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ABSTRACT

A dynamic oligopoly model, having a market share attraction form, is formulated as a stochastic

sequential game. Market shares evolve randomly over time according to dynamics that incorporate

a general lag structure. The model incorporates
n
goodwill" as a measure of current and past effort

decisions.

Qualitative properties of closed-loop, equilibrium strategies are developed by establishing a

relationship between an equilibrium point of the dynamic, stochastic game and an associated static

(one-period) game.
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1. Introduction

Market share attraction models describe the manner in which a fixed market is par-

titioned among a number of competitors, given the effort allocations of each of the com-

petitors. In these models, market shares have the form

"my effective effort"

"my effective effort" -f "your effective allocation"

Models that specify payoffs as a function of competitive effort allocations of this general

form are prevalent in the economics, game theory, and operations research literature. See,

for example, Schmalensee (1976), Shapley and Shubik (1977), Case (1979, Chapter 4),

Ponssard (1981, Chapter 3), Shakun (1965), and Monahan (1987).

In this paper, we present a dynamic, stochastic oligopoly model in which payoffs have

the market share attraction form. In any time period, the share of a fixed market accruing

to one of Q > 2 competitors is a random function of current and past effort allocations

of all of the Q competitors. Our focus in this paper is on the partitioning effects of

competitive effort allocation rather than on the size of the market. The model's market

share dynamics, i.e., the specification of how market shares evolve from period to period,

incorporate a stochastic lag structure that has a rather general form. The market shares

are based on a measure of "goodwill" that summarize current and past effort allocations;

the competitors' discounted expected profits are their payoffs. The resulting model is a

stochastic sequential game to which we apply the Nash equilibrium point solution concept.

Most of this paper's analysis is devoted to the determination of qualitative properties

of an equilibrium point (ep) solution to a sequential game (sg) that has special structure.

Even simple sg's, such as the iterated prisoner's dilemma, possess extraordinarily many

ep's. This richness arises from strategies in which a player's action in a period depends

on the past behavior of other players. There does not yet seem to be a generally effective

framework for assessing the effects of information conditions on qualitative properties of

ep's of structured sg's. See Albright and Winston (1979), Deshmukh and Winston (1978),

Kirman and Sobel (1974), Mamer (1986), and Shubik and Sobel (1979) for examples of sg's
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in which qualitative properties of selected ep's are elicited. As in those papers, we study

ep's that depend on as little information as possible. In particular, we examine an ep that

corresponds to a stationary Markov strategy (in the parlance of Markov decision processes).

This relative simplicity leads to the analysis of a static (one-period) noncooperative game

with a unique ep in the duopoly case.

While market share models are prevalent in the literature, the model we develop here

has novel features. It is the first model to specify the dynamic evolution of market shares

over time and to incorporate the direct and indirect effects of effort decisions made in the

current period and earlier periods.

We are able to establish a number of interesting properties of equilibrium strategies

even though the model specification is quite general. The class of strategies we admit

includes open-loop, closed-loop, and reaction-function strategies. These properties of an

ep are established by exploiting results in Sobel (1990a) regarding the relation between

an ep of myopic-affme stochastic games and an ep of an associated static game. The

analysis of the static game draws on results for one-period market share attraction models

in Monahan (1987). (See Fershtman and Kamien (1987) for a comparison of the differences

between open-loop and closed-loop strategies in a two-person differential game.)

The remainder of the paper is organized as follows. The dynamic market share model is

specified in Section 2. Section 3 reduces the analysis of the dynamic game to the analysis

of a static game. Several properties of an ep solution to the static, and hence to the

dynamic game are developed in Section 4. Additional properties of the solution, especially

those relating to the lag structure, are developed in Section 5. Concluding remarks are in

Section 6.

2. The Model

Consider a single market with a sales potential of V units and Q competing firms. The

effort expended by each of the Q competitors is specified by the Q-vector g = (g\, . .
.

, (jq).
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Let Hq(g) be firm g's net profit. The market share attraction form specifies that

Mg) = 2U? (1)

where M
q

is firm g's profit per unit sold and q = 1, . .
. , Q. The term in the numerator of

(1) is the "attraction" of gq , which is the effort expended by firm q. The denominator is the

total attraction of effort of all Q competitors. The parameter b
q

is the relative effectiveness

of the effort expended by firm q. The attraction elasticity of effort is

g = ijCMf) _9q_
d9a bq

g%

'

We assume that all parameters are positive numbers and that /3 < 1.

