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1.0 INTRODUCTION

This report describes a stochastic parametric sensitivity analysis of

a detailed structural model of the U.S. economic system. Model parameters

defining the structure of the system at the time of measurement were derived

from physical observations of the system. Use of such models is becoming

increasingly prevalent for mid-to long-range studies and policy analyses in

government planning at all levels. Resource scarcity, foreign policy con-

tingencies and other factors have made rapid structural change the object of

analysis, not something one can assume avay. Effective use of such models

requires an understanding of the effects of parametric change and uncertain-

ty.

We are concerned here with a linear static input-output model of the

U.S. economy. Its parameters are derived from data on interindustry trans-

actions complied by the U.S. Department of Commerce. Due to the

size and complexity of the economic system, funding limitations and measure-

ment lags, these parameters are seven years out of date when published.

Parametric uncertainty therefore can arise from two sources: observation

of the system during the base year and structural changes during the seven

year lag period. Estimates of uncertainty in the base year parameters were

compiled by Bullard (1976) and are discussed in Appendix A.

The effect of parametric uncertainty on model outputs has been dis-

cussed by Sebald (197M and Bullard and Sebald (1975). These papers

quantified the maximum error tolerances that would result from the worst-

case distribution of parametric errors. For this model, it was found that

the process of matrix inversion could magnify input errors by more than



emphasizing the need for developing a methodology that could

quantify the extent to which parametric errors cancel one another.

The Monte Carlo simulation analysis described here was designed to

answer that question. Base year interindustry transactions were character-

ized as random variables ana the model parameters were derived from them.

The results from each simulation were used to update a set of sufficient

statistics to yield unbiased estimates of means, variances and some covari-

ances. The simulations were performed to evaluate both the effect of doubling

error tolerances on inputs and the effect of changing the structure of the

model to enhance its usefulness for predictive work.

After 200 simulations, the preliminary results were analyzed in order

to determine the cost-effectiveness of proceeding with more simulations.

In all cases, this a priori determination of the confidence intervals on

final results showed that 1000 runs would be adequate. These estimates were

then verified when the simulation had been completed.

Chapter 2 describes the preparation of the data base and estimation of

uncertainty on base year transactions. Chapter 3 details the simulation

methodology, the criteria for determining "acceptability" of simulated

parameters and derivation of the stopping rule. Chapter h presents the

results of all simulations, and discusses the effects of aggregation,

magnitude of input uncertainty and other <. .riables.



2.0 DATA BASE PREPARATION

2.1 The Model

The linear static input-output model of the U. S. economic system is

described in detail by Bullard and Herendeen (1975). It is based on the

theory developed by Leontief (19^1), and relies largely on data assembled by

the U. S. Department of Commerce, Bureau of Economic Analysis (BEA). Data

are expressed in constant dollars, 'which act as a surrogate for physical

units. In this particular model however, the inputs of energy to all sectors

are expressed in physical units, to take account of the fact that energy is

sold to different users at different prices.

The governing equation of the model is

(I-A) X = Y (2.1-1)

where X is an N-order vector of gross domestic outputs for each sector, Y is

the vector of total final demands for the output of each sector, and A is the

matrix of parameters describing the technology of producing goods and services

during the base year. A typical element A. . represents the amount of input

from sector i required directly by sector j to produce one unit of its out-

put. These parameters are derived from base year observations of interindustry

transactions, T.., (amount of output from sector i sold directly to sector j):
*- J

T. .

A E -iJ- (2.1-2)

In turn, these interindustry transactions are defined as the sum

T = DA + MDT + TF (2.1-3)



where DA is the amount of product i sold directly to sector J, MDT.
1 J ij

represents the transportation or trade margin i on all inputs to sector j ,

and TF. . represents the amount of product j produced as a secondary output
-'-J

by sector i.

2.2 The Data

Estimates of all elements of the above matrices are collected and

assembled by BEA at the kQk sector level of detail. Before publication

however, they are aggregated to about 360 sectors. BEA personnel respon-

sible for this compilation were interviewed; their subjective estimates of

uncertainty on all base year transactions are given in Appendix A.

Before proceeding with the Monte Carlo simulation, these data were

aggregated to 90 and then to 30 sectors. The 30 sector data base was used

for the development and verification of all the computer programs. The 90

sector data base was used for the main simulation. This degree of aggregation

was chosen for economic reasons (matrix inversion is an expensive N

operation) and because it corresponds most closely to the most widely dis-

tributed and used version of the BEA input-output tables. These are published

at the 83 sector level of detail, while the 90 sector model used here retains

more detail in the transportation and energy sectors of the economy.

Aggregating an input-output data base is a nontrivial operation since

it must be done prior to the operations in (2.1-3). After aggregating the

Names of sectors at each level of aggregation are given in Appendix B.



three matrices independently and summing to obtain T, X and A are computed

using eqs. (2.1-1) and (2.1-2).

A 101 sector data base was also constructed by replacing the 5 energy

sectors in the 90 order model by 16 energy . supply and service sectors.

The rationale and development of the 101 sector model are described by

Bullard and Sebald (1975). Its purpose is to more accurately predict energy

consumption in future years by explicitly modeling fuel substitutability.

In effect, this model recognizes that end uses of energy (space heating,

lighting, air conditioning, etc.) are less substitutable than the fuels

themselves by permitting the non-energy sectors to purchase only end uses

of energy, while fuels are sold only to the end use sectors. Note that

the former are very stable over time while the latter are not. The most

variable coefficients or parameters involved in energy consumption are

thereby confined to the few representing sales of fuels to the end use

sectors, which can be estimated independently using models designed

expressly for that purpose.

* Names of sectors at each level of aggregation are given in Appendix B,



3.0 METHODOLOGY

3.1 Point of Viev for Stochastic Error Analysis

There are several ways to interpret this problem, and the point of view

affects both the methodology and the interpretation of results. One way is

to act as a simulator of BEA's activities from data collection through matrix

inversion. In an alternative viewpoint, the analyst attempts an a priori de-

termination of the effect of mathematical transformations on uncertain obser-

vations. In either case, this information enables the analyst to assess the

usefulness of the data for modeling purposes. We have adopted the latter point

of view.

Within this framework, the analyst receives signals from the economic

system associated with each interindustry transaction as well as total output

and value added. Actually, each of these signals from an industry is the sum

of many signals from individual establishments. The signals appear to be in-

dependent; that is to say, the signals tell us little about their correlation.*

The analyst's only information on these correlations comes from accounting

identities requiring income to equal outgo.

Each signal is characterized by BEA in terms of upper and lower bounds and

a "published value" representing their estimates of where the true value is mos

likely to lie. We then characterize BEA's knowledge of the transactions as ran

dom variables. The distributions are inputs for the Monte Carlo analysis which

transforms them into a set of numbers comprising the solution set. Each elemen

of the solution set is characterized by a set of statistics** which are then

compared with the deterministic result.

* Due to the size and complexity of the economic system, frequent measurement
is economically prohibitive so no information is available from time series
analysis.

** Mean, variance 6



Each input variable is first sampled independently, but some effort is

then made to assure that the external balance conditions are satisfied. This

is what BEA does in their deterministic approach, and we make a similar

attempt with our Monte Carlo approach. It is unrealistic however, to

completely simulate BEA's activities, many of which are judgemental, undocu-

mented, and not reproducible. The specific shortcuts taken are detailed in

section 3.^.

3.2 Sampling Random Variables

All of the basic data (transactions, industry output, final demands)

are characterized as random variables having either normal or lognormal

distributions.* As discussed in Appendix A, Section k
t entries which

have been truncated to zero by BEA are modeled with a "folded normal" ran-

dom variable, which is simply the absolute value of a normal random variable

with mean 0. Non-zero cells are modeled using either normal . or lognormal

random variables with the former used in those cases where the published

value is relatively accurate. In situations where the data is less well

known, an analyst will tend to use a multiplicative factor to bound his

estimate rather than an additive error bound. A lognormal distribution is

appropriate in such a case because of its property of multiplicative sym-

metry about the median. That is, if X_is the median of a lognormal random

variable X, then Prob. (X > X D) = Prob^ (X < X /D) for any factor D. For

* In a few cases a negative entry in the data is modeled by the negative of
a lognormal random variable (which necessarily takes only positive values).
This set of circumstances is handled so much like the usual lognormal case
that it is not discussed separately in what follows.



example, if an analyst states that his estimate has probability a of being

correct within a factor of D, then a lognormal random variable with a =

Prob. (X
fl

/D < X <_ X D) will be used to model the situation.

This section outlines a procedure for sampling from random variables

such that

1) The sample will be drawn from a folded normal, normal or lognormal
population.

2) The distributions will be truncated to prevent samples that are
absurd (e.g., negative transactions). Truncation eliminates
samples in the upper and lower 0.15$ tails in the normal and log-
normal cases and in the upper 0.3$ tail in the folded normal case.

This corresponds to the percentage of probability outside 3

standard deviations from the mean in a normal population.

3) The expected value of the sampled result is equal to the published
value, M, of the entry in question (except in the folded normal
case where the published value is zero).

k) Before truncation, the random variable X from which we sample

has a confidence interval defined by a parameter b, 5 or D.

a. Folded Normal Case

Prob (X < b) = .997
(i.e., b amounts to 3 standard deviations of the underlying
normal random variable.

b. Normal Case

Prob (p - 6 ^x- X - y
JC

+ 6V = '" 7

(i.e., o amounts to 2> standard deviations of X expressed as a

fraction of the mean, M y
= M)

c. Lognormal Case

Prob (X
Q
/D < X < X

Q
D) = .997

In all three cases the sampling procedure is based on a standard normal

random variable (i.e. , mean = and variance = 1, denoted N(0,l)).

* The standard normal random number generator used was the International

Mathematical Statistical Library routine GGNRF. Tests of randomness and

normality were performed for verification purposes and are described in

Appendix D.



Truncation is achieved by sampling until a value r is obtained which is

less than 3 in absolute value. In the folded normal case we set y = and

a = b/3 so that y + or is a sample from a truncated N(y, a ) variable; the

absolute value then satisfies the conditions for the folded normal sample.

6M
In the normal case we set y = M, a = — and then y + ra is used as the

normal sample.

The situation for X lognormal is slightly more complicated. In this

Y
case, X = e where Y is a normal random variable. Let y and a be the mean

and standard deviation of Y.

Then the median X of X is equal to e so y = In X . Therefore,

Prob (X
Q
/D < X <_ X

Q
D) = .997

implies that

Prob (lnX - InD <_ Y <_ lnX
Q

+ InD) =

Prob (-InD <_Y - y <_ InD) = .997

so that

InD = 3a.

Since we want the mean value to equal the published value,

2

y+ 7T . „ a n ,, In D
y = e 2 = M, we must set y = InM - — = InM - n

To summarize, we sample for X in the lognormal case by obtaining a

truncated standard normal random number, r, and setting X = e where
2

a = InD and y = InM - n . Comparing the three cases we have;

X Folded Normal X Normal X Lognormal

y =

a = b/3
y = M
a = 6M/3

y = InM -

a = lnD/3

2
In D

18

X = truncated ABS(N(y,a )) X = truncated N(y,o ) X = truncated e
N(y,a'



In the lognormal case the mean is not coincident with the median. To

evaluate the error resulting from assuming they are equal, suppose an analyst

gives a confidence interval for the true value T, in terms of his estimate

M and a factor D. That is,

Prob (M/D < T <_ MD) = .997

where .997 is just the probability spanned by three standard deviations

about the mean in a normal distribution.

We have modeled this situation with a random variable X with

u = M and

Prob (X /D <_ X < DX
Q

) = .997

We want to show that

Prob (M/D < X 1 DM) is close to .997-

In fact,

Prob (M/D < X < DM) =

Prob (inM - InD < Y < InD + InM) =

2 2

Prob (y+|- -3a<Y<3c+y+|-)=

Prob (§- 3 <_^< 3 + £)
d. a 2

Y-u
Since is standard normal, we can find this probability in standard

normal tables if we know a. For a typical value of D such as

2

o o _ InD
D = 8, - = -T~- = .35

Therefore,

Prob (M/D <_ X < DM) = Prob ( . 35 - 3 < — < 3 + .35) = -995 ,
a

_ '

indicating that the error resulting from the assumption is negligible

.10



3.3 Aggregating Random Variables

Based on subjective uncertainty estimates made by BEA Personnel,

probability distributions were defined at the 360 sector level of detail.

