; this difference is but 0.6 per cent. For points within the United

States the extreme variation equals about 0.3 per cent. For any two

• In common parlance the word weight is used in at least two senses. Thus, suppose

that a dealer sells coal to a consumer by weight, and engages a teamster to deliver it by

weight; to the consumer, the weight of each wagon load represents a certain amount of

useful material, but to the teamster it represents a certain burden on his team due to the

action of gravity on the coal. That is, weight suggests material to the one man and

earth-pull to the other.
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points on the surface of the earth, the variation equals that in the values of

g in the formula

g
=

32.0894 (i + 0.0052375 sin^/) (i
—

0.0000000957 e)

computed for the two places; / denotes latitude, and e elevation above sea

level, in feet. ^K
The place of application of most forces with which we shall deal is a

portion of the surface of the body to which the force is applied. A notable

exception is earth-pull, or gravity, which is applied not to the surface of a

body but throughout the same. All such are called distributed forces. The

places of application of some forces are very small compared to the sur-

faces of the bodies to which they are applied, and for many purposes these

places may be regarded as points of application; any such force is called a

concentrated force. The line of action of a concentrated force is a line

indefinite in length, parallel to the direction of the force, and containing its

point of application. A concentrated force may act along its line of action in

one of two ways,
— to the right or left, up or down, etc. We say that the sense

of a force is toward the right, toward the left, up, or down as the case may
be. That is, sense refers to

*'
arrow-headedness

"
(see next paragraph).

Since a force is a vector quantity,* it can be represented in part by a

vector (a straight line of definite length and direction), the length of the

vector representing the magnitude of the force according to some scale,

and the direction of the vector giving the direction of the force. Thus, if

the pressures of the driving wheels of the locomotive on the rails (Fig. i)

is 12 tons, then the vector Aa (0.4 inch long) represents the magnitude and

direction of the pressures, the scale being one inch
"
equals

"
30 tons. If

the force to be represented is a concentrated one, as in the illustration, then

the line of action also can be represented by the same vector which repre-

sents the force magnitude by drawing it through the point of application
of the force. Thus the vector Bb represents magnitude, line of action, and
direction of the pressure of the first driving wheel. We might extend this

scheme further so as to indicate also point of application of the force by
the head, say, of the vector as Cc\ but we will not plan to do that because
the point of application is not of importance in this subject,

— Statics.

* A vector quantity is one having magnitude and direction, as, for example, a definite

displacement of a moving point. A quantity having magnitude only, as the volume of a
thing for example, is a scalar quantity.
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Any number of forces collectively considered is called a system or a set

of forces. The forces of a set are called coplanar if their lines of action are

in the same plane, and noncoplanar if not in the same plane; they are

called concurrent if their lines of action intersect in a point, and noncon-

current when they do not so intersect; they are called parallel if their lines

of action are parallel, and nonparallel if the lines of action are not parallel.

Force-sets are also described in accordance with the foregoing definitions;

thus, a concurrent set, a noncoplanar parallel set, etc., according as the

forces of the set are concurrent, noncoplanar and parallel, etc. Force-

sets can be classified in various ways, as below for example,
—

f concurrent /colmear . . . . . i

Coplanar \
1 nonparaUel . . . . 2

[nonconcurrent{P-J^^^^^^^
3

concurrent 5

{parallel

6

nonparallel ^

Noncoplanar
| nonconcurrent /Parallel ....... 6

Two sets of forces acting on a rigid body are said to balance, when their

combined effect on the rest or on the motion of that body is nil, so that

if the body is at rest, for example, then it would remain at rest even if all

the forces ceased to act. Two sets of forces acting on a rigid body are said

to be equivalent if either set would balance the other set reversed (sense of

each force changed) ; or, what amounts to the same thing, if each set acting

singly would balance some other third set. The resultant of a set of forces

is the single force which is equivalent to the set; or," if no single force is

equivalent to the set, then the resultant is the simplest equivalent set. The

resultant of a set of forces acting on a rigid body consists always of a single

force or of two forces (proved later). Having given a set of forces, the process

of finding a simpler equivalent set is called composition of the given set. The

component of a given force is any one of a set which is equivalent to that

force. Having given a force, the process of finding a set equivalent to that

force is called resolution of the force.

The anti-resultant of a set of forces is the reversed resultant of the set. The

equilihrant of a set of forces is the single force, or pair of forces if necessary,

which could balance the set. Obviously the anti-resultant and the equilibrant

of a set are identical.
^

3. Parallelogram and Triangle of Forces

The parallelogram and the triangle of forces are names of certain methods

for determining {a) the resultant of two given concurrent forces, and

i]b) two concurrent components of a given force.

§ I. Composition of Two Concurrent Forces.—Parallelogram Law.—
If two forces acting upon a rigid body be represented by lines OA and OB,
then their resultant is represented by the diagonal OC of the parallelogram
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OABC. For example, take the two forces applied to the cap of the boom
of Fig. 3 at points i and 2, their value being 2 and 1.2 tons respectively,

let us suppose. Extending the lines of action to their intersection O
(Fig. 4), then making OA = 2 tons and OB = 1.2 tons according to some

convenient scale, and completing the parallelogram, we get OC, and ac-

cording to th^ law, this line represents the resultant completely; that is,

the magnitude of the resultant is OC = 2.2 tons, the line of action of

the resultant is colinear with OCj and the sense of the resultant is from

O to C.

The law can be verified by means of the apparatus shown in Fig. 5. It

consists of a drawing board mounted in a vertical position, two pulleys, a

spring balance, two weights, some cord, and a small ring. When the

weights Wi and W2 are suspended somewhat as shown, then the ring is

Fig. 4 Fig. 5 Fig. 6

subjected to three forces : pull Pi = PTi, pull P2 = ^2, and an upward

pull P3, the magnitude of which is indicated by the spring balance. Since

Pz is the equilibrant of Pi and P2, the resultant of Pi and P2 is equal and

opposite to and colinear with P3. It remains now to ascertain whether a

construction for the resultant of Pi and P2 according to the parallelogram

law will represent a force equal and opposite to and colinear with Pz. So

we lay off OA and OB on the board, just under the strings, equal to Pi

and P2, and complete the parallelogram OABC\ then measure OC and com-

pare its direction with P3. We find that OC equals P3 (by scale), and is

colinear with P3.

To test the law for forces having different points of application, the

apparatus shown in Fig. 6 might be used; it consists of a tub of water,

a floating drawing board, three smoothly running pulleys, three weights

(TFi, W2, and W^j and three cords. Nails are driven into the drawing
board at any points iVi, iV2, and Nz\ the weights are then suspended by
cords passing over the pulleys, and tied to the nails as shown; then if

each weight is less than the simi of the other two, the board, if not too

large, will move about and assume a position of rest without touching

the tub. In such position, the forces acting on the board are its weight

(or gravity), pressure of the water, and the three pulls (Pi, P2, and Pj)
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practically equal to TFi, W2, and W3 respectively. Obviously the first two

forces balance each other ;• therefore the three pulls also balance, and so

the resultant of Pi and P2 is equal and opposite to and colinear with P3.

We next determine the resultant R of Pi and P2 by the parallelogram law:

extend the lines of action of the pulls Pi and P2 to their intersection O;

from there lay off OA and OB equal (by some convenient scale) to Pi and

P2; complete the parallelogram OABC. Then OC represents P; on compari-

son it will be found, as before, that OC is equal and opposite to and colinear

with P3, and hence OC does represent the magnitude and line of action of

R. Since P3, and hence R, passes through (the intersection of Pi and

P2), this experiment emphasizes the fact that the line of action of the re-

sultant of two concurrent forces passes through their point of concurrence.

The point of application of R might of course be taken anywhere in OC or

its extension; for, so taken, R obviously would balance P3.*

The Triangle Law. — If two concurrent forces acting on a rigid body be

represented in magnitude and direction by ^^ and BC, then their resultant

is represented in magnitude and direction by the side ^C of the triangle

*
By using accurate apparatus the foregoing tests for verifying the parallelogram law

can be made very accurately. Such verifications are as satisfying to many students as
"
mathematical proof." What about such proof? Some writers assert that the law is

fundamental, and not susceptible of deduction from anything more simple and obvious

than the law itself. But many deductions or proofs have been proposed. All necessarily

depend upon one or more axioms or statements whose truth is justified by experience. We
give a proof based upon a principle of moments (Art. 5) which most students readily

grant as axiomatic or justified by their experience. The principle is that the moment of

the resultant of two concurrent forces about any point in

their plane equals the algebraic sum of the moments of the
^^--~^

two forces about the same point. Let P and Q denote the / ""^>-.. y
two concurrent forces and R their resultant. Suppose that

P and Q act in OA and OB respectively (Fig. 7)
— the

body upon which they act is not represented
— and let the

lengths OA and OB represent the magnitudes of the forces ^
P and Q to some scale, that is OA -^ OB = P -i- Q. OABC /
is a parallelogram, and CD, CE, BF, and BG respectively /
are perpendicular to OA,OB, OA, and OC. Now the mo- /£_
ments of P and Q about O equal zero; it follows from the ^0 P' A D

principle of moments that the moment of R about O equals Yig. 7
zero also, and hence the line of action of R passes through
0. Now the area of the parallelogram is OA X CD; also OB X CE. Hence, OA -j- OB
= CE-T- CD; and P -T- Q = CE ^ CD, or P X CD = Q X CE; that is, the moments
of P and Q about C are equal. But these two moments are opposite in sign, and so their

algebraic sum equals zero. It follows from the principle of moments that the moment
of R about C equals zero, and hence the line of action of R passes through C. The moments
of P, Q, and R about B are respectively, P X BF, o, and R X BG; then, according to the

principle of moments, R X BG = P X BF, or R ^ P = BF -i- BG. The area of the paral-

lelogram is OC X BG; also OA X BF. Hence, OC -i- OA = BF -t- BG; and from the last

proportions R -7- P = OC-r-OA; that is, OC represents i? according to the same scale that

OA represents P.
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ABC. For example, let two forces of 2 and 1.2 tons be applied at i and 2

(Fig. 8) as shown, li AB and BC be drawn anywhere in the directions

of these forces, and AB and BC be made equal to the forces respectively,

then AC gives the magnitude and the direction of the

resultant; the line of action of the resultant is ac,
—

par-
allel to ^C 2in^ concurrent with the given forces.

The resultant of two concurrent forces can be deter-

mined without a scale drawing of a triangle or parallelo-

gram. We sketch the triangle of forces roughly, and then

solve the triangle for the length and direction of the side

representing the resultant. For example, let the forces P
and Q (Fig. 9)

*
equal 100 and 150 pounds respectively,

and the angle <^ between them be 60 degrees; required,

their resultant R. Roughly, ABC is the triangle for the

forces, AC representing the magnitude and direction of

R, and the angle ABC = 180° - 60° = 120°. Then from

the trigonometry of the triangle, R^ = loo^ + 150^
— 2 X 100 X 150 cos 120°

=
47,500, or R =

218.3; ^Iso sin CAB/sin 120° = 150/i?, or CAB (the angle a

between R and i')
=

36° 35'. Employing the

foregoing method, the following general form-

ulas may be worked out for determining the

magnitude and direction of the resultant,
—

R^

Fig. 8

P2 + Q2 _|. 2 PQ cos 0;

sin a = sin • Q/R, and sin /3
= sin <^ P/R,

where 0, a, and ^ are the angles marked in Fig. 9. When the two forces

P and Q are at right angles to each other (0 = 90 degrees), then

R^ = P^ + Q\ and tan a = Q/P.

§ 2. Resolution of a Force into Concurrent Components can be

accomplished by applying the triangle or parallelogram law inversely. Thus,

let it be required to resolve the force F (Fig. 10) into two components. We
draw AB anywhere equal (by some scale) and parallel to F; join any point C
with A and 5, and draw lines through any point in ab parallel to ^C and

BC; then AC and CB represent the magnitudes and directions, ac and cb

the lines of action of two forces equivalent to F, that is, components of F.

For the resultant of these two component forces is F, as shown by the tri-

* For convenience and clearness of figure, a subdivided square (or rectangle) will herein-

after represent a machine, or structure (derrick-boom, bridge, etc.), on which the forces

under discussion act. If he prefers, the student might regard the subdivided square as

representing a drawing board or some other definite object suggested by the square. It

is important that he should have in mind the fact that forces act only on material things

(bodies), and that the lines of action of the forces represented in any given figure are

definitely related to the body on which the forces act.
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angle law applied directly. Since C was taken at random, it is plain that a

given force can be resolved into many different pairs of components.

If conditions be imposed on the components, the resolution is more or

less definite. Thus, let it be required to resolve F (Fig. ii), equal to 350

pounds, into two components, one of which must act along the left-hand edge

of the board and the other through the lower right-hand corner. Since the

three forces must be concurrent, the second component must act through

point i; so we make AB equal and parallel to F and draw from A and B
lines parallel to the two components; then AC and CB represent the values

(200 and 320 pounds respectively) and the directions of the components.

An important case of resolution is that in which the components are at

right angles to each other. Each is called a rectangular component or re-

solved part of the force. Rectangular components can generally be com-

puted more easily than by geometrical construction. Let F (Fig. 12) be

the given force to be resolved into horizontal and vertical components, the

d.
^-^\/ i a

.b

c
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the forces of the given set; then find the resultant R" of any other given
force and R'\ then the resultant of another given force and R"\ and so on

until the resultant of all is found. Thus, suppose that the resultant of Fi,

F2, Fsy and F4 (Fig. 13) is required: Taking the given forces in the order

in which they are numbered, say, we first draw AB parallel to Fi and equal
to Fi by some convenient scale, then BC in the direction of and equal to

F2; then AC gives the magnitude and direction of R', the line of action of

R' passing through parallel to^^C. Next we draw CD in the direction of

Fig. 13

F3 and equal to F3; then AD gives the magnitude and direction of i?", the

line of action of R" passing through O parallel to AD. Next we draw DE
in the direction of and equal to F^; then AE gives the magnitude and

direction of R''\ the line action of i?'" passing through O parallel to AE,
Of course the lines AC, AD, R', and R" are not really essential to the solu-

tion; they were drawn here and referred to only for explanatory purposes.

The force polygon for a set of forces is the figure formed by drawing in

succession and continuously lines which represent the magnitudes and

directions of those forces. A force polygon is not necessarily a closed

Fig. 14

figure; thus ABCDE, not including EA, is a force polygon for Fi, F2, F3, and

F4. Many force polygons can be drawn for a given set of forces, as many
as there are orders of taking the forces; if there are n forces in the set, then

I • 2 •
3

• • • • « different force polygons can be drawn. In Fig. 14 ad-

ditional polygons ABCDE are shown for Fi, Fz, F3, and F4 of Fig. 13; the

lines AE represent the magnitude and direction of R. The bare con-

struction for determining the resultant of a set of concurrent forces can now

be stated thus: Draw a polygon for the forces; join the beginning and the

end of the polygon, and draw a line through the point of concurrence of

the given forces parallel to the joining line; the joining line, with arrow-

head pointing from the beginning to end of the force polygon, represents
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the magnitude and direction of the resultant, and the other line its line of

action.

Algebraic Method.— Choose a pair of rectangular axes of resolution, which

let us call X and y axes, with origin at the point of concurrence of the forces

to be compounded; then resolve each force into its x and y components

at the origin, and imagine it replaced by them; the resulting system consists

of forces in the a; and in the ysixes; next find the resultant of the forces act-

ing in the x axis, and the resultant of those acting in the y axis; finally, get

the resultant of these two rectangular resultants; this is the resultant sought.

For example, let it be required to determine the resultant of the six forces

acting upon the 4 foot board shown in Fig. 15. The

computations in outline are scheduled below. The

values of the angles which the several forces make
with the horizontal were computed from dimensions in

the figure; the sum of the x components is + 340,
and that of the y components is —7.22 pounds. The

signs of the sums indicate respectively that the x com-

ponent of the resultant R acts toward the right and

the y component downward; hence the resultant acts

to the right and downward. The angle which R makes with the horizontal

is tan~^ (7.22 -^ 3.40
=

2.123)
= 64° 47'. The value of the resultant is

R = VsA^^ + 7-222
= ygg pounds.

F
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and OB, and OD represents the resultant of OC and the third force 0C\ and

(hence, also) the resultant of the three given forces. This law leads to a

simple algebraic method for finding the resultant when the three forces are

rectangular (at right angles to each other). Thus, let Fi, F2, and Fz (Fig. 17)

be the three forces, R their resultant, and ^1, O2, and 6z the angles between R
and the forces respectively; then

cos di
= Fi/R, cos $2

= F2/R, cos dz
= Fz/R.

For the resultant of Fi and F2 (represented by OC, Fig. 17) equals

(i^i^+ Fg^)^, and hence R^ = {Fi^ + F2') + Fz^; also the triangles ODA,
ODBj and ODC are right-angled at A, B, and C respectively, and hence

cos(9i = 0^/Oi) = Fi/R, cos(92 = 05/OZ) = F2/R, etc.

(2) A force can be resolved into three noncoplanar concurrent forces by

applying the parallelopiped law inversely. Thus, let OD (Fig. 18) represent

the given force F; first, construct any parallelopiped of which OD is a

A
,
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it into two components F cos a (along the x axis) and F sin a (in the plane of

the y and 2 axes), and then resolve F sin a into components along the y
and z axes, that is, F sin a sin </> and F sin a cos <^.

^w}/ number of noncoplanar concurrent forces can be compounded

graphically by means of their force polygon, but this method is not practi-

cable generally, because the polygon is not a plane one; however, it could

be drawn in
"
plan and elevation

"
so as to furnish the resultant sought.

The algebraic method is preferable; it is carried out as follows: First,

select three rectangular axes of resolution (here called x, y, and z), with

origin at the point of concurrence of the forces to be compounded; next

resolve each force into its x, y, and z components, and imagine it replaced

by them, thus arriving at a set consisting of forces acting in the axes
;
then

find the resultants of the forces in the x, in the y, and in the z axis; finally,

compound these three resultants, thus finding the resultant sought.

For example, let it be required to determine the resultant of the four

forces acting on a 4 foot cube (Fig. 20). The forces are concurrent at O;

the 10 and the 15 pound forces act through quarter

points of certain edges as shown. The x, y, and z

components of the 18 and 40 poimd forces are ob-

viously as scheduled adjoining. Since the 15 pound
force is perpendicular to the x axis, its x component

equals zero; and since the angle which that force

makes with the z axis = tan~^ f = 36° 52', its y
and z components are 15 sin 36° 52'

=
9, and 15

cos 36° 52'
= 12 pounds respectively as scheduled.

The components of the 10 pound force were de-

termined as follows: Since Fa =
5 and YO = 4 feet, the angle which the

/
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The signs of the sums of the x, y, and z components show that the result-

ant R acts toward the right, downwards and forward. Its angles with the

X, y, and z axes are respectively: cos~^ (i3-3i "^ 29.7)
=

63°; cos~^ (i5«25 -^

29-7)
=

59°; cos-1 (21.75 -^ 29.7)
=

43°.

5. Moment of a Force; Couples*

§ i# The Moment or Torque of a force with respect to a point is the

product of the magnitude of the force and the perpendicular distance be-

tween its line of action and the point. The perpendicular distance is called

the arm of the force with respect to that point, and the point is called an

origin or center of moments. Experience suggests the notion that the

moment of a force with respect to a point is a measure of the tendency of

the force to rotate the body about a line through the point and perpen-

dicular to the plane of the force and the point. Such a notion can be

verified quite accurately by means of a simple apparatus represented in

Fig. 21. It consists of a board mounted on a horizontal shaft, a heavy body,

and the pail which can be suspended [from the

board; the shaft rests in ball bearings so that

practically no resistance to turning is exerted

at the shaft; the board, without the body and

the pail, is well balanced so that gravity would

not cause it to turn from any position. Now,
let the pail containing shot be hung from B, C, Z>,

etc., in succession, the amount of shot being

taken so that the heavy body will be supported, OA not being horizontal

necessarily. Then in each case the turning effect of the pull a,t B, C, or

D equals the turning effect of the pull at A
;
hence the turning effects of

the pulls at Bj C, D, etc., are equal. And if the moments of these pulls

(several weights of pail and shot) about O be computed, then those mo-

ments will be found equal too, and therefore moments are measures of turn-

ing effects.

It follows from the definition of moment that the unit moment is that of

a unit force whose arm is a unit length. There are no one-word names for

any of these units of moment; the units are called foot-pound, inch-ton, etc.,

according as the unit length and force are the foot and the pound, the inch

and the ton, etc.

In a discussion involving the moments of several forces, it is generally

convenient to give signs to the moments to indicate the directions (clock-

wise or anticlockwise) in which the several forces turn or tend to turn

the body to which they are applied about the origin in question. In this

book, clockwise rotation is regarded as negative and anti as positive, and

rotations are supposed to be viewed from the reader's side of the printed page;
* See Art. 8 also.
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thus the moment of the 200 pound force (Fig. 22) about O is positive and

about A negative.

Principles of Moments, — If two sets of coplanar ^r^^^^^^^'
forces are equivalent (Art. 2), then the moment-sum*

for one set with respect to any point equals that for

the other with respect to the same point. This will

be granted as self-evident by most students; others

may be convinced by this: Let Si and 6*2 denote the

two equivalent sets, and S3 a third set (coplanar with ^200 lbs.
^

Si and S2) which could balance ^i, and hence also 6*2. yig. 22

Since 6*1 and S3 would balance, they together would not

turn the body on which they act about any line; hence the moment-sums for

Si and S3 with respect to any point O in the plane are equal in value but

opposite in sign. Likewise, the moment-sums for 6*2 and S3 with respect to O
are equal in value but opposite in sign. Therefore the moment-sums for Si and

^2 with respect to O, being equal to the same thing, are equal. It follows from

the foregoing principle that the moment-sum for any set of coplanar forces

with respect to any point in their plane equals the moment of their resultant

with respect to that point. Also, the moment of a force with respect to a

point equals the moment-sum of its components with respect to the same

point, the components to be coplanar with the given force and the point.

When the moment of a force about a certain point must be computed,
and the arm of the force with respect to that point cannot be easily de-

termined, then the desired moment can be computed, more easily perhaps,
from components of the force, by aid of the preceding

'

principle. Thus,
let it be required to compute the moment of the 100 pound force (Fig.

22) about O. The horizontal and vertical components of the force are

respectively, 86.6 and 50 pounds; imagining them applied at A makes

their arms 3 and 4 feet respectively, hence the desired moment equals
—

(86.6 X 3)
—

(50 X 4)
= —

459.8 foot-pounds. Sometimes the components
can be applied (in imagination) so that one passes through the origin of

moments; then its moment equals zero and the desired moment equals the

moment of the other component. Thus the horizontal and vertical compo-
nents of the 200 pound force equal 89.4 and 178.8 pounds respectively;

imagining them applied at C, their arms are o and 3 feet, and so the desired

moment equals 178.8 X 3
=

536.4 foot-pounds.f

* " Moment-sum " means the algebraic sum of the moments of the forces of a system;

torque of a set of forces means the same thing.

t Some writers regard the parallelogram law (for forces) as fundamental, and deduce

the principle of moments from the law. We give such a deduction of the principle for two

forces,
—

namely, the moment of the resultant of two concurrent forces about any point in

their plane equals the algebraic sum of the moments of the forces about the same point

(Varignon's theorem). The theorem can be extended easily to any number of coplanar

forces, thus proving the principle.

Let P and Q (Fig. 24) be two concurrent forces acting
— on a body not shown— in
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AB represents the resultant of Qi reversed and Pi, and the diagonal

BA represents the resultant -of Q2 reversed and P2. Since the resultants are

equal, opposite, and colinear they balance, and so the P couple and the

reversed Q couple balance. Hence, etc. (2) When Pi, P2, Qi and Q2 are

parallel, and the moments of the two couples are equal, then each couple is

equivalent to some third couple, the forces of which intersect Pi, P2, Qi,

and Q2, according to (i). Therefore they are equivalent to each other.

§ 3. A Force and a Couple.— The resultant of a coplaner force and couple

is a single force; the resultant is equal and parallel to the force, and its moment

about any point on the given force equals the moment of the^couple. Proof

follows:

Let F (Fig. 26) be the given force, and P1P2 the given couple. (If the

forces of the given couple are parallel to P, then imagine the couple shifted

^JV

Fig. 25 Fig. 26

until they are not so parallel.) Now suppose that AB and BC represent
the magnitudes and directions of Pi and F respectively; then AC repre-

sents the magnitude and direction of the resultant of those two forces,

(The line of action of the resultant is P', parallel to ^C and through the in-

tersection of Pi and P.) Let CD equal AB; then AD represents the magni-
tude and direction of the resultant of P' and P2, and hence of the three

forces Pi, P, and P2. But ^Z) is equal and parallel to BC; hence this final

resultant is equal and parallel to P. (The line of action of this final resultant

is P, parallel to BC and through the intersection of R' and P2.) Since R is

equivalent to P, Pi, and P2, its moment about any point of P equals the sum
of the moments of P, Pi, and P2 about that point; but P has no moment
about such point, and hence the moment of R equals the sum of the moments
of Pi and P2 (the moment of the couple).

It follows from the foregoing that a force R can be resolved into a force equal

and parallel to R, and a couple whose moment equals that of R about any point

on the component force. Thus the moment of the couple component depends
on the line of action chosen for the force component. Independent proof
of this proposition follows:
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Fig. 27

Let R (Fig. 27) be"the force to be resolved, and O a point through which

the line of action of the force component is to pass. First we resolve R
into two concurrent components, one of which

passes through O; take any point on R (as a)

for the point of concurrence and any direction

(as ab) for the line of action of the second com-

ponent. These components we call Ci and C2

respectively. To determine Ci and C2, we draw

^^ to represent R, and AC and BC parallel

to Ci and C2 respectively; then AC =
Ci, and

CB = C2. Next we resolve Ci at O into two

components parallel to C2 and R^ which com-

ponents we call C3 and C4 respectively. To
determine Cz and C4, we draw from A a line

parallel to C3 and from C a line parallel to C4,

and so locate D; then AD =
C3, and DC = C4. Obviously now C2, C3 and

C4 are equivalent to Rj that is, they are components of R; and as required

C4 passes through O, and C2 and C3 (equal, parallel, and opposite) constitute

a couple. Moreover, according to the principle of moments, the moment of

R about any point on d equals that of

C2, C3, and Ci about that point; but the

moment of d equals zero, hence, etc.*

6. Graphical Coniposition of Coplanar
Nonconcurrent Forces

f "I. First Method.— When the forces

to be compounded are not parallel nor

nearly so, then we compound any two of

the forces, next their resultant and the

third force, that resultant and the fourth

force, and so on until the resultant of all

the forces has been found. For example,
consider the forces acting on the retaining wall shown in section in Fig. 28;

*
(i) Composition of a Force and a Couple and (2) Resolution of a Force into a Force and

a Couple can be performed also as follows (student should supply figure): (i) Replace the

couple by an equivalent couple whose forces equal the given force, and place the couple so

that one of its forces is colinear with and opposite to the given force. These two forces

balance; the other force of the new couple remains, and it is the Resultant sought. (Study
of the steps in the process shows that the resultant force is equal and parallel to the original

force, and that the moment of the resultant about a point on the line of action of the original

. force equals the moment of the couple.) (2) Apply two forces at the given point equal and

parallel to the given force and opposite to each other. These two forces along with the

given force can be grouped into a force and a couple, and they (the force and couple) are

the components sought. (Study of the steps of the process shows that the component
force is equal and parallel to the given force, and the moment of the couple equals that of

the given force about the given point.)

Fig. 28
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they consist of its own weight (16,000 pounds per foot of length), the earth

pressure on the back (6000 pounds), that on the top of the base (9000 pounds),

and that on the bottom of the base. The resultant of the first three forces

will now be determined. We draw AB and BC to represent the 6000 and

the 16,000 pound forces, and then join A and C; AC represents the magni-
tude and direction of the resultant of the two forces, and the line marked

R' (parallel to AC and through point i) is the line of action of that resultant.

We next draw CD to represent the 9000 pound force, and join A and D;
AD represents the magnitude and direction of the resultant of R' and 9000

(and hence also of the three given forces), and the line marked R (through

point 2 and parallel to AD) is the line of action of that resultant.

It may be noted that the magnitude and the direction of the resultant is

found just as for concurrent forces (Art. 4). For nonconcurrent forces it

is necessary to draw the lines of action of the intermediate resultants

(R-f R"j etc.), in order to find the line of action of the final resultant, lines

which are unnecessary when compounding concurrent forces.

When the forces are parallel or nearly so, the foregoing method fails

because there is no accessible intersection of the lines of action of two

given forces through which to draw the line of action of the first resultant.

This difl&culty can be met as follows: Introduce into the given system
two equal, opposite, and colinear forces, which will not change the resultant,

taking their common line of action somewhat across those of the given

forces; then use the first method, compounding first any pair of forces

whose intersection is accessible, etc.

§ 2. Second Method, applicable to any coplanar forces. — We first re-

solve each force into two concurrent components, resolving in such a way

Fig. 29

that these components, excepting one of the first force and one of the last

force, balance or destroy each other; these two remaining components

are, in general, concurrent, and so we readily find their resultant, which is

also tlje resultant of the given forces. For example, let F^ /^2, ^s, and F^

(Fig. 29) be the forces to be compounded. First we draw a force polygon
for the given forces, taking them in any convenient order, as ABCDE;
then we take any convenient point O as the common vertex of the trii

angles of resolution. AO and OB represent two components of Fi in mag-
nitude and direction, BO and OC two components of /^2, etc.; thus this
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resolution gives several pairs of equal and opposite components, OB and

BO, OC and CO, OD and DO. The components of Fi are taken to act

through point i, those of .F2 through 2, those of F3 through 3, etc., the

first point, i, being taken at pleasure on Fi, point 2 where ob intersects F2,

point 3 where oc intersects F^, etc. Thus the components OB and BO are

colinear and^hey balance; likewise OC and CO, and OD and DO. Only the

first and last components AO and OE remain; their resultant is represented

by ^^ in magnitude and direction, and its line of action is ae (parallel to

AE through the intersection of ao and oe).

The common vertex of the triangles of resolution O (Fig. 29) is the pole

of the force polygon; the lines from the pole to the vertexes of the force

polygon, OA, OB, OC, etc., are rays', the line of action of the several forces,

oa, ob, OC, etc., are strings which, considered collectively, is the string or

funicular polygon (also called equilibrium polygon, especially when the given
forces are balanced or in equilibrium). The rays are sometimes referred

to by number, OA being the first, OB the second, etc.
;
likewise the strings.

In using this second method, the beginner had best reason out the vari-

ous steps of the construction somewhat as in the foregoing. After some

practice he might use the following aids: (i) The two strings intersecting

on the line of action of any force are parallel to the rays drawn to the ends

of that side of the force polygon corresponding to that force, thus the strings

intersecting on be are ob and oc. (2) The string which joins points in the

lines of action of any two forces is parallel to the ray which is drawn to

the common point of the two sides of the force polygon corresponding to

those forces, or, the string joining points on be and cd is parallel to OC.

(3) The bare construction in the second method is simply this: Draw a

force and a string polygon for the forces, then draw a line from the begin-

ning to the end of the force polygon and a parallel line through the inter-

section of the first and last strings; the first line represents the magnitude
and direction of the resultant (sense being from the beginning to the end of

the force polygon), and the second line is the line of action of the resultant.

This second method is not so simple in principle as the first, but in the

second there is more opportunity for varying the construction to keep
the drawing within convenient limits; thus the pole may be shifted, and the

starting point of the string polygon may be taken an3rwhere on any of the

given forces. Though many string polygons may be drawn for a given set

of forces, all determine the same line of action of the resultant; that is, the

intersections of the first and last strings of all string polygons lie on one

straight line, the line of action of the resultant.

§ 3. When the Force Polygon Closes.— It may seem, at first thought,

that the resultant vanishes, or is zero; in general, this conclusion would

be wrong, the system actually reducing to a couple. Thus, let F\, Fi, Fz,

and F4 (Fig. 30) be a force-set whose force polygon ABODE closes; using

the first method for compounding, we find that the resultant R" of the
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first three forces is given by AD in magnitude and in direction, and ad

is its line of action; hence R^' is equal, opposite, and parallel to F4, and so

the given force-set reduces to a couple "(i?'', F4). The arm of this couple is

the perpendicular distance between F^ and i?", and so the moment of the

couple is the product of F4 (or R^') and the arm (according to the scale

of the space diagram); the sense of the couple, clockwise, is apparent from

the relative positions and directions of the forces of the couple as seen in

the space diagram. In Fig. 31 the composition has been made by the

second method; the system reduces to the two components AO (acting in

ao) and OE (acting in oe). These components are equal, opposite, and

parallel, and so the given force-set reduces to a couple. The arm of the

couple is the perpendicular distance between the first and last strings, ao

and oe; the moment of the couple is the product of OA or EO (according

Fig. 30 Fig. 31

to the scale of the force diagram) and the arm (according to the scale of

the space diagram) ;
the sense is apparent from the space diagram.

The length of the arm and the magnitude of the forces of the couple

depend on the order in which the forces are taken in the force polygon, in

the first method; and upon the position chosen for the pole O, in the second

method. But the moment of the couple is independent of all these vari-

ations. This fact may be verified by actually compounding a certain force-

set (whose force polygon closes) in several ways, making all these different

variations and thus arriving at different couples. The couples are all

equivalent to the same force-set and so equivalent to each other, and

hence their moments are equal (Art. 5).

7. Algebraic Composition of Coplanar Nonconcurrent Forces

§ I. Parallel Forces.—If the forces be given sign, those in either direc-

tion being called positive and those in the other negative, then the alge-

braic sum of the forces gives the magnitude and sense of the resultant, the

sign of the sum indicating the sense of the resultant. According to the

principle of moments (Art. 5), the moment of the resultant about any point

equals the algebraic sum of the moments of the forces about that point, and
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,20 lbs.

Y40lbs.

Fig. 32

30 lbs.

4'50.1bs.

this requirement fixes the position or line of action of the resultant. Fo

example, let us find the resultant of the four forces acting on a 10 foo

board, as shown in Fig. 32. Calling upward forces positive, their alge
braic sum is + 20 — 40 — 50 + 30 =—40; hence the resultant equals 4
pounds and acts downward. The algebraic sum of the moments of th

-1 forces about the left end of th

board, say, is o — 120 — 350 + 270 =

— 200 foot-pounds, and hence th

moment of the resultant also is — 2o<

foot-pounds; this fixes the arm of th

resultant, 200 -^ 40, or 5 feet. Sine

the resultant acts downwards and its moment about the origin is negative

its line of action must be to the right of the origin, 5 feet.

To find the resultant of two parallel forces (a common problem), w
may of course use the general method just explained, but the foUowinj

special results are worth noting. We distinguish two cases: (i) the tw(

forces are alike in sense; (2) they are opposite. In (i) the resultant equal
the sum of the forces and agrees with them in sense; in (2) the resultan

equals the difference between the two

forces and agrees with the larger in

sense. In order that the moment of

the resultant R may equal the sum of

the moments of the forces, F and Q
(Fig. 33), then, in case (i), i? must lie

between the forces, and in case (2) out-

side of them and adjacent to the larger force (assumed to be F in the figure)

Furthermore, if the distances from R to F and Q be called p and q respec

tively, and that between F and Q be a, then in either case, Rp = Qa am

Rg = Fa, or p = Qa/R and '^
= Fa/R

either of which definitely fixes the position of R. Also for either case, Pj
= Qq or F/Q =

q/p; hence

F/Q = BC/AC,

that is, the line of action the resultant of two parallel forces divides any secan

intersecting their lines of action into two segments which are inversely pro

portional to the two forces.

If the algebraic sum of a set of parallel forces equals zero, then it ma]

appear to the student that their resultant vanishes or is zero; this doei

not follow, but the resultant actually is in general a couple. For the re

sultant of all but one of the given forces is a single force equal, opposite

and parallel to the omitted one; but these two are not in general colinear

and so they constitute a couple, the resultant of the system. The couph
arrived at depends on which one of the given forces is omitted, but th<

moment of the couple does not, for that couple is the resultant of the set

hP-H
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horizontal is tan-^ (7.22 -7- 3.40), or 64° 47'. The sum of the moments is

—
14.14 foot-pounds; and, since the moment of R also equals —14.14, R lies

on the right-hand side of the origin of moments (the moment being negative),

and its arm is 14.14 -^ 7.98
=

1.77 feet. Thus, R has been completely
determined.

I
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Fig. 37

about any point equals the sum of the moments of the couples; hence any

couple whose moment equals the sum of the moments of the given couples

may be regarded as the resultant.

8. Moment of a Force
; Couples

*

§ I. MoAiENT ABOUT A LiNE.— Art. 5 relates to moments of forces and

to couples with special reference to coplanar forces and couples. In some

discussions on noncoplanar forces it is convenient to make use of the moment

or torgue of a force with respect to a line; this is defined as the product

of the component of the force perpendicular to the

line— the other component being parallel to it—
and the distance from the line to the perpendicu-

lar component, or to the force (the distances being

equal). For example, let F (Fig. 37), acting on a

body not shown, be the force, and LL' the line, or

axis of moments as it is called. MN is any plane

perpendicular to the axis, represented to make the

figure plain. OACB is a parallelogram with OC

(representing F) as diagonal, and sides perpendicu-

lar and parallel to LL'] then OA and OB represent

the perpendicular and parallel components (Fi and F2) referred to; and the

moment of F about LL' is the product of Fi and PL.

The moment of a force with respect to a line is a measure of the tendency
of the force to turn the body to which the force is applied about that line.

Thus, when the force is parallel to the line the moment is zero, and obvi-

ously the force has no tendency to turn the body about the line. Again,

when the force is perpendicular to the line the moment of the force about

the line equals the product of the force and the perpendicular distance

from the line to the force, and it is shown in Art. 5 that this product meas-

ures the tendency of the force to turn the body about the line. Finally,

when the force F is not parallel nor perpendicular to the axis of moments

(Fig. 37), then Fi and F2 together are equivalent to F, and their combined

turning effect equals that of F. But F2 has no turning effect; therefore

that of Fi and that of F are equal. But it was explained that Fi X LP
(the moment of Fi) measures the turning effect of Fi, and so it also measures

the turning effect of F.

In a discussion involving moments of several forces about a line, it is

generally convenient to give signs to the moments to indicate the directions

(clockwise or counter) in which the several forces would turn the body
about the line if it were free to rotate about that line. Whether a given

rotation is clockwise or counter depends on the point of view; in a par-

ticular discussion a point of view should be assumed on the line or axis' of

moments and outside of the body, so that all rotations would be seen look-

ing in the same direction. When the axis of moments is also an axis of

* See Art. 5 also.
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coordinates, then it is customary to view rotations about that axis from

the positive end of the coordinate axis, looking in the negative direction.

Principle of Moments. — If two sets of forces are equivalent (Art. 2),

then the moment-sum for one set with respect to any line equals the mo-

ment-sum for the other set with respect to the same line. This will be

granted as self-evident by most students; others may consider this: Let

Si and S2 denote the two equivalent sets of forces, and Sz a third set which

would b3,lance S\ and hence also 52. Since S\ and Sz would balance, they

would not turn the body on which they act about any line; hence the

moment-sums for Si and ^3 with respect to any line are equal in value but

opposite in sign. Likewise, the moment-sums for S2 and S3 with respect

to that same line are equal in value and opposite in sign. The moment-

sums for Si and S2 being equal to the same thing, are therefore equal.

It follows from the preceding that the moment-sum for any set of forces

with respect to a given line equals the moment of the resultant of those

forces with respect to the same line. Also, the moment of a force about any
line equals the moment-sum of its components with respect to the same

line. This last principle suggests a second method for computing the

moment of a force with respect to a line, more simple than the first method

in some cases: Resolve the force into three rectangular components, one of

which is parallel to the axis of moments; compute the moment of each of

the other two components about the axis, and add the moments alge-

braically; this sum equals the moment of the given force. For an example,

we compute the moment of a 100 pound force which acts upon a 4 foot

cube as shown in Fig. 38, with respect to those

edges marked X, F, and Z. The x, y, and z com-

ponents of the force are 37.2, 74.2, and 55.7 pounds

respectively (see Art. 4); these components must

be concurrent with the given force. Taking A as

the point of concurrence, the moments are com-—
^y'^ puted as follows: —74.2 X 4 + 55-7 X 4 =" —

74;

^^^ -37-2 X4- 55-7 X 2 = -260; and 37.2X4 +
74.2 X 2 = 297 foot-pounds. With point of con-

currence taken at B or at any other point in ABj
the same result would be obtained for the moment.

§ 2. Couples (see also Art. 5).
— Two couples whose planes are parallel

and whose moments, or torques^ and senses are the same are equivalent.

Proof of this proposition for coplanar couples is given in Art. 5; proof for

noncoplanar couples follows. Let Pi and P2 (Fig. 39) be the forces of one

couple, Qi and Q2 (not shown) the forces of the other, and p and q the arms

of the couples respectively; then by supposition Pp = Qq. According to

Art. 5, the Q couple can be replaced by a couple in its own plane provided

that the moment and sense of the new couple equals that of the Q couple.

Let Si and ^2 be the forces of that replacing couple, Si and ^2 being chosen

100 \bs

37.2
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Fig. 39

parallel and equal to Pi and P2; then the arm ab of the S couple equals p,

and abed is a parallelogram.' We now show that the P couple would balance

the reversed S couple; it will follow that the F and 5 couples are equiva-

lent, and hence also the F and Q couples. The resultant R' of Fi and

—52 (S2 reversed) equals the resultant R" of P2

and —Si (Si reversed), and R^ and R'' are parallel

and opposite in sense. Moreover, R^ lies midway
between Pi and 6*2, and R'' lies midway between

P2 and 6*1; therefore each resultant acts through
the center of the parallelogram abed, and hence

they are colinear. The resultants therefore bal-

ance, and hence the four forces Pi, P2, —Si, —S2
do also. Therefore, etc.

The resultant of any number of eouples is a eouple. Proofs of this prop-

osition for the case of coplanar couples are given in Arts. 6 and 7. For

the case of noncoplanar parallel couples: The given couples can be re-

placed by equivalent ones respectively, all in some one plane; the result-

ant of these is a couple, and hence the resultant of the given ones is also a

couple. For the case of nonparallel couples: Imagine each of the two

couples to be replaced by an equivalent couple, and let the four forces of

the replacing couples be equal; furthermore, imagine the two new couples

so placed (in their respective planes) that a force of one couple will balance

a force of the other. See Fig. 40 (perspec-

tive), which shows the two replacing couples,

there marked P1P2 and P3P4; cc is the angle

between the planes of the couples. Since

P2 and P4 balance, Pi and P3, constituting a

couple, are equivalent to Pi, P2, P3 and P4

and hence to the two original couples.

The resultant of any coplanar or parallel

couples can be determined very simply; the

resultant is any couple parallel to the given

couples, its moment being equal to the alge-

fibraic sum of the moments of the given couples. The resultant of nonparallel

couples can be determined best from their vectors* by means of this proposi-

tion,
— The vector of the resultant of any number of eouples equals the sum

of the veetors of those eouples. Proof: Consider first two couples, say the

two whose resultant was found in the preceding paragraph. Let ABC (Fig.

41) be an end view of Fig. 40, looking along the line AA^; that is, ABC of

* The vector of a given couple is perpendicular to the plane of the couple (exact posi-

tion of vector immaterial) ; its length is equal to the moment of the couple according

to some scale understood; and its sense agrees with the sense (rotation) of the couple

according to some rule of agreement, as for example the following: Imagine the vector

to be a right-handed screw turning with the couple; then the arrowhead on the vector

point in the direction in which the screw advances.

Fig. 40



30 Chap, i

Fig. 41 is ABC of Fig. 40 in true proportions. Then AM (perpendicular to

AB), AN (perpendicular to AC), and AO (perpendicular to BC) are respec-

tively the vectors of the two given couples and their resultant, provided that

the lengths of the vectors are proportional to the moments of the couples F/i,

Ff2 and Ff; let the lengths be in that proportion. Vector ^O is the sum
of the vectors AM and AN, provided that OMAN is a parallelogram; we
now show 4:hat it is a parallelogram. Angle MAO =

jS; since in the tri-

angle MAO and ABC two sides are proportional each to each and the in-

cluded angles are equal, the triangles are similar; it follows that OM is

perpendicular to AC, or parallel to AN. From similar reasoning, it fol-

lows that ON is perpendicular to AB, or parallel to AM. Hence OMAN
is a parallelogram. Obviously, if .the proposition holds for two couples, it

holds for any number.

Composition of three couples whose planes are mutually at right angles
is an important special case. We take the three planes as coordinate

planes, and call the couples whose planes are perpendicular to the. x, y, and

z axes Cx, Cy, and Cg respectively, their vectors Vx, Vy and Vz, and the re-

sultant couple C and its vector v. Then v = {vj^ + Vy^ + Vz^)^; hence

Also, if
<f)i, <f)2, and 03 denote the direction angles of Vy then cos 0i = Vx/v,

cos<^ = Vy/Vf and cos 03 = "i^z/y, hence

cos 01 = Cx/Cf cos 02 = Cy/Cf cos 03 = Cz/C.

It follows from the preceding that a couple may be equivalent to two or

more couples, which are therefore components of that couple; also, to re-

solve a couple we have only to resolve its vector, the component vectors

being the vectors of the component couples. The resolution of a couple

into three components whose planes are mutually at right angles is an im-

portant special case. Let C be the couple to be resolved and v its vector,

and denote the direction angles of .the vector by a, j(3, and 7, the coordi-

nate planes having been taken to coincide with the planes of the desired

component couples. Let d, Cy, and Cg denote the component couples,

which are perpendicular to the x, y and z axes respectively, and Vx, Vy and

Vz the corresponding vectors. Then Vx = v cos a, Vy
= v cos j8, and 2^2

=
z> cos 7;

hence,

Cx = C cos a, Cy = C cos /?, G = C cos 7.

9. Noncoplanar Nonconcurrent Forces

§ I. Parallel Forces.— It is shown in Art. 7 that the resultant of any two

parallel forces is parallel to those forces, and that its magnitude and sense

are given by the algebraic sum of the forces, the sense being given by the

sign of the sum. It follows that the resultant of any number of parallel

forces, not coplanar necessarily, is parallel to the forces, and that its magni-
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tude and sense are given by the algebraic sum of the forces (all forces of the

same sense having one sign, and those of the opposite sense having the oppo-

site sign). The line of auction of the resultant may be fixed by means of the

arms of the resultant with respect to two rectangular axes, each perpendicu-

lar to the forces. Such arms can be computed readily from the principle

that the moment of the resultant about any axis equals the algebraic sum

of the moments of the forces about the same axis.

For an example, we find the resultant of four forces which referred to a

set of rectangular axes are described as follows: They are parallel to the

s-axis; their magnitudes are recorded in the first column of the schedule

F
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single couple (Art. 8). This force and couple respectively will be denoted

by R and C.

We now show in detail how to determine R and C. Let Fi, F2, F3, etc.

(Fig. 42, only Fi shown), be the forces of the given system acting on a

body not shown; O the point through which R is to pass; and OX, OY
and OZ any convenient axes of reference. Let Pi and ft, acting at O
(Fig. 42), be tqual and parallel to Fi; similarily, let P2 and ft (not shown)

act at O, and be equal and parallel to F^] etc. Then the force Pi and the

couple Fift (Fig. 43) are equivalent to Pi (Fig. 42) ;
the force P2 and the

couple p2ft are equivalent to P2; etc. Now the axial components of Pi,

Fig. 42 Fig. 43 Fig. 44

P2, P3, etc. (the concurrent forces), are respectively equal to the axial com-

ponents of Pi, P2, P3, etc. (the given forces); hence if 2Px, 2Py and 2P,

denote the algebraic sums of the x, y, and z components of the given forces^

then Rx = ^F^, Ry = ZP,,, and R^ = SP,; also

P2=(2P,)2+(2P,)2+(2P,)2.

And if ^1, ^2, and ^3 denote the direction angles of P, then

cos di = 1:FJR, cos 62 = -2Pv/P, cos ^3
= 2P,/P.

These formulas determine R. To determine C: Imagine it resolved into

three components whose planes are respectively perpendicular to the x,

y, and z axes (Art. 8), and denote the components and their moments by
Cxi Cy, and Cg (Fig. 44). Since the system P, Cx, Cy, and C« is equivalent to

the given system, their moments about any line are equal; hence Cx=2ifx,

Cy = ^My, and Cg = 21f«, where SMx, 2^^, and ^Mz denote the moment-

sums for the given system with respect to the x, y, and z axes respectively.

Also, according to Art. 8,

a = (XMxY + {^MyY + (SM,)^;

and if 01, 02 and 03 denote the direction angles of the vector representing

C, then

cos 01 = Sikfx/C, cos 02 = 2ilfv/C, cos 0, = Sil/./C.
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In general, R and C may be compounded into two noncoplanar forces.

For^ as explained in Art. 8, C may be shifted about without change of

effect if only the direction of its plane be unchanged; assume such shift

until one of the forces of C intersects R; then that force and R may be

compounded into a single force R'; there remain R' and the second force

of C, and obviously R' and that force are not coplanar. These two cannot

be compounded; they are the simplest set equivalent to the given system,

and therefore constitute the resultant of the given system. If the plane of

C happens to be parallel to R, then C and R can be compounded into a

single force, and the resultant of the given system is a single force. For

shifting C about until C and R become coplanar, then they may be com-

pounded readily into a single force (Art. 5).

In general, the system of forces has a torque about every line through 0.

There is one line which is of prime importance, the line about which the

torque is greatest. The torque of the forces about that line is called the or

resultant torque of the system (for the chosen point O). Since R has no

moment about a line through O, the torque of the system about any such line

equals the torque of C about that line. But the torque of C is greatest about

a line perpendicular to the plane of C; this is the important line mentioned.

The direction of this line is given by equations (4), and the resultant torque
of the system by equations (3) . The system of forces has no torque about a

line through O parallel to the plane of C, (perpendicular to the line or axis of

resultant torque) since R and C have no torque about such line.



CHAPTER II

FORCES IN EQUILIBRIUM

' 10. Principles of Equilibrium

§ I. TJeneral Conditions of Equilibrium.—It is convenient in some
discussions to distinguish forces as "externar' or ''internal," meaning by
external force one which is exerted on the body under discussion by some
other body, and by internal force one which is exerted on a part of the body
under discussion by another part. (The word body is used here in a broad
sense to denote any definite portion of matter, as a locomotive, a bridge, the
steam in a boiler, the water in a pond, etc.) For illustration, consider the

crude crane in Fig. 45. It consists of three

main members {AB, CD and DE), a pulley, a

winding drum and a hoisting chain; it is sup-

ported at A (ceiling) and at B (floor). The
external forces acting on the crane consist of

the weight of all the parts (exerted by the

earth), the pull down on the hook (exerted by
the load), the supporting force at A (exerted

by the ceiling), and the supporting force at B
(exerted by the floor). The members exert

forces upon each other where they come to-

gether, but these are internal forces with ref-

erence to the whole crane. With reference to

the crane post AB, the external forces are its weight, the supporting force at

A, that at B, the pressures on it at £, C, and the drum. All these are

exerted on the .post by something else, and so are properly called external

forces. Any two adjacent portions of the post, as the upper and lower

halves, exert forces on each other, and these forces are internal with refer-

ence to the post.

All the external forces acting on a body at rest constitute a balanced

system, and such system is said to be in equilibrium. Obviously, the re-

sultant of such a system is nil, and this fact is sometimes called the general

condition of equilibrium for any kind of a force system. The general con-

dition implies subordinate conditions; thus, for any system whatever,

(A) the algebraic sum of the {rectangular) components of all the forces along

any line equals zero, and

{B) the algebraic sum of the moments of all the forces about any line equals

zero.

y>/////////////////////////.

Fig. 45

34
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By means of (A) and (B) we can write many equations for any system in

equilibrium. Thus, for a coplanar concurrent system, (A) gives 2Fx =
o,

XFy =
o, XFu = o, etc., 'where x, y, u, etc., are axes of resolution; and

(B) gives l^Ma = o, l^Mb = o, HMc =
o, etc., where a, b, c, etc., are origins

of moments in the plane of the forces. Not all of such equilibrium equa-

tions are independent, however; that is, certain ones follow from the others.

Thus, if '^Fx = o for any coplanar concurrent system, then SF^ does

not necessarily equal zero, but if also l^Fy
=

o, then the resultant equals

zero, and it follows that SF„ = o. That is, XFx = o and 'EFy
= o are two

independent equations, but any third similar equation (as l^Fu = o) is not

independent of them. The independent equations or conditions of equi-

librium for any particular kind of force system are such as are necessary

and sufficient to insure a vanishing resultant. We will now deduce these

independent conditions of equilibrium for the various classes or kinds of

force systems.

(i) Colinear Forces. — There is one condition of equilibrium. It can be

stated in several forms; namely,

(i) XF = o or (2) XMa = o.

Form (i) states that the algebraic sum of the forces equals zero; (2) that

the algebraic sum of the moments of all the forces about any point (not on

their common line of action) equals zero. On the graphical basis, the condi-

tion of equilibrium is that the force polygon for the forces (degenerated into

a straight line in this case) is a closed one. For if XF =
o, or SM =

o, or

the force polygon closes, then there is no resultant.

(ii) Coplanar Concurrent Forces.—There are two independent algebraic con-

I

ditions of equilibrium. They can be expressed in three forms; namely,

(i) 1:Fx = ^Fy = o, (2) SF = Silfa = o, or (3) i:.Ma = ^Mb = o.

\
Form (i) states that the algebraic sums of the components of the forces

\ along two lines x and y (in the plane of the forces) equal zero; (2) that the

\ algebraic sum of the components of the forces along any line (as x), and the

I

algebraic sum of the moments of all the forces about any point, each equal

j-

zero (the' point a to be in the plane of the forces, and the line joining a and

i 0, their point of concurrence, to be inclined to the x axis); and (3) that

the algebraic siims of the moments of all the forces about two points (not

colinear with the point of concurrence of the forces) equal zero. For in

any case the resultant is zero, as will be seen from this: (i) According to

i Art. 4, the resultant of the system, if there is one, is a single force R, given

by 7? = V{1:FxY-{- (2Fy)2; and hence if 2F^ = o and 2Fy = o, R must

equal zero. (2) If 2Fa, = o, then the resultant, if there is one, must be

perpendicular to the x axis; and if l^Ma = o, then the moment of R about

a equals zero, which requires that R = o. (3) The resultant, if there is one,

must pass through the point of concurrence of the given forces; if I^Ma=o
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then R must pass through a also; if I^Mb = o, then R must equal zero, b

not being on Oa.

The graphical condition of equilibrium is that the force polygon for the

forces closes. For, if it does close, then there is no resultant.

(iii) Coplanar Nonconcurrent Parallel Forces.—There are two independent

algebraic conditions of equilibrium. They can be expressed in two forms;

namely,
(i) SF = Sikf = o or (2) Silfa = ^Mh = o

Form (i) states that the algebraic sum of the forces and the algebraic sum

of the moments of the forces about any point (in the plane of the forces) equal

zero; (2) that the algebraic sums of the moments of the forces about two

points equal zero, the line joining the origins not to be parallel to the forces.

For either set of conditions is necessary and sufficient to make the result-

ant zero, as may be shown thus: In Art. 7 it is shown that the resultant,

if there is one, is a single force or a couple. And (i), if 2F =
o, then the

resultant is not a force, and if 2ilf = o, then it is not a couple; and hence

there is no resultant. (2) If l^Ma = o, the resultant is not a couple but a

force, which passes through a; if also H^Mb = o, then the moment of the

resultant force about b must be zero, and that requires that the force equals

zero.

There are two graphical conditions of equilibrium, namely, a force and

a string polygon for the forces must close. For if a force polygon closes,

then the resultant, if there is one, is a couple; if a string polygon closes, then

the resultant is not a couple.

(iv) Coplanar Nonconcurrent Nonparallel Forces.— There are three inde-

pendent algebraic conditions of equilibrium. They can be stated in three

forms; namely,
(i) SF, = XFy = I^Ma = o;

(2) SFx = 2Ma =
Silfft

=
o;

and (3) Silfa = S^Tb = Sikfc = o.

Form (i) states that the algebraic sums of the components of all the forces

along two lines and the algebraic sum of the moments of the forces about

any point equal zero, the lines and points to be in the plane of the forces;

(2) that the algebraic sums of the components of the forces along any line x

and the algebraic sums of the moments of the forces about two points, a and

ft, equal zero, the line x and that joining a and b not to be at right angles;

and (3) that the algebraic sums of the moments of the forces about three

points, a, b, and c, equal zero, the points not to be colinear. For any set of

these conditions is necessary and just sufficient to make the resultant vanish

as may be shown, thus: The resultant, if there is one, is a single force or a

single couple (Art. 7). And (i) if SF^ = 2Fx = o, then the resultant is not

force, and if SAf = o, it is not a couple; and hence there is no resultant.

(2) If SiP, = o, the resultant is a force R perpendicular to the x axis or a
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couple; if XMa =
o, it is not a couple, but a force passing through a (and

perpendicular to the x axis); if also XMb =
o, then the moment of that

force about b must equal zero, and hence the force must equal zero. (3) If

2Ma =
o, the resultant, if there is one, is not a couple but a force passing

through a; if XMb =
o, that resultant passes through b; if also ZMc =

o,

then the resultant force must equal zero.

There are two graphical conditions, just like those for parallel coplanar

nonconcurrent forces; namely, a force and a string polygon must close.

For if a force polygon closes, then the resultant, if there is one, is not a

force but a couple; if a string polygon closes, then the resultant is not a

couple, and so there is no resultant (see Art. 6).

(v) Noncoplanar Concurrent Forces. — There are three independent7alge-

braic conditions of equilibrium. The convenient form is

1 2/?; = SF, = 2F, = o;

that is, the algebraic sums of the components of all the forces along three

rectangular axes, x, y, and z, equal zero. For as shown in Art. 4, the resultant,

if there is one, equals a/(2Fx)2 4- {^FyY -\- {^F^Y, and so if the conditions

stated are fulfilled then the resultant equals zero.

(vi) Noncoplanar Parallel Forces. There are three independent algebraic

conditions of equilibrium. There are two convenient forms; namely,

(i) SF = 2ifi = Zilfa = o, and (2) SMi = l^M^ = Silfa = o.

f Form (i) states that the algebraic sum of the forces and the algebraic sums

of the moment of the forces about two lines perpendicular to the forces but

not parallel to each other equal zero; (2) that the algebraic sums of the mo-

\
ments about three coplanar nonconcurrent nonparallel lines perpendicular to

the forces equal zero. For (i) if 2F =
o, the resultant is not a force; if

I 2iV/i = o, the resultant is a couple whose plane is parallel to the first line or

!' axis of moments (and to the forces); and if 2Af2 = o, then the plane of the

jj couple must also be parallel to the second axis; but all these conditions

|i
of parallelism cannot be fulfilled unless the two forces of the couple are

I

colinear, in which case the two forces balance, so that there is really no re-

\ sultant. (2) If 2Afi = XM^ = o, then the resultant must be a force pass-

ing through the intersection of lines i and 2; if l^Mz = o, then that force

must equal zero; that is, the three conditions make the resultant vanish.

(vii) Noncoplanar Nonconcurrent Nonparallel Forces. — There are six

independent algebraic conditions of .equilibrium, namely,

2F^ = 2Fy = ZF, = 2M:, = XMy = llMz = o;

that is, the algebraic sums of the components of all the forces along three

lines and the algebraic sums of the moments of the forces, about three non-

coplanar axes equal zero. (It is generally most convenient to take the

three lines and the three axes at right angles to each other.) For the result-
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Fig. 46

ant of the system, if there is one, is always reducible to a single force and

a single couple (Art. 9); if SF^ = ^Fy = ^Pz = o, the single force equals

zero, and llMx=^My= l^Mz=o^ if then the couple vanishes, and so there

is no resultant.

If every force in the given system (in equilibrium) be represented by a

vector, and all these vectors be projected on three rectangular coordinate

planes, then the three sets of projections

represent three force systems, and each

is in equilibrium (proved below). In

some cases it may be more convenient to

deal with these projected systems. In

general, each furnishes three conditions

or equations of equilibrium, making nine

in all; but there are duplicates among the

nine, and only six are independent. To

prove the foregoing, let F (Fig. 46) be

one of the forces of the system in equilib-

rium and P its point of application (on a

body not shown). A, B, and C are pro-

jections of the vector P on the xy, yz, and zx planes respectively. Obviously,
the X and y components of A equal Fx and Py respectively; the y and z com-

ponents of B equal Py and Pz respectively, and the z and x components of

C equal Pg and Fx respectively, as indicated. Since the given system is in

equilibrium,

(i) 2F, = 0, (4) Sir. = 2(F,y
-

F,3)
=

o,

(2) 2Fy = o, (5) i:My = Z(PxZ
- P^x) = o, and

(3) 2F, = o, (6) XM, = XiPyX
-

Pxy) = o.

Now HFx is also the sum of the x components of the ^-system; 2Fy is also

the sum of the y components of the ^-system; and 'Z(PyX—Pxy) is also the

sum of the moments of the A forces about 0. Hence (i), (2), and (6) are

conditions which assert the equilibrium of the ^-system. For similar rea-

sons (2), (3), and (4) assert the equilibrium of the ^-system and (i), (3),

(5) assert the equilibrium of the C-system.

§ 2. Special Conditions of Equilibrium, depending on number of forces

in the system.
—

(i) A single force cannot be in equilibrium. (2) If two

forces are in equilibrium, then obviously they must be colinear, equal, and

opposite. (3) If three forces are in equilibrium, then they must be coplanar,

and concurrent or parallel. Proof: Let the three forces be called Pi, P2,

and F3; since Fi and P2 balance Fz, Pi and Fo have a single force resultant

R colinear with F3; since Fi and F2 have a resultant colinear with P3, they

lie in a plane with F3. If Fi and F2 are concurrent, then R is concurrent

with them and hence F3 also; if Fi and F2 are parallel, then R and hence

Fz is parallel to them. When the three forces are concurrent, then each is
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proportional to the sine of either angle between the other two (Lami's

theorem) ;
that is,

Fi F2 F3

Fig. 47

sin a' — sin a" sin /3'
= sin jS" sin 7' = sin y"

where Fi, F2, and F3 are the forces, a' and a" the angles between F2 and Fj,

|3' and i8" those between Fi and F3, and y' and 7" those between Fi and F2

(see Fig. 47). For it follows from the triangle of forces, ABCA (in which

AB, BC, and CZ) represent Fi, F2, and F3 respectively), that AB/sin BCA =

5C/sin CAB = C^/sin ^ J5C. But BCA =
a', CAB = ^\ and ^5C =

7', also

a' and a", jS' and /3'', 7' and 7", are supplementary, hence sin a' = sin a",

etc., etc. When the three forces are par-

allel, then the two outer ones act in the

same direction and the middle one in the

opposite direction, and the moments of

any two of the forces about a point on

the third are equal in magnitude and op-

posite in sense, or sign. (4) When four

coplanar forces are in equilibrium, then

the resultant R of any two of the forces

balances the other two. Hence, (a) if the first two are concurrent and the

second two also, then the R passes through the two points of concurrence;

(b) if either two are concurrent and the other two parallel, then the resultant

R of the first pair acts through the point of concurrence and is parallel to

the second pair; (c) if all four forces are parallel, then R is parallel to

the forces. Principles (a) and (b) are useful in graphical analysis of four-

j

force systems.

I § 3. Summary.—The algebraic conditions of equilibrium explained in detail

I in the foregoing are brought together here for convenience of reference.

Coplanar Forces.

Colinear, 2F =
o; or 2M = o.

Concurrent, SF^ = SF^ = o; or 2Fx = 2Ma = o; or XMa = SATd = o.

Parallel, SF = Silf = o; or XMa = ^Mb = o.

Nonconcurrent nonparallel, SFx = SFy = 2M =
o; or

2Fx = XMa = ^Mb =
o; or ZMa = XMb = ^Mc = o.

Noncoplanar Forces.

Concurrent, SF, = SFy = XF^ = o.

Parallel, SF = ZMi = XM2 =
o; or XMi = XM2 =

Nonconcurrent nonparallel, SF^ = XFy = SF^ = XMa

1,Mz = o.

'he graphical conditions of equilibrium for coplanar systems: for concur-

it forces, the force polygon closes; for nonconcurrent forces, the force and
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the string polygon close. There are graphical conditions of equilibrium for

noncoplanar forces, but their usefulness is very hmited, and they are there-

fore not given here.

II. Coplanar Concurrent Forces in Equilibrium

§ I. The general principles of equilibrium for such forces are explained
in Art. lo under (ii). We now show how to apply the principles in two

particular problems.

Typical Problem (i).
— A system of coplanar concurrent forces is in

equiiibrium, and all the forces: except two are wholly known; the lines of

action of these are known, and their magnitudes and senses are to be de-

termined. The graphical method is generally the simplest for solving this

problem; but if there are only three forces in the system, or if the angle
between the two imknown forces is 90 degrees, then the algebraic method
is simple.

To solve graphically, we draw a force polygon for all the forces, and
make it close since they are in equilibrium; in doing so the desired un-

knowns will be determined. For example, consider the forces acting on

the pin of the bridge truss partially represented in Fig. 48. (A pin

passes through holes in the members, OF, OG, OF, and O/, thus fastening

them together at O.) There are four forces acting on this pin, one exerted

by each member named, and they constitute a system in equilibrium.

(Strictly, there is a fifth force in the system, the weight of the pin, but

that is small compared to the others and is negligible.) These four forces

are coplanar and concurrent. We assume that they act in the directions

of the members respectively (generally not far from the fact) as shown;

furthermore, we will suppose that the magnitudes and directions of two of

the forces have been determined somehow. Now to determine the other

two, P and Q, completely: We draw AB to represent the 80 ton force accord-

ing to some convenient scale; and BC to represent 20 tons; then from C, a

line parallel to Q, and from A^ a line parallel to P, and mark their intersec-

tion D. Then CD and DA represent the magnitudes Q and P respectively;

and, since the arrowheads in the closed vector polygon must be confluent, Q
acts in the direction CD and P in the direction DA. There are other possible

force polygons, each giving the same result as the one explained.
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To solve this problem algebraically we may employ any one of the three

sets of equations or conditions of equilibrium (Art. 10) ; namely,

2Fa, = i:Fy
=

o, ZFa; = ZMa =
o, or UMa = ^Mb = o.

Taking the first set and assuming* senses for P and Q (Fig.

49), we get

ZFx = Q cos 20° + F cos 40° + 80 cos 40° = o, and
ZOtons

llFy
= — 20 + Q sin 20° — F sin 40° + 80 sin 40° = o; Fig. 49

solving these equations simultaneously for P and Qy we get P = 10.04 and

Q=-73-3 tons.

When the system is a three-force system, then the special condition,

Fi/sin a = F2/sin /5
= Fa/sin 7 (Art. 10), is, in general, the simplest to apply.

(Fi, F2 and F3 denote the forces, and a either angle between F2 and F3, /3

either angle between Fz and Fi, and 7 either angle between Fi and F2.)

To illustrate, we discuss the forces acting upon a cylin-

der which lies in a trough formed by two smooth f in-

clined planes (Fig. 50). There are three forces acting on

the cylinder; namely, its own weight (100 pornids), and

the two supporting forces Fi and F2. Since the planes

are smooth Fi and F2 act normally, and hence through
the center of the cylinder as shown. It follows from the

geometry of the figure that the acute angle between Fi

and W =
40°, that between F2 and W =

80°, and that

between Fi and F2 = 60°; hence Fi/sin 80° = F2/sin 40° = loo/sin 60°, or Fi
= 1 13.7 and F2 =74.2 pounds.

* Whenever a force whose sense is unknown is to be entered in a resolution or moment

equation, a sense should be assumed for that force and adhered to in the solution of the

equation. The correct sense is indicated by the sign of the computed value of that force;

a positive sign indicates that the sense assumed is correct and a negative sign that the

sense assumed is wrong. Senses found to be wrong are corrected in the figures of the

book, by a short line across the assumed arrowhead (Fig. 49).

t When two bodies are in contact, and they exert forces upon each other (equal and

opposite), the forces are, in general, inclined to the surface of contact, assumed plane for

the moment. The components of either of the forces men-
tioned along and perpendicular to the surface of contact are W[
called friction and normal pressure respectively. Fig. 51 fur- P ^1 y
nishes the simplest illustration; it represents a heavy body A

y///////// >/////;/ww///f//w/w/^

supported by a rough surface 5, and subjected to a push P. \R
The surface B exerts a force R on A (inclined as shown), and Y\a
the horizontal and vertical components of R are the friction

and the normal pressure exerted by 5 on ^4. Obviously, this friction is the resistance which
B offers to the tendency of A to slide over B. So long as there is only tendency to

sliding, this friction equals the push P. Experience has shown that the friction is a maxi-
mum just as sliding impends, and also that the smoother the surfaces of contact, the

smaller is the force required to cause sliding, and hence the smaller this maximum resist-

ance to sliding. We are thus led to the conception of a perfectly smooth surface as one



42 Chap, n

^\\mm>>Y>v.

\
\

\

Typical Problem (ii). A system of coplanar concurrent forces is in

equilibrium and all except one are wholly known; the magnitude and direc-

tion of this one are required. To solve this problem we might determine

the resultant of the wholly known forces; this resultant reversed is the

desired force. But the problem may also be solved by means of principles

of equilibrium, that is, by applying the appropriate condi-

tions of equilibrium to the entire system of forces. To

illustrate, we determine the value and direction of the ten-

sion in the cord* (Fig. 52) which supports a ring from

which a body W is suspended, the ring being subjected to

a force P as shown. The forces acting on the ring are

W, P, and the pull of the long cord (equal to the tension),

and these three forces are in equilibrium. To solve graph-

ically, we draw AB to represent W, and BC to represent P;
then CA represents the desired pull or tension. To solve algebraically, we
call the desired force F and its inclination to the vertical 6. Then, using
the conditions XFx = o and SFy = o, we get 20 cos 30°

— F sin ^ = o and
— 100 + F cos ^ + 20 sin 30°

=
o; these

solved simultaneously give F =
91.6 ^P'

A C g
P|^

pounds, and 6 = 10° 54'. Pj^ -

As another example, we determine the

force which the inclined plane (Fig. 54) exerts on the body A when it is sub-

jected to a pull P = 20 pounds, the plane being so rough that motion does

not ensue. The weight of A (100 pounds), P, and the re-

action R of the plane are in equilibrium; hence, using 6 to

denote the inclination of R to the plane, and resolving along ,

the plane and normal to it, we get |

20— 100 sin 30 + i? cos ^ = o, and Rsind — 100 cos 30° = o.

W 100 lbs. B

Fig. 52

Fig. 54

Solving these simultaneously, we get R =
91.7 pounds, and

which can offer no frictional resistance, only normal reaction. Such a surface is of

course ideal, but there are surfaces which are nearly perfectly smooth. For brevity we

will call these smooth, and those whose resistance to sliding is to be taken into account

will be called rough.

If the surface of contact between two bodies is curved, then we speak of the friction

and normal pressure at any elementary portion of the contact, meaning the tangential

and normal components of the pressure at that element. If the contact between two

bodies is small, practically a point, and they exert forces R upon each other there, then

normal pressure means the component of R at right angles to the plane which is tangent

to the surfaces at the contact, and friction means the component along that plane. If

one or both the bodies is smooth, then any pressure exerted between the two at any point

of the contact is directed along the normal there. (For fuller discussion of friction see

Chapter IV.)
* "

Tension in a cord
"

refers to the forces which two parts of a taut cord exert upon each

other. Suppose that AB (Fig. 53) is a cord subjected to equal pulls at its ends, and imagine a
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§ 2. Many machines and other devices consist of parts (members) more

or ]ess intimately conr^cted, and, in general, these parts exert forces upon
each other when the machine is in service. To determine these forces

seems a complicated problem to most beginners. And yet in many in-

stances the whole problem can be resolved into several simpler ones, often

like typical problem (i), which may be solved in turn and thus furnish

values of the desired forces. In this connection it will be convenient to

designate a member of any device as a one-force piece if only one force

acts upon it; as a two-force piece if only two forces act upon it; etc.

Obviously, a one-force piece cannot be at rest. If a two-force piece is at

rest, then the two forces acting upon it must be equal, opposite, and colinear;

each force acts in the line joining their points of application, and the re-

actions which the piece exerts (upon the members which act upon it) also

act along the same line.* If a three-force piece is at rest, then the three

forces are coplanar, and concurrent or parallel (Art. lo, § 2). If a four-force

piece is at rest, then the resultant of any pair of the four balances the other

pair. We now illustrate how to resolve the apparently difficult problem into

several simpler ones.

Example. The crab-tongs represented in Fig. 55 consist of six pieces

fastened together by pms B^B', Cfi', and D\ angle ABC = 100 degrees,

\
\

\

M
Fig. 55

AB = I foot, BC = I foot 9 inches, CD = i foot, and BB' =
3 feet.

Required the forces which act on each piece when the tongs suspend a

^
stone W whose weight = 1000 pounds, and width AA^ = 1 foot 6 inches.

Apparently, the trigonometric relations between the parts are not simple;

so we will solve graphically, and first we draw (or lay out) the tongs to

scale. Obviously, the supporting force at E equals 1000 pounds (weight of

plane of separation at any place C between the ends of the cord. Since the part AC is in

equilibrium, there is a force acting upon it at its right end equal and opposite to P'; this

force is exerted by the part BC. Similarly, there is a force acting upon BC at its left end

equal and opposite to P"; this force is exerted by the part AC. These two equal and

opposite forces at C hold the parts AC and BC together. By magnitude of the tension

is meant the magnitude of either of the forces.
*

Action and reaction are equal, opposite, and colinear if they are concentrated. This

is a brief statement of Newton's Third Law of Motion, and it means that when one body
exerts a force upon another body then the latter also exerts one on the former, and the

two forces are equal in magnitude and opposite in direction. By action is meant either

of these two forces and by reaction the other one.
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tongs neglected). The pin D is acted upon by DE, DC and DC, and,
since each of these is a two-force piece, the forces upon the pin act along

DE, DC J
and DC, as shown at center. The first force equals looo pounds

and acts upwards; determination of the other two presents typical prob*
lem (i). So we draw MN to represent the looo pound force, and from M
and N lines parallel to the other two, thus fixing 0; then NO and OM rep-

resent the magnitudes of the two forces (620 pounds). It follows that DC
and DC are subjected to end pushes or compressions of 620 pounds. CBA
is a tllree-force piece, the forces being applied at C, B and A. The first

acts parallel to CD as shown and equals 620 pounds; the second is exerted

by the two-force piece BB\ and hence acts along BB') and the third must be

concurrent with the first two and so acts along the straight line through A,

Determination of the two unknown forces presents typical problem (i). So

we draw PQ to represent the 620 pound force, and lines from P and Q
parallel to the other two, thus fixing R\ then QR represents the force at A
(950 pounds), and RP that at B (13 15 pounds). It follows that the piece

BB' is subjected to end pulls of 13 15 pounds.

12. Coplanar Parallel Forces in Equilibrium

§ I. Principles of equilibrium for a system of forces of this kind are de-

veloped in Art. 10 under (iii); we now show how to apply them to a common

problem. (For typical problems i and ii see Art. 11.)

Typical Problem (iii). A system of coplanar parallel forces is in equilib-

rium, and all the forces except two are wholly known; the lines of action

of these two are known and their magnitudes and senses are required.

The algebraic method is the better one, by far, for solving the problem.
There are two sets of conditions of equilibrium available; namely, (i)

XF = Silf = o, that is, the algebraic sum of the forces and the algebraic

sum of the moments of the forces each equal zero; and (2) XMa = '2Mb = c,

that is, the moment-sums for two different origins equal zero, the line join-

ing the origins not to be parallel to- the forces. Either set will furnish a

solution of the problem. The second set is recommended, and the origins

of moments a and b should be taken on

?006\b5. loooibs. Soooibs. the lines of action of the two unknown

i 1 A i B forces. For example, consider the beam

L~..^'.--i:2'X--3'4<- 7' J • represented in Fig. 56 under the action
•

'Ri
' ^2 of three loads (its own weight neglected),

Fig. 56
2,nd supported at A and B; required, the

reactions of the two supports. The five

forces just mentioned constitute a system in equilibrium; therefore, taking

moment origins on Ri and R2 respectively, and assuming that Ri and R2 act

upwards, we get

Silfi = 2000 X 6 + 1000 X 2 — 3000 X 3 + -^2 X 10 = o,

and XM2 = 2cxx> X16 + 1000 X12 + 3000 X 7
—

i?i X 10 = o.
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The first gives i?2=--5oo pounds, and the second Ri — 6500; the negative

sign means that R2 acts^ downward on the beam and not upward, as as-

sumed. As a check on the solution we try whether SF = o; thus,

3000 + 6500— 2000 — 1000 500 = 0.

The graphical solution of the foregoing problem is based on the conditions

that the force and the string polygon for the forces close; the process of

constructing and closing the polygons determines the unknown forces. To

illustrate we take the beam shown in Figs. 56 and 57 and determine the

reactions. First, the force polygon should be drawn as far as possible,

the knowns represented first, thus AB, BC, and CD (Fig. 58) representing

the 2000, the 1000, and 3000 pound forces respectively; then the lines of

action should be lettered to correspond, ab, be, and cd (Fig. 57). If R2, say,

is taken next, it would be lettered DE, and Ri would be EA, since the force

2000 lbs. 1000 lbs.
3000 lbs

^ooo't'^-ioooibs.
^oo°"'^-

Fig. 58 Fig. 59

polygon for all must close. It remains now to locate E; this can be done by
means of the string polygon. (At this point it may be well for the reader

to recall the significance of the strings of a string polygon; see Art. 6.)

The polygon may be started at any point on any of the lines of action of

the forces of the system; if it be started at i (on ab), then strings oa and

ob must be drawn through that point; oc must be drawn from 2 (where ob

cuts be), od from 3 (where oc cuts cd), and oe from 4 (where od cuts de) and

from 5 (where oa cuts ea) ;
hence the closing string oe passes through 4 and

5. Finally, the ray OE, parallel to oe, is drawn, thus determining E; DE
represents R2, and EA Ri. Fig. 59 shows another solution; Ri is taken as

the fourth force DE', and R2 as the fifth E'A.

§2. We take this opportunity to mention a class of problems on forces

in equilibrium, not parallel necessarily, which cannot be solved by the

principles of statics alone, and are therefore called statically indeterminate

problems, A beam resting on more than two supports furnishes a simple

illustration; thus, let it be required to determine the reactions of the sup-

ports {A, B, and C) on the beam represented in Fig. 60, due to the two
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loads. If not already warned of the difficulty in this problem, some stu-

dents would probably write moment equations for the forces in equilibrium

(Pi, P2, ^1, ^2, and P3), with moment origins at A, B, and C, and then

attempt to solve the equations simultaneously for the three unknowns.

Such attempt would fail, even though each

I

P. \?z equation would be correct, because the

•X
'^ T ^ r three would not be independent

— there

Ir, Ir^ 'R3 being only two conditions of equilibrium

Fig. 60 ^^^ 2, system of the kind under considera-

tion (Art. 10 under iv)
— and so the three

equations would not determine the three unknowns. Doubters are advised

to try to determine Ri, R2, and Rz in this way in the simple case where the

spans and the loads are equal, and the loads are applied at the centers of

the spans.

How may one determine whether a given problem (a force system in

equilibrium with some unknowns required) is statically determinate or

indeterminate? A complete answer to the question is beyond the scope

of this book; we may remark, however, that statically indeterminate prob-

lems commonly arise in connection with structures which have redundant

or superfluous parts or supports, by which is meant that some of the parts

or supports are not strictly necessary for the equilibrium of the structure.

For example, in Fig. 60 one support is superfluous, since the beam on two

supports would, if strong enough, support the load. No statically inde-

terminate problems are given in this book without notice; but the student

may meet a force system in equilibrium containing many imknowns, and

he is now reminded that it is futile to write out more equilibrium equations

than there are algebraic conditions of equilibrium for the system under

consideration (Art. 10), with the expectation that the equations if solved will

determine the unknowns. And so it is well to know the number of con-

ditions of equilibrium for each class of force systems.

13. Coplanar Nonconcurrent Nonparallel Forces

Principles of equilibrium for a force system of this kind are developed in

Art. 10 under (iv). Their use will be explained now by applying them to

two particular common problems.

§ I. Typical Problem (iv).
— A system of coplanar nonconcurrent non-

parallel forces is in equilibrium, and all except two are wholly known; only

the line of action of one of these two and a point in that of the other are

known, and it is required that these two be determined completely.

The algebraic solution of this problem can be effected by means of any one,

of these sets of equilibrium equations:

XF, = XFy = XM =
o; 2/^^ = SMa

= SMt = o; SAf« = 2^6 = SMc = 0.
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50.000

35,000 lbs.

C

Fig. 61

For an example, consider the roof truss represented in Fig. 61. It sustains

two loads, 35,000 (weight of roof and truss) and 50,000 pounds (wind pressure).

The left end of the truss merely rests on a

wall, but the right end is fastened to a wall;

therefore the reaction of the left-hand wall

must be vertical, but that of the other may
be inclined. Let it be required to determine

these reactions. We call the left reaction A,

the right one B, and the inclination of B
to the horizontal 6. Then the first set of

equilibrium equations gives SMb = +35,000 X 45 + 50,000 X (60 cos 30°)
—

yl X 90 = o, or i4 = 46,400 pounds. ZFx = —Bcosd-{- 50,000 sin 30°
=

o,

and ^Fy = -{-B sin —
50,000 cos 30°

—
35,000 + 46,400 = o; these solved

simultaneously give B = 40,500 pounds and ^ = 51° 54'.

For algebraic solutions, it is generally advisable to imagine the second

unknown force, whose point of appUcation is known, to be replaced by two

(unknown) components. Then the problem is in the form of typical problem

(v) (see next page) . Thus, in the preceding example the unknowns would be A
and, instead of B and 6, Bx and By. After finding Bx and By, one could easily

get B and 0.

The graphical solution of this problem is effected by drawing the force and

the string polygons, making both close since the force system is in equilibrium.

To illustrate we use the preceding

example. We first draw the polygon
ABC (Fig. 62) for the known forces,

and continue it with a line through
C parallel to the left-hand reaction.

The end of that line, as yet unknown,
is to be marked D; that point once

determined, then DA will represent

the right-hand reaction. To find D we must construct a string polygon; so

we next mark the lines of action of the several forces to agree with the nota-

tion in the force polygon, choose a pole 0, and draw the rays OA, OB, and

OC. To make use of the known point i of the fourth force (right-hand reac-

tion), the string polygon must be begun at that point. The string oa is the

one to draw through that point (to ab), and then ob and oc as shown. The

string od must pass through points i and 4, and so is determined. Next we
draw the ray OD (parallel to od), and thus determine D (the intersection of

CDsLudOD).
The following special graphical method is simpler in principle than the pre-

ceding method: Let R = the resultant of the wholly known forces, P = the

force whose line of action is known, and Q = the force whose point of applica-

tion is known. Find R, and then imagine the wholly known forces replaced

by R; R, P, and Q would be in equilibrium. Now a balanced three-force

35.000 lbs.

Fig. 62
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Fig. 63

system is concurrent or parallel (Art. 10, § 2) ;
hence if R intersects P, then

Q acts through that point of intersection, and if i? is parallel to P, then Q is

also. If the three forces are concurrent, then determine P and Q from the

force triangle for the three forces as explained in Art. 1 1
;

if they are parallel,

determine P and Q as explained in Art. 12. To illustrate, we use the data

of the foregoing example. First we draw AB and BC (Fig. 63), to represent

the two loads; then AC represents the magnitude and direction of their

resultaot R. The line of action of R is ac, parallel to ^C and passing through
the intersection of ab and be. (When
the wholly known forces are noncon-

current it is necessary to construct a

string polygon to find a point in the line

of action of R, see Art. 6.) We next

extend the lines of action of R and P,

and join their intersection with the point

of application of Q; this line is the line

of action of Q. Finally we complete the force triangle ACDA for R, P, and

Q; then CD = P and DA =
Q.