Suppose that the Q firms compete in the fixed market over an infinite number of

periods, starting with t = 1. Our model encompasses direct lagged effects of effort; that

is, the effort expended over the last N periods directly influences the market share in

the current period. The initial data thus include the levels of efforts expended in the N

periods prior to t = 1. Let a qt be firm </'s effort in period t and let a* be the column vector

(ait: • • ,«Qt)', where prime denotes transpose. The initial data include the lagged direct

effort allocations a_/v-f i,a_./v-f2, - • • '
a°-

We use the term "goodwill" to label the cumulative effect of effort. Let g qt be firm g's

goodwill in period t after effort is allocated in period r, and let g t
= (git, • • ,gQt)'' • The

model for the dynamics of goodwill is

N

g t = Kt-igt-i + ^2 L« a'-"+i' (
2

)

n= l

where K
t

is a random Q x Q matrix. The vector Kogo specifies the starting levels of

goodwill and is included in the initial data. The model stipulates that goodwill levels at

the end of period t depend stochastically on goodwill levels at the end of period t — 1 and

on efforts expended in the current and previous N — \ periods. Less general specifications

of goodwill are prevalent in the literature; see, for example, Nerlove and Arrow (1961) and

the references in Monahan (1983) and Heyman and Sobel (1984).
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The QxQ matrix Ln specifies the rate at which effort in period t—n+\ affects goodwill

in period t, n = 1,...,JV (N < oo). When effort represents advertising expenditures, a

number of papers support the argument that empirical advertising-sales phenomena often

warrant an explicit lag structure (N > 2); see, e.g., Little (1979). However, the sensitivity

of decisions to misspecification of the lag structure is a subject of continuing investigation

[Bultez and Naert (1979) and Magat, et al. (1986)]. The models in these two papers can be

interpreted as special cases of the monopoly version of (2). See Mann (1975) for examples

of other advertising models that explicitly incorporate a lag structure.

Let 6
q
be firm g's single-period discount factor (0 < 8

q
< 1). Until the Appendix,

we assume that Li and Li + 8q^2 + • • • + <^
-1

Lat (for each q) are nonsingular matrices

and M = (Li )

_1
has nonnegative elements. Let \qn and £q t be the <?th diagonal elements

in L n and K<, respectively. We assume that Ki,K2,... are independent and identically

distributed but fit, ... , £q* may be correlated for fixed t. Much of the empirical literature

that estimates market shares with attraction models treats £qt as a constant fraction, say

6
q , for all t\ see, e.g., Naert and Weverbergh (1982). In these settings, 1 — 6

q
is the

depreciation rate of firm g's goodwill; discrepancies between the data and the model are

explained with "shocks" and "errors".

When L n and K< are diagonal matrices, (2) simplifies to

N

gqt — tq,t-\9q,t-\ + 2_j ^qn^q,t-n+l- (3)

n=l

Bultez and Naert (1979) (see, also, Magat, et al. (1980)) specify a model of goodwill which

is a special case of (3) wherein f9 ,t-i
= for all q and t and {Agn } is a Pascal probability

distribution.

We specify firm <y's gross profit in period t as fJ. q {gt)- The net profit, denoted Xqt ,

is the gross profit less the cost associated with the level of effort; so Xqt = Hq{gt) — o. qt .

Until the Appendix, we employ the market share attraction form (1) for n q {-).

The present value of firm q's time stream of net profits is

oo oo

*f = Ew~'-Y« = E(M'
-1
Mg<) - o«i] (4)

(=1 t=l



We assume that each firm selects its effort levels via a strategy, that is, a contingency

plan that specifies nonnegative effort levels. The contingencies are the outcomes of stochas-

tic elements in the model and the elapsed effort levels selected by the firm's competitors

(and itself). The plan must be non-anticipative (i.e., it cannot depend on events that occur

later in time), but it can depend arbitrarily (perhaps randomly) on the elapsed history of

all of the firms' sequences of efforts and goodwills. Thus, "open-loop" decision rules and

reaction functions are proper subsets of the set of all strategies.

We employ a Nash equilibrium point solution concept for the dynamic-oligopoly effort

game with payoffs E(ir
q ) that are expected values of present values. Let v

q
(d\,

.

. . ,c?q
|
h)

denote E(-K
q ) when c?i, . .

.
, (1q are the strategies employed by firms 1, . . . ,Q, respectively,

and h specifies the initial conditions of the game ((aat ,gqt ,J£ t ), for t = —N + 2, . . . ,0).

We say that (<i*, . .
.

, dq) is an ep with respect to H if

v
q
(d\,...,d*

q
,...,d*Q \h) > v

q (dl, . . . ,dj_n d,,dj+1 , . . . ,d*Q \h) (5)

for all d
q , for all q = 1, . .

. , Q, and h £ H.

In the next section, we define the equilibrium point problem as an sg (sequential game)

and pose questions regarding the structure of an ep. In order to answer the questions posed,

we show how the sg is related to a static game.

3. The Market Share Attraction Game

Let St, the state of the sequential game at time 2, be the vector of goodwill levels before

decisions in period t are made. Also, define gqt as firm g's action in period t. Thus the

vector of actions g* = (gq t)
is the vector of goodwill levels after decisions in period t are

made but before profits are earned. From (3),

N
g<=s, + Lia, and s t+l = K<g< + jP L n a (

_n+2 (6)

describe actions and states, respectively.