Since simulations were done at the 101, 90 and 30 sector levels, aggregation

was necessary. The means of the aggregated variables are easily obtained

but specification of the distributions of the aggregate variables is a non-

trivial task which was undertaken in the following way. Since all trans-

actions, margins, etc. at the 368 order are in fact aggregates of data

obtained initially from individual establishments grouped by 5 or 6 digit

Standard Industrial Classification codes, the specification of a distribution

for these aggregates was a crude assumption in itself. The basis for

specifying the distribution at the 90 sector level is equally subjective,

so we adopt the following convention. Assume that the variance, V, of

each aggregated element is the sum of the variances of all its constituents. If

3/"v is less than hQ% of the aggregated mean, y, assign a normal N('y,V)

distribution to the variable. If 3"V is greater than k0% of y , a lognormal

distribution is assumed. If y equals 2iero, a folded normal distribution is

used. This rule is simply a formalized reproducible characterization of a

subjective assessment of input data uncertainty. It is felt that the sub-

jective nature of the disaggregated uncertainty estimates did not warrant a

more rigorous approach. For purposes of reproducibility, however, the

adopted algorithm is detailed below.

The first step in aggregating is to compute the variances of the entries

being aggregated:

11



*

Case 1: Folded Normal. V = (b/3)
2

(l- -)
TT

Case 2: Normal. V = (M 6/3)
2

*
2 1

2
D

Case 3: Lognormal. V = M exp(—— )
- 1 !

As indicated above, the variances of the entries being aggregated are

summed to obtain the variance of the aggregate entry. The decision to make

the aggregate entry folded normal, normal or lognormal depends on the ag-

gregate variance V and the aggregate published value M.

Case 1: M = 0. Here we assume that the constituent entries were
also published zeros. The parameter b is chosen so that the
variance of the resulting folded normal will equal the given
aggregate variance V. This value is b = / V/(l - 2/tt)

Case 2: M 4 and 3 / V/ IM1 <_ .k. These entries are modeled as normal
with 6 chosen so that the resulting variance will equal V.

This value for 6 is 6 = 3/"v?!M|

Case 3: M ^ and 3 / V/ [Ml > . U. Here we use a lognormal random
variable specified by the paramete r D chosen to be consistent
withv. D = exp(3 / ln(l + V/M^))*

3.3 Constructing the Transactions Matrix

Fig. 3-1 shows graphically the relationship between the matrices of

transactions, (T), final demand (FD), imports (M) and gross domestic outputs

(GDO).

N 10
T T. + J FD.

n
- M. = GDO. (3.3-1)

j=l 1J k=l
lk X

These random variables are sampled from normal or lognormal distributions as

described above. Each element in the first row (i=l) is sampled first

independently, just as BEA analysts receive these values from apparently in-

dependent sources. Since eq. (3.3-1) is an external balance condition that

*See appendix C for details.
12
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is not satisfied in general, we force this condition to be satisfied in

much the same manner as BEA does. The lognormally distributed variables in

the row are generally those obtained from unreliable sources or computed

using surrogate variables. Therefore these values are scaled proportionately

*
to satisfy eq. (3.3-1).

Proceeding in this manner through N rows, a complete data set is con-

structed satisfying row constraints. The rows are not independent, however,

because the value of all outputs (GDO) of a sector must equal the value of

all commodity inputs (from the other N sectors) plus "value added" (a term,

VA, accounting for wages, taxes, and profit). VA is measured independently

by federal agencies and provides BEA analysts with another external

condition to satisfy. Their method for satisfying this was too complex to

»*
model, so a simpler check had to be devised for this Monte Carlo study.

The method employed is based on the response of the BEA's director

of the 1-0 study to the following question: "If the criterion for terminating

the iterative process of balancing the 1-0 table were based on uncertainty of

the VA values, how much could be tolerated?" The answer indicated that out

of 90 sectors, at least 88 must be within ±20$ of the "true" value.*** If

the condition was not met, the matrix was rejected. This condition was never

violated in the actual simulation.

* In fact, BEA analysts actually estimate many of these uncertain values by
computing the difference between GDO and the sum of the well known (normall;

distributed) variables and allocating proportional to some surrogate
variables (e.g. employment).

** In the 1967 input-output study, consistency between row and column sums

was assured by assigning responsibility for individual sectors to different
analysts and after each independently estimated initial row values, the
resulting columns were presented to each analyst for independent verifi-
cation. After many iterations and some undocumented Judgement decisions,
the "published" values were agreed upon.

*** Philip M. Ritz (1976) Interindustry Economics Branch, Bureau of Economic
Analysis, U. S. Department of Commerce, personal communication.

Ik



Next, the terms in eq. (3.3-1) are used to compute the coefficients

T. .

A = -±d-
ij GDOj

and the Leontief inverse matrix (i-A) " is finally calculated. Aside from

checking the eigenvalues of A, there is no a priori check that can he performed

to guarantee positivity of the inverse matrix. Therefore, each inverse matrix

is checked after it is computed to verify that every element is greater than

zero. If it fails the test, all the randomly selected variables T, FD, M,

GDO are discarded and a new set is selected. This is exactly the procedure

employed by BEA. Again, the simulation was completed without this condition

being violated.

3.^ Results Saved for Analysis

The simulation described here is expensive from a computational point

3
of view since matrix inversion is an N operation. For this reason, every

simulated Leontief inverse matrix was saved on tape so it would be available

**
for future analysis if necessary.

For purposes of this analysis, our attention was focused on the means,

variances and confidence intervals for the elements of (i-A) and selected

subsets and linear combinations thereof. To calculate these, it was necessary

to save a set of sufficient statistics on disk after each iteration, the

running sum and the sum of the squares for each element of the following set

of results which we shall denote by fi:

* If all variables were expressed in current-year dollars, some a priori
tests are available. In the general case such as thin one, where the
energy sector outputs are uxprt-ujjtnJ in [Aiy \: i caJ unit.;:, no awAi tests exist

* * The tape will be delivered to EPRI under separate cover.

15



1. The entire (i-A) matrix;

2. The total primary energy intensity vector, e; and

3. The sector output vector, X.

The total primary energy intensity vector is a linear combination of the

energy rows of (i-A) , and a typical element e. represents the amount of basic
J

energy resources required directly and indirectly to produce one unit of output

from sector j for final consumption. The sector outputs X are computed from

the simulated (i-A) ' matrix using the base year domestic final demands as

weighting factors:

1
10

X. = I (I-A) 7. ( I FD. .
- M.) (3.U-1)

This is done because 1-0 models are frequently employed to estimate total sectc

outputs corresponding to a specified final bill of goods, and a significant

amount of additional error cancellation may be achieved.

In order to ascertain the nature of the distribution of typical random

variables, each simulated value was saved for source results. The

variables saved were X, e, and the electricity sector row of (i-A) .
Goodness

of fit tests performed on these variables are described in Section h.

Finally, since most applications of the particular models examined are in

the area of energy policy analysis, it was decided to save sufficient stat-

* The energy rows utilized are those corresponding to coal, crude oil and gas,

and the fossil fuel equivalent of hydro and nuclear electricity: e. = (i-A).

+ (I-A)"
1

+ 0.6 (I-A)"1 !*.

16



istics for recovering covariances of the energy sector rows of (l-A)~ . Since

all possible linear combinations were ~ot o^ interest - only row and column

combinations - storage requirements were considerably reduced. It was sufficient

to save the running sums of products of all pairs of entries appearing together

in such linear combinations. If other combinations are ever needed, they will

be recoverable from (i-A) matrices saved on an archive tape as described

earlier.

With this set of results it is possible to estimate the total energy require-

ments to meet arbitrarily specified final demands, and to compute linear

combinations of energy intensities similar to the "total primary" one described

earlier.

3.5 Stopping Rule

One of the major difficulties associated with Monte Carlo simulation is

knowing how many runs will be required to attain reasonable confidence in-

tervals on the results of the simulation. There are two major problem areas.

If one is considering whether or not to use Monte Carlo techniques, an

estimate of the required number of runs is crucial to determination of

simulation costs. It may be, for example, that reasonable confidence in-

tervals may require a prohibitively expensive number of runs. The second

problem arises after the decision has been made to use Monte Carlo methods.

One needs to know when enough runs have been made.

In the first problem area, present practice dictates running several

small scale simulations of a similar nature to the one of interest in order

to be able to extrapolate the number of runs in the smaller cases to the

probable runs needed in the larger. In the second area, good statistical

IT



practice dictates that before taking any samples, one must determine how to

stop sampling in a way that doesn't bias results. Executing additional runs

if the resulting confidence intervals are too large is considered unwise

since one runs the risk of biasing the simulation results by stopping when

the desired outcome occurs.

In this section we present a method for determining, based on a very

small number of runs, the proper number of total runs the simulation should

require. The method properly elucidates the cost/benefit tradeoff between

the cost of additional runs and the benefits of increased accuracy. Informa-

tion is displayed to the analyst in a way that facilitates his making a

judgement on the proper number of runs to be made. Since this method

is based on just the first few runs, biasing of the simulation is not a

problem. Based on a very small number of runs, it is also a cost effective

way to decide whether a Monte Carlo analysis is economically feasible.

In section 3.5.1 we outline the approach used, in section 3.5.2 a

brief sketch of the mathematics involved is given, followed by an example

in section 3.5-3. Mathematical derivations are given in section 3.5.^.

3.5.1 An Outline of the Approach

Suppose a relatively small number of simulation runs have been made and

unbiased estimates of the second order statistics of all elements of a set

of results, ft, have been calculated. Since the estimates are themselves

random quantities, one can determine an interval about each estimate which

contains the population value (e.g. mean or variance) with a certain probabilit

These intervals are called confidence intervals (Cl) and we shall interest

18



ourselves in intervals for which the corresponding probability is .95.

Fig. 3.5-1 describes the situation within which one must interpret the

results of a simulation. Generally, then, the simulation output is given in

two ways: the unbiased estimates are tabulated and their confidence intervals

(e.g. 95%) are also given. Our strategy will be to make a few runs and then

based on the resulting estimates and CI's, determine how many runs the entire

simulation will require. Two major effects occur with increasing sample size.

First, the estimates y and a will move around, ultimately converging to the

correct values. Second, the width of the CI's will decrease monotonically to

zero as the number of runs goes to infinity. For purposes of the stopping

rule, we have chosen to quantify the resulting simulation accuracy by monitor-

ing a histogram of

T3+4 3o + U
d -—

y

for each stopping point considered. The algorithm therefore:

1) Draws a histogram of the actual B values after an initial number of
runs , m .

2) On the basi| of the information after m runs, draws a histogram of
predicted B values after ^

2 runs, where m
2
> m denotes a possible

stopping point for the full blown simulation.

3) Step 2 for various m .

Typical results are displayed in fig. 3.5-2.

3.5.2 A Mathematical Overview

As before, we denote the matrix of simulation output variables by ft. Each

X e ft has an unknown distribution which is at best only approximately normal.

The symbols are defined in Figure 3.

5

-l.
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A.

x

a. b

f44
1

Figure 3.5-1 Mean and Variance Estimates and their Confidence Intervals

u « unbiased estimate of the mean of the underlying distribution a and b are
the upper and lower confidence interval lengths for y.

- unbiased estimate of the standard deviation of the underlying distribution

U and L are the upper and lower confidence interval lengths for 3o.
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Figure 3.5-2 Stopping Rule Output Histograms for the 90 Order
Simulation.
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We denote the set of samples of each X e ft by {x.}. Although what follows

could be done for the unknown density of X e ft , this approach involves inac-

curacies in the determination of the fourth central moment and is computationa]

quite expensive. Instead we have chosen to convert each X e ft to a normal

random variable Z by the transformation

lOi

1 10
j = 10(i-l) J

Since the samples x are independent and identically distributed (iid) the
J

2

central limit theorem implies that the z. are approximately N(y ,o /10 ) . All
i y •*

statistical evaluations will be performed on Z and the results will be back-

transformed via (3.5-1) to X. Since the Z's are normal, the unbiased estimates

for their mean and variance are given by the well known relations [Winkler

& Hayes (1970)]

V =
n

i=l
y = -

I z. (3.5-2)
n .^ 1

-.2
I

(z.- M V

o = i=± (3.5-3)
(n-1)

where n = m/10 is the number of Z sample points and m is the total number of ru

We assume that even after the initial 1^ runs, the CI around J is very small.

