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Abstract

A superpopulation modelling approach is used to represent the

audited amounts within a population of balances or transactions. When

monetary errors represent overstatements, an upper bound on the expected

variance of the stratified difference estimator is derived. This result

is used to stratify the population, determine an appropriate sample

size, and determine a decision rule for evaluating sample results.





Stratified Sampling Using a Stochastic Model

Introduction

According to SAS No. 39, planning a statistical substantive test of

details requires specifying a tolerable monetary error and an allowable

risk of incorrect acceptance. The tolerable error represents the maxi-

mum monetary error that can exist in the population without causing the

financial statements to be materially misstated. The risk of incorrect

acceptance is the risk of the sample's supporting the conclusion that

the total monetary error in the population does not exceed the toler-

able error when, in fact, the total monetary error does not exceed the

tolerable error. The auditor may also elect to control the risk of

incorrect rejection. This is the risk of the sample's supporting the

conclusion that the total monetary error in the population exceeds the

tolerable error when, in fact, the total monetary error is less than

the tolerable error.

Statistically, the auditor may formulate this audit problem as a

statistical test of hypothesis (Elliott and Rogers [1972], Roberts

[1978]). This involves specifying an hypothesis and an alternative.

One hypothesis would state that the total monetary error in the popula-

tion exceeds the tolerable error, while the alternative would state

that the total monetary error in the population is less than the toler-

able error.

To test these hypotheses, the auditor must specify the sample size,

how the sample is to be selected, and how the sample results are to be

evaluated. One commonly used selection method is stratified random
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sampling. This entails dividing the recorded amounts into several

strata, and choosing a random sample from each stratum. To evaluate

the results, a decision rule based on an estimate of the total monetary

error can be developed.

An exact statistical solution to this testing problem requires

knowing the sampling distribution of the estimated total monetary error

under the hypothesis and under the alternative. If the sampling dis-

tribution were known as a function of the total monetary error in the

population, a sample size and decision rule could be determined that

would have the allowable risk of incorrect acceptance and, if desired,

the allowable risk of incorrect rejection at some specified small amount

of monetary error.

Because the sampling distribution as a function of the total mone-

tary error is unknown, only approximate solutions are possible. The

currently used testing procedures that are based on classical statisti-

cal estimators regard the sampling distribution as being approximately

a normal distribution.

Even in situations where the normal approximation is appropriate, a

difficulty arises because the variability of the sampling distribution

(the standard error of the estimate) is related to the amount of error

in the population. The fact that the variability of the population of

audited or error amounts changes as the total monetary error is changed,

was observed by Duke [1980 J and Duke, Neter, and Leitch [1982] in their

study of power characteristics. Their study demonstrates some of the

difficulties encountered when the auditor uses a procedure that does

not recognize this changing variability.
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Is it possible to say anything about the variability of audited or

difference amounts relative to the variability of recorded amounts as

a function of the error population distribution? In this paper we

suggest this question may be answered "yes" provided we are willing to

employ a plausible model for the population of audited or difference

amounts.

The modelling technique entails regarding the audited amounts asso-

ciated with any particular population of recorded amounts as being a

realization of a particular type of chance mechanism. This technique,

known in the statistical literature as a superpopulation model, permits

us to derive relationships on an expected value basis.

The particular case where all monetary errors represent overstate-

ments allows us to determine upper and lower limits for the expected

variability of audited and difference amounts. The upper limits are

then used to provide an approximate solution to the testing problem.

The suggested procedure provides a method for stratifying the popu-

lation, determining the sample size, and evaluating the sample results.

Because this procedure uses an upper bound based on a worst case situa-

tion, it is robust.

Superpopulation Model . Cassel, Sarndal, and Writman [1977] observe

that many recent important contributions to the problem of inference

in finite populations have used the superpopulation approach. In the

auditing context, taking a superpopulation approach means that the ob-

served audited amounts are regarded as realized outcomes of a prescribed

random process. Superpopulation models have long been used in sampling

research. Early users include Cochran [1939] and [1946], Deming and

Stephan [1941], and Madow and Madow [1944].
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The model for the audited amounts in the population used here is

(1) X. = (1 - 0.)Y
, j = 1, ..., N.

In this model, the recorded amount (Y . ) is not regarded as a random

variable, but the associated audited amount (X.) is the outcome of a

random process. The random variable X. is generated from the recorded

amount Y. by multiplying by the factor (1 - 0J). 0. is a random variable

which takes on the value zero (0) with probability (1-tt), and with proba-

bility it, takes on a value governed by a distribution function F.