8
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Let m
q
be the qth. row ofM = (I*i)

l

. From (6), a* = M(g, - s t ) and

a qt = m q(g t -s t ). (7)

So the level of effort expended by firm q in period t can be expressed in terms of period

r's state and action vectors. It follows that the single-period rewards earned by firm q in

period t can also be expressed solely in terms of the current state and action vectors; i.e,

X
q t
= V q (gt)

- a qt = fi q (gt)
- m,(g< - st ). (8)

The substitution of a, = M(g, — s,) for each i in the expression for s (+ i in (6) yields

N

s t+l = K«g, + Y^ LuM(g <
_ n+2 - s

t
- n+2 ). (9)

n=2

The equilibrium point problem is to find strategies d\ , . .
.

, d*q for the Q firms that

satisfy (5), where firm q's payoff is

E
oo

EW"'X«<

t=\

(10)

and Xqt is given in (8), subject to the dynamics in (9). In light of (7), the choice of a new

level of goodwill in period t, given the state of the process at the beginning of period t,

corresponds to choosing a value for a qt . We also require the sensible condition that effort

levels be noiinegative, namely m9(gi
— s

t )
> for all q. We note that this inequality

corresponds to g qi > s qt for all q and t, where s qt is the qth. element of St, only if Li is a

diagonal matrix with positive diagonal elements.

We discuss the existence of an ep in Section 3.4.

3.1 What Does The Equilibrium Look Like?

Consider two specifications of the game given in (10) in which all the parameters are

identical with the exception of (3, the attraction elasticity of effort in (1). In the absence

of competition, we would expect that more effort will be expended in the setting when (3



is higher, since the marginal benefit generated by the last unit of effort is higher in this

case. With competition, however, the consequences of a higher elasticity of effort are not

as obvious. Since the elasticity measure is common to all competitors and the size of the

market is fixed, it may no longer be in each player's best interest to expend more effort

in the setting exhibiting the higher elasticity.^ What determines which firms will expend

more or less? We address such comparative statics issues in Sections 4 and 5. In Section

4, we show in some duopoly cases that it will be optimal to expend less. The requisite

conditions for each case are specified in terms of the parameter values.

The effect of the attraction elasticity on equilibrium effort allocations is one of several

results in Sections 4 and 5 that describe the influence of certain parameters on optimal

allocations. There are few sequential games whose equilibrium points have been character-

ized qualitatively. However, we are able to conduct a fairly extensive parametric analysis

by exploiting results in Sobel (1990a, 1990b) that establish conditions under which an ep

of an sg coincides with an ep of an associated static game. Such ep's are called myopic,

since the repeated application of a solution to a one-period game is optimal in the multi-

period game. The formal presentation of the general conditions, the equivalence result,

and the demonstration that the conditions hold in the market share model are given in

the appendix. In the next sub-section, we discuss the intuition behind the conditions and

discuss their ramification in the market share attraction model.

3.2 An Equivalent Static Game

Here is the basic idea. Suppose that both the expected single-period rewards and

the dynamical equation describing the evolution of the state from period to period are

(a) additively separable in state and action and (b) linear in the state variable. Notice

that (8) and (9) have this form. In (8), the single-period reward accruing to firm q is a

non-linear function [/'(g) — ni
9g] of the "action" vector g plus a linear function of the state

(m
9 Sf). In (9), we see that the dynamics of the decision process are linear and separable

in both state and action. The conditions, therefore, correspond to requirements that the
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expected single-stage reward and the expected state next period be affine functions of the

state vector. See Dirven and Vrieze (1986) for an advertising duopoly model with affine

structure that differs from ours.

Under these conditions, it can be shown (see the Appendix for details) that there

exists a function H
q (g), specified below, such that

E
oo

£w'~%<
t=l

= E f^r^g,)
,n=l

+ Kc (11)

where K
q

is a constant that does not depend upon the strategies employed by the competi-

tors. Let e
q
be the qth unit row vector, I be the identity matrix,

J, = (L 1 +^L 2 + ... + ^- 1 L /v
)" 1

,

and assume that J
q

exists and Li is nonsingular (but neither is necessarily a diagonal

matrix). Then H
q (g) has the form:

ff,(g) = /i,.(g)-e,J,[I-*, JB(K 1 )]g. (12)

Under the further assumption that E(K\) and Ln for n = l,...,iV are diagonal

matrices, (12) simplifies to

Hq(&) = PqiS.) ~ Cq9q, (13)

c
q
= (14)

where

It is convenient to write g as (gi , . .
. , qq). For the remainder of this paper (until

the Appendix), g q
refers to the ^th component of g and not to the vector of actions in

"period" q. We shall discuss the consequences of (11) and then examine the structure

of H
q (-). Notice that H

q (-) does not depend upon the time period. Let T be the one-

period noncooperative game amongst players 1, . . . ,Q in which player q chooses g q
> 0,

g = (01,... ,#q), and player </'s payoff is H
q (g) defined by (12). Suppose g* = (<jrf , . . . ,#£)

is an unrandomized Nash equilibrium point of T. It follows that an ep of the sequential
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game (1) is given by gqt = g* for all t if such choices are feasible (i.e., g*
t
> s qt , where s qt is

the qth component of the state vector that satisfies the dynamics given in (9)). Therefore,

setting g t
= g* for all t is an ep of the sg with respect to H, the set of initial conditions

for which this strategy is feasible.