This has empirically been verified as a valid assumption and it permits us to

evaluate B+ for the Z variables by only worrying about the upper CI on a which

"2. ~ o
we denote by a . Again due to the normality of the Z's, c is well known tou u

be [Winkler & Hayes (1970)]

; 2 (n-l) a
2

(.975; n-l)
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where )(• / _n denotes the value in a chi-square distribution with n-1

J

degrees of freedom cutting off the upper .975 of sample values.

B for the Z variables is then given by

3o T

B
+ = _Un = ^1 / (n-1)

(3>5_ 5)
n y y / v 2

n
V * (.975. n-1)

i

where the subscript n denotes the number of Z sample points in the simulation. To

evaluate B we shall require (J and a . Even with relatively small n,
n
2

n
2

n
2

y ^ p since the CI even at n, is very short. Such is not the case with
n.,?* n 1

**
a . We can, however, upper bound a if a is known by noting that
n
2

n
2

n
±

2~ 1~ 1 has an F distribution with n - n and n degrees of freedom

(n
2
-n

1
)(n

1
-l)

o
n
2

where Q ^ ttt~. We can then determine K such that

a
n
l

P{Q <_K} = .50 (3.5-6)

and then use

a = A o (3.5-7)
n
2

n
x

in (3.5-5). It is clear from (3. 5-5) and (3.5-7) that for r^ and n
2

fixed,

the B
+

is linearly related to B for each Z. The histogram of Figure
n
2

n
±

+
3.5-2 can then be generated by evaluating the actual histogram for B after

*
N. = M./10

i :

**
This is proved in section 3.5-^.
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n runs, fixing n , evaluating the constant multiplier, C, and multiplying

each point in the histogram by C. In particular,

B = C B
+

Where
n
2

n
±

C = / K
n
2 " X \ / n

i - 2

$ (.975-, n
2
-l)y^# (.975; r^-l)

and K is given by (3.5-6)

The choice of the probability .5 in (3.5-6) is not arbitrary. We a^e

interested in predicting the histogram of B from the histogram B Foi
n
2

n
i 1

each Z e ft, define an indicator function I as follows:
Z

1 if Q„ > K
I =' z

otherwise

The numbers of Z's for which Q > K is then equal to
Li

N A I I

Zeft

Provided .50 is used in (3. 5-6), the expected value of N = \ E{I„} = — |fi|

Zeft

where |fl| denotes the number of elements in the set ft. The histogram of

B can be predicted from that for B if the behavior around the decile
n
2

n
±

points can be quantified. The fact that E{N} = — |ft| indicates that the set of

points around each decile in the histogram of B should behave in the fol-
n
l

lowing way. The deciles of B are approximately C times the deciles of
n
2

B since for large Iftl roughly half of the points around each B decile
n '

' n
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is expected to change by more than a factor of C with the completion of

n runs. The other half is expected to change by less than a factor of C.

Provided some degree ol Independence exists among the entries, the decile at

n should therefore be approximately c times the decile at n . The final step

simply uses (3.5-1) to convert the B histogram of values for the Z variables
n
2

in il back to a histogram for the associated X variables. This just amounts

to multiplying the decile values of B by / 10 since /10a = a and u = u .

3.^.3 An Example

As an example, we shall discuss the actual 90 order stopping rule

results. After 200 runs, the histograms of Figure 3.5-2 were generated.*

As discussed above, B = 3 a / y was chosen as the ordinate since it

is a useful measure of the variability of each element in the result

set. This figure predicts the variability of results to be expected after

different possible stopping points. The diminishing returns for increasing

the number of runs is evident from a comparison of the marginal benefit

by increasing from 200 to 600 runs to that obtained by increasing from

1000 to 2000 runs. This format permits the analyst to decide at which

point the marginal benefit no longer justifies the increased cost. Clearly,

this requires a non trivial judgement by the analyst. Based on the

relatively high cost per iteration in this simulation, 1000 was

chosen as the stopping point.

In an attempt to quantify the accuracy of this stopping rule, comparisons

of predicted and actual histograms were made at the 90 order. Results

are given in Table 3.5-1. Similar tests were done at the 30 order where

actuals were compared with predictions based on only 100 runs, and very

small errors were observed.

*Although similar histograms for the total primary vector, e, and GDO

were used in the determination of the proper stopping point, for purposes

of this example, we shall concentrate on figure 3-5-1.
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3.5.1+ Mathematical Derivations

(n^ - n - l)n
We first demonstrate in this appendix that 73 —^77 ^ N Q has

U, - n )(n - l)

an F/ \ 2
(n

2
- n ; n ) distribution where Q 4— and then outline the method

a
n

l

for calculating the K of (3.5-6).

Consider the event R A < K '

where

I 7-
"2 i»l

n-1
and y. = z. - y

1 1 z.
1

f
n
2

R =< I y,
2

< (n-1) K <?

2

i=l
X d n

i

Since
i=l 2 1

r »
2

R =('
I y

2
l[(n?

-l) K - (n-1)] a
2

j i=n +1 1

,
2

n-1
Dividing "both sides of the inequality by (n -n ) Q ( ) we obtain;

n2

(I y?
i=n +1 . /(n -n )

R = <
n„

( I
1
y")/^

i=l

L

2 1 n n

(n_-l)K - (n.-l) ; n.
_£ ± I (_JL_)

n —

n

n —1
2 J 1 1J

For large samples, y is much closer to the mean than any ^iven sample point,
2*
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z. ,and therefore y. are N(0,o ) and iid. Introducing q. = -- y. in * we obtain

r

(I q?)/(n,-nj

R =<

i=n +1
1

x

2 1'

i i=l

(n -l)K - (n -1) n.—

£

, J:
(

±_^ **
In -n V1 '

where q.,-jN(0,l). Since q.'^ 1 N(0,l) and q. are iid, both the numerator and
T. 1 1

v 2
denominator of the LHS of ** are -k random variables divided by their

respective degrees of freedom, and the LHS of * and ** have an F, _ n .

n ^

(n
2
-n

1
-l)n

1
distribution [Winkler and Hayes (1970)]. Therefore, -?—-

—

\ / _^ Q has an

(n -n in ) distribution, QED

We shall now determine K such that P {Q<K} = .5. By **, this event is

equivalent to

(

P ( F

n
±

(n
2
-l)K - (n

x
-l) jl

(n
2
-n

1
;n

1
)
- n -1 n2~nl

Therefore we simply find ^ such that P <' F, \
< = .5 and

V
(n

2
-nr n

i
)_"

find K from

K- Mn
1
-l)(n

2
-n

1
) +

( j| ^

1 n
2
-l
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k.O ANALYSIS OF RESULTS

The basic results of the simulation will be given for the 90 order

1-0 matrix. This includes information on bias relative to published values,

variance measures and their relation to error bounds, the sensitivity of the

results to uncertainties on the variances of the underlying BEA data and the

effects of aggregating to 30 sectors and disaggregating to 101 sectors. As

a prelude, we begin by discussing the goodness of fit tests which were

required to verify some distributional assumptions inherent in the simulation.

k.l Goodness of Fit

The methodology for the goodness of fit tests was developed by Stephens

(197°), who describes a test for normality based on the Cramer-von Mises

statistic which may be employed when the population mean and standard devia-

tion are not known. Stephens' test compares a given sample distribution

function to a normal distribution with mean and standard deviation given by

the sample mean and sample standard deviation. Included in Stephens' paper is a

table of significance levels for the statistic given the hypothesis that the

random variable being tested is normal. Thus, a test of normality may be

made by calculating the value of Stephens' statistic for a given sample and

comparing it to the tabulated values which characterize normal behavior.

The first series of tests using this method was made to test the normal-

ity of the Z random variables defined by averaging every ten consecutive

sample points obtained for the entries in the simulation results. In all,

270 of these random variables were tested, one for each entry in the electric

utility sector row of (i-A) , the total primary energy vector, e, and the

total output vector, X. Table U-l shows the upper tail percentage points
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calculated by Stephens along with the observed percentages of the Z random

variables which fell into the various categories.

OBSERVED PERCENTAGE 16.0 12.22 6.29 3.33 1.

NORMAL PERCENTAGE 15.0 10.0 5.0 2.5 1.

STEPHENS' STATISTIC .091 .10*4 .126 .148 •

Table 4-1. A Comparison of Observed and Theoretical Upper Tail Percentage

Points for Goodness of Fit Tests on the Random Variables Z.

For example, Stephens predicts that 10$ of all normal samples will achieve

sample statistics larger than .104; we observed 12.2$ above that mark.

Even if the 270 random variable being tested are interdependent, the expected

value of the observed percentages should equal the theoretical percentages

if the normality hypothesis is satisfied. Thus the results are very reas-

suring and seem to justify treating the average variables as normal.

A second series of tests was undertaken to examine the distributional

properties of the raw data for the same 270 entries. In the absence of

averaging there is little reason to suspect that these random variables are

normal. However, the results were surprising in that very many of the 270

sample statistics were small and therefore indicate good fit to a normal

distribution curve. Those entries that displayed decidedly non-normal be-

havior were virtually all unimodal but slightly skewed to the right. It is

interesting to conjecture why some entries seem to be roughly normal while

others are not; perhaps in the process of inversion some elements of (i-A)

get a better mix of elements of the A matrix. At any rate it is useful to

know that the entries are all more or less unimodal and symmetric. If such

is the case then 3a may be conveniently employed as an error bound on the

distance from the mean, p. While Chebychev's inequality guarantees that
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y ± 3a contains at least o9% of the total probability in an arbitrary

distribution, this percentage rises to 99.7 in the normal case. Pre-

sumably the percentage is also high for any random variable whose density

function is roughly unimodal and symmetric. For all but one of the entries

examined here, at least 99% of the sample points fell within three sample

standard deviations of the sample mean. Thus , 3a may be thought of as an

approximate bound on deviation from the mean for the entries in the simulation

results, even if many of those entries are not very close to being normal.

k.2 Confidence Intervals

This section discusses the precision of the sample statistics obtained

for various simulation results in light of the goodness of fit tests just

discussed. Because the Z variables are approximately normal, standard

techniques may be used to derive confidence intervals for the mean and

variance of a Z variable and hence for the mean and standard deviation of

the associated entry. After 1000 inversions, a 97-5% upper confidence

bound a on the standard deviation a of an entry is given by a = a *l.l6.
u J u

Thus, a is a fairly good estimate of a for any given entry.

The confidence intervals on the sample means are even smaller. In more

than 90% of the entries in the inverse the population mean is within 2% of

the sample mean with 95% confidence. All the entries of e and X are ac-

curate to within 1% with 95% confidence.
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^.3 Variability of the Elements in the Result Set

Histograms of jo/p were prepared in order to show the relative amount

of variability in the entries of the results set. Three such histograms, one

for the whole inverse, one fore and one for X, are displayed in Figure k-1.

For half of the entries of the inverse, 3o/u is less than 20% while

virtually all the entries of e and X have 3o/p less than 20%. The above

discussion of confidence intervals suggests that these histograms would not

change substantially if the sample statistics were replaced by the population

means and standard deviations. Since these entries are roughly unimodal and

symmetric, the histograms may then be taken as a good measure of the variabili

in the entries of the various subsets of the results. The large decrease in

variability from the elements of the inverse to the elements of X suggests

that significant error cancellation occurs as linear combinations of many

1-0 coefficients are computed.
(3o

u
+ y - p)

In addition to those discussed above, histograms for
P

(3a + p - u)
u

and , where p = published value, were also computed in order

to relate p to the upper and lower bounds on the uncertainty in an entry.

Because y is generally very close to p and because a is only slighter

larger than a, these histograms are very similar to the histograms for

3o/y except that the values are all slightly larger.

k.k Bias on Elements of the Result Set

In standard statistical language, bias is usially defined as the dif-

ference between the mean of an estimator and the true value of the quantity

to be estimated. We use the term in a fundamentally different way to denote

the difference between the mean of the simulation output variables and their
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corresponding published values. The mean values of the assumed distributions

of each element of the transactions matrix are equal to their respective

published values. One important result of the simulation is to determine

the bias introduced by normalization and inversion in passing from the trans-

actions matrix to (i-A)

Fig. h-2 details histograms of the ratio of sample mean to published

value, u/p, for three important and disjoint subsets of the result set, viz

the vectors of total output X and total primary energy intensity e and the

entire inverse (i-A) . Three aspects are noteworthy:

1) Nearly all y cluster within 2% of their published values.