Conceptually, each recorded amount is accorded an equal chance, tt
,

of being in error. If a monetary error exists, the magnitude of the

error is determined by the value of 0, which measures the relative error
Y. - X.

(0. = —aL
) in the recorded amount. The relative errors are con-

sidered to be generated from the same distribution function. When this

distribution is confined to the interval from zero to one, all the mone-

tary errors are overstatements. Negative values for would correspond

to understatement errors.

This conceptual model reasonably reflects the situation the auditor

faces in a substantive test of details. The auditor knows the recorded

amounts but the associated audited amounts are unknown. An unknown

fraction of the recorded amounts contain monetary errors. Because the

auditor generally has no knowledge of which items are in error, it seems

reasonable to suppose that each item is equally likely to contain an

error. The size of the monetary error may be expressed relative to the

magnitude of the recorded amount.
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Kaplan [1973A] used a similar model. The chief difference, other

than notation, is that he considered a second stage of randomization in

which the audited amount was associated with a recorded amount selected

at random from the population. His expectations were taken relative

to both the random selection process and the error producing process.

Because we want to examine the structure of the audit population gener-

ated from the error producing process, the superpopulation model defined

here does not include random selection as part of the model.

Expectation and Variance of Audited Amounts . The model may be used

to derive the expectation and variance of audited amounts. Using the

symbol E to represent the expectation operator with respect to the

random variable 0, the following relationship holds:

(2) EgX. J Y.U-,y
e

)

where y denotes the mean of the distribution of relative errors. By

adding over all population items, it follows that

N N

(3) E (EX ) = (EY )(1-ttu ).
U

1
J

1
J U

This says that the expected total audited amount equals the total re-

corded amount multiplied by the factor (1-ttjj-) , or equivalently, the

difference between the total recorded amount and the expected total

audited amount equals the total recorded amount multiplied by iry (the

faction of accounts in error times the mean relative error) . Because

of the large size of N, a realization of the random process would yield

a value of the actual sum of audited amounts very close to its expecta-

tion, or
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N , N
EX, = SY,(l-7ry ),

1 J
1

J 9

where = denotes approximate equality.

The expected variance of audited amounts is

(4) E_Var X = [Tra^-Hr(l-Tr)u^+(1-Try )
2
]Var Y + ba^U-TOy^T2~ 9 Q

Kx.-xr
1 "3 "

2
where Var X = = ' ^^ is the variance of the relative error,~ N

and the symbol = denotes approximate equality. The approximation arises

N-l
from substituting one (1) for the quantity ( ) , and consequently the

expression on the right slightly overstates the expected variance.

Of special interest is the magnitude of the expected variance when

the total monetary error equals the tolerable error. The following in-

equality holds when all monetary errors represent overstatement errors.

(5) E
Q
Var X < (l-iTU )Var Y + ttu (1-ttu

q
)Y

2

Using the symbol TE to represent the tolerable error, and Y to represent

the total recorded amount, the following inequality is the result of im-

posing the condition that the expected total monetary error equals

TEUu Y = TE),

TF 2
(6) E AVar X < (l-TE/Y)Var Y + -^Kl-TE/Y)Y

~ i

This upper bound is realized when all monetary errors represent 100

percent overstatements.
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A lower bound on the expected variance of audited amounts when the

total monetary error equals the tolerable error corresponds to the situa-

tion where the relative error is concentrated at a single value, making

2 TE
o_ = 0. This can be seen by examining (4) and setting tru = ——. The

following inequality then holds:

TF
(7) E

Q
Var X > (l-^Var *

This lower bound is realized when each account is overstated by a con-

stant percentage.

While these results have been derived without considering the effect

of stratifying the recorded amounts, similar relationships hold when

the recorded amounts are stratified provided the probability of an item's

being in error is not affected by the stratification. Examining each

of the relationships (2)-(7), the only change is that all hold for each

stratum. To illustrate this (3) and (4) become, for the k stratum,

Nk Nk
(3

?

) EAl X., ) = (E Y., )(l-iru_)

x
~jk

1
jk

and

(4
f

) E
Q
Var ^ = Tra^Cl-* )^+(l-TTu

Q
)
2
Var Y

k
+ (tto-q+ttU-iOu

2^
where the subscript k indicates the restriction to the k stratum.

Expectation and Variance of Differences . Defining the difference

as the recorded amount minus the audited amount, analogous results may

be derived concerning the expected difference and the expected variance

of the difference. From the basic definition of the model, the dif-

ference, D, may be represented as
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(8) D. = Y. - X.
~J J ~3

= 0.Y..