§2. Typical Problem (v).
— A system of coplanar nonconcurrent non-

parallel forces is in equilibrium, and all the forces except three are wholly

known; only the lines of action of these three are known, and their magni-
tudes and senses are required.*

The algebraic solution of this problem can be effected by means of any one

of these three sets of equilibrium equations:

SFa, = ^Fy = Sif = o; SFx = SMa = SMb = o; or SMa = 2Mb = 2Mc = o.

For example, consider the crane represented in Fig. 64. It consists of a post

ABy a, boom CD, and a brace EF; the post rests in a depression in the floor

below, and against the side of a hole in the

floor above. The external forces acting on

the crane consist of the load W (8 tons), the

weights of the parts named (0.8, 0.9, and i.i

tons respectively), and the reactions of the

floors. The upper floor exerts a single hori-

zontal force on the post; the lower floor

exerts two forces on the post, one horizontal

and one vertical. Let it be required to de-

termine the magnitudes of these reactions.

The entire external system of forces just

described is in equilibrium. Calling the reactions A, Bx, and By respectively,

then the first set of equilibrium equations become: SMa = — 8 X 20 —

0.9 X II - I.I X 7 + 5x X 18 = o, or Bx = 9.86; XFx = 9.86
- A =

o, or

A =
9.86; 2Fy = By— 8.0 — 0.8 — 0.9

— I.I = o, or By = 10.8 tons.

*
If the three unknown forces are concurrent or parallel, the problem is indeterminate.

'//M
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The general graphical solution is carried out as follows: Let P, Q, and 5

stand for the three forces whose lines of action only are known. Imagine any
two of these, say P and Q, replaced by their resultant R'

;
one point in that

resultant is known, the intersection of P and Q, Then 5, R\ and the known

forces would be in equilibrium, and the given problem has been transformed

to typical problem iv. So we first determine S and R'
,
as explained in § i,

and then resolve R' into two components parallel to P and Q\ these compo-
nents are P and Q. To illustrate, we take the preceding example, and we call

the two lower reactions P and Q, and the upper one S (Fig. 65). The resultant

R' of P and Q passes through the lower

end of the post. We draw the polygon
ABODE for the knowns, and continue

it with a line parallel to S. The as

yet unknown end of that line is to be

marked F; that point once determined,

then FA will represent R\ since the

polygon for all the forces must close.

To find F we must construct a string

polygon; so we mark the lines of ac-

tion of the several forces to agree with

'the notation in the force polygon, choose

a pole 0, and draw rays OA, OB, 00,

OD, and OE. The string polygon must be begun at the lower end of the

post, the point of application of FA or R\ The strings to pass through

that point are of and oa (Art. 6), and so we draw oa to ab; then ob, oc, od, and

oe as shown. Now point i is in of, and point 6 is also; therefore of is deter-

mined. The ray OF is drawn next (parallel to of), thus determining F; then

EF and FA represent S and R\ as already stated. Finally we draw through

F a vertical and through A a horizontal; then FG and GA represent the

vertical and horizontal reactions (P and Q) of the lower floor.

The following special graphical method

is simpler in principle than the preced-

ing: First we determine the resultant R
of the wholly known forces; R and the

three partly unknown forces (P, Q, and

S) would be in equilibrium. The special

condition of equilibrium for four such

forces is that the resultant R' of any

pair as P and Q balances the other pair;

hence R' and the other pair {R and S)

are in equilibrium, and so must be con-

current or parallel. Next we solve the

system R', R, and S (if concurrent by Art. 11, and if parallel by Art. 12).

Finally we complete the force polygon for R, S, P, and Q. For an illus-
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tration we take the preceding example. Let the two lower reactions be

called P and Q, and the upper one 5 (Fig. 66). The resultant R of the

loads is I0.8 tons acting as shown (construction for R is. indicated). The
resultant R' acts through point i; and, since R and S are concurrent at

point 2, R' acts through point 2 also. We now draw the force triangle AEFA
for R, S, and R\ AE representing R\ then EF represents S. Finally we draw

lines from A and F parallel to Q and P, thus fixing G\ and then FG represents

P, and QA represents Q.

14. Noncoplanar Forces in Equilibrium

§ I. The principles of equilibrium for noncoplanar forces are set forth in

Art. 10 under (v), (vi), and (vii). The three following illustrations deal with

concurrent, parallel, and nonconcurrent nonparallel forces respectively.

(i) A heavy body W (Fig. 67) weighing 1000 pounds is suspended from a

ring over the center of a street 60 feet wide; the ring is supported by three

ropes OA, OB, and OC; A and B are points

on the face of a building as shown, and C is

a point on the face of a building (not shown)
on the opposite side of the street, OC being

perpendicular to the face of the buildings.

Values of the tensions in the ropes are required.

There are four forces acting on the ring,
—

the pull of 1000 pounds, and the pulls of the

three ropes which we call L, M, and N respec-

tively; this system is concurrent. To deter-

mine the unknown forces in it, we use the

conditions that the algebraic sums of the com-

ponents along three rectangular axes equal

zero; as axes we choose a vertical line and

two horizontal lines, one parallel and one

transverse to the street. To get the components of L, M, and N, we need

values of certain angles: A'OC =^ tSLrr' A'C/OC= 28° 4'; AOA'=tan-^

AA'/OA'=so'' 2S'', BVa=t^n-'B'C/OC=s8°4o'; BOB'^tsLrr' BB'/OB'
= 46° 11'. The X, y, and z components, respectively, of L are L cos 30° 28'

sin 28° 4'= 0.405 L, L sin 30° 28'= 0.507 L, and L cos 30° 28' cos 28° 4'
=

0.760 i; of M they are ilf cos46° 11' sin 38° 40'= 0.4325 M, M sin 46° ii' =

0.721 M, and M cos 46° 11' cos 38° 40'= 0.5405 M; of N they are o, o, and

N; of the looo-pound pull they are o, 1000, and o. The algebraic sums

of the X, y, and z components are

-0.405 L + 0.4325 ikf + o + o =0
,

-i-0.507 L + 0.721 M + o — 1000 = o,

—
0.760 L — 0.5405 Jlf + iV + o = o.

Solving these equations simultaneously, we find that L — 846, M= 792, and

N= 1072 pounds.
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Fig. 68

(ii) A body weighing 1000 pounds is suspended from the ceiling of a room

by means of three vertical ropes; the points of attachment at the ceiling lie

at the vertices of an equilateral triangle ABC (Fig.

68) whose sides are 10 feet long; W is the projection

of the center of gravity of the body upon the ceiling.

The tension in each rope is required. We call the

tensions in the ropes fastened a-t A, B, and C, respec-

tively, L, M, and N. The four forces acting on the

body constitute a parallel system; the conditions of

equilibrium for such are that the sums of the moments

of the forces about any three coplanar nonparallel axes perpendicular to the

forces equal zero. The lines AB, BC, and CA are good lines to choose as

axes of moments. With respect to these lines the moment equations are

respectively, N X 8.66 — 1000 X 2.10 = o, L X 8.66 — 1000 X 4.15
=

o, and

M X 8.66 — 1000 X 2.41
=

o, 8.66 being the altitude of the triangle. Solu-

tion of these equations shows that L =
479, M =

278, and N =
243 pounds.

(iii) Fig. 69 shows a velocipede crane. The crane can be run along on a

single rail below^ tipping being prevented by two overhead rails which guide
a horizontal wheel mounted on the top
of the crane post. The crane weighs

1.25 tons, and it is balanced so that its

center of gravity is in the axis of the

post. We will now show how to deter-

mine the supporting forces (exerted by
the rails) when the crane supports a

loadof 1.5 tons

and the jib is

swung out at

right angles to

the rails to-

ward the left

(Fig. 70).

There are

three support-

ing forces or

reactions, one

on each wheel.

Since the lower

rail is level, the

crane does not tend to roll, and there is no reaction of the rails in their

direction. The reaction of the upper rail is directed horizontally and evi-

dently as shown; the reaction on each lower wheel has two components
as shown. We call these component reactions Ax, Ay, Bx, and By, and the

upper reaction C. The external system of forces acting on the entire crane

Fig. 69 Fig. 70
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consist of the reactions named, the weight of the crane, and the load. For

noncoplanar nonconcurrent nonparallel systems there are, in general, six con-

ditions of equilibrium, but this system has only five because there are no
*'
z forces

"
(see the figure). The five conditions of equilibrium are

2Fx ='^. + 5x-C =
o; (i)

'

SF, =+^, + 5,-1.25-1.5 =
0; (2)

SMx = 5vX 10- 1.25X6- 1.5X6 =0; (3)

^My = CX6^B,Xio =
o; (4)

SM, =-C X 16 -i- 1.5 X 6 = o. (5)

From (5) it follows that C =
5.625 tons; from (4), that Bx = 3.375 tons;

from (i), that Ax =
2.25 tons; from (3), that By = 1.65 tons; and from (2),

that Ay = 1. 10 tons.

We now give another solution, making use of the principle that if the forces

of a system in equilibrium be represented by vectors, then the projection of

the vectors on any plane represents a

force system also in equilibrium (see

Art. 10 under (vii)). Fig. 71 shows

such projections on the x-yj y-z, and z-x

planes of Fig. 70. From the y-z pro-

jection (side elevation), XMa = By X
10 — 2.75 X 6 = o, or J5y

=
1.65 tons;

-rV

^-^
fend ElevcitLQn;

-rV

1.5^ 'tons

1.25"tons 1.25

I B

tons

and "SMb = —AyXio + 2.75 X 4 = o,

*-^?7='1=
l!l

[^i:^'
Side Elevation

Ic Bx

Plan.

Fig. 71

or ^j,
= 1. 10 tons. From the x-y projec-

tion (end elevation), 'LMa = C X i6 —

1.5 X 6 = o, or C =
5.625 tons. From

the z-x projection (plan), XMa = — BxX
10 + 5.625 X6 = o,oT Bx= 2.375 tons;

•and 2Mb = —Ax X lo + 5.625 X 4 = o,

or Ax = 2.25 tons.

§ 2. A noncoplanar system can gen-

erally be solved by means of an equivalent coplanar system. This indirect

method is regarded as simpler than the direct one when the forces of the non-

coplanar system are nonparallel. The two following examples will illustrate.

For one example we use the data ^^^ ^h ^^B
of example (i). Instead of ropes OA
and OB (Fig. 67), imagine a rope 00'

in the plane of those ropes, and also

in the same vertical plane with COC.
Such a rope fastened to O and to the

building at O' would help to support

the ring in its place, and would leave

F
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angle, FGHF, for these forces shows that the pull TV = 1070 and P = 1460

pounds. We next lay otit the ropes OAj OB, and 00' in their true relations,

and then we resolve the pull 1460 in the imaginary rope into components

along the real ropes. Thus we lay off OQ equal to 1460, and then on

the diagonal OQ complete the parallelogram OMQN; and find OM and ON,

representing the tensions in the real ropes, 860 and 790 pounds.

For another illustration we take a tripod (Fig. 73) ,
shown in plan and eleva-

tion. The requirement is to determine the forces acting at the top of each leg

of the tripod due to a load of 1000 pounds. On account of this load, each leg

is under the action of two forces, one applied at each end of that leg, and so

those two forces act along the axis of the leg. We imagine a single leg in the

plane of any two, and in the same vertical plane with

the third, to replace the two; thus OD to replace OA
and OB. Then there would be three forces applied

to the pin at O, namely, the load 1000 pounds, and

the supporting forces exerted by OC and OD. So we
draw a force triangle for these three forces FGHF;
it shows that the push of OC is GH =

565, and

that of OD is HF = 650 pounds. Next we lay out

the other pair of legs and the imaginary one in their

true relation 0''A'\ 0"B", and 0"D", and make
0"P = EF = 650 pounds; then resolve 0"P into

two components along the pair O'^A" and 0''B'^ by
means of a parallelogram 0"MPN. Thus we find that

0"M and 0"N represent the pushes of AO and BO,
or 340 pounds.
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is neglected, is subjected to forces (pin pressures and loads) at its two pin

holes only, somewhat as shown in Fig. 75 or Fig. 76, where P' and P" denote

pin pressures and V and L" loads. Let R' denote the resultant of P' and L',

and R" the resultant of P" and L". Since R' and R" balance, each acts along

All
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pounds, and the two forces exerted upon the part under consideration by the

remainder of the truss; they are marked Fi and F2, and both are assumed to

be pulls.* This part of the truss, as well as every other part, is at rest, and

so the three forces are in equilibrium. Determination of the unknown forces

Fi and Fi presents typical problem (i) (Art. 11). We choose the algebraic

method for solving: 2Fy = F2 sin 60° + 2250 = o, or F2 = —2600; the

negative sign indicates that F2 is really a push, that is, the stress is com-

pressive. SFx = Fi — 2600 cos 60° = o, or Fi = +1300; the positive sign

indicates that the stress is tensile. Passing a section around B, and consider-

ing the forces acting on the part of the truss within the section (or
"
con-

sidering forces at joint -S"), we get Fig. 79. The forces are the reaction 2750

pounds and the two forces exerted on the part under consideration by the

remainder of the truss; they are marked F3 and F4 and are assumed to be

pulls. Solution of this three-force system shows that F3 = +1588 (tension),

and F4 =— 3177 (compression).

Next we might discuss joint C, D, or E and determine two more stresses.

Fig. 80 represents joint C and the forces acting upon it so far as known. Stress

_ _ _
j
1000 lbs lOOOlbs.!

<: fr \ / -)^-^' i3^,^
5 4f 13p0lbs.\£^ 1

588^1
b5. / \ / ^

275oibJ EOOOjlbs.
2600 lbs. 144Albs* S661b5. 31771b5.

Fig. 79 Fig. 80 Fig. 81 Fig. 82

in CA was determined to be a tension of 1300 pounds; therefore the part of

CA not shown in the figure exerts a pull of 1300 on the part shown as indi-

cated. Similarly, the part of CB not shown in the figure exerts a pull of 1588

on the part shown as indicated; F^ and Fq are assumed to be pulls. Solution

of this five-force system shows that F^ = +1444 (tension), and Fq = -f-866

(tension). Taking joint D next, we get Fig. 81, four forces acting on the

joint (the load, and the three forces "exerted on the joint by the remainder of

the truss). DA was found to be under a compression of 2600 pounds, hence

the part of DA not shown in the figure acts on the part shown as indicated;

CD was found to be under a tension of 1444 pounds, hence the part of DC not

shown in the figure acts on the part shown as indicated; F7 is assumed to be

a pull. ZFx = o shows that F7 = —2021 (compression); and writing out

XFy we find that it equals zero, which is a fair check on the computation.

Fig. 82 represents joint E and all the forces acting upon it, as already deter-

mined. If XFx = o and ^Fy = o for those forces, then the check on the pTe-

ceding computations is satisfactory.
* In simple trusses the kind of stress (tension or compression) in any member is apparent.

When the kind is not apparent, we might follow the suggestion in the footnote, page 41.

But for uniformity we will always assume the force to be a pull. Then, according to the

footnote, the force is actually a pull or a push (and the stress is tensile or compressive), ac-

cording as its computed value is positive or negative.
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Directions.— The foregoing method for "analyzing a truss" (determin-

ing the stresses in its' members) can be formulated into brief directions

as follows: (i) Determine the reactions (supporting forces) on the truss if

possible. (2) Consider a joint at which there are only two unknown forces,

and then determine those two. (3) Repeat (2) again and again until all

stresses have been determined. (These directions do not provide for a

certain contingency which may arise; see § 2 for a case and directions for

meeting it.)

We now give illustration of truss analysis by this method but omitting the

computations; they should be supplied by the student. The truss shown in

Fig. 83 will be used; it is supported at each end, and supports three loads of

5000 pounds as shown. Obviously each

reaction equals one-half the total load.

On joint A there are three forces (the re-

action, and the stresses in AD and AE);

solving that force system we find that the

first stress = 15,000 pounds compression,

and the second = 13,000 tension. On joint

D there are four forces (the load 5000

pounds, the stress in AD =
15,000 pounds, and the stresses in DE and DC

unknown); solving that system, we find that the stress in DE = 4335 pounds

compression, and that in DC =
12,500 compression. On joint E there are

four forces (the stress in AE =
13,000 pounds, the stress in DE = 4335

pounds, and the stresses in EC and EG unknown); solving the system, we

find that the stress in EC =
4335 pounds tension, and that in EG = 8667

tension.

§ 2. We now explain the contingency or difficulty mentioned in the fore-

going directions and how to meet it; the truss shown in Fig. 84 furnishes an

illustration. Following the directions,

we determine the reactions Ri and R2,

2800 poimds and 2400. Then we take

joint A, and find stresses in AB and

^Zf to be 3960 (compression) and 2800

(tension) respectively; next we take

joint' G, and find stresses in GF and

1200
1
lbs. i I Rz'f" GI to be 3400 (compression) . and 2400

f^
•—^-

W —-->k J6 H
(tension) respectively. No joint re-

Fig. 84 mains at which there are only two

unknown stresses, and the difficulty is already met. Now if in some way we
could ascertain the stress in almost any other member, then we could con-

tinue to apply the rule. For example, if we knew the stress in HB, HJ, or

EI
J
then consideration of joint H would determine the two xmknown stresses

there; consideration of joint B would give stresses in BJ and BC\ considera*

tion of joint C would give stresses in CJ and CD, etc. Now there is a way to
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EBOOjlbs. 1200jibs.

Fig. 85

ascertain the stresses in CD, JD, and HI,— by passing a section through
those members, and solving the force system acting upon either portion of

the truss. Fig. 85 represents the left-hand portion and all the forces acting

p^ upon it; namely, the three loads, the left reaction,

and the forces which the right-hand part exerts (6*1, 6*2,

and Sz, assumed to be pulls). Solution of this force

system presents typical problem (v) (Art. 13). To
determine ^i, for example, we take moments about

the intersection of 6*2 and ^3 (or joint D), and find

Si= 1600 pounds tension. Then having determined

Si we proceed as in the foregoing examples.

In order to determine the stress in any particular

member of a truss the following direction may be tried: Imagine the truss

separated into two distinct parts (" pass a section
"
through the truss); pass

it in such a way that the member under consideration is one of the members
cut by the section, and so that the system of forces acting on one of the two

parts is solvable for the desired stress; then solve the system for the desired

stress. (The system of forces acting on one part of the truss consists of the

loads and reactions on that part, and the forces, or stresses, which the other

part exerts upon it. In plane trusses this system is always coplanar; it can be

solved if it is concurrent with not more than two unknowns, or if it is non-

concurrent with not more than three unknowns, provided that the three

unknowns are not parallel nor concurrent.)

Foregoing direction may be applied not only to bridge over the difficulty

sometimes met in connection with directions in § i, but also when it is desired

to determine the stress in a particular member quite directly without first

computing stresses in several other members. For example, let it be required

to determine the stress in BC (Fig. 86), the truss being supported at its ends,

span AE = 32 feet, rise CG = 8 feet, and five loads as shown. Obviously

2000 lbs

B

lOOd'^lbs lOOO^lbs.

aooo
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§ 3. Warning is here given that not all trusses can be analyzed by the

principles of statics aione, as in the preceding; that is to say, there are

trusses that are statically indeterminate. Only the so-called complete or per-

fect trusses are always statically determinate; beside these there are incom-

plete trusses, and trusses with redundant members.

A pin-connected triangle (Fig. 88) is the simplest complete truss; it is

indeformable and has no superfluous or redundant members. Adding two

more members makes a complete truss of

two triangles; and each addition of two

members as shown extends the truss and

leaves it complete. If m = number of

members, and j = number of joints, then

for a complete truss, w = 27
—

3. A

pin-connected quadrilateral (Fig. 89) is

the simplest incomplete truss; it is deformable and requires the addition of

one or more members to make it complete. For an incomplete truss,

m < 2 j
—

2>'
A pin-connected quadrilateral with two diagonal members

(Fig. 90) is the simplest truss with a superfluous or redundant member; it

is indeformable and would be so with any member removed. For a truss

with a redundant member m > 27
—

3. Figs. 91, 92, and 93 are other

examples of the three classes of trusses described.

Fig. 88 Fig. 89 Fig. 90

Fig. 91 Fig. 92 Fig. 93

In the foregoing it is assumed that the trusses are pin-connected, and that

each member can sustain tension or compression as called upon by the loading.

For a classification not so restricted as this one, readers are referred to stand-

ard works on Structures.*

16. Graphical Analysis of Trusses; Stress Diagrams

§ I. Graphical methods are especially well adapted for analyzing trusses.

As in the algebraic methods of the preceding article, we imagine the truss

separated into two parts, and direct our attention to the external forces acting

upon either part. Graphical instead of algebraical conditions of equilibrium

are then applied to these forces to determine the unknowns. The notation

for graphical work described in Art. 2 can be advantageously systemized as

follows: Each triangular space in the truss diagram is marked by a lower-

case letter, also the space between consecutive lines of action of the loads and

reactions (Fig. 94) ;
then the two letters on opposite sides of any line serve to

*
Johnson, Bryan, and Turneaure's Modern Framed Structures.
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lOOOhbs.

1000 libs. -fx/^^-F* 1000 lbs.

designate that line, and the same capital letters are used to designate the

magnitude of the corresponding force. This scheme of notation is a great

help in graphical analyses of trusses.

As an illustration we determine the

stress in each member of the truss of

Fig. 94. Evidently each reaction

equals one-half^ the load, or 2000

pounds. We "
pass section

"
a, and

consider the forces acting on the left-

500 libs. S

Fig. 94

hand part of the truss (Fig. 95) ; they are the load 500 pounds, the reaction 2000

pounds, and the stresses cd and da. Since those forces are in equilibrium, their

polygon closes; in constructing it, the unknowns will be determined. Beginning

with the knowns, AB is drawn to represent 2000 pounds, BC to represent

500 pounds ;
and then a line from A (or C) parallel to the line of action of one

unknown, and a line from C {or A) parallel to the other, are drawn. The last

two lines determine D (or D'),dind the closed polygon is ABCDA (or ABCD'A) ;

hence the forces in the members cd and ad are represented by CD and DA

(3000 and 2600 pounds) respectively. It is seen from the force polygon that

CD is a push, and DA is a pull; hence the members cd and ad are in com-

pression and tension respectfully.

CBt

>-^A

-,D'
elf U^1

3000 lbs.
d\e

Fig. 95 Fig. 96

We may next pass section /3, and consider the forces acting on the smaller

(and simpler) part of the truss (Fig. 96); they are the load 1000 pounds, the

stress 3000 pounds (compressive), and. the stresses /e and de. Their force

polygon may be drawn thus: DC to represent 3000 pounds (compression),

CF to represent 1000 pounds, a line from F parallel to one of the unknowns,
and one from D parallel to the other. The last two lines determine E, and

the force polygon is DCFED\ hence the forces in the members je and ed

are represented by FE and ED (2500 and 866 pounds)

respectively. Both members are in compression.
We next pass section 7, and consider the forces acting

on the smaller part of the truss (Fig. 97); they consist

of the stress 2600 pounds (tension), the stress 866 pounds

(compression), and the stresses eg and ga. Their force

polygon may be drawn thus: AD to represent 2600 pounds

(tension), DE to represent 866 pounds (compression),
a line from E parallel to one of the unknowns, and a line from A parallel to

the other. The last two lines determine G, and the force polygon is ADEGA;

866 .lbs.
y

2600 lbs, d
"^ a a

"VE
Fig. 97
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hence the forces in the members eg and ag are represented by EG and GA

(866 and 1732 pounds) respectively. Each member is in tension. On account

of the symmetry of the truss and loading, the forces in the remaining mem-

bers are now known.

In drawing the force polygon for all the external forces on the part of a

truss included within a section about a joint, it will be advantageous to repre-

sent the forces in the order in which they occur about the joint. A force

polygon so drawn will be called a polygon for the joint; and for brevity, if

the order taken is clockwise the polygon will be called a clockwise polygon,

and if counterclockwise it will be called a counterclockwise polygon. ABCDA
(Fig. 95) is a clockwise polygon for joint h of Fig. 94; ABCD'A is a force

polygon for the "forces at joint i," but it is not a polygon for the joint, be-

cause the forces are not represented in the polygon in the order in which the

forces occur about the joint. The student should draw the counterclockwise

polygon for the joint, and compare with ABCDA,
If the polygons for all the joints of a truss are drawn separately as in the

preceding illustration, then the stress in each member will have been repre-

sented twice. It is possible to combine the polygons so that

it will not be necessary to represent the stress in any mem-
ber more than once, thus reducing the number of lines to

be drawn. Such a combination of force polygons is called

a stress diagram. Fig. 98 is a stress diagram for the truss

of Fig. 94 loaded as there shown. Comparing the part of

the stress diagram consisting of solid lines with Figs. 95,

96, and 97, it is seen to be a combination of the latter three

figures. It will also be observed that the polygons are all
* ^

clockwise polygons; counterclockwise polygons also could be combined into

a stress diagram.

Directions for constructing a stress diagram for a truss imder given loads:

(i) Letter the truss diagram as already explained.

(2) Determine the reactions. (In some exceptional cases this stage may or

must be omitted; also stage (3). See § 2 for two illustrations.)

(3) Construct a force polygon for all the external forces applied to the truss

(loads and reactions), representing them in the order in which their points of

application occur about the truss, clockwise or counterclockwise. (The part
of that polygon representing the loads is called a load line.)

(4) On the sides of that polygon construct the polygons for all the joints.

They must be clockwise or counterclockwise ones, according as the polygon
for the loads and reactions was drawn clockwise or counterclockwise. The
first polygon drawn must be for a joint at which but two members are fastened;

the joints at the supports are usually such. Next the polygon is drawn for a

point at which not more than two stresses are unknown; that is, of all the

members fastened at that joint the forces in not more than two are unknown.

Then the next joint at which not more than two stresses are unknown is con-
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sidered, etc., etc. (These directions do not provide for a certain difficulty

which may arise; see § 2 for a case and directions for handling it.)

To illustrate the foregoing directions we analyze the truss represented in

Fig. 99; it sustains four loads (600, 1000, 1200, and 1800 pounds), and is

S^

'D

lOOOl lbs.

600^ lbs.

Fig. gg

supported at its ends. Supposing the reactions to have been determined, we

draw the force polygon for the loads and reactions ABCDEFA, at the left; it

is a clockwise polygon. We may begin by drawing the clockwise polygon for

joint I or 2; for the former it is FABGF* Member hg is therefore in com-

pression and gf in tension. Next we may draw the clockwise polygon for

joint 2, 3, or 4; for the joint 2 it is CDEHC, Member ch is in compression

and eh in tension. For joint 3, the polygon is HEFGH, and member gh is in

tension. If the work has been correctly and accurately done, the line GH is

parallel to gh.

§ 2. There are exceptional cases not covered by the foregoing directions.

In case the reactions cannot be determined in advance, the stress diagram can

still be drawn if the truss is statically determinate. Fig.

100 represents such a case, the truss being pinned to its

supports. The diagram can be constructed by drawing in

succession the proper polygons (all clockwise or counter-

clockwise) for joints i, 2, 3, and 4. Then, if desired, the

reactions can be determined by drawing the polygons for

joints 5 and 6.

Fig. loi represents a case where the reactions can be

determined at stage (2) of the analysis, but determina-

tion of the reactions is not essential for the construction

of the stress diagram. The truss is supported by a shelf

A and a tie B. The stress diagram can be constructed

by drawing in succession proper polygons for joints i, 2,

reaction at B is determined by the polygon for joint 5; that at A by the

polygon for joint 6.

* The student is urged to make sketches of the bodies (parts of truss) upon which the

forces, whose polygons are being drawn, act. A force acting upon the "cut" end of a mem-

ber and toward the joint is a push, and the stress in the member is compressive; if the force

acts away from the joint, it is a pull, and the stress is tensile.

Fig. 100
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Fig. 102 shows a truss the analysis of which is not fully provided for in the

directions. Thus, suppose that the reactions have been determined; the

polygon for joint i may be drawn first, next that for joint 2, and then that for

joint 3. Similarly the polygons for joints i', 2', and 3' can be drawn; but

then no joint remains at which there are but two unknown stresses, and so

no more polygons can be drawn, as yet. If in any way the number of un-

known stresses at a remaining joint could be reduced to two, then the polygon

for that joint could be drawn, and the stress diagram could be completed.

Thus, if the stress in ij, jm^ or mf could be determined, then the polygon for

joint 4 could be drawn, and then those for 5, 6, 7, and 8.

1000, lbs.

1000 lb5.
I

1000 lbs.

1000 lbs.
I . ® ^®

d §^

500 lbs.

The difficulty here pointed out is just like that mentioned under the direc-

tions in § I of the preceding article. It may be met by means of the direction

in § 2 of that article, which explains how to determine the stress in a par-

ticular member quite directly and independently of any stress diagram or

polygons for joints. Thus to determine the stress in w/we pass a section as a,

and solve the external system of forces (including stresses in the members

cut) which acts upon either part of the truss for the desired stress. Then we

proceed with the stress diagram as already pointed out. There are other

ways of meeting the difficulty presented in this form of truss, but that here

explained is quite general and can be applied readily to other forms.

We will now explain this matter in detail, using the same truss. Evidently
each reaction equals one-half the total load. ABCDEE'D'C'B'A 'FA is a clock-

wise polygon for the loads and reactions. The polygon for joint i is FABGF;
that for joint 2 is GBCHG; that for joint 3 is FGHIF. The polygons for

joints i', 2', and 3' are B'A'FG'B', C'B'G'H'C, and H'G'PrH' respectively.

The forces acting on the part of the truss to the left of section a are the loads

at joints i, 2, 5, and 6, the left reaction, and the forces exerted on the left part

^
of the truss by the right (stresses el^ Im, and mf). This system may be solved

graphically or algebraically; the algebraic method is much the simpler, arms

of forces being scaled from the truss drawing. Thus to ascertain the stress

; mf, we take moments about the intersection of el and Im, and get 1000 X
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7.5 + 1000 X 15 + 1000 X 22.5 + 500 X 30
—

4000 X 30
—

{mf) X 17.5
=

o,

or mf = 3425 (tension). Next we represent the stress mf in its proper place

in the stress diagram at MF, and then draw the polygon for joint 4; it is

MFIJM. Completion presents no difficulties.

< 17. Simple Frameworks (Crane Type)

The fjames here considered, like the trusses of the preceding articles, are

plane and symmetrical with respect to the plane of the frame. For example,
the crane represented in Fig. 103 consists of a post MN, a boom PQ, and a

brace KQ\ the boom consists of two pieces between which the post and the

brace lie, and the brace is forked at its lower end by means of side pieces

and straddles the post. Like the trusses, these frames are assumed to be pin

connected, the pins being practically frictionless. Thus each pin pressure

lies in the plane of the frame, and the hne of action cuts the axis of the pin.

UrJike the trusses, these frames may include a member which is pinned to

others at more than two points; the loads also on these frames are applied

an)rwhere, not at the joints necessarily. The result of these conditions is

that the stress in any member of the frame is generally not a simple tension

or compression, the member being bent as well as stretched or shortened.

We will not attempt to determine the stresses in the members of these frames

but Umit the discussions to a determination of the forces which act upon
each member, the pin pressures, reactions of supports, etc.

In general the pressure of a pin on a member does not act along the axis

of that member. Take, for example, the brace (diagonal) (Fig. 103) ;
it is

N

Fig. 103

acted upon by three forces,
— its own weightW and the pin pressuresK and Q.

These three forces must be concurrent or parallel (Art. 10, § 2). If they are

concurrent, then neither K nor Q is axial or else both are; but obviously both

K and Q cannot be axial and then balance W, and so neither acts axially. If

they are parallel, then neither K nor Q acts axially.

In some consideration of frameworks, the weights of some or all members

are negligible in comparison with other forces (loads) which act upon the

frame, and so we may have to do with a. member acted upon by only two

forces,
—

pin pressures. On such a member, the pin pressures do act along the
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axis of that member, since the pressures balance each other and so must be

colinear (Fig. 103).
'

"
Analysis of a crane

" means the determination of every force (magnitude

and direction) acting on each part or member due to weight of the crane or

loads on it or both. The general method of procedure may be briefly summa-

rized as follows: (i) Make a sketch of the entire crane, and represent as far

as possible all the external forces acting upon it; apply the appropriate con-

ditions of equilibrium to the force system, and then determine as many of

the unknowns as possible. (2) Make a sketch of a member or of a combina-

tion as they are on the crane, and represent as far as possible all the external

forces acting on it; then apply the appropriate conditions of equilibrium to

the force system, and then determine as many of the unknowns as possible.

(3) If other forces remain to be determined, then continue as directed in

(2), bearing in mind the law of
"
action and reaction

"
(Art. 11). We will

now give two examples of analysis employing both algebraic and graphic

methods.

Example (i).
— We analyze the crane represented in Fig. 103; the crane

is supported at M and N by sockets in the ceiHng and floor. MN =18,

PQ =
14, MP = NK =

3 feet; it bears a load of 8 tons on the boom at

16 feet from the axis of the post; weights of members neglected. Fig. 104

8tons

t y
8tons

K
7.11tons

Ln^"

N

tons

Fig. 104

(at the left) represents the entire crane with all external forces, the senses of

the reactions being quite obvious. The solution of this system falls under

Art. 13. SifAT
= o gives M= 7.1 1 tons; since SFx = o, iVx = 7.11 tons;

and since ZFy = 0, Ny=S tons. We sketch the brace KQ next. Since

it is a two-force member, the pin pressures K and Q are axial, equal, and

obviously have senses as shown. The common value of K and Q cannot be

determined from a consideration of their equilibrium. Next we sketch the

boom. Q on the boom and Q on the brace constitute an action and reaction,

[

and so are coHnear, opposite, and equal; the pressure at P is unknown in

direction, and in an algebraic solution can be dealt with most easily through

I

its components Px and Py, senses guessed at. Solution of this system falls



66 Chap, ni

under Art. 13. Since 2ilfp= o, Q = 14.05 tons; since SF^ = o, Px = 10.67

tons; since 'EFy
=

o, Py= —1.14 tons, the negative sign indicating that Py

acts downward. Finally, P = ^(10.67^+ 1.14^)
=

10.73 tons, and the in-

clination of P with the horizontal is tan"^ (1.14 -^ 10.67)
= ^° j'l ^.nd now

all the forces on each member are determined, those on the post being

represented in^the figure.

Generally, several sketches may be made and considered in several differ-

ent orders, each furnishing a complete analysis. For example, we might have

taken the entire crane, the boom, and the post; or the brace, the boom, and

the entire crane. The student is advised to try these orders and make the

analysis.

The graphic method of solving the various force systems may be carried out

as follows: The system acting on the entire crane consists of four forces, and

so the resultant of any pair of the four forces, as Nx and Ny, balances the other

pair; therefore that resultant is concurrent with the second pair and acts in

the line 1-2 (Fig. 105). So we draw the force triangle ABCA for those three

8tons-.(/

v////^////////„. Ceiling

forces (making AB represent 8 tons), and find that BC represents M and CA
the resultant of the first pair. Next we resolve CA into components parallel

to iVx and iVy, and find that CD and

DA represent iV^ and iVx respectively.

The forces on the boom being three in

number (the load, Q, and P), they must

be parallel or concurrent, and because

two (the load and Q) are concurrent,

all must be; thus the line of action of

P is determined. So we may draw the

force triangle EFGE for the three forces,

making EF represent 8 tons; thus we

find that EG = P and OF = Q.

Example (ii).
— For another illus-

tration, we analyze the hydraulic crane represented in Figure 106. It consists

of a hollow post MN (up into which the piston can be projected) a boom PQ,

.±.

Floor

Fig. 106
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and a pin-connected frame KPQ. A single roller is mounted on the pin K,

and two on the pin P, so that as the piston moves the frame moves with it,

all rollers roUing on the post. Thus there are twelve parts: a post, a boom,

two struts KP (one on each side of the post), two ties KQ (one on each side),

a pin at P, one at Q, one at K, two rollers at P and one at K. We take the

load as 10 tons and x = 15 feet, and neglect the weights of the parts.

Fig. 107 represents the entire crane, not

including the piston, with all the external

forces acting upon it. 2Fx = o shows that

M = Nx, and SM^v = o shows that M =

(10 X 1 5) -^ /f where h = height of post. L and

Ny cannot be found from this force system; so

we try the frame with rollers (Fig. 108) . The

external forces acting on it are the load, the
^ * ^°^

piston pressure L, the post pressure Ri against the single roller, and the result-

lOttons

Fig. 108

H
10
[tons

lOitons

Fig. 109

ant post pressure R2 against the lower rollers. The solution of this system
falls under Art. 13; it shows that L = 10 and Ri = R2= 21.4. tons. Fig. 109

represents the boom alone and the external forces acting upon it,
— the load,

the piston pressure, the pin pressure Q (acting along the ties because each is

a two-force member), and the pin pressure P whose direction is unknown.

The solution of this system falls under Art. 13. DeaHng with the unknown

components of P (senses guessed at), we find from ^Mp = o that Q =
25.2

tons; from "EFx = o that Px = 24 tons; and from XFy = o that Py= 7.2

tons.

^V
%

21A

^ nt

The pin at K (Fig. no) is subjected to three forces, namely, the pull of

the two ties (25.2 tons), the pressure

of the roller (21.4), and the force F
exerted by the struts (along the axis

of the struts, since each is a two-

force member). From ZFy = o we
find that F =

7.8 tons. Fig. no
also represents the post with all

Since SFy = o, iVj,
=

o; IIMn = o gives

M =
7.14; and SFx = o gives Nx =

7.14. We have now determined all the

forces on each part; each tie is subjected to end pulls of 12.6 tons; each strut

to end pushes of 3.9 tons; the pin at P to three forces as shown in the figure.

iNy'O

Fig. I 10

the external forces acting upon it.
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The graphical solutions of the various force systems might be carried out

as follows: Four forces act on the portion of the crane shown in Fig. in,—the

load ID tons, the pressures L, Ri, and i?2. The resultant R oi L and R2 acts

through their intersection and through that of Ri and the load, hence in the

line 1-2. The load, Ri, and R are in equilibrium; so we draw a closed force

polygon for^them as ABCA (Fig. 112); AB = 10 tons, BC =
21.4, and CA

Rj
10 tons

Fig. Ill Fig. 1X2

represents R. Finally we resolve R into its two components; CD and DA
represent L and R2 respectively. There are four forces acting on" the boom,

namely, the load =10 tons, L = 10 tons, the pin pressure P, and that at Q
(Fig. 113). Obviously the pressure Q acts along the tie rod. The first pair of

forces named constitute a couple; and since a couple can be balanced only

by another couple, the second pair is a couple and P is parallel to Q, and the

resultant of each pair therefore acts in the Hne 1-2. We now draw a Hne

through B (Fig. 112) parallel to Q, and one through A parallel to 1-2; then BE
represents Q and AE represents the resultant of L and P. Finally, there are

three forces acting on the pin at P, namely, R2 (or CB), —P (or BE), and

the pressure of the braces KP (Fig. in). These three forces being on equi-

librium, the last one is represented by EC.

Example (iii).
—We now make an analysis of a crane taking into account

the weights of the members. For this purpose we take the crane described

in example (i) and assume that the weights of members are as follows: MN =
0.8 ton, PQ = 0.9 ton, and KQ =1.1 tons. The load is taken, as in example (i),

to be 8 tons at 16 feet out from the axis of the post, and the boom 22 feet long.

Fig. 114 shows the entire crane and aU the external forces acting upon it

so far as known. Determination of the unknown reactions M, Nx, and Ny

presents typical problem (v) (Art.

8.09tons
12), From XMm = o we get

Nx = 8.09; from XFx = o, M =

8.09; and from XFy = 0, Ny =
10.8. Fig. 115 represents the

post and all the external forces

acting upon it so far as known.

The pressures on the post are

exerted by members which are

not two force members, and

therefore those pressures do not

0.9tons
tons

B.09

0.8 tons

Fig. 114

^0"^
lO.OStons

Fig. lis

act in the directions of the boom and brace. The directions of those pres-

sures being unknown, we represent each by its (unknown) horizontal and
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vertical component. The force system acting on the post contains four

unknowns, namely, Px, Py, Kx, and Ky. Not all of these unknowns can be

determined from a study of this system alone; but two of them, Px and Kx,

can be so determined. IIiMk = o gives Px = 12.13, and 2Fx = o gives Kx =

12.13 tons.

Fig. 116 shows the boom and the forces acting upon it so far as known.

The direction of the pressure at Q is unknown as yet; therefore that pressure

is represented by means of its (unknown) components. Determination of the

J2.l3ton5<-

9.65 toa»-

IZ.13
tons

0.9 tons
I ^ 8 tons

K^-—^12.13tons

Fig. 116 Fig. 117

unknowns in the force system presents typical problem (v). 2Fx = o gives

Qx = 12.13 tons; SMq = o gives Py = 0.95; and SFy = o gives Qy = 9.85.

Having found the value of Py, we find from XFy = o for Fig. 115 that Ky =

10.95 tons. To check the analysis, we might supply values of the forces

acting on the brace (Fig. 117), and then test whether the force system is

balanced, that is, whether 2Px = o, ZFy = o, and 2M = o.

18. Cranes.— Continued

In this article we show how to analyze three cranes, paying some attention

to the forces due to the hoisting rig. Generally, a pulley is an important part
of such rig. We assume here that the tensions Pi and P2 (Fig. 118) in the rope
or chain on opposite sides of the pulley on which it bears

are equal. This assumption imphes perfect flexibility of

rope or chain and a frictionless pin supporting the pulley.

The pressure P against the pin equals the resultant of

those tensions, or 2 P cos § a, and it bisects the angle
between their Hues of action. If the Unes of action are

parallel (a = o), P = 2 P; if they are at right angles

(a = 90°), P= 1.414P.
Fig. 118

Example (i).
—

Fig. 119 represents a crane supported in a footstep bearing
i at the floor and a collar bearing on the wall bracket H. The hoisting rig con-

sists of a simple hand winch mounted on the waU at W, a chain, and pulleys

as shown. Pulley at G is 12 inches in diameter; the load is one-half ton.

The reactions at the supports depend on the hoisting rig, as will be seen from

the following: On the entire crane, including the top pulley (Fig. 120), there

i are acting four forces, namely, the upper reaction H, the lower reactions P,
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and Py, and the pressure of the chain against the pulley equivalent to two

components, one-half ton each, as shown. Taking moments about the lower

end, we find H to be 0.087 ton; from SF^, = o and ZF^ = o, we find that

5ton

Fig. 119 Fig. 120

Px = 0.413 and Py = 0.5 ton. All members except the vertical HP are simple
tension or compression members. Force polygons for joints G and / show

that the stresses are as follows: GK =
0.35 ton (tension); GJ = i ton (com-

pression); JK =
0.57 ton (compression); JP = i ton (compression). Mem-

ber HP is subjected to the reactions of the supports as already computed, and

the following forces: a puE of 0.35 ton along KG; a push of 0.57 ton along KJ;
and a push of i ton along PJ.

Example (ii).
—

Fig. 121 represents a common type of derrick. It is sup-

ported by a footstep at the bottom of post and at the top by two stiff legs

''w////7//^//////////////

which extend backward to the ground or other base; the spread (angle be-

tween their horizontal projections) being 90 degrees so that the derrick can

swing about its vertical axis through 270 degrees. Sometimes the derrick is
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supported at the top by a collar bearing held in place by cables extending oflF

to quite remote points on the ground.

Obviously the pull on a stiff leg is greatest when the boom is in the same

plane with that leg; the pull on a cable is greatest when that cable and the

boom are in the same plane and on opposite sides of the post. Let P denote

this pull, and a the incHnation of the cable to the horizontal or the incKnation

of the Hne joining the pivot on the post with the lower end of a stiff leg. Then

taking moments of all external forces on the derrick about the footstep bear-

ing, we get Ph cos a = Ws^ or P = Ws/h cos a (only the weight of the load

being taken into account). CaUing the horizontal and the vertical reactions

at the footstep H and V respectively, we find that H = Ws/h and F = PT+
P sin a = W{i + tan a •

s/h).

There are seven forces acting on the part shown in Fig. 122, which consists

of the crane post, the winch W, the two sheaves S, and a part of the hoisting

and topping ropes as shown. The forces are: H, V, and P (already explained) ;

Q, the pressure of the boom on the post acting in a direction as yet unknown;

I W, approximate value of the tension in the hoisting rope; T, which denotes

the tension in the topping rope; and 2 T, exerted by the top pulley shackle.

Of these seven forces, all except Q and T are already known. To find these

we may proceed as follows : Take moments of all the forces about the pin at Q,

and thus find T; then take horizontal and vertical components, and thus

find the horizontal and vertical components of Q, and finally Q itself. The
force system can be solved graphically as follows: First find the line of action

of the resultant R of the two forces T and 2 T; then this R and the other five

forces constitute a system in equilibrium, which solve for R and Q by methods

explained in Art. 13; finally resolve R into its components T and 2 T.

Example (iii).
—

Fig. 123 represents a sheer leg crane. It consists of two

front legs AC and BC and a back leg CD, all connected by a horizontal pin
at C; the front legs are pin-supported on

the ground at A and B, and the back leg ^^^^^/f
is restrained at the ground by a holding- .^^^/ h
down rail and a long horizontal screw which ..^^^/^S^ /
works in a nut on the lower end D. The ^^^ y^^-~~^^..,._ L.^-

purpose of the screw is to move D, thus
r^ ,^^^-—^^"~"^^^^^l^..

turning the front legs about AB and moving
~=^=— ^^^

the load in and out. We will now show how
to determine the pressures on the ends of the legs due to their own weights,

taking the following data: lengths of front legs 160 feet, distance between

their lower ends 50 feet, distance between their upper ends 10 feet, length

of back stay 210 feet, weight of each front leg 44 tons, of the back leg 53

tons; we take the crane in its position of greatest overhang, 64 feet.

The external forces acting on the crane are the following (see Fig. 124):

the three weights, the holding-down force Dy, the push of the screw Dxj the

inward pushes At and Bz of the supports at A and B, and the pressures of the
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pins at A and B; each of these pressures is represented by two components
in the figure, Ax, Ay, and Bx, By, respectively. There are six conditions of

equiHbrium for this system, namely, the sums of the components of the forces

along the x, y, and z axes, and the sums of the moments about those axes

equal zero. Thus,
—

I^Fx = Ax + Bx- Dx = o

'fFy
= Ay -{-By- Dy- S3- 44- 44 =

2F, = -^,+ J5, =

XMx= -Ay X 25 + 5„ X 25 + 44 X IS
- 44 X 15

= o

ZMy= AxX2S- BxX2S = o

Silf,= Dy X 87.6 + 53 X 11.8 - 44 X 32 X 2 = o

(i)

(2)

(3)

(4)

(5)

(6)

Equation (6) shows that Dy= 2$ tons; (4) shows that Ay = By; from these

results and (2) it follows that Ay and By equal S3 tons. No other unknowns
can be determined from the equations; but (3) shows that Az = B2, (5) that

Ax = Bxy and (i) that Ax + Bx = Dx.

Fig. 124

To get values of these unknowns we consider the forces acting on the back

leg; there are four forces, namely, the weight of the leg (53 tons), the holding-

down force Dy (25 tons), the screw pressure Dx, and the pressure of the upper

pin at C, represented for convenience by two components which we call Cx and

Cy (Fig. 125). This system is in equilibrium and so XMc =
25 X 151.6

—

Dx X 145-2 + 53 X 75-8
=

o> or Dx = 53-8 tons; SF^ = Cx- 53-8
=

o, or

^x = 53-Sj ^^^ ^^v = ^v ~"
25
~

53
=

o, or Cy = 78. Returning now to

equations (i) and (5), we find that Ax and Bx = 26.9. To get Az and Bg it is

necessary to discuss the forces on one of the front legs. There are three

forces,
— the weight 44 tons, and the pressures at the ends; each of the pres-

sures is represented (Fig. 126) by three components, 26.9, S3, and Bg below,

and Qx, Qy and Qg above. The system being in equilibrium, we take moments

about the vertical Hne through Q; thus Bg X 64.
—

26.9 X 20 = o, or Bg =

8.41 tons. Inspection shows that Qx — 26.9, Qy = 39, and Qg = 8.41 tons.
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Z6.9tons

The forces acting on the upper pin (at C) are represented in Fig. 127, by
means of their components.

We now give another solution of the foregoing example,

making use of the principle that if the forces of a system
in equilibriimi

b e represented

by vectors, then

the projection of

those vectors on Fig. 127

any plane r^ppresents a force system
also in equihbrium (Art. 10 under

(vii)). Projecting the force system

represented in Fig. 124 on the three

coordinate planes, we get the three

systems represented in Fig. 128,
—

side elevation, end elevation, and

plan. From the side elevation,

I^iMa = o gives Dy — 2% tons;

IIiMd = o shows that Ay = By;

and SFy shows that Ay-\- By =

166, ox Ay and By = 83 tons. No further numerical result can be obtained

from these projected systems. Considering the back leg alone as before, we
would find that Dx = 53.8 tons; then from the plan Ax= Bx obviously,

and Ax + Bx= 53.8, or Ax and Bx = 26.9 tons. Az and Bz would be

gotten as before.*

* For full information on cranes, see Bottcher's book on that subject, English translation

by Tolhausen.

Side Elevation.

|53.8tons

End
Elevation.

Fig. 128

i



CHAPTER IV

FRICTION

'19. Definitions and General Principles

§ I. f)EriNiTiONS, Etc.— When one body slides or tends to slide over an-

other, then the sHding of the first or its tendency to slide is resisted by the

second. Thus,, if A (Fig. 129) is a body which slides or tends to slide toward

the right over B, then B is exerting some such force

2iS Ron A, and the component of R along the surface

of contact is the resistance which B offers to the sliding

or tendency. Of course A exerts on 5 a force equal
and opposite to R\ either of these equal forces is

called the total reaction between the two bodies. TheFig. 129

component of either total reaction along the (plane) surface of contact is

called friction^ and the component of either along the normal is called normal

pressure; they will be denoted by F and N respectively. If the surface of

contact of the two bodies is not plane, the force exerted at each elementary

part of the surface is the total reaction at that element, and its components in

and normal to the element are the friction and the normal pressure at the ele-

ment. Friction is called kinetic or static according as sliding does or does not

take place. Only static friction is considered here.

The amount of static friction between two bodies depends upon the degree
of the tendency to slip. Thus suppose that A (Fig. 130) is a block weighing
10 pounds, upon a horizontal surface B\ that the block is subjected to a hori-

zontal pull P, and that the pull must exceed 6 pounds to start the block.

Obviously when P = 2 pounds say, then F =
2; when P = 4 pounds, then

P = 4; etc., until motion begins. So long as P does not exceed 6 pounds, F

equals P; that is, F is passive and changes just as P changes. The inclination

of the reaction R also depends on the degree of the tendency to slip. When
P = 2 pounds, then the angle NOR = tan~^ f^ = 11° 19'; when P = 4 pounds,

74
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NOR = tan~^ t% = 21° 48'; etc., until motion begins. The greatest values of

the friction F and the angle NOR obtain when motion impends.

The friction corresponding to impending motion is called limiting friction.

We will denote it by Fm, since it is a maximum value (see Fig, 130). The

coefficient of static friction for two surfaces is the ratio of the limiting friction

corresponding to any normal pressure between the surfaces and that normal

pressure. We will denote it by /z; then

M = Fm/N, or F„, = fiN; also, F > ,jlN.

The angle offriction for two surfaces is the angle between the directions of the

normal pressure and the total reaction when motion is impending. We will

denote it by </> (see Fig. 130) ;
then

ta,n<f>
= Fm/N; hence tan0 = fi.

If a block were placed upon an inchned plane, the inclination at which slipping

would impend is called the angle of repose for the two rubbing surfaces; it will

be denoted by p. The angles of friction and repose for

two surfaces are equal; proof follows: Suppose that A \

(Fig. 131) is on the point of sliding down the incline;

two forces act on A, its own weight W and the reaction ^/
R of the plane. Since A is at rest, R and W are colinear, \^
that is, R is vertical; and since motion impends, the <0-^-^

angle between R and the normal is the angle of fric-
^^^' ^3^

tion (/). It follows, from the geometry of the figure, that and p are equal.

The coefficient of static friction for two bodies A and B may be found in

several ways: (i) Place ^ on ^ as in Fig, 130, and determine the pull P which

will just start A\ then
fj,
= P divided by the weight of ^. Or (ii) tilt B, and

determine the inclination at which gravity will start A down; then
jjl equals

the tangent of that angle of inclination. In either method several determina-

tions must be made to obtain a fair average. Many experiments have been

made in these ways, and it has been ascertained that coefficients of static

friction depend on the nature of the materials, character of rubbing surfaces

and kind of lubricant, if any be used. Early experimenters reported (Coulomb

1871, Rennie 1828, Morin 1834, and others) that the coefficient is independent
of the intensity of normal pressure; and although this announcement was

clearly subject to the limitation of the range of the experiments performed,

yet it was generalized and long accepted as a universal law of friction. But
the universaUty of the law has been questioned; Morin himself pointed out

that length of time of contact of the two bodies influences the coefficient; and

obviously the coefficient changes when the intensities of pressure get so low

that a considerable part of the friction is due to adhesion, or so high as to affect

the character of the surfaces in contact. Messiter and Hanson report* prac-

*
Eng. News, 1895, Vol. 33, page 322.
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tical constancy of coefficient for yellow pine and spruce. They give the

following for planed or sandpapered (i) yellow pine and (2) spruce.

(i) ju
=

0.25 to 0.32; average ju
=

0.29 for 100 to 1000 lbs. persq. in.

(2) /z
= 0.18 to 0.53; average ij,

= 0.42 for 100 to 1600 lbs. per sq. in.

The variation depends on relation of grain of wood to direction of slide.

Coefficients of Static Friction

(Compiled by Rankine from experiments by Morin and others.)

Dry masonry and brickwork 0.6 to 0.7

Masonry and brickwork with damp mortar 0.74

Timber on stone about 0.4

Iron on stone 0.3 to 0.7

Timber on timber 0.2 to 0.5

Timber on metals 0.2 to 0.6

Metals on metals 0.15 to 0.25

Masonry on dry clay 0.51

Masonry on moist clay 0.33

Earth on earth 0.25 to i.o

Earth on earth, dry sand, clay, and mixed earth 0.38 to 0.75

Earth on earth, damp clay i.o

Earth on earth, wet clay 0.31

Earth on earth, shingle and gravel 0.81 to i.ii

§ 2. Tractive Force.— Let W = the weight of a body A upon a horizontal

surface B (Fig. 132), /^
= the coefficient of friction for the surfaces in contact,

= their angle of friction, and P a force applied to the body as shown, 6 being
the inclination of F to the horizontal. Then the force F required to start the

body to move is given by
fiW Wsin<f)F =

cos -\- fjL sin"^ cos (6
—

0)

Fig. 132

\e
4

Fig. 133 Fig.. 134 Fig. 13s

The forces acting on A are P, TF, and the reaction of the plane whose two

components are N and (when motion impends) Fm. (Fig. 133). Now P cos =

Fm, N = W — F sin Q, and Fm =
iJ-N] these three equations solved simul-

taneously furnish the first stated value of F. The second value can be ob-

tained from the first, or by solving the three-force system acting on A as repre-

sented in Fig. 134. According to Lami's theorem (Art. 10), F/W = sin 0/sin

(90 -f
-

0) ;
hence P = PF sin 0/cos (B

-
<i>).
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If the pull P is horizontal (6
=

0), then P = fiW. If the pull is inclined,

but not too much, then the pull P required to start the body may be less than

IjlW. In fact the least value of P obtains when d —
<t>,

— "the best angle of

traction equals the angle of friction,"
— and the minimum value of the pull

is IF sin 0. Proofs follow: (i) Evidently W^sin</> -J- cos (0
—

(f>), the general

value of P, changes as d changes, and, for a given W and 0, P is least when

cos (d
—

0) is greatest; but this greatest value is i, and obtains when 9 —
<f)
=

Oy

or when d =
<f>

cLS stated, etc. (ii) Or, let AB (Fig. 135) represent W, BC be

parallel to P, and ^C be parallel to R; then CA represents R. If 6 be changed,

then BC (and P) will change; and evidently P will be least when BC is per-

pendicular to CA, that is, when ^ = </>. And then BC (or P) = W sin (/>.

§ 3. Test for Rest or Motion.— A body is supported so that it can slip

and is subjected to given forces; it is required to ascertain whether those forces

do cause slipping, and the value of the friction is desired. We assume that

the body is at rest, and determine the friction F and the normal pressure N
from conditions or equations of equilibrium; then we compare F with fxN,

If F is less than fiN, there is no motion and the computed value of F is correct;

if F is greater than fxN, then there is motion and the friction is kinetic, its

value being less than jjlN. For example, consider a block of material weighing
100 pounds supported on a horizontal surface, the coefficient of friction being

J, and imagine a down push of 200 pounds applied to the block at an angle of

30 degrees with the vertical. N = 100 + 200 cos 30 = 273.2, and for rest,

F = 200 sin 30 = 100; nN = i X 273.2
=

136.6, and this is the greatest fric-

tional resistance which the support can offer so long as N =
273.2. Only

100 pounds are required to prevent motion, and so the body is at rest under

the action of friction of that required value.

Or, to test for rest or motion, we may make use of the so-called cone of fric-

tion for the two bodies in contact, which may be described thus: Let P (Fig.

136 or 137) denote the resultant of all the forces

applied to or acting on the body A (whose

state is to be investigated) but not including

the total reaction of the supporting body B;
O the point where P cuts the surface of con-

tact between A and B, and DOC equal the

angle of friction; then the cone generated by

revolving OC about OD is the cone of friction.

If the line of action of the resultant P does

not fall outside the cone (Fig. 136), then there

is no slipping; if it does fall outside (Fig. 137),

then there is slipping. Proof follows: As

already pointed out, the direction of the total reaction R on a. body, which

tends to slide over another, depends on the degree of the tendency; the greater

the tendency, the greater the inclination of R from the normal; but the in-

clination has a limit, that limit being equal to the angle of friction, and it
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obtains when slipping impends. Therefore when P acts within the cone or

along an element of it, then R can incline and completely oppose P (Fig. 136),

no matter how large P may be. When P falls outside the cone, R can incline

only to an element, and the friction cannot successfully oppose the component
of P which tends to move the body (Fig. 137). In the preceding example P
is the resultant of the weight of the block 100 pounds, and the applied push
200 pounds. "That resultant makes an angle of 10°

t,^)' with W or the normal.

The angle of friction is tan"^ |, or 26° 34'; hence P falls inside the cone and,

according to the principle of the cone, motion does not ensue.

As another application of the cone principle consider Fig. 138, which repre-
sents (in plan and elevation) a type of simple hanger. It consists of a fixed

vertical rod and a horizontal piece which is

forked; there is a hole in each part of the

fork so that the piece can be slipped over the

rod as shown in the elevation. The hanger,
if properly made, will not slip down along the

rod on account of its own weight or that of a

load unless it be hung quite close to the fork.

The mechanics of the device may be explained

as follows: Obviously the rod reacts on the

hanger at Oi and O2. When slipping impends
at these points, the reactions act along OiCi

and O2C2 inclined to the normals an amount

equal to the angle of friction as shown.

The hanger being at rest (by supposition), the third force acting upon it

(the load, weight of hanger neglected) must be concurrent with these two

reactions; hence to just put the hanger on the point of slipping, the load

must be hung from a point in the vertical through C. If the load is hung
out beyond C, as at A, the hanger will not slip. For suppose slipping to

impend at Oi, then R at Oi would act along OiCi, and R and W would concur

at a. To preserve equilibrium, R at O2 must also act through a, which

is possible, since O^a is within the cone. Or suppose slipping to impend at

O2, then R at O2 would act along O2C2, and R and W would concur at m. To

preserve equilibrium, R at Oi must also act through m which is possible. In

similar manner, it can be shown that a load hung between the rod and C, as at

B, would cause slipping.

Fig. 138

20. Friction in Some Mechanical Devices

§ I . Inclined Plane.— Let a. = the inclination of the plane to the horizontal

(Fig. 139), p = angle of repose for the plane and a particular body upon it,

</>
= their angle of friction, fi

= coefficient of friction, W = weight of the

body, and 6 = angle between the push or pull P and the incline, (i) The pull

P required to start the body up the plane is given by

Pi = W sin {a + 4>)/cos (9
-

0)
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as can be shown by means of Lami's theorem (Art. 10) applied to the three

forces acting on the body (P, W, and the reaction R of the plane). Thus

Pi/W = sin {a + 0)/sih (90
— + ^) ; hence, etc. Pi is a minimum (for given

W, a, and <t>)
when = 0; then its value is W sin (a + 0). For, it is ob-

vious that Pi is least when sin (90
— + 6) is greatest, that is, when = 0.

(ii) When the inclination of the plane is greater than the angle of repose

(a > p = 0), then the body would slip down unless pre-

vented by a suitable force. The pull P required to prevent the

slipping down is given by

P2 = Wsm(a- 0)/cos (6 + 0).

P2 is a minimum when 6 = —cj); then its value is W X
sin (q!

—
0). (iii) When the inclination of the plane is less

than the angle of repose (a < p = 0), then the body would not sUp down
on account of its own weight. The push P required to start the body down
is given by

P3 = Wsin (0
-

a)/cos (0 + B).

Pz is a minimum when = — 0; then its value is W sin (0
—

a).

When the force P acts along the plane {6
=

o), then the values of Pi, P2, and

Pz are respectively.

Fig. 139

W sin {a + 0)

cos
W sin {a

—
0)

COS0
W sin (0

—
a)

COS0

§ 2. Wedge.— In order that the force P (Fig. 140) may start the wedge in-

ward to overcome the load W, the friction at the three rubbing surfaces must
be overcome also. If the three rubbing contacts are equally rough and =
their common angle of friction, then the force P required to start the wedge
inward is given by

Pi = Trtan(2 + a).

wm///m//\(m7//////m/////

Fig. 140 Fig. 141 Fig. 142

Fig. 141 represents the three forces W, Pi, and Ri acting on the block M\ also

the three forces Ri' (= P2O, ^3, and P acting on the wedge. The angles which
'

Pi, P2, and P3 make with their normal components equal 0, since motion im-

pends, by supposition. In Fig. 142, ABCA is a triangle for the forces acting
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on M, AB representing W\ and CBDC is a triangle for the forces acting

on the wedge. The given formula for Pi may be derived from these triangles

by solving for BD, which represents Pi. From the first triangle {R2 = R2')

/W = cos <^/sin {go
—

({)

— a —
<f>) ,

or R2 = P2'' = W cos 0/cos (2 </> + a) ;

from the second triangle P\/{R2 — R2") = sin (2 </> + a)/cos ^. Therefore

Pi = (i?2'
= R2") sin (2 + q:)/cos

= it tan (2 + a).

If the wedge angle a is less than 2 <^, the wedge will not slip out under any
load W even when there is no push P; that is, the wedge is self-locking. The
force required to pull the wedge out, that is to lower the load Wj must equal

PF tan (2
—

a), when a> <t> (guide at right of Af),

or

TF sin (2
—

a) -i- cos a, when a < cf) (guide at left of M).

In order that the force Q (Fig. 143) may overcome the resistances TF, the

frictional resistances at the four contacts must be overcome also. If the con-

FiG. 143 Fig. 144 Fig. 145

tacts are equally rough and = their common angle of friction, then the force

necessary to start the wedge down is given by

ft =
2W

cot ((/) + a)
— tan <f>

Fig. 144 represents the forces Q, Ri, and R2' acting on the

wedge, and the forces acting on M and N. Each of the

reactions R makes -with its normal component an angle

equal to (motion impending). In Fig. 145, ABCA is

a triangle for the forces acting on M, AB representing

W, ACDA is a triangle for the forces acting on the

wedge. The given formula for Qi can be derived from

these triangles by solving them for DA^ which represents

Qi.

If the wedge angle 2 o: is less than 2 0, then the wedge
would not slip out under any pressures W even when there

is no push Q; that is, the wedge is self-locking. The force

required to pull the wedge out (M and N guided above) is

given by

o
^^

^'
cot (<j>- a) + tan <t>
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§ 3. Screw.— Fig. 146 represents a simple jackscrew much used for raising

and lowering heavy loads through short distances. In the simpler forms,

the screw is turned by means of a lever stuck through a hole in the head E
of the screw. There is frictional resistance between the screw and the nut,

also between the cap C and the head of the screw, unless the load can turn

with the screw. Let P = the (horizontal) force apphed to the lever; a =
the arm of P with respect to the axis of the screw; W = load on the cap;

r — mean radius of the screw, \ (n + r2); a = pitch angle
= tan~^ Qi-^ 2 irr);

and =
angle of friction = tan~V> where ix

= coefficient of friction. Dis-

regarding the friction between the cap and head of the screw, the moment

required to raise the load (or move the screw against W) is given by

p^a= Wrt8in(<t>-\-a),

If the pitch angle is less than the angle of friction, the load would not turn the

screw; that is, the screw is self-locking. The moment required to lower the

load (or move the screw with W) is given by

P2a = TFrtan(0- a).

Jackscrews are always made self-locking, the pitch angle a being between 4 and

6 degrees generally. With a = 4 degrees and = 6 degrees (/x
=

o.i),

Pia = 0.18 Wr and P2a = 0.035 ^''•

Derivation of formulas for Pi and P2: At each point of contact between

the screw and nut, the latter exerts a pressure whose normal and tangential

component we call dN and dF respectively, (i) When the screw tends to

rise, dF acts downward on the screw as shown at A
;
the vertical components

of the forces dN and dF are, everywhere, dN cos a and dF sin a, and their

horizontal components are dN sin a and dF cos a. Taking the sum of the

vertical components of all the forces acting on the screw and the sum of the

moments of the forces about the axis of the screw, we get

SFy = -PF - i:{dF . sma) -f i:(dN • cosa) =
o, and

Sif = Pa- X(dF -cosa-r)
-

i:{dN -sina-r) = o.

When slipping impends, dF = fjdN andP becomes Pi; substituting these values

in the two equations gives

W =
(cos a — fjL sin a)'ZdN, and Pia = r(sin a + /x cos a)'EdN.

Division of these and substitution of tan
(f> for fi furnishes the value of Pi.

(2) When the load is lowered dF is changed in direction as at 5; also the direc-

tion of the pull on the lever is changed. Therefore, changing Pi to —P2 and

to —0 in the formula for Pi, we get the formula for P2.

To allow for the friction between the cap and the head of the screw, let ju
=

the coefficient of friction, and R = the effective arm of the friction there with

respect to the axis of the screw. (If the surface of contact between the cap
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and the head were flat and a full circle, R would equal two-thirds the radius

of the circle. But the contact is generally a hollow circle, as in Fig. 146, and

then R is practically equal to the mean radius.) The friction moment at the

cap is jjWR;

(i) for raising the load. Fa = Wr tan (0 + a) + fjWR,

X2) for lowering the load, Pa = Wr tan (0
—

a) + /jWR.

§ 4». Journal in Worn Bearing.— Fig. 147 represents, in section, a journal

in a worn bearing, wear much exaggerated; the contact between the two is

along a line practically. When the journal is about to turn clockwise and slip,

then the bearing exerts a reaction R', making an angle (the angle of fric-

tion for the surfaces in contact) with the normal ON; when the journal is

about to turn counterclockwise and slip, then the bearing exerts a reaction

R'' inclined at an angle with ON, but on the other side. If the radius of the

journal is r, then the perpendicular from the center to R' and R" equals r sin 0,

and the circle of radius r sin <f)
with center at the center of the cross section of

the journal is tangent to R^ and R'\ This circle is called the friction circle for

journal and bearing. For smooth contacts sin nearly equals tan or /z, and

hence the radius of the circle practically equals iir.

Fig. 148

We use the friction circle as an aid to fix upon the line of action of the re-

action between journal and bearing when motion impends; the line is tangent
to the circle. For example, consider the bell crank shown in Fig. 148, the

journal being ij inches in diameter and the coefiicient of friction 0.3; the re-

quirement is to determine the least force P, acting as shown, which will over-

come Q (that is, start the bell crank to turn clockwise), and the pressure on the

bearing then. The radius of the friction circle is f sin tan~^ 0.3
= 0.18 inch.

Since there are but three forces acting on the bell crank (P, Q, and R), they

are concurrent, that is, R acts through O; but R is also tangent to the circle

as shown, and so its line of action is known. To determine the values of P
and P, we draw AB to represent Q by some scale, and lines through A and B

parallel to P and R to their intersection C; then BC and CA represent the

magnitudes and directions of R and P respectively.

(Which one of the two tangent lines to take can be determined by trial.

Thus, trying ON, the contact between journal and bearing would be at N, and

the tangential or frictional component of the pressure on the journal would
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be as shown, not consistent with the assumed tendency to slipping. Obvi-

ously the other tangent is the correct one, and on investigating for the friction

component of R when acting at M we find that such component is consistent

with the assumed tendency to slip.)

The force P which would just permit Q to start the bell crank to turn counter-

clockwise could be determined in a similar way. Then R would act along the

tangent ON, and P would be represented by C^A. When P has any value

between CA and CA, then slipping does not impend, and the line of action

of R cuts the friction circle.

When a link L (Fig. 149) of a machine or structure is pinned to other parts

or members, and there is slipping or tendency to slipping at the pins, then the

pressure exerted by each pin on the link does not necessarily act through the

center of the pinhole there. If slipping impends, then the line of action of

the pressure is tangent to the friction circle; and if the link is a two-force

member (only the two pin pressures acting on it), then the two pressures are

colinear and must act along a line which is tangent to both friction circles.

Which one of the four tangents to take in a given case depends upon the direc-

tion of the tendency to slipping at each pin, and whether the link is under ten-

sion or compression. To ascertain the correct tangent, try any one as the line

of action of the two pin pressures R, and then investigate the i?'s for their

frictional components to ascertain whether the directions of those components
are consistent with the directions of slip; only one tangent will satisfy all

Fig. 149

the conditions for a given case. For example, suppose that the tendency is

for a to increase and /3 to decrease; if the pressures put the Unk under tension,

then the two pressures act along tangent number i at points Ai and A2, and
if the pins put the link under compression then the two pressures act along

tangent number 2 at points Bi and B2.

The deviations of the various tangents (lines of action of the pin pressures)

from the axis of the link depend on the diameter of the friction circle and the

length of the link. Generally the diameter is so small compared to the length
of the link that the deviation is small, and one may safely take the axis of

the link as the line of action of the pin pressures so long as the link is at rest

and for all states of tendency to slip.

§ 5. Belt or Coil Friction.— Fig. 150 represents a cylinder about a part
of which a belt or rope is wrapped. If the cylinder is not very smooth, then
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the pulls Pi and P2 may be quite unequal without causing slipping over the

cylinder, as may be easily verified by trial. When slipping impends, then the

ratio of these pulls depends on the coefficient of friction and on the angle of

wrap. If P2 = the larger pull, ji
= the coefficient of friction, a = the angle

of lap expressed in radians, and e = base of the Napierian system of logarithms

(2.718), then'as proved below,

P2 -^ Pi = ef^.

For a given value of Pi, P2 increases very rapidly with a as shown by Fig.

151, which is the polar graph of the foregoing equation, P2 and a being the vari-

ables, e= 2.718, )Li
taken as J, and Pi = OA. The following table gives values

of the ratio P2/P1 for three values of the coefficient of friction and for twelve

values of the angle of lap.

Maximum Ratios P2/P1 (Slipping Impending)
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Integration gives

log. P2
-

log. Pi = m, or P2 = Pie^.

8S

hence,

For an example consider the band-brake shown in Fig. 154. It consists of

a rope or other band wrapped part way around a brake wheel PT, the two ends

of the band being fastened to the brake lever L\

the lever is pivoted at Q. Obviously any force as

F tightens the band, and if the wheel tends to turn

(on account of some turning force, not shown),

then P induces friction between wheel and band.

We will now show how great a frictional moment

(origin in the axis of the wheel) the force F can

induce. Let M = the moment, P2 = the larger

tension in the brake band (on the side as marked
when the wheel tends to rotate as indicated). Pi = the smaller tension, r =
radius of the wheel, a\ = arm of F\ with respect to Q, ^2 = arm of P2, and

a — arm of P. Consideration of the forces acting on the brake-strap shows

that M =(P2 — Pi)r; consideration of forces acting on the lever shows that

Fa = Pifli + P2fl2. For a given P, M is greatest when slipping impends, and

then P2 -i- Pi = e**". These three equations solved simultaneously show that

M = Pa{ef^- i)r -^ {a^e^^ -j- ai).

Fig. 154

For example, let P = 75 pounds, a = 10 feet, /z
=

J, a = 320° ( 5-5

radians), r =
2> f^^t, ai = 2 feet, and (h = 9 inches. Then a -5- 2 tt = about 9,

and e**" = 4.115 (see table on preceding page) ;
and

ilf = 75 X 6 (4.1 1 — i) 3 -^ (f X 4.11 + 2)
= 765 foot-pounds.



CHAPTER V

CENTER OF GRAVITY

21. Center of Gravity of Bodies

§ I. It is shown in Art. 7 that the resultant of two parallel forces Fi and F2

acting at two points A and B of any body cuts the line ABm.2, point F so that

AP/PB = F2/F1 (Fig. 155). This proportion fixes the position of P, and

since the proportion is independent of the angle between AB and the forces, P
is also, so independent. Therefore ii AB were a rod and Fi and F2 the weights

of two bodies suspended from A and B, then the resultant R of Fi and F2 would

always pass through the same point even if the tilt of the rod were changed

slowly so as to leave the suspending strings parallel. Furthermore, if three

parallel forces be applied at definite points A, B, and C of a body (Fig. 155),

and if R denotes the resultant of Fi and F2 as before and R' the resultant of

R and F3 (and so also the resultant of Fi, F2, and F3), then CP'jPP' = i^/Fs.

This proportion fixes P' (in CP'), and it is independent of the angle between

the forces and the plane of ABC. Therefore M AB and CP be two rods rigidly

fastened at P, and Fi, F2, and F3 the weights of bodies suspended from A
Bj and C, then the resultant of the three forces would always pass through P
if the rods were slowly turned about leaving the strings parallel. And so if

any number of parallel forces have definite points of application on a rigid

body, the resultant of the forces always passes through some one definite point

of the body, or of its extension, when the body is turned about so as not to

disturb the parallelism of the forces. This unique point is called the center

or centroid of the parallel forces.

The forces of gravity on all the constituent particles of a body constitute a

parallel force system having definite points of application; therefore all those

forces have a centroid. That is, the resultant of the forces of gravity on all

the particles of a body (its weight) always passes through some one definite

point of the body, or of its extension, no matter how the body is turned about;
86
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of gravity of the whole wire are: x = 177.5 w -i- 43 w =
4.13 in.; y = 148 w -^

4SW =
3.44 in.; z = 192 le; ^ 43 w = 4.47 in.

w
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mainder of a body with respect to any plane equals the moment of the whole

minus the moments of the parts taken away.

(iii) As an example, we determine the center of gravity of a cylinder of cast

iron (specific weight 450 pounds per cubic foot) with a conical recess in one

end and a cylindrical hole in the other, shown in section y
in Fig. 1 59. The weights of the complete solid cylinder,

of the cone, and of the small cylinder, all as of cast iron,

are given under W. The coordinates of the center of

gravity of the solid cylinder and of the parts are given

under x and y (see Art. 24 for information on cone), and

the moments with respect to the yz and zx planes are

given in the last two columns. The weight of the

actual piece of cast iron is 327.5
—

(41 + 26.2)
=

260.3

pounds; the moments of the piece equal 1637.5
—

(205.0 + 78-6)
=

1353-9 and 2620 - (61.5 + 314.4)
=

2244.1 inch pounds respectively. For the piece of cast

iron, therefore, x = 1353.9 -^ 260.3
=

5.2, and y =

2244.1 -i- 260.3
= 8-6 inches.

Part.
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then the horizontal distance from the center of gravity to the knife-edge is

W'a/W. In this manner the horizontal distances of the center of gravity
from several knife-edge supports can be got and the center of gravity located.

The distance of the center of gravity of a body from the plane through three

points of the body, can be determined if the body can be supported at the points
and if certain weighings can be performed as described. Let A, B, and C
(behind B and not shown) be three such points of the body (Fig. i6i); a = dis-

tance of A from the line joining B and C; W= weight of the body; W =

weight recorded by the scale when A, B, and C are at the same level as shown

Fig. i6i Fig. 162

in Fig. 161, and W" — weight recorded by the scale when A is higher than B
and C by any amount h (Fig. 162). Then the distance y of the center of gravity

from the plane ABC is given by

y==—h ^^-
Proof: From the first position it is plain that W'a = Wx; from the second

it follows that W"a cos 6 = W(x cos ^ — y sin 6). Solving these simultane-

ously we get y = {W - W) (a cotd)/W; but cot 6 = Va^ - h^ -^ h, hence,

etc.

22. Centroids of Lines, Surfaces, and Solids

§ I. Lines, surfaces, and (geometric) solids have no weight, and therefore

they have no center of gravity in the strict sense of the term as defined in the

preceding article. However, we do speak of the center of gravity of those geo-

metric conceptions; and we niean by the term, the center of gravity of the line,

surface, or volume materialized, that is, conceived as a homogeneous slender

*
wire, thin plate, or body, respectively. The center of gravity of a line, surface,

or solid is sometimes spoken of as the center of gravity of the length (of the

line), area (of the surface), and volume (of the solid). The term centroid has

been proposed as a substitute for center of gravity when applied to lines, sur-

faces, and solids as being more appropriate; the new term is given preference

in this book.

If a given line, surface, or solid is imagined as materialized, then we can

apply the principle of moments (Art. 21) to it. Thus, ii W = the weight of

the whole materialized line, surface, or solid, Wi, W2, W3, etc.,
= the weights

of all the parts into which we imagine it divided, x = the coordinate of the

i
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center of gravity of the whole with reference to some convenient reference

plane, and Xi, X2, Xi, etc. = the coordinates of the centers of gravity of all the

parts respectively, then

W^ = Wixi + W2X2 + 1^3:^3 + • • •
.

But the weights W, W\, W2, W3, etc., are proportional to the respective lengths

(L, Li, L2, Lz, etc.) or areas {A,Ai, A2, A3, etc.) or volumes (F, Vi, V2, F3, etc.),

as the case may be; and therefore it follows from the preceding equations that

for lines, Lx = LiXi -\- L2X2 + L^xz + * • •

,

for surfaces. Ax = AiXi + A2X2 + ^3^3 + • * •

,

and for solids, Vx = Fi:ri + 72^1^ + ¥3X3 + • • •
.

The foregoing formulas can be rendered conveniently in a single statement

of words or proposition by means of a new term which we now define. The

moment of a line, surface, or solid with respect to a plane is the product of the

length of the line, area of the surface, or volume of the solid and the coordinate

of the centroid of the line, surface, or solid with respect to that plane. (The

moment of a plane line or surface with respect to a plane perpendicular to

the plane of the line or surface is also called its moment with respect to the

line of intersection of the two planes.) The proposition or principle of mo-

ments, then, is this: The moment of a line, surface, or solid with respect to any

plane equals the algebraic sum of the moments of the parts of that line, surface,

or solid into which we imagine the whole divided, with respect to that same

plane.* The principle of moments can be used to determine the centroids of

all geometrical bodies which can be divided up into parts whose magnitudes
and centroids are known. Three examples follow:

(i) Let it be required to locate the centroid of the line

represented (heavily) in Fig. 163, the curved portion being
a circular arc; given that each coordinate of the centroid

of the arc is 6.366 inches (Art. 24). Let x denote the x

coordinate of the centroid of the line; then taking moments
about OY (the length of the line = 35.7 inches), 35.7 i =
10 X o + 10 X 5 + 15.71 X 6.366, or ^ = 4.20 inches.

Obviously, the y coordinate also equals 4.20 inches. ^^^

(ii) Let it be required to locate the centroid of the shaded area in Fig. 164,

which represents the cross section of a "channel" (a form of steel beam much
used in construction). We consider the section as divided into a rectangle,

0.40 by 15 inches, and two trapezoids. The distance of the centroid of either

trapezoid from its longer base is given by 3 (0.90 + 0.80) -r- 3 (0.90 -f- 0.40) =
1.3 1 inches (Art. 24). The second column of the adjoining schedule gives the

areas of the parts; the third, the centroidal coordinates with respect to the base

* Of course these moments have nothing to do with turning effects like the moment of a
force with respect to a line or a point. To distinguish these moments, the former are some-
times called statical moments, not very appropriately, however.

10-
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of the section; and the last, the moments with respect to that base. The dis-

tance of the centroid of the entire section from the base is 7.70 -^ 9.8
=

0.79
inch.

Part.
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quadrant have been taken away; given that the centroid of the triangle is

2 inches from OY and 4 inches from YC, and that the centroid of the quadrant
is 2.54 inches from OX and CX (see Art. 24). The areas, centroidal coordi-

nates, and moments appear in the adjoining schedule. The area of the shaded

portion is 144
—

(36 + 28.27)
=

79.73 square inches, and the moments of the

shaded part with respect to the y and x axes are 864
—

(72 + 266.9)
—

S^S-i

and 864 — (288+ 71.8)
=

494.2 cubic inches respectively. Therefore ^ =

525.1 -^ 79.73
=

6.59, and y = 494.2 -^ 79.73
= 6.20 inches.

Part
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(i) Circular arc; radius = r and central angle = 2 a (Fig. 167). The radius

which bisects the central angle is a line of symmetry, therefore the centroid is

on that line; if that line is taken as x axis, then 3;
= o. The length of the arc =

2 ra {a expressed in radians), dL = rd4>, and a; = r cos 0; therefore formula (i)

becomes

2 rax 'i: £r defy r cos 4> =r^ I cos<^^<^ = 2r2sina; or x = (r sin a.) -v- a.

(ii) The preceding problem will now be solved without using polar coordi-

nates. Since x^ + y^
=

r^, xdx -{• ydy = Oy or dy = — {x dx)/y. Hence

and

dL = Vdof+df = dx Vi + jcV/ = dxr/y = dxr/Vr^ - x^,

dx
2 rax

/'
JT r ^dx , .xdL=2r I —y===2r^sina; etc.

«^rcoaaVr2— ^2

Fig. I68

(iii) The parabolic segment AOBA (Fig. i68); altitude = a and base = b.

Evidently the axis of the parabola is a line of symmetry, and therefore it

contains the centroid. If that line be taken as the x axis, then y = o. Let

X and y be the coordinates of any point P on the parabola; then the area of the

elementary portion shaded is 2y dx. Since the area of the segment is f ab,

and the equation of the parabola is 4 ay^
=

b^x, formula (2) becomes

abx = 1 2ydx'X = —^ I

Jo -vaJo
x^dx = - ba^'.

5

and X = -ba^ -T- -ab
5 3

of them (infinite); then the mean ordinate is {x\ \- X2 -\- xz -{-
• •

*) -i- n\ also, let Q = the

length, area, or volume of the line, surface, or solid, and dQ = the length, area, or volume of

the equal elementary portions; then the mean ordinate equals •

{x{+ xt+ '

'^)dQ

ndQ Q
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(iv) Circular sector (Fig. 169); radius = r and central angle
= 2 a. The

radius which bisects the central angle is evidently a line of symmetry, and so

the centroid is on that line. If that line is taken as x axis, then y = o. The

area of the sector equals r^a, a expressed in radians; dA —
pd(l)'dp, where

p = OP and P is any point in the sector. Therefore formula (2) becomes

I pd<l>dp'X= I I p d(t> dp • p cos
(f);

«/—a «yO U—a

J - /2 » • \ . / 2 \ 2 r sin a
and x = \-r^ sma] -^ [r^a]=

(v) Conical or pyramidal solid; altitude = o (Fig. 170). We take the origin

of coordinates at the apex, and the x axis perpendicular to the base; OMNO
represents the projection of the cone or pyramid on the XY plane. We imagine

the soUd divided into plates or laminas parallel to the base; if the area of the

base is called A, say, then the area of the lamina represented is Ax^/a^y and the

volume of the lamina is dx •
Ax^/a^. And since the volume of the solid is J ^a,

formula (3) becomes

-Aax = 1 {dx • Ax^/a^) x = A/a^ / x^dx =
;

3 *^o Jo 4

Fig. 169 Fig. 171

hence, x—\a, that is, the perpendicular distance from the centroid to the

base equals one-fourth the altitude. Evidently, the centroid of every lamina

lies on the line joining the apex and the centroid of the base; therefore the

centroid of all the laminas (that is, the solid) lies on that line.