2) Within this cluster, y tends to have a positive bias more often
than a negative one.

3) Essentially none of the y fall below 9&% of their respective pub-
lished values while, especially in the inverse, a small number of

y range well above the published value.

The reason for this positive bias is unclear. The best explanation

may be that transactions reported by BEA as zero were assigned a small

positive value in the simulation to account for the fact that no trans-

action is known to be exactly zero (see Appendix C). The large percentage

excess over the published value may result for the same reason, since an

inverse element may be affected (percentagewise) quite significantly if

its corresponding direct coefficient A. . changes from zero to some finite

value

.

k-5. Sensitivity of Simulation Results to Assumptions on Input Uncertainties

Since the variances assigned to input quantities such as the trans-

actions matrix, FD and GDO are only estimates of the true variances, simula-

tion results have meaning only if small changes in these assumed variances,
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do not cause very large changes in simulation outputs. This sensitivity to

changes in input variances was investigated by repeating the simulation with

the standard deviations of all normal quantities doubled and dispersion

factors on lognormal inputs doubled. Three major effects were noted:

1) The ratio of CI to u, where CI is the length of the 95% confidence
interval for the mean, was doubled by the factor of two increase

in standard deviation.

2) The ratio of 3a to y doubled on the average by doubling the input

standard deviations.

3) Increasing the input variability made the biases slightly more
negative. This is thought to be the result of increasing simulation
sensitivity to the larger elements of the transactions matrix and
decreasing relative sensitivity to the smaller elements discussed
in section k.k.

Since output uncertainties only doubled with a factor of two increase

in input uncertainties, the simulation is probably very stable with regard

to assumptions on input variances.

The absolute magnitudes of these results with doubled input uncertain-

ties may be useful in assessing the general viability of 1-0 results applied

far beyond the base year (the uncertainty of base year parameters increases

over time). Moreover, if institutional factors make it unlikely (as some

claim) that government can fairly estimate uncertainty of its own data, then

these results show the effect of a 50% underestimate of the actual uncertainty.

U.6 The Effect of Aggregation

The effect of aggregating the 90 order model to 30 order was analyzed

for two reasons

:

l) It was felt that although variances at the 30 order were smaller
than those of the 90 order due to the aggregation, more error
cancellation should exist at the 90 order where more input elements
combined to form elements of X, e and (i-A )"-'-.
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2) Since much 1-0 work is done at the 360 order, it is of interest

to determine whether the expansion of the simulation to 360 order

would likely require more than the 1000 runs used in the 90 order

case.

Aggregation produced effectively no change in the simulation output

uncertainties:

1) The ratio of 3a to y remained virtually unchanged by the aggregation.

This implies that the cwo effects mentioned above virtually cancel

one another.

2) The already very small biases of Fig. k-2 were made slightly more

negative by aggregating to the 30 order.

3) Since the ratio a /o is a function only of the number of simulation

runs, it is unaffected by aggregation.

These results give no indication that more than 1000 runs would be needed

in the 360 sector case.

U.7 Results for the 101 Sector Model

As discussed in Section 2.2 above, the purpose of the 101 order model

is to trade increased base year uncertainty for increased parametric stability

over time. The purpose of the 101 order simulation was to measure the

increase in base year uncertainty over the 90 order model. Comparison of

90 order and 101 order histograms for y /published, CI /y and 3a/y indicates

virtually no change in (l-A)~ , GDO and e and a slight increase in 3a /y for

the energy related rows of (l-A)~ . In particular, at the 90 order, 95.6$ of

the elements of the total primary energy intensities had 3a/y < .15 while at

the 101 order, 9h% were less than .15. This indicates a rather low cost in

increased stability over time. This low cost is thought to be due to the fact

3T



that there are many more elements of the transactions matrix which are import-

ant to the energy embodied in a particular sector output . Even though

the uncertainty of each of these elements is greater in the 101 case, more

of them combine so greater error cancellation occurs.

#
Consider natural gas to auto manufacturing. Natural gas is sold to perhaps
eight energy products which in turn are sold to the automobile sector.
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APPENDIX A. BASE YEAR UNCERTAINTY ESTIMATES

Clark W. Builard

A.l BEA DATA

A. 1 . 1 INTRODUCTION

Input-output data form the basis for most structural analyses of the

U.S. economic system. The massive tables of data provide a complete and

internally consistent set of linear production functions for all sectors

of the economy. But surprisingly, these analytical objectives and appli-

cations do not guide the efforts to acquire the data and compile the

tables. Actually the input-output tables are constructed as a bridge be-

tween the national income and product accounts for selected base years in

order to provide a "benchmark GNP" estimate for those years.

It is important for the analyst using input-output (i-o) data for

structural analyses to view the data from this perspective. Since it was

not acquired primarily to support structural economic analyses, it places

additional burdens on the analyst to verify the data's usefulness and

relevance to his particular application.

Consider the most general type of application, where the analyst

wants to predict sector outputs X needed to produce a final bill of

goods Y. To do this he premultiplies Y by the Leontief inverse matrix

(l-A)~ which is calculated from a matrix of direct coefficients A for a

(prior) base year input-output table. The problem the analyst must

address is : What is the uncertainty AX on the result X_ given

Data for 368 sectors are published by the U.S. Department of Commerce (l97^a)

**
For a more detailed discussion of input-output analyses see Leontief (l9Ul).
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uncertainty AA in the input-output coefficients? Actually AA may result

from 1) base-year measurement error and 2) changes in the actual A since

the base year. In this paper we are concerned only with the former.

Quantitative methods for treating this general error analysis problem

are of three types. The first uses the condition number of (i-A) to obtain

a bound on the norm of (l_-A) , resulting in an extremely conservative

upper bound on parametric error magnification. Ar. expression for true

maximum upper bound on (l-A)~ was derived by Secald (1973), and the

relative importance of certain parameters to specific applications was

determined. Even the true upper bound, however, was quite conservative

in that it did not account for the (likely) possibility of error can-

cellation.

This report is limited to presentation of uncertainty estimates on

1-0 data used in calculating the direct coefficients A.

A. 1.1.1 Sources of Error

Uncertainty in the 1-0 coefficients is related directly to several source

of error in estimating interindustry transactions for the base year. Due

to the exhaustive nature of 1-0 data, it originates from a variety of sources

ranging from census questionnaires to judgemental guesses. Morganstern (1950

has categorized the various sources of error in economic data and most of

his observations are relevant here. The total uncertainty on a particular

transaction "measurement" will include effects of incomplete census cover-

age, reporting errors due to misunderstandings or outright lying, sampling

errors inherent in surveys of firms, transcription or key punching errors,
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the possibility that forms are lost, classification errors (matching firms

and products to SIC codes), and last but certainly not least, the problem

of separating companies from establishments in processing returns from

surveys or censuses.

A. 1.1. 2 Effects of Scale

The scale of this problem is what makes it unique. Due to the size

and complexity of the system being modeled (the U.S. economy) measurments

can be taken only at infrequent intervals and at great expense. Moreover,

it takes whole institutions to obtain the measurements (e.g. the U.S. Census

Bureau) so the user of the data is generally not the one who acquired it.

Thus the burden borne routinely by persons who play the roles

of data-taker and analyst is now split amoung bureaucracies. Part of that

burden—responsibility for estimating parametric uncertainty and its effects

on analyses— is sometimes never borne because of the way the roles and

responsibilities of the bureaucracies are defined.

The mission of the Census Bureau is to produce statistics; the Bureau

of Economic Analysis (BEA) takes these and others and produces accounting

tables supporting a benchmark GNP estimate. The analyst would like to

take these statistics and interpret them as observations of a physical sys-

tem whose structure he would like to model. The statistics are often

published in terms of 5 or 10 significant figures, but none of the hundreds

or thousands of persons involved in deriving a statistic are responsible

for estimating and documenting its uncertainty.
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A. 1.2 METHOD

Recognizing that actual measurements of interindustry transactions

and other variables are made in the presence of "noise" (error sources),

and that frequent measurements are impractical, we must rely on subjective

estimates of uncertainty. Such estimates are test obtained at the level

of detail at which the measurements are taken, but here too a compromise

must be made. A single transaction in an 1-0 table may be the sum of millions

, of individual measurements of physical quantities; this report is based

on interviews with personnel at BEA, Census, and other agencies near the

top of this statistical pyramid.

A. 1.2.1 Quantities Estimated

Uncertainty estimates were obtained on the three basic constituents of

the interindustry transactions matrix. These were direct allocations, mar-

gins on domestic transactions, and transfers* Independently, estimates were

obtained for final demands, gross domestic outputs, and imports and exports.

In the next section, uncertainty estimates will be given for each of

these categories of data.

A. 1.2.2 Degree of Detail

Within the scope of this study it was possible to consider data inputs

to the 1-0 tables at the U8U-sector level of detail in many cases; and at

the 368-sector level for the remainder. At the more detailed level, a

magnetic tape was available from BEA which included notes fcr various direct

allocations indicating the source of the data and the magnitude of the

«
Precise definitions of these terms are given by the U.S. Department of
Commerce (l97Ub).
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figure obtained from that source. This tape was scanned for notes identi-

fying entries from the Census Bureau or other sources deemed equally ac-

curate. If more than 75% of the entry in the 368-order Direct Allocations

matrix was from one of these sources, it was assigned the same uncertainty

as census data. Estimates of uncertainty for all other data were made at

the 368-level of detail as described in the next section.

A. 1.2. 3 Interviev Techniques

Many agency personnel seemed well-prepared and sometimes even anxious

to assign quantitative estimates of uncertainty to the statistics for which

they were responsible. Others were quite reluctant, citing the fact that

the "correct" answer was not known and only one measurement had been taken

so there was inadequate information on which to base an answer. While this

latter group was probably more correct in their assessment of the situation,

it should be remembered that such a statement could be used as an "excuse"

for covering up error levels that might reflect badly on one's job perfor-

mance. In virtually every case, those interviewed responded with a quanti-

tative answer to a question of the form "If God appeared and told the

correct number to the commander of a firing squad, and if that commander

asked you to estimate error bounds for your published figure and threaten-

ed to kill you if the correct figure lay outside the bounds ... What would

you estimate?"

During the course of interviews with persons relying on the same data

sources, and with persons responsible for producing that source data, I was

able to arrive at what I believe to be an internally consistent set of uncer-

tainty estimates.' All results presented in this report may be attributed to the

These sources are Minerals Yearbook , Census of Mineral Industries , Census
of Manufactures Table 7A , Census of Transportation , Census of Business ,

Interstate Commerce Commission, and Civil Aeronautics Board publications.
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author, although footnotes are used to identify the persons whom I inter-

viewed to obtain information and impressions. Given the nature of the

strong institutional pressures for downward bias in these estimates, I

do not expect that the pressures for conservatism that I offered in phras-

ing my interview questions provided a significant counteracting force.

A.I.2.U. Bilas

It is expected that uncertainty estimates obtained from such "top of

the pyramid" interviews will be biased downward, since a BEA employee (say)

will be reluctant to question the Census Bureau's estimate of the total

U.S. steel production unless he has conflicting statistics from somewhere

else. Since the Census Bureau has a virtual monopoly on such statistics,

the latter situation is impossible; since the BEA employee has barely the

resources to do his own job, he cannot begin to duplicate the efforts of

the Census Bureau so the former situation never arises either. Simply

stated, if one bureaucracy publishes a seven-significant-figure statistic

that cost a million dollars to derive, the humble bureaucrat in another

agency, with his own problems to worry about, is unlikely to seriously

challenge the figure.

Possible treatments for this problem of bias will be discussed in

the last section.

A. 1.2.5 Effect of Numerical Magnitude

Development of 1-0 data involves much work within established, or

relatively well-known, control totals. For this reason, and since the

work is done primarily within an accounting framework, the largest numbers

«
See Morganstern (1950).
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usually receive the most attention and are the best known, and the "residual"

between the well -known components and the control total is often distributed

among other categories using some kind of estimation algorithm. The only

exception to this general "rule" occurs when the figure involved has a signi-

ficant impact on the value of GNP; then, though small, the figure may become

the subject of further analysis and refinement.