In the case where i£[Ki] and Ln , n = l
l
... , JV are diagonal, an equilibrium of the

static game with payoffs given in (13) yields a dynamic equilibrium. Notice that the

expression for c
q
in (14) involves only parameters of the model and does not depend upon

the decision variables of any of the Q firms. If c
q

is interpreted as the "cost" per unit of

goodwill chosen by firm q, then (13) represents the single-period "net reward" accruing to

firm q if g is the level of goodwill is chosen by all of the competitors. When X
q i , . .

.
, \

qN

is a probability distribution, as in Bultez and Naert (1979) and Magat, et al. (1986), then

the denominator in (14) is a probability generating function with argument S
q

.

3.3 Repeatability

This subsection concerns the feasibility of each firm repeating its same level of goodwill

in every period. The feasibility of g t
= g* for all t corresponds to a (

> for all t. From

(6) and (7),

a, = M
N

g< — K t _ig<_i —
2_^ L„a ( _ n+1

n= 2

(15)

Notice that the sign of a. t depends on the signs of the differences of the components of the

random vector in the bracketed term and on a<_i, . . . , SLt-N+i- It follows, therefore, that

a< > when K< and L n are not "too variable" and the lag structure is "moderate". In

Case 4 below, we give an example that explicitly addresses these issues.

Although it seems difficult to obtain general sufficiency conditions for a* > when

gt = g* (for all £), we can easily establish conditions for interesting special cases.

Case 1: No lagged direct effects.

If iV = 1, the K/'s are diagonal matrices, and £qt are random variables that take on

values in [0, 1), then (15) and nonnegativity of M imply a
t
> for all t.

12



Case 2: Q — 1 (Monopoly version of the model).

If flf = 9 G (0, 1] for all r, then go = gi = g* and (2) imply au > 0, where

(i-fl)yr

if a^-Ar+2, • • , a i,o equals the right side of (1Q). Hence, an > for all t if $ < 1.

Case 3: (Deterministic dynamics with geometrically-distributed lags).

Suppose K t
= = diag(0

9 ) and L t
= L' with L = diag(A

g ), < 9
q
< 1, and

< A
g
< 1 for all <? and t (N = oo). Suppose further that a_N+2 = . . . = ao = and

g0 = g*. Then (15) and LM = I imply

a, = M(I-0)g*-^L"a,_ n

n=l

for t = 1, 2, . . .. Therefore, ai = M(I - 0)g* and a* = [M - I](I - 0)g* for t = 2,3 . .

.

and both vectors have nonnegative components.

Case 4: N = 2.

Let E be the Q x Q matrix that is all one's. We assume that 6E < Ki < /E (with

probability one), 6^1, and L2 is a diagonal matrix. Then L»2ao < M(I — Ko)g* and

<^2 £ (1 _ /)/(! ~" &) f°r all 9 imply a qt > for all q and r, as we shall prove. These

conditions can be interpreted as ao not "too large"
, £qt not "too variable", and moderate

lagged effects.

Let u t
= M(I - K,)g*. From (15), < a<+1 if L2 a, < u tl but L 2 a (

= L 2 M(I -

K,_! )g* < u
t
= M(I - K,)g*, which corresponds to < (I - L 2 )Mg* + L 2MK t

_!g* -

MK (
g* whose right side is bounded below by [(1 — /)I — (1 — 6)L 2 ] Mg*, which is non-

negative if (1 — /)/(l - b) > \ q2 for all q.

3.4 Existence of Equilibrium Points

Sufficient conditions for the existence of ep's of discounted sg's depend on the struc-

ture of the sets of states and actions, the players' single-period reward functions, and the

13



dynamics (transition probabilities). An ep exists if there are only finitely many states and

actions [Fink (1964)]. If the state space is a continuum, only approximation results are

known ("e-equilibria") [Whitt (1980) and Nowak (1985)].

In our model, the sets of states and actions are continua and the dynamics are not

first-order Markov. We can dispose of the laUer difficulty, namely that the expression

for s*+i in (6) involves actions taken in periods earlier than t, by suitably expanding the

dimension of the state vector. However, the resulting model has a continuum of states (and

actions) and the general theory yields only approximation results. We take an alternative

approach and exploit (11).