(vi) Octant of a sphere; radius = r (Fig. 171). Obviously x = y = z'yx\s,

given by

I {dx dy dz)x.

Evaluating the integral and substituting for V its value, |7rr^, we find that

§ 2. Surfaces and Solids of Revolution.— For surfaces, we use formula

(2) and select as element the surface described by an elementary part of the
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generating curve MN (Fig. 172). Let the x axis be taken coincident with the
axis of revolution; then the area described by a part of the generating curve

of length ds is 2 wy ds. The centroid of

this area is in the x axis, and its x coor-

dinate is the X in the figure; hence if A
stands for the area of the surface of

revolution,

x= 2Tr
I yds'X, or x = -^ I xyds.

Fig. 172 Fig. 173

The limits of integration must be assigned
so that each product ,xy ds will be in-

cluded in the integration.

For solids, we use formula (3), and
take as element that volume generated

by an elementary part of the generating

plane MFN (Fig. 173) which is included between two lines perpendicular to

the axis of revolution. Thus, if the x axis is taken coincident with the axis of

revolution, then PQqp generates the elementary volume, or dV = tt {yi
—

y^) dx. Now the centroid of this elementary volume is in the x axis, and its

X coordinate is the x in the figure; hence if V denotes the volume of the solid

of revolution, then

Vx = T
I (y2^

—
yi^) dx'X, or i = t? / (yi^

—
yi^)x dx.

The limits of integration are to be assigned so that each product (^2^
—

yi^)x dx

will be included in the integration.*

* Theorems of Pappus and Guldinus. — These relate primarily to the determination of

the area and volume of a solid of revolution; they involve the centroid of the generating curve

or plane, and are therefore mentioned in this place, (i) The first theorem states that the

area of a surface of revolution generated by a -plane curve revolved about a line in its plane

equals the product of the length of the curve and the circumference of the circle described by
the centroid of the curve. Proof: Let MN (Fig. 172) be the generating curve, L = length
of the curve, y — the ordinate of the centroid of L from the axis of revolution, and A = area

of the surface generated. Then

A = i 2iry dL and yL = i y dL.

Combining these equations we get A = L 2 iry, which is the proposition in mathematical

form. (2) The second theorem states that the volume of a soHd of revolution generated by a

plane figure revolved about an axis in the plane equals the product of the area of the figure and
the circumference of the circle described by its centroid. Proof: Let MPN (Fig. 173) be the

generating plane, a = area of the plane, y = the ordinate of the centroid of a from the axis

of revolution, and V = volume of the solid generated. Then

V = i ir{y-?
—

yi^) dx, and from eq. (2), ay = i (y2
—

yi) dx | (yz + yi).

Combining these equations we get V = a 2 iry, which is the proposition in mathematical form.

To illustrate, we determine the area of the surface generated by revolving the circular arc

ABC (Fig. 175) about AC, and the volume of the soUd generated by revolving the figure
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For an illustration imagine the quadrant XY (Fig, 174) rotated about OX
so as to generate a hemisphere. The positions of the centroids of the surface

and soUd generated could be computed as follows: (i) The area of the hemi-

sphere is 2 irr^, X = r sin (j), y = r cos
(j),

and ds = r d<f); hence for the area

X

x= (2^-7- 2 7rr2) j xyds = r
j

sin <^ cos ^ = J r.

Fig. 174 Fig. 175 Fig. 176

(ii) The volume of the hemisphere is f irr^, yz
= r cos

<!),
x = r sin 0, and dx ==

r cos <})d4>; hence for the volume
IT

X = {it -^ 3 Trr^) / W —
o) xdx = (3 r/2) I cos^ sin(^ c?</)

= f r.

§ 3. The centroid of an irregular plane surface or figure can be determined

graphically or experimentally. The graphical method requires the use of a

planimeter or other device for measuring an area. Let aaa'a^ (Fig. 176) be

the figure whose centroid is to be located, (i) Take OX and YX' on opposite

sides of the figure at any convenient distance I apart, (ii) Project any width

of the figure as aa on YX'; connect projections bb with any point on OX as

Q, and note the intersections cc. (iii) Repeat (ii) for other widths as a'a', and

then connect all points like c by a smooth curve, (iv) Measure the area A '

included by this curve, and the area A of the given figure. Then A'I is the

(statical) moment of A with respect to OX (proof follows), and hence the dis-

tance from OX to the centroid \sy = A'l^A. Proof: Let w = any width

of the figure as aa, and vj' the corresponding width cc of the derived curve; then

the moment of A with respect to OX is

ywdy— j
Iw' dy = I I w'dy = lA',

To determine the centroid experimentally cut a piece of stiff cardboard into

the shape of the irregular figure, and find its center of gravity by balancing
as explained in Art. 21; this point locates the centroid sought.

ABCA about AC. The length of the arc = 10.47 inches; the distance of its centroid from

AC =
0,89 inch (Art. 24) ;

hence A = 10.47 X 2 x X 0.89
= 58.5 square inches. The area of

ABCA =
9.06 square inches; the distance of its centroid from AC = 0.54 inch; hence V =

0.06 X 2 7r X 0.54 = 30.7 cubic inches.

The theorems A = L 2iry and V = a 2iry can be used also for computing y ii A and L,
or V and a (as the case may be), are known.
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24. Centroids of Some Lines, Surfaces, and Solids

Circular Arc (Fig. 177).
— C is the centroid; its distance from the center is

(r sin a)/a, the divisor a to be expressed in radians (i degree = 0.0175 radian);

?MA the distance is also rc/s, where s = arc. If the arc is flat

then the distance of its centroid from the chord is nearly

f h\ the discrepancy is less than one-half per cent for

arcs whose central angle 2 a is less than 60 degrees.

When the arc is a semicircle, then the distance from

the centroid to the center is 2 r/ir
= 0.6366 r. When the

arc
is_

a quadrant, then the distance to the center is

2 r ^2/^ = 0.9003 r, and the distance to the radii OA and

OB is 2 t/tt
=

0.6366 r.

Triangle.
— The centroid is at the intersection of the medians; its per-

pendicular distance from any side equals one-third the altitude of the triangle

measured from that side. If Xi, 0C2, and X3 are the coordinates of the vertexes

with respect to any plane and x the coordinate of the centroid, tHen x =

{x\-{-X2-\- X3).

Fig. 177

T—
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^ Sector of a Circle (Fig. 183).
— C is the centroid; its distance from the center

is f (r sin a)/a, the divisor a to be expressed in radians (i degree = 0.0175

radian) ;
the distance also equals f rc/s, where 5 = arc.

A

Fig. 181

When the sector is a quadrant, then the distance of the centroid from the

center is 4 V2 r/3 tt = 0.6002 r; and the distance to the radii OA and OB is

4 r/2, IT = 0.4242 r. For a semicircle the distance from diameter to centroid

is 4.r/^T = 0.4242 r.

Fig. 183

Sector of a Circular Ring (Fig. 184).

center is

Fig. 185

The distance from the centroid to the

2 R^ — r^ sin a

SR^-r^ ~or'

the divisor a to be expressed in radians (i degree = 0.0175 radian).

Segment of a Circle (Fig. 185).
— The distance from the centroid to the

center is

(^ _ 2 r^ sin^ a

12 A 3^
where A denotes the area of the segment. ^ = r^ (2 a — sin 2 a), the first

a to be expressed in radians (i degree
= 0.0175 radian).

Ok "la ""^
\<
—"••• a

Fig. 187
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The Area Shaded in Fig, i86, included between a quadrant and the tangents
at its extremities. The distance of the centroid from the bounding tangents
is 0.223 r, and the distance to their intersection is 0.315 r.

Parabolic Segments (Fig. 187).
—

Ci and d are the centroids of the shaded

parts. Their distances from the sides of the inclosing rectangle {a X h) are

marked in the figure.

Elliptic Segment (Fig. 188).
— The centroid of the segment XAAX coincides

with the centroid of the segment XaaX of the circumscribed circle; the cen-

troid of the segment YBBY coincides with the centroid of the YhhY of the

inscribed circle.

Fig. 188 Fig. 189

Right Circular Cylinder (Fig. 189).
— C is the centroid; its distance from

the axis of the cylinder is | (r^ tan a)/hj and its distance from the base is

hh-\-\ {r'^ tan^ a)/h. When the oblique top cuts the base in a diameter of

the base (lower part of Fig. 189), then the distance from the centroid to the

axis is -i^ irrj and to the base 3^2 ^ra.

Cone and Pyramid.
— The centroid of the surface (not including base) is on

a line joining the apex with the centroid of the perimeter of the base at a dis-

tance of two-thirds the length of that line from the apex. The centroid of the

solid cone or pyramid is on the lines joining the apex with centroid of the base

at a distance of three-fourths the length of that line from the apex.

Frustum of a Circular Cone.— Let R = radius larger base, r = radius smaller,

a = altitude. The distance of the centroid of the curved surface from larger

base is ^ a(R -{- 2 r)/(R -\- r) ;
from smaller base ^ a(2 R -f r)/(R -j- r);

from a plane midway between bases | a{R — r)/(R + r). The distance from

the centroid of the solid frustum to the larger base is v/

i a{R? + 2 i?r
J5r2)/(i?2

-f i?r -f r").

^
Frustum of a Pyramid.

— If the frustum has regular bases, let R and r be

the lengths of sides of the larger and smaller bases, and h the altitude; then

the distance of the centroid of the surface (not including bases) from the larger

base is \h{R-\- 2 r)/(R-{- r). Whether the bases are regular or not, let A
and a = the areas of the large and small bases and h the altitude; then the

distance of the centroid of the solid from the larger base is

\h{A-\-2 VAa + 3 a)/(A -f VAa+a),

I
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Obelisk and Wedge (Fig. 190).

centroid to the base AB is

The distance from the

^h{AB + Ab+aB-{-s ah)I {2 AB + Ab + aB-\-2 ah).

If ft
= o the solid is a wedge, and the distance from the

centroid to the base is

\h{A + a)/{2A^'a),

Fig. 190
Sphere.

— The centroid of any zone (surface) of a sphere

(Fig. 191) is midway between the bases. The distance of the centroid of a

segment (solid) (Fig. 192) from the base is \ h{^ r — h)/ {t^t
—

h)] when h= r

(hemisphere) then the distance is | r. The distance of the centroid of a sector

(solid) (Fig. 193) from the center of the sphere is f (i + cos a) r = f (2 r — /f).

^^^
Fig. 192 Fig. 193

Ellipsoid.
— Let the three axes be taken as Xy y, and z coordinate axes, and

o, 6, and c to denote the semi-lengths of the corresponding axes of the ellipsoid;

the centroid of one octant of the solid is given by ^ = f a, y = f 6, and 2 = f c.

Paraboloid of Revolution, formed by revolving a parabola about its axis.

Let h = height of the paraboloid, the distance from its apex to the base, then

the distance from the centroid of the solid to the base is | A.



CHAPTER VI

< SUSPENDED CABLES (WIRE, CHAIN, ETC.)

•: 25. Parabolic Cable

§1. Symmetrical Case.— When a cable is suspended from two points and

it sustains loads uniformly spaced along the horizontal and spaced so closely

that the loading is practically continuous, then the curve assumed by the

cable is a parabolic arc as will now be shown. The symmetrical case (points

of suspension at same level) will be considered first. Let AOB (Fig. 194) be

the cable suspended from A and B, w = load per unit (horizontal) length,

a = span AB,f= sag, H = tension in cable at lowest point, and T = tension

at any other point Q (coordinates x and y). The forces acting on the portion

OQ are H^T, and the distributed load wx (Fig. 195); this load acts at mid-

length of X. Since the forces are in equilibrium, their moment-sum equals

zero for any origin of moments; hence moments about Q give Hy = wx{x/2)y

2H
or

w ,

(i)

This is the standard form of the equation of a parabola; the axis of the parab-

ola coincides with the y axis, and the vertex is at 0. If we substitute for

X and y their values for the point A (x
= a/2, and y =

J)^ then we get

aV4 =
(2 H/w) f, or H = wa^/Sf; hence equation (i) may be written

,,-4/-' =
^^'

or x\ (2)

A formula for the tension T at any point Q may be arrived at as follows:

Let <t>
=

slope of the curve at Q; then it is plain from Fig. 195 that

r sin = wx, and T cos = H. Squaring and adding gives

2^2 = ^2^2 ^H^ = ^2^2 _^ U)^a^/64P. (3)
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At the points of suspension, x — a/2, and the value of T at that point is

(4)

7 / 7
— —

The adjoining table gives values of T/wa for various values of //o, the sag

ratio (denoted by n in the table).

T/wa
I.O
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point, V and H' respectively
= the two components of T along AY and

AB. There are three forces acting on the part AQ, — its load wx, the

Fig. 196

tension T, and the tension at Q. The moment-sum for these three forces for

any origin equals zero; with Q as origin

- wx • x/2 + V'x - H' (QP) = o, or V'x - ^2/2 = H' (y cosB
- x sin 6), (i)

This is the equation of a parabola with the axis parallel to the y coordinate

axis.

To express the equation of the curve in terms of the dimensions a, 6, and

the vertical sag /i under the middle point of the chord AB:— The forces

acting on the entire cable consist of the load wa, the tension at A, and that at j

B, Their moment-sum with origin at B is 1

wa • a/ 2 — V'a = o;
"

hence V = wa/2, (2)

The forces on the upper half AC consist of the load wa/2, the tension at A
and that at C. Their moment-sum with origin at C is

hence H' =— F - + Hji cos ^ = o;
wa^

24 2

Substituting these values of V and E^ in (i) gives

8/1 cos ^

^(a-x) =y-xtsine,a
or y = (4/1 + *)

- -
4/1

(3)

(4)

The vertical distance of any point as Q below the chord AB is y
— tan 9;

hence if we let y' denote that distance, the foregoing equation can be put into

the more convenient form

4/1^y = (a
-

x). (S)
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The value of the slope at any point of the curve is (differentiating equa-

tion 4)

g -7-
— 4— •

ax a a a a

Let a and /3
= the slope angles at A and B respectively (where ic = o, and

X = a); then

tana = (6 + 4/1)A, and tan 18 = (b
—

4/1) /a. (6)

Let xo and 3/0
= the coordinates of the vertex of the parabola (where

dy/dx = o); then

xo = a(b-{- 4fO/Sf„ and yo
=

(b + 4/i)Vi6./i. (7)

Let H and V respectively
= the horizontal and vertical components of T.

Then (see Fig. 196)

I
H = H' cos^ = waysfi, and

V = r + H' sine = iwa (i + a tanS/^fi);

and since T^ = H^ -\- V^, we find that

-=i7;hH+WT=i-fe
sin^

, 1^
h I

2% J
(8)

where wi = sag ratio fi-r- AB = fi-^ asecd. The last expression shows

that for given w, a, and Wi, the tension T increases as the angle 6 is made

larger; also that for given w, a, and d, T increases as ni is made smaller.*

Length of the Parabolic Arc AB (Fig. 196).
— Let ai = the length of the

chord AB, fii
<=

sag ratio /i -^ ai, and h = length of the arc AB. Also let

ds = length of an elementary portion of the arc; then

ds = [i + {dy/dxy]Ux.

From the equation of the curve (4), we can get

This last value of dy/dx substituted in the foregoing expression for ds gives

ds = 5 1 + 8 wi f I — 2 -
j

2 wi
[
I — 2 -

J
+ sin ^ > secddx.

Now this equation is in the form ds ^ {1 -\- X) seed dx, where

X_= Sni{i — 2 x/a) [2 Hi (i
— 2 x/a) + sin 6].

* Let MN (Fig. 197) represent the load on the cable AB, and let

PO and QO be parallel to the tangents at A and B (Fig. 196) respec-

tively; then OMNO is a force triangle for the three forces acting on

the cable AB, and OM represents T and ON represents 5. It is

plain from the figure that OR tan a — 022 tan jS
= MN, or OR

(tan a - tan ^) = MN. But 0R = Tcosa = S cos /3, and MN = wa;
hence

T cos q; (tan a — tan jS)
= wa = 5 cos (tan a — tan 0).

Substituting the values of tan a and tan/3 given by equation (6), we
find that

r cos a = waySfi = S cos /9.
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Unless the sag is relatively large ds and sec 6 dx are nearly equal at all points

along the curve (see Fig. 196); hence (i + Z) is nearly equal to i at all points,

which means that X is small compared to i. Therefore, we may expand

{i -jr X) by the binomial theorem, and drop all terms except the first few

without serious error. Thus we have as a close approxunation ds = (i +
iX-iX^)se^.edx,

and h= r(i + iX-iX^)secddx,

Substituting for X and X^ their values, and integrating we finally get

/i
=

fli (i + 1 cos2^ . ui"
-

-'t^m'). (10)

If the approximation made in the derivation of formula (10) is not per-

missible in a given case, then one might determine the exact length of the

cable AB somewhat as follows when a, b, and/i are given: We first locate the

vertex O of the parabola of which the cable is a part from equation (7). The

vertex will be found either between A and Bj on the cable (Fig. 198), or

Fig. 198

beyond B (Fig. 199). Then we determine the length of the arcs AOA' and

BOB' by means of equation (5), §1, and finally the length h of the arcAB from

Zi
= i AOA' + i BOB' for Fig. 198, or h = i AOA' - ^ BOB' for Fig. 199.

For example take a = 800 feet, b = 300 feet, and /i
= 200 feet. Let xq and

yo
= the coordinates of the vertex. From equation (7)

Xo
(300 + 4X200)800 ^ ^ (300 + 4X200)^ ^

8X 200 ^^ ' -^"
16 X 200 ^' ^

Hence the cable hangs as shown in Fig. 200. The length AA' =
1348.6 feet

according to (5), (o
= iioo and n = 378.5 -J- iioo); the length BB' =

530.9

feet according to (5), {a = 500 and n =
78.5 -i- 500).

i X 1348.6 + i X 530-9
=

939-8 feet.

Hence AB =
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26. Catenary Cable.
»

§1. Symmetrical Case.— A chain or flexible cable suspended from two

points and hanging freely under its own weight or a load uniformly distributed

along its length assumes a curve called (common)

catenary. Let A and B (Fig. 201) be the points of

suspension of such a cable, C its lowest point, Q any
other point of the cable, s — the length CQ, R — ten-

sion at C, T = tension at Q,
=

slope of the curve

a,i Q,w = weight of load per unit length of cable, and

c = Si length so that cw = H or c = H/w. The forces

acting on CQ are H, T, and ws. Since they are in

equilibrium, T cos 4>
= H, and T sin 4>

= ws\ hence

tan <i>
= ws/H =

s/c. But tan =
dy/dx, therefore Fig. 201

dy/dx = s/c. (i)

Now since ds^ = dx^ + dy"^, {ds/dyY = {dx/dyY + i and {ds/dxY = i +
{dy/dxY\ also

\dyj s'
+ 1 =

c^ + s'
and

\dx)
i+-5 = c^ -\- s'

(2)

Integrating the first one of these equations we get y = (c^ -\- 5^)1 + A where

^ is a constant of integration. But y = c where 5 = 0, therefore A =
o,

and hence

^2
_

^2 _|_ ^5 or ^2
_

^2
_

^2^

Integrating the second differential equation we get

X = c log. + 1 = c sismh~^-,
c

the constant of integration being zero (x
= o when s = 6). From (3)

s = ^c (e^/'
-

e-^l^')
= c sinh - .

(3)

(4)

(5)

To obtain the cartesian equation of the catenary we combine (3) and (4)

or (3) and (5) so as to eliminate s. Thus squaring (5) and comparing with

(3) we get easily

(6)

or

y = ic {f''' + e-^'")
= c cosh-

y
X = C loge I

- =bs i\ = c cosh~^ (7)

The slope angle <f> at any point in terms of the coordinates of the point

{x,y,s) is given by

tan</)
=

s/c
= i {fl"

-
e-^/^)

= sinh {xjc), (8)
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See equations (i) and (5). And from equations (2) and (3), we get

sin<^ = sly and cos0 = cjy. (9)

It follows from the equilibrium equation T sin = ws and (9), that

T =
wy, (10)*

that is, the tension at any point Q equals the weight of a length of cable reach-

ing frem Q to the directrix OX. Hence T increases from C to .4. According
to the definition of c

n = wc. (11)

In passing, it may be noted that since J cos <^
= H, the horizontal com-

y ponent of the tension at any point Q = wc, constant

i, for a given suspended cable.

As in the preceding article, let a = span AB (Fig.

202), / = sag, and I = length of cable ACB. Any
two of the three dimensions a, I, and / determine the

catenary, as will be shown presently. For the point

A, X = ^ a, y = f -\- c, and 3 = ^1. Hence substi-

tuting in equations (3), (4), and (6) respectively we

get
Fig. 202

(/+c)» = ,2 + ip, or c/f
= Hl/fy-l (3')

I a = c sinh~^ (J l/c), or | a/c = sinh"^ (| l/c). (4')

and f-\-c = c cosh (J a/c), or / + (f/c)
= cosh (| a/c). (6')

When I and / are given (3O gives c, and then a may be gotten from (4') or

(6'). When a and / are given (6') determines c but the equation cannot be

solved directly,
—

only by trial or by some similar method; having thus

determined c, I may be gotten from (3O or (4'). When a and / are given,

(4O determines c (solution by trial), and then / may be gotten from (3') or

(6').

Inasmuch as these trial methods are generally long, computations on some

catenary problems may be facilitated by means of diagrams. In Fig, 203

the curves marked A give the relation between f/a and l/a for values of

f/a from o to 0.5 and (corresponding) values of l/a from i to about 1.50.

For example, let a = 800 feet and / = 160 feet. Then f/a = 0.20, and the

corresponding ordinate (over f/a = 0.20) to curve A reads i.io; hence

l/a = I.IO, and / = 800 X i.io = 880 feet (length of cable).

Most practical catenary problems involve the strength of the wire or cable

and the load per unit length of wire. For such problems we have, in ad-

dition to (3O, (4O and (60,
'

T =
w(f-\-c), or T/w=f+c, (11')

where T = the greatest tension (at the points of support), which should of
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course not exceed the strength of the wire. Most of these problems can be

solved by trial only,' unless a diagram is available. For example, given the

strength T of a wire, the load per unit length w, and the span a; required
the proper length of wire I. Here

T/wa = f/a + c/a. (i i")

This equation and (6') contain only two unknown quantities / and c, and the

two equations determine / and c. But they can be solved only by trial.

After/ and c have been ascertained, then I may be computed from (3') directly.

The curves marked B in Fig. 203 show the relation between f/a and T/wa.

1.00

.95

1.00 1.30

.90

| .80

75

.70

: ni : zzz z —-— -_
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§ 2. Unsymmetrical Case (points of suspension not on same level).
— The

cable uniformly loaded along its length hangs in an arc of a catenary. The
vertex C may be on the cable (between the points of suspension A and B) as

in Fig. 204, or beyond the lower point of suspension as in Fig. 205. In either

f
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of graphs showing the relation between jja and Tjwa (values at left-hand

margin) for the same ten slopes (r = tension at higher point of support and

w = weight of cable per unit length). To illustrate, let a = 200 feet, 6 = 40

feet, / = 240 feet, and w = 2 pounds per foot. On the curve for hja = 0,20

in the lower group, we find the point whose ordinate Ija = 1.20 and note

that the abscissa of that point is f/a = 0.385. Hence / = 200 X 0.385
=

77

feet. On the curve for h/a = 0.20 of the upper group, we find the point

whose abscissa is 0.385 and note that its ordinate T/wa =
0.90. Hence

T = 2 X 200 X 0.90 = 360 pounds.*

*
Fig. 206 was made from certain of the (more extensive) figures in Mr. Robertson's paper

mentioned in the footnote at the end of this chapter. The following is an explanation of

a method for the construction of such a figure. Let h = arc AC and h = arc BC (Figs. 204

and 205); also let yi and y2
= ordinates of A and B respectively, and ka and (i

— k)a = the

abscissas of A and B. Then ior A, x = ka, y = yi and s = li; ior B, x = (k
—

i)a, y = yi,

and s = h. Hence, substituting in equations (3) and (6) of §1, we get

''

I, and |'iV=f^r-i. (3Oe)'-(?)'-"
-

(t)'-(?)'-^
— = cosh k and ^ = cosh (k-i)-- (6')
c c c

^ '
c

At the higher point of support A (Fig. 203 or 204), y = yi\ hence according to equation

(11) §1, the tension at that point = wyx, and

— = yi = (yi\^[^\
^•

wa a \c ) \c J

This equation, (3') and (6'), constitute the basis of the method. We first assume a value

of k, say 0.6, and different values of a/c (say 0.02, 0.04, etc.); then (i) compute values of

yi/c and y2/c from (6') corresponding to those values of a/c (and k =
0.6); (ii) compute

the values of h/c and k/c from (3') to correspond; (iii) compute values of l/c from

l/c
=

{k/c) + {h/c); (iv) compute values of f/c iromf/c = {yi/c)
— i. Finally compute: h/a

from b/a = [{yi/c)
—

(72/^)] -J- {a/c) (see Figs. 203 and 204); l/a from l/a = {l/c) -^{a/c);

f/a [horn f/a =
{f/c) -^ {a/c); and T/wa from T/wa = {yi/c) -^ {a/c). (See schedule.)

\

1

a/c

u

yjc

Ul

y-z/c

IV

IJc

V

h/c

VI

l/c

vn

f/c

VUl

b/a

IX

l/a

X

f/a

0.6

S0.3

^^^—
7
—
")^
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§3. Approximate Solutions of Catenary Problems.— If the cable is

suspended from two points at the same level and the sag is small compared
to the span so that the slope of the catenary is small at every point, then the

load (weight) per unit length of span is nearly constant and equal to the

weight of the cable per xmit length. Hence the catenary coincides very

nearly with a, parabola of the given span and sag, and the formulas and re-

sults of the preceding article §1 (symmetrical case) may be applied to the

case here under consideration without serious error.

That the catenary agrees closely with a parabola can be shown otherwise

as follows: Expanding the exponentials in the equation of the catenary,

(6) §1, we get

e^l
c 2 c

2 +^ +2
3^3

and e-^/« =1-- + -^ — -:— +
c 2c^ 3 c^

hence the equation of the catenary may be written

X
Neglecting the higher powers of the small quantity -.

c

approximations

we have as close

y = c + x'^/2 c, or 2c{y- c).

These are equations of a parabola whose axis coincides with the y coordinate

axis and vertex c distant above the origin of coordinates.

If the supports A and B are not at the same level (Fig. 196) and the sag /
of the cable is small compared to the distance between the points of support,

then the slope of the catenary is nearly constant and the load per unit length

of horizontal distance is nearly constant {w sec d, where w = weight of cable

per unit length, and 6 = angle BAX). Hence the catenary coincides very

k = 0.7 say, and make computations i, ii, iii,.etc., as described; then plot three more curves

(Figs. 207, 208 and 209), Then we repeat for still other values of k.

From the three sets of curves (Figs. 207, 208, and 209) we pick out sets of corresponding

values of l/a, f/a and T/wa for the several values of b/a. Thus iorh/a =
0.2, we find the

adjoining tabulated values from the curves.
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nearly with a parabolic arc of the given (oblique) chord AB and sag /i, and

the formulas of the preceding article §2 (unsymmetrical case) may be ap-

plied to the cable imder consideration without serious error, it being under-

stood that w of §2 = (weight of cable per unit length) X sec d.

27. Cables with Concentrated Loads

§1. Weight of Cable Negligible.— Let Fig. 210 represent a cable ACB
suspended from two given points A and B, C being a given point from which

a load is suspended. If the cable can be "
laid out" in a drawing, the ten-

sions in ^C and BC can be determined easily by constructing the force tri-

angle PQRP for the load W and the two tensions. PQ = W according to

some convenient scale; PR and QR (parallel to ^C and BC respectively)

represent the tensions in ^C and BC. Or, if one wishes to avoid graphical

methods the two tensions (Ti and T2) may be computed by solving the tri-

angle algebraically. Such solution would give

Ti = W cos /3/sin {a -\- /3) and T2 = W cos a/sin (a -f- /3),

where a and ^ are the angles which AC and BC make with the horizontal

(Fig. 210).

20' t

4'
I

2000/bs.

Fig. 210 Fig. 211

When several bodies are suspended from given points on the cable, the

cable takes up a definite position, but it is not easy to determine the slopes of

the segments of the cable and the tensions. The difficulty lies in the alge-

braic computation. For example, consider the case represented in Fig. 211.

The given data are shown in the figure; the lengths are drawn to scale, but

the inclinations of the segments of the cable may not be correct, being un-

known as yet. Let the inclinations be called a, (3, and 7 as shown; and Ti, T2,

and Ts = the tensions in OA, AB, and BN respectively. At each point of

suspension of a load (A or B) there are three forces acting; at A, the load

1000 pounds, Ti, and T2, and at B, the load 2000 pounds, T2, and T^. Con-

sideration of forces at A and of those at B gives respectively

Ti cos a = T2 cos /3 and Ti sin a — T2sin0 = 1000

T2 cos jS
= Ts cos 7 and T2 sin jS -j- Ta sin 7 = 2000.
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It is plain from the geometry of the figure that

Scoso: + iocos/3 + 12 C0S7 = 20, and 8 sin a + 10 sin jS
— 12 sin 7 =

4.

These six equations may be solved simultaneously for the six unknowns

(Ti, T^y T3, a, (3, and 7) ;
the actual solution is not simple. For similar cases

with more than two loads, the work of solving the equations increases rapidly

with increasing number of loads.

Suspended loads can be chosen so as to hold points of suspension {A, B,

etc.) in certain definite positions. For instance let it be required to de-

termine Wij W2, etc., to hold a cable in the position shown in Fig. 212. We

Fig. 212

may assume any value for one of the weights and then compute the values

of the others. Thus taking Wi = 1000 pounds say, then we compute the

tension in AB from a force triangle for the three forces acting at A. PQXP
is such a triangle, where PQ = 1000 pounds (according to any convenient

scale) and PX and QX are parallel to OA and AB respectively; then XQ
represents the tension in AB. The next step is to find the value of W2 which

corresponds to such tension in AB; so we draw a force triangle for the three

forces acting at B one of which is the determined tension in AB. This force

triangle is XQRX, and so QR represents W2 and RX represents the tension in

BC. Finally, we draw the force triangle XRSX for the three forces acting

at C, one of which is the determined

tension in BC, and thus find that W3
is represented by RS. Obviously any
three weights Wi, W2, and Ws in the

proportion of PQ, QR, and RS would

hold the cable in the specified position.

§2. Weight of Cable Not Neg-

ligible.— It is assumed in the fol-

lowing discussion that the cable segments are quite flat so that they are

practically parabolic arcs (see preceding article §3). Then the weight of any

segment of the cable is practically the same as the weight of a length equal to

the chord of the segment. Let ABC (Fig. 213) be a cable supported at A and

C, a load being suspended from the cable at its middle point B. Given the

span AC = 2 a, the length of the cable = 2 /, the weight of the cable per unit
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length
= w, and the load = W; required the sag (depth of B below AC) and

the tension at A . This (apparently) simple problem is determinate but prac-

tically imsolvable on account of algebraic difl&culties. The equations are

easily set up. Thus let ai= the (unknown) length of chord AB,fi = the sag
of the cable below the chord as in Fig. 196, 5 = the tension and |8

= the slope
of the cable at B (Fig. 196). Then according to equations (10) and (6) re-

spectively of Art. 25, § 2

(i) L=l + ^ly(Ly and tan^=^^^^-li^. (.)

According to the footnote, on page 105.

Scos^= iwai/a)aysfi. (3)

From the three forces acting at B (W, S, and 5), it is plain that

2Ssm^ = W. (4)

These four equations determine the unknowns appearing in them, ai, /i, S, and

/3. Thus by division, the last two give tan jS
= 4 Wfi/wa'^; equating the two

values of tan /3 and transforming, we get

ai wa ai V \ai/ ai
^

This equation and (i) contain only two unknowns, the ratios {a/ai) and (/i/ai),

and the equations determine the ratios. Supposing the ratios determined we

may find ai since a is given, and then /i. Exact simultaneous solution of

equations (i) and (5) is impossible, but each equation may be graphed and

then the coordinates of their intersection would be the desired values of a/ai

^ and/i/ai.

I The converse of the preceding problem is much simpler. It is this: Given

the span AC = 2 a, the chord AB =
ai, the sag/i, and the weight of the cable

per unit length w, required the load W. Equations (2), (3), and (4) give in

succession jS, S, and W. Equation (i) gives the length /.*

* For other information on the subjects of this chapter, particularly as related to elec-

tric transmission lines, see the following: University of Illinois Bulletin, No. 11 (191 2) by
A. Gruell; Transactions American Institute of Electric Engineers, Vol. 30 (1911), papers by
Wm. L. Robertson, Percy H. Thomas, and Harold Pender and H. F. Thompson. These

papers contain extensive tables and diagrams, and discuss effects of temperature changes.
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CHAPTER VII

RECTILINEAR MOTION

28. Velocity and Acceleration

§ I. Velocity. — When a point moves so that it traverses or describes

equal distances in all equal intervals of time then it is said to move uniformly,

and we call the motion uniform. All other motions we call nonuniform. By
velocity of a moving point is meant the time-rate at which the point is moving,
or describing distance. To express the magnitude of any velocity we must of

course compare that velocity to some particular velocity as a standard or unit.

Any velocity
— that of light, for example

—
might be taken as standard; but

it is more convenient to take the velocity of a point moving uniformly and

describing a unit of length in a unit of time for a standard. Thus, we use the

foot per second, mile per hour, etc. The word per in these names of velocity-

units is quite commonly replaced by the soHdus sign /; thus, foot per second,

mile per hour, etc., are abbreviated to ft/sec, mi/hr, etc.*

In any uniform motion the velocity may be computed by dividing the dis-

tance traversed in any interval of time by the interval. Thus, ii v = the

velocity, A5 = the distance traversed, and A^ = the interval of time, then

V •= As/^t. (i)

In any nonuniform motion the rate of moving is not constant but changes

continuously, as we all realize. Not all, however, have a clear notion of the

value of the rate, or velocity, at a particular instant of the motion. To bring

this matter up definitely, let us consider the following example:
— In a certain

launching, the ship moved through the distances given after s in the adjoin-

ing schedule in the times given after t.

t = o 2
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in a straight line by the guides G. We will now find a general formula for the

velocity of the crosshead (and piston) when the crank rotates uniformly. Let
r = the length of crank, / = length of connecting rod, c = r/l, n = number
of revolutions of the crank per unit time (assumed constant), co = angle in

radians described by crank per unit time (w = 2'jrn), s = varying distance

of the crosshead from its highest position, 6 = the "crank angle" QOP, and

t = time required for the crank to describe the angle 6 {= oit = 2 irnt).

Obviously, there is a definite relation between 5 and 6 (or /), and this relation

we need in order to get ds/dt or v. When the crosshead is in its highest posi-

tion, its distance from O equals l-\-r\ hence for any position, s = {I -\- r)
—

CQ =F OQf =F OQ according as the crank OP is above or below OX. Now
CQ =

(/2
_ y2 sin2 e)^

= / (i
- c2 sin2 6)^, and 0Q= ±r cos 6; hence

s= (/ + r) -/(i -c^sinH)^ -rcosd.

Differentiating the expression for s with respect to /, we get ds/dt, or v; and

remembering that dd/dt = co, we can easily reduce the result to

/ . .
,

c sin 2 ^ \

V 2(1 - c2sin2^)V

From this general formula we can get the value of v for any particular case.

Thus, let r = 10 inches, / = 30 inches (then c = |), and n = 100 revolutions

per minute (co
= 27r 100 = 628 radians per minute). When the crank is at

OPq say, 6 = 90° and the formula gives v = 6280 inches per minute =523
feet per minute.

The expression ds/dt in equation (3) may be positive or negative; therefore v

must be regarded as having the same sign that ds/dt has. Now ds/dt is posi-

tive when 5 increases algebraically, and ds/dt is negative when s decreases

algebraically; hence the sign of the velocity of a moving point at any instant

is positive or negative according as s is increasing or decreasing then, that is the

sign is the same as that of the direction in which the point is moving then.

When the mathematical relation between s and t is unknown, then equation

(3) cannot be used to determine the velocity at a particular instant. But if

the displacements of the moving point are known for^—
1 a number of known intervals beginning or terminating at

the instant in question, then a fair approximation to the

desired velocity can be obtained from the values of the

average velocity for those intervals as explained in

the launching illustration preceding. One may determine
8 W )Z \^ J65ecs. ,, ,. .^ f ^, i •!• • ^ i i,

the limit of the average velocities approximately by
iG. 219

graphical methods. Thus, in Fig. 219 we have plotted

the average velocities of the launching example in a manner which is ob-

vious and then joined the plotted points by a smooth curve; this curve

was extended, as seemed best, to the vertical through point 8. The ordinate

8 A represents approximately the limit sought, that is the velocity at the 8th

second. Another graphical method is explained in § 2 of the following article.

1
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I § 2. AccELERATioi^.— A nonuniform motion is said to be accelerated, and

the moving point is said to have acceleration. If the velocity changes uni-

formly, that is by equal amounts in all equal intervals of time, the motion

is uniformly accelerated; if the velocity does not change uniformly, then the

motion is nonuniformly accelerated.

By acceleration of a moving point is meant the rate at which its velocity is

changing. To express the magnitude of any acceleration we must compare
that acceleration to some particular acceleration as a standard or unit. Any
rate of velocity-change

— that of a freely faUing body, for example
—

might
be taken as a unit of acceleration but it is more convenient to take the accel-

eration of a point whose velocity changes uniformly by one unit (of velocity)

in one unit of time. Thus, we have the foot-per-second per second, the mile-

per-hour per second, etc. And, abbreviating the word per as before, these

would be written ft/sec/sec (also written ft/sec '^), mi/hr/sec, etc.*

In a uniformly accelerated motion (u.a.m.), the acceleration may be computed

by dividing the velocity-change which takes place in any interval of time by
the length of the interval. Thus, if a = acceleration, Az> = the velocity-

change and A/ = the interval, then

a = At;/A/. (4)
ife.

I In a nonuniformly accelerated motion the rate of change of the velocity is not

constant but it varies continuously from instant to instant. To arrive at a

definite notion of the value of the rate or acceleration at a particular instant,

let us consider an example. The adjoining schedule gives values of velocity

and time taken from a "starting test
"

of an electric street railway car.

2345 6 789
5.3 7.7 9.9 11.9 13.7 15.2 16.4 17.3

/ = o I

V = O 2.8

10 seconds;

18.0 miles per hour.

Any velocity-change divided by the time required for the change we regard as

the average acceleration for that time; thus, during the first six seconds the

velocity-change is 13.7 miles per hour, and 13.7 -^ 6 = 2.28 miles per hour per
second is the average acceleration for the first six seconds. (Obviously a

uniform acceleration of this value would produce in six seconds a velocity-

change of 13.7 miles per hour.)

A/ (sees.)
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In the adjoining table we have listed the velocity-changes (under Az)) for the

intervals o to 6, i to 6, 2 to 6, etc.; and also the average acceleration (under aa)

for the same intervals, and the decrements in the average acceleration under

Ada. Obviously the average acceleration for the intervals 5^ to 6, 5I to 6, etc.,

continues to decrease, approaching a definite limit as the interval approaches
zero. The series of decrements, o.io, 0.08, o.io, o.io, o.io, suggests that the

next (fwU) decrement is about o.io, and hence the limit about 1.80 — o.io =

1.70 miles per hour per second. The exact limit is the value of the rate of

change of velocity, or the acceleration, when t = 6 seconds.

Summarizing now: — Let Av = the velocity-change in any interval of time

A/, and aa = average acceleration for that interval, then in any kind of recti-

linear motion

aa = Av/AL is)

The true value of the acceleration at a particular instant of the interval is the

limiting value of the average acceleration as the time interval is taken smaller

and smaller but always including the particular instant; or in the calculus

notation

a = dv/dt = dh/df. (6)

Formulas (6), respectively, can be used for finding the value of a in any
rectilinear motion if the relation between v and t or 5 and / are known. Thus

suppose that a point is known to move in a straight line so that the velocity

(in miles per hour) always equals one-tenth of the square of the time (in

seconds) from the start, that is z>
= o.i ^2; then a = dv/dt = 0.2 /. This is

the general formula for a in this motion; for instance, at 3 seconds after start- .

ing a = 0.6 miles per hour per second.

For another example of the use of equation (6), we consider the motion of
'

the crosshead of the crank and connecting-rod mechanism described in § i.
^

There we found that

/ . « .

• c sin 2 ^
V = rcolisin^-f

V 2(1 -c2sin2 6')V

Differentiating this with respect to t and remembering that w is constant, we

get dv/dt or

„/ ,
^cos 20 + c^sin'^dX

a = rco^
I
cos 6 -\ s

—
1

•

V (i-c'sinH)^ I

From this general formula, we can get the value of a for any special case. Thus

as in § I, let r = 10 inches, / = 30 inches (then c — J), and n = 100 revolu-

tions per minute (co
= 2 7r 100 = 628 radians per minute). When the crank

is at OPq (Fig. 218), then = 90 and the formula gives a = — 2220 inches per

minute per minute = — 185 feet per minute per minute. The negative sign

means that the acceleration is upward (negative), that is, the velocity is de-

creasing (at B = 90°).

The expression dv/dt, equation (6), may be positive or negative; therefore a

must be regarded as having the same sign as has dv/dt. Now dv/dt is positive

I
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when the velocity increases algebraically, and dv/dt is negative when the

velocity decreases algebraically; therefore the sign of the acceleration of a

moving point at any instant is positive or nega-

tive according as the velocity is increasing or

decreasing (algebraically) then.

When the mathematical relation between v and

/ (and s and t) are unknown, then equation (6)

cannot be used to determine the acceleration at

a particular instant. But if the values of the

velocity are known at a number of known in-

stants near the instant in question, then a fair

approximation to the acceleration desired can be obtained from the values

of the average acceleration for intervals beginning or terminating at the

instant in question, as explained in the car-starting example preceding. Fig.

220 shows a construction for determining the limit of the average accelera-

tion in the example referred to. The ordinate 6 A represents the limit

approximately. Another graphic method is explained in the next article

under § 2.

6 Sees.

Note on Rate of a Scalar Quantity.
— The foregoing explanations of two particular rates

(velocity and acceleration) will now be generalized so that hereafter we will not need to de-

rive the expressions or formulas for other rates which will come up for discussion.

By a scalar quantity is meant one which has magnitude only, not direction also. An
amount of money, the volume of a thing, the population of a city, etc., are scalar quantities.

Let X and y denote two scalar quantities which are related to each other so that any change
in one produces a change in the other. If all equal changes in x produce equal changes in y,

then y is said to vary uniformly with respect to x and y is called a uniform variable. If all

equal changes in x produce unequal changes in y, then y is said to vary nonuniformly and y
is called a nonuniform variable.

If y is a uniform scalar, then the graph which represents the relation between x and y is a

straight line obviously, as for example in Fig. 221 where yi and y2 respectively denote values

of y corresponding to xi and X2 (values oi x). The meaning of "rate of y with respect to x "

or "x-rate of y
"

is quite generally understood; it is the change in y per unit change in x. The
value of the rate is computed by dividing any change in y by the corresponding change in x.

Thus, if Ax and Ay = corresponding changes in x and y {x2
—

Xx and ya
—

yi), and r = a;-rate

of y, then
r = Ay/Ax.

Evidently r is the same for all values of x, that is, the rate of a uniform scalar is constant.

Fig. 221

If y is a nonuniform scalar then the graph which represents the relation between x and y
is a curved line, as for example in Fig. 221 where yi and y-z represent values of y which corre-

spond to xi and X2 respectively. Any change in y divided by the corresponding change in x
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is commonly called the average rate of y with respect to x for the range X2
—

xx. Thus, if

ra = average a;-rate of y for the range Ax {= xz
—

xi) in x, then

ra = Ay/Ax.

The average rate is represented by the slope of the chord AB, for tan BAC = Ay/Ax.

The value of the average a^-rate of y depends on the amount of the range Ax. It approaches
a definite value ^s Ax is taken smaller and smaller, x^ approaching xi for instance. This Umit-

ing value is taken as the true or instantaneous rate of y at the value y = yi{oix = Xi). Thus,
if r = x-^te of y at any value of y, then

r = lim (Ay/Ax) = dy/dx.

The x-rsite of y at y = yi is represented by the limit of the slope of the chord AB sls B ap-

proaches A ,
that is, by the slope of the tangent at A .

By means of the foregoing formula, we can determine the x-rate of y provided that we know
the precise relation between x and y, that is, the equation y = / (x). In case we do not know

this equation but do know values of y corresponding to several values of x, then we can de-

termine the x-rate of y at one of the values of x approximately. This approximate value can

be obtained from the average rates for ranges of x which begin or terminate at the value of

X for which the rate is desired as already explained in some of the preceding examples.

§ 3. Features or a Motion Determined by Integration. — In the

preceding article we showed how to determine the velocity from the dis-

tance-time (s-t) law, and the acceleration from the velocity-time (v-t) law.

The process, in each case, is one of differentiation. By means of the reverse

process, integration, one may determine the s-t from the v-t law, and the v-t

from the a-t law. We explain further by means of examples.

Suppose that a point moves in a straight line according to the law v = 6ot

+ 4. In all cases of rectihnear motion v = ds/dt, or ds = v dt; hence in the

present instance, ds = (60 / + 4) dt. Integration gives s = $ot^ -\r ^t -{ C^

where C is a constant to be determined from "initial conditions." Let us sup-

pose that 5 is reckoned from the place where the moving point is when t = o,

or that 5 = when / = o; then substituting these (simultaneous) values of

5 and / in the equation containing C, we get o = o + o + C, or C = o. Hence

the s-t law is s = $ot^ -\- 4t. We might have integrated "between limits,"

thus I ds =
j (60 / + 4) dt, or s = s°t^-\- 4tf

the lower limits being the simultaneous values of .s and / from the given initial

conditions^

For another example, we will suppose that a point moves in a straight line

so that a = cos /, initial conditions being v = 4 when / = o.

In all cases of rectilinear motion a = dv/dt, or dv = a dt; hence, in this

instance, dv = cos t dt. Integration gives z;
= sin / + C. Substituting the

(initial) simultaneous values of v and / in this equation we find 4 = o + C, or

C =
4; hence v = sin / + 4 is the law sought. Or, integrating between limits

we get

cos tdt, or V — 4 = sin /.

•Ji *Jo
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If the as law for a motion is given, then the v-s law can be found by

integrating v dv = a ds, which follows from a = dv/dt
=

(dv/ds) (ds/dt)
=

(dv/ds) V. Thus, suppose that in a rectilinear motion a = 25 + 3, initial

conditions being i;
= 10 when 5=4; then

j
vdv =

I {2S-\r 3)dSf or ^v^ = s^ + ^s -]- C.

Initial values substituted in the last equation give C = 22, and hence ^v^ = s^

+ 35+22.
The formulas a = dv/dt and v = ds/dt can be used to get "time." These

can be written dt = {i/a) dv and dt = (i/v) ds; hence by integration

J^Vi

I /*«2 I
-
dv, and / = / -ds.

V,
a Js, V

These respectively give the time required for v to change from Vi to V2, and for

s to change from Si to ^2.

Since ads = vdv, ^ {v^^
—

vi^)
=

j ads,

where Vi and V2 are values of the velocity when s = Si and s = sz respectively.

Uniformly Accelerated Motion. — Let a = the value of the (constant) accel-

eration, and vo
= the velocity at the instant from which time is reckoned, and

So = the distance of the moving point from the origin at that instant. (Some-

times Vo and So are called initial velocity and initial distance, respectively.)

Since a is constant, integration oi a = dv/dt gives at once v = at-\-Ci, and

from the initial conditions (v
=

Vo when t = o), Ci = Vo, hence

V = at-\- Vq. (i)

From V = ds/dt
= at -\- Vo we find by integration that s = ^at^ -{- Vot + C2,

and the initial conditions {s
=

^o when / = o) make €2 = Sq; hence

s = ^at^-\- Vot + Sq. (2)

Eliminating / between (i) and (2) we find that

2a(s — So)
= v^ — vo^. (3)

If the initial velocity and distance = o, then

V = at, s = \ at^, and 2as = v^. (4)

Although uniformly accelerated motions are important practically, the

student is advised not to make a special effort to memorize the foregoing

formulas (i, 2, 3, and their special forms, 4). But, if he will memorize them,
then he should also remember that they are for a special motion, constant

acceleration. All students ought to be able to discuss a uniformly accelerated

motion nonmathematically
— by means of elementary notions somewhat as

in the following example: The velocity of a certain train can be reduced by
braking from 40 to 20 miles per hour in a distance of 1600 feet. In what dis-
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tance would braking stop the train from 40 miles per hour, supposing the

retardation to be the same at all velocities? Since the velocity changes uni-

formly, the average velocity during the reduction from 40 to 20 miles per hour

equals one-half of 40 + 20 or 30 miles per hour; and the time required for the

reduction of velocity or travel of 1600 feet (= 0.303 miles) is 0.303 -^ 30
= 0.0101 hours, or 36.4 seconds. The time required to stop the train from 40
miles per hour would be twice 36.4 or 72.8 seconds; and, inasmuch as the

average velocity during the stoppage would be one-half of (40 + 0)
= 20

miles per hour or 29.3 feet per second, the distance travelled in the 72.8 seconds

would be 29.3 X 72.8
= 2133 feet.

29. Motion Graphs

The features of rectilinear motion, discussed in the preceding article, can be

represented nicely by certain curves described in the following:

A distance-time (s-t) graph for any motion is a curve drawn "upon
'*

a

pair of rectangular reference axes so that the coordinates of any point on the

curve represent corresponding, or simulta-

neous, values of 5 and /, where / = the time

elapsed from some instant of reckoning (usu-

ally taken at the instant of starting), and j

= the distance of the moving point from

some fixed point chosen as origin (usually

taken at the place of starting). Fig. 222 is

the s-t graph for the launching mentioned

in § I of the preceding article. Since the slope of the s-t graph is proportional

to ds/dt and v = ds/dt, the slope at any point of the graph represents the

velocity at the corresponding instant, according to some scale. The slope

scale depends on the scales used for plotting the s-t graph. Thus, in Fig. 222

the scales are i inch of ordinate = 100. feet and i inch of abscissa = 10 seconds,

hence, a slope of unity
= 100 (feet) -^ 10 (seconds)

= 10 (feet per second).

Thus, the velocity at / = 8 seconds, where the slope is BC -7- AC =
0.54, is

5.4 feet per second. Instead of interpreting the slope in this way, that is by
a slope scale, we might determine the velocity as follows: draw the tangent

line at the point A in question, drop a per-

pendicular from any point B in the tangent
to the horizontal through A, measure CA
and CB according to the proper scales and

compute the ratio BC -^ ^C (as measured);

this ratio equals the desired velocity. Thus,
in Fig. 222, AC =

5 seconds, C5 =
27 feet,

and ^ = 27-^5 =
5.4 f^^^ P^r second.*

* Several instruments have been devised recently for drawing a tangent to a plane curve.

A very simple one is represented in Fig. 223. It consists of a metal straight-edge A with a por-

tion of one side polished to a mirror. OB represents a curve on a piece of paper across which

16 Sees.

Fig. 222

Fig. 223
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The velocity-time (v^t) graph for any rectilinear motion is a curve drawn

upon a pair of rectangular reference axes so that the coordinates of any point

of the curve represent corresponding, or simultaneous, values of the velocity

V and time /. The curve in Fig. 224 is a v-t graph for the car-starting test
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Further let h and ^ = the times corresponding to Xi and X2 and to Si and S2, the
values of s (space); and A = area. Then

S2-S1
mn

225

(see preceding article) ;
and A {mn) = S2

—
Si. Hence

(mn) is the scale-number for interpretating the area.

Thus, in Fig. 224, one-inch ordinate = 20 miles per
hour =29.3 feet per second, and one-inch abscissa =

5 seconds; hence one square inch = 29.3 (feet per

(seconds) = 1465 feet. The area may be interpreted more

multiplying the average ordinate measured by the scale of

second) X 5

directly by
ordinates (hence equal to the average velocity for the time interval) by the

length of the interval. Thus, in Fig. 224 the average ordinate represents 10.9

miles per hour =16 feet per second, and the time interval is 10 seconds, J

hence the displacement is 160 feet. ^

The acceleration-time (a-t) graph for any rectilinear motion is a curve

drawn upon a pair of rectangular reference axes so that the coordinates of any

point of the curve represent corresponding, or simultaneous, values of the ac-

celeration a and the time t. The "area under the curve" represents the

velocity-change for the time interval represented by the distance between the

ordinates. For the area under the curve is given by

fy dt, and % — ^1 I adt

(see preceding article). To determine the numerical value of the velocity-

change, the area must be interpreted by scale or be computed in a manner

analogous to that explained in the foregoing under velocity-time graph.

The velocity-distance (v-s) graph for a rectilinear motion is a curve drawn

upon a pair of rectangular axes so that the coordinates of any point of the

curve represent corresponding, or simultaneous,

values of the velocity v and distance 5. Fig. 226

is the v-s graph for an air-brake test on a pas-

senger train.* The subnormal at any point of the

graph represents the acceleration at the corre-

sponding instant. For, any subnormal as BC is

given by AC tan BAC — vdv/ds^ and from the

preceding article a = dv/dt = (dv/ds) (ds/dt)
=

V dv/ds; hence BC = a. To actually determine

the value of a from a subnormal we must use the

proper scale, depending on the scales used for plotting the v-s graph. For Fig.

228 one-inch ordinate = 50 miles per hour, and one-inch abscissa = 1000 feet

=
0.19 mile; hence the subnormal scale is one inch = 50^ -i- 0.19

=
13,150 miles

per hour per hour = 3.65 miles per hour per second. The subnormal BC
* "Air-brake Tests— VVestinghouse.

"
Page 297.

200 400 600 800

Fig. 226

iooo"
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= 0.72 inch; hence the,(negative) acceleration at A (when the train had made

600 feet from the place where braking began) was 0.72 X 3.65
=

2.63 miles

per hour per second.

The acceleration-distance {as) grhph for a rectilinear motion is a curve

drawn upon a pair of rectangular axes so that the coordinates of any point on

the graph represent corresponding, or simultaneous, values of a and s. Any
"area under the curve" represents one-half the change in the velocity-

square for the corresponding displacement. For the area is given by

/*J Si

ads = iW —
^i^)y see § 3 preceding article.

Example.
— A mechanism is to be designed for producing a rectilinear

motion whose acceleration-time graph is shown in Fig. 227. There are three

distinct laws of acceleration. In the first

and last quarter seconds the acceleration is

constant and equals 16 feet per second

per second; in the second quarter the ac-

celeration decreases uniformly from 16 to

—48; and in the third it increases uni-

formly from —48 to 16. Preliminary to

the design it is necessary to find the dis-

tance-time law; this we proceed to do, but

first we get the velocity-time and distance-

time graphs approximately.

During the first quarter of a second the

velocity changes uniformly, and the change
is 16 X i = 4 feet per second; and if the

initial velocity is zero, then OA (Fig. 228)

is the velocity-time graph for the first quar-

ter second. Since the velocity changes

uniformly in the first quarter second, the

average velocity equals | (o H- 4)
= 2 feet per second, and the displacement

5^4 ys yz "/a ^ •/%

Figs. 227, 228, 229

during the quarter = 2 X foot. If the initial distance is zero then o

and A (Fig. 229) are points on the distance-time graph. In a similar way
intermediate points could be computed.

In the second quarter the acceleration varies uniformly. The average

acceleration for the interval from \ to fV second is 8 feet per second per second;

hence the velocity-change for that interval is 8 X tV = 2 foot per second, and

the velocity at / = fV is 4 + § = 4-5 feet per second, and B (Fig. 228) is a point

on the velocity-time graph. In a similar way, C, Z), and intermediate points

could be determined. This portion ylZ) is curved, and the average velocity

for any interval cannot be ascertained so simply. But estimating the average

ordinate for the third eighth of a second to be 4.4, then the displacement for

that interval is 4.4 X i
=

0.55 feet, and C (Fig. 229) is another point on the
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distance-time graph. In a similar way we might determine other points

approximately. Determination of the graphs for the third and fourth quarter
seconds by this method presents no difficulties, so we pass on to a second

(mathematical) determination of the graphs.

/ In the first quarter, dv/dt = i6, or dv = 16 dt; hence 7;
= 16 / + C. But

in accordance with initial conditions assumed, v = o when t = o; hence

C =
o, and z)

= 16/ is the equation of the velocity-time graph for the first

quarter. From that equation we find for / = i, v = 4 ^s before. Since

V = ds/dt, ds = vdt = 16 tdt, and s = St^ -{- C. In accordance with initial I

conditions assumed, s = o when ^ = o; hence C =
o, and s = S t^ is the equa-

tion of the distance-time graph for the first quarter. From that equation we
find for / = J, 5 = J as before; Sit t = ^, s = ^ foot; etc.

In the second quarter, a = So — 256 /, equation of AD (Fig. 227); hence

dv = (80
—

256 t) dt or V = Sot — 128 /^ -f C. We found that v = 4 when
i = i; therefore4=8oXi- 128 XtV+ C,or C= - 8,and y = 80/ -128/2-8
is the equation of the velocity-time graph for the second quarter. Continu-

ing, ds/dt
= Sot- 128/2 -s,ors = 40/2 -^2^1^ -St + C; but 5 = | when

/ = I, hence C =
|, and 5 = 40 /^ — 42I /^

_ g / + | is the equation of the

distance-time graph for the second quarter.

The equations of the graphs for the remaining quarters could be obtained

in a similar way. Care must be taken in determining the constants of inte-

gration; use no value of / (and corresponding value of v or s) which does not

fall within the period to which the equation under consideration pertains.

The remaining equations are—
For the third quarter For the fourth quarter

a = — i76-f256/ a= 16,

2; = - 176 / -f 128 /2 + 56 V = i6t- 16, (yViJy L,
s = /2 -j- 42f /3 -f 56 /

- 10 8/2- 16/ +8.

Graphs for Uniformly Accelerated Motion. — Fig. 230 shows the acceleration-

time graph for a rectilinear motion; in the first six seconds a = 4 feet per

second per second, in the next ten seconds a = o,

and in the last 8 seconds a = — 3 feet per second

per second (the negative sign meaning retardation).

Fig. 231 shows the corresponding velocity-time

graph, it being assumed that there is no initial

4itpersec.persec.

,
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30. Simple' Harmonic Motion and a Similar One

§ I. Simple Harmonic Motion (S.H.M.).
— If a point moves uniformly

along the circumference of a circle then the motion of the projection of that

point on any diameter is called a simple harmonic motion. Obviously the

projection (Q) moves to and fro in its path, and travels the length of the

diameter twice while the point (P) in the circumference goes once around.

By amplitude of the s.h.m. is meant one-half the length of the path of Q^ equal

to the radius of the circle. 'Qy frequency of the s.h.m. is meant the number of

complete (to and fro) oscillations of the moving point Q per unit time, equal to

the number of excursions of P around the circumference per unit time. By
period of the s.h.m. is meant the time required for one complete to and fra

oscillation of the moving point Q, equal to the time required for one excursion

of P around the circle. By displacement of the moving point Q is meant its

distance from the center of the path; it is regarded as positive or negative

according as Q is on the positive or negative side of the center.

Let us now consider a simple harmonic motion to ascertain approximately
its nature. Suppose that the circle (Fig. 234) to be the path of P, and the
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from O; OA =
o-i, OB =

1-2, OC =
2-3, and OD =

3-4. Carefully com-

paring these distances, we see that the numerical difference between succes-

sive average velocities increases; hence the acceleration increases in value

as Q moves from o to 4. In fact the acceleration is zero when Q is at the

middle, and greatest when at either end of its path (proved below).

We now examine s.h.m. more carefully, using the following notation :
—

r wf amplitude (radius of the circle),

n = frequency,

CO = 2 TTW (abbreviation), cc being angle in radians swept out per unit time

by OP,

X, y, or s = displacement,

t = time after some convenient origin as described later,

V = velocity of the s.h.m. at the time /,

a = acceleration of the s.h.m. at time /.

When time t is reckoned from the instant when Q was at middle oj its path atid

moving in positive direction. — Suppose the circle (Fig. 235) to be the path of P,
which moves in sense indicated by arrow, and let us

|

consider the motion of the projection of P on the verti-
""

cal diameter, from now on called V instead of Q. Let

6 = angle XOP; then, since / is time elapsed since P
was at X, ^ = 2 Tnt = cot and dd/dt = co. It is plain

from the figure that y = r sind; and since v = dy/dt = r

{dd/dt) cos e,

•£iG, 235
V = roi cos = no cos co/.

These are (general) formulas for v in terms of 6 and / respectively.

Since cos = sin (^ + | tt), ^ = rco sin (^ + J tt). This formula for v sug-

gests an easy method for drawing a v-d graph, showing how the velocity

varies with 6, and hence with /. First we draw an auxiliary circle with radius

equal to 2 irrn according to any convenient scale; divide the circumference into

any convenient number of equal parts, as sixteen; and number the points of

division as in Fig. 236, that is 90° ahead of the numbers in Fig. 234. On an

Fig. 236

extension of the horizontal diameter we lay off oT to represent 360°, and sub-

divide this into the same number of equal parts (sixteen), numbering as shown;
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then 01, 02, etc., represent d = 22^°, 6 = 45°, etc. Finally we project points

o, I, 2, etc., of the circle toward the right to meet corresponding vertical lines

through points o, i, 2, etc., of oT. These points of meeting are on the v-d

graph, for the coordinates of any point on the curve are corresponding, or

simultaneous, values of 6 and rco sin (^ + i^r), or v.

Inspection of the v- 6 graph verifies what was said about the acceleration.

It shows clearly that the velocity of the moving point V (Fig. 235) changes more

rapidly when V is near the ends of its path than when near the center; hence

the acceleration of V is greater near the ends than near the center. Since the

v-6 graph is also a v-t graph, the slopes of the graph represent, to proper

scale, values of the (varying) acceleration. The curve is steepest when 6 = 90°

and 270° (when V is at the ends of its path), and horizontal where d = o and

180° (when V is at the center of its path); hence again the acceleration is

greatest at the ends of the path, and zero at the center. When the moving

point V is approaching the center of its path
— from either side— then V is

getting up speed, and hence the acceleration of V is directed toward the center;

when V is receding from the center, then V is slowing down, and hence the

acceleration is directed toward the center. Therefore the acceleration is

always directed toward the center.

A general formula for acceleration in a s.h.m. will now be derived. We take

the motion of V (Fig. 235) for that purpose, and let a = the acceleration at any
time /. Now a = dv/dt, v = rca cos 6, and dO/dl = w; hence

a = — rco^sind = — rco^ sin co/.

These are (general) formulas for a in terms of 6 and / respectively.

Since sin = — sin {6 -\- tt), a = rco^ sin {6 + tt). This last formula sug-

gests an easy method for drawing the a-d graph, showing how a varies with

6, and hence also with t. First we draw an auxiliary circle (Fig. 237) with

Fig. 237

radius equal to rcc^ according to any convenient scale; divide the circumfer-

ence into any convenient number of equal parts, say sixteen; and number
them as in the figure, that is 180° ahead pf the numbers in Fig. 234. On an

extension of the horizontal diameter we lay off OT to represent 360°, and sub-

divide OT into sixteen equal parts numbering as shown; then 01, 02, etc.,

represent 6 = 22^°, d = 45°, etc. Finally, we project points o, i, 2, etc., of

the circle horizontally to meet the corresponding vertical lines through points

o, I, 2, etc., of the line OT. These points of meeting are on the a-d graph,
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for the coordinates of any point on the curve are corresponding, or simulta-

neous, values of d and roy^ sin (^ + tt), or a.

In Fig. 238 the foregoing described distance, velocity, and acceleration graphs \

are superimposed; the solid curve is the y-O graph, the dashed curve thai

V- 6 graph, and dot-dash curve is the a-d graph.

560 6
lb T

Fig. 238

Time dated from the instant when Q was at the positive end of its path.
— We

might continue to regard the s.h.m. as taking place in the vertical diameter

of- Fig. 235, reckoning time from the instant when P was

at F. It will be more convenient to consider the mo-

tion of the projection of P on the horizontal diameter;

then we measure 6 and / as before. In this case, it is

easy to show that

x = r QosB = r cos co/;

1)
= — roi ?,m.d = — roi sin co^;

a = — roi^ cos 6 = — roP- cos co/.

Fig. 239 shows the distance, velocity, and acceleration-

time graphs for a s.h.m. regarded in this way.
Time dated from instant when

Q was anywhere.
— Let / be

reckoned from instant when P
(Fig. 240) was at some point as

Po, and let d = PqOP and e =

XOPq. This latter angle is

called angle of lead— but angle

of lag when Po is below OX.

Now XOP = d + e = cct + e. In

the s.h.m. executed by F,

y = r sin {6 -^ e);

V = rct) cos (d -{- e);

a = — ro)^ sin (6 + e).

In the simple harmonic motion executed by H,

X = r cos {9 -\- e);

V = — ro3 sin (^ + e) ;

a = — ro)^ cos {6 -f- c).

Fig. 240

Fig. 239



Art. 30 135

Formulas jor Velocity, and Acceleration in Terms 0} Displacement.
— These

do not depend on the way in which time is reckoned. Referring to the fore-

going formulas we see that

a = — co^^,

where 5 stands for displacement x or y.

The graph of z;
= co V r^ — s^ is the velocity-displacement graph for any

s.h.m.; it is an ellipse. Fig. 241 shows that graph for the motion of the pro-

jection of F on the horizontal diameter of the circle. When P is where indi-

cated say, the velocity of H is represented by the ordinate HV. The graph of

a = — oih is the acceleration-displacement graph ;
it is a straight line. The

diagonal line in the figure is the a-s graph for the motion of H. The acceler-

ation of H is represented by the ordinate HA.
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The following approximate formulas (i, 2, and 3) are simpler and quite accu-

rate, as will be shown.

As in Art. 28, let r = length of crank, / =--
length of connecting rod, c = r/l,

n = number of revolutions of crank per unit time (assumed constant), co =

angle in radians described by crank per unit time ((0
= 2 irn), s = the varying

distance of "the crosshead from its position most remote from the crank, 6 =
the crank angle PqOP, and t = time required for the crank to describe the

angle 6 {8
= cot = 2Trnt). It follows from the geometry of the figure, as

explained in Art. 28, that

^ = (/ -I- y)
_

/ (i
_ c2 sin2^)2

- r cos 6.

Now (i
— c^ sin2 ^)2

= I — J c2 sin^ 6 — \(^ sin^ d — etc. (binomial expansion).
And since c is generally less than J, the third and succeeding terms in the series

are very small and negligible; hence we have as a good approximation

/ (i
- c2 sin2 0)1 = / (i

- 1 c^ sin2 d)
= I (i

-
i c^ -{- i c^ cos 2 6),

and s = r (1
— cos 0) -\- J cr {i

— cos 26). (i)

Now if we differentiate this with respect to /, we get ds/dt or v (velocity of the

crosshead), and remembering that dd/dt = w, we finally get

V = rQ}(smd-^^csm 2 0). (2)

Differentiating again and remembering that w is constant we get dv/dt or

a = ro)^ (cos 6 -\-ccos 2 6). (3)

Because of our way of measuring s, the positive direction is from the cylinder

toward the crank. Positive velocity v means that the crosshead is moving
toward the crank, and positive acceleration a means that velocity toward the

crank is being added to the velocity.

In order to furnish a comparison between the foregoing approximate formu-

las and the exact ones of Art. 28, we give in the adjoining table the values of a

for the case c = 3^ for a few values of the crank angle 6 (Fig. 243).
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To find the acceleration at the "crank-end dead-center" we put B = 180°, and

find from either the exact or approximate formula that

o = — rco^ (i
—

c).

To show that the motion of the crosshead C is approximately simple har-

monic we show that its motion resembles the motion of Q (Fig. 243) which is a

simple harmonic one. In Fig. 244 we have marked nine corresponding posi-

tions of Q and C. Thus points o to

Length ofRod

Length of Crank

6.HM^

Fig. 244

8 are the positions of Q when the crank

angles are 0°, 22^°, 45°, etc., and

points O, I, II, III, etc., are the corre-

sponding positions of C. In the lower

part of Fig. 244 the paths of Q and C

(with the points i, 2, 3 and I, II, III,

marked upon them) have been brought o^

together for comparison. It is seen

that the actual distances described by

Q and C in any interval of time are g^
nearly the same, and so the motion

of C is nearly the same as that of Q,

The three intermediate lines in the figure are paths of C with' points corre-

sponding to I, 2, 3, etc., for three other lengths of connecting rod. And we
see that the longer the rod the more nearly is the motion of the crosshead

simply harmonic.

To arrive at a more complete comparison of the motions of C and Q, we will

derive the formulas for the position, velocity, and acceleration of Q correspond-

ing to equations (i), (2), and (3). The variable distance of Q from Po (Fig.

243) we will call z, then

z = r (i
—

COS0). . (4)

Differentiating with respect to /, we get for velocity of Q
ZJ = rco sin ^, (5)

and differentiating again we get for accel-

eration of Q
a = roj^ cos 0. (6)

Now compare (i) and (4), (2) and (5), and

(3) and (6) and note that the] formulas for

the motion of C contain an "extra
"
term.

Each of these terms depends on c {= r/l),.

or on the "obliquity" of the connecting
rod (maximum inclination of the rod to the

line of stroke OC). The smaller c (the

longer the rod in comparison with the

crank), the smaller are the extra terms, and so the longer the rod the more

nearly is the motion of the crosshead a simple harmonic one.

Fig. 24s
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Fig. 245 presents a comparison of the motion of the crosshead C and the

motion of Q. The solid lines refer to the first motion and the dashed lines to

the second. Vc is the velocity-distance {v-s) graph and Ac is the acceleration-

distance {as) graph for the motion of C Vq is the velocity-distance graph
and ^g is the acceleration-distance graph for the motion of Q. The graphs
for C were drawn for a connecting rod three cranks long (c

= i -J- 3). For

longer rods the graphs for C would come much nearer the graphs for Q.

31. Motion and Force

The preceding discussion of motion deals, for the most part, with displace-

ment, velocity, and acceleration; it does not refer at all to the forces acting

upon the moving bodies. In this article we explain in what manner any rec-

tilinear motion of a rigid body depends upon the forces acting upon it.

§ I. First View and Form of the Fundamental Principle.— In Art.j
2 it is explained that the units of force most used by engineers are the so-calledl

gravitation units, equal to the earth-pulls on certain things called standards of

weight. These units have slightly different values at different places; thus

we have the London pound-force, the New York pound-force, etc. Some
writers define the pound-force as any force equal to the earth's attraction on

the standard pound weight at London or at sea level in latitude 45°, thus

making the unit force invariable or an "absolute
"

one. Besides these units

there are others; see § 2 of this article.

In Art. 2, we explained also that the word weight is used in at least two

senses in common parlance (see footnote, page 4). But we will continue to

use it in a single sense, to connote the earth-pull on a body, and we employ a

separate word (mass, see § 2 of this article) to connote the amount of substance

or stuff in a body. Our two weighing devices, beam-scale and spring-scale,

differ in a certain feature which is worth noting here. A beam-scale measures

the weight (earth-pull) of a body in. terms of the local unit of force, say the

pound force for the place where the weighing is done; a spring-scale measures

the weight of a body in terms of an invariable unit, say the particular pound
force for which the scale was graduated. A beam-scale will not detect the

change in the weight of a body with change of place because the magnitude of

the unit (pull on the poise) changes just as the weight of the body changes.

A spring-scale if sufficiently accurate will detect change in weight, with change
of place.

First-hand knowledge of the relation between motion and the forces acting

on the moving body must rest on observation or experiment. Let us consider

a simple case of motion, that of a falling body. The motion takes place under

the action of the weight of the body and the resistance of the surrounding air.

But if the falling body is quite dense, the air resistance is negligible comparec

to the weight until the velocity becomes quite large. Observations have showr

that such a body falls with a constant acceleration of about 32 feet per seconc

per second at moderate velocities, and we infer that any force equal to th(
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weight of the body would, if acting alone on that body, produce an acceleration

of the value stated.

We are now led to inquire what is the effect on a body of an applied force of

some other magnitude, say a force equal to double its weight or one-half its

weight? If we could intensify or dilute the earth-pull upon a body by a

(gravity) lens or screen, then we could make a body fall under a force differing

from its own weight and ascertain the answer to our question by observing the

fall. Unfortunately for our purpose, we cannot so concentrate or dilute the

force of gravity but we can dilute it indirectly by means of an "Atwood ma-

chine," designed for that purpose. The essential parts of that machine are a

light pulley P mounted on a smooth horizontal axle (Fig. 246), some blocks of

metal which can be suspended as shown by a light flexible

cord, and a timing device for getting the acceleration of A
and B when the system is allowed to move. Neglecting the

small influence of the pulley, axle, and cord, we regard A and

B as the body moved and the difference in their weights

{Wb — W^a) as the driving force. Experiments with this ma-

chine show that A and B move with constant acceleration,

and when runs are made with various driving forces— all

metal pieces being used each time— then the accelerations in the ^ ,7"

different runs are directly proportional to the driving forces. In

this machine the driving force can be made very small but it cannot be made

larger than the weight of all the metal pieces. It would seem that the force-

acceleration relation stated holds even for driving forces larger than the weight
of the body moved; and we assume that when any forces are applied successively

to the same body so as to make it move in a straight line, then the accelerations are

proportional to the forces respectively. Or, if F and F' = the magnitudes of two

forces applied to any body in succession, and a and a' = the accelerations

respectively, then

F/F' = aja'.

If W = the weight of the body, g
= the acceleration due to gravity (W), F

and a as above, then the foregoing principle gives also F/W =
a/g, or as it is

more commonly written, F = (W/g) a.

Generally, a moving body is under the influence of more than one force.

When the body moves in a straight line, the resultant of all the forces acting upon
it is a single force acting in the direction of the acceleration (proved in Art. 35).

Therefore the resultant has no component at right angles to the line of motion;

or, the algebraic sum of the components of all the forces acting on the body along

any line at right angles to the path equals zero. Thus, if the path is taken as an
X axis and two lines at right angles to each other and to the path as y and 2

axes, then

2i^j,
=

o, 2F, = 0, and ^F^ = R,

where SF^, SF^, and SF^ stand for the algebraic sums of the x, y, and z com-
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ponents of all the forces acting on the body, and R denotes their resultant.

Furthermore, as proved in Art. 35,

(i)R^^a.

Any unit of force may be used for R and W in equation (i), and any unit for

g and a. Wfien a gravitational unit of force is used— such are most conven-

ient in engineering calculations— then, strictly, the numerical value of g used

should correspond to the 'locality
"
of the unit-force used. That is, when one

is about to make a calculation by means of equation (i), implying the New
York pound-force say, then he should use for g its value for New York. As

already stated, the variation in g is negligible in most engineering calculations,

and we generally use 32.2 feet per second per second or even 32 for simplicity.

Non-gravitational units, the dyne for example, may be used in equation (i).

But when such units are preferred, then equation (2) is to be preferred in place

of equation (i).

Examples.
— When a body moves in a straight line and if all the forces act-

ing on it are known so that R can be computed, then the acceleration can be

determined easily by means of equation (i). If the acceleration is known
then we can determine R easily, and from R we can find out something
about the forces acting on the body.

I. A (Fig. 247) represents a body being dragged along a rough horizontal

surface 5 by a pull P acting as shown. Suppose that the body weighs 100

pounds, P = 40 pounds, and the friction resistance = 10 pounds. We will

find the acceleration of A and the normal component of the force exerted

between A and B. The forces acting on A are represented in Fig. 248, N de-

noting the normal component of the reaction of ^ on yl
,
friction being the other

component. Resolving at right angles to the path, we get N + 40 sin 20°

=
100, or iV = 86.3 pounds. Resolving along the path, we get R = 40 cos 20°

— 10 = 27.6. Equation (i) gives 27.6
= (100 -^ 32.2) a, or a = 8.9 feet per

second per second.

100
1 Jbs

"^•-^
s\^\s\s^

^V\\\\m\V

Fig. 247

^^^^^

40^
TSsT

Fig. 248 Fig. 249 Fig. 250

2. A (Fig. 249) represents a body being dragged up the rough inclined plane
5 by a pull P equal to 50 pounds; A weighs 60 pounds and the coefl&cient of

friction for A and J5 is J. We determine the acceleration. Three forces act

on A^ namely the weight, the pull, and the reaction of B. The last force is

represented by two components (iV and F) in Fig. 250. Resolving at right

angles to the path, we get iV = 60 cos 30° = 52 ;
hence F = 52 -r- 4= 13 pounds.

Resolving along the path, we get i? = 50
—

13
— 60 sin 30° = 7 pounds; hence

7
= (60 -^ 32.2) o, or a = 3.75 feet per second per second.
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3. A certain passengpr elevator gets up speed at the rate of 4 feet per second

per second, and can be stopped at the rate of 8 feet per second per second.

We discuss the pressure on the shoes of a standing passenger weighing 160

pounds, during an ascent. The forces acting on the man are his own weight

and the pressure P of the floor on his shoes (upward). During acceleration the

resultant of these forces is upward, hence P is larger than 160 pounds and

R = P — 160. Equation (i) becomes P — 160 = (160 -r- 32) X 4 = 20, or

P = 180 pounds. During the next period, constant speed, a = o and P = 160.

During retardation the acceleration is downward and hence R also. There-

fore R = 160 — P = (160 -T- 32) X 8 = 40, or P = 120 pounds.

4. We determine the reaction of the car (Fig. 251) on ^ during the period

of getting up speed at the rate of 2 feet per second per second; A weighs 1000

pounds. We suppose the floor of the car so rough that A does not slip. There

are two forces acting on A (Fig. 252), its own weight and the pressure P of

the floor. This latter force must be inclined as shown to furnish a component
on A in the direction of the acceleration. Resolving at right angles to the

path, we get P cos ^ = 1000; resolving along the path, we get R = P sind =

(1000 -7- 32.2) X 2. Solving these two simultaneously we find that P = 1002

pounds and =
3° 3s'. (The horizontal component of P is friction. To

prevent slipping the floor must be rough enough to furnish such a resistance.)

Fig. 251

&>i

Fig. 252

^<\^
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pressure; and F = friction. Then resolving forces normally to the path we

gtt N =W cos a; therefore F = nN = fjW cos a. Resolving along the path
we get R= W sina — F = W (sin a — /jlcoso) = {W ^ g) a, or

a = g (sin q:
—

yu cos a).

If the plane'ls perfectly smooth fx
=

o, and a = gsin a.

§ 2. Second View and Form of the Fundamental Principle.— Physi-
cists avoid the (common) double meaning of the word weight by employing
the word mass to connote amount of material, substance, or stuff, in a body,
and weight to connote the earth-pull on the body. Such usage is followed in

this book. Material is measured in different ways; for example, Hquids

generally by gallon, earthwork by cubic yard, cloth by square yard, brick by
thousand, iron by ton, etc. But mass of a body means substance as measured

by a beam-scale. Our standards of mass (commonly and legally called
"
stand-

ards of weight ") are the pound and the kilogram. These are certain pieces

of metal preserved in London and Paris respectively. The mass of a body,
measured as just explained, does not change with change of locality, and this

is in accordance with our conception of material, substance, or stuff.

The force-acceleration relation, F = (W/g) a, can be put into an alternative

form which is preferable from some points of view. Thus suppose that two

bodies whose weights at the same place are Wi and W2 are subjected to equal
forces F; let ^

= the acceleration due to gravity at the place and ai and 02

= the accelerations produced by the two forces F. Then F =
(Wi/g) ai

= W2/g) 02, or

ai/a2
= W2/W1.

That is, the accelerations of the two bodies are inversely as their weights at the

same place; and since the masses of two bodies are proportional to the

weights (at the same place), the accelerations of the two bodies are inversely

proportional to their masses. This relation and that between the accelerations
3

produced in a body by two different forces acting singly can be expressed in 1

one statement as follows:— Whenever a force acts upon a body so as to make it

move in a straight line, then the acceleration produced is proportional to the force

directly and to the mass of the body inversely, or a ocF -^ m. This proportion-

ality can be put into the form of an equation,

F = Kma,

where i^ is a proportionality factor whose value depends on the units used

for expressing magnitudes of F, m, and a. This is the alternative form

mentioned.

We may fix the value of K in two ways:
—

(i) choose units of F, m, and a

at pleasure, and deduce the value of i^; or (2) choose a value of K and units for

any two of the quantities F, m, and a, and then deduce the proper unit for the

third quantity. On plan (i) we choose, for example, the pound-force, the

pound-mass, and the foot per second per second as units for F, m, and a, and
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then determine K by reference to any motion in which F, w, and a are known.

The motion of a faUing body is such a one. Thus when a body "weighing
"

say 10 pounds falls, then F = 10 pounds, m = 10 pounds, and a = about 32.2

feet per second per second, and we have io = iiLXioX32.2, or K = 1 -^-

32.2. On plan (2) we take K equal to unity for simplicity, and then (i) choose

units of m and a at pleasure, and deduce the proper unit of F; or (ii) choose

units of F and a at pleasure, and deduce the proper unit of m. (i) Physicists

take the gram as unit mass, and the centimeter per second per second as unit

of acceleration; then the corresponding unit of force (K = i) is such a force as

would give to the gram an acceleration of one centimeter per second per

second. They call this force the dyne, (ii) If we take the pound as unit of

force, the foot per second per second as unit of acceleration, then the corre-

sponding unit of mass (K = i) is such a mass which will sustain an acceleration

of one foot per second per second under the action of a force of one pound.
This unit of mass has no generally accepted name, but it is sometimes called

"engineers' unit of mass," also "slug
" and "gee-pound."

A set of units for which i^ = i is called a systematic set of units, also a

kinetic set. We will always use systematic units and thus always have F = may
or when several forces make a body move in a straight line,

R = ma. (2)

where R denotes the resultant of those forces. For a falling body R = W and

a = g; thus when systematic units are used

W = mg, or m = W/g. (3)

Therefore R = (W/g) a as in § i.

To arrive at a notion of the magnitude of the unfamiliar units dyne (force)

and slug (mass), let us consider the well-known force-mass-acceleration rela-

tion in the case of a falling body. A body whose mass is one gram, falling at

Paris, falls under the action of a force (earth-pull) of one Paris gram, and has

an acceleration of 981 centimeters per second per second. Hence a force of

0.001019 (= I -^ 981) Paris grams would give to a body whose mass is one

gram an acceleration of one centimeter per second per second. Therefore

that force is the dyne, that is

I dyne = 0.001019 Paris grams (force).

A body whose mass is one pound, falling at London, falls under the action of a

force (earth-pull) of one London pound, and has an acceleration of 32.2 feet

per second per second. Hence a force of one London pound would give to a

body whose mass is 32.2 pounds an acceleration of one foot per second per
second. Therefore, that mass is the slug, that is

I slug
=

32.2 pounds (mass).



CHAPTER VIII

CURVILINEAR MOTION

32, Velocity and Acceleration

§ I. Velocity. — In common parlance, velocity of a moving point at a

certain instant means the rate at which the point is describing distance then.