A. 1.3. UNCERTAINTY ESTIMATES

In this section, estimates will first be presented at the 368-sector

level of detail. This was the level of disaggregation at which most of the

persons interviewed were most comfortable in assigning their subjective

estimates of uncertainty.

As indicated earlier, all estimates of upper and lower bounds presented

here may be attributed to the author. The discussion and footnotes indicate

the source of my impressions and information.

Estimates of upper and lower bounds are given in two ways. The first

is a fraction 6 which denotes symmetric bounds around the published value

of + 1006 %. The second, applied in cases where the published value is

less well known, is the factor D which when multiplied by the published

value gives the upper bound, and whose inverse determines the lower bound.

All bounds should be taken to represent a 99- 1% confidence level.

A. 1.3.1 Direct Allocations

"Good" Census-grade entri es. All transactions from one manufacturing

sector to another are assigned 6 = .05, as are all other interindustry

direct allocations obtained from Census Bureau sources. This figure is

*
This information based primarily on interviews with Kenneth Hanson, Richard
Chassey, Ruth Runyan, and Patrick Duck of the Census of Manufactures,
Industry Division.
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based on interviews with Census Bureau personnel who feel their techniques

for circumventing problems associated with less than 100$ coverage are

well within these limits, and that internal cross-checks minimize report-

ing and related errors. The largest source of error here is suspected to

be classification error; matching products and firms to SIC codes.

*
Agriculture sector rows . Based largely on crop reporting surveys;

estimate 6 = .10 except for certain transactions noted elsewhere

(e.g. government final demand).

Agriculture sector columns . Inputs from real estate, chemicals, and

chemical fertilizer mining are known best from surveys and other sources;

estimate 6 = .10. Directly allocated inputs from transportation and trade

sectors were treated the same as margins, as described in sections 3,*+. All

other entries are based at least in part on farm expenditure surveys taken in

1955; assume D = 2 for all entries greater than 1% of gross domestic out-

put for the sector. All smaller nonzero numbers scaled from D = 2 -* D = 10

as described in Sec. A. 3.

Federal government purchases . For both defense and non-defense

purchases, the following assumptions apply; hew construction inputs are

based on a good data source, so assign 6 = .05; maintenance and repair

construction is more subject to classification errors, so 6 = .10.

All entries between $10 million and $50 million are assigned 5 = . 30

unless otherwise specified below. Purchases less than or equal to

$10 million are assigned D = 2 -> 10 as discussed in Sec. A. 3.

*Based primarily on interviews with Jerry Schluter, U.S. Department of

Agriculture.

Based primarily on interviews with Roy Seaton , Bureau of Economic Analysis,
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Defense purchases are generally better known, due to more complete

source data. Inputs from manufacturing sectors are assigned 6 = .10

if they exceed $50 million. Transportation inputs were derived from

outdated formulae that applied poorly to the Southeast Asia situation

in 1967 and are assigned 6 = .50. Other non-manufacturing inputs were

assigned 6 = .10 if they were above the $50 million threshold.

Non-defense purchases of inputs from non-manufacturing sectors were

less well known, and were assigned D = 3 if they exceeded one percent of

total inputs and D=3-*10 if they were smaller, liar.uf acturir.g ir.puts below

the $50 million threshold were treated the same. Transportation inputs

were assigned 6 = .30.

State and local government purchases . 7cr health, welfare, education,

and sanitation purchases, new construction and real estate inputs are as-

signed 6 = .05 since they are obtained from census sources. Together with

wages, these inputs account for nearly 75^ of all ir.puts. Other inputs

are assigned 6 = .25 if they exceed 1% of total ir.puts, and Z = 1.5 -* 10

as per Sec. A. 3 if they are equal to or smaller than 1%.

For public safety purchases, new construction and real estate are

assigned 6 = .05. Maintenance construction is known poorly; D = 1.5.

Manufactured inputs greater than $2 million are assigned D = 1.5, and

smaller inputs D = 1.5 * 10. Non-manufactured ir.puts are assigned D = 1. 5 for

those greater than $10 million, and D = 1.5 •* 10 for the smaller ones.

Other state and local government purchases are also assigned 5 = .05

for new construction and real estate, but also 5 = .05 for maintenance

construction since it is primarily highway maintenance which is a Census

4t

Based primarily on interviews with John Wealty, Bureau of Economic Analysis,
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number. Manufactured inputs greater than $5 million are assigned D = 1.5,

and smaller figures D 1.5 +• 10 ae per Sec. A. 3. Non-manufactured inputs

greater than $50 million are assigned D = 2 and D = 2 -* 10 for smaller inputs
#

Imports and exports . Trade data for commodities (BEA sectors 1.00 -

6U.00) are obtained from Census sources and are assigned 6 = .05. Trans-

portation and wholesale and retail trade data, including margins, were assign*

6 = .25. Data on other items (services, etc.) involved in international

trade were assigned D = 2, since they were obtained from balance of pay-

ments sample data. Small entries at the 368-sector level of detail, repre-

senting less than 1% of gross imports or exports were assigned D = 2 * 10

as per Sec. A. 3.

Inventory change . These figures are in general the least accurate

of all final demand entries, and were assigned 6 = .20 for manufactured

goods and 6 = .40 elsewhere.

"All other" direct allocations . Within the scope of this study it was

impossible to identify those responsible for most entries in the input-

output tables. Having taken care of most entries through interviews des-

cribed above, the remainder were handled as a group. The algorithm was

designed to assign very tight tolerances to any transaction comprising a

high percentage of total outputs or inputs, and to any sector's output

which "by definition" had to be assigned to a particular cell. For example,

the algorithm had to assign a very tight tolerance to sales from new resi-

dential construction to gross private capital formation, so it would be

compatible with the tolerance assigned to that sector's gross domestic out-

put. There are numerous other instances where census data might identify

Based primarily on interviews with Robert Mangen, Bureau of Economic Analysis.
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sales of "butter to food processors or bakers, and the remainder is attri-

buted to personal consumption expenditures. On the other hand, very small-

magnitude transactions were assigned high uncertainty for the reasons dis-

cussed earlier.

The algorithm defined two fractions for each direct allocation:

an input fraction, by normalizing with respect to the gross domestic

output of the consuming sector; and an output fraction, by normalizing

with respect to the gross domestic output of the producing sector. The

algorithm proceeds with these tests in the following order, and assigning

6 or D when the first condition is satisfied: if both fractions exceed

•95 then 6 = .01, if only one exceeds .95 then 5 = .02; if both exceed

.80, 6 = .05, if only one exceeds .80, 6 = .10; if either fraction ex-

ceeds .05, then 6 = .20; if either exceeds .01, then Z - 1.5. If

both are smaller than .01 it assigns D = 2 -* 10 as per Sec. A. 3.

*
A. 1.3. 2 Gross Domestic Output

These figures are the best known because they are from the Census

or other equally reliable sources (e.g., IRS) and are assigned 5 = .01.

The largest errors here probably stem from classification problems and

possible confusion between company and establishment-based data.

A. 1.3. 3 Transfers .

If both the row and column sectors were manufacturing sectors , the

Based primarily on interviews with Gene Roberts ana Phil Ritz , Bureau oi

Economic Analysis, and with Kenneth Hanson, Census of Manufactures Industry

Division.

#*
Based primarily on interviews with Kenneth Hanson, Census of Manufactures

Industry Division.
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source of this data was the Census Bureau, cut the accuracy was less than

that of direct allocations; assign 6 = .20. All other transfers were

assigned upper and lower bounds in the same manner as the corresponding

cell in the direct allocations matrix.

A. 1.3.*+ Margins

Transportation margins, Toy product type and mode, are obtained as

totals and then prorated proportional to producers' prices across all pur-

chasers of that commodity. Then margins in each .input are summed for

each purchaser and added to the directly allocated inputs. For all

transport modes, 6 = .25 was assigned to the margins, Wholesale and

retail trade margins may be expected to be more variable, and are some-

times computed as percentage markups over the already estimated trans-

port-margins. Therefore they are assigned 6 - .35-

A.l.U. CONCLUSIONS, APPLICATIONS, AND LIMITATIONS

Earlier work using maximum-upper-bound analyses had shown the dangers

that might be encountered using results of input-output analyses. There-

fore, these estimates of uncertainty on the actual data were needed to check

the maximum error bounds on the particular results we were interested in

using (e.g. , elements of the energy sector rows of the 1967 Leontief inverse

matrix) . It soon became evident that the magnitude of the uncertainties in

*See for example the results presented by Bullard and Sebald (1975).
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the parameter estimation process that our max' mum upper bound analysis would

yield unsatisfactory results.

The above information is given to further i.lluminat'e the context in

which these uncertainty estimates were made, nnd hopefully will dis-

courage inappropriate applications of the results.

Finally, I repeat that the uncertainty estimates presented here

are my own. I have listed many of the persons whom I interviewed, but

they have not endorsed my interpretations of those interviews. If the

absolute levels of the estimates are widely disputed (and I expect they

will be) perhaps at least the relative levels will be accepted. On

this basis we have performed stochastic error analyses on the 1°67 U.S.

input-output model for several cases; including doubling error margins

presented here, to determine the sensitivity of the results to systematic

bias in the estimates.
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A. 2 DIRECT ENERGY ALLOCATIONS

Knecht (1975) estimated error tolerances on all physical-unit energy-

transactions. These are coded in Table A. 2-2, at the 90 sector level of

detail, and in Tables A. 2-3 and A.2-U at the 101-sector level, and the" codes ai

explained in Table A. 2-1 below.

Table A. 2-1

ENERGY TRANSACTION TOLERANCE CODES

Code

00 y=0 and 3a=10
11

Btu)

01, 02,09,13 .05

0U, Ul,l6,18,19,20,2^,28 .10

03,05,06,29,30 .15

07, 12, Ik, 15, 17, 22, 23, 26, 27 .20

25 .25

08,10,11 .30

10 .35

* Note that instead of the 368-sector level of aggregation, the results pre-
sented here are consistent with the slightly aggregated 357-sector breakdown
described by Bullard & Herendeen (1975). Dummy sectors consuming no energy

have been deleted and public and private sectors producing the same primary
product have been combined.
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TABLE A. 2-2

TOLERANCE CODES FOR DIRECT ENERGY USE DATA (90 SECTOR)

Sector
Number

1

2

3
4

5

6
7

8

9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Sector Name

COAL MINING
CRUDE PETR0LEU1/ GAS
REF'D PETROLEUM PROD'S
ELECTRIC UTILITIES
NATURAL GAS UTILITIES
LIVESTOCK.. .PRODUCTS
OTHER AGRIC'L PRODUCTS
FORESTRY AND FISHERY..
AG./ FOR'Y. ..SFRVICES
IRON.. .OPES MINING
NONFERROUS ORES MINIMS
STONE AND CLAY MINING.
CHEMICALS^ ETC. MINING
NEW CONSTRUCTION
MAINT. AND REPAIR CON.
ORDNANCE AND ACCESSOR.
FOOD AND KINDRED PROD.
TOBACCO MANUFACTURING
FABRIC. ..THREAD MILLS
MISC. TEXTILE. ..FLOOR.
APPAREL
MISC. FA3. TEXTILE PRO
LUMBER. ..PROD'S/ EXCEP
WOODEN CONTAINERS
HOUSEHOLD FURNITURE
OTHER FURNITURE AND
PAPER AND.. .EXCEPT...
PAPERB'D CONTAINERS
PRINTING AND PU3LISH'G
CHEMICALS AND. ..PROD'S
PLASTICS AND MATER'S
DRUGS /...PREPARATIONS
PAINTS AND PRODUCTS
PAVING MIXTURES AND...
ASPHALT FELTS AND COAT
RUBBER AND. ..PRODUCTS
LEATHER TANNING AND...
FOOTWEAR AND. ..PROD'S
GLASS AND GLASS PROD'S
STONE AND CLAY PROD'S
PRIM. IRON AND STEEL..
PRIM. NONFERROUS METAL
METAL CONTAINERS
HEAT./ PLUMti PROD'S
SCREW MACH. PROD'S/
OTHER FAO. METAL PROD.
ENGINES AND TURH1NES
FARM MACHINERY
CONSTRUCTION/ EQUIP.
MAT. HANDLING EQUIP.