Let g* be an ep (unrandomized) of T. Then it follows from (11) and (5) that g< = g*

for all t = 1, 2, ... is an ep of the sg with respect to the set of initial conditions such that g*

is repeatable, i.e., P{a* > for all t
| gr = g* for all r} = 1. Section 3.3 presents several

instances of repeatability. It follows from Monahan (1987) that a sufficient condition for T

to have a unique unrandomized equilibrium point g* is /3 < 1 and e
q
3

q
[I — S

q
E(K.\

)] g >

for each q. If £"(Ki ) and L n for each n are diagonal matrices, the latter condition reduces

to c
q
> for each q.

4. Properties of a Duopoly Equilibrium Point

It follows from Section 3 that the analysis of an ep for the sg with payoffs given by

(10) can be reduced to the analysis of g*, an ep of the static game with payoffs given by

either (12) or (13), depending upon the assumptions regarding the formation of goodwill.

In this section, we restrict our attention to the duopoly game with -E^Ki] and L n being

diagonal matrices, n = 1, . .
.

, JV.

The static game with payoffs given by (13) is a minor variation of the "linear bud-

get" model in Monahan (1987). Drawing on the analysis in that paper, the following

characteristics of an ep of the static game are readily established.

LEMMA 1. Let M
q , b

q , and (3 < 1 be the parameters given in (1) and let c
q
be given by

14



(14), q = 1,2. If ^(0,0) = and VM
q
> c

q
for q = 1,2, then the unique ep of the static

game is given by

, T(r) . , M2 T(r) ,_.
flfJ
= -A2 ^d 9*2 = -77-T2 , (17)

Ci M1C2

wijere

.. ClM2 (3VMl b l b2 rP

c2Mi
w

[61 + t2 r^]
2 v '

Several functions of the parameters of the model, discussed in detail in Monahan

(1987), also play a significant role in establishing qualitative properties of an equilibrium

point in the dynamic, stochastic setting of this paper. The first function is the competitive

advantage ratio, defined as

R=^r-f>. (19)

As we show below, the sign of R — 1 determines how various parameters influence the

equilibrium goodwill levels. The condition that R > 1 corresponds to firm l's total ef-

fectiveness of effort (bi(VM\ J
C\)P) being greater than firm 2's total effectiveness of effort

(b2(VM2 /c2
)P).

The second function of the parameters of the model, established in Monahan (1987),

is /?*(r) = k/\n(r) (r ^ 1) where k is a solution to the hyperbolic equation

&2(*-l)'

When r = 1, firm l's equilibrium effort allocation is an increasing function of /3. When

r ^ 1, firm l's equilibrium allocation is an increasing (decreasing) function of (3 when

(3 < (>)(3*(r). Recall the hypothetical case in Section 3.1. Suppose j3\ and /?2 denote the

effort elasticities in the two settings and (3\ < (32 - If Pi > P*(r), then firm l's equilibrium

allocation is lower at (3 = (32 then at (3 — (3\

.

Both R and (3* appear in Table 1 which summarizes the structure of an equilibrium

solution to the static game. Since these results are analogous to results given in Monahan

(1987), the proofs are omitted. Qualitative characteristics of the equilibrium point can be

deduced from the entries in this table. Result 7, for example, states that if the competitive

15



advantage ratio is less than one (R < 1), then firm 1 is not as "strong" as firm 2 in the

sense of total effectiveness of effort discussed above; so an increase in firm 2's profit per

unit (M2) is associated with a lower equilibrium level of firm l's goodwill (i.e., g* is lower).

Results 7 and 8 specify how /3*(r) determines the way in which the attraction elasticity

effects optimal effort decisions. Results 10-13 indicate how fl*(r) changes as either 61 or

62 increases.

Table 1 About Here

Much of the analysis in the next section hinges on the dependence of g\ on c\ defined

in (14). Note from (13) that c\ can be viewed as the constant marginal cost of goodwill. It

follows from (17) that the equilibrium level of firm </'s goodwill diminishes as c
q
increases

and does so at a decreasing rate.

PROPOSITION 1. Firm q's equilibrium goodwill level y* is a decreasing convex function of

c
q

.

If g (
= g* for each r, then a*

t
= m

q
(g* — s<) is the effort level expended by firm q in

period t, when the state of the sequential game at the beginning of period t is s t (cf. the

expression in (7)). In the next subsection, we summarize the effects on a*
t
of changes in

some of the parameters.

4.1 Properties of Competitive Effort Levels

We have seen that a solution to the dynamic game has the following extremely simple

structure: firm q simply "replenishes" its level of goodwill each period until it equals g *.

What does this simple strategy imply about optimal expenditures of effort? We show

in this subsection, that the relative simplicity of the goodwill strategy being employed
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can induce complex expenditures of effort. The example below has a fractional tit-for-tat

pattern of effort expenditures.

In a one-period deterministic duopoly attraction model, Monahan (1987) shows that

the allocations of one competitor are proportional to the allocations of the other competi-

tor. If one competitor increases effort, it is optimal for the other to do likewise. However,

the competitive effort decisions in the dynamic attraction model can be quite different. In

order to focus on the influence of the lag structure on effort decisions, we examine a special

case of the general model given in Section 2.