So understood, velocity has magnitude and sign only, and is therefore a scalar

quantity. In the preceding chapter (on rectilinear motion) we used the word

in this sense; in the present chapter we use the word in a broader sense— so

that it is a vector quantity whose magnitude is the rate at which the moving

point is describing distance at the instant in question and whose direction is

the same as that of the motion then.

If 5 = the (varying) distance of the moving point from some fixed origin

in the path, the distance being measured along the path, then the magnitude
of the velocity at any instant equals the value of ds/dt for that instant. Or if

V = magnitude of velocity,

V = ds/dt.

If the point is moving uniformly, then the rate at which distance is described

is constant, and is given by A^/A/, where A^ is the distance described in any
interval A/. The direction of the motion at any instant (and the direction of

the velocity there) is along the tangent to the path at the position of the

moving point at that instant. To illustrate, imagine a lo-foot wheel mounted

on a horizontal axis which points north and south, and suppose that the wheel

is rotating at 180 revolutions per minute clockwise when viewed from the

south. When a certain point on the rim is in its highest position then the

velocity of the point has a magnitude of 2 7r 5 X 180 = 5655 feet per minute,
and the direction of the velocity is horizontal from west to east.

The magnitude part of a velocity is called speed by some writers; we follow

this usage. Thus in the preceding illustration the speed is 5655 feet per minute ;

while the wheel turns, the speed of the point is constant but the velocity

changes in direction.

§ 2. Acceleration. — The acceleration of a moving point at any instant

is the rate at which its velocity
— not speed

— is changing then. If V de-

notes the (varying) velocity of a moving point and v the (varying) speed, then

the definition states that the acceleration is dV/dt and not dv/dt. Inasmuch

as most readers are unfamiliar with the rate of a vector quantity
— the rate

chapters in most books on differential calculus deal with rates of scalar quanti-

ties only
— we explain in considerable detail just what is meant by the rate of

144
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change of a velocity, but first we explain for subsequent use a motion graph
called

Hodograph.
— This is a curve which shows how the velocity of a moving

point varies. It is constructed by laying off vectors from a point to represent

successive velocities, and then the free ends of the vectors are joined by a

smooth curve. The curve is the hodograph for the motion. Thus, suppose
XhdX ABCD (Fig. 256 ) is the path of a moving point P, and that the vectors at

A, BjC, and D represent the velocities of P when Sit A, B, C, and D respec-

tively. If O'A', O'B', O'C, and O'D' (Fig. 257) are drawn (from any point O')

Fig. 256

bed
Fig. 258

to represent the velocities respectively, then the curve A'B'CD' is the hodo-

graph for the motion of P from A to D. The increment or change in the

velocity while P moves from ^ to Z> say is represented by the vector A'D'

(in magnitude and direction). The change in the speed = length O'D' —
length O'A'. (The hodograph should not be confused with the speed-time

curve. The latter is represented in Fig. 258 where ah, he, and cd represent the

times required for P to move from A to B,B to C, and C to D respectively, and

the ordinates over a, b, c, and d represent the speeds Sit A, B, C, and D.)

Fig. 259 Fig. 260

1.6 1.8 2.0 2.2 2.4Secs.

Fig. 261

We are now ready to explain the meaning of rate of change of velocity; we
base our explanation on a simple case of curvilinear motion. Suppose that a

point P starts at Q (Fig. 259) and describes the circle shown in such a way that

the distance traversed (in feet) equals double the cube of the time after start-

ing (in seconds), or s = 2 fi. Required the acceleration say, when / = 2.4

seconds, or 5 = 2 X 2.4^
=

27.65 feet. The curve in Fig. 260 is the hodograph
of the motion for the interval from / = 1.6 to ^ = 2.6, containing the instant
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in question. It was constructed from the adjoining schedule, computed from

s — 2t^,d = s/20 (radians) = 2.865 -^ (degrees), and v = ds/dt = 6 f.

t (sec.)
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on the original drawing already mentioned. The direction of this acceleration

is the limit of the directions of the average acceleration, and obviously this

limit is the tangentto the hodograph at E'. On the original drawing the angle

between this tangent and the horizontal is 24 degrees.

For emphasis by contrast we will determine the way in which the speed

changes during the motion under consideration. Speed-increments are listed

under A^ in the schedule; average rates of change of speed for the respective

time-intervals are listed under iH^v/At. The limiting value of these averages,

as A^ is taken smaller and smaller biit always terminating at / = 2.4, is about

2^ feet per second per second, and this is the rate at which the speed changes

(dv/dt) at / = 2.4 seconds.

We now generalize the foregoing. LetAB (Fig. 262) be the path of a moving

point P, and let O'A' and O'B' be the velocities of P when at A and B respec-

tively. Then vector A'B' is the velocity-in-

crement for the interval A/ while P moves

from A to B; (chord A'B') -^ A/ is the mag-
nitude of the average acceleration for the in-

terval, and the direction A'B' is the direction

of the average acceleration. The magnitude
of the (instantaneous) acceleration of P when ^^^- ^^^

passing A is the limit of (chord A'B') -j- A/, as B is taken closer and closer to

A; and the direction of the acceleration is the limit of the direction of A'B^

as B approaches A, or B' approaches A'. Now lim (chord A'B') -^ A/ = lim

(arc A'B') -^ A/ = ds'/dt where ds' is the elementary portion of the hodo-

graph Sit A', and s' is the distance of P' (the point in the hodograph corre-

sponding to P) from any fixed origin on the hodograph; and the limiting

direction of the chord A'B' is the tangent at A'. Finally, the acceleration of

P is a vector quantity whose magnitude is ds'/dt and whose direction is that

of the tangent to the hodograph at the point P' corresponding to P. This

final result can be viewed differently: Since the magnitude of the velocity

of P' = ds'/dt and its direction is along the tangent to the hodograph, the

acceleration of P is the same as the velocity of its corresponding point

P', it being understood that s' (distance on the hodograph) must be inter-

preted by the scale of the hodograph diagram, where distances represent

velocity. The student should note that the acceleration of P is not directed

along the tangent to the path but always toward the concave side of the

path.

As an example of the use of our final result, that the acceleration of P is given

by the velocity of its corresponding point in the hodograph, we determine the

acceleration of a point which describes a circle at a constant speed. Let P
(Fig. 263) be the point, r — radius of the circle, and v = the speed of P. The

hodograph is a circle whose radius equals v; A' corresponds to A and P' to P;
and hence A'O'P' equals d. We measure the distance 5 (traversed by P) from

A, and s' (traversed by P') from A', Then s'/v
—

s/r^ or s' = sv/r. Now
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the velocity of P' equals ds'/dt
=

(ds/dt) (v/r)
=

v^/r, and the velocity of P'

is directed along the tangent at P' (parallel to the radius OP); hence the

acceleration of P is directed from P to O and

its magnitude is v^/r.

The method for determining acceleration

used in the preceding example is difficult to

apply in most motions. Why then was the

method developed at length? To make plain

the meaning of acceleration in curvilinear

motion and particularly to show students,

in an elementary way, that acceleration in

curvilinear motion does not equal dv/dt and is not directed along the tan-

gent to the path in general. Thus in the preceding example it was found

that the magnitude of the acceleration is v^/r, whereas dv/dt = o since v

is constant; also it was found that the acceleration is directed along the

normal to the path. In the motion discussed at length (where 5 = 2 /^), it

was found that the magnitude of the acceleration when t = 2.4. seconds is

about 66.5 feet per second per second; but, since v = ds/dt
— 6 t^y dv/dt

=
12 t = 28.8 for t = 2.4.*

Fig. 263

33. Components of Velocity and Acceleration

§ I. Components or Velocity. — Velocity, like any other vector quantity,

can be resolved into components. For our purpose components parallel to axes

of coordinates (as x, y, and z) are most useful; such components are called

* Note on Rate of Change of a Vector Quantity.
—We shall have to deal with the rates of

vector quantities other than velocity. Therefore we now generalize our notions on the rate

of this vector quantity (velocity) just arrived at so as to prepare for the rates of these other

vector quantities for future use. Let OA, OB, OC, etc. (Fig. 264), represent successive

values of any vector p, in magnitude and direction, vector OB represent-

ing p at time /i, OB at time t2, OC at time ts, etc. The change in p during

the intervals ti to ^2, ti to ^3, ti to ti, etc., are represented by the vectors

AB, AC, AD, etc. The average rate of change in the vector p during

any of these intervals may be found by dividing the change by the

time; thus for the interval ti to /2 the average rate = AB -r- {h —ti),

and this rate is a vector whose direction \s AB. For the interval ti to

tz, the average rate = AC -^ {tz
—

ti) and the direction of the rate is AC.

In general, both the magnitude and the direction of the average rate of

a vector depends on the length of the interval for which the average

rate is taken or computed. By true or instantaneous rate of change of

the vector at the time ti, say, is meant the limit of the average rate AB -r- {t2
—

ti) as /2 is taken

closer and closer to /i. The magnitude of this limit = hmit of chord AB -J- (^2
—

ti)
= Hmit

of arc AB -i- {h
—

ti)
= dS/dt where dS = elementary portion of the arc

;
the direction of

the limit is the direction of the tangent to the arc at A.

Imagine a point P to move in the curve AD so that the vector OP represents the vector

p at each instant. The velocity of P = dS/dt and its direction at any instant is tangent to

the curve at the point where P is at the instant; hence the time-rate of p is the same as the

velocity of P (the moving end of p).

Fig. 264
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Axial Components.
— Let x, y, and z = the (changing) coordinates of a

moving point F, and Vx, Vy, and Vz = the components of the velocity of P
parallel to the x, y, and z coordinate axes respectively; then

Vx = dx/dt, Vy
=

dy/dt, Vz = dz/dL

(Proof follows.) These formulas state that each axial component of the

velocity at any instant equals the rate at which the corresponding coordinate

of the moving point is changing then. In the following derivation of the for-

mulas we assume for simplicity that the path of the moving point is a plane
curve— in the xy plane; proof can be extended readily to include the case of

a tortuous, or twisted, path. Let P (Fig. 265) be the moving point, v = the

magnitude of the velocity of P, and a = the angle which the tangent at P
makes with the x axis. Then Vx = v cos a, and Vy

= v sin a. But v = ds/dt,

cos a — dx/dSj and sin a = dy/ds; hence

ds dx dx , ds dy _ dy
Vx =

dt ds dt
and v^u

dt ds dt

Fig. 26s Fig. 266

For an example, we determine the x and y components of the velocity of a

point P which moves in the circle of Fig. 266 according to the law s = 2t^, s

being in feet and / in seconds. (This is the motion discussed at length in the

preceding article.) It is plain from the figure that x = 20 cos ^ = 20 cos

(5/20)
= 20 cos (o.i^O; hence

Vx = — 20 sin (o.i/^) 0.3 /2 = — 6 /2 sin (o.i/^).

When / = 2 seconds, say, z^x
= — 6 X 4 sin (0.8 radians) = — 24 sin 45.8°

= —
17.2 feet per second. The negative sign means that the component of the

velocity is directed toward the left. In a similar way it can be shown that

I'y
= 6^2 cos (o.i/^).

Other Components.
— The velocity of a moving point P is directed along the

tangent to its path at the point where P is at the instant under consideration;

hence, the tangential component of the velocity equals the velocity itself, and
the velocity has no normal component (along the normal to the path). For

formulas for components of velocity along and perpendicular to the radius-

vector of the moving point see Hoskins' "Theoretical Mechanics," Ziwet's,
or any other standard work on that subject.

§ 2. Components OF Acceleration.—Acceleration is a vector quantity, and
can be resolved into components therefore. The most useful components for
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our purposes are:— (i) Those parallel to axes of coordinates {x, y, and z), called

axial components; (2) those parallel to the tangent and normal to the path of

the moving point at the place where the point is at the instant in question.*

Axial Components.
— Let ax, ay, and az = the axial components of the

acceleration of a moving point P, and as in § i let Vx, Vy, and Vz = the (varying)

axial components of the velocity of P, then

•; ax — dvx/dt, ay
=

dvy/dt, az = dvz/dt.

(Two proofs follow.) These formulas state that each axial component of the

acceleration of P at any instant equals the rate at which the corresponding
axial component of the velocity of P is changing then. Since Vx = dx/dt,

Vy
=

dy/dt, and Vz = dz/dt, we have also

ax = d^x/dt^, ay
=

d^y/dt^, az = dh/dt^.

In the following proof it is assumed for simplicity, that the path of the

moving point is a plane curve— in the xy plane. The proof can be extended

readily to include the case of a tortuous or twisted path. LetP (Fig. 267) be

the moving point. Fig. 268 shows the hodograph for the motion; P' is the

Fig. 267 Fig. 268

point "corresponding" toP (see Art. 32 under hodograph), and the direction

of the acceleration of P is tangent to the hodograph at P' as indicated. Let

a = the magnitude of the acceleration, and a' = the angle between the acceler-

ation and the x axis. Then ax — a cos a and ay
= a sin a'. But a = ds'/dt,

where ds' denotes elementary length on the hodograph (see preceding article) ;

and since the coordinates of P' are Vx and Vy, cos a =
dvx/ds\ and sin a' =

dvy/ds'. Hence _ ds^ dvx _dvx J

~~di ds'^Tt'
^"^^ _ ds' dvy __ dVy ,

* For discussion of components along and perpen-
dicular to the radius-vector drawn from any fixed

origin to the moving point see texts referred to in § i .

t The following is an alternative proof:
— Let AB

(Fig. 269) be a portion of the path of the moving point

P, and let O'A' and O'B' represent the velocities of P
when at A and B. Then A'B' represents the change
in the velocity while P moves from A to B, and A'M

and A'N represent the x and y components of this velocity-change. Let A'Q, tangent to the^

hodograph at A', represent the acceleration of P when at A. Then

Fig. 269

ax = a cos a = lim^ Mm {cos B'A'M)
,.

A'B' cos B'A'M ,.
A'M

hm — = hm ——-.

At Ai

But A'M = O'X — O'X' = increment in the x component of the velocity = Avx', hence
j

ax = Um (Avx/At) = dvx/dt. In a similar way one could prove that ay= dvy/dt.
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For an example we*determine the x and y components of the acceleration

in the motion of the preceding example (see Fig. 266). In that example it was

shown that the general value of the x component of the velocity (true for any

instant) is Vx = — 6 1"^ sin (o.i /^); hence

dvx/dt (or ax)
= — 12 t sin (o.i t^)

— 1.8 /^ cos (o.i Z^).

And when t = 2.4 seconds, say, dx =— 29.4 feet per second per second. In a

similar way the value of ay can be found from the general expresssion for Vy.

Tangential and Normal Components.
— They will be denoted by at and a„

respectively; other notation as before, and r = radius of curvature of the path
at the point occupied by the moving point at the instant in question. Then

at = dv/dt
—

dh/dt^, and an = v^/r.

(Two proofs follow.) These formulas respectively state that at = the rate

at which the speed (magnitude of the velocity) changes, and that an is propor-

tional to the square of the speed directlyand to the radius of curvature inversely.

Where the speed is increasing, dv/dt is positive and at has the same direction

as the velocity; where the speed is decreasing, dv/dt is negative and at is

opposite to the velocity in direction. The normal acceleration an is always
directed from the moving point toward the center of curvature.

Let AB (Fig. 270) be the path of a moving pointP, v = velocity of P at ^
,
and

V -\- Av =
velocity of P at B, Also let O^A' be equal and parallel to v, and

O'B^ be equal and parallel to v-{- ^v; then A' and B' are on the hodograph.

v+Jv

The acceleration a of P when at A is parallel to the tangent A'Q. Let A'Q ^
the acceleration; then A^M and A'N respectively rep-

resent the tangential and normal components of a.

Hence

a< = a cos = ids'/dt) cos
</>,

and fln
= fl sin =

(ds'/dt) sin </>.

For use in the foregoing equations we now recall certain

formulas from calculus. In the language of that subject
we call OC and OC (Fig. 271) the radius vectors of C and

C, we denote them by p andp' (or p + Ap), the arc CC by A/, and the angle
COC by A^. It is shown in standard works on calculus that sin^ =pdd/dl
and cos ^ = dp/dl. Now these formulas from calculus when applied to the
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curve under consideration, hodograph (Fig. 270), become sin = vdB/ds' and

cos <f>
=

dv/ds'. Therefore

ds' dv dv , ds' dd dd dd ds v^ ^

""'^WdP^dt^
^^^

""^^df'd^'^'Jt^'dsdt^r

For an example we determine the tangential and normal components of the

acceleration in the motion of the two preceding examples. Since 5=2/^,
V = 6 t^ and dv/dt

= 12 / = fl<; at / = 2.4 seconds, say, at = 28.8 feet per

second per second. Also an = iP-jr
= 36 /V20 = 1.8 /^; at / = 2.4, an = 59.7

feet per second per second.

The (resultant) acceleration can be obtained from its axial or tangential and

normal components. Thus

a = Va/ + ay^ + fl.2
= Vat^ + an\

* The following is an alternative proof:
— Let AB (Fig. 272) be a portion of the path of

the moving point P, and O'A' and O'B' represent the velocities of P when at A and B respec-

tively. Then A'B' represents the change in the velocity while P moves from A to B. Let

Fig. 272

V = the magnitude of the velocity a,t A, v -\- Av = that at B, M = the angle between the

normals (and the tangents) at A and B, and /3 the angle between the acceleration and the

velocity at ^. Then

at = a cos/S = lim {A'B'/M) lim {cosB'A'E) =
lim [{A'B'/M) co^B'A'E] = lim {A'E/M) = lim [{O'B' cosM - 0'A')/At] =

lim [v (cos A^ — i)/At + Av cos A0/A/] = lim [t; (cos A^ — i)/At] + lim [Av cos AO/At].

Now the first of these last two limits equals zero for it can be written

,. fv (cos A0 — i) Ad sin A9"l ,. v (cosA^ — i) ,. A^ ,. sin Ad

l^^^L At A9^^0r^'^~-^nW-^'^At^''^-M-='
lim [v (cot A0 - esc A0)] (dd/dt)

• i = o •
(dd/dt)

• i.

This final result = o because dd/dt (rate at which changes) is not infinitely great. The

second of the two limits mentioned equals lim (cos Ad) lim (Av/At) = i X dv/dt. Hence

at = dv/dt. Referring to the figure it will be seen that an = a sin fi
=

,. A'B\. ,. ^,,,^. ,.
A'B' sin B'A'E

,.
B'E

,. (v + At;) sin A0
hm —— hm (sm B'A'E) = lim — = hm—— = hm

At
^ '

At At. At

Now sin Ad = BD/BO, where O is the intersection of the normals at A and B; and if As stani

for the arc AB then the last limit can be written

BD
As

The first of these three limits = v/r, the second =
v, and the last = i; hence On = v^/r.

.. Fv -\- Av BD As~\ ,. v-\-Av.. As,.hm ———
r^Tj
— = hm p^ hm — hm

L At BO AsJ BO At
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The angles which a makes with the x, y, and z axes are given respectively by

cos~^ {ax/a), cos~^ (%/«), and cos~i (az/a).

The angle which a makes with the normal equals tan~i (at/dn). From a =

(at^ + <in^)^ it appears that a does not equal at = dv/dt in general; only when

an = o. And an{= v^/r)
= o only when v = o or r = cc, that is, where the

moving point reverses direction of motion or where the radius of curvature is

infinitely great.

Simple Harmonic Motion (see Art. 30).
— The fact that the components of

the velocity and acceleration— along any line— of a moving point F equal

the velocity and acceleration of the projections of the point on that same

line, enables one to get the formulas for velocity and acceleration in a

simple harmonic motion very easily. Thus let P, Fig. 273, be a point describ-

ing the circle uniformly, and Q its projection on the horizontal diameter;

then the motion of Q is a sunple harmonic one (Art. 30). Let the amplitude of

the s.h.m. (radius of the circle)
= 2 feet, and the frequency of the s.h.m.

(revolutions of P per unit time) = 100 vibrations per minute. Then the

velocity ofP=27rX2X 100 = 1260 feet per minute =21 feet per second,

directed along the tangent at P as shown; and the acceleration ofP=2I2-^2
= 220 feet per second per second, directed along the radius PO, Now when

PO makes an angle
=

30° say, then the velocity of Q is 21 sin 30°
=

10.5

feet per second; the acceleration oiQ = 220 cos 30° =180 feet per second per

second, directed toward whether P is travelling clockwise or coimter clock-

wise. Evidently the greatest velocity of Q obtains when Q is at 0; that value

equals 21 feet per second. The greatest acceleration of Q obtains when Q is at

either end of its path; that value is 220 feet per second per second.

ii^!a
= -3

Fig. 273 Fig. 274

•

General formulas for velocity and acceleration in simple harmonic motion

can be as easily derived. Let r = amplitude, n = frequency. Then the

velocity of P = 2 irrn and its acceleration = 4 irh^n^ -i- r = 4 tt^wV. Hence

velocity and acceleration of Q are respectively (see Fig. 273)

— 2 irrn sin 6 and —
4 ir^nh cos d.

§ 3. Projectile Without Air Resistance. — Let u = the velocity of

projection (initial velocity), and a = the angle of projection (angle between

direction of projection and the horizontal), x and y = the coordinates of the

rojectileP (Fig. 274) at any time t after projection, v = the velocity of P, and

i
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a = the acceleration of P at the time /. The only force acting on the pro-

jectile during flight is gravity. Hence the acceleration of the projectile is

vertically downwards at all times and equal to g (Art. 34), or a^:
= o and

o^v
=—

g' Since there is no x acceleration, the x velocity remains constant

during the flight, and we find that value from the initial conditions {u, a) to be

Vx = ucosa. (i)

The y velocity is decreased at all times by the y acceleration — g. In the

interval /, that decrease is gt, and since the initial y velocity is u sin a, the y

velocity at any time / is given by

Vy
= usina — gt. (2)

Since the x velocity remains constant, the x displacement in the interval / is

given by
X = ucosa' t. (3)

The y velocity varies uniformly with the time; hence the average y velocity

for the interval / is | [(w sin a + {u sin a — gt)]
= usina — ^ gt. The y dis-

placement for the interval equals the product of the average y velocity and

the time or

y = usina 't — i gt^. (4)

Foregoing results determine the velocity and position at any time /. They
may be arrived at more directly by integrating the given equations

dVx J dvy

Thus integrating the first equation we find that Vx = Ci, where Ci is a constant

of integration whose value for reasons already stated is u cos a. Integrating

the second equation we find that Vy
= —

gt-{-C2 where C2 is another constant

of integration. From the initial conditions Vy
= u sin a when t = o, and on

substituting these values of Vy and / in the last equation we find that C2 =

usina; thus Vy
=—

gt -\- usina as before. Now integrating Vx = dx/dt =
u cos a, we get x — u cos a • / -J- C3. From initial conditions :*:

= o when

^ = o; therefore 2;
= o + C3, or C3 = o, and x — ucosa* t sls before. Inte-

grating Vy
= dy/dt = — gt -\- u sin a, we get y = — ^ gf^ -{- u sin a • t -{- d.

From initial conditions y = o when / = o; therefore o = o + o -|- C4 or

Ci = o, and y = — | g/^ + « sin a • / as before.

The trajectory (path of the projectile) is a portion of a parabola as can be

shown from the equation of the trajectory. To arrive at the equation we may
combine equations (3) and (4) so as to eliminate t. Thus we find that

y 2U^ cos^ a = xu"^ sin 2 a — gx^. (5)

Range and Greatest Height.
— At the end X of the range, y = o; hence the

time of flight is given hy u sin at — ^ gfi
=

o, or t = (2 w sin a)/g. The range

R equals the value of x in equation (3) when t = the value just foimd; thus

R =
(u^ sin 2 a) ^ g.

I
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R also equals the value of x in equation (5) when y = o. The formula for R
shows that the range is greatest

— for a given velocity of projection
— when

a =
45°. That greatest value is u'^/g.

At the highest point of the trajectory Vy
=

o; hence the time of flight to

that point is given by w sin a — ^/
=

o, or ^ = (u sin a) -r- g. The height H
of the trajectory equals the value of y in equation (4) when / = the value just

found; thus

H = \{u sin aY -^ g.

H also equals the value of y in equation (5) when x = \ R.

34. Motion of the Center of Gravity of a Body

In Art. 31 we found that any rectilinear motion of a body depends in a very

simple way upon the forces acting on the body. The relation between the

motion of the center of gravity of a body (whether rigid or not) which has any
sort of motion however complicated is also quite simply related to the forces

exerted on the body as we shall see presently.

§ I. A Particle is a body so small that its dimensions are negligible in

comparison with the range of its motion. In any motion of a particle no dis-

tinction need be made between the displacements (velocities or accelerations)

of different points of the particle, for they are equal or practically so; and

by displacement (velocity or acceleration) of the particle is meant the dis-

placement (velocity or acceleration) of any point of the particle.
'^ Laws of Motion.''^ — i. When no force is exerted upon a particle then it

remains at rest or continues to move uniformly in a straight line. 2. When a

single force is exerted upon a particle, then it is accelerated; the direction of the

acceleration is the same as the direction of the force, and its magnitude is propor-

tional to the force directly and to the mass of the particle inversely. 3. When one

particle exerts a force upon another, then the latter exerts one on the former; and

the two forces are equal, colinear, and opposite.

These are essentially Newton's Laws of Motion. The form of statement here

used differs however from that in which he announced them (1687). They
are based on observation and experience. Newton was led to them through
his study of the motions of heavenly bodies. No other moving bodies have

been so accurately and extensively observed, and the agreement of the laws

and those motions constitutes the best evidence of the correctness of the laws.

Law 3 has already been referred to (page 43, footnote). This law is doubted

by some beginners in this subject. The doubt is sometimes expressed in this

way: "When a horse pulls on a cart, then, if the cart pulls back on the horse

an equal amount (as the law states) , why is it that they generally move for-

ward? "
Close attention to the forces which act on the horse and on the cart

should clear up this doubt. There are three forces exerted on the horse,
—

his weight (exerted by the earth), the pull of the cart, and the reaction exerted

by the roadway on his hoofs. When the horizontal (forward) component of
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the reaction on his hoofs exceeds the pull back by the cart then the horse starts

forward. There are three forces acting on the cart,
— its weight (exerted

by the earth), the pull of the horse, and the reaction of the roadway on the

wheels. When the pull exceeds the horizontal (backward) reaction of the

roadway then the cart starts forward. Or, the motion of horse and cart

together may be explained like this: There are four forces acting upon the

pair,
—

^the weight of the horse, that of the cart, the reaction of the roadway on

the horse, and that on the cart; the horse and cart start to move when the

horizontal component of the reaction of the roadway on the horse exceeds that

on the cart.

Law 2 is discussed at length in Art. 31 for the case of rectilinear motion, but

is not referred to there as a "law." It covers curvilinear motion, as well as

rectilinear, inasmuch as no reference to kind of motion is made in the law.

We cannot give a real illustration of a particle moving under the action of a

single force. But imagine a particle projected in some way, and then sub-

jected to a single force inclined to the direction of projection; the particle

would move in a curved path. (A ball in flight through the air is a near ap-

proach to our imagined illustration. This ball is acted upon by two forces,

gravity and air resistance; but at moderate velocities the latter may be neglible

in comparison with the former.) The law states that the direction of the

acceleration of the particle agrees at each instant with the direction of the

force, and that the magnitude of the acceleration is directly proportional to

the force and inversely proportional to the mass of the particle {a cc F -^ m,
where a = the acceleration, m = the mass of the particle, and F = the force

acting upon it). It is shown in Art. 31, § 2, that the proportion a oc F/m can

be written as an equation F = Kma where i^ is a constant whose value depends
on the units used for F, m, and a. Units may be chosen so that K =

i', such

units are "systematic units"; for example, dyne (force), gram (mass), and

centimeter per second per second (acceleration). We will continue to take

i^ = I (as in Art. 31), thus implying the use of systematic units.

Law I is really included in law 2. For if there is no force acting on a particle

during any particular interval of time, then the particle has no acceleration

during the interval (according to law 2) ;
and hence the velocity of the particle,

whatever it may be, remains unchanged. Thus, if the velocity is zero at the

beginning of the interval, then the velocity remains zero, that is the particle

rests; if the velocity is not zero initially, then the velocity remains constant

in magnitude and direction, that is the particle moves uniformly and in a

straight line. This fact is important enough to warrant its statement in a

separate law.

The word inertia is used in Mechanics to refer to the property of the matter

involved more or less in laws i and 2. It refers to the fact that the natural

state of a particle is rest or uniform rectilinear motion, that a particle is reluc-

tant, as it were, to change that state, and responds only to an outside influence

which we call force. We also express this fact by sa3dng that matter is inert.
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"Force of inertia
"

is a term which students sometimes use to express a notion,

but generally in a vague way. For example, concerning the motion of a

hockey puck projected without spin along the surface of smooth ice, it is stated

sometimes that the puck is urged on by the (or its) force of inertia. This

statement is at variance with the laws of motion. The only forces acting on

the puck, after projection, are gravity and the reaction of the ice. There is no

force urging the puck onward; it moves onward— for a time— because it

was (forcibly) projected, and in spite of the retarding influence of the reaction

of the ice. Were it not for this influence (friction), the puck would move

across the entire field of ice at constant velocity, not because of any force urg-

ing it onward but because of no force to change its natural state (of uniform

rectilinear motion).

For another illustration, imagine a yard stick mounted on a vertical axis,

the wide sides of the stick being horizontal; also imagine a coin laid on the

upper side and near the end of the stick remote from the axis, and that several

pins are stuck about the coin to hold it in place when the yard stick is rotated.

If the pins are not too strong and firm, then the stick may be rotated so rapidly

that the pins will give way, and the coin will "fly off." Or, as some would

say, the coin will be "thrown off by the force of inertia." Such statement

is at variance with the laws of motion. The following is a description of the

phenomenon in accordance with those laws. Before the stick is rotated, there

are two forces acting on the coin,
— its own weight (or gravity) and the re-

action of the stick (upward and equal to the weight). When the stick is ro-

tated, the coin is forced into an unnatural state (curvilinear motion) by some

of the pins. We know from our experience and observation that the coin

presses against the outer pins (remote from the axis) and that those pins press

against the coin. Thus there is no- force acting on the coin tending to throw

it off the stick; on the contrary, the pins exert forces to hold it on. The coin

eventually flies off— as the speed is increased— because the pressure of the

coin against the pins gets large enough to make them give way; then the pins

can no longer restrain the coin, and it takes on a natural state of motion.

This motion is along the tangent to the (circular) path previously described

by the coin at the point where the coin is supposed to have

broken loose, andwithvelocityequal to that of the coin at failure.

Of course this natural motion is short-lived, because after the coin

has left the stick, it is subjected to a single unbalanced force

(gravity) which interferes with the inclination— as it were—
of the coin to move along the straight Une mentioned (tangent).

When several forces a-ct on a particle then the particle has a

definite acceleration at each instant, which might of course equal

zero under certain circumstances. Let F', F" ^
etc. (Fig. 275), be forces acting

on the particle' P, and a = the acceleration, and m — the mass of P. Obviously
some single force R acting alone would give the particle that same accelera-

tion. According to the second law R would have to act in the direction of the
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acceleration and equal ma. This force is the resultant of the forces F', F" , etc.,

which actually produce the acceleration.* Let a — the angle between the di-

rection of the acceleration and any line, say the x axes of a coordinate frame.

Then R cos a — ma cos a, or R^ = max where R^ and a^ denote the x com-

ponents of R and a respectively. But Rx equals the algebraic sum of the x

components-of F', F" ^
etc. (Art. 4), and hence Y^Fx = max.

§ 2. Two OR More Particles considered collectively are called a system

of pariicles. We conceive a body (whether rigid or not) as consisting of parti-

cles, that is, as a system or collection of particles. Among the forces exerted

upon any particle of a body some may be exerted by the particles of another

body; such a force has been called an external Jorce with reference to the body
under consideration (Art. 10). A force exerted on a particle of a body by
another particle of the same body is called an internal jorce with reference to

the body. According to the third law of motion, if one particle of a body
exerts a force upon another, then the second exerts a force upon the first; and

these two forces are equal, colinear, and opposite. Hence, a system oj internal

forces consists of pairs of equal, colinear, and opposite forces.

Let Fig. 276 represent a body, not rigid necessarily, points i, 2, 3, etc., being

constituent particles of the body; let Fi, F2, F3, etc., be the external forces

acting on the body, the other vectors (not lettered)

being internal forces. Imagine the last equation of § i

(which states that the algebraic sum of the com-

ponents
—

along any line— of all the forces acting

on a particle equals the product of the mass of the

particle and the component of its acceleration along

the line) written down for every particle of the body,
and then imagine the left-hand members to be added

and also the right-hand members; these sums are

equal of course. To the first sum the internal forces

contribute nothing, since those forces occur in certain pairs as already ex-

plained; hence the sum depends only on the external forces. We will de-

note the algebraic sum of their components along some fine, say an axis of
x,|

by HFx as customarily. The second sum is m'aj + m'^aj' + • • • where m'l

m"
, etc., denote the masses of the particles and aj , aj', etc., the x component

of their accelerations respectively. A simple expression for this sum can be

found as follows:— Let x'
, x", etc., be the :\:-coordinates of the particles at

any instant of the motion, and x = ic-coordinate of their mass-center j at that

instant; then wV + m"x" -f = xYm.

* This force R is called resultant in accordance with the definition of. the term in Art. 3,

where first used. For if R were reversed, then acting alone it would give the particle an acceler-

ation — a; and acting together with the forces F'
,
F"

, etc., the acceleration would be zero. R
therefore is

"
equivalent

"
to F', F", etc. All the relations between concurrent forces and their

resultant developed in Statics hold here also for F', F", etc., and R.

t Mass-center is another name for center of gravity. The former term seems more appro-
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Differentiating with respect to time, we get

m'i)J + wI'dJ' + • • • = v^m^

where i)J , vj', etc., are the x components of the velocity of the respective par-

ticles, and Vx is the x component of the velocity of the mass-center. Differen-

tiating again we get

m'aj + m"aj' + • • • = Sa-Sm,

where Ox is the x component of the acceleration of the mass-center. If now we

equate these simplified expressions for the sums mentioned we get

SF, = M-a,, (i)

where M is written in place of Sw, the mass of the whole body, for simplicity.

Since Si^x does not include internal forces, a^, does not depend on those forces;

that is to say, the acceleration of the mass-center of a system of particles does

not depend at all upon internal forces.

Equation i is a mathematical form of an important principle which we will

call the principle of the motion of the mass-center. It may be put into words as

follows: In any motion of a body {whether rigid or not) the algebraic sum of the

components {along any line) of all the external forces equals the product of the

mass of the body and the component of the acceleration of the mass-center along

that line. It is worth noting that equation (i) is just like the last equation of

§ I which relates to the motion of a particle. Hence, the motion of the mass-

center of a body is the same as though the entire mass of the body were con-

centrated at the mass-center with all the external forces acting on the body

applied to the dense point parallel to their actual lines of action. The use of

systematic units (Art. 31) is presupposed; but if W/g be written in place of

M (see Art. 31, § 2), where W is the weight of the body, then

2F. = {W/g) a. (2)

and any unit may be used for F and W, and any unit for g and ax.

Any number of equations like (i) or (2) can be written in a given case, one

for each possible direction of resolving (x, y, z, u, etc.). Only three of these

equations would be independent; the others would be superfluous. Thus we
would have

2Fx = Max, I^Fy = May, 2F, = Ma^.

When the mass-center describes a curve then it is usually more convenient to

resolve along the tangent to the curve, the (principal) normal, and at right

angles to the plane of the first two directions. The component of the acceler-

ation in this last direction equals zero; calling the components in the first two

priate in the present discussion. Since masses of bodies are proportional to their weights

(at the same place), we may substitute mass for weight in the formulas for the coordinates

of the center of gravity (or mass-center) in Art. 21. (Mass-center is generally defined with-

I
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directions a* and a„ respectively, we then have for our three equations of

resolution

2F, = Mat, 2Fn = M^n, SFg = o,

where HF^, 2F„, and SF3 stand for the algebraic sums of the components of

all the external forces acting on the body, along the three lines of resolution

just named.

Ex4i^mples.
— i. Fig. 277 represents a flat car on which there is a body A

weighing 4000 pounds. Suppose that the car is on a curve with no elevation

,
of outer rail; that the speed of the car is

increasing at 2 miles per hour per second.

Required the reaction of the car on A at

the instant when the velocity is 40 miles

per hour, and where the radius of the

curve is 1000 feet. There are two forces

acting on A, its weight and the reaction

of the car. For simplicity we imagine the

reaction resolved into two components, normal pressure N (vertical) and

friction F (horizontal); next we imagine F resolved into two components,

along the tangent and the radius of the path of the center of mass of A
,
and

we call them Fi and F2 respectively (see Fig. 277), where A is shown in plan

and elevation. Therefore

^Ft = Fi = Mat, SFn = F2 = Man, and SFg = N -
4000 = o.

Now at = 2 miles per hour per second = 2.93 feet per second per second.

The velocity is 40 miles per hour or 58.7 feet per second, and therefore an =

58.7^ -T- 1000 = 3.44 feet per second per second. The force-acceleration

equations become Fi = (4000 -r- 32.2) 2.93
= 364 pounds, F2 = (4000 -^

32.2) 3.44
= 427 pounds, and N = 4000 pounds. The reaction sought equals

V(4ooo^ + 364^ + 427^)
= 4039 pounds.

We have assumed that A and the floor of the car are rough so as to furnish a

.frictional force large enough to hold A in place on the

car; the necessary holding force = '\/(^64^ + 427^)
=

561 pounds.
2. A circular cylinder C (Fig. 278) is laid in a box

which is mounted on a board as shown, and the whole

thing is then rotated about a vertical axis AB. The

weight of the cylinder is 30 pounds, AC = 2 feet, and

the rate of rotation (constant) = 60 revolutions per

minute. The pressures of the box on the cylinder

are required. There are three forces acting on the cylinder,
— its weight,

the pressure Pi of the bottom of the box, and a pressure P2 exerted by
one of the ends of the box. We assume that the cylinder rests against the

lower end; the complete solution will determine whether the assumption is

Fig. 278
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correct. Because the,rate of rotation is constant there are no pressures on the

cylinder in the direction of motion (perpendicular to paper). The velocity

of the mass-center =27r2X6o=754 feet per minute =12.5 feet per second;

hence ^ = 78 feet per second per second, directed toward the axis of rotation.

Now SiPn = Pi sin 30°
— P2 cos 30°

=
(30 -f- 32.2) 78, and SFg = Pi cos 30°

+ P2 sin 30°
—

30 = o. Solving them simultaneously for Pi and P2 we get

Pi = 62.3 and P2 = — 48.0 pounds. The negative sign means that we made
a wrong assumption as to P2; it acts downward and is exerted by the upper
end of the box.

3. A simple conical pendulum consists of a "bob "
suspended from a fixed

point by a cord, arranged so the bob and cord can be rotated about a vertical

through the fixed point. See Fig. 279 which represents such a pendulum by
side and end views; ^-S is a forked vertical shaft; GG are guides fastened to

the shaft, between which the bob may swing. When the shaft is rotated, the

cord will deflect from the vertical. We now determine this deflection for any
constant speed of rotation. Let I = length of cord, from point of suspension
to the center of the bob; d = angle of deflection; n = number of revolutions

per unit time; W = weight of bob; T = tension in the cord. The bob is

under the action of Wj T, and the pressure P of one of the guides possibly;

hence

SF„ = r sin ^ = ][fdn; I>Fs= T cosB -W =
o; 2F, = P = Mat,

Wheff the speed is constant as here assumed, the deflection is constant, and the

center of the bob describes a horizontal circle of radius / sin 6. The velocity

of the center = nrlsind 'n; hence an = 4 irVl sin B, and T sin ^ = {W/g)

4 ir'^nH sin 0. Solving this and T cosd — W simultaneously for we get

cosd = g -^ {^ttHH). Also T = W4Tr^nH -i- g; and since at = o, P = o.

Fig. 279 Fig. 280

Elevation of Outer Rail on Curves.— Fig. 280 represents a car
"
on a curve

"
in

a railway track. We discuss certain features of the pressures of the car upon
the track as the car runs around the curve. Imagine the rail pressure on each

wheel resolved into three components,
— one parallel to the ties (so-called

flange pressure), one perpendicular to the track, and one parallel to the rails.

Unless the curve is quite sharp, the forces of each of these three sets of com-

ponents are parallel. We will suppose them parallel, and call the resultants
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of the three sets i?i, i?2, and Rs respectively. Besides these three resultants

there are acting on the car the weight W, the pull Pi of the car ahead, and the

pull P2 of the car behind. Unless the curve is quite sharp Pi and P2 are practi-

cally parallel to the tangent to the ciu*ve under the middle of the car; we will

assume them to be so. Then resolving along the normal (or radius of the

curve), the -vertical, and the tangent to the curve, we get

Pi cos <l,-\-R2smcf>= (W-^ g)an= {W-^ g) v^r,
m

where v = velocity of the car and r = radius of the curve;

- Pi sm + P2 cos - IF = o; and Pi - P2 - P3 = (TF -f- g) at.

Solving the first and second simultaneously for Pi and P2 we get

Ri = W I
— cos

(f)
^ sin (j)] ,

and P2 = TF(— sin^-j- cos^J*

It is obvious from the expression for Pi that the resultant flange pressure may
be equal to zero for certain values of v, r, and 0. It will be zero if {v'^ cos 0)

-7- gr
= sin 0, or tan =

v^/grj^ When Vj r, and are related in this way,
then W = R2 cos 0.

* This formula, or some modification of it, is used to determine the proper elevation of the

outer rail on railroad curves, except as noted below. The following is a practical rule deduced

from the formula: "The correct superelevation for any curve is equal to the middle ordinate

of a chord [of the curve] whose length in feet is 1.6 times the speed of the train in miles per

hour." On the Pennsylvania Railroad the rule is modified as follows:
" No speed greater

than 50 miles per hour should be assumed in determining the superelevation by the above

method even though higher speed may be made. No superelevation exceeding 7 inches is

permissible and none exceeding 6 inches should be used except at special locations on passenger

tracks." The formula was deduced on the basis that resultant flange pressure should = zero.

The same formula is arrived at by making ties of the track perpendicular to the resultant

pressure between the floor of the car and any object resting upon it, or perpendicular to a

plumb line suspended in the car.



CHAPTER IX

TRANSLATION AND ROTATION

35. Translation

A translation is such a motion of a rigid body that each straight line of the

body remains fixed in direction; there is no turning about of any line of the

body. The coupling or side rods of a locomotive (connecting the driving

wheels on either side of the locomotive) have a translatory motion when the

engine is running on a straight track. It should be noticed that our definition

does not require rectilinear motion of each point of the moving body. But

rectilinear translations are most common, and such translations have been

quite fully discussed in Art. 31.

The motions of all points of a body in translation are alike. For, let A and

B be any two points of the body, and A' and B^ be the positions of those points

in space at a certain instant and A" and B" their positions at a later instant.

By definition of translation the lines A^B^ and A^'B" are parallel; and since

the lines are equal in length the figure A'B' B"A" is a parallelogram; and

A'A" and B'B'' (the displacements of A and B respectively) are equal and

parallel. Since the displacements of all points of the moving body for any

interval, long or short, are equal and parallel, the velocities of all points at any
instant are alike, and hence also the accelerations. By displacement, velocity,

and acceleration of a body having a motion of translation is meant the dis-

placement, velocity, and acceleration respectively of any one of its points.

The general principle of Art. 34, relating to the motion of the mass-center of a

body moving in any way, when applied to a translation, takes this form: the

algebraic sum of the components
—

along any line— of the external forces

acting on the body equals the product of the mass of the body and the com-

ponent of the acceleration of the body along that line. This gives three in-

dependent "equations of motion," namely,

SFx = Ma^, llFy = May, SF. = Ma,,

where x, y, and z denote three noncoplanar lines of resolution.

The resultant of all the external forces acting on a body having a motion of trans-

lation is a single force; its line of action passes through the mass-center, the force

is directed like the acceleration of the body, and its magnitude equals the product

of the mass of the body and the acceleration.* Assuming that the resultant is a

single force, most students will accede to the second statement in the foregoing
* The student is reminded that the resultant of a system of forces is a force, a couple, or a

pair of noncoplanar forces (see Chapter I).

163
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proposition, on the basis of their experience; for, they will say, if the resultant

did not pass through the mass-center, the body would turn and not have a

translatory notion. But it can be demonstrated as follows: Let Fig. 281

represent the body and points i, 2, 3, etc., its constituent particles; the

external forces acting on the body are not shown. Suppose that the accelera-

tion is directed, say, toward the right, and let a = the magnitude of that

acceleration, and Wi, nh, W3, etc. = the masses of the particles respectively.
Then" the resultants of all the forces acting on the several particles equal re-

spectively Wia, nha, m^a, etc., all directed Hke the acceleration, as represented
in the figure. Now this system of imaginary forces (resultants) is equivalent
to all the real forces, external and internal, acting on the system of particles;

and the resultant of the imaginary system and that of the real system are

identical in magnitude, line of action, and sense. But the internal forces occur

in pairs of equal, colinear, and opposite forces (Art. 34), and so constitute a

balanced system and contribute nothing to the resultant of the real system.

Hence, the resultant of the external system and that of the imaginary system
are identical. We proceed now to ascertain the resultant from the latter

system.

Fig. 281 Fig. 282

The imaginary system (/) consists of parallel forces proportional to the

masses of the particles, and the lines of action of the forces pass through the

particles respectively. The system of earth-pulls (gravity, G) Ukewise con-

sists of parallel forces proportional to the masses of the particles, and the lines

of action of these pulls pass through the particles respectively. Hence systems
I and G are very similar; and if we imagine the body turned so that the line

AB (parallel to a) in Fig. 281 is vertical (Fig. 282) then systems I and G are still

more alike. The difference is in the magnitudes of corresponding forces; the

forces of / are respectively proportional to the forces of G. It follows that the

line of action of the resultants of systems / and G coincide (in the body) ;
but the

resultant of system G passes through the mass-center of the body; and hence

the resultant of system / (and the resultant of the external system) also passes

through the mass-center. From Fig. 281 it is obvious that the resultant of the

external system is a single force directed like the acceleration, and equals

mia -f nha -)-•••= dLm = Ma.

The algebraic sums of the moments, or torque, of all the externalforces about any
line through the mass-center equals zero, for the resultant of those forces has no
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moment about such line. This principle gives three independent m^oment

equations:

Tx = 0, Ty = o, T^ = o, (i)

where Tx, Ty, and Tz denote the moment-sums for three noncoplanar lines

through the mass-center. Or we may take moments about any three lines

and equate the torques of the external forces about that line to the moments

of the resultant {Ma) about the same lines respectively.

Examples.
— i. A (Fig. 283) is a rectangular prism weighing 2000 pounds.

The car is being started at 4 feet per second per second. Required the pressure

of the car on the bottom of the prism. There

are only two forces acting on the prism,
— its

own weight and the required pressure P. See

the figure where P is shown resolved into two

components (Piand P2) at the base of the prism.

The (unknown) distance from the point of ap-

plication of P to the center of the base is de-

noted by X. SPj, = Pi — 2000 = May = o, or

Pi = 2000; SPa; = P2 = (2000/32.2) 4 = 248. Hence P = V (20002 -f- 248^) =

2015 pounds, and the inclination of P to the vertical = tan~^ (248/2000) =
8° 25'. To determine x we take the torque, of the forces acting on the prism,

about the horizontal line through the mass-center and perpendicular to the

direction of motion and equate to zero. Thus 248 X 2.5
— 2000 :\;

=
o, or

X = 0.31 feet = 3.72 inches. (P2 = 24S pounds is friction, and the floor and

prism must be rough enough to develop such a value, to prevent the slipping,

here assumed not to occur. Thus the coefficient of friction must be not less

than 248 -r- 2000 = 0.124 or about one-eighth. If the coeflficient were less

than one-eighth, the friction developed under the prism, say 200 pounds, could

not give the prism an acceleration of 4 feet per second per second, only 3.22.

Hence the prism would eventually be left behind. The prism is not
"
thrown

off by the force of inertia
"

in such a case, as some would describe the phe-

nomenon, but the car slips out from imder the prism.)

2. C and C (Fig. 284) are two parallel cranks, their shafts being connected

mechanically so that they rotate together with equal speeds and in the same

direction. 5 is a bar pinned to the cranks. We
discuss the forces acting on B when the mechanism

is in motion. There are three such forces
;
the weight

of B and the pressures of the pins on B. We will

neglect the weight, or assume that the plane of the

cranks is horizontal so that the bar lies upon the

Fig. 284 cranks and the supporting forces balance the weight.

If the bar is uniform then it seems reasonable to

5ume that the pin pressures Q are parallel; if so they must be equal since

algebraic sum of their moments about the mass-center of B equals zero.

^ ^

~0
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Moreover, the resultant of the pin pressures
= Q + Q = Ma, where M = mass

of the rod and a = its acceleration, and the pressures act in the direction of a.

The acceleration of the bar is the same as that of the center of either pin P.

If the cranks be made to turn uniformly, then the acceleration is in the direc-

tion PO and it equals v'^/r (Art. 32), where v — velocity of P and r = PO;
hence 2 Q =? Mv^r = (W/g) (v^r), or Q = i Wv^/gr.

3. Imagine a locomotive raised up off its track, and that steam is "turned

on "
so that the drivers are made to rotate at constant speed. If the connect-

ing rod on one side be detached— the drivers being driven from the othe

side — then the side rod on the first side would be under the action of pi:

pressures just like those discussed in the preceding example. Each pressure

equals J Mv^/r, directed along its crank radius and toward the crank shaft.

(The weight of the rod induces pressures equal to ^W upwards.)

When the locomotive is running on its track, then there is superimposed

upon the motion of the side rod just discussed the forward (or backward)

motion of the locomotive as a whole. The velocity of the side rod equals the

vector sum of v and the velocity of the locomotive; and the acceleration of the

rod equals the vector sum of the acceleration v^/r and that of the locomotive.

Now when the velocity of the locomotive is constant its acceleration is zero,

and the acceleration of the side rod is still v'^/r and parallel to the cranks and

directed as explained in example i. Hence, even when the locomotive is

running on a track, the pin pressures on the (lone) side rod are as when the

locomotive is ''jacked up
" and running. Let V =

speed of locomotive, R =

radius of driving wheels; then v = Vr/R, and the pin pressures
= i (W/g) r

V^jR^ (weight of rod neglected). For example, let W = 275 pounds, r = i

foot, R =
2.75 feet, and F = 60 miles per hour = %'^ feet per second; then

the pin pressures
= \ (275/32.2) X i X (88 -f- 2.75)2

= 4425 pounds.

Locomotive Side Rod. — We give here another solution of the side rod prob-

lem (see preceding examples). In Fig. 285 each pin pressure on the rod is

represented by two components, hori-

zontal and vertical. The vertical com-

ponents are equal since the sum of the

moments of all the forces acting on the rod

(pressures and weight) about the center

of gravity (at mid-length of the rod)

equals zero; hence both vertical com-

ponents are denoted by the same letter

F. The horizontal components are Xi and Xi. Let a = the total, or abso-

lute, acceleration of any and every point of the rod when the cranks make an]

angle with the downward vertical, and ax and ay
= the horizontal and verti-«

cal components of a. Then

Xi-X2=^ Max, and 2Y -W = May, or Y = iiW + May).

Presently we show how to find a^ and ay for any position of the cranks. Thei
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from the above we can determine Xi — X2 and F. The values of Xi and X2

depend upon the load or pull on the locomotive, and how it is distributed

among the driving wheels. But Y does not depend on the pull, only on W
and ay.

We now discuss the motion of one of the crank pins with the view of obtain-

ing formulas for ax and ay. Let V = the velocity of the locomotive, A = its

acceleration, R — radius of the driving wheels, and

r = length of the cranks (CP, Fig. 286). It will

be convenient to refer the motion of the crank-pin

P to the coordinate axes shown; OF is the position

occupied by the crank when F was in its lowest

position. Let s be the distance of C from OY, and

X and y the coordinates of P. Then

s = Rd,

X = s — rsind,

y = R — r cos d

Fig. 286

low a. d^x/dt^ and ay
=

d'^y/dt^, and for use below V = ds/dt = R dd/dt, or

^/dt
= V/R. Thus

-77
= — — r cos ^ •

37 = F — r cos ^ •
7;
= F I — 7^ COS :

at at at K \ K /

dVf r a\ ,rrr . ^ dd ./ r ^ ,

V . ^

dV dd 72

dt R
— sin ^ + F -7^ cos d '— = A -^smd-{- r-zr cos d.

R dt R R^

Thus it is seen that ax and ay depend on the velocity and acceleration of the

locomotive. The largest values of ax and ay obtain at high speed, and then the

A terms (in the expressions for ax and ay) are small and negligible compared to

the F terms. So when we neglect these terms or when the acceleration of

the locomotive is zero, then

ax = {V/RY r sin
(9,

and ay
= (V/RY r cos d.

When the rod is in its lowest position, 6 = o, ax = o, ay = {V/RYr, Xi = X2,

and F = i TF H- i (W/g) {V/RYr; the forces F act upward on the rod.

When B = 90°, ax = {V/RYr, ay
=

o; the resultant of the two forces X acts

toward the right and equals {W/g) {V/R)h, and F = ^ W. When the rod is

in its highest position 6 = 180°, ax = o, ay
= — {V/R)h; Xi = X2, and F = J

TF — J {W/g) {V/R)h; for high speeds F acts down on the rod. When
6 = 270°, ax = —{V/R)h, ay

=
o; the resultant of Zi and X2 acts toward the

left -and equals {W/g) {V/R)h, and F = J PF.
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of the unit. Thus, when the pound and the foot are used as units of mass and

length respectively, then the unit of moment of inertia is called a pound-foot

square; when the slug (about 32.2 pounds) and the foot are used, then the

unit moment of inertia is called slug-foot square.*

The moment of inertia of any right prism
— cross section of any form—

with respect to any line parallel to the axis of the prism can be computed in a

special way, preferred by some. Thus if we take as elementary portion a

filament of the prism parallel to the axis, then dM = (adA) 8 where a = the

altitude of the prism, dA = the cross section of the filament, and 8 = density;

and p
I = a8

j
dir^. (2)

This integral (extending over the area of the cross section) is called the moment
of inertia of the cross section about the line specified (see appendix B).

Since a moment of inertia is one dimension in mass and two in length, it can

be expressed as the product of a mass and a length squared; it is sometimes

convenient to so express it. The radius of gyration of a body with respect to

a line is such a length whose square multiplied by the mass of the body equals

the moment of inertia of the body with respect to that line. That is, if k and /

denote the radius of gyration and moment of inertia of the body with respect

to any axis and M = its mass, then ^

km = I or k= ViJm. (3)

The radius of gyration may be viewed as follows: If we imagine all the material

of a body concentrated into a point so located that the moment of inertia of

the material point about the line in question equals the moment of inertia of

the body about that line, then the distance between the line and the point

equals the radius of gyration of the body about that Hne. The material point
is sometimes called the center of gyration of the body for the particular line.

To furnish still another view of radius of gyration we call attention to the

fact that the square of the radius of gyration of a homogeneous body with

respect to any line is the mean of the squares of the distances of all the equal

elementary parts of the body from that line. For let n, r2, etc., be the dis-

tances from the elements, dM, to the axis, and let n denote their number (in-

finite). Then the mean of the squares is

{ri" + r2^+ ' ' ' )/n= {r^UM + ra'^M + • • • )/ndM = I/M = k\

Obviously the radius of gyration of a body with respect to a line is intermediate

between the distances from the line to the nearest and most remote particle of

the body. This fact will assist in estimating the radius of gyration of a body.

Examples.
— i. Required to show that the moment of inertia of a slender

rod about a line through the center and inclined at an angle with the rod is

i\MP sin^ a, whereM = mass, I — length, and a = angle between the line and
the axis of the rod. Let a = the cross section of the rod, 5 = the density, and

* For dimensions of a unit of moment of inertia, see Appendix A.
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X = the distance of any elementary portion from the middle of the rod AB
(Fig. 288). Then dM = 8 {a dx), and the distance of the element from CD =
X sin a. Hence

X
+ yi r^3-j+iz

8a dx • x^ sin^ a = 8a sin^ a\—
\

=

and this rednces to jV -^^^ sin^ a, since 8al = M.

8a sin^ a P
3X11 Ct 1

13.
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question, and PQ a section of one of the laminas; then the mass of the lamina

is 8 (iry^dx). According to example 3 the moment of inertia of this lamina

(cylinder) about its axis {XX') is § 5 iTry^dx)y^. Hence the moment of inertia

of the sphere is

r^ 'i 5 (wf dx) = i
7r5 f"^

'

(r2
-

x'^Y dx Kdrr^ = etc.T3-

§ 2. Parallel Axis Theorem; Reduction or Transformation Formu-

las.— There is a simple relation between the moments of inertia (and the

radii of gyration) of a body with respect to parallel lines one of which passes'

through the mass-center of the body. By means of this relation we can

simplify many calculations of moment of inertia, and avoid integrations (see

examples following); it may be stated as follows:

The moment of inertia of a body with respect to any line equals its moment of

inertia with respect to a parallel line passing through the mass-center plus the

product of the mass of the body and the square of the distance between the lines.

Or, if / = the first moment of inertia, / = the second (for the line through the

mass-center), M = mass, and d = the distance between the parallel lines,

I = l-\-MdK (4)

Proof. — Let (Fig. 292) be the mass-center, and P any other point of the

body (not shown), XL the line about which the mo-

ment of inertia is /, and OZ a parallel line (through

the mass-center) about which the moment of inertia

is 7. Distance between these parallel lines is d.

For convenience we take x and y axes through O,

the former in the plane of the two parallel lines and

the latter perpendicular to that plane. Let x, y, and

z = the coordinates of P. The square of the dis-

tance of P from the z axis equals x'^-\-y'^, hence / =
/
dM {x'^-\-y^). The

square of the distance of P from the line LL equals {d
— xY -\- y^, hence

/ =
J[{d

- xY -}- r'l dM =
J{x^

-{- /) dM -f d^JdM
-
2dJxdM.

Now the first of the last three integrals
=

7, and the second one = Md"^. If

now we show that the third = o, then formula (4) is proved. The third

integral is proportional to the moment of the body with respect to the yz

plane; but this plane contains the mass-center, and hence the moment equals
zero (Arts. 21 and 23). Thus, if TF = weight of the body,

CxdM= fxdW/g
= (i/g)Wx,

If we divide both sides of equation (4) by M, we get I/M = I/M + d^, or

k^ = k^ + d^ (5)
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that is, the square of the radius of gyration of a body with respect to any line

equals the square of its radius of gyration with respect to a parallel line passing

through the mass-center plus the square of the distance between the two lines.

According to (5) ^ is always greater than d] that is, the radius of gyration of

a body with respect to a line is always greater than the distance from the line

to the center of gravity of the body. But, if the dimensions of the cross

sections of the body perpendicular to jthe line in question are small com-

pared-to d, then k/d is small compared to i, and k equals d approximately (see

example 2). In such a case the moment of inertia is approximately equal
to Md\

Examples.
— i. Required the moment of inertia of a prism of cast iron

(weighing 450 pounds per cubic foot) 6 inches X 9 inches X 3 feet with respect

to one of the long edges. The block weighs 507 pounds. According to example

2, § I, the moment of inertia of the block with respect to the line through the

mass-center parallel to the long edge is 507 (6^ -f 9^) -r- 12 = 4940 pounds-
inches^. The square of the distance from a long edge to the mass-center =

29.25 inches^; hence the moment of inertia desired = 4940 -\- 507 X 29.25
=

19,760 pound-inches^ = 4.27 slug-feet^.

2. Required the radius of gyration of a round steel rod i inch in diameter

with respect to a line 1 2 inches from the axis of the rod. According to example

3, § I, the square of the radius of gyration of the rod with respect to its axis is

\ 0.52
=

0.125 inches^. According to equation (5) the radius of gyration desired

= ^(0.125 + 144) = 12.01, nearly the same as the distance from the line of

reference to the mass-center of the rod.

3. It is required to show that the moment of inertia of a right circular cone

with respect to a line through the apex and parallel to the base = ^^ M (r^ -f-

4 a^) where M = mass of the cone, r = radius of its base, and a = its altitude.

We conceive the cone as made of laminas parallel to the base,

find the moment of inertia of each laniina with respect to the

specified line, and then add all the moments. For con-

venience we take the axis of the cone as the y-coordinate

axis, and the line for which the moment of inertia is required

as the X axis (Fig. 293). The moment of inertia of the lamina
Fig. 293 indicated about a diameter is"J dM • x^ where dM = the mass

of the lamina and x = its radius. Hence its moment of inertia about the x

axis = J dMx^ + dMy^ (see equation |),
and the moment of inertia of the en-

tire cone = / (idMx^ -}- dMy^), the limits being assigned so as to include all

laminas. We choose to integrate with respect to y, and so must express dM
and X in terms of y. From similar triangles in the figure x/y = r/a, or

X = ry/a] obviously dM = hrx^dy = Sir (r^y^/a^) dy where 5 = density. , Hence

r -wr^hfdy C'^ 'Kr'^hf dy ^ -nr^ha irr^a^ ^~
Jo 4 fl^ Jo a^ 20 5

t<— r —>
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Composite Body.
— By this term is meant a body which one naturally con-

ceives as consisting of finite parts, for example, a flywheel which consists of a

hub, several spokes, and a rim. The moment of inertia of such a body with

respect to any line can be computed by adding the moments of inertia of all

the component parts with respect to that same line. The radius of gyration

of a composite body does not equal the sum of the radii of gyration of the

component parts. It can be determined from equation (3), where / =
moment of inertia of the whole body and M = its mass.

§ 3. Radius or Gyration of Some Homogeneous Bodies. — Let k =
radius of gyration, a subscript with k referring to the axis with respect to which

k is taken; thus kx means radius of gyration with respect to the x axis. Also

M = mass and 8 = density.

Straight Slender Rod. — Let I = its length, a = angle between the rod and

the axis. Then about an axis through the mass-center k^ = ^V ^^ sin^ a;

about an axis through one end of the rod k^ = ^ P sin^ a.

Slender Rod Bent into a Circular Arc (Fig. 294).
— Let r = radius of the

arc, then

kx^ ^ i^^U — (sin a cos a)/a], and ky^
= ir^[i -\- (sin a cos a)/a].

The divisor a must be expressed in radians (i degree = 0.0175 radians).

kz^ = r^ (the z axis is through O and perpendicular to the plane of the arc).

Fig. 29s Fig. 296 Fig. 297

Right Parallelopiped (Fig. 295).
— The axis OX contains the mass-center,

and is parallel to the edge c; kx^ = yV (^^ + ^^)-

Right Circular Cylinder (Fig. 296).
— Both axes OX and OY contain the

mass-center, r = radius and a = altitude; then

kx' = ir'', ky'
= T\(3r' + a').

Hollow Right Circular Cylinder (Fig. 297).
— Let R = outer radius, r = inner

radius, and a = altitude; then lY

kx' = HR' + r'); ky'
= i{R' + r' + ia'). I A

Right Rectangular Pyramid (Fig. 298).
— The x axis ^

contains the mass-center and is parallel to the edge a;

M = \ abhb.
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Right Circular Cone (Fig. 299).
— The x axis contains the mass-center, and

is parallel to the base; M = \ irr^ad.

k.' = ^\{r' + la'); ky'
= j\r'; k^' = ^^ {r' + 4 a') .

Frustum of a Cone. — Let R = radius of larger base, r = radius of smaller

base, and a = altitude. For the axis of the frustum

k^ = j\ {R'
-

r') -T- (i?3
-

r^); / = -^^^rhd {R'
-

r') ^ (R - r).

Sphere.
— Let r = radius. For a diameter

Fig. 299 Fig. 300

Hollow Sphere.
— Let R = outer and r = inner radius. For a diameter

k^ = ^(R^-r')-^{R^-f^); I = j%Tr{R'-r^)8.

Ellipsoid.
— Let 2 a, 2 b, and 2 c = length of axes. For the axis whose

length
= 2 c,

k^=i {a^ + b^); 1 = j\ 7rabc8 (a^ + b^).

Paraboloid Generated by Revolving a Parabola about its Axis. — Let r =
radius of base and h = its height. For the axis of revolution

^2 = 1^2. I = ^Trr'hS.

Ring (Fig. 300). —The x axis contains the mass-center and is parallel to the

plane of the ring; the y axis is the axis of the ring.

h' = iR' + ir';- h=T''Rr'8{R' + ^r').

ky"
= i?2 + J r2; 'Iy

= 2 TT^Rr^ (i?2 _|- | r^) ,

§ 4. Experimental Determination of Moment of Inertia.— When
the body is so irregular in shape that the moment of inertia desired cannot

j

be computed easily, then an experimental method may be simpler. There

are several experimental methods available.

By Gravity Pendulum.— This method is available if the body can be

suspended and oscillated, like a pendulum, about an axis coinciding with or

parallel to the Une with respect to which the moment of inertia is desired.

Let T = the time of one complete (to and fro) oscillation, c = distance from

the mass-center to the axis of suspension, W = weight of the pendulum, g
=

acceleration due to gravity, k = radius of gyration, and / = moment of

inertia about the axis of suspension; then

T — THWk=-— Vcg and I = =- •

(i)
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Above formulas are based on the formrula for the time of oscillation or

period of a pendulum T = itt ^k^/cg (see Art. 39). If the axis of suspen-

sion does not coincide with the line about which the moment of inertia is

desired, then it remains to
'^
transfer" / to that line (see § 2).

The desired moment of inertia can be determined without any time obser-

vation as follows: From the same axis about which the suspended body
oscillates suspend a

"
mathematical pendulum," a very small bob with cord

suspension (see Art. 39); adjust the length of the cord so that the periods

(times of oscillation) of bob and body become equal; then

yfe
= V^ and / = Wcl/g, (2)

where / = the distance from the center of the bob to the axis of suspension

and k, Wj c, I have the same meaning as above. The foregoing result is

based on the fact that k^/c (for the pendulum) equals the length / of the

mathematical pendulum (see Art. 39).

By Torsion Pendulum.— The torsion pendulum here referred to would

consist of an elastic wire suspended in a vertical position, the lower end

being fashioned or terminated in a disk so that objects, whose moments of

inertia are to be determined, may be suspended on the wire and made to

oscillate about its axis. Let / = the (observed) period (time of one oscilla-

tion) of the bare pendulum, h = the (observed) period of the pendulum when

it is loaded with a body A which is so regular in shape (as a cube or cylinder)

that its moment of inertia about the axis of oscillation can be computed

easily, and h — the (observed) period of the pendulum when it is loaded with

the body B whose moment of inertia is desired; further let /i = the (com-

puted) moment of inertia of A and I2 — the moment B about the axis of

suspension. B should be suspended so that the axis of suspension coincides

with or is parallel to the Ime (of B) about which the moment of inertia is

desired. Then

l2=h{k-t)-r{h-t), (3)

This result is based on the] fact that the square of the period of a torsion

pendulum is proportional to the moment of inertia of the pendulum with

respect to the axis of oscillation. Thus, if 7 = the moment of inertia of the

bare pendulum, and C the proportionality factor, then

/2 = CI, h^ = C (/ + /i), and t-i"
= C (7 + h).

These three equations may be combined so as to eliminate C and 7 and thus

give equation (3).

If B cannot be suspended so as to make the axis of oscillation and the line

(of B) about which the moment of inertia of B is desired coincident, then it

remains to reduce, or transform, h to that line (see § 20 of this article).
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37. Rotation

§ I. A rotation is such a motion of a rigid body that one line of the body of J

of the extension of the body remains fixed. The fixed line is the axis of the^

rotation. The motion of the flywheel of a stationary engine is one of rotation^

and the axis of rotation is the axis of the shaft on which the wheel is mounted;
the motion of an ordinary clock pendulum is one of rotation, and the axis of

rotation is the horizontal line through the point of support and perpendicular

to the axis of the pendulum. Obviously all points of a rotating body, except

those on the axis if any, describe circles whose centers are in the axis and whose

planes are perpendicular to the axis. The plane in which the mass-center of

the body moves will be called the plane of the rotation, and the intersection of

the axis of rotation and the plane of rotation will be called center of rotation. All

points of the body on any line parallel to the axis move alike; hence the motion

of the projection of the line on the plane of the motion represents that of all

the points, and the motion of the body itself is represented by the motion of

its projection.

By angular displacement of a rotating body during any time interval is

meant the angle described during that interval by any line of the body perpen-

dicular to the axis of rotation. Obviously all such lines de-

scribe equal angles in the same interval, and we select a line

which cuts the axis. Let the irregular outline (Fig. 301) rep-

resent a rotating body, the plane of rotation being that of

the paper, and O the center of rotation. Let P be any point

and 6 the angle XOP, OX being any fixed line of reference.
Fig. 301 ^g customarily, d is regarded as positive or negative according

as OX when turned about toward OP moves counter clockwise or clockwise.

If Bi and 62. denote initial and final values of 6 corresponding to any rotation,

then the angular displacement = $2
—

Bi.

The angular velocity of a rotating body is the time-rate at which its angular

displacement occurs; or, otherwise stated, it is the time-rate at which any line

of the body perpendicular to the axis describes angle. The time-rate at which

OP describes angle, or the time-rate (of change) of B is dB/dt (see Art. i,

Note). Hence, if co denotes angular velocity,

CO = dB/dt. (i)

Any angular displacement divided by the duration of that displacement gives

the average angular velocity for that duration or interval of time. If the body
is rotating uniformly (describing equal angles in all equal intervals of time),

then the average velocity is also the actual velocity.

The formulas for angular velocity imply as unit"^ the angular velocity of a

body rotating uniformly and making a unit angular displacement in each unit

time. There are several such units; thus, one revolution per minute, one

degree per hour, one radian per second, etc. The last is the one usually used

* For dimensions of units of angular velocity and acceleration, see Appendix A.
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herein. An angular velocity must be regarded as having sign, the same as that

of dd/dL Since dd/dt is positive or negative according as 6 increases or de-

creases algebraically, the angular velocity of a rotating body at any instant

is positive or negative according as it is turning in the counter clockwise or

clockwise direction at that time.

The angular acceleration of a rotating body is the time-rate (of change) of

its angular velocity. If, as in the preceding, co denotes the angular velocity,

then the general expression for the time-rate of the angular velocity is dw/dt;

hence if a denotes the angular acceleration,

a = doi/dt
=

d^e/dt^. (2)

The change in angular velocity which takes place during any interval of time

divided by the length of the interval gives the average angular acceleration for

that interval. If the velocity changes uniformly, then this average accelera-

tion is also the actual acceleration.

The foregoing formulas imply as unit * the angular acceleration of a body
whose angular velocity is changing uniformly and so that imit angular velocity-

change occurs in each unit time. One revolution per second per second, one

radian per second per second, etc., are such units. An angular acceleration

must be regarded as having sign
— the same as that of dw/dt. Since doi/dt

is positive or negative according as co increases or decreases algebraically, an

angular acceleration is positive or negative according as the angular velocity
is increasing or decreasing (algebraically).

There are simple relations between the linear velocity v and linear acceleration

a of any point P of a rotating body and the angular velocity and acceleration of the

body. Let r — the distance of P from the axis of rotation, s = distance travelled

by P in any time from some fixed point in the path of P, and 6 = the angle
described by the radius to P in that same time. Then s = rd iidbe expressed
in radians; ds/dt = r dd/dt, or

V = roj.

Differentiating again, we find that dv/dt = r doi/dt, or

at = ra', also a„ (= v'^/r)
= rco^.

Here at and a„ mean the tangential and normal components of the acceleration

of P (Art. 34).

§ 2. Equation of Motion.— We have already called attention to the

fact (Art. 36, footnote) that in the case of rotation the angular acceleration

is proportional to the algebraic sum of the moments of all the external forces

acting on the body directly and to the moment of inertia of the body inversely,

both moments being about the axis of rotation. Or, if Tq and Iq be used to

denote these moments, and a = the angular acceleration, then a is proportional
to {Tq -^ /o) ; and, if systematic units (Art. 4) be used then

To = /oa = Mh'^a,
*>

(3)

* For dimensions of units of angular velocity and acceleration, see Appendix A.
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where M — mass of the body and k^ = its radius of gyration about the axis of

rotation. If W/g be written for M (Art. 4, § 2), then any unit of force (in-

cluding W), any unit of length, and any unit of time may be used in (3).

The foregoing is called the equation of motion for a rotation; it may be de

rived from a consideration of the torque, about the axis of rotation, of all

the forces acting on each particle of the body. Let P' (Fig. 302)

represent a particle of the rotating body not shown, m' = its

-^^:^' mass, and a' = its acceleration. Then the resultant of all

^Y^\ the forces acting on P' = m'a\ and the tangential, normal,

/ \|. and axial components of this force are m'a/, m'an, and o

/^^i^T" respectively. Similarly the tangential, normal, and axial

Jc components of the resultant of all the forces acting on the
Fig. 302 second particle P'' are m"a/\ m"an", and o. All the radial

or normal components are directed toward the axis of rotation, and all the

tangential components clockwise or counter clockwise. Now the torque of all

the forces acting on P' equals the torque of m'at and m'ar!; this torque
=

m'at'r'. Simiarly the torque of all the forces acting on P" = m"al'Y" .

Hence the torque of the forces acting on all the particles equals

m'a^r' + m"arr" + • • • = m'r'ar' + m"r"aY" + • • • = aSw^ = ah.

Now the system of forces acting on all the particles consists of internal and

external forces. The internal forces jointly have no torque since they consist

of pairs of coUnear, equal, and opposite forces. Hence, the torque of the ex-

ternal forces equals /oa-

Examples.
— i . Fig. 303 represents a circular disk of cast iron 4 inches thick

and 3 feet in diameter. It is supported on a fixed horizontal shaft 3 inches in

diameter. A cord is wrapped around the disk, and then a pull P =

100 pounds is applied to the cord as shown. What is the angular

acceleration of the disk? The external forces acting on the disk and

cord are the weight of the disk and cord P, and the reaction of the

shaft. Only one of these, P, has a moment about the axis of rota-

tion. We are assuming that the disk is homogeneous so that the

center of gravity is in the axis of rotation, and that the shaft is

frictionless. SMo of equation (3) is therefore 100 X 1.5
= 150 foot-pounds.

Now the square of the radius of gyration of the disk about the axis of rotation

is \ (1.5^ + 0.125^)
= 1. 133 feet^ (Art. 36). And since the weight of the disk

is 1053 pounds, its moment of inertia about the axis of rotation is (1053 -^ 32.2)

1.133 = 37.0 slug-feet^. Hence the angular acceleration of the disk is 150 -r-

37.0
= 4.0 radians per second per second.

2. Suppose that a turning force P in the preceding example is supplied not

"by hand " but by means of a body suspended from the cord, and suppose

that the body weighs 100 pounds. Obviously the system (disk and suspended

body) moves with acceleration; hence the two forces acting on the body (gravity

and the pull P of the cord) are not equal or balanced but have a resultant



Art. 37 179

downward (direction of the acceleration of the body). That resultant is

100 — P, and it equals the product of the mass and acceleration of the body,

or 100 — P = (100 -f- 32.2) Xa where a = the acceleration. The torque on

the disk is P X 1.5,"^ and 1.5 P = la = 37.00;. But a = the tangential

acceleration of any. point on the rim of the disk = 1.5 X a, or a = 1.5 a.

These three equations

100 — P = (100/32.2) a, i.5P = 37.00:, and 0=1.50;,

solved simultaneously give a =
3.41 radians per second per second, less than

in example i as was to be expected, because the pull P in this example is less

than 100 pounds. The value of P as obtained from the foregoing equations

is 8.41 pounds.

3. In Fig. 304 we take weight of ^ = 64 pounds, of 5 = 96 pounds, and of

pulley C = 144 pounds; assume coeflGicient of friction under B = \ ior sliding,

axle friction zero; take diameter of pulley
= 2 feet 6 inches, and the radius

of gyration of the pulley about the axis of rotation = 10.6 inches. We show

how to determine the acceleration of the system. Let a = acceleration of A
and B, and a = (angular) acceleration of the pulley. Obviously a = 1.25 a.

Let us now consider the forces acting on each body A , B, and C. On A there

are two,
—

gravity (64 pounds) and the pull of the cord Pi (see Fig. 305). On

"mmzmm^^^

Fig. 304

64 lbs.

Fig. 305

96 lbs.

B

In
F

Fig. 306

Tz

mibs.

Fig. 307

B there are three,
—

gravity (96 pounds), the pull of the cord P2, and the re-

action of the supporting surface D (see Fig. 306 where this latter force is

represented by two components iV and P). On the pulley there are three

forces,
—

gravity (144 pounds), the reaction Q of the axle, and the pressure of

the cord. Since the mass of the cord is negligible, the tension at any point of

the cord from A to the pulley is Pi, and at any point from B to the pulley it is

P2. Hence the pressure of the cord against the pulley equals the resultant of

Pi and Pi (Fig. 307), and that pressure is equivalent to Pi and P2. Therefore

the equation of motion becomes (Pi
—

P2) 1.25
= (144 -^ 32) (10.6 ^ 12)^0:

=
4.5 X 0.778 X a =

3.5 a. Since the acceleration of B is towajd the right,

the resultant force on it acts in that direction and equals P2 — P = P2 — 5 N
= P2 - ^ 96 = P2 - 19.2; and hence P2 - 19.2

=
(96 H- 32) a = 3 a. Since

the acceleration of A is downward the resultant force on A acts in that direc-

tion and equals 64 — Pi; hence 64
— Pi = (64 -7- 32) a = 2 a. Now solving

the three equations of motion,

(Pi
-

P2) X 1.25
=

3.5 X, P2-i9.2 = 3^. and 64 -Pi =2 a,
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together with a = 1.25 a, we find that a = 6.19 feet per second per second,

and a = 4.95 radians per second per second. The equations also show that

Pi = 51.62 pounds, and P2 = 37-77 pounds.

38. Axle Reactions

§ I. Rotating bodies, such as machine parts, are commonly supported by
shafts upon or with which the bodies rotate. In such a case, axle reaction

means the force which the shaft exerts upon the rotating body. To determine

such a force we make use of the principle of the motion of the mass-center.

The principle states (Art. 24) that the algebraic sum of the components
—

along

any line— of all the external forces acting on a body, moving in any way,

equals the product of the mass of the body and the component of the accelera-

tion of the mass-center along that line. In general, the principle furnishes

three independent equations, one for each of three rectangular lines of resolu-

tion. If the mass-center of the (rotating) body does not lie in the axis of rota-

tion then there are three lines of resolution which are generally more convenient

to use than any others, and these we now describe. Let the circle (Fig. 308)

be the path of the mass-center of a rotating body (not

shown), O be the center of rotation (intersection of the axis

of rotation and plane of the path of the mass-center), and

C be the mass-center. Then the three convenient lines are

the axis of rotation, the line OC, and a line perpendicular to

the first two. The directions of these lines are called re-

FiG. 308 spectively axial, radial or normal {OC being a radius and

normal of the circle), and tangential (the third Hne being parallel to the tan-

gent at C). Now let IIFf,IIF„, and UFa = the algebraic sums of the tangen-

tial, normal, and axial components of all the external forces acting on any

rotating body; at and a„ = the tangential and normal components of the ac-

celeration of its mass-center— the axial component of the acceleration equals

zero; and M = the mass. Then

^Ft = Mat, ^Fn = Man, SFa = o. (i)

Systematic units (Art. 31) must be used in the foregoing. If W/g be substituted

for M (Art. 31) then any unit may be used for force (including weight), any
unit for length, and any unit for time.

Let r = radius of the circle described by the mass-center, v = velocity of

the mass-center, a = angular acceleration, and co = angular velocity of the

rotating body at the instant under consideration; then (see Art. 37, §1)

at = ra, and an = v^/r
=

ro)^,

and we may use these in equations (i).

If the mass-center of the rotating body is in the axis of rotation, then the
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Fig. 309

acceleration of the ma^s-center is always zero, and the algebraic sum of the

components of the external forces along any Ime equals zero.

Examples.
— i.AB (Fig. 309) is a bar of wrought iron 1.5 inches (perpen-

dicular to paper) X 4 inches X 6 feet, suspended from a horizontal axis at A .

Suppose that the bar is made to rotate and is then left to it- r^»

self rotating under the influence of gravity, the axle reaction,

and the initial velocity given to it. Suppose further that

the initial velocity was such that when the bar gets into the

position shown, the angular velocity is 60 revolutions per

minute. Required the axle reaction in the position shown.

The only forces acting on the body are its weight W = 120

pounds, and the axle reaction represented by two components

Ri and R^. We neglect the axle friction; then the lines of

actions of Ri and R^. cut the axis of rotation, and the equation of motion (Art.

37) becomes W (2 sin 35°)
= la. Now I = (PF/32.2) F = (120/32.2) 7.01;

hence a = 5.26 radians per second per second, and a< = 2 X 5.26
=

10.52

feet per second per second. The angular velocity, 60 revolutions per minute,

equals 6.28 radians per second; hence «„ = 2 X 6.28^ = 78.8 feet per second

per second. Finally, equations (i) become

120 sin 35°
— R\= (120/32.2) 10,52

=
39.2, and

R2 — 120 cos 35°
=

(120/32.2) 78.8
=

294.

'rom the first Ri = 29.7, and from the second R2. = 392 pounds.
2. AB (Fig. 310) is a simple brake for retarding the motion of the drum C

and suspended body W. Let W = 2000 pounds, weight of the drimi = 1800

pounds, radius of gyration of drum about axis of rotation = 2.5 feet, coefficient of

friction "between "
brake and drum = 0.5. Suppose that W is descending and

the brake pull P is 1000 pounds. Required the axle reaction on the drum. Fig.

311 shows all the forces acting on the drum, — its own weight (1800 pounds),
the brake pressure represented by two components N (normal pressure) and

F (friction), the pull T of th'C rope, and the axle reaction represented by two

components Ri and R2. From a consideration of the forces acting on the brake

it is plain that N = (1000 X 6.5) -^ 1.5
= 4333 pounds; and hence F =

0.5

X 4333 = 2167 pounds. Now in order to get T we write out the equations
of motion of the drum and the suspended body. Since F is greater than the
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weight of the body the velocities of drum and body are being decreased; hence
j

T is greater than W but less than F. lia = the acceleration of the drum and!

a = the acceleration of the suspended body then the equations of motion are

2167 X 3
— r X 3

=
(1800/32.2) 2.52^, and

T — 2000 = (2000/32,2) a.

These equations and a = 3 a, solved simultaneously, give T = 2103 pounds.
Sincft the acceleration of the mass-center of the drum equals zero,

2167
— Ri = Oj or R\ = 2167, and

R2 — 4333
— 1800 ~ 2103 = o, or i?2

= 8236 pounds.

Therefore the axle reaction = V(2i672 + 8237^)
= 8500 pounds inclined up-

wards and to the left at an angle of 14! degrees with the vertical.

§ 2. In some cases equations (i) do not suffice to determine the axle reaction,

but in a certain common ''symmetrical case
"
a simple principle furnishes the

additional necessary equations. If the rotating body is symmetrical about

a plane and the axis of rotation is perpendicular to that plane, then the result-

ant of all the external forces acting on the rotating body lies in the plane of

symmetry (proof below). It follows that the algebraic sum of the moments
of aU the external forces about any line in that plane equals zero.

We prove that the resultant lies in the plane mentioned indirectly, by

showing that the resultant of an equivalent (imaginary) system lies in that

plane. This imaginary system of forces (first mentioned in Art. 35) consists of

the resultants of all the forces acting on the several particles of the body; each

resultant equals the product of the mass and acceleration of the corresponding

particle, and the resultant and the acceleration agree in direction. Imagine
the body to consist of elementary rods parallel to the axis of rotation, and each

rod divided into elementary portions of equal length. Let m = mass of each

elementary portion, and a' = the. (common) acceleration of all the portions;

then the resultant on each portion
•

equals ma' and these resultants are all

parallel and parallel to the plane of symmetry. Therefore the resultant R' of

all the imaginary forces ma' is at mid-depth of the rod and lies in the plane of

symmetry. Similarly the resultant R'' of all the imaginary forces ma'' on the

elementary portions of the second rod lies in the plane of symmetry. And

obviously the resultant of R', R", etc., lies in the plane of symmetry.