Coal

Energy Supplies

Crude Oil Electric Gas

02 00 02 02 02
11 02 02 02 02
01 01 01 01 01
01 00 01 01 01
11 01 11 11 01
11 00 08 08 11
11 00 08 08 11

11 00 11 11 11

11 00 11 11 11
11 00 02 02 02
11 00 02 02 02
02 00 02 02 02
11 00 02 02 02
03 00 11 11 11
03 00 11 11 11
03 00 05 03 03
02 00 04 02 02
02 00 04 02 02
02 00 04 02 02
03 00 05 11 03
03 00 05 03 03
11 00 11 11 11

03 00 05 03 03
11 uo 05 03 11

03 00 05 03 03
03 00 05 11 03
02 00 04 02 02
02 00 04 02 02
03 00 05 03 03
02 02 04 02 02
02 00 04 02 02
02 00 04 02 02
02 00 04 02 02
11 00 06 02 02
02 00 06 02 02
02 00 04 02 02
03 00 05 11 11

05 00 05 03 03
02 00 04 02 02
02 00 04 02 02
02 00 04 02 . 02
02 00 04 02 02
02 00 06 02 02
03 00 05 03 03
02 00 04 02 02
03 00 07 03 03
02 . 00 04 02 02
02 00 04 02 02
03 00 05 03 03
03 00 05 11 03
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TABLE A. 2-2 (continued)

Sector
Number

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Sector Name
Energy Supplies

METALS
SPEC.
GEN. I

M A C M J N

OFF.,
SERV.
ELEC.
HOUSt H

ELEC.
RADIO,
ELEC.
MISC.
MOTOR
A1RCRA
OTHER
PROFES
OPICAL
MISC.
RA1LRO
...HIG
MOTOR
WATER
AIR TR
PIPE L

TRANSP
COM'.MS
RADIO
WATER
WHOLES
FINANC
REAL E

HOTELS
BUSINE
AUTO.
AMUSEM
MED./
FED. G

STATE
BUS. T

OFFICE
PERS.
GROSS.
NET IN
NET EX
FED. G

FED. G

STATE.
STATE.
STATF.
STATE.

0RK1N
INDUS
ND'JST

E ShO
C'OMP'

1ND.
TRANS
OLD A

LI'jHT
TV,

CO*!PO
ELEC.
VEHIC
FT AN
TRANS
SIONA
. ..EQ
M A N U F

ADS A

HwAY
FREIG
TRANS
ANSPO
INE T

ORTAI
EXCE

AND T

AND S

ALE A

E AND
STATE
AND.

SS SE
REPAI
ENTS
ED. S

OV'T
AND L

RAV..
SUPP

CONSU
..CAP
V E N T

PORTS
OV'T.
OV'T.
. .GOV
. .HFA
. .GOV
. .GOV

'j . . . E

TRY..
RIAL.
P PRO
G M

M A C H 1

...AP
PPLIA
•G...
COM.
NENTS
..SUP
HLES.
D PAR
. E9IJ

L...S
UIP.
ACTUR
ND
PASS .

HT TR
PORTA
RTATI
RANSP
ON SE
PT RA
V 3R0
AN. S

ND RE
INSU
AND
..EXC
"VICE
R AND

QUIP'T
.EQUIP
. .EQ'T
DUCTS
mCHINE
NES
PARAT.
NCES
EQUIP.
EQUIP.

PLIES
..EQ'T
TS
IP*1ENT
UPPLIE
AND. ..

1NG
SERV'S
TRAN.

ANS. ..

T10N
ON
ORTA'N
RVICES
DID...
ADCAST
ERV 'S

TAIL..
RANCE
RENTAL
EPT...
S

SERV.

ERV'S AND..
ENTERPRISES
OCAL...EN'S
.AND GIFTS
LIES
MP'N EXPEN.
. FORMATION
RY CHANGE

..DEFENSE

..OTHER
'T...EDUC 'N

LTH, SAN.
'T.. .SAFETY
•T OTHER

sal Crude Oil Electric Gas

U2 00 04 02 02
03 00 05 11 03
02 00 04 02 02
03 00 05 03 03
11 00 04 02 02
03 00 05 11 03
03 00 05 03 03
03 00 05 11 03
03 00 05 03 03
03 00 05 03 03
02 00 04 02 02
03 00 05 11 11

02 00 04 02 02
02 00 04 02 02
0? 00 04 02 02
03 00 05 11 11

03 00 04 02 02
03 00 05 03 11

09 00 09 09 11

11 00 09 09 11
11 00 09 11 11
0? 00 09 11 11

11 00 09 11 11
11 00 11 11 09
11 00 00 11 11
11 00 11 11 11

11 00 11 11 11
11 00 11 11 11

11 00 11 11 11
11 00 11 12 11

no 00 11 11 11

11 00 11 11 51
11 00 11 12 11

n 00 11 12 11

11 00 11 12 11

11 00 11 11 11

11 00 11 12 11

11 00 11 12 11

00 00 00 00 00
03 00 00 00 00
11 00 01 12 01
CO 00 00 00 00
01 01 01 00 01
01 01 01 01 01
11 00 11 11 11

11 00 11 11 11

11 00 11 11 11

11 00 11 12 11

11 . 00 11 12 11

11 00 11 12 11
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TABLE A. 2-3

TOLERANCE CODES FOR ENERGY END USES DATA (101 SECTOR)

Misc.

Misc.
Elec.

Sector i
Feed- Mot. Ther. Water Space Air Pow.

Number Sector Name Coke Stocks Pow. Users Heat Heat Cond • Uses

1

2

COAL MINING 00 14 14 16 15 00 00 18

CRUDE PETROLEUM/- GAS 00 14 14 16 15 00 00 18

3 GASIFIED COAL 00 21 '21 21 21 21 21 21

k RtF'D PETROLEUM PROD'S 00 13 14 19 15 14 1 7 20
5 NATURAL GAS UTILITIES 00 14 14 00 14 22 14 23
6 FOSSIL ELECTRIC UTIL'S 00 14 14 30 14 22 14 23

7 NUCLEAR ELEC. UTIL'S 00 14 14 00 14 22 14 23
8 RENEWA3LE ELEC. UTIL'S 00 14 14 00 14 22 14 23
9 ORt-REDUC. FEEDSTOCKS 00 00 00 DO 00 00 00 00
10 CHEMICAL FEEDSTOCKS 00 00 DO 30 00 00 00 00
11 MOTIVE POWER 00 00 00 00 00 00 00 00
12 MISC. THERMAL USES 00 00 00 30 DO 00 UO 00
13 WATER HEAT 00 00 00 30 30 00 00 00
Ik SPACE HEAT 00 00 00 30 00 00 00 00
15 AIR-CONDITIONING 00 00 00 00 00 00 00 00
16 MISC. ELEC. POWER USES 00 00 00 00 DO 00 00 00
17 LIVESTOCK PRODUCTS CO u 14 00 14 22 00 23
18 OTHER AGRIC'L PRODUCTS 00 13 13 30 14 22 00 23
19 FORTSTRY AND FISHERY.. 00 14 14 00 14 22 00 23
20 AG.*- FOR*Y. -.SERVICES 00 14 14 00 14 22 00 23
21 IRON. ..ORES MINING 00 n 14 16 15 00 00 18
22 NONFfcRROUS ORES MINING 00 14 14 16 15 00 00 18
23 STONE AND CLAY MINING. 00 14 14 16 15 00 00 18
2U CHEMICALS, ETC. MINING 00 14 14 16 15 00 00 18
25 NEW CONSTRUCTION 00 24 14 25 25 25 00 23
26 MAINT. AND REPAIR CON. 00 24 14 25 25 00 00 23
27 ORDNANCE AND ACCESSOR. 00 14 14 29 15 14 17 30
28 FOOD AND KINDRED PROD. 13 14 14 19 15 14 17 20
29 TOBACCO MANUFACTURING 00 14 14 19 15 14 17 20
30 FA3RIC THREAD MILLS 00 14 14 19 15 14 17 20
31 MISC. TEXTILE.. .FLOOR. 00 14 14 29 15 14 17 30
32 APPAREL 00 14 14 29 15 14 17 30
33 MISC. FAB. TEXTILE PRO 00 14 14 29 15 . 14 17 30
3U LUMBER. ..PROD'S, EXCEP 00 14 14 29 15 14 17 30
35 WOODEN CONTAINERS 00 14 14 29 15 14 00 30
36 HOUSEHOLD FURNITURE 00 14 14 29 15 14 00 30
37 OTHER FURNITURE AND 00 14 14 29 15 14 00 30
38 PAPER AND.. .EXCEPT 00 13 14 19 15 14 17 20
39 PAPERB'D CONTAINERS... 00 14 14 19 15 14 17 20
UO
Ul

U2

»»3

kk

h5

k6

hi

PRINTING AND PUBLISH'G 00 14 14 29 15 14 17 30
CHEMICALS AND PROD'S 00 13 14 19 15 14 17 20
PLASTICS AND. . .MATER'S 00 13 14 19 15 14 17 20
DRUGS, PREPARATIONS 00 14 14 19 15 14 17 20
PAINTS AND PRODUCTS 00 13 14 19 15 14 17 20
PAVING MIXTURES AND... 00 13 14 19 15 14 00 20
ASPHALT FELTS AND COAT 00 13 14 19 15 14 00 20
RUBBER AND PRODUCTS 00 14 14 19 15 14 17 20

J*8 LEATHER TANNING AND 00 14 14 29 15 14 00 30
k9 FOOTWEAR AND PROD'S 00 14 14 29 15 14 00 30
50 GLASS AND GLASS PROD'S 00 14 14 19 15 14 17 20
51 STONE AND CLAY PROD'S 13 14 14 19 15 14 17 20
52 PRIM. IRON AND STEEL.. 13 14 14 19 15 14 17 20
53 PRIM. NONFERROUS METAL 13 14 14 19 15 14 17 20
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TABLE A. 2- 3 (continued)

Misc
Misc. Elec

Sector Feed- Mot. Ther. Hater Space Air- Pow.

Number Sector Name Coke Stocks Pow. Uses. Heat Heat Cond. Uses

5k METAL CONTAINERS 00 14 14 19 15 14 OC 20
55 HEAT./ PLUMB. . .PROD'S 13 14 14 29 15 14 17 30
56 SCREW MACH. PROD 'S/ . .

.