4.1.1. K t = 61 FOR ALL t.

The special case considered here is a deterministic version of the general model with

a one-period lag. We assume L„ = 0, n > 2 and K< = 01 for all r, where 9 is a positive

scalar. In this case, g* = g* for all t and (15) imply

a? =V [g*(l - 6) - Laa^]

,

(20)

where g* is the vector of equilibrium goodwill levels.

Intertemporal variation of competitive effort decisions is implicit in (20). For example,

suppose that Li = diag(A^) with A gl > 0, and L2 = [<*ijl> hj — 1,2. From (20),

a
*,t = [(1 - 0)9q ~ <*ql ~ aq,t-l X ql ~ O^-g.t-l] / X <H (21 )

for q = 1,2. Competitor g's equilibrium level of expenditure of effort in period t depends

upon its own equilibrium goodwill level and the levels of effort expended in period t — 1

by itself and its competitors.

Example.

The following example illustrates the period-to-period variability of effort allocations

that can accompany a policy that maintains a constant stock of goodwill. The example is

also interesting because the two competitors follow a "tit-for-tat" strategy discussed, for

example, in Kalai and Stanford (1985).

17



In Figure 1, we graph (21) as a function of t. The parameter values are:

(1 - 9)g*/Xn = 110 au /\u = 0.4

a 12 /Xu =0.005
(1 - 0)<72*/A21 = 90 a21 /A 21 =0.4

a22 /A21 = 0.005

a*
>0
= aj = 85

Each competitor employs a "pulsing" expenditure policy-in one period, one competitor

expends relatively more than the other and the pattern is reversed in the following period.

While these cycles repeat, the optimal effort levels dampen over time. In effect, we have an

example where a fractional tit-for-tat strategy is optimal in the larger class of closed-loop

strategies. Note that the pulsing effort allocations arise even though each competitor is

applying a "myopic" equilibrium strategy of maintaining goodwill levels at g*.

Insert Figure 1 About Here

The pulsing phenomenon can persist even in the presence of random goodwill effects.

For example, we have simulated equilibrium effort allocations in a model without direct

lagged effects (L
r , =0 for all n > 2) and with ^qt is uniformly distributed between 0.0 and

0.5 (Case 1 in Section 3.3). We observed pulsing expenditure patterns over a wide range

of parameter values.

5. Other Properties of an Equilibrium

This section presents additional results describing the qualitative dependence of equi-

librium efforts on model parameters.

PROPOSITION 2. If < £(f,i) < 1 and \qn > for all q and n, then the goodwill level g*

is an increasing function of the discount factor S
q

.

PROOF: Differentiating (14) with respect to S
q
establishes that c

q
is a nonincreasing func-

tion of S
q

. The result then follows from Proposition 1.
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The influence of the discount factor on equilibrium goodwill is not unexpected. A

decrease in the discount factor diminishes the valuation of future returns generated by

current goodwill. Current period payoffs are concave in goodwill, and hence both effort

and goodwill decline as the discount factor decreases.

The remaining results in this section concern the effect of the lag structure on equi-

librium allocations. Let A
q
= (X

q \ , . .
.

, A
9 /v) and A'

q
= (X'

ql , . .
.

, X'qN ) be different specifi-

cations of firm g's diagonal elements in the matrices Li , . .
.

, Lyv in the dynamical equation

(2) for goodwill. We write A
g
y A'

q
if

N N
L = £*?-%, >£' = £*J-lA

;»- (22 )

n=l n=l

If A
q
y A' current effort allocations have less impact in the "primed" model than they do

in the "unprimed" model. In this sense, the lag structure in the "primed" model is weaker

than in the "unprimed" model.

As in Proposition 2, firm ^'s equilibrium level of goodwill is lower if the impact of

future events on current profits is reduced. Let firm g's goodwill level with the "primed"

lag structure be g'

.

Proposition 3. If A
q
y A'

q
, then g* > g'

q
*.

PROOF: The hypothesis is that L > L' , so that

_ l-f,E(f,i) 1-^gfe.) _ .

C
'
_

L
S V

_ C ''

Therefore, Proposition 1 implies that g q
(c

g ) > g'
q
(c

q ). m

Bultez and Naert (1979) use Lydia Pinkham data to estimate the parameters of a

Pascal-distributed lag structure. The next result summarizes the influence of the Pascal

parameters on equilibrium effort levels.

Suppose A,/;l is Pascal-distributed with parameters x and y; i.e.,

A,„ =(l-x)y(y +
n
_
"j*"" 1

,
n = l,2,... andy = 0,l,.... (23)
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COROLLARY 4. If {X qn } satisfies (23), then g* increases (decreases) as y (x) increases.

PROOF: Using (23), it can be shown that

l = f>)n_1v = E^r-Hi - *) y x n
(
y + n ~ l

) ,

n=l n=l V n /

which simplifies to L = {(1 — x)/(l - 8x)} y
. Therefore, dL/dx < and dL/dy > 0, which

(from Proposition 3) establishes the result.