Examples.
— i. AB (Fig. 312) is a slender rod, not drawn to scale, supported

by a cord BC and a vertical shaft CD as shown; the rod weighs 60 pounds.

A force P = 30 pounds is applied horizontally and perpendicular to AB Sit E,

and makes the rod rotate about the shaft. Required the reaction of the shaft

and the tension in the cord at the instant when the speed reaches 10 revolu-

tions per minute. Four forces act on the rod,
— its weight, P, the pull T of

the cord, and the axle reaction. We will imagine this latter force resolved

into three components,
— Pi (tangential, and not shown in Fig. 313), P2 normal,

and P3 axial.
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We need the values of the tangential and normal components of the accelera-

tion of the mass-center for use in equations (i), and so we find a and w

first. The angular acceleration depends on the

turning moment; the only force having such

moment is the applied force P, and the moment

is 30 X 3
= 90 foot-pounds. The moment of

inertia of the rotating body about the axis of

rotation is J (60 -r- 32.2) X 6^ = 22.35 slug-feet^

(see Art. 36). Hence the angular acceleration

is 90 -^ 22.35
=

4-°3 radians per second per sec- nj i

[

"1 ^y
ond, and the tangential acceleration of the mass-

center is 3 X 4.03
=

12.09 feet per second per
^^^' ^^^' ^^^

second. The linear velocity of the mass-center is 3 X 1.047
~

3-i4i f^^t per
second (10 revolutions per minute = 1.047 radians per second); hence the

normal acceleration of the mass-center is ^.141^-7- 3
=

3.3 feet per second per
second. Therefore equations (i) become

IRi + 30= (60 4- 32.2) 12.09,

R2 + T cos 26° 34'
= (60 -^- 32.2) 3.3, and

Rz — 60 -{- T sin 26° 34'
= o.

From the first equation Ri =— 7.5; the negative sign means that Ri acts

opposite to P. The two remaining equations are not sufficient to determine

R2, Rz, and T. The additional necessary equation can be obtained by taking
moments about the line through B say and perpendicular to the axis of

rotation; thus

—
i?3 X 6 + 60 X 3

=
o, or i?3 = 30 pounds.

Substituting this value in the preceding equation, we find that T =
67.1, and

hence i?2 = —
53.8, the negative sign indicating that R2 acts not as assumed

but toward the right (on AB),

39. Pendulums

§ I. Gravity Pendulum. — By this term is meant the common pendulum,
that is a body suspended on a horizontal axis so that it can be made to oscillate

freely under the influence of gravity. A real pendulum is sometimes called a

compound or physical pendulum to distinguish it from an imaginary one con-

sisting of a mass-point or particle suspended by a massless cord; this latter is

called a simple or mathematical pendulum. Let T = the period or time of one

complete or double (to and fro) oscillation, k = the radius of gyration of the

pendulum with respect to the axis of suspension, c = distance from the center

of gravity of the pendulum to that axis, and 2 ^ = the angle swept out by the

pendulum in one single oscillation. Then, as will be shown presently, the

; period is given closely by
r = 27rVP7^, (i)
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provided that j8 is small.* Since jS does not appear in this formula the period
of any pendulum is independent of jS; that is all small oscillations of a pendulum
have equal periods or, as we say, they are isochronous. When g is expressed in

feet per second per second then k and c should be expressed in feet; T will be

in seconds.

For the derivation of equation (i) let OG (Fig. 314) be a pendulum in any

swinging position, the center of suspension, G the center of gravity; let W =
the weight of the pendulum, c — OG, and 6 the (varying) angle which OG makes

with the vertical, regarded as positive when the pendulum is on the right side

of the vertical, as shown. There are three forces acting on the pendulum,
—

gravity, the supporting force at the knife edge, and the pressure of the sur-

rounding air. The moment of the first force about the axis of suspension is

Wc sin d; the moments of the other two forces we take as negligible. Hence

the resultant torque on the pendulum in any position
= Wc sin d practically.

The angular acceleration = d^d/dt^ (see Art. 37); hence according to equation

(3) of that article

Wc smd= -
(W/g) kWe/df,

the negative sign being introduced because sin d and d'^B/dt'^ are always opposite

in sign. It follows readily from the preceding equation that

d^e/df = -
{cg/k'') sin 6= -A sin d,

where A is an abbreviation for cg/k"^. We will assume that the greatest value

of 6, that is jS, is so small that sin 6 and are nearly equal; then as a good

approximation we may substitute 6 for sin 0, and have

dsydt''
= -AS.

To integrate this simply, let u =
de/dt\ then d'^B/df-

= du/dt = {du/dB)

{dB/dt)
= {du/dB) u, and hence

{du/dB)u = —AB, or udu=—ABdB.

Now integrating and replacing u by dB/dt, we get

where C\ is a constant of integration. Remembering that dB/dt — the angular

velocity of the pendulum, we note that where =
jS, there dB/dt = o; there-

fore for these (simultaneous) values the preceding equation becomes o = — J ^4

+ Ci, or Ci = I ^, and finally

dB/dt = ±A V|82 _ 02.

* The exact value of the period is given by

r =
..V.-Vi[x

+
(l)%in=f+(i.^ysin^f +...].

If /8
= 8 degrees then the bracket above = i.001 22; and for smaller values of /8 the

value|
of the bracket is still nearer unity. Hence the error in the approximate formula is

lessj

than one-eighth of one per cent if /3 does not exceed 8 degrees.
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The positive sign is to be used when dd/dt is positive; that is when the pen-

dulum is swinging in the positive direction. Now let r = the time required

for the pendulum to swing out from its lowest to its highest position on the

right, that is while B changes from o to /3. To get a value of this time we

integrate the preceding equation as follows:

fcet r' = the time required for a swing from the extreme right position to the

lowest position, that is while 6 changes from ^ to o. To get this time we

integrate as follows:

Hence r and t' are equal, as was to be expected. Finally, the time of one

complete oscillation = 4 r = 2 x ^k'^/cg, as was to be shown.

Let k = the radius of gyration of the pendulum with respect to an axis

through its center of gravity and parallel to the axis of suspension; then

k^ = k + c^ (see Art. 36), and hence

T = 27r\-^ = 2w\—^— = 27r V -

(^i

+
-j

.

(2)

Contrary to common belief, the period does not increase for all increases in c,

the distance from the center of gravity to the axis of suspension. For examin-

ing the foregoing expression for T with reference to a variation in c, we find that

dc cVlgc(c'+k')]

Now this is negative for all values of c less than ^, and positive for all values

greater than k. Hence when c is less than k an increase in c decreases T;
when c is greater than k an increase in c increases T. When c = k, then

dT/dc = o, and T has its least value equal to 2 tt \/(2 k/g).

In the case of a simple pendulum of length /, the radius of gyration h = I

and also c = I; hence the period of a simple pendtUum is given by

T=2TVTrg* (3)

A physical pendulimi and a simple pendulum whose periods are equal are said

to be equivalent. Periods are equal if k^/cg
=

l/g, or I = k^/c.

*
Strictly speaking, a simple or mathematical pendulum can exist only in imagination,

but a real pendulum made of a small bob suspended by means of a cord may be regarded as a

simple pendulum in computing period. That is the period of the cord-bob pendulum = 2ir

V //g where I = the distance from the axis of suspension to the center of the bob. For
kjc^

for the cord-bob pendulum is small compared to i, and hence equation (3) gives T= 2 7r Vc/g
practically.
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Imagine the entire mass of a (real) pendulum concentrated into a point Q
(Fig. 314), whose distance from the center of suspension O equals k^/c. Then,
as just shown, the period of such an (imaginary) simple or mathematical pendu-
lum would be 2 TT VQ/g), where I is the length OQ or k^/c; hence the period
would be 2 TT V(k^/cg), that is equal to the period of the real pendulum.
For this feason Q is sometimes called the center of oscillation of the pen-

dulum. (It coincides with the center of percussion, see Art. 48.) The dis-

tance Tfrom the center of gravity to the center of oscillation is

GQ= c = c = —'
c c c

Fig. 314 Fig. 315

0^

Fig. 316

" The centers of suspension and of oscillation of a pendulum are interchange-

able," that is if a pendulmn be suspended from Q (Fig. 315), then O becomes

the center of oscillation. For, suppose that Q' is the center of oscillation corre-

sponding to Q, then

k /cQG

hence Q' coincides with 0. It follows from the property of interchangeabihty
that the periods of a pendulum when suspended from O and from Q are equal.

The pendulum is our best device for accurately determining the acceleration

due to gravity at any place. We have only to determine the period T and

the length k^/c of a pendulum at the place, and then compute g from the

formula T= 2Tr\/(k^/cg). But it is not easy to determine k^/c directly.

Captain Kater first (18 18) made use of the property of interchangeabihty of

centers of suspension and oscillation to make a pendulum whose length P/c
could be determined accurately and readily. Fig. 316 represents a Kater

pendulum in principle; Oi and O2 are two knife edges as shown at a known
distance apart; PT is a weight which can be slid along the rod and clamped
where desired. The periods of oscillation for Oi suspension and O2 suspension
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would be different, but by shifting the weight and trying repeatedly, the

periods can be made equal. When the periods are equal, then either knife

edge is the axis of oscillation for the other as axis of suspension, and O1O2

(a known distance) is the length of the equivalent simple pendulum or the

k^/c of the formula. By means of a Kater pendulum the value of g for Wash-

ington was determined to be 980. 100 centimeters per second per second. Values

of g at many other places have been determined more simply
—

by comparing
the periods of oscillation of a more ordinary pendulum at Washington and the

other places. This comparison is based on the principle that the squares of

the periods of oscillation of any pendulum at two different places are inversely

proportional to the values of g at those places; hence if Ty, and T = the periods
at Washington and some other station and g

= the acceleration at the latter

place, then g = 980.1 {Ty,/Ty.

§ 2. Torsion Pendulum. — This consists of a heavy bob suspended

vertically by means of a Ught elastic wire, the wire being firmly embedded
in the bob and in its support. Any horizontal couple applied to the bob will

turn the bob and twist the wire. If the couple is not too large
— so as not

to stress the wire beyond its "elastic limit" — then the angular displace-

ment of the bob will be proportional to the moment of the couple applied.

That is, if C and C = the moments of two couples applied successively and
6 and $' are the corresponding angular displacements produced by the couples,
then d/d'

= C/C . Hence, the moment C required to produce any displace-

ment is given by C = {C/Q') B. In any displaced position of the bob, the

wire exerts a couple on the bob equal to the applied couple.

If the bob were released from any position of (moderate) angular displace-

ment /3, it would oscillate under the influence of the couple exerted by the

wire. We will assimie that this (varying) couple follows the law expressed
above. Then the equation of motion (rotation) for the bob would be (see

equation 3, Art. 37) C = la, where / = moment of inertia of the bob with

respect to the axis of the wire and a = the (varying) angular acceleration.

Since a = d^B/dt^, and B and d^/dt^ are opposite in sign, the equation can be

written

C' ^d^ d^B

where B is an abbreviation for {C'/B') -^ /. This last equation is just like the

equation d'^B/dt^
= —AB oi %i, relating to the motion of a gravity pendulum

except that B appears in one equation and A in the other. Hence the form-

ulas in § I apply to this section if A be changed to B. Thus the time of one

quarter complete oscillation of a torsion pendulum is

-v^hiMv/^^
The period (one complete to and fro oscillation) equals 4 t, or

T=2irVmpJF), (i)
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/ = Mh!^ = (W/g) k^ where W = weight and k = radius of gyration of the

bob with respect to the axis of the wire. If, in a numerical case, W is taken in

pounds and g in feet per second per second, k should be expressed in feet, C'

in foot-pounds, and 6' (always) in radians; T will be in seconds. C^/d' (thie

ratio of the moment of any twisting couple to the angle of twist produced)
is a measure of the torsional stiffness of the wire, for that ratio is the moment

required for twisting per radian of twist. Formula (i) shows that the stiffer

the wire the less the period.



CHAPTER X
WORK, ENERGY, POWER

40. Work

§ I. Definitions, Etc. — Work is a common word and has many mean-

ings (see dictionary), but it is used in a single special sense in Mechanics.

Work is said to be done upon a body by a force— also by the agent exerting

the force— when the point of application of the force moves so that the force

has a component along the path of the point of appUcation. This component
will be called the working component of the force; and the length of the path
of the point of appUcation the distance through which the force acts. The
amount of work done by the force is taken as equal to the product of the

working component and the distance through which the force acts.

The meaning of this measure of work done by a force is clear when the work-

ing component is constant. For example, suppose that the body represented

in Fig. 317 is moved along the line AB hy 2l number of forces, two of which

(indicated) are constant in magnitude and

in direction. During any portion of the _a__

motion, as from A to B, the work done by ' >F,

Fi IS Fi{AB) and the work done by F2 is
'

{F2 cos 6) AB. This expression when written

F (AB cos 6) means the product of the force and the component of the dis-

placement along the line of action of the force, which is a
" view" of amoimt

of work done by a force sometimes more convenient than the other.

When the working component is not constant in magnitude, then we may
arrive at an expression for the work somewhat hke this:— Let AB (Fig. 318)

be the path of the point of application of one of the forces

acting upon a body not shown, and F any point on the

path. Let F = the force and
<{>
= the angle between F and

the tangent atP, and ds = the elementary portion of the

path at P. Then the work done by F during the elementary
* ^^

displacement
= F cos

(f)
* ds or Ft ds where Ft means working

or tangential component of F; and the work done by F in the displacement

from A to B =
\ Pt ds, limits of integration to be assigned so as to include all

elementary works Ft ds in the motion from A to B. It is worth noting that if

the force F acts normally to the path at all points, then Ft = o always, and

the formula gives zero for the work done by F, as it should.

189
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The unit work is the work done by a force whose working component equals
unit force acting through unit distance.* The unit of work depends upon the

units used for force and distance; thus we have the foot-pound, centimeter-

dyne, etc. The second unit is also called erg; and lo^ ergs
= i joule. The

horse-power-hour and the watt-hour are larger units of work. They are the

amounts of "work done in one hour at the rates of one horse-power and one

watt, respectively (see Art. 41) ; thus,

One horse-power-hour = 1,980,000 foot-pounds, and

One watt-hour = 3600 joules.

When the works done by several forces are under discussion, it may be

convenient to give signs to their works according to this commonly used rule:

When the working component acts in the direction of motion, the work of the

force is regarded as positive; when opposite to the direction of motion then the

work is regarded as negative. The formula J F cos<t> ds, with the lower and

upper limits of integration to correspond to the initial and final positions A
and B, respectively, observes this rule of signs for work, if s is measured posi-

tive in the direction of motion from some fixed origin to P, and <^ is measured

from the
"
positive tangent" around to the line of action of the force as shown

in the figure. Forces which do positive work are sometimes called efforts;

those which do negative work are called resistances.
"f

Work Diagram.
— If values of Ft and 5 be plotted on two rectangular axes

(Fig. 319) for all positions of the point of application of F, then the curve

joining the consecutive plotted points might be called a " work-
'*

^^,,<<riT|]]P ing force-space" (Ft-s) curve. The portion of the diagram

/{l!|j|j|i'|I|

*' under the curve" (between the curve, the j-axis, and any

i!|i[|[|||l}
two ordinates) is called the work diagram for the force F for

ka->I" """"1
* the displacement corresponding to the bounding ordinates.

^ The area of a work diagram represents the work done by the

force during the displacement corresponding to the bounding

ordinates. Proof: Let m = the force scale-number, and n = the space scale-

number; that is, unit ordinate (inch)
= m units of Ft (pounds) and unit

abscissa (inch)
= n units of ^ (feet). Also let A = area; then

f^x, r^Ftds I r^ r^ J workA= I ydx= I
—

f Ftas=
Jxi Ja m n mnja mn

Hence, A {mn) = work; that is, A = work according to the scale number mn
to be used for interpreting the area.

By average working component of F is meant a value of Ft which multiplied

by the distance s^
—

Si, or b — a, gives the work done by F. Obviously, that

average working force is represented by the average ordinate to the curve of

* For dimensions of unit work, see Appendix A.

t The (negative) work done by a resistance on a body is often referred to as (positive)

work done by the body against the resistance.
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the work diagram. When that curve is straight, that is, when Ft varies uni-

formly with respect to s, then the average working component equals the mean

of the initial and final values.

Fig. 320 is a fac-simile of a record made by the traction dynamometer (a

spring balance essentially) in a certain train test. Abscissas represent distances

travelled by the train, and ordinates represent "draw-bar pulls" (the pulls

between the tender and first car of the train). Thus, the figure is a work

diagram. To determine the area of such a diagram as this we first draw in

an average curve "by eye," and then ascertain the area under this curve in

any convenient way.

\/*/VMvs^^•A^A|^'^^^

•3 tons

6ins. = I Mile.

bA-

>v. a"

! •

V V

l/e

!

Fig. 320 Fig. 3: Fig. 322

§ 2. Some Special Cases. — (i) The work done by a force which is con-

stant in magnitude and direction equals the product of the force and the pro-

jection of the displacement of its point of appHcation upon the line of action

of the force. For, let F = the force, APB (Fig. 321) the path of its point of

appHcation, <^
= the (variable) angle between F and the direction of the motion

of the point of application P. Then the work done by F is

/ F cos (f)ds
= F

j
ds cos

<t>,

where ds is an elementary portion of the path. Now ds cos <^ is the projection

of the element ds upon F, or upon any line parallel to F, and jds coscj) is

the sum of the projections of all the elements of APB upon the line. But the

sum of the projections
= the projection of APB = the projection of the chord

AB.

(ii) The work done by gravity upon a body in any motion equals the product
of its weight and the vertical distance described by the center of gravity;

the work is positive or negative according as the center of gravity has descended

or ascended. Let Wi, W2, etc., denote the weights of the particles of the body;

yiy y2, etc., their distances above some datum plane
— below which the body

does not descend— at the beginning of motion; and y/', ^2'', etc., their dis-

tances above that plane at the end of the motion (see Fig. 322) where a'a'^ is

the path of the first particle, b'b" that of the second, etc.). Also let W denote

the weight of the body, and y' and y^' the initial and final heights of its center

of gravity above the plane. Then the works done by gravity on the particles,

respectively, are Wi {yi'
—

y/), ^2 (y2"
—

yaOj etc., and the sum of these

works can be written

{wiyi" + W2y2' +...) —
{wiji -\- wiy^' -{-.,,).
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The first term of this sum = Wy", and the second = Wy'' (see Art. 21); hence

the sum of the works done on all the particles equals

Wy -Wy' = W (y''
-

Y).

(iii) The algebraic sum of the works done by any number of forces having a

common pomt of appUcation during any displacement of that point equals the

work done by their resultant during that displacement. For, let F'^ F'\ F'"
,

etc., 5= the forces, R = their resultant, and F/, F/', Fi" ^ etc., and Rt = the

components of the forces and of the resultant, respectively, along the tangent
to the path of the point of appHcation. Now Ft + Fi' + Ft" + • • . = Rt

(Art. 4). Hence F/ ds + FT ds + Ft'" ds+ • - - = Rtds, and

CF/ds+ CFt"ds-{- CFt"'ds-\- • • • = CRtds;

that is, the sum of the works done by the forces equals the work done by their

resultant.

(iv) The work done by a pair of equal, colinear, and opposite forces in any

displacement of their points of application equals

Fdr or - / Fdr
Jri

according as the two forces separate or draw the two points of application

together; F = the common magnitude of the two forces— not constant

necessarily
—

,
r = the distance between their points of application, and ri

and ^2 = initial and final values of r. Let A and B (Fig. 323) be the points of

application of the two forces— acting on a body

p^ ^ not shown— at any intermediate stage of the

'••y--
^;;::::^^rp^ displacement, and suppose that the path of A is

ylf^^'- /by" ^1^2 and that of B is B1B2. Let x'.y' be the
'
Y' '

\

s^
coordinates of A, and %"

^ y" those of B, (For

simplicity in figure we have taken the paths of A
and B as coplanar. The following proof could

be extended to cover the case of any paths. The paths are not necessarily

due to the forces F alone; but since we are concerned with the work done by
these two forces only, no mention is made of any other forces concerned

with the motion.) According to the preceding paragraph the work done by
either force F in any displacement equals the sum of the works done by the

X and y components of F in that same displacement. Hence in an elementary

displacement ds the work of F on ^ = (—F cos dx' — F sin 6 dy'), and the

work of F on 5 = (F cos 6 dx" + F sin ^ dy"). The work done by both

forces F in the elementary displacement is

F [ cos {dx"
-

dx') + sin 6 {dy"
-

dy')].

It will readily be seen from the figure that {x"
—

x')^ -{- {y"— y'Y = r^; and,

by differentiation, we find that
I

{x"- x') {dx"- dx') + iy"- y') {dy"- dy') =rdr.
'

'
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Dividing by r and transforming we find that

cos e {dx"
-

dx') + sin e {dy"
-

dy')
= dr.

Hence, the work done in the elementary displacement is F dr, and the work

done in the displacement from AiBi to A2B2 equals the integral of F dr between

the Irniits as stated. Obviously, changing the senses of the forces F (in the

figure) so that they tend to make A and B approach, changes the sign of the

total work done by the forces.

41. Energy

When the state or condition of a body is such that it can do work against

forces applied to it, the body is said to possess energy. For example, a

stretched spring can do work against forces applied to it if they are such that

it may contract, and a body in motion can do work against an applied force

which tends to stop it; the spring and the body, therefore, possess energy.

The amount of energy possessed by a body at any instant is the amount of

work which it can do against applied forces while its state or condition changes
from that of the instant to an assumed standard state or condition. The

meaning of the standard condition is explained in subsequent articles. The
unit of energy must, in accordance with the above, be the same as the unit of

work. Thus we have the foot-pound, foot-ton, centimeter-dyne (or erg),

the joule, horse-power-hour, watt-hour, etc. (see preceding article).*

§ I. Mechanical Energy. — Energy is classified into kinds depending on

the state or condition of the body, in virtue of which it has energy.

Kinetic Energy of a body is energy which the body has by virtue of its

velocity. The amount of kinetic energy possessed by a particle at any instant

is the work which it can do while the velocity changes from its value at that

instant to some other value taken as a standard. It is customary to take

zero velocity as the standard one; this being understood, then the amount of

kinetic energy possessed by a particle is the work which the particle can do in
"
giving up all its velocity.

" The kinetic energy of a single particle whose

mass and velocity are m and v, respectively, equals | mv"^.

Proof: Let Fi, F2, F3, etc., be the forces which act on the

particle P (Fig. 324) and eventually stop it; and let ABh^
the path, A the beginning (where velocity

=
v-^ and B the

end where velocity
= o. Then we are to prove that the

work done by the particle on the neighboring particles or

bodies (which exert the forces Fi, F2, F3, etc.) equals J mvi^, during the motion.

Now, the work done by the forces Fi, F2, F3, etc., on the particle is

/ Fi cos (t>ids-\-
j F2Cos<f}2ds-\-

• * ' = I (Fi cos 0i + F2 cos 02 + • • •
) ds,

* For dimensions of a unit of energy, see Appendix A.
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where 0i, 02, 03, etc., are the angles between Fi, F^, F3, etc., and the direction of

motion (Art. 40). Since the particle F exerts forces on its neighbors, equal
and opposite to i^i, F2, etc., the work done by the particle on its neighbors is

— / {Fi cos 01 + F2 cos 02 + • • •

) ds.

But Fi cos 01 + F2 cos 02 + . . .
= mat = w dv/dt, where at is the tangential

comppnent of the acceleration of the particle; hence the work done by P is

—
I m (dv/dt) ds = —

j
m {ds/dt) dv = —

j
mvdv = ^ mvi^.

The kinetic energy of a body (a collection or system or particles) is the'

sum of the kinetic energies of the constituent particles of the body. We will

now evaluate this sum for certain common cases,
—

namely, (i) translation,

(ii) rotation, and (iii) combined translation and rotation.

(i) In translatory motion all particles of the moving body have at each

instant equal velocities; hence, the sum of the kinetic energies of the particles

is| Wi?;2 + J nhv'^ -|-
. . . = i

2>2 (2w), where mi, nh, etc.,
= the masses of

the particles and v — their common velocity at the instant under consideration.

Or, if if = the mass of the body and E —
energy, then

E = hMv''^^(W/g)'u\ (i)

li 2,2.2 is written for g, then v should be expressed in feet per second. E will

be in foot-pounds, foot-tons, etc., according as W is expressed in pounds, or

tons, etc.

(ii) In a rotation about a fixed axis the velocity of any particle of the body

equals the product of the angular velocity of the body, expressed in radians per

unit time, and the distance from the particle to the axis of rotation (Art. 37).

Hence, the sum of the kinetic energies of the particles of the body is

I Wi (ri 6o)2 + I m2 (r2Co)2 -f
. . . = i

co^ Swr^,

where w = the angular velocity of the body at the instant under consideration,

and ri, r2, etc.,
= the distances of the particles respectively from the axis of

rotation. But Swr^ = the moment of inertia of the body about the axis of

rotation; hence, the kinetic energy is given by

£ = 1
/co2 = i My^2^2 = 1

(j^/^) ;^2^2^ (2)

where I = the moment of inertia described, and k = the radius of gyration of

the body about the axis of rotation. If 32.2 is written for g, then k should be

expressed in feet and co in radians per second (co
= 2 ttw where n = revolu-

tions per second). Then E will be in foot-pounds, foot-tons, etc., according

as W is expressed in pounds, tons, etc.

(iii) A body which has a combined plane translation and rotation (Art. 50),

like a wheel rolling, has kinetic energy given by

£ = |ikfz^ + Hco2 = J iW/g)v' + HW/g) k'o^^ (3)
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where M = mass of the body, v = velocity of the center of gravity, / = the

moment of inertia of the body with respect to anaxis through the center of

gravity perpendicular to the plane of the motion, k = radius of gyration with

respect to the same axis, and co = the angular velocity of the motion. Proof

of this formula is given in Art. 51. The portions J Mv^ and J /co^ of the kinetic

energy are sometimes called the translational and rotational components,

respectively.

As an example of the use of the preceding formula we find the kinetic energy

of a cylindrical disk, 6 feet in diameter and 400 pounds in weight, which is

rolHng so that the center has a velocity of 4 feet per second. M = 400 -r- 32.2
=

12.4 slugs; the square of the radius of gyration of the disk is J 3^
=

4.5 feet^

(see Art. 36) ;
and co, the rate at which the wheel is turning, is 4 -^3 radians per

second. Hence

£ = -
12.4 X 4^ + -

12.4 X j-
= 148.8 foot-pounds.

Potential Energy.
— A body may possess energy which is not due to velocity.

Thus two mutually attracting bodies can do work against forces applied to

either or both if allowed to move so that they approach each other; and, as

stated, a compressed or stretched spring can do work against applied forces

if permitted to resiune its natural length. The "change of condition or state'*

in the first case is a change in configuration, a change in the positions of the

bodies relative to each other; and, in the second case, if we conceive of the

spring as consisting of discrete particles, the change is also one in configuration

(of the particles). Energy of a system of particles dependent on configura-

tion of the system is called energy of configuration, and potential energy

more commonly.
The amount of potential energy possessed by a system in any configuration

is the work which it can do in passing from that configuration to any other

taken as a standard, it being understood that no other change of condition

takes place. The standard configuration may be chosen at pleasure, but it is

convenient to so select it that in all other configurations considered the poten-

tial energy is positive.

A most common case of potential energy is that of the earth and an elevated

body. In this case, standard configuration means one in which the body and

earth are as near together as possible. Practically, it is necessary to regard

the earth as fixed and the energy as resident in the elevated body. The amount

of potential energy of an elevated body is just equal to the work which gravity

would do upon the body during the descent into the standard or lowest position,

and this work is given by Wh (see preceding article), where W — the weight
of the body and h = the distance through which the center of gravity of the

body can descend.

§ 2. Other Forms of Energy. — Kinetic energy and potential energy
are often called mechanical energy. It is the opinion of some that all energy
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is mechanical, and some think that it is all kinetic. Whether either of these

views be correct, it is practically necessary to recognize other forms. A merej
enumeration of these with brief remarks is sufficient for the present purpose,!
since we shall deal mostly with energy known to be mechanical.

Thermal Energy.
— A hot body may do work under favorable conditions;

thus, if sucli a one is placed in a boiler containing water, the water will be^

heated and a part may be converted into steam which may drive a steam

engine, that is, do work. By giving up its heat the hot body has done work,
'

and, hence, by definition, it possessed energy in its heated state. Not only is

this fact well known, but also the fact that a given quantity of heat represents

a definite amount of energy. Thus, one British thermal unit (B.T.U.), which

is the amount of heat required to raise the temperature of one pound of water

one Fahrenheit degree, =778 foot-pounds. And one (small) calorie, which

is the amount of heat "required to raise the temperature of one gram of water

one Centigrade degree,
=

4.187 X 10^ ergs (at 15 degrees). Based on the

molecular hypothesis the common theory is that heat is due to the vibratory'

motion of molecules, that is, thermal energy is kinetic.

Chemical Energy.
— Many substances combine chemically, and their com-

bination gives evidence that they possessed energy. Thus, coal and oxygen I

combine and produce heat which, as we have seen, is a form of energy. We
*

rightly say, therefore, that the coal and oxygen before combination possessed

energy. Based on this molecular hypothesis the theory of chemical energy
in cases where heat is generated in the chemical combination is that internal

(molecular) forces of the substances do work during the combination, and,

hence (see Art. 43), increase the kinetic energy of the molecules. According
to this explanation the energy before combination is potential; and after,

kinetic.

Electrical Energy.
— If a charged storage battery be connected with a motor,

work may be done by the latter. As the work is done, the electrical condition

of the battery changes, and we therefore ascribe the energy to the battery.

The energy is called electrical because it is due to a change of electrical condi-

tion. The nature of electrical energy is even less understood than that of

thermal energy, and no commonly accepted explanation of it has yet been made.

42. Power

§ I. In common parlance the word power has many meanings (see diction-

ary). Thus we hear of the power of a giant, power of example, power of the

press, etc. And of things mechanical, we hear such expressions as a powerful

derrick, a powerful cannon, a powerful pump, etc. On reflection we note that

the adjective in these three expressions probably does not refer to the same

feature of the derrick, cannon, and pump. A derrick is probably called power-

ful because it can lift a very heavy body, or exert a very great (lifting) force.

A cannon is generally called powerful because it can project a heavy shot

I
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with great velocity, aijd we shall see presently such performance depends on

the energy which the gun can impart to the shot. A piunp is probably called

powerful because it can elevate or transport a large quantity of liquid in a short

space of time, or perform much work per unit time.

Use of the word power in the sense of force was very common in engineering

! literature at one time. Such usage is comparatively rare now, but not obso-

I lete. Thus we read of the
"
tractive power of a locomotive" to denote pull in

; the bulletins of the American Locomotive Company. (But 'Goss in his Loco-

\i motive Performance, and Henderson in his Locomotive Operation, seem to prefer

tractive force; and in Locomotive Tests and Exhibits, of the Pennsylvania Rail-

road System at the Louisiana Purchase Exposition, we find
"
tractive effort

"

to denote that pull.) The other two uses of the word power to denote (i)

work or energy, and (ii) rate at which work is done or energy is transmitted

or transformed are quite common. Thus in the same text-book we find:

(i)
"
the actual power utilized is one-half the energy available," and (ii) "the

power of the plant is about 470 horse-power" (258,500 foot-pounds per

second, see below). And in another book there appear: (i)
"
the power of

the rotating shaft could be converted into electrical energy," and (ii) ''the

power is here measured in kilowatts
"
(one kilowatt equals 10^^ ergs per second,

see below). It seems probable that this double usage of the word power in

engineering literature will persist. In common with most authors, even those

quoted above, we will define power in a single sense, namely,
— as the rate at

which work is done.

Units of Power
*
like units of work may be classed into gravitational, which

vary slightly with locality, and absolute. Thus, the foot-pound per minute and

the kilogram-meter per second are units of the first class; also the (practical)

English and American horse-power = 550 foot-pounds per second

=
33,000 foot-pounds per minute,

Continental horse-power = 75 kilogram-meters per second

= 4500 kilogram-meters per minute.

The dyne-centimeter (or erg) per second is a unit of the second class; also the

watt which is 10^ ergs per second, and the (practical)

kilowatt = 1000 watts = 10^^ ergs per second.

The Bureau of Standards has recently decided to adopt the Enghsh and

American horse-power as the exact equivalent of 746 watts, thus making
:his horse-power an absolute unit.

" Thus defined it is the rate of work ex-

:)ressed by 550 foot-pounds per second at 50° latitude and sea level, approxi-

nately the location of London, where the original experiments were made by
fames Watt to determine its value. The '

continental horsepower
'

is similarly

nost conveniently defined as 736 watts, equivalent to 75 kilogram-meters per
iecond at latitude 52° 30', or Berlin." f

* For dimensions of a unit of power see Appendix A.

t Circular of the Bureau of Standards, No. 34.
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§ 2. Measurement or Power. — There is only one instrument in common
use which measures power directly, the wattmeter. It measures electric

power and reads in watts, hence the name wattmeter. Power other than elec-

trical is generally measured indirectly by measuring the amount of work done

or energy transmitted in a certain length of time; this work or energy divided

by the time gives the average power for the period. And to measure the

work or energy generally requires the measurement of a force; this force multi-

pHed by the distance through which it acts (as explained later) gives the work

or energy. Thus most appliances for ascertaining power measure force first

of all, and so are properly called dynamometers (force-measurers). Dynamom-
eters are of two kinds,

—
absorption and transmission. Those of the first

kind absorb or waste the energy which they measure, and those of the second

kind transmit the energy or nearly all of it. A great many dynamometers
have been devised. Only one of each kind are here described.*

Prony Brake. — A simple form is shown in Fig. 325. AA are two bearing

blocks which bear against the face of the pulley on the shaft of the motor or

other machine whose power is to be measured; BC is the beam, one end of

which is supported on a post D which rests on the platform of a weighing scale;

BB are nuts by means of which the pressures between the pulley and the bear-

ing blocks may be changed and consequently the frictional drag also when

the pulley is turning. The drag on the brake tends to depress the end C
when the pulley is rotating as indicated.

v///T/7/////fn

Fig. 325 Fig. 326

Let S = the reading of the scale when the pulley is rotating at the desired^

speed, the brake then absorbing the energy which is to be measured; n = the

revolutions of pulley per unit time; a = the horizontal distance from the

support of C to the center of the shaft; and X = a correction explained below.

Then the power equals

P = {S
- X) 2'Kan. (i)

If 5* and X are expressed in pounds, a in feet, and n in revolutions per minute,|

then

P = 0.000190 {S
— X) an horse-power. (2]

The' meaning of X will appear from the following derivation of formula
(i)j

Let F = the total frictional drag on the pulley while the energy to be measure

* For full descriptions of many others see Flathers' Dynamometers or Carpenter and Dedei

ichs' Experimental Engineering.
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is being absorbed and d = diameter of pulley. The work done on the pulley

by this friction per revolution is F ird, and per unit time the work is Ft dn.

Now let W = weight of the brake, and w = weight of D; then it is plain from

Fig. 326 that iFd + Wb = (S -w) a, or

Fd = 2[S - {w + Wb/a)] a; and hence P = [S
- {w + Wb/a)] 2 wan.

This last equation is Hke (i) except that X replaces w + Wb/a. Now obvi-

ously Wb/a is the pressure on the scale due to W; hence X is that portion of

S due to W and w. X can be determined directly as follows: Loosen the

screws BB and insert a small roller between the top of pulley and the upper

block A, but without shifting C; then read the scale. That reading = X,
for the pressure on the scale then = w -{- Wb/a.

.x-->l1^-

Qzfv/iQ. wl
a

k-b -4 t«-'-b->i

Fig. 327 Fig. 328

Tatham Dynamometer.
— This consists of four pulleys, A, B, C and D

(Fig. 327), two levers E and F, a weighing beam G, and a belt HIJK. Pulleys

A and B are mounted on the frame of the dynamometer; pulleys C and D are

idlers and are mounted on the levers which, in turn, are supported on knife

edges resting on the frame and by knife-edge links L and M suspended from

the weighing beam, all as shown; the weighing beam is supported from the

frame at N. The dimensions are such that the straight portions of the belt

are vertical, and H and K are vertically below the knife-edge supports of the

levers. The shafts of A and B extend backwards to connect with machines

between which the energy to be measured is transmitted. In all cases, the

connections to machines should be made so that the tension in I is greater

than that in /(/"tight" and / "slack"); and, if possible, the machine

whose power is to be determined should be connected to or be on the shaft of

A. When the dynamometer is in operation, then L andM pull on the weighing

beam; and, if the beam be balanced by the poise, then the scale-reading gives

the difference in tensions of / and /, or Pi — Pi (see Fig. 328). Let S = the
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scale-reading, n = revolutions per unit time of pulley A, D = diameter of

the pulley plus thickness of belt, and F = power; then

P = STrDn.

For Sir D is the work done by the belt on A in one turn of A
; and, hence, the

work done per unit time is Sir Dn.

Fig. 328 shows the forces acting on the various parts, and makes plain how
the poise measures P2 — Pi- Thus, from the right-hand lever Qi = Pic/b;

from the left-hand lever Q2 = P2c/b; and from the weighing beam Wx =

(ft -Qi)a= (P2
-

Pi) ac/b. Hence, P^ - Pi = (Wb/ac) x. Now, Wb/ac
is a constant, and so it is possible to graduate the scale beam (mark values of

X on it), so that the readings will give the corresponding values of P2 — Pi-

(No mention has been made of the weights of the parts. These are counter-

balanced by a balancing weight on the scale beam as in an ordinary platform

scale.)

§ 3. Indicator; Locomotive Power. — To determine the work done in

the cylinder of a steam or gas engine per stroke or per unit time, use is made
of an instrument called an indicator. The indicator makes a diagram or
'^ card" from which the intensity of the pressure on either side of the piston

at any point of a stroke can be read. Fig. 329 represents, in principle, the

original form of indicator as used by James Watt (i 736-1819).

^ is a cylinder; 5 is a piston working against a coil spring C
whose upper end is fixed; D is a pencil which presses against

the card or paper E; F is a frame, movable right and left in

suitable slides, for holding the paper or card. When the piston

is moved the pencil simply makes a vertical line on the card;

when the frame is moved the pencil makes a horizontal line.

To take a diagram the cyhnder of the instrument is connected

with one end of the cylinder of the engine to be indicated,

and the frame is connected to the cross-head of the engine with

suitable reducing device so that the frame gets a motion just Hke

that of the piston but greatly reduced. When the instrument

is connected up, as just described, then the pencil describes a curve, something

Uke GHIJG, the upper portion GHI being drawn during the forward stroke

and the lower portion IJG during the return. The ordinates to the curve

from the line of zero pressure K represent pressure per unit area in the

cylinder, the scale of ordinates depending on the stiffness of the spring of

course. The horizontal width of the diagram represents the stroke of the

piston.

Fig. 330 is a facsimile of an indicator card; the solid curve pertains to one

end of the cylinder, and the dotted curve to the other end; ^^ is the line of zero

pressure. The area ACDEBA represents the work done on one side of the

piston (per unit area) during the forward stroke, and the area BEFCAB

represents the work done on it during the return stroke. But the first work is

I.
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positive, and the second negative; hence the work done on that side of the

piston during both strokes is represented by the area enclosed by the curve

CDEFC. Similarly, the area of the dotted

curve represents the work done upon the

other side of the piston (per unit area)

during a to-and-fro stroke. The mean

heights of these areas represent pressures

per unit area which are called mean effective
*

P
pressures, one for the head-end and one for

the crank-end of the cyUnder. Let pi
= mean ejffective pressure for the head-

end, p2
= that for the crank-end, A = area of cross-section of the cylinder,

A^ = area of cross-section of the piston rod, and I — length of stroke. Then
the work done by the steam in the head-end during two consecutive strokes

=
piAl) that done by the steam in the crank-end = p^iA —A') I, and the

total work done is the sum of these expressions.

The average of the mean effective pressures {p\ and p^) for the two ends of

the cylinder is sometimes called the mean effective pressure (for the cyUnder).
Let p = this mean effective pressure (per unit area) ;

a = the average of the

areas of the two sides of the piston, or what amounts to the same thing, the

area of the cross-section of the cyUnder minus one-half the area of the cross-

section of the piston rod; n = the number of strokes of the piston per unit

time; and / = length of stroke, as before. Then, as will be shown presently,

the work done on the piston per double stroke is 2 pal closely; and, hence, the

work done per unit time, or the power, is

P =
plan. (i)

If the customary units are used, namely, p in pounds per square inch, / in feet,

a in square inches, and n in strokes per minute, then P, above, is in foot-pounds

per minute; and

P = -^-
horse-powers.

33,000

To justify 2pal:
— Let x be an area such that the product 2pxl gives the

true work done on the piston in a double stroke; that is

2xi{pi + P2) xl = piAl + p2iA- A') I.

Then x = A - —^^A\ Now pi
=

p2 nearly, and so —^— = J very
pi-\- p2 pi-\- p2

nearly. Therefore, as a close approximation x = A —
i A' = i (A -\-A—A'),

and this is the value assigned to a above. Hence, 2 pal is a close approxi-
mation to the work done on the piston per double stroke.

For a single-expansion, two-cylinder locomotive, P = 2 plan. Let 5 = the
'

piston speed,
"

the actual distance which a piston describes in its cylinder

per unit time; then 5 = In -and

P =
2pas, (2)
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With customary units for p, a, and s (pounds per square inch, square inches,
and feet per minute respectively) the foregoing formula gives P in foot-pounds

per minute. Since the piston speed and the velocity of the locomotive are

related, it is possible to express the indicated power of a locomotive in terms
of its velocity. Thus let v = the velocity of the locomotive, and D= diam-
eter of the driving wheels; then one turn of the drivers means a displacement
of the locomotive equal to tD and a displacement of the piston relative to

its cylinder equal to 2 /. Hence v/s = TrD/2 I, or s = (2 1/tD) v. Substitut-

ing for s in the preceding formula [for P, we find that

pd"-^
V, (3)

100

where d = diameter of the cylinder. (Strictly d = the diameter of a circle

whose area equals the area of the cross-section of the cylinder minus one-half

the area of the cross-section of the piston rod.) With pounds per square inch

for p, inches for d, I, and Z>, and feet per minute for v, the foregoing formula

gives P in foot-pounds per minute. Both formulas for P show that the power
of a locomotive is zero at starting, and would increase exactly with the velocity
if the mean effective pressure were the same at all speeds.

The mean effective pressure depends upon the boiler pressure obviously,
and on the cut-off and piston speed.* The American Locomotive Company

has adopted the line ABCD (Fig. 331), as

expressing the variation of mean effective

pressure with change of piston speed, for

the manner of rimning (cut-off, etc.) which

engine men usually employ. Thus, for all

speeds up to 250 feet per minute, the mean
effective pressure is taken at 85 per cent of

the boiler pressure; at 500 feet per minute,

it is taken at about 65 per cent, etc. Let

po
= boiler pressure and K = ratio of mean

effective to boiler pressure, which may be

called speed coefficient for convenience; so

Then the formula for indicated power of the locomotive can

P = 2 paKs. (4)

Thus, for a given boiler pressure the power varies as Ks, The line DEFGH
(Fig. 331) is a graph of the preceding equation, the maximum value of P being

called iCK) per cent. It appears, then, that for the American Locomotive

Company speed coefficients, the power increases uniformly up to a piston speed

of 250 feet per minute, then less rapidly up to a maximum value at about

700 feet per minute, then remains nearly constant up to about 1000 feet per

minute, and then diminishes.

* See Fig. 42 in Goss' High Pressures in Locomotive Service, which shows clearly how the

mean effective pressure varied in a test made by him.

;q-4o
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t4^ Principles of Work and Energy

§ I. Principle of Work and Kinetic Energy. — In any displacement

of a single particle the forces acting upon it, if any, do more or less work; and,

in general, the velocity of the particle is changed, and, hence, the kinetic energy

also. There is a simple relation between the total work done upon
the particle by all the forces acting upon it in the displacement

and the change in the kinetic energy as we will now show. Let

P (Fig. 332) be the particle; m = its mass; OAB be its path (not

a plane curve necessarily); vi = its velocity at A, and V2
= its

velocity Sit B; R = the resultant of all the forces acting on F;
and Rt = the component of R along the tangent to the path at P.

Then the work done by all the forces during an elementary dis-

placement ds is Rt ds. But Rt = ma = m dv/dt, where a = tan-

gential component of the acceleration of P. Hence the work done on P in

the displacement ds is m (dv/dt) ds = m (ds/dt) dv = mvdv; and the work

done in the total displacement AB is

mvdv = i mv2^ — i mvi^.

"Now I mv2^ is the kinetic energy of the particle at jB, and | mvi^ is its kinetic

energy at A
;
hence ^ mv2^ — J mvi^ is the increment in the kinetic energy of

P. Thus we have the simple relation,
— in any displacement of a particle,

the work done by all the forces acting upon it equals the increment in the

kinetic energy of the particle. If the total work done is positive then the

increment in the kinetic energy is positive also, and there is a real gain and

increase in velocity; if the total work done upon the particle is negative, then

the increment in the kinetic energy is negative and there is a loss and decrease

in velocity.

Let Pi, P2, Psy etc., be the particles of any body (not rigid necessarily). In

any displacement of the body,

work done by forces acting upon Pi = increment in kinetic energy of Pi,

r2 — -f^2,

li li It (C It ti -p _ tl (t It it tt p

etc. = etc.

Adding we get total work done on all particles
= simi of increments in their

kinetic energies
= increment in kinetic energy of the system. That is, in any

displacement of any body the total work done upon it by all the external and internal

forces acting upon it equals the increment in the kinetic energy of the body.

In a displacement of a rigid body the total work done by the internal forces

equals zero. Proof:— Consider any internal force exerted, say, on Pi by P2;

Pi exerts an equal, opposite, and colinear force on P2. Since the body is rigid

the distance between the points of application (Pi and P2) of these two forces
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does not change, and hence (Art. 40) the total work done by these two forces

equals zero. But all the internal forces occur in such pairs; hence, the total

work done by all the internal forces equals zero, as stated. Thus we have

the principle,
— in any displacement of a rigid body the total work done upon

the body by the external forces acting upon it equals the increment in the kinetic

energy of the' body.

From these principles it follows that the rate at which work is done upon a

body Equals the rate at which it gains kinetic energy. But the rate at which

work is done is power; so we may state that the combined power of all the forces

doing work on a body at any instant equals the rate at which it is gaining kinetic

energy then.

The foregoing principles written out mathematically would take the form:

work done = increment in kinetic energy. Since work is of the form force

X distance or space, we may state that the
"
space-effect" of force is kinetic

energy. (The
"
time-effect" of force is momentum, see Art. 45.) The fore-

going principles are especially well adapted for ascertaining the change in

velocity
—

velocity-square, rather— when it is possible to compute the total

work done on the body under consideration for the space in which the change
takes place. By their means we may ascertain also something about the forces

or displacement which accompany any given change in the kinetic energy of

a body. We illustrate by means of some

Examples.
— i. A (Fig. 333) is a body weighing 400 pounds. It is dragged

along a rough horizontal plane 5 by a force F, inclined as shown; P = 80

pounds. The coefficient of friction is about i/io. What is the

velocity acquired from rest in the first 10 feet? In the first

-^— 20 feet? The normal pressure between A and B = 400
— 80

. sin 20 =
372.6 pounds; hence, the friction = 37.3 pounds. Now

P we know all the forces acting on A. Gravity (400 pounds) does

no work on A
;
the work done by P during a displacement of

10 feet = (80 cos 20°) X 10 = 752 foot-pounds; the reaction of J5 on ^ does

a work = —37.3 X 10 = 373 foot-pounds. Hence, the total work done

on^ =
752

—
373 = 379 foot-pounds; and this is also the amount of the

gain in the kinetic energy of A during 10 feet of displacement. Let Vi
=

the velocity (in feet per second) at the end of the first 10 feet; then the kinetic

energy of A at the end of the first^io feet = J (400/32.2) v^ = 6.21 Vi^ foot-

pounds. Hence 6.21 Vi^ = 379, or Vi = 7.81 feet per second. Let % = the

velocity of A at thetnd of the first 20 feet; then the kinetic energy of A =6.21

V2^. Since the work done on A during the first 20 feet = 758 foot-pounds,

6.21 V2^ = 758, or V2
= ii.o feet per second.

Such a problem can be solved also by first finding the acceleration. Thus,

since the resultant force acting on ^ = 80 cos 20° — 37.3
=

37.9 pounds, the

acceleration = 37.9 -^ (400/32.2)
=

3.05 feet per second per second. The

time for describing the first 10 feet = the velocity acquired -j- the acceleration

=
^1/3-05

= 0-328 vi. The distance = the average velocity X the time; that
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is, 10 = 1 1)1 X 0.328 Vi, or Vi = 7.81 feet per second as before. Obviously,

the first method is more direct than the second.

2. A piece of timber 12'' X 12" X 16' is suspended by means of two parallel

ropes as shown in position A^B' (Fig. 334). The ropes are 10 feet long and

the timber weighs 800 pounds. It is raised into the
, ,

position AB^ two feet above A'B'
^
and then allowed

to swing. What are its kinetic energy and velocity

when it reaches its lowest position? The forces

acting on the timber during its descent are gravity,

the pulls of the ropes, and air pressure. We neglect „

the last. At each instant the pulls are normal to the

direction of the displacement of their respective points of application; there-

fore the pulls do no work. The work done by gravity during the descent =
800 X 2 = 1600 foot-pounds. Since this is the total work done on the timber,

the kinetic energy of the timber in [its lowest position
= 1600 foot-pounds.

Now the timber has a motion of translation— no turning
—

,
and therefore

at each instant all points of the timber have identical velocities (Art. 35).

Hence, if z;
= the velocity in the lowest position, then

\ (800/32.2) ip- = 1600, or I'
= 16 feet per second.

3. A certain flywheel and its shaft weigh 400 pounds; the radius of gyration

of both with respect to the axis of rotation = 10 inches. The wheel is set to

rotating at 100 revolutions per minute, and is then left to itself, coming to rest

under the influence of axle friction and air resistance after making 84 turns.

Required, the average torque of the resistances. The moment of inertia of

the wheel and shaft, about the axis,
=

(400/32.2) (10/12)2 = 35^^ slug-feet 2.

The angular velocity, 100 revolutions per minute, = 2 tt 100/60 = 10.47

radians per second. Hence, the kinetic energy of this wheel and shaft, when

released,
= | 8.64 X 10.47^

= 474 foot-pounds. Besides the forces mentioned

above, gravity and the normal pressure of the bearings act on the wheel and

shaft, but these do no work during the stoppage. Let M = average torque
of the resistances in foot-pounds; then the work done by them during the

stoppage is — ii'2 7r84 = —
528 ilf foot-pounds. This equals the gain in the

kinetic energy of the wheel; that is, 528 M =
474, or M =

0.90 foot-pounds.

4. A (Fig. 335) is a sheave supported on a smooth horizontal shaft. A is

3 feet in diameter, and its radius of gyration with respect to the axis of rotation

^-^ =
9 inches. The weights of A, B, and C are *ioo, 200, and 300

\q^ pounds, respectively. The system is released and allowed to move
\Zy under the influence of gravity and the resistances brought into

H action. Required the velocity of the suspended weights when
lii they have moved through 10 feet. The system moves under the

action of the following external forces,
—

gravity, axle reaction,
'

' ^
air resistance, and the internal reactions between sheave and rope

and the fibers of the rope. If the rope is quite flexible then the forces

a
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in the rope do little work; this will be neglected. If the rope does not

sUp on the sheave, then no work is done by the reaction between rope and

sheave. Thus, httle or no work is done by the internal forces. The work

done by air resistance is small unless the speeds of the moving bodies get high;

it will be neglected. The work done by the frictional component of the axle

reaction perturn isM2 tt, whereM is the frictional moment which we will assume

has been found to be 10 inch-pounds. In the displacement under consideration,

10 feet for B and C, the wheel makes 10/3 tt turns. Hence, the total work

done by friction = (10 X 2 tt) (10/3 tt)
=

66.7 inch-pounds = 5.6 foot-pounds.

Gravity does no work on ^
;
on ^ and C its work = 3ooX 10— 200 X 10

= 1000 foot-pounds. We neglect its work on the rope as small. Hence, the

total work done on the system = 1000 — 5.6
=

994.4 foot-pounds. Now
let V = the required velocity in feet per second; then the angular velocity of

the wheel = v -^ 1.5
=

0.667 ^ radians per second. The kinetic energy of

the system equals

I soo „
,

I 200 „
,

I ^ , . . .„-^— v^ -\ v^-\- -I {0.667 vy,
232.2 232.2 2 .

where / = moment of inertia of the sheave. Now I = (100/32.2) X (9/12)^
=

1.75 slug-feet^. Hence, the kinetic energy of the system = 8.16 z^^ foot-

pounds. Thus the work-energy equation is 994.4
= 8.16 z^^; hence ?;

= 11 feet

per second.

5. A certain pair of car wheels with their axle weigh 2000 pounds. Their

diameter is 33 inches and the radius of gyration of wheels and axle is 9 inches.

They are rolled along a level track until their speed is 60 revolutions per min-

ute, and are then left under the influence of the rolling resistance of the track,

coming to rest after rolling a distance of 1000 feet. (Data not from an actual

experiment.) Required, the average rolling resistance. When released, the

angular velocity of the wheels =.one revolution per second = 6.28 radians

per second, and the linear velocity of their centers = tt 33/12 = 8.64 feet per

second. Hence, the kinetic energy =

X 8.64^ H (0/12)2 y^ 5 282 = ^010 foot-pounds.
2 32.2 2 32.2

^^' '

This is also the value of the work done by the rolling resistance, air resistance

neglected. Hence, the rolling resistance is equivalent to a constant pull-back

of 3010/1000 = 3 pounds.

§ 2. Moving Trains. — We will now apply the principles of work and

energy to some train problems. First, we briefly consider the forces directly

concerned with the motion of a train consisting of engine, tender, and cars.

For convenience we regard the train as consisting of two parts, namely, the

locomotive (engine and tender) and the cars; notation as in Art. 42, § 3.

Locomotive. — For simplicity we regard the locomotive as being driven by
an imaginary (forward) force F equivalent to the steam pressures. To be
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equivalent the work ^one by F per unit time (or power of F) must equal the

indicated power of the locomotive, or Fv must equal pd'^{l/D) v\ hence,

F = pdH/D.

This force F we will call the cylinder effort of the locomotive. The resist-

ances to motion experienced by a locomotive running alone on a straight

and level track may be put into three groups:
—

(i) Those which arise through
its action as a machine, consisting of friction in the working mechanism

(valves and gear, cross-head, piston, crank pins, and journals of driving-wheels) ;

(ii) those which arise through its action as a vehicle, like the resistances exper-

ienced by the cars (see below); (iii) the air resistance. For convenience we

may regard all the resistances in each group lumped, as it were, into a single

resistance acting backward on the locomotive. We call them machine resist-

ance, vehicle resistance, and frontal resistance, respectively; and we desig-

nate them by Rm, Rv, and Rf. The sum of these three is called locomotive

resistance, and will be denoted by Ri. Thus, we regard a moving locomotive

as under the action of the following forces (see Fig. 336) : gravity, the support-

y^

lO (') (•-) (-7

R.<

Fig. 336

ing forces of the track (having no components along the rails), the draw-bar

pull T, the locomotive resistance {Rm + i?„ + R/), and the moving force pi d^/D.

The actual external forces are shown in Fig. 337.

v^

ft t t t t t t t

Fig. 337

If the velocity of the locomotive is constant and the track is straight and

level, then for any run of length L the work-energy equation is

lip dH/D) -T-Ri]L = o- hence T =
{p dH/D) - Ri.
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If the velocity is changing, then the power equation is

where v = velocity of locomotive and a = its acceleration. Hence

''^ T={pdH/D)-Ri-Ma.

If the-locomotive is running on a grade then the grade resistance Rg must be

included in an obvious way.

According to the American Locomotive Company {Bulletin, No. looi), the

resistances in pounds are as follows:

Rf = 0.24 V^, where V is velocity in miles per hour;

Rm = 22.2 X weight on drivers, in tons; and

Rv = the same as for cars (see further on).

The Cars. — The cars are urged forward by only one force, the pull of the

tender on the first car; this is called draw-bar pull. The cars are retarded by
several forces, namely: The rolling resistance of the rails upon the treads of

the car wheels; the journal friction at the axles of the wheels; the air resist-

ance; and miscellaneous forces, due to oscillation and concussion. The
*' laws" of these separate resistances are known only in a very general way.
Because of lack of knowledge of these separate items of resistance, and, for

convenience, it is customary to
"
lump" them into a single equivalent resist-

ance, called train resistance. Thus we may imagine trains to be without

actual track, journal, air, etc., resistance, but subjected to this equivalent

force, conceived as a single pull backward on the train. A train of cars, then,

may be regarded as moving under the action of four forces, namely, the

draw-bar pull, the train resistance, gravity, and a supporting force exerted by
the track, having no components along the rails.

Many experiments have been made to determine train resistance, special
"
dynamometer cars" (equipped with instruments for measuring and record-

ing speed of train, draw-bar pull, steam pressure, wind velocity and direction,

etc.) being used for that purpose now-a-days. The methods for determining

train resistance are very simple in principle. One method is this:— the loco-

motive drags the cars along a straight, level track at a constant speed; the

draw-bar pull and the speed are measured. Then the (total) train resistance

for that speed equals the draw-bar pull. But level stretches of track are not

always convenient of access, and constant speeds are not easily maintained.

For an experiment on a grade let H = the ascent or descent of the center of

gravity of the train during the experiment, L = the length of the run, W =

weight of cars, T = average draw-bar pull, R =
average train resistance.

Then the grade resistance is Rg = zLWH/L, according as the train is

ascending or descending the grade, and the work-energy equation is

(T-Rt- Rg) L = E,
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where E is the gain in kinetic energy of the cars during the run, to be regarded

as negative if there is'a loss of kinetic energy. Hence

Rt = T-Rg- E/L.

This gives average train resistance for the speeds of the run, or, perhaps, the

train resistance for the average speed of the run. Another method is based

on the power equation (the rate at which work is done on the cars equals the

rate at which they gain kinetic energy); this is

{T-Rt- Rg) V=iM- Mva,

v/hereM = mass of cars, v = velocity, and a = acceleration. Hence

Rt = T - Rg- Ma.

If the train is being retarded then a should be regarded as negative. There

are many practical difficulties in carrying out experiments as suggested; dis-

cussion of these is not appropriate here.*

Obviously, train resistance depends upon many conditions, as state of track

and roUing-stock, weather and wind, and velocity of train. It is practically

impossible to express the influence of all these conditions in a formula for train

resistance. For a long time a favorite formula was the so-called

Engineering News formula, r = 2 + J F,

where r = train resistance in pounds per ton (weight of cars), and V =
velocity

of train in miles per hour. Recent experiments have shown very clearly that

train resistance (per ton) depends very much on the loading of the cars, being
much less for heavily loaded cars than for

empties, and not so much on velocity as formerly
believed. The American Locomotive Company
in Bulletin No. looi states that

" The best data

available shows that the resistance varies from

about 2.5 to 3 pounds for 7 2-ton cars to 6 to 8

pounds for 20-ton cars" (see Fig. S3^)} ^^^d "for

speeds from 5 to 10 up to 30 to 35 miles per
hour the resistance is practically constant."

Schmidt, in the bulletin already mentioned, gives

formulas for train resistance (per ton) for trains

consisting of cars of different average weights; also the following as an

approximation

J.
_ F + 39.6- 0.031 ze;

^

4.08 -f- 0.152 ze;

where r — train resistance in pounds per ton, V = velocity in miles per hour^

and w =
average weight of cars in tons.

12



2IO Chap, x

Example.
— i. A certain locomotive (engine and tender) weighs 178.5 tons,

106 tons on the drivers. There are two cylinders, 23 inches (diameter) X
32 inches (stroke); the drivers are 63 inches in diameter; and boiler pressure

is 200 pounds per square inch. Required the maximum draw-bar pull which

this locomotive can exert on a level track at 20 miles per hour. The cyUnder
effort is

Kp^dH/D = {K200X 232 X 32) -^ 63
= i^ 53,800 pounds.

Now the piston speed s = 2 vl/w D (see preceding article)
=

(2 X 20 X 32)

H- (tt X 63)
=

6.465 miles per hour = 569 feet per minute. The speed
coefficient (see Fig. 331) is about 0.60; hence the cylinder effort is 0.60 X
53,800 = 32,300 pounds. The frontal resistance = 0.24 X 20^ = 96 pounds;
the machine resistance = 22.2 X 106 = 2350 pounds; the vehicle resistance

is about 4 pounds per ton or 4 X (178.5
—

106) =
290. Hence, the total

locomotive resistance is about 2740 pounds, and the maximum draw-bar pull
=

32,300
—

2740 = 29,560 pounds about.

2. A freight train consists of 30 cars, average weight with load being 60 tons.

What is the
"
resistance" of this train at 20 miles per hour? According to

P. R. R. (Fig. 338), the resistance is about 3.5 pounds per ton or 6300 pounds

total; according to C. B. & Q., it is about 2.5 pounds per ton or 4500 pounds
total. According to Schmidt's formula, it is about 4.4 pounds per ton or

7920 pounds total.

3. The locomotive (example i) pulls the train (example 2) along a straight

track. Required to show graphically how the cylinder effort and the various

resistances vary with the velocity, assuming laws of resistances, etc., as in

the preceding examples. As in example i the cylinder effort F= 2^53,800;

the piston speed s = 2 vl/irD
=

28.45 ^ f^^t per minute where v is velocity of

locomotive in miles per hour. Thus we have

V =
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velocity for the range from 5 to 35 miles per hour. This plotted gives line

number 3.

'

The ordinate between Hnes i and 3 at any velocity represents the net or

resultant driving or accelerating force on the train at that velocity. Thus, at

20 miles per hour that ordinate scales about 23,500 pounds.

Lbs.
50 000

40 000

30 000

20 000

10 000

5 10 15 20 25 30 35

Miles per Hour

Fig. 339

4. Referring to the train of the preceding example:
—

Required to show

how its acceleration varies with the velocity. Under the preceding example
it was explained that any ordinate between lines i and 3 represents net driving

force on the train. Hence the acceleration at any velocity
= such ordinate

(to scale) divided by the mass of the train. Thus at 20 miles per hour, say, the

ordinate represents about 23,500 pounds, and the acceleration = 23,500 -r-

(3,957,000/32.2)
= 0.1914 feet per second per second. In this way the

accelerations at other velocities m.ight be computed, and then the curve

of accelerations determined. This curve would resemble curve i; indeed

the accelerations are proportional to the ordinates from line 3 to line i.

^
/
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is a machine does not convert or transmit the entire input. The difference

between output and input, for the same interval of time of course, is called

lost energy or loss simply. By efficiency, in this connection, is meant the ratio

of output to input; that is if e = eflSciency, then

e = output -T- input.

Most machines are designed for a definite rate of working or for a certain load

called its full load. Then we speak of the efficiency of a machine at full load,

half-load, quarter over-load, etc., these efficiencies being different generally.

The two following tables are given to furnish some notion of the efficiencies

of the more common machines.*

Full-load Efficiency of Efficiency of Some Machine Elements*

Per cent Per cent

Hydraulic turbines 60-85 Common bearing, singly 96-98
impulse wheels 75-85 Common bearing, long lines of shafting. . . 95

Roller bearings 98
Steam boilers 50-75 Ball bearings 99

engines 5-20 Spur gear cast teeth, including bearings. . 93
turbines 5-20 Spear gear cut teeth, including bearings. . 96

Bevel gear cast teeth, including bearings. 92
Gas and oil engines 16-30 Bevel gear cut teeth, including bearings. . 95

Belting 96-98
Electric dynamos 80-92 Pin-connected chains, as used on bicycles. 95-97

motors 75-90 High-grade transmission chains 97-99
- transformers. . . . 50-95

* From Kimball and Barr's Elements of Machine Design.

The efficiency of a combination of machines. A, B, C, etc., A transmitting

to Bj B to C, etc., is the product of the efficiencies of the individual machines.

For, let ei, ^2, ^3, etc. = the efficiencies of the separate machines A,B,C, etc.,

and e = the efficiency of the group. Then if £ = the input for A
,
the output

of ^ = eiE = the input for B; the'output oi B = e2eiE = the input for C;

the output of C = ezCiexE = the input for D; etc. Hence, the output of the

last machine -r- the input of the first = (^162^3 . . . )E -i- E =
e^e^ez . . .

,
or

e = Cx^e^'ez . . . .

For example, if a dynamo is run by a steam engine, then the efficiency of the

combination or set = the product of their separate efficiencies, say 0.20 X
0.90

= 0.18 or 18 per cent.

§ 2. Hoisting Appliances, Etc. — There are certain rather simple ap-

pliances by means of which a given force can overcome a relatively large

resistance; as, for example, the lever, the wedge, the screw, the differential

pulley. By mechanical advantage of such appliances is meant the ratio

* For detailed information see Mead's Water Power Engineering, from which most values

in the first table were taken; Gebhardt's Steam Power Plant Engineering; and Franklin and

Esty's Elements of Electrical Engineering.
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of the resistance to the driving force or effort. In most cases this ratio is

constant during operation; also, all equal displacements of the point of appli-

cation of the effort result in equal displacements of the point of application

of the resistance, and these displacements take place along the lines of action

of the effort and resistance respectively. We will generally use a and h to

denote these displacements, and F and R to denote effort and resistance

respectively. Then the works done by effort and resistance are respectively

Fa and —Kb.

Although we do not regard these appliances under discussion as devices for

transmitting energy they may be so regarded. The input is the work done by
the effort; the output is that done against the (useful) resistance; and the

loss is the work done against friction. Hence, efficiency equals the ratio of

the useful work done by the appliance to the input, meaning by useful work

that done against the resistance (not including friction). Or, in terms of our

symbols,
e = Rh^ Fa. (i)

Let Fq = the effort which would be required to overcome the resistance R
if the machine were frictionless; then F^a = Rb. Substituting in (i) we find

that efficiency is given also by

e = Fo^F. (2)

Let Rq = the resistance which F could overcome if the machine were friction-

less; then Fa = Rob. Substituting in (i) we find that efficiency is given

also by
e = R-^Ro. (3)*

Most of the appliances now under discussion can be operated backward as

well as directly. For example, the lever, the wedge, the screw, etc., can be

used to lower a heavy body as well as to raise it. Some of these appliances,

which can be run either way, will run backward without direct assistance

when loaded; that is the load will overcome the internal friction. Such

appliances are said to overhaul. Some will not run backward unassisted;

that is the load cannot overcome the internal friction. Such apphances are

said to self-lock. An appliance will overhaul or self-lock according as its

(direct) t efficiency is greater or less than one-half, if the works done in

overcoming friction in a forward and in an equal backward motion are equal

* Formulas (2) and (3) hold even when the displacements a and b are not along the lines

of action of F and R. In such a case let/ and r respectively = the components of a and b

along F and R. Then e = Rr -^ Ff, Fof = Rr, Ff = Ror, etc.

t When a machine is run backwards it is said to have reversed efficiency, by (considerable)

extension of the definition of efficiency. In such case the load (on the hoist, for example)
is the effort, and the applied force is regarded as the useful resistance. In case the machine

overhauls so that the applied force (P say) must assist the load, then by considerable stretch

of imagination
— P is regarded as the useful resistance; the computed (reversed) efficiency

is negative.

I
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(usual case). Proof:— As before, let F = the effort, R = the (useful)

resistance, a and b =
corresponding displacements of F and R, and w = the

work done against friction, all in forward motion of the appUance. Then
Fa = Rb -\- w. Now if the efl&ciency (forward motion) is greater than one-

half, then more than one-half of the work Fa is expended usefully (against

R)\ that is^i^^ is greater than w, and hence R could overcome the friction in

backward motion. If the efficiency (forward motion) is less than one-half,

then fess one-half the work Fa is done against R\ that is Rb is less than w^

and hence R could not overcome friction unassisted in backward motion.

Inclined Plane. — In Art. 20 there is a discussion relating to a body resting

on an inclined plane, in two certain limiting cases of equilibrium; namely,
—

the body is on the point of ascending and descending. Three formulas are

derived there for the force P which would just start the, body up, just permit
it to descend, and cause it to descend. These formulas were derived from
"
conditions of equilibrium." Now when the body on the plane is moving

up or down with constant velocity, then the forces acting on it are balanced;

that is the conditions of equilibrium hold. Therefore, the results arrived at

in Art. 20 hold even when such motion obtains but the coefficient of friction j

and angle of friction of the formulas must be regarded as kinetic coefficient

and angle respectively (see Art. 45) which are strictly analogous to the static

coefficient and angle respectively (see Art. 19). These latter will be denoted

by Mo and <^o respectively in this article. We will not borrow all following

formulas from Art. 19 as just explained, but will derive some independently.

y^l p
When the pull P (Fig. 340) is directed along the plane,

\^\^^lfff^
then the normal pressure =W cos a and the kinetic

<^ Jffl^ friction = nW cos a. For any displacement a along the

J^f^ plane, the distance through which gravity works is

^--^ a sin a.

Fig. 340
(J) When the body A is dragged up the plane, the

effort = P, the useful resistance = W\ and for displacement a at constant

speed (or initial and final velocities = o),Pa = Wa sin a -^ fiW cos a-a, or

W _ I _ COS0

P sin a -j- M cos a sin (a + <^)

The efficiency is the ratio of the work Wa sin a to the work Pa, or

e = sin a/ (sin a-{- ficoscx)
=

(sin a cos 0)/sin (a -}- 0).

(ii) When the plane is quite steep, then the body A would slip down unless

prevented from so doing by a suitable force. It is shown in Art. 19 that such

slipping would occur when the incUnation is greater than the angle of repose or

static angle of friction (a><^o). If the body is permitted to slide down against

an applied force P up the plane, then W is the effort and Wa sin a = Pa -\-

tiW cos a-a, and

P = W (sin a — M cos a) = W sin {a
—

0)/cos 0.
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In this case efficiency is the ratio of the work of the resistance P to the work

of the effort W\ that is

e = (sin q:
—

/x cos a)/sin a = sin (a
—

0)/sin a cos 0.

(iii) When the incHnation of the plane is less than the angle of repose

(a<0o) then the body would not slip down the plane under the action of

gravity alone. If the body is assisted down by a force P along the plane then

all the work of gravity and P is expended against friction; thus Wa sin a +
Pa = fxW cos a-a, or

P = W (jjL cos a — sin a) = W sin (</>
—

a)/cos </>.

In this case the only resistance is the friction, and yet
—P is sometimes

regarded as useful resistance and the (reversed) efficiency then as —Pa -r-

Wa sin a, or

e = —
(m cos a — sin a)/sin a = — sin (</>

—
a)/sin a cos </>.

Wedge.
— In Fig. 341 M is a bearing block sustaining a load W, N is the

wedge and A, B, and C are guides. Let a =
angle of the wedge, and = the

angle of (kinetic) friction for all rubbing surfaces. As just explained under

inclined plane we may borrow formulas from Art. 19 for the present purpose.

Thus when P raises W, the mechanical advantage is given by

W^ I

P tan (2 <^ + a)

If there were no friction (0 = 0), the effort Po required to overcome W would

be W tan a; hence the efficiency of the actual wedge is given by (see equa-
tion 2)

e = tan a/tan (2 <^ + a).

Fig. 34] Fig. 342

As explained in Art. 19 the wedge would not slip out (under the action of the

load W when P =
o) if the wedge angle is less than the double (static) angle

of friction (a < 2 0o). In such a case the force P required to withdraw the

wedge is given by
P = IT tan (2 00 -a).

M
Fig. 342 represents another arrangement of a wedge; N is the wedge and

'

andM are bearing blocks against which resistances R are exerted. Borrow-
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ing from Art. 19 we find that when the force P depresses the wedge, the

mechanical advantage is given by

R _ cot (0 -j- a)
— tan

If there wer^ no friction (<^
=

0), the effort Po required to depress the wedge

against the resistances R would = 2 R/cot a\ hence the efficiency of the

actual*wedge arrangement is

e = [cot (0 + a)
— tan 0] -^ cot a.

As explained in Art. 19 forces R could not push the wedge out even when

P = o if the wedge angle is less than double the angle of friction (a < <^o) ;
that

is such a wedge self-locks. The force F required to withdraw the wedge is

given by
P = 2R^ [cot (<^o

-
ol) + tan 4>q].

Screw and Lever. — Fig. 343 represents a square thread screw in which the

only friction occurs at the nut N. Let a = the pitch angle, h =
pitch, r =

mean radius of the thread; then tan a =
h/iwr. Also let

/ = length of the lever, (i) When the load W is being

overcome then the mechanical advantage is (see Art. 19)

W ^l I

P f tan (a + <^)

*

If the screw were frictionless the force Pq would = W (r/l)

tan a; hence the efficiency is

e = tan a/tan (a -f 0).

It is shown in Art. 19 that the screw self-locks if the pitch

angle is less than the static angle of friction {a < <^o)- To
start the screw in the direction of PF in such a case requires a moment given

^y Pl = Wrt^n{<f>o-a).

Mr. Albert Kingsbury has made numerous experiments on screw-jacks to

determine their coefficient of friction.* ''The conclusions which the results

seem to warrant are: That for metallic screws in good condition, turning at

extremely slow speeds, under any pressure up to 14,000 pounds per square

inch of bearing surface, and freely lubricated before application of pressure,

the following coefficients may be used."

Lubricant
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Fig. 344

Pulley,
—

Fig. 344,represents a simple pulley with part of a rope or chain

upon it. Let 5 = tension in leading or off side of the rope, and T = tension

in the following or on side. Then evidently S is greater

than T, for S overcomes not only T but also the friction

at the pin and the "rigidity" of the rope. The resistance

due to pin friction = the product of the coefficient of

axle friction (see Art. 45) and the pressure on the pin;

this pressure
= S -\- T. Hence, if / = coefficient and

r = radius of the pin, the work done against friction per

revolution of the pulley
= 2 tt r (5 + T). The work done

in bending or unbending (inelastic) rope over the pulley

is proportional to the amount of rope so bent per revolution (that is 2 irR),

and it seems to be proportional also to the tension, to the area of the cross

section of the rope and inversely proportional to the radius R. Thus the

work of bending = CiirRT dP-jR
= C2TrT(P, where d = diameter of the rope

and C is an experimental coefficient depending on the kind of rope and perhaps

other elements. Likewise the work of unbending (at off side)
= CiirSd^.

Now, if we equate the work done by the effort S to the work done against

rigidity, the resistance T, and the axle friction, and then simplify the resulting

equation, we get / ^ ^2^^ ^/ ^ j2\

RJi'-'i-^'i) i'+/i+c
This equation can be written in the following approximately correct form,

—

-(• + "r + "'ry- KT,

where K is an abbreviation for i + 2 fr/R + 2 C d^/R. According to experi-

ments by Eytelwein, C equals about 0.23 when d and R are expressed in inches.

The American Bridge Company made some experiments to determine C and

K for such pulleys and rope as are in common use in tackle for construction

work, and found that C depends not only on kind of rope, as expected, but also

on the size of rope. The following table is taken from their report.*

Dimensions and coefficients
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Tackle. — In the fixed pulley (Fig. 345) when lifting, the efficiency
= Wa/Pa

= T/S = i/K. When lowering, W is the effort and P the resistance; hence

efficiency
= Pa/Wa = T/S = i/K. In the movable pulley (Fig. 346) when

lifting, W = P-\-T = P{i+ K)/K. For any displacement oi P = a say,

the displacement oiW = ^a; hence efficiency
= (W ^ a) -^ Pa =

(i -\- K)/2 K,

When lowering, PF = P + 5 = P(i -\- K); and hence efficiency
= Pa -^

(Wia) = 2/{i+K).

Fig. 345 Fig. 346

In a similar way we can determine the efficiency (and mechanical advantage)
of any combination of pulleys in terms of K. For example, consider the tackle

represented in Fig. 347. There are two separate pulleys in each block A and

B. The pulleys in a block are generally aUke in size but are here represented

unlike for clearness. Let P = the applied pull and W —
load. Pi, P2,

P3, and P4 = the tensions as indicated in Fig. 348. When lifting, Pi = P/K,
P2 = p^lK = P/Z2, P3 = P2IK = P/K^, and P4 = Pz/K = P/K\ Since

IF = Pi + P2 + P3 + P4 we have also

////////////,///////,. v/////////////////.

P P.P3 ^4^2

Ms'

Fig. 349 Fig. 350

If there were no lost work {K =
i), then all the tensions would equal P, and

the load TFo would be 4 P. Hence the efficiency equals Tr/4 P (see equation 3),

or
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Special {Chain) Hoists. — Fig. 349 represents a Weston differential hoist.

The upper block contains two pulleys differing slightly in diameter; they are

fastened together. The lower block contains only one pulley. The pulley

grooves have pockets into which the links of the chain fit; thus slipping

of the chain is prevented. The chain is endless and is reeved as shown. If

there were no lost work, then the tension in each portion of the chain to block

B would equal one-half the load (Fig. 350), and the pulls on the block A would

be as indicated in the figure. Now if R and r = the distances from the center

of the pin in block A to the axis of the chain as indicated then moments about

the axis of the pin give

P^ + \Wr = \Wr,orW = PQ2R/{R-r)]

the ratio, W/Pq = 2R/{R — r) may be made very large by making i? — r small.

The mechanical advantage is

WW 2R
e

P Po R-r'

where P = the actual force required to raise W and e =
efficiency. These

hoists are made of various capacities up to TT =
3 tons; their efficiencies are

relatively low, from about 25 to 40 per cent according to the manufacturers'

lists. In the so-called Duplex and Triplex hoists the upper blocks are screw-

geared and spur-geared respectively. At full load the efficiency of these

hoists vary from about 30 to 40 and from 70 to 80 per cent.

Example.
— We will now show how to apply some of the preceding prin-

ciples and formulas in a computation relating to the operating machinery of

the vertical lift bridge represented in Figs. 351 and 352. The lift span when

down in place rests on two piers. When up it is balanced by two counter-

weights as shown. Each counterweight is suspended by means of two pairs

of one-inch cable; each pair of cables extends upwards from the counterweight,

over a sheave and downward to a point of attachment on the Hft span. At

each corner of the lift span there is a spirally grooved drum carrying two one-

half-inch cables. Each cable has one end attached to its drum; the other end

of the up-haul cable is attached to a point vertically above at the top of the

tower, and the other end of the down-haul cable is similarly attached at the

base of the tower. As the drum is revolved, one cable is wound upon it and

the other is paid out. The two drums at either end of the span are mounted

upon a single cross-shaft A I which carries a bevel gear B. The gears BB mesh

with bevel pinions DD mounted on the longitudinal shaft C which also carries

a bevel gear E. E meshes with a bevel pinion F on a vertical shaft which

carries a capstan head. This capstan head takes a horizontal lever by means

of which a man operates the mechanism. To lift the bridge he rotates the

capstan headed shaft in the proper direction and drives the drums; they wind

the up-haul cable upon themselves and pay out the down-haul cable as already

described. This winding up necessitates upward motion of the bridge.



220 Chap, x

The length of the lever (radius of circle in which the man walks as he oper-

ates) is 6 feet. The pinions F and D are alike; each is 6.86 inches in diameter

and has 21 teeth. The spur wheels E and B are also alike; each is 16.87

inches in diameter and has 53 teeth. The drums are 18 inches, the sheaves

54 inches, and the sheave shafts are 3I inches in diameter. The Uft span

weighs 68,000 pounds and each counterweight weighs one-half that amount.

Thus the span would be perfectly balanced, if the mechanism were frictioniess

and the cables without stiffness and weight, and no effort would be required

to operate the bridge.

Drum-
PyllipASfUdi^P^Jl^

Drum-^ fi-Drom

Dram
Toiler

Brac/h

Diagram of Operating Machinery.

54-"6heave

Coufjtertve/ght

Side Elevation,

Fig. 351

Cross Section.

Fig. 352

In the following computation the weight of cables is neglected. Then the

tension in each counterweight cable on the counterweight side of the sheaves

is one-fourth of 34,000 pounds or 8500 pounds. When the span is being

lifted, the tension on the other or following side of the sheave is less than 8500

pounds. Call that tension T; then

8500 = KT, otT = 8500 -^ K
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(see under "
pulley" above). We will take K =

1.06; then T = 8020 pounds,
and hence the Uft on the span due to counterweights = 8 X 8020 = 64,160

pounds. This leaves 68,000
—

64,160 = 3840 pounds to be furnished by the

four up-haul cables, or 960 pounds apiece.

Let a and b =
respectively any corresponding displacements of the effort

at the hand lever and the resistance 960 pounds at each drum; then

b 3.43 21 18
^

Hence, if the mechanism were frictionless the effort Po required to produce

960 pounds tension in one rope = 960 -r- 50
=

19.2 pounds; and the effort P
required to produce that tension by means of the actual mechanism = 19.2 -^ e,

where e = the efficiency of that part of the mechanism which transmits from

P to the resistance 960 pounds. The efficiency of each pair of gears and

necessary bearings we take as 0.95; the efficiency of a drmn about i -i- 1.03
=

0.97; hence e = 0.95 X 0.95 X 0.97
=

0.875. \
Therefore P =

19.2 -^ 0.875
=

22 pounds, and the effort (at the lever) required to develop a tension of 960

pounds at the four drmns = 4 X 22 = 88 pounds.
The computation can also be made as follows:— We regard the total force

Q exerted at the hand lever and the force of gravity on the counterweights as

two efforts which overcome the (useful) resistance (gravity on the lift span)
and the wasteful resistances in the entire mechanism. For any rise b of the

lift-span the counterweights descend an equal distance and the hand-lever

effort works through a distance 50 J; and since the efficiency of a sheave =
1 -^ 1.06 =

0.944, we have

2 X 50 & X 0.875 + 2 X 34,000 X ^ X 0.944
= 68,000 Xb,orQ = 87 pounds.

45. Kinetic Friction

§ I. Kinetic Friction, or Friction of Motion, is the friction between two

bodies when sliding actually occurs. The coefficient of kinetic friction for two

bodies is the ratio of the kinetic friction to the corresponding normal pressure

between them. The angle of kinetic friction is the angle between the normal

pressure and the total pressure (resultant of the normal pressure and the

kinetic friction). One of the so-called laws of friction states that the kinetic

coefficient is less than the static coefficient (Art. 19), and impKes that there is

a sudden or abrupt change in the values of the coefficients. Experiments by
Jenkin and Ewing* on the kinetic coefficients at speeds as low as 0.0002 foot

per second (about f foot per hour) lead them to conclude that "it is highly

probable that the kinetic coefficient gradually increases when the velocity

becomes extremely small, so as to pass without discontinuity into the static

coefficient." Experiments by Kimballf also indicate that there is no abrupt
*

Phil. Trans. Roy. Soc, 1877, Vol. 167, Part 2.

t Am. Jour. Set., 1877, Vol. 13, p. 353.
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change from static to kinetic coeflScient. Moreover, they show that the

kinetic coefficient may be greater than the static. Galton and Westinghouse

experiments* indicate that the coefficient for dry surfaces probably decreases

progressively from the value of the static coefficient as the velocity increases.

See the following table of

Coefficients of Friction at Various Speeds

•! Cast-iron Brake Shoes on Steel-tired Wheels

Velocity
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Coefficients of Friction*

Various Brake-shoe Materials on Steel-tired Wheels

Materiab

Cast iron.