CO 14 14 19 15 14 17 20
57 OTHER FAB. METAL TROD. 13 14 14 29 15 14 17 30
58 ENGINES AND TURBINES 13 14 14 19 15 14 17 20
59 FARM MACHINERY 13 14 14 19 15 14 1 7 20
60 CONSTRUCTION, ...EQUIP. 13 14 14 29 15 14 17 30
61 MAT. HANDLING E0U1P. 00 14 14 29 15 14 17 30
62 METAL WORKING EQUIP' T 00 14 14 19 15 14 17 20
63 SPEC. INDUSTRY EQUIP 13 14 14 29 15 14 1 7 30
6k GEN. INDUSTRIAL. ..EQ'T 13 14 14 19 15 14 17 20
65 MACHINE SHOP PRODUCTS 13 14 14 29 15 14 17 30
66 OFF./ C *! P ' G MACHINE 00 14 14 30 15 14 17 20
67 SERV. 1ND. MACHINES 00 14 14 29 15 14 17 30
68 ELEC. TRANS APPARAT. 00 14 14 29 15 14 17 30
69 HOUSEHOLD APPLIANCES 00 14 14 29 . 15 14 17 30
70 ELEC. LIGHT • C . . .EQUIP. 13 14 14 29 15 14 17 30
71 RADIO/ TV/ COM. E3UIP. 00 14 14 29 15 14 17 30
72 ELEC. COMPONENTS. .. 00 14 14 19 15 14 17 20
73 H1SC. ELEC. ..SUP-LIES 00 14 14 29 15 14 17 30
7k MOTOR VEHICHLES CQ'T 13 14 14 19 15 14 17 20
75 AIRCRAFT AND » A fi T S 00 14 14 19 15 14 17 20
76 OTHER TRANS. EQUIPMENT 00 14 14 19 15 14 17 20
77 PROFESSIONAL.'. .SUP PL IE 00 14 14 29 15 14 17 30
78 0P1CAL EQUIP. AND 00 14 14 19 15 14 17 20
79 MISC. MANUF ACTUPINu 00 14 14 29 15 14 17 30
80 RAILROADS AND ... SERV '

S

00 13 13 30 15 22 00 18
81 ...HIGHWAY PASS. T R A N . 00 13 13 30 15 22 00 1b
82 MOTOR FREIGHT TRANS 00 13 13 30 15 22 00 18
83 WATER TRANSPORTATION 00 13 13 30 15 22 00 18
81* AIR TRANSPORTATION 00 13 13 30 15 21 00 18
85 PIPE LINE TOANSPORTA'N 00 22 22 00 15 22 00 18
86 TRANSP0RTA10N SERVICES 00 90 00 30 15 22 00 18
87 COHVNS EXCEPT RADIO... 00 ?7 27 30 14 22 14 23
88 RADIO AND TV BROADCAST 00 27 27 00 14 22 14 23
89 WATER AND SAN. SERV'S 00 27 27 30 14 22 14 23
90 -WHOLESALE AND RETAIL.. 00 27 27 26 26 22 14 23
91 FINANCE AND INSURANCE 00 27 27 30 14 22 14 23
92 REAL ESTATE AND RENTAL 00 27 27 30 14 22 14 23
93 HOTELS AND EXCEPT... 00 27 27 26 52 52 14 23
9^ BUSINESS SERVICES 00 27 27 30 14 22 14 23
95 AUTO. REPAIR AND SERV. 00 27 27 30 14 22 14 23
96 AMUSEMENTS 00 27 27 26 26 22 14 23
97 MED./ ED. SERV'S AND.. 00 27 27 ?6 26 22 14 23
98 FED. GOV'T ENTERPRISES 00 27 27 30 14 22 14 23
99 STATE AND LOCAL EN'S 00 27 27 30 14 22 14 23

100 BUS. TRAV AND GIFTS 00 00 00 00 00 00 00 00
101 OFFICE SUPPLIES 00 00 00 30 00 00 00 00
102 PERS. CONSUMP'N EXPEN. 00 28 28 28 28 28 28 28
103 bROSS...CAP. FORMATION 00 00 00 30 00 00 00 00
10U NET INVENTORY CHANGE 00 00 00 00 00 00 00 00
105
106

NET EXPORTS 00 00 00 00 00 00 00 00
FED. GOV'T DEFENSE 00 13 13 26 26 22 14 23

107
108

FED. GOV'T OTHER 00 27 27 30 14 22 14 23
STATE.. .GOV'T. . .EDUC'N 00 27 27 26 26 22 14 23

109 STATE HEALTH/ SAN. 00 27 27 26 26 22 14 23
110 STATE GOV'T SAFETY 00 27 27 00 14 22 14 23
111 STATE. ..GOV'T.

.

.OTHER 00 27 27 30 14 22 14 23
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A. 3 DISPERSION FACTORS FOR SMALL-MAGNITUDE FIGURES

Often the uncertainty on a column of figures, X- would be described

in terms of "a dispersion factor D. for x. = B increasing to a dis-

persion factor D for the smallest value reported." Taking this lower

bound to be X- = A where A = $10 for the 196? U.S. input-output

tables, and assuming a linear dependence of D(x) on log(x) we obtain

the following expression for D as a function of x-« Let D(x) = a log(x)

+ b where a = (D
g

- D )/(log A - log 3) and b = (D
1

log A - D
g

log B)/

(log A - log B). It is easy to verify that D(x) takes values D
x

and Z
2

at x = B and x = A respectively.

Obviously this is a crude approximation, but it actually may be

even too refined when viewed from the perspective of the person estima-

ting the uncertainty.

58



A.U PROBABLE VALUES OF "ZERO" ELEMENTS

Since few transactions can be defined to be zero, the published

figures truncated at $10 dollars may be misleading. It is probably-

true that if we examined in detail the transactions of all firms in the

U.S. defined by a particular transaction cell in the 1-0 table, we would

find at least one nonzero transaction. Therefore the following approxi-

mation was used to estimate the probable distribution of nonzero values

between the lower and upper bounds [0, $10 ].

Let X be the absolute value of a normal random variable Y with

mean and a = 10/ . Then X takes nearly all its values between

and 10 . By truncating X at 10 , in the sense that larger values are

discarded and resampled, the resulting random variable takes all of

its values in [0, 10 ] with the great bulk of its unit probability ac-

cumulated near zero.

For direct energy transactions, the cutoff was 10 ^Btu, which

corresponds to approximately the same dollar value.

Details of the "folded normal" distribution are given in Appendix C.
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Appendix B. Sector Definitions

TABLE B-l. 30 Sector Model

30 SECTOR
MODEL BEA SECTOR

1. 7 Coal

2. 8 Crude Oil and Natural Gas

3. 31.01 Refined Petroleum Products

k. 68.01 Electric Utilities

5- 68.02 Natural Gas Utilities

6. 1-k Agriculture

7. 5-10 Mining

8. 11-12 Construction

9. Ik, 15, 29 Food and Drugs

10. 16-19 Textiles and Apparel

11. 20-26 Wood and Paper Products

12. 27, 28, 30-32 Paint, Plastics and Oil Products

13. 33, 3^+ Leather and Shoes

lk. 35, 36 Stone, Clay and Glass Products

15. 37-^2 Metals and Metal Products

16. 1+3-52 Machinery

17. 53-58 Electrical Equipment and Appliances

18. 59-61 Cars, Planes and Transport Equipment

19. 62-6U, 13 Miscellaneous Manufacturing

20. 65.OI Rail Transport

21. 65.02 Local Passenger Transport

22. 65.03 Truck Transport and Warehousing

23. 65. 0k Water Transport

2k. 65.05 Air Transport

25. 65.06 Pipeline Transport

26. 66-67 Radio, TV, Communications

27. 69 Wholesale and Retail Trade

28. 70-71 Finance, Insurance and Real Estate

29. 65.07, 68.03, 72-79 • • • Services

30. 81-82 Business Travel and Office Supplies
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Appendix C. Treatment of Zero Values

In section 1 the variance of a "folded" normal is computed while

section 2 details the relationship between the variance of a lognormal

and its dispersion factor.

C.l Variance of a "Folded" Normal Distribution

The variance of any random variable, X, is given by Var(X) =

E(X
2

) - (E(X))
2

, where E denotes expected value. If Y is N(0,l) then

1 = Var (Y) = E(Y
2

) -
2

so E(Y
2

) =1. Z is said to be "folded" N(0,l),

if Z * ABS(Y). Then E(Z
2

) = E(Y
2

) = 1. Therefore Var (Z) = E(Z
2

) - (E(z))
2

.

But
2 2

-t -t I
°°

E(Z) . -i- te"2" d = -§rl-
? u-2-

;

r
2n . 2ii j

; o 2n

therefore Var (Z) = 1 - (E(z) )

2
= 1 - -|

If we fold a normal random variable with three sigmas equal to b then the

variance computed above is multiplied by a factor of (—) . Conversely

if we know the variance V of a folded normal then one sigma of the underlying

normal is \ V

-I

C.2 Variance of a Lognormal Distribution

If a given cell is lognormal with published mean M and three sigma

2
dispersion factor D, then we sample for this cell by exponentiating a N(a,3 )

2
. ,., , „ InD , , „. In D

random variable where 8 = -rr— and a = InM - „ .
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The variance of a lognormal random variable with parameters a and 3 is

given by V = e (e -l) = M (e -l). Substituting —r— for $ we obtain

2

V = M * exp —

-

— -1 . Conversely, we can solve this equation for D:

D = exp (3* lnd+V/M
2
)'

Incidentally, at the changeover point from normal to lognormal we have
' "

\
ABS -rr/ r .h or —? = .0178. At this point D = I.U89. As we cross the changeover

point from normal to lognormal we switch from a normal with range between

60% and ll+0% of the published mean value to a lognormal with D = . IU89 and

1/D = .67.
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APPENDIX D. RANDOM NUMBER GENERATOR VERIFICATION

By Robert Bohrer and Dan Putnam

D.l INTRODUCTION

The present Monte Carlo study of the sensitivity of Input-Output data

to stochastic estimation errors requires the use of a fast, reliable nor-

mal random number generator. In the present case each Monte Carlo trial

requires roughly ten thousand random numbers to perturb the parameters

in the Input-Output model. Since several hundred trials are required to

obtain useful results, speed is an important consideration in the choice

of a generator for this application. Furthermore, a necessary condition

for the validity of the results is, of course, that the random inputs

conform to the modeling assumptions. In this case the required inputs

are independent, normally distributed random numbers.

The generators in the International Mathematical and Statistical Li-

lt

braries were given special consideration for use in the Monte Carlo study

because of the good reputation of IMSL and the availability of IMSL at

most large IBM installations. One generator, GGNRF, was especially ap-

pealing since it was designed specifically as a fast normal random num-

ber generator and had already been optimized and coded in assembler

language for efficiency. The one flaw in the qualifications of GGNRF

was that the existing documentation of its statistical properties was

inadequate for our needs. Although the distributional properties had

been checked with several goodness of fit tests, independence had been

Available from International Mathematical and Statistical Libraries

(IMSL) Inc., Sixth Floor, GNB Building, 7500 Bellaire Boulevard, Houston,

Texas 77036.



checked only up to five lags. Documentation of these tests may be found

in Kuki (197*0. While it is impossible to test all aspects of randomness,

it is prudent to examine at least those aspects most important to the

particular application. The present Monte Carlo study requires inde-

pendence among the inputs to each Monte Carlo trial and among the

separate trials as well. The tests described in this paper were designed

by the first author to examine both types of independence. Tests of nor-

mality were also included for the sake of completeness.

These properties may be tested by selecting several seeds for the

generator and examining three sequences obtained from each. The first

two sequences are chosen so that in the actual simulation they would oc-

cupy corresponding positions in the inputs to consecutive simulation

runs. Thus, the first N numbers drawn from a seed constitute the first

sequence. Then, as many more numbers are generated as would be needed

to complete one simulation run. The second sequence then consists of

the next N numbers drawn. To examine the independence between these

first two sequences, a third sequence of 2N numbers is formed by shuff-

ling the other two sequences so that the odd numbered entries are taken

in order from the first sequence and the even numbered entries are taken

in order from the second sequence.

It is desirable to use tests which are sensitive to as many depar-

tures from the hypotheses as possible. The methods used here allow

tests of the independence .of X(t) and X(t+L) for all lags L less than

*
For a discussion of random number generation and testing see Jansson (1966)
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or equal to the sample size N. For this reason and because the statis-

tical power of these tests increases with sample size, the value of N

used in defining the sequences above should be as large as possible.

While it would be desirable to make N as large as the number of inputs

to a Monte Carlo trial, this possibility was precluded by considerations

of the availability of computing resources in the statistical analyses

of the random number samples. In this study N = 102U was chosen with

these considerations in mind and because of the efficiency of working

with a power of 2 in Fast Fourier Transformation. Five seeds were

selected for the tests that follow, again with this number being de-

termined partly by considerations of available computing resources

versus the quantity of information generated.

Section 2 details the tests performed on the shuffled sequences

obtained from the five seeds to check independence between Monte Carlo

trials. Section 3 describes the tests on the two unshuffled sequences

from each seed to examine the independence of the inputs to a single

trial. Finally, section h documents the test performed on the un-

shuffled sequences to check that the samples are normally distributed

with mean zero and variance one.
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D.2 INDEPENDENCE BETWEEN MONTE CARLO SAMPLES

To test the independence of consecutive runs from the Monte Carlo

experiment, the shuffled sequences from the five seeds were examined.