The interpretation of these results is simplified by noting a relationship developed in

the proof of Proposition 3. There we show that c
g , hence g*, is an increasing function of

A. We established Corollary 4 by showing that A increases (decreases) with y (x). The

interpretation, therefore, is consistent with the discussion following Proposition 2.

6. Summary

We formulated a stochastic, dynamic oligopoly model in which intra-period gross

profits have a market share attraction form. Market shares in the model evolve randomly

and respond to previous effort levels via a general lag structure. The model utilizes goodwill

as a measure of the market consequences of current and past effort decisions. We observed

that the model's dynamics and single-period rewards possess an affine structure that yields

a relatively simple expression for each firm's expected discounted expected profits. This

simple expression led to a single-period noncooperative game whose equilibrium points may

identify equilibrium points of the dynamic oligopoly model. The key requirement is the

condition that it must be feasible for every for each firm to repeat its portion of the single-

period game's equilibrium point. Several examples were given where this repeatability

condition is satisfied. Further, we present an example where repetition of the equilibrium

point induces continual fluctuation of effort levels.

Wr

e exploited the market share attraction form further by identifying an equilibrium

point of the one-period game with aesthetic appeal. Finally, we converted this equilibrium
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point to an equilibrium point of the dynamic oligopoly model and deduced the qualitative

dependence of equilibrium effort levels on various model parameters.

Appendix

Suppose that a discrete-time stochastic optimization process is observed and con-

trolled denumerably many times by the composite actions of players 1, . .
. ,
Q. Let states

(i.e., values taken by the stochastic process) be j -dimensional column vectors with real

components, let S be the state space, and let Asq be player <?'s nonempty set of feasible ac-

tions if the state is s' = (s\, , Sj), where prime denotes transpose. The state and player

g's action in period t are s t and g qt ,
respectively. Let g t = (git-, • • -,9Qt)- It is expedient

to permit the rewards and dynamics in a period to depend on earlier states and actions; so

the pertinent history in period t is h* = (s_5+2 ,g-B+2, • • • ,Si,gi, . .
.

, s t_i,g t -i, s t ) for

an appropriate integer B.

Player g's reward in period t is the random variable Xqt and player g's single-period

discount factor is 6qi < 8
q < 1. Let A = x =̂1 Uses Asq .

For b — 1,. .
.

,

B, let wj(-) be a column j-vector-valued function on A and W& be a

j x j matrix, and for each player q, let yqb{') be a real-valued function on A and Y
q b

be a

row j -vector.

Suppose for all t = 1,2, . .

.

Condition I:

B

E(sf+1 |hf ,g«) = ^[w 6 ( g< _ 6+1)+W 6 s,_ 6+1 ]
(Al)

6=1

Condition II:

B

E(Xqt \h t ,g t )
= ^2[yqb {gt-b+i) + Y qb s t -b+i]

.

(A2)

6=1

B
Let C, = £?=iWw ,- The following result is established in Sobel (1990a).

PROPOSITION 1. Ifl-C
q

is nonsingular, Conditions I and II imply that (11) is valid for

every control strategy and initial history for which the expectation on the left side exists

21



and is finite. Moreover, the number K
q
depends on hi but not on the strategy, and

H,(g) = E(^)
1- 1

6=1

B

Vqb (g) + Yg6 [I-C,]-
1^g )

fc
- 1 w,(g)

k=\

(A3)

We assume that I — C
q

is nonsingular and now show that Conditions I and II are

satisfied by the market share attraction model, whose single-stage reward and dynamics
m

are specified by (8) and (9), respectively. We see that (8) satisfies Condition II with

yqb (-) = and Yqb = if b > 2, yqi(gt) = /i,(g«) - m
9g*, and Y,i = m

q
. Likewise,

(9) satisfies Condition I with B = N - 1, wi(g) = [£(Ki) + L2 M] g, Wj = -L 2M,

wn (g) = Ln+iMg and Wn = -Ln+1M for n > 1.

Now we prove that the substitution of these elements in (A3) leads to (12). Substitu-

tion into (A3) yields

+ Samqmq
N-\ i -1

I-*
g
(-L 2M)- ^(^)

nLn+1M
n=2 (A4)

N-\

[E(K!) + L 2M]g+ ^(^^Ln+iMg

Note that

N -i
-1

i + ^c^ru+iLr 1

n=l

n=2

N

[lUi-^qr^n+lLT^-L- 1

n= l

-1

(A5)

Since (AB) 1 = B * A ! for nonsingular matrices A and B, (A5) simplifies to Li J q
and

(A4) becomes

N
H

q (g) = Kg) - ™*g + ^m,L!