Taking the expectation with respect to the random variable 0, the

following relationship holds:

(9) ED. = *UJT,.

By adding overall population items, it follows that

N N

(10) E (ID.) = iry (EY.)
i J 1 1

The expected variance of difference amounts is

(11) EnVar D = ir(y^+a^)Var Y + (y^(l-TT)+ua^)T
2

© ~

As anticipated, this expected variance is always smaller than the ex-

pected variance of audited amounts whenever the expected audited amount

is at least fifty percent of the recorded amount.

When all monetary errors represent overstatements and the total

monetary error equals the tolerable error (TE) , an upper bound for the

expected variance of differences is

(12) E
Q
Var D < -2. Var Y + I|<1-I|)Y 2

If the distribution of monetary error with the largest variance is

called the least favorable , then it follows from (12) that when all

monetary errors represent overstatements, the least favorable distribu-

tion of monetary error selects a proportion of the items in the popula-

tion to contain the error, and each item selected is 100% overstated.
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This notion of a least favorable distribution was introduced by

Teitlebaum [1973] in connection with dollar unit sampling.

The inequality (12) is obtained from (11) by maximizing the

2
variance of the relative error (o"_) subject to the conditions that

TE
ttu = —— and takes its values between zero and one. More generally,

for any value of tt y , the inequality may be written

(13) E
Q
Var D < 7ru

Q
Var Y + 7nj

Q
(l-Tru

Q
)¥

2

It is also possible to obtain a lower bound for the expected

variance of differences under these same conditions. This relationship

is expressed as

TF 2
(14) E^Var D > (—; Var *

« Y

This inequality corresponds to the situation where every population

TE
item is overstated by the same relative monetary error, —~.

From (12) when all monetary errors represent overstatements and

the total monetary error equals the tolerable error it follows that the

variance of recorded amounts exceeds the expected variance of differences

whenever the square of the coefficient of variation of recorded amounts

TE
is greater than——. That is,

Var Y TE
—2 Y
Y

Because these results apply to each stratum in a stratified design,

it follows that as long as the square of the coefficient of variation

TE
of recorded amounts within any stratum is larger than ——, the variance

of the stratum recorded amounts exceeds the expected variance of dif-

ferences within the stratum.
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APPLICATION TO TESTING . In this section we shall apply the approxi-

mate expected variances to the problem of testing whether the monetary

error exceeds the tolerable error (TE). We suppose that the auditor

expects some monetary error (EE), and that all monetary errors represent

overstatements

.

Figure 1 illustrates the situation. On the left is the sampling

distribution of the estimated monetary error, D, under the hypothesis

that the total monetary error equals EE, the expected error, and on the

right is the sampling distribution of D under the hypothesis that the

total monetary error equals TE, the tolerable error. Note that the

variability of the sampling distribution on the right as measured by

its standard deviation, S(TE), is larger than the standard derivation

on the left, S(EE). S(TE) is the standard error of the estimated dif-

ference when the population monetary error equals TE; S(EE) is the

standard error of the estimated difference when the population monetary

error equals EE.

plG*fc£ I

TOTAL MONETARY
ERROR
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For a specified risk of incorrect acceptance (3) and a specified

risk of incorrect rejection (a), the auditor must determine a sample

size n and a critical amount C. If the estimated difference, D, exceeds

C, the auditor decides that the monetary error may be larger than the

tolerable error (TE) , and if the estimated difference, D, is less than

or equal to C, the auditor decides that the monetary error does not

exceed the tolerable error.

The risk of incorrect acceptance is determined as the probability

that D is less than or equal to C when the total monetary error equals

TE; the risk of incorrect rejection is determined as the probability

that D exceeds C when the total monetary error equals EE. Using the

symbols z to represent the normal table value corresponding to a risk
p

of incorrect acceptance equal to 3, and z to represent the normal table

value corresponding to a risk of incorrect rejection equal to a, the

equations for the sample size, n, and the critical amount, C, are

(15) TE - EE = z S(EE) + z S(TE)
a 3

and

(16) C = TE - z S(TE)
p

Solving these equations for n and C requires knowing the standard

derivations S(EE) and S(TE). To obtain an approximate solution, we can

use the inequality (13) developed in the previous section for the case

where all monetary errors represent overstatements. Neglecting strati-

fication and the finite population correction factor for the moment, the

following inequalities hold,
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S(EE) <
/
± • ^| /

Var Y + (l-^Y2"

and S(TE) <
/
± • -~

/
Var Y + (1-^|)Y

2

Replacing S(EE) and S(TE) by these upper limits, we can solve the fol-

lowing equation for the sample size:

2

EE TT _ ., f . EE N
—2 TE TT v ,. TE N

—

2

Z
a/—•

Var Y + (1~)Y +V T•
Var Y + (1~Y )Y

(17) n = _

(TE - EE)

This expression can be simplified and made somewhat larger by substitut-

ing (1-EE/Y) for (1-TE/Y) and rewriting as

2
EE TE 2

Z
a/ ~Y

+ Z
6/ ~Y Var Y + C1-EE/Y)Y

(18) n « — 21 1

(TE - EE)
2

Now we are ready to consider the situation where stratification is

used. We suppose that the stratification is based on the recorded

amounts, by using some acceptable technique such as the square-root of

the cumulative frequencies. As in the unstratified case, the two for-

mulas (15) and (16) are to be solved to determine the required sample

size and critical number.

An additional decision to be made when a stratified plan is used is

how to allocate the sample is to the strata. Neyman allocation, in which

the sample is divided among the strata in proportion to the product of

the stratum population size times the stratum standard deviation, is a

commonly used procedure. Using this allocation method, the question is

what standard derivation to use. One choice would be to use the stan-

dard deviation of recorded amounts. A better choice would be to use the
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standard deviation associated with either the expected error amount (EE)

or the tolerable error amount (TE).

While neither of the latter two is known, the inequality (13) pro-

vides a useful upper limit for the situation when the monetary errors

all represent overstatements. Using the inequality, the two possible

allocations are

N, , Var Y(h) + (l-^|)Y
2
(h)

(19) n, = n

Z N
h/

Var Y(h) + (l-£|)Y
2
(h)

and

N, , Var Y(h) + (l-^|)Y
2
(h)

(20) n = n
h/ Y

h L
1 N, , Var Y(h) + (l-TE/Y)T^(h)
1

h/

In these equations, h represents stratum h and there a total of L strata.

As a numerical example, we adapt an example described in Roberts

[1978], p. 98. A population of 10,000 items with a total recorded amount

of $4,000,000 is divided into four strata. Table 1 gives the facts for

this example. Additionally, we assume that 7E = $200,000 (TE/Y = .05),

and EE = $20,000 (EE/Y = .005).

Var Y(h) Y,
n

STRATUM N
h

1 5500

2 3000

3 1000

4 500

6,400 $203.64

22,500 316.67

40,000 1050.00

168,100 1760.00
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The following table shows the allocations using each formula as well as

the standard deviation of recorded amounts.

PERCENTAGE OF SAMPLE

STRATUM
RECORDED

EE = $20,000 TE = $200, 000 AMOUNTS

28.48 28.48 34.00

24.88 24.92 34.67

25.27 25.24 15.33

21.37 21.36 16.00

1

2

3

4

These results illustrate that the allocation differs little between

using EE and TE, but both of these give a different allocation from

that based on the recorded amounts. Consequently, we shall use Neyman

allocation calculated using the upper limit at EE. This choice simpli-

fies the formulas for calculating the sample size and critical number

without affecting the resulting allocation very much.

The following expression represents the upper limit for the standard

error of stratified estimates D , based on L strata when the monetary

error equals TE:

TE
L N

h -2
(21) S(TE) </-—/ Z(— - N,)(Var Y(h) + (1-TE/Y)Y

Z
(h)

)

r Y v , n, h
1 n

The corresponding inequality for S(EE) is of the same form, but with

EE replacing TE.

The formula (15) can now be used to determine the sample size.

Using that formula, we replace the stratum sample sizes n, by the ex-

pression (19) and use the inequalities for S(TE) and S(EE) represented
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by (21). After some simplification and replacing (1-TE/Y) by (1-EE/Y)

in the bound for S(TE) , the formula for n can be expressed as

Cz
a/ ^f + V 1

!)
2

(E N
h/

Var Y(h) + Cl-^Y^CH))
2

(22) n= i
j-

(TE-EE)
2
+ (2

a/^ + V^")2 E N
h
(Var Y ( h )+ ( 1^f)Y

2
( h))

When this formula is applied to the previous numerical example with

a = 6 = .05, the resulting sample size is 125, allocated among the four

strata as 35, 31, 31, and 28. For comparison, suppose the sample size

is determined by using the recorded amounts. In that case, the required

sample size is 518. This large difference is caused by two factors:

(1) in this case the standard deviation of the stratum recorded amounts

is larger than the standard deviation of differences under EE, and,

except for stratum 3, under TE, and (2) using the recorded amounts does

not permit using the fact that the standard deviation under EE is smaller

than under TE.