Given the hypothesis of independence between simulation runs, the sample

autocovariances at odd lags, L, of the shuffled sequences should be

independent and standard normal (i.e., N(o,l)) when multiplied by

1/20U8-L. A test of the independence of consecutive Monte Carlo trials

may then be made by using the Kolmogrov-Srairnov (K-S) statistic to

compare the sample distribution function of the adjusted autocovariances

at odd lags to the standard normal distribution function. The sample

used for this test was therefore s
1
*** s

256»
S
i

= AC
2i-l

* v/20U8-(2i-l)

where the AC~. , are the odd lag autocovariances. Table 1 lists the five
2i-l

K-S statistics and P-levels obtained from the five shuffled sequences

in this way. The tabled statistics represent the square root of the sample

That the mean is and the variance is 1/20U8-L follows from simple

calculation with expectations. The asymptotic normality and independence

follow from careful application of a multivariate central limit theorem

such as theorem 9.2.3 in Wilks (1962). For example, normality of the

lag L covariance estimate is shown by applying the theorem to the two

sequences

(X1*W ••• X
L*
X
2L'

X
2L+1*

X
3L+1>

•"
)

and (Xl+^sl+I*
•" X

2L*
X
3L'

X
3L+1*

X
UL+1 '

•**
) '

If the covariance estimates are adjusted for the sample mean, then the

tests for the hypothesized means and covariances can be made separately,

each having valid significance level, even under certain natural dis-

crepancies from the other hypothesis. Also, a theorem in section 20.6

of Cramer (19U6) shows that the large sample distribution theory is

exactly the same as described above.
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size times the maximum absolute difference between sample and hypothesized

distribution functions. The P-level is defined as the probability that a

truly normal sample would have achieved a larger value for the K-S statis-

tic than the value actually observed. Given the independence hypothesis,

the P-levels should be independent and uniformly distributed on the unit

interval. This fact allows the use of the following summary statistic:

if P..«'«P are independent and uniform on the unit interval, then

n *
-2*£ ln(P.) is chi square with 2n degrees of freedom. This sample

1
X

statistic and its own P-level are included in Table 1 along with the

K-S statistics and their P-levels as an additional check and summary.

TABLE 1

Statistic P-level

1 .Ihk .6U

2 .869 M
3 .5^8 .92

k .807 .53

5 .772 .59

-2*Z ln(P ) 5.03 .89

This derives from the fact that if P is uniform on [0,1], then -2*ln(P)
is exponentially distributed with distribution function l-e'X'2^

The result now follows by verifying that the associated density function
is that of a chi-square random variable with two degrees of freedom.
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A plot of the sample distribution function with the worst fit (from

seed #2 in this case) is shown in Figure 1. Even in this worst case

note how closely the sample distribution function fits the hypothesized

distribution.

The K-S tests described above provide a check on independence in

the time domain; a check in the frequency domain was also performed. By

summing the Fast Fourier Transform of each of the shuffled sequences,

sample integrated periodograms were obtained. Under the independence

hypothesis, the integrated periodogram values should increase linearly

from zero to one as the frequencies increase from zero to one-half. The

Grenander-Rosenblatt (G-R) statistic may be used to measure the discrep-

ancy of the sample integrated periodogram from linearity. If the hypo-

thesis is true then a factor of V20U8 / \J2 = 32 times the maximum ab-

solute difference between the sample integrated periodogram and twice the

corresponding frequency should have the distribution calculated in Hannan

(1967) ; departures from independence will tend to make the sample sta-

tistics too large to fit the distribution. The five sample statistics

and corresponding P-levels are shown in Table 2 below along with the chi-

square summary statistic defined in the last section. Seed #1 had the

worst P-level so a graph of the corresponding sample integrated periodo-

£ram is included in Figure 2.

Computed with SOUPAC program FASPER available from Computing Services
Office, University of Illinois, Urbana, Illinois 618OI.
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TABLE 2

Statistic P-level

.1 2.21+3 .OU

2 .725 .88

3 1.578 .33

k l.OOU .63

5 .671 .92

-2*1 ln(p.)
1

10.00 .Ul»

The res\ilts of this series of tests, like those of the preceding

section, are quite satisfactory and give no cause to suspect interdependence

between simulation runs

.
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D.3 INDEPENDENCE BETWEEN INPUTS TO A MONTE CARLO SAMPLE

While the frequency domain tests of the last section actually include

a test of the independence of sample inputs, further tests were performed

and are described below. The next two series of tests paralleled the two

series of the last section in methodology, but this time attention was

focused on the two sequences of 102U numbers generated from each of the five

seeds. In the time domain, the autocovariances at lags L = 1,512 of a sequence

were adjusted by a factor of /102U-L and tested with the Kolmogorov-Smirnov

statistic. Again, under the hypothesis of independence within each of the

ten sequences of 102^ numbers, the adjusted autocovariances of each sequence

should constitute a standard normal sample. The resulting sample statistics

and P-levels along with the chi-square summary statistic and its P-level are

shown in Table 3. Similarly, the ten sequences were tested for independence

in the frequency domain with the Fast Fourier Transform just as in the previous

section. The sample statistics and summary statistic are shown in Table k.

Again, the worst cases are illustrated for the time and frequency domain

tests in Figures 3 and k.

TABLE 3

Statistic P-level

1A
IB
2A
2B
3A
3B
ua
kB

5A
5B

1.132
1.21U
1.077
.573
.882

1.106
.7^5

.657

.61*5

.U91

.15

.11

.20

.90

.U2

.17

.61*

.78

.80

.97

-2*1 ln(P.)
l

18.81 .53

73



3

rj

CD

TU



r

,,.,, ...u ii, a. u iLu.uJii'UJU'U a u-U-iu UIU.U I'.U'U.IDU ujujUiu uiuu uju'UUiuju'u-uiu uiilu'liuiuui I

tU'00-(M(0^i.'>inONc:^c,CMNr v*ir<.'\of>-xroOHM<u^'/vON'rr-co-^i'^^(r.^irt',-0 i

ooooooocooooococcocooooooooooocooocooooococooooooooooo

• »m
¥NO»X

ITMi

• •

«*•©#
m «

"* *
• f

o«
i

O* I

**!

m «|
r» «m *
• •'

©m*|
a* I

(is!
• t,

mo*

;

m i
m *
m «
•

Or"*
o«
o#
m«
• •

(*>0-»
in *

m
A.mm
m
X'

inm i

in:xm
m
m
nim

»n
mm.
*x

5- CM
m

m
o.-g»,
o»
m#
m*;
• t

<NlO»
-n «.

m *
m *
•

o*
Oft
m*
• «,

mO*m *

— *
• «t

o*
in*

HOI
tn p-

m s
-« *
• «

o«
OK
-**
• i

-Oi
•»in *
i»h- *
O *

*. • •

fOO«
e*

r uv
< o*
a • •

ooo*
cm *
cm «CO *

ero
UJ
aa. *.

o
o
UJ

m
m
mf>-,

m«\i
tn
x«*-
' o

«*-x
in

*x
n
n

tf-m
in
in
mm

x>*
o
X.J-mmm

LImm
in
omm1

>n

*xm
x>t

.n

in
in

tn
X«f

in
x*r
m
mm>

xy
;mm
mm

>rx
o
Li
X.

X |

w-l I

mr^

h*x
.n
«j-xm

«
*
«

«
«

•J
«

*

*rx

mm

booc'cncrrocr>r »?">c c itiror it c-r-ocoorjc oooooooo oo^oo;ccoo?oo?c;ccoooccooocjc
I

'a-H'ji mm u. l U' J i.l. j UiuiI:<l.u.j i'
' ul u_i_ l-i. u-uit'U'UiU u uji:.u u,uri_..uu i-.-iu

ffif1 ci>-i'« O'.'-'ncw »>»i ?!•»'». 'cc-•mm^"».'«L* j'- i i^v. ;v—<m-^ r-.*>i">^.-—;?-:——

«

Jm o r ~j <v- "n. .-* -*»«.rr~ -r? i-r " ^j-~- "*r ,.* r —. -f- 7 ^^ "»m.r -v- »."> j»—-r^-'—•<. r- •" .-
"

(M* V i- — n;f^f^f^r^(-~r^ oo^j • o >. >>•" >-"x -* Oi "W vT >T >r r -Tfi iWitiHi^NNNMM'JH''

"(JOOOC OO DO
I I I I I I

a. i' UIUIL.1..1.H1 j.uj

00000000 r0000000 00 3o,oocjoo-j00 Jooooooocooqo^o00 c -3100000.^00

<\J

3!

I

o

g

a;

CO

-p
to

>H

•H

o

Pi

o

u

o
•H

CD

Pi

cu

13

w
CD

•H



TABLE h

'

Statistic P-level

1A .659 .93

IB 2.259 .05

2A 2.1+39 .03

2B l.U6l .29

3A .602 .96

3B 1.52U .25

UA 1.U23 .31

ub .910 .71

5A .866 .75

5B .833 .79

-2*Z in (P.) 22.55 .31

These results, like those of the preceding section are quite

acceptable. Overall then, the independence properties of GGNRF are

very satisfactory.
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D.U TESTING FOR NORMALITY

A final series of tests was undertaken to examine the suitability

of GGNRF in an application calling for normally distributed random

numbers. First, the Kolmogorov-Smirnov goodness of fit test was applied

to the ten sequences of 102U numbers with the results shown in Table 5

Following the same format as in previous sections, the sample statistics

and their P-levels are given along with the summary chi-square statistic,

The plot of the sample distribution function with the worst fit is shown

in Figure 5.

TABLE 5

Statistic P-level

1A 1.210 .10

IB .799 .55

2A .70U .70

2B .578 .89

3A 1.111 .17

3B 1.187 .12

kA 1.095 .18

UB .590 .88

5A 1.053 .22

5B .609 .85

-2*1 ln(P.)
l

21.57 .36
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Although these results indicate good fit , especially given the

relatively large sample size, the sample variances and means were also

checked. Given the standard normality hypothesis, the sample variances

multiplied by 1021+ should be chi-square distributed with 1023 degrees

of freedom. The sample variances and the corresponding P-levels under this

hypothesis are listed below in Table 6 along with the usual summary

statistic.

.

TABLE 6

Statistic P-level

1A .979 .77

IB .915 .97^

2A 1.106 .009

2B .936 .925
3A .997 .51

3B 1.038 .19

HA 1.033 .22

Ub 1.022 .30

5A .963 .79

5B .998 .50

-2*1 ln(P.) 22.11 .33
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The sample means should be normal with mean and variance 1/1021+

.

Multiplying the sample means by a factor of 32 should result in numbers

drawn from a standard normal population. However, the large size of

the P-levels in Table 7 gives cause for suspicion that the hypothesis

is not true. On the other hand, the sample size of 1021+ was originally

chosen to be large enough to signal even acceptably small deviations from

ideal behavior; the very worst sample mean was only -.062. Furthermore,

given the amount of testing undertaken in this study, it is to be expected

that sooner or later some test results will go awry. To shed more light

on the matter, further tests of the mean tendency of GGNRF seemed appro-

priate. Since only one seed would be needed for the actual Monte Carlo

application, seed #3 was selected for a more intensive examination.

Eleven thousand numbers were drawn from seed #3 and then discarded in

order to skip over the two strings of 1021+ numbers previously tested.

Then ten consecutive strings of 102U numbers were drawn and their sample

means were computed. The results are listed in Table 8. In addition,

ten new seeds were selected and samples of 1021+ numbers drawn from each.

The data for these sequences is shown in Table 9.

TABLE T

Statistic P-level

1A -.01+9 .9*

IB -.019 .72
2A .0083 .1+0

2B .0069 .1+1

3A .031+ .11+

3B -.01+2 .91

UA -.067 .98

UB -.021 .75

5A -.056 .95

5B -.019 .72

-2*1 1 (P ) 9.89 .97n 1

An



TABLE 8

1

Statistic P-level

1

2

3

b

5

6

7
8

9
10

.035

.013

-.029
-.0035
-.036
-.016
-.005^
.025

.06b

-.0060

.13

.3U

.82

.5h

.87

• 70

.57

.21

.02

.58

-2*1 ln(P.) 21.925 ,3k

TABLE 9

Statistic P-level

1 .OUl .10

2 .0053 .U3

3 -.0U .90
1* .023 .23

5 -.010 .63

6 -.02U .78

7 .029 .17

8 .018 .28

9 .0026 M
10 -.0035 .5b

-2*Z ln(P.) 19.1b .U8
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The results of these tests certainly do much to allay the suspicions

raised by the results in Table 7. Neither would it seem that seed 03

has run into an area of systematically bad behavior (witness Table 8), nor

would it seem that there is an overall bias in the generator (witness Table

9). These tests together with the preceding K-S tests and sample variance

tests indicate that GGNRF has satisfactory distributional properties.

Overall then, GGNRF tests out as a satisfactory normal random number

generator.
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