Cast iron.

Oak
Oak
Poplar
Poplar—
Cast iron.

Cast iron.

Oak
Oak
Poplar
Poplar

Pressure,
pounds per
square inch

10

40
10

40
10

40
20

80

40
120

40
120

Velocity, miles per hour

32
30
037
073
041

070

0-37
•30

55

40
72

53
28

26

032
055
038
053

Lubrication

none
none
none
none
none
none
water
water
water
water
water
water

* From Experiments by Ernest Wilson, Engr. News, 1909, Vol. 62, p. 736.

Coefficients of Kinetic Friction (Rough Averages)

Compiled by Rankine from Experiments by Morin and others

Wood on wood, dry . .

soapy
Metals on oak, dry . . .

wet. . .

soapy .

Metals on elm, dry. . .

Hemp on oak, dry
wet
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moment of this resistance about the axis of the shaft =
fjL{W/irR^)dA-p.

take dA =
pdd-dp; then the total resisting moment =

We

Jo Jo

W 2

-^.ddp'dp
= fxW^R.

Thus the actual resistance may be regarded as a single force = jjW with an

arm = ^R; and, for example, the work done against friction per revolution

or the i)ower lost may be computed simply on that basis. Thus the work done

per revolution = f wfjiWR, and the power lost = J irpWRn where n = number

of revolutions per unit time.

(ii) In a similar way we might determine the resisting (frictional) moment
in a collar bearing pivot (Fig. 354). We would find the moment to be

llxW{R^-f^)^ (R^-r^).

Hence we may regard the resistance as a single force = fxW with an arm

Fig. 353 Fig. 354 Fig. 355 Fig. 356

(iii) In the conical pivot (Fig. 355), the total normal pressure, and hence the

friction too, is increased by wedge action. Let p = the intensity of normal

pressure at any point of the contact, regarded as constant. Then the normal

pressure on an elementary area dA = pdA. Since the friction has no vertical

component, the vertical component of the normal pressures on all the elemen-

tary areas = W; that is,

W
pdA 'sina = W = pA sin a,orp =f' A sin a

But ^ sin a = the horizontal projection of the actual surface of contact.

Hence the intensity of the normal pressure is independent of a, the pivot

angle. For Fig. 355, p = W/irR^; hence the normal pressure on the elemen-

tary area dA is {W/TR^)dA and the frictional resistance = ijl{W/'jrR^)dA .

The moment of this resistance about the axis of the shaft = /jL{W/TR^)dA-pf

and the entire resisting moment = the integral of this expression. For sim-

plicity in integration, imagine dA to be of such shape that its horizontal

projection equals pdB-dp (see Fig. 355). Then sin a-dA =
pdd-dp, and the

resisting moment
'RfiWddp^dp ,jlW 2

Jo ttR^ sin a sin a 3
R,
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Hence we may regard the resistance as a single force fiW/sin a with an arm

3 ^•

(iv) In a similar way we may compute the resisting (frictional) moment
in the case of a frustrated conical pivot (Fig. 356). We would find that the

resisting moment =

sin aT^R^ — r^

Hence we may regard the friction as a single force = ^iW/sm a with an arm

Journal Friction. ^- We do not attempt to compute the normal pressure and

frictional resistance at each point of a journal bearing and then the resisting

moment as in the case of pivots. So-called coefficients ofjournal friction have

been determined from direct experiments on journal friction. This coeflficient

is the ratio of the frictional resistance to the pressure between journal and the

bearing. Thus in a certain experiment there were 20 babbitt bearings sus-

taining a 2yV-inch shaft; the load per bearing was 2,000 pounds, audit was found
,

that 1 1 24 watts were required to run the shaft at 350 revolutions per minute.

All the power was used to overcome the journal friction. Since 11 24 watts =

49,600 foot-pounds per minute and 350 revolutions per minute corresponds to

a (shaft) surface velocity of 223 feet per minute, the total frictional resistance

= 49,600 -^ 2 23 = 2 2 2 pounds or 1 1 . 1 pounds per bearing. Hence the coefficient

of journal friction in this particular instance was ii.i -7- 2000 = 0.0055.

The pressure between a journal and its bearing is not uniformly distributed

over the surface of contact. By nominal intensity of pressure ("pressure"
for brevity) is meant the whole pressure divided by the product of the length

and diameter of the bearing. Thus in the experiment just mentioned, the

length of each bearing was 9f^ inches; hence the nominal intensity was

2000 -^ (2xV X 9fi) = 90 poimds per square inch.

It has been found from numerous experiments that coefficients of journal

friction depend on (i) the method of lubrication, (ii) the lubricant, (iii) its

temperature, (iv) the velocity of rubbing, and (v) intensity of pressure on the

bearing.

(i) Tower* and Goodmanf report the following relative coefficients as

showing effect of the method of applying the lubricant:

Method
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(ii) The following table (according to Tower) indicates how the coefficient

depends on the lubricant. Numbers are relative.

Sperm oil
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pressure. The lubrication was forced; journal and bearing combinations as

follows:

Number
Journal .

Bearing ,

I

steel

white metal

II

nickel steel

white metal

III
nickel steel

IV
nickel steel

bronze
wrought iron
white metal

The heavy line in each figure. represents the average law for the five combina-

tions, and the other two curves relate to the two combinations departing most

from the average result.

0.015

I g 0.010

itu- 0.005

a^

\



CHAPTER XI

MOMENTUM AND IMPULSE

46. Linear Momentum and Impulse

§ I. (Linear) Momentum.— By momentum of a moving particle is meant
the product of its mass and velocity. We regard momentum as having direc-

tion, namely, that of velocity; thus, momentum is a vector quantity. By
momentum of a collection of particles is meant the vector-sum of the momen-

tirnis of the particles. For example, let m'

and m" = the masses of two particles (Fig.

362), v' and v" = the velocities of the par-

ticles at a certain instant, and suppose that

AB = wlif and BC = m"i)" according to some

convenient scale; then AC represents the

momentum of the two particles.

Since the component of the vector AC along any line equals the algebraic

sum of the components of the vectors AB and BC along that line, it follows

that the component of the momentum of a pair of particles along any Kne

equals the algebraic sum of the components of their momentums along that

line. Obviously, this proposition can be extended to a collection of any number,

of particles. A simple expression for this component can be arrived at a:

follows: Let m\ m'\ m' ", etc. = the masses of the particles; v', v", etc. = their

velocities; and v'^, "^''x, etc. = the components of these velocities along any line

x. Then the component of the momentum of the collection along this line =

m'v'x + m"'o"x + . . . Now if ^', x"
^

etc. = the x coordinates of the

moving particles, and x = the x coordinate of the mass-center, all at the same

instant, then m'x' + m"x" + . . .
= x^m (Art. 34) ;

and differentiating

with respect to t, we get m'dx'/dt + m"dx"jdt + . . .
=

{dx/dt)J!^m, or

m'v'x + m"'D"x+•..•= v^m = Mvx^

whereM = 2w = the mass of the collection. That is, the x component of the

momentum of the collection of particles equals the product of the mass of the

collection and the x component of the velocity of the mass-center. Hence,

the component momentum is just the same as though all the material of the

body were concentrated at the mass-center.

In the case of a body having a motion of translation, all the particles have

at any instant velocities which are equal in magnitude and the same in direc-

tion (Art. 35). Hence the momentums of the particles are parallel, and their

228
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vector sum = m'v + m"v + . . .
= uSw = Mv, where v = their common

velocity and M = the mass of the body.
The definition of momentum impUes that the unit of momentum equals the

momentum of a body of unit mass moving with unit velocity. The magnitude
of the unit, therefore, depends on the units of mass and velocity used. No

single word, has been generally accepted for any unit of momentum. The

dimensional formula for momentum is F'T' (see appendix A), that is, a unit

momentum is one dimension in force and one in time. Hence, any unit of

momentum may be and commonly is called by names of the units of force and

time used. Thus the unit of momentum in the C.G.S. system is called the

dyne-second; in the ''engineers' system," the pound (force) -second, etc.

In Art. 34 it is explained that the acceleration of the mass-center of any
collection of particles does not depend at all on the forces which the particles

exert upon each other but on the external forces; also that the algebraic sum

of the components of the external forces along any line equals the product of

the mass of the system and the component of the acceleration of the mass-

center along that line, that is,

n + F",+ . . .«M^,, (i)

where F'xj F"xi etc., are the components of the external forces along a line x,

and Gx is the x component of the acceleration of the mass-center. Now ax

•equals the rate at which the x component of the velocity of the mass-center

changes, that is, ax = dvx/dt, where Vx is the x component of the velocity of the

mass-center; hence. Max = M d^x/dt = d{Mvx)/dt; and finally

F'x + F''x + . . .
= d(mx)/dt (2)

But Mvx is the x component of the momentum of the system, and d{Mvx)/dt

is the rate at which that component changes; hence the algebraic sum of the

components of the external forces along any line x equals the rate at which the x

component of the linear momentum changes.

The principle just arrived at (equation 2) was derived from the law of motion

of the mass-center (equation i), and it is essentially an alternative form of the

law. But practically the former seems to apply more simply in certain cases

as the following examples show.

Fig. 363 represents a jet of water impinging against a flat plate. Required
the pressure of the jet upon the plate. Let W = the weight of water impinging

per unit time, v = the velocity of the water in the jet, and a = the angle

between the jet and the plate as indicated. We suppose that the water does

not rebound from the plate with any considerable velocity; then the momen-

tum of the water after striking has no component normal to the plate. The

momentum of an amount of water equal to W before striking is (W/g)v, and

the component of that momentum along the normal to the plate
= {W/g)v

sin a; hence the change in the (normal) component momentum is {W/g)v sin a.

This change takes place in unit time; therefore, it is the rate at which
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momentum along the normal is changed, and also the value of the normal

pressure of the plate against the jet. The jet exerts an equal (normal) pressure

against the plate. If the plate is rough, then the water also exerts a-frictional

force on the plate.

For another example, we will determine the pressure on a bend in a pipe

by water flowing through it at constant velocity. Let W = the weight of

the water flowing past any section of the pipe per unit time; v = velocity

of the water, assumed to be the same at all points of inlet and outlet cross

sections of the bend; and a = the angle of the bend (Fig. 364). Also let

A^ = the time required for the body of water AB to move into the position

A'B\ The momentum of the body of water at the beginning of the

interval = that of AA' -{ that of A'B] its momentum at the end of the

interval = that oi A'B -\- that of BB', Hence the change in the momentum
of the body of water in the time M = momentum of AA' — momentum of

BB'. These momentums respectively are in the direction AA' and BB'] each

equals {WM/g)v. Hence the change of momentum under consideration is

represented by the vector MN where OM and ON represent the two mo-

mentums just mentioned. But MN = 2{0M) sin^a; hence the change =

2{WAt/g)v sin I a, and the rate at which the change occurs = 2(W/g)v sin | a.

The direction of this rate is MN; it bisects the angle a. This rate of change
of momentum is maintained by the forces acting on the body of water in A'B,

Those forces consist of gravity G, the pressures Pi and P2 (of the water) on

the front and rear faces of the body, and the pressure P of the bend upon it.

Their resultant R = 2{W/g)v sin | a, and R bisects a. If R, G, Pi and P2 are

known then P can be determined. For it is such a force which compounded
with G, Pi and P2 gives R. The pressure of the water on the bend = — P.

For another exaniple, we take the jet propeller of a ship. This consists

essentially of a pimip which ta,kes in water from the sea and ejects it from

nozzles toward the rear (to propel the ship forward). Let W = weight of

water so ejected per unit time, v = velocity of the ship, and V =
velocity of

the ejected water relative to the ship. The absolute velocity of the jet (rela-

tive to the sea)
= V — v. Hence the amount of momentum produced by the

pumping plant (pump, pipes, etc.) per unit time = (W/g) (V — v). The

direction of this is horizontal and backward; hence the plant exerts a force on

the body of water within the passages at any instant equal to (W/g) (V — v);

the water exerts an equal force forward on the passages.
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If the algebraic sunv of the components
—

along any line— of the external

forces acting on a body equals zero, then the rate of change of the component
momentum (along that line) equals zero; hence, if the sum remains zero for

any interval of time, the component momentimi remains constant. This is

known as the principle of conservation of linear momentum. It follows that

if there are no external forces acting on the body, its hnear momentum remains

constant. The grand illustration of this principle is furnished by the solar

system. Even the nearest stars exert no appreciable attractions on the solar

system, and so the members of the system move under the action of their

mutual attractions only. Accordingly, the component of the momentum of

the system along any Hne does not change; the linear momentum is, therefore,

constant in amount and direction. It follows that the mass-center of the

system moves uniformly, and in a straight line.

§ 2. (Linear) Impulse. — If the magnitude and direction of a force are

constant for any interval of time, then the product of the magnitude of the

force and the interval is called the impulse of the force for that interval. If

the magnitude varies, then the impulse for any interval equals the sum of the

impulses for all the elementary periods of time which make up the interval;

that is impulse =

Km [F'A/ + F'A/ + . . . . ]= fpdt, ^

where F = the varying force. If the direction of the force varies, we regard
the impulse for any elementary portion of time as a vector quantity having
the direction of the force, and then in principle we add (vectorially) the ele-

mentary impulses for all the portions of time which make up the interval.

That is to say, we integrate F dt vectorially, arriving at a definite vector

quantity.

Units of impulse depend on the units of force and time used.* There is no

current single-word name for any unit of impulse. Each
unit is named by the names of the units of force and time

involved in it. Thus, in the C.G.S. system the unit of

impulse is the dyne-second; in the "engineers' system"
the unit of impulse is the pound (force) -second. ^""^^

It is evident (Fig. 365) that the elementary inpulse F dt
^^' ^ ^

is the resultant of the impulses of the x and y components of F (or x, y,

and z components, if preferred). Hence the x^ y, and z components respec-

tively of the impulse of F equal the impulses of the components of the force

F. If we integrate equation (2) over any interval t^,
—

/i, say, we get

jy'^dt+jy\dt+ . . . =\Mv2-\m,= ^{m), (3)

in which vi and ?^
= the velocity of the center of gravity of the system at

times ti and Ui respectively. Equation (3) can be put into the following

* See appendix A.
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principle of {linear) impulse and momentum. The algebraic sum of the com-

ponents
—

along any line— of the impulses of the external forces acting on

any system of particles equals the increment in the component of the mo-
mentum of the system along that same line, the sum and the increment re-

ferring to any interval of time.

The principle of impulse and momentum answers such questions as,
— how

much ^velocity in a given time? or how much time to produce a certain ve-

locity? For example, it is required to ascertain how much time is required
to give a velocity of 10 feet per second to a certain body by sUding it along a

horizontal rail by means of a constant push of 20 pounds, the body weighing
100 pounds and the frictional resistance of the rail being 8 pounds. The ex^_

ternal forces acting on the body are gravity, the push, and the reaction of the

rail, the horizontal and vertical components of which are friction and the
"
normal pressure." Only the impulses of the push and friction have com-

ponents along the line of motion; hence

20 t
— % t = (100/32.2) 40,

where t = the required time. Therefore t = 10.3 seconds. Solution of such

a problem by earher methods of this book would be as follows: Let a = the

acceleration; then a = (20
—

8) -^ (100/32.2) =
3.86 feet per second per

second. Hence ^ = 40 -i- 3.86
=

10.3 seconds.

47. Impact or Collision

§ I. Blow. — Momentum of a blow, energy of a blow, and especially

force of a blow are terms generally used more or less vaguely. But when one

of the two colliding bodies is fixed, then the first two terms are taken to mean
the momentum and the kinetic energy respectively of the moving body just

before the impact, perfectly definite quantities. If the motion is one of

translation, these are Mv = {W/g)v and ^ Mv^ = J {W/g)'v'^ respectively. If

in a numerical case we write g
=

32.2 (feet per second per second), v should be

expressed in feet per second; W may be expressed in any force unit. If the

pound is used, then the momentum is in pound-seconds and the energy in

foot-pounds.

Force of a blow means the pressure which two colliding bodies exert upon
each other. The pressure changes during the collision. Analysis of this

variation is beyond the scope of this book. We will deal only with average

values of the force of a blow. In the first place, it should be noted that there

are two average values of the force of a given blow,
— a space-average and a

time-average. We explain the distinction by means of an example, but we

choose the simpler case of a varying horizontal pull dragging a body along a

smooth horizontal surface instead of a blow. Let us suppose first that the

pull varies uniformly with respect to time, from a zero value to 40 pounds in

20 seconds (see Fig. 366). Then the time-average is represented by the

average ordinate to the line which shows how the force varies with respect to
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the time; hence it is^o pounds. We wish to find now how the force varies

with respect to distance. Let P = the value of the pull at any time t after

starting; then the law of force is P = 2 t. Also let M = mass of the body;

a and v respectively
= the acceleration and velocity at any time t, and

s = the displacement up to that time. Then

I^ 2
^^ = F =

F^' M /2, and

The total displacement (^i) in the 20 seconds = (1/3 if) 8000. It follows

from the last equation that

t = (3 Ms)^; hence P = 2 (3 Ms)i.

This equation determines the graph shown in Fig. 367, from which it is ap-

parent that the space-average force is more than 20 pounds, or the time-aver-

5 10 15 ZOsecc

Fig. 366
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done on the cylinder up to each stage was computed. Amounts of compression
and corresponding amounts of work were plotted to determine the curve.

Curve C is a static curve but for a higher speed. Z) is a so-called dynamic
curve. It was obtained from drop or impact tests in which each crusher was

subjected to a blow from a "hammer "
dropped upon it. The hammer

-51
c

A
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^ inch and time of impact about twuu second; the weight of hammer was

^^ pounds and the drop 15 inches. For the copper crushers used the maxi-

mum pressure occurred just before the end of the compression, and its value

was sHghtly less than twice the space-average.

§ 2. Motion after Collision. — In this section we discuss the changes of

motion of one or both colliding bodies due to the coUision in certain compara-

tively simple cases. In most cases of collision the pressures which the colliding

bodies exert on each other are enormous compared with other forces acting

on the bodies. For example, the' space-average pressure between two billiard

balls colHding with velocity of 8 feet per second is about 1300 pounds. There-

fore in discussing changes of motion of the bodies during collision we may
neglect the other (ordinary) forces acting on the bodies, gravity for example;
that is we regard the two bodies jointly as under the action of no external

forces. Hence, according to the principle of conservation (Art. 46), the

momentum of the two bodies jointly is not changed by the impact.
If the center of gravity of two bodies about to collide are moving along the

same straight line, then the collision or impact is called direct; if otherwise,

oblique. If the pressures which two coUiding bodies exert upon each other

during impact are directed along the line joining their centers of gravity, then

the impact is called central; if otherwise, eccentric. These are the kinds of

impact called simple, above.

Direct Central Impact.
— We assume that the bodies have motions of trans-

lation before impact. Since the impact is supposed to be central, the pressure

(of impact) on each body acts through the center of gravity of that body and
does not turn it. Hence the motion of each body after collision is one of

translation. Let A and B be the two bodies,

Ml and M2. = their masses,

Ui and W2 = their velocities just before impact,
and Vi and % = their velocities just after impact respectively.

We regard these velocities as having sign; velocity in one direction (along the

line of motion) being positive, and that in the other being negative. Then the

momentum of the two bodies before impact = MiUi + M2ti2, and after impact
it = MiVi -f- M2.V2. Since the momentums before

^
and after impact are equal,

we have

MiVi + M2V2 = MiUi + M2U2' (i)

The foregoing expressions are correct whether A and B are moving in the same
or opposite directions before or after the impact. Thus, if both are moving
toward the right before impact, at 8 and 10 feet per second say, their momen-
tum is 8 ilfi -f 10 ilf2; but if A is moving toward the right and B toward the

left, their momentum is 8 if1
— 10 if2.

It has been learned experimentally that when two spheres A and B collide

directly and centrally the velocity of separation is always less than and opposite
to the velocity of approach, and the ratio of these two velocities seems to
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depend only on the material of the two spheres. The ratio of the velocity of

separation to that of approach (signs disregarded) is called coefficient of restitu-

tion; it is generally denoted by e. The following are approximate values of

e for a few materials,

glass II, ivory f ,
steel and cork |, wood about |, clay and putty o.

Now the vefocity of approach equals Ui — ih {or ih
—

Ui),
— the first with

reference to A (regarded as fixed) and the second with reference to B (re-

garded as fixed)
—

,
and the velocity of separation is Vi

—
v^ (or 1)2

—
v^).

Since these velocities are opposite in direction, we have

—
(^1
—

i)^/{ui
—

th)
=

e, or —
{vi
—

V2)
= e {ui

—
U2). (2)

Equations (i) and (2) solved simultaneously for the final velocities Vi and

V2 give

If one of the colliding bodies is fixed, say B, then th = o, and M2 is the mass of

B and its supports, infinitely great. Thus we have ^i = — eui.

Oblique Central Impact.
— We assume as before that the bodies A and B

have a motion of translation before impact; then the pressure on each during
the impact acts through the center of gravity and produces no turning. Let

Z7i and U2 = the velocities of A and B before impact; Vi and V2 their velocities

after impact; Ui and u^ = the components of Ui

and U2 along the line of impact pressure (joining

the centers of gravity of A and B when in con-

tact); Vi and V2
= the components of Vi and V2

along that line; and Wi and W2 = the components!
of Z7i and U2 at right angles to that line. See

Fig. 369 which represents one of several possible

ways of obhque collision. Since the impact pressure on either body has no

component transversely to the line of pressure XX, the component of the!

momentum of either body at right angles to XX is not changed. Hence

the transverse component of the velocity of either body is not changed by j

the impact. The longitudinal components are changed as in direct impact,
'

and Vi and V2 are given by equations (3). The final velocities Vi and V2,

therefore, are determined, Vi by its components Vi and Wi, and V2 by its

components V2 and W2.

Loss of Energy in Impact.
— Let L = the loss of kinetic energy; then

Z =
(i MiU,^ + i M2U2') - (i ilfiFi^ + i M2V2').

Now Ui" = ui^ + Wi^, V^ = ^2^ _}. ^^2, Fi2 = 1)^ + ?fi2, and Fa^ = -02^ + W2\
hence

Z = i Mi(Wi2
-

^i2) + 1
J^2(^2

_
^2),

Substituting for z>i and ih their values from equation (3) and simplifying we get
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For perfectly elastic bodies (e
=

i), L = o. For other bodies (i
—

e^) is not

zero but a positive quantity; and since {ui
—

th) is not zero, L is always a

finite positive quantity. That is, in every colUsion of bodies not perfectly

elastic there is loss of kinetic energy. If the bodies are without elasticity

(e
=

o), the loss = J [iMiM2)/iMi + M^)] (u,
-

u^Y.

The foregoing is essentially Newton's analysis of impact. Several more

recent analyses have been made independent of any coefficient of restitution

but taking into account the vibrations set up in the colliding bodies. On
accoimt of the difficulties of the problem they include only impact of spheres

and cylinders end on. Explanation of these analyses fall beyond the scope

of this book.*

48. Angular Momentum and Impulse

§ I. Angular Momentum. — The linear momentum of a moving particle

is a vector quantity, as explained in Art. 46; the magnitude of the momentum
is mv (where m = mass of the particle and v = its velocity), and the direction is

that of the velocity. We go farther now and assign position to the mo-

mentum and to the momentum-vector. The position, or position-line, of the

momentum of a moving particle is the line through the particle in the direction

of the velocity. Thus the Hnear momentum of a particle is a
"
locaHzed

"

vector quantity,
— like a concentrated force, which has magnitude, direc-

tion and a definite position, or line of action as it is more commonly called.

We apply the term moment of momentum to a product which is analogous to

the product which we call moment of a force about a line. Thus the moment

of momentum of a moving particle about a line (or

angular momentum as it is also called) is the product
of the component of the momentum perpendicular

to the line— the other component being parallel

to it — and the distance from the line to the per-

pendicular component. (Compare definition of

moment of a force about a line, Art. 8.) For

example, let O (Fig. 370) be the position of the

moving particle at a given instant, OC the direc-

tion of its velocity, and OABC a parallelogram . Fig. 370

whose sides are parallel and perpendicular to

the line LU, an axis of moments. {QQ is a plane perpendicular to LL'

represented to make the figure more plain.) Then according to some scale

OC represents the momentum mv, and OA and OB represent components
of mv perpendicular and parallel to LV respectively. The angular momen-

tum of the particle about LV is OA X PL. It follows from the definition of

* See Love's Theory of Elasticity, Vol. 2; Nature, Vol. 88, p. 531 (1912) for an instructive

paper by Prof. Hopkinson, on "The Pressure of a Blow"; also Journal of the Franklin In-

stitute, Vol. 172, p. 22 (1911) for an account of some determinations of the time of impact
of metal spheres.
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the term, that the angular momentum of a particle about a line parallel to its

momentum is zero; and about a line perpendicular to its momentum it is

equal to the product of the momentum and the distance from the line to the

particle.

There is another method for computing the angular momentum of a moving

particle abouf a line which is more simple generally than that described in

the definition of angular momentum. It is as follows: we resolve the momen-

tum into any three rectangular components, one of which is parallel to the

axis of moments— then the other two are perpendicular to the axis—
,
and

add the moments of the two perpendicular components about the line; the

sum equals the angular momentum of the particle. Proof: Imagine the

momentum OC (Fig. 370) resolved first into two rectangular components OA
and OB as before, and then OA into any two rectangular components per-

pendicular to LL'. These last two are not shown in the figure but their

relations to OA and the axis LL' are shown in projection on the plane QQ
in Fig. 371. The moment of the component OM about LL' is O'M X L'm

' B

!^

^

D

Fig. 371 Fig. 372

,1.'

= O'M X O'L' sin ju
= O'M sin /x X O'L', The moment of the component

O'N is O'N X L'n = O'N X O'L' sin v = O'N sin v X O'L'. Hence the sum

of the moments = {O'M sin ^ + O'N sin v) O'L' = O'A' sin a X O'L' = O'A'

X O'L' sin a = O'A' X L'P' which is the angular momentum of the particle

as defined.

By angular momentum of any collection of particles (body) about a Hne is

meant the algebraic sum of the angular momentums of the particles about

that line. In the case of a rigid body rotating about a fixed axis, the angular

momentum of the body about the axis of rotation can be computed quite

easily. Thus let Wi, nh, etc.,
= the masses of the particles of the body; n,

r2, etc.,
= the distances of the particles respectively from the axis of rotation;

and CO = the angular velocity of the body. Then the linear velocities of the

particles are respectively nco, r2co, etc. (Art. 37), and their linear momentums
are miTico, nhr2fjo, etc. These momentums are perpendicular to the axis of

moments; hence the angular momentums are mifiori, frhr2^r2, etc. And since

these are of the same sign, the angular momentum of the body is Wiri^co -j-

W2^2^w + . . .
= 0)2wr^ = Oil, where / = the moment of inertia of the

body about the axis of rotation (Art. 36).

A general formula for the angular momentum of a body about a line can be
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arrived at as follows:. Let P (Fig. 372) be one of the particles of the body,

OX the line about which to compute the angular momentum, and PD = the

velocity of P. Let OXYZ be a set of fixed coordinate axes; x, y^ and z = the

(varying) coordinates of P; m = mass oi P\v = velocity of P; Vx, Vy, and Vg
=

the axial components of v (represented by PA, PB, and PC respectively). Then

to some scale, PD represents the momentum mv of the particle, and PA, PB,
and PC represent the axial components of the momentum; these equal mVx,

mvy, and mvz respectively. Hence the angular momentum of P about OZ
is mVyX

—
mvxy, and the angular momentum of the entire body is

2 {mVyX
—

mVxy).

We will now ascertain how the angular momentum of a body about any
line depends on the forces concerned in the motion. Let P, Fig. 373, be one

of the particles of a body, OX a fixed fine about which

the angular momentum in taken, R = the resultant of
| ,|^Ry

all the forces acting on this particle, v = its velocity,

and a = its acceleration. Further, let the coordinates of

P at any particular instant under consideration be x, y,

and z referred to axes one of which is the fine OX; Rx,

Ry, and Rz = the axial components of R; Vx, Vy, and

K

.9-
-X

Vz
= the axial components of v; dx, ay, and a^ = the p

axial components of a; and T^ = the torque of all the

forces acting on P about the z axis. Then Tg = RyX
—

Rxy (Art. 8); and

since Rx = max and Ry = may (Art. 34),

Tz = mayX — maxy.

Now imagine one equation like the last written down for each particle of the

body. The sum of the left-hand members equals the sum of the right-hand

members of course. To the first sum the internal forces (exerted by the

particles upon each other) contribute nothing because these internal forces

occur in pairs, the forces of each being colinear, equal, and opposite, and

so the moments of such two forces cancel. Therefore, the first sum is also

the torque of the external forces about the z axis. Thus, we have where

STz = 2 (mayX
—

maxy), (i)

where -STz = the torque of all the external forces, acting on the body, about

the z axis. The second sum, S {mayX
—

maxy), equals the rate at which the

angular momentum of the body about the z axis is changing. We prove this

by differentiating the expression for angular momentum about the z axis,

S {mVyX
—

mVxy), with respect to the time; thus

illimv^ - mv.y) = S
[fn(^^x

-
v,^)

-
m(^^^y

-
..|)].dt
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Now dvyjdt
=

fly, dxidt = i^xj dvjdt = a^, and dy/dt = Vy; and substitution

of these equivalents of the four derivatives in the long equation gives

-7-Z {mVyX
—

mvxy) = 2 (mayX
—

maxj),

which was tq, be proved. Thus finally we have the important principle that

the torque of the external forces, acting on any body, about any line equals the rate

at which the angular momentum of the body about that line is changing, or

sr, = dhjdt, (2)

where the line in question is called z, and /?«
= the angular momentum of the

body about that Hne.

For an example we will apply the foregoing principle to determine the

torque of the water flowing through the water motor (Barker Mill) repre-

sented in Fig. 374. Essentially, the motor consists of a horizontal cylinder

AB, mounted on a vertical pivot C, and an inlet D connected by a water-tight

sleeve joint to a feed pipe E. On opposite sides of the cylinder and near its

ends there are orifices or nozzles through which the water escapes horizontally.

The water turns the motor in the opposite direction. Let W — the weight of

water escaping per unit time, v = the velocity of escape relative to the orifices,

and CO = the angular velocity of the motor. The amount of water which

escapes in a short interval of time A/ is WM; and, since the absolute velocity

of escape
=

7;
— rco (Art. 53), the angular momentum of this water about the

axis of rotation is (W^t/g) (v
—

nS) r. Hence the rate at which the motor

gives angular momentum to the water is

W/g) (v
-

ro))r,

and this equals the torque of the motor on the water; also the torque of the

water on the motor.

If the torque
— about any line— of the external forces acting on a body

equals zero, then the rate of change of the angular momentum of the body
about that line equals zero; hence, if the torque remains zero for any interval

of time, then the angular momentum remains constant. This is known as the

principle of the conservation of angular momentum. It can be well illustrated

by means of the apparatus on which the man (Fig. 375) is standing. It consists

of a metal plate A supported on balls in suitable circular races in A and B so

that A can be rotated about the line C with very Httle friction resistance; B is

fij^ed. Imagine that a man has mounted the plate A and holds a balancing

pole as shown, all being at rest; then the angular momentum of the man-plate-

pole system about CC equals zero. Now suppose that the man exerts himself

in any way, to move the pole about for example, but touches nothing except

A and the pole. The only external forces acting on the system are gravity,

reactions of the balls on A
,
and the air pressure. The first has no torque about

C; the other two very little and are negUgible here. Hence there is no external
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torque about C, and the angular momentum of the system about C equals zero

always. This is stri^ngly illustrated if the man, without moving his feet on

the plate, trys to rotate the pole (over his head as shown) about C In doing

so, he and A begin to rotate in the opposite direction. If / and /' = the

moments of inertia of man (and A) and the pole respectively about C, and co

and 03' = their angular velocities at any instant, then the principle requires

that the angular momentums /co and /co' shall be equal (and opposite). Or,

imagine the man-plate-pole system is given an angular velocity by external

means (the man holding the rod as shown, say), and then left to itself. If now
the man should change the pole into a vertical position before him, he would

reduce the moment of inertia of the system (about C) very materially; and

since the angular momentum must remain constant, the angular velocity of the

system would increase accordingly.

The grand illustration of the principle of conservation of angular momentum
is furnished by the solar system. The system moves under the influence of

no external forces; hence the angular momentum of the system about any line

remains constant. The angular momentum about a certain line through the

mass-center of the system is greater than that about any other such line.

The line is known as the invariable axis of the system
— a plane perpendicular

to it as the invariable plane
— and "

is the nearest approach to an absolutely

fixed direction yet known."

Center of Percussion. — Fig. 376 represents a body OC suspended like a

pendulum; is the center of suspension, and C is the center of gravity or mass-

center of the body. Let R = the reaction of the axle supporting the pendulum,

AU

^
iit

'//T////' (

K - r
->|<--

r —H

Fig. 374 Fig. 375

t

Fig. 376

and P = the time average force of a blow applied as shown. In general, R
would not be vertical during the blow; so let Rx and Ry — the horizontal and

vertical components of the time-average of R during the blow. The value

of Rx depends not only on the force of the blow P but also on the arm of the

blow with respect to the axis of suspension. It will be shown presently that
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if the arm has a certain value, then Rx equals zero. The point Q in OC (ex-

tended) and in the Une of action of a blow appHed as just explained so that

there is no component axle reaction parallel to the blow, is called the center

of percussion of the body for the particular axis of suspension. {Q is the

point that was called center of oscillation in Art. 39.) The distance of the

center of pefcussion from the axis of suspension equals

•• ^
=

k^/c
= c -\-k /c,

where k = the radius of gyration of the pendulum about the axis of suspension,

c = the distance from the center of gravity, to that axis, and k = the radius

of gyration about a line through the mass-center and parallel to the axis of

suspension.

To develop the expression for q given above let M = the mass of the body,

p = the arm of P about the axis of suspension, co = the angular velocity of the

body produced by the blow, and At = the duration of the blow. By the end

of the blow the velocity of C will be ceo, and practically horizontal; hence,

according to Art. 46,
P -Rx = Mcoi/At.

The only force which has a torque about during the blow is P; hence

Pp = Mk^oi/At.

These two equations solved simultaneously for Rx give Rx = P {i
—

cp/k^);

therefore, ii p =
k'^/c, Rx = o which was to be shown.

Every American boy has batted a baseball a few times in such a way that

the bat "stung
"

his hands; and he soon learned that such stinging is a result

of impact near his hands or quite near the big end of the bat; in fact, quite

remote from the center of percussion of the bat (with reference to the particular

axis of rotation about which the bat was being swung at the instant of impact).

Such a blow also results in rapid vibrations of the material of the bat which

cause the sting. Large pendulums are used in certain impact testing machines

for striking a blow. To avoid the impulsive reaction at the suspension and

vibrations in the pendulum, they are always so arranged that the line of action

of the blow passes through the center of percussion of the pendulum.

§ 2. Angular Impulse. — If the line of action of a force is fixed in posi-

tion then the angular impulse of that force for any interval about any hne is

the moment of the impulse of the force for the interval about that line. The

moment of an impulse is computed just like moment of a force (Art. 8) or

angular momentum; that is, we resolve the impulse into two components,
one parallel and one perpendicular to the line and then we take the product
of the perpendicular component and the distance from it to the line. If the

line of action of the force changes then the angular impulse of the force about

any line for any interval is the algebraic sum of the angular impulses for all

the elementary portions of time which comprise the interval. Thus let F =

the force, /''
—

t' = the interval,
= the angle between the line of action F
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and the line, and p == the perpendicular distance between the two lines.

the angular impulse is

Then

Jf^t" -£Fdt'smd'p= I F sine *pdL

Since F sind ' p = the torque of the force about the line in question, the

angular impulse of the force may also be regarded as the time-integral of the

torque of the force. Hence, ii T = the torque of the force about the line at

any instant then the angular momentum for the interval equals

r TdL

Now let us integrate equation (2) over any interval /''
—

/' say; then

r I,T,dt, orS r Tzdt, = V' - V =
A/?„ (3)

in which hz and h/' denote the angular momentums of the body about the

z axis at the times t' and /'' respectively. Equation (3) can be put into the fol-

lowing principle of angular impulse and momentum: The sum of the angular

impulses of all the external forces acting on a body about any Hne equals the

increment in the angular momentum of the body about that line.

49. Gyrostat

\ § I. General Description. — The words gyroscope and gyrostat are

generally used synonymously but sometimes a distinction is made, as follows:

A gyrostat consists of a wheel and axle, both being symmetrical to the axis of

the axle, and mounted so that they may be rotated about that axis; a gyro-

scope consists of a gyrostat mounted in a frame which can be rotated. Fig.

377 represents a common form of gyroscope; the gyrostat (wheel W and axle

AA') is supported by a ring R which can be rotated

about the axis BB'\ the axle BB^ is supported by the

forked pillar F which can be rotated about the axis CC.
Thus the wheel can be rotated about its center into

any desired position. The gyroscope seems to have

been designed for illustrating principles of composition
of rotations (Art. 54). In 1852 Foucault (French phy-

sicist) made an interesting application of the instru-

ment; by its means he practically made visible the

rotation of the earth. More recently the gyroscope has

been made use of in several connections,
— to steer a

torpedo, to serve as a substitute, unaffected by the iron of the ship, for the

ordinary (magnetic) mariner's compass, to stabiHze a mono-rail car, and to

[steady a ship in a rough sea; it has been proposed also to stabilize flying

lachines by means of a gyroscope.

When its wheel is spinning, a gyroscope possesses properties which seem

Fig. 377
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peculiar to students as yet uninformed in the matter, inasmuch as it does not

always respond as expected to efforts made to change its motion or position.

For example, if a gyroscope like that represented in Fig. 377, well made and

practically frictionless at all bearings and pivots, be grasped by the pillar and

then moved about in any way, the axle of the wheel remains fixed in direction

in spite of any attempt to alter it. The (gimbal) method of support makes

it impossible to exert any resultant torque on the gyrostat (by way of the

pillar) about any line through the center; and hence, as will be proved later,

the direction of the axle cannot be thus changed. It is this property of per-

manence of direction of the spin-axis of a gimbal-supported gyrostat which is

made use of in the self-steering torpedo.

For another example, consider the effect of a torque applied directly to the

g)n*ostat. A vertical force, say, applied at A would turn the gyrostat when

not spinning about the axis B. But when spinning, that force U would rotate

the spin-axis about the axis C, the direction of rotation depending upon the

direction of spin. When the gyrostat is spinning in the direction indicated

by the arrow co, then such force U would rotate the spin-axis about C in the

direction indicated by the arrow
jjl. Again, a horizontal force applied at A,

say, would turn the gyrostat when not spinning about the axis C. But when

spinning, such force L would rotate the spin-axis about BB'
;
and in the direc-

tion indicated by the arrow X if the spin is as indicated. This behavior of a

spinning g3n:ostat under the action of torque is exhibited more strikingly by
a gyroscope represented plainly in Fig. 378. The wheel may be spun on the

axle A; the gyrostat and its

frame may be rotated about

the axis BB^; and all may be

rotated about the axis CC.
W is the weight which can be

clamped on the stem A' to

balance or unbalance the frame

with respect to the axis BB\
Now imagine W clamped so

that the frame (with W and

the gyrostat) is unbalanced.

Then if the gyrostat is set spinning and the frame be released in the position

shown, say, the frame will not rotate about BB' but about CC The

direction of this rotation depends on the direction of spin and on the di-

rection of the torque of gravity about BB\ If, for example, W is clamped

quite near BB' so that the torque of gravity is clockwise as seen from B and

the spin is as indicated, then A rotates toward B. This rotation persists except

in so far as it is interfered with by friction at the pivots, and air resistance.

We might recite still other peculiar performances of a gyrostat but the fore-

going suffice for our purpose. Professor Perry's book on "Spinning Tops"

would be foxmd interesting in this connection.

Fig. 378
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Any such rotation of the axis of a spinning gyrostat is called a precessional

motion or precession ,of the axis or of the gyrostat; the axis and the gyrostat

are said to precess. We will call precession normal or oblique according as

the axis precesses about a line perpendicular or inclined to the axis. It may
not be clear from the foregoing examples of precession how to predict the

direction of precession that would result by applying a given torque to a gyro-
stat with a given spin. The following is a simple rule for predicting; it is

based on the dynamics of the whole matter as will be seen later:
" When forces

act upon a spinning body tending to cause rotation about any other axis than

the spinning axis, the spinning axis sets itself in better agreement with the new

(other) axis of rotation; perfect agreement would mean perfect parallelism,

the direction of rotation being the same." (From "Spinning Tops".) Or,
what amounts to the same thing, the precession is such as to turn the spin-

vector* toward the couple or torque-vector.

The following is an incomplete proof of the foregoing rule. Further ex-

planation is given in the next section and in Art. 56. Fig. 379 represents
a gyrostat pivoted at O so that it can be

rotated freely about that point; we sup-

pose the center of gravity of the gyrostat
to be at O. Imagine that the gyrostat is

at rest, not spinning, in the position shown,
and that a downward force is appHed to

the axle on the left-hand side of O and
^^' ^^^

downward. The torque makes the gyrostat rotate about the axis OB, that is

the torque produces angular momentum about that axis. The amount of an-

gular momentum produced is proportional to the torque and to the duration of

its action (see Art. 48). This angular momentum may be represented by a

vector on OB, the length of the vector representing the amount of the angular
momentum and the arrow-head pointing so as to agree with the direction of

rotation, according to the usual convention, that is, forward in this case. Now
imagine that the axis of the gyrostat is at rest in the position shown but the

\Yheel spinning, say, counter-clockwise when viewed from the right. The an-

gular momentum of the spinning gyrostat about its axisf would be represented

by a vector on OA pointing in the direction OA; let 01 be that vector.

* A spin-vector is a vector on the axis of spin, its arrow-head pointing to the place from
which the spin appears counter-clockwise; or— what amounts to the same thing

— the arrow-

head points in the direction along which the axis would advance if it were a right-hand screw

turning in a fixed nut. The length of the vector— immaterial in the present connection—
represents the angular velocity of spin to some convenient scale. Likewise the couple-vector

(see Art. 8) is a vector perpendicular to the plane of the couple pointing to the place from which
the rotation, which the couple tends to produce, would appear counter-clockwise; or— what
amounts to the same thing

— the arrow-head points in the direction along which the vector

would advance if it were a right-handed screw turned by the couple in a fixed nut.

t This angular momentum is greater than that for any other line, and hence may be

regarded as the total or resultant angular momentum of the gyrostat (see Art, 55).
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Now suppose that the torque already described comes into action, and let OJ
represent the angular momentum which it would produce in a short interval

of time. This angular momentum added to the original angular momentum

gives OR as the resultant angular momentum of the gyrostat at the end of the

interval. It seems, therefore, that the spin-axis would coincide with OR at

the end of the interval; indeed, that axis does approach OR, that is the spin-

axis turns toward the torque-axis as stated in the rule which we undertook

to prove.

The approach just mentioned is not a direct one; the gyrostat yields slightly

to the torque just as though there were no spin; that is the wheel rises (in this

instance) slightly. This is only the first (small) swing of a rapid oscillation

of the spin-axis
— nutation as it is called— which accompanies the (more

prominent) precession of the spin-axis toward the torque-axis. The (unavoid-

able) friction at the pivot O rapidly damps this oscillation so that the oscilla-

tion generally escapes notice. The mentioned rise of the spin-axis may be

explained as follows: In the approach of that axis toward OR the gyrostat

rotates about OC, due to which it acquires angular momentum about OC,
clockwise when viewed from above; but since there is no torque about OC,
the gyrostat can acquire no (resultant) angular momentum about that line

(see Art. 48 on conservation) ;
hence the spin-axis rises so that at each instant

the component along OC of the angular momentum due to spin just equals the

angular momentum due to the rotation about OC.

There is another item of gyrostat behavior worth noting here. Suppose
that the gyrostat shown in Fig. 378 to be precessing as already explained.

If the precession be hurried, say by means of a horizontal push applied at A \
the center of gravity of the frame (with gyrostat and weight) rises; if the

precession be retarded, the center of gravity descends. This behavior is in

accordance with the rule for predicting precession. In the first case we have

a torque about CC\ the torque vector is in the direction OC; the spin-vector

is in the direction 0A'\ and in accordance with the rule OA' turns toward OC,
that is the center of gravity rises. In the second case we have a torque about

CC but the torque-vector is OC; and the spin-vector OA' turns toward that

vector, that is the center of gravity descends. Thus we may state as another

rule: Hurry a precession, the gyrostat rises or opposes the torque which causes

the precession; retard a precession, the gyrostat falls, or yields to the torque

which causes the precession.

Self-steering Torpedo.
— The gyroscope of such a torpedo is linked to appro-

priate valves of a compressed air engine in such a way that any turning of

the spin- axis toward either side of the torpedo causes the engine to turn the

(vertical) rudder of the torpedo in the opposite direction. Prior to projection

of a torpedo, the gimbals are locked so as to hold the spin-axis of the g)n*ostat

parallel (or inclined at any desired angle) to the axis of the torpedo. During
the discharge of the torpedo, the gyrostat is automatically set spinning and

the gimbals are unlocked. During the flight, the spin-axis continues to point
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in its original direction; any deviation of the torpedo from its intended course

changes the incHnation of the spin-axis relative to the torpedo; simultaneously

the gyroscope actuates the rudder as explained, and the torpedo is deflected

back toward its proper direction. Like a common pendulum swinging to its

lowest position, the torpedo swings beyond a mean direction, and is then swung
back again by the rudder. And this oscillation is kept up during the flight so

that the actual path of the torpedo is a zigzag, about two feet wide. A gyro-

stat (wheel and axle) weighing 2 pounds and rotating at 2500 revolutions per
minute has been made to serve the purpose just described.

Gyro-compass.
— For our purpose we may regard a gyro-compass as con-

sisting essentially of a gyrostat (wheel and axle), the axle supported in a ring

or case, and the ring suspended from above. See A, Fig. 380. Such a com-

pass, when the gyrostat is spinning, sets its spin-axis into the plane of the

meridian at the place where the compass happens
to be. Imagine such a compass to be set up at the g i^ ^j^n
equator with its spin-axis pointing east and west, and ^^l^^
suppose that the direction of spin is counter-clockwise /^\
when viewed from the west. The rotating earth / N

carries the gyrostat eastward; the spin-axis would '

remain parallel to its original position if the gyrostat

were supported in frictionless gimbals, and would in
'^' ^°"

time be positioned as shown at B. Now consider the gyrostat as shown at

B, supported not in gimbals but suspended from above as in the gyro-

compass. The supporting force (above) and the force of gravity would have

a torque counter-clockwise as viewed from the north; thus the torque vector

would point toward the reader. The spin-vector points to the right; hence

the torque would turn the end of the spin-axis marked n from the west

toward the north.

Of course the action is not precisely as outlined above, that is the spin-axis

does not remain parallel to its original position for a time and then yield to

the influence of the torque mentioned. The action is really continuous; the

slightest rotation of the compass with the earth from the position A induces

the gravity torque, and the spin-axis begins to turn toward the meridian as

described.

Though the restraint of the support (fine wire in the Sperry and mercury
float in the Anschiitz compass) is very small, the gravity torque is so small

that the turning of the spin-axis into the meridian is very slow. Like a

magnetic compass the gyro-compass swings beyond the meridian from a

deflected position and osciUates for a time. In the Anschiitz type the period
of a free oscillation is about i hour and 20 minutes. Special damping ar-

rangements reduce the osciUations to zero (from a deflected position of 40

degrees) in about one and one-half hours. The spin is maintained electrically,

at about 20,000 revolutions per minute.

Mono-rail Car. — A car on a single rail can be rendered stable even if the
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center of gravity of the car is above the rail by means of a suitable gyroscope

apparatus. Fig. 381 represents the germ of one type of such apparatus.
AA' is the spin-axis, L is a lever rigidly fastened to the axle BB' by means of

which the gyrostat can be made to precess about BB\ Imagine the car to be

standing or travelling in an upright position, the gyrostat spinning, and a man
standing on the car so that he may grasp and operate the lever. Now suppose
that the car is tilted, as by a wind against either side. The car exerts tilting

forces ^n the gyrostat axle at B and 5', the torque-vector of which is parallel

Y M
Fig. 381 Fig. 382

to the rail; hence (see the stated rule) the spin-axis begins to set itself parallel

to the rail, that is it precesses about BB\ The axle BB^ exerts (righting)

reactions on the car but if the man will hurry the precession, the (heavy,

rapidly spinning) gyrostat will rise against the tilting forces and carry the car

back with it toward the vertical position. It is conceivable that a skillful

operator could put the car back into its vertical position in one swing, but in

general he would swing the car beyond the vertical, then back again and after

a few oscillations, into its vertical position.

Gyro-stabilizers as now built automatically perform the function of the man
of the preceding explanation, and they include two gyrostats, spinning in

opposite directions, to enable the car to run on a curve. The gyrostat wheels

of a certain Brennan mono-rail car (40 feet long and weighing 22 tons) are 3J

feet in diameter; each weighs f tons, and spins at 3000 revolutions per minute

(in a vacuum to avoid air friction). Such a car has taken curves of 105 feet

radius at a speed of 7 miles per hour without appreciable disturbance of the

level of the car floor. The spin is maintained by electric means; in fact each

gyro-wheel is made the armature of a motor and this is driven by a generator

on the car.

Schlick Gyro-stabilizer for Reducing the Rolling of a Ship.
— This is repre-

sented in Fig. 382. The gyrostat is mounted in a rigid frame F which is sup-

ported in bearings B and J5' fixed on the ship. Thus the wheel can be spun

about AA' and the axle AA' can precess about BB'. P is a brake pulley by
means of which this precession can be controlled. Explanation of the steady-

ing action of this device is beyond the scope of this article. Such a stabilizer

has been tried out in a ship no feet long, 12 feet wide and of 58 tons displace-

ment. The gyro-wheel weighed iioo pounds, was i meter in diameter, and
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was spun at 1600 re\iolutions per minute. In still water the ship would settle

down from a heel of 20 degrees to one of | degree in about 20 single oscillations;

the period was about 4I seconds. The stabihzer produced the same extinction

in less than three oscillations of 6 seconds period. (See London Engineering,

Vol. 83, p. 448 (1907)).
•

§ 2. Rate of Normal Precession; Determination of Forces. — In

the preceding section, we discussed the effect of a torque on a spinning gyro-
stat in a qualitative way; we will now discuss the matter quantitatively.

Let / = the moment of inertia of the gyrostat about the axis of spin and

CO = the angular velocity of spin; then /co = the angular momentum of the

gyrostat about that axis (Art. 48). If T = the applied torque, the angular

momentum produced by it in the element of time dt is T dl, and the angular

approach of the spin-axis toward the torque-axis in that time is lOR (Fig.

379)
= tan~^ (r dt/Io))

= T dt/Io). The rate at which this angle is described,

that is the angular velocity of precession
—

generally denoted by O— is

O = (IOR)/dt= T/Ioi.

If the torque is applied so that its vector is always perpendicular to the axis

of spin OA, then there is no torque about OA and hence oj is constant; if also

the magnitude of the torque is constant, then it follows from the preceding

formula that O is constant. That is, in the case assumed, the velocities of

spin and precession are constant. The case is quite analogous to that of a

moving particle subjected to a constant force whose line of action is always

perpendicular to the direction of motion and in a given plane. Such a force

does not change the magnitude of the velocity but continually changes the

direction of it; indeed, the particle describes a circle with constant speed

(Art. 34). Let P (Fig. 383) be the particle, m = its mass, v = its velocity,

F = the force, PQ be the path and r = the radius of the

circle. The linear momentum = mv; the angle POQ ^:^^^nv_^»_l
through which the vector mv is turned in any time /is - ^^*N;^-^0
vt/r. Since r = mv^/F (see Art. 34), the angle

= tF/mv.

Hence the rate at which F turns the linear momentum
vector is F/mv, a result strictly analogous with T/Ico, the

rate at which the torque T turns the angular momentum
vector /co. The result can be arrived at, independently
of Art. 34, in a way to bring out the analogy still more. We may regard F
constant in direction for an element of time dt. During that time it produces
an amount of momentum, in its own direction PQ, equal to F dt. Let PJ
represent this momentum and PI the initial momentum mv. At the end of

the interval the (resultant) momentum is represented by PR. Hence the

change in the direction of the momentum is IPR = (F dt) -^ {mv), and the

rate at which the change occurs is the change divided by dt, that is F/mv.
The Forces Acting on a Gyrostat Precessing Normally at Constant Speed.

—
We will now determine certain conditions which the forces in such a case
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always fulfill. Incidentally, we give an alternative derivation of the formula

fi = r//co. We take the gyrostat represented by two projections in Fig. 384.
AN is the axis of spin, the perpendicular to the paper at O is the axis of pre-

cession, and Q is the mass-center of the gyrostat. The assumed directions of

spin and precession are indicated by the curved arrows co and 12 respectively.

'" B
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If we substitute in these expressions for Vx, Vy, and Vg their values as just de-

duced, then sum up for all the particles of the gyrostat, we arrive at the follow-

ing simple expressions for the angular momentums of the gyrostat about the

Xy y, and z axes respectively:*

hx = loi cos 0, hy
= 7w sin 0, and hz = /'12.

Differentiating these expressions for hxj hy, and hg, with respect to time (and

remembering that w and 12 are assumed to be constant), we find that the rates

at which the angular momentums change are

dhx/dt
= — /col2 sin </>, dhy/dt

= ItoQ, cos
<f>y

and dhg/dt
= o.

(These rates are also the values of the torques, of all the external forces acting

on the gyrostat, about the x, y, and z axes repectively; see Art. 48.) Now
consider the instant, or position of the gyrostat, when the spin-axis NA is

parallel to the x axis. Then </>
=

o, and the rates respectively
=

o, Zcofi, and

o; hence the external forces have no torques about the axes of spin and pre-

cession but a torque equal to /col2 about the common perpendicular to those

axes. Or, if T,, Tp, and T respectively denote the torques about the axes of

spin and precession and- their common normal, then

T =
I(Alf and T, = Tp = o. (i)

Let M = mass of the gyrostat, and r = the distance from its mass-center

to the precession axis. Since the mass-center describes a circle with constant

speed its acceleration at any instant is directed from the mass-center toward

the center of the circle and equals rQ^ (Art. 32). Hence, according to the

principle of the motion of the mass-center (Art. 34), the sum of the components
of all the forces (acting on the gyrostat) along radius of the circle (through the

mass-center perpendicular to the precession-axis) equals Mrfl^, and the sum
of the components at right angles to this hne equals zero. Or, if Rr, Rp, and

Rz respectively be used to denote the sums of the components along the radius

of the circle, along the precession-axis, and along the common perpendicular
to those two Unes,

Rr = Mril^ = (W/g) 4 rirm^, and Rp = R, = o^ (2)

where N = the number of precessional revolutions per unit time.

Examples.
—

(i) Fig. 385 represents a side and end view of the armature

of the motor of an electric locomotive. The armature shaft is parallel to the

ties of the track. We will discuss the forces acting on the armature when the

locomotive is rounding a curve. Inasmuch as we are not now concerned with

the driving of the locomotive by this motor we will assume that the armature

is spinning but under no load, the locomotive being driven around the curve

by another locomotive. And for simplicity, we assume that there is no eleva-

tion of the outer rail, so that the precession of the armature is normal; that is,

" In reducing the summations, the student should note that

Sw(62 + c2)
=

/, Sw(a2 + 62)
=

/', and

Swk = Xmca = Xmab = Xmb = I^mc = o.
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we take the angle between the axis of spin and the (vertical) precession-axis

to be 90 degrees. We take the weight of the armature = 8000 pounds, its

radius of gyration =15 inches, its speed =750 revolutions per minute,

Fig. 386

distance between centers of bearings = 4 feet, the radius of the curve = 2000

feet, and the speed of the car = 30 miles per hour (=44 feet per second).

Then
I = (8000/32.2) (15/12)2

= 388 slug-feet,2

CO = 750 X 2 7r/6o
=

78.54 radians per second,

and fi = 44/2000 = 0.022 radians per second.

The forces acting on the armature are gravity and the reactions P and Q of the

bearings on the armature shaft. We neglect axle friction and imagine each

reaction resolved into three components, vertical, parallel to the armature,

shaft, and parallel to the rails. We distinguish these components by the sub-

scripts I, 2, and 3, respectively (see the figure). If the center of the curve

is on the right, then evidently the armature presses outward against the

bearing P and hence Q2
= o. Since the sum of the component forces

along the rails = o, P3 and Q3 must be equal and opposite, or else equal zero.

Since the torque about the axis of precession must =
o, P3 and ^3 = o.

According to equation (2),

P2 = (8000/32.2) (44V2000) = 240 pounds.

The torque of all the forces acting on the gyrostat about the common per-

pendicular to the spin and precession axes equals

Zcofi = 388 X 785.4 X 0.022 = 6700 foot-pounds.

If the direction of spin is the same as the direction of rotation of the car wheels,

then the torque is clockwise seen from the rear; hence

Pl(2000 + 2) + Qi(2000
—

2)
— 8000 X 2000 = 6700.

We have also Pi-\- Qi = 8000; hence, solving these two equations simul-

taneously, we find

8000
, 6700 , J ^ 8000 6700 J

Pi = f-
-^— =

5675, and Qi = — '—- =
2325 pounds.24 24
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If the armature werenot spinning (co
=

o), or the car were running on a straight

track (12
=

o) then /coi2 would equal zero, and hence the reactions Pi and Qi
would equal 4000 pounds. Thus the effect of the spin and precession is to

increase one reaction and decrease the other by 6700 -i- 4 = 1375 pounds.
This increase and decrease are called the gyrostatic couple or gyrostatic effect.

The force P2 does not depend on the spin of the armature, only on the radius

of the curve and the velocity of the car. It is often described as the centrif-

ugal effect.

(2) Fig. 386 represents a pair of car wheels which we assume to be rounding
a curve. We will determine the forces acting on them. We assume that the

wheels are "coned" so that there is true rolling; even if there were slipping
—

because of the excess length of the outer over the inner rail— our results would

be practically correct. We neglect the tilt of the track and so regard the

precession as normal. Let W = the weight of the wheels (including their

axle), M = their mass, k = the radius of gyration of wheels, r = their radius,

V =
velocity of the center of gravity, R = the radius of the curve, and / =

gage of the track. Further let P and Q = the vertical components of the

pressure of the outer and inner rails on the wheels; H = the transverse com-

ponent of the pressure of the outer rail. Besides these there are components

along the rails with which we are not concerned. According to the first of

equations (i),

P(R + y)+Q{R- if) -WR-Hr = MkWyRr-,

and according to the first two of equations (2)

H = MV^R Sind P + Q=W.
Solving these three simultaneously for P and Q we get

W MVh MkW^
^

2 Rf Rrf

The first terms in these two expressions are due to gravity. The second

terms are due to centrifugal action; they have the same values as if the wheels

were skidding, that is, they do not depend on the spin of the wheels. The
third terms are due to gyrostatic action; the components of P and Q which

they stand for constitute the so-called gyrostatic couple.

§ 3. Gyrostatic Reaction. — In general, any system of forces can be

compounded into a single force acting through any desired point and a couple

(Art. 9). Let us imagine all the forces acting on a gyrostat which is precess-

ing normally to be compounded into a force acting through the mass-center

of the gyrostat and a couple. Let these be denoted by F and C respectively.
As will be proved presently,

F = Mr^' = {W/g)r 4 ttW^, (i)
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where M = mass of gyrostat, W = its weight, r = distance from its center of

gravity to the precession-axis, 12 = angular velocity of precession, and N =
number of revolutions per unit time about the precession-axis. F acts along

the perpendicular from the mass-center to the precession-axis, and in that

direction (see JFig. 384),

C = /col2 = {W/g)k^ 4 T^^nN, (2)

where J = the moment of inertia of the gyrostat about the axis of spin, k =
its radius of gyration about the same axis, co = the angular velocity of the spin,

and n = number of revolutions of spin per unit time. The plane of the couple

is perpendicular to the common perpendicular to the axes of spin and pre-

cession. The sense of the couple may be described as follows: Imagine a

vector laid off on the axis of spin to represent the direction of the spin; then the

vector representing the couple at any instant is parallel to the position which

the spin-vector will occupy at the end of a quarter of the precession period

(time required for one turn about the axis of precession). See Fig. 384; NA' is

the spin-vector, and NB' is the couple-vector. That F and C have values and

other characteristics as stated follows from the fact that such a force and

couple together satisfy all the conditions injposed by equations (i) and (2) of

§ 2 on the system of forces acting on the gyrostat.

The gyrostat exerts reactions on the bodies which exert forces upon it equal

and opposite to those forces respectively. Hence those reactions are equiva-

lent to —F and — C, where —F and —C denote a force and a couple respec-

tively equal and opposite to F and C Now —F is independent of the spin or

precession (see equation i) but C depends on both. Hence —C is called the

gyrostatic (part of the) reaction.

In the examples of the preceding section we determined the forces acting on

certain gyrostats, and it is easy to pick out the gyrostatic reactions. Thus,

in example (i) the armature shaft exerts downward forces of 5675 and 2325

pounds on its left- and right-hand bearings as seen from the rear. As already

pointed out each of these pressures is the resultant of two components, thus:

4000 -f 1675 and 4000
—

1675,

the second cornponent being the gyrostat reaction; they are the couple denoted

by — C. In example (2) the car wheels exert downward pressures equal to

P and Q. The third components of these reactions constitute the gyrostatic

reaction of the wheels.

A side (paddle) wheel steam boat sustains gyrostatic reactions in certain

circumstances. When such a boat is turning, the (pair of) paddle wheels and

shaft exert a gyrostatic couple on the boat which makes the boat heel. When
the boat is, say, travelling forward and turning to starboard, the couple heels the

boat to port. Likewise a screw-propelled ship sustains a gyrostatic couple

when she is turning; it is due to the precession of the screw and shaft (and

turbine too if so equipped). The couple depresses the bow or stern depending
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on the direction of turning of the ship and sense of rotation of the screw. It

has been suggested that the gyrostatic reactions to which (comparatively frail)

torpedo-boat destroyers are subject may over-tax their strength. The fact

is, these reactions are quite insignificant compared to other straining actions

which such boats withstand (see J. and J. G. Gray's "Treatise on Dynamics,"

page 531).

A flying machine is subjected to a gyrostatic reaction of its propeller, shaft

and engine when turning or when describing any curved path. When turning,

the reaction tends to raise or depress the front of the machine, depending on the

circumstances. Propellers being right-hand screws (turning clockwise when

viewed from the rear), the front is raised (unless prevented by the air man)
when he turns to the right. When he makes a dive the couple tends to advance

the side of the machine on the right-hand side of the air man. The flight of

a machine fitted with two screws which rotate in opposite directions is not thus

interfered with by gyrostatic reactions. Each propeller exerts a couple on

the machine but the two couples are always opposite. It has been suggested

that gyrostatic reactions of propellers and motors may have been the cause

of some flying-machine accidents. However, a well-built machine can safely

withstand such reactions even under conditions of legitimate quick driving

and turning. Thus, for a dive or turn at the rate of one revolution in 20

seconds, it has been ascertained* that a loo-horse-power Gnome motor— speed

not stated, but probably about 1200 revolutions per minute— exerts a gyro-

static couple of 140 foot-pounds; and the (suitable) propeller, a couple of

184 foot-pounds. The forces involved in the couples come upon the flying

machine at the supports of the engine and the propeller shaft, f

* M. O'Gorman in The Aeronautical Journal for April, 1913.

t For a full discussion of the subject of this article, consult Crabtree's Spinning Tops and

Gyroscopic Motion.
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CHAPTER XII

TWO DIMENSIONAL (PLANE) MOTION
«

50. Kinematics of Plane Motion

§ I. Plane motion is a motion in which every point of the moving body
remains at a constant distance from a fixed plane. Each point of the body
moves in a plane; that is, its motion is uniplanar. By plane of the motion is

meant the plane in which the mass-center of the body moves. The wheels of

a locomotive running on a straight track have plane motion; also a book which

is slid about in any way on the top of a table. A translation (Art. 35) may or

may not be a plane motion; a rotation about a fixed axis (Art. 37) is always a

plane motion.

In a plane motion all points of the moving body which lie on a perpendic-

ular to the plane of the motion move ahke, and the motion of the projection

of this fine on the plane of the motion correctly represents the motion of all

the points. So also the motion of the projection of the moving body upon
the plane of the motion correctly represents the motion of the body itself.

Thus we have a plane figure (the projection just mentioned) moving in a

plane representing a plane motion of a body; and since the motion of the plane

figure is uniplanar, the motion of the body is called uniplanar. Hereafter,

we will sometimes refer to the projection of the body as the body itself.

By angular displacement of a body whose motion is plane is meant (as in

rotation) the angle described by any line of the body which is in the plane of

the motion. Obviously all such lines describe equal angles in the same in-

terval of time. As in rotations also, displacements are

regarded as positive or negative according as they are due

to counter-clockwise or clockwise turning of the body. Let

the irregular outline (Fig. 387) represent the projection of

the moving body on the plane of the motion, AB 2i fixed
' ^ ^

line of the projection, and OX a fixed reference Une; also

let 6 denote the angle XOA, it being regarded as positive or negative ac-

cording as OX, when turned about toward AB, turns counter-clockwise or

clockwise. If di and 62 denote initial and final values of d corresponding to

any motion of the body, then the angular displacement
=

62
—

di
= AB-

If a body has a plane motion, its angtdar velocity is the time-rate at which

its displacement occurs, and its angular acceleration is the time-rate at which

its angular velocity changes. These definitions are precisely similar to those

of the angular velocity and acceleration of a rotation about a fixed axis

256
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(Art. 37); hence the expressions, units, and rules of signs given in that article

hold also for any plane motion. The expressions are

o) = de/dt and a. = do^/dt
=

d'^B/dt'^,

CO and a denoting angular velocity and acceleration of the moving body re-

spectively.

§ 2. Any uniplanar displacement of a body can be accompUshed by means

of a translation of the body followed by a rotation, or vice versa. Thus let

AiBiCi (Fig. 388) be one position of a body ABC, and AAC^ a subsequent

position. By means of a translation the body can be displaced so that one

of its points is put into its final position; thus a translation to A^h'C puts A^

B. ....--

Fig. 388

into its final position. Then a rotation of the body about A2 puts the body
into its final position. Or, by means of a rotation we can put the body into

an intermediate position Aih"c" so that each line in it will be parallel to its

final position (in A^B^C^) ;
and then the body may be put into its final position

by a translation. Obviously, the translation and rotation might be performed

simultaneously.

The point (or axis) of the body about which we imagine the rotation to

occur is called a base point (or base axis). Fig. 388 also represents a displace-

ment from AiBiCi to A2B2C2, accomplished with B as base point. A trans-

lation puts the body into the position B2a"'C", and a suitable rotation about

B2 puts it into the final position B2A2C2' It is clear that the amount of the

translation component depends on the base point; thus .4 1^2 is the transla-

tion for A as base point, while B1B2 is the translation for B as base point.

But the amount of the rotation component does not depend on the base

point; thus the rotation equals the angle b^A^Bz for A as base point, and it

equals the angle a'"B2A2 for B as base point.

The successive small displacements of ABC from AiBiCi to A'B'C, A"B"C\
etc., to A2B2C2 (Fig. 389) already mentioned (and which altogether approxi-

mate to a continuous motion of ABC in which all points of the body move along

smooth curves), can each be made by a small simultaneous translation and

rotation. And if we take some one point as base point for all these small dis-

placements then we may regard the motion as a continuous combined or
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simultaneous translation and rotation, the translation being like the motion

of the base point and the rotation being about that point. In accordance

with this view, the velocity of any point of the moving body at any particular

instant consists of two components, one corresponding to the translation and
one to the rotation. Thus let A (Fig. 390) be the chosen base point, v' = the

velocity of A for the position of the body shown, and co = the angular velocity

B,,.. •--6

aV^A'
A"

Fig. 389

of the body at the instant under consideration. Then the first component of

the velocity of any point P equals v' and is directed like v; the second compo-
nent equals ro {r

= AP) and is directed at right angles to AP, the sense

depending on the sense of co (clockwise or counter-clockwise). Also the accelera-

tion of any point consists of two components, one corresponding to the trans-

lation component of the motion and one to the rotation. Thus let a' be the

acceleration of the base point, and a = the angular acceleration of the body.

Then the first component of the acceleration of any point Q equals a' and is

'^/U777m7777777rr7777:i77777777.

6ir/sec

Fig. 391

/
Sfi/sec

^>N^A

Fig. 392

-^^- Zif/sec/sec_

Fig. 393

directed like a!\ the second component we describe by means of two com-

ponents, as in a rotation about a fixed axis (see Art. 37), one of which (the

normal component) is directed along QA and the other (the tangential com-

ponent) is at right angles to QA. The normal component equals rco^ {r = AQ)
and is always directed from ^ to ^, toward the base point or center of the

rotational component; the tangential component equals ra, and obviously

its sense depends on the sense of the angular acceleration.

For a numerical example let us consider the motion of the bar AB (Fig. 391)

the ends of which slide along the lines OA and OB. Let the length of the bar =
6 feet, and the velocity and acceleration of ^ = 6 feet per second and 2 ieet
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per second per second respectively (both toward the right) when ^ = 30

degrees. Required the velocity and acceleration of P, 4 feet from A. It is

plain from the figure that 6 cos d = x; hence,

— 6 sin ^ dd/dt = dx/dt, or — 6 sin d*o) = (i)

where w = the angular velocity of the bar and v = velocity of A at any
instant. Differentiating the last equation with respect to time we get

— 6 (co cos d'dB/dt + sin d'dw/dt)
=

dv/dty or

- 6 (co2 cos e + os^ ey
= a^ (2)

where a = the angular acceleration of the bar and a = the acceleration of A
at any instant. Now when =

30°, (i) gives co = — 2 radians per second, and

(2) gives a = —
7.6 radians per second per second. The negative signs mean

that CO and a are counter-clockwise, clockwise having been taken as positive for

B. Finally, the velocity components of P are z;
=

6, and 4 X w = — 8 feet per
second as shown in Fig. 392; the acceleration components of P are a = 2,

4 X a = —
30.4, and 4 X co^ = 16 feet per second per second as shown in

Fig. 393-

§ 3. Any uniplanar displacement of a body can be accompUshed by means
of a single rotation. Thus consider the displacement of ABC from the position

AiBiCi to A2B2C2 (Fig. 394) . The point A can be brought from ^ 1 to ^2 by means

V

Fig. 395 Fig. 396

of a rotation of ^^ about any point on the perpendicular bisector aO (of A1A2);
and B can be brought from Bi to B2 by means of a single rotation of ^^ about

any point on the perpendicular bisector bO (of B1B2). If the intersection of

the bisectors is taken for the center of rotation of both A and B, then the

amounts of the rotations (angles A1OA2 and B1OB2) are equal; hence, the line

AB (and body ABC) can be displaced from one position to any other (uni-

! planar displacement) by means of a single rotation as stated.

In case the two bisectors coincide (Fig. 395), then the angles Bi and B2 are

equal and hence the Hues AiBi and A2B2 extended intersect on the bisector ah

extended; this extension is the center of rotation C which would displace AB
t from AiBi to A2B2. In case the bisectors are parallel (Fig. 396) the center of
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rotation is "at infinity," and the displacement is a translation; thus a uniplanar
translation may be regarded as a rotation about a center of infinity.

The actual continuous motion oi AB from one position AiBi to an-

other A2B2 (in which A and B describe smooth curves) can be closely duplicated

by a succession of rotations oi AB from AiBi (Fig. 389) into successive inter-

mediate positions A'B\ A'^B", etc., until ^42^2 is reached. Each small rota-

tion is made about a definite center 0', 0'\ etc. (not shown). The closer these

intermediate positions are taken (and the more numerous and closer the centers

of rotation 0'
, O", etc.) the more nearly do the successive rotations reproduce

the actual continuous motion. "In the limit," the actual motion is repro-

duced by the rotations, the centers of rotation forming a continuous line.

Thus we may regard any uniplanar motion of a body as consisting of a con-

tinuous rotation about a center which, in general, is continuously moving.
The position of the center O about which the moving body is rotating at any
instant is called the instantaneous center of the motion for the particular instant

or position (of the body) under consideration, and the line through that center

and perpendicular to the plane of the motion is called the instantaneous axis

of the motion for that instant.

In general, the instantaneous center moves about in the body and in space.

Its path in the body is called body centrode; its path in space the space cen-

trode. Thus, in the case of a wheel rolling on a plane, the instantaneous center

at any instant is the point of contact between the wheel and plane; the

successive instantaneous centers on the wheel trace or mark out the circum-

ference and this line is the body centrode; the successive instantaneous centers

in space trace or mark out the track and this line is the space centrode. It

can be shown that any plane motion may be regarded as a rolling of the body
centrode on the space centrode.

Now in a rotation about a fixed axis the velocities of all points of the body
are proportional to the distances of the points from the axis of rotation, and

the velocities are respectively normal to the perpendiculars from the points

to the axis (Art. 37); the velocity of any particular point is given by 7;
=

rco,

where v = the velocity of the point, r = the distance of the point from the

axis, and co = the angular velocity of the body. So too, in the case of a uni-

planar motion, the velocities of all points of the body at any particular instant

are proportional to the distances of the points from the instantaneous axis

(corresponding to that instant) ;
the velocities are respectively normal to the

perpendiculars from the points to the instantaneous axis; and the velocity v

of any particular point is given by t;
=

rco, where r = the distance from the

point to the axis and oj = the angular velocity of the body.

By means of the foregoing velocity relations, we can locate the instantaneous

center for any given position of the moving body if the directions of the veloci-

ties of two of its points are given; and then if the value of one velocity is given

we can compute the angular velocity of the body and the velocity of any other

point. For an example we will consider the connecting rod of an engine {BC,
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Fig. 397), in the position shown, the speed being 100 revolutions per minute.

Since the velocity of the point B of the rod is along the tangent to the crank-

pin circle at B, the instantaneous center of the

connecting rod is on the normal to the tangent P^^'^-v^

at B, that is on AB or its extension; and since
{ "*"^--^^ B^,- ->.^

the velocity of the point C of the rod is along _i..^^-;^rmr!lt^^j^-_ '-

AC, the instantaneous center is on the normal C'
v^

to AC. Hence the instantaneous center is at the
Pi^, -q^

intersection O. Now velocity oi B = iir Y. AB
(to scale) X 100 = 2000 feet per minute; hence, the angular velocity of the

rod = 2000 -^ OB (to scale)
=

185 radians per minute. The velocity of

C = OC (to scale) X 185
= 1110 feet per minute.

51. Kinetics of Plane Motion

§ I. General Principles. — From the principle of the motion of the

mass-center (Art. 34) we may write at once

2F;, = Ma^, llFy
= May, and ^F^ = o; (i)

where S/^'x, ^Fy, and HFg = the algebraic sums of the components of the ex-

ternal forces acting on the body along three rectangular lines, the third one

being at right angles to the plane of the motion, ax and ay respectively
= the

OC and y components of the acceleration of the mass-center, and M = the mass

of the body. In addition to the above, we have another simple relation

(established later),

T = Ia = Mk^a (2)

where T denotes the torque of all the external forces about the line through

the mass-center and perpendicular to the plane of the motion, / = the moment

of inertia of the body about the hne just mentioned, k = the radius of

gyration of the body about that line, and a = the angular acceleration of the

moving body. Systematic units (Art. 31) must be used in equations (i)

and (2). But we may substitute W/g for M (where W = the weight of the

body and g
= the acceleration due to gravity) and then use any convenient

units for force (and weight), length, and time.

To derive equation (2), let Fig. 398 represent the moving body, C be the

mass-center, a = the acceleration of C, co and a = the angular velocity and

acceleration respectively of the body. Further, let Pi, P2, etc., be particles of

the body; mi, nh, etc.,
= their masses; ri, r^, etc.,

= their distances from the

line through C and perpendicular to the plane of the motion; and Ri, R2,

etc.,
= the resultants respectively of all the forces acting on Pi, P2, etc. We

will regard the motion as consisting of a translation like the motion of C and a

rotation about the
"
base axis

"
through C. Then the acceleration of Pi can

be regarded as consisting of three components, a, na, and nco^ as indicated;

likewise the acceleration of P^ can be regarded as consisting of three com-
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ponents, a, r%oL, t'^iji^^ etc. Therefore, the resultant R\ consists of three com-

ponents mifl, Wiria, and mi^ico^ directed Uke the corresponding accelerations;

similarly, the resultant R^ consists of three components m^, nhr^a, and nhr'^'^

directed like the corresponding accelerations; etc. Now the torque of all the

forces acting..on Pi = the torque of the (three) components of i?i; similarly,

the torque of all the forces acting on P2 = the torque of. the (three) com-

ponent of R2) etc. Hence, the torque of all the forces acting on all the

m.r.w^/

"'iQ

Fig. 398 Fig. 399

particles (external and internal forces acting on the body) = the torque of

the components (as nia, mra, and mro)'^) of all the resultants Ri, R2, etc. Since

the internal forces occur in pairs of equal, opposite, and colinear forces, they

contribute nothing collectively to the first torque just mentioned. It is plain

from the figure that the normal components Winco^, ^2^20?^, etc., have no

torque about the (base) axis. Since the resultant of the components mia,

nha, etc., passes through the mass-center (Art. 35), they have no torque about

the axis. The torque of the remaining set of components is

minari + m^r^oLri + al

(see Art. 36). Hence, we have T =
/a, or equation (2).*

To show how to
"
apply

"
equations (i) and (2) we will discuss the rolling

of a homogeneous cylinder on an inclined plane. We take the weight of the

* For some cases it may be desirable to know the value of the torque of the external

forces about an axis (perpendicular to the plane of the motion) not containing the mass-

center. The value of such torque may be arrived at just as above except that we take the

line in question as base axis. That is, we regard the motion as consisting of a translation

like the motion of the Une and a rotation about that line. Thus let A (Fig. 399) be the base

point (intersection of that line and the plane of the motion), and a' = the acceleration of

A. Then the components of R\, Ri, etc., are as represented. As before, the normal or

radial components have no torque about the (base) axis; the torque of the tangential com-

ponents is /a, where I = moment of inertia about the axis (through A), but in this case

the torque of the (translation) components m^a', nha', etc., is not zero. The resultant of

these components = Ma' (where M = mass of the body), and its line of action passes through

the mass-center in the direction of a'; hence the torque of the components equals the prod-

uct of Ma' and its arm with reference to A which let us call p. Therefore the torque of the

external forces equals the sum or difference of la and Ma'p according as these two torques

are alike or opposite in sense.



Art. si 263

cylinder
= 200 pounds, the diameter of its bases = 3 feet, and the inclina-

tion of the plane 25 degrees. Further, we assume that the cylinder and plane

do not distort each other, so that there is only Une-contact between them

and no "
rolling resistance

"
(Art. 52); also that the surfaces in contact are

sufficiently rough to prevent slipping so that the rolling is perfect. There

are only two external forces acting on the rolling cylinder, its own weight and

the reaction of the plane, but the latter is represented by two components,

N and F, in Fig. 400. Since the mass-center moves in a line parallel to the

incline, ax = a, and ay
=

o; hence equations (i) become

200 sin 25°
— F = (200 -r- 32.2) a,

N — 200 cos 25°
=

o, and = 0.

The second equation shows that iV^ = 181 pounds. The first equation con-

tains two unknowns {F and a) and does not furnish the value of either of them;
—2

so we resort to equation (2). Since k = \ 1.5^
=

1.125 (see Art. 36), equa-

tion (2) becomes
F X 1.5

= (200 -T- 32.2) 1. 125 X a.

Now we have two equations but three unknowns, and so we need an ad-

ditional equation; this is given by the (simple) relation between a and a.

Since there is no sHpping, the displacement 5 of the mass-center in any interval

of time and the angular displacement 6 of the cylinder for that interval are

related thus: 5 = 1.5 ^ (^ in radians and ^ in feet); hence dh/df =1.5 d^d/df^

or a = 1.5 a. Substituting 1.5 a for a in the first equation and then solving

simultaneously with the fourth, we find that a =
6.05 radians per second per

second (o
=

9.07 feet per second per second) and F = 28.2 pounds.

For another example we will discuss the forces acting on a rolling wheel

whose center of gravity is not in the axis of the wheel, and we suppose that

the speed of rolling is maintained uniform by a suitable horizontal force P
(Fig. 401). Let W = weight of the wheel, r = its radius, and c = the dis-

tance from its center A to the center of gravity C; further let 6 = the angle

between AC and the horizontal in the position of the wheel under consideration.

There are three forces acting on the wheel, P, W, and the reaction of the

roadway (represented for convenience by two components N and F). Equa-
tions (i) become

P - F = (W/g)a^ and N = W- iW/g)ay,
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Since the angular velocity is constant, « =
o, and equation (2) becomes

F {r + c sin d)
— Nc cos — Pc sin = o.

These equations contain five unknowns (P, F, N, ax, and ay), and so we
need other equations. Obviously the relations between ax, ay, and 6 furnish

the additional equations. To determine these let us regard the rolling as con-

sisting of a translation with A as base point and a rotation about A. Then
since

^^
moves uniformly, the acceleration of the translational component =

o;

and there being no angular acceleration, the acceleration of the rotational

component of the motion of C is wholly radial (along CA) and equals ccc^.

Hence a equals cco^ and is directed from C to ^
;
and

'

ax = C(xP- cos Q, and ~ay=
—

C(xP- sin B.

Substituting these values of ax and ay in the first two equations, and solv-

ing them simultaneously with the third we find that

W
(^
+—

)cos^; >=TF^cos^;
iV =

Tf(i
- — sinA

For CO we may write 2 ttw, where n = the number of turns of the wheel per
imit time.

It follows from the foregoing results that P and F are always opposite;

that P and F act as shown whenever the center of gravity C is on the left of

the vertical through the center A (6 between —
90° and + 90°) ;

that P and

F act opposite to the directions indicated in the figure when C is on the right

of the vertical through A
;

that N always acts upward unless cco^ sin 6 is

greater than g; that the greatest value of iV obtains when C is vertically be-

low A (6
=—

90°) and then N = W (1 -\- coi^/g). This excess Wcco^/g over

W in the value of N is called
" hammer blow "

in locomotive parlance, but

the hammer blow of a locomotive driving wheel depends also upon the side

rods attached to the wheel (see Art. 35).

Equations (i) contain no term depending on the rotation of the body about

the mass-center; therefore, they show that the motion of the mass-center is

entirely independent of the rotation about that point. And as already pointed
out (Art. 34), the acceleration of the mass-center is the same as though the

entire body were concentrated at the mass-center and all the external forces

were appUed at that point parallel to their actual fines of action. Equation

(2) contains no term depending on the motion of the mass-center; therefore,

the rotation of the body about the mass-center is independent of any motion

of the mass-center itself. And on comparing equations (2) with the equation
of motion for rotations about fixed axes (Art. 37), it becomes plain that the

external forces produce rotation about a free (moving) axis through the mass-

center as though that axis were fixed. Thus we have complete independence

of translation and rotation effects of the external forces. This independence
holds only for the mass-center.
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I To illustrate we will apply the principle of independence to explain center of

ffercussion; Art. 48 includes an explanation based on other principles. Let

AB (Fig. 402) be a prismatic bar lying on a horizontal surface, and C its center

of gravity. Now imagine the bar to be struck a blow in the Hne

F. The only other forces acting on the bar are gravity and the ra

supporting force of the surface; these produce no appreciable

effect on the motion during the blow. The motion produced, f

therefore, consists of a translation as though the blow F acted -k-

through the mass-center, and a rotation about the mass-center —^^

as though the mass-center were fixed. Any point beyond C

gets a velocity toward the right due to the translation, and a

A clocity toward the left due to the rotation. For some par- Fig. 402

ticular point these two velocities are equal and opposite, and

hence if the bar were pivoted there, the pivot would feel no pressure from the

bar during the blow. For such a point, G is the center of percussion. Let us

now find where this pivot point is. For that purpose let M = mass of the

bar, k = its radius of gyration about the line through C perpendicular to

the supporting surface, / = the arm of the blow F about the mass-center, R be

the pivot point, r = its distance from C, a — the average acceleration of the

mass-center, a = the average angular acceleration of the body during the blow,

and Ai = the duration of the blow. The velocities of R due to the translation

and rotation respectively equal aAt and raAt. Now

a = F/M and <x = Ff/Mk^l

herefore, for the pivot point we have

{F/M)At = r{Ff/Mk^)At, or fr
= f.