Having determined an appropriate sample size for a stratified design,

the critical amount C may be obtained by using inequality (21) as a proxy

for S(TE) in formula (16). The stratified difference estimator, D , is

compared to the critical amount as described earlier in the paper. The

critical amount C is determined by the following equation:

2
L N

C = TE - z
Q
^/S(— - N.)(Var Y(h) + (1 -^f-)Y

2
(h))

3 Y
1 \ h Y

Continuing the numerical example, the critical amoung C = $65848. The

decision rule is to decide that the total monetary error exceeds

$200,000 when the stratified estimator of the monetary difference

exceed $65,848.
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SUMMARY AND CONCLUSIONS . Adopting a superpopulation approach to

modelling the distribution characteristics of audited amounts provides

a useful basis for planning and evaluating stratified random samples.

When the monetary errors represent overstatments we have derived upper

bounds to the expected variance of the stratified difference estimator.

Using this upper bound, it is possible to stratify the population,

determine an appropriate sample size, and determine a decision rule for

evaluating the sample results.

Using this modelling approach when faced with overstatemetns we are

able to avoid some of the difficulties associated with the more com-

monly used stratified sampling designs. The foremost of these is the

problem of observing very few monetary errors in the sample. Neter and

Looibbecke [1975] observed this in their simulation study. The model

approach does not depend upon the sample to provide an estimate of the

standard deviation of population differences, and hence will perform

well regardless of the number of errors observed in the sample.

Another difficulty noted in the literature is the failure of the

standardized estimator (defined as the estimator minus the mean divided

by the standard error) to be approximately normally distributed.

Kaplan [1973b] observed that the correlation between the estimator and

the estimated standard error was responsible for this failure. The

model approach developed here depends only on the approximate normality

of the estimator. Examining the results of Neter and Loebbecke [1975]

for the populations 3 and 4, we see evidence that the stratified dif-

ference estimator has a distribution that is reasonably close to being
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normal when the population error percentage is at least five.

Consequently, the use of normal table factors should produce reason-

ably good results.

Finally, the modelling approach presented here overcomes some of

the theoretical difficulties caused by the fact that the standard devi-

ation of audited amounts (or difference amounts) increases as the

amount of monetary increases.



-18-

REFERENCES

Cassel, C. , C. Sarndal, and J. Wretman (1977), Foundations of Inference
in Survey Sampling . New York: Wiley.

Cochran, W. G. (1939), "The Use of Analysis of Variance in Enumeration
by Sampling," Journal of the American Statistical Association , 34,

pp. 492-510.

Cochran, W. G. (1946), "Relative Accuracy of Systematic and Stratified
Random Sampling for a Certain Class of Population," Annals of Mathe-
matical Statistics , 17, pp. 164-177.

Deming, W. E. and F. Stephen (1941), "On the Interpretation of Censuses
as Samples," Journal of the American Statistical Association , 60,

pp. 750-771.

Duke, G. (1980), An Empirical Investigation of the Power of Statistical
Sampling Procedures Used in Auditing under Different Models of

Change of Error Patterns. Unpublished Ph.D. Dissertation, Univer-
sity of Georgia.

Duke, G. , J. Neter, and R. Leitch (1982), "Power Characteristics of Test
Statistics in the Auditing Environment: An Empirical Study,"
Journal of Accounting Research (Spring), pp. 42-67.

Elliott, R. K. and J. R. Rogers (1972), "Relating Statistical Sampling
to Auditing Objectives," The Journal of Accountancy , July, pp. 46-55.

Kaplan, R. S. (1973A), "A Stochastic Model for Auditing," Journal of

Accounting Research , Autumn, pp. 38-46.

Kaplan, R. S. (1973B), "Statistical Sampling in Auditing with Auxiliary
Information Estimates," Journal of Accounting Research , Autumn,

pp. 238-258.

Madow, W. G. and L. H. Madow (1944) , "On the Theory of Systematic
Sampling," Annals of Mathematical Statistics , 15, pp. 1-24.

Neter, J. and J. K. Loebbecke (1975), Behavior of Major Statistical
Estimates in Sampling Accounting Populations . New York: American
Institute of Certified Public Accountants.

Roberts, D. M. (1978), Statistical Auditing . New York: American
Institute of Certified Public Accountants.

Teitlebaum, A. D. (1973), "Dollar-unit Sampling in Auditing," unpublished
paper presented at 1973 American Statistical Association annual
meeting.

D/98A