J

f[JS?(KO + ^W"- 2 L n M]g. (A6)

n= 2

>N
But ^(tf"21" = (VM [(

J
«/)

_1 - L i]- Therefore, (A6) becomes (after substituting

m
gLi = e

q )

Hq(g) = /*(g) - m^g + ^m,Li J, ECKO+Rj^-Lil-M g

u(g) - m
gg + S

q
e
q
J

q
E(K

l )g + £,e, [I - J
? Li]

—Mg
6
q

/i(g)-«
fJfP-^(Ki)]g,

which is (12).

99



References

BULTEZ, A. V. AND NaERT, P. A. (1979). "Does Lag Structure Really Matter in Opti-

mizing Advertising Expenditures," Management Science,25 , 454-465.

CASE, J. (1979). Economies and the Competitive Process. New York, NY: New York

University Press.

DESHMUKH, S. D. AND WINSTON, W. (1978).
UA Zero-Sum Stochastic Game Model of

Duopoly," Int. J. of Game Theory, 7, 19-30.

DRIVEN, C. A. J. M. AND VRIEZE, O. J. (1986). "Advertising Models, Stochastic Games

and Myopic Strategies," Operations Research, 34, 645-649.

FlNK, A. M. (1964). "Equilibrium in a Stochastic n-Person Game," J. Sci. Hirohima

Univ. Ser. A-J, 28,89-93.

HEYMAN, D. P. AND SOBEL, M. J. (1984). Stochastic Models in Operations Research:

Vol. II. New York, NY: McGraw-Hill.

KALAI, E. AND W. STANFORD. (1985). "Conjectural Variations Strategies in Accelerated

Cournot Games," International Journal of Industrial Organization, 3, 133-152.

KlRMAN, A. P. AND SOBEL, M. J. (1974) "Dynamic Oligopoly with Inventories," Econo-

metrica, 42, 279-288.

LITTLE, J. D. C. (1979). "Aggregate Advertising Models: The State of the Art," Opera-

tions Research, 27, 629-667.

Magat, W. A., McCANN, J. M., AND MOREY, R. C. (1986). "When Does Lag Struc-

ture Really Matter in Optimizing Advertising Expenditures," Management Science,

32, 182 193.

MAMER, J. W. (1986) "Monotone Stopping Games," Working Paper, Graduate School of

Management, UCLA.

23



Mann, D. H. (1975). "Optimal Theoretic Advertising Stock Models: A Generalization

Incorporating the Effects of Delayed Response from Promotional Expenditures," Man-

agement Science, 21, 823-832.

MONAHAN, G. E. (1983). "Optimal Advertising with Stochastic Demand," Management

Science, 29, 106-117.

MONAHAN, G. E. (1987) "The Structure of Equilibria in Market Share Attraction Models,"

Management Science, 33, 228-243.

NAERT, P. A. AND WEVERBERGH, M. (1981). "On the Prediction Power of Market Share

Attraction Models," J. Marketing Res., 18, 146-153.

NERLOVE, M. AND ARROW, K. (1962). "Optimal Advertising Policy Under Dynamic

Conditions," Economica, 22, 129-142.

Nowak, A. S. (1985). "Existence of Equilibrium Stationary Strategies in Discounted

Noncooperative Stochastic Games with Uncountable State Space", J. of Optimization

Theory and Applications, 45, 591-602.

PONSSARD, J. P. (1981). Competitive Strategies. Amsterdam: North-Holland.

SCHMALANENSE, R. (1976). "A Model of Promotional Competition in Oligopo-

ly," Rev. Economic Studies, 43, 493-507.

SHUBIK, M. AND SOBEL, M. J. (1979) "Stochastic Games, Oligopoly Theory and Compet-

itive Resource Allocation," in Dynamic Optimization and Mathematical Economics

(P. T. Lu, Ed.) New York, NY: Plenum Press.

SHAPELY, L. AND SHUBIK, M. (1977). "Trade Using One Commodity as a Means of

Payment," J. Political Economy, 85, 937-967.

SOBEL, M. J. (1990a). "Myopic Solutions of Affine Dynamic Models," Oper. Res., 37, to

appear.

24



SOBEL, M.J. (1990b) "Higher-Order and Average Reward Myopic-Affine Dynamic Mod-

els," Math, of Oper. Res., 15, to appear.

WHITT, W. (1980). "Representation and Approximation of Noncooperative Sequential

Games," SIAM J. Control Optimization, 18, 33-48.

25



Result Conclusion
Number Variable Assumption Variable Direction*

1 6i #> 1 *i +
2 h R< 1 9*1 —

3 h i?> 1 9i
—

4 b2 fl< 1
9*i +

5 Mi 9*i +

6 M2 #> 1 9t +

7 M2 #< 1 9l
—

8 /? P>F 9*i +

9 /? (3 < (3*
9*i

—

10 6i r < 1 P*
—

11 6i r > 1 (3* +

12 62 r < 1 0* +

13 62 r > 1 (3* —

^Increasing and decreasing are denoted "+" and "—
",

respectively.

Table 1. Qualitative Properties of an Equilibrium
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