["hat is, r = ^ //. For a given pivot the distance of the center of percussion
—2

rom the center of gravity is / = ^ /r, which agrees with the result reached in

bt. 48.

Kinetic Energy of a Body with Plane Motion. — Let M = the mass of the

lody, W = its weight, / = its moment of inertia about a hne through the

'mass-center perpendicular to the plane of the motion, k = its radius of gyra-
tion about the same line, v = the velocity of the mass-center, and co = the

angular velocity of the body. Then the kinetic energy of the body equals

im' + iic^^ = i (w/gTv' -I- i iw/g)k'c^^. (I)

The latter is the more convenient form generally for use in a numerical case.

If g is taken as 32.2 (feet per second per second), then the foot and second

should be adhered to as units of length and time; co should be expressed in

radians per unit time. If W be expressed in pounds, tons, etc., then the result

will be in foot-pounds, foot-tons, etc.
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Fig. 403

The first term of (i) equals the kinetic energy which the body would have

if its motion were one of translation with velocity equal to v; and the second

term equals the kinetic energy which it would have if its motion were one of rota-

tion about a fixed axis through the mass-center and perpendicular to the plane
of the motion. Hence the kinetic energy of a

body with any plane motion may be regarded

as consisting of two parts; they are called trans-

lational and rotational.

The following is a derivation of the preceding

formula after the view that a plane motion is a

combined translation and a rotation (Art. 50, § 2).

Let Fig. 403 represent the moving body, C its

mass-center, and P any other point of the body.
Also let r = the distance of F from the line

through C perpendicular to the plane of the motion, and v = the velocity of P.

Then v is the resultant of v and rco as indicated. The angle QPS = 90
—

(j8
—

0), where jS and are the angles which v and OP respectively make with

the X axis. Therefore

2,2
_

^2 _{_ j,2^2 _ 2 ^roj sin (j8
—

^),

and the kinetic energy of the entire body (S J mv^) equals

J v^^m + J co^Smr^ — 2V(a (sin 0Zmr cos d + cos jSSwr sin B).

Now r cos 6 and r sin ^, respectively, equal the x and y coordinate of P. Hence

Hmr COS0 = llmx = xZm (see page 158), ic denoting the x coordinate of the

mass-center; and since x = o, ^mr cos = o. Similarly, Swr sin^ = o.

Hence the foregoing expression for the kinetic energy reduces to

The following is a derivation based on the view that any plane motion con-

sists of a succession of instantaneous rotations (Art. 50, § 3). Let / = the

moment of inertia of the body about that line which is the (instantaneous)

axis of rotation at the instant in question, d = the distance from that axis to

the mass-center, p = the distance of any point P of the body from the axis,

z>
= velocity of P (as before), and co = angular velocity of the body.

Then z>
=

pw, and the kinetic energy of the body is

I^imv^ i co22mp2 = i Ico\ (2)

This is a much simpler expression than (i) but not so convenient to use gener-

ally, because / refers to an axis not fixed in the body. It remains to reduce

(2) to (i). According to the parallel axis theorem (Art. 36, § 2), / = / 4*

Md^', hence

I
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For an example we will compute the kinetic energy of a solid cylinder

rolling on a plane surface. Let W = weight of cylinder, D = its diameter,

and n = number of turns of the cylinder per unit time. Then M = W/g,
V = irDn, 7 = i {W/g)D^ (see Art. 36), and co = 2 ttw. Hence the kinetic

energy of the cylinder equals

i {W/g)TW^n^ + i iW/g)TrW^n\

Thus it appears that two-thirds of the energy is translational and one-third

is rotational.

§ 2. Dynamics of a Simple Moving Vehicle. — Let W = weight of

the body of the vehicle and its load, if any; w = the weight of each wheel (in-

cluding one-half of the axle if the wheels are rigidly mounted on their axles) ;

k = radius of gyration of wheel (with one-half of axle in case mentioned);

r = radius of wheel; n = number of wheels; and v = velocity of the vehicle.

The kinetic energy of each wheel is

i (w/gy -f
i
{w/g)k' (v/ry = J (w/g) (i -f k^r^y.

Hence the kinetic energy of the entire vehicle is

»[?+=(. 4')>--

Comparing this expression with that for the kinetic energy of a body with a

motion of translation, we see that the motion of the entire vehicle may be

regarded as one of translation provided that the weight of the vehicle is taken

equal to W -\- nw (i -{ k^/r^). For modern freight cars r = 16.5 inches and

k = 9.5 inches (about); hence k^/r^
=

0.35. Therefore the "effective in-

ertia
"

of the wheels when rolling is about one-third greater than when at rest

or skidding.

Height of Draw Bar. — Fig. 404 represents a vehicle, as a railroad car, being

dragged on a level track by a pull P. The other external forces acting on the

r M Q

Fig. 404 Fig. 405 Fig. 406

car are gravity (W -f nw) and the reactions of the rails on the wheels (each

represented by its horizontal and vertical components). In Fig. 405 there are

represented all the external forces acting on one wheel, in Fig. 406 those

acting on the car body. The pressures between axles and bearings are repre-

sented by their horizontal and vertical components; axle friction is disregarded.

Let a = the acceleration of the car; then the angular acceleration of the
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wheels = ajr. Consideration of the forces on the wheel, equation (2), §1,
shows that

Fr^^-^k^"-, or P = %a.
g r r^

We have also (according to equations i)

q-F^^^a,
or e =

f(x+g..
Consideration of the forces acting on the car body shows that P — nQ =

{W/g)a, or

When applied high up on the car, P tends to raise the rear end, decreasing

the rear vertical axle pressures and increasing the forward vertical axle pres-

sures. When appHed low, F produces the opposite effect. Obviously, when

apphed in some certain hne, P has no such effect on the vertical axle pressures.

We will now locate that line; let h = its height above the plane of the axes

of the axles, and H = the height of the center of gravity of the car body
and its load above that plane. When the car is at rest (P and Q =

o), the

(vertical) pressures of the axles on the car body take on certain values.

If, when P (and nQ) act on the car body, their resultant acts through the

center of gravity, then those forces do not tend to rotate the car body and

do not affect vertical pressures of or on the axles already mentioned. Thus,
to provide against extra loading or unloading of axles by P (draw-bar effect),

the moments of P and nQ about the transverse horizontal line through the

center of gravity of the car body (and load) should balance. That is, we
should have Ph = QH, or

H
h =

I + (nw/W) (i -\- k^/r^)

52. Rolling Resistance

§ I. Rollers. — In the present connection a roller is taken to differ from

a wheel (of a vehicle) in that the latter sustains its load indirectly through its

axle, while the former has no axle but takes its load directly. When a roller

(or wheel) is made to roll, it experiences more or less resistance from the

track (or roadway) upon which it rolls. Obviously the amount of this resist-

ance depends in large part on the nature of the surfaces in contact and on the

amount of the pressure between them. In the case of an inelastic roadway

(Ay Fig. 407) the roller leaves a rut, and there is a continual expenditure of

energy in thus (permanently) deforming the track as well as against friction

due to actual rubbing between roller and track. In the case of an elastic

roadway (B, Fig. 407) also, there is rubbing between the roller and the de-

forming and recovering positions {OA and OB) and consequently friction
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Fig. 407

loss.* In any case there is expenditure of energy against the (internal) friction

in portions of the roller and track which are deforming or recovering.t

Let R = the resultant reaction of the track

on the roller. Obviously the point of ap-

plication of R is on the surface (or arc) of

contact between wheel and roadway; and it

will be shown presently that this point is in

front of the vertical diameter of the roller,

the roadway supposed to be horizontal. The
distance from this point to the diameter is called the coefficient of rolling re-

sistance; we will denote it by c, and express numerical values of the coefficient

in inches. Obviously the coefficient of rolUng resistance depends on the

nature of the wheel and roadway, and is greater for yielding surfaces than for

rigid ones. It would seem that the coefficient depends on the load but in

certain cases at least the coefficient is not influenced much by it. The
coefficient is claimed to be independent of the radius of the roller; also

that it varies as the square root of the radius. The precise way in which the

coefficient varies with the conditions named has not been established. Below

we give some of the meager experimental data relating to the matter.

Coulomb seems to have made the first experiments to determine coefficients

of rolHng resistance. The following are his results for

Lignum Vit^ Rollers on Oak "Pieces"
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In these experiments, increasing the length of bearing from 0.97 to 2.94

(about triple) more than halved the coefficient. Thus it appears that the

coefficient depends on the loading per unit length of contact between roller

and roadway. But the coefficient probably does not decrease indefinitely

with increase of length of contact.

For some conditions the coefficient seems to vary as the square root of the

radius of tht roller, that is

where <l>
is another coefficient and r = radius of the roller. Dupuit gives the

following average values:

Wood on wood
</>
=

0.0069

Iron on moist wood .0063

Iron on iron .0044

Wheel on macadam .19

For the conditions of his experiments,* Prof. C. L. Crandall takes the co-

efficient of roUing resistance as proportional to the square root of the radius,

that is c = V7\ Roller plates used were i§ inches thick; rollers i, 2, 3 and

4 inches in diameter, all ij inches long except the first whose length was i

inch. Plates and rollers were used as they came from the plane and lathe;

were not polished or filed. Loads varied from 350 to 2500 pounds per linear

inch in contact. The coefficient did not seem to vary much with load; with

materials it varied as follows:

Cast iron
<f>
=

0.0063

Wrought iron .0120

Steel .0073

These values refer to cast-iron plates; for wrought-iron plates they should

be increased about 13 per cent, and for steel plates they should be decreased

by that amoimt.

Fig. 408 represents in principle the device used by Coulomb to determine

the coefficient of roUing resistance. W = weight of roller, Wi and W2 =

weights of suspended bodies as. shown. By adjusting the

/ |W \^
difference between Wi and W2 the roller was made to roll

(f "^ji^vJ^.r.J quite uniformly. When roUing at constant speed, the reaction

V '

^Li / ^ of the track on the roller is vertical, and i? = W -\-Wi-\- W2.

^^^^I'CrYrf!^,.. ^^^ there is no resultant torque on the roller; hence the

I R 1 moment of R must be counter-clockwise (in this illustration),

w nil iniw ^^^ ^^ ^^^ point of appHcation of R is in front of the vertical
' ^ ""^ diameter of the roUer (as stated). It follows that {W2 - Wi)
F1G.408 / = Re = {W^Wx + W2)c\ or

c = / (TF2
- Wi)/{W + TFi -h W2),

from which c can be computed easily.

* Trans. Am. Soc. C.E., Vol. 32, p. 99 (1894).
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Fig. 409 represents in principle the device used by Crandall. There were

two rollers under load (and a third one to preserve stability only), and three

plates as shown. The lower plate was supported on the weighing table of a

testing machine; load was applied on the upper plate; and then the middle

plate was subjected to a force P sufficient to start the plate. Thus the middle

plate was subjected to the reactions of the two main rollers, inclined as shown.

\ Plate I

\})
\

w
I p

I Plate "1-p> r . /-X ^"^

Lxn
\ Plate I

*>W/7//ff//////W/////P/)ia///////////////7/WW////'

Fig. 409 Fig. 410

Let R = these reactions (nearly equal), and 6 = their inclination to the vertical.

Then, evidently, P = 2 i? sin ^ = 2 Rc/r, and Rcosd = W or R = W nearly;

hence
P = 2 Wc/r and c = i Pr/W.

Rollers are generally used for moving a heavy load as shown in Fig. 410.

Let r = radius of rollers, c = their coefficient of rolling resistance (assumed

same for top and bottom contacts), Ri, R2, etc.,
= the reactions of the rollers,

6 = their inclinations to the vertical, W =
load, and P = the pull required to

move the load. Then since 6 is small, (i?i + i?2 + . . • )
= W (nearly) ;

and since sin ^ = c/r, P = {Ri-\- R2+ . . . ) c/r. Hence

P=Wc/r.

§ 2. RoLLESTG Wheel.— The general nature of rolling resistance in the

case of a wheel is like that against a roller. A rolling wheel of a vehicle ex-

periences axle friction as well as rolling resistance,* and few experiments have

been made to determine them separately. For cast-iron wheels 20 inches in

diameter on cast-iron rails Weisbach and Rittinger, respectively, found for the

coefficient of rolling resistance c = 0.0183 ^^^ o-oi93 inches.f For an iron

railroad wheel 39.4 inches in diameter, Pambour gives c = 0.0196 to 0.0216

inches.

Fig. 411 represents a simple case of rolling wheel. The velocity is supposed
to be constant, so maintained by the force P as shown. Practically it would

be difficult to so apply P without friction, but inasmuch as we are interested

just now in roUing resistance, this axle friction (due to P) will be disregarded.

W = the weight of the wheel, including its load if any; the axle friction due

to the load will be disregarded too. R = the reaction of the roadway. Evi-

* See Baker's Roads and Pavements for full information on total resistance to traction of

vehicles (due to rolling resistance and axle friction),

t Coxe's translation of Weisbach's Mechanics.



272 Chap, xii

dently R has a backward component (overcome by P); and since there is no

angular acceleration, the torque on the wheel = o, and hence R acts through
the center of the wheel. Therefore, R cuts the rim of the wheel in front of the

Fig. 411 Fig. 412 Fig. 413

lower end of the vertical diameter, and of course within the arc of contact of

wheel and roadway. The vertical component oi R = W, Since the vertical

distance between A and O equals r (nearly)

Pr = Wc, or P = Wc/r.

This gives the force P (appUed as shown) required to maintain constant speed

to overcome roUing resistance. If we imagine R resolved into horizontal and

vertical components, we get a good view of the mechanics of the case. See

Fig. 412, in which Ry is the vertical component of R, and Rr is the horizontal

component.

Fig. 413 represents a wheel rolling toward the right with increasing velocity,

the acceleration being produced by the force P. Obviously the point of

apphcation of the reaction R of the roadway is in front of the vertical diameter

of the wheel as indicated. Since the angular acceleration is clockwise, the

resultant torque on the wheel about the axis through its center is in that

direction too. Therefore, R acts somewhat as shown. For convenience

imagine R resolved into two components at ^, P' horizontal and the other

along the radius AO; then imagine this latter component resolved into a

horizontal component Rr and a vertical one Rv (see Fig. 414). Let W =

weight of wheel and W = weight of its load, if any; then

Rv=W-\- W, and Rr = P. tan (9 = (IF + W'yjr, nearly.

Let a — the acceleration of the center of the wheel, h = the radius of gyration

of the wheel with respect to its axis; then

P-Rr-R' = {W/g)a, and PV = {W/g)¥a/r.

These two equations (solved simultaneously) show that the acceleration pro-

duced by a given force P is

^ P-{W-^W')c/r .

^ M (i + kyr^)
'

and that the force P required to produce a given acceleration is

where M = mass of the wheel = W/g,
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53. Relative Motion

§ I. Motion Relative to a Point. — We can specify position of a point

only by means of a set of reference axes or some other equivalent base de-

scribed or implied in the specification. Thus when we say that Chicago is

10J degrees west and 3 degrees north of Washington
— the cities regarded

as points
— we are really specifying the position of the former city with refer-

ence to the parallel and the meridian through Washington. But we say

briefly that the specification is relative to Washington. So too when we say

that a moving ship A is 40 miles east and 50 miles north of another ship B at

a certain instant, we are specifying position of A by means of the parallel and

the meridian through B at the instant in question; but we say that the specifi-

cation is relative to B, the coordinate axes being imderstood. Being small

compared to the distances mentioned (40 and 50 miles), the

ships were regarded as mere points. If, however, the ships were

at close quarters, then to describe the position of A relative to

B we would specify the position of at least two points in A
(bow and stern for example) relative to axes fixed in B, as

indicated in Fig. 415, say. Even if B were turning about, we
would still use those axes to specify subsequent positions of A
relative to B. For the present we will deal with position (and

motion) of points (or bodies regarded as mere points) relative to another base

point
— not body

— and it should be understood that the coordinate axes,

though moving with the base point, remain fixed in direction.

Let the points o, i, 2, 3, etc. (Fig. 416), on the lines aa and bb be the positions

Fig. 415
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Taking points o, i, 2, etc., on the line cc (Fig. 416) as the positions (relative

to the Ughthouse) of a third ship C at the hours mentioned, we have the follow-

ing tabulation of the coordinates of the positions of A relative to C from which

the path of A relative to C (Fig. 418) was constructed. Thus it is clear that in

general the path of a moving point depends on the point of reference or base

point.

Time (hours)
East (degrees)
North (degrees)
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Fig. 420
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lute velocity (or acceleration) of the second; the sum is the desired quantity.
To justify this solution we first show that the (vector) sum of the displace-

ment of the first point relative to the second and the absolute displacement
of the second point equals the absolute displacement of the first, all dis-

placements being taken for any interval of time. It will follow that the rela-

tive and absolute velocities (and accelerations) are related as above stated.

Referring to our glass-board-table device, let A, B, and C be the three points

respectively. Let (i) and (2), Fig. 421, be the positions of glass and board

at the beginning and end of any interval, as before. Then A'A^ is the dis-

placement of A relative to B as explained; B1B2 is the absolute displacement
of B\ and A\A2 is the absolute displacement of ^. As already shown, the

quadrilaterals in the figure are parallelograms; hence the vector sum of ^'^2

and B1B2 equals ^1^2-

{h) Let A and B be the first two points and C the third, and the velocity

(or acceleration) of A relative to B the desired quantity. According to (a),

the absolute velocity (or acceler-

^ ^ ation) of ^ = the vector sum of

^''\. B /l the velocity (or acceleration) of A
/ I relative to B and the absolute

Q / / velocity (or acceleration) of B.

^zz ^"^"^rv Therefore the (desired) velocity (or

„ acceleration) is such a velocity (or

acceleration) which when added

vectorially to the absolute velocity (or acceleration) oi B = the absolute

velocity (or acceleration) of A. For example let Va and Vb (Fig. 422) be the

absolute velocities (or accelerations) of A and B) then if OM and ON be

drawn to represent Va and % respectively, NM will represent the velocity (or

acceleration) of A relative to B.

The problem can be solved also on the basis of the principle that if we add

equal velocities (or accelerations) to -the absolute velocities (or accelerations)

of the two points we do not change the velocities (or accelerations) of either

of the points relative to the other. Thus, taking the preceding example, we

will add to Va and i)h a velocity equal and opposite to Db (Fig, 423); then

the new % = o and the new 'Va
= NM. Since now B is at rest relative

to C, the new velocity of A relative to C is also the velocity of A relative

toB.

§ 2. Motion of a Point Relative to a Body.— As explained in § i, we

specify the positions of a moving point relative to another moving point by
means of reference axes of fixed directions through the second point, but its

positions relative to a moving body by means of reference axes fixed in the

body. See illustrations of the ships. Then the path of a point relative to

a body is the line through the successive positions of the point relative to

the body. Thus, to illustrate, consider again the glass-board-table appara-

tus (Fig. 419). When both the glass and board are rolled about in any way,
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the pencil A traces a line on the board, and that line is the path of A relative

to the board.

By velocity of a point relative to a moving body is meant the rate at which

the point traverses its path relative to the body at the instant in question.

By acceleration of a point relative to a moving body is meant the rate at

which the velocity of the point relative to the body is changing at the instant

in question.

When a point P is moving relative to a moving body B then the absolute velocity

of P equals the vector sum of its relative velocity and the absolute velocity of that

point of B with which P coincides at the instant in question. For simplicity of

proof we take the pencil A of the glass-board-table apparatus as the moving

point P and the board as the moving body B. Since P and B have plane

motion, the proof is not general. Let Bdi (Fig. 424) be the position of B at

Fig. 424

a particular time /i, and Bd2 the position of 5 at a later time Aj; also Pi and P2

respectively, the positions of P at those times. Let M be the point of B with

which P coincides at time ti. At time ti, M is at Mi (under Pi) ;
and at time

/2, M is at M2. Then for the interval t2
—

ti the absolute displacement of P
is P1P2; the relative displacement of P is M2P2'j and the absolute displace-

ment of M is M1M2' Obviously P1P2 = M2P2 + M1M2 (vectorially). Since

this relation holds for any interval, the rates at which these displacements occur

(velocities) are related in the same way; that is, the absolute velocity of P =
its relative velocity -f the velocity of M.
When a point P is moving relative to a moving body B then the absolute accelera-

tion ofP equals the vector sum of three accelerations, namely
— the relative accelera-

tion of P, the absolute acceleration of that point of B with which P coincides at the

instant in question, and a so-called complimentary acceleration. The compli-

mentary acceleration equals twice the product of the relative velocity of P and

the angular velocity of B at the instant in question; its direction is the same
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as that of the linear velocity of p where Pp is a vector representing the relative

velocity of P due to the angular velocity of B.

For simpHcity again we restrict the proof to plane motions. Let Pipi

(Fig. 424) = the relative velocity of P at the time h, and Mmi = the absolute

velocity of M at that instant. The vector sum of these two velocities

equals the absolute velocity of P at the time /i. Making OA' and OB' to

represent these velocities respectively, we get the diagonal OC to represent

the absolute velocity of P at the time ti. Let N be the point of the board with

which P coincides at the time h] N \s> under P2 then. The velocity of N (at

time fe) equals the vector sum of the velocity of M2 and the velocity of N
*' about

"
M2' Now the velocity of N about M2 equals the product of M^N

and the angular velocity of the board (at time ^2), or Ar X C02, where Ar = M2N
and C02

= the angular velocity. The direction of this velocity Ar •
C02 is perpen-

dicular to M2N as indicated (assuming that C02 is counter-clockwise). OB
and hB" are equal and parallel to M2nh and Ar'C02 respectively; hence

OB'' is the velocity of N at time h- Now let P2P2 (= OA") be the relative

velocity of P at time h- Then the diagonal OC" of the parallelogram on OA"
and OB" is the absolute velocity of P at time h- Therefore C'C" is the incre-

ment in the absolute velocity of P for the interval h — k- It follows readily

from the geometry of the figure that

C'C" = A'A"-{-B'B", (i)

vectorial addition being imderstood here and in the following.

Now let M2(i = Pipi and the angle between these vectors equal the angular

displacement A^ of the board during the interval h — h. Then the increment

in the relative velocity of P for that interval equals the difference between the

vectors M2(i and P2p2- Oa is equal and parallel to if2a; hence aA" is that

difference. Therefore

A'A" = A'a + AT^r = 2 Vr sin | A^ -f- A^^r,

where Vr means relative velocity of P at time h. Since Oh is equal and parallel

to Mi^h, (velocity of M at time t^), B'b is the increment in the velocity of M
during the interval h — k', and since bB" =

Ar*co2,

B'B" = AVm-{- Ar'(^2,

where Vm means velocity of M. Substituting the foregoing values of A'A"

and B'B" in equation (i), we get

C'C" = AVr + AVm-{-2Vr siu J A(9 -f Ar •
CO2. (2)

Now let A/ = As
—

k, and Aj approach /i; then we get

.. C'C" ,. Az^r
,

,. Avm, y AS.,. Ar
hm ——- = lim -— + lim—rr + Vr lim— + hm— W2.

At At At At At

The left-hand member is the absolute acceleration of P; the first term of the

right-hand member is the relative acceleration of P; the second term is the

acceleration of M, Lim {AO/At) = coi, the angular velocity of the board at
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time/i; hence the third term = VrOii. Lim (Ar/A/)co2
= lim (Ar/At) X limco2

=
VrOJi. Hence the. third and fourth terms are equal in magnitude, and if their

directions— they are vectors— are parallel, then their smn = 2 VrO^i. The
direction of the third term is the limiting direction of A'a, perpendicular to

OA^ or Vr obviously. The direction of the fourth term is the limiting direction

of bB'^ or Nc. Now Nc is always (as h approaches h) perpendicular to M^Pi]
and since M2P2, is the relative displacement of P, the limiting direction of

M2P2 is Pip\ (or Vr). Hence the limiting direction of Nc is perpendicular to Vr.

Thus the sum of the last two terms = 2 VrOii, and it has the direction mentioned,

perpendicular to Vr. And this sum is the so-called complimentary acceleration;

it is called also acceleration of Coriolos after him who first discovered the rela-

tion between the accelerations under discussion.



CHAPTER XIII

- THREE DIMENSIONAL (SOLID) MOTION

54. Body with a Fixed Point, Kinematics of

§ I. Spherical Motion means motion of a rigid body with only one

point of the body fixed. Each point of the body, excepting the fixed one,

moves on the surface of a sphere, whence the name spherical motion.

Any spherical displacement of a body can be accomplished by means of a

rotation about some fine of the body passing through the fixed point, and

fixed in space. Proof:— Evidently, we may describe any position of the

body by describing the positions of two of its points, not in fine with the fixed

point. Let A and B denote two such points, equally distant from the fixed

point O; then during any motion of the body, A and B move on the surface

of the same sphere. Let OAiBi be one position of

the body, and OA2B2 another. Then we are to

prove that the points A and B could be brought

from AiBi to A2B2 by means of a single rotation

about some fixed line through 0. Let the lines

AiBi (Fig. 425) and A2B2 be arcs of great circles

of the sphere mentioned; these arcs are equal

since A and B are points of a rigid body. The

lines A1A2 and B1B2 are arcs of great circles; M
and N bisect these arcs; MR and NR are great

circles perpendicular to ^1^2 and B1B2 respectively.

In general two such great circles do not coincide but intersect at two points, R
and S. The diameter ROS is the axis, rotation about which would produce

the given displacement, proven presently. Let AiR, A2R, BiR, and B2R be

arcs of great circles. Since A1A2R and BAR are isosceles triangles, AiR =

A2R and BiR = B2R; and, as already stated, AiBi = A2B2. Hence the trian-

gles RAiBi and RA2B2 are equal, and the angle AiRBi = A2RB2. Finally,

A1RA2 = A1RB2 + A2RB2 = A1RB2 + ^li^^i = B1RB2.

Hence a rotation of the great circles AiR and BiR about RS of an amount

equal to the angle A1RA2 would displace A from ^1 to ^2 and B from Bi to B2.

Imagine any actual continuous spherical motion of a body, in which the

two points A and B of the body are displaced from ^1 to ^2 and Bi to B2 re-

spectively. Let A', A", etc., be several intermediate positions of A, and let

B', B", etc., be corresponding intermediate positions of B. As already shown,

the displacements of AB from AiBi to A'B\ from A'B' to A"B", from A"B"
280

Fig. 425
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to A"'B"\ etc., might be accompKshed by single rotations about definite

fixed fines R'OS\ M."OS", R"'OS"\ etc. If a large number of intermediate

positions A'B', A"B"j etc., be assumed, and if the successive rotations be

accompfished in times equal to the times required for the actual displace-

ments in the continuous motion, then the succession of rotations would closely

resemble the actual continuous motion. The more numerous the interme-

diate positions, and the more nmnerous the succession of single rotations,

the more closely would the succession resemble the actual motion. ''In the

limit," the succession would reproduce the actual motion; hence we may
regard any spherical motion of a body as consisting of a continuous rotation

about a fine through the fixed point, the fine continually shifting about in the

body and in space. The fine about which the body is rotating at any instant

is the instantaneous axis (of rotation) at that instant.

At any particular instant of a spherical motion, the body is rotating about

the instantaneous axis at a definite rate; this rate is called the angular velocity

of the body at that instant. We wiU, generaUy, denote magnitude of angular

velocity by co. In a rotation about a fixed axis, the (linear) velocity of any

point of the body equals the product of the angular velocity and the perpen-

dicular distance (or radius)^ from the point to the axis; and the direction of

the linear velocity is perpendicular to the plane of the radius and the axis. So

too in a spherical motion, the linear velocity of any point of the body at any
instant equals the product of the angular velocity at that instant and the

radius (perpendicular from the point to the instantaneous axis for that in-

stant); the direction of that velocity is perpendicular to the plane of the

radius and the axis.

Any angular velocity co may be represented by means of a vector laid off

on the corresponding instantaneous axis; the length of the vector is made

equal to oj according to some convenient scale, and the sense of the vector

indicates the direction of the rotation according to some convention. We
will always associate direction with angular velocity in the way just described;

that is, we regard angular velocity as a vector quantity. In a spherical mo-

tion, angular velocity changes in direction continuously; it may or may not

change in amount too. In any case, the rate at which the (vector) angular

velocity is changing at any instant is called the angidar acceleration at that

instant. (See page 148 for note on rate of change of a vector quantity.) This

rate or acceleration has a definite amount and direction at each instant, and

hence is a vector quantity too. We will use a to denote the magnitude of an

angular acceleration.

§ 2. Composition and Resolution of Angular Velocities.— Imagine

a body P to be rotating about a line /, fixed in a body A ;
and that A is rotating

about a line ^, intersecting h and fixed in a body B (Fig. 426). For conve-

nience we call the motion of P relative to B its absolute motion, and we regard

this absolute motion as a resultant motion consisting of the (component)

rotations about h and h- We will show presently that the absolute motion
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of P is spherical, and that the angular velocity of that motion equals the

vector sum of the angular velocity of P relative to A and that of A relative

to^.

That the absolute motion is spherical will be conceded as ahnost self-evident;

for the point (of P) does not move at all, being a point of B, and O appears
to be the only point of P which is fixed. But more on this matter later.

Let Oa and Oh (Fig. 427) be the two Hues h and k at the instant in question,
and let the angular velocities (of rotation) about those Hnes be coi and C02 re-

spectively, and in the directions indicated. Let C, not shown, be any point
of the body P in the plane of the lines h and k (or paper). If C is taken above

Fig. 426 Fig. 427

Oa, then the rotation coi alone brings C up out of the paper; if below, then

coi depresses C. If C is above Oh, then a?2 alone brings C up out of the paper;
if below, C02 depresses C. Hence if C is in either acute angle between h and h,

the two rotations give C displacements in opposite directions. Let Co be

such a point C, and so chosen too that the two displacements of Co in an ele-

ment of time dt would be equal. If ri and ^2 = the distances of Co from h

and k. respectively, these displacements = ricoi dt and ^2002 dt. Hence, ricoi
=

^2052, or OCo sin a •
coi
= OCo sin jS

•
C02; and

sin a •
cui
= sin j8

•
C02, or sin a/sin /3

=
CO2/CO1. (i)

Let D be any other point on OCq; then its displacements due to a>i and C02 in

the time dt are respectively {OD sin a) coi dt and {OD sin j8)co2 dt. But these

are equal, since sin a •
oji
=

sinjS
•
C02; hence all points on OCo have zero velocity

at the instant in question. Evidently, there are no other points in the body
P whose velocity is zero at the instant; hence the state of motion of P is a

rotation about OCo, a line fixed by equation (i).

Let (0 = the angular velocity of the rotation of P (about OCo); Q (Fig. 427)

be any point of P in the plane of the paper; q, qi, and ^2
= distances of Q from

OCo, hy and k respectively. Then the displacements of Q due to coi and C02

are respectively qio)i dt and ^2^02 dt. These displacements for Q as chosen are

in the same direction; hence the total or resultant displacement
=

(^icoi -f-

^2^02) dt, and the Unear velocity of Q (displacement per unit time) = qioji +
^20)2. Now the angular velocity of the body P equals the linear velocity of
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its point Q divided by the distance of Q from the (instantaneous) axis of rota-

; tion OCo, or
;,

CO = {qiO)i + ^2^) -T- q.

It follows from the trigonometry of the figure that

qi
= qcosa-\- (OR) sin a, and ^2

=
^ cos /3

— (OR) sin /3.

Substituting these values of gi and ^2 in the expression for co and noting equa-

tion (i), we arrive at

CO = coi cos q; + ^2 cos jS. (2)

Equations (i) and (2) respectively enable us to determine the axis (OCo) of

the resultant of two angular velocities coi and C02 and the amount of the result-

ant angular velocity co.

By means of equations (i) and (2) we can show that co is the vector-sum of

coi and C02. Let OM and ON (Fig. 428), on h and k (Figs. 426 and 427), repre-

sent coi and C02, and let OMNR be a parallelogram. Then

coi sin MOR =
C02 sin NOR.

Comparing this with equation (i), we see that MOR = a and NOR =
/3;

hence the parallelogram construction gives a diagonal which coincides with

^-Z

Fig. 429

the instantaneous axis of the absolute motion. It will be readily seen from

the parallelogram that

OR =
coi cos a -|- C02 cos j8;

hence the length of the diagonal gives the magnitude of the angular velocity

(see equation 2).

Reverting now to the proposition that the absolute motion of P is spher-

ical, we note that the axis of instantaneous rotation OCo (Fig. 427) is always
in the plane of h and h and hence is not fixed. Therefore there is only one

fixed point of P, the intersection of h and h-

Obviously, the foregoing analysis could be extended to a case of simulta-

neous rotations about three or more concurrent axes h, k, h, etc. Hence, in

any case, the resultant motion is spherical, and the resultant angular velocity

is given by the vector-sum of the component angular velocities. Conversely,

the angular velocity of any spherical motion can be resolved into any number



284 Chap, xiii

of concurrent components, and the vector-sum of the components is equal to

the given velocity.

§ 3. Velocity of Any Point of the Moving Body. — Let P (Fig. 429)
be any point of a moving body (not shown), fixed at O;" ^, }',

and z the (chang-

ing) coordinates of P with reference to fixed axes OX, OY and 0Z\ o)x, coy, and

o^z
= the components of the angular velocity of the body with respect to those

axes; v = the linear velocity of P; and Vx, Vy, and Vz = the components of v

along those axes. Then as will be proved presently

I'x
=

zo)y
—

yo)z, Vy
= xoog

—
zcx3x, Vz = ycox

—
xojy. (3)

If the body were rotating about the x axis only, then P would be describing a

circle about X, and the velocity of P would be XP X co^. This velocity has

no X component, and it is plain from the figure that the y and z components
of that velocity respectively are — zoox and yoix- These component velocities

of P due to angular velocity cox are scheduled below; also the component
velocities due to angular velocities coy and cog. It is plain from the schedule

that the total component velocities due to the three angular velocities are as

given by equations (3) .

Rotation about OX produces

OY produces

OZ produces

55. Body with a Fixed Point, Kinetics of a

§ I. Angular Momentum. — Certain definitions and notions set forth in

Chapter XI will be recalled now, and then we will develop anew the subject of

angular momentum with special reference to the kind of motion now under

consideration. The momentum of a moving particle at any instant is the

product of the mass of the particle and its velocity at that instant (Art. 46).

The momentum is regarded as having -direction — that of the velocity; also

we regard it as having position
— that of the line through the particle and in

the direction of the velocity. Hence momentum of a particle is a locahzed

vector quantity. The (localized) vector representing the momentum of a

particle we call the momentum-vector of the particle. By angular momentum
of a (moving) particle with respect to or about a Hne is meant the momeift of

the momentum about that line; that is the product of that component of the

momentum which is perpendicular to the hne — the other component being

parallel to it— and the distance between the line and the perpendicular com-

ponent (Art. 48). (Compare definition of moment of a force about a hne,

Art. 8.)

It will be of assistance now to represent angular momentum about any line

by a vector coinciding with the hne, the length and sense of the vector to rep-

resent the magnitude and sense of the angular momentum. Thus we regard

angular momentum as a localized vector quantity. A moving particle has

=
0,
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angular momentum about every conceivable line— except a line which cuts

or is parallel to the momentum-vector of the particle; but in the case of a

particle of a moving body with a fixed point
— and such particles are assumed

from now on— the angular momentum of the particle about a line through
the fixed point normal to the plane of that point and the momentum-vector
of the particle is of prime importance, because that angular momentum is

greater than the angular momentimi about any other line through the point.

Hence we may call it the angular momentum of the particle. The angular

momentum of a particle of a body with a fixed point equals the product of

the momentum of the particle and the perpendicular distance from the fixed

point to the momentum-vector, or mvp where m = mass of the particle, v =
its velocity at the instant under consideration, and p = the distance just

mentioned.

^ We now show that the (rectangular) component along any Une through
the fixed point of the body, of the vector representing the angular momentum
of any particle represents the angular momentum of the particle about that

line. Let P (Fig. 430) be the particle (of mass m) ; PQ the momentum-vector

.:7'"n

T
Fig. 430

(= mv) of P; O the fixed point of the body (not shown); OR the angular mo-

mentum-vector; OA any line through O; and ha the component of OR along

that fine. Also let OA be the x axis of a set of coordinate axes with origin at

0; X, y, and z = the coordinates of P; and a, /3, and 7 = the direction angles

(with respect to those axes) of v. Then

ha = mvp cos (AOR) = mvp (cosyy — cos p'z)/p = m (vzy
—

Vyz).

But m{vzy
—

Vyz) is the angular momentum of P about OA (see Art. 48);

hence the component of OR along OA does represent the angular momentum
of P about OA as stated.

If we should add (or compound) the vectors representing the (resultant)

angular momentums of the several particles of a body, we would arrive at a

vector of definite magnitude, position, and sense. Thus, suppose that OA,
OB, OCf etc. (Fig. 431) are the vectors; then the closing side On of the vector-

polygon OAbcd . . . (not plane) is the vector-sum. Evidently this vector

does not depend in any way on any coordinate system. We now prove that

this vector represents the angular momentum of the body about the line On.

According to definition, the angular momentum of the body about that line

is the algebraic sum of the momentums of all the particles about that line (see
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Art. 48). The angular momentum of the first particle about On = the pro-

jection of Oa on On; that of the second particle
= the projection of ab on On;

etc. Hence, the algebraic sum of the projections equals the algebraic sum
of the angular momentums of the particles, that is, the angular momentum
of the body about On. This particular angular momentum of the body we
call the (or resultant) angular momentum of the body; we will denote it by h.

Let hx, hy, and hz respectively equal the components of h along any three

rectangular axes through the fixed point of the moving body; the axes need

not be fixed in space. Then obviously h^, hy, and hg respectively equal the

algebraic sums of the angular momentums of the particles of the body about

the X, y, and z axes; that is

hx = 'Zm{vzy
—

Vyz), hy
= ^m{vxZ

—
Vzx), hz = Xm{vyX

—
Vxy). (i)

These expressions for the component angular momentums can be transformed

into the following (involving angular and not linear velocities) :

hx = + I^x — Jz^y
—

JyOiz,

hy
= —

Jz(j3x + Iy(jOy
—

JiCay, (2)

hz = —
JyO)x

—
JxOiy + Iz(jOz.

Ix, ly, and Iz = the moments of inertia of the body about the x, y, and z axes

respectively; or symbolically,

Ix = ^m{y^ + z2), ly
=

2:w(z2 + x""), h = ^m(x^ + y^).

Jx, Jy, and Jz respectively
= the products of inertia of the body with respect

to the two coordinate planes intersecting in the x, y, and z axes (Art. 57); or

symbolically,
Jx = 2wyz, Jy = llmzx, Jz = ^mxy.

Symbols 03x, o)y, and 03z denote the axial components of the angular velocity

of the body. Equations (2) may be deduced from equations (i) by substi-

tuting for Vx, Vy, and Vz their values from equations (3) of Art. 54, and then

simplifying. If the coordinate axes x, y, and z are principal axes of the body
at the fixed point (Art. 57), then Jx, Jy, and Jz = o; and

hx = /xCOx, hy
=

IyO)y, aUd hz = IzijOz.

§ 2. Rate of Change of Angular Momentum. — Let O be the fixed

point of a moving body; OX, OY, and OZ a set of fixed axes; and OA, OB, and

DC another (rectangular) set rotating about O, but not necessarily fixed in the

body. Let w = the angular velocity of the body, and 6 = the angular velocity

of the rigid frame consisting of the axes OA, OB, and OC. (If these

axes are fixed in the body, 6 and 03 are equal.) Also let di, 62, and ^3
= the

components of 6 about the axes OA, OB, and OC; and hi, h^, and h = the

angular momentums of the body about the axes OA
, OB, and OC respectively.

Then, as will be proved presently, the rates at which the angular momentums
about the (moving) axes OA, OB, and OC respectively are changing at any
instant are given by



Art. 55 287

where the derivatives, the h^s and the 0's all pertain to the instant in question.

Furthermore, since the torque of the forces acting on a body about any line

equals the rate at which the angular momentum of the body about that line

is changing, we have

Ti = (dhi/dt)
-

Ihdz + hA,
T2 = (dh/dt)

- hA + hSs,

Ts = (dh/dt)
- hA + hPi,

(3)

where Ti, T2, and Tz are the torques about the axes OA
, 05, and OC. Torques

and rates pertain to the same instant of course.

Evidently, the angular momentums hi, /f2, and h do not depend on the x,

y, and z axes; hence the rates of change of the angular momentums do not

depend on those axes. We may choose any positional relation between the two

sets of axes for deducing expressions for the rates. For simplicity, we choose

them coincident as shown in Fig. 432. Let the vectors OA, OB, and OC rep-

YCbB
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§ 3. Kinetic Energy.— As in § 3 of Art. 54, let w^, Wj,, and co,
= the axial

components of the angular velocity of the moving body at any particular

instant; x, y^ and z = the coordinates of some particle P of the body then;

and lix, Vy, and Vz = the axial components of the velocity of P. If w = the

mass of the particle, then its kinetic energy at the instant in question is

|wfe2 + V + O-
Now if we substitute for Vx, Vy and Vg their values from equations (3) of Art.

54, Wfe arrive at a new expression for the kinetic energy of P; and if we sum

up such expressions for all the particles of the body, we find that the kinetic

energy of the body is

where Ix, ly, and Iz are the moments of inertia of the moving body about the

X, y, and z axes respectively, and Jx, Jy, and Jz are the products of inertia of

the body with respect to the pairs of coordinate planes intersecting in the

X, y, and z axes respectively (Art. 57) all at the instant in question. That is

Jx = l^myz, Jy = '^mzx, Jz — ^mxy.

The products of inertia may be zero; then the kinetic energy equals

56. Gyrostat

§ I. Steady Oblique Precession.— Let OC (Fig. 434) be the spin-axis'

of a gyrostat, OZ a fixed axis about which OC is rotating or precessing at a

steady rate, 6 = the constant angle ZOC, co = the angular velocity of spin,

and Q, = the angular velocity of precession. Let

OX and OF be fixed axes, perpendicular to each

other and to OZ; OA an axis on the plane of ZOC
and perpendicular to OC; and OB perpendicular

to OA and OC. OA and OB are moving axes,

rotating with OC about OZ.

The motion of the gyrostat consists of the com-l

ponent rotations co and 12 about OC and OZ re-i

spectiyely. The resultant of those components is

Fig. 434 a rotation about the diagonal of the parallelogram

on the vectors Oc and Oz representing w and 12

(Art. 54), and the angular velocity of that resultant rotation is represented

by that diagonal. Hence, the components of the angular velocity of the

gyrostat along OA , OB, and OC are respectively

— 12 sin 0, o, and w + 12 cos ^ = «,

n being an abbreviation for « + 12 cos B.

It may be well to note the distinction between the velocity of spin co and n.

The spin velocity is the angular velocity of the gyrostat relative to the moving
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frame OABC; it is the product of 2 x and the number of times per unit time

which a point on the
g;;^rostat pierces the plane ZOC. The angular velocity n

is the component of the absolute angular velocity of the gyrostat along the

fixed Hne with which OC happens to coincide at the instant in question. Since

OA, OB, and OC are principal axes of the gyrostat (Art. 57), the angular mo-
mentums of the gyrostat about these axes are respectively

— ^ 12 sin d, o, and C (w + 12 cos 6)
= Cn,

where A and C denote the moments of inertia of the gyrostat about OA and
i OC respectively.

Since the entire frame of axes OABC is rotating about OZ with angular

velocity 12, the components of that velocity along OA, OB, and OC are re-

/ spectively, — 12 sin 0, o, and 12 cos ^.

'

Substituting now in equation (3) of Art. 55, we get as the required values of

!the torques of the external forces about the axes OA, OBj and OC respectively

Ti = o,

T2 = CnQsind - AQ"^ sind cosd,

: and T3 = o.

Therefore for steady spin and precession, there must be no torque about any
i hne in the plane of the spin and precession axes (Ti and T3 = o) but a torque

equal to

CnQ sind — A 12^ sin d cos

about a line perpendicular to those axes.

Let us now consider whether a gyrostat may precess steadily under the in-

fluence of gravity and the pivot reaction only. Let W = the weight of the

gyrostat, and h = the distance of its center of gravity from the pivot; then the

torques of gravity about OA, OB, and OC are respectively o, Wh sin 6, and o.

We assume that the pivot is so well made that the torques of the reaction

about the lines mentioned equal zero practically. Hence the gyrostat is not

subjected to any torque about OA and OC but a torque of Wh sin 6 about OB.

If now the quantities W, h, 6, etc., be given such values that

Wh sind = Cwl2sin^ - ^ 12^ sin ^ cos ^,

then all the conditions for steady precession will be satisfied. Evidently
such values can be assigned, in general. Indeed if we solve the preceding

equation for 12, we get

Cn± V{C'n^ - 4 AWh cos 6)
12 =

2 ^ cos ^

from which it is plain that in general there are two possible velocities of pre-

cession for a given gyrostat, spin w, and incHnation 0. But if C^n^ = 4 AWh
COS0, then there is only one value of 12; and if C^n^ < 4 AWh cos 0, then

12 is imaginary, and the gyrostat will not precess under the conditions imposed.
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A gyrostat whose center of gravity is at the pivot will precess steadily for

certain conditions of impressed spin, precession, and obliquity. For, suppose
that spin, precession, and obliquity are so arranged that Cn — A^cosd;
then Tz = o, that is no torque is required to maintain the precession. Hence

the gyrostat, with center of gravity at the pivot, would continue to precess.

Gyrostat in a Case. — The foregoing analysis must be modified for a spin-

ning gyrostat in a frame or case which does not spin but merely precesses

with the axis of spin. Let A and C be moments of inertia of the spinning part

as bdore, and A' and C the corresponding moments of inertia of the case.

Then the angular momentums of the case about the axes OA, OB, and OC
(Fig. 434) are respectively

-A'Usind, o, and CUcosd.

These may be added to the earlier expressions for corresponding momentums
of the spinning part to arrive at values of the angular momentums of the entire

gyroscope. Then substituting in equation (3) of Art. 55 as before, we find

that the necessary torques about OA, OB, and OC for steady precession are

respectively

Ti = o,

T2 = (Cn + CUcosd) fisin^- {A + A')nHmdcose,
and Tz = o,

where w = co + ^ cos 6 as before.

§ 2. Unsteady Oblique Precession. — Imagine a gyrostat to have

been started spinning in some way, and then released and left to itself on a

frictionless pivot under the action of the pivot reaction and gravity. The

subsequent motion will now be investigated. j

Let 0)0
= the angular velocity of spin, and ^0 = the angle between the axis

of spin and the vertical at release. Let Fig. 434 represent the gyrostat at

some instant after its release; co = the velocity of spin (velocity of the gyro-

stat relative to the plane ZOC) ;
12 = the velocity of turning of the plane ZOC

(which we will continue to call velocity of precession); and d = the angle

ZOC. We do not assume w, 0, and 6 to be constants.

At the instant of release, when there is not yet any motion of the axes OABC
the total angular velocity of the gyrostat is coq. At a later instant the angular

velocity of the gyrostat is the resultant of its velocity of spin co (relative to

the frame OABC) and the angular velocity of the frame. Now this latter

velocity has the following components along OA, OB, and OC respectively,

fisin^, e,* and 12 cos ^;

hence the (resultant) angular velocity of the gyrostat has the following com-

ponents along OA, OB, and OC respectively,

— 12 sin 6, B, and co -f 12 cos ^ = w,

*
According to this (fluxional) notation, a symbol with a dot over it means the time rate

of the quantity represented by the symbol; thus 6 means dd/dt, s means ds/dt, etc.
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where n is an abbreviation for co + cos^ as in § i. And the angular mo-

mentums about those same lines are

-^12sin^, Be, and Cn.

According to equation (3), Art. 55, the rate at which the angular momentum
about OC is changing is

C^ + ^ sin • ^ - 50* sin^;

but this rate equals zero since there is no torque about OC. And because

A = B, Cn =
o\ hence n is constant, and therefore always equals its initial

value, that is,

w = o.

This does not mean that the spin velocity, w, is constant.

Since there is no torque about the (fixed) axis OZj the angular momentum
about that line remains constant; thus that angular momentum at any instant

equals its initial value, or

^ 12 sin X sin + Ccoo cos 6 = Ccoo cos Bq.

This equation shows that

fl = CwoCcos 00
— cos 6) -^ A sin^ 0, i)

from which one may compute the velocity of the plane ZOC, or the velocity of

precession.

Investigation of the (nutational) motion of the spin-axis in the (azimuthal)

plane ZOC can be made simplest by means of the principle of work and kinetic

energy (Art. 43). From the instant of release of the gyrostat to any subse-

quent instant, gravity does an amount of work on the gyrostat equal to the

product of the weight and the vertical descent of the center of gravity. If,

as in § I, IF = the weight, and h = the distance from the pivot to the center

of gravity, then the work done by gravity is

TFA(cos0o- COS0).

The initial kinetic energy of the gyrostat is | Ccoo^, and its kinetic energy at a

later instant is

\A^^?>mH + \Be''-\-\Coi^.

Now the change in kinetic energy is due to the work done by gravity; hence,

since A = B,

I ^ ( 122 sin2 + 02)
= wh (cos 0o

- cos 6) (2)

From this equation and (i), it is possible to compute the angular velocity

of nutation for any value of 6. Thus if we eliminate 12 between equations

(i) and (2), we get

•„ 2lF^. - -. C2a;o^(cos0o
—

cos0)2
02 = —— (cos0o

-
COS0) .2 • 20 (3)A ^^sm^0
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Now the angular velocity d must be real, and hence the right-hand member
of (3) cannot be negative; it may equal zero or be positive. The right-hand
member is zero (and then ^ =

o), when d = do; also when d equals 61, where

cos di = \ — V I — 2 X cos ^0 + X^,

X being an abbreviation for 0(ji^l2 WhA. Any value of 6 between 60 and 61

makes the right-hand member of (3) positive, and gives two equal values of

of opposite sign. Hence the spin-axis oscillates in the

azimuthal plane, 6 varying between do and ^1.

Whenever 9 is greater than 60, Q, is positive (see equation

i); but when 6 = do, then 12 = o. Hence the azimuthal

plane rotates always in one direction but its velocity is zero

every time when the center of gravity of the gyrostat gets

into its highest position (6 = ^0).

In Fig. 435 the curve CqCiCqCi represents the path of

a point on the spin-axis of the gyrostat; CoCo are the highest
Fig. 435

and CiCi the lowest positions reached by the point; ZOCo — Oo and ZOCi = 61.

57. Principal Moments of Inertia and Axes

§ I. Moment of Inertia and Radius of Gyration of a body with respect

to (or about) a line are defined in Art. 36. It is shown there, among other

things, that the moments of inertia and radiuses of gyration of a body with

respect to parallel fines are very simply related (§ 2) ;
and of such moments

of inertia and radiuses of gyration, the one about the line through the mass-

center is least. We will now examine the moments of inertia of a body about

afi lines through any point of it. It will be shown that in general there is

one line about which the moment of inertia is maximum, and a second line,

perpendicular to the first, about which the moment of inertia is a minimum.

These two fines and the one perpendicular to their

plane at the point in question are called the principal

axes at the point, and the moments of inertia about

those lines are the principal moments of inertia at

the point. These axes are important dynamically

(see § 2).

Let P (Fig. 436) be a point of a body (not other-

wise shown) ; any other point, not in the body

necessarily; and OA any line through O. Let X, )U,

and V = the direction cosines of OA with respect to any coordinates axes with

origin at O, w = mass oi P,r = distance of P from OA
,
and / = the moment

of inertia of the body about OA, According to definition, / = Swr^. Now
y2
—

(ppy — (ORy. OP is a diagonal of a parallelopiped of which fines x,

y, and z are three intersecting edges; hence OP"^ = x^ -\- y^ + z^. OQ is one

side of the closed (gauche) polygon OZQPRO; and since any side of a closed

Fig. 436
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polygon equals the algebraic sum of the projections of the other sides upon

it, OR = \x + fjiy -{ vz-\- o. Hence,

>2 = ^2 ^ ^2 _|_ 22 _{- (xo; + /xy + vz)\

Expanding this expression for r^ and arranging terms we would find that

/ = Sw[X2(3;2 + 2^) + ii^iz^ + x^) + v^{x^ -\- y^)
— 2 iJLvyz

— 2v\zx — 2\ixxy].

In this (space) summation X, /i, and v are constants; hence

I = \^Xm(y^ + 2^) + • • * •

—2fjLv'Efnyz
— - - - -

Now y^ + z^, z^ + y?^ and 0^ + y'^ respectively
= the squares of the distances

of P from the x^ y, and z axes; hence ii A,B, and C = the moments of inertia

of the body with respect to the x, y, and z axes, we have

A = 2w(y2 + 22), 5 = Sw(22 + x2), and C = 2w(x2 + y2).

The remaining summations in the foregoing expression for / are the so-called

products of inertia of the body with respect to the two coordinate planes inter-

secting in the x^ y, and z axes respectively. Let D, E, and F respectively

denote these products of inertia, that is

D = Zmyz, E = 'Zmzx, and F = Xmxy.

Then we have

7 = X2^ + fJi'^B + P^C - 2 fJLvD
- 2v\E-2 X/xF. (i)

If we know the moments of inertia {A, B, and C) of a body about each one of

a set of coordinate axes, and the products of inertia (Z), E, and F) with respect

to each pair of the coordinate planes, then by means of formula (i) we can. find

the moment of inertia I of the body about any line through the origin of coor-

dinates. And by means of formula (4) of Art. 36, we can transfer this / to

any parallel axis desired. Thus the two formulas enable one to "transfer"

from the coordinate axes to any line whatsoever.

Imagine a length OS laid off on OA (Fig. 436) so that OS, which we will

call p, is inversely proportional to the radius of gyration of the body about

OA . That is, if ^ = the radius of gyration and X a factor of proportionality,

then p = K/k. Such points 5 for all lines OA would lie on the surface of an

ellipsoid (proved presently) called the momental ellipsoid of the body for the

selected point O. Let X, F, and Z = the coordinates of 5; they equal pX,

PAi, and pv respectively. Then equation (i) multiplied by p^ reduces to

AX^ + BY^ + CZ2 - 2 DZY - 2 EYX - 2 FXY = Km, (2)

where M = the mass of the body. This is the equation of an ellipsoid with

center at O (see any standard work on Analytic Geometry).
In general, the axes of an ellipsoid are unequal in length. Hence, the

radius of gyration (and the moment of inertia) about the shortest axis of the

momental ellipsoid is greater than the radius of gyration (and moment of
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inertia) about any other line through the center of the eUipsoid, and the mo-
ment of inertia about the longest axis is less than that about any other line

through the center. Thus we have shown that there are two lines at right

angles to each other through any point of a body (or of its extension) about

which the moments of inertia of the body are maximum and minimimi. The
momental ellipsoid might of course be one of revolution in a special case,

or even a sphere.

If two of the products of inertia equal zero, say E and F, then the equation
of the tnomental ellipsoid is

AX'' + BV + CZ2 - 2 DYZ = K'M,

which shows that the ellipsoid is symmetrical with respect to the yz plane.

Hence the x axis coincides with one of the axes of the ellipsoid, that is with

one of the principal axes of the body at the point 0. If the three products
of inertia equal zero, then the ellipsoid is symmetrical with respect to the three

coordinate planes, and hence each coordinate axis is a principal axis at the

origin. Then if A, h, and h denote the principal moments of inertia, formula

(i) becomes

Symmetrical Bodies.— If a homogeneous body is symmetrical with respect

to a plane, then any line perpendicular to the plane is a principal axis at the

point where it pierces the plane. For, take such line as the x axis, and the y
and z axes in the plane. Then for every particle of the body whose coordi-

nates are a, b, and c, there is another one whose coordinates are —
a, b, and

c; hence '^mzx and llmxy = o, and therefore as explained the x axis is a

principal axis at the origin of coordinates.

If a homogeneous body has two planes of symmetry at right angles to each

other, then their intersection is a principal axis at every point of that line.

For if the two planes be taken as coordinate planes and any plane perpendic-

ular to them as the third coordinate plane, then it is obvious that the three

products of inertia equal zero; hence" the intersection of the planes of sym-

metry (one of the coordinate axes) is a principal axis at the origin of coordi-

nates (taken at any point on the intersection).

§ 2. Free Axes. — The axes of principal moments of inertia at the mass-

center of a rigid body are called free axes of the body because they possess

a certain property which may be described as follows: If the body could be

set to rotating about any one of these axes and then left to itself entirely free

from all external forces, even gravity, it would continue to rotate about that

axis. To demonstrate this, we will imagine this axis to be a shaft resting in

bearings, and then show that the bearings would exert no pressures whatever

on the shaft. It will follow that such bearings are not necessary to hold the

shaft in position. Let B1B2 (Fig. 437) be the axis, Bi and B2 the bearings,

O the mass-center of the body, and co = the angular velocity. Also let O be

the origin of the axes x, y^ and z as shown, F and Q = the reactions of the
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bearings on the shaft; and Px, Py, and Pz — the axial components of P, and

Qx, Qy, and Qz = those of Q. Evidently, Pz or Qz = o. Since the mass-

center is at rest, the sums of the x, y, and z

components of all the forces (P and Q) acting

on the body equal zero. Hence

Pz = Qz = o; Px and Qx are opposite;

also Py and Qy.

That is, the external forces consist of two 3
couples, Px and Qx, and Py and Qy. Let A
be one of the particles of the body; w = its P
mass; r = its distance from the axis; 6 =

the (varying) angle which r makes with xz plane (as shown); x, y, and

z = the coordinates of A; Vx, Vy, and Vz = the axial components of the

velocity of A . Since Vz = o, the angular momentums of A about the x and y
axes are respectively

—
mVyZ = — mv cos 6 'Z = — mroj cos d'Z = —

ojmxz,

and mVxZ = — rnvsind-z = — mrco sind'Z = — oomyz.

Hence the angular momentums of the entire body about the x and y axes

respectively are
— co2wxz and —

co'Zmyz.

Since the z axis is a principal axis, these summations (or products of inertia)

equal zero; that is the angular momentums about the x and y axes equal zero,

at all times. It follows that there is no torque about either axis at any time;

hence there are no such couples, PxQx and PyQy.

If the axis of rotation BA is not a principal axis, then the angular momen-
tums — ojZmxz and —

oi'Emyz are not always zero nor are they constant in

value during a revolution; hence the torques of the couples PxQx and PyQy
are not always zero. Such couples can be sensed roughly by supporting an

irregular shaped body by means of one's hands as bearings and then making
it rotate. Of course one would feel the dead weight of the body but also

pulls and pushes due to the tendency or effort of the axis of rotation to get

away. If a regular body were selected, one would be apt to rotate it about

a principal axis, and so miss the effect just described.

In general a body has three free axes, the axes of greatest, least, and mean
moments of inertia— axes through the mass-center being understood. There

is an interesting difference among these axes, namely, rotation about the axis

of greatest or least moment of inertia is stable, while rotation about the axis

of mean moment is unstable. That is, if the body were set rotating about

either of the first two axes, then any slight deviation of the axis of rotation

from such principal axis would not be followed by continually increasing

deviations; but if the initial rotation be about the axis of mean moment then

slight deviation is followed by still greater change. Explanation of these

properties would take us too far afield.
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58. Any Motion of a Rigid Body; Summary of Dynamics

§ I. Any Motion of a Rigid Body. — A rigid body can be displaced

from one position A into another position B by means of a translation followed

by a rotation. For, it is obvious that a translation can be selected so as to

move any chosen point O of the body from its original position (in A) into its

final position tin B). From this intermediate position, the body can be put
into its final position by means of a rotation (of suitable amount) about a

(certain) fixed axis through the final position of (see Art. 54). The displace-

ment might be effected in the reverse order, that is a rotation followed by a

translation. For, a rotation about a fixed line through the "base point" O
could be made so as to put the two lines OP and OQ, P and Q being two points

of the body not in line with O, parallel to their final positions (in B) ;
and a

suitable translation would put those lines (and the body) into their final

positions.

Evidently, the rotation and the translation could be made simultaneously.

Therefore any actual motion of a body from one position into another may
be regarded as a succession of infinitesimal simultaneous translations and

rotations. All the translations may refer to the same base point, but in gen-
eral the successive rotations do not occur about the same line of the body.
Thus we may regard any motion of a rigid body as consisting of a translation

(in which each point of the body moves just like the base point), combined with

a rotation about a line through the base point, the line shifting about in the

body, generally. There is not only such (kinematic) independence of trans-

lation and rotation as just explained, but if we take the center of gravity

as base point, then there is also independence of translation and rotation

dynamically. That is to say, we may ascertain the translation (or motion

of the center of gravity) quite independently of the rotation; and the rota-

tion about the center of gravity quite independently of the translation. We
proceed to demonstrate this independence.

As already shown in Art. 34, the acceleration of the mass-center of a body
(even if not rigid) may be determined as though all the material of the body

were concentrated at the mass-center, and all the

external forces were applied at that (dense) point.

To see that the rotation about the mass-center is

independent of the translation, let us apply the prin-

ciple that the torque of all the external forces about

any line equals the rate at which the angular momen-
tum about that line is changing (Art. 48), taking the

p g
line through the mass-center. Let O (Fig. 438) be

the mass-center, and P any other point of the

moving body; a, h, and c = the (changing) coordinates of O with respect to

fixed axes QX, QF, and QZ] x, y, and z = the coordinates of P with respect

to the same axes, and x', y\ and z' = the coordinates of P with respect to a

Y

-•A-o
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parallel set of axes, the origin being at O. Furthermore, let m = mass of P,

and Vx, Vy, and Vg =-the x, y, and z components of the velocity of P; then the

angular momentum of P about the z' axis say (through O and parallel to the

z axis)
= mvyx'

—
rnvxy', and the angular momentum of the entire body

about that line equals

'Lm{vyx'
—

Vxj').

Now X = x' -{ a^ and y = y' + h\ hence Vx = dx'/dt + da/dt and Vy
=

dy'/dt

+ ^^/f//. Therefore, the angular momentum =

^m{x' dy'ldt + x' dh/dt
-

y' dx'/dt
-

y'da/dt)
=

Swx' ^);'/(/^ + (JV^O 2wx' - Swy' <fic7(/^
-

(</a/J/) Swy'.

Since Sw:r' and Sw};'
=

o, the second and fourth terms equal zero. Hence

the angular momentum equals

i:m{x' dy'/dt
-

y' dx'/dt) .

Now this expression does not depend on the motion of the center of gravity

at all; moreover, it is just like the expression for the angular momentum
of a body rotating about a fixed point (see Art. 55).

§ 2. Summary; Motion of a Rigid Body.— The following simfmaary

is based upon the order of development of dynamics followed in this book;

it may therefore be regarded as a brief review.

Motion of Translation (rectilinear or otherwise).
— The resultant of all the

external forces acting on the body is a single force. Its line of action passes

through the mass-center, and hence the external forces have no torque about

any line through that point. The resultant and the acceleration of the mov-

ing body have the same direction; hence the algebraic sum of the components
of the external forces at right angles to the acceleration equals zero. The

acceleration is proportional to the resultant directly and to the mass of the

body inversely; or a = R/M (where a = acceleration, R =
resultant, and

M = mass) if systematic units be used. The (linear) momentimi of the body
= Mv = iW/g)Vf where v = velocity, W =

weight, and g
= acceleration due

to gravity. The kinetic energy of the body = § Mi^ = | (W/g) v^.

Rotation about a Fixed Axis.— The torque of all the external forces about

the axis of rotation and the angular acceleration of the rotating body are alike

in sense. The angular acceleration is proportional to the torque directly

and to the moment of inertia of the body (with respect to the axis of rotation)

inversely; or a = T/I (where a = angular acceleration, T =
torque, and

/ = moment of inertia), if systematic units be used. (It is generally con-

venient to take I = MP =
{W/g)k'^ where k = radius of gyration of the body

about the axis of rotation. We have also

SP„ = Man, ^Ft = Mat, and SP3 = o.

The summations mean the algebraic sums of the components of the external

forces— including the axle reaction if any
—

along three certain lines, namely,—
(i) the perpendicular to the axis of rotation through the mass-center, (2)
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the perpendicular to the plane of the line just mentioned and the axis of rota-

tion, and (3) the axis of rotation. Symbols an and at denote the components
of the acceleration of the mass-center along the first two lines respectively;

an = rco^ and at = ra, where r = the distance from the mass-center to the

axis of rotation, w = the angular velocity, and a = the angular acceleration

of the body. "If ^the angular velocity is constant then XFt =
o; if the mass-

center is in the axis of rotation, then the three summations equal zero.

The 'angular momentum of the body = /co = Mk^cx) = (W/g)k^o); its

kinetic energy = J /co^ = J MifeV = i iW/g)kW.

Uniplanar Motion. — It may be regarded as a combined translation and

rotation. Motion of the mass-center is given by

2F^ = Ma^ and l^Fy
= May,

where 2^Fx and SF^ respectively mean the algebraic sums of the components
of the external forces along axes x and y in the plane of the motion; and ax

and ay
= the x and y components of the acceleration of the mass-center. The

rotation of the body about the mass-center is given hy T — la, where T =
the torque of the external forces about the perpendicular to the plane of the

motion through the mass-center, I = the moment of inertia of the body about

that line, and a = the angular acceleration of the body. The kinetic energy

of the body is given by J Mv^ -\- 1 Jco^, where v = the velocity of the mass-

center and CO = the angular velocity of the body at the instant in question.

Rotation about a Fixed Point. — The principle of motion of the mass-center

(§ 3) furnishes three independent equations of motion of the mass-center like

SFx = Max,

where the symbols have meanings already explained. The axes x, y, and z

must not be parallel. The principle of torque and angular momentiun fur-

nishes three independent equations like

Tx ='dhx/dt,

where Tx is the torque of the forces acting on the body about any line x, and hx

is the angular momentum of the body about the same line. That line and

the other two may be taken at pleasure; generally Unes through the fixed

point are simplest.

Any (Solid) Motion. — Motion of the mass-center and rotation about the

mass-center are independent (§1). We may treat these motions separately;

the first as the motion of a particle whose mass equals that of the body under

the action of forces like those acting on the body; the second as though the

body were fixed at the mass-center.

§ 3. Summary; Motion of Any System of Particles, Solid or Fluid.

—We will call the system a body but without implying that it is rigid except

as noted.

Principle of Motion of Mass-Center. — The motion of the mass-center doe

not depend at all on the internal forces; it moves just as if all the material

c
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of the moving body were concentrated at the mass-center and all the external

forces were applied to that (dense) point in their actual directions of course.

Thus the component of the acceleration of the mass-center along any Une

is proportional to the algebraic sum of the components of the external forces

along that line directly and to the mass of the body inversely. Or, if sys-

tematic units are used a^ = 2Fx -^ M, where ax and XFx = the mentioned

component acceleration and algebraic sum respectively and M = mass. The

foregoing equation is generally written

ZFx = Max.

Principle of Force and Momentum. — The algebraic sum of the components—
along any line— of the external forces acting on the body at any instant

equals the rate at which the component (along the same line) of the momen-
tum of the body is changing then. Or

where Vx = the component of the velocity of the mass-center along the line

called X. Mvx = the x component of the linear momentum of the body.

Principle of Impulse and Momentum. — The algebraic sum of the impulses

of the components
—

along any line— of all the external forces for any in-

terval equals the increment in the component of the momentum of the body

along that line for that interval. Or

r: Fx dt = Mvx" - Mva

Principle of Torque.
— The torque of all the external forces, acting on any

body, equals the torque of the resultants of all the forces acting on the par-

ticles of the body, all torques being taken about any line. An expression

for this latter torque was deduced in Art. 48, the line about which torque was

taken being called a z coordinate axis; it is 2w {ayX
—

axy), where m = the

mass of any particle, x and y = the coordinates of the particle, and ax and

ay
= the :*: and y components of its acceleration all at the instant in question.

Thus the principle gives

Tz = llm(ayX
—

axy)f

where Tz means the torque of all the external forces about the z axis.

Principle of Torque and Angular Momentum. — The torque of the external

forces acting on the moving body about any line equals the rate at which the

angular momentum of the body about that line is changing (Art. 48). Or

Tz =
-J ^{mVyX

—
mvxy)y

the torque and angular momentum being taken about a z axis of a coordinate

frame. If, in a given case, there is no torque during an interval then the
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angular momentum about that line remains constant; this is the principle of

conservation of angular momentum.

Principle of Angular Impulse and Momentum. — The angular impulse of all

the external forces— about any line— for any interval equals the increment

in the angular momentum of the body about that line and for that interval.

Or

Tz dt = AS {mvyx
—

mVxy).X
Principle of Work and Kinetic Energy.

— The total work done upon a body

by all the external and internal forces during any displacement of the body

equals the increment in the kinetic energy of the body during the interval.

If the total work is positive then there is a real gain; if negative, then there

is loss. If the body is a rigid one, the internal forces do no work; the total

work done upon the body by the external forces equals the increment in its

kinetic energy.

Principle of Conservation of Energy.
— If a body is isolated so that it is

beyond the influence of other bodies, then during any change of condition

of the body, the amount of its energy remains constant. There may be a

transfer of energy from one part of the body to another, but the total gain

or loss in one part is exactly equivalent to the loss or gain in the remainder.

D'Alemberts' Principle, not heretofore discussed. — The resultant of all the

forces acting on any particle of a body is called the elective force for that par-

ticle. Its magnitude equals the product of the mass and acceleration of the

particle; its direction is the same as that of the acceleration. The group of

effective forces for all the particles of a body is called the effective system (of

forces) for the body. It should be noted that these forces are fictitious or

imaginary, equivalent respectively to the actual forces acting upon the par-

ticles. The principle may be stated in two forms:— (a) The external system

of forces and the effective system are equivalent, and (b) the external system

and the reversed effective system jointly balance, or are in equilibrium.
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THEORY OF DIMENSIONS OF UNITS
•

§ I. Dimensions of Units.— The magnitude of a quantity is expressed

by stating how many times larger it is than a standard quantity of the same

kind and naming the standard. Thus, we say that a certain distance is lo

miles, meaning that the distance is lo times as great as the standard distance,

the mile. The number expressing the relation between the magnitude of

the quantity and the standard (the number lo in the illustration) is called the

numeric (or numerical value) of the quantity, and the standard is called the

unit.

A imit for measuring any kind of quantity may be selected arbitrarily, but

it must of course be a quantity of the same kind as the quantity to be measured.

Thus, as unit of velocity we might select the velocity of Ught, as unit of area

the area of one face of a silver dollar, etc. Many units in use are arbitrarily

chosen, that is without reference to another unit (for example, the bushel and

the degree); but generally it is convenient practically to define them with

reference to each other. All mechanical and nearly all physical quantities

can be defined in terms of three arbitrarily selected units, not dependent on

any other \mits. These are called fundamental units, and the others, defined

with reference to them, derived units. It is customary in works on theoretical

mechanics and physics to choose as fundamental the units of

length, mass, and time;

but it is sometimes more convenient to take as fundamental the units of

length, Jorce, and time.

We give an analysis of derived units with reference to each of these sets of

fundamentals, and two tables in which the absolute units are referred to the

first set of fundamentals and the gravitational units to the second set. But

either set might serve as fundamentals for all absolute and gravitational

units.

A statement of the way in which a derived unit depends on the funda-

mental units involved in it is called a statement of the dimensions of the

unit. For example.

one square yard _ (one yard, or three feet)^

302

one square foot (one foot)^
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Thus, a unit of area depends only on the unit of length used, and the unit of

area varies as the square of the unit of length. This relation is expressed in

the form of a "dimensional equation" as follows:

(unit area) = (unit length)^,

and briefly a unit area is said to be "two dimensions in length." Similarly, a

unit volume is said to be three dimensions in length. We proceed to de-

termine "dimensional formulas" for the units of several of the quantities of

mechanics. The student should be able to determine formulas (see sub-

sequent tables) for the others.

Velocity.
—

According to the definition of velocity (Art. 28), a unit ve-

locity is directly proportional to the imit length and inversely to the unit

time; hence if V, L, and T denote units of velocity, length, and time respec-

tively, the dimensional equation is

V= L/T = LT-i,

and a unit velocity is one dimension in length and minus one in time.

Acceleration. — According to the definition of acceleration (Art. 28), a

unit acceleration is proportional directly to the unit velocity and inversely to

the unit time; hence if A denotes unit acceleration, the dimensional equation
is

A = V/T = L/T2 = LT-2,

and a unit acceleration is one dimension in length and minus two in time.

Angular Velocity.
—

According to the definition of angular velocity (Art.

37), a unit angular velocity is proportional directly to the unit angle and

inversely to the unit time; hence if CD and 6 denote units of angular velocity

and angle respectively, the dimensional equation is

<o = 0/T or (0 = T-i,

since units of angle (degree, radian, etc.) are independent of the fundamental

units. A unit angular velocity is therefore minus one dimension in time.

Angular Acceleration. — According to the definition of angular velocity

(Art. 37), a unit angular acceleration is proportional directly to the unit an-

gular velocity and inversely to the unit time; hence if a denotes unit angular

acceleration, the dimensional equation is

a = (o/T
=

T-2,

and a unit angular acceleration is minus two dimensions in time.

Force. — In accordance with the equation of motion of a particle (Art. 31),

R = ma, or

"force = mass X acceleration;"

that is, the unit force is directly proportional to the units of mass and accel-

eration. Hence if F and M denote units of force and mass respectively, the

dimensional equation is

F = MA = LMT-2,
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ABSOLUTE SYSTEMS

Names of Quantities.

Dimen-
sional

Formulas.

Names of Units.

C.G.S, F.P.S.

Length r

Mass
Time
Velocity.
Acceleration

Angular velocity
Angular acceleration
Force

Weight
Moment of mass
Moment of inertia (body)
Moment of force

Work
Energy
Power
Impulse
Momentum
Density
Specific weight
Moment of area
Moment of inertia (area).
Stress
Stress intensity

L
M
T

LT-i
LT-2
T-i
'J'—

2

LMT-2
LMT-2
LM*
L2M

L2MT-2
L2MT-2
L2MT-2
L2MT-3
LMT-i
LMT-i
L-3M

L'2MT-i

L^
LMT-2
L-iMT-2

centimeter (cm)
gram (gr)

second (sec)

cm/sec ("kine")
cm/sec2 (" spoud")

rad/sec
rad/sec2
dyne
dyne
gr-cm
gr-cm

cm-dyne
cm-dyne (" erg ")
cm-dyne (" erg ")

erg/sec
dyne-sec (" bole ")
dyne-sec ( bole ")

gr/cm'
dyne/cm*

cm^
cm*
dyne

dyne/cm2

foot (ft)

pound (lb)
second (sec)

ft/sec

ft/sec2

rad/sec
rad/sec2

poundal (pdl)

pdl
Ib-ft

Ib-ft

ft-pdl

ft-pdl

ft-pdl

ft-pdl/sec

pdl-sec
pdl-sec
Ib/ft^

pdl/ft^
ft^

ft*

pdl
pdl/ft2

and a unit force is one dimension in length, one in mass, and minus two in

time.

Mass. — If we regard length, force, and time as fundamental units, then

the last equation written as follows is the dimensional equation for a imit

mass:
m = ftVl = l-ift2,

and a unit mass is minus one dimension in length, one in force, and two in

time.

Work. — According to the definition of work (Art. 40), the unit of work is

directly proportional to the units of force and length; hence if W denotes

unit work, the dimensional equation is

W = LF = L2MT-2,

and a unit work is one dimension in length, one in force, or two in length,

one in mass, and minus two in time.

Power. — According to the definition of power (Art. 42), a unit of power is

proportional directly to the unit work and inversely to the unit time; hence

if P denotes unit of power, the dimensional equation is

p = w/T = LFT-i = L2MT-3,

and a unit power is one dimension in length and force and minus one in time^

or two in length, one in mass, and minus three in time.
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from the dimensional equation because they are independent of L, M, and

T. Using L, F, and T, the dimensional' form of the equation is

=i'©'
which is simpler than the first form. Indeed dimensional equations based

on L, F, and T are generally the simpler in the case of formulas with which

engineers have to deal, particularly if mass does not appear in the formula.

Showing that an equation is homogeneous does not prove that it is correct,

but that it may be correct; showing that an equation is non-homogeneous

shows it to be incorrect. Since abstract numbers do not appear in the dimen-

sional form of an equation, the test for homogeneity does not disclose errors

in numerical coeflScients and terms, nor errors in signs.

(2) To express a magniMe in different units. — Obviously the numerical

value of a given quantity changes inversely as the magnitude of the unit

used; thus a certain distance may be expressed as

10 mi., 17,600 yds., and 52,800 ft.,

and plainly the numerics are respectively as i, 1760, and 5280, while the cor-

responding units are as 5280, 1760, and i.

Let qi be the known numerical value of a quantity when expressed in the

unit Qi, and ^2 the numeric (to be found) of the same quantity expressed in

the unit Q2; then

gi/g2
=

Q2/Q1, or qi
=

q2Q2/Qi-

The ratio Q1/Q2 can be easily computed by substituting for~Qi and Q2 their

equivalents in terms of fundamental units; thus if a, b, and c are the dimen-

sions of Qi (and Q2),

Qi = h (Li^'MM'^) and Q2 = kiiW'WTi'),

where Li, Mi, and Ti are the particular fundamentals for ^1; L2, M2, and T2

those for Q2; and ki and ^2 numerical coeflScients (very often unity). Finally,

h/uYfM.y/TiV

As an example, let us determine how many watts in 10 horse-power. Since

Qi (horse-power) =550 ft-lb-sec~^ and Q2 (watt) = 10^ ergs per sec. = 10^

cm-dyne-sec~^,

550 ft lb sec~^ KKo . „. . ^, .... .

qi
= 10^— -z :

= 10^(30.48) (4.45 X 10^) (i)
=

7640.
10^ cm dyne sec-^ ^^7

^o i- / \-t -rj

(3) To ascertain the unit of the result of a numerical calculation. — Substi-

tute for the quantities the names of the units in which they are expressed,

and then repeat the calculation, treating the names as though they were
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algebraic quantities. The reduced answer is the name of the unit of the

numerical answer. Thus in the formula for the elongation of a rod due to a

pull at each end, Pl/AE (wherein P denotes pull, / length of the rod, A area

of cross-section, and E Young's modulus for the material), suppose that P =

10,000 lbs., / = 50 in., ^ =
0.5 in^, E =

30,000,000 lbs/in^; the calculations

for elongation and name of unit are

10,000 X ^o , lbs X in lbs X in X in^

z^
— =

0-33) and . „ v . ,1 /• 2
= —

. o . . »— = m.
0-5 X 30,000,000

"^"^
in^ X Ibs/m m^ X lbs
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MOMENT O^ INERTIA AND RADIUS OF GYRATION OF PLANE AREAS *

§ I. -Elements of the Subject.
— In the subject of Strength of Ma-

terials, students of engineering meet certain quantities, formulas for which are

like

/dA'X^

where dA denotes elementary area and x the distance of dA from some line,

and the integration is to be extended over some finite area as the cross section

of a beam, column, etc. In Chapter V of] this book there are integrals Hke

/dA*x, or dAi * Xi -\- dA2 '
3C2 -\-

Since each of the terms in this summation is the product of an elementary
area and its distance from some line (the y coordinate axis), each term (and

their sum) has been called "moment of area;" this name is in line with

"moment of force" which is a similar product. Likewise, since

/dA'X^ = {dAi'x)xi + {dA •X2)x2 + * • •

,

and since each term of the summation may be regarded as the moment of a

moment, the terms (and more particularly their sum) are called "second

moments of area." Thus these names for the integrals are quite appropriate.

But the names are not in general use; others not so appropriate are more

common. The first moment is generally called statical moment, and the

second is generally called moment of inertia. This latter name came into use

because the integral named is Uke a certain other integral, I dM • r^ (Art. 36)

which has been previously called (with some reason) moment of inertia.

Students should recognize at once that an area has no inertia, and hence

in the ordinary sense of the words, no moment of inertia. There is therefore

no physical meaning whatsoever attached to moment of inertia of an area.

Nevertheless, the term is so firmly established that we will follow the common

usage. Thus,

Moment of inertia of an area with respect to or about a straight line (or

axis) is the sum of the products obtained by multiplying each elementary

* Writers on Strength of Materials usually refer to works on Mechanics for a discussion

of this subject, and for that reason this appendix is included herein.

308
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part of the area by the square of its distance from the line. Engineers have

occasion to compute-moments of inertia of plane areas only, and about a line

which is either in the plane or perpendicular to it. The moment of inertia

of an area about a Hne perpendicular to the plane of the area is called a polar

moment of inertia, and the line a polar axis.

The almost universal symbol for moment of inertia is /. A subscript on

the symbol indicates the axis to which the moment of inertia refers; thus Ix

means moment of inertia about the x axis. Using p to stand for distance of

the elementary area dA from the axis we have a general formula

=/dA-iS' = dAx-fy? + dAi-pt^ + (1)

In using this formula care must be taken to select the elementary areas so

that all parts of each are equally distant from the axis. If this is not done,

then the distance p is uncertain. This caution is illustrated in the first exam-

ple following.

Each term in the preceding series is the product of four lengths; hence a

moment of inertia of an area is four "dimensions" in length. The numerical

value of a moment of inertia of an area is usually computed with the inch as

unit length, and the corresponding unit moment of inertia is called a "bi-

quadratic inch," abbreviated in.^

Examples.
— i. It is required to ascertain the value of the moment of

inertia of a rectangle whose breadth and height are h and h respectively, about

i

Fig. I

n
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2. It is required to ascertain the value of the moment of inertia of a tri-

angle whose base and height are b and h respectively, about a hne through
its centroid parallel to the base. For (any) elementary area we take a strip

as shown in Fig. 2; let y = its distance from the axis, and u = its length.

Then dA = udy =
(b/h) H h — y)dy, and hence

3. It is required to ascertain the value of the moment of inertia of a circle

whose radius is r about a polar axis through its center. Here it is practically

necessary to take an elementary area of the second order, as dx dy or pdd' df>

in polar coordinates. We choose the latter (see Fig. 3). Then

h =££\ de .
dp)p^ = i wr^

Radius of Gyration.
— Since any moment of inertia of an area is four "di-

mensions" in length, it can be expressed as the product of the area and a

r—>K— r —->l

Fig. 3 Fig. 4

length squared. It is sometimes convenient to so express it. The length
is called the radius of gyration of the area about the line to which the moment
of inertia refers; thus if k and / denote radius of gyration and moment of

inertia of an area A about the same hne, then

k^A =
/, or k = VTJa. (2)

This length k was called radius of gyration because of the analogy between

it and another length which had been previously called radius of gyration.

This other length is defined by the equation k'^M = I, where / is the moment
of inertia of a body of mass M about some line (Art. 36). For this length,

the term radius of gyration is more or less appropriate, but for the first, de-

fined by equation (2), the term is not appropriate, except through the analogy.

It is worth noting that the square of the radius of gyration of an area with

respect to any Hne is the mean of the squares of the distances of all the equal

elementary parts of the area from that line. For let pi, p2, etc., be the dis-

tances from the elements (dA) to the line, and let n denote their number (in-

finite) ;
then the mean of the squares is

(Pi' + P22 + P8'+ . . . )/n=WdA-\-p2^dA-\-, . . )/ndA=I/A=k\
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Parallel Axes Theorem. — There is a very simple relation between the mo-

ments of inertia (and the radiuses of gyration) of an area with respect to par-

allel axes, one of which passes through the centroid of the area. Thus the

moment of inertia of an area with respect to any line exceeds the moment
of inertia with respect to a parallel line through the centroid by an amount

equal to the product of the area and the square of the distance between the

lines. Or if / and / denote the moments of inertia respectively, A the area,

and d the distance between the lines, then

1 = 1+ Ad?. (3)

Proofs of the Theorem. — (i) When the two axes are in the plane area.—
Let C (Fig. 4) be the centroid of the area, U and X the'^o parallel lines or

axes, and v and y — the ordinates of the elementary area dA from those lines

respectively. Then

/ =fdA'ir'=fdAiy + dy = CdA-y^ + 2dfdA-yj-d^CdA.

Now
j dA»y^

=
I; j

dA • y = Oy shown presently; and
j
dA = A; hence,

I = 1 -i- Ad^. dA 'y is the statical (or first) moment of dA about CX, and

the sum of all such terms a,sdA*y is the statical moment
of the area about CX. Since this line contains the

centroid, the statical moment equals zero (Art. 22).

(2) When the two Hues are perpendicular to the area.

— Let O and C (Fig. 5) be the points where the two

parallel lines pierce the area, C being the centroid of

the area. We take OC for an x coordinate axis, and

the y axis as shown. Let x and y = the coordinates

of dA
;
then since d = OC, the square of the distance of

dA from O is {x + dy + y^. Hence the moment of inertia of the area with

respect to the parallel line through O is

JdA lix + dy + y^= JdA {x^-\-y^) + 2dfdA'X-hd^ CdA,

Now x'^ + / equals the square of the distance from dA to C; hence

1 dA{x^ + /) = ^; and as already shown
j
dA * x = o, and

j
dA = A.

Therefore/ = 7 + ^.^.
If we divide both sides of equation (3) by A we get I/A = I/A + d^, or

^2=^2 + ^, (4)

where k and k respectively denote the radiuses of gyration of the area with

respect to any line and a parallel line through the centroid and d is the dis-

tance between the lines. According to this equation k is always greater than

Fig. 5
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d\ that is, the radius of gyration of an area with respect to a line is always

greater than the distance from the line to the centroid of the area. But if

the line is outside the area so that d is great compared with the greatest di-

mension of the area in the direction of d, then k/d is small compared to i

and k equals d approximately. In such a case, the moment of inertia equals

Ad^ approximately.

The parallel axes theorems enable one to simplify many calculations on

moment*of inertia and often to avoid integrations. Thus having found by

integration in example i preceding (or otherwise) that the moment of inertia

of a rectangle with respect to its base equals \ hh^ (where h and h are base and

height respectively), we can write at once that the moment of inertia with

respect to the median parallel to the base is

bh (i hy = j\ bh\\hh^

With respect to a line parallel to the base at quarter or three quarters height,

the moment of inertia is

^^ bh' + {bh) (J hy ^s bh\

In steel structural design it is often necessary to compute the moment of

inertia or radius of gyration of the cross section of a beam or column which

is to be "built up" of so-called "structural shapes," about some line of the sec-

tion. Fig. 6 represents the section of a built-up

column consisting of a web plate W, two side plates

S, and four Z bars. Manufacturers. of such shapes

publish "hand books" which include detailed infor-

mation about the shape sections,
—

dimensions, area,

position of centroid, moments of inertia and radiuses

of gyration about several lines through the centroid,

etc. Thus for the Z section, 6X3! X | inches, it

is given that its area = 8.63 inches^, its moments of

inertia respectively about horizontal and vertical axes

through its centroid (Fig. 6) =42.12 and 15.44 inches*.

For another example of the use of the parallel axes theorem, we will com-

pute the moment of inertia of the built-up section represented in Fig. 6 about

the X axis. The moment of inertia of the web-plate section (7.75 X 0.75

inches) is

iV 7-75 X 0.753
=

0.27 inchest

The moment of inertia of the two side plate sections (14 X 0.75 inches) about

the X axis is

2 [t^t 14 X 0.753 + (14 X 0.75) 6.752]
=

959.0 inches^

6.75 inches being the distance from the centroid of either rectangle to the

X axis. The moment of inertia of the four Z sections about the x axis is

4 [42.12 -f- (8.63 X 3-375^)]
=

561.7 inches*,
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3.375 inches being the distance from the centroid of a Z section from the x axis.

Hence the momentof inertia of the entire section about the x axis is

0.3 + 959.0 + 561.7
=

152 1.o inches^.

While the moment of inertia of a composite area with respect to a line can

be found by adding the moments of inertia of the component parts about that

line, the radius of gyration of the area cannot be found in that way. To find

the radius of gyration in such a case, find the moment of inertia first, and then

use k = {I/A)K For example, let it be required to find the radius of gyra-

tion of the cross section of two 6X4X1 inch angles, placed as shown in

Fig. 7 about the line XX through their centroid. We find in a hand book

l<.
— 4"—)j<

— 4"—
->|

X—

Y

Fig. 7 Fig. 8

that the radius of gyration of a single angle about the line XX is 1.85 inches,

and that the area of one section is 9 inches 2. Hence the moment of inertia

of the pair about XX = 2 (9 X 1-85^), and the radius of gyration of the

pair is

v
2 (9 X 1.85^)

2X9
=

1.85 inches.

Three Rectangular Axes Theorem. — The moment of inertia of an area with

respect to any polar axis (perpendicular to the area) equals the sum of the

moments of inertia of the area with respect to any two rectangular axes which

intersect the polar axes and lie in the area. If the rectangular axes and the

polar axis be regarded as x, y, and z coordinates axes respectively, then the

theorem can be written

/. = /.+/,. (5)

To prove this theorem let x and y = the coordinates of the element dA (Fig.

8). Then the distance of dA from the z axis is (x^ + y^)K and hence

7, =
JdAix^

+ /) =fdA
. x2 +fdA

- y

If equation (5) be divided by ^, we get at once

= /«+/.

Kz —
"vx ~i f^y ) (6)

where ^x, ky, and kg denote the radiuses of gyration with respect to the x, y,

and z axes respectively.
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Graphical Determination of the Moment of Inertia of a Plane Area. — If the

area is quite irregular in shape so that it cannot be divided into simple

parts whose moments of inertia are known, then the method now to be ex-

plained may be resorted to for finding the moment of inertia of the irregular

area about any line in its plane. This method is merely graphical integra-

tion. Let the area at the left in Fig. 9 be the irregular area and XX the line

i

Fig. 9 Fig. 10

about which the moment of inertia of the area is required. Let w = the

width of the area, parallel to XX, at any point of the figure; and y = the

distance of the point or width from XX. Then

I =
j (w dy) 'f

=
f (wy^) dy = \ w' dy,

where w' is merely an abbreviation for wy"^. Now suppose we multiply several

widths w by the square of the corresponding distances y, lay off the products

wf- to any convenient scale from a perpendicular to XX as shown, and then

draw a smooth curve through the ends of the ordinates or distances wy"^ or w'.

The area between this smooth curve and the perpendicular equals

/w' dy, and hence it represents /.

Evidently, the modified area, as we may call it, must be interpreted according

to some scale as we will explain in connection with

w
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The new area is 0.25 inches^. Since the scale of the quadrant is i inch =

2.5 inches, the scale of the new area is i square inch = 5 X 2.5
=

12.5 inches'^.

Hence, the construction gives 0.25 X 12.5
=

3.12 inches'* as the moment
of inertia desired. The exact formula (tV^t/^) gives 3.142 inches^.

§ 2. Formulas for Moment of Inertia and Radius of Gyration for

SOME Special Cases. — In the following, I and k are symbols for moment
of inertia and radius of gyration respectively. Only a few formulas for k are

stated; in any case k can be computed from V//area.

Rectangle.
— Let h = base and h = altitude. About a line through the

center parallel to b, I = yV bh^. About a line through the center parallel

to h, I = tV hb^' About the base b, I = ^ b¥. About the side h, I = \ h¥.

About a diagonal, I = \ b^h^/(b^ + h^). About a line through the center

perpendicular to the rectangle, / = yV (^^^ + hb^)-

Square.
— Make b = h m foregoing. The moment of inertia for all axes

in the plane of the square and passing through the center is ^^ h^, where h

is the length of one side of the square.

Hollow Rectangle.
— Let B and b = outer and inner breadths, and H and

h = outer and inner heights. About an axis parallel to B and b and passing

through the center, I = yV (BH^ - b¥).

Triangle.
— Let b — base and h = altitude. About the base, I = j\ bh^.

About a Hne through the centroid, and parallel to the base, I = ^^ bh^. About

a line through the vertex and parallel to the base, I = \ bh^.

Regular Polygon.
— Let A =

area, R = radius of circumscribed circle,

r = radius of inscribed circle, and 5 = length of a side. About any axis

through the center and in the plane of the polygon, I = ^\ A (6 R^ — s^)
=

J^^ A(i2 r^ -{- s^). About a line perpendicular to the plane of the polygon

passing through the center, / = double the preceding /.

Trapezoid.
— Let B =

long base, b = short base, and h = altitude. About

the long base, / = yV (J5 + 3 b)h^. About the short base, / = yV (3 -^ + b)h^.

About a line through the centroid and parallel to the bases,

/ = ^V (B^ + 4Bb + b^) h'/(B + b).

Circle. — Let d = diameter and r = radius. About a diameter, T =

i^ird"^
=

i-Trr*; k = \d = \r. About a line through the center and per-

pendicular to the circle, / = ^-^ird^
=

i^rr^; k = V|^ = VJr.
Semicircle. — Let d = diameter and r = radius. About the bounding

diameter or about the line of symmetry, / = yi? tt^/^ = i ^r^- About a line

through the centroid and parallel to the bounding diameter,

/ = (9 71^
—

64) JV1152 T = 0.00686 d"^ = 0.1 10 r*.

Hollow Circle. — Let D and d = outer and inner diameters, and R and

r = outer and inner radiuses. About a diameter, / = ^V tt {D^
—

d^)
=

i(R^-r^); k = l(D^ + d'')^
= i (R^ -\- r'')K About a line through the

center and normal to the circle, I = ^ ir (D^
—

d'^)
= ^ ir (R^ — r^); k =

V5 (Z)2 + ^)i = V| {R^ + r^)K
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Circular Segment.
— Let A — area of the segment, r = radius of the arc,

and 2 a = the angle subtended at the center by the arc. About the hne of

S3mimetry of the segment,

I = lAr^li — ^ (sin^ a cos a)/{a
— sin o: cos a)].

About the diameter of the circle which is parallel to the straight side of the

segment,
/ = J Ar^ [i + I (2 sin^ a cos a)/ {a

— sin a cos a)].

Circular Sector. — Let A = area of the sector, r = radius of the arc, and

2 a = the angle subtended at the center by the arc. About the line of sym-

metry of the sector,

/ = J Ar^ (i
— sin a cos a/a).

About a Hne through the center perpendicular to the line of symmetry and

in the plane of the sector,

/ = i Ar^ (i + sin a cos a/a).

About a line through the center of the arc and perpendicular to the plane of

the sector, I = ^ Ar^.

Parabolic Segment bounded by an arc of a parabola and a chord which is

perpendicular to the axis of the parabola. Let a = distance from the vertex

to the chord and b = length of the chord. About the axis of the parabola
/ = t\ ab^. About the tangent at the vertex of the parabola, / = f ba^.

Ellipse.
— Let 2 a and 2b =

lengths of the axes of the ellipse. About the

2 a axis, / = i wab^. About the 2 b axis, I = i irba^. About a line through
the center and perpendicular to the ellipse, / = | irabia^ + b^).

§ 3. Product of Inertia and Principal Axes. — Preparatory to another

matter, we will now discuss briefly a quantity called product of inertia of a

plane area with respect to two rectangular coordinate axes in the plane. By
this term is meant the sum of all the products obtained by multiplying each

elementary area by its coordinates. Thus if dA\, dA2, etc., denote (second

order) elements of the area, and {xiyi)f fey2), etc., denote their coordinates

respectively, then the product of inertia is dAiXiyi + dA20C2y2 + . . .
,
or

= / dAxy,Jxy
= I dAxy, (i)

Jxy being the symbol which we shall use for product of inertia with respect to

axes X and y. It is plain from the definition and expression that a unit prod-

uct of inertia is four "dimensions" in length. Like moments of inertia we

will express products of inertia in biquadratic inches.

Unlike a moment of inertia, a product of inertia may be zero or negative.

For example, the product of inertia of the rectangle (Fig. 11) with respect to

the axes OX and OF is zero, which may be shown as follows: for every elemen-

tary area whose coordinates are {a, 6), there is one whose coordinates are

(a,
—

b), and hence the product of inertia of the pair \s> dA<ab — dA^ab = o\

therefore the product of inertia of the entire area is zero.
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The product of inertia of the rectangle with respect to the axes O'X' and

O'Y' is negative; for one of the coordinates of each element is negative and

the other is positive, and hence the product of inertia of each element is nega-

tive. Even for different pairs of axes with the same origin the product of

inertia of an area may be positive, zero, or negative. Thus, the product of

inertia of the triangle (Fig. 11) for the axes

shown is zero. If the axes be turned clock-

wise about O slightly, then the product of

inertia is negative; and if turned counter

clockwise slightly, then it is positive. As will

be shown presently there is always one pair

of axes through each point of an area with

respect to which the product of inertia is zero,

and this pair is of prime importance in certain

particulars. If the area has a line of symmetry, then some of the pairs of

axes for which the product of inertia of the area is zero can be identified

easily; indeed for such an area, the product of inertia is zero with respect

to the axis of symmetry and any line (in the area) perpendicular to that

axis. For if we think of the elementary areas grouped into pairs sym-
metrical with respect to the axis of symmetry, then we see that the product
of inertia of each pair

— and hence that of the entire area— equals zero.

Parallel Axes Theorem for Products of Inertia. — There is a simple relation

between the products of inertia of an area with respect to two parallel sets

of coordinate axes, the origin of one set being at the centroid of the area. It

is expressed by
J = 7 + Axy, (2)

where / = the product of inertia about the axis through the centroid, J = the

product about the other pair, A = the area, and (xy)
=

the coordinates of the centroid with respect to the second

set of axes. To deduce equation (2), let C (Fig. 12) be

the centroid of the area, O any other point, CU and CV
one set of axes, OX and OY another parallel set, (w, v)

and {x, y)
= the coordinates of any elementary area dA

with respect to these sets of axes respectively. Then
X = u -\-x and y =

"v -{- y'.,
alsoFig.

/ = CdAiu + xXv + y)
= Co

Now
j
dA'UV = J; xy I dA = Axy; j

v dA and \ u dA = the statical mo-

dA * uv -\- xy j
dA -{- x

j
vdA -\-y j

udA.

ments of A about CU and CV respectively, and these moments equal zero

since these lines contain the centroid (Art. 22). Therefore / = / + Axy.
We will now illustrate by determining the product of inertia of the angle
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section (7 X 3J X i) shown in Fig. 13 with respect to the axes CX and CY.

Imagine the section divided into two rectangles as shown; their areas are

3-5X1= 3-5 inches^, and 6 X i = 6 inchest The coordinates of the cen-

troids of these areas with respect to the axes CX and CY are (0.79,
—

2.21)

jY
and (— 0.46, 1.29) respectively. Now the product of inertia

o"96 of each rectangle with respect to axes through its centroid

parallel to CX and CF is zero; therefore according to the

fp^ parallel axes theorem, the product of inertia of the entire

2.7/ section about CX and CF is

k--ji"-.>i'" [o + 3.5 (0.79) (- 2.21)] + [o + 6 (- 0.46) (1.29)]

Fig. 13
= — 6.1 1 — 3.56

= —
9.67 inches^.

Inclined Axis Theorem for Moment of Inertia. — Let OX and OY (Fig. 15)

be any two rectangular axes in the area and OU and OV another pair, XOU
being any angle a. It is plain from the figure that

V = y cos a — a: sin a, and u = y^m.a-\- x cos a.

If these values for u and v be substituted in /„ = I dA* v^, it will be found on

simpUfying that

lu = Ix cos^ a-\- ly sin^ a — Jxy sin^ 2a . . . (3)

With this equation it is possible to find the moment of inertia of an area with

respect to an axis through any point in the plane, if the moments and the

product of inertia of the area with respect to two rectangular axes through
the point are known.

Obviously, the moment of inertia of an area with respect to different lines

through the same point are unequal in general. We will show presently that,

generally, there is one line for which the moment of inertia is greater, and a

fine for which the moment of inertia is smaller than for any other Une through
the point; also that these two lines are at right angles to each other. They
are called the principal axes of the area for the particular point; and corre-

sponding to those axes we speak of the principal moments of inertia and principal

radiuses of gyration of the area for the point. The condition for a maximum or

minimum value of /„ is that diu/da = o. Now from (3),

dljdcL —— 2 7a; sin a cos qj + 2 7j, sin a cos a — 2 Jxy cos 2 a.

Let us denote by oc the value of a which makes this zero. Then we have

— Ix sin 20^ -\-Iy sin 2 a' — 2 J^ cos 2 a' = o, or

tan2«' = y^. (4) \
V

In general, this equation gives two values of 2 a' differing by 180 degrees;

hence two values of a' differing by 90 degrees. These two values of a fix two
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lines {u axes) which are the principal axes for the point under consideration.

li Jxy
= o and ly

=
Ix, then equation (4) is ambiguous. For such case, equa-

tion (3) shows that7„ = Ix = ly', that is, lu does not depend on the incUna-

tion, and there is no maximum or minimum value for any axis through the

point.

The condition expressed by equation (4), for locating the principal axes,

can be stated somewhat differently. Referring to Fig. 14, it will be seen that

=/'
dA^uv — \ {Ix

—
ly) sin 2 a + Jxy COS 2 a. (s)

Apparently this may equal zero for certain values of a; indeed if we equate

it to zero we will arrive at equation (4). Hence, the principal axes are such a

pair for which the product of inertia is zero.

Fig. 14 Fig. is

For an example, we will locate the principal axes of the section shown in

Fig. 13, for the point C, it being given that Ix = 45-37 ^-ud ly
=

7.53 inches'*.

In the preceding example, it is shown that Jxy = — 9.67 inches*. Therefore

according to equation (4),

tan 2 q;' = 2 (- 9-67)/(7-53
-

45-32)
=

0.5118; hence

2a =
27° 6' or 207° 6', and a' = 13° 33' or 103° 33'.

Substituting these two values successively in equation (3), we find as the prin-

cipal moments of inertia

/i = 47.70, and I2 = 5.20 inches'*.

There is a simple graphical construction for the radius of gyration of an

area about any Une through a given point, if the principal axes and radiuses

of gyration of the area for that point are known. Let O (Fig. 15) be the point

(area not shown), OP the line, OX and OY the principal axes, and kx and ky

the principal radiuses of gyration respectively. We draw two circles with

centers at O and radiuses equal to kx and ky] and we call the intersection of

these circles with OP, A and B respectively. We draw lines through A and B

parallel to OF and OX respectively and call their intersection C. Then OC

equals the desired radius of gyration (about OP). For when the axes x and y
of equation (3) are principal axes, Jxy = o and

lu = Ix cos^ a-[- ly sin^ a, or ku^ = kx^ cos^ a + ky^ sin ^
a;
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but OD (Fig. 15)
= kx cos a and CD =

ky sin a, and hence {ODf + {CDf,
which equals {OCy, = k:^ cos^ a + ^j;^ sin^ a = ku, or OC = k^

§ 4. Inertia Curves. — By means of a certain {inertia) circle, we can

locate principal axes, find principal moments of inertia, etc.,
— in short, do

graphically what we did algebraically in the preceding section. We will now
show how to draw and use this circle; proof of the method is supplied later.

Let the shaded portion of Fig. 16 be the area under consideration. To

Fig. 16 Fig. 17

draw the required circle we must know (as in § 3 to apply equations 3 and 4)

the moments of inertia of the area about two rectangular axes through the

point under consideration and the product of inertia about those axes; we

will suppose these quantities (/x, ly, and /xy) to have been determined. First

we lay off OA and OB to represent Ix and ly respectively, according to some

convenient scale; draw BC from B parallel to OF, and make BC =
Jxy (re-

quiring that BC be drawn in the positive or negative y direction according as

Jxy is positive or negative); we bisect AB inQ, and then draw the circle with

center at Q and radius equal to QC. This is the inertia circle of the area for

the axes OX and OY. If we letter the intersections of the circle with OX say

M and iV^, then the principal axes for O are parallel to CM and CN, and the

corresponding (principal) moments of inertia are equal to OM and ON, ac-

cording to the scale used. To find the moment of inertia of the area about

any line through O as Of/:— draw a secant through C parallel to OU, and

mark its intersection with the circle Z); from D draw a line parallel to the y
axis and mark its intersection with the x axis E\ then OE equals the desired

moment of inertia /«. Incidentally we may note that ED represents Juv, the

product of inertia of the area with respect toOU and OV.

We will prove first that the construction for /„ is correct. Equation (3)

can be written

lu = {Ix cos a — Jxy sin a) cos a -\- (Ty sin a — Jxy cos a) sin a,

and this form suggests the proof. Since (Fig. 17) Ix = OA, ly
= OB, and

Jxy = BC = AC,
lu = {OA cos a — AC sin a) cos a -f- {OB sin a — BC cos a) sin a
— {Oa — ac') cos a -\- {Bb

—
Be) sin a

= Oc' cos a-\-{bc = c'D) sin a = Oe+{dD = eE) = OE,
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If we imagine OU to turn about O clockwise, say, CD (drawn parallel to

OU) turns about C; and OE (and therefore Ju) increases. The greatest

value of lu (larger principal moment of inertia) obtains

when £ is at M; then D is at Af, and the corresponding

principal axis is parallel to CM. If we imagine OU to

turn counter clockwise, OD turns and OE (or /„) gets

smaller. The smallest value of lu (the lesser principal

moment of inertia) obtains when £ is at iV; then D is at

N and the corresponding principal axis is parallel to CN.

Inertia Ellipse.
— Let OX and OY (Fig. 18) be the

principal axes of an area (not shown) for the point O, ki

and k2 respectively
= the radiuses of gyration of the area

with respect to those axes, and OA = k^ and OB —
ki;

then the ellipse AB is called the inertia ellipse of the area for the point O.

Let r = any radius as OP, k = the radius of gyration of the area about OPy
and p = the perpendicular from O to either tangent parallel to OP; then,

as will be shown presently,

k = kik2/r
=

p. (i)

Since the coordinates of P are r cos a and r sin a, the equation of the ellipse

can be written

Fig. 18

h'
=

I, or
ki^ cos^ a + k2^ sin^ a

It follows from equation (3), § 3, that k^ = k^ cos^ a + ki sin^ a; hence r^ =

ki%^/k'^, or ^ = kik2/r. One of the well-known properties of the ellipse is

that the product of any radius and the perpendicular from the center to

either tangent parallel to that radius is constant; that is rp
=

^1^2; hence

kik2/r
=

p.





PROBLEMS

Mlbs.

i

The number in Parentheses following a problem number refers to the article

which pertains to that problem.

i-{s). Compound the 80 and no lb. forces (Fig. i) by means of the parallelogram

law. (To describe the line of action of the resultant, note where it cuts edges of the

square board. Use scales of about 4 ins. and 40 lbs. to the inch.)*

2-(3). Compound the 50 and 60 lb. forces

(Fig. i) by means of the triangle law. (Make
the vector diagram separate from the space

diagram, and use standard notation.)

3-(3). Compound the 60 and 70 lb. forces

(Fig. i) algebraically. (Specify the direction

of the resultant by means of the angles between

it and the two given forces.)

4-(3). Compound the 50 and 90 lb. forces

(Fig. i).

5-(3). Resolve the 40 lb. force (Fig. i) into

two components, one parallel to the 70 lb. force

and one vertical, by a graphical method.f

6-(s). Resolve the 100 lb. force (Fig. i) into two components, one of which acts

in the lower edge of the square and the other through the upper right-hand corner.

-(3). Resolve the no lb. force (Fig. i) into horizontal and vertical components.

7^(3) . Draw a square and letter the corners A,B,C, andD consecutively. Imagine
a force of 100 lbs. to act in ^-S and in the direction

AB. Resolve it into components acting in the other

three sides.

9-(4). Compound the 40, 50, 60, and 70 lb.

forces (Fig. i) graphically. (Do not draw the force

polygon in the space diagram; use standard nota-

tion.)

io-(4). Compound the 70, 90, 100, and no lb.

forces (Fig. i) algebraically. (Specify the direction

of the resultant by means of the angle between it

and the horizontal.)

ii-(4). Compound the four forces of the cube in

Fig. 2.
Fig. 2

I i2-(5). Compute the moment of the 60 lb. force (Fig. i) about point i.

*
Complete composition requires that the magnitude, line of action, and sense of the

resultant be determined.

t Complete resolution requires that the magnitude, line of action, and sense of each

component be determined.

323
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i3~(5)- Compute the moment of the 40 lb. force (Fig. i) about point 2, making use

of the principle of moments.

14. A certain chimney is 150 ft. high and weighs 137,500 lbs. Suppose that it is

subjected to a horizontal wind pressure of 54,000 lbs., uniformly distributed along
its height. Determine where the line of action of the resultant of the weight and

pressure cuts the ground.

15. Fig. 3 represents the cross section of a masonry dam. It weighs 150 lbs/ft'

y^fe^k
^^^ ^^^ water pressure against it is 112,500 lbs. per foot length of

dam. The resultant pressure acts at right angles to the face of

the dam and 20 ft. above its base. The center of gravity of the

cross section is 11.46 ft. from the face of the dam and 24 ft. above

the base. Find where the resultant of the weight and the

pressure cuts the base.

i6-(5). Imagine a clockwise couple of 2 ft-lbs. to act on the

square board of Fig. i. Then compound the couple and the

40 lb. force.

i7-(5)- Fig. 4 represents a 3 ft. pulley on the end of a shaft;

the pulley is subjected to a pull of 100 lbs. applied tangentially

as shown.

Resolve the force into a force acting through the center of the puUey
and a couple.

i8-(6). Compound the four forces (wind pressures) represented in

Fig. 5. (Be prepared to give the inclination of the resultant and the

point where the line of action cuts the floor.)

i9-(6). Fig. 6 represents one-half of an arch and certain loads Fjg. 4

applied to it. Pi = 4000, P2 = 5000, Pa = 6000, and P4 = 10,000

/S,000

Fig. 6

53fi00lbs, 57,000/ds.

37^O00Wt

Fig. 5 Fig. 7

lbs.; their inclinations are 0°, 3°, 8°, and 12° respectively; the coordinates of points

I, 2, 3, and 4 are (1.6, o.i), (4.9, 0.7), (8.4, 2.1), and (12.8, 4.8), all in feet. Com-

pound the four load by the second method. (Specify the line of action of the result-

ant by means of the angle between it and the x axis and the intercept on that axis.)

20-(7). Determine the resultant of the locomotive wheel-loads (Fig. 7).

2i-(7). Determine the resultant of the loads described in Prob. 19 algebraically.

22-(8). Compute the moments of each of the forces represented in Fig. 2 about

the «, y, and z axes.
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23-(8). Determine the resultant of the three couples acting on the 4 ft. cube repre-

sented in Fig. 8. (Specify the plane of the resultant by means of the angles which

a normal to the plane*makes with the edges of the cube.)

24-(9). Determine the resultant of all except the 300 lb. forces (Fig. 8).

25-(io). State what you can about the resultant in the following cases:

(a) A system of coplanar concurrent forces for which sFy = 0; for which

MSo =
o; for which the force polygon closes.

(b) A system of noncoplanar concurrent forces for which ZF, = o.

(c) A system of coplanar parallel forces for which SFj, = 0; for which

IfSa = o; for which the force polygon closes.

(d) A system of coplanar nonconcurrent nonparallel forces for which

SFx =0; for which ZF^ = 2Fy = 0; for which sMo =
Sikfft

= o.

Y

Fig. 8 Fig. 10

26-(ii). A and B (Fig. 9) are two smooth cylinders supported by two planes as

shown. A weighs 200 lbs. and B 100 lbs.; the diameter of ^ is 6 ft. and of B 10 ft.;

a =
30°. Determine the pressures on the planes and that between the cylinders.

27-(ii). Fig. 10 represents two wedges; a = 70° and fi
= 40°. A push P of

1000 lbs. can sustain what load Q if all rubbing surfaces are smooth?

28-(ii). The chains AB ^nd AC (Fig. 11) are 5 ft. long. When BC = S ft. and

the suspended load W = 2 tons, what is the tension on each chain? If the safe pull

for each chain is 3 tons, how large may the spread BC be?

A-

1^ v^-
—w ^

Fig. II

29-(ii). Two bars AB and CD (Fig. 12) are connected by a pin at A and to a
floor by pins B and C. BC = 8 ft., AB = AC =

s ft., and AD = S ft. A weight
of 100 lbs. is suspended from D. Determine the pin pressures aitA,B, and C.

30-(ii). A carrier is arranged as shown in Fig. 13. The bar AB connecting the

axles of the wheels is 24 ins. long. The bars AC and CB are each 30 ins. long There
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is a load of 1200 lbs. at C.

Fig. 14

be stalled in the position shown, 6 = 60

degrees, and the steam pressure 150 lbs

/in^. Determine the push on the connect-

ing rod BC and the pressure against the

cross-head guide D.

33-(ii). The beU-crank ^5C (Fig. 16)

Determine the compression in AB and the tension in ^C
and BC.

3i-(ii). AB (Fig. 14) is a bar suspended from a ceiling

by means of vertical ropes AC and BD, The middle

pointsE andF are connected by another rope. AB=AC
= BD = 8 ft. A vertical force P is apphed at the middle

G, deflects the ropes as shown by the dotted Knes, and

raises the bar. How large must P be to support the bar

(weighing 1000 lbs.) 6 ins. above its original position?

32-(ii). The cyhnder of the steam engine (Fig. 15) is

10 ins. in diameter, the crank AB is $ ins. long, and the

connecting rod BC is 15 ins. long. Assume the engine to

1
i

Fig.

is pinned to a wall a.t A; a, cylinder G is suspended by means
of a cord from D as shown; BD = 4 ins. The cyhnder weighs
80 lbs. and is smooth. Determine all the forces which act upon
the bell-crank.

34-(ii). Fig. 17 represents a riveting machine operated by
compressed air. It consists of a rigid frame F on which the

air cyhnder C is mounted; P is the piston; AB is the piston

rod pinned to the piston at A so that the rod can be rotated

somewhat about A inside of the (hollow) piston; the toggle Hnk
BD is pinned to the frame at D; the toggle Hnk BE is pinned
to the plunger Q (movable in a vertical guide on the frame) at

HH are the rivet dies between which the

AB =^ ig ins.; BD =
13 ins.;

Fig. 16

E;
rivet is squeezed.

BE = 10 ins.; the diameter of the cylinder is

10 ins. Assume the air pressure to be 100

lbs/in* and then determine the pressure at

the pinsD and E, the pressure against the guide,

and the pressure on the rivet. (To "lay out
"

this mechanism begin at D, then fix A, then B,
and then E.) Solve the problem when A is

advanced 2 ins. from the position shown.

lOOlbs-perih
2000\lbs.IXlbs. SOO\l

.
1 D >k.

|<-6-"4-4-4^^
/2'.-...->J<...^^*-5-~>!

SOO\/bs.

Fig. 18 Fig. 17

35-(i2). The beam AB (Fig. 18) is supported at C and D, and it sustains three

loads as shown. The beam weighs 50 lbs. per lineal feet. Determine each supporting

force, or reaction.
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^ 36-(i2). Fig. 19 represents a shutter dam; AB is the shutter, and CD and CE are

braces. The shutter and the braces are pinned

together at C; the shutter rests against an

inclined stop at A; brace CD is pinned to a

bed plate at D; brace CE rests against a bed

socket at E. The shutter is 4 ft. wide and its

length AB = 12 ft. The water pressure is

16,000 lbs., and its "center" is at F, 4 ft.

from A. Determine the reactions at D and E
due to the water pressure.

37-(i3)- Fig. 20 represents a truss supported

by a shelf 5 on a wall and a horizontal tie A ;

AB =
9 ft. and BC =12 ft. Determine the

reactions at A and B due to the loads.

38-(i3). AB (Fig. 21) is a beam supported

by a rod CD and a pin at ^ ;
AB = 9 ft. ^C =

3

/^^<3/A5.

WOO/Ai

SOOlbs. SOOIbs.

Fig. 20

FiG. 19

ft., AD='^ ft., and ^E =
5 ft. The beam weighs

400 lbs. and the load, = W 1000 lbs. Determine

the pull at C and the pressure at A .

39-(i3). The crane represented in Fig. 22 is sup-

ported by two floors as shown. E is a hole in the

upper floor and F is a cylindrical socket in the lower

floor. The crane weighs 5 tons and its center of

gravity is 2 ft. to the left of the axis of the post.

Determine the pressures on the floors when the load

W is 5000 lbs.

(Fig. 23) are two horizontal4o-(i3). A and B
pegs in a wall; they are 3 and 6 ft, above the floor

respectively, and the horizontal distance between

them is 4 ft. A smooth straight bar CD, 15 ft. long

and weighing 200 lbs., is placed under A and over B
with its lower end on the floor, but is not sprung into

that position. Determine all the pressures on the

bar, due to its own weight..

41. AB (Fig. 24) is a bar 12 ft. long fastened

to the floor at ^ by a pin and it rests at C on a

smooth cylinder 4 ft. in diameter. The center

of the cylinder is 6 ft. to the right of A and is

connected by a horizontal cord to the bar at D.

A weight of 100 lbs. is hung on the free end of

the bar. What is the pressure between the

bar and the cyhnder; between the cylinder

and the floor; what is the tension in the cord;
'

: 20 '•

>i
^^^ what is the pressure exerted by the nip on

the bar A ? Consider the cyUnder and the bar

as weightless.

42. AB (Fig. 25) is a bar 20 ins. long, and

weighs 10 lbs. It rests on a peg C and against a

I -^-

Oj

.JE.«. floor

Fig. 22



What vertical force applied at B will preserve the
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smooth wall at ^, as shown,

equilibrium of the bar?

43. If the weight of the bar in Prob. 42 is 12 lbs. and a load weighing 4 lbs.

suspended at B, at what angle must the bar be placed to insure equilibrium?

Fig. 23 Fig. 24. Fig. 25

44-(i4). Figs. 26 and 27 are two outline views of a steam shovel; the former repre-
sents a dumping and the latter a digging position. A is the "^-frame," B the boom,
and D the dipper. The pin P (axis perpendicular to the paper) is seated on the upper
half of a "fifth wheel " which permits swinging of the boom about the vertical axis

FQ. Two engines are mounted on the boom, — the main engine which operates the

hoisting drum, and the thrusting engine which operates the pinion meshing with a
rack on the bottom of the dipper handle.

Fig. 26 Fig. 27

Many of the parts of a shovel are most severely stressed when the dipper is en-

countering an unyielding obstruction in the bank. We indicate how some of these

stresses may be determined and then ask the student to determine others.

The actual resistance of the bank against the dipper cannot be determined with

certainty because the line of action of the resistance is generally unknown. It doubt-

less depends largely on the direction in which the cutting edge of the dipper tends to

move in the bank, determined mainly by the pull of the hoisting rope and the thrust

on the dipper handle. Some designers assume that the Une of action of the resist-

ance for the digging position shown in Fig. 27 is about along the bottom of the dipper.

Making this assumption and analyzing the system of forces acting on the dipper and
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its handle (resistance of the bank, hoisting pull, weight of dipper and handle, and
thrust on the handle) we find that the resistance is about 20,000 lbs. We might

proceed now and determine the pressures developed at various points in the structure

and mechanism on account of this bank resistance. For instance, analysis of all

the external forces acting on the boom, dipper and handle, main and thrusting engines

(resistance of bank, pull of front guys G', pin pressure at base of boom, and weight
of parts under consideration) shows that the pull of the guys is about 22,000 lbs.

The student should now determine the stress in each leg of the .4-frame and that

in each back guy G'. (These guys are fastened to the car at points 9 ft. apart.

22§ ft. from the base of the yl-frame and on the same level with that base.)

45-(i4). Suppose that the shovel is digging as shown in Fig. 27, but with the boom
at right angles to the track as shown in Fig. 26. The pull of the front guys is 22,000

lbs. as in the preceding problem. Determine the stress in each leg of the -4-frame,

and the stress in each back guy.

46-(i5). The truss represented in Fig. 28 is supported at A and D; CE = 12 ft..

Pi = 1000 lbs. and P2 = 2000 lbs. Deter-

mine the amount and kind of stress in

each member.

^47-(i5). The truss represented in Fig.

29 is supported at F and D; BF = CE
= 12 ft.. Pi = P2 = 2000 lbs., and P3 = ^^4

= 1000 lbs. Determine the amount and

kind of stress in each member.

48-(i5). The truss represented in Fig

/30 is supported at A and E; each load Fig. 30

P = 1000 lbs. Determine \he amount and kind of stress in each member.

ei

I

Fig. 31

49~(i5)- The truss represented in Fig. 31 is supported at each end; span = 80 ft.
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4, 5, 7

Draw a stress dia-

I, 2, 3, 6 and the points

vertices of parallelograms

gram for the truss loaded as shown, and make a

record of the stresses in the members.

52-(i6). Solve Prob. 47 graphically.

53~(i7)- Fig- 33 represents a crane consisting

of three members, a boom AC, a, brace AD, and

a post BF. The crane is supported at E and F

by two floors. The load TF= 5 tons. Determine

all forces acting on each member.

54-(i7). The crane represented in Fig. 34

consists of a post AB, a, boom CD, and braces

DE and FG. The crane is supported by sockets

at A and B as shown. The boom passes freely

through a smooth slot in the post at H so that

and rise = 20 ft.
; consecutive points on

AG are equidistant; DI is perpendicular

to ^G; H bisects AI, and / bisects GI;
each load = 1000 lbs. Determine the

amount and kind of stress in IK, and be

prepared to describe how to determine

the stress in every other member.

5o-(i6). Solve Prob. 46 graphically.

5i-(i6). The truss represented in Fig.

32 is supported at each end. The points

are at the
....6 //' :^

B

VQ
i
w

F/oor ^
E :

any reaction existing there will be

C vertical. The counterweight at

j
D is ^ ton, the load PF is | ton,

^ and the latter is 21 ft. from the

v7 axis of the post. Determine all

the forces which act upon each

member.

S5-(i7)- Fig- 35 represents a certain type of

hydrauHc crane. It consists of a post AB, an

hydraulic cylinder C mounted on the post, a large sleeve S
which, can be sUpped

le post, two rol-

lers D and E mounted

on the sleeve, a boom

EF, and a tie rodl FG. When water (under

pressure) is admitted to the cylinder, the

pistons are pushed upward; the upper one

bears against the sleeve, and rolls the entire

part DEFG up along the post. Let the load

W= 2 tons and suppose that it is 10 ft. out

from the axis of the post; then determine all

the forces which act upon each pin (Z), E,
and G).

Fig. 35



331

56-(i7). Solve Prob. 54 but take into account the weights of the members of the

crane as follows: p»st AB =
o.y ton, boom CD =

0.5 ton, brace DE =
0.3 ton, and

brace FG = 0.6 ton. Middle of boom is 5 ft. 6 ins. from axis of post.

57-(i7). Solve Prob. 53 but take into account the weights of the members which

are as follows: post BF= 0.5 ton, brace AD = 0.2 ton, and boom AC =
0.7 ton. The

boom is 18 ft. long; its center of gravity is 2 ft. 6 ins. from B.

58-(i8). Fig. 36 represents a crane supported by a foot-step bearing at B and a

collar-bearing at C. B can furnish horizontal and vertical support, and C can furnish

->^ Jo hoist

Fig. 36

\/^///y'

Fig. 37

horizontal support only. The pulleys E and F are i ft. in diameter; the noisting

cable enters the post at F, descends through the post, over pulley G, and to the

hoist as shown. The counter-weight JST is 2 tons and the load 4 tons. Determine all

the forces which act upon each member.

59-(i8). The crane represented in Fig. 37 consists of a post AB, a boom CD^ and a

tie rod DE. The pulley at D and the winding drum at G are i ft. in diameter. The

load TF is I ton. DE = 1 2 ft. Determine all the forces which act on each member.

6o-(i8). Imagine the winding drum (Prob. 59) to be mounted in bearings at E
(supported by the brace CD) instead of at G. Then solve.

-^ A Cord

B

WP''mrnmim/mw
c

Fig. 38

B

mmmmmm
Fig. 39

r UJ
7177 Wm///////7/.

i^i
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5
Fig. 40 Fig. 41

6i-(i9). A (Fig. 38) weighs 100 lbs. and B 200 lbs. A, B, and C are very rough.
Make separate sketches of A and B and represent all the forces which act on each

body when P = 20 lbs. (not large enough to produce any sHpping).

62-(i9). A (Fig. 39) weighs 100 lbs. and B 200 lbs. For A and B, fi
=

i; for

B and C, /*
=

|. How large must P be to cause sHpping?

63~(i9)- ^ (Fig. 40) weighs 100 lbs.; the surfaces in contact are very rough;
P = 50 lbs., and a = 20°. Determine the friction F and the normal pressure N.

64-(i9). A (Fig. 40) weighs 100 lbs.; a = 20°, and /x
= 0.6. How large must

P be to start A ? How large is F when slipping impends?

65-(i9). A (Fig. 40) weighs 100 lbs., a = 40°, n = 0.6, P = 200 lbs. Does
Pmove^?

66-(2o). Same as Prob. 63 but refer to Fig. 41.
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67-(2o). Same as Prob. 64 but refer to Fig. 41.

68-(2o). Same as Prob. 65 but refer to Fig. 41.

69-(2o). Fig. 42 represents a double-wedge device for raising and lowering a

heavy load W* The device consists of wedges A and B
and bearing blocks C and D; W = 200,000 lbs. The
coefficient of friction is 0.5. How large are the required

pushes P to raise the load? How large are the required

pulls to lower the load? (First consider C and determine

the forces acting upon it.)

7o-(2o). Fig. 43 represents, somewhat conventionalized,
^^* ^^ an adjusting device used in making the closure (insertion

of the last few members) of a large cantilever bridge (Beaver River) .f The mechanical

elements are a double wedge W, a screw S, and a lever Z,. The accessories are a head

piece H, two struts A, and two wedge-blocks B; they are

pin-connected as shown. C and C are two portions of the

bridge member to be connected; they are under compres-
sion P and pin-bear against the compression blocks. The

nut, which bears against the head piece, can be turned by
means of the lever, and the screw and wedge raised or

lowered. Raising the wedge separates the wedge blocks

and parts C and C. Determine the necessary moment (of

force) on the lever for raising the wedge against pressures

p = 1,235,000 lbs., assuming that the struts A are vertical

and the following data: mean diameter of screw = 4^

ins.; pitch of screw = | in.; bevel of wedge (each side)

= I in 10; mean radius of nut where it bears on the head

piece=9 ins.; coefl&cientof friction for all rubbing surfaces

=
i. (Consider first a wedge-block, and determine all the forces which act upon it.)

7i-(2o). Fig. 44 represents a screw

toggle used in the erection of a steel arch

(Niagara Falls and Clifton Bridge) 4 It

consists of four multiple links pinned to-

gether as shown, a right-and-left screw 5

with nuts N, and a lever L. The toggle

is supported by the anchor rod R and brace

B. The "pulling end "
of the toggle was

connected to the arch under construction,

supplying the supporting force P. Assume

mean diameter of screw = 2 ins., pitch
= ^ in., coefficient of friction = 0.3 ;

also

that now the diagonal MM = 16 ft., 4 ins.,

and the diagonal NN = 4 ft., 4 ins. De-

termine the couple on the lever which will shorten NN; which will lengthen NN.

72-(2o). Solve Prob. 34, taking into account the friction at all rubbing surfaces

(pins, piston, and guide). Pins A and E are 2 ins. and pins B and D are 3 ins. in

Fig. 43

Fig. 44

*
Engineering News, July 15, 1911. f Engineering Record, June 10, 1911.

X Skinner's Details of Bridge Construction.
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diameter. The coefficient of friction is i. (Solve graphically and make drawing of

riveter full size or larger.)

73-(2o). Fig. 45 represents a band-brake. The diameter of the wheel is i ft., 8

ins., the angle of lap = 255°, P = 60 lbs., and the coefficient

of friction is i; the wheel is turning clockwise. Compute the

frictional moment and the pull on the pins A and B. Solve for

the case when the wheel is turning in the other direction.

74-(2i). Fig. 46 represents a crank-arm for a shaft, by-

plan and elevation— dotted lines to be disregarded. Locate

the center of gravity of the arm.

75-(2i). Solve Prob. 74 but change width at thin end as
<-.j^

.,

shown by dotted lines. (See ObeHsk, Art. 24.)

76-(2i). Fig. 47 represents a connecting rod for a steam ^^

engine by plan and elevation. The rod is i ^ ins. thick except as noted. Determine

the distances of the center of gravity from the center of each hole.

jr_

S'

j<.-4"->l<. 7'i-— >i<..j.''..->j

m
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83-(24). The cross section of a certain cylinder is elliptical; the axes]of the ellipse
= 2 a and 2 b, and the length of the cylinder

= /. Show that the radius of gyration of

the cylinder with respect to the 2 b axis of the middle section = (i^i
^ + xV ^^)i-

84-(25). A cord is supported at two points on the same level 30 ft. apart, and its

lowest point is 8 ft. below the level of the supports. If the load is 20 lbs. per hori-

zontal ft., what are the tensions at the supports and at the lowest point ?

85-(26). A cable is to be suspended between two points at the same level 200 ft.

apart; the sag is to be 80 feet. Determine the length of the cable.

86-(27). A rope 100 feet long is suspended from two points A and B at the same

level 60 ft. apart. A body weighing 1000 lbs. is suspended from a point C X ft.

distant from A. Determine the tension in ^C when x = 10, 20, 30, 40, 50, 60, 70,

80, and 90 ft. Make a graph showing how the tension varies with x.

87-(28). Fig. 52 is a chronographic record of the launching of the U.S.S. Cali-

fornia (Transactions of Naval Architects and Marine Engineers, Vol. 12). Determine

^
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ographic record (Fig. 52) by taking the mean of the average velocities for the half-

seconds immediately preceding and following the instants or times listed below.

/ = 15 16 17 18 19 20 21 22 23 24

v=. 2.50 3.00 3.55 4-20 4.80 5.45 6.10 6.75 7.45 8.15

Compute the acceleration for / = 16 sees.

89-(28). Reduce a sprint of 100 yds. in 10 sees, to miles per hour. Compare the

retardation Of a train at 4 mi/hr/sec with the retardation of gravity on a ball thrown

vertically upward.

9o-(28). A point P moves in a straight line so that s = 2 t^ — s fi, where s (in feet)

equals the distance of F from a fixed origin in the path at any time t (in minutes).

Determine the velocity and acceleration when t=i min.; when t = 2 mins. Inter-

pret the negative signs.

9i-(28). A certain point P of a mechanism is made to move in a straight line by
means of a crank in such a way that ^ = 3 cos 2 d, where s = the distance of P from

a fixed, origin in the path of P and d = the angle which the crank makes with a

fixed line of reference. The crank rotates uniformly at 100 rev/min. Determine

position, velocity, and acceleration of P when 6 = 60°. Interpret signs of the re-

sults.

92-(28). In a certain "gunnery experiment" the shot was fired through screens

placed 150 ft. apart. The times (in seconds) of piercing were observed with the

following results:

screen 1234567
time o 0.0666 0.1343 0.2031 0.2729 0.3439 0.4161

Determine the velocity at the fourth screen.

93-(28). A point P moves in a straight Hne so that a = 4 — 2
t, where a is in

feet per minute per minute and / in minutes. When t = o, v = o and s = o. De-

termine general formulas for v and s. What are v and s when / = 4 ? when / = 5 ?

94-(28). A certain electric train can get up full speed of 24 mi/hr in a distance of

150 ft., and can stop from full speed in a distance of 100 ft. What is the shortest

time in minutes in which the train can make a run between two stations 650 ft.

apart, the train starting from one station and coming to full stop at the other ?

(Assume that the starting and stopping are accomplished uniformly with respect to

time.)

95-(28). A certain train can be retarded at a rate of 4 mi/hr/sec by braking.

Determine the times (in seconds) and the distances (in feet) in which the train can

be stopped from 10, 20, 30, and 40 mi/hr. (Assume that the retardation is the same

at all speeds.)

96-(29). Draw the distance-time and velocity-time graphs for the interval from

15 to 24 sees, of the launching mentioned in Prob. 87, and determine the velocity

arid acceleration at the twentieth second from the graphs.

97-(29). Fig. 53 shows the acceleration-time graph for a certain rectilinear motion.

When t = o, V and s = o. Construct the v-t and s-t graphs.

98-(29). Make a sketch of the velocity-time graph for the train-run described in

Prob. 94, calling the lengths of the three periods h, h, and h respectively. Then use

the principle that
"
area under the curve

"
represents distance travelled to find

values of /i, h, and h, and finally the time, for the entire run.
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99-(3o)' The period of a certain simple harmonic motion is 8 sees., and the ampli-

tude is 6 ins. What is the maximum velocity ? the maximum acceleration ? For

the motion from one extreme point in the path to the center, what is the average

velocity? the average acceleration?

ioo-(3o). Four particles, Qi, Q2, Q3, and Q^, are describing simple harmonic motions

in AB (Fig. 54) ;
the period of each motion is 8 sees. At a certain instant the four

1 ^1 h"£lJ.:T777F7/77777777777777}
'^

"TTTTTTTTTTTTrTTfrnFTfTTTTTTTTTTTTTTnTTT/TJ

Fig. S3 Fig. 54 Fig. 55

particles are at points i, 2, 3, and 4 respectively; Qx and Qz are moving toward the

right and Qi and Q4 are moving toward the left. Write out the expressions for the

X coordinates of the moving points t sees, after the instant mentioned. {AB = 12

ins., and is divided into sixths by the points.)

ioi-(3i). A (Fig. 55) weighs 200 lbs., B weighs 100 lbs.; the coefficient of friction
"
under " A is ^, that under B\%\\ P = 300 lbs. Determine the acceleration of A

and B, and the tension in the rope connecting them.

7777-
'W////Wnj///////U^

C

Fig. 57 Fig. 58

io2-(3i). Suppose that the supporting surface in the preceding problem is not

horizontal but inclined at 30 degrees to the horizontal. Then solve.

io3-(3i). A (Fig. 56) weighs 50 lbs. and B weighs 100 lbs.; the pull P gives A
and B an acceleration of 2 ft/sec/sec. Determine the magnitude and direction

(referred to the horizontal) of the pressure between A and B.

io4-(3i). Two bodies are connected somewhat as two cars, and are placed on a

plane incHned at 30 degrees to the horizontal. The lower one weighs 600 lbs. and is

smooth, that is, there is no resistance to its sliding on the plane. The upper one weighs

1000 lbs., and the coefficient friction under it is yV- With what acceleration will

the bodies slide down when released ? Will there be tension or pressure at the con-

nection ? What is its value ?

io5-(3i). The weights oi A, B, and C (Fig. 57) are 50, 100, and 200 lbs. respec-

tively. Contacts between A, B, and C are very rough; between C and D very

smooth; P = 100 lbs. Determine the forces which the bodies exert upon each

other. Sketch each body separately, showing the forces acting on it.

io6-(3i). A (Fig. 58) weighs 100 lbs., and B weighs 200 lbs. The coefficient of

kinetic friction under B h\; the coefficient of static friction under A is iV- When
P = 75 lbs., will A slip? How great is the friction under A ? How large a force

P would just make A slip ?

io7~(3i)- ^ (Fig. 56) weighs 50 lbs., and B weighs 100 lbs. C is perfectly smooth;
the coefficient of static friction "between" A and 5 is ^; the angle between the



337

top of B and the horizontal is 25 degrees. How great may P be without making A

slip on B?

io8-(3i). A (Fig. 59) weighs 100 lbs., and B weighs 50 lbs. The coefficient of

friction under ^ is ^. Neglect the inertia of the pulley and the friction at its

axle, and find the acceleration of A and B, and the tension in the cord. (The re-

sultant of the three forces acting on ^ is T— 20, where T = tension; and the resultant

of the two forces acting on B is $0
— T. Now write the equations of motion,

R = {W/g)a, for vl and B, and solve them simultaneously for a and T.)

io9-(3i). Show that the acceleration of the suspended bodies and the tension in

the cord of the Atwood machine (Fig. 60) are respectively

JTF2-TF1) . ^ (2 WJV2)

when the inertia of the pulley and the axle friction are negligible.

iio-(3i). Fig. 61 represents a simple engine, without connecting rod. Stroke =
18 ins., speed =150 r.p.m. Piston and rod weigh 120 lbs. When x = ^ ins., steam

777777'^77777777>

Fig. 59 Fig. 60

kx

It J 1
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which would make the stress on the specimen equal to zero at the upper end of the

stroke. What would the stress be at the lower end at that speed ?

ii4-(32). A point P starts at A (Fig. 63), and moves in the circle as indicated

traversing distance s so that s = 2f, where / is time after starting in seconds and s

is in feet; radius OA = 20 ft. Draw the hodograph for the first 3 sees. Then de-

termine the average accelerations for the intervals i to 3, 1.5 to 3, 2 to 3, 2.5 to 3.

Next determine-the magnitude and direction of the acceleration when ^ = 3 from

these average accelerations.

YY

/I
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body resting on E, and B is suspended by means of a cord fastened to A as shown.

A weighs lo lbs. and B weighs 20 lbs. Suppose that E makes 30 rev/min; then

compute the pressure at the stop S. The centers of A and B are 5 and 3 ft. from

CD respectively. (Neglect friction under A, Sit B and the pulley axle.)

i2i-(34). Suppose that A and B in Prob. 120 are rough, the coefficients of static

friction being | for each. What rate of rotation would lift B ?

1 2 2- (34). T (Fig. 67) is a horizontal whirling

table. A and B are spheres connected by an elastic

cord, the tension in which is 30 lbs. when the table

is at rest. A weighs 10 lbs. and B weighs 40 lbs.

What are the pressures of the stops S' and 5"' against

the spheres when the table is rotated about CD at 20

rev/min ?

i23-(35). Suppose that the floor of the car and A (Fig. 283, Art. 35) are very

rough so that A will not slip on the car; then ascertain how great an acceleration of

the car would result in tipping of A .

i24-(35). Suppose that the coefficient of friction in Prob. 123 is I. If the ap-

plied push on the car is gradually increased, thus increasing the acceleration grad-

ually, will A sUp or tip eventually ?

•T
-> <-

Fig. 67

Fig. 68 Fig. 69

2" i

^-i^-^N-
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i

FiG. 70

i25-(35). The Scotch cross-head (Fig. 61) described in Prob. no presses against

the stuffing box and on the cylinder by reason of the weight of the cross-head and

the pressure of the crank-pin on it. Suppose that the center of gravity of the cross-

head is 15 ins. from the center of the slot, the center of the piston is 24 ins. from

the same point, and the center of the stuffing box is 13 ins. from 0. Determine the

pressures mentioned when the circumstances are as in Prob. no (steam pressure =

2000 lbs., etc.).

i26-(36). Show that the moment of inertia of the slender wire AB (Fig. 68)

about the jc-axis is \ Mr\\.
—

(sin a cos «)/«], where M = mass of the wire.

i27-(36). Show that the moment of inertia of a right circular cone about its axis is

TTj Mr^, where M = the mass of the cone and r = the radius of its base.

i28-(36). Show that the moment of inertia of the ring or torus (Fig. 69) about

the z-axis is M {R^ -{- jr^), where M = the mass of the ring.

i29-(36). The length of a homogeneous right elliptic prism is /, and the semi-

axes of its cross section are a and b. Prove that the radius of gyration of the

prism with respect to a line through its center of gravity parallel to the axis b is

(ia^ + TV^)^

i3o-(36). Fig. 70 is a section of a cast-iron flywheel; there are six spokes. The

.ss section of each spoke is elliptical, the axes of the ellipse being 2 inches and 5^

long. Compute the moments of mertia of rim, spokes, and hub with respect tc^

axis of the wheel; also the '

gyration of the wheel about that axis.
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i3i~(37)- In order to produce a tension of loo lbs. in the cord of Ex. 2, Art. 37,

how heavy must the suspended body be ?

i32-(37). A, B, and C (Fig. 71) weigh 100 lbs., 30 lbs., and 34.4 lbs., respectively.

The diameter of C = 2 ft. 3 ins., and the radius of gyration of C about the axis

of rotation = i ft.;
= 30 deg. Friction under A, when the system is moving,

= 10 lbs. Determine the acceleration oi A, B, and C, and the tensions, the system

having started without initial velocity. (Neglect axle friction.)

i33~(37)- A, B, and C (Fig. 72) weigh 50 lbs., 100 lbs., and 150 lbs. respectively.

C is a solid disk of cast iron 16 ins. in diameter. Determine the acceleration of A,

B, C, and also the pulls of the cord on A and B. (Neglect axle friction.)

A

Fig. 71 Fig. 72

K-
— a —>K--b
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pute the work done on C by each force acting on it while C is moved from A to B,

a distance of 15 ft.

i42-(4o). ABC (Fig. 77) is a smooth rail in the form of a vertical semicircle of

4 ft. radius. Z> is a body, weighing 50 lbs., which can be made to slide along the

rail. P is a force of 150 lbs. always incHned 30 deg. to the horizontal; ^ is a

force of 40 lbs. always directed along the tangent. Compute the work done on D by
all the forces acting on it while D is moved from A to B.

Fig. 76 Fig. 77

i43-(4o). Solve the preceding problem on the supposition that P is always di-

rected toward B.

i44-(4o). In order to retard the motion of a launching ship, ropes were fastened

to it and to points on the shore, so that the ship broke many of the ropes as it pro-

gressed. In order to estimate the retarding effect of each rope broken, tension tests

were made on samples of the rope (7-in. manilla). Fig. 78 shows the average ten-

sion-stretch curve for these tests. The average strength of the samples was about

n
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i46-(4i). A certain freight car with its load weighs 60 tons. Each pair of wheels

v/ith its axle weighs 1800 lbs., and the radius of gyration of a pair and axle with

respect to the axis of the axle is 0.81 ft.; the diameter of the wheels is S3 ins. De-

termine the ratio of the rotational part of the kinetic

energy of the moving car (and load) to the trans-

lational part.

i47-(42). In the American Machinist for Dec. 2,

1909, there appears a communication in which an

alleged
"
fault in brake dynamometers

"
is pointed out

and explained. The writer states that on several

occasions he got ridiculous results with a Prony brake.

The "
enigma

" became clear to him when he en-

countered a
"
paradox

"
in his experimental work,

described by him as follows:

In Fig. 79 S represents a shaft, mounted in two bearings

BB', carrying two levers, arms AA', each exactly 50 inches

long from center of shaft to the fulcrums MM', respectively,

and firmly kej^ed to the shaft. At K is represented a coun-

terweight which balanced the two lever arms and brought
the center of gravity about the center line of the shaft S;

T represents a platform scale and W represents a weight,

which weighed 100 pounds when placed on the scales T.

When W of loo-pounds weight was hung on the fulcrum

N', the scales just balanced at no pounds. At first the

paradox almost paralyzed the brain, but on closer examination the mystery was easily

s' :\ ed, as follows: Considering A and ^' to be firmly keyed to the shaft S, then the two

ar; 3 and shaft S become practically one solid mass. Therefore, when any weight W is placed
on ?he fulcrum if of the lever A'

,
the whole mass will tend to rotate about a line passing

through the points of support M and B, with a moment of W times the lever arm X'. The

sh;i;'t 5 at the point B' will be fetched forcibly up against the top of the box or bearing cap
of ! tearing B', which will resist the rotation of the mass about MB, with a balancing

lAocpent equal to WX', or a reaction on the bearing cap equal to

100 lbs.

Fig. 79

WX'
Y' '

WX

No\' , it is evident that the resultant of these two forces is a downward vertical force C at

the Doint C equal ioW+ {WX)/Y which load is distributed between the points of support
B a cd M inversely proportional to their respective distances from the point C. Hence the

:> .d on the scales T will be represented by

ZC Z
V-\-Z' v + z (^+^}

Hence a weight of 100 pounds on the fulcnun M will produce a load on the scales T equal to

Z I
,

looZX

instead of 100 pounds as generally believed. The above condition obtains, more or less, in

the vast majorities of dynamometers, and is sometimes so exaggerated as to make the re-

sults positively ridiculous. In the case of a motor test let W represent the tangential pull on

the armature, an equal upward pull on the opposite side of the shaft might tend to balance

the error, or it might tend to make matters worse, depending upon the position of the other
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points in the diagram, but wherever W may fall the results will be most erroneous. For

instance, suppose that W happens to fall on the Une MB at W
,
then it is evident that the

weight exerted on the scales T will be equal to

WZ
instead of

A'PF

F + Z ' L
as generally accepted.

Show that the writer is mistaken in his assertion that

V^-Z
(100 + —^^-

1 does not = 100, and that does not = NW

v}//////////////////////////////////////////y/y////M

Fig. 80

and, hence, that his explanation of the
"
enigma

"
does not explain.

i48-(42). Fig. 80 represents Durand's dynamometer. A,B,C, and D are sprocket

wheels of equal diameter; A and B are mounted on a beam XYT which is carried

by the well-known Emery steel-plate support or

knife-edge at E. The knife-edge rests on the

standard R. Sprocket wheels C and D are

mounted on R. The bars SS are fastened rig-

idly to the beam, and engage loosely with a pin

on R, thus limiting rotation of the beam. The

sprocket chain passes over A, under D, over B,

under C, and up to ^. The shafts for C and

D are extended forward and back; and on these

extensions pulleys may be mounted, or universal

joint couplings may be attached, for the receipt

and delivery of power. (For detailed descrip-

tion see American Machinist for June 20, 1907.)

OED'T is horizontal; PQ and IE are vertical; MN and KL are inclined at an angle

of 27 deg. with the vertical; OE = O'E =12 ins.; and ET — 24 ins. Suppose that

an electric motor on the shaft of C turns counter-clockwise at 100 rev/min, and

transmits to a machine on the shaft of Z), and that a weight of 40 lbs. at T keeps
the beam XY balanced. What is the power of the motor ?

i49-(42). Assume that the law of mean effective pressure and piston speed is

represented by the dotted line in Fig. 331 of the text, so that

/>
=

/'o [0.95
-

(7 ^ +11,000)],

where ^ = mean effective pressure, />o
= boiler pressure, and 5 = piston speed in

feet per minute. Then derive a formula for indicated locomotive power. Find

piston speed at which power is maximum. Also graph your formula in the figure,

calling the maximum power 100 per cent.

150^(42). Let B = diameter of the driving wheels of a locomotive in inches;

I = stroke in inches
;
d = diameter of the cylinder in inches

; />o
= boiler pressure in

pounds per square inch; and V = velocity of the locomotive in miles per hour.

Assume that the mean effective pressure varies as described in the preceding

problem. Derive a formida for the indicated power of the locomotive in horse

powers for any velocity V.

i5i-(43). A certain body weighs 400 lbs., and is dragged along a rough hori-

zontal plane by a force of 80 lbs. The force is inclined 20 deg. upward from the

horizontal; the coefficient of friction between the body and plane is about ^.
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At a certain point in the motion, the velocity of yl is 5 ft/sec. What is the velocity
oi A 10 ft. beyond the point?

i52-(43)- For the purposes of comparing the
"
running quaUties

"
of certain freight

car trucks, they were tested substantially as follows: Each one was made to roll

down a steep incUne to give it
"

initial velocity," and then it passed onto a moderate

upgrade; the velocity was measured at two points on the upgrade; then the loss

of kinetic energy was computed. These losses furnished a comparison. The up-

grade was 0.38 per cent, and the points at which velocities were measured were

257.2 ft. apart. One of these trucks (four-wheeled) weighed 18,150 lbs.; each pair
of wheels and axle 1800 lbs. The. diameter of wheels was ^:^ ins.; the radius of

gyration of a pair and axle was 0.81 ft. In one test the velocities at the two points
were 14.95 ^.nd 11.05 ft/sec. Determine the average ''truck resistance," a single

imaginary force equivalent to actual resistance experienced by the truck. (Ex-

periments by Prof. L. E. Endsley for American Steel Foundries.)

i53~(43)- The suspended body C (Fig. 81) weighs 10 lbs. The coefficient of

friction under the brake is |; n = 4^ ins., r-z
= 6 ins., a= 2 ft., and b = i it. C

is allowed to descend 6 ft., thus turning
the wheel, and then the brake is put on,

mth P = 20 lbs. How much farther will

C descend ? (Neglect axle friction.)

i54-(43)- ^, B, and C respectively

(Fig. 82) weigh 100, 30, and 64.5 .
lbs.

The diameter of C = 30 ins., and its

radius of gyration about the axis of rota-

tion = I ft.; </>
= 30 deg. The friction

Determine the velocity of the system when A has moved

.„.>!<--b-H

Fig. 81 Fig. ^2

under ^ = 10 lbs.

through 10 ft. from rest.

i55-(43)- Copy Fig. 339 (pertaining to Exs. 2 and 3, Art. 43, § 2) using scale

I in. = 10,000 lbs. and 5 mi/hr. {a) Make a graph in your copy which will show

how the accelerating force is apportioned between the locomotive and the cars.

What is there in your finished figure which represents draw-bar pull ? {h) Modify

your figure for the case of the train when on an upgrade of 0.5 per cent.

i56-(43). Make graphs showing how the total train resistance in pounds varies

with the velocity in miles per hour according to Schmidt's formula and the Engi-

neering News formula for the train described in Ex. 2, Art. 43, § 2.

i57-(43). Make a new figure (as for problem 155) assuming that the train re-

sistance varies according to Schmidt's formula. First assume level track; then

modify the diagram for the case of an upgrade of 0.5 per cent.

i58-(43). Referring to the preceding problem with train on upgrade: (a) Make
a graph showing how the acceleration changes with velocity, {b) Find the time re-

quired for the velocity to change from 10 to 20 mi/hr. (See § 3, Art. 28.)

i59-(43). Make a graph showing how the velocity of the train of the preceding

problem (on the upgrade) changes with the time (in seconds) during the run men-

tioned.

i6o-(43). Make a graph showing how the distance covered by the train of the

preceding problem (on an upgrade) changes with the time.
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i6i-(44)- Fig. 83 represents in outline a certain small vertical-lift bridge. The

lifting span is coimterweighted as shown. At the center of the span there is a cross-

shaft having on each end a drum long enough to provide for two up-haul and two

down-haul cables. From each drum the cables are led to deflecting sheaves at each

(7\Sheav0

Tower-

r7\5heaye

Spur Oear-^

Bevel Gecra.

^<-P/nion

:Drum

Prurri^ Cross ^>5/raff~^

Section at Drums.

Sheave Sheave

^^^

<Tower

3
""^

Fig. 83

end of the span, beyond which they are led to attachments at the top and bottom of

the tower, as shown. The cross-shaft is driven through a pair of bevel gears by a

vertical shaft connected by a single set of spur gearing to a second vertical shaft to

the capstan head of which the operating lever is fitted when the span is to be raised or

lowered. For full description see Engineering News for July 18, 191 2.

The dimensions, etc., are as follows, but those marked "assumed" are missing in

the published description:
—

Weight of Ufting span = 58,cx)o lbs., and of each coun-

terweight 29,000 lbs.; length of operating lever = 6 ft. (assimied); number of teeth

in pinion 17, in spur gear 68, and in each bevel gear 30; diameter of dnmis = 18

ins. (assumed); diameter of (four) deflecting sheaves =12 ins., and diameter of

shafts for same = i in. (assumed); diameter of (four) counterweight sheaves =

54 ins. (assumed); and diameter of shafts for same = 3^ ins. (assumed); diameter

of (eight) counterweight cables =1 in.; and of other cables f in. Determine the

necessary effort (force) at the end of the operating lever required to Uft the span;

to lower it.

i62-(44). Fig. 84 represents the arrangement of tackle, engines, etc., used for

moving a large building (three stories, 120 X 142 ft., weighing about 8000 tons).

Pulls were appHed at six points on the rear of the building as shown. The four blocks

under and the three immediately in front of the building are single (one sheave or

pulley in each) ;
A and B are single, C and D double, and E and F triple. The pull-

ing cable from each engine extends to A, and is reeved through A and B, ending

at ^
;
a second cable is fastened to A and reeved through C and D, ending at C; a

third cable is fastened to C and reeved through E and F, ending at E. Blocks E are

merely hooked to the three blocks immediately in front of the building; blocks 5,

D and F are held in place by cables fastened to deadmen (buried logs or the hke).

The runs of cable from ^ to C and from C to E are really parallel to the main runs;
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they are shown inclined to avoid confusion of lines. The pull of each engine was
about one ton. (For fuller description see Engineering Record for Nov. 22, 19 13.)

Assume K to be 1.15, and compute the total pull exerted on the building; also the

pull exerted on each deadman cable. Which one or ones of all the cables is subjected
to the greatest pull?

•Hoisting o—
Engine

^''Deadman

Fig. 84

i63-(44).'; The building (preceding problem) was moved forward 40 ft. for each

setting of the equipment. How far did blocks A, C, and E travel for each setting?

How much cable was wound on the drmn of each engine?

i64-(45). Fig. 85 represents the mechanism for operating a small bascule bridge

of a single draw span. The train of gears, A, B,C, D, and E rests on the (fixed) ap-

Quacfrant

Keyed on
Trunnion

16 Crank
••»' fiand/e

EMA.Nawa

'i? -^iy

Fig. 8s

proach span. The quadrant and the draw span are keyed to the same trunnion,

supported on the pier shown. When the hand crank is turned counter clockwise

(in the view shown), the quadrant rotates clockwise, and the free end of the draw

span lifts. The total weight of the draw span and counterweight is 115,000 lbs.,

and the center of gravity of that (moving) part of the bridge is in the axis of the trun-

nion. The trunnion is 7 ins. in diameter. The following description of the gear train

is sufficient for our purpose:

Gear A B C D E Quadrant

Number of teeth 13 94 15 122 11 57
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(For fuller description see Engineering News for July 24, 1913, or the paper by
the designer, Prof^ L. E. Moore, in Engineering and Contracting for Aug. 13, 1913.)

Determine how large a force appHed to the crank handle at right angles to the crank

is required to raise the draw span.

i65-(4s). Fig. 86 represents in plan certain elements of the downstream (miter)

gate of the lock at the Keokuk Dam. Each leaf of the gate is hung on hinges some-

what like an ordinary door; but the lower hinge is a hemispherical pivot or pintle

— Faces of lock Walls--rn

tngine

Fig. 86

and it takes up all the direct weight of the leaf, the upper hinge taking up only hori-

zontal pull. Each leaf is opened and closed by means of an operating strut ABy
pinned to the top of the leaf and to the rim of a horizontal bull-wheel; each wheel

is driven by an engine through a train of gears. Each leaf weighs 463,000 lbs.; the

distance from its center of gravity to the (vertical) axis of its hinges is 31 ft. 8 ins.;

the distance between the hinges is 48 ft.; the diameter of the upper hinge pin is 12

ins.; the radius of the pintle is 9 ins. Assume coefficients of friction for pin and

pintle to be 0.05 and 0.15 respectively. Determine the reactions at the hinge pin

and pintle due to the weight of the leaf, and the moment of the frictional resistance

to swinging, about the axis of the hinges.

i66-(45). Fig. 87"represents certain details of the'operating mechanism for the lock

gate described in the preceding problem. It will be noticed that when the gate is

wide open, the axis of the operating strut is over the center of the bull-wheel. The

dimensions, proportions, etc., are such that a turn of the wheel through 180° from

the position shown closes the leaf; and then the center of the wheel is again in Hne

with the axis of the strut. From a large drawing, we have scaled the arms of the

thrust of the strut with respect to the axes of rotation of the leaf and bull-wheel for

thirteen positions of the strut, corresponding respectively to the open position of the

wheel, 15° turn, 30° turn, etc. (see adjoining table). Compute the torque required

on the bull-wheel for overcoming the frictional resistance at the hinges for each of

the thirteen positions, neglecting the frictional resistance at the pins of the strut,

at the center pin of the wheel and at the rollers under the rim of the wheel. Make a

curve which shows how this torque varies with 6. What does the area under the curve

represent?
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i67-(45)- The shaft of the engine, which operates the gate described in the pre-

ceding problems,' carries a pinion A (Fig. 87) ;
A drives a spur wheel 5 on a second

shaft which also carries a bevel pinion C; C drives a bevel spur wheel Z> on a vertical

shaft which also carries a pinion E; E gears with the rack F and thus drives the bull-

wheel. The numbers of teeth on the pinions, wheels, etc., are as follows:

A B C D E F
18 126 20 90 16 150

the last for one-half the circumference, more not required. Neglecting all friction

loss in the operating mechanism, compute the torque required at the engine shaft

for each of the thirteen positions of the gate mentioned in the preceding example,

and make a graph which shows how this torque varies with 6. Recompute, but

allow for friction loss by means of (estimated) efi&ciency of the gear train. What is

the total amount of work done at the engine shaft in closing one gate?

i68-(45). The engine (preceding problems) is run at 370 rev/min. Compute
the rate (in horse-power) at which the engine works, at the engine shaft, when closing

a leaf at each of the thirteen positions mentioned. Show by means of a graph how
the power varies with d and the time. (The author is indebted to Mr. B. H. Parsons,

Mechanical Engineer of the Mississippi River Power Company, for the data of these

problems relating to the Keokuk Lock.)

i69-(46). Water is flowing through a certain 6-in. pipe at a velocity of 4 ft/sec.

Compute the resultant pressure of the water against a right-angle bend in the pipe.

(Assume that the water pressure is the same at both ends of the bend, and equals

100 lbs/in^.)

i7o-(46). Actually, the water pressure (referring to_the preceding problem) is

greater at the inlet end of the bend. Assume that the pressures are 104 and 100

lbs/in^; then solve.

i7i-(46). A certain three and one-half inch hose is conducting water at a velocity

of 20 ft/sec. There is a circular bend of 180° in the hose; the radius of the bend is

8 ft. Assume water pressure at both ends of the bend to be 100 lbs/in^. Determine

the resultant water pressure on the bend. How much pressure (tending to straighten

the hose) is there per inch of bend.

i72-(46). Water is projected into a smooth channel with borders so that the mag-
nitude of the velocity of the stream is not changed, only its direction. Determine

the pressure of the stream against the channel.

i73~(47)- A body whose mass = if is dragged along a smooth horizontal plane

by a force which varies uniformly with the displacement, the force being zero when

the displacement = o and 40 lbs. when the displacement = 10 ft. Determine the

time-average value of the force.

i74-(47). Fig. 88 is a part copy of a figure from a report on certain tests of an

hydraulic (railway) buffer by Mr. Carl Schwartz, pubHshed in the Journal of the

American Society of Mechanical Engineers for June, 19 13. An abstract of the report

is printed in Engineering News for Sept. 11, 1913. The buffer consists essentially

of a cylinder 22 ins. in diameter, and a piston; the working stroke is 11 ft. The
buffer is firmly anchored at the stopping point, with the piston rod in the line of ap-

proach of the buffer of the car or locomotive to be stopped. The cylinder is grooved
so as to allow water to pass by the piston during a stop.

The curve marked "speed" shows how the speed of the locomotive, in this instance,

varied during the 12 sees, preceding impact, and also during the impact. Thus
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the speed was about 5.6 mi/hr at the beginning of the test; it increased to about

7.3 in 8^ sees; then it decreased uniformly up to the instant of impact after which it

decreased much more rapidly. The curve marked pressure shows how the hydrauhc

pressure behind the piston varied during the impact. Thus the initial pressure on

each side of the piston was about 45 lbs/in^; after the instant of impact the pressure

shot up to a maximum of 925 lbs/in'^, and then decreased to about 80. The entire

travel of the piston in this case was 3 ft. (not indicated in the figure). The locomo-

tive weighed 100 tons.

1000IV
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the axis of precession. Take the case of a wheel spinning about a horizontal axis

supported at one, end which is precessing about a vertical axis through the point of

support. The total centrifugal force is

which equals the ordinary centrifugal force WV^/gR plus the additional centrifugal

force due to spin (gyroscopic centrifugal force) {WV^k'^p^)/{gR2r^). W = weight of

the gyroscope, y^ = its radius of gyration, R = the radius of the circle of precession,

r = the radius of the spinning wheel, V = the hnear velocity of the precession, v =

the peripheral velocity of the wheel, and p = the ratio v/V.^' Presumably, R means

the radius of the circle described by the mass-center of the wheel. Ascertain in your

own way whether any force, appropriately called centrifugal force, has the value

above stated in the case in question.

i79-(49). On page 144 of the journal mentioned in the preceding problem there

appears this statement. "The total vertical force on the outside rail [car wheels

running around a curve] due to gyroscopic action will therefore be (3 WV^k"^) -i-

(2 gRrx)." W = the weight of a pair of wheels and axle (presumably), k = radius

of gyration of the pair and axle (about their axis), r = the radius of the wheels, R =
radius of the curve, x = gage of the track, and V = the velocity of the car. Can

you prove the statement?

i8o-(5o). A wheel 6 ft. in diameter rolls on a straight track. At a certain instant

the velocity and acceleration of its center are 10 ft/sec. and 4 ft/sec/sec. Deter-

mine the acceleration of the lowest point of the wheel at the instant in question.

i8i-(5i). When a slender body, such as a pole, chimney, etc., is tipped over from

an upright position, the motion is one of rotation about the point of contact of the

body and the surface which supports the body until sUp occurs at the contact or

the lower end lifts from the surface. Assume that the slender body is hinged to the

supporting surface so that it cannot slip or hft, and then determine the verticaf and

horizontal components {V and H) of the supporting force for various positions of the

tipping body. Draw curves showing how V and H vary with the angular displace-

ment of the pole from the vertical. How could you ascertain whether shp or lift

would occur first?

i82-(5i). Referring to the preceding problem, assume that the pole is supported
on the ground, and that sHp cannot occur during tipping. The lower end of the pole

will lift when a certain degree of tip is reached; afterwards the pole moves under the

influence of gravity only. Until the pole strikes ground, it rotates with the angular

velocity which it had at the instant when the contact was broken, and the center of

gravity moves in a parabolic path due to its initial velocity (when the contact was

broken) and action of gravity. Determine the distance from the (original) paint

of support of the pole to where it first strikes the ground.

i83-(52). In Fig. 410, the load W = 18,000 lbs.; the diameter of the rollers =

15 ins.; the coefficient of rolling resistance "under" the rollers = 0.020, that "over"

the rollers = 0.025. How large a force P is required to move the load? Determine

the two forces which act upon a roller supposing that the load is distributed equ^Uy
among the rollers.

i84-(52). Referring to Prob. 162: The rollers used were 3 ins. in diameter; about
2000 were used. They were of steel 2 ft. long and rolled between steel plates above
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^

and below. Assume that your computed result in Prob. 162 is the value of the pull

actually exerted on the building when moving on a level stretch. Then compute
the average coefficient of rolling resistance.

i85-(53). Two men A and B are walking at a speed of 4 mi/hr along east and west

and north and south paths respectively. Compute the velocity of A relative to B
when A is walking northward and B eastward; when A is walking northward and

B westward.

i86-(53). The disk (Fig. 89) is 4 ft. in diameter and is rotating uniformly about O
at one re\»/sec. A point P is moving uniformly along the diameter AB from A
toward B at a, speed of 4 ft/sec. Determine the absolute velocity of P when midway
between A and O; when midway between and B.

i87-(53). Suppose that P (see preceding problem) is moving from C toward A;
the angle </>

=
150°, and when P reaches A its speed is 6 ft/sec (along CA). What is

the absolute velocity of P then?

Fig. 89

i88-(53). A certain square is 6 X 6 ft., and its corners are lettered A, B, C, and D
in succession around the perimeter. The square is rotating imiformly about a line

through A perpendicular to its plane at one rev/sec; a point P is moving uniformly

along CD and in that direction at 6 ft/sec. Determine the absolute velocity and

acceleration of P when it reaches the mid position between C and D.

i89-(54). The sphere (Fig. 90) is suspended from the end of a vertical shaft OZ
by means of the rod OC extending into and rigidly fastened to the sphere. The

shaft and the rod are connected by a Hooke's (flexible) joint. When the shaft is

rotated it exerts a torque on the rod which in turn makes the sphere roll around on

the cone. Assume that the sphere is 2 ft. in diameter, i? = 4 ft., / = 8 ft., and that

the shaft makes 150 rev/min. Determine the angular velocity of the sphere, and the

X, y, and z components of that velocity.

i90-(55). Referring to the preceding problem, suppose that the sphere is cast

iron (weighing 450 lbs/ft^). Then compute the angular momentum of the sphere

and determine the rate at which the angular momentum is changing.

i9i-(55). Suppose that there is no "roUing resistance" (Art. 52) between sphere

and cone. Then determine the following: normal pressure and friction between

cone and sphere; the torque which the shaft must exert on the rod; and the x, y,

and z components of the supporting force at 0.

i92-(56). Fig. 91 represents in principle the Griffin Mill for grinding cement. The

cross piece of the (upright) frame supports the upper (vertical) shaft S by means

of a thrust ball bearing. The large pulley P is rigidly fastened to the shaft. The



353

pulley hub EH is extended downward and is restrained laterally by the guides GG,

thus virtually forjning an extension of the shaft. The "roll" is rigidly fastened to

the "roll shaft" and both are suspended on a cylindrical seat on the inside of the hub

of the pulley as shown. Thus the roll and its shaft can oscillate hke a common pen-

dulum about a perpendicular to the paper at 0. iC is a cross head rigidly fastened

to the roll shaft but slipping in vertical guides on

the hub when the roll and its shaft oscillate like a

common pendulum. The "die" is a hard metal

ring between which and the roll the grinding of

the cement takes, place as explained presently.

When the mill is idle, the roll shaft hangs in a

vertical position; if the pulley be rotated the guides

in the hub exert a torque on the cross head, and

the roll shaft is made to rotate in the vertical

position with the pulley. When it is desired to

start the miU for grinding, the roll is first pulled

outward "with an iron hook," and then the power
is turned on at the pulley. The roll shaft rotates

with the pulley; promptly, the roll begins and

continues to roll on the die (ring), a great pressure

being developed between roU and die. Material

to be groimd is fed into the mill so that some is

caught between the roll and the die and then pul-

verized. Suitable paddles on the lower side of the

roll continually toss the material which collects in

the recess of the base; eventually it is caught be-

tween roll and die.

It will be noted that the roll and its shaft constitute a large gyrostat. We now

propose the problem of determining the pressure between the roll and the ring when

the mill is operating. The makers (Bradley Pulverizer Co.) state it to be about 15,000

lbs. for their giant size when run at a pulley speed of 165 to 170 rev/min. The follow-

ing data, approximated in some cases, was taken from drawings furnished by the

makers of the mill. The die is 40 ins. in diameter (inside), 8 ins. high; from the plane

of its top to the point of suspension O is 5 ft. 4^ ins. The roll weighs 880 lbs.; its

larger diameter is 24 ins. The roll shaft weighs 600 lbs.
;

its length over all is 6 ft.

9^ ins.; its point of suspension is 6 ins. from the upper end; its diameter varies from

5 1 ins. at the cross head to 6\ ins. at the roll but the ends in the cross head and roll

are tapered. For simplicity, make the following approximations: roll-shaft uniform

diameter is 5f ins., smaller diameter of roll =22 ins., and its thickness is 8 ins. As
a further close approximation for locating center of gravity and determining required

moments of inertia, assume that the roll is a cylinder 23 ins. in diameter and 8 ins.

thick (with 5f ins. hole for the roll shaft).

i93~(57)- A certain right cone with a circular base is homogeneous; the diameter

of its base is 4 ft.; the altitude is 6 ft.; and half the apex angle is 20°. Determine

the radius of gyration of the cone with respect to an element of its curved surface.

Fig. 91
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